pAns22ATS)

FHAEAIT.
LKLY,
$EY

%

&

X

XXX

XAXXX

b.9.4.9.4.4.4.4

KUEXAAXX

AXXXXXXKXKLK

KAXAXXAXAKXXK

AXAXXKXKAAXKKKX

XX XKXUK KK KAXKKKKXX

b 0968960 4.84960604.494

P 9.08.6.6.8468600.540084

J 09,0008 0 44488608 406¢46.004
p8.6.0.9.0.4.080.4. 6684006640686
XRAELAAXUA XX AKX KA XX XA XK LA KAXKX
XXX XA XA XA KK LK XK KX XK XAKKX
PP OO UGG 09 0098.4.8000800940
PO SOG4 0000000089000 80 8000446846

PO S.00 00606000000 908.99869500880¢8.6,84.
}9.6.0.90.6.6.0.9.000008060800000.808400V¢898446

P B 0SS b D P 06000800000 0.48009.689.00008

1000 S 0000000000000 08 0.0660008000008

b 010.0.0.8.0.0.000.60.0.0:0.0.0.40.040.4.08460.00968000480900
1:0:8.6.66.06.0.6600.08.000.0.0009 4840000308 50080890¢880

PO E O TN IO 00.0.068.66060690080080$68800006080808
OGS E 00 P 0SEO VS SIS PO EI G 088048¢80.00.99066000806960
p V0000060888000 86800:080.008¢09600880080400008080808

rtVAX 300 Hardware Usgr's Guide

Order Number: EK-382AB-UG-002

This manual contains technical and physical specifications of the tVAX 300
processor and information necessary for configiring it into host and target
configurations—that is, information on the following interfaces: memory
gyatem, console and boot ROM, network interconnect, and I/O device.

Revision/Update information:

Software Revision:
Hardware Revision:

Firmware Revision:

Digital Equipment Corporation
Maynard, mussacnusetis

T 's manual supersedes the #VAX 300
Hardware User’s Guide, EK-382AA-UG-
HON

VAXELN Version 4.2
rtVAX 300 Version C1

Version 1.1

First Printing, May 1990
Revised, April 1991

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that may appear in this
document.

Any software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license. No responsibility is assumed for the use or
reliability of software or equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to

restrictions as set forth in subparagraph (cX1Xii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1990, 1991.
All right- reserved. Printed in U.S.A.

The Reader’s Comments form at the end of this document requests your critical evaluation to
assist in preparing future Jocumentation.

The following are trademarks of Digital Equipment Corporation: DDCMP, DEC, DECnet,
DECnet-VAX, DECwindows, DELUA, DEQNA, DEUNA, DSSI, IVAX, MicroVAX, PDP, Q22-bus,
RQDX, rtVAX 300, ThinWire, VAX, VAXcluster, VAX DOCUMENT, VAXELN, VMS, and the
DIGITAL logo.

IBM PC/AT is a registered trademark of the International Business Machines Corporation.
PROMLINK is a registered trademark of the DATA I/C Corporation. Signetics is a registered
trademark of the Signetics Company.

51537

This document was prepared with VAX DOCUMENT, Version 1.2.

Contents

Preface Xix

1 Overview of the rtVAX 300 Processor

1.1 Central Processor 1-2
1.2 Floating-Point Accelerator 1-2
1.3 Ethernet Coprocessor, 1-3
1.4 System Support Functions 1-3
15 Resident Firmware 1-3

. 2 Technical Specification

21 Functional Description 2-1
2.1.1 Architecture Summary 2-2
2.1.2 CPUand CFPA 2-2
2.1.3 ROM and Reserved Memory Locations 2-2
214 Network Interface 2-2
215 Decode and Control Logic. 2-4
216 Interrupt Structure L 24
2.1.7 DMA Structure 24
. 2.1.8 Interval Timer 2-4
2.19 Internal Cache 2-5
2.2 Mimimum Hardware Configuration 2-5
2.21 System RAM 2-5
222 Console 2-5
2.3 Bus Connections. 2-6
2.31 Power Connections 2-6
232 Reset and Power-Up Requirements 2-6
233 Power-Down Sequencing: Power-Fail. 2—7
24 Pin and Signal Description 2-8
241 Dataand Address Bus 2-11
242 Ethernet Connections 2-12
. 24.3 Bus Control Signals 2-13

244 BusRetryCycles 2-16 ‘

245 Status and Parity Control Signals 2-16
246 Interrupt Control i 2-18
247 DMA Control Signals it 2-18
248 System Control Signals 2-19
249 ClockSignals i, 2-19
24.10 Power Supply Connections 2-20
2.5 Memoryand VO Space.............. 2-20
25.1 Address Decode and Boot ROM 2-22
25.2 Boot ROM 2-22
253 Programming the User ROMs 2-23
254 Network Interface Registers 2-23
255 Board-Level Initialization and Diagnostic ROMs 2-23
2.6 Bus Cyclesand Protocols 2-24
26.1 Microcycle Definition 2-24
26.2 Single-Transfer Read Cycle 2~24
26.3 Quadword-Transfer Read Cycle 2-26
2.6.4 Octaword-Transfer Read Cycle 2-29
2.6.5 Single-Transfer Write Cycle 2-32
266 Octaword-Transfer Write Cycle 2-35
26.7 Interrupt Acknowledge Cycle 2-37
268 External IPRCycles. 2-37
26.8.1 External IPRRead Cycle 2-37
2682 External IPR WriteCycle. 2-39
269 Intermal Cycles. 2-40
2.6.10 DMACycle. 2~41
2.6.11 CacheInvalidateCycle. 242

3 Hardware Architecture

31 Central Processort 3-2
311 DataTypes.ooiiii ittt 3-2
312 Imstruction Set 3-2
313 Microcode-Assisted Emulated Instructions. 3-3
314 Processor State ittt 35
3.14.1 General-Purpose Registers 3-5
3142 Processor Status Longword 3-5
3143 Internal Processor Registers 37
315 Interval Timert -9
316 ROM Address Space. innn. 3-10
317 Resident Firmware Operation 3-10

3.1.8 Memory Management 3-11

3.1.8.1 Translation Buffer 31
3.1.8.2 Memory Management Control Registers 3-12
3.1.9 Exceptions and Interrupts 3-12
3.1.10 Interrupt Control 3-13
3.1.11 Internal Hardware Interrupts 3-13
3.1.12 Dispatching Interrupts: Vectors. 3-13
3.1.121 Interrupt Action. oL 3-14
3.1.12.2 Halting the Processor. 3-16
3.1.123 Exceptions 3-16
3.1.124 Information Saved on a Machine Check Exception 3-19
3.1.125 System Control Block 3-24
3.1.126 Hardware Detected Errors 3-26
3.1.127 Hardware Halt Procedure 3-27
3.1.13 System Identification L. 3-28
3.1.14 CPUReferences, 3-29
3.1.141 Instruction-Stream Read References 3-28
3.1.14.2 Data-Stream Read References 3-29
3.1.143 Write References 3-30
3.2 Floating-Point Accelerator 3~-30
3.2.1 Floating-Point Accelerator Instructions 3-30
3.22 Floating-Point Accelerator Data Types. 3-31
3.3 Cache Memoryt i 3--31
3.3.1 Cacheable References 3-31
3.3.2 Internal Cache 3-32
3.3.2.1 Internal Cache Organization 3--32
3.3.2.2 Internal Cache Address Translation. 3-33
3.3.23 Internal Cache Data Block Allocation 3-34
3.3.24 Internal Cache Behavioron Writes 3-35
3.3.25 Cache Disable Register 3-36
3.3.26 Memory System Error Register 3-38
3.3.2.7 Internal Cache Error Detection 3-39
3.4 Hardware Initialization 340
3.441 Power-Up Initialization 3-40
3.4.2 /O Bus Initialization it 3-41
3.4.3 Processor Initialization 3-41
3.5 Console Interface Registers 3-41
3.5.1 Boot Register i 3—41
3.5.2 Console DUART Register 3-43
353 Memory System Control/Status Register 344
354 Status LED Registerivun.. 345
3.6 Ethernet Coprocessorttt inn .. 3-47

3.6.1 Control/Status Registers
3.6.1.1 Vector Address, IPL, Sync/Asynch (CSR0)
3.6.1.2 Transmit/Receive Polling Demands (CSR1, CSR2)
3.6.1.3 Descriptor List Addresses (CSR3,CSR4)
36.1.4 Status Register (CSR5)
3.6.1.5 Command and Mode Register (CSR6)
3.6.1.6 System Base Register (CSR7)
3.6.1.7 Watchdog Timer Register (CSR9)...................
3.6.1.8 Revision Number and Missed Frame Count (CSR10). . . .
3.6.1.9 Boot Message Registers (CSR11, CSR12, CSR13).......
3.6.1.10 Breakpoint Address Register (CSR14)
3.6.1.11 Monitor Command Register (CSR15)
36.2 Descriptor and Buffer Formats
3.6.2.1 Receive Descriptors
3.6.2.2 Transmit Descriptors
3.6.2.3 SetupFrame
3.6.2.3.1 First Setup Frame
3.6.2.3.2 Subsequent Setup Frame
3.6.2.3.3 Setup Frame Descriptor
3.6.2.3.4 Perfect Filtering Setup Frame Buffer
3.6.2.3.5 Imperfect Filtering Setup Frame Buffer
3.6.3 Operation i e
3.6.3.1 Hardware and Software Reset
3.6.3.2 Interrupts
3.64 Serial Interface
3.6.4.1 Transmit Mode
3.64.2 Receive Mode
3.65 Diagnosticsand Testing
3.6.5.1 Error Reporting
3.6.5.2 On-Chip Diagnostics
3.6.5.2.1 Internal Self-Test
36522 LoopbackModes
3.6523 Time Domain Reflectometer
4 Firmware
4.1 System Firmware ROM Format
4.1.1 System ROM Part Format
412 System ROM Set Format
4.2 System Firmware Entry. L.
4.2.1 Restart
42.2 Boot e
4.2.3 Halt ...

vi

a0 @

349
3-50
3-51
3-53
3-57
3-61
3-62
3-63
3-64
3-64
3-65
3-66
3-67
3-72
3-78
3-78
3-78
3-79
3-80
3-82
3-84
3-85
3-86
3-86
3-87
3-87
3-87
3-87
3-88
3-88
3-89
3-89

4-2
4-2

4-7
4-7

4.3 Console Program

4.3.1 Entering the Console Program
4.3.2 Compatible Console Interface.
4.3.3 Entering and Exiting from Console Mode
4.3.4 Console Keyst
4.3.5 Console Command Syntax
4.3.6 Console Commandsoouviinonn. co
4.3.6.1 BOO L . .t
4.36.2 ContiNUE ...ttt ettt it e i e
4.3.6.3 Deposit. ... oot
4.3.6.4 Examine. i
4.3.6.5 Find . .. e
4.36.6 Halt
4.3.6.7 Help . ..ot e
4.36.8 Initializet it e e
4.36.9 Repeat ooiit i e
4.3.6.10 =1 75
4.3.6.11 SROW . i e e
4.3.6.12 SLArt . oo
4.3.6.13 TSt . o oo e e e

4.3.6.14 Unjamt
4.3.6.15 Transfero e
4.3.6.16 P (Comment). . . .ovvv e e
4.3.7 Supported Boot Devices
4.3.8 Console Program Messages
4.3.9 Console Device o vt e
4.3.10 Capabilities of Console Terminals
4.3.11 Console Entryand Exit
44 Entity-Based Module and Ethernet Listener
45 Startup Messages.o
4.5.1 Power-On Display it
452 Boot Countdown Description
453 Halt Actiont
454 Boot Devicet e
455 BootFlagsoiiiii i
4.6 Diagnostic Test List it
4.7 System Scratch RAM i
4.7.1 SCR$A_SAVE_CONSOLE
47.2 SCR$A_RESTORE_CONSOLE
4.8 User-Defined Board-Level Boot and Diagnostic ROMs
481 Optional User Initialization Routine
4.8.2 Input Parameters. i
483 Memory Bitmap Descriptor Format

4-9

4-9

4-9
4-1
4-11
4-11
4-12
4-12
4--15
4~15
4-15
4-16
4-17
4-17
4~17
4-18
4-19
4-19
4-20
4-20
4-21
4-21
4-22
4-24
4--24
4-25
4-25
4-26
4--26
4-27
4-28
4-28
4-29
4-29
4-34
4-39
4-39
4-39
440
4-41
4-42

vii

484 Optional User-Supplied Diagnostic Routines 4-42 ‘

4.84.1 Self-Test Routine Input Parameters 4-43
48.4.2 Self-Test Routine Qutput 4-43
4.8.5 Linking User Initialization/User Test ROM 4-44
4.9 Creation and Down-Line Loading of Test Programs 4-44
4.9.1 Writing Test Programs 4-44
4.9.2 Using MOP to Run Test Programs 4-45
410 Serial-Line Boot Directions 4-45
411 ROM Bootstrap Operations 4-47
4111 Booting from Cached ROM Address Space. 4-49
4.11.2 Booting from ROM I/O Address Space 4-49

5 Memory System Interface

5.1 Memory Speed and Performance 5-2
5.2 Staticand Dynamic RAMs, 5-2
5.3 Basic Memory Interface L. 5-3
54 CycleStatus Codes. i, 5-4
5.5 Byte Mask Lines 5-5
5.6 Data Parity Checking. 57
57 Internal Cache Control 5-8
5.8 Memory Management Unit 5-9
5.9 Memory System Design Example 59
5.9.1 Address Decodert 5-9
592 AddressLatches i i i, 5-11
5.9.3 DRAM Memory Refresh 5-12
5.9.4 DRAM Row and Column Address Multiplexer 5-12
595 AM-Byte DRAM AITayottt 5-15
5.9.6 DRAM Terminating Resistors 5-16
5.9.7 DRAM Data Latches 5-17
5.9.8 Memory Controller State Machine 5-17
5.10 Memory Timing Considerations 5-21
5.10.1 Calculating Memory Access Time. 5-21
5.10.2 State Machine Input Setup Time 5-22
5.10.3 Memory Subsystem Longword and Quadword Read Cycle

NG . . oottt e e 5-23
5.10.3.1 Calculating DRAM Row Address Setup Time. 5-27
5.10.3.2 Calculating DRAM Row Address Hold Time 5-27
5.10.3.3 Calculating DRAM Column Address Setup Time 5-28
5.10.3.4 Calculating DRAM Column Address Hold Time. 5-28
5.10.4 Memory Subsystem Octaword Write Cycle Timing. 5-28
5.10.4.1 Calculating DataInSetup Time 5-30
5.10.4.2 Calculating DataIn Hold Time 5-30

viii

. 5.10.5 Memory Subsystem Refresh Timing 5-30

5.10.6 RASPrecharge Time iiiiinnnn... 5-32
5.10.7 DALBusTurnoff Time. 5-32
5.11 Memory System Illustrations and Programmable Array Logic. . . 5-33
5.11.1 Application Module Address Decoder PAL 5-33
5.11.2 Memory Subsystem Sequencer State Machine PAL 5-43

6 Console and Boot ROM Interface

6.1 Console System Interface 61
6.1.1 Console ACCESS v vttt et e 6-3
. 6.1.2 Console State Machine 64
6.1.3 Console Interrupt Acknowledge Cycles 64
6.1.4 Console Timing Parameters 66
6.1.4.1 Console Address Setup and Hold Times 67
6.1.4.2 Console Data Turn-Off Time 6-9
6.1.4.3 Console Read Cycle Timing Analysis 6-9

6.1.4.4 Console Write Cycle and Data In Setup and Hold Timing
Analysis e e 6-10
6.1.5 Console Oscillator 6-11
6.1.6 Line Drivers and Receivers 6-1
. 6.1.7 Console Break Key Support 6~11
6.2 Booting from External ROM 6~-12
6.2.1 Base Address of External ROM 6-12
6.2.2 Programming the Boot ROMs 6-12
6.2.3 Boot ROM Interface Design 6-13
6.2.4 Boot ROM Address Decoder 6-14
6.25 ROM AddressLatch 6-14
626 ROMRead CycleTiming 6~14
6.2.7 ROM Turn-Off Time i i e 6-18
. 6.2.8 ROM Speed Versus rtVAX 300 Performance 6-19
6.3 rtVAX 300 Processor Status LED Register 6-19

6.4 Console Interface and Boot ROM Illustrations and

Programmable Array Logic 6-19
6.4.1 Application Module Address Decoder PAL 621
6.4.2 Console Sequencer State Machine PAL 6—29
6.4.3 Interrupt Decoder PAL.. 6-33

7 Network Interconnect interface

7.1 DECnet Communicationsttt nnns
7.2 Ethernet Interface
7.3 Thickwire Network Interconnect,
7.4 ThinWire Support
7.5 Ethernet Coprocessor Registers
7.6 Hardware Implementation Example
7.6.1 QOverview of Ethernet Interface
7.6.1.1 Ethernet Interface Functions
7612 DP8392 Transceiver Chip.
76.2 Implementationof Design
7.6.2.1 ThinWire Transceiver. iiiinninanns
7622 Layout Requirements
7.6.2.3 Typical Ethernet Board Parts List 7-11
7.62.4 DCDC Converterttt 7-12
786.3 Detailed Design Considerations 7-12
7.6.3.1 Differential Signals 7-12
7.6.3.2 DP8392 Transceiver iit i 7-12
7.63.2.1 External Components. 7-14
7.6.3.2.2 Layout Considerations 7-15
7.6.3.3 ThinWire Application Hints 7-16
76.3.4 POWET . . . e 7-18
76.3.5 Grounding 7-19
7.6.3.6 Isolation Boundary.......... a. 7-20

8 1/0 Device Interfacing

8.1 /O Device Mappingttt
8.1.1 Address Latch
8.1.2 Address Decoding
8.1.3 /O Access: Cache Control, Data Parity, and 1/0 Cycle

TyPES . . et
8.2 rtVAX 300 Interrupt Structure.
8.2.1 Interrupt Daisy-Chaining
822 Interrupt Vector
8.3 General Bus Interfacing Techniques
8.3.1 BusErrors
832 Using the rtVAX 300 asa BusMaster
8.3.3 Using the rtVAX 300 asa Bus Slave
834 Building a DMA Engine for the tVAX 300
8.4 DMA Device Mapping Registers.
8.4.1 Q22-bus to Main Memory Address Translation

C
D

E

8.4.2
843
8.5

8.5.1
8.5.2
8.5.3
8.54
8.55

8.5.5.1
8.5.5.2

8.5.6
8.6
8.7
8.8

Q22-bus Map Registers iy
Dual-Ported Memory iiiuiiiinienn..
rtVAX 300 to Digital Signal Processor (DSP) Application
Example. e
DSP Private Memory
4K Words of DSPPrivate RAM
DSP 4K-Word Private Initialization ROM
DSPDMACyclesttt
Control and Status Register.
1-Way Mirror Register
Interrupt, Reset,and Hold Bits
DMA Base Address Register
Reset/Power-Upot i
Halting the Processor.
I/0 System Ilustrations

Physical, Electrical, and Environmental Characteristics

A
A2
A3

Physical Characteristics
Electrical Characteristics o it i ittt et it e et e e
Environmental Characteristics.

Acronyms

Address Assignments

User Boot/Diagnostic ROM Sample

Sample C Program to Build Setup Frame Buffer

index

8-12
8-13

8-13
8-16
8-16
8-17
8-17
8-19
8-19
8-19
8-20
8-20
8-21
8-23

xi

Examples

31 Perfect Filtering Setup Buffer Fragment 3-81
3-2 Imperfect Filtering Setup Frame Buffer 3-83
4-1 Firmware Dispatch Code 4-6
E-1 Hash Filtering Setup Frame Buffer Creation C Program . .. E-1
Figures
2-1 rtVAX 300 Block Diagram 2-3
2-2 Typical rtVAX 300 Environment 2-6
2-3 Timing Cycle for Reset Function 2-7
24 rtVAX 300 FinLayout 2-11
2-5 Thickwire Connections 2-13
2-6 rtVAX 300 Memory and /O Space 2-21
2-7 rtVAX 300 Memory Bank Organization 2-22
2-8 Microcycle Timing 2-24
2-9 Single-Transfer Read Cycle Timing 2-25
2-10 Quadword-Transfer Read Cycle Timing 2-28
2-11 Octaword-Transfer Read Cycle Timing 2-31
2-12 Single-Transfer Write Cycle Timing 2-34
2-13 Octaword-Transfer Write Cycle Timing 2~36
2-14 Interrupt AcknowledgeCycle 2-38
2~-15 Internal Read or WriteCycle 2-41
2-16 DMACycle 2-42
2-17 Octaword Cache Invalidate Cycle. 2-43
2-18 Quadword Cache Invalidate Cycle 2-44
3~ Processor Status Longword 3-6
3-2 Interval Timer, 3-10
33 Interrupt Registers 3-16
34 Information Saved on a Machine Check Exception 3-19
35 System Control Block Base Register 3-24
36 System Identification Register 3-29
3-7 Internal Cache Organization 3-32
3-8 Internal Cache Entry 3-33
3-5 Internal Cache TagBlock 3-33
3-10 Internal CacheDataBlock 3-33 .

il

3~11 Internal Cache Address Translation. 3-35

3-12 Cache Disable Register 3-36
3-13 Memory System Error Register 3-38
3-14 Boot Register i, 3-42
3-15 Memory Systemm Control/Status Register 3-44
3-16 LED Display/Status Register 3-45
3-17 Ethernet Ceprocessor Block Diagram 347
3-18 CSRO Formatttt it it en 3-50
3-19 CSRI/CSR2Formatc. i, 3-51
3-20 CSR3/CSRAFormatc0viiiiiiiinnnn.. 3-52
3-21 CSREFormat ottt 3-53
3-22 COREFOIMAL ittt it e 3-57
3-23 CSR7Format i ittt 3-61
3-24 CSROFormat i 3-62
3-25 CSRIOFormatt 3-63
3-26 CSR14 Formatttt 3-64
3-27 CSR15Format 3-65
3-28 Receive Descriptor Format 3-67
329 Transmit Descriptor Format 3-72
3-30 Setup Frame Descriptor Format 3-79
3-31 Perfect Filtering Setup Frame Buffer Format 3-81
3-32 Imperfect Filtering Setup Frame Buffer Format 3-82
4-1 System ROM Format 4-2
4-2 System KOMPart 4-3
4-3 Systera ROM SetData 44
44 System Type Register. 4-5
4-5 HelpDisplay i 4-16
456 Console Mailbox Register (CPMBX) Offset 0016. 4-34
4-7 Console Program Flags 4-36
4-8 Default Boot Device Register (BOOTDEV). 4-37
4-9 User Boot/Diagnostic ROM 4-41
4-10 Memory Bitmap Descriptor 4-42
4-11 ROMBootBlock............ 448
51 Memory Organization 5-5
5-2 Sample Design: Memory Subsystem Functional Diagram . . . 5-10
5-3 Sample Design: DRAM AddressPath 5-14
54 Sample Design: Memory Controller Sequence 5-19

xiii

xiv

Le

5-9
5-10
5-11
5-12
5-13
5-14
5-15
6-1

IITTIIT

69
6-10
611
6-12
6-13
7-1

7-3
7-4
7-5

7-€

7-8

Sample Design: Memory Controller Longword Timing
Sample Design: Memory Controller Octaword Read Cydle

Timing

.........................

Sample Design: Memory Controller Octaword Write Cycle

Timing

..............................

Sample Design: Memory Controller Refresh Timing
Sample Design: Address Decoder and Power-Up Reset

RAM Memory Map. . .

..............................

Sample Design: Address Latches
Sample Design: DRAM Memory Array(1)...............
Sample Design: DRAM Memory Array (2}
Sample Design: RAM Daia Latches.
Sample Design: Memory Controller
Sample Design: Console Terminal Interface Block

Diagram...........

..............................

Sample Design: Console Cycle Sequence
Sample Design: Interrupt Acknowledge Cycle Timing
Sample Design: Console Read and Write Cycle Timing
Sample Design: Boot ROM Functional Block Diagram
Sample Design: Address Decoder.

Sample Design: Address Laiches

Sample Design: ROM Read Cycle Timing
Sample Design: Processor Status Display
Application Module Address Decoder Memory Map
Sample Design: Console Interface
Sample Design: User Boot ROM Bank 1 with Drivers.
Sample Design: User Boot ROM Bank 2

Network Interconnect:

Network Interconnect:
Jumpers...........

Network Interconnect:
Network Interconnect:
Network Interconnect:

Network Interconnect:
Network Intercc nect:

Network Interconnect:

Controller Block Diagram
Isolation Transformer and

..............................

Ethernet Interface Block Diagram. . .
DP8392 Chip Block Diagram
Transceiver, BNC Connector, and AUI

..............................

dc-to-dc Converter
Layout of ThinWire Medium

..............................

o @

5-25

5-29
5-31
5-35
5-36
3-37
5-38
5-39

5-41

63

6-13
6-15
6-16
6—-17
6—-20
6-21
6-23
6-25
6--27

7-3

7-4
7-6
7-8

7-10
7-13

7-16
7-17

8-1
8-2
8-3

=
'~

87

8-9
8-10
8-11

8-12
8-13
8-14
8-15
8-16
817
8-18

8-19
8~-20
8-21
8-22

8-23
8-24
8-25

8-26
827

8-28
8-29
8-30
8-31

1/0 Device Interfacing: Address Latches
I/O Device Interfacing: Address Decoding Block Diagram . . .

/O Device Interfacing: Interrupt Daisy-Chain Block
Diagram e

I/O Device Interfacing: DMA Read Cycle Timing.
Q22-bus to Main Memory Address Translation

Q22-bus Map Register

..................

............

1/0 Device Interfacing: DSP and rtVAX 300 Processor

Interface Block Diagram
1/0 Device Interfacing:
I/0 Device Interfacing:
I/0 Device Interfacing:
1/O Device Interfacing:

................

DMA State Machine Sequence

Reset Timer Logic . . .

............

............

Reset e e

I/0 Device Interfacing:
1/0 Device Interfacing:
1/0) Device Interfacing:
O Device Interfacing:
I/O Device Interfacing:
1/0 Device Interfacing:
/0 Device Interfacing:

Network Connections

I/0 Device Interfacing:
I/0 Device Interfacing:
I/0 Device Interfacing:
/O Device Interfacing:

DRAM Memory Array
DRAM Memory Array
RAM Data Latches . .

DSP PGM Loader ROM

............

(1) g

.........

2) _

............

rtVAX 300 ThinWire/Thickwire

..................

............

DMA Write Cycle Timing

Memory Controller .7
Console Interface . ..
User Boot ROM Bank

A

............

............

1 with

DAVeLS . . .ttt e e e

/O Device Interfacing:
I/0 Device Interfacing:
1/0 Device Interfacing:

Generator

DSP and Private RAM

..........

...........

DSP DMA Transceiver and Parity

.......................................

1/0 Device Interfacing:
I/0 Device Interfacing:

...........

Register e

I/O Device Interfacing:
I/0 Device Interfacing:
I/0 Device {nterfacing:
I/O Device Interfacing:

............

...........

.....

8-2
8-3

85
8-S
8-11
8-12

8-15
8-18
8-21
8-22

8-24
8-25
8-26
8-27
8-28
8-29
8-30

8-31
8-33
8-35
8-37

8-39
841
8-43

8-45
8-47

8-49
8-51
8-53
8-565
8-57

xXv

8-32
A-1
A-2
A-3

Tables

xvi

2-1
2-2
2-3
24
2-5
26
-7
2-8
3-1
32
3-3
34
3-5
36
37
3-8
3-9
3-10
31
312
3-13
3-14
3-15
3-16
3-17
3-18
3~19
3-20
3-21
322

I/O Device Interfacing: DecouplingCaps
rtVAX 300 TopView i,
rtVAX 300 Bottom View
rtVAX 300 Side View

BusInterface Signals
rtVAX 300 Processor Pin Description

DAL Lines
Byte Masks

.......................................

......................................

rtVAX 300 Bus Status Signals
Interrupt Priority Assignments
rtVAX 300 Responses to a Quadword-Transfer Read Cycle ..
rtVAX 300 Responses to Octaword-Transfer Read Cycle
Microcode-Assisted Emulated Instructions.
Processor Status Longword Bit Map
Internal Processor Registers

Interrupts
Exceptions

.......................................

.......................................

System Control Block Format
Nonmaskable Interrupts That Can Causea Halt.
Exceptions That Can Causea Halt
System Identification Register Fields.
Cache Disable Register Fields
Memory System Error Register Fields
Boot Options i,
Console Registers SCN 2681 DUART
Memory System Control/Status Register Fields
LED Display/Status Register Fields.
LEDDisplavChart,
Ethernet Coprocessor Registers

CSRO Bits
CSR1 Bits
CSR2 Bits

.......................................

.......................................

.......................................

CSR3/CSR4A Bits. i

CSR5 Bits

.......................................

3~-23 CSREBits 3-57

3-24 CORT Bitst ii it ittt et et 3~61
3-25 CORIO BitS . ..ottt i e e 3-62
3-26 CSRIOBIts ittt 3-63
3-27 CSR11,CSR12,CSR13Bits 3-64
3-28 CSRIA BitS i ittt et et e 3-64
3-29 CORIG Bitscoiiiit it i e 3~65
3-30 RDESO Fields.ottt 3-68
3-31 RDES1Fields.0 i, 3-70
3-32 RDES2Fields. 3-71
3-33 RDES3 Fields. i 3-71
334 Receive Descriptor Status Validity 3-72
3-35 TDESOFields. 3-72
3-36 TDES1Fields. 3-74
3-37 TDES2 Fields i 3-76
3-38 TDES3 Fields. i, 3-77
3-39 Transmit Descriptor Status Validity. 3-77
340 Setup Frame Descriptor Bits 3-79
341 Ethernet Coprocessor CSR Nonzero Fields After Reset 3-85
342 Ethernet Coprocessor Summary of Reported Errors. 3-88
4-1 System Type Register Fields 4-5
4-2 Firmware Error Messages 4-22
4-3 Countdown Status Codes 4-27
44 Boot Countdown Indications 4-27
4-5 LED Test Number Code List 4-29
4-6 Scratch RAM Offset Definitions 4-34
4-7 Console Mailbox Register Fields 4-35
4-8 Console Program Flags Fields 4-36
4-9 Default Boot Device Register Fields. 4-38
5-1 rtVAX 300 Data Transfer and Bus Cycle Types 54
5-2 rtVAX 300 DAL Parity and Byte Masks. 5-7
5-3 rtVAX 300 CSDP<4:0> IPR and IACK Codes 5-11
5-4 Memory Read Cycle Selection 5-15
55 Q-_adword and Octaword Read Cycle Transfers 5-20
5-6 Memory Controller Setup Times 5-22
57 DRAM Timing Parameters for 80 ns Page Mode IM

Bitx 1. e 5-26

xvii

5-8 DRAM CAS Before RAS Refresh Timing Parameters 5-32 '

5-9 Application Module Address Decoder PAL 5-34
5-10 Application Module Address Decoder Equations 5-36
5-11 Memory Subsystem Sequencer State Machine PAL 543
6-1 SCN 2681 DUART Timing Parameters 6~7
6-2 Typical ROM Access Time 6~-18
6-3 Decoder Equations L, 621
64 Application Module Address Decoder 6~22
6-5 Console Sequencer State Machine PAL 629
6—6 Interrupt Decoder 6~-33
67 Interrupt Decoder PAL Equations 6~35
7-1 MAU Signals Description 7-6
7-2 Etnernet Board Parts List 7-11
8-1 Response to Bus Errors and DAL Parity Errors 8-7
8-2 Q22-bus Map Register Bits 8-13
8-3 TMS320C25 Digital Signal Processor Memory Map 8-16
A-1 Recommended Operating Conditions A~5
A-2 DC Characteristicsottt A-5
A-3 ACCharacteristiCsttt A-6
C~1 Memory Spacettt C-1
c-2 Input/Output Space C~1
C-3 Local Register Input/Output Space C-2

xvii

Preface

The rtVAX 300 is a target processor designed to be embedded in a Digital
Equipment Corporation computing network. The rtVAX 300 processor permits
the coupling of realtime instruments, peripheral devices, sensors, and similar
devices to DECnet, VAX computers, servers, workstations, and terminals. The
rtVAX 300 processor is also compatible with DECwindows applications.

The rtVAX 300 is the minimal hardware that you apply by adding required
memory, I/O devices, interrupt logic, and peripheral chips in order to customize
it to the specific application that you have designed. You can also interface
your own proprietary LSI/VLSI custom integrated circuits to your design,
because the rtVAX 300 permits direct access to its microprocessor bus.

. intended Audience

This book is intended for hardware and software technical personnel who
design and program subsystems and hardware configurations based on
the rtVAX 300 processor. Readers should be familiar with the information
presented in the VAX Architecture Reference Manual.

Document Structure

This document consists of eight chapters and five appendixes:

* Chapter 1, Overview of the rtVAX 300 Processor, provides brief descriptions
of the central processor, floating-point accelerator, Ethernet coprocessor,
system support functions, and resident firmware.

¢ Chapter 2, Technical Specification, provides a functional description of
the rtVAX 300 and describes the minimum hardware configuration, bus
connections, pin and signal descriptions, memory and I/O space map and
registers, and bus cycles and protocols.

¢ Chapter 3, Hardware Architecture, contains more detailed information on
the central processor, floating-point accelerator, cache memory, hardware
initialization, console interface registers, and Ethernet coprocessor.

xixX

Chapter 4, Firmware, describes the system firmware ROM format, system
firmware entry, console program, entity-based module and Ethernet
listener, startup messages, hardware CSRs referenced by the rtVAX

300 firmware, a diagnostic test list, user-defined board-level boot and
diagnostic ROMS, creation and down-line loading of test programs, and
ROM bootstrap operations.

Chapter 5, Memory System Interface, describes memory speed and
performance, static and dynamic RAMs, basic memory interface, cycle
status codes, byte mask lines, data parity checking, internal cache control,
mermory management unit, a memory system design example, memory
timing considerations, memory system illustrations, and programmable
array logic.

Chapter 6, Console and Boot ROM Interface, discusses console system
interface, booting from external ROM, the processor status LED register,
console interface and boot ROM illustrations, and programmable array
logic.

Chapter 7, Network Interconnect Interface, describes the rtVAX 300
DECnet communications, Ethernet interface, thickwire network
interconnect, ThinWire support, Ethernet coprocessor registers, and a
hardware implementation example.

Chapter 8, I/O Device Interfacing, discusses I/O device mapping,

the interrupt structure, general bus interfacing techniques, DMA

device mapping registers, an rtVAX 300-to-digital signal processor
application example, reset/power-up, halting the processor, and I/O system
illustrations.

Appendix A describes the physical, electrical, and environmental
characteristics of the rtVAX 300 processor.

Appendix B lists and defines acronyms used frequently in this guide.

Appendix C lists address assignments for memory space, input/output
space, and local register input/output space.

Appendix D is a template for user boot/diagnostic firmware routines.

Appendix E contains a C program that builds a setup frame buffer for the
hashing filtering mode.

. Conventions

This manual adheres to the following numbering and signal-naming
conventions.

Numbering Conventions

All computer addresses are hexadecimal numbers; for example, address
10000000 denotes 10000000,4. All other numbers are decimal-based, unless
otherwise specified.

Digital Sighal-Naming Conventions

A signal name begins with a letter and may end with either H or L.

. * H means that the signal is active high—that is, the signal voltage is
between 2.4V and 5.0V.
e L means that the signal is active low—that is, the signal voltage is between
0.0V and 0.8V.

The term “Asserted” means that a signal voltage is within the active voltage
range for that signal. For example, the signal AS L is an active low signal; if
this signal is asserted, a voltage between 0.0V and 0.8V is present.

All voltages are specified with respect to the +5V power supply ground that is
. used to power the rtVAX 300: 1 is equivalent to high; 0 is equivalent to low.

Signal buses are specified by the following notation:

Signal_Name<HIGHEST_BIT_IN_BUS:LOWEST_BIT_IN_BUS> assertion

For example, the signal DAL<31:00> H represents a 32-bit-wide bus named

DAL, whose bits are numbers 0 to 31; each signal in this bus is active high.

Therefore, if bit number 5 of this bus is connected to a gate, the signal name
for that bit is DAL<05> H.

. Associated Documents

¢ Brunner, Richard A., ed. VAX Architecture Reference Manual. 2d ed.
Bedf~rd, MA: The Digital Press, 1990.

* Levy, Henry M., and Eckhouse, Richard H., Jr. Computer Programming
and Architecture: The VAX. 2d ed. Bedford, MA: The Digital Press, 1989.

* rtVAX 300 Programmer’s Guide
o VAXELN-rtVAX 300 Supplement

xxi

rtVAX 300 Test Box .

You can order an rtVAX 300 test box and user’s guide from Design Analysis
Associates. The Design Analysis Associates part number for the text box is
DAA-20RTVX-01.

The address for Design Analysis Associates is:

Design Analysis Associates, Inc.
75 West 100 South

Logan, UT 84321 U.SA.

Phone: (801) 753-2212

FAX: (801) 753-7669

xxii

prss s
LRI
pANNA S A
CHELE
LY

b4

L

XXKXX
XXXAXKX

XHKXXKXXX

AXAEXXLAKKX

p0.$.0.0.0.0.0.0.8.0.¢04

P8.0:4.9.0.0.4.5.5.9.0.6.4.04

P O0.0.0.0.044.¢.5.0.9.6.6.4.64

P06 0.8.6.99.0668.08009469¢

b 0.0.0.60.0.0.4.0.0.0.¢.0.8¢.¢6.0.0,0

KAKA KL XA XK AL KK LL XK KKKXN

P 694000806 0.0.860006000000

HAKKXX KK KA KL UX N KAA KX XXKAN

P08 0.00.0066004008000556060840

PO 0066000000000 000.0080688899.6

AAKA KA X KKK KA AE XXX XK XXX XEKRX
100.0.0.05.9.0.0.0.0.0.005680.089.9866999956400

OO 000000 9.0.0.600.000050.606.006898008¢5¢0

J OO0 00009000 P0 80P 0.000.08.0.008.69880060804]

PO 0000 008.0.0.0.0.0.4.8.0.0.6.6.60049.989.6688008800988
1000000000 00 I 40.$.00000.60404.908663008880040]
RSO SS9 $.0.8.69.8.0.9.0000808¢0460080800000¢0

PO SOOI 0PI P NG 5.4.0.0.00.08080848.0.88.000680068988

PO PSPPI OPINEIIIENCIOSEEO PN I 90.0.8.0000088000 08,
RGO P OIT DG OEO LI OO OF OO 999.0.9.9.8.88.0.800,0.80.8600003

1

Overview of the rtVAX 300 Processor

The rtVAX 300 is a realtime target processor that is adaptable to running
applications that benefit from a fully supported network connection. Designed
to be embedded in a robust computing network, the rtVAX 300 processor is a
117 mam x 79 mm (4.61 in. x 3.11 in.) module encapsulated in a black painted
metailic cover.

The rtVAX 300 processor 1s intended to work in the following situations:
¢ Distributed applications that are part of a Digital computing network
e Customized, embedded, standalone hardware

¢ Remote data acquisition and computing platform that can be linked to use
Digital da.a communication message protocc. DDCMP) serial lines

e Applcations that use proprietary I/O buses and industry-standard buses,
such a¢ the VME bus or the IBM PC/AT

° App s that interface with industry-standard LSI/VLSI peripheral
chias
The rtVA. '~ -ocessor is the basic hardware element that you extend to

handle y¢ - 3, :ation, adding only the memory and I/O devices that you
need.

Many face - - £ ithe final system, from memory and I/O to power and packaging,
are under , 7 control.

When a &::5: .5 2681 dual universal asynchronous receiver/transmitter (SCN
2681 DUA.:T) serial-line chip is added to its configuration, the rtVAX 300
processor ¢. 1 support a console terminal.

Overview of the tVAX 300 Processor 1-1

1.1 Central Processor ‘

The central processor is implemented by using Digital's CVAX chip. This chip
contains about 180,000 transistors and supports full VAX memory management
and a 4G-byte virtual address space.

The CVAX chip contains all VAX vigible general-purpose registers (GPRs), a
1K-byte instruction/data cache, all memory management hardware, including
a 28-entry translation buffer, and several system registers—~such as the cache
disable register (CADR), memory system error register (MSER), and system
control block base register (SCBB).

The CVAX chip provides the following functions: ‘
¢ Fetches all VAX instructions

e Executes 181 VAX instructions

¢ Assists in the execution of 21 additional instructions

e Passes 70 floating-point instructions to the CFPA chip

The remaining 32 VAX instructions (including H-floating and octaword) must
be emulated in macrocode.

The CVAX chip provides the following subset of the VAX data types: ‘
s Byte

* Word

* Longword

* Quadword

¢ Character-string

¢ Variable-length bit field ‘

Macrocode emulation can provide support for the remaining VAX data tyves.

The cache is a 1K-byte, 2-way associative, write-through cache memory that is
implemented within the CVAX chip.

1.2 Floating-Point Accelerator

The floating-point accelerator is implemented by the CVAX floating-point
accelerator (CFPA) chip. The CFPA chip contains about 60,000 transistors and
executes 70 floating-point instructions. The CFPA chip receives operations code
information from the CVAX chip and receives operands directly from memory
or from the CVAX chip. The floating-point result is always returned to the
CVAX chip.

1=2 Overview of the tVAX 300 Processor

. 1.3 Ethernet Coprocessor

The rtVAX 300 processor contains the second-generation Ethernet coprocessor
(SGEC) chip and can pass data and instructions to and from other stations on
a network without processor intervention.

The Ethernet coprocessor has the following attributes:

Supports ThinWire and thickwire Ethernet interfaces to the rtVAX 300
processor’

Contains 16 control and status registers (CSRs) that control its operation
Resets hardware and software and handles interrupts

Supports the full IEEE 802.3 frame encapsulation and media access control
Supports three levels of testing and diagnostics

1.4 System Support Functions
System support functions provided by the rtVAX 300 processor include:

Halt/boot-request arbitration logic

Interval timer with 10 ms interrupts

Flexible interface to the rtVAX 300 processor’s DAL bus
Ethernet thickwire connections

Control logic to attach a console terminal

1.5 Resident Firmware

Resident firmware consists of 256K bytes of ROM. Firmware gains control

when the processor halts; it contains programs that provide the following
services:

Board initialization

Power-up self-testing of the rtVAX 300 processor and its attached memory

system

1

Ethernet is synonymous with IEEE 802.3; ThinWire, with IEEE 802.3 10BASEZ2;
thickwire, with IEEE 802.3 10BASES5.

Overview of the ntVAX 300 Processor 1-3

e Emulation of a subset of the VAX standard console (automatic/manual
bootstrap and a simple command language for examining/altering the state
of the processor)

e Booting from ROM, network, or DECnet DDCMP

The rtVAX 300’s firmware interface is extensible: you can use it to add your
own power-up initialization and self-test diagnostics.

1~4 Overview of the rnVAX 300 Processor

X
XL
AXXK

KUXAAKE

KAKAXKKK K,

p6.9.0.9.0.0.9.0.4.8.4

XK XAXKXAKAX

p10.9.4.4.4.4.9.9.0.9.9.4.9.04

PG00 806400064050

$0.9.0.0.9.0.4.6.¢9.38848¢6444

p.9.6.0.9.0.0.6.9.0.4,0.08.648484664

KAXX KA XA XX XX XK XX XX KL XAX

PO 008608 0000000008008¢8090

KXAXUXA XA XA X AL XX XAKLX AKX

AR AKX ONA XL A KA ALKL

PO OSSN D000 0069.0.05004.0004

4 06.0.6.0.0.00.8000000808¢80¢86000044

XAAK XK KX KX KK R XX XEKKE AXXEXKEAKKALX
}4.0.9.60.9.0.0.0:000.08.0900.0.6¢.9656.0.0008860.649

PO 00 600.8.8.4.6.6.0.66608000040.06500095080008
$0.0.0.0.0.088.6.0.8.00000.66,08400640056869800008 800
POV D0 P D000 P00 08 7S 0008 800080840
P OO0V 0PI 90.98.0.6060.00.08000.909.080068009088;

)00 0.0:0.0.6:6.60.9.0.0.0.¢.98.9.0.040.0¢.6.0.0600.858808009990869
J0100.9.0:0.6.9,0:010,000.0:0.¢:0.0.0.6.9.6.0,80.9.0.6.0.0.6.0.8.0.0.0¢89.60¢$09¢0,
10060 0000V EH NI EE 000080000008 0800000880¢0090840,

2

Technical Specification

covering the following subjects:

0 This chapter discusses the technical specifications of the rtVAX 300 processor,

Functional description (Section 2.1)

Minimum hardware configuration (Section 2.2)
Bus connections (Section 2.3)

Pin and signal description (Section 2.4)
Memory and I/0 space (Section 2.5°

Bus cycles and protoecols (Section 2.6)

2.1 Functional Description
The functional description of the rtVAX 300 processor consists of the following:

L 4

Architecture summary (Section 2.1.1)

Processor and floating-point accelerator (Section 2.1.2)
ROM and reserved memory locations (Section 2.1.3)
Network Interface (Section 2.1.4)

Decode and control logic (Section 2.1.5)

Interrupt structure (Section 2.1.6)

DMA structure (Section 2.1.7)

Interval timer (Section £.1.8)

Internal cache (Section 2.1.9)

Technical Specification 2-1

2.1.1 Architecture Summary

Based on Digital’s CVAX microprocessor chip, the rtVAX 300 processor contains
an Ethernet coprocessor, a floating-point accelerator, an interval timer, control
logic, and a diagnostic and boot ROM. Figure 2-1 shows a block diagram of the
rtVAX 300 processor.

The rtVAX 300 processor provides a common interface to the user logic as

close t» the CVAX microprocessor bus interface as possible. The rtVAX 300
processor can access up to 510M bytes of physical memory; 256M bytes are
read/write memory, and 254M bytes are recad/only memory. All memory is

directly accessible by its Ethernet coprocessor and is cacheable by the CVAX.

The rtVAX 300 also provides access to 512M bytes for I/0 space. Accesses in ‘
170 space are not cached.

2.1.2 CPU and CFPA

The processor on the rtVAX 300 is Digital's CVAX chip with its associated
CVAX floating-point accelerator (CFPA). The rtVAX 300 runs VAXELN software
based on the VAX instruction set. The VMS and ULTRIX operating systems
are¢ not supported on the rtVAX 300.

2.1.3 ROM and Reserved Memory Locations ‘

The upper 2M bytes of memory space are reserved for Digital. The lowest 2M
bytes of /O space are the rtVAX 300 lecal register 1/0 space intended for the
user. The rtVAX 300 processor stores in /O space its self-diagnostic routines,
console emulation program, other routines that it needs to boot bootstrap-
supported devices, registers, and the Network ID ROM. The rtVAX 300 tester,
console serial-line unit (SLU), and board-level initialization and diagnostic
ROMs can also use a portion of this I/O space.

2.1.4 Network Interface ‘

The Ethernet controller, or Network Interface (NI), shown in Fizure 2-1,
cunnects the rtVAX 300 processor to the Ethernet. It consists of the Ethernet
coprocessor, which interfaces to the CVAX chip data and address line (DAL) bus
and the serial interface adapter (SIA), to allow users t. connect to Ethernet.
Details of the connection to thickwire and ThinWire Ethernet are in Chapter 7.
The Ethernet coprocessor can perform direct memory access (DMA) to any
location in memory space. This controller is programmed by reading from,
and writing to, a set of registers in the Ethernet coprocessor, SGEC Refer to
Section 2.5.)

2-2 Technical Specification

Figure 2-1 rtVAX 300 Block Diagram

CLKA
CLKB
CLKIN
CLK20
S
C—3
IRQ<3:0>
| IRQ<t>
interrupt CSDP<d>
Arb. Logic P
. 7 SDP«3:0> BM and
CVAX BM<3:0> | cspp ®
Buffers a
IACK IRQ %
]
o
&
Ethernet ©
Coprocessor SIA g
[+2]
>
<
>
DAL<31:00> DAL €
Buffers
NI_DMG NI_DMR
DMR
DMA ™ USER_DMG
DMG Arb. Logic | = Buff
| USER_DMR
Boot
System Reg.
and NI
ROMs Decode ___]
Logic
AS, DS
Buft
CFPA CCTL, RDY, ERR
MLO-006367

Technical Specification 2--3

2.1.5 Decode and Control Logic ‘

The control logic consists of state machines responsible for the following: RDY
signal generation for the ROMs, DMA and interrupt arbitration between DMA
devices and the Ethernet coprocessor, and decoding internal addresses to
control the output buffer direction and to assert CSDP<4> L.

The control logic also provides the counters for generating the timeout error
signal and the 10 ms interval timer interrupt.

2.1.6 Interrupt Structure

The rtVAX 300 processor has access to the four interrupt request lines that the
CVAX chip uses. Interrupt request line 1 (IPL 15,4) is daisy-chained to the ‘
user through the Ethernet coprocessor, giving the Ethernet controller a higher
priority than devices connected to this line.

Interrupt acknowledge cycles responding to the Ethernet coprocessor are
marked as internal cycles and are indicated by the assertion of CSDP<4> L.
Hardware external to the rtVAX 300 processor should ignore such cycles.

2.1.7 DMA Structure

The rtVAX 300 processor issues a DMA grant signal that is daisy-chained to
the user through the Ethernet coprocessor, giving the Ethernet controller the ‘
highest DMA priority.

The rtVAX 300 processor relinquishes the bus once it grants DMA control to
the user hardware; however, the rtVAX 300 processor monitors the AS L line,
the CCTL L line, and the DAL lines to invalidate the appropriate cache entries
during DMA write cycles, if the CCTL L line is asserted.

Note

A DMA device should not hold the rtVAX 300 bus for more than 6 ps.
If such a device requires the bus for a longer time, it should relinquish
the rtVAX 300 DAL lines by deasserting DMR L and request it again.

2.1.8 interval Timer

The interval timer generates a 50% duty cycle 100 Hz TTL square wave.
This signal interrupts the CVAX once every 10 ms for VAXELN system clock
updates.

2-4 Technical Specification

. 2.1.9 internal Cache

The CVAX has a 1K-byte write-through cache as part of the chip. Chapter 3
describes the organization of this cache.

2.2 Minimum Hardware Configuration

The rtVAX 300 processor is a platform that requires additional hardware
to be usable. Section 2.2.1 and Section 2.2.2 list the minimum hardware
requirements needed for the rtVAX 300 processor.

2.2.1 System RAM

. The rtVAX 300 processor contains no RAM; however, in order for the rtVAX
' 300 processor to run its power-on self-test diagnostics successfully and issue
the console program prompt, the processor needs at least 64K bytes of RAM.
Under DECnet Phase IV, at least 512K bytes are needed to boot a VAXELN
system image with the Ethernet driver, local and remote debuggers, and a
200K-byte user application. The RAM resides in VAX memory space beginning
at physical address 00000000.

2.2.2 Console

. The rtVAX 300 processor needs no console; however, a console port is required
in order for the processor to use the console emulation program, report errors
and warnings, and display system crashes.

The rtVAX 300 processor supports the Signetics 2681 dual universal
asynchronous receiver/transmitter (SCN 2681 DUART) or a compatible
device as a console interface. The data lines of the SCN 2681 DUART should
be connected to the DAL<07:00> H lines. When the DUART is read from or
written to, the BM<0> L line should be asserted. The rtVAX 300 processor uses
channel A of the DUART for the console. Channel B is available and can be
. used by the application, for example, to load an application image over serial
lines. A VAXELN device driver supports both channels.

The console (IPL 14,¢) is associated with interrupt request line IRQ<0> and
the vector 02C04¢.

The control logic has assigned locations for the registers that the SCN 2681
DUART uses. These registers are decoded/assigned addresses in the rtVAX
300's local register I/O space. (Table 3—-13 lists the physical address of each
register. Chapter 6 contains details on how to connect the SCN 2681 DUART
to the rtVAX 300.)

Technical Specification 2-5

2.3 Bus Connections .

Figure 2-2 shows a typical interface configuration of the rtVAX 300 processor
and includes control signals and bus connections. All signals are TTL levels,
except for the Ethernet differential pairs.

Figure 2-2 Typical rtVAX 300 Environment

VAN

tVAX 300

Thickwire DAL<31:00>
Network
Backbone L.

M . User-

Isolation - '

A Transformer j— Defined Console

u Hardware

e Control

Lines

MLO-008368

2.3.1 Power Connections

The rtVAX 300 processor requires a +6V/2A dc power supply. Seven pins are
provided to connect to +5V, and seven pins for +5V return. The four mounting
holes can also serve as a ground connection. The power decoupling and proper
ground connections are very important. (Refer to Section A.Z for detailed

information. ‘

2.3.2 Reset and Power-Up Requirements

Asserting the RST L signal for a minimum of 30 clock periods resets the
rtVAX 300 processor. This line must be deasserted within the specified time
before the rising edge of CLKA. Figure 2-3 shows the timing cycle of the reset
function.

2-6 Technical Specification

. Figure 2-3 Timing Cycle for Reset Function

P1

aa /N N\ ../ ./ \.

awe _/ _/" "‘“’ /S

R&T

@

AS
& .

DMG

DAL

BM

WR

DPE

CsDP MLO-004380
. Note

Timing diagrams within this manual often contain circled numbers;

Table A-3 explains their meanings.

2.3.3 Power-Down Sequencing: Power-Fail

The system power supply conditions external power and transforms it for use

by the processor. When external power fails, the power supply requests a

power-fail interrupt of the processor by asserting the PWRFL L signal. The
. PWRFL L signal is a maskable interrupt at IPL 1E¢.

The power supply must continue to provide power to the processor for at least
2 ms after the interrupt is requested, in order to allow the operating system

to save state. When the power supply can no longer provide power to the
processor, the processor halts through the assertion of the HLT L signal. (Refer
to Appendix A for a summary of electrical characteristics.)

Section 2.4.8 and Table 2-1 define the PWRFL L control signal and its
functions.

Technical Specification 2-7

2.4 Pin and Signal Description '

This section briefly describes the input-output signals and power and ground
connections of the rtVAX 300 processor. Table 2-1 lictc bus and interface
signals and their functions. Table 2-2 lists pin assignments; Figure 2—4 shows
the pin layout.

Table 2-1 Bus Interface Signhals

Signal Meaning

+5V +5V power supply

ASL Address strobe

BM«<3:0> L Byte masks

BOOT<3:0> L Boot select pins

BTREQ L Ethernet coprocesser boot request signal
CCTL L Cache control, for cache invalidation and selective caching
CLRK20 20 MHz clock output

CLKA/CLKB CPU clock outputs

CLKIN System clock input signal

COL+/COL~ Ethernet collision detect differential pair
CSDP<«4:0> L Control status/data parity
DAL<31:00>H Data and address lines

DMG L Direct memory grant

DMR L Direct memory request

DPE L Data parity enable

DSL Data strobe

ERR L Bus error input

GND +5V ground (return)

HLT L Halt processor interrupt

INTIM 10 ms timer—100 Hz 50% duty cycle output
IRQ<3:0> L Interrupt request

PWRFL L Powerfail

RCV+/RCV- Ethernet receive data differential pair

2-8 Technical Specification

{continued on next page}

Table 2-1 (Cont.) Bus Interface Signals

Signal Meaning
RDY L Bus ready input
RST L Reset input
WR L Read/write
XMT+/XMT- Ethernet transmit data differential pair
Table 2-2 ntVAX 300 Processor Pin Description
. Pin Signal InfOut Definition/Function
Al, Al15 A31,B6, GND - +5V ground return
B14, B32, B50
A2, Al6, A32, B5, +5V - +5V dc power
B13, B31, B49
A6-A3 BOOT<3:0> L I Defines the boot device
A7 BTREQ L oD Remote Ethernet boot request from
the coprocessor
. A8 INTIM o) 100 Hz interval timer clock output
Al12-A9 BM<3:0> L OfZ Byte masks
Al3 DMG L 0 DMA grant
Al4 DMR L I DMA request
Al7 RST L I Reset
AlB HILT L 1 Halt processor
Al9 PWRFL L I Indicates loss of ac power
A24-A21 IRQ<3:0> L I User-defined interrupt request lines
. A25 CCTL L O/Z Cache control
A26 RDY L I/0/Z Bus ready
A27 ERR L VVO/Z Bus error
A28 DSL OrZ Data strobe
A29 WR L 0/Z Read/write
A30 ASL O7Z Address strobe
A36 XMT- 0 Thickwire transmit data —

(continued on next page

Technical Specification 2-

Table 2-2 (Cont.) rtVAX 300 Processor Pin Description

Pin Signal in/Out Definition/Function

A38 XMT+ o Thickwire transmit data +

A40 RCV- I Thickwire receive data —

A42 RCV+ I Thickwire receive data +

Ad4 COL~ I Thickwire collision detect —

A46 COL+ I Thickwire collision detect +

Bl CLKIN I System clock input

B2 CLKA 6] Clock A output ‘
B3 CLK20 0 20 MH:z clock output

B4 CLKB o Clock B output

B10-B7 CSDP<3:0> L VO/Z Control status and parity information
B11 CSDP«4> L O/Z Ethernet interrupt acknowledge cycle
B12 DPE L VO/Z Data parity enable

B48-B33, DAI<31:00> H I/O/Z Data and address multiplexed bus
B30-B15

Note

All TTL inputs except CLKIN have an internal 2K {2 pull-up. All
outputs are driven by the ACTQ 244 or ACTQ 245 buffers. Signal
designations are as follows:

Signal

Designation Meaning

1 Input

o Output

oD Open-drain bidirectional
Z Tri-stateable bidirectional

2-10 Technical Specification

Figure 2-4 rtVAX 300 Pin Layout

. View of Application Board Socket
A

i1 2
GND O O +8v CLKIN
BOOT<0>] O O BOOT<«1> CLK20
BOOT<2>] O O BOOT<3> +5V
BTREQ O O INTIM CSDP<0>
BM<0> O O BMc<«1> CSDP<«2s>
BM<2> O O BM<3> CSDP<4>
DMG O O DMR +5V
GND O O 45V DAL<00>
RST O OHLT DAL<0O2>
PWRFL QO blank keypin DAL<04>
IRQ<0> O O IRQ<c1> DAL<06>
IRQ<2> O O IRQ<3> DAL<08>
CCTL O O RDY DAL<10>
ERR O 0ODbs DAL<12>
WR O C AS DAL<14>
CGND O O +5v +5V
reserved | O O reserved DAL<16>
reserved | O O XMT- DAL<18>
raserved | O O XMT+ DAL<20>
reserved | O O RCV- DAL<22>
reserved | O O RCV+ DAL<24>
resarved | O O COL- DAL<26>
reserved | O O COL+ DAL«28>
reserved | O O resarved DAL<30>
reserved | O O reserved +5V

49 50

2000000000000000C0000000000~

w

S0O00000000000000C00OOO000O000O0wW

2.4.1 Data and Address Bus

CLKA
CLKB
GND
CSDP<1>
CSDP«3>
DPE
GND
DAL<O1>
DAL<D3>
DAL<05>
DAL.:07>
DAL<09>
DAL<11>
DAL<13>
DAL<15>
GND
DAL<17>
DAL<19>
DAL<21>
DAL <23>
DAL<25>
DAL<27>
DAL<29>
DAL<31>
GND

MLO-D0€378

The data and address lines, DAL<31:00> H (I/O/Z), form a time-multiplexed
bidirectional bus that transfers address, data, and other information Juring

bus cycles.

Technical Specification 2-11

During the address portion of a bus cycle, the following occurs: ‘

* DAL<31:30> H provide information on the type of cycle, as indicated in
Table 2-3.

e DAL<29> H is asserted when the rtVAX 300 processor accesses I/O space;
otherwise, it is deasserted.

* DAL<«28:02> H provide the physical address of the device being accessed.
¢ DAL<01:00> H are reserved.
During the data portion of a bus cycle, the DAL lines carry data to or from the

user hardware. .

Table 2-3 DAL Lines
DAL>31> H DAL<30> H Description

0 1 Longword read/write
| 0 Quadword read (Quadword writes do not occur)
1 1 Octaword read/write
2.4.2 Ethernet Connecticns ‘

The rtVAX 300 processor allows you to connect to Ethernet by means of
standard thickwire connections through a 75 nH isolation transformer, as
shown in Figure 2-5. Connection to ThinWire is also straightforward. (For
more information, refer to Chapter 7.)

Signals are as follows:

® Collision Detect (COL+, COL~) (non-TTL)

This differential pair of wires connects through a user-supplied isolation
transformer to a user-supplied 15-pin D-sub connector, when the rtVAX
300 processor is counected te a media attachment unit (MAU) with a
transceiver cable. See Figure 2-5. These two signals are used for the
collision detect. The rtVAX 300 supplies 78 2 termination on these lines.
Chapter 7 discusses this connection in greater detail.

e Receive (RCV+, RCV-) (non-TTL)

This differential pair of wires connects through a user-supplied isolation
transformer to a user-supplied 15-pin D-sub connector, when the rtVAX 300
processor is connected to an MAU with a transceiver cable. The rtVAX 300
supplies 78 12 termination on these lines. See Figure 2-5.

2-12 Technical Specification

. ®* Transmit (XMT+, XMT-) (non-i7'L)

This differential pair of wires connects through a user-supplied isolation
transformer to a user-supplied 15-pin D-sub connector, when the rtVAX 300
processor is connected to an MAU with a transceiver cable. See Figure 2-5.

Figure 2-5 Thickwire Connect:ana

y

——— 8 Chassis GND
. 15 Not Connected —— ——O
O.— —— 7 Not Gonnected
14 Chassis GND —~O
Oo— ——— 6 Reference GND
12 +12V Source —-.O
O--—-— 5 RCV +
12 RCV - -O
0- L 4Chassis GND
11 Chassis GND —.O
. O-—- e 3 XMT +
10 XMT - 0
O.— — 2COL +
9 COL - O
——— 1 Chassis GND

€

15~Pin D-Sub (Female) View

. MLO-004391

2.4.3 Bus Control Signals
Bus control signals are as follows:
¢ Address Strobe (AS L) (O/Z)

This signal indicates that valid address information is available on the
DAL«<29:02> H bus, and valid status information is on the BM<3:0> L,
CSDP<4:0> L, and WR L lines. The leading edge of this signal can be used
to latch the address and status information.

Technical Specification 2-13

Note ___ ‘

BM<3:0> L must be latched during quadword and longword cycles and
must flow through during octaword access cycles.

During a DMA transfer, the rtVAX 300 processor uses the assertion of AS
L to latch the DMA address, which is used in a cache invalidate cycle when
CCTL L is asserted.

* Data Strobe (DS L) (O/Z)

This signal indicates that the DAL<31:00> H and CSDP<3:0> L lines are
free to receive data and parity information during a vead cycle or that ‘
valid data is on the DAL<31:00> H lines and valid parity on CSDP<3:0> L
during a write cycle.

* Byte Masks (BM<3:0> L) (0/Z)

These signals indicate which bytes of the DAL lines contain valid data, as
listed in Table 2—4.

Table 2-4 Byte Maske

Byte Mask Description Data Byte
BM<0> L Low byte of low word DAL«07:00> H
BM«1> L High byte of low word DAL<15:08> H
BM<2>L Low byte of high word DAL«23:16> H
BM<3> L High byte of high word DAI<31:24> H

For a read cycle, byte masks indicate which bytes of the DAL lines must

have data driven onto them; for a write cycle, they indicate which bytes ‘
of the DAL lines contain valid data. Lines BM<3:0> L are valid when

the AS L signal is asserted during quadword and longword access cycles.
Octaword transfer cycles require that these lines not be latched.

* Write/Read (WR L) (O/Z)

This signal specifies the direction of a data transfer on the DAL bus

for the current bus cycle. When the signal is asserted, the rtVAX 300
processor is perferming a write operation; when the signal is deasserted, it
is performing a read operation or interrupt acknowledge cycle. The WR L
signal is valid when AS L is asserted.

2-14 Technical Specification

Ready (RDY L) VO/2)

External logic asserts this signal to indicate the cumpletion of the current
bus cycle. When this signal is not asserted, the rtVAX 300 processor
extends the current bus cycle for a slower memory or peripheral device.
The RDY L or ERR L signal must be asserted to end the current bus
cycle. These signals must be driven by tri-state drivers. Both signals can
be asserted simultaneously to force the rtVAX 300 processor to retry the
current pus cycle.

During internal cycles (CSDP<4> L asserted), the rtVAX 300 processor
drives RDY L high. The rtVAX 300 processor asserts RDY L before the end
of an internal cycle. The rtVAX 300 processor dees not drive the RDY L
signal on non-internal cycles.

Note

During quadword cache invalidate cycles, AS L must remain asserted
for at least 250 ns, which equates to a 4-microcycle write cycle. (Two
wait states must be added.) Memory systems faster than 400 ns must
delay cache invalidate write cycles at least two microcycles by holding
off the assertion of RDY L. Slower memory systems already adhere

to the minimum AS L assertion requirement during cache invalidate
cycles. Write cycles that do not involve cache invalidation (CCTL L not
asserted) and read cycles can occur without wait states.

Error (ERR L) (1/0/Z)

External logic asserts this signal to indicate an error associated with

the current bus cycle and to end the bus cycle. The rtVAX 300 processor
asserts this signal when a bus timeout condition occurs. Either the ERR L
or the RDY L signal must be asserted to end the current bus cycle. RDY L
and ERR L are synchronous inputs and must be asserted within the timing
values specified in Section 2.6.

Note

The rtVAX 300 processor has an internal timer that aborts any read
or write cycle if an RDY L or an ERR L signal is not received from
16 to 32 ps after AS L is asserted. This provides for the bus timeout
feature and prevents the rtVAX 300 processor from hanging when
communicating with a nonexistent or faulty memory or I/0 device.

Technical Specification 2-15

® Cache Control Signal (CCTL L) (VO/Z) .

During a DMA cycle, assertion of this signal by external logic initiates a
conditional cache invalidate cycle. The internal Ethernet controller also
asserts this signal during DMA write cycles.

During an rtVAX 300 read cycle, this signal is asserted to prevent the
accessed data from being stored in the internal cache memorv of the rtVAX
300. CCTL L is level-sensitive and must be asserted synchronousiv with
the timing sampling point for the rtVAX 300 processor read cycle.

2.4.4 Bus Retry Cycles

External hardware can force the rtVAX 300 processor to retry the current .
bus cycle by asserting both RDY L and ERR L at the same time. This has no

effect on the current bus cycle; the data are transferred later, when the cycle is
successfully retried. Only longword and quadword processor access cycles can

be retried; octaword and Ethernet controller cycles cannot be retried.

2.4.5 Status and Parity Control Signals

Status and parity control signals are as follows:

¢ Data Parity Enable (DPE L) (I/0/Z)

This signal controls the checking and generation of data parity. During an
rtVAX 300 read cycle or an interrupt acknowledge cycle, DPE L is asserted
by external logic to enable data parity checking by the rtVAX 300. During
an rtVAX 300 write cycle, the rtVAX 300 asserts DPE L to indicate to
external logic that valid parity information is on CSDP<3:0> L.

® Control Status and Data Parity (CSDP<4:0> L) (1/0/Z)

These lines transfer cycle status and data parity information between the
rtVAX 300 processor and external devices. During the first part of the
bus cycle, CSDP<4:0> L and WR L provide status information about the
current bus cycle, as listed in Table 2-5. CSDP<3> L indicates the set
in internal cache memory that is being allocated during a cacheable read
operation and is undefined during all other bus cycles. CSDP<3> L is
asserted to specify set 1 and negated to specify set 2.

Z2-16 Technical Specification

Table 2-5 rtVAX 300 Bus Status Signais

CcSbpP
WRL «d>L «2>L «<1>L «<«0>L BusCycle Type
H H L L L Request D-stream read
H H L L H Reserved
H H L H L External IPR read
H H L H H External interrupt acknowledge
H H H L L Request I-stream read
H H H L H Demand D-stream read (lock)
H H H H L Demand D-stream read (modify intent)
H H H H H Demand D-stream read (no lock or
modify intent)
L H L L L Reserved
L H L L H Reserved
L H L H L External IPR write
L H L H H Reserved for use by DMA devices
L H H L L Reserved
L H H L H Write unlock
L H H H L Reserved
L H H H H Write no unlock
X L X X X Reserved (rtVAX 300 internal interrupt

acknowledge cycle only)

During the second part of the bus cycle, the CSDP<3:0> L lines are used
to transfer byte parity information for the DAL line data during a read or
write cycle. During the read cycle, the rtVAX 300 processor checks parity
on all four bytes, regardless of the assertion of the BM<3:0> L signals. On
a write cycle, the rtVAX 300 generates data parity on the CSDP<3:0> L
lines.

Technical Specification 2-17

2.4.6 Interrupt Control ‘

The IRQ<«3:0> L lines are asynchronous interrupt request lines. External logic
uses them to indicate interrupt requests to the CVAX. The rtVAX 300 sanples
‘he lines every microcycle, and they must stay asserted until the end of the
interrupt acknowledge cycle.

Although the rtVAX 300 Ethernet coprocessor shares IRQ<1> L on the CVAX,
the coprocessor is serviced before the user interrupt. Table 2-6 lists the
interrupt priority level (IPL) assignments as they relate to IRQ<0> L and
IRQ<1> L.

Table 2-6 Interrupt Priority Assignments
IRQ L IPLse Device

IRQ<0> 14 User-defined, shared with external console
IRQ<1> 15 User-defined, shared with the Ethernet coprocessor
IRQ<2> 16 User-defined, shared with the interval timer
IRQ<3> 17 User-defined

2.4.7 DMA Control Signals
DMA control signals are as follows:
¢ DMA Request (DMR L) (I)

External logic uses this signal to request control of the DAL bus and its
related control signals.

 DMA Grant (DMGL){O)

This signal indicates that the rtVAX 300 processor has granted the use of
the DAL bus and its related control signals.

Note

Both DMA request and DMA grant signals are daisy-chained from
the CVAX processor through the Ethernet coprocessor chip inside the
rtVAX 300 to the user-defined hardware. Therefore, the Ethernet
coprocessor has the first priority for a DMA. In addition, to prevent
Ethernet FIFO overfiows, a user device cannot remain bus master
longer than 6 ps.

2-18 Technical Specification

. 2.4.8 System Control Signals

System control signals are as follows:

Reset (RST L) (I)

This signal initializes the rtVAX 300 processor to a known state. This line
must be asserted on power-up.

Halt (HLT L) (I)

This signal causes a nonmaskable interrupt at IPL 1F;g that causes
the rtVAX 300 processor to enter the console emulation program in
the firmware. This signal is negative-edge-triggered and internally
synchronized.

Power Failure (PWRFL L) (I)

This signal allows external logic to notify the rtVAX 300 of a power failure.
The rtVAX 300 processor samples the signal every microcycle. The PWRFL
L signal generates an interrupt at IPL 1E;g. This interrupt is internally
acknowledged by the rtVAX 300 and does not use an interrupt acknowledge
bus cycle. This signal is edge-sensitive and internally synchronized.

Boot (BOOT<3:0> L) (I)

These pins determine the default boot actions of the rtVAX 300. These
signals are pulled up internally and default to 1. When a pin is low, it
registers a C. (See Table 3-12 for different allowable boot devices.)

Boot Requests (BTREQ L) (OD)

This signal is asserted low once a valid trigger request is received over the
Ethernet from a host system. This lead is gated with a board-level remote
trigger enable signal and fed into the HLT L signal.

. 2.4.9 Clock Signals

Clock signals are as follows:

20 MHz Clock Output (CLK20) (O)

This taps into the internal oscillator and can be fed back into CLKIN to
drive the rtVAX 300.

Note
Use this signal only to drive CLKIN.

Technical Specification 2-19

e System Clock Input (CLKIN) (I) ‘

This system clock input must be a TTL-compatible oscillator at a maximum
frequency of 20 MHz. A lower frequency clock can be used to lower power
consumption or to match the processor to slower memory devices. The duty
cycle must be 50%.

¢ Basic Clock Output (CLKA) (O)

This TTL buffered clock must be used to synchronize the rtVAX 300
external logic and the CPU bus cycles. This clock provides the P1 and P3

timing reference.
Note ‘

In the following two items, all timing is referenced to CLKA and CLKB.

° Basic Clock Output (CLKB) (O)

This TTL buffered clock must be used to synchronize the rtVAX 300
system. This clock provides the P2 and P4 timing reference.

¢ 10 ms Interval Timer (INTIM) (O)
This signal produces a 10 ms TTL square wave (50% duty cycle).

2.4.10 Power Supply Connections
Power supply connections are as follows:
* +5V dc power (+5V)
¢ Reference ground, +5V return (GND)

2.5 Memory and I/O Space ‘

The rtVAX 300 processor can access 510M bytes (256 R/W and 254 R/O) of
memory space and an I/O space of 512M bytes. The Ethernet coprocessor has
direct access to all memory space.

2M bytes of I/O space are used for local registers. (Refer to Appendix C.)
Figure 2-6 shows the partitioning and layout of memory. (Undesignated
shaded areas are reserved.) In addition to the registers shown in Figure 2-6,
the rtVAX 300 processor contains internal processor registers, as described in
Chapter 3. Table 3-3 lists and describes internal processor registers.

2-20 Technical Specification

Figure 2-6 rtVAX 300 Memory and /O Space

! 201FEFEF
3FFFFFFF ,.' 201FFFFC
'l
! 20110003
; 20110000
[}
User /O '.'
/ 2010003F
pace ; Console Registers | 20100000
/ 200FFFFF
a" User Boot
20200000 / or Dlagnostic
ROM
201FFFFF Local Register /1O 20080000
2007FFFF
AFFFFFFF Boot FOMs
0000 20040000
FDFFFFF \ Boot Register 2003FFFF
"FORFEFE \ e 2003FFEC
Cache “ S ::.'
ROM \
10000000 \ 2001007F
A 20010000
OFFFFFFF
System RAM : 4 2000803F
| 20008000
00000000 s
MLO-006366

The rtVAX 300 accesses memory in bytes, words (2 bytes), longwords (4 bytes),
quadwords (8 bytes), or octawords (16 bytes). However, quadword and octaword
accesses are restricted to the system RAM portion of the memory space.

The rtVAX 300 read/write memory is organized into four banks, as shown
in Figure 2-7. The rtVAX 300 issues longword addresses on the DAL bus.

You can read from or write to any byte of any memory location by using the
different byte mask signals.

Technical Specification 2-21

Figure 2-7 rtVAX 300 Memory Bank Organization

Bank 3 Bank 2 Bank 1 Bank 0

el qe] qel 4

< DAL <31:24> DAL <23:16> DAL <15:08> DAL <07:00>
BM<3> BM<2> BMci> BM<0>
MLO-006380

2.5.1 Address Decode and Boot ROM

The internal ROM address latch logic latches the address on the DAL bus
and drives it on the ROM address bus to the boot and diagnostic ROMs, the
Network Interface address decode logic, and the Network Interface address
ROMs. The ROM address decode logic decodes the address on the DAL bus to
provide control signals for the ROMs and the boot register.

2.5.2 Boot ROM

The boot ROM contains the boot drivers, self-test diagnostics, and console
emulation program. It also accesses the registers used by the Ethernet
coprocessor and the registers used by the user-provided console ports.

The boot register is a read-only register that resides at address 2003FFEC.
The firmware reads this register on power-up to determine the default boot
device and whether or not to enable remote console and remote trigger. (For
additional information on the boot register, see Figure 3-14.)

2~-22 Technical Specification

' 2.5.3 Programming the User ROMs

The system image generated by the VAXELN System Builder (EBUILD) is
first down-line loaded by using the network as the booting device on the
rtVAX 300 target. You can use the remote and local debuggers to debug the
application software. Once the application software is running correctly, you
should generate a new system file by selecting the ROM as the boot method
and then run the resulting .SYS file through the PROMLINK program to
create a loadable file for the EPROM burner. The ROMs are then inserted
into the EPROM programmer, programmed, and then inserted into their
correct sockets. Then, the BOOT pins <2:0> L can be connected, as shown in
Table 312, and the rtVAX 300 will boot from these ROMs.

2.5.4 Network Interface Registers

The Network Interface on the rtVAX 300 is programmed by reading from and
writing to a set of 16 Ethernet coprocessor registers located from 20008000
to 2000803F. In addition to the 16 registers, the Ethernet ID ROM, providing

the physical network address for the rtVAX 300, is located from 20010000 to
2001007F.

For detailed information on programming the Ethernet coprocessor chip, refer
to Chapter 3.

2.5.5 Board-Level Initialization and Diagnostic ROMs

I/0 space locations 20080000 through 200FFFFF are available for use by

the user-supplied board-level initialization and diagnostic ROMs. After the
firmware finishes executing the processor, CFPA, and ROM self-tests, it checks
for an external ROM mapped to 20080000. If the ROMs exist, control is
transferred to them. They can then perform board-level initialization and
diagnostics, define a new boot device, and execute the RET instruction to
return to the internal firmware for memory testing and bootstrapping. If
user/boot diagnostic ROMs do not exist, the rtVAX 300-resident firmware
continues with memory tests and Yootstrapping. Chapter 4 provides further
programming information.

Technical Specification 2-23

2.6 Bus Cycles and Protocols ‘

The rtVAX 300 processor performs bus cycles when one of the following occurs:

e The CVAX is reading or writing information to or from memory, internal or
external ROM, internal or external registers, the Ethernet coprocessor, or
any other external memory or peripheral device.

e The Ethernet coprocessor is reading from or writing to external RAM.

* The CVAX is acknowledging an interrupt internal or external to the rtVAX
300.

2.6.1 Microcycle Definition .

A microcycle is the basic timing unit for a CVAX bus cycle. A microcycle is
defined as four clock phases, as shown in Figure 2-8. A microcycle equals two
CLKIN cycles.

Figure 2-8 Microcycle Timing

1 microcycle 50 ns

|

CLKAM [P\ Pa__ [/ PIN__/ P\
|
CLKB WN JPZ /PN [P\ /[

MLO-004305

2.6.2 Single-Transfer Read Cycle

Both the CVAX and the Ethernet coprocessor inside the 1tVAX 300 can initiate

a single-transfer read cycle. This cycle requires at least two microcycles;
microcycles can be added in increments of one microcycle Figure 2-9 shows ‘
the timing of a single-transfer read cycle.

— Note

I/0 space read references always occur as single-transfer read cycles.

2-24 Technical Specification

Figure 2-9 Single-Transfer Read Cycle Timing

CLKA P1 P3 PI__ /P __ /P __/"P3_
CLKB P2 Pa AW AW
DAL
DPE
coTL
CSDP Cycle Type Pari
i
AS ™\
DS
BM
WR
RDY,ERR

MLO-004306

The sequence of events is as follows:

1. The CVAX transfers the physical address onto the DAL<29:02> H lines.
The DAL<31:30> H lines are set to 01; to indicate a single longword
transfer.

2. The BM<3:0> L and CSDP«4:0> L lines are asserted as required, and the
WR L line is negated.

Technical Specification 2-25

3. The CVAX asserts AS L, validating CSDP L, BM L, WR L, and address ‘
information.

4. The CVAX asserts DS L to indicate that the DAL lines are available to
receive the incoming data.

5. The CVAX checks for a complete cycle once every two phases starting at
the next possible P1 rising edge. External logic indicates that the cycle is
complete by one of the following three responses:

a. If no error occurs, external logic places the requested data on the
DAL<31:00> H lines and parity information on CSDP<3:0> L, asserts
DPE L if parity is to be checked, and asserts RDY L while ERR L
is deasserted. If the CVAX detects a parity error, appropriate error
information is logged in the memory system error register (MSER); the
CVAX ignores the data on the DAL<31:00> H lines and generates a
machine check if the cycle was a demand read cycle.

b. If a bus error occurs, external logic asserts ERR L with RDY L
deasserted. The CVAX ignores the data on the DAL<31:00> H lines
and generates a machine check if the cycle was a demand read cycle.
An error is recognized only if RDY L is deasserted for two consecutive
P1 sample points.

c. External logic can request a retry of the cycle by asserting RDY L and
ERR L. Certain request read cycles do not reissue a bus cycle if they
are retried. Specifically, if the retry occurs on a prefetch reference,
the cperation may not be reissued because the processor may execute
a branch operation before the prefetch can be retried. In addition,
Ethernet controller cycles cannot be retried.

6. The CVAX completes the read cycle by deasserting DS L and AS L.

2.6.3 Quadword-Transfer Read Cycle ‘

During a quadword-transfer read cycle, the CVAX reads two longwords from
main memory. A quadword-transfer read requires at least three microcycles.
Each longword transfer may be increased in increments of one microcycle The
sequence of events of a quadword-transfer read cycle is as follows:

1. The CVAX transfers the physical address of the preferred longword onto
the DAL<29:02> H lines. This address can be aligned with either of the
two longwords of the quadword. DAL <02> H indicates whether the upper
or lower longword is transferred first. DAL<31:30> H lines are set to 10
to indicate a quadword transfer. The CVAX sends an address of only the
initial longword (preferred). The address of the second associated longword ‘

2-26 Technical Specification

(cache fill) is implied and, therefore, is not transferred. External logic can
generate the implied address by inverting bit 02 of the preferred address.

2. BM«<3:0> L and CSDP<4:0> L are asserted as required, and WR L is
negated.

3. The CVAX asserts AS L, validating CSDP<4:0> L, BM<3:0> L, WR L, and
address information on DAL<31:62> H.

4. DS L is asserted for each data transfer to indicate that the DAL lines are
available to receive the incoming daia.

5. The CVAX checks for a complete cycle once every microcycle, after each
longword cycle, starting at the next possible P1 rising edge. External
logic indicates that the cycle is complete by one of the following three
responses:

a. If no error occurs, external logic places the requested data on the
DAJ<31:00> H lines and parity information on CSDP<3:0> L, asserts
DPE L if parity is to be checked, asserts CCTL L if data caching is to
be disabled, and asserts RDY L, while ERR L is deasserted for each
data transfer. The CVAX reads the data and parity information and
deasserts DS L for every transfer. If the caching is prevented (CCTL L
asserted), the cycle immediately terminates without reading the second
longword. If the CVAX detects a parity error, the appropriate error
information is logged in the MSER; the CVAX ignores the data on the
DAL<31:00> H lines and generates a machine check if the cycle was
a demand read. If a parity error is detected on the first longword, the
CVAX performs the second data transfer and ignores all the data.

b. If an error occurs on either longword, external logic asserts ERR L with
RDY L deasserted. The CVAX ignores the data on the DAL<31:00> H
lines, terminates the cycle without reading any additional data, and
generates a machine check if the cycle was a demand read. Only the
first transfer can be a demand cycle. An error is recognized only if RDY
L is deasserted for two consecutive P1 sample points.

c. External logic can request a retry of the cycle by asserting RDY L and
ERR L. If the retry occurs during the second longword transfer, the
read cycle is not reissued.

6. The CVAX completes the read cycle by deasserting DS L and AS L.

Technical Specification 2-27

Figure 2-10 illustrates quadword-transfer read cycle timing, and Table 2-7
shows responses to this cycle.

Figure 2-10 Quadword-Transfer Read Cycle Timing

P1__/Ps _)'?\ /Pa\

/PN_/
®_.__

o

p2\ /Pa

77727 Data >——K
10)
T —Z
&
/ 2 2) 707
77 Parity ———%
14

@

CLKA P1 -
CLKB P2 - /—F_v_:g-\
)
@r ;
DAL %CW% Address ——G;m
ove TSRS @
. 7
CCTL
CcsDP Cycle Type _—____@'
1
. ®
6
ps @ 1‘ N
Sl ';//';,nf ’r'_ /,,’l, /; T ;:,"/.‘
WR
RLY.ERR

2-28 Technical Specification

MLO-004367

7 N
?

Table 2-7 rtVAX 300 Responses to a Quadword-Transfer Read Cycle

Parlty Action for Second

CCTLL RDYL ERRL Error Action for First Reference Reference

X H H X Wait for data. Wait for data.

X B L X Macnine check if demand No machine check.
read. Invalidate cache Invalidate cache entry.
entry. No second reference.

H L H H No machine check. Update = No machine check. Update
cache. Proceed to second cache.
reference.

L L H H No machine check. No machine check. Update
Invalidate cache entry. cache.

No second reference.

H L H L Machine check if demand No machine check.
read. Invalidate cache Invalidate cache entry.
entry. Log error in MSER. Log error in MSER.
No second reference.

L L H L Machine check if demand No machine check.
read. Invalidate cache Invalidate cache entry.
entry. Log error in MSER. Log error in MSER.
No second referencs.

X L L X o machine check. No No machine check.

cache change. No second
reference-retry.

Invalidate cache entry.
No retry.

2.6.4 Octaword-Transfer Read Cycle

During an octaword-transfer read cycle, the rtVAX 300 reads four consecutive
longwords, supplying the address of only the first longword. An octaword-
transfer read cycle requires at least nine microcycles. Only the Ethernet
coprocessor initiates octaword-transfer reads. The sequence of events of an
octaword-transfer read cycle is as follows:

1. The rtVAX 300 transfers the physical address of the preferred longword
onto the DAL<29:02> H lines. This address is always octaword-aligned,
and DAL<03:02> H lines are always zero. The DAL<31:30> H lines are set
to 11, to indicate an octaword transfer. The rtVAX 300 sends an address
of only the initial longword (preferred). All other associated addresses are
implied and, therefore, are not transferred. These implied addresses are
generated by incrementing the count on address b'ts 2 and 3.

2. Lines CSDP<4:0> L are 1X111, (demand read), and lines BM<3:0> L are
asserted as required; WR L is negated.

Technical Specification 2-29

3. The rtVAX 300 asserts AS L, validating lines CSDP<4:0> L, BM<3:0> L, .
WR L, and the address information on DAL<31:02> H.

4. Lin: DS L is asserted for each data transfer to indicate that the DAL lines
#ve available to receive the incoming duta. BM«3:0> L are changed with
each assertion of DS.

5. The rtVAX 300 checks for a complete cycle after slipping one microcycle.
This is done once every microcycle, starting at the second possible P1 rising
edge. External logic indicates that the cycle is complete by one of the
following three responses:

a. If no error occurs, external logic places the requested data on the .
DAL<31:00> H lines and parity information on CSDP<3:0> L, asserts
DPE L if parity is to be checked, and asserts RDY L, while ERR L 1s
deasserted for each data transfer. The rtYAX 300 reads the data and
parity information and deasserts DS L for every transfer. If the rtVAX
300 detects a parity error, the processor is interrupted, and the rtVAX
300 ignores the data on the DAL«<31:00> H lines and terminates the
cycle.

RDY L deasserted. The rtVAX 300 ignores the data on the DAL«<31:00>

b. If an error occurs on any longword, external logic asserts ERR L with .
H lines and terminates the cycle without reading any additional data.

