
VAX Architecture Handbook

VAX Architecture Handbook

1986

Digital believes the information in this publication is accurate as of its publica¬

tion date; such information is subject to change without notice. Digital is not

responsible for any inadvertent errors.

The following are trademarks of Digital Equipment Corporation:

DEC PDP RT

DECmate P/OS UNIBUS

DECUS Professional VAX

DECwriter Rainbow VMS

DIBOL RSTS VT

MASSBUS

MicroVAX

RSX Work Processor

And the Digital Logo: SQSDDSD

Copyright ® 1986 Digital Equipment Corporation. All Rights Reserved.

CONTENTS

Preface

Chapter 1 ■ VAX Architecture Design

Introducing VAX Architecture.1-1

Virtual Address Extension.1-2

PDP-11 Computer Compatibility Option.1-3

Memory Management.1-3

Additional Literature.1-4

Chapter 2 ■ VAX Architecture Overview

Processing Concepts.2-1

Context Switching.2-2

Priority Dispatching.2-3

Virtual Addressing.2-4

Memory Management.2-4

Instruction Set.2-5

Routine Call Capability.2-7

Instruction Operand Processing.2-7

Process Control Instructions.2-8

General Register Addressing.2-9

Data Types.2-10

Stacks.2-13

Condition Codes.2-13

Exceptions and Interrupts.2-14

Input/output Control.2-15

Chapter 3 ■ VAX Architecture Characteristics

Programming Environment.3-1

Processor Status Longword.3-1

Processor Access Modes.3-1

Special Instructions.3-2

Data Sharing.3-3

Data Access Synchronization.3-3

Registers.3-4

General Registers.3-4

Processor Registers.3-7

Input/output Registers.3-13

Stacks.3-14

Cache Memory.3-16

Restartability. 3-17

Interrupts and Errors..3-18

Chapter 4 ■ Data Representation

Character String Data.4-1

Floating-point Data.4-2

D_floating Data.4-2

F_floating Data.4-3

G_floating Data.4-4

H_floating Data.4-5

Integer Data.4-6

Byte Data.4-7

Word Data.4-7

Longword Data.4-8

Quadword Data.4-8

Octaword Data.4-9

Numeric String Data.4-10

Leading Separate Numeric String Data.4-10

Trailing Numeric String Data.4-12

Packed Decimal String Data.4-16

Queue Data.4-17

Variable Length Bit Field Data.4-21

Data in Registers.4-24

Chapter 5 ■ The Instruction Characteristics

Notation Convention.5-1

Assembler Notation.5-1

Operand Notation.5-1

Operation Notation.5-2

Range and Extent Notation.5-5

MACRO Source Statement Format.5-5

Instruction Format.5-6

Operator Field.5-8

Operand Field.5-9

Addressing Modes.5-10

General Mode Addressing.5-12

Branch Mode Addressing.5-41

Chapter 6 ■ Functions of the Instruction Set

Address Instructions.6-1

Arithmetic Instructions.6-2

Character String Instructions.6-2

Control Instructions.6-3

Case Instructions.6-4

Loop Control Instructions.6-4

Subroutine Call Instructions.6-4

Transfer Instructions.6-5

Cyclic Redundancy Check Instruction.6-5

Decimal String Instructions.6-6

Edit Instruction.6-9

Floating-point Instructions.6-10

Index Instruction.6-12

Integer Instructions.6-13

Logic Instructions.6-13

Multiple Register Instructions.6-14

Privileged Instructions.6-15

Procedure Call Instructions.6-16

Processor Status Longword Instructions.6-18

Queue Instructions.6-19

Absolute Queue Instructions.6-19

Self-relative Queue Instructions.6-22

Variable Length Bit Field Instructions.6-25

Chapter 7 ■ Memory Management

Virtual Memory.7-2

Virtual Address Space.7-6

Address Translation.7-8

Page Table Entry.7-8

Page Table Entry for I/O Devices.7-10

Changing Page Table Entries.7-11

System Space Address Translation.7-11

Process Space Address Translation.7-13

Access Control.7-16

Controlling Memory Management.7-19

Faults and Parameters.7-20

Accessing Privileged System Services.7-22

Chapter 8 ■ Exceptions and Interrupts

Event Handling.8-1

Interrupt Priority Levels.8-3

Exceptions and Interrupts.8-3

Processor Status.8-4

Asynchronous System Traps.8-7

Exceptions.8-9

Arithmetic Exceptions.8-9

Instruction Fault.8-11

Memory Management Exceptions.8-12

Operand Reference Exceptions.8-12

Serious System Failures.8-14

Trace Exceptions.8-15

Interrupts.8-18

Device Interrupts.8-19

Software-generated Interrupts.8-19

Urgent Interrupts.8-21

Interrupt Priority Level Register.8-21

Interrupt Example.8-22

System Control Block.8-23

Stacks.8-27

Stack Location.8-28

Stack Alignment.8-28

Status Bits.8-29

Accessing Stack Registers.8-30

Recognition Priority.8-30

Suspended Instructions.8-31

Initiating an Exception or Interrupt.8-31

Chapter 9 ■ The Instruction Set

Add.9-1

Add Aligned Word Interlocked.9-2

Add Compare and Branch.9-2

Add One and Branch.9-3

Add Packed.9-3

Add with Carry.9-4

Arithmetic Shift.9-4

Arithmetic Shift and Round Packed.9-4

Bit Clear.9-5

Bit Clear Processor Status Word.9-5

Bit Set.9-6

Bit Set Processor Status Word.9-6

Bit Test.9-6

Branch. 9-7

Branch on Bit.9-7

Branch on Bit Interlocked.9-7

Branch on Bit and Modify without Interlock.9-8

Branch on Condition.9-8

Branch on Low Bit.9-10

Branch to Subroutine.9-11

Breakpoint Fault.9-11

Bugcheck.9-11

Call Procedure with General Argument List.9-12

Call Procedure with Stack Argument List.9-13

Case.9-14

Change Mode.9-14

Clear.9-15

Compare. 9-15

Compare Characters.9-16

Compare Field.9-17

Compare Packed.9-17

Convert.9-18

Convert Leading Separate Numeric to Packed.9-20

Convert Longword to Packed...9-20

Convert Packed to Leading Separate Numeric.9-21

Convert Packed to Longword.9-21

Convert Packed to Trailing Numeric.9-22

Convert Trailing Numeric to Packed.9-23

Cyclic Redundancy Check Instruction.9-23

Decrement.9-26

Divide. 9-26

Divide Packed.9-27

Edit Instruction.9-27

EO$ ADJUST_INPUT.9-29

EO$BLANK_ZERO.9-29

EO$CLEAR_SIGNIF.9-29

EO$END.9-30

EO$END_FLOAT.9-30

EO$FILL.9-30

EO$FLOAT.9-31

EO$INSERT.9-31

EO$LOAD.9-32

EO$MOVE.9-32

EO$REPLACE_SIGN.9-33

EO$SET_SIGNIF.9-33

EO$STORE_SIGN.9-34

Exclusive OR.9-34

Extended Divide.9-33

Extended Function Call.9-35

Extended Modulus.9-35

Extended Multiply.9-36

Extract Field.9-36

Find First Bit.9-37

Halt.9-37

Increment.9-38

Index.9-38

Insert Entry in Queue.9-38

Insert Entry into Queue at Head, Interlocked.9-39

Insert Entry into Queue at Tail, Interlocked.9-40

Insert Field.9-41

Jump.9-41

Jump to Subroutine.9-41

Load Process Context.9-42

Locate Character.9-42

Match Characters.9-43

Move.9-43

Move Address.9-44

Move Characters.9-44

Move Complement.9-45

Move from Processor Register.9-45

Move from Processor Status Longword.9-47

Move Negated.9-47

Move Packed.9-48

Move to Processor Register.9-48

Move Translated Characters.9-49

Move Translated until Character.9-49

Move Zero-extended.9-50

Multiply.9-50

Multiply Packed.9-51

Polynomial Evaluation.9-31

Pop Registers.9-32

Probe Accessibility.9-32

Push Address.9-33

Push Longword.9-54

Push Registers.9-54

Remove Entry from Queue.9-54

Remove Entry from Queue at Head, Interlocked.9-55

Remove Entry from Queue at Tail, Interlocked.9-56

Return from Exception or Interrupt.9-56

Return from Procedure.9-57

Return from Subroutine.9-58

Rotate Longword.9-58

Save Process Context.9-58

Scan Characters.9-59

Skip Character.9-59

Span Characters.9-60

Subtract.9-60

Subtract One and Branch.9-61

Subtract Packed.9-62

Subtract with Carry.9-62

Test.9-63

Chapter 10 ■ Architectural Subsetting

Subsetting Rules.10-1

Floating-point Instructions.10-1

String Instructions.10-2

Compatibility Mode Instruction Set.10-2

Processor Registers.10-2

The Kernel Instruction Set.10-3

Instruction Emulation.10-4

Micro VAX I Systems.10-4

Micro VAX II Systems.10-4

Chapter 11 ■ PDP-11 Compatibility Mode

PDP-11 User Environment Emulation.11-2

General Registers.11-2

Stack Pointer Register.11-3

Processor Status Word.11-3

Compatibility Mode Instructions.11-4

Entering and Leaving PDP-11 Compatibility Mode.11-6

Memory Management.11-7

Exceptions and Interrupts.11-10

Tracing in Compatibility Mode.11-10

Unimplemented PDP-11 Traps.11-11

Input/output References.11-11

Processor Registers.11-11

Program Synchronization.11-11

Appendix A ■ Powers of Binary and Hexadecimal Numbers.A-l

Appendix B ■ List of Instructions by Mnemonic.B-l

Appendix C ■ List of Instructions by Opcode.C-l

Glossary.Glossary-1

Index.Index-1

Preface

The primary purpose of this handbook is to provide the detail needed to make

a sound technical evaluation of the capabilities and characteristics of the VAX

Architecture. A secondary purpose is its use as a text for students of computer

architecture. The handbook is not an assembly language reference. However,

readers interested in assembly language programming will find this handbook

an excellent introduction to that subject.

. m :, :*: '1 ’ ^rrihsd ■'\mfmq -r 3

- ' ' • : .»• .. .• ' . •. . : •• • '•?■■. • v.h,., -

"7-ij ?(ft: I- . g ?o’: iX r >i*$Z ::tf Si . >.>q " .0" 0 ;? , ■

• • - *•'

Chapter 1 ■ VAX Architecture Design

During the next decade, computers and the computer industry will witness

ever-increasing, perhaps unpredictable, demands. In finance, government,

industry, and in the home, computers will serve expanding roles, solving prob¬

lems, managing processes, or facilitating communication. Digital developed an

innovative computer technology to confront these challenges—a technology

that offers vast power and enormous flexibility for every application. At the

same time, we have held fast to the philosophy of affordability and ease of use

that made Digital the leader of the minicomputer industry.

Scientific, industrial, commercial, and educational market users have already

put the original VAX model through its paces in numerous situations—real¬

time, computational, program development. In the coming decade we will see

a wide range of new tasks handled by VAX processors.

■ Introducing VAX Architecture

The VAX architecture is the heart of the VAX processor family. We define

architecture as the collection of attributes common to all VAX processors—

attributes that guarantee that all software developed on a VAX processor runs

without change on all VAX processors.

Particularly pertinent attributes are the instruction set, memory management,

and certain other aspects of the design that help define contexts and pro¬

cesses. Let us make a distinction between the architecture and the implemen¬

tation of that architecture. For example, the architecture of the typewriter is

essentially fixed: it is the keyboard layout. With knowledge of the alphabet

and punctuation systems, any typist can make a typewriter work—can pro¬

cess jobs. However, each manufacturer may implement that architecture in

differing ways. Some may have striking print keys while others may have

spherical typing elements. Some may have a blue keyboard, some black. In

addition, the manufacturer could trade one feature for another; for example, a

lighter touch versus the capability to make a number of carbons. Neverthe¬

less, all typewriters still perform an essential function, typing.

Computer architectures also perform an essential function. Each processor in

the family may bear slightly differing implementations and tradeoffs. Yet all

will fulfill the requirements of the machine. And all will deliver the same ser¬

vice to the users. For example, having learned the instruction set, a program¬

mer is ensured that an instruction performs precisely the same operation on

each processor in the VAX computer family. This includes the Micro VAX pro¬

cessors that use a subset of the VAX instruction set.

1-2 ■ VAX Architecture Design

VAX architecture is appropriate over a variety of system costs, performance

and application needs. Therefore, a broad range of user requirements can be

met at a lower cost because the price of supporting many different architec¬

tures is eliminated.

The most visible attribute of VAX architecture is the instruction set. Over

three hundred instructions give an assembly-level programmer extensive con¬

trol of computer operation. Each instruction has a mnemonic, a shorthand

name that suggests its function. (Obvious mnemonics are ADD, DIV, MOV,

and PUSH.) Independence is incorporated into the instruction set. That is, the

operation being performed, the type of data used, and the method of address¬

ing can all be considered independently by the compiler. This makes for

faster, more efficient, and easier to implement compilers.

Some recurrent operations from high-level languages are engineered into the

hardware so that a single instruction can handle them. The FORTRAN DO

loop and three-operand addition (A = B + C) are examples of operations

that are handled by a single VAX instruction.

The instructions include provisions to make various applications and operat¬

ing system codes more efficient. There are, in this group, hardware support of

queues, easy access to bit fields of variable lengths, and simple instructions to

save or restore a program context.

Because Digital foresaw the possibility of adding more and more applications,

the instruction set is extendible. The instruction set can be expanded to

include new data types and operators in a way that consistently matches all the

ones that already exist. Enormous flexibility is assured this way, because

what exists now does not significantly constrain what may be added in the

future.

■ Virtual Address Extension

The word VAX suggests the premier feature of VAX processors—virtual

address extension. In a VAX computer, information is located with a 32-bit

address. This means effectively that the computer can recognize more than

four billion addresses. In minicomputer and programming terms, this is an

enormous address range. The remarkable thing about this address space is that

it is virtual.

The physical memory of the computer need not be nearly as large as the four

billion bytes for the machine to process data whose addresses are scattered

through the address space. In fact, what happens is that a sophisticated

scheme called memory management allows programmers to operate as if a

major part of the virtual address space is available to them. Memory manage¬

ment handles all the details of storing programs and subsequently bringing

them into main memory where they are processed.

1-3

From the programmers’ points of view, two billion bytes of virtual address

space can be used for programs. Programmers need never worry about the

complicated techniques of overlaying or segmenting to squeeze the program

into a smaller address range. Logic is built into the VAX processors to quickly

■ translate all the virtual addresses to physical addresses

■ store the programs and data in convenient locations

■ bring into main memory whatever parts of the program or data are needed

at any instant.

Another characteristic of the VAX architecture is the rapid switching of pro¬

cess context. VAX machines are high-powered processors. Many programs

and many programmers can use a VAX processor simultaneously, with each

appearing to have control. Actually, the processor is executing pieces of one

program and switching back and forth to execute other programs. A switched-

in context allows a program to run. A switched-out context makes the program

wait for the processor. Consequently, many different activities can occur on a

VAX processor at any one time. Context switching takes place so quickly that

no one is aware of the change.

■ PDP-11 Computer Compatibility Option

We use the word compatibility to designate VAX systems’ connection to the

PDP-11 computers. Customers have a large investment in the PDP-11 com¬

puters and software. To protect that investment, and to simplify the migra¬

tion procedures, Digital offers optional software to ensure that VAX systems

accept with minimal conversion many types of PDP-11 programs.

Conversely, VAX systems offer an excellent host development environment

for applications that will eventually run on PDP-11 computers. Naturally,

there are some restrictions. But most of the time, a simple recompilation of

programs is all that is required to carry a PDP-11 program to a VAX processor.

Compatibility mode programs may execute with native mode programs in a

VAX system environment.

■ Memory Management

The memory management hardware is responsible for maintaining virtual

memory environment and for enforcing memory protection between access

modes. But that is only a part of the memory management function. In particu¬

lar, the memory management hardware enables the operating system to pro¬

vide an extremely flexible and efficient virtual memory programming

environment.

1-4 ■ VAX Architecture Design

Virtual address space consists of all possible 32-bit addresses that can be

exchanged between a program and the processor to identify a byte location in

physical memory. The memory management hardware translates a virtual

address into a physical address.

NOTE

A physical address is the address exchanged between the pro¬

cessor, memory, and the peripheral adapters. Typically, the

physical address is transparent to the programmer, who deals

with virtual addresses.

■ Additional Literature

Additional literature on the VAX architecture is available. The literature is

directed toward two types of readers—those who need only enough detail to

evaluate the VAX processors and those who need the myriad of detail needed

to develop assembly language programs. Should you need for that literature, it

can be ordered through your local Digital Sales Office or through the Digital

Accessories and Supplies Group.

For the evaluators, there is the VAX Handbook Series of which this handbook

is one. They cover a variety of subjects related to VAX processors—hardware,

software, languages, tools, and others.

For assembly language programmers (and in-depth evaluators), there is a man¬

ual available that describes the architecture in great detail (VAX-11 Architec¬

ture Reference Manual, Order Code EK-VAXAR-RM-002). The manual

provides a functional description of the behavior of the VAX processors. In

addition, there is a programming card containing the instructions in tabular

form. The card lists by opcode each instruction, its arguments, and the affect

the instruction has on the condition codes (VAX-11 Programming Card, order

number AV-D827C-TE).

We hope that the handbooks answer most of your questions about the VAX

family of computers, their architecture, and the abundance of available soft¬

ware. If you have more questions, your Digital sales representative will be

happy to help you.

Chapter 2 ■ VAX Architecture Overview

The term VAX architecture, when used in the context of this discussion, refers

to the functional behavior of a VAX processor as opposed to the logical design

and the physical implementation. The primary advantage of a common family

architecture is that it provides the ability to create software on one processor

and execute that software on any other processor in the family.

NOTE

For your convenience, this handbook contains a glossary of

words and terms that have either a unique meaning in VAX

systems or are used with special meaning.

■ Processing Concepts

VAX processors are designed specifically to support a high-performance multi¬

programming environment. The major advantage of a multiprogramming sys¬

tem is its ability to share its resources. For example, multiprogramming

enables the apparently simultaneous execution of many applications and the

interactive development of applications programs. Hardware characteristics

that support multiprogramming are

■ Rapid context switching.

■ Priority dispatching.

■ Virtual addressing.

■ Memory management.

Multiprogramming VAX systems not only share the processor among several

processes but also protect processes from one another while allowing them to

communicate and share both code and data.

A process is the basic entity that can be executed by a VAX system. Processes

consist of an address space, a hardware context, and a software context. The

hardware context is defined by a process control block (PCB). The block is a

data structure containing images of the general purpose registers, processor

status longword, program counter, process stack pointers, process mapping

registers, and several minor control fields.

2-2 ■ VAX Architecture Overview

When a process is not executing, its hardware context is stored in the process

control block. Most of the process control block must be moved to internal

registers for the process to execute. When a process is executing, some of its

hardware context is updated in the internal registers.

Saving the contents of the privileged registers in the process control block of

the currently executing process and then loading a new set of context in the

privileged registers from another process control block is termed context

switching. Context switching occurs as one process after another is scheduled

for execution.

Context Switching

In a multiprogramming environment, several individual streams of code can

be ready to execute at any time. Instead of allowing each stream to execute to

completion serially (as in a batch-only stream), the operating system inter¬

venes and switches among them. In VAX computers, the hardware establishes

an environment for rapid switching. Switching occurs to increase the effi¬

ciency of the computer by using its resources in a balanced fashion, and to

allow the intervention of processes or events that require priority treatment.

The stream of code executing at any one time is determined by its hardware

context; that is, the information that is in processor registers. That informa¬

tion identifies

■ The location of the stream’s instructions and data.

■ Which instruction to execute next.

■ The processor status during execution.

Therefore, a process is a stream of instructions and data defined by a hardware

context. Each process has a unique identification. The operating system

switches between processes by requesting the processor to save one process’s

context and load another. Context switching occurs rapidly because the

instruction set includes instructions that save and load hardware context.

For each process eligible to execute, the operating system creates a data struc¬

ture called the software process control block. Within that block is a pointer

to another data structure, the hardware process control block. That control

block contains the hardware process context, that is, all the data needed to

load the processor’s programmable registers when a context switch occurs. To

give control of the processor to a process, the operating system loads the pro¬

cessor’s process control block base register with the physical address of a hard¬

ware process control block and issues the load process context instruction. The

processor loads the process context in one operation and is ready to execute

code within that context.

2-3

The process control block also contains the definition of the process virtual

address space. Thus, the mapping of the process is automatically context-

switched.

Furthermore, the process control block provides the mechanism for triggering

asynchronous system traps (AST) to processes. The AST field is used to sched¬

ule a software interrupt. The interrupt initiates an AST routine and ensures

that they (interrupt and AST routine) are delivered to the proper process.

Priority Dispatching

While running in the context of one process, the processor executes instruc¬

tions and controls data flow to and from peripherals and main memory. To

share processor, memory, and peripheral resources among many processes, the

processor has two arbitration mechanisms that support high-performance

multiprogramming—exceptions and interrupts. Exceptions are events that

occur synchronously (predictably) with respect to the execution of a particular

stream of instructions. Interrupts are external events that occur asynchro¬

nously.

The flow of execution can change at any time, and the processor distinguishes

between changes in flow that are local to a process and those that are system-

wide. Process-local changes occur as the result of a user software error or

when user software calls operating system services. They are handled through

the processor’s exception detection mechanism and the operating system’s

exception dispatcher.

Systemwide changes in flow generally occur as the result of interrupts from

devices or interrupts generated by the operating system software. Interrupts

are handled by the processor’s interrupt detection mechanism and the operat¬

ing system’s interrupt service routines. Systemwide changes in flow may also

occur as the result of severe hardware errors, in which case they are handled

either as special exceptions or high-priority interrupts.

Systemwide changes in flow take priority over process-local ones. Further¬

more, the processor uses a priority system for servicing interrupts. Each kind

of interrupt is assigned a priority, and the processor responds to the highest-

priority interrupt pending. For example, interrupts from the high-speed disk

devices take precedence over interrupts from low-speed devices.

The processor services interrupts between instructions, or at well-defined

points during the execution of long, iterative instructions. When the proces¬

sor acknowledges an interrupt, it switches rapidly to a special systemwide con¬

text to enable the operating system to service the interrupt. Systemwide

changes in the flow of execution are handled so they do not disrupt individual

processes.

2-4 ■ VAX Architecture Overview

Virtual Addressing

Most data is located in memory using the address of an 8-bit byte. Virtual

addresses identify the byte locations. Such addresses are called virtual because

they are not the real addresses for physical memory locations. Rather, they are

translated into real addresses by the processor under operating system control.

A virtual address, unlike a physical memory address, is not a unique address of

a location in memory. For example, two programs using the same virtual

address might refer to two different physical memory locations. Conversely,

two programs could refer to the same physical memory location using differ¬

ent virtual addresses.

The set of all possible 32-bit virtual addresses is called virtual address space.

It can be viewed as an array of byte locations labeled from 0 to 4,294,967,295

(232 - 1). This space is divided into sets of virtual addresses designated for

certain uses: those used by processes constitute half of the total virtual

address space, and are collectively designated as process space. Addresses in

the remaining half of virtual address space refer to locations maintained and

protected by the operating system, and are collectively designated as system

space.

Memory Management

Memory management hardware enables the operating system to provide an

extremely flexible and efficient virtual memory programming environment.

The memory management hardware oversees the handling of virtual address

space including memory protection.

Virtual address space is divided into pages. Each page represents 512 bytes of

contiguously addressed memory. The first page begins at byte 0 and continues

to byte 511. The next page begins at byte 512 and continues to byte 1023,

and so forth.

To make memory mapping efficient, the processor must be able to translate

virtual addresses rapidly to physical addresses. Two features providing rapid

address translation are the processor’s internal address translation buffer and

the translation algorithm itself.

The processor has three pair of page mapping registers. Two pair are for the

process space (P0 and PI) and one pair for system space. The operating sys¬

tem’s memory management software loads the pairs of registers with base

addresses and lengths of data structures called page tables. The tables provide

the mapping information for each virtual page in the system. Thus, there is

one page table for each of the three regions.

2-5

A page table is a virtually contiguous array of page table entries. Each entry is

a longword representing the physical mapping and protection for one virtual

page. To translate a virtual address to a physical address, the processor uses

the virtual page number as an index into the page table from the given page

table base address. Each translation contains 512 virtual addresses.

All process page tables have virtual addresses in the system region of virtual

address space. But the system region page table itself is located by its address

in physical memory. That is, the system region page table base register con¬

tains the physical address of the page table base, while the process page table

base registers contain the virtual addresses of their page table bases.

There are two advantages to using a virtual address as the base address of a

process page table. The first is that all page tables need not reside in physical

memory. The system region page table is the only page table that needs to be

resident in physical memory. The process page tables can reside in auxiliary

memory. That is, they can themselves be paged and swapped as necessary.

The second advantage is that the operating system’s memory management soft¬

ware can allocate process page tables dynamically because they do not need to

be mapped into contiguous physical pages. And although the system region

page table must be mapped into contiguous physical pages, this requirement

does not restrict physical memory allocation. The region is shared among pro¬

cesses and therefore does not require redefinition from context to context.

Memory protection is implemented by having four access modes. Each pro¬

cess is assigned an access mode. The hardware checks the memory access

request against the assigned access mode. There are four access modes: ker¬

nel, executive, supervisor, and user. The kernel mode has the highest degree

of access while the user has the lowest degree of access. Memory management

is described in greater detail later in this book.

■ Instruction Set

A major goal of the VAX architecture is to provide an instruction set that is

symmetrical with respect to data types. Symmetrical operations include data

movement, data conversion, data testing, and computation. Thus, the best

instruction for the data type can be selected for optimum processing.

Instruction mnemonics are formed by combining an operator abbreviation

with a data-type suffix. Conversion instructions are formed by adding suf¬

fixes for both the source and destination data types. Computation instruc¬

tions have an additional suffix to indicate the choice between two-operand

and three-operand instructions. Instruction mnemonics were carefully chosen

to ensure they perform the task for which they were designed.

2-6 ■ VAX Architecture Overview

A native-mode instruction may start on any byte boundary. The variable-

length instruction format makes code more compact and also guarantees that

the instruction set can be easily extended. Operation codes or opcodes for the

operations are single or double bytes followed by up to six operand specifiers.

An operand specifier can be from 1 to 17 bytes long depending on the address¬

ing mode and data type.

Figure 2-1 illustrates the autodecrement mode move longword instruction as a

string of bytes starting with the opcode followed by two operand specifiers.

In this example, the assumed starting location is 00003000. When the proces¬

sor completes the execution of an instruction, the program counter contains

the address of the first byte of the next instruction. Program counter opera¬

tion is totally transparent to the programmer.

MACHINE CODE: (ASSUMED STARTING LOCATION 00003000)

00003000 DO OPCODE FOR MOVE LONG INSTRUCTION

00003001 73 AUTODECREMENT MODE, REGISTER R3

00003002 54 REGISTER MODE, REGISTER R4

Figure 2-1 ■ Autodecrement Move Longword Instruction

The program counter can be used to identify operands. The assembler trans¬

lates many types of operand references into addressing modes using the pro¬

gram counter. The addressing modes have names different from those when

other registers are used. When using the program counter in autoincrement

mode, the mode is called immediate mode. Immediate mode is used to specify

inline constants. Autoincrement deferred mode using the program counter is

called absolute mode. Absolute mode is used to reference an absolute address.

Displacement and displacement-deferred modes using the program counter

are used to specify an operand using an offset from the current location.

Addressing using the program counter enables the coding of position-inde¬

pendent code. Position-independent code can be executed anywhere in virtual

address space after it has been linked. Program linkages are identified as abso¬

lute locations in virtual address space. All other addresses are identified rela¬

tive to the current instruction.

2-7

Routine Call Capability

The processor provides two kinds of routine call instructions—those for sub¬

routines and those for procedures. In general, a subroutine is a routine entered

using a jump to subroutine or branch to subroutine instruction, while a proce¬

dure is a routine entered using a call instruction.

The processor automatically saves and restores the contents of registers to be

preserved across procedure calls, and it provides two methods for passing argu¬

ment lists to called procedures—by passing the arguments on the stack and by

passing addresses of arguments elsewhere in memory. The processor also con¬

structs a journal of procedure call nesting by using a general register as a

pointer to the place on the stack where a procedure has its linkage data. This

record of each procedure’s stack data, called its stack frame, enables proper

returns from procedures even when the procedures leave data on the stack. In

addition, user and operating system software can unwind the stack frame to

trace back through nested calls to handle errors or debug programs.

Instruction Operand Processing

The following three steps are performed by each instruction during execution.

First, each operand specifier is evaluated by type of access in the order in

which they appear in the instruction stream.

1. Read access—evaluate the operand address, read the operand, and save

the operand.

2. Write access—evaluate the operand address and save the address.

3. Modify access—evaluate the operand address, read the operand, save both

the address and the operand.

4. Address and branch access—evaluate the address and save the address.

5. Field access—evaluate the operand base address and save the address.

Second, the operation indicated by the instruction is performed. Third, the

result or results are stored using the saved address in the order indicated by

the occurrence of operand specifiers in the instruction stream.

NOTE

Character and numeric string instructions write any output

strings and store the registers during step 3.

The implications of this processing are

1. Autoincrement and autodecrement operations occur as the operand and

specifiers are processed and subsequent operand specifiers use the

updated contents of register modified by those operations.

2-8 • VAX Architecture Overview

2. Except for those operations mentioned in step 1, all input operations are

read and all addresses of output operands are computed before any results

of the instruction are stored.

3. An operand of modify access type is not read, modified, and written as an

indivisible operation. Therefore, modify access type operands cannot be

used for synchronization. For synchronization, refer to the ADAWI,

BBCCI, BBSSI, INSQHI, INSQTI, REMQHI, and REMQTI instructions.

4. If an instruction references two operands of write or modify access type at

the same or overlapping address, the first will be overwritten by the sec¬

ond. If an instruction modifies a register implicitly and also has an output

operand, the output store is performed after the register update.

Process Control Instructions

Process scheduling software executes on the interrupt stack. This protocol

makes available a noncontext-switched stack. If the scheduler were running

on a process’s kernel stack, any state information in that stack would disap¬

pear whenever a new process is selected. Running on the interrupt stack can

occur as the result of the interrupt origin of scheduling events. Some synchro¬

nous scheduling requests (such as a WAIT service) may cause rescheduling

without any interrupt occurrence. For this reason, the save process context

(SVPCTX) instruction can be executed while on either the kernel or interrupt

stack. It forces a transition to execution on the interrupt stack.

All of the process control instructions are privileged and can be executed in

kernel mode only. Example 2-1 illustrates how the process structure instruc¬

tions can be used to implement process dispatching software. It is assumed

that this simple dispatch routine is always entered by way of an interrupt.

Example 2-1 ■ Simple Dispatch Routine

i ENTERED VIA INTERRUPT , IPL = 3

RESCHED:SVPCTX iSaue context in PCB.

<set state to runnable and place current PCB on proper RUN queue)

<Remoue head of highest priority, nonempty, RUN queue)

MTPR GHPHYSPCB, PCBB ;Set physical PCB address in PCBB.

LDPCTX

REI

; Load context from PCB for new process.

iPlace process in execution.

2-9

■ General Register Addressing

Within the processor there are locations called general registers that can be

used for temporary data storage and addressing. Sixteen 32-bit general regis¬

ters are available for use with the native instruction set, though some have

special significance. For example, one register is designated as the program

counter, and it contains the address of the next instruction to be executed.

An instruction operand can be located in main memory, in a general register,

or in the instruction stream itself. The method by which an operand location

is specified is called the operand addressing mode. VAX processors offer a

variety of addressing modes and addressing mode optimizations: one address¬

ing mode locates an operand in a register; several other addressing modes

locate an operand in memory by using a register to point to the operand, point

to a table of operands, or point to a table of operand addresses.

Other addressing modes exist that are indexed modifications of the address¬

ing modes that locate an operand in memory. Finally, still other addressing

modes identify the location of the operand in the instruction stream, includ¬

ing one for constant data and one for branch instruction addresses. The gen¬

eral register addressing modes are briefly summarized in Table 2-1.

Table 2-1 ■ General Register Addressing Modes

Mode Symbol Indexed

Absolute @#addr [Rx]

Autodecrement -(R n) [Rx]

Autoincrement (R «) + [Rx]

Autoincrement Deferred @(R«) + [Rx]

Displacement—

Byte Btdispl(Rn) [Rx]
Word mdispKRn) [Rx]
Longword Lfdispl{Rn) [Rx]

Displacement Deferred-

Byte @R^displ(Rn) [Rx]
Word @yVMispl(Rn) [Rx]
Longword @Lfdispl(Rn) [Rx]

Immediate It# constant NA

Literal St# constant NA

Register Rn [Rx]

Register Deferred (R n) [Rx]

Legend: n = 0:15, x = 0:14, displ = displacement address

2-10 ■ VAX Architecture Overview

■ Data Types

The processor’s native instruction set recognizes several primary data types—

character-string, floating-point, integer, numeric-string, packed-decimal, and

variable-length bit field. For each of these data types, the selection of opera¬

tion immediately informs the processor of the size and interpretation of the

data. This is done so that the processor can then manipulate the bit field as a

function of user-defined field size and relative position from a given byte

address.

Several variations of the primary data types exist. Table 2-2 provides a sum¬

mary of all the data types available. Figure 2-2 illustrates some of them graphi¬

cally.

Table 2-2 ■ Data Types

Data Type Size Range (decimal)

Integer— Signed Unsigned

Byte 8 bits - 128 to + 127 0 to 255

Word 16 bits - 32768 to + 32767 0 to 65535

Longword 32 bits -231 to +231 - 1 0 to232 - 1

Quadword 64 bits - 263 to + 263 - 1 0 to 264 - 1

Octaword 128 bits - 2127 to + 2127 - 1 0 to + 2128 - 1

Floating Point—

D_floating 64 bits approximately 16 decimal digits

precision

F_floating 32 bits approximately 7 decimal digits
precision

G_floating 64 bits approximately 15 decimal digits
precision

H_floating 128 bits approximately 33 decimal digits
precision

Packed Decimal 0 to 16 bytes numeric, two digits per byte sign in
String (31 digits) low half of last byte

Character String 0 to 65533 bytes one character per byte

Variable-length 0 to 32 bits dependent on interpretation

Bit Field

Numeric String 0 to 31 bytes

(digits)

- 1031 - 1 to + 1031 - 1

Queue > 2 longwords/

queue entry
0 through 2 billion entries

2-11

BYTE

7

LONGWORD

31

WORD

15

tz]:A

QUADWORD

31

63

OCTAWORD
31

127

D_FLOATING

15

IE EXPONENT FRACTION

FRACTION

FRACTION

FRACTION

63

G_FLOATING

15 14 4 3

FRACTION

FRACTION

FRACTION

63

CHARACTER STRING (XYZ)

7 0

A

A + 1

A + 2

F_FLOATING

15 7 6

s\ EXPONENT | FRACTION

FRACTION

48

S\ EXPONENT | FRACTION |:A

31

H_FLOATING

15 14

A + 2
IE EXPONENT

FRACTION

FRACTION

FRACTION

FRACTION

FRACTION

FRACTION

FRACTION

: A

32

127

12

96

0

A + 2

A + 4

A + 6

A + 8

A + 10

A + 12

A + 14

113

PACKED DECIMAL STRING (-

7 4 3 0

: A

123)

1

: A + 1

VARIABLE-LENGTH BIT FIELD

P + S P + S - 1 P P - 1

]:A
A = ADDRESS S - 1

Figure 2-2 ■ Data-type Representations

2-12 ■ VAX Architecture Overview

The data type of an instruction operand identifies how many bits of storage

should be considered as a unit and what is to be the interpretation of that unit.

This is important because, as you will see in later sections, identical bit pat¬

terns can be interpreted as very different data items; similarly, different bit

patterns may be used to represent the same numerical value.

Character string data is a string of bytes containing any binary data, for exam¬

ple, ASCII codes. The first character in the string is stored in the first byte,

the second character is stored in the second byte, and so on. In particular, a

character string that contains ASCII codes for decimal digits is called a

numeric string.

Floating-point values are stored using a signed exponent and a binary frac¬

tion. Four types of floating-point data formats are provided. Subset implemen¬

tations of the VAX architecture may not include all four data types. Operating

system software may emulate omitted instructions and may utilize user-mode

stack space during emulation. F_floating and D_floating are 4 and 8 bytes

long, respectively. F_floating data yields approximately 7 decimal digits of

precision, while D_floating yields approximately 16 decimal digits of preci¬

sion. G_floating is also 8 bytes long. Because of the different arrangement

of the fraction and exponent parts, its precision is approximately 15 decimal

digits. However, G_ floating has a wider range of exponents. H_floating

is 16 bytes long with a 15-bit exponent and 113-bit fraction. As a result, its

precision is approximately 33 decimal digits.

Integer data is stored as binary values. An integer can be stored in a byte,

word, longword, quadword, or in an octaword. A byte is 8 bits, a word is 2

bytes, a longword is 4 bytes, a quadword is 8 bytes, and an octaword is 16

bytes. The processor can interpret an integer as either a signed value (sign is

determined by the high-order bit) or an unsigned value.

Numeric-string data is a representation of fixed quantities using 1 byte of the

string for each decimal digit. The variety of external data arrangements

demands a variety of matching numeric string forms; particularly, it is neces¬

sary to know whether the sign of the number appears in the first byte or as

part of the last byte.

Packed decimal data is stored in a string of bytes. Each byte is divided in half

forming two nibbles (4 bits = 1 nibble). One decimal digit is stored in each

nibble. The first, or most significant digit is stored in the high-order nibble of

the first byte, the second digit is stored in the low-order nibble of the first

byte, the third digit is stored in the high-order nibble of the second byte, and

so on. The sign of the number is stored in the low-order nibble of the last byte

of the string.

Variable-length bit field data is small integers packed together in a larger data

structure. Basically, they are used to increase memory efficiency.

2-13

Queue data is held in circular, doubly linked lists (that is, each entry is accom¬

panied by two longwords—one longword tells the location of the succeeding

entry, the other specifies the location of the preceding entry). Two kinds of

queue data exist—absolute queues that use absolute addresses, and relative

queues that use relative addresses.

The address of any data item is the address of the first byte in which the item

resides. All integer, floating-point, packed-decimal, and character data can be

stored starting on an arbitrary byte boundary. A bit field, however, does not

necessarily start on a byte boundary. It is simply a set of contiguous bits (0-32)

whose starting bit location is identified relative to a given byte address. The

native instruction set can interpret a bit field as a signed or unsigned integer.

■ Stacks

A stack is an array of consecutively addressed data items referenced on a last-

in/first-out (LIFO) basis using a general register. Data is added to and

removed from the low address end of the stack. A stack grows toward lower

addresses as items are added and shrinks toward higher addresses as items are

removed.

A stack can be created anywhere in the program’s address space and can use

any register to point to the current item on the stack. The operating system,

however, automatically reserves portions of each process address space for

stack data structures. User software refers to its stack data structure, called

the user stack, through a general register designated as the stack pointer (SP).

When you run a program image, the operating system automatically provides

the address of the area designated for the user stack.

A stack is an extremely powerful data structure because it can be used to pass

arguments to routines. In particular, the stack structure enables the coding of

reentrant routines because the processor can handle routine linkages automati¬

cally using the stack pointer. Routines can also be recursive: arguments can be

saved on the stack for each successive call of the same routine.

■ Condition Codes

Condition codes are used to indicate the type of result produced by an instruc¬

tion. The codes are stored as bits in the processor status longword. Four condi¬

tions are coded—carry, negative, overflow, and zero.

■ Carry condition code—indicates that the last instruction had a carry out of

or a borrow from the most significant bit of the result.

2-14 ■ VAX Architecture Overview

■ Negative condition code—indicates that an instruction produced a nega¬

tive result.

■ Overflow condition code—indicates that an instruction produced a result

that could not be represented in an operand or that there was a conversion

error.

■ Zero condition code—indicates that the last instruction produced a zero

result.

■ Exceptions and Interrupts

The processor can automatically initiate changes in the normal flow of pro¬

gram execution. The processor recognizes two kinds of events that cause it to

invoke conditional software—exceptions and interrupts. Some exceptions,

for example, arithmetic traps affect an individual process only. Other excep¬

tions, for example, machine checks affect the system as a whole. Interrupts

include both device interrupts, such as those signaling I/O completion, and

software-requested interrupts, such as those signaling the need for a context

switch operation.

The processor knows which software to invoke when an exception or inter¬

rupt occurs because it references specific locations called vectors to obtain the

starting address of the exception or interrupt dispatcher. The processor has

one internal register, the system control block base register, which the operat¬

ing system loads with the physical address of the base of the system control

block, where the exception and interrupt vectors are contained. The processor

locates each vector by using a specific offset into the system control block.

Each vector tells the processor how to service the event, and contains the sys¬

tem region virtual address of the routine to execute.

To handle interrupt requests, the processor enters a special systemwide con¬

text. In the systemwide context, the processor executes in kernel mode using

a special data structure called the interrupt stack. The interrupt stack cannot

be referenced by any user-mode software because the processor selects the

interrupt stack only after an interrupt, and all interrupts are trapped through

system vectors.

The interrupt service routine executes at the interrupt priority level of the

interrupt request. When the processor receives an interrupt request at a level

higher than that of the currently executing software, the processor honors the

request and services the new interrupt at its priority level. When the inter¬

rupt service routine issues the return from exception or interrupt instruction,

the processor returns control to the previous level.

2-15

■ Input/output Control

An I/O device controller has a set of control/status and data registers. The reg¬

isters are assigned addresses in physical address space, and their physical

addresses are mapped, and thus protected, by the operating system’s memory

management software. That portion of physical address space in which device

controller registers are located is called I/O space.

No special processor instructions are needed to reference I/O space. The regis¬

ters are simply treated as locations containing integer data. An I/O device

driver issues commands to the peripheral controller by writing to the control¬

ler’s registers as if they were physical memory locations. Software reads the

registers to obtain the controller status. The driver controls interrupt

enabling and disabling on the set of controllers for which it is responsible. If

interrupts are enabled, an interrupt occurs when the controller requests it.

The processor accepts the interrupt request and executes the driver’s inter¬

rupt service routine if it is not currently executing on a higher-priority inter¬

rupt level.

Chapter 3 ■ VAX Architecture Characteristics

The VAX architecture defines a functional behavior that is consistent through¬

out the family of VAX processors. From a programming point of view, the user

environment is consistent. Characteristics of this consistency include sharing

address space, sharing data, register usage, memory usage, restartability, inter¬

rupts and errors, and I/O structure.

■ Programming Environment

Within the context of any one process, user-level software controls its execu¬

tion using the instruction sets, the general registers, and the processor status

word. Within the multiprogramming environment, the operating system con¬

trols the system’s execution using a set of' special instructions, the processor

status longword, and the processor registers.

Processor Status Longword

A processor register called the processor status longword (PSL) determines the

execution state of the processor at any time. The low-order 16 bits of the PSL
are the processor status word (PSW) that is available to the user process. The

high-order 16 bits provide privileged control of the system.

The PSL fields can be grouped by functions that control

■ The access mode of the current instruction.

■ The instruction set in execution.

■ Interrupt processing.

Processor Access Modes

In a multiprogramming system, the processor must provide protection and

sharing for the processes competing for system resources. The mechanism for

protection in this system is the processor’s access mode. The access mode is

responsible for determining the

■ Instruction execution privileges (which instructions the processor will exe¬

cute).

■ Memory access privileges (which locations in memory the current instruc¬

tion can access).

3-2 ■ VAX Architecture Characteristics

The processor executes code either in an interrupt context or in process con¬

text. In the interrupt context, all normal processing is halted until the inter¬

rupt is serviced. In the process context, the processor operates in one of four

modes—kernel, executive, supervisor, and user. Kernel is the most privileged

mode and user is the least privileged.

The processor executes in user mode in one process context or another. When

a user process needs privileged services, it calls for those services. Then the

processor executes the services either in the process’s access mode or, tempo¬

rarily under operating system control, in a more privileged mode. Only in ker¬

nel mode can the processor

■ Execute an instruction that halts the processor.

■ Load and save process context or access the internal processor registers con¬

trolling memory management.

■ Access privileged processor registers.

The ability to execute code in a higher-privileged mode is controlled by the

operating system. In general, code executing in one mode can protect itself

and any portion of its data structures from read and/or write access by code

executing in a less privileged mode.

Special Instructions

The VAX instruction set contains instructions that enable user-mode software

to obtain privileged services without jeopardizing the integrity of the operat¬

ing system. They are

■ Change mode instructions (CHMK, CHME, CHMS, CHMU).

■ PROBE instructions.

■ Return from exception or interrupt (REI) instruction.

User-mode software can obtain privileged services with a standard call

instruction. The operating system’s service dispatcher issues an appropriate

change mode instruction before actually entering the procedure. A change

mode instruction is a special trap instruction similar to a service call instruc¬

tion.

The PROBE instructions enable a procedure to check the read (PROBER) and

write (PROBEW) access protection against the privileges of the caller who

requested access to a particular location. This makes the operating system pro¬

vide services that execute in privileged modes to less privileged callers while

preventing the caller from accessing protected areas of memory.

3-3

The operating system’s privileged service procedures and interrupt and excep¬

tion service routines exit using the REI instruction. The instruction is the only

way to decrease the privilege of the processor’s access mode. An REI instruc¬

tion restores both the program counter and the processor state. This ensures

the interrupted process’s execution resumes at the point where it was inter¬

rupted.

When the operating system schedules a context switch, the context switching

procedure uses the save process context (SVPCTX) and load process context

(LDPCTX) instructions. The operating system’s context switching procedure

locates the hardware context to be loaded by updating a processor register.

Data Sharing

Data or instructions may be shared among various entities including pro¬

grams, processors, and I/O devices. Entities sharing data may do so explicitly

by referencing the same data or implicitly by referencing different items

within the same physical memory location.

In VAX architecture, implicit sharing is transparent to the programmer. The

memory system is implemented so the mechanism of access for independent

modification is the byte. Not that this does not imply a maximum reference

size of one byte but only that independent modifying accesses to adjacent

bytes produce the same results regardless of the order of execution. For exam¬

ple, locations 0 and 1 contain the values 3 and 6, respectively. One process

executes an INCB 0 instruction (increment by 1 the byte at location 0) and

another executes an INCB 1 instruction. Regardless of the order of execution

(including effectively simultaneous execution) the final contents must be 6

and 7.

Data Access Synchronization

Access to explicitly shared data that may be written must be synchronized.

Before accessing shared writable data, the programmer must acquire control

of the data structure. Seven instructions are provided to permit interlocked

access to a control variable.

■ The branch on bit set and set, interlocked (BBSSI) and branch on bit clear

and clear, interlocked (BBCCI) instructions make a read and a subsequent

write reference to a single bit within a single byte in an interlocked

sequence.

■ The add aligned word, interlocked (ADAWI) instruction makes a read and a

subsequent write operation to a single aligned word in an interlocked

sequence to allow counters to be maintained without other interlocks.

3-4 ■ VAX Architecture Characteristics

■ The insert at queue head, interlocked (INSQHI), insert at queue tail, inter¬

locked (INSQTI), remove from queue head, interlocked (REMQHI), and

remove from queue tail, interlocked (REMQTI) instructions make a series

of aligned longword reads and writes in an interlocked method to allow

queues to be maintained without other interlocks.

Use of these instructions guarantees that no read operation within the synchro¬

nizing part of these instructions can occur between the synchronized reads

and the writes of the instructions. Such instructions are implemented so that

faults cannot cause the data structure to be locked for an extended period. On

the processor, only interlocking instructions are locked out by the interlock.

■ Registers

VAX processors contain three types of registers used during execution—gen¬

eral registers, processor registers, and input/output registers. The general reg¬

isters are used as counters and pointers, and some are available for use by

programmers. Processor registers perform system functions and normally are

not used for other purposes. The input/output registers function in the con¬

trol and status reporting of peripheral devices.

General Registers

VAX provides sixteen general registers for temporary storage of addresses and

data. General registers are identified as R« where n is an integer in the range

0 through 15. These registers do not have memory addresses. They are

accessed either explicitly by specifying the register number in an instruction

operand specifier, or implicitly by machine operations that automatically refer¬

ence specific registers. Certain registers have specific uses and special names.

■ Register R15—is the program counter (PC). The processor updates the reg¬

ister to address the next byte of the program. The PC is not used as a tem¬

porary, accumulator, or index register.

■ Register R14—is the stack pointer (SP). Several instructions make implicit

references to the SP. Most software assumes that the SP points to memory

set aside for use as a stack. There is no restriction on the explicit use of

other registers (except PC) as stack pointers. Those instructions that make

implicit references to the stack always use the SP.

3-5

■ Register R13—is the frame pointer (FP). The VAX procedure call conven¬

tion builds a data structure called a stack frame on the stack. The call

instructions load the FP with the base address of the stack frame, and the

return instruction depends on the FP containing the address of a stack

frame. Further, VAX software depends on maintenance of the FP for cor¬

rect reporting of certain exceptional conditions.

■ Register R12—is the argument pointer (AP). The VAX procedure call con¬

vention uses a data structure called an argument list. The conventions need

the AP as the base address of the argument list. Call instructions load the

AP in accordance with that convention. There is no hardware or software

restriction on the use of the AP for other purposes.

■ Registers R6 through Rll—these registers have no special significance to

either the hardware or the operating system. Specific software assigns uses

for each register.

■ Registers R5 through RO—these registers are available for any use by soft¬

ware. But, they are also loaded with specific values by those instructions

whose execution must be interruptible — the character string, decimal

arithmetic, cyclic redundancy check, and polynomial instructions. The spe¬

cific instruction descriptions identify which registers are used and what

values are loaded into them.

The general philosophy of register allocation is high-numbered registers have

the most global significance, low-numbered registers are used for the most

temporary, local purposes. While there is no technical basis for this rule, it is

a matter of convention followed by both hardware and system software. Thus,

high-numbered registers are used for pointers needed by all software and hard¬

ware, and low-numbered registers are used for the working storage of string-

type instructions. Similarly, the VAX procedure call software convention

regards registers RO and R1 as so temporary that they are not saved on calls.

This is because RO and R1 are used to return function values. Table 3-1 lists

the use of general registers.

3-6 • VAX Architecture Characteristics

Table 3-1 ■ General Register Usage

Registers Hardware Use Conventional Software Use

PC (R15) Program counter Program counter

SP (R14) Stack pointer Stack pointer

FP (R13) Frame pointer saved

and loaded by CALL,

used and restored by

RET instruction

Frame pointer; condition signaling

AP (R12) Argument pointer

saved and loaded by

CALL, restored by

RET instruction

Argument pointer (base address of

argument list)

R6:R11 None Any

R3,R5 Address counter in

character and decimal

instructions

Any

R2,R4 Length counter in char- Any

acter and decimal

instructions

R1 Result of POLYD

instruction; address

counter in character

and decimal instruc¬

tions

Result of functions (not saved or

restored on procedure call)

RO Results of POLY, CRC Results of functions, status of services

instructions; length (not saved or restored on procedure
counter in character call)

and decimal instruc¬

tions

A reference to the stack pointer (SP) can access one of five general stack

pointers—executive, interrupt, kernel, supervisor, or user stack pointers

depending on certain conditions. The conditions are the values of the current

mode and interrupt stack bits in the processor status longword. Also, the move

to processor register (MTPR) and move from processor register (MFPR) instruc¬

tions can access those stack pointers including the currently selected stack

pointer. This is also true for those processors whose executive, kernel, supervi¬

sor, and user stack pointers reside in the process control block PCB only.

3-7

Processor Registers

Processor registers reside in the processor register space. They are sometimes

called internal registers or privileged registers. These registers perform control

and status functions. They are accessible through the MTPR and MFPR

instructions. These instructions can be invoked from the kernel mode only.

Context switching is the act of suspending an executing process and starting

the execution of another. With the exception of the memory mapping and

asynchronous system trap registers, processor registers are loaded from the

processor control block (PCB) during a context load operation. During a con¬

text save operation, the registers are written to the PCB. In some VAX proces¬

sors, scratchpad registers are used as an intermediate step in the read/write

operation.

Depending on the model of processor, accessing processor registers using the

MTPR and MTFR instructions may render invalid data. In some VAX proces¬

sors, all or some of the processor registers reside in the PCB only. In those

processors, the MTPR and MTFR instructions must be directed to the corre¬

sponding PCB location. VAX processors with processor registers in hardware

scratchpads need not access the corresponding PCB locations.

■ Clock Registers

There are two clocks in VAX processors: a time-of-year clock and an interval

clock. The time-of-year clock register is used to measure the duration of

power failures and is needed for unattended restart after a power failure. The

interval clock is used for accounting, time-dependent events, and to maintain

the date and time.

Time-of-year Clock The time-of-year clock is a longword register. It forms an

unsigned 32-bit binary counter that is driven by a precision clock source. The

clock operates at a minimum accuracy of 0.0025 percent. After approximately

497 days, the clock cycles to zero. As an option, the register can have an emer¬

gency power supply. The power supply may contain a battery that can operate

for several hours. The register does not gain or lose time during the transition

to or from the emergency power supply. The battery is usually automatically

recharged.

Should the battery fail and the clocking is not accurate, the register is cleared

after power is applied. Then the clock is started.

Interval Clock The interval clock provides an interrupt at programmed inter¬

vals. The counter is incremented at microsecond intervals with a minimum

accuracy of 0.01 percent. The clock interface consists of three registers — the

interval count register (ICR), the next interval count register (NICR), and the

interval clock control/status register (ICSS).

3-8 • VAX Architecture Characteristics

The interval count register is a read-only register that is incremented every

microsecond. It is automatically loaded from the next interval count register.

If the interrupt is enabled, an interrupt is initiated when the interval count

register is loaded.

The next interval count register is a write-only device that holds the value to

be loaded into the interval count register when it overflows. The value is

retained when the interval count register is loaded. The next interval count

register is capable of being loaded regardless of the current values of the other

two registers.

The interval clock control/status register contains control and status informa¬

tion for the interval clock. The register contains the following bits:

■ Run bit—when the run bit is set, the interval count register increments

each microsecond. When the bit is reset (0), the interval count register

does not increment. During bootstrap procedures, the run bit is cleared.

■ Transfer bit (XFR)—is a write-only bit. The next interval count register is

transferred to the interval count register when this bit is set.

■ Signal bit (SGL)—is a write-only bit. If the run bit is reset (0), the interval

count register is incremented by one each time this bit is set.

■ Software interrupt request (IE) bit—when this bit is set and the interval

count register overflows, an interrupt request is generated. When this bit

is reset, no interrupt is requested. If the hardware interrupt request bit is

set and then this bit is set, an interrupt is requested.

■ Hardware interrupt request (INT) bit—this bit is set by hardware when¬

ever the interrupt count register overflows. If the IE bit is set and this bit is

set, an interrupt is requested. If this bit is reset with a MTPR instruction,

the clock tick interrupt is enabled.

■ Error (ERR) bit—Whenever the interval count register overflows and the

INT bit is set, this bit is set. This bit indicates that a clock tick was missed.

This bit is cleared by a MTPR instruction.

NOTE

Subset processors may omit the interval count and next inter¬

val count registers. These processors are required to imple¬

ment the software interrupt (IE) bit of the interval clock

control/status register. If this bit is set, an interrupt request

is generated every 10 milliseconds.

3-9

The interval clock is set by loading the negative of the desired interval into

the NIC register. Then invoking an MTPR instruction enables interrupts,

loads the interval count register with the interval stored in the next interval

count register, and the run bit is set. Every interval count microsecond sets the

INT bit and invokes an interrupt request. The interrupt routine should exe¬

cute an MTPR instruction to clear the interrupt. If the INT bit is not reset by

the next interval count register overflow, the err bit is set.

■ Console Terminal Registers

The console terminal is accessed through four processor registers. Two regis¬

ters are used for reception and two are used for transmission. There are con¬

trol/status registers and data buffer registers for both reception and

transmission. A status byte is used to determine the success or failure of a

read or write operation. The status byte is transmitted to the operating system

on completion of every read, write, or read status operation.

Receive Registers During bootstrap procedures, the console receive control/

status register is initialized to zero. Whenever data is received, the done bit is

set by the console. If the register’s interrupt enable bit is set, an interrupt is

requested. If the done bit is set and the software sets the interrupt enable bit,

an interrupt is requested. If the data received contained an error, the error bit

of the console receive data buffer register is set. The data received is stored in

the data field of the register. When a MFPR instruction is executed, the done

bit is reset. If the value in the ID field of the console receive data buffer regis¬

ter is zero, the data is from the console terminal. If the value of the ID field is

other than zero, the entire register is implementation-dependent.

Transmit Registers During bootstrap procedures, the console transmit controlj

status register is initialized with all the bits reset except for the ready (RDY)

bit which is set. Whenever the console transmitter is not busy, it sets the

ready bit. And if the register’s interrupt enable bit is set, an interrupt is

requested. Also, if the ready bit is set, then the interrupt enable bit is set, an

interrupt is requested. The software can send data by writing it to DATA.

When an MTPR instruction is executed with the transmit data buffer as the

destination operand, the ready bit is cleared. If the ID bit is zero, the data is

sent to the console terminal. If the ID bit is set, the entire register is implemen¬

tation-dependent .

■ Process Control Block Base Register

The process control block base (PCBB) register is an internal privileged regis¬

ter containing the physical longword address of the process control block

(PCB). The process control block contains the switchable process context. The

context is collected into a compact form for ease of movement to and from the

privileged registers.

3-10 ■ VAX Architecture Characteristics

In most operating systems, there is additional software context for each pro¬

cess. However, the following description is limited to the hardware process

control block. See Figure 3-1 for an illustration of the process control block.

Table 3-2 contains a description of the process control block longwords.

BIT BIT

3 0
1 0

00 KERNEL MODE STACK POINTER

01 EXECUTIVE MODE STACK POINTER

02 SUPERVISOR MODE STACK POINTER

03 USER MODE STACK POINTER

04 REGISTER R0

05 REGISTER R1

06 REGISTER R2

07 REGISTER R3

08 REGISTER R4

09 REGISTER R5

10 REGISTER R6

11 REGISTER R7

12 REGISTER R8

13 REGISTER R9

14 REGISTER R10

15 REGISTER R11

16 ARGUMENT POINTER

17 FRAME POINTER

18 PROGRAM COUNTER

19 PROCESSOR STATUS LONGWORD

20 PROGRAM REGION BASE REGISTER

21 1 PROGRAM REGION LENGTH REGISTER

22 CONTROL REGION BASE REGISTER

23 2 CONTROL REGION BASE REGISTER

3222222 0

1 7 6 4 3 2 1 0

NOTES:

1. Asynchronous Trap Pending Field

2. Enable Performance Monitor Field

Figure 3-1 ■ Hardware Process Control Block

3-11

Table 3-2 ■ Process Control Block Definition

Long-

word

Bits Mnemonic Description

0 31:0 KSP Kernel Stack Pointer. Contains the stack

pointer to be used when the value of the cur-

rent access mode field in the processor

status longword (PSL) is 0 and interrupt

stack (IS) is 0.

1 31:0 ESP Executive Stack Pointer. Contains the stack

pointer to be used when the value of the cur¬

rent access mode field in the PSL is 1.

2 31:0 SSP Supervisor Stack Pointer. Contains the

stack pointer to be used when the value of

the current access mode field in the PSL

is 2.

3 31:0 USP User Stack Pointer. Contains the stack

pointer to be used when the value of the cur¬

rent access mode field in the PSL is 3.

4:17 31:0 R0:R11,

AP, FP
General registers 0 through 11, argument

pointer, and frame pointer.

18 31:0 PC Program counter

19 31:0 PSL Processor status longword

20 31:0 P0BR Base register for the page table describing

the process virtual addresses from 0

through 1,073,741,823 (decimal) (230 - 1).

21 21:0 P0LR Length register for the page table located by

base register P0. Describes the effective len¬
gth of the page table.

23:22 MBZ Must be zero (0)

26:24 ASTLVL Contains the access mode number estab¬

lished by software of the most privileged

access mode for which an asynchronous sys¬

tem trap is pending. Controls the triggering

of the asynchronous system trap delivery

interrupt during return from exception or

interrupt instructions.

3-12 ■ VAX Architecture Characteristics

Table 3-2 ■ Process Control Block Definition (Cont.)

Long¬

word

Bits Mnemonic Description

ASTLVL

Field

Asynchronous system trap

pending for access mode:

0 0 (kernel)

1 1 (executive)

2 2 (supervisor)

3 3 (user)

4 No traps pending

5:7 Reserved

31:27 MBZ Must be zero (0)

22 31:0 P1BR Base register for the page table. Describes

the process virtual addresses from

1,073,741,824 through 2,147,483,647
(230 through 231 - 1).

23 21:0 P1LR Length register for the page table.

Located by base register PI. Describes

the effective length of the page table.

30:22 MBZ Must be zero (0)

31 PME Performance Monitor Enable. Controls a

signal visible to an external hardware per¬

formance monitor. This bit is set to iden¬

tify those processes for which monitoring

is desired, and to permit their behavior to

be observed without interference from

other system activity

NOTE

Software symbols are defined for these locations by using the

prefix PTX$L and the mnemonics shown above. The prefix

and mnemonic must be separated by an underscore character.

For example, should you wish to specify the supervisor stack

pointer register, the software symbol is: PTX$L_SSP.

There are two exceptions to this symbology: longwords 21

and 23. The symbols for those words are:

PXT$L_POLRASTL (longword 21)

PTX$L_P1LRME (longword 23)

3-13

A process must be executing in one particular mode to alter its context switch¬

ing fields. First the process stores the new value in the memory image of the

process control block. Then it moves the value to the appropriate privileged

register. This protocol is used because the process control block context

switching fields are read-only fields. The context switching fields are POBR,

P1BR, POLR, P1LR, ASTLVL, and PME.

NOTE

The ASTLVL and PME fields of the process control block are

in registers when the process is executing. In order to access

the fields, two privileged registers are provided. These are

the AST Level register and the Performance Monitor Enable

(PME) register.

■ System Identification Register

The system identification (SID) register is a read-only device that specifies the

processor type. The entire register is included in the error log and the type

field may be used by software to distinguish processor types. The register is

divided into two fields—type and type specific. The type field identifies the

model of the processor. The type specific field varies among the models but

contains specific identification for that model.

