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Preface 

The primary purpose of this handbook is to provide the detail needed to make 

a sound technical evaluation of the capabilities and characteristics of the VAX 

Architecture. A secondary purpose is its use as a text for students of computer 

architecture. The handbook is not an assembly language reference. However, 

readers interested in assembly language programming will find this handbook 

an excellent introduction to that subject. 
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Chapter 1 ■ VAX Architecture Design 

During the next decade, computers and the computer industry will witness 

ever-increasing, perhaps unpredictable, demands. In finance, government, 

industry, and in the home, computers will serve expanding roles, solving prob¬ 

lems, managing processes, or facilitating communication. Digital developed an 

innovative computer technology to confront these challenges—a technology 

that offers vast power and enormous flexibility for every application. At the 

same time, we have held fast to the philosophy of affordability and ease of use 

that made Digital the leader of the minicomputer industry. 

Scientific, industrial, commercial, and educational market users have already 

put the original VAX model through its paces in numerous situations—real¬ 

time, computational, program development. In the coming decade we will see 

a wide range of new tasks handled by VAX processors. 

■ Introducing VAX Architecture 

The VAX architecture is the heart of the VAX processor family. We define 

architecture as the collection of attributes common to all VAX processors— 

attributes that guarantee that all software developed on a VAX processor runs 

without change on all VAX processors. 

Particularly pertinent attributes are the instruction set, memory management, 

and certain other aspects of the design that help define contexts and pro¬ 

cesses. Let us make a distinction between the architecture and the implemen¬ 

tation of that architecture. For example, the architecture of the typewriter is 

essentially fixed: it is the keyboard layout. With knowledge of the alphabet 

and punctuation systems, any typist can make a typewriter work—can pro¬ 

cess jobs. However, each manufacturer may implement that architecture in 

differing ways. Some may have striking print keys while others may have 

spherical typing elements. Some may have a blue keyboard, some black. In 

addition, the manufacturer could trade one feature for another; for example, a 

lighter touch versus the capability to make a number of carbons. Neverthe¬ 

less, all typewriters still perform an essential function, typing. 

Computer architectures also perform an essential function. Each processor in 

the family may bear slightly differing implementations and tradeoffs. Yet all 

will fulfill the requirements of the machine. And all will deliver the same ser¬ 

vice to the users. For example, having learned the instruction set, a program¬ 

mer is ensured that an instruction performs precisely the same operation on 

each processor in the VAX computer family. This includes the Micro VAX pro¬ 

cessors that use a subset of the VAX instruction set. 
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VAX architecture is appropriate over a variety of system costs, performance 

and application needs. Therefore, a broad range of user requirements can be 

met at a lower cost because the price of supporting many different architec¬ 

tures is eliminated. 

The most visible attribute of VAX architecture is the instruction set. Over 

three hundred instructions give an assembly-level programmer extensive con¬ 

trol of computer operation. Each instruction has a mnemonic, a shorthand 

name that suggests its function. (Obvious mnemonics are ADD, DIV, MOV, 

and PUSH.) Independence is incorporated into the instruction set. That is, the 

operation being performed, the type of data used, and the method of address¬ 

ing can all be considered independently by the compiler. This makes for 

faster, more efficient, and easier to implement compilers. 

Some recurrent operations from high-level languages are engineered into the 

hardware so that a single instruction can handle them. The FORTRAN DO 

loop and three-operand addition (A = B + C) are examples of operations 

that are handled by a single VAX instruction. 

The instructions include provisions to make various applications and operat¬ 

ing system codes more efficient. There are, in this group, hardware support of 

queues, easy access to bit fields of variable lengths, and simple instructions to 

save or restore a program context. 

Because Digital foresaw the possibility of adding more and more applications, 

the instruction set is extendible. The instruction set can be expanded to 

include new data types and operators in a way that consistently matches all the 

ones that already exist. Enormous flexibility is assured this way, because 

what exists now does not significantly constrain what may be added in the 

future. 

■ Virtual Address Extension 

The word VAX suggests the premier feature of VAX processors—virtual 

address extension. In a VAX computer, information is located with a 32-bit 

address. This means effectively that the computer can recognize more than 

four billion addresses. In minicomputer and programming terms, this is an 

enormous address range. The remarkable thing about this address space is that 

it is virtual. 

The physical memory of the computer need not be nearly as large as the four 

billion bytes for the machine to process data whose addresses are scattered 

through the address space. In fact, what happens is that a sophisticated 

scheme called memory management allows programmers to operate as if a 

major part of the virtual address space is available to them. Memory manage¬ 

ment handles all the details of storing programs and subsequently bringing 

them into main memory where they are processed. 
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From the programmers’ points of view, two billion bytes of virtual address 

space can be used for programs. Programmers need never worry about the 

complicated techniques of overlaying or segmenting to squeeze the program 

into a smaller address range. Logic is built into the VAX processors to quickly 

■ translate all the virtual addresses to physical addresses 

■ store the programs and data in convenient locations 

■ bring into main memory whatever parts of the program or data are needed 

at any instant. 

Another characteristic of the VAX architecture is the rapid switching of pro¬ 

cess context. VAX machines are high-powered processors. Many programs 

and many programmers can use a VAX processor simultaneously, with each 

appearing to have control. Actually, the processor is executing pieces of one 

program and switching back and forth to execute other programs. A switched- 

in context allows a program to run. A switched-out context makes the program 

wait for the processor. Consequently, many different activities can occur on a 

VAX processor at any one time. Context switching takes place so quickly that 

no one is aware of the change. 

■ PDP-11 Computer Compatibility Option 

We use the word compatibility to designate VAX systems’ connection to the 

PDP-11 computers. Customers have a large investment in the PDP-11 com¬ 

puters and software. To protect that investment, and to simplify the migra¬ 

tion procedures, Digital offers optional software to ensure that VAX systems 

accept with minimal conversion many types of PDP-11 programs. 

Conversely, VAX systems offer an excellent host development environment 

for applications that will eventually run on PDP-11 computers. Naturally, 

there are some restrictions. But most of the time, a simple recompilation of 

programs is all that is required to carry a PDP-11 program to a VAX processor. 

Compatibility mode programs may execute with native mode programs in a 

VAX system environment. 

■ Memory Management 

The memory management hardware is responsible for maintaining virtual 

memory environment and for enforcing memory protection between access 

modes. But that is only a part of the memory management function. In particu¬ 

lar, the memory management hardware enables the operating system to pro¬ 

vide an extremely flexible and efficient virtual memory programming 

environment. 
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Virtual address space consists of all possible 32-bit addresses that can be 

exchanged between a program and the processor to identify a byte location in 

physical memory. The memory management hardware translates a virtual 

address into a physical address. 

NOTE 

A physical address is the address exchanged between the pro¬ 

cessor, memory, and the peripheral adapters. Typically, the 

physical address is transparent to the programmer, who deals 

with virtual addresses. 

■ Additional Literature 

Additional literature on the VAX architecture is available. The literature is 

directed toward two types of readers—those who need only enough detail to 

evaluate the VAX processors and those who need the myriad of detail needed 

to develop assembly language programs. Should you need for that literature, it 

can be ordered through your local Digital Sales Office or through the Digital 

Accessories and Supplies Group. 

For the evaluators, there is the VAX Handbook Series of which this handbook 

is one. They cover a variety of subjects related to VAX processors—hardware, 

software, languages, tools, and others. 

For assembly language programmers (and in-depth evaluators), there is a man¬ 

ual available that describes the architecture in great detail (VAX-11 Architec¬ 

ture Reference Manual, Order Code EK-VAXAR-RM-002). The manual 

provides a functional description of the behavior of the VAX processors. In 

addition, there is a programming card containing the instructions in tabular 

form. The card lists by opcode each instruction, its arguments, and the affect 

the instruction has on the condition codes (VAX-11 Programming Card, order 

number AV-D827C-TE). 

We hope that the handbooks answer most of your questions about the VAX 

family of computers, their architecture, and the abundance of available soft¬ 

ware. If you have more questions, your Digital sales representative will be 

happy to help you. 
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The term VAX architecture, when used in the context of this discussion, refers 

to the functional behavior of a VAX processor as opposed to the logical design 

and the physical implementation. The primary advantage of a common family 

architecture is that it provides the ability to create software on one processor 

and execute that software on any other processor in the family. 

NOTE 

For your convenience, this handbook contains a glossary of 

words and terms that have either a unique meaning in VAX 

systems or are used with special meaning. 

■ Processing Concepts 

VAX processors are designed specifically to support a high-performance multi¬ 

programming environment. The major advantage of a multiprogramming sys¬ 

tem is its ability to share its resources. For example, multiprogramming 

enables the apparently simultaneous execution of many applications and the 

interactive development of applications programs. Hardware characteristics 

that support multiprogramming are 

■ Rapid context switching. 

■ Priority dispatching. 

■ Virtual addressing. 

■ Memory management. 

Multiprogramming VAX systems not only share the processor among several 

processes but also protect processes from one another while allowing them to 

communicate and share both code and data. 

A process is the basic entity that can be executed by a VAX system. Processes 

consist of an address space, a hardware context, and a software context. The 

hardware context is defined by a process control block (PCB). The block is a 

data structure containing images of the general purpose registers, processor 

status longword, program counter, process stack pointers, process mapping 

registers, and several minor control fields. 
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When a process is not executing, its hardware context is stored in the process 

control block. Most of the process control block must be moved to internal 

registers for the process to execute. When a process is executing, some of its 

hardware context is updated in the internal registers. 

Saving the contents of the privileged registers in the process control block of 

the currently executing process and then loading a new set of context in the 

privileged registers from another process control block is termed context 

switching. Context switching occurs as one process after another is scheduled 

for execution. 

Context Switching 

In a multiprogramming environment, several individual streams of code can 

be ready to execute at any time. Instead of allowing each stream to execute to 

completion serially (as in a batch-only stream), the operating system inter¬ 

venes and switches among them. In VAX computers, the hardware establishes 

an environment for rapid switching. Switching occurs to increase the effi¬ 

ciency of the computer by using its resources in a balanced fashion, and to 

allow the intervention of processes or events that require priority treatment. 

The stream of code executing at any one time is determined by its hardware 

context; that is, the information that is in processor registers. That informa¬ 

tion identifies 

■ The location of the stream’s instructions and data. 

■ Which instruction to execute next. 

■ The processor status during execution. 

Therefore, a process is a stream of instructions and data defined by a hardware 

context. Each process has a unique identification. The operating system 

switches between processes by requesting the processor to save one process’s 

context and load another. Context switching occurs rapidly because the 

instruction set includes instructions that save and load hardware context. 

For each process eligible to execute, the operating system creates a data struc¬ 

ture called the software process control block. Within that block is a pointer 

to another data structure, the hardware process control block. That control 

block contains the hardware process context, that is, all the data needed to 

load the processor’s programmable registers when a context switch occurs. To 

give control of the processor to a process, the operating system loads the pro¬ 

cessor’s process control block base register with the physical address of a hard¬ 

ware process control block and issues the load process context instruction. The 

processor loads the process context in one operation and is ready to execute 

code within that context. 
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The process control block also contains the definition of the process virtual 

address space. Thus, the mapping of the process is automatically context- 

switched. 

Furthermore, the process control block provides the mechanism for triggering 

asynchronous system traps (AST) to processes. The AST field is used to sched¬ 

ule a software interrupt. The interrupt initiates an AST routine and ensures 

that they (interrupt and AST routine) are delivered to the proper process. 

Priority Dispatching 

While running in the context of one process, the processor executes instruc¬ 

tions and controls data flow to and from peripherals and main memory. To 

share processor, memory, and peripheral resources among many processes, the 

processor has two arbitration mechanisms that support high-performance 

multiprogramming—exceptions and interrupts. Exceptions are events that 

occur synchronously (predictably) with respect to the execution of a particular 

stream of instructions. Interrupts are external events that occur asynchro¬ 

nously. 

The flow of execution can change at any time, and the processor distinguishes 

between changes in flow that are local to a process and those that are system- 

wide. Process-local changes occur as the result of a user software error or 

when user software calls operating system services. They are handled through 

the processor’s exception detection mechanism and the operating system’s 

exception dispatcher. 

Systemwide changes in flow generally occur as the result of interrupts from 

devices or interrupts generated by the operating system software. Interrupts 

are handled by the processor’s interrupt detection mechanism and the operat¬ 

ing system’s interrupt service routines. Systemwide changes in flow may also 

occur as the result of severe hardware errors, in which case they are handled 

either as special exceptions or high-priority interrupts. 

Systemwide changes in flow take priority over process-local ones. Further¬ 

more, the processor uses a priority system for servicing interrupts. Each kind 

of interrupt is assigned a priority, and the processor responds to the highest- 

priority interrupt pending. For example, interrupts from the high-speed disk 

devices take precedence over interrupts from low-speed devices. 

The processor services interrupts between instructions, or at well-defined 

points during the execution of long, iterative instructions. When the proces¬ 

sor acknowledges an interrupt, it switches rapidly to a special systemwide con¬ 

text to enable the operating system to service the interrupt. Systemwide 

changes in the flow of execution are handled so they do not disrupt individual 

processes. 
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Virtual Addressing 

Most data is located in memory using the address of an 8-bit byte. Virtual 

addresses identify the byte locations. Such addresses are called virtual because 

they are not the real addresses for physical memory locations. Rather, they are 

translated into real addresses by the processor under operating system control. 

A virtual address, unlike a physical memory address, is not a unique address of 

a location in memory. For example, two programs using the same virtual 

address might refer to two different physical memory locations. Conversely, 

two programs could refer to the same physical memory location using differ¬ 

ent virtual addresses. 

The set of all possible 32-bit virtual addresses is called virtual address space. 

It can be viewed as an array of byte locations labeled from 0 to 4,294,967,295 

(232 - 1). This space is divided into sets of virtual addresses designated for 

certain uses: those used by processes constitute half of the total virtual 

address space, and are collectively designated as process space. Addresses in 

the remaining half of virtual address space refer to locations maintained and 

protected by the operating system, and are collectively designated as system 

space. 

Memory Management 

Memory management hardware enables the operating system to provide an 

extremely flexible and efficient virtual memory programming environment. 

The memory management hardware oversees the handling of virtual address 

space including memory protection. 

Virtual address space is divided into pages. Each page represents 512 bytes of 

contiguously addressed memory. The first page begins at byte 0 and continues 

to byte 511. The next page begins at byte 512 and continues to byte 1023, 

and so forth. 

To make memory mapping efficient, the processor must be able to translate 

virtual addresses rapidly to physical addresses. Two features providing rapid 

address translation are the processor’s internal address translation buffer and 

the translation algorithm itself. 

The processor has three pair of page mapping registers. Two pair are for the 

process space (P0 and PI) and one pair for system space. The operating sys¬ 

tem’s memory management software loads the pairs of registers with base 

addresses and lengths of data structures called page tables. The tables provide 

the mapping information for each virtual page in the system. Thus, there is 

one page table for each of the three regions. 
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A page table is a virtually contiguous array of page table entries. Each entry is 

a longword representing the physical mapping and protection for one virtual 

page. To translate a virtual address to a physical address, the processor uses 

the virtual page number as an index into the page table from the given page 

table base address. Each translation contains 512 virtual addresses. 

All process page tables have virtual addresses in the system region of virtual 

address space. But the system region page table itself is located by its address 

in physical memory. That is, the system region page table base register con¬ 

tains the physical address of the page table base, while the process page table 

base registers contain the virtual addresses of their page table bases. 

There are two advantages to using a virtual address as the base address of a 

process page table. The first is that all page tables need not reside in physical 

memory. The system region page table is the only page table that needs to be 

resident in physical memory. The process page tables can reside in auxiliary 

memory. That is, they can themselves be paged and swapped as necessary. 

The second advantage is that the operating system’s memory management soft¬ 

ware can allocate process page tables dynamically because they do not need to 

be mapped into contiguous physical pages. And although the system region 

page table must be mapped into contiguous physical pages, this requirement 

does not restrict physical memory allocation. The region is shared among pro¬ 

cesses and therefore does not require redefinition from context to context. 

Memory protection is implemented by having four access modes. Each pro¬ 

cess is assigned an access mode. The hardware checks the memory access 

request against the assigned access mode. There are four access modes: ker¬ 

nel, executive, supervisor, and user. The kernel mode has the highest degree 

of access while the user has the lowest degree of access. Memory management 

is described in greater detail later in this book. 

■ Instruction Set 

A major goal of the VAX architecture is to provide an instruction set that is 

symmetrical with respect to data types. Symmetrical operations include data 

movement, data conversion, data testing, and computation. Thus, the best 

instruction for the data type can be selected for optimum processing. 

Instruction mnemonics are formed by combining an operator abbreviation 

with a data-type suffix. Conversion instructions are formed by adding suf¬ 

fixes for both the source and destination data types. Computation instruc¬ 

tions have an additional suffix to indicate the choice between two-operand 

and three-operand instructions. Instruction mnemonics were carefully chosen 

to ensure they perform the task for which they were designed. 
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A native-mode instruction may start on any byte boundary. The variable- 

length instruction format makes code more compact and also guarantees that 

the instruction set can be easily extended. Operation codes or opcodes for the 

operations are single or double bytes followed by up to six operand specifiers. 

An operand specifier can be from 1 to 17 bytes long depending on the address¬ 

ing mode and data type. 

Figure 2-1 illustrates the autodecrement mode move longword instruction as a 

string of bytes starting with the opcode followed by two operand specifiers. 

In this example, the assumed starting location is 00003000. When the proces¬ 

sor completes the execution of an instruction, the program counter contains 

the address of the first byte of the next instruction. Program counter opera¬ 

tion is totally transparent to the programmer. 

MACHINE CODE: (ASSUMED STARTING LOCATION 00003000) 

00003000 DO OPCODE FOR MOVE LONG INSTRUCTION 

00003001 73 AUTODECREMENT MODE, REGISTER R3 

00003002 54 REGISTER MODE, REGISTER R4 

Figure 2-1 ■ Autodecrement Move Longword Instruction 

The program counter can be used to identify operands. The assembler trans¬ 

lates many types of operand references into addressing modes using the pro¬ 

gram counter. The addressing modes have names different from those when 

other registers are used. When using the program counter in autoincrement 

mode, the mode is called immediate mode. Immediate mode is used to specify 

inline constants. Autoincrement deferred mode using the program counter is 

called absolute mode. Absolute mode is used to reference an absolute address. 

Displacement and displacement-deferred modes using the program counter 

are used to specify an operand using an offset from the current location. 

Addressing using the program counter enables the coding of position-inde¬ 

pendent code. Position-independent code can be executed anywhere in virtual 

address space after it has been linked. Program linkages are identified as abso¬ 

lute locations in virtual address space. All other addresses are identified rela¬ 

tive to the current instruction. 
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Routine Call Capability 

The processor provides two kinds of routine call instructions—those for sub¬ 

routines and those for procedures. In general, a subroutine is a routine entered 

using a jump to subroutine or branch to subroutine instruction, while a proce¬ 

dure is a routine entered using a call instruction. 

The processor automatically saves and restores the contents of registers to be 

preserved across procedure calls, and it provides two methods for passing argu¬ 

ment lists to called procedures—by passing the arguments on the stack and by 

passing addresses of arguments elsewhere in memory. The processor also con¬ 

structs a journal of procedure call nesting by using a general register as a 

pointer to the place on the stack where a procedure has its linkage data. This 

record of each procedure’s stack data, called its stack frame, enables proper 

returns from procedures even when the procedures leave data on the stack. In 

addition, user and operating system software can unwind the stack frame to 

trace back through nested calls to handle errors or debug programs. 

Instruction Operand Processing 

The following three steps are performed by each instruction during execution. 

First, each operand specifier is evaluated by type of access in the order in 

which they appear in the instruction stream. 

1. Read access—evaluate the operand address, read the operand, and save 

the operand. 

2. Write access—evaluate the operand address and save the address. 

3. Modify access—evaluate the operand address, read the operand, save both 

the address and the operand. 

4. Address and branch access—evaluate the address and save the address. 

5. Field access—evaluate the operand base address and save the address. 

Second, the operation indicated by the instruction is performed. Third, the 

result or results are stored using the saved address in the order indicated by 

the occurrence of operand specifiers in the instruction stream. 

NOTE 

Character and numeric string instructions write any output 

strings and store the registers during step 3. 

The implications of this processing are 

1. Autoincrement and autodecrement operations occur as the operand and 

specifiers are processed and subsequent operand specifiers use the 

updated contents of register modified by those operations. 
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2. Except for those operations mentioned in step 1, all input operations are 

read and all addresses of output operands are computed before any results 

of the instruction are stored. 

3. An operand of modify access type is not read, modified, and written as an 

indivisible operation. Therefore, modify access type operands cannot be 

used for synchronization. For synchronization, refer to the ADAWI, 

BBCCI, BBSSI, INSQHI, INSQTI, REMQHI, and REMQTI instructions. 

4. If an instruction references two operands of write or modify access type at 

the same or overlapping address, the first will be overwritten by the sec¬ 

ond. If an instruction modifies a register implicitly and also has an output 

operand, the output store is performed after the register update. 

Process Control Instructions 

Process scheduling software executes on the interrupt stack. This protocol 

makes available a noncontext-switched stack. If the scheduler were running 

on a process’s kernel stack, any state information in that stack would disap¬ 

pear whenever a new process is selected. Running on the interrupt stack can 

occur as the result of the interrupt origin of scheduling events. Some synchro¬ 

nous scheduling requests (such as a WAIT service) may cause rescheduling 

without any interrupt occurrence. For this reason, the save process context 

(SVPCTX) instruction can be executed while on either the kernel or interrupt 

stack. It forces a transition to execution on the interrupt stack. 

All of the process control instructions are privileged and can be executed in 

kernel mode only. Example 2-1 illustrates how the process structure instruc¬ 

tions can be used to implement process dispatching software. It is assumed 

that this simple dispatch routine is always entered by way of an interrupt. 

Example 2-1 ■ Simple Dispatch Routine 

i ENTERED VIA INTERRUPT , IPL = 3 

RESCHED:SVPCTX iSaue context in PCB. 

<set state to runnable and place current PCB on proper RUN queue) 

<Remoue head of highest priority, nonempty, RUN queue) 

MTPR GHPHYSPCB, PCBB ;Set physical PCB address in PCBB. 

LDPCTX 

REI 

; Load context from PCB for new process. 

iPlace process in execution. 
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■ General Register Addressing 

Within the processor there are locations called general registers that can be 

used for temporary data storage and addressing. Sixteen 32-bit general regis¬ 

ters are available for use with the native instruction set, though some have 

special significance. For example, one register is designated as the program 

counter, and it contains the address of the next instruction to be executed. 

An instruction operand can be located in main memory, in a general register, 

or in the instruction stream itself. The method by which an operand location 

is specified is called the operand addressing mode. VAX processors offer a 

variety of addressing modes and addressing mode optimizations: one address¬ 

ing mode locates an operand in a register; several other addressing modes 

locate an operand in memory by using a register to point to the operand, point 

to a table of operands, or point to a table of operand addresses. 

Other addressing modes exist that are indexed modifications of the address¬ 

ing modes that locate an operand in memory. Finally, still other addressing 

modes identify the location of the operand in the instruction stream, includ¬ 

ing one for constant data and one for branch instruction addresses. The gen¬ 

eral register addressing modes are briefly summarized in Table 2-1. 

Table 2-1 ■ General Register Addressing Modes 

Mode Symbol Indexed 

Absolute @#addr [Rx] 

Autodecrement -(R n) [Rx] 

Autoincrement (R «) + [Rx] 

Autoincrement Deferred @(R«) + [Rx] 

Displacement— 

Byte Btdispl(Rn) [Rx] 
Word mdispKRn) [Rx] 
Longword Lfdispl{Rn) [Rx] 

Displacement Deferred- 

Byte @R^displ(Rn) [Rx] 
Word @yVMispl(Rn) [Rx] 
Longword @Lfdispl(Rn) [Rx] 

Immediate It# constant NA 

Literal St# constant NA 

Register Rn [Rx] 

Register Deferred (R n) [Rx] 

Legend: n = 0:15, x = 0:14, displ = displacement address 
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■ Data Types 

The processor’s native instruction set recognizes several primary data types— 

character-string, floating-point, integer, numeric-string, packed-decimal, and 

variable-length bit field. For each of these data types, the selection of opera¬ 

tion immediately informs the processor of the size and interpretation of the 

data. This is done so that the processor can then manipulate the bit field as a 

function of user-defined field size and relative position from a given byte 

address. 

Several variations of the primary data types exist. Table 2-2 provides a sum¬ 

mary of all the data types available. Figure 2-2 illustrates some of them graphi¬ 

cally. 

Table 2-2 ■ Data Types 

Data Type Size Range (decimal) 

Integer— Signed Unsigned 

Byte 8 bits - 128 to + 127 0 to 255 

Word 16 bits - 32768 to + 32767 0 to 65535 

Longword 32 bits -231 to +231 - 1 0 to232 - 1 

Quadword 64 bits - 263 to + 263 - 1 0 to 264 - 1 

Octaword 128 bits - 2127 to + 2127 - 1 0 to + 2128 - 1 

Floating Point— 

D_floating 64 bits approximately 16 decimal digits 

precision 

F_floating 32 bits approximately 7 decimal digits 
precision 

G_floating 64 bits approximately 15 decimal digits 
precision 

H_floating 128 bits approximately 33 decimal digits 
precision 

Packed Decimal 0 to 16 bytes numeric, two digits per byte sign in 
String (31 digits) low half of last byte 

Character String 0 to 65533 bytes one character per byte 

Variable-length 0 to 32 bits dependent on interpretation 

Bit Field 

Numeric String 0 to 31 bytes 

(digits) 

- 1031 - 1 to + 1031 - 1 

Queue > 2 longwords/ 

queue entry 
0 through 2 billion entries 
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BYTE 

7 

LONGWORD 

31 

WORD 

15 

tz ]:A 

QUADWORD 

31 

63 

OCTAWORD 
31 

127 

D_FLOATING 

15 

IE EXPONENT FRACTION 

FRACTION 

FRACTION 

FRACTION 

63 

G_FLOATING 

15 14 4 3 

FRACTION 

FRACTION 

FRACTION 

63 

CHARACTER STRING (XYZ) 

7 0 

A 

A + 1 

A + 2 

F_FLOATING 

15 7 6 

s\ EXPONENT | FRACTION 

FRACTION 

48 

S\ EXPONENT | FRACTION |:A 

31 

H_FLOATING 

15 14 

A + 2 
IE EXPONENT 

FRACTION 

FRACTION 

FRACTION 

FRACTION 

FRACTION 

FRACTION 

FRACTION 

: A 

32 

127 

12 

96 

0 

A + 2 

A + 4 

A + 6 

A + 8 

A + 10 

A + 12 

A + 14 

113 

PACKED DECIMAL STRING ( - 

7 4 3 0 

: A 

123) 

1 

: A + 1 

VARIABLE-LENGTH BIT FIELD 

P + S P + S - 1 P P - 1 

]:A 
A = ADDRESS S - 1 

Figure 2-2 ■ Data-type Representations 
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The data type of an instruction operand identifies how many bits of storage 

should be considered as a unit and what is to be the interpretation of that unit. 

This is important because, as you will see in later sections, identical bit pat¬ 

terns can be interpreted as very different data items; similarly, different bit 

patterns may be used to represent the same numerical value. 

Character string data is a string of bytes containing any binary data, for exam¬ 

ple, ASCII codes. The first character in the string is stored in the first byte, 

the second character is stored in the second byte, and so on. In particular, a 

character string that contains ASCII codes for decimal digits is called a 

numeric string. 

Floating-point values are stored using a signed exponent and a binary frac¬ 

tion. Four types of floating-point data formats are provided. Subset implemen¬ 

tations of the VAX architecture may not include all four data types. Operating 

system software may emulate omitted instructions and may utilize user-mode 

stack space during emulation. F_floating and D_floating are 4 and 8 bytes 

long, respectively. F_floating data yields approximately 7 decimal digits of 

precision, while D_floating yields approximately 16 decimal digits of preci¬ 

sion. G_floating is also 8 bytes long. Because of the different arrangement 

of the fraction and exponent parts, its precision is approximately 15 decimal 

digits. However, G_ floating has a wider range of exponents. H_floating 

is 16 bytes long with a 15-bit exponent and 113-bit fraction. As a result, its 

precision is approximately 33 decimal digits. 

Integer data is stored as binary values. An integer can be stored in a byte, 

word, longword, quadword, or in an octaword. A byte is 8 bits, a word is 2 

bytes, a longword is 4 bytes, a quadword is 8 bytes, and an octaword is 16 

bytes. The processor can interpret an integer as either a signed value (sign is 

determined by the high-order bit) or an unsigned value. 

Numeric-string data is a representation of fixed quantities using 1 byte of the 

string for each decimal digit. The variety of external data arrangements 

demands a variety of matching numeric string forms; particularly, it is neces¬ 

sary to know whether the sign of the number appears in the first byte or as 

part of the last byte. 

Packed decimal data is stored in a string of bytes. Each byte is divided in half 

forming two nibbles (4 bits = 1 nibble). One decimal digit is stored in each 

nibble. The first, or most significant digit is stored in the high-order nibble of 

the first byte, the second digit is stored in the low-order nibble of the first 

byte, the third digit is stored in the high-order nibble of the second byte, and 

so on. The sign of the number is stored in the low-order nibble of the last byte 

of the string. 

Variable-length bit field data is small integers packed together in a larger data 

structure. Basically, they are used to increase memory efficiency. 
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Queue data is held in circular, doubly linked lists (that is, each entry is accom¬ 

panied by two longwords—one longword tells the location of the succeeding 

entry, the other specifies the location of the preceding entry). Two kinds of 

queue data exist—absolute queues that use absolute addresses, and relative 

queues that use relative addresses. 

The address of any data item is the address of the first byte in which the item 

resides. All integer, floating-point, packed-decimal, and character data can be 

stored starting on an arbitrary byte boundary. A bit field, however, does not 

necessarily start on a byte boundary. It is simply a set of contiguous bits (0-32) 

whose starting bit location is identified relative to a given byte address. The 

native instruction set can interpret a bit field as a signed or unsigned integer. 

■ Stacks 

A stack is an array of consecutively addressed data items referenced on a last- 

in/first-out (LIFO) basis using a general register. Data is added to and 

removed from the low address end of the stack. A stack grows toward lower 

addresses as items are added and shrinks toward higher addresses as items are 

removed. 

A stack can be created anywhere in the program’s address space and can use 

any register to point to the current item on the stack. The operating system, 

however, automatically reserves portions of each process address space for 

stack data structures. User software refers to its stack data structure, called 

the user stack, through a general register designated as the stack pointer (SP). 

When you run a program image, the operating system automatically provides 

the address of the area designated for the user stack. 

A stack is an extremely powerful data structure because it can be used to pass 

arguments to routines. In particular, the stack structure enables the coding of 

reentrant routines because the processor can handle routine linkages automati¬ 

cally using the stack pointer. Routines can also be recursive: arguments can be 

saved on the stack for each successive call of the same routine. 

■ Condition Codes 

Condition codes are used to indicate the type of result produced by an instruc¬ 

tion. The codes are stored as bits in the processor status longword. Four condi¬ 

tions are coded—carry, negative, overflow, and zero. 

■ Carry condition code—indicates that the last instruction had a carry out of 

or a borrow from the most significant bit of the result. 
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■ Negative condition code—indicates that an instruction produced a nega¬ 

tive result. 

■ Overflow condition code—indicates that an instruction produced a result 

that could not be represented in an operand or that there was a conversion 

error. 

■ Zero condition code—indicates that the last instruction produced a zero 

result. 

■ Exceptions and Interrupts 

The processor can automatically initiate changes in the normal flow of pro¬ 

gram execution. The processor recognizes two kinds of events that cause it to 

invoke conditional software—exceptions and interrupts. Some exceptions, 

for example, arithmetic traps affect an individual process only. Other excep¬ 

tions, for example, machine checks affect the system as a whole. Interrupts 

include both device interrupts, such as those signaling I/O completion, and 

software-requested interrupts, such as those signaling the need for a context 

switch operation. 

The processor knows which software to invoke when an exception or inter¬ 

rupt occurs because it references specific locations called vectors to obtain the 

starting address of the exception or interrupt dispatcher. The processor has 

one internal register, the system control block base register, which the operat¬ 

ing system loads with the physical address of the base of the system control 

block, where the exception and interrupt vectors are contained. The processor 

locates each vector by using a specific offset into the system control block. 

Each vector tells the processor how to service the event, and contains the sys¬ 

tem region virtual address of the routine to execute. 

To handle interrupt requests, the processor enters a special systemwide con¬ 

text. In the systemwide context, the processor executes in kernel mode using 

a special data structure called the interrupt stack. The interrupt stack cannot 

be referenced by any user-mode software because the processor selects the 

interrupt stack only after an interrupt, and all interrupts are trapped through 

system vectors. 

The interrupt service routine executes at the interrupt priority level of the 

interrupt request. When the processor receives an interrupt request at a level 

higher than that of the currently executing software, the processor honors the 

request and services the new interrupt at its priority level. When the inter¬ 

rupt service routine issues the return from exception or interrupt instruction, 

the processor returns control to the previous level. 
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■ Input/output Control 

An I/O device controller has a set of control/status and data registers. The reg¬ 

isters are assigned addresses in physical address space, and their physical 

addresses are mapped, and thus protected, by the operating system’s memory 

management software. That portion of physical address space in which device 

controller registers are located is called I/O space. 

No special processor instructions are needed to reference I/O space. The regis¬ 

ters are simply treated as locations containing integer data. An I/O device 

driver issues commands to the peripheral controller by writing to the control¬ 

ler’s registers as if they were physical memory locations. Software reads the 

registers to obtain the controller status. The driver controls interrupt 

enabling and disabling on the set of controllers for which it is responsible. If 

interrupts are enabled, an interrupt occurs when the controller requests it. 

The processor accepts the interrupt request and executes the driver’s inter¬ 

rupt service routine if it is not currently executing on a higher-priority inter¬ 

rupt level. 
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The VAX architecture defines a functional behavior that is consistent through¬ 

out the family of VAX processors. From a programming point of view, the user 

environment is consistent. Characteristics of this consistency include sharing 

address space, sharing data, register usage, memory usage, restartability, inter¬ 

rupts and errors, and I/O structure. 

■ Programming Environment 

Within the context of any one process, user-level software controls its execu¬ 

tion using the instruction sets, the general registers, and the processor status 

word. Within the multiprogramming environment, the operating system con¬ 

trols the system’s execution using a set of' special instructions, the processor 

status longword, and the processor registers. 

Processor Status Longword 

A processor register called the processor status longword (PSL) determines the 

execution state of the processor at any time. The low-order 16 bits of the PSL 
are the processor status word (PSW) that is available to the user process. The 

high-order 16 bits provide privileged control of the system. 

The PSL fields can be grouped by functions that control 

■ The access mode of the current instruction. 

■ The instruction set in execution. 

■ Interrupt processing. 

Processor Access Modes 

In a multiprogramming system, the processor must provide protection and 

sharing for the processes competing for system resources. The mechanism for 

protection in this system is the processor’s access mode. The access mode is 

responsible for determining the 

■ Instruction execution privileges (which instructions the processor will exe¬ 

cute). 

■ Memory access privileges (which locations in memory the current instruc¬ 

tion can access). 
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The processor executes code either in an interrupt context or in process con¬ 

text. In the interrupt context, all normal processing is halted until the inter¬ 

rupt is serviced. In the process context, the processor operates in one of four 

modes—kernel, executive, supervisor, and user. Kernel is the most privileged 

mode and user is the least privileged. 

The processor executes in user mode in one process context or another. When 

a user process needs privileged services, it calls for those services. Then the 

processor executes the services either in the process’s access mode or, tempo¬ 

rarily under operating system control, in a more privileged mode. Only in ker¬ 

nel mode can the processor 

■ Execute an instruction that halts the processor. 

■ Load and save process context or access the internal processor registers con¬ 

trolling memory management. 

■ Access privileged processor registers. 

The ability to execute code in a higher-privileged mode is controlled by the 

operating system. In general, code executing in one mode can protect itself 

and any portion of its data structures from read and/or write access by code 

executing in a less privileged mode. 

Special Instructions 

The VAX instruction set contains instructions that enable user-mode software 

to obtain privileged services without jeopardizing the integrity of the operat¬ 

ing system. They are 

■ Change mode instructions (CHMK, CHME, CHMS, CHMU). 

■ PROBE instructions. 

■ Return from exception or interrupt (REI) instruction. 

User-mode software can obtain privileged services with a standard call 

instruction. The operating system’s service dispatcher issues an appropriate 

change mode instruction before actually entering the procedure. A change 

mode instruction is a special trap instruction similar to a service call instruc¬ 

tion. 

The PROBE instructions enable a procedure to check the read (PROBER) and 

write (PROBEW) access protection against the privileges of the caller who 

requested access to a particular location. This makes the operating system pro¬ 

vide services that execute in privileged modes to less privileged callers while 

preventing the caller from accessing protected areas of memory. 
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The operating system’s privileged service procedures and interrupt and excep¬ 

tion service routines exit using the REI instruction. The instruction is the only 

way to decrease the privilege of the processor’s access mode. An REI instruc¬ 

tion restores both the program counter and the processor state. This ensures 

the interrupted process’s execution resumes at the point where it was inter¬ 

rupted. 

When the operating system schedules a context switch, the context switching 

procedure uses the save process context (SVPCTX) and load process context 

(LDPCTX) instructions. The operating system’s context switching procedure 

locates the hardware context to be loaded by updating a processor register. 

Data Sharing 

Data or instructions may be shared among various entities including pro¬ 

grams, processors, and I/O devices. Entities sharing data may do so explicitly 

by referencing the same data or implicitly by referencing different items 

within the same physical memory location. 

In VAX architecture, implicit sharing is transparent to the programmer. The 

memory system is implemented so the mechanism of access for independent 

modification is the byte. Not that this does not imply a maximum reference 

size of one byte but only that independent modifying accesses to adjacent 

bytes produce the same results regardless of the order of execution. For exam¬ 

ple, locations 0 and 1 contain the values 3 and 6, respectively. One process 

executes an INCB 0 instruction (increment by 1 the byte at location 0) and 

another executes an INCB 1 instruction. Regardless of the order of execution 

(including effectively simultaneous execution) the final contents must be 6 

and 7. 

Data Access Synchronization 

Access to explicitly shared data that may be written must be synchronized. 

Before accessing shared writable data, the programmer must acquire control 

of the data structure. Seven instructions are provided to permit interlocked 

access to a control variable. 

■ The branch on bit set and set, interlocked (BBSSI) and branch on bit clear 

and clear, interlocked (BBCCI) instructions make a read and a subsequent 

write reference to a single bit within a single byte in an interlocked 

sequence. 

■ The add aligned word, interlocked (ADAWI) instruction makes a read and a 

subsequent write operation to a single aligned word in an interlocked 

sequence to allow counters to be maintained without other interlocks. 
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■ The insert at queue head, interlocked (INSQHI), insert at queue tail, inter¬ 

locked (INSQTI), remove from queue head, interlocked (REMQHI), and 

remove from queue tail, interlocked (REMQTI) instructions make a series 

of aligned longword reads and writes in an interlocked method to allow 

queues to be maintained without other interlocks. 

Use of these instructions guarantees that no read operation within the synchro¬ 

nizing part of these instructions can occur between the synchronized reads 

and the writes of the instructions. Such instructions are implemented so that 

faults cannot cause the data structure to be locked for an extended period. On 

the processor, only interlocking instructions are locked out by the interlock. 

■ Registers 

VAX processors contain three types of registers used during execution—gen¬ 

eral registers, processor registers, and input/output registers. The general reg¬ 

isters are used as counters and pointers, and some are available for use by 

programmers. Processor registers perform system functions and normally are 

not used for other purposes. The input/output registers function in the con¬ 

trol and status reporting of peripheral devices. 

General Registers 

VAX provides sixteen general registers for temporary storage of addresses and 

data. General registers are identified as R« where n is an integer in the range 

0 through 15. These registers do not have memory addresses. They are 

accessed either explicitly by specifying the register number in an instruction 

operand specifier, or implicitly by machine operations that automatically refer¬ 

ence specific registers. Certain registers have specific uses and special names. 

■ Register R15—is the program counter (PC). The processor updates the reg¬ 

ister to address the next byte of the program. The PC is not used as a tem¬ 

porary, accumulator, or index register. 

■ Register R14—is the stack pointer (SP). Several instructions make implicit 

references to the SP. Most software assumes that the SP points to memory 

set aside for use as a stack. There is no restriction on the explicit use of 

other registers (except PC) as stack pointers. Those instructions that make 

implicit references to the stack always use the SP. 
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■ Register R13—is the frame pointer (FP). The VAX procedure call conven¬ 

tion builds a data structure called a stack frame on the stack. The call 

instructions load the FP with the base address of the stack frame, and the 

return instruction depends on the FP containing the address of a stack 

frame. Further, VAX software depends on maintenance of the FP for cor¬ 

rect reporting of certain exceptional conditions. 

■ Register R12—is the argument pointer (AP). The VAX procedure call con¬ 

vention uses a data structure called an argument list. The conventions need 

the AP as the base address of the argument list. Call instructions load the 

AP in accordance with that convention. There is no hardware or software 

restriction on the use of the AP for other purposes. 

■ Registers R6 through Rll—these registers have no special significance to 

either the hardware or the operating system. Specific software assigns uses 

for each register. 

■ Registers R5 through RO—these registers are available for any use by soft¬ 

ware. But, they are also loaded with specific values by those instructions 

whose execution must be interruptible — the character string, decimal 

arithmetic, cyclic redundancy check, and polynomial instructions. The spe¬ 

cific instruction descriptions identify which registers are used and what 

values are loaded into them. 

The general philosophy of register allocation is high-numbered registers have 

the most global significance, low-numbered registers are used for the most 

temporary, local purposes. While there is no technical basis for this rule, it is 

a matter of convention followed by both hardware and system software. Thus, 

high-numbered registers are used for pointers needed by all software and hard¬ 

ware, and low-numbered registers are used for the working storage of string- 

type instructions. Similarly, the VAX procedure call software convention 

regards registers RO and R1 as so temporary that they are not saved on calls. 

This is because RO and R1 are used to return function values. Table 3-1 lists 

the use of general registers. 
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Table 3-1 ■ General Register Usage 

Registers Hardware Use Conventional Software Use 

PC (R15) Program counter Program counter 

SP (R14) Stack pointer Stack pointer 

FP (R13) Frame pointer saved 

and loaded by CALL, 

used and restored by 

RET instruction 

Frame pointer; condition signaling 

AP (R12) Argument pointer 

saved and loaded by 

CALL, restored by 

RET instruction 

Argument pointer (base address of 

argument list) 

R6:R11 None Any 

R3,R5 Address counter in 

character and decimal 

instructions 

Any 

R2,R4 Length counter in char- Any 

acter and decimal 

instructions 

R1 Result of POLYD 

instruction; address 

counter in character 

and decimal instruc¬ 

tions 

Result of functions (not saved or 

restored on procedure call) 

RO Results of POLY, CRC Results of functions, status of services 

instructions; length (not saved or restored on procedure 
counter in character call) 

and decimal instruc¬ 

tions 

A reference to the stack pointer (SP) can access one of five general stack 

pointers—executive, interrupt, kernel, supervisor, or user stack pointers 

depending on certain conditions. The conditions are the values of the current 

mode and interrupt stack bits in the processor status longword. Also, the move 

to processor register (MTPR) and move from processor register (MFPR) instruc¬ 

tions can access those stack pointers including the currently selected stack 

pointer. This is also true for those processors whose executive, kernel, supervi¬ 

sor, and user stack pointers reside in the process control block PCB only. 
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Processor Registers 

Processor registers reside in the processor register space. They are sometimes 

called internal registers or privileged registers. These registers perform control 

and status functions. They are accessible through the MTPR and MFPR 

instructions. These instructions can be invoked from the kernel mode only. 

Context switching is the act of suspending an executing process and starting 

the execution of another. With the exception of the memory mapping and 

asynchronous system trap registers, processor registers are loaded from the 

processor control block (PCB) during a context load operation. During a con¬ 

text save operation, the registers are written to the PCB. In some VAX proces¬ 

sors, scratchpad registers are used as an intermediate step in the read/write 

operation. 

Depending on the model of processor, accessing processor registers using the 

MTPR and MTFR instructions may render invalid data. In some VAX proces¬ 

sors, all or some of the processor registers reside in the PCB only. In those 

processors, the MTPR and MTFR instructions must be directed to the corre¬ 

sponding PCB location. VAX processors with processor registers in hardware 

scratchpads need not access the corresponding PCB locations. 

■ Clock Registers 

There are two clocks in VAX processors: a time-of-year clock and an interval 

clock. The time-of-year clock register is used to measure the duration of 

power failures and is needed for unattended restart after a power failure. The 

interval clock is used for accounting, time-dependent events, and to maintain 

the date and time. 

Time-of-year Clock The time-of-year clock is a longword register. It forms an 

unsigned 32-bit binary counter that is driven by a precision clock source. The 

clock operates at a minimum accuracy of 0.0025 percent. After approximately 

497 days, the clock cycles to zero. As an option, the register can have an emer¬ 

gency power supply. The power supply may contain a battery that can operate 

for several hours. The register does not gain or lose time during the transition 

to or from the emergency power supply. The battery is usually automatically 

recharged. 

Should the battery fail and the clocking is not accurate, the register is cleared 

after power is applied. Then the clock is started. 

Interval Clock The interval clock provides an interrupt at programmed inter¬ 

vals. The counter is incremented at microsecond intervals with a minimum 

accuracy of 0.01 percent. The clock interface consists of three registers — the 

interval count register (ICR), the next interval count register (NICR), and the 

interval clock control/status register (ICSS). 
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The interval count register is a read-only register that is incremented every 

microsecond. It is automatically loaded from the next interval count register. 

If the interrupt is enabled, an interrupt is initiated when the interval count 

register is loaded. 

The next interval count register is a write-only device that holds the value to 

be loaded into the interval count register when it overflows. The value is 

retained when the interval count register is loaded. The next interval count 

register is capable of being loaded regardless of the current values of the other 

two registers. 

The interval clock control/status register contains control and status informa¬ 

tion for the interval clock. The register contains the following bits: 

■ Run bit—when the run bit is set, the interval count register increments 

each microsecond. When the bit is reset (0), the interval count register 

does not increment. During bootstrap procedures, the run bit is cleared. 

■ Transfer bit (XFR)—is a write-only bit. The next interval count register is 

transferred to the interval count register when this bit is set. 

■ Signal bit (SGL)—is a write-only bit. If the run bit is reset (0), the interval 

count register is incremented by one each time this bit is set. 

■ Software interrupt request (IE) bit—when this bit is set and the interval 

count register overflows, an interrupt request is generated. When this bit 

is reset, no interrupt is requested. If the hardware interrupt request bit is 

set and then this bit is set, an interrupt is requested. 

■ Hardware interrupt request (INT) bit—this bit is set by hardware when¬ 

ever the interrupt count register overflows. If the IE bit is set and this bit is 

set, an interrupt is requested. If this bit is reset with a MTPR instruction, 

the clock tick interrupt is enabled. 

■ Error (ERR) bit—Whenever the interval count register overflows and the 

INT bit is set, this bit is set. This bit indicates that a clock tick was missed. 

This bit is cleared by a MTPR instruction. 

NOTE 

Subset processors may omit the interval count and next inter¬ 

val count registers. These processors are required to imple¬ 

ment the software interrupt (IE) bit of the interval clock 

control/status register. If this bit is set, an interrupt request 

is generated every 10 milliseconds. 
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The interval clock is set by loading the negative of the desired interval into 

the NIC register. Then invoking an MTPR instruction enables interrupts, 

loads the interval count register with the interval stored in the next interval 

count register, and the run bit is set. Every interval count microsecond sets the 

INT bit and invokes an interrupt request. The interrupt routine should exe¬ 

cute an MTPR instruction to clear the interrupt. If the INT bit is not reset by 

the next interval count register overflow, the err bit is set. 

■ Console Terminal Registers 

The console terminal is accessed through four processor registers. Two regis¬ 

ters are used for reception and two are used for transmission. There are con¬ 

trol/status registers and data buffer registers for both reception and 

transmission. A status byte is used to determine the success or failure of a 

read or write operation. The status byte is transmitted to the operating system 

on completion of every read, write, or read status operation. 

Receive Registers During bootstrap procedures, the console receive control/ 

status register is initialized to zero. Whenever data is received, the done bit is 

set by the console. If the register’s interrupt enable bit is set, an interrupt is 

requested. If the done bit is set and the software sets the interrupt enable bit, 

an interrupt is requested. If the data received contained an error, the error bit 

of the console receive data buffer register is set. The data received is stored in 

the data field of the register. When a MFPR instruction is executed, the done 

bit is reset. If the value in the ID field of the console receive data buffer regis¬ 

ter is zero, the data is from the console terminal. If the value of the ID field is 

other than zero, the entire register is implementation-dependent. 

Transmit Registers During bootstrap procedures, the console transmit controlj 

status register is initialized with all the bits reset except for the ready (RDY) 

bit which is set. Whenever the console transmitter is not busy, it sets the 

ready bit. And if the register’s interrupt enable bit is set, an interrupt is 

requested. Also, if the ready bit is set, then the interrupt enable bit is set, an 

interrupt is requested. The software can send data by writing it to DATA. 

When an MTPR instruction is executed with the transmit data buffer as the 

destination operand, the ready bit is cleared. If the ID bit is zero, the data is 

sent to the console terminal. If the ID bit is set, the entire register is implemen¬ 

tation-dependent . 

■ Process Control Block Base Register 

The process control block base (PCBB) register is an internal privileged regis¬ 

ter containing the physical longword address of the process control block 

(PCB). The process control block contains the switchable process context. The 

context is collected into a compact form for ease of movement to and from the 

privileged registers. 
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In most operating systems, there is additional software context for each pro¬ 

cess. However, the following description is limited to the hardware process 

control block. See Figure 3-1 for an illustration of the process control block. 

Table 3-2 contains a description of the process control block longwords. 

BIT BIT 

3 0 
1 0 

00 KERNEL MODE STACK POINTER 

01 EXECUTIVE MODE STACK POINTER 

02 SUPERVISOR MODE STACK POINTER 

03 USER MODE STACK POINTER 

04 REGISTER R0 

05 REGISTER R1 

06 REGISTER R2 

07 REGISTER R3 

08 REGISTER R4 

09 REGISTER R5 

10 REGISTER R6 

11 REGISTER R7 

12 REGISTER R8 

13 REGISTER R9 

14 REGISTER R10 

15 REGISTER R11 

16 ARGUMENT POINTER 

17 FRAME POINTER 

18 PROGRAM COUNTER 

19 PROCESSOR STATUS LONGWORD 

20 PROGRAM REGION BASE REGISTER 

21 1 PROGRAM REGION LENGTH REGISTER 

22 CONTROL REGION BASE REGISTER 

23 2 CONTROL REGION BASE REGISTER 

3222222 0 

1 7 6 4 3 2 1 0 

NOTES: 

1. Asynchronous Trap Pending Field 

2. Enable Performance Monitor Field 

Figure 3-1 ■ Hardware Process Control Block 
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Table 3-2 ■ Process Control Block Definition 

Long- 

word 

Bits Mnemonic Description 

0 31:0 KSP Kernel Stack Pointer. Contains the stack 

pointer to be used when the value of the cur- 

rent access mode field in the processor 

status longword (PSL) is 0 and interrupt 

stack (IS) is 0. 

1 31:0 ESP Executive Stack Pointer. Contains the stack 

pointer to be used when the value of the cur¬ 

rent access mode field in the PSL is 1. 

2 31:0 SSP Supervisor Stack Pointer. Contains the 

stack pointer to be used when the value of 

the current access mode field in the PSL 

is 2. 

3 31:0 USP User Stack Pointer. Contains the stack 

pointer to be used when the value of the cur¬ 

rent access mode field in the PSL is 3. 

4:17 31:0 R0:R11, 

AP, FP 
General registers 0 through 11, argument 

pointer, and frame pointer. 

18 31:0 PC Program counter 

19 31:0 PSL Processor status longword 

20 31:0 P0BR Base register for the page table describing 

the process virtual addresses from 0 

through 1,073,741,823 (decimal) (230 - 1). 

21 21:0 P0LR Length register for the page table located by 

base register P0. Describes the effective len¬ 
gth of the page table. 

23:22 MBZ Must be zero (0) 

26:24 ASTLVL Contains the access mode number estab¬ 

lished by software of the most privileged 

access mode for which an asynchronous sys¬ 

tem trap is pending. Controls the triggering 

of the asynchronous system trap delivery 

interrupt during return from exception or 

interrupt instructions. 
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Table 3-2 ■ Process Control Block Definition (Cont.) 

Long¬ 

word 

Bits Mnemonic Description 

ASTLVL 

Field 

Asynchronous system trap 

pending for access mode: 

0 0 (kernel) 

1 1 (executive) 

2 2 (supervisor) 

3 3 (user) 

4 No traps pending 

5:7 Reserved 

31:27 MBZ Must be zero (0) 

22 31:0 P1BR Base register for the page table. Describes 

the process virtual addresses from 

1,073,741,824 through 2,147,483,647 
(230 through 231 - 1). 

23 21:0 P1LR Length register for the page table. 

Located by base register PI. Describes 

the effective length of the page table. 

30:22 MBZ Must be zero (0) 

31 PME Performance Monitor Enable. Controls a 

signal visible to an external hardware per¬ 

formance monitor. This bit is set to iden¬ 

tify those processes for which monitoring 

is desired, and to permit their behavior to 

be observed without interference from 

other system activity 

NOTE 

Software symbols are defined for these locations by using the 

prefix PTX$L and the mnemonics shown above. The prefix 

and mnemonic must be separated by an underscore character. 

For example, should you wish to specify the supervisor stack 

pointer register, the software symbol is: PTX$L_SSP. 

There are two exceptions to this symbology: longwords 21 

and 23. The symbols for those words are: 

PXT$L_POLRASTL (longword 21) 

PTX$L_P1LRME (longword 23) 
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A process must be executing in one particular mode to alter its context switch¬ 

ing fields. First the process stores the new value in the memory image of the 

process control block. Then it moves the value to the appropriate privileged 

register. This protocol is used because the process control block context 

switching fields are read-only fields. The context switching fields are POBR, 

P1BR, POLR, P1LR, ASTLVL, and PME. 

NOTE 

The ASTLVL and PME fields of the process control block are 

in registers when the process is executing. In order to access 

the fields, two privileged registers are provided. These are 

the AST Level register and the Performance Monitor Enable 

(PME) register. 

■ System Identification Register 

The system identification (SID) register is a read-only device that specifies the 

processor type. The entire register is included in the error log and the type 

field may be used by software to distinguish processor types. The register is 

divided into two fields—type and type specific. The type field identifies the 

model of the processor. The type specific field varies among the models but 

contains specific identification for that model. 

Input/Output Registers 

Input/output registers are also known as peripheral device control/status and 

data registers. These registers are in the physical address space. They can be 

manipulated by memory reference instructions. Use of general instructions 

permits virtual address mapping and protection mechanisms to be used when 

referencing I/O registers. An area of the I/O physical address space maps 

through to the UNIBUS addresses. This area is called the UNIBUS space. I/O 

registers satisfy the following conditions: 

■ All registers must be aligned on natural boundaries. 

■ The physical address of an I/O register must always be an integral multiple 

of the register size in bytes (which must be a power of 2). 

■ References using a length attribute other than the length of the register 

and/or an unaligned reference may produce unpredictable results. For exam¬ 

ple, a byte reference to a wordlength register will not necessarily respond 

by supplying or modifying the byte addressed. 
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■ In peripheral devices, error and status bits that may be asynchronously set 

by the device are usually cleared by software writing a one to these bits, 

and are not affected by writing a zero. This is to prevent resetting bits that 

may be asynchronously set between reading and writing a register. 

■ Only byte and word references of a read-modify-write type in UNIBUS I/O 

spaces are guaranteed to interlock correctly. References in the I/O space 

other than in UNIBUS spaces are undefined with respect to interlocking. 

This includes the BBSSI and BBCCI instructions. 

■ String, quad word, octaword, F_floating, D_floating, G_floating, 

H_floating, and field references in the I/O space result in undefined 

behavior. 

■ Stacks 

Stacks are also called pushdown lists or last-in I first-out (LIFO) queues. They 

are an important feature of the architecture. They are used to perform various 

functions; for example, to 

■ Save the general registers including the program counter at entry to a sub¬ 

routine for restoration at exit. 

■ Save the program counter, processor status longword, and general registers 

at the time of interrupts and exceptions, and during context switches. 

■ Create storage space for temporary use or for nesting of recursive routines. 

A stack is implemented in a VAX processor by a block of memory and a general 

register that addresses the top of the stack. The top of the stack is that loca¬ 

tion in the block containing the next candidate for removal. An item is added 

to the stack (pushed on) by decrementing the stack pointer register and stor¬ 

ing the item at the address in the updated register. The pointer is decre¬ 

mented by the length of the item added to the stack to allow enough room for 

it. Conversely, the top item is removed (popped off) by adding the length of 

the item to the stack pointer after the last use of the item. These operations 

are built into the basic addressing mechanisms of VAX instructions. Thus any 

instruction can operate on the stack; it is seldom necessary to devote separate 

instructions to maintain the stack pointer. 

There are two common programming errors associated with stacks: (1) adding 

more data than there is space to store, and (2) removing more data than was 

added. In order to catch those common programming errors, a stack is usually 

bound by inaccessible pages. By placing the stack in a block of memory 

between inaccessible pages, the programmer can be confident of finding such 

errors. The operating system initializes the stacks this way. 
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Many VAX processor operations make use of the stack implicitly; that is, with¬ 

out specifying the stack pointer in an operand. This occurs in instructions 

used in calling and returning from subroutines and in the processor sequences 

that initiate and terminate interrupt or exception service routines. In all such 

cases, the processor uses the stack addressed by R14. 

This does not mean that exceptions, interrupts, and system services are per¬ 

formed on the same stacks employed by user-mode programs. The processor 

maintains five internal registers as pointers to separate blocks of memory to 

be used as stacks and uses one or another as a stack pointer depending on cer¬ 

tain bits in the processor status longword. Whenever those bits change, the 

processor saves the stack pointer in a register selected by the old value of 

those bits. Then the processor loads the stack pointer from the register 

selected by the new value of these bits. There is one interrupt stack for the 

entire system. But the kernel, executive, supervisor, and user stacks are differ¬ 

ent for each process in the system. Figure 3-2 illustrates the relationships of 

the five stacks and multiple processes. 

PROCESS 1 PROCESS 2 PROCESS 3 

USER 1 

STACK 

USER 2 

STACK 

USER 3 

STACK 

SUPERVISOR 1 SUPERVISOR 2 

STACK 

SUPERVISOR 3 

STACK GREATER STACK 

MODE _ 

(LESSER 

PRIVILEGE) EXECUTIVE 1 

STACK 

EXECUTIVE 2 

STACK 

EXECUTIVE 3 

STACK 

KERNEL 1 

STACK 

KERNEL 2 

STACK 

KERNEL 3 

STACK 

INTERRUPT STACK 

(ALL PROCESSES) 

Figure 3-2 ■ Stacks by Mode versus Processes 
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This multiple-stack mechanism offers a number of advantages over a single¬ 

stack mechanism: 

■ User programs are not subject to sudden and nonreproducible changes in 

the data beyond the end of their stack. While it is bad practice to depend 

on such data, it would also be poor design to make it difficult to debug pro¬ 

grams that did. 

■ The integrity of a privileged mode program cannot be compromised by a 

less privileged caller. Even if the caller has completely filled its own stack, 

the privileged code is in no danger of running out of space. Separate blocks 

of memory are allocated to the stack associated with each mode to prevent 

that situation. 

■ Privileged mode programs are not vulnerable to accidental or malicious 

destruction of the stack pointer by less privileged programs. Even if the 

user program uses the stack pointer as a floating-point accumulator, privi¬ 

leged code can use it as a stack pointer. To accomplish this, the processor 

saves the floating-point value and loads the pointer value when a mode 

change occurs. 

■ By allocating separate stacks for each mode, VAX processors can page most 

stack space dynamically while ensuring the availability of space for inter¬ 

rupt and page fault service. Interrupt service routines and the page fault 

handler may be invoked at any time and must have a small amount of stack 

available immediately without waiting for it to be paged in. Conversely, 

user programs may need very large stack spaces making it desirable to swap 

out those regions not in use. Only the kernel and interrupt stacks need be 

resident. 

■ Cache Memory 

Cache memory or cache is a mechanism that reduces access time by making 

copies of recently used memory. In VAX family processors, the cache is imple¬ 

mented in such a way that it is transparent to software except for timing and 

error reporting/control. In cache, the following protocol is observed: 

■ Program writes to memory—followed by a peripheral output transfer— 

result in the output of the updated value. 

■ A peripheral input transfer—followed by a program reading of memory— 

results in a read of the input value. 
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■ A write or modify operation—followed by a halt on one processor—fol¬ 
lowed by a read or modify operation on another processor—results in a 

read of the updated value. (Note that this applies only to customer- 
designed multiprocessor systems.) 