¢. External logic cannot request a retry of the cycle for octaword-transfer
reads.

6. The rtVAX 300 completes the read cycle by deasserting DS L and AS L.

Figure 2-11 illustrates octaword-transfer read cycle timing, and Table 2-8
shows responses to this cycle.

2-30 Technical Specification

Lg~2 uoneoyedg jeajuyosy

Figure 2-11 Octaword-Transfer Read Cycie Timing

CLKA

CLKB

oAL T
DPE TR
cetL §

CSDP B3

AS

DS

BM §

WR

RDY, ERR

e1\pz2/ra\pafr\r2/Pa\p4

p1fP2\p3fra\p1/r2\rafps

13

First Longword Byte information

Y2nd Longword Byte Mask Info.X 3rd Longword Byte Mask info. X 4th Longword tiyte Mask Into.

@

@

-

u

MLO-004398

Table 2-8 rtVAX 300 Responses to Octaword-Transfer Read Cycie

Parity Action for
CCTLL RDYL ERRL Error Action for First Reference Other References
X H H X Wait for data. Wait for data.
X H L X Cycle is aborted after end of Cycle is aborted after
reading current longword. end of reading current
longword.
H L H H Proceed to second reference. Proceed to next longword
reference.
X L H L Interrupt processor. Abort Interrupt processor. Abort
cycle. cycle.
X L L X Finish reading longword. Finish reading longword.

Abort cycle. No retry.

Abort cycle. No retry.

2.6.5 Single-Transfer Write Cycle

During an rtVAX 300 single-transfer write cycle, the rtVAX 300 writes one
longword to the main memory or to an I/O device. An rtVAX 300 write cycle

2-32 Technical Specific: tion

requires at least two microcycles. Each transfer can be increased in increments

of one microcycle. The sequence of events of an rtVAX 300 write cycle is as
follows:

The rtVAX 300 transfers the physical address onto the DAL<29:02> H

1.

lines. The DAL<31:30> ™ lines are set to 015 to indicate a single longword

transfer.

BM<3:0> L and CSDP<«4:0> L are asserted as required, and WR L is

asserted.

The rtVAX 300 asserts AS L, validating CSDP<4:0> L, BM<3:0> L, WR L,
and the address information on DAL<31:02> H.

The rtVAX 300 transfers the output data on the DAL<31:00> H lines and

byte parity information onto CSDP<3:0> L, and CSDP«4> L is deasserted.
The rtVAX 300 then asserts DPE L to indicate that valid parity information

is available and asserts DS L to indicate that the DAL lines contain valid

data.

5. The rtVAX 300 checks for a complete cycle once every two phases starting
at the second possible P1 rising edge. External logic indicates that the
cycle is complete by one of the following three responses:

a. If no error occurs, external logic reads the DAL line’s data and asserts
RDY L while ERR L is deasserted.

b. If an error occurs, external logic asserts ERR L with RDY L deasserted.
The rtVAX 300 generates a machine check. An error is recognized only
if RDY L is deasserted for two consecutive P1 sample points.

c. External logic can request a retry of the cycle by asserting RDY L and
ERR L. DAL arbitration occurs after the write operation is terminated.

6. The rtVAX 300 completes the write cycle by deasserting DS L and AS L.
Figure 2-12 illustrates single-transfer write cycle timing.

Notes

1. I/O space writes always occur as single-transfer write cycles.

2. The Ethernet controller can issue longword write cycles. To
maintain CPU cache consistency, it asserts CCTL L at the beginning
of the write cycle to start a quadword cache invalidation cycle. Cache
invalidation cycles require a minimum of four microcycles; therefore, if
CCTL L is asserted at the beginning of the cycle, the memory system
must add two wait states (a total cycle time of 400 ns) to the cycle by
holding off the assertion of RDY L. If CCTL L is not asserted at the
beginning of the cycle, this is a CPU longword write cycle, and 0 or 1
wait state (200 or 300 ns) memory access can be applied.

Technical Specffication 2-33

Figure 2-12 Single-Transfer Write Cycle Timing

cika S e1__ /[P P1_/_P_3—__/ P1 P3

CLKB

DAL

DPE

CsDpP

RDY .ERR —

MLO-004309

2-34 Techrnical Specification

. 2.6.6 Octaword-Transfer Write Cycle

During an octaword-transfer write cycle, the rtVAX 300 writes four consecutive
longwords, supplying the address of only the first longword. An octaword-
transfer write cycle requires at least nine microcycles. Only the Ethernet
coprocessor initiates octaword-transfer writes. The sequence of events of an
octaword-transfer write cycle is as follows:

1. The rtVAX 300 transfers the physical address of the preferred longword
onto the DAL<29:02> H lines. This address is always octaword-aligned.
DAL<«03:02> H are always zero. The DAL<31:30> H lines are set to 119
to indicate an octaword transfer. The rtVAX 300 sends an address only of
. the initial longword (preferred). All other associated addresses are implied
and, therefore, are not transferred. These addresses are generated by
incrementing the count on address bits 2 and 3.

2. The CSDP<4:0> L lines are 1X1115 (write no unlock); the BM«3:0> L lines
are asserted as required, and WR L is asserted.

3. The rtVAX 300 asserts AS L, validating CSDP<4:0> L, BM<3:0> L, WR L,
and the address information on DAL<29:02> H.

4. The rtVAX 300 drives the DAL<31:0C> H lines with valid data, places
. parity information on CSDP<3:0> L, and CSDP<4> L remains deasserted.
The rtVAX 300 then asserts DS L to indicate that the DAL lines contain
valid data and asserts DPE L to indicate that CSDP<3:0> L contain
valid parity information. BM<3:0> L are changed as required with each
assertion of DS L.

5. The rtVAX 300 checks for a complete cycle once every microcycle, starting
at the second possible P1 rising edge. External logic indicates that the
cycle is complete by one of the following three responses:

. a. If no error occurs, external logic asserts RDY L, while ERR L is
deasserted for each data transfer.

b. If an error occurs on any longword, external logic asserts ERR L with
RDY L deasserted. The rtVAX 30(continues the octaword write with
BM«<3:0> L set to 1, and only then completes the cycle.

c. External logic cannot request a retry of the cycle for octaword-transfer
reads.

6. The rtVAX 300 completes the write cycle by deasserting DS L and AS L.
Figure 2-13 illustrates octaword-transfer write cycle timing.

Technical Specification 2-35

uogeoyoedg feoluyoe] 9g~2

Figure 2-13 Octaword-Transfer Write Cycle Timing

CLKA Jpi\p2/ra\rafri\r2/ra\r4fei\r2/ra\rafri\p2/P3\r4
cLkB \F:/FZ\FE/N' r1fr2\rafrar1fr2\rafra\r1/ra\rP3fra

2 aHq @ ‘ D2 7
DAL sssuins Addrese Y Data Data Data Data &
@8- 19) (8 19 (8 i8) 18

Cyclel Typp

CSDP Gaiuuist R Parity Parity Parity Parity

s 1@ r
13 13 G 13

®1— ;s G & iSi

BM \\ U First Longword Byle information Xan Longword Byle Mask Info Xl 3rd Longword Byle Mask Info.xiﬂh Longword Byte Mask info.
¥

\n

WR

e | oo | o e | ©

RDY, ERR

MLO-004400

. 2.6.7 Interrupt Acknowledge Cycle

An interrupt acknowledge cycle sequence is similar to a single-transfer read
cycle. The sequence of events follows:

1. During the address portion of the cycle, DAL<06:02> H transfers the IPL
of the interrupt being acknowledged. The DAL<«31:30> H lines are set to
01,5, and the DAL<29:07> H and DAL<01:00> H lines are set to 0.

2. During the data portion of the cycle, external logic should transfer vector
information on the DAL lines. Lines DAL<15:02> H contain the vector
offset within the system control block. The new processor status longword

. priority level is determined either by the external interrupt request level
that caused the interrupt or by DAL<00> H. If DAL<00> H is 0, the new
IPL is determined by the interrupt being serviced; otherwise, the new IPL
is changed to 17;. Lines DAL<31:16> H and DAL<01> H are ignored.

3. Assertion of ERR L and RDY L in the proper sequence causes the rtVAX
300 to abort or retry the cycle. An abort or a data parity error causes the
rtVAX 300 to ignore the data being read and to release the bus at the end
of the cycle. This results in a passive release of the interrupt.

. Figure 2-14 illustrates interrupt acknowledge cycle timing.

2.6.8 External IPR Cycles
Section 2.6.8.1 and Section 2.6.8.2 discuss external IPR cycles.

2.6.8.1 External IPR Read Cycle

An external processor register read cycle is initiated when an MFPR

(move from processor register) instruction reads a category 3 processor

register. (Section 3.1.4.3 defines processor register categories.) The only

IPR register that should be implemented externally is IPR 3715. This is the

. I/0 reset register, and any write to this register should reset all external
devices. Implementing any other IPR externally may cause future software
incompatibilities.

The external processor register read cycle protocol is the same as that of a
single-transfer CPU read cycle, as shown in Figure 2-9; however, CSDP<2:0>
L reads 010;, indicating an external IPR cycle. This cycle requires at least two
microcycles and can be extended in increments of one microcycle. The sequence
of events for an external processor register read cycle is as follows:

Technical Specification 2-37

Figure 2-14 Interrupt Acknowledge Cycle

cwa e\ __/Pa_
cke _/P2__/Pa\

IPL of Interrupt

DAL

DPE

CCTL &
CSDPc4>5

CSDP
<3:0>

P1___/P—3__/ P1 P3

Intermal Cyc

T ———

Cycle Type
1

AS

AN

"

Parity

14

Ds

BM

B

s

WR

i ,,ﬁﬁéﬁ%fé%

T
.

e e

RDY.ERR

1. The rtVAX 300 transfers the processor register onto DAL<07:02> H, and
DAL<31:30> H are set to 01 to indicate a longword transfer. DAL <28:08>

H and DAL<01:00> H are zero.

2. BM<3:0> L are all asserted, CSDP<2:0> L read 0105, and WR L is

unasserted.

3. The rtVAX 300 asserts AS L, indicating that the register number, BM<3:0>

MLO-004401

L, CSDP<3:0> L, and WR L are valid and can be latched.

2-38 Technical Specification

. 4. The rtVAX 300 asserts DS L to indicate that DAL are available to receive
incoming data.

5. The rtVAX 300 checks for a compiete cycle once every two clock cycles,
starting at the next possible P1. The response of external logic is as
follows:

a. If the processor register is implemented, external logic transfers the
required data on DAL<31:00> H, asserts DPE L if parity is to be
checked, and asserts RDY L with ERR L deasserted. The rtVAX 300
reads the data from DAL<31:00> H.

. b. If the processor register is not implemented, external logic asserts
ERR L with RDY L deasserted. The rtVAX 300 ignores the data on
DAL<31:00> H and internally forces the result to zero. A detected
parity error will force the result to zero and is not reported. Therefore,
it is recommended that DPE L remain asserted during a processor
register read. The unimplemented response will be recognized only
if RDY L is deasserted for two consecutive P1 sample points. If this
response (ERR L asserted and RDY L deasserted) is detected at the
first P1 sample point but RDY L is asserted at the second P1 sample
. point, the cycle will terminate according te the retry protocol.

c. To request a retry, external logic asserts both RDY L and ERR L. DAL
arbitration occurs after the initial read cycle is terminated.

6. The rtVAX 300 completes the read cycle by deasserting AS L and DS L.

2.6.8.2 External IPR Write Cycle

An external processor register write cycle is initiated when an MTPR
(move to processor register) instruction writes a category 3 processor
register. (Section 3.1.4.3 defines processor register categories.) The only
. IPR register that should be implemented externally is IPR 37;6. This is the
I/O reset register, and any write to this register should reset all external
devices. Implementing any other IPR externally may cause future software
incompatibilities.
An external prucessor register write cycle protocol is the same as an rtVAX
300 write cycle, as shown in Figure 2-12; however, CSDP<2:0> L reads 0105,
indicating an external IPR cycle. The cycle requires at least two microcycles

and may be extended in increments of one microcycle. The sequence of events
for an external processor register write cycle is as follows:

1. The rtVAX 300 transfers the processor register number onto DAL<07:02>
H, and DAL<31:30~ H are set to 013 to indicate a longword transfer.
. DAL<28:08> H and DAL<01:00> H are zero.

Technical Specification 2-39

2. BM<3:0> L are all asserted, CSDP<2:0> L read 0105, and WR L is ‘
unasserted.

3. The rtVAX 300 asserts AS L to indicate that the register number, BM<3:0>
L, CSDP<«3:0> L, and WR L are valid and can be latched.

4. The rtVAX 300 transfers the data onto DAL<31:00> H and asserts DS L to
indicate that the DAL contains valid data.

5. The rtVAX 300 checks for a completed cycle once every two clock phases,
starting at the next possible P1. The response of the external logic is as
follows:

a. If the processor register is implemented, external logic reads the data ‘
from DAL and asserts RDY L while ERR L is deasserted.

b. If the processor register is not implemented, external logic responds
either as if the register is unimplemented by asserting ERR L when
RDY L is deasserted or as if the register is implemented by asserting
RDY L with ERR L deasserted. Both respenses have the same effect,
and no special action is taken. The unimplemented response indicates
no special action only if RDY L is deasserted for two consecutive P1
sample points. If this response is detected at the first P1 sample
point but RDY L is asserted at the second P1 sample point, the cycle .
terminates according to the retry protocol.

c. To request a retry, external logic asserts both RDY L and ERR L. DAL
arbitration occurs after the initial write cycle is terminated.

6. The 1tVAX 300 completes the write cycle by deasserting AS L and DS L.

2.6.9 Internal Cycles

The internal cycles start off as regular read/write cycles. However, by the end
of the address portion of the cycle, all data lines are undefined. The beginning ‘
of an internal cycle is indicated by an address within the reserved space or the
assertion of CSDP<4> L. The end of the cycle is indicated by the deassertion of

AS L. See Figure 2—-15.

2-40 Technical Specification

. Figure 2-15 Internal Read or Write Cycle

WA WL
NS\ /e

P4

PUPS\ / P1 P3

/72\

BM

WR

ERR,RDY

2.6.10 DMA Cycle

T A L A A A DA
S i i
R 2

MLO-004402

The rtVAX 300 can relinquish the DAL lines and related control signals upon
request from an external DMA device or other processor. The sequence is as

follows:

1. The external device requests control of the bus by asserting DMR L.

2. Once the rtVAX 300 finishes the current bus cycle and no pending DMA
requests are present from the Ethernet coprocessor, the rtVAX 300 causes
the DAL<31:00> H lines, AS L, DS L, WR L, BM<3:0> L, and CSDP<4:0>

between bus retry cycles.

L to become high impedance and asserts DMG L. DAL bus arbitration
occurs at the end of each bus cycle, so that DMA devices can intervene

Technical Specification 2-41

3. To return bus control to the rtVAX 300, the external device deasserts DMR '
L, and the rtVAX 300 responds by deasserting DMG L and returning to
regular bus cycles. The rtVAX 300 does not invalidate cache entries, unless
tne CCTL L line is asserted appropriately.

Figure 2-16 illustrates DMA cycle timing.

Note

If an external DMA device remains DAL bus master longer than 6 us,
the Ethernet coprocessor FIFO may overflow when receiving packets.

See Figure 2-16. .

Figure 2-16 DMA Cyrle

CLKA P1 P3 P1 P3 P1 P3 P1 Pa P1 P3 P1 P3
CLKB P2 P4 P2 P4 P2
DMR _@?

DMG /‘

DS (from DMA device)

Ds, AS, DBE,
DPE, WF, BM

CSDP
DAL

—
/.;;%

“a

MLO-004403

2.6.11 Cache Invalidate Cycle

External logic initiates a conditional cache invalidate cycle to allow the CVAX
to detect and invalidate stale data stored in cache. A cache invalidate cycle
requires at least four uicrocycles. The sequence of events is as follows:

2-42 Technical Specification

1. After DMG L is asserted, external logic drives the address on the
DAL<31:00> H lines and asserts AS L to latch the address into the
rtVAX 300. External logic should also assert CCTL L to start the cache
invalidate cycle.

2. The rtVAX 300 invalidates the quadword entry selected by the DMA
address if the location is stored in cache.

3. External logic deasserts CCTL L and optionally reasserts CCTL L to
conditionally invalidate the alternate quadword formed by inverting
DAL<«03> H. This allows external logic to detect and invalidate stale data
stored in any naturally aligned octaword.

4. The cycle ends when external logic deasserts CCTL L and AS L.

If a cache parity error is detected during a conditional cache invalidate cycle,
no machine check is generated, no invalidate occurs, and the error is logged in
the MSER.

Figure 2-17 illustrates the octaword cache invalidate cycle. Figure 2-18
illustrates the quadword cache invalidate cycle.

Figure 2-17 Octaword Cache invalidate Cycle

AW WA W __/__/—__/'-’3 Pa
CLKB fm e \._ J_\g\\
CCTL

@ ;

38
AS \

DAL

MLO-008378%

Technical Specification 2-43

Figure 2-18 Quadword Cache Invalidate Cycle

CLKA Wpa\ [P _\Jp—s_ﬁ_ﬁ;'ﬁ\ﬁ
ctke _ [Pa_fr2\ /P4 fe_ _fr_fr__fP__ [P\

CCTL -@

MLO-006320

2-44 Technical Specification

2¥EX
A

XAKXH
XARKAKH

400640044

XXXXXAXAXLY

AXEXXKXKXXAXKD

XXXX XXX KAXKXXD

p:0.00.0.0.64.6.904800440

) 0.6.6.0.0.00.046800444088

P.0.94.00 60084400 800900

p9.0.0.60064044083 88000800

P 0000 00040.9.0.0.00.48.668444640
KEXXAAKK XK XA T KKK AL KR AKX

b 66000800004 8908406400068400840
).0.0.6.8.00.0.0.4.0.00.46.4.0.0.9.6.966608040649

P8 8.0.6.00.060.06600006.0.8.090096048009
PEH0.8.90.0.6:6.4.00.06068.9.0.00000.6.00.90666909
}9.0.08.0.0.00.0604600.00.80095058.88¢80988080¢
}0.0.0.0.0.6.0.000.04.0.0.00.0000600896.6.60866660508
FO000.00000.0.08000000500000099000.0.0695446460¢4
POV SO0 O NG00 E04.040848.9.4.90.008608050810.044
PO NS G086 6:00.0.4:0:0.65.60.8.00009.0.880885888801

P OOV OV D9.0.069.006:0.6.6.00:0.60.80.0.6.0.600.06.609896680.6080

PO 06.0.0:0.040.000.0050.6:0:0:6.0:0,0.0.0.6.00.0.0.¢.090.9.0.99.0609¢8064.0
XXX XA XX KRN KX XX LK UK XY KL X KA XXX LKA KL KKK K LKA KK KK

3

Hardware Architecture

This chapter discusses the hardware architecture features of the rtVAX 300
processor. The VAX Architecture Reference Manual discusses VAX hardware
architecture in general and in detail.

The rtVAX 300 processor implements a compatible subset of the VAX
architecture. Visible machine state consists of virtual and physical memory, 16
general-purpose registers, the processor status word, and 16 system registers.

The instruction set architecture responds to all 304 native-mode VAX
instructions. Of these, 251 are implemented in the microprocessor, and the
remaining 53 instructions may be implemented through software emulation, of
which 21 are assisted by the chip’s microcode.

All VAX data types are recognized. Of these, nine are implemented in the
microprocessor: byte, word, longword, and quadword integers; variable length
bit fields, variable length character strings, single precision, double precision,
and extended double precision floating-point numbers. The remaining data
types are supported through software emulation.

This chapter discusses the following topics:
¢ Central processor (Section 3.1)

¢ Floating-point accelerator (Section 3.2)

e Cache memory (Section 3.3)

° Hardware initialization (Section 3.4)

¢ Console interface registers (Section 3.5)

e Ethernet coprocessor (Section 3.6)

Hardware Architecture 3-1

3.1 Central Processor

The central processor of the rtVAX 300 supports the CVAX chip subset (plus
gix additional string instructions) of the VAX instruction set and data types

and full VAX memory management. It is implemented by a single VLSI chip
called the CVAX.

3.1.1 Data Types
The rtVAX 300 processor supports the following subset of VAX data types:

e Byte

e Word

¢ Longword
e Quadword

¢ Character string
* Variable length bit field
Macrocode emulation can provide support for the remaining VAX data types.

3.i.2 Instruction Set

The rtVAX 300 processor implements the following subset of VAX instruction
set types in microcode:

¢ Integer arithmetic and logical

e Address
® Variable length-bit field
o Control

¢ Procedure call

o Miscellaneous
* Queue

e Charactsy string moves (MOVCS, MOVCS5, CMPC3, CMPC5, LOCC,
SCANC. WKPC, and SPANC)

e Operating system support

e F floating
e G_floating
e D_floating

3-2 Hardweare Architecture

The rtVAX 300 CVAX chip provides special microcode assistance to aid the
macrocode emulation of the following instruction groups:

© Character string (except MOVC3, MOVC5, CMPC3, CMPC5, LOCC,
SCANC, SKPC, and SPANC)

¢ Decimal string
* CRC
o EDITPC

o H_floating
. Octaword instruction groups are not implemented but may be emulated by
macrocode.
3.1.3 Microcode-Assisted Emulated Instructions

The rtVAX 300 processor provides microcode assistance for the emulation of
these instructions by system software. The processor processes the operand
specifiers, creates a standard argument list, and takes an emulated instruction
fault. Table 3-1 describes microcode-assisted emulated instructions.

. Table 3—~1 Microcode-Assisted Emulated Instructions
OP Mnerronic and Arguments Description nzvc Exceptions'

20 ADDP4 addlen.rw, addaddr.ab, Add packed 4-operand **xx0 rsv, dov
sumlen.rw, sumaddr.ab

21 ADDP6 addllen.rw, addladdr.ab, Add packed 6-operand *xx0 rsv, dov
add2len.rw, add2addr.ab, sumlen.rw,

sumaddr.ab
F8 ASHP cnt.rb, srclen.rw, srcaddr.ab, Arithmetic shift and *xxQ rsv, dov
. round.rb, dstlen.rw, dstaddr.ab round packed
35 CMPP3 len.rw, srcladdr.ab, Compare packed 3- **00
src2addr.ab operand
37 CMPP4 srcllen.rw, srcladdr.ab, Compare packed 4- **00
src2len.rw, src2addr.ab operand
0B CRC tbl.ab, inicrc.rl, strlen.rw, Calculate cyclic **00
stream.ab redundancy check

F9 CVTLP src.rl], dstlen.rw, dstaddrab Convert long to packed ¥**x0 rsv, dov

lrev = reserved operand fault; iov = integer overflow trap; dov = decimal overflow trap; ddvz = decimal

divide by zero trap.

. (continued on next page)

Hardware Architecture 3-3

Table 3-1 (Cont.) Microcode-Assisted Emulated Instructions

OP Mnemonic and Arguments Description hzve Exceptions’

36 CVTPL srclen.rw, srcaddr.ab, dst.wl = Convert packed to long * %X 0 rsv, iov

08 CVTPS srclen.rw, srcaddr.ab, Convert packed to *%xx(rsv, dov
dstlen.rw, dstaddr.ab leading

separate

09 CVTSP srclen.rw, srcaddr., Convert leading * %% Q r8v, dov
dstlen.rw, dstaddr.ab separate to packed

24 CVTPT srclen.rw, srcaddr.ab, Convert packed to * %% Q rsv, dov
thladdr.ab, dstlen.rw, dstaddr.ab trailing

26 CVTTP srclen.rw, srcaddr.ab, Convert. packed to *% X% 0 rev, dov
tbladdr.ab, dstlen.rw, dstaddr.ab trailing

27 DIVP divrlen.rw, divraddr.ab, Divide packed * % *xQ rsv, dov, ddvz
divdlen.rw, quolen.rw,
quoaddr.ab

38 EDITPC srclen.rw, srcaddr.ab, Edit packed to character ** * * rsv, dov
pattern.ab, dstaddr.ab string

39 MATCHC objlen.rw, objaddr.ab, Match characters 0*00
srclen.rw, srcaddr.ab

34 MOVP len.rw, srcaddr.ab, Move packed ¥**¥00
dstaddr.ab

2E MOVTC srclen.rw, srcaddr.ab, fill.th, Move translated * % *
tbladdr.ab, dstlen.rw, dstaddr.ab characters

2F MOVTUC srclen.rw, srcaddr.ab, Move translated until * kKK
esc.rb, tbladdr.ab, dstlen.rw, character
dstaddr.ab

25 MULP mulrlen.rw, mulraddr.ab, Multiply packed **%(0 rav,dov
muldlen.rw, muldaddr.ab,
prodlen.rw, prodaddr.ab

22 SUBP4 sublen.rw, subaddr.ab, Subtract packed **x(r8v, dov
diflen.rw, difaddr.ab 4-operand

23 SUBPS sublen.rw, subaddr.ab, Subtract packed * %% Q) rav, dov
minlen.rw, minaddr.ab, diflen.rw, 6-operand

difaddr.ab

lrsv = reserved operand fault; iov = integer overflow trap; dov = decimal overflow trap; ddvz = decimal
divide by zero trap.

3-4 Hardware Architecture

3.1.4 Processor State

The processor state is stored in processor registers rather than in memory.
The processor state is composed of 16 general-purpose registers (GPRs), the
processor status longword (PSL), and the internal processor registers (IPRs).

Nonprivileged software can access the GPRs and the processor status word
(bits <15:00> of the PSL). Only privileged software can access the IPRs

and bits <31:16> of the PSL. The IPRs are explicitly accessible only by the
move to processor register MTPR) and move from processor register (MFPR)
instructions, which can be executed only while running in kernel mode.

. 3.1.4.1 General-Purpose Registers

The rtVAX 300 implements 16 general-purpose registers as specified in the VAX
Architecture Reference Manua!. These registers are used for temporary storage,
as accumulators, and as base and index registers for addressing. These
registers are denoted RO through R15. The bits of a register are numbered
from the right <0> through <31>.

Certain of these registers have been assigned special meaning by the VAX
architecture.

* R15 is the program counter (PC). The PC contains the address of the next
instruction byte of the program.

* R14 is the stack pointer (SP). The SP contains the address of the top of the
processor defined stack.

e R13 is the frame pointer (FP). The VAX procedure call convention builds
a data structure on the stack called a stack frame. The FP contains the
address of the base of this data structure.

¢ R12 is the argument pointer (AP). The VAX procedure call convention uses
a data structure called an argument list. The AP contains the address of
the base of this data structure.

Consult the VAX Architecture Reference Manual for more information on the
operation and use of these registers.

3.1.4.2 Processor Status Longword

The processor status longword (PSL) is implemented as specified in the VAX
Architecture Reference Manual, which should be consulted for a detailed
description of the operation of this register. The PSL is saved on the stack
when an exception or interrupt occurs and is saved in the process control
block (PCB) on a process context switch. Nonprivileged software can access
bits <15:00>; only privileged software can access bits <31:16>. Processor

Hardware Architecture 3.5

initialization sets the PSL to 041F0000,6. Figure 3-1 shows the format of the
processor status longword; Table 3-2 describes the fields within the PSL.

Figure 3-1 Processor Status Longword

3130202827 262524 23222120 1615 0807060504 0302 01 00
CT' i 1 1 rirTrT1r 1T rvrvrtTT olFl 1
MPO s 0 iPL 0 VUVTNZVC:
1 | . | | T OO S N P |
-———— PRV MQD
CURMOD
FPD MLO-006380

Table 3-2 Processor Status Longword Bit Map

Data Bit

Definition

<31l>

<30>
<29:28>
<27>
<26>
<25:24>
<23:22>
<21>
<20:16>
<15:8>
<>

<6>
<B5>

<4>

Compatibility mode (CM). Reads as zero. The rtVAX 300 does not support
compatibility mode.

Trace pending (TP).

Unused. Must be written as zero.
First part done (FPD).

Interrupt stack (IS).

Current mode (CUR MOD).
Previous mode (PRV MOD).
Unused. Must be written as zero.
Interrupt priority level (IPL).
Unused. Must be written as zero.

Decimal overflow trap enable (DV). Has no effect on rtVAX 300 hardware.
Can be used by macrocode which emulates VAX decimal instructions.

Floating underflow fault enable (FU).
Integer overflow trap enable (IV).
Trace trap enable (T).

(continued on next page)

3-8 Hardware Architecture

Table 3-2 (Cont.) Processor Status Longword Bit Map
Data Bit Definition

<3> Negative condition code (N).
<2> Zero condition code (Z).

<1> Overflow condition code (V).
<0> Carry condition code (C).

. 3.1.4.3 Internal Processor Registers

The rtVAX 300 IPRs can be accessed by using the MFPR and MTPR privileged
instructions. Each IPR falls into one of the following categories:

1. Implemented by rtVAX 300 (in the CVAX chip).
2. Implemented by rtVAX 300 (and all designs that use the CVAX chip)

uniquely.
3. Not implemented, timed out by the DAL bus timer after 32 ps. Read as 0.
NOP on write.
. 4. Access not allowed; accesses result in a reserved operand fault.

Accessible, but not fully implemented. Accesses yield unpredictable results.
6. Externally implemented on application module.

Table 3-3 lists each rtVAX 300 IPR, its mnemonic, its access type (read or
write), and its category number.

Table 3-3 Internal Processor Registers

. Decimal Hex Register Mnemonic Type Category’
0 0 Kernel stack pointer KSP r/w 1
1 1 Executive stack pointer ESP /w 1
2 2 Supervisor stack pointer SSP r/w 1
3 3 User stack pointer UsP r/w 1
4 4 Interrupt stack pointer ISP r/w 1
7:5 75 Reserved 3

' = register initialized on power-up and by negation of RST when the processor is halted.

. (continued on next page)

Hardware Architecture 3-7

Table 3-3 (Cont.) Internal Processor Registers

Decimal Hex Register Mnemonic Type Category'
8 8 PO base register POBR r/'w 1
9 9 PO length register POLR r/w 1
10 A P1 base register P1BR r/w 1
11 B P1 length register P1LR r/w 1
12 C System base register SBR r'w 1
13 D System length register SLR r/w 1
15:14 FE Reserved 3
16 10 Process control block base PCBB r/w 1
17 11 System control block base SCBB r'w 1
18 12 Interrupt priority level IPL r'w 11
19 13 AST level ASTIVL r/w 11
20 14 Software interrupt request SIRR w 1
21 15 Software interrupt summary SISR r'w j |
23:22 17:16 Reserved 3
24 18 Interval clock control/status ICCS r/w 21
25 19 Next interval count NICR w 3
26 1A Interval count ICR r 3
27 1B Time-of-year clock register TODR r/w 3
28 1C Console storage receiver status CSRS r'w 51
29 1D Console storage receiver data CSRD r 51
30 1E Console storage transmit status ~ CSTS 'w 51
31 1F Console storage transmit data CSTD w 51
32 20 Console receiver control/status RXCs r/w 3
33 21 Console receiver data buffer RXDB r 3
34 22 Congole transmit control/status TXCS r/w 3
35 23 Console transmit data buffer TXDB w 3
36 24 Translation buffer disable TBDR r'w 3
37 25 Cache disable CADR r/w 21

{ = register initialized on power-up and by negation of RST when tie processor is halted.

3-8 Hardware Architecture

{continued on next page) ‘

Table 3-3 (Cont.) Internal Processor Registers

Decimal Hex Register Mnemonic Type Category'
38 26 Machine check error summary MCESR /W 3
39 27 Memory system error MSER r/'w 21
41:40 29:28 Reserved 3
42 2A Console saved PC SAVPC r 2
43 2B Console saved PSL SAVPSL r 2
47:44 2F:2C Reserved 3
48 30 SBI Fault/status SBIFS r'w 3
49 31 SBI silo SBIS T 3
50 32 SBI silo comparator SBISC r'w 3
51 33 SBI maintenance SBIMT r/w 3
52 34 SBI error SBIER r/w 3
53 35 SBI timeout address SBITA r 3
54 36 SBI quadword clear SBIQC w 3
55 37 /O bus reset IORESET w 6
56 28 Memory management enable MAPEN r'w 1
57 39 TB invalidate all TBIA w 1
58 3A TB invalidate single TBIS w 1
59 3B TB data TBDATA r/w 3
60 3C Microprogram break MBRK r'w 3
61 3D Performance moniior enable PMR /w 3
62 3E System identification SiD T 1
63 3F Translation buffer check TBCHK w 1
127:64 7F:46 Reserved 4

'] = register initialized on power-up and by negation of RST when the processor is halted.

3.1.5 Interval Timer

The rtVAX 300 interval timer, IPR 24, is implemented according to the VAX
Architecture Reference Manual for subsct processors. The interval clock control
/status register (ICCS) is implemented as the standard subset of the standard
VAX ICCS in the CVAX chip; NICR and ICR are not implemented (Figure 3-2).

Hardware Architecture

3-9

Figure 3-2 Interval Timer

31 070605 00
LIS B N L L L B B PR IR AR N
0 E o ACCS
I N L N I 00 0 U O N N I O 0 A Li i1t
MLO-004570
Bit Definition
<31:07> Unused. Read as zeros, must be written as zeros.
<06> Interrupt enable (IE). Read/write. This bit enables and disables the

interval timer interrupts. When the bit is set, an interval timer interrupt
is requested every 10 ms with an error of less than 0.01 percent. When
the bit is clear, interval timer interrupts are disabled. This bit is cleared

on power-up.

<05:00> Unused. Read as zeros, must be written as zeros.

Interval timer requests are posted at IPL 1635 with a vector of C0;5. The
interval timer is the highest priority device at this IPL.

3.1.6 ROM Address Space

The entire 128K-byte boot and diagnostic ROM may be read from local register
1/0 space (addresses 20040000 through 2007FFFF). Writes to this space result

in a machine check.

3.1.7 Resident Firmware Operation

The rtVAX 300 resident firmware can be entered by transferring program

control to location 20040000.

Section 3.1.9 lists the various halt conditions that cause the CVAX processor to
transfer program control to location 20040000.

When running, the rtVAX 300-resident firmware provides the services expected
of a VAX console system. In particular, the following services are available:

¢ Bootstrap following processor halts or initial power-up

® An interactive command language allowing the user to examine and alter

the state of the processor

¢ Diagnostic tests executed on power-up that check out the CVAX processor,
the memory system, and the Ethernet coprocessor

3-10 Hardware Architecture

. 3.1.8 Memory Management

The rtVAX 300 implements full VAX memory management, as defined in the
VAX Architecture Reference Manual. System space addresses are virtually
mapped through single-level page tables, and process space addresses are
virtually mapped through 2-level page tables. Refer to the VAX Architecture
Reference Manual for descriptions of the virtual to physical address translation
process and the format of VAX page table entries (PTEs).

Translation Buffer

To reduce overhead associated with translating virtual addresses to physical
addresses, the rtVAX 300 processor employs a 28-entry, fully associative
translation buffer for caching VAX PTEs in modified form. Each entry can
store a modified PTE for translating virtual addresses in either the VAX
process space or VAX system space. The translation buffer is flushed whenever
memory management is enabled or disabled, for example, by writes to IPR
56, when any page table base or length registers are modified, for example, by
writes to IPRs 8 to 13, and by writing to IPR 57 (TBIA) or IPR 58 (TBIS).

Each entrv is divided into two parts: a 23-bit tag register and a 31-bit PTE
register. The tag register stores the virtual page number (VPN) of the virtual
page that the corresponding PTE register maps; the PTE register stores the 21-
bit PFN field, the PTE<V> bit, the PTE<M> bit, and an 8-bit partially decoded
representation of the 4-bit VAX PTE PROT field, from the corresponding VAX
PTE, and a translation buffer valid (TB<V>) bit.

During virtual to physical address translation, the contents of the 28 tag
registers are compared with the virtual page number field (bits <31:9>) of
the virtual address of the reference. If there is a match with one of the
tag registers, a translation buffer hit has occurred, and the contents of the
corresponding PTE register are used for the translation.

If there is no match, the translation buffer does not contain the necessary
VAX PTE information to translate the address of the reference, and the PTE
must be fetched from memory. Upon fetching the PTE, the translation buffer
is updated by replacing the entry that is selected by the replacement pointer.
Since this pointer is moved to the next sequential translation buffer entry
whenever it is pointing to an entry that is accessed, the replacement algorithm
is not last used (NLU).

Hardware Architecture 3-11

3.1.8.2 Memory Management Control Registers ‘

Four IPRs control the memory management unit (MMU): IPR 56 (MAPEN),
IPR 57 (TBIA), IPR 58 (TBIS), and IPR 63 (TBCHK).

Memory management can be enabled/disabled through IPR 56 (MAPEN).
Writing 0 to this register with an MTPR instruction disables memory
management; writing a 1 enables memory management. Writes to this register
flush the translation buffer. To determine whether or not memory management
is enabled, IPR 56 is read by the MFPR instruction. Translation buffer entries
that map a particular virtual address can be invalidated by using the MTPR
instruction to write the virtual address to IPR 58 (TBIS).

¢

Whenever software changes a valid PTE for the system or current
process region, or a system PTE that maps any part of the current
process page table, all process pages mapped by the PTE must be

invalidated in the translation buffer.

to write a 0 to IPR 57 (TBIA).

The translation buffer can be checked to see if it contains a valid translation
for a particular virtual page by using the MTPR instruction to write a virtual
address within that page to IPR 63 (TBCHK). If the translation buffer contains
a valid translation for the page, the condition code V bit (bit <1> of the PSL) is
set.

The entire translation buffer can be invalidated by using the MTPR instruction .

Note

The TBIS, TBIA, and TBCHK IPRs are write only. The operation of an .
MFPR instruction from any of these registers is undefined.

3.1.9 Exceptions and interrupts

Both exceptions and interrupts divert execution from the normal flow of
control. An exception is caused by the execution of the current instruction
and is typically handled by the current process, for example, an arithmetic
overflow; an interrupt is caused by some activity outside the current process
and typically transfers control outside the process, for example, an interrupt
from an external hardware device.

3-12 Hardware Architecture

3.1.10

. 3.1.11

3.1.12

The following events cause interrupts:
¢ HLT L (non=askable)
o PWRFL L (IPL 1Eq¢)

e Interrupt from a peripheral device received on IRQ<3:0> L (IPL 14,4 to
IPL 174¢):

Interval timer (IPL 16,¢)
Ethernet coprocessor (IPL 15:¢)
Console DUART (IPL 14,4)

° Software interrupt invoked by MTPR sre, #SIRR (IPL 016 to OF¢)
* AST delivery when REI restores a PSL with a mode > ASTLVL (IPL 02,4)

Each device has a separate interrupt vector location in the system control block
(SCB). Thus, interrupt service routines do not need to poll devices in order

to determine which device interrupted. The vector address for each device is
determined by hardware.

To reduce interrupt overhead, no memory mapping information is changed
when an interrupt occurs. Thus, the instructions, data, and contents of the
interrupt vector for an interrupt service routine must be in the system address
space or present in every process at the same address.

Interrupt Control

The IRQ<3:0> L, HLT L, and PWRFL L inputs to the processor and three
registers control the hardware interrupt system. Asserting any of the input
pins generates an interrupt at the hardware level given in Table 3—4. The
three registers are used to control the software interrupt system.

internal Hardware Interrupts

The rtVAX 300 10 ms interval timer interrupts at IPL 16,4, and the Ethernet
coprocessor can interrupt the rtVAX 300 at TPL 15,4. These interrupts have
higher priority than iRQ<2> L and IRQ<1> L, which also interrupt at IPL 16¢
and YPL 1516-

Dispatching Interrupts: Vectors

The system control block is a page-aligned table containing the vectors used
to dispatch exceptions and interrupts to the appropriate service routines.
Only device vectors in the range of 1004 to 7FFC;¢ should be used, except
by devices emulating console storage and terminal hardware. The console

reserves vectors 02C0 to 02CC and interrupts at IPL 14,4 by means of IRQ<0>
L.

Hardware Architecture 3-13

3.1.12.1

The rtVAX 300 internal Ethernet coprocessor can interrupt at IPL 15,¢. This
interrupt is daisy-chained to the external interrupt request IRQ<1> L and

is serviced before IRQ<1> L. The vector is set by writing to the Ethernet
coprocessor CSRO register at location 20180000.

Interrupt Action
Interrupts can be divided into two classes: nonmaskable and maskable.

Nonmaskable interrupts cause a halt through the hardware halt procedure
which saves the PC, PSL, MAPEN<0>, and a halt code in IPRs, raises the
processor IPL to 1F;g, and then passes control to the resident firmware. The
firmware dispatches the interrupt to the appropriate service routine, based on
the halt code and hardware event indicators. Nonmaskable interrupts with a
halt code of 3 cannot be blocked, because this halt code is generated after a
hardware reset.

Maskable interrupts save the PC and PSL, raise the processor IPL to the
priority level of the interrupt (except for vectors with DAL<0> H set to 1,
where the processor IPL is set to 17,6, independent of the level at which the
interrupt was received), and dispatch the interrupt to the appropriate service
routine through the SCB.

Table 34 lists the various interrupt conditions for the rtVAX 300 plus their
associated priority levels and SCB offsets.

Note

If the external device sets DAL<00> H of the vector that it places

on the bus, the rtVAX 300 processor raises the IPL to 17,4 after
responding to interrupts gererated by the assertion of IRQ<3> L,
IRQ<«2> L, IRQ<1> L, or IRQ<0> L. The rtVAX 300 maintains the IPL
at the priority of the interrupt, if DAL<00> H is zero.

3-14 Hardware Architecture

Table 3—4 interrupts

Priority Levelss interrupt Condition SCB Oftset
Nonmaskable Reset asserted 1
HLT L asserted 2
1F Unused
1E PWRFL L asserted oC
1D-18 Unused
17 IRQ<3> L asserted Device vector on DAL<15:02> H
16 Interval timer interrupt Co
IRQ<2> L asserted Device vector on DAlL<15:02> H
15 Ethernet coprocessor Vector placed in Ethernet coprocessor
interrupt CSRO
IRQ<1> L asserted Device vector on DAL<«15:02> H
14 Console terminal 02C0
IRQ<0> L asserted Device vector on DAL<15:02> H
13-10 Unused
0F-01 Software interrupt requests 84-BC

 This condition forces execution to the resident firmware’s dispatcher with a halt code of 3
(hardware reset).

2'3115 condition forces execution to the resident firmware's diepaicher with a halt code of 2 (external
halt).

Three IPRs control the interrupt system: IPR 18, the interrupt priority level
register (IPL), IPR 20, the software interrupt request register (SIRR), and
IPR 21, the software interrupt summary register (SISR). The IPL is used

for loading the processor priority. The SIRR is used for generating software
interrupt requests. The SISR records pending software interrupt requests at
levels 1 through 15. Figure 3—-3 shows the format of these registers. Refer to
the VAX Architecture Reference Manual for more information on these registers.

Hardware Architecture 3-15

Figure 3-3 Interrupt Reglsters

N 0504 00
Ty irrrrerryi v rrTvrrTrryrryiroroverd LB
ignored, Retums 0 PSL<20:16>] :IPL
FEEEEE NN N
<3 0403 00
ryryrrri+1rrvrryrryreierriertrrrrorariid LI
ignored Request| SIRR
S T T T L W% S N0 150 TS (VOO T T O T A N N TN N TN TN O BN e | |
31 1615 00
T rirrrrroerirraad TPV T T vVrrrrveryirinid
Pending Scfiware Interrupts |of :SiISR
Lot bbbt IFEDCBAIL8,71615413;211

MLO-004407

3.1.12.2 Halting the Processor

The rtVAX 300 is a dynamic device and cannot be halted by disabling its clock
input (CLKIN). The CPU is halted either by executing the HALT instruction in
kernel mode or by asserting the HLT L signal.

Assertion of the HLT L signal results in the execution of a nonmaskable
interrupt by the CPU. HLT L is edge-sensitive and must be asserted for at
least two microcycles to guarantee its being sensed by the CPU. In order for
another HLT L to be recognized, HLT L must be deasserted for at least two
microcycles. A break detection circuit may be added to the console receive line
to assert the HLT line when the console break key is depressed. (Chapter 6
gives details of and illustrates this circuit.)

Execution of the HALT instruction or assertion of HLT L causes the execution
of macro instructions to be suspended and the restart process to be entered.
The initiation of the restart process is under control of the processor microcode,
which saves the processor state and passes control to the internal boot and
diagnostic ROMs beginning at physical address 20040000. These ROMs
implement the console emulation program and give control to the console,
displaying the >>> prompt when a halt condition is detected.

3.1.12.3 Exceptions
There are three types of exceptions: -

* Trap
¢ Fault
e Abort

3-16 Hardware Architecture

A trap is an exception that occurs at the end of the instruction that caused
the exception. After an instruction traps, the PC saved on the stack is the
address of the next instruction that would normally have been executed, and
the instruction can be restarted.

A fault is an exception that occurs during an instruction and leaves the
registers and memory in a consistent state, such that the elimination of

the fault condition and restarting the instruction gives correct results. After
an instruction faults, the PC saved on the stack points to the instruction that
faulted.

An agbort is an exception that occure during an instruction and leaves the value
of the registers and memory unpredictable, such that the instruction cannot
necessarily be correctly restarted, completed, simulated, or undone. After an
instruction aborts, the PC saved on the stack points to the instruction that
was aborted, which may or may not be the instruction that caused the abort;
the instruction may or may not be restarted, depending on the class of the
exception and the contents of the parameters that were saved.

Exceptions are grouped into six classes:
* Arithmetic

¢ Instruction execution

¢ Memory management

° QOperand reference

e System failure

* Tracing

Table 3-5 lists exceptions by class. Exceptions save the PC and PSL, and

in some cases, one or more parameters, on the stack. Most exceptions do

not change the IPL of the processor (except the exceptions in serious system
failures class, which set the processor IPL to 1Fg) and cause the exception

to be dispatched to the appropriate service routine through the SCB (except
for the interrupt stack not valid exception, and exceptions that occur while an
interrupt or another exception are being serviced, which cause the exception to
be dispatched to the appropriate service routine by the resident firmware).

The VAX Architecture Reference Manual describes the exceptions listed in
Table 3-5 (except machine check) in greater detail. Section 3.1.12.4 describes
the machine check exception in greater detail. Table 3-8 in Section 3.1.12.7
describes exceptions that can cccur while an interrupt or another exception are

being serviced.

Hardware Architecture 3~17

Table 3-8 Exceptions

SCB Offsety Type Meaning

Arithmetic Trap and Fault

34 Trap Integer overflow

34 Trap Integer divide-by-zero
34 Trap Subscript range

34 Fault Floating overflow

34 Fault Floating divide-by-zero
34 Fault Floating underflow

Instruction Execution Exceptions

10

2C
40-4C
C8
CcC

Fault
Fault
Trap
Trap
Fault

Reserved/privileged instruction

Breakpoint

Change mode (CHMK, CHME, CHMS, CHMU)

Instruction emulation
Suspended emulator

Memory Management Exceptions

20
24

Fault
Fault

Access control violation
Translation not valid

Operand Reference Exceptions

18
1C

Abort

Fault

Reserved operand fault
Reserved addressing mode

System Failure Exceptions

1

04
04

Abort
Abort

2

Interrupt stack not valid
Machine check
DAL bus parity errors

!Dispatched by resident firmware rather than through the SCB.

“Handled through machine check.

3-18 Hardware Architecture

(continued on next page)

Table 3-5 (Cont,) Exceptions
SCB Offsetye Type Meaning

System Fallure Exceptions

04 2 Internal cache parity errors
04 2 ERR L asserted without RDY L
04 : DAL bus timeout errors
08 Abort Kernel stack not vahd
. Tracing Exception
28 Fault Trace
*Handled through machine check.

3.1.12.4 Information Saved on a Machine Check Exception

In response to a machine check exception, the PSL, PC, four parameters, and a
byte count are pushed onto the stack, as shown in Figure 3—4.

Figure 3-4 Information Saved on a Machine Check Exception

31 00
Byte Count (00000010 HEX) SP

Machine Check Code

Most Recent Virtual Address

internal State Information 1

. Internal State Information 2

PC
PSL

MLO-004408

Byte Count

Byte count <31:00> indicates the number of bytes of information that follow on
the stack (excluding the PC and PSL).

Hardware Architecture 3-19

Machine Check Code Parameter

Machine check code <31:00> indicates the type of machine check that occurred.
Possible machine check codes and their associated causes follow:

* Floating-point errors indicate that the floating-point accelerator (CFPA)
chip detected an error while communicating with the CVAX processor chip
during the execution of a floating-point instruction. The most likely causes
of these types of machine checks are: a problem internal to the CVAX
processor chip; a problem internal to the CFPA; or a problem with the
interconnect between the two chips. Machine checks due to floating-point
errors may be recoverable, depending on the state of the VAX can't restart
flag (captured in internal state information 2 <15>) and the first part done
flag (captured in PSL <27>). If the first part done flag is set, the error
is recoverable. If the first part done flag is cleared, then the VAX can’t
restart flag must also be cleared for the error to be recoverable; otherwise,
the error is unrecoverable, and depending on the current mode, either
the current process or the operating system should be terminated. The
information pushed onto the stack by .his type of machine check is from
the instruction that caused the machine check.

Codess Error Description

1 The CFPA chip detected a protocol error while attempting to execute a
floating-point instruction.

2 The CFPA chip detected a reserved instruction while attempting to
execute a floating-point instruction.

3 The CFPA chip returned an illegal status code while attempting to execute
a floating-point instruction.

4 The CFPA chip returned an illegal status code while attempting to execute

a floating-point instruction.

* Memory management errors indicate that the microcode in the CVAX
processor chip detected an impossible situation while performing memory
management functions. The most likely cause of this type of a machine
check is a problem internal to the CVAX chip. Machine checks due
to memory management errors are nonrecoverable. Depending on the
current mode, either the current process or the operating system should
be terminated. The state of the POBR, POLR, P1BR, P1LR, SBR, and SLR
should be logged.

3-20 Hardware Architecture

Code;s Error Description

5 The calculated virtual address for a process PTE was in the PO space
instead of in the system space when the CVAX processor attempted to
access a process PTE after a translation buffer miss.

6 The calculated virtual address space for a process PTE was in the P1
space instead of in the system space when the CVAX processor attempted
to access a process PTE after a translation buffer miss.

7 The calculated virtual address for a process PTE was in the PO space
instead of in the system space when the CVAX processor attempted to
access a process PTE to change the PTE<M:> bit before writing to a
previously unmodified page.

8 The calculated virtual address for a process PTE was in the P1 space
instead of in the system space when the CVAX processor attempted to
access a process PTE to change the PTE<M> bhit before writing to a
previously unmodified page.

Interrupt errors indicate that the interrupt controller in the CVAX
processor requested a hardware interrupt at an unused hardware IPL.
The most likely cause of this type of a machine check is a problem
internal to the CVAX chip. Machine checks due to unused IPL errors
are nonrecoverable. A nonvectored interrupt generated by a serious error
condition (memory error, power fail, or processor halt) has probably been
lost. Execution of the operating system should be terminated.

Code,; Error Description

9 A hardware interrupt was requested at an unused IPL.

Microcode errors indicate that the microcode detected an impossible
situation during instruction execution. Note that most erroneous branches
in the CVAX processor microcode cause random microinstructions to be
executed. The most likely cause of this type of machine check is a problem
internal to the CVAX chip. Machine checks due to microcode errors are
nonrecoverable. Depending on the current mode, either the current process
or the operating system should be terminated.

Codey¢ Error Description

A An impossible state was detected during an MOVC3 or MOVC5
instruction (not move forward, move backward, or fill).

Read errors indicate that an error was detected when the CVAX processor
tried to read from the internal cache, main memory, or an external /O
device. The most likely cause of this type of machine check must be

Hardware Architecture 3-21

determined from the state of the MSER. Machine checks due to read errors
may be recoverable, depending on the state of the VAX can (restart flag

(- aptured in internal state information 2 <15>) and the first part done
flag (captured in PSL <275). If the first part done flag is set, the error

is recoverable. If the first part done flag is cleared, then the VAX can’t
restart flag must also be cleared for the error to be recoverable; otherwise,
the error is unrecoverable and depending on the current mode, either

the current process or the operating system should be terminated. The
information pushed onto the stack by this type of machine check is from
the instructioa that caused the machine check.

Codeys Error Description

80 An error occurred while reading an operand, a process page table entry
during address translation, or on any read generated as part of an
interlocked instruction.

81 An error occurred while reading a system page table entry during address

translation, a process control block entry during a context switch, or a
system control block entry while processing an interrupt.

¢ Write errors indicate that an error was detected when the CVAX processor
tried to write to either the internal cache, the main memory, or an external
I/0O device. The most likely cause of this type of machine check must be
determined from the state of the MSER. Machine checks due to write
errors are nonrecoverable, because the processor can perform many read
operations out of the internal cache before a write operation completes. For
this reason, the information that is pushed onto the stack by this type of
machine check cannot be guaranteed to be from the instruction that caused
the machine check.

Code,¢ Error Description

82 An error occurred while writing an operand, or a process page table entry to
change the PTE<M> bit before writing a previously unmodified page.
83 An error occurred while writing a system page table entry to change the

PTE<M> bit before writing a previously unmodified page, or while writing
a process control block (PCB) entry during a context switch or during the
execution of instructions that modify any stack pointers stored in the PCB.

Most Recent Virtual Address Parameter

Most recent virtual address <31:00> captures the contents of the virtual
address pointer register at the time of the machine check. If a machine check
other than machine check 81 occurs on: a read operation, this field represents

3-22 Hardware Architecture

the virtual address of the location that is being read when the error occurs,
plus four. If machine check 81 occurs, this field represents the physical address
of the location that is being read when the error occurs, plus four.

If a machine check other than machine check 83 occurs on a write operation,
this field represents the virtual address of a location that is being referenced
either when the error occurs, or sometime after, plus four. If a machine check
83 occurs, this field represents the physical address of the location that was
being referenced either when the error occurs, or sometime after, plus four. In
other words, if the machine check occurs on a write operation, the contents of
this field cannot be used for error recovery.

internal State Information 1 Parameter

Internal state information 1 is divided into four fields. The contents of these
fields are described as follows:

* <31:24> captures the opcode of the instruction that was being read or
executed at the time of the machine check.

® <23:16> captures the internal state of the CVAX processor chip at the
time of the machine check. The four most significant bits are equal to
<1111>, and the four least significant bits contain highest priority software
interrupt <3:0>.

® «15:08> captures the state of CADR<07:00> at the time of the machine
check. See Section 3.3.2.5 for an interpretation of the contents of this
register.

e «07:00> captures the state of the MSER<07:00> at the time of the machine
check. See Section 3.3.2.6 for an interpretation of the contents of this
register.

internal State Information 2

Internal state information 2 is divided into five fields. The contents of these
fields are described as follows:

® <31:24> captures the internal state of the CVAX processor chip at the time
of the machine check. This field contains SC register <7:0>.

® <23:16> captures the internal state of the CVAX processor chip at the
time of the machine check. The two most significant bits are equal to 11
(binary), and the six least significant bits contain state flags <5:0>.

e <15> captures the state of the VAX can't restart flag at the time of the
machine check.

Hardware Architecture 3-23

3.1.12.5

® <14:08> captures the internal state of the CVAX processor chip at the time
of the machine check. The three most significant bits are equal to 111
(binary), and the four least significant bits contain ALU condition codes.

® <07:00> captures the offset between the virtual address of the start of the
instruction being executed at the time of the machine check (saved PC) and
the virtual address of the location being accessed (PC) at the time of the
machine check.

PC

PC<31:00> captures the virtual addrzss of the start of the instruction being
executed at the time of the machine check.

PSL

PSL<31:00> captures the contents of the PSL at the time of the machine check.

System Controi Block

The system control block (SCB) consists of at least two pages in memoery that
contain the vectors by which interrupts and exceptions are dispatched to the
appropriate service routines. IPR 17, the system control block base register
(SCBB), points to the SCB. Figure 3—5 represents the SCB; Table 3-6 describes
its format.

Figure 3-5 System Control Block Base Register

313029 0908 00

| I e B A e 0 D O A O D D D A N Y O O B

0 Physical Longword Address of PCB 0 :SCBB

FI T U Y T Y N T U O O 1 N O OO 5 O 5 O 1 A 6 A
MLO-004409

Table 3-6 System Control Block Format

scCB interrupt/Exception Param-

Offset,s Name Type eter Notes

00 Unused IRQ passive release on other
VAX systems

04 Machine check Abort 4 Parameters depend on error
type

(continued on next page)

3-24 Hardware Architecture

Table 3-6 (Cont.) System Control Block Format

SCB interrupt/Exception Param-
Offset,s, Name Type eter Notes
08 Kernel stack not valid Abort 0 Must be serviced on
interrupt stack
oC Power fail Interrupt 0O IPL is raised to 1E¢
10 Reserved/privileged Fault 0
instruction
14 Customer reserved Fault 0 XFC instruction
instruction
18 Reserved operand Fault/ 0 Not always recoverable
Abort
1C Reserved addressing Fault 0
mode
20 Access control violation Fault 2 Parameters are virtual
address, status code
24 Translation not valid Fault 2 Parameters are virtual
address, status code
28 Trace pending (TP) Fault 0
2C Breakpoint instruction Fault 0
30 Unused Compatibility mode in other
VAX processors
34 Arithmetic Trap/ 1 Parameter is type code
Fault
38:3C Unused
40 CHMK Trap 1 Parameter is sign-
extended operand word
44 CHME Trap 1 Parameter is sign-
extended operand word
48 CHMS Trap 1 Parameter is sign-
extended operand word
4C CHN'™” Trap 1 Parameter is sign-
extended operand word
50:80 Unused
84 Software level 1 Interrupt 0O

(continued on next page)

Hardware Architecture 3-25

Table 3-5 (Cont.) System Control Block Format

SCB Interrupt/Exception Param-

Offset;e Name Type eter Notes

88 Software leve] 2 Interrupt 0 Ordinarily used for AST
delivery

8C Software level 3 Interrupt 0 Ordinarily used for process
scheduling

90:BC Software levels 4-15 Interrupt 0

Co Interval timer Interrupt 0O IPL is 1635 (INTIM)

C4 Unused

cs Emulation start Fault 10 Same mode exception,
FPD=0, parameters are
opcode, PC, specifiers

cC Emulation continue Fault 0 Same mode exception,
FPD=1: no parameters

DO:DC Unused

EO:EC Reserved for customer or

CSS use

FO:FC Unused Reserved to Digital

100:1FC Adapter vectors Interrupt 0O Not implemented by the
rtVAX 300

200:7FFC Device vectors Interrupt 0 Correspond to DAL

bus vectors placed on
DAL<15:02> H

3.1.12.6 Hardware Detected Errors

The rtVAX 300 can detect three types of error conditions during program

execution:

e DAL bus parity errors indicated by MSER<6> (on a read) being set. (This

error cannot be distinguished if detected during a read reference.)

¢ Internal cache tag parity errors indicated by MSER<0> being set.

e Internal cache data parity errors indicated by MSER<1> being set.

3--26 Hardware Architacture

. 3.1.12.7 Hardware Halt Procedure

The hardware halt procedure is the mechanism by which the hardware assists
the firmware in emulating a processor halt. The hardware halt procedure
saves the current value of the PC in IPR 42 (SAVPC), and the current value
of the PSL, MAPEN<«0>, and a halt code in IPR 43 (SAVPSL). The current
stack pointer is saved in the appropriate internal register. The PSL is set to
041F0000 (IPL=1F;¢, kernel mode, using the interrupt stack), and the current
stack pointer is loaded from the interrupt stack pointer. Control then passes
to the resident firmware at physical address 20040000 with the state of the
processor as follows:

. Register New Contents

SAVPC Saved PC
SAVPSL«31:16>, <07:00> Saved PSL«<31:16>, <07:00>
SAVPSL<15> Saved MAPEN<0>
SAVPSL<14> Valid PSL flag (unknown for halt code of 3)
SAVPSL<13:8> Saved restart code
SP Current interrupt stack
. PSL 041F0000
PC 20040000
MAPEN 0
ICCS 0 (for a halt code of 3)
MSER 0 (for a halt code of 3)
CADR 0 (for a halt code of 3, internal cache is also flushed)
SISR 0 (for a halt code of 3)
‘ ASTLVL 0 (for a halt code of 3)
All else Undefined

The firmware uses the halt code in combination with any hardware event
indicators to dispatch the execution or interrupt that caused the halt to the
appropriate firmware routine (either console emulation, power-up, reboot, or
restart). Table 3—-7 and Table 3—8 list the interrupts and exceptions that can
cause halts along with their corresponding halt codes and event indicators.

Hardware Architecturs 3-27

Table 3-7 Nonmaskable interrupts That Can Cause a Halt
Hait Code Interrupt Condition

2 External halt (CVAX HLT L pin asserted)
3 Hardware reset (CVAX RST L pin asserted)

Table 3-8 Exceptions That Can Cause a Hait
Halt Code Exception Condition

6 Halt instruction executed in kernel mode.
Exceptions While Servicing an Interrupt or Exception

4 Interrupt stack not valid during exception.
5 Machine check during normal exception.

7 SCB vector bits<1:0> = 11.

8 SCB vector bits<1:0> = 10.

A CHMx executed while on interrupt stack.
B CHMx ex:cuted to the interrupt stack.

10 ACV or TNV during machine check exception.

11 ACV or TNV during kernel stack not valid exception.
12 Machine check during machine check exception.

13 Machine check during kernel stack not valid exception.
19 PSL<26:24> = 101 during interrupt or exception.

1A PSL«26:24> = 110 during interrupt or exception.

1B PSL<26:24> = 111 during interrupt or exception.

1D PSL<«26:24> = 101 during REIL

1E PSL<26:24> = 110 during REL

1F PSL«26:24> = 111 during REIL

3.1.13 System Identification

The system identification register (SID), IPR 62, is a 32-bit read-only register
implemented in the CVAX chip, as specified in the VAX Architecture Reference
Manual. This register identifies the processor type and its microcode revision
level. Figure 3-6 shows the system identification register; Table 3-9 describes
its fields.

3-28 Hardware Architecture

3.1.14

3.1.14.1

3.1.14.2

Figure 3-6 System ldentification Register

3 2423 o8 o7 a0
§ o8 § 8 b 9@ 8 o 8 0 8 30 b v o0 ¥ f o9 b & f g b §F ¥ 0 b
Type Rosorved Microcode
§ 4.2 3 1. 2.l g ¢ 9 4 3 3 Lo 2t § I & B £ P 6 & F Bk k
ME 0004410

Table 3-8 System Identification Register Fields

Data Bit Definition

<31:24> Processor type (TYPE). This field always reads as 0A;s, indicating
that the processor is implemented using the CVAX chip.

<23:08> Reserved for future use.

<07:00> Microcode revision (MICROCCDE REV.). This field reflects the

microcode revision level of the CVAX chip.

CPU References

All references by the CVAX processor can be classified into one of three groups:
¢ Request instruction-stream read references

¢ Demand data-stream read references

e Write references

instruction-Stream Read References

The CVAX processor has an instruction prefetcher with a 12-byte (3 longword)
instruction prefetch queue (IPQ) for prefetching program instructions from
either cache or main memory. Whenever there is an empty longword in the
IPQ and the prefetcher is not halted due to an error, the instruction prefetcher

generates an aligned longword, reguest instruction-stream (I-stream) read
reference.

Data-Stream Read References

Whenever data is immediately needed by the CVAX processor to continue
processing, a demand data-stream (D-stream) read reference is generated.
More specifically, demand D-stream references are generated on operand, page
table entry (PTE), system control block (SCB), and process control block (PCB)
references.

Hardware Architecture 3-29

When interlocked instructions, such as branch on bit set and set interlock
(BBSSI) are executed, a demand D-stream read-lock reference is generated.
Since the CVAX processor does not impose any restrictions on data alignment
(other than the aligned operands of the ADAWI and interlocked ¢ ueue
instructions) and since memory can be accessed only one aligned longword at
a time, all data read references are translated into an appropriate combination
of masked and nonmasked, aligned longword read references.

If the required data is a byte, a word within a longword, or an aligned
longword, then a single, aligned longword, demand D-stream read reference is
generated. If the required data is a word that crosses a longword boundary,
or an unaligned longword, then two successive aligned longword demand D-
stream read references are generated. Data larger than a longword is divided
into a number of successive aligned longword demand D-stream reads, with no
optimization.

3.1.14.3 Write References

Whenever data is stored or moved, a write reference is generated. Since the
CVAX processor does not impose any restrictions on data alignment (other than
the aligned operands of the ADAWI and interlocked queue instructions) and
since memory can be accessed only one aligned longword at a time, all data
write references are translated into an appropriate combination of masked and
nonmasked aligned longword write references.

If the required data is a byte, a word within a longword, or an aligned
longword, then a single, aligned longword write reference is generated. If

the required data is a word that crosses a longword boundary or an unaligned
longword, then two successive aligned longword write references are generated.
Data larger than a longweord is divided into a number of successive aligned
longword writes.

3.2 Floating-Point Accelerator
The floating-point accelerator is ipiplemented in a single VLSI chip.

3.2.1 Floating-Point Accelerator Instructions

The floating-point accelerator processes F_floating, D_floating, and G_floating
format instructions and accelerates the execution of MULL, DIVL, and EMUL
integer instructions.

3-30 Hardware Architecture

3.2.2 Floating-Point Accelerator Data Types

The rtVAX 300 floating-point accelerator supports byte, word, longword,
quadword, F_floating, D_floating, and G_floating data types. The H_floating
data type is not supported, but may be implemented by macrocode emulation.

3.3 Cache Memory

To maximize CVAX processor performance, the rtVAX 300 incorporates a
1K-byte cache implemented within the CVAX chip.

3.3.1 Cacheable References

Any reference that can be stored by the internal cache is called a cacheable
reference. The internal cache stores CVAX processor read references to the
VAX memory space (bit <29> of the physical address equals 0) only. It does not
cache /O space references or DMA references by external devices, including
the Ethernet coprocessor. The type(s) of CVAX processor references that

can be cached—either request instruction-stream (I-stream) read references,
or demand data-stream (D-stream) read references other than read-lock
references—is determined by the state of cache disable register CADR<5:4>.
The normal operating mode is for both I-stream and D-stream references to be
stored.

Whenever the CVAX processor generates a noncacheable reference, a single
longword reference of the same type is generated on the DAL bus.

Whenever the CVAX processor generates a cacheable reference stored in the
internal cache, no reference is generated on the DAL bus.

Whenever the CVAX processor generates a cacheable reference not stored

in the internal cache, a quadword transfer is generated on the DAL bus. If
the CVAX processor reference is a request I-stream read, then the quadword
transfer consists of two indivisible longword transfers, the first being a request
I-stream read (prefetch), and the second being a request I-stream read (fill). If
the CVAX processor reference is a demand D-stream read, then the quadword
transfer consists of two indivisible longword transfers, the first being a demand
D-stream read, and the second being a request D-stream read (fill).

Hardware Architecture 3-31

3.3.2 Internal Cache

The rtVAX 300 includes a 1K-byte, 2-way associative, write-through internal
cache with a 100-ns cycle time. CVAX processor read references access one
longword at a time; CVAX processor writes access one byte at a time. A single
parity bit is generated, stored, and checked for each byte of data and each tag.
The internal cache can be enabled/disabled by setting/clearing the appropriate
bits in the CADR. The internal cache is flushed by any write to the CADR, as
long as cache is not in diagnostic mode.

3.3.2.1 Internal Cache Organization

The internal cache is divided into two independent storage arrays called set ‘
1 and set 2. Each set contains a 64-row by 22-bit tag array and a 64-row by
72-bit data array. Figure 3-7 shows the organization of the two sets.

Figure 3-7 Internal Cache Organization

Set 1 Set2
f
64 J 64 by 22-Bit| 64 by 72-Bit 64 by 22-Bit| 64 by 72-Bit
Rows Tag Array Data Array Tag Array Data Array
—Cache
Entry
a3 ~ 7271 00 93 7271 00
MLO-004411 ‘

A row within a set corresponds to a cache entry, so there are 64 entries in each
set and a total of 128 entries in the entire cache. Each entry contains a 22-bit
tag block and a 72-bit (8-byte) data block. Figure 3—8 shows the organization
of a cache entry.

3-32 Hardware Architecture

Figure 3-8 Internal Cache Entry

93

727 00

B I N M A D RO N N D Y Rt R B
Tag Block Data Block

N T O T O T Y T O IO O B O B T SR I A R O S T I

MLO-004412

A tag block consists of a parity bit, a valid bit, and a 20-bit tag. Figure 3-9
shows the organization of a tag block.

Figure 3-9 Internal Cache Tag Block

212019 00
| IR N Y S N D Y N N Y R D O T A N
Tag
| S N U T T N T 1 O T O N O O O I

PV

Parity Bit
Valid Bit ——

MLO-004413

A data block consists of 8 bytes of data, each with an associated parity bit. The

total data capacity of the cache is 128 8-byte blocks, or 1024 bytes. Figure 3-10
shows the organization of a data block.

Figure 3-10 Internal Cache Data Block

Data Bits
62 56 55 48 47 40 39 32 3N 24 23 16 15 08 07 00
P| Byte 7 |P| Byte 6 |P| Byte 5 |P| Byte 4 |P| Byte 3 |P| Byte 2 jP| Byte 1 {P| Byte 0
07 06 05 04 03 02 o1 00
. Parity Bits
MLO-004414

3.3.2.2 Internal Cache Address Translation

Whenever the CVAX processor requires an instruction or dat3, the contents of
the internal cache are checked to < ‘termine if the referenced location is stored

there. The cache contents are checked by translating the physical address as
follows:

¢ On noncacheable references, the reference is never stored in the cache, so

an internal cache miss occurs and a single longword reference is generated
on the DAL bus.

Hardware Architecture 3-33

* On cacheable references, the physical address must be translated to
determine if the contents of the referenced location resides in the cache.
The cache index field, bits <8:3> of the physical address, is used to select
one of the 64 rows of the cache, with each row containing a single entry
from each set. The cache tag field, bits <28:9> of the physical address, is
then ompared to the tag block of the entry from both sets in the selected
YOW.

If a match occurs with the tag block of one of the set entries and the valid bit
within the entry is set, the cache contains the contents of the referenced
location, and a cache hit occurs. On a cache hit, the set match signals
generated by the compare operation select the data block from the appropriate
set. The cache displacement field, bits <2:0> of the physical address, is used
to select the byte(s) within the block. No DAL bus transfers are initiated on
CVAX processor references that hit the internal cache.

If no match occurs, the cache does not contain the contents of the referenced
location, and a cache miss occurs. In this case, the data must be obtained
from either second-level cache or the main memory controller, so a quadword
transfer is initiated on the DAL bus (Figure 3-11).

3.3.2.3 Internal Cache Data Block Allocation

Cacheable references that miss the internal cache initiate a quadword read on
the DAL bus. When the requested quadword is supplied by either the second-
level cache or the main memory controller, the requested longword is passed on
to the CVAX processcr, and a data block is allocated in the cache to store the
entire quadword.

Because the cache is 2-way associative, only two data blocks (one in each set)
can be allocated to a given quadword. These two data blocks are determined
by the cache index field of the address of the quadword, which selects a unique
row within the cache. Selection of a data block within the row (for example, set
selection) for storing the new entry is random.

Since the rtVAX 300 supports 256M bytes (32M quadwords) of physical
memory, up to 512K quadwords share each row (two data blocks) of iiie cache.
Contiguous programs larger than 512 bytes or any noncontiguous programs
separated by 512 bytes have a 50 percent chance of overwriting themselves
when cache data blocks are allocated for the first time for data separated by
512 bytes (one page). After six allocations, there is a 97 percent probability
that both sets in a row will be filled.

3-34 Hardware Architecture

. Figure 3-11 Internal Cache Address Translation

2828 0008 0302 00
Y N N N N D N A D A D D R |
Cache Tag
]LLLLLIILJ_IIIIIIIIJ AN
VO Space Cache index—
Cache Displacement ~——-
Valid Bit Valid Bit
Set 1 ¢ Set 2
20-Bit| 64-Bit 20-Bit| 64-Bit
Tag | Data Block .— Tag | Data Block
p A
Set | 1Match? Set | 2Match?
9 . A
Data

MLO-004567

3.3.2.4 Internal Cache Behavior on Writes

On CVAX processor-generated write references, the internal cache is write-
through. All CVAX processor write references that hit the internal cache cause

. the contents of the referenced location in main memory to be updated as well
as the copy in the cache.

On DMA write references that hit the internal cache, the cache entry
containing the copy of the referenced location is invalidated. If the internal
cache is configured to store only I-stream references, then the entire internal
cache is also flushed whenever an REI instruction is executed. (The VAX
architecture requires that an REI instruction be executed before executing
instructions out of a page of memory that has been updated.)

Hardware Architecture 3-35

3.3.2.5 Cache Disable Register

The cache disable register (CADR), IPR 37, controls the internal cache, and is
unique to processor designs that use the CVAX chip. Figure 3-12 shows the
cache disable register, and Table 3—10 lists its fields.

Figure 3-12 Cache Disable Register

31 08070605040302 0100
tr v rrrrraarrrrrrrirreryu

0 2|1IS‘S11|§I|
Lt a1 a a9 90 IEEEE PiA

MLO-006381

Table 3-10 Cache Disable Register Fields

Data Bit Definition

«31:08> Unused. Always read as zeros. Writes have no effect.

<07:06> Used selectively to enable or disable each set within the cache.

<07> S2E. Read/write. When set, set 2 of the cache is enabled. When
cleared, set 2 of the cache is disabled. Cleared on power-up by the
negation of RST L.

<06> S1E. Read/write. When set, set 1 of the cache is enabled. When
cleared, set 1 of the cache is disabled. Cleared on power-up by the
negation of RST L.

<05:04> Used selectively to enable or disable storing I-stream and D-stream

references in the cache.

<05> ISE. Read/write. When set, I-stream memory space references are
stored in cache, if it is enabled; when cleared, .hey are not stored in
cache. Cleared on power-up by the negation of RST L.

<04> DSE. Read/write. When set, D-stream memory space references are
stored in cache, if it is enabled; when cleared, they are not stored in
cache. Cleared on power-up by the negation of RST L.

<03:02> Unused. Always read as 1s.

<01> Write wrong parity (WWP). Read/write. When set, incorrect parity
is stored in the internal cache whenever it is written. When cleared,
correct parity is stored in the cache whenever the cache is written.
Cleared on power-up by the negation of RST L.

(continued on next page)

3-36 Hardware Architecture

Table 3-10 (Cont.) Cache Disable Register Flelds
Data Bit Definition

<00> Diagnostic mode (DIA). Read/write. When set, the internal cache is in
diagnostic mode, and writes to the CADR will not cause the internal
cache to be flushed. When cleared, the cache is in normal operating
mode, writes to the CADR cause the internal cache to be flushed (all
valid bits set to the invalid state), and the internal cache is configured
for write-through operation.

Note

The internal cache can be disabled either by disabling both set 1 and
set 2 (clearing CADR<07:06>) or by not storing either I-stream or
D-stream references (clearing CADR<05:04>).

For improved performance, the cache should be configured to store both I-
and D-stream references. I-stream only mode suffers from a degradation in
performance from what would normally be expected relative to I- and D-stream
mode and D-stream only mode, because invalidation of cache entries due to
writes to memory by a DMA device are handled less efficiently.

In I-stream only mode, the entire internal cache is flushed whenever an REI
instruction is executed. The VAX Architecture Reference Manual states that
an REI instruction must be executed before executing instructions out of a
page of memory that has been updated, whereas in the other two modes of
operation, cache entries are invalidated on an individual basis, only if a DMA
write operation results in a cache hit.

CVAX processor write references with a longword destination (for example,
MOVL) write the data into main memory (if it exists), as well as invalidate the
corresponding cache entry, irrespective of whether or not a cache hit occurred.
CVAX processor write references with a quadword destination (for example,
MOVQ) write the data into main memory (if it exists) and cause the second
longword of the quadword to be written into the longword of the cache data
array that corresponds to the address of the first longword of the destination,
irrespective of whether or not a cache hit occurred.

The data in the longword of the cache data array that corresponds to the
address of the second longword of the destination remains unaltered. In
addition, errors generated during write references, which would normally
cause a machine check, are ignored; they do not generate a machine check trap
or prevent data from being stored in the cache.

Hardware Architecture 3-37

Diagnostic mode is intended to allow the internal cache tag store to be fully ‘
tested without requiring 512M bytes of main memory. This mode makes it
possible for the tag Flock in a particular cache entry to be written with any
pattern by executing a MOVQ instruction with bits <28:9> of the destination
address equal to the desired pattern.

Two MOVQ instructions, one with a quadword aligned destination address and
one with the next longword aligned destination address, are required to write
to both longwords in the data block of a cache entry. Diagnostic mode does not

affect read references.
Note .

At least one read reference must occur between all write references
made in diagnostic mode. Diagnostic mode should be selected when one
and only one of the two sets is enabled. Operation of this mode with
both sets enabled or both sets disabled yields unpredictable results.

3.3.2.6 Memory System Error Register

The memory system error register (MSER), IPR 39, records the occurrence of
internal cache hits, as well as parity errors on the DAL bus in the cache. This .
register is unique to CVAX processor designs. MSER<6:4,1:0> are peculiar in

the sense that they remain set until explicitly cleared. Each bit is set oa the

first occurrence of the error it logs and remains set for subsequent occurrences

of that error. The MSER is explicitly cleared through the MTPR instruction
irrespective of the write data. Figrire 3-13 shows the memory system error
register; Table 3-11 lists its fields.

Figure 3-13 Memory Systam Error Register

31 0807060504 03020100
tvr bt rii v 11171 1r++1717 1073 71T M D
; TR o
NS DUEE RN NI LIDIC TIG
MLO-004569

3-38 Hardware Architecture

Table 3-11 Memory System Error Register Fields

Data Bit Definition
<31:08> Unused. Always read as zero. Writes have no effect.
<07> Hit/miss (HM). Read only. Writes have no effect. Cleared on all

cacheable references that hit the internal cache. Set on all cacheable

references that miss the internal cache. Cleared on power-up by the
negation of RST L.

<06> DAL parity error (DAL). Read/write to clear. Set whenever a DAL bus
parity error is detected. Cleared on power-up by the negation of RST
L.

<05> Machine check (MCD). DAL parity error. Read/write to clear. Set
whenever a DAL bus data parity error causes a machine check.
These errors generate machine checks only on demand D-stream read
references. Cleared on power-up by the negation of RST L.

<04> Machine check (MCC). Internal c~che parity error. Read/write to
clear. Set whenever an internal cacl.e parity error in the tag or data
store causes a machine check. These errors generate machine checks
only on demand D-stream read references. Cleared on power-up by
the negation of RST L.

<03:02> Unused. Always read as zero. Writes have no effect.

<01> Data parity error (DAT). Read/write to clear. Set when a parity
error is detected in the data store of the internal cache. Cleared on
power-up by the negation of RST L.

<00> Tag parity error (TAG). Read/write to clear. Set when a parity error is
detected in the tag store of the internal cache. Cleared on power-up
by the negation of RST L.

3.3.2.7 Internal Cache Error Detection

Both the tag and data arrays in the internal cache are protected by parity.
Each 8-bit byte of data and the 20-bit tag are stored with an associated parity
bit. The valid bit in the tag is not covered by parity. Odd data bytes are stored
with odd parity; even data bytes are stored with even parity. The tag is stored
with odd parity.

The stored parity is valid only when the valid bit associated with the internal
cache entry is set. Tag and data parity (on the entire longword) are checked on
read references that hit the internal cache, but only tag parity is checked on
CPU and DMA write references that hit the internal cache.

Hardware Architecture 3-39

The action taken following the detection of an internal cache parity error ‘
depends on the reference type:

 During a demand D-stream read reference, the entire internal cache is
flushed, the CADR is cleared (which disables the first level cache and
causes the second-level cache to ignore all read operations). The cause of
the error is logged in MSER<4:0>, and a machine check abort is initiated.

* During a request I-stream read reference, the entire internal cache is
flushed (unless CADR«<0> is set), the cause of the error is logged in
MSER«<1:0>, the prefetch is halted, but no machine check abort occurs,
and both caches remain enabled. ‘

e During a masked or nonmasked write reference, the entire internal cache
is flushed (unless CADR<0> is set), the cause of the error is logged in
MSER«<0> (only tag parity is checked on CVAX processor writes that hit
the internal cache), there is no effect on CVAX processor execution, and
both caches remain enabled.

e During a DMA write reference, the cause of the error is logged in
MSER<0> (only tag parity is checked on DMA writes that hit the internal
cache), there is no effect on CVAX processor execution, both caches remain
enabled, and no invalidate operation occurs. ‘

3.4 Hardware Initialization
The VAX architecture defines three kinds of hardware initialization:
e Power-up
* I/Obus

* Processor

3.4.1 Power-Up Initialization

Power-up initialization occurs when power is restored and includes a hardware
reset, an I/O bus initialization, a processor initialization, and initialization

of several registers, as defined in the VAX Architecture Reference Manual. In
addition to initializing these registers, the rtVAX 300 firmware also configures
main memory and the local /O space registers.

An rtVAX 300 hardware reset occurs on power-up and the assertion of RGT

L. A hardware reset initiates the hardware halt procedure (Section 3.1.12.7)
with a halt code of 03. The reset also initializes some IPRs and most 1/0 space
registers to a known state. Those IPRs that are affected by a hardware reset
are noted in Section 3.1.4.3. The effect a hardware reset has on I/O space
registers is documented in the description of the registers.

3-40 Hardware Architecture

. 3.4.2 /O Bus Initialization

An /O bus initialization occurs on power-up, the assertion of RST L when
the processor is halted, or as the result of an MTPR to IPR 55 (IORESET) or
console UNJAM command.

The I/0 bus reset register (IORESET), IPR 55, is implemented externally on
the rtVAX 300 application hardware. An MTPR of any value to IORESET
causes an I/O bus initialization.

3.4.3 Processor Initialization

A processor initialization occurs on power-up, on the assertion of RST L when
the processor is halted, as the result of a console INITIALIZE command, and
after a halt caused br an error condition.

3.5 Console Interface Registers

The following tables and figures list and show hardware registers that the
rtVAX 300 :rocessor references:

e Boot register (Section 3.5.1)

* Console registers for SCN 2681 DUART (Section 3.5.2)

* Memory system control/status register (Section 3.5.3)

* LED displ iy/status register (Section 3.5.4)

(Appendix C contains tables of rt VAX 300 address assignments.)

3.5.1 Bceot Register

The boot register is read once by the firmware when the system is powered on
or reset. Bits <3:0> define the initial value of bits <3:0> of the boot action cell.
This register is decoded by the rtVAX 300, and BOOT<3:0> L are used for the
contents of this register. If the user does not connect these pins, their default
value is 1. Figure 3—14 shows the boot register; Table 3-12 lists boot options
as they relate to register contents.

Hardware Architecture 3-41

Figure 3-14 Boot Register

31 04 03 02 01 00
T
Reserved
1 1
Remote Trigger J
Power-On Boot Action
MLO-006371

Table 3-12 Boot Options

Register Bit Setting

«3>L «<2»L «1>L <0=L Device Action

X L L L - No boot performed. rtVAX 300 enters
console mode, executing the console
emulation program.

X L L H PRAO Boot from ROM at location 10000000
in memory space.

X L H L PRBO Boot from ROM in /O space.

X L H H PRB1 Copy ROM from I/O space to memory
space, and then boot.

X H L L CSBO DECnet DDCMP boot using Channel
B of DUART at 1200 bps.

X H L H CSB1 DECnet DDCMP boot using Channel
B of DUART at 2400 bps.

X H H L CSB2 DECnet DDCMP boot using Channel
B of DUART at 9600 bps.

X H H H EZAO Boot from Eth..aet using standard
MOQP protocol.

L X X X - Enable remote triggering.

3-42 Hardware Architecture

. 3.5.2 Console DUART Register

Table 3-13 lists the addresses for the console registers and their functions.

Table 3-13 Console Registers SCN 2681 DUART

Address Read Function Write Function
20100000 Channel A mode registers (MRA1, Channe] A mode registers (MRA1,
MRA2) MRA2)
20100004 Channel A status register (SRA) Channel A clock select register
(CSRA)
20100008 Reserved register Channe] A command register (CRA)
2010000C Channel A receive holding register Channel A transmit holding register
(RHRA) (THRA)
20100010 Input port change register (IPCR) Auxiliary control register (ACR)
20100014 Channel A/B interrupt status Channel A/B interrupt mask register
register (ISR) (IMR)
20100018 Counter/timer interval register Counter/timer interval register upper
upper (CTU) (CTUR)
2010001C Counter/timer interval register Counter/timer interval register lower
lower (CTL) (CTLR)
20100020 Channel B mode register (MRB1, Channel B mode register (MRB1,
MRB2) MRB2)
20100024 Channel B status register (SRB) Channel B clock select register
(CSRB)
20100028 Reserved register Channel B command register (CRB)
2010002C Channel B receive holding register Channel B transmit holding register
(RHRB) (THRB)
20100030 Reserved register Reserved register
20100034 Input port register Output port configuration register
(OPCR)
20100038 Start counter command register Set output port bits command
register
2010003C Stop counter commard register Reset output port bits command

register

Hardware Architecture 343

3.5.3 Memory System Control/Status Register

To support systems with multiple processors sharing the same memory,

the rtVAX 300’s automatic memory system testing can be disabled. Digital
recommends that the memory testing be enabled, so that the firmware can
build a realistic page frame bitmap. Disabling the memory tests has the
advantage that self-tests will finish very quickly; however, the disadvantage of
doing this is that the page frame bitmap that is built lists all pages as “good.”
The firmware will not have tested each page, and bad pages will not have been
found and might be used by the VAXELN kernel. In addition, if parity or ECC
memory has been implemented, read cycles to locations that have not been

written to will cause parity error machine checks.

An external memory system control/status (MSCR) register located at physical
address 20110000 contains 1 bit; it can optionally be implemented to disable
memory tests. If this register is not implemented, the rtVAX 300 uses the
default bit value of 1, enabling memory tests. Figure 3—15 shows the layout of

this register; Table 3~14 describes its bit structure.

Figure 3-15 Memory System Control/Status Register

31 020100
L L O R O 1 R N
20110000 Undefined and Not Used 1
[T N I T O N N TN N S U N NN T N T N U N A T I A A
Enable Memory Tests
MLO-008348

Table 3-14 Memory System Control/Status Register Flelds

Bit Description

<31:02> Unused.

<01> Set if memory test is to be performed on power-up; cleared when test is not to
be performed. If the register is not implemented, the default is 1.

<00> Unused.

Note

Digital does not recommend that memory tests be disabled. If they
are disabled, parity errors can occur when an uninitialized memory

3-44 Hardware Architecture

location is being read, and an untested page frame number bit map will
be generated.