Input/Output Registers

Input/output registers are also known as peripheral device control/status and

data registers. These registers are in the physical address space. They can be

manipulated by memory reference instructions. Use of general instructions

permits virtual address mapping and protection mechanisms to be used when

referencing I/O registers. An area of the I/O physical address space maps

through to the UNIBUS addresses. This area is called the UNIBUS space. I/O

registers satisfy the following conditions:

■ All registers must be aligned on natural boundaries.

■ The physical address of an I/O register must always be an integral multiple

of the register size in bytes (which must be a power of 2).

■ References using a length attribute other than the length of the register

and/or an unaligned reference may produce unpredictable results. For exam¬

ple, a byte reference to a wordlength register will not necessarily respond

by supplying or modifying the byte addressed.

3-14 • VAX Architecture Characteristics

■ In peripheral devices, error and status bits that may be asynchronously set

by the device are usually cleared by software writing a one to these bits,

and are not affected by writing a zero. This is to prevent resetting bits that

may be asynchronously set between reading and writing a register.

■ Only byte and word references of a read-modify-write type in UNIBUS I/O

spaces are guaranteed to interlock correctly. References in the I/O space

other than in UNIBUS spaces are undefined with respect to interlocking.

This includes the BBSSI and BBCCI instructions.

■ String, quad word, octaword, F_floating, D_floating, G_floating,

H_floating, and field references in the I/O space result in undefined

behavior.

■ Stacks

Stacks are also called pushdown lists or last-in I first-out (LIFO) queues. They

are an important feature of the architecture. They are used to perform various

functions; for example, to

■ Save the general registers including the program counter at entry to a sub¬

routine for restoration at exit.

■ Save the program counter, processor status longword, and general registers

at the time of interrupts and exceptions, and during context switches.

■ Create storage space for temporary use or for nesting of recursive routines.

A stack is implemented in a VAX processor by a block of memory and a general

register that addresses the top of the stack. The top of the stack is that loca¬

tion in the block containing the next candidate for removal. An item is added

to the stack (pushed on) by decrementing the stack pointer register and stor¬

ing the item at the address in the updated register. The pointer is decre¬

mented by the length of the item added to the stack to allow enough room for

it. Conversely, the top item is removed (popped off) by adding the length of

the item to the stack pointer after the last use of the item. These operations

are built into the basic addressing mechanisms of VAX instructions. Thus any

instruction can operate on the stack; it is seldom necessary to devote separate

instructions to maintain the stack pointer.

There are two common programming errors associated with stacks: (1) adding

more data than there is space to store, and (2) removing more data than was

added. In order to catch those common programming errors, a stack is usually

bound by inaccessible pages. By placing the stack in a block of memory

between inaccessible pages, the programmer can be confident of finding such

errors. The operating system initializes the stacks this way.

3-15

Many VAX processor operations make use of the stack implicitly; that is, with¬

out specifying the stack pointer in an operand. This occurs in instructions

used in calling and returning from subroutines and in the processor sequences

that initiate and terminate interrupt or exception service routines. In all such

cases, the processor uses the stack addressed by R14.

This does not mean that exceptions, interrupts, and system services are per¬

formed on the same stacks employed by user-mode programs. The processor

maintains five internal registers as pointers to separate blocks of memory to

be used as stacks and uses one or another as a stack pointer depending on cer¬

tain bits in the processor status longword. Whenever those bits change, the

processor saves the stack pointer in a register selected by the old value of

those bits. Then the processor loads the stack pointer from the register

selected by the new value of these bits. There is one interrupt stack for the

entire system. But the kernel, executive, supervisor, and user stacks are differ¬

ent for each process in the system. Figure 3-2 illustrates the relationships of

the five stacks and multiple processes.

PROCESS 1 PROCESS 2 PROCESS 3

USER 1

STACK

USER 2

STACK

USER 3

STACK

SUPERVISOR 1 SUPERVISOR 2

STACK

SUPERVISOR 3

STACK GREATER STACK

MODE _

(LESSER

PRIVILEGE) EXECUTIVE 1

STACK

EXECUTIVE 2

STACK

EXECUTIVE 3

STACK

KERNEL 1

STACK

KERNEL 2

STACK

KERNEL 3

STACK

INTERRUPT STACK

(ALL PROCESSES)

Figure 3-2 ■ Stacks by Mode versus Processes

3-16 * VAX Architecture Characteristics

This multiple-stack mechanism offers a number of advantages over a single¬

stack mechanism:

■ User programs are not subject to sudden and nonreproducible changes in

the data beyond the end of their stack. While it is bad practice to depend

on such data, it would also be poor design to make it difficult to debug pro¬

grams that did.

■ The integrity of a privileged mode program cannot be compromised by a

less privileged caller. Even if the caller has completely filled its own stack,

the privileged code is in no danger of running out of space. Separate blocks

of memory are allocated to the stack associated with each mode to prevent

that situation.

■ Privileged mode programs are not vulnerable to accidental or malicious

destruction of the stack pointer by less privileged programs. Even if the

user program uses the stack pointer as a floating-point accumulator, privi¬

leged code can use it as a stack pointer. To accomplish this, the processor

saves the floating-point value and loads the pointer value when a mode

change occurs.

■ By allocating separate stacks for each mode, VAX processors can page most

stack space dynamically while ensuring the availability of space for inter¬

rupt and page fault service. Interrupt service routines and the page fault

handler may be invoked at any time and must have a small amount of stack

available immediately without waiting for it to be paged in. Conversely,

user programs may need very large stack spaces making it desirable to swap

out those regions not in use. Only the kernel and interrupt stacks need be

resident.

■ Cache Memory

Cache memory or cache is a mechanism that reduces access time by making

copies of recently used memory. In VAX family processors, the cache is imple¬

mented in such a way that it is transparent to software except for timing and

error reporting/control. In cache, the following protocol is observed:

■ Program writes to memory—followed by a peripheral output transfer—

result in the output of the updated value.

■ A peripheral input transfer—followed by a program reading of memory—

results in a read of the input value.

3-17

■ A write or modify operation—followed by a halt on one processor—fol¬
lowed by a read or modify operation on another processor—results in a

read of the updated value. (Note that this applies only to customer-
designed multiprocessor systems.)

■ A write or modify operation—followed by a power failure — followed by
restoration of power—followed by a read or modify operation—results in a

read of the updated value. This occurs only if the duration of the power
failure does not exceed the maximum nonvolatile period of the main mem¬
ory or if the contents of memory were protected by an optional battery-
operated emergency power supply.

■ In multiprocessor systems, access to variables shared among processors can

be interlocked by software executing interlocking instructions (ADAWI,

BBCCI, BBSSI, INSQHI, INSQTI, REMQHI, or REMQTI). In particular,

the write device must execute an interlocking instruction after the write to

release the interlock and the read device must execute a successful match¬

ing interlock instruction before the read.

■ Accesses to I/O registers are not loaded into the cache.

■ Restartability

VAX architecture requires that all instructions be restartable after a fault or
interrupt that terminated execution before the instruction was completed.

Generally, this means that modified registers are restored to the value they
had at the start of execution. For some complex or iterative instructions, inter¬
mediate results are stored in the general registers. In this case, memory may
have been altered, but the former case requires that no operand be written

unless the instruction can be completed. For most instructions with only a sin¬
gle modified or written operand, this implies special processing only when a
multibyte operand spans a protection boundary. Spanning the boundary
makes necessary the testing of the accessibility of both parts of the operand.

Instructions that store intermediate results in general registers do not compro¬
mise system integrity. They ensure that any addresses stored or used are vir¬
tual addresses subject to protection checking. Furthermore, they ensure that
any state information stored or used does not result in a sequence that cannot

be interrupted or terminated.

3-18 ■ VAX Architecture Characteristics

Instruction operands that are peripheral device registers having access side

effects may produce unpredictable results due to the instruction restarting

after faults (including page faults) or interrupts. To ensure no interrupts, pro¬

grammers must avoid operand specifier addressing modes 9, 11, 13, and 15,

and the indexed forms of these modes. (Refer to Chapter 5 for details of

addressing modes.) However, the hardware may allow interrupts for these

modes in order to minimize interrupt latency.

Memory modifications are produced as a by-product of instruction execution;

for example, memory access statistics. These modifications are specifically

excluded from the constraint that memory may not be altered until the instruc¬

tion can be completed. Instructions that abort are constrained only to ensure

memory protection; for example, the registers can be changed.

■ Interrupts and Errors

Underlying the VAX architectural concept of an interrupt is the notion that an

interrupt request is a static condition—not a transient event—and can be sam¬

pled by a processor at appropriate times. Further, if an interrupt is no longer

needed before a processor has honored that interrupt request, the interrupt

request can be removed without consequence. Any instruction that changes

the processor’s interrupt priority level to enable a pending interrupt allows

the interrupt to occur before executing the next instruction. Similarly, if pro¬

cessor priority permits, instructions that generate requests at the software

interrupt levels allow the interrupt to occur before executing the next instruc¬

tion.

Processor errors that are consistent with instruction completion create high-

priority interrupt requests. Otherwise, they terminate instruction execution

with an exception. Error notification interrupts may be delayed from the

apparent completion of the executing instruction at the time of the error. But,

if enabled, the interrupt is requested before processor context is switched.

Chapter 4 ■ Data Representation

VAX instructions use a variety of types of data. The data must be presented in

a form that is acceptable to the instructions. The acceptable forms are

described in the ensuing paragraphs. They are

■ Character string data

■ Floating-point data

■ Integer data

■ Numeric string data
—

■ Packed decimal data

■ Queue data

■ Variable length bit field data
—

' .. , _ .

NOTE

In the following discussions of floating-point and integer

data, the address of the data in memory is the address of the

byte of the data with the lowest address. In illustrations, this

lowest byte is shown on the right (bits 0 through 7). In text,

when the word right is used to describe the position of a byte,

the lowest byte is the byte being discussed.

■ Character String Data

Character strings are used to represent names, data records, or text. The

instructions allow you to copy, search, concatenate, and translate strings. A

character string is a contiguous sequence of bytes in memory and is specified

by two attributes—the address (A) of the first byte of the string, and the len¬

gth (L) of the string in bytes. The length of a string is in the range 0 through

65,535. A string with a length of 0 is called a null string. Null strings have no

bytes. No memory is referenced; hence, the address need not be valid. The

format of a character string is illustrated in Figure 4-1. The address of a string

specifies the first character of a string as shown in Figure 4-2.

4-2 ■ Data Representation

: A

: A + L - 1

Figure 4-1 ■ Character String Format

I

7 0

A

A + 1

A + 2

Figwre 4-2 ■ Character String Address

■ Floating-point Data

The VAX instruction set supports floating-point data in longwords, quad-

words, and octawords. Four types of floating-point data are available. Two

types are eight bytes long (D_floating and G_floating), one type is four

bytes long (F_floating), and the last is sixteen bytes long (H_floating).

NOTE

An exponent value of zero with a sign bit that is zero is taken

as reserved.

D_floating Data

D floating data is sometimes called double floating or double-precision float¬

ing. It is eight contiguous bytes starting on an arbitrary byte boundary. The

bits are labeled from the right starting with 0 and terminating with 63 as

shown in Figure 4-3.

4-3

D_floating data is specified by the address of the byte containing the first

bit. The form of D_floating data is identical to F_floating data except for

an additional 32 low-significance fraction bits. Within the fraction, bits

increase in significance from 48 through 63, 32 through 47, 16 through 31,

and 0 through 6. This is illustrated by the widening arrow in Figure 4-3. The

8-bit exponent field encodes the values 0 through 255. An exponent value of

0 with a sign bit of 0 indicates the data has a value of zero. Exponent values of

1 through 255 indicates true binary exponents of -127 through +127. Float¬

ing-point instructions processing a reserved operand take a reserved operand

fault. The values of D_floating data are in the approximate range 0.29 x

10'38 through 1.7 x 1038. The precision is approximately one part in 255 or

16 decimal digits.

15 14 7 6 0

: A

: A + 2

: A + 4

: A + 6

63 48

Figure 4-3 ■ D_floating Data Format

F_floating Data

F_floating data is sometimes called floating or single-precision floating and is

four contiguous bytes starting on an arbitrary byte boundary. The bits are

labeled from the right starting at 0 and terminating with 31 as shown in Fig¬

ure 4-4.

i i

5 4 7 6 0

S EXPONENT FRACTION

FRACTION

31 16

Figure 4-4 ■ F_floating Data Format

4-4 ■ Data Representation

F_floating data is specified by the address of the byte containing the first

bit. The form of F_floating data is sign magnitude with bit 15 as the sign

bit, bits 7 through 14 express an excess 128 binary exponent, and bits 0

through 6 and 16 through 31 are a normalized 24-bit fraction with the redun¬

dant most significant fraction bit not represented. Within the fraction, bits

increase in significance from 16 through 31 and 0 through 6. The 8-bit expo¬

nent field encodes the values 0 through 255. An exponent value of 0 with a

sign bit of 0 indicates the data has a value of zero. Exponent values of 1

through 255 indicates true binary exponents of -127 through + 127. Floating

point instructions processing a reserved operand take a reserved operand

fault. The values of F_floating data are in the approximate range 0.29 x

10'38 through 1.7 x 1038. The precision is approximately one part in 223, or

approximately seven decimal digits.

G_floating Data

G_floating data is eight contiguous bytes starting on an arbitrary byte

boundary. The bits are labeled from the right starting with 0 and ending with

63 as shown in Figure 4-5.

The form of G_floating data is sign magnitude with bit 15 as the sign bit,

bits 4 through 14 expressing an excess 1024 binary exponent, and bits 0

through 3 and 16 through 63 expressing a normalized 5 3-bit fraction with the

redundant most significant fraction bit not represented. Within the fraction,

bits increase in significance from 48 through 63, 32 through 47, 16 through

31, and 0 through 3. The 11-bit exponent field encodes the values 0 through

2047. An exponent value of 0 with a sign bit of 0 indicates the data has a value

of zero. Exponent values of 1 through 2047 indicate true binary exponents of

-1023 through + 1023. Floating-point instructions processing a reserved

operand take a reserved operand fault.

The value of G_floating data is in the appropriate range of 0.56 x 10'308

through 0.9 x 10308. The precision is approximately one part in 252 or fifteen

decimal digits.

4-5

5 4 4_3 0

S EXPONENT FRACTION : A

FRACTION : A + 2

FRACTION : A + 4

FRACTION : A + 6

63 48

Figure 4-5 ■ G_floating Data Format

H_floating Data

H_floating data is sixteen contiguous bytes starting on an arbitrary byte

boundary. The bits are labeled from the right starting with 0 and ending with

127 as shown in Figure 4-6. H_floating data is specified by the address of

the byte containing the first bit.

The form of H_floating data is sign magnitude with bit 15 as the sign bit,

bits 0 through 14 express an excess 16384 binary exponent, and bits 16

through 127 express a normalized 113-bit fraction with the redundant most

significant fraction bit not represented. Within the fraction, bits increase in

significance from 112 through 127, 96 through 111, 80 through 95, 64

through 79, 48 through 63, 32 through 47, and 16 through 31. The 15-bit

exponent field encodes the values 0 through 32,767. An exponent value of 0

with a sign bit of 0 indicates that the data has a value of zero. Exponent

values of 1 through 32,767 indicate true binary exponents of -16,383

through + 16,383. Floating-point instructions processing a reserved operand

take a reserved operand fault.

The value of H_floating data is in the approximate range 0.84 x 10 4932

through 0.59 x 104932. The precision is approximately one part in 2112 or

thirty-three decimal digits.

4-6 ■ Data Representation

1 1

A

A + 2

A + 4

A + 6

A + 8

A + 10

A + 12

A + 14

Figure 4-6 ■ H_floating Data Format

■ Integer Data

VAX systems support integer data in 8-bit bytes, 16-bit words, 32-bit long-

words, 64-bit quadwords, and 128-bit octawords. Integer data is stored in a

binary format that can be signed or unsigned. As unsigned quantities, inte¬

gers increment from 0. As signed quantities, the integers are represented in

two’s complement form. This means that positive numbers have a zero for the

most significant bit (MSB); and the representation of a negative number is one

greater than the bit-by-bit complement of its positive counterpart. Thus the

MSB is always zero for positive values and one for negative values.

4-7

Byte Data

A byte is eight contiguous bits starting on an addressable byte boundary. The

bits are numbered from the right starting with 0 as shown in Figure 4-7. The

byte is specified by its address. When interpreted arithmetically, a byte is a

two’s complement integer with bits increasing in significance from 0 through

6 and with bit 7 designating the sign. The value of the integer is in the range

of -128 through 127. For addition, subtraction, or comparison, VAX instruc¬

tions provide direct support for interpreting a byte as an unsigned integer

with bits of increasing significance starting at bit 0 and increasing to bit 7.

The value of the unsigned integer is in the range of 0 through 255.

7_0

: A

Figure 4-7 ■ Byte Data Format

Word Data

A word is two contiguous bytes and starts on an arbitrary byte boundary. The

bits are numbered from the right starting with 0 as shown in Figure 4-8.

Words are specified by their address which is the address of the byte contain¬

ing the first bit. When interpreted arithmetically, a word is a two’s comple¬

ment integer with bits increasing in significance from 0 through 14, and bit

15 designating the sign. The value of the integer is in the range -32,768

through 32,767. For addition, subtraction, and comparison, VAX instructions

provide direct support for interpreting a word as an unsigned integer with

bits increasing in significance from bit 0 to bit 15. The value of an unsigned

integer is in the range of 0 through 65,535.

Figure 4-8 ■ Word Data Format

4-8 • Data Representation

Longword Data

A longword is four contiguous bytes starting on an arbitrary byte boundary.

The bits are numbered from the right starting with 0 as shown in Figure 4-9.

A longword is specified by its address that is the address of the byte contain¬

ing the first bit. When interpreted arithmetically, a longword is a two’s com¬

plement integer with bits increasing in significance from 0 through 30 and

with bit 31 designating the sign.

The value of the integer is in the range -2,147,483,648 through

2,147,483,647. For addition, subtraction, and comparison, VAX instructions

provide direct support for interpreting longwords as unsigned integers with

bits increasing in significance from bit 0 to bit 31. The value of the unsigned

integer is in the range of 0 through 4,294,967,295.

Figure 4-9 ■ Longword Data Format

Quadword Data

A quadword is eight contiguous bytes starting on an arbitrary byte boundary.

The bits are numbered from the right starting with 0 and terminating with 63

as shown in Figure 4-10. A quadword is specified by its address that is the

address of the byte containing the first bit. When interpreted arithmetically,

a quadword is a two’s complement integer with bits increasing in significance

from 0 through 62, and bit 63 is the sign bit. The value of the integer is in the

range -263 to (263)-l. The quadword data type is not fully supported by VAX

instructions.

4-9

Figure 4-10 ■ Quadword Data Format

Octaword Data

An octaword is sixteen contiguous bytes starting on an arbitrary byte bound¬

ary. The bits are numbered from the right starting with 0 and terminating

with 127 as shown in Figure 4-11. Octawords are specified by the address of

the byte containing the first bit. When interpreted arithmetically, an

octaword is a two’s complement integer with bits of increasing significance

starting at bit 0 and terminating at bit 126, and bit 127 is the sign bit. The

value of the integer is in the range -2127 to (2127)-1. The octaword data type is

not yet fully supported by VAX instructions.

Figure 4-11 ■ Octaword Data Format

: A + 8

: A + 12

4-10 ■ Data Representation

■ Numeric String Data

Numeric string data is used to represent fixed scaled quantities in forms close

to their external representations. For programs that are input/output inten¬

sive, rather than computation intensive, this presentation can be efficient.

The decimal string form also provides greater precision than floating point

and greater range than integer data types.

There are two forms of decimal data on VAX systems— numeric and packed.

In numeric string data, each digit occupies one byte. In packed decimal

strings, two digits are packed into one byte. Because the numeric string

exactly represents many external data arrangements, it appears in several

forms.

There are two forms of signed numeric strings. The first is called the leading

separate numeric string; the second is called the trailing numeric string. In the

leading separate numeric string, the sign appears before the first digit. In the

trailing numeric string, the sign is superimposed on the last digit.

Leading Separate Numeric String Data

A leading separate numeric string is a contiguous sequence of bytes in mem¬

ory. It is specified by two attributes—an address and a length. The address is

the address of the first byte or the sign character. The length is the length of

the string in digits—not the length of the string in bytes. The number of bytes in

a leading separate numeric string is the length plus one. The address of the

string specifies the byte of the string containing the sign. Digits of decreasing

significance are assigned to bytes of increasing addresses.

The sign of a leading separate numeric string is stored in a separate byte. Valid

sign bytes are listed in Table 4-1. The preferred representation for positive

strings is the ASCII code 2B for the plus sign character. All subsequent bytes

contain an ASCII digit character. Table 4-2 lists the ASCII digit characters.

Table 4-1 ■ Leading Separate Numeric String Sign Bytes

Sign Decimal Hexadecimal ASCII character

+ 43 2B +

+ 32 20 < blank >

_ 45 2D _

4-11

Table 4-2 ■ ASCII Digit Characters

Digit Decimal Hexadecimal ASCII character

0 48 30 0

1 49 31 1

2 30 32 2

3 31 33 3

4 32 34 4

3 33 33 3

6 34 36 6

7 33 37 7

8 36 38 8

9 37 39 9

The length of a leading separate numeric string must be within the range of 0

to 31 (0 to 31 digits). The value of a zero length string is zero. It contains the

sign byte only. Figures 4-12 and 4-13 show how to represent + 123 and -123

in leading separate numeric string format.

7 4 3 0

: A

: A + 1

: A + 2

: A + 3

2 B

3 1

3 2

3 3

Figure 4-12 ■ Positive Leading Separate Numeric String Format

4-12 • Data Representation

7 4 3 0

2 D : A

3 : A + 1

3 2 : A + 2

3 3 : A + 3

Figure 4-13 ■ Negative Leading Separate Numeric String Format

Trailing Numeric String Data

A trailing numeric string is a contiguous sequence of bytes in memory. The

string is specified by two attributes—an address and the length of the string.

The address of the first byte of the string is the most significant digit. The

length is the length of the string in bytes. Note that the address of the string

specifies the byte of the string containing the most significant digit. Digits of

decreasing significance are assigned to increasing addresses. All bytes of a

trailing numeric string except the least significant digit byte must contain

ASCII decimal (0 through 9) characters. See Table 4-2 for a list of the ASCII

characters.

The highest addressed byte of a trailing numeric string represents an encoding

of both the least significant digit and the sign of the numeric string. The

numeric string instructions support any encoding. There are three preferred

encodings used by VAX software

■ overpunched numeric

■ unsigned numeric in which there is no sign and the least significant digit

contains an ASCII decimal digit character

■ zoned numeric

Several variations in overpunched format have evolved because that format

has been used for many years, and because various card encodings are used.

These alternate forms are accepted on input. The normal form is generated on

output of all operations. The valid representations of the digit and sign in each

of the latter two formats is shown in Table 4-3.

4-13

Table 4-3 ■ Representation of Least Significant Digit and Sign

Digit Decimal Hexadecimal

ASCII Character

Normal Alternate

Overpunch Format

0 123 7B {
*

1 63 41 A 1

2 66 42 B 2

3 67 43 C 3

4 68 44 D 4

5 69 45 E 5

6 70 46 F 6

7 71 47 G 7

8 72 48 H 8

9 73 49 I 9

-0 125 7D } t

-1 74 4A j None

-2 75 4B K None

-3 76 4C L None

-4 77 4D M None

-3 78 4E N None

-6 79 4F O None

-7 80 50 P None

-8 81 51 Q None

-9 82 52 R None

* There are three alternate characters for this code: the zero (0), the left square bracket

([), and the question mark (?).

t There are three alternate characters for this code: the right square bracketQ), the
colon (:), and the exclamation point (!).

4-14 m Data Representation

Table 4-3 ■ Representation of Least Significant Digit and Sign (Cont.)

Digit Decimal Hexadecimal

ASCII Character

Normal Alternate

Zoned Numeric Format

0 48 30 0 None

1 49 31 1 None

2 50 32 2 None

3 51 33 3 None

4 52 34 4 None

5 53 35 5 None

6 54 36 6 None

7 55 37 7 None

8 56 38 8 None

9 57 39 9 None

-0 112 70 P None

-1 113 71 q None

-2 114 72 r None

-3 115 73 s None

-4 116 74 t None

-5 117 75 u None

-6 118 76 V None

-7 119 77 w None

-8 120 78 X None

-9 121 79 y None

The length of a trailing numeric string must be within the range of 0 to 31 (0

to 31 digits). The value of a zero length string is zero. It contains no bytes and

no memory is referenced; hence the address need not be valid. Figures 4-14

and 4-15 show how to represent the value 123 in both positive and negative

trailing numeric string format.

0

4-15

ZONED FORMAT OR UNSIGNED

7 4 3

: A

: A + 1

: A + 2

OVERPUNCH FORMAT

: A

: A + 1

: A + 2

7_4 3_0

3 1

3 2

4 3

Figure 4-14 ■ Positive Trailing Numeric String Format

ZONED FORMAT

: A

: A + 1

: A + 2

4 3

OVERPUNCH FORMAT

: A

: A + 1

: A + 2

Figure 4-15 ■ Negative Trailing Numeric String Format

4-16 ■ Data Representation

■ Packed Decimal String Data

A packed decimal string is a contiguous sequence of bytes in memory. The

address and length specify a packed decimal string. The length is the number

of digits in the string—not the number of bytes. Every byte of a packed decimal

string is divided into two 4-bit fields called nibbles. Each nibble must contain

decimal digits except the low nibble of the last byte that must contain a sign.

The representation for the digits and sign is listed in Table 4-4.

Table 4-4 ■ Packed Decimal String Digits and Signs

Character Decimal Hexadecimal

0 0 0

1 1 1

2 2 2

3 3 3

4 4 4

5 5 3

6 6 6

7 7 7

8 8 8

9 9 9

+ * t

- t §

* This value can be 10, 12, 14, or 15 (hexadecimal),

t This value can be A, C, E, or F (hexadecimal).

X This value can be 11 or 13 (hexadecimal).

§ This value can be B or D (hexadecimal).

The preferred sign representation is 12 for a plus sign and 13 for a minus sign.

The length is the number of digits in the packed decimal string (not counting

the sign) and must be within the range of 0 through 31. If the number of

digits is odd, the digits and the sign fit into length/2 + 1 bytes. When the

number of digits is even, an extra 0 digit must appear in the high nibble (bits

4 through 7) of the first byte. The length in bytes of a string with an even

number of bytes is length/2 + 1 bytes. The length is the integer portion only.

The value of a zero-length packed decimal string is zero. It contains only the

sign byte that also includes the extra 0 digit.

4-17

The address of the string specifies the byte of the string containing the most

-significant digit in its high nibble. Digits of decreasing significance are

assigned to increasing byte addresses and from high nibble to low nibble

within a byte. In Figure 4-16, + 123 (length 3) is represented in packed deci¬

mal format. In Figure 4-17, - 12 (length 2) is represented in packed decimal

format.

7 4 3 0

: A

: A + 1

figure 4-16 ■ Positive Packed Decimal String Format

: A

: A + 1

Figure 4-17 ■ Negative Packed Decimal String Format

■ Queue Data

A queue is a list whose entries are specified by their addresses. Each queue

entry is linked to the next by way of a pair of longwords. The first longword is

the forward link. It specifies the location of the succeeding entry. The second

longword is the backward link. It specifies the location of the preceding entry.

VAX systems support two types of links—absolute and self-relative. Queues

are named after the type of link used in the queue.

An absolute queue uses a link that contains the absolute address of the entry

to which it points. A self-relative queue uses a link that contains a displace¬

ment from the present queue entry.

7 4 3 0

0 1

2 13

1 2

3 12

4-18 ■ Data Representation

Queues require a header that is identical to a pair of queue linkage longwords.

The forward link of the header is the address of the entry called the head of

the queue. The backward link of the header is the address of the entry called

the tail of the queue. Logically, the forward link of the tail points to the

header.

Self-relative queues are intended for use in situations where they are

addressed by two separate processes. Each process may view the queues as

residing in two separate locations in their respective virtual address spaces.

The instructions that operate on self-relative queues are interlocked. When

interlocked instructions only are used on the queue, the processes may be in

separate machines with each process directly addressing the queue.

Absolute queues are somewhat simpler in structure than self-relative queues

in that their pointers are virtual addresses. Also, the instructions that operate

on these queues are not interlocked. In general, operations on absolute queues

are somewhat faster than those on self-relative queues. However, absolute

queues cannot be used when more than one processor is to access them. Also,

the queues can be shared by two processes in the same processor only when

both processes address the queue in the same section of their virtual address

space. Figure 4-18 illustrates the format of the self-relative queue, and Figure

4-19 illustrates the format of the absolute queue.

4-19

EMPTY SELF-RELATIVE QUEUE (HEADER ONLY)

SELF-RELATIVE QUEUE WITH TWO ENTRIES

31 1 0

SELF-RELATIVE QUEUE WITH ONE ENTRY

31 1 0

Figure 4-18 ■ Self-relative Queues

4-20 • Data Representation

EMPTY ABSOLUTE QUEUE (HEADER ONLY-SIMPLE ENTRY ONLY)

ABSOLUTE QUEUE WITH HEADER AND OTHER ENTRY

ABSOLUTE QUEUE WITH HEADER AND TWO OTHER ENTRIES

Figure 4-19 ■ Absolute Queues

4-21

■ Variable Length Bit Field Data

The variable length bit field is a type of data used to store small integers

packed together in a larger data structure. This conserves memory when many

small integers are part of a larger structure. A specific case of the variable bit

field is that of one bit. This form is used to store and access individual flags

efficiently.

A variable bit field is from 0 to 32 contiguous bits located arbitrarily with

respect to byte boundaries and specified by three attributes—a base address,

a bit position, and size.

The base address (A) is the address of a particular byte in memory chosen as a

reference point for locating the bit field F. The bit position (P) is the signed

longword specifying the bit displacement of the least significant bit of the

field with respect to bit zero of the byte at address A. The size (S) is the byte

integer length of field F expressed as a number of bits. Size must be between 0

and 32 bits inclusive. Figure 4-20 illustrates the variable length bit field

where the field is the shaded area.

SIZE OF FIELD IN BITS -1

BIT DISPLACEMENT OF FIELD

FROM BIT 0 OF ADDRESS A -

Figure 4-20 ■ Variable Length Bit Field

For bit strings in memory, the position in bits can be either a positive or nega¬

tive displacement within the range of -231 through (231)-1. It can be viewed

as a signed 29-bit byte offset and a 3-bit bit-within-byte field as shown in Fig¬

ure 4-21.

4-22 • Data Representation

3
j_3 2 o

BYTE OFFSET

I
BIT-WITHIN-BYTE

Figure 4-21 ■ Variable Length Bit Field in Memory

The sign-extended 29-bit byte offset is added to the address and the resulting

address specifies the byte in which the field begins. The 3-bit bit-within-byte

field encodes the starting position (0 through 7) of the field within that byte.

VAX instructions provide direct support for the interpretation of a field as a

signed or unsigned integer. When interpreted as a signed integer, it is the

two’s complement with bits increasing in significance from 0 through S-2

where bit S-l is the sign bit. When interpreted as an unsigned integer, bits

increase in significance from 0 through S-l. A field size of zero has a value of

zero.

A variable bit field may be contained in zero to five bytes. From a memory

management point of view only the minimum number of bytes necessary to

contain the field is actually referenced.

If the field is contained in a register and the size is not zero, the position oper¬

and must have a value in the range 0 through 31 or a reserved operand fault

occurs. If size plus position are greater than 32, then the operand is located in

the concatenation of register \n + 1] and by register [n] (that is

R\n + 1]’RR[«]). See Figure 4-22. The most significant bit of the specified

field lies in R[« + 1] and the least significant bit of the specified field is

located in R[«].

3

1 p p - 1 0

y//////.//

P + s P + S - 1

Figure 4-22 ■ Variable Length Bit Field in Register

4-23

To illustrate the variable length bit field with a positive displacement, assume

the following variable length bit field attributes—base address (A) =

B2204C01, position (P) = 29, and size (S) = 2. See Figure 4-23. The start¬

ing position of the field is bit 29; that is, the first bit of F is the twenty-ninth

bit after bit zero of A as shown in Figure 4-23. Now that the starting bit posi¬

tion of field has been located, determine its length. To determine its length,

apply the size attribute as shown in Figure 4-24.

FIRST

BIT OF F

7 0

7 6 5 4 3 2 1

15 14 13 12 11 10 9 8

23 22 21 20 19 18 17 16

'/S'.
'29'
V77

28 27 26 25 24

: A B2204C01

Figure 4-23 ■ Positive Displacement Variable Bit Field

FIELD F

Figure 4-24 ■ Determining Length of Positive Displacement Field

To determine the length of negative displacement variable length bit field,

assume the following attributes—base address (A) = 801134E3, position (P)

= -7, and size (S) = 6. See Figure 4-25. The starting position of F is the

seventh bit preceding the zero bit of address 801134E3 as shown in Figure

4-25. To determine the field length, apply the size attribute as in the previous

example counting from lower to higher addresses as shown in Figure 4-26.

4-24 ■ Data Representation

STARTING BIT POSITION

OF FIELD F

801134E2

801134E3

801134E4

Figure 4-25 ■ Negative Displacement Variable Bit Field

801134E2

' Y

FIELD F

Figure 4-26 ■ Determining Length of Negative Displacement Field

■ Data in Registers

When byte, word, longword, or floating type data is stored in a register, the
bit numbering in the register corresponds to the numbering in memory. A
byte is stored in a register in bits 0 through 7. A word is stored in bits 0
through 15. Longword and F_floating data is stored in register bits 0

through 31. A byte or word written to a register writes only bits 7 through 0
and 15 through 0 respectively. The higher bits are unaffected. A byte or word
read from a register reads only bits 0 through 7 and 0 through 15, respec¬

tively. The other bits are ignored.

When quadword or D_floating data is stored in a register, the data is stored
in two adjacent registers. Because of program counter restrictions, wrap¬
around from register PC to register RO is unpredictable. Bits 0 through 31 of
the quadword or D_floating data are stored in the first register. Bits 32

through 63 of the quadword or D_floating data are stored in the second reg¬

ister.

4-25

An octaword or H_floating data stored in a register is stored in four adja¬

cent registers. Bits 0 through 31 of the data are stored in the first register, bits

32 through 63 are stored in the second register, bits 64 through 93 are stored

in the third register, and bits 96 through 127 are stored in the fourth register.

With one restriction, a variable length bit field may be specified in the regis¬

ters. The starting bit position (P) must be in the range 0 through 31. For quad-

word and D— floating data, a pair of registers is treated as a 64-bit register

with bits 0 through 31 in the base register and bits 32 through 63 in the adja¬

cent register.

The VAX string instructions are unable to process string data types stored in

registers. Thus there is no representation of strings in registers.

Chapter 5 ■ The Instruction Characteristics

The notation conventions, source statement format, and register addressing

modes are described in this chapter. One must understand the notation con¬

ventions before being able to read and comprehend the instructions. Then the

addressing modes can be studied. Addressing modes are related to the instruc¬

tion format because the form of the instruction implicitly specifies the regis¬

ter addressing mode.

■ Notation Conventions

The notation conventions described here are for the assembler and instruction

set only and do not apply to other syntax. The conventions cover the assem¬

bler, instruction operand, instruction operation, and range and extent nota¬

tion.

Assembler Notation

The radix of the assembler is decimal. To express a hexadecimal number in

assembler notation, the number must be preceded by a caret (-) and an upper¬

case X. For those keyboards without a caret character, the up arrow (t) charac¬

ter is used. For example, in the instruction MOVW #3456,-(SP), the

assembler interprets the number 3456 as a decimal number. If 3456 is to be

interpreted as a hexadecimal number, it must be preceded by a caret or up

arrow and an uppercase X (#tX3456).

Operand Notation

Operands are specified in the following way:

< name >. < access_type > < data_type >

where < name > is typically a mnemonic for the operand of the instruction.

The <access_ type> is a letter denoting the operand access type.

a means to calculate the effective address of the specified operand.

Address is returned in a longword that is the instruction operand. Con¬

text of address calculation is given by < data_type >.

b means there is no operand reference. Operand specifier is a branch dis¬

placement. Size of branch displacement is given by < data_type >.

5-2 ■ The Instruction Characteristics

m means the operand is read, sometimes modified, and written. Note

that this is not an indivisible memory operation. Also note that if the

operand is not actually modified, it may not be written back. However,

modify type operands are always checked for both read and write acces¬

sibility.

r means the operand is read only.

v means to calculate the effective address of the specified operand. If the

effective address is in memory, the address is returned in a longword

that is the instruction operand. Context of address calculation is given

by <data_type> . If the effective address is R«, then the operand

actually appears in R[«], or in R[n + 1]’R[»].

w means the operand is written only.

The < data_type > is a letter denoting the data type of the operand.

b denotes byte data

d denotes D_floating data

f denotes F_floating data

g denotes G_floating data

h denotes H_floating data

1 denotes longword data

o denotes octaword data

q denotes quadword data

w denotes word data

x denotes the first data type specified by instruction

y denotes the second data type specified by instruction

Operation Notation

The operation of each instruction is given as a sequence of control and assign¬

ment statements in an ALGOL-like syntax. No attempt is made to define the

syntax formally. The syntax is assumed to be familiar to the reader and is sum¬

marized in Table 5-1.

5-3

Table 5-1 ■ Operation Notation Conventions

Notation Meaning

+ addition

- subtraction

X multiplication

/ division (quotient only)

** exponentiation

concatenation

is replaced by

= is defined as

Rn or R [n] contents of register Rn

PC the contents of register R15

SP the contents of register R14

FP the contents of register R13

AC the contents of register R12

PSW the contents of the Processor Status Word

PSL the contents of the Processor Status Longword

(x) contents of memory whose address is x

(x) + contents of memory whose address is x; x is

incremented by size of operand referenced at x

-(*) x decremented by size of operand to be referenced

at x; contents of memory whose address is x

x:y a modifier which delimits an extent from bit

position x to bit position y inclusive

xl,x2,...,xn a modifier that enumerates bits xl,x2, ... ,xn

x...y x through y inclusive

{ } braces used to indicate precedence

AND logical AND

OR logical OR

XOR logical XOR

5-4 ■ The Instruction Characteristics

Table 5-1 ■ Operation Notation Conventions (Cont.)

Notation Meaning

NOT logical (l’s) complement

LSS less than signed

LSSU less than unsigned

LEQ less than or equal signed

LEQU less than or equal unsigned

EQL equal signed

EQLU equal unsigned

NEQ not equal signed

NEQU not equal unsigned

GEQ greater than or equal signed

GEQU greater than or equal unsigned

GTR greater than signed

GTRU greater than unsigned

SEXT (x) x is signed-extended to size of operand needed

ZEXT (x) x is zero-extended to size of operand needed

REM (x, y) remainder of x divided by y, such that x/y and REM

(x,y) have the same sign

MINU (x, y) minimum unsigned of x and y

MAXU (x, y) maximum unsigned of x and y

The following conventions are used:

■ Other than that caused by (x) + , or - (x), and the advancement of the pro¬

gram counter, only operands or portions of operands appearing on the left

side of assignment statements are affected.

■ No operator precedence is assumed other than that replacement has the

lowest precedence. Precedence is indicated explicitly by braces.

■ All arithmetic, logical, and relational operators are defined in the context

of their operand. For example, a plus sign (+) applied to floating operands

means a floating add while the same sign applied to byte operands means

an integer byte add. Similarly, LSS is a floating comparison when applied

to floating operands; and LSS is an integer byte comparison when applied

to byte operands.

I

5-5

■ Instruction operands are evaluated according to the operand specifier con¬

ventions. The order in which operands appear in the instruction descrip¬

tion has no effect on the order of evaluation.

■ In general, condition codes are affected on the value of actual stored

results, not on true results that might be generated internally to greater pre¬

cision. Thus, for example, two positive integers can be added together and

the sum stored, because of overflow, as a negative value. The condition

codes will indicate a negative value even though the true result is clearly

positive.

Range and Extent Notation

An integer range is specified in English by the word through, or in notational

form by a double period (..), and is inclusive. For example, the range 0 through

4, or 0..4, means the integers 0, 1, 2, 3, and 4.

An extent is given by a pair of numbers separated by a colon and is also inclu¬

sive. For example, bits 7:3 specifies an extent of bits including bits 7, 6, 5, 4,

and 3.

■ MACRO Source Statement Format

MACRO source statements have four fields—label, operator, operand, and

comment fields. The label field defines a location in the program. The opera¬

tor field specifies the action to be performed. The operator can be a VAX archi¬

tecture instruction, an assembler directive, or a MACRO call. The operand

field contains the instruction operand or operands, the assembler directive

argument or arguments, or the MACRO statement or statements. The com¬

ment field contains a comment that explains the meaning of the statement.

Comments do not affect program execution.

The label and comment fields are optional. The label field must end with a

colon (:). The comment field must begin with a semicolon (;). The operand

field must conform to the format of the instruction, directive, or MACRO spec¬

ified in that field. See Figure 5-1 for the MACRO source statement format.

The statement format and fields are fully described in the VAX-11 MACRO

Reference Manual.

5-6m The Instruction Characteristics

COLUMN COLUMN COLUMN COLUMN

1

1
9 17

1
41

1
1
LABEL: CLRL

1
R5

Y
; CLEAR REGISTER

Figure 5-1 ■ MACRO Source Statement Format

Because of printing restrictions, the instruction examples in this book do not

conform to the field requirements of the assembler. In practice, the instruc¬

tions must be formatted as shown in Figure 5-1. A single statement can be

continued on several lines by using a hyphen as the last nonblank character

before the comment field. When there are no comments, the line can be con¬

tinued by using a hyphen at the end of the line.

■ Instruction Format

The VAX instruction set has a variable length instruction format whose length

depends on the type of instruction. The general instruction format is shown in

Figure 5-2. Each instruction consists of an operator followed by up to six oper¬

ands. The number and type of operands depend on the operator. All operands

have the same format; that is, an address mode plus additional information.

This additional information contains up to two register designators and

addresses, data, or displacements. Operand use is determined implicitly from

the opcode and is called the operand type. It includes both the access type and

the data type. The example in Figure 5-3 shows several VAX instruction for¬

mats.

OPCODE (1 OR 2 BYTES)

OPERATION CODE

OPERAND SPECIFIER 1

OPERAND SPECIFIER 2

OPERAND SPECIFIER 3

OPERAND SPECIFIER N

Figure 5-2 ■ General VAX Instruction Format

5-8 ■ The Instruction Characteristics

MOVL 6(R1), R5 SIX IS ADDED TO R1. THE RESULT USED AS AN

ADDRESS AND THE CONTENTS OF THAT ADDRESS

IS MODED TO R5

BYTE_

1 MOVL

2 (R1)

3 6
4 R5

OPCODE

OPERAND SPECIFIER 1

OPERAND SPECIFIER 2

A. MOVE LONG INSTRUCTION

MOVW#t X3456, -(SP) ; THE NUMBER 3456 IS PUSHED ON THE

; STACK

BYTE

1

2

3

4

5

MOVW

(PC) +

56

34

~(SP)

OPCODE

OPERAND SPECIFIER 1

\ IMMEDIATE DATA (56 STORED IN BYTE 3)

| (34 STORED IN BYTE 4)

OPERAND SPECIFIER 2

B. MOVE WORD INSTRUCTION

ADDL 3 (SP) + , R4, R5

BYTE

NUMBER ON THE STACK IS

ADDED TO THE CONTENTS OF

R4 AND RESULT IS STORED

IN R5

1

2

3

4

OPCODE

OPERAND SPECIFIER 1

OPERAND SPECIFIER 2

OPERAND SPECIFIER 3

C. ADD LONG INSTRUCTION (3 OPERAND)

Figure 5-3 ■ Instruction Formats

Operator Field

Each VAX instruction contains an operating code (opcode) that specifies the

operation to perform. An instruction is specified by the byte address of its

opcode. The opcode may be one or two bytes long depending on the contents

of the byte at address A. Two bytes are used under the condition that the

value of the first byte is FD (hexadecimal) through FF (hexadecimal). Figure

5-4 illustrates the opcode formats.

7 0

OPCODE

1 BYTE OPCODE

15_87_0

FC-FD

_ (1111 1100-1111 1111)

2 BYTE OPCODE

Figure 5-4 ■ Opcode Format

Operand Field

The operand field contains an operand specifier that gives the information

needed to locate the operand. Each general mode addressing description

includes the definition of the operand address and the specified operand. For

operand specifiers of address access type, the operand address is the actual

instruction operand. For other access types, the specified operand is the

instruction operand. The branch mode addressing description includes the def¬

inition of the branch address.

The operand types specify how the operand is to be used. The opcode informa¬

tion includes the data type of each operand and how the operand is accessed.

The data types include byte, word, longword, quadword, octaword, and all

the floating types. The following groups of data types are considered equiva¬

lent within groups for addressing mode considerations:

■ Longword and F_floating

■ Quadword, D_floating, and G_floating

■ Octaword and H floating

An operand may be accessed in one of six ways.

1. Read—the specified operand is read-only.

2. Write—the specified operand is write-only.

3. Modify—the specified operand is read, potentially modified, and is writ¬

ten. This is not a memory interlock.

5-10 ■ The Instruction Characteristics

4. Address—the address of the operand in the form of a longword is the

actual instruction operand. The operand is not accessed directly although

the instruction may subsequently use the address to access that operand.

5. Variable bit field base address—same as address access type except for reg¬

ister mode. In register mode, the field is stored in the register designated

by the destination operand or in the destination register concatenated with

the next higher addressed register. This access type is a special variant of

the address access type.

6. Branch—no operand is accessed. The operand specifier itself is a branch

displacement. In this specifier, the data type indicates the size of the

branch displacement.

For the address and branch address type that do not directly reference oper¬

ands, the data type indicates the address and branch. The address indicates

the operand size to be used in the address calculation in the autoincrement,

autodecrement, and index modes. The branch indicates the branch displace¬

ment.

■ Addressing Modes

VAX register addressing can be divided into two broad categories—general

mode addressing and branch addressing. The sections that follow describe the

various modes under both categories.

Table 5-2 contains a summary of the general register and program counter

addressing modes. It shows the mode specifier for each addressing mode in

hexadecimal and decimal notation; the assembler notation; the access types

that may be used with the various modes; the effect on the program and stack

pointer; and which modes may be indexed. For example, in literal mode, only

a read access may occur. Any other type of access results in a fault. The pro¬

gram counter and stack pointer are not referenced in this mode and are logi¬

cally impossible. If indexing is attempted in this mode, a reserved addressing

mode fault occurs.

Table 5-2 ■ Addressing Modes

GENERAL REGISTER ADDRESSING

Hex Dec Name Assembler r m w a v PC SP Indexable?

0-3 0-3 literal St#literal y f f f f li li f

4 4 indexed i[Rx] y y y y y f y f

5 5 register Rn y y y f y u uq f

6 6 register deferred (Rn) y y y y y u y y

7 7 autodecrement -(Rn) y yyyy u y ux

8 8 autoincrement (Rn) + y y y y y p y ux

9 9 autoincrement

deferred
@(Rn) + y y y y y p y ux

A 10 byte displacement BtD (Rn) y y y y y p y y

B 11 byte displacement

deferred

@BtD (Rn) y y y y y p y y

C 12 word displacement WtD (Rn) y y y y y p y y

D 13 word displacement

deferred
@WtD (Rn) y y y y y p y y

E 14 longword displace¬
ment

LtD (Rn) y y y y y p y y

F 15 longword displace¬

ment deferred

@LtD (Rn) y y y y y p y y

PROGRAM COUNTER ADDRESSING

8 8 immediate It# constant y u u y y li li y

9 9 absolute @# address y y y y y li li y

A 10 byte relative Bt address y y y y y li li y

B 11 byte relative
deferred

@Btaddress y y y y y li li y

C 12 word relative Wt address y y y y y li li y

D 13 word relative
deferred

@Wt address y y y y y li li y

E 14 longword relative Lt address y y y y y li li y

F 15 longword relative
deferred

@Lt address y y y y y li li y

5-12 • The Instruction Characteristics

Legend

a = address access

D = displacement

f = reserved addressing mode fault

i = any indexable addressing mode

li = logically impossible

m = modify access

p = program counter addressing

r = read access

u = unpredictable

uo = unpredictable for octaword and H_floating format only

uq = unpredictable for quadword, octaword, D_floating, G_floating, and

H_floating (and field, if position + size is greater than 32)

ux = unpredictable for index register same as base register

v = field access

w = write access

y = yes, always valid addressing mode

General Mode Addressing

In general mode addressing, there are two types of addressing—general regis¬

ter addressing and program counter addressing. General register addressing

has nine modes while program counter addressing has four.

■ General Register Addressing

The nine modes in which to access general registers are autodecrement, autoin¬

crement, autoincrement deferred, displacement, displacement deferred,

index, literal, register, and register deferred. Each is described in the ensuing

paragraphs.

Autodecrement Mode. With autodecrement mode, .the size of the operand in

bytes is subtracted from the content of specified source register. Then the con¬

tent of the destination register is replaced by the remainder of the subtraction.

The remainder is the address of the operand.

To specify the autodecrement mode, the source register operand is enclosed in

parentheses and is preceded by a minus (-) sign. See Example 3-1 for the for¬

mat of this address mode.

5-13

Example 5-1 ■ Autodecrement Mode Instruction

MOVL -(R3)# R4

Figure 5-5 shows a wow /o«g instruction using autodecrement mode. The con¬

tents of register R3 are decremented according to the data type specified in

the opcode. In this example, the register contents are decremented by 4

because a longword is used. The updated contents of R3 are then used as the

address of the operand. The instruction causes the operand to be fetched and

loaded into register R4.

7_4 3_0

7 Rn

v___y v___y

MODE

SPECIFIER
REGISTER

SPECIFIER

OPERAND SPECIFIER FORMAT

ADDRESS

SPACE R3 R4

00001014 10 'N | 00001018 | 1 00000000 1
00001015 32

> CE543210 .
00001016 54

00001017 CE J -NL
BEFORE INSTRUCTION EXECUTION

R3 R4

| 00001014 | | CE543210 |

AFTER INSTRUCTION EXECUTION

00003000 DO OPCODE FOR MOVE LONG INSTRUCTION

00003001 73 AUTODECREMENT MODE, REGISTER R3
00003002 54 REGISTER MODE, REGISTER R4

MACHINE CODE: ASSUME STARTING LOCATION 00003000

Figure 5-5 ■ Autodecrement Mode Instruction

The program counter may not be used in autodecrement mode. If it is, the

address of the operand is unpredictable and the next instruction executed or

the next operand specifier is unpredictable.

3-14 ■ The Instruction Characteristics

Autoincrement Mode. In autoincrement mode addressing, the register speci¬

fied in the source register operand contains the address of the operand. After

the operand address is determined, the size of the operand is added to the

contents of the source register. Then the contents of the destination register

are replaced by the sum of the addition. This mode provides for automatic

stepping of a pointer through sequential elements of a table of operands. Con¬

tents of registers are incremented to address the next sequential location.

The autoincrement mode is especially useful for array processing and stacks.

It accesses an element of a table and then steps the pointer to address the next

operand in the table. Although most useful for table handling, this mode is-

general and may be used for variety of purposes.

If the program counter is used as the general register, this addressing mode is

considered immediate mode and has special syntax. Immediate mode is

described in the section on Program Counter Addressing.

The autoincrement mode is specified by enclosing the register identifier in

parentheses followed by a plus (+) sign. See Example 5-2 for the format of

the instruction.

Example 5-2 ■ Autoincrement Mode Instruction

H0VL <R1)+/R2

Figure 5-6 shows a move long instruction using autoincrement mode. The con¬

tent of register R1 is the effective address of the source operand. Because the

operand is a 32-bit longword, 4 bytes are transferred to register R2. Register

R1 is then incremented by 4 because the instruction specifies a longword data

type.

Autoincrement Deferred Mode. In autoincrement deferred addressing, the

source register contains a longword address that is a pointer to the operand

address. After the operand address has been determined, 4 is added to the

contents of the source register. The contents of the source register are

replaced with the sum of the addition. The quantity 4 is used because there

are 4 bytes in an address.

Autoincrement deferred mode is specified by an at (@) sign, the source regis¬

ter enclosed in parentheses, followed by a plus (+) sign. Example 5-3 contains

a register in the autoincrement deferred mode.

Example 5-3 ■ Autoincrement Deferred Mode Instruction

mm «(RD*,R2

SPECIFIER SPECIFIER

OPERAND SPECIFIER FORMAT

R2

00000000

SOURCE OPERAND ADDRESS: 00001010

BEFORE INSTRUCTION EXECUTION

ADDRESS

SPACE R1 R2

00001010
00001011
00001012
00001013

00001014

00001015

AFTER INSTRUCTION EXECUTION

| 00001014 | | 33221100 |

ADDRESS

SPACE

00003000

00003001
00003002

OPCODE FOR MOVE LONG WORD INSTRUCTION

AUTOINCREMENT MODE, REGISTER R1
REGISTER MODE, REGISTER R2

MACHINE CODE: ASSUME STARTING LOCATION 3000

Figure 5-6 ■ Autoincrement Mode Instruction

5-16 ■ The Instruction Characteristics

Figure 5-7 shows a move word instruction using autoincrement deferred

mode. Register R1 is a pointer to the operand address. Because a word length

instruction is specified, the byte at the effective address and the byte at the

effective address plus 1 are loaded into the low-order half of register R2. The

upper half of register R2 is unaltered. Register R1 is then incremented by 4

since it points to a 32-bit address.

If the program counter is used as the general register, this addressing mode is

considered absolute mode. Absolute mode is described in the section on Pro-

gram Counter Addressing.

4 3

y

MODE-1

SPECIFIER

OPERAND SPECIFIER FORMAT

REGISTER

SPECIFIER

ADDRESS

SPACE

00001010 00

00001011 11 L
00001012 22 L
00001013 33 J
00001014 44

00001015 55

/^ADDRESS

SPACE

33221100 34

33221101 5F

33221102 00

33221103 00

33221100

BEFORE INSTRUCTION EXECUTION

R1 R2

| 00001010] | 00000000 |

DDRESS

R1 R2

| 00001014 ”| | 00005F34 1

AFTER INSTRUCTION EXECUTION

ADDRESS

00003000

00003001

00003002

SPACE

B0

91

52

OPCODE FOR MOVE WORD INSTRUCTION

AUTOINCREMENT DEFERRED MODE, REGISTER R1

REGISTER MODE, REGISTER R2

MACHINE CODE: ASSUME STARTING LOCATION 00003000

Figure 5-7 ■ Autoincrement Deferred Mode Instruction

5-17

Displacement Mode. The VAX architecture provides for an 8-bit, 16-bit, or

32-bit offset. Because most program references occur within small discrete

portions of the address space, a 32-bit offset is not always necessary. The 8-

and 16-bit offsets use fewer bits. If the displacement is a byte or a word, it is

sign-extended to 32 bits. Then the displacement is added to the content of the

specified register. The result is the operand address. See Example 5-4 for the

syntax of the displacement mode.

Example 5-4 ■ Byte Displacement Mode Instruction

MOVE Bt5(R4),Bt3(R3)

Figure 5-8 shows a move byte instruction using displacement mode. A dis¬

placement of 5 is added to the content of R4 to form the address of the byte

operand. The operand is moved to the address formed by adding the displace¬

ment of 3 to the contents of R3.

Three data types can be specified. For example,

■ Btd(R«) forces byte displacement.

■ Wtd(Rn) forces word displacement.

■ Ltd(Rtf) forces longword displacement.

If the program counter is used as the general register, this mode is called rela¬

tive mode. The Program Counter Register Addressing section describes the
relative mode.

Displacement Deferred Mode. If the displacement is a byte or word, it is sign-

extended to 32 bits. Then the displacement is added to the contents of the

selected general register. The result is a longword address of the operand

address. See Example 5-5 for an example of an instruction in displacement
deferred mode.

Three data types can be specified. For example,

■ @Btd(R«) forces byte displacement deferred mode.

■ @ Wtd(Rn) forces word displacement deferred mode.

■ @Ltd(Rn) forces longword displacement deferred mode.

5-18 ■ The Instruction Characteristics

8 7 4 3

BYTE DISPLACEMENT MODE

WORD DISPLACEMENT MODE

LONGWORD DISPLACEMENT MODE

REGISTER SPECIFIER

DISPLACEMENT 1- MODE SPECIFIER

A = BYTE DISPLACEMENT

C = WORD DISPLACEMENT

E = LONGWORD DISPLACEMENT

OPERAND SPECIFIER FORMAT

ADDRESS

SPACE R4 R3

00001015 00 1 00001012 | | 00002020 |

00001016 00

00001017 06 —OPERAND

00001018 00 00001012 00002020
00001019

+ 5 +3

•
00001017 00002023

00002021 00

00002022 00

00002023 00

BEFORE INSTRUCTION EXECUTION

ADDRESS

00001015

00001016

00001017

00001018

SPACE

00
00
06

00

R4

| 00001012 1

R3

| 00002020]

00002021
00002022
00002023 -—OPERAND

AFTER INSTRUCTION EXECUTION

00003000

00003001

00003002

00003003

00003004

ADDRESS

OPCODE FOR MOVE BYTE INSTRUCTION

SIGNED BYTE DISPLACEMENT, REGISTER R4

SPECIFIER EXTENSION (DISPLACEMENT OF 5)

SIGNED BYTE DISPLACEMENT, REGISTER R3
SPECIFIER EXTENSION (DISPLACEMENT OF 3)

SPACE

90

A4

05

A3

03

MACHINE CODE: ASSUME STARTING LOCATION 00003000

Figure 5-8 ■ Displacement Mode Instruction

5-19

Example 5-5 ■ Byte Displacement Deferred Mode Instruction

INCW «Bt5CR4)

Figure 5-9 shows an increment word instruction using displacement deferred

mode. The quantity 5 is added to the contents of register R4 to produce the

longword address of the address of the operand. The operand of 5713 is incre¬

mented to 5714.

If the program counter is used as the general register, this is considered rela¬

tive deferred mode.

Index Mode. Index mode addressing provides very general and efficient access¬

ing of arrays. The VAX architecture provides for context indexing where the

number in the index register is shifted left by the context of the data type

specified. It is not shifted for byte data, shifted once for word data, twice for

longword data, three times for quadword data, and four times for octaword

data. This allows loop control variables to be used in the address calculation

without first shifting them the appropriate number of times. This minimizes

the number of instructions required. This feature is used to advantage in the

FORTRAN VAX compiler.

The operand specifier consists of at least two bytes—a primary operand speci¬

fier and a base operand specifier. The primary operand specifier contained in

bits 0 through 7 includes the index register (Rx) and a mode specifier of 4.

The address of the primary operand is determined by first multiplying the con¬

tents of index register Rx by the size of the primary operand in bytes. This

value is then added to the address specified by the base operand specifier (bits

15:8), and the result is taken as the operand address.

Specifying register, literal, or index mode for the base operand specifier

results in an illegal addressing mode fault. If the use of some particular speci¬

fier is illegal (that is, causes a fault or unpredictable behavior), then that speci¬

fier is also illegal as a base operand specifier in index mode under the same

conditions.

The following restrictions are placed on index register Rx:

1. The program counter cannot be used as an index register. If it is, a

reserved addressing mode fault occurs.

2. If the base operand specifier is for an addressing mode that modifies a reg¬

ister, that register cannot be the index register. If it is, the primary oper¬

and address is unpredictable. Addressing modes that modify a register are

the autoincrement, autoincrement deferred, and autodecrement modes.

5-20 ■ The Instruction Characteristics

Table 5-3 lists the various forms of index mode addressing available. The

names of the addressing modes resulting from index mode addressing are

formed by adding index to the addressing mode of the base operand specifier.

The general register is designated Rn and the indexed register is Rx.

15 8 7 4 3

DISP Rn

23 8 7 4 3

DISP Rn

8 7 4 3

DISP F Rn

v yl_j _y

T 1
DISPLACEMENT 1- MODE SPf

SPECIFIER EXTENSION IS

BYTE DISPLACEMENT DEFERRED

SPECIFIER EXTENSION IS

WORD DISPLACEMENT DEFERRED

SPECIFIER EXTENSION IS

LONGWORD DISPLACEMENT DEFERRED

REGISTER SPECIFIER

B = BYTE DISPLACEMENT

D = WORD DISPLACEMENT

F = LONGWORD DISPLACEMENT

OPERAND SPECIFIER FORMAT

ADDRESS

SPACE R4

00001017 88 ^ | 00001012

00001018 42 l OPERAND
00001019 24 f ADDRESS
00001020 68 /

■ OPERAND

BEFORE INSTRUCTION EXECUTION

00001012
+5

5713 OPERAND

+ 1 INCREMENT

5714 NEW OPERAND

AFTER INSTRUCTION EXECUTION

ADDRESS

SPACE

OPCODE FOR INCREMENT WORD INSTRUCTION
SIGNED BYTE DISPLACEMENT, REGISTER R4

SPECIFIER EXTENSION (DISPLACEMENT OF 5)

MACHINE CODE: ASSUME STARTING LOCATION 00003000

Figure 5-9 ■ Displacement Deferred Mode Instruction

00003000
00003001

00003002

B6

B4

05

5-21

Table 5-3 ■ Index Mode Addressing

Index Mode Assembler Notation

Absolute @#address [Rx]

Autodecrement -(Rn) [Rx]

Autoincrement (Rn) + [Rx]

Autoincrement Deferred @(Rn) + [Rx]

Deferred Displacement:

Byte @BtD(Rn) [Rx]

Word @WtD(Rn) [Rx]

Longword @LtD(Rn) [Rx]

Immediate1 It# constant [Rx]

Immediate Displacement:

Byte BtD(Rn) [Rx]

Word WtD(Rn) [Rx]

Longword LtD(Rn) [Rx]

Register Deferred (Rn) [Rx]

Relative Indexed address [Rx]

1 The instruction is recognized by assembler but is not generally useful. The operand

address is independent of the value of the constant.

It is important to note that the operand address (the address containing the

operand) is first evaluated. Then the index specified by the index register is

added to the operand address to find the indexed address. To illustrate this,

an example of each type of indexed addressing is shown in Examples 5-6

through 5-12.