■ A write or modify operation—followed by a power failure — followed by 
restoration of power—followed by a read or modify operation—results in a 

read of the updated value. This occurs only if the duration of the power 
failure does not exceed the maximum nonvolatile period of the main mem¬ 
ory or if the contents of memory were protected by an optional battery- 
operated emergency power supply. 

■ In multiprocessor systems, access to variables shared among processors can 

be interlocked by software executing interlocking instructions (ADAWI, 

BBCCI, BBSSI, INSQHI, INSQTI, REMQHI, or REMQTI). In particular, 

the write device must execute an interlocking instruction after the write to 

release the interlock and the read device must execute a successful match¬ 

ing interlock instruction before the read. 

■ Accesses to I/O registers are not loaded into the cache. 

■ Restartability 

VAX architecture requires that all instructions be restartable after a fault or 
interrupt that terminated execution before the instruction was completed. 

Generally, this means that modified registers are restored to the value they 
had at the start of execution. For some complex or iterative instructions, inter¬ 
mediate results are stored in the general registers. In this case, memory may 
have been altered, but the former case requires that no operand be written 

unless the instruction can be completed. For most instructions with only a sin¬ 
gle modified or written operand, this implies special processing only when a 
multibyte operand spans a protection boundary. Spanning the boundary 
makes necessary the testing of the accessibility of both parts of the operand. 

Instructions that store intermediate results in general registers do not compro¬ 
mise system integrity. They ensure that any addresses stored or used are vir¬ 
tual addresses subject to protection checking. Furthermore, they ensure that 
any state information stored or used does not result in a sequence that cannot 

be interrupted or terminated. 
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Instruction operands that are peripheral device registers having access side 

effects may produce unpredictable results due to the instruction restarting 

after faults (including page faults) or interrupts. To ensure no interrupts, pro¬ 

grammers must avoid operand specifier addressing modes 9, 11, 13, and 15, 

and the indexed forms of these modes. (Refer to Chapter 5 for details of 

addressing modes.) However, the hardware may allow interrupts for these 

modes in order to minimize interrupt latency. 

Memory modifications are produced as a by-product of instruction execution; 

for example, memory access statistics. These modifications are specifically 

excluded from the constraint that memory may not be altered until the instruc¬ 

tion can be completed. Instructions that abort are constrained only to ensure 

memory protection; for example, the registers can be changed. 

■ Interrupts and Errors 

Underlying the VAX architectural concept of an interrupt is the notion that an 

interrupt request is a static condition—not a transient event—and can be sam¬ 

pled by a processor at appropriate times. Further, if an interrupt is no longer 

needed before a processor has honored that interrupt request, the interrupt 

request can be removed without consequence. Any instruction that changes 

the processor’s interrupt priority level to enable a pending interrupt allows 

the interrupt to occur before executing the next instruction. Similarly, if pro¬ 

cessor priority permits, instructions that generate requests at the software 

interrupt levels allow the interrupt to occur before executing the next instruc¬ 

tion. 

Processor errors that are consistent with instruction completion create high- 

priority interrupt requests. Otherwise, they terminate instruction execution 

with an exception. Error notification interrupts may be delayed from the 

apparent completion of the executing instruction at the time of the error. But, 

if enabled, the interrupt is requested before processor context is switched. 
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VAX instructions use a variety of types of data. The data must be presented in 

a form that is acceptable to the instructions. The acceptable forms are 

described in the ensuing paragraphs. They are 

■ Character string data 

■ Floating-point data 

■ Integer data 

■ Numeric string data 
— 

■ Packed decimal data 

■ Queue data 

■ Variable length bit field data 
— 

' .. , _ . 

NOTE 

In the following discussions of floating-point and integer 

data, the address of the data in memory is the address of the 

byte of the data with the lowest address. In illustrations, this 

lowest byte is shown on the right (bits 0 through 7). In text, 

when the word right is used to describe the position of a byte, 

the lowest byte is the byte being discussed. 

■ Character String Data 

Character strings are used to represent names, data records, or text. The 

instructions allow you to copy, search, concatenate, and translate strings. A 

character string is a contiguous sequence of bytes in memory and is specified 

by two attributes—the address (A) of the first byte of the string, and the len¬ 

gth (L) of the string in bytes. The length of a string is in the range 0 through 

65,535. A string with a length of 0 is called a null string. Null strings have no 

bytes. No memory is referenced; hence, the address need not be valid. The 

format of a character string is illustrated in Figure 4-1. The address of a string 

specifies the first character of a string as shown in Figure 4-2. 
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: A 

: A + L - 1 

Figure 4-1 ■ Character String Format 

I 

7 0 

A 

A + 1 

A + 2 

Figwre 4-2 ■ Character String Address 

■ Floating-point Data 

The VAX instruction set supports floating-point data in longwords, quad- 

words, and octawords. Four types of floating-point data are available. Two 

types are eight bytes long (D_floating and G_floating), one type is four 

bytes long (F_floating), and the last is sixteen bytes long (H_floating). 

NOTE 

An exponent value of zero with a sign bit that is zero is taken 

as reserved. 

D_floating Data 

D floating data is sometimes called double floating or double-precision float¬ 

ing. It is eight contiguous bytes starting on an arbitrary byte boundary. The 

bits are labeled from the right starting with 0 and terminating with 63 as 

shown in Figure 4-3. 
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D_floating data is specified by the address of the byte containing the first 

bit. The form of D_floating data is identical to F_floating data except for 

an additional 32 low-significance fraction bits. Within the fraction, bits 

increase in significance from 48 through 63, 32 through 47, 16 through 31, 

and 0 through 6. This is illustrated by the widening arrow in Figure 4-3. The 

8-bit exponent field encodes the values 0 through 255. An exponent value of 

0 with a sign bit of 0 indicates the data has a value of zero. Exponent values of 

1 through 255 indicates true binary exponents of -127 through +127. Float¬ 

ing-point instructions processing a reserved operand take a reserved operand 

fault. The values of D_floating data are in the approximate range 0.29 x 

10'38 through 1.7 x 1038. The precision is approximately one part in 255 or 

16 decimal digits. 

15 14 7 6 0 

: A 

: A + 2 

: A + 4 

: A + 6 

63 48 

Figure 4-3 ■ D_floating Data Format 

F_floating Data 

F_floating data is sometimes called floating or single-precision floating and is 

four contiguous bytes starting on an arbitrary byte boundary. The bits are 

labeled from the right starting at 0 and terminating with 31 as shown in Fig¬ 

ure 4-4. 

i i 

5 4 7 6 0 

S EXPONENT FRACTION 

FRACTION 

31 16 

Figure 4-4 ■ F_floating Data Format 
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F_floating data is specified by the address of the byte containing the first 

bit. The form of F_floating data is sign magnitude with bit 15 as the sign 

bit, bits 7 through 14 express an excess 128 binary exponent, and bits 0 

through 6 and 16 through 31 are a normalized 24-bit fraction with the redun¬ 

dant most significant fraction bit not represented. Within the fraction, bits 

increase in significance from 16 through 31 and 0 through 6. The 8-bit expo¬ 

nent field encodes the values 0 through 255. An exponent value of 0 with a 

sign bit of 0 indicates the data has a value of zero. Exponent values of 1 

through 255 indicates true binary exponents of -127 through + 127. Floating 

point instructions processing a reserved operand take a reserved operand 

fault. The values of F_floating data are in the approximate range 0.29 x 

10'38 through 1.7 x 1038. The precision is approximately one part in 223, or 

approximately seven decimal digits. 

G_floating Data 

G_floating data is eight contiguous bytes starting on an arbitrary byte 

boundary. The bits are labeled from the right starting with 0 and ending with 

63 as shown in Figure 4-5. 

The form of G_floating data is sign magnitude with bit 15 as the sign bit, 

bits 4 through 14 expressing an excess 1024 binary exponent, and bits 0 

through 3 and 16 through 63 expressing a normalized 5 3-bit fraction with the 

redundant most significant fraction bit not represented. Within the fraction, 

bits increase in significance from 48 through 63, 32 through 47, 16 through 

31, and 0 through 3. The 11-bit exponent field encodes the values 0 through 

2047. An exponent value of 0 with a sign bit of 0 indicates the data has a value 

of zero. Exponent values of 1 through 2047 indicate true binary exponents of 

-1023 through + 1023. Floating-point instructions processing a reserved 

operand take a reserved operand fault. 

The value of G_floating data is in the appropriate range of 0.56 x 10'308 

through 0.9 x 10308. The precision is approximately one part in 252 or fifteen 

decimal digits. 
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5 4 4_3 0 

S EXPONENT FRACTION : A 

FRACTION : A + 2 

FRACTION : A + 4 

FRACTION : A + 6 

63 48 

Figure 4-5 ■ G_floating Data Format 

H_floating Data 

H_floating data is sixteen contiguous bytes starting on an arbitrary byte 

boundary. The bits are labeled from the right starting with 0 and ending with 

127 as shown in Figure 4-6. H_floating data is specified by the address of 

the byte containing the first bit. 

The form of H_floating data is sign magnitude with bit 15 as the sign bit, 

bits 0 through 14 express an excess 16384 binary exponent, and bits 16 

through 127 express a normalized 113-bit fraction with the redundant most 

significant fraction bit not represented. Within the fraction, bits increase in 

significance from 112 through 127, 96 through 111, 80 through 95, 64 

through 79, 48 through 63, 32 through 47, and 16 through 31. The 15-bit 

exponent field encodes the values 0 through 32,767. An exponent value of 0 

with a sign bit of 0 indicates that the data has a value of zero. Exponent 

values of 1 through 32,767 indicate true binary exponents of -16,383 

through + 16,383. Floating-point instructions processing a reserved operand 

take a reserved operand fault. 

The value of H_floating data is in the approximate range 0.84 x 10 4932 

through 0.59 x 104932. The precision is approximately one part in 2112 or 

thirty-three decimal digits. 
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1 1 

A 

A + 2 

A + 4 

A + 6 

A + 8 

A + 10 

A + 12 

A + 14 

Figure 4-6 ■ H_floating Data Format 

■ Integer Data 

VAX systems support integer data in 8-bit bytes, 16-bit words, 32-bit long- 

words, 64-bit quadwords, and 128-bit octawords. Integer data is stored in a 

binary format that can be signed or unsigned. As unsigned quantities, inte¬ 

gers increment from 0. As signed quantities, the integers are represented in 

two’s complement form. This means that positive numbers have a zero for the 

most significant bit (MSB); and the representation of a negative number is one 

greater than the bit-by-bit complement of its positive counterpart. Thus the 

MSB is always zero for positive values and one for negative values. 
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Byte Data 

A byte is eight contiguous bits starting on an addressable byte boundary. The 

bits are numbered from the right starting with 0 as shown in Figure 4-7. The 

byte is specified by its address. When interpreted arithmetically, a byte is a 

two’s complement integer with bits increasing in significance from 0 through 

6 and with bit 7 designating the sign. The value of the integer is in the range 

of -128 through 127. For addition, subtraction, or comparison, VAX instruc¬ 

tions provide direct support for interpreting a byte as an unsigned integer 

with bits of increasing significance starting at bit 0 and increasing to bit 7. 

The value of the unsigned integer is in the range of 0 through 255. 

7_0 

: A 

Figure 4-7 ■ Byte Data Format 

Word Data 

A word is two contiguous bytes and starts on an arbitrary byte boundary. The 

bits are numbered from the right starting with 0 as shown in Figure 4-8. 

Words are specified by their address which is the address of the byte contain¬ 

ing the first bit. When interpreted arithmetically, a word is a two’s comple¬ 

ment integer with bits increasing in significance from 0 through 14, and bit 

15 designating the sign. The value of the integer is in the range -32,768 

through 32,767. For addition, subtraction, and comparison, VAX instructions 

provide direct support for interpreting a word as an unsigned integer with 

bits increasing in significance from bit 0 to bit 15. The value of an unsigned 

integer is in the range of 0 through 65,535. 

Figure 4-8 ■ Word Data Format 
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Longword Data 

A longword is four contiguous bytes starting on an arbitrary byte boundary. 

The bits are numbered from the right starting with 0 as shown in Figure 4-9. 

A longword is specified by its address that is the address of the byte contain¬ 

ing the first bit. When interpreted arithmetically, a longword is a two’s com¬ 

plement integer with bits increasing in significance from 0 through 30 and 

with bit 31 designating the sign. 

The value of the integer is in the range -2,147,483,648 through 

2,147,483,647. For addition, subtraction, and comparison, VAX instructions 

provide direct support for interpreting longwords as unsigned integers with 

bits increasing in significance from bit 0 to bit 31. The value of the unsigned 

integer is in the range of 0 through 4,294,967,295. 

Figure 4-9 ■ Longword Data Format 

Quadword Data 

A quadword is eight contiguous bytes starting on an arbitrary byte boundary. 

The bits are numbered from the right starting with 0 and terminating with 63 

as shown in Figure 4-10. A quadword is specified by its address that is the 

address of the byte containing the first bit. When interpreted arithmetically, 

a quadword is a two’s complement integer with bits increasing in significance 

from 0 through 62, and bit 63 is the sign bit. The value of the integer is in the 

range -263 to (263)-l. The quadword data type is not fully supported by VAX 

instructions. 
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Figure 4-10 ■ Quadword Data Format 

Octaword Data 

An octaword is sixteen contiguous bytes starting on an arbitrary byte bound¬ 

ary. The bits are numbered from the right starting with 0 and terminating 

with 127 as shown in Figure 4-11. Octawords are specified by the address of 

the byte containing the first bit. When interpreted arithmetically, an 

octaword is a two’s complement integer with bits of increasing significance 

starting at bit 0 and terminating at bit 126, and bit 127 is the sign bit. The 

value of the integer is in the range -2127 to (2127)-1. The octaword data type is 

not yet fully supported by VAX instructions. 

Figure 4-11 ■ Octaword Data Format 

: A + 8 

: A + 12 
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■ Numeric String Data 

Numeric string data is used to represent fixed scaled quantities in forms close 

to their external representations. For programs that are input/output inten¬ 

sive, rather than computation intensive, this presentation can be efficient. 

The decimal string form also provides greater precision than floating point 

and greater range than integer data types. 

There are two forms of decimal data on VAX systems— numeric and packed. 

In numeric string data, each digit occupies one byte. In packed decimal 

strings, two digits are packed into one byte. Because the numeric string 

exactly represents many external data arrangements, it appears in several 

forms. 

There are two forms of signed numeric strings. The first is called the leading 

separate numeric string; the second is called the trailing numeric string. In the 

leading separate numeric string, the sign appears before the first digit. In the 

trailing numeric string, the sign is superimposed on the last digit. 

Leading Separate Numeric String Data 

A leading separate numeric string is a contiguous sequence of bytes in mem¬ 

ory. It is specified by two attributes—an address and a length. The address is 

the address of the first byte or the sign character. The length is the length of 

the string in digits—not the length of the string in bytes. The number of bytes in 

a leading separate numeric string is the length plus one. The address of the 

string specifies the byte of the string containing the sign. Digits of decreasing 

significance are assigned to bytes of increasing addresses. 

The sign of a leading separate numeric string is stored in a separate byte. Valid 

sign bytes are listed in Table 4-1. The preferred representation for positive 

strings is the ASCII code 2B for the plus sign character. All subsequent bytes 

contain an ASCII digit character. Table 4-2 lists the ASCII digit characters. 

Table 4-1 ■ Leading Separate Numeric String Sign Bytes 

Sign Decimal Hexadecimal ASCII character 

+ 43 2B + 

+ 32 20 < blank > 

_ 45 2D _ 
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Table 4-2 ■ ASCII Digit Characters 

Digit Decimal Hexadecimal ASCII character 

0 48 30 0 

1 49 31 1 

2 30 32 2 

3 31 33 3 

4 32 34 4 

3 33 33 3 

6 34 36 6 

7 33 37 7 

8 36 38 8 

9 37 39 9 

The length of a leading separate numeric string must be within the range of 0 

to 31 (0 to 31 digits). The value of a zero length string is zero. It contains the 

sign byte only. Figures 4-12 and 4-13 show how to represent + 123 and -123 

in leading separate numeric string format. 

7 4 3 0 

: A 

: A + 1 

: A + 2 

: A + 3 

2 B 

3 1 

3 2 

3 3 

Figure 4-12 ■ Positive Leading Separate Numeric String Format 
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7 4 3 0 

2 D : A 

3 : A + 1 

3 2 : A + 2 

3 3 : A + 3 

Figure 4-13 ■ Negative Leading Separate Numeric String Format 

Trailing Numeric String Data 

A trailing numeric string is a contiguous sequence of bytes in memory. The 

string is specified by two attributes—an address and the length of the string. 

The address of the first byte of the string is the most significant digit. The 

length is the length of the string in bytes. Note that the address of the string 

specifies the byte of the string containing the most significant digit. Digits of 

decreasing significance are assigned to increasing addresses. All bytes of a 

trailing numeric string except the least significant digit byte must contain 

ASCII decimal (0 through 9) characters. See Table 4-2 for a list of the ASCII 

characters. 

The highest addressed byte of a trailing numeric string represents an encoding 

of both the least significant digit and the sign of the numeric string. The 

numeric string instructions support any encoding. There are three preferred 

encodings used by VAX software 

■ overpunched numeric 

■ unsigned numeric in which there is no sign and the least significant digit 

contains an ASCII decimal digit character 

■ zoned numeric 

Several variations in overpunched format have evolved because that format 

has been used for many years, and because various card encodings are used. 

These alternate forms are accepted on input. The normal form is generated on 

output of all operations. The valid representations of the digit and sign in each 

of the latter two formats is shown in Table 4-3. 
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Table 4-3 ■ Representation of Least Significant Digit and Sign 

Digit Decimal Hexadecimal 

ASCII Character 

Normal Alternate 

Overpunch Format 

0 123 7B { 
* 

1 63 41 A 1 

2 66 42 B 2 

3 67 43 C 3 

4 68 44 D 4 

5 69 45 E 5 

6 70 46 F 6 

7 71 47 G 7 

8 72 48 H 8 

9 73 49 I 9 

-0 125 7D } t 

-1 74 4A j None 

-2 75 4B K None 

-3 76 4C L None 

-4 77 4D M None 

-3 78 4E N None 

-6 79 4F O None 

-7 80 50 P None 

-8 81 51 Q None 

-9 82 52 R None 

* There are three alternate characters for this code: the zero (0), the left square bracket 

([), and the question mark (?). 

t There are three alternate characters for this code: the right square bracketQ), the 
colon (:), and the exclamation point (!). 
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Table 4-3 ■ Representation of Least Significant Digit and Sign (Cont.) 

Digit Decimal Hexadecimal 

ASCII Character 

Normal Alternate 

Zoned Numeric Format 

0 48 30 0 None 

1 49 31 1 None 

2 50 32 2 None 

3 51 33 3 None 

4 52 34 4 None 

5 53 35 5 None 

6 54 36 6 None 

7 55 37 7 None 

8 56 38 8 None 

9 57 39 9 None 

-0 112 70 P None 

-1 113 71 q None 

-2 114 72 r None 

-3 115 73 s None 

-4 116 74 t None 

-5 117 75 u None 

-6 118 76 V None 

-7 119 77 w None 

-8 120 78 X None 

-9 121 79 y None 

The length of a trailing numeric string must be within the range of 0 to 31 (0 

to 31 digits). The value of a zero length string is zero. It contains no bytes and 

no memory is referenced; hence the address need not be valid. Figures 4-14 

and 4-15 show how to represent the value 123 in both positive and negative 

trailing numeric string format. 
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ZONED FORMAT OR UNSIGNED 

7 4 3 

: A 

: A + 1 

: A + 2 

OVERPUNCH FORMAT 

: A 

: A + 1 

: A + 2 

7_4 3_0 

3 1 

3 2 

4 3 

Figure 4-14 ■ Positive Trailing Numeric String Format 

ZONED FORMAT 

: A 

: A + 1 

: A + 2 

4 3 

OVERPUNCH FORMAT 

: A 

: A + 1 

: A + 2 

Figure 4-15 ■ Negative Trailing Numeric String Format 
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■ Packed Decimal String Data 

A packed decimal string is a contiguous sequence of bytes in memory. The 

address and length specify a packed decimal string. The length is the number 

of digits in the string—not the number of bytes. Every byte of a packed decimal 

string is divided into two 4-bit fields called nibbles. Each nibble must contain 

decimal digits except the low nibble of the last byte that must contain a sign. 

The representation for the digits and sign is listed in Table 4-4. 

Table 4-4 ■ Packed Decimal String Digits and Signs 

Character Decimal Hexadecimal 

0 0 0 

1 1 1 

2 2 2 

3 3 3 

4 4 4 

5 5 3 

6 6 6 

7 7 7 

8 8 8 

9 9 9 

+ * t 

- t § 

* This value can be 10, 12, 14, or 15 (hexadecimal), 

t This value can be A, C, E, or F (hexadecimal). 

X This value can be 11 or 13 (hexadecimal). 

§ This value can be B or D (hexadecimal). 

The preferred sign representation is 12 for a plus sign and 13 for a minus sign. 

The length is the number of digits in the packed decimal string (not counting 

the sign) and must be within the range of 0 through 31. If the number of 

digits is odd, the digits and the sign fit into length/2 + 1 bytes. When the 

number of digits is even, an extra 0 digit must appear in the high nibble (bits 

4 through 7) of the first byte. The length in bytes of a string with an even 

number of bytes is length/2 + 1 bytes. The length is the integer portion only. 

The value of a zero-length packed decimal string is zero. It contains only the 

sign byte that also includes the extra 0 digit. 
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The address of the string specifies the byte of the string containing the most 

-significant digit in its high nibble. Digits of decreasing significance are 

assigned to increasing byte addresses and from high nibble to low nibble 

within a byte. In Figure 4-16, + 123 (length 3) is represented in packed deci¬ 

mal format. In Figure 4-17, - 12 (length 2) is represented in packed decimal 

format. 

7 4 3 0 

: A 

: A + 1 

figure 4-16 ■ Positive Packed Decimal String Format 

: A 

: A + 1 

Figure 4-17 ■ Negative Packed Decimal String Format 

■ Queue Data 

A queue is a list whose entries are specified by their addresses. Each queue 

entry is linked to the next by way of a pair of longwords. The first longword is 

the forward link. It specifies the location of the succeeding entry. The second 

longword is the backward link. It specifies the location of the preceding entry. 

VAX systems support two types of links—absolute and self-relative. Queues 

are named after the type of link used in the queue. 

An absolute queue uses a link that contains the absolute address of the entry 

to which it points. A self-relative queue uses a link that contains a displace¬ 

ment from the present queue entry. 

7 4 3 0 

0 1 

2 13 

1 2 

3 12 
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Queues require a header that is identical to a pair of queue linkage longwords. 

The forward link of the header is the address of the entry called the head of 

the queue. The backward link of the header is the address of the entry called 

the tail of the queue. Logically, the forward link of the tail points to the 

header. 

Self-relative queues are intended for use in situations where they are 

addressed by two separate processes. Each process may view the queues as 

residing in two separate locations in their respective virtual address spaces. 

The instructions that operate on self-relative queues are interlocked. When 

interlocked instructions only are used on the queue, the processes may be in 

separate machines with each process directly addressing the queue. 

Absolute queues are somewhat simpler in structure than self-relative queues 

in that their pointers are virtual addresses. Also, the instructions that operate 

on these queues are not interlocked. In general, operations on absolute queues 

are somewhat faster than those on self-relative queues. However, absolute 

queues cannot be used when more than one processor is to access them. Also, 

the queues can be shared by two processes in the same processor only when 

both processes address the queue in the same section of their virtual address 

space. Figure 4-18 illustrates the format of the self-relative queue, and Figure 

4-19 illustrates the format of the absolute queue. 
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EMPTY SELF-RELATIVE QUEUE (HEADER ONLY) 

SELF-RELATIVE QUEUE WITH TWO ENTRIES 

31 1 0 

SELF-RELATIVE QUEUE WITH ONE ENTRY 

31 1 0 

Figure 4-18 ■ Self-relative Queues 
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EMPTY ABSOLUTE QUEUE (HEADER ONLY-SIMPLE ENTRY ONLY) 

ABSOLUTE QUEUE WITH HEADER AND OTHER ENTRY 

ABSOLUTE QUEUE WITH HEADER AND TWO OTHER ENTRIES 

Figure 4-19 ■ Absolute Queues 
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■ Variable Length Bit Field Data 

The variable length bit field is a type of data used to store small integers 

packed together in a larger data structure. This conserves memory when many 

small integers are part of a larger structure. A specific case of the variable bit 

field is that of one bit. This form is used to store and access individual flags 

efficiently. 

A variable bit field is from 0 to 32 contiguous bits located arbitrarily with 

respect to byte boundaries and specified by three attributes—a base address, 

a bit position, and size. 

The base address (A) is the address of a particular byte in memory chosen as a 

reference point for locating the bit field F. The bit position (P) is the signed 

longword specifying the bit displacement of the least significant bit of the 

field with respect to bit zero of the byte at address A. The size (S) is the byte 

integer length of field F expressed as a number of bits. Size must be between 0 

and 32 bits inclusive. Figure 4-20 illustrates the variable length bit field 

where the field is the shaded area. 

SIZE OF FIELD IN BITS -1 

BIT DISPLACEMENT OF FIELD 

FROM BIT 0 OF ADDRESS A - 

Figure 4-20 ■ Variable Length Bit Field 

For bit strings in memory, the position in bits can be either a positive or nega¬ 

tive displacement within the range of -231 through (231)-1. It can be viewed 

as a signed 29-bit byte offset and a 3-bit bit-within-byte field as shown in Fig¬ 

ure 4-21. 



4-22 • Data Representation 

3 
j_3 2 o 

BYTE OFFSET 

I 
BIT-WITHIN-BYTE 

Figure 4-21 ■ Variable Length Bit Field in Memory 

The sign-extended 29-bit byte offset is added to the address and the resulting 

address specifies the byte in which the field begins. The 3-bit bit-within-byte 

field encodes the starting position (0 through 7) of the field within that byte. 

VAX instructions provide direct support for the interpretation of a field as a 

signed or unsigned integer. When interpreted as a signed integer, it is the 

two’s complement with bits increasing in significance from 0 through S-2 

where bit S-l is the sign bit. When interpreted as an unsigned integer, bits 

increase in significance from 0 through S-l. A field size of zero has a value of 

zero. 

A variable bit field may be contained in zero to five bytes. From a memory 

management point of view only the minimum number of bytes necessary to 

contain the field is actually referenced. 

If the field is contained in a register and the size is not zero, the position oper¬ 

and must have a value in the range 0 through 31 or a reserved operand fault 

occurs. If size plus position are greater than 32, then the operand is located in 

the concatenation of register \n + 1] and by register [n] (that is 

R\n + 1]’RR[«]). See Figure 4-22. The most significant bit of the specified 

field lies in R[« + 1] and the least significant bit of the specified field is 

located in R[«]. 

3 

1 p p - 1 0 

y//////.// 

P + s P + S - 1 

Figure 4-22 ■ Variable Length Bit Field in Register 
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To illustrate the variable length bit field with a positive displacement, assume 

the following variable length bit field attributes—base address (A) = 

B2204C01, position (P) = 29, and size (S) = 2. See Figure 4-23. The start¬ 

ing position of the field is bit 29; that is, the first bit of F is the twenty-ninth 

bit after bit zero of A as shown in Figure 4-23. Now that the starting bit posi¬ 

tion of field has been located, determine its length. To determine its length, 

apply the size attribute as shown in Figure 4-24. 

FIRST 

BIT OF F 

7 0 

7 6 5 4 3 2 1 

15 14 13 12 11 10 9 8 

23 22 21 20 19 18 17 16 

'/S'. 
'29' 
V77 

28 27 26 25 24 

: A B2204C01 

Figure 4-23 ■ Positive Displacement Variable Bit Field 

FIELD F 

Figure 4-24 ■ Determining Length of Positive Displacement Field 

To determine the length of negative displacement variable length bit field, 

assume the following attributes—base address (A) = 801134E3, position (P) 

= -7, and size (S) = 6. See Figure 4-25. The starting position of F is the 

seventh bit preceding the zero bit of address 801134E3 as shown in Figure 

4-25. To determine the field length, apply the size attribute as in the previous 

example counting from lower to higher addresses as shown in Figure 4-26. 
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STARTING BIT POSITION 

OF FIELD F 

801134E2 

801134E3 

801134E4 

Figure 4-25 ■ Negative Displacement Variable Bit Field 

801134E2 

' Y 

FIELD F 

Figure 4-26 ■ Determining Length of Negative Displacement Field 

■ Data in Registers 

When byte, word, longword, or floating type data is stored in a register, the 
bit numbering in the register corresponds to the numbering in memory. A 
byte is stored in a register in bits 0 through 7. A word is stored in bits 0 
through 15. Longword and F_floating data is stored in register bits 0 

through 31. A byte or word written to a register writes only bits 7 through 0 
and 15 through 0 respectively. The higher bits are unaffected. A byte or word 
read from a register reads only bits 0 through 7 and 0 through 15, respec¬ 

tively. The other bits are ignored. 

When quadword or D_floating data is stored in a register, the data is stored 
in two adjacent registers. Because of program counter restrictions, wrap¬ 
around from register PC to register RO is unpredictable. Bits 0 through 31 of 
the quadword or D_floating data are stored in the first register. Bits 32 

through 63 of the quadword or D_floating data are stored in the second reg¬ 

ister. 
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An octaword or H_floating data stored in a register is stored in four adja¬ 

cent registers. Bits 0 through 31 of the data are stored in the first register, bits 

32 through 63 are stored in the second register, bits 64 through 93 are stored 

in the third register, and bits 96 through 127 are stored in the fourth register. 

With one restriction, a variable length bit field may be specified in the regis¬ 

ters. The starting bit position (P) must be in the range 0 through 31. For quad- 

word and D— floating data, a pair of registers is treated as a 64-bit register 

with bits 0 through 31 in the base register and bits 32 through 63 in the adja¬ 

cent register. 

The VAX string instructions are unable to process string data types stored in 

registers. Thus there is no representation of strings in registers. 





Chapter 5 ■ The Instruction Characteristics 

The notation conventions, source statement format, and register addressing 

modes are described in this chapter. One must understand the notation con¬ 

ventions before being able to read and comprehend the instructions. Then the 

addressing modes can be studied. Addressing modes are related to the instruc¬ 

tion format because the form of the instruction implicitly specifies the regis¬ 

ter addressing mode. 

■ Notation Conventions 

The notation conventions described here are for the assembler and instruction 

set only and do not apply to other syntax. The conventions cover the assem¬ 

bler, instruction operand, instruction operation, and range and extent nota¬ 

tion. 

Assembler Notation 

The radix of the assembler is decimal. To express a hexadecimal number in 

assembler notation, the number must be preceded by a caret ( -) and an upper¬ 

case X. For those keyboards without a caret character, the up arrow (t) charac¬ 

ter is used. For example, in the instruction MOVW #3456,-(SP), the 

assembler interprets the number 3456 as a decimal number. If 3456 is to be 

interpreted as a hexadecimal number, it must be preceded by a caret or up 

arrow and an uppercase X (#tX3456). 

Operand Notation 

Operands are specified in the following way: 

< name >. < access_type > < data_type > 

where < name > is typically a mnemonic for the operand of the instruction. 

The <access_ type> is a letter denoting the operand access type. 

a means to calculate the effective address of the specified operand. 

Address is returned in a longword that is the instruction operand. Con¬ 

text of address calculation is given by < data_type >. 

b means there is no operand reference. Operand specifier is a branch dis¬ 

placement. Size of branch displacement is given by < data_type >. 
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m means the operand is read, sometimes modified, and written. Note 

that this is not an indivisible memory operation. Also note that if the 

operand is not actually modified, it may not be written back. However, 

modify type operands are always checked for both read and write acces¬ 

sibility. 

r means the operand is read only. 

v means to calculate the effective address of the specified operand. If the 

effective address is in memory, the address is returned in a longword 

that is the instruction operand. Context of address calculation is given 

by <data_type> . If the effective address is R«, then the operand 

actually appears in R[«], or in R[n + 1]’R[»]. 

w means the operand is written only. 

The < data_type > is a letter denoting the data type of the operand. 

b denotes byte data 

d denotes D_floating data 

f denotes F_floating data 

g denotes G_floating data 

h denotes H_floating data 

1 denotes longword data 

o denotes octaword data 

q denotes quadword data 

w denotes word data 

x denotes the first data type specified by instruction 

y denotes the second data type specified by instruction 

Operation Notation 

The operation of each instruction is given as a sequence of control and assign¬ 

ment statements in an ALGOL-like syntax. No attempt is made to define the 

syntax formally. The syntax is assumed to be familiar to the reader and is sum¬ 

marized in Table 5-1. 
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Table 5-1 ■ Operation Notation Conventions 

Notation Meaning 

+ addition 

- subtraction 

X multiplication 

/ division (quotient only) 

** exponentiation 

concatenation 

is replaced by 

= is defined as 

Rn or R [n] contents of register Rn 

PC the contents of register R15 

SP the contents of register R14 

FP the contents of register R13 

AC the contents of register R12 

PSW the contents of the Processor Status Word 

PSL the contents of the Processor Status Longword 

(x) contents of memory whose address is x 

(x) + contents of memory whose address is x; x is 

incremented by size of operand referenced at x 

-(*) x decremented by size of operand to be referenced 

at x; contents of memory whose address is x 

x:y a modifier which delimits an extent from bit 

position x to bit position y inclusive 

xl,x2,...,xn a modifier that enumerates bits xl,x2, ... ,xn 

x...y x through y inclusive 

{ } braces used to indicate precedence 

AND logical AND 

OR logical OR 

XOR logical XOR 
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Table 5-1 ■ Operation Notation Conventions (Cont.) 

Notation Meaning 

NOT logical (l’s) complement 

LSS less than signed 

LSSU less than unsigned 

LEQ less than or equal signed 

LEQU less than or equal unsigned 

EQL equal signed 

EQLU equal unsigned 

NEQ not equal signed 

NEQU not equal unsigned 

GEQ greater than or equal signed 

GEQU greater than or equal unsigned 

GTR greater than signed 

GTRU greater than unsigned 

SEXT (x) x is signed-extended to size of operand needed 

ZEXT (x) x is zero-extended to size of operand needed 

REM (x, y) remainder of x divided by y, such that x/y and REM 

(x,y) have the same sign 

MINU (x, y) minimum unsigned of x and y 

MAXU (x, y) maximum unsigned of x and y 

The following conventions are used: 

■ Other than that caused by (x) + , or - (x), and the advancement of the pro¬ 

gram counter, only operands or portions of operands appearing on the left 

side of assignment statements are affected. 

■ No operator precedence is assumed other than that replacement has the 

lowest precedence. Precedence is indicated explicitly by braces. 

■ All arithmetic, logical, and relational operators are defined in the context 

of their operand. For example, a plus sign ( + ) applied to floating operands 

means a floating add while the same sign applied to byte operands means 

an integer byte add. Similarly, LSS is a floating comparison when applied 

to floating operands; and LSS is an integer byte comparison when applied 

to byte operands. 

I 
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■ Instruction operands are evaluated according to the operand specifier con¬ 

ventions. The order in which operands appear in the instruction descrip¬ 

tion has no effect on the order of evaluation. 

■ In general, condition codes are affected on the value of actual stored 

results, not on true results that might be generated internally to greater pre¬ 

cision. Thus, for example, two positive integers can be added together and 

the sum stored, because of overflow, as a negative value. The condition 

codes will indicate a negative value even though the true result is clearly 

positive. 

Range and Extent Notation 

An integer range is specified in English by the word through, or in notational 

form by a double period (..), and is inclusive. For example, the range 0 through 

4, or 0..4, means the integers 0, 1, 2, 3, and 4. 

An extent is given by a pair of numbers separated by a colon and is also inclu¬ 

sive. For example, bits 7:3 specifies an extent of bits including bits 7, 6, 5, 4, 

and 3. 

■ MACRO Source Statement Format 

MACRO source statements have four fields—label, operator, operand, and 

comment fields. The label field defines a location in the program. The opera¬ 

tor field specifies the action to be performed. The operator can be a VAX archi¬ 

tecture instruction, an assembler directive, or a MACRO call. The operand 

field contains the instruction operand or operands, the assembler directive 

argument or arguments, or the MACRO statement or statements. The com¬ 

ment field contains a comment that explains the meaning of the statement. 

Comments do not affect program execution. 

The label and comment fields are optional. The label field must end with a 

colon (:). The comment field must begin with a semicolon (;). The operand 

field must conform to the format of the instruction, directive, or MACRO spec¬ 

ified in that field. See Figure 5-1 for the MACRO source statement format. 

The statement format and fields are fully described in the VAX-11 MACRO 

Reference Manual. 
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COLUMN COLUMN COLUMN COLUMN 

1 

1 
9 17 

1 
41 

1 
1 
LABEL: CLRL 

1 
R5 

Y 
; CLEAR REGISTER 

Figure 5-1 ■ MACRO Source Statement Format 

Because of printing restrictions, the instruction examples in this book do not 

conform to the field requirements of the assembler. In practice, the instruc¬ 

tions must be formatted as shown in Figure 5-1. A single statement can be 

continued on several lines by using a hyphen as the last nonblank character 

before the comment field. When there are no comments, the line can be con¬ 

tinued by using a hyphen at the end of the line. 

■ Instruction Format 

The VAX instruction set has a variable length instruction format whose length 

depends on the type of instruction. The general instruction format is shown in 

Figure 5-2. Each instruction consists of an operator followed by up to six oper¬ 

ands. The number and type of operands depend on the operator. All operands 

have the same format; that is, an address mode plus additional information. 

This additional information contains up to two register designators and 

addresses, data, or displacements. Operand use is determined implicitly from 

the opcode and is called the operand type. It includes both the access type and 

the data type. The example in Figure 5-3 shows several VAX instruction for¬ 

mats. 



OPCODE (1 OR 2 BYTES) 

OPERATION CODE 

OPERAND SPECIFIER 1 

OPERAND SPECIFIER 2 

OPERAND SPECIFIER 3 

OPERAND SPECIFIER N 

Figure 5-2 ■ General VAX Instruction Format 
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MOVL 6(R1), R5 SIX IS ADDED TO R1. THE RESULT USED AS AN 

ADDRESS AND THE CONTENTS OF THAT ADDRESS 

IS MODED TO R5 

BYTE_ 

1 MOVL 

2 (R1) 

3 6 
4 R5 

OPCODE 

OPERAND SPECIFIER 1 

OPERAND SPECIFIER 2 

A. MOVE LONG INSTRUCTION 

MOVW#t X3456, -(SP) ; THE NUMBER 3456 IS PUSHED ON THE 

; STACK 

BYTE 

1 

2 

3 

4 

5 

MOVW 

(PC) + 

56 

34 

~(SP) 

OPCODE 

OPERAND SPECIFIER 1 

\ IMMEDIATE DATA (56 STORED IN BYTE 3) 

| (34 STORED IN BYTE 4) 

OPERAND SPECIFIER 2 

B. MOVE WORD INSTRUCTION 

ADDL 3 (SP) + , R4, R5 

BYTE 

NUMBER ON THE STACK IS 

ADDED TO THE CONTENTS OF 

R4 AND RESULT IS STORED 

IN R5 

1 

2 

3 

4 

OPCODE 

OPERAND SPECIFIER 1 

OPERAND SPECIFIER 2 

OPERAND SPECIFIER 3 

C. ADD LONG INSTRUCTION (3 OPERAND) 

Figure 5-3 ■ Instruction Formats 

Operator Field 

Each VAX instruction contains an operating code (opcode) that specifies the 

operation to perform. An instruction is specified by the byte address of its 

opcode. The opcode may be one or two bytes long depending on the contents 

of the byte at address A. Two bytes are used under the condition that the 

value of the first byte is FD (hexadecimal) through FF (hexadecimal). Figure 

5-4 illustrates the opcode formats. 



7 0 

OPCODE 

1 BYTE OPCODE 

15_87_0 

FC-FD 

_ (1111 1100-1111 1111) 

2 BYTE OPCODE 

Figure 5-4 ■ Opcode Format 

Operand Field 

The operand field contains an operand specifier that gives the information 

needed to locate the operand. Each general mode addressing description 

includes the definition of the operand address and the specified operand. For 

operand specifiers of address access type, the operand address is the actual 

instruction operand. For other access types, the specified operand is the 

instruction operand. The branch mode addressing description includes the def¬ 

inition of the branch address. 

The operand types specify how the operand is to be used. The opcode informa¬ 

tion includes the data type of each operand and how the operand is accessed. 

The data types include byte, word, longword, quadword, octaword, and all 

the floating types. The following groups of data types are considered equiva¬ 

lent within groups for addressing mode considerations: 

■ Longword and F_floating 

■ Quadword, D_floating, and G_floating 

■ Octaword and H floating 

An operand may be accessed in one of six ways. 

1. Read—the specified operand is read-only. 

2. Write—the specified operand is write-only. 

3. Modify—the specified operand is read, potentially modified, and is writ¬ 

ten. This is not a memory interlock. 
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4. Address—the address of the operand in the form of a longword is the 

actual instruction operand. The operand is not accessed directly although 

the instruction may subsequently use the address to access that operand. 

5. Variable bit field base address—same as address access type except for reg¬ 

ister mode. In register mode, the field is stored in the register designated 

by the destination operand or in the destination register concatenated with 

the next higher addressed register. This access type is a special variant of 

the address access type. 

6. Branch—no operand is accessed. The operand specifier itself is a branch 

displacement. In this specifier, the data type indicates the size of the 

branch displacement. 

For the address and branch address type that do not directly reference oper¬ 

ands, the data type indicates the address and branch. The address indicates 

the operand size to be used in the address calculation in the autoincrement, 

autodecrement, and index modes. The branch indicates the branch displace¬ 

ment. 

■ Addressing Modes 

VAX register addressing can be divided into two broad categories—general 

mode addressing and branch addressing. The sections that follow describe the 

various modes under both categories. 

Table 5-2 contains a summary of the general register and program counter 

addressing modes. It shows the mode specifier for each addressing mode in 

hexadecimal and decimal notation; the assembler notation; the access types 

that may be used with the various modes; the effect on the program and stack 

pointer; and which modes may be indexed. For example, in literal mode, only 

a read access may occur. Any other type of access results in a fault. The pro¬ 

gram counter and stack pointer are not referenced in this mode and are logi¬ 

cally impossible. If indexing is attempted in this mode, a reserved addressing 

mode fault occurs. 



Table 5-2 ■ Addressing Modes 

GENERAL REGISTER ADDRESSING 

Hex Dec Name Assembler r m w a v PC SP Indexable? 

0-3 0-3 literal St#literal y f f f f li li f 

4 4 indexed i[Rx] y y y y y f y f 

5 5 register Rn y y y f y u uq f 

6 6 register deferred (Rn) y y y y y u y y 

7 7 autodecrement -(Rn) y yyyy u y ux 

8 8 autoincrement (Rn) + y y y y y p y ux 

9 9 autoincrement 

deferred 
@(Rn) + y y y y y p y ux 

A 10 byte displacement BtD (Rn) y y y y y p y y 

B 11 byte displacement 

deferred 

@BtD (Rn) y y y y y p y y 

C 12 word displacement WtD (Rn) y y y y y p y y 

D 13 word displacement 

deferred 
@WtD (Rn) y y y y y p y y 

E 14 longword displace¬ 
ment 

LtD (Rn) y y y y y p y y 

F 15 longword displace¬ 

ment deferred 

@LtD (Rn) y y y y y p y y 

PROGRAM COUNTER ADDRESSING 

8 8 immediate It# constant y u u y y li li y 

9 9 absolute @# address y y y y y li li y 

A 10 byte relative Bt address y y y y y li li y 

B 11 byte relative 
deferred 

@Btaddress y y y y y li li y 

C 12 word relative Wt address y y y y y li li y 

D 13 word relative 
deferred 

@Wt address y y y y y li li y 

E 14 longword relative Lt address y y y y y li li y 

F 15 longword relative 
deferred 

@Lt address y y y y y li li y 
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Legend 

a = address access 

D = displacement 

f = reserved addressing mode fault 

i = any indexable addressing mode 

li = logically impossible 

m = modify access 

p = program counter addressing 

r = read access 

u = unpredictable 

uo = unpredictable for octaword and H_floating format only 

uq = unpredictable for quadword, octaword, D_floating, G_floating, and 

H_floating (and field, if position + size is greater than 32) 

ux = unpredictable for index register same as base register 

v = field access 

w = write access 

y = yes, always valid addressing mode 

General Mode Addressing 

In general mode addressing, there are two types of addressing—general regis¬ 

ter addressing and program counter addressing. General register addressing 

has nine modes while program counter addressing has four. 

■ General Register Addressing 

The nine modes in which to access general registers are autodecrement, autoin¬ 

crement, autoincrement deferred, displacement, displacement deferred, 

index, literal, register, and register deferred. Each is described in the ensuing 

paragraphs. 

Autodecrement Mode. With autodecrement mode, .the size of the operand in 

bytes is subtracted from the content of specified source register. Then the con¬ 

tent of the destination register is replaced by the remainder of the subtraction. 

The remainder is the address of the operand. 

To specify the autodecrement mode, the source register operand is enclosed in 

parentheses and is preceded by a minus (-) sign. See Example 3-1 for the for¬ 

mat of this address mode. 
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Example 5-1 ■ Autodecrement Mode Instruction 

MOVL -(R3)# R4 

Figure 5-5 shows a wow /o«g instruction using autodecrement mode. The con¬ 

tents of register R3 are decremented according to the data type specified in 

the opcode. In this example, the register contents are decremented by 4 

because a longword is used. The updated contents of R3 are then used as the 

address of the operand. The instruction causes the operand to be fetched and 

loaded into register R4. 

7_4 3_0 

7 Rn 

v___y v___y 

MODE 

SPECIFIER 
REGISTER 

SPECIFIER 

OPERAND SPECIFIER FORMAT 

ADDRESS 

SPACE R3 R4 

00001014 10 'N | 00001018 | 1 00000000 1 
00001015 32 

> CE543210 . 
00001016 54 

00001017 CE J -NL 
BEFORE INSTRUCTION EXECUTION 

R3 R4 

| 00001014 | | CE543210 | 

AFTER INSTRUCTION EXECUTION 

00003000 DO OPCODE FOR MOVE LONG INSTRUCTION 

00003001 73 AUTODECREMENT MODE, REGISTER R3 
00003002 54 REGISTER MODE, REGISTER R4 

MACHINE CODE: ASSUME STARTING LOCATION 00003000 

Figure 5-5 ■ Autodecrement Mode Instruction 

The program counter may not be used in autodecrement mode. If it is, the 

address of the operand is unpredictable and the next instruction executed or 

the next operand specifier is unpredictable. 
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Autoincrement Mode. In autoincrement mode addressing, the register speci¬ 

fied in the source register operand contains the address of the operand. After 

the operand address is determined, the size of the operand is added to the 

contents of the source register. Then the contents of the destination register 

are replaced by the sum of the addition. This mode provides for automatic 

stepping of a pointer through sequential elements of a table of operands. Con¬ 

tents of registers are incremented to address the next sequential location. 

The autoincrement mode is especially useful for array processing and stacks. 

It accesses an element of a table and then steps the pointer to address the next 

operand in the table. Although most useful for table handling, this mode is- 

general and may be used for variety of purposes. 

If the program counter is used as the general register, this addressing mode is 

considered immediate mode and has special syntax. Immediate mode is 

described in the section on Program Counter Addressing. 

The autoincrement mode is specified by enclosing the register identifier in 

parentheses followed by a plus (+) sign. See Example 5-2 for the format of 

the instruction. 

Example 5-2 ■ Autoincrement Mode Instruction 

H0VL <R1)+/R2 

Figure 5-6 shows a move long instruction using autoincrement mode. The con¬ 

tent of register R1 is the effective address of the source operand. Because the 

operand is a 32-bit longword, 4 bytes are transferred to register R2. Register 

R1 is then incremented by 4 because the instruction specifies a longword data 

type. 

Autoincrement Deferred Mode. In autoincrement deferred addressing, the 

source register contains a longword address that is a pointer to the operand 

address. After the operand address has been determined, 4 is added to the 

contents of the source register. The contents of the source register are 

replaced with the sum of the addition. The quantity 4 is used because there 

are 4 bytes in an address. 

Autoincrement deferred mode is specified by an at (@) sign, the source regis¬ 

ter enclosed in parentheses, followed by a plus ( + ) sign. Example 5-3 contains 

a register in the autoincrement deferred mode. 
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mm «(RD*,R2 

SPECIFIER SPECIFIER 

OPERAND SPECIFIER FORMAT 

R2 

00000000 

SOURCE OPERAND ADDRESS: 00001010 

BEFORE INSTRUCTION EXECUTION 

ADDRESS 

SPACE R1 R2 

00001010 
00001011 
00001012 
00001013 

00001014 

00001015 

AFTER INSTRUCTION EXECUTION 

| 00001014 | | 33221100 | 

ADDRESS 

SPACE 

00003000 

00003001 
00003002 

OPCODE FOR MOVE LONG WORD INSTRUCTION 

AUTOINCREMENT MODE, REGISTER R1 
REGISTER MODE, REGISTER R2 

MACHINE CODE: ASSUME STARTING LOCATION 3000 

Figure 5-6 ■ Autoincrement Mode Instruction 
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Figure 5-7 shows a move word instruction using autoincrement deferred 

mode. Register R1 is a pointer to the operand address. Because a word length 

instruction is specified, the byte at the effective address and the byte at the 

effective address plus 1 are loaded into the low-order half of register R2. The 

upper half of register R2 is unaltered. Register R1 is then incremented by 4 

since it points to a 32-bit address. 

If the program counter is used as the general register, this addressing mode is 

considered absolute mode. Absolute mode is described in the section on Pro- 

gram Counter Addressing. 

4 3 

y 

MODE-1 

SPECIFIER 

OPERAND SPECIFIER FORMAT 

REGISTER 

SPECIFIER 

ADDRESS 

SPACE 

00001010 00 

00001011 11 L 
00001012 22 L 
00001013 33 J 
00001014 44 

00001015 55 

/^ADDRESS 

SPACE 

33221100 34 

33221101 5F 

33221102 00 

33221103 00 

33221100 

BEFORE INSTRUCTION EXECUTION 

R1 R2 

| 00001010 ] | 00000000 | 

DDRESS 

R1 R2 

| 00001014 ”| | 00005F34 1 

AFTER INSTRUCTION EXECUTION 

ADDRESS 

00003000 

00003001 

00003002 

SPACE 

B0 

91 

52 

OPCODE FOR MOVE WORD INSTRUCTION 

AUTOINCREMENT DEFERRED MODE, REGISTER R1 

REGISTER MODE, REGISTER R2 

MACHINE CODE: ASSUME STARTING LOCATION 00003000 

Figure 5-7 ■ Autoincrement Deferred Mode Instruction 
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Displacement Mode. The VAX architecture provides for an 8-bit, 16-bit, or 

32-bit offset. Because most program references occur within small discrete 

portions of the address space, a 32-bit offset is not always necessary. The 8- 

and 16-bit offsets use fewer bits. If the displacement is a byte or a word, it is 

sign-extended to 32 bits. Then the displacement is added to the content of the 

specified register. The result is the operand address. See Example 5-4 for the 

syntax of the displacement mode. 

Example 5-4 ■ Byte Displacement Mode Instruction 

MOVE Bt5(R4),Bt3(R3) 

Figure 5-8 shows a move byte instruction using displacement mode. A dis¬ 

placement of 5 is added to the content of R4 to form the address of the byte 

operand. The operand is moved to the address formed by adding the displace¬ 

ment of 3 to the contents of R3. 

Three data types can be specified. For example, 

■ Btd(R«) forces byte displacement. 

■ Wtd(Rn) forces word displacement. 

■ Ltd(Rtf) forces longword displacement. 

If the program counter is used as the general register, this mode is called rela¬ 

tive mode. The Program Counter Register Addressing section describes the 
relative mode. 

Displacement Deferred Mode. If the displacement is a byte or word, it is sign- 

extended to 32 bits. Then the displacement is added to the contents of the 

selected general register. The result is a longword address of the operand 

address. See Example 5-5 for an example of an instruction in displacement 
deferred mode. 

Three data types can be specified. For example, 

■ @Btd(R«) forces byte displacement deferred mode. 

■ @ Wtd(Rn) forces word displacement deferred mode. 

■ @Ltd(Rn) forces longword displacement deferred mode. 
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8 7 4 3 

BYTE DISPLACEMENT MODE 

WORD DISPLACEMENT MODE 

LONGWORD DISPLACEMENT MODE 

REGISTER SPECIFIER 

DISPLACEMENT 1- MODE SPECIFIER 

A = BYTE DISPLACEMENT 

C = WORD DISPLACEMENT 

E = LONGWORD DISPLACEMENT 

OPERAND SPECIFIER FORMAT 

ADDRESS 

SPACE R4 R3 

00001015 00 1 00001012 | | 00002020 | 

00001016 00 

00001017 06 —OPERAND 

00001018 00 00001012 00002020 
00001019 

+ 5 +3 

• 
00001017 00002023 

00002021 00 

00002022 00 

00002023 00 

BEFORE INSTRUCTION EXECUTION 

ADDRESS 

00001015 

00001016 

00001017 

00001018 

SPACE 

00 
00 
06 

00 

R4 

| 00001012 1 

R3 

| 00002020 ] 

00002021 
00002022 
00002023 -—OPERAND 

AFTER INSTRUCTION EXECUTION 

00003000 

00003001 

00003002 

00003003 

00003004 

ADDRESS 

OPCODE FOR MOVE BYTE INSTRUCTION 

SIGNED BYTE DISPLACEMENT, REGISTER R4 

SPECIFIER EXTENSION (DISPLACEMENT OF 5) 

SIGNED BYTE DISPLACEMENT, REGISTER R3 
SPECIFIER EXTENSION (DISPLACEMENT OF 3) 

SPACE 

90 

A4 

05 

A3 

03 

MACHINE CODE: ASSUME STARTING LOCATION 00003000 

Figure 5-8 ■ Displacement Mode Instruction 
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Example 5-5 ■ Byte Displacement Deferred Mode Instruction 

INCW «Bt5CR4) 

Figure 5-9 shows an increment word instruction using displacement deferred 

mode. The quantity 5 is added to the contents of register R4 to produce the 

longword address of the address of the operand. The operand of 5713 is incre¬ 

mented to 5714. 

If the program counter is used as the general register, this is considered rela¬ 

tive deferred mode. 

Index Mode. Index mode addressing provides very general and efficient access¬ 

ing of arrays. The VAX architecture provides for context indexing where the 

number in the index register is shifted left by the context of the data type 

specified. It is not shifted for byte data, shifted once for word data, twice for 

longword data, three times for quadword data, and four times for octaword 

data. This allows loop control variables to be used in the address calculation 

without first shifting them the appropriate number of times. This minimizes 

the number of instructions required. This feature is used to advantage in the 

FORTRAN VAX compiler. 

The operand specifier consists of at least two bytes—a primary operand speci¬ 

fier and a base operand specifier. The primary operand specifier contained in 

bits 0 through 7 includes the index register (Rx) and a mode specifier of 4. 

The address of the primary operand is determined by first multiplying the con¬ 

tents of index register Rx by the size of the primary operand in bytes. This 

value is then added to the address specified by the base operand specifier (bits 

15:8), and the result is taken as the operand address. 

Specifying register, literal, or index mode for the base operand specifier 

results in an illegal addressing mode fault. If the use of some particular speci¬ 

fier is illegal (that is, causes a fault or unpredictable behavior), then that speci¬ 

fier is also illegal as a base operand specifier in index mode under the same 

conditions. 

The following restrictions are placed on index register Rx: 

1. The program counter cannot be used as an index register. If it is, a 

reserved addressing mode fault occurs. 

2. If the base operand specifier is for an addressing mode that modifies a reg¬ 

ister, that register cannot be the index register. If it is, the primary oper¬ 

and address is unpredictable. Addressing modes that modify a register are 

the autoincrement, autoincrement deferred, and autodecrement modes. 
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Table 5-3 lists the various forms of index mode addressing available. The 

names of the addressing modes resulting from index mode addressing are 

formed by adding index to the addressing mode of the base operand specifier. 

The general register is designated Rn and the indexed register is Rx. 

15 8 7 4 3 

DISP Rn 

23 8 7 4 3 

DISP Rn 

8 7 4 3 

DISP F Rn 

v yl_j \_y 

T 1 
DISPLACEMENT 1- MODE SPf 

SPECIFIER EXTENSION IS 

BYTE DISPLACEMENT DEFERRED 

SPECIFIER EXTENSION IS 

WORD DISPLACEMENT DEFERRED 

SPECIFIER EXTENSION IS 

LONGWORD DISPLACEMENT DEFERRED 

REGISTER SPECIFIER 

B = BYTE DISPLACEMENT 

D = WORD DISPLACEMENT 

F = LONGWORD DISPLACEMENT 

OPERAND SPECIFIER FORMAT 

ADDRESS 

SPACE R4 

00001017 88 ^ | 00001012 

00001018 42 l OPERAND 
00001019 24 f ADDRESS 
00001020 68 / 

■ OPERAND 

BEFORE INSTRUCTION EXECUTION 

00001012 
+5 

5713 OPERAND 

+ 1 INCREMENT 

5714 NEW OPERAND 

AFTER INSTRUCTION EXECUTION 

ADDRESS 

SPACE 

OPCODE FOR INCREMENT WORD INSTRUCTION 
SIGNED BYTE DISPLACEMENT, REGISTER R4 

SPECIFIER EXTENSION (DISPLACEMENT OF 5) 

MACHINE CODE: ASSUME STARTING LOCATION 00003000 

Figure 5-9 ■ Displacement Deferred Mode Instruction 

00003000 
00003001 

00003002 

B6 

B4 

05 
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Table 5-3 ■ Index Mode Addressing 

Index Mode Assembler Notation 

Absolute @#address [Rx] 

Autodecrement -(Rn) [Rx] 

Autoincrement (Rn) + [Rx] 

Autoincrement Deferred @(Rn) + [Rx] 

Deferred Displacement: 

Byte @BtD(Rn) [Rx] 

Word @WtD(Rn) [Rx] 

Longword @LtD(Rn) [Rx] 

Immediate1 It# constant [Rx] 

Immediate Displacement: 

Byte BtD(Rn) [Rx] 

Word WtD(Rn) [Rx] 

Longword LtD(Rn) [Rx] 

Register Deferred (Rn) [Rx] 

Relative Indexed address [Rx] 

1 The instruction is recognized by assembler but is not generally useful. The operand 

address is independent of the value of the constant. 

It is important to note that the operand address (the address containing the 

operand) is first evaluated. Then the index specified by the index register is 

added to the operand address to find the indexed address. To illustrate this, 

an example of each type of indexed addressing is shown in Examples 5-6 

through 5-12. 

Register Deferred Index Mode. See Example 5-6. 

Example 5-6 ■ Register Deferred Index Mode Instruction 

INCW CR2) CR5] 

Figure 5-10 shows an increment word instruction using register deferred 

index addressing. The base operand address is evaluated. This location is 

indexed by 6 because the value (3) in the index register is multiplied by the 

word data size of 2. 
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PRIMARY OPERAND 

DISP BASE OPERAND SPECIFIER 4 Rn 

OPERAND SPECIFIER FORMAT 

- MODE SPECIFIER 

ADDRESS 

SPACE 

00001012 04 

00001013 56 

00001014 78 

00001015 87 

00001018 

00001019 

45 

67 

R2 R5 

| 00001012 | 1 00000003 ] 

316 x 2 BYTES PER WORD = 6 

00001012 
+6 

OPERAND 
00001018 

BEFORE INSTRUCTION EXECUTION 

ADDRESS 

SPACE R2 R5 

| 0000101*2 1 | 00000003 ] 00001018 46 

00001019 67 

AFTER INSTRUCTION EXECUTION 

ADDRESS 

00003000 

00003001 

00003002 

SPACE 

B6 

45 

62 

OPCODE FOR INCREMENT WORD INSTRUCTION 

INDEX MODE, REGISTER R5 

REGISTER DEFERRED MODE, REGISTER R2 

ASSEMBLY CODE: ASSUME STARTING LOCATION 00003000 

Figure 5-10 ■ Register Deferred Index Mode Instruction 

Autoincrement Index Mode. See Example 5-7. 

Example 5-7 ■ Autoincrement Index Mode Instruction 

CLRL (R4) + CR5] 
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Figure 5-11 shows a clear longword instruction using the autoincrement 

indexed addressing mode. The base operand address is in register R4. This 

value is indexed by the quantity in R5 multiplied by the data size. This loca¬ 

tion, plus the next three, are cleared because a clear longword instruction is 

specified. 

ADDRESS 

SPACE 

000010A6 11 

000010A7 22 

000010A8 33 

000010A9 44 

R4 

00001012 | 

R5 

00000025 | 

► OPERAND INDEX = 2516 x 4 BYTES PER 

LONGWORD, 

= 94ie 

k 00001012 
00000094 - 

ADDRESS OF OPERAND 000010A6 

BEFORE INSTRUCTION EXECUTION 

ADDRESS 

SPACE R4 R5 

000010A6 00 | 00001016 | | 00000025 | 

000010A7 00 

000010A8 00 

000010A9 00 

AFTER INSTRUCTION EXECUTION 

ADDRESS 

SPACE 

00003000 

00003001 

00003002 

OPCODE FOR CLEAR LONGWORD INSTRUCTION 

INDEX MODE, REGISTER R5 

AUTOINCREMENT MODE, REGISTER R4 

MACHINE CODE: ASSUME STARTING LOCATION 00003000 

Figure 5-11 ■ Autoincrement Index Mode Instruction 

Autoincrement Deferred Index Mode. See Example 5-8. 