3.5.4 Status LED Register

The rtVAX 300 allows you to connect a processor status LED display to display
the status of self-test and diagnostic routines. The rtVAX 300 will continue its
gelf-test routines if this optional register does not exist. The first digit indicates
the current state of the system; the second digit depends on the status of the
first digit. This register is mapped to the word location 201FFFFE.

Figure 3-16 shows the layout of this register; Table 3-15 describes its bit
structure. Table 3-16 is a LED display chart.

Figure 3-16 LED Display/Status Register

31 262524232221201918171615 00
IR ER IR) 0 Y N S A A D D I S A
201FFFFC}] Reserved Resarved

[S | ISR TN T T N O Y U ! S o Wt

BLANK _LED B —
BLANK LED A —

LED_B<3» —————
LED B<2>
LED B<1>
LED_B<0>
LED_A<3>
LED_A<2>
LED Ac<i>

LED_A<O> MLO-004509

Table 3-15 LED Display/Status Register Fields
Bit Description

BLANK_LED_B Blank or turn off the most significant LED display digit: 1 means

blank or disable this display digit; 0 means to enable this display
digit.
BLANK_LED_A Blank or turn off the least significant LED display digit: 1 means

blank or disable this display digit; 0 means enable this display
digit.

(continued on next page)

Hardware Architecture 3-45

Table 3-15 (Cont.) LED Display/Status Register Flelds

Bit Description

LED_B«3:0> The 4-bit binary hexadecimal code to be displayed on the most
significant LED display. Note that these signals are inverted.

LED_A<3:0> The 4-bit binary hexadecimal code to be displayed on the least

significant LED display. Note that these signals are inverted.

Table 3-16 LED Display Chart

LED<3:0> BLANK HEX Code Displayed

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
XXXX

© oW ke 0P OO EHS

- O O Q0 O 0 0O C O 0O o O O 0 o O O

Blanked

3-46 Hardware Architecture

3.6 Ethernet Coprocessor

The Ethernet coprocessor supports the Ethernet interface to the rtVAX 300
processor. Figure 3-17 shows a block diagram of this function. This section
provides an overview of the following:

¢ Control/status registers (Section 3.6.1)

e Descriptors and buffers format (Section 3.6.2)
* Operation (Section 3.6.3)
. o Serial interface (Section 3.6.4)

e Diagnostics and testing (Section 3.6.5)

Figure 3-17 Ethernet Coprocessor Block Diagram

DAL<31:00> «g——=ux
AS a—
DS w—

BM/TEST<3:0> «<¢—»
o T <

RDY ==
ERR ——~

CSDP<3:0> <a—bx

@
33
Pt

Bus
interface
Unit

16
——— la—— RX
Receive
16 , Machine [* ROLK
. L Receive . RXEN
7 FIFO [~ [+
IOP CLSN
16 Transmit | 16
7 =1 mF0 [*T™ _—_ > TX
ransm
Machine [+ TOHK
- s o= TXEN
16
g~ 7L
I %_‘ internal IOP Bus
) f To All Blocks
ROM RAM
e CLKA

Clocks a— CLKB

pg— RESET

MLO-004415

Hardware Architecture 3-47

- 3.6.1 Control/Status Registers ‘

The Ethernet coprocessor contains 16 CSRs, found at locations 20008000
through 2000803F, that are used to control its operation. The CSRs are located
in the I/O address space. The register addresses must be longword-aligned and
can be accessed only by using longword instructions. The CSRs are divided
into two groups: physical CSRs and virtual CSRs. The assigned locations for
the registers are defined in Table 3-17.

You program the Ethernet interface by reading and writing to these registers.
The network ID ROM provides the physical network address for the rtVAX 300
at 20008040 to 200080BF. .

The physical CSRs are CSR0 through CSR7 and CSR15. These registers are
physically present in the Ethernet coprocessor and are directly accessed by
the rtVAX 300 processor. The rtVAX 300 processor can access these registers
by a single longword instruction. The rtVAX 300 perceives no delay, and the
instruction completes immediately. The physical CSRs contain most of the
commonly used features of the Ethernet coprocessor.

The virtual CSRs are CSR8 through CSR14. These registers are not directly
accessible to the rtVAX 300 processor. When the rtVAX 300 processor accesses

one of these registers, the Ethernet coprocessor controls access to these ‘
registers by fetching the requested information from on-chip memory and

passing it to the rtVAX 300 processor. Table 3-17 lists and describes Ethernet
coprocessor registers.

Table 3-17 Ethernet Coprocessor Registers
Address Register Name

20008000 CSRO Vector Address, IPL, Sync/Async (see Section 3.6.1.1)

20008004 CSR1 Transmit Polling Demand (see Section 3.6.1.2) ‘
20008008 CSR2 Receive Polling Demand (see Section 3.6.1.2)

2000800C CSR3 Receive List Address (see Section 3.6.1.3)

20008010 CSR4 Transmit List Address (see Section 3.6.1.3)

20008014 CSRE5 Status Register (see Section 3.6.1.4)

20008018 CSRé Command and Mode Register (see Section 3.6.1.5)

2000801C CSR7 System Base Register (see Section 3.6.1.6)

20008020 CSR8 Reserved

(continued on next page)

3-48 Hardware Architecture

Table 3-17 (Cont.) Ethernet Coprocessor Registers
Address Register Name

20008024 CSR9 Watchdog Timer Register (see Section 3.6.1.7)
20008028 CSR10 Revision Number and Missed Frame Count (see Section 3.6.1.8)
2000802C CSR11 Boot Message Register (see Section 3.6.1.9)
20008030 CSR12 Boot Message Register (see Section 3.6.1.9)
20008034 CSR13 Boot Message Register (see Section 3.6.1.9)
20008038 CSR14 Breakpoint Address Register (see Section 3.6.1.10)
. 2000803C CSR15 Monitor Command Register (see Section 3.6.1.11)

3.6.1.1 Vector Address, IPL, Sync/Asynch (CSR0)
This register must be the first one written by the rtVAX 300, because the

Ethernet coprocessor may generate an interrupt on parity errors during rtVAX
300 writes to CSRs.
Caution

. A parity error that occurs while the rtVAX 300 is writing to CSRO may
cause an rtVAX 300 failure due to an erroneous interrupt vector. To
protect against failure, CSRO is written as follows while IPL 16,4 is
disabled:

1. Write CSRO.
2. Read CSRO.

3. Compare value read to value written. If values mismatch, repeat

step 2.
. 4. Read CSR5 and examine CSR5<04> for pending parity interrupt.
Should an interrupt be pending, write CSR5 to clear it.

Figure 3-18 shows the format of CSR0; Table 3-18 describes its bit structure.

Hardware Architecture 3-49

Figure 3-18 CSRO Format

Table 3-18 CSRO Bits

3130292827262524 232221 201918171615 02 0100

s TTTTTT T T :

IPA1111111111111 Interrupt Vector 1[1] CSRO

I N W O T O O 0 O I
MLO-004416

Bit Name Access

Description

15:00 IV R/W

29 SA R'W

31:30 P R/'W

Interrupt Vector—During an interrupt acknowledge cycle
for an Ethernet coprocessor interrupt, the Ethernet
coprocessor drives this value on the rtVAX 300 bus
DAL<31:00> H pins.

DAL <31:16> and <01:00> H are set to 0. DAL<01:00> H
are ignored when CSRO is written and set to 1 when read.

Sync/Asynch—Determines the Ethernet coprocessor
operating mode when it is the bus master. When this bit
is set, the Ethernet coprocessor operates as a synchronous
device; when clear, as an asynchronous device.

Interrupt Priority—Is the rtVAX 300 interrupt priority
level at which the Ethernet coprocessor interrupts.

P IPLs
00 14
01 15
10 16
11 17

3.6.1.2 Transmit/Recelve Polling

Demands (CSR1, CSR2)

Figure 3-19 shows the format of both CSR1 and CSR2. Table 3-19 describes
the CSR1 bit structure; Table "-20 describes the bit structure of CSR2.

3-50 Hardware Architecture

. Figure 3-19 CSR1/CSR2 Format

3130202827 26252423222120191817161514 131211 10080807 060504 03 02 0100

p CSR1
1111111111111111111111111111111D and
| CsRe
MLO-006382
Table 3-19 CSR1 Bits
Bit Name Access Description
. 00 PD R/W Transmit Polling Demand-—Checks the transmit list for
frames to be transmitted.
The PD value is meaningless.
Table 3-20 CSR2 Bits
Bit Name Access Description
00 PD R/W Receive Polling Demand—Checks the receive list for receive
. descriptors to be acquired.

The PD value is meaningless.

3.6.1.3 Descriptor List Addresses (CSR3, CSR4)

The two descriptor list heads address registers are identical in function: one
is used for the transmit buffer descriptors and one for the receive buffer
descriptors. In both cases, the registers point the Ethernet coprocessor to the
start of the appropriate buffer descriptor list.

. The descriptor lists reside in rtVAX 300 physical memory space and must be
longword-aligned.
Note

For best performance, Digital recommends that the descriptor lists be
octaword-aligned.

Caution

Initially, these registers must be written before the respective Start
command is given (see Section 3.6.1.5); otherwise, the respective
. process remains in the stopped state. New list head addresses are

Hardware Architecture 3-51

acceptable only while the respective process is in the stopped or ‘
suspended states. Addresses written while the respective process is
in the running state are ignored and discarded.

If the rtVAX 300 attempts to read any of these registers before writing to them,
the Ethernet coprocessor responds with unpredictable values. Figure 3-20
shows the format of the descriptor list; Table 3-21 describes its bit structure.

Figure 3—20 CSR3/CSR4 Format

313029 020100 .
U B 1 U N O I I O 0 O
ojo Start ot Receive List - RBA 0|0{ CSR3
} NN N Y N O TS (Y N T O U T O T N O I 1t I T S A A O N
LA Lt O I O
ojo Start of Transmit List - TBA 0|0} CSR4
} I N R T T OO IO T Y T Y N N T R N U (N O T T e T T
0 = ignored by the SGEC MLC-004418
Table 3-21 CSR3/CSR4 Blts .
Register Bit Name Access Description
CSP3 26:00 RBA R/W A 80-bit rtVAX 300 physical address of the start of
the receive list.
CSR4 29:00 TBA RW A 30-bit rtVAX 300 physical address of the start of

the transmit list.

Note .
The descriptor lists must be longword-aligned.

3-52 Hardware Architecture

. 3.6.1.4 Status Register (CSR5)

This register contains all the status bits that the Ethernet coprocessor reports
to the rtVAX 300. Figure 3-21 shows the format of CSR5; Table 3—22 describes
its bit structure.

Figure 3-21 CSRS5 Format

313029 2625242 ~212019181716151413121110090807 06 0504 03 02 0100

LR 1
1S
bl s |s

T
RS|1}1

i

1|OM
1

D
N

BIT|IRM|RIR|T} !

1111‘1111O elutilils

CSR5

Table 3-22 CSRS5 Bits

MLO-004419

Bit Name

Access

Description

00 IS
01 TI

02 RI

R/W1
R/W1

R/W1

Interrupt Summary—The logical OR of CSR5<06:01>.

Transmit Interrupt—When set, indicates one of the
following:

Either all the frames in the transmit list have been
transmitted (next descripior owned by the rtVAX
300), or a frame transmission was aborted due to a
locally induced error. The port driver must scan the
list of descriptors to determine the exact cause. The
transmission process is placed in the suspended state.
Chapter 5 explains the transmission process state
transitions. To resume processing transmit descriptors,
the port driver must issue the Poll Demand command.

A frame transmission completed, and TDES1<24> was
set. The transmission process remains in the running
state, unless the next descriptor is owned by the rtVAX
300 or the frame transmission aborted due to an error.
In the latter cases, the transmission process is placed
in the suspended state.

Receive Interrupt—When set, indicates that a frame has
been placed on the receive list. Frame specific status
information was posted in the descriptor. The reception
process remains in the running state.

(continued on next page)

Hardware Architecture 3-53

Table 3-22 (Cont.) CSRS Bits

Description

Bit Name Access
03 RU RW1
04 ME R/W1
05 RW R/W1
06 ™ RW1
07 BO RW1

354 Hardware Arzhitecture

Receive Buffer Unavailable—When set, indicates that

the rtVAX 300 owns next descriptor on the receive list

and could not be acquired by the Ethernet coprocessor. The
reception process is placed in the suspended state. Once set
by the Ethernet coprocessor, this bit will not be set again
until a poll demand is issued and the Ethernet coprocessor
encounters a descriptor that it cannot acquire. To resume
processing receive descriptors, the rtVAX 300 must issue
the poll demand command.

Memory Error—Is set when any of the followi: ; occurs:

* Ethernet coprocessor is the DAL bus master, and the
ERR L pin is asserted by external logic (generally
indicative of a memory problem)

* Parity error detected on an rtVAX 300-to-Ethernet
coprocesaor CSR write or Ethernet coprocessor read
from memory

When Memory Error is set, reception and transmission
processes are aborted and placed in the stopped state.

Note: This point, port driver must issue a Reset command
and rewrite all CSRs.

Receive Watchdog Timer Interrupt—When set, indicates
that the receive watchdog timer has timed out, indicating
that some other node is transmitting overlength packets
on the network. Current frame reception is aborted, and
RDESO<«14> and RDES0<08> are set. Bit CSR5«<02> is
also set. The reception process remains in the running
state.

Transmit Watchdog Timer Interrupt—When set, indicates
that the transmit watchdog timer has timed out, indicating
that the Ethernet coprocessor transmitter was transmitting
overlength packets. The transmission process is aborted
and placed in the stopped state. (Also reported into the Tx
descriptor status TDES0<14> flag).

Boot Message—When set, indicates that the Ethernet
coprocessor has detected a boot message on the serial line
and has set the external pin BOOT L.

(continued on next page)

Table 3-22 (Cont.) CSR5 Bits

Bit Name Access Description
16 DN R Done—When set, indicates that the Ethernet coprocessor

has completed a requested virtual CSR access. After a

reset, this bit is set.

18:17 OM R Operating Mode—These bits indicate the current Ethernet
coprocessor operating mode, as follows:

Value Meaning

00 Normal operating mode.

01 Internal Loopback—Indicates that the Ethernet
coprocessor is disengaged from the Ethernet
wire. Frames from the transmit list are " oped
back to the receive list, subject to address
filtering.

10 External Loopback—Indicates that the Ethernet
coprocessor is working in full duplex mode.
Frames from the transmit list are transmitted
on the Ethernet wire and are looped back to the
receive list, subject to address filtering.

11 Diagnostic Mode—Explained in Section 3.6.5.2.

23:22 RS R Reception Process State—Indicates the current state of the

reception process, as follows:

Value Meaning
00 Stopped
01 Running
10 Suspended

Section 3.6.4.2 explains the reception process operation and
state transitions.

(continued on next page)

Hardware Architecture 3-55

Table 3-22 (Cont.) CSR5 Bits
Bit Name Access Description

25:24 TS R Transmission Process State—Indicates the current state of
the transmission process, as follows:

Value Meaning

00 Stopped
01 Running

10 Suspended ‘

Section 3.6.4.1 explains the transmission process operation
and state transitions.

29:26 SS R Self-Test Status—The self-test completion code (valid only
if CSR5<30> is set) is as follows:

Value Meaning

0001 ROM error

0010 RAM error

0011 Address filter RAM error
0100 Transmit FIFO error
0101 Receive FIFO error

0110 Special loopback error

Note: Self-test takes 25 ms to complete.

30 SF R Self-Test Failed—When set, indicates that the Ethernet
coprocessor self-test has failed. The self-test completion
code bits indicate the failure type.

31 D R Initiaiization Done—When set, indicates that the Ethernet
coprozessor has completed the initialization (reset and
self-test) sequences and is ready for further commands.
When clear, indicates that the Ethernet coprocessor ...
performing the initialization sequence and ignoring all
commands. After the initialization sequence completes, the
transmission and reception processes are in the stopped
state.

3-56 Hardware Architecture

. 3.6.1.5 Command and Mode Register (CSR6)

This register is used to establish opzrating modes and for port driver
commands. Figure 3-22 shows the format of CSR6; Table 3-23 describes
its bit structure.

Figure 3-22 CSR6 Format

31302928 2524 21201918 1615 121110090807060504 0302 0100

T 171) A
ElEr BL 111122rrr1111$§omggrrgAFr.csne

L4 J L L
. MLO-004420

Table 3-23 CSR6 Bits

Bit Name Access Description
2:1 AF R/W Address Filtering Mode—Defines the way incoming frames
are addreas filtered:
. Value Meaning
00 Normal—Incoming frames are filtered

according to the values of the SDES1<25> and
SDES1«26> bits of the setup frame descriptor.

01 Promiscuous—All incoming frames are passed
to the rtVAX 300, regardless of the SDES1<25>
bit value.

10 All Multicast~—All incoming frames with
multicast destination addresses are passed to
the rtVAX 300. Inceming frames with individual

. destination addresses are filtered according to
the SDES1<25> bit value.

11 Unused—Reserved.

(continued on next page)

Hardware Architecture 3-57

Table 3-23 (Cont.) CSR6 Blts

Bit Name Access

Description

3 PB RW

6 FC R'W

7 DC R/W

3-58 Hardware Architecture

Pass Bad Frames Mode—When set, the Ethernet
coprocessor passes frames that have been damaged by
collisions or are too short due to premature reception
termination. Both events should have occurred within
the collision window (64 bytes), or else other errors are
reported.

When clear, these frames are discarded and never show up
in the rtVAX 300 receive buffers.

Note: Bad Frames is subject to the address filtering mode;
that is, to monitor the network, this mode must be set
together with the promiscuous address filtering mode.

Force Collision Mode—Allows the colligion logic to be
tested. This chip must be in internal loopback mode for FC
to be valid. If this bit is set, a collision is forced during the
next transmission attempt. This results in 16 transmission
attempts with excessive collision reported in the transmit
descriptor.

Disable Data Chaining Mode—When set, no data chaining
occurs in reception; frames no longer than the current
receive buffer are truncated. RDES0<09:08> are always
set. The frame length returned in RDES0<30:16> is the
true length of the nontruncated frame, while RDES0<10>
indicates that the frame has been truncated due to the
buffer overfiow.

When clear, frames too long for the current receive buffer
are transferred to the next buffer(s) in the receive list.

(continued on next page)

Table 3-23 (Cont.) CSR6 Bits

Bit Name Access Description
0:8 OM RW Operating Mode—Determine the Ethernet coprocessor
main operating mode:

Value Meaning

00 Normal operating mode.

01 Internal Loopback-—The Ethernet coprocessor
will loop back buffers from the transmit list.
The data is passed from the transmit logic back
to the receive logic. The receive logic treats the
looped frame as it would any other frame and
subjects it to the address filtering and validity
check process.

10 External Loopback-—The Ethernet coprocessor
transmits normally and enables its receive logic
to its own transmissions. The receive logic
treats the looped frame as it would any other
frame and subjects it to the address filtering
and validity check process.

11 Reserved for diagnostics.

10 SR R/W Start/Stop Reception Command-—When set, the reception

process is placed in the running state, the Ethernet
coprocessor attempts to acquire a descriptor from the
receive list and process incoming frames. Descriptor
acquisition is attempted from the current position in the
list, the address set by CSR3, or the pogition retained when
the Rx process was previously stopped. If no descriptor can
be acquired, the reception process enters the suspend state.

The Start Reception command is honored only when the
Reception process is in the stopped state. The first time
this command is issued, an additicnal requirement is that
CSR3 has already written to; otherwise, the reception
process remains in the stopped state.

When cleared, the reception process is placed in the stopped
state after completing reception of the current frame. The
next descriptor position in the receive list is saved and
becomes the current position after reception is restarted.
The Stop Reception command is honored only when the
reception process is in the running or suspended state.

(continued on next page)

Hardware Architecture 3-59

Table 3-23 (Cont.) CSR6 Bits

Bit

Name Access

Description

11

19

20

28:25

30

ST R/W
SE RW
BE W
BL RW
IE R/W

3~60 Hardware Architecture

Start/Stop Transmission Command—When set, the
transmission process is placed in the running state, and
the Ethernet coprocessor checks for a frame to transmit at
the transmit list at the current position, the address set by
CSR4, or the position retained when the Tx process was
previously stopped. If it does not find a frame to transmit,
the transmission process enters the suspend state. The
Start Transmission command is honored only when the
transmission process is in the stopped state. The first
time this command is issued, an additional requirement
is that CSR4 has already been written to; otherwise, the
transmission process remains in the stopped state.

When cleared, the transmission process is placed in the

stopped state after completing transmission of the current
frame. The next descriptor position in the transmit list is
saved and becomes the current position after transmission

is restarted.

The Stop Transmission command is honored only when the
transmission process is in the running or suspended states.

Single-Cycle Enable Mode—When set, the Ethernet
coprocessor transfers only a single longword or an octaword
in a single DMA burst on the rtVAX 300 bus.

Boot Message Enable Mode—When set, enables the boot
message recognition. When the Ethernet coprocessor
recognizes an incoming boot message on the serial line,
CSR5<07> is set, and the external pin BOOT L is asserted
for a duration of 6*T cycles (of the rtVAX 300 clock).

Burst Limit Mode—Specifies the maximum number of
longwords to be transferred in a tsingle DMA burst on the

rtVAX 300 bus.

When CSR6<19> is cleared, permissible values are 1, 2, 4,
and 8; when set, the only permissiole values are 1 and 4,
and a value of 2 or 8 is respectively forced to 1 or 4.

After initialization, the burst limit is set to 1.
Interrupt Enable Mode—When set, setting of CSR5<06:01>

generates an interrupt.

(continued on next page)

Table 3-23 (Cont.) CSR6 Bits
BIt Name Access Description

31 RE R/W Reset Command—When set, the Ethernet coprocessor
aborts all processes and starts the reset sequence. After
completing the reset and self-test sequence, the Ethernet
coprocessor sets bit CSR5«<31>. Clearing this bit has no
effect.

Note: CSR5<05> value is unpredigtable on read after
hardware reset.

. 3.6.1.6 System Base Register (CSR7)

This CSR contains the physical starting address of the rtVAX 300 system page
table. This register must be loaded by rtVAX 300 software before any address
translaticn occurs so that memory will not be corrupted.

Figure 3-23 shows the format of CSR7; Table 3-24 describes its bit structure.

Figure 3-23 CSR7 Format

. 313029 00
T 11T 1T rrrirrryrverTrrerT T T TrTrand

olo System Base Address CSR7
T I VO DO O O U O T U T G O O N O N O Y O O

MLO-004421

Table 3-24 CSR?7 Bits
Bit Name Access Description

. 29:00 SB RW System Base Address—The physical starting address of
the rtVAX 300 System Page Table. Unused if VA (virtual
addressing) is cleared in all descriptors.

Caution: This register should be loaded only once after a
reset. Subsequent modifications of this register may cause
unpredictable results.

Hardware Architecture 3-61

3.6.1.7 Watchdog Timer Register (CSR9)

The Ethernet coprocessor has two timers that restrict the length of time during
which the chip can receive or transmit. These watchdog timers are enabled

by default and assume the default values after hardware or software resets.
Figure 3-24 shows the format of the watchdog timer register; Table 3—25

describes its bit structure.

Figure 3-24 CSR9 Format

31 1615 00
rrrrrrreyvyrored FrT TP 1T i T T T rTrTd
Receive Watchdog Time~Out - RT | Transmit Watchdog Time-Out - TT | CSR9
| N D T N VO YUY TR Y 1 OO N N A I N U TN N N A T N T N A
MLO--004422
Table 3-25 CSR9 Bits
Bit Name Access Description
15:00 TT R/'W Transmit Watchdog Time-Out—The transmit watchdog

timer protects the network against Ethernet coprocessor
transmissions of overlength packets. If the transmitter
stays on for T'T * 16 cycles of the serial clock, the Ethernet
coprocessor cuts off the transmitter and sets the CSR5<06>
If the timer is set to zero, it never times out. The value
of TT is an unsigned integer. With a 10 MHz serial clock,
this provides a range of 1.6 ns to 100 ms. The default value

bit.

is 1250, corresponding to 2 ms.

31:16 RT R'W Receive Watchdog Time-Out—The receive watchdog tinier
protects the rtVAX 300 microprocessor against other
transmitters sending overlength packets on the network. If
the receiver stays on for RT * 16 cycles of the serial clock,
the Ethernet coprocessor cuts off reception and sets the
CSR5<05> bit. If the timer is set to zero, it will never time
out. The value of RT is an unsigned integer. With a 10
MHz serial clock, this provides a range of 1.6 ns to 100 ms.
The default value is 1250, corresponding to 2 ms.

Note: An Rx or Tx watchdog value between 1 and 44 is
forced to the minimum time-out value of 45 (72 ps).

3-62 Hardware Architecture

' 3.6.1.8 Revision Number and Missed Frame Count (CSR10)

This register contains a missed frame counter and Ethernet coprocessor
identification information. Figure 3-25 shows the format of CSR10; Table 326
describes its bit structure.

Figure 3-25 CSR10 Format
K3 | 2827 24 23 2019 1615 00

LI T I N O I N e e e ey O
DIN 0 HRN FRN MFC CSR10
1

1§ 1 [O | I S | _| L S N T T TN T N N N U N D U |
. MLO-006383

Table 3-26 CSR10 Bits

Bit Name Access Description

15:00 MFC R Missed Frame Count—Counter for the number of frames
that were discarded and lost because rtVAX 300 receive
buffers were unavailable. The counter is cleared when read

. by the rtVAX 300.
19916 FRN R Firmware Revision Number—Stores the internal firmware
revision number for this particular Ethernet coprocessor.
23:20 HRN R Hardware Revision Number—Stores the revision number
for this particular Ethernet coprocessor.
27:24 Reserved—Read as zeros.
31:28 DIN R Chip Identification Number—Determines whether this is

an SGEC or an SGEC-compatible device.

Hardware Architecture 3-63

3.6.1.9 Boot Message Registers (CSR11, CSR12, CSR13)

These registers contain the boot message verification and processor fields;
Table 3-27 describes their bit structure.

Table 3-27 CSR11, CSR12, CSR13 Blts

Register Bit Name Access Description

CSR11 31:00 VRF<31:00> R/W Boot Message Verification field <31:00>

CSR12 31:00 VRF<63:32> R/W Boot Message Verification field <63:32>

CSR13 07:00 PRC R/W Boot Message Processor field .

3.6.1.10 Breakp»int Address Register (CSR14)

This register contains the brea.point address that causes the internal
microprocessor to jump to a patch address. This register, in conjunction with
the diagnostic descriptors, allows software patches. Figure 3-26 shows the
format of CSR14; Table 3-28 describes its bit structure.

Figure 3-26 CSR14 Format

3130 1615 00
B L L L L DL L B trTvry 1ty 1P 1 11
E Code Restart Address — CRA Breakpoint Address ~ BPA CSR14
I I O O U T T T N A LIS G VR 1 O O O (O U N A N I A |
MLO-004424

Table 3-28 CSR14 Bits

Bit Name Access Description

15:00 BPA R/W Breakpoint Address—The internal processor address at .
which the program will halt and jump to the RAM-loaded
code.

(continued on next page)

3-64 Hardware Architecture

Table 3-28 (Cont.) CSR14 Bits
Bit Name Access Description

30:16 CRA R/W Code Restart Address—The first address in the internal
ROM to which the internal processor jumps after a
breakpoint occurs.

a1 BE R/W When set, breakpoint is enabled.

3.6.1.11 Monitor Command Register (CSR15)

This register is a physical CSR. It contains the bits that select the internal
. test block operation mode. Figure 3-27 shows the format of CSR15; Table 3-29
describes its bit structure.

Figure 3-27 CSR15 Format

31 161514131211 10090807 060504 03 020100
rTitT 7T 17T 17T 7T 1T T T T 1T 11 S 1 B
Address / Data TOADSuuuuuuu ujnjujujul :CSR15
| T W U (N IS R Y (O O T O o |]

. MLO-~004425

Table 3-29 CSR15 Bits

Bit Name Access Description

12 BS w Bus Select—When set, the monitoring is applied
on the internal address bus. Meaningful only
in test mode (T'SM=1). When reset, the internal
data bus is monitored on the external test pins

. BM_L/TEST<03:00>.
(continued on next page)

Hardware Architecture 3-65

Table 3-29 (Cont.) CSR15 Bits
Bit Name Access Description

14:13 QAD w Quad Select—Meaningful only in test mode
(TSM=1). These bits define the specific four
bits of the internal data bus or address bus
which are monitored on the external test pins
BM_L/TEST<03:00>.

QAD Blts
00 <03:00>
01 <07:04>
10 <11:08>
11 <15:12>
15 ST w Start Read—When set, starts the Examine

cycle: the data addressed by CSR15<31:16> is
fetched and stored into the same register field.
Reset by hardware at the end of the operation.

31:16 ADDR/DATA R/W Address/Data—Before the Examine cycle starts,
it points to the location to be read; three cycles
after the assertion of CSR15<153>, it contains
the read data.

3.6.2 Descriptor and Buffer Formats

The Ethernet coprocessor transfers frame data to and from receive and
transmit buffers in rtVAX 300 memory. These buffers are pointed to by
descriptors, also resident in rtVAX 300 memory.

There are two descriptor lists: one for receive and one for transmit. The '
starting address of each list is writter into CSRs 3 and 4, respectively.

A descriptor list is a forward-linked (either implicitly or explicitly) list of
descriptors, the last of which may point back to the first entry, thus creating a

ring structure. Explicit chaining of descriptors, through setting xDES1<31> is
called descriptor chaining. The descriptor lists reside in VAX physical memory
address space.

Note

The Ethernet coprocessor first reads the descriptors, ignoring all
unused bits regardless of their state. The only word that the Ethernet
coprocessor writes back is the first word (xDES0) of each descriptor. ‘

3-66 Hardware Architecture

. Unused bits in xDES0 are written as 0. Unused bits in xDES]1,
xDES2, and xDES3 may be used by the port driver, and the Ethernet
coprocessor will never disturb them.

A data buffer can contain an entire frame or part of a frame, but it cannot
contain more than a single frame. Buffers contain only data; buffer status is
contained in the descriptor. The term data chaining refers to frames spanning
muliiple data buffers. Data chaining can be enabled or disabled, in reception,
through CSR6<07>. Data buffers reside in VAX memory space, either physical

. or virtual.

1. The virtual to physical address translation assumes that PTEs are
locked in the rtVAX 300 memory while the Ethernet coprocessor owns
the related buffer.

2. For best performance in virtual addressing mode, PPTE (Processor
Page Table Entry) vectors must not cross a page of the PPTE table.

Notes

. 3.6.2.1 Recelve Descriptors
Figure 3~28 shows the format of Receive Descriptors; Table 3-30 through

Table 3-33 describe the RDESx bit structures. The RDES0 word contains
received frame status, length, and descriptor ownership ir.formation.

Figure 3-28 Receive Descriptor Format

313020282726252423222120191817 161514131211 1009 08 07 06 0504 03 0201 00

LR R L L o r
o) Frame Length — FL EIL| pr [RIBIFILITICIFI 5{TIDIC|O
. W | framelengh-FL ~ |slg| OT |¢lols|s|L|s|] °|n|e|E|F| RDESO

C v V I LI S DL L] 1 i ¥ 1 1 ¥ u il RDE81

L

u Buffer Size - BS u Page Offset ~ PO RDES2
ity & ¢« 1 1 1 1 i I N TN N N JUN RN UGN SR N E T
€ v 7 7 Ll) t]] H 1 1 L) ¥ Ll J ' L] LR T TF Lk]

ulu Buffer SVAPTE / PAPTE / Physical Address - SV / PV / PA u} RDES3
I N . { 1 | I S S . | i | H] 1 1 1 -] i 1 1) SIS WL

0 - SGEC writes as "0" _

u ~ Ignored by the SGEC on read, never written MLO-006489

Hardware Architecture 3-67

Table 3-30 RDESO Flelds
Bits Name Description

00 OF Overflow—When set, indicates received data in this descriptor’s
buffer was corrupted due to internal FIFO overflow. This will
generally occur if Ethernet coprocessor requests are not granted
before the internal receive FIFO fills up.

01 CE CRC Error—When set, indicates that a CRC error has occurred on
the received frame.
02 DB Dribbling Bits—When set, indicates that the frame contained a

number of dribbling bits in the last byte exceeds two. Meaningless if
RDES0<06> or RDES0<11> is set.

The CRC check is performed independent of this error; however, only
whole bytes are run through the CRC logic. Consequently, received
frames with up to six dribbling bite will have this bit set, but if
RDES0<01> (or another error indicator) is not set, these frames

81, ~uld be considered valid:

noninteger multiple of eight bits. This error reported only if the ‘

RDES0<01> RDES0<02> Error

0 0 None
0 1 None
1 0 CRC error
1 1 Alignment error
03 TN Translation Not Valid—When set, indicates that a translation error

occurred when the Ethernet coprocessor was translating a VAX
virtual buffer address. It is set only if RI'-ES1<30> was set. The
reception process remains in the running state and attempts to
acquire the next descriptor.

05 FT Frame Type—When set, indicates the frame is an Ethernet type
frame (Frame Length Field > 1500). When clear, indicates the frame
is an IEEE 802.3 type frame. Meaningless for Runt frames shorter
than 14 bytes.

06 CS Collision Seen—When set, indicates the frame was damaged by a
collision that occurred after the 64 bytes following the SFD.

(continued on next page)

3-68 Hardware Architecture

Table 3-30 (Cont.) RDESO Fields

Bits

Name

Description

07

08

09

10

11

13:12

i4

15

TL

LS

3

BO

RF

LE

ES

Frame Too Long—When set, indicates the frame length exceeds the
maximum Ethernet-specified size of 1518 bytes.

Note: Frame Too Long is only a frame length indication and does
not cause any frame truncation.

Last Segment—When set, indicates that this buffer contains the last
segment of a frame and status informaticn is valid.

First Segment—When set, indicates that this buffer contains the
first segment of a frame.

Buffer Overflow—When set, indicates that the frame has been
truncated due to a buffer too small to fit the frame size. This bit may
be set only if data chaining is disabled (CSR6<07> = 1).

Runt Frame—When set, indicates that this frame was damaged by
a collision or premature termination before the collision window
had passed. Runt frames will only be passed on to the rtVAX 300 if
CSR6<03> is set. Meaningless if RDES0<00> is set.

Data Type—Indicates the type of frame the buffer contains, according
to the following table:

Value Meaning

00 Serial received frame.
01 Internally looped back frame.

10 Externally looped back frame or serial received frame.

(The Ethernet coprocessor does not differentiate between
looped back and serial received frames. Therefore, this
information ig global and reflects only CSR6<09:08).

Length Error—When set, indicates a frame truncation caused by one
of the following:

¢ The frame segment does not fit within the currant buffer and
the Ethernet coprocessor does not own the next descriptor. The
frame is truncated.

¢ The Receive Watchdog timer expired. CSR5<05> is also set.

Error Summary—The logical OR of RDESO0 bits 00, 01, 03, 06, 07,
11, 14.

(continued on next page)

Hardware Architecture 3-69

Table 3-30 (Cont.) RDESO Fields

Bits Name Description

30:16 FL Frame Length—The length in bytes of the received frame.
Meaningless if RDESO<14> is set.

31 oW Own Bit—When set, indicates that the descriptor is owned by the
Ethernet coprocessor. When cleared, indicates that the descriptor
is owned by the rtVAX 300. The Ethernet coprocessor clears this
bit upon completing processing of the descriptor and its associated

buffer.
Table 3-31 RDES1 Fields .
Bits Name Descriptor
29 VT Virtual Type—In case of virtual addressing (RDES1<30> = 1),

indicates the type of virtual address translation. When clear, the
buffer address RDES3 is interpreted as a SVAPTE (System Virtual
Address of the Page Table Entry). When set, the buffer address is
interpreted as a PAPTE (Physical Address of the Page Table Entry).
Meaningful only if RDES1<30> is set.

30 VA Virtual Addressing—When set, RDES3 is interpreted as a virtual .
address. The type of virtual address translation is determinea by
the RDES1<29> bit. The Ethernet coprocessor uses RDES3 and
RDES2<08:00> to perform a VAX virtual address translation process
to obtain the physical address of the buffer. When clear, RDES3 is
interpreted as the actual physical address of the buffer:

RDESi<30> RDES1<29> Addressing Mode
0 X Physical

1 0 Virtual —SVAPTE
1 Virtual-—PAPTE

{continued on next page)

3-70 Hardware Architecture 4

Table 3-31 (Cont.) RDES1 Fields

Bits Name

Descriptor

31 CA

Chain Address—When set, RDES3 is interpreted as another
descriptor's VAX physical address. This allows the Ethernet
coprocessor to process multiple, noncontiguous descnptor lists and
explicitly "chain” the lists. Note that contiguous descriptors are
implicitly chained.

In contrast to what is done for an Rx buffer descriptor, the Ethernet
coprocessor clears neither the ownership bit RDES0<31> nor any
other bit of RDESO of the chain descripter after processing.

To protect against infinite loop, a chain descriptor pointing back
to itself is considered owned by the rtVAX 300, regardless of the
ownership bit (RDES0<31>) state.

Table 3-32 RDES2 Fields

Bits Name Descriptor

08:00 PO Page Offset—The byte offset of the buffer within the page.
Meaningful only if RDES1<30> is set.
Note: Receive buffers must be word-aligned.

30:16 BS Buffer Size—The size, in bytes, of the data buffer.

Note: Receive buffers size must be an even number of bytes, not
shorter than 16 bytes.

Table 3-33 RDES3 Fields

Bits Name

Descriptor

31:00 SV/PV/PA SVAPTE/PAPTE/Physical Address—When RDES1<30> is

set, RDES3 is interpreted as the address of the Page Table
Entry and used in the virtual address translation process.
RDES1<29> determines the type of the address: System
Virtual address (SVAPTE) or Physical Address (PAPTE). When
RDES1<30> is clear, RDES3 is interpreted as the physical
address of the buffer; when RDES1<31> is set, RDES3 is
interpreted as the VAX physical address of another descriptor.

Note: Receive buffers must be word-aligned.

Table 3-34 summarizes the validity of the Receive Descriptor status
bits regarding the reception completion status. (V indicates valid; X,

meaningless.)

Hardware Architecture 3-71

Table 3-34 Receive Descriptor Status Validity

Rx Status Report

Reception Status RF TL CS FT DB CE (ES,LE,BO,DTFS,LSFL,TN,OF)
Overflow X v X v X X \Y%
Collision a®ter 512 bits v v v v X X \Y
Runt frame vV v v v X X \Y
Runt frame < 14 bytes v v v X X X v
Watchdog time-out v v X v X X v

3.6.2.2 Transmit Descriptors
Figure 3-29 shows the format of Transmit Descriptors; Table 3-35 through

Table 3-38 describe the TDESx bit structures. The TDESO word contains
transmitted frame status and descriptor ownership information.

Figure 3-29 Transmit Descriptor Format

31 3029282726252423 2221 20191817161514131211 10 09 08 07 06 05 04 03 02 01 00

o) L Merain Rafle e|lT] [LILiNJLIEIH] T ~n " {T]UlD

W TimeDomalnReﬂeckI)mlete{ lTI?R' slololelslelelcte | C.c BNEE TDESD

C V A F L ’ V 1 i 1 T 1 L3 ¥ T
DT u TDES?

R = Y MNEFENEr VS ANT e

u Buffer Size — BS u Page Offset- PO | TDES2
e e T ootk e B e e o o

ulu Buffer SVAPTE / PAPTE / Physical Address — SV / PV /PA TDES3
) N k3 I | 1 L ’ | i 1 [l 1 L Il 1 1 VTS T UV W S | 1 1 4 Il 1

0 - SGEC writes as "0"

u - lgnored by the SGEC on read, never written MLO-006500

Table 3-35 TDESO Fields

Blts Name Description

00 DE Deferred—When set, indicates that the Ethernet coprocessor had to

defer while trying to transmit a frame. This condition occurs if the
channel is busy when the Ethernet coprocessor is ready to transmit.

(continued on next page)

3-72 Hardware Architecture

Table 3-35 (Cont.) TDESO Fields

Bits

Name

Description

01

02

06:03

07

08

09

10

11

UF

TN

cc

HF

EC

LC

NC

LO

Underflow Error—When set, indicates that the transmitter has
truncated a message due to data late from memory. This bit
indicates that the Ethernet coprocessor encountered an empty
transmit FIFO while in the midst of transmitting a frame. The
transmission process enters the suspended state and sets CSR5<01>.

Translation Not Valid—When set, indicates that a translation error
occurred when the Ethernet coprocesso:r was translating a VAX
virtual buffer address. It may only set if TDES1<30> was set. The
transmission process enters the suspended state and sets CSR5<01>.

Collision Count—A 4-bit counter indicating the number of collisions
that occurred before the transmission attempt succeeded or failed.
Meaningless when TDES0<08> is also set.

Heartbeat Fail—When set, indicates Heartbeat Collision Check
failure. (The transceiver failed to return a collision pulse as a check
after the transmission. Some transceivers do not generate heartbeat,
and so will always have this bit set. If the transceiver does support
Heartbeat Fail, <HF>indicates transceiver failure.) Meaningless if
TDES0<01> is set.

Excessive Collisions—When set, indicates that the transmission was
aborted because 16 successive collisions occurred while attempting to
transmit the current frame.

Late Collision—When set, indicates frame transmission was aborted
due to a late collision. Meaningless if TDES0<01> is set.

No Carrier—When set, indicates the carrier signal from the
transceiver was not present during transmission (possible problem in
the transceiver or transceiver cable).

Meaningless in internal loopback mode (CSR5<18:17>=1).

Loss of Carrier—When set, indicates loss of carrier during
transmission (possible short circuit in the Ethernet cable).

Meaningless in internal loopback mode (CSR5<18:17>=1).

(continued on next page)

Hardware Architecture 3-73

Table 3-35 (Cont.) TDESO Fields

Bits

Name

Description

12

14

15
29:16

31

LE

TO

ES
TDR

ow

Length Error—When set, indicates one of the following:

¢ Descriptor unavailable (owned by the rtVAX 300) in the middle
of data-chained descriptors.

¢ Zero length buffer in the middle of data-chained descriptors.

* Setup or diagnostic descriptors (data type TDES1<29:28> is not
equal to 0) in the middle of data-chained descriptors. .

¢ Incorrect order of first_segment TDES1<26> and last_segment
TDES1<25> descriptors in the descriptor list.

The transmission process enters the susperded state and sets
CSR5<01>.

Transmit Watchdog Time-Out—When set, indicates that the transmit
watchdog timer has timed out, indicating that the Ethernet
coprocessor transmitter was babbling. The interrupt CSR5<06>

is set and the Transmission process is aborted and placed in the
stopped state.

Error Summary—The logical OR of bits 01, 02, 08, 09, 10, 11, 12, 14. .

Time Domain Reflectometer—A count of bit time useful for locating
a fault on the cable by using the velocity of propagation on the cable.
Valid only if TDES0<08> is also set. Two excessive collisions in a
row with the same +£20 TDR values indicate a possil.le open cable.

Own Bit—When set, indicates that the descriptor is owned by the
Ethernet coprocessor. When cleared, indicates that the descriptor
is owned by the rtVAX 300. The Ethernet coprocessor clears this

bit upon completing processing of the descriptor and its associated

buﬁ'er. .

Table 3-36 TDES1 Fields

Bits

Name

Descriptor

23

3-74 Hardware Architecture

VT

Virtual Type—In case of virtual addressing (TDES1<30> = 1),
indicates the type of virtual address translation. When clear, the
buffer address TDES3 is interpreted as a SVAPTE (System Virtual
Address of the Page Table Entry). When set, the buffer address is
interpreted as a PAPTE (Physical Address of the Page Table Entry).
Meaningful only if TDES1<30> is set.

(continued on next page)

Table 3-36 (Cont.) TDES1 Fields

Bits

Name

Descriptor

24

25

26

27

29:28

IC

LS

FS

AC

DT

Interrupt on Completion—When set, the Ethernet coprocessor sets
CSR5<01> after this frame has been transmitted. To take effect, this
bit must be set in the descriptor where bit 25 is set.

Last Segment—When set, indicates that the buffer contains the last
segment of a frame.

First Segment—When set, indicates that the buffer contains the first
segment of a frame.

Add CRC Disable—When set, the Ethernet coprocessor will not
append the CRC to the end of the transmitted frame. To take effect,
this bit must be set in the descriptor where bit 26 is set.

Note: If the transmitted frame is shorter than 64 bytes, the
Ethernet coprocessor adds the padding field and the CRC, regardless
of the <27> flag.

Data Type—Indicates the type of data that the buffer contains,
according to the following table:

Value Meaning

00 Normal transmit frame data

10 Setup frame (Refer to Section 3.6.2.3.)

11 Diagnostic fraine (Refer to Section 3.6.5.)

(continued on next page)

Hardware Architecture 3-75

Table 3-36 (Cont.) TDES1 Fields
Bits Name Descriptor

30 VA Virtual Addressing—When set, TDES3 is interpreted as a virtual
address. The type of virtual address translation is determined by
the TDES1<23> bit. The Ethernet coprocessor uses TDES3 and
TDES2<08:00> to perform a VAX virtual address translation process
to obtain the physical address of the buffer. When clear, TDES3 is
interpreted as the actual physical address of the buffer:

TDES1<30> TDES1«<23> Addressing Mode

0 X Physical
1 0 Virtual—SVAPTE
1 1 Virtual—PAPTE
31 CA Chain Address—When set, TDES3 is interpreted as another

descriptor’s VAX physical address. This allows the Ethernet

coprocessor to process multiple, noncontiguous descriptor lists and
explicitly "chain” the lists. Note that contiguous descriptors are
implicitly chained.

In contrast to what is done for a Tx buffer descriptor, the Ethernet .

coprocessor clears neither the ownership bit TDES0<31> nor any
other bit of TDESO of the chain descriptor after processing.

To protect against infinite loop, a chain descriptor pointing back to
itself is considered owned by rtVAX 300, regardiess of the ownership
bit state.

Table 3-37 TDES2 Fields
Bits Name Descriptor ‘
08:.00 PO Page Offset—The byte offset of the buffer within the page.

Meaningful only if TDES1<30> is set.

Note: Transmit buffers may start on arbitrary byte boundaries.

30:16 BS Buffer Size—The size, in bytes, of the data buffer. If this field is
0, the Ethernet coprocessor ignores this buffer. The frame size is
the sum of all buffer size fields of the frame segments (between and
including the descriptors having TDES1<26> and TDES1<25> set).

(continued on next page)

3-76 Hardware Architecture

Table 3~37 (Cont.) TDES2 Flelds

Bits Name Descriptor

Note: If the port driver wishes to suppress transmission of a frame,
this field must be set to 0 in all descriptors comprising the frame and
prior to the Ethernet coprocessor acquiring them. If this rule is not
adhered to, corrupted frames might be transmitted.

Table 3-38 TDES3 Fields

Bits Name

Descriptor

31:00 SV/PV/PA

SVAPTE/PAPTE/Physical Address—When TDES1<30:> is

set, TDES3 is interpreted as the address of the Page Table
Entry and used in the virtual address translation process.
TDES1<23> determines the type of address: System Virtual
Address (SVAPTE) or Physical Address (PAPTE). When
TDES1<30> is clear, TDES3 is interpreted as the physical
address of the buffer; when TDES1<315> it is set, TDES3 is
interpreted as the VAX physical address of another descriptor.

Note: Transmit buffers may start on arbitrary byte

boundaries.

Table 3-39 summarizes the validity of the Transmit Descriptor status
bits regarding the transmission completion status. (V indicates valid; M,

meaningless.)

Table 3-39 Transmit Descriptor Status Validity

Transmisslon Status LO NC

Tx Status Report

LC EC HF CC (ES,TO,LE,TN.UFDE)

Underflow X
Excessive collisions

Watchdog time-out

KoM
M < <g
<

Internal loopback

X

v

o<

A%

< % <
Mo <

X

\%

< < X

v

\Y%
A%
\Y

Hardware Architecture 3-77

3.6.2.3 Setup Frame ‘

A setup frame defines the Ethernet coprocessor destination addresses. These
addresses filter all incoming frames. The setup frame is never transmitted over
the Ethernet nor looped back to the receive list. While the setup frame is being
processed, the receiver logic temporarily disengages from the Ethernet wire.
The setup frame size is always 128 bytes and must be wholly contained in a
single transmit buffer. There are two types of setup frames:

e Perfect filtering addresses (16) list
* Imperfect filtering hash bucket (512) heads and one physical address

3.6.2.3.1 First Setup Frame A setup frame must be queued, that is, placed ‘
in the transmit list with Ethernet coprocessor ownership, to the Ethernet
coprocessor before the reception process is started, except when the Ethernet
Coprocessor s in promiscuous reception mode.

Note

The self-test completes with the Ethernet coprocessor Address filtering

table fully set to 0. A reception process started without loading a

setup frame rejects all incoming frames except those with a destination
physical address of 000000,¢. ‘

3.6.2.3.2 Subsequent Setup Frame Subsequent setup frames may be queued
to the Ethernet coprocessor regardless of the reception process state. The only
requirement for the setup frame to be processed, is that the transmission
process be in the running state. The setup frame is processed after all
preceding frames have been transmitted and after the current frame reception,
if any, is completed.

The setup frame does not affect the reception process state, but during the ‘
setup frame processing, the Ethernet coprocessor is disengaged from the ‘
Ethernet wire.

3-78 Hardware Architecture

3.6.2.3.3 Setup Frame Descriptor Figure 3-30 shows the format of the setup
frame descriptors; Table 3-40 describes the SDECx bit structure.

Figure 3-30 Setup Frame Descriptor Format

313020282726252423222120191817 161514131211 100908 07 06 05 04 03 02 01 00

0 I S T S LI DL L I O L A O B € s L IR L L L L

e 0 s|O1e 0 SDESO
1 | S N N T N | DN IO K S I D W U S B N
T ' H ' L L S) ¥ L] LR LR Lt ¥ 1) LR L O I

0fu| DT vl clple u SDESH
: A B B

u Buffer Size - BS u SDES2
| W WO VOO TS WUV [WU R G N N |) W VR WOOUR I DU SR SRS DSt U NN N Sy S |
LA 1)]] LI LI 1 L L) T T 1 T 1 1] Ll T 1] L AL]

ulu Setup Buffer Physical Address - PA u]| SDES3
[W W TR ST R U g S | 1 Lol U S I D DR U TR P R W R | Lemndemad

0 - SGEC writes as "0" (SDESO only)

u - Ignored by the SGEC on read, never written MLO--006501

Table 3-40 Setup Frame Descriptor Bits

Word

Bits

Name

Description

SDESO

SDES1

13

15
31

25

SE

ES
ow

IC

HP

Setup Error—When set, indicates that the setup frame
buffer size is not 128 bytes.

Error Summary—Set when bit 13 is set.

Own Bit—When set, indicates that the descriptor is
owned by the Ethernet coprocessor. When cleared,
indicates that the descriptor is owned by the rtVAX
300. The Ethernet coprocessor clears this bit upon
completing processing of the descriptor and its
associated buffer.

Interrupt on Completion—When set, the Ethernet
coprocessor sets CSR5<01> after this setup frame has
been processed.

Hash/Perfect Filtering Mode—When set, the Ethernet
coprocessor interprets the setup frame as a hash table
and does imperfect address filtering. The imperfect
mode is useful when there are more than 16 multicast
addresses to listen to.

When clear, the Ethernet coprocessor does a perfect
address filter of incoming frames according to the
addresses specified in the setup frame.

(continued on next page)

Hardware Architecture 3-79

Table 3-40 (Cont.) Setup Frame Descriptor Bits
Word Bits Name Description

26 IF Inverse Filtering—When set, the Ethernet coprocessor
does inverse filtering: the Ethernet coprocessor
receives incoming frames with destination address
not matching the perfect addresses and rejects frames
with destination address matching one of the perfect
addresses.

Meaningful only for perfect filtering (SDES1<25>=0),
while promiscuous and all multicast modes are not
selected (CSR6<02:01>=0).

29:28 DT Data Type-—Must be 2 to indicate setup frame.
SDES2 30:16 BS Buffer Size—Must be 128.
SDES3 29:1 PA Physical Address—Physical address of setup buffer.
Note: Setup buffers must be word-aligned.

3.6.2.3.4 Perfect Filtering Setup Frame Buffer This section describes how
the Ethernet coprocessor interprets a setup frame buffer when SDES1<25> is
clear.

The Ethernet coprocessor can store sixteen 48-bit Ethernet destination
addresses. It compares the addresses of any incoming frame to these, and
based on the status of Inverse_Filtering flag SDES1<26>, rejects those that

* Do not match, if SDES1<26> = 0
¢ Match, if SDES1<26> =1

The setup frame must always supply all 16 addresses. Any mix of physical and
multi- 3t addresses can be used. Unused addresses should be duplicates of one
of the valid addresses. Figure 3-31 shows the format of the addresses. ‘

3-80 Hardware Architecture

Figure 3-31 Perfect Filtering Setup Frame Buffer Format

a1

16115

Bytes
<3:0»
<7:4>

PHYSICAL_ ADDRESS 00
<31:16>=Undefined |

PHYSICAL_ ADDRESS 01
<31:16>=Undefined |

PHYSICAL_ ADDRESS 02
<31:16>=Undefined |

e
-y

i

PHYSICAL_ ADDRESS 03

<123:120>
<127:124>

PHYSICAL_ADDRESS 15
<31:16>=Undefined |

00
L1 <~ INDIVIDUAL s GROUP bit
U Address <31:00>
Address <47:32>

U

N

ju

MLO-006502

The low-order bit of the low-order byte is the address’s multicast bit.

Example 3-1 illustrates a perfect filtering setup buffer fragment.

Example 3-1 Perfect Filtering Setup Buffer Fragment

Ethernet addresses to be filtered:
@ 28-09-65-12-34-76
09-BC-87-DE=03~15

Setup frame buffer fragment:

1265098
00007634
DE87TBCO9
00001503

@ Ethernet multicast addresses written according to the IEEE 802
specification for address display

@ Those two addresses as they would appear in the buffer

Hardware Architecture 3-81

3.6.2.3.5 Imperfect Flitering Setup Frame Buffer This section describes how
the Ethernet coprocessor interprets a setup frame buffer when SDES1<25> is
set.

The Ethernet coprocessor can store 512 bits, serving as hash bucket heads,
and one physical 48-bit Ethernet address. Incoming frames with multicast
destination addresses are subjected to the imperfect filtering. Frames with
physical destination addresses are checked against the single physical address.

For any incoming frame with a multicast destination address, the Ethernet
coprocessor applies the standard Ethernet CRC function to the first six bytes
containing the destination address, and then uses the least significant nine bits

of the result as a bit index into the table. If the indexed bit is set, the frame is ‘
accepted; if it is cleared, the frame is rejected.

This filtering mode is called imperfect, because multicast frames not addressed
to this station may slip through, but it still reduces the number of frames that
the rtVAX 300 must process.

Figure 3-32 shows the format for the hash table and the physical address.

Figure 3-32 Imperfect Filtering Setup Frame Buffer Format

31 16,15 00
B<>g%°>> HASH_FILTER 00
<7id> HASH_FILTER 01
HASH FILTER 02
HASH_FILTER 03
i —
HASH_FILTER 14
<63:60> HASH_FILTER 15
<67:64> PHYSICAL ADDRESS |} <~ INDIVIDUAL / GROUP bit
<71:68>] <71.70>=Undefined |
<75:72> :
- «127:72>=Undefined ——
<127:124>

MLO-008503

3-B2 Hardware Architecture

Bits are sequentially numbered from right to left and down the table. For
example, if the destination address CRC<8:0> is 33, the Ethernet coprocessor
examines bit 1 in the second longword. Example 3-2 shows an imperfect
filtering setup frame buffer. Appendix E shows a C program to compute the
setup frame buffer for the hashing filtering mode.

Example 3-2 Imperfect Filtering Setup Frame Buffer

Ethernet addresses to be filtered:
@ 25-00-25-00-27-00
A3-C5-62~3F=25-87
D9-C2-C0-99-0B~82
7D-48-4D=-FD-CC=0A
E7-C1-96~36-89-DD
61-CC-28-55-D3-C7
6B-46-0A-55-2D~TE
@ 1n8-12-34-35-76-08

Setup frame buffer:
© 00000000
10000000
00000000
00000000
00000000
40000000
00000080
00100000
000000C0
10000000
00000000
00000000
00000000
00010000
00600000
50400600
@ 35341228
00000876

Ethernet multicast addresses written according to the IEEE 802
specification for address display

An Ethernet physical address

The first part of an imperfect filter setup frame buffer with set bits for the
multicast addresses

The second part of the buffer with the physical address

© 00 ©

Hardware Architecture 3-83

3.6.3 Operation

A program in rtVAX 300 memory called the port driver controls the operation
of the Ethernet coprocessor. The Ethernet coprocessor and the port driver
communicate through two data structures:

* Command and Status Registers (CSRs)—These registers are located in the
Ethernet coprocessor and mapped in the rtVAX 300 processor’s /O address
space. The CSRs are used for initialization, global pointers, command
transfer, and global error reporting.

¢ Descriptor Lists and Data Buffers—These are collectively called the host
communication area and are located in rtVAX 300 memory. These lists
and buffers handle the actions and status reporting related to buffer
management.

The Ethernet coprocessor can be viewed as two independent, concurrently
executing processes: reception and transmission. These processes are started
after the Ethernet coprocessor completes its initialization sequence. Once
started, these processes alternate between three states: stopped, running, or
suspended. State transitions take place as a result of port driver commands or
the occurrence of selected external events.

A simple programming sequence of the chip can be summarized as follows:
1. After power-up or reset, verify that self-test completed successfully.

2. Load CSRs with major parameters, such as the system base register,
interrupt vector, or address filtering mode.

3. Create transmit and receive lists, and load CSRs to identify them to the
Ethernet coprocessor.

4. Place a setup frame in the transmit list to load the internal reception
address filtering table.

Start receive and transmit processes by placing them in the running state.
Wait for Ethernet coprocessor interrupts.

Issue a Polling Demand command if either the receive or transmit process
enters the suspended state. This is done after correcting the cause of the
process suspension.

The following sections describe Ethernet coprocessor operation:
¢ Hardware and software reset (Section 3.6.3.1)

¢ Interrupts (Section 3.6.3.2)

3-84 Hardware Architecture

. 3.6.3.1 Hardware and Software Reset

The Ethernet coprocessor responds to two types of reset commands: a
hardware reset through the RESET L pin, and a software reset command
triggered by setting CSR6<31>. In both cases, the Ethernet coprocessor aborts
all ongoing processing and starts the reset sequence. The Ethernet coprocessor
restarts and reinitiahizes all internal states and registers. No internal states
are retained, no descriptors are owned, and all rtVAX 300 visible registers are
set to 0, except where otherwise noted.

Note

. The Ethernet coprocessor does not explicitly disown any owned
descriptors; so a descriptor’'s Own bits might be left in a state indicating
Ethernet coprocessor ownershup.

Table 3-41 lists the CSR fields that are not set to 0 after reset.

Table 3-41 Ethernet Coprocessor CSR Nonzero Fields After Reset

. Fleld Value
CSR3 Unpredictable
CSR4 Unpredictable

CSRb6< 16> 1

C5R6<28:25> 1

CSR6<31> Unpredictable after hardware reset; 1 after software reset
CSR7 Unpredictable

. C5R9 RT = TT = 1250

After the reset sequence completes, the Ethernet coprocessor executes the
gelf-test procedure to do basic sanity checking. After the self-test completes,
the Ethernet coprocessor sets the initialization done flag CSR5<31>. The self-
test completion status bits CSR5<30> and CSR5<29:26> indicate whether the
self-test failed and the reason for the failure.

Note
T self-test takes 25 ms to complete.

Hardware Architecture 3-85

If the self-test completes successfully, the Ethernet coprocessor is ready to
accept further rtVAX 300 commands. Both the reception and transmission
processes are placed in the stopped state.

Successive reset commands (either hardware or software) may be issued. The
only restriction is that Ethernet coprocessor CSRs should not be accessed
during a 1-ps period following the reset. Access during this period will result
in a CP-BUS timeout error. Access to Ethernet coprocessor CSRs during the
self-test are permitted; only CSR5 reads should be performed.

3.6.3.2 Interrupts

Various events generate interrupts. CSRS5 contains all the status bits that
may cause an interrupt, provided that CSR6<30> is set. The port driver must
clear the interrupt bits (by writing a 1 to the bit position) to enable further
interrupts from the same source.

Interrupts are not queued, and if the interrupting event recurs before the
port driver has responded to it, no additional interrupts are generated. For
example, CSR5<02> indicates that one or more frames were delivered to rtVAX
300 memory. The port driver should scan all descriptors, from its last recorded
position up to the first description owned by the Ethernet coprocessor.

An interrupt is generated only once for simultaneous, multiple interrupting
events. The port driver must scan CSR5 for the interrupt cause(s). The
interrupt will not be regenerated, unless a new interrupting event occurs after
the rtVAX 300 acknowledged the previous one, and provided that the port
driver cleared the appropriate CSR5 bit(s).

For example, CSR5<01> and CSR5<02> may both be set, the rtVAX 300
acknowledges the interrupt, and the port driver begins executing by reading
CSR5. Now CSR5<03> sets. The port driver writes back its copy of CSR5,
clearing CSR5<01> and CSR5<02>. After the rtVAX 300 IPL is lowered below

the Ethernet coprocessor level, another interrupt will be delivered with the
CSR5<03> bit set.

Should the port driver clear ali CSR5 set interrupt bits before the interrupt
has been acknowledged, the interrupt will be suppressed.

3.6.4 Serial interface

The Ethernet coprocessor supports the full IEEE 802.3 frame encapsulation
and media access control (MAC). The Ethernet coprocessor functions in a send
and receive half-duplex mode and is in either the transmit or receive mode,
except when the Ethernet coprocessor is in one of its loopback modes, which
operate in full duplex.

386 Hardware Architecture

. 3.6.4.1 Transmit Mode

In transmit mode, the Ethernet coprocessor initiates a DMA cycle to access
data from the transmit buffer in rtVAX 300 memory to assemble a packet to be
transmitted on the network. It then adds a preamble and start frame delimiter
(SFD) pattern to the beginning of the data, calculates and appends a cyclic
redundancy check (CRC) value, if enabled, to the data to make the packet.
After the packet is assembled, the Ethernet coprocessor waits for MAC to allow
transmission on the network. When transmission is enabled, the Ethernet

coprocessor serializes the data and sends it to the serial interface adapter
(SIA).

3.6.4.2 Receive Mode

In receive mode, the decoded serial data and clock are fed to the Ethernet
coprocessor from the external SIA. The Ethernet coprocessor uses the decoded
clock to read the data into its internal FIFO receive buffer. The data is
desenalized, and the destination address is checked. If the message is for
the Ethernet coprocessor, a CRC value for the received data is calculated and
compared to the CRC checksum at the end of the frame. If there is a CRC
error, an error bit is set in the receive descriptor. The Ethernet coprocessor
notifies the rtVAX 300 processor of all received frames, including those with
CRC errors and framing errors. Frames less than 64 bytes long are not
delivered to the rtVAX 300 processor, unless the Ethernet coprocessor is
programmed to do so.

3.6.5 Diagnostics and Testing

The Ethernet coprocessor supports three levels of testing and diagnostics:
¢ First Level—Error reporting during normal operation
e Second Level—In system software controlled diagnostic features

¢ Third Level—Hardware diagnostic mode, which allows access to the
internal data paths of the Ethernet coprocessor

3.6.5.1 Error Reporting

The Ethernet coprocessor reports error conditions that relate to the network
as a whole or to individual data frames. Network-related errors are recorded
as flags in one or more of the Ethernet coprocessor’'s CSRs and result in an
interrupt being posted to the rtVAX 300 CVAX processor. Frame-related errors
are written to the descriptor entries of the corresponding frame. Table 342
lists reported errors by class.

Hardware Architecturg 3-87

Table 3-42 Ethernet Coprocessor Summary of Reported Errors

Classification Error

System Errors Memory Error

Serial Interface Collision Fail

Errors Transmit Watchdog Timeout
Receive Watchdog Timeout
Loss of Carrier

Frame Errors CRC Error
Framing Error
Overflow/Underflow Error
Translation Error
Late Collision Error
Frame less than 64 bytes long

3.6.5.2 On-Chip Diagnostics

The Ethernet coprocessor contains extensive on-chip diagnostics. These

diagnostics include an internal self-test, loopback modes, and a time domain
reflectometer.

3.6.5.2.1 Internal Self-Test The Ethernet coprocessor’s self-test is run after
a reset of the chip. The internal self-test checks the operation of the following
sections of the Ethernet coprocessor:

* Internal ROM

°* Internal RAM

¢ Transmit FIFO

* Receive FIFO

® Address Recognition RAM

3--88 Hardware Architecture

3.6.5.2.2 Loopback Modes The self-test performs a local loopback test. The
Ethernet coprocessor supports these loopback modes: internal loopback and
external loopback. Internal loopback mode permits the testing of Ethernet
coprocessor logic that includes frame length checking, CRC generation and
checking, and descriptor management, for example, chaining and virtual
address translation. External loopback mode provides a loopback capability
on an active Ethernet or IEEE 802.3 network. This mode places the Ethernet
coprocessor in full duplex operation in which it receives its own transmissions.
In either loopback mode, the rtVAX 300 software must:

* Build the data frame that is to be transmitted

* Provide a receive buffer for the looped data that is i be returned to the
rtVAX 300 processor

Loopback operation is selected by the operating mode bits (CSR6<09:08>).

3.6.5.2.3 Time Domain Reflectometer The Ethernet coprocessor has a time
domain reflectometer (TDR) to help find faults on the Ethernet cable. The TDR
detects short and open circuits on the cable that result in reflections on the
cable.

Hardware Architecture 3-89

IR AT ELE
YAYEITAIT A
bANS 24044

A 4 44

b.4594.6.4
.4 4

X

X

b 9.4.¢
XXXXXY
XXXXXXX

KXXXXAXXXK

p0.€.4.9.4..0.9,4.4

XAXAXKXXXXKXAX

.0.8.4.0.0.0.86.0. 5§04

XAXEXXXEXAXX KX AXX

P84 6.0.4.8.0694.08564548464

b0 8.8.0:0.86205460.63496444

AKX KX AX XA XXX KX KX

UKL AAXKEARKALAX XL XL LANXK

HES 0550806880 0088808¢64004

P 0.0.0.88 08560440688 098 8580064604

P 4.0.09066 840980060063 09.004.04¢6604

PO GG P OGP0 0500000090098.08098.949980
ji99.0.8.2.0.9.00.66668:06.06¢0.06000900646.9991
p:8.8.0060.000006000080.80400.60000896084660.0
F00.0.4.0.0.¢.8.060.66.98.09$00086.0668084808668¢0.

J 300000086800 09 46500300880 006 080884648694

0. 8.90.0.8.0.00.0.0.0.0.0.50.0.6005.660.0009009.0.0.8.9.60.0.84¢994.
p4.90.9.6.9.800089.68.00.0.888600.068.88880.906080.0.005890
)6.9:9.9.0.80.6.99.9.00.0.08.60.006.5500800808808060860898609:

. 0.9:9.0:4.4.0.0.0.8.6.0.0.0.0.0.0.6:0.0.00.¢.050.0.9.0$9.86.8.0.0.0,6.09860008008

P 004 0.0.9.68099.00009805.6.0.0:000090900900994.90¢86849996969;

4

Firmware

The rtVAX 300 processor firmware contains the following components:
* A subset of the VAX console program

e Power-on and Ethernet self-tests

* Bootstrap for bootir g from Ethernet, serial lines, or PROM

The rtVAX 300 processor uses the clock interrupt for various timers. Portions
of the code run at IPL 15, to allow clock interrupts. No other interrupts are
used.

The rtVAX 300 system firmware is the software in the system ROM. The
corresponding firmware sections provide these functions:

e Power-on self-test—Tests the base system and the optional console at
power-on

e System configuration—Handles integration of the optional consocle and
memory with the base system by accessing external devices, sizing memory,
and checking for console hardware registers

» Dispatcher—Handles entry to the system ROM by booting or entering the
console emulation program

* Bootstrap—Loads the next level of software, that is, the VAXELN system
mage

® Console emulation program—Emulates a subset of the VAX standard
console program

This chapter discusses the following topics:

®* System firmware ROM format (Section 4.1)

¢ System firmware entry (Section 4.2)

* Console program (Section 4.3)

* Entity-based module and Ethernet listener (Section 4.4)

Firmware 4-1

e Startup messages (Secticn 4.5)

¢ Diagnostic test list (Section 4.6)

e System scratch RAM (Section 4.7)

¢ User-defined board-level boot and diagnostic ROMs (Section 4.8)
* Creation and down-lige loading of test programs (Section 4.9)

¢ Serial-line boot directions (Section 4.10)

* ROM bootstrap operations (Section 4.11)

4.1 System Firmware ROM Format ‘

The base rtVAX 300 firmware is contained in four 8-bit-wide ROMs; this
provides a full 32-bit memory data path. Figure 4-1 shows the system ROM
format.

Figure 4-1 System ROM Format

3 24 23 16 15 08 07 00
T T T | D A R O B L O B | T T
Byte 3 Byte 2 Byte 1 Byte 0
I B B Y| SO B I [A I SR B B BN I
T T T T TT I T T L B T T T
Byte 7 Byte 6 Byte 5 Byte 4
NV O O T I [O I N | I B I I I

MLO-004499

System firmware ROMs require two types of information: some information is
required on a per-byte basis for ease of manufacture and development; the bulk
of the information (software and tables) is supplied by the set of ROM parts. ‘

4.1.1 System ROM Part Format

The following features are provided for each ROM part, that is, for each of
the four ROM chips. These features simplify development and manufacture of
ROM parts. The first two bytes (00 and 01) of each chip are reserved for data
used within the context of the full set of chips. The ROM set data start on a
longword boundary. Byte addressing is the address within the isolated chip,
not the address in the system firmware ROM address space nor the address
within the ROM set. The information presented in Figure 4-2 represents the
data within each byte of the system ROM space. The data are replicated for
each byte of the devices associated with the system ROM.

4-2 Firmware

Figure 4-2 System ROM Part

07

00

Reserved tor ROM Set Data Byte 0O

Reserved for ROM Set Data Byte 1

Version Low Byte Byte 2

ROM Byte Number Byte 3

Manutacturing Check Data (55,;) | Byte 4

Manutacturing Check Data (AA,,) | Byte 5

Manutacturing Check Data (33,5) | Byte 6

Manufacturing Check Data (00+s) | Byte 7

AN

~ Reserved for ROM Set Data -~ Byte 8
Last
Checksum Byte

MLO-006384

Contents are as follows:

Version (byte 02)—Contains the version number of the console code for the
rtVAX 300 system firmware. The same value appears in each of the four
ROM parts, so that a set of chips may be verified to be compatible with a
high level of confidence.

ROM byte number (byte 03)—~Indicates the position of the byte among the
set of ROMs used to implement the firmware. This is equal to the low two
bits of the physical address of the first byte in this ROM part. This value

ranges from 0 to 3.

Manufacturing check data (bytes 04 through 07)>—~May be used for a quick
verification of the ROM. The data are 55,5, AA1g, 3316. and 0045.

Checksum (last byte)—FEach ROM byte contains a simple additive
checksum in its last word. The system adds all bytes, modulus 256, and
stores the negative value of the sum for each ROM.

Firmware 4-3

4.1.2 System ROM Set Format

The following data are meaningful only within the context of the collated set
of ROMs. All information in the system firmware ROM memory is position-
independent. Figure 4-3 shows the ROM set data.

Figure 4-3 System ROM Set Data

31 16 15 00
Processor Restart Address 20040000 (Set)
SYS_TYPE 20040004 (Set)
Vers Vers Vers Vers 20040008 (Byte)
0316 0216 0116 0016 2004000C (Byte)
5516 5546 5546 5516 20040010 (Byts)
AhAse AAss Ahqe AAsg 20040014 (Byte)
3316 3315 334 3346 20040018 (Byte)
0016 001s 0046 0016 2004001C (Byte)
” Callable Routines (Memory Test) ;]5 20040020 (Set)
- Rest of ROM Set Data and Code ;l:20040080 (Set)
Last
Checksum Checksum Checksum Checksum Longword (Word)

MLO-006385

These physical addresses in the rtVAX 300 base system ROM set are fixed, as
follows:

° 20040000 {processor restart addressj—The rtVAX 300 hardware begins
execution at address 20040000 on one of the following conditions:

— At poveer-on.
—~ On execution of a HALT instruction.

— On assertion of the EXT HLT line, for example, when a break signal

is received from the user-supplied console device or the button is
pressed.

4-4 Firmware

~ On processor detection of severe corruption of its operating environ-
ment. The processor is forced into kernel mode at IPL 1F4, and
mapping is disabled, so that all addresses are physical.!

e 20040004 (SYS_TYPE)—This is the system type register. The value
representing the rtVAX 300 is 09nn0002, where nn is an 8-bit quantity
representing the major and minor revisions. The high byte is always 09,
representing the rtVAX 300. The next byte contains two 4-bit quantities
identifying the major and minor versions of the resident firmware. The
lowest byte (2) identifies the rtVAX 300 as a single-user system. Figure 44
shows the system type register; Table 4-1 lists its fields.

* 20040008 (reserved for ROM part data)}—24 bytes (6 bytes in each of the 4
system ROMs) are reserved for information contained in each ROM byte.
Section 4.1.1 lists the informatior contained in each ROM byte.

Figure 44 System Type Register
3

24 23 2019 1615 a8 07 o8}
R RS T Tt R AR
Type Maj Min ‘ Reserved Bitmask
| O O D B O | Ll ! 0 O O S S T Y N B | O T O O Tt
MLO-006372

Table 4-1 System Type Register Fields

Data Bit Definition

<31:24> System processor type of the rtVAX 300. This field is 0946.

<23:20> Firmware Revision: Version Major ID. This field is 155 for the rtVAX
300 Firmware Version V1.1.

<19:16> Firmware Revision: Version Minor ID. This field is 1,6 for the rtVAX
300 Firmware Version V1.1

<15:08> Reserved. This field is all zeros.

<07:00> Licensing bitmask. Unused. The value of this field is 0246, indicating

a single-user system.

1" The actual contents at the location 20040000 is a branck instruction.

Firmware 4-5

4.2 System Firmware Entry

The firmware checks for a power-on entry to see if it should execute the
power-on self-test. The firmware then passes control to the dispatch code
shown in Example 4-1, which examines, and dispatches according to, the halt
code set by the hardware at entry, the halt action fields stored internally, and
the restart in progress and bootstrap in progress bits.

Example 4-1 Firmware Dispatch Code

if halt code = power on
then (CPMBX<hlt act>» = 03

CPMBX<hlt swx> = 03
BOOTDEV<2:0> = BOOT<2:0>
if user_init code present then call user_init code
1f BOOTDEV<Z2:0> = 0
then halt
else boot according to BOOTDEV<2:0>
endif
}

elseif halt code = external halt
then halt

else (case CPMBX<hlt act>

0: (CPMBX<hlt_act>=CPMBX<hlt_swx>
restart
)

1: (CPMBX<hlt_act>=CPMBX<h1t_swx>
restart
)

2: (CPMBX(hlt_act>=CPMBX<hlt_swx>
boot
)

3: (CPMBX(hlt_act>=CPMBX<hlt_swx>
halt
)

endif

(continued on next page)

4-8& Firmware

Example 4-1 (Cont.) Firmware Dispatch Code

restart: if restart in progress
then (display ‘restart error’ message
boot
)
glse (set restart in progress

do restart
)
endif
boot ! if bootstrap in progress
then (display 'boot error’ message
halte
)
else (set bootstrap in progress
do boot
)
endif

halt: do halt ©

@ Refer to Section 4.2.1.
@® Refer to Section 4.2.2.
© Refer to Section 4.2.3.

4.2.1 Restart

The restart operation searches system memory for a restart parameter block
(RPB). This data structure is previously allocated by the console program and
filled in by the VAXELN realtime executive and the console program. If a valid
RPB is found, the operating system is restarted at an address specified in the
RPB. An internal flag indicating restart in progress is set to prevent repeated
attempts to restart a failing operating system. A system restart can occur as
the result of a processor halt.

4.2.2 Boot

The system firmware can load and start (bootstrap) an operating system. The
firmware searches for a section of correctly functioning system memory large
enough to hold a primary bootstrap program. If the firmware finds such a
section of memory, it loads and starts the primary bootstrap.

Firmware 4-7

The primary bootstrap then loads and starts the operating system. An internal ‘
flag indicating that a bootstrap is in progress is set to prevent repeated

attempts to boot the operating system when one attempt has already failed.

System bootstrap occurs when the operator enters a BOOT command or when

the processor halts.

4.2.3 Halt

The console (Halt) progra.a interprets commands entered on the console
terminal and controls the processor operation. The following people may use
the console terminal:

¢ An operator to boot the operating system ‘
e A customer service engineer to maintain the system

¢ A system user to communicate with running programs
The processor can halt on one of the following conditions:
* An operator command

¢ A serious system error

¢ A HALT instruction

* Assertion of the HLT line

¢ Boot failure

Although users may employ the console program to develop software this

is not a goal of its implementation. The operator may put the system in an
inconsistent state by using console commands. The operation of the processor
in such a state is undefined.

4.3 Console Program ‘

This section discusses the operator interface to the firmware console program.

The console program operates an optional user-supplied terminal through the

Signetics 2681 Serial-Line Unit (SCN 2681 DUART) chip or its equivalent.
4.3.1 Entering the Console Program

The rtVAX 300 operates normally in program /O mode. The mode is set to
console I/O mode by one of the following methods:

o Kernel HALT occurs: the rtVAX 300 is running in kernel program mode, a
program executes the HALT instruction, and the default recovery action is
specified to halt.

* Boot operation fails and the default action is set for Boot/Halt, ‘

4-8 Firmware

The boot operation fails, and the default recovery action is set for
Restart/Boot/Halt.

The operating environment is severely corrupted: the processor forces a
processor restart when it detects one of several events indicating severe
corruption of its operating environment. The system firmware treats this
like a processor restart caused by a kernel mode HALT.

The system powers on: the boot register bits 2:0 are specified to be Halt, or
the boot switch is set for a boot option and the boot operation fails.

Boot fails for any reason.

External HALT the external HLT line to the rtVAX 300 is asserted at any
time. This line is typically connected to a user-supplied HALT button.

4.3.2 Compatible Console Interface
The rtVAX 300 ROM code includes console support similar to that supported
by the rest of Digital’'s VAX product line.

4.3.3 Entering and Exiting from Console Mode

Normal operation of the rtVAX 300 is in program I/O mode. The mode is set to
console I/O mode by one of the methods de .cribed in Section 4.2.

You issue the BOOT, START, or CONTINUE console command to exit from
console IO mode.

Caution

The operator can put the system in an inconsistent state by issuing
console commands. Processor operation in such a state is undefined.
If power fails, the rtVAX 300 processor enters the power-off state and
loses all context, that is, memory and register contents.

4.3.4 Console Keys
The rtVAX 300 console I/0 program responds to the following keys and signals:

Note

During execution of the XFER console command, data directed to and
from the console are interpreted as binary data and thus may not be
interpreted as described below.

Firmware 4-9

° ends a command line. No action is taken on a command until after ‘
it is terminated by a carriage return. A null line terminated by a carriage
return 1s treated as a valid, null command. No action is taken, and the
console reprompts for input. Carriage return is echoed as <CR><LF>.

e deletes the last character that the operator previously typed. The
previous character is erased from the screen and the cursor is restored to
its previous position.

. aborts processing of the current command if control has not been
passed to another program, such as the system-level diagnostics. The
console program echoes this key as "C.

. causes the console to ignore transmissions to its terminal until the ‘
next [Ct/0] is entered. This key is echoed as "0 when it disables output but
1s not echoed when it reenables output. Output is reenabled if the console
prints an error message or prompts for a command from the terminal.
Displaying a REPEAT command does not reenable output. When output is
reenabled for reading a command, the console prompt is displayed. Output
is also enabled by entering program I/O mode, and then pressing [Ctr/C].

* [CtlIQ] resumes output to the console terminal that has been stopped by
[CtS] Additional are ignored. [Ct/Q] and [Ctr/S] are not echoed. ‘

* [CtIS] stops output to the console terminal until [Cr/Q] is pressed. and
ct/Q] are not echoed.

. causes the console to echo “U<CR> and deletes the entire line. If[Ct/U]
is pressed on an empty line, it is echoed, and the console displays (>>>) to
prompt for another command.

« [CulR] causes the console to echo <CR> <LF> followed by the current command
line. This function can be used to improve the readability of a command
line that has been heavily edited. When is pressed as part of a ‘
command line, the console deletes the line, as it does with [CtriU].

° allows the system to enter console I/O mode upon receipt of the
BREAK signal; you must supply circuitry to assert the EXT HLT line if the
received signal goes into the spacing state for more than 100 ms. The SCN
2681 DUART does not support BREAK processing directly. (Chapter 6
gives a circuit example.)

4-10 Firmware

. 4.3.5 Console Command Syntax

The console program prompt is three right angles (>>>) on a new line.l
The following restrictions apply to console commands:

¢ They are limited to 80 characters. Characters entered after the 80th
character replace the last character in the buffer. Though characters so
lost may be displayed on the console display, they will not be included in
the actual command line.

¢ The command interpreter i5 case-insensitive. The lowercase ASCII
characters “a” through “z” are treated as uppercase characters.

. * The parser rejects characters with codes greater than 7F.5. These
characters are acceptable in comments.

° Type-ahead is not supported. Characters received before the console
prompt is displayed are checked for control characters, such as,

and [CtrIC], but otherwise discarded.

4.3.6 Console Commands
The rtVAX 300 console program supports the commands described in the

. following sections.
4.3.6.1 Boot

B[OOT] [1R5:]<DATUM:] [<device-name>[:]]

The console program loads an operating system. If the load is successful, the
operating system is started.

¢ Qualifier

The qualifier is of the form /<DATUM>, where <DATUM> is a hexadecimal
value passed as a longword in register five (R5) to the bootstrap program.

. This value is used as boot flags by the loaded code. An equivalent qualifier
takes the form /R5:<DATUM> for backward compatibility. Refer to the
specification of the loaded operating system for a detailed list of other
used flags. The rtVAX 300 system firmware interprets only bit 9 of this
longword. If bit 9 is set, the firmware immediately halts before transferring
control to the booted code. The rtVAX 300 system firmware uses none of
the other bits.

1 The character sequence is 0Dis, 0As6, 0D16, 3E16, 3E16, 3E16, 2016 (Which is «cr>, <Fs,
«CR>, >>>', «p>); this character string can be used by host software executing a binary
load on the special attached terminal port to determine when it may respond.

Firmware 4-11

¢ Device Name

The name of the boot device is passed to the bootstrap routine in register
zero (RO). The name is of the formn ddcu, where dd is a 2-letter device
mnemonic, ¢ is an optional 1-letter controller designator, and u is a 1-digit
decimal unit number. The console program accepts lowercase letters, but
converts the name to uppercase. A terminating colon on the device name
is acceptable, but not required; this character is not passed to the loaded
code.

Section 4.3.7 lists boot devices and their corresponding mnemonics.

4.3.6.2 Continue
C[ONTINUE]

The console I/O mode is exited. Operation returns to (or begins in) program
mode at the PC value either saved when console /O mode was entered or
entered by the operator using the DEPOSIT command.

Note

The interrupt stack pointer (ISP) must contain a valid virtual or
physical address of RAM memory for this command to work. Two
longwords are pushed on the interrupt stack. If the interrupt stack
contains an invalid address, the following message is displayed:

7?04 ISP ERR

4.3.6.3 Deposit
D[EPOSIT] [/<QUALIFIER>] <ADDRESS> <DATUM>

The specified datum is written to the specified address.
¢ Qualifiers
— Access (size) qualifiers

/B—byte
/W—word
/L—longword

— Address qualifiers

N—virtual memory
/P—physical memory
/I—internal register

4.-12 Firmware

/G—general-purpose register
/M-—machine register

~ Miscellaneous qualifiers

/N:<COUNT>—repeat count
/U—unprotect

In the absence of an access or address qualifier, the previous qualifier is
used. Specification of conflicting qualifiers is an error, and an appropriate
error message is displayed; the command is ignored.

The effect of miscellaneous qualifiers /U and /N does not persist beyond the
command in which they are typed.

The /U (unprotect) qualifier allows access to almost any address. Without
the /U switch, a protected deposit or examine can only access memory that

is reflected in the PFN map or physical addresses between 20000000 and
3FFFFFFF.

Address—The address is specified in hexadecimal. A missing address is
treated as a +. Supported symbolic addresses are as follows:

— *is the location last referenced in an examine or deposit operation.

— @ is the location addressed by the last location referenced in an
examine or deposit operation. This reference cannot be to a gen ral
register.

— + is the location immediately following the last location referenced in
an examine or deposit operation. For references to physical or virtual
memory spaces, the location referenced is the last address, plus the size
of the last reference (1 for byte, 2 for word. 4 for longword).

—~ - is the location immediately preceding the last location referenced in
an examine or deposit operation. For references to physical or virtual
memory spaces, the location referenced is the last address, minus the
size of the last reference (1 for byte, 2 for word, 4 for longword).

The following limited set of mnemonic addresses is supported:
ASTLVL AST level register
CADR Cache disable register

ESP Executive mode stack pointer
ICCS Interval clock control register
IPL Interrupt priority level register

Firmware 4~13

ISP Interrupt stack pointer

KSP Kernel mode stack pointer

MAPEN Memory management enable register
MSER Memory system error register

PGBR PO base register

POLR PO length register

P1BR P1 base register

P1LR P1 length register

PCBB Process control block base address register

PC Program counter
PSL Program status longword
R<n> General register (n = a decimal number 0 through 15)

SAVPC Saved PC register—read only, ignored on write
SAVPSL Saved PSL register—read only, ignored on write
SBR System base register

SCBB System control block base register

SiD System identification register

SIRR Software interrupt request register
SISR Software interrupt summary register
SLR System length register

SP Stack pointer

Ssp Supervisor mode stack pointer

TBCHK Translation buffer check register
TBIA Translation invalidate all register

TBIS Translation invalidate single register
USP User mode stack pointer

The rtVAX 300 system firmware maintains shadow copies of many
processor registers, because reference to the actual registers would
interfere with the operation of the rtVAX 300 firmware. Data accessible
only through their shadow copies are general registers RO through R15, the
PSL, and internal registers MAPEN, ICCS, SCBB, IPL, MSER, and CADR.
Access of any stack pointer may involve the current stack pointer (R14),
the shadow copy of the stack pointer, and the internal registers.

