
Migrating to an OpenVMS AXP
System: Recompiling and Relinking
Applications
Order Number: AA–PV63A–TE

May 1993

This manual describes how to create an OpenVMS AXP version of an
OpenVMS VAX application.

Revision/Update Information: This is a new manual.

Software Version: OpenVMS AXP Version 1.5
OpenVMS VAX Version 6.0

Digital Equipment Corporation
Maynard, Massachusetts

May 1993

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant
to a valid written license from Digital or an authorized sublicensor.

© Digital Equipment Corporation 1993. All rights reserved.

The postpaid Reader’s Comments forms at the end of this document request your critical evaluation
to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: AXP, Bookreader, DEC,
DECmigrate, Digital, OpenVMS, PDP–11, VAX, VAX Ada, VAX C, VAX COBOL, VAX DBMS,
VAX DOCUMENT, VAX FORTRAN, VAX MACRO, VAX Pascal VMS, the AXP logo, and the
DIGITAL logo.

ZK5780

This document was prepared using VAX DOCUMENT Version 2.1.

Contents

Preface . ix

1 Introduction

1.1 Overview . 1–1
1.2 Recompiling Your Application with Native AXP Compilers 1–1
1.3 Identifying Dependencies on the VAX Architecture in Your Application . . . 1–2
1.4 Relinking Your Application on an AXP System . 1–3
1.5 Compatibility Between the Mathematics Libraries Available on VAX and

AXP Systems . 1–5
1.6 Determining the Host Architecture . 1–5

2 Adapting Applications to a Larger Page Size

2.1 Overview . 2–1
2.1.1 Compatibility Features . 2–1
2.1.2 Summary of Memory Management Routines with Potential Page-Size

Dependencies . 2–2
2.2 Examining Memory Allocation Routines . 2–6
2.2.1 Allocating Memory in Expanded Virtual Address Space 2–6
2.2.2 Allocating Memory in Existing Virtual Address Space 2–8
2.2.3 Deleting Virtual Memory . 2–9
2.3 Examining Memory Mapping Routines . 2–10
2.3.1 Mapping into Expanded Virtual Address Space 2–10
2.3.2 Mapping a Single Page to a Specific Location 2–12
2.3.3 Mapping into a Defined Address Range . 2–13
2.3.4 Mapping from an Offset into a Section File . 2–19
2.4 Obtaining the Page Size at Run Time . 2–20
2.5 Locking Memory in the Working Set . 2–21

3 Preserving the Integrity of Shared Data

3.1 Overview . 3–1
3.1.1 VAX Architectural Features That Guarantee Atomicity 3–2
3.1.2 Alpha AXP Compatibility Features . 3–3
3.2 Uncovering Atomicity Assumptions in Your Application 3–3
3.2.1 Protecting Explicitly Shared Data . 3–5
3.2.2 Protecting Unintentionally Shared Data . 3–8
3.3 Synchronizing Read/Write Operations . 3–9
3.4 Ensuring Atomicity in Translated Images . 3–10

iii

4 Checking the Portability of Application Data Declarations

4.1 Overview . 4–1
4.2 Checking for Dependence on a VAX Data Type . 4–1
4.3 Examining Assumptions About Data-Type Selection 4–4
4.3.1 Effect of Data-Type Selection on Code Size . 4–4
4.3.2 Effect of Data-Type Selection on Performance 4–4

5 Examining the Condition Handling Code in Your Application

5.1 Overview . 5–1
5.2 Examining Condition Handling Routines for Dependencies 5–1
5.3 Identifying Exception Conditions . 5–5
5.3.1 Testing for Arithmetic Exceptions on AXP Systems 5–7
5.3.2 Testing for Data-Alignment Traps . 5–9
5.4 Performing Other Tasks Associated with Condition Handling 5–10

6 Ensuring Interoperability Between Native and Translated Images

6.1 Overview . 6–1
6.1.1 Compiling Native Images That Can Interoperate with Translated

Images . 6–1
6.1.2 Linking Native Images That Can Interoperate with Translated

Images . 6–2
6.2 Creating a Native Image That Can Call a Translated Image 6–2
6.3 Creating a Native Image That Can Be Called by a Translated Image 6–5
6.3.1 Controlling Symbol Vector Layout . 6–6
6.3.2 Creating Stub Images . 6–8

A OpenVMS AXP Compilers

A.1 Compatibility of DEC Ada Between AXP Systems and VAX Systems A–1
A.1.1 Differences in Data Representation and Alignment A–1
A.1.2 Tasking Differences . A–2
A.1.3 Differences in Language Pragmas . A–2
A.1.4 Differences in the SYSTEM Package . A–2
A.1.5 Differences Between Other Language Packages A–3
A.1.6 Changes to Predefined Instantiations . A–3
A.2 Compatibility of DEC C for OpenVMS AXP Systems with VAX C A–4
A.2.1 Language Modes . A–4
A.2.2 DEC C for OpenVMS AXP Systems Data-Type Mappings A–4
A.2.2.1 Specifying Floating-Point Mapping . A–5
A.2.3 Features Specific to AXP Systems . A–6
A.2.3.1 Accessing Alpha AXP Instructions . A–6
A.2.3.2 Accessing Alpha AXP Privileged Architecture Library (PALcode)

Instructions . A–6
A.2.3.3 Ensuring the Atomicity of Combined Operations A–7
A.2.4 Differences Between the VAX C and DEC C for OpenVMS AXP

Systems Compilers . A–7
A.2.4.1 Controlling Data Alignment . A–7
A.2.4.2 Accessing Argument Lists . A–8
A.2.4.3 Synchronizing Exceptions . A–8
A.2.5 VAX C Features Not Supported by /STANDARD=VAXC Mode A–8
A.3 Compatibility of DEC COBOL with VAX COBOL A–9

iv

A.3.1 Command Line Qualifiers . A–10
A.3.1.1 Qualifiers Shared by DEC COBOL and VAX COBOL A–10
A.3.1.2 DEC COBOL Qualifiers Not Available in VAX COBOL A–10
A.3.1.3 VAX COBOL Qualifiers Not Available in DEC COBOL A–11
A.3.2 Behavior Differences . A–12
A.3.2.1 Specifying Alignment for Numeric Data Items with the DEC

COBOL /ALIGNMENT Qualifier and Alignment Directives A–12
A.3.2.1.1 Using the /ALIGNMENT Qualifier . A–13
A.3.2.1.2 Using Alignment Directives . A–13
A.3.2.2 Validating Numeric Data with the DEC COBOL

/CHECK=NODECIMAL Qualifier Option . A–13
A.3.2.3 Converting Leading Blanks to Zeros with the DEC COBOL

/CONVERT=LEADING_BLANKS Qualifier Option A–14
A.3.2.4 Specifying a Floating-Point Data Format with the DEC COBOL

/FLOAT Qualifier . A–14
A.3.2.5 Optimizing Your Code with the DEC COBOL /OPTIMIZE

Qualifier . A–14
A.3.2.6 Checking for Special Reserved Words with the DEC COBOL

/RESERVED_WORDS Qualifier . A–14
A.3.2.7 Calling Out Language Feature Extensions to the COBOL ANSI

Standard with the DEC COBOL /STANDARD Qualifier A–15
A.3.2.7.1 /STANDARD=V3 Qualifier Option . A–15
A.3.2.7.2 /STANDARD and /WARNINGS Qualifiers A–18
A.3.2.8 Calling Native and Translated Images with the DEC COBOL /TIE

Qualifier . A–18
A.3.2.9 VAX COBOL to DEC COBOL Program Conversion A–18
A.3.2.10 Program Structure . A–19
A.3.2.11 COPY and REPLACE Statements . A–20
A.3.2.12 MOVE Statement . A–22
A.3.2.13 ACCEPT and DISPLAY Statements . A–23
A.3.2.14 LINAGE Statement . A–23
A.3.2.15 File Status Differences . A–24
A.3.2.16 System Return Codes . A–24
A.3.2.17 Storage Differences for Double-Precision Data Items A–25
A.3.2.18 RMS Special Registers . A–25
A.4 Compatibility of DEC Fortran for OpenVMS AXP with VAX

FORTRAN . A–26
A.4.1 Language Features . A–26
A.4.1.1 Language Features Specific to DEC Fortran A–27
A.4.1.2 Language Features Specific to VAX FORTRAN A–28
A.4.1.3 Interpretation Differences . A–29
A.4.1.4 DEC Fortran Restrictions . A–29
A.4.2 Command Line Qualifiers . A–30
A.4.2.1 Shared Qualifiers . A–30
A.4.2.2 Qualifiers Specific to DEC Fortran . A–31
A.4.2.3 Qualifiers Specific to VAX FORTRAN . A–32
A.4.3 Interoperability with Translated Shared Images A–33
A.4.4 Porting VAX FORTRAN Data . A–33
A.5 Compatibility of DEC Pascal for OpenVMS AXP Systems with VAX

Pascal . A–34
A.5.1 New Features of DEC Pascal . A–34
A.5.2 Modifying Default Alignment Rules for Record Fields A–35
A.5.3 Recommended Use of Predeclared Identifiers . A–36
A.5.4 Platform-Dependent Features . A–36

v

A.5.5 Obsolete Features . A–37
A.5.5.1 /OLD_VERSION Qualifier . A–37
A.5.5.2 /G_FLOATING Qualifier . A–37
A.5.5.3 OVERLAID Attribute . A–37

Index

Examples

1–1 Using the ARCH_TYPE Keyword to Determine Architecture Type . . . 1–5
2–1 Allocating Memory by Expanding Your Virtual Address Space 2–8
2–2 Allocating Memory in Existing Address Space 2–9
2–3 Mapping a Section into Expanded Virtual Address Space 2–11
2–4 Mapping a Section into a Defined Area of Virtual Address Space 2–15
2–5 Source Code Changes Required to Run Example 2–4 on an AXP

System . 2–17
2–6 Using the $GETSYI System Service to Obtain the CPU-Specific Page

Size . 2–20
3–1 Atomicity Assumptions in a Program with an AST Thread 3–5
3–2 Version of Example 3–1 with Synchronization Assumptions 3–7
4–1 Assumptions About Data Types in VAX C Code 4–3
5–1 Condition Handling Routine . 5–5
5–2 Sample Condition Handling Program . 5–12
6–1 Source Code for Main Program (MYMAIN.C) 6–3
6–2 Source Code for Shareable Image (MYMATH.C) 6–3

Figures

2–1 Virtual Address Layout . 2–7
2–2 Effect of Address Range on Mapping from an Offset 2–20
3–1 Synchronization Decision Tree . 3–4
3–2 Atomicity Assumptions in Example 3–1 . 3–6
3–3 Order of Read and Write Operations on an AXP System 3–10
4–1 Alignment of mystruct Using VAX C . 4–6
4–2 Alignment of mystruct Using DEC C for OpenVMS AXP Systems 4–6
5–1 Signal Array on VAX and AXP Systems . 5–2
5–2 Mechanism Array on VAX and AXP Systems . 5–3
5–3 SS$_HPARITH Exception Signal Array . 5–8
5–4 SS$_ALIGN Exception Signal Array . 5–10

Tables

1–1 Linker Qualifiers and Options Specific to AXP Systems 1–4
1–2 $GETSYI Item Codes That Specify Host Architecture 1–6
2–1 Potential Page-Size Dependencies in Memory Management

Routines . 2–2
2–2 Potential Page-Size Dependencies in Run-Time Library Routines 2–6
4–1 Comparison of VAX and AXP Native Data Types 4–2

vi

5–1 Architecture-Specific Hardware Exceptions . 5–6
5–2 Exception Summary Argument Fields . 5–8
5–3 Run-Time Library Condition Handling Support Routines 5–11
A–1 Modes of Operation of the DEC C for OpenVMS AXP Systems A–4
A–2 Arithmetic Data-Type Sizes in DEC C for OpenVMS AXP

Compiler . A–4
A–3 DEC C Floating-Point Mappings . A–5
A–4 DEC C Compiler Features Specific to AXP Systems A–6
A–5 Atomicity Built-Ins . A–7
A–6 Qualifiers and Options Shared by DEC COBOL and VAX COBOL . . . A–10
A–7 DEC COBOL Qualifiers Not Available in VAX COBOL A–11
A–8 VAX COBOL Qualifiers Not Available in DEC COBOL A–11
A–9 I-O File Status Codes for the /STANDARD Qualifier A–16
A–10 Qualifiers Shared by DEC Fortran and VAX FORTRAN A–30
A–11 DEC Fortran Qualifiers Not in VAX FORTRAN A–31
A–12 VAX FORTRAN Options Not in DEC Fortran A–32
A–13 Floating-Point Data on VAX and AXP Systems A–34
A–14 New Features of DEC Pascal . A–34
A–15 Recommended Use of Predeclared Identifiers . A–36

vii

Preface

Migrating to an OpenVMS AXP System: Recompiling and Relinking Applications
is designed to assist developers in moving OpenVMS VAX applications to an
OpenVMS AXP system. The manual consists of the following chapters:

• Chapter 1 provides an overview of areas to look at to uncover VAX
dependencies in your application.

• Chapter 2 describes how to handle dependencies your application may have
on the VAX page size.

• Chapter 3 describes how to handle dependencies your application may have
on the synchronization provided by the VAX architecture with regard to data
access by multiple processes.

• Chapter 4 describes the implications of data declarations on an AXP system,
including alignment concerns.

• Chapter 5 describes how to handle dependencies your application may contain
on the VAX condition handling facility.

• Chapter 6 describes how to create native AXP images that can call and be
called by translated VAX images.

• Appendix A contains brief summaries of the new and changed features
supported by the Ada, C, COBOL, FORTRAN, and Pascal programming
languages on AXP systems.

Intended Audience
This manual is intended for experienced software engineers responsible for
moving application code written in high- or mid-level programming languages
such as C or FORTRAN.

Associated Documents
This manual is part of a set of manuals that describe various aspects of migrating
OpenVMS VAX applications to an OpenVMS AXP system. The other manuals in
this set are as follows:

• Migrating to an OpenVMS AXP System: Planning for Migration provides an
overview of the VAX to Alpha AXP migration process and information to help
you plan a migration. It discusses the decisions you must make in planning
a migration and the ways to get the information you need to make those
decisions. In addition, it describes the migration methods available so that
you can estimate the amount of work required for each method and select the
method best suited to a given application.

ix

• Migrating to an OpenVMS AXP System: Porting VAX MACRO Code describes
how to port VAX MACRO code to an AXP system using the MACRO–32
compiler for OpenVMS AXP. It describes the features of the compiler, presents
a methodology for porting VAX MACRO code, identifies nonportable coding
practices, and recommends alternatives to such practices. The manual also
provides a reference section with detailed descriptions of the compiler’s
qualifiers, directives, and built-ins, and the system macros created for porting
to AXP systems.

In addition, the DECmigrate for OpenVMS AXP Systems Translating Images
manual describes the VAX Environment Software Translator (VEST) utility.
This manual is distributed with the optional layered product, DECmigrate for
OpenVMS AXP, which supports the migration of OpenVMS VAX applications to
OpenVMS AXP systems. The manual describes how to use VEST to convert most
user-mode VAX images to translated images that can run on AXP systems; how
to improve the run-time performance of translated images; how to use VEST to
trace AXP incompatibilities in an VAX image back to the original source files;
and how to use VEST to support compatibility among native and translated
run-time libraries. The manual also includes complete VEST command reference
information.

Conventions
In this manual, every use of OpenVMS AXP means the OpenVMS AXP operating
system, every use of OpenVMS VAX means the OpenVMS VAX operating system,
and every use of OpenVMS means both the OpenVMS AXP operating system and
the OpenVMS VAX operating system.

The following conventions are used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold
down the key labeled Ctrl while you press another key or a
pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

. . . A horizontal ellipsis in examples indicates one of the
following possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can
be entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

() In format descriptions, parentheses indicate that, if you
choose more than one option, you must enclose the choices in
parentheses.

x

[] In format descriptions, brackets indicate optional elements.
You can choose one, none, or all of the choices. (Brackets are
not optional, however, in the syntax of a directory name in
an OpenVMS file specification or in the syntax of a substring
specification in an assignment statement.)

{ } In format descriptions, braces surround a required choice of
options; you must choose one of the options listed.

boldface text Boldface text represents the introduction of a new term or
the name of an argument, an attribute, or a reason.