Register Deferred Index Mode. See Example 5-6.

Example 5-6 ■ Register Deferred Index Mode Instruction

INCW CR2) CR5]

Figure 5-10 shows an increment word instruction using register deferred

index addressing. The base operand address is evaluated. This location is

indexed by 6 because the value (3) in the index register is multiplied by the

word data size of 2.

5-22 ■ The Instruction Characteristics

PRIMARY OPERAND

DISP BASE OPERAND SPECIFIER 4 Rn

OPERAND SPECIFIER FORMAT

- MODE SPECIFIER

ADDRESS

SPACE

00001012 04

00001013 56

00001014 78

00001015 87

00001018

00001019

45

67

R2 R5

| 00001012 | 1 00000003]

316 x 2 BYTES PER WORD = 6

00001012
+6

OPERAND
00001018

BEFORE INSTRUCTION EXECUTION

ADDRESS

SPACE R2 R5

| 0000101*2 1 | 00000003] 00001018 46

00001019 67

AFTER INSTRUCTION EXECUTION

ADDRESS

00003000

00003001

00003002

SPACE

B6

45

62

OPCODE FOR INCREMENT WORD INSTRUCTION

INDEX MODE, REGISTER R5

REGISTER DEFERRED MODE, REGISTER R2

ASSEMBLY CODE: ASSUME STARTING LOCATION 00003000

Figure 5-10 ■ Register Deferred Index Mode Instruction

Autoincrement Index Mode. See Example 5-7.

Example 5-7 ■ Autoincrement Index Mode Instruction

CLRL (R4) + CR5]

5-23

Figure 5-11 shows a clear longword instruction using the autoincrement

indexed addressing mode. The base operand address is in register R4. This

value is indexed by the quantity in R5 multiplied by the data size. This loca¬

tion, plus the next three, are cleared because a clear longword instruction is

specified.

ADDRESS

SPACE

000010A6 11

000010A7 22

000010A8 33

000010A9 44

R4

00001012 |

R5

00000025 |

► OPERAND INDEX = 2516 x 4 BYTES PER

LONGWORD,

= 94ie

k 00001012
00000094 -

ADDRESS OF OPERAND 000010A6

BEFORE INSTRUCTION EXECUTION

ADDRESS

SPACE R4 R5

000010A6 00 | 00001016 | | 00000025 |

000010A7 00

000010A8 00

000010A9 00

AFTER INSTRUCTION EXECUTION

ADDRESS

SPACE

00003000

00003001

00003002

OPCODE FOR CLEAR LONGWORD INSTRUCTION

INDEX MODE, REGISTER R5

AUTOINCREMENT MODE, REGISTER R4

MACHINE CODE: ASSUME STARTING LOCATION 00003000

Figure 5-11 ■ Autoincrement Index Mode Instruction

Autoincrement Deferred Index Mode. See Example 5-8.

Example 5-8 ■ Autoincrement Deferred Index Mode Instruction

CLRW 9CR4)+[R5]

5-24 ■ The Instruction Characteristics

Figure 5-12 shows a clear word instruction using the autoincrement deferred

indexing mode. Register R4 contains the address of the operand address. The

index value A is obtained by multiplying the contents (5) of the index register

by the context of the data type, which is 2. The calculated word address is

cleared.

00001012
00001013

00001014

00001015

0608214D

0608214E

0608214F

ADDRESS

SPACE R4 R5

| 00001012 | | 00000005 |

x 2 BYTES PER WORD = 0000000A

ADDRESS

SPACE

OPERAND

0608214D

BEFORE INSTRUCTION EXECUTION

0608214D

0608214E

0608214F

ADDRESS

SPACE R4

| 00001014 |

AFTER INSTRUCTION EXECUTION

R5

| 00000005 1

00003000

00003001

00003002

ADDRESS

OPCODE FOR CLEAR WORD INSTRUCTION

INDEX MODE, REGISTER R5

AUTOINCREMENT DEFERRED MODE, REGISTER R4

SPACE

B4

45

94

MACHINE CODE: ASSUME STARTING LOCATION 3000

Figure 5-12 ■ Autoincrement Deferred Index Mode Instruction

Autodecrement Index Mode. See Example 5-9.

Example 5-9 ■ Autodecrement Index Mode Instruction

CLRW -<R2) [R4]

5-25

Figure 5-13 shows a clear word instruction using autodecrement indexed

mode. Register R2 is predecremented and the indexed value is calculated as 6.

Because a clear word instruction is specified, two bytes are cleared.

ADDRESS

0000101A
0000101B
0000101C
0000101D

SPACE

33

33

33

33

BEFORE INSTRUCTION EXECUTION

R2 R4

| 00001016 ~| | 00000003 ~[

316 x 2 BYTES PER WORD = 6(INDEX)

00001016

00000002 DECREMENT BY 2

00001014 OPERAND ADDRESS

00000006 INDEX VALUE

0000101A INDEXED OPERAND ADDRESS

ADDRESS

0000101A
0000101B
0000101C
0000101D

SPACE

00
00
00
00

R2

1 00001014 |

R4

| 00000003 |

AFTER INSTRUCTION EXECUTION

00003000

00003001

00003002

ADDRESS

SPACE

B4

44

72

OPCODE FOR CLEAR WORD INSTRUCTION

INDEX MODE, REGISTER R4

AUTODECREMENT MODE, REGISTER R2

MACHINE CODE: ASSUME STARTING LOCATION 00003000

Figure 5-13 ■ Autodecrement Index Mode Instruction

Absolute Index Mode. See Example 5-10.

Example 5-10 ■ Absolute Index Mode Instruction

CLRL «#tX1012 CR23

3-26 ■ The Instruction Characteristics

Figure 5-14 shows a clear longword instruction using absolute indexed mode.

The base of 00001012 (hexadecimal) is indexed by R2 that contains 5.

Because a longword data type is specified, 5 x 4 = 14 (hexadecimal), which

becomes the index value. This value is added to 00001012 (hexadecimal) yield¬

ing 0001026 (hexadecimal). This is the operand address, and four bytes are

cleared because a longword data type has been specified.

ADDRESS

SPACE R2

f 00000005 |

5i6 x 4 = 1416

00001012
00000014

00001026

BEFORE INSTRUCTION EXECUTION

ADDRESS

SPACE

00001026

00001027

00001028

00001029

R2

| 00000005]

AFTER INSTRUCTION EXECUTION

Figure 5-14 ■ Absolute Index Mode Instruction

Displacement Index Mode. See Example 5-11.

Example 5-11 ■ Displacement Index Mode Instruction

CLRQ 2CRDCR31

Figure 5-15 shows a clear quadioord instruction using displacement index

mode. The byte displacement of 2 is added to the contents of register R1. The

index, calculated as 28, is added to this address. Because a quadword was spec¬

ified, this location and the next seven locations are cleared.

5-27

ADDRESS

SPACE

0000402A 24

0000402B 68

0000402C 13

0000402D 57

0000402E 62
0000402F 43

00004030 34

00004031 47

R1

00004000 00000005

516 x 8 BYTES PER QUADWORD

= 2816 (INDEX)

00004000

00000002
CONTENTS OF R1

BYTE DISPLACEMENT

00004002

00004002 OPERAND ADDRESS

00000028 INDEX

0000402A INDEXED OPERAND ADDRESS

BEFORE INSTRUCTION EXECUTION

ADDRESS

SPACE R1 R3

0000402A 00 | 00004000 I | 00000005 |

0000402B 00

0000402C 00

0000402D 00

0000402E 00

0000402F 00

00004030 00

00004031 00

AFTER INSTRUCTION EXECUTION

ADDRESS

00003000

00003001

00003002

SPACE

7C

43

61

OPCODE FOR CLEAR QUADWORD

INDEX MODE, REGISTER R3

REGISTER DEFERRED MODE, REGISTER R1

MACHINE CODE: ASSUME STARTING LOCATION 00003000

Figure 5-15 ■ Displacement Index Mode Instruction

Displacement Deferred Index Mode. See Example 5-12.

Example 5-12 ■ Displacement Deferred Index Mode Instruction

MOVL 3tX14CRl)CR31#R5

5-28 • The Instruction Characteristics

Figure 5-16 shows a move longivord instruction using displacement deferred

indexed addressing. The displacement of 14 is added to the contents of regis¬

ter Rl. The sum is the address 00001026 (hexadecimal). The contents of this

location yield the operand address (44332211 (hexadecimal)). This quantity is

added to the index yielding the indexed operand address of 44332221 (hexa¬

decimal). The contents of this address are then moved into register R5.

ADDRESS Rl

SPACE | 00001012 |

00001012 12 R3
00001013 34

| 00000004 |
00001014 56

00001015 78 R5

•

| 00000000 |

00001026 11 00001012
00001027 22 00000014

00001028 33 00001026
00001029 44

O
P

44332221 01 > E 44332211

44332222 23 l R 00000010

44332223 45 f A 44332221
44332224 67 J N
44332225 89 D

416 x 4 BYTES PER LONGWORD

= 1016 (INDEX)

CONTENTS OF Rl

DISPLACEMENT

ADDRESS OF OPERAND ADDRESS

OPERAND ADDRESS

INDEX

INDEXED OPERAND ADDRESS

BEFORE INSTRUCTION EXECUTION

Rl

|~~00001012 |

R3

[~~00000004 |

R5

| 67452301 1

AFTER INSTRUCTION EXECUTION

Figure 5-16 ■ Displacement Deferred Index Mode Instruction

Literal Mode. Literal mode addressing provides an efficient means of specify¬

ing integer constants in the range from 0 to 63. This is called short literal. Lit¬

eral values greater than 63 are obtained by using the program counter in

autoincrement mode (immediate mode). For predefined values, the assembler

chooses between short literal and immediate modes. The format for short lit¬

eral operands is shown in Figure 3-17. Bits 7 and 6 are always set to zero.

Figure 3-18 shows some short literals (14, 30, 46, and 62). To specify literal

mode, prefix the literal with St#.

MODE SPECIFIER
__A__
r "\

7 6 5 4_0

0 0
-1--1-1_I_I_I_

Figure 5-17 ■ Short Literal Operand

MODE

SPECIFIER = 0
A

*\

0 (0 0 0 1110
1 1 1 1 1

MC

SPECIF

V J
V

141 o = 0E16
)DE
IER = 1
v._

r a

0 (0 0 11110
i i i i i

MC
SPECIF

j

v y
V

3010 = 1Ei6

)DE
IER = 2
_

r \

0 0
i

10 1110
1 1 1 1 1

MO

SPECIFI
j

V J

46-iq = 2E16
DE
ER = 3
c.

r ^

0 0 111110
-1-1_1_1_1_

6210 — 3E16

RANGE OF MODE SPECIFIER = 0
ISO - 1510

RANGE OF MODE SPECIFIER = 1

IS 16 - 3110

RANGE OF MODE SPECIFIER = 2

IS 32 - 4710

RANGE OF MODE SPECIFIER = 3

IS 48 - 6310

Figure 5-18 ■ Typical Short Literal Operands

5-30 ■ The Instruction Characteristics

Floating-point literals as well as short literals can be expressed. The floating¬

point literals are listed in Table 5-4. For operands of the short floating type,

the 6-bit literal field in the operand specifier is composed of two 3-bit fields.

The field marked EXP designates the exponent column and FRAC designates

the fraction columns. See Figure 5-19.

5 3 2 o

EXP FRAC

Figure 5-19 ■ Literal Field

The 3-bit EXP field and 3-bit FRAC field are used to form an F_floating or

D_floating operand as shown in Figure 5-20. Bits 63:32 are not present in

an F_floating operand. G_floating and H_floating operands can be

formed in analogous ways using the EXP and FRAC fields.

EXP FRAC

15 14 13 12 11 10^9 8 7^ 5 4^ 3_0

0 1 0 0 0 0

63 48

Figure 5-20 ■ D_floating and F_floating Operands in Literal Mode

Bits 3 through 5 of the EXP field are stored in bits 7 through 9, respectively,

of the floating operand. (See Figure 5-21.) Bits 0 through 2 of the FRAC field

are stored in bits 4 through 6 in the floating operand. The decimal values that

can be stored are given in Table 5-4.

5-31

LITERAL MODE

7 6 5 4 3 2 1 0

Figure 5-21 ■ Floating Operand Bit Storage

The EXP field is expressed in excess 128 notation. In this notation, an offset

of 128 is added to the exponent. For example, an exponent of 0 is represented

as 128 or 10000000 (binary), while an exponent of 3 is represented as 131 or

10000011 (binary).

Assume you want to express the floating-point literal of 64. Find the integer

64 in the table. It is in the 7 row of EXP and the 0 column of the fraction

columns. Therefore, 7 is the value of the exponent field and 0 is the value of

the fraction field.

Table 5-4 ■ Floating Literals

Exponent Fraction

0 1 2 3 4 5 6 7

0 1/2 9/16 5/8 11/16 3/4 13/16 7/8 15/16

1 1 1-1/8 1-1/4 1-3/8 1-1/2 1-5/8 1-3/4 1-7/8

2 2 2-1/4 2-1/2 2-3/4 3 3-1/4 3-1/2 3-3/4

3 4 4-1/2 5 5-1/2 6 6-1/2 7 7-1/2

4 8 9 10 11 12 13 14 15

5 16 18 20 22 24 26 28 30

6 32 36 40 44 48 52 56 60

7 64 72 80 88 96 104 112 120

5-32 ■ The Instruction Characteristics

Example 5-13 ■ Literal Mode Instruction

MOVL St#9;R4

Figure 5-22 shows a move long instruction using literal mode. The literal 9 is

transferred to register R4.

7 6 5_0_

0 0 LITERAL
-1--I_I—.I_I_I_

OPERAND SPECIFIER FORMAT

R4

f 00000000 |

BEFORE INSTRUCTION EXECUTION

R4

f00000009 1

AFTER INSTRUCTION EXECUTION

00003000

00003001

00003002

ADDRESS

SPACE

OPCODE FOR MOVE LONG INSTRUCTION

LITERAL 9

REGISTER MODE, REGISTER R4

MACHINE CODE: ASSUME STARTING LOCATION 00003000

Figure 5-22 ■ Literal Mode Instruction

Register Mode. With register mode, any of the general registers may be used

as simple accumulators and the operand is contained in the selected register.

Because they are hardware registers within the processor, they provide speed

advantages when used for operating on frequently accessed variables.

This mode can be used with operand specifiers using read, write, or modify

access but cannot be used with the address access type. Otherwise, an illegal

addressing mode fault occurs. The program counter cannot be used in this

mode. If the program counter is read, the value is unpredictable. If the pro¬

gram counter is written, the next instruction executed or the next operand

specified is unpredictable. Similarly, if the program counter is used in register

mode for a write-access operand that takes two adjacent registers, the con¬

tents of register 0 are unpredictable.

5-33

If register 12, 13, the stack pointer, or program counter is used in register

mode addressing for an operand that takes four adjacent registers, the results

are unpredictable. If the program counter is used in register mode for a write

access that requires four adjacent registers, the contents of registers 0, 1, and

2 are unpredictable. Likewise, if register 13 is used in register mode for a write

access that takes four adjacent registers, the contents of register 0 are unpre¬

dictable. If the stack pointer is used in register mode for a write access that

takes four adjacent registers, the contents of registers 0 and 1 are unpredict¬

able.

The stack pointer cannot be used in this mode for an operand that takes two

adjacent registers because that implies a direct reference to the program coun¬

ter and the results are unpredictable.

The operand is the content of register n, or R[n + 1] concatenated with Rn for

quadword, D_floating, and certain field operations. The following list iden¬

tifies the single- and multiple-register operand format.

One register operand = Rn

Two register operand = R[# + 1]’R[«]

Four register operand = R[« + 3]’R[» + 2]’R[» + 1]’R[«]

Example 5-14 ■ Register Mode Instruction

V\0W R1, R2

Figure 5-23 shows a move word instruction using register mode. The content

of register 1 is the operand. The move word instruction transfers the least sig¬

nificant half of register 1 to the least significant half of register 2. The upper

half of register 2 is unaffected.

Register Deferred Mode. The register deferred mode provides one level of indi¬

rect addressing over register mode. That is, the general register contains the

address of the operand rather than the operand itself. The deferred modes are

useful when dealing with an operand whose address is calculated. The pro¬

gram counter cannot be used in register deferred mode addressing as the

results are unpredictable. To indicate the register deferred mode, enclose the

register operand in parentheses. See Example 5-15 for the format of the

instruction.

3-34 ■ The Instruction Characteristics

Rn

V_

MODE-' *- REGISTER

SPECIFIER SPECIFIER

OPERAND SPECIFIER FORMAT

R1 R2

0 0 0 0 0 0 0 0

BEFORE INSTRUCTION EXECUTION

C 0 A 0 3 2

AFTER INSTRUCTION EXECUTION

0 0 0 0 3 4 1 2

00003000

00003001

00003002

80

51

52

OPCODE FOR MOVE WORD INSTRUCTION

OPERAND SPECIFIER. SOURCE; REGISTER MODE 1

OPERAND SPECIFIER, DESTINATION; REGISTER MODE 2

MACHINE CODE: ASSUME STARTING LOCATION 00003000

Figure 3-23 ■ Register Mode Instruction

Example 5-15 ■ Register Deferred Mode Instruction

CLRQ CR4)

5-35

Figure 5-24 shows a clear quadword instruction using register deferred mode.

Register 4 contains the address of the operand. The instruction specifies that

the byte at this address plus the following seven bytes are to be cleared.

Rn

MODE

SPECIFIER
REGISTER

SPECIFIER

OPERAND SPECIFIER FORMAT

00001010 AB

00001011 CD
00001012 EF

00001013 12

00001014 34

00001015 56

00001016 76

00001017 65

BEFORE INSTRUCTION EXECUTION

X ADDRESS \

SPACE X R4

00001010 00] 00001010 I

00001011 00

00001012 00
00001013 00

00001014 00

00001015 00

00001016 00

00001017 00

AFTER INSTRUCTION EXECUTION

ADDRESS

SPACE

00003000

00003001

7C

64
OPCODE FOR CLEAR QUAD INSTRUCTION

OPERAND SPECIFIER FOR REGISTER DEFERRED

MACHINE CODE: ASSUME STARTING LOCATION 00003000

Figure 5-24 ■ Register Deferred Mode Instruction

5-36 ■ The Instruction Characteristics

■ Program Counter Register Addressing

Register 15 is used as the program counter. It can also be used as a register in

addressing modes. The processor increments the program counter as the

opcode, operand specifier, and immediate data or address of the instruction

are evaluated. The amount that the program counter is incremented is deter¬

mined by the opcode, number of operand specifiers, and so on.

The program counter can be used with all the VAX addressing modes except

register or index mode. In those two modes, the results are unpredictable. The

addressing mode register functions are shown in Table 5-5. The following

modes use the program counter as a general register.

■ Absolute Mode—same as > autoincrement deferred mode

■ Immediate Mode—same as autoincrement mode

■ Relative Mode—same as displacement mode

■ Relative Deferred Mode- —same as displacement deferred mode.

Table 5-5 ■ Addressing Mode Functions

Mode Assembler Notation Note

Absolute $#Location *

Byte Relative BtG (R) t

Byte Relative Deferred SBtG (R) t

Immediate IttlOperand §

Longword Relative LtG CR)

Longword Relative Deferred #LtG (R)

Word Relative WtG <R>

Word Relative Deferred <3WtG (R)

* Absolute mode is the same as autoincrement mode with the program counter used as a

general register. Absolute address follows address mode.

t Relative mode is the same as displacement mode with the program counter used as a

general register. Displacement is added to current value of PC to obtain operand

address.

X Relative deferred mode is the same as displacement deferred mode with the program

counter used as a general register. Displacement is added to current value of PC to yield

address of operand address.

§ Immediate mode is the same as autoincrement mode with the program counter used

as a general register. The constant operand follows the address mode.

3-37

When a standard program is available for different users, it is often helpful to

be able to run it at different areas of virtual memory. VAX computers can

accomplish the relocation of a program very efficiently through the use of posi¬

tion-independent code. If an instruction and its objects are moved in such a

way that the relative distance between them is not altered, the same offset

relative to the program counter can be used in all positions in memory.

Absolute Mode. This mode is autoincrement deferred when using the program

counter as a general register. The contents of the location following the

addressing mode are taken as the operand address. This is interpreted as an

absolute address. See Example 5-16 for the format of the operand.

Example 5-16 ■ Absolute Mode Instruction

CLRL e#tX674533

Figure 5-25 shows a clear longujord instruction using the absolute addressing

mode. This instruction causes the location or locations following the address¬

ing mode to be taken as the address of the operand. In this example, the

address is 00674533 (hexadecimal). The longword operand for this address is

cleared.

Immediate Mode. The immediate addressing mode is autoincrement mode

when the program counter is used as a general register. The contents of the

location following the addressing mode are immediate data. Immediate mode

may not be used for operands of the modify or write access types. If immedi¬

ate mode is used for one of those operands, the value of the data read is unpre¬

dictable. So is the address at which the operand is written. See Example 5-17

for the format of the operand.

5-38 ■ The Instruction Characteristics

39 4 3

ADDRESS

MODE-1 1- REGISTER

SPECIFIER SPECIFIER

OPERAND SPECIFIER FORMAT

Dn ADDRESS

SPACE

00001012 D4

00001013 9F

00001014 33

00001015 45

00001016 67

00001017 00

00001018 55

OPCODE FOR CLEAR LONG INSTRUCTION

OPERAND SPECIFIER, AUTOINCREMENT DEFERRED PC (ABSOLUTE)

► OPERAND ADDRESS

BEFORE INSTRUCTION EXECUTION

00674533

00674534

00674535

00674536

AFTER INSTRUCTION EXECUTION

Figure 5-25 ■ Absolute Mode Instruction

oo
oo
oo
oo

Example 5-17 ■ Immediate Mode Instruction

MOVL #6,R4

Figure 5-26 shows a move longword instruction using immediate mode. The

immediate data (00000006(hexadecimal)) following the mnemonic and oper¬

and specifier are moved to register R4.

5-39

CONSTANT

4 3

SIZE DEPENDS

ON CONTEXT
MODE

SPECIFIER
REGISTER

SPECIFIER

OPERAND SPECIFIER FORMAT

/
o

C

L

00001012 DO

00001013 8F

00001014 06

00001015 00
00001016 00

00001017 00

00001018 54

OPCODE FOR MOVE LONG INSTRUCTION

OPERAND SPECIFIER, AUTOINCREMENT PC (IMMEDIATE)

-► IMMEDIATE DATA R4

I 00000000 I
REGISTER MODE, REGISTER R4 1-1

BEFORE INSTRUCTION EXECUTION

00001014

00001015

00001016

00001017

AFTER INSTRUCTION EXECUTION

Figure 5-26 ■ Immediate Mode Instruction

Relative Mode. This mode is the displacement mode with the program coun¬

ter used as a general register. The displacement follows the operand specifier

and is added to the program counter. The sum of which becomes the address

of the operand. This mode is useful for writing position-independent code

because the location referenced is always fixed. See Example 5-18 for the for¬

mat of the operand.

Example 5-18 ■ Relative Mode Instruction

R4

| 00000006 1

MOVL tX2016,R4

5-40 • The Instruction Characteristics

Figure 5-27 shows a move longword instruction using relative mode. The word

following the address mode is added to the program counter to obtain the

address of the operand. In this example, the program counter is pointing to

location 00001016 (hexadecimal) after the first operand specifier is evalu¬

ated. The word following the mnemonic and first operand specifier is

00001000 (hexadecimal), and is added to the program counter yielding

00002016 (hexadecimal). This value represents the address of the longword

operand (00860077 (hexadecimal)). Then this operand is moved to register

R4. The program counter contains 00001017 (hexadecimal) after instruction

execution.

15 8 7 4 3
SPECIFIER EXTENSION IS

BYTE DISPLACEMENT

SPECIFIER EXTENSION IS

WORD DISPLACEMENT

SPECIFIER EXTENSION IS

LONGWORD DISPLACEMENT

DISPLACEMENT MODE 1-REGISTER

SPECIFIER SPECIFIER

A = BYTE DISPLACEMENT

C = WORD DISPLACEMENT

E = LONGWORD DISPLACEMENT

OPERAND SPECIFIER FORMAT

pr ADDRESS
SPACE

00001012 DO

00001013 CF

00001014 00

00001015 10

00001016 54

OPCODE FOR MOVE LONG 1 00000000 1

DISPLACEMENT MODE WITH PC

- DISPLACEMENT = 1000

REGISTER MODE. REGISTER R4

00001016

1000

00002016

R4

[00860077

AFTER INSTRUCTION EXECUTION

Figure 5-27 ■ Relative Mode Instruction

5-41

Relative Deferred Mode. This mode is similar to relative mode except that the

displacement following the addressing mode is added to the prograjn counter.

The updated contents of the program counter are the address of the first byte

beyond the specifier extension. This addressing mode is useful when process¬

ing tables of addresses. See Example 5-19 for the format of the operand.

Example 5-19 ■ Relative Deferred Mode Instruction

MOML «tX2058,R2

Figure 5-28 shows a move long instruction where 00002050 (hexadecimal) rep¬

resents the address of the operand. A byte displacement is selected by the

assembler because the displacement is within 128 addressable bytes. When

the displacement is evaluated, the program counter is pointing to 00002003

(hexadecimal). The displacement of 4D is added to the current value of the

program counter yielding the address of 00002050 (hexadecimal). Then the

contents of this address are used as the effective operand address (00006000

(hexadecimal), and the operand of 1234567 (hexadecimal) is moved to regis¬

ter R2.

Branch Mode Addressing

In branch mode displacement addressing, the byte or word displacement is

sign-extended to 32 bits and added to the updated content of the program

counter. The updated content of the program counter is the address of the

first byte beyond the operand specifier. The assembler notation for byte and

word branch displacement addressing is A where A is the branch address.

Note that the branch address and not the displacement is used. See Figure

5-29 for the branch mode instruction operand specifier format.

5-42 ■ The Instruction Characteristics

15 8 7 4 3 0

DISP B F

23 .8 7 4 3 0

DISP D F

39 8 7 4

o

CO

DISP F F

DISPLACEMENT ^'mODE^^ —

SPECIFIER

SPECIFIER EXTENSION IS

BYTE DISPLACEMENT DEFERRED

SPECIFIER EXTENSION IS

WORD DISPLACEMENT DEFERRED

SPECIFIER EXTENSION IS

LONGWORD DISPLACEMENT DEFERRED

REGISTER

SPECIFIER

B = BYTE DISPLACEMENT DEFERRED

D = WORD DISPLACEMENT DEFERREED

F = LONGWORD DISPLACEMENT DEFERRED

OPERAND SPECIFIER FORMAT

PC^ R2

00002000 DO MOVE LONG OPCODE | 00000000 |

00002001 BF BYTE DISPLACEMENT FROM PC

00002002 4D AMOUNT OF DISPLACEMENT

00002003 52 REGISTER MODE, REGISTER 2

00002050

00002051

00002052

00002053

l OPERAND

[ADDRESS

DISPLACEMENT

CALCULATION

00002003
4D

00002050

00006000

00006001

00006002

00006003

OPERAND

BEFORE INSTRUCTION EXECUTION

R2

| 01234567 |

AFTER INSTRUCTION EXECUTION

Figure 5-28 ■ Relative Deferred Mode Instruction

5-43

DISPLACEMENT

OR

DISPLACEMENT

Figure 5-29 ■ Branch Mode Instruction Operand Specifier Format

Branch instructions are most frequently used after instructions like compare

(CMP). They are used to cause different actions depending on the results of

the compare instruction. Example 5-20 causes a branch to location NOT if C is

not a digit; that is, C is treated as an unsigned number outside the range 0

through 9. See Example 5-21 for a typical branch on bit instruction applica¬
tion.

Example 5-20 ■ Unsigned Branch Mode

CURB C,#tA/0/ i Compare C and ASCII representation of digit.

BLSSU NOT * Branch to location NOT if less than unsigned 8.

CURB C,#tA/9/ i Compare C and ASCII representation of digit 9.

BGTRU NOT i Branch to location NOT if greater than an unsigned 9.

Example 5-21 ■ Branch on Bit Instruction

BBS #2,B,X ; Branches toXifbit#2inBis set.

BBSC #2;B> X > Branches to X if bit #2 in B is set and bit is then cleared.

BLBS B,X ; Branches to X if bit 0 of B is set.

Chapter 6 ■ Functions of the Instruction Set

A major goal of the VAX architecture is to provide an instruction set that is

symmetrical with respect to data types. For example, there are separate add

instructions for seven integer and floating-point data types. Each is available

in both two-operand and three-operand format. Other symmetrical opera¬

tions include data movement, data conversion, data testing, and computation.

Thus both assembly language programmers and compilers can choose the best

instruction to use independent of the data type.

Instruction mnemonics are formed by combining an base operation abbrevia¬

tion with a data-type suffix. Conversion instructions are formed by adding

suffixes for both the source and destination data types. For example, the basic

convert instruction is CVT. To convert G floating to F floating, one must

affix a G for the source and an H for the destination data type. This forms the

mnemonic CVTGH.

Computation instructions have an additional suffix to indicate the choice

between two- and three-operand instructions. For example, the multiply word

instruction uses the mnemonic MULW. A two-operand instruction uses

MULW2 and a three-operand instruction uses MULW3.

Special instruction mnemonics have been chosen for similarity. For example,

a move word instruction has the mnemonic MOVW, while a move F_floating

instruction has the mnemonic MOVF. Some instructions span several catego¬

ries. For example, the compare instruction is found in character string, deci¬

mal string, floating point, integer, and variable length bit field instructions.

Chapter 9 contains detailed descriptions of each instruction. This chapter

describes the general functioning of the types of instructions.

Instructions are described in this chapter according to categories. They are

Address, Arithmetic, Character String, Control, Cyclic Redundancy Check,

Decimal String, Edit, Floating Point, Index, Integer, Logic, Multiple Regis¬

ter, Privileged, Procedure Call, Processor Status Longword, Queue, and Vari¬

able Length Bit Field.

■ Address Instructions

Address instructions are used to manipulate addresses. There are two basic

address instructions: move address (MOVA) and push address (PUSHA). The

move address instruction replaces one address with another. Push address

instructions write an address onto a stack.

6-2 ■ Functions of the Instruction Set

There are suffixes for each type of data. The suffix B is used to specify byte

data, D for D_floating data, F for F_floating data, G for G— floating

data, L for longword data, O for octawords, Q for quadwords, and W for

words. In order to move an address in F_floating data, the mnemonic MOVA

would have an F affixed to it forming the instruction MOVAF. Other mne¬

monics are similarly constructed.

Arithmetic Instructions

Arithmetic instructions are add, subtract, multiply, and divide. The instruc¬

tions are available in both two- and three-operand forms for each applicable

data type. As input, the three-operand form takes the values of the first two

operands, performs the operation, and stores the result in the third operand.

Character String Instructions

The character string instructions are

■ Compare character (CMPC).

■ Locate character (LOCC).

■ Match character (MATCHC).

■ Move character (MOVC).

■ Move translated characters (MOVTC).

■ Move translated until character (MOVTUC).

■ Scan characters (SCANC).

■ Skip characters (SKPC).

■ Span characters (SPANC).

A character string is specified by two operands—an unsigned word operand

giving the length of the character string in bytes and the address of the lowest

addressed byte of the character string. This is specified by a byte operand of

address access type.

6-3

Each of the character string instructions uses general registers to store a con¬

trol block that maintains updated addresses and state information during the

execution of the instruction. At completion, these registers are available to

software to use as string specification operands for a subsequent instruction.

During the execution of the instructions, pending interrupt conditions are

tested. If any are found, the control block is updated, the first part done bit of

the processor status longword is set, and the instruction is interrupted. After

the interruption, the instruction resumes transparently. The format of the con¬

trol block is shown in Figure 6-1.

31 0

: RO

: R1

: R2

: R3

. R4

: R5

Figure 6-1 ■ Control Block Format

LENGTH 1

ADDRESS 1

LENGTH 2

ADDRESS 2

LENGTH 3

ADDRESS 3

The fields LENGTH 1, LENGTH 2, and LENGTH 3 (if required) contain the

number of bytes remaining to be processed in the first, second, and third

string operands, respectively. The fields ADDRESS 1, ADDRESS 2, and

ADDRESS 3 (if required) contain the address of the next byte to be processed

in the first, second, and third string operands, respectively.

■ Control Instructions

Control instructions include case, loop, subroutine, and transfer instructions.

In most situations, execution speed is improved if the target of a control

instruction is on an aligned longword boundary. But this is not a requirement.

6-4 ■ Functions of the Instruction Set

Case Instructions

Dispatching to a routine based on the value of a variable occurs frequently

enough that some high-level languages include special constructs to handle it;

for example, the computed GOTO in FORTRAN and the case statement in

PASCAL. Because of this, the VAX instruction set includes a case instruction

so that such control structures can be represented efficiently. Not only does

case handle the transfer of control but it also handles the initialization and

bounds checking for the index variable.

The objective of the case instruction is to transfer control to one of several

locations based on the value of the integer selector operand. The base operand

specifies the lower bound for selector. Following the case instruction is a table

of word displacements for the branch locations. Just as the displacements in

branch instructions are added to the program counter to give the branch desti¬

nation, these word displacements are added to the address of the first displace¬

ment to form the case branch destinations.

Loop Control Instructions

There are three loop control instructions—add compare and branch (ACB), add

one and branch (AOB), and subtract one and branch (SOB). The instructions

efficiently implement the general FOR or DO loops in high-level languages.

Specified operands are manipulated and if certain results are obtained, the

program counter is loaded with the result of the manipulation.

The add compare and branch instruction can accommodate seven types of data

—byte, word, longword, D_floating, F_ floating, G_floating, and

H_floating. The add one and branch instruction adds a one to the specified

index operand. The sum of the operation replaces the operand. The subtract

one and branch instruction removes a one from the specified index operand.

The remainder of the operation replaces that operand.

Subroutine Call Instructions

Two special types of branch and jump instruction are provided for calling

subroutines—branch to subroutine and jump to subroutine. Both instructions

save the contents of the program counter on the stack before loading the coun¬

ter with the new address. With branch to subroutine instructions, you can sup¬

ply either a byte or word displacement.

This shortcut to subroutine calling is complemented by the return from subrou¬

tine instruction. The instruction removes the first longword of the stack and

loads it into the program counter. Because the branch to subroutine instruc¬

tion is either two or three bytes long and the return from subroutine instruction

is one byte long, extremely efficient programs can be written using subrou¬

tines.

6-5

The breakpoint fault instruction is used in conjunction with the trace bit to

implement debugging facilities.

Transfer Instructions

The two basic types of control transfer instructions are branch and jump

instructions. Both branch and jump load new addresses in the program coun¬

ter. With branch instructions, you supply a displacement (offset) that is added

to the program counter to obtain the new address. With jump instructions,

you supply the address you want loaded, using one of the normal addressing

modes.

Because most transfers are to locations relatively close to the current instruc¬

tions, and because branch instructions take less space than jump instructions,

the processor offers a variety of branch instructions to choose from. There are

two unconditional branch instructions and many conditional branch instruc¬

tions, such as branch on less than and branch on less than unsigned.

The unconditional branch instructions allow you to specify a byte or word dis¬

placement. This allows you to branch to locations as far from the current loca¬

tion as 32,767 bytes in either direction. For control transfers to locations

farther away, use the jump instruction.

■ Cyclic Redundancy Check Instruction

The cyclic redundancy check (CRC) is an error detection method involving a

division of the data stream by a CRC polynomial. In memory, the data stream

is represented as a standard VAX string. Error detection is accomplished by

computing the CRC polynomial at the source and again at the destination. The

CRC is compared at each end. The CRC that is selected should minimize the

number of undetected block errors of specific lengths.

The operands of the instruction are a string descriptor, a 16-longword table,

and an initial CRC. The string descriptor is a standard VAX operand pair of

the length of the string in bytes (up to 65,535) and the starting address of the

string. The contents of the table are a function of the CRC polynomial to be

used. It can be calculated from the polynomial by a variety of algorithms. The

initial CRC figure is used to start the polynomial correctly. Typically, it has

the value 0 or -1 but would be different if the data stream were represented

by a sequence of noncontiguous strings.

6-6 ■ Functions of the Instruction Set

The CRC instruction operates by scanning the string and for each byte of the

data stream including it in the CRC being calculated. The byte is included by

XORing it to the right eight bits of the CRC. Then the CRC is shifted right

one bit, inserting zero on the left. The rightmost bit of the CRC (lost by the

shift) is used to control the XORing of the CRC polynomial with the resultant

CRC. If the bit is set, the polynomial is XORed with the CRC. Then the CRC

is again shifted right and the polynomial is conditionally XORed with the

result a total of eight times. Actual algorithms used can shift by one, two, or

four bits at a time using the appropriate entries in a specially constructed

table. The instruction produces a 32-bit CRC. For shorter polynomials, the

result must be extracted from the 32-bit field. Data streams must be multiples

of eight bits in length. If they are not, they must be right-adjusted in the

string with leading 0 bits.

■ Decimal String Instructions

Decimal string instructions operate on packed decimal strings. They treat dec¬

imal strings as integers with the decimal point assumed immediately beyond

the least significant digit of the string. If a string in which a result is to be

stored is longer than the result, its most significant digits are filled with zeros.

Instructions are provided to convert between packed decimal and trailing

numeric string (overpunched or zoned) and leading separate numeric string for¬

mats. Where necessary, a specific data type is identified. Where the phrase

decimal string is used, it means any of the three previously mentioned data

types. The instructions are

■ Add packed (ADDP).

■ Arithmetic shift and rounded packed (ASHP).

■ Compare packed (CMPP).

■ Convert leading separate numeric string to packed decimal string (CVTSP).

■ Convert longword integer to packed decimal string (CVTLP).

■ Convert packed decimal to leading separate string (C VTPS).

■ Convert packed decimal string to a longword (C VTPL).

■ Convert packed decimal string to a trailing numeric string (C VTPT).

■ Convert trailing numeric to packed decimal string (C VTTP).

■ Divide packed (DIVP).

■ Move packed (MOVP).

6-7

■ Multiply packed (MULP).

■ Subtract packed (SUBP).

A decimal string is specified by two operands.

■ For decimal strings, the length is the number of digits in the string. The

number of bytes in the string is a function of the length and the type of

decimal string referenced.

■ The address of the lowest addressed byte of the string. This byte contains

the most significant digit for trailing numeric and packed decimal strings.

This byte contains a sign for leading separate numeric strings. The address

is specified by a byte operand of address access type.

Each of the decimal string instructions uses general registers 0 through 3 or 0

through 5 to contain a control block that maintains updated addresses and

state during the execution of the instruction. At completion, the registers con¬

taining addresses are available to the software to use as string specification

operands for a subsequent instruction on the same decimal strings.

During the execution of the instructions, pending interrupt conditions are

tested and, if any are found, the control block is updated. The first part done

bit is set in the processor status longword, and the instruction is interrupted.

After the interruption, the instruction resumes transparently. The format of

the control block at completion is shown in Figure 6-2.

: RO

: R1

: R2

: R4

: R5

Figure 6-2 ■ Control Block after Instruction Execution

6-8 ■ Functions of the Instruction Set

The fields ADDRESS 1, ADDRESS 2, and ADDRESS 3 (if required) contain

the address of the byte containing the lowest addressed byte in the first, sec¬

ond, and third (if required) string operands, respectively.

Decimal overflow occurs if the destination string is too short to contain all the

nonzero digits of the result. On overflow, the destination string is replaced by

the correctly signed least significant digits of the result even if the result is -0.

Note that neither the high nibble of an even length packed decimal string nor

the sign byte of a leading separate numeric string is used to store result digits.

A zero result has a positive sign for all operations that complete without deci¬

mal overflow. However, when digits are lost because of overflow, a zero result

receives the sign of the correct result.

A decimal string with a negative zero value is treated as identical to a decimal

string with a positive zero value. For example, positive zero is equal to nega¬

tive zero in a compare instruction. Similarly, when condition codes are

affected on a negative zero result, they are affected as if the result were posi¬

tive.

A reserved operand fault occurs if the length of a decimal string operand is

outside the range of 0 through 31, or if an invalid sign or digit is encountered

in a CVTSP or CVTTP instruction.

The result of any operation is unpredictable if any source decimal string oper¬

and contains invalid data. Except for CVTSP and CVTTP instructions, the dec¬

imal string instructions do not verify the validity of source operand data. If

the destination operands overlap any source operands, the result of the opera¬

tion is unpredictable. Destination strings, registers used by the instruction,

and condition codes are unpredictable when a reserved operand fault occurs.

Packed decimal strings generated by the decimal string instructions always

have the preferred sign representation—12 for positive and 13 for negative.

An even length packed decimal string is always generated with a 0 digit in the

high nibble of the first byte of the string. A packed decimal string contains an

invalid nibble if

■ A digit occurs in the sign position.

■ A sign occurs in a digit position.

■ A nonzero nibble occurs in the high-order nibble of the lowest addressed

byte for an even length string.

The length of a packed decimal string can be zero. In this case, the value is

zero (plus or minus) and one byte of storage is occupied. This byte must con¬

tain a 0 digit in the high nibble and the sign in the low nibble.

6-9

The length of a trailing numeric string can be zero. In this case, no storage is

occupied by the string. If a destination operand is a zero-length trailing

numeric string, the sign of the operation is lost. Memory access faults do not

occur when a zero-length trailing numeric operand is specified because no

memory reference occurs.

The length of a leading separate numeric string can be zero. In this case, one

byte of storage is occupied by the sign. Memory is accessed when a zero-length

operand is specified, and a reserved operand fault occurs if an invalid sign is

detected. The value of a zero-length decimal string is zero.

■ Edit Instruction

The edit instruction implements the common editing functions that occur in

handling fixed format output. The instruction operates by converting a

packed decimal string to a character string generating characters for the out¬

put. But the instruction can be used for other applications. When converting

digits, options include leading zero fill; leading zero protection; insertion of

floating sign, floating currency symbol, or special sign representations; and

blanking an entire field when it is zero.

The operands to the EDITPC instruction are an input-packed, decimal-string

descriptor, a pattern specification, and the starting address of the output str¬

ing. The packed decimal descriptor comprises a standard VAX operand pair of

the length of the decimal string of up to 31 digits and the starting address of

the string. The pattern specification is the starting address of a pattern opera¬

tion editing sequence that is interpreted in much the same way normal instruc¬

tions are interpreted. Only the starting address of the output string is

required because the pattern unambiguously defines the length.

While the EDITPC instruction is operating, it manipulates two character reg¬

isters and the four condition codes. One character register contains the fill

character. Normally, the character is an ASCII blank character. But the char¬

acter may be changed to an asterisk (*) for check protection. The other charac¬

ter register contains the sign character. Initially, the character is either an

ASCII blank or a minus sign depending upon the sign of the input. The sign

register can be changed to allow other sign representations such as a plus or

minus sign or plus/blank, and can be manipulated to output special notations

such as CR for a credit (+) or DB for a debit (-). The sign register can also be

changed to the currency sign in order to implement a floating currency sign.

6-10 ■ functions of the Instruction Set

After execution, the condition codes note the sign of the input, the presence

of a nonzero source, an overflow condition, and the presence of significant

digits. Condition code N is determined at the start of the instruction and is

not changed except for correcting a negative zero input. The other condition

codes are computed and updated as the instruction execution proceeds. When

the EDITPC instruction terminates, registers 0 through 5 contain the conven¬

tional values after a decimal instruction.

■ Floating-point Instructions

Mathematically, a floating-point number may be defined as having the form:

± (2K)/where K is an integer and/is a positive fraction. For a nonvanishing

number, K and / are uniquely determined by imposing the condition:

1/2 </< 1.

The fraction factor (/) of the number is then said to be binary normalized.

For the number 0,/must be assigned the value 0, and the value of K is indeter¬

minate.

The VAX floating-point data formats are derived from this mathematical rep¬

resentation for floating-point numbers. Four types of floating-point data are

provided; F_floating numbers are 32 bits long, D_floating and G_float¬

ing numbers are 64 bits long, and H_floating numbers are 128 bits long.

Because of the hidden bit, the fractional factor is not available to distinguish

between zero and nonzero numbers whose fractional factor is exactly one half.

Therefore VAX software reserves a sign-exponent field of zero for this pur¬

pose. Any positive floating-point number with biased exponent of zero is

treated as if it were an exact zero by the floating-point instruction set. In par¬

ticular, a floating-point operand, whose bits are all zero, is treated as zero.

This is the format generated by all floating point instructions for which the

result is zero.

A reserved operand is defined to be any bit pattern with a sign bit of 1 and a

biased exponent of zero. On VAX machines, all floating-point instructions

generate a fault if a reserved operand is encountered. Because a reserved oper¬

and has a biased exponent of 0, it can be internally generated only if overflow

occurs.

An instruction is defined to be exact if its result extended on the right by an

infinite sequence of zeros is identical to that of an infinite-precision calcula¬

tion involving the same operands. The prior accuracy of the operands is thus

ignored. For all arithmetic operations, except division, a 0 operand implies

that the instruction is exact. The same statement holds for division if the 0

operand is the dividend. If it is the divisor, division is undefined and the

instruction traps.

6-11

The add, subtract, multiply, and divide instructions, an overflow bit on the

left, and two guard bits on the right are necessary and sufficient to guarantee

return of a rounded result identical to the corresponding infinite-precision

operation rounded to the specified word length. Thus with two guard bits, a

rounded result has an error bound of one-half the least significant bit.

Note that an arithmetic result is exact if only no bits are lost in truncating the

infinite-precision result to the data length to be stored. The first bit lost in

truncating is called the rounding bit. The value of a rounded result is related

to the truncated result as follows.

■ If the rounding bit is 1, the rounded result is the truncated result incre¬

mented by a least significant bit.

■ If the rounding bit is 0, the rounded and truncated results are identical.

Rounding may be implemented by adding a one to the rounding bit and propa¬

gating the carry if it occurs. Note that a renormalization may be required after

rounding takes place. If this happens, the new rounding bit is zero so renor¬

malization can happen once only. To summarize the relations among trun¬

cated, rounded, and true (infinite-precision) results.

■ If a stored result is exact, then its rounded value = truncated value = true

value.

■ If a stored result is not exact, its magnitude is

— always less than that of the true result for truncating.

— always less than that of the true result for rounding if the rounding

bit is 0.

— greater than that of the true result for rounding if the rounding bit is 1.

To be consistent with the floating-point instruction set that faults on reserved

operands, software-implemented, floating-point functions should verify that

the input operands are not reserved. An easy way to do this is a move or test of

the input operands.

In order to facilitate high-speed implementations of the floating-point instruc¬

tion set, certain restrictions are placed on the addressing mode combinations

usable within a single floating-point instruction. These combinations involve

the logically inconsistent use of a value as both a floating-point operand and

an address.

6-12 ■ Functions of the Instruction Set

Specifically, if within the same instruction the contents of a specified register

are used as an F_floating point operand or part of a larger floating input

operand and as an address in an addressing mode that modifies that register,

the value of the floating-point operand is unpredictable. The operand speci¬

fier notation section describes the notation used for these instructions.

The VAX instruction set includes special floating-point instructions for mod¬

ulus (range reduction) and polynomial calculation to aid in the implementation

of mathematical functions, along with shift and rotate instructions.

The floating point instructions are

■ Add (ADD).

■ Clear (CLR).

■ Compare (CMP).

■ Convert (CVT).

■ Convert rounded (CVTR).

■ Divide (DIV).

■ Extended modulus (EMOD).

■ Move (MOV).

■ Move negated (MNEG).

■ Multiply (MUL).

■ Polynomial evaluation (POLY).

■ Subtract (SUB).

■ Test (TST).

■ Index Instruction

The index instruction calculates an index for an array of fixed-length data

types (integer and floating) and for arrays of bit fields, character strings, and

decimal strings. It accepts as arguments a subscript, lower and upper subscript

bounds, an array element size, a given index, and a destination for the calcu¬

lated index. It incorporates range checking within the calculation for high-

level languages using subscript bounds, and it aids index calculation optimiza¬

tion by removing invariant expressions.

6-13

■ Integer Instructions

The integer optimizations include an instruction to write a longword onto the

stack. Each integer data type includes operations that increment and decre¬

ment. The VAX instruction set includes special instructions to implement mul¬

tiple precision integer arithmetic. A special variant of integer add instruction

is an operation that adds a word under a memory interlock (for operating sys¬

tem counters in a multiprocessor system). The integer instructions are

■ Add aligned word under memory interlock (ADAWI).

■ Add with carry (ADWC).

■ Decrement (DEC).

■ Extended divide (EDIV).

■ Extended multiply (EMUL).

■ Increment (INC).

■ Push longword (PUSHL).

■ Subtract with carry (SBWC).

■ Logic Instructions

The logic computation instructions are for the three integer data types and are

bit set (inclusive OR), bit clear (complement AND), and exclusive OR. The

instructions are available in both two- and three-operand forms for each appli¬

cable data type. As input, the three-operand form takes the values of the first

two operands and stores the result in the third operand.

The logical operations are simple move, clear, arithmetic negate, and logical

complement. The logical complement operations are available only for the

three-integer data types because these are the logical types. Both negate and

complement include a move, rather than being restricted to altering an oper¬

and in place. VAX software has a large set of conversions covering almost all

data type pairs. In addition, special conversions exist to round floating data to

integer, and to extend unsigned integers to larger integers. The data compari¬

son and testing instructions are compare, test against zero, and multiple bit

testing. The logic instructions are

■ Arithmetic shift (ASH).

■ Bit clear (BIC).

■ Bit set (BIS).

6-14 ■ Functions of the Instruction Set

■ Fittest (BIT).

■ C/ttzr (CLR).

■ Compare (CMP).

■ Convert (CVT).

■ Exclusive OR (XOR).

■ Move (MOV).

■ Afcwe complemented (MCOM).

■ Move negated (MNEG).

■ Move zero-extended (MOVZ).

■ Rotate longword (ROTL).

■ Test (TST).

■ Multiple Register Instructions

Multiple register instructions save and restore several registers in one opera¬

tion. The save area is on the stack. The PUSHR instruction saves multiple regis¬

ters by pushing them onto the stack. The POPR instruction restores multiple

registers by popping them from the stack. A 16-bit mask operand specifies the

list of registers. This mask is a normal read operand. The mask can be calcu¬

lated or it can be an inline literal. When registers in the range RO through R5

only are being saved or restored, the mask can be expressed as a short literal.

The software standard for calling and signaling requires that registers be

saved in the call frame. With the exception of registers RO and Rl, any regis¬

ter manipulated by a PUSHR or POPR instruction must appear in the proce¬

dure entry mask. The architecture also requires that any registers between R2

and Rll that are modified by the procedure to be saved in the call frame by

setting up the appropriate entry mask. Registers RO and Rl are used to return

procedure status.

PUSHR or POPR instructions should be used to save and restore only those

registers specified in the procedure entry mask. If a procedure saves registers

that are not noted in the entry mask and that procedure receives an exception,

the procedure’s caller’s registers cannot be properly restored.

6-15

■ Privileged Instructions

The privileged instructions give upward and downward mobility through the

access modes, and provide a way to compare memory protection levels to the

access mode privilege of callers. The instructions are

■ Change mode (CHM).

■ Extended function call (XFC).

■ Haiti HALT).

■ Load process context (LDPCTX).

■ Move from processor register (MFPR).

■ Move to processor register (MTPR).

■ Probe (PROBE).

■ Return from Exception or Interrupt (REI).

■ Save process context (S VPCTX).

A change mode instruction is a special trap instruction that can be likened to

an operating system service call instruction. User access-mode software can

explicitly issue change mode instructions.

The extended function (XFC) instruction is used to request the services of non¬

standard microcode in the writeable control store or simulator software run¬

ning in kernel mode. The request is controlled by the system control block.

The halt instruction is a privileged instruction that halts the processor only if

it is running in kernel mode. If the instruction is issued when the processor is

in any mode other than the kernel mode, a privileged instruction fault is

issued.

When the operating system schedules a context switching operation, the con¬

text switching procedure uses the save process context (S VPCTX) and load pro¬

cess context (LDPCTX) instructions to save the current process context and

load another. The operating system’s context switching procedure identifies

the location of the hardware context to be loaded by updating an internal pro¬

cessor register.

The move to processor register (MTPR) and move from processor register

(MFPR) instructions are the only instructions that can explicitly access the

internal processor registers. MTPR and MFPR instructions are privileged and

can be issued only in kernel mode.

6-16 ■ Functions of the Instruction Set

Probe instructions enable a procedure to compare the read (PROBER) and

write (PROBEW) access protection of pages in memory to the privileges of the

caller. The validation enables the operating system to provide services that

execute in access modes to callers with less privileged access and yet prevent

the caller from accessing protected memory.

The operating system’s privileged service procedures and interrupt and excep¬

tion service routines exit using the return from exception or interrupt (REI)

instruction. The REI instruction is the only way the caller’s access mode privi¬

lege can be decreased.

■ Procedure Call Instructions

Procedures are general purpose routines thar use argument lists passed auto¬

matically by the processor and use only local variables for data storage. A pro¬

cedure call instruction provides several services. It

■ Saves all the registers that the procedure uses, and only those registers,

before entering the procedure.

■ Passes an argument list to a procedure.

■ Maintains the stack, frame, and argument pointers.

■ Sets the arithmetic trap enables to a specific state.

Three instructions are used to implement a standard procedure calling inter¬

face. Two instructions implement a procedure. The third instruction imple¬

ments the matching return instruction. A callg instruction calls a procedure

with the argument list actuals in an arbitrary location. The calfc instruction

calls a procedure with the argument list actuals on the stack. Upon return

after a calls instruction, this list is automatically removed from the stack.

Both call instructions specify the address of the entry point of the procedure

being called. It is assumed to consist of a word called the entry mask followed

by the procedure’s instructions. The procedure terminates by executing a

return instruction.

The entry mask specifies the subprocedure’s register use and overflow

enables. Figure 6-3 shows the entry mask.

6-17

15 14 13 12 11 0

DV IV MBZ
1

, REGISTERS
_l_1_i i i i i

Figure 6-3 ■ Procedure Call Entry Mask

On call, the stack is aligned to a longword boundary and the trap enable bits

in the processor status word are set to a known state to ensure consistent

behavior of the called procedure. Integer overflow enable and decimal over¬

flow enable are affected according to bits 14 and 15 of the entry mask, respec¬

tively. The floating underflow enable bit is cleared.

Registers Rll through RO are saved on the stack and are restored by the

return instruction. The procedure calling standard requires that all registers in

the range R2 through Rll used in the procedure must appear in the mask. In

addition, call instructions always preserve the program counter, stack

pointer, frame pointer, and argument pointer. However, the stack pointer is

not explicitly saved and differs after a calls instruction with arguments. Thus

a procedure can be considered equivalent to a complex instruction that stores

a value into RO and Rl, affects memory, and clears the condition codes. If the

procedure has no function value, the contents of RO and Rl are unpredictable.

In order to preserve the state, the procedure call instructions form a structure

on the stack called a call frame or stack frame. This contains the saved regis¬

ters and processor status word, the register save mask, and several control

bits. The frame also includes a longword that the procedure call instructions

clear. This is used to implement the condition handling facility. At the end of

execution of the procedure call instruction, the frame pointer contains the

address of the stack frame. The return instruction uses the contents of the

frame pointer to find the stack frame and restore state. The condition han¬

dling facility assumes that frame pointer always points to the stack frame. See

Figure 6-4 for the stack frame format.

6-18 ■ Functions of the Instruction Set

31 0

CONDITION HANDLER

SPA S 0 MASK <11: 0> PSW <15: 5> 0

SAVED ARGUMENT POINTER

SAVED FRAME POINTER

SAVED PROGRAM COUNTER

SAVED REGISTER RO (. . . .)

SAVED REGISTER R11 (. . .)

(0 TO 3 BYTES SPECIFIED BY SPA. STACK POINTER ALIGNMENT)

5 BIT-SET IF CALLS; CLEAR IF CALLG

Figure 6-4 ■ Stack Frame Format

Note that the saved condition codes and the saved trace enable bits are

cleared. The contents of bits 0 through 3 of the frame processor status word at

the time return is executed becomes the condition codes resulting from the

execution of the procedure.

■ Processor Status Longword Instructions

There are three instructions available to manipulate the processor status long-

word.

■ Bit clear processor status longword (BICPS W) that clears a trap enable condi¬

tion.

■ Bit set processor status longword (BISPSW) that sets a trap enable condition.

■ Move from processor status longword (MOVPSL) that obtains the processor

status.

These are rather straightforward instructions and are not explained here. But

the details on the instructions can be found in Chapter 9.

6-19

■ Queue Instructions

A queue is a circular, doubly linked list whose entries are specified by their

addresses. Each queue entry links to two others by way of a pair of longwords.

The first or lower addressed longword is the forward link. It specifies the loca¬

tion of the succeeding entry. The second longword is the backward link. It

specifies the location of the preceding entry. Two distinct types of queues are

possible in VAX systems—absolute and self-relative. They are classified

according to the type of links they use. An absolute link contains the absolute

address of the entry to which it points. A self-relative link contains a displace¬

ment from the present queue entry.

Absolute Queue Instructions

An absolute queue is specified by a queue header that is identical to a pair of

queue linkage longwords. The forward link of the header is the address of the

entry called the head of the queue. The backward link of the header is the

address of the entry termed the tail of the queue. The forward link of the tail

points to the header.

Two general operations can be performed on queues—insertion and removal

of entries. Generally, entries can be inserted or removed only at the head or

tail of a queue.

The following figures illustrate some queue operations. An empty queue is

specified by its header at address H as shown in Figure 6-5. If an entry at

address B is inserted into an empty queue at either the head or tail, the queue

is as shown in Figure 6-6. If an entry at address A is inserted at the head of the

queue, the queue is as shown in Figure 6-7. Finally, if an entry at address C is

inserted at the tail, the queue appears as shown in Figure 6-8. Following the

steps above in reverse order gives the effect of removal at the tail and removal

at the head.

If more than one process can perform operations on a queue simultaneously,

insertions and removals should be done only at the head or tail of the queue.

When just one process (or one process at a time) can perform operations on a

queue, insertions and removals can be made at other locations. In the example

above with the queue containing entries A, B, and C, the entry at address B

can be removed as shown in Figure 6-9.

6-20 ■ Functions of the Instruction Set

31 0

: H

: H + 4

Figure 6-5 ■ Empty Absolute Queue

Figure 6-7 ■ Putting an Entry into the Head of an Absolute Queue

6-21

Figure 6-9 ■ Removing an Entry from an Absolute Queue

6-22 ■ Functions of the Instruction Set

The reason for the restriction above is that operations at the head or tail are

always valid because the queue header is always present. Operations else¬

where in the queue depend on specific entries being present and may become

invalid if another process is concurrently performing operations on the queue.

Two instructions are provided for manipulating absolute queues—INSQUE

and REMQUE. The INSQUE instruction inserts an entry specified by an entry

operand into the queue, following the entry specified by the predecessor oper¬

and. The REMQUE instruction removes the entry specified by the entry oper¬

and. Queue entries can be on arbitrary byte boundaries. Both INSQUE and

REMQUE instructions are implemented as noninterruptible instructions.

Self-relative Queue Instructions

Self-relative queues use displacements from queue entries as links. As with

absolute queues, queue entries are linked by a pair of longwords. The first long-

word is the forward link displacement of the succeeding queue entry from the

present entry. The second longword is the backward link—the displacement

of the preceding queue from the present entry. A queue is specified by a queue

header that also consists of two longword links.

The following shows some examples of queue operations. An empty queue is

specified by its header at address H. Because the queue is empty, the self-

relative links must be 0, as shown in Figure 6-10. If an entry at address B is

inserted into an empty queue at either the head or tail, the queue is as shown

in Figure 6-11. If an entry at address A is inserted at the head of the queue,

the queue is as shown in Figure 6-12. Finally, if an entry at address C is

inserted at the tail, the queue appears as shown in Figure 6-13. Following the

steps above in reverse order yields the effect of removal at the tail and removal

at the head.

0 : H

0 : H + 4

Figure 6-10 ■ Empty Self-relative Queue

6-23

: H

: H + 4

: B

: B + 4

Figure 6-11 ■ Putting an Entry into an Empty Self-relative Queue

Figure 6-12 ■ Putting an Entry into the Head of a Self-relative Queue

6-24 • Functions of the Instruction Set

31 0

Figure 6-13 ■ Putting an Entry into the Tail of a Self-relative Queue

There are four self-relative queue instructions.

■ Insert entry into queue at head, interlocked (INSQHI).

■ Insert entry into queue at tail, interlocked (INSQTI).

■ Remove entry from queue at head, interlocked (REMQHI).

■ Remove entry from queue at tail, interlocked (REMQTI).

These operations are interlocked to allow cooperating processes in a multipro¬

cessor system to access a shared list without additional synchronization.

Queue entries must be quad word aligned. A hardware- supported interlocked

memory access mechanism is used to read the queue header. Bit 0 of the

queue header is used as a secondary interlock and is set when the queue is

being accessed.

If an interlocked queue instruction encounters the secondary interlock set,

the instruction terminates after setting the condition codes to indicate failure

to gain access to the queue. If the secondary interlock bit is not set, then the

interlocked queue instruction sets the bit during its operation and clears the

bit upon completion. This prevents other interlocked queue instructions from

operating on the same queue.

6-25

■ Variable Length Bit Field Instructions

Variable length bit field instructions are useful when dealing with data not in

8-bit increments; for example, 13 bits of data that do not start on a byte

boundary. Such data could also be handled without these instructions but less

efficiently because it requires additional shift and mask operations to get the

bits into the proper form and to eliminate the nonrequired bits.

There are four variable length bit field instructions.

■ Compare field (CMP).

■ Extract field (EXT).

■ Find first (FF).

■ Insert field (INSV).

The CMP instruction compares the field specified with a source operand. The

EXT instruction causes the destination operand to be replaced by the speci¬

fied sign-extended field. The FF instruction extracts a field specified by the

start position, size, and base operand. The INSV instruction replaces a speci¬

fied field with a base operand.

A variable bit field is 0 to 32 contiguous bits (contained in 1 to 5 bytes) that is

arbitrarily located with respect to byte boundaries. The variable length bit

field instructions have four operand specifiers. Three of these specifiers deter¬

mine how to find the variable length field. The fourth designates where it is to

be stored. The first three specifiers are the position operand, the size oper¬

and, and the base address.