Example 5-8 ■ Autoincrement Deferred Index Mode Instruction 

CLRW 9CR4)+[R5] 
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Figure 5-12 shows a clear word instruction using the autoincrement deferred 

indexing mode. Register R4 contains the address of the operand address. The 

index value A is obtained by multiplying the contents (5) of the index register 

by the context of the data type, which is 2. The calculated word address is 

cleared. 

00001012 
00001013 

00001014 

00001015 

0608214D 

0608214E 

0608214F 

ADDRESS 

SPACE R4 R5 

| 00001012 | | 00000005 | 

x 2 BYTES PER WORD = 0000000A 

ADDRESS 

SPACE 

OPERAND 

0608214D 

# 

BEFORE INSTRUCTION EXECUTION 

0608214D 

0608214E 

0608214F 

ADDRESS 

SPACE R4 

| 00001014 | 

AFTER INSTRUCTION EXECUTION 

R5 

| 00000005 1 

00003000 

00003001 

00003002 

ADDRESS 

OPCODE FOR CLEAR WORD INSTRUCTION 

INDEX MODE, REGISTER R5 

AUTOINCREMENT DEFERRED MODE, REGISTER R4 

SPACE 

B4 

45 

94 

MACHINE CODE: ASSUME STARTING LOCATION 3000 

Figure 5-12 ■ Autoincrement Deferred Index Mode Instruction 

Autodecrement Index Mode. See Example 5-9. 

Example 5-9 ■ Autodecrement Index Mode Instruction 

CLRW -<R2) [ R4 ] 
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Figure 5-13 shows a clear word instruction using autodecrement indexed 

mode. Register R2 is predecremented and the indexed value is calculated as 6. 

Because a clear word instruction is specified, two bytes are cleared. 

ADDRESS 

0000101A 
0000101B 
0000101C 
0000101D 

SPACE 

33 

33 

33 

33 

BEFORE INSTRUCTION EXECUTION 

R2 R4 

| 00001016 ~| | 00000003 ~[ 

316 x 2 BYTES PER WORD = 6(INDEX) 

00001016 

00000002 DECREMENT BY 2 

00001014 OPERAND ADDRESS 

00000006 INDEX VALUE 

0000101A INDEXED OPERAND ADDRESS 

ADDRESS 

0000101A 
0000101B 
0000101C 
0000101D 

SPACE 

00 
00 
00 
00 

R2 

1 00001014 | 

R4 

| 00000003 | 

AFTER INSTRUCTION EXECUTION 

00003000 

00003001 

00003002 

ADDRESS 

SPACE 

B4 

44 

72 

OPCODE FOR CLEAR WORD INSTRUCTION 

INDEX MODE, REGISTER R4 

AUTODECREMENT MODE, REGISTER R2 

MACHINE CODE: ASSUME STARTING LOCATION 00003000 

Figure 5-13 ■ Autodecrement Index Mode Instruction 

Absolute Index Mode. See Example 5-10. 

Example 5-10 ■ Absolute Index Mode Instruction 

CLRL «#tX1012 CR23 



3-26 ■ The Instruction Characteristics 

Figure 5-14 shows a clear longword instruction using absolute indexed mode. 

The base of 00001012 (hexadecimal) is indexed by R2 that contains 5. 

Because a longword data type is specified, 5 x 4 = 14 (hexadecimal), which 

becomes the index value. This value is added to 00001012 (hexadecimal) yield¬ 

ing 0001026 (hexadecimal). This is the operand address, and four bytes are 

cleared because a longword data type has been specified. 

ADDRESS 

SPACE R2 

f 00000005 | 

5i6 x 4 = 1416 

00001012 
00000014 

00001026 

BEFORE INSTRUCTION EXECUTION 

ADDRESS 

SPACE 

00001026 

00001027 

00001028 

00001029 

R2 

| 00000005 ] 

AFTER INSTRUCTION EXECUTION 

Figure 5-14 ■ Absolute Index Mode Instruction 

Displacement Index Mode. See Example 5-11. 

Example 5-11 ■ Displacement Index Mode Instruction 

CLRQ 2CRDCR31 

Figure 5-15 shows a clear quadioord instruction using displacement index 

mode. The byte displacement of 2 is added to the contents of register R1. The 

index, calculated as 28, is added to this address. Because a quadword was spec¬ 

ified, this location and the next seven locations are cleared. 
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ADDRESS 

SPACE 

0000402A 24 

0000402B 68 

0000402C 13 

0000402D 57 

0000402E 62 
0000402F 43 

00004030 34 

00004031 47 

R1 

00004000 00000005 

516 x 8 BYTES PER QUADWORD 

= 2816 (INDEX) 

00004000 

00000002 
CONTENTS OF R1 

BYTE DISPLACEMENT 

00004002 

00004002 OPERAND ADDRESS 

00000028 INDEX 

0000402A INDEXED OPERAND ADDRESS 

BEFORE INSTRUCTION EXECUTION 

ADDRESS 

SPACE R1 R3 

0000402A 00 | 00004000 I | 00000005 | 

0000402B 00 

0000402C 00 

0000402D 00 

0000402E 00 

0000402F 00 

00004030 00 

00004031 00 

AFTER INSTRUCTION EXECUTION 

ADDRESS 

00003000 

00003001 

00003002 

SPACE 

7C 

43 

61 

OPCODE FOR CLEAR QUADWORD 

INDEX MODE, REGISTER R3 

REGISTER DEFERRED MODE, REGISTER R1 

MACHINE CODE: ASSUME STARTING LOCATION 00003000 

Figure 5-15 ■ Displacement Index Mode Instruction 

Displacement Deferred Index Mode. See Example 5-12. 

Example 5-12 ■ Displacement Deferred Index Mode Instruction 

MOVL 3tX14CRl)CR31#R5 
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Figure 5-16 shows a move longivord instruction using displacement deferred 

indexed addressing. The displacement of 14 is added to the contents of regis¬ 

ter Rl. The sum is the address 00001026 (hexadecimal). The contents of this 

location yield the operand address (44332211 (hexadecimal)). This quantity is 

added to the index yielding the indexed operand address of 44332221 (hexa¬ 

decimal). The contents of this address are then moved into register R5. 

ADDRESS Rl 

SPACE | 00001012 | 

00001012 12 R3 
00001013 34 

| 00000004 | 
00001014 56 

00001015 78 R5 

• 

| 00000000 | 

00001026 11 00001012 
00001027 22 00000014 

00001028 33 00001026 
00001029 44 

O 
P 

44332221 01 > E 44332211 

44332222 23 l R 00000010 

44332223 45 f A 44332221 
44332224 67 J N 
44332225 89 D 

416 x 4 BYTES PER LONGWORD 

= 1016 (INDEX) 

CONTENTS OF Rl 

DISPLACEMENT 

ADDRESS OF OPERAND ADDRESS 

OPERAND ADDRESS 

INDEX 

INDEXED OPERAND ADDRESS 

BEFORE INSTRUCTION EXECUTION 

Rl 

|~~00001012 | 

R3 

[~~00000004 | 

R5 

| 67452301 1 

AFTER INSTRUCTION EXECUTION 

Figure 5-16 ■ Displacement Deferred Index Mode Instruction 



Literal Mode. Literal mode addressing provides an efficient means of specify¬ 

ing integer constants in the range from 0 to 63. This is called short literal. Lit¬ 

eral values greater than 63 are obtained by using the program counter in 

autoincrement mode (immediate mode). For predefined values, the assembler 

chooses between short literal and immediate modes. The format for short lit¬ 

eral operands is shown in Figure 3-17. Bits 7 and 6 are always set to zero. 

Figure 3-18 shows some short literals (14, 30, 46, and 62). To specify literal 

mode, prefix the literal with St#. 

MODE SPECIFIER 
__A__ 
r "\ 

7 6 5 4_0 

0 0 
-1--1-1_I_I_I_ 

Figure 5-17 ■ Short Literal Operand 

MODE 

SPECIFIER = 0 
_A_ 

*\ 

0 ( 0 0 0 1110 
1 1 1 1 1 

MC 

SPECIF 

V J 
V 

141 o = 0E16 
)DE 
IER = 1 
v._ 

r a 

0 ( 0 0 11110 
i i i i i 

MC 
SPECIF 

j 

v y 
V 

3010 = 1Ei6 

)DE 
IER = 2 
_ 

r \ 

0 0 
i 

10 1110 
1 1 1 1 1 

MO 

SPECIFI 
j 

V J 

46-iq = 2E16 
DE 
ER = 3 
c. 

r ^ 

0 0 111110 
-1-1_1_1_1_ 

6210 — 3E16 

RANGE OF MODE SPECIFIER = 0 
ISO - 1510 

RANGE OF MODE SPECIFIER = 1 

IS 16 - 3110 

RANGE OF MODE SPECIFIER = 2 

IS 32 - 4710 

RANGE OF MODE SPECIFIER = 3 

IS 48 - 6310 

Figure 5-18 ■ Typical Short Literal Operands 
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Floating-point literals as well as short literals can be expressed. The floating¬ 

point literals are listed in Table 5-4. For operands of the short floating type, 

the 6-bit literal field in the operand specifier is composed of two 3-bit fields. 

The field marked EXP designates the exponent column and FRAC designates 

the fraction columns. See Figure 5-19. 

5 3 2 o 

EXP FRAC 

Figure 5-19 ■ Literal Field 

The 3-bit EXP field and 3-bit FRAC field are used to form an F_floating or 

D_floating operand as shown in Figure 5-20. Bits 63:32 are not present in 

an F_floating operand. G_floating and H_floating operands can be 

formed in analogous ways using the EXP and FRAC fields. 

EXP FRAC 

15 14 13 12 11 10^9 8 7^ 5 4^ 3_0 

0 1 0 0 0 0 

63 48 

Figure 5-20 ■ D_floating and F_floating Operands in Literal Mode 

Bits 3 through 5 of the EXP field are stored in bits 7 through 9, respectively, 

of the floating operand. (See Figure 5-21.) Bits 0 through 2 of the FRAC field 

are stored in bits 4 through 6 in the floating operand. The decimal values that 

can be stored are given in Table 5-4. 
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LITERAL MODE 

7 6 5 4 3 2 1 0 

Figure 5-21 ■ Floating Operand Bit Storage 

The EXP field is expressed in excess 128 notation. In this notation, an offset 

of 128 is added to the exponent. For example, an exponent of 0 is represented 

as 128 or 10000000 (binary), while an exponent of 3 is represented as 131 or 

10000011 (binary). 

Assume you want to express the floating-point literal of 64. Find the integer 

64 in the table. It is in the 7 row of EXP and the 0 column of the fraction 

columns. Therefore, 7 is the value of the exponent field and 0 is the value of 

the fraction field. 

Table 5-4 ■ Floating Literals 

Exponent Fraction 

0 1 2 3 4 5 6 7 

0 1/2 9/16 5/8 11/16 3/4 13/16 7/8 15/16 

1 1 1-1/8 1-1/4 1-3/8 1-1/2 1-5/8 1-3/4 1-7/8 

2 2 2-1/4 2-1/2 2-3/4 3 3-1/4 3-1/2 3-3/4 

3 4 4-1/2 5 5-1/2 6 6-1/2 7 7-1/2 

4 8 9 10 11 12 13 14 15 

5 16 18 20 22 24 26 28 30 

6 32 36 40 44 48 52 56 60 

7 64 72 80 88 96 104 112 120 
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Example 5-13 ■ Literal Mode Instruction 

MOVL St#9;R4 

Figure 5-22 shows a move long instruction using literal mode. The literal 9 is 

transferred to register R4. 

7 6 5_0_ 

0 0 LITERAL 
-1--I_I—.I_I_I_ 

OPERAND SPECIFIER FORMAT 

R4 

f 00000000 | 

BEFORE INSTRUCTION EXECUTION 

R4 

f00000009 1 

AFTER INSTRUCTION EXECUTION 

00003000 

00003001 

00003002 

ADDRESS 

SPACE 

OPCODE FOR MOVE LONG INSTRUCTION 

LITERAL 9 

REGISTER MODE, REGISTER R4 

MACHINE CODE: ASSUME STARTING LOCATION 00003000 

Figure 5-22 ■ Literal Mode Instruction 

Register Mode. With register mode, any of the general registers may be used 

as simple accumulators and the operand is contained in the selected register. 

Because they are hardware registers within the processor, they provide speed 

advantages when used for operating on frequently accessed variables. 

This mode can be used with operand specifiers using read, write, or modify 

access but cannot be used with the address access type. Otherwise, an illegal 

addressing mode fault occurs. The program counter cannot be used in this 

mode. If the program counter is read, the value is unpredictable. If the pro¬ 

gram counter is written, the next instruction executed or the next operand 

specified is unpredictable. Similarly, if the program counter is used in register 

mode for a write-access operand that takes two adjacent registers, the con¬ 

tents of register 0 are unpredictable. 
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If register 12, 13, the stack pointer, or program counter is used in register 

mode addressing for an operand that takes four adjacent registers, the results 

are unpredictable. If the program counter is used in register mode for a write 

access that requires four adjacent registers, the contents of registers 0, 1, and 

2 are unpredictable. Likewise, if register 13 is used in register mode for a write 

access that takes four adjacent registers, the contents of register 0 are unpre¬ 

dictable. If the stack pointer is used in register mode for a write access that 

takes four adjacent registers, the contents of registers 0 and 1 are unpredict¬ 

able. 

The stack pointer cannot be used in this mode for an operand that takes two 

adjacent registers because that implies a direct reference to the program coun¬ 

ter and the results are unpredictable. 

The operand is the content of register n, or R[n + 1] concatenated with Rn for 

quadword, D_floating, and certain field operations. The following list iden¬ 

tifies the single- and multiple-register operand format. 

One register operand = Rn 

Two register operand = R[# + 1]’R[«] 

Four register operand = R[« + 3]’R[» + 2]’R[» + 1]’R[«] 

Example 5-14 ■ Register Mode Instruction 

V\0W R1, R2 

Figure 5-23 shows a move word instruction using register mode. The content 

of register 1 is the operand. The move word instruction transfers the least sig¬ 

nificant half of register 1 to the least significant half of register 2. The upper 

half of register 2 is unaffected. 

Register Deferred Mode. The register deferred mode provides one level of indi¬ 

rect addressing over register mode. That is, the general register contains the 

address of the operand rather than the operand itself. The deferred modes are 

useful when dealing with an operand whose address is calculated. The pro¬ 

gram counter cannot be used in register deferred mode addressing as the 

results are unpredictable. To indicate the register deferred mode, enclose the 

register operand in parentheses. See Example 5-15 for the format of the 

instruction. 
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Rn 

V_ 

MODE-' *- REGISTER 

SPECIFIER SPECIFIER 

OPERAND SPECIFIER FORMAT 

R1 R2 

0 0 0 0 0 0 0 0 

BEFORE INSTRUCTION EXECUTION 

C 0 A 0 3 2 

AFTER INSTRUCTION EXECUTION 

0 0 0 0 3 4 1 2 

00003000 

00003001 

00003002 

80 

51 

52 

OPCODE FOR MOVE WORD INSTRUCTION 

OPERAND SPECIFIER. SOURCE; REGISTER MODE 1 

OPERAND SPECIFIER, DESTINATION; REGISTER MODE 2 

MACHINE CODE: ASSUME STARTING LOCATION 00003000 

Figure 3-23 ■ Register Mode Instruction 

Example 5-15 ■ Register Deferred Mode Instruction 

CLRQ CR4) 



5-35 

Figure 5-24 shows a clear quadword instruction using register deferred mode. 

Register 4 contains the address of the operand. The instruction specifies that 

the byte at this address plus the following seven bytes are to be cleared. 

Rn 

MODE 

SPECIFIER 
REGISTER 

SPECIFIER 

OPERAND SPECIFIER FORMAT 

00001010 AB 

00001011 CD 
00001012 EF 

00001013 12 

00001014 34 

00001015 56 

00001016 76 

00001017 65 

BEFORE INSTRUCTION EXECUTION 

X ADDRESS \ 

SPACE X R4 

00001010 00 ] 00001010 I 

00001011 00 

00001012 00 
00001013 00 

00001014 00 

00001015 00 

00001016 00 

00001017 00 

AFTER INSTRUCTION EXECUTION 

ADDRESS 

SPACE 

00003000 

00003001 

7C 

64 
OPCODE FOR CLEAR QUAD INSTRUCTION 

OPERAND SPECIFIER FOR REGISTER DEFERRED 

MACHINE CODE: ASSUME STARTING LOCATION 00003000 

Figure 5-24 ■ Register Deferred Mode Instruction 
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■ Program Counter Register Addressing 

Register 15 is used as the program counter. It can also be used as a register in 

addressing modes. The processor increments the program counter as the 

opcode, operand specifier, and immediate data or address of the instruction 

are evaluated. The amount that the program counter is incremented is deter¬ 

mined by the opcode, number of operand specifiers, and so on. 

The program counter can be used with all the VAX addressing modes except 

register or index mode. In those two modes, the results are unpredictable. The 

addressing mode register functions are shown in Table 5-5. The following 

modes use the program counter as a general register. 

■ Absolute Mode—same as > autoincrement deferred mode 

■ Immediate Mode—same as autoincrement mode 

■ Relative Mode—same as displacement mode 

■ Relative Deferred Mode- —same as displacement deferred mode. 

Table 5-5 ■ Addressing Mode Functions 

Mode Assembler Notation Note 

Absolute $#Location * 

Byte Relative BtG (R) t 

Byte Relative Deferred SBtG (R) t 

Immediate IttlOperand § 

Longword Relative LtG CR) 

Longword Relative Deferred #LtG (R) 

Word Relative WtG <R> 

Word Relative Deferred <3WtG (R) 

* Absolute mode is the same as autoincrement mode with the program counter used as a 

general register. Absolute address follows address mode. 

t Relative mode is the same as displacement mode with the program counter used as a 

general register. Displacement is added to current value of PC to obtain operand 

address. 

X Relative deferred mode is the same as displacement deferred mode with the program 

counter used as a general register. Displacement is added to current value of PC to yield 

address of operand address. 

§ Immediate mode is the same as autoincrement mode with the program counter used 

as a general register. The constant operand follows the address mode. 
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When a standard program is available for different users, it is often helpful to 

be able to run it at different areas of virtual memory. VAX computers can 

accomplish the relocation of a program very efficiently through the use of posi¬ 

tion-independent code. If an instruction and its objects are moved in such a 

way that the relative distance between them is not altered, the same offset 

relative to the program counter can be used in all positions in memory. 

Absolute Mode. This mode is autoincrement deferred when using the program 

counter as a general register. The contents of the location following the 

addressing mode are taken as the operand address. This is interpreted as an 

absolute address. See Example 5-16 for the format of the operand. 

Example 5-16 ■ Absolute Mode Instruction 

CLRL e#tX674533 

Figure 5-25 shows a clear longujord instruction using the absolute addressing 

mode. This instruction causes the location or locations following the address¬ 

ing mode to be taken as the address of the operand. In this example, the 

address is 00674533 (hexadecimal). The longword operand for this address is 

cleared. 

Immediate Mode. The immediate addressing mode is autoincrement mode 

when the program counter is used as a general register. The contents of the 

location following the addressing mode are immediate data. Immediate mode 

may not be used for operands of the modify or write access types. If immedi¬ 

ate mode is used for one of those operands, the value of the data read is unpre¬ 

dictable. So is the address at which the operand is written. See Example 5-17 

for the format of the operand. 
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39 4 3 

ADDRESS 

MODE-1 1- REGISTER 

SPECIFIER SPECIFIER 

OPERAND SPECIFIER FORMAT 

Dn ADDRESS 

SPACE 

00001012 D4 

00001013 9F 

00001014 33 

00001015 45 

00001016 67 

00001017 00 

00001018 55 

OPCODE FOR CLEAR LONG INSTRUCTION 

OPERAND SPECIFIER, AUTOINCREMENT DEFERRED PC (ABSOLUTE) 

► OPERAND ADDRESS 

BEFORE INSTRUCTION EXECUTION 

00674533 

00674534 

00674535 

00674536 

AFTER INSTRUCTION EXECUTION 

Figure 5-25 ■ Absolute Mode Instruction 

oo 
oo 
oo 
oo 

Example 5-17 ■ Immediate Mode Instruction 

MOVL #6,R4 

Figure 5-26 shows a move longword instruction using immediate mode. The 

immediate data (00000006(hexadecimal)) following the mnemonic and oper¬ 

and specifier are moved to register R4. 
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CONSTANT 

4 3 

SIZE DEPENDS 

ON CONTEXT 
MODE 

SPECIFIER 
REGISTER 

SPECIFIER 

OPERAND SPECIFIER FORMAT 

/ 
o

 
C

L 

00001012 DO 

00001013 8F 

00001014 06 

00001015 00 
00001016 00 

00001017 00 

00001018 54 

OPCODE FOR MOVE LONG INSTRUCTION 

OPERAND SPECIFIER, AUTOINCREMENT PC (IMMEDIATE) 

-► IMMEDIATE DATA R4 

I 00000000 I 
REGISTER MODE, REGISTER R4 1-1 

BEFORE INSTRUCTION EXECUTION 

00001014 

00001015 

00001016 

00001017 

AFTER INSTRUCTION EXECUTION 

Figure 5-26 ■ Immediate Mode Instruction 

Relative Mode. This mode is the displacement mode with the program coun¬ 

ter used as a general register. The displacement follows the operand specifier 

and is added to the program counter. The sum of which becomes the address 

of the operand. This mode is useful for writing position-independent code 

because the location referenced is always fixed. See Example 5-18 for the for¬ 

mat of the operand. 

Example 5-18 ■ Relative Mode Instruction 

R4 

| 00000006 1 

MOVL tX2016,R4 
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Figure 5-27 shows a move longword instruction using relative mode. The word 

following the address mode is added to the program counter to obtain the 

address of the operand. In this example, the program counter is pointing to 

location 00001016 (hexadecimal) after the first operand specifier is evalu¬ 

ated. The word following the mnemonic and first operand specifier is 

00001000 (hexadecimal), and is added to the program counter yielding 

00002016 (hexadecimal). This value represents the address of the longword 

operand (00860077 (hexadecimal)). Then this operand is moved to register 

R4. The program counter contains 00001017 (hexadecimal) after instruction 

execution. 

15 8 7 4 3 
SPECIFIER EXTENSION IS 

BYTE DISPLACEMENT 

SPECIFIER EXTENSION IS 

WORD DISPLACEMENT 

SPECIFIER EXTENSION IS 

LONGWORD DISPLACEMENT 

DISPLACEMENT MODE 1-REGISTER 

SPECIFIER SPECIFIER 

A = BYTE DISPLACEMENT 

C = WORD DISPLACEMENT 

E = LONGWORD DISPLACEMENT 

OPERAND SPECIFIER FORMAT 

pr ADDRESS 
SPACE 

00001012 DO 

00001013 CF 

00001014 00 

00001015 10 

00001016 54 

OPCODE FOR MOVE LONG 1 00000000 1 

DISPLACEMENT MODE WITH PC 

- DISPLACEMENT = 1000 

REGISTER MODE. REGISTER R4 

00001016 

1000 

00002016 

R4 

[ 00860077 

AFTER INSTRUCTION EXECUTION 

Figure 5-27 ■ Relative Mode Instruction 
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Relative Deferred Mode. This mode is similar to relative mode except that the 

displacement following the addressing mode is added to the prograjn counter. 

The updated contents of the program counter are the address of the first byte 

beyond the specifier extension. This addressing mode is useful when process¬ 

ing tables of addresses. See Example 5-19 for the format of the operand. 

Example 5-19 ■ Relative Deferred Mode Instruction 

MOML «tX2058,R2 

Figure 5-28 shows a move long instruction where 00002050 (hexadecimal) rep¬ 

resents the address of the operand. A byte displacement is selected by the 

assembler because the displacement is within 128 addressable bytes. When 

the displacement is evaluated, the program counter is pointing to 00002003 

(hexadecimal). The displacement of 4D is added to the current value of the 

program counter yielding the address of 00002050 (hexadecimal). Then the 

contents of this address are used as the effective operand address (00006000 

(hexadecimal), and the operand of 1234567 (hexadecimal) is moved to regis¬ 

ter R2. 

Branch Mode Addressing 

In branch mode displacement addressing, the byte or word displacement is 

sign-extended to 32 bits and added to the updated content of the program 

counter. The updated content of the program counter is the address of the 

first byte beyond the operand specifier. The assembler notation for byte and 

word branch displacement addressing is A where A is the branch address. 

Note that the branch address and not the displacement is used. See Figure 

5-29 for the branch mode instruction operand specifier format. 
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15 8 7 4 3 0 

DISP B F 

23 .8 7 4 3 0 

DISP D F 

39 8 7 4 

o
 

CO
 

DISP F F 

DISPLACEMENT ^'mODE^^ — 

SPECIFIER 

SPECIFIER EXTENSION IS 

BYTE DISPLACEMENT DEFERRED 

SPECIFIER EXTENSION IS 

WORD DISPLACEMENT DEFERRED 

SPECIFIER EXTENSION IS 

LONGWORD DISPLACEMENT DEFERRED 

REGISTER 

SPECIFIER 

B = BYTE DISPLACEMENT DEFERRED 

D = WORD DISPLACEMENT DEFERREED 

F = LONGWORD DISPLACEMENT DEFERRED 

OPERAND SPECIFIER FORMAT 

PC^ R2 

00002000 DO MOVE LONG OPCODE | 00000000 | 

00002001 BF BYTE DISPLACEMENT FROM PC 

00002002 4D AMOUNT OF DISPLACEMENT 

00002003 52 REGISTER MODE, REGISTER 2 

00002050 

00002051 

00002052 

00002053 

l OPERAND 

[ ADDRESS 

DISPLACEMENT 

CALCULATION 

00002003 
4D 

00002050 

00006000 

00006001 

00006002 

00006003 

OPERAND 

BEFORE INSTRUCTION EXECUTION 

R2 

| 01234567 | 

AFTER INSTRUCTION EXECUTION 

Figure 5-28 ■ Relative Deferred Mode Instruction 
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DISPLACEMENT 

OR 

DISPLACEMENT 

Figure 5-29 ■ Branch Mode Instruction Operand Specifier Format 

Branch instructions are most frequently used after instructions like compare 

(CMP). They are used to cause different actions depending on the results of 

the compare instruction. Example 5-20 causes a branch to location NOT if C is 

not a digit; that is, C is treated as an unsigned number outside the range 0 

through 9. See Example 5-21 for a typical branch on bit instruction applica¬ 
tion. 

Example 5-20 ■ Unsigned Branch Mode 

CURB C,#tA/0/ i Compare C and ASCII representation of digit. 

BLSSU NOT * Branch to location NOT if less than unsigned 8. 

CURB C,#tA/9/ i Compare C and ASCII representation of digit 9. 

BGTRU NOT i Branch to location NOT if greater than an unsigned 9. 

Example 5-21 ■ Branch on Bit Instruction 

BBS #2,B,X ; Branches toXifbit#2inBis set. 

BBSC #2;B> X > Branches to X if bit #2 in B is set and bit is then cleared. 

BLBS B,X ; Branches to X if bit 0 of B is set. 





Chapter 6 ■ Functions of the Instruction Set 

A major goal of the VAX architecture is to provide an instruction set that is 

symmetrical with respect to data types. For example, there are separate add 

instructions for seven integer and floating-point data types. Each is available 

in both two-operand and three-operand format. Other symmetrical opera¬ 

tions include data movement, data conversion, data testing, and computation. 

Thus both assembly language programmers and compilers can choose the best 

instruction to use independent of the data type. 

Instruction mnemonics are formed by combining an base operation abbrevia¬ 

tion with a data-type suffix. Conversion instructions are formed by adding 

suffixes for both the source and destination data types. For example, the basic 

convert instruction is CVT. To convert G floating to F floating, one must 

affix a G for the source and an H for the destination data type. This forms the 

mnemonic CVTGH. 

Computation instructions have an additional suffix to indicate the choice 

between two- and three-operand instructions. For example, the multiply word 

instruction uses the mnemonic MULW. A two-operand instruction uses 

MULW2 and a three-operand instruction uses MULW3. 

Special instruction mnemonics have been chosen for similarity. For example, 

a move word instruction has the mnemonic MOVW, while a move F_floating 

instruction has the mnemonic MOVF. Some instructions span several catego¬ 

ries. For example, the compare instruction is found in character string, deci¬ 

mal string, floating point, integer, and variable length bit field instructions. 

Chapter 9 contains detailed descriptions of each instruction. This chapter 

describes the general functioning of the types of instructions. 

Instructions are described in this chapter according to categories. They are 

Address, Arithmetic, Character String, Control, Cyclic Redundancy Check, 

Decimal String, Edit, Floating Point, Index, Integer, Logic, Multiple Regis¬ 

ter, Privileged, Procedure Call, Processor Status Longword, Queue, and Vari¬ 

able Length Bit Field. 

■ Address Instructions 

Address instructions are used to manipulate addresses. There are two basic 

address instructions: move address (MOVA) and push address (PUSHA). The 

move address instruction replaces one address with another. Push address 

instructions write an address onto a stack. 
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There are suffixes for each type of data. The suffix B is used to specify byte 

data, D for D_floating data, F for F_floating data, G for G— floating 

data, L for longword data, O for octawords, Q for quadwords, and W for 

words. In order to move an address in F_floating data, the mnemonic MOVA 

would have an F affixed to it forming the instruction MOVAF. Other mne¬ 

monics are similarly constructed. 

Arithmetic Instructions 

Arithmetic instructions are add, subtract, multiply, and divide. The instruc¬ 

tions are available in both two- and three-operand forms for each applicable 

data type. As input, the three-operand form takes the values of the first two 

operands, performs the operation, and stores the result in the third operand. 

Character String Instructions 

The character string instructions are 

■ Compare character (CMPC). 

■ Locate character (LOCC). 

■ Match character (MATCHC). 

■ Move character (MOVC). 

■ Move translated characters (MOVTC). 

■ Move translated until character (MOVTUC). 

■ Scan characters (SCANC). 

■ Skip characters (SKPC). 

■ Span characters (SPANC). 

A character string is specified by two operands—an unsigned word operand 

giving the length of the character string in bytes and the address of the lowest 

addressed byte of the character string. This is specified by a byte operand of 

address access type. 



6-3 

Each of the character string instructions uses general registers to store a con¬ 

trol block that maintains updated addresses and state information during the 

execution of the instruction. At completion, these registers are available to 

software to use as string specification operands for a subsequent instruction. 

During the execution of the instructions, pending interrupt conditions are 

tested. If any are found, the control block is updated, the first part done bit of 

the processor status longword is set, and the instruction is interrupted. After 

the interruption, the instruction resumes transparently. The format of the con¬ 

trol block is shown in Figure 6-1. 

31 0 

: RO 

: R1 

: R2 

: R3 

. R4 

: R5 

Figure 6-1 ■ Control Block Format 

LENGTH 1 

ADDRESS 1 

LENGTH 2 

ADDRESS 2 

LENGTH 3 

ADDRESS 3 

The fields LENGTH 1, LENGTH 2, and LENGTH 3 (if required) contain the 

number of bytes remaining to be processed in the first, second, and third 

string operands, respectively. The fields ADDRESS 1, ADDRESS 2, and 

ADDRESS 3 (if required) contain the address of the next byte to be processed 

in the first, second, and third string operands, respectively. 

■ Control Instructions 

Control instructions include case, loop, subroutine, and transfer instructions. 

In most situations, execution speed is improved if the target of a control 

instruction is on an aligned longword boundary. But this is not a requirement. 
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Case Instructions 

Dispatching to a routine based on the value of a variable occurs frequently 

enough that some high-level languages include special constructs to handle it; 

for example, the computed GOTO in FORTRAN and the case statement in 

PASCAL. Because of this, the VAX instruction set includes a case instruction 

so that such control structures can be represented efficiently. Not only does 

case handle the transfer of control but it also handles the initialization and 

bounds checking for the index variable. 

The objective of the case instruction is to transfer control to one of several 

locations based on the value of the integer selector operand. The base operand 

specifies the lower bound for selector. Following the case instruction is a table 

of word displacements for the branch locations. Just as the displacements in 

branch instructions are added to the program counter to give the branch desti¬ 

nation, these word displacements are added to the address of the first displace¬ 

ment to form the case branch destinations. 

Loop Control Instructions 

There are three loop control instructions—add compare and branch (ACB), add 

one and branch (AOB), and subtract one and branch (SOB). The instructions 

efficiently implement the general FOR or DO loops in high-level languages. 

Specified operands are manipulated and if certain results are obtained, the 

program counter is loaded with the result of the manipulation. 

The add compare and branch instruction can accommodate seven types of data 

—byte, word, longword, D_floating, F_ floating, G_floating, and 

H_floating. The add one and branch instruction adds a one to the specified 

index operand. The sum of the operation replaces the operand. The subtract 

one and branch instruction removes a one from the specified index operand. 

The remainder of the operation replaces that operand. 

Subroutine Call Instructions 

Two special types of branch and jump instruction are provided for calling 

subroutines—branch to subroutine and jump to subroutine. Both instructions 

save the contents of the program counter on the stack before loading the coun¬ 

ter with the new address. With branch to subroutine instructions, you can sup¬ 

ply either a byte or word displacement. 

This shortcut to subroutine calling is complemented by the return from subrou¬ 

tine instruction. The instruction removes the first longword of the stack and 

loads it into the program counter. Because the branch to subroutine instruc¬ 

tion is either two or three bytes long and the return from subroutine instruction 

is one byte long, extremely efficient programs can be written using subrou¬ 

tines. 
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The breakpoint fault instruction is used in conjunction with the trace bit to 

implement debugging facilities. 

Transfer Instructions 

The two basic types of control transfer instructions are branch and jump 

instructions. Both branch and jump load new addresses in the program coun¬ 

ter. With branch instructions, you supply a displacement (offset) that is added 

to the program counter to obtain the new address. With jump instructions, 

you supply the address you want loaded, using one of the normal addressing 

modes. 

Because most transfers are to locations relatively close to the current instruc¬ 

tions, and because branch instructions take less space than jump instructions, 

the processor offers a variety of branch instructions to choose from. There are 

two unconditional branch instructions and many conditional branch instruc¬ 

tions, such as branch on less than and branch on less than unsigned. 

The unconditional branch instructions allow you to specify a byte or word dis¬ 

placement. This allows you to branch to locations as far from the current loca¬ 

tion as 32,767 bytes in either direction. For control transfers to locations 

farther away, use the jump instruction. 

■ Cyclic Redundancy Check Instruction 

The cyclic redundancy check (CRC) is an error detection method involving a 

division of the data stream by a CRC polynomial. In memory, the data stream 

is represented as a standard VAX string. Error detection is accomplished by 

computing the CRC polynomial at the source and again at the destination. The 

CRC is compared at each end. The CRC that is selected should minimize the 

number of undetected block errors of specific lengths. 

The operands of the instruction are a string descriptor, a 16-longword table, 

and an initial CRC. The string descriptor is a standard VAX operand pair of 

the length of the string in bytes (up to 65,535) and the starting address of the 

string. The contents of the table are a function of the CRC polynomial to be 

used. It can be calculated from the polynomial by a variety of algorithms. The 

initial CRC figure is used to start the polynomial correctly. Typically, it has 

the value 0 or -1 but would be different if the data stream were represented 

by a sequence of noncontiguous strings. 
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The CRC instruction operates by scanning the string and for each byte of the 

data stream including it in the CRC being calculated. The byte is included by 

XORing it to the right eight bits of the CRC. Then the CRC is shifted right 

one bit, inserting zero on the left. The rightmost bit of the CRC (lost by the 

shift) is used to control the XORing of the CRC polynomial with the resultant 

CRC. If the bit is set, the polynomial is XORed with the CRC. Then the CRC 

is again shifted right and the polynomial is conditionally XORed with the 

result a total of eight times. Actual algorithms used can shift by one, two, or 

four bits at a time using the appropriate entries in a specially constructed 

table. The instruction produces a 32-bit CRC. For shorter polynomials, the 

result must be extracted from the 32-bit field. Data streams must be multiples 

of eight bits in length. If they are not, they must be right-adjusted in the 

string with leading 0 bits. 

■ Decimal String Instructions 

Decimal string instructions operate on packed decimal strings. They treat dec¬ 

imal strings as integers with the decimal point assumed immediately beyond 

the least significant digit of the string. If a string in which a result is to be 

stored is longer than the result, its most significant digits are filled with zeros. 

Instructions are provided to convert between packed decimal and trailing 

numeric string (overpunched or zoned) and leading separate numeric string for¬ 

mats. Where necessary, a specific data type is identified. Where the phrase 

decimal string is used, it means any of the three previously mentioned data 

types. The instructions are 

■ Add packed (ADDP). 

■ Arithmetic shift and rounded packed (ASHP). 

■ Compare packed (CMPP). 

■ Convert leading separate numeric string to packed decimal string (CVTSP). 

■ Convert longword integer to packed decimal string (CVTLP). 

■ Convert packed decimal to leading separate string (C VTPS). 

■ Convert packed decimal string to a longword (C VTPL). 

■ Convert packed decimal string to a trailing numeric string (C VTPT). 

■ Convert trailing numeric to packed decimal string (C VTTP). 

■ Divide packed (DIVP). 

■ Move packed (MOVP). 
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■ Multiply packed (MULP). 

■ Subtract packed (SUBP). 

A decimal string is specified by two operands. 

■ For decimal strings, the length is the number of digits in the string. The 

number of bytes in the string is a function of the length and the type of 

decimal string referenced. 

■ The address of the lowest addressed byte of the string. This byte contains 

the most significant digit for trailing numeric and packed decimal strings. 

This byte contains a sign for leading separate numeric strings. The address 

is specified by a byte operand of address access type. 

Each of the decimal string instructions uses general registers 0 through 3 or 0 

through 5 to contain a control block that maintains updated addresses and 

state during the execution of the instruction. At completion, the registers con¬ 

taining addresses are available to the software to use as string specification 

operands for a subsequent instruction on the same decimal strings. 

During the execution of the instructions, pending interrupt conditions are 

tested and, if any are found, the control block is updated. The first part done 

bit is set in the processor status longword, and the instruction is interrupted. 

After the interruption, the instruction resumes transparently. The format of 

the control block at completion is shown in Figure 6-2. 

: RO 

: R1 

: R2 

: R4 

: R5 

Figure 6-2 ■ Control Block after Instruction Execution 
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The fields ADDRESS 1, ADDRESS 2, and ADDRESS 3 (if required) contain 

the address of the byte containing the lowest addressed byte in the first, sec¬ 

ond, and third (if required) string operands, respectively. 

Decimal overflow occurs if the destination string is too short to contain all the 

nonzero digits of the result. On overflow, the destination string is replaced by 

the correctly signed least significant digits of the result even if the result is -0. 

Note that neither the high nibble of an even length packed decimal string nor 

the sign byte of a leading separate numeric string is used to store result digits. 

A zero result has a positive sign for all operations that complete without deci¬ 

mal overflow. However, when digits are lost because of overflow, a zero result 

receives the sign of the correct result. 

A decimal string with a negative zero value is treated as identical to a decimal 

string with a positive zero value. For example, positive zero is equal to nega¬ 

tive zero in a compare instruction. Similarly, when condition codes are 

affected on a negative zero result, they are affected as if the result were posi¬ 

tive. 

A reserved operand fault occurs if the length of a decimal string operand is 

outside the range of 0 through 31, or if an invalid sign or digit is encountered 

in a CVTSP or CVTTP instruction. 

The result of any operation is unpredictable if any source decimal string oper¬ 

and contains invalid data. Except for CVTSP and CVTTP instructions, the dec¬ 

imal string instructions do not verify the validity of source operand data. If 

the destination operands overlap any source operands, the result of the opera¬ 

tion is unpredictable. Destination strings, registers used by the instruction, 

and condition codes are unpredictable when a reserved operand fault occurs. 

Packed decimal strings generated by the decimal string instructions always 

have the preferred sign representation—12 for positive and 13 for negative. 

An even length packed decimal string is always generated with a 0 digit in the 

high nibble of the first byte of the string. A packed decimal string contains an 

invalid nibble if 

■ A digit occurs in the sign position. 

■ A sign occurs in a digit position. 

■ A nonzero nibble occurs in the high-order nibble of the lowest addressed 

byte for an even length string. 

The length of a packed decimal string can be zero. In this case, the value is 

zero (plus or minus) and one byte of storage is occupied. This byte must con¬ 

tain a 0 digit in the high nibble and the sign in the low nibble. 
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The length of a trailing numeric string can be zero. In this case, no storage is 

occupied by the string. If a destination operand is a zero-length trailing 

numeric string, the sign of the operation is lost. Memory access faults do not 

occur when a zero-length trailing numeric operand is specified because no 

memory reference occurs. 

The length of a leading separate numeric string can be zero. In this case, one 

byte of storage is occupied by the sign. Memory is accessed when a zero-length 

operand is specified, and a reserved operand fault occurs if an invalid sign is 

detected. The value of a zero-length decimal string is zero. 

■ Edit Instruction 

The edit instruction implements the common editing functions that occur in 

handling fixed format output. The instruction operates by converting a 

packed decimal string to a character string generating characters for the out¬ 

put. But the instruction can be used for other applications. When converting 

digits, options include leading zero fill; leading zero protection; insertion of 

floating sign, floating currency symbol, or special sign representations; and 

blanking an entire field when it is zero. 

The operands to the EDITPC instruction are an input-packed, decimal-string 

descriptor, a pattern specification, and the starting address of the output str¬ 

ing. The packed decimal descriptor comprises a standard VAX operand pair of 

the length of the decimal string of up to 31 digits and the starting address of 

the string. The pattern specification is the starting address of a pattern opera¬ 

tion editing sequence that is interpreted in much the same way normal instruc¬ 

tions are interpreted. Only the starting address of the output string is 

required because the pattern unambiguously defines the length. 

While the EDITPC instruction is operating, it manipulates two character reg¬ 

isters and the four condition codes. One character register contains the fill 

character. Normally, the character is an ASCII blank character. But the char¬ 

acter may be changed to an asterisk (*) for check protection. The other charac¬ 

ter register contains the sign character. Initially, the character is either an 

ASCII blank or a minus sign depending upon the sign of the input. The sign 

register can be changed to allow other sign representations such as a plus or 

minus sign or plus/blank, and can be manipulated to output special notations 

such as CR for a credit ( + ) or DB for a debit ( - ). The sign register can also be 

changed to the currency sign in order to implement a floating currency sign. 
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After execution, the condition codes note the sign of the input, the presence 

of a nonzero source, an overflow condition, and the presence of significant 

digits. Condition code N is determined at the start of the instruction and is 

not changed except for correcting a negative zero input. The other condition 

codes are computed and updated as the instruction execution proceeds. When 

the EDITPC instruction terminates, registers 0 through 5 contain the conven¬ 

tional values after a decimal instruction. 

■ Floating-point Instructions 

Mathematically, a floating-point number may be defined as having the form: 

± (2K)/where K is an integer and/is a positive fraction. For a nonvanishing 

number, K and / are uniquely determined by imposing the condition: 

1/2 </< 1. 

The fraction factor (/) of the number is then said to be binary normalized. 

For the number 0,/must be assigned the value 0, and the value of K is indeter¬ 

minate. 

The VAX floating-point data formats are derived from this mathematical rep¬ 

resentation for floating-point numbers. Four types of floating-point data are 

provided; F_floating numbers are 32 bits long, D_floating and G_float¬ 

ing numbers are 64 bits long, and H_floating numbers are 128 bits long. 

Because of the hidden bit, the fractional factor is not available to distinguish 

between zero and nonzero numbers whose fractional factor is exactly one half. 

Therefore VAX software reserves a sign-exponent field of zero for this pur¬ 

pose. Any positive floating-point number with biased exponent of zero is 

treated as if it were an exact zero by the floating-point instruction set. In par¬ 

ticular, a floating-point operand, whose bits are all zero, is treated as zero. 

This is the format generated by all floating point instructions for which the 

result is zero. 

A reserved operand is defined to be any bit pattern with a sign bit of 1 and a 

biased exponent of zero. On VAX machines, all floating-point instructions 

generate a fault if a reserved operand is encountered. Because a reserved oper¬ 

and has a biased exponent of 0, it can be internally generated only if overflow 

occurs. 

An instruction is defined to be exact if its result extended on the right by an 

infinite sequence of zeros is identical to that of an infinite-precision calcula¬ 

tion involving the same operands. The prior accuracy of the operands is thus 

ignored. For all arithmetic operations, except division, a 0 operand implies 

that the instruction is exact. The same statement holds for division if the 0 

operand is the dividend. If it is the divisor, division is undefined and the 

instruction traps. 
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The add, subtract, multiply, and divide instructions, an overflow bit on the 

left, and two guard bits on the right are necessary and sufficient to guarantee 

return of a rounded result identical to the corresponding infinite-precision 

operation rounded to the specified word length. Thus with two guard bits, a 

rounded result has an error bound of one-half the least significant bit. 

Note that an arithmetic result is exact if only no bits are lost in truncating the 

infinite-precision result to the data length to be stored. The first bit lost in 

truncating is called the rounding bit. The value of a rounded result is related 

to the truncated result as follows. 

■ If the rounding bit is 1, the rounded result is the truncated result incre¬ 

mented by a least significant bit. 

■ If the rounding bit is 0, the rounded and truncated results are identical. 

Rounding may be implemented by adding a one to the rounding bit and propa¬ 

gating the carry if it occurs. Note that a renormalization may be required after 

rounding takes place. If this happens, the new rounding bit is zero so renor¬ 

malization can happen once only. To summarize the relations among trun¬ 

cated, rounded, and true (infinite-precision) results. 

■ If a stored result is exact, then its rounded value = truncated value = true 

value. 

■ If a stored result is not exact, its magnitude is 

— always less than that of the true result for truncating. 

— always less than that of the true result for rounding if the rounding 

bit is 0. 

— greater than that of the true result for rounding if the rounding bit is 1. 

To be consistent with the floating-point instruction set that faults on reserved 

operands, software-implemented, floating-point functions should verify that 

the input operands are not reserved. An easy way to do this is a move or test of 

the input operands. 

In order to facilitate high-speed implementations of the floating-point instruc¬ 

tion set, certain restrictions are placed on the addressing mode combinations 

usable within a single floating-point instruction. These combinations involve 

the logically inconsistent use of a value as both a floating-point operand and 

an address. 
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Specifically, if within the same instruction the contents of a specified register 

are used as an F_floating point operand or part of a larger floating input 

operand and as an address in an addressing mode that modifies that register, 

the value of the floating-point operand is unpredictable. The operand speci¬ 

fier notation section describes the notation used for these instructions. 

The VAX instruction set includes special floating-point instructions for mod¬ 

ulus (range reduction) and polynomial calculation to aid in the implementation 

of mathematical functions, along with shift and rotate instructions. 

The floating point instructions are 

■ Add (ADD). 

■ Clear (CLR). 

■ Compare (CMP). 

■ Convert (CVT). 

■ Convert rounded (CVTR). 

■ Divide (DIV). 

■ Extended modulus (EMOD). 

■ Move (MOV). 

■ Move negated (MNEG). 

■ Multiply (MUL). 

■ Polynomial evaluation (POLY). 

■ Subtract (SUB). 

■ Test (TST). 

■ Index Instruction 

The index instruction calculates an index for an array of fixed-length data 

types (integer and floating) and for arrays of bit fields, character strings, and 

decimal strings. It accepts as arguments a subscript, lower and upper subscript 

bounds, an array element size, a given index, and a destination for the calcu¬ 

lated index. It incorporates range checking within the calculation for high- 

level languages using subscript bounds, and it aids index calculation optimiza¬ 

tion by removing invariant expressions. 
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■ Integer Instructions 

The integer optimizations include an instruction to write a longword onto the 

stack. Each integer data type includes operations that increment and decre¬ 

ment. The VAX instruction set includes special instructions to implement mul¬ 

tiple precision integer arithmetic. A special variant of integer add instruction 

is an operation that adds a word under a memory interlock (for operating sys¬ 

tem counters in a multiprocessor system). The integer instructions are 

■ Add aligned word under memory interlock (ADAWI). 

■ Add with carry (ADWC). 

■ Decrement (DEC). 

■ Extended divide (EDIV). 

■ Extended multiply (EMUL). 

■ Increment (INC). 

■ Push longword (PUSHL). 

■ Subtract with carry (SBWC). 

■ Logic Instructions 

The logic computation instructions are for the three integer data types and are 

bit set (inclusive OR), bit clear (complement AND), and exclusive OR. The 

instructions are available in both two- and three-operand forms for each appli¬ 

cable data type. As input, the three-operand form takes the values of the first 

two operands and stores the result in the third operand. 

The logical operations are simple move, clear, arithmetic negate, and logical 

complement. The logical complement operations are available only for the 

three-integer data types because these are the logical types. Both negate and 

complement include a move, rather than being restricted to altering an oper¬ 

and in place. VAX software has a large set of conversions covering almost all 

data type pairs. In addition, special conversions exist to round floating data to 

integer, and to extend unsigned integers to larger integers. The data compari¬ 

son and testing instructions are compare, test against zero, and multiple bit 

testing. The logic instructions are 

■ Arithmetic shift (ASH). 

■ Bit clear (BIC). 

■ Bit set (BIS). 
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■ Fittest (BIT). 

■ C/ttzr (CLR). 

■ Compare (CMP). 

■ Convert (CVT). 

■ Exclusive OR (XOR). 

■ Move (MOV). 

■ Afcwe complemented (MCOM). 

■ Move negated (MNEG). 

■ Move zero-extended (MOVZ). 

■ Rotate longword (ROTL). 

■ Test (TST). 

■ Multiple Register Instructions 

Multiple register instructions save and restore several registers in one opera¬ 

tion. The save area is on the stack. The PUSHR instruction saves multiple regis¬ 

ters by pushing them onto the stack. The POPR instruction restores multiple 

registers by popping them from the stack. A 16-bit mask operand specifies the 

list of registers. This mask is a normal read operand. The mask can be calcu¬ 

lated or it can be an inline literal. When registers in the range RO through R5 

only are being saved or restored, the mask can be expressed as a short literal. 

The software standard for calling and signaling requires that registers be 

saved in the call frame. With the exception of registers RO and Rl, any regis¬ 

ter manipulated by a PUSHR or POPR instruction must appear in the proce¬ 

dure entry mask. The architecture also requires that any registers between R2 

and Rll that are modified by the procedure to be saved in the call frame by 

setting up the appropriate entry mask. Registers RO and Rl are used to return 

procedure status. 

PUSHR or POPR instructions should be used to save and restore only those 

registers specified in the procedure entry mask. If a procedure saves registers 

that are not noted in the entry mask and that procedure receives an exception, 

the procedure’s caller’s registers cannot be properly restored. 
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■ Privileged Instructions 

The privileged instructions give upward and downward mobility through the 

access modes, and provide a way to compare memory protection levels to the 

access mode privilege of callers. The instructions are 

■ Change mode (CHM). 

■ Extended function call (XFC). 

■ Haiti HALT). 

■ Load process context (LDPCTX). 

■ Move from processor register (MFPR). 

■ Move to processor register (MTPR). 

■ Probe (PROBE). 

■ Return from Exception or Interrupt (REI). 

■ Save process context (S VPCTX). 

A change mode instruction is a special trap instruction that can be likened to 

an operating system service call instruction. User access-mode software can 

explicitly issue change mode instructions. 

The extended function (XFC) instruction is used to request the services of non¬ 

standard microcode in the writeable control store or simulator software run¬ 

ning in kernel mode. The request is controlled by the system control block. 

The halt instruction is a privileged instruction that halts the processor only if 

it is running in kernel mode. If the instruction is issued when the processor is 

in any mode other than the kernel mode, a privileged instruction fault is 

issued. 

When the operating system schedules a context switching operation, the con¬ 

text switching procedure uses the save process context (S VPCTX) and load pro¬ 

cess context (LDPCTX) instructions to save the current process context and 

load another. The operating system’s context switching procedure identifies 

the location of the hardware context to be loaded by updating an internal pro¬ 

cessor register. 

The move to processor register (MTPR) and move from processor register 

(MFPR) instructions are the only instructions that can explicitly access the 

internal processor registers. MTPR and MFPR instructions are privileged and 

can be issued only in kernel mode. 
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Probe instructions enable a procedure to compare the read (PROBER) and 

write (PROBEW) access protection of pages in memory to the privileges of the 

caller. The validation enables the operating system to provide services that 

execute in access modes to callers with less privileged access and yet prevent 

the caller from accessing protected memory. 

The operating system’s privileged service procedures and interrupt and excep¬ 

tion service routines exit using the return from exception or interrupt (REI) 

instruction. The REI instruction is the only way the caller’s access mode privi¬ 

lege can be decreased. 

■ Procedure Call Instructions 

Procedures are general purpose routines thar use argument lists passed auto¬ 

matically by the processor and use only local variables for data storage. A pro¬ 

cedure call instruction provides several services. It 

■ Saves all the registers that the procedure uses, and only those registers, 

before entering the procedure. 

■ Passes an argument list to a procedure. 

■ Maintains the stack, frame, and argument pointers. 

■ Sets the arithmetic trap enables to a specific state. 

Three instructions are used to implement a standard procedure calling inter¬ 

face. Two instructions implement a procedure. The third instruction imple¬ 

ments the matching return instruction. A callg instruction calls a procedure 

with the argument list actuals in an arbitrary location. The calfc instruction 

calls a procedure with the argument list actuals on the stack. Upon return 

after a calls instruction, this list is automatically removed from the stack. 

Both call instructions specify the address of the entry point of the procedure 

being called. It is assumed to consist of a word called the entry mask followed 

by the procedure’s instructions. The procedure terminates by executing a 

return instruction. 

The entry mask specifies the subprocedure’s register use and overflow 

enables. Figure 6-3 shows the entry mask. 
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Figure 6-3 ■ Procedure Call Entry Mask 

On call, the stack is aligned to a longword boundary and the trap enable bits 

in the processor status word are set to a known state to ensure consistent 

behavior of the called procedure. Integer overflow enable and decimal over¬ 

flow enable are affected according to bits 14 and 15 of the entry mask, respec¬ 

tively. The floating underflow enable bit is cleared. 

Registers Rll through RO are saved on the stack and are restored by the 

return instruction. The procedure calling standard requires that all registers in 

the range R2 through Rll used in the procedure must appear in the mask. In 

addition, call instructions always preserve the program counter, stack 

pointer, frame pointer, and argument pointer. However, the stack pointer is 

not explicitly saved and differs after a calls instruction with arguments. Thus 

a procedure can be considered equivalent to a complex instruction that stores 

a value into RO and Rl, affects memory, and clears the condition codes. If the 

procedure has no function value, the contents of RO and Rl are unpredictable. 

In order to preserve the state, the procedure call instructions form a structure 

on the stack called a call frame or stack frame. This contains the saved regis¬ 

ters and processor status word, the register save mask, and several control 

bits. The frame also includes a longword that the procedure call instructions 

clear. This is used to implement the condition handling facility. At the end of 

execution of the procedure call instruction, the frame pointer contains the 

address of the stack frame. The return instruction uses the contents of the 

frame pointer to find the stack frame and restore state. The condition han¬ 

dling facility assumes that frame pointer always points to the stack frame. See 

Figure 6-4 for the stack frame format. 
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31 0 

CONDITION HANDLER 

SPA S 0 MASK <11: 0> PSW <15: 5> 0 

SAVED ARGUMENT POINTER 

SAVED FRAME POINTER 

SAVED PROGRAM COUNTER 

SAVED REGISTER RO (. . . .) 

SAVED REGISTER R11 (. . .) 

(0 TO 3 BYTES SPECIFIED BY SPA. STACK POINTER ALIGNMENT) 

5 BIT-SET IF CALLS; CLEAR IF CALLG 

Figure 6-4 ■ Stack Frame Format 

Note that the saved condition codes and the saved trace enable bits are 

cleared. The contents of bits 0 through 3 of the frame processor status word at 

the time return is executed becomes the condition codes resulting from the 

execution of the procedure. 

■ Processor Status Longword Instructions 

There are three instructions available to manipulate the processor status long- 

word. 

■ Bit clear processor status longword (BICPS W) that clears a trap enable condi¬ 

tion. 

■ Bit set processor status longword (BISPSW) that sets a trap enable condition. 

■ Move from processor status longword (MOVPSL) that obtains the processor 

status. 

These are rather straightforward instructions and are not explained here. But 

the details on the instructions can be found in Chapter 9. 
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■ Queue Instructions 

A queue is a circular, doubly linked list whose entries are specified by their 

addresses. Each queue entry links to two others by way of a pair of longwords. 

The first or lower addressed longword is the forward link. It specifies the loca¬ 

tion of the succeeding entry. The second longword is the backward link. It 

specifies the location of the preceding entry. Two distinct types of queues are 

possible in VAX systems—absolute and self-relative. They are classified 

according to the type of links they use. An absolute link contains the absolute 

address of the entry to which it points. A self-relative link contains a displace¬ 

ment from the present queue entry. 

Absolute Queue Instructions 

An absolute queue is specified by a queue header that is identical to a pair of 

queue linkage longwords. The forward link of the header is the address of the 

entry called the head of the queue. The backward link of the header is the 

address of the entry termed the tail of the queue. The forward link of the tail 

points to the header. 

Two general operations can be performed on queues—insertion and removal 

of entries. Generally, entries can be inserted or removed only at the head or 

tail of a queue. 

The following figures illustrate some queue operations. An empty queue is 

specified by its header at address H as shown in Figure 6-5. If an entry at 

address B is inserted into an empty queue at either the head or tail, the queue 

is as shown in Figure 6-6. If an entry at address A is inserted at the head of the 

queue, the queue is as shown in Figure 6-7. Finally, if an entry at address C is 

inserted at the tail, the queue appears as shown in Figure 6-8. Following the 

steps above in reverse order gives the effect of removal at the tail and removal 

at the head. 

If more than one process can perform operations on a queue simultaneously, 

insertions and removals should be done only at the head or tail of the queue. 

When just one process (or one process at a time) can perform operations on a 

queue, insertions and removals can be made at other locations. In the example 

above with the queue containing entries A, B, and C, the entry at address B 

can be removed as shown in Figure 6-9. 
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31 0 

: H 

: H + 4 

Figure 6-5 ■ Empty Absolute Queue 

Figure 6-7 ■ Putting an Entry into the Head of an Absolute Queue 
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Figure 6-9 ■ Removing an Entry from an Absolute Queue 
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The reason for the restriction above is that operations at the head or tail are 

always valid because the queue header is always present. Operations else¬ 

where in the queue depend on specific entries being present and may become 

invalid if another process is concurrently performing operations on the queue. 

Two instructions are provided for manipulating absolute queues—INSQUE 

and REMQUE. The INSQUE instruction inserts an entry specified by an entry 

operand into the queue, following the entry specified by the predecessor oper¬ 

and. The REMQUE instruction removes the entry specified by the entry oper¬ 

and. Queue entries can be on arbitrary byte boundaries. Both INSQUE and 

REMQUE instructions are implemented as noninterruptible instructions. 

Self-relative Queue Instructions 

Self-relative queues use displacements from queue entries as links. As with 

absolute queues, queue entries are linked by a pair of longwords. The first long- 

word is the forward link displacement of the succeeding queue entry from the 

present entry. The second longword is the backward link—the displacement 

of the preceding queue from the present entry. A queue is specified by a queue 

header that also consists of two longword links. 

The following shows some examples of queue operations. An empty queue is 

specified by its header at address H. Because the queue is empty, the self- 

relative links must be 0, as shown in Figure 6-10. If an entry at address B is 

inserted into an empty queue at either the head or tail, the queue is as shown 

in Figure 6-11. If an entry at address A is inserted at the head of the queue, 

the queue is as shown in Figure 6-12. Finally, if an entry at address C is 

inserted at the tail, the queue appears as shown in Figure 6-13. Following the 

steps above in reverse order yields the effect of removal at the tail and removal 

at the head. 

0 : H 

0 : H + 4 

Figure 6-10 ■ Empty Self-relative Queue 
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: H 

: H + 4 

: B 

: B + 4 

Figure 6-11 ■ Putting an Entry into an Empty Self-relative Queue 

Figure 6-12 ■ Putting an Entry into the Head of a Self-relative Queue 
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31 0 

Figure 6-13 ■ Putting an Entry into the Tail of a Self-relative Queue 

There are four self-relative queue instructions. 

■ Insert entry into queue at head, interlocked (INSQHI). 

■ Insert entry into queue at tail, interlocked (INSQTI). 

■ Remove entry from queue at head, interlocked (REMQHI). 

■ Remove entry from queue at tail, interlocked (REMQTI). 

These operations are interlocked to allow cooperating processes in a multipro¬ 

cessor system to access a shared list without additional synchronization. 

Queue entries must be quad word aligned. A hardware- supported interlocked 

memory access mechanism is used to read the queue header. Bit 0 of the 

queue header is used as a secondary interlock and is set when the queue is 

being accessed. 