Boldface text is also used to show user input in Bookreader
versions of the book.

italic text Italic text emphasizes important information, indicates
variables, and indicates complete titles of manuals. Italic
text also represents information that can vary in system
messages (for example, Internal error number), command
lines (for example, /PRODUCER=name), and command
parameters in text.

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

- A hyphen in code examples indicates that additional
arguments to the request are provided on the line that
follows.

numbers All numbers in text are assumed to be decimal, unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xi

1
Introduction

This chapter introduces the general process of moving an application that runs
on a VAX system to an AXP system by recompiling and relinking the source
files that make up the application. Specifically, this chapter covers the following
topics:

• Using AXP versions of the tools in the VAX programming environment, such
as native compilers and the linker

• Identifying dependencies your application may have on aspects of the VAX
architecture

1.1 Overview
In general, if your application is written in a high-level programming language,
you should be able to get it running on an AXP system with a minimum of
effort. High-level languages insulate applications from dependence on the
underlying machine architecture. In addition, for the most part, the programming
environment on AXP systems duplicates the programming environment on VAX
systems. Using native AXP versions of the language compilers and the OpenVMS
Linker utility (linker), you can recompile and relink the source files that make up
your application to produce a native AXP image.

However, it is possible to introduce architectural dependencies even in
applications written in high-level languages. The following sections describe
the programming environment on an AXP system and provide guidelines for
identifying code in your application source files that may not be able to be moved
to an AXP system without modification.

1.2 Recompiling Your Application with Native AXP Compilers
Many of the languages supported on VAX systems are supported on AXP systems,
such as FORTRAN and C. For complete information about the availability of
programming languages on AXP systems, see Migrating to an OpenVMS AXP
System: Planning for Migration.

The compilers available on AXP systems are intended to be compatible with their
counterparts on VAX systems. The compilers conform to language standards and
include support for most VAX language extensions. The compilers produce output
files with the same default file types as they do on VAX systems, such as .OBJ for
an object module.

Note, however, that some features supported by the compilers on VAX systems
may not be available in the same compiler on AXP systems. In addition,
some compilers on AXP systems support new features not supported by their
counterparts on VAX systems. To provide compatibility, some compilers support
compatibility modes. For example, the DEC C for OpenVMS AXP systems
compiler supports a VAX C compatibility mode that is invoked by specifying the

1–1

Introduction
1.2 Recompiling Your Application with Native AXP Compilers

/STANDARD=VAXC qualifier. Appendix A lists the features of several compilers
available on both the VAX and AXP systems.

1.3 Identifying Dependencies on the VAX Architecture in Your
Application

Even if your application recompiles successfully with a compiler that generates
native AXP code, it may still contain subtle dependencies on the VAX
architecture. The operating system has been designed to provide a high
degree of compatibility; however, the fundamental differences between the
two architectures inevitably create certain inconsistencies. The following list
highlights those areas of your application you should examine. The remaining
chapters in this manual provide more information about these topics.

• Check the data declarations contained in your application. The high-level
language data types you selected to represent data items on a VAX system
may not be the best choice on an AXP system. In particular, consider the
following:

Data packing—Applications on VAX systems typically use the smallest
available data type to represent a data item to achieve efficient use of
memory resources. For various reasons (described in Chapter 4), using
larger data types may be more efficient on AXP systems.

Data-type selection—The Alpha AXP architecture supports most of
the VAX native data types; however, certain VAX data types, such as the
H_float floating-point data type, are not supported. Check to see if your
application depends on the size or bit representation of an underlying
native data type. Chapter 4 contains a list of all the data types supported
by the Alpha AXP architecture.

Shared access to data—Check any data item that is accessed by
multiple threads of execution. The VAX architecture includes instructions
that can perform certain complex operations, such as incrementing
a variable, that appear as a single, noninterruptable operation to
other threads of execution. The Alpha AXP architecture is a load-
store architecture that does not support atomic memory-to-memory
modifications. Chapter 3 provides more information about this topic.

In addition, the VAX architecture supports instructions that can
manipulate byte- and word-sized data in a single noninterruptable
operation. The Alpha AXP architecture supports noninterruptable access
only to aligned longword- or aligned quadword-sized data. Chapter 3 and
Chapter 4 describe how this can affect your application.

Buffer size—Your application may determine the size of certain data
buffers based on the VAX page size. Different implementations of the
Alpha AXP architecture can support 8K, 16K, 32K, or 64K byte pages.
Search your application for the text strings ‘‘512’’ and ‘‘511’’ (or the
hexadecimal equivalent ‘‘200’’) to find dependencies on the VAX page size.
Chapter 2 describes how to adapt your application to this change in page
size.

• Check any condition handlers your application may include. While the
condition handling facility on AXP systems is functionally equivalent to the
VAX condition handling facility, certain aspects of the facility have changed,
such as the format of the mechanism array. In addition, the way in which

1–2

Introduction
1.3 Identifying Dependencies on the VAX Architecture in Your Application

arithmetic exceptions are reported has changed. For information about this
topic, see Chapter 5.

• Check for dependence on the AST parameter list. While the AST parameter
list on AXP systems has the same format as on VAX systems, only the AST
parameter field can be used. The other fields in the AST parameter list
(contents of R0, R1, program counter [PC], and processor status [PS]) are
provided for compatibility only and have no subsequent use after the AST
procedure exits.

1.4 Relinking Your Application on an AXP System
Once you successfully recompile your source files, you must relink your
application to create a native AXP image. The linker produces output files
with the same file types as on current VAX systems. For example, by default, the
linker uses the file type .EXE to identify image files.

Because the way in which you perform certain linking tasks is different on AXP
systems, you will probably need to modify the LINK command used to build
your application. The following list describes some of these linker changes that
may affect your application’s build procedure. See the OpenVMS Linker Utility
Manual for more information.

• Declaring universal symbols in shareable images—If your application
creates shareable images, your application build procedure probably includes
a transfer vector file, written in VAX MACRO, in which you declare the
universal symbols in the shareable image. On AXP systems, instead of
creating a transfer vector file, you must declare universal symbols in a linker
options file by specifying the SYMBOL_VECTOR= option.

• Linking against the OpenVMS executive—On VAX systems, you link
against the OpenVMS executive by including the system symbol table file
(SYS.STB) in your build procedure. On AXP systems, you link against the
OpenVMS executive by specifying the /SYSEXE qualifier.

• Optimizing the performance of images—On AXP systems, the linker
can perform certain optimizations that can improve the performance of the
images it creates. In addition, the linker can create shareable images that
can be installed as resident images, another performance enhancement.

• Processing shareable images implicitly—On VAX systems, when you
specify a shareable image in a link operation, the linker also processes all
the shareable images to which that shareable image was linked. On AXP
systems, to include these shareable images in your build procedure, you must
explicitly specify them.

The linker supports several qualifiers and options, listed in Table 1–1, that are
specific to AXP systems. The table also lists those linker qualifiers supported on
VAX systems that are not supported by the linker on AXP systems.

1–3

Introduction
1.4 Relinking Your Application on an AXP System

Table 1–1 Linker Qualifiers and Options Specific to AXP Systems

Qualifiers Description

/DEMAND_ZERO Controls how the linker creates demand-zero image
sections.

/GST Directs the linker to create a global symbol table
(GST) for a shareable image (the default). More
typically specified as /NOGST when used to create
shareable images for run-time kits.

/INFORMATIONALS Directs the linker to output informational messages
during a link operation (the default). More typically
specified as /NOINFORMATIONALS to suppress
these messages.

/NATIVE_ONLY Directs the linker to not pass along the procedure
signature block (PSB) information, created by the
compilers, in the image it is creating (the default).

If /NONATIVE_ONLY is specified during linking, the
image activator uses the PSB information, if any,
provided in the object modules specified as input files
to the link operation to create jacket routines. Jacket
routines are necessary to allow native AXP images to
work with translated VAX images.

/REPLACE Directs the linker to perform certain optimizations
that can improve the performance of the image it is
creating, when requested to do so by the compilers
(the default).

/SECTION_BINDING Directs the linker to create a shareable image that
can be installed as a resident image.

/SYSEXE Directs the linker to process the OpenVMS executive
image (SYS$BASE_IMAGE.EXE) to resolve symbols
left unresolved in a link operation.

Options Description

BASE= option Not supported on AXP systems.

DZRO_MIN= option Not supported on AXP systems.

ISD_MAX= option Not supported on AXP systems.

SYMBOL_TABLE= option Directs the linker to include global symbols as
well as universal symbols in the symbol table file
associated with a shareable image. By default, the
linker includes only universal symbols.

SYMBOL_VECTOR= option Used to declare universal symbols in AXP shareable
images.

UNIVERSAL= option Not supported on AXP systems.

1–4

Introduction
1.5 Compatibility Between the Mathematics Libraries Available on VAX and AXP Systems

1.5 Compatibility Between the Mathematics Libraries Available on
VAX and AXP Systems

Mathematical applications using the standard VMS call interface to the
OpenVMS Mathematics (MTH$) Run-Time Library need not change their calls to
MTH$ routines when migrating to an AXP system. Jacket routines are provided
that map MTH$ routines to their math$ counterparts in the Digital Portable
Mathematics Library (DPML) for AXP systems. However, there is no support
in the DPML for calls made to JSB entry points and vector routines. Note
that DPML routines are different from those in the OpenVMS MTH RTL and
you should expect to see small differences in the precision of the mathematical
results.

To maintain compatibility with future libraries and to create portable
mathematical applications, Digital recommends that you use the DPML routines
available through the high-level language of your choice (for example, FORTRAN
or C) rather than using the call interface. Significantly higher performance and
accuracy are also available to you with DPML routines.

See the Digital Portable Mathematics Library manual for more information about
the DPML routines.

1.6 Determining the Host Architecture
Your application may need to determine whether it is running on an OpenVMS
VAX system or an AXP system. From within your program, you can obtain
this information by calling the $GETSYI system service (or the LIB$GETSYI
RTL routine), specifying the ARCH_TYPE item code. When your application
is running on a VAX system, the $GETSYI system service returns the value
1. When your application is running on an AXP system, the $GETSYI system
service returns the value 2.

Example 1–1 illustrates how to determine the host architecture in a DCL
command procedure by calling the F$GETSYI DCL command and specifying the
ARCH_TYPE item code. (For an example of calling the $GETSYI system service
in an application, see Section 2.4, where it is used to obtain the page size of an
AXP system.)

Example 1–1 Using the ARCH_TYPE Keyword to Determine Architecture Type

$! Determine architecture type
$ type_symbol = f$getsyi("arch_type")
$ if type_symbol .eq. 1 then goto ON_VAX
$ if type_symbol .eq. 2 then goto ON_ALPHA_AXP
$ ON_VAX:
$!
$! Do VAX-specific processing
$!
$ exit
$ ON_ALPHA_AXP:
$!
$! Do Alpha AXP-specific processing
$!
$ exit

1–5

Introduction
1.6 Determining the Host Architecture

Note, however, that the ARCH_TYPE item code is available only on VAX systems
running Version 5.5 or later. If your application needs to determine the host
architecture for earlier versions of the operating system, use one of the other
$GETSYI system service item codes listed in Table 1–2.

Table 1–2 $GETSYI Item Codes That Specify Host Architecture

Keyword Usage

ARCH_TYPE Returns 1 on a VAX system; returns 2 on an AXP system.
Supported on AXP systems and on VAX systems running OpenVMS
Version 5.5 or later.

ARCH_NAME Returns text string ‘‘VAX’’ on VAX machines and text string ‘‘Alpha’’
on AXP machines. Supported on AXP systems and on VAX systems
running OpenVMS Version 5.5 or later.

HW_MODEL Returns an integer that identifies a particular hardware model. All
values equal to or larger than 1024 identify AXP systems.

CPU Returns an integer that identifies a particular CPU. The value 128
identifies an AXP system.

1–6

2
Adapting Applications to a Larger Page Size

This chapter describes how to identify dependencies your application may have on
the VAX page size and makes recommendations for correcting those dependencies.

2.1 Overview
In general, page size, the basic unit of memory manipulated by the operating
system, is below the level of applications, especially for applications written
in high- or mid-level programming languages. However, your application may
contain page-size dependencies if it calls system services or run-time library
routines to perform memory management functions such as the following:

• Allocating virtual memory

• Mapping sections into the virtual address space of your process

• Locking memory into your working set

• Protecting segments of your virtual address space

The system services and run-time library routines that perform these functions
manipulate memory in pages. The values you specified as arguments to these
routines are based on an assumption of a 512-byte page, the page size defined
by the VAX architecture. The Alpha AXP architecture supports an 8K, 16K,
32K, or 64K byte page size, depending on the implementation, so you should
examine the values you specify as arguments to the routines to make sure they
still satisfy the requirements of your application. The following sections provide
more information about examining the routines.

Note that this difference in page sizes does not affect memory allocation using
higher level routines, for example, the run-time library routines that manipulate
virtual memory zones or language-specific memory allocation routines such as the
malloc and free routines in C.

2.1.1 Compatibility Features
Wherever possible, system services or run-time library routines attempt to
present the same interface and return values on AXP systems as they do on
VAX systems. For example, on AXP systems, the routines that accept page-count
values as arguments still interpret these arguments in 512-byte quantities, called
pagelets to distinguish them from the CPU-specific page size. The routines
convert pagelet values into CPU-specific pages. The routines that return page-
count values convert from CPU-specific pages to pagelets so that the return
values expected by your application are still measured in 512-byte units.

2–1

Adapting Applications to a Larger Page Size
2.1 Overview

Note

On AXP systems, when creating page frame sections using the $CRMPSC
system service (with the SEC$M_PFNMAP flag bit set), the value
specified in the page count argument (pagcnt) is interpreted as the
CPU-specific page size, not as a pagelet value.

2.1.2 Summary of Memory Management Routines with Potential Page-Size
Dependencies

Despite the compatibility, some routines behave differently on AXP systems than
they do on VAX systems and may require you to modify your source code. For
example, on AXP systems, the system services that map section files ($CRMPSC
and $MGBLSC) require you to specify address value arguments that are aligned
on CPU-specific page boundaries. On VAX systems, these routines round the
address values specified in arguments to VAX page boundaries. On AXP systems,
the routines do not round these addresses to CPU-specific page boundaries.

Table 2–1 lists the memory management routines with the arguments they
support that may contain page-size dependencies. The table lists the arguments
with their intended function and describes how these arguments are interpreted
on AXP systems. Note that the table does not attempt to list all the arguments
accepted by each routine. For more information about the routines and their
argument lists, see the OpenVMS System Services Reference Manual.

Table 2–1 Potential Page-Size Dependencies in Memory Management Routines

Routine Argument Behavior on AXP Systems

Adjust Working Set Limit
($ADJWSL)

pagcnt specifies the number of
pages to add to (or subtract from)
the current working set limit.

Interpreted in pagelets, adjusted
up or down to represent CPU-
specific-sized pages.

wsetlm specifies the value of the
current working set limit.

Interpreted in pagelets, adjusted
up or down to represent CPU-
specific-sized pages.

Create Process
($CREPRC)

quota accepts several quota
descriptors that specify page counts,
such as the default working set size,
paging file quota, and working set
expansion quota.

Interpreted in pagelets, adjusted
up or down to represent CPU-
specific-sized pages.

Create Virtual Address
($CRETVA)

inadr specifies the start- and end-
addresses of the memory to be
allocated. If the end-address is the
same as the start-address, a single
page is allocated.

Addresses are adjusted up or
down to fall on CPU-specific
page boundaries.

retadr specifies the actual start-
and end-addresses of the memory
affected by the call.

Unchanged.

(continued on next page)

2–2

Adapting Applications to a Larger Page Size
2.1 Overview

Table 2–1 (Cont.) Potential Page-Size Dependencies in Memory Management Routines

Routine Argument Behavior on AXP Systems

Create and Map Section
($CRMPSC)

inadr specifies the start- and end-
addresses that define the region to
be remapped. If the end-address
is the same as the start-address,
a single page is mapped, unless
the SEC$M_EXPREG flag is set,
in which case the start-address is
interpreted as determining whether
the allocation should be in P0 or P1
space.