The position operand is a signed longword operand that designates the num¬

ber of bits away from the base address operand. If the variable length field is

contained in a register, the position operand must have a value in the range 0

through 31 (if the size is nonzero) or a reserved operand fault occurs.

The size operand is a byte operand that specifies the length of the field. This

operand must be in the range 0 through 32 or a reserved operand fault occurs.

Normally, the size operand is a short literal if the field is fixed.

The base address is an address relative to which the position is used to locate

the bit field. The base address is obtained from an address access type oper¬

and. Unlike other address access type operands, register mode may be desig¬

nated in the specifier. In this case, the field is contained in register designated

by the operand specifier.

"• ill : T ’-'f ;■ '.iV ^vJ ['Zi&V *

iii ;.k 23«>x ib^ ^ticobxor : * ; xi.. : '?=.i. •'• $; rUpt&i jx^hr v

3iV%j i. •■'■ ijti? tL\ ..b'MiiV.; 1 ' xi 0 Y^: " '' ^

• ’■• •-. ■ • • ~ v' • • ' • : «} .

■h ;)t .. ; ; , ’ • ■- ? Q&'j'&A " 1 - ■•••■■ w'" «tV~

2-lf* h*'-- . ’ Aoi ■ ,-: SX.riiJldbV O.'U nb! Oj>! > ;fi

.gfTor'yjnT?!*: Ix-xHtd •.: -v •-_• .•idnrisv : ;o3 •;=»■*s gT

'

.{ry ■ v-'~ Yiv.-'m ’

■

■

r: .^iTB f^:.hjon. rbiy< Pf ' nztysiQZ y »•' 4# • -* 1' '*I

i. >.\e ?r!- yd og-W y.i :a? i r v .

yd b- •;■• ;' - - . ■ >1 • • & ,.. x . «.*; •

' . ,0-9 ■. A.!;;^n * l :x • x rr :--t. ra x ;•,•■ v

• ;br . o v u,6 j ~i #fj . ijx ’ •

.-•:r:; {•; ? r . . ft{ bsnL: :x • :itr: > y.!:>r: *irj ‘ o 0 ...:: iaH ?i .' \r-t 'by l

f*Tj rbv x Jdf xx: sb * . ^iirb-aiK d 3i^c! -.ji >>J

• ■..?»■:.■ a^Pr^G' x^rJ} V : ■ Brib -k. >*: • <T bl.

c>!?x.risjapw 2ateajsfSM: b •■ joidjT tbbibgr»3: ddrniiv^fhtvuicfi "or nil:?.
’•- -r; - .i? G.b b, • y.io . ;d> 'Sqi1 ^

.... ^i;Go a • xjj h •. .bn.G

G:,:1 •,■,;■'•,:■• ‘ ■ - j:^hl-. *",U b - r' "■ <i ■ GGi

4,(1 ’J gJ ' . . b V Ori j. ■? ::•?•%•• ... ! su'.n: a- .'

0.§^ . : i ‘ ; ba.^4?* :i g. . *131 :: >:: Dgg'

. ’ j. si . . v; Gio d/iG -ncn ab->5*b . : • V ! r”-.

: •’ 'bu :,u to rb\ .•> g:- 'g-juj • ?i bn&*|^ ; -'gsg'-

:r, • ;,(• g(f:. iy;c .. . IX .■ f i.tii - lb*

b •'". ■' bb •-: • ■ b it I3lff no U a ?r ! * 'v -> viiuin.)

•i

:/?: < ;‘>e " mvfr«oi^ b ^'^jdo as tP$rJM :,c .hi- "id adt

•b^D^G ;. .1 ,-x ;i ?io-5ny1 - >fUci* ‘ - • • x .) ^ 4^a‘.r .-.a/i

n-;- angix--. r xu —;x.-nxO''?’ , . .ix .:>3£s o t.b
• . Ot- -.rv,. O-M

Chapter 7 ■ Memory Management

Memory management is the control, allocation, and use of main memory for

the VAX family of processors. VAX architecture is intended to support multi¬

programming—the concurrent execution of a number of processes in a single

computer system. A process can be defined for now as a single stream of

machine instructions executed in sequence. Memory management includes

both hardware and software. The hardware provides page mapping and pro¬

tection, while the software provides the operating system image activator and

pager.

Virtual address space is mapped into the physical address space by the proces¬

sor’s memory management logic. In addition, the memory management hard¬

ware supports paging. Paging is a technique that keeps in physical memory

only those parts of a process’s virtual memory that are in use. A VAX process

exists in and operates on a memory space of 4,294,967,296 (232) bytes. Cer¬

tain addresses and data are kept in the sixteen 32-bit general registers. A few

processor state variables are kept in a special register called the processor

status longword, or PSL. The combined set of information in memory, general

registers, and PSL defines a process.

In a typical multiprogramming system, several processes may simultaneously

reside in main memory. Memory protection is provided to ensure that one pro¬

cess does not affect other processes or the operating system. To improve soft¬

ware reliability further, memory access is controlled by the use of four

privilege modes. They are kernel, executive, supervisor, and user. Kernel

mode is the most privileged. User mode is the least privileged. Protection is

specified at the individual page level. A page may be inaccessible, read only, or

read/write for each of the four access modes. Any location accessible to a less

privileged mode is also accessible to all more privileged modes. For each access

mode, any location that may be written can also be read. While an image is

being executed by the CPU, virtual addresses are generated. Before these

addresses can be used to access instructions and data, they must be translated

into physical addresses. Memory management software maintains tables of

mapping information (page tables) that keep track of where each 512-byte vir¬

tual page is located in main memory. The processor uses this mapping informa¬

tion in translating virtual addresses to physical addresses. Memory

management provides both memory protection and memory mapping func¬

tions for VAX systems. This feature is designed to

■ Provide a large address space for instructions and data.

■ Allow data structures up to one billion bytes.

7-2 ■ Memory Management

■ Provide convenient and efficient sharing of instructions and data.

■ Contribute to software reliability.

A virtual memory system is used to provide a large address space, while allow¬

ing programs to run on systems that have smaller memories. The operating

system provides each process with a potential 4-billion-byte virtual address

space.

11 Virtual Memory

Half of the virtual address space is called system space. System space contains

the operating system software and systemwide data. To facilitate interrupt

handling and system service routines, system space is shared by all processes.

The other half of the virtual address space is separately defined for each pro¬

cess. It is called process space or per-process space. For consistency, we shall

use the term process space. Process space is subdivided into PO and PI space.

Program images and most of their data reside in PO space. In PI space, the

system allocates space for stacks and process-specific data. Because PI space is

used for stacks, it is unique in that it is allocated from high addresses down¬

ward. Together, PO and PI space constitute a process’s working memory.

Except for special cases of sharing, each process has its own PO and PI spaces

independent of others in the system. Figure 7-1 illustrates the address spaces

of several processes in a multiprogramming system. Each process space is inde¬

pendent of the others. System space is shared by all.

7-3

PROCESS 1 PROCESS 2 PROCESS 3

Though the basic addressable unit in VAX machines is the 8-bit byte, larger

units can be constructed by doubling byte sizes: a word is two bytes; a long-

word is four bytes; a quad word is eight bytes; and an octaword is sixteen

bytes. These five are the units in which VAX memory stores data. But the

processor sometimes interprets operands in other units; for example, half

bytes (nibbles) for decimal digits, or variable-sized bit fields.

Generally, the memory system processes requests only for naturally aligned

data. In other words, a byte can be obtained from any address. But a word can

come only from an even address, and a longword can come only from an

address that is a multiple of four, and so on. VAX processors convert an

unaligned request into a sequence of requests that can be accepted by the mem¬

ory. However, this conversion has a serious impact on performance. Data

structures should be designed in such a way that the natural alignment of oper¬

ands is preserved wherever possible.

The VAX memory management logic serves six principal purposes.

1. A number of processes may simultaneously occupy main memory. All pro¬

cesses can use process space addresses while referring independently to

tfieir own programs and data.

7-4 • Memory Management

2. The operating system keeps selected parts of a process and its data in mem¬

ory, bringing in other parts as needed without explicit intervention by the

program. Large programs can be run in reduced memory space without re¬

coding or overlays visible to the programmer.

3. The operating system may scatter pieces of programs and data wherever

space is available in memory without regard to the apparent contiguity of

the program. It is never necessary for the system to shuffle memory in

order to collect contiguous space for another process to be brought into

memory.

4. Cooperating processes share memory in a controlled way. Two or more pro¬

cesses may communicate through shared memory, in which both have

read/write access. One process may be granted read access to memory

being modified by others; or, a number of processes may share a single

copy of a read-only area.

5. The operating system limits access to memory according to a privilege hier¬

archy. Within any address space, privileged software can maintain

databases that it can access but that code running in less privileged modes

cannot.

6. The operating system may grant or inhibit access to control, status, and

data registers in peripheral devices and their controllers. Since those regis¬

ters are part of the physical address space, access to them is achieved by

creation of a page table entry. The page frame number field of the page

table entry selects the desired device or controller address in the I/O por¬

tion of the physical address space. References to the registers are then

under control of the access control field of the page table entry. The same

privilege mechanisms that control access to sensitive data in memory are

used to control access to I/O devices.

For the purposes of memory management—specifically protection and transla¬

tion of virtual to physical addresses—the unit of memory is the 512-byte

page. Pages are always naturally aligned; that is, the address of the first byte of

a page is a multiple of 512. Virtual addresses are 32 bits long, and are parti¬

tioned by the memory management logic as shown in Figure 7-2.

3
1 9 8 0

VIRTUAL PAGE NUMBER BYTE WITHIN PAGE

Figure 1-2 ■ Virtual Address Format

7-5

Field Extent: Bits 31:9

Field Name: Virtual Page Number

Function: The virtual page number field specifies the virtual page to be refer¬

enced. There are 8,388,608 pages in each virtual address space. Each page

contains 512 bytes. When bit 31 is set (1), the address is in the system space.

When bit 31 is clear (0), the address is in process space. Within the process

space, bit 30 distinguishes between the program and control regions. When

bit 30 is set (1), the control region is referenced. When bit 30 is clear (0), the

program region is referenced.

Field Extent: Bits 8:0

Field Name: Byte Number

Function: The byte number field specifies the byte address within the page. A

page contains 512 bytes.

The nine low-order bits select a byte within a page and are unchanged by the

address translation process. The two high-order bits select the P0, PI, or sys¬

tem portion of the address space. The remaining 21 bits are used to obtain a

longword called the page table entry (PTE) from the P0, PI, or system page

table as appropriate. The page table entry format is described in detail later in

this chapter. The PTE contains four pieces of information.

■ Protection code—specifying which, if any, access modes are to be permit¬

ted read or write access to the page.

■ Page frame number—identifying the 512-byte page of physical memory to

be used on references to the virtual address.

■ Valid bit—indicating that the page frame number is valid; that is, it iden¬

tifies a page in memory rather than one in the swapping space on a disk.

■ Modification flag—set by the processor whenever a write to the page

occurs.

In concept, the process of obtaining a page table entry occurs on every mem¬

ory reference. In practice, the processor maintains a translation buffer that is

a special purpose cache of recently used page table entries. Most of the time,

the translation buffer already contains the page table entries for the virtual

addresses used by the program, and the processor need not go to memory to

obtain them.

7-6 ■ Memory Management

There is one page table entry for each existing page of the virtual address

space. A length register associated with each region specifies how many pages

exist in that region of the address space. The system page table (SPT) is allo¬

cated to contiguous pages in physical memory. The table contains page table

entries for addresses greater than 80000000 (hexadecimal). Since the size of

system space is relatively constant and can be determined at system startup

time, allocating a fixed amount of physical memory to the system page table

poses no problems.

Process space page tables change quite dynamically and can become very large.

Because it would be awkward to require the operating system to keep the pro¬

cess page tables in contiguous areas of physical memory, VAX architecture

defines structures called the process space page tables. The tables are identified

as P0PT and P1PT and are to be allocated in contiguous areas of system space.

Thus, the mapping for process space addresses involves two memory refer¬

ences: one to translate the process space address into a physical memory

address, and the second to translate the system virtual address of the table

containing the first translation. It is important to note that even if the transla¬

tion buffer does not have the mapping for the process space address, it is likely

to have that for the page table and can save one of the references.

■ Virtual Address Space

The virtual address space is divided into two address spaces of equal size; one

for the processes, the other for the system. The system address space is the

same for all processes. The operating system resides in the lower half of the

system address space. The operating system is implemented as a series of call¬

able procedures. This arrangement makes the system code available to all

other system and user codes using a call instruction. The upper half of the

system space is reserved for future use. Process address space is separate for

each process. However, several processes may have access to the same page

thus providing controlled sharing. A virtual address is a 32-bit unsigned inte¬

ger specifying a byte location in the address space. The address space seen by

the programmer is a linear array of over 4 billion bytes. The space is divided

into a collection of 512-byte units called pages. The page is the basic unit of

both relocation and protection.

7-7

Virtual address space cannot be contained in currently manufactured main

memory. Memory management maps the active part of the virtual address

space to the available physical address space. Memory management also pro¬

vides page protection between processes. The operating system controls the

memory management tables that map virtual addresses into main memory

addresses. Parts of the virtual address space that are not in use are copied or

swapped to auxiliary memory. When those parts are needed, they are brought

back into the virtual address space. See Figure 7-3 for a diagram of virtual

address space.

VIRTUAL ADDRESS

(32 BITS)
VIRTUAL ADDRESS

SPACE

0000 0000
P0 REGION

(PROGRAM)

GROWTH DIRECTION

>

3FFF FFFF PROCESS

4000 0000 (SPACE

7FFF FFFF

GROWTH DIRECTION

PI REGION

(CONTROL) J
8000 0000

SYSTEM REGION

's

BFFF FFFF

GROWTH DIRECTION

1 SYSTEM

C000 0000

RESERVED

SPACE

FFFF FFFF J

Figure 7-3 ■ Virtual Address Space

The figure shows that virtual address space is divided into two major areas—

process space and system space. Each process has a separate address transla¬

tion map for process space, so the process spaces of all processes are nonconti¬

guous.

The address map for process space is context-switched when the process run¬

ning on the system is changed. Process space is further divided into two

regions named PO and PI. These regions are described in detail later in this

chapter.

7-8 ■ Memory Management

The other half of virtual address space is called system space. All processes use

the same address translation map for system space. System space is shared by

all processes. The address map for system space is not context-switched. In a

shared-memory multiprocessor configuration, changing any of the address

mapping information for system space requires that all processors execute an

MTPR xxx,#TBIS instruction.

Access to each of the three regions is controlled by a length register. The

length registers are POLR, P1LR, and SLR. Register POLR controls access to

region PO. Register P1LR controls access to region PI. Register SLR controls

access to the system space of the virtual address space. Within the limits set

by the length registers, the access is controlled by a page table that specifies

the validity, access requirements, and location of each page in the region.

■ Address Translation

The action of translating a virtual address to a physical address is governed by

the setting of the Memory Mapping Enable (MME) bit. When MME is reset

(0), page protection is disabled. This feature is reserved for Field Service. This

section describes address translation when the MME bit is set (1) and page pro¬

tection is enabled.

The address translation mechanism is presented with a virtual address, an

intended access (read or write), and a mode against which to check that

access. If the access is allowed and the address is not faulted, the output of

this routine is a physical address corresponding to the specified virtual

address. The mode that is used is normally the current mode field of the pro¬

cessor status longword. But process page table entry references use the kernel

mode.

If the operation to be performed is a read operation, the intended access is

read access. If the operation to be performed is a write operation, the

intended access is write access. If the operation to be performed is a modify

(that is, a read followed by a write operation), the intended access for the read

portion is specified as a write access. If an operand is not an address operand,

no reference is made.

Page Table Entry

All virtual addresses are translated to physical addresses by means of a page

table entry (PTE). See Figure 7-4 for a graphic description of the page table

entry.

7-9

33 22222222

10 76543210_ 0

V PROT M Z OWN S s PFN

Figure 7-4 ■ Page Table Entry

Field Extent: Bit 31

Field Name: Valid bit (V)

Function: Governs the validity of the modify (M) bit and the page frame num¬

ber (PFN) field. The bit is set (1) for valid; reset (0) for invalid. When this bit

is reset, the modify and page frame number fields are reserved for system soft¬

ware.

Field Extent: Bits 30:27

Field Name: Protection (PROT)

Function: This field is always valid and is used by the hardware even when the

valid bit is reset (0). The protection field is defined as always being valid and

is checked first. The page table entry is defined as having a valid bit that con¬

trols the validity of the modify bit and page frame number field only. Protec¬

tion is checked first so that programs executing in user mode do not perform

access protection checks in the system region and fault all the swappable

pages.

Field Extent: Bit 26

Field Name: Modify bit (M)

Function: When the valid bit is reset (0), the modify bit is reserved for system

software and I/O devices. When the valid bit is set(l) and this bit is reset (0),

the page has not been modified. When the valid bit and this bit are set, the

page has been modified. The modify bit is reset by software. It is set by the

CPU on a successful write or modify to the page. In addition, it may be set by a

probe-write instruction or an implied probe-write. This bit is not set if the

page is inaccessible.

7-10 ■ Memory Management

Field Extent: Bit 25

Field Name: Must Be Zero

Function: This bit is reserved and must be zero.

Field Extent: Bits 24:23

Field Name: Owner (OWN) bits

Function: These bits are reserved for system software use. The VAX/VMS

operating system uses these system bits as the access mode of the owner of the

page; that is, the mode allowed to alter the page. The field is not examined or

altered by hardware.

Field Extent: Bits 22:21

Field Name: Operating System Software

Function: These bits are reserved for Operating System Software.

Field Extent: Bits 20:0

Field Name: Page Frame Number (PFN)

Function: The upper 21 bits of the physical address of the base of the page.

The field is used by hardware only if the valid bit is set.

The operating system software uses combinations of software bits to imple¬

ment its page management data structures and functions. Some of the func¬

tions implemented are initialize pages with zeros, copy on reference, page

sharing, and transitions between active and swapped-out states. VAX/VMS

software encodes these functions in page table entries whose valid bit is reset

(0) and processes them whenever a page fault occurs.

Page Table Entry for I/O Devices

Some I/O devices use memory management to translate addresses. These

devices use a page table entry format that is an extension of the page table

entry used by the CPU. For hardware, the extended page table entry imple¬

ments some functions that the CPU implements with software. Three page

table entry bits are used in four combinations to identify a valid page frame

number, a global page table index, and an I/O abort. The page table bits are

22, 26, and 31. The page frame number is valid if bit 31 is set (1) or if bits 22,

26, and 31 are reset (0). When bit 22 is set (1) and bits 26 and 31 are reset (0),

the page frame number field is a global page table index (GPTX). The I/O

device has a global page table base register that is loaded with a system virtual

address.

7-11

The I/O device calculates the system virtual address of a second page table

entry. The second page table entry must yield a valid page frame number and

the three bits must indicate a valid page frame number. If either of these

requirements is not met, the result is undefined. The protection field always

comes from the first PTE. Some I/O devices may examine and check the pro¬

tection field or modify the M bit—this is device dependent. Devices that use

the protection field and M bit do so in the same manner as does the CPU.

I/O devices that perform memory mapping use the same SPT as the CPU. But

the devices have their own copies of the system base register and system space

length register. Buffer addresses are described in terms of a system virtual

address of the PTE for the first buffer page and a byte offset within that page.

In addition, the I/O devices use a global page table in memory and an I/O hard¬

ware global page table base register (GBR) which must be loaded by software.

Changing Page Table Entries

Page table entries are changed by the operating system as part of its memory

management functions. For example, the operating system sets and resets the

valid bit and changes page frame numbers as pages are swapped.

The software must guarantee that each PTE is consistent within itself. Chang¬

ing a PTE one field at a time may cause incorrect system operation. For exam¬

ple, the valid bit could be set for one instruction while the page frame number

is for another instruction. Then, an interrupt routine could occur between the

two instructions that would use an address mapped to this inconsistent PTE.

This problem can be avoided by simultaneously changing all the fields in PTE.

Simply build the new PTE in a register and move that PTE into the page table

with one instruction (MOVL).

Multiprocessors complicate the matter. One processor can reference a page

table that is being modified by another processor. The PTEs must be consis¬

tent. In order to guarantee this, first note that PTEs are longword-aligned long-

words. Because of this, two requirements must be met. First, whenever the

software modifies a PTE in more than one byte, the software must use a long-

word, longword-aligned, write-destination instruction (such as MOVL). Sec¬

ond, the hardware must guarantee that an incomplete longword-aligned

longword write operation cannot be read or overwritten.

System Space Address Translation

Figure 7-5 graphically describes the system space address format. The figure

shows a virtual page number field with bits 31 and 30 set to a value of 2.

7-12 • Memory Management

31 30 29 9 8

VIRTUAL PAGE NO. (VPN) BYTE #

Figure 7-5 ■ System Space Address Format

The system virtual address space is defined by the system page table, which is

a vector of page table entries. The physical base address of the system page

table is in the system base register. The size of the system page table in long-

words (number of page table entries) is in the system length register. The page

table entry addressed by the system base register maps the first page of system

space; that is, virtual byte address 80000000 (hexadecimal).

The virtual page number field is bits 9 through 29 of the virtual address.

Thus, there could be as many as 2,097,152 (221) pages in the system region.

Typically, the value is in the range of a few hundred to a few thousand system

pages. A 22-bit field is required to express the values 0 through 2,097,152

inclusive. During a bootstrap procedure, the contents of both registers are

unpredictable. The translation from system space virtual address to physical

address is shown in Figure 7-6.

7-13

33 2

10 9 980

Figure 7-6 ■ System Space Address Translation

Process Space Address Translation

The process virtual address .space is divided into two separately mapped

regions according to the setting of bit 30 in the process virtual address. If bit

30 is reset (0), the P0 region of the address space is selected. If bit 30 is set (1),
the PI region is selected.

The P0 region of the address space defines a contiguous area starting at the

smallest address in the process virtual space and moving toward the larger

addresses. The P0 region is used typically for program images, and the region
grows dynamically.

In contrast, the PI region of the address space defines a contiguous area that

starts at the largest address in the process virtual space and moves toward the

smaller addresses. The PI region is typically used for system-maintained pro¬

cess context. It may grow dynamically for the user stack.

7-14 ■ Memory Management

Both regions of the process virtual space are described by page tables. The two

page tables are addressed with virtual addresses in the system region of the

virtual address space. For process space, the address of the page table entry is

a virtual address in system space, and the fetch of the page table entry is sim¬

ply a fetch of a longword using a system virtual address.

Process page tables are addressed in virtual space. If the tables were addressed

in physical space, a process page table that required more than a page of page

table entries would also require physically contiguous pages. Such a require¬

ment would make the dynamic allocation of process page table space more com¬

plex.

A process space translation causing a translation buffer miss usually causes

one memory reference for a page table entry. If the virtual address of the page

containing the process page table entry is also missing from the translation

buffer, a second memory reference is required.

When a process page table entry is fetched, a reference is made to system

space. This reference is made as a kernel read. The system page containing a

process page table is either accessible or inaccessible. Similarly, a check is

made against the system length register (SLR). The fetch of an entry from a

process page table can cause access or length violation faults.

The PO region of the address space is mapped by the PO page table (POPT) that

is defined by the PO Base Register (POBR) and the PO Length Register (POLR).

The base register contains a virtual address in the system half of virtual

address space that is the base address of the PO page table. The length register

contains the size of the PO page table in longwords; that is, the number of page

table entries. The page table entry addressed by the PO base register maps the

first page of the PO region of the virtual address space (virtual byte address

zero). The page table entries in the PO page table contain the mapping informa¬

tion themselves; or point to the mapping information in the global page table

if the page table entry is in the global page table index format.

The virtual page number is bits 9 through 29 of the virtual address. This

means there could be as many as 2,097,152 (221) pages in the PO region. A 22-

bit field is needed to express the values 0 through 2,097,152 inclusive. Bits

24 through 26 of register POLR are ignored on the move to processor register

(MTPR) instruction and are read back as zero on the move from processor regis¬

ter (MFPR) instruction. During bootstrap procedures, the contents of both

registers are unpredictable. An attempt to load register POBR with a value less

than 2,147,483,648 (231) or greater than 3,221,225,468 (((231) + (230))-4)

causes a reserved operand fault. The translation from PO virtual address to

physical address is shown in Figure 7-7.

7-13

33 2

Figure 7-7 m PO Region Address Translation

The PI region of the address space is mapped by the PI page table (P1PT) that

is defined by the PI Base Register (P1BR) and the PI Length Register (P1LR).

Because PI space moves from higher to lower addresses and because a consis¬

tent hardware interpretation of the base and length registers is important, reg¬

isters P1BR and P1LR describe that portion of PI space that is inaccessible.

The base register contains a virtual address of what would be the page table

entry for the first page PI-virtual byte address 40000000 (hexadecimal). The

length register contains the number of nonexistent page table entries. An

address in the base register is not necessarily an address in system space; but

an address of a page table entry must be in system space. The page table

entries in the PI page table contain the mapping information or point to the

mapping information in the global page table entry if the page table entry is in

global page table index format.

7-16 • Memory Management

Bit 31 of the length register is ignored by a move to processor register instruc¬

tion and is read as zero by a move from processor register instruction. During

bootstrap procedures, the contents of both registers are unpredictable.

Attempting to load register P1BR with a value less than 2,139,095,040

(7F800000 (hexadecimal)) causes a reserved operand fault. The translation

from PI virtual address to physical address is shown in Figure 7-8.

33

10

CM CT> 9 8 0

PVA: 1 BYTE

(FHUCbSS VIH 1 UAL

ADDRESS) o I 1 0
EXTRACT AND

3 ^ 1 1 ^ CHECK LENGTH
10 1 3 2 2

o 0

ADD

P1BR: SYS VIRT BASE ADR OF P1PT 0

YIELDS

SYS VIRT ADR OF PTE 0

FETCH BY SYSTEM SPACE TRANSLATION ALGORITHM,

INCLUDING LENGTH AND KERNEL MODE ACCESS

CHECKS

3 3 2 2

1 0 1 0_0

PTE: 1 PFN

1
8 1 r 0

CHECK ACCESS
3 31

1 0

THIS ACCESS CHECK

g IN CURRENT MODE g

PHYS ADR OF DATA: 0

Figure 7-8 ■ PI Region Address Translation

■ Access Control

Access control is the process of screening page access requests and verifying

that the requester is authorized access to that page. Every page is assigned a

protection code. That code specifies for each mode whether or not read or

write references are allowed. Also, each address is checked to ensure that it

resides in the virtual address space.

7-17

There are four access modes. The modes are listed in Table 7-1 in the order of

most to least privileged. The mode at which the processor is currently running

is stored in the current mode field of the processor status longword.

Table 7-1 ■ Processor Access Modes

Access Mode Code Access Mode Name

0 Kernel

1 Executive

2 Supervisor

3 User

Page protection is assigned according to its use, not its location in the virtual

address space. Although the system space is shared, a program may be pre¬

vented from modifying or accessing portions of the system space. A program

may also be prevented from accessing or modifying portions of process space.

For example, in system space, scheduling queues are highly protected, but

library routines may be executed by any privilege code. Also, in process space,

process accounting information may be highly protected, while normal user

code may be executed by any privilege code.

Each page is assigned a protection code describing the accessibility of the page

for each mode. The protection codes allow a choice of protection for each

access level within the following limits.

■ Each level’s access can be read or write, read only, or no access.

■ Whichever level has read access, all more privileged levels also have read

access.

■ Whichever level has write access, all more privileged levels also have write

access.

This scheme results in 15 possible protection codes. The protection code is

encoded in a 4-bit field in the page table entry. See Table 7-2 for a list of the

codes.

7-18 ■ Memory Management

Table 7-2 ■ Page Table Entry Protection Codes

Protection Code Access Modef

Decimal Binary Mnemonic* K E S U Comments

0 0000 NA NO NO NO NO No access

1 0001 UN UN UN UN Reserved

2 0010 KW RW NO NO NO Kernel write

3 0011 KR R NO NO NO Kernel read

4 0100 UW RW RW RW RW All access

5 0101 EW RW RW NO NO

6 0110 ERKW RW R NO NO

7 0111 ER R R NO NO

8 1000 sw RW RW RW NO

9 1001 SREW RW RW R NO

10 1010 SRKW RW R R NO

11 1011 SR R R R NO

12 1100 URSW RW RW RW R

13 1101 UREW RW RW R R

14 1110 URKW RW R R R

15 mi UR R R R R

* Software symbols are defined using PTE$K as a prefix to the mnemonics listed

above. For example, the software protection symbol PTE$KUR means that that soft¬

ware can be read by anyone with user access privileges and those with higher privileges.

A software protection symbol of PTE$KER means that that software can be read by

anyone with kernel or supervisor access privileges. No one is allowed write access to

that software.

t There are four access modes—K for Kernel Access Mode, E for Executive Access

Mode, S for Supervisor Access Mode, and U for User Access Mode. Within these

access modes, there are certain functions that may be performed - R indicates read

access only, RW indicates read and/or write access, NO indicates no access, and UN

indicates unpredictable results if access is attempted.

Every valid virtual address must reside in one of the addressing regions and

the associated length registers. The algorithm for making these checks is a

limit check. The notation for this check is shown in Example 7-1.

7-19

Example 7-1 ■ Valid Virtual Address Checking Algorithm

case Vftddr <31=30>

set

[0]:

if ZEXT (VAddr<29:9>) GEQU P0LR
then (length violation)

[i3 =
if ZEXT (iVAddr<29:9>) LSSU P1LR

then {length violation);

[23:

if ZEXT (VAddr<29:9>) GEQU SLR
then {length violation);

[33:

{length violation);

tes;

An access control fault occurs if the current mode of the processor status long-

word and the page protection fields indicate the access is illegal, or if the

address causes a length violation. If an access is made across a page boundary,

the order in which the pages are accessed is unpredictable. However, for a

given page, access control violation always takes precedence over translation

not valid.

■ Controlling Memory Management

There are three additional privileged registers used to control the memory

management hardware. One register is used to enable and disable memory

management. The other two are used to clear the hardware address transla¬

tion buffer when a page table entry is changed.

The action of translating a virtual address to a physical address is governed by

the setting of the memory mapping enable bit of the map enable register. The

map enable register (MAPEN) contains a value of 0 or 1 depending upon mem¬

ory management. If memory management is disabled, the value is 0. If mem¬

ory management is enabled, the value is 1. During bootstrap procedures, this

register is initialized to zero.

When memory management is disabled, virtual addresses are mapped to physi¬

cal addresses by ignoring their high-order bits. Access is allowed in all modes,

and the modify bit is not maintained.

To read the register, use the move from processor register (MFPR) with the

source operand specified as ff56. To write to the register, use the move to pro¬

cessor register (MTPR) instruction using If56 as the destination operand.

!P0 region

!PI region

!S region

! reserved region

7-20 ■ Memory Management

In order to reduce repeated address translations, the hardware includes a trans¬

lation buffer that records virtual address translations and page status. When¬

ever the process context is loaded by the load process context (LDPCTX)

instruction, the translation buffer is automatically updated. That is, the pro¬

cess virtual address translations are invalidated. Whenever a page table entry

for the system or current process region is changed other than to set the page

table entry valid bit, the software must notify the translation buffer of this

change. This is done by moving an address within the corresponding page into

the translation buffer invalidate single (TBIS) register.

Additionally, when the software changes a system page table entry that maps

any part of the current process page table, all process pages so mapped must be

invalidated in the translation buffer. They may be invalidated by moving an

address within each such page into the TBIS register. They may also be invali¬

dated by clearing the entire translation buffer. This is done by moving zero to

the translation buffer invalidate all register with a move to processor register

instruction.

The translation buffer must not store invalid page table entries. Software is

not required to invalidate translation buffer entries when making changes for

page table entries that are already invalid. Whenever the location or size of

the system map is changed (SBR, SLR) the entire translation buffer must be

cleared by moving 0 into the translation buffer invalidate all (TBIA) register.

Before enabling memory management, the translation buffer must be cleared

by moving 0 into the TBIA register with the move to processor register instruc¬

tion.

Whenever the memory management enable bit is zero, the contents of the

translation buffer are unpredictable. Therefore, the entire translation buffer

must be cleared before enabling memory management.

■ Faults and Parameters

Two types of faults are associated with memory mapping and protection. A

translation not valid fault is taken when a read or write reference is attempted

through an invalid page table entry. An access control violation fault is taken

when the protection field of the page table entry indicates that the intended

access is illegal.

Note that these two faults have distinct vectors in the system control block. If

both access control violation and translation not valid faults occur, the access

control violation fault takes precedence.

An access control violation fault is also taken if the virtual address referenced

is beyond the end of the associated page table. Such a length violation is essen¬

tially the same as referencing a page table entry that specifies no access. To

avoid repeating the length check, a length violation is stored in the fault param¬

eter word. The fault parameter word format is shown in Figure 7-9.

7-21

3

1 2 10

Figure 7-9 ■ Fault Parameter Word Format

The same parameters are stored for both types of faults. The first parameter

pushed on the kernel stack after the processor status longword and program

counter is the initial virtual address that caused the fault. A process space ref¬

erence can result in a system space virtual reference for the page table entry.

If the page table entry reference faults, the process virtual address is saved. In

addition, a bit is stored in the fault parameter word indicating that the fault

occurred in the process page table entry reference. The second parameter

pushed on the kernel stack contains the information listed below.

Field Extent: Bit 2

Field Name: Write or Modify Intent

Function: This bit is set (1) to indicate that the program’s intended access is a

write or modify. This bit is reset (0) if the program’s intended access is a read.

Field Extent: Bit 1

Field Name: Page Table Entry Reference

Function: This bit is set (1) to indicate that the fault occurred during the refer¬

ence to the process page table associated with the virtual address. This bit is

set on either length or protection faults.

Field Extent: Bit 0

Field Name: Length Violation

Function: This bit is set (1) to indicate that an access control violation was the

result of a length violation rather than a protection violation. This bit is reset

(0) for a translation not valid fault.

7-22 ■ Memory Management

■ Accessing Privileged System Services

Most processes execute in the user access mode. At times, the user access

mode processes need to use system services that execute at a higher-level

access mode. These user mode processes are not allowed access to other modes

except for these necessary services. VAX systems provide instructions that

change an access mode to one of greater privilege under strictly controlled con¬

ditions. These instructions are called the privilege instructions.

The privilege instructions change a process’s mode to a more privileged mode

and transfer control to a service dispatcher for the new mode. The instruc¬

tions provide the only mechanism for less privileged code to call more privi¬

leged code. When the mode transition takes place, the previous mode is saved

in the previous mode field of the processor status longword. This allows the

more privileged code to determine the privilege of its caller.

The instructions give upward and downward mobility through the access

modes, and provide a way to compare memory protection levels to the access

mode privilege of callers. The instructions are change mode (CHM), probe,

return from exception or interrupt (REI), save process context (SVPCTX), load

process context (LDPCTX), move to processor register (MTPR), and move from

processor register (MFPR).

User mode software can access privileged services by calling operating system

service procedures with a call instruction. The operating system’s service dis¬

patcher issues an appropriate change mode instruction before entering the pro¬

cedure. A change mode instruction allows access mode transitions to take place

from one mode to the same or more privileged access mode (upward) only.

When such a mode transition takes place, the previous mode is saved in the

previous mode field of the processor status longword. This action allows the

more privileged code to determine the access privilege of its caller.

A change mode instruction is a special trap instruction that can be likened to

an operating system service call instruction. User access-mode software can

explicitly issue change mode instructions. Because the operating system

receives the trap, nonprivileged users cannot write software to execute in any

of the privileged access modes. User mode software can include a condition

handler for change mode to user traps. This instruction provides general pur¬

pose services for user access-mode software. Before software with a change

mode instruction can be executed, the user’s privilege must be changed in the

system authorize database (SYSUAF.DAT). The privilege is changed for one

program and is not a global change for the user.

7-23

For service procedures written to execute in privileged access modes, the pro¬

cessor provides address access privilege validation instructions called probe

instructions. Probe instructions enable a procedure to compare the read

(PROBER) and write (PROBEW) access protection of pages in memory to the

privileges of the caller. The validation enables the operating system to provide

services that execute in access modes to callers with less privileged access and

yet prevent the caller from accessing protected memory.

When the operating system schedules a context switching operation, the con¬

text switching procedure uses the save process context (SVPCTX) and load pro¬

cess context (LDPCTX) instructions to save the current process context and

load another. The operating system’s context switching procedure identifies

the location of the hardware context to be loaded by updating an internal pro¬

cessor register.

Internal processor registers include not only those that identify the executing

process but also the memory management and other registers such as the con¬

sole and clock control registers. The move to processor register (MTPR) and

move from processor register (MFPR) instructions are the only instructions that

can explicitly access the internal processor registers. MTPR and MFPR instruc¬

tions are privileged and can be issued only in kernel mode.

The operating system’s privileged service procedures and interrupt and excep¬

tion service routines exit using the return from exception or interrupt (REI)

instruction. The REI instruction is the only way the caller’s access mode privi¬

lege can be decreased. Like the procedure and subroutine return instructions,

the REI instruction restores the program counter and the processor state to

the values that were stored there before the change mode trap interruption.

This procedure ensures that the process resumes execution at the point where

it was interrupted.

REI instructions perform special services that normal return instructions do

not. For example, REI instructions inspect the asynchronous system trap

queue for the executing process. If an asynchronous system trap was queued

for the process while the interrupt or exception service routine was executing,

the REI instruction ensures that the process receives them. Also, REI instruc¬

tions check the mode to which control is being returned. That mode must be

the same as or a less privileged mode than the one in which the exception or

interrupt occurred. The REI instruction is available to all software including

user-written trap handling routines. There is a restriction; a program cannot

increase its privilege by altering the processor state to be restored.

r rSfe-»f.cf2'^;.: *> jj iJin . oox j:.: - ■ - < ■•

TJ^ai•nort;cf)iI-.-j /2~q *44/y« :■ Ihv ;(f ,.

: -3^t "aieq'fy.y *.‘1 ^fcD^O'fg \ ph%rj<, .^o cl ^ou. nl-n

' i q. • y, - •rr-j.ji ev' ^ jo ^^btrnWife* v" * ;Wr/*0>:\, • - ,v ^jtehdTO 1;

->hi.. *i<$K r5sip£$:gtflfcl • •: or! cokl^ro i; orD’ . . : . ‘ J i '

•i.ru* - y ■: U■::■■•.«I Jtr r - .-irr, of ro/xyr v:^ :;2>1» us' ? ‘Uidf 3- r: l..;-

. • ■ - ::« ,h

-mr> -»•:*/ ' •' / t ,) r: '.... m*>? ■ »: • ••* f*qc or- rrW/7

-<: bn*. {Jr?:/ iy; ~tro yi&cro ■ c ^r'?..; ‘ tvibw^'jti y.nfri:>j :.v.i rd?

■ •'>yv,.-. ' .-:> j» 3£ rq . •. ' , •'. *y ' «€■}<. v r . 1C. ■ r*■
..- .iliidLd • ii/b'OQ* .♦ '•• dbn.»; «J, • •■... vc $i.v:v xju or.1/ .or • ?:» ' :•' '

::sj u,r -ilr- ^nhnbqj vd .2j*;qi orJ'qj-iisttjfc •';• i" nHo nv'r>:,vi n
■ Vj£: ; r ;' rk--» *tr

gPlh;>^jbv*)Ui' ViI?ridOf ‘Krfl-^qdJ -t^wO .*on -■ri/r dx~rt<2%i'f -. .-vr r: 'iv
■:■ rb j>.. ■ •• •■:*o-- . :• ; " ;?. *!0. • • 'iTi-Uu ■ ■

’ r; /‘r-i i *s;« ' yj^rvjv j) £ cv, .nor. ;.Tr rr-/;. •. Ljbr Jx . on •

j?ib>v>r -o - Irro;»'i; yv . • r ','v‘< •. ^

;> " o;r-.•■ ! ■.-. '191%+ f^r/i. ;■• >i-:• ^ -w rs v;•/prorf-r

. •'• :,. 1 >: 2 .-tj-r* ..• -r <; . ‘-r r »; r .-•’ v.‘‘t«.']. ■ :y f

■ >>:y: . :v -in ' ' ,.: - .•■/ '.. -. ft- ’ ■ 7 '■’ • •

• '' . .

;yj '• bHl «/s; / • v{t-t t.;* :XrT '/ndi..;)-:13k 2

. : -» n&i* '-Sl»a> • r*:,.c: >.'L;. yodl-KJ^.l r- • . *Kt<: -••: ;

e2r <;2- y.- yr^k ;?■ . " oai :-y -•!.,- ,ii .'/,

,r, r •.- . ,r: -Don's .. /j • ’■ ro >* ■.; • : *

...:-»r! - :; *J .: . .wIl- .. • ■ • y .-• «••■ 4'i : ■ 'f». '

■-.» r:r K: •'?rri lu K.:i

: ,v ■-. >■:•• >a: . - .. • ••-'• • ; ; .

m ; • u •nojy ,

>'*7:.y -.7 .-:’VS/'on;i.••../;

’ ■

. •. ’■ *: • v
nD'V'.:'D..: ■'$&’> • • * ?. j . .. -.r ' n, ... ' U iS/i'83fi.'

*>.f 1- ; . • • ' - ?••• -v. c ••;. ~*1 .,.... . • .

‘..;;d(yjyr-.v Oi-. -• > ir 'joj

'•dilxriJiu?. nit ■. Jli;-ot v n .qo'^n.l^rH"/ 'rrr n.; t . • rn

til - •.._ q,: -• vj.-;^in ? ■ •.rf: ySrt s'jw ■; .r '•.■ / , ./'• •

• c * -;.• yp?'x^ ■ : J - . ■-,... at • • > *

Chapter 8 ■ Exceptions and Interrupts

Events within the system sometimes need software outside the flow of con¬

trol. In these cases, the processor changes the flow of control from that indi¬

cated in the executing process. Some such events are relevant to the current

process and normally invoke software within the context of that process. The

notification of these events is called an exception.

Other events are relevant to other processes or to the system as a whole and

are serviced in a systemwide context. The notification process for these events

is called an interrupt. The systemwide context is described as executing on the

interrupt stack. Some interrupts require high-priority service, while others

must be synchronized with independent events. To meet these needs, the pro¬

cessor has priority logic that grants interrupt service to the highest priority

event at any moment. The priority assigned to an interrupt is called its inter¬

rupt priority level (IPL).

■ Event Handling

Exceptions are handled by the operating system. Usually they are reflected to

the originating mode as a signal. In general, the exception is described by a

vector that is a list of longwords. The first longword contains a count of other

longwords in the vector. The second longword identifies which exception

occurred. The remaining longwords are the stack parameters, the program

counter, and the processor status longword. There are three kinds of excep¬

tions — aborts, faults, and traps.

An abort is a condition that occurs when an instruction leaves the value of the

registers and memory in an unpredictable condition and the instruction cannot

be correctly restarted, completed, simulated, or undone. After an instruction

aborts, the program counter addresses the opcode of the aborted instruction.

The following events produce unpredictable results.

■ Destination operands including implied operands such as the top of the

stack in a JSB instruction.

■ Registers modified by an operand specifier evaluation including specifiers

for implied operands.

■ The modify bit of the page table entry in those entries that map destination

operands if the operands could have been but were not written, and the

modify bit was clear before the instruction.

8-2 • Exceptions and Interrupts

■ The first part done bit of the processor status longword.

■ The trace pending bit of the processor status longword.

If not noted in the description of the abort exception, the rest of the processor

status longword, other registers, and memory are not affected.

A fault exception is a condition that occurs during an instruction. Faults leave

the registers and memory in a consistent state. When the fault condition is

corrected and the instruction is restarted, the execution yields correct results.

Note that faults do not always leave everything as it was prior to the fault

instruction. Faults restore only enough to allow restarting. Thus the state of a

faulted process may not be the same as that of an interrupted process if both

occurred at the same point.

A trap exception is a condition that occurs at the end of the instruction that

caused the exception. Therefore, the program counter saved on the stack is

the address of the next instruction that would normally have been executed.

Any software can enable and disable some of the trap conditions with a single

instruction. For example, refer to the descriptions of the bit set processor

status word (BISPSW) and bit clear processor status word (BICPSW) instruc¬

tions.

The processor arbitrates interrupt requests according to priority. Only when

the priority of an interrupt request is higher than the current interrupt prior¬

ity level does the processor raise the level and service of the interrupt request.

The interrupt service routine is entered at the level of the interrupt request

and usually does not change the set by the processor.

Interrupt requests come from devices, controllers, other processors (in cus¬

tomer-designed systems), or the processor itself. Software executing in kernel

mode can raise and lower the priority of the processor. But note that the prior¬

ity level of one processor does not affect the priority level of the other proces¬

sors. This is done to prevent the interrupt priority levels from being used to

synchronize access to shared resources in multiprocessor systems. Special soft¬

ware action is required to stop other processors in your multiprocessor system.

Most service routines for software-generated exceptions execute at interrupt

priority level 0. However, if a serious system failure occurs, the processor

raises the interrupt priority level to the highest level to prevent interruption

until the problem is corrected. Exception service routines are usually coded to

avoid exceptions. However, nested exceptions may occur in the the following

faults—an access control violation, reserved operand, or reserved addressing

mode.

8-3

Interrupt Priority Levels

The processor has 31 interrupt priority levels (IPLs) divided into 15 software

levels (numbered 1 through F (hexadecimal)) and 16 hardware levels (10

through IF (hexadecimal)). User applications, system calls, and system ser¬

vices run at process level (IPLO). Higher numbered IPLs have higher priority.

Any request with an IPL higher than the processor’s IPL causes an immediate

interrupt. But requests with a lower or equal IPL are deferred.

Interrupt levels 1 through F (hexadecimal) exist entirely for use by software.

No hardware device can request interrupts on those levels but software can

force an interrupt. The interrupt is forced by executing a move to processor

register instruction using the software interrupt request register as the destina¬

tion. After a software interrupt request is made, the request is cleared by hard¬

ware when the interrupt is taken. Interrupt levels 10 through 17

(hexadecimal) are for use by devices and controllers, including UNIBUS

devices. Interrupt levels 18 through IF (hexadecimal) are used by urgent con¬

ditions including—the interval clock, serious errors, and powerfail.

Two of the software interrupt priorities are reserved for process structure soft¬

ware. They are IPL2 and IPL3. IPL2 is the AST delivery interrupt. It is trig¬

gered by a return from exception or interrupt instruction that detects

PSLcCUR MOD> GEQU ASTLVL. IPL2 indicates that a pending AST for

the executing process can now be delivered.

IPL3 is the process scheduling interrupt. It is triggered by software to allow

the process running at IPL3 to cause the executing process to be blocked and

the highest priority executable process to be scheduled.

Exceptions and Interrupts

Exceptions and interrupts are similar. When either is initiated, both the pro¬

cessor status longword (PSL) and the program counter are put on a stack. How¬

ever, there are seven important differences between exceptions and

interrupts.

■ An exception is caused by an executing instruction. An interrupt is caused

by the computing system and is usually independent of an instruction.

■ Usually, an exception is serviced in the context of the process that pro¬

duced that exception. An interrupt is serviced independently of the cur¬

rent process.

■ Generally, the interrupt priority level of the processor is not changed when

the processor initiates an exception. The interrupt priority level is always

raised when an interrupt is initiated.

8-4 • Exceptions and Interrupts

■ Normally, exception service routines execute on a process stack. Interrupt

service routines normally execute on a processor stack. However, a

machine check always executes on the interrupt stack pointer.

■ Enabled exceptions are initiated immediately, independent of the proces¬

sor interrupt priority level. Interrupts are delayed until the processor inter¬

rupt priority level drops below the level of the requesting interrupt.

■ Most exceptions cannot be disabled. If an exception-causing event should

occur while that exception is disabled, no exception is initiated even when

that event is subsequently enabled. This includes overflow exceptions. If

an interrupt is disabled and an initiating event occurs, the event initiates

an interrupt when subsequently enabled if the interrupt condition exists.

Also, if the process is at an equal or higher interrupt priority level, the

interrupt is initiated when enabled.

■ The previous mode field in the processor status longword is always set to

kernel on an interrupt. On an exception, the field indicates the mode in

which the exception occurred.

Processor Status

When an exception or interrupt is serviced, the processor status must be pre¬

served. This is done so the interrupted process continues normally. Processor

status preservation is the task of the program counter and the processor status

longword. The counter and longword are restored with a return from exception

or interrupt instruction. Any other status information needed to resume an

interruptible instruction is stored in the general registers. Process context is

not saved or restored on each exception or interrupt. Instead, context is saved

and restored only when process context is switched. Other processors’ status

is changed less frequently.

There are several processor state variables associated with each process, and

VAX software groups them into the 32-bit processor status longword (PSL).

Bits 15 through 0 of the PSL are referred to separately as the processor status

word (PSW). The PSW contains unprivileged information and those bits of

the PSW that have defined meaning are controllable by any program. Bits 31

through 16 of the PSL have privileged status. While any program can perform

the REI instruction (which loads PSL), the instruction refuses to load any PSL

that would increase the privilege of a process, or create an undefined state in

the processor. Figure 8-1 illustrates the processor status longword and the fol¬

lowing paragraphs explain the various fields.

8-5

31 30 2928 27 26 25 24 23 22 21 20 16 15 8 7 6 5 4 3 2 1 0

CM TP MBZj |fpd IS
CURRENT

MODE
PREVIOUS

MODE
MBZ IPL MBZ DV FU IV T N Z V c

v
PSW

Figure 8-1 ■ Processor Status Longword

Bits 3:0 of the PSL are called the condition codes. In general, they reflect the

result status of the most recent instruction that affects them. The condition

codes are tested by the conditional branch instructions.

Bit 3 is the negative condition code (N bit). In general, it is set by negative

result instructions. The bit is cleared by positive result or zero instructions.

For those instructions that affect the bit according to a stored result, the N bit

reflects the actual result even if the sign of the result is algebraically incorrect

as a result of overflow.

Bit 2 is the zero condition code (Z bit). Typically it is set by instructions that

store an exactly zero result and cleared if the result is not zero. Again, this

reflects the actual result even if overflow occurs.

Bit 1 is the overflow condition code (V bit). In general, it is set after arithme¬

tic operations in which the magnitude of the algebraically correct result is too

large to be represented in the available space, and cleared after operations

whose result fits. Instructions in which overflow is impossible or meaningless

either clear the bit or leave it unaffected. Note that all overflow conditions

that set the V bit can also cause traps if the appropriate trap enable bits are

set.

Bit 0 is the carry condition code (C Bit). Usually, it is set after arithmetic oper¬

ations in which a carry out of, or borrow into, the most significant bit

occurred. The bit is cleared after arithmetic operations that had no carry or

borrow, and is either cleared or unaffected by other instructions. The C bit is

unique in that it not only determines the operation of conditional branch

instructions, it also serves as an input variable to the ADWC (Add with Carry)

and SBWC (Subtract with Carry) instructions used to implement multiple-pre¬

cision arithmetic.

Bits 7 through 4 of the PSL are trap-enable flags that cause traps to occur

under special circumstances.

8-6 ■ Exceptions and Interrupts

Bit 7 is the decimal overflow trap enable bit (DV bit). When set, it causes a

decimal overflow trap after the execution of any instruction that produces a

decimal result whose absolute value is too large to be represented in the desti¬

nation space provided. When the DV bit is clear, no decimal overflow trap

occurs. The result stored consists of the low-order digits and sign of the alge¬

braically correct result. Note that there are other trap conditions for which

there are no enable flags-division by zero and floating overflow.

Bit 6 is the floating underflow exception enable bit (FU bit). When the FU bit

is set (1), it forces a floating underflow exception after execution of the instruc¬

tion that produced an underflowed result. When the FU bit is clear (0), no

exception occurs. The result stored is zero.

NOTE

On VAX-11/780 processors with a hardware revision level of

less than 7, a trap occurs. On all other VAX processors, a

fault occurs.

Bit 5 is the integer overflow trap enable bit (IV bit). When set, it causes an

integer overflow trap after an instruction that produced an integer result that

could not be correctly represented in the space provided. When bit 5 is clear,

no integer overflow trap occurs. The V condition code is set independently of

the state of the IV condition code.

Bit 4 is the trace bit (T bit). When set, it causes a trace trap to occur after

execution of the next instruction. This facility is used by debugging and per¬

formance analysis software to step through a program one instruction at a

time. If any instruction is traced and causes an arithmetic trap, the trace trap

occurs after the arithmetic trap.

Bits 15 through 8 of the PSL are not used and are reserved.

Bits 20 through 16 represent the processor’s interrupt priority level (IPL). In

order to be acknowledged by the processor, an interrupt must be at a priority

higher than the current IPL. Virtually all software runs at IPL 0, so the proces¬

sor acknowledges and services interrupt requests of any priority. The inter¬

rupt service routine for any request runs at the IPL of the request. This

temporarily blocking interrupt requests lower or equal priority. Briefly, there

are 31 interrupt priority levels above zero, numbered 01 through IF (hexadec¬

imal). Interrupt levels 01 through OF exist entirely for use by software. IPLs

10 through 17 are for use by peripheral devices and their controllers.

Although present systems support only 14 through 17. Levels 18 to IF are for

use for urgent conditions including the interval clock, serious errors, and

powerfail.

8-7

Bits 23 and 22 are the previous mode bits that contain the value from the cur¬

rent mode field at the most recent exception that transferred from a less privi¬

leged mode to this one. Previous mode is of interest in the PROBE

instructions that enable privileged routines to determine whether a caller at

the previous mode is sufficiently privileged to reference a given area of mem¬

ory.

Bits 25 and 24 are the current mode bits that determine the privilege level of

the currently executing program. Privilege is granted in two ways by the mode

field-certain instructions (halt, move to processor register, and move from pro¬

cessor register) are not performed unless the current mode is kernel. The mem¬

ory management logic controls access to virtual addresses on the basis of the

program’s current mode, the type of reference (read or write), and a protec¬

tion code assigned to each page of the address space.

Bit 26 is the interrupt stack flag (IS bit) that indicates that the processor is

using the special interrupt stack rather than one of the four stacks associated

with the current process. When the IS bit is set, the current mode is always

kernel. Thus, for example software operating on the interrupt stack has full

kernel mode privileges.

Bit 27 is the first part done flag (FPD bit) that the processor uses in certain

instructions. These instructions may be interrupted or page faulted in the mid¬

dle of their execution. If the FPD bit is set when the processor returns from an

exception or interrupt, the processor resumes the interrupted operation

where it left off rather than restart the instruction.

Bit 30 is the trace pending bit (TP bit) that is used by the processor to ensure

that one trace trap occurs for each instruction performed with the trace bit

set.

Bit 31 is the compatibility mode bit (CM bit). When the CM bit is set, the

processor is in PDP-11 compatibility mode and executes PDP-11 instructions.

When the bit is clear, the processor is in native mode and executes VAX

instructions. Compatibility mode may be omitted from subset implementa¬

tions of the VAX architecture. In a processor that does not have compatibility

mode, this bit is always clear.

Asynchronous System Traps

An asynchronous system trap (AST) is used to notify a process that some

events are not synchronized with process execution. Traps are also used to ini¬

tiate processing for those events with the least possible delay.

Delay in delivery may be due to one of two causes. Either the process is not on

the system or there is an access mode mismatch. The efficient handling of

traps in VAX processors requires some hardware assistance to detect changes

in access mode.

8-8 • Exceptions and Interrupts

Each of the execution access modes may receive ASTs. However, an AST for a

less privileged access mode must not be permitted to interrupt execution in a

more privileged access mode. Because transitions to a less privileged access

mode occur only in the return from exception or interrupt instruction, compari¬

son of the current access mode field is made with a privileged register

(ASTLVL). The register contains the most privileged access mode number for

which an AST is pending. If the new access mode is greater than or equal to

the pending ASTLVL, an Interrupt Processor Level (IPL) 2 interrupt is initi¬

ated to deliver the pending AST.

NOTE

Loading an ASTLVL or LDPCTX instruction with a move to

processor register instruction does not request a software

interrupt at IPL2. During a return from exception or interrupt

instruction only can an ASTLVL instruction cause an inter¬

rupt request.

The general software flow for AST processing is described in the following

paragraphs.

1. An event associated with an AST causes software to put an AST control

block in the queue to the software process control block. Then the soft¬

ware sets the hardware process control block ASTLVL field to the most

privileged access mode for which an AST is pending. If the target process

is executing, the ASTLVL privileged register also has to be set.

2. When a return from exception or interrupt instruction detects a transition

to an access mode that can be interrupted by a pending AST, a priority

level 2 interrupt is requested to deliver the AST. Note that the instruction

does not check pending ASTs when returning to a routine executing on the

interrupt stack.

3. The priority level 2 interrupt service routine computes the new value for

ASTLVL to prevent additional AST delivery interrupts while in kernel

mode. And the service routine moves that value to the process control

block and the ASTLVL register before lowering the interrupt priority level

and actually dispatching the AST. This interrupt service routine normally

executes on the kernel stack in the context of the process receiving the

AST.

4. At the conclusion of processing for an AST, the ASTLVL is recomputed

and moved to the process control block and ASTLVL register by software.

8-9

NOTE

Two of the software interrupt priority levels are reserved for

process structure software. Interrupt priority level 2 is for

AST delivery interrupts. Interrupt priority level 3 is for pro¬

cess scheduling interrupts.

■ Exceptions

There are six types of exceptions—arithmetic, instruction fault, memory man¬

agement, operand reference, serious system failures, and tracing. All are

described in the subsequent paragraphs.

Arithmetic Exceptions

Exceptions caused by arithmetic or conversion operations are mutually exclu¬

sive and can be assigned the same vector in the system control block. Each

indicates that an exception occurred during the last instruction and that the

instruction has been either completed (in the case of a trap) or backed up (in

the case of a fault). A code identifying the exception is written on the stack as

a longword. Figure 8-2 illustrates the stack after an arithmetic exception. In

the case of a fault, the program counter of the next instruction is the same as

the instruction that caused the exception. Arithmetic exception codes are

listed in Table 8-1.

TYPE CODE

PROGRAM COUNTER OF

NEXT INSTRUCTION TO EXECUTE

PROCESSOR STATUS LONGWORD

Figure 8-2 ■ Stack after Arithmetic Exception

8-10 ■ Exceptions and Interrupts

Table 8-1 ■ Arithmetic Exception Type Codes

Code Exception Type Software Mnemonic

Traps

1 Integer overflow SRM$K_-

INT OVF T

2 Integer divide by zero SRM$K INT DIV T

3 Floating overflow* SRM$K FLT OVF T

4 Floating/decimal divide by zero SRM$K FLT DIV T

5 Floating underflow* SRM$K FLT UND T

6 Decimal overflow SRM$K DEC OVF T

7 Subscript range SRMJK SUB RNG T

Faults

8 Floating overflow SRM$K FLT OVF F

9 Floating divide by zero SRM$K FLT DIV F

10 Floating underflow SRM$K FLT UND F

* Not on VAX-11/750

An integer overflow trap exception indicates that the preceding instruction set

the overflow condition code bit. This trap occurs only if the integer overflow

enable bit in the processor status word is set. The result stored is the low-

order part of the correct result, and type code 1 is put on the stack. The nega¬

tive and zero condition-code bits are set according to the stored result. Note

that the BISPSW, MOVTUC, REI, REMQHI, REMQTI, REMQUE, and RET

instructions do not cause an integer overflow even if they set the overflow con¬

dition code bit. EMOD instructions can cause integer overflow.

An integer divide by zero trap exception indicates that the preceding instruc¬

tion had an integer zero divisor. The result stored is equal to the dividend,

and the overflow condition code bit is set and type code 2 is put on the stack.

A decimal string divide by zero trap exception indicates that the preceding

instruction had a decimal string zero divisor. The destination, registers R0

through R5, and condition codes are unpredictable. The zero divisor can be

either positive or negative. Type code 4 is put on the stack.

A decimal string overflow trap exception indicates that the preceding instruc¬

tion had a decimal string result too large for the destination string provided,

and that decimal overflow trap enable bit is set. The overflow condition code

bit is always set. Type code 6 is put on the stack.

8-11

A subscript range trap exception indicates that the preceding instruction was

an index instruction with a subscript operand that failed the range check. The

value of the subscript operand is lower than the low operand or greater than

the high operand. The result is stored in the indexout operand and the condi¬

tion codes are set as if the operand is within range. Type code 7 is put on the

stack.

A floating-overflow fault exception indicates that the preceding instruction

resulted in an exponent greater than the largest representable exponent for

the data type. The result is normalized and rounded before comparison. The

destination is unaffected and the saved condition codes are unpredictable. The

saved program counter points to the instruction causing the fault. If the

instruction is an extended polynomial instruction, it is suspended and the pro¬

cessor status word first part done bit is set. Type code 8 is put on the stack.

A divide by zero floating fault exception indicates the preceding instruction

had a floating zero divisor. The quotient operand is unaffected, and the saved

condition codes are unpredictable. The saved program counter points to the

instruction causing the fault. Type code 9 is put on the stack.

A floating-underflow fault exception indicates that the preceding instruction

resulted in an exponent less than the smallest representable exponent for the

data type. The result is normalized and rounded before comparison. The desti¬

nation operand is unaffected, and the saved condition codes are unpredict¬

able. The saved program counter points to the instruction causing the fault. If

the instruction is an extended polynomial instruction, it is suspended and the

processor status word’s first part done bit is set. Type code A is put on the

stack.

Instruction Fault

There are four instruction faults. They are breakpoint fault, compatibility

mode fault, opcode reserved to Digital fault, and opcode reserved to users fault.

A breakpoint fault occurs when the breakpoint (BPT) instruction is executed.

No parameters are saved. To proceed from a breakpoint, a debugger or tracing

program typically restores the original contents of the location containing the

breakpoint, sets the trace enable bit in the processor status longword that was

saved by the breakpoint fault, and resumes. When the breakpointed instruc¬

tion completes, a trace exception occurs. Then the tracing program can rein¬

sert the breakpoint, restore the trace enable bit of the processor status

longword to its original state, and resume. Note that if both tracing and break¬

pointing are in progress, then on the trace exception both the breakpoint resto¬

ration and a normal trace exception should be processed by the trace handler.