4-14 Firmware

' Notes

1. The shadow copy replaces the actual copy at console exit.

2. Upon entry of the ROM code, the IPR CADR is not correctly saved,
howsever, if the IPR CADR is changed by a DEPOSIT command, the
value added by the DEPOSIT command is restored.

* Datum~—The datum is specified as a hexadecimal number. A missing
datum is treated as a zero entry.

. 4.3.6.4 Examine
E[XAMINE] [/<QUALIFIER>] [<ADDRESS>]
The contents of the specified address are displayed in hexadecimal.
* Qualifiers—Supported qualifiers are the same as the DEPOSIT command.

e Address—The address specification is the same as the DEPOSIT command

4.3.6.5 Find
F[IND] [<QUALIFIER LIST>]

. The console searches the system memory starting at physical address zero
for a page-aligned 128K-byte section of main memory or a restart parameter
block (RPB). If the segment or block is found, its address plus 512 is left in
the SP; otherwise, an error message is issued, and the contents of the SP are
unpredictable. If no qualifier is specified, /MEM is assumed.

Valid qualifiers are:
¢ /MEM-—Search memory for a page-aligned 128K-byte segment of good

memory.
. * /RPB—Search memory for a restart parameter block. The search leaves

memory unchanged. SP contains the address of the RPB+2004¢.

4.3.6.6 Halt
H[ALT]

A halt message is displayed, followed by the console prompt.

Firmware 4-15

4.3.6.7 Help .

HE[LP]

Supported console commands are listed along with supported parameters and
available options. Figure 4-5 illustrates the Help screen.

Figure 4-5 Help Display

o

>>> help W

DEPOSIT [{ /B | /W | /L }] [{ /B } /v | /I }] [/V] [/N:<n>}
[{ <addr> | <sym> | + | - | * | @) [<datum>]]

EXAMIRE [{ /B | /W { /L }) [{ /P | /V | /I }) [/U] [/N:<n>]
[{ <addx> | <sym> | + | = | * | @ }]

SET BOOT <ddcu>

SET BFLG <bflg>

SET HALT <0-3>

SET TRIG <0=1>

SHOW (BOOT | BFLG | ETHER | HALT | MEM | TRIG)
INITIALIZE

UNJAM

BOOT [/R5:)[<bflg>] (EZA0 | PRAO | PRBx | C8Bx}
CONTINUE

START <addr>

REPEAT <cmd>

TEST <n>

FIND [{ /MEM | /RPB }]

XFER <addr>» <cnt>

HALT

HELP

>> -
- i,
MLO-006357

The Help display is intended to aid the user and does not provide a complete
description of the commands.

4-16 Firmware

. 4.3.6.8 Inltialize

I[NITIALIZE]

A processor initialization is performed. The following registers are set (all
values in hexadecimal):

PSL 041F0000
ASTLVL 4

SISR 0

1CCS 0
MAPEN 0

CADR 0

PC 200

ISP 200

All other registers are unpredictable.

4.3.6.9 Repeat

4.3.6.10

R[EPEAT] <COMMAND>

The console program repeatedly executes the specified command. Repeated
execution of a command stops when the operator types or when any
abnormal circumstance occurs. Any console command may be specified for the
command.

Set
SE[T] <PARAMETER-NAME> <VALUE>

Note

All saved values are lost on power failure or reset.

Set the console parameter to the indicated value. The following console
parameters and their acceptable values are defined:

o BOOT—Sets the default boot device. The value must be a valid boot device
name, as specified in Table 4-9 in the device field.

¢ BFLG—Sets the default boot flags. The value must be a hexadecimal
number of up to eight characters. The value that is entered is not checked
for validity.

Firmware 4-17

HALT—Sets the default halt action and halt switch codes. This code
specifies the default action the console should take for all error halts and
halt instructions.

TRIG—Sets remote trigger to be enabled or disabled. This allows a remote
system to request a local boot of the system. If the Ethernet self-test has
failed, then this command is illegal. The power-on condition for this is
determined by BOOT<3>.

4.3.6.11 Show
SH{OW] <PARAMETER-NAME>

The indicated console parameter is displayed.

BOOT—Displays the default boot device as defined above. If no boot device
has been specified, the field appears as four dots (. ...).

BFLG—Displays the default boot flags. If no default flags have been
specified, then 00000000 is displayed.

ETHER—Displays the hardware Ethernet address. The Ethernet address
ROM is validated and is displayed as ID YY-YY-YY-YY-YY-YY, where YY
is a valid 2-digit hexadecimal number. If the Ethernet address ROM is
invalid, then ID XX-XX-XX-XX-XX~XX is displayed to indicate that the
Ethernet address ROM is invalid.

HALT—Shows the default halt action code.

MEM-—Displays information concerning the rtVAX 300 system memory.
The format of the display is:

>>> SHOW MEM

00400000
00000000
003FD400:003FFFFF

The first 8-character field displays the total amount of memory in the
system, including the console data structures. The second 8-character field
shows the first address of 128K bytes of contiguous memory. The final line
of the display shows the address range of the area of memory that is not
available to the operating system. This includes the area of memory that
is reserved for use by the console program. This fieid will be repeated as
many times as needed to display all address ranges that are not available
to the operating system.

4-18 Firmware

4.3.6.12

4.3.6.13

¢ TRIG~—Shows the state of r- mote trigger enable. If the returned value is 0,
remote triggers are not allowed, if 1, remote triggers are allowed.

Note

The symbols used in the SET and SHOW commands must be entered
as shown; however, they can be entered in lowercase and uppercase.
The spelling of each symbol is critical.

Start
S[TART) <ADDRESS>

The console starts executing instructions at the specified address. The address
is treated within the context of the user’s memory management mode (physical
or virtual).

If no address is given, the current saved PC is used. The START command is
equivalent to a DEPOSIT PC followed by a CONTINUE. No initialization is
performed.

Note

The interrupt stack pointer (ISP) must contain a valid virtual or
physical address of RAM memory for this command to work. Two
longwords are pushed on the interrupt stack. If the interrupt stack
contains an invalid address, the following message is displayed:

204 ISP ERR

Also note that the ISP is undefined after a power-up or reset.

The INITIALIZE command can be used to initialize the ISP and the
rest of the processor.

Test
T{EST] <PARAMETER1> [<PARAMETER2>]

This command invokes extended diagnostics and utilities. Tests 11 through
718 are onboard power-up tests, tests 8;5 through E;g are user-supplied power-
up tests. (Refer to Table 4-5 for a list of test numbers and their meanings.)

Firmware 4-19

4.3.6.14 Unjam
UINJAM]

This command provides a system reset. The status of all devices returns to a
known, initial stat~—that is, registers are reset to 0, and logic is reset to state
0.

This operation is implemented on the rtVAX 300 by invoking the hardware
IORESET, and calling UNJAM routines for the Ethernet interface and the

console serial-line unit, if present. The user is responsible for decoding the
IORESET processor register to produce a reset signal and for using this signal

to reset the user’s devices. Any device that may interrupt the rtVAX 300 at

IPL 164¢ or IPL 17, must be reset in this fashion. The user cannot reasonably .
expect to continue from an UNJAM command.

When you connect the rtVAX 300 to a bus, such as the VME bus, it 1s useful for
the rtVAX 300 to be able to reset that bus and its peripherals under program
control. The console UNJAM command provides this facility, because it writes
to IPR 37,4, the /O bus reset register. It is not implemented within the rtVAX
300 processor module.

However, if you need an external bus reset signal, external board-level logic
should decode the external-internal processor register write cycle to IPR 374
and assert the I/O bus reset line when any write is performed to that register
location. Any user devices that may interrupt at IPL 16,¢ or 17;5 must
implement IORESET, and the device must disable all interrupts upon receiving
IORESET.

There are no bit assignments for the external bus reset I/O register. The /O
bus reset should be performed after any write to IPR 374¢.

4.3.6.15 Transfer
X[FER] <ADDRESS> <COUNT> <CR> <CHECKSUM> <DATA STREAM> <CHECKSUM>

This command transfers binary data to and from physical memory. It is
intended for use only by host software through an attached console terminal,
serial port Channel A. Do not expect to be able to type this command from
a keyboard. Note that XON/XOFF line spacing is disabled during the binary
transfer: these characters are treated as binary data when they occur in the
binary data stream.

4-20 Firmware

address—Specifies the physical address that the binary data are
transferred to or from. It is specified as a hexadecimal number.

count—Specifies the number of bytes to be transferred. The count is
expressed as an 8-bit hexadecimal number. If the high-order bit of the
count longword is 1, the data are transferred (read) from physical memory
to the console terminal; if it is 0, the data are transferred (written) from
the console terminal to physical memory.

CR-—~Carriage return

checksum-—Specifies the two’s complement checksum of the command
string or data stream. The checksum is one byte of data expressed as a
2-digit hexadecimal number.

data stream—"Count" bytes of binary data.

4.3.6.16 ! (Comment)
! <COMMENT>

<COMMAND> ! (comment)

The exclamation point prefixes a comment, wherever it appears on the line; the
remainder of the line is ignored.

4.3.7 Supported Boot Devices

The boot device names that you can use to boot the rtVAX 300 processor are as
follows:

1
2.
3
4.
5
6
7

EZA(0—Ethernet

PRAO—ROM in memory space, starting at physical address 10000000
PRBO—ROM in /O space, starting at physical address 20200000
PRB1—ROM in /O space, copied to system memory

CSB0O—Channel B on SCN 2681 DUART at 1200 bps
CSB1—Channel B on SCN 2681 DUART at 2400 bps
CSB2—Channel B on SCN 2681 DUART at 9600 bps

If no device name and/or qualifiers are given on the BOOT command, the
console uses the value determined by BOOT<2:0>.

Firmware 4-21

4.3.8 Console Program Messages

Error messages consist of a 2-digit hexadecimal number prefaced by a question
mark and an abbreviated text message. Error message numbers are in the
range 00,5 through 7F;¢.

Section 4.5 discusses and illustrates startup messages that can be displayed
during power-on initialization. Table 4-2 lists and describes firmware error

messages.

Table 4-2 Firmware Error Messages

Codes Message Text Description

02 702 EXT HLT The external HLT line was asserted.

04 704 ISP ERR The interrupt stack was inaccessible or invalid
during the processing of an interrupt or exception.

05 705 DBL ERR1 A machine check occurred while the processor was
processing a normal exception.

06 706 HLT INST A kernel mode HALT instruction was executed.

07 707 SCB ERR3 SCB interrupt vector bits <1:0> equaled 3.

08 708 SCB ERR2 SCB interrupt vector bits <1:0> equaled 2.

0A 76A CHM FR ISTK A change mode instruction was executed when
PSL<IS> was set.

0B ?70B CHM TO ISTK The exception vector for the change mode had bit 0
set.

0C 70C SCB RD ERR A hard memory error occurred while the processor
was trying to read an exception or interrupt vector.

10 710 MCHK AV An access violation or invalid translation occurred
during the processing of a machine check.

11 711 KSP AV An access violation or invalid translation occurred
during the processing of an invalid kernel stack
pointer exception.

12 ?12 DBL ERR2 A machine check occurrad while the processor was
trying to report a machine check.

13 713 DBL ERR3 A machine check occurred while the processor was
trying to report an invalid kernel stack pointer
exception.

19 719 PSL EXC5 PSL<26:24> = 5 on an interrupt or exception.

4-22 Firmware

(continued on next page)

Table 4-2 (Cont.) Firmware Error Messages

Codey; Message Text Description

1A ?1B PSL EXC6 PS1.<26:24> = 6 on an interrupt or exception.

1B ?1B PSL EXC7 PS1.<26:24> = 7 on an interrupt or exception.

iD 71D PSL EXC7 PSL<26:24> = 5 on an REL

1E ?1E PSL EXC7 PS1.<26:24> = 6 on an REL

1F ?1F PSL EXC7 PS1L<26:24> = 7 on an REL

21 721 CORRPTN Console memory corrupted.

. 22 722 ILL REF The requested reference would violate virtual
memory protection. the addres- is not mapped, the
reference is invalid in the specified address space, or
the value is invalid in the specified destination.

23 ?23 ILL CMD The command string cannot be parsed.

24 724 INV DGT The number has an invalid digit.

25 7225 LTL The command was too large for the console to buffer.
The message is issued only after the receipt of the
terminating carriage return.

26 726 ILL ADR The specified address falls outside the limits of the
addressing space.

27 727 VAL TOO LRG The specified value does not fit in the destination.

28 728 SW CONF Switches conflict.

29 729 UNK SW The switch is unrecognized.

2A 72A UNK SYM The symbolic address in the EXAMINE or DEFOSIT
command is unrecognized.

2B 72B CHKSM The command or data checksum on the XFER

. command is invalid.

2C 72C HLTED The operator entered a HALT command.

2D 72D FND ERR The FIND command failed to find the RPB or 64K
bytes of good memory.

2E 722E TMOUT During an XFER command, data failed to arrive in
the expected time.

2F 72F MEM ERR A parity or other memory error occurred.

(continued on next page}

Firmware 4-23

Table 4-2 (Cont.) Firmware Error Messages
Codeys Message Text Description

30 730 UNXINT Unexpected interrupt or exception. For some
interrupts, this message is followed by the PC,
PSL, and interrupt vector.

83 BOOT SYS This is the bootstrapping message.

84 FAIL This is the general failure message.

85 RESTART SYS This is the restarting system software message.
86 RMT TRGGR This is the remote trigger request message.

4.3.9 Console Device

The console program operates an optional attached terminal connected through
a serial port. The attached terminal may be an ASCII video terminal, for
example, a VT220 or VT320, or a host computer sunning special software.

The existence of a console is determined by the Mllowing test performed at
power-on:

* Check the physical address 20100000 frr a nonexistent memory errar
(NXM) timeout. If a timeout occurs, 7.0 cons~!: i~ ~vailable for use.

e The SCN 2681 DUART device .s .nitialized, and the console port (Channel
A) is initialized to 9600 bps, no varity, 8 bits/character, and 1 stop bit.

¢ Channel B is not initialized at this time.

e No check is made to determine wi. *L.r ¢ device is on the other end of the
cable.

4.3.10 Capabilities of Console Terminals

Console terminals for the rtVAX 300 must support at least USASCH
graphic character encoding. The terminal may optionally support the DEC
Multinational Character Set, which is a superset of USASCII. National
replacement character sets are not supported.

Characters normally transmitted by the console program are the USASCII
graphic characters 21,4 ('} through 7E;¢ (-}, the space character 2044, and
control characters 0D;5 (CR), 0A;g (LF}, and 08,4 {BS, a backspace character}.

4-24 Fimware

. 4.3.11 Console Entry and Exit

The system firmware must do several things when it enters and exits from
console mode to ensure that the console window is displayed correctly.

Attached Termina's When present, the attached terminal on serial port

Channel A is expected to be operable at all times. Console firmware does not

attempt to alter the state of these terminals or the serial port through which

they are connected. At entry to the console mode, firmware calls the operating

system’s SAVE routine (SCR$A_SAVE_CONSOLE), if supplied, and the console

prompt is displayed; at exit, firmware calls the operating system’s RESTORE
. routine (SCR$A_RESTORE_CONSOLE), if supplied.

Resident irmware sends several characters to the attached console terminal at

entry to console mode. These attempt to place the terminal in a known mode
and include:

* XON (11;4) enables terminal.

e ESC\ (1By, 5Cyg) turns off special text modes (ReGIS, SIXEL, etc).
s ESC\4i (1Byg, 5Cy¢, 3416, 6916) directs output to screen.

. 4.4 Entity-Based Module and Ethernet Listener

The Ethernet maintenance operation protocol (MOP) module supports MOP
Version 3 and Version 4 functions. The hardware device type of the rtVAX 300
in the MOP SYSID hardware code field is 105.

The Ethernet listener polls the Ethernet subsystem for receipt of packets.
Once a packet has been received, the listener code inspects the packet protocol
in order to determine the actions to take. Important protocols are as follows:

e MOP loopback packet (protocol 90-00) for Ethernet connectivity testing.
The listener forwards or loops back a MOP loopback packet.

* DECnet SYSID request packet (protocol 60—02, type 5) for sizing the
network. The listener generates a DECnet SYSID.

¢ Ethernet counters request packet (protocol 60-02, type 9) for checking the
performance of the system on the Ethernet. The listener generates an
Ethernet counters packet.

DECnet bootstrap trigger packet (protocol 6001, type 6) for forcing the
rtVAX 300 system to enter its bootstrap sequence. Remote trigger must be
enabled, in order to initiate the bootstrap process. The listener processes a
. down-line loaded system image.

Firmware 4-25

¢ DECnet assistance volunteer packet (protocol 60—01, type 3) for the case
where the console program has failed an attempt at booting over the
Ethernet.

The listener is established when an initialization routine sets up a pointer

in the scratch RAM area to the listener’s starting address. The initialization
routine is established when the Ethernet subsystem self-test passes and sets
up the pointer in scratch RAM to the initialization routine’s starting address.

The initialization routine is called by the UNJAM routine, or at power-up

time prior to the console program startup, unless the MOP flag is set to 0.

This routine establishes the Ethernet controller data structures (transmit and
receive descriptor rings, data buffers) and some scratch area for the listener to .
maintain pointers and counters.

If the protocol is one of those described above, the listener code takes the
appropriate action. If the protocol is unsupported, for example, DECnet
routing updates, the packet is disregarded.

4.5 Startup Messages

The console displays messages and menus, some during power-up and others
when the operator issues commands at the console terminal. The latter depend '
on entries in the console memory.

4.5.1 Power-On Display

This display is intended to give a complete, but abbreviated, account of the
results of the power-on initialization. The display includes the board name and
firmware version, a hexadecimal countdown list of test modules (F through 1)
with a quick summary of the status of each, and an expanded status report

of those test modules for which error or status information is available. The
following example shows a sample power-on display:

E...D...C...B...A...9...8...
rtVaX 300 Vvn.m

>>>
where:

n is the major version number
m is the minor version number

4-26 Firmware

In the countdown line, each test number is followed by a status character and
two periods. Table 4-3 lists the status codes and their meanings.

Table 4-3 Countdown Status Codes
Code Meaning

Test completed without fatal error
? Fatal error detected in test
Test determined option is missing

* The return status of a user-supplied test was not 1 (test passes), O (test failed),
or -1 (option not present)

4.5.2 Boot Countdown Description

When the rtVAX 300 is loading an operating system, the LED display and
the console display, if they exist, indicate the progress of the boot. Table 44
explains the meanings of the LED displays and console messages.

Table 44 Boot Countdown Indications

LED Console

Display,s Message Meaning

02 2. The bootstrap code has started; no valid load host or ROM
boot block has been located yet.

01 1. For ROM boots, the ROM boot block has been located, and
if the ROM is to be copied to memory, this procedure has
started.

For Ethernet and serial line boots, a host system has offered
to down-line load an operating system to the rtVAX 300 and
load of the operating system has started.

00 0... The load of the operating system from the host or copying

and verifying of ROM ie complete, and control is being
transferred to the loaded operating system.

When the system is booted, a positive indication of boot status is returned in
the processor LED display and on the console terminal, as follows:

¢ The name of the boot device appears on the console terminal.

* The value 2 appears on the console terminal and th . processor LEDs to
indicate that the bootstrap device is about to be accessed.

Firmware 4-27

® The value 1 appears on the console terminal and the processor LEDs to
indicate that the rtVAX 300 firmware has found the secondary bootstrap
image on the boot device, and is now reading the image into physical
memory

— For ..OM boots, the ROM boot block has been located and copied to
memory, if the boot device was PRB1.

— For Ethernet and serial-line boots, a host system has volunteered and
is down-line loading the rtVAX 300 system.

e The value 0 appears on the console terminal and the processor LEDs to
indicate that the rtVAX 300 resident firmware is now transferring control
o0 the operating system or secondary bootstrap.

A typical console display during the boot process is:

-EZAD
2..1..0..

This illustrates a boot from the Ethernet. Other boot devices would be
displayed, depending on the setting of the user boot register.

4.5.3 Hait Action

The operator may inspect and possibly modify the console fields used during
processor restarts by using the console SET/SHOW HALT command, for
example:

>>> SET HALT
2 755 3

>>>

See Section 4.2.1 for more information.

4.5.4 Boot Device

The operator may inspect the console field used for the default boot device and
modify it by using the console SET/SHOW BOOT command, for example:

>>> SET BOOT

EZAQ 7 >>>

>>>

See Section 4.2.2 for more information. This field is initialized from the boot

register upon reset or power-up. When there is no default for the boot device,
it is displayed as four periods. To clear the field, enter a period at the prompt.

428 Firmware

. 4.5.5 Boot Flags

The operator may inspect and possibly modify the console field used as default
boot flags for system image boot by using the console SET/SHOW BFLG
command, for example:

>>> SET BFLG
00000000 2 »>> 10

>>>

See Section 4.3.6.1 for information on the BOOT command. This field is zeroed
upon power-up or reset.

4.6 Diagnostic Test List

Tests are listed in the order they are executed upon restart. Tests are executed
implicitly by a power-up/restart condition or explicitly by a console TEST

nn command, where nn is the hexadecimal test number. Table 4-5 lists
LED-displayed test numbers and their meanings.

Each test has the following features:

o When called from the conscle, it supports loop-on-test, loop-on-error,
halt-on-error, and continue-on-error.

e It has two levels of subtests:
— The functional unit of the device under test

— The particular function of the subunit being tested

Table 4-5 LED Test Number Code List
Test LED Description

No. Code,s
0 Initialization test. This test is not user-selectable.

FF Power-up value; this value is set on power-up. It indicates that there
is power on the module. If the display remains at this value, the
rtVAX 300 is unable to execute the first few instructions correctly.

FE The first few instructions have completed. The rtVAX 300 can write
to the display register.

FD Special value u. -'d for the tVAX 300 HALT test in the tester box.

This value is used only when the rtVAX 300 test box is used.

(continued on next page)

Firmware 4-29

Table 4-5 (Cont.) LED Test Number Code List

Test LED Description
No. Codes
FC Special value used for the tVAX 300 HALT test in the tester box.
This value is used only when the rtVAX 300 tester box is used.
FB The actual presence of the LED display is verified.
F8 Value set when user initialization ROM entry point is called.
F7-F1 Reserved for use by the user’s initialization ROM,
FoO The preliminary initialization is completed. Basic rtVAX 300
instructions work, and it is possible t¢ communicate off the chip.

1 rtVAX 300 ROM verification, LED tests, and checksum. Verify the
ROM checksum, that the high and low bytes of ROM are the same
version, and that ROM test patterns are correct. The LED registers
are verified. This may be the only means to display errors.

EF The ROM high and low byte identification words are incorrect.
EE ROM version numbers do not match.

ED ROM test patterns are incorrect.

EC ROM checksum is incorrect.

EO0 ROM tests exited successfully.

2 Memory test codes DF, DE, DD, and D1 are displayed by the scratch
memory tests that find and verify RAM used by ROM code and tests
that locate, verify, and initialize RAM for use by the console data
structures. The RAM is tested with . bit pattern test and an address
test and cleared to 0.

DF No memory present.

DE Memory could not be cleared.

DD Sizing memory.

D8 Full memory test—clearing memory.

D7 Full memory test—memory addressing test.
D6 Full memory test—test each page of memory.
D5 Full memory test—test page boundaries.

D1 Sizing memory completed.

Do Scratch memory initialized and is usable.

4-30 Firmware

(continued on next page)

Table 4-5 (Cont.) LED Test Number Code List

Test LED Description

No. Code¢

3 Console channel routine, channel existence, and verification. Check
to see if a console device responds to the console address. The consovle
will be used after this point if it exists and is functional.

CF Console not found. All output directed to the console is discarded
(not necessarily a failure).

CE Console detected.

C9 Initialization of Ethernet coprocessor after self-tests.

cs UNJAM function after self-tests.

Cc7 Performing automatic restart/boot/halt action according to boot
register.

4 Not implemented.

5 Floating-Point Accelerator test. The different groups of floating-point
instructions, including F.. D-, G-float adds, subtracts, multiplies,
comparisons and divides are tested and verified with known results.
This verifies the operation of the CFPA.

AF MOVF instructions.

AE MNEGF instructions.

AD ACBF instructions.

AC ADDF2/ADDF3 instructions.

As CMPF instructions.

AA CVTFD/CVTFG instructions.

A9 CVTFB/CVTFW/CVTFL/CVTRFL instructions.
A8 CVTBF/CVIW /CVTLF instructions.
A7 DIVF2/DIVF3 instructions.

A6 EMODF instructions.

AS MULF2/MULFS3 instructions.

A4 POLYF instructions.

A3 SUBF2/SUBF3 instructions.

A2 TSTF instructions.

AO CFPA tests passed.

(continued on next page)

Firmware 4-31

Table 4-5 (Cont.) LED Test Number Code List
Test LED Description

No. Codey

6 Interval timer test. Verify the on-board interval timer interrupt
signal exists, does generate interrupts when enabled, and is accurate.

9F Interval timer interrupts when disabled via IPL.

9E Interval timer does not interrupt.

9D Time between interrupts is too short or is not consistent.

9C Interval timer interrupts when disabled via ICCS IPR. ‘
90 Interval timer tests passed.

7 Ethernet test. Tests that the Ethernet interface is functional and
that the Ethernet network ID ROM contains a valid network address
and correct checksum. Ethernet tests consist of the Ethernet self-
test, an Ethernet sanity test, internal and external loopback testing
of the Ethernet, address filter testing and several others. This test
determines if the Ethernet can be used for booting. This is the final
self-test.

8F Ethernet sanity test failed.

8E ROM network ID address test failed.

8D Ethernet internal loopback failed.

8C Ethernet collision test failed.

8B Multicast addressing test failed.

8A CRC test failed.

89 Frame type test failed.

88 Virtual mode test failed.

80 Ethernet tests passed. ‘

The remaining tests are reserved for the user-application-specific test ROMs and are
not part of the rtVAX 300.

8 7F-70 User-supplied Test 8.
9 6F-60 User-supplied Test 9.
A 5F-50 User-supplied Test A.

{continued on next page)

4-32 Firmware

Table 4-5 (Cont.) LED Test Number Code List
Test LED Description

No. Codey;

B 4F-40 User-supplied Test B.
C 3F-30 User-supplied Test C.
D 2F-20 User-supplied Test D.
E 1F-10 User-supplied Test E.

The following routines are in the rtVAX 300:

- System boot. This is not a test. If other tests pass, the system either
boots or enters console mode, as determined by the boot register

setting.

05 System is awaiting or executing a console command.

03 Console Restore Procedure, called before control is transferred to
user’s code, by CONTINUE command.

02 Attempting boot.

01 Boot host found, or ROM boot block located.

00 Control passed to down-line loaded code or external ROM code.

Once control is passed to the loaded code, the state LEDs will have meaning only as
defined by that code.

Caution

User code may modify the LED display without affecting the system
ROM code; however, such modifications may cause confusion, if the
user believes that the system ROM code caused the status.

Firmware 4-33

4.7 System Scratch RAM

The rtVAX 300 system firmware acquires a numi-er of pages of RAM memory at
power-on initialization. These pages are marked “bad” in the memory bitmap
to prevent higher-level software from modifying their data indiscriminately.
Table 4-6 lists the offsets in the scratch RAM to parameters and variables of
interest to operating system or option ROM developers.

Table 4-6 Scratch RAM Ofiset Definitions
Offsety Name

00 Console program mailbox

01 Console program flags

02 Default boot device register

03 Reserved

04 SCR$A_RESTORE_CONSOLE
08 SCR$A_SAVE_CONSOLE

Figure 4-6 shows the layout of the console mailbox register; Table 4~7
describes its fields. Figure 4-7 shows the layout of the console program flags;
Table 4-8 describes its fields. Figure 4-8 shows the layout of the default boot
device register; Table 4-9 describes its fields.

Figure 4-6 Console Mailbox Register (CPMBX) Offset 004¢

07 06 05 04 03 02 Q1 00
B i
TRIG | RSV HLT_SWX RP | BP HLT_ACT
i 1
MLO-G06517

4-24 Firmware

Table 4-7 Console Mailbox Register Fields

Fleld Description

TRIG A 1-bit field that indicates that remote triggers are allowed. If this bit is
get, remote trigger is allowed.

This field is initialized upon power-up/reset to the value of the remote
trigger bit of the boot flags byte after the user’s initialization routine (if
any) is called.

RSV Reserved.

HLT_SWX A 2-bit halt switch field used to encode permanently the desired console
action when a processor halt occurs (except externally generated halts
brought about by the assertion of the HLT L line). The action taken is
indicated below:

0 — Restart; if that fails, boot; if that fails, halt.

1 — Restart; if that fails, boot; if that fails, halt.

2 — Boot; if that fails, halt.

3 — Halt.

This field is initialized upon power-up/reset to the value 2 (BOOT)
before the user’s initialization routine (if any) is called. This field

may be inspected and modified by using the SET/SHOW HALT console
cornmands.

At entry to the console, this value is moved to the HLT_ACT field, except
for externally generated halts.

RIP A 1-bit field that serves as the restart in progress flag. The bit is set

when the console attempts a restart. If it is already set, the restart
attempt is abandoned, an error message is displayed, and a boot is
attempted.

This field is cleared at power-up. It is also cleared at entry to the console
(halt) program, after any attempts at restart and/or boot.

The user application must clear this bit when the Ethernet coprocessor’s
Boot Message Enable mode is to be used.

(continued on next page)

Firmware 4-35

Table 4-7 (Cont.) Console Mallbox Register Fields
Fleid Description

BIP A 1-bit field that serves as the bootstrap in progress flag. The bit is set
when the console attempts a cold restart. If the bit is already set, the
bootstrap attempt is abandoned, an error message is displayed, and the
Console (halt) program is executed.

This field is cleared at power-up. It is also cleared at entry to the console
(halt) program, after any attempt to boot.

The user application must clear this bit when the Ethernet coprocessor’s
Boot Message Enable mode is to be used.

HLT_ACT A 2-bit field that temporarily encodes the action that the console is to
take when the next processor halt occurs (except for externally generated
halts, such as BREAK and assertion of the HLT L signal). The action
taken is as described for HLT_SWX above.

This field is copied from the HLT_SWX field at power-up, upon execution
of the SET/SHOW HALT console commands, and at entry to the console.

Figure 4-7 Console Program Flags

07 06 Q5 04 03 Q2 o1 00
T T ! T T
Reserved to Console Code pisp SLuU
| | 4 1 1
MLO-004504

Table 4-8 Console Program Flags Fields
Field Description

DISP A 1-bit field used by the console code to determine if the hexadecimal display
at address 201FFFFE is present. If the bit is set, that address responded,
and the display is assumed to exist. If the bit is clear, there was no hardware
response to that address.

User-supplied tests and booted images may test this bit to determine if the
display register exists.

This field is initialized at every entry to the console program.

(continued on next page)

4-36 Firmware

Table 4-8 (Cont.) Console Program Flags Fields

Field

Description

SLU

A 1-bit field used by the console code to determine if the SCN 2681 console
DUART at address 20100000 is present. If the bit is set, the address
responded and preliminary tests determin.~d that the console DUART was
usable. If the bit is clear, there was no harlware response to that address.

User-supplied tests and booted images may test this bit to determine if the
console DUART is present.

This field is initialized at every entry to the console program.

Figure 4-8 Default Boot Device Register (EOOTDEV)

07

06

05

04

03

02

[00

T T
Reserved
1 1

MEMTST

Res.

A

i

BOOT
i

MLO-004505

Firmware 437

4-38

Table 4-9 Detault Boot Device Register Fields

Fleld Description

«2:0> A 3-bit field used to determine the default boot action of the rtVAX 300 when
it executes a boot sequence. This field is temporarily overridden by a BOOT
command with an explicit device specified. This field is initialized from the
boot register at power-up or reset and may be modified by software control.

Possible field meanings are as follows:

BOOTDEV Device Boot Action

000 No boot performed; system enters or remains in
HALT mode.

001 PRAO Boot from ROM in system memory space. The
firmware searches for a boot block starting at
physical address 10000000 every 16K bytes until
it finds the boot block or has reached the address
1FDFCO000.

010 PRBO Boot from ROM in /O space. The firmware
searches for a boot block starting at physical
address 20200000 at each 512 byte boundary, until
it finds the boot block or has made 256 attempts.

011 PRB1 Boot from ROM in I/O space after copy. The same
action as the PRBO boot is taken, except the
contents of ROM are copied into RAM memory
address before control is transferred, and then
control is transferred to the RAM copy.

100 CSBO DECnet DDCMP boot. Channel B on the SCN 2681
is initialized to 1200 bps, and a DDCMP MOP load
function is executed. See the DDCMP specification
for more details. The SCN 2681 console DUART
must be supplied by the user.

101 CSB1 DECnet I:DCMP boot. Same as CSBO, except that
Channel B is initialized to 2400 bps.

110 CSB2 DECnet DDCMP boot. Same as CSB0, except that
Channel B is initialized to 9600 bps.

111 EZAO Boot from Ethernet. The standard MOP protocol
for Ethernet loads is used.

<3> Reserved.

Firmware

(continued on next page)

Table 4-9 (Cont.) Default Boot Device Register Fields
Fleld Description

<4> Set if memory test is to be performed on power-up; cleared when test is not to
be performed.

<7:5> Reserved.

4,71 SCR$A_SAVE_CONSOLE

Scratch RAM contains the longword physical address of a save routine supplied
by the operating system. This routine is called as the console program enters
console mode. The routine gives the operating system the opportunity to save
the current state of hardware that may be obliterated by the console device and
to ensure that the console device hardware is in an operable state (as discussed
in Section 4.3.11 and shown in Table 4-6). This routine is called with a JSB
instruction at IPL 1F;4 in kernel mode with memory management disabled. A
value of 0 in this field implies that no routine has been provided, and no call
is made in this case. The console program does not wait for the hardware that
is used by the console device to complete its current operation (become stable)
befare calling this routine. This field is zeroed at power-up.

4.7.2 SCR$A_RESTORE_CONSOLE

This is the longword physical address of a restore routine supplied by the
operating system. This routine is called as the console program exits from
console mode. The routine gives the operating system the opportunity to
restore the original hardware state when the console program no longer needs
to use the console device. This routine is called with a JSB instruction at IPL
1F1g in kernel mode with memory management disabled. A value of 0 in this
field implies that nc routine has been provided; no call is made in this case.
This field is zeroed at power-up.

4.8 User-Defined Board-Level Boot and Diagnostic ROMs

An optional, user-defined initialization routine and up to seven user-defined
self-test routines can be located in user ROM. This 32-bit-wide user ROM is
located at a starting address of 20080000 of physical /O space. This ROM
is optional and is not necessary for the normal operation of the firmware
initialization and self-test routines.

Firmware 4-39

On power-up, the firmware runs preliminary self-tests and then checks to see '
if a ROM exists at location 20080000. If a ROM responds to that address,

the console program checks for a user-supplied ROM initialization routine in

user ROM before executing the full self-tests. If the routine is found, the ROM
initialization routine is called.

Once the rtVAX 300 firmware regains control from the user ROM initialization
routine, the rtVAX 300 completes its self-test.

If the ROM exists at location 20080000, it is checked again for user-supplied
self-test routines; these routines are executed, and the system attempts to boot
or to enter console mode, depending on the setting of the BOOT<2:0> lines. .

The longword at ROM address 2008001C contains the address of the user’s
initialization procedure. The seven longwords starting at ROM address
20080020 contain the physical addresses of the seven test routines. The
physical address of these routines must be in the range of 20080040 to
200FFFFC, or be 0. A value of 0 for the physical address indicates that this
routine does not exist. Figure 4-9 shows the layout of this ROM. Refer to
Appendix D for a template of these routines.

The CALLG/CALLS instruction is used to call the initialization and test
routines, and the RET instruction to return from them. You must follow the
VAX calling standard and therefore save registers R2 to R11. If you use R2 to
R11 in the routine, specify them in the procedure entry mask. Registers R12 to
R15 are specially handled by CALLX/RET and need not concern users writing
code according to the standard. The procedures are called at IPL 1F;¢ with
memory mapping disabled.

4.8.1 Optional User Initialization Routine

Routines in the initialization ROM can initialize any of the user-supplied

devices to a known state and use the interrupt stack for variable storage. The

only requirement is that the processor context be restored as described in the ‘
VAX calling standard after these routines exit.!

* The user’s devices are optionally placed in a known state before the
self-test is run.

¢ The console mailbox can optionally be modified.

! Registers R2 to R15, the interrupt stack, and all IPRs must be preserved. The VAX ‘
Architecture Reference Manual describes this standard.

4-40 Firmware

Figure 4-9 User Boot/Diagnostic ROM

200FFFFF

20080040
2008003C
20080038
20080034
20080030
2008002C
20080028
20080024
20080020
2008001C
20080018
20080014
20080010
2008000C
20080008
20080004
20080000

31

16,15

Board Level Initialization Code and
Diagnostics Testing Code.

Reserved, Mustbe O

Ptiysical Address of Test # E

Physical Address of Test# D

Physical Address of Test#C

Physical Address of Test#B

Physical Address of Test# A

Physical Address of Test#9

Physical Address of Test # 8

Physical Address of Init Code

Reserved, Mustbe O

Reserved, Mustbe O

Any Value

Any Value

Must be 20202020,

ROM Byte Nuimber (03020100,,)

Any Value

Must be 3101,

31

4.8.2 Input Parameters

The user-defined initialization routine is called with three parameters:

e Parameter 1 (AP+4) is the address of the console mailbox.

1€ 15

LED Display
Range

(1F-10)
(2F-20)
(3F-30)
(4F-40)
(5F-50)
(6F~60)
(7F=70)
(F8-FO)

MLO-006375

* Parameter 2 (AP+8) is the address of the memory bitmap descriptor.
Section 4.8.3 defines this descriptor.

¢ Parameter 3 (AP+12) is the address of a scratch memory area.

Firmware 4-41

4.8.3 Memory Bitmap Descriptor Format
Figure 4-10 shows the layout of the memory bitmap descriptor.

Figure 4-10 Memory Bitmap Descriptor

31 00
Bitmap Length (in Bytes) +00
Bitmap Starting Address +04
MLO-006374

Each bit corresponds to a page of memory; bit 0 corresponds to physical page 0, .
bit 1 corresponds to physical page 1, and so on. If a bit is 1, the corresponding

page is considered good and available for use by the operating system. A page

whose bit is 0 is considered “bad” or reserved by the console program, and is

not to be used as general-purpose memory.

The initialization routine may change any bit from a 1 to a 0 to indicate that
a page is reserved for any reason or is not to be passed to the loaded operating
system as a normal memory page.

Bits set to 0 when the user initialization routine is called should not be set to 1
by user firmware.

The memory self-test that executes later will change the bit that corresponds
to any defective page of memory to a 0. Pages whose bit is 0 when the memory
self-test starts will not be tested.

4.8.4 Optional User-Supplied Diagnostic Routines

User-supplied ROM test routines can test any of the user-supplied devices.
The seven longwords at 20080020 through 20080038 are checked for addresses
of user-supplied tests. If these longwords contain a number in the range
20080040 through 200FFFFC, it is considered the address of a user test, and
the test at this location is called with a CALLG/CALLS instruction. Any tests
not used should have a 0 as the test address. The processor context must be
restored according to the VAX calling standard after these ROMs exit.

The LED status display values between 10,6 and 7F¢ are reservec for use by
these external self-test routines. When control is passed to the test in ROM,
the high-order byte of the LED status register is set to a value in the range
of 1 through 7 to indicate the test number, and the low-order byte is set to
Fi6. The user’s test routine must change the value from the starting vaiue to

! Registers RZ to R15, the interrupt stack, and all IPRs must be preserved.

4-42 Firmware

indicate progress through the user’s subtests. Normally. the subtests count the
lowest digit down from F;g to 0;5. The high-order byte should always indicate
the same value to make failure codes unique.

4.8.4.1 Self-Test Routine input Parameters
The user-defined initialization routine is called with five parameters:

Parameter 1 (AP+4) is the address of a scratch memory area. The first 4K
bytes may be used as a scratch memory area.

Parameter 2 (AP+8) is the address of a longword that the test may use to
store the PC if the test fails.

Parameter 3 (AP+12) is the address of a quadword that the test may use to
store "expected data" if the test fails.

Parameter 4 (AP+16) is the address of a quadword that the test may use to
store "actual data” if the test fails.

Parameter 5 (AP+20) is a longword containing flags:

—~ Bit 0: 1 if explicitly called with a TEST x command. Informational
messages should be suppressed if this bit is 0.

— Bit 1: 1 if test is called by the power-up sequence.

— Bit 2: 1 if test should return immediately upon failure; if 0, test may
continue to completion and return an error if there is a failure.

— Bit 3: 1 if console DUART exists; otherwise, 0.
—~ Bit 4: 1 if LED test display exists; otherwise, 0.

4.8.4.2 Self-Test Routine Output

The return status of each test is placed in register R0. Return status meanings
are as follows:

1—Test passed successfully. During self-test, the hexadecimal digit
corresponding to the test number followed by 3 periods (...) is displayed to
indicate that the test passed.

0—Device under test failed the test. During self-test, the hexadecimal digit
corresponding to the test number followed by a "?7" and 2 periods (?..) is
displayed to indicate that the test failed.

—1—Device being tested is not present. During self-test, the hexadecimal
digit corresponding to the test number followed by a "_" and 2 periods (_..)
is displayed to indicate that the tested option is not present; however, this
is not considered a failure.

Firmware 4-43

4.8.5 Linking User Initialization/User Test ROM ‘

To link the ROM containing the user initialization/user test routines, use the
following LINK command to generate a ROM image in file ROM_IMAGE.SYS:

$ LINK/SYSTEM=3X20080000/NOHEADER/EXE=ROM IMAGE.SYS roml.obj,rom2.obj, ...

4.9 Creation and Down-Line Loading of Test Programs

You can write simple test routines, down-line load their executable files (.EXE)
to the rtVAX 300, and run them.

4.9.1 Writing Test Programs ‘

Test routines can be written in VAX MACRO or in any other programming
language that does not call the runtime library (RTL). When compiled and
linked with the /SYSTEM and /HEADER qualifiers, they create an executable
(.EXE) file, as in the following VAX MACRO code sample:

§ MACRO/LIST TEST.MAR
$ LINK/SYSTEM/HEADER TEST.QOBJ

The /HEADER information, which contains the starting address of the

executable code, is automatically attached to the beginning of the .EXE

file. The rtVAX 300’s built-in maintenance operation protocol (MOP) loads the ‘
executable file into memory and jumps to the starting address.

The program is defined as a load file when the network data base is set up. Do
not begin the program’s code with the VAX MACRO .ENTRY statement or its
equivalent in other languages.

The following example shows a VAX MACRO self-looping test program that
allows verification of correct down-line loading:

START: brb START

.end START .
When you power up the rtVAX 300, issue the BOOT EZAQ command to boot
it; the processor loads the test program into memory and runs it. When the
processor halts, it displays the current program counter address, which you

can verify. The address should be 00001800, but it can vary according to the
firmware revision.

Use the HALT instruction to end a test program. The processor halts and
displays the program counter address.

4-44 Firmware

. 4.9.2 Using MOP to Run Test Programs

To set up your network data base for an rtVAX 300 target node, use the
network control program (NCP), defining the target node name, address,
hardware address, and load file, as shown in the example below.

The network data base consists of the following:

* A permanent data base, which is stored en the system disk. You need
BYPASS privileges to modify the permanent data base; you use the
DEFINE command to make modifications.

* A volatile working data base, which is loaded at network startup time from
the permanent data base. You need OPER privileges to modify the volatile
data base; you use the SET command to make modifications.

NCP> set node rtv300 hard address 08-00-2B~12-BC-36
NCP> set node rtv300 service circuit gna-0
NCP> set node rtv300 load file user:|[day]test.exe

If network service is disabled, you must enable it, for example:

NCP> set circuit gna-0 service enable

When you boot from Ethernet, MOP loads and starts the test program.

4.10 Serial-Line Boot Directions

The following directions show how to set up a VMS system for serial down-line
loading of VAXELN system images to an rtVAX 300 target through Channel B
on the DUART.

1. To load the asynchronous DDCMP driver, execute the following statements
each time the system is booted:

$ RUN SYS$SYSTEM:SYSGEN
SYSGEN> CONNECT NOA(:/NOADAPTOR
SYSGEN> “Z

2. Configure the asynchronous terminal port as a DDCMP port as follows:
§ SET TERM ddcu: /PROTOCOL=DDCMP

where dd is the device code, ¢ is the controller designation, and u is the
unit number.

Note

To ensure that these procedures are performed on each system startup,
enter the commands in steps 1 and 2 in the system startup file.

Firmware 4-45

3. Determine the DECnet name for the terminal port used to boot the rtVAX '
300. To do so, change the third character of the VMS device name (the ¢
in the ddcu: format) from a letter to the number that corresponds to the
letter’s position in the alphabet; then, subtract one from that number.

For example, if the port you are using is TXB4:, convert the third character
(B) to 2 (since B is the second letter of the alphabet), and subtract 1, which
leaves 1.

4. Take the following steps to build the new device name:

a. Append a dash (~) to the first two characters of the VMS device name
(the "dd" in the ddcu: format). ‘

b. Append the digit obtained in step 3 to the resulting string.
c. Append another dash (-) to the resulting string.

d. Append the unit number, which is the fourth and following digits of the
VMS device name (the u in the ddcu: format).

For example, the device name TXB4: becomes TX-1-4. The device name
TTA1: becomes TT-0-1. Do not append the colon character (:) to the new
device name.

5. Run the Network Control Program (NCP), as follows: ‘

$ RUN SYSSSYSTEM:NCP
NCP>

6. Use the NCP SET command to identify the rtVAX 300 node name and
address and to specify the new device name (derived in step 4) and the file
that DECnet must down-line load to the rtVAX 300 when it makes a load

request.

NCP> SET NODE name ADDRESS a.n SERVICE CIRCUIT tt-m-n LOAD FILE file.ext
name The DECnet name assigned to the rtVAX 300 '
a.n The DECnet address of the rtVAX 300

tt-m~n The terminal name derived in step 3

file.ext The name of the system image to be loaded to the rtVAX 300

For an tVAX 300 named RTVAX1 connected to TXB4: to which you need
to down-line load the file MOMS$LOAD:RTVAX300.SYS, you would enter
the following NCP SET command:

NCP> SET NODE RTVAX1 ADDRESS 1.1 SERVICE CIRCUIT TX~1-4 LOAD -
FILE MOMSLOAD:RTVAX300.SYS

4-46 Firmware

. 7. Start the DECnet line using the terminal name derived in step 4, as
follows:

tt-m-n The terminal name derived in step 3
P The line speed to be used (one of 1200, 2400, or 9600 bps for the
rtVAX 300)

For example, you use the following NCP SET LINE command to set the
line for device TXB4: at 9600 baud:

. NCP> SET LINE TX-1-4 STATE ON LINE SPEED 9600

8. Start the DECnet virtual circuit, and instruct DECnet to service load
requests, as follows:

NCP> SET CIRC tt-m-n STATE ON SERVICE ENABLED

For example, you use the following NCP SET CIRCUIT command to start
the virtual circuit for device TXB4: specified in the previous step:

NCP> SET CIRC TX-1-4 STATE ON SERVICE ENABLED

. Note

Use NCP DEFINE rather than NCP SET commands to save the
information in the nonvolatile data base, where it can be automatically
used whenever DECnet is started or restarted.

4.11 ROM Bootstrap Operations

The ROM bootstrap allows an rtVAX 300 system to execute either out of ROM
. or out of RAM, after the system image has been copied from ROM to RAM.

You can specify which RAM bootstrap to use in any of the following ways:
* By selecting a boot action in the boot register at power up

e By using the BOOT command and explicitly specifying any of the ROM
boot devices

* By overriding the default boot action in the BOOTDEV register through
software

Firmware 4-47

The ROM bootstrap uses a boot block mechanism that allows flexible placement ‘
of the ROM in either of the two ROM address spaces. To locate a ROM

bootstrap, the rtVAX 300’s resident firmware searches a ROM address space,
looking for a valid page-aligned ROM boot block. When the first six longwords

of any such page contain a valid ROM boot block, the rtVAX 300’s firmware

copies the ROM contents (if selected) and starts execution. Otherwise, the

search continues until the resident firmware has either searched all of the

ROM address space or has found a ROM boot block.

Figure 4-11 shows the format of the ROM boot block.

Figure 4-11 ROM Boot Block

31 24 23 16 15 00 gg.
Check Any Value 0018 ¢ +00:
Must Be Zero +04:
Size of ROM in Pages +08;
Must Be Zero +12:
Offset into ROM to Start Execution +16:
Sum of Previous Three Longwords +20:
MLO--006373
BB+0: This word must be 0018;¢.
BB+2: This byte may be any value.
BB+3: This byte must be the one’s complement of the sum of the previous three
bytes.
BB+4: This longword must be 0. ‘
BB+8: This longword contains the size (in pages) of the ROM.
BB+12: This longword must be 0.
BB+16: This longword contains the byte offset into the ROM “vhere execution is
to begin.
BB+20: This longword contains the sum of the previous three longwords.

The rtVAX 300 supports two ROM address spaces:
* (Cached ROM address space
e ROM I/O address space

4-48 Firmware

. 4.11.1

4.11.2

Booting from Cached ROM Address Space

Cached ROM address space 1s located in memory space to permit the caching of
any data and instruction references to it. Cached ROM address space provides
254M bytes of addressing. It begins at address 10000000 and ends at address
1FDFFFFF.

Booting from cached ROM address space is selected by the device PRAO. To
speed the search for the ROM boot block, only pages on 16K-byte boundaries
are checked for a ROM boot block.

Booting from ROM I/O Address Space

ROM I/0O address space is located in user I/O space. Any data and instruction
references to ROM located here are not cached.

ROM 1/O address space starts at the base of user I/0O space starting at address
20200000. Booting from ROM I/0 address space is selected by the devices
PRBO or PRB1. There is no restriction on the upper bound of ROM 1I/O address
space; however, the search for a ROM boot block is limited to 255 pages and is
done on a page-by-page basis. Bootstrap operations for the two devices PRBO
and PRB1 are identical, except that, for PRB1, the ROM is copied to the first
contiguous piece of good RAM in memory space large enough to hold the ROM
image.

Firmware 449

P S0844444.6049 004854444
P 08.6.65.68.008455448.4449.804
fA 4409004 004060904
p4.9.6.6.0.8.9.0.9.6.9046604
p.4.49.6.0.6.5. 58044644
).9.9.5.4.4.4.4.4.9.6.0.6 4
§.9.9.0.9.6.0.0.4.¢.6 4

p.6.9.4.9.4.0.8.4.4

.0.9.0.6,0.¢.4

XXXXX
XXX

X

X3

XXX3

XXXHX)

EXXXKXXWD

b 8.0.0.4.0.6.690

XXX KAXK KA XD
}90.9.9.4.5.0.0.6.0.0660

1 $.9.6.8.0.0.68.806044.94
KXXHXAXXEKXKXX AKX

XX XK XX XA XK XA KAXK XXX
$0.0.0.9.6.0.9.6.9.0.4.09846.09¢.6¢
P 0980004 0.809.806400.988044

10009 0.050.6060.606008098000¢8
B.0.0:0.00.0.4.00000.40.9.949608484640.90¢
$.9.0.00.0.6.0.8.0.0.8908.0¢.685.46806569044

) $.:9.:9.8.00.0.6.6.5.0.0.090069.9908090964é4¢

P O8G0 00000000 00.8060000009¢98904449¢
$0.0.¢.¢.0.0.9:90.0.06969.90$09090.9.99906¢65509¢

0 9.90.8.0.0608.0.0.6.0.04006000890.0.80690 8888838040
10.0.8.4:94.9.4.0.0.0.6.06.009.940009008008080684600¢8

D 0.0.0.0.0.0.0.0.08.00.0.0600.69.80866900998008069.94694
}10.010.6.0.9.¢.0¢.0.0:0.0090.0.0.080.60064.90088000298684849
0.0.9.0.9.0.9:0.088060900908006808096089.0889090690648500

1 9.0.0.0.909.0.68.8.$84006090959.8.900.00.96909.006809.6 0¥ 04
19,48 0,88 4040890089 0.4:0 8086908680990 05.00 680508080001

S

Memory System Interface

This chapter provides the technical information necessary to design a RAM
memory system for the rtVAX 300 processor. A 4M-byte DRAM memory array
and controller design is presented as an example. Design illustrations are
included at the end of this chapter.

This chapter discusses the following topics:

e Memory speed and performance (Section 5.1)
s Static and dynamic RAMs (Section 5.2)

* Basic memory interface (Section 5.3)

¢ Cycle status codes (Section 5.4)

¢ Byte mask lines (Section 5.5)

¢ Data parity checking (Section 5.6)

* Internal cache control (Section 5.7)

* Memory management unit (Section 5.8)

¢ Memory system design example (Section 5.9)
e Memory timing considerations (Section 5.10)

* Memory system illustrations and programmable array logic (Section 5.11)

Memory System Interface 5-1

5.1 Memory Speed and Performance

The system performance of the rtVAX 300 system is linked to the performance
of the memory system. Most bus cycles are used to access memory, because
memory contains both the application instructions and data that the rtVAX
300 is processing.

In turn, the rtVAX 300 memory system performance depends on the speed or
access time of the RAM memory devices used. In general, the cost of memory
devices is directly proportional to their speed and size. Static RAMs generally
provide the fastest access time; however, they are more costly and less dense
than dynamic RAMs (DRAMs). The memory system speed must be weighed
against the cost of the memory elements to determine the type of memory
devices which are used.

To improve its performance, the rtVAX 300 processor contains a 1K-byte cache.
This cache has a very high hit rate (greater than 70% for some applications)
and allows the rtVAX 300 to read a longword in one microcycle. This cache
helps to provide very high performance with relatively slow external memory,
by satisfying many of the required processor read operations in one microcycle.
The best processor performance is still realized with the fastest memory
system, so the memory system should be designed to be as fast as practicable.

5.2 Static and Dynamic RAMs

The memory system can be constructed from either static or dynamic RAMs.
Dynamic RAMs provide more storage at a lower cost per bit than static RAMs,
and they also require less PC board space for the same density. Static RAMs
store data more reliably than dynamic RAMs, because the data is stored in

a latch and not as a charge on a capacitor. Static RAMs have faster access
time than dynamic RAMs. Dynamic RAMs require refresh cycles to retain the
stored data and also require address multiplexing and precise strobe timing.
Thece requirements complicate the design of a memory controller for DRAMs.

Once the size of the external memory system has been determined, the type
and speed of the memory elements must be defined after weighing all of the
factors mentioned above. If performance is the only issue and cost and size are
less important, fast static RAMs are the better choice. If cost, size, and power
consumption are big concerns, dynamic RAMs are the better choice. For most
applications, the slower, less expensive DRAMs are a good choice, because the
rtVAX 300 performance is greatly enhanced by its internal cache.

5-2 Memory System Interface

. 5.3 Basic Memory Interface

The rtVAX 300 can access up to 256M bytes of physical memory and up to
510M bytes of memory-mapped 1/O. The physical memory addresses are in the
range of 00000000 to OFFFFFFF. Appendix C lists rtVAX 300 addresses.

The device address is first multiplexed onto the DAL<31:00> bus, and the

data is then transferred through that same bus. This reduces the number of

external pins on the rtVAX 300 processor module; however, it requires the

addition of external latches to store the device address for the duration of the

bus cycle. Other bus cycle information must also be latched, such as the WR L,

CSDP<«4:0> L, and sometimes the BM<3:0> L lines. The latches must hold the
. bus cycle and address information while AS L is asserted.

When the rtVAX 300 attempts reading from or writing to memory, it first
places the memory’s physical address on DAL<29:02> H. DAL<01:00> H are
unused at this time, and DAL<31:30> H indicate the number of longwords that
are to be transferred. Table 54 shows the codes for DAL<31:30> H and the
number of longwords that are to be transferred.

The 28-bit address provided by the rtVAX 300 on DAL<«29:02> H is a longword
address that uniquely identifies one of 268,435,456 32-bit-wide memory

. locations. The rtVAX 300 provides four byte masks, BM<3:0> L, to facilitate
byte accesses within 32-bit memory locations. The rtVAX 300 imposes no
restrictions on data alignment. Any data item, regardless of size, may start at

any memory address, except the aligned operands of ADAWI and interlocked
gueue instructions.

Any rtVAX 300 read or write falls into one of the following categories: byte
access, word access within a longword, word access across longwords, aligned
longword aeress. or unaligned longword access. Quadword and octaword

accesses a ~cur on longword boundaries. Byte accesses, word accesses
. within a | 'nd aligned longword accesses require one bus cycle. Word
accesses th. uss a longword boundary and unaligned longword accesses

require two bus cycles. Table 51 lists each transfer and the type and number
of bus cycles required for the transfer.

Memory System Interface 5-~3

Table 5~1 rtVAX 300 Data Transter and Bus Cycle Types

Number

Data Transfer of Bytes Number of Bus Cycle
Type Transferred Bus Cycles Type
Byte 1 1 Longword
Aligned word 2 1 Longword
Unaligned word 2 2 Longword
Aligned longword 4 1 Longword
Unaligned longword 4 2 Longword
Aligned quadword 8 1 Quadword
Aligned octaword 16 1 Octaword

5.4 Cycle Status Codes

The CSDP<4:0> L lines indicate the type of transfer cycle that is taking
place. Note that the address decoder for memory must include the CSDP<4:0>
L cycle status information to prevent accidental memory access during an
interrupt acknowledge cycle, an IPR access cycle, or an rtVAX 300 internal
access cycle. Interrupt acknowledge cycles are performed in the same way as
a memory read cycle; however, CSDP<4:0> L reads 1X0115. In addition, IPR
access cycles are performed in the same way as a memory read cycle; however,
CSDP<4:0> L reads 1X010y. Lastly, during rtVAX 300 internal access cycles,
CSDP<4:0> L reads 0XXXX,. Thus, if CSDP<4:0> L indicates an interrupt
acknowledge cycle, an IPR access cycle, or an rtVAX 300 internal access cycle,
do not allow the memory controller to perform a memory access cycle, although
the longword address on DAL<29:02> H is within the system RAM space.

The remaining codes are useful for implementing a multiple processor system
(to lock and unlock dual-ported memory); however, most simple applications
need to decode these lines only to determine when the rtVAX 300 is running an
interrupt acknowledge cycle or an IPR access cycle. If an IPR (accessed with
MTPR and MFPR instructions) is implemented externally—such as IPR 37,
the /O reset registers—the IPR read and write codes must be decoded to select
the IPR. The read lock code could be used to set a flop that locks the memory
subsystem to prevent auxiliary processors from accessing it with interlocked
instructions. The write unlock code could then be used to unlock memory by
resetting that flop. If the rtVAX 300 is the only device that can access system
memory, the lock and unlock cycles can be ignored.

Table 2-5 lists the cycle status symbols.

5-4 Memory System Interface

. 5.5 Byte Mask Lines

The data path of the rtVAX 300 is 32 bits wide. Byte mask lines indicate which
byte(s) the processor is accessing.

Memory is viewed as four parallel 8-bit banks, each of which receives the
longword address in parallel on DAL<29:02> H. The address placed on
DAL<29:02> H is a longword address, and the byte masks are used to select
the bytes within that longword that are being accessed. Each bank reads or
writes one byte of the data bus DAL<31:00> H when that byte’s byte mask
signal is asserted, as shown in Figure 5-1. Byte mask lines BM<3:0> L must
be latched on longword and quadword cycles and flow through on octaword

. cycles; they need be used only during write cycles. During write cycles, the
byte masks must be used to select only the byte(s) in memory indicated by
asserted byte masks. If a byte with an unasserted byte mask is written to, the
data in that location will be corrupted.

Figure 5-1 Memory Organization

DAL<07:00>
DAL<29:02>
. : DAL<15:08>
DAL<31:00>
DAL<23:16>
_B_M..<°_>__. Bank0
DAL<31:24>
._B_M.ﬂz_.... Bank 1
BM<2> .1 Bank2
BM<3>
. ———wf Bank3 MLO-0" 1426
Note

Valid parity must be placed on each CSDP<3:0> L line during a read
cycle, regardless of the assertion of BM<3:0> L, if DPE L is asserted.
Therefore, use the by te masks only for write cycles and select all 4

Memory System Interface 5-5

bytes during read cycles. This parity information is required for proper
functioning of the Ethernet controller.

The rtVAX 300’s Ethernet controller can use octaword transfer cycles when
transferring to nonoctaword-aligned buffers in memory. This forces the byte
mask lines to change state during octaword transfers. The Digital-supplied
VAXELN device driver always sets up transmit and receive buffers on page
boundaries, so that all octaword transfers occur on octaword boundaries. Thus,
the byte mask lines will not change during octaword transfers when using the
Digital-supplied Ethernet device driver.

Although Digital does not recommend this, users can write their own Ethernet
device driver and use nonoctaword-aligned buffers. Digital has tested

device drivers that use nonaligned buffers and has found they have poorer
performance than those that use aligned buffers. Nonaligned buffers require
that memory controllers connected to the rtVAX 300 write only to bytes whose
byte mask lines are asserted for each longword that is transferred.

To handle octaword transfers to nonaligned buffers correctly, you must not
latch the byte mask lines. They must be able to enable CAS line assertion of
the DRAMs during each longword that is transferred directly. Longword and
quadword transfer cycles require that the byte mask lines be latched during
the address transfer portion of the memory access cycle.

The BM<3:0> L lines of the rtVAX 300 must be connected to a separate 74F373
latch. The HOLD L line of this latch cannot be connected directly to the AS

L signal of the rtVAX 300. Decoding logic which decodes LADDR<31:30> is
used to gate the HOLD L input of the address latches with the AS L line of the
rtVAX 300.1 Figure 5-11 schematically represents this logic.

Note

Modules that have been designed to latch the byte mask lines under
all conditions work correctly with current Digital-supplied VAXELN
Ethernet device drivers. Digital recommends that all future designs
implement the selective byte mask latch, as described above. Selective
byte mask latching is required by users who write Ethernet device
drivers that place buffers on nonoctaword-aligned boundaries or
support continuous address buffer chaining without a 16-byte buffer at
the end of each buffer.

1 LADDR<31:30> are asserted during octaword transfer cycles.

5-6 Memory System Interface

. 5.6 Data Parity Checking

To monitor the data integrity of the DAL«31:00> H bus, parity bits are
provided with each byte. The parity bits are driven onto CSDP<3:0> L during
write cycles while the data is driven onto the DAL<31:00> H bus. During
read cycles, the CSDP<3:0> L lines must be driven with valid parity while
the DAL<31:00> H bus is driven with the data. The odd bytes (DAL<31:24>,
<15:08> H) are driven with odd parity, and the even bytes (DAL<23:16>,
<07:00> H) are driven with even parity. If the CSDP<3:0> L lines are not
driven with valid parity during a read cycle when DPE L is asserted, the
rtVAX 300 performs a DAL parity error machine check, as described in

. Table 3-11. If the Ethernet controller was bus master at the time of the error,
the CPU will be interrupted and will not performm a machine check.

To accommodate peripherals that do not generate or check parity, the DPE L
line is provided to cause the rtVAX 300 to ignore DAL parity. DPE L must be
driven along with the data during a read cycle; if it is driven low, the rtVAX
300 checks the parity on all 4 bytes, regardless of the assertion of BM«3:0>
L; if it is driven high, the rtVAX 300 ignores the data parity information.
Table 52 lists the parity bits and byte mask lines associated with the 4 bytes
of the DAL<31:00> H bus. Proper parity is required only when the DPE line

. is being asserted. Read cycles from devices residing in the 1/0 space do not
require parity generation.

Table 5-2 HVAX 300 DAL Parity and Byte Masks

Byte Parity
DAL Mask CSDP Type
07:00 0 0 Even
15:08 1 1 Odd
. 23:16 2 2 Even
31:24 3 3 Odd

Note

The CSDP<4> L signal is used only to indicate an internal cycle and
not as a parity bit.

Memory System Interface 5-7

5.7 Internal Cache Control .

The rtVAX 300 provides the CCTL L signal to allow external control of the 1K
internal cache. If this line is asserted (driven low) during the data transfer of
a quadword read cycle, the data read is not stored in the internal cache. In
addition, the rtVAX 300 aborts the quadword read cycle after the first longword
has been read when the CCTL L line is asserted. If this line is unasserted
(driven high) during the data transfer of a quadword read cycle, the data read
is stored in the internal cache. To improve processor performance, this line
should be driven high during a memory read cycle to allow read references

to be internally cached. I/O devices generally drive this line low during read
cycles to prevent internal caching of volatile I/0 data. Reads from the I/O ‘
space (20000000 to 3FFFFFFF) are not cached internally, regardless of the
state of CCTL L.

In applications containing multiple processors or a secondary cache, the CCTL
L line is manipulated to maintain internal cache consistency. The designer
may want to segment system RAM into cacheable and noncacheable address
ranges. This can be accomplished through the manipulation of the CCTL L
line after the address is decoded.

When external devices perform DMA to the rtVAX 300 private external
memory, the internal cache entries corresponding to modified memory locations .
must be invalidated. This is accomplished by running a conditional cache
invalidation DMA cycle. This cycle begins by asserting the CCTL L line before

the DMA address during the DMA write cycle. (See Figure 8-19.)

Each conditional invalidate cycle causes the rtVAX 300 to detect a collision on
a quadword cache entry. Two consecutive conditional invalidate cycles can be
used to detect a collision on a naturally aligned octaword. To maintain cache

coherency, a detected collision invalidates that entire quadword within the
rtVAX 300 internal cache. .

The Ethernet controller can issue longword write cycles. To maintain CPU
cache consistency, the Ethernet controller asserts CCTL L at the beginning of
the write cycle to start a quadword cache invalidation cycle. Cache invalidation
cycles require at least 4 microcycles; therefore, if CCTL L is asserted at the
beginning of the write cycle, the memory system must add two wait states

(a total cycle time of 400 ns) to the cycle by holding off the assertion of RDY
L. If CCTL L is not asserted at the beginning of the write cycle, this is a

CPU longword write cycle, and zero or one wait state (200 or 300 ns) memory
access can be applied. All DMA devices that use cache invalidation cycles to
maintain internal cache consistency must adhere to the cache control timing
specifications shown in Figure 2-17. .

5-8 Memory System Interface

. 5.8 Memory Management Unit

To facilitate multitasking and to ease program development, the rtVAX 300
supports virtual memory. The internal memory management unit (MMU) of
the rtVAX 300 processor translates virtual addresses to physical addresses.
Since the MMU resides within the rtVAX 300, only physical addresses appear
on the DAL<29:02> H bus. Thus, the memory system design is simplified,
and the memory subsystem is directly addressed by the rtVAX 300 processor.!
The VAX Architecture Reference Manual provides more information on
virtual-to-physical address translation of the MMU.

. 5.9 Memory System Design Example

The remainder of this chapter discusses the design of a 4M-byte DRAM
memory system for the rtVAX 300. This memory system consists of the
following elements:

® Address and cycle status decoders

° Address latches

¢ Refresh request timer

¢ Thirty-six 1M-bit DRAMs (32 for data and 4 for parity bits)
¢ DRAM row and column address multiplexer

* DRAM data latches

° Meniory controller state machine

Figure 5-2 shows a simplified diagram of the memory controller logic. Read,
write, and refresh memory operations are sequenced by the memory controller.

5.9.1 Address Decoder

The rtVAX 300 places a 28-bit longword address on the DAL<29:02> H bus

at the beginning of a memory access cycle. This address must be decoded by
an address decoder to provide a select signal for the memory controlier. All
physical memory must be mapped at the lowest possible memory addresses.
Physical memory must also be contiguous and 32 bits wide. Therefore, if a IM-

byte memory array was constructed, it must be mapped to locations 00000000
through 000FFFFF.

! Memory system design is similar to that of a nonvirtual-addressed processor.

Memory System Imerface 5-8

O0E XVAY * 3150 [s:eauq 3da
017} =*—3551 Per 100 WTTRED
-t <g:
~*<oe>svyomvag| o8By 0-€>SYD
MvHg | = —1 Budueg
oY - SVHNVHT Ytk 810AUQ
_ <0:5>HAAYWNVHG SS2PpY
T 3UHMWYHA] WvHd <0:6>HAAVXIN
|
Juumi

< vI0
21607 JAD43H B doj4-dni4
smﬂwo “ronai vded ajeIS-4 i1sd
SYOdN3 ¢ 11100 y
] o8} eng'ci
AQV3HAVHQA jsenbey sewy)
03Y43H ysesjoH ysesyey
SUTBAL 17 3) 1M
olBig , sy
sjjosuog HINOVI| 8P0%8Q 1, 7
Aows 85pp’ <0:¥>d0aSs9
W v |
Wvy3s ‘Zzee>va
) sa AS L
; JBZIUDIYOUAG
l\Q CHOOVANI svicAs] ewous | sY
£4aav $884PPY V310
mxoidiny f
unjoo/mol ZHQAVANI
=
’ sSaUpPY | <0E'1E>TVQ
<c'ie>wva

wieiBejq jeuonoung waisAsqng Liowapy :ubisaq sjdwes z—s ainbi4

5-10 Memory System Interface

. Full memory address decoding must be implemented to prevent multiple

mapping of memory. This is necessary because the firmware begins at location
00000000 and uses a binary search algorithm to ascertain the configuration of
memory for sizing and initialization. Nonexistent memory is detected when
the memory controller does not assert the RDY L line. The rtVAX 300 internal
timer times out, and the memory sizing finishes with the highest responsive
location marked as the top of memory. The stacks are set up, and the rtVAX
300 is able to boot.

If full memory address decoding was not implemented, the initialization
firmware would find an invalid top of memory. This would cause the stack to
. write over free process pages and the rtVAX 300 to fail when it tries to boot.

The decoder can be implemented in a registered PAL, as shown in Figure 5-9.
In this configuration, DAL<29:22> H are fed into the inputs of the PAL. For
memory access, all of these bits must be zero. The PAL'’s internal flip-flop
latches the output of this decoder, SELRAM, at the rising edge of AS H. The
SELRAM signal will remain valid throughout the entire bus cycle, until AS H
deasserts.

The CSDP<4:0> L bits must be decoded to prevent them from enabling

memory when the rtVAX 300 is executing an interrupt acknowledge cycle or
. an externally implemented internal processor register access cycle. Disable

memory during these two cycles; Table 5-3 lists their bit assertions.

Table 5-3 rtVAX 300 CSDP<4:0> IPR and IACK Codes
CSDP«<4> CSDP<2> CSDP<1> CSDP<0> Bus Cycle Type

H L H L External IPR read or write
H L H H External interrupt acknowledge
. L X X X rtVAX 300 internal cycle

5.9.2 Address Latches

The rtVAX 300 uses a time-multiplexed data and address (DAL) bus. Address
latches, such as the 74F373, must be connected to the DAL lines, and the
HOLD line of these latches must be connected to the AS line. This latched
address can then be fed into the address inputs of the memory elements. Also,
the WR L and BM<3:0> L lines must be latched. (Figure 5~11 shows the
connections of these latches.)

Memory System Interface 5-11

5.9.3 DRAM Memory Refresh .

Each bit of data stored in a DRAM memory element is stored as a charge in a
very small capacitor. Through time, this charge is bled from these capacitors,
so each bit must constantly be refreshed to retain the stored data. Special
access cycles are defined for the DRAMs that refresh an entire row of data
bits. The 1M-bit DRAMs used in this example contain 1,048,576 bits divided
into 512 rows, each containing 2048 data bits. Thus, it takes only 512 refresh
cycles (one for each row) to refresh every bit within the DRAM.

The specifications for the 80 ns page mode DRAMs require that every row

of the entire DRAM array be refreshed every 8.0 ms. The rows can all be
refreshed in sequence every 8.0 ms, or one row can be refreshed every 15.6 ns
(8.0 ms/512 rows). The 8-bit counter shown in Figure 5-15 sets the refresh
request SR latch every 12.8 ps, and the memory controller then refreshes a row
of the DRAMs and resets the SR latch. In this scheme, a new row is refreshed
every 12.8 ps, so the entire DRAM is refreshed every 6.6 ms (512 x 12.8 ps),
and the refresh requirements are met.

Before a refresh cycle can occur, a refresh row address must be generated. This
address is latched into the DRAMs, and each bit cell in that row is refreshed
during the refresh cycle. The DRAMs that were used generate their own

refresh address internally, simplifying the external logic by eliminating the .
need for a refresh row address counter. DRAMs that support column address

strobe (CAS) before row address strobe (RAS) refresh internaily generate their

own refresh row address. When the DRAM CAS line is asserted before the

RAS line, the internal refresh row address counter is incremented, and the

next row is selected. When the RAS line is then asserted, the selected row

of bit cells are refreshed. RAS and CAS are then deasserted, and the refresh

cycle is complete. An external refresh address counter, whose outputs are
multiplexed to the DRAMs address lines, must be added if the chosen DRAMs

do not support CAS before RAS refresh. ‘

5.9.4 DRAM Row and Column Address Multiplexer

All DRAMs have a multiplexed row and column address bus. This means that
half of the address of any bit is driven onto the DRAM address bus at one
time. For example, to read one cell within the DRAM, half of the address of
that bit is driven onto the DRAM address bus.! Next, the RAS is asserted, and
the second half of the address (10 bits) is driven onto the DRAM address bus.
Next, the CAS is asserted, and the output driver is turned on. After the DRAM
access time delay, data that is stored in the addressed cell is driven at the
DRAM’s data output pin. Once the data has been transferred to the processor,

! Half the address equals 10 bits, because the 1M-bit DRAMs require 20 bits of
addressing.

5-12 Memory System Interface

the RAS and CAS lines are deasserted, and the DRAM'’s output is tri-stated.
RAS must remain deasserted briefly to allow for internal DRAM precharging.

A multiplexer, such as the 74F711 shown in Figure 5-3, is needed to multiplex
the row and column address onto the DRAM address bus. Because the address
bus of each DRAM is connected to the output of this multiplexer, high current
output drivers are needed to drive the high-capacitive inputs of the DRAMs.
This will prevent excessive propagation delay. The 74F711 multiplexers
provide sufficient drive current to drive the address bus of the DRAMs directly.
If the 74F258 multiplexer is chosen, high current drivers, such as the 74F244,
are needed to drive the high capacitance of the DRAM address bus.

The rtVAX 300 supports multiple longword memory access cycles. During
quadword and octaword transfer cycles, the rtVAX 300 places only one
longword address on the DAL bus at the beginning of the transfer cycle.

The memory system must generate the correct number of longwords in the
correct order. The subsequent longword addresses are generated by adding
the F86 XOR gates between the two lowest order column address inputs of the
74F711 multiplexer. The assertion of the other input of the two F86 gates will
cause the associated column address bit to invert.

DAL<31:30> H indicate the number of longwords to be transferred. Table 54
lists the codes for DAL<31:30> H and the number of longwords that are to be
transferred.

Memory System Interface 5-13

eoepelu| weisAg Alowepy pL~§

Figure 5-3 Sample Design: DRAM Address Path

Row/Column DRAM MUX

5%2 MUX
74711
LADDR<21> H 2 MUXADDR<9> H 1 2 DRAMADDR<9> H
LADDRA<11> H 1 ;g:g FE AR
LADDR<20> H 14 MUXADDR<8>H 2 DRAMADDRB> H
1D-D FD AW
LADDR<10> H (13 Pt A
LADDR<19> H Lt ey MUXADDR<7>H 2 DRAMADDR<7> H
[ADDR<D> H #looe " C AN
LADDR<18> H 1 MUXADDR<6> H 1 2 DRAMADDR<6> H
{ADDR H PI] M A
LADDR<17> H 2 MUXADDR<5> H 1 2 DRAMADDR<S> H
1D-A FA A
LADDR<7> H Hooa ¥
5]setect
———|—1CI invert
s (o3
A5V — A AN
2K 0 5X2 MUX
74F711
LADDR<16> H 20 FE MUXADDR<4>H 1 . .2 DRAMADDR<4> H
{ADDR<6> H wlone A
LADDR<15> H Wi MUXADDR<3>H 1 2 DRAMADDR<3> H
LADDR<5> H T M A
LADDR<14> H T prey MUXADDR<2> H 1 z DRAMADDR<2> H
[ADDR<4> H] 0 FC AR
LADDR<13> H wl MUXADDR<1> H 1 2 DRAMADDR<1> H
LADDR<3> H_ayi— 7T A
&
INVADDR3 H &)]F8s 21ib-A FA MUXADDR<O> H sz DRAMADDR<0> H
{ADDR<12> H [Yooa 2
LACDRe2> H ¢ °
74 N2 179 Select
INVADDR2H _ 2]|F86 i Invert
L oE
SELCOLL
1
n4s5
100

RAS, WRITE and CAS DRAM Array Drivers

18
Octal
Bufler
74F244
[T I 2 ORAMRAS L
Y
RAS L sl —y
1 deN
18
Octal
Buffer
74F244
12 4 2 DRAMWRITE L
Y vV
weret | sl A
L Jen
4BF
Octal
Driver
74F244
12 ' 2 DRAMCASI> L
Y3 VW
CAS<3> L L TR A
1" 1 2 DRAMCAS<2>tL
Y2 ——— A —— ———————
cAs<2> L | el,, A
8 1 2 DRAMCASci> L
CAS<1> L 4 YIiDp——W
Al 22
18 [2 DRAMCAS<O> L
CAS<0> L 2 Yor———\W
AD 2
r—'—C EN
1
R33!

100

MLO-004428

Table 5-4 Memory Read Cycle Selection

DAL Longwords
31 30 Cycle Type Transferred
0 1 Longword read or write
0 Quadword read cycle (CPU) 2
1 1 Octaword read or write

cycle (Ethernet)

The memory controller looks at LADDR«31:30> to see the transfer cycle type
and subsequently asserts INVADDR<3:2> to generate the necessary longword
addresses during muitiple longword transfer cycles.

5.9.5 4M-Byte DRAM Array

The memory system for the rtVAX 300 must be 32 bits wide. If parity memory
is desired, 4 bits must be added, so that each hyte has 1 panty bit. Most
DRAMs are a single bit wide, so 36 DRAMs are needed to implement parity
memory. DRAM packs, which are 8 or 9 bits wide, could also be used.

Note

During Ethernet controller read cycles, proper parity must be generated
in CSDP«3:0> L for each longword read, if DPE L is asserted.

The scheme that is used to satisfy multiple word transfers requires that the
DRAMSs support page mode access. For example, when a quadword read
cycle is performed, the address of the preferred longword is first placed on
the DAL<29:02> H bus, and DAL<31:30> H read 105. The rtVAX 300 then
asserts AS, and the address is latched by the address latches. The row address
ripples through the F711 MUX and appears on the DRAM address bus. The
decoder is asserting the SELRAM and deasserting the IACKIPR signal. The
memory controller now asserts RAS, and the row address is latched into the
DRAMSs. The address MUX select latch then asserts the SELCOL signal,
driving the column address onto the DRAM address bus. Now, the memory
controller asserts ENBCAS, waits for the access time of the DRAMs, and
asserts DRAMREADY. The first longword is now latched into the data latches
shown in Figure 5-14, and the ENBCAS line is deasserted. The INVADDR2
line is now asserted, driving the next longword address onto the DRAM
address bus. Now, the ENBCAS line of the DRAM is reasserted, and the next
longword appears at the data latches. DRAMREADY is reasserted, the second
longword is transferred, and the access cycle is complete.

Memory System Interface 5-15

If page mode access is not supported by the DRAMs, the row address would '
have to be restrobed into the DRAMs for the second longword and the memory
performance would suffer.

5.9.6 DRAM Termiratiing Resistors

The very fast rise and fall times of the DRAM’s address, RAS, CAS, and

WE lines have some very high frequency components associated with them.
When one of these signals changes state, the voltage change has to travel
down the PC board trace. The trace acts like a transmission line to very high
frequencies, and the impedance of this line may not be uniform. A reflection
occurs when a signal encounters a change in impedance. These reflections
cause signal overshoot and undershoot, where the line voltage bounces above
5.0V or below 0.0V. Signal reflections deteriorate the signal transition edges; in
a clock signal, this could affect which time data is strobed; in the case of data,
this could affect when the signal can be sampled.

Most TTL gates can handle a small amount of overshoot and undershoot,

DRAMs are easily damaged by excessive overshoot and undershoot. These
memory elements have a specification for the amount of undershoot that can
safely be tolerated. If this value is exceeded, the DRAM can corrupt its stored
data or can be damaged permanently. '

Many techniques can be used to reduce the amount of overshoot and
undershoot that the DRAM experiences. The RAS, CAS, WE, and address
lines connecting to the DRAMs must be made as short as possible to reduce
the lines’ inductance and capacitance. These lines should be daisy-chained to
all of the connection points. Series-dampening resistors should be added to all
of these lines as close to the MUX outputs as possible, as shown in Figure 5-3.

The DAL and strobe signal lines of the rtVAX 300 are driven by an ACTQ

244 or ACTQ 245. Thrse CMOS drivers can also generate a fair amount

of overshoot and undershoot. Therefore, it is good practice to add series '
termination resistors for these lines on the application module to improve

signal integrity. These resistors slow the rise and fall times of the DRAMs,
reducing the reflections. The value of these resistors is determined by

measuring the overshoot and rise time of these signal lines on the actual

PC be=rd prototype. The resistor value should be the lowest that gives an
undershoot voltage below that tolerated by the DRAMs that are used. Shunt
resistors can also be used at the end of these lines as terminators.

5-16 Memory System Interface

' 5.9.7 DRAM Data Latches

The latches shown in Figure 5-14 store data for processor reading, while
the next longword is accessed in the DRAMs. This overlapping improves the
performance of the memory system for multiple longword transfer cycles.

When the data for the first longword is valid, the memory controller asserts
DRAMREADY. This sets the ready hold latch (see Figure 5-15) and asserts
the RDY L line of the rtVAX 300. This latch is cleared when the rtVAX 300
deasserts the data strobe (DS) line. When the RDY L line is asserted, the
data that was present at the DRAM outputs is latched and driven onto the
DAL bus. Once the data has been latched, the CAS hold latch can deassert
the CAS<3:0> lines of the DRAMsS, and the memory controller can assert the
INVADDR?Z line to generate the next longword address. The memory controller
reasserts the ENBCAS line, asserting the CAS<3:0> lines and driving the next
longword data into the inputs of the RAM data latches. When the processor
finishes transferring the first longword, the second longword is latched into the
data latches.

Caution

The RDY L, ERR L, and CCTL L lines are tri-stateable lines. These
lines are pulled up by resistors in the rtVAX 300 and must be driven by
a tri-stateable driver, such as the 74F125. If tl ese lines are driven by
a standard TTL totem pole output, the rtVAX 300 will not function.

These latches can be eliminated; however, the memory controller state machine
must be redesigned and quadword read cycles take one more microcycle,

with the consequent reduction of memory system performance. The rtVAX
300 octaword access cycle always requires at least two microcycles for each
longword that is transferred; memory performance and longword read cycles
are not improved by these latches.

5.9.8 Memory Controller State Machine

The memory controller state machine diagram has the following responsibili-
ties:

* Arbitrate between refresh requests and memory access (refresh requests
have priority)

« Execute refresh requests by cyvcling the REFCYC, ENBCAS, and RAS lines

Memory System Interface 5~17

e [Execute memory access cycles by cycling RAS, ENBCAS, DRAMREADY, ‘
and INVADDR<3:2>

® Provide the precise timing that is required on the DRAM RAS and CAS
lines

Refer to Figure 54 for the following discussion.

Every 12.8 ps the refresh counter asserts its TC L output. This sets the refresh
request latch shown in Figure 5-15. The latch asserts the REFREQ input of

the memory controller. The controller now jumps to the STARTREFRESH state

and asserts ENBCAS and REFCYC, asserting every DRAM CAS line. The
assertion of REFCYC clears the refresh request latch, deasserting REFREQ. ‘
Next, the memory controller asserts RAS, waits one clock tick, and deasserts
ENBCAS and REFCYC. The state machine now jumps into the FINISHUP

state and deasserts RAS, so the refresh cycle is now finished.

The AS signal of the rtVAX 300 is synchronized by the address strobe
synchronizer latch, as shown in Figure 5-15. This is necessary, because AS
deasserts just before the rising edge of CLKA, possibly causing the state
machine to missequence. By synchronizing AS with CLKB, SYNCHAS
deasserts after the rising edge of CLKA.

Note

The setup time of the state machine must be met on all unmasked
inputs to prevent missequencing.

During a memory access cycle, SYNCHAS and SELRAM are asserted, while
IACKIPR is deasserted. When these conditions are true and REFREQ is
unasserted, the memory controller state machine jumps to the STARTACCESS
state and asserts RAS. The row address has been latched by the DRAMs, and .
the SELCOL line is asserted by the address MUX select latch when CLKA
deasserts. The column address of the first longword is placed on the DRAM
address bus. Next, the controller ensures that the DS line is asserted and
then asserts the ENBCAS signal. If this is a write cycle, ENBCAS is then
deasserted and DRAMREADY is asserted. The state of INVADDR<3:2> is
incremented, creating the DRAM column address for the next longword. Next,
the state of INVADDR<3:2> is compared to LADDR<31:30> to determine if the
last longword has been transferred. If that was the last longword, the state
machine jumps to the FINISHUP state, deasserts all outputs, and waits the
RAS precharge time before it allows another memory access.

5-18 Memory System Interface

. Figure 5-4 Sample Design: Memory Controller Sequence

j

IDLE Ll
REFCYC-
INVADDR1.
INVADDR2.
: No
REFREQ MEMORY
RST ACCESS
lII’ r-~——-—-—-———-—---Yos
!
STARTREFRESHL] STARTACCESY]
i ENBCAS+ RAS+
| REFCYC+
B
¥ :
REFRESHCVYC L]
RAS«

i

X
ENDREFRESHL] N
ENBCAS- 2

MEMORY
ACCESS

1
|
|
i
!
i
{

L
™ DRAMREADY.