Addresses must be aligned
on CPU-specific pages (unless
the SEC$M_EXPREG flag is
set); no rounding is done. (See
Section 2.3 for more information
about mapping.)

retadr specifies the actual start-
and end-addresses of the memory
affected by the call.

Returns the start- and end-
addresses of the usable range
of addresses, which may be
different than the total amount
mapped. This argument is
required when the relpag
argument is specified.

flags specifies the type and
characteristics of the section to
be created or mapped.

The flag bit SEC$M_NO_
OVERMAP indicates that
existing address space should
not be overmapped. When the
flag bit SEC$M_PFNMAP is
set, the pagcnt argument is
interpreted as CPU-specific
pages, not pagelets.

relpag specifies the page offset at
which mapping of the section file
should begin.

Interpreted as an index into
the section file, measured in
pagelets.

pagcnt specifies the number of
pages (blocks) in the file to be
mapped.

Interpreted in pagelets; no
rounding is done. When the
flag bit SEC$M_PFNMAP is
set, the pagcnt argument is
interpreted as CPU-specific
pages, not pagelets.

pfc specifies the number of pages
that should be mapped when a page
fault occurs.

Interpreted in CPU-specific-
sized pages. When specifying
a value for this argument,
remember that, because AXP
systems support 8K, 16K, 32K,
and 64K byte physical page
sizes, at least 16 pagelets will be
mapped for each physical page.
The system cannot map less
than a physical page.

Delete Virtual Address
($DELTVA)

inadr specifies the start- and end-
addresses of the memory to be
deallocated.

Addresses are adjusted up or
down to fall on CPU-specific
page boundaries.

retadr specifies the actual start-
and end-addresses of the memory
that was deleted.

Unchanged.

(continued on next page)

2–3

Adapting Applications to a Larger Page Size
2.1 Overview

Table 2–1 (Cont.) Potential Page-Size Dependencies in Memory Management Routines

Routine Argument Behavior on AXP Systems

Expand Program/Control Region
($EXPREG)

pagcnt specifies the amount of
memory to allocate, in 512-byte
units.

Interpreted in pagelets.

retadr specifies the actual start-
and end-addresses of the memory
affected by the call.

Unchanged.

Get Job/Process Information
($GETJPI)

itmlst specifies which information
about the process is to be returned.

Many items, such as JPI$_
WSEXTENT, interpreted
as pagelet values. See the
OpenVMS System Services
Reference Manual for more
information.

Get Queue Information
($GETQUI)

itmlst specifies information to be
used in performing the function
specified by the func argument.

Several items interpreted
as pagelet values. See the
OpenVMS System Services
Reference Manual for more
information.

Get Systemwide Information
($GETSYI)

itmlst specifies which information
is to be returned about the node or
nodes.

Several items interpreted as
pagelet values. One additional
item, SYI$_PAGE_SIZE,
specifies the page size supported
by the node. See the OpenVMS
System Services Reference
Manual for more information.

Get User Authorization
Information ($GETUAI)

itmlst specifies which information
from the user’s user authorization
file is to be returned.

Several items return pagelet
values. See the OpenVMS
System Services Reference
Manual for more information.

Lock Page
($LCKPAG)

inadr specifies the start- and end-
addresses of the memory to be
locked.

Addresses are adjusted up or
down to fall on CPU-specific
page boundaries.

retadr specifies the actual start-
and end-addresses of the memory
that was locked.

Unchanged.

Lock Working Set
($LKWSET)

inadr specifies the start- and end-
addresses of the memory to be
locked.

Addresses are adjusted up or
down to fall on CPU-specific
page boundaries.

retadr specifies the actual start-
and end-addresses of the memory
that was locked.

Unchanged.

Map Global Section
($MGBLSC)

inadr specifies the start- and end-
addresses that define the region to
be remapped. If the end-address
is the same as the start-address,
a single page is mapped, unless
the SEC$M_EXPREG flag is set,
in which case the start-address is
interpreted as determining whether
the allocation should be in P0 or P1
space.

Addresses must be aligned on
a CPU-specific page (unless
the SEC$M_EXPREG flag is
set); no rounding is done. (See
Section 2.3 for more information
about mapping.)

(continued on next page)

2–4

Adapting Applications to a Larger Page Size
2.1 Overview

Table 2–1 (Cont.) Potential Page-Size Dependencies in Memory Management Routines

Routine Argument Behavior on AXP Systems

retadr specifies the actual start-
and end-addresses of the memory
affected by the call.

Returns start- and end-
addresses of usable portion
of memory mapped.

relpag specifies the page offset at
which mapping of the section file
should begin.

Interpreted as an index into
the section file, measured in
pagelets.

Purge Working Set
($PURGWS)

inadr specifies the start- and end-
addresses of the memory to be
purged.

Addresses are adjusted up or
down to fall on CPU-specific
page boundaries.

Set Protection
($SETPRT)

inadr specifies the start- and end-
addresses of the memory to be
protected.

Addresses are adjusted up or
down to fall on CPU-specific
page boundaries.

retadr specifies the actual start-
and end-addresses of the memory
that was protected.

Unchanged.

Set User Authorization File
($SETUAI)

itmlst specifies which information
from the user’s user authorization
file is to be set.

Several items interpreted
in pagelet values. See the
OpenVMS System Services
Reference Manual for more
information.

Send to Job Controller
($SNDJBC)

itmlst specifies information to be
used in performing the function
specified by the func argument.

Several items interpreted
in pagelet values. See the
OpenVMS System Services
Reference Manual for more
information.

Unlock Page
($ULKPAG)

inadr specifies the start- and end-
addresses of the memory to be
unlocked.

Addresses are adjusted up or
down to fall on CPU-specific
page boundaries.

retadr specifies the actual start-
and end-addresses of the memory
that was unlocked.

Unchanged.

Unlock Working Set
($ULWSET)

inadr specifies the start- and end-
addresses of the memory to be
unlocked.

Addresses are adjusted up or
down to fall on CPU-specific
page boundaries.

retadr specifies the actual start-
and end-addresses of the memory
that was unlocked.

Unchanged.

Update Section
($UPDSEC)

inadr specifies the start- and end-
address of the section to write to
disk.

Rounds requests to CPU-
specific pages. Note that only
the address range actually
represented by on-disk storage
will be written to disk.

retadr specifies the actual start-
and end-addresses of the memory
that was written to disk.

Addresses are adjusted up or
down to fall on CPU-specific
page boundaries.

2–5

Adapting Applications to a Larger Page Size
2.1 Overview

The run-time library routines listed in Table 2–2 allocate (or free) pages
of memory. For compatibility, these routines also interpret the page-count
information you specify in pagelets.

Table 2–2 Potential Page-Size Dependencies in Run-Time Library Routines

Routine Argument Behavior on AXP Systems

LIB$GET_VM_PAGE number-of-pages argument
specifies the number of contiguous
pages to allocate.

Interpreted in pagelets, rounded
to CPU-specific pages.

LIB$FREE_VM_PAGE number-of-pages argument
specifies the number of contiguous
pages to free.

Interpreted in pagelets, rounded
to CPU-specific pages.

2.2 Examining Memory Allocation Routines
To determine if the memory allocation performed by your application requires
modification, check to see where the memory is allocated. The system service
routines that perform memory allocation ($EXPREG and $CRETVA) allow you to
allocate memory in two ways:

• By expanding the size of the P0 or P1 regions of your application’s virtual
address space

• By reclaiming a region of your application’s existing virtual address space,
starting at a location you specify

The Alpha AXP architecture defines the same virtual address space layout as the
VAX architecture and allows for growth of the P0 and P1 regions in the same
direction as on VAX systems. Figure 2–1 illustrates this layout.

2.2.1 Allocating Memory in Expanded Virtual Address Space
If your application allocates memory by expanding virtual address space using
the $EXPREG system service, you may not need to make any source code changes
because the values you specified as arguments are valid on AXP systems and VAX
systems. The reasons for this are as follows:

• On AXP systems, the $EXPREG system service interprets the amount of
memory requested (specified as a page count in the pagcnt argument) in 512-
byte units, the same as on an VAX system. Thus, the value your application
specified still requests the same amount of memory. Note, however, that
because the system service rounds the value up to CPU-specific pages,
the actual amount of memory allocated by the system for your application
may be larger on an AXP system than it is on a VAX system. The entire
amount of memory allocated is available for use by your application. Because
applications typically allocate memory to satisfy buffer requirements, which
do not change with different platforms, the value you specified should still
satisfy the requirements of your application.

• Because the allocation occurs in an expanded area of virtual address space,
the discrepancy between the amount requested and the amount actually
allocated by the system should have no effect on the function of your
application.

2–6

Adapting Applications to a Larger Page Size
2.2 Examining Memory Allocation Routines

Figure 2–1 Virtual Address Layout

7FFFFFFF

ZK−0861−GE

40000000
3FFFFFFF

Program Region

Growth
Direction of

(P1)
Control Region

Length

Length

Growth
Direction of

00000000
Address
Virtual

(P0)

Recommendation
Your application may not need to be modified. However, Digital suggests that you
obtain the exact boundaries of the memory allocated by the system, because the
amount of memory returned by the $EXPREG system service may vary among
implementations of the Alpha AXP architecture. To do this, specify the optional
retadr argument to the $EXPREG system service, if your application does not
already include it. The retadr argument contains the start-address and the
end-address of the memory allocated by the system service.

For example, the program in Example 2–1 calls the $EXPREG system service to
request 10 additional pages of memory. If you run this program on a VAX system,
the $EXPREG system service allocates 5120 bytes of additional memory. If you
run this program on an AXP system, the $EXPREG system service allocates at
least 8192 bytes and possibly more, depending on the page size of the particular
implementation of the Alpha AXP architecture.

2–7

Adapting Applications to a Larger Page Size
2.2 Examining Memory Allocation Routines

Example 2–1 Allocating Memory by Expanding Your Virtual Address Space

#include <ssdef.h>
#include <stdio.h>
#include <stsdef.h>
#include <descrip.h>
#include <dvidef.h>

#define PAGE_COUNT 10 1
#define P0_SPACE 0
#define P1_SPACE 1

main(argc, argv)
int argc;
char *argv[];
{

int status = 0;
long bytes_allocated, addr_returned[2];

2 status = SYS$EXPREG(PAGE_COUNT, &addr_returned, 0, P0_SPACE);

bytes_allocated = addr_returned[1] - addr_returned[0];

if(status == SS$_NORMAL)
printf("bytes allocated = %d\n", bytes_allocated);

else
return (status);

}

The items in the following list correspond to the numbered items in Example 2–1:

1 The example defines a symbol, PAGE_COUNT, to stand for the number of
pages requested.

2 The example requests 10 additional pages to be added at the end of the P0
region of its virtual address space.

2.2.2 Allocating Memory in Existing Virtual Address Space
If your application reallocates memory that is already in its virtual address space
by using the $CRETVA system service, you may need to modify the values of the
following arguments to $CRETVA:

• If your application explicitly rounds the address specified in the inadr
argument to be a multiple of 512 in order to align on a VAX page boundary,
you need to modify the address. On AXP systems, the $CRETVA system
service rounds the start-address down to a CPU-specific page boundary, which
will vary with different implementations.

• The size of the reallocation, specified by the address range in the inadr
argument, may be larger on an AXP system than it is on a VAX system
because the request is rounded up to CPU-specific pages. This can cause the
unintended destruction of neighboring data, which also occurs with single-
page allocations. (When the start-address and the end-address specified in
the inadr argument match, a single page is allocated.)

Recommendations
To determine whether your application needs to be modified, Digital suggests
doing the following:

• For all potential page sizes, make sure the area of virtual address space
affected by the call does not destroy important data.

2–8

Adapting Applications to a Larger Page Size
2.2 Examining Memory Allocation Routines

• For all potential page sizes, make sure the start-address at which the
allocation begins always falls on a page boundary.

• Specify the optional retadr argument, if not already included by your
application, to determine the exact boundaries of the memory allocated by
the call to the $CRETVA system service.

Example 2–2 shows how memory allocated to a buffer can be reallocated by using
the $CRETVA system service.

Example 2–2 Allocating Memory in Existing Address Space

#include <ssdef.h>
#include <stdio.h>
#include <stsdef.h>
#include <descrip.h>
#include <dvidef.h>

char _align(page) buffer[1024];

main(argc, argv)
int argc;
char *argv[];
{

int status = 0;
long inadr[2];
long retadr[2];

inadr[0] = &buffer[0];
inadr[1] = &buffer[1023];

printf("inadr[0]=%u,inadr[1]=%u\n",inadr[0],inadr[1]);

status = SYS$CRETVA(inadr, &retadr, 0);

if(status & STS$M_SUCCESS)
{

printf("success\n");
printf("retadr[0]=%u,retadr[1]=%u\n",retadr[0],retadr[1]);

}
else
{

printf("failure\n");
exit(status);

}
}

2.2.3 Deleting Virtual Memory
Calls to the $DELTVA system service to free memory allocated by the $EXPREG
and $CRETVA system services should require no modification if your application
uses the address range returned in the retadr argument (returned by the
routine used to allocate the memory) as the inadr argument to the $DELTVA
system service. Because the actual amount of the allocation will vary with the
implementation, your application should not make any assumptions regarding
the extent of the allocation.

2–9

Adapting Applications to a Larger Page Size
2.3 Examining Memory Mapping Routines

2.3 Examining Memory Mapping Routines
To determine if the memory mapping performed by your application requires
modification, check to see where in virtual memory your application performs
the mapping. The memory mapping system services ($CRMPSC and $MGBLSC)
allow you to map memory in the following ways:

• Map memory into an expanded area of your application’s virtual address
space

• Map a single page of memory into your application’s virtual address space,
starting at a location you specify (the location may be in existing virtual
address space)

• Map memory into an existing area of your virtual address space, defined by
the start- and end-addresses you specify

How your application maps a section is determined primarily by the following
arguments to the $CRMPSC and $MGBLSC system services:

• inadr argument—Specifies the size and location of the section by its start-
and end-addresses, interpreted by the $CRMPSC system service in the
following ways:

If both addresses specified in the inadr argument are the same and the
SEC$M_EXPREG bit is set in the flags argument, the system service
allocates the memory in whichever program region the addresses fall, but
does not use the specified location.

If both addresses specified in the inadr argument are the same and the
SEC$M_EXPREG flag is not set, a single page is mapped, starting at the
specified location. (Note that this mode of operation of the $CRMPSC
system service is not supported on AXP systems. If your application uses
this mode, see Section 2.3.2 for recommendations about modifying your
source code.)

If both addresses are different, the system service maps the section into
memory using the boundaries specified.

• pagcnt (page count) argument—Specifies the number of blocks you want to
map from the section file.

• relpag (relative page number) argument—Specifies the location in the section
file at which you want mapping to begin.

The $CRMPSC and $MGBLSC system services map a miminum of one CPU-
specific page. If the section file does not fill a single page, the remainder of the
page is filled with zeros. The extra space on the page should not be used by your
application because only the data that fits into the section file will be written
back to the disk.

2.3.1 Mapping into Expanded Virtual Address Space
If your application maps a section file into an expanded area of your application’s
virtual address space, you may not need to modify the source code. Because
the mapping occurs in expanded virtual address space, there is no danger of
overmapping existing data, even if the amount of memory allocated is larger on
an AXP system than on a VAX system. Thus, the values you specify as arguments
to the $CRMPSC system service on a VAX system should still work on an AXP
system.

2–10

Adapting Applications to a Larger Page Size
2.3 Examining Memory Mapping Routines

Recommendation
While applications that map sections into expanded areas of virtual memory may
work correctly without modification, Digital suggests that you specify the retadr
argument, if not already specified by your application, to determine the exact
boundaries of the memory that was mapped by the call.

Note

If your application specifies the relpag argument, you must specify the
retadr argument; it is not an optional argument. For more information
about using the relpag argument, see Section 2.3.4.