If an interlocked queue instruction encounters the secondary interlock set, 

the instruction terminates after setting the condition codes to indicate failure 

to gain access to the queue. If the secondary interlock bit is not set, then the 

interlocked queue instruction sets the bit during its operation and clears the 

bit upon completion. This prevents other interlocked queue instructions from 

operating on the same queue. 
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■ Variable Length Bit Field Instructions 

Variable length bit field instructions are useful when dealing with data not in 

8-bit increments; for example, 13 bits of data that do not start on a byte 

boundary. Such data could also be handled without these instructions but less 

efficiently because it requires additional shift and mask operations to get the 

bits into the proper form and to eliminate the nonrequired bits. 

There are four variable length bit field instructions. 

■ Compare field (CMP). 

■ Extract field (EXT). 

■ Find first (FF). 

■ Insert field (INSV). 

The CMP instruction compares the field specified with a source operand. The 

EXT instruction causes the destination operand to be replaced by the speci¬ 

fied sign-extended field. The FF instruction extracts a field specified by the 

start position, size, and base operand. The INSV instruction replaces a speci¬ 

fied field with a base operand. 

A variable bit field is 0 to 32 contiguous bits (contained in 1 to 5 bytes) that is 

arbitrarily located with respect to byte boundaries. The variable length bit 

field instructions have four operand specifiers. Three of these specifiers deter¬ 

mine how to find the variable length field. The fourth designates where it is to 

be stored. The first three specifiers are the position operand, the size oper¬ 

and, and the base address. 

The position operand is a signed longword operand that designates the num¬ 

ber of bits away from the base address operand. If the variable length field is 

contained in a register, the position operand must have a value in the range 0 

through 31 (if the size is nonzero) or a reserved operand fault occurs. 

The size operand is a byte operand that specifies the length of the field. This 

operand must be in the range 0 through 32 or a reserved operand fault occurs. 

Normally, the size operand is a short literal if the field is fixed. 

The base address is an address relative to which the position is used to locate 

the bit field. The base address is obtained from an address access type oper¬ 

and. Unlike other address access type operands, register mode may be desig¬ 

nated in the specifier. In this case, the field is contained in register designated 

by the operand specifier. 
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Chapter 7 ■ Memory Management 

Memory management is the control, allocation, and use of main memory for 

the VAX family of processors. VAX architecture is intended to support multi¬ 

programming—the concurrent execution of a number of processes in a single 

computer system. A process can be defined for now as a single stream of 

machine instructions executed in sequence. Memory management includes 

both hardware and software. The hardware provides page mapping and pro¬ 

tection, while the software provides the operating system image activator and 

pager. 

Virtual address space is mapped into the physical address space by the proces¬ 

sor’s memory management logic. In addition, the memory management hard¬ 

ware supports paging. Paging is a technique that keeps in physical memory 

only those parts of a process’s virtual memory that are in use. A VAX process 

exists in and operates on a memory space of 4,294,967,296 (232) bytes. Cer¬ 

tain addresses and data are kept in the sixteen 32-bit general registers. A few 

processor state variables are kept in a special register called the processor 

status longword, or PSL. The combined set of information in memory, general 

registers, and PSL defines a process. 

In a typical multiprogramming system, several processes may simultaneously 

reside in main memory. Memory protection is provided to ensure that one pro¬ 

cess does not affect other processes or the operating system. To improve soft¬ 

ware reliability further, memory access is controlled by the use of four 

privilege modes. They are kernel, executive, supervisor, and user. Kernel 

mode is the most privileged. User mode is the least privileged. Protection is 

specified at the individual page level. A page may be inaccessible, read only, or 

read/write for each of the four access modes. Any location accessible to a less 

privileged mode is also accessible to all more privileged modes. For each access 

mode, any location that may be written can also be read. While an image is 

being executed by the CPU, virtual addresses are generated. Before these 

addresses can be used to access instructions and data, they must be translated 

into physical addresses. Memory management software maintains tables of 

mapping information (page tables) that keep track of where each 512-byte vir¬ 

tual page is located in main memory. The processor uses this mapping informa¬ 

tion in translating virtual addresses to physical addresses. Memory 

management provides both memory protection and memory mapping func¬ 

tions for VAX systems. This feature is designed to 

■ Provide a large address space for instructions and data. 

■ Allow data structures up to one billion bytes. 
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■ Provide convenient and efficient sharing of instructions and data. 

■ Contribute to software reliability. 

A virtual memory system is used to provide a large address space, while allow¬ 

ing programs to run on systems that have smaller memories. The operating 

system provides each process with a potential 4-billion-byte virtual address 

space. 

11 Virtual Memory 

Half of the virtual address space is called system space. System space contains 

the operating system software and systemwide data. To facilitate interrupt 

handling and system service routines, system space is shared by all processes. 

The other half of the virtual address space is separately defined for each pro¬ 

cess. It is called process space or per-process space. For consistency, we shall 

use the term process space. Process space is subdivided into PO and PI space. 

Program images and most of their data reside in PO space. In PI space, the 

system allocates space for stacks and process-specific data. Because PI space is 

used for stacks, it is unique in that it is allocated from high addresses down¬ 

ward. Together, PO and PI space constitute a process’s working memory. 

Except for special cases of sharing, each process has its own PO and PI spaces 

independent of others in the system. Figure 7-1 illustrates the address spaces 

of several processes in a multiprogramming system. Each process space is inde¬ 

pendent of the others. System space is shared by all. 
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PROCESS 1 PROCESS 2 PROCESS 3 

Though the basic addressable unit in VAX machines is the 8-bit byte, larger 

units can be constructed by doubling byte sizes: a word is two bytes; a long- 

word is four bytes; a quad word is eight bytes; and an octaword is sixteen 

bytes. These five are the units in which VAX memory stores data. But the 

processor sometimes interprets operands in other units; for example, half 

bytes (nibbles) for decimal digits, or variable-sized bit fields. 

Generally, the memory system processes requests only for naturally aligned 

data. In other words, a byte can be obtained from any address. But a word can 

come only from an even address, and a longword can come only from an 

address that is a multiple of four, and so on. VAX processors convert an 

unaligned request into a sequence of requests that can be accepted by the mem¬ 

ory. However, this conversion has a serious impact on performance. Data 

structures should be designed in such a way that the natural alignment of oper¬ 

ands is preserved wherever possible. 

The VAX memory management logic serves six principal purposes. 

1. A number of processes may simultaneously occupy main memory. All pro¬ 

cesses can use process space addresses while referring independently to 

tfieir own programs and data. 
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2. The operating system keeps selected parts of a process and its data in mem¬ 

ory, bringing in other parts as needed without explicit intervention by the 

program. Large programs can be run in reduced memory space without re¬ 

coding or overlays visible to the programmer. 

3. The operating system may scatter pieces of programs and data wherever 

space is available in memory without regard to the apparent contiguity of 

the program. It is never necessary for the system to shuffle memory in 

order to collect contiguous space for another process to be brought into 

memory. 

4. Cooperating processes share memory in a controlled way. Two or more pro¬ 

cesses may communicate through shared memory, in which both have 

read/write access. One process may be granted read access to memory 

being modified by others; or, a number of processes may share a single 

copy of a read-only area. 

5. The operating system limits access to memory according to a privilege hier¬ 

archy. Within any address space, privileged software can maintain 

databases that it can access but that code running in less privileged modes 

cannot. 

6. The operating system may grant or inhibit access to control, status, and 

data registers in peripheral devices and their controllers. Since those regis¬ 

ters are part of the physical address space, access to them is achieved by 

creation of a page table entry. The page frame number field of the page 

table entry selects the desired device or controller address in the I/O por¬ 

tion of the physical address space. References to the registers are then 

under control of the access control field of the page table entry. The same 

privilege mechanisms that control access to sensitive data in memory are 

used to control access to I/O devices. 

For the purposes of memory management—specifically protection and transla¬ 

tion of virtual to physical addresses—the unit of memory is the 512-byte 

page. Pages are always naturally aligned; that is, the address of the first byte of 

a page is a multiple of 512. Virtual addresses are 32 bits long, and are parti¬ 

tioned by the memory management logic as shown in Figure 7-2. 

3 
1 9 8 0 

VIRTUAL PAGE NUMBER BYTE WITHIN PAGE 

Figure 1-2 ■ Virtual Address Format 
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Field Extent: Bits 31:9 

Field Name: Virtual Page Number 

Function: The virtual page number field specifies the virtual page to be refer¬ 

enced. There are 8,388,608 pages in each virtual address space. Each page 

contains 512 bytes. When bit 31 is set (1), the address is in the system space. 

When bit 31 is clear (0), the address is in process space. Within the process 

space, bit 30 distinguishes between the program and control regions. When 

bit 30 is set (1), the control region is referenced. When bit 30 is clear (0), the 

program region is referenced. 

Field Extent: Bits 8:0 

Field Name: Byte Number 

Function: The byte number field specifies the byte address within the page. A 

page contains 512 bytes. 

The nine low-order bits select a byte within a page and are unchanged by the 

address translation process. The two high-order bits select the P0, PI, or sys¬ 

tem portion of the address space. The remaining 21 bits are used to obtain a 

longword called the page table entry (PTE) from the P0, PI, or system page 

table as appropriate. The page table entry format is described in detail later in 

this chapter. The PTE contains four pieces of information. 

■ Protection code—specifying which, if any, access modes are to be permit¬ 

ted read or write access to the page. 

■ Page frame number—identifying the 512-byte page of physical memory to 

be used on references to the virtual address. 

■ Valid bit—indicating that the page frame number is valid; that is, it iden¬ 

tifies a page in memory rather than one in the swapping space on a disk. 

■ Modification flag—set by the processor whenever a write to the page 

occurs. 

In concept, the process of obtaining a page table entry occurs on every mem¬ 

ory reference. In practice, the processor maintains a translation buffer that is 

a special purpose cache of recently used page table entries. Most of the time, 

the translation buffer already contains the page table entries for the virtual 

addresses used by the program, and the processor need not go to memory to 

obtain them. 
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There is one page table entry for each existing page of the virtual address 

space. A length register associated with each region specifies how many pages 

exist in that region of the address space. The system page table (SPT) is allo¬ 

cated to contiguous pages in physical memory. The table contains page table 

entries for addresses greater than 80000000 (hexadecimal). Since the size of 

system space is relatively constant and can be determined at system startup 

time, allocating a fixed amount of physical memory to the system page table 

poses no problems. 

Process space page tables change quite dynamically and can become very large. 

Because it would be awkward to require the operating system to keep the pro¬ 

cess page tables in contiguous areas of physical memory, VAX architecture 

defines structures called the process space page tables. The tables are identified 

as P0PT and P1PT and are to be allocated in contiguous areas of system space. 

Thus, the mapping for process space addresses involves two memory refer¬ 

ences: one to translate the process space address into a physical memory 

address, and the second to translate the system virtual address of the table 

containing the first translation. It is important to note that even if the transla¬ 

tion buffer does not have the mapping for the process space address, it is likely 

to have that for the page table and can save one of the references. 

■ Virtual Address Space 

The virtual address space is divided into two address spaces of equal size; one 

for the processes, the other for the system. The system address space is the 

same for all processes. The operating system resides in the lower half of the 

system address space. The operating system is implemented as a series of call¬ 

able procedures. This arrangement makes the system code available to all 

other system and user codes using a call instruction. The upper half of the 

system space is reserved for future use. Process address space is separate for 

each process. However, several processes may have access to the same page 

thus providing controlled sharing. A virtual address is a 32-bit unsigned inte¬ 

ger specifying a byte location in the address space. The address space seen by 

the programmer is a linear array of over 4 billion bytes. The space is divided 

into a collection of 512-byte units called pages. The page is the basic unit of 

both relocation and protection. 
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Virtual address space cannot be contained in currently manufactured main 

memory. Memory management maps the active part of the virtual address 

space to the available physical address space. Memory management also pro¬ 

vides page protection between processes. The operating system controls the 

memory management tables that map virtual addresses into main memory 

addresses. Parts of the virtual address space that are not in use are copied or 

swapped to auxiliary memory. When those parts are needed, they are brought 

back into the virtual address space. See Figure 7-3 for a diagram of virtual 

address space. 

VIRTUAL ADDRESS 

(32 BITS) 
VIRTUAL ADDRESS 

SPACE 

0000 0000 
P0 REGION 

(PROGRAM) 

GROWTH DIRECTION 

> 

3FFF FFFF PROCESS 

4000 0000 ( SPACE 

7FFF FFFF 

GROWTH DIRECTION 

PI REGION 

(CONTROL) J 
8000 0000 

SYSTEM REGION 

's 

BFFF FFFF 

GROWTH DIRECTION 

1 SYSTEM 

C000 0000 

RESERVED 

SPACE 

FFFF FFFF J 

Figure 7-3 ■ Virtual Address Space 

The figure shows that virtual address space is divided into two major areas— 

process space and system space. Each process has a separate address transla¬ 

tion map for process space, so the process spaces of all processes are nonconti¬ 

guous. 

The address map for process space is context-switched when the process run¬ 

ning on the system is changed. Process space is further divided into two 

regions named PO and PI. These regions are described in detail later in this 

chapter. 
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The other half of virtual address space is called system space. All processes use 

the same address translation map for system space. System space is shared by 

all processes. The address map for system space is not context-switched. In a 

shared-memory multiprocessor configuration, changing any of the address 

mapping information for system space requires that all processors execute an 

MTPR xxx,#TBIS instruction. 

Access to each of the three regions is controlled by a length register. The 

length registers are POLR, P1LR, and SLR. Register POLR controls access to 

region PO. Register P1LR controls access to region PI. Register SLR controls 

access to the system space of the virtual address space. Within the limits set 

by the length registers, the access is controlled by a page table that specifies 

the validity, access requirements, and location of each page in the region. 

■ Address Translation 

The action of translating a virtual address to a physical address is governed by 

the setting of the Memory Mapping Enable (MME) bit. When MME is reset 

(0), page protection is disabled. This feature is reserved for Field Service. This 

section describes address translation when the MME bit is set (1) and page pro¬ 

tection is enabled. 

The address translation mechanism is presented with a virtual address, an 

intended access (read or write), and a mode against which to check that 

access. If the access is allowed and the address is not faulted, the output of 

this routine is a physical address corresponding to the specified virtual 

address. The mode that is used is normally the current mode field of the pro¬ 

cessor status longword. But process page table entry references use the kernel 

mode. 

If the operation to be performed is a read operation, the intended access is 

read access. If the operation to be performed is a write operation, the 

intended access is write access. If the operation to be performed is a modify 

(that is, a read followed by a write operation), the intended access for the read 

portion is specified as a write access. If an operand is not an address operand, 

no reference is made. 

Page Table Entry 

All virtual addresses are translated to physical addresses by means of a page 

table entry (PTE). See Figure 7-4 for a graphic description of the page table 

entry. 



7-9 

33 22222222 

10 76543210_ 0 

V PROT M Z OWN S s PFN 

Figure 7-4 ■ Page Table Entry 

Field Extent: Bit 31 

Field Name: Valid bit (V) 

Function: Governs the validity of the modify (M) bit and the page frame num¬ 

ber (PFN) field. The bit is set (1) for valid; reset (0) for invalid. When this bit 

is reset, the modify and page frame number fields are reserved for system soft¬ 

ware. 

Field Extent: Bits 30:27 

Field Name: Protection (PROT) 

Function: This field is always valid and is used by the hardware even when the 

valid bit is reset (0). The protection field is defined as always being valid and 

is checked first. The page table entry is defined as having a valid bit that con¬ 

trols the validity of the modify bit and page frame number field only. Protec¬ 

tion is checked first so that programs executing in user mode do not perform 

access protection checks in the system region and fault all the swappable 

pages. 

Field Extent: Bit 26 

Field Name: Modify bit (M) 

Function: When the valid bit is reset (0), the modify bit is reserved for system 

software and I/O devices. When the valid bit is set(l) and this bit is reset (0), 

the page has not been modified. When the valid bit and this bit are set, the 

page has been modified. The modify bit is reset by software. It is set by the 

CPU on a successful write or modify to the page. In addition, it may be set by a 

probe-write instruction or an implied probe-write. This bit is not set if the 

page is inaccessible. 
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Field Extent: Bit 25 

Field Name: Must Be Zero 

Function: This bit is reserved and must be zero. 

Field Extent: Bits 24:23 

Field Name: Owner (OWN) bits 

Function: These bits are reserved for system software use. The VAX/VMS 

operating system uses these system bits as the access mode of the owner of the 

page; that is, the mode allowed to alter the page. The field is not examined or 

altered by hardware. 

Field Extent: Bits 22:21 

Field Name: Operating System Software 

Function: These bits are reserved for Operating System Software. 

Field Extent: Bits 20:0 

Field Name: Page Frame Number (PFN) 

Function: The upper 21 bits of the physical address of the base of the page. 

The field is used by hardware only if the valid bit is set. 

The operating system software uses combinations of software bits to imple¬ 

ment its page management data structures and functions. Some of the func¬ 

tions implemented are initialize pages with zeros, copy on reference, page 

sharing, and transitions between active and swapped-out states. VAX/VMS 

software encodes these functions in page table entries whose valid bit is reset 

(0) and processes them whenever a page fault occurs. 

Page Table Entry for I/O Devices 

Some I/O devices use memory management to translate addresses. These 

devices use a page table entry format that is an extension of the page table 

entry used by the CPU. For hardware, the extended page table entry imple¬ 

ments some functions that the CPU implements with software. Three page 

table entry bits are used in four combinations to identify a valid page frame 

number, a global page table index, and an I/O abort. The page table bits are 

22, 26, and 31. The page frame number is valid if bit 31 is set (1) or if bits 22, 

26, and 31 are reset (0). When bit 22 is set (1) and bits 26 and 31 are reset (0), 

the page frame number field is a global page table index (GPTX). The I/O 

device has a global page table base register that is loaded with a system virtual 

address. 



7-11 

The I/O device calculates the system virtual address of a second page table 

entry. The second page table entry must yield a valid page frame number and 

the three bits must indicate a valid page frame number. If either of these 

requirements is not met, the result is undefined. The protection field always 

comes from the first PTE. Some I/O devices may examine and check the pro¬ 

tection field or modify the M bit—this is device dependent. Devices that use 

the protection field and M bit do so in the same manner as does the CPU. 

I/O devices that perform memory mapping use the same SPT as the CPU. But 

the devices have their own copies of the system base register and system space 

length register. Buffer addresses are described in terms of a system virtual 

address of the PTE for the first buffer page and a byte offset within that page. 

In addition, the I/O devices use a global page table in memory and an I/O hard¬ 

ware global page table base register (GBR) which must be loaded by software. 

Changing Page Table Entries 

Page table entries are changed by the operating system as part of its memory 

management functions. For example, the operating system sets and resets the 

valid bit and changes page frame numbers as pages are swapped. 

The software must guarantee that each PTE is consistent within itself. Chang¬ 

ing a PTE one field at a time may cause incorrect system operation. For exam¬ 

ple, the valid bit could be set for one instruction while the page frame number 

is for another instruction. Then, an interrupt routine could occur between the 

two instructions that would use an address mapped to this inconsistent PTE. 

This problem can be avoided by simultaneously changing all the fields in PTE. 

Simply build the new PTE in a register and move that PTE into the page table 

with one instruction (MOVL). 

Multiprocessors complicate the matter. One processor can reference a page 

table that is being modified by another processor. The PTEs must be consis¬ 

tent. In order to guarantee this, first note that PTEs are longword-aligned long- 

words. Because of this, two requirements must be met. First, whenever the 

software modifies a PTE in more than one byte, the software must use a long- 

word, longword-aligned, write-destination instruction (such as MOVL). Sec¬ 

ond, the hardware must guarantee that an incomplete longword-aligned 

longword write operation cannot be read or overwritten. 

System Space Address Translation 

Figure 7-5 graphically describes the system space address format. The figure 

shows a virtual page number field with bits 31 and 30 set to a value of 2. 
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31 30 29 9 8 

VIRTUAL PAGE NO. (VPN) BYTE # 

Figure 7-5 ■ System Space Address Format 

The system virtual address space is defined by the system page table, which is 

a vector of page table entries. The physical base address of the system page 

table is in the system base register. The size of the system page table in long- 

words (number of page table entries) is in the system length register. The page 

table entry addressed by the system base register maps the first page of system 

space; that is, virtual byte address 80000000 (hexadecimal). 

The virtual page number field is bits 9 through 29 of the virtual address. 

Thus, there could be as many as 2,097,152 (221) pages in the system region. 

Typically, the value is in the range of a few hundred to a few thousand system 

pages. A 22-bit field is required to express the values 0 through 2,097,152 

inclusive. During a bootstrap procedure, the contents of both registers are 

unpredictable. The translation from system space virtual address to physical 

address is shown in Figure 7-6. 
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33 2 

10 9 980 

Figure 7-6 ■ System Space Address Translation 

Process Space Address Translation 

The process virtual address .space is divided into two separately mapped 

regions according to the setting of bit 30 in the process virtual address. If bit 

30 is reset (0), the P0 region of the address space is selected. If bit 30 is set (1), 
the PI region is selected. 

The P0 region of the address space defines a contiguous area starting at the 

smallest address in the process virtual space and moving toward the larger 

addresses. The P0 region is used typically for program images, and the region 
grows dynamically. 

In contrast, the PI region of the address space defines a contiguous area that 

starts at the largest address in the process virtual space and moves toward the 

smaller addresses. The PI region is typically used for system-maintained pro¬ 

cess context. It may grow dynamically for the user stack. 
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Both regions of the process virtual space are described by page tables. The two 

page tables are addressed with virtual addresses in the system region of the 

virtual address space. For process space, the address of the page table entry is 

a virtual address in system space, and the fetch of the page table entry is sim¬ 

ply a fetch of a longword using a system virtual address. 

Process page tables are addressed in virtual space. If the tables were addressed 

in physical space, a process page table that required more than a page of page 

table entries would also require physically contiguous pages. Such a require¬ 

ment would make the dynamic allocation of process page table space more com¬ 

plex. 

A process space translation causing a translation buffer miss usually causes 

one memory reference for a page table entry. If the virtual address of the page 

containing the process page table entry is also missing from the translation 

buffer, a second memory reference is required. 

When a process page table entry is fetched, a reference is made to system 

space. This reference is made as a kernel read. The system page containing a 

process page table is either accessible or inaccessible. Similarly, a check is 

made against the system length register (SLR). The fetch of an entry from a 

process page table can cause access or length violation faults. 

The PO region of the address space is mapped by the PO page table (POPT) that 

is defined by the PO Base Register (POBR) and the PO Length Register (POLR). 

The base register contains a virtual address in the system half of virtual 

address space that is the base address of the PO page table. The length register 

contains the size of the PO page table in longwords; that is, the number of page 

table entries. The page table entry addressed by the PO base register maps the 

first page of the PO region of the virtual address space (virtual byte address 

zero). The page table entries in the PO page table contain the mapping informa¬ 

tion themselves; or point to the mapping information in the global page table 

if the page table entry is in the global page table index format. 

The virtual page number is bits 9 through 29 of the virtual address. This 

means there could be as many as 2,097,152 (221) pages in the PO region. A 22- 

bit field is needed to express the values 0 through 2,097,152 inclusive. Bits 

24 through 26 of register POLR are ignored on the move to processor register 

(MTPR) instruction and are read back as zero on the move from processor regis¬ 

ter (MFPR) instruction. During bootstrap procedures, the contents of both 

registers are unpredictable. An attempt to load register POBR with a value less 

than 2,147,483,648 (231) or greater than 3,221,225,468 (((231) + (230))-4) 

causes a reserved operand fault. The translation from PO virtual address to 

physical address is shown in Figure 7-7. 
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33 2 

Figure 7-7 m PO Region Address Translation 

The PI region of the address space is mapped by the PI page table (P1PT) that 

is defined by the PI Base Register (P1BR) and the PI Length Register (P1LR). 

Because PI space moves from higher to lower addresses and because a consis¬ 

tent hardware interpretation of the base and length registers is important, reg¬ 

isters P1BR and P1LR describe that portion of PI space that is inaccessible. 

The base register contains a virtual address of what would be the page table 

entry for the first page PI-virtual byte address 40000000 (hexadecimal). The 

length register contains the number of nonexistent page table entries. An 

address in the base register is not necessarily an address in system space; but 

an address of a page table entry must be in system space. The page table 

entries in the PI page table contain the mapping information or point to the 

mapping information in the global page table entry if the page table entry is in 

global page table index format. 
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Bit 31 of the length register is ignored by a move to processor register instruc¬ 

tion and is read as zero by a move from processor register instruction. During 

bootstrap procedures, the contents of both registers are unpredictable. 

Attempting to load register P1BR with a value less than 2,139,095,040 

(7F800000 (hexadecimal)) causes a reserved operand fault. The translation 

from PI virtual address to physical address is shown in Figure 7-8. 
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Figure 7-8 ■ PI Region Address Translation 

■ Access Control 

Access control is the process of screening page access requests and verifying 

that the requester is authorized access to that page. Every page is assigned a 

protection code. That code specifies for each mode whether or not read or 

write references are allowed. Also, each address is checked to ensure that it 

resides in the virtual address space. 
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There are four access modes. The modes are listed in Table 7-1 in the order of 

most to least privileged. The mode at which the processor is currently running 

is stored in the current mode field of the processor status longword. 

Table 7-1 ■ Processor Access Modes 

Access Mode Code Access Mode Name 

0 Kernel 

1 Executive 

2 Supervisor 

3 User 

Page protection is assigned according to its use, not its location in the virtual 

address space. Although the system space is shared, a program may be pre¬ 

vented from modifying or accessing portions of the system space. A program 

may also be prevented from accessing or modifying portions of process space. 

For example, in system space, scheduling queues are highly protected, but 

library routines may be executed by any privilege code. Also, in process space, 

process accounting information may be highly protected, while normal user 

code may be executed by any privilege code. 

Each page is assigned a protection code describing the accessibility of the page 

for each mode. The protection codes allow a choice of protection for each 

access level within the following limits. 

■ Each level’s access can be read or write, read only, or no access. 

■ Whichever level has read access, all more privileged levels also have read 

access. 

■ Whichever level has write access, all more privileged levels also have write 

access. 

This scheme results in 15 possible protection codes. The protection code is 

encoded in a 4-bit field in the page table entry. See Table 7-2 for a list of the 

codes. 
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Table 7-2 ■ Page Table Entry Protection Codes 

Protection Code Access Modef 

Decimal Binary Mnemonic* K E S U Comments 

0 0000 NA NO NO NO NO No access 

1 0001 UN UN UN UN Reserved 

2 0010 KW RW NO NO NO Kernel write 

3 0011 KR R NO NO NO Kernel read 

4 0100 UW RW RW RW RW All access 

5 0101 EW RW RW NO NO 

6 0110 ERKW RW R NO NO 

7 0111 ER R R NO NO 

8 1000 sw RW RW RW NO 

9 1001 SREW RW RW R NO 

10 1010 SRKW RW R R NO 

11 1011 SR R R R NO 

12 1100 URSW RW RW RW R 

13 1101 UREW RW RW R R 

14 1110 URKW RW R R R 

15 mi UR R R R R 

* Software symbols are defined using PTE$K as a prefix to the mnemonics listed 

above. For example, the software protection symbol PTE$KUR means that that soft¬ 

ware can be read by anyone with user access privileges and those with higher privileges. 

A software protection symbol of PTE$KER means that that software can be read by 

anyone with kernel or supervisor access privileges. No one is allowed write access to 

that software. 

t There are four access modes—K for Kernel Access Mode, E for Executive Access 

Mode, S for Supervisor Access Mode, and U for User Access Mode. Within these 

access modes, there are certain functions that may be performed - R indicates read 

access only, RW indicates read and/or write access, NO indicates no access, and UN 

indicates unpredictable results if access is attempted. 

Every valid virtual address must reside in one of the addressing regions and 

the associated length registers. The algorithm for making these checks is a 

limit check. The notation for this check is shown in Example 7-1. 
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Example 7-1 ■ Valid Virtual Address Checking Algorithm 

case Vftddr <31=30> 

set 

[0]: 

if ZEXT (VAddr<29:9>) GEQU P0LR 
then (length violation) 

[i3 = 
if ZEXT (iVAddr<29:9>) LSSU P1LR 

then {length violation); 

[23: 

if ZEXT (VAddr<29:9>) GEQU SLR 
then {length violation); 

[33: 

{length violation); 

tes; 

An access control fault occurs if the current mode of the processor status long- 

word and the page protection fields indicate the access is illegal, or if the 

address causes a length violation. If an access is made across a page boundary, 

the order in which the pages are accessed is unpredictable. However, for a 

given page, access control violation always takes precedence over translation 

not valid. 

■ Controlling Memory Management 

There are three additional privileged registers used to control the memory 

management hardware. One register is used to enable and disable memory 

management. The other two are used to clear the hardware address transla¬ 

tion buffer when a page table entry is changed. 

The action of translating a virtual address to a physical address is governed by 

the setting of the memory mapping enable bit of the map enable register. The 

map enable register (MAPEN) contains a value of 0 or 1 depending upon mem¬ 

ory management. If memory management is disabled, the value is 0. If mem¬ 

ory management is enabled, the value is 1. During bootstrap procedures, this 

register is initialized to zero. 

When memory management is disabled, virtual addresses are mapped to physi¬ 

cal addresses by ignoring their high-order bits. Access is allowed in all modes, 

and the modify bit is not maintained. 

To read the register, use the move from processor register (MFPR) with the 

source operand specified as ff56. To write to the register, use the move to pro¬ 

cessor register (MTPR) instruction using If56 as the destination operand. 

!P0 region 

!PI region 

!S region 

! reserved region 
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In order to reduce repeated address translations, the hardware includes a trans¬ 

lation buffer that records virtual address translations and page status. When¬ 

ever the process context is loaded by the load process context (LDPCTX) 

instruction, the translation buffer is automatically updated. That is, the pro¬ 

cess virtual address translations are invalidated. Whenever a page table entry 

for the system or current process region is changed other than to set the page 

table entry valid bit, the software must notify the translation buffer of this 

change. This is done by moving an address within the corresponding page into 

the translation buffer invalidate single (TBIS) register. 

Additionally, when the software changes a system page table entry that maps 

any part of the current process page table, all process pages so mapped must be 

invalidated in the translation buffer. They may be invalidated by moving an 

address within each such page into the TBIS register. They may also be invali¬ 

dated by clearing the entire translation buffer. This is done by moving zero to 

the translation buffer invalidate all register with a move to processor register 

instruction. 

The translation buffer must not store invalid page table entries. Software is 

not required to invalidate translation buffer entries when making changes for 

page table entries that are already invalid. Whenever the location or size of 

the system map is changed (SBR, SLR) the entire translation buffer must be 

cleared by moving 0 into the translation buffer invalidate all (TBIA) register. 

Before enabling memory management, the translation buffer must be cleared 

by moving 0 into the TBIA register with the move to processor register instruc¬ 

tion. 

Whenever the memory management enable bit is zero, the contents of the 

translation buffer are unpredictable. Therefore, the entire translation buffer 

must be cleared before enabling memory management. 

■ Faults and Parameters 

Two types of faults are associated with memory mapping and protection. A 

translation not valid fault is taken when a read or write reference is attempted 

through an invalid page table entry. An access control violation fault is taken 

when the protection field of the page table entry indicates that the intended 

access is illegal. 

Note that these two faults have distinct vectors in the system control block. If 

both access control violation and translation not valid faults occur, the access 

control violation fault takes precedence. 

An access control violation fault is also taken if the virtual address referenced 

is beyond the end of the associated page table. Such a length violation is essen¬ 

tially the same as referencing a page table entry that specifies no access. To 

avoid repeating the length check, a length violation is stored in the fault param¬ 

eter word. The fault parameter word format is shown in Figure 7-9. 
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3 

1 2 10 

Figure 7-9 ■ Fault Parameter Word Format 

The same parameters are stored for both types of faults. The first parameter 

pushed on the kernel stack after the processor status longword and program 

counter is the initial virtual address that caused the fault. A process space ref¬ 

erence can result in a system space virtual reference for the page table entry. 

If the page table entry reference faults, the process virtual address is saved. In 

addition, a bit is stored in the fault parameter word indicating that the fault 

occurred in the process page table entry reference. The second parameter 

pushed on the kernel stack contains the information listed below. 

Field Extent: Bit 2 

Field Name: Write or Modify Intent 

Function: This bit is set (1) to indicate that the program’s intended access is a 

write or modify. This bit is reset (0) if the program’s intended access is a read. 

Field Extent: Bit 1 

Field Name: Page Table Entry Reference 

Function: This bit is set (1) to indicate that the fault occurred during the refer¬ 

ence to the process page table associated with the virtual address. This bit is 

set on either length or protection faults. 

Field Extent: Bit 0 

Field Name: Length Violation 

Function: This bit is set (1) to indicate that an access control violation was the 

result of a length violation rather than a protection violation. This bit is reset 

(0) for a translation not valid fault. 
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■ Accessing Privileged System Services 

Most processes execute in the user access mode. At times, the user access 

mode processes need to use system services that execute at a higher-level 

access mode. These user mode processes are not allowed access to other modes 

except for these necessary services. VAX systems provide instructions that 

change an access mode to one of greater privilege under strictly controlled con¬ 

ditions. These instructions are called the privilege instructions. 

The privilege instructions change a process’s mode to a more privileged mode 

and transfer control to a service dispatcher for the new mode. The instruc¬ 

tions provide the only mechanism for less privileged code to call more privi¬ 

leged code. When the mode transition takes place, the previous mode is saved 

in the previous mode field of the processor status longword. This allows the 

more privileged code to determine the privilege of its caller. 

The instructions give upward and downward mobility through the access 

modes, and provide a way to compare memory protection levels to the access 

mode privilege of callers. The instructions are change mode (CHM), probe, 

return from exception or interrupt (REI), save process context (SVPCTX), load 

process context (LDPCTX), move to processor register (MTPR), and move from 

processor register (MFPR). 

User mode software can access privileged services by calling operating system 

service procedures with a call instruction. The operating system’s service dis¬ 

patcher issues an appropriate change mode instruction before entering the pro¬ 

cedure. A change mode instruction allows access mode transitions to take place 

from one mode to the same or more privileged access mode (upward) only. 

When such a mode transition takes place, the previous mode is saved in the 

previous mode field of the processor status longword. This action allows the 

more privileged code to determine the access privilege of its caller. 

A change mode instruction is a special trap instruction that can be likened to 

an operating system service call instruction. User access-mode software can 

explicitly issue change mode instructions. Because the operating system 

receives the trap, nonprivileged users cannot write software to execute in any 

of the privileged access modes. User mode software can include a condition 

handler for change mode to user traps. This instruction provides general pur¬ 

pose services for user access-mode software. Before software with a change 

mode instruction can be executed, the user’s privilege must be changed in the 

system authorize database (SYSUAF.DAT). The privilege is changed for one 

program and is not a global change for the user. 
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For service procedures written to execute in privileged access modes, the pro¬ 

cessor provides address access privilege validation instructions called probe 

instructions. Probe instructions enable a procedure to compare the read 

(PROBER) and write (PROBEW) access protection of pages in memory to the 

privileges of the caller. The validation enables the operating system to provide 

services that execute in access modes to callers with less privileged access and 

yet prevent the caller from accessing protected memory. 

When the operating system schedules a context switching operation, the con¬ 

text switching procedure uses the save process context (SVPCTX) and load pro¬ 

cess context (LDPCTX) instructions to save the current process context and 

load another. The operating system’s context switching procedure identifies 

the location of the hardware context to be loaded by updating an internal pro¬ 

cessor register. 

Internal processor registers include not only those that identify the executing 

process but also the memory management and other registers such as the con¬ 

sole and clock control registers. The move to processor register (MTPR) and 

move from processor register (MFPR) instructions are the only instructions that 

can explicitly access the internal processor registers. MTPR and MFPR instruc¬ 

tions are privileged and can be issued only in kernel mode. 

The operating system’s privileged service procedures and interrupt and excep¬ 

tion service routines exit using the return from exception or interrupt (REI) 

instruction. The REI instruction is the only way the caller’s access mode privi¬ 

lege can be decreased. Like the procedure and subroutine return instructions, 

the REI instruction restores the program counter and the processor state to 

the values that were stored there before the change mode trap interruption. 

This procedure ensures that the process resumes execution at the point where 

it was interrupted. 

REI instructions perform special services that normal return instructions do 

not. For example, REI instructions inspect the asynchronous system trap 

queue for the executing process. If an asynchronous system trap was queued 

for the process while the interrupt or exception service routine was executing, 

the REI instruction ensures that the process receives them. Also, REI instruc¬ 

tions check the mode to which control is being returned. That mode must be 

the same as or a less privileged mode than the one in which the exception or 

interrupt occurred. The REI instruction is available to all software including 

user-written trap handling routines. There is a restriction; a program cannot 

increase its privilege by altering the processor state to be restored. 
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Chapter 8 ■ Exceptions and Interrupts 

Events within the system sometimes need software outside the flow of con¬ 

trol. In these cases, the processor changes the flow of control from that indi¬ 

cated in the executing process. Some such events are relevant to the current 

process and normally invoke software within the context of that process. The 

notification of these events is called an exception. 

Other events are relevant to other processes or to the system as a whole and 

are serviced in a systemwide context. The notification process for these events 

is called an interrupt. The systemwide context is described as executing on the 

interrupt stack. Some interrupts require high-priority service, while others 

must be synchronized with independent events. To meet these needs, the pro¬ 

cessor has priority logic that grants interrupt service to the highest priority 

event at any moment. The priority assigned to an interrupt is called its inter¬ 

rupt priority level (IPL). 

■ Event Handling 

Exceptions are handled by the operating system. Usually they are reflected to 

the originating mode as a signal. In general, the exception is described by a 

vector that is a list of longwords. The first longword contains a count of other 

longwords in the vector. The second longword identifies which exception 

occurred. The remaining longwords are the stack parameters, the program 

counter, and the processor status longword. There are three kinds of excep¬ 

tions — aborts, faults, and traps. 

An abort is a condition that occurs when an instruction leaves the value of the 

registers and memory in an unpredictable condition and the instruction cannot 

be correctly restarted, completed, simulated, or undone. After an instruction 

aborts, the program counter addresses the opcode of the aborted instruction. 

The following events produce unpredictable results. 

■ Destination operands including implied operands such as the top of the 

stack in a JSB instruction. 

■ Registers modified by an operand specifier evaluation including specifiers 

for implied operands. 

■ The modify bit of the page table entry in those entries that map destination 

operands if the operands could have been but were not written, and the 

modify bit was clear before the instruction. 
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■ The first part done bit of the processor status longword. 

■ The trace pending bit of the processor status longword. 

If not noted in the description of the abort exception, the rest of the processor 

status longword, other registers, and memory are not affected. 

A fault exception is a condition that occurs during an instruction. Faults leave 

the registers and memory in a consistent state. When the fault condition is 

corrected and the instruction is restarted, the execution yields correct results. 

Note that faults do not always leave everything as it was prior to the fault 

instruction. Faults restore only enough to allow restarting. Thus the state of a 

faulted process may not be the same as that of an interrupted process if both 

occurred at the same point. 

A trap exception is a condition that occurs at the end of the instruction that 

caused the exception. Therefore, the program counter saved on the stack is 

the address of the next instruction that would normally have been executed. 

Any software can enable and disable some of the trap conditions with a single 

instruction. For example, refer to the descriptions of the bit set processor 

status word (BISPSW) and bit clear processor status word (BICPSW) instruc¬ 

tions. 

The processor arbitrates interrupt requests according to priority. Only when 

the priority of an interrupt request is higher than the current interrupt prior¬ 

ity level does the processor raise the level and service of the interrupt request. 

The interrupt service routine is entered at the level of the interrupt request 

and usually does not change the set by the processor. 

Interrupt requests come from devices, controllers, other processors (in cus¬ 

tomer-designed systems), or the processor itself. Software executing in kernel 

mode can raise and lower the priority of the processor. But note that the prior¬ 

ity level of one processor does not affect the priority level of the other proces¬ 

sors. This is done to prevent the interrupt priority levels from being used to 

synchronize access to shared resources in multiprocessor systems. Special soft¬ 

ware action is required to stop other processors in your multiprocessor system. 

Most service routines for software-generated exceptions execute at interrupt 

priority level 0. However, if a serious system failure occurs, the processor 

raises the interrupt priority level to the highest level to prevent interruption 

until the problem is corrected. Exception service routines are usually coded to 

avoid exceptions. However, nested exceptions may occur in the the following 

faults—an access control violation, reserved operand, or reserved addressing 

mode. 
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Interrupt Priority Levels 

The processor has 31 interrupt priority levels (IPLs) divided into 15 software 

levels (numbered 1 through F (hexadecimal)) and 16 hardware levels (10 

through IF (hexadecimal)). User applications, system calls, and system ser¬ 

vices run at process level (IPLO). Higher numbered IPLs have higher priority. 

Any request with an IPL higher than the processor’s IPL causes an immediate 

interrupt. But requests with a lower or equal IPL are deferred. 

Interrupt levels 1 through F (hexadecimal) exist entirely for use by software. 

No hardware device can request interrupts on those levels but software can 

force an interrupt. The interrupt is forced by executing a move to processor 

register instruction using the software interrupt request register as the destina¬ 

tion. After a software interrupt request is made, the request is cleared by hard¬ 

ware when the interrupt is taken. Interrupt levels 10 through 17 

(hexadecimal) are for use by devices and controllers, including UNIBUS 

devices. Interrupt levels 18 through IF (hexadecimal) are used by urgent con¬ 

ditions including—the interval clock, serious errors, and powerfail. 

Two of the software interrupt priorities are reserved for process structure soft¬ 

ware. They are IPL2 and IPL3. IPL2 is the AST delivery interrupt. It is trig¬ 

gered by a return from exception or interrupt instruction that detects 

PSLcCUR MOD> GEQU ASTLVL. IPL2 indicates that a pending AST for 

the executing process can now be delivered. 

IPL3 is the process scheduling interrupt. It is triggered by software to allow 

the process running at IPL3 to cause the executing process to be blocked and 

the highest priority executable process to be scheduled. 

Exceptions and Interrupts 

Exceptions and interrupts are similar. When either is initiated, both the pro¬ 

cessor status longword (PSL) and the program counter are put on a stack. How¬ 

ever, there are seven important differences between exceptions and 

interrupts. 

■ An exception is caused by an executing instruction. An interrupt is caused 

by the computing system and is usually independent of an instruction. 

■ Usually, an exception is serviced in the context of the process that pro¬ 

duced that exception. An interrupt is serviced independently of the cur¬ 

rent process. 

■ Generally, the interrupt priority level of the processor is not changed when 

the processor initiates an exception. The interrupt priority level is always 

raised when an interrupt is initiated. 
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■ Normally, exception service routines execute on a process stack. Interrupt 

service routines normally execute on a processor stack. However, a 

machine check always executes on the interrupt stack pointer. 

■ Enabled exceptions are initiated immediately, independent of the proces¬ 

sor interrupt priority level. Interrupts are delayed until the processor inter¬ 

rupt priority level drops below the level of the requesting interrupt. 

■ Most exceptions cannot be disabled. If an exception-causing event should 

occur while that exception is disabled, no exception is initiated even when 

that event is subsequently enabled. This includes overflow exceptions. If 

an interrupt is disabled and an initiating event occurs, the event initiates 

an interrupt when subsequently enabled if the interrupt condition exists. 

Also, if the process is at an equal or higher interrupt priority level, the 

interrupt is initiated when enabled. 

■ The previous mode field in the processor status longword is always set to 

kernel on an interrupt. On an exception, the field indicates the mode in 

which the exception occurred. 

Processor Status 

When an exception or interrupt is serviced, the processor status must be pre¬ 

served. This is done so the interrupted process continues normally. Processor 

status preservation is the task of the program counter and the processor status 

longword. The counter and longword are restored with a return from exception 

or interrupt instruction. Any other status information needed to resume an 

interruptible instruction is stored in the general registers. Process context is 

not saved or restored on each exception or interrupt. Instead, context is saved 

and restored only when process context is switched. Other processors’ status 

is changed less frequently. 

There are several processor state variables associated with each process, and 

VAX software groups them into the 32-bit processor status longword (PSL). 

Bits 15 through 0 of the PSL are referred to separately as the processor status 

word (PSW). The PSW contains unprivileged information and those bits of 

the PSW that have defined meaning are controllable by any program. Bits 31 

through 16 of the PSL have privileged status. While any program can perform 

the REI instruction (which loads PSL), the instruction refuses to load any PSL 

that would increase the privilege of a process, or create an undefined state in 

the processor. Figure 8-1 illustrates the processor status longword and the fol¬ 

lowing paragraphs explain the various fields. 
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Figure 8-1 ■ Processor Status Longword 

Bits 3:0 of the PSL are called the condition codes. In general, they reflect the 

result status of the most recent instruction that affects them. The condition 

codes are tested by the conditional branch instructions. 

Bit 3 is the negative condition code (N bit). In general, it is set by negative 

result instructions. The bit is cleared by positive result or zero instructions. 

For those instructions that affect the bit according to a stored result, the N bit 

reflects the actual result even if the sign of the result is algebraically incorrect 

as a result of overflow. 

Bit 2 is the zero condition code (Z bit). Typically it is set by instructions that 

store an exactly zero result and cleared if the result is not zero. Again, this 

reflects the actual result even if overflow occurs. 

Bit 1 is the overflow condition code (V bit). In general, it is set after arithme¬ 

tic operations in which the magnitude of the algebraically correct result is too 

large to be represented in the available space, and cleared after operations 

whose result fits. Instructions in which overflow is impossible or meaningless 

either clear the bit or leave it unaffected. Note that all overflow conditions 

that set the V bit can also cause traps if the appropriate trap enable bits are 

set. 

Bit 0 is the carry condition code (C Bit). Usually, it is set after arithmetic oper¬ 

ations in which a carry out of, or borrow into, the most significant bit 

occurred. The bit is cleared after arithmetic operations that had no carry or 

borrow, and is either cleared or unaffected by other instructions. The C bit is 

unique in that it not only determines the operation of conditional branch 

instructions, it also serves as an input variable to the ADWC (Add with Carry) 

and SBWC (Subtract with Carry) instructions used to implement multiple-pre¬ 

cision arithmetic. 

Bits 7 through 4 of the PSL are trap-enable flags that cause traps to occur 

under special circumstances. 
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Bit 7 is the decimal overflow trap enable bit (DV bit). When set, it causes a 

decimal overflow trap after the execution of any instruction that produces a 

decimal result whose absolute value is too large to be represented in the desti¬ 

nation space provided. When the DV bit is clear, no decimal overflow trap 

occurs. The result stored consists of the low-order digits and sign of the alge¬ 

braically correct result. Note that there are other trap conditions for which 

there are no enable flags-division by zero and floating overflow. 

Bit 6 is the floating underflow exception enable bit (FU bit). When the FU bit 

is set (1), it forces a floating underflow exception after execution of the instruc¬ 

tion that produced an underflowed result. When the FU bit is clear (0), no 

exception occurs. The result stored is zero. 

NOTE 

On VAX-11/780 processors with a hardware revision level of 

less than 7, a trap occurs. On all other VAX processors, a 

fault occurs. 

Bit 5 is the integer overflow trap enable bit (IV bit). When set, it causes an 

integer overflow trap after an instruction that produced an integer result that 

could not be correctly represented in the space provided. When bit 5 is clear, 

no integer overflow trap occurs. The V condition code is set independently of 

the state of the IV condition code. 

Bit 4 is the trace bit (T bit). When set, it causes a trace trap to occur after 

execution of the next instruction. This facility is used by debugging and per¬ 

formance analysis software to step through a program one instruction at a 

time. If any instruction is traced and causes an arithmetic trap, the trace trap 

occurs after the arithmetic trap. 

Bits 15 through 8 of the PSL are not used and are reserved. 

Bits 20 through 16 represent the processor’s interrupt priority level (IPL). In 

order to be acknowledged by the processor, an interrupt must be at a priority 

higher than the current IPL. Virtually all software runs at IPL 0, so the proces¬ 

sor acknowledges and services interrupt requests of any priority. The inter¬ 

rupt service routine for any request runs at the IPL of the request. This 

temporarily blocking interrupt requests lower or equal priority. Briefly, there 

are 31 interrupt priority levels above zero, numbered 01 through IF (hexadec¬ 

imal). Interrupt levels 01 through OF exist entirely for use by software. IPLs 

10 through 17 are for use by peripheral devices and their controllers. 

Although present systems support only 14 through 17. Levels 18 to IF are for 

use for urgent conditions including the interval clock, serious errors, and 

powerfail. 
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Bits 23 and 22 are the previous mode bits that contain the value from the cur¬ 

rent mode field at the most recent exception that transferred from a less privi¬ 

leged mode to this one. Previous mode is of interest in the PROBE 

instructions that enable privileged routines to determine whether a caller at 

the previous mode is sufficiently privileged to reference a given area of mem¬ 

ory. 

Bits 25 and 24 are the current mode bits that determine the privilege level of 

the currently executing program. Privilege is granted in two ways by the mode 

field-certain instructions (halt, move to processor register, and move from pro¬ 

cessor register) are not performed unless the current mode is kernel. The mem¬ 

ory management logic controls access to virtual addresses on the basis of the 

program’s current mode, the type of reference (read or write), and a protec¬ 

tion code assigned to each page of the address space. 

Bit 26 is the interrupt stack flag (IS bit) that indicates that the processor is 

using the special interrupt stack rather than one of the four stacks associated 

with the current process. When the IS bit is set, the current mode is always 

kernel. Thus, for example software operating on the interrupt stack has full 

kernel mode privileges. 

Bit 27 is the first part done flag (FPD bit) that the processor uses in certain 

instructions. These instructions may be interrupted or page faulted in the mid¬ 

dle of their execution. If the FPD bit is set when the processor returns from an 

exception or interrupt, the processor resumes the interrupted operation 

where it left off rather than restart the instruction. 

Bit 30 is the trace pending bit (TP bit) that is used by the processor to ensure 

that one trace trap occurs for each instruction performed with the trace bit 

set. 

Bit 31 is the compatibility mode bit (CM bit). When the CM bit is set, the 

processor is in PDP-11 compatibility mode and executes PDP-11 instructions. 

When the bit is clear, the processor is in native mode and executes VAX 

instructions. Compatibility mode may be omitted from subset implementa¬ 

tions of the VAX architecture. In a processor that does not have compatibility 

mode, this bit is always clear. 

Asynchronous System Traps 

An asynchronous system trap (AST) is used to notify a process that some 

events are not synchronized with process execution. Traps are also used to ini¬ 

tiate processing for those events with the least possible delay. 

Delay in delivery may be due to one of two causes. Either the process is not on 

the system or there is an access mode mismatch. The efficient handling of 

traps in VAX processors requires some hardware assistance to detect changes 

in access mode. 
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Each of the execution access modes may receive ASTs. However, an AST for a 

less privileged access mode must not be permitted to interrupt execution in a 

more privileged access mode. Because transitions to a less privileged access 

mode occur only in the return from exception or interrupt instruction, compari¬ 

son of the current access mode field is made with a privileged register 

(ASTLVL). The register contains the most privileged access mode number for 

which an AST is pending. If the new access mode is greater than or equal to 

the pending ASTLVL, an Interrupt Processor Level (IPL) 2 interrupt is initi¬ 

ated to deliver the pending AST. 

NOTE 

Loading an ASTLVL or LDPCTX instruction with a move to 

processor register instruction does not request a software 

interrupt at IPL2. During a return from exception or interrupt 

instruction only can an ASTLVL instruction cause an inter¬ 

rupt request. 

The general software flow for AST processing is described in the following 

paragraphs. 

1. An event associated with an AST causes software to put an AST control 

block in the queue to the software process control block. Then the soft¬ 

ware sets the hardware process control block ASTLVL field to the most 

privileged access mode for which an AST is pending. If the target process 

is executing, the ASTLVL privileged register also has to be set. 

2. When a return from exception or interrupt instruction detects a transition 

to an access mode that can be interrupted by a pending AST, a priority 

level 2 interrupt is requested to deliver the AST. Note that the instruction 

does not check pending ASTs when returning to a routine executing on the 

interrupt stack. 

3. The priority level 2 interrupt service routine computes the new value for 

ASTLVL to prevent additional AST delivery interrupts while in kernel 

mode. And the service routine moves that value to the process control 

block and the ASTLVL register before lowering the interrupt priority level 

and actually dispatching the AST. This interrupt service routine normally 

executes on the kernel stack in the context of the process receiving the 

AST. 

4. At the conclusion of processing for an AST, the ASTLVL is recomputed 

and moved to the process control block and ASTLVL register by software. 
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NOTE 

Two of the software interrupt priority levels are reserved for 

process structure software. Interrupt priority level 2 is for 

AST delivery interrupts. Interrupt priority level 3 is for pro¬ 

cess scheduling interrupts. 

■ Exceptions 

There are six types of exceptions—arithmetic, instruction fault, memory man¬ 

agement, operand reference, serious system failures, and tracing. All are 

described in the subsequent paragraphs. 

Arithmetic Exceptions 

Exceptions caused by arithmetic or conversion operations are mutually exclu¬ 

sive and can be assigned the same vector in the system control block. Each 

indicates that an exception occurred during the last instruction and that the 

instruction has been either completed (in the case of a trap) or backed up (in 

the case of a fault). A code identifying the exception is written on the stack as 

a longword. Figure 8-2 illustrates the stack after an arithmetic exception. In 

the case of a fault, the program counter of the next instruction is the same as 

the instruction that caused the exception. Arithmetic exception codes are 

listed in Table 8-1. 

TYPE CODE 

PROGRAM COUNTER OF 

NEXT INSTRUCTION TO EXECUTE 

PROCESSOR STATUS LONGWORD 

Figure 8-2 ■ Stack after Arithmetic Exception 
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Table 8-1 ■ Arithmetic Exception Type Codes 

Code Exception Type Software Mnemonic 

Traps 

1 Integer overflow SRM$K_- 

INT OVF T 

2 Integer divide by zero SRM$K INT DIV T 

3 Floating overflow* SRM$K FLT OVF T 

4 Floating/decimal divide by zero SRM$K FLT DIV T 

5 Floating underflow* SRM$K FLT UND T 

6 Decimal overflow SRM$K DEC OVF T 

7 Subscript range SRMJK SUB RNG T 

Faults 

8 Floating overflow SRM$K FLT OVF F 

9 Floating divide by zero SRM$K FLT DIV F 

10 Floating underflow SRM$K FLT UND F 

* Not on VAX-11/750 

An integer overflow trap exception indicates that the preceding instruction set 

the overflow condition code bit. This trap occurs only if the integer overflow 

enable bit in the processor status word is set. The result stored is the low- 

order part of the correct result, and type code 1 is put on the stack. The nega¬ 

tive and zero condition-code bits are set according to the stored result. Note 

that the BISPSW, MOVTUC, REI, REMQHI, REMQTI, REMQUE, and RET 

instructions do not cause an integer overflow even if they set the overflow con¬ 

dition code bit. EMOD instructions can cause integer overflow. 

An integer divide by zero trap exception indicates that the preceding instruc¬ 

tion had an integer zero divisor. The result stored is equal to the dividend, 

and the overflow condition code bit is set and type code 2 is put on the stack. 

A decimal string divide by zero trap exception indicates that the preceding 

instruction had a decimal string zero divisor. The destination, registers R0 

through R5, and condition codes are unpredictable. The zero divisor can be 

either positive or negative. Type code 4 is put on the stack. 

A decimal string overflow trap exception indicates that the preceding instruc¬ 

tion had a decimal string result too large for the destination string provided, 

and that decimal overflow trap enable bit is set. The overflow condition code 

bit is always set. Type code 6 is put on the stack. 
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A subscript range trap exception indicates that the preceding instruction was 

an index instruction with a subscript operand that failed the range check. The 

value of the subscript operand is lower than the low operand or greater than 

the high operand. The result is stored in the indexout operand and the condi¬ 

tion codes are set as if the operand is within range. Type code 7 is put on the 

stack. 

A floating-overflow fault exception indicates that the preceding instruction 

resulted in an exponent greater than the largest representable exponent for 

the data type. The result is normalized and rounded before comparison. The 

destination is unaffected and the saved condition codes are unpredictable. The 

saved program counter points to the instruction causing the fault. If the 

instruction is an extended polynomial instruction, it is suspended and the pro¬ 

cessor status word first part done bit is set. Type code 8 is put on the stack. 

A divide by zero floating fault exception indicates the preceding instruction 

had a floating zero divisor. The quotient operand is unaffected, and the saved 

condition codes are unpredictable. The saved program counter points to the 

instruction causing the fault. Type code 9 is put on the stack. 

A floating-underflow fault exception indicates that the preceding instruction 

resulted in an exponent less than the smallest representable exponent for the 

data type. The result is normalized and rounded before comparison. The desti¬ 

nation operand is unaffected, and the saved condition codes are unpredict¬ 

able. The saved program counter points to the instruction causing the fault. If 

the instruction is an extended polynomial instruction, it is suspended and the 

processor status word’s first part done bit is set. Type code A is put on the 

stack. 

Instruction Fault 

There are four instruction faults. They are breakpoint fault, compatibility 

mode fault, opcode reserved to Digital fault, and opcode reserved to users fault. 

A breakpoint fault occurs when the breakpoint (BPT) instruction is executed. 

No parameters are saved. To proceed from a breakpoint, a debugger or tracing 

program typically restores the original contents of the location containing the 

breakpoint, sets the trace enable bit in the processor status longword that was 

saved by the breakpoint fault, and resumes. When the breakpointed instruc¬ 

tion completes, a trace exception occurs. Then the tracing program can rein¬ 

sert the breakpoint, restore the trace enable bit of the processor status 

longword to its original state, and resume. Note that if both tracing and break¬ 

pointing are in progress, then on the trace exception both the breakpoint resto¬ 

ration and a normal trace exception should be processed by the trace handler. 
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A compatibility mode fault occurs when the processor is in compatibility 

mode. A longword of information is written to the stack. All other exceptions 

in compatibility mode occur to the regular VAX vector. The compatibility 

mode is an option and is not present on all VAX systems. 

An opcode reserved to Digital fault occurs when the processor finds an opcode 

that is not specifically defined, or one that requires higher privileges than the 

current mode. No parameters are written. Opcode FFFF (hexadecimal) is 

always faulted. 

An opcode reserved to users fault occurs for exactly the same reasons as above 

except that the event is caused by a different set of opcodes and faults through 

a different vector. All user-reserved opcodes start with FC (hexadecimal). If 

the special instruction needs to generate a unique exception, one of the user- 

reserved vectors should be used. An example of a unique exception is an unrec¬ 

ognized second byte of an instruction. 

Memory Management Exceptions 

There are two memory management exceptions—the access control violation 

fault, and the translation not valid fault. 

An access control violation fault is an exception indicating that the process 

attempted a reference not allowed at the access mode at which the process was 

operating. Software may restart the process after changing the address transla¬ 

tion information. 

A translation not valid fault indicates the process attempted a reference to a 

page for which the valid bit of the page table was not set. If a process attempts 

to reference a page for which the page table entry specifies both not valid and 

access violation, an access control violation fault occurs. 

Operand Reference Exceptions 

Two types of operand reference cause exceptions—a reserved addressing mode 

fault, and a reserved operand exception. 

A reserved addressing mode fault is an exception that indicates an operand 

specifier attempted to use an addressing mode that is not allowed. No parame¬ 

ters are written. A short literal specifier is not allowed in the modify, destina¬ 

tion, address source operand reference. A register specifier is not allowed in an 

address source operand reference. An index mode specifier is not allowed 

with the program counter as the index. Short literal, register and index mode 

specifiers are not allowed in the index mode. 
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A reserved operand exception indicates that an accessed operand has a format 

reserved for future use by Digital. No parameters are written. This exception 

always backs up the program counter to point to the opcode. The exception 

service routing may determine the type of operand by examining the opcode 

using the stored program counter. Note that only the changes made by instruc¬ 

tion fetch and, because of operand specifier evaluation, may be restored. 

Therefore, some instructions are not restartable. These exceptions are labeled 

as aborts rather than faults. The program counter is always restored properly 

unless the instruction attempted to modify the counter so that it has unpre¬ 

dictable results. With the exception of the first part done and the trace pending 

bits, the processor status longword is not changed except for the condition 

codes, which are unpredictable. Reserved operand exceptions are caused by 

the following conditions. 

■ Bit field is too wide. 

■ Decimal string is too long. 

■ Floating-point numbers with the sign bit set and the exponent is zero 

except in the POLY table. 

■ Floating-point numbers with the sign bit set and the exponent is zero in 

the POLY table. 

ft Incorrect source string length at completion of EDITPC instruction. 

ft Invalid bit combination in a BISPSW or BICPSW instruction. 

■ Invalid bit combination in PSW or MASK longword during RET instruc¬ 

tion. 

ft Invalid CALL entry mask. 

ft Invalid combinations in the process control block loaded by an LDPCTX 

instruction. 

■ Invalid digit in a CVTTP or CVTSP instruction. 

ft Invalid operand addresses in an INSQHI, INSQTI, REMQHI, or REMQTI 

instruction. 

ft Invalid processor status longword bit combination stored by a return from 

exception or interrupt instruction. 

■ Invalid register content in MTPR instructions to some register for some 

implementations. 