8-12 ■ Exceptions and Interrupts

A compatibility mode fault occurs when the processor is in compatibility

mode. A longword of information is written to the stack. All other exceptions

in compatibility mode occur to the regular VAX vector. The compatibility

mode is an option and is not present on all VAX systems.

An opcode reserved to Digital fault occurs when the processor finds an opcode

that is not specifically defined, or one that requires higher privileges than the

current mode. No parameters are written. Opcode FFFF (hexadecimal) is

always faulted.

An opcode reserved to users fault occurs for exactly the same reasons as above

except that the event is caused by a different set of opcodes and faults through

a different vector. All user-reserved opcodes start with FC (hexadecimal). If

the special instruction needs to generate a unique exception, one of the user-

reserved vectors should be used. An example of a unique exception is an unrec¬

ognized second byte of an instruction.

Memory Management Exceptions

There are two memory management exceptions—the access control violation

fault, and the translation not valid fault.

An access control violation fault is an exception indicating that the process

attempted a reference not allowed at the access mode at which the process was

operating. Software may restart the process after changing the address transla¬

tion information.

A translation not valid fault indicates the process attempted a reference to a

page for which the valid bit of the page table was not set. If a process attempts

to reference a page for which the page table entry specifies both not valid and

access violation, an access control violation fault occurs.

Operand Reference Exceptions

Two types of operand reference cause exceptions—a reserved addressing mode

fault, and a reserved operand exception.

A reserved addressing mode fault is an exception that indicates an operand

specifier attempted to use an addressing mode that is not allowed. No parame¬

ters are written. A short literal specifier is not allowed in the modify, destina¬

tion, address source operand reference. A register specifier is not allowed in an

address source operand reference. An index mode specifier is not allowed

with the program counter as the index. Short literal, register and index mode

specifiers are not allowed in the index mode.

8-13

A reserved operand exception indicates that an accessed operand has a format

reserved for future use by Digital. No parameters are written. This exception

always backs up the program counter to point to the opcode. The exception

service routing may determine the type of operand by examining the opcode

using the stored program counter. Note that only the changes made by instruc¬

tion fetch and, because of operand specifier evaluation, may be restored.

Therefore, some instructions are not restartable. These exceptions are labeled

as aborts rather than faults. The program counter is always restored properly

unless the instruction attempted to modify the counter so that it has unpre¬

dictable results. With the exception of the first part done and the trace pending

bits, the processor status longword is not changed except for the condition

codes, which are unpredictable. Reserved operand exceptions are caused by

the following conditions.

■ Bit field is too wide.

■ Decimal string is too long.

■ Floating-point numbers with the sign bit set and the exponent is zero

except in the POLY table.

■ Floating-point numbers with the sign bit set and the exponent is zero in

the POLY table.

ft Incorrect source string length at completion of EDITPC instruction.

ft Invalid bit combination in a BISPSW or BICPSW instruction.

■ Invalid bit combination in PSW or MASK longword during RET instruc¬

tion.

ft Invalid CALL entry mask.

ft Invalid combinations in the process control block loaded by an LDPCTX

instruction.

■ Invalid digit in a CVTTP or CVTSP instruction.

ft Invalid operand addresses in an INSQHI, INSQTI, REMQHI, or REMQTI

instruction.

ft Invalid processor status longword bit combination stored by a return from

exception or interrupt instruction.

■ Invalid register content in MTPR instructions to some register for some

implementations.

■ Invalid register number in MFPR or MTPR instruction.

8-14 • Exceptions and Interrupts

■ Misaligned operand in ADAWI instruction.

■ POLY degree is too large.

■ Reserved pattern operator in EDITPC instruction.

Serious System Failures

Serious system failures are processed by privileged software. There are three

types of serious system failures.

■ Interrupt stack not valid—halt.

■ Kernel stack not valid—abort.

■ Machine check.

An interrupt stack not valid—halt indicates that

■ The interrupt stack was invalid.

■ A memory error occurred while the processor was writing information onto

the stack during the initiation of an exception or interrupt.

No further interrupt requests are acknowledged on this processor. The proces¬

sor leaves the program counter, the processor status longword, and the reason

for the halt in registers. That is made available to a debugger, the normal boot¬

strap routine, or an optional watchdog bootstrap routine. A watchdog boot¬

strap routine can cause the processor to leave the halted state.

Kernel stack not valid—abort exceptions indicate that the kernel stack was

not valid while the processor was writing information onto the stack during

the initiation of an exception or interrupt. Usually, this is an indication of

stack overflow or another executive software error. The attempted exception

is transformed into an abort that uses the interrupt stack. No information

other than the processor status longword and program counter is written onto

the interrupt stack. The interrupt priority level is raised to IF (hexadecimal).

Software may abort the process without aborting the system. Because of the

lost information, the process cannot be continued. If the kernel stack is not

valid during the normal execution of an instruction including change mode ker¬

nel and return from exception or interrupt instructions, the processor initiates

the normal memory management fault. If the exception vector for kernel stack

not valid is 0 or 3, the behavior of the processor is undefined.

8-15

A machine check exception indicates that the processor detected an internal

error. Machine check exceptions can be caused by such bus errors as nonexist¬

ent memory, cache parity, translation buffer parity, or by a control store par¬

ity error. Like other exceptions, this exception is taken independently of the

interrupt priority level. The level is raised to IF (hexadecimal). Implementa¬

tion-specific data is written as longwords to the stack. The processor specifies

the length parameter by placing the number of bytes written as the last long-

word written. This count excludes the program counter, processor status long-

word, and the length parameter. On the basis of presented information,

software decides whether or not to abort the current process if the machine

check came from the process. Machine check includes uncorrected bus and

memory errors, and any other processor-detected errors. Some processor

errors cannot ensure the state of the machine at all. For such errors, the state

is preserved on a best effort basis. If the exception vector for the machine

check is 0 or 3, the behavior of the processor is undefined. Under these condi¬

tions, the VAX processor halts.

Trace Exceptions

Trace exceptions occur between instructions when trace is enabled. Trace is

used for tracing programs, for performance evaluation, or for debugging pur¬

poses. The machine is designed so that one trace exception occurs before the

execution of each traced instruction. The program counter saved on a trace is

the address of the next instruction that would normally be executed. If a trace

fault and a memory management fault occur simultaneously, the order in

which the exceptions are taken is unpredictable. The trace fault for an instruc¬

tion takes precedence over all other exceptions.

8-16 • Exceptions and Interrupts

In order to ensure that exactly one trace occurs per instruction despite other

traps and faults, the processor status longword contains two bits—the trace

enable (T) bit, and the trace pending (TP) bit. If only one bit is used, the occur¬

rence of an interrupt at the end of an instruction would produce either no

trace or two traces depending on the design. The trap is implemented by copy¬

ing the trace enable bit to a second bit. The second bit is the trace pending

(TP) bit. The TP bit is used to generate the exception. The trace pending bit

generates a fault before any other processing at the start of the next instruc¬

tion.

The rules of operation for trace are as follows:

1. At the beginning of an instruction, if the trace pending bit is set, a trace

fault is taken after clearing the trace pending bit.

2. The trace pending bit is loaded with the value of the trace bit.

3. If the instruction faults or an interrupt is serviced, the trace pending bit is

cleared before writing the processor status longword. The written program

counter is set to the start of the faulting or interrupted instruction. Instruc¬

tion execution is resumed at step 1 above.

4. If the instruction aborts or takes an arithmetic trap, the trace pending bit

of the processor status longword is not changed before the processor status

longword is written.

5. If an interrupt is serviced after instruction completion and arithmetic

traps but before tracing is checked for at the start of the next instruction,

then the trace pending bit is not changed before the processor status lon¬

gword is written.

The routine entered by a change mode instruction is not traced because the

instruction clears the trace and trace pending bits in the new processor status

longword. However, if the trace bit was set at the beginning of the change

mode instruction, the trace and trace pending bits of the saved processor

status longword are set. Trace faults resume with the instructions following

the return from exception or interrupt (REI) instruction in the routine that was

entered by the change mode instruction.

An instruction following a REI faults either if the trace bit is set when the REI

instruction was executed, or if the trace pending bit is set in the saved proces¬

sor status longword. In both cases, the trace pending is set after the REI

instruction. Note that a trace fault is taken with the new processor status long¬

word if that fault occurs for an instruction following a return from exception

or interrupt that sets the trace pending bit. Thus, special care must be

observed if exception or interrupt routines are traced. If the trace bit is set by

a BISPSW instruction, trace faults begin with the second instruction after the

BISPSW instruction.

8-17

In addition, the call instructions save a clear trace bit, although the trace bit in

the processor status long word is unchanged. This is done so that a debugger or

trace program proceeding from a breakpoint fault does not get a spurious trace

from the RET instruction that matches the call instruction.

The detection of reserved instruction faults occurs after the trace fault. The

detection of interrupts and other exceptions can occur during instruction exe¬

cution. In this case, the trace pending bit is cleared before the exception or

interrupt is initiated. The entire processor status longword is saved automati¬

cally on interrupt or exception initiation and is restored at the end with an

REI instruction. This makes interrupts and benign exceptions totally transpar¬

ent to the executing program.

Routines using the trace facility are called trace handlers. When developing

handling routines, the following conventions and restrictions should be

observed.

1. When the trace handler routine returns control to the traced program, the

handler should always set the trace bit of the processor status longword

that is to be restored. This prevents other programs from clearing the bit.

2. The trace handler should never examine or alter the trace pending bit

when tracing. The hardware ensures that this bit is correctly maintained.

3. When tracing is complete, both the trace and trace pending bits must be

cleared. This ensures that tracing ceases.

4. Tracing a service routine that completes with an REI instruction initiates a

trace in the restored mode when the instruction completes. If the program

to which control is being restored was being traced, only one trace excep¬

tion is initiated.

5. If a routine entered by a call instruction is executed at full speed by clear¬

ing the trace bit, trace control can be regained by setting the trace bit in

the call frame of the processor status word. Tracing resumes after the

instruction following the RET instruction.

6. Tracing is disabled for routines entered by a change mode instruction or

any exception. If a change mode instruction or exception service routine is

to be traced, a breakpoint instruction must be placed at the entry point in

the routine. If the routine is recursive, breakpointing catches each recur¬

sion only if the breakpoint is not on the change mode instruction or the

instruction with the exception.

7. If multiple trace handlers are used, all handlers must preserve the trace bit

when turning the handler on and off. They also have to simulate traced

code that alters or reads the trace bit.

8-18 • Exceptions and Interrupts

■ Interrupts

The processor arbitrates interrupt requests according to priority. When the

interrupt request priority level is higher than the current interrupt priority

level, the processor raises the interrupt priority level and services the inter¬

rupt request. The interrupt service routine is entered at the interrupt priority

level of the interrupt request and usually does not change the interrupt prior¬

ity level set by the processor.

Interrupt requests can come from devices, controllers, other processors, or the

processor itself. Software executing in kernel mode can raise and lower the

priority of the processor by executing an MTPR instruction with the source

operand specifying the priority desired. However, a processor cannot disable

interrupts on other processors. Furthermore, the priority level of one proces¬

sor does not affect the priority level of the other processors. Thus, in multipro¬

cessor systems, interrupt priority levels cannot be used to synchronize access

to shared resources. Even the various urgent interrupts including those excep¬

tions that run at IPL IF (hexadecimal) do so on one processor only. Because of

this, special software action is required to stop other processors in a multipro¬

cessor system.

The processor services an interrupt request when the currently executing

instruction is completed. The processor also services interrupt requests at

well-defined points during the execution of long, iterative instructions. To

avoid saving additional instruction state in memory, interrupts are initiated

when the instruction state can be completely contained in the registers, proces¬

sor status longword, and program counter. The following events cause inter¬

rupts:

■ Asynchronous system trap delivery when a return from exception or inter¬

rupt instruction restores a processor status longword with the interrupt

stack bit clear, and mode greater than or equal to ASTLVL (IPL 2 (hexadeci¬

mal)).

■ Console storage device (IPL 17 (hexadecimal) or IPL 14 (hexadecimal).

■ Console terminal transmit and receive (IPL 14 (hexadecimal)).

■ Device alert (IPL 10:17 (hexadecimal)).

■ Device completion (IPL 10:17 (hexadecimal)).

■ Device error (IPL 10:17 (hexadecimal)).

■ Device memory error (IPL 10:17 (hexadecimal)).

■ Interval timer (IPL 18 (hexadecimal)).

8-19

■ Power failure (IPL IE (hexadecimal)).

■ Recovered memory, bus or processor errors (the VAX-11/750 interrupts at

IPL 1A (hexadecimal) for corrected memory reads; the VAX-11/780 at IPL

IB (hexadecimal), implementation specific).

■ Software interrupt invoked by a move to processor register instruction with

the software interrupt request register as the destination (IPL IF (hexadeci¬

mal)).

■ Unrecovered memory, bus, or processor errors (the VAX-11/750 and VAX-

11/780 interrupt at IPL ID (hexadecimal) for write memory errors, imple¬

mentation specific).

Each device controller has a separate set of interrupt vector locations in the

system control block. This eliminates the need to determine which controller

originated the interrupt. The vector address for each controller is fixed by

hardware.

In order to reduce interrupt overhead, memory mapping information is not

changed when an interrupt occurs. The instructions, data, and contents of the

interrupt vector for an interrupt service routine must be in the system address

space or present in every process at the same address.

Device Interrupts

Interrupt priority levels 10 through 17 (hexadecimal) are assigned to device

interrupts. Any given implementation may or may not have all levels of inter¬

rupts. For example, on the VAX-11/750, levels 14 (hexadecimal) through 17

(hexadecimal) only are available for device interrupts. These levels correspond

to the UNIBUS levels BR4 through BR7.

Software-generated Interrupts

The system software has 15 interrupt priority levels (1 through F (hexadeci¬

mal)). Refer to the VAX Software Handbook for details of these interrupts.

Two registers are used in software- generated interrupt processing—the soft¬

ware interrupt summary register, and the software interrupt request register.

The software interrupt summary register (SISR) is a privileged register that

records pending software interrupts. The register contains a value of 1 in the

bit positions corresponding to levels on which software interrupts are pend¬

ing. See Figure 8-3. All such levels must be lower than the current processor

interrupt priority level. Otherwise, the processor would have taken the

requested interrupt.

8-20 • Exceptions and Interrupts

3 1 1
1 6 5 10

Figure 8-3 ■ Software Interrupt Summary Register

The software interrupt summary register is a read/write register accessible

only to privileged software. During bootstrap procedures, the contents of the

register are cleared. To read the contents of the register, use the move from

processor register instruction. To write to the register, use the move to proces¬

sor register instruction. The move to processor register instruction writes to the

register; but this is not the normal way to make software interrupt requests.

The instruction is useful for clearing the software interrupt system and for

reloading its state after a power failure.

The software interrupt request register is a write-only 4-bit privileged register

used for making software interrupt requests. See Figure 8-4. Executing an

MTPR source, #SIRR instruction requests an interrupt at the level specified

by bits 0 through 3 of the source operand. After a software interrupt request

is made, the corresponding bit in the register is set. The hardware clears the

bit when the interrupt is taken. If the specified level is greater than the cur¬

rent interrupt priority level, the interrupt occurs before execution of the fol¬

lowing instruction. If the specified level is less than or equal to the current

interrupt priority level, the interrupt is deferred until the interrupt priority

level is lowered to less than the specified level with no higher interrupt level

pending. Either a return to exception or interrupt or a move to processor register

instruction lowers the level. If the value of bits 0 through 3 of the specified

source is 0, an interrupt does not occur.

4 3 0

IGNORED REQUEST

Figure 8-4 ■ Software Interrupt Request Register

8-21

No indication is given if there is a request at the selected level. Therefore, the

service routine must not assume there is a one-to-one correspondence of inter¬

rupts generated to interrupts initiated. A valid protocol for generating such a

correspondence is as follows:

■ The requester uses an INSQUE instruction to replace a control block

describing the request onto a queue for the service routine.

■ The requester uses an MTPR instruction to request an interrupt at the

appropriate level.

■ The service routine uses a REMQUE instruction to remove a control block

from the queue of the service requests. If the instruction returns failure

(nothing in the queue), the service routine exits with a return from excep¬

tion or interrupt instruction.

■ If the REMQUE instruction returns with an item from the queue, the ser¬

vice routine performs the service and returns to the third step to look for

other requests.

Urgent Interrupts

The processor has eight priority levels for urgent conditions including serious

errors and powerfail. Interrupts on these levels are initiated by the processor

upon detection. Some of these conditions are not interrupts. For example, a

machine check is usually an exception. But it runs at a high priority level on

the interrupt stack. Interrupt level IE (hexadecimal) is reserved for power-

fail. Interrupt level IF (hexadecimal) is reserved for those exceptions that

must lock out all processing until handled. This includes the hardware and

software disasters {kernelstack not valid and machine check). It might also be

used to allow a kernel mode debugger to gain control on any exception.

Interrupt Priority Level Register

Writing to the interrupt priority level register with the move to processor regis¬

ter instruction loads the processor priority field in the processor status long-

word. That is, bits 20 through 16 of the processor status longword are loaded

from bits 4 through 0 of the interrupt priority level register. Reading from the

interrupt priority level register with the move from processor register instruc¬

tion reads the processor priority field from the processor status longword.

When writing to the register, bits 5 through 31 are ignored. When reading

from the register, bits 5 through 31 are returned zero. During a bootstrap

routine, the interrupt priority level is initialized to IF (hexadecimal).

8-22 • Exceptions and Interrupts

Interrupt service routines must follow the discipline of not lowering the inter¬

rupt priority level below the initial level. If they do, an interrupt at an interme¬

diate level could cause improper stack nesting. This would fault the return

from exception or interrupt instruction. Actually, a service routine could lower

the interrupt priority level if it ensured that no intermediate levels could inter¬

rupt. However, this would result in unreliable code.

Interrupt Example

Using Example 8-1, assume the processor is running in response to an inter¬

rupt at interrupt priority level 5 (Step 1). (All numbers in this example are

hexadecimal.) Then the processor sets the interrupt priority level to 8 (Step 2)

and posts software requests at interrupt priority levels 3 (Step 3), 7 (Step 4),

and 9 (Step 5). Subsequently, a device interrupt arrives at interrupt priority

level 11 (Step 6). Finally the interrupt priority level is set back to interrupt

priority level 5 (Step 10).

Example 8-1 ■ Interrupt Sequence

State after Event Interrupt

Priority Level in Contents of

SISR PSL

Step Event IPL (hex) (hex) stack

1 Initiate sequence 5 0 0

2 MTPR #8, #IPL instruction 8 0 0

3 MTPR #3, #SIRR instruction 8 8 0

4 MTPR #7, #SIRR instruction 8 88 0

5 MTPR #9, #SIRR instruction 9 88 8,0

6 Interrupts to device 11 88 9,8,0

7 Interrupts to device service
routine REI

9 88 .8,0

8 IPL 9 service routine REI 8 88 0

9 MTPR #5, #IPL instruction

changes IPL to 5 and the request
for 7 is granted immediately

7 8 5,0

10 IPL 7 service routine REI 5 8 0

11 Initial IPL 5 service routine REI

back to IPL 0 and the request

for 3 is granted immediately

3 0 0

12 IPL 3 service routine REI 0 0 -

8-23

■ System Control Block

The system control block (SCB) is a page containing the vectors by which

exceptions and interrupts are dispatched to the appropriate service routines.

The system control block base is a privileged register containing the physical

address of the system control block, which must be page-aligned. During boot¬

strap routines, the contents of the system control block base register are unpre¬

dictable. The actual length is dependent upon the system implementation

because the length represents a physical address.

NOTE

On some processors, the SCB may have additional pages that

contain the addresses of interrupt service routines for I/O

devices.

A vector is a longword in the SCB that is examined by the processor when an

exception or interrupt occurs. The vector is used to determine how to service

the event. See Table 8-2 for a list of the vectors. Separate vectors are defined

for each interrupting device controller and each class of exception. Each vec¬

tor is interpreted according to the value stored in bits 0 and 1.

If the value is 0, the event is serviced on the kernel stack unless it is running

on the interrupt stack. If it is running on the interrupt stack, it is serviced

there. Behavior of the processor is undefined for a kernel stack not valid excep¬

tion with this code.

If the value is 1, the event is serviced on the interrupt stack. If this event is an

exception, the interrupt priority level is raised to IF (hexadecimal).

If the value is 2, the event is serviced in writable control store passing bits 2

through 15 to the installation-specific microcode there. If writable control

store does not exist or is not loaded, the operation is undefined.

If the value is 3, the operation is undefined.

For values 0 and 1, bits 2 through 31 contain the virtual address of the service

routine. The address must begin on a longword boundary and is normally in

the system space. A change mode instruction is serviced on the stack selected

by the new mode. Bits 0 and 1 in the change mode vectors must be zero or the

operation is undefined.

8-24 ■ Exceptions and Interrupts

Table 8-2 ■ Event Vectors

Vector

(hex)*

Vector Name Type of

Event

Number of

Parameters

Notes

00 Passive Release Interrupt May occur when an inter¬

rupt request is removed

before the interrupt is ini¬

tiated. IPL is that of the

request.

04 Machine Check Abort or

Fault or

Trap

t Processor- and error-

dependent information is

pushed onto the stack if

possible. Restartability is

processor-dependent.

IPL is raised to lF(hex)

and the interrupt stack is

used (PSL < IS > 1).

08 Kernel Stack Not

Valid

Abort 0 IPL is raised to lF(hex)

and the interrupt stack is

used (PSL < IS > <— 1).

OC Powerfail Interrupt 0 IPL is raised to lE(hex)

10 Reserved or Privi¬

leged Instruction

Fault 0 Opcodes reserved to Digi¬

tal and privileged instruc¬

tions

14 Customer-reserved

Instruction

Fault 0 XFC instruction

18 Reserved Operand Fault or

Abort

0 Type depends on the cir¬

cumstances

1C Reserved Addressing Fault

Mode

0

20 Access Control Viola- Fault

tion

2 Virtual address causing

fault is pushed onto stack

Notes:

* (Hex) indicates the preceding number is in hexadecimal notation.

* The number of bytes of parameters is pushed onto the stack and is imple¬

mentation-dependent .

8-25

Table 8-2 ■ Event Vectors (Cont.)

Vector

(hex)*

Vector Name Type of

Event

Number of

Parameters

Notes

24 Translation Not

Valid

Fault 2 Virtual address causing

the fault is pushed onto

the stack

28 Trace Pending Fault 0

2C Breakpoint Instruc¬

tion

Fault 0

30 Compatibility Fault or

Abort

1 A type code is pushed onto

the stack

34 Arithmetic Trap or 1 A type code is pushed onto

Fault the stack

38:3C Reserved to Digital

40 CHMK Trap 1 The operand word is sign

extended and pushed onto

the stack. Vector < 1:0>

must be zeros.

44 CHME Trap 1 The operand word is sign

extended and pushed onto

the stack. Vector < 1:0 >

must be zeros.

48 CHMS Trap 1 The operand word is sign

extended and pushed onto

the stack. Vector < 1:0 >

must be zeros.

4C CHMU Trap 1 The operand word is sign

extended and pushed onto

the stack. Vector < 1:0>

must be zeros.

8-26 ■ Exceptions and Interrupts

Table 8-2 ■ Event Vectors (Cont.)

Vector

(hex)*

Vector Name Type of

Event

Number of

Parameters

Notes

50:60 Reserved for System Interrupt

Bus and Memory

Errors

IPL is implementation

dependent.

64:80 Reserved to Digital

84 Software Level 1 Interrupt 0 IPL is 1.

88 Software Level 2 Interrupt 0 IPL is 2. Ordinarily used

for AST delivery.

8C Software Level 3 Interrupt 0 IPL is 3. Ordinarily used

for process scheduling.

90:BC Software Levels 4:F Interrupt 0 Vector corresponds to IPL.

CO Interval Timer Interrupt 0 IPL is 16 or 18(hex).

C4 Reserved to Digital

C8 Subset Emulation Trap 10 FPD bit clear. Subset VAX

systems only.

CC Suspended Emula¬

tion

Fault 0 FPD bit set. Subset VAX

systems only.

D0:DC Reserved to Digital

E0:EC Reserved to Cus¬

tomer or Computer

Special Systems

(Digital)

F0 Console Storage

Receive

Interrupt 0 On VAX-11/730 andVAX-

11/750. IPL is implementa¬

tion-dependent.

8-27

Table 8-2 ■ Event Vectors (Cont.)

Vector

(hex)*

Vector Name Type of

Event

Number of

Parameters

Notes

F4 Console Storage

Transmit

Interrupt 0 On VAX-11/730 and VAX-

11/750 only. IPL is imple¬

mentation-dependent .

F8 Console Terminal

Receive

Interrupt 0 IPL is 14(hex).

FC Console Terminal

Transmit

Interrupt 0 IPL is 14(hex).

100:

13C

Adapter Vectors Interrupt 0 IPL is 14(hex).

140:

17C

Adapter Vectors Interrupt 0 IPL is 15(hex).

180:

1BC

Adapter Vectors Interrupt 0 IPL is 16(hex).

ICO:

1FC

Adapter Vectors Interrupt 0 IPL is 17(hex).

200:

3FC

Device Vectors Interrupt 0 May be any IPL

14:17(hex).

400:

5FC

Device Vectors Interrupt 0 May be any IPL

14:17(hex).

■ Stacks

The processor is either in a process context or a systemwide interrupt service

context at all times. When in the process context, the processor is in one of

four modes (kernel, executive, supervisor, or user), and the interrupt stack

(IS) is zero. When the processor is in the systemwide interrupt service con¬

text, it operates with kernel privileges, and the interrupt stack is one. A stack

pointer (SP) is assigned to each of these five states. Whenever the processor

changes states, stack pointer R14 is stored in the process context stack

pointer for the old state and loaded from that for the new state. The process

context stack pointers are allocated in the hardware process control block.

There are four stack pointers—KSP (kernel), ESP (executive), SSP (supervi¬

sor), and USP (user).

8-28 ■ Exceptions and Interrupts

Operating system design must choose a priority level that is the boundary

between kernel and interrupt stack use. The system control block interrupt

vectors must be set so the interrupts to levels above the boundary run on the

interrupt stack and interrupts below this boundary run on the kernel stack.

Typically, asynchronous system trap delivery is on the kernel stack and higher

levels are on the interrupt stack.

In addition, VAX systems keep copies of the four process stack pointers in

privileged registers. These registers are accessed during stack switch opera¬

tions. The stack pointers in the hardware process control block are referenced

only during context switch by the save process context (SVPCTX) and load pro¬

cess context (LDPCTX) instructions.

Stack Location

The executive, supervisor, and user stacks need not be resident in main mem¬

ory. The kernel can bring in or allocate process stack pages as address transla¬

tion not valid faults occur. However, the kernel stack for the current process

and the interrupt stack must be resident and accessible. Translation not valid

and access control violation faults occurring on references to either of these

stacks are serious system failures from which recovery is impossible.

If either of these faults occurs on a kernel stack reference, the processor

aborts the current sequence and initiates a kernel stack not valid abort on hard¬

ware level IF (hexadecimal). If either fault occurs on a reference to the inter¬

rupt stack, the processor halts. Note that this does not mean every possible

reference is checked. It means the processor does not loop under these condi¬

tions. The kernel stack for processes other than the current one need not be

resident; but it must be resident before the software’s process dispatcher

selects a process to run. Further, any mechanism using access control violation

or translation not valid faults to gather process statistics must exercise care not

to invalidate kernel stack pages.

Stack Alignment

Except on call instructions, the hardware does not attempt to align the stacks.

For best performance, the software should align the stack on a longword

boundary and allocate the stack in longword increments. In order to keep the

stacks longword-aligned, the following six instructions are recommended.

■ Convert byte to longword (CVTBL).

■ Convert longword to byte (CVTLB).

■ Convert longword to word (CVTLW).

■ Convert word to longword (CVTWL).

8-29

■ Move zero-extended byte to longword (MOVZBL).

■ Move zero-extended word to longword (MOVZWL).

Status Bits

The interrupt stack bit and current mode bits in the processor status long¬

word (PSL) specify which of the five stack pointers is in use. Table 8-3 lists the

interrupt stack (IS) and current mode bits that identify the stack pointers.

Table 8-3 ■ PSL Stack Status Bits

IS Bit Current Register
Mode Bit

_1_0_Interrupt stack pointer (ISP)

0 0 Kernel stack pointer (KSP)

0_1_Executive stack pointer (ESP)_

0_2_Supervisor stack pointer (SSP)

0 3 User stack pointer (USP)

The processor does not allow the current mode bits to be set (1) when the inter¬

rupt stack bit is set. This is done by clearing the mode bits

■ When taking an exception or interrupt.

■ By causing a reserved operand fault if the return from exception or inter¬

rupt instruction attempts to load a processor status longword in which both

the interrupt status bit and current mode bits are set.

The stack to be used for an exception is selected by the current processor

status longword interrupt stack bit and the event vector bits. Figure 8-5 illus¬

trates the stack selection logic. Values 10 (binary) and 11 (binary) of the vec¬

tor are used for other purposes as described in the system control block

vectors section.

8-30 ■ Exceptions and Interrupts

VECTOR <1: 0>

0

PSL< IS>

1

Figure 8-3 ■ Stack Selection

00 01

KSP ISP

ISP ISP

Accessing Stack Registers

Reference to the stack pointer in the general registers will access one of five

stack pointers depending on the values of the current mode and interrupt stack

bits in the processor status longword. Some processors implement stack

pointers as processor registers. On these processors, software can access any

of the stack pointers that are not selected by the current mode and interrupt

stack bits. Results are correct even if the currently selected stack pointer is

referenced in the processor register space by an MTPR or MFPR instruction. If

the process stack pointers are implemented as registers, move processor regis¬

ter instructions are the only method for accessing the stack pointers of the

current process. If the process stack pointers are kept only in the process con¬

trol block, an MTPR or MFPR instruction might not access the process control

block.

The internal processor register numbers were chosen to be the same as bits 24

through 26 of the processor status longword. The previous stack pointer is the

same as bits 22 and 23 of the processor status longword unless the interrupt

stack bit is set. If the interrupt stack bit is set, the previous mode cannot be

determined from the processor status longword because interrupts always

clear bits 22 and 23 of that longword. At bootstrap time, the contents of all

stack pointers are unpredictable.

■ Recognition Priority

The order in which recognition of simultaneous exceptions and interrupts

takes place is as follows:

1. Arithmetic exceptions.

2. Console halt or higher priority interrupt.

3. Machine check exception.

8-31

4. Start instruction execution or restart suspended instruction.

5. Trace fault (only one per instruction).

NOTE

The order in which console halt and interrupt recognition

occurs is not dictated by the VAX architecture. Future VAX

processors may not take these in the same order as the VAX-

11/750 or VAX-11/780 that take console halts before inter¬

rupts.

■ Suspended Instructions

The VAX architecture allows the suspension of certain instructions at well-

defined intermediate points in the execution. This is done to take memory

management faults, console halts, or interrupts. In this case, the hardware

uses processor status longword trace and trace pending bits to ensure that no

additional trace faults occur when execution is resumed.

■ Initiating an Exception or Interrupt

The handling of the event is determined by the contents of the longword vec¬

tor in the system control block. If bits 0 and 1 of the vector contain an invalid

code, the CPU behavior is unpredictable.

During the following sequence, interrupts are disabled.

1. The condition codes are replaced with zeros if bits 0 and 1 of the vector

have a value of 0 or 1.

2. The current pointer is saved and the new stack pointer is fetched if the

CPU is not executing on the interrupt stack.

3. The old processor status longword is written onto the new stack.

4. If the event being processed is either an interrupt between instructions or

a trap, this step is not performed. A copy of the program counter is stored.

Then the program counter is written onto a new stack. The value that is

saved on the stack points to an event or the next instruction to execute.

5. The new processor status longword is initialized.

6. The interrupt priority level is changed only if

— the event is an interrupt.

— the event is an exception and the processor status longword vector bits

0 and 1 is a value of 1.

7. Any and all related parameters are stored.

8-32 • Exceptions and Interrupts

8. For exceptions only, the previous mode field of the processor status long-

word is set to the old value of the current mode.

9. Last, the program counter is changed to point to the longword bits 2

through 31 of the vector.

If the processor received an access control violation or a translation not valid

condition while attempting to write information on the kernel stack, a kernel

stack not valid—abort is initiated. And the interrupt priority level is changed

to IF (hexadecimal). Any additional information associated with the original

exception is lost. However, the processor status longword and the program

counter are written to the interrupt stack with the same values as would have

been written on the kernel stack. If the processor receives an access control

violation or a translation not valid condition while attempting to write to the

interrupt stack, the processor is halted and only the state of interrupt stack

pointer, program counter, and processor status longword is ensured to be cor¬

rect for subsequent analysis. The processor status longword and the program

counter have the values that would have been written on the interrupt stack.

The value of the processor status longword trace pending bit that is saved on

the stack is shown in Table 8-4. The value of the program counter that is saved

on the stack is shown in Table 8-3.

Table 8-4 ■ Trace Pending Bit Saved Values

Cause of Event Source of Value Saved

Abort PSL TP bit

BPT instruction (Bit is cleared.)

CHM instruction PSL TP bit

Fault (Bit is cleared.)

Interrupt If EPD bit is set, this bit is cleared.
If after traps, before trace—from PSL TP bit.

Trace (Bit is cleared.)

Trap PSL TP bit

Reserved instructions (Bit is cleared.)

XEC instruction (Bit is cleared.)

8-33

Table 8-5 ■ Program Counter Saved Values

Cause of Event Interrupt Stack Points to

Abort The instruction aborting or detecting

the kernel-stack-not-valid condition

(not ensured on a machine check

event).

BPT instruction The BPT instruction.

CHM instruction The next instruction to execute.

Fault The instruction faulting.

Interrupt The instruction interrupted or the

next instruction to execute.

Trace The next instruction to execute; that

is, the instruction at the beginning of

which the trace fault was taken.

Trap The next instruction to execute.

Reserved instruction The reserved instruction.

XFC instruction The XFC instruction.

The noninterrupt stack pointers may be fetched and stored by hardware in

either privileged registers or in the processor control block. Only LDPCTX

and SVPCTX instructions always fetch the processor control block. Move from

processor register and move to processor register instructions always fetch and

store the pointers whether in privileged registers or the processor control

block.

*.. • x wfaikif • UK' 3. %: ,

"vl.4 ' •

ft ..V- -wv : .. -I • :.. V--

;&>»' •. . ' °’y< ' -T

■• t{‘3ij-v>r.V^ Fl-**•# •!. - v..

Stf •* • _£fi i

v ■ ' ’ - •

*• : -r jX'i o3- -»rti •

;; .. ••. n: ; • ; • v?...

. :ii •.*£*?

•>ia . - r : ; .

>

>r’*hti x* •

?ii; Mr-/*;

. X 1 : • vjii.

‘.i i .xx i :v .r" .rxlv ■ - M:

■ • . ij .. iTiCK K>X viq xx ;m**. «• 4? Xii XT.‘>;Ve ;xr

: • • • ■ . " .

. • Xti ii. . ^ • i'y-x-- tJr , ,•••;* '■■'.? ’••:.>:• Odl .

. >oM

Chapter 9 ■ The Instruction Set

The instructions are arranged in alphabetic order. Notation conventions,

instruction format, and addressing modes and conventions are described in

detail in Chapter 5. No attempt is made to reiterate those details in this chap¬

ter. A general description of the instructions by category is in Chapter 6.

-Ada

Purpose: Used to perform arithmetic addition

Format: There are two formats—two operand and three operand.

operator add.rx, sum.mx

operator addl.rx, add2.rx, sum.vjx

Opcode

80

81

AO

Al

CO

Cl

40

41

60

61

40FD

41FD

60FD

61FD

Operator Function

ADDB2 Add Byte 2 Operand

ADDB3 Add Byte 3 Operand

ADDW2 Add Word 2 Operand

ADDW3 Add Word 3 Operand

ADDL2 Add Longword 2 Operand

ADDL3 Add Longword 3 Operand

ADDF2 Add F_floating 2 Operand

ADDF3 Add F_floating 3 Operand

ADDD2 Add D_floating 2 Operand

ADDD3 Add D_floating 3 Operand

ADDG2 Add G_floating 2 Operand

ADDG3 Add G_floating 3 Operand

ADDH2 Add H_floating 2 Operand

ADDH3 Add H_floating 3 Operand

Description: In 2-operand format, the addend operand is added to the sum

operand and the sum operand is replaced by the result. In 3-operand format,

the addend 1 operand is added to the addend2 operand and the sum operand is

replaced by the result. In floating-point format, the result is rounded.

9-2 ■ The Instruction Set

Add Aligned Word Interlocked

Purpose: Used to maintain operating system resource usage counts

Format: ADAWI add.rw, sum.mw

Opcode Operator Function

58 ADAWI Add Aligned Word Interlocked

Description: The addend operand is added to the sum operand and the sum

operand is replaced by the result. The operation is interlocked against similar

operations by other processors or in a multiple multiprocecessor system. The

destination must be aligned on a word boundary. Otherwise a reserved oper¬

and fault is taken.

NOTE

If the addend and the sum operand overlap, the result and

the condition codes are unpredictable.

Add Compare and Branch

Purpose: Used to maintain a loop count and loop

Format: operator limitsx, add.rx, index.mx, displ.bw

Opcode Operator Function

9D ACBB Add Compare and Branch Byte

3D ACBW Add Compare and Branch Word

FI ACBL Add Compare and Branch Longword

4F ACBF Add Compare and Branch F_floating

6F ACBD Add Compare and Branch D_floating

4FFD ACBG Add Compare and Branch G_floating

6FFD ACBH Add Compare and Branch H_floating

Description: The addend operand is added to the index operand and the index

operand is replaced by the result. The index operand is compared with the

limit operand. If the addend operand is positive (or 0) and the comparison is

less than or equal, or if the addend is negative and the comparison is greater

than or equal, then the sign-extended branch displacement is added to the pro¬

gram counter (PC) and the PC is replaced by the result.

9-3

NOTE

ACB efficiently implements the general FOR or DO loops in

high-level languages because the sense of the comparison

between index and limit is dependent on the sign of the

addend.

■ Add One and Branch

Purpose: Used to increment an integer loop count and loop

Format: operator limit A, index, ml, displ.bb

Opcode Operator Function

F2 AOBLSS Add One and Branch Less Than

F3 AOBLEQ Add One and Branch Less Than or Equal

Description: One is added to the index operand and the index operand is

replaced by the result. The index operand is compared with the limit operand.

On AOBLSS, if the index operand is less than the limit operand, the branch is

taken. On AOBLEQ, if the index operand is less than or equal to the limit

operand, the branch is taken. If the branch is taken, the sign-extended branch

displacement is added to the program counter (PC) and the PC is replaced by

the result.

■ Add Packed

Purpose: Used to add one packed decimal string to another

Format: There are two formats—4 operand and 6 operand.

ADDP4 addlen.rw, addadr.ab, sumlen.xvj, sumadr.ab

ADDP6

sumadr.ab

addllen.rw, addladr.ab, add2len.rw, add2adr.ab, sumlen.rw,

Opcode Operator Function

20 ADDP4 Add Packed 4 Operand

21 ADDP6 Add Packed 6 Operand

Description: In 4-operand format, the addend string specified by the addend

length and addend address operands is added to the sum string specified by

the sum length and sum address operands and the sum string is replaced by

the result.

9-4 ■ The Instruction Set

In 6-operand format, the addend 1 string specified by the addend 1 length and

addend 1 address operands is added to the addend2 string specified by the

addend2 length and addend2 address operands. The sum string specified by

the sum length and sum address operands is replaced by the result.

■ Add with Carry

Purpose: Used to perform extended-precision addition

Format: ADWC add.rl, sum.vcA

Opcode Mnemonic Function

D8 ADWC Add with Carry

Description: The contents of the condition code C bit and the addend oper¬

and are added to the sum operand. The sum operand is replaced by the result.

■ Arithmetic Shift

Purpose: Used to shift integers

Format: operator count.rb, source.rx, destination.wx

Opcode Operator Function

78 ASHL Arithmetic Shift Longword

79 ASHQ Arithmetic Shift Quadword

Description: The source operand is arithmetically shifted by the number of

bits specified by the count operand, and the destination operand is replaced

by the result. The source operand is unaffected. A positive count operand

shifts to the left bringing zeros into the least significant bit. A negative count

operand shifts to the right bringing in copies of the most significant (sign) bit

into the most significant bit position. A zero count operand replaces the desti¬

nation operand with the unshifted source operand.

■ Arithmetic Shift and Round Packed

Purpose: Used to scale numeric content of a packed decimal string by a power

of 10

Format:

ASHP cnt.rb, srclen.rw, srcadr.ab, round.rb, dstlen.rw, dstadr.ab

Opcode Operator Function

F8 ASHP Arithmetic Shift and Round Packed

9-3

Description: The source string specified by the source length and source

address operands is scaled by a power of 10 specified by the count operand.

The destination string specified by the destination length and destination

address operands is replaced by the result.

A positive count operand effectively multiplies. A negative count effectively

divides. A zero count just moves and affects condition codes. When a nega¬

tive count is specified, the result is rounded using the round operand.

■ Bit Clear

Purpose: Used to perform complemented AND of two integers

Format: There are two formats—2 operand and 3 operand

operator mask.rx, destination.mx

operator mask.rx, source.rx, destination.wx

Opcode Operator Function

8A BICB2

8B BICB3

AA BICW2

AB BICW3

CA BICL2

CB BICL3

Bit Clear Byte 2 Operand

Bit Clear Byte 3 Operand

Bit Clear Word 2 Operand

Bit Clear Word 3 Operand

Bit Clear Longword 2 Operand

Bit Clear Longword 3 Operand

Description: In 2-operand format, the destination operand is ANDed with the

one’s complement of the mask operand and the destination operand is

replaced by the result. In 3-operand format, the source operand is ANDed

with the one’s complement of the mask operand and the destination operand

is replaced by the result.

■ Bit Clear Processor Status Longword

Purpose: Used to clear trap enables

Format: BICPSW mask.rw

Opcode Operator Function

B9 BICPSW Bit Clear PSW

Description: On BICPSW, the Processor Status Longword is ANDed with the

one’s complement of the 16-bit mask operand and the PSW is replaced by the

result.

9-6 ■ The Instruction Set

Bit Set

Purpose: Used to perform logical inclusive OR of two integers

Format: There are two formats—2 operand and 3 operand

operator mask.rx, destination.mx

operator mask.rx, source.rx, destination.wx

Opcode Operator Function

88 BISB2 Bit Set Byte 2 Operand

89 BISB3 Bit Set Byte 3 Operand

A8 BISW2 Bit Set Word 2 Operand

A9 BISW3 Bit Set Word 3 Operand

C8 BISL2 Bit Set Longword 2 Operand

C9 BISL3 Bit Set Longword 3 Operand

Description: In 2-operand format, the mask operand is ORed with the destina¬

tion operand and the destination operand is replaced by the result. In 3-oper¬

and format, the mask operand is ORed with the source operand and the

destination operand is replaced by the result.

Bit Set Processor Status Longword

Purpose: Used to set trap enables

Format: BISPSW mask.rw

Opcode Operator Function

B8 BISPSW Bit set PSW

Description:On BISPSW, the Processor Status Longword is ORed with the

16-bit mask operand and the PSW is replaced by the result.

Bit Test

Purpose: Used to test a set of bits for all zero

Format: operand mask.rx, source.rx

Opcode Operator Function

93 BITB Bit Test Byte

B3 BITW Bit Test Word

D3 BITL Bit Test Longword

9-7

Description: The mask operand is ANDed with the source operand. Both oper¬

ands are unaffected. The only action is to affect condition codes.

■ Branch

Purpose: Used to transfer control

Format: operator displ.bx

Opcode Operator Function

11 BRB Branch with Byte Displacement

31 BRW Branch with Word Displacement

Description: The sign-extended branch displacement is added to the program

counter (PC) and the PC is replaced by the result.

■ Branch on Bit

Purpose: Used to test a selected bit

Format: operator pos.rl, base.vh, displ.bb

Opcode Operator Function

EO BBS Branch on Bit Set

El BBC Branch on Bit Clear

Description: The single bit field specified by the position and base operands is

tested. If it is in the test state indicated by the instruction, the sign-extended

branch displacement is added to the program counter (PC) and PC is replaced

by the result.

■ Branch on Bit Interlocked

Purpose: Used to test and modify a specified bit under memory interlock

Format: operator pos.rl, base.vh, displ.bb

Opcode Operator Function

E6 BBSSI Branch on Bit Set and Set Interlocked

E7 BBCCI Branch on Bit Clear and Clear Interlocked

9-8 • The Instruction Set

Description: The single bit field specified by the pos and base operands is

tested. If it is in the test state indicated by the instruction, the sign-extended

branch displacement is added to the program counter (PC) and PC is replaced

by the result. Regardless of whether or not the branch is affected, the tested

bit is put in the new state as indicated by the instruction. If the bit is stored in

memory, the reading of the state of the bit and the setting of it to the new

state constitute an interlocked operation, interlocked against similar opera¬

tions by other processors or devices in the system.

■ Branch on Bit and Modify without Interlock

Purpose: Used to test and modify a specified bit

Format: operator pos.rl, base.vb, displ.bb

Opcode Operator Function

E2 BBSS Branch on Bit Set and Set

E3 BBCS Branch on Bit Clear and Set

E4 BBSC Branch on Bit Set and Clear

E5 BBCC Branch on Bit Clear and Clear

Description: The single bit field specified by the position (pos) and base oper¬

ands is tested. If it is in the test state indicated by the instruction, the sign-

extended branch displacement is added to the program counter (PC) and PC is

replaced by the result. Regardless of whether or not the branch is taken, the

tested bit is put in the new state as indicated by the instruction.

■ Branch on Condition

Purpose: Used to test condition codes

Format: operator displ.bb

9-9

t Condition Operator Function

12 ZEQLO BNEQ Branch on Not Equal (Signed)

12 ZEQLO BNEQU Branch on Not Equal Unsigned

13 ZEQL 1 BEQL Branch on Equal (Signed)

13 ZEQL1 BEQLU Branch on Equal Unsigned

14 {N OR Z} EQLO BGTR Branch on Greater Than (Signed)

13 {N OR Z} EQL 1 BLEQ Branch on Less Than or Equal

(Signed)

18 N EQLO BGEQ Branch on Greater Than or Equal

(Signed)

19 N EQL 1 BLSS Branch on Less Than (Signed)

1A {C OR Z} EQL 0 BGTRU Branch on Greater Than Unsigned

IB {C OR Z} EQL 1 BLEQU Branch Less Than or Equal

Unsigned

1C V EQL 0 BVC Branch on Overflow Clear

ID V EQL 1 BVS Branch on Overflow Set

IE C EQLO BGEQU Branch on Greater Than or Equal

Unsigned

IE C EQL 0 BCC Branch on Carry Clear

IF C EQL 1 BLSSU Branch on Less Than Unsigned

IF C EQL 1 BCS Branch on Carry Set

t Opcode

Description: The condition codes are tested, and if the condition indicated by

the instruction is met, the sign-extended branch displacement is added to the

program counter (PC) and PC is replaced by the result.

The VAX conditional branch instructions permit considerable flexibility in

branching but you need to exercise some care to choose the correct one. The

conditional branch instructions are divided into three overlapping groups:

1. The Overflow and Carry Group

BVSV EQL 1

BVCV EQLO

BCSC EQL 1

BCCC EQLO

9-10 ■ The Instruction Set

These instructions are typically used to check for overflow (when overflow

traps are not enabled), for multiprecision arithmetic, and for other special

purposes.

2. The Unsigned Group

BLSSU CEQLl

BLEQU {C or Z} EQL 1

BEQLU ZEQL 1

BNEQU Z EQL 0

BGEQU CEQLO

BGTRU {C OR Z} EQLO

These instructions typically follow integer and field instructions where the

operands are treated as unsigned integers, addressed instructions, and

character string instructions.

3. The Signed Group

BLSS N EQL 1

BLEQ {N OR Z} EQL 1

BEQL Z EQL 1

BNEQ ZEQLO

BGEQ N EQLO

BGTR {N OR Z} EQLO

These instructions typically follow integer and field instructions where the

operands are being treated as signed integers, floating- point instructions,

and decimal-string instructions.

■ Branch on Low Bit

Purpose: Used to test a specified bit

Format: operator source.rl, displacement.bb

Opcode Operator Function

E8 BLBS Branch on Low Bit Set

E9 BLBC Branch on Low Bit Clear

9-11

Description: The low bit (bit 0) of the source operand is tested and if it is

equal to the test state indicated by the instruction, the sign-extended branch

displacement is added to program counter (PC) and PC is replaced by the

result.

■ Branch to Subroutine

Purpose: Used to transfer control to subroutine

Format: operator displ.bx

Opcode Operator Function

10 BSBB Branch to Subroutine with Byte Displacement

30 BSBW Branch to Subroutine with Word Displacement

Description: The program counter (PC) is pushed on the stack as a longword.

The sign-extended branch displacement is added to PC and PC is replaced by

the result.

NOTE

Since the operand specifier conventions cause the evaluation

of the destination operand before saving PC, JSB can be used

for coroutine calls, with the stack used for linkage. The form

of such a call is JSB @(SP) + .

■ Breakpoint Fault

Purpose: Used to help to implement debugging

Format: BPT

Opcode Operator Function

03 BPT Breakpoint Fault

Description: This instruction is used with the trace bit of the processor status

word to implement debugging facilities.

■ Bugcheck

Purpose: Used to report software-detected errors

Format: operator message.bx

Opcode Operator Function

FEFF BUGW Bugcheck with Word Message Identifier

FDFF BUGL Bugcheck with Longword Message Identifier

9-12 ■ The Instruction Set

Description: The hardware treats these opcodes as Reserved to Digital and

faults. The VAX/VMS operating system treats these as requests to report soft¬

ware-detected errors. The inline message identifier is zero-extended to a long-

word (BUGW) and interpreted as a condition value. If the process is privileged

to report bugs, a log entry is made. If the process is not privileged, a reserved

instruction is signaled.

■ Call Procedure with General Argument List

Purpose: Used to invoke a procedure with actual arguments from anywhere in

memory

Format: CALLG arglist.ab, dst.ab

Opcode Operator Function

FA CALLG Call Procedure with General Argument List

Description: The stack pointer (SP) is saved in a temporary register and then

bits 1:0 are replaced by zero so that the stack is longword aligned. The proce¬

dure entry mask is scanned from bit 11 to bit 0. The contents of registers

whose number corresponds to set bits in the mask are pushed on the stack as

longwords, along with the program counter, frame pointer, and argument

pointer. The condition codes are cleared. A longword containing the saved

two low bits of SP in bits 31:30, a zero in bit 29 and bit 28, the low 12 bits of

the procedure entry mask in bits 27:16, and in bits 15 through 0 of the proces¬

sor status word, with the T bit cleared is pushed on the stack. A longword zero

is pushed on the stack. The frame pointer is replaced by the stack pointer. The

argument pointer is replaced by the arglist operand that specifies the address

of the actual argument list. The trap enables in the processor status word are

set to a known state. Integer overflow and decimal overflow are affected

according to bits 14 and 15 of the entry mask, respectively; floating under¬

flow is cleared. The T bit is unaffected. PC is replaced by the sum of destina¬

tion operand and 2 that transfers control to the called procedure at the byte

beyond the entry mask.

NOTE

The VMS Procedure Calling Software Standard and the con¬

dition handling facility require the following register saving

conventions. R0 and R1 are always available for function

return values and are never saved in the entry mask. Regis¬

ters 2 through 11 which are modified in the called procedure

must be preserved in the mask.

9-13

■ Call Procedure with Stack Argument List

Purpose: Used to invoke a procedure with actual arguments or addresses on

the stack

Format: CALLS numarg.rl, dst.ab

Opcode Operator Function

FB CALLS Call Procedure with Stack Argument List

Description: The numarg operand is pushed on the stack as a longword (byte 0

contains the number of arguments; the high-order 24 bits are used by Digital

software). SP is saved in a temporary location and then bits 1:0 of SP are

replaced by zero so that the stack is longword aligned. The procedure entry

mask is scanned from bit 11 to bit 0 and the contents of the register whose

number corresponds to set bits in the mask are pushed on the stack. PC, FP,

and AP are pushed on the stack as longwords. The condition codes are cleared.

A longword containing the saved two low bits of SP in bits 31:30, a 1 in bit 29,

0 in bit 28, the low 12 bits of the procedure entry mask in bits 27:16, and the

PSW in bits 15:0 with the T bit cleared is pushed on the stack. A longword

zero is pushed on the stack. FP is replaced by SP. AP is set to the saved SP (the

value of the Stack Pointer after the number of arguments operand was pushed

on the stack). The trap enables in the PSW are set to a known state. Integer

overflow and decimal overflow are affected according to bits 14 and 15 of the

entry mask, respectively; floating underflow is cleared; the T bit is unaf¬

fected. PC is replaced by the sum of destination operand and 2, which trans¬

fers control to the called procedure at the byte beyond the entry mask.

NOTES

1. Normally, the arglist is pushed onto the stack in reverse

order prior to the CALLS. On return, the arglist is removed

from the stack automatically.

2. The VMS Procedure Calling Software Standard and the

condition handling facility require the following register sav¬

ing conventions. R0 and Rl are always available for function

return values and are never saved in the entry mask. All regis¬

ters 2 through 11 that are modified in the called procedure

must be preserved in the entry mask.

9-14 • The Instruction Set

Case

Purpose: Used to perform multiple branching depending upon arithmetic

input

Format:

operator selector.rx, base.rx, limit.rx, displ [0].bw,...ydispl [limit].bw

Opcode Operator Function

8F CASEB Case Byte

AF CASEW Case Word

CF CASEL Case Longword

Description: The base operand is subtracted from the selector operand and a

temporary operand is replaced by the result. The temporary operand is com¬

pared with the limit operand and if it is less than or equal unsigned, a branch

displacement selected by the temporary value is added to the program counter

(PC) and the PC is replaced by the result. Otherwise, 2 times the sum of the

limit operand and 1 is added to the PC and the PC is replaced by the result.

This causes the PC to be moved past the array of branch displacements.

Regardless of the branch taken, the condition codes are affected by the com¬

parison of the temporary operand with the limit operand.

This instruction implements high-level language computed GOTO statements.

You supply a list of displacements that generate different branch addresses

depending on the value you obtain as a selector. The branch falls through if

the selector does not generate any of the displacements on the list.

NOTE

After operand evaluation, PC is pointing at displ[0]—not the

next instruction. The branch displacements are relative to

the address of displ[0].

Change Mode

Purpose: Used to request higher privilege software

Format: operator code.rw

Opcode Operator Function

BC CHMK Change Mode to Kernel

BD CHME Change Mode to Executive

BE CHMS Change Mode to Supervisor

BF CHMU Change Mode to User

9-15

Description: Change mode instructions allow processors to change their

access mode in a controlled manner. The instruction increases privilege only.

A change in mode also results in a change of stack pointers. The old pointer is

saved, and the new pointer is loaded. The PSL, PC, and any code passed by the

instruction are pushed onto the stack of the new mode. The saved PC

addresses the instruction following the CHMx instruction. The code is sign

extended. After execution, the new stack’s appearance is

sign extended code :(SP)

PC of next instruction

Old PSL

The destination mode selected by the opcode is used to select a location from

the System Control Block. This location addresses the CHMx dispatcher for

the specified mode.

■ Clear

Purpose: Used to clear a scalar quantity

Format: operator destination.wx

Opcode Operator Function

94 CLRB Clear Byte

B4 CLRW Clear Word

D4 CLRL Clear Longword

7C CLRQ Clear Quadword

7CFD CLRO Clear Octaword

7C CLRD Clear D_floating

D4 CLRF Clear F_floating

7C CLRG Clear G_floating

7CFD CLRH Clear H_floating

Description: The destination operand is replaced by 0.

■ Compare

Purpose: Used to perform an arithmetic comparison between two specified

scalar quantities

Format: operator srcl.rx, src2.rx

9-16 • The Instruction Set

Opcode Operator Function

91 CMPB Compare Byte

B1 CMPW Compare Word

D1 CMPL Compare Longword

31 CMPF Compare F_floating

71 CMPD Compare D_floating

31FD CMPG Compare G_floating

71FD CMPH Compare H_floating

Description: The srcl operand is compared with the src2 operand. The only

action is to affect the condition codes.

■ Compare Characters

Purpose: Used to compare two character strings

Format: There are two formats—3 operand and 3 operand.

CMPC3 /e«.rw, srcladr. ab, src2adr. ab

CMPC3 srcllen.xvj, srcladr. 3b, fill, rb, src2len. rw, src2adr.ab

Opcode Operator Function

29 CMPC3 Compare Characters 3 Operand

2D CMPC3 Compare Characters 5 Operand

Description: In 3-operand format, the first string is specified by the srcladr

operand. The second string is specified by the src2adr operand. The strings

are compared until inequality is detected or until all the bytes of the strings

have been examined. Condition codes are affected by the result of the last

byte comparison.

In 3-operand format, the bytes of one string are compared to the bytes of the

second string. If one string is longer than the other, the shorter string is con¬

ceptually extended to the length of the longer by appending (at higher

addresses) bytes equal to the fill operand. Comparison proceeds until inequal¬

ity is detected or all the bytes of the strings have been examined. Condition

codes are affected by the result of the last byte comparison.

NOTE

1. After execution of a 3-operand instruction RO = number

of bytes remaining in string 1 including byte that terminated

comparison, R1 = address of the byte in string 1 that termi¬

nated comparison, R2 = RO, R3 = address of the byte in

string 2 that terminated the comparison.

9-17

2. After execution of a 5-character instruction RO = the num¬

ber of bytes remaining in string 1 including the byte that ter¬

minated comparison, R1 = address of the byte in string 1

that terminated comparison, R2 = the number of bytes

remaining in string 2 including the byte that terminated com¬

parison, and R3 = the address of the byte in string 2 that

terminated comparison.

■ Compare Field

Purpose: Used to compare bit field to integer

Format: operator pos.rl, size.rb, base.vb, src.rl

Opcode Operator Function

EC CMPV Compare Field

ED CMPZV Compare Zero-extended Field

Description: The field specified by the position, size, and base operands is

compared with the source operand. For CMPV, the source operand is com¬

pared with the sign-extended field. For CMPZV, the source operand is com¬

pared with the zero-extended field. The only action is to affect the condition

codes.

■ Compare Packed

Purpose: Used to compare two packed decimal strings and set condition codes

Format: There are two formats—3 operand and 4 operand.

CMPP len. rw, scrladr.ab, src2adr. ah

CMPP src lien, rw, srcladr. ab, src2len. rw, src2adr. ab

Opcode Operator Function

35 CMPP3 Compare Packed—3 Operand

37 CMPP4 Compare Packed—4 Operand

Description: In 3-operand format, the srcl string is compared to the

string. The only action is to affect the condition codes.

In 4-operand format, the srcl string is compared to the src2 string. The

action is to affect the condition codes.

src2

only

9-18 • The Instruction Set

■ Convert

Purpose: Used to convert a signed quantity to a different signed data type

Format: operator src.rx, dst.vry

Opcode Operator Function

99 CVTBW Convert Byte to Word

98 CVTBL Convert Byte to Longword

33 CVTWB Convert Word to Byte

32 CVTWL Convert Word to Longword

F6 CVTLB Convert Longword to Byte

F7 CVTLW Convert Longword to Word

4C CVTBF Convert Byte to F_floating

6C CVTBD Convert Byte to D_floating

4CFD CVTBG Convert Byte to G_floating

6CFD CVTBH Convert Byte to H_floating

4D CVTWF Convert Word to F_floating

6D CVTWD Convert Word to D_floating

4DFD CVTWG Convert Word to G_floating

6DFD CVTWH Convert Word to H_floating

4E CVTLF Convert Longword to F_floating

6E CVTLD Convert Longword to D_floating

4EFD CVTLG Convert Longword to G_floating

6EFD CVTLH Convert Longword to H_floating

48 CVTFB Convert F_floating to Byte

68 CVTDB Convert D_floating to Byte

48FD CVTGB Convert G_floating to Byte

68FD CVTHB Convert H_floating to Byte

49 CVTFW Convert F_floating to Word

69 CVTDW Convert D_floating to Word

49FD CVTGW Convert G_floating to Word

69FD CVTHW Convert H_floating to Word

9-19

4A CVTFL Convert F_floating to Longword

4B CVTRFL Convert Rounded F_floating to Longword

6A CVTDL Convert D_floating to Longword

6B CVTRDL Convert Rounded D_floating to Longword

4AFD CVTGL Convert G_floating to Longword

48FD CVTRGL Convert Rounded G_floating to Longword

6AFD CVTHL Convert H_floating to Longword

6BFD CVTRHL Convert Rounded H_floating to Longword

56 CVTFD Convert F_floating to D_floating

99FD CVTFG Convert F_floating to G_floating

98FD CVTFH Convert F_floating to H_floating

76 CVTDF Convert D_floating to F_floating

32FD CVTDH Convert D_floating to H_floating

33FD CVTGF Convert G_floating to F_floating

56FD CVTGH Convert G_floating to H_floating

F6FD CVTHF Convert H_floating to F_floating

F7FD CVTHD Convert H_floating to D_floating

76FD CVTHG Convert H_floating to G_floating

Description: The source operand is converted to the data type of the destina¬

tion operand and the destination operand is replaced by the result. For integer

format, conversion of a shorter data type to a longer is done by sign extension.

Conversion of longer to a shorter is done by truncation of the higher num¬

bered (most significant) bits. For floating format, the form of the conversion

is as follows:

9-20 • The Instruction Set

Exact Conversion Truncated Conversion Rounded Conversion

CVTBF CVTHW CVTLF

CVTBD CVTFL CVTDF

CVTBG CVTFB CVTRHL

CVTBH CVTDL CVTRFL

CVTWF CVTDB CVTRDL

CVTWD CVTGL CVTHG

CVTWG CVTHL CVTRGL

CVTWH CVTGB CVTGF

CVTLD CVTFW CVTHF

CVTFD CVTDW CVTHD

CVTLG CVTGW

CVTLH CVTHB

CVTFH

CVTFG

CVTDH

CVTGH

Convert Leading Separate Numeric to Packed

Purpose: Used to convert leading separate numeric string to packed decimal

string

Format: CVTSP srclen.tvj, srcadr.ab, dstlen.rw, dstadr.ab

Opcode Operator Function

09 CVTSP Convert Leading Separate Numeric to Packed

Description: The source numeric string specified by the source length and

source address operands is converted to a packed decimal string, and the desti¬

nation string specified by the destination address and destination length oper¬

ands is replaced by the result.