Example 2–3 illustrates a call to the $CRMPSC system service that maps a
section file into expanded address space. The example maps a section file named
MAPTEST.DAT that was created using the DCL CREATE command, as follows:

$ CREATE maptest.dat
test data test data test data test data test data
test data test data test data test data test data
test data test data test data test data test data
test data test data test data test data test data
test data test data test data test data test data
test data test data test data test data test data
test data test data test data test data test data
test data test data test data test data test data

Ctrl/Z

Example 2–3 Mapping a Section into Expanded Virtual Address Space

#include <ssdef.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <stsdef.h>
#include <descrip.h>
#include <dvidef.h>
#include <rms.h>
#include <secdef.h>

struct FAB fab;

char _align(page) buffer[1024];
char *filename = "maptest.dat";

main(argc, argv)
int argc;
char *argv[];
{

int status = 0;
long flags = SEC$M_EXPREG;
long inadr[2];
long retadr[2];
int fileChannel;

(continued on next page)

2–11

Adapting Applications to a Larger Page Size
2.3 Examining Memory Mapping Routines

Example 2–3 (Cont.) Mapping a Section into Expanded Virtual Address Space

/******** create disk file to be mapped *************/

fab = cc$rms_fab;
fab.fab$l_fna = filename;
fab.fab$b_fns = strlen(filename);
fab.fab$l_fop = FAB$M_CIF | FAB$M_UFO; /* must be UFO */

status = sys$create(&fab);

if(status & STS$M_SUCCESS)
printf("%s opened\n",filename);

else
{

exit(status);
}

fileChannel = fab.fab$l_stv;

/********** create and map the section ****************/

inadr[0] = &buffer[0];
inadr[1] = &buffer[0];

status = SYS$CRMPSC(inadr, /* inadr=address target for map */
&retadr, /* retadr= what was actually mapped */

0, /* acmode */
flags, /* flags, with SEC$M_EXPREG bit set */

0, /* gsdnam, only for global sections */
0, /* ident, only for global sections */
0, /* relpag, only for global sections */

fileChannel, /* returned by SYS$CREATE */
0, /* pagcnt = size of sect. file used */
0, /* vbn = first block of file used */
0, /* prot = default okay */
0); /* page fault cluster size */

if(status & STS$M_SUCCESS)
{

printf("section mapped\n");
printf("retadr[0]=%u,retadr[1]=%u\n",retadr[0],retadr[1]);

}
else
{

printf("map failed\n");
exit(status);

}

}

2.3.2 Mapping a Single Page to a Specific Location
If your application maps a section file into a single page of memory, you will need
to modify your source code because this mode of operation is not supported on
AXP systems. Because the page size on AXP systems differs from that on VAX
systems and varies with different implementations of the Alpha AXP architecture,
you must specify the exact boundaries of the memory into which you intend to
map a section file. The $CRMPSC system service returns an invalid arguments
error (SS$_INVARG) for this usage.

To see if your application uses this mode, check the start- and end-addresses
specified in the inadr argument. If both addresses are the same and the
SEC$M_EXPREG bit in the flags argument is not set, your application is using
this mode.

2–12

Adapting Applications to a Larger Page Size
2.3 Examining Memory Mapping Routines

Recommendations
Digital suggests the following guidelines when modifying calls to the $CRMPSC
system service in this mode:

• If the location into which the mapping occurs is unimportant, set the SEC$M_
EXPREG bit in the flags argument and let the system service map the section
into an expanded area of your application’s virtual address space. For more
information about this mode of operation, see Section 2.3.1.

• If the location into which the mapping occurs is important, define both the
start- and end-addresses in the inadr argument and map the section into a
defined area. For more information about this mode, see Section 2.3.3.

2.3.3 Mapping into a Defined Address Range
If your application maps a section into a defined area of its virtual address
space, you may need to modify your source code because, on AXP systems, the
$CRMPSC and $MGBLSC system services interpret some of the arguments
differently than on VAX systems. The differences are as follows:

• The start-address specified in the inadr argument must be aligned on a
CPU-specific page boundary and the end-address specified must be aligned
with the end of a CPU-specific page. On VAX systems, the $CRMPSC and
the $MGBLSC system services round these addresses to page boundaries for
you. On AXP systems, automatic rounding is not done because rounding to
CPU-specific page boundaries affects a much larger portion of memory due
to the larger page sizes on AXP systems. Thus, on AXP systems, you must
explicitly state where you want the virtual memory space mapped. If the
addresses you specify are not aligned on CPU-specific page boundaries, the
$CRMPSC system service returns an invalid arguments error (SS$_INVARG).

• The addresses returned in the retadr argument reflect only the usable
portion of the actual memory mapped by the call, not the entire amount
mapped. The usable amount is either the value specified in the pagcnt
argument (measured in pagelets) or the size of the section file, whichever
is smaller. The actual amount mapped depends on how many CPU-specific
pages are required to map the section file. If the section file does not fill a
CPU-specific page, the remainder of the page is filled with zeros. The excess
space on this page should not be used by your application. The end-address
specified in the retadr argument specifies the upper limit available to your
application. Note also that, when the relpag argument is specified, you must
also include the retadr argument; it is not an optional argument on AXP
systems as it is on VAX systems. See Section 2.3.4 for more information.

Recommendations
Digital suggests that you change your application so that it maps data into
expanded virtual address space, if possible. If you cannot change the way your
application maps data, Digital recommends the following guidelines:

• Because the operating system maps a minimum of one physical page and
physical pages on AXP systems are larger than pages on VAX systems, you
must make sure that when the system maps the section into the buffer
you define in your application it does not overwrite neighboring data. Most
applications on VAX systems define the buffer into which the section is to
be mapped in multiples of 512 bytes because that is the page size on VAX
systems, even if the section file to be mapped is less than 512 bytes in size.
To follow this strategy on AXP systems, you would need to declare a buffer in

2–13

Adapting Applications to a Larger Page Size
2.3 Examining Memory Mapping Routines

your application as large as the largest possible AXP page, 64K bytes, which
would waste memory.

A better way to make sure your section does not overwrite neighboring data
when it is mapped is to force the linker to isolate the buffer into a separate
image section. (The linker creates an image out of image sections. Each
image section defines the memory requirements of part of the image.) By
isolating the buffer into its own image section, you ensure that the mapping
operation will not overwrite neighboring data because the linker allocates
image sections on page boundaries; neighboring data will start on the next
page boundary. Thus, you can map a page of memory into your section
without disturbing neighboring data and without having to change the size of
the buffer.

To ensure that the linker puts your section into its own image section,
you must set the SOLITARY attribute of the program section in which
your section resides, using the linker’s PSECT_ATTR= option. (For more
information, see the OpenVMS Linker Utility Manual.) Note that you may
need to use the capabilities of whatever high- or mid-level programming
language you are using to ensure that the compiler puts the buffer you
define into a separate program section. See compiler documentation for more
information.

• Make sure that the start- and end-addresses of the section that you specify
as arguments to the $CRMPSCK and $MGBLSC system services are aligned
with the start- and end-addresses of a CPU-specific page. On VAX systems,
the system services round the addresses to page boundaries for you. On AXP
systems, the system services do not round the addresses you specify to page
boundaries.

If you isolate the section into its own image section, using the SOLITARY
program section attribute, the start-address is guaranteed to be on a page
boundary because the linker aligns image sections on page boundaries by
default, no matter what the page size of the host machine is at run time.

To make sure the end-address of the section is aligned on a CPU-specific page
boundary, you must know the page size supported by the machine on which
your application is being run. You can obtain the CPU-specific page size at
run time by calling the $GETSYI system service or the LIB$GETSYI run-time
library routine, and use this value to calculate an aligned end-address value
to pass in the inadr argument to the system services.

Note that you should specify the retadr argument to determine the amount of
usable memory the system mapped. The operating system maps a minimum
of one page; however, your application may use only part of the page. The
end-address specified in the retadr argument marks the upper limit of usable
memory. (On AXP systems, if your application specifies the relpag argument
to the $CRMPSC system service, you must specify the retadr argument.)

For example, the VAX program in Example 2–4 maps the section file created in
Section 2.3.1 into its existing virtual address space. The application defines a
buffer, named buffer, that is 512 bytes in size, reflecting the VAX page size. The
program defines the exact bounds of the section by passing the address of the
first byte of the buffer as the start-address and the address of the last byte of the
buffer as the end-address in the inadr argument.

2–14

Adapting Applications to a Larger Page Size
2.3 Examining Memory Mapping Routines

Example 2–4 Mapping a Section into a Defined Area of Virtual Address Space

#include <ssdef.h>
#include <stdio.h>
#include <stsdef.h>
#include <descrip.h>
#include <dvidef.h>
#include <rms.h>
#include <secdef.h>

struct FAB fab;

char *filename = "maptest.dat";

char _align(page) buffer[512];

main(argc, argv)
int argc;
char *argv[];
{

int status = 0;
long flags = 0;
long inadr[2];
long retadr[2];
int fileChannel;

/******** create disk file to be mapped *************/

fab = cc$rms_fab;
fab.fab$l_fna = filename;
fab.fab$b_fns = strlen(filename);
fab.fab$l_fop = FAB$M_CIF | FAB$M_UFO; /* must be UFO */

status = sys$create(&fab);

if(status & STS$M_SUCCESS)
printf("Opened mapfile %s\n",filename);

else
{

printf("Cannot open mapfile %s\n",filename);
exit(status);

}

fileChannel = fab.fab$l_stv;

/********** create and map the section ****************/

inadr[0] = &buffer[0];
inadr[1] = &buffer[511];

printf("inadr[0]=%u,inadr[1]=%u\n",inadr[0],inadr[1]);

status = SYS$CRMPSC(inadr, /* inadr=address target for map */
&retadr, /* retadr= what was actually mapped */

0, /* acmode */
0, /* flags */
0, /* gsdnam, only for global sections */
0, /* ident, only for global sections */
0, /* relpag, only for global sections */

fileChannel, /* returned by SYS$CREATE */
0, /* pagcnt = size of sect. file used */
0, /* vbn = first block of file used */
0, /* prot = default okay */
0); /* page fault cluster size */

(continued on next page)

2–15

Adapting Applications to a Larger Page Size
2.3 Examining Memory Mapping Routines

Example 2–4 (Cont.) Mapping a Section into a Defined Area of Virtual Address
Space

if(status & STS$M_SUCCESS)
{

printf("Map succeeded\n");
printf("retadr[0]=%u,retadr[1]=%u\n",retadr[0],retadr[1]);

}
else
{

printf("Map failed\n");
exit(status);

}

}

To get the program in Example 2–4 to run correctly on an AXP system, you must
make the following modifications:

• You must ensure that the start-address of the section specified in the inadr
argument is aligned on an AXP page boundary and the end-address specified
is aligned with the end of an AXP page.

• You must ensure that when a larger page on an AXP system is mapped,
neighboring data is not overwritten.

One way to accomplish these goals is to isolate the program section that contains
the section data in its own image section by using the SOLITARY program section
attribute.

In the example, the section, named buffer, appears in the program section named
buffer. (Program section creation is different in various programming languages
on each platform. Check compiler documentation to ensure that the section is
placed in its own program section.), The following link operation illustrates how
to set the solitary attribute of this program section:

$ LINK MAPTEST, SYS$INPUT/OPT
PSECT_ATTR=BUFFER,SOLITARY

Ctrl/Z

To specify an end-address for the section buffer that is aligned with the end of
a CPU-specific page boundary, obtain the CPU-specific page size at run time,
subtract 1 from the returned value, and use it to take the address of the last
element of the array. Pass this value as the second longword in the inadr
argument. (To find out how to obtain the page size at run time, see Section 2.4.)
Note that you do not need to change the allocation of the buffer into which the
section is mapped.

To ensure that your application will run on an AXP system with any page size,
specify the /BPAGE=16 qualifier to force the linker to align image sections on
64K-byte boundaries. Note that the total amount of memory mapped may be
much larger than the total amount of usable memory. The amount of usable
memory is determined by the value of the page count argument (pagcnt) or the
size of the section file, whichever is smaller. To avoid using memory that is not
within the bounds of the section, use the values returned in the retadr argument.

2–16

Adapting Applications to a Larger Page Size
2.3 Examining Memory Mapping Routines

Example 2–5 shows the source changes required for Example 2–4 to get it to run
on an AXP system.

Example 2–5 Source Code Changes Required to Run Example 2–4 on an AXP
System

#include <ssdef.h>
#include <stdio.h>
#include <stsdef.h>
#include <string.h>
#include <stdlib.h>
#include <descrip.h>
#include <dvidef.h>
#include <rms.h>
#include <secdef.h>
#include <syidef.h> 1

char buffer[512]; 2
char *filename = "maptest.dat";
struct FAB fab;

long cpu_pagesize; 3

struct itm { /* item list */
short int buflen; /* length of buffer in bytes */
short int item_code; /* symbolic item code */
long bufadr; /* address of return value buffer */
long retlenadr; /* address of return value buffer length */

} itmlst[2]; 4

main(argc, argv)
int argc;
char *argv[];
{

int i;
int status = 0;
long flags = SEC$M_EXPREG;
long inadr[2];
long retadr[2];
int fileChannel;
char *mapped_section;

/******** create disk file to be mapped *************/

fab = cc$rms_fab;
fab.fab$l_fna = filename;
fab.fab$b_fns = strlen(filename);
fab.fab$l_fop = FAB$M_CIF | FAB$M_UFO; /* must be UFO */

status = sys$create(&fab);

if(status & STS$M_SUCCESS)
printf("%s opened\n",filename);

else
{

exit(status);
}

fileChannel = fab.fab$l_stv;

(continued on next page)

2–17

Adapting Applications to a Larger Page Size
2.3 Examining Memory Mapping Routines

Example 2–5 (Cont.) Source Code Changes Required to Run Example 2–4 on
an AXP System

/********** obtain the page size at run time ****************/

itmlst[0].buflen = 4;
itmlst[0].item_code = SYI$_PAGE_SIZE;
itmlst[0].bufadr = &cpu_pagesize;
itmlst[0].retlenadr = &cpu_pagesize_len;
itmlst[1].buflen = 0;
itmlst[1].item_code = 0;

5 status = sys$getsyiw(0, 0, 0, &itmlst, 0, 0, 0);

if(status & STS$M_SUCCESS)
{

printf("getsyi succeeds, page size = %d\n",cpu_pagesize);
}
else
{

printf("getsyi fails\n");
exit(status);

}

/********** create and map the section ****************/

inadr[0] = &buffer[0];
inadr[1] = &buffer[cpu_pagesize - 1]; 6

printf("address of buffer = %u\n", inadr[0]);

status = SYS$CRMPSC(&inadr, /* inadr=address target for map */
&retadr, /* retadr= what was actually mapped */

0, /* acmode */
0, /* no flags to set */
0, /* gsdnam, only for global sections */
0, /* ident, only for global sections */
0, /* relpag, only for global sections */

fileChannel, /* returned by SYS$CREATE */
0, /* pagcnt = size of sect. file used */
0, /* vbn = first block of file used */
0, /* prot = default okay */
0); /* page fault cluster size */

if(status & STS$M_SUCCESS)
{

printf("section mapped\n");
printf("start address returned =%u\n",retadr[0]);

}
else
{

printf("map failed\n");
exit(status);

}
}

The items in the following list correspond to the numbered items in Example 2–5:

1 The header file SYIDEF.H contains definitions of OpenVMS item codes for the
$GETSYI system service.

2–18

Adapting Applications to a Larger Page Size
2.3 Examining Memory Mapping Routines

2 The buffer is defined without using the _ _align(page) storage descriptor.
Because the page size cannot be determined until run time on OpenVMS
AXP systems, the DEC C for OpenVMS AXP compiler aligns the data on the
largest AXP page size (64K bytes) when _ _align(page) is specified.

3 This structure defines the item list used to obtain the page size at run time.

4 This variable will hold the page-size value returned.

5 This call to the $GETSYI system service obtains the page size at run time.

6 The end-address of the buffer is specified by subtracting 1 from the page-size
value returned.

2.3.4 Mapping from an Offset into a Section File
Your application may map a portion of a section file by specifying the address at
which to start the mapping as an offset from the beginning of the section file. You
specify this offset by supplying a value to the relpag argument of the $CRMPSC
system service. The value of the relpag argument specifies the page number
relative to the beginning of the file at which the mapping should begin.

To preserve compatibility, the $CRMPSC system service interpets the value of the
relpag argument in 512-byte units on both VAX systems and AXP systems. Note,
however, that because the CPU-specific page size on AXP systems is larger than
512 bytes, the address specified by the offset in the relpag argument probably
does not fall on a CPU-specific page boundary. The $CRMPSC system service
can map virtual memory in CPU-specific page increments only. Thus, on AXP
systems, the mapping of the section file will start at the beginning of the CPU-
specific page that contains the offset address, not at the address specified by the
offset.