ENBCAS+

1
READ
ACCESS
Yas
READCYC1 L]

ENBCAS-
DRAMREADY+
AG

MEMORY
ACCESS

Yes

¥
FINISHUP L

INVADDR2-
INVADDR3-
ENBCAS. RAS-
DRAMREADY-
REFCYC-

WRITECYCT1L]

ENBCAS-
DRAMREADY +
FLAQ+

MEMORY
ACCESS

» Yes

READCYC? L]

DRAMREADY.
ENBCAS+

WRITECYC2L]

DRAMREADY -

Ye

I

D&

—{NO

WRITECYC3 L]

WRITE ACCESS = P4 & LWRITE

MEMORY ACCESS = SYNCHAS & IIACK & SELRAM

READ ACCESS = P4 & ILWRITE & (!FLAG # IDS)

EQU1 = lINVADDRR2 & INVADDR3 & LADDR<30> & ILADDR<31>
EQU2 = INVADDR2 & lINVADDR3 & L ADDR<30> & LADDR<31>
EQU3 = INVADDR2 & INVADDRS3 & !LADDR<30> & ILADDR<31>
EQU4 = INVADDR2 & INVADDR2 & LADDR<30> & LADDR<31>

* INVADDR2 = INVADDR2

** INVADDRS3 = (INVADDR2 & INVADDR3) # ({NVADDR2 & lINVADDR3)

WRITECYC4 L]

DRAMREADY +
ENBCAS+

MLO-0068387

If another longword is required and it is a write cycle (LWRITE is asserted),
the state machine jumps toc WRITECYC2 and deasserts DRAMREADY. The

state machine then waits for DS to deassert and jumps to WRITECYC3. Once
DS asserts, the state machine jumps to WRITECYC4 and asserts ENBCAS

Memory System Interface 5-19

and DRAMREADY. The machine then increments INVADDR<3:2>, driving '
the address of the next longword onto the DRAM address bus. The state

of INVADDR<3:2> is compared to LADDR<31:30>», and the cycle repeats if
another longword is needed.

If another longword is required and it is a read cycle (LWRITE is deasserted),
the state machine jumps to READCYC2, deasserts DRAMREADY, and asserts
ENBCAS, driving the next longword into the inputs of the RAM latches. When
DS deasserts and the rtVAX 300 processor has latched the previous longword,
the state machine jumps into the READCYC1 state, and the process repeats
itself until the last longword is read.

Table 5--5 lists all transfer cycles along with the order of the longwords that ‘
are transferred.

Table 5-5 Quadword and Octaword Read Cycle Transters

rtVAX 300 Memory Address
Latched Address DRAMADDR Longword
LADDR 03 02 03 02 Transferred
Quadword
X 0 X 0 First ‘
X 0 X 1 Second
X 1 X 1 First
X 1 X 0 Second
Octaword
0 0 0 0 First
0 0 0 1 Second
0 0 1 0 Third
0 0 11 Fourth ‘

After AS and DS have been asserted, the rtVAX 300 processor waits for the
assertion of RDY L, indicating that the memory or device has transferred the
data. Wait states of one microcycle are added to the I/0 or memory access cycle
until the memory controller asserts RDY L. If RDY L is not asserted 16 to 32
ps after the assertion of AS, the rtVAX 300 completes the access cycle, indicates
an error condition, and transfers operation to an error-handler routine. This
action prevents the rtVAX 300 processor from stalling when a read or write
request is directed to a nonexistent I/O device or memory location.

5-20 Memory System Interface

. 5.10 Memory Timing Considerations

5.10.1

The memory subsystem of the rtVAX 300 must satisfy some special timing
requirements. (Table A-3 lists these requirements.)

Note

The rtVAX 300 read and write timing specifications must be followed
explicitly. Any timing parameter that is not within specification can
cause intermittent or complete memory system failure.

The PLUS405-45 logic sequencer controls the timing of all the memory control
signals. This sequencer is clocked on the rising edge of CLKA; therefore, all
outputs of the state machine will change 12 ns after the rising edge of CLKA.

Calculating Memory Access Time

The rtVAX 300 accommodates slower memory and peripherals by providing the
RDY L input. The accessed peripheral can add any number of wait states into
the access cycle by holding off the assertion of RDY L. Each wait state is one
microcycle long; the processor will wait up to 32 ps until it times out. When
calculating the speed of the memory elements, first determine the number of
wait =tates.

If you are operating with one wait state, data must be valid 28 ns before the
second rising P1 edge. The access time of the DRAMs is specified from the
time that the RAS line is asserted. The sample memory controller will assert
the RAS line 12 ns after the rising edge of P3. The RAS driver delay must also
be added along with the 74F374 latch delay; thus, the access time from RAS is
as follows:

+ 3.0 x CLKA period

— Data setup time

— Memory controller delay
— RAS driver delay

- Latch delay

Access time
In this case, access time =3 x50 ns ~ 28 ns - 12 ns - 5 ns — 7 ns = 98 ns.

Therefore, during a read cycle with one wait state, data must become valid 98
ns after the assertion of RAS. Thus, 98 ns or faster DRAMs, used with this
scheme, allow the memory subsystem to operate with one wait state.

Memory System Interface 5-21

5.10.2 State Machine Input Setup Time

In Figure 515, the PLUS40545 state machine used as the memory controller
requires 12 ns of setup time at each of its inputs. The actual setup time on
any of these inputs is calculated by adding the maximum propagation delay of
each gate located between the source and the state machine input. This sum
18 added to the delay of the source from the rising edge of CLKA. For example,
the AS signal is asserted by the rtVAX 300 23 ns after the rising edge of CLKA
when the processor is in the P1 state. The delay of the F00 gate in the address
strobe synchronizer (5 ns) is added to 23 ns to yield 28 ns total delay from the
rising edge of CLKA. Because the cycle time of CLKA 1s 50 ns, the setup time
of SYNCHAS is 22 ns, meeting the 12 ns requirement.

The IACKIPR and SELRAM outputs of the 22V10 PAL in Figure 5-9 are both
stable 10 ns after the rising edge of AS H. The 4 ns delay of the AS inverter in
Figure 5-15 must be added; therefore, IACK and SELMEM are delayed 14 ns
after the falling edge of AS. Since AS falls 23 ns after the CLKA rising edge,
IACKIPR and SELMEM assert 37 ns (23 ns + 14 ns) after the CLKA edge.
Thus, the setup time for these two signals is 13 ns 30 ns — 37 ns), which is
greater than the 12 ns requirement.

Similar analysis was done to the rest of the memory controller sequencer setup
times, and Table 5-6 lists the setup times of all the signals.

Table 5-6 Memory Controller Setup Times

Minirnum Actual
Signal Name Setup (ns) Setup (ns)
IACKIPR 12 13
SELRAM 12 13
LWRITE 12 62
P3P4 12 42
DS 12 22
SYNCHAS 12 21
REFREQ 12 30
RST 12 35
LADDR30 12 62
LADDR31 12 62
INVADDR2 12 38
INVADDR3 12 38

5-22 Memory System Interface

. 5.10.3 Memory Subsystem Longword and Quadword Read Cycle
Timing
Section 2.6 specifies the memory system longword, quadword, and octaword
read and write cycle timing. The rtVAX 300 bus timing is synchronous with
CLKA and CLKB. This timing is used to derive the states required by the
memory controller state machine. The state machine, shown in Figure 54,

illustrates sample operation of the memory controller. Figure 5-5 shows the
sample longword and quadword read cycle timing.

The critical timing parameters for the rtVAX 300 memory system must be
satisfied along with the timing parameters for the DRAMs. Section 2.6

. discusses the values of these parameters. In addition, the DRAMs have some
critical timing parameters that must be met. Table 5~7 lists these parameters.

The memory system must be able to transfer four successive longwords at a
time during an octaword read cycle. Sample timing for the octaword read cycle
i1s shown in Figure 5-6. The timing relationships are similar to those of the
longword read timing.

Memory System Interface 5-23

Figure 5-5 Sample Design: Memory Controller Longword Timing

Note. LWRITE L IS DEASSERTED AND LADDR<31:30>s01 FOR THE LONGWORD CYCLE AND 10 FOR QUADWORDS
P1 P2 P3 P4 PY P2 P3 P4 PY P2 P3 P4 P1 P2 P3 P4 PY P2 Pa P4 P1 P2 P3 Pa Pt P2 P3 P4 P1 P2 P3 P4

CLKAH

CLKBH

d: GWO&D 0

; : 5 : LDNGWGQRD 0

DAL«31.:0» H ADDHESS %(

Lo~awono 1 :

<

ore = I L
p SN e W U
SELcOLL \ / \ ‘
e e T s e e WY
INVADDR2 H I'—\ l j—'—"'\
5 {ADDRT COL | ’ ‘ ADDRZCOL ?

DRAMADDR<8:0> H

g XADDRO quXAdDao C¢LX X

IDLE ACCESSCYC

IOLE
IDLE STARTACCESS READCYC

5-24 Memory System Interface

FIN!SHUP

Xﬁbono Ho%noao cdj AD$R1 coL

‘ DLE ACC ESSCYC ACCESSCYC

IDLE STARTACCESS READCYC

READCYC

»

FINISHUP
IDLE

MLO-006388

£EPFOCOIR
o Eg el

3 JNHSINI

HS3UJILANT = 2ADQY¥Y3H
0>01mwmuw¢ O>Ummw00¢ 0>Ommw00< OA

QAJSSIOOV

2A0aVYIY

QADSE300V

QJA0QVIH
DWWWOO(0>0mmw00< 0>mew00< U>wawoo<

OAOQY3IH 6S3VVVYIHVIS

ERe]

Fal

]

H <0 HAAVNYHA

H EdOAVAN

Memory System Interface 525

H TUQOVAN

TAGH

1 AQVIHNYLHG

7 <CFE>SYO

1 SVOENT

7171007138

asvd

H vdtd

180

18Y

H : i i §
: : B CE) omng.x 23300 't wmwmoe. : % zz:..oo z mwmmoﬁ X|oo Eeowx_eo omoa md onadv |
—
: : ; : : H - : : : : : : : : : !
: “ ! ! ! ! ; : ! ! : : ! : : : !
TR T U O S s S A R R o B |
H 4 H H N B M . H i H H ' H : H H i
S o VAT W I S VO (VS S S
T 1 P i N
R B R (R I Y (O VN (I A S S
IR e e e e o Ul U
] + + I3] 1

T R T S T s e U s s Y VI VI
— . b F
s ey n R A A
w IS N R A A A
: : : i : ! ; ; u ; | : : : ; : '
W W N T I T \ I T A T
i
: . - : ; : - : : ; : ;] : v :] i
H : H) 4 H . B | . H H H . H . '
M ¢ i i i i i i ior b
i T i ' H . H J H H) M : H ' H
: : : ; : : : : ! ! : ! : ! !
H sumam ¥ H T\ “\lullla.n H Y g ¥ ;

' | A : g S [S — ; [— :
: £ QupDMONGT i i 2 GHOMONGT H C f ¢ I

P4 €2 Cd id Pd

¥d tdi2d 12!Pd £ai2d 1aiPd Ed1Zd 1917d B8

$17<0€ 1E>HGAY T GNY GILHISSY LON SI UHMT -8IoN

'24 19i¥a £42d 1a}vd €diZd idivd £a12d 1divd EdiZd aivd taizd 1divd edied 1divd edizd I1d

e 24 1d P Bd 24 19 ?d E2 d id ¥d €d 2d 1d ¥d £d 2d 1d ¥d Ed 2d i vd B2 2d 19 ¥d ©d 2d 1d vd €3 2d 1d vd £d Zd td

I|A H <0 1E>va
rl\l/ HEY0

HWYD

Bupwiy 9j9AD pesH piome}dQ ajjosuod Atowaw :ubjsaq ajdwes g—¢ ainbid

Table 5-7 DRAM Timing Parameters tor 80 ns Page Mode 1M Bit x 1

Minimum Time Maximum
Parameter Name (ns) Time (ns)
Row address setup time 0 -
Row address hold time 15 -
Column address setup time 0 -
Column address hold time 20 -
RAS precharge time 70 -
RAS width 80 10,000
Access time from RAS - 80
Access time from CAS - 20
Output disable time after CAS 20 -
RAS to CAS lead time 25 60
Data in setup time before CAS 0 -
Data in hold time after CAS 15 -

5-26 Memory System Interface

. 5.10.3.1

5.10.3.2

Calculating DRAM Row Address Setup Time

When the rtVAX 300 is accessing memory, the memory controller asserts RAS
on the rising edge of P3. The address is placed on the DAL<29:02> H bus
20 ns before the rising edge of P1. This address has to propagate through
the 74F373 latches, the 74F86 XOR gate, and the 74F711 MUX. The total

propagation delay is as follows:

+ 1 CLKA period

+ Address to P1 edge

— Propagation of 74F373

— Propagation of 74F86

— Propagation of 74F711

+ Minimum memory controller delay
+ Minimum RAS driver delay

DRAM row address setup time

In this case, DRAM row address setup time =50 ns + 23 ns — 7ns — 5ns - 6
ns + 0 ns + 2 ns = 57 ns.

Calculating DRAM Row Address Hold Time

Once RAS has been asserted, the SELCOL input to the 74F711 is asserted on
the following CLKA falling edge. When the worst-case row address hold time
is calculated, the minimum propagation delay of the two 74F00 gates of the
address MUX select flop must be added to the RAS to SELCOL time. The row
address hold time is calculated as follows:

+ RAS to CLKA rising edge

~ Memory controller output delay

— 2 x minimum propagation of 74F00
+ Minimum 74F711 delay

—~ Minimum 74F04 delay

DRAM row address hold time

In this case, DRAM row address hold time =50 ns — 12 ns - (2x 2)ns + 8 ns
— 4 ns = 38 ns.

Memory System Interface 5-27

5.10.3.3 Calculating DRAM Column Address Setup Time
The memory controller asserts ENBCAS on the P1 edge following the assertion
of RAS. The CAS lines of the DRAMs assert after two minimum 74F0Q delays.
The SELCOL line, which drives the column address onto the DRAM address
bus, does this two maximum 74F00 gate delays after the falling edge of CLKB.
The column address setup time is calculated as follows:

+ SELCOL to CLKA rising edge

— 2 x maximum propagation of 74F00 (address MUX latch)
~ Maximum propagation of 74F711

+ 2 x minimum propagation of 74¥00 (CAS decode latch)

+ Minimum CAS driver delay

DRAM column address setup {ime

In this case, DRAM column address setup time = 25 ns - (2x5)ns — 15 ns +
(2% 2)ns + 2 ns =6 ns.

5.10.3.4 Calculating DRAM Column Address Hold Time

The INVADDR<3:2> lines assert on the P3 edge that follows the assertion of
ENBCAS. The column address hold time is calculated as follows:

+ CAS assertion to INVADDR<3:2> assertion

~ ENBCAS memory controller output propagation delay
— 2 x maximum propagation or 74F00

—~ CAS driver delay

+ Minimum INVADDR<3:2> memory controller delay

+ Minimum 74F86 delay

+ Minimum 74F711 delay

DRAM column address hold time

In this case, DRAM column address hold time =50 ns — 12ns ~(2x5)ns - 5
ns +0ns+2ns+ 5ns=30ns.

5.10.4 Memory Subsystem Octaword Write Cycle Timing

Like the access time for read cycles, DRAMs also have setup and hold times
that must be met for write cycles. The data on the DALSs is strobed into

the DRAMs on the falling edge of CAS. The rtVAX 300 can write up to four
longwords in one access cycle. Refer to All multiple word write cycles ship one
microcycle for each longword transferred to satisfy the data in setup and hold
times. Figure 5-7 for the octaword write cycle sample timing.

5-28 Memory System Interface

SEFPO0-ON

s} Fa POADIUVM EDAO3LIBM IDADILIBM EDADILHM 1OADZUUM EODADILIYM I1DAD3LIMM SSIVOVIHYLS Epe'l
L dNHSINIZ 0>mew00< NO»OW.:I; O>mew00(NQ>0W.CE>> O>ommw00< N0>0wtm>> JAISSIVOV L .

; i n i : i : : { : i | : i i
: : ! : z:a..Oo € Mvmuxoﬁ? X nwrhooz ummxom.‘ X z::§ 1 mmmaoor Ybo oua ﬁzxz.am Ean«.m : H <0'8>HOQYNVHA
1 13 . 1 1 1 * v !
: : : i i : ; ; : i m .. “ : : .. : :
: : ! oo m " ! “ : . . : m ” H H ENGOYANI
i : i i : i : ; : { i ' ; i m i i i i
' : : . : i : _ : : : : : : : . : : :
i i ; o i “ N ; ; Y : i . | ; i ! i H Z4aavaNI
! | v ! : ! : ; : . | P _ ; : |
N B R B U et R Y A VS n 2 AQH
: ! ! i " ! i | : ! : ! m : ‘ ' : m :
i ! ‘_ \i i ‘ \ \i ! i \ \ { i ‘ \ i i : 1 AQV3UAYHG
! i i i : i ! i : : i : : ; i i ! i i i i
; i T\l i L [\ : N R i ARt i i i 1<0:6>5v0
! ! ' ' . ! : ' ! “ m “ : u ; “ ' ' w
i ! i i ; i : i i _ : ; : ; : ; i ;
| ; P\ i N Rt : R Y ! i ! 15voBN3
T : : : : > i : : ;] . : : : :
! ! . i ! : ! : i : : ! i ; i ; H m
i i P A i 1ioos
] i : : : : . : : ! :
: : I : : : : : i ; : : : R ¢ 1sWH
: : i ; i § : i ; ; ; ; : i ; :
“ ! _ ! ! i : " : { ' : “ :
! ' \ f \ / \] \ s \ . H rdtd
i : ; H ; ; " i m “ i ; i
' ! : ! : ‘E ! ' ' : ; ' ! : :
= S [i L ; 1ea
; ‘ : : : : : n " : : : : i i : : ! ;
| /I S R R B A s
: i i i i ; ; i : i ; H i i
" : : . v : : :
; al. £ QHOMONOT : Nomo.‘sozo,m : § QUOMONOY i ' 0 QHOMONOT] Immwmag‘i H<0'1e>va
: " : : ‘ . ; ; . i “ m ‘ ‘ ‘
WA WA TS

td €di2d Id

; d d J J A . d . d J d d d d d ! d , d J HYY10
¥d €d 2d id ¥d Ed 2d id ¥d £d 2d I1d #d €d Zd Id vd Ed 2d id ¥d Ed 2d 1d Pd €d Zd Id ¥d €d 2d Id ¥d €4 2d Id ¥d £d Zd id P Bd 2d Ld

H1=<0E 1E>HOAYT ONY Q3LUISSY LON SI 3LIUMT ‘%oN

Bujwyl 81242 aium piomeldQ J9jjonuo) Alowel :ubisag sjdwes 7—¢ ainbi4

Memory System Interface 5-29

5.10.4.1 Caiculating Data In Setup Time

The Data In setup and hold time must be calculated to ensure that valid data
is strobed into the DRAMs. The DALSs are driven with valid data 23 ns

(2P — 27 ns) before the rising edge of P1. The DRAMs CAS line is driven 17
ns after the rising edge of P1; thus, the worst-case DRAM data in setup time is
calculated as follows:

+ 2 (74F00 minimum propagation delay)
+ 23 ns
+ 0 ns (state machine minimum propagation delay)

Data in setup time

In this case, data in setup time = 23 ns + 4 ns + 0 ns = 27 ns.

5.10.4.2 Calculating Data In Hold Time

The rtVAX 300 continues to drive the DAL bus with valid data until 31 ns (P +
6 ns) after the rising edge of the following P1. Thus, the minimum data in hold
time can be calculated as follows:

-~ 2 (74F00 maximum propagation delay)
~ Memory controller delay

+ 31l ns

+ 100 ns

Data in hold time
In this case, data in hold time = 131 ns - 12 ns — 12 ns = 107 ns.

5.10.5 Memory Subsystem Refresh Timing

Figure 5-8 shows the memory controller refresh timing. The DRAMs that
are used support CAS before RAS refresh, page mode, and thLey have an
access time of 80 ns. These DRAMs require that CAS be asserted at least
20 ns before RAS, and RAS must be asserted for at least 80 ns. If CLKA is
operating at 20 MHz, the cycle time is 50 ns. The timing diagram also shows
that ENBCAS and REFCYC assert 50 ns after REFREQ asserts. REFCYC
clears REFREQ, and all of the DRAMs’ CAS lines are asserted. RAS asserts
50 ns after ENBCAS asserts, and all three signals remain asserted for 100
ns. Table 5-8 lists all of the timing parameters needed for CAS before RAS
refresh.

5-30 Memory System Interface

. Figure 5-8 Sample Design: Memory Controller Refresh Timing

Pi P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

CLKAH

P3 i P4 P1 P2 P3iPaiP1l i P2.P3 P4iPIip2iP3ip4

RASL§‘;§§E:§%§\

\ . . 1 v
] . 1 . I . '
' ‘ . '

. ReFREQL: . o N\ b b
REFCYC L | oo —\— S N R [P
ENBCAS L | ; \ I / R

l
'

IDLE IDLE IDLE REFRESHCYC "» FINISHUP IDLE
STARTREFRESH ENDREFRESH
MLO-004430

Memory System Interface 5-31

Table 5-8 DRAM CAS Before RAS Refresh Timing Parameters

Minimum Maximum Actual
Parameter Description Time (ns) Time (ns) Time (ns)
CAS low while RAS high 20 - 40
RAS low time 80 10,000 100
RAS precharge time 70 - 100

5.10.6 RAS Precharge Time

RAS precharge time is defined as the amount of time that the DRAM needs ‘
to be unselected (RAS and CAS are deasserted) after any access cycle. This is
needed because internal voltages of the DRAMs must settle after each access.

The RAS precharge time for the DRAMs is maintained, because the memory
controller enters the FINISHUP state followed by the IDLE state after every
memory access or refresh cycle. During these two states, all the memory
controller’s outputs are unasserted, and the controller stays in each state for

50 ns. This deasserts the RAS and CAS lines for at least 100 ns after each
memory access, satisfying the RAS and CAS precharge requirements.

5.10.7 DAL Bus Turnoff Time

The DAL bus turnoff time must also be preserved to prevent bus contention.
This time is 35 ns (P + 10) after the P1 edge, when DS has deasserted. After
that time, the rtVAX 300 begins to drive the DAL bus with the next address.
The DRIVERAM signal, which turns off the DRAM latches, deasserts one
74F20 gate delay after DS. Thus, the turnoff time is as follows:

+ DS deassertion delay
+ 74F20 propagation delay
+ 74F373 turnoff time

Turnoff time
In this case, turnoff time = 25 ns + 5 ns + 7 ns = 37 ns after P1 edge.

Because the memory system is deactivated in 37 ns, transceivers are not
required between the rtVAX 300 and the memory system. This time is less
than the 53 ns maximum time required by the rtVAX 300. If the turnoff time
for any peripheral is greater than 53 ns, transceivers are needed to isolate that
peripheral from the DAL bus after the peripheral has been accessed.

5-32 Memory System Interface

5.11 Memory System lllustrations and Programmable Array
L.ogic

The following sections show memory system illustrations and programmable
array logic.

5.11.1

Figure 5-9 shows the sample design for the address decoder and powe.-up
reset.

Figure 5~10 shows the RAM memory map.

Figure 5~11 shows the sample design for the address latches.
Figure 5-12 shows the sample design for DRAM memory array 1.
Figure 5-13 shows the sample design for DRAM memory array 2.
Figure 5-14 shows the sample design for the RAM data latches.

Figure 5-15 shows the sample design for the memory controller.

Application Module Address Decoder PAL

Table 5-9 lists the programmable array logic (PAL) that decodes the rtVAX 300
address and cycle status lines. This PAL does the following:

Selects the memory and decodes rtVAX 300 interrupt acknowledge cycles

Asserts the SELRAM, IACKIPR, and ENBCCTLDPE lines, which control
the data parity enable and cache control drivers, select system RAM, and
signal when the rtVAX 300 is running an interrupt acknowledge or IPR
cycle

The SELRAM and IACKIPR select lines are internally latched on the rising
edge of AS H. This PAL eliminates the need for external device select latches
by using the D flip-flops built into the 22V10 PAL.

Memory System Interface 5-33

Table 5-8 Application Module Address Decoder PAL
Pin Description

input

1 AS

2 DAL22
3 DAL23
4 DAL24
5 DAL25
6 DAL26
7 DAL27
8 DAL28
9 DAL29
10 CSDPO
11 CSDP1
13 CsDhP2
14 CSDP4
15 DS

16 'WR
Output

23 ISELRAM

22 TACKIFR

21 !IENBCCTLDPE
20 CYCRES

5-34 Memory System Interface

' Figure 5-9 Sample Design: Address Decoder and Power-Up Reset

+BV

1Na154 7S

+8V

+8v

Power-On and Powar Glitch Reset

2470

RESE TVAX L

T4

AAA

HLT L

AAA

L RESETVAX L

Address Decoder PAL (includes laich)
Note: Socket used here

PAL
Deondie PAL 22vi0
TN 23 SELRAM L

a9 22 {ACKIPR L
Re M 21 ENBCCTLDPE L
R? 20 {CYCRES)
A6 DR
RS [
R4 DTé
Ra 1E
R2 T3

CSDP<2> L__lwl‘-‘-1—5—-2(-LE_—1

CSDPeta L 11] oo

CSDP<0> L 10| g

DAL<2O> H 8 M

DAL<28>H 8 D6

DALR27>H 7 e

DAL<R6>H 6 Da

DALB5y H_ 8| 1o

DALc2d> H | 02

DAL<23» H D1

DAL"2> H DO

AS H CiLK

CSDPcéd> L

DS L

WRL

Note: The nVAX 300 uses CMOS ACTQ245 drivers for

the DAL lines and ACTQ244 drivers for the control lines.
These drivers have very fast rise and fall imes which can
generate a fair amount of undershoot and overshoot. Some

PAL devices and RAM chips may malfunction when exposed
to excessive overshoot and undershoot. It may be necessary
to isalate these devices from the fVAX 300 signal lines with

TTL butfers or provide series terminatioh resistors for these

lines.

MLO-006389

Memory System Interface 635

Figure 5-10 shows the RAM memory map; Table 5-10 lists the corresponding
equations.

Figure 5-10 RAM Memory Map

Memory Locations DAL<29:2x
Device Selected 29 24 283 16 15 0807 02
RAM 00000000 - 003FFFFF 000000 | 00XXXXXX | XXXXXXXX | XXXXXX
k MLO-004435
Table 5-10 Application Module Address Decoder Equations
Line Equals
SELRAM.D g)%ﬁz% 'DAL28 & 'DAL27 & 'DAL26 & 'DAL25 & 'DAL24 & !DAL23

SELRAM.AR CYCRES

IACKIPRD !WR & (!CSDP2 & CSDP1 & CSDPO) # (ICSDP2 & CSDP1 & !CSDP0)
JIACKIPRAR CYCRES

CYCRES !AS & (IACKIPR # SELRAM)

ENBCCTLDPE DS & SELRAM

5-36 Memory System Interface

. Figure 5-11 Sample Design: Address Latches

Address Latches Address Latches
8BF 8BF
8-Bit 8-Bit
Latch Latch
74F373 74F373
- 19 LADDR<17>H 5 19
DAL<1?7> H 18 D7 R7 18] D7 R7 ™
166 LADDBR«16>H 16
DAL<t6> H 17 D6 R6 17 D6 RE6>A—
15 LADDR<15>H 15
DAL<155> H 1] o RS s AT
1z LADDR<«14> H 12
. DAL<14> H af, R4 13 g R4S
DR<13> H M<3
DAL<13» H o] Rarf LADDR<13> BM<3> L o] Raps LM< L
D3 D3
1 B
DAL<12> H r| Rep|tHADDR<IZ M BM<2> L 7| Rl LBM<2> L
b2 D2
;
DAL<11> H o mip}t LADDR<I>H BM<is L . R1® LBM<1> L
D1 D1
DAL<10> H 3 RO 2 LADDR<10> H BM<O> L , P 2 LBM<O> L
Do 0o
1n 11 pre——
—— HOLD HOLD
A deno LADDR<31> M o 2 deno
LADDR<30>H |- —d72 -
BF — %8 8BF
8 _dF2e
8-Bit ASL | 8-Bit
Latch Latch
74F373 74F373
19 LADDR<9> H : 19
DAL«8> H 19 D7 R7 L] oo R7 >
T
DAL <8> H ” R6 16 LADDR<8> H WR L v e 1% LWRITE L
D8 ‘ D6
DAL<7> H wl_ Rspys LADDR<7>H DAL<E1> H v meds LADDAGSI> H
DAL<6> H | Rep2 . LADDR<G>H DAL<a0s H | vl masli_ LADDR<30> H
D4 —1Da
DAL<5> H o| Rap}lLADDR<SH DAL<21>H | mapi HADDR<21>H
DAL<4> H 7| mop}® LADDR<4>H DALe20s H | Foolt_ LADDR<20> H
D2 = D2
DAL<3> H oo, R1oE LADDR<3> H DAL<18> H e LADDR<19> H
DAL<2> H s RO 2 LADDR<2> H DAL<18> H 2| Rool2 LADDR<18> H
ASL —
"I HOLD ~FoLD
GLENO —dENo

MLO-004436

Memory System Interface 5-37

eospew) weishs Lowey ge—S

Figure 5-12 Sample Design: DRAM Memory Array (1)

Note: Pinout of DRAM depends on peckage typs Used.

RAM<13> H AAM<12» H RAM<11> i RAM<d> H RAMcE>» M 1>

DAL<13>H | DAL«I2>H DAL<11> H OAL <10> H CAL ¥ C80P«i> L
18 1B 18
fvw-—'— Fid VB ZIP ™8 0P VD 2P|
100 DRAM DRAM DRAM DRAM
- ol s D‘DQD |L;W’ - s D‘DOD ' D'WD' s by s DOED.
B] _9 [}] [[] [
gmggtol: I: ;;_4 A9 [N YN 11 a0 ae 1A 1l an A9 1lag 1t ap
DRAMADDR<7>H 1» :'7 19 :; 19 :'7 1 :; 19 :; [T :; 19 :; [:: 19 :;
> H 16 1 a0 1918 81 181 a8 18 1,8 183 g 181 a8 1) as T P4
ORAMADDR<S>H 17] o¢ 173 a8 LA v 17§ 45 a8 178 ax 17 8 an 17} s 17§ .8
DRAMADDR«<4> H_18 | 4 1€ 1 as 19} 0 TR ¥ 1Al '8 '™ A v CX ¥ N Y
DHAMADDM:: 14] a9 14] as 73 14 1 as 12 1 as 14 1 a3 18] e :4 A8 14 } as
DRAMADDR«<Z>H 13 | 4o 13] a2 13 % A 18} a2 131 s 18) a2 1310 3 § a2 13§ a2
DRAMADDR<c1>H 12 § o iy a [9 12 §aq 12 { a4 L 2l ey 12} a4 12 § a1
DRAMADDR«O>H 11] 46 1Y Ao 1} a0 11 ¥ a0 1140 114 a0 11 { a0 11] a0 11) a0
DRAMRASL 7 14 7 |74 r —1d 7 ? L4
e M g e g g e g fagse
DREAMWRITEL ¢ o we sdwe |—dwe }|—dwe 2 we Sdwe Sdwe tdwe Sdwe
RAM<7> H RAM<8> H RAM<S> H RAM<A> H RAM<3> H RAM<2> H RAM<1> H RAM<O> H DP<O> L
DAL<7> H DAL ¥ DAL<d> H DAL<3> H DAL<2> H DAL<1> H DAL<0> H CSDP<O> L
1B 18 18 1B 1B 18 1B 1B
A] iMB 2IP iMB 2P 1MB 2\P 1mMB 2P 1MB 2P iMB ZIP 1MB ZiP 1MB 2P
{ 100 DRAM s DRAM DRAM . DRAM . DRAM . ORAM . DRAM . ORAM .
= : - : DI DO : : DO : oI 00 : - [+ 7e]~ $ o [oZeT> : D [« o]~ : o Doq
DRAMADDR<®>H 1 | 4o 1] ag N Y 18 a0 [PPN 14 a0 1 a0 11 ap 1) a0
DRAMADDR« H » ™) » o » = o
DRAMADDR<7> H 1% :; 1 :g 1) :; U] :: 1" :: 1" :: 18 :; 1 :.', 1" ::
DRAMADORGS> H 18 | 40 181 40 (LH ¥ (T P 18| an 181 as TR T PP T8 v
DRAMADDRA<S> H 17 | 40 171 ag 17 { a8 17 f A 171 a8 17 { ax 17§ a8 I7 { a8 17 § as
DRAMADDRcA>H 10 | ,, L YW 8} L vt L Y 18] a4 TR v 18 4 a4 T3
DRAMADDR<3> H 14 A3 13 AT PP 18 % an LLIE AP 1] a3 18] 43 14 1 a3 LTI
DRAMADDR<2>H 13 | 13 13 i] 13 13 13 19 13
DRAMADDR<I>H 12 :f 12 :s 12 :f 12 :f 12 :f 12 :3 12 :? 12 :s 12 :ﬁ
DRAMADDR<O>H 11] 45 N Y T I 1§ a0 1l a0 11 A0 “.1a0 T8 1] a0
DRAMRAS T 7 i 14 k4 7 | T 4 i T 1 7
———m——!s———C‘ms T2 RAS ——.-QRAS —-;cm s RAS ———!-{:HAS -—-Tqms : RAS —!qm —lcms
DRAMCAS<O>L 24 cag tqcas |—dcoas |—doas |—dcas :g cas | —Idocas —_-.-g cas | —Edcas
DBAMWRITEL... & 3 we WE we +—*dwe |—dwe wE |—iqwe we +idwe

Figure 5-13 Sample Design: DRAM Memory Array (2)

Note: Pinout of DRAM depends on package type used.

6E-§ oorpeluj weisig Aiowepy

RAM<31> H RAM<30> H RAM<20> H AAM<28> H RAMc27> H RAM<26> H RAM<25> H RAM 24> H _DPA>L
DAL<31> H DAL <30> H DAL <28> H DAL«<28> H DAL<27> H DAL <26> H DAL<25>» H DAL<24> H CSDP<3> L
1B 1B 1B 18 1B) 1B 18 ‘ 1B 18
1 2 1MB ZIP 1MB ZIP ™B 2P 1MB ZiP MB 2P MB 2P 1MB ZIP 1MB ZIP MB 2IP
100 DRAM . ORAM . DRAM . DRAM . DRAM ’ DRAM ’ ORAM DRAM _:aj ORAM
3
= . ol i DO s o [eaT5 s oy Doy o Doy slp DO LE DOy s lp DO S io DO
] s []])) . °
e e T b e 1 a0 L1 a0 1 a0 Hao a0 a9
b — N W = <= | — | —= 3
DRAMADDR<7> H \gﬁ A8 1" A8 1% A8 \ A8) A8 1" A8 19 A8 1" A8 19 A8
== - AT AT A7 A7 A7 A7 A7 A7 A7
DRAMADDR<6> H 18 18 18 1] 18 18 18 " 1
= S A A AS AS AS AS AS A8
DRAMADDR<S> H 17 17 17 17 17 17 17 17 17
= AS AS AB AS AS AS AS AS AS
DRAMADDH<d> H 18 18 T 18 [T 8 18 18 18
= Ad Ad Ad Ad A Ad A4 Ad Al
DRAMADDR«<3> H 14 14 14 14 14 14 14 14 14
: A3 A3 A3 A3 A A3 }— 221 a3 A3 A3
DRAMADODR«<2> H 13 13 13 13 13 13 13 13 [F]
P A2 A2 A2 A2 A2 A2 A2 A2 A2
DRAMADDR<I> H 12 12 12 12 12 12 12 12 iz
= b At Al At Al At At Al At Al
DRAMADDR<O>H 11 { 44 1N Y 114 a0 1] a0 Y3 a0 1§ a0 LN PP 1} a0 1] a0
ORAMRASL __ 7qaas |—Ldms |—‘dms | —Idaas |—Iqmas | —Tdms |—Tdms [—Tdms {(—Tdnas
D <3> : CAS : CAS jﬁ CAS ::—g CAS —-%c cas | —2dcas ——%c CAS —:—c CAS ——:c cAS
WE WE Q WE WE ———(} WE ——(] WE —— WE |-——C] WE - WE
RAM<23> H RAM<22> H RAM<21> H RAM<20> H RAM<19> H RAM=18> H RAM<17> H RAM<16> H DP<2> L
DAL<23> H DAL<22» H DAL<21> H DAL<20> H DAL<19> H DAL<18> H DAL<17> K DAL<16> H CSDP<2> L
1B 1B 18 1B i 18 1B l 1B 18 18
! 2 1MB ZIP 1vB ZIP 18 Zp iMB ZiP 18 ZiF 1ME ZiP ™8 ZiP 1MB ZIP 1M8 ZIP
100 DRAM DRAM . DRAM . DRAM . DRAM . DRAM . L DRAM DRAM . DRAM
s
= 8 o DOy s{o DOK (N ' Doq gl o DO 8o DO [P DO 8 { o DO 1o DO 5 1o DO
] ? » »] [[. ®
DRAMADDR<#> H 1 AP 'Y ap 1] ap \) ap 1) a9 11 A9 I PP 14 a0 LN PP
DRAMADDR<8>H 20 } 40 R | a8 2| ® | an 2§ an 2 | an 2 | op 2 | ap 2 | a0
ORAMAODOR<7> #_18 te 1t »] 1] 19 10 T
A7 A7 A7 AT A7 A7 A7 A7 A7
ORAMADDR«O> H 18 10 1" " 19 1 1] 18 "
A8 AB A8 AS A8 AB A8 A8 AS
DRAMADDR<S> H 17 17 17 12 17 17 17 17 7
S AS A5 AS AS A5 AS AS AS AS
DRAMADDRcA> H_18 } 44 v las L1 PV wlag AL I LI PV 18 4 as LI 9P 18 | a0
DRAMADDR«3> H 14 | 09 LI N 14§ as LI P 14§ a9 LI s 14 { an LU 14 [s
DRAMADDR<R> H 13 13 1] 13 13 18 13 13 13
= =1 A2 A2 A2 ———1 A2 A2 A2 A2 A2 Az
DRAMADDR<!> H 12 At 120 a4 2 1 aq 12 } a1 12 1 A% 12) a1 12) 4y 12) a9 12} a9
DRAMADDR<O>H 11 } 49 AN P a0 1 { a0 LI VY LI Y LR IS Y { a0 1t { a0
DAAMRASL __ Tqms [—Idqms |—Iqmas |—qnas L ras Ld ras j RAS —_—:E ras 1—1dras
DRAMCAS<2>L A cag +q cAs jg CAS :g cAs +q cAs +J CAs S cAs cgcas ——dcas
DRAMWRITEL 8 3 we WE WE | WE WE we |idwe +*dwe [—tdwe
MLO-D08301

eoepelu| weisAg Alowsy oS

Figure 5-14 Sample Design: RAM Data Latches

BBF
B-Bit
Latch
74F373
RAM<15> H 18 H?DL._-_[—J&" 5> e
—————1D7
AAM<i4>H 17 meplf BAL<14>H
RAM<13>H P RS 18 DAL<13> H
—D5
RAM<i12>H 1| mapl 2 DAL<1Z2H
——— D4
° DAL<11> H
RAM<i1>H » R3pf— <21
-1 D3
AAM<10>H 7] R2 o8 DAL<iO>H
—————{D2
ST BT L
ramse> v 3] Root? DAL<8> H
MRDYL 1t
e — (| HOLD
DRIVERAWL 1 JF00
8BF
8-Bit
Latch
74F373
RAM<7> H 10 A7 b DAL<7>H
D7
RAM<6> H v Rrepb S DAL<6> H
D6 —
RAM<S> H 4 as 16 DAL<S> H
DS
DAL<4> H
RAM<4> H 1 R4S 12 <4>
D4 —
RAM<3> H e RIS ° DAL<3> I:l
D3
DAL H
RAM<2> H 7 Rz s <2>
D2
HAM<1> H 4 A1 s DAL<ci> H
Dt
RAM<O> H s RO 2 DAL<G> H
MROY L 1"
DRIVERAM L QHOLD
———QENO

R

5

2

8BF
B-Bit
Latch
74F373
RAM<31>H 18 o7 R7 4
RAM<30> H 17 /6
Ram<29>H 1a} ¢ RSHY
RAM<28> H R4
<28> 13 D4 =
M<27> H R3
E_A_f______.2 > ___.J D3 5
RAM H
<26> 7 D2
RAM<25> H 4 o1 R1
RAM<24> H 3ipe Rot
MRDY L 1
'] WolD
DRIVERAM L ENO
8BF
B-Bit
Latch
74F373
AAM<23> H R7
<23> 18 o7 =
RAM<22> 4 17 RE 4
RAMc21> H 14 RS
RAM<20> H 13 04 R4
Mc19s H !
RAMc 19> [] D3 3 A
Mc18> H R2
RAMc18> 7 D2 >
RAM<17> H 4 01 R14
RAM<16> H 3 RO
MRDY L 1 diaio
Riv
DRIVERAML ENO

® DAL<31>H

DAL<30> H

DAL<29> H

DAL<2B> H

DAL<27>H

DAL<26> H
DAL<25> H

2 DAL24>H

DAL<23> H
DAL<22> H
DAL<21> H

2 __DAL20> K

DAL<19> H

__DAL<18> H
DAL<17> H

DAL<16> H

88F
8-Bit
Latch
74F373
"0
R7SE -
7 B9
] o PO
14 R5{A it
'3 rapt'?
DP<3> L 8 R3D"°'*E§9F_<i>—‘.
{03
— o2
DPet> L i)t CSOPcixt
————q 01
opeost __sf mad] 2 CSDP<O>L
MROY L 1
e —— (A HOLD
DRIVERAML ENO
SYNCHAS H
LWRITE L
18
ENABLERAM L
CLKA H

_DRIVERAM L

MLO-090£440

;
|

Address MUX Select
Pig-Flop

12.8 uS Refresh Request Timer

8.8it
Cournter
T4FSTO |
g &
s S
2 <
o 2
ENP
& svne
SR

5 ——] Pe

RESETVAX L |

X MR TC
SV ~tmana—2 ENO
CLKA cp

[

Figure 5-15 Sample Design: Memory Controller

CAS Decode Logic

L 18
LBM> | B 8 L
8
o

18
] 1 7
oM | L) e e A
1B
> 1B
B,
LeM<> L 1%) M
18 1.
B 4
. s Fop pPE———CASD L,

18
nr .
o0 0+
7 18
SYNCHAS H CCTL and DPE Drivers
REFCYC L
MRDY L 18

Memory System Interface 5-41

PAGE 5-42 INTENTIONALLY LEFT BLANK

. 5.11.2 Memory Subsystem Sequencer State Machine PAL

The memory subsystem sequencer performs the following functions:

e Sequences the RAS, CAS, and address enable control lines for memory
access and refresh on the rtVAX 300 application example

e Arbitrates between refresh requests and memory accesses

e Controls the RDY L signal to the rtVAX 300 to mark the end of a memory

access cycle

Table 5-11 lists pins, signals, and comments.

Table 5~11 Memory Subsystem Sequencer State Machine PAL

Comment

Pins Signal
Input Signals

1 CLKA

2 SYNCHAS
3 'DS

4 CLKB

5 P3P4

6 'LWRITE
7 SELRAM

The rtVAX 300 A phase of the CVAX clock used to
trigger all state transitions.

This synchronized version of AS L from the rtVAX 300
indicates that the address cycle status information is
valid and that the rtVAX 300 is starting a memory
access. The signal remains asserted until the end of the
memory access cycle and is synchronized to deassert on
the CLKA positive edge.

This rtVAX 300 data strobe signal output is assertzd
when the DAL bus is ready to transfer data.

This rtVAX 300 B phase of the processor clock is added
here in case extra states need to be clocked off its edge.

This signal is asserted when the rtVAX 300 is in the P3
or P4 state and deasserted when the rtVAX 300 is in
the P1 or P2 state. This state machine uses the signal
to determine when to assert the DRAMREADY line.

This latched write signal output from the rtVAX 300 is
asserted during a write cycle and unasserted for reads.
It affects the operation of this state machine.

This signal is asserted by decode logic when the rtVAX
300 is trying to access the DRAM.

(continued on next page)

Memory System Interface 5-43

Table 5-11 (Cont.) Memory Subsystem Sequencer State Machine PAL

Comment

Pins Signal

input Signals

8 'IACKIPR
19 OE

21 FINVADDR2
22 FINVADDR3
23 LADDR30
24 LADDR31
25 IRST

26 'RESETVAX
27 'REFREQ

5-44 Memory System Interface

This pin is controlled by external decode logic connected
to the CSDP lines of the rtVAX 300. The signal
asserts when the rtVAX 300 is running an interrupt
acknowledge cycle but is not asserted for a memory
read cycle and must be checked to prevent this state
machine from starting a memory access cycle when the
rtVAX 300 is running an IACK cycle.

This is the output enable of the sequencer.
This is tied to the INVADDR2 output of this state

machine and used as an input for determining the
address of the last longword transferred during
multiple-longword transfer cycles.

This is connected to the INVADDRS output of this
state machine and used as an input for determining
the address of the last longword transferred during
multiple-longword transfer cycles.

This signal is the secend most significant bit of the
latched address of the rtVAX 300. When it is deasserted
and LADDR<31> is asserted, a quadword read cycle is
taking place.

This signal is the most significant bit of the latched
address of the rtVAX 300. When it is asserted and
LADDR<30> is deasserted, a quadword read cycle is
taking place.

This signal asserts during power-up and system reset.
It causes the state machine to run refresh cycles
continually to warm up the DRAM upon power-up.

This signal is asserted to start a svstem reset; its
assertion forces the IDLE state and deasserts all
outputs.

This signal is asserted by an external refresh request
counter every 3.28 ms. This request is reset when this
state machine asserts the ENBREFRESH signal.

(continued on next page)

Table 5-11 (Cont.) Memory Subsystem Sequencer State Machine PAL

Pins

Signal

Comment

Output Signals

12

13

15

16

17

18

'RAS

'ENBCAS

'REFCYC

INVADDRS3

INVADDR2

'DRAMREADY

The assertion of this signal strobes the row address into
the selected DRAMs for refresh or memory access.

The assertion of this signal strobes the column address
into the selected DRAMs, writes data into them during
a write cycle, and turns on the output drivers during a
read cycle to drive output data.

The assertion of this signal turns on the refresh
address counter output drivers, driving the next refresh
address onto the address lines of the DRAMs. This line
clears the refresh request latch, and its deassertion
increments the refresh address counter.

The assertion of this signal inverts the LADDR<3>

bit of the column address, which is then driven onto
the address lines of the DRAM. This line is asserted
only during the quadword, hexword, and octaword read
cycles.

The assertion of this signal inverts the LADDR<2>

Lit of the column address, which is then driven onto
cne address lines of the DRAM. This line is asserted
only during the quadword, hexword, and octaword read
cycles.

This output controls assertion of the RDY L line to
signal that valid data is on the DAL lines and that the
cycle should end.

You define the internal state bits and assign a state name for each bit pattern
as follows. In addition, all illegal states are defined to prevent the machine
from accidentally hanging. All illegal states next-state to the idle state.

NODE [STATE(Q, STATEl, STATEZ, STATE3,FLAG];

STATEQ . CKMUX = CLKA;
STATEL .CKMUX = CLKA;
STATEZ2 .CKMUX = CLKA;
STATE3 .CKMUX = CLKA;
FLAG . CKMUX = CLXA;
/* REFCYC.CKMUX = CLKA;
DRAMREADY.CKMUX = CLKA;
INVADDR2 .CKMUX = CLKA;
INVADDR3 .CKMUX = CLKA;
RAS.CKMUX = CLKA;

ENBCAS.CKMUX = CLKA;

Memory System Interface 5-45

FIELD MEMORY = [STATE3,STATEZ, STATEL, STATEO];

SDEFINE IDLE ‘B’ 0000
SDEFINE STARTACCESS ‘'B’0100
$DEFINE ACCESSCYC 'B'0110

$DEFINE READCYC "B’ 0010
$DEFINE WRITECYC1 ~ ‘B'1110
$DEFINE WRITECYC2 B’ 1100
$DEFINE WRITECYC3 'B‘0111

$DEFINE STARTREFRESH 'B‘1000

S$DEFINE REFRESHCYC 'B’1001
SDEFINE ENDREFRESH 'B’1011

$DEFINE FINISHUP "B’ 0001
$DEFINE POWERUP ‘B’1111
SDEFINE ILLEGALl ~ ‘B’001l
$DEFINE ILLEGAL2 "B 0101
$DEFINE ILLEGAL3_ ~ 'B’1010
$DEFINE ILLEGAL4 ~ 'B’1101

You now define equations to ease the state transition conditions. Memory

access can start only if SYNCHAS and SELRAM are asserted and if IACK

and REFREQ are not asserted to give refresh priority over memory access

and to prevent memory access during an rtVAX 300 interrupt acknowledge

cycle. EQU 1 through 4 determine when multiple longword transfer cycles are ‘
complete by looking at the cycle type LADDR<31:30> and the address of the

last longword INVADDR<3:2> that was transferred.

MEMACCESS = SYNCHAS & SELRAM & !IACKIPR;
EQUl = !LADDR31 & LADDR30_ & FINVADDR2_ & !FINVADDR3 ;
/* END LONGWORD XFR */

EQU2 = LADDR31_ & !'LADDR30_ & 'FINVADDRZ & FINVADDR3 ;
/* END QUADWORD XFR */

EQU3 = !'LADDR31_ & 'LADDR30_ & FINVADDRZ_ & FINVADDR3 ;
/* END HEXWORD XFR */

EQU4 = LADDR31 & LADDR30_ & !'FINVADDRZ & !FINVADDR3 ;

/* END OCTAWORD XFR */

The state machine listing is as follows:

SEQUENCE MEMORY {
PRESENT IDLE
IF (REFREQ # RST) NEXT STARTREFRESH OUT REFCYC OUT ENBCAS;
IF MEMACCESS & ! (REFREQ # RST) NEXT STARTACCESS OUT RAS;
DEFAULT NEXT IDLE OUT !REFCYC
OUT !RAS
OUT !ENBCAS
OUT !INVADDR2
OUT !INVADDR3_
OUT !DRAMREADY
OUT !FLAG;

546 Memory System Interface

PRESENT STARTACCESS

IF MEMACCESS & DS NEXT ACCESSCYC OUT ENBCAS;
IF 'MEMACCESS NEXT ENDREFRESH,

DEFAULT NEXT STARTACCESS;

PRESENT ACCESSCYC
IF 'P4_ & !'LWRITE & 'FINVADDR2 & 'FINVADDR3 & (!FLAG # !'DS)
- NEXT READCYC OUT DRAMREADY
OUT !'ENBCAS
OUT INVADDR2 ;
IF 'P4_ & 'LWRITE & FINVADDRZ & 'FINVADDR3 & (!FLAG # !DS)
NEXT READCYC OUT DRAMREADY
OUT !'ENBCAS
OUT !INVADDR2
OUT INVADDR3 ;
IF 'P4_ & 'LWRITE & !'FINVADDR2 & FINVADDR3_ & (!FLAG # !DS)
- NEXT READCYC OUT DRAMREADY
OUT !'ENBCAS
OUT INVADDR2 ;
IF 'P4_ & 'LWRITE & FINVADDR2 & FINVADDR3_ & (!FLAG # !DS)
- NEXT READCYC OUT DRAMREADY
OUT !'ENBCAS
OUT !INVADDR2_
OUT !INVADDR3_;
IF !'P4_ & LWRITE & 'FINVADDR2 & !FINVADDR3
NEXT WRITECYC1 OUT DRAMREADY
OUT !ENBCAS
OUT INVADDR2 ;
IF 'P4_ & LWRITE & FINVADDRZ & !FINVADDR3
NEXT WRITECYCl OUT DRAMREADY
OUT !ENBCAS
OUT !INVADDR2
OUT INVADDR3 ;
IF 'P4_ & LWRITE & 'FINVADDR2 & FINVADDR3_
- NEXT WRITECYC1 OUT DRAMREADY
OUT !'ENBCAS
OUT INVADDR2 ;
IF !'P4_ & LWRITE & FINVADDR2 & FINVADDR3
- NEXT WRITECYC1 ~OQUT DRAMREADY
OUT !ENBCAS
OUT !INVADDR2
OUT !INVADDR3 ;
DEFAULT NEXT ACCESSCYC;
PRESENT READCYC
IF MEMACCESS & !(EQU1 4 EQU2 # EQU3 # EQU4)
NEXT ACCESSCYC OUT ENBCAS
OUT !DRAMREADY
OUT FLAG;
IF EQU4 NEXT REFRESHCYC OUT !RAS
OUT !ENBCAS
OUT !INVADDR2
OUT !INVADDR3_

Memory System Interface 5-47

OUT !DRAMREADY
OUT !FLAG;
DEFAULT NEXT FINISHUP OUT !RAS
OUT !ENBCAS
OUT !INVADDR2
OUT !INVADDR3_
OUT !DRAMREADY
OUT !FLAG;
PRESENT WRITECYC1
IF MEMACCESS & !(EQU1 # EQU2 # EQU3 § EQU4)
NEXT WRITECYC2 OUT !DRAMREADY;
DEFAULT NEXT FINISHUP OUT !RAS
OUT !ENBCAS
OUT !INVADDR2
OUT !INVADDR3
OUT !DRAMREADY;
PRESENT WRITECYC2
IF !DS NEXT WRITECYC3 ;
IF DS NEXT WRITECYC2 ;
PRESENT WRITECYC3 — ~
IF DS NEXT ACCESSCYC OUT ENBCAS
OUT FLAG;
IF !'DS NEXT WRITECYC3 ;
PRESENT STARTREFRESH
NEXT REFRESHCYC OUT RAS;:
PRESENT REFRESHCYC
NEXT ENDREFRESH OUT !ENBCAS;
PRESENT ENDREFRESH
NEXT FINISHUP OUT 'REFCYC
OUT !RAS;
PRESENT FINISHUP
NEXT IDLE OUT !RAS
OUT !ENBCAS
OUT !INVADDR2
OUT !INVADDR3_
OUT !REFCYC
OUT !DRAMREADY
OUT !FLAG;
PRESENT POWERUP
NEXT FINISHUP;
PRESENT ILLEGAL]
NEXT FINISHUP;
PRESENT ILLEGAL2
NEXT FINISHUP;
PRESENT ILLEGAL3
MEXT FINISHUP;
PRESENT ILLEGAL4
NEXT FINISHUP;
}

5-48 Memory System Interface

XXKXX
XXXXXXX

XAXXXXXXX
.9.4.0.0.9.0.0.6.0.8

PO 0:0.9.0.4.4.04004

B0 9.6.6.0.44646.666464

P 0908860644 884604

0 0.49.4.5,0.646.44406060464

p.9.0.4.6.0.6.0.0.0.8.6884.96¢6444

P9 0.00 006500056 8444.9094.94

D5 4.40.0.0.600.0.804.9004¢$48064

P09 0008 004800.6009.04.69094644
BO0.989.0.406809008606088504000464

P00 0.0.089.900.00804.9.0.600988.0049¢4¢4

J0.0. 00069 488¢0.0090.60.0068656¢8004944

$. 0,608 800008408 8.6.000004.8.640430¢48948894

$.0.8.0.0.0.0.8.09.8 9846960600 0000.006680 6644044
$:8.9.0.0.6.00.8.0.0.6.8:96.08¢6.90090,6.9.90.06.99609¢4064
000.8.0.0.0000.6000.0900660.48000.9646049.0609691046¢44
p.96.0.50.000.00.8.9.0.00.80.898¢880446000083890 5349444
p.0.9.0.9.90.90.00.0609.0.998.000809900009086006.00096¢866094
$.9.9:9.9,0.0.6:09.9.69.6.6.98.9.0.0.0.999.$.68000855096898.00666$.906
1.0.8.8.08.9.6.0.9.99.0,68.00.9.9.9.9.09.909.69086898460.00069¢60¢6683
1908 8.9.6.9.6.0.90.09.8.0000080.9098008000.64909.0669.008006405.468064

6

Console and Boot ROM Interface

This chapter provides information and examples for interfacing a processor

. status LED register and an external boot ROM to the rtVAX 300 processor.
The console is used for hardware and software debugging, and the optional boot
ROM is used to store the VAXELN image and user apj.ication permanently, so
that the rtVAX 300 processor can boot without an operational network or host
system. This ROM could also be used for board-level testing and initialization.
The processor status LEDs are used to indicate the progress of rtVAX 300
self-test and processor operating mode.

This chapter discusses the following topics:
. * Console system interface (Section 6.1)
* Booting from external ROM (Section 6.2)
* rtVAX 300 processor status LED register (Section 6.3)

* Console and boot ROM illustrations and programmable array logic
(Section 6.4)

6.1 Console System Interface

. The rtVAX 300 processor module does not contain an internal console serial-
line unit (SLU); however, 16 console registers are reserved in the rtVAX 300
processor reserved space to select and program an external Signetics 2681
console dual universal asynchronous receiver/transmitter (SCN 2681 DUART).
These registers occupy physical locations 20100000 to 2010003F. The built-in
firmware of the rtVAX 300 programs and communicates with the external SCN
2681 DUART, which implements these console registers. The firmware detects
the absence of an external console DUART and will stop communication with
the console and continue to boot if the console is inoperable or nonexistent.
(Table 3-13 lists console register addresses and their read and write functions.)

Console and Boot ROM Interface 61

Note

Digital recommends that the console DUART be implemented in every
application module that uses the rtVAX 300 processor. The console
provides a tool for debugging the application hardware and software.
Without the consnle terminal, you cannot use the console emulation
program and the local debugger.

I/0 registers implemented in the application hardware can be debugged
by using the EXAMINE and DEPOSIT commands of the console
emulation program through the console terminal. The built-in console
emulation routines provide other commands for performing self-test
and external memory testing. The VAXELN kernel also provides a
local debugger that is used through the console. User-written VAX
assembly language programs for debugging hardware and VAXELN
system images can easily be loaded through Channel B of the DUART.

A console terminal interface for the rtVAX 300 processor must contain the
following elements:

Full address decoder to select the console DUART

Cycle status decoder to detect console interrupt acknowledge cycles
Address latches to hold the console register address

SCN 2681 DUART to implement the console registers and interface
Line receivers and drivers

DAL transceiver to prevent bus contention

Interrupt vector generator

Optional 160 ms break detector

Console state machine

Figure 6~1 shows the console terminal interface block diagram. The interface
contains the address and cycle status decoder, the DUART, DAL bus
transceivers, address latches, an interrupt vector generator, and a console
state machine. The console terminal connects to Channel A of the DUART,; a
serial-line output of a VMS host can be connected to Channel B to down-line
load hardware debugging assembly language programs and VAXELN system
images. Other general-purpose RS—232 peripheral devices can also connect to
Channel B.

6-2 Console and Boot ROM Interface

. Figure 6-1 Sample Design: Console Terminal intertace Block Diagram

A 1
DSL<29 35,‘ Address RXA Console A RXDA TXDA TXA RXA
AS _ _ _ »l Decoder UPCONE Receiver _
CONE Line
DS y LOWCONE oB XD Driver B
. RX B TX RXB
DAL<12:2> RXB Console B
CSDP’—;;)-—’ Address | conlACK Receiver " JConsole g ‘
Lol <8 U>mt and IACK
WR Decoder | ENBVECTOR DUART
M »
LADDR<5:2> 3
AS SOULTEE2 plSCN2681y | 36864 MH:z
) ‘ RST Oscillator
CONE ENBCONRD > D<7:0
ENBROM ENBCONWR < a
CONIACK IRQ<0> | Transceiver
LBM<O> N DS DAL<7:0>
P3P4 »| Conscle —— EN
DS Iinterface CONE .
SYNCH AS. Controlier ENBCONDATA = DIR
AR IOREADY ENBCONWR ‘
LWRI"RTSET | |
imerrupt
CLKA __, {>¢ DNBCONRD | Vector
|
H

Generator
. LWRITE | J
Drivers
Bits (9, 7, 6)

Bits (15-10, 8, 5-0) DAL<15:0»

I e
i ENBVECTOR EN

+5V-AW—o

MLO-006522

6.1.1 Console Access

. When the rtVAX 300 processor accesses any of the 16 console registers, the
rtVAX 300 first places the register address on the DAL<29:02> H bus. This
address is in the range of 20100000 through 2010003F. The address decoder
(see Figure 6—6) asserts the console enable (CONE L) signal when a valid
console address is latched. CONE L asserts on the rising edge of AS H and
remains asserted throughout the entire console access cycle. The 4 low-order
address bits DAL<05:02> H are latched (see Figure 6-7) and fed into A<3:0>
of the DUART to select one of the 16 internal registers. The DUART is only 8
bits wide; therefore, DAL<31:08> H are ignored when acce:sing the console.

Console and Boot ROM Interface 6-3

6.1.2 Console State Machine

When the address decoder has asserted CONE L, the DUART is selected, and
the console state machine jumps to the WRITECYC1 state, if it is a console
write cycle, or to the READCYC1 state, if it is a read cycle. ENBCONDATA
and either the DUART RD or the WR input are asserted. The state machine
waits the appropriate number of wait states for the console read or write
cycle, synchronizes with the P3P4 signal, and asserts IOREADY. This sets the
ready hold latch (see Figure 6-11), and the RDY L input to the rtVAX 300 is
asserted until the end of the access cycle. The state machine then jumps to the
FINISHUP1 to FINISHUPS3 states. These states are necessary to satisfy the
200 ns of deselect time required by the SCN 2681 DUART. Refer to Figure 6-2
to see the console state machine sequences.

Caution

The RDY L, ERR L, and CCTL L lines are tri-stateable, bidirectional
lines. These lines are pulled up by resistors inside the rtVAX 300
processor and must be driven by a tri-stateable driver, such as the
74F125. If these lines are driven by a standard TTL totem pole output,
the rtVAX 300 processor will not function.

6.1.3 Console interrupt Acknowledge Cycles

Interrupt requests to the rtVAX 300 processor from the DUART are generated
on the IRQ<0> L line when the receive buffer is full or the transmitter buffer
is empty. The rtVAX 300 processor responds to interrupt requests by initiating
an interrupt acknowledge cycle, shown in Figure 6-3; the sequence is shown in
Figure 6-2.

The INT output of the DUART asserts the IRQ<0> L input of the rtVAX 300
processor. The rtVAX 300 processor executes an interrupt acknowledge cycle,
during which it expects to read a vector from the interrupting device. The
interrupt vector generator (see Figure 6-11) drives a vector of 02C0;4 onto the
DAL bus when the ENBVECTOR signal is asserted.

The cycle status decoder (see Figure 6—6) monitors the CSDP<4:0> L and
DAL<06:02> H lines to determine if the rtVAX 300 processor is performing
an interrupt acknowledge cycle. The interrupt priority level (IPL) is detected
when DAL<06:02> H is read. If the IPL correlates to an interrupt generated
by the console, the cycle status decoder asserts the CONIACK signal.

6-4 Console and Boot ROM interface

. Figure 6-2 Sample Design: Console Cycle Sequence

— L
| 1 READ
i RITECYC L.
‘ WRITECYC CYCLE
. |ENBCONDATA. »
- | :
| | e
iDLE U WRITECYC2 READCYC1 L] ROMCYC1 1
ENBCONDATA- ENBCONDATA ENBCONDATA+ e
IOREADY- .
| IAEKCYC2
. . AOMCYGZ L] —
WRITECYCa L] READCYC2 L ’ i
ENBCONDATAS ENBCONDATAS T]
Y ¥ Yeos
‘ AOMCYE3]
WRITECYCY READCYCS [<
ENBCONDATAS ENBCONDATA+
. FINISHIACK L]
‘ ROMCYC4
- JU—
|) IOREADY
WRITECYCSL] | READCYC4]
ENBCONDATAs| | ENBCONDATA+

ROMCYCE L]

M

ROMCYCE U

FINISHWRITE]

[4
v
%
Z\ <

FINISHRAEAD L]

ENBCONDATA. ENBCONDATA. FINISRUPY L]
IOREADY IOREADY+
No ENBCONDATA.-
IOREADY.
FINISHAOM L

FINISHUP3

WRITE ACCESS = LWRITE & LBM<c<0Oc> & CONE & SYNCHAS
READ ACCESS = ILWRITE & LBM<«<0<> & CONE & SYNCHAS
IACK CYCLE = (CONIACK # CPUST) & SYNCHAS
ROM ACCESS = LWRITE & SELROM & SYNCHAS

START

Q.,,

Ol

The ENBVECTOR signal is asserted when DS asserts, driving the vector
onto the DAL bus. When in the IDLE state and CONIACK is asserted, the
console state machine jumps to the IACKCYC1 state and to IACKCYC2. The
state machine checks the state of P3P4 to synchronize with the rtVAX 300
and asserts IOREADY, ending the cycle. The rtVAX 300 reads the vector that
was driven onto the DAL bus and uses it as an offset into the system control
block (SCB) to determine the location of the interrupt service routine for the
console.

Console and Boot ROM interface 6-5

Figure 6-3 Sample Design: interrupt Acknowledge Cycle Timing

P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3

CLKA H

{P1:P21P3 P4 P1.P2 P3 P4:P1:P2:P3 P4 P1 P2:P3 P4 P1:P2 P3 P4 P1 P2 P3.
CLKBH\ g | g

DAL<31:0> H :)-——-(ubL HNT%ER#UP*VSCTQE)-E——%—-(ADD{RE#SH wélré evﬁ

. ') , : . . 1 I . ; ! |
' . : ! h . .) | ; . i
.)) : h

DS L ; ' ; ¢ i) , : . ;
. : | h : h h |

. \ ; . . . ' 1) .

) : : . . : | .
I .) :) \ . T

ASL

W e |
SLTNEEEY ou Wl an SEREEN oo Ui s
CONIACK L I A ' "

IOREADY L T\ | |

ENBVECTORL ——————\ s

IDLE IDLE IACKCYC2 IDLE IDLE IDLE
IDLE IACKCYC1 FINISHIACK IDLE IDLE IDLE

MLO-004443

6.1.4 Console Timing Parameters

To ensure reliable console operation, all timing parameters of the SCN 2681
DUART and the rtVAX 300 must be satisfied. Table 6-1 lists important timing
parameters of the SCN 2681 DUART. ‘

6-6 Console and Boot ROM Interface

Table 6-1 SCN 2681 DUART Timing Parameters

Minimum Time
Parameter Name (ns) Maximum Time (ns)

Address setup time to RD, WR assertion 10 -
Address hold time to RD,WR assertion 0 -

WR,RD pulse width 225 -
Data valid after RD low - 175
Data float after RD high - 100
Data in setup before WR deasserts 100 -
Data in hold after WR deasserts 20 -
High time between WR and RD 200 -

Figure 6—-4 shows a timing diagram of the console read and write cycle. This
state machine is clocked on CLKA; therefore, all state transitions occur on the
positive edge of CLKA. The setup times for each of these inputs were calculated
like those of the memory controller and meet the requirements of the 15 ns
22V10 PAL that was used.

6.1.4.1 Console Address Setup and Hold Times

When the rtVAX 300 is accessing the console, the address is placed on the
DAL<29:02> H bus 23 ns before the rising edge of P1. ENBCONDATA is
asserted on the rising edge of P3. The address information has to propagate
through the 74F373 latches (see Figure 6-7).

The calculation for the address setup time is as follows:

+ 74F244 turn-off time (5 ns)
+ 50 ns

+ 23 ns

— Propagation of F373

DUART address setup time

In this case, the DUART address setup time =5 ns + 50 ns + 23 ns — Tns =71
ns.

The address on A<3:0> of the DUART will be valid during the entire console
access cycle, so the DUART address hold time is easily satisfied.

Console and Boot ROM Interface 6-7

Freroo0OIN

na ANHSING AUEMHSINIZ POAD3ILEM SOAD3NUM

ERt] SANHSINE QVIUHSINGG COADGVIY

DAY 3

EdNHSINIY PANHSINEG SOADIUEM EDADILEM IDADIUHM EdNHSINID P INHSINIA $OAOAVIY 22A0QV3IY

3

Ial

ERlell

1&8.&&»&1&@&wamwanaun-n_vn-naNn_-nuquN&—&d&ﬂ&ﬂn——&iﬁ@&&w&wnm&gp&vnnaﬂuvﬁn&nmwawmcn_aa.N&—n—

J AQY3IHOI

1 vivaNOOBNI

T13NOD

T IWVANOOBNT

H rdtd

3 3y

184

sy

H <0-ie>va

Poiod foddt i Pl P i b H P i
P P\ A i H [\ P i
I T : T o] ' T T
BN R P [A T\l
—t raaummrered B o P : : ; ; ; :
R A O N N R : ' ! ! ! !
P H L ot E— : ! : ' :
P AN P /i m PN
P H P H I R : m P i i i
" : S : et : b e !
Pl S AEEEEEEEEEEE " i A
' T b : P - ' : A d :
: R : P ¢ i : Pl : :
[] [¥ [[] 1]) I3 ’ ® . 9’) i+ ¢ 1 1]
m A B L BN EL SN L S P LS " :
i H SR N Lt P P - R ;
: i Pl H A S T podd Pod : i i
1 » 3 i3 1 1] 0] . [. i . I3 > H
: pop b H i i L T O N : i Pl
i Y - : : A A : o i
: I : : Pl Eo : I ; Pl A\
— ———— : R = : R : P :
: R ! HEH : ; : R N H
RERE e RN U EREEE
A S S S S S S ; P : : : P
—— Huxs 3k Fjoshod ; s¢3upav -+ i X | vavdaival F—{s$3u00¢ }——r h
R O A 0 = E 2T N
190]Ed i 2d1idivdiEdi2di1d P iEdiSdiid PAEIZd IdiPdIEdiZdiIdiPdiEd Zdiid PditdiZdisd v EdiZdiLal v iEd i 2diid |V Ed{ZdiidiNdiEd i 2ditd}

HYX10

Bujwi, 8j9A2 aliM pue peal ajosuo)) :ubjsaq ajdwes p—g ainbid

6-8 Console and Boot ROM Interface

. 6.1.4.2 Console Data Turn-Off Time

The turn-off time of any device connected to the rtVAX 300 DAL bus must be
less than 35 ns after the rising edge of CLKA during the last P1 cycle. Since
the turn-off time of the DUART is 100 ns, a transceiver is needed between the
DUART data bus and the DAL<07:00> H bus. This 74F245 transceiver (see
Figure 6-11) turns off with the deassertion of DS, satisfying the required bus
turn-off time. The transceiver also adds delay to the read access time and the
write setup time.

The calculation for the timing analysis for the console turn-off time is as
follows:.

+ DS deassertion delay
+ 74F32 propagation delay
+ 74F245 turn-off time

Turn-off time

In this case, turn-off time = 25 ns + 5 ns + 5 ns = 35 ns after P1 edge.

Note

The time required to deactivate memory and peripheral devices must be
considered in the application design to prevent bus contention conflicts.

6.1.4.3 Console Read Cycle Timing Analysis

Since the read access time of the DUART is 175 ns, two wait states are needed
to satisfy the rtVAX 300 read-timing. These wait states are added by delaying
the assertion of the rtVAX 300 RDY L signal.

During a console read cycle, the console state machine asserts the ENBCONDATA
signal, which enables the ENBCONRD, to the DUART, and the ENBCONDAL
signal is asserted when DS asserts. The assertion of ENBCONDAL and
ENBCONRD turns on the bus transceivers and asserts the RD input of the
DUART. The console controller state machine waits 200 ns and then asserts

the IOREADY signal within the rtVAX 300 RDY L window, adding two wait
states. The console controller completes the console read cycle by deasserting
ENBCONDATA and IOREADY for 150 ns and then waits for another console
access cycle to begin.

Console and Boot ROM Interface 6-9

Console read cycle access time is calculated as follows:

+ 5 x CLKA period

— rtVAX 300 data setup time

— CLKA edge to ENBCONDATA assertion
— 74F00 propagation delay

— T4F245 propagation delay

Access time from RD

In this case, access time from RD = (6 x50)ns - 28 ns — 12ns - 5 ns — 6 ns
= 199 ns.

The FINISHUP1 to FINISHUP3 and IDLE states deassert the ENBCONDATA
signal for at least 200 ns after each console read or write cycle. This satisfies
the 200 ns RD and WR deassertion time after each console read or write cycle.

6.1.4.4 Console Write Cycle and Data in Setup and Hold Timing Analysis

During console write cycles, the WR line of the DUART must be asserted for
at least 225 ns. The data is latched in the DUART internal register upon the
deassertion of this line. Figure 64 shows the console write cycle timing. The
ENBCONWR line is deasserted when the console state machine deasserts the
ENBCONDATA line. The console state machine asserts the ENBCONDATA
line on the P3 edge after AS asserts. ENBCONDATA remains asserted for five
CLKA cycles and deasserts on the P3 edge of CLKA before the cycle ends. At
this time, the console state machine asserts IOREADY, asserting the rtVAX
300 RDY L line and ending the console write cycle.

Memory system write cycle data in setup time is calculated as follows:

+5x 50 ns

+ DAL write data setup

+ 74F00 minimum propagation delay
— 74F245 propagation delay

Memory system write cycle data in setup time

In this case, data in setup time = 250 ns + 23 ns + 2 ns — 6 ns = 269 ns.

6-10 Console and Boot ROM Interface

The input data is valid on the DALs until after the P1 edge of CLKA. The
ENBCONDATA line deasserts on the P3 edge of CLKA. Thus, the data in hold
time is calculated as follows:

+ 1 CLKA period
— State machine output delay
-~ T4F00 propagation delay

Data in hold time
In this case, data in hold time = 50 ns — 12 ns — 5 ns = 33 ns.

. 6.1.5 Console Oscillator

A 3.6864 MHz crystal oscillator provides the clock signals and internal timing
to the DUART. The baud rate and other serial line configuration information

is software-programmable by writing to the appropriate console register. The
built-in firmware of the rtVAX 300 sets the baud rate to 9600 with 8 data bits
and 1 stop bit.

6.1.6 Line Drivers and Receivers

The voltages of RS-232 and DEC—423 are not directly TTL-compatible. Line
drivers and receivers must convert the TTL voltages of the DUART to the
standard voltage levels that are used for RS-232 and DEC—423 applications.
The 9636 and 9639 line drivers and receivers (see Figure 6-11) serve as the
DEC—423 interface drivers.

6.1.7 Console Break Key Support

You can set up the console terminal break key to halt the rtVAX 300 program
execution. This is accomplished by adding a break detection circuit connected
to the HLT L line of the rtVAX 300. When the break key of the console
terminal is depressed, the RXD line receiver output is asserted low for more
than 160 ms. The counter (see Figure 6—11) begins counting as soon as the
RXD line is low; it will reset as soon as the RXD line returns to the high
state. This counter is clocked by the 10 ms interval timer, and once it counts
to 16 (after 160 ms), it asserts the HLT L line of the rtVAX 300 processor and
stops counting. The assertion of the HLT L line on the rtVAX 300 processor
breaks the program execution and drops the program into console emulation.
This break detection circuit can be eliminated if a separate halt switch is
implemented or if the console break key is not needed.

Console and Boot ROM Interface 6-11

6.2 Booting from External ROM

The default booting device for the rtVAX 300 is the network. In this
configuration, the BOOT<3:0> L pins are tied to Vcc or left unconnected. (The
BOOT«3:0> L pins are tied high through pull-up resistors.) When the rtVAX
300 initializes after a power-on reset, it sends the maintenance operation
protocol (MOP) message over the network. The host system responsible for
booting the rtVAX 300 receives these MOP requests and begins to down-line
load the ELN system file to the rtVAX 300. Once this file is loaded into the
rtVAX 300's memory, the rtVAX 300 begins executing the application software
from its RAM.

Many applications require the rtVAX 300 to boot internally, independently of
the state of the network or host. This is accomplished by connecting a ROM
in the rtVAX 300’s /O space or memory space and fixing the VAXELN system
image in this ROM. The rtVAX 300 can now boot the intended application if
the host node is not available or the network segment fails. This feature is
important if controller down time is unacceptable.

6.2.1 Base Address of External ROM

The external user ROM’s base address (first and lowest physical location) may
be at 20200000 or 16000000. To boot from this ROM, you must connect the
BOOT<3:0> L pins, as shown in Table 3-12. When the rtVAX 300 finishes
initializing after a reset operation, it begins to copy the VAXELN system image
from the ROMs to its external system RAM or runs from the ROMs. The
rtVAX 300 does not send the MOP requests over the network; instead, the
rtVAX 300 boots from the ROMs. Table 3-12 lists boot options.

6.2.2 Programming the Bost ROMs

The system file generated by EBUILD must first be down-line loaded to the
rtVAX 300 target by means of the network as the booting device. You can then
use the remote and local debuggers to debug the application software. Once the
application software is running correctly, EBUILD should be used to generate
a new system file, selecting the ROM as the boot method. The resulting

.SYS file should then be run through the PROMLINK program, for example,
which creates a loadable file for the EPROM programmer. The programmed
ROMs are then inserted into the EPROM programmer, programmed, and then
inserted into their correct sockets on the user’s application module.

You can now connect the BOOT<3:0> L pins, as shown in Figure 2-7; the
rtVAX 300 boots from these ROMs.

6—12 Console and Boot ROM Interface

Note

The ROMs must be plugged into their correct sockets; otherwise, the
rtVAX 300 will not boot.

6.2.3 Boot ROM Interface Design

Figure 6-5 shows the design of a 1M-byte boot ROM connected to the rtVAX
300’s DAL lines. This ROM is constructed from eight 128K x 8 bit 27010 1M-
bit ROMs. Eight ROMs are needed to construct a memory size of 1M bytes and
each ROM is connected to one of the four bytes of the rtVAX 300 DAL lines by
means of F244 drivers. During a read cycle, it is not necessary to qualify each
byte with the BM<3:0> L lines. The rtVAX 300 reads only the byte(s) in the
longword that correlate to an asserted BM<3:0> L and ignores the other bytes.
However, during write cycles you must write only to the byte(s) selected by an
asserted BM<3:0> L line. Since ROMs are read-only and cannot be written to,
the select logic need not include the BM<«3:0> L signals.

Figure 6-5 Sample Design: Boot ROM Functional Block Diagram

ROMDATA
DAL<18:2> Address [T AnPRas23) P21 [T ROMDATA
Latches 4 ROMs |+o—— ="
WR ROMDATA
WR_ 128K X 8 |
SELROM<O> SELROM<0> | ROMDATA,
DAL<29:19 Add > ——>|C8
ress AS —— |LWRITE _
Decoder el HOLD 3 EN
AS_ .} andLatch [SELROM<1>
[ROM READ |
Bank2 I~
LWRITE 4 RoMs |
'SELROM<0> Ds c} 2B X B
sem@—c SELROM<1> |
—_— RS %
»i EN

Drivers

DAL<31 :0>

MLO-004445

Console and Boot ROM Interface 6-13

6.2.4 Boot ROM Address Decoder

The address decoder, shown in Figure 6-6, decodes the address placed on the
DALs by the rtVAX 300. When a valid address for ROM bank 0 (between
20200000 and 2027FFFF) is placed on the DAL bus, the address decoder
asserts the SELROMO signal. In addition, when a valid address for ROM bank
1 (between 20280000 and 202FFFFF) is placed on the DAL bus, the address
decoder asserts the SELROM1 signal. These two signals are latched by the
assertion of AS H and select the appropriate ROM bank; when the DS L output
signal of the rtVAX 300 is asserted, the ROM outputs and drivers are enabled.

6.2.5 ROM Address Latch

Since the address is valid on the DAL<29:02> H bus only at the beginning of
any rtVAX 300 access cycle, latches are needed to preserve this address for the
duration of the access cycle. The 74F373 latches shown in Figure 6-7 serve
to latch the ROM longword address upon the assertion of AS L. This latched
address, LADDR<18:02>, is fed directly into the address inputs of the ROMs.

6.2.6 ROM Read Cycle Timing

Figure 6-8 shows the read cycle timing for the ROM system. Valid data must
be placed on the DALs 28 ns before the rising edge of P1; D3 L asserts 27

ns after the rising edge of P3. To operate without any wait states, data must
be available at the same time as the assertion of DS L.1 Access time of the
ROMs used is 250 ns; therefore, you must insert three wait states. ROMREAD
asserts 5 ns after DS; thus, ROM read cycle access time is calculated as follows:

+ (number of wait states x 100)
+ P3 to P1 time

— DS assertion delay

-- Data in setup time

-- 74F244 propagation delay

- 74F20 propagation delay

ROM read cycle access time

1 100—72—28 = 0 ns, according to the rtVAX 300 specifications.

6~14 Console and Boot ROM Interface

. Figure 66 Sample Design: Address Decoder

Address Decoder PAL (Inciuges aich) 1B
Note: Socke! used here g—c 74 ™\ cPUST L
é F32]
> PAL 18
ecucie PAL 22V10
ST 2 UPCONE L a 74 CONE L
Ao 22 UPCPUST L ‘ 4732
RE o2 SELROM H ;’
R7 D?g NC - Cycie Reset PAL '
Re 12 IACK PAL 22v10
s 18 ! s o4 LOWCONE L
Ra ~7 RoJ22__ LOWCPUSTL
fa oJ16 RB Dm CONIACK L
Ro 15 R7D% NC - Cycle Reset
R14 ; L
DAL<23> H 155w | , 18
DAL<22> H 11 Do : !
DAL<21> H 15, D8
DAL<20> H g{ M f
DAL<18> H B o L
DAL<1B> H 7] op L DAL<E> H
DAL<17>H 6 D o DAL<5> H
DAL<16> H 5] 1. DAL<d> H
DALc15> H 4] o, DAL<3> H
DAL<14> H 3| o7 DAL<2> H
DALc13> H 2} Do ; P CSDPed> L
] j . CSDhP<2> L
ASH CLK ,} . CSDF<ia L
i [CSDP<0> L
DAL<24> H | Lo WR L
. DAL<25> H ; | | BsL 2
DAL<26> H | P]
DAL<27> H D ASH
DAL<2B> H Pl
DAL<20> H DAL<7> H o
DAL H L
DAL<E> H Lo
DAL<10> H] i
DAL<11> H i
DAL<12> H
Note: The tVAX 300 uses CMOS ACTQ245 drivers for the DAL lines and ACTQ244 drivers for the control lines.
These drivers have very fast rise and fall times which can generate a tair amount of undershoot and overshoot.
Some PAL devices and RAM chips may matfunction when exposed to excessive overshoot and undershoot.
It may be necessary to isolate these devices trom the fVAX 300 signal lines with TTL buffers or provide series
termination resistors for these lines.
MLO-004447

In this case, ROM access timie = 300 ns + 50 ns — 27 ns - 28 ns - 6 ns - 5 ns
= 284 ns.

Table 62 shows a list of ROM access times and the number of required wait
states. The delay of the drivers, if placed between the ROM ocutputs and the
DAL lines, must be added to the ROM access time.

Console and Boot ROM Interface 6-15

Figure 6~7 Sample Design: Address Latches

Adcress Latiches CTL and DPE Drivers
8BF
8.8it
Latch
74F373
= DDR«17> M
OAL<17>H 18] _ R7ppe HADDR<IT> B
D7
1
DAL<16s H 17| RepL e RADDR1E> H
D86
DAL<15> H 1a o 15 LADDR<15> H
DS
H
DAL<14>H 1] mapjz HADDR<IE B ;
b4 LWRITEH __ 5 4 =
» LADDR<13>H B o 122 i
DAL<13>H | RID DS | o F32 74 g
[2k] AT/, Faz AR
1 13
bAL<tzs H 7| Fop|f tADDR<12> H - 234
—b2 CONEL ¥ l
¢ LADDR<11> H . 11} SELCONROM L
DAL<11> H 4 D1 K109 ENBROM L 13
2 LADDR<10s H
DAL<10> H *loo ROy Note' Parity checking not enabled bacause caching
" not aliowed on console reads P-State Flip-Flop
r-'—‘—C HOLD
— ENO RST L
Address Latches A4 1B
88F 8BF ~2p PR 4ls PP
8-Bit B-Bit A i 74
Latch Latch G 2 F74
74F373 74F373
E10 LADDR<@> H E13
19 <> i9
Bttty 7
DAL<®> H 18 D7 R7DY 18 b7 R7DA
DAL<Ba M | | 17| Ao DS CADDR<E> H e RECA-S
Re WH!
DAL<7> H 4 RSD—‘-S——L—A;D—D——J::‘ WRL 1a F{SD‘—S—-——L-———TE-E
D5 13
12 LADDR<6> 12 LADDR<c18> H
DAL<6> H 13 Da R4 D}———————— DAL<18> H 13 D4 a4 Dp—————— Address Strobe Synchronizer
R H
DAL<Ss H | | o] RopjiARORS R gy, of mapltLEM<2L 8
D3 -] 03 AS L 4
DAL<d> H ? Rzp._e__.g_D_D_H‘_‘:ﬁ BM<2> L 7 RQD_L_M [} SYNCHAS H
D2 —_————1 b2 5 i
DAL<3> H 4 R ;)_S__LA_EEB_(_?:_,H BMci» L . R1 D_E____L_BM | i
D1 —_——D
DDR. H 8M
DAL<2> H | | o] mopPBOPRE2 R gyeo, o| mopf ML B
DO e oo o 1
ast e o oD feo b
] ENO A ENO CLKB *3]Es8
1

6-16 Console and Boot ROM Inteiface

Figure 6-8 Sample Design: ROM Read Cycle Timing

P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 P1 P P3 P4 P1 P2 P3 P4 PY P2 P3

CLKA H]

f i

‘P3 P4 P1 P2P3:P4:P1:P2:P3 P4 P1IP2 P

'P1IP2IP3 P4 P1:P2P3 P4 P1IP2:P2 P4IPY P2 P3 P4 PYIP2

CLKB H

1 é : L n 3 L LoﬁawbnbnSAog . ; IRE AN
DAL<31:0> H D-:—-‘-(Aoo;ness):——(; L LINVALID DATAT 1 0 X T T e ADohEsls)—;-(’:WF{lTEiBYﬁEE
ASUTTTTTT D b
osv T T\ T
wRITEL T T\
SORRRRRNN po B o W e B o WRREEN L U
esoun | e L
oweaoy |
reng, ——
ipLe IDLE ROMCYC2 HOMCYC4 ROMCYC6 IDLE "ibte | ioee

IDLE ROMCYCH ROMCYC3 ROMCYCS FINISHROM 1DLE 10LE IDLE
MLO-004446

Console and Boot ROM Interface 6-17

Table 6-2 Typical ROM Access Time

Maximum ROM Access Wait States Total Read
Time (ns) Needed Cycle Time (ns)
84 1 300

184 2 400

284 3 500

384 4 600

These wait states are inserted by holding off the assertion of the RDY L signal
input of the rtVAX 300. This RDY L signal is controlled by the console state
machine. The machine jumps to the ROMCYC state when the ENBROM and
AS signals are asserted. The state machine then counts seven CLKA ticks
and asserts the IOREADY signal, which in turn asserts the RDY L line of the
rtVAX 300. Additional wait states can easily be added for slower ROMs by
increasing the number of CLKA counts (ROMCYC states) needed before the

assertion of the RDY L line.
6.2.7 ROM Turn-Off Time

The rtVAX 300 uses ROMs that have a data turn-off time of 60 ns. This time
exceeds the 35 ns specified by the rtVAX 300 processor. Data drivers are added
between the ROM data outputs and the DAL bus to stop driving the DAL

bus after DS L deasserts to prevent bus contention. The calculation of ROM

turn-off time is as follows:

+ DS deassertion delay
+ T4F20 propagation delay
+ 74F244 turn-off time

ROM turn-off time from CLKA to Pl edge

In this case, ROM turn-off time from CLKA to Pl edge =27 ns + 5 ns + 6 ns =

38 ns.