■ Invalid register number in MFPR or MTPR instruction. 
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■ Misaligned operand in ADAWI instruction. 

■ POLY degree is too large. 

■ Reserved pattern operator in EDITPC instruction. 

Serious System Failures 

Serious system failures are processed by privileged software. There are three 

types of serious system failures. 

■ Interrupt stack not valid—halt. 

■ Kernel stack not valid—abort. 

■ Machine check. 

An interrupt stack not valid—halt indicates that 

■ The interrupt stack was invalid. 

■ A memory error occurred while the processor was writing information onto 

the stack during the initiation of an exception or interrupt. 

No further interrupt requests are acknowledged on this processor. The proces¬ 

sor leaves the program counter, the processor status longword, and the reason 

for the halt in registers. That is made available to a debugger, the normal boot¬ 

strap routine, or an optional watchdog bootstrap routine. A watchdog boot¬ 

strap routine can cause the processor to leave the halted state. 

Kernel stack not valid—abort exceptions indicate that the kernel stack was 

not valid while the processor was writing information onto the stack during 

the initiation of an exception or interrupt. Usually, this is an indication of 

stack overflow or another executive software error. The attempted exception 

is transformed into an abort that uses the interrupt stack. No information 

other than the processor status longword and program counter is written onto 

the interrupt stack. The interrupt priority level is raised to IF (hexadecimal). 

Software may abort the process without aborting the system. Because of the 

lost information, the process cannot be continued. If the kernel stack is not 

valid during the normal execution of an instruction including change mode ker¬ 

nel and return from exception or interrupt instructions, the processor initiates 

the normal memory management fault. If the exception vector for kernel stack 

not valid is 0 or 3, the behavior of the processor is undefined. 
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A machine check exception indicates that the processor detected an internal 

error. Machine check exceptions can be caused by such bus errors as nonexist¬ 

ent memory, cache parity, translation buffer parity, or by a control store par¬ 

ity error. Like other exceptions, this exception is taken independently of the 

interrupt priority level. The level is raised to IF (hexadecimal). Implementa¬ 

tion-specific data is written as longwords to the stack. The processor specifies 

the length parameter by placing the number of bytes written as the last long- 

word written. This count excludes the program counter, processor status long- 

word, and the length parameter. On the basis of presented information, 

software decides whether or not to abort the current process if the machine 

check came from the process. Machine check includes uncorrected bus and 

memory errors, and any other processor-detected errors. Some processor 

errors cannot ensure the state of the machine at all. For such errors, the state 

is preserved on a best effort basis. If the exception vector for the machine 

check is 0 or 3, the behavior of the processor is undefined. Under these condi¬ 

tions, the VAX processor halts. 

Trace Exceptions 

Trace exceptions occur between instructions when trace is enabled. Trace is 

used for tracing programs, for performance evaluation, or for debugging pur¬ 

poses. The machine is designed so that one trace exception occurs before the 

execution of each traced instruction. The program counter saved on a trace is 

the address of the next instruction that would normally be executed. If a trace 

fault and a memory management fault occur simultaneously, the order in 

which the exceptions are taken is unpredictable. The trace fault for an instruc¬ 

tion takes precedence over all other exceptions. 
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In order to ensure that exactly one trace occurs per instruction despite other 

traps and faults, the processor status longword contains two bits—the trace 

enable (T) bit, and the trace pending (TP) bit. If only one bit is used, the occur¬ 

rence of an interrupt at the end of an instruction would produce either no 

trace or two traces depending on the design. The trap is implemented by copy¬ 

ing the trace enable bit to a second bit. The second bit is the trace pending 

(TP) bit. The TP bit is used to generate the exception. The trace pending bit 

generates a fault before any other processing at the start of the next instruc¬ 

tion. 

The rules of operation for trace are as follows: 

1. At the beginning of an instruction, if the trace pending bit is set, a trace 

fault is taken after clearing the trace pending bit. 

2. The trace pending bit is loaded with the value of the trace bit. 

3. If the instruction faults or an interrupt is serviced, the trace pending bit is 

cleared before writing the processor status longword. The written program 

counter is set to the start of the faulting or interrupted instruction. Instruc¬ 

tion execution is resumed at step 1 above. 

4. If the instruction aborts or takes an arithmetic trap, the trace pending bit 

of the processor status longword is not changed before the processor status 

longword is written. 

5. If an interrupt is serviced after instruction completion and arithmetic 

traps but before tracing is checked for at the start of the next instruction, 

then the trace pending bit is not changed before the processor status lon¬ 

gword is written. 

The routine entered by a change mode instruction is not traced because the 

instruction clears the trace and trace pending bits in the new processor status 

longword. However, if the trace bit was set at the beginning of the change 

mode instruction, the trace and trace pending bits of the saved processor 

status longword are set. Trace faults resume with the instructions following 

the return from exception or interrupt (REI) instruction in the routine that was 

entered by the change mode instruction. 

An instruction following a REI faults either if the trace bit is set when the REI 

instruction was executed, or if the trace pending bit is set in the saved proces¬ 

sor status longword. In both cases, the trace pending is set after the REI 

instruction. Note that a trace fault is taken with the new processor status long¬ 

word if that fault occurs for an instruction following a return from exception 

or interrupt that sets the trace pending bit. Thus, special care must be 

observed if exception or interrupt routines are traced. If the trace bit is set by 

a BISPSW instruction, trace faults begin with the second instruction after the 

BISPSW instruction. 
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In addition, the call instructions save a clear trace bit, although the trace bit in 

the processor status long word is unchanged. This is done so that a debugger or 

trace program proceeding from a breakpoint fault does not get a spurious trace 

from the RET instruction that matches the call instruction. 

The detection of reserved instruction faults occurs after the trace fault. The 

detection of interrupts and other exceptions can occur during instruction exe¬ 

cution. In this case, the trace pending bit is cleared before the exception or 

interrupt is initiated. The entire processor status longword is saved automati¬ 

cally on interrupt or exception initiation and is restored at the end with an 

REI instruction. This makes interrupts and benign exceptions totally transpar¬ 

ent to the executing program. 

Routines using the trace facility are called trace handlers. When developing 

handling routines, the following conventions and restrictions should be 

observed. 

1. When the trace handler routine returns control to the traced program, the 

handler should always set the trace bit of the processor status longword 

that is to be restored. This prevents other programs from clearing the bit. 

2. The trace handler should never examine or alter the trace pending bit 

when tracing. The hardware ensures that this bit is correctly maintained. 

3. When tracing is complete, both the trace and trace pending bits must be 

cleared. This ensures that tracing ceases. 

4. Tracing a service routine that completes with an REI instruction initiates a 

trace in the restored mode when the instruction completes. If the program 

to which control is being restored was being traced, only one trace excep¬ 

tion is initiated. 

5. If a routine entered by a call instruction is executed at full speed by clear¬ 

ing the trace bit, trace control can be regained by setting the trace bit in 

the call frame of the processor status word. Tracing resumes after the 

instruction following the RET instruction. 

6. Tracing is disabled for routines entered by a change mode instruction or 

any exception. If a change mode instruction or exception service routine is 

to be traced, a breakpoint instruction must be placed at the entry point in 

the routine. If the routine is recursive, breakpointing catches each recur¬ 

sion only if the breakpoint is not on the change mode instruction or the 

instruction with the exception. 

7. If multiple trace handlers are used, all handlers must preserve the trace bit 

when turning the handler on and off. They also have to simulate traced 

code that alters or reads the trace bit. 
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■ Interrupts 

The processor arbitrates interrupt requests according to priority. When the 

interrupt request priority level is higher than the current interrupt priority 

level, the processor raises the interrupt priority level and services the inter¬ 

rupt request. The interrupt service routine is entered at the interrupt priority 

level of the interrupt request and usually does not change the interrupt prior¬ 

ity level set by the processor. 

Interrupt requests can come from devices, controllers, other processors, or the 

processor itself. Software executing in kernel mode can raise and lower the 

priority of the processor by executing an MTPR instruction with the source 

operand specifying the priority desired. However, a processor cannot disable 

interrupts on other processors. Furthermore, the priority level of one proces¬ 

sor does not affect the priority level of the other processors. Thus, in multipro¬ 

cessor systems, interrupt priority levels cannot be used to synchronize access 

to shared resources. Even the various urgent interrupts including those excep¬ 

tions that run at IPL IF (hexadecimal) do so on one processor only. Because of 

this, special software action is required to stop other processors in a multipro¬ 

cessor system. 

The processor services an interrupt request when the currently executing 

instruction is completed. The processor also services interrupt requests at 

well-defined points during the execution of long, iterative instructions. To 

avoid saving additional instruction state in memory, interrupts are initiated 

when the instruction state can be completely contained in the registers, proces¬ 

sor status longword, and program counter. The following events cause inter¬ 

rupts: 

■ Asynchronous system trap delivery when a return from exception or inter¬ 

rupt instruction restores a processor status longword with the interrupt 

stack bit clear, and mode greater than or equal to ASTLVL (IPL 2 (hexadeci¬ 

mal)). 

■ Console storage device (IPL 17 (hexadecimal) or IPL 14 (hexadecimal). 

■ Console terminal transmit and receive (IPL 14 (hexadecimal)). 

■ Device alert (IPL 10:17 (hexadecimal)). 

■ Device completion (IPL 10:17 (hexadecimal)). 

■ Device error (IPL 10:17 (hexadecimal)). 

■ Device memory error (IPL 10:17 (hexadecimal)). 

■ Interval timer (IPL 18 (hexadecimal)). 
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■ Power failure (IPL IE (hexadecimal)). 

■ Recovered memory, bus or processor errors (the VAX-11/750 interrupts at 

IPL 1A (hexadecimal) for corrected memory reads; the VAX-11/780 at IPL 

IB (hexadecimal), implementation specific). 

■ Software interrupt invoked by a move to processor register instruction with 

the software interrupt request register as the destination (IPL IF (hexadeci¬ 

mal)). 

■ Unrecovered memory, bus, or processor errors (the VAX-11/750 and VAX- 

11/780 interrupt at IPL ID (hexadecimal) for write memory errors, imple¬ 

mentation specific). 

Each device controller has a separate set of interrupt vector locations in the 

system control block. This eliminates the need to determine which controller 

originated the interrupt. The vector address for each controller is fixed by 

hardware. 

In order to reduce interrupt overhead, memory mapping information is not 

changed when an interrupt occurs. The instructions, data, and contents of the 

interrupt vector for an interrupt service routine must be in the system address 

space or present in every process at the same address. 

Device Interrupts 

Interrupt priority levels 10 through 17 (hexadecimal) are assigned to device 

interrupts. Any given implementation may or may not have all levels of inter¬ 

rupts. For example, on the VAX-11/750, levels 14 (hexadecimal) through 17 

(hexadecimal) only are available for device interrupts. These levels correspond 

to the UNIBUS levels BR4 through BR7. 

Software-generated Interrupts 

The system software has 15 interrupt priority levels (1 through F (hexadeci¬ 

mal)). Refer to the VAX Software Handbook for details of these interrupts. 

Two registers are used in software- generated interrupt processing—the soft¬ 

ware interrupt summary register, and the software interrupt request register. 

The software interrupt summary register (SISR) is a privileged register that 

records pending software interrupts. The register contains a value of 1 in the 

bit positions corresponding to levels on which software interrupts are pend¬ 

ing. See Figure 8-3. All such levels must be lower than the current processor 

interrupt priority level. Otherwise, the processor would have taken the 

requested interrupt. 
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3 1 1 
1 6 5 10 

Figure 8-3 ■ Software Interrupt Summary Register 

The software interrupt summary register is a read/write register accessible 

only to privileged software. During bootstrap procedures, the contents of the 

register are cleared. To read the contents of the register, use the move from 

processor register instruction. To write to the register, use the move to proces¬ 

sor register instruction. The move to processor register instruction writes to the 

register; but this is not the normal way to make software interrupt requests. 

The instruction is useful for clearing the software interrupt system and for 

reloading its state after a power failure. 

The software interrupt request register is a write-only 4-bit privileged register 

used for making software interrupt requests. See Figure 8-4. Executing an 

MTPR source, #SIRR instruction requests an interrupt at the level specified 

by bits 0 through 3 of the source operand. After a software interrupt request 

is made, the corresponding bit in the register is set. The hardware clears the 

bit when the interrupt is taken. If the specified level is greater than the cur¬ 

rent interrupt priority level, the interrupt occurs before execution of the fol¬ 

lowing instruction. If the specified level is less than or equal to the current 

interrupt priority level, the interrupt is deferred until the interrupt priority 

level is lowered to less than the specified level with no higher interrupt level 

pending. Either a return to exception or interrupt or a move to processor register 

instruction lowers the level. If the value of bits 0 through 3 of the specified 

source is 0, an interrupt does not occur. 

4 3 0 

IGNORED REQUEST 

Figure 8-4 ■ Software Interrupt Request Register 
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No indication is given if there is a request at the selected level. Therefore, the 

service routine must not assume there is a one-to-one correspondence of inter¬ 

rupts generated to interrupts initiated. A valid protocol for generating such a 

correspondence is as follows: 

■ The requester uses an INSQUE instruction to replace a control block 

describing the request onto a queue for the service routine. 

■ The requester uses an MTPR instruction to request an interrupt at the 

appropriate level. 

■ The service routine uses a REMQUE instruction to remove a control block 

from the queue of the service requests. If the instruction returns failure 

(nothing in the queue), the service routine exits with a return from excep¬ 

tion or interrupt instruction. 

■ If the REMQUE instruction returns with an item from the queue, the ser¬ 

vice routine performs the service and returns to the third step to look for 

other requests. 

Urgent Interrupts 

The processor has eight priority levels for urgent conditions including serious 

errors and powerfail. Interrupts on these levels are initiated by the processor 

upon detection. Some of these conditions are not interrupts. For example, a 

machine check is usually an exception. But it runs at a high priority level on 

the interrupt stack. Interrupt level IE (hexadecimal) is reserved for power- 

fail. Interrupt level IF (hexadecimal) is reserved for those exceptions that 

must lock out all processing until handled. This includes the hardware and 

software disasters {kernelstack not valid and machine check). It might also be 

used to allow a kernel mode debugger to gain control on any exception. 

Interrupt Priority Level Register 

Writing to the interrupt priority level register with the move to processor regis¬ 

ter instruction loads the processor priority field in the processor status long- 

word. That is, bits 20 through 16 of the processor status longword are loaded 

from bits 4 through 0 of the interrupt priority level register. Reading from the 

interrupt priority level register with the move from processor register instruc¬ 

tion reads the processor priority field from the processor status longword. 

When writing to the register, bits 5 through 31 are ignored. When reading 

from the register, bits 5 through 31 are returned zero. During a bootstrap 

routine, the interrupt priority level is initialized to IF (hexadecimal). 
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Interrupt service routines must follow the discipline of not lowering the inter¬ 

rupt priority level below the initial level. If they do, an interrupt at an interme¬ 

diate level could cause improper stack nesting. This would fault the return 

from exception or interrupt instruction. Actually, a service routine could lower 

the interrupt priority level if it ensured that no intermediate levels could inter¬ 

rupt. However, this would result in unreliable code. 

Interrupt Example 

Using Example 8-1, assume the processor is running in response to an inter¬ 

rupt at interrupt priority level 5 (Step 1). (All numbers in this example are 

hexadecimal.) Then the processor sets the interrupt priority level to 8 (Step 2) 

and posts software requests at interrupt priority levels 3 (Step 3), 7 (Step 4), 

and 9 (Step 5). Subsequently, a device interrupt arrives at interrupt priority 

level 11 (Step 6). Finally the interrupt priority level is set back to interrupt 

priority level 5 (Step 10). 

Example 8-1 ■ Interrupt Sequence 

State after Event Interrupt 

Priority Level in Contents of 

SISR PSL 

Step Event IPL (hex) (hex) stack 

1 Initiate sequence 5 0 0 

2 MTPR #8, #IPL instruction 8 0 0 

3 MTPR #3, #SIRR instruction 8 8 0 

4 MTPR #7, #SIRR instruction 8 88 0 

5 MTPR #9, #SIRR instruction 9 88 8,0 

6 Interrupts to device 11 88 9,8,0 

7 Interrupts to device service 
routine REI 

9 88 .8,0 

8 IPL 9 service routine REI 8 88 0 

9 MTPR #5, #IPL instruction 

changes IPL to 5 and the request 
for 7 is granted immediately 

7 8 5,0 

10 IPL 7 service routine REI 5 8 0 

11 Initial IPL 5 service routine REI 

back to IPL 0 and the request 

for 3 is granted immediately 

3 0 0 

12 IPL 3 service routine REI 0 0 - 
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■ System Control Block 

The system control block (SCB) is a page containing the vectors by which 

exceptions and interrupts are dispatched to the appropriate service routines. 

The system control block base is a privileged register containing the physical 

address of the system control block, which must be page-aligned. During boot¬ 

strap routines, the contents of the system control block base register are unpre¬ 

dictable. The actual length is dependent upon the system implementation 

because the length represents a physical address. 

NOTE 

On some processors, the SCB may have additional pages that 

contain the addresses of interrupt service routines for I/O 

devices. 

A vector is a longword in the SCB that is examined by the processor when an 

exception or interrupt occurs. The vector is used to determine how to service 

the event. See Table 8-2 for a list of the vectors. Separate vectors are defined 

for each interrupting device controller and each class of exception. Each vec¬ 

tor is interpreted according to the value stored in bits 0 and 1. 

If the value is 0, the event is serviced on the kernel stack unless it is running 

on the interrupt stack. If it is running on the interrupt stack, it is serviced 

there. Behavior of the processor is undefined for a kernel stack not valid excep¬ 

tion with this code. 

If the value is 1, the event is serviced on the interrupt stack. If this event is an 

exception, the interrupt priority level is raised to IF (hexadecimal). 

If the value is 2, the event is serviced in writable control store passing bits 2 

through 15 to the installation-specific microcode there. If writable control 

store does not exist or is not loaded, the operation is undefined. 

If the value is 3, the operation is undefined. 

For values 0 and 1, bits 2 through 31 contain the virtual address of the service 

routine. The address must begin on a longword boundary and is normally in 

the system space. A change mode instruction is serviced on the stack selected 

by the new mode. Bits 0 and 1 in the change mode vectors must be zero or the 

operation is undefined. 
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Table 8-2 ■ Event Vectors 

Vector 

(hex)* 

Vector Name Type of 

Event 

Number of 

Parameters 

Notes 

00 Passive Release Interrupt May occur when an inter¬ 

rupt request is removed 

before the interrupt is ini¬ 

tiated. IPL is that of the 

request. 

04 Machine Check Abort or 

Fault or 

Trap 

t Processor- and error- 

dependent information is 

pushed onto the stack if 

possible. Restartability is 

processor-dependent. 

IPL is raised to lF(hex) 

and the interrupt stack is 

used (PSL < IS > 1). 

08 Kernel Stack Not 

Valid 

Abort 0 IPL is raised to lF(hex) 

and the interrupt stack is 

used (PSL < IS > <— 1). 

OC Powerfail Interrupt 0 IPL is raised to lE(hex) 

10 Reserved or Privi¬ 

leged Instruction 

Fault 0 Opcodes reserved to Digi¬ 

tal and privileged instruc¬ 

tions 

14 Customer-reserved 

Instruction 

Fault 0 XFC instruction 

18 Reserved Operand Fault or 

Abort 

0 Type depends on the cir¬ 

cumstances 

1C Reserved Addressing Fault 

Mode 

0 

20 Access Control Viola- Fault 

tion 

2 Virtual address causing 

fault is pushed onto stack 

Notes: 

* (Hex) indicates the preceding number is in hexadecimal notation. 

* The number of bytes of parameters is pushed onto the stack and is imple¬ 

mentation-dependent . 
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Table 8-2 ■ Event Vectors (Cont.) 

Vector 

(hex)* 

Vector Name Type of 

Event 

Number of 

Parameters 

Notes 

24 Translation Not 

Valid 

Fault 2 Virtual address causing 

the fault is pushed onto 

the stack 

28 Trace Pending Fault 0 

2C Breakpoint Instruc¬ 

tion 

Fault 0 

30 Compatibility Fault or 

Abort 

1 A type code is pushed onto 

the stack 

34 Arithmetic Trap or 1 A type code is pushed onto 

Fault the stack 

38:3C Reserved to Digital 

40 CHMK Trap 1 The operand word is sign 

extended and pushed onto 

the stack. Vector < 1:0> 

must be zeros. 

44 CHME Trap 1 The operand word is sign 

extended and pushed onto 

the stack. Vector < 1:0 > 

must be zeros. 

48 CHMS Trap 1 The operand word is sign 

extended and pushed onto 

the stack. Vector < 1:0 > 

must be zeros. 

4C CHMU Trap 1 The operand word is sign 

extended and pushed onto 

the stack. Vector < 1:0> 

must be zeros. 
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Table 8-2 ■ Event Vectors (Cont.) 

Vector 

(hex)* 

Vector Name Type of 

Event 

Number of 

Parameters 

Notes 

50:60 Reserved for System Interrupt 

Bus and Memory 

Errors 

IPL is implementation 

dependent. 

64:80 Reserved to Digital 

84 Software Level 1 Interrupt 0 IPL is 1. 

88 Software Level 2 Interrupt 0 IPL is 2. Ordinarily used 

for AST delivery. 

8C Software Level 3 Interrupt 0 IPL is 3. Ordinarily used 

for process scheduling. 

90:BC Software Levels 4:F Interrupt 0 Vector corresponds to IPL. 

CO Interval Timer Interrupt 0 IPL is 16 or 18(hex). 

C4 Reserved to Digital 

C8 Subset Emulation Trap 10 FPD bit clear. Subset VAX 

systems only. 

CC Suspended Emula¬ 

tion 

Fault 0 FPD bit set. Subset VAX 

systems only. 

D0:DC Reserved to Digital 

E0:EC Reserved to Cus¬ 

tomer or Computer 

Special Systems 

(Digital) 

F0 Console Storage 

Receive 

Interrupt 0 On VAX-11/730 andVAX- 

11/750. IPL is implementa¬ 

tion-dependent. 
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Table 8-2 ■ Event Vectors (Cont.) 

Vector 

(hex)* 

Vector Name Type of 

Event 

Number of 

Parameters 

Notes 

F4 Console Storage 

Transmit 

Interrupt 0 On VAX-11/730 and VAX- 

11/750 only. IPL is imple¬ 

mentation-dependent . 

F8 Console Terminal 

Receive 

Interrupt 0 IPL is 14(hex). 

FC Console Terminal 

Transmit 

Interrupt 0 IPL is 14(hex). 

100: 

13C 

Adapter Vectors Interrupt 0 IPL is 14(hex). 

140: 

17C 

Adapter Vectors Interrupt 0 IPL is 15(hex). 

180: 

1BC 

Adapter Vectors Interrupt 0 IPL is 16(hex). 

ICO: 

1FC 

Adapter Vectors Interrupt 0 IPL is 17(hex). 

200: 

3FC 

Device Vectors Interrupt 0 May be any IPL 

14:17(hex). 

400: 

5FC 

Device Vectors Interrupt 0 May be any IPL 

14:17(hex). 

■ Stacks 

The processor is either in a process context or a systemwide interrupt service 

context at all times. When in the process context, the processor is in one of 

four modes (kernel, executive, supervisor, or user), and the interrupt stack 

(IS) is zero. When the processor is in the systemwide interrupt service con¬ 

text, it operates with kernel privileges, and the interrupt stack is one. A stack 

pointer (SP) is assigned to each of these five states. Whenever the processor 

changes states, stack pointer R14 is stored in the process context stack 

pointer for the old state and loaded from that for the new state. The process 

context stack pointers are allocated in the hardware process control block. 

There are four stack pointers—KSP (kernel), ESP (executive), SSP (supervi¬ 

sor), and USP (user). 
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Operating system design must choose a priority level that is the boundary 

between kernel and interrupt stack use. The system control block interrupt 

vectors must be set so the interrupts to levels above the boundary run on the 

interrupt stack and interrupts below this boundary run on the kernel stack. 

Typically, asynchronous system trap delivery is on the kernel stack and higher 

levels are on the interrupt stack. 

In addition, VAX systems keep copies of the four process stack pointers in 

privileged registers. These registers are accessed during stack switch opera¬ 

tions. The stack pointers in the hardware process control block are referenced 

only during context switch by the save process context (SVPCTX) and load pro¬ 

cess context (LDPCTX) instructions. 

Stack Location 

The executive, supervisor, and user stacks need not be resident in main mem¬ 

ory. The kernel can bring in or allocate process stack pages as address transla¬ 

tion not valid faults occur. However, the kernel stack for the current process 

and the interrupt stack must be resident and accessible. Translation not valid 

and access control violation faults occurring on references to either of these 

stacks are serious system failures from which recovery is impossible. 

If either of these faults occurs on a kernel stack reference, the processor 

aborts the current sequence and initiates a kernel stack not valid abort on hard¬ 

ware level IF (hexadecimal). If either fault occurs on a reference to the inter¬ 

rupt stack, the processor halts. Note that this does not mean every possible 

reference is checked. It means the processor does not loop under these condi¬ 

tions. The kernel stack for processes other than the current one need not be 

resident; but it must be resident before the software’s process dispatcher 

selects a process to run. Further, any mechanism using access control violation 

or translation not valid faults to gather process statistics must exercise care not 

to invalidate kernel stack pages. 

Stack Alignment 

Except on call instructions, the hardware does not attempt to align the stacks. 

For best performance, the software should align the stack on a longword 

boundary and allocate the stack in longword increments. In order to keep the 

stacks longword-aligned, the following six instructions are recommended. 

■ Convert byte to longword (CVTBL). 

■ Convert longword to byte (CVTLB). 

■ Convert longword to word (CVTLW). 

■ Convert word to longword (CVTWL). 
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■ Move zero-extended byte to longword (MOVZBL). 

■ Move zero-extended word to longword (MOVZWL). 

Status Bits 

The interrupt stack bit and current mode bits in the processor status long¬ 

word (PSL) specify which of the five stack pointers is in use. Table 8-3 lists the 

interrupt stack (IS) and current mode bits that identify the stack pointers. 

Table 8-3 ■ PSL Stack Status Bits 

IS Bit Current Register 
_Mode Bit_ 

_1_0_Interrupt stack pointer (ISP) 

0 0 Kernel stack pointer (KSP) 

0_1_Executive stack pointer (ESP)_ 

0_2_Supervisor stack pointer (SSP) 

0 3 User stack pointer (USP) 

The processor does not allow the current mode bits to be set (1) when the inter¬ 

rupt stack bit is set. This is done by clearing the mode bits 

■ When taking an exception or interrupt. 

■ By causing a reserved operand fault if the return from exception or inter¬ 

rupt instruction attempts to load a processor status longword in which both 

the interrupt status bit and current mode bits are set. 

The stack to be used for an exception is selected by the current processor 

status longword interrupt stack bit and the event vector bits. Figure 8-5 illus¬ 

trates the stack selection logic. Values 10 (binary) and 11 (binary) of the vec¬ 

tor are used for other purposes as described in the system control block 

vectors section. 
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VECTOR <1: 0> 

0 

PSL< IS> 

1 

Figure 8-3 ■ Stack Selection 

00 01 

KSP ISP 

ISP ISP 

Accessing Stack Registers 

Reference to the stack pointer in the general registers will access one of five 

stack pointers depending on the values of the current mode and interrupt stack 

bits in the processor status longword. Some processors implement stack 

pointers as processor registers. On these processors, software can access any 

of the stack pointers that are not selected by the current mode and interrupt 

stack bits. Results are correct even if the currently selected stack pointer is 

referenced in the processor register space by an MTPR or MFPR instruction. If 

the process stack pointers are implemented as registers, move processor regis¬ 

ter instructions are the only method for accessing the stack pointers of the 

current process. If the process stack pointers are kept only in the process con¬ 

trol block, an MTPR or MFPR instruction might not access the process control 

block. 

The internal processor register numbers were chosen to be the same as bits 24 

through 26 of the processor status longword. The previous stack pointer is the 

same as bits 22 and 23 of the processor status longword unless the interrupt 

stack bit is set. If the interrupt stack bit is set, the previous mode cannot be 

determined from the processor status longword because interrupts always 

clear bits 22 and 23 of that longword. At bootstrap time, the contents of all 

stack pointers are unpredictable. 

■ Recognition Priority 

The order in which recognition of simultaneous exceptions and interrupts 

takes place is as follows: 

1. Arithmetic exceptions. 

2. Console halt or higher priority interrupt. 

3. Machine check exception. 
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4. Start instruction execution or restart suspended instruction. 

5. Trace fault (only one per instruction). 

NOTE 

The order in which console halt and interrupt recognition 

occurs is not dictated by the VAX architecture. Future VAX 

processors may not take these in the same order as the VAX- 

11/750 or VAX-11/780 that take console halts before inter¬ 

rupts. 

■ Suspended Instructions 

The VAX architecture allows the suspension of certain instructions at well- 

defined intermediate points in the execution. This is done to take memory 

management faults, console halts, or interrupts. In this case, the hardware 

uses processor status longword trace and trace pending bits to ensure that no 

additional trace faults occur when execution is resumed. 

■ Initiating an Exception or Interrupt 

The handling of the event is determined by the contents of the longword vec¬ 

tor in the system control block. If bits 0 and 1 of the vector contain an invalid 

code, the CPU behavior is unpredictable. 

During the following sequence, interrupts are disabled. 

1. The condition codes are replaced with zeros if bits 0 and 1 of the vector 

have a value of 0 or 1. 

2. The current pointer is saved and the new stack pointer is fetched if the 

CPU is not executing on the interrupt stack. 

3. The old processor status longword is written onto the new stack. 

4. If the event being processed is either an interrupt between instructions or 

a trap, this step is not performed. A copy of the program counter is stored. 

Then the program counter is written onto a new stack. The value that is 

saved on the stack points to an event or the next instruction to execute. 

5. The new processor status longword is initialized. 

6. The interrupt priority level is changed only if 

— the event is an interrupt. 

— the event is an exception and the processor status longword vector bits 

0 and 1 is a value of 1. 

7. Any and all related parameters are stored. 
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8. For exceptions only, the previous mode field of the processor status long- 

word is set to the old value of the current mode. 

9. Last, the program counter is changed to point to the longword bits 2 

through 31 of the vector. 

If the processor received an access control violation or a translation not valid 

condition while attempting to write information on the kernel stack, a kernel 

stack not valid—abort is initiated. And the interrupt priority level is changed 

to IF (hexadecimal). Any additional information associated with the original 

exception is lost. However, the processor status longword and the program 

counter are written to the interrupt stack with the same values as would have 

been written on the kernel stack. If the processor receives an access control 

violation or a translation not valid condition while attempting to write to the 

interrupt stack, the processor is halted and only the state of interrupt stack 

pointer, program counter, and processor status longword is ensured to be cor¬ 

rect for subsequent analysis. The processor status longword and the program 

counter have the values that would have been written on the interrupt stack. 

The value of the processor status longword trace pending bit that is saved on 

the stack is shown in Table 8-4. The value of the program counter that is saved 

on the stack is shown in Table 8-3. 

Table 8-4 ■ Trace Pending Bit Saved Values 

Cause of Event Source of Value Saved 

Abort PSL TP bit 

BPT instruction (Bit is cleared.) 

CHM instruction PSL TP bit 

Fault (Bit is cleared.) 

Interrupt If EPD bit is set, this bit is cleared. 
If after traps, before trace—from PSL TP bit. 

Trace (Bit is cleared.) 

Trap PSL TP bit 

Reserved instructions (Bit is cleared.) 

XEC instruction (Bit is cleared.) 
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Table 8-5 ■ Program Counter Saved Values 

Cause of Event Interrupt Stack Points to 

Abort The instruction aborting or detecting 

the kernel-stack-not-valid condition 

(not ensured on a machine check 

event). 

BPT instruction The BPT instruction. 

CHM instruction The next instruction to execute. 

Fault The instruction faulting. 

Interrupt The instruction interrupted or the 

next instruction to execute. 

Trace The next instruction to execute; that 

is, the instruction at the beginning of 

which the trace fault was taken. 

Trap The next instruction to execute. 

Reserved instruction The reserved instruction. 

XFC instruction The XFC instruction. 

The noninterrupt stack pointers may be fetched and stored by hardware in 

either privileged registers or in the processor control block. Only LDPCTX 

and SVPCTX instructions always fetch the processor control block. Move from 

processor register and move to processor register instructions always fetch and 

store the pointers whether in privileged registers or the processor control 

block. 
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Chapter 9 ■ The Instruction Set 

The instructions are arranged in alphabetic order. Notation conventions, 

instruction format, and addressing modes and conventions are described in 

detail in Chapter 5. No attempt is made to reiterate those details in this chap¬ 

ter. A general description of the instructions by category is in Chapter 6. 

-Ada 

Purpose: Used to perform arithmetic addition 

Format: There are two formats—two operand and three operand. 

operator add.rx, sum.mx 

operator addl.rx, add2.rx, sum.vjx 

Opcode 

80 

81 

AO 

Al 

CO 

Cl 

40 

41 

60 

61 

40FD 

41FD 

60FD 

61FD 

Operator Function 

ADDB2 Add Byte 2 Operand 

ADDB3 Add Byte 3 Operand 

ADDW2 Add Word 2 Operand 

ADDW3 Add Word 3 Operand 

ADDL2 Add Longword 2 Operand 

ADDL3 Add Longword 3 Operand 

ADDF2 Add F_floating 2 Operand 

ADDF3 Add F_floating 3 Operand 

ADDD2 Add D_floating 2 Operand 

ADDD3 Add D_floating 3 Operand 

ADDG2 Add G_floating 2 Operand 

ADDG3 Add G_floating 3 Operand 

ADDH2 Add H_floating 2 Operand 

ADDH3 Add H_floating 3 Operand 

Description: In 2-operand format, the addend operand is added to the sum 

operand and the sum operand is replaced by the result. In 3-operand format, 

the addend 1 operand is added to the addend2 operand and the sum operand is 

replaced by the result. In floating-point format, the result is rounded. 
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Add Aligned Word Interlocked 

Purpose: Used to maintain operating system resource usage counts 

Format: ADAWI add.rw, sum.mw 

Opcode Operator Function 

58 ADAWI Add Aligned Word Interlocked 

Description: The addend operand is added to the sum operand and the sum 

operand is replaced by the result. The operation is interlocked against similar 

operations by other processors or in a multiple multiprocecessor system. The 

destination must be aligned on a word boundary. Otherwise a reserved oper¬ 

and fault is taken. 

NOTE 

If the addend and the sum operand overlap, the result and 

the condition codes are unpredictable. 

Add Compare and Branch 

Purpose: Used to maintain a loop count and loop 

Format: operator limitsx, add.rx, index.mx, displ.bw 

Opcode Operator Function 

9D ACBB Add Compare and Branch Byte 

3D ACBW Add Compare and Branch Word 

FI ACBL Add Compare and Branch Longword 

4F ACBF Add Compare and Branch F_floating 

6F ACBD Add Compare and Branch D_floating 

4FFD ACBG Add Compare and Branch G_floating 

6FFD ACBH Add Compare and Branch H_floating 

Description: The addend operand is added to the index operand and the index 

operand is replaced by the result. The index operand is compared with the 

limit operand. If the addend operand is positive (or 0) and the comparison is 

less than or equal, or if the addend is negative and the comparison is greater 

than or equal, then the sign-extended branch displacement is added to the pro¬ 

gram counter (PC) and the PC is replaced by the result. 
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NOTE 

ACB efficiently implements the general FOR or DO loops in 

high-level languages because the sense of the comparison 

between index and limit is dependent on the sign of the 

addend. 

■ Add One and Branch 

Purpose: Used to increment an integer loop count and loop 

Format: operator limit A, index, ml, displ.bb 

Opcode Operator Function 

F2 AOBLSS Add One and Branch Less Than 

F3 AOBLEQ Add One and Branch Less Than or Equal 

Description: One is added to the index operand and the index operand is 

replaced by the result. The index operand is compared with the limit operand. 

On AOBLSS, if the index operand is less than the limit operand, the branch is 

taken. On AOBLEQ, if the index operand is less than or equal to the limit 

operand, the branch is taken. If the branch is taken, the sign-extended branch 

displacement is added to the program counter (PC) and the PC is replaced by 

the result. 

■ Add Packed 

Purpose: Used to add one packed decimal string to another 

Format: There are two formats—4 operand and 6 operand. 

ADDP4 addlen.rw, addadr.ab, sumlen.xvj, sumadr.ab 

ADDP6 

sumadr.ab 

addllen.rw, addladr.ab, add2len.rw, add2adr.ab, sumlen.rw, 

Opcode Operator Function 

20 ADDP4 Add Packed 4 Operand 

21 ADDP6 Add Packed 6 Operand 

Description: In 4-operand format, the addend string specified by the addend 

length and addend address operands is added to the sum string specified by 

the sum length and sum address operands and the sum string is replaced by 

the result. 
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In 6-operand format, the addend 1 string specified by the addend 1 length and 

addend 1 address operands is added to the addend2 string specified by the 

addend2 length and addend2 address operands. The sum string specified by 

the sum length and sum address operands is replaced by the result. 

■ Add with Carry 

Purpose: Used to perform extended-precision addition 

Format: ADWC add.rl, sum.vcA 

Opcode Mnemonic Function 

D8 ADWC Add with Carry 

Description: The contents of the condition code C bit and the addend oper¬ 

and are added to the sum operand. The sum operand is replaced by the result. 

■ Arithmetic Shift 

Purpose: Used to shift integers 

Format: operator count.rb, source.rx, destination.wx 

Opcode Operator Function 

78 ASHL Arithmetic Shift Longword 

79 ASHQ Arithmetic Shift Quadword 

Description: The source operand is arithmetically shifted by the number of 

bits specified by the count operand, and the destination operand is replaced 

by the result. The source operand is unaffected. A positive count operand 

shifts to the left bringing zeros into the least significant bit. A negative count 

operand shifts to the right bringing in copies of the most significant (sign) bit 

into the most significant bit position. A zero count operand replaces the desti¬ 

nation operand with the unshifted source operand. 

■ Arithmetic Shift and Round Packed 

Purpose: Used to scale numeric content of a packed decimal string by a power 

of 10 

Format: 

ASHP cnt.rb, srclen.rw, srcadr.ab, round.rb, dstlen.rw, dstadr.ab 

Opcode Operator Function 

F8 ASHP Arithmetic Shift and Round Packed 
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Description: The source string specified by the source length and source 

address operands is scaled by a power of 10 specified by the count operand. 

The destination string specified by the destination length and destination 

address operands is replaced by the result. 

A positive count operand effectively multiplies. A negative count effectively 

divides. A zero count just moves and affects condition codes. When a nega¬ 

tive count is specified, the result is rounded using the round operand. 

■ Bit Clear 

Purpose: Used to perform complemented AND of two integers 

Format: There are two formats—2 operand and 3 operand 

operator mask.rx, destination.mx 

operator mask.rx, source.rx, destination.wx 

Opcode Operator Function 

8A BICB2 

8B BICB3 

AA BICW2 

AB BICW3 

CA BICL2 

CB BICL3 

Bit Clear Byte 2 Operand 

Bit Clear Byte 3 Operand 

Bit Clear Word 2 Operand 

Bit Clear Word 3 Operand 

Bit Clear Longword 2 Operand 

Bit Clear Longword 3 Operand 

Description: In 2-operand format, the destination operand is ANDed with the 

one’s complement of the mask operand and the destination operand is 

replaced by the result. In 3-operand format, the source operand is ANDed 

with the one’s complement of the mask operand and the destination operand 

is replaced by the result. 

■ Bit Clear Processor Status Longword 

Purpose: Used to clear trap enables 

Format: BICPSW mask.rw 

Opcode Operator Function 

B9 BICPSW Bit Clear PSW 

Description: On BICPSW, the Processor Status Longword is ANDed with the 

one’s complement of the 16-bit mask operand and the PSW is replaced by the 

result. 
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Bit Set 

Purpose: Used to perform logical inclusive OR of two integers 

Format: There are two formats—2 operand and 3 operand 

operator mask.rx, destination.mx 

operator mask.rx, source.rx, destination.wx 

Opcode Operator Function 

88 BISB2 Bit Set Byte 2 Operand 

89 BISB3 Bit Set Byte 3 Operand 

A8 BISW2 Bit Set Word 2 Operand 

A9 BISW3 Bit Set Word 3 Operand 

C8 BISL2 Bit Set Longword 2 Operand 

C9 BISL3 Bit Set Longword 3 Operand 

Description: In 2-operand format, the mask operand is ORed with the destina¬ 

tion operand and the destination operand is replaced by the result. In 3-oper¬ 

and format, the mask operand is ORed with the source operand and the 

destination operand is replaced by the result. 

Bit Set Processor Status Longword 

Purpose: Used to set trap enables 

Format: BISPSW mask.rw 

Opcode Operator Function 

B8 BISPSW Bit set PSW 

Description:On BISPSW, the Processor Status Longword is ORed with the 

16-bit mask operand and the PSW is replaced by the result. 

Bit Test 

Purpose: Used to test a set of bits for all zero 

Format: operand mask.rx, source.rx 

Opcode Operator Function 

93 BITB Bit Test Byte 

B3 BITW Bit Test Word 

D3 BITL Bit Test Longword 
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Description: The mask operand is ANDed with the source operand. Both oper¬ 

ands are unaffected. The only action is to affect condition codes. 

■ Branch 

Purpose: Used to transfer control 

Format: operator displ.bx 

Opcode Operator Function 

11 BRB Branch with Byte Displacement 

31 BRW Branch with Word Displacement 

Description: The sign-extended branch displacement is added to the program 

counter (PC) and the PC is replaced by the result. 

■ Branch on Bit 

Purpose: Used to test a selected bit 

Format: operator pos.rl, base.vh, displ.bb 

Opcode Operator Function 

EO BBS Branch on Bit Set 

El BBC Branch on Bit Clear 

Description: The single bit field specified by the position and base operands is 

tested. If it is in the test state indicated by the instruction, the sign-extended 

branch displacement is added to the program counter (PC) and PC is replaced 

by the result. 

■ Branch on Bit Interlocked 

Purpose: Used to test and modify a specified bit under memory interlock 

Format: operator pos.rl, base.vh, displ.bb 

Opcode Operator Function 

E6 BBSSI Branch on Bit Set and Set Interlocked 

E7 BBCCI Branch on Bit Clear and Clear Interlocked 
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Description: The single bit field specified by the pos and base operands is 

tested. If it is in the test state indicated by the instruction, the sign-extended 

branch displacement is added to the program counter (PC) and PC is replaced 

by the result. Regardless of whether or not the branch is affected, the tested 

bit is put in the new state as indicated by the instruction. If the bit is stored in 

memory, the reading of the state of the bit and the setting of it to the new 

state constitute an interlocked operation, interlocked against similar opera¬ 

tions by other processors or devices in the system. 

■ Branch on Bit and Modify without Interlock 

Purpose: Used to test and modify a specified bit 

Format: operator pos.rl, base.vb, displ.bb 

Opcode Operator Function 

E2 BBSS Branch on Bit Set and Set 

E3 BBCS Branch on Bit Clear and Set 

E4 BBSC Branch on Bit Set and Clear 

E5 BBCC Branch on Bit Clear and Clear 

Description: The single bit field specified by the position (pos) and base oper¬ 

ands is tested. If it is in the test state indicated by the instruction, the sign- 

extended branch displacement is added to the program counter (PC) and PC is 

replaced by the result. Regardless of whether or not the branch is taken, the 

tested bit is put in the new state as indicated by the instruction. 

■ Branch on Condition 

Purpose: Used to test condition codes 

Format: operator displ.bb 
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t Condition Operator Function 

12 ZEQLO BNEQ Branch on Not Equal (Signed) 

12 ZEQLO BNEQU Branch on Not Equal Unsigned 

13 ZEQL 1 BEQL Branch on Equal (Signed) 

13 ZEQL1 BEQLU Branch on Equal Unsigned 

14 {N OR Z} EQLO BGTR Branch on Greater Than (Signed) 

13 {N OR Z} EQL 1 BLEQ Branch on Less Than or Equal 

(Signed) 

18 N EQLO BGEQ Branch on Greater Than or Equal 

(Signed) 

19 N EQL 1 BLSS Branch on Less Than (Signed) 

1A {C OR Z} EQL 0 BGTRU Branch on Greater Than Unsigned 

IB {C OR Z} EQL 1 BLEQU Branch Less Than or Equal 

Unsigned 

1C V EQL 0 BVC Branch on Overflow Clear 

ID V EQL 1 BVS Branch on Overflow Set 

IE C EQLO BGEQU Branch on Greater Than or Equal 

Unsigned 

IE C EQL 0 BCC Branch on Carry Clear 

IF C EQL 1 BLSSU Branch on Less Than Unsigned 

IF C EQL 1 BCS Branch on Carry Set 

t Opcode 

Description: The condition codes are tested, and if the condition indicated by 

the instruction is met, the sign-extended branch displacement is added to the 

program counter (PC) and PC is replaced by the result. 

The VAX conditional branch instructions permit considerable flexibility in 

branching but you need to exercise some care to choose the correct one. The 

conditional branch instructions are divided into three overlapping groups: 

1. The Overflow and Carry Group 

BVSV EQL 1 

BVCV EQLO 

BCSC EQL 1 

BCCC EQLO 
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These instructions are typically used to check for overflow (when overflow 

traps are not enabled), for multiprecision arithmetic, and for other special 

purposes. 

2. The Unsigned Group 

BLSSU CEQLl 

BLEQU {C or Z} EQL 1 

BEQLU ZEQL 1 

BNEQU Z EQL 0 

BGEQU CEQLO 

BGTRU {C OR Z} EQLO 

These instructions typically follow integer and field instructions where the 

operands are treated as unsigned integers, addressed instructions, and 

character string instructions. 

3. The Signed Group 

BLSS N EQL 1 

BLEQ {N OR Z} EQL 1 

BEQL Z EQL 1 

BNEQ ZEQLO 

BGEQ N EQLO 

BGTR {N OR Z} EQLO 

These instructions typically follow integer and field instructions where the 

operands are being treated as signed integers, floating- point instructions, 

and decimal-string instructions. 

■ Branch on Low Bit 

Purpose: Used to test a specified bit 

Format: operator source.rl, displacement.bb 

Opcode Operator Function 

E8 BLBS Branch on Low Bit Set 

E9 BLBC Branch on Low Bit Clear 
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Description: The low bit (bit 0) of the source operand is tested and if it is 

equal to the test state indicated by the instruction, the sign-extended branch 

displacement is added to program counter (PC) and PC is replaced by the 

result. 

■ Branch to Subroutine 

Purpose: Used to transfer control to subroutine 

Format: operator displ.bx 

Opcode Operator Function 

10 BSBB Branch to Subroutine with Byte Displacement 

30 BSBW Branch to Subroutine with Word Displacement 

Description: The program counter (PC) is pushed on the stack as a longword. 

The sign-extended branch displacement is added to PC and PC is replaced by 

the result. 

NOTE 

Since the operand specifier conventions cause the evaluation 

of the destination operand before saving PC, JSB can be used 

for coroutine calls, with the stack used for linkage. The form 

of such a call is JSB @(SP) + . 

■ Breakpoint Fault 

Purpose: Used to help to implement debugging 

Format: BPT 

Opcode Operator Function 

03 BPT Breakpoint Fault 

Description: This instruction is used with the trace bit of the processor status 

word to implement debugging facilities. 

■ Bugcheck 

Purpose: Used to report software-detected errors 

Format: operator message.bx 

Opcode Operator Function 

FEFF BUGW Bugcheck with Word Message Identifier 

FDFF BUGL Bugcheck with Longword Message Identifier 
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Description: The hardware treats these opcodes as Reserved to Digital and 

faults. The VAX/VMS operating system treats these as requests to report soft¬ 

ware-detected errors. The inline message identifier is zero-extended to a long- 

word (BUGW) and interpreted as a condition value. If the process is privileged 

to report bugs, a log entry is made. If the process is not privileged, a reserved 

instruction is signaled. 

■ Call Procedure with General Argument List 

Purpose: Used to invoke a procedure with actual arguments from anywhere in 

memory 

Format: CALLG arglist.ab, dst.ab 

Opcode Operator Function 

FA CALLG Call Procedure with General Argument List 

Description: The stack pointer (SP) is saved in a temporary register and then 

bits 1:0 are replaced by zero so that the stack is longword aligned. The proce¬ 

dure entry mask is scanned from bit 11 to bit 0. The contents of registers 

whose number corresponds to set bits in the mask are pushed on the stack as 

longwords, along with the program counter, frame pointer, and argument 

pointer. The condition codes are cleared. A longword containing the saved 

two low bits of SP in bits 31:30, a zero in bit 29 and bit 28, the low 12 bits of 

the procedure entry mask in bits 27:16, and in bits 15 through 0 of the proces¬ 

sor status word, with the T bit cleared is pushed on the stack. A longword zero 

is pushed on the stack. The frame pointer is replaced by the stack pointer. The 

argument pointer is replaced by the arglist operand that specifies the address 

of the actual argument list. The trap enables in the processor status word are 

set to a known state. Integer overflow and decimal overflow are affected 

according to bits 14 and 15 of the entry mask, respectively; floating under¬ 

flow is cleared. The T bit is unaffected. PC is replaced by the sum of destina¬ 

tion operand and 2 that transfers control to the called procedure at the byte 

beyond the entry mask. 

NOTE 

The VMS Procedure Calling Software Standard and the con¬ 

dition handling facility require the following register saving 

conventions. R0 and R1 are always available for function 

return values and are never saved in the entry mask. Regis¬ 

ters 2 through 11 which are modified in the called procedure 

must be preserved in the mask. 
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■ Call Procedure with Stack Argument List 

Purpose: Used to invoke a procedure with actual arguments or addresses on 

the stack 

Format: CALLS numarg.rl, dst.ab 

Opcode Operator Function 

FB CALLS Call Procedure with Stack Argument List 

Description: The numarg operand is pushed on the stack as a longword (byte 0 

contains the number of arguments; the high-order 24 bits are used by Digital 

software). SP is saved in a temporary location and then bits 1:0 of SP are 

replaced by zero so that the stack is longword aligned. The procedure entry 

mask is scanned from bit 11 to bit 0 and the contents of the register whose 

number corresponds to set bits in the mask are pushed on the stack. PC, FP, 

and AP are pushed on the stack as longwords. The condition codes are cleared. 

A longword containing the saved two low bits of SP in bits 31:30, a 1 in bit 29, 

0 in bit 28, the low 12 bits of the procedure entry mask in bits 27:16, and the 

PSW in bits 15:0 with the T bit cleared is pushed on the stack. A longword 

zero is pushed on the stack. FP is replaced by SP. AP is set to the saved SP (the 

value of the Stack Pointer after the number of arguments operand was pushed 

on the stack). The trap enables in the PSW are set to a known state. Integer 

overflow and decimal overflow are affected according to bits 14 and 15 of the 

entry mask, respectively; floating underflow is cleared; the T bit is unaf¬ 

fected. PC is replaced by the sum of destination operand and 2, which trans¬ 

fers control to the called procedure at the byte beyond the entry mask. 

NOTES 

1. Normally, the arglist is pushed onto the stack in reverse 

order prior to the CALLS. On return, the arglist is removed 

from the stack automatically. 

2. The VMS Procedure Calling Software Standard and the 

condition handling facility require the following register sav¬ 

ing conventions. R0 and Rl are always available for function 

return values and are never saved in the entry mask. All regis¬ 

ters 2 through 11 that are modified in the called procedure 

must be preserved in the entry mask. 
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Case 

Purpose: Used to perform multiple branching depending upon arithmetic 

input 

Format: 

operator selector.rx, base.rx, limit.rx, displ [0].bw,...ydispl [limit].bw 

Opcode Operator Function 

8F CASEB Case Byte 

AF CASEW Case Word 

CF CASEL Case Longword 

Description: The base operand is subtracted from the selector operand and a 

temporary operand is replaced by the result. The temporary operand is com¬ 

pared with the limit operand and if it is less than or equal unsigned, a branch 

displacement selected by the temporary value is added to the program counter 

(PC) and the PC is replaced by the result. Otherwise, 2 times the sum of the 

limit operand and 1 is added to the PC and the PC is replaced by the result. 

This causes the PC to be moved past the array of branch displacements. 

Regardless of the branch taken, the condition codes are affected by the com¬ 

parison of the temporary operand with the limit operand. 

This instruction implements high-level language computed GOTO statements. 

You supply a list of displacements that generate different branch addresses 

depending on the value you obtain as a selector. The branch falls through if 

the selector does not generate any of the displacements on the list. 

NOTE 

After operand evaluation, PC is pointing at displ[0]—not the 

next instruction. The branch displacements are relative to 

the address of displ[0]. 

Change Mode 

Purpose: Used to request higher privilege software 

Format: operator code.rw 

Opcode Operator Function 

BC CHMK Change Mode to Kernel 

BD CHME Change Mode to Executive 

BE CHMS Change Mode to Supervisor 

BF CHMU Change Mode to User 
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Description: Change mode instructions allow processors to change their 

access mode in a controlled manner. The instruction increases privilege only. 

A change in mode also results in a change of stack pointers. The old pointer is 

saved, and the new pointer is loaded. The PSL, PC, and any code passed by the 

instruction are pushed onto the stack of the new mode. The saved PC 

addresses the instruction following the CHMx instruction. The code is sign 

extended. After execution, the new stack’s appearance is 

sign extended code :(SP) 

PC of next instruction 

Old PSL 

The destination mode selected by the opcode is used to select a location from 

the System Control Block. This location addresses the CHMx dispatcher for 

the specified mode. 

■ Clear 

Purpose: Used to clear a scalar quantity 

Format: operator destination.wx 

Opcode Operator Function 

94 CLRB Clear Byte 

B4 CLRW Clear Word 

D4 CLRL Clear Longword 

7C CLRQ Clear Quadword 

7CFD CLRO Clear Octaword 

7C CLRD Clear D_floating 

D4 CLRF Clear F_floating 

7C CLRG Clear G_floating 

7CFD CLRH Clear H_floating 

Description: The destination operand is replaced by 0. 

■ Compare 

Purpose: Used to perform an arithmetic comparison between two specified 

scalar quantities 

Format: operator srcl.rx, src2.rx 
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Opcode Operator Function 

91 CMPB Compare Byte 

B1 CMPW Compare Word 

D1 CMPL Compare Longword 

31 CMPF Compare F_floating 

71 CMPD Compare D_floating 

31FD CMPG Compare G_floating 

71FD CMPH Compare H_floating 

Description: The srcl operand is compared with the src2 operand. The only 

action is to affect the condition codes. 

■ Compare Characters 

Purpose: Used to compare two character strings 

Format: There are two formats—3 operand and 3 operand. 

CMPC3 /e«.rw, srcladr. ab, src2adr. ab 

CMPC3 srcllen.xvj, srcladr. 3b, fill, rb, src2len. rw, src2adr.ab 

Opcode Operator Function 

29 CMPC3 Compare Characters 3 Operand 

2D CMPC3 Compare Characters 5 Operand 

Description: In 3-operand format, the first string is specified by the srcladr 

operand. The second string is specified by the src2adr operand. The strings 

are compared until inequality is detected or until all the bytes of the strings 

have been examined. Condition codes are affected by the result of the last 

byte comparison. 

In 3-operand format, the bytes of one string are compared to the bytes of the 

second string. If one string is longer than the other, the shorter string is con¬ 

ceptually extended to the length of the longer by appending (at higher 

addresses) bytes equal to the fill operand. Comparison proceeds until inequal¬ 

ity is detected or all the bytes of the strings have been examined. Condition 

codes are affected by the result of the last byte comparison. 

NOTE 

1. After execution of a 3-operand instruction RO = number 

of bytes remaining in string 1 including byte that terminated 

comparison, R1 = address of the byte in string 1 that termi¬ 

nated comparison, R2 = RO, R3 = address of the byte in 

string 2 that terminated the comparison. 
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2. After execution of a 5-character instruction RO = the num¬ 

ber of bytes remaining in string 1 including the byte that ter¬ 

minated comparison, R1 = address of the byte in string 1 

that terminated comparison, R2 = the number of bytes 

remaining in string 2 including the byte that terminated com¬ 

parison, and R3 = the address of the byte in string 2 that 

terminated comparison. 

■ Compare Field 

Purpose: Used to compare bit field to integer 

Format: operator pos.rl, size.rb, base.vb, src.rl 

Opcode Operator Function 

EC CMPV Compare Field 

ED CMPZV Compare Zero-extended Field 

Description: The field specified by the position, size, and base operands is 

compared with the source operand. For CMPV, the source operand is com¬ 

pared with the sign-extended field. For CMPZV, the source operand is com¬ 

pared with the zero-extended field. The only action is to affect the condition 

codes. 

■ Compare Packed 

Purpose: Used to compare two packed decimal strings and set condition codes 

Format: There are two formats—3 operand and 4 operand. 

CMPP len. rw, scrladr.ab, src2adr. ah 

CMPP src lien, rw, srcladr. ab, src2len. rw, src2adr. ab 

Opcode Operator Function 

35 CMPP3 Compare Packed—3 Operand 

37 CMPP4 Compare Packed—4 Operand 

Description: In 3-operand format, the srcl string is compared to the 

string. The only action is to affect the condition codes. 

In 4-operand format, the srcl string is compared to the src2 string. The 

action is to affect the condition codes. 

src2 

only 
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■ Convert 

Purpose: Used to convert a signed quantity to a different signed data type 

Format: operator src.rx, dst.vry 

Opcode Operator Function 

99 CVTBW Convert Byte to Word 

98 CVTBL Convert Byte to Longword 

33 CVTWB Convert Word to Byte 

32 CVTWL Convert Word to Longword 

F6 CVTLB Convert Longword to Byte 

F7 CVTLW Convert Longword to Word 

4C CVTBF Convert Byte to F_floating 

6C CVTBD Convert Byte to D_floating 

4CFD CVTBG Convert Byte to G_floating 

6CFD CVTBH Convert Byte to H_floating 

4D CVTWF Convert Word to F_floating 

6D CVTWD Convert Word to D_floating 

4DFD CVTWG Convert Word to G_floating 

6DFD CVTWH Convert Word to H_floating 

4E CVTLF Convert Longword to F_floating 

6E CVTLD Convert Longword to D_floating 

4EFD CVTLG Convert Longword to G_floating 

6EFD CVTLH Convert Longword to H_floating 

48 CVTFB Convert F_floating to Byte 

68 CVTDB Convert D_floating to Byte 

48FD CVTGB Convert G_floating to Byte 

68FD CVTHB Convert H_floating to Byte 

49 CVTFW Convert F_floating to Word 

69 CVTDW Convert D_floating to Word 

49FD CVTGW Convert G_floating to Word 

69FD CVTHW Convert H_floating to Word 
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4A CVTFL Convert F_floating to Longword 

4B CVTRFL Convert Rounded F_floating to Longword 

6A CVTDL Convert D_floating to Longword 

6B CVTRDL Convert Rounded D_floating to Longword 

4AFD CVTGL Convert G_floating to Longword 

48FD CVTRGL Convert Rounded G_floating to Longword 

6AFD CVTHL Convert H_floating to Longword 

6BFD CVTRHL Convert Rounded H_floating to Longword 

56 CVTFD Convert F_floating to D_floating 

99FD CVTFG Convert F_floating to G_floating 

98FD CVTFH Convert F_floating to H_floating 

76 CVTDF Convert D_floating to F_floating 

32FD CVTDH Convert D_floating to H_floating 

33FD CVTGF Convert G_floating to F_floating 

56FD CVTGH Convert G_floating to H_floating 

F6FD CVTHF Convert H_floating to F_floating 

F7FD CVTHD Convert H_floating to D_floating 

76FD CVTHG Convert H_floating to G_floating 

Description: The source operand is converted to the data type of the destina¬ 

tion operand and the destination operand is replaced by the result. For integer 

format, conversion of a shorter data type to a longer is done by sign extension. 

Conversion of longer to a shorter is done by truncation of the higher num¬ 

bered (most significant) bits. For floating format, the form of the conversion 

is as follows: 
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Exact Conversion Truncated Conversion Rounded Conversion 

CVTBF CVTHW CVTLF 

CVTBD CVTFL CVTDF 

CVTBG CVTFB CVTRHL 

CVTBH CVTDL CVTRFL 

CVTWF CVTDB CVTRDL 

CVTWD CVTGL CVTHG 

CVTWG CVTHL CVTRGL 

CVTWH CVTGB CVTGF 

CVTLD CVTFW CVTHF 

CVTFD CVTDW CVTHD 

CVTLG CVTGW 

CVTLH CVTHB 

CVTFH 

CVTFG 

CVTDH 

CVTGH 

Convert Leading Separate Numeric to Packed 

Purpose: Used to convert leading separate numeric string to packed decimal 

string 

Format: CVTSP srclen.tvj, srcadr.ab, dstlen.rw, dstadr.ab 

Opcode Operator Function 

09 CVTSP Convert Leading Separate Numeric to Packed 

Description: The source numeric string specified by the source length and 

source address operands is converted to a packed decimal string, and the desti¬ 

nation string specified by the destination address and destination length oper¬ 

ands is replaced by the result. 