Convert Longword to Packed

Purpose: Used to convert longword integer to packed decimal string

Format: CVTLP src.rl, dstlen.rw, dstadr.ab

Opcode Operator Function

F9 CVTLP Convert Long to Packed

9-21

Description: The destination string is specified by the destination length and

address operands. The source operand is converted to a packed decimal string

and the destination string is replaced by the result.

■ Convert Packed to Leading Separate Numeric

Purpose: Used to convert packed decimal string to leading separate numeric

string

Format: CVTPS srclen.rvj, srcadr.ab, dstlen.rw, dstadr.ab

Opcode Operator Function

08 CVTPS Convert Packed to Leading Separate Numeric

Description: The source packed decimal string specified by the source length

and source address operands is converted to a leading separate numeric string.

The destination string specified by the destination length and destination

address operands is replaced by the result.

Conversion is effected by replacing the lowest addressed byte of the destina¬

tion string by the ASCII plus or minus characters which is determined by the

sign of the source string. The remaining bytes of the destination string are

replaced by the ASCII representations of the values of the corresponding

packed decimal digits of the source string.

■ Convert Packed to Longword

Purpose: Used to convert a packed decimal string to a longword

Format: CVTPL srclen.rw, srcadr.ab, dst.wl

Opcode Operator Function

36 CVTPL Convert Packed to Long

Description: The source string specified by the source length and source

address operands is converted to a longword and the destination operand is

replaced by the result.

9-22 ■ The Instruction Set

■ Convert Packed to Trailing Numeric

Purpose: Used to convert packed decimal string to trailing numeric string

Format: CVTPT srclen.rw, srcadr.ab, tbladr.ab, dstlensw, dstadr.ab

Opcode Operator Function

24 CVTPT Convert Packed to Trailing Numeric

Description: The source packed decimal string specified by the source length

and source address operands is converted to a trailing numeric string. The des¬

tination string specified by the destination length and destination address

operands is replaced by the result. The condition code N and Z bits are

affected by the value of the source packed decimal string.

Conversion is effected by using the highest addressed byte of the source

string as an unsigned index into a 256-byte table whose zeroth entry address

is specified by the table address operand. The byte read out of the table

replaces the least significant byte of the destination string. The remaining

bytes of the destination string are replaced by the ASCII representations of

the values of the corresponding packed decimal digits of the source string.

NOTE

By appropriate specification of the table, conversion to any

form of trailing numeric string may be realized. See Chapter

4 for the preferred form of trailing overpunch, zoned, and

unsigned data. In addition, the table may be set up for abso¬

lute value, negative absolute value, or negative conversions.

9-23

■ Convert Trailing Numeric to Packed

Purpose: Used to convert trailing numeric string to packed decimal string

Format: CVTTP srclen.rw, srcadr.ab, tbladr.ab, dstlen.rw, dstadr.ab

Opcode Operator Function

26 CVTTP Convert Trailing Numeric to Packed

Description: The source trailing numeric string specified by the source length

and source address operands is converted to a packed decimal string. The des¬

tination packed decimal string specified by the destination address and desti¬

nation length operands is replaced by the result.

Conversion is effected by using the highest addressed (trailing) byte of the

source string as an unsigned index into a 256-byte table whose zeroth entry is

specified by the table address operand. The byte read out of the table replaces

the highest addressed byte of the destination string; that is, the byte contain¬

ing the sign and the least significant digit. The remaining packed digits of the

destination string are replaced by the low-order four bits of the corresponding

bytes in the source string.

NOTES

1. By appropriate specification of the table, conversion from

any form of trailing numeric string may be realized. In addi¬

tion, the table may be set up for absolute value, negative abso¬

lute value or negated conversions. Refer to Chapter 4 for the

preferred form of trailing overpunch, zoned, and unsigned

data.

2. If the table translation produces a sign nibble containing

any valid sign, the preferred sign representation is stored in

the destination packed decimal string.

■ Cyclic Redundancy Check Instruction

Purpose: Used to initiate communications or software redundancy checks

Format: CRC tbl.ab, inicrc.rl, strlen.rw, stream.ab

Opcode Operator Function

OB CRC Calculate Cyclic Redundancy Check

9-24 ■ The Instruction Set

Description: The CRC of the data stream described by the string descriptor is

calculated. The initial CRC is given by inicrc and is normally 0 or -1 unless the

CRC is calculated in several steps. RO is replaced by the result. If the polyno¬

mial is less than order-32, the result must be extracted from RO. The CRC

polynomial is expressed by the contents of the 16-longword table. See the

Notes for calculation of the table.

NOTES

1. If the data stream is not a multiple of eight bits long, it

must be right-adjusted with leading zero fill.

2. If the CRC polynomial is less than order-32, the result

must be extracted from the low-order bits of RO.

3. The following algorithm can be used to calculate the CRC

table given a polynomial expressed as follows:

poly<n> — {coefficient of x**{ order-l-n}}

This routine is available as system library routine LIB$-

CRC_TABLE (POLY, TABLE). The table is the location of a

64-byte (16-longword) table into which the result is written.

4. The following are descriptions of some commonly used

CRC polynomials.

■ CRC-16 (used in DDCMP and Bisync):

Polynomial: X16 + X15 + X2 + 1

Poly: 120001 (octal)

Initialize: 0

Result: RO < 15:0 >

■ CCITT (used in ADCCP, HDLC, SDLC):

Polynomial: X16 + X12 + X5 + 1

Poly: 102010 (octal)

Initialize: -1 < 15:0 >

Result: one’s complement of R0 < 15:0 >

9-25

■ AUTODIN-II

Polynomial: X32 + X26 + X23 + X22 + X16 + X12 + X11

+ X10 + Xs + X7 + X3 + X4 + X2 + X + 1

Poly: EDB88320 (hexadecimal)

Initialize: —1 < 31:0 >

Result: one’s complement of R0 < 31:0 >

5. This instruction produces an unpredictable result unless

the table is well formed, such as produced in Note 3. Note

that for any well-formed table, entry [0] is always 0 and entry

[8] is always the polynomial expressed as in Note 3. The oper¬

ation can be implemented using shifts of one, two, or four

bits at a time as follows:

Shift: 1

Steps per byte (limit): 8

Index table index: tmp3 < 0 >

Table multiplier: 8

Use table entries: [0] = 0, < 8>

Shift: 2

Steps per byte (limit): 4

Index table index: tmp3 < 1:0 >

Table multiplier: 4

Use table entries: [0] = 0,[4],[8],[12]

Shift: 4

Steps per byte (limit): 2

Index table index: tmp3 < 3:0 >

Table multiplier: 1

Use table entries: all

- '' - *' • ' Vs£TVv , I

9-26 ■ The Instruction Set

Decrement

Purpose: Used to subtract 1 from an integer

Format: operator difference.mx

Opcode Operator

97 DECB

B7 DECW

D7 DECL

Function

Decrement Byte

Decrement Word

Decrement Longword

Description: One is subtracted from the difference operand and the differ¬

ence operand is replaced by the result.

Divide

Purpose: Used to perform arithmetic division

Format: There are two formats—2 operand and 3 operand.

operator divr.tx, quo.mx

operator divr.rx, divd. rx, quo.wx

Opcode Operator Function

86 DIVB2 Divide Byte 2 Operand

87 DIVB3 Divide Byte 3 Operand

A6 DIVW2 Divide Word 2 Operand

A7 DIVW3 Divide Word 3 Operand

C6 DIVL2 Divide Longword 2 Operand

C7 DIVL3 Divide Longword 3 Operand

46 DIVF2 Divide F_floating 2 Operand

47 DIVF3 Divide F_floating 3 Operand

66 DIVD2 Divide D_floating 2 Operand

67 DIVD 3 Divide D_floating 3 Operand

46FD DIVG2 Divide G_floating 2 Operand

47FD DIVG3 Divide G_floating 3 Operand

66FD DIVH2 Divide H_floating 2 Operand

67FD DIVH3 Divide H_floating 3 Operand

9-27

Description: In 2-operand format, the quotient operand is divided by the divi¬

sor operand, and the quotient operand is replaced by the result.

In 3-operand format, the dividend operand is divided by the divisor operand

and the quotient operand is replaced by the result. In floating format, the quo¬

tient operand result is rounded for both 2- and 3-operand formats.

Integer division is performed so that the remainder (unless it is zero) has the

same sign as the dividend. That is, the result is truncated toward zero.

■ Divide Packed

Purpose: Used to divide one packed decimal string by a second, with the result

placed in a third

Format:

DIVP divrlen. rw, divradr. ab, divdlen.vu, divdadr.ab, quolen.rw,

quoadr.ab

Opcode Operator Function

27 DIVP Divide Packed

Description: The dividend string is specified by the dividend length and divi¬

dend address operands. The divisor string is specified by the divisor length

and divisor address operands. The quotient string is specified by the quotient

length and quotient address operands. The dividend string is divided by the

divisor string. The quotient string is replaced by the result. The division is

performed in the following manner:

1. The absolute value of the remainder (which is lost) is less than the absolute

value of the divisor.

2. The product of the absolute value of the quotient and the absolute value of

the divisor is less than or equal to the absolute value of the dividend.

3. The sign of the quotient is determined by the rules of algebra from the

signs of the dividend and the divisor. If the value of the quotient is zero,

the sign is always positive.

■ Edit Instruction

Purpose: Used to edit a source string

Format: EDITPC srclen.rw, srcadr.ab, pattern.ab, dstadr.ab

Opcode Operator Function

38 EDITPC Edit Packed to Character String

9-28 ■ The Instruction Set

Description: The destination string is specified by the pattern and destination

address (dstadr) operands. The source string is specified by the source length

(srclen) and source address (srcadr) operands. The destination string is

replaced by the edited version of the source string.

Editing is performed according to the pattern string. The pattern string con¬

sists of one-byte pattern operators. Editing starts at the address pattern and

extends until an end (EO$END) pattern operator is encountered. Some pat¬

tern operators take no operands. Some take a repeat count that is in the

rightmost nibble of the pattern operator itself. The rest take a one-byte oper¬

and that immediately follows the pattern operator. This operand is either an

unsigned integer length or a byte character. Pattern operators are described

on subsequent pages and are summarized in Table 9-1.

Table 9-1 ■ Edit Instruction Pattern Operators

Function Name Operand* Summary

Control: EO$ ADJUST_INPUT len Adjust source length.

EO$CLEAR_ SIGNIF — Clear significance flag.

EO$END — End edit.

EO$SET SIGNIF — Set significance flag.

Fixup: EO$BLANK_ZERO len Fill backward when zero.

EO$REPLACE SIGN len Replace with fill if -0.

Insert: EO$FILL rep Insert fill.

EO$INSERT char Insert character, fill if insignifi¬

cant.

EO$STORE SIGN — Insert sign.

Load: EO$LOAD_FILL char Load fill character.

EO$LOAD_MINUS char Load sign character if negative.

EOfLOAD_PLUS char Load sign character if positive.

EO$LOAD SIGN char Load sign character.

Move: EO$END_FLOAT — End floating sign.

EOfFLOAT rep Move digits, floating sign.

EO$MOVE rep Move digits, filling insignificant.

* char = one character

len = length in the range 1 through 255

rep = repeat counter in the range 1 through 15

The following definitions are used:

fiH = R2 < 7:0>

sign = R2< 15:8 >

9-29

EO$ ADJUST INPUT
Purpose: Used to handle source strings of a length different from the output

string

Format: EO$ADJUST_ INPUT len

Opcode Pattern Operator Function

47 EO$ADJUST INPUT Adjust Input Length

Description: The pattern operator is foUowed by an unsigned byte integer

length in the range 1 through 31. If the source string has more digits than the

length, the excess digits are read and discarded. If any discarded digits are not

zero, the overflow and significance bits are set, and the zero bit is cleared. If

the source string has fewer digits than the length, a counter is set to the num¬

ber of leading zeros to supply. This counter is stored as a negative number in

register RO in bits 31 through 16.

EOJBLANK_ZERO
Purpose: Used to fix the destination to be blank when the source value is zero

Format: EO$BLANK_ZERO len

Opcode Pattern Operator Function

45 EO$BLANK ZERO Blank Backwards When Zero

Description: The pattern operator is followed by an unsigned byte integer

length. If the value of the source string is zero, the contents of the fill register

are stored into the last length bytes of the destination string.

NOTE

This pattern operator is used to blank any characters stored

in the destination under a forced significance such as a sign or

the digits following the radix point.

EOJCLEAR_SIGNIF
Purpose: Used to control the significance (leading zero) indicator

Format: EO$CLEAR__ SIGNIF

Opcode Pattern Operator Function

02 EO$CLEAR SIGNF Clear Significance

9-JO ■ The Instruction Set

Description: The significance indicator is cleared. This controls the treatment

of leading zeros. (Leading zeros are zero digits for which the significance indi¬

cator is clear.) EO$CLEAR_SIGNIF is used to initialize leading zero suppres¬

sion (EO$MOVE) or floating sign (EOJFLOAT) following a fixed insert

(EO$INSERT with significance set).

EO$END
Purpose: Used to end edit operation

Format: EO$END

Opcode Pattern Operator Function

00 EO$END End Edit

Description: The edit operation is terminated.

EO$END_FLOAT
Purpose: Used to end a floating-sign operation

Format: EO$END_FLOAT

Opcode Pattern Operator Function

01 EO$END_FLOAT End Floating Sign

Description: If the floating sign has not yet been placed in the destination

(that is, if significance is not set), the contents of the sign register are stored in

the destination and significance is set.

NOTE

This pattern operator is used after a sequence of one or more

EO$FLOAT pattern operators that start with significance

clear. The EOfFLOAT sequence can include intermixed

EO$INSERTs and EO$FILLs.

EOJFILL
Purpose: Used to insert the fill character

Format: EO$FILL rep

Opcode Pattern Operator Function

81:8F EOJFILL Store Fill

Description: The right nibble of the pattern operator is the repeat count. The

contents of the fill register are placed into the destination the number of times

specified in the rep operand. This pattern operator is used for fill (blank) inser¬

tion.

9-31

EOfFLOAT

Purpose: Used to move digits, floating the sign across insignificant digits

Format: EO$FLOAT rep

Opcode Pattern Operator Function

A1:AF EOfFLOAT Float Sign

Description: The right nibble of the pattern operator is the repeat count. For

repeat iterations, the following algorithm is executed the number of times

specified in the repeat count (rep) operand.

Repeat Count Algorithm—The next digit from the source is examined for one

of two conditions:

■ If the next digit is nonzero and significance is not yet set, the contents of

the sign register are stored in the destination, the significance bit is set,

and the zero bit is cleared.

■ If the digit is significant, it is stored in the destination. Otherwise, the

content of the fill register is stored in the destination.

This pattern operator is used to move digits with a floating arithmetic sign.

The sign must already be set up as for EO$STORE_SIGN. A sequence of one

or more EOjFLOATs can include intermixed EOjINSERTs and EO$FILLs.

Significance must be clear before the first pattern operator of the sequence.

The sequence must be terminated by one EO$END_FLOAT.

This pattern operator is used to move digits with a floating currency sign. The

sign must already be set up with an EOJLOAD_SIGN. A sequence of one or

more EO$FLOATs can include intermixed EOJINSERTs and EOjFILLs. Sig¬

nificance must be clear before the first pattern operator of the sequence. The

sequence must be terminated by one EO$END_FLOAT.

EOJINSERT

Purpose: Used to insert a fixed character, substituting the fill character if not

significant

Format: EOJINSERT char

Opcode Pattern Operator Function

44 EOJINSERT Insert Character

Description: The pattern operator is followed by a character. If the signifi¬

cance bit is set, the character is placed into the destination. If the significance

bit is not set, the contents of the fill register are placed into the destination.

9-32 ■ The Instruction Set

NOTE

This pattern operator is used for blankable inserts (for exam¬

ple, comma) and fixed inserts (for example, slash). Fixed

inserts require that significance be set by EO$SET_SIGNIF

or EO$END_FLOAT.

EOJLOAD
Purpose: Used to change the contents of the fill or sign register

Format: pattern_operator char

Opcode Pattern Operator Function

40 EO$LOAD_ FILL Load Fill Register

41 EO$LOAD_SIGN Load Sign Register

42 EO$LOAD_PLUS Load Sign Register If Plus

43 EO$LOAD_ MINUS Load Sign Register If Minus

Description: The pattern operator is followed by a character. For EO$LOAD

_FILL, this character is placed into the fill register. For EO$LOAD_SIGN,

this character is placed into the sign register . For EO$LOAD_PLUS, this

character is placed into the sign register if the source string has a positive sign.

For EOfLOAD_MINUS, this character is placed into the sign register if the

source string has a negative sign.

NOTES

1. EO$LOAD_FILL is used to set up check protection

instead of space.

2. EO$LOAD_SIGN is used to set up a floating currency

sign.

3. EOfLOAD_PLUS is used to set up a nonblank plus sign.

4. EOJLOAD_MINUS is used to set up a alternate minus

sign such as CR, DB, or the PL/1 + .

EO$MOVE
Purpose: Used to move digits, filling for insignificant digits (leading zeros)

Format: EO$MOVE rep

Opcode Pattern Operator Function

91:9F EO$MOVE Move Digits

Description: The right nibble of the pattern operator is the repeat count. For

repeat iterations, the following algorithm is executed the number of times

specified in the repeat count (rep) operand.

9-33

The next digit is moved from the source to the destination under the following

conditions:

■ If the digit is nonzero, the significance bit is set and the zero bit is cleared.

■ If the digit is not significant (that is, it is a leading zero), it is replaced by

the contents of the fill register in the destination.

NOTES

1. This pattern operator is used to move digits without a float¬

ing sign. If leading zero suppression is desired, the signifi¬

cance bit must be clear. If leading zero should be explicit, the

significance bit must be set. A string of EO$MOVE operators

intermixed with EOflNSERT and EO$FILL operators cor¬

rectly handles suppression.

2. If check protection (*) is desired, EOJLOAD_FILL must

precede the EO$MOVE.

EO$REPLACE_SIGN

Purpose: Used to change the destination sign when the value is minus zero

Format: EO$REPLACE_SIGN len

Opcode Pattern Operator Function

46 EO$REPLACE SIGN Replace Sign When Minus Zero

Description: The pattern operator is followed by an unsigned byte integer

length. If the value of the source string is zero (that is, if the Z bit is set), the

contents of the fill register are stored into the byte of the destination string

that is len bytes before the current position.

NOTES

1. The length must be nonzero and within the destination

string already produced.

2. This pattern operator is used to correct a stored sign

(EOfEND_FLOAT or EO$STORE_ SIGN) if a minus was

stored and the source value is zero.

EOfSET_SIGNIF

Purpose: Used to control the significance (leading zero) indicator

Format: EO$SET_ SIGNIF

Opcode Pattern Operator Function

03 EO$SET SIGNIF Set Significance

9-34 • The Instruction Set

Description: The significance indicator is set. This controls the treatment of

leading zeros. (Leading zeros are zero digits for which the significance indica¬

tor is clear.) EOJSET_SIGNIF is used to avoid leading suppression (before

EO$MOVE) or to force a fixed insert (before EOJINSERT).

EO$ STORE_SIGN

Purpose: Used to insert the sign character

Format: EO$STORE_ SIGN

Opcode Pattern Operator Function

04 EO$STORE SIGN Store Sign

Description: The contents of the sign register are placed into the destination.

NOTE

This pattern operator is used for any nonfloating arithmetic

sign. It should be preceded by a EO$LOAD_PLUS and/or

EO$LOAD_MINUS if the default sign convention is not

desired.

■ Exclusive OR

Purpose: Used to perform logical exclusive OR of two integers

Format: There are two formats—2 operand and 3 operand

operator mask.rx, destination.mx

operator mask.rx, source.rx, destination.wx

Opcode

8C

8D

AC

AD

CC

CD

Operator Function

XORB2 Exclusive OR Byte 2 Operand

XORB3 Exclusive OR Byte 3 Operand

XORW2 Exclusive OR Word 2 Operand

XORW3 Exclusive OR Word 3 Operand

XORL2 Exclusive OR Longword 2 Operand

XORL3 Exclusive OR Longword 3 Operand

Description: In 2-operand format, the mask operand is XORed with the desti¬

nation operand and the destination operand is replaced by the result. In 3-

operand format, the mask operand is XORed with the source operand and the

destination operand is replaced by the result.

9-35

■ Extended Divide

Purpose: Used to perform extended-precision division

Format: EDIV divisor.rl, dividend.rq, quotient.wl, remainder.wl

Opcode Operator Function

7B EDIV Extended Divide

Description: The dividend operand is divided by the divisor operand. The

quotient operand is replaced by the quotient and the remainder operand is

replaced by the remainder.

Unless the remainder operand is zero, the division is performed so that the

remainder operand has the same sign as the dividend operand. If the quotient

and remainder operands both reference the same location, the remainder oper¬

and overlays the quotient operand.

■ Extended Function Call

Purpose: Used to provide customer-defined extensions to the instruction set.

Format: XFC

Opcode Operator Function

FC XFC Extended Function Call

Description: This instruction requests services of nonstandard microcode or

software. If no special microcode is loaded, then an exception is generated to a

kernel mode software simulator. Typically, the next byte would specify which

of several extended functions are requested. Parameters would be passed

either as normal operands or, more likely, in fixed registers.

■ Extended Modulus

Purpose: Used to perform accurate range reduction of math function argu¬
ments

Format: There are four formats—one for each type of floating point data

EMODD mulr.rx, mulrx.rb, muld.rx, int.vAJ'racism

mulr.rx, mulrx.rb, muld.rx, int.vA,fract.wx

mulr.rx, mulrx.rw, muld.rx, int.vAJract.vix

mulr.rx, mulrx.rw, muld.rx, int.vA,fract.vix

EMODF

EMODG

EMODH

9-36 • The Instruction Set

Opcode Operator Function

54 EMODF Extended Multiply and Integerize F_floating

74 EMODD Extended Multiply and Integerize D_floating

MFD EMODG Extended Multiply and Integerize G_floating

74FD EMODH Extended Multiply and Integerize H_floating

Description: The multiplier extension operand is concatenated with the multi¬

plier operand to gain 8 (EMODD and EMODF), 11 (EMODG), or 15

(EMODH) additional low-order fraction bits. The low-order 5 or 1 bits of the

16-bit multiplier extension operand are ignored by the EMODG and EMODH

instructions, respectively. The multiplicand operand is multiplied by the

extended multiplier operand. This multiplication is such that the result is

equivalent to the exact product truncated (before normalization) to a fraction

field of 32 bits in F_floating, 64 bits in D_floating and G_floating, and

128 in H_floating. Regarding the result as the sum of an integer and frac¬

tion of the same sign, the integer operand is replaced by the integer part of the

result and the fraction operand is replaced by the rounded fractional part of

the result.

Extended Multiply

Purpose: Used to perform extended-precision multiplication

Format: EMUL multiplier.rl, multiplicand.rl, addend.rl, product.wq

Opcode Operator Function

7A EMUL Extended

Description: The multiplicand operand is multiplied by the multiplier oper¬

and giving a double-length result. The addend operand is sign-extended to

double length and added to the result. Then, the product operand is replaced

by the result.

Extract Field

Purpose: Used to move bit field to integer

Format: operator pos.rl, size.rb, hase.wb, dst.wl

Opcode Operator Function

EE EXTV Extract Field

EF EXTZV Extract Zero-extended Field

Description: For EXTV, the destination operand is replaced by the sign-

extended field specified by the position, size, and base operands. For EXTZV,

the destination operand is replaced by the zero-extended field specified by the

position, size, and base operands. If the size operand is zero, the only action is

to replace the destination operand with zero and affect the condition codes.

An example of this instruction is to extract the four protection bits (bits 27

through 30) from the memory management unit Page Table Entry. The base

address is the address of a longword operand containing these bits; the posi¬

tion operand could be the number of bits from the base address to the protec¬

tion code; and the size operand would be 4 because the protection code is 4

bits long. The destination operand would specify where the protection bits are

to be stored.

Because the protection code is not an arithmetic operand and does not need to

be sign-extended, the extract zero-extended field instruction should be speci¬

fied.

Find First Bit

Purpose: Used to locate the first bit in a bit field

Format: operator startpos.rl, size.rb, base.vb, findpos.wl

Opcode Operator Function

EB FFC Find First Clear

EA FFS Find First Set

Description: A field specified by the start position, size, and base operands is

extracted. The field is tested for a bit in the state indicated by the instruction

starting at bit 0 and extending to the highest bit in the field. If a bit in the

indicated state is found, the find position operand is replaced by the position

of the bit and the Z condition code bit is cleared. If no bit in the indicated

state is found, the find position operand is replaced by the position (relative to

the base) of a bit one position to the left of the specified field and the Z condi¬

tion code bit is set. If the size operand is zero, the find position operand is

replaced by the start position operand and the Z condition code bit is set.

Halt

Purpose: Used to stop processor operation

Format: HALT

Opcode Operator Function

00 HALT Halt

9-38 • The Instruction Set

Description: If the process is running in kernel mode, the processor is halted.

Otherwise, a privileged instruction fault occurs.

NOTE

This opcode is zero to trap many branches to data.

Increment

Purpose: Used to add 1 to an integer

Format: operator sum.mx

Opcode Operator

96 INCB

B6 INCW

D6 INCL

Function

Increment Byte

Increment Word

Increment Longword

Description: One is added to the sum operand and the sum operand is

replaced by the result.

Index

Purpose:Used for index calculation of arrays of fixed length data, bit fields,

and strings

Format:

INDEX subscript.rl, low.rl, high.rl, size.rl, indexin.A, indexout.wl

Opcode Operator Function

OA INDEX Compute Index

Description: The index in operand is added to the subscript operand and the

sum is multiplied by the size operand. The indexout operand is replaced by

the result. If the subscript operand is less than the low operand or greater than

the high operand, a subscript range trap is taken.

Insert Entry in Queue

Purpose: Used to add an entry to the head or tail of a queue

Format: INSQUE entry.ab, predecessor.ab

Opcode Operator Function

OE INSQUE Insert Entry in Queue

9-39

Description: The entry specified by the entry operand is inserted into the

queue following the entry specified by the predecessor operand. If the entry

inserted was the first one in the queue, the condition code Z-bit is set; other¬

wise, it is cleared. The insertion is a noninterruptible operation. Before per¬

forming any part of the operation, the processor validates that the entire

operation can be completed. This ensures that if a memory management excep¬

tion occurs, the queue is left in a consistent state.

NOTES

1. Because the insertion is noninterruptible, processes run¬

ning in kernel mode can share queues with interrupt service

routines.

2. The INSQUE instruction is implemented so the cooperat¬

ing software processes in a single processor may access a

shared list without additional synchronization if the inser¬

tions and removals are only at the head or tail of the queue.

3. During access validation, any access that cannot be com¬

pleted results in a memory management exception, even

though the queue insertion is not started.

■ Insert Entry into Queue at Head, Interlocked

Purpose: Used to perform an interlocked entry insert at head of queue

Format: INSQHI entry.ab, header.aq

Opcode Operator Function

5C INSQHI Insert Entry into Queue at Head, Interlocked

Description: The entry specified by the entry operand is inserted into the

queue following the header. If the entry inserted was the first one in the

queue, the condition code Z-bit is set; otherwise, it is cleared. The insertion is

a noninterruptible operation. The insertion is interlocked to prevent concur¬

rent interlocked insertions or removals at the head or tail of the same queue by

another process even in a processor environment. Before performing any part

of the operation, the processor validates that the entire operation can be com¬

pleted. This ensures that if a memory management exception occurs, the

queue is left in a consistent state. If the instruction fails to acquire the second¬

ary interlock, the instruction sets condition codes and terminates.

9-40 ■ The Instruction Set

NOTES

1. Because the insertion is noninterruptible, processes run¬

ning in kernel mode can share queues with interrupt service

routines.

2. The INSQHI instruction is implemented so the cooperat¬

ing software processes in a processor may access a shared list

without additional synchronization.

3. During access validation, any access that cannot be com¬

pleted results in a memory management exception even

though the queue insertion is not started.

■ Insert Entry into Queue at Tail, Interlocked

Purpose: Used to perform an interlocked entry insert at tail of queue

Format: INSQTI entry.2b, header.aq

Opcode Operator Function

3D INSQTI Insert Entry into Queue at Tail, Interlocked

Description: The entry specified by the entry operand is inserted into the

queue preceding the header. If the entry inserted was the first one in the

queue, the conditon code Z-bit is set; otherwise it is cleared. The insertion is a

noninterruptible operation. The insertion is interlocked to prevent concur¬

rent interlocked insertions or removals at the head or tail of the same queue by

another process even in a processor environment. Before performing any part

of the operation, the processor validates that the entire operation can be com¬

pleted. This ensures that if a memory management exception occurs, the

queue is left in a consistent state. If the instruction fails to acquire the second¬

ary interlock, the instruction sets condition codes and terminates.

NOTES

1. Because the insertion is noninterruptible, processes run¬

ning in kernel mode can share queues with interrupt service

routines.

2. The INSQTI instruction is implemented so the cooperat¬

ing software processes in a processor may access a shared list

without additional synchronization.

3. During access validation, any access that cannot be com¬

pleted results in a memory management exception even

though the queue insertion was not started.

9-41

■ Insert Field

Purpose: Used to move an integer to a bit field

Format: INSV source.rl, position.rl, size.rb, ^se.vb

Opcode Operator Function

FO INSV Insert Field

Description: The field specified by the position, size, and base operands is

replaced by bits < size - 1:0 > of the source operand. If the size operand is

zero, the only action is to affect the condition codes.

■ Jump

Purpose: Used to transfer control

Format: JMP dst. ab

Opcode Operator Function

17 JMP Jump

Description: The PC is replaced by the destination operand.

■ Jump to Subroutine

Purpose: Used to transfer control to subroutine

Format: JSB dst. ab

Opcode Operator Function

16 JSB Jump to Subroutine

9-42 ■ The Instruction Set

Description: The program counter (PC) is pushed on the stack as a longword.

The PC is replaced by the destination operand.

NOTE

Since the operand specifier conventions cause the evaluation

of the destination operand before saving PC, JSB can be used

for coroutine calls, with the stack used for linkage. The form

of such a call is: JSB @(SP) + .

Load Process Context

Purpose: Used to restore register and memory management context

Format: LDPCTX

Opcode Operator Function

06 LDPCTX Load Process Context

Description: The process control block is specified by the process control

block base. The general registers are loaded from the PCB. The memory man¬

agement registers describing the process address space are also loaded and the

process entries in the translation buffer are cleared. Execution is switched to

the kernel stack. The PC and PSL are moved between the PCB and the stack

suitable for use by a subsequent REI instruction. This instruction can be exe¬

cuted only in kernel mode.

Some processors keep a copy of each of the process stack pointers in internal

registers. In those processors, LDPCTX loads the internal registers from the

PCB. Processors that do not keep a copy of all four process stack pointers in

internal registers keep only the current access mode register in an internal reg¬

ister. The contents of the internal register are switched with the PCB contents

whenever the current access mode field changes.

Locate Character

Purpose: Used to find a character in a character string

Format: LOCC char.rb, /e«.rw, adr.ab

Opcode Operator Function

3 A LOCC Locate Character

9-43

Description: The character (char) operand is compared with the bytes of the

string specified by the length (len) and address (adr) operands. Comparison

continues until equality is detected, or until all bytes of the string have been

compared. If equality is detected, the condition code Z bit is cleared. Other¬

wise the Z bit is set.

■ Match Characters

Purpose: Used to find substring (object) in character string

Format: MATCHC objlen.rvr, objadr.ab, srclen.rvj, srcadr.ab

Opcode Operator Function

39 MATCHC Match Characters

Description: The source string is specified by the source length and source

address operands. The object string is specified by the object length and

object address operands. The source string is examined for a substring that

matches the object string. If the substring is found, the condition code Z bit is

set. Otherwise, it is cleared.

■ Move

Purpose: Used to move a specified scalar quantity

Format: operator source.rx, destination.wx

Opcode Operator Function

90 MOVB Move Byte

BO MOVW Move Word

DO MOVL Move Longword

7D MOVQ Move Quadword

7DFD MOVO Move Octaword

50 MOVF Move F_floating

70 MOVD Move D_floating

50FD MOVG Move G_floating

70FD MOVH Move H_floating

Description: The destination operand is replaced by the source operand. The

source operand is unaffected.

9-44 • The Instruction Set

NOTE

The MOVB and MOVW instructions do not modify the high-

order bytes of a register destination. Refer to the MOVZxL

and CVTxL instructions to update the full register contents.

Move Address

Purpose: Calculates address of quantity

Format: operator source.ax, destination.wl

Opcode Operator Function

9E MOVAB Move Address Byte

3E MOVAW Move Address Word

DE MOVAL Move Address Longword

DE MOVAF Move Address F_floating

7E MOVAQ Move Address Quadword

7E MOVAD Move Address D_floating

7E MOVAG Move Address G_floating

7EFD MOVAH Move Address H_floating

7EFD MOVAO Move Address Octaword

Description: The destination operand is replaced by the source operand,

which is an address. The context in which the source operand is evaluated is

given by the data type of the instruction. The operand whose address replaces

the destination operand is not referenced.

Move Characters

Purpose: Used to move a character string or block of memory

Formats: There are two formats—3 operand and 5 operand

MOVC srclen. rw, sreadr. ab, dstadr. ab

MOVC srclen.rvj, sreadr.ab, fill.rb, dstlen.rw, dstadr.ab

Opcode Operator Function

28 MOVC 3 Move Character—3 Operand

2C MOVC5 Move Character—5 Operand

9-45

Description: The destination string is replaced by the source string. If the des¬

tination string is longer than the source string, the highest address bytes of the

destination are replaced by the fill operand. However, if the destination string

is shorter than the source string, the highest addressed bytes of the source

string are not moved. The operation of the instruction is such that overlap of

the source and destination strings does not affect the result.

■ Move Complement

Purpose: Used to move the logical complement of an integer

Format: operator source.rx destination.wx

Opcode

92

B2

D2

Operator Function

MCOMB Move Complemented Byte

MCOMW Move Complemented Word

MCOML Move Complemented Longword

Description: The destination operand is replaced by the one’s complement of

the source operand.

■ Move from Processor Register

Purpose: Used to provide access to the internal privileged (processor) registers

Format: MFPR procreg.rl, dst.wl

Opcode Operator Function

DB MFPR Move from Processor Register

Description: The specified register is stored. The procreg operand is a long-

word that contains the privileged register number. Execution may have regis¬

ter-specific side effects. A reserved operand fault may occur if the processor

internal register does not exist. A reserved instruction fault occurs if instruc¬

tion execution is attempted in other than kernel mode. (See also “Move to

Processor Register”.) See Table 9-2 for a list of the processor registers.

9-46 ■ The Instruction Set

Table 9-2 ■ Processor (Privileged) Registers

Number Register Name Mnemonic* Typet Scopef

0 Kernel Stack Pointer KSP R/W PROC

1 Executive Stack Pointer ESP R/W PROC

2 Supervisor Stack Pointer SSP R/W PROC

3 User Stack Pointer USP R/W PROC

4 Interrupt Stack Pointer ISP R/W CPU

8 P0 Base Register POBR R/W PROC

9 P0 Length Register POLR R/W PROC

10 PI Base Register PlBR R/W PROC

11 Pi Length Register P1LR R/W PROC

12 System Base Register SBR R/W CPU

13 System Length Register SLR R/W CPU

16 Process Control Block Base PCBB R/W PROC

17 System Control Block Base SCBB R/W CPU

18 Interrupt Priority Level IPL R/W CPU

19 Asynchronous System Trap Level ASTLVL R/W PROC

20 Software Interrupt Request SIRR W CPU

21 Software Interrupt Summary SISR R/W CPU

* Each register address is formed as PR$ followed by the register’s mnemonic. For

example, the register address for the user stack pointer is PR$USP. Once assigned, the

register number is not changed. Implementation-dependent registers are assigned dis¬

tinct addresses for each implementation. Thus, any privileged register present on more

than one implementation performs the same function whenever implemented. All

unsigned positive numbers are reserved to Digital. All negative numbers are reserved

to Digital’s Customer Software Services and customers.

t The Type column indicates the read/write characteristics of that register. The letter

R means the register is read-only. The characters R/W means the register is both read

and write. The character W means the register is write-only.

t The Scope column indicates if a register is a CPU register or a process register. Regis¬

ters labeled CPU are manipulated through software only using the MTPR and MFPR

instructions. Registers labeled PROC are manipulated by context switch instructions.

9-47

Table 9-2 ■ Processor (Privileged) Registers (Cont.)

Number Register Name Mnemonic* Typet ScopeJ

24 Interval Clock Control ICCS R/W CPU

25 Next Interval Count NICR W CPU

26 Interval Count ICR R CPU

27 Time of Year (optional) TODR R/W CPU

32 Console Receive Control/status RXCS R/W CPU

33 Console Receiver Data Buffer RXDB R CPU

34 Console Transmit Control/status TXCS R/W CPU

35 Console Transmit Date Buffer TXDB W CPU

56 Memory Management Enable MAPEN R/W CPU

57 Translation Buffer Invalidate All TBIA W CPU

58 Translation Buffer Invalidate Single TBIS W CPU

61 Performance Monitor Enable PMR R/W PROC

62 System Identification SID R CPU

■ Move from Processor Status Longword

Purpose: Used to obtain processor status

Format: MOVPSL dst.wl

Opcode Operator Function

DC MOVPSL Move from PSL

Description: The destination operand is replaced by the processor status long-

word.

■ Move Negated

Purpose: Used to move the arithmetic negation of a scalar quantity

Format: operator source.rx, destination.wx

9-48 • The Instruction Set

Opcode Operator

8E MNEGB

AE MNEGW

CE MNEGL

52 MNEGF

72 MNEGD

52FD MNEGG

72FD MNEGH

Function

Move Negated Byte

Move Negated Word

Move Negated Longword

Move Negated F_floating

Move Negated D_floating

Move Negated G_floating

Move Negated H_floating

Description: The destination operand is replaced by the negative of the source

operand.

Move Packed

Purpose: Used to move a packed decimal string from one memory location to

another memory location

Format: MOVP len.rw, srcadr.ab, dstadr.ab

Opcode Operator Function

34 MOVP Move Packed

Description: The destination string specified by the length and destination

address operands is replaced by the source string specified by the length and

source address operands.

Move to Processor Register

Purpose: Used to provide access to the internal privileged registers

Format: MTPR src.rl, procreg.rl

Opcode Operator Function

DA MTPR Move to Processor Register

Description: The specified register is loaded. The procreg operand is a long-

word that contains the privileged register number. Execution may have regis¬

ter-specific side effects. A reserved instruction fault occurs if instruction

execution is attempted in other than kernel mode. A reserved operand fault

may occur if the processor internal register does not exist. See “Move from

Processor Register” for a summary of accessible privileged registers

(Table 9-2).

9-49

■ Move Translated Characters

Purpose: Used to move and translate character strings

Format:

MOVTC srclen.Yvj, srcadr.2bJill.Yb, tbladr.ab, dstlen.rw, dstadr.ab

Opcode Operator Function

MOVTC Move Translated Characters

Description: The source string is translated and replaces the destination

string. Translation is accomplished by using each byte of the source string as

an index into a 256-byte table whose first entry address is specified by the

table address operand. The byte selected replaces the byte of the destination

string. If the destination string is longer than the source string, the highest

addressed bytes of the destination string are replaced by the fill operand. If

the destination string is shorter than the source string, the highest addressed

bytes of the source string are not translated and moved. The operation of the

instruction is such that overlap of the source and destination strings does not

affect the result. If the destination string overlaps the translation table, the

destination string is unpredictable.

■ Move Translated until Character

Purpose: Used to move and translate a character string and to handle escape

codes

Format:

MOVTUC srclen.Yvj, srcadr.ab, esc.rb, tbladr.ab, dstlen.rw, dstadr.ab

Opcode Operator Function

2F MOVTUC Move Translated until Character

Description: The specified source string is translated and replaces the destina¬

tion string. Translation is accomplished by using each byte of the source string

as an index into a 256-byte table whose first entry address is specified by the

table address operand. The byte selected replaces the byte of the destination

string. Translation continues until a translated byte is equal to the escape byte

or until the source string or destination string is exhausted. If translation is

terminated because of escape, the condition code V bit is set. Otherwise, it is

cleared. If the destination string overlaps the table, the results are unpredict¬

able. If the source and destination strings overlap and their addresses are not

identical, then the results are unpredictable. If the source and destination

string addresses are identical, the translation is performed correctly.

9-50 • The Instruction Set

■ Move Zero-extended

Purpose: Used to convert an unsigned integer to a wider unsigned integer

Format: operator source.rx, destination.wy

Opcode

9B

9A

3C

Operator Function

MOVZBW Move Zero-Extended Byte to Word

MOVZBL Move Zero-Extended Byte to Longword

MOVZWL Move Zero-Extended Word to Longword

Description: For MOVZBW, bits 7:0 of the destination operand are replaced

by the source operand; bits 15:8 are replaced by zero. For MOVZBL, bits 7:0

of the destination operand are replaced by the source operand; bits 31:8 are

replaced by zero. For MOVZWL, bits 15:0 of the destination operand are

replaced by the source operand; bits 31:16 are replaced by zero.

■ Multiply

Purpose: Used to perform arithmetic multiplication

Format: There are two formats—2 operand and 3 operand.

operator multiplier.rx y product, mx

operator multiplier.rx , multiplicand.rx, product, wx

Opcode Operator Function

84 MULB2 Multiply Byte 2 Operand

85 MULB3 Multiply Byte 3 Operand

A4 MULW2 Multiply Word 2 Operand

A5 MULW3 Multiply Word 3 Operand

C4 MULL2 Multiply Longword 2 Operand

C5 MULL3 Multiply Longword 3 Operand

44 MULF2 Multiply F_floating 2 Operand

45 MULF3 Multiply F_floating 3 Operand

64 MULD2 Multiply D_floating 2 Operand

65 MULD3 Multiply D_floating 3 Operand

44FD MULG2 Multiply G_floating 2 Operand

45FD MULG3 Multiply G_floating 3 Operand

64FD MULH2 Multiply H_floating 2 Operand

65FD MULH3 Multiply H_floating 3 Operand

9-51

Description: In 2-operand format, the product operand is multiplied by the

multiplier operand and the product operand is replaced by the result.

In 3-operand format, the multiplicand operand is multiplied by the multiplier

operand and the product operand is replaced by the result. In floating format,

the product operand result is rounded for both 2- and 3-operand formats.

■ Multiply Packed

Purpose: Used to multiply one packed decimal string by a second, result placed

in a third

Format:

MULP mulrlen.rw, mulradr.ab, muldlen.rw, muldadr.do, prodlen.rw,

prodadr.ab

Opcode Operator Function

23 MULP Multiply Packed

Description: The multiplicand string is specified by the multiplicand length

and multiplicand address operands. The multiplier string is specified by the

multiplier length and multiplier address operands. The product string speci¬

fied by the product length and product address operands. The multiplicand

string is multiplied by the multiplier string. The product string is replaced by

the result.

■ Polynomial Evaluation

Purpose: Used for fast calculation of math functions

Format: operator argument.rx, degree.rw, table address.ah

Opcode Operator Function

33 POLYF Polynomial Evaluation F_floating

75 POLYD Polynomial Evaluation D_ floating

55FD POLYG Polynomial Evaluation G_floating

75FD POLYH Polynomial Evaluation H_floating

Description: The table address operand points to a table of polynomial coeffi¬

cients. The coefficient of the highest order term of the polynomial is pointed

to by the table address operand. The table is specified with lower order coeffi¬

cients stored at increasing addresses. The data type of the coefficients is the

same as the data type of the argument operand.

9-52 ■ The Instruction Set

Evaluation is carried out by Horner’s method, and the contents of RO (Rl’RO

for POLYD and POLYG, R3’R2’Rl’RO for POLYH) are replaced by the result.

The result computed is

result = C [0] + X*(C[1] + X*(C[2] + ... X*C [d]))

where d = degree and X = arg. The unsigned word degree operand specifies

the highest numbered coefficient to participate in the evaluation. POLYH

requires four longwords on the stack to store arg in case the instruction is inter¬

rupted.

Pop Registers

Purpose: Used to restore multiple registers from stack

Format: POPR mask.rw

Opcode Operator Function

BA POPR Pop Registers

Description: The contents of registers whose number corresponds to set bits

in the mask operand are replaced by longwords popped from the stack. R[n] is

replaced if mask < n > is set. The mask is scanned from bit 0 to bit 14 and bit

15 is ignored.

Probe Accessibility

Purpose: Used to verify that arguments can be accessed

Format: operator mode.rb, len.rv/, base.2b

Opcode Operator Function

OC PROBER Probe Read Accessibility

OD PROBEW Probe Write Accessibility

Description: The PROBE instruction checks the read or write accessibility of

the first and last byte specified by the base address and the zero-extended

length. The bytes in between are not checked. System software must check all

pages between the two end bytes if they are to be accessed.

The protection is checked against the larger of the modes specified in bits

< 1:0> of the mode operand and the previous mode field of the PSL. Note

that probing with a mode operand of zero is equivalent to probing the mode

specified in PSL < previous-mode >.

9-53

NOTES

1. On the probe of a process virtual address, if the valid bit of

the system page table entry is zero, then a translation not

valid fault occurs. This allows for the demand paging of the

process page tables.

2. On the probe of a process virtual address, if the protection

field of the system page table entry indicates no access, then a

status of not-accessible is given. One no access page table

entry in the system map is equivalent to 128 no access page

table entries in the process map.

■ Push Address

Purpose: Calculates address of quantity

Format: operator source.ax

Opcode Operator Function

9F PUSHAB Push Address Byte

3F PUSHAW Push Address Word

DF PUSHAL Push Address Longword

DF PUSHAF Push Address F_floating

7F PUSHAQ Push Address Quadword

7F PUSHAD Push Address D_floating

7F PUSHAG Push Address G_floating

7FFD PUSHAH Push Address H_floating

7FFD PUSHAO Push Address Octaword

Description: The source operand is pushed on the stack. The context in which

the source operand is evaluated is given by the data type of the instruction.

The operand whose address replaces the destination operand is not refer¬

enced.

9-54 ■ The Instruction Set

Push Longword

Purpose: Used to push a longword source operand onto the stack pointer

Format: PUSHL src.rl

Opcode Operator Function

DD PUSHL Push Longword

Description: The longword source (src) operand is pushed onto the stack.

Push Registers

Purpose: Used to save multiple registers on stack

Format: PUSHR mask.rw

Opcode Operator Function

BB PUSHR Push registers

Description:The contents of registers whose number corresponds to set bits in

the mask operand are pushed on the stack as longwords. R[n] is pushed if mask

< n > is set. The mask is scanned from bit 14 to bit 0, and bit 15 is ignored.

Remove Entry from Queue

Purpose: Used to remove an entry from the head or tail of a queue

Format: REMQUE entry.ab, address.wl

Opcode Operator Function

OF REMQUE Remove Entry from Queue

Description: The queue entry specified by the entry operand is removed from

the queue. The address operand is replaced by the address of the entry

removed. If there was no entry in the queue to be removed, the condition code

V bit is set; otherwise, it is cleared. If the queue is empty at the end of this

instruction, the condition code Z-bit is set; otherwise, it is cleared. The

removal is a noninterruptible operation. Before performing any part of the

operation, the processor validates that the entire operation can be completed.

This ensures that if a memory management exception occurs, the queue is left

in a consistent state.

9-55

NOTES

1. Because the removal is noninterruptible, processes run¬

ning in kernel mode can share queues with interrupt service

routines.

2. The REMQUE instruction is implemented so the cooperat¬

ing software processes in a single processor may access a

shared list without additional synchronization if insertions

and removals are only at the head or tail of the queue.

3. During access validation, any access that cannot be com¬

pleted results in a memory management exception, even

though the queue removal is not started.

■ Remove Entry from Queue at Head, Interlocked

Purpose: Used to perform an interlocked remove of an entry from the head of

queue

Format: REMQHI header.aq, address.vA

Opcode Operator Function

5E REMQHI Remove Entry from Queue at Head, Interlocked

Description: The queue entry following the header is removed from the

queue. The address operand is replaced by the address of the entry removed.

If no entry was removed from the queue (because either there is nothing to

remove or secondary interlock failed), the condition code V bit is set; other¬

wise, it is cleared. If the interlock succeeded and the queue is empty at the end

of this instruction, the condition code Z-bit is set; otherwise, it is cleared. The

removal is interlocked to prevent concurrent interlocked insertions or

removals at the head or tail of the same queue by another process even in a

processor environment. The removal is a noninterruptible operation. Before

performing any part of the operation, the processor validates that the entire

operation can be completed. This ensures that if a memory management excep¬

tion occurs, the queue is left in a consistent state. If the instruction fails to

acquire the secondary interlock, the instruction sets condition codes and termi¬

nates without altering the queue.

NOTES

1. Because the removal is noninterruptible, processes run¬

ning in kernel mode can share queues with interrupt service

routines.

2. The REMQHI instruction is implemented so the cooperat¬

ing software processes in a processor may access a shared list

without additional synchronization.

9-56 ■ The Instruction Set

3. During access validation, any access that cannot be com¬

pleted results in a memory management exception even

though the queue removal is not started.

■ Remove Entry from Queue at Tail, Interlocked

Purpose: Used to perform an interlocked entry remove from the tail of a

queue

Format: REMQTI header.aq, address.wl

Opcode Operator Function

5F REMQTI Remove Entry from Queue Tail, Interlocked

Description: The queue entry preceding the header is removed from the

queue. The address operand is replaced by the address of the entry removed.

If no entry was removed from the queue (because either there is nothing to

remove or secondary interlock failed), the condition code V bit is set; other¬

wise, it is cleared. If the interlock succeeded and the queue is empty at the end

of this instruction, the condition code Z-bit is set; otherwise, it is cleared. The

removal is interlocked to prevent concurrent interlocked insertions or

removals at the head or tail of the same queue by another process even in a

processor environment. The removal is a noninterruptible operation. Before

performing any part of the operation, the processor validates that the entire

operation can be completed. This ensures that if a memory management excep¬

tion occurs, the queue is left in a consistent state. If the instruction fails to

acquire the secondary interlock, the instruction sets condition codes and termi¬

nates without altering the queue.

NOTES

1. Because the removal is noninterruptible, processes run¬

ning in kernel mode can share queues with interrupt service

routines.

2. The REMQTI instruction is implemented so the cooperat¬

ing software processes in a processor may access a shared list

without additional synchronization.

3. During access validation, any access that cannot be com¬

pleted results in a memory management exception even

though the queue removal is not started.

■ Return from Exception or Interrupt

Purpose: Used to exit from an exception or interrupt service routine and initi¬

ate a controlled return.

9-57

Format: REI

Opcode Operator Function

02 REI Return from Exception or Interrupt

Description: A longword is popped from the current stack and held in a tempo¬

rary PC. A second longword is popped from the current stack and held in a

temporary PSL. Validity of the popped PSL is checked. The current stack

pointer is saved and a new stack pointer is selected according to the new PSL

CURRENT— MODE and IS fields. The level of the highest-privilege AST is

checked against the current access mode to see whether a pending AST can be

delivered. Execution resumes with the instruction being executed at the time

of the exception or interrupt. Any instruction lookahead in the processor is

reinitialized.

The exception or interrupt service routine is responsible for restoring any reg¬

isters saved and removing any parameters from the stack.

■ Return from Procedure

Purpose: Used to transfer control from a procedure to the calling process

Format: RET

Opcode Operator Function

04 RET Return from Procedure

Description: The stack pointer (SP) is replaced by the frame pointer (FP) plus

4. A longword containing stack alignment bits in bits 31:30, a CALLS/CALLG

flag in bit 29, the low 12 bits of the procedure entry mask in bits 27:16, and a

saved PSW in bits 15:0 is popped from the stack and saved in a temporary

register. The program counter (PC), frame pointer (FP), and argument pointer

(AP) are replaced by longwords popped from the stack. A register restore mask

is formed from bits 27:16 of the temporary register. Scanning from bit 0 to

bit 11 of the restore mask, the contents of registers whose number is indicated

by set bits in the mask are replaced by longwords popped from the stack. SP is

incremented by bits 31:30 of the temporary register. PSW is replaced by bits

15:0 of the temporary register. If bit 29 in the temporary register is 1 (indicat¬

ing that the procedure was called by CALLS), a longword containing the num¬

ber of arguments is popped from the stack. Four times the unsigned value of

the low byte of this longword is added to SP and SP is replaced by the result.

The VMS Procedure Calling Software Standard and condition handling facil¬

ity assume that procedures that return a function value or a status code do so

in R0 or R0 and Rl.

9-58 • The Instruction Set

■ Return from Subroutine

Purpose: Used to return control from subroutine

Format: RSB

Opcode Operator Function

05 RSB Return from Subroutine

Description: The program counter (PC) is replaced by a longword removed

from the stack.

NOTE

RSB is used to return from subroutines called by the BSBB,

BSBW, and JSB instructions.

■ Rotate Longword

Purpose: Used to rotate integer

Format: ROTL count.rb, source, rl, destination. wl

Opcode Operator Function

9C ROTL Rotate Longword

Description: The source operand is rotated logically by the number of bits

specified by the count operand and the destination operand is replaced by the

result. The source operand is unaffected. A positive count operand rotates to

the left. A negative count operand rotates to the right. A 0 count operand

replaces the destination operand with the source operand.

■ Save Process Context

Purpose: Used to save register context

Format: SVPCTX

Opcode Operator Function

07 SVPCTX Save Process Context

Description: The process control block (PCB) is specified by the privileged reg¬

ister process control block base (PCBB). The general registers are saved into

the PCB. The PC and PSL currently on the top of the current stack are popped

and stored in the PCB. If a SVPCTX instruction is executed when the IS is

clear, then the IS is set, the interrupt stack pointer is activated, and the IPL is

maximized with 1 because of the switch to the interrupt stack. This instruc¬

tion can be executed only in kernel mode.

9-59

NOTES

1. The map, ASTLVL, and PME contents of the PCB are not

saved because they are rarely changed. Thus, not writing

them saves overhead.

2. Some processors keep a copy of each of the process stack

pointers in internal registers. In those processors, SVPCTX

stores the internal registers in the PCB. Processors that do

not keep a copy of all four process stack pointers in internal

registers keep only current access mode register in an internal

register and switch this with the PCB contents whenever the

current access mode field changes.

3. Between the SVPCTX instruction that saves state for one

process and the LDPCTX that loads the state of another, the

internal stack pointers may not be referenced by MFPR or

MTPR instructions. This implies that interrupt service rou¬

tines invoked at a priority higher than the lowest one used for

context switching must not reference the process stack

pointers.

■ Scan Characters

Purpose: Used to find (scan) a set of characters in character string

Format: SCANC /e/z.rw, adr.ab, tableadr.ab, mask.rb

Opcode Operator Function

2A SCANC Scan Characters

Description: The bytes of the string specified by the length and address oper¬

ands are successively used to index into a 256-byte table whose entry address

is specified by the table address operand. The byte selected from the table is

ANDed with the mask operand. The operation continues until the result of

the AND is nonzero or until all the bytes of the string have been exhausted. If

a nonzero AND result is detected, the condition code Z bit is cleared. Other¬

wise, the Z bit is set.

■ Skip Character

Purpose: Used to skip a character in a character string

Format: SKPC char.rb, len.rw, adr.ab

Opcode Operator Function

3B SKPC Skip Character

9-60 • The Instruction Set

Description: The character (char) operand is compared with the bytes of the

string specified by the length (len) and address (adr) operands. Comparison

continues until inequality is detected, or until all bytes of the string have been

compared. If inequality is detected, the condition code Z bit is cleared. Other¬

wise the Z bit is set.

■ Span Characters

Purpose: Used to skip (span) a set of characters in character string

Format: SPANC len.rw, adr.ab, tableadr.ab, mask.rb

Opcode Operator Function

2B SPANC Span Characters

Description: The bytes of the string specified by the length and address oper¬

ands are successively used to index into a 256-byte table whose entry address

is specified by the table address operand. The byte selected from the table is

ANDed with the mask operand. The operation continues until the result of

the AND is zero or until all the bytes of the string have been exhausted. If a

zero result is detected, the condition code Z bit is cleared. Otherwise, the Z

bit is set.

■ Subtract

Purpose: Used to perform arithmetic subtraction

Format: There are two formats—2 operand and 3 operand

operator subtrahend.rx, difference.mx

operator subtrahend.rx, minuend.rx,dif Jerence.wx

9-61

Opcode Operator Function

82 SUBB2 Subtract Byte 2 Operand

83 SUBB3 Subtract Byte 3 Operand

A 2 SUBW2 Subtract Word 2 Operand

A3 SUBW3 Subtract Word 3 Operand

C2 SUBL2 Subtract Longword 2 Operand

C3 SUBL3 Subtract Longword 3 Operand

42 SUBF2 Subtract F_floating 2 Operand

43 SUBF3 Subtract F_floating 3 Operand

62 SUBD2, Subtract D_floating 2 Operand

63 SUBD3 Subtract D_floating 3 Operand

42FD SUBG2 Subtract G_floating 2 Operand

43FD SUBG3 Subtract G_floating 3 Operand

62 FD SUBH2 Subtract H_floating 2 Operand

63FD SUBH3 Subtract H_floating 3 Operand

Description: In 2-operand format, the subtrahend operand is subtracted from

the difference operand and the difference operand is replaced by the result.

In 3-operand format, the subtrahend operand is subtracted from the minuend

operand and the difference operand is replaced by the result. In floating for¬

mat, the result is rounded.

■ Subtract One and Branch

Purpose: Used to decrement an integer loop count and loop

Format: operator index.ml, displ.bb

Opcode Operator Function

F4 SOBGEQ Subtract One and Branch Greater Than or
Equal to Zero

F5 SOBGTR Subtract One and Branch Greater Than Zero

Description: One is subtracted from the index operand and the index operand

is replaced by the result. On SOBGEQ, if the index operand is greater than or

equal to 0, the branch is taken. On SOBGTR, if the index operand is greater

than 0, the branch is taken. If the branch is taken, the sign-extended branch

displacement is added to the program counter (PC) and the PC is replaced by

the result.

9-62 ■ The Instruction Set

■ Subtract Packed

Purpose: Used to subtract one packed decimal string from another

Format: There are two formats—a 4-operand and a 6-operand format.

SUBP4 sublen.rw, subadr.ab, diflen.rvj, difadr.ab

SUBP6 sublen.rv/, subadr.sb, minlen.rw, minadr.ab, diflen.rvj, difadr.ab

Opcode Operator Function

22 SUBP4 Subtract Packed 4 Operand

23 SUBP6 Subtract Packed 6 Operand

Description: In 4-operand format, the subtrahend string is specified by sub-

trahend length and subtrahend address operands. The difference string is

specified by the difference length and difference address operands. The sub¬

trahend string is subtracted from the difference string and the difference

string is replaced by the result.

In 6-operand format, the subtrahend string is specified by the subtrahend

length and subtrahend address operands. The minuend string is specified by

the minuend length and minuend address operands. The difference string is

specified by the difference length and difference address operands. The sub¬

trahend string is subtracted from the minuend string. The difference string is

replaced by the result.

■ Subtract with Carry

Purpose: Used to perform extended-precision subtraction

Format: SBWC subtrahend, rl, difference .ml

Opcode Operator Function

D9 SWBC Subtract with Carry

Description: The subtrahend operand and the contents of the condition code

C bit are subtracted from the difference operand and the difference operand

is replaced by the result.

9-63

■ Test

Purpose: Used to perform an arithmetic compare of a scalar to 0

Format: operator src.rx

Opcode Operator Function

95 TSTB Test Byte

B5 TSTW Test Word

D5 TSTL Test Longword

53 TSTF Test F_floating

73 TSTD Test D_floating

53FD TSTG Test G_floating

73FD TSTH Test FI_floating

Description: The condition codes are affected according to the value of the
source (src) operand.

NOTE

On a floating reserved operand, the condition codes are unpre¬

dictable.

Chapter 10 ■ Architectural Subsetting

Architectural subsetting deals with those parts of the VAX architecture that

may be included as standard features of a processor, provided as options to the

processor, or omitted completely from the processor.

A processor implementing a subset of the VAX instructions, data types, or reg¬

isters, as described in this chapter, is known as a subset VAX processor. Of

the many subsets possible, the following four subsets are the most common.

■ Full VAX—includes all VAX data types, instructions, and registers.

■ Kernel subset—the minimum allowed subset.

■ Micro VAX I subset—as implemented by the Micro VAX I systems.

■ Micro VAX II subset—as implemented by the MicroVAX II chip.

■ Subsetting Rules

The features of the architecture that may be omitted are divided into several

groups, each with different rules for subsetting. Floating and string instruc¬

tions with their associated data types, compatibility mode instruction set, and

processor registers may be omitted in a subset implementation.

Floating-point Instructions

The first group consists of the D_floating, F_floating, G_floating, and

H— floating data types, and the associated instructions. Each of these data

types may be subset only as an entity. This means that if one of these data

types is included, all the instructions that operate on that data type must be

included. If an instruction in this group is omitted by a processor, execution

of the instruction results in a reserved instruction fault.

■ D_floating instructions (24)—ACBD, ADDD2, ADDD3, CMPD,

CVTBD, CVTDB, CVTDF, CVTDL, CVTDW, CVTFD, CVTLD, CVTRDL,

CVTWD, DIVD2, DIVD3, EMODD, MNEGD, MOVD, MULD2, MULD3,

POLYD, SUBD2, SUBD3, and TSTD.

■ F_floating instructions (22)—ACBF, ADDF2, ADDF3, CMPF, CVTBF,

CVTFB, CVTFL, CVTFW, CVTLF, CVTRFL, CVTWF, DIVF2, DIVF3,

EMODF, MNEGF, MOVF, MULF2, MULF3, POLYF, SUBF2, SUBF3, and

TSTF.

10-2 ■ Architectural Subsetting

■ G_floating instructions (24)—ACBG, ADDG2, ADDG3, CMPG,

CVTBG, CVTFG, CVTGB, CVTGF, CVTGL, CVTGW, CVTLG, CVTRGL,

CVTWG, DIVG2, DIVG3, EMODG, MNEGG, MOVG, MULG2, MULG3,

POLYG, SUBG2, SUBG3, and TSTG.