Note

Even though the routine starts mapping at the beginning of the CPU-
specific page that contains the address specified by the offset, the start-
address returned in the retadr argument is the address specified by the
offset, not the address at which mapping actually starts.

If your application maps from an offset into a section file, you may need to enlarge
the size of the address range specified in the inadr argument to accommodate
the extra virtual memory space that gets mapped on AXP systems. If the address
range specified is too small, your application may not map the entire portion
of the section file you desire, because the mapping begins at an earlier starting
address in the section file.

For example, to map 16 blocks in a section file starting at block number 15 on a
VAX system, you could specify an address range 16*512 bytes in size in the inadr
argument and specify a value of 15 for the relpag argument. To accomplish this
same mapping on an AXP system, you must allow for the difference in page sizes.
For example, on an AXP system with an 8K-byte page size, the address specified
by the relpag offset might fall 15 pagelets into a CPU-specific page, as illustrated
in Figure 2–2. Because the $CRMPSC system service on an AXP system begins
the mapping of the section file at a CPU-specific page boundary, it would fail
to map blocks 16 through 30. For the mapping to succeed, you would need to
increase the size of the address range to accommodate the additional 15 pagelets
mapped by the $CRMPSC system service (or the $MGBLSC system service) on

2–19

Adapting Applications to a Larger Page Size
2.3 Examining Memory Mapping Routines

an AXP system. Otherwise, only one block of the portion of the section file you
specified would be mapped. Figure 2–2 illustrates this scenario.

Figure 2–2 Effect of Address Range on Mapping from an Offset

0 3115

ZK−2499A−GE

$MGBLSC: =512*16

On OpenVMS AXP system:

=15

$MGBLSC: =512*16
=15

(pagelets 0 through 15 mapped)

inadr
relpag

On OpenVMS VAX system:

(pagelets 15 through 30 mapped)

inadr
relpag

When trying to calculate how much to enlarge the size of the address range
specified in the relpag argument, the following formula may be helpful. The
formula calculates the maximum number of CPU-specific pages needed to map a
given number of pagelets.

(number of pagelets to map+ (2 � pagelets per page)� 2)

pagelets per page

For example, this formula can be used to calculate how much to enlarge the
address range specified in the previous scenario. In the following equation, the
page size is assumed to be 8K, so pagelets_per_page equals 16:

16+((2x16)-2)/16=2.87...

Rounding the result down to the nearest whole number, the formula indicates
that the address range specified in the inadr argument must encompass two
CPU-specific pages.

2.4 Obtaining the Page Size at Run Time
To obtain the page size supported by an AXP system, use the $GETSYI system
service. Example 2–6 illustrates how to use this system service to obtain the page
size at run time.

Example 2–6 Using the $GETSYI System Service to Obtain the CPU-Specific
Page Size

#include <ssdef.h>
#include <stdio.h>
#include <stsdef.h>
#include <descrip.h>

(continued on next page)

2–20

Adapting Applications to a Larger Page Size
2.4 Obtaining the Page Size at Run Time

Example 2–6 (Cont.) Using the $GETSYI System Service to Obtain the
CPU-Specific Page Size

#include <dvidef.h>
#include <rms.h>
#include <secdef.h>
#include <syidef.h> /* defines page size item code symbol */

struct itm { /* define item list */
short int buflen; /* length in bytes of return value buffer */
short int item_code; /* item code */
long bufadr; /* address of return value buffer */
long retlenadr; /* address of return value length buffer */

} itmlst[2];

long cpu_pagesize;
long cpu_pagesize_len;

main(argc, argv)
int argc;
char *argv[];
{

int status = 0;

itmlst[0].buflen = 4; /* page size requires 4 bytes */
itmlst[0].item_code = SYI$_PAGE_SIZE; /* page size item code */
itmlst[0].bufadr = &cpu_pagesize; /* address of ret_val buffer */
itmlst[0].retlenadr = &cpu_pagesize_len; /* addr of length of ret_val */
itmlst[1].buflen = 0;
itmlst[1].item_code = 0; /* Terminate item list with longword of 0 */

status = sys$getsyiw(0, 0, 0, &itmlst, 0, 0, 0);

if(status & STS$M_SUCCESS)
{

printf("getsyi succeeds, page size = %d\n",cpu_pagesize);
exit(status);

}
else
{

printf("getsyi fails\n");
exit(status);

}
}

2.5 Locking Memory in the Working Set
The $LKWSET system service locks into the working set the range of pages
identified in the inadr argument as an address range on both VAX and
AXP systems. The system service rounds the addresses to CPU-specific page
boundaries if necessary.

However, because Alpha AXP instructions cannot contain full virtual addresses,
AXP images must reference procedures and data indirectly through a pointer
to a procedure descriptor. The procedure descriptor contains information about
the procedure, including the actual code address. These pointers to procedure
descriptors and data are collected into a new program section called a linkage
section.

2–21

Adapting Applications to a Larger Page Size
2.5 Locking Memory in the Working Set

Recommendation
On AXP systems, it is not sufficient to simply lock a section of code into memory
to improve performance. You must also lock the associated linkage section into
the working set.

To lock the linkage section in memory, determine the start- and end-addresses of
the linkage section and pass these addresses as values in the inadr argument to
a call to the $LKWSET system service.

2–22

3
Preserving the Integrity of Shared Data

This chapter describes synchronization mechanisms that ensure the integrity of
shared data, such as the atomicity guaranteed by certain VAX instructions.

3.1 Overview
If your application uses multiple threads of execution and the threads share
access to data, you may need to add explicit synchronization mechanisms to your
application to protect the integrity of the shared data on AXP systems. Without
synchronization, an access to the data initiated by one application thread can
potentially interfere with an access initiated simultaneously by a competing
thread, leaving the data in an unpredictable state.

On VAX systems, the degree of synchronization required depends on the
relationship of the different threads of execution, which can include the following:

• Multiple threads executing within a single process, such as a main thread
interrupted by an asynchronous system trap (AST) thread.

Note that the AST thread can either be initiated by the application or by
the operating system. For example, the operating system uses an AST to
write status to an I/O status block. The operating system also uses an AST to
complete a buffered I/O read operation to a specified user buffer.

• Multiple threads separated into multiple processes executing on a single
processor that access a global section.

• Multiple threads separated into multiple processes executing concurrently on
multiple processors that access a global section.

On VAX systems, applications that take advantage of the parallel processing
potential of a multiprocessor system have always had to provide explicit
synchronization mechanisms such as locks, semaphores, and interlocked
instructions to protect shared data. However, applications that use multiple
threads on uniprocessor systems may not explicitly protect the shared data.
Instead, these applications may depend on the implicit protection provided
by features of the VAX architecture that guarantee synchronization between
application threads executing on a VAX uniprocessor system (described in
Section 3.1.1).

For example, applications that use a semaphore variable to synchronize access
to a critical region of code by multiple threads depend on the semaphore
being incremented atomically. On VAX systems, this is guaranteed by the
VAX architecture. The Alpha AXP architecture does not make the same
synchronization guarantees. On AXP systems, access to this semaphore or any
data that can be accessed by multiple threads of execution must be explicitly
synchronized. Section 3.1.2 describes features of the Alpha AXP architecture you
can use to provide equivalent protection.

3–1

Preserving the Integrity of Shared Data
3.1 Overview

3.1.1 VAX Architectural Features That Guarantee Atomicity
The following features of the VAX architecture provide synchronization among
multiple threads of execution running on a uniprocessor system. (Note that the
VAX architecture does not extend this guarantee of atomicity to multiprocessor
systems.)

• Instruction atomicity—Many of the instructions defined by the VAX
architecture are capable of performing a read-modify-write operation in a
single, noninterruptable sequence (called an atomic operation) from the
viewpoint of multiple application threads executing on a single processor.
The Alpha AXP architecture does not support such instructions. Operations
that could be performed atomically on VAX systems require a sequence of
instructions on AXP systems, which can be interrupted, leaving the data in
an unpredictable state.

For example, the VAX Increment Long (INCL) instruction fetches the contents
of a specified longword, increments its value, and stores the value back in the
longword, performing the operations without interruption. On AXP systems,
each step must be explicitly performed by a separate instruction.

To provide compatibility with VAX systems, the Alpha AXP architecture
defines a pair of instructions that you can use to ensure that a read/write
operation is done atomically. Section 3.1.2 describes these instructions and
describes how compilers on AXP systems make this capability available to
programs written in high-level languages.

Note, however, that even on VAX systems, implicit dependence on the
atomicity of VAX instructions is not recommended. Because of the
optimizations they perform, compilers on VAX systems do not guarantee that
they implement certain program statements, such as an increment operation
(x = x + 1), using a VAX atomic instruction, even if such an instruction is
available.

• Memory access granularity—The VAX architecture supports instructions
that can manipulate byte- and word-sized data in a single, noninterruptable
operation. (The VAX architecture supports instructions to manipulate data
of other sizes as well.) The Alpha AXP architecture supports instructions
that manipulate longword- and quadword-sized data. Manipulation of byte-
and word-sized data on AXP systems requires multiple instructions: the
longword or quadword that contains the byte or word must be fetched, the
nontargeted bytes must be masked, the target byte or word manipulated, and
then the entire longword or quadword must be stored. Because this sequence
is interruptable, operations on byte and word data, which are atomic on VAX
systems, are not atomic on AXP systems.

Note that this change in the granularity of memory access can also affect the
definition of which data is shared. On VAX systems, a byte- or word-sized
data item that is shared can be manipulated individually. On AXP systems,
the entire longword or quadword that contains the byte- or word-sized item
must be manipulated. Thus, simply because of its proximity to an explicitly
shared data item, neighboring data may become unintentionally shared.

Compilers use the Alpha AXP instructions described in Section 3.1.2 to ensure
the integrity of byte- and word-sized data.

3–2

Preserving the Integrity of Shared Data
3.1 Overview

• Read/write ordering—On VAX uniprocessor and multiprocessor systems,
sequential write operations and read operations appear to occur in the same
order in which you specify them from the viewpoint of all types of external
threads of execution. AXP uniprocessor systems also guarantee that the
order of read and write operations appears synchronized for multiple threads
of execution running within a single process or within multiple processes
running on a uniprocessor. However, write operations visible to threads
executing concurrently on an AXP multiprocessor system require explicit
synchronization.

To provide compatibility with VAX systems, the Alpha AXP architecture
supports an instruction with which you can ensure that read/write operations
occur in the order specified, from the viewpoint of all the processors in the
system. Section 3.1.2 provides more information about this instruction and
about how high-level languages make this instruction available. Section 3.3
describes the feature of the Alpha AXP architecture that provides this
synchronization and describes how the compilers make it available to
high-level language programs on AXP systems.

3.1.2 Alpha AXP Compatibility Features
To provide compatibility with the atomicity capabilities of the VAX architecture,
the Alpha AXP architecture defines two mechanisms:

• Load-locked/Store-conditional instructions—The Alpha AXP instruction
set includes a pair of instructions, named Load-locked (LDxL) and Store-
conditional (STxC), that provide for atomic load and store operations
by setting and testing a lock bit. For complete information about these
instructions, see the Alpha Architecture Reference Manual.

Using the Load-locked/Store-conditional instructions, compilers can provide
atomic access to byte- and word-sized data on AXP systems. In addition,
compilers may generate the Load-locked/Store-conditional instruction
sequence when accessing byte- and word-sized data that is declared with
the volatile attribute. (The Alpha AXP architecture provides atomic load and
store operations of longword- and quadword-sized data.)

• Memory barriers—The Alpha AXP instruction set includes an instruction
that can ensure that read/write operations, issued by multiple threads
executing on separate processors in a multiprocessor system, appear to
occur in the order specified. This instruction, named memory barrier (MB),
guarantees that all subsequent load or store instructions will not access
memory until after all previous load and store instructions have accessed
memory from the viewpoint of multiple threads of execution.

3.2 Uncovering Atomicity Assumptions in Your Application
One way to uncover synchronization assumptions in your application is to identify
data that is shared among multiple threads of execution and then examine each
access to the data from each thread. When looking for shared data, remember
to include unintentionally shared data as well as intentionally shared data.
Unintentionally shared data is shared because of its proximity to data that
is accessed by multiple threads of execution such as data written to by ASTs
generated by the operating system as a result of system services such as $QIO,
$ENQ, or $GETJPI.

3–3

Preserving the Integrity of Shared Data
3.2 Uncovering Atomicity Assumptions in Your Application

Because compilers on AXP systems use quadword instructions by default in
certain circumstances, all data items within a quadword of a shared data item
may potentially become unintentionally shared. For example, compilers use
quadword instructions to access a data item that is not aligned on natural
boundaries. (Data is naturally aligned when its address is divisible by its size.
For more information, see Chapter 4. Compilers align explicitly declared data on
natural boundaries by default.)

When examining data access, determine if another thread could view the data
in an intermediate state and, if such a view is possible, whether it is important
to the application. In some cases, the exact value of the shared data may not be
important; the application depends only on the relative value of the variable. In
general, ask the following questions:

• Is the operation performed on the shared data atomic from the viewpoint of
other threads of execution?

• Is it possible to perform an atomic operation to the data type involved?

Figure 3–1 illustrates this decision process.

Figure 3–1 Synchronization Decision Tree

No

Yes

ZK−5204A−GE

Does your application
share data between
multiple threads of
execution?

No synchronization
required.

Is operation performed
on the data atomic?

Requires explicit
synchronization.

No synchronization required.

Requires explicit
synchronization.

No

No

Yes

Yes

Can data be accessed
atomically?

3–4

Preserving the Integrity of Shared Data
3.2 Uncovering Atomicity Assumptions in Your Application

3.2.1 Protecting Explicitly Shared Data
The program in Example 3–1 is a simplified illustration of some possible
atomicity assumptions in a VAX application. The program uses a variable,
flag, through which an AST thread communicates with a main processing thread
of execution. In the example, the main processing loop continues working until
the counter variable reaches a predetermined value. The program queues an AST
interruption that sets the flag to the maximum value, terminating the processing
loop.

Example 3–1 Atomicity Assumptions in a Program with an AST Thread

#include <ssdef.h>
#include <descrip.h>

#define MAX_FLAG_VAL 1500

int ast_rout();
long time_val[2];
short int flag; /* accessed by main and AST threads */

main()
{

int status = 0;
static $DESCRIPTOR(time_desc, "0 ::1");

/* changes ASCII time value to binary value */

status = SYS$BINTIM(&time_desc, &time_val);

if (status != SS$_NORMAL)
{

printf("bintim failure\n");
exit(status);

}

/* Set timer, queue ast */

status = SYS$SETIMR(0, &time_val, ast_rout, 0, 0);

if (status != SS$_NORMAL)
{

printf("setimr failure\n");
exit(status);

}

flag = 0; /* loop until flag = MAX_FLAG_VAL */
while(flag < MAX_FLAG_VAL)
{

printf("main thread processing (flag = %d)\n",flag);
flag++;

}
printf("Done\n");

}

ast_rout() /* sets flag to maximum value to stop processing */
{

flag = MAX_FLAG_VAL;
}

In Example 3–1, the variable named flag is explicitly shared between the
main thread of execution and an AST thread. The program does not use any
synchronization mechanism to protect the integrity of this variable; it implicitly
depends on the atomicity of the increment operation.

3–5

Preserving the Integrity of Shared Data
3.2 Uncovering Atomicity Assumptions in Your Application

On an AXP system, this program may not always work as desired because the
mainline thread of execution can be interrupted in the middle of the increment
operation by the AST thread before the new value is stored back into memory, as
illustrated in Figure 3–2. (This would be more likely to fail in a real application
with dozens of AST threads.) In this scenario, the AST thread would interrupt
the increment operation before it completes, setting the value of the variable to
the maximum value. But once control returns to the main thread, the increment
operation would complete, overwriting the value of the AST thread. When the
loop test is performed, the value would not be at its maximum and the processing
loop would continue.

Figure 3–2 Atomicity Assumptions in Example 3–1

Time

ZK−5203A−GE

Main Thread

1500

126

:flag

AST ThreadShared Data

125

Read value
of flag.