Convert Longword to Packed 

Purpose: Used to convert longword integer to packed decimal string 

Format: CVTLP src.rl, dstlen.rw, dstadr.ab 

Opcode Operator Function 

F9 CVTLP Convert Long to Packed 
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Description: The destination string is specified by the destination length and 

address operands. The source operand is converted to a packed decimal string 

and the destination string is replaced by the result. 

■ Convert Packed to Leading Separate Numeric 

Purpose: Used to convert packed decimal string to leading separate numeric 

string 

Format: CVTPS srclen.rvj, srcadr.ab, dstlen.rw, dstadr.ab 

Opcode Operator Function 

08 CVTPS Convert Packed to Leading Separate Numeric 

Description: The source packed decimal string specified by the source length 

and source address operands is converted to a leading separate numeric string. 

The destination string specified by the destination length and destination 

address operands is replaced by the result. 

Conversion is effected by replacing the lowest addressed byte of the destina¬ 

tion string by the ASCII plus or minus characters which is determined by the 

sign of the source string. The remaining bytes of the destination string are 

replaced by the ASCII representations of the values of the corresponding 

packed decimal digits of the source string. 

■ Convert Packed to Longword 

Purpose: Used to convert a packed decimal string to a longword 

Format: CVTPL srclen.rw, srcadr.ab, dst.wl 

Opcode Operator Function 

36 CVTPL Convert Packed to Long 

Description: The source string specified by the source length and source 

address operands is converted to a longword and the destination operand is 

replaced by the result. 
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■ Convert Packed to Trailing Numeric 

Purpose: Used to convert packed decimal string to trailing numeric string 

Format: CVTPT srclen.rw, srcadr.ab, tbladr.ab, dstlensw, dstadr.ab 

Opcode Operator Function 

24 CVTPT Convert Packed to Trailing Numeric 

Description: The source packed decimal string specified by the source length 

and source address operands is converted to a trailing numeric string. The des¬ 

tination string specified by the destination length and destination address 

operands is replaced by the result. The condition code N and Z bits are 

affected by the value of the source packed decimal string. 

Conversion is effected by using the highest addressed byte of the source 

string as an unsigned index into a 256-byte table whose zeroth entry address 

is specified by the table address operand. The byte read out of the table 

replaces the least significant byte of the destination string. The remaining 

bytes of the destination string are replaced by the ASCII representations of 

the values of the corresponding packed decimal digits of the source string. 

NOTE 

By appropriate specification of the table, conversion to any 

form of trailing numeric string may be realized. See Chapter 

4 for the preferred form of trailing overpunch, zoned, and 

unsigned data. In addition, the table may be set up for abso¬ 

lute value, negative absolute value, or negative conversions. 
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■ Convert Trailing Numeric to Packed 

Purpose: Used to convert trailing numeric string to packed decimal string 

Format: CVTTP srclen.rw, srcadr.ab, tbladr.ab, dstlen.rw, dstadr.ab 

Opcode Operator Function 

26 CVTTP Convert Trailing Numeric to Packed 

Description: The source trailing numeric string specified by the source length 

and source address operands is converted to a packed decimal string. The des¬ 

tination packed decimal string specified by the destination address and desti¬ 

nation length operands is replaced by the result. 

Conversion is effected by using the highest addressed (trailing) byte of the 

source string as an unsigned index into a 256-byte table whose zeroth entry is 

specified by the table address operand. The byte read out of the table replaces 

the highest addressed byte of the destination string; that is, the byte contain¬ 

ing the sign and the least significant digit. The remaining packed digits of the 

destination string are replaced by the low-order four bits of the corresponding 

bytes in the source string. 

NOTES 

1. By appropriate specification of the table, conversion from 

any form of trailing numeric string may be realized. In addi¬ 

tion, the table may be set up for absolute value, negative abso¬ 

lute value or negated conversions. Refer to Chapter 4 for the 

preferred form of trailing overpunch, zoned, and unsigned 

data. 

2. If the table translation produces a sign nibble containing 

any valid sign, the preferred sign representation is stored in 

the destination packed decimal string. 

■ Cyclic Redundancy Check Instruction 

Purpose: Used to initiate communications or software redundancy checks 

Format: CRC tbl.ab, inicrc.rl, strlen.rw, stream.ab 

Opcode Operator Function 

OB CRC Calculate Cyclic Redundancy Check 
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Description: The CRC of the data stream described by the string descriptor is 

calculated. The initial CRC is given by inicrc and is normally 0 or -1 unless the 

CRC is calculated in several steps. RO is replaced by the result. If the polyno¬ 

mial is less than order-32, the result must be extracted from RO. The CRC 

polynomial is expressed by the contents of the 16-longword table. See the 

Notes for calculation of the table. 

NOTES 

1. If the data stream is not a multiple of eight bits long, it 

must be right-adjusted with leading zero fill. 

2. If the CRC polynomial is less than order-32, the result 

must be extracted from the low-order bits of RO. 

3. The following algorithm can be used to calculate the CRC 

table given a polynomial expressed as follows: 

poly<n> — {coefficient of x**{ order-l-n}} 

This routine is available as system library routine LIB$- 

CRC_TABLE (POLY, TABLE). The table is the location of a 

64-byte (16-longword) table into which the result is written. 

4. The following are descriptions of some commonly used 

CRC polynomials. 

■ CRC-16 (used in DDCMP and Bisync): 

Polynomial: X16 + X15 + X2 + 1 

Poly: 120001 (octal) 

Initialize: 0 

Result: RO < 15:0 > 

■ CCITT (used in ADCCP, HDLC, SDLC): 

Polynomial: X16 + X12 + X5 + 1 

Poly: 102010 (octal) 

Initialize: -1 < 15:0 > 

Result: one’s complement of R0 < 15:0 > 
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■ AUTODIN-II 

Polynomial: X32 + X26 + X23 + X22 + X16 + X12 + X11 

+ X10 + Xs + X7 + X3 + X4 + X2 + X + 1 

Poly: EDB88320 (hexadecimal) 

Initialize: —1 < 31:0 > 

Result: one’s complement of R0 < 31:0 > 

5. This instruction produces an unpredictable result unless 

the table is well formed, such as produced in Note 3. Note 

that for any well-formed table, entry [0] is always 0 and entry 

[8] is always the polynomial expressed as in Note 3. The oper¬ 

ation can be implemented using shifts of one, two, or four 

bits at a time as follows: 

Shift: 1 

Steps per byte (limit): 8 

Index table index: tmp3 < 0 > 

Table multiplier: 8 

Use table entries: [0] = 0, < 8> 

Shift: 2 

Steps per byte (limit): 4 

Index table index: tmp3 < 1:0 > 

Table multiplier: 4 

Use table entries: [0] = 0,[4],[8],[12] 

Shift: 4 

Steps per byte (limit): 2 

Index table index: tmp3 < 3:0 > 

Table multiplier: 1 

Use table entries: all 

- '' - *' • ' Vs£TVv , I 
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Decrement 

Purpose: Used to subtract 1 from an integer 

Format: operator difference.mx 

Opcode Operator 

97 DECB 

B7 DECW 

D7 DECL 

Function 

Decrement Byte 

Decrement Word 

Decrement Longword 

Description: One is subtracted from the difference operand and the differ¬ 

ence operand is replaced by the result. 

Divide 

Purpose: Used to perform arithmetic division 

Format: There are two formats—2 operand and 3 operand. 

operator divr.tx, quo.mx 

operator divr.rx, divd. rx, quo.wx 

Opcode Operator Function 

86 DIVB2 Divide Byte 2 Operand 

87 DIVB3 Divide Byte 3 Operand 

A6 DIVW2 Divide Word 2 Operand 

A7 DIVW3 Divide Word 3 Operand 

C6 DIVL2 Divide Longword 2 Operand 

C7 DIVL3 Divide Longword 3 Operand 

46 DIVF2 Divide F_floating 2 Operand 

47 DIVF3 Divide F_floating 3 Operand 

66 DIVD2 Divide D_floating 2 Operand 

67 DIVD 3 Divide D_floating 3 Operand 

46FD DIVG2 Divide G_floating 2 Operand 

47FD DIVG3 Divide G_floating 3 Operand 

66FD DIVH2 Divide H_floating 2 Operand 

67FD DIVH3 Divide H_floating 3 Operand 



9-27 

Description: In 2-operand format, the quotient operand is divided by the divi¬ 

sor operand, and the quotient operand is replaced by the result. 

In 3-operand format, the dividend operand is divided by the divisor operand 

and the quotient operand is replaced by the result. In floating format, the quo¬ 

tient operand result is rounded for both 2- and 3-operand formats. 

Integer division is performed so that the remainder (unless it is zero) has the 

same sign as the dividend. That is, the result is truncated toward zero. 

■ Divide Packed 

Purpose: Used to divide one packed decimal string by a second, with the result 

placed in a third 

Format: 

DIVP divrlen. rw, divradr. ab, divdlen.vu, divdadr.ab, quolen.rw, 

quoadr.ab 

Opcode Operator Function 

27 DIVP Divide Packed 

Description: The dividend string is specified by the dividend length and divi¬ 

dend address operands. The divisor string is specified by the divisor length 

and divisor address operands. The quotient string is specified by the quotient 

length and quotient address operands. The dividend string is divided by the 

divisor string. The quotient string is replaced by the result. The division is 

performed in the following manner: 

1. The absolute value of the remainder (which is lost) is less than the absolute 

value of the divisor. 

2. The product of the absolute value of the quotient and the absolute value of 

the divisor is less than or equal to the absolute value of the dividend. 

3. The sign of the quotient is determined by the rules of algebra from the 

signs of the dividend and the divisor. If the value of the quotient is zero, 

the sign is always positive. 

■ Edit Instruction 

Purpose: Used to edit a source string 

Format: EDITPC srclen.rw, srcadr.ab, pattern.ab, dstadr.ab 

Opcode Operator Function 

38 EDITPC Edit Packed to Character String 
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Description: The destination string is specified by the pattern and destination 

address (dstadr) operands. The source string is specified by the source length 

(srclen) and source address (srcadr) operands. The destination string is 

replaced by the edited version of the source string. 

Editing is performed according to the pattern string. The pattern string con¬ 

sists of one-byte pattern operators. Editing starts at the address pattern and 

extends until an end (EO$END) pattern operator is encountered. Some pat¬ 

tern operators take no operands. Some take a repeat count that is in the 

rightmost nibble of the pattern operator itself. The rest take a one-byte oper¬ 

and that immediately follows the pattern operator. This operand is either an 

unsigned integer length or a byte character. Pattern operators are described 

on subsequent pages and are summarized in Table 9-1. 

Table 9-1 ■ Edit Instruction Pattern Operators 

Function Name Operand* Summary 

Control: EO$ ADJUST_INPUT len Adjust source length. 

EO$CLEAR_ SIGNIF — Clear significance flag. 

EO$END — End edit. 

EO$SET SIGNIF — Set significance flag. 

Fixup: EO$BLANK_ZERO len Fill backward when zero. 

EO$REPLACE SIGN len Replace with fill if -0. 

Insert: EO$FILL rep Insert fill. 

EO$INSERT char Insert character, fill if insignifi¬ 

cant. 

EO$STORE SIGN — Insert sign. 

Load: EO$LOAD_FILL char Load fill character. 

EO$LOAD_MINUS char Load sign character if negative. 

EOfLOAD_PLUS char Load sign character if positive. 

EO$LOAD SIGN char Load sign character. 

Move: EO$END_FLOAT — End floating sign. 

EOfFLOAT rep Move digits, floating sign. 

EO$MOVE rep Move digits, filling insignificant. 

* char = one character 

len = length in the range 1 through 255 

rep = repeat counter in the range 1 through 15 



The following definitions are used: 

fiH = R2 < 7:0> 

sign = R2< 15:8 > 
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EO$ ADJUST INPUT 
Purpose: Used to handle source strings of a length different from the output 

string 

Format: EO$ADJUST_ INPUT len 

Opcode Pattern Operator Function 

47 EO$ADJUST INPUT Adjust Input Length 

Description: The pattern operator is foUowed by an unsigned byte integer 

length in the range 1 through 31. If the source string has more digits than the 

length, the excess digits are read and discarded. If any discarded digits are not 

zero, the overflow and significance bits are set, and the zero bit is cleared. If 

the source string has fewer digits than the length, a counter is set to the num¬ 

ber of leading zeros to supply. This counter is stored as a negative number in 

register RO in bits 31 through 16. 

EOJBLANK_ZERO 
Purpose: Used to fix the destination to be blank when the source value is zero 

Format: EO$BLANK_ZERO len 

Opcode Pattern Operator Function 

45 EO$BLANK ZERO Blank Backwards When Zero 

Description: The pattern operator is followed by an unsigned byte integer 

length. If the value of the source string is zero, the contents of the fill register 

are stored into the last length bytes of the destination string. 

NOTE 

This pattern operator is used to blank any characters stored 

in the destination under a forced significance such as a sign or 

the digits following the radix point. 

EOJCLEAR_SIGNIF 
Purpose: Used to control the significance (leading zero) indicator 

Format: EO$CLEAR__ SIGNIF 

Opcode Pattern Operator Function 

02 EO$CLEAR SIGNF Clear Significance 
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Description: The significance indicator is cleared. This controls the treatment 

of leading zeros. (Leading zeros are zero digits for which the significance indi¬ 

cator is clear.) EO$CLEAR_SIGNIF is used to initialize leading zero suppres¬ 

sion (EO$MOVE) or floating sign (EOJFLOAT) following a fixed insert 

(EO$INSERT with significance set). 

EO$END 
Purpose: Used to end edit operation 

Format: EO$END 

Opcode Pattern Operator Function 

00 EO$END End Edit 

Description: The edit operation is terminated. 

EO$END_FLOAT 
Purpose: Used to end a floating-sign operation 

Format: EO$END_FLOAT 

Opcode Pattern Operator Function 

01 EO$END_FLOAT End Floating Sign 

Description: If the floating sign has not yet been placed in the destination 

(that is, if significance is not set), the contents of the sign register are stored in 

the destination and significance is set. 

NOTE 

This pattern operator is used after a sequence of one or more 

EO$FLOAT pattern operators that start with significance 

clear. The EOfFLOAT sequence can include intermixed 

EO$INSERTs and EO$FILLs. 

EOJFILL 
Purpose: Used to insert the fill character 

Format: EO$FILL rep 

Opcode Pattern Operator Function 

81:8F EOJFILL Store Fill 

Description: The right nibble of the pattern operator is the repeat count. The 

contents of the fill register are placed into the destination the number of times 

specified in the rep operand. This pattern operator is used for fill (blank) inser¬ 

tion. 
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EOfFLOAT 

Purpose: Used to move digits, floating the sign across insignificant digits 

Format: EO$FLOAT rep 

Opcode Pattern Operator Function 

A1:AF EOfFLOAT Float Sign 

Description: The right nibble of the pattern operator is the repeat count. For 

repeat iterations, the following algorithm is executed the number of times 

specified in the repeat count (rep) operand. 

Repeat Count Algorithm—The next digit from the source is examined for one 

of two conditions: 

■ If the next digit is nonzero and significance is not yet set, the contents of 

the sign register are stored in the destination, the significance bit is set, 

and the zero bit is cleared. 

■ If the digit is significant, it is stored in the destination. Otherwise, the 

content of the fill register is stored in the destination. 

This pattern operator is used to move digits with a floating arithmetic sign. 

The sign must already be set up as for EO$STORE_SIGN. A sequence of one 

or more EOjFLOATs can include intermixed EOjINSERTs and EO$FILLs. 

Significance must be clear before the first pattern operator of the sequence. 

The sequence must be terminated by one EO$END_FLOAT. 

This pattern operator is used to move digits with a floating currency sign. The 

sign must already be set up with an EOJLOAD_SIGN. A sequence of one or 

more EO$FLOATs can include intermixed EOJINSERTs and EOjFILLs. Sig¬ 

nificance must be clear before the first pattern operator of the sequence. The 

sequence must be terminated by one EO$END_FLOAT. 

EOJINSERT 

Purpose: Used to insert a fixed character, substituting the fill character if not 

significant 

Format: EOJINSERT char 

Opcode Pattern Operator Function 

44 EOJINSERT Insert Character 

Description: The pattern operator is followed by a character. If the signifi¬ 

cance bit is set, the character is placed into the destination. If the significance 

bit is not set, the contents of the fill register are placed into the destination. 
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NOTE 

This pattern operator is used for blankable inserts (for exam¬ 

ple, comma) and fixed inserts (for example, slash). Fixed 

inserts require that significance be set by EO$SET_SIGNIF 

or EO$END_FLOAT. 

EOJLOAD 
Purpose: Used to change the contents of the fill or sign register 

Format: pattern_operator char 

Opcode Pattern Operator Function 

40 EO$LOAD_ FILL Load Fill Register 

41 EO$LOAD_SIGN Load Sign Register 

42 EO$LOAD_PLUS Load Sign Register If Plus 

43 EO$LOAD_ MINUS Load Sign Register If Minus 

Description: The pattern operator is followed by a character. For EO$LOAD 

_FILL, this character is placed into the fill register. For EO$LOAD_SIGN, 

this character is placed into the sign register . For EO$LOAD_PLUS, this 

character is placed into the sign register if the source string has a positive sign. 

For EOfLOAD_MINUS, this character is placed into the sign register if the 

source string has a negative sign. 

NOTES 

1. EO$LOAD_FILL is used to set up check protection 

instead of space. 

2. EO$LOAD_SIGN is used to set up a floating currency 

sign. 

3. EOfLOAD_PLUS is used to set up a nonblank plus sign. 

4. EOJLOAD_MINUS is used to set up a alternate minus 

sign such as CR, DB, or the PL/1 + . 

EO$MOVE 
Purpose: Used to move digits, filling for insignificant digits (leading zeros) 

Format: EO$MOVE rep 

Opcode Pattern Operator Function 

91:9F EO$MOVE Move Digits 

Description: The right nibble of the pattern operator is the repeat count. For 

repeat iterations, the following algorithm is executed the number of times 

specified in the repeat count (rep) operand. 
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The next digit is moved from the source to the destination under the following 

conditions: 

■ If the digit is nonzero, the significance bit is set and the zero bit is cleared. 

■ If the digit is not significant (that is, it is a leading zero), it is replaced by 

the contents of the fill register in the destination. 

NOTES 

1. This pattern operator is used to move digits without a float¬ 

ing sign. If leading zero suppression is desired, the signifi¬ 

cance bit must be clear. If leading zero should be explicit, the 

significance bit must be set. A string of EO$MOVE operators 

intermixed with EOflNSERT and EO$FILL operators cor¬ 

rectly handles suppression. 

2. If check protection (*) is desired, EOJLOAD_FILL must 

precede the EO$MOVE. 

EO$REPLACE_SIGN 

Purpose: Used to change the destination sign when the value is minus zero 

Format: EO$REPLACE_SIGN len 

Opcode Pattern Operator Function 

46 EO$REPLACE SIGN Replace Sign When Minus Zero 

Description: The pattern operator is followed by an unsigned byte integer 

length. If the value of the source string is zero (that is, if the Z bit is set), the 

contents of the fill register are stored into the byte of the destination string 

that is len bytes before the current position. 

NOTES 

1. The length must be nonzero and within the destination 

string already produced. 

2. This pattern operator is used to correct a stored sign 

(EOfEND_FLOAT or EO$STORE_ SIGN) if a minus was 

stored and the source value is zero. 

EOfSET_SIGNIF 

Purpose: Used to control the significance (leading zero) indicator 

Format: EO$SET_ SIGNIF 

Opcode Pattern Operator Function 

03 EO$SET SIGNIF Set Significance 
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Description: The significance indicator is set. This controls the treatment of 

leading zeros. (Leading zeros are zero digits for which the significance indica¬ 

tor is clear.) EOJSET_SIGNIF is used to avoid leading suppression (before 

EO$MOVE) or to force a fixed insert (before EOJINSERT). 

EO$ STORE_SIGN 

Purpose: Used to insert the sign character 

Format: EO$STORE_ SIGN 

Opcode Pattern Operator Function 

04 EO$STORE SIGN Store Sign 

Description: The contents of the sign register are placed into the destination. 

NOTE 

This pattern operator is used for any nonfloating arithmetic 

sign. It should be preceded by a EO$LOAD_PLUS and/or 

EO$LOAD_MINUS if the default sign convention is not 

desired. 

■ Exclusive OR 

Purpose: Used to perform logical exclusive OR of two integers 

Format: There are two formats—2 operand and 3 operand 

operator mask.rx, destination.mx 

operator mask.rx, source.rx, destination.wx 

Opcode 

8C 

8D 

AC 

AD 

CC 

CD 

Operator Function 

XORB2 Exclusive OR Byte 2 Operand 

XORB3 Exclusive OR Byte 3 Operand 

XORW2 Exclusive OR Word 2 Operand 

XORW3 Exclusive OR Word 3 Operand 

XORL2 Exclusive OR Longword 2 Operand 

XORL3 Exclusive OR Longword 3 Operand 

Description: In 2-operand format, the mask operand is XORed with the desti¬ 

nation operand and the destination operand is replaced by the result. In 3- 

operand format, the mask operand is XORed with the source operand and the 

destination operand is replaced by the result. 
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■ Extended Divide 

Purpose: Used to perform extended-precision division 

Format: EDIV divisor.rl, dividend.rq, quotient.wl, remainder.wl 

Opcode Operator Function 

7B EDIV Extended Divide 

Description: The dividend operand is divided by the divisor operand. The 

quotient operand is replaced by the quotient and the remainder operand is 

replaced by the remainder. 

Unless the remainder operand is zero, the division is performed so that the 

remainder operand has the same sign as the dividend operand. If the quotient 

and remainder operands both reference the same location, the remainder oper¬ 

and overlays the quotient operand. 

■ Extended Function Call 

Purpose: Used to provide customer-defined extensions to the instruction set. 

Format: XFC 

Opcode Operator Function 

FC XFC Extended Function Call 

Description: This instruction requests services of nonstandard microcode or 

software. If no special microcode is loaded, then an exception is generated to a 

kernel mode software simulator. Typically, the next byte would specify which 

of several extended functions are requested. Parameters would be passed 

either as normal operands or, more likely, in fixed registers. 

■ Extended Modulus 

Purpose: Used to perform accurate range reduction of math function argu¬ 
ments 

Format: There are four formats—one for each type of floating point data 

EMODD mulr.rx, mulrx.rb, muld.rx, int.vAJ'racism 

mulr.rx, mulrx.rb, muld.rx, int.vA,fract.wx 

mulr.rx, mulrx.rw, muld.rx, int.vAJract.vix 

mulr.rx, mulrx.rw, muld.rx, int.vA,fract.vix 

EMODF 

EMODG 

EMODH 
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Opcode Operator Function 

54 EMODF Extended Multiply and Integerize F_floating 

74 EMODD Extended Multiply and Integerize D_floating 

MFD EMODG Extended Multiply and Integerize G_floating 

74FD EMODH Extended Multiply and Integerize H_floating 

Description: The multiplier extension operand is concatenated with the multi¬ 

plier operand to gain 8 (EMODD and EMODF), 11 (EMODG), or 15 

(EMODH) additional low-order fraction bits. The low-order 5 or 1 bits of the 

16-bit multiplier extension operand are ignored by the EMODG and EMODH 

instructions, respectively. The multiplicand operand is multiplied by the 

extended multiplier operand. This multiplication is such that the result is 

equivalent to the exact product truncated (before normalization) to a fraction 

field of 32 bits in F_floating, 64 bits in D_floating and G_floating, and 

128 in H_floating. Regarding the result as the sum of an integer and frac¬ 

tion of the same sign, the integer operand is replaced by the integer part of the 

result and the fraction operand is replaced by the rounded fractional part of 

the result. 

Extended Multiply 

Purpose: Used to perform extended-precision multiplication 

Format: EMUL multiplier.rl, multiplicand.rl, addend.rl, product.wq 

Opcode Operator Function 

7A EMUL Extended 

Description: The multiplicand operand is multiplied by the multiplier oper¬ 

and giving a double-length result. The addend operand is sign-extended to 

double length and added to the result. Then, the product operand is replaced 

by the result. 

Extract Field 

Purpose: Used to move bit field to integer 

Format: operator pos.rl, size.rb, hase.wb, dst.wl 

Opcode Operator Function 

EE EXTV Extract Field 

EF EXTZV Extract Zero-extended Field 



Description: For EXTV, the destination operand is replaced by the sign- 

extended field specified by the position, size, and base operands. For EXTZV, 

the destination operand is replaced by the zero-extended field specified by the 

position, size, and base operands. If the size operand is zero, the only action is 

to replace the destination operand with zero and affect the condition codes. 

An example of this instruction is to extract the four protection bits (bits 27 

through 30) from the memory management unit Page Table Entry. The base 

address is the address of a longword operand containing these bits; the posi¬ 

tion operand could be the number of bits from the base address to the protec¬ 

tion code; and the size operand would be 4 because the protection code is 4 

bits long. The destination operand would specify where the protection bits are 

to be stored. 

Because the protection code is not an arithmetic operand and does not need to 

be sign-extended, the extract zero-extended field instruction should be speci¬ 

fied. 

Find First Bit 

Purpose: Used to locate the first bit in a bit field 

Format: operator startpos.rl, size.rb, base.vb, findpos.wl 

Opcode Operator Function 

EB FFC Find First Clear 

EA FFS Find First Set 

Description: A field specified by the start position, size, and base operands is 

extracted. The field is tested for a bit in the state indicated by the instruction 

starting at bit 0 and extending to the highest bit in the field. If a bit in the 

indicated state is found, the find position operand is replaced by the position 

of the bit and the Z condition code bit is cleared. If no bit in the indicated 

state is found, the find position operand is replaced by the position (relative to 

the base) of a bit one position to the left of the specified field and the Z condi¬ 

tion code bit is set. If the size operand is zero, the find position operand is 

replaced by the start position operand and the Z condition code bit is set. 

Halt 

Purpose: Used to stop processor operation 

Format: HALT 

Opcode Operator Function 

00 HALT Halt 
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Description: If the process is running in kernel mode, the processor is halted. 

Otherwise, a privileged instruction fault occurs. 

NOTE 

This opcode is zero to trap many branches to data. 

Increment 

Purpose: Used to add 1 to an integer 

Format: operator sum.mx 

Opcode Operator 

96 INCB 

B6 INCW 

D6 INCL 

Function 

Increment Byte 

Increment Word 

Increment Longword 

Description: One is added to the sum operand and the sum operand is 

replaced by the result. 

Index 

Purpose:Used for index calculation of arrays of fixed length data, bit fields, 

and strings 

Format: 

INDEX subscript.rl, low.rl, high.rl, size.rl, indexin.A, indexout.wl 

Opcode Operator Function 

OA INDEX Compute Index 

Description: The index in operand is added to the subscript operand and the 

sum is multiplied by the size operand. The indexout operand is replaced by 

the result. If the subscript operand is less than the low operand or greater than 

the high operand, a subscript range trap is taken. 

Insert Entry in Queue 

Purpose: Used to add an entry to the head or tail of a queue 

Format: INSQUE entry.ab, predecessor.ab 

Opcode Operator Function 

OE INSQUE Insert Entry in Queue 
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Description: The entry specified by the entry operand is inserted into the 

queue following the entry specified by the predecessor operand. If the entry 

inserted was the first one in the queue, the condition code Z-bit is set; other¬ 

wise, it is cleared. The insertion is a noninterruptible operation. Before per¬ 

forming any part of the operation, the processor validates that the entire 

operation can be completed. This ensures that if a memory management excep¬ 

tion occurs, the queue is left in a consistent state. 

NOTES 

1. Because the insertion is noninterruptible, processes run¬ 

ning in kernel mode can share queues with interrupt service 

routines. 

2. The INSQUE instruction is implemented so the cooperat¬ 

ing software processes in a single processor may access a 

shared list without additional synchronization if the inser¬ 

tions and removals are only at the head or tail of the queue. 

3. During access validation, any access that cannot be com¬ 

pleted results in a memory management exception, even 

though the queue insertion is not started. 

■ Insert Entry into Queue at Head, Interlocked 

Purpose: Used to perform an interlocked entry insert at head of queue 

Format: INSQHI entry.ab, header.aq 

Opcode Operator Function 

5C INSQHI Insert Entry into Queue at Head, Interlocked 

Description: The entry specified by the entry operand is inserted into the 

queue following the header. If the entry inserted was the first one in the 

queue, the condition code Z-bit is set; otherwise, it is cleared. The insertion is 

a noninterruptible operation. The insertion is interlocked to prevent concur¬ 

rent interlocked insertions or removals at the head or tail of the same queue by 

another process even in a processor environment. Before performing any part 

of the operation, the processor validates that the entire operation can be com¬ 

pleted. This ensures that if a memory management exception occurs, the 

queue is left in a consistent state. If the instruction fails to acquire the second¬ 

ary interlock, the instruction sets condition codes and terminates. 
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NOTES 

1. Because the insertion is noninterruptible, processes run¬ 

ning in kernel mode can share queues with interrupt service 

routines. 

2. The INSQHI instruction is implemented so the cooperat¬ 

ing software processes in a processor may access a shared list 

without additional synchronization. 

3. During access validation, any access that cannot be com¬ 

pleted results in a memory management exception even 

though the queue insertion is not started. 

■ Insert Entry into Queue at Tail, Interlocked 

Purpose: Used to perform an interlocked entry insert at tail of queue 

Format: INSQTI entry.2b, header.aq 

Opcode Operator Function 

3D INSQTI Insert Entry into Queue at Tail, Interlocked 

Description: The entry specified by the entry operand is inserted into the 

queue preceding the header. If the entry inserted was the first one in the 

queue, the conditon code Z-bit is set; otherwise it is cleared. The insertion is a 

noninterruptible operation. The insertion is interlocked to prevent concur¬ 

rent interlocked insertions or removals at the head or tail of the same queue by 

another process even in a processor environment. Before performing any part 

of the operation, the processor validates that the entire operation can be com¬ 

pleted. This ensures that if a memory management exception occurs, the 

queue is left in a consistent state. If the instruction fails to acquire the second¬ 

ary interlock, the instruction sets condition codes and terminates. 

NOTES 

1. Because the insertion is noninterruptible, processes run¬ 

ning in kernel mode can share queues with interrupt service 

routines. 

2. The INSQTI instruction is implemented so the cooperat¬ 

ing software processes in a processor may access a shared list 

without additional synchronization. 

3. During access validation, any access that cannot be com¬ 

pleted results in a memory management exception even 

though the queue insertion was not started. 
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■ Insert Field 

Purpose: Used to move an integer to a bit field 

Format: INSV source.rl, position.rl, size.rb, ^se.vb 

Opcode Operator Function 

FO INSV Insert Field 

Description: The field specified by the position, size, and base operands is 

replaced by bits < size - 1:0 > of the source operand. If the size operand is 

zero, the only action is to affect the condition codes. 

■ Jump 

Purpose: Used to transfer control 

Format: JMP dst. ab 

Opcode Operator Function 

17 JMP Jump 

Description: The PC is replaced by the destination operand. 

■ Jump to Subroutine 

Purpose: Used to transfer control to subroutine 

Format: JSB dst. ab 

Opcode Operator Function 

16 JSB Jump to Subroutine 
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Description: The program counter (PC) is pushed on the stack as a longword. 

The PC is replaced by the destination operand. 

NOTE 

Since the operand specifier conventions cause the evaluation 

of the destination operand before saving PC, JSB can be used 

for coroutine calls, with the stack used for linkage. The form 

of such a call is: JSB @(SP) + . 

Load Process Context 

Purpose: Used to restore register and memory management context 

Format: LDPCTX 

Opcode Operator Function 

06 LDPCTX Load Process Context 

Description: The process control block is specified by the process control 

block base. The general registers are loaded from the PCB. The memory man¬ 

agement registers describing the process address space are also loaded and the 

process entries in the translation buffer are cleared. Execution is switched to 

the kernel stack. The PC and PSL are moved between the PCB and the stack 

suitable for use by a subsequent REI instruction. This instruction can be exe¬ 

cuted only in kernel mode. 

Some processors keep a copy of each of the process stack pointers in internal 

registers. In those processors, LDPCTX loads the internal registers from the 

PCB. Processors that do not keep a copy of all four process stack pointers in 

internal registers keep only the current access mode register in an internal reg¬ 

ister. The contents of the internal register are switched with the PCB contents 

whenever the current access mode field changes. 

Locate Character 

Purpose: Used to find a character in a character string 

Format: LOCC char.rb, /e«.rw, adr.ab 

Opcode Operator Function 

3 A LOCC Locate Character 
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Description: The character (char) operand is compared with the bytes of the 

string specified by the length (len) and address (adr) operands. Comparison 

continues until equality is detected, or until all bytes of the string have been 

compared. If equality is detected, the condition code Z bit is cleared. Other¬ 

wise the Z bit is set. 

■ Match Characters 

Purpose: Used to find substring (object) in character string 

Format: MATCHC objlen.rvr, objadr.ab, srclen.rvj, srcadr.ab 

Opcode Operator Function 

39 MATCHC Match Characters 

Description: The source string is specified by the source length and source 

address operands. The object string is specified by the object length and 

object address operands. The source string is examined for a substring that 

matches the object string. If the substring is found, the condition code Z bit is 

set. Otherwise, it is cleared. 

■ Move 

Purpose: Used to move a specified scalar quantity 

Format: operator source.rx, destination.wx 

Opcode Operator Function 

90 MOVB Move Byte 

BO MOVW Move Word 

DO MOVL Move Longword 

7D MOVQ Move Quadword 

7DFD MOVO Move Octaword 

50 MOVF Move F_floating 

70 MOVD Move D_floating 

50FD MOVG Move G_floating 

70FD MOVH Move H_floating 

Description: The destination operand is replaced by the source operand. The 

source operand is unaffected. 
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NOTE 

The MOVB and MOVW instructions do not modify the high- 

order bytes of a register destination. Refer to the MOVZxL 

and CVTxL instructions to update the full register contents. 

Move Address 

Purpose: Calculates address of quantity 

Format: operator source.ax, destination.wl 

Opcode Operator Function 

9E MOVAB Move Address Byte 

3E MOVAW Move Address Word 

DE MOVAL Move Address Longword 

DE MOVAF Move Address F_floating 

7E MOVAQ Move Address Quadword 

7E MOVAD Move Address D_floating 

7E MOVAG Move Address G_floating 

7EFD MOVAH Move Address H_floating 

7EFD MOVAO Move Address Octaword 

Description: The destination operand is replaced by the source operand, 

which is an address. The context in which the source operand is evaluated is 

given by the data type of the instruction. The operand whose address replaces 

the destination operand is not referenced. 

Move Characters 

Purpose: Used to move a character string or block of memory 

Formats: There are two formats—3 operand and 5 operand 

MOVC srclen. rw, sreadr. ab, dstadr. ab 

MOVC srclen.rvj, sreadr.ab, fill.rb, dstlen.rw, dstadr.ab 

Opcode Operator Function 

28 MOVC 3 Move Character—3 Operand 

2C MOVC5 Move Character—5 Operand 



9-45 

Description: The destination string is replaced by the source string. If the des¬ 

tination string is longer than the source string, the highest address bytes of the 

destination are replaced by the fill operand. However, if the destination string 

is shorter than the source string, the highest addressed bytes of the source 

string are not moved. The operation of the instruction is such that overlap of 

the source and destination strings does not affect the result. 

■ Move Complement 

Purpose: Used to move the logical complement of an integer 

Format: operator source.rx destination.wx 

Opcode 

92 

B2 

D2 

Operator Function 

MCOMB Move Complemented Byte 

MCOMW Move Complemented Word 

MCOML Move Complemented Longword 

Description: The destination operand is replaced by the one’s complement of 

the source operand. 

■ Move from Processor Register 

Purpose: Used to provide access to the internal privileged (processor) registers 

Format: MFPR procreg.rl, dst.wl 

Opcode Operator Function 

DB MFPR Move from Processor Register 

Description: The specified register is stored. The procreg operand is a long- 

word that contains the privileged register number. Execution may have regis¬ 

ter-specific side effects. A reserved operand fault may occur if the processor 

internal register does not exist. A reserved instruction fault occurs if instruc¬ 

tion execution is attempted in other than kernel mode. (See also “Move to 

Processor Register”.) See Table 9-2 for a list of the processor registers. 
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Table 9-2 ■ Processor (Privileged) Registers 

Number Register Name Mnemonic* Typet Scopef 

0 Kernel Stack Pointer KSP R/W PROC 

1 Executive Stack Pointer ESP R/W PROC 

2 Supervisor Stack Pointer SSP R/W PROC 

3 User Stack Pointer USP R/W PROC 

4 Interrupt Stack Pointer ISP R/W CPU 

8 P0 Base Register POBR R/W PROC 

9 P0 Length Register POLR R/W PROC 

10 PI Base Register PlBR R/W PROC 

11 Pi Length Register P1LR R/W PROC 

12 System Base Register SBR R/W CPU 

13 System Length Register SLR R/W CPU 

16 Process Control Block Base PCBB R/W PROC 

17 System Control Block Base SCBB R/W CPU 

18 Interrupt Priority Level IPL R/W CPU 

19 Asynchronous System Trap Level ASTLVL R/W PROC 

20 Software Interrupt Request SIRR W CPU 

21 Software Interrupt Summary SISR R/W CPU 

* Each register address is formed as PR$ followed by the register’s mnemonic. For 

example, the register address for the user stack pointer is PR$USP. Once assigned, the 

register number is not changed. Implementation-dependent registers are assigned dis¬ 

tinct addresses for each implementation. Thus, any privileged register present on more 

than one implementation performs the same function whenever implemented. All 

unsigned positive numbers are reserved to Digital. All negative numbers are reserved 

to Digital’s Customer Software Services and customers. 

t The Type column indicates the read/write characteristics of that register. The letter 

R means the register is read-only. The characters R/W means the register is both read 

and write. The character W means the register is write-only. 

t The Scope column indicates if a register is a CPU register or a process register. Regis¬ 

ters labeled CPU are manipulated through software only using the MTPR and MFPR 

instructions. Registers labeled PROC are manipulated by context switch instructions. 
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Table 9-2 ■ Processor (Privileged) Registers (Cont.) 

Number Register Name Mnemonic* Typet ScopeJ 

24 Interval Clock Control ICCS R/W CPU 

25 Next Interval Count NICR W CPU 

26 Interval Count ICR R CPU 

27 Time of Year (optional) TODR R/W CPU 

32 Console Receive Control/status RXCS R/W CPU 

33 Console Receiver Data Buffer RXDB R CPU 

34 Console Transmit Control/status TXCS R/W CPU 

35 Console Transmit Date Buffer TXDB W CPU 

56 Memory Management Enable MAPEN R/W CPU 

57 Translation Buffer Invalidate All TBIA W CPU 

58 Translation Buffer Invalidate Single TBIS W CPU 

61 Performance Monitor Enable PMR R/W PROC 

62 System Identification SID R CPU 

■ Move from Processor Status Longword 

Purpose: Used to obtain processor status 

Format: MOVPSL dst.wl 

Opcode Operator Function 

DC MOVPSL Move from PSL 

Description: The destination operand is replaced by the processor status long- 

word. 

■ Move Negated 

Purpose: Used to move the arithmetic negation of a scalar quantity 

Format: operator source.rx, destination.wx 
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Opcode Operator 

8E MNEGB 

AE MNEGW 

CE MNEGL 

52 MNEGF 

72 MNEGD 

52FD MNEGG 

72FD MNEGH 

Function 

Move Negated Byte 

Move Negated Word 

Move Negated Longword 

Move Negated F_floating 

Move Negated D_floating 

Move Negated G_floating 

Move Negated H_floating 

Description: The destination operand is replaced by the negative of the source 

operand. 

Move Packed 

Purpose: Used to move a packed decimal string from one memory location to 

another memory location 

Format: MOVP len.rw, srcadr.ab, dstadr.ab 

Opcode Operator Function 

34 MOVP Move Packed 

Description: The destination string specified by the length and destination 

address operands is replaced by the source string specified by the length and 

source address operands. 

Move to Processor Register 

Purpose: Used to provide access to the internal privileged registers 

Format: MTPR src.rl, procreg.rl 

Opcode Operator Function 

DA MTPR Move to Processor Register 

Description: The specified register is loaded. The procreg operand is a long- 

word that contains the privileged register number. Execution may have regis¬ 

ter-specific side effects. A reserved instruction fault occurs if instruction 

execution is attempted in other than kernel mode. A reserved operand fault 

may occur if the processor internal register does not exist. See “Move from 

Processor Register” for a summary of accessible privileged registers 

(Table 9-2). 
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■ Move Translated Characters 

Purpose: Used to move and translate character strings 

Format: 

MOVTC srclen.Yvj, srcadr.2bJill.Yb, tbladr.ab, dstlen.rw, dstadr.ab 

Opcode Operator Function 

MOVTC Move Translated Characters 

Description: The source string is translated and replaces the destination 

string. Translation is accomplished by using each byte of the source string as 

an index into a 256-byte table whose first entry address is specified by the 

table address operand. The byte selected replaces the byte of the destination 

string. If the destination string is longer than the source string, the highest 

addressed bytes of the destination string are replaced by the fill operand. If 

the destination string is shorter than the source string, the highest addressed 

bytes of the source string are not translated and moved. The operation of the 

instruction is such that overlap of the source and destination strings does not 

affect the result. If the destination string overlaps the translation table, the 

destination string is unpredictable. 

■ Move Translated until Character 

Purpose: Used to move and translate a character string and to handle escape 

codes 

Format: 

MOVTUC srclen.Yvj, srcadr.ab, esc.rb, tbladr.ab, dstlen.rw, dstadr.ab 

Opcode Operator Function 

2F MOVTUC Move Translated until Character 

Description: The specified source string is translated and replaces the destina¬ 

tion string. Translation is accomplished by using each byte of the source string 

as an index into a 256-byte table whose first entry address is specified by the 

table address operand. The byte selected replaces the byte of the destination 

string. Translation continues until a translated byte is equal to the escape byte 

or until the source string or destination string is exhausted. If translation is 

terminated because of escape, the condition code V bit is set. Otherwise, it is 

cleared. If the destination string overlaps the table, the results are unpredict¬ 

able. If the source and destination strings overlap and their addresses are not 

identical, then the results are unpredictable. If the source and destination 

string addresses are identical, the translation is performed correctly. 
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■ Move Zero-extended 

Purpose: Used to convert an unsigned integer to a wider unsigned integer 

Format: operator source.rx, destination.wy 

Opcode 

9B 

9A 

3C 

Operator Function 

MOVZBW Move Zero-Extended Byte to Word 

MOVZBL Move Zero-Extended Byte to Longword 

MOVZWL Move Zero-Extended Word to Longword 

Description: For MOVZBW, bits 7:0 of the destination operand are replaced 

by the source operand; bits 15:8 are replaced by zero. For MOVZBL, bits 7:0 

of the destination operand are replaced by the source operand; bits 31:8 are 

replaced by zero. For MOVZWL, bits 15:0 of the destination operand are 

replaced by the source operand; bits 31:16 are replaced by zero. 

■ Multiply 

Purpose: Used to perform arithmetic multiplication 

Format: There are two formats—2 operand and 3 operand. 

operator multiplier.rx y product, mx 

operator multiplier.rx , multiplicand.rx, product, wx 

Opcode Operator Function 

84 MULB2 Multiply Byte 2 Operand 

85 MULB3 Multiply Byte 3 Operand 

A4 MULW2 Multiply Word 2 Operand 

A5 MULW3 Multiply Word 3 Operand 

C4 MULL2 Multiply Longword 2 Operand 

C5 MULL3 Multiply Longword 3 Operand 

44 MULF2 Multiply F_floating 2 Operand 

45 MULF3 Multiply F_floating 3 Operand 

64 MULD2 Multiply D_floating 2 Operand 

65 MULD3 Multiply D_floating 3 Operand 

44FD MULG2 Multiply G_floating 2 Operand 

45FD MULG3 Multiply G_floating 3 Operand 

64FD MULH2 Multiply H_floating 2 Operand 

65FD MULH3 Multiply H_floating 3 Operand 



9-51 

Description: In 2-operand format, the product operand is multiplied by the 

multiplier operand and the product operand is replaced by the result. 

In 3-operand format, the multiplicand operand is multiplied by the multiplier 

operand and the product operand is replaced by the result. In floating format, 

the product operand result is rounded for both 2- and 3-operand formats. 

■ Multiply Packed 

Purpose: Used to multiply one packed decimal string by a second, result placed 

in a third 

Format: 

MULP mulrlen.rw, mulradr.ab, muldlen.rw, muldadr.do, prodlen.rw, 

prodadr.ab 

Opcode Operator Function 

23 MULP Multiply Packed 

Description: The multiplicand string is specified by the multiplicand length 

and multiplicand address operands. The multiplier string is specified by the 

multiplier length and multiplier address operands. The product string speci¬ 

fied by the product length and product address operands. The multiplicand 

string is multiplied by the multiplier string. The product string is replaced by 

the result. 

■ Polynomial Evaluation 

Purpose: Used for fast calculation of math functions 

Format: operator argument.rx, degree.rw, table address.ah 

Opcode Operator Function 

33 POLYF Polynomial Evaluation F_floating 

75 POLYD Polynomial Evaluation D_ floating 

55FD POLYG Polynomial Evaluation G_floating 

75FD POLYH Polynomial Evaluation H_floating 

Description: The table address operand points to a table of polynomial coeffi¬ 

cients. The coefficient of the highest order term of the polynomial is pointed 

to by the table address operand. The table is specified with lower order coeffi¬ 

cients stored at increasing addresses. The data type of the coefficients is the 

same as the data type of the argument operand. 
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Evaluation is carried out by Horner’s method, and the contents of RO (Rl’RO 

for POLYD and POLYG, R3’R2’Rl’RO for POLYH) are replaced by the result. 

The result computed is 

result = C [0] + X*(C[1] + X*(C[2] + ... X*C [d])) 

where d = degree and X = arg. The unsigned word degree operand specifies 

the highest numbered coefficient to participate in the evaluation. POLYH 

requires four longwords on the stack to store arg in case the instruction is inter¬ 

rupted. 

Pop Registers 

Purpose: Used to restore multiple registers from stack 

Format: POPR mask.rw 

Opcode Operator Function 

BA POPR Pop Registers 

Description: The contents of registers whose number corresponds to set bits 

in the mask operand are replaced by longwords popped from the stack. R[n] is 

replaced if mask < n > is set. The mask is scanned from bit 0 to bit 14 and bit 

15 is ignored. 

Probe Accessibility 

Purpose: Used to verify that arguments can be accessed 

Format: operator mode.rb, len.rv/, base.2b 

Opcode Operator Function 

OC PROBER Probe Read Accessibility 

OD PROBEW Probe Write Accessibility 

Description: The PROBE instruction checks the read or write accessibility of 

the first and last byte specified by the base address and the zero-extended 

length. The bytes in between are not checked. System software must check all 

pages between the two end bytes if they are to be accessed. 

The protection is checked against the larger of the modes specified in bits 

< 1:0> of the mode operand and the previous mode field of the PSL. Note 

that probing with a mode operand of zero is equivalent to probing the mode 

specified in PSL < previous-mode >. 
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NOTES 

1. On the probe of a process virtual address, if the valid bit of 

the system page table entry is zero, then a translation not 

valid fault occurs. This allows for the demand paging of the 

process page tables. 

2. On the probe of a process virtual address, if the protection 

field of the system page table entry indicates no access, then a 

status of not-accessible is given. One no access page table 

entry in the system map is equivalent to 128 no access page 

table entries in the process map. 

■ Push Address 

Purpose: Calculates address of quantity 

Format: operator source.ax 

Opcode Operator Function 

9F PUSHAB Push Address Byte 

3F PUSHAW Push Address Word 

DF PUSHAL Push Address Longword 

DF PUSHAF Push Address F_floating 

7F PUSHAQ Push Address Quadword 

7F PUSHAD Push Address D_floating 

7F PUSHAG Push Address G_floating 

7FFD PUSHAH Push Address H_floating 

7FFD PUSHAO Push Address Octaword 

Description: The source operand is pushed on the stack. The context in which 

the source operand is evaluated is given by the data type of the instruction. 

The operand whose address replaces the destination operand is not refer¬ 

enced. 
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Push Longword 

Purpose: Used to push a longword source operand onto the stack pointer 

Format: PUSHL src.rl 

Opcode Operator Function 

DD PUSHL Push Longword 

Description: The longword source (src) operand is pushed onto the stack. 

Push Registers 

Purpose: Used to save multiple registers on stack 

Format: PUSHR mask.rw 

Opcode Operator Function 

BB PUSHR Push registers 

Description:The contents of registers whose number corresponds to set bits in 

the mask operand are pushed on the stack as longwords. R[n] is pushed if mask 

< n > is set. The mask is scanned from bit 14 to bit 0, and bit 15 is ignored. 

Remove Entry from Queue 

Purpose: Used to remove an entry from the head or tail of a queue 

Format: REMQUE entry.ab, address.wl 

Opcode Operator Function 

OF REMQUE Remove Entry from Queue 

Description: The queue entry specified by the entry operand is removed from 

the queue. The address operand is replaced by the address of the entry 

removed. If there was no entry in the queue to be removed, the condition code 

V bit is set; otherwise, it is cleared. If the queue is empty at the end of this 

instruction, the condition code Z-bit is set; otherwise, it is cleared. The 

removal is a noninterruptible operation. Before performing any part of the 

operation, the processor validates that the entire operation can be completed. 

This ensures that if a memory management exception occurs, the queue is left 

in a consistent state. 
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NOTES 

1. Because the removal is noninterruptible, processes run¬ 

ning in kernel mode can share queues with interrupt service 

routines. 

2. The REMQUE instruction is implemented so the cooperat¬ 

ing software processes in a single processor may access a 

shared list without additional synchronization if insertions 

and removals are only at the head or tail of the queue. 

3. During access validation, any access that cannot be com¬ 

pleted results in a memory management exception, even 

though the queue removal is not started. 

■ Remove Entry from Queue at Head, Interlocked 

Purpose: Used to perform an interlocked remove of an entry from the head of 

queue 

Format: REMQHI header.aq, address.vA 

Opcode Operator Function 

5E REMQHI Remove Entry from Queue at Head, Interlocked 

Description: The queue entry following the header is removed from the 

queue. The address operand is replaced by the address of the entry removed. 

If no entry was removed from the queue (because either there is nothing to 

remove or secondary interlock failed), the condition code V bit is set; other¬ 

wise, it is cleared. If the interlock succeeded and the queue is empty at the end 

of this instruction, the condition code Z-bit is set; otherwise, it is cleared. The 

removal is interlocked to prevent concurrent interlocked insertions or 

removals at the head or tail of the same queue by another process even in a 

processor environment. The removal is a noninterruptible operation. Before 

performing any part of the operation, the processor validates that the entire 

operation can be completed. This ensures that if a memory management excep¬ 

tion occurs, the queue is left in a consistent state. If the instruction fails to 

acquire the secondary interlock, the instruction sets condition codes and termi¬ 

nates without altering the queue. 

NOTES 

1. Because the removal is noninterruptible, processes run¬ 

ning in kernel mode can share queues with interrupt service 

routines. 

2. The REMQHI instruction is implemented so the cooperat¬ 

ing software processes in a processor may access a shared list 

without additional synchronization. 
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3. During access validation, any access that cannot be com¬ 

pleted results in a memory management exception even 

though the queue removal is not started. 

■ Remove Entry from Queue at Tail, Interlocked 

Purpose: Used to perform an interlocked entry remove from the tail of a 

queue 

Format: REMQTI header.aq, address.wl 

Opcode Operator Function 

5F REMQTI Remove Entry from Queue Tail, Interlocked 

Description: The queue entry preceding the header is removed from the 

queue. The address operand is replaced by the address of the entry removed. 

If no entry was removed from the queue (because either there is nothing to 

remove or secondary interlock failed), the condition code V bit is set; other¬ 

wise, it is cleared. If the interlock succeeded and the queue is empty at the end 

of this instruction, the condition code Z-bit is set; otherwise, it is cleared. The 

removal is interlocked to prevent concurrent interlocked insertions or 

removals at the head or tail of the same queue by another process even in a 

processor environment. The removal is a noninterruptible operation. Before 

performing any part of the operation, the processor validates that the entire 

operation can be completed. This ensures that if a memory management excep¬ 

tion occurs, the queue is left in a consistent state. If the instruction fails to 

acquire the secondary interlock, the instruction sets condition codes and termi¬ 

nates without altering the queue. 

NOTES 

1. Because the removal is noninterruptible, processes run¬ 

ning in kernel mode can share queues with interrupt service 

routines. 

2. The REMQTI instruction is implemented so the cooperat¬ 

ing software processes in a processor may access a shared list 

without additional synchronization. 

3. During access validation, any access that cannot be com¬ 

pleted results in a memory management exception even 

though the queue removal is not started. 

■ Return from Exception or Interrupt 

Purpose: Used to exit from an exception or interrupt service routine and initi¬ 

ate a controlled return. 
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Format: REI 

Opcode Operator Function 

02 REI Return from Exception or Interrupt 

Description: A longword is popped from the current stack and held in a tempo¬ 

rary PC. A second longword is popped from the current stack and held in a 

temporary PSL. Validity of the popped PSL is checked. The current stack 

pointer is saved and a new stack pointer is selected according to the new PSL 

CURRENT— MODE and IS fields. The level of the highest-privilege AST is 

checked against the current access mode to see whether a pending AST can be 

delivered. Execution resumes with the instruction being executed at the time 

of the exception or interrupt. Any instruction lookahead in the processor is 

reinitialized. 

The exception or interrupt service routine is responsible for restoring any reg¬ 

isters saved and removing any parameters from the stack. 

■ Return from Procedure 

Purpose: Used to transfer control from a procedure to the calling process 

Format: RET 

Opcode Operator Function 

04 RET Return from Procedure 

Description: The stack pointer (SP) is replaced by the frame pointer (FP) plus 

4. A longword containing stack alignment bits in bits 31:30, a CALLS/CALLG 

flag in bit 29, the low 12 bits of the procedure entry mask in bits 27:16, and a 

saved PSW in bits 15:0 is popped from the stack and saved in a temporary 

register. The program counter (PC), frame pointer (FP), and argument pointer 

(AP) are replaced by longwords popped from the stack. A register restore mask 

is formed from bits 27:16 of the temporary register. Scanning from bit 0 to 

bit 11 of the restore mask, the contents of registers whose number is indicated 

by set bits in the mask are replaced by longwords popped from the stack. SP is 

incremented by bits 31:30 of the temporary register. PSW is replaced by bits 

15:0 of the temporary register. If bit 29 in the temporary register is 1 (indicat¬ 

ing that the procedure was called by CALLS), a longword containing the num¬ 

ber of arguments is popped from the stack. Four times the unsigned value of 

the low byte of this longword is added to SP and SP is replaced by the result. 

The VMS Procedure Calling Software Standard and condition handling facil¬ 

ity assume that procedures that return a function value or a status code do so 

in R0 or R0 and Rl. 
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■ Return from Subroutine 

Purpose: Used to return control from subroutine 

Format: RSB 

Opcode Operator Function 

05 RSB Return from Subroutine 

Description: The program counter (PC) is replaced by a longword removed 

from the stack. 

NOTE 

RSB is used to return from subroutines called by the BSBB, 

BSBW, and JSB instructions. 

■ Rotate Longword 

Purpose: Used to rotate integer 

Format: ROTL count.rb, source, rl, destination. wl 

Opcode Operator Function 

9C ROTL Rotate Longword 

Description: The source operand is rotated logically by the number of bits 

specified by the count operand and the destination operand is replaced by the 

result. The source operand is unaffected. A positive count operand rotates to 

the left. A negative count operand rotates to the right. A 0 count operand 

replaces the destination operand with the source operand. 

■ Save Process Context 

Purpose: Used to save register context 

Format: SVPCTX 

Opcode Operator Function 

07 SVPCTX Save Process Context 

Description: The process control block (PCB) is specified by the privileged reg¬ 

ister process control block base (PCBB). The general registers are saved into 

the PCB. The PC and PSL currently on the top of the current stack are popped 

and stored in the PCB. If a SVPCTX instruction is executed when the IS is 

clear, then the IS is set, the interrupt stack pointer is activated, and the IPL is 

maximized with 1 because of the switch to the interrupt stack. This instruc¬ 

tion can be executed only in kernel mode. 
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NOTES 

1. The map, ASTLVL, and PME contents of the PCB are not 

saved because they are rarely changed. Thus, not writing 

them saves overhead. 

2. Some processors keep a copy of each of the process stack 

pointers in internal registers. In those processors, SVPCTX 

stores the internal registers in the PCB. Processors that do 

not keep a copy of all four process stack pointers in internal 

registers keep only current access mode register in an internal 

register and switch this with the PCB contents whenever the 

current access mode field changes. 

3. Between the SVPCTX instruction that saves state for one 

process and the LDPCTX that loads the state of another, the 

internal stack pointers may not be referenced by MFPR or 

MTPR instructions. This implies that interrupt service rou¬ 

tines invoked at a priority higher than the lowest one used for 

context switching must not reference the process stack 

pointers. 

■ Scan Characters 

Purpose: Used to find (scan) a set of characters in character string 

Format: SCANC /e/z.rw, adr.ab, tableadr.ab, mask.rb 

Opcode Operator Function 

2A SCANC Scan Characters 

Description: The bytes of the string specified by the length and address oper¬ 

ands are successively used to index into a 256-byte table whose entry address 

is specified by the table address operand. The byte selected from the table is 

ANDed with the mask operand. The operation continues until the result of 

the AND is nonzero or until all the bytes of the string have been exhausted. If 

a nonzero AND result is detected, the condition code Z bit is cleared. Other¬ 

wise, the Z bit is set. 

■ Skip Character 

Purpose: Used to skip a character in a character string 

Format: SKPC char.rb, len.rw, adr.ab 

Opcode Operator Function 

3B SKPC Skip Character 
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Description: The character (char) operand is compared with the bytes of the 

string specified by the length (len) and address (adr) operands. Comparison 

continues until inequality is detected, or until all bytes of the string have been 

compared. If inequality is detected, the condition code Z bit is cleared. Other¬ 

wise the Z bit is set. 

■ Span Characters 

Purpose: Used to skip (span) a set of characters in character string 

Format: SPANC len.rw, adr.ab, tableadr.ab, mask.rb 

Opcode Operator Function 

2B SPANC Span Characters 

Description: The bytes of the string specified by the length and address oper¬ 

ands are successively used to index into a 256-byte table whose entry address 

is specified by the table address operand. The byte selected from the table is 

ANDed with the mask operand. The operation continues until the result of 

the AND is zero or until all the bytes of the string have been exhausted. If a 

zero result is detected, the condition code Z bit is cleared. Otherwise, the Z 

bit is set. 

■ Subtract 

Purpose: Used to perform arithmetic subtraction 

Format: There are two formats—2 operand and 3 operand 

operator subtrahend.rx, difference.mx 

operator subtrahend.rx, minuend.rx,dif Jerence.wx 
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Opcode Operator Function 

82 SUBB2 Subtract Byte 2 Operand 

83 SUBB3 Subtract Byte 3 Operand 

A 2 SUBW2 Subtract Word 2 Operand 

A3 SUBW3 Subtract Word 3 Operand 

C2 SUBL2 Subtract Longword 2 Operand 

C3 SUBL3 Subtract Longword 3 Operand 

42 SUBF2 Subtract F_floating 2 Operand 

43 SUBF3 Subtract F_floating 3 Operand 

62 SUBD2, Subtract D_floating 2 Operand 

63 SUBD3 Subtract D_floating 3 Operand 

42FD SUBG2 Subtract G_floating 2 Operand 

43FD SUBG3 Subtract G_floating 3 Operand 

62 FD SUBH2 Subtract H_floating 2 Operand 

63FD SUBH3 Subtract H_floating 3 Operand 

Description: In 2-operand format, the subtrahend operand is subtracted from 

the difference operand and the difference operand is replaced by the result. 

In 3-operand format, the subtrahend operand is subtracted from the minuend 

operand and the difference operand is replaced by the result. In floating for¬ 

mat, the result is rounded. 

■ Subtract One and Branch 

Purpose: Used to decrement an integer loop count and loop 

Format: operator index.ml, displ.bb 

Opcode Operator Function 

F4 SOBGEQ Subtract One and Branch Greater Than or 
Equal to Zero 

F5 SOBGTR Subtract One and Branch Greater Than Zero 

Description: One is subtracted from the index operand and the index operand 

is replaced by the result. On SOBGEQ, if the index operand is greater than or 

equal to 0, the branch is taken. On SOBGTR, if the index operand is greater 

than 0, the branch is taken. If the branch is taken, the sign-extended branch 

displacement is added to the program counter (PC) and the PC is replaced by 

the result. 
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■ Subtract Packed 

Purpose: Used to subtract one packed decimal string from another 

Format: There are two formats—a 4-operand and a 6-operand format. 

SUBP4 sublen.rw, subadr.ab, diflen.rvj, difadr.ab 

SUBP6 sublen.rv/, subadr.sb, minlen.rw, minadr.ab, diflen.rvj, difadr.ab 

Opcode Operator Function 

22 SUBP4 Subtract Packed 4 Operand 

23 SUBP6 Subtract Packed 6 Operand 

Description: In 4-operand format, the subtrahend string is specified by sub- 

trahend length and subtrahend address operands. The difference string is 

specified by the difference length and difference address operands. The sub¬ 

trahend string is subtracted from the difference string and the difference 

string is replaced by the result. 