■ H_floating instructions (32)—ACBH, ADDH2, ADDH3, CLRH

(CLRO), CMPH, CVTBH, CVTDH, CVTFH, CVTGH, CVTHB, CVTHD,

CVTHF, CVTHG, CVTHL, CVTHW, CVTLH, CVTRHL, CVTWH,

DIVH2, DIVH3, EMODH, MNEGH, MOVAH (MOVAO), MOVH, MOVO,

MULH2, MULH3, PUSHAH (PUSHAO), POLYH, SUBH2, SUBH3, and

TSTH.

String Instructions

The second group consists of the string instructions and their associated data

types, including the decimal string, EDITPC, CRC, and character string

instructions, but not including MOVC3 or MOVC5 instructions. The MOVC3

and MOVC3 instructions are part of the kernel instruction set and may not be

omitted. Instructions in this group may be subset individually.

■ Character string instructions (10)—CMPC3, CMPC5, CRC, LOCC,

MATCHC, MOVTC, MOVTUC, SCANC, SKPC, and SPANC.

■ Decimal string instructions (17)—ADDP4, ADDP6, ASHP, CMPP3,

CMPP4, CVTLP, CVTPL, CVTPT, CVTTP, CVTPS, CVTSP, DIVP,

EDITPC, MOVP, MULP, SUBP4, and SUBP6.

If an instruction in this group is omitted, an attempt to execute the instruc¬

tion results in a subset-emulation exception.

Compatibility Mode Instruction Set

The third group consists of the compatibility mode instruction set. If compati¬

bility mode is omitted by a processor, the execution of an REI instruction

attempting to enter compatibility mode results in a reserved operand fault.

Processor Registers

The fourth group consists of processor registers. The registers described

below may be omitted from subset processors. If any of the registers named in

one of the following subgroups is included, all the registers in that subgroup

must be included.

■ Interval timer registers NICR, ICR, ICCS except for <IE>. The

ICCS < IE > register is part of the kernel subset and may not be omitted.

10-3

■ Time-of-Year clock register TODR.

■ Console registers RXCS, RXDB, TXCS, and TXDB.

■ Performance Monitor Enable register PME.

■ The Kernel Instruction Set

The kernel instruction set is defined by exception; it is those instructions that

may not be omitted. For convenience, the kernel set is listed here. There are

304 native mode instructions in the full VAX instruction set. Of these, 129

may be omitted, leaving 175 instructions in the kernel instruction set. Byte,

word, longword, and quadword operand sizes have been included in the kernel

instruction set. The octaword operand size has not been included. The follow¬

ing instructions are the kernel instruction set.

■ Address instructions (8)—MOVAB, MOVAL, MOVAQ, MOVAW,

PUSHAB, PUSHAL, PUSHAQ, and PUSHAW.

■ Branch and control instructions (39)—ACBB, ACBL, ACBW, AOBLEQ,

AOBLSS, BBC, BBCC, BBCCI, BBCS, BBS, BBSC, BBSS, BBSSI, BEQL,

BGEQ, BGEQU, BGTR, BGTRU, BLBC, BLBS, BNEQ, BRB, BRW, BSBB,

BSBW, BVC, BVS, CASEB, CASEL, CASEW, JMP, JSB, RSB, SOBGEQ,

and SOBGTR.

■ Character string instructions (2)—MOVC3 and MOVC5.

■ Instructions for use by operating systems (12)—CHME, CHMK, CHMS,

CHMU, HALT, LDPCTX, MFPR, MTPR, PROBER, PROBEW, REI, and

SVPCTX.

■ Integer arithmetic and logical instructions (89)—ADAWI, ADDB2,

ADDB3, ADDL2, ADDL3, ADDW2, ADDW3, ADWC, ASHL, ASHQ,

BICB2, BICB3, BICL2, BICL3, BICW2, BICW3, BISB2, BISB3, BISL2,

BISL3, BISW2, BISW3, BITB, BITL, BITW, CLRB, CLRL, CLRQ, CLRW,

CMPB, CMPL, CMPW, CVTBL, CVTBW, CVTLB, CVTLW, CVTWB,

CVTWL, DECB, DECL, DECW, DIVB2, DIVB3, DIVL2, DIVL3, DIVW2,

DIVW3, EDIV, EMUL, INCB, INCL, INCW, MCOMB, MCOML,

MCOMW, MNEGB, MNEGL, MNEGW, MOVB, MOVL, MOVQ, MOVW,

MOVZBL, MOVZBW, MOVZWL, MULB2, MULB3, MULL2, MULL3,

MULW2, MULW3, PUSHL, ROTL, SBWC, SUBB2, SUBB3, SUBL2,

SUBL3, SUBW2, SUBW3, TSTB, TSTL, TSTW, XORB2, XORB3, XORL2,

XORL3, XORW2, and XORW3.

10-4 ■ Architectural Subsetting

- Miscellaneous instructions (9)—BICPSW, BISPSW, BPT, INDEX,

MOVPSL, NOP, POPR, PUSHR, and XFC.

■ Procedure call instructions (3)—CALLG, CALLS, and RET.

■ Queue instructions (6)—INSQHI, INSQTI, INSQUE, REMQHI,

REMQTI, and REMQUE.

■ Variable length bit field instructions (7)—CMPV, CMPZV, EXTV,

EXTZV, FFC, FFS, and INSV.

Instruction Emulation

Subset VAX processors and their operating systems cooperate to support emu¬

lation of those instructions that are omitted from the processor’s instruction

set. Programs running under the operating system can make use of these

instructions as though they were supported directly by the processor. The pro¬

cess of emulating an omitted instruction depends on the instruction type.

Emulation of string instructions is assisted by the processor, through the

instruction emulation exception. Emulation of compatibility mode instruc¬

tions and floating point instructions is done entirely by software.

Micro VAX I Systems

The Micro VAX I is the first subset VAX system. There are two versions of the

subset—one that includes F_floating and G_floating instructions, and

one that includes F_floating and D_floating instructions. Neither version

includes H_floating instructions. The MicroVAX I processor includes some

of the optional string instructions (CMPC3, LOCC, SCANC, SKPC, and

SPANC), but does not include compatibility mode.

MicroVAX II Systems

MicroVAX II is the first subset VAX system with the processor on a single

chip. It includes the F_floating, D_floating, and G_floating instruc¬

tions in an optional floating-point unit (a separate chip), but does not include

the H_floating instructions. MicroVAX II includes none of the optional

string instructions. It does not include optional processor registers or compati¬

bility mode.

Chapter 11 ■ PDP-11 Compatibility Mode

*

During the design of the VAX computer architecture, Digital’s engineers were

acutely aware of the need to establish a high degree of compatibility with the

large, well-established PDP-11 computer family. VAX systems represent the

natural growth direction for many installations using PDP-11 machines and

programs. It was important that VAX machines display selected compatibility

features for good reasons—to ease the growth, to quicken program transition,

and to protect customer investment. Also, VAX machines had to provide com¬

patibility for people who would take advantage of its excellent program devel¬

opment tools. These tools are used to create and test programs that are to be

run on PDP-11 systems. PDP-11 compatibility mode is now an option. VAX

processors that implement compatibility mode do so as described in this chap¬

ter. Operating system software may emulate compatibility mode on proces¬

sors that omit it. For details of the PDP-11 instruction set, see the PDP-11

Architecture Handbook.

NOTE

In this chapter, references to compatibility mode mean the

PDP-11 compatibility mode of operation. References to

native mode mean the VAX native mode of operation.

The PDP-11 compatibility mode makes a VAX computer look like a PDP-11

computer running PDP-11 instructions. Naturally, there are some restrictions

and requirements. A VAX computer treats compatibility mode programs like

other processes, and can run them in its multiprogramming environment

along with native mode programs. The VAX computer should not be thought

of as existing in one state or another, but rather as capable of handling both

modes as needed.

If you are considering a VAX system for growth and for host program develop¬

ment, you will find that it provides useful compatibility with PDP-11 systems

already in use or others that might be added. As a powerful link joining PDP-

11 computers and VAX computers, compatibility mode can help you expand

your computing resources efficiently. And programs that cannot take advan¬

tage of compatibility mode, for one reason or another, usually can be fixed

easily and quickly.

What follows in this chapter is a fairly detailed review of the powers and the

restrictions of the compatibility mode. Should you need a greater depth of

information, your Digital Sales Representative or Software Specialist can sup¬

ply it for you.

11-2 • PDP-11 Compatibility Mode

■ PDP-11 User Environment Emulation

Compatibility mode hardware, in conjunction with a compatibility mode soft¬

ware executive (which runs in native mode), can emulate the environment pro¬

vided to user programs on a PDP-11 system. But this environment excludes

from a complete PDP-11 the normal operation of the following features:

1. Privileged instructions such as HALT and RESET.

2. Special instructions such as traps and WAIT.

3. Access to internal processor registers (for example, processor status word

and console switch register).

4. Direct access to trap and interrupt vectors.

5. Direct access to I/O devices. (PDP-11 compatibility mode programs can

directly reference I/O devices if and only if proper mapping has been estab¬

lished by native mode software.)

6. Interrupt servicing.

7. Stack overflow protection.

8. Alternate general register sets.

9. The PDP-11 processor kernel and supervisor modes are not supported.

The user mode is the only mode supported in PDP-11 compatibility mode.

10. Floating-point instructions.

Compatibility mode architecture is divided into two parts. The first part is

the PDP-11 environment provided by the VAX hardware. Details of the opera¬

tion of PDP-11 compatible operations can be found in the PDP-11 Architec¬

ture Handbook. The second part is the hardware provided in the VAX

architecture that enable the implementation of various compatibility mode

executives. This part is considered a subset of the VAX System Architecture.

General Registers
All the PDP-11 general registers and addressing modes are in the compatibil¬

ity mode. Side effects caused by a destination address calculation have no

effect on source values (except in JSR instructions), and autoincrement modes

in JMP and JSR do not affect the new program counter. However, side effects

caused by a source address calculation affect the value of a register used for

destination address calculation. All PDP-11 addresses are 16 bits long. In com¬

patibility mode, a 16-bit PDP-11 address is zero-extended to 32 bits.

The operands of some PDP-11 instructions are implied by the instruction type

while others are specified as part of the instruction. Address mode operand

specifiers include a 3-bit mode field specifying one of eight modes—

autodecrement, autodecrement deferred, autoincrement, autoincrement

deferred, index, index deferred, register, and register deferred.

11-3

Compatibility mode registers 0 through 6 are bits 13 through 0 of VAX gen¬

eral registers 0 through 6, respectively. Compatibility mode register 7 (pro¬

gram counter) is bit 13 through 0 of VAX general register 13. VAX registers 8

through 14 (stack pointer) are not affected by compatibility mode. When

entering compatibility mode, VAX register 7 and the upper halves of registers

0 through 6 and 13 are ignored. When an exception or interrupt occurs from

compatibility mode, VAX register 7 is unpredictable and the upper halves of

RO through R6 and the stacked R15 (PC) are zero. There are no floating accu¬

mulators (registers). That is why there are no FP11 floating point instructions

in compatibility mode.

Stack Pointer Register

As in the PDP-11 processors, general register R6 is used as the stack pointer

by certain instructions. However, it is not used by the hardware for any excep¬

tions or interrupts, nor is there any stack overflow protection in compatibility

mode.

Processor Status Word

A subset of the PDP-11 processor status word is available in compatibility

mode. The format of the compatibility mode processor status word (PSW) is

shown in Figure 11-1. Compatibility mode processor status word bits 0

through 4 have the same meaning as do the VAX processor status longword

bits 0 through 4. They are the trace bit and the condition code bits.

Figure 11-1 ■ Compatibility Mode Processor Status Word

The processor status word can be affected only by the RTI and RTT condition

code instructions. When an RTI or RTT instruction is executed, bits 13

through 3 in the saved processor status word (PSW) on the stack are ignored.

11-4 • PDP-11 Compatibility Mode

Compatibility Mode Instructions

The compatibility mode instructions are listed in Table 11-1. Table 11-2 lists

the trap instructions that cause the VAX processor to enter native mode. In

native mode, either the complete trap may be serviced or the instruction may

be simulated. Some instructions (such as WAIT and RESET) are considered

reserved instructions in compatibility mode. When these instructions are

encountered, they cause a fault to native mode. Table 11-3 lists the reserved

instructions. In addition, all other opcodes not defined in Tables 11-1 and

11-2 result in a fault to native mode. No floating-point instructions are

included in compatibility mode.

Table 11-1 ■ PDP-11 Compatibility Mode Instructions

Opcode (octal) Mnemonic Name

000002 RTI Return from Interrupt

000006 RTT Return from Trap

0001DD JMP Jump

00020R RTS Return from Subroutine

000240-000277 Condition Codes

0003DD SWAB Swap Bytes

000400-003777 Branches Branch

100000-103777 Branches Branch

004RDD JSR Jump to Subroutine

X050DD CLR(B) Clear

X051DD COM(B) Complement

X052DD INC(B) Increment

X053DD DEC(B) Decrement

X054DD NEG(B) Negate

X055DD ADC(B) Add Carry

X056DD SBC(B) Subtract Carry

X057DD TST(B) Test

X060DD ROR(B) Rotate Right

X061DD ROL(B) Rotate Left

X062DD ASR(B) Arithmetic Shift Right

X063DD ASL(B) Arithmetic Shift Left

0065SS MFPI* Move from Previous Instruction
Space

11-5

Table 11-1 ■ PDP-11 Compatibility Mode Instructions (Cont.)

Opcode (octal) Mnemonic Name

0066DD MTPI* Move to Previous Instruction Space

1065SS MFPD* Move from Previous Data Space

1066DD MTPD* Move to Previous Data Space

0067DD SXT Sign Extend Word

070RSS MUL Multiply

071RSS DIV Divide

072RSS ASH Arithmetic Shift

073RSS ASHC Arithmetic Shift Combined

074RSS XOR Exclusive OR

077RNN SOB Subtract One and Branch

X1SSDD MOV(B) Move

X2SSSS CMP(B) Compare

X3SSSS BIT(B) Bit Test

X4SSDD BIC(B) Bit Clear

X5SSDD BIS(B) Bit Set

06SSDD ADD Add

16SSDD SUB Subtract

Legend

DD Destination operand specifier

R Register specifier

SS Source operand specifier

X Operation specifier—0 for word, 1 for byte

These instructions execute exactly as they would on a PDP-11 in user

mode with Instruction and Data space overmapped. More specifically,

they ignore the previous access level and act as if they were PUSH and

POP instructions referencing the current stack.

11-6 ■ PDP-11 Compatibility Mode

Table 11-2 ■ PDP-11 Compatibility Mode Trap Instructions

Opcode (octal) Mnemonic

000003 BPT

000004 IOT

104000-104377 EMT

104400-104777 TRAP

Table 11-3 ■ PDP-11 Compatibility Mode Reserved Instructions

Opcode (octal) Mnemonic

000000 HALT

000001 WAIT

000003 RESET

000007 MFPT

00023N SPL

0064NN MARK

0070DD CSM

07500R FADD - FIS

07501R FSUB - FIS

07502R FMUL-FIS

07503R FDIV - FIS

076XXX Extended Instructions

1064SS MTPS

1067DD MFPS

17XXXX FP11 Floating Point

■ Entering and Leaving PDP-11 Compatibility Mode

Compatibility mode is entered when an REI instruction is executed with the

compatibility mode bit of the processor status longword (PSL) on the stack is

set. Other bits in the PSL either have the same effect as in native mode or are

required to have specific values in compatibility mode. The effects of other

bits in the PSL are listed in Table 11-4.

11-7

Table 11-4 ■ Effects of Processor Status Longword Bits

Bit Effect

C Condition Code

CUR MOD Reserved operand fault if not 3

DV Reserved operand fault if not zero

FPD Reserved operand fault if not zero

FU Reserved operand fault if not zero

IPL Reserved operand fault if not zero

IS Reserved operand fault if not zero

IV Reserved operand fault if not zero

N Condition Code

PRV MOD Reserved operand fault if not 3

T Trace bit

TP Trace pending bit

V Condition Code

Z Condition Code

Native mode is reentered from compatibility mode on an exception or an inter¬

rupt. The processor status longword (PSL) pushed on the stack has all the bits

that cause reserved operand faults set to the appropriate state.

Note that when an RTI or RTT instruction is executed in compatibility mode,

the 11 high bits of the processor status word (PSW) are ignored. But when the

PSW is restored as part of the PSL when going from native to compatibility

mode, those bits must be zero or a reserved operand fault will occur.

■ Memory Management

The PDP-11 uses 16-bit byte addresses. For this reason, compatibility mode

programs are confined to execute in the first 64 Kbytes of the process part of

virtual address space. There is a one-to-one correspondence between a compati¬

bility mode virtual address and its VAX counterpart. For example, virtual

address 0 references the same location in both modes. A compatibility mode

address is interpreted as shown in Figure 11-2.

11-8 • PDP-11 Compatibility Mode

3

i

11 oo o
6 5 9 8 0

0 PAGE DISPLACEMENT

Figure 11-2 ■ Compatibility Mode Address Interpretation

The PDP-11 computers can provide different access protection to different

segments of memory. PDP-11 segments are in 8-block increments. VAX seg¬

ments are 512-byte pages. This is done because protection is specified by

pages in the VAX architecture. (One VAX page equals eight PDP-11 blocks.)

The memory management system protects and relocates compatibility mode

addresses in the normal manner. Thus, all of the memory management mecha¬

nisms available in native mode are available to the compatibility mode execu¬

tive for managing both the virtual and physical memory of compatibility

mode programs. All the exception conditions that can be caused by memory

management in native mode can also occur when relocating a compatibility

mode address.

Most of the features of the PDP-11 memory management hardware affecting

the user environment can be simulated with the VAX memory management

system. Table 11-5 provides a general description of how this can be done.

Table 11-6 demonstrates how a PDP-11 environment can be created using the

concepts in Table 11-5. There are 8 segments. Segments 0,1, and 2 are pro¬

gram segments; 3 is unused; 4 and 5 are stack; 6 and 7 are read/write data.

11-9

Table 11-5 ■ PDP-11 Memory Management Simulation

PDP-11 Memory Management
Feature

VAX Simulation Method

Eight segments per user Eight segments can be simulated by

dividing the 128 pages of the compati¬

bility mode virtual address space into

eight logical groups of 16 pages each

having possibly different protection.

Segment size from 64 bytes to 8

Kbytes (1 to 128 blocks) in 64-byl

increments, using contiguous
memory

Segment size from 512 bytes to 8

:e Kbytes (1 to 16 pages) in 512-byte (1

page) increments, using discontiguous
memory.

Forward growing segments

(Expand Direction 0)
Can be simulated using page table

entries specifying no access for those
pages that are not allocated.

Backward growing segments

(Expand Direction 1)
Can be simulated using page table

entries specifying no access for those

pages that are not allocated.

Segments begin on any 64-byte
boundary

Segments begin on any 512-byte
boundary.

Table 11-6 ■ Creating a PDP-11 Environment

PDP-11 Environment VAX Page Table

Segment
Number

Size Expand

(bytes) Direction
Access Page Access

Type Type

0 8K Up Read only 0-15 Read only

1 8K Up Readonly 16-31 Readonly

2 256 Up Read only 32 Read only

3 0 None None 33-77 No Access

4 IK Down Read/Write 78-79 Read/Write

5 8K Down Read/Write 80-95 Read/Write

6 8K Up Read/Write 96-111 Read/Write

7 2K Up Read/Write 112-115 Read/write

116-127 No access

11-10 ■ PDP-11 Compatibility Mode

Exceptions and Interrupts

All interrupts and exception conditions that occur while the machine is in com¬

patibility mode cause the machine to enter native mode. Note that this

includes backing up instruction side effects if necessary. The following excep¬

tion conditions are specific to compatibility mode. All these exceptions create

a three-longword frame on the kernel stack containing a processor status long-

word (PSL), program counter (PC), and one longword of trap-specific informa¬

tion. Bits 15 through 0 of this longword contain a code indicating the specific

type of trap and bits 31 through 16 are zero. No compatibility mode excep¬

tion conditions result in traps.

Tracing in Compatibility Mode

A compatibility mode trace fault occurs at the beginning of an instruction

when the trace bit is set in the processor status word at the beginning of the

prior instruction. On trace faults, a 2-longword kernel stack frame is created.

The frame contains the processor status longword and the program counter.

The interrupt priority level (IPL) and interrupt stack (IS) bits are 0, and the

compatibility mode (CM) bit is 1 in the stacked processor status longword.

Compatibility mode trace faults use the same vector as native mode trace

fault. In fact, the rules for trace fault generation in compatibility mode are

identical to those for native mode. However, an odd address abort for an

instruction fetch may precede the trace fault for that instruction. There are

two ways to set the trace bit at the beginning of a compatibility mode instruc¬

tion.

1. An RTT/RTI instruction is executed in compatibility mode and the trace

bit in the processor status word image on the stack is set. In this case, the

next instruction is executed and a trace fault is taken after that instruc¬

tion. (The next instruction is the one pointed to by the program counter on

the stack.)

2. An REI instruction is executed in native mode under the following condi¬

tions. The instruction has both the trace bit and the compatibility mode

bit set and the trace pending bit clear in the saved processor status long¬

word image on the stack. Again, one instruction is executed, and the trace

trap is taken. (The operations that occur as a function of these conditions

are the same whether or not compatibility mode is being entered from the

REI instruction.)

11-11

■ Unimplemented PDP-11 Traps

Some traps that occur in PDP-11 systems are not implemented in VAX sys¬

tems PDP-11 compatibility mode.

1. There is no stack overflow trap. Stack overflow can be provided by the

compatibility mode executive using the memory management mecha¬

nisms.

2. There is no concept of a double error trap in compatibility mode. This is

because the first error always returns the machine to native mode.

3. All other trap conditions such as power failure, memory parity, and mem¬

ory management traps cause the machine to enter native mode.

■ Input/output References

Instruction stream, data read, or data write references to I/O space are not

allowed. The results are unpredictable if I/O space is referenced from compati¬

bility mode.

■ Processor Registers

The only processor register available in compatibility mode is part of the pro¬

cessor status word, and it may be referenced only with the condition code

instructions, RTI and RTT. Access to all other registers must be done in native

mode.

■ Program Synchronization

All PDP-11 systems guarantee that read-modify-write operations to I/O

device registers are interlocked. That is, the device can determine at the time

of the read that the same register will be written as the next bus cycle. This

synchronization also works in memory on most PDP-11 systems. In compatibil¬

ity mode, instructions that have modify destinations perform this synchroniza¬

tion for UNIBUS I/O device registers but never for memory. Compatibility

mode procedures can write data that is to be subsequently executed as an

instruction without requiring additional synchronization.

Appendix A ■ Powers of Binary and Hexadecimal Numbers

Powers of Binary Numbers

Power Number

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1,024

11 2,048

12 4,096

13 8,192

14 16,384

15 32,768

16 65,536

17 131,072

18 262,144

19 524,288

20 1,048,576

21 2,097,152

22 4,194,304

23 8,388,608

24 16,777,216

25 33,554,432

26 67,108,864

27 134,217,728

Appendix A-2 ■ Powers of Binary and Hexadecimal Numbers

Powers of Binary Numbers (Cont.)

Power Number

28 268,433,456

29 536,870,912

30 1,073,741,824

31 2,147,483,648

32 4,294,967,296

33 8,589,934,592

34 17,179,869,184

33 34,359,738,368

Powers of Hexadecimal Numbers

Power Number

0 1

1 16

2 256

3 4,096

4 65,536

3 1,048,576

6 16,777,216

7 268,435,456

8 4,294,967,296

9 68,719,476,736

10 1,099,511,627,776

11 17,592,186,044,416

12 281,474,976,710,656

13 4,503,599,627,370,496

14 72,057,594,037,927,936

13 1,152,921,504,606,846,976

1

Appendix B ■ List of Instructions by Mnemonic

Mnemonic Instruction Opcode

ACBB Add compare and branch byte 9D

ACBD Add compare and branch D floating 6F

ACBF Add compare and branch F floating 4F

ACBG Add compare and branch G floating 4FFD

ACBH Add compare and branch H floating 6FFD

ACBL Add compare and branch longword FI

ACBW Add compare and branch word 3D

ADAWI Add aligned word, interlocked 58

ADDB2 Add byte 2 operand 80

ADDB3 Add byte 3 operand 81

ADDD2 Add D floating 2 operand 60

ADDD3 Add D floating 3 operand 61

ADDF2 Add F floating 2 operand 40

ADDF3 Add F floating 3 operand 41

ADDG2 Add G floating 2 operand 40FD

ADDG3 Add G floating 3 operand 41FD

ADDH2 Add H floating 2 operand 60FD

ADDH3 Add H floating 3 operand 61FD

ADDL2 Add longword 2 operand CO

ADDL3 Add longword 3 operand Cl

ADDP4 Add packed 4 operand 20

ADDP6 Add packed 6 operand 21

ADDW2 Add word 2 operand AO

ADDW3 Add word 3 operand Al

ADWC Add with carry D8

AOBLEQ Add one and branch on less or equal F3

AOBLSS Add one and branch on less F2

ASHL Arithmetic shift longword 78

Appendix B-2 ■ List of Instructions by Mnemonic

Mnemonic Instruction Opcode

ASHP Arithmetic shift and round packed F8

ASHQ Arithmetic shift quadword 79

BBC Branch on bit clear El

BBCC Branch on bit clear and clear E5

BBCCI Branch on bit clear and clear, interlocked E7

BBCS Branch on bit clear and set E3

BBS Branch on bit set EO

BBSC Branch on bit set and clear E4

BBSS Branch on bit set and set E2

BBSSI Branch on bit set and set, interlocked E6

BCC Branch on carry clear IE

BCS Branch on carry set IF

BEQL Branch on equal 13

BEQLU Branch on equal, unsigned 13

BGEQ Branch on greater or equal 18

BGEQU Branch on greater or equal, unsigned IE

BGTR Branch on greater 14

BGTRU Branch on greater, unsigned 1A

BICB2 Bit clear byte 2 operand 8A

BICB3 Bit clear byte 3 operand 8B

BICL2 Bit clear longword 2 operand CA

BICL3 Bit clear longword 3 operand CB

BICPSW Bit clear processor status word B9

BICW2 Bit clear word 2 operand AA

BICW3 Bit clear word 3 operand AB

BISB2 Bit set byte 2 operand 88

BISB3 Bit set byte 3 operand 89

BISL2 Bit set longword 2 operand C8

BISL3 Bit set longword 3 operand C9

BISPSW Bit set processor status word B8

BISW2 Bit set word 2 operand A8

BISW3 Bit set word 3 operand A9

BITB Bit test byte 93

Appendix B-3

Mnemonic Instruction Opcode

BITL Bit test longword D3

BITW Bit test word B3

BLBC Branch on low bit clear E9

BLBS Branch on low bit set E8

BLEQ Branch on less or equal 15

BLEQU Branch on less or equal, unsigned IB

BLSS Branch on less 19

BLSSU Branch on less, unsigned IF

BNEQ Branch on not equal 12

BNEQU Branch on not equal, unsigned 12

BPT Breakpoint fault 03

BRB Branch with byte displacement 11

BRW Branch with word displacement 31

BSBB Branch to subroutine with byte displacement 10

BSBW Branch to subroutine with word displacement 30

BUGL Bugcheck longword FDFF

BUGW Bugcheck word FEFF

BVC Branch on overflow clear 1C

BVS Branch on overflow set ID

CALLG Call with general argument list FA

CALLS Call with stack FB

CASE BCase byte 8F

CASEL Case longword CF

CASEW Case word AF

CHME Change mode to executive BD

CHMK Change mode to kernel BC

CHMS Change mode to supervisor BE

CHMU Change mode to user BF

CLRB Clear byte 94

CLRD Clear D floating 1C

CLRF Clear F floating D4

CLRG Clear G floating 1C

CLRH Clear H floating 7CFD

Appendix B-4 • List of Instructions by Mnemonic

Mnemonic Instruction Opcode

CLRL Clear longword D4

CLRO Clear octaword 7CFD

CLRQ • Clear quadword 7C

CLRW Clear word B4

CMPB Compare byte 91

CMPC3 Compare character 3 operand 29

CMPC3 Compare character 5 operand 2D

CMPD Compare D floating 71

CMPF Compare F floating 31

CMPG Compare G floating 31FD

CMPH Compare H floating 71FD

CMPL Compare longword D1

CMPP3 Compare packed 3 operand 33

CMPP4 Compare packed 4 operand 37

CMPV Compare field EC

CMPW Compare word B1

CMPZV Compare zero-extended field ED

CRC Calculate cyclic redundancy check OB

CVTBD Convert byte to D floating 6C

CVTBF Convert byte to F floating 4C

CVTBG Convert byte to G floating 4CFD

CVTBH Convert byte to H floating 6CFD

CVTBL Convert byte to longword 98

CVTBW Convert byte to word 99

CVTDB Convert D floating to byte 68

CVTDF Convert D floating to F floating 76

CVTDH Convert D floating to H floating 32FD

CVTDL Convert D floating to longword 6A

CVTDW Convert D floating to word 69

CVTFB Convert F floating to byte 48

CVTFD Convert F floating to D floating 36

CVTFG Convert F floating to G floating 99FD

CVTFH Convert F floating to H floating 98FD

Appendix B-5

Mnemonic Instruction Opcode

CVTFL Convert F floating to longword 4A

CVTFW Convert F floating to word 49

CVTGB Convert G floating to byte 48FD

CVTGF Convert G floating to F floating 33FD

CVTGH Convert G floating to H floating 56FD

CVTGL Convert G floating to longword 4AFD

CVTGW Convert G floating to word 49FD

CVTHB Convert H floating to byte 68FD

CVTHD Convert H floating to D floating F7FD

CVTHF Convert H_floating to F_floating F6FD

CVTHG Convert H floating to G floating 76FD

CVTHL Convert H floating to longword 6AFD

CVTHW Convert H_floating to word 69FD

CVTLB Convert longword to byte F6

CVTLD Convert longword to D floating 6E

CVTLF Convert longword to F floating 4E

CVTLG Convert longword to G floating 4EFD

CVTLH Convert longword to H floating 6EFD

CVTLP Convert longword to packed F9

CVTLW Convert longword to word F7

CVTPL Convert packed to longword 36

CVTPT Convert packed to trailing numeric 24

CVTPS Convert packed to leading separate numeric 08

CVTRDL Convert rounded D floating to longword 6B

CVTRFL Convert rounded F floating to longword 4B

CVTRGL Convert rounded G floating to longword 4BFD

CVTRHL Convert rounded FI floating to longword 6BFD

CVTSP Convert leading separate numeric to packed 09

CVTTP Convert trailing numeric to packed 26

CVTWB Convert word to byte 33

CVTWD Convert word to D floating 6D

CVTWF Convert word to F floating 4D

CVTWG Convert word to G floating 4DFD

Appendix B-6 ■ List of Instructions by Mnemonic

Mnemonic Instruction Opcode

CVTWH Convert word to H floating 6DFD

CVTWL Convert word to longword 32

DECB Decrement byte 97

DECL Decrement longword D7

DECW Decrement word B7

DIVB2 Divide byte 2 operand 86

DIVB3 Divide byte 3 operand 87

DIVD2 Divide D floating 2 operand 66

DIVD3 Divide D floating 3 operand 67

DIVF2 Divide F floating 2 operand 46

DIVF3 Divide F floating 3 operand 47

DIVG2 Divide G floating 2 operand 46FD

DIVG3 Divide G floating 3 operand 47FD

DIVH2 Divide H floating 2 operand 66FD

DIVH3 Divide H floating 3 operand 67FD

DIVL2 Divide longword 2 operand C6

DIVL3 Divide longword 3 operand C7

DIVP Divide packed 27

DIVW2 Divide word 2 operand A6

DIVW3 Divide word 3 operand A7

EDITPC Edit packed to character 38

EDIV Extended divide 7B

EMODD Extended modulus D floating 74

EMODF Extended modulus F floating 54

EMODG Extended modulus G floating 54FD

EMODH Extended modulus H floating 74FD

EMUL Extended multiply 7A

EXTV Extract field EE

EXTZV Extract zero-extended field EF

FFC Find first clear bit EB

FFS Find first set bit EA

HALT Halt 00

INCB Increment byte 96

Appendix B- 7

Mnemonic Instruction Opcode

INCL Increment longword D6

INCW Increment word B6

INDEX Compute index OA

INSQHI Insert into queue head, interlocked 3C

INSQTI Insert into queue tail, interlocked 3D

INSQUE Insert into queue OE

INSV Insert field FO

JMP Jump 17

JSB Jump to subroutine 16

LDPCTX Load process context 06

LOCC Locate character 3A

MATCHC Match characters 39

MCOMB Move complemented byte 92

MCOML Move complemented longword D2

MCOMW Move complemented word B2

MFPR Move from processor register DB

MNEGB Move negated byte 8E

MNEGD Move negated D floating 72

MNEGF Move negated F floating 32

MNEGG Move negated G floating 32FD

MNEGH Move negated H floating 72FD

MNEGL Move negated longword CE

MNEGW Move negated word AE

MOVAB Move address of byte 9E

MOVAD Move address of D floating 7E

MOVAF Move address of F floating DE

MOVAG Move address of G floating 7E

MOVAH Move address of H floating 7EFD

MOVAL Move address of longword DE

MOVAO Move address of octaword 7EFD

MOVAQ Move address of quadword 7E

MOVAW Move address of word 3E

MOVB Move byte 90

Appendix B-8 • List of Instructions by Mnemonic

Mnemonic Instruction Opcode

MOVC 3 Move character 3 operand 28

MOVC5 Move character 5 operand 2C

MOVD Move D floating 70

MOVF Move F floating 50

MOVG Move G floating 50FD

MOVH Move H floating 70FD

MOVL Move longword DO

MOVO Move octaword 7DFD

MOVP Move packed 34

MOVPSL Move processor status longword DC

MOVQ Move quadword 7D

MOVTC Move translated characters 2E

MOVTUC Move translated until character 2F

MOVW Move word BO

MOVZBL Move zero-extended byte to longword 9A

MOVZBW Move zero-extended byte to word 9B

MOVZWL Move zero-extended word to longword 3C

MTPR Move to processor register DA

MULB2 Multiply byte 2 operand 84

MULB3 Multiply byte 3 operand 85

MULD2 Multiply D floating 2 operand 64

MULD3 Multiply D floating 3 operand 65

MULF2 Multiply F floating 2 operand 44

MULF3 Multiply F floating 3 operand 45

MULG2 Multiply G floating 2 operand 44FD

MULG3 Multiply G floating 3 operand 45FO

MULH2 Multiply H floating 2 operand 64FD

MULH3 Multiply H floating 3 operand 65FD

MULL2 Multiply longword 2 operand C4

MULL3 Multiply longword 3 operand C5

MULP Multiply packed 25

MULW2 Multiply word 2 operand A4

MULW3 Multiply word 3 operand A5

Appendix B-9

Mnemonic Instruction Opcode

NOP No operation 01

POLYD Polynomial evaluate D floating 75

POLYF Polynomial evaluate F floating 55

POLYG Polynomial evaluate G floating 55FD

POLYH Polynomial evaluate H floating 75FD

POPR Pop registers BA

PROBER Probe read access OC

PROBEW Probe write access 0D

PUSHAB Push address byte 9F

PUSHAD Push address of D floating 7F

PUSHAF Push address of F floating DF

PUSHAG Push address of G floating 7F

PUSHAH Push address of H floating 7FFD

PUSHAL Push address of longword DF

PUSHAO Push address of octaword 7FFD

PUSHAQ Push address of quadword 7F

PUSHAW Push address of word 3F

PUSHL Push longword DD

PUSHR Push registers BB

REI Return from exception or interrupt 02

REMQHI Remove from queue head, interlocked 5E

REMQTI Remove from queue tail, interlocked 5F

REMQUE Remove from queue OF

RET Return from called procedure 04

ROTL Rotate longword 9C

RSB Return from subroutine 05

SBWC Subtract with carry D9

SCANC Scan for character 2A

SKPC Skip character 3B

SOBGEQ Subtract one and branch on greater or equal F4

SOBGTR Subtract one and branch on greater F5

SPANC Span characters 2B

SUBB2 Subtract byte 2 operand 82

Appendix B-10m List of Instructions by Mnemonic

Mnemonic Instruction Opcode

SUBB3 Subtract byte 3 operand 83

SUBD2 Subtract D floating 2 operand 62

SUBD3 Subtract D floating 3 operand 63

SUBF2 Subtract F floating 2 operand 42

SUBF3 Subtract F floating 3 operand 43

SUBG2 Subtract G floating 2 operand 42FD

SUBG3 Subtract G floating 3 operand 43FD

SUBH2 Subtract H floating 2 operand 62FD

SUBH3 Subtract H floating 3 operand 63FD

SUBL2 Subtract longword 2 operand C2

SUBL3 Subtract longword 3 operand C3

SUBP4 Subtract packed 4 operand 22

SUBP6 Subtract packed 6 operand 23

SUBW2 Subtract word 2 operand A2

SUBW3 Subtract word 3 operand A3

SVPCTX Save process context 07

TSTB Test byte 95

TSTD Test D floating 73

TSTF Test F floating 53

TSTG Test G floating 53FD

TSTH Test H floating 73FD

TSTL Test longword D5

TSTW Test word B5

XFC Extended function call FC

XORB2 Exclusive OR byte 2 operand 8C

XORB3 Exclusive OR byte 3 operand 8D

XORL2 Exclusive OR longword 2 operand CC

XORL3 Exclusive OR longword 3 operand CD

XORW2 Exclusive OR word 2 operand AC

XORW3 Exclusive OR word 3 operand AD

Appendix C ■ List of Instructions by Opcode

Opcode Mnemonic Instruction

00 HALT Halt

01 NOP No operation

02 REI Return from exception or interrupt

03 BPT Breakpoint fault

04 RET Return from called procedure

05 RSB Return from subroutine

06 LDPCTX Load process context

07 SVPGTX Save process context

08 CVTPS Convert packed to leading separate numeric

09 CVTSP Convert leading separate numeric to packed

0A INDEX Compute index

0B CRC Calculate cyclic redundancy check

OC PROBER Probe read access

0D PROBEW Prove write access

0E INSQUE Insert into queue

OF REMQUE Remove from queue

10 BSBB Branch to subroutine with byte displacement

11 BRB Branch with byte displacement

12 BNEQ Branch on not equal

12 BNEQU Branch on not equal, unsigned

13 BEQL Branch on equal

13 BEQLU Branch on equal, unsigned

14 BGTR Branch on greater

15 BLEQ Branch on less or equal

16 JSB Jump to subroutine

17 JMP Jump

18 BGEQ Branch on greater or equal

19 BLSS Branch on less

Appendix C-2 • List of Instructions by Opcode

Opcode Mnemonic Instruction

1A BGTRU Branch on greater, unsigned

IB BLEQU Branch on less or equal, unsigned

1C BVC Branch on overflow clear

ID BVS Branch on overflow set

IE BGEQU Branch on greater or equal, unsigned

IE BCC Branch on carry clear

IF BLSSU Branch on less, unsigned

IF BCS Branch on carry set

20 ADDP4 Add packed 4 operand

21 ADDP6 Add packed 6 operand

22 SUBP4 Subtract packed 4 operand

23 SUBP6 Subtract packed 6 operand

24 CVTPT Convert packed to trailing numeric

25 MULP Multiply packed

26 CVTTP Convert trailing numeric to packed

27 DIVP Divide packed

28 MOVC 3 Move character 3 operand

29 CMPC3 Compare character 3 operand

2A SCANC Scan for character

2B SPANC Span characters

2C MOVC5 Move character 5 operand

2D CMPC5 Compare character 5 operand

2E MOVTC Move translated characters

2F MOVTUC Move translated until character

30 BSBW Branch to subroutine with word displacement

31 BRW Branch with word displacement

32 CVTWL Convert word to longword

33 CVTWB Convert word to byte

34 MOVP Move packed

35 CMPP3 Compare packed 3 operand

36 CVTPL Convert packed to longword

37 CMPP4 Compare packed 4 operand

38 EDITPC Edit packed to character

Opcode Mnemonic Instruction

39 MATCHC Match characters

3A LOCC Locate character

3B SKPC Skip character

3C MOVZWL Move zero-extended word to longword

3D ACBW Add compare and branch word

3E MOVAW Move address of word

3F PUSHAW Push address of word

40 ADDF2 Add F_floating 2 operand

41 ADDF3 Add F floating 3 operand

42 SUBF2 Subtract F floating 2 operand

43 SUBF3 Subtract F floating 3 operand

44 MULF2 Multiply F_floating 2 operand

43 MULF3 Multiply F floating 3 operand

46 DIVF2 Divide F floating 2 operand

47 DIVF3 Divide F floating 3 operand

48 CVTFB Convert F floating to byte

49 CVTFW Convert F floating to word

4A CVTFL Convert F floating to longword

4B CVTRFL Convert rounded F floating to longword

4C CVTBF Convert byte to F floating

4D CVTWF Convert word to F floating

4E CVTLF Convert longword to F floating

4F ACBF Add compare and branch floating

30 MOVF Move F floating

31 CMPF Compare F floating

32 MNEGF Move negated F floating

33 TSTF Test F floating

34 EMODF Extended modulus F floating

53 POLYF Polynomial evaluate F floating

56 CVTFD Convert F floating to D floating

57 Reserved

58 ADAWI Add aligned word, interlocked

59 Reserved

Appendix C-4 • List of Instructions by Opcode

Opcode Mnemonic Instruction

5A Reserved

5B Reserved

5C INSQHI Insert into queue head, interlocked

5D INSQTI Insert into queue tail, interlocked

5E REMQHI Remove from queue head, interlocked

5F REMQTI Remove from queue tail, interlocked

60 ADDD2 Add D floating 2 operand

61 ADDD3 Add D floating 3 operand

62 SUBD2 Subtract D floating 2 operand

63 SUBD3 Subtract D floating 3 operand

64 MULD2 Multiply D floating 2 operand

65 MULD3 Multiply D floating 3 operand

66 DIVD2 Divide D floating 2 operand

67 DIVD3 Divide D floating 3 operand

68 CVTDB Convert D floating to byte

69 CVTDW Convert D floating to word

6A CVTDL Convert D floating to longword

6B CVTRDL Convert rounded D floating to longword

6C CVTBD Convert byte to D floating

6D CVTWD Convert word to D floating

6E CVTLD Convert longword to D floating

6F ACBD Add compare and branch D floating

70 MOVD Move D floating

71 CMPD Compare D floating

72 MNEGD Move negated D floating

73 TSTD Test D floating

74 EMODD Extended modulus D floating

75 POLYD Polynomial evaluate D floating

76 CVTDF Convert D floating to F floating

77 Reserved

78 ASHL Arithmetic shift longword

79 ASHQ Arithmetic shift quadword

7A EMUL Extended multiply

Opcode Mnemonic Instruction

7B_EDIV_Extended divide

7C_CLRQ_Clear quadword_

7C CLRD Clear D_floating

7C CLRG Clear G_floating

7D_MQVQ_Move quadword _

7E_MOVAQ_Move address of quadword

7E_MOVAD Move address of D floating

7E_MOVAG Move address of G floating

7F_PUSHAQ Push address of quadword

7F_PUSH AD Push address of D floating

7F_PUSHAG Push address of G floating

80 ADDB2 Add byte 2 operand

81 ADDB3 Add byte 3 operand

82 _SUBB2_Subtract byte 2 operand

83 _SUBB3_Subtract byte 3 operand_

84 _MULB2_Multiply byte 2 operand_

85 _MULB3_Multiply byte 3 operand_

86 DIVB2 Divide byte 2 operand

87 DIVB3 Divide byte 3 operand

88 _BISB2_Bit set byte 2 operand_

89 BISB3 Bit set byte 3 operand

8A BICB2 Bit clear byte 2 operand

8B BICB3 Bit clear byte 3 operand

8C_XORB2_Exclusive OR byte 2 operand

8D_XQRB3_Exclusive OR byte 3 operand

8E MNEGB Move negated byte

SF CASEB Case byte

90 MOVB Move byte

91 CMPB Compare byte

92 _ MCOMB Move complemented byte

93 _ BITB Bit test byte

94 CLRB Clear byte

95 TSTB Test byte

Appendix C-6 ■ List of Instructions by Opcode

Opcode Mnemonic Instruction

96 INCB Increment byte

97 DECB Decrement byte

98 CVTBL Convert byte to longword

99 CVTBW Convert byte to word

9A MOVZBL Move zero-extended byte to longword

9B MOVZBW Move zero-extended byte to word

9C ROTL Rotate longword

9D ACBB Add compare and branch byte

9E MOVAB Move address of byte

9F PUSHAB Push address of byte

AO ADDW2 Add word 2 operand

A1 ADDW3 Add word 3 operand

A2 SUBW2 Subtract word 2 operand

A3 SUBW3 Subtract word 3 operand

A4 MULW2 Multiply word 2 operand

A5 MULW3 Multiply word 3 operand

A6 DIVW2 Divide word 2 operand

A7 DIVW3 Divide word 3 operand

A8 BISW2 Bit set word 2 operand

A9 BISW3 Bit set word 3 operand

AA BICW2 Bit clear word 2 operand

AB BICW3 Bit clear word 3 operand

AC XORW2 Exclusive OR word 2 operand

AD XORW3 Exclusive OR word 3 operand

AE MNEGW Move negated word

AF CASEW Case word

BO MOVW Move word

B1 CMPW Compare word

B2 MCOMW Move complemented word

B3 BITW Bit test word

B4 CLRW Clear word

B5 TSTW Test word

B6 INCW Increment word

Opcode

B7_

B8_

B9_

BA_

BB_

BC_

BD

BE_

BF_

CO_

Cl_

C2_

C3_

C4_

C3_

C6_

C7_

C8_

09_

CA

CB_

CC_

CD

CE

CF_

DO_

D1_

D2_

D3_

D4_

D4_

D5_

D6

Mnemonic Instruction

DECW_Decrement word

BISPSW Bit set processor status word

BICPSW Bit clear processor status word

POPR_Pop register

PUS FIR Push register

CFFMK Change mode to kernel

CFFME Change mode to executive

CHMS_Change mode to supervisor

CHMU_Change mode to user

ADDL2_Add longword 2 operand

ADDL3_Add longword 3 operand

SUBL2_Subtract longword 2 operand

SUBL3_Subtract longword 3 operand

MULL2 Multiply longword 2 operand

MULL3_Multiply longword 3 operand

DIVL2_Divide longword 2 operand

DIVL3 Divide longword 3 operand

BISL2_Bit set longword 2 operand

BISL3_Bit set longword 3 operand

BICL2_Bit clear longword 2 operand

BICL3 Bit clear longword 3 operand

XORL2 Exclusive OR longword 2 operand

XORL3 Exclusive OR longword 3 operand

MNEGL_Move negated longword

CASEL Case longword

MOVL_Move longword_

CMPL Compare longword

MCOML Move complemented longword

BITL Bit test longword

CLRL_Clear longword

CLRF Clear F_floating

TSTL Test longword

INCL Increment longword

Appendix C-8 ■ List of Instructions by Opcode

Opcode Mnemonic Instruction

D7 DECL Decrement longword

D8 ADWC Add with carry

D9 SBWC Subtract with carry

DA MTPR Move to processor register

DB MFPR Move from processor register

DC MOVPSL Move processor status longword

DD PUSHL Push longword

DE MOVAL Move address of longword

DE MOVAF Move address of F floating

DF PUSHAL Push address of longword

DF PUSHAF Push address of F floating

EO BBS Branch on bit set

El BBC Branch on bit clear

E2 BBSS Branch on bit set and set

E3 BBCS Branch on bit clear and set

E4 BBSC Branch on bit set and clear

E5 BBCC Branch on bit clear and clear

E6 BBSSI Branch on bit set and set, interlocked

E7 BBCCI Branch on bit clear and clear, interlocked

E8 BLBS Branch on low bit set

E9 BLBC Branch on low bit clear

EA FFS Find first set bit

EB FFC Find first clear bit

EC CMPV Compare field

ED CMPZV Compare zero-extended field

EE EXTV Extract field

EF EXTZV Extract zero-extended field

FO INSV Insert field

FI ACBL Add compare and branch longword

F2 AOBLSS Add one and branch on less

F3 AOBLEQ Add one and branch on less or equal

F4 SOBGEQ Subtract one and branch on greater or equal

F5 SOBGTR Subtract one and branch on greater

Appendix C-9

Opcode Mnemonic Instruction

F6 CVTLB Convert longword to byte

F7 CVTLW Convert longword to word

F8 ASHP Arithmetic shift and round packed

F9 CVTLP Convert longword to packed

FA CALLG Call with general argument list

FB CALLS Call with stack argument list

FC XFC Extended function call

FD Reserved Escape to 2-byte opcode

FE Reserved Escape to 2-byte opcode

FF Reserved Escape to 2-byte opcode

OOFD Reserved

31FD Reserved .
32FD CVTDH Convert D floating to H floating

33FD CVTGF Convert G floating to F floating

34FD Reserved

3FFD Reserved

40FD ADDG2 Add G floating 2 operand

41FD ADDG3 Add G floating 3 operand

42FD SUBG2 Subtract G floating 2 operand

43FD SUBG3 Subtract G floating 3 operand

44FD MULG2 Multiply G floating 2 operand

45FD MULG3 Multiply G floating 3 operand

46FD DIVG2 Divide G floating 2 operand

47FD DIVG3 Divide G floating 3 operand

48FD CVTGB Convert G floating to byte

49FD CVTGW Convert G floating to word

4AFD CVTGL Convert G floating to longword

Appendix C-10 ■ List of Instructions by Opcode

Opcode Mnemonic Instruction

4BFD CVTRGL Convert rounded G_floating to longword

4CFD CVTBG Convert byte to G floating

4DFD CVTWG Convert word to G floating

4EFD CVTLG Convert longword to G floating

4FFD ACBG Add compare and branch G floating

50FD MOVG Move G floating.

51FD CMPG Compare G floating

52FD MNEGG Move negated G floating

53FD TSTG Test G floating

MFD EMODG Extended modulus G floating

MFD POLYG Polynomial evaluate G floating

56FD CVTGH Convert G floating to H floating

57FD Reserved

5FFD Reserved

60FD ADDH2 Add H floating 2 operand

61FD ADDH3 Add H floating 3 operand

62FD SUBH2 Subtract H floating 2 operand

63FD SUBH3 Subtract H floating 3 operand

64FD MULH2 Multiply H floating 2 operand

65FD MULH3 Multiply H floating 3 operand

66FD DIVH2 Divide H floating 2 operand

67FD DIVH3 Divide H floating 3 operand

68FD CVTHB Convert H floating to byte

69FD CVTHW Convert H floating to word

6AFD CVTHL Convert H floating to longword

6BFD CVTRHL Convert rounded H floating to longword

6CFD CVTBH Convert byte to H floating

6DFD CVTWH Convert word to H floating

6EFD CVTLH Convert longword to H floating

6FFD ACBH Add compare and branch H floating

Appendix C-ll

Opcode Mnemonic Instruction

70FD MOVH Move H floating

71FD CMPH Compare H floating

72FD MNEGH Move negated H floating

73FD TSTH Test H floating

74FD EMODH Extended modulus H floating

75FD POLYH Polynomial evaluate H floating

76FD CVTHG Convert H floating to G floating

77FD Reserved

7BFD Reserved

7CFD CLRH Clear H floating

7CFD CLRO Clear octaword

7DFD MOVO Move octaword

7EFD MOVAH Move address of H floating

7EFD MOVAO Move address of octaword

7FFD PUSHAH Push address of H floating

7FFD PUSHAO Push address of octaword

80FD Reserved

8FFD Reserved

90FD Reserved

97FD Reserved

98FD CVTFH Convert F floating to H floating

99FD CVTFG Convert F floating to G floating

Appendix C-12 ■ List of Instructions by Opcode

Opcode Mnemonic Instruction

9AFD Reserved

9FFD Reserved

AOFD Reserved

EFFD Reserved

FOFD Reserved

F5FD Reserved

F6FD CVTHF Convert H floating to F floating

F7FD CVTHD Convert FI floating to D floating

F8FD Reserved

FFFD Reserved

OOFF Reserved

FCFF Reserved

FDFF BUGL Bugcheck longword

FEFF BUGW Bugcheck word

FFFF Reserved

Glossary

abort: An exception that occurs in the middle of an instruction that can

leave the registers and memory in an indeterminate state. When in this state,

the instruction may not be able to be restarted.

absolute indexed mode: An indexed addressing mode in which the base

operand specifier is addressed in absolute mode.

absolute mode: Autoincrement deferred mode in which the program coun¬

ter (PC) is used as the register. The PC contains the address of the location

containing the actual operand.

access mode: Any of the four processor access modes in which software exe¬

cutes. Processor access modes are, in order from most to least privileged and

protected, kernel (mode 0), executive (mode 1), supervisor (mode 2), and user

(mode 3).

access type: (1) How the processor accesses instruction operands. Access

types are read, write, modify, address, and branch. (2) The way in which a

procedure accesses its arguments.

access violation: (1) An attempt to reference an address that is not mapped

into virtual memory. (2) An attempt to reference an address that is not accessi¬

ble by the current access mode.

address: A number used by the operating system and user software to iden¬

tify a storage location. See also virtual address, physical address.

address access type: A type of operation in which the specified operand of

an instruction is not directly accessed when the processor executes the instruc¬

tion. The context of the address calculation is given by the data type of the

operand.

addressing mode: The way in which an operand is specified; for example,

the way in which the effective address of an instruction operand is calculated

using the general registers.

address space: The set of all possible addresses available to a process. Vir¬

tual address space refers to the set of all possible virtual addresses. Physical

address space refers to the set of all possible physical addresses.

alphanumeric character: An uppercase or lowercase letter (A to Z, a to z), a

dollar sign ($), an underscore (_.), or a decimal digit (0 to 9).

American Standard Code for Information Interchange (ASCII): A set of

8-bit binary numbers representing the alphabet, punctuation, numerals, con¬

trol, and other special symbols used in text representation and communica¬

tions protocol.

G-2 • Glossary

Argument Pointer: General register 12 (R12). By convention, the argument

pointer (AP) contains the address of the base of the argument list for proce¬

dures initiated using the CALL instructions.

autodecrement index mode: A mode in which the base operand specifier

uses autodecrement mode addressing.

autodecrement mode: A mode in which the contents of the selected register

are decremented, and the result is used as the address of the actual operand of

the instruction. The contents of the register are decremented according to the

data type context of the register—1 for byte; 2 for word; 4 for longword and

F_floating; 8 for quadword, G_floating, and D_floating; and 16 for

octaword and H_floating.

auto deferred indexed mode: An indexed addressing mode in which the

base operand specifier uses autoincrement deferred mode addressing.

autoincrement deferred mode: An addressing mode in which the specified

register contains the address of a longword that contains the address of the

actual operand. The contents of the register are incremented by 4 (the num¬

ber of bytes in a longword). If the program counter is used as the register, this

mode is called absolute mode.

autoincrement indexed mode: An indexed addressing mode in which the

base operand specifier uses autoincrement mode addressing.

autoincrement mode: A mode in which the contents of the specified register

are used as the address of the operand; then the contents of the register are

incremented by the size of the operand.

balance set: The set of all process working sets currently resident in physical

memory. The processes whose working sets are in the balance set have mem¬

ory requirements that balance with available memory.

base operand address: The address of the base of a table or array referenced

by index mode addressing.

base operand specifier: The register used to calculate the base operand

address of a table or array referenced by index mode addressing.

base register: A general register used to contain the address of the first entry

in a list, table, array, or other data structure.

bit complement: The result of exchanging Os and Is in the binary representa¬

tion of a number. Thus the bit complement of the binary number 11011001

(217 (decimal)) is 00100110. Bit complements are used in place of their corre¬

sponding binary numbers in some arithmetic computations in computers.

Also called one's complement.

bit string: See variable length bit field.

G-3

block: (1) The smallest addressable unit of data that a device can transfer in

an I/O operation (512 contiguous bytes for most disk devices). (2) An arbi¬

trary number of contiguous bytes used to store logically related status, con¬

trol, or other processing information.

branch access type: An instruction attribute that indicates that the proces¬

sor does not reference an operand address, but rather that the operand is a

branch displacement. The size of the branch displacement is given by the data

type of the operand.

branch mode: In branch address mode, the instruction operand specifier is a

signed byte or word displacement. The displacement is added to the contents

of the updated program counter (which is the address of the first byte beyond

the displacement), and the result is the branch address.

byte: Eight contiguous bits starting on an addressable byte boundary. Bits

are numbered from the right, 0 through 7, with bit 0 the low-order bit.

cache memory: A small, high-speed memory placed between main memory

and the processor.

call frame: See stack frame.

Call instructions: The processor instructions CALLG (Call Procedure with

General Argument List) and CALLS (Call Procedure with Stack Argument

List).

call stack: The stack and conventional stack structure used during a proce¬

dure call. Each access mode of each process context has one call stack, and the

interrupt service context has one call stack.

character: A symbol represented by an ASCII code. See also alphanumeric

character.

character string: A contiguous set of bytes identified by two attributes—an

address and a length. Its address is the address of the byte containing the first

character of the string. Subsequent characters are stored in bytes of increas¬

ing addresses. The length is the number of characters in the string.

character string descriptor: A quadword data structure used for passing

character data (strings). The first word of the quadword contains the length of

the character string. The second word can contain type information. The

remaining longword contains the address of the string.

compatibility mode: See PDP-11 compatibility mode.

condition codes: Four bits in the Processor Status Word (PSW) that indicate

the results of previously executed instructions.

condition handler: A procedure that a process wants the system to execute

when an exception condition occurs.

G-4 • Glossary

console: A manual-control unit integrated into the central processor that

enables the operator to start and stop the system, monitor system operation,

and run diagnostics.

console terminal: The part of a computer used by the operator to determine

the status of, and to control, the operation of the computer. The console may

have controls and indicators that are used for manual operation of the com¬

puter.

context indexing: The process of indexing through a data structure automat¬

ically because the size of the data type is known and is used to determine the

offset factor.

context switching: Interrupting the activity in progress and switching to

another activity. Context switching occurs as one process after another is

scheduled for execution.

control region: The highest-addressed half of process space (the PI region).

Control region virtual addresses refer to the process-related information used

by the system to control the process.

control region base register (P1BR): The processor register, or its equiva¬

lent in a hardware process control block, that contains the base virtual address

of a process control region page table.

control region length register (P1LR): The processor register, or its equiva¬

lent in a hardware process control block, that contains the number of nonexist¬

ent page table entries for virtual pages in a process control region.

current access mode: The processor access mode of the currently executing

software. The Current Mode field of the Processor Status Longword (PSL)

indicates the access mode of the currently executing software.

D_floating datum: Eight contiguous bytes starting on an addressable byte

boundary that are interpreted as containing a floating point number. The bits

are labeled from right to left, 0 to 63.

data structure: Any table, list, array, queue, or tree whose format and access

conventions are well defined for reference by one or more images.

data type: In reference to the processor instructions, the data type of an oper¬

and identifies the size of the operand and the significance of the bits in the

operand. Operand data types include floating point, integer, character string,

packed decimal string, numeric string, queue, and variable length bit field.

descriptor: A data structure used in calling sequences for passing argument

types, addresses and other optional information. See character string descrip¬

tor.

device interrupt: An interrupt received on interrupt priority levels 16

through 23. Device interrupts can be requested only by devices, controllers,

and memories.

device register: A location in device controller logic used to request device

functions (such as I/O transfers) and/or to report status.

diagnostic: A program that tests logic and reports any faults it detects,

direct mapping cache: A cache organization in which any block of main

memory data can be placed in only one possible position in the cache. Compare

with fully associative cache.

displacement deferred indexed mode: An indexed addressing mode in

which the base operand specifier uses displacement deferred mode address¬

ing.

displacement deferred mode: A mode in which the specifier extension is a

byte, word, or longword displacement. The displacement is sign-extended to

32 bits and added to a base address obtained from the specified registers. The

result is the address of a longword that contains the address of the actual oper¬

and.

displacement indexed mode: A mode in which the base operand specifier

uses displacement mode addressing.

displacement mode: A displacement addressing mode in which the specifier

extension is a byte, word, or longword displacement. The displacement is sign

extended to 32 bits and added to a base address obtained from the specified

register. The result is the address of the actual operand.

double floating datum: See D_floating datum.

effective address: The address obtained after indirect or indexing modifica¬

tions are calculated.

entry mask: A word whose bits represent the registers to be saved or

restored on a subroutine or procedure call using the call and return instruc¬

tions.

entry point: A location that can be specified as the object of a call instruc¬

tion. It contains an entry mask and exception enables known as the entry

point mask.

event: A change in process status or an indication of the occurrence of some

activity that concerns an individual process or cooperating processes. An inci¬

dent reported to the scheduler that affects a process’s ability to execute.

Events can be synchronous with the process’s execution (waic request), or

they can be asynchronous (I/O completion).

exception: An event that changes the normal flow of instruction or set of

instructions. Interrupts and branch, call, case, and jump instructions are

excluded from this class of events. Exceptions are detected by the hardware.

There are three types of hardware exceptions—traps, faults, and aborts.

G-6 ■ Glossary

exception condition: A hardware- or software-detected event other than an

interrupt or jump, branch, case, or call instruction that changes the normal

flow of instruction execution.

exception enables: See trap enables,

exception vector: See vector.

executive mode: The second most privileged processor access mode (mode

1). The Record Management Services (RMS) and many of the operating sys¬

tem’s programmed service procedures execute in executive mode.

F_floating datum: Four contiguous bytes starting on an addressable byte

boundary. The bits are labeled from right to left 0 to 31. A two-word floating¬

point number is identified by the address of the byte containing bit 0.

fault: A hardware exception condition that occurs in the middle of an instruc¬

tion. A fault leaves the registers and memory in a consistent state so the elimi¬

nation of the fault and restarting the instruction gives correct results.

field: A set of contiguous bytes in a logical record. See also variable length

bit field.

floating (point) datum: See F_floating datum.

frame pointer: General register 13 (R13). By convention, the frame pointer

(FP) contains the base address of the most recent call frame on the stack.

fully associative cache: A cache organization in which any block of data

from main memory can be placed anywhere in the cache. Compare with direct

mapping cache.