Begin
increment operation.

Main
thread
resumes. Write incremented

value to flag.

Main thread overwrites value written by
AST thread.

AST thread
reads value of
flag (125)

AST thread writes
MAX_FLAG_VAL
to flag variable.

AST interrupts
increment operation

125

:flag

:flag

:flag

Recommendations
To correct these atomicity dependencies, Digital recommends doing the following:

• Disable AST delivery, using the $SETAST system service, while the data is
being accessed and enable it after access is completed.

• Explicitly protect the data by using a compiler mechanism. For example,
DEC C for OpenVMS AXP systems supports atomicity built-ins. In addition,
you can use other mechanisms to synchronize access to this data, such as the
$ENQ system service (for data accessed by multiple threads running on a
multiprocessor system) or run-time library routines, such as LIB$BBCCI or
LIB$BBSSI, and the interlocked queue routines.

3–6

Preserving the Integrity of Shared Data
3.2 Uncovering Atomicity Assumptions in Your Application

For example, in Example 3–1, replace the increment operation,
which is performed by the C increment operator (flag++) with the
atomicity built-in supported by DEC C for OpenVMS AXP systems
(_ _ADD_ATOMIC_LONG(&flag,1,0)). See Example 3–2 for the complete
example.

Note that the shared variable must be an aligned longword or aligned
quadword to be protected by the atomicity built-ins.

• If you cannot change byte- or word-sized data to a longword or quadword,
change the granularity the compiler uses when accessing the data item.
Many compilers on AXP systems allow you to specify the granularity they
will use when accessing a particular data item or when processing an entire
module. Note, however, that specifying byte and word granularity can have
an adverse effect on the performance of your application.

Example 3–2 illustrates how these changes are implemented in the program
presented in Example 3–1.

Example 3–2 Version of Example 3–1 with Synchronization Assumptions

#include <ssdef.h>
#include <descrip.h>
#include <builtins.h> 1

#define MAX_FLAG_VAL 1500
int ast_rout();
long time_val[2];
int 2 flag; /* accessed by mainline and AST threads */

main()
{

int status = 0;
static $DESCRIPTOR(time_desc, "0 ::1");

/* changes ASCII time value to binary value */

status = SYS$BINTIM(&time_desc, &time_val);

if (status != SS$_NORMAL)
{

printf("bintim failure\n");
exit(status);

}

/* Set timer, queue ast */

status = SYS$SETIMR(0, &time_val, ast_rout, 0, 0);

if (status != SS$_NORMAL)
{

printf("setimr failure\n");
exit(status);

}

(continued on next page)

3–7

Preserving the Integrity of Shared Data
3.2 Uncovering Atomicity Assumptions in Your Application

Example 3–2 (Cont.) Version of Example 3–1 with Synchronization
Assumptions

flag = 0;
while(flag < MAX_FLAG_VAL) /* perform work until flag set to zero */
{

printf("mainline thread processing (flag = %d)\n",flag);
__ADD_ATOMIC_LONG(&flag,1,0); 3

}
printf("Done\n");

}

ast_rout() /* sets flag to maximum value to stop processing */
{

flag = MAX_FLAG_VAL;
}

The items in the following list correspond to the numbers in Example 3–2:

1 To use the DEC C for OpenVMS AXP systems atomicity built-ins, you must
include the builtins.h header file.

2 In this version, the variable flag is declared as a longword to allow atomic
access (the atomicity built-ins require it).

3 The increment operation is performed with an atomicity built-in function.

3.2.2 Protecting Unintentionally Shared Data
In Example 3–1, both threads clearly access the same variable. However, on
an AXP system, it is possible for an application to have atomicity concerns
for variables that are inadvertently shared. In this scenario, two variables
are physically adjacent to each other within the boundaries of a longword or
quadword. On VAX systems, each variable can be manipulated individually. On
an AXP system, which supports atomic read and write operations of longword
and quadword data only, the entire longword must be fetched before the target
bytes can be modified. (For more information about this change in data-access
granularity, see Chapter 4.)

To illustrate this problem, consider a modified version of the program in
Example 3–1 in which the main thread and the AST thread each increment
separate counter variables that are declared in a data structure, as in the
following code:

struct {
short int flag;
short int ast_flag;
};

If both the main thread and the AST thread attempt to modify their individual
target words simultaneously, the results would be unpredictable, depending on
the timing of the two operations.

Recommendations
To remedy this synchronization problem, Digital suggests doing the following:

• Change the size of the shared variables to longwords or quadwords. Note,
however, that because compilers on AXP systems use quadword instructions
in certain circumstances, you should use quadwords to ensure the integrity of

3–8

Preserving the Integrity of Shared Data
3.2 Uncovering Atomicity Assumptions in Your Application

the data. For example, if the data is not aligned on a natural boundary, the
compilers use a quadword instruction to access the data.

In data structures, you can also insert extra bytes between data items to
force the elements of the structure onto natural quadword boundaries. The
compilers align data on natural boundaries by default on AXP systems.

For example, to ensure that each flag variable in the data structure can be
modified without interference from other threads of execution, change the
declarations of the variables so that they are 64-bit quantities. Using DEC C,
you could use the double data type, as in the following code:

struct {
double flag;
double ast_flag;
};

• Explicitly protect the data by using a compiler mechanism, such as the
atomicity built-ins or the volatile attribute. In addition, you can synchronize
access to data by multiple threads of execution running on a multiprocessor
system by using the $ENQ system service or a run-time library routine, such
as LIB$BBCCI or LIB$BBSSI, or by employing interlocked queue operations.

3.3 Synchronizing Read/Write Operations
VAX multiprocessing systems have traditionally been designed so that if one
processor in a multiprocessing system writes multiple pieces of data, these
pieces become visible to all other processors in the same order in which they
were written. For example, if CPU A writes a data buffer (represented by X in
Figure 3–3) and then writes a flag (represented by Y in Figure 3–3), CPU B can
determine that the data buffer has changed by examining the value of the flag.

On AXP systems, read and write operations to memory may be reordered to
benefit overall memory subsystem performance. Processes that execute on a
single processor can rely on write operations from that processor becoming
readable in the order in which they are issued. However, multiprocessor
applications cannot rely on the order in which write operations to memory become
visible throughout the system. In other words, write operations performed by
CPU A may become visible to CPU B in an order different from that in which
they were written.

Figure 3–3 illustrates this problem. CPU A requests a write operation to X,
followed by a write operation to Y. CPU B requests a read operation from Y
and, seeing the new value of Y, initiates a read operation of X. If the new value
of X has not yet reached memory, CPU B receives the old value. As a result,
any token-passing protocol relied on by procedures running on CPUs A and B
is broken. CPU A could write data and set a flag bit, but CPU B may see the
flag bit set before the data is actually written and erroneously use stale memory
contents.

3–9

Preserving the Integrity of Shared Data
3.3 Synchronizing Read/Write Operations

Figure 3–3 Order of Read and Write Operations on an AXP System

Time
Writable global section

write #123,X

write #1,Y

0

0

0 or 123

1

:X

ZK−5202A−GE

read Y
if Y = 1 then read X
(even if Y = 1, X can be either
0 or 123; if y = 0, X can also
be either 0 or 123)

:Y

:X

:Y

Code on
CPU A

Code on
CPU B

Recommendations
Programs that run in parallel and that rely on read/write ordering require some
redesigning to execute correctly on an AXP system. One or more of the following
techniques may be appropriate, depending on the application:

• Use the Alpha AXP memory barrier instruction (MB) before and after all read
and write instructions for which the completion order is crucial. For example,
the DEC C for OpenVMS AXP systems compiler supports the memory barrier
instruction as a built-in function.

• Redesign the application to use the memory interlocks available in the PPL$
run-time library or the VAX interlocked instruction routines available in the
LIB$ run-time library.

• Redesign the application to use the $ENQ and $DEQ system services to
protect the data with a lock.

3.4 Ensuring Atomicity in Translated Images
The VEST command’s /PRESERVE qualifier accepts keywords that allow
translated VAX images to run on AXP systems with the same guarantees of
atomicity that are provided on VAX systems. Several /PRESERVE qualifier
keywords provide different types of atomicity protection. Note that specifying
these /PRESERVE qualifier keywords can have an adverse effect on the
performance of your application. (For complete information about specifying the
/PRESERVE qualifier, see DECmigrate for OpenVMS AXP Systems Translating
Images.)

To ensure that an operation that can be performed atomically on a VAX system
by a VAX instruction is performed atomically in a translated image, specify the
INSTRUCTION_ATOMICITY keyword to the /PRESERVE qualifier.

3–10

Preserving the Integrity of Shared Data
3.4 Ensuring Atomicity in Translated Images

To ensure that simultaneous updates to adjacent bytes within a longword or
quadword can be accomplished without interfering with each other, specify the
MEMORY_ATOMICITY keyword to the /PRESERVE qualifier.

To ensure that read/write operations appear to occur in the order you specify
them, specify the READ_WRITE_ORDERING keyword to the /PRESERVE
qualifier.

3–11

4
Checking the Portability of Application Data

Declarations

This chapter describes how to check the data your application uses for
dependencies on the VAX architecture. The chapter also describes the effect your
choice of data type can have on the size and performance of your application on
an AXP system.

4.1 Overview
The data types supported by high-level programming languages, such as int
in C or INTEGER*4 in FORTRAN, provide applications with a degree of data
portability because they hide the machine-specific details of the underlying
native data types. The languages map their data types to the native data types
supported by the target platform. For this reason, you may be able to successfully
recompile and run an application that runs on VAX systems on an AXP system
without modifying the data declarations it contains.

However, if your application contains any of the following assumptions about data
types, you may need to modify your source code:

• Assumptions about data-type mappings—Your application may depend
on the underlying VAX data type to which a high-level language maps. The
Alpha AXP architecture supports most of the VAX data types; however, there
are some data types that are not supported. Your application may make
assumptions about the size or bit format of a data type that may no longer
be valid on an AXP system. Section 4.2 provides more information about this
topic.

• Assumptions about data-type selection—Your choice of data type may
have different implications on an AXP system. For example, on VAX systems,
you may have chosen the smallest data type available to represent data items
to conserve memory usage. On an AXP system, this strategy may actually
increase memory usage. Section 4.3 provides more information about this
topic.

4.2 Checking for Dependence on a VAX Data Type
To provide data compatibility, the Alpha AXP architecture has been designed to
support many of the same native data types as the VAX architecture. Table 4–1
lists the native data types supported by both architectures. (See the Alpha
Architecture Reference Manual for more information about the formats of the data
types.)

4–1

Checking the Portability of Application Data Declarations
4.2 Checking for Dependence on a VAX Data Type

Table 4–1 Comparison of VAX and AXP Native Data Types

VAX Data Types AXP Data Types

byte byte

word word

longword longword

quadword quadword

octaword –

F_float F_float

D_float (56-bit precision) D_float (53-bit precision)

G_float G_float

H_float –

– S_float (IEEE)

– T_float (IEEE)

Variable-length bit field –

Absolute queue Absolute longword queue

– Absolute quadword queue

Self-relative queue Self-relative longword queue

– Self-relative quadword queue

Character string –

Trailing numeric string –

Leading separate numeric string –

Packed decimal string –

Recommendations
Unless your application depends on the format or size of the underlying native
VAX data types, you may not have to modify your application because of changes
to the data-type mappings. Wherever possible, the compilers on AXP systems
map their data types to the same native data types as they do on VAX systems.
For those VAX data types that are not supported by the Alpha AXP architecture,
the compilers map their data types to the closest equivalent native Alpha AXP
data type. (For more information about how the compilers on AXP systems map
the data types they support to native Alpha AXP data types, see Appendix A and
compiler documentation.)

The following list provides guidelines that can be helpful for certain types of data
declarations:

• D_float data—Most compilers on AXP systems map their double-precision
floating-point data type to the VAX native G_float data type by default
because the Alpha AXP architecture does not support the VAX D_float data
type. The OpenVMS VAX compilers map their double-precision floating-point
data type to the D_float data type. For example, VAX C maps the double data
type to D_float and DEC C for OpenVMS AXP systems compiler maps the
double data type to the G_float data type.

This change may not affect most applications. Note, however, that the value
returned by the G_float data type (significant to 15 digits after the decimal)
is slightly less precise than the value returned by the D_float data type
(significant to 16 digits after the decimal).

4–2

Checking the Portability of Application Data Declarations
4.2 Checking for Dependence on a VAX Data Type

The OpenVMS Run-Time Library supports a conversion routine
(CVT$CONVERT_FLOAT) that you can use to convert floating-point data
from one format to another. For example, using this routine you can convert
data in D_float format to IEEE format and back again. Note also that the
Alpha AXP architecture supports the IEEE double-precision floating-point
format (T_float).

DEC C for OpenVMS AXP systems issues a warning message when it
encounters declarations that use the long float data type. On VAX systems,
the long float data type is a synonym for double. On AXP systems, the long
float data type is obsolete, even when the DEC C compiler is used in VAX C
mode.

• Pointer data—Check for assumptions that an address (pointer) data type is
equivalent in size to an integer data type. On AXP systems, an address is 64
bits.

For example, in VAX C, some programs may make this assumption, as
illustrated in Example 4–1.

Example 4–1 Assumptions About Data Types in VAX C Code

typedef struct {
char small;
short medium;
long large;
} MYSTRUCT ;

main()
{

int a1;
long b1;
MYSTRUCT c1;

1 a1 = &c1;
2 b1 = &c1;

3 a1->small = 1;
b1->small = 2;

}

The items in the following list correspond to the numbered items in
Example 4–1:

1 The example assigns the address of the structure to the variable a1,
declared as an int data type.

2 The example assigns the address of the structure to the variable b1,
declared as a long data type.

3 The example accesses the first field in the structure by using the variables
assigned to int and long data types.

To move this example to an AXP system, you should change the declarations
of a1 and b1 to be pointers to the data structure (MYSTRUCT), as in the
following:

MYSTRUCT *a1,*b2;

4–3

Checking the Portability of Application Data Declarations
4.3 Examining Assumptions About Data-Type Selection

4.3 Examining Assumptions About Data-Type Selection
Even though your application may recompile and run successfully on an AXP
system, your data-type selection may not take full advantage of the benefits of
the Alpha AXP architecture. In particular, data-type selection can impact the
ultimate size of your application and its performance on an AXP system.

4.3.1 Effect of Data-Type Selection on Code Size
On VAX systems, applications typically use the smallest size data type adequate
for the data. For example, to represent a value between 32,768 and -32,767
in an application written in C, you might declare a variable of type short. On
VAX systems, this practice conserves storage and, because the VAX architecture
supports instructions that operate on all sizes of data types, does not affect
efficiency.

On an AXP system, byte- and word-sized data incurs more overhead than
longword- or quadword-sized data because the Alpha AXP architecture does not
support instructions that manipulate these smaller data types. Each reference to
a byte or word, which generates a single instruction on a VAX system, generates a
sequence of instructions on an AXP system, in which the longword containing the
byte or word is fetched, manipulated so that only the target bytes are modified,
and then stored. For frequently referenced data, these additional instructions can
significantly add to the total size of your application on an AXP system.

4.3.2 Effect of Data-Type Selection on Performance
Another aspect of data-type selection is data alignment. Alignment is an attribute
of a data item that refers to its placement in memory. The mixture of byte-sized,
word-sized, and larger data types, typically found in data-structure definitions
and static data areas in applications on VAX systems, can lead to data that is not
aligned on natural boundaries. (A data item is naturally aligned when its address
is a multiple of its size in bytes.)

Accessing unaligned data incurs more overhead that accessing aligned data on
both VAX and AXP systems. However, VAX systems use microcode to minimize
the performance impact of unaligned data. On AXP systems, there is no hardware
assistance. References to unaligned data trigger a fault, which must be handled
by the operating system’s unaligned fault handler. While the fault is being
handled, the instruction pipeline must be stopped. Thus, the cost of an unaligned
reference in performance is dramatically higher on AXP systems.

The compilers on AXP systems attempt to minimize the performance impact by
generating a special unaligned reference instruction sequence when an unaligned
reference is known at compile time. This prevents a run-time unaligned fault
from occurring. Unaligned references that appear at run time must be handled
as unaligned reference faults.