In 6-operand format, the subtrahend string is specified by the subtrahend 

length and subtrahend address operands. The minuend string is specified by 

the minuend length and minuend address operands. The difference string is 

specified by the difference length and difference address operands. The sub¬ 

trahend string is subtracted from the minuend string. The difference string is 

replaced by the result. 

■ Subtract with Carry 

Purpose: Used to perform extended-precision subtraction 

Format: SBWC subtrahend, rl, difference .ml 

Opcode Operator Function 

D9 SWBC Subtract with Carry 

Description: The subtrahend operand and the contents of the condition code 

C bit are subtracted from the difference operand and the difference operand 

is replaced by the result. 
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■ Test 

Purpose: Used to perform an arithmetic compare of a scalar to 0 

Format: operator src.rx 

Opcode Operator Function 

95 TSTB Test Byte 

B5 TSTW Test Word 

D5 TSTL Test Longword 

53 TSTF Test F_floating 

73 TSTD Test D_floating 

53FD TSTG Test G_floating 

73FD TSTH Test FI_floating 

Description: The condition codes are affected according to the value of the 
source (src) operand. 

NOTE 

On a floating reserved operand, the condition codes are unpre¬ 

dictable. 
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Architectural subsetting deals with those parts of the VAX architecture that 

may be included as standard features of a processor, provided as options to the 

processor, or omitted completely from the processor. 

A processor implementing a subset of the VAX instructions, data types, or reg¬ 

isters, as described in this chapter, is known as a subset VAX processor. Of 

the many subsets possible, the following four subsets are the most common. 

■ Full VAX—includes all VAX data types, instructions, and registers. 

■ Kernel subset—the minimum allowed subset. 

■ Micro VAX I subset—as implemented by the Micro VAX I systems. 

■ Micro VAX II subset—as implemented by the MicroVAX II chip. 

■ Subsetting Rules 

The features of the architecture that may be omitted are divided into several 

groups, each with different rules for subsetting. Floating and string instruc¬ 

tions with their associated data types, compatibility mode instruction set, and 

processor registers may be omitted in a subset implementation. 

Floating-point Instructions 

The first group consists of the D_floating, F_floating, G_floating, and 

H— floating data types, and the associated instructions. Each of these data 

types may be subset only as an entity. This means that if one of these data 

types is included, all the instructions that operate on that data type must be 

included. If an instruction in this group is omitted by a processor, execution 

of the instruction results in a reserved instruction fault. 

■ D_floating instructions (24)—ACBD, ADDD2, ADDD3, CMPD, 

CVTBD, CVTDB, CVTDF, CVTDL, CVTDW, CVTFD, CVTLD, CVTRDL, 

CVTWD, DIVD2, DIVD3, EMODD, MNEGD, MOVD, MULD2, MULD3, 

POLYD, SUBD2, SUBD3, and TSTD. 

■ F_floating instructions (22)—ACBF, ADDF2, ADDF3, CMPF, CVTBF, 

CVTFB, CVTFL, CVTFW, CVTLF, CVTRFL, CVTWF, DIVF2, DIVF3, 

EMODF, MNEGF, MOVF, MULF2, MULF3, POLYF, SUBF2, SUBF3, and 

TSTF. 
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■ G_floating instructions (24)—ACBG, ADDG2, ADDG3, CMPG, 

CVTBG, CVTFG, CVTGB, CVTGF, CVTGL, CVTGW, CVTLG, CVTRGL, 

CVTWG, DIVG2, DIVG3, EMODG, MNEGG, MOVG, MULG2, MULG3, 

POLYG, SUBG2, SUBG3, and TSTG. 

■ H_floating instructions (32)—ACBH, ADDH2, ADDH3, CLRH 

(CLRO), CMPH, CVTBH, CVTDH, CVTFH, CVTGH, CVTHB, CVTHD, 

CVTHF, CVTHG, CVTHL, CVTHW, CVTLH, CVTRHL, CVTWH, 

DIVH2, DIVH3, EMODH, MNEGH, MOVAH (MOVAO), MOVH, MOVO, 

MULH2, MULH3, PUSHAH (PUSHAO), POLYH, SUBH2, SUBH3, and 

TSTH. 

String Instructions 

The second group consists of the string instructions and their associated data 

types, including the decimal string, EDITPC, CRC, and character string 

instructions, but not including MOVC3 or MOVC5 instructions. The MOVC3 

and MOVC3 instructions are part of the kernel instruction set and may not be 

omitted. Instructions in this group may be subset individually. 

■ Character string instructions (10)—CMPC3, CMPC5, CRC, LOCC, 

MATCHC, MOVTC, MOVTUC, SCANC, SKPC, and SPANC. 

■ Decimal string instructions (17)—ADDP4, ADDP6, ASHP, CMPP3, 

CMPP4, CVTLP, CVTPL, CVTPT, CVTTP, CVTPS, CVTSP, DIVP, 

EDITPC, MOVP, MULP, SUBP4, and SUBP6. 

If an instruction in this group is omitted, an attempt to execute the instruc¬ 

tion results in a subset-emulation exception. 

Compatibility Mode Instruction Set 

The third group consists of the compatibility mode instruction set. If compati¬ 

bility mode is omitted by a processor, the execution of an REI instruction 

attempting to enter compatibility mode results in a reserved operand fault. 

Processor Registers 

The fourth group consists of processor registers. The registers described 

below may be omitted from subset processors. If any of the registers named in 

one of the following subgroups is included, all the registers in that subgroup 

must be included. 

■ Interval timer registers NICR, ICR, ICCS except for <IE>. The 

ICCS < IE > register is part of the kernel subset and may not be omitted. 
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■ Time-of-Year clock register TODR. 

■ Console registers RXCS, RXDB, TXCS, and TXDB. 

■ Performance Monitor Enable register PME. 

■ The Kernel Instruction Set 

The kernel instruction set is defined by exception; it is those instructions that 

may not be omitted. For convenience, the kernel set is listed here. There are 

304 native mode instructions in the full VAX instruction set. Of these, 129 

may be omitted, leaving 175 instructions in the kernel instruction set. Byte, 

word, longword, and quadword operand sizes have been included in the kernel 

instruction set. The octaword operand size has not been included. The follow¬ 

ing instructions are the kernel instruction set. 

■ Address instructions (8)—MOVAB, MOVAL, MOVAQ, MOVAW, 

PUSHAB, PUSHAL, PUSHAQ, and PUSHAW. 

■ Branch and control instructions (39)—ACBB, ACBL, ACBW, AOBLEQ, 

AOBLSS, BBC, BBCC, BBCCI, BBCS, BBS, BBSC, BBSS, BBSSI, BEQL, 

BGEQ, BGEQU, BGTR, BGTRU, BLBC, BLBS, BNEQ, BRB, BRW, BSBB, 

BSBW, BVC, BVS, CASEB, CASEL, CASEW, JMP, JSB, RSB, SOBGEQ, 

and SOBGTR. 

■ Character string instructions (2)—MOVC3 and MOVC5. 

■ Instructions for use by operating systems (12)—CHME, CHMK, CHMS, 

CHMU, HALT, LDPCTX, MFPR, MTPR, PROBER, PROBEW, REI, and 

SVPCTX. 

■ Integer arithmetic and logical instructions (89)—ADAWI, ADDB2, 

ADDB3, ADDL2, ADDL3, ADDW2, ADDW3, ADWC, ASHL, ASHQ, 

BICB2, BICB3, BICL2, BICL3, BICW2, BICW3, BISB2, BISB3, BISL2, 

BISL3, BISW2, BISW3, BITB, BITL, BITW, CLRB, CLRL, CLRQ, CLRW, 

CMPB, CMPL, CMPW, CVTBL, CVTBW, CVTLB, CVTLW, CVTWB, 

CVTWL, DECB, DECL, DECW, DIVB2, DIVB3, DIVL2, DIVL3, DIVW2, 

DIVW3, EDIV, EMUL, INCB, INCL, INCW, MCOMB, MCOML, 

MCOMW, MNEGB, MNEGL, MNEGW, MOVB, MOVL, MOVQ, MOVW, 

MOVZBL, MOVZBW, MOVZWL, MULB2, MULB3, MULL2, MULL3, 

MULW2, MULW3, PUSHL, ROTL, SBWC, SUBB2, SUBB3, SUBL2, 

SUBL3, SUBW2, SUBW3, TSTB, TSTL, TSTW, XORB2, XORB3, XORL2, 

XORL3, XORW2, and XORW3. 
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- Miscellaneous instructions (9)—BICPSW, BISPSW, BPT, INDEX, 

MOVPSL, NOP, POPR, PUSHR, and XFC. 

■ Procedure call instructions (3)—CALLG, CALLS, and RET. 

■ Queue instructions (6)—INSQHI, INSQTI, INSQUE, REMQHI, 

REMQTI, and REMQUE. 

■ Variable length bit field instructions (7)—CMPV, CMPZV, EXTV, 

EXTZV, FFC, FFS, and INSV. 

Instruction Emulation 

Subset VAX processors and their operating systems cooperate to support emu¬ 

lation of those instructions that are omitted from the processor’s instruction 

set. Programs running under the operating system can make use of these 

instructions as though they were supported directly by the processor. The pro¬ 

cess of emulating an omitted instruction depends on the instruction type. 

Emulation of string instructions is assisted by the processor, through the 

instruction emulation exception. Emulation of compatibility mode instruc¬ 

tions and floating point instructions is done entirely by software. 

Micro VAX I Systems 

The Micro VAX I is the first subset VAX system. There are two versions of the 

subset—one that includes F_floating and G_floating instructions, and 

one that includes F_floating and D_floating instructions. Neither version 

includes H_floating instructions. The MicroVAX I processor includes some 

of the optional string instructions (CMPC3, LOCC, SCANC, SKPC, and 

SPANC), but does not include compatibility mode. 

MicroVAX II Systems 

MicroVAX II is the first subset VAX system with the processor on a single 

chip. It includes the F_floating, D_floating, and G_floating instruc¬ 

tions in an optional floating-point unit (a separate chip), but does not include 

the H_floating instructions. MicroVAX II includes none of the optional 

string instructions. It does not include optional processor registers or compati¬ 

bility mode. 
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* 

During the design of the VAX computer architecture, Digital’s engineers were 

acutely aware of the need to establish a high degree of compatibility with the 

large, well-established PDP-11 computer family. VAX systems represent the 

natural growth direction for many installations using PDP-11 machines and 

programs. It was important that VAX machines display selected compatibility 

features for good reasons—to ease the growth, to quicken program transition, 

and to protect customer investment. Also, VAX machines had to provide com¬ 

patibility for people who would take advantage of its excellent program devel¬ 

opment tools. These tools are used to create and test programs that are to be 

run on PDP-11 systems. PDP-11 compatibility mode is now an option. VAX 

processors that implement compatibility mode do so as described in this chap¬ 

ter. Operating system software may emulate compatibility mode on proces¬ 

sors that omit it. For details of the PDP-11 instruction set, see the PDP-11 

Architecture Handbook. 

NOTE 

In this chapter, references to compatibility mode mean the 

PDP-11 compatibility mode of operation. References to 

native mode mean the VAX native mode of operation. 

The PDP-11 compatibility mode makes a VAX computer look like a PDP-11 

computer running PDP-11 instructions. Naturally, there are some restrictions 

and requirements. A VAX computer treats compatibility mode programs like 

other processes, and can run them in its multiprogramming environment 

along with native mode programs. The VAX computer should not be thought 

of as existing in one state or another, but rather as capable of handling both 

modes as needed. 

If you are considering a VAX system for growth and for host program develop¬ 

ment, you will find that it provides useful compatibility with PDP-11 systems 

already in use or others that might be added. As a powerful link joining PDP- 

11 computers and VAX computers, compatibility mode can help you expand 

your computing resources efficiently. And programs that cannot take advan¬ 

tage of compatibility mode, for one reason or another, usually can be fixed 

easily and quickly. 

What follows in this chapter is a fairly detailed review of the powers and the 

restrictions of the compatibility mode. Should you need a greater depth of 

information, your Digital Sales Representative or Software Specialist can sup¬ 

ply it for you. 
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■ PDP-11 User Environment Emulation 

Compatibility mode hardware, in conjunction with a compatibility mode soft¬ 

ware executive (which runs in native mode), can emulate the environment pro¬ 

vided to user programs on a PDP-11 system. But this environment excludes 

from a complete PDP-11 the normal operation of the following features: 

1. Privileged instructions such as HALT and RESET. 

2. Special instructions such as traps and WAIT. 

3. Access to internal processor registers (for example, processor status word 

and console switch register). 

4. Direct access to trap and interrupt vectors. 

5. Direct access to I/O devices. (PDP-11 compatibility mode programs can 

directly reference I/O devices if and only if proper mapping has been estab¬ 

lished by native mode software.) 

6. Interrupt servicing. 

7. Stack overflow protection. 

8. Alternate general register sets. 

9. The PDP-11 processor kernel and supervisor modes are not supported. 

The user mode is the only mode supported in PDP-11 compatibility mode. 

10. Floating-point instructions. 

Compatibility mode architecture is divided into two parts. The first part is 

the PDP-11 environment provided by the VAX hardware. Details of the opera¬ 

tion of PDP-11 compatible operations can be found in the PDP-11 Architec¬ 

ture Handbook. The second part is the hardware provided in the VAX 

architecture that enable the implementation of various compatibility mode 

executives. This part is considered a subset of the VAX System Architecture. 

General Registers 
All the PDP-11 general registers and addressing modes are in the compatibil¬ 

ity mode. Side effects caused by a destination address calculation have no 

effect on source values (except in JSR instructions), and autoincrement modes 

in JMP and JSR do not affect the new program counter. However, side effects 

caused by a source address calculation affect the value of a register used for 

destination address calculation. All PDP-11 addresses are 16 bits long. In com¬ 

patibility mode, a 16-bit PDP-11 address is zero-extended to 32 bits. 

The operands of some PDP-11 instructions are implied by the instruction type 

while others are specified as part of the instruction. Address mode operand 

specifiers include a 3-bit mode field specifying one of eight modes— 

autodecrement, autodecrement deferred, autoincrement, autoincrement 

deferred, index, index deferred, register, and register deferred. 
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Compatibility mode registers 0 through 6 are bits 13 through 0 of VAX gen¬ 

eral registers 0 through 6, respectively. Compatibility mode register 7 (pro¬ 

gram counter) is bit 13 through 0 of VAX general register 13. VAX registers 8 

through 14 (stack pointer) are not affected by compatibility mode. When 

entering compatibility mode, VAX register 7 and the upper halves of registers 

0 through 6 and 13 are ignored. When an exception or interrupt occurs from 

compatibility mode, VAX register 7 is unpredictable and the upper halves of 

RO through R6 and the stacked R15 (PC) are zero. There are no floating accu¬ 

mulators (registers). That is why there are no FP11 floating point instructions 

in compatibility mode. 

Stack Pointer Register 

As in the PDP-11 processors, general register R6 is used as the stack pointer 

by certain instructions. However, it is not used by the hardware for any excep¬ 

tions or interrupts, nor is there any stack overflow protection in compatibility 

mode. 

Processor Status Word 

A subset of the PDP-11 processor status word is available in compatibility 

mode. The format of the compatibility mode processor status word (PSW) is 

shown in Figure 11-1. Compatibility mode processor status word bits 0 

through 4 have the same meaning as do the VAX processor status longword 

bits 0 through 4. They are the trace bit and the condition code bits. 

Figure 11-1 ■ Compatibility Mode Processor Status Word 

The processor status word can be affected only by the RTI and RTT condition 

code instructions. When an RTI or RTT instruction is executed, bits 13 

through 3 in the saved processor status word (PSW) on the stack are ignored. 
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Compatibility Mode Instructions 

The compatibility mode instructions are listed in Table 11-1. Table 11-2 lists 

the trap instructions that cause the VAX processor to enter native mode. In 

native mode, either the complete trap may be serviced or the instruction may 

be simulated. Some instructions (such as WAIT and RESET) are considered 

reserved instructions in compatibility mode. When these instructions are 

encountered, they cause a fault to native mode. Table 11-3 lists the reserved 

instructions. In addition, all other opcodes not defined in Tables 11-1 and 

11-2 result in a fault to native mode. No floating-point instructions are 

included in compatibility mode. 

Table 11-1 ■ PDP-11 Compatibility Mode Instructions 

Opcode (octal) Mnemonic Name 

000002 RTI Return from Interrupt 

000006 RTT Return from Trap 

0001DD JMP Jump 

00020R RTS Return from Subroutine 

000240-000277 Condition Codes 

0003DD SWAB Swap Bytes 

000400-003777 Branches Branch 

100000-103777 Branches Branch 

004RDD JSR Jump to Subroutine 

X050DD CLR(B) Clear 

X051DD COM(B) Complement 

X052DD INC(B) Increment 

X053DD DEC(B) Decrement 

X054DD NEG(B) Negate 

X055DD ADC(B) Add Carry 

X056DD SBC(B) Subtract Carry 

X057DD TST(B) Test 

X060DD ROR(B) Rotate Right 

X061DD ROL(B) Rotate Left 

X062DD ASR(B) Arithmetic Shift Right 

X063DD ASL(B) Arithmetic Shift Left 

0065SS MFPI* Move from Previous Instruction 
Space 
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Table 11-1 ■ PDP-11 Compatibility Mode Instructions (Cont.) 

Opcode (octal) Mnemonic Name 

0066DD MTPI* Move to Previous Instruction Space 

1065SS MFPD* Move from Previous Data Space 

1066DD MTPD* Move to Previous Data Space 

0067DD SXT Sign Extend Word 

070RSS MUL Multiply 

071RSS DIV Divide 

072RSS ASH Arithmetic Shift 

073RSS ASHC Arithmetic Shift Combined 

074RSS XOR Exclusive OR 

077RNN SOB Subtract One and Branch 

X1SSDD MOV(B) Move 

X2SSSS CMP(B) Compare 

X3SSSS BIT(B) Bit Test 

X4SSDD BIC(B) Bit Clear 

X5SSDD BIS(B) Bit Set 

06SSDD ADD Add 

16SSDD SUB Subtract 

Legend 

DD Destination operand specifier 

R Register specifier 

SS Source operand specifier 

X Operation specifier—0 for word, 1 for byte 

These instructions execute exactly as they would on a PDP-11 in user 

mode with Instruction and Data space overmapped. More specifically, 

they ignore the previous access level and act as if they were PUSH and 

POP instructions referencing the current stack. 
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Table 11-2 ■ PDP-11 Compatibility Mode Trap Instructions 

Opcode (octal) Mnemonic 

000003 BPT 

000004 IOT 

104000-104377 EMT 

104400-104777 TRAP 

Table 11-3 ■ PDP-11 Compatibility Mode Reserved Instructions 

Opcode (octal) Mnemonic 

000000 HALT 

000001 WAIT 

000003 RESET 

000007 MFPT 

00023N SPL 

0064NN MARK 

0070DD CSM 

07500R FADD - FIS 

07501R FSUB - FIS 

07502R FMUL-FIS 

07503R FDIV - FIS 

076XXX Extended Instructions 

1064SS MTPS 

1067DD MFPS 

17XXXX FP11 Floating Point 

■ Entering and Leaving PDP-11 Compatibility Mode 

Compatibility mode is entered when an REI instruction is executed with the 

compatibility mode bit of the processor status longword (PSL) on the stack is 

set. Other bits in the PSL either have the same effect as in native mode or are 

required to have specific values in compatibility mode. The effects of other 

bits in the PSL are listed in Table 11-4. 
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Table 11-4 ■ Effects of Processor Status Longword Bits 

Bit Effect 

C Condition Code 

CUR MOD Reserved operand fault if not 3 

DV Reserved operand fault if not zero 

FPD Reserved operand fault if not zero 

FU Reserved operand fault if not zero 

IPL Reserved operand fault if not zero 

IS Reserved operand fault if not zero 

IV Reserved operand fault if not zero 

N Condition Code 

PRV MOD Reserved operand fault if not 3 

T Trace bit 

TP Trace pending bit 

V Condition Code 

Z Condition Code 

Native mode is reentered from compatibility mode on an exception or an inter¬ 

rupt. The processor status longword (PSL) pushed on the stack has all the bits 

that cause reserved operand faults set to the appropriate state. 

Note that when an RTI or RTT instruction is executed in compatibility mode, 

the 11 high bits of the processor status word (PSW) are ignored. But when the 

PSW is restored as part of the PSL when going from native to compatibility 

mode, those bits must be zero or a reserved operand fault will occur. 

■ Memory Management 

The PDP-11 uses 16-bit byte addresses. For this reason, compatibility mode 

programs are confined to execute in the first 64 Kbytes of the process part of 

virtual address space. There is a one-to-one correspondence between a compati¬ 

bility mode virtual address and its VAX counterpart. For example, virtual 

address 0 references the same location in both modes. A compatibility mode 

address is interpreted as shown in Figure 11-2. 
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Figure 11-2 ■ Compatibility Mode Address Interpretation 

The PDP-11 computers can provide different access protection to different 

segments of memory. PDP-11 segments are in 8-block increments. VAX seg¬ 

ments are 512-byte pages. This is done because protection is specified by 

pages in the VAX architecture. (One VAX page equals eight PDP-11 blocks.) 

The memory management system protects and relocates compatibility mode 

addresses in the normal manner. Thus, all of the memory management mecha¬ 

nisms available in native mode are available to the compatibility mode execu¬ 

tive for managing both the virtual and physical memory of compatibility 

mode programs. All the exception conditions that can be caused by memory 

management in native mode can also occur when relocating a compatibility 

mode address. 

Most of the features of the PDP-11 memory management hardware affecting 

the user environment can be simulated with the VAX memory management 

system. Table 11-5 provides a general description of how this can be done. 

Table 11-6 demonstrates how a PDP-11 environment can be created using the 

concepts in Table 11-5. There are 8 segments. Segments 0,1, and 2 are pro¬ 

gram segments; 3 is unused; 4 and 5 are stack; 6 and 7 are read/write data. 
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Table 11-5 ■ PDP-11 Memory Management Simulation 

PDP-11 Memory Management 
Feature 

VAX Simulation Method 

Eight segments per user Eight segments can be simulated by 

dividing the 128 pages of the compati¬ 

bility mode virtual address space into 

eight logical groups of 16 pages each 

having possibly different protection. 

Segment size from 64 bytes to 8 

Kbytes (1 to 128 blocks) in 64-byl 

increments, using contiguous 
memory 

Segment size from 512 bytes to 8 

:e Kbytes (1 to 16 pages) in 512-byte (1 

page) increments, using discontiguous 
memory. 

Forward growing segments 

(Expand Direction 0) 
Can be simulated using page table 

entries specifying no access for those 
pages that are not allocated. 

Backward growing segments 

(Expand Direction 1) 
Can be simulated using page table 

entries specifying no access for those 

pages that are not allocated. 

Segments begin on any 64-byte 
boundary 

Segments begin on any 512-byte 
boundary. 

Table 11-6 ■ Creating a PDP-11 Environment 

PDP-11 Environment VAX Page Table 

Segment 
Number 

Size Expand 

(bytes) Direction 
Access Page Access 

Type Type 

0 8K Up Read only 0-15 Read only 

1 8K Up Readonly 16-31 Readonly 

2 256 Up Read only 32 Read only 

3 0 None None 33-77 No Access 

4 IK Down Read/Write 78-79 Read/Write 

5 8K Down Read/Write 80-95 Read/Write 

6 8K Up Read/Write 96-111 Read/Write 

7 2K Up Read/Write 112-115 Read/write 

116-127 No access 



11-10 ■ PDP-11 Compatibility Mode 

Exceptions and Interrupts 

All interrupts and exception conditions that occur while the machine is in com¬ 

patibility mode cause the machine to enter native mode. Note that this 

includes backing up instruction side effects if necessary. The following excep¬ 

tion conditions are specific to compatibility mode. All these exceptions create 

a three-longword frame on the kernel stack containing a processor status long- 

word (PSL), program counter (PC), and one longword of trap-specific informa¬ 

tion. Bits 15 through 0 of this longword contain a code indicating the specific 

type of trap and bits 31 through 16 are zero. No compatibility mode excep¬ 

tion conditions result in traps. 

Tracing in Compatibility Mode 

A compatibility mode trace fault occurs at the beginning of an instruction 

when the trace bit is set in the processor status word at the beginning of the 

prior instruction. On trace faults, a 2-longword kernel stack frame is created. 

The frame contains the processor status longword and the program counter. 

The interrupt priority level (IPL) and interrupt stack (IS) bits are 0, and the 

compatibility mode (CM) bit is 1 in the stacked processor status longword. 

Compatibility mode trace faults use the same vector as native mode trace 

fault. In fact, the rules for trace fault generation in compatibility mode are 

identical to those for native mode. However, an odd address abort for an 

instruction fetch may precede the trace fault for that instruction. There are 

two ways to set the trace bit at the beginning of a compatibility mode instruc¬ 

tion. 

1. An RTT/RTI instruction is executed in compatibility mode and the trace 

bit in the processor status word image on the stack is set. In this case, the 

next instruction is executed and a trace fault is taken after that instruc¬ 

tion. (The next instruction is the one pointed to by the program counter on 

the stack.) 

2. An REI instruction is executed in native mode under the following condi¬ 

tions. The instruction has both the trace bit and the compatibility mode 

bit set and the trace pending bit clear in the saved processor status long¬ 

word image on the stack. Again, one instruction is executed, and the trace 

trap is taken. (The operations that occur as a function of these conditions 

are the same whether or not compatibility mode is being entered from the 

REI instruction.) 
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■ Unimplemented PDP-11 Traps 

Some traps that occur in PDP-11 systems are not implemented in VAX sys¬ 

tems PDP-11 compatibility mode. 

1. There is no stack overflow trap. Stack overflow can be provided by the 

compatibility mode executive using the memory management mecha¬ 

nisms. 

2. There is no concept of a double error trap in compatibility mode. This is 

because the first error always returns the machine to native mode. 

3. All other trap conditions such as power failure, memory parity, and mem¬ 

ory management traps cause the machine to enter native mode. 

■ Input/output References 

Instruction stream, data read, or data write references to I/O space are not 

allowed. The results are unpredictable if I/O space is referenced from compati¬ 

bility mode. 

■ Processor Registers 

The only processor register available in compatibility mode is part of the pro¬ 

cessor status word, and it may be referenced only with the condition code 

instructions, RTI and RTT. Access to all other registers must be done in native 

mode. 

■ Program Synchronization 

All PDP-11 systems guarantee that read-modify-write operations to I/O 

device registers are interlocked. That is, the device can determine at the time 

of the read that the same register will be written as the next bus cycle. This 

synchronization also works in memory on most PDP-11 systems. In compatibil¬ 

ity mode, instructions that have modify destinations perform this synchroniza¬ 

tion for UNIBUS I/O device registers but never for memory. Compatibility 

mode procedures can write data that is to be subsequently executed as an 

instruction without requiring additional synchronization. 





Appendix A ■ Powers of Binary and Hexadecimal Numbers 

Powers of Binary Numbers 

Power Number 

0 1 

1 2 

2 4 

3 8 

4 16 

5 32 

6 64 

7 128 

8 256 

9 512 

10 1,024 

11 2,048 

12 4,096 

13 8,192 

14 16,384 

15 32,768 

16 65,536 

17 131,072 

18 262,144 

19 524,288 

20 1,048,576 

21 2,097,152 

22 4,194,304 

23 8,388,608 

24 16,777,216 

25 33,554,432 

26 67,108,864 

27 134,217,728 
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Powers of Binary Numbers (Cont.) 

Power Number 

28 268,433,456 

29 536,870,912 

30 1,073,741,824 

31 2,147,483,648 

32 4,294,967,296 

33 8,589,934,592 

34 17,179,869,184 

33 34,359,738,368 

Powers of Hexadecimal Numbers 

Power Number 

0 1 

1 16 

2 256 

3 4,096 

4 65,536 

3 1,048,576 

6 16,777,216 

7 268,435,456 

8 4,294,967,296 

9 68,719,476,736 

10 1,099,511,627,776 

11 17,592,186,044,416 

12 281,474,976,710,656 

13 4,503,599,627,370,496 

14 72,057,594,037,927,936 

13 1,152,921,504,606,846,976 

1 



Appendix B ■ List of Instructions by Mnemonic 

Mnemonic Instruction Opcode 

ACBB Add compare and branch byte 9D 

ACBD Add compare and branch D floating 6F 

ACBF Add compare and branch F floating 4F 

ACBG Add compare and branch G floating 4FFD 

ACBH Add compare and branch H floating 6FFD 

ACBL Add compare and branch longword FI 

ACBW Add compare and branch word 3D 

ADAWI Add aligned word, interlocked 58 

ADDB2 Add byte 2 operand 80 

ADDB3 Add byte 3 operand 81 

ADDD2 Add D floating 2 operand 60 

ADDD3 Add D floating 3 operand 61 

ADDF2 Add F floating 2 operand 40 

ADDF3 Add F floating 3 operand 41 

ADDG2 Add G floating 2 operand 40FD 

ADDG3 Add G floating 3 operand 41FD 

ADDH2 Add H floating 2 operand 60FD 

ADDH3 Add H floating 3 operand 61FD 

ADDL2 Add longword 2 operand CO 

ADDL3 Add longword 3 operand Cl 

ADDP4 Add packed 4 operand 20 

ADDP6 Add packed 6 operand 21 

ADDW2 Add word 2 operand AO 

ADDW3 Add word 3 operand Al 

ADWC Add with carry D8 

AOBLEQ Add one and branch on less or equal F3 

AOBLSS Add one and branch on less F2 

ASHL Arithmetic shift longword 78 



Appendix B-2 ■ List of Instructions by Mnemonic 

Mnemonic Instruction Opcode 

ASHP Arithmetic shift and round packed F8 

ASHQ Arithmetic shift quadword 79 

BBC Branch on bit clear El 

BBCC Branch on bit clear and clear E5 

BBCCI Branch on bit clear and clear, interlocked E7 

BBCS Branch on bit clear and set E3 

BBS Branch on bit set EO 

BBSC Branch on bit set and clear E4 

BBSS Branch on bit set and set E2 

BBSSI Branch on bit set and set, interlocked E6 

BCC Branch on carry clear IE 

BCS Branch on carry set IF 

BEQL Branch on equal 13 

BEQLU Branch on equal, unsigned 13 

BGEQ Branch on greater or equal 18 

BGEQU Branch on greater or equal, unsigned IE 

BGTR Branch on greater 14 

BGTRU Branch on greater, unsigned 1A 

BICB2 Bit clear byte 2 operand 8A 

BICB3 Bit clear byte 3 operand 8B 

BICL2 Bit clear longword 2 operand CA 

BICL3 Bit clear longword 3 operand CB 

BICPSW Bit clear processor status word B9 

BICW2 Bit clear word 2 operand AA 

BICW3 Bit clear word 3 operand AB 

BISB2 Bit set byte 2 operand 88 

BISB3 Bit set byte 3 operand 89 

BISL2 Bit set longword 2 operand C8 

BISL3 Bit set longword 3 operand C9 

BISPSW Bit set processor status word B8 

BISW2 Bit set word 2 operand A8 

BISW3 Bit set word 3 operand A9 

BITB Bit test byte 93 
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Mnemonic Instruction Opcode 

BITL Bit test longword D3 

BITW Bit test word B3 

BLBC Branch on low bit clear E9 

BLBS Branch on low bit set E8 

BLEQ Branch on less or equal 15 

BLEQU Branch on less or equal, unsigned IB 

BLSS Branch on less 19 

BLSSU Branch on less, unsigned IF 

BNEQ Branch on not equal 12 

BNEQU Branch on not equal, unsigned 12 

BPT Breakpoint fault 03 

BRB Branch with byte displacement 11 

BRW Branch with word displacement 31 

BSBB Branch to subroutine with byte displacement 10 

BSBW Branch to subroutine with word displacement 30 

BUGL Bugcheck longword FDFF 

BUGW Bugcheck word FEFF 

BVC Branch on overflow clear 1C 

BVS Branch on overflow set ID 

CALLG Call with general argument list FA 

CALLS Call with stack FB 

CASE BCase byte 8F 

CASEL Case longword CF 

CASEW Case word AF 

CHME Change mode to executive BD 

CHMK Change mode to kernel BC 

CHMS Change mode to supervisor BE 

CHMU Change mode to user BF 

CLRB Clear byte 94 

CLRD Clear D floating 1C 

CLRF Clear F floating D4 

CLRG Clear G floating 1C 

CLRH Clear H floating 7CFD 
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Mnemonic Instruction Opcode 

CLRL Clear longword D4 

CLRO Clear octaword 7CFD 

CLRQ • Clear quadword 7C 

CLRW Clear word B4 

CMPB Compare byte 91 

CMPC3 Compare character 3 operand 29 

CMPC3 Compare character 5 operand 2D 

CMPD Compare D floating 71 

CMPF Compare F floating 31 

CMPG Compare G floating 31FD 

CMPH Compare H floating 71FD 

CMPL Compare longword D1 

CMPP3 Compare packed 3 operand 33 

CMPP4 Compare packed 4 operand 37 

CMPV Compare field EC 

CMPW Compare word B1 

CMPZV Compare zero-extended field ED 

CRC Calculate cyclic redundancy check OB 

CVTBD Convert byte to D floating 6C 

CVTBF Convert byte to F floating 4C 

CVTBG Convert byte to G floating 4CFD 

CVTBH Convert byte to H floating 6CFD 

CVTBL Convert byte to longword 98 

CVTBW Convert byte to word 99 

CVTDB Convert D floating to byte 68 

CVTDF Convert D floating to F floating 76 

CVTDH Convert D floating to H floating 32FD 

CVTDL Convert D floating to longword 6A 

CVTDW Convert D floating to word 69 

CVTFB Convert F floating to byte 48 

CVTFD Convert F floating to D floating 36 

CVTFG Convert F floating to G floating 99FD 

CVTFH Convert F floating to H floating 98FD 
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Mnemonic Instruction Opcode 

CVTFL Convert F floating to longword 4A 

CVTFW Convert F floating to word 49 

CVTGB Convert G floating to byte 48FD 

CVTGF Convert G floating to F floating 33FD 

CVTGH Convert G floating to H floating 56FD 

CVTGL Convert G floating to longword 4AFD 

CVTGW Convert G floating to word 49FD 

CVTHB Convert H floating to byte 68FD 

CVTHD Convert H floating to D floating F7FD 

CVTHF Convert H_floating to F_floating F6FD 

CVTHG Convert H floating to G floating 76FD 

CVTHL Convert H floating to longword 6AFD 

CVTHW Convert H_floating to word 69FD 

CVTLB Convert longword to byte F6 

CVTLD Convert longword to D floating 6E 

CVTLF Convert longword to F floating 4E 

CVTLG Convert longword to G floating 4EFD 

CVTLH Convert longword to H floating 6EFD 

CVTLP Convert longword to packed F9 

CVTLW Convert longword to word F7 

CVTPL Convert packed to longword 36 

CVTPT Convert packed to trailing numeric 24 

CVTPS Convert packed to leading separate numeric 08 

CVTRDL Convert rounded D floating to longword 6B 

CVTRFL Convert rounded F floating to longword 4B 

CVTRGL Convert rounded G floating to longword 4BFD 

CVTRHL Convert rounded FI floating to longword 6BFD 

CVTSP Convert leading separate numeric to packed 09 

CVTTP Convert trailing numeric to packed 26 

CVTWB Convert word to byte 33 

CVTWD Convert word to D floating 6D 

CVTWF Convert word to F floating 4D 

CVTWG Convert word to G floating 4DFD 
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Mnemonic Instruction Opcode 

CVTWH Convert word to H floating 6DFD 

CVTWL Convert word to longword 32 

DECB Decrement byte 97 

DECL Decrement longword D7 

DECW Decrement word B7 

DIVB2 Divide byte 2 operand 86 

DIVB3 Divide byte 3 operand 87 

DIVD2 Divide D floating 2 operand 66 

DIVD3 Divide D floating 3 operand 67 

DIVF2 Divide F floating 2 operand 46 

DIVF3 Divide F floating 3 operand 47 

DIVG2 Divide G floating 2 operand 46FD 

DIVG3 Divide G floating 3 operand 47FD 

DIVH2 Divide H floating 2 operand 66FD 

DIVH3 Divide H floating 3 operand 67FD 

DIVL2 Divide longword 2 operand C6 

DIVL3 Divide longword 3 operand C7 

DIVP Divide packed 27 

DIVW2 Divide word 2 operand A6 

DIVW3 Divide word 3 operand A7 

EDITPC Edit packed to character 38 

EDIV Extended divide 7B 

EMODD Extended modulus D floating 74 

EMODF Extended modulus F floating 54 

EMODG Extended modulus G floating 54FD 

EMODH Extended modulus H floating 74FD 

EMUL Extended multiply 7A 

EXTV Extract field EE 

EXTZV Extract zero-extended field EF 

FFC Find first clear bit EB 

FFS Find first set bit EA 

HALT Halt 00 

INCB Increment byte 96 
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Mnemonic Instruction Opcode 

INCL Increment longword D6 

INCW Increment word B6 

INDEX Compute index OA 

INSQHI Insert into queue head, interlocked 3C 

INSQTI Insert into queue tail, interlocked 3D 

INSQUE Insert into queue OE 

INSV Insert field FO 

JMP Jump 17 

JSB Jump to subroutine 16 

LDPCTX Load process context 06 

LOCC Locate character 3A 

MATCHC Match characters 39 

MCOMB Move complemented byte 92 

MCOML Move complemented longword D2 

MCOMW Move complemented word B2 

MFPR Move from processor register DB 

MNEGB Move negated byte 8E 

MNEGD Move negated D floating 72 

MNEGF Move negated F floating 32 

MNEGG Move negated G floating 32FD 

MNEGH Move negated H floating 72FD 

MNEGL Move negated longword CE 

MNEGW Move negated word AE 

MOVAB Move address of byte 9E 

MOVAD Move address of D floating 7E 

MOVAF Move address of F floating DE 

MOVAG Move address of G floating 7E 

MOVAH Move address of H floating 7EFD 

MOVAL Move address of longword DE 

MOVAO Move address of octaword 7EFD 

MOVAQ Move address of quadword 7E 

MOVAW Move address of word 3E 

MOVB Move byte 90 
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Mnemonic Instruction Opcode 

MOVC 3 Move character 3 operand 28 

MOVC5 Move character 5 operand 2C 

MOVD Move D floating 70 

MOVF Move F floating 50 

MOVG Move G floating 50FD 

MOVH Move H floating 70FD 

MOVL Move longword DO 

MOVO Move octaword 7DFD 

MOVP Move packed 34 

MOVPSL Move processor status longword DC 

MOVQ Move quadword 7D 

MOVTC Move translated characters 2E 

MOVTUC Move translated until character 2F 

MOVW Move word BO 

MOVZBL Move zero-extended byte to longword 9A 

MOVZBW Move zero-extended byte to word 9B 

MOVZWL Move zero-extended word to longword 3C 

MTPR Move to processor register DA 

MULB2 Multiply byte 2 operand 84 

MULB3 Multiply byte 3 operand 85 

MULD2 Multiply D floating 2 operand 64 

MULD3 Multiply D floating 3 operand 65 

MULF2 Multiply F floating 2 operand 44 

MULF3 Multiply F floating 3 operand 45 

MULG2 Multiply G floating 2 operand 44FD 

MULG3 Multiply G floating 3 operand 45FO 

MULH2 Multiply H floating 2 operand 64FD 

MULH3 Multiply H floating 3 operand 65FD 

MULL2 Multiply longword 2 operand C4 

MULL3 Multiply longword 3 operand C5 

MULP Multiply packed 25 

MULW2 Multiply word 2 operand A4 

MULW3 Multiply word 3 operand A5 
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Mnemonic Instruction Opcode 

NOP No operation 01 

POLYD Polynomial evaluate D floating 75 

POLYF Polynomial evaluate F floating 55 

POLYG Polynomial evaluate G floating 55FD 

POLYH Polynomial evaluate H floating 75FD 

POPR Pop registers BA 

PROBER Probe read access OC 

PROBEW Probe write access 0D 

PUSHAB Push address byte 9F 

PUSHAD Push address of D floating 7F 

PUSHAF Push address of F floating DF 

PUSHAG Push address of G floating 7F 

PUSHAH Push address of H floating 7FFD 

PUSHAL Push address of longword DF 

PUSHAO Push address of octaword 7FFD 

PUSHAQ Push address of quadword 7F 

PUSHAW Push address of word 3F 

PUSHL Push longword DD 

PUSHR Push registers BB 

REI Return from exception or interrupt 02 

REMQHI Remove from queue head, interlocked 5E 

REMQTI Remove from queue tail, interlocked 5F 

REMQUE Remove from queue OF 

RET Return from called procedure 04 

ROTL Rotate longword 9C 

RSB Return from subroutine 05 

SBWC Subtract with carry D9 

SCANC Scan for character 2A 

SKPC Skip character 3B 

SOBGEQ Subtract one and branch on greater or equal F4 

SOBGTR Subtract one and branch on greater F5 

SPANC Span characters 2B 

SUBB2 Subtract byte 2 operand 82 
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Mnemonic Instruction Opcode 

SUBB3 Subtract byte 3 operand 83 

SUBD2 Subtract D floating 2 operand 62 

SUBD3 Subtract D floating 3 operand 63 

SUBF2 Subtract F floating 2 operand 42 

SUBF3 Subtract F floating 3 operand 43 

SUBG2 Subtract G floating 2 operand 42FD 

SUBG3 Subtract G floating 3 operand 43FD 

SUBH2 Subtract H floating 2 operand 62FD 

SUBH3 Subtract H floating 3 operand 63FD 

SUBL2 Subtract longword 2 operand C2 

SUBL3 Subtract longword 3 operand C3 

SUBP4 Subtract packed 4 operand 22 

SUBP6 Subtract packed 6 operand 23 

SUBW2 Subtract word 2 operand A2 

SUBW3 Subtract word 3 operand A3 

SVPCTX Save process context 07 

TSTB Test byte 95 

TSTD Test D floating 73 

TSTF Test F floating 53 

TSTG Test G floating 53FD 

TSTH Test H floating 73FD 

TSTL Test longword D5 

TSTW Test word B5 

XFC Extended function call FC 

XORB2 Exclusive OR byte 2 operand 8C 

XORB3 Exclusive OR byte 3 operand 8D 

XORL2 Exclusive OR longword 2 operand CC 

XORL3 Exclusive OR longword 3 operand CD 

XORW2 Exclusive OR word 2 operand AC 

XORW3 Exclusive OR word 3 operand AD 
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Opcode Mnemonic Instruction 

00 HALT Halt 

01 NOP No operation 

02 REI Return from exception or interrupt 

03 BPT Breakpoint fault 

04 RET Return from called procedure 

05 RSB Return from subroutine 

06 LDPCTX Load process context 

07 SVPGTX Save process context 

08 CVTPS Convert packed to leading separate numeric 

09 CVTSP Convert leading separate numeric to packed 

0A INDEX Compute index 

0B CRC Calculate cyclic redundancy check 

OC PROBER Probe read access 

0D PROBEW Prove write access 

0E INSQUE Insert into queue 

OF REMQUE Remove from queue 

10 BSBB Branch to subroutine with byte displacement 

11 BRB Branch with byte displacement 

12 BNEQ Branch on not equal 

12 BNEQU Branch on not equal, unsigned 

13 BEQL Branch on equal 

13 BEQLU Branch on equal, unsigned 

14 BGTR Branch on greater 

15 BLEQ Branch on less or equal 

16 JSB Jump to subroutine 

17 JMP Jump 

18 BGEQ Branch on greater or equal 

19 BLSS Branch on less 
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Opcode Mnemonic Instruction 

1A BGTRU Branch on greater, unsigned 

IB BLEQU Branch on less or equal, unsigned 

1C BVC Branch on overflow clear 

ID BVS Branch on overflow set 

IE BGEQU Branch on greater or equal, unsigned 

IE BCC Branch on carry clear 

IF BLSSU Branch on less, unsigned 

IF BCS Branch on carry set 

20 ADDP4 Add packed 4 operand 

21 ADDP6 Add packed 6 operand 

22 SUBP4 Subtract packed 4 operand 

23 SUBP6 Subtract packed 6 operand 

24 CVTPT Convert packed to trailing numeric 

25 MULP Multiply packed 

26 CVTTP Convert trailing numeric to packed 

27 DIVP Divide packed 

28 MOVC 3 Move character 3 operand 

29 CMPC3 Compare character 3 operand 

2A SCANC Scan for character 

2B SPANC Span characters 

2C MOVC5 Move character 5 operand 

2D CMPC5 Compare character 5 operand 

2E MOVTC Move translated characters 

2F MOVTUC Move translated until character 

30 BSBW Branch to subroutine with word displacement 

31 BRW Branch with word displacement 

32 CVTWL Convert word to longword 

33 CVTWB Convert word to byte 

34 MOVP Move packed 

35 CMPP3 Compare packed 3 operand 

36 CVTPL Convert packed to longword 

37 CMPP4 Compare packed 4 operand 

38 EDITPC Edit packed to character 
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39 MATCHC Match characters 

3A LOCC Locate character 

3B SKPC Skip character 

3C MOVZWL Move zero-extended word to longword 

3D ACBW Add compare and branch word 

3E MOVAW Move address of word 

3F PUSHAW Push address of word 

40 ADDF2 Add F_floating 2 operand 

41 ADDF3 Add F floating 3 operand 

42 SUBF2 Subtract F floating 2 operand 

43 SUBF3 Subtract F floating 3 operand 

44 MULF2 Multiply F_floating 2 operand 

43 MULF3 Multiply F floating 3 operand 

46 DIVF2 Divide F floating 2 operand 

47 DIVF3 Divide F floating 3 operand 

48 CVTFB Convert F floating to byte 

49 CVTFW Convert F floating to word 

4A CVTFL Convert F floating to longword 

4B CVTRFL Convert rounded F floating to longword 

4C CVTBF Convert byte to F floating 

4D CVTWF Convert word to F floating 

4E CVTLF Convert longword to F floating 

4F ACBF Add compare and branch floating 

30 MOVF Move F floating 

31 CMPF Compare F floating 

32 MNEGF Move negated F floating 

33 TSTF Test F floating 

34 EMODF Extended modulus F floating 

53 POLYF Polynomial evaluate F floating 

56 CVTFD Convert F floating to D floating 

57 Reserved 

58 ADAWI Add aligned word, interlocked 

59 Reserved 
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Opcode Mnemonic Instruction 

5A Reserved 

5B Reserved 

5C INSQHI Insert into queue head, interlocked 

5D INSQTI Insert into queue tail, interlocked 

5E REMQHI Remove from queue head, interlocked 

5F REMQTI Remove from queue tail, interlocked 

60 ADDD2 Add D floating 2 operand 

61 ADDD3 Add D floating 3 operand 

62 SUBD2 Subtract D floating 2 operand 

63 SUBD3 Subtract D floating 3 operand 

64 MULD2 Multiply D floating 2 operand 

65 MULD3 Multiply D floating 3 operand 

66 DIVD2 Divide D floating 2 operand 

67 DIVD3 Divide D floating 3 operand 

68 CVTDB Convert D floating to byte 

69 CVTDW Convert D floating to word 

6A CVTDL Convert D floating to longword 

6B CVTRDL Convert rounded D floating to longword 

6C CVTBD Convert byte to D floating 

6D CVTWD Convert word to D floating 

6E CVTLD Convert longword to D floating 

6F ACBD Add compare and branch D floating 

70 MOVD Move D floating 

71 CMPD Compare D floating 

72 MNEGD Move negated D floating 

73 TSTD Test D floating 

74 EMODD Extended modulus D floating 

75 POLYD Polynomial evaluate D floating 

76 CVTDF Convert D floating to F floating 

77 Reserved 

78 ASHL Arithmetic shift longword 

79 ASHQ Arithmetic shift quadword 

7A EMUL Extended multiply 
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7B_EDIV_Extended divide 

7C_CLRQ_Clear quadword_ 

7C CLRD Clear D_floating 

7C CLRG Clear G_floating 

7D_MQVQ_Move quadword _ 

7E_MOVAQ_Move address of quadword 

7E_MOVAD Move address of D floating 

7E_MOVAG Move address of G floating 

7F_PUSHAQ Push address of quadword 

7F_PUSH AD Push address of D floating 

7F_PUSHAG Push address of G floating 

80 ADDB2 Add byte 2 operand 

81 ADDB3 Add byte 3 operand 

82 _SUBB2_Subtract byte 2 operand 

83 _SUBB3_Subtract byte 3 operand_ 

84 _MULB2_Multiply byte 2 operand_ 

85 _MULB3_Multiply byte 3 operand_ 

86 DIVB2 Divide byte 2 operand 

87 DIVB3 Divide byte 3 operand 

88 _BISB2_Bit set byte 2 operand_ 

89 BISB3 Bit set byte 3 operand 

8A BICB2 Bit clear byte 2 operand 

8B BICB3 Bit clear byte 3 operand 

8C_XORB2_Exclusive OR byte 2 operand 

8D_XQRB3_Exclusive OR byte 3 operand 

8E MNEGB Move negated byte 

SF CASEB Case byte 

90 MOVB Move byte 

91 CMPB Compare byte 

92 _ MCOMB Move complemented byte 

93 _ BITB Bit test byte 

94 CLRB Clear byte 

95 TSTB Test byte 
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Opcode Mnemonic Instruction 

96 INCB Increment byte 

97 DECB Decrement byte 

98 CVTBL Convert byte to longword 

99 CVTBW Convert byte to word 

9A MOVZBL Move zero-extended byte to longword 

9B MOVZBW Move zero-extended byte to word 

9C ROTL Rotate longword 

9D ACBB Add compare and branch byte 

9E MOVAB Move address of byte 

9F PUSHAB Push address of byte 

AO ADDW2 Add word 2 operand 

A1 ADDW3 Add word 3 operand 

A2 SUBW2 Subtract word 2 operand 

A3 SUBW3 Subtract word 3 operand 

A4 MULW2 Multiply word 2 operand 

A5 MULW3 Multiply word 3 operand 

A6 DIVW2 Divide word 2 operand 

A7 DIVW3 Divide word 3 operand 

A8 BISW2 Bit set word 2 operand 

A9 BISW3 Bit set word 3 operand 

AA BICW2 Bit clear word 2 operand 

AB BICW3 Bit clear word 3 operand 

AC XORW2 Exclusive OR word 2 operand 

AD XORW3 Exclusive OR word 3 operand 

AE MNEGW Move negated word 

AF CASEW Case word 

BO MOVW Move word 

B1 CMPW Compare word 

B2 MCOMW Move complemented word 

B3 BITW Bit test word 

B4 CLRW Clear word 

B5 TSTW Test word 

B6 INCW Increment word 



Opcode 

B7_ 

B8_ 

B9_ 

BA_ 

BB_ 

BC_ 

BD 

BE_ 

BF_ 

CO_ 

Cl_ 

C2_ 

C3_ 

C4_ 

C3_ 

C6_ 

C7_ 

C8_ 

09_ 

CA 

CB_ 

CC_ 

CD 

CE 

CF_ 

DO_ 

D1_ 

D2_ 

D3_ 

D4_ 

D4_ 

D5_ 

D6 

Mnemonic Instruction 

DECW_Decrement word 

BISPSW Bit set processor status word 

BICPSW Bit clear processor status word 

POPR_Pop register 

PUS FIR Push register 

CFFMK Change mode to kernel 

CFFME Change mode to executive 

CHMS_Change mode to supervisor 

CHMU_Change mode to user 

ADDL2_Add longword 2 operand 

ADDL3_Add longword 3 operand 

SUBL2_Subtract longword 2 operand 

SUBL3_Subtract longword 3 operand 

MULL2 Multiply longword 2 operand 

MULL3_Multiply longword 3 operand 

DIVL2_Divide longword 2 operand 

DIVL3 Divide longword 3 operand 

BISL2_Bit set longword 2 operand 

BISL3_Bit set longword 3 operand 

BICL2_Bit clear longword 2 operand 

BICL3 Bit clear longword 3 operand 

XORL2 Exclusive OR longword 2 operand 

XORL3 Exclusive OR longword 3 operand 

MNEGL_Move negated longword 

CASEL Case longword 

MOVL_Move longword_ 

CMPL Compare longword 

MCOML Move complemented longword 

BITL Bit test longword 

CLRL_Clear longword 

CLRF Clear F_floating 

TSTL Test longword 

INCL Increment longword 
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Opcode Mnemonic Instruction 

D7 DECL Decrement longword 

D8 ADWC Add with carry 

D9 SBWC Subtract with carry 

DA MTPR Move to processor register 

DB MFPR Move from processor register 

DC MOVPSL Move processor status longword 

DD PUSHL Push longword 

DE MOVAL Move address of longword 

DE MOVAF Move address of F floating 

DF PUSHAL Push address of longword 

DF PUSHAF Push address of F floating 

EO BBS Branch on bit set 

El BBC Branch on bit clear 

E2 BBSS Branch on bit set and set 

E3 BBCS Branch on bit clear and set 

E4 BBSC Branch on bit set and clear 

E5 BBCC Branch on bit clear and clear 

E6 BBSSI Branch on bit set and set, interlocked 

E7 BBCCI Branch on bit clear and clear, interlocked 

E8 BLBS Branch on low bit set 

E9 BLBC Branch on low bit clear 

EA FFS Find first set bit 

EB FFC Find first clear bit 

EC CMPV Compare field 

ED CMPZV Compare zero-extended field 

EE EXTV Extract field 

EF EXTZV Extract zero-extended field 

FO INSV Insert field 

FI ACBL Add compare and branch longword 

F2 AOBLSS Add one and branch on less 

F3 AOBLEQ Add one and branch on less or equal 

F4 SOBGEQ Subtract one and branch on greater or equal 

F5 SOBGTR Subtract one and branch on greater 
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Opcode Mnemonic Instruction 

F6 CVTLB Convert longword to byte 

F7 CVTLW Convert longword to word 

F8 ASHP Arithmetic shift and round packed 

F9 CVTLP Convert longword to packed 

FA CALLG Call with general argument list 

FB CALLS Call with stack argument list 

FC XFC Extended function call 

FD Reserved Escape to 2-byte opcode 

FE Reserved Escape to 2-byte opcode 

FF Reserved Escape to 2-byte opcode 

OOFD Reserved 

31FD Reserved . 
32FD CVTDH Convert D floating to H floating 

33FD CVTGF Convert G floating to F floating 

34FD Reserved 

3FFD Reserved 

40FD ADDG2 Add G floating 2 operand 

41FD ADDG3 Add G floating 3 operand 

42FD SUBG2 Subtract G floating 2 operand 

43FD SUBG3 Subtract G floating 3 operand 

44FD MULG2 Multiply G floating 2 operand 

45FD MULG3 Multiply G floating 3 operand 

46FD DIVG2 Divide G floating 2 operand 

47FD DIVG3 Divide G floating 3 operand 

48FD CVTGB Convert G floating to byte 

49FD CVTGW Convert G floating to word 

4AFD CVTGL Convert G floating to longword 
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Opcode Mnemonic Instruction 

4BFD CVTRGL Convert rounded G_floating to longword 

4CFD CVTBG Convert byte to G floating 

4DFD CVTWG Convert word to G floating 

4EFD CVTLG Convert longword to G floating 

4FFD ACBG Add compare and branch G floating 

50FD MOVG Move G floating. 

51FD CMPG Compare G floating 

52FD MNEGG Move negated G floating 

53FD TSTG Test G floating 

MFD EMODG Extended modulus G floating 

MFD POLYG Polynomial evaluate G floating 

56FD CVTGH Convert G floating to H floating 

57FD Reserved 

5FFD Reserved 

60FD ADDH2 Add H floating 2 operand 

61FD ADDH3 Add H floating 3 operand 

62FD SUBH2 Subtract H floating 2 operand 

63FD SUBH3 Subtract H floating 3 operand 

64FD MULH2 Multiply H floating 2 operand 

65FD MULH3 Multiply H floating 3 operand 

66FD DIVH2 Divide H floating 2 operand 

67FD DIVH3 Divide H floating 3 operand 

68FD CVTHB Convert H floating to byte 

69FD CVTHW Convert H floating to word 

6AFD CVTHL Convert H floating to longword 

6BFD CVTRHL Convert rounded H floating to longword 

6CFD CVTBH Convert byte to H floating 

6DFD CVTWH Convert word to H floating 

6EFD CVTLH Convert longword to H floating 

6FFD ACBH Add compare and branch H floating 
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Opcode Mnemonic Instruction 

70FD MOVH Move H floating 

71FD CMPH Compare H floating 

72FD MNEGH Move negated H floating 

73FD TSTH Test H floating 

74FD EMODH Extended modulus H floating 

75FD POLYH Polynomial evaluate H floating 

76FD CVTHG Convert H floating to G floating 

77FD Reserved 

7BFD Reserved 

7CFD CLRH Clear H floating 

7CFD CLRO Clear octaword 

7DFD MOVO Move octaword 

7EFD MOVAH Move address of H floating 

7EFD MOVAO Move address of octaword 

7FFD PUSHAH Push address of H floating 

7FFD PUSHAO Push address of octaword 

80FD Reserved 

8FFD Reserved 

90FD Reserved 

97FD Reserved 

98FD CVTFH Convert F floating to H floating 

99FD CVTFG Convert F floating to G floating 



Appendix C-12 ■ List of Instructions by Opcode 

Opcode Mnemonic Instruction 

9AFD Reserved 

9FFD Reserved 

AOFD Reserved 

EFFD Reserved 

FOFD Reserved 

F5FD Reserved 

F6FD CVTHF Convert H floating to F floating 

F7FD CVTHD Convert FI floating to D floating 

F8FD Reserved 

FFFD Reserved 

OOFF Reserved 

FCFF Reserved 

FDFF BUGL Bugcheck longword 

FEFF BUGW Bugcheck word 

FFFF Reserved 



Glossary 

abort: An exception that occurs in the middle of an instruction that can 

leave the registers and memory in an indeterminate state. When in this state, 

the instruction may not be able to be restarted. 

absolute indexed mode: An indexed addressing mode in which the base 

operand specifier is addressed in absolute mode. 

absolute mode: Autoincrement deferred mode in which the program coun¬ 

ter (PC) is used as the register. The PC contains the address of the location 

containing the actual operand. 

access mode: Any of the four processor access modes in which software exe¬ 

cutes. Processor access modes are, in order from most to least privileged and 

protected, kernel (mode 0), executive (mode 1), supervisor (mode 2), and user 

(mode 3). 

access type: (1) How the processor accesses instruction operands. Access 

types are read, write, modify, address, and branch. (2) The way in which a 

procedure accesses its arguments. 

access violation: (1) An attempt to reference an address that is not mapped 

into virtual memory. (2) An attempt to reference an address that is not accessi¬ 

ble by the current access mode. 

address: A number used by the operating system and user software to iden¬ 

tify a storage location. See also virtual address, physical address. 

address access type: A type of operation in which the specified operand of 

an instruction is not directly accessed when the processor executes the instruc¬ 

tion. The context of the address calculation is given by the data type of the 

operand. 

addressing mode: The way in which an operand is specified; for example, 

the way in which the effective address of an instruction operand is calculated 

using the general registers. 

address space: The set of all possible addresses available to a process. Vir¬ 

tual address space refers to the set of all possible virtual addresses. Physical 

address space refers to the set of all possible physical addresses. 

alphanumeric character: An uppercase or lowercase letter (A to Z, a to z), a 

dollar sign ($), an underscore (_.), or a decimal digit (0 to 9). 

American Standard Code for Information Interchange (ASCII): A set of 

8-bit binary numbers representing the alphabet, punctuation, numerals, con¬ 

trol, and other special symbols used in text representation and communica¬ 

tions protocol. 



G-2 • Glossary 

Argument Pointer: General register 12 (R12). By convention, the argument 

pointer (AP) contains the address of the base of the argument list for proce¬ 

dures initiated using the CALL instructions. 

autodecrement index mode: A mode in which the base operand specifier 

uses autodecrement mode addressing. 

autodecrement mode: A mode in which the contents of the selected register 

are decremented, and the result is used as the address of the actual operand of 

the instruction. The contents of the register are decremented according to the 

data type context of the register—1 for byte; 2 for word; 4 for longword and 

F_floating; 8 for quadword, G_floating, and D_floating; and 16 for 

octaword and H_floating. 

auto deferred indexed mode: An indexed addressing mode in which the 

base operand specifier uses autoincrement deferred mode addressing. 

autoincrement deferred mode: An addressing mode in which the specified 

register contains the address of a longword that contains the address of the 

actual operand. The contents of the register are incremented by 4 (the num¬ 

ber of bytes in a longword). If the program counter is used as the register, this 

mode is called absolute mode. 

autoincrement indexed mode: An indexed addressing mode in which the 

base operand specifier uses autoincrement mode addressing. 

autoincrement mode: A mode in which the contents of the specified register 

are used as the address of the operand; then the contents of the register are 

incremented by the size of the operand. 

balance set: The set of all process working sets currently resident in physical 

memory. The processes whose working sets are in the balance set have mem¬ 

ory requirements that balance with available memory. 

base operand address: The address of the base of a table or array referenced 

by index mode addressing. 

base operand specifier: The register used to calculate the base operand 

address of a table or array referenced by index mode addressing. 

base register: A general register used to contain the address of the first entry 

in a list, table, array, or other data structure. 

bit complement: The result of exchanging Os and Is in the binary representa¬ 

tion of a number. Thus the bit complement of the binary number 11011001 

(217 (decimal)) is 00100110. Bit complements are used in place of their corre¬ 

sponding binary numbers in some arithmetic computations in computers. 