G_floating datum: Eight contiguous bytes starting on an arbitrary byte

boundary. The bits are labeled from the right 0 through 63. The address of a

G_floating datum is specified by the address of the byte containing bit 0.

general register: Any of the sixteen 32-bit registers used as the primary oper¬

ands of the native mode instructions. The general registers include 12 general

purpose registers that can be used as accumulators, as counters, and as

pointers to locations in main memory, and the Frame Pointer (FP), Argument

Pointer (AP), Stack Pointer (SP), and Program Counter (PC) registers.

giga: A prefix meaning 1,000,000,000 (109). In the computer industry, giga

is often used to mean 1,073,741,824 (230) which is about 7.4 percent larger.

H_floating datum: Sixteen contiguous bytes starting on an arbitrary byte

boundary. The bits are labeled from the right 0 through 127. The address of

an H_floating datum is specified by the address of the byte containing

bit 0.

G-7

hardware context: The values contained in the following registers while a

process is executing—the Program Counter (PC), the Processor Status Long-

word (PSL), the 14 general registers (RO through R13), the four processor reg¬

isters (POBR, POLR, PlBR, and P1LR), the Stack Pointer (SP) for the current

access mode in which the processor is executing, and the contents to be loaded

in the stack pointer for every access mode other than the current access mode.

When a process is executing, its hardware context is continuously updated by

the processor. When a process is not executing, its hardware context is stored

in its hardware process control block.

hardware process control block (PCB): A data structure known to the pro¬

cessor that contains the hardware context when a process is not executing. A

process’s hardware PCB resides in its process header.

image file: A file containing the necessary information to establish an incar¬

nation of a user program in a process including the memory image. Image files

can be of the executable, shareable, and system types.

immediate mode: Autoincrement mode addressing in which the program

counter is used as the register.

incarnation: A resource that is automatically allocated on a call or recursive

call. A resource is a physical part of the computer such as a device, memory, or

an interlocked data structure.

indexed addressing mode: In indexed mode addressing, two registers are

used to determine the actual instruction operand — an index register and a

base operand specifier. The contents of the index register are used as an index

(offset) into a table or array.

index register: A register containing an address offset.

instruction buffer: An 8-byte buffer in the processor used to contain bytes

of the instruction currently being decoded and to prefetch instructions in the

instruction stream. The control logic continuously fetches data from memory

to keep the 8-byte buffer full.

interleaving: Assigning consecutive physical memory addresses alternately

between two memory controllers.

internal processor register: A part of the processor used by the operating

system software to control the execution states of the computer system. Some¬

times called privileged processor register. These registers are accessed with

MTPR and MFPR instructions.

interrupt: An event other than an exception or branch, call, case, or jump

instruction that changes the normal flow of instruction execution. Interrupts

are generally external to the process executing when the interrupt occurs. See

also device interrupt, software interrupt, and urgent interrupt.

G-8 ■ Glossary

interrupt priority level (IPL): The interrupt level at which the processor

executes when an interrupt is generated. There are 31 possible interrupt prior¬

ity levels (IPL). IPL 1 is lowest, 31 highest.

interrupt service routine: The software executed when a device interrupt

occurs.

interrupt stack: The systemwide stack used when executing in interrupt ser¬

vice context. At any time, the processor is either in a process context or in

systemwide interrupt service context. When executing in interrupt service

context, the processor is operating with kernel privileges on the kernel or

interrupt stack. The interrupt stack is not context-switched or swapped.

interrupt stack pointer: The stack pointer for the interrupt stack. Unlike

the stack pointers for process context stacks, which are stored in the hardware

PCB, the interrupt stack pointer is stored in an internal register.

interrupt vector: See vector.

kernel mode: The most privileged processor access mode (mode 0). The oper¬

ating system’s most privileged services (I/O drivers, the pager) run in kernel

mode.

literal mode: An addressing mode in which the instruction operand is a con¬

stant whose value is expressed in a 6-bit field of the instruction.

longword: Four contiguous bytes starting on an addressable byte boundary.

Bits are numbered from right to left 0 through 31.

main memory: See physical memory.

mass-storage device: A device capable of reading and writing data on mass

storage media such as a diskpack or a magnetic tape reel.

memory management: The system functions that include the hardware’s

page mapping and protection and the operating system’s image activator and

pager.

Memory Mapping Enable (MME): A bit in a processor register that governs

address translation.

modify access type: A specific way of accessing characterized by a specified

operand of an instruction or procedure being read, and potentially modified

and written, during that instruction’s or procedure’s execution.

native mode: See VAX native mode,

nibble: Four bits of memory; one half of a byte.

normalized fraction: A numeric representation patterned on scientific nota¬

tion, but in which the fraction part of the representation is greater than or

equal to 0.3 and less than 1. As a binary form, such a fraction always begins

with a 1 in the leftmost (most significant) bit, unless the number is zero.

Because of this, the lead 1 is not stored, and a bit-per-number saving is

effected in storage.

G-9

numeric string: A contiguous sequence of bytes representing up to 31 deci¬

mal digits (one per byte) and possibly a sign. The numeric string is specified

by its lowest addressed location, its length, and its sign representation.

octaword: An octaword is 16 contiguous bytes starting on an arbitrary byte

boundary. The bits are numbered from the right 0 through 127. An octaword

is specified by the address of the byte containing bit 0.

offset: A fixed displacement from the beginning of a data structure. System

offsets for items within a data structure normally have an associated symbolic

name used instead of the numeric displacement. Where symbols are defined,

programmers always reference the symbolic names for items in a data struc¬

ture instead of using the numeric displacement.

one’s complement: See bit complement.

opcode: Short form of operation code. That part of a machine language

instruction that identifies the operation the CPU is to perform. The pattern of

bits within an instruction that specifies the operation to be performed.

operand specifier: The pattern of bits in an instruction that indicates the

addressing mode and a register or displacement that identifies an instruction

operand.

operand specifier type: The access type and data type of an instruction’s

operand(s). For example, test instructions are of read access type because they

only read the value of the operand. The operand can be of byte, word, or long-

word data type, depending on whether the opcode is for the TST3 (test byte),

TSTW (test word), or TSTL (test longword) instruction.

packed decimal: A method of representing a decimal number by storing a

pair of decimal digits in one byte, taking advantage of the fact that only four

bits are required to represent the numbers 0 through 9.

packed decimal string: A contiguous sequence of up to 16 bytes interpreted

as a string of nibbles. Each nibble represents a digit, except the low-order nib¬

ble of the highest addressed byte, which represents the sign. The packed deci¬

mal string is specified by its lowest addressed location and the number of

digits.

page: (1) A set of 512 contiguous byte locations used as the unit of memory

mapping and protection. (2) The data between the beginning of file and a

page marker, between two markers, or between a marker and the end of a file.

page fault: An exception generated by a reference to a page that is not map¬

ped into a working set.

page fault cluster size: The number of pages read in on a page fault.

page frame number (PFN): The address of the first byte of a page in physi¬

cal memory. The high-order 21 bits of the physical address of the base of a

page.

G-10m Glossary

page table entry (PTE): The data structure that identifies the location and

status of a page of virtual address space. When a virtual page is in memory, the

PTE contains the page. When it is not in memory, the PTE contains the infor¬

mation needed to locate the page on secondary storage (disk).

paging: The process of bringing pages of an executing process into physical

memory when referenced. When a process executes, all of its pages are said to

reside in virtual memory. Only the actively used pages need to reside in physi¬

cal memory. The remaining pages can reside on disk until they are needed in

physical memory. In this system, a process is paged only when it references

more pages than it is allowed to have in its working set. A page fault occurs

when the process refers to a page not in its working set. This causes the operat¬

ing system’s pager to read in the referenced page if it is on disk, replacing the

least recently faulted pages as needed. A process pages only against itself; that

is, one process cannot exceed the working set limit assigned to it by bringing

in more than its quota of pages. This protects other processes in the system.

PDP-11 compatibility mode: (This is now an optional feature of the VAX

architecture.) A mode of execution that enables the central processor to exe¬

cute nonprivileged PDP-11 instructions.

physical address: The address used by hardware to identify a location in

physical memory or on directly addressable secondary storage devices such as a

disk. A physical memory address consists of a page frame number and the num¬

ber of a byte within the page. A physical disk block address consists of a cylin¬

der or track and sector number.

physical address space: The set of all possible 30-bit physical addresses that

can be used to refer to locations in memory (memory space) or device registers

(I/O space).

physical memory: The memory modules connected to the Synchronous Back¬

plane Interconnect that are used to store (1) instructions that the processor

can directly fetch and execute, and (2) any other data that a processor is

instructed to manipulate. Also called main memory.

position dependent code: Code that can execute properly only in the loca¬

tions in virtual address space that are assigned to it by the linker.

position independent code: Code that can execute properly without modifi¬

cation wherever it is located in virtual address space, even if its location is

changed after it has been linked. Generally, this code uses addressing modes

that form an effective address relative to the Program Counter register.

privileged instruction: In general, any instruction intended for use by the

operating system or privileged system programs. In particular, an instruction

that the processor does not execute unless the current access mode is kernel

mode (for example, HALT, SVPCTX, LDPCTX, MTPR, and MFPR).

privileged processor register: See internal processor register.

G-ll

procedure: A routine entered by way of a call instruction.

process: The basic entity scheduled by the system software that provides

the context in which an image executes. A process consists of an address space

and both hardware and software contexts.

process address space: See process space.

process context: The hardware and software contexts of a process.

process control block (PCB): A data structure used to contain the process

context. The hardware PCB contains the hardware context. The software

PCB contains the software context, which includes a pointer to the hardware

PCB. See also hardware process control block.

process page tables: The page tables used to describe process virtual mem¬

ory.

process space: The lowest-addressed half of virtual address space, where pro¬

cess instructions and data reside. Process space is divided inco a program

region and a control region.

Processor Status Longword (PSL): A system-programmed processor regis¬

ter consisting of a word of privileged processor status and the PSW. The privi¬

leged processor status information includes the current interrupt priority

level, the previous access mode, the current access mode, the interrupt stack

bit, the trace trap pending bit, and the compatibility mode bit.

Processor Status Word (PSW): The low-order word of the Processor Status

Longword. Processor status information includes the condition codes (carry,

overflow, zero, negative), the arithmetic trap enable bits (integer overflow,

decimal overflow, floating underflow), and the trace enable bit.

Program Counter (PC): General register 15 (R15). At the beginning of an

instruction’s execution, the program counter (PC) normally contains the

address of a location in memory from which the processor will fetch the next

instruction to execute.

program locality: An indication of the proximity of a program’s references

to virtual memory locations. A program with a high degree of locality does not

refer to many widely scattered virtual addresses in a short period of time.

program region: The lowest-addressed half of process address space (PO

space). The program region contains the image being executed by the process

and other user code called by the image.

program region base register (POBR): The processor register, or its equiva¬

lent in a hardware process control block, that contains the base virtual address

of the page table entry for virtual page number 0 in a process program region.

program region length register (POLR): The processor register, or its equiv¬

alent in a hardware process control block, that contains the number of entries

in the page table for a process program region.

G-12 • Glossary

quadword: Eight contiguous bytes (64 bits) starting on an addressable byte

boundary. Bits are numbered from right to left, 0 to 63. A quadword is identi¬

fied by the address of the byte containing the low-order bit (bit 0).

queue: (1) noun. A circular, doubly linked list. (2) verb. To make an entry in

a list or table, perhaps using the INSQUE instruction.

read access type: An instruction or procedure operand attribute indicating

that the specified operand is only read during instruction or procedure execu¬

tion.

register: A storage location in hardware logic other than main memory. See

also general register, processor register, device register.

register deferred indexed mode: An indexed addressing mode in which the

base operand specifier uses register deferred mode addressing.

register deferred mode: An addressing mode in which the contents of the

specified register are used as the address of the actual instruction operand.

register mode: An addressing mode in which the contents of the specified

register are used as the actual instruction operand.

scatter/gather: A method used to transfer in one I/O operation data from

discontiguous pages in memory to contiguous blocks on disk, or data from con¬

tiguous blocks on disk to discontiguous pages in memory.

secondary storage: Random access mass storage.

signal: (1) An electrical impulse conveying information. (2) The software

mechanism used to indicate that an exception condition was detected.

software interrupt: An interrupt generated on interrupt priority levels 1

through 15, that can be requested only by software.

software process control block: See process control block.

stack: An area of memory set aside for temporary storage, or for procedure

and interrupt service linkages. A stack uses the last-in/ first-out concept. As

items are added to (pushed on) the stack, the stack pointer decrements. As

items are retrieved from (popped off) the stack, the stack pointer increments.

stack frame: A standard data structure built on the stack during a procedure

call, starting from the location addressed by the frame pointer and going to

lower addresses, and popped off during a return from procedure. Also called

call frame.

Stack Pointer (SP): General register 14 (R14). SP contains the address of

the top (lowest address) of the processor-defined stack. Reference to SP will

access one of the five possible stack pointers—kernel, executive, supervisor,

user, or interrupt—depending on the value in the current mode and interrupt

stack bits in the processor status longword.

store through: See write through.

G-13

Supervisor mode: The third most privileged processor access mode (mode

2). The operating system’s command interpreter runs in supervisor mode.

Synchronous Backplane Interconnect (SBI): That part of the hardware

that interconnects the processor, memory controllers, MASSBUS adapters,

and the UNIBUS adapter.

system address space: See system space, system region.

system base register (SBR): A processor register that contains the physical

address of the base of the system page table.

system control block (SCB): The data structure in system space that con¬

tains all the interrupt and exception vectors known to the system.

system control block base register (SCBB): A processor register containing

the base address of the system control block.

system identification register (SIR): A processor register which contains

the processor type and serial number.

system length register (SLR): A processor register containing the length of

the system page table in longwords, that is, the number of page table entries in

the system region page table.

system page table (SPT): The data structure that maps the system region

virtual addresses, including the addresses used to refer to the process page

tables. The system page table (SPT) contains one page table entry (PTE) for

each page of system region virtual memory. The physical base address of the

SPT is contained in a register called the system base register (SBR).

system region: The third quarter of virtual address space; that is, the lower-

addressed half of system space. Virtual addresses in the system region are

shareable between processes. Some of the data structures mapped by system

region virtual addresses are system entry vectors, the system control block

(SCB), the system page table (SPT), and process page tables.

system space: The higher-addressed half of virtual address space. See also

system region.

system virtual address: A virtual address identifying a location mapped by

an address in system space.

system virtual space: See system space.

terminal: The general name for those peripheral devices that have key¬

boards and videoscreens or printers. Under program control, a terminal

enables users to type commands and data on the keyboard and receive mes¬

sages on the videoscreen or printer. Examples of terminals are the LA38 DEC-

writer hardcopy terminal and the VT100 video display terminal.

translation buffer: An internal processor cache containing translations for

recently used virtual addresses.

G-14m Glossary

trap: An exception condition that occurs at the end of the instruction that

caused the exception. The program counter (PC) saved on the stack is the

address of the next instruction that would normally have been executed. All

software can enable and disable some of the trap conditions with a single

instruction.

trap enables: Three bits in the Processor Status Word that control the pro¬

cessor’s action on certain arithmetic exceptions.

two’s complement: A binary representation for integers in which a negative

number is one greater than the bit complement of the positive number.

two-way associative cache: A type of cache memory organization that has

two groups of directly mapped blocks. Each group contains several blocks for

each index position in the cache. A block of data from main memory can go

into either group at its proper index position. A two-way associative cache is a

compromise between the extremes of fully associative and direct mapping

cache organizations. It takes advantage of the features of both,

undefined: An operation that may vary from moment to moment, implemen¬

tation to implementation, and instruction to instruction. The operation can

vary in effect from doing nothing to halting system operation. Nonprivileged

software should avoid invoking operations identified as undefined.

unpredictable: Results of an operation that may vary from moment to

moment, implementation to implementation, and instruction to instruction.

Engineering Change Orders (ECOs) may alter unpredictable results. Software

should not depend on results specified as unpredictable.

urgent interrupt: An interrupt received on interrupt priority levels 24

through 31. These can be generated only by the processor for the interval

clock, serious errors, and powerfail.

user mode: The least privileged processor access mode (mode 3). User pro¬

cesses and the Runtime Library procedures run in user mode.

user privileges: The privileges granted a user by the system manager.

variable length bit field: A set of 0 to 32 contiguous bits located arbitrarily

with respect to byte boundaries. A variable bit field has four attributes—the

address of a byte, the bit position of the starting location of the bit field with

respect to bit 0 of the byte address, the size of the bit field in bits, and

whether the field is signed or unsigned.

VAX native mode: The processor’s primary execution mode.

G-25

vector: (1) An interrupt or exception vector is a storage location, known to

the system, that contains the starting address of a procedure to be executed

when a given interrupt or exception occurs. The system defines separate vec¬

tors for each interrupting device controller and for classes of exceptions. Each

system vector is a longword. (2) For the purposes of exception handling, users

can declare up to two software exception vectors (primary and secondary) for

each of the four access modes. Each vector contains the address of a condition

handler. (3) A one-dimensional array.

virtual address: A 32-bit integer identifying a byte location in virtual

address space. The memory management hardware translates a virtual address

to a physical address. The term virtual address may also refer to the address

used to identify a virtual block on a mass storage device.

virtual.address space: The set of all possible virtual addresses that an image

executing in the context of a process can use to identify the location of an

instruction or of data. The virtual address space seen by the programmer is a

linear array of 4,294,967,296 (232) byte addresses.

virtual memory: The set of storage locations in physical memory and on disk

that is referred to by virtual addresses. From the programmer’s viewpoint, the

secondary storage locations appear to be locations in physical memory. The

size of virtual memory in any system depends on the amount of physical mem¬

ory available and the amount of disk storage used for nonresident virtual mem¬

ory.

virtual page number: The virtual address of a page of virtual memory.

word: Two contiguous bytes (16 bits) starting on an addressable byte bound¬

ary. Bits are numbered from the right, 0 through 15. A word is identified by

the address of the byte containing bit 0.

working set: The set of pages in process address space to which an executing

process can refer without incurring a page fault. The working set must be resi¬

dent in memory for the process to execute. The remaining pages of that pro¬

cess, if any, are either in memory and not in the process working set or they

are on secondary storage.

write access type: The specified operand of an instruction or procedure that

is only written during that instruction’s execution.

write allocate: A cache management in which cache is allocated on a write

miss as well as on the usual read miss.

write back: A cache management technique in which data from a write oper¬

ation to cache is copied into main memory only when the data in cache must be

overwritten. This results in temporary inconsistencies between cache and

main memory. Compare with write through.

G-16m Glossary

write through: A cache management technique in which data from a write

operation is copied in both cache and main memory. Cache and main memory

data are always consistent. Compare with write hack.

Index

A

aborts, 8-1—8-2

caused by kernel stack not valid

exceptions, 8-14

caused by reserved operand

exceptions, 8-13

absolute index mode, 3-25—5-26

absolute mode, 2-6, 5-37

absolute queues, 2-13, 4-17, 4-18

instructions for, 6-19—6-22

access

control of, 7-16—7-19

to privileged system services,

7-22—7-23

to shared data, synchronization of,
3-3—3-4

to stack registers, 8-30

access control violation faults, 7-20,
8-12, 8-32

access modes, 2-5, 3-1—3-2, 7-17

asynchronous system traps and, 8-8

change mode instruction for,

9-14—9-15

in PDP-11 compatibility mode, 11-2
privileged instructions for,

6-15—6-16

access types, 2-7

in operand notation, 5-1—5-2

add instructions

add, 6-2, 6-11, 6-12, 9-1

add aligned word interlocked

(ADAWI), 3-3, 6-13, 9-2
add compare and branch (ACB),

6-4, 9-2—9-3

add one and branch (AOB), 6-4, 9-3

add packed (ADDP), 6-6, 9-3—9-4

add with carry (ADWC), 6-13, 9-4

address and branch access, 2-7

addresses

instructions for, 6-1—6-2

move address instruction for, 9-44

in PDP-11 compatibility mode, 11-7

push address instruction for, 9-53
translation of, 7-8—7-16

virtual, 2-4

virtual address extension for,

1-2—1-3

in virtual address space, 1-4

addressing

of general registers, 2-9
virtual, 2-4

addressing modes, 2-6, 2-9, 5-10—5-12

absolute, 5-37

absolute index, 5-25—5-26

autodecrement, 5-12—5-13

autodecrement index, 5-24—5-25

autoincrement, 5-14

autoincrement deferred, 5-14—5-16

autoincrement deferred index,

5-23—5-24

autoincrement index, 5-22—5-23

branch mode addressing,
5.41—5.43

displacement, 5-17

displacement deferred, 5-17—5-19

displacement deferred index,

5-27—5-28

displacement index, 5-36—5-27
faults and, 8-12

general mode addressing, 5-12

general register addressing, 5-12

immediate, 5-37—5-39
index, 5-19—5-21

literal, 5-29—5-32

program counter register

addressing, 5-36—5-37

register, 5-32—5-33

1-2 ■ Index

addressing modes, (cont.)

register deferred, 5-33—5-35

register deferred index, 5-21—5-22

relative, 5-39—5-40

relative deferred, 5-41

restarts and, 3-18

address space, virtual, 7-6—7-8

address translation maps, 7-7

architectural subsetting, 10-1—10-4

architecture, 1-1—1-2

of PDP-11 compatibility mode,

11-2

argument lists, 3-5

argument pointer (AP), 3-5

arithmetic exceptions, 8-9—8-11

arithmetic instructions, 6-2

add, 9-1

arithmetic shift and round packed

(ASHP), 6-6, 9-4—9-5

arithmetic shift (ASH), 6-13, 9-4

divide, 9-26—9-27

multiply, 9-50—9-51

subtract, 9-60—9-61

array processing

autoincrement mode used for, 5-14

index instruction for, 6-12

index mode used for, 5-19

assembler, notation conventions for,

5-1

ASTLVL registers, 8-8

asynchronous system traps (ASTs), 2-3,

8-7—8-9

autodecrement index mode, 5-24—5-25

autodecrement mode, 5-12—5-13

autoincrement deferred index mode,

5-23—5-24

autoincrement deferred mode, 2-6,

5.14—5-16

autoincrement index mode, 5-22—5-23

autoincrement mode, 5-14

B

backward link, 4-17

base addresses, 6-25

batteries, for time-of-year clock, 3-7

binary normalized numbers, 6-10

bit clear (BIC) instruction, 6-13, 9-5

bit clear processor status word

(BICPSW) instruction, 6-18, 9-5

bit set (BIS) instruction, 6-13, 9-6

bit set processor status word (BISPSW)

instruction, 6-18, 9-6

bit test (BIT) instruction, 6-14,

9-6—97

branch instructions, 6-4—6-5

add compare and branch, 9-2—9-3

add one and branch, 9-3

branch (BR), 9-7

branch on bit (BB), 9-7

branch on bit and modify without

interlock (BR), 9-8

branch on bit and clear and clear,

interlocked (BBCCI), 3-3

branch on bit interlocked (BB),

9-7—9-8

branch on bit set and set,

interlocked (BBSSI), 3-3

branch on condition, 9-8—9-10

branch on low bit (BLB),

9-10—9-11

branch to subroutine (BSB), 2-7,

6-4, 9-11

case, 9-14

subtract one and branch, 9-61

branch mode addressing, 5-41—5-43

breakpoint fault (BPT) instruction, 6-5,

9-11

breakpoint faults, 8-11

budcheck (BUG) instruction,

9-11—9-12

byte data type, 4-7

bytes, 4-7, 7-3

1-3

c
cache memory, 3-16—3-17

call frames (stack frames), 2-7, 3-5,

6-14, 6-17

call instructions, 2-7, 3-2, 6-4—6-5,

6-16—18

to access privileged system services,

7-22

call procedure with general

argument list (CALLG), 6-16,

9-12

call procedure with stack argument

lists (CALLS), 9-13

call procedure with stack pointer

argument list (CALLS), 6-16,

6-17

extended function call, 9-35

frame pointer and, 3-5

trace exceptions and, 8-17

carry condition code, 2-13, 8-5

case instructions, 6-4, 9-14

change mode (CHM) instruction,

3-2, 6-15, 7-22, 9-14—9-15

character string data type, 2-12,

4-1—4-2

edit instruction to convert packed

decimal to, 6-9

character string instructions, 6-2—6-3,

10-2

compare characters, 9-16—9-17

edit, 9-27—9-34

locate character, 9-42—9-43

match character, 9-43

move character, 9-44—9-45

move translated characters, 9-49

move translated until character,

9-49

scan characters, 9-59

skip characters, 9-59—9-60

span characters, 9-60

clear (CLR) instruction, 6-12, 6-14,

9-15

clock registers, 3-7—3-9

comments, in MACRO source

statements, 5-5

compare characters (CMPC)

instruction, 6-2, 9-16—9-17

compare field (CMP) instruction, 6-25,

9-17

compare (CMP) instruction, 6-12, 6-14,

9- 15—9-16

compare packed (CMPP) instruction,

6-6, 9-17

compatibility, with PDP-11 systems,

1-3, 11-1—11-11

compatibility mode bit, 8-7

compatibility mode faults, 8-12

compatibility mode instruction set,

10- 2

computation instructions, 6-1

computers, architecture of, 1-1

condition codes, 2-13—2-14, 5-5, 8-5

console receive control/status register,

3-9

console registers, 10-3

console terminal registers, 3-9

console transmit control/status register,

3-9

constants, literal mode for, 5-29—5-30

context load operations, 3-7

contexts, 2-1, 3-2

for exceptions and interrupts, 2-14

during exceptions and interrupts,

8-4

process, 8-27

switched, 1-3, 2-2—2-3, 3-7

context save operations, 3-7

control instructions, 6-3—6-5

case, 9-14

jump, 9-41

jump to subroutine, 9-41—9-42

See also branch instructions;

subroutines

1-4 ■ Index

conversion exceptions, 8-9

conversion instructions, 6-1

convert (CVT) instruction, 6-12, 6-14,

9-18—9-20

convert leading separate numeric to

packed (CVTSP) instruction, 6-6,

9-20

convert longword to packed (CVTLP)

instruction, 6-6, 9-20—9-21

convert packed to leading separate

numeric (CVTPS) instruction, 6-6,

9-21

convert packed to longword (CVTPL)

instruction, 6-6, 9-21

convert packed to trailing numeric

(CVTPT) instruction, 6-6, 9-22

convert rounded (CVTR) instruction,

6-12

convert trailing numeric to packed

(CVTTP) instruction, 6-6, 9-23

cyclic redundancy check (CRC)

instruction, 6-5—6-6, 9-23—9-25

D

data

in registers, 4-24—4-25

sharing of, 3-3—3-4

data types, 2-10—2-13, 4-1

address instructions for, 6-2

character string, 4-1—4-2

convert instructions for, 9-18—9-23

floating-point, 4-2—4-6

floating-point, instructions for,

10-1—10-2

instructions symmetrical with, 2-5,

6-1
integer, 4-6—4-9

numeric string, 4-10—4-15

in operand notation, 5-2

packed decimal string, 4-16—4-17

queue, 4-17—4-21

variable length bit field, 4-21—4-24

debugging, trace exceptions during,

8-15

decimal overflow trap enable bit, 8-6

decimal string data types

packed, 2-12

packed decimal string, 4-16—4-17

decimal string divide by zero trap

exceptions, 8-10

decimal string instructions, 6-6—6-9,

10-2

add packed, 9-3—9-4

arithmetic shift and round packed,

9-4—9-5

compare packed, 9-17

convert leading separate numeric to

packed, 9-20

convert longword to packed,

9-20—9-21

convert packed to leading separate

numeric, 9-21

convert packed to longword, 9-21

convert packed to trailing numeric,

9-22

convert trailing numeric to packed,

9-23

divide packed, 9-27

move packed, 9-48

multiply packed, 9-51

subtract packed, 9-62

decimal string overflow trap

exceptions, 8-10

decrement (DEC) instruction, 6-13,

9-26

device controllers, interrupt vectors in,

8-19

device interrupts, 8-19

D_floating-point data type, 2-12,

4- 2—4-3, 6-10

instructions for, 10-1

stored in registers, 4-24, 4-25

displacement deferred index mode,

5- 27—5-28

displacement deferred mode, 2-6,

5-17—5-19

displacement index mode, 5-26—5-27

1-5

displacement mode, 2-6, 5-17

divide by zero floating fault exceptions,

8-11

divide (DIV) instruction, 6-2,

6-10—6-12, 9-26—9-27

divide packed (DIVP) instruction, 6-6,

9-27

documentation, 1-14

double-precision floating (D_) data

type, 4-2

E

edit (EDITPC) instruction, 6-9—6-10,

9-27—9-34

emulation

of instructions, 10-4

of PDP-11 user environment,

11-2—11-6

environments

for PDP-11 compatibility mode,

11-2—11-6

for programming, 3-1—3-4

EO$ADJUCT_INPUT operator, 9-29

EO$BLANK_ZERO operator, 9-29

EOICLEAR_SIGNIF operator,

9-29—9-30

EO$END_FLOAT operator, 9-30

EO$END operator, 9-30

EO$FILL operator, 9-30

EO$FLOAT operator, 9-31

EO$INSERT operator, 9-31—9-32

EO$LOAD operator, 9-32

EO$MOVE operator, 9-32—9-33

EO$REPLACE_SIGN operator, 9-33

EO$SET_SIGNIF operator,

9-33—9-34

FOISTORE_SIGN operator, 9-34

errors

cyclic redundancy check instruction

for, 6-5—6-6

processor, 3-18

in use of stacks, 3-14

event handling, 8-1—8-2

asynchronous system traps for,

8-7—8-9

for exceptions and interrupts,

8-3—8-4

interrupt priority levels for, 8-3

processor status and, 8-4—8-7

system control block vectors for,

8-23—8-27

See also exceptions; interrupts

exceptions, 2-3, 2-14, 8-1, 8-3—8-4

arithmetic, 8-9—8-11

event handling of, 8-1—8-2

initiating, 8-31—8-33

instruction faults, 8-11—8-12

memory management, 8-12

operand reference, 8-12—8-14

in PDP-11 compatibility mode,

11-10

priority of recognition of,

8-30—8-31

processor status during, 8-4—8-7

return from exception or interrupt

instruction for, 9-56—9-57

serious system failures, 8-14—8-15

system control block and,

8-23—8-27

trace, 8-15—8-17

exclusive OR (XOR) instruction, 6-14,

9-34

executive access mode, 2-5, 3-2, 7-1

executive stack pointer (ESP), 8-27

extended divide (EDIV) instruction,

6-13, 9-35

extended function call (XFC)

instruction, 6-15, 9-35

extended modulus (EMOD)

instruction, 6-12, 9-35—9-36

extended multiply (EMUL) instruction,

6-13, 9-36

1-6 ■ Index

extent notation, 5-5

extract field (EXT) instruction, 6-25,

9-36—9-37

F

failures, system, 8-14—8-15

fault parameter word, 7-20—7-21

faults, 8-2

instruction, 8-11—8-12

kernel stack and, 8-28

memory management, 7-20—7-21,

8-12

operand reference, 8-12—8-14

trace, in PDP-11 compatibility

mode, 11-10

See also exceptions

F_floating-point data type, 2-12,

4-3—4-4, 6-10

instructions for, 10-1

stored in registers, 4-24

field access, 2-7

fields

instructions for, 6-25

variable-length bit field data type,

2-12, 4-21—4-24

See also variable-length bit field

instructions

find first bit (FF) instruction, 6-25,

9- 37

flags, trap-enable, 8-5

floating-overflow fault exceptions, 8-11

floating-point data types, 2-12,

4-2—4-6

floating-point instructions, 6-10—6-12,

10- 1—10-2

add, 9-1

clear, 9-15

compare, 9-15—9-16

convert, 9-18—9-20

divide, 9-26—9-27

extended modulus, 9-35—9-36

move, 9-43—9-44

floating-point instructions, (cont.)

move negated, 9-47—9-48

multiply, 9-50—9-51

polynomial evaluation, 9-51—9-52

subtract, 9-60—9-61

test, 9-63

floating-point literals, 5-30

floating underflow enable bit, 6-17

floating-underflow exception enable

bit, 8-6

floating-underflow fault exceptions,

8-11

format

for instructions, 5-5—5-10

for MACRO source statements,

5-5—5-6

forward link, 4-17

frame pointer (FP), 3-5

G

general mode addressing, 5-12

general register addressing,

5-12—5-35

program counter register

addressing, 5-36—5-41

general register addressing, 5-12

absolute index mode, 5-25—5-26

autodecrement index mode,

5-24—5-25

autodecrement mode, 5-12—5-13

autoincrement deferred index

mode, 5-23—5-24

autoincrement deferred mode,

5-14—5-16

autoincrement index mode,

5-22—5-23

autoincrement mode, 5-14

displacement deferred index mode,

5-27—5-28

displacement deferred mode,

5-17—5-19

displacement index mode,

5-26—5-27

1-7

general register addressing, (cont.)

displacement mode, 5-17

index mode, 5-19—5-21

literal mode, 5-29—5-32

register deferred index mode,

5-21—5-22

register deferred mode, 5-33—5-35

register mode, 5-32—5-33

general registers, 3-4—3-6

addressing of, 2-9

for PDP-11 compatibility mode,

11-2—11-3

G_floating-point data type, 2-12,

4-4—4-5, 6-10

instructions for, 10-2

global page table base register (GBR),

7-11

global page table index (GPTX), 7-10

H

halt instruction, 6-15, 9-37—9-38

handbooks, 1-4

handling routines, 8-17

hardware

high-level language instructions

implemented in, l-2v

interrupt priority levels for, 8-3

interrupts generated by, 8-19

memory management, 1-3—1-4,

2-4, 7-1, 7-19, 7-20

for multiprogramming, 2-1

page table entries for, 7-10—7-11

for PDP-11 compatibility mode,

11-2

hardware context, 2-1, 2-2

hardware process control block, 2-2

head of the queue, 4-18, 6-19

hexadecimal numbers, assembler

notation for, 5-1

H—floating-point data type, 2-12,

4-5—4-6, 6-10

H—floating-point data type, (cont.)

instructions for, 10-2

stored in registers, 4-25

high-level languages, 1-2

I

immediate mode, 2-6, 5-37—5-39

increment (INC) instruction, 6-13, 9-38

index instruction, 6-12, 9-38

index mode, 5-19—5-21

index registers, 5-19

input/oputput control, 2-15

input/output device controllers, 2-15

input/output devices, page table entries

for, 7-10—7-11

input/output references in PDP-11

compatibility mode, 11-11

input/output registers, 3-13—3-14

insert entry in queue (INSQUE)

instruction, 6-22, 9-38—9-39

insert entry into queue at head,

interlocked (INSQHI) instruction,

3-4, 6-24, 9-39—9-40

insert entry into queue at tail,

interlocked (INSQTI) instruction,

3-4, 6-24, 9-40

insert field (INSV) instruction, 6-25,

9-41

instruction faults, 8-11—8-12

instructions and instruction sets, 1-2,

2-5—2-6

aborts caused by, 8-1

access modes for, 3-1

add, 9-1

add aligned word interlocked, 9-2

add compare and branch, 9-2—9-3

add one and branch, 9-3

add packed, 9-3—9-4

address, 6-1—6-2

addressing modes and, 5-10—5-43

1-8 ■ Index

instructions and instruction sets, (cont.)

add with carry, 9-4

arithmetic, 6-2

arithmetic shift, 9-4

arithmetic shift and round packed,

9- 4—9-5

bit clear, 9-5

bit clear processor status word, 9-5

bit set, 9-6

bit set processor status word, 9-6

bit test, 9-6—9-7

branch, 9-7

branch on bit, 9-7

branch on bit and modify without

interlock, 9-8

branch on bit interlocked, 9-7—9-8

branch on condition, 9-8—9-10

branch on low bit, 9-10—9-11

branch to subroutine, 9-11

breakpoint fault, 9-11

bugcheck, 9-11—9-12

call procedure with general

argument list, 9-12

call procedure with stack argument

list, 9-13

case, 9-14

to change access mode, 7-22—7-23

change mode, 9-14—9-15

character string, 6-2—6-3

clear, 9-15

compare, 9-15—9-16

compare characters, 9-16—9-17

compare field, 9-17

compare packed, 9-17

compatibility mode instruction set,

10- 2
condition codes for, 2-13—2-14

control, 6-3—6-5

convert, 9-18—9-20

convert leading separate numeric to

packed, 9-20

convert longword to packed,

9.20—9-21

convert packed to leading separate

numeric, 9-21

convert packed to longword, 9-21

convert packed to trailing numeric,

9-22

instructions and instruction sets, (cont.)

convert trailing numeric to packed,

9-23

cyclic redundancy check, 6-5—6-6,

9- 23—9-25

data types recognized by,

2-10—2-13

decimal string, 6-6—6-9

decrement, 9-26

divide, 9-26—9-27

divide packed, 9-27

edit, 6-9—6-10, 9-27—9-34

emulation of, 10-4

exclusive OR, 9-34

extended divide, 9-35

extended function call, 9-35

extended modulus, 9-35—9-36

extended multiply, 9-36

extract field, 9-36—9-37

faults during execution of, 8-2

find first bit, 9-37

floating-point, 6-10—6-12,

10- 1—10-2

floating-point instructions,

10-1—10-2

format for, 5-6—5-10

halt, 9-37—9-38

increment, 9-38

index, 6-12, 9-38

insert entry in queue, 9-38—9-39

insert entry in queue at head,

interlocked, 9-39—9-40

insert entry in queue at tail,

interlocked, 9-40

insert field, 9-41

integer, 6-13

jump, 9-41

jump to subroutine, 9-41—9-42

kernel instruction set, 10-3—10-4

load process context, 9-42

locate character, 9-42—9-43

logic, 6-13—6-14

MACRO source statement format

for, 5-5—5-6

match characters, 9-43

on Micro VAX I and II systems,

10-4

move, 9-43—9-44

1-9

instructions and instruction sets, (cont.)

move address, 9-44

move characters, 9-44—9-45

move complement, 9-45

move from processor register,

9-45—9-47

move from processor status

longword, 9-47

move negated, 9-47—9-48

move packed, 9-48

move to processor register, 9-48

move translated characters, 9-49

move translated until characters,

9-49

move zero-extended, 9-50

multiple register, 6-14

multiply, 9-50—9-51

multiply packed, 9-51

notation conventions for, 5-1—5-5

operand processing by, 2-7—2-8

for PDP-11 compatibility mode,

11-4—11-6

polynomial evaluation, 9-51—9-52

pop registers, 9-52

privileged, 6-15—6-16

probe accessibility, 9-52—9-53

procedure call, 6-16—6-18

process control, 2-8

processor status longword, 6-18

push address, 9-53

push longword, 9-54

push registers, 9-54

queue, 6-19—6-24

remove entry from queue,

9-54—9-55

remove entry from queue at head,

interlocked, 9-55—9-56

remove entry from queue at tail,

interlocked, 9-56

restarts and, 3-17—3-18

return from exception or interrupt,

9-56—9-57

return from procedure, 9-57

return from subroutine, 9-58

rotate longword, 9-58

routine calls, 2-7

save process context, 9-58—9-59

scan characters, 9-59

instructions and instruction sets, (cont.)

for shared data, 3-3—3-4

skip character, 9-59—9-60

span characters, 9-60

special, 3-2—3-3

stacks and, 3-14

string instructions, 10-2

subtract, 9-60—9-61

subtract one and branch, 9-61

subtract packed, 9-62

subtract with carry, 9-62

suspended, 8-31

test, 9-63

trace exceptions between

executions of, 8-15—8-17

variable length bit field, 6-25

integer data types, 2-12, 4-6—4-9

integer divide by zero trap exceptions,

8-10

integer instructions, 6-31

add aligned word interlocked, 9-2

add with carry, 9-4

decrement, 9-26

extended divide, 9-35

extended multiply, 9-36

increment, 9-38

push longword, 9-54

subtract with carry, 9-62

integer overflow trap enable bit, 8-6

integer overflow trap exceptions, 8-10

internal (processor) registers, 3-7

interrupt context, 3-2

interrupt priority level register,

8-21—8-22

interrupt priority levels (IPLs), 8-1, 8-3

asynchronous system traps and, 8-9

in PDP-11 compatibility mode,

11-10

processors’, 8-6

for software interrupts, 8-19, 8-20

for urgent interrupts, 8-21

interrupts, 2-3, 2-14, 3-18, 8-1,

8-3—8-4, 8-18—8-19

during character string instruction

executions, 6-3

I-10 ■ Index

interrupts, (cont.)

device, 8-19

event handling of, 8-2

example of, 8-22

initiating, 8-31—8-33

interrupt priority level register for,

8-21—8-22

in PDP-11 compatibility mode,

11-10
priority of recognition of,

8-30—8-31

processor status during, 8-4—8-7

restarts after, 3-17

return from exception or interrupt

instruction for, 9-56—9-57

software-generated, 8-19—8-21

system control block and,

8-23—8-27

urgent, 8-21

interrupt stack, 3-15, 8-27

in PDP-11 compatibility mode,

11-10
process scheduling software

executed on, 2-8

interrupt stack flag, 8-7

interrupt stack not valid—halt

exceptions, 8-14

interval clock, 3-7—3-9

interval clock control/status register,

3-8

interval count register, 3-8

interval timer registers, 10-2

I/O references, see input/output

references

J
journals (of procedure call nesting), 2-7

jump instructions, 6-4

jump (JMP) instruction, 6-5, 9-41

jump to subroutine (JSB) instruction,

2-7, 6-5, 9-41—9-42

K

kernel access mode, 2-5, 3-2, 7-1

interrupt priority changed in, 8-2

process page table entries in, 7-8

kernel instruction set, 10-3—10-4

kernel reads, 7-14

kernel stack, 8-28, 8-32

kernel stack frame, 11-10

kernel stack not valid—abort

exceptions, 8-14, 8-32

kernel stack pointer (KSP), 8-27

L

labels, in MACRO source statements,

5- 5

languages, 1-2

last-in/first-out (LIFO) queues (stacks),

3-14

leading numeric string data type, 6-6

leading separate numeric string data

type, 4-10—4-12

length registers, 7-9

literal mode, 5-29—5-32

literature, 1-4

load process context (LDPCTX)

instruction, 2-2, 3-3, 6-15, 7-22,

7-23, 9-42

stack pointers referenced by, 8-28,

8-33

translation buffer updated by, 7-20

locate character (LOCC) instruction,

6- 2, 9-42—9-43

logical complement operations, 6-13

logic instructions, 6-13—6-14

arithmetic shift, 9-4

bit clear, 9-5

bit set, 9-6

bit test, 9-6—9-7

clear, 9-15

1-11

logic instructions, (cont.)

compare, 9-15—9-16

convert, 9-18—9-20

exclusive OR, 9-34

move, 9-43—9-44

move complement, 9-45

move negated, 9-47—9-48

move zero-extended, 9-50

rotate longword, 9-58

test, 9-63

longword data type, 4-8, 4-24

longwords, 7-3

loop control instructions, 6-4

m

machine checks, 8-4, 8-15, 8-21

MACRO source statements, 5-5—5-6

manuals, 1-4

map enable register (MAPEN), 7-19

match characters (MATCHC)

instruction, 6-2, 9-43

memory

access modes for, 3-1

cache, 3-16—3-17

paging of, 7-1

virtual, 7-2—7-6

memory management, 1-3—1-4,

2-4—2-5, 7-1—7-2

access control in, 7-16—7-19

access privileged system services

and, 7-22—7-23

address translation in, 7-8—7-16

control of, 7-19—7-20

exceptions in, 8-12

faults and parameters for,

7-20—7-21

interrupts and, 8-19

in PDP-11 compatibility mode,

11-7—11-9

virtual address space in, 7-6—7-8

virtual memory in, 7-2—7-6

memory mapping, 2-4

Memory Mapping Enable (MME) bit,

7-8

Micro VAX I systems, 10-4

Micro VAX II systems, 10-4

modify access, 2-7

move address (MOVA) instruction, 6-1,

9-44

move characters (MOVC) instruction,

6-2, 9-44—9-45

move complement (MCOM)

instruction, 6-14, 9-45

move from processor register (MFPR)

instruction, 6-15, 7-22, 9-45—9-47

processor registers and, 3-7, 7-23

process space address translation

and, 7-14, 7-16

to read map enable register, 7-19

for software interrupt summary

register, 8-20

stack pointers referenced by, 3-6,

8-33

move from processor status longword

(MOVPSL) instruction, 6-18, 9-47

move (MOV) instruction, 6-12, 6-14,

9-43—9-44

move negated (MNEG) instruction,

6-12, 6-14, 9-47—9-48

move packed (MOVP) instruction, 6-6,

9-48

move to processor register (MTPR)

instruction, 6-15, 7-22, 9-48

interrupt priority level register and,

8-21

interrupts forced by, 8-3

processor registers and, 3-7, 7-23

process space address translation

and, 7-14, 7-16

for software interrupt summary

register, 8-20

stack pointers referenced by, 3-6,

8-33

to write to map enable register,

7-19

1-12 ■ Index

move translated characters (MOVTC)

instruction, 6-2, 9-49

move translated until character

(MOVTUC) instruction, 6-2, 9-49

move zero-extended (MOVZ)

instruction, 6-14, 9-50

multiple register instructions, 6-14

multiply (MUL) instruction, 6-2, 6-11,

6-12, 9-50—9-51

multiply packed (MULP) instruction,

6-7, 9-51

multiprocessor systems

interrupt priority levels in, 8-18

interrupt requests in, 8-2

page table entries and, 7-11

multiprogramming, 2-1, 7-1

context switching in, 2-2—2-3

virtual memory in, 7-2

N

negative condition code, 2-14

next interval count register, 3-8

nibbles, 4-16, 7-3

notation conventions, 5-1—5-5

null strings, 4-1

numeric string data types, 2-12,

4-10—4-15

o
octaword data type, 4-9, 4-25

octawords, 7-3

opcode reserved to Digital fault, 8-12

opcode reserved to users fault, 8-12

operand processing, 2-7—2-8

operand reference exceptions,

8-12—8-14

operands

in instructions, 5-6, 5-9—5-10

in MACRO source statements, 5-5

notation conventions for, 5-1—5-2

in PDP-11 compatibility mode, 11-2

operating system, 7-2, 7-4, 7-6

memory management tables

controlled by, 7-7

page table entries changed by, 7-11

stacks used by, 8-28

operation codes (opcodes), 2-6

operation notation, 5-2—5-5

operators

in edit instruction, 9-28—9-34

in instructions, 5-6, 5-8

in MACRO source statements, 5-5

notation convention for, 5-4

options

compatibility mode instruction set,

10-2

floating-point instructions,

10-1—10-2

instruction emulation, 10-4

kernel instruction set, 10-3—10-4

Micro VAX 1 and II systems, 10-4

PDP-11 compatibility mode as, 11-1

processor registers, 10-2—10-3

string instructions, 10-2

OR instruction, exclusive OR (XOR),

9-34

outputs, edit instructions for,

6-9—6-10

overflow condition code, 2-14, 8-5

overflow exceptions, 8-4

overflows, 6-8

P

P0 Base Register (P0BR), 7-14

P0 Length Register (P0LR), 7-14

P0LR (length register), 7-9

1-13

PO page table (POPT), 7-14

POPT (process space page table), 7-6

PO space, 7-2, 7-7, 7-13

PI Base Register (P1BR), 7-15

PI Length Register (P1LR), 7-15

P1LR (length register), 7-9

PI page table (P1PT), 7-15

P1PT (process space page table), 7-6

PI space, 7-2, 7-7, 7-13

packed decimal data type, 2-12

edit instruction to convert to

character string, 6-9

instructions for, 6-6—6-9

packed decimal string data type,

4-16—4-17

page frame number (PFN), 7-9, 7-10

page mapping registers, 2-4

pages (memory), 2-4, 7-1, 7-4, 7-6

access control for, 7-16

in PDP-11 compatibility mode, 11-8

page table entry (PTE), 7-5—7-6,

7-8—7-10

changing, 7-11

for input/output devices,

7-10—7-11

page tables, 2-4—2-5, 7-1, 7-4, 7-8

faults for, 7-20

paging, 7-1

parameters, for memory management,

7-20—7-21

PDP-11 compatibility mode, 1-3, 8-7,

11-1

entering and leaving, 11-6—11-7

exceptions and interrupts in, 11-10

input/output references in, 11-11

memory management in,

11-7—11-9

processor registers in, 11-11

program synchronization in, 11-11

tracing in, 11-10

unimplemented PDP-11 traps in,

11-11

PDP-11 compatibility mode, (cont.)

user enviroment emulation in,

11-2—11-6

performance monitor enable register,

10-3

peripheral device control/status and

data (input/output) registers, 3-13

peripherals

control, status and data registers in,

7- 4

interrupts generated by, 8-19

page table entries for, 7-10—7-11

physical addresses, 2-4

polynomial evaluation (POLY)

instruction, 6-12, 9-51—9-52

pop registers (POPR) instruction, 6-14,

9-52

position-independent code, 2-6

powerfail, 8-3, 8-6, 8-21

power supply, for time-of-year clock,

3-7

precision

of D_floating-point data type, 4-3

of F_floating-point data type, 4-4

of floating-point data types, 2-12

of G_floating-point data type, 4-4

of H_floating-point data type, 4-5

priority dispatching, 2-3, 2-3

priority levels

of exceptions and interrupts,

8- 30—8-31

for interrupts, 3-18, 8-1—8-3, 8-18

for urgent interrupts, 8-21

privileged instructions, 6-15—6-16

change mode, 9-14—9-15

extended function call, 9-35

halt, 9-37—9-38

load process context, 9-42

move from processor register,

9- 45—9-47

move to processor register, 9-48

probe accessibility, 9-52—9-53

1-14 ■ Index

privileged instructions, (cont.)

return from exception or interrupt,

9-56—9-57

save process context, 9-58—9-59

privileged modes, 3-16, 7-1, 7-4

privileged (processor) registers, 2-2, 3-7

asynchronous system traps and, 8-8

copies of process stack pointers in,

8-28

for memory management, 7-19

See also processor registers

privileged system services, 7-22—7-23

probe accessibility instructions, 3-2,

6-15, 6-16, 7-22, 7-23, 9-52—9-53

probe read accessibility (PROBER)

instruction, 3-2, 6-16, 7-23,

9-52—9-53

probe write accessibility (PROBEW)

instruction, 3-2, 6-16, 7-23,

9-52—9-53

procedures

call instructions for, 6-16—6-18

calls for, 2-7

return from procedure instruction

for, 9-57

process address space, 7-6

process context, 3-2

interrupt stack during, 8-27

load process context instruction for,

9-42

save process context instruction for,

5-58—9-59

process control block (PCB), 2-1—2-3,

3-6, 3-7, 3-9

process control block base (PCBB)

register, 3-9—3-13

processes, 2-1—2-2

context switching for, 2-2—2-3

control instructions for, 2-8

multiprogramming execution of, 7-1

programming environment for,

3-1—3-4

virtual memory shared by, 7-2, 7-4

processor errors, 3-18

processor registers, 3-7—3-13,

10-2—10-3

move from processor register

instruction for, 9-45—9-47

move to processor register

instruction for, 9-48

in PDP-11 compatibility mode,

11-11

See also privileged registers

processors, 2-1—2-2

access modes for, 3-1—3-2

context switching in, 2-2—2-3

general registers in, 2-9

instruction operand processing by,

2-7—2-8

instruction set and, 2-5—2-6

interrupt requests arbitrated by,

8-2, 8-18

memory management and, 2-4—2-5

priority dispatching in, 2-3

process context on, 1-3

process control instructions in, 2-8

routine call capability in, 2-7

status during exceptions and

interrupts of, 8-4—8-7

virtual addressing in, 2-4

processor status longword (PSL), 3-1,

7-1

during exceptions and interrupts,

8-3—8-6

PDP-11 compatibility mode and,

11-7, 11-10

PDP-11 compatibility mode bit on,

11-6
status bits in, 8-29

trace exceptions and, 8-15

trace pending bit saved values in,

8-32

processor status longword instructions,

6-18

bit clear processor status word, 9-5

bit set processor status word, 9-6

move from processor status

longword, 9-47

processor status word (PSW), 3-1, 8-4

bit clear processor status word

instruction for, 9-5

1-15

processor status word, (cont.)

bit set processor status word

instruction for, 9-6

PDP-11 compatibility mode and,

11-3, 11-7

trap enable bits in, 6-17

process page tables, 2-3, 7-14

process scheduling interrupt, 8-3

process space, 2-4, 7-2, 7-7

access control for, 7-17

address translation for, 7-13—7-16

process space page tables, 7-6

program counter (PC), 2-9, 3-4

addressing modes for, 5-36—5-41

events and values saved in,

8-32—8-33

during exceptions and interrupts,

8-3, 8-4

not used in autodecrement mode,

5-13

not used in register deferred mode,

5-33

not used in register mode, 5-32,

5-33

operands identified by, 2-6

program counter register addressing,

5-36—5-37

absolute mode in, 5-37

immediate mode in, 5-37—5-59

relative deferred mode in, 5-41

relative mode in, 5-39—5-40

programming

trace exceptions during debugging

in, 8-15

use of stacks in, 3-14

programming environment, 3-1—3-4

programs

stacks used by, 3-16

virtual memory for, 1-3

program synchronization, in PDP-11

compatibility mode, 11-11

protection

access control for, 7-16—7-19

access modes for, 2-5

protection, (coni.)

for memory, in multiprogramming,

7-1

for page table entries, 7-9

privileged instructions for, 6-16

processor access modes for,

3-1—3-2

protection codes, 7-16, 7-18

push address (PUSHA) instruction,

6-1, 9-53

pushdown lists (stacks), 3-14

push longword (PUSHL) instruction,

6-13, 9-54

push registers (PUSHR) instruction,

6-14, 9-54

Q

quadword data type, 4-8—4-9, 4-24

quadwords, 7-3

queue data type, 2-13, 4-17—4-20

queue instructions, 6-19—6-24

insert entry in queue, 9-38—9-39

insert entry in queue at head,

interlocked, 9-39—9-40

insert entry in queue at tail,

interlocked, 9-40

remove entry from queue,

9-54—9-55

remove entry from queue at head,

interlocked, 9-55—9-56

remove entry from queue at tail,

interlocked, 9-56

queues, 4-17—4-18

R

range notation, 5-5

read access, 2-7

receive registers, 3-9

1-16 ■ Index

register deferred index mode,

5-21—5-22

register deferred mode, 5-33—5-35

register mode, 5-32—5-33

registers, 3-4

data in, 4-24—4-25

general, 3-4—3-6

general, addressing of, 2-9,

5-12—5-35

input/output, 3-13—3-14

in input/output device controllers,

2-15

interrupt priority level, 8-21—8-22

length, 7-9

for memory management, 7-19

multiple, instructions for, 6-14

page mapping, 2-4

for PDP-11 compatibility mode,

11-2—11-3

in peripheral devices, 7-4

pop registers instruction for, 9-52

privileged, 2-2

procedure calls and, 2-7

processor, 3-7—3-13, 10-2—10-3

processor, in PDP-11 compatibility

mode, 11-11

processor status longword, 3-1, 7-1

program counter addressing modes,

5-36—5-41

push registers instruction for, 9-54

after restarts, 3-17

stack, 8-30

relative deferred mode, 5-41

relative mode, 5-39—5-40

relative queues, 2-13

instructions for, 6-22—6-24

remove entry from queue at head,

interlocked (REMQHI) instruction,

6-24, 9-55—9-56

remove entry from queue at tail,

interlocked (REMQTI) instruction,

3-4, 6-24, 9-56

remove entry from queue (REMQUE)

instruction, 6-22, 9-54—9-55

reserved addressing mode faults, 8-12

reserved operand exceptions,

8-13—8-14

restartability, 3-17—3-18

return from exception or interrupt

(REI) instruction, 2-14, 3-3, 6-16,

7-22, 9-56—9-57

asynchronous system traps and, 8-8

to enter PDP-11 compatibility

mode, 11-6

interrupts triggered by, 8-3

program counter and processor

status longword restored by, 8-4

service routines exit using, 7-23

trace exceptions and, 8-15

return from procedure (RET)

instruction, 9-57

return from subroutine (RSB)

instruction, 6-4, 9-58

return instruction, 3-5, 6-16, 6-17

rotate longword (ROTL) instruction,

6-14, 9-58

rounded results, 6-11

routines

call capability for, 2-7

case instructions for, 6-4

procedures, instructions for,

6-16—6-18

trace handlers, 8-17

s
save process context (SVPCTX)

instruction, 3-3, 6-15, 7-22, 7-23,

9-58—9-59

executed on kernel or interrupt

stacks, 2-8

stack pointers referenced by, 8-28,

8-33

scan characters (SCANC) instruction,

6-2, 9-59

scheduling

interrupt for, 8-3

of processes, 2-8

scratchpad registers, 3-7

1-17

security

access control for, 7-16—7-19

access modes for, 2-5

privileged instructions for, 6-16

processor access modes for,

3-1—3-2

self-relative queues, 2-13, 4-17, 4-18

instructions for, 6-22—6-24

serious system failures, 8-14—8-15

sharing of data, 3-3—3-4

short literals, 5-29

single-precision floating (F_) data

type, 4-3

skip character (SKPC) instruction, 6-2,

9-59—9-60

SLR (length register), 7-8

software

asynchronous system traps and,

8-8—8-9

exceptions generated by, 8-2

interrupt priority levels for, 8-3

interrupts generated by, 8-19—8-21

memory management, 2-5, 7-1

process scheduling, 2-8

programming environment for,

3-1—3-4

registers available to, 3-5

system failures caused by, 8-14

software context, 2-1

software interrupt summary register

(SISR), 8-19—8-20

software process control block, 2-2

span characters (SPANC) instruction,

6-2, 9-60

special instructions, 3-2—3-3, 6-1

stack frames (call frames), 2-7, 3-5,

6-14, 6-17

stack pointers (SP), 2-13, 3-4, 3-6,

3-14, 3-15, 8-27—8-28

accessing, 8-30

not used in register mode, 5-33

for PDP-11 compatibility mode,

11-3

stack registers, 8-30

stacks, 2-13, 3-14—3-16, 8-27—8-30

autoincrement mode and, 5-14

during exceptions and interrupts,

8- 3

in PI space, 7-2

pop registers instruction for, 9-52

push registers instruction for, 9-54

status bits, 8-29

string instructions, 10-2

See also character string instructions

subroutines

branch to subroutine instruction

for, 9-11

call instructions for, 6-4—6-5

calls for, 2-7

jump to subroutine instruction for,

9- 41—9-42

return from subroutine instruction

for, 9-58

subscript range trap exceptions, 8-11

subtract (SUB) instruction, 6-2, 6-11,

6-12, 9-60—9-61

subtract one and branch (SOB)

instruction, 6-4, 9-61

subtract packed (SUBP) instruction,

6-7, 9-62

subtract with carry (SBWC)

instruction, 6-13, 9-62

supervisor access mode, 2-5, 3-2, 7-1

supervisor stack pointer (SSP), 8-27

suspended instructions, 8-31

swapping, 7-7

switched-in context, 1-3

switched-out context, 1-3

synchronization

of access to shared data, 3-3—3-4

in PDP-11 compability mode, 11-11

syntax, for operation of instructions,

5-2

system address space, 7-6

1-18 ■ Index

system authorize database

(SYSUAF.DAT), 7-22

system control block (SCB), 2-14,

8-23—8-27

system control block base register, 2-14

system failures, 8-14—8-15

system identification (SID) register,

3-13

system length register (SLR), 7-14

system maps, 7-20

system page table (SPT), 7-6

system page table entries, 7-20

system region page tables, 2-5

system services, privileged, 7-22—7-23

system space, 2-4, 7-2, 7-7, 7-8

access control for, 7-17

address translation for, 7-11—7-12

T

tail of the queue, 4-18, 6-19

test (TST) instruction, 6-12, 6-14, 9-63

time-of-year clock, 3-7

time-of-year block register, 10-3

trace bit, 8-6, 8-32

trace exceptions, 8-15—8-17

trace handlers, 8-17

tracing, in PDP-11 compatibility mode,

11-10

trailing numeric string data type,

4-12—4-15, 6-6

transfer instructions, 6-5

translation buffer invalidate all register

(TBIA), 7-20

translation buffer invalidate single

(TBIS) register, 7-20

translation buffers, 7-6, 7-20

translation not valid faults, 7-20, 8-12,

8-32

translation of addresses, 2-4—2-5,

7-8—7-16

transmit registers, 3-9

trap enable bits, 6-17, 6-18

trap-enable flags, 8-5

traps, 8-2

asynchronous system, 2-3, 8-7—8-9

unimplemented in PDP-11

compatibility mode, 11-11

truncated results, 6-11

two’s complement data representation,

4-6

u
urgent interrupts, 8-21

user access mode, 2-5, 3-2, 7-1

privileged system services accessed

by, 7-22

user stack, 2-13

user stack pointer (USP), 8-27

v
variable-length bit field data type,

2-12, 4-21—4-24

variable-length bit field instructions,

6-25

compare field, 9-17

extract field, 9-36—9-37

find first bit, 9-37

insert field, 9-41

VAX-11/780 processors, 8-6

VAX systems

Micro VAX I and II systems, 10-4

PDP-11 compatibility mode on,

11-1—11-11

vectors, in system control block,

8-23—8-27

1-19

virtual address extension, 1-2—1-3

virtual address space, 1-4, 7-1,

7-6—7-8

virtual addresses, 7-1

virtual addressing, 2-4

virtual memory, 7-2—7-6

X

XFC (extended function call)

instruction, 9-35

XOR (exclusive OR) instruction, 9-34

w
word data type, 4-7

words, 7-3

working memory, 7-2

write access, 2-7

z
zero condition code, 2-14, 8-5

zeros, 6-8, 6-10

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

VAX Architecture 1986

READER S COMMENTS

Your comments and suggestions will help us in our continuous effort to
improve the quality and usefulness of our handbooks.

What is your general reaction to this handbook? (format, accuracy,
completeness, organization, etc.)_

What features are most useful?

Does the publication satisfy your needs?

What errors have you found?

Additional comments

Name

Title

Company Dept.

Address

City State ZIP
(staple here) EB-26115-46

(please fold here)

No Postage

Necessary if

Mailed in the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD, MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

Digital Equipment Corporation
Corporate Communications Group
CFO 1-2/M92
200 Baker Avenue
West Concord, MA 01742