Recommendations
Given the potential impact of data-type selection on code size and performance,
you might think you should change all byte- and word-sized data declarations to
longwords to eliminate the extra instructions required for byte and word accesses
and improve alignment. However, before making sweeping changes to your data
declarations, consider the following factors:

• Frequency of access/Number of replications—If a byte- or word-sized
data item is frequently referenced, changing it to a longword eliminates the
extra instructions required at each reference and can reduce application
size significantly. However, if the byte or word is not referenced frequently

4–4

Checking the Portability of Application Data Declarations
4.3 Examining Assumptions About Data-Type Selection

and is replicated a large number of times (for example, in a data structure
instantiated many times), the change to a longword can add up to more than
the cost of the additional instructions at each reference. The three bytes
added when changing to a longword can significantly increase virtual memory
usage if the data item is replicated thousands of times. Before changing a
data declaration, consider how it is used and how much virtual memory (and
thus physical memory) you want to spend for this performance improvement.
Such trade-offs between size and performance are a frequent consideration
during design.

• Interoperability requirements—If the data object is shared with a
translated component or a native VAX component, you may be unable to
make changes that would improve its layout because the other components
depend on the binary layout of the data. Compilers (and the VEST utility)
attempt to minimize the performance impact in this case by including the
unaligned reference instruction sequence in the code they generate.

Taking these factors into consideration, use the following guidelines when
examining data-type selections:

• For data that is frequently referenced but not frequently replicated, change
byte- and word-sized fields to longwords, especially for performance-critical
fields.

• For data that is not frequently referenced but that is frequently replicated, no
change is recommended.

• For data that is both frequently referenced and frequently replicated,
the decision must be made after carefully examining the code size versus
performance impact of the change.

• For static data, always use a longword instead of a byte. It does incur
three extra bytes of storage; however, a single reference requires three extra
instructions, each of which is a longword.

• Use the capabilities of the compilers on AXP systems to uncover data that
is not aligned on natural boundaries. For example, many compilers on AXP
systems support the /WARNING=ALIGNMENT qualifier, which checks for
data that is not aligned on natural boundaries.

• Use the capabilities of the run-time analysis tools, Program Coverage and
Analyzer (PCA) and the OpenVMS Debugger, to uncover at run time data
that is not aligned on natural boundaries. For more information, see the
Guide to Performance and Coverage Analyzer for VMS Systems and the
OpenVMS Debugger Manual.

• Take advantage of the natural alignment provided by the compilers on
AXP systems, wherever interoperability concerns allow. On AXP systems,
compilers align data on natural boundaries by default, wherever possible. On
VAX systems, compilers use byte alignment.

Note that the compilers on AXP systems support qualifiers and language
pragmas that allow you to request they use the same byte alignment
they use on VAX systems. For example, the DEC C for OpenVMS AXP
systems compiler supports the /NOMEMBER_ALIGNMENT qualifier and a
corresponding pragma that allow you to control data alignment. For more
information, see the DEC C compiler documentation.

4–5

Checking the Portability of Application Data Declarations
4.3 Examining Assumptions About Data-Type Selection

The data structure defined in Example 4–1 illustrates these data-type selection
concerns. The structure definition, called mystruct, is made up of byte-, word-,
and longword-sized data, as follows:

struct{
char small;
short medium;
long large;
} mystruct ;

When compiled using VAX C, the structure is laid out in memory as illustrated in
Figure 4–1.

Figure 4–1 Alignment of mystruct Using VAX C

63 0

ZK−5209A−GE

31

Large Medium Small
:0

When compiled using DEC C for OpenVMS AXP systems compiler, the structure
is padded to achieve natural alignment, as illustrated in Figure 4–2. Note that by
adding a byte of padding after the first field, small, both the following members of
the structure are aligned.

Figure 4–2 Alignment of mystruct Using DEC C for OpenVMS AXP Systems

63 0

ZK−5210A−GE

31

Large Medium Small
:0

Note that the byte- and word-sized fields of the data structure still require
multiple instruction sequences for access. If the fields small and medium are
frequently referenced, and the entire structure is not frequently replicated,
consider redefining the data structure to use longword data types. If, however,
the fields are not frequently referenced or the data structure is frequently
replicated, the cost of the byte or word references is a design trade-off the
programmer must make.

4–6

5
Examining the Condition Handling Code in

Your Application

This chapter describes the effect of differences between the VAX architecture and
the Alpha AXP architecture on the condition handling code in your application.

5.1 Overview
For the most part, the condition handling code in your application will work
correctly on an AXP system, especially if your application uses the condition
handling facilities provided by the high-level language in which it is written,
such as the END, ERR, and IOSTAT specifiers in FORTRAN. These language
capabilities insulate applications from architecture-specific aspects of the
underlying condition handling facility.

However, there are certain differences between the Alpha AXP condition handling
facility and the VAX condition handling facility that may require you to modify
your source code. These include the following:

• Changes to the mechanism array format

• Changes to the condition codes returned by the system

• Changes to how other tasks related to condition handling in your application
are accomplished, such as enabling exception signaling and specifying
condition handling routines dynamically at run time.

The following sections describe these changes in more detail and provide
guidelines to help you decide if modifying your source code is necessary.

5.2 Examining Condition Handling Routines for Dependencies
The calling sequence of user-written condition handling routines remains the
same on AXP systems as it is on VAX systems. Condition handling routines
declare two arguments to access the data the system returns when it signals
an exception condition. The system uses two arrays, the signal array and the
mechanism array, to convey information that identifies which exception condition
triggered the signal and to report on the state of the processor when the exception
occurred.

The format of the signal array and the mechanism array is defined by the system
and is documented in the OpenVMS Programming Concepts Manual. On AXP
systems, the data returned in the signal array and its format is the same as it is
on VAX systems, as illustrated in Figure 5–1.

5–1

Examining the Condition Handling Code in Your Application
5.2 Examining Condition Handling Routines for Dependencies

Figure 5–1 Signal Array on VAX and AXP Systems

Argument Count

Condition Code

Optional Message Sequence Arguments

Program Counter (PC)

Processor Status Longword (PSL)

31 0

ZK−5208A−GE

The following table describes the arguments in the signal array:

Argument Description

Argument Count On AXP and VAX systems, this argument contains a positive
integer that indicates the number of longwords that follow in the
array.

Condition Code On AXP and VAX systems, this argument is a 32-bit code that
uniquely identifies a hardware or software exception condition.
The format of the condition code, which remains unchanged on
AXP systems, is described in OpenVMS Programming Interfaces:
Calling a System Routine. Note, however, that AXP systems
do not support every condition code returned on VAX systems
and defines condition codes that cannot be returned on a VAX
system. Section 5.3 lists VAX condition codes that cannot be
returned on AXP systems.

Optional Message
Sequence

These arguments provide additional information about the
particular exception returned and vary for each exception.
The OpenVMS Programming Concepts Manual describes these
arguments for VAX exceptions.

Program Counter (PC) The address of the next instruction to be executed when the
exception occurred, if the exception is a trap; or the address of
the instruction that caused the exception, if the exception is a
fault. On AXP systems, this argument contains the lower 32 bits
of the PC (which is 64 bits long on AXP systems).

Processor Status
Longword (PSL)

A formatted 32-bit argument that describes the status of the
processor when the exception occurred. On AXP systems, this
argument contains the lower 32 bits of the Alpha AXP 64-bit
processor status (PS) quadword.

On AXP systems, the mechanism array returns much of the same data that it
does on VAX systems; however, its format is different. The mechanism array
returned on AXP systems preserves the contents of a larger set of integer scratch
registers as well as the floating-point scratch registers. In addition, because these
registers are 64 bits long, the mechanism array is constructed of quadwords (64
bits) on AXP systems, not longwords (32 bits) as it is on VAX systems. Figure 5–2
compares the format of the mechanism array on VAX and AXP systems.

5–2

Examining the Condition Handling Code in Your Application
5.2 Examining Condition Handling Routines for Dependencies

Figure 5–2 Mechanism Array on VAX and AXP Systems

63 0

ZK−5207A−GE

Argument Count

Frame (FP)

Depth

R0

R1

31 0 31

Flags Argument Count

Frame (FP)

Reserved Depth

Handler Data Address

Signal Array Address

R0

R1

R16

Integer Registers R17 − R27

R28

F0

F1

F10

Floating Registers F11 − F29

F30

Exception Stack Frame Address

The following table describes the arguments in the mechanism array:

Argument Description

Argument Count On VAX systems, this argument contains a positive
integer that represents the number of longwords that
follow in the array. On AXP systems, this argument
represents the number of quadwords in the mechanism
array, not counting the argument count quadword (always
43 on AXP systems).

Flags On AXP systems, this argument contains various flags to
communicate additional information. For example, if bit 0
is set, it indicates that the process has already performed
a floating-point operation and the floating-point registers
in the array are valid. (No equivalent in the mechanism
array on VAX systems.)

5–3

Examining the Condition Handling Code in Your Application
5.2 Examining Condition Handling Routines for Dependencies

Argument Description

Frame Pointer (FP) On VAX and AXP systems, this argument contains the
address of the call frame on the stack that established the
condition handler.

Depth On VAX and AXP systems, this argument contains an
integer that represents the frame number of the procedure
that established the condition handling routine, relative
to the frame that incurred the exception.

Reserved Reserved.

Handler Data Address On AXP systems, this argument contains the address of
the handler data quadword, when a handler is present.
(No equivalent in the mechanism array on VAX systems.)

Exception Stack Frame
Address

On AXP systems, this argument contains the address
of the exception stack frame. (No equivalent in the
mechanism array on VAX systems.)

Signal Array Address On AXP systems, this argument contains the address of
the signal array. (No equivalent in the mechanism array
on VAX systems.)

Registers On VAX and AXP systems, the mechanism array includes
the contents of scratch registers. On AXP systems, this
includes a much larger set of registers and also includes a
corresponding set of floating-point registers.

Recommendations
Because the signal array is the same on AXP systems as it is on VAX systems,
you may not need to modify the source code of your condition handling routine.
However, the changes to the mechanism array may require changes to your
source code. In particular, check the following:

• Check the source code of your condition handling routine for assumptions
about the size of array elements or the ordering of array elements in the
mechanism array.

• If the condition handling routine in your application uses the depth argument
to unwind a specific number of stack frames, you may need to modify your
source code. Because of architectural changes, the depth argument returned
on an AXP system may be different from that returned on a VAX system.
(The depth argument in the mechanism array indicates the number of frames
between the procedure that established the handler, relative to the frame that
incurred the exception.)

Applications that unwind to the establisher frame by specifying the address
of the depth argument to the SYS$UNWIND system service, or unwind to
the caller of the establisher frame by using the default depth argument of
the SYS$UNWIND system service, will continue to work correctly. Depths
specified as negative numbers still indicate exception vectors (as on VAX
systems).

Example 5–1 presents a condition handling routine written in C.

5–4

Examining the Condition Handling Code in Your Application
5.2 Examining Condition Handling Routines for Dependencies

Example 5–1 Condition Handling Routine

#include <ssdef.h>
#include <chfdef.h>

.

.

.
1 int cond_handler(sigs, mechs)

struct chf$signal_array *sigs;
struct chf$mech_array *mechs;

{
int status;

2 status = LIB$MATCH_COND(sigs->chf$l_sig_name, /* returned code */
SS$_INTOVF); /* test against */

3 if(status != 0)
{

/* ...Condition matched. Perform processing. */
return SS$_CONTINUE;

}
else
{

/* ...Condition does not match. Resignal exception. */
return SS$_RESIGNAL;

}
}

The items in the following list correspond to the numbered items in Example 5–1:

1 The routine defines two arguments, sigs and mechs, to access the data
returned by the system in the signal array and the mechanism array.
The routine declares the arguments using two predefined data structures,
chf$signal_array and chf$mech_array, defined by the system in the
CHFDEF.H header file.

2 This condition handling routine uses the LIB$MATCH_COND run-time
library routine to compare the returned condition code with the condition code
that identifies integer overflow (defined in SSDEF.H). The condition code is
referenced as a field in the system-defined signal data structure (defined in
CHFDEF.H).

3 The LIB$MATCH_COND routine returns a nonzero result when a match is
found. The condition handling routine executes different code paths based on
this result.

5.3 Identifying Exception Conditions
Application condition handling routines identify which exception is being
signaled by checking the condition code returned in the signal array. The
following program fragment, taken from Example 5–1, illustrates how a condition
handling routine can accomplish this task by using the run-time library routine
LIB$MATCH_COND:

status = LIB$MATCH_COND(sigs->chf$l_sig_name, /* returned code */
SS$_INTOVF); /* test against */

On AXP systems, the format of the 32-bit condition code and its location in the
signal array are the same as they are on VAX systems. However, the condition
codes your condition handling routine expects to receive on VAX systems may
not be meaningful on AXP systems. Because of architectural differences, some

5–5

Examining the Condition Handling Code in Your Application
5.3 Identifying Exception Conditions

exception conditions that are returned on VAX systems are not supported on AXP
systems.

For software exceptions, AXP systems support the same set supported by VAX
systems, as documented in the online Help Message utility or in the OpenVMS
system messages documentation. Hardware exceptions, however, are more
architecture specific, especially the arithmetic exceptions. Only a subset of the
hardware exceptions supported by VAX systems (documented in the OpenVMS
Programming Concepts Manual) are also supported on AXP systems. In addition,
the Alpha AXP architecture defines several additional exceptions that are not
supported by the VAX architecture.

Table 5–1 lists the VAX hardware exceptions that are not supported on AXP
systems and the Alpha AXP hardware exceptions that are not supported on
VAX systems. If the condition handling routine in your application tests for any
of these VAX-specific exceptions, you may need to add the code to test for the
equivalent Alpha AXP exceptions. (Section 5.3.1 provides more information about
testing for arithmetic exceptions on AXP systems.)

Note

A translated VAX image run on an AXP system can still return these VAX
exceptions.

Table 5–1 Architecture-Specific Hardware Exceptions

Exception Condition Code Comment

Exceptions Specific to AXP Systems

SS$_HPARITH–High-performance arithmetic
exception

Replaces VAX arithmetic exceptions
(see Section 5.3.1)

SS$_ALIGN–Data alignment trap No equivalent on VAX systems

Exceptions Specific to VAX Systems

SS$_ARTRES–Reserved arithmetic trap No equivalent on AXP systems

SS$_COMPAT–Compatibility fault No equivalent on AXP systems
1SS$_DECOVF–Decimal overflow Replaced by SS$_HPARITH

(see Section 5.3.1)
1SS$_FLTDIV–Float divide-by-zero (trap) Replaced by SS$_HPARITH

(see Section 5.3.1)

SS$_FLTDIV_F–Float divide-by-zero (fault) Replaced by SS$_HPARITH
(see Section 5.3.1)

1SS$_FLTOVF–Float overflow (trap) Replaced by SS$_HPARITH
(see Section 5.3.1)

SS$_FLTOVF_F–Float overflow (fault) Replaced by SS$_HPARITH
(see Section 5.3.1)

1SS$_FLTUND–Float underflow (trap) Replaced by SS$_HPARITH
(see Section 5.3.1)

1May be generated by software on AXP systems

(continued on next page)

5–6

Examining the Condition Handling Code in Your Application
5.3 Identifying Exception Conditions

Table 5–1 (Cont.) Architecture-Specific Hardware Exceptions

Exception Condition Code Comment

Exceptions Specific to VAX Systems

SS$_FLTUND_F–Float underflow (fault) Replaced by SS$_HPARITH
(see Section 5.3.1)

1SS$_INTDIV–Integer divide-by-zero Replaced by SS$_HPARITH
(see Section 5.3.1)

1SS$_INTOVF–Integer overflow Replaced by SS$_HPARITH
(see Section 5.3.1)

SS$_TBIT–Trace pending No equivalent on AXP systems

SS$_OPCCUS–Opcode reserved to customer No equivalent on AXP systems

SS$_RADMOD–Reserved addressing mode No equivalent on AXP systems

SS$_SUBRNG–INDEX subscript range check No equivalent on AXP systems

1May be generated by software on AXP systems

5.3.1 Testing for Arithmetic Exceptions on AXP Systems
On a VAX system, the architecture ensures that arithmetic exceptions are
reported synchronously; that is, a VAX arithmetic instruction that causes an
exception (such as an overflow) enters any exception handlers immediately and
no subsequent instructions are executed. The program counter (PC) reported to
the exception handler is that of the failing arithmetic instruction. This allows
application programs, for example, to resume the main sequence, with the failing
operation being emulated or replaced by some equivalent or alternate set of
operations.