To determine if drivers are needed, add the DS assertion delay to the ROM
CS select delay and subtract the total from 35 ns. The resulting value is the
maximum turn-off delay that can be tolerated without the addition of drivers.
In this example, the maximum turn-off delay of the ROMs was as follows:

Sample maximum turn-off delay = 35 ns - 28 ns —~ 5 ns = 12 ns.

6-18 Console and Boot ROM Interface

. If the ROMs take longer than 12 ns from CS deassertion to HI-Z, a set of
drivers must be added between the ROMs' data bus and the DAL bus to
prevent bus contention;! they are enabled by the ROMREAD L signal.

6.2.8 ROM Speed Versus rtVAX 300 Performance

If the ROMs are copied to RAM, the speed of these ROMs affects only the time
required to boot the VAXELN system on the rtVAX 300. Once the rtVAX 300
has finished booting, it runs out of system RAM and no longer accesses the
ROMs: The entire system image has been copied from the ROMs to system
RAM before the VAXELN kernel begins executing. If a loi -ar boot period can
be tolerated, slower ROMs can be used. If the rtVAX 300 is designed to run

. out of the ROMs, the access time of the ROMs directly affects the runtime
performance.

6.3 rtVAX 300 Processor Status LED Register

Many applications must have a visual indication of the rtVAX 300 processor
status. Two 7-segment LED displays and a status register can be implemented
on the user’s application module to use as a processor status display. When
the rtVAX 300 firmware is performing its self-test, it writes to that register

. to show the progress of the self-test. This register is at physical address
201FFFFE and is implemented as shown in Figure 6-9. The implementation
of this register is optional; if it is deleted, the rtVAX 300 continues to perform
its self-tests correctly.

6.4 Console Interface and Boot ROM lllustrations and
Programmable Array Logic

This section shows console interface and boot ROM illustrations and describes
the programmable array logic (PALSs) used.

* Figure 6-10 shows the memory map for all the RAM and ROM registers;
Table 6-3 lists the corresponding equations.

¢ Figure 6-11 illustrates a sample design of a console interface.

* Figure 6-12 and Figure 6-13 illustrate sample designs of user boot ROM
banks 1 and 2, respectively.

o ! The ROMs used in the example were specified at 60 ns from CS deassertion to HI-Z.

Console and Boot ROM interface 6-19

Figure 6-9 Sample Design: Processor Status Display

4BE
W ey —
LB HEX
a1 o
DAL<23» H 18 ‘Dil QB i 354 B
10 | | - &g °
of 1y A =g
DAL<R2> H 12 inp Mb‘""‘“‘"‘““’ ; | 4,{"“““““‘1
e 38
o, { at
Aige. o] g HOLD
DALg21> H 5 o P — 7
w%‘a ! t vGe
DAL H 4 o - t
“M‘.@%w H
+BV
4BF
4D Fip; [e
748175 WEX
" Rab PP
o b de g -%8
DAL<16> H 13 D3 ‘ 3 g‘a , E
10 |
s
DALte: 1 i] | g
OPR
A) ——gHaD
DAL<17> H LI J ity
2 :
L S H--tivee
DAL<16> H 4 oo P |
1
. 1B "] —Teagh i
L&!m“_‘—‘ﬁ 4 U 12
CPUSY | 104F32 b O 9 !
,;\,gcm“‘
4BF |
4 Fp !
TALSITS
16
RATA
DAL<25> H 18 _ing P
il nz 0
ki
DAL<24> H 12 iny P
A T 4
. R15a
RST L £ \
1 . F!DS:
WM L gt 1 g
CRUST L £F32 o) 074 s —qh
— DS L 2 Fa2 MLODOAED

6-20 Conscle and Boot ROM Interface

. 6. 4 1 Application Module Address Decoder PAL

The application module address decoder PAL selects the memory and I/0
devices. It asserts the UPCPUST, SELROM, and CONE signals for the system
console and the external boot ROM. The ROM and console select lines are
internally latched on the rising edge of AS H. This eliminates the need for
external device select latches by using the D flip-flops that are built into the
22V10 PAL. Table 6-4 lists pin settings.

Figure 6-10 Application Module Address Decoder Memory Map

. Memory Locations DAL<29:2>
Device Selected 29 2423 16 15 0807 02
CONE 20100000 - 2010003F |100000] 00010000 | 00000000] 00 XXXX

ROM 20200000 - 202FFFFF 100000 1 0010 XXXX | XXXXXXXX | XXXXXX
CPUST| 201FFFFE - 201FFFFF [100000{ 00011111] 14111111} 111111

M1.O-004453

Table 6-3 Decoder Equations
. Line Equals

UPCONE.D DAL29 & 'DAL28 & 'DAL27 & !DAL.26 & 'DAL25 & 'DAL24 & 'DAL23
& 'DAL22 & 'DAL21 & DAL20 & 'DAL19 & !DALIS & 'DAL17 &
'DAL16 & 'DAL15 & 'DAL14 & 'DAL13

UPCONE.AR CYCRES

SELROM.D DAL29 & 'DAL28 & 'DAL27 & 'DAL26 & 'DAL25 & 'DAL24 & !DAL23
& 'DAL22 & DAL21 & 'DAL20

SELROMAR CYCRES

. UPCPUST.D DAL29 & 'DAL28 & 'DAL27 & 'DAL26 & 'DAL25 & 'DAL24 & 'DAL23
& 'DAL22 & 'DAL21 & DALZ0 & DAL19 & DALI18 & DAL17 & DAL16
& DAL15 & DAL14 & DAL13

UPCPUST.AR CYCRES
CYCRES AS & (UPCPUST # SELROM # UPCONE)

Console and Boot ROM Interface 6-21

Table 64 Application Module Address Decoder

Pin Setting
Input Signals

1 AS

2 DAL13

3 DAL14

4 DAL15

5 DAL1l6

6 DAL17

7 DAL18

8 DAL19

9 DAL20
10 DAL21

11 DAL22
13 DAL23
14 DAL24
15 DAL25
16 DAL26
17 DAL27
18 DAL28
19 DAL29
Output Signals

23 'UPCONE
22 'UPCPUST
21 SELROM
20 CYCRES

6-22 Console and Boot ROM Interface

Figure 6-11 Sample Design: Console Interface

inmerrupt Vector Generstor ser
4BF
Conscle intemupt Vedtor = 02C0 - Console DUART 7'"'vn
TH, G244 ES0
& &0 . =t <7
S I DALIS> W e ® s A
1753 DUART A%GQ 12 <8>
Yoo, 8 DAL H 2631 I————-Lo
|18 .ip2 Y2 BS i1t . DAL<S> H
? DALc13> H I 1> a8
3 iy AL, 4 <d>» H
B84 <
. Yoo AL<12> H an 1 (] Ad
uc3° 7 L s |y B DALs3>
EN
R 18 E&s& u
4BF ot L 17 DAL<1> H
RXD,
S oal-1e 3 Y <
E;TL 3 T Pl] <0>» H
. o3 il k! <1 M LWR 1 DIR
. vaoL-u <10> o a =
2] SET
18 DALS> H
-l oy Y15 i _ NT i D}E'
YO o218 AL<8> H ' CLK [31]
i E10 ; G |
1 3 I 3.6864 Mz Rl . ;g TXA L
4 y —py————2
q +8V o >
Q> y | K 4
1 1
4BF LWRITE L 8 + N gy
M oy
Oriver
TALS244 0S8 L 8 "
2 s Vas-d— _ DAL<T> H
[wloy Y25 5 AL H 160 ms Brask Detection 8 ' o IACK State Mach
il DAL<S> H 74 Jote: Socket used hers
31p1 5 1805 8 HLT L ~ —F—"“m&
: 10
1 g YOS PALee H E4g i
A
—tecEn - | b=
©F RXDA H) Consoie PAL 2 v
Soed gia H 10 Ig b!— i %E
fiS | i
I i B TYPN W“‘“
03
14 DAL<2> H
tlge 2P <€z RST L %—‘IL
| 16 DAL<i> H R
slp YO 1 +5V i By
oo Yoo 18 DAL<0> H ﬂ ; SYRCHAE W 0
INTM L T :
ENBVECTOR L Je ‘ — s n o

Console and Boot ROM Interface 6-23

PAGE 6-24 INTENTIONALLY LEFT BLANK

Figure 6-12 Sample Design: User Boot ROM Bank 1 with Drivers

LR) T TUVPROM]) 4BF
| %1 ROMDATA> H 75:.;;“':;‘ K9]8t ROMDATA<15> H 5
2 FOMDATA<I0> M E4a . AL1a M 20_ROMDATA<14> H £ . OAL<1Ss M
19 ROMDATA<20> H g Y3 19_ROMDATA<13> H 17 [pa Y30
18_ROMDATA<28> H : AL<30> H 18 ROMDATA«12> W " il DAL<14> H
17 AOMDATART> H | | = . 17_ROMDATA<11> H A2 .
Drl_ﬂ&ﬂz_ﬂ L2 DAL<I3> H
18 ROMDATA<26> H ! ‘ % 16_ROMDATA<10> H EH PO AL
14 ROMDATA<2S> H | ; __DAL<28> H 14 FOMDATA<P> H | . vorl* DAL<12> H
T | T ;
13 ROMDATA<24> H 1AD 13 AOMDATA<8> H | | " A
Wmi iixaii 7 UVPROM | ,f —QEN
Ret@r M 3 | \128KXB | BeoRar % 100 0% ‘ 4BF
ﬁ"f‘; % 48F DODRSTES . —
A - | ;
e l , O,
CADDRETES B | ' £38
! i
i ‘ L1 DALcll> H
B ek | o L
S H . ' o Yoo 4 DAL<10> H
EXBBRaEE ‘ A2
: | 16 DAL<9> H
CAODHLS 5 | [oy, YiOR DMl
M- i 18 DAL<8> H
K 0 : 2 vopi18 . DAL B
t AD
v —tdEN
, R10
VAT BEYVONE S
L7 agF 1 e 4BF
/] Oatal
| 21 ROMDATA3» H ; %‘ ! 7]t ROMDATAST: ek Sea
20 ROMDATA<22> H | E39 ’ |0 FOMDATA<S> W . Ex 12 DAL<7> H
19 ROMDATA=1> H 1 VD RALZiz X 15 ROMDATA<6> H ; 8l YO
|18 FOMDATA20> H T veo S DAL<R2» H | Vool DAL W
185 yaps H 8
; . Az
17_ROMDATA<19> H A2 -, DALY H 1 ___17 ROMDATA<3> H " OAL<Ss H
15 ROMDATA<18> H 13 4y TVD* —DAL21> H 15_ROMDATA<2> H gy YO
14 ROMDATA<17> H Yoot DAL<20> H 14 ROMDATA<1> H . vool-18__ DALeés H_
' TAs16 T |13 ROMDATA<0> H__ e
T UVPAOM | QEN T UVPROM | =N
‘ go g | 128K |
J i o ——— (r
' Ootal > - - ! | Ootal
| | gt T | , Orver
L ‘ LST > H) 1 14P244
\ 12 DAL<3> H
TSETTIT] lagde | L[, V3B 12 ___ DAL<19> H DOoRETYS E »A gl o [y V35 <3>
N 3 i
Q’——- i : i DAL<2> H
: i . YZDI‘ 14 DAL<18> H > ¥ ‘ 8 lp Y2 bt DA ce> H
R — 718 DAL M o 1 viol e <> H
CADOR:#> H L i DS %r— ; alyy Y
R , VOIS DAL<IG> H o 2|, VOOl DM H
) A0 i FROMREAD L)
ROMREAD tm 2 i ROMREAD L o gmqig, el ROMREAD L . P =
Wﬁgg L >, mE E
ULLUPE 1
bee i UV PROM 27010 128KXBUVEP

Console and Boot ROM Interface

Address Rangs 20200000 o 2027FFFF

WMLO-C04481

6-25

PAGE 6-26 INTENTIONALLY LEFT BLANK

Figure 6-13 Sample Design: User Boot ROM Bank 2

Address Range 20280000 to 202FFFFF

g i i "
e ROMDATA<31> H —E— ROMDATA<23> H ol .21 ROMDATA<15» H ol ROMDATA<7> H
2 ROMDATACG H MDAT. H o 14> H P ROMDATA<6> H
L1} R A H 19 ROMDATA<21> H 19 AOMDATA<13> H 1 ROMDATA<S5> _H
1 ROMDATA<28> H) ROMDATA<20> H 18 ROMDATA<12> H 1 ROMDATA<4> H
W ROMDATA<2T> H 17 AT H |17 ROMDATA<I1> H 17 ROMDATA<3> H
18 __ROMDATA<26> H ‘ 18 ATA<18> H ‘ 18 ROMDATA<10> H 18 ROMDATA«<2> H
" AOMDAT 4<25> H L) ROMDATA<17> H 14 ROMDATA<#> H 14 ROMDATA<1> H
13 ROMDATA<24> H 18 ROMDATA<16> H 13 ROMDATA H I T ROMDAT A<0> H
" UVPROM | UVPROM | [UVPROM " UVPROM |
_.\DDR<18> H 2 \128Kx8 LADDR<18> H 2 1 28Kxa LADOR«18> H 2 JJ28Kx8 LADDR<18> H 2 128KX3
CADDR<I /> 3 18 CADDR=175 H - 1€ = o — -1 i CXDORSTTS 3 16)
% 13 EARDRTE — 'j!‘mn%l LR
.‘-;;11-————;——-—g 2 i CADDH<T4> X
s =S A .—§
RO R — 85— 1 EADOHSTT } 1 AR | [, 1
» A J— A —
<105 T— 2K mq__ R v < R
25 > — | FADDR<E H
< </> H | > M
> > H | ﬁl_‘.’um
RO 10— DADDRSAs H— 10 ; Wi Cr o m——
) ° 7 j ° 4 - . 0 4
ROMREAD L 24 ROMREAD L 24 ENICUTP! AOMREAD L 24 ENIOU
==y == Gl ==
P : ‘

Uv PROM 27010 12BKXBUVEP

LAOM<1> L - . N H s lB
SELROM<O> L 10 TWHITE L 17] s ROMREAD L
RS DEH 107
48V —Lw 2
K MLO-004452

Console and Boot ROM Interface 6-27

PAGE 6-28 INTENTIONALLY LEFT BLANK

Table 6-5 (Cont.) Console Sequencer State Machine PAL

Pin

Signal

Comment

Output Signals

16

18
19
20
21

TOREADY

STATEA
STATEB
STATEC
STATED
STATEE
ENBCONDATA

This output asserts the tVAX 300 READY line to
signal that valid data is on the DAL lines and the cycle
should end.

This output correlates to a state bit for this machine.
This output correlates to a state bit for this machine.
This output correlates to a state bit for this machine.
This output correlates to a state bit for this machine.
This output correlates to a state bit for this machine.

The assertion of this signal enables a DUART read or
write cycle.

You define a state name for each bit pattern as follows:
FIELD CONSOLE = [STATEE, STATED, STATEC, STATEB, STATEA];

$DEFINE
SDEFINE
$DEFINE
$DEFINE
$DEFINE
SDEFINE
$DEFINE
SDEFINE
SDEFINE
SDEFINE
$DEFINE
SDEFINE
SDEFINE
$DEFINE
SDEFINE
SDEFINE
SDEFINE
$DEFINE
SDEFINE
SDEFINE
$DEFINE
$DEFINE
$DEFINE

IDLE 'B’00000

WRITECYC1 ‘B’00001
WRITECYCZ "B’00010
WRITECYC3 "B’ 00011
WRITECYC4 'B’ 00100
WRITECYCS ‘B’00101

FINISHWRITE 'B’00110

READCYC1 'B’10001
READCYCZ "B’ 10010
READCYC3 'B’10011
READCYC4 'B’10100
FINISHKEAD 'B’10101
FINISHUP1 'B’'10110
FINISHUPZ 'B’10111
FINISHUP3 'B’11000
I0CY¥CL 'BT00111
IOCYC2 ‘B’01000
FINISHIO 'B’'01001
ROMCYC1 ’B’01010
ROMCYC2 ’'B’'01011
ROMCYC3 'B’01100
ROMCYC4 'B’'01101
ROMCYCS 'B’01110

6-38 Console and Boot ROM Interface

. SDEFINE ROMCYC6 'B’(01111

SDEFINE FINISHROM 'B’110(1
SCEFINE ILLEGALI 'B'11010
SLEFINE ILLEGAL2 'B’11(11
SDEFINE ILLEGAL3 ’B’11100
$DEFINE ILLEGRL4 'B’111C1
SDEFINZ ILLEGALS "B’11110
SDEFINE ILLEGALS 'B'"1111
SDEFINE ILLEGAL? 'B’10000

You set access and cycle information as follows:

WRITEACCTESS LWRITE & LBM0O & CONE & SYNCHAS;
. READACCESS = 'LWRITE & IBM0O & CONE & SYNCHAS;

ROMACCESS LWRITE & ENBROM & SYNCHAS,
ZACKCYCLE {CONIACK # CPUST) & SYWCHAS;

li

You force the idle state during power-up and reset assertion, as follows:

ENBCONDATA . AR RST;
ENBCONDATA.SP = 'B'{;
IOREADY . AR RST;
IOREADY .SP "B’ 0;
STATEA.AR = RST;
STATEA.SP = 'B’'0;

i

N

STATEB.AR = RST;
STATEB.SP = 'B’'0;
STATEC.AR = RST;
STATEC.SP = 'B'0;
STATED .AR = RST;
STATED.SP = 'B'(;
STATEE.AR = RST,
STATEE.SP = 'B’'Q;

The state machine listing is as follows:

SEQUENCE CONSQLE {

PRESENT IDLE

IF WRITEACCESS NEXT WRITEC7/C1 OUT ENBCONDATY;
1F READACCESS NEXT READCYC1 07T ENRCONDATA;
IF IACKCYCLE NEXT IOCYC1;

IF ROMACCESS NEXT ROMCYC1;

DEFAULT NEXT IDLE;
PRESENT WRITECYC1

NEXT WRITECYCZ OUT ENBCONDATA;
PRESENT WRITECYC2

NEXT WRITECYC3 OUT ENBCONDATA;
PRESENT WRITECYC3

NEXT WRITECYC4 OUT ENBCONDATA;

Console and Boot ROM interface 6-31

PRESENT WRITECYCY ‘
NEXT WRITECYC5 OUT ENBCONDATA;
PRESENT WRITECYCS
IF 'P4 NEXT FINISHWRITE OUT ENBCONDATA
OUT IOREADY;
DEFRULT NEXT WRITECYCS OUT ENBCONDATA,;
PRESENT FINISHWRITE
NEXT FINISHUP1:
PRESENT READCYC1
NEXT READCYC2 OUT ENBCONDATA;
PRESENT READCYC2
NEXT READCYC3 OUT ENBCONDATA;
PRESENT READCYC3
NEXT READCYC4 OUT ENBCONDATA,
PRESENT READCYCY
IF 'P4 NEXT FINISHREAL OUT INBCONLATA
OUT IOREADY;
DEFAULT NEXT READCYC4 QUT ENBCONDATA;
PRESENT FINISHREAD
NEXT FINISHUPL;
PRESENT FINISHUP1
NEXT FINISHUPZ;
PRESENT FINISHUPZ
NEXT FINISHUP3;
PRESENT FINISHUP3
NEXT IDLE;
PRESENT IOCYC1
NEXT I0CYCZ;
PRESENT IOCYC2
IF 'P4 NEXT ¥INISHIC OUT IOREADY;
DEFAULT NEXT 10CYCZ;
PRESENT FINISHIO
NEXT IDLE;
PRESENT ROMCYC1
NEXT ROMCYCZ;
PRESENT ROMCYC2
NEXT ROMCYC3;
PRESENT ROMCYC3
NEXT ROMCYC4;
FRESENT ROMCYC4
NEXT ROMCYCS:
PRESENT ROMCYCS
NEXT ROMCYCE;
PRESENT ROMCYCH
IF 'P4 NEXT FINISHROM OUT ICREADY;
DEFARULT NEXT ROMCYCE;
PRESENT FINISHROM
NEXT IDLE;
PRESENT ILLEGAL1
NEXT IDLE;
PRESENT ILLEGALZ
NEXT IDLE;

6~32 Console and Boot ROM interface

. PRESENT ILLEGAL3

NEXT IDLE;
PRESENT ILLEGALA4
NEXT IDLE,
PRESENT ILLEGALS
NEXT IDLE;
PRESENT ILLEGALG
NEXT IDLE;
PRESENT ILLEGAL7
NEXT IDLE;

}

. 6.4.3 Interrupt Decoder PAL

The interrupt decoder PAL decodes the CSDP<2:0> L, CSDP<4> L, and
DAL<06:02> H lines to determine when the rtVAX 300 is running an interrupt
acknowledge cycle. The CONIACK signal is asserted when the rt VAX 300 is
running a console interrupt acknowledge cycle for a console interrupt (IPL
1414). The console is connected to the rtVAX 300 IRQ<0> L line. DAL<12:06>
H lines are decoded to produce the LOWCONE signal to enable the console.
The CONIACK and LOWCONE outputs are internally latched by the rising
edge of AS This is accomplished by using the internal D flops to store the
output information. The ENBVECTOR output asserts to drive the interrupt
. vector onto the DAL bus during an interrupt acknowledge cycle.

Table 66 lists the pins, signals, and comments; Table 6-7 lists the
corresponding equations.

Table 6-6 Interrupt Decoder

Pin Signal Comment

Input Signals

. 1 AS This is the active high (inverted) rtVAX 300 address strobe signal,
AS L. It is used to ciock the internal latches on the rising edge
while WR L, DAL, and CSDP L information is valid.

2 'DS This data strobe line, DS L, of the rtVAX 300 is asserted when

the processor is expecting to receive the interrupt acknowledge
vector from the DALs.

3 'WR WR L signal from the rtVAX 300 is high during an interrupt
acknowledge cycle.
4 CSDPO The cycle status bit 0 is asserted during an rtVAX 300 external

interrupt acknowledge cycle.

(continued on next page)

Conscle and Boot ROM Interface 6-33

Table 6-6 (Cont.) Interrupt Decoder

Pin Signal Comment

Input Signals

5 CSDP1 The cycle status bit 1 1s asserted during an rtVAX 300 external
interrupt acknowledge cycle.

6 CSDpP2 The cycle status bit 0 18 deasserted during an rtVAX 300 external
interrupt acknowledge cycle.

7 CSDP4 The cycle status bit 4 is deasserted during an rtVAX 300 external
interrupt acknowledge cycle.

8 DAL2 DAL line 2 from the rtVAX 300 contains information about the

IPL of the rtVAX 300 By decoding the DAL and CSDP lines,
this PAL can determine when the rt VAX 300 is running a console
interrupt acknowledge cycle.

9 DAL3 DAL line 3 from the rtVAX 300 contains information about the
IPL of the rtVAX 300. By decoding the DAL and CSDP lines,
this PAL can determine when the rtVAX 300 is running a console
interrupt acknowledge cycle.

10 DAl4 DAL line 4 contains information about the IPL of the rtVAX 300.
By decoding the DAL and CSDP lines, this PAL determines when
the rtVAX 300 is running a console interrupt acknowledge cycle.

11 DALS5 DAL line 5 contains information about the IPL of the rtVAX 300.
By decoding the DAL and CSDP lines, this PAL can determine
when the rtVAX 300 is running a console interrupt acknowledge
cycle.

13 DALS DAL line 6 contains information about the IPL of the rtVAX 300.
By decoding the DAL and CSDP lines, this PAL determines when
the rtVAX 300 is running a console interript acknowledge cycle.

14 DAL7 DAL line 7 is used as one of the console address decoder inputs.
15 DALS DAL line 8 is used as one of the console address decoder inputs.
16 DALS9 DAL line 9 is used as one of the console address decoder inputs.
17 DAL10 DAL line 10 is used as one of the console address decoder inputs.
18 DAL11 DAL line 11 is used as one of the console address decoder inputs.
19 DAL12 DAL line 12 is used as one of the console address decoder inputs.

(continued on next page)

6-34 Console and Boot ROM Interface

Table 66 (Cont.) Interrupt Decoder

Pin Signal Comment

Output Signals

23 ILOWCONE This signal and the UPCONE of the address decoder select the
console.

22 'LOWCPUST This signal selects the processor status LED register and the
UPCPUST of the address decoder.

21 ICONIACK This signal is asserted when the rtVAX 300 is running an
interrupt cycle for the console.

20 ICYCRES This signal resets all the select outputs asynchronously once AS
deasserts.

Table 6-7 Interrupt Decoder PAL Equations
Line Equals

CONIACKD 'WR & CSDP4 & !CSDP2 & CSDP1 & CSDPO & DALG6 & 'DALS &
DAl4 & 'DAL3 & 'DAL2

CONIACK.AR CYCRES
LOWCONE.D 'DAL12 & 'DAL11 & 'DAL10 & !DALY & 'DALS & 'DAL7 & !DAL6
LOWCONEAR CYCRES

LOWCPUST.D DAL12 & DAL11 & DAL10 & DALY & DALS8 & DAL7 & DALS &
DAL5 & DAI4 & DAL3 & DAL2

LOWCPUST AR CYCRES
CYCRES 'AS & (CONIACK # LOWCONE # LOWCPUST)

Console and Boot ROM Interface 6-35

.o

XXX
XAUAKL K
XHUARLALL

KHXXA KK
KAXAXAXAKNIL
KXAA LA LARXALAL.
b.6.90.0.9.6.9.449459860

0 9.9.60.9.0.8.400.3.8409044

KAXKAEXAK LK KK KKLLKLL

)0.0.0.0.¢.6.0.90.8.9.9.¢.6000.6484089

p8.6.0.0.0.86. 6040600440508 0.44
F4.400.0.4.0000,00.4888.8654040434
KEXEKAXX UK KU HE UK XA XL KK LKL,

PO 0000000000808 0800590850000,

P OGS GO D000 800400580 8408688040

} 0000066008 6060000009 0880888445008

PO 00.060600090.000008068 4860080008904

PIRIN OGO S O VI 0000006490004 08000800

P O9.0:8.0.6:0.0.0,0.0.0606.000908489.6696086690545809¢

)OG5 000060909 0.0.00.09 0060 +8 040008004888 0040

PO 00000 6000 9.0.60.4:00.600098040999960600$89900,

) 0.0:6.000.990.0.08.8000.0.04.0080.996666800600099¢90949
PO PPN G OISO I D IH IV OV D E I 900089 0808600900044500,
XA XK KK AKX XK KXK A KKK XK LK AR KA KA KL KL KL LU LA LA LKA KA AK

7

Network Interconnect Interface

VAXELN kernel can include DECnet communication through the built-in

' The rtVAX 300 processor connects easily to Digital’s Ethernet network. The
Ethernet interface.

This chapter discusses the following topics:

* DECnet communications (Section 7.1)

e Ethernet interface (Section 7.2)

e Thickwire network interconnect (Section 7.3)
' ¢ ThinWire support (Section 7.4)

e Ethernet coproessor registers (Section 7.5)

° Hardware implementation example (Section 7.6)

7.1 DECnet Communications

The rtVAX 300 processor allows the transfer of information and programs

among Digital’s systems, and among Digital's and other manufacturer’s

systems. Network communications between Digital’s systems is facilitated by
. DECnet hardware and software.

VAXELN programs developed on a host VAX processor can be loaded into

the target rtVAX 300 based application through the network. The rtVAX 300
communicates with other VAX processors through the Ethernet local area
network. Systems and devices can easily be connected to the network; network
expansion is possible without interrupting network operations. Programs and
data can be transferred between realtime applications and VAX processors in
the network.

Network Interconnect Interface 7-1

Ethernet provides the following features:

* Simplified network design allows installation of new devices without
interrupting communication.

¢ (Cable segments can be added to expand networks.
e Remote locations have fast access to data.

¢ High-speed communication can take place between nodes.

7.2 Ethernet Interface

The Ethernet coprocessor and serial-interface adapter (SIA) built into the
rtVAX 300 provide the basis of an interface to an Ethernet network. The
coprocessor has these features:

e It supports virtual DMA and buffer management.

e It contains one 120-byte FIFO queue for data reception, and another for
data transmission, with loopback capability.

e It complies with IEEE Standard 802.3.

¢ It provides collision handling, transmission deferral and retransmission, .
and automatic jam and backoff.

¢ It has a continuous packet rate of up to 14,000 frames per second.

The Ethernet interface can perform DMA transfers directly to the 256M bytes
of system RAM. The coprocessor is programmed by reading from and writing
to a set of registers on the rtVAX 300. Figure 7-1 shows a block diagram of an
interface which supports AUI connection to thickwire and ThinWire or direct
connection to ThinWire.

Proper operation of an Ethernet/IEEE 802.3 interface requires precise and ‘
specific physical design of the power and ground arrangements Briefly,
components connected to the trunk network cable must be dc and low
frequency-isolated from system ground. This isolation is provided by the

isolation transformer and dc-to-dc converter. Figure 7-3 illustrates this

isolation.

7-2 Network Interconnect Interface

' Figure 7-1 Network Interconnect: Controller Block Diagram

AVAX 300 : Application '
: ‘
! T _

ansceiver
: ' C!::ip *‘[[ThinWire
| i
! [
] ;
! Isolation | | Switching !
. : Transformer Unit ‘_ v
!
I :
! AUI Cable |
i MAU§
! 15-Pin ——
: D-Sub ‘
b o e e et e e e e e e e Media
MLO-004456

7.3 Thickwire Network Interconnect

Thickwire Ethernet interconnect requires addition of an external isolation
transformer and a 15-pin D-sub connector to the rtVAX 300. Figure 7-2
shows the wiring requirements for the collision detect, receive, and transmit
signals for this connector. (Figure 7-2 shows a jumper array, to allow alternate
support of a ThinWire interconnect. Figure 7-5 shows the AUI connector and

. pinning.)

7.4 ThinWire Support

The rtVAX 300 connects to a ThinWire Ethernet network through the DP8392
transceiver and a few other components. An isolated —9V power source is
needed to support the ThinWire connection.

The user’s application can incorporate the design shown in Figure 7-5, which
allows selection of either the thickwire or the ThinWire configurations.

Network Interconnect interface 7-3

Figure 7-2 Network Interconnect: Isolation Transformer and Jumpers

2
we
1 T1 tVAX 300
XMIT+ U 1 16 XMT +
0
AU XMIT+ 20 } {
, W5 2 16 XMT -
XMIT- aiyl 4 13 RCV +
2
AUL_XMIT- &y
5 12 RCV -
1 wd 7 10 COL +
RX+ -{1
20
3
AU'_RCV+ _‘D 8 r-g COL .
hl] w3
RX-
2[; Note:
- 3
AUI_RCV- ml o All etch to and from T1 to be of
minimum length, with each differential
: W2 pair having identical lengths and
COLL+ Sy paired runs.
20
AUI_COLL+ 30
1 w1
COLL- —{
20
Aul_coLt- ——13[

MLO-006302

7.5 Ethernet Coprocessor Registers

The rtVAX 300 Ethernet coprocessor is programmed by reading from and
writing to a set of 16 registers at locations 20008000 through 2000803F. Refer
to Section 3.6.1 and Table 3-17 for a full description.

The Network ID ROM provides a unique physical network address for the
rtVAX 300, readable at locations 20008040 through 200080BF. This address
is predetermined by Digital and cannot be changed. This network address is
marked on the rtVAX 300 body.

7-4 Network Interconnect Interface

' 7.6 Hardware Implementation Example

A dual-purpose ThinWire/Attachment Unit Interface (AUI) design was chosen
as the sample design, because many designs now incorporate IEEE 802.3
network interfaces through either ThinWire or AUI. The terms ThinWire and
AUIT should be understood.

Many aspects of these two interfaces are similar; however, detailed

implementation of the two differs significantly. The main difference lies

in the connection of the network controller to the media: ThinWire adapters

are designed specifically to attach directly to the ThinWire (RG58-like) cable,
. that is, they employ an internal MAU.

In contrast, AUI interconnects never attach directly to the media. Instead, they
employ an IEEE 802.3 standard interface to a Media Attachment Unit (MAU),
which will attach to the media. Figure 7-1 shows a block diagram of the
sample design. The broken lines indicate the design’s functional boundaries.

7.6.1 Overview of Ethernet Interface

Figure 7-3 shows an Ethernet interface block diagram. This interface supports
both direct ThinWire and AUI interfaces.

. 7.6.1.1 Ethernet Interface Functions
At the heart of all Ethernet interconnect systems are three basic components:
¢ The MAU
¢ The Manchester data encoder-decoder, sometimes called an EnDec)
* The local area network controller

The MAU is incorporated in the user module if direct media attachment to
TuinWire is required; the other two components are implemented within the
. rtVAX 300.

The MAU allows access to the medium and handles certain critical timing

and amplitude level conversions. The DP8392 CTI chip performs the MAU
functions for the ThinWire medium.

Network Interconnect Interface 7-5

Figure 7-3 Network Interconnect: Ethernet interface Block Diagram

AF

/_};—— Bypassing _37
]
; -aVv
+12V et BC.t0-DC TXO
+12V RTN — Converter | DP8932
: \% XMIT 2
rtVAX 300 | RX 2 RXI
| coLL 2| anp j— OO
XMT + ' —%
XMT - :
RCV + Isoléltion E Jumpers | — Isolation
RCV - | Transformer — S e T Boundary
COL + : — l)
coL - '
: | AUI_XMIT ,~")
| ; AUI_RCV * ,
Femmm N AUI_COLL] AUI
7 1Conn
+12Vv
+12V RTN
—_.L—_ S~
- /77
MLO-008370
Table 7-1 MAU Signals Description
Signal Description ‘
inputs from MAU Interface
Collision+, Collision— These are signals of = 1V on a 78 (2 differential
pair.
Receive+, Receive— These are signals of £ 1V on a 78 £2 differential
pair.
Outputs to MAU Interface
Transmit+, Transmit— Differential Manchester-encoded, drive 78 ?

differential. No pulldown resistors.

7-6 Network Interconnect [nterface

. 7.6.1.2 DP8392 Transcelver Chip

This section describes the transceiver chip and its interface functions.
Figure 7-2 shows the rtVAX 300 isolation transformer and jumpers.

The major transceiver functions are as follows:

Transmit—The DP8392 chip takes a differential input (output of the
rtVAX 300) and drives a single-ended ac signal onto the ThinWire Ethernet
coaxial cable.

Receive—A signal is received from the coaxial cable, corrected for
frequency distortion, and driven to the rtVAX 300 on the receive differential
pair. The receiver has high input impedance, and low input capacitance,
to minimize reflections and loading of the ThinWire coaxial cable. The
receiver squelch prevents nois: on the coaxial cable from triggering the
receiver. At the end of reception, the squelch also serves to prevent dribble
bits.

Collision Detect—A low-pass filter extracts the average dc level on the
coaxial cable and compares it to the collision threshold. The collision
threshold is met if more than one transmitter is simultaneously active on
the coaxial cable. The DP8392 chip signals the collision to the rtVAX 300
by a 10 MHz signal on the collision differential pair.

Heartbeat Generator—After each transmission, the DP8392 chip sends a
10 MHz signal to the rtVAX 300 on the collision differential pair. This tests
the collision detection circuitry. The heartbeat (also called the SQE test)
may be disabled with the HE pin.

Jabber Monitor—The DP8392 chip monitors each transmission with a
watchdog timer. If the transmitter is active for an illegal length of time,
the transmitter is disabled. Thus, jabbering (broken) nodes are not allowed
to interfere with the operation of the network.

. Figure 74 shows an DP8392 chip block diagram. On the coaxial cable side, the
DP8392 chip connects to the 50 12 Ethernet coaxial cable by a BNC connector.
On the rtVAX 300 side, the DP8392 chip differential signals connect to the
rtVAX 300 differential signals through isolation transformers.

Network Interconnect Interface 7~7

Figure 7-4 Network Interconnect: DP8392 Chip Block Diagram

Data » RXI
Receivers
Receive pE——
Squeich g
CD+
Line 10 MMz Collision
CD- Driver Oscillator Detection
HBE
=% Transmit
~—p] Squelch
Heartbeai Jabber
+ Generator Monitor
TX+
T 1 Data T TX:
X | Transmitter
Transceiver Medium
Interface Intertace
MLO-004461

7.6.2 Iimplementation of Design

The following sections discuss implementation considerations:

* Section 7.6.2.1 discusses the transceiver.
e Section 7.6.2.2 discusses layout requirements.
¢ Section 7.6.2.3 lists Ethernet board parts.

e Section 7.6.2.4 discusses the dc-to-dc converter.

7-8 Network Interconnect Interface

' 7.6.2.1 ThinWire Transcelver

Figure 7-5 shows the ThinWire interface (BNC connector) and the AUI
connector (15-pin D-sub). Included in this figure are the BNC connector for
direct ThinWire connection and the required capacitive bypassing between
reference planes. The DP8392 transceiver chip must be connected directly to
the coaxial BNC connector by an etch run of less than 4 cm.

The 15-pin D-sub connector is the AUI interface to an external MAU, if one

is employed. Note that either the direct ThinWire connect or the external

MAU can be employed, never both. W8 is the Heartbeat enable jumper for the

DP8392 chip; W9 is the Ethernet/IEEE 802.3 isolation jumper. W9 should be
. installed for standard product shipment.

Note

The isolation transformer is not shown in Figure 7-5.

7.6.2.2 Layout Requirements

. ® The shell of the AUI connector must be attached to the chassis ground.

¢ Etch running from pin 6 of the AUl connector to the 12V return, and
from pin 13 of the AUI connector to the 12V source, must be capable of
maintaining a steady-state current of 5 A.

¢ It is recommended that the 12V return line (pin 6) be taken from the AUI
connector and returned to the power supply directly. The return for the
12V supply should not be connected through logic ground due to possible
. noise problems caused by ground loops.

e Pins 4, 5, and 13 of the DP8392 chip require thermal relief. This can be
accomplished by connecting these pins to the —9V plane by an etch pad
with a surface area greater than 6.45 cm? (1 inch?).

¢ Placement of the BNC connector is critical. In order to reduce stray
capacitance, place the BNC connector as close as possible to the DP8392
chip, no farther than 4 cm etch length away, and void all planes beneath
the connecting etch.

Network Interconnect Interface 7-9

Figure 7-5 Network Interconnect: Transcelver, BNC Connector, and AUl Connector ‘

J1
-9V T | COAX
Ws R11 2 R24 $R22 R16 | TRANZORB
7499 9499 ¢ 499 7 499 De
— COLL+— — RX- _@_
Y 2N COLL- RX+
ov—_-2 R20
oV —+{]
XCVR] 1M
lgP8392 Y i1
1 ¥o DGG“ ¥
CD+ T 1Y
5’7_[& o CD- p5——- 4700PF
8RX) 1000V
XMIT+ XMIT- RX. b8 77
Y _iRXI
| . J2
TX+
8
™ mxofts @
_____gc HBE 014
1L IRR F 13| =
, I 2o’ +12V —ON0 012 =
L c15 Ri9 10K 4 IyEEs 2A AUI_RCV- —1—0O
r
™ AUF AUl_COLL- ———08
NN of
Notes: O6
e The shell of the D-Sub connector J2 to be O
attached to chassis ground. AUI_RCV+ — 1 ° %7
e The etch for ground B and +12V to J2 must C}4 B
be capable of handling a current of S5A. 3
e Ground B to be connected to logic ground AUI_XMIT+ '—02
at the power supply only. AUI_COLLy ——0O
e Pins 4, 5, and 13 of E4 tc be connected to 1
the VEE plane with a surface area >1 sq in

for heat dissipation purposes.

» Place E4 within 2 cm of J1. Void all planes
as near to J1 as possible.

® A indicates the -9V return.

¢ B indicates the 12V return.

7-10 Network interconnect interface

(s

MLO-006383

. 7.6.2.3 Typical Ethernet Board Parts List

Table 7-2 shows a list of parts used in this design example.

Table 7-2 Ethernet Board Parts List

Generic Name

Discrete Value

Total in Design

RES

CAP

RES
JUMPER
ENETXFMR
DP8392
BIZENER
FUSE
CONN15
JUMPER
CAP

RES

RES

RES
DIODE
CAP

CAP

CAP

CAP

CAP
ZENER
TRANSISTOR,NPN
DIODE
DIODE
TRANS
INDUCTOR

40.2

.1 uF
100

75 uH
COAXXCVR
400V

2A

15 P D-SUB

4700 pF

1K 1%

1M

499

D664

.01 uF

820 pF

47 uF

i50 pF

68 uF

8.2V 1%
SWITCHING
UES1302
1N4004
POWER XFORM
2.2 uH

O T o e I S S R S S T O O O N I = S A X

(continued on next page)

Network fnterconnect Interface 7-11

Table 7-2 (Cont.) Ethernet Board Parts List

Generic Name Discrete Value Total In Design
4N38 OPTO IS "LATOR 1
555 TIMER 1
NMOS NMOS POWER FET 1
RES 1K 1
RES 75 1
RES 39.2 2
RES 14.7K 1% 1
RES 16.5K 1% 1

7.6.2.4 DC/DC Converter

Figure 7-6 shows a discrete dc-to-de converter that produces the voltage
required by the DP8392 chip while maintaining the isolation requirements
of Ethernet. Note that some modular dc-to-de converters perform the same
functions as the discrete converter.

7.6.3 Detailed Design Considerations

This section presents detailed information regarding use of the standard
Ethernet devices. The data presented here are more detailed than those found
in the device specifications and form the basis for the layout requirements
presented in Section 7.6.

7.6.3.1 Ditterential Signals

The transmit (XMITz), receive (RX+), and collision (COL=) signals are
differential pairs. Run etch to these pins as parallel pairs, maintaining equal
etch length.

7.6.3.2 DP8392 Transceiver
This section discusses:

¢ External components (Section 7.6.3.2.1)
¢ Layout considerations (Section 7.6.3.2.2)

7-12 Network Interconnect Interface

gl~L ©oeMelu| J08uUodIelU] YIOMIBN

Figure 7-6 Network Interconnect: dc-to-dc Converter

. w7
+12v -{]
Notes: +12V_SW ______g{]
® Ground B 1o be connected to logic ground 3D
at power supply only.
e Ground A 1o be isolated from all other grounds.
L1 D3 IV —
1N4004 UES1302
D4 2.2UH , T2
+12V_SW —— e STYTYTYTY .
Cc19 > R17 R14
c22 _l. c21 l s
~ 47UF %100 29.2
AUF TJUF]‘ZW _ e .
cao
! R < Grur
8 E1 Q2
QUTPUT | p2s orr DEC30039B
2 TRIGGER > 29.2 L Gaur
R23 4= =7
1K RESET 15V
ef E3 5w 2 {CONTROL 05
4N28 R18 *ITHRSHLD | /, IN756A
::/'7'(DISCHG §7 B.2V 1%
: 4 ° vee
GND
3‘ pz | R21
(_" D664 ;; 16.5K B‘ ;’
c18 1%
150PF
_L C16 1 Ci4
T 820PF i AUF
B B
N

MLC-004458

7.6.3.2.1 External Componenits The following paragraphs list and discuss
external components.

¢ Pull-Down Resistors—The ThinWire receive and collision balanced
differential line drivers from the transceiver chip need four pull-down
resistors to VEE. Being external to the chip, they allow setting of the
voltage swings required to drive the differential lines and dissipate power
outside the chip, which adds to long-term reliability. In addition, they are
used with the transformer to control the differential undershoot which
occurs when the drivers reset.

In ThinWire designs with integrated transceivers, the transceiver is

directly connected to isolation transformers. In this case, higher value '
pull-down resistances (up to 1.5K (2) may be used to save power and still
provide the necessary ac voltage swing. The use of resistances greater than
1.5K 12 is not justified by the amount of power saved and results in too low

a signal for proper operation of the SIA receiver squelch.

e Diode—The requirements for the capacitance added by the transceiver
chip to the ThinWire coaxial cable are strict. The transceiver along with
the media-dependent interface is allotted 10 pF in a ThinWire network.
The DP8392 transceiver chip introduces about 4.5 pF when it is not

transmitting. To decrease this capacitance, the "off" state capacitance .
of a diode is placed in ¢ s with the transmitter output (TXO) pin of the
chip.

A general-purpose diode, like the D664 of 25V and 135 mA, provides a
maximum 2 pF of capacitance when it is reverse-biased and has a reverse
recovery time of a maximum 10 ns. This means that the capacitance
introduced by the DP8392 is reduced from 4.5 pF to 1.4 pF (maximum) and
that 10 ns are added to the transmitter startup delay (the time required
for transmitted data to validly appear on the coaxial medium).

¢ Precision Resistor—The transceiver chip uses a 1K, 1% resistor between
pins 11 (RR+) and 12 (RR-) to set ThinWire coaxial drive levels, output
rise and fall times, 10 MHz collision oscillator frequency, jabber timing and
receiver ac squelch timing. A 1K, 0.25 W, 1% resistor is recommended.

¢ Decoupling Capacitor—A 0.1 to 0.47 uF capacitor is needed between
the GND and VEE pins (10 and 4, 5, 13). This decrupling capacitor helps
reduce impulse and ripple noise on the transceiver chip power supply
below limits of +75 mV and +100 mV peak-to-peak, respectively. A ceramic
capacitor should be used for its good high-frequency characteristics. A 0.47
uF, 25V capacitor is recommended. If impulse noise and ripple limits are
exceeded, packet loss results.

7-14 Network Interconnect Interface

Pulse Transformer—MAUSs, either internal or external, need three
isolation pulse transformers to isolate the differential signals (COL =, RX
+, and XMIT =) of the transceiver chip from the SIA. ThinWire products
with integrated transceivers use 75 uH pulse transformers.

Power Supply—The DP8932 transceiver chip cperates over a supply
voltage range of —8.46V to —9.54V. The chip draws from 50 to 200 mA. The

transceiver chip has a power supply noise immunity of 100 mV peak-to-
peak.

7.6.3.2.2 Layout Considerativrn s

To minimize the capacitance introduced to the ThinWire coaxial cable by
the transceiver chip, follow these guidelines:

— Mount the transceiver chip as close to the center pin of the BNC
connector as possible, no more than 4 cm away.

— Align the RXI pin, 14, and the anode of the isolation diode with the
center pin of the BNC connector.

— Keep the length of traces from the RXI and TXO pins (14 and 15) to
the BNC connector to a minimum, not greater than 4 ¢cm.

— Keep all metal traces, especially GND and VEEZ traces and planes, as
far as possible from the RXI and TXO traces.

— In a multilayered PC board, void the area of GND and VEE planes
beneath the RXI and TXO lines.

— Solder the DP8392 chip directly onto the PC board. Do not use a
socket; the DP8392 has a special lead frame designed to conduct heat
out of the chip.

Connect VEE pins (4, 5, and 13) to large metal traces or planes. Good heat
conduction is required for long-term reliability. A minimum total trace or
plane area of 6.45 cm? (1 inch?) is recommended to take advantage of the
3.5 W power dissipation rating of the chip package at 25°C. Do not use
heat-relieved mounting holes for these pins.

Connect the collision detect sense (CDS) pin independently to the coaxial
shield. The CDS pin is provided for accurate detection of collision levels
on the coaxial cable. To avoid altering the coli ion tureshold due to
intermediate ground drops from pin 16 to the coaxial shield, attach pin
16 independently to the coaxial shield by a short, heavy conductor. During
ESD testing, any potential differences between power ground (pin 10) and
the CDS pin (pin 16) can cause some internal functions to latch up.

Network Interconnect interface 7-15

e Place the decoupling capacitor, connected across GND and VEE, as close to
the transceiver chip as possible to minimize the trace induciance.

e Etch run: from the pins of the differential pairs (COL =, pins 1 and 2;
RX =, pins 3 and 6; and XMIT =, pins 7 and 8) must be parallel pairs of
minimum, equal lengths. The possibility of one side of the differential
pair picking up more noise than the other is minimized when the lines are
balanced.

¢ For ThinWire designs maintain a voltage isolation barrier of 500V RMS
between input and output circuits

Figure 7-7 shows the typical layout of a ThinWire interface.

Figure 7-7 Network Interconnect: Layout of ThinWire Medium Intertace

Pulidown
Resistors ThinWire
Grounding
Network
L "7 77" Diode o
—— ThinWire
Connector
o O O O =
Q e Precision
Q Resistor
© O o O Bypass
8 8 g g | Capacitor
Transformaer DP8392 Heartbeat
Enable
Switch

MLO-004462

7.6.3.3 ThinWire Application Hints
The following application hints may be useful:

¢ PCB layout considerations

Figure 7-8 shows a heat spreader, implemented in side one (component
side) PCB etch, connected to pins 4, 5, and 13 of the transceiver chip. This
heat spreader works in conjunction with the special copper leadframe used
in the DP8392 chip to conduct heat out of the VEE pins. Since this large
area of side one etch is under the chip, it does not require extra PCB space

7-16 Network Interconnect interface

to implement. You need not route signals under the chip on side one, if the
layout is done as indicated above.

Figure 7-8 Network Interconnect: Heat Spreader

-~ O O OO0 0 0---

e |o
o

6

by

5

Q

6

?

EMC compliance

ThinWire Ethernet interfaces can be difficult to certify for FCC Class B;
Class A requirements are less difficult. The best approach is to use very
low ESR capacitors between the isolated ThinWire cable shield and the
system chassis earth ground. The best type of device is a multilayered
ceramic-surface mount capacitor. These devices have very low ESR,
insignificant lead length, and are available in a 1000 VDC rating that
meets the 500 VAC (RMS) isolation requirement of Standards IEEE 802.3
and ECMA 97.

In general, more than one value may be required, and two to six parts may
have to be connected in parallel to achieve a low enough impedance at all
frequencies of interest. The total capacitance must not exceed the limit
imposed by IEEE 802.3, 0.01 xF. This requires some experimentation and
testing at the EMC test sites. The etch used to connect the BNC shield
contact and the chassis ground to these capacitors must be very thick and
very short for the capacitors to be effective.

Network Interconnect Interface 7-17

The 1M 12 resistor required by the IEEE 802.3 10Base-2 (ThinWire) ‘
Standard between isolated ground and chassis earth ground removes static
electricity buildup, but does not protect from ESD effects. The best solution

for ESD protection is two 400 VDC bidirectional transorbs (similar to
back-to-back zener diodes) in series. This retains the required 500 VAC

(RMS) isolation, but protects against ESD voltages above 800 VDC. The
connection requirements for the transorbs are similar to those for the
capacitors, that is, very short and very thick etch.

7.6.3.4 Power

The Ethernet interface requires two supply voltages, +12V and -9V. The
following are the specific requirements for each supply. ‘

e +12V

The +12V supply must be between 11.28V and 15.75V. This supply is
referenced to AUI voltage return. This +12V is used to supply power to
the MAU. The MAU may be the DP8392 chip (and associated circuitry) or
may be an external MAU connected to the station by an AUI cable. It is
not permissible to supply power to both MAU’s simultaneously to prevent
transmission on two networks.

When the MAU is the on-board DP8392 chip, the current drawn from ‘
the +12V supply is approximately 220 mA. When power is supplied to

an external MAU through the AUI connector, the current draw can be as

much as 0.5 A steady state. The voltage that appears at the AUI connector
must be at least 11.28V (12V—6%) when the external MAU is drawing the
maximum current of 0.5 A. It is therefore important to minimize the dc
resistance of the path between the power supply of the station and the AUI
connector.

In addition to the steady-state current requirements, there are consid-

erations for surge current. The +12V supply must be able to handle the .
surge current drawn by an external MAU, when it is hot-swapped. The
connection of an external MAU should not crash the station, or otherwise

affect normal operation of the station. The +12V supply (as seen at the

AUI connector) is allowed to go out of tolerance during MAU hot-swap.
Transceivers draw currents of up to 25 A lasting 500 us.

A significant amount of noise can be coupled into the voltage return line
for the +12V supply. Most of this is switching noise from the dec-to-dc
converter (either on-board or in the external MAU). It is recommended that
a dedicated path be used for voltage return between the AUI connector and
the power supply. Avoid coupling this noise inte the logic ground of the
board.

7-18 Network Interconnect Interface

~9V

A dc-to-dc converter is used to create a -9V supply that is necessary to run
the DP8392 chip, when used. The ground reference for the -9V supply is
the ThinWire coaxial cable ground. This supply and its ground must be
dc-isolated from the other grounds in the design.

7.6.3.5 Grounding
Four different ground references must be considered in the Ethernet interface:

®

Logic ground
This is the reference for the system +5V supply.

Chassis ground

This is the lowest available impedance path to earth, usually provided by
the ac power line.

Voltage return

This is the reference for the +12V supply. Keep the voltage drop over the
path to the power supply small to ensure that a minimum requirement of
11.28V is delivered to the AUT cuonnector when 0.5 A are being drawn from
the +12V supply.

Ultimately, the logic, chassis, and voltage return grounds may all be
common. However, it is recommended that these three grounds be tied
together only at one location: at the power supply.

Connector grounding

= ThinWire BNC connector grounding requirements (if used):

The shell of the BNC connector must be common with the ground of
the DI'8392 chip and the return of the ~9V supply. This ground must
be dc-isolated from the remaining three grounds.

-~ AUI connector grounding requirements:

Two variants of the AUI cable exist: old, Ethernet-compliant cables and
IEEE 802.3-compliant cables.

The old Ethernet cable has a protective outer shield which is connected
to the connector shell and pin 1 of the cable. It may have shields on
the individual twisted pairs, which are also connected to pin 1.

The IEEE 802.3 cable has a protective outer shield which is connected
to the connector shell only. It also has inner shields on the twisted
pairs. If the shields have a common drain wire, the cable is connected

to pin 4. If the shields have individual drain wires they are connected
to pins 1, 4, 8, 11, and 14.

Network Interconnect Interface 7-19

It is the goal of the sample design to meet the functional requirements
of both cable types. This is accomplished by connecting the connector
shell to the chassis ground with a dc resistance not to exceed 20 mf?
and connecting pins 4, 8, 11, and 14 to logic ground at the station’s
AUI connector. A jumper is used to configure the connection of pin

1 in the station. When the jumper is installed, pin 1 is connected to
logic ground. When the jumper is removed, pin 1 is left floating. The
jumper must be installed when IEEE 802.3 AUI cables are used with
the station. The jumper must be removed if the station has an old
Ethernet cable.

Stations should ship with the jumper installed. This ensures that
the implementation of the interface complies with the IEEE 802.3
grounding specification. All cables shipped by Digital Equipment
Corporation comply with the IEEE 302.3 ground design requirements.

7.6.3.6 Isolation Boundary

An isolation boundary must exist between the coaxial cable medium and the
circuitry within the station. This boundary has two characteristics:

e It presents a high impedance to low frequency signals.

This is required in order to limit currents in ground loops. These ground
loops are set up by multiple stations connecting to their local earth grounds
and to the coaxial cable ground that is the network media. The impedance
between either coaxial cable conductor (center conductor or shield) and any
of the conductors in the AUI must be a. least 250 k2 at 60 Hz.

¢ It presents a low impedance to high frequency signals.

This creates a low impedance path for noise to be shunted to earth ground.
The magnitude of the impedance between the shield of the coaxial cable
and the protective ground of the AUI must be at most 15 12 in the frequency
range of 3 MHz to 30 MHz.

This isolation boundary is implemented within the MAU. When a station
has only an AUI connector, the design need not implement these isolation
requirements, because they are implemented in the external MAU.

The isolation boundary must be implemented in internal MAUs and is provided
by the isclation transformer between the SIA and the MAU. The requirement
for a high impedance at 60 Hz is met by the use of two blocks: a de-to-dc
converter and a signal isolation transformer. The layout must maintain

a sufficient spacing between any two conductors on opposite sides of the
boundary.

7-20 Network Interconnect Interface

The requirement for a low impedance at 3 MHz is met by the use of the
bypassing block. Note that the design uses a capacitance of 4700 pF to provide
the RF shunt. At 3 MHz, this capacitance has an impedance of 11.3 2. This
leaves a budget of 3.7 12 (15—11.3) for connection between the chassis ground
on the PC board and the earth ground of the station.

Hetwork Interconnect Interface 7-21%

F S 0000000008000 0 0000800000 00006.0904¢.0988 008904694
PG448 490080080080 0003084800840 000099¢¢048499

F 9000000000604 000 00 P00t 88 80000000800 ¢84090!

FE S0 000080800848 04580 9200064080000 800.80508.894
p00.0.8.00.0.0 9090068490 0969.0.06.6.00000869006999.68¢

P30489 88043040003 04040830889408043459.0¢9.4

P00 4000900008846 8880808809490¢¢959074

bR 00809 9.9.8.095009808660880806408808440
PO ED S0 F 090 $4484.4.940:088009¢946996931
XA KA KR EY AR KR AR KK KK XK XA KHLEXAKK
HXXAARA KK KK XA KA KA XK AR KA KK AKX

1 9.4.9.9:0.0.9.0.8.9.0.0.0.99.8.9.8.6.0.¢64.8¢3991

L0300 96700 86.89.¢.900094.09.0969.0¢4

ERUXAK KA KA AL KKK KA LA KK KL K

0993 60.99.0.0.9.9449049.949093

P840 ¢40.0.8.0.9.3.9.0.46.4.¢¢.4.4

XXX KEXH X AKX KR KR KX

p8 5. $9.9.9.4.9.5.3.9.5.8.4.4.9 4

b 9,68 9.0.9.6.9.0.9.9.9.9.9

b 49949089 4.0.¢.4 4

).0.8.9.6.9.8.8..9.9.4

ARERKKAKK

EXKXKXX

KXXXH
XXX

X

. 9.6.9.9.4.4.

£ 8. 4.9.8.9.9.4.9 4

EKXAAUAAKAUKK

pO 80089444401
KXEXEXERY L AKEXX

XXX LHAAKARKKLLER
2006880865 8988659843 1
TERARA XK AL LA LR EALARKNK
XK AR KUK KL KRR KA RRE
b 8099008083000 00 4068485489
KEXKRX KL AR AR LA KX TA KA KKK
XX OO A A R AN K KA
kOB SD 4PN IS LD D0 05.05.009084

IR DO I G 0000000 00.95800004989
EUN AR EX KRR R AR XK A A XA AN ALK LKA K

LR PO BRI PIEI RN LI S0 00 800884008

KR XX X A AR XA KA AL XL R K LA A KUK RALLR

KX XA X YN N AU N A Y R R KA N XA U KA KK KA K

KRR R XU EA XK L XU AR LR AR A W X H AN R WL H AR KA

EARAES IR S GO SIS SN ENG 000200 089.40.0500.00

EXHK AR KL LH YUK LR LR AR R KA RN YK KL RER AL R EKEN KA,
PSSP IIINEGEIORICIDOINTIIIEN ISP IEREI DI RIS
168004008988V ERRIVESIFEIINEPCIERNIFNDNDEG DI040

8

I/0O Device Interfacing

This chapter discusses the following topics:

*]/O device mapping (Section 8.1)

* Interrupt structure (Section 8.2)

* Bus interfacing techniques (Section 8.3)

¢ DMA device mapping registers (Section 8.4)

» rtVAX 300 to digital signal processor application example (Section 8.5)
e Reset/power-up (Section 8.6)

e Halting the processor (Section 8.7)

e I/0O system illustrations (Section 8.8)

8.1 I/0 Device Mapping

The rtVAX 300 processor supports 8-bit, 16-bit, ar.1 32-bit I/O devices that are
located in the rtVAX 300 processor’s 510M bytes of I/O space. This space is
accessed with the same read and write cycles used for memory access; however,
address bit 29 is set for /0 access and clzared for memory access. The I/O
space of the rtVAX 300 is at physical locations 20000000 to 3FFFFFFF.

8.1.1 Address Latch

The rtVAX 300 uses time-multiplexed data and address lines to transfer
memory and device addresses and data. Since the address is valid only on this
bus at the beginning of a device read or write cycle, address latches are needed
to latch the address. These latches can be connected, as shown in Figure 8-1,
by using the AS signal to latch the address. In addition, the byte mask signals
BM<3:0>, write line WR L, and cycle status signals CSDP<4:0> L must all

be latched along with the address. The outputs of these latches are used as
inputs to address decoders and other application-specific logic. The outputs of
these latches maintain valid address and cycle status information throughout
the access cycle.

I/O Device Interfacing 8-1

Figure 8-1 VO Device Interfacing: Address Latches

BM<3:0> 74F373 LBM<30>
i -
DAL<21:18> LADDR<«31:30>, LADDR<2'I:2>’
(Hold ’
From 74F373
rVAX 300 DAL<17:10> y
e |
(’
Hold To
? Application
Logic
DAL<31:30>, 74F373
L«21: D, 9:2
DAL<212> NDAL<92> | /
Hold
\, DAL <31:30> 7aF373 /
CSDP<4.0> LCS«4:0>
orfiing -
WR LWRITE
~#4 Hold =
AS J MLO -004464

8.1.2 Address Decoding

Address decoding to generate chip select signals must be performed for each
memory-mapped 1/O peripheral. Programmable logic, such as the PAL 22V10,

can be used to decode the rtVAX 300 addresses and generate the chip select .
signals for the memory subsystem and I/O peripherals. To implement full

address decoding for a byte-, word-, or longword-wide peripheral, 28 address

bits must be decoded. However, most PAL programmable devices do not offer
enough input pins, and you can cascad. «wo PAL devices to decode the memory
address, as shown in Figure 8-2.

The first PAL decodes the upper address bits DAL<29:13>, and the outputs
of this PAL are all latched by the device select latch. ROM and RAM are
selected by the first PAL. Two other outputs of this PAL are latched and fed
into a second PAL with the low-order latched address bits LADDR<12:02>.
The output of thuis PAL asserts the CONE (console enable), SELBADDR (DMA
base address register), and SELCSR (I/O CSR register). The data strobe (DS)
line enables these three select signals.

8-2 /O Device Interfacing

' Figure 8-2 1/O Device Interfacing: Address Decoding Block Dlagram

Davice
First Select
Decoder Latch SELRAM
SELROM
DAL<29:13> 17 5 e
7~y PAL |5 SELDSPRAM
e e o
[LSELCONIO
Address LSELREGIO
Latches
. CONE
oo . ad
DAL<12:2> LADDR<12:2> SELBADDR
o p———————d PAL —pn
SELCSR
S Second
A f Decoder
DS MLO-004465

. 8.1.3 I/O Access: Cache Control, Data Parity, and 1/O Cycle Types

The rtVAX 300 performs only longword transfers from I/O space; it does
not cache any data read from there. This allows for a simple design of /O
peripherals, because they need not respond to quadword or octaword ac. 2ss
cycles.

I/O devices can be constructed to generate and check DAL bus parity, although
proper parity is not required for I/O space reads if the DPE L line is deasserted.

drive the DPE L line high during that device’s read cycle. A 74F657 parity
transceiver can be used to generate and detect parity for an I/O device. Note
that the odd bytes (DAL<15:08> and DAL<31:24>) have odd parity and that
the even bytes (DAL<07:00> and DAL<23:16>) have even parity. If the /O
device is capable of DMA operations to the rtVAX 300 processor’s external
RAM memory, the DMA I/O device must generate the correct parity when
writing to memory; otherwise, the rtVAX 300 detects a DAL parity error when
reading those modified memory locations.

. If DAL parity generation and detection are not needed for the I/O device,

1/0O Device Interfacing 8-3

8.2 rtVAX 300 Interrupt Structure

Most simple peripherals, such as A/D, D/A, parallel, and serial I/O devices,
can be directly mapped to a valid location of the rtVAX 300 processor’s I/O
space. When the device requests service, it asserts one of the four IRQ<3:0> L
lines and waits for the rtVAX 300 to run an interrupt acknowledge cycle. This
interrupt acknowledge cycle looks like a normal memory read cycle; however,
the CSDP«<4:0> L reads 1X011, indicating an external interrupt acknowledge
cycle.

The IPL of the device interrupt being serviced is placed on DAL<06:02>, and

AS L is asserted. This IPL must then be decoded, and the interrupting device
must place a vector on DAL<15:02> and assert RDY L. DAL«31:16> and ‘
DAL<01> are ignored; however, DAL<0>L can be used to force the processor

IPL to 17, when asserted. Thus, if a device interrupts the rtVAX 300 by
asserting IRQ<0> L, the processor raises its IPL to 144¢. If the vector that is
driven onto DAL<15:00> is odd (DAL<00> is set to 1), the rtVAX 300 raises its
priority level to IPL 17, when executing the interrupt service routine. It is

now up to the interrupt service routine to lower the IPL of the rtVAX 300 so

that other interrupt requests are nct blocked.

Lines IRQ<3:0> L are level-sensitive, and the interrupting device can continue
to assert the IRQ<0> L line until the interrupt service routine lowers the
rtVAX 300 IPL level below the interrupt request IPL. The rtVAX 300 does not
service interrupt requests of the same or lower IPL than the IPL at which
the processor is now operating. Therefore, if a device requests an interrupt
by asserting IRQ<1> L and the processor runs an interrupt acknowiedge cycle
for that device, the processor’s IPL is raised to 15;4. If the device continues
to assert the IRQ<1> L line, the processor does not acknowledge the second
interrupt until the interrupt service routine iowers the processor’s. IPL below
1516; thas prevents interrupt stacking and allows multiple devices to interrupt
the processor by using the same interrupt request line. It is good practice to
have the I/0 device clear the interrupt request after the rtVAX 300 runs an
interrupt acknowledge cycle for that device.

Typically, a CSR register associated with the I/O device contains the interrupt
control bit(s). When a device has requested an interrupt, a bit is set in that
register. This bit can automatically reset after the CSR is read, or the ISR
can clear this bit by writing back to the CSR. The ISR branches to the correct
servicing code, which depends on the nature of the interrupt, after reading this
CSR. The ISR exzecutes the service code, which cannot be preempted. After
executing the code, the ISR lowers the processor’s IPL, and other interrupts
can be serviced. See the rtVAX 300 Programmer’s Guide for a discussion of

ISRs. ‘

8—4 /0 Device Interfacing

b 8.2.1 interrupt Daisy-Chaining

In many applications, more than four devices need to request interrupts from
the rtVAX 300. To accommodate multiple devices, the interrupt requests are
logically ORed, and the interrupt acknowledge is daisy-chained between the
devices, as shown in Figure 8-3.

Figure 8—3 1/O Device interfacing: Interrupt Daisy-Chain Block Diagram

Device 1 ‘
CSDP<4.,2:0> __.__\ Device 2
;] | IACKIN
. DALEZ> { o ACK [lLaen| |/ “\IACKOUT | | IACKIN
WR | 4 IACKOUT | ©
. ———G
i Device Interrupt
AS 1 | Request Device Interrupt
DS | Request
/
vee 1\
1
. Open-Collector -
IRQ<0> Driver ®
MLO-004466

For example, if two devices need to interrupt at IPL 1444, the interrupt request
line of both devices can connect to IRQ<0> through open-collector drivers. A
decoder that decodes interrupt acknowledgments at IPL 14,5 asserts the device
interrupt acknowledge signal. After being latched, this signal is then ANDed
with DS and fed into the interrupt acknowledge input of the first device. This
device drives a vector onto the DAL bus and drives RDY L, if it was the device
that was asserting IRQ<0> L. However, if the first device did not assert the
IRQ<0> L signal, it passes the interrupt acknowledge to the second device

by asserting an interrupt acknowledge output signal. This IACKOUT signal

is then fed into the interrupt acknowledge input of the second device. The
second device can now drive the vector onto the DAL bus and assert RDY L.
If the second device did not assert the IRQ<0> L signal and it receives the
interrupt acknowledge input, it should not drive the vector onto DAL<15:00>
or assert RDY L. The rtVAX 300 times out after 32 ps and aborts the interrupt
acknowledge cycle. Aborted interrupt acknowledge cycles result in a passive
release without a machine check.

I/O Device Interfacing 8-5

8.2.2 Interrupt Vector

The interrupt vector generated by the interrupting device is used as an offset
to locate an entry in the system control block (SCB). This entry is then read
from the SCB to determine the virtual starting address of the interrupt service
routine for that interrupting device. Each interrupting device must generate

a unique vector, so that a different ISR is invoked for each device. (Table 3—4
lists the relationship between interrupts and the SCB.)

8.3 General Bus Interfacing Techniques

In some applications, the rtVAX 300 interfaces with a general-purpose I/0 bus, ‘
such as the VME bus or the IBM PC/AT bus. The design of this interface can
vary. The rtVAX 300 application module can function either as a bus master or

a slave processor. Communication between the rtVAX 300 application module

and other modules on the bus is carried out through either shared memory or
dual-ported data registers.

8.3.1 Bus Errors

When a bus error occurs, external logic notifies the CPU by asserting ERR L
during a bus cycle. The CPU responds, as shown in Table 8-1. External logic
can assert both ERR L and RDY L to request a retry of bus cycles.

Caution

The RDY L, ERR L , and CCTL L lines are tri-stateable bidirectional
lines. These lines are also internally pulled up by a resistor, and they
must be driven by tristateable drivers. If these lines are driven by a
standard TTL totem pole output, the rtVAX 300 does not function.

8.3.2 Using the rtVAX 300 as a Bus Master ‘

In most bus interfacing applications, the rtVAX 300 functions as a bus master.
The address space of the bus should be mapped to the rtVAX 300’s I/O space.
An interrupt controller is needed to handle and control interrupts that are
generated on the bus; this controller must interrupt the rtVAX 300 and provide
an interrupt vector when the rtVAX 300 acknowledges the interrupt. A bus
cycle controller is also needed to control the bus protocol of the I/0 bus and
correctly service bus access cycles from the rtVAX 300. This controller becomes
fairly complex if multiple bus masters are allowed on the I/O bus.

8-6 /O Device Interfacing

Table 8-1 Response to Bus Errors and DAL Parity Errors

Cycle Type Prefetch Cache' Error Status?® Machine Flows
Demand D-stream - Entry Logged in MSER bits Machine check abort
(read) invalidated 06:05

Write - - - Machine check abort
Request D-stream - Entry Logged in MSER bit -

(read) invalidated 06

Request I-stream Halted Entry Logged in MSER bit -~

(read) invalidated 06

1The entire row in cache memory selected by the faulting address is invalidated whether or not the reference
is cacheable. The entries from both sets are invalidated.

20nly DAL parity errors log status.

8.3.3 Using the rtVAX 300 as a Bus Slave

In certain applications, rtVAX 300 functions as a slave processor on a system
bus. To do this, a bus interface must be designed to interface the bus to dual-
ported memory on the rtVAX 300. This memory must map to the rtVAX 300’s
1/0 space and to some address space of the system bus. It is useful to construct
a few CSRs that allow the master processor on the system bus to interrupt the
rtVAX 300 and give status information. In addition, the rtVAX 300 should be
able to interrupt the master processor.

8.3.4 Building a DMA Engine for the rtvVAX 300

The rtVAX 300 allows the peripherals to request the DAL bus and become DAL
bus master. When the rtVAX 300 has given bus mastership to the external
DMA device, the rtVAX 300 tri-states its DAL<31:00>, AS L, DS L, WR L,
BM<3:0>, and CSDP<4:0> L lines. The DMA peripheral must now drive each
of these lines with the same protocol as the rtVAX 300. All control signals
must be pulled up to prevent accidental assertion when their lines are first
tri-stated. It is also good practice to pull up the DAL<31:00>, BM<3:0>, and
CSDP<4:0> L lines to prevent oscillation when these lines are not driven.

The DMA peripheral transfers information in the following sequence:

1. The DMA device asserts the DMR L signal, requesting to become DAL bus
master, and waits for the assertion of DMG L.

2. The rtVAX 300 finishes the present transfer cycle, tri-states all signal li~es,
and asserts DMG L.

I/0O Device Interfacing 8-7

3. The DMA device drives the DMA address on the DAL bus, the cycle status ‘
onto CSDP<4:0> L, and the BM<3:0> lines, which are the byte access
information, along with the WR L and DPE L lines.

4. The DMA device asserts AS L. This is the P1 clock phase.

The DAL<31:00>, CSDP<4:0> L, DPE L, and WR L lines are tri-stated by
the DMA device. This is the P2 phase.

6. During a DMA write cycle, the DAL bus is driven with the data and
CSDP «3:0> L is driven with the byte parity by the bus master. During
a read cycle, the DMA peripheral listens to the DAL and CSDP lines to
read the data. During either cycle, the DS L line is asserted. This is the ‘
P3 phase. DMA write cycles must maintain rtVAX 300 internal cache
coherency; therefore, a DMA write to an address whose data has been
previously cached invalidates that cache entry. The DMA bus master
accomplishes this by first asserting the CCTL L line and then driving
the DMA addresses onto the DAL bus and asserting AS L. This cache
invalidation cycle prevents stale data from existing in the rtVAX 300
internal cache.

7. The DMA device waits for the assertion of RDY L durirg the P1 phase.
Until RDY L is asserted, all signals stay in the same state. ‘

8. During a read cycle, the memory subsystem asserts RDY L, and the DMA
device must latch the data; during a write cycle, the DMA device must
tri-state the DAL<31:00> and CSDP<4:0> L lines during the P2 phase.

9. If another DMA transfer is required, the DMA device goes to step 3.
Only eight successive DMA transfers are allowed; the DMA device must
relinquish the bus to the rtVAX 300 by deasserting DMR L. In addition,
DMA devices cannot remain bus master for longer than 6 ps. If more DMA
transfers are required, the DMA device can reassert DMR L and go back to
step 1. The deassertion of DMR L allows the rtVAX 300 to access memory
between DMA requests.

10. The DMA device deasserts the DMR L signal, the rtVAX 300 deasserts the
DMG L signal, and the DMA transfer is complete.

The DMA timing diagrams, Figure 8—4 and Figure 8-19, show more details

of the read and write cycles. In Figure 84, all data and strobe signals are
controlled on rising edges of both CLKA and CLKB. For example, the AS L

signal asserts on the rising edge of CLKA (P1 state) and deasserts on the rising
edge of CLKB (P2 state). To emulate the proper timing of these strobe signals,

a state machine must be clocked on CLKA, and some output latches must be
clocked on CLKB. (See Figure 8-29 for an example of this.) '

8-8 /O Device Interfacing

L9¥P00-OTIN

na

Eye

EYL

NN

N&DIm.ZZ

1dIASINIZ ZOADSSADOVY SYIWISSY
.0>owmw00< _O\.Ommmour. CQD(W\:EQ . BN

i

SNAWADIH SNEWADAY sNdv/,034
gIva034 SN Vao3y]

_ 3

x owa_umoz_: I _

L0 1

)

::

[

-
}—
0t
|
=5
—
—s
b
meora-fowToo.
o
|t
PPN e R

E::

P

EE_

oo i
' H
 a ' '
1 3 v]
‘ - - [[i
' . v ' . ' « s . H o " 1 ' ' . Y '
A S T T I S S Voo avaw . v 1 b 8 &8‘ vi [) H
‘ ' ' [' ’ 1 ' , ' v . ‘ T . [T i . ’ ' ' \ ')
' f ‘ . 1 ' 1 P R ‘ i [v i 1 [N T 1 ‘ | { { | i 1 '
' 1 [[* \ [S \ 1 [[i '] [] \ ° . \ [« ‘ 1
) ’ ' i ' ' + LI B ' ' Voo ' ' ' [| y) ‘ v ' . i ' ' ' '
. ' [l ‘ | I ' ' i ‘ . . ' . ' ' [] [i ' . ¢ ‘ ' i '
]] oo]]]] ' ' Voo 1] '] o ' v] 1] 1) '
[A N S R A) [: ! ! [o
' i : . ' ' . [S ‘ ' O H ' ' ' yoo) . h H ' . 1 ‘ ' 1
s H PO 1 ' ' F T . i [T . COE B . ' . 1 . ‘ 1 i . \
H i P R [3 ' \ \ ' \ T P i i H s ' ' ' 1 i i
' h ' i ' [N ' e ' i i I ' '
I I S T R T P H 1 [A T } i | I R [
]
7 " ") " " I v y 1 IS T] '] " i ’ ' v)]] ’ 0
[! ! i . ‘ I ' i | ' ‘ ¢ i [. i ' H ' ‘ ¢ ‘ ' ‘
oo ooy i . [T L . [SRR . 4 ' \ . . ¢
oy [T T T T T T T S T } 1 \ A { v [T |
' ' . ‘ ' ‘ [B ' ‘ yoo ' ' 1 IR v . 1 ' PR T ' i ' H H
' i ' ' i T B i ' IR B ’ i I ' 4 ' ' [' : ¢ . 4
' '))) Voo) ' ‘ I . . o] ' ' i [‘ ' . ' .
1 tor
1 [i 1 : I . I 1 [i i 1 N] 1] 4 ‘ i 1] ¥] "
' . ' ‘ ' ooy : : 1 . oo] [H \ v '
3 . \ |) [' v 5 \ [' ' vl \ |
' ’ « ’
) I 0] g ' i ' i f 1
1 i) 1
' :)
.
T : "
s 1 v
’ 1 ¢
' i
' 1
' ’
i ’
H

/

STa0d LLTTITEE £y BETI oS

PPN (Y YOOI PN PR PN POV PO P

b
] !
' 1
h .
i
v v v ‘ H v
' ' ' 1 I '
¥ + 1]] +
. ‘ ‘ ' '
' ' 1
l ‘ i ' '
+] 1
] v " 3 ' 1 v v . ' ‘ ' ' ' 3 D) Y 1 i
' ' ‘ ‘ 1 ' ' ' ' ') ' ' i HE ') ’ 1 ' '
: J h H h ' ' h H N ‘ i . 5 . ' ' ‘ ' ‘ ¢ ' '
I ' 3 . + + 1 H ¥ E3 1} 1 + %) [} \] L} 1 —
+ . * 3 1 I3 1 1 I3 1 I K 3 ,) 1 I3 i 1) v] 4 .
. ' . ' . ‘ ‘ ' ' h ' ' ' (9 ‘ N ' ‘ ‘ ’ ‘ i
i ' } y \ i | | H) | H . [[i | . ') ' . '
" 1 + ' . I3 1 ¥ 1 ' ' I3 + i 1 + I3 1] [} +] 1 1]
' ' H ' . ' | ' i i ‘ i i ' H ' : i H i i i H
h ' H ' ' . ' ' ' i | . ' . \ ‘ H 1) I . H ‘
) ' ' ' ' ' ' . y ' ' ' . i ‘ y ‘
‘ 1 h i . ' ' ' : ' ’ " . * v T] ¢ . ' : ’ ' i i
¢ ' . i . i I T o i ‘. ' ' . i \ 1 ' ' ‘ h 1
4 1 + 3 1 t + . + 1 ’ Ll [} +)) t] t + [A [1]
P R 1 ‘ ' ' '
‘ . . ') v v v] 1 I B H ' ' ¢]] H . I 1
. : ' h . h h ' [h Voo . ‘ i [h : . ' ‘ . ‘ H
’) ¥ ' s ' ' [' Voo h + ') ' ' \ i . ' i 1 H
’ 1 + 1 P *) i . ’ i ' . 1 1
' H \ . ' ' h ' [. . v i ' " I " " [" " v . 3 ‘ H
. H . H : . PO T S ' [S H [' : ' [T v ‘ ' ' : H i i
' ') .) ') R ‘ ' ' v ' ' ' ' 1 . i . TR ‘ V . \
— 1 . 1 3 ‘ 1 1 3 4] . 1
1 11 . ' . 1 3 I " 1] I 1 s) i i . ¥ . H . i ¢ ‘ i] K]
' 1 ' v ‘ . ' PO ' I ' \ . ' v ' [1 ’ IR S ‘ ' . 1 1
' ' ') ' ' ' I ' [1 : : '] \) [« ' i ' ' 1] ‘ ‘.
i ' ;
. 1 . N + i] 1 . ¥ 1} b . .] 1 Q 1 . (] . 1 I3 1] 1) . 1 [] ﬂ 1}
v 1) 1 I3 t ' [3 .] t . . [} 3 I3 [} . . 1} 3 t)] . 1 1) 3 '
+ + + 1 + v ‘ 1 13) 1] 1 [l v h) 3 ' ' 13 ’ . 3 + ' [1 i] + 1
' v B H . ' B v ‘ P PO s h v ' ‘ [' « ‘ h . ' h ' ' '
. ' ' ' ' ' y [T P v ooy ¥ ' 1 " ' ' LR T 1) i 1 ' ’ \ ' v '
i 1 ’ N .]) ’ . [] 13 1 + 1 ! v 1 _ m 1 ’ + o * I3] 1 1 ’ ~ 1] t '
i | ‘ ' | [[| [i £ e 4 . ' i i | S | (' ‘ ' H ' i
I v . ¢ " v T IS v)] I] v ") v T T v '
« J . ' ' h) P S I ' ; . i ' '
Y ' ' [' [T ' 1 Voo ' § 1
1 ' 1) +) 1] .) [} 4 3 1] 3 k)) '
.o ' . ' ' ' ' ‘ P ' ‘ LI B . '
[B ‘ ‘ ‘ ‘ . ' PR B ' h J [I h
IR ' [\ ‘ ' a0 ' ' ooyt . |
1]] H 1] : ' i t i . 3 i] *] 1] 1 ' © 3
P ' . ' P H [S H h PO B h ' H '
h v ' . ‘ : \ \ [S \ ' [T H ' b
[R ’ ' [i ’ I B ' + i [T ' ' . '
1 ’ ! ¢ . _ . — [} ' — . . I3 + ‘ .) t K ’ ¥
H H [S T i i : ' ' [S S S Voo i ‘ ‘ H
' h v ' ' ' L B s ' (O S ' i IS 1 + ' 1 '
' 4 V . ’ 1 P s y . (' « 1 g . . p H i

74 £d 2d Id ¥d £d 2d Id ¥d £€d 2d id ¥d ﬁ.&.&,K.E..&‘E.E.E.E,E.E.E.&.E.&.E..d.mn_,&.E.I.&.&.K.E.E 2d id ¥d £d 2d id

h

v
Am H <4 e>va
\

T AQY3YdSq

TAQH

T vavnaend

asa

1L ey

T Haavanga

19/a

TUNG

H rdtd

18d1SdsQs

148d4sQs

HEeXN10

{ Hvo

Bujwi L ajoAo peay YING :Butdeuaiur 8djaaq O/l 8 ainbid

I/0 Device Interfacing 8-9

8.4 DMA Device Mapping Registers

When /O devices or 2 bus interface must support DMA to the rtVAX 300
systern memory, a scatter/gather ($'G) map is useful. This map translates the
DMA addresses generated by the 1/O device into the physical addresses of the
rtVAX 300 system memory.

The VAX architecture defines a page to contain 512 bytes. To access any byte
within any page, 9 bits of addressing are required for the byte offset within a
page, anrd 21 bits are needed (the page frame number) to locate the page within
the 30 bits of addressing accommodated by the VAX. To map the 1/0 device
DMA address to the rtVAX 300 system memory correctly, the S/G map provides
the page frams number (PFN) for the address that the I/O device generates.

For example, the Q22-bus supports 22 bits of addressing and multiple bus
masters. The bottom 9 bits of the Q22-bus are directly multiplexed onto the
rtVAX 300 system memory address. Bus address bits <08:02> are multiplexed
onto DAL<08:02>, and bus address bits <01:00> control BM<3:0> to access
the correct byte of VAX memory. The upper 13 bits of the Q22-bus address
are used 1o select one entry in the S/G map. That entry in the S/G map then
contains the 20 bits of possible pages in memory space to define the PFN. In
addition, a Valid bit (bit 31) for each entry ensures that the operating system
has correctly updated each map entry. Thus, the S/G map consists of 8192
Q22-bus mapping registers (QMRs), each being 21 bits wide.

The operating system dynamically updates each entry in the S/G map as pages
of the I/O bus are mapped into physical pages of the rtVAX 300 svstem RAM.
The rtVAX 300 views the S5/G map as 8192 longword registers; each register
maps one page of Q22-bus memory to a page in the rtVAX 300 system RAM.
Figure 8-5 shows the translation from Q22-bus addresses to physical memory
addresses.

Implementing these mapping registers allows Q22-bus DMA devices to perform
DMA to and from contiguous Q22-bus addresses; the S/G map maps each page
of Q22-bus memory to a page in system RAM ii the Valid bit is set. These
mapping registers must be readable and writable only from the rtVAX 300
and directly mapped to I/O space locations. When the rtVAX 300 is writing to
or reading from the Q22-bus, the mapping registers are not used to address
the Q22-bus. The Q22-bus address space is directly mapped to locations in
the rtVAX 300 I/O space. The S/G map is used only when Q22-bus devices
are performing DMA to the rtVAX 300 system memory. The rtVAX 300 can
access its memory space through the Q22-bus interface by accessing a Q22-bus
address that is validly mapped to its own system RAM.

8-10 /O Device Interfacing

’ Figure 3-5 Q22-bus to Main Meimory Address Translation

Q22 bus Address
21 9 &

0
Map Register Number] Byte Ofiset _J
—

- v -

~v——
Extract f.eg:star Numbes
to Select Map Register
[— -
Q22-bus Map Hagister
32-B.t Map Register
3130 2019 0
Sealactad Map Ruyister F—»1 V ! Page Frame Number |
(valid) \ ~
Main Memory Addrzes
29 9 8 it
a l r Page Frame Number Byte Oftset

29-Bit Physical Memory Address
MLO-004468

These mapping registers are not a requircinen’, and some low-cost rtVAX 300
bus interfaces may not implement them. In addition, larger buffer areas that
span many Kbytes can be used to reduce the number of mapping registers. In
these applications, sections of the rtVAX 300 system RAM are directly mapped
to an address space withir the bus. This methed requires rontiguous allocation

' of DMA catz buffers and reduces the flexability of the VAXELN dewvice drivers.
Refer to the riVAX 300 Pirogrammer’s Guide for information un rtVAX 300
device dnivers.

Digital recommends implementing error registers for bus inter{faces. These
regisiers log events, such as DMA tiineout znd bus protocol and parity errors.
Trror conditions should interrupt the processor or assert the ERR L line. The
ERR L line is asserted only if the preseni processor bus cycle caused the error
condition. The system software zan access these error registers to acknowledge
the errcr condition and take the appropriate action.

I/O Device interfacing 8-11

8.4.1 Q22-bus to Main Memory Address Translation

On DMA references to main memory, the 22-bit Q22-bus address must be
translated into a 29-bit physical memory address. This translatior process
is performed by the Q22-bus interface by using the Q22-bus map. This map
contains 8192 mapping registers (one for each page in the Q22-bus memory
space), each of which can map a page (512 bytes) of the Q22-bus memory
address space into any of the 1M pages in main memory. Figure 8-5 shows
how Q22-bus adldrr.ses are translated to main memory addresses. At system
power-up, the Q22-bus map registers, including the Valid bits, are undefined.
The system software must initialize these registers and enabie the S/G map.