Also called one's complement. 

bit string: See variable length bit field. 
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block: (1) The smallest addressable unit of data that a device can transfer in 

an I/O operation (512 contiguous bytes for most disk devices). (2) An arbi¬ 

trary number of contiguous bytes used to store logically related status, con¬ 

trol, or other processing information. 

branch access type: An instruction attribute that indicates that the proces¬ 

sor does not reference an operand address, but rather that the operand is a 

branch displacement. The size of the branch displacement is given by the data 

type of the operand. 

branch mode: In branch address mode, the instruction operand specifier is a 

signed byte or word displacement. The displacement is added to the contents 

of the updated program counter (which is the address of the first byte beyond 

the displacement), and the result is the branch address. 

byte: Eight contiguous bits starting on an addressable byte boundary. Bits 

are numbered from the right, 0 through 7, with bit 0 the low-order bit. 

cache memory: A small, high-speed memory placed between main memory 

and the processor. 

call frame: See stack frame. 

Call instructions: The processor instructions CALLG (Call Procedure with 

General Argument List) and CALLS (Call Procedure with Stack Argument 

List). 

call stack: The stack and conventional stack structure used during a proce¬ 

dure call. Each access mode of each process context has one call stack, and the 

interrupt service context has one call stack. 

character: A symbol represented by an ASCII code. See also alphanumeric 

character. 

character string: A contiguous set of bytes identified by two attributes—an 

address and a length. Its address is the address of the byte containing the first 

character of the string. Subsequent characters are stored in bytes of increas¬ 

ing addresses. The length is the number of characters in the string. 

character string descriptor: A quadword data structure used for passing 

character data (strings). The first word of the quadword contains the length of 

the character string. The second word can contain type information. The 

remaining longword contains the address of the string. 

compatibility mode: See PDP-11 compatibility mode. 

condition codes: Four bits in the Processor Status Word (PSW) that indicate 

the results of previously executed instructions. 

condition handler: A procedure that a process wants the system to execute 

when an exception condition occurs. 
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console: A manual-control unit integrated into the central processor that 

enables the operator to start and stop the system, monitor system operation, 

and run diagnostics. 

console terminal: The part of a computer used by the operator to determine 

the status of, and to control, the operation of the computer. The console may 

have controls and indicators that are used for manual operation of the com¬ 

puter. 

context indexing: The process of indexing through a data structure automat¬ 

ically because the size of the data type is known and is used to determine the 

offset factor. 

context switching: Interrupting the activity in progress and switching to 

another activity. Context switching occurs as one process after another is 

scheduled for execution. 

control region: The highest-addressed half of process space (the PI region). 

Control region virtual addresses refer to the process-related information used 

by the system to control the process. 

control region base register (P1BR): The processor register, or its equiva¬ 

lent in a hardware process control block, that contains the base virtual address 

of a process control region page table. 

control region length register (P1LR): The processor register, or its equiva¬ 

lent in a hardware process control block, that contains the number of nonexist¬ 

ent page table entries for virtual pages in a process control region. 

current access mode: The processor access mode of the currently executing 

software. The Current Mode field of the Processor Status Longword (PSL) 

indicates the access mode of the currently executing software. 

D_floating datum: Eight contiguous bytes starting on an addressable byte 

boundary that are interpreted as containing a floating point number. The bits 

are labeled from right to left, 0 to 63. 

data structure: Any table, list, array, queue, or tree whose format and access 

conventions are well defined for reference by one or more images. 

data type: In reference to the processor instructions, the data type of an oper¬ 

and identifies the size of the operand and the significance of the bits in the 

operand. Operand data types include floating point, integer, character string, 

packed decimal string, numeric string, queue, and variable length bit field. 

descriptor: A data structure used in calling sequences for passing argument 

types, addresses and other optional information. See character string descrip¬ 

tor. 

device interrupt: An interrupt received on interrupt priority levels 16 

through 23. Device interrupts can be requested only by devices, controllers, 

and memories. 



device register: A location in device controller logic used to request device 

functions (such as I/O transfers) and/or to report status. 

diagnostic: A program that tests logic and reports any faults it detects, 

direct mapping cache: A cache organization in which any block of main 

memory data can be placed in only one possible position in the cache. Compare 

with fully associative cache. 

displacement deferred indexed mode: An indexed addressing mode in 

which the base operand specifier uses displacement deferred mode address¬ 

ing. 

displacement deferred mode: A mode in which the specifier extension is a 

byte, word, or longword displacement. The displacement is sign-extended to 

32 bits and added to a base address obtained from the specified registers. The 

result is the address of a longword that contains the address of the actual oper¬ 

and. 

displacement indexed mode: A mode in which the base operand specifier 

uses displacement mode addressing. 

displacement mode: A displacement addressing mode in which the specifier 

extension is a byte, word, or longword displacement. The displacement is sign 

extended to 32 bits and added to a base address obtained from the specified 

register. The result is the address of the actual operand. 

double floating datum: See D_floating datum. 

effective address: The address obtained after indirect or indexing modifica¬ 

tions are calculated. 

entry mask: A word whose bits represent the registers to be saved or 

restored on a subroutine or procedure call using the call and return instruc¬ 

tions. 

entry point: A location that can be specified as the object of a call instruc¬ 

tion. It contains an entry mask and exception enables known as the entry 

point mask. 

event: A change in process status or an indication of the occurrence of some 

activity that concerns an individual process or cooperating processes. An inci¬ 

dent reported to the scheduler that affects a process’s ability to execute. 

Events can be synchronous with the process’s execution (waic request), or 

they can be asynchronous (I/O completion). 

exception: An event that changes the normal flow of instruction or set of 

instructions. Interrupts and branch, call, case, and jump instructions are 

excluded from this class of events. Exceptions are detected by the hardware. 

There are three types of hardware exceptions—traps, faults, and aborts. 



G-6 ■ Glossary 

exception condition: A hardware- or software-detected event other than an 

interrupt or jump, branch, case, or call instruction that changes the normal 

flow of instruction execution. 

exception enables: See trap enables, 

exception vector: See vector. 

executive mode: The second most privileged processor access mode (mode 

1). The Record Management Services (RMS) and many of the operating sys¬ 

tem’s programmed service procedures execute in executive mode. 

F_floating datum: Four contiguous bytes starting on an addressable byte 

boundary. The bits are labeled from right to left 0 to 31. A two-word floating¬ 

point number is identified by the address of the byte containing bit 0. 

fault: A hardware exception condition that occurs in the middle of an instruc¬ 

tion. A fault leaves the registers and memory in a consistent state so the elimi¬ 

nation of the fault and restarting the instruction gives correct results. 

field: A set of contiguous bytes in a logical record. See also variable length 

bit field. 

floating (point) datum: See F_floating datum. 

frame pointer: General register 13 (R13). By convention, the frame pointer 

(FP) contains the base address of the most recent call frame on the stack. 

fully associative cache: A cache organization in which any block of data 

from main memory can be placed anywhere in the cache. Compare with direct 

mapping cache. 

G_floating datum: Eight contiguous bytes starting on an arbitrary byte 

boundary. The bits are labeled from the right 0 through 63. The address of a 

G_floating datum is specified by the address of the byte containing bit 0. 

general register: Any of the sixteen 32-bit registers used as the primary oper¬ 

ands of the native mode instructions. The general registers include 12 general 

purpose registers that can be used as accumulators, as counters, and as 

pointers to locations in main memory, and the Frame Pointer (FP), Argument 

Pointer (AP), Stack Pointer (SP), and Program Counter (PC) registers. 

giga: A prefix meaning 1,000,000,000 (109). In the computer industry, giga 

is often used to mean 1,073,741,824 (230) which is about 7.4 percent larger. 

H_floating datum: Sixteen contiguous bytes starting on an arbitrary byte 

boundary. The bits are labeled from the right 0 through 127. The address of 

an H_floating datum is specified by the address of the byte containing 

bit 0. 
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hardware context: The values contained in the following registers while a 

process is executing—the Program Counter (PC), the Processor Status Long- 

word (PSL), the 14 general registers (RO through R13), the four processor reg¬ 

isters (POBR, POLR, PlBR, and P1LR), the Stack Pointer (SP) for the current 

access mode in which the processor is executing, and the contents to be loaded 

in the stack pointer for every access mode other than the current access mode. 

When a process is executing, its hardware context is continuously updated by 

the processor. When a process is not executing, its hardware context is stored 

in its hardware process control block. 

hardware process control block (PCB): A data structure known to the pro¬ 

cessor that contains the hardware context when a process is not executing. A 

process’s hardware PCB resides in its process header. 

image file: A file containing the necessary information to establish an incar¬ 

nation of a user program in a process including the memory image. Image files 

can be of the executable, shareable, and system types. 

immediate mode: Autoincrement mode addressing in which the program 

counter is used as the register. 

incarnation: A resource that is automatically allocated on a call or recursive 

call. A resource is a physical part of the computer such as a device, memory, or 

an interlocked data structure. 

indexed addressing mode: In indexed mode addressing, two registers are 

used to determine the actual instruction operand — an index register and a 

base operand specifier. The contents of the index register are used as an index 

(offset) into a table or array. 

index register: A register containing an address offset. 

instruction buffer: An 8-byte buffer in the processor used to contain bytes 

of the instruction currently being decoded and to prefetch instructions in the 

instruction stream. The control logic continuously fetches data from memory 

to keep the 8-byte buffer full. 

interleaving: Assigning consecutive physical memory addresses alternately 

between two memory controllers. 

internal processor register: A part of the processor used by the operating 

system software to control the execution states of the computer system. Some¬ 

times called privileged processor register. These registers are accessed with 

MTPR and MFPR instructions. 

interrupt: An event other than an exception or branch, call, case, or jump 

instruction that changes the normal flow of instruction execution. Interrupts 

are generally external to the process executing when the interrupt occurs. See 

also device interrupt, software interrupt, and urgent interrupt. 
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interrupt priority level (IPL): The interrupt level at which the processor 

executes when an interrupt is generated. There are 31 possible interrupt prior¬ 

ity levels (IPL). IPL 1 is lowest, 31 highest. 

interrupt service routine: The software executed when a device interrupt 

occurs. 

interrupt stack: The systemwide stack used when executing in interrupt ser¬ 

vice context. At any time, the processor is either in a process context or in 

systemwide interrupt service context. When executing in interrupt service 

context, the processor is operating with kernel privileges on the kernel or 

interrupt stack. The interrupt stack is not context-switched or swapped. 

interrupt stack pointer: The stack pointer for the interrupt stack. Unlike 

the stack pointers for process context stacks, which are stored in the hardware 

PCB, the interrupt stack pointer is stored in an internal register. 

interrupt vector: See vector. 

kernel mode: The most privileged processor access mode (mode 0). The oper¬ 

ating system’s most privileged services (I/O drivers, the pager) run in kernel 

mode. 

literal mode: An addressing mode in which the instruction operand is a con¬ 

stant whose value is expressed in a 6-bit field of the instruction. 

longword: Four contiguous bytes starting on an addressable byte boundary. 

Bits are numbered from right to left 0 through 31. 

main memory: See physical memory. 

mass-storage device: A device capable of reading and writing data on mass 

storage media such as a diskpack or a magnetic tape reel. 

memory management: The system functions that include the hardware’s 

page mapping and protection and the operating system’s image activator and 

pager. 

Memory Mapping Enable (MME): A bit in a processor register that governs 

address translation. 

modify access type: A specific way of accessing characterized by a specified 

operand of an instruction or procedure being read, and potentially modified 

and written, during that instruction’s or procedure’s execution. 

native mode: See VAX native mode, 

nibble: Four bits of memory; one half of a byte. 

normalized fraction: A numeric representation patterned on scientific nota¬ 

tion, but in which the fraction part of the representation is greater than or 

equal to 0.3 and less than 1. As a binary form, such a fraction always begins 

with a 1 in the leftmost (most significant) bit, unless the number is zero. 

Because of this, the lead 1 is not stored, and a bit-per-number saving is 

effected in storage. 
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numeric string: A contiguous sequence of bytes representing up to 31 deci¬ 

mal digits (one per byte) and possibly a sign. The numeric string is specified 

by its lowest addressed location, its length, and its sign representation. 

octaword: An octaword is 16 contiguous bytes starting on an arbitrary byte 

boundary. The bits are numbered from the right 0 through 127. An octaword 

is specified by the address of the byte containing bit 0. 

offset: A fixed displacement from the beginning of a data structure. System 

offsets for items within a data structure normally have an associated symbolic 

name used instead of the numeric displacement. Where symbols are defined, 

programmers always reference the symbolic names for items in a data struc¬ 

ture instead of using the numeric displacement. 

one’s complement: See bit complement. 

opcode: Short form of operation code. That part of a machine language 

instruction that identifies the operation the CPU is to perform. The pattern of 

bits within an instruction that specifies the operation to be performed. 

operand specifier: The pattern of bits in an instruction that indicates the 

addressing mode and a register or displacement that identifies an instruction 

operand. 

operand specifier type: The access type and data type of an instruction’s 

operand(s). For example, test instructions are of read access type because they 

only read the value of the operand. The operand can be of byte, word, or long- 

word data type, depending on whether the opcode is for the TST3 (test byte), 

TSTW (test word), or TSTL (test longword) instruction. 

packed decimal: A method of representing a decimal number by storing a 

pair of decimal digits in one byte, taking advantage of the fact that only four 

bits are required to represent the numbers 0 through 9. 

packed decimal string: A contiguous sequence of up to 16 bytes interpreted 

as a string of nibbles. Each nibble represents a digit, except the low-order nib¬ 

ble of the highest addressed byte, which represents the sign. The packed deci¬ 

mal string is specified by its lowest addressed location and the number of 

digits. 

page: (1) A set of 512 contiguous byte locations used as the unit of memory 

mapping and protection. (2) The data between the beginning of file and a 

page marker, between two markers, or between a marker and the end of a file. 

page fault: An exception generated by a reference to a page that is not map¬ 

ped into a working set. 

page fault cluster size: The number of pages read in on a page fault. 

page frame number (PFN): The address of the first byte of a page in physi¬ 

cal memory. The high-order 21 bits of the physical address of the base of a 

page. 
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page table entry (PTE): The data structure that identifies the location and 

status of a page of virtual address space. When a virtual page is in memory, the 

PTE contains the page. When it is not in memory, the PTE contains the infor¬ 

mation needed to locate the page on secondary storage (disk). 

paging: The process of bringing pages of an executing process into physical 

memory when referenced. When a process executes, all of its pages are said to 

reside in virtual memory. Only the actively used pages need to reside in physi¬ 

cal memory. The remaining pages can reside on disk until they are needed in 

physical memory. In this system, a process is paged only when it references 

more pages than it is allowed to have in its working set. A page fault occurs 

when the process refers to a page not in its working set. This causes the operat¬ 

ing system’s pager to read in the referenced page if it is on disk, replacing the 

least recently faulted pages as needed. A process pages only against itself; that 

is, one process cannot exceed the working set limit assigned to it by bringing 

in more than its quota of pages. This protects other processes in the system. 

PDP-11 compatibility mode: (This is now an optional feature of the VAX 

architecture.) A mode of execution that enables the central processor to exe¬ 

cute nonprivileged PDP-11 instructions. 

physical address: The address used by hardware to identify a location in 

physical memory or on directly addressable secondary storage devices such as a 

disk. A physical memory address consists of a page frame number and the num¬ 

ber of a byte within the page. A physical disk block address consists of a cylin¬ 

der or track and sector number. 

physical address space: The set of all possible 30-bit physical addresses that 

can be used to refer to locations in memory (memory space) or device registers 

(I/O space). 

physical memory: The memory modules connected to the Synchronous Back¬ 

plane Interconnect that are used to store (1) instructions that the processor 

can directly fetch and execute, and (2) any other data that a processor is 

instructed to manipulate. Also called main memory. 

position dependent code: Code that can execute properly only in the loca¬ 

tions in virtual address space that are assigned to it by the linker. 

position independent code: Code that can execute properly without modifi¬ 

cation wherever it is located in virtual address space, even if its location is 

changed after it has been linked. Generally, this code uses addressing modes 

that form an effective address relative to the Program Counter register. 

privileged instruction: In general, any instruction intended for use by the 

operating system or privileged system programs. In particular, an instruction 

that the processor does not execute unless the current access mode is kernel 

mode (for example, HALT, SVPCTX, LDPCTX, MTPR, and MFPR). 

privileged processor register: See internal processor register. 
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procedure: A routine entered by way of a call instruction. 

process: The basic entity scheduled by the system software that provides 

the context in which an image executes. A process consists of an address space 

and both hardware and software contexts. 

process address space: See process space. 

process context: The hardware and software contexts of a process. 

process control block (PCB): A data structure used to contain the process 

context. The hardware PCB contains the hardware context. The software 

PCB contains the software context, which includes a pointer to the hardware 

PCB. See also hardware process control block. 

process page tables: The page tables used to describe process virtual mem¬ 

ory. 

process space: The lowest-addressed half of virtual address space, where pro¬ 

cess instructions and data reside. Process space is divided inco a program 

region and a control region. 

Processor Status Longword (PSL): A system-programmed processor regis¬ 

ter consisting of a word of privileged processor status and the PSW. The privi¬ 

leged processor status information includes the current interrupt priority 

level, the previous access mode, the current access mode, the interrupt stack 

bit, the trace trap pending bit, and the compatibility mode bit. 

Processor Status Word (PSW): The low-order word of the Processor Status 

Longword. Processor status information includes the condition codes (carry, 

overflow, zero, negative), the arithmetic trap enable bits (integer overflow, 

decimal overflow, floating underflow), and the trace enable bit. 

Program Counter (PC): General register 15 (R15). At the beginning of an 

instruction’s execution, the program counter (PC) normally contains the 

address of a location in memory from which the processor will fetch the next 

instruction to execute. 

program locality: An indication of the proximity of a program’s references 

to virtual memory locations. A program with a high degree of locality does not 

refer to many widely scattered virtual addresses in a short period of time. 

program region: The lowest-addressed half of process address space (PO 

space). The program region contains the image being executed by the process 

and other user code called by the image. 

program region base register (POBR): The processor register, or its equiva¬ 

lent in a hardware process control block, that contains the base virtual address 

of the page table entry for virtual page number 0 in a process program region. 

program region length register (POLR): The processor register, or its equiv¬ 

alent in a hardware process control block, that contains the number of entries 

in the page table for a process program region. 
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quadword: Eight contiguous bytes (64 bits) starting on an addressable byte 

boundary. Bits are numbered from right to left, 0 to 63. A quadword is identi¬ 

fied by the address of the byte containing the low-order bit (bit 0). 

queue: (1) noun. A circular, doubly linked list. (2) verb. To make an entry in 

a list or table, perhaps using the INSQUE instruction. 

read access type: An instruction or procedure operand attribute indicating 

that the specified operand is only read during instruction or procedure execu¬ 

tion. 

register: A storage location in hardware logic other than main memory. See 

also general register, processor register, device register. 

register deferred indexed mode: An indexed addressing mode in which the 

base operand specifier uses register deferred mode addressing. 

register deferred mode: An addressing mode in which the contents of the 

specified register are used as the address of the actual instruction operand. 

register mode: An addressing mode in which the contents of the specified 

register are used as the actual instruction operand. 

scatter/gather: A method used to transfer in one I/O operation data from 

discontiguous pages in memory to contiguous blocks on disk, or data from con¬ 

tiguous blocks on disk to discontiguous pages in memory. 

secondary storage: Random access mass storage. 

signal: (1) An electrical impulse conveying information. (2) The software 

mechanism used to indicate that an exception condition was detected. 

software interrupt: An interrupt generated on interrupt priority levels 1 

through 15, that can be requested only by software. 

software process control block: See process control block. 

stack: An area of memory set aside for temporary storage, or for procedure 

and interrupt service linkages. A stack uses the last-in/ first-out concept. As 

items are added to (pushed on) the stack, the stack pointer decrements. As 

items are retrieved from (popped off) the stack, the stack pointer increments. 

stack frame: A standard data structure built on the stack during a procedure 

call, starting from the location addressed by the frame pointer and going to 

lower addresses, and popped off during a return from procedure. Also called 

call frame. 

Stack Pointer (SP): General register 14 (R14). SP contains the address of 

the top (lowest address) of the processor-defined stack. Reference to SP will 

access one of the five possible stack pointers—kernel, executive, supervisor, 

user, or interrupt—depending on the value in the current mode and interrupt 

stack bits in the processor status longword. 

store through: See write through. 
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Supervisor mode: The third most privileged processor access mode (mode 

2). The operating system’s command interpreter runs in supervisor mode. 

Synchronous Backplane Interconnect (SBI): That part of the hardware 

that interconnects the processor, memory controllers, MASSBUS adapters, 

and the UNIBUS adapter. 

system address space: See system space, system region. 

system base register (SBR): A processor register that contains the physical 

address of the base of the system page table. 

system control block (SCB): The data structure in system space that con¬ 

tains all the interrupt and exception vectors known to the system. 

system control block base register (SCBB): A processor register containing 

the base address of the system control block. 

system identification register (SIR): A processor register which contains 

the processor type and serial number. 

system length register (SLR): A processor register containing the length of 

the system page table in longwords, that is, the number of page table entries in 

the system region page table. 

system page table (SPT): The data structure that maps the system region 

virtual addresses, including the addresses used to refer to the process page 

tables. The system page table (SPT) contains one page table entry (PTE) for 

each page of system region virtual memory. The physical base address of the 

SPT is contained in a register called the system base register (SBR). 

system region: The third quarter of virtual address space; that is, the lower- 

addressed half of system space. Virtual addresses in the system region are 

shareable between processes. Some of the data structures mapped by system 

region virtual addresses are system entry vectors, the system control block 

(SCB), the system page table (SPT), and process page tables. 

system space: The higher-addressed half of virtual address space. See also 

system region. 

system virtual address: A virtual address identifying a location mapped by 

an address in system space. 

system virtual space: See system space. 

terminal: The general name for those peripheral devices that have key¬ 

boards and videoscreens or printers. Under program control, a terminal 

enables users to type commands and data on the keyboard and receive mes¬ 

sages on the videoscreen or printer. Examples of terminals are the LA38 DEC- 

writer hardcopy terminal and the VT100 video display terminal. 

translation buffer: An internal processor cache containing translations for 

recently used virtual addresses. 
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trap: An exception condition that occurs at the end of the instruction that 

caused the exception. The program counter (PC) saved on the stack is the 

address of the next instruction that would normally have been executed. All 

software can enable and disable some of the trap conditions with a single 

instruction. 

trap enables: Three bits in the Processor Status Word that control the pro¬ 

cessor’s action on certain arithmetic exceptions. 

two’s complement: A binary representation for integers in which a negative 

number is one greater than the bit complement of the positive number. 

two-way associative cache: A type of cache memory organization that has 

two groups of directly mapped blocks. Each group contains several blocks for 

each index position in the cache. A block of data from main memory can go 

into either group at its proper index position. A two-way associative cache is a 

compromise between the extremes of fully associative and direct mapping 

cache organizations. It takes advantage of the features of both, 

undefined: An operation that may vary from moment to moment, implemen¬ 

tation to implementation, and instruction to instruction. The operation can 

vary in effect from doing nothing to halting system operation. Nonprivileged 

software should avoid invoking operations identified as undefined. 

unpredictable: Results of an operation that may vary from moment to 

moment, implementation to implementation, and instruction to instruction. 

Engineering Change Orders (ECOs) may alter unpredictable results. Software 

should not depend on results specified as unpredictable. 

urgent interrupt: An interrupt received on interrupt priority levels 24 

through 31. These can be generated only by the processor for the interval 

clock, serious errors, and powerfail. 

user mode: The least privileged processor access mode (mode 3). User pro¬ 

cesses and the Runtime Library procedures run in user mode. 

user privileges: The privileges granted a user by the system manager. 

variable length bit field: A set of 0 to 32 contiguous bits located arbitrarily 

with respect to byte boundaries. A variable bit field has four attributes—the 

address of a byte, the bit position of the starting location of the bit field with 

respect to bit 0 of the byte address, the size of the bit field in bits, and 

whether the field is signed or unsigned. 

VAX native mode: The processor’s primary execution mode. 
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vector: (1) An interrupt or exception vector is a storage location, known to 

the system, that contains the starting address of a procedure to be executed 

when a given interrupt or exception occurs. The system defines separate vec¬ 

tors for each interrupting device controller and for classes of exceptions. Each 

system vector is a longword. (2) For the purposes of exception handling, users 

can declare up to two software exception vectors (primary and secondary) for 

each of the four access modes. Each vector contains the address of a condition 

handler. (3) A one-dimensional array. 

virtual address: A 32-bit integer identifying a byte location in virtual 

address space. The memory management hardware translates a virtual address 

to a physical address. The term virtual address may also refer to the address 

used to identify a virtual block on a mass storage device. 

virtual.address space: The set of all possible virtual addresses that an image 

executing in the context of a process can use to identify the location of an 

instruction or of data. The virtual address space seen by the programmer is a 

linear array of 4,294,967,296 (232) byte addresses. 

virtual memory: The set of storage locations in physical memory and on disk 

that is referred to by virtual addresses. From the programmer’s viewpoint, the 

secondary storage locations appear to be locations in physical memory. The 

size of virtual memory in any system depends on the amount of physical mem¬ 

ory available and the amount of disk storage used for nonresident virtual mem¬ 

ory. 

virtual page number: The virtual address of a page of virtual memory. 

word: Two contiguous bytes (16 bits) starting on an addressable byte bound¬ 

ary. Bits are numbered from the right, 0 through 15. A word is identified by 

the address of the byte containing bit 0. 

working set: The set of pages in process address space to which an executing 

process can refer without incurring a page fault. The working set must be resi¬ 

dent in memory for the process to execute. The remaining pages of that pro¬ 

cess, if any, are either in memory and not in the process working set or they 

are on secondary storage. 

write access type: The specified operand of an instruction or procedure that 

is only written during that instruction’s execution. 

write allocate: A cache management in which cache is allocated on a write 

miss as well as on the usual read miss. 

write back: A cache management technique in which data from a write oper¬ 

ation to cache is copied into main memory only when the data in cache must be 

overwritten. This results in temporary inconsistencies between cache and 

main memory. Compare with write through. 
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write through: A cache management technique in which data from a write 

operation is copied in both cache and main memory. Cache and main memory 

data are always consistent. Compare with write hack. 
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executive access mode, 2-5, 3-2, 7-1 

executive stack pointer (ESP), 8-27 

extended divide (EDIV) instruction, 

6-13, 9-35 

extended function call (XFC) 

instruction, 6-15, 9-35 

extended modulus (EMOD) 

instruction, 6-12, 9-35—9-36 

extended multiply (EMUL) instruction, 

6-13, 9-36 
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extent notation, 5-5 

extract field (EXT) instruction, 6-25, 

9-36—9-37 

F 

failures, system, 8-14—8-15 

fault parameter word, 7-20—7-21 

faults, 8-2 

instruction, 8-11—8-12 

kernel stack and, 8-28 

memory management, 7-20—7-21, 

8-12 

operand reference, 8-12—8-14 

trace, in PDP-11 compatibility 

mode, 11-10 

See also exceptions 

F_floating-point data type, 2-12, 

4-3—4-4, 6-10 

instructions for, 10-1 

stored in registers, 4-24 

field access, 2-7 

fields 

instructions for, 6-25 

variable-length bit field data type, 

2-12, 4-21—4-24 

See also variable-length bit field 

instructions 

find first bit (FF) instruction, 6-25, 

9- 37 

flags, trap-enable, 8-5 

floating-overflow fault exceptions, 8-11 

floating-point data types, 2-12, 

4-2—4-6 

floating-point instructions, 6-10—6-12, 

10- 1—10-2 

add, 9-1 

clear, 9-15 

compare, 9-15—9-16 

convert, 9-18—9-20 

divide, 9-26—9-27 

extended modulus, 9-35—9-36 

move, 9-43—9-44 

floating-point instructions, (cont.) 

move negated, 9-47—9-48 

multiply, 9-50—9-51 

polynomial evaluation, 9-51—9-52 

subtract, 9-60—9-61 

test, 9-63 

floating-point literals, 5-30 

floating underflow enable bit, 6-17 

floating-underflow exception enable 

bit, 8-6 

floating-underflow fault exceptions, 

8-11 

format 

for instructions, 5-5—5-10 

for MACRO source statements, 

5-5—5-6 

forward link, 4-17 

frame pointer (FP), 3-5 

G 

general mode addressing, 5-12 

general register addressing, 

5-12—5-35 

program counter register 

addressing, 5-36—5-41 

general register addressing, 5-12 

absolute index mode, 5-25—5-26 

autodecrement index mode, 

5-24—5-25 

autodecrement mode, 5-12—5-13 

autoincrement deferred index 

mode, 5-23—5-24 

autoincrement deferred mode, 

5-14—5-16 

autoincrement index mode, 

5-22—5-23 

autoincrement mode, 5-14 

displacement deferred index mode, 

5-27—5-28 

displacement deferred mode, 

5-17—5-19 

displacement index mode, 

5-26—5-27 
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general register addressing, (cont.) 

displacement mode, 5-17 

index mode, 5-19—5-21 

literal mode, 5-29—5-32 

register deferred index mode, 

5-21—5-22 

register deferred mode, 5-33—5-35 

register mode, 5-32—5-33 

general registers, 3-4—3-6 

addressing of, 2-9 

for PDP-11 compatibility mode, 

11-2—11-3 

G_floating-point data type, 2-12, 

4-4—4-5, 6-10 

instructions for, 10-2 

global page table base register (GBR), 

7-11 

global page table index (GPTX), 7-10 

H 

halt instruction, 6-15, 9-37—9-38 

handbooks, 1-4 

handling routines, 8-17 

hardware 

high-level language instructions 

implemented in, l-2v 

interrupt priority levels for, 8-3 

interrupts generated by, 8-19 

memory management, 1-3—1-4, 

2-4, 7-1, 7-19, 7-20 

for multiprogramming, 2-1 

page table entries for, 7-10—7-11 

for PDP-11 compatibility mode, 

11-2 

hardware context, 2-1, 2-2 

hardware process control block, 2-2 

head of the queue, 4-18, 6-19 

hexadecimal numbers, assembler 

notation for, 5-1 

H—floating-point data type, 2-12, 

4-5—4-6, 6-10 

H—floating-point data type, (cont.) 

instructions for, 10-2 

stored in registers, 4-25 

high-level languages, 1-2 

I 

immediate mode, 2-6, 5-37—5-39 

increment (INC) instruction, 6-13, 9-38 

index instruction, 6-12, 9-38 

index mode, 5-19—5-21 

index registers, 5-19 

input/oputput control, 2-15 

input/output device controllers, 2-15 

input/output devices, page table entries 

for, 7-10—7-11 

input/output references in PDP-11 

compatibility mode, 11-11 

input/output registers, 3-13—3-14 

insert entry in queue (INSQUE) 

instruction, 6-22, 9-38—9-39 

insert entry into queue at head, 

interlocked (INSQHI) instruction, 

3-4, 6-24, 9-39—9-40 

insert entry into queue at tail, 

interlocked (INSQTI) instruction, 

3-4, 6-24, 9-40 

insert field (INSV) instruction, 6-25, 

9-41 

instruction faults, 8-11—8-12 

instructions and instruction sets, 1-2, 

2-5—2-6 

aborts caused by, 8-1 

access modes for, 3-1 

add, 9-1 

add aligned word interlocked, 9-2 

add compare and branch, 9-2—9-3 

add one and branch, 9-3 

add packed, 9-3—9-4 

address, 6-1—6-2 

addressing modes and, 5-10—5-43 
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instructions and instruction sets, (cont.) 

add with carry, 9-4 

arithmetic, 6-2 

arithmetic shift, 9-4 

arithmetic shift and round packed, 

9- 4—9-5 

bit clear, 9-5 

bit clear processor status word, 9-5 

bit set, 9-6 

bit set processor status word, 9-6 

bit test, 9-6—9-7 

branch, 9-7 

branch on bit, 9-7 

branch on bit and modify without 

interlock, 9-8 

branch on bit interlocked, 9-7—9-8 

branch on condition, 9-8—9-10 

branch on low bit, 9-10—9-11 

branch to subroutine, 9-11 

breakpoint fault, 9-11 

bugcheck, 9-11—9-12 

call procedure with general 

argument list, 9-12 

call procedure with stack argument 

list, 9-13 

case, 9-14 

to change access mode, 7-22—7-23 

change mode, 9-14—9-15 

character string, 6-2—6-3 

clear, 9-15 

compare, 9-15—9-16 

compare characters, 9-16—9-17 

compare field, 9-17 

compare packed, 9-17 

compatibility mode instruction set, 

10- 2 
condition codes for, 2-13—2-14 

control, 6-3—6-5 

convert, 9-18—9-20 

convert leading separate numeric to 

packed, 9-20 

convert longword to packed, 

9.20—9-21 

convert packed to leading separate 

numeric, 9-21 

convert packed to longword, 9-21 

convert packed to trailing numeric, 

9-22 

instructions and instruction sets, (cont.) 

convert trailing numeric to packed, 

9-23 

cyclic redundancy check, 6-5—6-6, 

9- 23—9-25 

data types recognized by, 

2-10—2-13 

decimal string, 6-6—6-9 

decrement, 9-26 

divide, 9-26—9-27 

divide packed, 9-27 

edit, 6-9—6-10, 9-27—9-34 

emulation of, 10-4 

exclusive OR, 9-34 

extended divide, 9-35 

extended function call, 9-35 

extended modulus, 9-35—9-36 

extended multiply, 9-36 

extract field, 9-36—9-37 

faults during execution of, 8-2 

find first bit, 9-37 

floating-point, 6-10—6-12, 

10- 1—10-2 

floating-point instructions, 

10-1—10-2 

format for, 5-6—5-10 

halt, 9-37—9-38 

increment, 9-38 

index, 6-12, 9-38 

insert entry in queue, 9-38—9-39 

insert entry in queue at head, 

interlocked, 9-39—9-40 

insert entry in queue at tail, 

interlocked, 9-40 

insert field, 9-41 

integer, 6-13 

jump, 9-41 

jump to subroutine, 9-41—9-42 

kernel instruction set, 10-3—10-4 

load process context, 9-42 

locate character, 9-42—9-43 

logic, 6-13—6-14 

MACRO source statement format 

for, 5-5—5-6 

match characters, 9-43 

on Micro VAX I and II systems, 

10-4 

move, 9-43—9-44 
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instructions and instruction sets, (cont.) 

move address, 9-44 

move characters, 9-44—9-45 

move complement, 9-45 

move from processor register, 

9-45—9-47 

move from processor status 

longword, 9-47 

move negated, 9-47—9-48 

move packed, 9-48 

move to processor register, 9-48 

move translated characters, 9-49 

move translated until characters, 

9-49 

move zero-extended, 9-50 

multiple register, 6-14 

multiply, 9-50—9-51 

multiply packed, 9-51 

notation conventions for, 5-1—5-5 

operand processing by, 2-7—2-8 

for PDP-11 compatibility mode, 

11-4—11-6 

polynomial evaluation, 9-51—9-52 

pop registers, 9-52 

privileged, 6-15—6-16 

probe accessibility, 9-52—9-53 

procedure call, 6-16—6-18 

process control, 2-8 

processor status longword, 6-18 

push address, 9-53 

push longword, 9-54 

push registers, 9-54 

queue, 6-19—6-24 

remove entry from queue, 

9-54—9-55 

remove entry from queue at head, 

interlocked, 9-55—9-56 

remove entry from queue at tail, 

interlocked, 9-56 

restarts and, 3-17—3-18 

return from exception or interrupt, 

9-56—9-57 

return from procedure, 9-57 

return from subroutine, 9-58 

rotate longword, 9-58 

routine calls, 2-7 

save process context, 9-58—9-59 

scan characters, 9-59 

instructions and instruction sets, (cont.) 

for shared data, 3-3—3-4 

skip character, 9-59—9-60 

span characters, 9-60 

special, 3-2—3-3 

stacks and, 3-14 

string instructions, 10-2 

subtract, 9-60—9-61 

subtract one and branch, 9-61 

subtract packed, 9-62 

subtract with carry, 9-62 

suspended, 8-31 

test, 9-63 

trace exceptions between 

executions of, 8-15—8-17 

variable length bit field, 6-25 

integer data types, 2-12, 4-6—4-9 

integer divide by zero trap exceptions, 

8-10 

integer instructions, 6-31 

add aligned word interlocked, 9-2 

add with carry, 9-4 

decrement, 9-26 

extended divide, 9-35 

extended multiply, 9-36 

increment, 9-38 

push longword, 9-54 

subtract with carry, 9-62 

integer overflow trap enable bit, 8-6 

integer overflow trap exceptions, 8-10 

internal (processor) registers, 3-7 

interrupt context, 3-2 

interrupt priority level register, 

8-21—8-22 

interrupt priority levels (IPLs), 8-1, 8-3 

asynchronous system traps and, 8-9 

in PDP-11 compatibility mode, 

11-10 

processors’, 8-6 

for software interrupts, 8-19, 8-20 

for urgent interrupts, 8-21 

interrupts, 2-3, 2-14, 3-18, 8-1, 

8-3—8-4, 8-18—8-19 

during character string instruction 

executions, 6-3 
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interrupts, (cont.) 

device, 8-19 

event handling of, 8-2 

example of, 8-22 

initiating, 8-31—8-33 

interrupt priority level register for, 

8-21—8-22 

in PDP-11 compatibility mode, 

11-10 
priority of recognition of, 

8-30—8-31 

processor status during, 8-4—8-7 

restarts after, 3-17 

return from exception or interrupt 

instruction for, 9-56—9-57 

software-generated, 8-19—8-21 

system control block and, 

8-23—8-27 

urgent, 8-21 

interrupt stack, 3-15, 8-27 

in PDP-11 compatibility mode, 

11-10 
process scheduling software 

executed on, 2-8 

interrupt stack flag, 8-7 

interrupt stack not valid—halt 

exceptions, 8-14 

interval clock, 3-7—3-9 

interval clock control/status register, 

3-8 

interval count register, 3-8 

interval timer registers, 10-2 

I/O references, see input/output 

references 

J 
journals (of procedure call nesting), 2-7 

jump instructions, 6-4 

jump (JMP) instruction, 6-5, 9-41 

jump to subroutine (JSB) instruction, 

2-7, 6-5, 9-41—9-42 

K 

kernel access mode, 2-5, 3-2, 7-1 

interrupt priority changed in, 8-2 

process page table entries in, 7-8 

kernel instruction set, 10-3—10-4 

kernel reads, 7-14 

kernel stack, 8-28, 8-32 

kernel stack frame, 11-10 

kernel stack not valid—abort 

exceptions, 8-14, 8-32 

kernel stack pointer (KSP), 8-27 

L 

labels, in MACRO source statements, 

5- 5 

languages, 1-2 

last-in/first-out (LIFO) queues (stacks), 

3-14 

leading numeric string data type, 6-6 

leading separate numeric string data 

type, 4-10—4-12 

length registers, 7-9 

literal mode, 5-29—5-32 

literature, 1-4 

load process context (LDPCTX) 

instruction, 2-2, 3-3, 6-15, 7-22, 

7-23, 9-42 

stack pointers referenced by, 8-28, 

8-33 

translation buffer updated by, 7-20 

locate character (LOCC) instruction, 

6- 2, 9-42—9-43 

logical complement operations, 6-13 

logic instructions, 6-13—6-14 

arithmetic shift, 9-4 

bit clear, 9-5 

bit set, 9-6 

bit test, 9-6—9-7 

clear, 9-15 
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logic instructions, (cont.) 

compare, 9-15—9-16 

convert, 9-18—9-20 

exclusive OR, 9-34 

move, 9-43—9-44 

move complement, 9-45 

move negated, 9-47—9-48 

move zero-extended, 9-50 

rotate longword, 9-58 

test, 9-63 

longword data type, 4-8, 4-24 

longwords, 7-3 

loop control instructions, 6-4 

m 

machine checks, 8-4, 8-15, 8-21 

MACRO source statements, 5-5—5-6 

manuals, 1-4 

map enable register (MAPEN), 7-19 

match characters (MATCHC) 

instruction, 6-2, 9-43 

memory 

access modes for, 3-1 

cache, 3-16—3-17 

paging of, 7-1 

virtual, 7-2—7-6 

memory management, 1-3—1-4, 

2-4—2-5, 7-1—7-2 

access control in, 7-16—7-19 

access privileged system services 

and, 7-22—7-23 

address translation in, 7-8—7-16 

control of, 7-19—7-20 

exceptions in, 8-12 

faults and parameters for, 

7-20—7-21 

interrupts and, 8-19 

in PDP-11 compatibility mode, 

11-7—11-9 

virtual address space in, 7-6—7-8 

virtual memory in, 7-2—7-6 

memory mapping, 2-4 

Memory Mapping Enable (MME) bit, 

7-8 

Micro VAX I systems, 10-4 

Micro VAX II systems, 10-4 

modify access, 2-7 

move address (MOVA) instruction, 6-1, 

9-44 

move characters (MOVC) instruction, 

6-2, 9-44—9-45 

move complement (MCOM) 

instruction, 6-14, 9-45 

move from processor register (MFPR) 

instruction, 6-15, 7-22, 9-45—9-47 

processor registers and, 3-7, 7-23 

process space address translation 

and, 7-14, 7-16 

to read map enable register, 7-19 

for software interrupt summary 

register, 8-20 

stack pointers referenced by, 3-6, 

8-33 

move from processor status longword 

(MOVPSL) instruction, 6-18, 9-47 

move (MOV) instruction, 6-12, 6-14, 

9-43—9-44 

move negated (MNEG) instruction, 

6-12, 6-14, 9-47—9-48 

move packed (MOVP) instruction, 6-6, 

9-48 

move to processor register (MTPR) 

instruction, 6-15, 7-22, 9-48 

interrupt priority level register and, 

8-21 

interrupts forced by, 8-3 

processor registers and, 3-7, 7-23 

process space address translation 

and, 7-14, 7-16 

for software interrupt summary 

register, 8-20 

stack pointers referenced by, 3-6, 

8-33 

to write to map enable register, 

7-19 
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move translated characters (MOVTC) 

instruction, 6-2, 9-49 

move translated until character 

(MOVTUC) instruction, 6-2, 9-49 

move zero-extended (MOVZ) 

instruction, 6-14, 9-50 

multiple register instructions, 6-14 

multiply (MUL) instruction, 6-2, 6-11, 

6-12, 9-50—9-51 

multiply packed (MULP) instruction, 

6-7, 9-51 

multiprocessor systems 

interrupt priority levels in, 8-18 

interrupt requests in, 8-2 

page table entries and, 7-11 

multiprogramming, 2-1, 7-1 

context switching in, 2-2—2-3 

virtual memory in, 7-2 

N 

negative condition code, 2-14 

next interval count register, 3-8 

nibbles, 4-16, 7-3 

notation conventions, 5-1—5-5 

null strings, 4-1 

numeric string data types, 2-12, 

4-10—4-15 

o 
octaword data type, 4-9, 4-25 

octawords, 7-3 

opcode reserved to Digital fault, 8-12 

opcode reserved to users fault, 8-12 

operand processing, 2-7—2-8 

operand reference exceptions, 

8-12—8-14 

operands 

in instructions, 5-6, 5-9—5-10 

in MACRO source statements, 5-5 

notation conventions for, 5-1—5-2 

in PDP-11 compatibility mode, 11-2 

operating system, 7-2, 7-4, 7-6 

memory management tables 

controlled by, 7-7 

page table entries changed by, 7-11 

stacks used by, 8-28 

operation codes (opcodes), 2-6 

operation notation, 5-2—5-5 

operators 

in edit instruction, 9-28—9-34 

in instructions, 5-6, 5-8 

in MACRO source statements, 5-5 

notation convention for, 5-4 

options 

compatibility mode instruction set, 

10-2 

floating-point instructions, 

10-1—10-2 

instruction emulation, 10-4 

kernel instruction set, 10-3—10-4 

Micro VAX 1 and II systems, 10-4 

PDP-11 compatibility mode as, 11-1 

processor registers, 10-2—10-3 

string instructions, 10-2 

OR instruction, exclusive OR (XOR), 

9-34 

outputs, edit instructions for, 

6-9—6-10 

overflow condition code, 2-14, 8-5 

overflow exceptions, 8-4 

overflows, 6-8 

P 

P0 Base Register (P0BR), 7-14 

P0 Length Register (P0LR), 7-14 

P0LR (length register), 7-9 
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PO page table (POPT), 7-14 

POPT (process space page table), 7-6 

PO space, 7-2, 7-7, 7-13 

PI Base Register (P1BR), 7-15 

PI Length Register (P1LR), 7-15 

P1LR (length register), 7-9 

PI page table (P1PT), 7-15 

P1PT (process space page table), 7-6 

PI space, 7-2, 7-7, 7-13 

packed decimal data type, 2-12 

edit instruction to convert to 

character string, 6-9 

instructions for, 6-6—6-9 

packed decimal string data type, 

4-16—4-17 

page frame number (PFN), 7-9, 7-10 

page mapping registers, 2-4 

pages (memory), 2-4, 7-1, 7-4, 7-6 

access control for, 7-16 

in PDP-11 compatibility mode, 11-8 

page table entry (PTE), 7-5—7-6, 

7-8—7-10 

changing, 7-11 

for input/output devices, 

7-10—7-11 

page tables, 2-4—2-5, 7-1, 7-4, 7-8 

faults for, 7-20 

paging, 7-1 

parameters, for memory management, 

7-20—7-21 

PDP-11 compatibility mode, 1-3, 8-7, 

11-1 

entering and leaving, 11-6—11-7 

exceptions and interrupts in, 11-10 

input/output references in, 11-11 

memory management in, 

11-7—11-9 

processor registers in, 11-11 

program synchronization in, 11-11 

tracing in, 11-10 

unimplemented PDP-11 traps in, 

11-11 

PDP-11 compatibility mode, (cont.) 

user enviroment emulation in, 

11-2—11-6 

performance monitor enable register, 

10-3 

peripheral device control/status and 

data (input/output) registers, 3-13 

peripherals 

control, status and data registers in, 

7- 4 

interrupts generated by, 8-19 

page table entries for, 7-10—7-11 

physical addresses, 2-4 

polynomial evaluation (POLY) 

instruction, 6-12, 9-51—9-52 

pop registers (POPR) instruction, 6-14, 

9-52 

position-independent code, 2-6 

powerfail, 8-3, 8-6, 8-21 

power supply, for time-of-year clock, 

3-7 

precision 

of D_floating-point data type, 4-3 

of F_floating-point data type, 4-4 

of floating-point data types, 2-12 

of G_floating-point data type, 4-4 

of H_floating-point data type, 4-5 

priority dispatching, 2-3, 2-3 

priority levels 

of exceptions and interrupts, 

8- 30—8-31 

for interrupts, 3-18, 8-1—8-3, 8-18 

for urgent interrupts, 8-21 

privileged instructions, 6-15—6-16 

change mode, 9-14—9-15 

extended function call, 9-35 

halt, 9-37—9-38 

load process context, 9-42 

move from processor register, 

9- 45—9-47 

move to processor register, 9-48 

probe accessibility, 9-52—9-53 
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privileged instructions, (cont.) 

return from exception or interrupt, 

9-56—9-57 

save process context, 9-58—9-59 

privileged modes, 3-16, 7-1, 7-4 

privileged (processor) registers, 2-2, 3-7 

asynchronous system traps and, 8-8 

copies of process stack pointers in, 

8-28 

for memory management, 7-19 

See also processor registers 

privileged system services, 7-22—7-23 

probe accessibility instructions, 3-2, 

6-15, 6-16, 7-22, 7-23, 9-52—9-53 

probe read accessibility (PROBER) 

instruction, 3-2, 6-16, 7-23, 

9-52—9-53 

probe write accessibility (PROBEW) 

instruction, 3-2, 6-16, 7-23, 

9-52—9-53 

procedures 

call instructions for, 6-16—6-18 

calls for, 2-7 

return from procedure instruction 

for, 9-57 

process address space, 7-6 

process context, 3-2 

interrupt stack during, 8-27 

load process context instruction for, 

9-42 

save process context instruction for, 

5-58—9-59 

process control block (PCB), 2-1—2-3, 

3-6, 3-7, 3-9 

process control block base (PCBB) 

register, 3-9—3-13 

processes, 2-1—2-2 

context switching for, 2-2—2-3 

control instructions for, 2-8 

multiprogramming execution of, 7-1 

programming environment for, 

3-1—3-4 

virtual memory shared by, 7-2, 7-4 

processor errors, 3-18 

processor registers, 3-7—3-13, 

10-2—10-3 

move from processor register 

instruction for, 9-45—9-47 

move to processor register 

instruction for, 9-48 

in PDP-11 compatibility mode, 

11-11 

See also privileged registers 

processors, 2-1—2-2 

access modes for, 3-1—3-2 

context switching in, 2-2—2-3 

general registers in, 2-9 

instruction operand processing by, 

2-7—2-8 

instruction set and, 2-5—2-6 

interrupt requests arbitrated by, 

8-2, 8-18 

memory management and, 2-4—2-5 

priority dispatching in, 2-3 

process context on, 1-3 

process control instructions in, 2-8 

routine call capability in, 2-7 

status during exceptions and 

interrupts of, 8-4—8-7 

virtual addressing in, 2-4 

processor status longword (PSL), 3-1, 

7-1 

during exceptions and interrupts, 

8-3—8-6 

PDP-11 compatibility mode and, 

11-7, 11-10 

PDP-11 compatibility mode bit on, 

11-6 
status bits in, 8-29 

trace exceptions and, 8-15 

trace pending bit saved values in, 

8-32 

processor status longword instructions, 

6-18 

bit clear processor status word, 9-5 

bit set processor status word, 9-6 

move from processor status 

longword, 9-47 

processor status word (PSW), 3-1, 8-4 

bit clear processor status word 

instruction for, 9-5 
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processor status word, (cont.) 

bit set processor status word 

instruction for, 9-6 

PDP-11 compatibility mode and, 

11-3, 11-7 

trap enable bits in, 6-17 

process page tables, 2-3, 7-14 

process scheduling interrupt, 8-3 

process space, 2-4, 7-2, 7-7 

access control for, 7-17 

address translation for, 7-13—7-16 

process space page tables, 7-6 

program counter (PC), 2-9, 3-4 

addressing modes for, 5-36—5-41 

events and values saved in, 

8-32—8-33 

during exceptions and interrupts, 

8-3, 8-4 

not used in autodecrement mode, 

5-13 

not used in register deferred mode, 

5-33 

not used in register mode, 5-32, 

5-33 

operands identified by, 2-6 

program counter register addressing, 

5-36—5-37 

absolute mode in, 5-37 

immediate mode in, 5-37—5-59 

relative deferred mode in, 5-41 

relative mode in, 5-39—5-40 

programming 

trace exceptions during debugging 

in, 8-15 

use of stacks in, 3-14 

programming environment, 3-1—3-4 

programs 

stacks used by, 3-16 

virtual memory for, 1-3 

program synchronization, in PDP-11 

compatibility mode, 11-11 

protection 

access control for, 7-16—7-19 

access modes for, 2-5 

protection, (coni.) 

for memory, in multiprogramming, 

7-1 

for page table entries, 7-9 

privileged instructions for, 6-16 

processor access modes for, 

3-1—3-2 

protection codes, 7-16, 7-18 

push address (PUSHA) instruction, 

6-1, 9-53 

pushdown lists (stacks), 3-14 

push longword (PUSHL) instruction, 

6-13, 9-54 

push registers (PUSHR) instruction, 

6-14, 9-54 

Q 

quadword data type, 4-8—4-9, 4-24 

quadwords, 7-3 

queue data type, 2-13, 4-17—4-20 

queue instructions, 6-19—6-24 

insert entry in queue, 9-38—9-39 

insert entry in queue at head, 

interlocked, 9-39—9-40 

insert entry in queue at tail, 

interlocked, 9-40 

remove entry from queue, 

9-54—9-55 

remove entry from queue at head, 

interlocked, 9-55—9-56 

remove entry from queue at tail, 

interlocked, 9-56 

queues, 4-17—4-18 

R 

range notation, 5-5 

read access, 2-7 

receive registers, 3-9 
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register deferred index mode, 

5-21—5-22 

register deferred mode, 5-33—5-35 

register mode, 5-32—5-33 

registers, 3-4 

data in, 4-24—4-25 

general, 3-4—3-6 

general, addressing of, 2-9, 

5-12—5-35 

input/output, 3-13—3-14 

in input/output device controllers, 

2-15 

interrupt priority level, 8-21—8-22 

length, 7-9 

for memory management, 7-19 

multiple, instructions for, 6-14 

page mapping, 2-4 

for PDP-11 compatibility mode, 

11-2—11-3 

in peripheral devices, 7-4 

pop registers instruction for, 9-52 

privileged, 2-2 

procedure calls and, 2-7 

processor, 3-7—3-13, 10-2—10-3 

processor, in PDP-11 compatibility 

mode, 11-11 

processor status longword, 3-1, 7-1 

program counter addressing modes, 

5-36—5-41 

push registers instruction for, 9-54 

after restarts, 3-17 

stack, 8-30 

relative deferred mode, 5-41 

relative mode, 5-39—5-40 

relative queues, 2-13 

instructions for, 6-22—6-24 

remove entry from queue at head, 

interlocked (REMQHI) instruction, 

6-24, 9-55—9-56 

remove entry from queue at tail, 

interlocked (REMQTI) instruction, 

3-4, 6-24, 9-56 

remove entry from queue (REMQUE) 

instruction, 6-22, 9-54—9-55 

reserved addressing mode faults, 8-12 

reserved operand exceptions, 

8-13—8-14 

restartability, 3-17—3-18 

return from exception or interrupt 

(REI) instruction, 2-14, 3-3, 6-16, 

7-22, 9-56—9-57 

asynchronous system traps and, 8-8 

to enter PDP-11 compatibility 

mode, 11-6 

interrupts triggered by, 8-3 

program counter and processor 

status longword restored by, 8-4 

service routines exit using, 7-23 

trace exceptions and, 8-15 

return from procedure (RET) 

instruction, 9-57 

return from subroutine (RSB) 

instruction, 6-4, 9-58 

return instruction, 3-5, 6-16, 6-17 

rotate longword (ROTL) instruction, 

6-14, 9-58 

rounded results, 6-11 

routines 

call capability for, 2-7 

case instructions for, 6-4 

procedures, instructions for, 

6-16—6-18 

trace handlers, 8-17 

s 
save process context (SVPCTX) 

instruction, 3-3, 6-15, 7-22, 7-23, 

9-58—9-59 

executed on kernel or interrupt 

stacks, 2-8 

stack pointers referenced by, 8-28, 

8-33 

scan characters (SCANC) instruction, 

6-2, 9-59 

scheduling 

interrupt for, 8-3 

of processes, 2-8 

scratchpad registers, 3-7 
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security 

access control for, 7-16—7-19 

access modes for, 2-5 

privileged instructions for, 6-16 

processor access modes for, 

3-1—3-2 

self-relative queues, 2-13, 4-17, 4-18 

instructions for, 6-22—6-24 

serious system failures, 8-14—8-15 

sharing of data, 3-3—3-4 

short literals, 5-29 

single-precision floating (F_) data 

type, 4-3 

skip character (SKPC) instruction, 6-2, 

9-59—9-60 

SLR (length register), 7-8 

software 

asynchronous system traps and, 

8-8—8-9 

exceptions generated by, 8-2 

interrupt priority levels for, 8-3 

interrupts generated by, 8-19—8-21 

memory management, 2-5, 7-1 

process scheduling, 2-8 

programming environment for, 

3-1—3-4 

registers available to, 3-5 

system failures caused by, 8-14 

software context, 2-1 

software interrupt summary register 

(SISR), 8-19—8-20 

software process control block, 2-2 

span characters (SPANC) instruction, 

6-2, 9-60 

special instructions, 3-2—3-3, 6-1 

stack frames (call frames), 2-7, 3-5, 

6-14, 6-17 

stack pointers (SP), 2-13, 3-4, 3-6, 

3-14, 3-15, 8-27—8-28 

accessing, 8-30 

not used in register mode, 5-33 

for PDP-11 compatibility mode, 

11-3 

stack registers, 8-30 

stacks, 2-13, 3-14—3-16, 8-27—8-30 

autoincrement mode and, 5-14 

during exceptions and interrupts, 

8- 3 

in PI space, 7-2 

pop registers instruction for, 9-52 

push registers instruction for, 9-54 

status bits, 8-29 

string instructions, 10-2 

See also character string instructions 

subroutines 

branch to subroutine instruction 

for, 9-11 

call instructions for, 6-4—6-5 

calls for, 2-7 

jump to subroutine instruction for, 

9- 41—9-42 

return from subroutine instruction 

for, 9-58 

subscript range trap exceptions, 8-11 

subtract (SUB) instruction, 6-2, 6-11, 

6-12, 9-60—9-61 

subtract one and branch (SOB) 

instruction, 6-4, 9-61 

subtract packed (SUBP) instruction, 

6-7, 9-62 

subtract with carry (SBWC) 

instruction, 6-13, 9-62 

supervisor access mode, 2-5, 3-2, 7-1 

supervisor stack pointer (SSP), 8-27 

suspended instructions, 8-31 

swapping, 7-7 

switched-in context, 1-3 

switched-out context, 1-3 

synchronization 

of access to shared data, 3-3—3-4 

in PDP-11 compability mode, 11-11 

syntax, for operation of instructions, 

5-2 

system address space, 7-6 
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system authorize database 

(SYSUAF.DAT), 7-22 

system control block (SCB), 2-14, 

8-23—8-27 

system control block base register, 2-14 

system failures, 8-14—8-15 

system identification (SID) register, 

3-13 

system length register (SLR), 7-14 

system maps, 7-20 

system page table (SPT), 7-6 

system page table entries, 7-20 

system region page tables, 2-5 

system services, privileged, 7-22—7-23 

system space, 2-4, 7-2, 7-7, 7-8 

access control for, 7-17 

address translation for, 7-11—7-12 

T 

tail of the queue, 4-18, 6-19 

test (TST) instruction, 6-12, 6-14, 9-63 

time-of-year clock, 3-7 

time-of-year block register, 10-3 

trace bit, 8-6, 8-32 

trace exceptions, 8-15—8-17 

trace handlers, 8-17 

tracing, in PDP-11 compatibility mode, 

11-10 

trailing numeric string data type, 

4-12—4-15, 6-6 

transfer instructions, 6-5 

translation buffer invalidate all register 

(TBIA), 7-20 

translation buffer invalidate single 

(TBIS) register, 7-20 

translation buffers, 7-6, 7-20 

translation not valid faults, 7-20, 8-12, 

8-32 

translation of addresses, 2-4—2-5, 

7-8—7-16 

transmit registers, 3-9 

trap enable bits, 6-17, 6-18 

trap-enable flags, 8-5 

traps, 8-2 

asynchronous system, 2-3, 8-7—8-9 

unimplemented in PDP-11 

compatibility mode, 11-11 

truncated results, 6-11 

two’s complement data representation, 

4-6 

u 
urgent interrupts, 8-21 

user access mode, 2-5, 3-2, 7-1 

privileged system services accessed 

by, 7-22 

user stack, 2-13 

user stack pointer (USP), 8-27 

v 
variable-length bit field data type, 

2-12, 4-21—4-24 

variable-length bit field instructions, 

6-25 

compare field, 9-17 

extract field, 9-36—9-37 

find first bit, 9-37 

insert field, 9-41 

VAX-11/780 processors, 8-6 

VAX systems 

Micro VAX I and II systems, 10-4 

PDP-11 compatibility mode on, 

11-1—11-11 

vectors, in system control block, 

8-23—8-27 
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virtual address extension, 1-2—1-3 

virtual address space, 1-4, 7-1, 

7-6—7-8 

virtual addresses, 7-1 

virtual addressing, 2-4 

virtual memory, 7-2—7-6 

X 

XFC (extended function call) 

instruction, 9-35 

XOR (exclusive OR) instruction, 9-34 

w 
word data type, 4-7 

words, 7-3 

working memory, 7-2 

write access, 2-7 

z 
zero condition code, 2-14, 8-5 

zeros, 6-8, 6-10 



NOTES 



NOTES 



NOTES 



NOTES 



NOTES 



NOTES 



NOTES 



NOTES 



NOTES 



VAX Architecture 1986 

READER S COMMENTS 

Your comments and suggestions will help us in our continuous effort to 
improve the quality and usefulness of our handbooks. 

What is your general reaction to this handbook? (format, accuracy, 
completeness, organization, etc.)_ 

What features are most useful? 

Does the publication satisfy your needs? 

What errors have you found? 

Additional comments 

Name 

Title 

Company Dept. 

Address 

City State ZIP 
(staple here) EB-26115-46 



(please fold here) 

No Postage 

Necessary if 

Mailed in the 

United States 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 MAYNARD, MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

Digital Equipment Corporation 
Corporate Communications Group 
CFO 1-2/M92 
200 Baker Avenue 
West Concord, MA 01742 