8.4.2 Q22-bus Map Registers

The Q22-bus map contains 8192 registers that control the mapping of Q22-
bus addresses into main memory. Each register maps a page of the Q22-bus
memory space into a page of main memory. These registers are implemented

in a 32K-byte block of 1/0 space.

The local I/O space address of each register was chosen so that register address
bits <14:02> are identical to Q22-bus address bits <21:09> of the Q22-bus page

that the register maps.

Figure 8-6 shows the format of the Q22-bus map registers (QMRs); Tabie 8-2

lists the register bits and their meanings.

Figure 8-6 Q22-bus Map Register

3130 2019 00
T It T T T T T T T [V T TTrTfirTrTrTrirTyrrrvrd

\ 0 A28 - A9
I N O O T I T N N T Y T N U O It ot
MLO-004469

8-12 VO Device Interfacing

Table 8-2 Q22-bus Map Register Bits

Data
Bit Meaning

31 Valid bit (V). Read/write. When a Q22-bus map register is s-lected by bits
<21:09> of the Q22-bus address, the Valid bit determines whether mapping is
valid for that Q22-bus page. If the Valid bit is set, Q22-bus addresses within
the page controlled by the register are mapped into the main memory page
determined by bits <28:09>. If the Valid bit is clear, \he Q22-bus interface
does not respond to addresses within that page.

19:00 Address bits <28:09>. Read/write. When a Q22-bus map register is selected
by a Q22-bus address, and if that register’s Valid bit is set. then these 20 bits
are used as 1 iin memory address bits <28:09>. Q22-bus aadress bits <08:00>
are used as main memory address bits <08:00>. These bits are undefined on
power-up and the negation of DCOK when the processor is halted.

. 20:20 Unused. These bits must always read and be written as zero.

8.4.3 Dual-Port2d Memory

Another communication method that can be used is the design of dual-ported
memory Either the system RAM can be dual-ported or some dual-ported RAM

. can be placed in the /O space. In addition, dual-ported RAM in the I/O space
does not require the implementation of cache invalidation cycles, because I/0
references are not stored in the cache. Dual-ported RAM in the I/O space has
the advantage that the processor can still read from and write to system RAM
while the 10 device is reading from and writing to the dual-ported VO RAM.
This method does not require the design of a DMA engine; therefore, the logic
may be simpler.

8.5 rtVAX 300 to Digital Signal Processor (DSP) Application
. Example

A 2-processer system v s designed and constructed as an application example
for the rtVAX 300. This application module has the following features:

e 4M bytes of parity DRAM system memory that operates with one wait
state

e A 1LI-byte user boot ROM for permanent storage of application sottware

* Two DEC—423 serial lines for the console and down-line loading

» DECnet Ethernet network interface for both ThinWire and thickwire
. * A Texas Instrument TMS320C25 DSP with 4K words of private memory

/O Device Interfacing 8-13

* 4K words cf initialization and loader ROM for the DSP
¢ A D/A and A/D converter that (s privately coupled to the DSP

e A DMA engine that allows the DSP wo write to and read from rtVAX 300
system memory

°* An interprocessor communication CSR

Figure 87 shows the rtVAX 300 and DSP processor interface.

8-14 VC Devigce Interfacing

si—g Buepeiul edineq O/l

Flgure 8-7 /O Device Interfacing: DSP and rtVAX 300 Processor Interface Block Diagram

TMS320C28 | DSPDATAC 1508 DAL<31:2¢
Digha! Signal <15:08> | B i
Pr * DSPDATACI 0> A Bre -
cPU L OF B->A
ZK¥%e Y] X8 e) K8 KKS OE A->B
SRAM SRAM SRAM SRAM EP ROM EP ROM —>L B->A
SsPeTRE Data | Data be— Data e Date J Data | — Deta H =} DEV ENB
WERAM >, | o o WERAN<D.| = e csmom | e '12p
- CsRAM<I> | oo ce CsRAND>) e M CEROM] o oF a 5 | DAL<23 182
»{ ADDR ADDR ~»] ADDA ADDR —»{ ADDR —»! ADDR _
<100 <100> <10:0> <10:0> <110 <110> OE B->A
e 18 118 118 128 128 CE A->B
. HoltL B>a
4K Word Private Progiam and Data Static RA 4K Word Loadar ROM :: DEV ENB
= DMA Addtess Drivers DMA Base 113P
= Oolal Octal
g\ . Drivor Driver Addrese Rogister] A E‘M&’
g o & outT|PALLISIO> | DSPWRITE W our|_SSoP<®>
Fd DSPWRITE 1 o o] W, N ouT|SEDP<I® OE B >A
% : ™ v AL<30> H{{ OE A->B
o +5v N ouTj—BAke Octal 1 >
CSDP<4:3> Flop LelL B5A
[N ouT
= OAL2Y X2 loat<zate - OEV ENE
F’J ENABLE ENABLE oArso:g) N oUT csoé 2 R :
< < 114
Octal Octal LATCHBADOR N oUY > L DAL<7 0>
\ a8 Driver Driver i CLK ENBDMARD< > | A 8 (¢———
v W OUT DAL<82> D:PADM«)» H N ouT M2 ENABLE ENBOMARD<0> | P
DSPADDR<O> L W outh BM< 10> ENBOMAWR wloE a0
r IN ouT w_é’ﬁ::%i’ EHBDMARDY 0 P
Lk
Ia IN OUT——2 ENBDMADAL »{ DEV ENB
ENABLE = L= ENABLE
ENBADDR
DAL Registersd Daiz T
MR_O-00804

8.5.1 DSP Private Memory

The DSP executes programs in 4K words of private RAM memory; 4K words of
ROM for initialization and program loading are privately coupled to the DSP.
Table 8-3 shows the memory map of the DSP.

Table 8-3 TMS320C25 Digital Signal Processor Memory Map
Program Data

Physical Space Space Global Memory
Location Device Device Space Device
0000—OFFF ROM RAM None
1000—1FFF ROM RAM None
2000—2FFF ROM RAM None
3000—3FFF ROM RAM None
4000—4FFF RAM RAM None
5000—5FFF RAM RAM None
6000—6FFF RAM RAM None
7000—7FFF RAM RAM None
8000—FFFF None None rtVAX 300 memory accessed by DMA cycles ‘

The DSP is a word-oriented device, expecting to transfer 16 bits of data at a
time. The rtVAX 300 can transfer either bytes, words, or longwords during
each bus cycle. When the DSP is reset, it begins to execute code from program
space location 0000. The loader ROM is at that location. The code in that ROM
first initializes some registers and vectors of the DSP; then, the code causes
the DSP to load a program from the rtVAX 300 memory by using DMA cycles.
Once the program has been loaded into the DSP’s RAM, the DSP executes the
loaded program from this program RAM at location 4000,¢. Since full address ‘
decoding was not implemented, the ROM maps four times in the program
space, and the RAM maps eight times in the data space and four times in the
program space.

8.5.2 4K Words of DSP Private RAM

When the DSP reads data from external memory, it first places the address
on the DSPADDR address bus. Either the program strobe (PS) signal for
access to program memory or the data strobe (DS) signal for access to data
memory is asserted. The DSPWRITE signal is not asserted (read cycle).
The DSP_MEMORY PAL (see Figure 8-29) looks at the SRAMADDR<0>
line to determine if bank 0 or bank 1 is selected. If bank 0 is selected,

the CSRAMO line is asserted and the two SRAMs in bank 0 are selected.

8-16 /O Device Interfacing

Both WRITERAM<1:0> signals remain unasserted. Next, the DSP asserts
the DSPSTRB signal, enabling all SRAM outputs. The DSPREADY signal
is asserted by the DSP_MEMORY PAL, and the DSP reads the data and
ends the cycle. Write cycles operate in the same manner; however, the
WRITERAM<1:0> signals assert with DSPSTRB for the selected bank.

The DSP requires the use of 40 ns static RAMs to operate without any wait
states. The propagation delay of the DSP_MEMORY PAL must be added to the
access time; therefore, 25 ns SRAMs were used.

8.5.3 DSP 4K-Word Private Initialization ROM

The DSP can read from only the initialization ROM. The DSP_MEMORY PAL
asserts the CSROM output when a valid ROM program space address is placed
on the DSPADDR bus. The OEROM signal is later asserted, and the DSP
asserts the DSPSTRB line with DSPWRITE unasserted. Since the ROMs are
very slow, the DMA_CONTROL PAL adds three wait states to the access cycle.
Aiter those wait states have occurred, the DMA_CONTROL PAL asserts the
DMAREADY line, which in turn asserts the DSPREADY line, ending the cycle.

8.5.4 DSP DMA Cycles

Certain portions of the DSP’s memory can be mapped globally. This global
memory is mapped between locations 8000 and FFFF. Access to these locations
causes the DSP DMA controller to assert the r{tVAX 300’s DMR L line. Then
the rtVAX 300 tri-states the DAL bus and all of the control signals and asserts
the DMG L line; now, the DMA controller must start a DMA access cycle.

Once the DMA controller state machine receives the DMG L signal from

the rtVAX 300, the DRIVEADDR signal is asserted to drive the DSP’s DMA
address onto the rtVAX 300’s DAL bus through the 74F244 drivers, shown

in Figure 8-26. The assertion of DRIVEADDR asserts the ENBADDR signal
through the CSR_REG PAL, driving DAL<31:02> H, CSDP<4,2:0> L, and
BM<3:0> L with the appropriate address and control information. Next,

the AS L signal is asserted and later, the DRIVEADDR signal deasserts.
Nnw, the DS signal and the ENBDMADAL are asserted; the DMA controller
waits for the assertion of RDY L in the RDY/ERR window. The assertion of
ENBDMADAL turns on the 74F543 transceivers (see Figure 8-25). Once RDY
L is received, the DMAREADY signal is asserted, asserting the DSPREADY
signal through the DSP_MEMORY PAL. If this is a DMA read cycle, the
DSPDMARDY signal causes the 74¥543 transceivers to latch the data on the
DAL bus and continue to drive the DSP data bus with that data until the DSP
finishes the read cycle. The DSP global memory access cycle now completes,
and the DMA controller deasserts AS L, DS L, DMR L, and ENBDMADAL. See
the state machine diagram described by Figure 88 and the timing diagram in
Figure 84 for details.

I/O Device Interfacing 8-17

Figure 8-8 1O Device Interfacing: DMA State Machine Sequence

ASSERTAS L
AS4
MDRIVEADDR-
IDLE L] DMACYC1 L
DS+
FINISHUPY L
DSPREADY+
DS-
AS-
DMR-
REQDALBUSL] DMACYC2 L[] [FINISHUP2 (]
DMR+
DSPREADY-
No Yes DMG
Yes No
S A
DRIVEADDR L
MDRIVEADDR+
o MLO-004471

8-18 VO Device Interfacing

8.5.5 Control and Status Register

A control and status register (CSR) is implemented between the rtvAX 300
and the DSP. This register has an 8-bit 1-way mirror for interv.rocesso.
communication. It also contains interrupt, reset, and hold mts for each
processor.

8.5.5.1 1-Way Mirror Register

The bottom 8 bits of the CSR register form a 1-way mirror register (see
Figure 8-27). When the DSP reads from I/0 space, the DSPIS signal is
asserted, indicating that the DSP is accessing the CSR. The DSR_BADDR
PAL then asserts the ENBDSPCSR line once DSPSTRB asserts, driving the
contents of the mailbox onto the DSPDATA bus. These contents are the value

that was last written to by the rtVAX 300 and not the contents last written to
by the DSP.

When the DSFP writes to I/O space, the DSPIS signal is also asserted. The
DSR_BADDR PAL then asserts the LATCHDSPCSR line when DSPSTRB
asserts. When LATCHDSPCSR deasserts, the data on the DSP data bus is
latched intc the DSP mirror register. The data on DSP data bit <08> is used
to set the VAX interrupt request flop, as shown in Figure 8-28. When this bit

is set, an interrupt at IPL 16,4 is. posted by asserting the IRQ<2> L line of the
rtVAX 300.

When the rtVAX 300 reads this mirror register, it reads the most recent value
written to it by the DSP. When the rtVAX 300 writes to this register, the DSP
reads that value the next time it reads from that register.

8.5.5.2 Interrupt, Reset, and Hold Bits

When the system is first reset, the CSR register clears all of its bits except
the HOLD DSP and RESET DSP bits. Once the rtVAX 300 boots, it writes the
DSP program into a reserved block of rtVAX 300 system memory and sets the
DMA base address register. The 1tVAX 300 can now reset these 2 bits, and the
DSP copies the program to its own private memory and begins to execute it.
The base address register (see Figure 8-28) drives through the bus drivers (see
Figure 8-27) to the rtVAX 300 DAL bus. The DSP cannot read any of these
bits; however, it can wri‘e to the interrupt VAX bit, as described above.

When set, the interrupt bit for the rtVAX 300 requests an interrupt by
asserting IRQ<2> L. When the rtVAX 300 runs an interrupt acknowledge
cycle, this request is cleared; however, the bit in the CSR remains set. When
this register is read, this bit is cleared at the end of the read cycle. The
interrupt bit for the DSP operates in the same manner; however, it asserts
the DSPIR <0> bit. This bit is cleared when the DSP runs an interrupt
acknowledge cycle.

I/0 Device Interfacing 8-19

8.5.6 DMA Base Address Register .

The rtVAX 300 can perform DMA to up to 64K bytes of memory. The DMA
base address register selects the 64K-byte block of memory which can be seen
by the DSP. The DSP CSR, whose implementation is shown in Figure 8-286, is
readable and writable only from the rtVAX 300 and cannot be accessed by the
DSP.

8.6 Reset/Power-Up

The rtVAX 300 processor must have its RST L line asserted for at least 750

ns when it is first powered up to ensure the stability of all on-chip voltages ‘
before beginning operation. Assertion of this line resets all rtVAX 300 internal
registers and sets the program counter to 20040000. Once the RST L line is
deasserted, the rtVAX 300 begins booting by fetching instructions that start at
physical location 20040000, the starting location of the rtVAX 300 internal boot

and diagnostics ROMs.

The power-on reset circuit, shown in Figure 8-9, asserts the RESETVAX line
when power is first applied to the board. The 4.7 ki? and 470 {2 resistors on
the (~) input of the LM211 comparator set that input voltage to 4.5V. The 10
uF capacitor on this input charges more quickly than the 10 pF capacitor, ‘
which is charged to 5V through a 100K resistor to Vec. Thus, when power is
first applied, the (~) input of the LM211 comparator quickly reaches 4.5V. The
(+) input of the comparator is at a lower voltage than the (-) input until the
10 pF capacitor charges over 4.5V. This takes slightly longer than the RC time
constant of 100,000 x 0.00001 = 1 second. While the (+) input is at a lower
potential than the (=) input, the open-collector output of the LM211 comparator
is turned on, and the RESETVAX signal is asserted.

When the reset switch is pressed, the BUTTRST signal also asserts through

the 74F32 gate of the ENBRST switch, shown in Figure 8-31. When either ‘
BUTTRST or RESETVAX is asserted, the 74F579 counter is reset, and the

reset hold latch is cleared. After 12.8 ns, the counter overflows, and the TC

output toggles. The reset hold flop stores a 1, and the RST L line is deasserted

by the reset latch.

Caution

The reset assertion time and deassertion timing in the specifications
must be followed exactly. RST L can deassert only 10 ns after or 20 ns
before any CLKA edge. If this timing is violated, the rtVAX 300 does
not initialize properly. The RST L line can be asserted at any time.

8-20 /O Device Interfacing

Figure 8-9 /O Device Interfacing: Reset Timer Logic

+5V
l 1 2 2 2
L R3 RS
ZS 100K 470
2 5 |6 |8 Re
-1 1 1 ped 1K
+
1 ggepF LM211 ~_7 |1 RESETVAXL
T oo E47 -~
3
. 2 §Z 4 1
1 2 1
C1 R7 c3 .
, 25V 1 : ?225\/

MLO-004473

8.7 Halting the Processor

The rtVAX 300 is a dynamic device and cannot be halted by disabling its clock
input (CLKIN). The CPU is halted either by executing the HALT instruction in
kernel mode or by asserting the HLT L signal.

When in the HALT position, the RUN/HALT switch (S1) sets a flip-flop which
asserts the HLT L output to the rtVAX 300 processor, as shown in Figure 8-10.
This causes the rtVAX 300 to enter a halt routine and to store the content

of certain rtVAX 300 registers. This is a momentary contact switch that is
normally in the RUN position.

/O Device Interfacing 8-21

Figure 8-11; 1/O Devi_e Interfacing: HALT Logic

+5V =
1 T2 1 1
lne R4
72K {2K SR §R34
2 1 1. 18 ToK 2K
74 13 |2 2 HLTREQL
LSO01 ,
S22 Run 2 1 E25
1
s s 1B

Halt ‘ 10‘
- 8~

MLO-006395

8-22 VO Device Interfacing

8.8 1/0 System lllustrations

The following pages show I/O system illustrations and programmable array
logic.

¢ Figure 8-11 shows the address decoder and power-on reset.
e Figure 8-12 shows the address latches.
e Figure 8-13 shows the DRAM address path.
* Figure 8-14 shows DRAM memory array (1).
. ¢ Figure 8-15 shows DRAM memory array (2).
* Figure 8-16 shows the RAM data latches.
° Figure 8-17 shows the DSP PGM loader ROM.
° Figure 8-18 shows rtVAX 300 ThinWire/thickwire network connections.
* Figure 8-20 shows the memory controlier.
* Figure 8-21 shows the console interface.
* Figure 8-22 shows the user boot ROM bank 1 with drivers.
' ¢ Figure 8-23 shows the user boot ROM bank 2.
°* Figure 8-24 shows the DSP and private RAM.
®* Figure 8-25 shows the DSP DMA transceiver and parity generator.
* Figure 8-26 shows the DMA address drivers.
¢ Figure 8-27 shows the VAX-to-DSP 1-way mirror register.
* Figure 8-28 shows the rtVAX 300 and DSP CSR.
. ° Figure 8-29 shows the DSP DMA controller.
° Figure 8-30 shows the D/A and A/D interface.
* Figure 8-31 shows rtVAX 300 I/O pin connectors.
* Figure 8-32 shows the decoupling czps.

I/0 Device iInterfacing 8-23

Figure 8-11 1/O Device Interfacing: Address Decoder and Power-On Reset

Power On and Power Gllich Reset Address Decoder PAL (inciudes latch)
a5V Note: Socket used here
[1 |2 2 2
ook S Decode PAL bvio
100K Tam 22v1
ZE"’__:: ‘1 1 2 | 3 E132
2 23 SELRAMH
[z fambs
220pF LM211 7 {1 RESETVAXL RB
T Foid . | B¢ o
Re[18. ___ SELCSRL
2 4 . RS ;Jﬁ NG - Cycle Reset
1 2 1 Ra PHLL.
& SRy & A Ra[HlE-
RI0UF 2 10UF = — 15
25v 147 25v R2
2 _Jl 2 5 R[4
p— e — DAL <> H 13575
- - - DAL<25>H 1Y) Ds
5V RAL<24> H 104 g
1|2 1 1 D7
2 Res R4 De
TAIK DAL<21>H 2
SR11 fR34 | DS
2 1 ® 32Kk 3 DAL<20>H 86} (4
12 1B b3
leor iz 2 2 HLTREOL 1 = gz !
Run 2 11 fg2s] 3. HLTL 1
= 1 ensvasire B Faz RAL<1E2 H 2| po
. I ASH CLK
)
Har O Jaor Naol| sTREQL |74 74 | DAL<275 H
= 8 E2s S08 sos DAL<zer H
RAL<ZS> H
DAL H
*5\’ 05
2 |2 1 I 1 Interrupt Decoder PAL (Includes latch)
gR1e Ri Note: Sccket used hers
) 12K' 12 $R18 fRi3 AL
1B T IACK PAL 22v10
18 E131
2 2 RSTREQL 1 .) NC - Cycie Resat
] — '7:;2 3 BUTTRSTL R (|2
ENBRST L 2 g5 Ra &l
—
A7 A0
Re 412 "
RS [
Ra{1Z . ENBVECTOR|
maffle __JOIACKL
. 1S CONIACK L
Note: The tVAX 300 uses CMOS ACTCG245 drivers for ‘;ﬁ L 14 IACK]
the DAL lines and ACTQ244 drivers tor the contro! lines, DSt 13875
These drivers have very fast rise and fall times which can generate WRBL 1l pg
a fair amount of undershoot. Some PAL devices and RAM chips DRAL<6>H 10 ng
may mallunction when expased to excessive ovarshoot and under- D7
shoot. It may be necessary to isolate these devices from the VAX be
300 signal itnes with TTL buters or provide series termination gi
rasistors for these lines, D3
CSDP<> L 4 0o
D1
CS0PP L2l po
ASH CLK
MLO-005206

8~24 /O Device Intertacing

. Figure 8-12

/O Device Intertacing: Address Latches

Address Latches

Addrest L.alcnes

8BF 8BF
B-Bit I 8-Bit]
Latch Latch
74F373 74F373
= DDFi<175 H E13
18 LADDH<17> .)
DAL<17> H 16 D7 R? 18] L7 R7 Y
& LADDR<16>H 16
DAL<16> H 1] g RER ———— 71ps RSO
1
DAL<15> H] o RS LADER<15> 1¢] s RSO
12 LADDR<14>H 12
. DAL<14> H 13} D4 R4 13 N4 R4p—
ADDR< 13> H L
DAL=13> H 8 R3 ¢ LADDR<13> BM<3s L 8 R3 9 LBM<3>
D3 D3
1
DAL<12> H ? A2 8 LADDR<i2>H BM<2s L . Ropb S LBM<2> L
_— D2 D2
DAL<1i> H of Rip}s LADDR<IIZH BM<1s L of . R} LBM<1> L
D1 D1
A
DAL<10> H 5 RO 2 LADDR<10> K BM<0> L . Fo 2 1 EM<O> L
Do Do
-L“-O HOLD LADDR<31> H TN },._.'_:.c HoLD
—C ENO LADDR<30> H -EJ—BJ——-»-C 7a —C ENQ
F32
8BF]——c BBF
atch atc
74F373 74F373
w10 LADDR<9> H E27
18 <3> 19
DAL<9> H 19 07 R7 18| D7 R7D4+—
DAL<8> H vl Reppt—_LADDR<E>H WRL vl RephS LWRITE L
Dé Ds
.7
DAL<7> H w| _ Rspjt LADDRATT>H DAL<31> H w| _ RsplsHADDR<31> H
D5 D5
DAL<6> H 1 F4 12 LADDR«6> H DAL <305 H 13 Fa 12 LADDR<30> H
04 D4
R<21
DAL<5> H 8 R3 i LADDR<5> H DAL<21>H s A3 9 LADDR<21> H
D3 D3
Red> H LADDR<20> H
DAL<d> H "o Rz} S LADDR<d>H DAL<20> H 710 B2 & DDR<20>
DAL<3> H o, PO LADDR<3> H DAL<19> H o, Riot LADDR<19> H
DAL<2> H a Ro 2 LADDR<2>H DAL<18> H s RO F LADDR<18> H
Do DO
ASL
~qAoLD R st
LA ENO ENO
= = -

11O Device Interfacing 8-25

Buepsiu} eoineq O/ 92-8

Figure 8-13 I/O Device Interfacing: DRAM Address Path

Row/Column BRAM MUX FAS, WRITE and CAS DRAM Array Drivers
5X2 MUX I 1B
74F711 ootal
LADDR<21> H 12 o MUXADDR<S>H 1 Rt 2 DRAMADDR<S> H Buter
LADDR<11> H 13 Z,g_'é FE A T Eo
LADDR<20> H wfio 7 MUXADDRH s R4 , DRAMANDR H T DRAMRAS L
CADDR<10> W wloon O vV AAS L of, YOr—vg
LADDR<19> H 17 i ¢ MUXADDR<7>H BRI o, DRAMADDR<7>H 1
LADDR<9> H wli0C Fe VYV —C|EN
LADDR<185 H 1 « MUXADDR<6>H 1 R3 5 DRAMADDR<E> H
. 1
LADDR<8> H 2|10 FB VYW B
LADDR<17> H 2f oA Tan)s MUXADDRS>H B33 DRAMADDRS: Selal
LADDR<7> H [1 Pe A 74F244
oD-A 2
9
Selet 12 M2, DRAMWRITE L
12 inven WRITEL | s Yo
doe o 2
1
- —en
5X2 MUX 4BF
74F711 =0
LADDR<16> H e e} MUXADDR<4>H 1+ A% 2 DRAMADDR<4> H Driver
LADDR<6> H Y oDE H 32 74F244
. E42
LADDR<15> H u 7 MUXADDR<3>H ¢ B2 ; DRAMADDR<3> H
10-D FD VAVAA t2 ¢ B40 5 DRAMCASCI> L
LADDR<5> H oD 4 casaasl | a,, Yap——AA
LADDR<14> H 17 ¢ MUXADDR<2>H ¢ R% ; DRAMADDR<2>H
10-C gC VVAA — ey B3B 5 DRAMCAS<Z2> L
LADDR<4> H #op.c % casesL | e, vy AW
LADDR<13> H i 4 MUXADDR<1>H 1 2! 3 DRAMADDR<i>H pos
LADDR<3> H 4 w| 0B FB VY Tiole_1 F3% 2 DRAMCAS<i> L
22177 N\ 0D-B CAS<i> L a Y
'NVADDR3 H &}}EB 21 DA 3 MUXADDR<O>H ¢ R?7 5 DRAMADDR<O> H A3z .
m ’ A FA AN T 2 DRAMCAS<O> L
LADDRs12> B IEL [*lop-a 2 cAS<O»L | 2] YOBE——W
LADDR<2> H 53 °
3 o] Select LIS Py
INVADDR2 H_2})F88 HeiCfinvert -~
o IEL L (o1
SELCOL L N .
45V — M |y Ra%
2K O 45 g 100
100

MLO-006307

Lz~g Buwepslu) edineq O/

Figure 8-14 /O Device Interfacing: DRAM Memory Array (1)

RAMc 15> H RAM< 14> H RAM<13> H RAM<i2x> B RAM<11> H FAM<10> H PAM<8> H _AAM<8> H DP<t>L
DAL<15> H DAL<14> H DAL<13> H ~ DAL<i2Z> H ~ DALcit> o DAL<10> H DAL<O> H DALH CSDP<1> L
18 18 18 1B 18 1B 1B 1B 1B
~-~‘-~\NV¥~L M8 2P 1MB ZiP 1MB ZiP MB ZIP 1MB 2P 1MB Z2IP 1MB ZIP 1MB ZIP MB ZIP
J 100 DRAM s DRAM) DRAM DRAM ‘.!J DRAM) DRAM . DRAM DRAM ’ DRAM ’
- . 2 . [5= 3 J
= o1 99 % o DOF s o DO o 995 s o to 5] p 0° s Lo oot ¢ 1o DO e Jo oot
DRAMADDR<9> H_ Ty R) y ! '
A SE— A9
DRAMADDR<8> 1 Tl AP Y P wlhe [—mla [—=]as
DRAMADDRc7> H (LI [A7 WAy 9) a7 9) a7 W | a7
DRAMADDR<6> H 18 [o '8 1 A6 R Y JELY PP TN v 18 1 A TN DS
DRAMADDR<S> H 17 | 4 M) as Al as Mlag o lilas b— 71 as A1l as 17 | ag
DRAMADDR<4> H 16 Ad 6§ Aa 18 | a4 18 | a4 16 | a4 18 | aq 18 | Aq
DRAMADDR<3> H 14 LN L 14 14 M 14
A3 - ~=~-1 A3 { A3 A3 Al A3 A3
DRAMADDR«<2> H 13 A2 131 a0 L 13 1 Az 1) a2 13 1 A 13 ¥ o
DRAMADDR<1> H 12 | 44 2] 12 Fag 2] 4y |12 1Ay 12 | aq 12 1 aq
DRAMADDR<O> H 11 } 44 LI Y) AD LU BN (R N 0 114 a0
DRAMRAS L ? 7 14 4 I r 7) 4
DRAMRAS L RAS |}—I(]RaAS —Rras |—LnRas |- RAS |- I dras JRAS L] RAS
DRAMoAS<I>L _1Qcas --‘é CAS —~-%fﬂ cas |--2dcas |—2dcas t—2dcas L—fdcas L—Edcas
ORAMWRITEL Sdwe [|--Edwe —8dwe |-L2dwe |—-*dwe |-%dwe |—Edqwe 5 we
RAM<7> H AAM<E> H _RAM<S5> H _RAMcd> H _RAM<3» H RAM<2> H RAM<i> H RAM<0> H DP<0> L
DAL<7> H DAL<6> H DAL<S> H DALcd> H DAL<3> H DAL<2> H DAL«<1> H DAL<0> H CSDP<0s> L
B8 1B 1B 1B 1B 1B 18 B 1B
A 2 iMB 2IP 1B ZIP 1MB 2IP 1MB 2IP |1MB 2IP 1MB 21P 1MB 2IP 1MB ZiP 1MB ZIP
100 DRAM , DRAM . DRAM . DRAM . DRAM . DRAM . DRAM . DRAM DRAM
&4 O~ 3 3
= 5 ol DO s DI Doy s | ol DO 3 o DO [o DoOY s 1o [s]eds 5 {p DO s | ol DO ,i_ DI DO
L9 ® | ® | o] |9} 2 []
DRAMADDR«O> H 1 1 \] ' 1 1 1
Al -1 AQ AD Al A9 Al
GRAMADDR> H 20 | o2 | o oy [Tala [Tl ol 7 I 7
DRAMADOR<7> H 18 | 47 19 a7 W | a7 W1 a7 % § A7 19 { a7 L TH I
DRAMADDR<E> H 18 | 46 LI Y LI PP LI [P LN PV 18 | a6 LI P 18 | ag
DRAMADDR<S> H 17 AS 21 as 7 | ag LES P L Y 7] as LA I 17| as
DRAMADDR<d> H 18 | 5, '8 3 a4 8 { aa 6 | s 18 | a4 18 1 a4 18 a4 t-3 PV
DRAMADDR<3> H 14 | 4o LI B 14 { an LI 15} aa (L W 14} aa 14 | A
DRAMADDR<2> H 13 13 13 13 13 12 13 13
A2 A2 AR A2 A2 A2 A2 A2
DRAMADDR<1>H 12] 44 12 1 At 12 1 aq 121 Ay 12§ A 2 § Ay 12 | Ay 2 1 a4
DRAMADDR<O>H _wt | 44 LA P LXH 0 114 a0 I P v a0 L VY 1 1 a0
ORAMRAS L TqRras | mas RAS |- —Ras ———d; RAs | RAs ————d; {rmas (—Idras —Zdnas
DRAMCAS<0=L 2 A 2dcas p—Idcas CAs |——cd cAS fdqcas |--2dcas |—Zdcas -—_—c: cas |—2dcas
REMMWRITEL _Sdwe |—2dwe d we qwe -Sdwe |—*dwe |—2dwe }—"dwe
MLO- 004479

Heju; ecineq O/ g2-8

Buioe

Figure 8—15 1/O Device Interfacing: DRAM Memory Array (2)

AAM<31> H RAM<30> H RAM<29> H RAM<28> H RAM<27> H RAM<26> H RAM<25>» H RAM<24> H DP<3> L
DAL<31> H DAL <30> H DAL <29> H DAL<28> H DAL<27> H DAL <26> H DAL<25> H DAL<c24> H CSOP«3> L
B8 iB 18 i8 1B B 1B 8 1B
L 2 1MB ZIP 1MB ZIP 1MB ZIP 1MB ZIP 1MB ZIP 1MB ZiP 1MB ZiP 1MB ZIP 1MB ZIP
100 DRAM DRAM s DRAM . DRAM DPRAM s DRAM J DRAM a DARAAM _!_‘ DRAM
3 Kl 3 — 5532 . B
= ' ol DOt s ol DO 5 o1 DO 5 o DO s oI Doy &_‘ oI HYY: D s | ol DOtA 5 oI [ol> E{p ooy
]] [[[° [) °
DRAMADDR<9> H 1 1 1 1 1 1 1 1 1
Al 9 AS AD AS A9 A AB A9
DRAMADDR<8> H 20 A: 20 :B 2| an 20 | ag 2§ aAg 2 | a8 20 | ap 20 § ap 2 { ag
DRAMADDR<7>H 10 | 5+ 12§ a7 " | a7 W1iaz 19§ A7] a7 e 4 a7 " 1 a7 9§ A7
DRAMADDR<6>H 8 | ¢ LN PP W) a6 18} a6 18] a8 '8 1 a6 LN P 18 2 a6 LIS PP
DRAMADDR<S> H_17 | 4¢ 17 a5 17} as | 7] as 173 a5 11] as 17 | as 7 §as 17 4 as
ORAMADDR<d> H 18 Ad 6 | ag L 'V (L3 'V LN ' 18 | ag L3 W 16§ a 8 | ad
ORAMADDRc3> H 14 | 5q 14 § aa 4| aa 14 | aa LI PV LN PO 14 | 4a LI LI
DRAMADDR<2>H 13 | », 134, 131 ap 31 as 13 a5 131 a0 13 | a2 13) a5 3} a2
DRAMADDR<1I> H 12 At 121 a4 12 A‘i- 2 1At i) 2] a9 2 | Ay 12] aq 2 8 A
DRAMADDR<O> H 11 A0 11 a0 1 o Ap 1 | a0 1N I L " § a0 ¥ a0 11 1 a0
=
DRAMRAS L RAS Tqras |—Idmas L—lqnas _—_’g ms | —Tdras L —Idras p—1dras |—Igras
DRAMGAS<3>L 2 cpg 2doas | —2dcas |—Zidoas 1 cas idcas |—Edcas —Edoas |—idcas
DRAMWRITEL 6 o we we |—2dwe |—&,dwe |-2dwe we |—2dwe |—Sdwe | -fdwe
RAM<23> H RAM<22> H RAM<2i> H RAM<20> H RAM<19> H RAM< 18> H RAM<17> H AAM<16> H DP<2> L
DAL<23>H ;| DAL<22>H DAL<21> H DAL <20> H DAL<18> H DAL<18> H DAL<17> H DAL<16> H CSDP«<2> L
18 1B 1B 1B 1B 1B 18 8
YMB zZIp 1MB ZIP “MB ZIP M8 Z2IP 1MB ZiP 1MB Z2IP 1MB ZIP 1MB ZIP 1MB ZIP
DRAM DRAM DAAM . DRAM . DRAM s DRAMN . DRAM DRAM DRAM
poet |, oo g oo s pord |, DOT 5 ooty 5 DOt s DO s DO}
Dl ° 2] . D! _ . ()] . o ' D! . D ° 0O " DI
DRAMADD3<9> H 1 1 ' \ 1 [} 1 1
AP A9 AD A8 AD A9 AB AD }———1 AP
DRAMADDR<8> H gn_j A 2 | an 2 | an - VY 2| 48 2 { a8 20 | pn - - [
DAAMADDR<7>H 13 | 47 19 } a7 1) Ay 1°) a7 " 1Ay T %} a7 9} Az LH Y
DRAMADDR<6> H 18 A6 '8) 26 AL VS LLE VY LU ¥ 8} a5 LI P LI PP 8§ A
DRAMADDR<S> H 17 A5 L8 B 17) ag 17 | as 171 as 7Y as L e 7 | as 17 1 ag
DRAMADDR<d> H 18 | o, 18 | ag 18 { aa 18 | g 18 | g 16 { a4 L 18 | g 18 | aa
DRAMADDR<3>H 14 A3 14| aa 14 { g LN 14| a3 L 0 14 | a3 14] 2
DRAMADDR<2>H 13 § 55 13 1 a2 13 1 A2 13§ a2 LEH 13 § 22 13 § 42 13 | a2 =N v
DRAMADDR<1> H 12 Al 2 8 aq 12} a4 12 } Ay 12 | Ay 12 Ay 12 ¥ a4y 2 | Ay 12 | Ay
DRAMADDR<0> H 11 AD Wl ap 1.3 a0 LA S LI IS LA B LTI] a0 T P
DRAMRAS L 7 ? | v 7 7 7 7 7
e e =] RAS ——-C RAS v—vh RAS (1 RAS ———C] RAS RAS ———C RAS ——C] RAS ————C] RAS
Q;M—M‘M?-L—-—:c cAS ——:—c cas b —iloas —:d cAs ——%c CAS ::g CAS ——id CAS -—%-c cas L —2dcas
DRAMWRITEL 8 fwe —"qwe —d\u: —=dawe |—dqwe |—"dwe —2dwe t—=2dwe |—dwe
MLO 004480

Figure 8-16 1/0 Device Interfacing: RAM Data Latches

8BF BBF BBF
B.BNt 88N B-B
Latch Latch Latch
747373 74F373 74F373
16 E15 12
DAL<155 H UAL<315 W N
RAM<15>H _ taf rrpp L RAL< 1 o ameata M e o7 LT Ao iA o, A7
DAL<145 H DAL <305 H 6
RAMcI4> H 17 D6 HGDL—E—*L &M<3D> Pi (k4 D6 %D-‘f—"“‘:‘"i‘ 7 06 RGD'L
DAL<135 H DAL <295 W 5
RAM<13> W vl Rt PAL<I®> B M2t o5 RS pf e e RS
H B
RAMc12> H 1o RaplEBARSIZY M gy on,n | mapiii DAL<28: o T A
AT R b e s Uba
<11 H AL<27> H P
RAM<1I>H & o DAL W pame7om 8| RapDALRTE p ol o] maplt CSOP<d>L
phaoclARAR AN E 1.7 e Elps e %ips
105 H Le26> M sDP
RAM<10>H 7| moppe PAL<IO= M oz | Repl S DALSEERM o oL | mep}S ESDP<2aL
M<I02H Tl M o2 E L SR 1,7
Al H H Pei
RAM<®s H | Ripho—DAL<S> RAM<25> W o] Ript DALS®SH o of RigpE. ESDPeIxL
el BANNLE 10 e s el o
AL H AL <245 H CSDP<D
AAM B o] Roppi—DALEX M erasH a| moo i DAL M 3] Roppi-SS0P<0xL
e N b TANee B 2l et 3me
MFDY L Vo e MRDY L g r— MRDY L g
SR £ e i — A WOLD e e g 13T i3
DRIVERAM L - oo DRIVERAML DRIVERAML 1 Jcve
BBF 8BF
861 B-6n
Latch Lateh
74F373 74FaT3
E17 (37]
RAM<7> H 8 Ayt DAL<?>H RAM<23s M 18 A7LLS DAL<23> H
WM<i> N Bl it P
AL<E> H " "
RAMcS> H v mepl® DALSB2H mezza k1] oot DAL<22>
VD T e iaiviasol ML 1Y
L» H 1> KW
RAMS> B vaf Rsop i DALSS2H ot b ve| Repp s PALZ M ovcmas m L
—_— . Clps B 181 LWRITE L ? ;;0 ¢ DRIVERAML
12 DAL<d4>H 2 DAL<20> H 4 !
4> H AL e bt 2 Pk ” 1) i
RAM<d> 13] o4 R4 4 RAM<20> H 13 ba R4 SELRAM H = r ‘ 5| E3 !
— —] SELRAM H | L
A AL<19> W i A
RAMc3> H "0a Rw.‘._.if_fti‘ RAM<19s H ¢ o3 RSD_’__E‘__‘-LA_{_, IACK L FoB -
6 DAL<2>H 6 DAL<18> M B ™~
RAM<2> H e e RAM<18> H R2 Dp—— e o |
2> ? D2 R2 o3 F <18> 7 D2 2 L—l74 si
> H 17> H FOO ~-t
RAMd, " . . R bj_._g.A_Lf.‘i.. RAM<17:» H . . Ry D_S_D_Mi_ CLKA M 2‘ E1
H H 1 H
RAM<O» H 3| Ropp i CAL<O2H pmctean 3| moo i DAL<IE> K
e e DO —— et 00
MRDY | vy fr— MRDY L : —
MADY 1 Ror MRDYL -
DRIVERAM L+ JHOLD DRIVERAM L . o HOLD
BEE— 1L — — ———{ENo MiLO-0Da4E

VO Device Interfacing 8-29

Buepeju| soneq O/ 08-8

Figure 8-17 /O Device Interfacing: DSP PGM Loader ROM

4BF 4BF
Octal Octal
Driver Driver
74F244 74F244
ES2 ES2
. vapl 2 DSPDATAc1S> H " vapll OSPDATA<7> H
A3 A3
. vao] ® DSPDATA<14>H . vool 5 DSPDATAE> H
A2 A2
y v1ol7 DSPDATA<13> 4 N yip]/_DSPDATA<S> H
Al [A1
® DSP 12> H
, vop} o -OSPDATA<12> H \ Yoo " DSPDATA<d> H
AD L} ¥ Y/
~2en LIS 1Y
4BF 48F
Octal Octal
Drivar Drivar
74F 244 74F 244
4KX8 €48 AKXB E48
RCM 12 DSPDATA<i1> H AROM 12 DSPDATA<3> H
2732 slas V9 2792 T
EE9 E68
1 v2 14 DSPDATA<10> H _‘_7_] YZDL‘- DSPOATA 2> H
D7 Dp=- 8laz 4% I —f—E1a2
D6] D6
DS DA . yip) 8 DSPDATA<S> H R [. vi] /6 _DSPDATA<1> H
a4 - Al papd Al
13 11
D34S { , vopi " BSPDATA H D34 \ voo}'®_DSPDATA<0> H
D2 s I Ll 02D AD
D1 [1 o1 J 1
Do L] J EN 00 [> L _ EN
DSPADDR<11>H _2! 20
HSPADDR<10> H 1) 1o) N
DSPADDR<O> H 23 22 oo
DSPADDRH 23 AB 2 4
DSPADPDR<7> H a7 1] s
DSPADDR<6> H 2t as 2] a6
DSPADDR<S5> H 3) a5] Iy
DSPADDR«<d> H 4 as L1 ¥
DSPADDR<3>H 5| . 5] a3
DSPADDR<2> H Sl a2 3 e
DSPADDR<I>H 7] % iy
DSPADDR<0> H tan L1
OEROM L 20 L 20
CSROM L wd ENO e ENO
cs Jcs
MLO 004486

Figure 8-18 /O Device Interfacing: rtVAX 300 ThinWire/Thickwire Network

COAX

Connections
Thickwire 15-Pin Female
-ORETURN 2 1 1 2 ‘D’ Connector
560
0.5W 8
ThinWire Q]
TNXXXX ne| O ~= GND for +5V Supply
“k/“? LIV 7 -
5A'A's o NC
T
I .5 14
= O .
1 O
Thickwire 2
oV ___.___o//O; o %7 GND for +12V Supply
5
o [T T—©
ThinWire 5 0/0““ 12
oy T 80 o
Sa 4
7 " C
*.___MEO’" o O—"—"'"‘:'E EthemestB802.3 Jumper
75 mH Oy oa
1S0OL 10 10
XEMR NS ey O
12 2
RCV+ |1 16 o , o)
13 | o -V
M 1 ! ! ! K
Rev- |2 15 o2 O 490 5 490 S 490 < 490
XMT + |4 19 16 1% <& 1% 1% 1%
[ﬂo/c /77 2 2 |2 |
1
1 % - {
XMT - {5 12| 1%
coL+ |7 0 20—
m—g { ‘ =
o
22 T
coL- |8) 23 XCVA
3" 24 ‘ ! DPB302
Ormerenmad 1 1 Co+ L
40.1 < 401 cD-
> 1% 1% 16 dcps
|
RX+
1 R
0.1UF T
50V 1]f 2 : 15 1 2
-9RETURN 16 o LXK
2 01UFL_2oHBE D664
4 B —— 50V 11 Afis
™ 0.0047uF - L—‘-sz 12 rR
1% 1000V Chassis Ground 10K | 4 b
R {isolated from 5V and 12V GND) % | L5 |VEEs
| o VEE]
91 N
Foor
100V

5V and 12V
Common Ground

Decoupling cap - piace closest to pins 10 and 13,

MLO-004455

I/O Device Interfacing 8-31

PAGE 8-32 INTENTIONALLY LEFT BLANK

Figure 8-19 /O Device Interfacing: DMA Write Cycle Timing

P1 P2 P P4 PY P2 P3 P4 P1 P2 PI P4 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 Pt P2 P3 P4 P1 P2 P3 B4 P1 P2 P3 P4 P1 k2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

CLKA H

0 1] Al v] L]]] 1 ¥ 1] 1 ¥ L] 1] L] + v + + 1 + 1] 1 1] 1] . [t 1] . 1 1] 1] 1] L L] 1]] [} 1 1 1 L} 1] 1 1] 1] 1] [} L] i) 1]
EP1EP2EP3}P4§P1EP'&EPG{PAEMEP2§P35P4§P1§P2§PSEP&§P1EP2§P3§P4EP1':P2§P3§P4§P1§P22P3§P4§P13P2§P3§P4;P1§P2§P3§P4§P1EPZ';PBEPA;NEPZEPSEF’AEFHEP2§P3§P4§P1§P2§P3§P4E
CLKB A \

d h h q h v h d h h v d h h [O S h d h h d h] [Namadt v (h h h h
. ' ' . . + + ' ' ' ' . 3 , ' N e . ' ' : ' ‘ ' . i} ') + ' ' ' .
\ ' ' . . .) ' ' 1 ' ' ' ' i [. ' ' ' | ' ' ' . i . i ‘ ' . ' ' '
' ' ' ' ' , ' ' ’ ' ' ' ' ' . ' [T ' 1 ' ' ' ' + . . + ' ' t ' . ' ' '
' ' h + + ' ' . ' . ’ ' . [' ‘ i ' ' ‘ ' i .] ' ' 1
SDSPBR L v ' ' ' ‘ . . ' ' h v ' . ' Voo ' ' ' i ' ' ' ¢ . H ' . ' . . v ¢ ' ' ! ' ¢ 1 1 « t 1 v ' ' '
. ' . ! ‘ ' ' ' ' . h v ' ' ' e ' ' . ' ' ¢ h ' 1 i ' I v ' ' ' ' ' i . + ' ' ' i . .] , ¢
' ’ . . . s N L | | 1 . | P ; ' ' | g | s ‘ ‘ I s 1 ' s ' ' . i ' . ' 1 . i ' . ' ' . .
' . + Ny " " L SEEND Snamnn coonmy sesu s e e " v v pr—p—————— ' ' ‘ . . ' ' s ' ' ’ ' ' ' ' ' ' .
. . ‘ j , v ' . ' ')) . ' . b R H . ' ' ' ' . ' H . ' i ' ! ' ' ' P ' ' ' v ' i ' 1 ¢ . ’ ' ‘ 1 ' +
. ‘ . . . ' . ' ' ' ' ' ' ' ' ' [T ' ‘ . ' ' . ' ' . ' ' ' 1 ' . ' ' ' ' ' ' ' ' ' ‘ ' ’ ') . ‘ i 1 '
. ' ' ' ' ' . . ' . ' T ' ' ‘ ' ' ' . ' ' . ' . . + ' . ¥ ek M PO R — : N M : A S
‘ ‘ ' ’ ' + ' ' ' ‘ ' v ' ' ' 1 ' ' ' 1 ' 1} + ' b ' ' ’ ' Ponemmr—p— T T T 13 * Tt et
SDSPSTRB L ' . . ' v ' ' ' ' ' ' ' ' ' P T ' ' ' ' 1 ' . ' ' i ' ' ‘ ' v I ' ' ' ' + ' ' ' ' . ' ' ' i ' t ' '
' . . ' ' ' ' ' ' ' . . . ' . R ' ' . . . h ' . h ' ' ' ' v ' ' . ' ' ’ . . h . ¢ ' . ' h . i ' '
. ' . ') — ' . ' . ') . ‘ ' v ' ' ' v ' ' ' ‘
. ’ ’ ' s " . » v v § " v N " Il r— " 0 " . v " N v i 0 1 V T v \ . 1 ' ' . ' . ' . ' ' 1 i ' ' v ' + ' '
' v . .)) ' ' . ' ' . ' ' ' . PR ' ' ’ N ' ¢ ' . B . . . ' ' . ' ‘ ' 1 . ' ' ' . ' ' + + . ' .
. ' ' v . ' ' ' ' ' ' ' ' ' ' . [T ' H . ' ' ' ¢ 1 . ' ' ' ' ' ' ' ‘ ' ' ' ‘ ' ' ' ' 1 ' ' i i s ' v
' i ' ‘ ' . ' ' \ ' v ' ' ' ' ' [' ‘ i . ' ' 1 s ' ' 1 ' . ' + ' ' ' ' i ' H ’ ' . ¥
PIPA H ' ' ‘ , . h . ' ' ' ' ’) ' ' ‘ ' . ' . ¢ I i » ' ' i \) ’ ' . 1 1 v \ i ' ' ' ') 1 ' 1 1 + ¢
. ' ' ' s B . ' ' ' ' . ' :) ' PR T H ' ' ' ' v ' ' h t ' ' ' ' ' ' h ' ' ' ' ’) H ' H ' i
' N s . . s | . | T ‘ i s | L . ‘ ' . ' v | . h v h s ' s . ¢ 1 \ 1 ' . | ‘ ' I s . ‘) {
- v s Bt * v v r——— Y p——— am -t ' ‘ . ' . ' v v v —t r Yoy Torp—— Pty s " ey
' ! . ‘ . 1 1 ' ' j ' . ' . ' ' [' . ' ' ' ' . \ ' . ' . . ' ' : . . ' ' . ' ' ' ‘ ' ' ' s ' ' 1 ' ' '
) ' ' . ' ' ' ' . ‘ i v ' ‘ ' + Vo ' ' ' ' ' ' ‘ v . i . ' ' ' ’ ‘ . ' ' ' ' ' ‘ ' ' 1 i h ' ' ' ' 1 '
- N N 4 s . ' ‘ ' . 1 ' ‘ [t i ' ' . . ‘ ‘ i :) ' ') . [S— . P PR " PO PR " PP :
¢ =t 1 L ' ' ' . . ‘ ' s ' ' ' ' . ‘ . ' I ' ‘ ' * . s ' ' ' l . T ———— e T—p— Pyt T T * t | amm—
bMRL . . . L T T T T R e e e e e Y 2 T S A A -
. . . ') h , . ’ ' ' ' ' ' v . ' + . ' . . ' . I . ' ' ' ' ' ' ' ' 1 . ' ' : ' . ' ' ' s ' '
i ' ' ' . H . 1
1 " N 1 " " , . ' . . ' ' 4
. ' ' . . H ' ' . ' ' h . . . s ' , . . ' . ' ' . ' ‘ . ' ' ' ' ' ' ' v ' ' ‘ h) ' +
. \ ' . § . . . ') . ' - ' ' . . h ' . ‘ . ‘ ' . . . ' ' . . ' . 1 ' ' '
' T ' . ' ' ' ' ' ' ' . ' ' H ' ‘ ' ‘ s 1 ' ' ' '
OMG L i ! ! . ' . y N . . v ' . i \x oo . : ' ' ' , . ' ' ' . T . ' ' ' . ' ' ‘ - , ' N
, . ' . ' ' . . ' . . . h N) ' . ' ' ' . . ' B . ' » ' ' ‘ ' . v . . ' ¢ ' ' l ' ' ‘ ' . H ' ' '
))) ' ' ' . ! . . ' ' ' ' h PR R SR P . 3 . . . i e : I R | Y 1 bl i ' ' . ' ¢ ' t 1 ' '
. . . ' ' ' ' ' \ ' ' ‘ ' ') * rarmapsmay L * Pr—— LSRN S S S seate S S ey 4 P et ’ T ' ‘ ' ' ' ' ' ‘ ' ' s i
N ’ ' ' : . ' ' ' ' ' ' . ‘ ' . [' . ' . 5 . N ' . . ‘ ' ' H ' .) ' . ' ' + ' ' ' ' ' ' ‘ . H ' ' .
N b ' oo . ' ' ' ' ' ' ' . ' I h s ' ' + ' ' ' ' . ' + ') ' . ' ' ' ' ' . ' ' . ¢ ' ') v ' . ' '
b et " N H . M SR S W P S S ' N H A M H H P P P Sreamdhnernd, ok & . . H H . P
! 0 0 ¥ ! T " 0 T 0 0 0 0 T 0 " e ‘ ' \ q 0 r— " 0 v v EE— v " v 0 0) v 0 g 0 Ia— T [" S i A
ENBADOR L . ' + . ' i ' ' . ' ' ' ' . . . [. ' 1 ' ¢) . . ’ ' ’ ' ' . + ' ' ' ' ' ' ' ‘ ' ' ' ' ' H ' ' '
. . . ‘ . N ' ' ' ' ' ‘ ' . ' ‘ [. ' : . ' ' ' s ' ' i ' ' v 1 ' ‘ ' ' ' ‘ ' . ' . + ' . v ' ' 1
. ' + . ' h ' . v . ' . ' s ' . [v . ' h ' ' ' ' ' + ‘ ' ' ' ' . + . I ' ' ' 1) ' ' . ' ' ' '
. i h ' , ' . . ' ' ' ' ' ' H ' C o ' V « " ' ' ' ' 1 » \ ' 1 . \ . ' ' ' ' 1 1 ' v ' ' ' H 1 1 H 1 ' 1
. ' ' ' ' ’ ' ' . ' ' ') ' ' ' [' . ' 1 ' ' '] 1 ‘ ' ' 1 ' ' t 1 ' ¢ ' ') i) ‘ ' v t ' ' ' ' ¢
' | \ . . ; . | 4 ' ' ' ' ' . s \ [‘) ' ' . ' ’ . ' ' ' 1 1 ' ' I ' ' 3 ' s) ' 4 ¢) s 1 ' ' ' '
‘ ' ' ' ' s * ' H . ¢ ' .
ASL Y D 1 v [! v] ' v v . ¢] [)] ’ . * * t 3 1
: \ , ' ' .
v Vo v v i el PR P T T
' [' . | e * * ¥ ' * ' ' p— 1
] . N ' ' . ‘ ' ' . . ' ' ' ' . Voo) ' ' h ' . ' ’ ’ ' ' ' ' ‘ v
| ' ' ' \ ' H ' . . . ' ' I . ' v . . ' ' ' ’ ' ' . ' . ‘ ‘ ' '
o DY —ten " 4 . H ' ' . ' ' ' ' .
! " 0 13 4 " s " . 0 i ? a T) ¢ ' ' ' . ' ¢ ' ' y T
oS L . | [[S .
. v \ 11 v ¥ v ' v N [. ' ' ' h . ' ¢ v . ' ' \ ' : v
' , ' ' ' , . . .
; . 1 .) . . " " . » ¢ 3 . v ' [. ' ' ' v) , ' ' . s . " ' 1 . '
' N ' ¢ \ ' ' ' ' I ' , v . ' ' [I . ’ . ' ' . . ' . ' . '
' | ' ' . . N \ . . \ | ; . \ . . 1) . s | , ' . . i | ' ' |
l o .
LATCHRM L ' ' SRR y ‘
, '
v
’
'

ENBSRAMDALL::::;::5:::::3::::::::t:

' . ' . . v ! ' . ' ' ¢ ' ') ' ' ' s . ' . ' . ' s
' . . i ' ' ! ' ' ' ' ' ‘ ' ' . ' ' ' ' . [
' ' ' ' s . ' ' 1 ' ' ' . ' ' '
] v il Ll ' 13] b + ")) I + . . + L 1’] 1 1 +]) 1 i K
: ' . . ! ' . : . ' . . ' h . ' [. ' v . ' ' ' ' ' : ' ' ' ‘ ' ' ‘ ' ' ' ' ' ' '
. . ' . : . : . . : . \ . . i . [I ‘ . . ‘ ' ' ‘ i . . ' ‘ 1
N v - -~ v p— e—p——p—————
RDY L - ' ' [v ' . v v ’ ll . . ’ . ' ' ' ' ' . ' ' v + t i) ’ ' ‘ v ' ‘ . ' * ' '
. ' . . : ' ' . . ’ s . ' ' . ' [. . s ' ‘ . ' . . ¢ ' I . ¢ ’ ' ' ' . v .
. , . . ! . . ' ' ' ' . . ' . ' : ' . . ' ' . ' . ' ' + s l ' ‘ . ' ' . . ' '
. ' ' . ' h I . . ' ' . . ‘ ’ '
. . . ! ' ' . . ' . . .) : . ' ' : ' . ' . l ' ' ' ' ' ' ' ' t 1 '
. . . : ' ' i ' ' ' + ' . . ' ' . ' . ,) ' . ' j H ' ‘ ' ’ ' 1 ' ' ' ' 1 v
DSPREADY L ' ¢ v " . v 1 0 " s s v " v v v o ¢ " . ' 1 v . g 0 " " * v ' i v | s I e 1
1) 1) * v . + 1 +] + v t)) +)) * v . 1) . [l [}) v [} + ' [) + 3 [}
. ' . ' ' . v . ' ' . ' LR ' . ' . . ' ' . . : ¢ ! ! : 1 ! : ‘
) . . v . . .) v]) r L]] ' L} ’ ¥ 1 v ' 4 v . 1 l . ‘
' ‘ . ‘ ' . . ' . ' ' . ' . ' : PR ' ' ' ' ' H '
. . ' ' . ' ' ' ' ' . ' ' ' ' ' T ' : : -
. s s : s . . .) . L s ' [
' TR

iouh AbOR

S SR UREOE ﬁ ,L; - . «««««««««(««(««

DLE . IDLE AEQDALBUSA REQDALBUSA REQDALBUSA ASSERTAS ~READGYCZA READGYC2A FINISHAEADZA FINISHUPZA = FINISHUPZA iDLE IDLE
State Machine DLE | REQDALBUGA. REGDALBUGA HEGOAL B D EADDR . AEADC T B O e crEht READCYC1A FINISHUPTA FINISHUPZA 1OLE IDLE IOLE

CLKA IDLE IDLE REQDALBUSE REQDALBUSB REQDALBUSB ASSERTDBE READCYC2B READCYC2B FINISHREAD2B FINISHUP28 F!N!SHUPZB IDLE IDLE
State Machine 10LE REQDALBUSB REQDALBUSB REQDALBUSB STARTACCESS READCYC1B READCYC1B8 READCYC1B FINISHUP1B FINISHUP28 DLE 10LE IDLE
GLKB

DAL<31:03 H !

MLO-004472

/O Device Interfacing 8-33

PAGE 8-34 INTENTIONALLY LEFT BLANK

&_S_L______!O. 7§~

Address Strobe Synchronizer

18

Address MUX Select

LN

CLKB H
P-State Flip-Flop
RST L
L
— s
—~B{D 74 1
GLKA H a Ll
cLr?
1
NS
AS L 5JF04 [AS H !
‘B4
L
w

RESETVAY LT Jm
L‘-n MR

+5V "‘NW‘E"—“‘T(AE

CLKA H r——-—jCP

Figure 8-20 /O Device interfacing: Memory Controller

CAS Decode Logic

Flip-Flop 4 18 e i 18
LBMB L .<Mem AL
E6
1B 8
SYNCHAS H LBMg2> L uﬁli@—i‘jg}n CAS<2> |
E2
i 1 18 18
oy R
LBM<t> L id?i) ; N\ CAS<1> L
E6
.18 .
8 4
LBM<0 —q@____
Memory Controller 2L *qe2 @ CASL> L
Stais Machine REFCYC L 12 ol
t 1
Nots: Socket used here LWRITE H 13 £ :
PROMBLE | ENBCAS L
Loale
Memory PAL 825105
Eng 10
TE oo 1
; = ga —ENBEAS ¢ SYNCHAS L
-
EEQW.A~__W T CCTL and DPE Drivers
4 RVADDHI H REFCYC L —
&R SRR T MRDY L
®_g
INVADDR2 H 23
CADORLAT> B2 13
HST U N 18
FEFRES L 57
18
EICHAS B 17 DPEDAIVE L s il OPE L
[N g urevnive L E?:Z 8 ___urt L
TWRITE L g [¢]
BCK L] 4
3 7 ENBCCTLOPE L
Refresh Request ~lo
Latch CLKA H 1 oK
PR-OE Peady Hold Lakh
. DRAMREADY L o a2
sset Hoid Latch IOREADY L 10 i;E% }“‘::@)4_'
(€21
RESETVAX L '8
BUT o] RST H
+5V 98 18
- //J 2.8 74
o lweoy LI, mov e
DS L IR —m T
L s
» v i RST L @
4
SELRAM H 1 ‘[;7:\34\> 12 SELRAM L
MLO-OG4ETE

VO Device Interfacing 8-35

PAGE 8-36 INTENTIONALLY LEFT BLANK

Figure 8-21 /O Device Interfacing: Console Interface

Interrupt Vector Genenstor oer
4BF W&n
Console interrupt Veosor « 02C0 = ;mcgn
OSP imemupt Vedtor « 02E0 Driver EmAFZA
4520 o 57 1 DAL<?> H
o vaEl-2 DAL<1S> H A7
D3 . B8 12)
Yzo)- 3 DALcias H k> A8
.18 D2 I v BS <A 13 M
1ol DAL<13> H T AS
13 4p . Pypre BT DAL ot> i
" wa_'YOD ° <12 H Lt Ad
l . 83 <) 18 <>
19 HEN A3
. ‘.22 18 DAlL<> H
4BF RXDA oa |18 3 Aa', 14 DAL<1> M
=]
n H
T4LS244 D 2 BO <
ET? WH AO
Vi <it> H ey LWRITE | 1 'om
L -8 103 A2 —CG EN
Al
. b2 Yz O 14 <10» H gm
18
nes Y1 ot L<l> M 4 - T ,-Dla Une
LI y
Y L o1 ENBCONDATA H @!— — |8 8 9636
2 Ing vo -2 < H g e g 2 7 ™8 L
Y —>—
} x ' el) —{ws
POD L 2K a2V H
2
l - i B N
Octal L
Otiver (]
é:bsz“ DS L 8 ﬁ
?_lng Y3y Conscle, ROM and IACK Stste Machine
- Y205 8 DAL« H . Nois: Socka: uped here
D2
180 m Braak Detection PAL
CONIACK L " viopl . DAbdb H s |2 s HIREG L Conacie PAL Zvio
== ———1D1
" Yo it DAL<A» H [T aBr | B‘ “}.".3_5 STATE ¥
= S pach® STATe ¢
e & R e
18 10 RS Dt ¢ TA H
) 3 o7 -, R4 D)
a5F) s s BAE
OO8 H 10 Y ——
Octal W g A1
Oriver vo2 -4 D10
é:tésw o] —; o
v o <
il 7) > Hene §
ENT D8
el Y2 of-14 DAL<2> H asT L gg SYNG %
e PE e
oy viDl18 DAL«<l> H W5V o g")
18
» DAL<C> H MR D
2n, O A L ENO CLK
ENBVECTOR L \den B —

VO Device Interfacing 8-37

PAGE 8-38 INTENTIONALLY LEFT BLANK

Figure 8-22 /O Device Interfacing: User Boot ROM Bank 1 with Drivers

M TUVPROI 4BF T UVPROM] | r-'
Py T L. =
| __E81 .,...i-eq 21 DATA<31> H | PM '_"_'—‘M"RG 4] DATA<15> H Driver
20 ROMDATACI H e 20_ROMDATA<lds H J4reas
5 3 DAL<31s H 3 DAL<15> H
L1 ROMDATAB M 1w 1o ROMDATA<12> H W, VD
) DAL<30> H 18_ROMDATA<I2> H 3 HH
I o 18, B < < . v2op—— DAL<t> H
17 ROMDATA<2?> M__ w2 | . 17 ROMDATAc!I> H Az
‘ i okt DAL<29> H = i ml DAL<12> H
" 18 _ROMDATA<26> H L 1B 18 ROMDATA<10> H ! Bl, Y5
14 ROMDATA<25» M voolo DAL <28 H 14_ROMDATA<S> : s i) DAL<12> H
1 : 1
e 1L AOMDATA<24s H - AQ C T T 13 _ROMDATA H ‘ A0
1 ¢ 19
T UVERGM - QEeN FUVPROM BN
LADDR<18> H 3 mos LADDR<1&> 2 |0+
TLniaalf s T S 1 4BF : DH':TTSW' % 48F
CRDDHS = Ol [ADDHLTES Sami
[RODRA<T4> | LADOR T4 D
VY . e ' H
.KJ)'!: & 3 o | . WEL2 OAL<27> H <15 H = 4 L a] DAL<11> H
DR — o — o T L T —— iR : a3
o) H 5 “ vaot-3 ... DAL<28x H (AU rail] DAL<I0> H
nd M 1 e Pihad: e
‘WHZS'E"‘—'“ .)4 DAL<2% H 18 DAL H
"te] ; w i Y1 Dy BN P Y1 Oy
CAUDRSR W | A DDR<E 11 Ll
: O —. - L 18 DALcl> W
;) 3 o " """“‘“‘Ao Yo ol-2) H ODR<S N~ 18] o AL 18 DAL<S> W
ROMREAD L E PUT ROMREAD h::%iE
mm% L) RO ROMHARK 05 1
PUCLOPK H 31 EqCHiP? ‘ ~CJBEN - ’ egcmn ! —1den
fat 1K %} : v
e
A0
R, o — g
uymgl 4BF ™ (UYPR:»&!] 4BF
E’e Octal
- s RoMDATA@m M Ormr |- FLROMDATAST> W o
" 20 ROMDATA<Z® H €39 . DAL N — 20 ROMDATA<E> H E32 12 DAL<7> H
<23 it
16 _ROMDATA<21> M 7.) e 19_ROMDATA<S> H 8y T
S 18 ROMDATA<20> M \ s —;:"-D 5 DAL<22 H [18 _ROMDATA<4> H . vz 14 DAL <S> H
1
e 17_ROMDATA<!9> H A2 17_ROMDATA<IH> H Az
S 1 b Lo DAL<21> H b vioL18 DAL<S H
- T ____15 ROMDATA<18» H LE TP 18_ROMDATA<2> H (S
= 14 _ROMDATA<!7> H l o DAL<20» H 14_ROMDATA<!> H } . Yo o18 DAL<é> H
11 '
- |13 ROMDATA<16s H _ o A0 12_AOMDATA<O» H) AQ
F TUVPROM - ..E_P_‘._...____ g %;nx%“ p ; EN
LADDRS 16 g ‘s:mxxn j r LADDR< 18> M 161 ; -
ABORSTE o — 28— ADDR:TE H- 2%
LADDRETS> -] <Y55 " H = ! Octal
CADDR< 5 Driver CADDHX) 3 . D
RDORETS i 74k 244 2Ll N — ,j T4r2u
s — ‘] w2 DAL<19> H CADDR=115 W~ 27] | = 12 DAL<3> H
? [y -& s WS——-*—-—-———— oAl T H 'Y ﬁz. o va
il - M- — A3 CADDRSI R ¢ A3
DOF<E R 8 ’ 14 DAL<18s H CADDH<8;) 14 DAL H
. + (] Y2 o= (Al <> 7 8 Y2
ﬂj:;:g g N R TrTrTTTTTT T A2 Reb> H e e]
LADH > Y1 18, DAL<i?> H Y1 18 DaL<i> H
(ADOR<& H 12~ 1, . T e el te DAL<16> H CADDR< H o 2 Yo 18 DAL<O> H
A0 AOMREAD L 24 A0
ROM L %G ENOUTH
READ L . oEn HOMBARK S Endorim] ROMREAD L 1{en
e PUCCOPS H—— 1~ 3 Py I

UV PROM 27010 12BKXBUVEP
Addrees Rargs 20200000 ®© 2027FFFF

MLO-004483

VO Device Interfacing 8-39

PAGE B8-40 INTENTIONALLY LEFT BLANK

User External Boot EPROM Bank 2
Address Range 20280000 to 202FFFFF

Figure 8-23 1/O Device interfacing: User Boot ROM Bank 2

" TGVPROM “TOVBROM " TOVPROM]
"t i pi i
E 2 ROMDATA<31> H —_—e ROMDATA<23> H 21 ROMDATA<15> Y 21 ROMDATA<7> H
A ‘ AY A A
e) ROMDATA<30> H P 2 ROMDATA<22> M e I AOMDATA<14> H S T ROMDATA6> H
19 AOMDATA<29> H —— 1 ROMDATA<21> H 19 ROMDATA<13> H 19 ROMDATA<S> H
18 AOMDATA<28> H P11 ROMDATA<205> H 18 AOMDATA<12> H 18 ROMDATA<4> H
— 17 AOMDATA<27> H e N 1 ROMDATA<19> H T = 17 ROMDATA<11> H I 17 ROMDATA<3> H
18 ROMDATA<2E> H : L. ROMDATA<18> H 18 ROMDATA<10> H 15 ROMDATA<Z> H
| A
14 ROMDATA<25> H : 14 ROMDATA<1 7> H 14 ROMDATA<G> H 14 ROMDATA<1> H
e R T ROMODATA<24> H ;"'“*“'““{ 13 ROMDATA<16> H oo 13 ROMDATA H 13 ROMDATA<O> H
TR TR YRR) i
LADDR<18> H 2 laxxa ADDR<18> H 2 el j LADDR<18> H 2 o ADDR<18> H 2|
CRODR<T7> R~ 3 |'6 EIel oL — Ep— | TN " — P LM 1 B —
N > H n <{b> <lb> M <>
SRR e 8 | i — o ——
LADDR<13> 4 <135 R R : <T4> H 3 X CADDR<145 T
CAUDH<TT> 7 TR | CADDR<T3> H 2K ! [ADDR<TZ5 .3
CADDH<TZ> px) JOR<Y2> 23 i [ADUR<YZ> H 23 \ .3 12> =
DR o -1 Ak oW g% — Ak | ADDRTE. B rAgk CADDHS10> E4 L‘a%;(
L/ € 1 i
CADDR 9o s CRODH > S— ; CADDASs B % ! EADDRS H %
RO RO | AOR T ‘ [ADDR<75 ¥
» L) >
ATOREET OUR6> i CADDH 6 SRR
L ADDR<SS] CAUDR<S> H o CADDR<SS %1 CADDH< > S
CADDH<d> H g CADDR<4> H L LA| <d> i i iﬂﬂn«,
[ADDR<35 CAUDH<3> [ADDH<3> . R<3> H
L <Z> - o | CADDR<Z> 0 | : H<d> E 0 <e> H 2 0)
ROMREAD L 24 OUTPUT] ROMBEAD L 24 eniourpum AOMREAD L 24 ENIOUTPUT] ROMREAL L 24 ENIQUTPUT]
FULLUPR H 3 EN{CHIP} POLLUPK R - %1 "'EEN CHIP] POLLUPA A~ 31 5 ENICHIP) PULLUPA H 31— EN[CHIP]
|
PULLUPE H @ i , PULLOPS H -7
UV PROM 27010 12BKXBUVEP
18
LADDR<19> H 8
>
= O A ROMBANK<0> L
— SELROM H 13 w2
E £ 8 . _____ROMREAD L
Ra DS H — 10 g% - -
oL N
o — w2
1K
SEROMH | P
Foon): AOMBANK<1> L MLO-004484

VO Device Interfacing 8-41

PAGE B-42 INTENTIONALLY LEFT BRLANK

Figure 8—24 1O Device Interfacing: DSP and Private RAM

4K Words of Privete Progmm end Dusts Memory

D16
D14 <A
D13 <A
D12 - e e :
it B '
o
878
08 - ,
i , L
Bt X : :
bo <} : . - ; :
1S 3 ¢ < ?
Ald ; | 1 |
A13 ! ‘ |
A12 ' { :
ANy i \ i
A1A0° ; ! !
Y A i AAM | RAM |
te e ol il I pee |
AS¢ L — | ! ,
A4 g;o—-ﬂ-—- e L4 ovg—-}%—- 1 07 o1k
Az s s — | 888 - B 1
A1 D4 Ay 4 D4 13 D4 <o
A0 P m— D3 < 03 4F]
b | A—— |oBe S 02 N D2 Di1g
i m—— 5 | e— gl 22T
1% a0 b 18 _ a0 S _1A10 8 {AT0
e % %8 &%
= —— —
A7 A7 A7 Ty
A 2 A8 A8 !
AS AS AS AS :
Ad M A Al k
A3 A3 A3 A3
R e &1 8 A
0 I A0) A0 |
1 qQwe wE w WE WE :
5 ENO ENO " ENO — ENO |
8cs cs eI LBl e cs :

VO Device Interfacing 8-43

PAGE 8~44 INTENTIONALLY LEFT BLANK

Figure 8-25 1/0 Device interfacing: DSP DMA Transcelver and Parity
Genearator

R
R6S
1 ...BL_..._/
100 /
= |2
ENBDMADAL, |, , IR TR
ENBOMAWR |, ENOA. i
DSPOMARDY H N
RIPPATACISE H
DEPDATA<7Os H !
ADDR<O> L z%;‘s i
ENBOMAR | e anr
; : A
1 | o,
) . TAF244
| B _E_s,g_ﬁs 1R C8DP> |
Rl H — W _ —— ian
ES) ! ! 14 CSDPed> L
R e -
EQRCEPERR L » ; e CEOP-4> L
— 57 | — 3 A
In s ; "'”""Y"T"' 18 CSOP> |
é,~_‘_.p DD; X B g
: 1
L\ j: if) - EN

YO Device Interfacing 8-45

PAGE 8-46 INTENTIONALLY LEFT BLANK

Figure 8-26 VO Device Interfacing: DMA Address Drivers
4BF
Gctal
ASS
100 38) DAL<31> H
. nls ¥
18
s DAL<30» H Addre
- L B W, T2 2 OMA Base ss Ragister SRAMADDR<O> H__ 11 | Foa 0 SRAMADDR<O> L
2K RN DAL<1$> H Exra DMA Basp Address -
SRAMADOR <14> H 13 a9 Stake Pin Output
[DAL<id> H - ABF
SRAMADDR<13> M i YO i P | Ol wae
R LI i
A7
DAL<31> H 18 _iny
48F Re \[] CSDP<3> L
Sctal DAL<30> H SRS | 45 9 -
Onve 4B
Tar2sa reas T} DAL<29> H
&7 3 DAL<I13» M DAL<ge> H 1 05 8?:
i
SRAMADDR<12> H T 7 nio2 DAL<28> H EASYN
b DAL<28> H -~ ‘V_I«:._JD‘ £55
Ve oLs DAL<12> H vaS12 CBDP<d> L
SRAMADDR<!1> M 18 1ao DAL<27s H AL s DAL<27> H sl
7 AL<11> H 7 14 DPE L
SRAMADDR<10> H 3 A : OAL<l1> s DAL<28> H 57,) 12 EL
A1 A2 8V v A2
AL DAL<RE> H o 2o o~
T e ol DAL<10> H i ote DAL<1> H
SRAMADDR<®> H 1 o 5 H o il AL<25> H 4 Lo
1 18 DAL<0> H
—qen 2 DAL <243 H , e, 3 Yo
CAL<ddx W . 3l RO b o]
4BF o ——tdEN
u%: e B
T4F244 ABF
SRAMADDR 8> H 1 Vi Phketz 7 t.%’r-"‘;.c;r_1
) = . oaL<en Hrea
Y2 == apF 12 BM<3> L
SBAMADOR<T> H a2 5 P SRAMADDRO>L | s [¥
, |~ W;‘__ 7 DAL<7> M 741;3 4 14 BM<2> L
SRAMADDR 6> H Al €6 e DAL<233 1 e 72
el DAL<6> H DAL<23> H 18_10, " Batets L
1
SRAMADOR<S> H 1 a0 i DAL<2Z> H o "
LI DAL<22> H 17 loe “ .
s 18 DAL<21> H SRAMADDR<0> H 2w OO
48F DAL<21> H 14_ing ‘
12 DAL <205 H —qEN
Stal DAL<20> H 19 |pg RABr—T e S S !
75‘22“ A3 -2 DAL<19> H ABF
’ v3 3 DAL<S> H DAL<19> H 2 1na —
1
SRAMADDR<d> H A R2 - DAL<18> H Driver
. v2 3 DAL <4> H DAL<18> H ? o2 é‘s’?“
AMAD! 1
SRAMADOR<3> H A2 il DAL<17> H 32 WR L
Y1 7 DAL <3> M DAL<17> M 4 Ny] A3
SRAMADDR<Z> M B 2 DA M oM csoPas L
T e o2 DAL<2> H DAL<16> H 3, PO DSPWRITE i, & iaz
SRAMADDR<1> H T
Al }d &N RE0 1 18 CSDP<1> L
19 {En LATCHBADDR L A2 A v 1 2 & ay
2 vosl.te. _ csopas L
LYY
ENBADDR L dEn
MLO-004488

VO Device Interfacing 8-47

PAGE B8-48 INTENTIONALLY LEFT BLANK

Figure 8-27 1/0 Device Interfacing: VAX-to-DSP 1-Way Mirror Register
VAX-10-DSP One-Way-Mimor .BFM-M Message Register UCLP40-DSP CSR Register
(Note: Register Values Afer Reset)
 TRNSC (1 ! H
' EgS“VR QUAL_IN_PROCESS » TRUE 9 (o0 o x 0 |ojo el |1 o {x|x]|xix|x x]x x
‘-———E.TE 18 DAL<7> H
DSPDATA<T> H 10 a7 - j L A A A AN &L & & & 54
B8 < b} B> M Satus LED
""'"""—“as 7 DAL<S> H Statua
h 18 H
DSPDATA<4> H T o (P Intermupt Enable
f__‘a;"“ 19 DAL B> H Not Used
DSPDATAI> N i PN v //
{ B2 Q_Q______QL@_H Ax \
DSPDATAc2> H § > a2 Interrupt DSP —
i OAL<1> H 08P XF T
DSPDATAcI> H 2 5 At o8P 8O |
! B0 AB DA H !
DSPDATAO> H 3 A Hold DSP {
Rsast DSP ‘
ENAB
s i LCHAB !
ﬁ!ﬁg&s{ ENOAR Roset VAX I
23 ‘ VAX40-DSP One-Way-Miror i
TCHVAXCSRA H eaa Meibox Message Register
LCHBA
ﬁsosvcs%sf ENOBA
e 1 Is Active; O Is inactive; X is Unpredctable
1
< R19
$ 100
2
< UCLP and DSP Status Register Bus Drivers
4BF 4BF 4BF
T Octal Octal Octal
Driver Driver Driver
2 s | e
= s DAL<19> H -2 DALx15s H HBEd DAL<11> H
LER<I> H 7 . 7 I 1 a2 17 s DSPRIO H 17 s
: 1 s DAL<ld> H s DAL<10> H
LEDO> H w . Y £ DALB2 H = LATCHVAXNT H ., Y2 HOLDOSF H 5, ¥ <
j——] DAL<17> H 7 DAL<13s W T DAL<D> H
; 1 v
FORCEPERR M 3 M INTDSP H 8y Y RESETDSP H 13 {ay
[] DAL«<8> H
“o Yo) DAL<16> W Yo) BCAL<12>» H A £8ET M 1 | Yo <
190 EN
MLO-004480

VO Device interfacing 8-49

PAGE 8-50 INTENTIONALLY LEFT BLANK

Figure 8-28 /O Device Interfacing: rtVAX 300 and DSP CSR

DSP Resst Synohronizer

af
DAL<11> H a0
PR 1B 18
E82 s DSPFBIO H [1s) []5)
: 74F3 TAF374
DAL<iO> H Fap* . 18 £50 18 £=9 1 RS L
o HOLDODSP | RESETDSP LA P RO 10 | b L
Rz HOLODSP H s |28 a HOLD L ide= A
o DSP H_ ‘
- A - E20 1 w— A A0 —— A
DALD> H o] R P H L~
i REGAESET 18 :
DAL H 2) | s |, 4 RESETVAX L
RST L &2 DPS ineupt Synchronizer
LATCHVAXCSR H
18
B 18
4BF ,] ”‘}'R
5 TWO CSR Status LEDs , L
s D¢ " i ' P———~—-—RD__1$ 11 10 DIPRO
i £84 1 R7e o
! 18 1> H Nxxxxl 1 8V L._.noi
DAL<19> H 113 |ha - 220 ClK
03
10 LD M mx R100 '
DAL<18> H KT R * i @LW}— kil
, FORCEPERR H 220 x 2
R FORCEPERR L 2
DAL<17> H 8 Iy O BOSPDATALS: H Uy A108
ENBVAXINT H 3 1 2
o ENBVAXINT L LATCHOSPCSA W 2 | Y e
DAL<18> H 4 1o P i
i_é{jcm TWO CSR Output Staks Pins 4 18
DAL<1d> M 2 {p L) 1 |8 LATCHVAXINT H
o , P2 LATCHVAXCSA L s b
N o
2K e
DAL<13> M

LATCHVAXCSR H

CLRDSPINT L [8

AST L 0 EF 2

18
Tk
E59
DSPIACK L 'SC o
‘den
CLKOUT2 H _ [TiS 2

ENBVAXCSR L

LKA H

R8T L

DS L 1 '8 18
3 4
LIOIACK L 2 8
8

CLRVAXINT L

O Device Interfacing 8-51

PAGr 8-52 INTENTIONALLY LEFT BLANK

Figure 8--29 /O Device Interfacing: DSP DMA Controller

18
READY L 1
DMAF Eg ? ____ DSPOMARDY H

DMA Base Addrest Regimer A
- - A "PAL and CS
iB L
<9 2 ot
DSPSTRB Lo/ 8 DSPSTRE £24 Note: Socket used here
Ed
230
2]
CSR_BADDR PAL a3
27149 DMG L
&-no
zy‘\]
OV 7
ERR
XE 6
DR T 5
DSPWRNE L g
= &
smen, ol el
DO 1
W. CLKA H 1 CLKA H
D8 ' —— 3 CLK
%1 D7 | ~—— PR/-OE
S> W i i [t
<1 8> D4 i i
e S e
D2 100
o — D! 2
DSPSTRB L ek B
HOLDA L
CLKB H
DSP RAM and ROM Select PAL =
Note: Sockst used here
T PAL
22V10
DIP_MEMORY PAL €134
52 WERAM<1> L SOEROM L
RI07 R0 AUS R0 A3 R7? gg;%%t
w8V T R7L “TEROM OEROM L
1 ' A r——wREADY H SDSPPS L
BE
R U DSPPS L
2 2 OSPDMARDY H 13 e
USPRDDRTSS> LA Do | SDSPBR L
<TA> TDG |
] “
%ADDFR z g; !
2 o¢ ' DSPBR L
B3 . o __SDSPSTRB L
1 318%
< DO .
) DSPSTRSB L
DEPMSC . 1 ok :
HOLDA L = - CLKA H

VC Device interfacing 8-53

PAGE 8-54 INTENTIONALLY LEFT BLANK

Figure 8-30 1/O Device Interfacing: D/A and A/D Interfece

ANALOGVCC H
[TLM7B06 |

E108 To
A2V i 3 ooy

L — 7| ™
< ' ca7 4
co 1 o it ‘g&F o s R78 .
= 10 [- —O—-ZAMAMOGGNO L sue L ,g‘au\i VO T NN
2 1 L] . 2 // NI LMazd™, 7 MICIN W
% R73 11 @ - 8 .E" !
- 2 oM ANALOGVCC L]“ §
! . v L R84,
3V REG Rit4 —‘-“"1’}&“
Bn 10K S.2 1
anv ——2 g T Tvold 1 in' m
AD:
I 2
' 1‘ 1 1
A L
= 10UF RE ¢ R102
2V 560 ¥ 100K
" L=
QLo T cst
ANALOGGN L?J]‘mus
25V
i - 2
ANALOGVCC H
To Microphone
Number 2
J8
4
-~ 1 1 2 1 - 12 .\\‘ nas
i 1
s - dofamwmccann 1y l@ .uv?zf{" oo B
" l 1 // x 1 MICINZ H
. § " g
] oM ANALOGVCC L
x E2 , e
L3 ‘ . R115 Seok
1 1 -2 1
R113 <
10K 1 :)
“12v R ,
l 1 1
RU8 <& R103
: 560 100K
2 2
1
cer
Iwus
2%V
2
- MLO-00MA2

O Device Interfacing 8-55

PAGE 8-56 INTENTIONALLY LEFT BLANK

Figure 8-31 VO Device Interfacing: rtVAX 300 I/O Pin Connectors

AVAX 300 50 Pin Conneciors

Sk

& B
Y
1 1 1 1 i
Power Connector aBE g(“ 3(53 ?k‘ “VAX 300 50 Pin Connectors !
"8-Position | ? i ,8_
" Switch 2 2 2 S o
q E110 i] J2
9 s_SW7 9 1 CLKIN TPy}
W 0 - —t RT3 T 'hadd CTRar g)l %: 5
SRETURN oy 7 SWE 1 %r—ﬂr > W5V -3 E’
v |8 CBUP3-> 5 cSDF<l> t
7 1 Rso.,., 2 8 WS 1 VAXH,T 3 N
e G 120 " awa o sn— = N '
+5v -——E-Os 2.0W . 5 d 12 —ENBRSY L, & i - +V ~pEranE -8 C DAL<T> F
O ; o SW3. 13 BOOT<H L - DAL H DAL<3> R
. R4 ; w2 PARRCL W By ROCONN DAL<A> H 0 o URLS>
T W o SN BV S 3 .- 1" BOOT<2» | i s L'%zl._ﬁ ke >F
3 120 sW1 s A § > ; : |
O4—— 20w » — 18 BOOT«<1> | R ji !Ln:i R, E é
C& : 1 Swo 18 BOQT<O> | DAL <745 H = 30— WAL<TS> H
1 , DAL<YE H T 73 ALTT5 W 2
O 4 - BAL<TE: H 5 7 GAT 16> H -
_/ B = DAL<Z H %7 DAL W
DR 27> % 90— DAL<25>
BA DAL<A> A i) R o T L
- DA< H P v A >R
DAL T8> H : B DAL R
OAL<30> H 47 38~ ML N> F
e
-

pgp CLKIN 1/ 2 [..
. i . I - . -
Eﬂ ot r@ E
cE — NI L &V Toras T % :
=3 B> L L + " 3. inchas o
K e {A
LF: :5 mari [okio L7 £ : ;
g o %Y DRLas B - -
= i L LY #
E;; <1:; A» M 19!
“‘2‘, be mab El
I i
E — " OV T L L M—
03T DALY —3p
‘ E AL H -] Console DEC-423 Connacior Loader/Prinker DEC-423 Conmeotor
5V 45V ki)
> <185 W 33
NOTORN<d>_H - <1H>
NOCONN <S> , 3 o B 1
UCU!W<5> R RCV - ’w
ROCURR<7> H %ﬂ rOf, e N “
NOCONN, o > & : n 32
ROCORN<10> H__47, Eg A3 "'ll g &V - o 5 mw BV —~ " r‘-%
AL > H % X L) 1 -
s ad fncwat | ! XA L l 5
%ms 8 1 1 agg =L 1
. 1
= L o N Riz < R14 25W £20 2 AM
= I J 100 3 100 2 10 $ 100
e 28w 25W e 25w B
2 _Lz 2 2

VO Device Interfacing 8-57

PAGE 8-58 INTENTIONALLY LEFT BLANK

Decoupling Caps

Flaure 8-32 VO Device Intertacing

J3WF jf A
50

1 Ca§
2

TRk T
50V

4 C4

2

BUF T GauF T AuF T
50V saov Bov

2

C50

Civad

o

AUF
v

C J: c78
%

|
I

2

'

S\PF T g%a\yF T &SyF T &S\yF

&%

4 C64

2

4 C88

1
c39 J. (74]

el Ls’o‘*\‘r“ L

4. C60
3

& 8 T4

4 C38

4 cée

UF T

3

1

[|
K

JUF T 33UF
50V

%

2

v

cs2

- It o

33UF T
By

2

e CW

v

50

4 C72
T 33UF T 33uF T

0V

1

.. C89
2

+5V

MLO-004404

VO Device Interfacing 8-59

+5v
SV

R T O O O R T R W SO R R Y R K
SHSASDAS SISO IIINA OIS E0000 0850000008001
JEASABENI SSRGS TIREIRI G DS SBININSS459.989.68.9.8
ARSI SAIOEBAGSATIRIGBLGANADENN000.000000.9 060)

J AN EASASSDESSHADIANN OO GSH SN 00900800068

JIRN SRS SOOGS0 L A8 05000 8055080009.000.94

LSS SAANA GOSN IEIOAN SO0 9088800800004

FA RS EN GO0 G004 NEEH IS $5.60009.6409.0940.4

A PR A O M Y A YO K KK KK KKK

J9 8986080000 005050080049050.40050908.4

ISR S060006950005900.09090.999004

P00 009696409509004.06008.00090894

I8 IS0 00690.00894090908.089.¢

MR YR AL LR AL VA LA L LA ELLAKAKA
$9.9.6.60.04.95.9.040.9099.0,0699.94

$0.0.60.0.8009.90.04.909.49.0.94

p:9.9.6.6.604.09:9.64.9.8.0.0.094

XY UL AL LK LAKAKKK

:9.9.0.0.0.9.6.0.6.9.9.9,:4.0.4

0:0.9.9.9.6.9.0.99.9:0.9 ¢

KAXKKXAKKEK

$9.0.6.9.0.9.0.9 4 \
1:9:9,0.9.8.9.4

XHXXX

XXX

b4

X

X

XXX

XXXXX

XAXXXAK

XX XAXAAXX

XX XXAXXAXEX

AXEX KA XKXLKKK

,0.9.¢.9.0.0.6.4.9.9.0.0.9 ¢4

XXAX XX XK KX XK Y UKKX

1 0.9.6:0.0.9.8.9.¢.0.6.0.¢.05.6.¢8 1
}9.0.0.86.0.4.0.9.0.9.:¢.0,9,0.6,¢,4.8.0.0
pO9.6.0.9.0,6,0.0.0:6894898.9.000491

) $.0.0.0.0.8.99.9.9:0.8.0.9:6.0.0.0.4.6.0.9.99
§10.9.0.0.6.9.0.9.0.8.9.0.0.9.690.0.90.0.0,46.6¢
P9.9.0.0.6.6.0.900.9.8.09.0.0.0.4.6.0.9.¢.0.06060

) $,8:0.8.0:4.0.0.6.999.0.0.60.6.$.880.8680090846
$9:9.6.0.6.9.9.9.8.0.6.0:¢5.0.9.0.90.90.9:0.0.9.99009.606:

1 5:9.0.0.8.9.0.00.0.9060.0000.¢8.000.8684060.¢808

) 0.0.:0.6.6.9.0.0.8:9090.0.80.0.09808.8.60868086480809;

1 9.0.0.8.68.08.0.06.0.880008460.0800.08.0884.900888 08

1 0:0.6:9.9.8.9.6.0.0.0.0.0:9.0.6.9:0.9.09.8,:0.0.680:069.66 60484808
:0.9.0.0.0.09.0.3.9.6.0.0.6.0.90.0.0:0.80.9.0.9000.0.9$5900.60.40909

1 0.9.9:0.9.8.0.9.:0.0.6.9.0.0.0.88:8.9.9.9.¢:09.9.0.0.:6.0.9.2.9 999098994848
)9.0.804:6.9.0:0.0.0,9.9.0.09.0.0.09.99.0.9.9.99:09:0965.6.99.990009098009

) 9.9:0.:8.0.0.9.0:0.9.9.9.99.00.0.0.90.9.:90 0.0 0.408¢.0.099 8096909999800
19.9:0.0.9:9.0.9:0.4:010.9.0.0.0.9.9.0.8.9.9.9.9.0.0.:9.9.0.6:9.09.09:9.9:0.9.0.09.0.¢.0.00.99

A

Physical, Electrical, and Environmental
Characteristics

. This appendix discusses the following topics:
¢ Phyvsical charactenstics (Section A1)
e Electrical characteristics (Section A.2)

¢ Environmental characteristics (Section A 3)

A.1 Physical Characteristics

. The rtVAX 300 processor is a 117 mm x 79 mm 4 .61 1n. x 3.11 1n) module
encapslated in a black pair ted metallic body. The body acts as a heat sink to
d.ssipate the heat generateC by the rtVAX 300, The rtVAX 300 weighs 142 g
(5.0 oz +10%.

The rtVAX 300 has four mounting holes, one on each corner. Each hole is

threaded for a 4-40 (U.S.A.) screw You can use these holes either to bolt

the rtVAX 300 to the mother board by using up to four screws or to provide

extra grounding for the rtVAX 300 and 1ts cover, which can help reduce

electromagnetic interference (EMI. The recommended torque on the screws 1s
' 0.50 Wm (¢ 51n-lb) +20%.

“Jou can connect the rtVAX 300 connectors to other modules by means of its
190 square 0,635 mm x 0.635 mm (0.0251n. x 0.025 1n.) pins.

You can mount the rtVAX 300 on another module either by using standard
sockets. for example, Digital part number 12-11004—05, or by soldering. Refer
to Figure A-2 for footprint dimensicns.

b.gure A-1, Figure A-2, and Figure A-3 show a top. bottom, and side view of
the rtVAX 300, respectively.

Physical. Electrical, and Environmental Characteristics A~1

Caution

The pin face of the rtVAX 300 module has conductive components,
Design the mounting to provide positive control of at least 0.010 1n.
clearance between these components of the rtVAX 300 module and the
applhcation module.

Figure A~1 rtVAX 300 Top View

4 ;

ALG T DT - [S S S S L SR Al |

O ASC T T T oo Do Tz oo TIDD T T T AR O;

rtVAX 300

78 994 mm
+/- 0.254 mm
(3110 in
+."-00‘,|n}

O S EREEE S EEETS EEEE N O

v |

117.094 mm +- 0.254 mm
ni (4810 :n «/- 0.01 in) B
ML O-004406

A-2 Phnysical, Electrical, and Environmental Characteristics

Figure A~-2 rtvAX 300 Bottom View

P — 72517 mm +- 0254 mm . g
2540 mm «/- 0254 mm gl lgo (2.855in +/- 0.010 in)
{0 100N +/- 0.010 n) g . 6B SBO MM 4oL 254 MM
6 422 mm +/- 0.254 mm ___p I {2.700in +/- 0.010 in)
(0.255in /- 0.010 i @ . 66040mm 4+ 0254mm !
(2600 in +- 0.010) |
6.422 mm +/- 0.254 mm \ " - A
(0.255in +/- 0.010in) , . ‘ i
) % C Q} ?
| i | E & o . ‘
| | el |
{ jw > .
1 [N :
: A= A
| RN M50
i P e] =
| e € -
1 ES
: o @
i ; o ©
| i < =
; ; I ou
i A
i ! 83 820 mm
+/- 0.254 mm -
3, (3.300 in co C
_ % | +/- 0.010 in) oo o 117.094 mm
' ! | co oo i
. | 104140mm | oo cc | *-0.254 mm
P +/-0254mm S o 1 o ’(466(; 00"‘\
! (4.100 in , oo G M ‘1 ")
L+ 0010I0) oo =c
| ‘ \] = C ':}’
110617 mm | i L= ce
+/- 0 254 mm 4 : a0 Co i
(4.355 in i ¥ ac co ;
+-0.010i0) | Be, 5 |

i

i
i
. i
i

O
|
l
b

78 994 mm +/- 0.254 mm
(3.110in +/- 5.010 in)

MLO-004467

Physical, Electrical, and Environmental Characteristics A-3

Figure A-3 rtVAX 300 Side View

5842 mm +/- 0.127 mm
(0.230 in «/- 0.005 in)

2.286 mm +/- 0.127 mm | 3.175 mm +/- 0.381 mm
(0.090 in +/- 0.005 in) ' (0.125 in +/- 0.015 in)

R

8.763 mm +/- 0.254 mm
(0.345 in +/- 0.010 in)
MLO-004498

A-4 Physical, Electrical, and Environmental Characteristics

. A.2 Electrical Characteristics

The following tables summarize the rtVAX 300 processor’s electrical
characteristics:

¢ Table A-1—Recommended operating conditions

e Table
e Table

Table A-1 Recommended Operating Conditions

A-2—DC characteristics

A-3—AC characteristics

. Symbol Parameter Minimum Typical Maximum Units
Vee Power supply voltage 4.75 5.0 5.25 VDC
Vi Input voltage 0 Vee VDC
Vo Output voltage 0 Vee vDC
Ta Operating free air temperature 0 +25.0 + 70.01 C

! To operatc at temperatures above 50°C, the tVAX 300 requires an airflow of at least 508 mny's 1100 LFM)

across the processor.

Table A-2 DC Characteristics

Sv-bol Parameter Minimum Maximum Units

ih High-level input 2.00 - \%

Vil Low-level input - 0.8 v

Voh High-level output (Ioh = 24 mA) 3.76 -

Vol Lov:-level output Toh = 24 mA:» - 0.36 v
‘ I Input leakage current - 0.1 1A

ioz Tri-state output off-state current - 0.5 pd

Icc Active supply current - 2000 mA

Physical, Electrical, and Environmental Characteristics

A-5

Table A-3 AC Characteristics

Number Name Description Minimum Maximum Units
1 Lasp Address strobe assertion delay 0 23 ns
2 tpaLp DAL address setup/ 2p-27 2p ns
WR assertion delay
tpaLy DAL address hold p+6 - ns
tpaLz DAL address to high impedance p+2 p+25 ns
state

5 tem Byte mask setup 9 P ns
6 tpsp DS strobe assertion delay 2p 2p+27 ns
7 tps DAL data setup 28 - ns
8 tpu DAL data hold 5 - ns
9 tpz DAL data to high impedance state 40 - ns
10 tpops Parity setup 26 - ns
11 tsws RDY and ERR sample window setup 23 - ns
12 tswr RDY and ERR sample window hold 5 45 ns
13 ipsip DS strobe deassertion delay 0 25 ns
14 tasIip AS strobe deassertion delay p p+28 ns
15 tparrz DAL undefined delay p+28 p+51 ns
16 temMHE BM hold 2p - ns
17 twrE WR hold p - ns
18 tppPES DPE setup 10 p ns
19 tDPEH DPE hold time p - ns
20 tpasaosp DMG assertion delay 0 43 ns
21 tsHLz Strobe high impedance delay 0 27 ns
22 tpspry DS delay after DMG 6p - ns
23 tparurz DAL high impedance delay - 42 ns
24 tsyns Asynchronous input setup 23 - ns
25 tsynH Asynchronous input hold 23 - ns
26 tasapra DAL hold during cache invalidate 20 - ns
27 tcerroyc CCTL cycle time during octaword 11p - ns

invalidate

A-6 Physical, Electrical, and Environmental Characteristics

(continued on next page)

. Table A-3 (Cont.) AC Characteristics

Number Name Description Minimum Maximum Units
28 taspry AS delay from asserting CCTL 0 4p ns
during cache invalidate
29 tasaprs DAL setup during cache invalidate 25 - ns
30 tomre DMR maximum assertion after - 6000 ns
DMG
31 trsTW Reset assertion width 30p - ns
32 trRsTD Strobe delay after reset 0 25 ns
. 33 trsTs Reset input setup prior to P1 20 2p-10 ns
34 tynTasp Initial AS delay 40p - ns
35 tzrDY Z-state RDY to RDY H 11 - ns
36 trRoYZ RDY deasserted to RDY Z - 2p ns
37 torsas CSDP<4> setup time 2p-42 2p ns
38 taswo Minimum AS assertion time for 21p - ns

octaword cache invalidation

39 taswo Minimum AS assertion time for 10p - ns
. quadword cache invalidation

Note: p = 0.25 microcycle = 0.50 CLKA cycle = 25 ns for 20 MHz

Physical, Electrical, and Environmental Characteristics A-7

A.3 Environmental Characteristics
Environmental characteristics include:

¢ Temperature—Operating temperature 0°C to 70°C, with the following
restrictions:

-~ 0°C to 50°C—No fan required, natural convection cooling.

- 50°C to 70°C—Fan required with at least 508 mm/s (100 LFM) across
the rtVAX 300 processor.

The rtVAX 300 has no preferred orientation for cooling with fan-assisted
convection. When natural convection cooling is employed, the rtVAX 300
processor should be mounted with the internal circuit board in a vertical .
plane.

¢ Relative humidity
— Operating: 10% to 90%, noncondensing.
— Storage: 10+ to 95%, noncondensing.

e Altitude—Operating and storage as they relate to altitude (standard
atmosphere and standard gravity) are as follows:

— Operating: The rtVAX 300 can operate at an altitude of up to 2.4 km. ‘

— Storage: The rtVAX 300 is not mechanically or electrically damaged at
altitudes of up to 4.9 km.

* Shock and vibration—Nonoperating tolerances are as follows:
— Mechanical shock: 30 G, 11 ms, 1/2 sine pulses.
~ Vibration sine: 5 G peak, up to 2000 Hz.
- Vibration random: 0.032 g2/Hz, up to 2000 Hz. ‘

where g2 = the gravitational acceleration constant squared, where the
gravitational constant is 9.8 meters/sec/sec (32.2 feet/sec/sec)

¢ Contamination—The rtVAX 300 should be stored and used in a noncaustic
environment.

A-8 Physical, Electrical, and Environmental Characteristics

XXAXX
XXXXAXX

XXXXXXXXK

XXXAXKAXKXK

AARXAXKXAXLK AKX

$8.8.6.9.3.$.94.¢806841
h0.0/6.0.6.0.4.8.46.0.64.6.44.4

b8 0.0.09.6.96.9.904.064.68 44
.8.0.6.0.4.6.0.4.4.4.0.59.9.0.9.4.¢.6.¢¢

HXAXAX KK AKX XA XK AAXA KA KAK
$9.9.6.9.0.00.6.0.9.06.6068500.6+009 1
PO0.09.0900004.69006.084000040.6604

e 06 80.6.5000.860.600508040040044
PO T 8.0.8.0.6.8.0.6.04.0089.0.096.0000660.60.44
0 5,9.:0.0.0.0.0.0.0.0.0.0.4.0.59.0.4.8.0.0.0.0.9.9.6.594.0.694

00 $:0.8.8.0.4.9.0,00.6.800.09.0.¢58.046006468360
DO.9..0.0.6:0.8.0.8.63.6.6.09.0.9.6.9.0.00.0,69.96004.964¢4

PO 48.0.6,0.00.008.00.0900000.8648850080606.660¢¢
$8.0.0.0.0.9.9.0.8.9.014.869.0.0.00.86.6$.9.6.0.6:6.9008¢669990.0
9.0.0.0.0.0.0.80.9.60.6.0.0.5.86.0.0.6900000.0.0.8.6:6.0.6994.0.0.0.6.94

DO ¢.0.0.00,0.0.00,8040.88.80.¢8.¢.60.0000¢60.0.8000.60609000 0
$0.8.6,8.8,0.90.4.6,0.9.0.0800.6,6068.0,605090:00.600.06:0.09969.0.9.0.04
:0,9.0.9.0.0:9.0,0.0.0.0,00.46:0.9.0.9.8.6.0.00800.4:60.96:9.0:0.60099 $:.59.99. 94
10.0.0,0.¢:0.0.9.0.6,06,¢.8.¢6.0.80:0010.99.00.9.0.0.00.99$6¢509 600000069004

B

Acronyms

This appendix defines the acronyms used most frequently in this guide,

Acronym Definition

+5V +5 V dc power

20MHz 20 MHz clock output

ACR DUART auxiliary control register

AS Address strobe bus interface signal
ASTLVL AST level internal processor register

BM Byte masks

BTREQ Request reboot output from Ethernet controller signal
CADR Cache disable internal processor register
CAS Column address strobe

CCTL Cache control bus interface signal

CFPA CVAX's floating-point coprocessor

CLKA CPU clock outputs bus interface signal
CLKB CPU clock outputs bus interface signal
CLKIN System clock input signal

CLK20 20 MHz clock output bus interface signal
COL Ethernet collision detect bus interface signal
CONE Console enable signal

CRA DUART channel A command register

CRB DUART channel B command register

CsSDP Cycle status/data parity bus interface signal
CSRA DUART channel A clock select register
CSRB DUART channel B clock select register

Acronyms B-~1

Acronym Definition

CTL DUART counter/timer register (lower)

CTU DUART counter/timer register (upper)

CVAX CMOS VAX microprocessor, the rtVAX 300 processor's CPU
DAL Data and address lines

DMA Direct memory access

DMG DMA grant bus interface signal

DMR Direct memory request bus interface signal

DPE Data parity enable bus interface signal

DRAM Dynamic, random-access memory

DS Data strobe bus interface signal

DSP Digital signal processor

DUART Dual universal asynchronous receiver/transmitter

ERR Bus error input interface signal

ESP Executive stack pointer internal processur register
GND 5V ground (return) signal

HLT Halt processor bus interface signal

ICCS Interval clock control and status internal processor register
IMR DUART channel A and B interrupt mask/status register
IPCR DUART input port change register

IPL Interrupt priority level

IPR Internal processor register

IRQ Interrupt request bus interface signal

ISP Interrupt stack pointer internal processor register

ISR Interrupt status register; interrupt service routine
KSP Kernel stack pointer internal processor register
MAPEN Memory management enable internal processor register
MRA DUART channel A mode registers

MRB DUART channel B mode registers

MSER Memory system error internal processor register

NI Network Interface

OPCR DUART output port configuration register

B-2 Acronyms

Acronym Definition

POBR PO base internal processor register

POLR PO length internal processor register

P1BR P1 base internal processor register

PI1LR P1 length interns1 processor register

PCBB Process control block base, internal processor register
PPTE Processor page table entry, processor PTE

PTE Page table entry, entry in page table of memory map
PWRFL Power failure interrupt bus interface signal

QMR Q22-bus map register

RAM Random-access memory

RAS Row address strobe

RCV Ethernet receive data bus interface signal

RDY Bus ready input interface signal

RHRA DUART channel A Rx holding register

RHRB DUART channel B Rx holding register

ROM Read-only memory

RST Reset bus interface signal

SAVPC Console saved PC internal processor register
SAVPSL Console saved PSL internal processor register

SBR System base internal processor register

SCBB System . ontrol block base internal processor register
SGEC Second-generation Ethernet coprocessor

Sl Serial interface adapter

SID System identification internal processor register
SIRR Software interrupt request internal processor register
SISR Software interrupt summary internal processor register
SLR System length internal processor register

SLU Serial-line »nit

SRA DUART channel A status register

SRAM Static random-access memory

SRB DUART channel B status register

Acronyms

Acronym

Definition

SSp
TBCHK
TBIA
TBIS
THRA
THRB
USP
WR
XMT

Supervisor stack pointer internal processor register
Translation buffer check internal processor register
Translation buffer invalidate all internal processor register
Translation buffer invalidate single internal processor register
DUART channel A Tx holding register

DUART channel B Tx holding register

User stack pointer internal processor register

Write line bus interface signal

Ethernet transmit data bus interface signal

B-4 Acronyms

B0 80086.8.0.689 4940069649464
$.8:6.5066.4.9.0.69¢66.0690690094

p .08 84456.604.440.46¢600.¢
1$.6.9.0.9.6.9.0.0.6:4:6:0.0.0.6.0.6 4
19.8.6.0.0.8.0.0.0.6.0:4.0.6.0.04
0.0.8.6.6.4.0.0.6.4.9.4.¢.4.¢.¢
$9.4.:0.0.4.0.0.0.4.6.4.4¢

$.9.6.8.¢.8.4.4.4. 44

XXXXXXXHK

$6.0.¢.6.9.¢ 4

XXAXX
XXX
X

XXXXX
XXXXXXX

XXXKAX KKK

XXXXXXAKX XXX

19.9.4,6.4.6.0.4.4.6.4.4 4

D 9.9.90.9.6.9.64:9.90.6.4.¢

b0 0.8.640.66.45.084444.4

KAAXAK XX XX AXXXKAKXKX

AXAXXXK XA XA XAKXAAXNKKAY

bSO 00030.000.0.648060609
P00.0.8.0.0.¢.0°0.0.6.9.06.40.68.564.659)

FO 0 $4969¢6060.96900090.¢4¢]

D990 000 0800000 0.04.48600000.660.4

$ 9. ¢.2.0.0.9.66.0000.000968.66064906,40900)]

F 0000090000908 90000660566.090.000)]

BP0 0.0.¢0084008 000008094 0.0400004040¢ 0]

DG 80E0.6:0.0808 080600000540 9000 00090608,

DOP VIO DGO 0008.0880.0 00000900001
DO.0.0.0.0.9.00.8,0.8.09.0.0.010.0080.048608¢.090.60.6 099060
9. 0.0.0.080.0.4008650.00080000.560 0000906660900 00
PO 0.0.8.0.8.00.00.8.08,08.0.80009040.09.0.00.09 000000 0¢ 00000
FE0:9.0.0.0:08.00 00.43.0.8.€00/01¢.0.0.0:4.0:0.9.0:0.0.0.0/ 9.0 8600000000

B 8.0.9.9.9.9.0.0.0.6.9.0.0.6.¢9:0.6/0.9.6,0.0.610.0.9.9.4:99.860.0.0 90000000
DE.00.0.9.0.0.0.0.0.0.0.0/0.8.5:6.0.0.0:0.0/0.0.0/0.9:0:0/9.010.9.499 60000000 060 00T

C

Address Assignments

This appendix covers the following topics:

* Memory space (Table C-1)

¢ Input/output space (Table C-2)

e Local register input/output space (Table C-3)

Table C-1 Memory Space
Address Range Contents

00000000—0FFFFFFF Cached read/write memory space (256M bytes)
10000000—1FDFFFFF Cached read-only memory space (254M bytes)
1FE00000—1FFFFFFF Reserved memory space (2M bytes)

Table C-2 Input/Output Space
Address Range Contents

20000000—201FFFFF Local register VO space (2M bytes)
20200000—3FFFFFFF User /G space (510M bytes)

Address Assignments €C-1

Table C-3 Local Register input/Output Space

Address Range

Contents

20000000—20007FFF
20008000—2000803F
20008040—2000FFFF
20010000—2001007F
20010080—2003FFEB
2003FFEC—2003FFFF
20040000—2007FFFF
20080000—200FFFFF
20100000—2010003F
20100040—2010FFFF
20110000—20110003
20110004—201FFFFB
201FFFFC—201FFFFF

Reserved local register I/O space
Ethernet coprocessor register I/O space
Reserved local register I/O space
Network interface address ROM L/O sp ace
Reserved local register 1/O space

Boot register

rtVAX 300 boot/diagnostic ROM space
User boot/diagnostic ROM space
Console DUART register VO space
Reserved local register /O space
Memory system control/status register
Reserved local regiscer I/O space

LED display/status register

C-2 Address Assignments

&

HEARLXILE i‘......."
HEELHALK
f 2 4.4, 4
po.e 4
¥
b 4
¥X¥
0. 8084
XXYAXLY
KAXAXKAWAEK
XXXXXAXINAY,
HHEXAELKAKAXKY,
AXA K AKX LYAKLS,
HA XK AN AX XA LK KARLY,
§ 9806 0.8054588048444544 3
p U004 400000460804048044

D8 #0060 4800848808004848044

P4 9090400000840698064604 41
§0.00.0.900000400904808480408675¢

YHEX AR KAKXXK LK AR XU LKL XLAKK

B 000500909099 0888898480004948441

P800 000000800808 098400080090 44444
$00.0.80.9.608060060084888048488084844544
1$.5,0.6.0.98.6.06.00.00000 080000888 584694840¢04

[8.40.9808 468980005048 00 08803 0844490484054
b4:00805000600080¢ 0000000 068968666080 48044
§0.0.0.000000608.6980009800000 8000000000800 4800¢4

PO 0466080860008 85000080068480989869066480404]
§0.6.0.8.000.0¢9000899989.9890.6600690804860858486805004
b0 S0 80.80.6808000.08 090908606 008009049 0080808648494
0.9.0.0.6.0.8.099.68.09006400060099900809660009089488804645403

D

User Boot/Diaghostic ROM Sample

This appendix contains a template of the functions that might be incorporated
in a user-supplied boot and diagnostic ROM.

.title 300USERROM - rtVAX 300 User Boot/Diagnostic Firmware
.ident /rtVAX 300 v1.0-00/

; COPYRIGHT (c) 1991
; by Digital Equipment Corporation, Maynard, Massachusetts

; This software is furnished under a license and may be used and copied
; only in accordance with the terms of such license and with the
; inclusion of the above copyright notice. This software or any other
; copies thereof may not be provided or otherwise made available to any
; other person. No title to and ownership of the software is hereby
; transferred.

; and should not be construed as a commitment by Digital Equipment

; The information in this software is subject to change without notice
’
; Corporation,

; Digital assumes no responsibility for the use or reliability of its
; software on equipment which is not supplied by Digital.

User Boot/Diagnostic ROM Sample D-1

; ‘ ‘l
; FACILITY:

; rtVAX 300 User Boot/Diagnostic Firmware

; ABSTRACT:

; This module contains routines to provide user=-defined rtVAX 300
; ROM-based board-level initialization and diagnostics.

; It is a template intended to serve as the starting point for
; implementing rtVAX 300 User Boot and Diagnostic routines. When
: used as a template, the code and definitions for the sample
; routines should be modified and expanded as needed.

; Assemble ROM-based firmware modules as follows:

; § MACRO/LIST/OBJECT 300USERROM.MAR+KERMAC .MLB/LIBRARY

; Note that the above assumes that KERMAC.MLB macro library can be
; found in your default directory.

; Build an executable image by specifying the ROM’s base address
; as follows:

; $ LINK/SYSTEM:$X20080000/MAP/FULL 300USERROM.OBJ

; AUTHOR:
; Realtime Software Engineering, CREATION DATE: 15-Feb-1991
. MODIFIED BY:

; modifier’s name, dd-mmm-yyyy, VERSION: svv.u-ep
; 01 - modification description

.sbttl Module Declarations
; INCLUDE FILES:

; 'kermac’ library symbol definitions

Scpu300def . define rtVAX 300 specific offsets,
; registers, etc.

; 'starlet’ library symbol definitions

$dscdef ; define memory bitmap descriptor

D-2 User Boot/Diagnostic ROM Sample

, MACROS:

.
e

; macro to define rom code or read-only data program section

macro

.endm

.
.

usrom_share psect alignment=long
.psect usrom$zcode,pic, rd, nowrt, quad

.list meb
.align psect alignment
usrom_share

. ; EQUATED SYMBOLS:

300 board-level test flagword fields

; rtvax
$vield

_300,0,< -
<btf testemd,l,m>, -
<btf _powerup,l,m>, -

<btf consdev,l,m», -~

< 727r>r =
>

; define test flagword fields

; explicitly invoked by TEST coumand
; test invoked by power-up sequence
<btf fatlerr,1l,m>, =~ ;
; upon failure

_ ; console slu is present
<btf dsply, 1,m>, =~ ;

test returns control immediately

led display is present

; reserved (always read as 0's)

; rtVAX 300 console program read/write data offsets

_300Sk_cpmbx = 0
300 b cpflg = 1
300$b bootdev = 2

; console program mailbox
; console program flags
; default boot device

; rtVAX 300 user boot/diagnostic ROM offsets

$defini
$def
Sdef
Sdef
$def
$def
Sdef
$def
Sdef
$def
Sdef
$def

300%v.rom, LOCAL, 0
30081 _usrom reserved 1l
730061 _usrom_ “board init
300$l usrom test 8
300$l_usrom_test_9
730051 usrom test 10
30081 usrom test 11
30051 usrom test_12
30081 usrom test 13
300$l usrom_ test 14
730081 usrom reserved 2
30051 usIom . shared

$defend 300Susrom

.blkb
.blkb

’

; reserved area
; start of board-level init an
; diagnecstic testing code/data

.bikb 28 ; reserved area
.blkl 1 ; address of board-level init
.blkl 1 ; addrecss of board-level test
.blkl 1 ; address of board-level test
.blkl 1 ; address of board-level test
.blkl 1 ; address of board-level test
.blkl 1 ; address of board-level test
.blkl 1 ; address of beard-level test
.blkl 1 ; address of board-level test
4
0

User Boot/Diagnostic ROM Sample D-3

; LOCAL STORAGE:

.
’

; rtVaX 300 user boot/diagnostic rom entry points
.psect usrom$ycode,pic,rd, nowrt, quad

_300%al _usrom vector:

.long x0003101 ;. reserved

.byte 00,01,02,03 ; rom index numbers

.byte 02,02,02,02 ; reserved

.quad 0 ; reserved

.quad 0 ; reserved (mbz)

assume <.-_300%al usrom vector> eq 30051 usrom board init
.address 300$usrom board init ; address of board-level m:.t.lal:.zatlon‘
assume <.- 300%al usrom vector> eq 30051 usrom test 8

.address 300$usron test_ 8 ; address of board-lesvel test 8
assume <.- 300$al usrom vector> eq 300$1 usrom test 9

.address 300$usrom test 79 ; address of board-level test 9
assume <.-_ 300%al usrom_ vector> eq 30051 usrom test 10
.address 300$usrom test ~10 ; address of board-level test 10
assume <.- 300$al_usrom vector> eq 30051 usrom test 11
.address 300$usrom test T11 ; address of board-level test 11
assume <.- 300$al usrom vector> eq 30051 usrom test 12
.address 300 usrom test 12 ; address of board-level test 12
assume <.- 300%al usrom vector> eq 30051 usrom test 13
.address 300$usrom test "13 ; address of board-level test 13
assume <.- 300$al usrom ' vector> eq 30051 usrom test 14
.address 300$usrom test_ "14 ; address of board-ievel test 14
long 0 ; reserved (mbz)

assume <.-_3005al _usrom vector> eq _30051 usrom_shared

; EXTERNAL REFERENCES:

’

; no external data/routines directly referenced in this module .

.sbttl rtVAX 300 Board-level Initialization

D-4 User Boot/Diagnostic ROM Sample

; 4+
; FUNCTIONAL DESCRIPTION:

; This routine (user-supplied) is called by the rtVAX 300's resident
; firmware at system power-on to do any board-level initialization. It
; is called at IPL 31, in kernel mode with memory management disabled.
; CALLING SEQUENCE:

; calls #3,_300$usrom_board_init

; INPUT PARAMETERS:

; cpmbx - address of console mailbox
; bitmap - address of memory bitmap descriptor
; scratch - address of scratch memory area

; IMPLICIT INPUTS:

; * & None * %

; OUTPUT PARAMETERS:
; % None %* %

; IMPLICIT OUTPUTS:
; * % None * %

; ROUTINE VALUE:

H * % None * %

; SIDE EFFECTS:

: % % None * %

; board-level initialization argument block offsets

offset «-
cpmbx, - ; address of console mailbox
bitmap, - ; address of memory bitmap descriptor
scratch - ; address of scratch memory area
>

usrom share byte

_300$usrom_board_init::
.word “m<>
ret ; return to caller

User Boot/Diagnostic ROM Sample D-6

.sbttl rtVAX 300 Board-level Test 8

++
FUONCTIONAL DESCRIPTION:

This routine (user-supplied) is called by the rtVAX 300's resident
firmware at system power-on to do board-level test 8. It is called
at IPL 31, in kernel mode with memory management disabled.

CALLING SEQUENCE:
calls #5, 300Susrom test 8

INPUT PARAMETERS:

scratch - address of scratch memory area

failing pc address of longword to store failing pc
expected data address of quadword to store expected data
actual data address of quadword to store actual data
flags - Dboard-level test flags

IMPLICIT INPUTS:
** None **

OUTPUT PARAMETERS:

r0 - test results
IMPLICIT OUTPUTS:
** None **

ROUTINE VALUE:

-1 - device not present or untestable
0 - test failed
1 - test passed

SIDE EFFECTS:

** None * %

ma we We s Me ms Me e Mo s e Ws We Ma Ne Wa We e Mu Ne Ne s We Wa Vs Wo W Me We M Ne e We W2 Ws W We e Ve ve we

~a

; board-level test 8 argument block offsets

D—6 User Boot/Diagnostic ROM Sample

. offset <~

scratch, - ; address of scratch memory area
failing_pec, - , address of longword to store failing
- ,; pc if test fails
expected_data, - ,; address of quadword that test can
- ; store expected data if test fails
actual data, - ; address of quadword that test can
- ; store actual data if test fails
flags -, board-level test flags
>

usrom share byte

_300$usrom test 8::

.word m<>
ret , return to caller

.sbttl rtVAX 300 Board-level Test 9

Dot
. FUNCTIONAL DESCRIPTION:

; This routine (user-supplied) is called by the rtVAX 300's resident
; firmware at system power-on to do board-level test 9. It is called
: at IPL 31, in kernel mode with memory management disabled.

. ; CALLING SEQUENCE:

; calls #5, 300%usrom test 9
; INPUT PARAMETERS:

; scratch - address of scratch memory area

; failing pc address of longword to store failing pc

; expected data address of quadword to store expected data
; actual data address of quadword to store actual data

; flags - Dboard-level test flags

. ; IMPLICIT INPUTS:

; ** None **

;, OUTPUT PARAMETERS:

H r) - test results
; IMPLICIT QUTPUTS:

; ** None **

; ROUTINE VALUE:

. H ~1 = device not present or untestable

User Boot/Diagnostic ROM Sample D-7

0 <« test failed
1 - test passed

e ®ma w. wa

SIDE EFFECTS:

L34 None L3

; board-level test 9 argument block offsets

offset <=

scratch, - ; address of scratch memory area

failing pc, - ; address of longword to store failing
- ; pc if test fails

expected data, - ; address of quadword that test can .
- ,; store expected data if test fails

actual data, - ; address of quadword that test can
- ; store actual data if test fails

flags - ; board-level test flags

b)

usrom_share byte

_300Susrom_test 9::

.word ~m<>
ret ; return to caller
.sbttl rtVAX 300 Boar~-level Test 10

D-8 User Boot/Diagnostic ROM Sample

ot

;, FUNCTIONAL DESCRIPTION:

This routine (user-supplied) is called by the rtVaX 300's

firmware at system power-on to do board-level test 10,

at IPL 31, in kernel mode with memory management disabled.

; CALLING SEQUENCE:

calls #5, 300$usrom test_

INFUT PARAMETERS:

scratch - address
failing pc address
expected data address
actual data address

10

of
of
of
of

flags - test flags

IMPLICIT INPUTS.:

** None **
; QUTPUT PARAMETERS:

r0 - test results
IMPLICIT OUTPUTS:

** None **

; ROUTINE VALUE:

scratch memory area

longword to store failing pc¢
quadword to store expected data
quadword to store actual data

-1 - device not present or untestable

0 - test failed
1 - test passed

; SIDE EFFECTS:

L 4 None * %

; board-level test 10 argument block offsets

User Boot/Diagnostic ROM Sample D-9

It is called

offset <-
scratch,
failing pc,

expected data,
actual data,

flags
>

usrom _share byte

_300$usrom_test_10::
.word
ret

m<>

.sbttl

; o+
; FUNCTIONAL DESCRIPTION:

; This routine

(user-supplied) is called by the rtVAX 300's
; firmware at system power-on to do board-level test 11.

- ; address of scratch memory area

- ; address of longword to store failing

- ; pc if test fails

- ; address of quadword that test can
- ; store expected data if test fails
- ; address of quadword that test can
- ; store actual data if test fails

- ; board-level test flags

; return to caller

rtvaXx 300 Board-level Test 11

resident
It is called

; at IPL 31, in kernel mode with memory management disabled.

; CALLING SEQUENCE:
; calls
; INPUT PARAMETERS:

; scratch -
; failing pc -
; expected data
; actual data

; flags -

; IMPLICIT INPUTS:

. %% None *x

; OUTPUT PARAMETERS:
; r(- test results
; IMPLICIT OUTPUTS:

; * % NOne * %

; ROUTINE VALUE:

-1 -

address of
address of
address of
address of
board-level test flags

#5,_300$usrom_test_11

scratch memory area

longword to store failing pc
quadword to store expected data
quadword to store actual data

; 1 device not present or untestable

D-10 User Boot/Diagnostic ROM Sam, s

0 -~ test failed
1 - test passed

SIDE EFFECTS:

k% None * i

Me e WM. Ne W wa we wa

; board-level test 11 argument block offsets

offset =
scratch,
failing pc,

expected_data,
actual data,

flags
>

usrom share byte

_300%usrom test 11::

. we we e

~e

address of scratch memory area
address of longword to store failing
pc if test fails

address of quadword that test can
store expected data if test fails
address of guadword that test can
store actual data if test fails
board-level test flags

.word ~mC>
ret ; return to caller
.sbttl rtVaxX 300 Beoard-level Test 12

User Boot/Diagnostic ROM Sample D-11

++
FUNCTIONAL DESCRIPTION:

This routine (user-supplied) is called by the rtVAX 300’s

firmware at system power-on to do board-level test 12. It is called

at IPL 31, in kernel mode with memory management disabled.
CALLING SEQUENCE:
calls #5, 300Susrom test 12
INPUT PARAMETERS:
scratch - address of scratch memory area
failing pc address of longword to store failing pc
expected data address of guadword to store expected data

actual data address of quadword to store actual data
flags - board-level test flags

IMPLICIT INPUTS:

*%k None *%
OUTPUT PARAMETERS:

r0 - test results
IMPLICIT OUTPUTS:

* % None * %k

ROUTINE VALUE:

-1 - device not present or untestable
0 - test failed
1 - test passed

SIDE EFFECTS:

** None **

; board-level test 12 argument block offsets

D-12 User Boot/Diagnostic ROM Sample

offset <-
scratch,
failing pc,

expected data,
actual data,

flags
>

usrom share byte

_300Susrom test 12::

address of scratch memory area
address of longword to store failing
pc if test fails

address of quadword that test can
store expected data if test fails
address of quadword that test can
store actual data if test fails
board-level test flags

.word m<>
ret ; return to caller
.sbttl rtVAY 300 Board-level Test 13

; ++
; FUNCTIONAL DESCRIPTION:

; This routine (user-supplied) is called by the rtVAX 300’'s resident
; firmware at system power-on to do board-level test 13. It is called
; at IPL 31, in kernel mode with memory management disabled.

; CALLING SEQUENCE:

; calls #5,_300Susrom est 13

; INPUT PARAMETERS:

; scratch - address of scratch memory area

; failing pc
; expected data
; actual data

address of longword to store failing pc
address of quadword to store expected data
address >f quadword to store actual data

; flags - board-level test flags

; IMPLICIT INPUTS:

; ** None **

; OUTPUT PARAMETERS:

; r0 = test results
; IMPLICIT OUTPUTS:

; ** None **

; ROUTINE VALUE:

; -1 - device not present or untestable

User Boot/Diagnostic ROM Sample D~13

; 0 - test failed
; 1 - test passed

; SIDE EFFECTS:

** None **

; board-level test 13 argument block offsets

offset <«-
scratch,
failing pc,

expected_data,
actual data,

flags
>

usrom share Dbyte

_300$usrom_test_l3::

e we M2 Ye W We wWe we

address of scratch memory area
address of longword to store failing
pc if test fails

address of quadword that test can
store expected data if test fails
address of quadword that test can
store actual data if test fails
board-level test flags

.word ‘m<>
ret ; return to caller
.sbttl rtVAX 300 Board-level Test 14

D-14 User Boot/Diagnostic ROM Sample

o+

; FUNCTIONAL DESCRIPTION:

This routine (user-supplied) is called by the rtVax 300's
firmware at system power-on to do board-ievel test 14.

at IPL 31, in kernel mode with memory management disabled.

; CALLING SEQUENCE:
calls #5,‘3005usrom_test_l4

; INPUT PARAMETERS:

scratch - address of scratch memory area

failing pc

expected data
actual data address of quadword to
flags - board-level test flags

address of longword to

; IMPLICIT INPUTS:

** None **

; OUTPUT PARAMETERS:

r0 - test results
; IMPLICIT OUTPUTS:

** None *¥

; ROUTINE VALUE:

-1 - device not present or untestable
¢ - test failed
1 - test passed

; SIDE EFFECTS:

** None **

; board-level test 14 argument block

User Boot/Diagnostic ROM Sample D-15

5]

store failing pc

address of quadword to store expected data

store actual data

ffsets

resident

It is called

offset «-
scratch,
failing pc,

expected data,
actual data,

flags
>

usrom_share byte

_300%usrom test_14::
.word ‘m<>
ret

.end

D-16 User Boot/Diagnostic ROM Sample

r

address of scratch memory area
address of longword to store failing
pc if test fails

address of gquadword that test can
store expected data if test fails
address of gquadword that test can
store actual data if tes: fails
board-level test flags

return tc caller

VAT,
pAAAS AN 44
fA 809004
YEYEY
4.4 4

¥

CHHTHT

KXHARH,

KAKAXXK

KA XUXAKAKY,

pA 94300000

KHEELXY Y ZALAEL,

YALA LA AL LA AL AL,

HAAL KK LK ALLE AL KA KLH

KAVH AL LA LA AL AL E LY

KA HAXA KR AA XA LA KL UANA AN

YLLK MUK LYK S LH L ALK

PO 004900480465 0904 60440

08004000 00800480404040044090

WA LK AR AL A E LA KA LA TR AL LTS LA

KA E A YA KA WA A LKA A A A

PR IS GNI ISP 000000 009888000044 44

PP NGNS IOV IO NI 999804804 36048404

PO VNG IS0 00090 08080889800 08400040 4
JAGOAIINISON SIS NSNS0 9998604680 058000485
LHEK AL LA AL AU U LKL ALK KA KA L LKA LA ALY
XE XA KU KA KK I A KK LK LA KA XL AR AL LA L LA AR A AL
WAALA LU AL UL AL G A S LAY A UKL L YL LAY LKL LAY

XAKA KA XL KL LK AR LR KA LR LA L L LL AL LA L LA LR LA LA LA RE

E

Sample C Program to Build Setup Frame
Buffer

Example E-1 shows a C program to create the setup frame buffer for the
hashing filtering mode.

Example E-1 Hash Filtering Setup Frame Butfer Creation C Program
/*

** This program builds the setup frame buffer for the SGEC imperfect

** filtering.

*

** The addresses are read, in the IEEE 802 address display format

** (yx-xx-xy-wx-xx-xx), from the file specified in the in_filename argument.
*

** The setup frame is writen in the file specified by the out filename
** grgument. If missing, the setup frame is sent to the standart output.
*k

** Each multicast address generates a hit in the hash filter.

** The first read physical addresses is kept as the physical address

** following the hash filter.Subsequent non multicast addresses, if any,
** are ignored.

* %

** The address crc is generated by the crc polynomial specified by the
** JEEE 802.3 standard:

*

** 32 26 23 22 16 12 11 190 8 7 5 4 2
** FCS(X) =X 4+ X + X +X +X 44X 4% +X +X+¥X+X+X+X+X+1

k24

*/

#include <stdio>
main{argc,argv}

int argc;
char *argv{};

(continued on next page)

Sample C Program to Build Setup Frame Buffer E-1

Example E-1 (Cont.) Hash Flltering Setup Frame Buffer Creation C Program .

{
FILE *fopen(),*fin, *fout;
unsigned char address[6],
setup_frame[128],
line[80],
physical cnt = 0;
int i, hash_index;

if (arge < 2) {
printf ("\n Usage: program in_filename {out filename}\n");
exit (1),
}

if (!(fin = fopen(argv[1l],"r"))){
printf ("\n Error: %s cannot be open for read\n",argv[l]);
exit (1);
}

if (arge >= 3)
if (!(fout = fopen(argv{2],"w"))){
printf ("\n Error: %s cannot be open for write\n",argv{2]);
fclose(fin);
exit (1),
}

/* initialize the setup buffer */

for (i=0; i<128; i++)
setup frame[i]=0;

while (1) {
/*get a Ethernet address */
if (!fgets(line,80,fin)) break;

sscanf (line, "$2X~%2X~-%2X-%2X~-%2X~-%2X",
gaddress[0], &address[1], &address(2],
&address[3], &address([4], &address[5]);

/* check the address type */
if (address[0] & 1){

/* multicast address */
/* calculate the hash_index */
hash_index = crc_address(&address[0]):

/* update the hash filter */
setup_frame[hash index>>3] |= (1 << hash_index%8) ;
}

(continued on next page) ‘

E-2 Sample C Program to Build Setup Frame Buffer

. Example E-1 (Cont.) Hash Flitering Setup Frame Buffer Creation C Program
else {
/* physical address */

if (!pbysical cnt)
for (i=0; i<6; i ++)
setup frame[64+i] = address[i};
physical cnt++;
continue;

}
}

/*
. ** send a warning message if no, or more than one, physical addresses
** have been found

*/

if (!physical cnt)
printf{ ("\nWarning: %s does not contain a physical address !'\n\n",
argv(l]);
else if {physical cnt > 1)
printf ("\nWarning: %s contains more than one (%d) physical address '\n\n®",
argv[l],physical _ecnt);

/*
. **store the setup buffer in the specified out file
*/

if (arge >= 3)
for {i=0; 1<18, i++)
fprintf (fout, "%02X%02X%02X%02X\n",
setup frame[i*4+3],setup frame[i*4+2],
setup frame[i*4+1], setup frame[i*4]);

else
for (i=0; i<18; i++)
print£("$02X%02X%02%¥%02X\n",
setup frame[i*4+3], setup frame[i*4+2],

setup_frame[i*4+1],setup frame[i*4]);

fclose(finj;
fclose{fout);

I
int crc_address (addr)

char *addr;

(continued on next page)

Sample C Program to Build Setup Frame Buffer E-3

Example E-1 (Cont.) Hash Filtering Setup Frame Buffer Creation C Program ‘
{

int i/ kl m,
hash = 0;

unsigned char mean,
crc33];

/* Init CRC to all 1's */

for (i=0; 1i<33; i++)
crcl[il = 1;

/* Compute the address CRC by running the CRC 48 steps */

for (i=0; 1i<6; i++4)
for (k=0; k<8; k++){

mean = crc32] * ((*(addr+i)>>k) & 1);
for (m=32; m>=2; m--)

cre(m] = crem-1];

crc[27] = cref27] * mean;
crc{24] = crci24] * mean;
crc{23] = crc[23] * mean:
crc{l7] = crc[17] * mean:
crc{l3] = crc[13] * mean;
crcli2] = crefl2] ~ mean;
crefll] = crc[ll] ~ mean;
crc{09] = crc[09] * mean;
crc{08] = crc[08] * mean;
crc[06] = crc{06] * mean;
cre{05] = crc{05] * mean;
crc[03] = crc[03] * mean;
~rc[02) = crcl02] * mean;
crc{0il = mean;

}

/t

** Extract the hash_index from the CRC residue

** (warning: the bits are mirrored into the CRC :

**x the msb bit of CRC residue is the lsb bit of the hash_index)
*/

for (k=24; k<33; k+4)
hash = hash<<1 | crclk];
return (hash & 0xz1FF);

E-4 Sample C Program to Build Setup Frame Buffer

8000009000000 08 00093 60088000886006.0.080848.068080409
XA OO X RO X X XA KK XK KK KX KL K AN KKK K
KEO R Y K KOO M D R O XX XK KK XK XK XK
p:0.4:9.0:0.0.60.5.808.00.48.090600.50088006460.906865.60.6.004

PS4 10448 4506808.08400080804300.003.9.095000064

PO 0PI RPN NS4 000.6.04060484808005000004

b p bGPttt 08908080808 888080008408480880044

L0800 0000 0800808400.60049.8.64606.04900.04

B AR 90880800863.08648.00.0000.0.966.009444
P40 400040006500 400.000530096.00.00¢
EXXXEX R TR EAURK XK Y XKL AR KK KL KK KKK

1.9 8.0.0.0.90.0.0.00.00.6808.8860.8606.0.¢,0.94
}:9.0:0.9.0.6.6.0.8.9,90.0.6.4.6.0.9.0.0.:0.0.8.4.0.4.4
R000.0.0.9.80.4.0.0.0.0.896686.06.¢.9.4.4

BE0 688485880800 60.4$50.0.4.4

b0 0.0.0.6406.8.0.0.040¢904.0.04
p..6.0.8.0.9.0.0.4.00.6.0.¢.000¢4
XXXAXHEXAUXKKALAY

}:0.6.6.0.0.0.0.9.6,0¢.8.4.6.4

$.0.9.4.9,6.4.4.4.0.89 04

EXXXKXXAKKX

XHUAXAXXXK

XXXHXXX

XXXXX
XXX

X

XX

XXXX

XAXXXKA

J.8.0.8.6,0.8.4

EXAXAAXKXH
XA XXX AKXKKY
KUAXAX KX XL AXH
f.0.0.0.9.£.60.4.0.08.0.4.00
}0.4.4.0.6.9.0.08390.4.9.8¢04
$9.0.96.08.0.4.0 08000000 0¢

1 $.0.00.080448080040 08000
PO 0308008040000 84¢4004

P00 880800908 000038 000000
p6.90.00.0.0.60.¢84.8060.8200.03 808004
$.4.0.0.0.09.808.0.680006.40.00050 00800 ¢

D 0.6.0.9.8.0.0.¢8 0880808 4448.09596049.000
$6.0,0.8.0,8.0.6.90.94.8040.069.6.9908$5880000¢
FO.,0.60.0.4.6049406,0860.0.890 8680808840400
}:9.0.0.00.6.0.6.0.0.0.$90.00.60,6808404.60¢000404404

b FR0.0.00004.8.60000 09000000808 88400 00000004
p6.9.4.0.0.0.669.8.00.0.9.¢.0800008.64¢049.9.800680003080

P D49 0084900008090 000660800.00.0908408048890¢84¢

0.0 0.6.0.0.0.0.009.000.9.0:0.06.009500008.0800 6800000068800
0.9.0.6.0.0.0.0:0.9.6.0.$.09.9.80.0:9.950.86.000.5080808088.9889489604
}5.4.9.0.9.0:6.0.0.0.09.80890868.8500.6.0400.089698900.053896060899

A

Abort, defined, 3-17
Access

console, 6-3

/O, 8-3

time for ROM, table of, 6-18
AC characteristics, table, A-6
ADAWTI instruction, 5-3
Address

de« .de and boot ROM, 2-22

decoder, 5-9
and power-up reset, figure, 5-36

application module
equations, 6~-21
equations, table of, 5-36
PAL, 5-34
table of pin settings, 6-22

boot ROM, 6-14

PAL, 5-33

decoder, figure, 6-14, 8-23

decoding, 8-2 to 8-3
sample application, diagram, 8-3

latch, 8-1
boot ROM, 6-14
latches, 5-11
latches, figure, 5-36, 6-15
ROM space, 3-10
translation
internal cache, 3-34
Q22-bus to memory, figure, 8-10
Altitude
operating, A-8
storage, A-8

Index

Application module
address decoder equations, 6-21
pin settings, table of, 6-22
Architecture
abort, 3-17
cacheable references, 3-31
cache address translation, 3-33
cache data block allocation, 3-34
cache memory, 3-31
cache organization, 3-32
CADR, 3-36
CFPA data types, 3-31
CFPA instructions, 3-30
CPU references, 3-29
data-stream read references, 3-29
Ethernet coprocessor, 3-47 to 3-89
exceptions, 3-16
fault, 3-17
floating-point accelerator, 3--30
floating-point errors, 3-20
hardware-detected errors, 3-26
hardware halt procedure, 3-27
hardware reset, 3-40
/O bus initialization, 3-41
initialization, 3-40
instruction-stream read references, 3-29
internal cache behavior on writes, 3-35
interrupt action, 3-14
interrupt errors, 3-21
machine check, information saved on,
3--19
memory management errors, 3-20
microcode-assisted emulated instructions,
3-3 to 34
microcode errors, 3-21

index-1

Architecture (Cont.)
microprocessor, 3-1
MSER, 3-38
power-up initialization, 3-40
processor initialization, 3-41
read errors, 3-21
resident firmware operation, 3-10
ROM address space, 3-10
SCBB, 3-24
SID, 3-28
summary, 2-2
trap, 3-17

AUI connector, diagram, 7-9

BNC connector, diagram, 7-9
Board-level initialization ROM, 4-39
Boot
command, 4-11
countdown, 4-27
device, irmware, 4-28
devices, 4-21, 6-12 to 6-19
display, 4-27
flags, firmware, 4-29
from external ROM, 6-12
register, 3-41
register, figure, 3-42
ROM, 2-22
address decoder, 6-14
address latch, 6-14
design, 6-13
diagram, 6-13
illustrations, 6-19 to 6-35
PALs, 6-19 to 6-35
programming, 6-12
serial-line, directions, 445 to 4-47
user ROM bank 1 with drivers, figure,
6-24
user ROM bank 2, figure, 6-26
Bootstrap operations, 447 to 449
[Broak], 4-10
Break detector, 6-11
Buffer formats, 3-66
Bus
connections, 2-6 to 2-7

Index-2

Bus (Cont.) ‘
control signals, 2-13
cycles and protocols, 2-24 to 2-43
cycle types, table of, 5-4
data and address, 2-11
errors, response to, table, 8-7
interfacing techniques, 8-6 to 8-32
master, rtVAX 300 as, 8-6
protocols, 2-24 to 2—43
retry cycles, 2-16
slave, rtVAX 300 as, 8-7

Byte
DAL masks, table of, 5-7

Byte mask
lines, 5-5 to 5-6

C

Cache, 3-32
address translation, 3-33
behavior on writes, 3-35
control line, 5-8
control of internal, 5-8
data block allocation, 3-34
disable register, figure, 3-36
internal, 2-5
internal, error detection, 3-39
invalidate cycle, 2-42
octaword, figure, 243
quadword, figure, 2-43
organization, 3-32
Cacheable references, 3-31
CADR, 3-36
Central processor, 3-2
overview, 1-2
CFPA, 2-2
data types, 3-31
instructions, 3-30
Chaining, data, 3-67
Chaining, descriptor, 3-66
Clock signals, 2-19
CMPBX contents, 4-35
Collision detect, 2-12
Column address, DRAM multiplexer, 5-12
Comment (!) command, 4-21
Communications, DECnet, 7-1 to 7-2 ‘

. Configuration, minimum, 2-5
Console
access, 6-3
circuit illustrations, 6-19 to 6-35
command line firmware, 4-11
command restrictions, 4-11
device
locating, 4-24
required capabilities, 4-24
DSP interface, figure, 8-36
DUART register, 3-43
I/0 mode, 4-8 to 4-25
. interface, figure, 6-22
interrupt acknowledge cycles, 64
keys, 4-9
line drivers and receivers, 6-11

mailbox register (CPMBX), figure, 4-34
mailbox register fields, table of, 4-35

mode, entering firmware, 4-8
oscillator, 6-11
PALs, 6-19 to 6-30
program flags, figure, 4-36
. program flags fields, table of, 4-36
read cycle timing, figure, 6-7
registers, table of, 3-43
sequencer, PAL, 6-29
state machine, 64
system interface, 6-1 to 6-11
terminal, and firmware, 4-24
terminal interface diagram, 6-3
timing parameters, 66
why needed, 2-5
. write cycle timing, figure, 6-7
Console emulation
see console program
Contamination, A-8
Continue command, 4-12
Control and Status Register, 8-19
CPU, 2-2
CPU references, 329
CsSDp
IACK codes, table of, 5-11
IPR codes, table of, 5-11
CSR

DSP, sample application, figure, 8-50

CSR (Cont.)
for DSP, 8-19

[Ctrix] characters, 4-10

Cycle
bus, 2-24 to 243
console read and write timing, 6-7
console sequence, 64
DMA read timing, figure, 8-9
DMA timing, figure, 242
DMA write timing, figure, 8-32
interrupt acknowledge timing, 6-5
read, selection, table of, 5-15
ROM read timing, 6-15
rtVAX 300 data transfer and bus types,

54

status codes, 5-4

D

DAL
bus turnoff time, 5-32
byte masks, table of, 5-7
parity errors, response to, table of, 8-7
parity masks, table of, 5-7
Data
and address bus, 2-11
chaining, 3-67
latches
DRAM, 5-17
RAM, figure, 5-40
parity checking, 5-7
transfer, table of types, 5-4
types, 3-2
Data and address line, see DAL
Data-stream read references, 3-29
D/A to A/D interface, sample application,
figure, 8-54
DC characteristics, table, A~5
DECnet communications, 7-1 to 7-2
Decode and control logic, 24
Decoder
address, 5-9
application module PAL, 5-34
boot ROM, 6-14
I/O device interfacing figure, 8-23

index-3

Decoder
address (Cont.)
sample design figure, 6-14
Decoding address, 8-2 to 8-3
gample application, diagram, 8-3
Decoupling caps
sample application, figure, 8-58
Default boot device register, figure, 4-37
Delete], 4-10
Deposit command, 4-12
Descriptor
chaining, 3-66
formats, 3-66
receive, 3-67
transmit, 3-72
receive format, figure, 3-68
setup frame format, figure, 3-79
transmit format, figure, 3-72
Device
DMA, mapping registers, 8-10 to 8-13
0, mapping, figure, 8-2
mapping, /O, 8-1 to 8-3
Diagnostics
Ethernet coprocessor, 3-87
Ethernet coprocessor, on-chip, 3-88
Digital signal processor, see DSP
DMA
building DMA engine, 8-7
contro] signals, 2-18
cycle, 241
cycle, figure, 242
devices
mapping registers, 8-10 to 8-13
optional mapping registers for, 8-10
DSP DMA controller
sample application, figure, 8-52
read cycle timing, figure, 8-9
state machine sequence, figure, 8-18
structure, 2-4
write cycle timing, figure, 8-32
DRAM
address path, figure, 5-13
array, 5-15
CAS before RAS, table of, 5-32
data latches, 5-17

index-4

DRAM (Cont.)
4M-byte array, 5-15
memory array, figure, 5-39, 540
memory refresh, 5-12
row and column address multiplexer,
5-12
terminating resistors, 5-16
timing parameters, 80 ns page mode,
5-26
DSp
and rtVAX 300 interface, diagram, 8-14
CSR bits: hold, interrupt, and reset, 8-19
CSR for, 8-19
DMA
base address register, 8-20
cycles, 8-17
initialization ROM, 8-17
memory map, 8-16
private memory, 8-16
RAM, 8-16
sample application
console interface, figure, 8-36
DMA
address drivers, figure, 8-46
controller, figure, 8-52
transceiver and parity generator,
figure, 8-44
DRAM address path, figure, 8-23
DRAM memory array (1), figure,
8-24
DRAM memory array (2), figure,
8-24
memory controller, figure, 8-34
PGM loader ROM, figure, 8-24
private RAM, figure, 8-42
RAM data latches, figure, 8-24
1-way mirror register, figure, 8-48
to rtVAX sample application, 8-13 to
8-20
halting processor, 8-21
power-up, 8-20 to 8-21
reset, 8-20 to 8-21
1-way mirror register, 8-19
Dual-ported memory, 8-13

. Dual universal asynchronous receiver

/transmitter, see DUART

DUART, 6-6

timing parameters, table of, 6-7

Electrical characteristics, A-5 to A-7
Emulated instructions

microcode-assisted, 3-3 to 34

Environment, figure, 2-6
Environmental characteristics, A-8
Error

bus, 8-6

Ethernet coprocessor, reporting, 3 87
hardware-detected, 3-26

memory system register, figure, 3-38
response to bus, table, 8-7

response to parity, table, 87

write, 3-22

Ethernet

coprocessor, 3-47 to 3-89

control/status registers, 348 to

3-66
CSRO, 349

format, figure, 3-50

table of bits, 3-50
CSR1, 3-50

format, figure, 3-51

table of bits, 3-51
CSR10, 3-63

format, figure, 3-63

table of bits, 3—63
CSR11, 3-64

table of bits, 364
CSR12, 3-64

table of bits, 3-64
CSR13, 3-64

table of bits, 3—64
CSR14, 3-64

format, figure, 3-64

table of, 364
CSR15, 3-65

format, figure, 3-65

table of, 3-65

Ethernet
coprocessor (Cont.)

CSR2, 3-50, 3-51
format, figure, 3-51
table of bits, 3--51
CSR3, 3-51
format, figure, 3-52
table of bits, 3-52
CSR4, 3-51
format, figure, 3-52
table of bits, 3-52
CSR5, 3-53
format, figure, 3-53
table of bits, 3-53
CSR6, 3-57
format, figure, 3-57
tabie of bits, 3-57
CSR7, 3-61
format, figure, 3-61
table of bits, 3-61
CSR9, 3-862
format, figure, 3-62
table of bits, 3-62
CSR fields after reset, table of, 3-85
descriptor formats, 3-66 to 3—83
descriptor list
addresses, format, 3-52
address registers, 3-51
address registers, table of, 3-52
diagnostics, 3-87
diagram, 3-47
error reporting, 3-87
errors, summary table, 3-88
hardware reset, 3-85
interrupts, 3-86
loopback modes, 3-89
on-chip diagnostics, 3—88
operation, 3-84
overview, 1-3
programming, 3--84
receive mode, 3-87
reflectometer, 3-89
registers
physical command/status, 3-48
table of, 3-48

Index-5

Ethernet

COprocessor
registers (Cont.)

virtual command/status, 348
serial interface, 3-86
software reset, 3-85
testing, 3-87
time-domain reflectometer, 3-89
transmit mode, 3-87
interface
implementation example, 7-5
programming the, 3-48
with rtVAX 300, 7-2 to 7-3
interface sample
block diagram, 7-6
board parts, table of, 7-11
controller block diagram, 7-3
dc-to-dc converter, diagram, 7-12
design corner functions, 7-5
differential signals, 7-12
DP8392 chip block diagram, 7-7
DP8392 transceiver, 7-12
DP8392 transceiver chip, 7-7
EMC compliance, 7-17
external components, 7-14
grounding, 7-19
heat spreader, diagram, 7-17
isolation boundary, 7-20
isolation transformer and jumpers
diagram, 7-3
layout considerations, 7-15

layout for medium interface, diagram,

7-16
PCB layout considerations, 7-16
power, 7-18
transceiver, 7-9
transceiver, functional description,

Examine command, 4-15

Example
boot process console display, 4-28
inspecting console field, 4-28
modifying console field, 4-28
power-on display, 4-26

Exceptions
and interrupts, 3-12
architecture, 3-16

External I/O bus reset register
firmware, 4-20

External ROM, booting from, 6-12

F

Fault, defined, 3-17

Figures
application module address decoder

memory map, 6-21

cache disable register, 3-36
console mailbox register, 4-34
console program flags, 4-36
CSRO format, 3-50
CSR10 format, 3-63
CSR14 format, 3-64
CSR15 format, 3-865
CSRV/CSR2 format, 3-51
CSR3/CSR4 format, 3-52
CSR5 format, 3-53
CSRé6 format, 3-57
CSR7 format, 3-61
CSR9 format, 3-62
default boot device register, 4--37
DMA cycle, 2-42

Ethernet coprocessor block diagram, 347

help display, 4-16
I/O device interfacing

7-7 address decoder and power-on reset,
transceiver and connectors, diagram, 8-23
7-9 address decoding block diagram, 8-3

transceiver interface, 7-7
transceiver interface signals, 7-5
listener, 4-25
registers and rtVAX 300, 74
thickwire connections, 2-12

address latches, 8-2, 8-23
coneole interface, 8-36

D/A and A/D interface, 8-54
decoupling caps, 8-58

DMA address drivers, 848

index-6

Figures

I/0 device interfacing (Cont.)

DMA read cycle timing, 8-9
DMA state machine sequence, 8-18
DMA write cycle timing, 8-32
DRAM address path, 8-23
DRAM memory array (1), 8-24
DRAM memory array (2), 8-24
DSP and private RAM, 8-42
DSP and rtVAX 300 processor
interface block diagram, 8-14
DSP DMA controller, 852
DSP DMA transceiver and parity
generator, 844
DSP PGM loader ROM, 8-24
HALT logic, 8-21
interrupt daisy-chain block diagram,
8-5
memory controller, 8-34
RAM data latches, 8-24
reset timer logic, 8-21
rtVAX 300 and DSP CSR, 8-50
rtVAX 300 I/O pin connectors, 8-56
rtVAX 300 ThinWire/thickwire
network connections, 8-24
user boot ROM bank 1 with drivers,
8-38
user boot ROM bank 2, 8-40
VAX-to-DSP 1-way mirror register,
8-48
imperfect filtering setup frame buffer
format, 3-82
information saved on machine check,
3-19
internal cache
address translation, 3-34
data block, 3-33
entry, 3-32
organization, 3-32
tag block, 3-33
internal read or write cycle, 240
interrupt acknowledge cycle, 2-37
interrupt registers, 3-15
interval timer, 3-9
LED status register, 3—45

Figures (Cont.)

memory bitmap descriptor, 442
memory organization, 5-5
memory system error register, 3-38
memory system status/control register,
344
microcycle timing, 2-24
network interconnect
controller block diagram, 7-3
dc-to-dc converter, 7-12
DP8392 chip block diagram, 7-7
Ethernet interface block diagram,
7-6
heat spreader, 7-17
isolation transformer and jumpers,
7-3
layout of ThinWire memium interface,
7-186
transceiver, BNC connector, and AUI
connector, 7-9
octaword cache invalidate cycle, 2-43
octaword-transfer read cycle timing, 2-30
octaword-transfer write cycle timing,
2-35
perfect filtering setup frame buffer format,
3-81
processor status longword, 3-6
Q22-bus map register, 8-13
Q22-bus to main memory address
translation, 8-10
quadword cache invalidate cycle, 2-43
quadword-transfer read cycle timing,
2-29
RAM memory map, 5-36
receive descriptor format, 3-67
ROM boot block, 4-48
rtVAX 300 block diagram, 2-2
rtVAX 300 bottom view, A-3
rtVAX 300 memory and /O space, 2-20
1tVAX 300 memory bank organization,
2-21
rtVAX 300 pin layout, 2-10
rtVAX 300 side view, A4
rtVAX 300 top view, A-2
sample design

index-7

Figures

sample design (Cont.)

add-ess decoder, 6-14

address decoder and power-up reset,
5-35

address latches, 5-36, 6-15

boot ROM functional block diagram,
6~13

console cycle sequence, 6—4

console interface, 6-22

console read and write cycle timing,
6-7

console terminal interface block
diagram, 6-3

DRAM address path, 5-13

DRAM memory array (1), 5-38

DRAM memory array (2), 5-39

interrupt acknowledge cycle timing,
6-5

memory controller, 5-40
longword timing, 5-24

octaword read cycle timing, 5-25

octaword write cycle timing,
5-28
refresh timing, 5-30
sequence, 5-18
memory subsystem functional
diagram, 5-9
processor status display, 6-19
RAM data latches, 540
ROM read cycle timing, 6-15
user boot ROM bank 1 with drivers,
6-24
user boot ROM bank 2, 6-26
setup frame descriptor format, 3-79
single-transfer read cycie timing, 2-25
single-transfer write cycle timing, 2-34
system control block base register, 3-24
system identification register, 3-28
system ROM format, 4-2
system ROM part, 4-3
system ROM set data, 4-4
system type register, 4-5
thickwire connections, 2-13
timing cycle for reset function, 2-7

index-8

Figures (Cont.)

transmit descriptor format, 3-72
typical rtVAX 300 environment, 2-6
user boot/diagnostic ROM, 4-40

Find command, 4-15
Firmware

board-level initialization ROM, 4-39
boostrapping operating system, 4—7
boot device, default, 4-28
boot devices, 4-21
boot flags, 4-29
compatible consoles, 4-9
console command line, 4-11
console command restrictions, 4-11
conscle commands, 4-11 to 4-21

!, 421

Boot, 4-11

Continue, 4-12

Deposit, 4-12

Examine, 4-15

Find, 4-15

Halt, 4-15

Help, 4-16

Initialize, 4-17

Repeat, 4-17

Set, 4-17

Show, 4-18

Start, 4-19

Test, 4-19

Unjam, 4-20

Xfer, 4-20
console device, 4-24

locating, 4-24

required capabilities, 4-24

requirements, 4-25
console entry and exit, 4-25
console keys and signals, 4-9
console mode. entering and exiting, 4-9
console program, 4-8 to 4-25
console program messages, 422
countdown status codes, table of, 4-27
CPU status LED register, 345
diagnostic test list, 4-29 to 4-33
entering console mode, 4-8
entry, 4-6 to 4-9

. Firmware (Cont.)

error messages, table of, 4-22
external /O bus reset register, 4-20
general description, 4-1
halt action, 4-28
memory system control/status register,
3-44
power-on, 4-6 to 4-9
display, 4-26
resident, operation, 3-10
resident, overview, 1-3
restart, 4-7
. ROM, format, 4-2
SCR$A_RESTORE_CONSOLE, 4-39
SCR$A_SAVE_CONSOLE, 4-39
scratch RAM offset definitions, table of,
4-34
startup messages, 4-26
gysterm ROM part format, 4-2 to 4-3
system ROM set format, 44 to 4-5
gystem scratch RAM, 4-34 to 4-39
test number codes, table of, 4-29
user initialization procedure, 4-40
user-supplied test procedures, 442
Firmware halt program, see console program
Floating-point accelerator, 3-30
overview, 1-2
Floating-point processor, see CFPA
Floating-point unit, see CFPA
Formats, descriptor and buffer, 3-66
Functional description, 2-1 to 2-5

B

Halt action, firmware, 4-28

Halt command, 4-15

HALT logic, figure, 8-21

HALT mode, see console program

Halt procedure, 3-27

Hardware configuration, minimum, 2-5
Hardware reset, 3—40

Help command, 4-16

Help display, figure, 4-16

Humidity, operating, A-8

Vo
access, 8-3
bus
initialization, 341
reset register, 3-41
cycle types, 8-3
device mapping, 8-1 to 8-3
devices and bus parity, 8-3
local register space, table, C-2
pin connectors
sample application, figure, 8-56
space, 2-20 to 2-23
system illustrations, 8-23 to 8-60
IACK codes on CSDP, table of, 5-11
Initialize command, 4-17
Instruction
microcode-assisted emulated, 3-3 to 34
set, 3-2
Instruction-stream read references, 3-29
Interconnect, network, 7-3
Interface
bus, 8-6 to 8-32
Ethernet-rtVAX 300, 7-2 to 7-3
Internal cache, 2-5
address translation, figure, 3-34
data block, figure, 3-33
entry, figure, 3-32
error detection, 3-39
organization, figure, 3-32
tag block, figure, 3-33
Internal cycles, 2-40
Interrupt
acknowledge cycle, 2-37
acknowledge cycle, figure, 2-37
acknowledge cycle timing, figure, 6-5
control, 2-18, 3~-13
daisy-chain, diagram, 8-5
daisy-chaining, 8-5
decoder, PAL, 6-33
decoder, PAL equations, 6-35
dispatching vector, 3-13
Ethernet coprocessor, 3-86

Index-9

Interrupt (Cont.)

internal hardware, 3-13
maskable, 3-14
nonmaskable, 3-14
registers, figure, 3-15
structure, 24
in /O device interfacing, 84 to 86
in rtVAX 300, 84 to 8-6
timer, 3-13
vector, 86
Interval timer, 2-4, 3-9
figure, 3-9
IPR codes on CSDI’, table of, 5-11
IPR cycles
external, 2-37
external read, 2-37
external write, 2-39
Isolation transformer and jumpers diagram,
7-3

L

aldr>ss, 8-1
‘ot ROM, 6-14
Latches
address, 5-11
sample application, figure, 8-23
address, figure, 6-15, 8-2
LED status register, 6-19
fields, table of, 3-45
figure, 3-45
LED test number codes, table of, 4-29
Line drivers, console, 6-11
Line receivers, console, 6-11
Listener, Ethernet, 4-25
Longword memory controller read timing,
5-23

Machine check
information saved, 3-19
information saved, figure, 3-19

Maintenance operation protocol, see MOP

index~10

Mapping

/O device, 8-1 to 8-3
registers, DMA device, 8-10 to 8-13

Maskable interrupt, 3-14
Memory

and VO space, 2-20 to 2-23
attachment unit, 2-12
bank organization, figure, 2-21
bitmap descriptor, figure, 4-42
controller
figure, 540
longword timing, figure, 5-24
octaword read cycle, figure, 5-25
octaword write cycle, figure, 5-28
read timing, longword, 5-23
read timing, quadword, 5-23
refresh timing, 5--30
refresh timing, figure, 5-30
sequence, figure, 5-18
setup times, table of, 5-22
state machine, 5-17
state machine setup time, 5-22
DRAM array, figure, 5-39, 5-40
DRAM refresh, 5-12
dual-ported, 8-13
interface. 5-3 to 5-4
management unit (MMU), 5-9
map, figure, 2-20
organization, figure, 5-5
read cycle selection, tabie of, 5~15
read cycle transfers, 5-20
reserved, locations, 2-2
space address assignment, table, C-1
speed and performance, 5-2
structure, 5-5
subgystem
functional diagram, 5-9
sequencer PAL, 5-43
sequencer state machine, 543
system
design example, 5-§ te 5-20
error registers, figure, 3-38
octaword write cycle timing, 5-28
timing, 5-21 to 5-32
access calculations, 5-21

Memory management, 3-11

control registers, 3-12

enable (MAPEN) register, 3-12
Memory system control/status register

fields, table of, 3—44

figure, 344
Memory system register, 3-—44 to 345
Messages, firmware console program, 4-22
Microcode-assisted emulated instructions,

3-3 to34

Microcycle, definition, 2-24
Microprocessor architecture, 3-1
Minimum configuration, 2-5
MMU, 5-9
MOP, 445

running test programs with, 4—45
MSER, 3-38

N

Network
interconnect, 7-3
Interface, 2-2

registers, 2-23
Nonmaskable interrupt, 3-14

O

Octaword
read cycle transfers, 5-20
write cycle timing, memory system, 5-28
Operating
altitude, A-8
recommended conditions, table, A-5
ternperature, A-8
Oscillator, console, 6-11
Overview of rtVAX 300, 1-1

P

Parity
checking data, 5-7
control signals, 2-16
DAL masks, table of, 5-7
data, checking, 5-7

Physical characteristics, A-1 to A~2

Pin

and signal description, 2-8 to 2-20

layout, figure, 2-10
Power

connections, 2-6

supply connections, 2-20
Power-down sequencing, 2-7
Power-failure, recovery from, 2-7
Power-on

display, 4-26

flags, figure, 4-37

reset, figure, 8-23
Power-up

initialization, 3-40

requirements, 2-6

reset and address decoder, figure,

sample applicaticn, 8-20
Processor

initialization, 3-41

state, 3-5

status display, figure, 6-19

status longword, 3-5

figure, 3-6

/PROGRAM, 444
Programmable array logic, see PAL

Q

536

Q22-bus
map registers, see QMR
address translation, figure, 8-10
DMA devices, 8-10
map registers, 8-10, 8-12

to main memory address translation,

8-12
QMR
map registers, figure, 8-13
register bits, table of, 8-13
Quadword

memory controller read timing, 5-23

read cycle transfers, 5-20

index-11

R

RAM, 2-5
data latches, figure, 540
static vs. dynamic, 5-2
Random-access memory, see RAM
Read cycle
DMA timing, figure, 8-9
internal, figure, 2-40
memory selection, 5-15
octaword, figure, 5-25
octaword-transfer, 2-29
octaword-transfer, figure, 2-30
quadword and octaword transfers, table,
5-20
gquadword-transfer, 2-26
quadword-transfer, figure, 2-29
ROM timing, 6-14
ROM timing, figure, 6-15
single-transfer, 2-24
single-transfer, figure, 2-25
Read references
data-stream, 3-Z9
instruction-stream, 3-29
Receive mode, Ethernet coprocessor, 3-87
Recovery from power-failure, 2-7
Register
boot, 341
breakpoint addrees, 3—64
cache disable, 3-36
command and mode, 3-57
console boot device, 4-37
console DUART, 3-43
console DUART, table of, 3-43
console mailbox, 4-34
control and status, 8§-19
default boot device, 4-37
descriptor list addresses, 3-51
DMA base address, 8-20
Ethernet coprocessor
physical command and status, 3-48
table of, 3-48
virtuz] command and status, 3-48
external YO bus reset, 4-20

ndex-12

Register (Cont.)

/O bus reset, 3—41
LED display/status, 3-45
local VO space, table, C-2
memory management control, 3-12
memory managerment enable (MAPEN),
3-12
memory system control/status, 3—44
memory system eyror, 3-38
monitor command, 3-85
processor status LED, 6-19
Q22-bus map bits, 8-13
revision number and missed frame count,
3-63
status, 3-53
system base, 3-61
system control block base (SCBB), figure,
3-24
system identification, 3-28
system type, 4-5
translation buffer
check (TBCHK), 3-12
invalidate all (TBIA), 3-12
invalidate single (TBIS), 3-12
transmit/receive polling demands, 3-50
vector address, IPL, sync¢/asynch, 3-49
watchdog timer, 3-62
1-way mirror, 8-19
Registers
boot message, 32-64
console interface, 3-41 to 3-46
control/status, 3-48 to 3-66
DMA device mapping, 8-10 te 8-13
Ethernet coprocessor, 348
general-purpose, 3-5
internal processor, 3-7
interrupt, figure, 3-15
raemory management control, 3-12
Network Interface, 2-23
Q22-bus mapping, 8-10, 8-12
Relative humidity, operating, A-8
Reliability, A-8
Repeat command, 4-17
Reserved memory locations, 2-2
Reset, 8-20

Reset (Cont.)
Ethernet CSR fields, table of, 3-85
requirements, 2-6
timer logic, figure, 8-21
timing, figure, 2-7
Resident firmware, overview, 1-3
Retry cycles, bus, 2-16
'Return|, 4-9
ROM
access time, table of, 6-18
address space, 3-10
boot
address latch. 6-14
znA address decode, 2-22
bleck, figure. 4-48
design, 6-13
diagram, 6-13
ilustrutions, 6-19 to 6-35
PAls, 6-19, 6-35
programiming, 6-12
bootstrap cperations, 4—47 to 449
diagnostic, 2-23
external, booiing from, 6-12
format, 4-2
initialization, 2-22
internal cache error detection, -39
iocations, 2-2
read cycle timing, 6-14
read cycle timing, figure, 6-15
system
format, figure, 4-2
part, figure, 4-3
part format, 4-2 to 4-3
set data, figure, 44
set format, 44 to 4-5
turn-off *‘me, 6-18
user, programming, 2-23
user boot bank 1 with drivers, figure,
6-24
user boot bank 2, figure, 6-26
Row and column address, DRAM
multiplexer, 5-12
rtVAX 300
bottom view, A—4
overview, 1-1

rtVAX 300 (Cont.)
side view, A4
top view, A-3
rtVAX to DSP sample application, 8-13 to
8-20
halting processor, 8-21
power-up, 8-20 o 8-21
Tteset, 8-20 to 8-21

S

Sample application
address decoding, figure, 8-3
address latches, figure, 8-23
D/A to A/D interface, figure, 8-54
decoupiing caps, figure, 8-58
DRAM address path, figure, 8-22
DRAM memory array (1), figure, 8-24
DRAM memory array (2), figure, 8-24
DSP 1-way mirror register, figure, 848
DSP console interface, figure, 8-36
DSP CSR, figure, 8-50
DSP DMA address drivers, figure, 846,
8-48
DSP DMA controller, figure, 8-52
DSP DMA transceiver and parity
generator, figure, 8-44
DSP private RAM, figure, 8-42
1/0 pin connectors, figure, 8-56
memory controller, figure, 8-34
PGM loader ROM, figure, 8-24
RAM data latches, figure, 8-24
ThinWire/thickwire network connections,
figure, 8-24
use boot ROM 1, figure, 8-38
use boot ROM 2, figure, 840
SCBB, 3-24
figure, 3-24
table, 3-24 to 3-26
SCR$A_RESTORE_CONSOLE, 4-39
SCR$A_SAVE_CONSOLE, 4-39
Self-test routine cutput, 443
Senal interface, Ethernet coprocessor, 3-86
Set command, 4-17
Setup frame buffer format
hash table, 3-83

Index-13

Setup frame buffer format (Cont.)
imperfect filtering, figure, 3-83
perfect filtering, figure, 3-81

Setup frame descriptor format, figure, 3-79

Setup time, memory controller state

machine, 5-22

Shock tolerance, A-8

Show command, 4-18

SID, 3-28
figure, 3-28
table, 3-29

Signal description, 2-8 to 2-20

Start command, 4-19

Startup messages, 4-26

Status
control signals, 2-16
display, figure, 6-19
register, 3-53

Status LED register, 3-45, 6-19

Storage
altitude, A-8
contamination, A-8

/SYSTEM, 4-44

System control block base register, see SCBB

System control signals, 2-19

System identification register, see SID

System ROM format, figure, 4-2

Systemn ROM part, figure, 4-3

System ROM set data, figure, 44

System support functions, 1-3

T

Tables

ac characteristics, A-6

acronyms, B-1

application module address decoder, 6-22
equations, 5-36
PAL, 5-34

boot options, 3-42

bus interface signals, 2-8

byte masks, 2-14

cache disable register fields, 3--36

console program flags fields, 436

index-14

Tables (Cont.)

console sequencer state machine PAL,
6-29

CSRO bits, 3-50

CSR10 bits, 3-63

CSR11/12/13 bits, 3-864

CSR14 bits, 3-64

CSR15 bits, 3-65

CSR1 bits, 3-51

CSR3/CSR4 bits, 3-52

CSRS5 bits, 3-53

CSR6 bits, 3-57

CSR7 bits, 3-61

CSR9 bits, 3—62

DAL lines, 2-12

dc characteristics, A-5

decoder equations, 6-21

default boot device register fields, 4-38

DRAM CAS before RAS refresh timing
parameters, 5-32

DRAM timing parameters for 80 ns page

mode IM Bitx 1, 5-26
Ethernet board parts list, 7-11
Ethernet coprocessor CSR nonzero fields

after reset, 3-85

Ethernet coprocessor summary of reported

errors, 3-88
/O space, C-1
interrupt decoder, 6-33
irzerrupt decoder PAL equations, 6-35
interrupt priority assignments, 2-18
LED display chart, 3-46
LED status register fields, 3-45
local register 1/O space, C-1
MAU signals description, 7-6
memory controller setup times, 5-22
memory read cycle selection, 5-15
memory space, C-1
memory subsystem sequencer state
machine PAL, 5-43

mermory system error register fields, 3-39

Q22-bus map register bits, 8-13

quadword and octaword read cycle
transfers, 5-20

RDESO fields, 3-68

. Tables (Cont.)

RDES] fields, 3-70
RDES2 fields, 3-71
RDERSS3 fields, 3-71
receive descriptor status validity, 3-72
recommended operating conditions, A-5
response to bus errors and DAL parity
errors, 8-7
rtVAX 300 bus status signals, 2-17
rtVAX 300 CSDP<4:0> IPR and IACK
codes, 5-11
rtVAX 300 DAL parity and byte masks,
5-7
rtVAX 300 data transfer and bus cycle
types, 54
rtVAX 300 prucessor pin description, 2-9
rtVAX 300 responses to octaword-transfer
read cycle, 2-30
1tVAX 300 responses to quadword-transfer
read cycle, 2-29
SCN 2681 DUART timing parameters,
6-7
setup frame descriptor bits, 3-79
system identification register fields, 3-29
system type register fields, 4-5
TDESO fields, 3-72
TDES]1 fields, 3-74
TDES2 fields, 3-76
TDESS3 fields, 3-77
TMS320C25 digital signal processor
memory map, 8-16
transmit descriptor status validity, 3-77
typical ROM access time, 6-18
Temperature, operating, A-8
Terminating resistors, DRAM, 5-16
Test command, 4-19
Testing, Ethernet coprocessor, 3-87
Test number codes, table of, 4-29
Test programs
creating and loading, 4-44
linking, 4-44
MOP, 445
running, 4-45
Thickwire
connections, 2-12 to 2-13

Thickwire (Cont.)
connections, figure, 2-13
network interconnect, 7-3
ThinWire, rtVAX 300 support, 7-3
ThinWire/thickwire
network connections, sample application,
figure, 8-24
rtVAX 300 support, 7-5
Timer, reset logic, 8-21
Timing
console, 6-6
DMA cycle, figure, 242
DRAM CAS before RAS refresh, table,
5-32
DUART parameters, table of, 6-7
internal read or write cycle, figure, 2-40
interrupt acknowledge, figure, 2-37
memory controller longword, figure, 5-24
memory controller octaword read cycle,

figure, 5-25
memory controller octaword write cycle,
figure, 5-28

memory controller refresh, figure, 5-30
microcycle, figure, 2-24
octaword cache invalidate cycle, figure,
243
octaword-transfer read cycle, figure, 2-30
octaword-transfer write cycle, figure,
2-35
quadword-transfer read cycle, figure,
2-29
reset cycle, figure, 2-7
single-transfer read cycle, figure, 2-25
single-transfer write cycle, figure, 2-34
Topology, figure, 2-2
Transceiver chip, Ethernet interface, 7-7
Transfer cycle status codes, 54
Translation buffer, 3-11
check (TBCHK) register, 3-12
invalidate all (TBIA) register, 3-12
invalidate single (TBIS) register, 3-12
Transmit mode, Ethernet coprocesser, 3-87
Trap, defined, 3-17
Turn-off time, ROM, 6-18

index~15

U

Unjam command, 4-20
User boot/ iagnostic ROM, figure, 4-40

\

Vector
dispatching interrupts, 3-13
interrupt, 8-6

Vibration tolerance, A-8

index-16

W

Write cycle
DMA timing, figure, 8-32
internal, figure, 2-40
octaword, figure, 5-28
octaword, memory system timing, 5-28
octaword-transfer, 2-35
octaword-transfer timing, figure, 2-35
single-transfer, 2-32
single-transfer timing, figure, 2-34
Write references, 3-30

X

Xfer command, 4-20