On AXP systems, arithmetic exceptions are reported asynchronously; that is,
implementations of the architecture can allow a number of instructions (including
branches and jumps) to execute beyond that which caused the exception. These
instructions may overwrite the original operands used by the failing instruction,
thus causing information integral to interpreting or rectifying the exception
to be lost. The PC reported to the exception handler is not that of the failing
instruction, but rather is that of some subsequent instruction. When the
exception is reported to an application’s exception handler, it may be impossible
for the handler to fix up the input data and restart the instruction.

Because of this fundamental difference in arithmetic exception reporting, AXP
systems define a single condition code, SS$_HPARITH, to indicate all of the
arithmetic exceptions. Thus, if your application contains a condition handling
routine that performs processing when an integer overflow exception occurs, on
VAX systems it expects to receive the SS$_INTOVR condition code. On AXP
systems, this exception is indicated by the condition code SS$_HPARITH. In
this way, condition handling routines in applications cannot mistake an AXP
arithmetic exception with the corresponding VAX exception. This is important
because the processing performed by the applications may be architecture specific.

Figure 5–3 illustrates the format of the SS$_HPARITH exception signal array.

5–7

Examining the Condition Handling Code in Your Application
5.3 Identifying Exception Conditions

Figure 5–3 SS$_HPARITH Exception Signal Array

Argument Count

Condition Code (SS$_HPARITH)

Integer Register Write Mask

Floating Register Write Mask

Exception PC

Exception PS

31 0

ZK−5206A−GE

This signal array contains three arguments that are specific to the SS$_HPARITH
exception: the integer register write mask, the floating register write
mask, and the exception summary arguments. The integer and floating
register mask arguments indicate the registers that were targets of instructions
that set bits in the exception summary argument. Each bit in the mask
represents a register. The exception summary argument indicates the type of
exception (or exceptions) that is being signaled by setting flags in the first seven
bits. Table 5–2 lists the meaning of each of these bits when set.

Table 5–2 Exception Summary Argument Fields

Bit Meaning

0 Software completion.

1 Invalid floating arithmetic, conversion, or comparison operation.

2 Invalid attempt to perform a floating divide operation with a divisor of zero.
Note that integer divide-by-zero is not reported.

3 Floating arithmetic or conversion operation overflowed the destination
exponent.

4 Floating arithmetic or conversion operation underflowed the destination
exponent.

5 Floating arithmetic or conversion operation gave a result that differed from the
mathematically exact result.

6 Integer arithmetic or conversion operation from floating point to integer
overflowed the destination precision.

Recommendations
The following recommendations provide guidelines for determining if a condition
handling routine that performs processing in response to an arithmetic exception
needs modification to run on an AXP system:

• If the condition handling routine in your application only counts the number
of arithmetic exceptions that occurred, or aborts when an arithmetic exception
occurs, it does not matter that the exception is delivered asynchronously on
AXP systems. These condition handling routines require only the addition of
a test for the SS$_HPARITH condition code.

5–8

Examining the Condition Handling Code in Your Application
5.3 Identifying Exception Conditions

• If your application attempts to restart the operation that caused the
exception, you must either rewrite your code or use a compiler qualifier
that ensures the exact reporting of arithmetic exceptions. (See Appendix A
for more information about these compiler qualifiers.) Note, however, that
specifying these instructions can affect performance adversely.

• To guarantee precise reporting of arithmetic exceptions in translated images,
specify the /PRESERVE=FLOAT_EXCEPTIONS qualifier on the VEST
command line when translating the image. When this qualifier is used, the
VEST utility generates code that allows an exception to be reported after each
instruction that could result in a floating-point fault. This qualifier adversely
affects the performance of the translated image. For more information about
using the VEST command, see DECmigrate for OpenVMS AXP Systems
Translating Images.

Note

A translated VAX image running on an AXP system can return VAX
exception conditions, including arithmetic exception conditions.

5.3.2 Testing for Data-Alignment Traps
On an AXP system, a data-alignment trap is generated when an attempt is made
to load or store a longword or quadword to or from a register using an address
that does not have the natural alignment of the particular data reference, without
using an Alpha AXP instruction that takes an unaligned address as an operand
(LDQ_U). (For more information about data alignment, see Chapter 4.)

Compilers on AXP systems typically avoid triggering alignment faults by:

• Aligning static data on natural boundaries by default. (This default behavior
can be overridden by using a compiler qualifier.)

• Generating special inline code sequences for data that is known to be
misaligned at compile time.

Note, however, that compilers cannot align dynamically defined data. Thus,
alignment faults may be triggered.

An alignment exception is identified by the condition code SS$_ALIGN.
Figure 5–4 illustrates the elements of the signal array returned by the SS$_
ALIGN exception.

5–9

Examining the Condition Handling Code in Your Application
5.3 Identifying Exception Conditions

Figure 5–4 SS$_ALIGN Exception Signal Array

Argument Count

Condition Code (SS$_ALIGN)

Virtual Address

Register Number

Exception PC

Exception PS

31 0

ZK−5205A−GE

This signal array contains two arguments specific to the SS$_ALIGN exception:
the virtual address argument and the register number argument. The virtual
address argument contains the address of the unaligned data being accessed. The
register number argument identifies the target register of the operation.

Recommendation

• Use this exception to detect alignment exceptions during the development
of your application. In this phase, you have the opportunity to fix the data
alignment before it can impact performance for a user of your application.
Once this exception is reported, your application has already experienced the
performance impact.

5.4 Performing Other Tasks Associated with Condition Handling
In addition to condition handling routines, applications that include condition
handling must perform other tasks, such as identifying their condition handling
routine to the system. The run-time library provides a set of routines that allow
applications to perform these tasks. For example, applications can call the
run-time library routine LIB$ESTABLISH to identify (or establish) the condition
handling routine they want executed when an exception is signaled.

Because of differences between the VAX architecture and the Alpha AXP
architecture and between the calling standards for both architectures, the way in
which many of these tasks are accomplished is not the same. Table 5–3 lists the
run-time library condition handling support routines available on VAX systems
and indicates which are supported on AXP systems.

5–10

Examining the Condition Handling Code in Your Application
5.4 Performing Other Tasks Associated with Condition Handling

Table 5–3 Run-Time Library Condition Handling Support Routines

Routine Support on AXP Systems

Arithmetic Exception Support Routines

LIB$DEC_OVER–Enable or disable signaling of decimal
overflow

Not supported

LIB$FIXUP_FLT–Change floating-point reserved operand
to a specified value

Not supported

LIB$FLT_UNDER–Enable or disable signaling of floating-
point underflow

Not supported

LIB$INT_OVER–Enable or disable signaling of integer
overflow

Not supported

General Condition Handling Support Routines

LIB$DECODE_FAULT–Analyze instruction context for
fault

Not supported

LIB$ESTABLISH–Establish a condition handler Not supported by RTL but
supported by compilers to
provide compatibility

LIB$MATCH_COND–Match condition value Supported

LIB$REVERT–Delete a condition handler Not supported by RTL but
supported by compilers to
provide compatibility

LIB$SIG_TO_STOP–Convert a signaled condition to a
condition that cannot be continued

Supported

LIB$SIG_TO_RET–Convert a signal to a return status Supported

LIB$SIM_TRAP–Simulate a floating-point trap Not supported

LIB$SIGNAL–Signal an exception condition Supported

LIB$STOP–Stop execution by using signaling Supported

Recommendations
The following list provides specific guidelines for applications that use run-time
library routines:

• If your application enables the signaling of exceptions by calling one of the
run-time library routines that enable exception reporting, you will need to
change your source code. These routines are not supported on AXP systems.
Note, however, that certain types of arithmetic exceptions are always enabled
on AXP systems. The following types of arithmetic exceptions are always
enabled:

– Floating-point invalid operation

– Floating-point division by zero

– Floating-point overflow

Those exceptions that are not enabled by default must be enabled at compile
time.

5–11

Examining the Condition Handling Code in Your Application
5.4 Performing Other Tasks Associated with Condition Handling

• If your application specifies a condition handling routine by calling the run-
time library routine LIB$ESTABLISH, you may not have to change your
source code. Most compilers on AXP systems, to preserve compatibility, accept
calls to the LIB$ESTABLISH routine. The compilers create a variable on the
stack to point at the ‘‘current’’ condition handler. LIB$ESTABLISH sets this
variable; LIB$REVERT clears it. The statically established handler for these
languages reads the value of this variable to determine which routine to call.

As an example, the program in Example 5–2, written in FORTRAN, uses the RTL
routine LIB$ESTABLISH to specify a condition handling routine that tests for
integer overflow by specifying the condition code SS$_INTOVF. On VAX systems,
you must compile the program with the /CHECK=OVERFLOW qualifier to enable
integer overflow detection.

To get this program to run on an AXP system, you must change the condition code
from SS$_INTOVF to SS$_HPARITH. (You can determine the type of overflow
by examining the exception summary argument in the signal array. For more
information, see the compiler documentation.) As on VAX systems, you must
specify the /CHECK=OVERFLOW qualifier on the compile command line to
enable overflow detection. The call to the LIB$ESTABLISH routine does not have
to be removed because DEC Fortran accepts this routine as an intrinsic function.

Example 5–2 Sample Condition Handling Program

C This program types a maximum value of integers
C Compile with /CHECK=OVERFLOW and the /EXTEND_SOURCE qualifiers

INTEGER*4 int4
EXTERNAL HANDLER
CALL LIB$ESTABLISH (HANDLER) 1

int4=2147483645
WRITE (6,*) ’ Beginning DO LOOP, adding 1 to ’, int4
DO I=1,10
int4=int4+1
WRITE (6,*) ’ INT*4 NUMBER IS ’, int4

END DO
WRITE (6,*) ’ The end ...’
END

C This is the condition handling routine

INTEGER*4 FUNCTION HANDLER (SIGARGS, MECHARGS)
INTEGER*4 SIGARGS(*),MECHARGS(*)
INCLUDE ’($FORDEF)’
INCLUDE ’($SSDEF)’
INTEGER INDEX
INTEGER LIB$MATCH_COND

INDEX = LIB$MATCH_COND (SIGARGS(2), SS$_INTOVF) 2
IF (INDEX .EQ. 0) THEN

HANDLER = SS$_RESIGNAL
ELSE IF (INDEX .GT. 0) THEN

WRITE (6,*) ’Arithmetic exception detected...’
CALL LIB$STOP(SIGARGS(1))

END IF
END

5–12

Examining the Condition Handling Code in Your Application
5.4 Performing Other Tasks Associated with Condition Handling

The items in the following list correspond to the numbered items in Example 5–2:

1 The example calls LIB$ESTABLISH to specify the condition handling routine.

2 On an AXP system, you must change the condition code SS$_INTOVF to
SS$_HPARITH. The handler routine calls the LIB$STOP routine to terminate
execution of the program.

The following example illustrates how to compile, link, and run the program in
Example 5–2:

$ FORTRAN/EXTEND_SOURCE/CHECK=OVERFLOW HANDLER_EX.FOR
$ LINK HANDLER_EX
$ RUN HANDLER_EX
Beginning DO LOOP, adding 1 to 2147483645
INT*4 NUMBER IS 2147483646
INT*4 NUMBER IS 2147483647
Arithmetic exception detected...
%TRACE-F-TRACEBACK, symbolic stack dump follows
Image Name Module Name Routine Name Line Number rel PC abs PC
INT_OVR_HAND INT_OVR_HANDLER HANDLER 1637 00000238 00020238
DEC$FORRTL 0 000651E4 001991E4
----- above condition handler called with exception 00000504:
%SYSTEM-F-HPARITH, high performance arithmetic trap, Imask=00000001, Fmask=00000
000, summary=40, PC=000200E0, PS=0000001B
-SYSTEM-F-INTOVF, arithmetic trap, integer overflow at PC=000200E0, PS=0000001B
----- end of exception message

0 84FE9FFC 84FE9FFC
INT_OVR_HAND INT_OVR_HANDLER INT_OVR_HANDLER 15 000000E0 000200E0

0 84EFD918 84EFD918
0 7FF23EE0 7FF23EE0

5–13

6
Ensuring Interoperability Between Native and

Translated Images

This chapter describes how to create native AXP images that can make calls to
and be called by translated VAX images.

6.1 Overview
DECmigrate for OpenVMS AXP Systems Translating Images describes how to use
the VAX Environment Software Translator (VEST) to convert a VAX executable
or shareable image into a functionally equivalent AXP image. (DECmigrate for
OpenVMS AXP is an optional layered product that supports the migration of a
VAX application to an AXP system. VEST is a component of the DECmigrate
utility.)

Using VEST, you can translate all the components of an application, such as the
main executable image and all the shareable images that it calls. However, you
can also create an application that is a mix of translated and native components.
For example, you may want to create a native version of a shareable image that
is called by your application to take advantage of native performance. You may
also choose to use a mixture of native and translated components to allow you to
create a native version of your application in stages.

You can use translated VAX images as you would a native AXP image. However,
to create native images that can interoperate with translated images requires
some additional considerations, described in the following sections.

6.1.1 Compiling Native Images That Can Interoperate with Translated Images
To create a native image that can call or be called by a translated image, you
must specify the /TIE qualifier when compiling the source files of the native AXP
image. Any source module that contains a procedure that is made available to
external callers must be compiled with the /TIE qualifier. When you specify the
/TIE qualifier, the compilers create procedure signature blocks (PSBs) that are
needed by the Translated Image Environment (TIE) at execution time in order to
properly jacket calls between translated and native images. The TIE is part of
the operating system.

You must also specify the /TIE qualifier when compiling a source module
that contains a procedure that performs a callback (or calls out to a specified
procedure) that may be in a translated image. In this case, the /TIE qualifier
causes the compilers to generate a call to a special run-time library routine,
OTS$CALL_PROC, that ensures that the outbound call to a translated procedure
is handled properly.

6–1

Ensuring Interoperability Between Native and Translated Images
6.1 Overview

In addition to the /TIE qualifier, you may need to specify other compiler qualifiers
to ensure correct interoperation between a translated image and a native
shareable image. For example, if the translated callers of a native shareable
image use the VAX D_float format for double-precision floating-point operations
(the default for VAX languages), you must specify the /FLOAT=D_FLOAT
qualifier because the default format for double-precision data on AXP systems
is not VAX D_floating. Consult compiler documentation to determine the exact
qualifier syntax to specify VAX D_floating format. Note that, because the VAX
D_floating data type is not supported by the AXP architecture, its use adversely
affects performance.

Depending on application-specific semantics, you may also need to specify other
compiler qualifiers to force byte granularity, data alignment, and AST atomicity.

6.1.2 Linking Native Images That Can Interoperate with Translated Images
To create a native AXP image that can call a translated VAX image, you must
explicitly link the native object modules with the /NONATIVE_ONLY qualifier.
(Note that /NATIVE_ONLY is the default used by the linker for this qualifier.)
This qualifier causes the linker to include in the image the PSB information
created by the compilers.

Because the /NONATIVE_ONLY qualifier affects only outgoing calls from native
images to translated images, you do not need to specify it when creating a native
AXP image that will be called by a translated VAX image. The linker’s default
behavior (/NATIVE_ONLY qualifier) can prevent native images from calling
translated images but not from being called by translated images.

Note that the layout of the symbol vector in the native version of the shareable
image must match the layout of the symbol vector in the translated shareable
image it replaces. For more information about replacing translated shareable
images with native shareable images, see Section 6.3.

6.2 Creating a Native Image That Can Call a Translated Image
To create a native AXP image that can make calls to a translated VAX shareable
image, perform the following steps:

1. Translate the VAX shareable image. See DECmigrate for OpenVMS AXP
Systems Translating Images for information about using VEST to translate
VAX images.

2. Create a native AXP version of the main program. Compile the source
modules using a compiler that produces native AXP code, specifying the /TIE
qualifier on the command line.

3. Link the native object module with the translated VAX shareable
image. Specify the translated image in a linker options file as you would any
other shareable image.

To illustrate interoperability, consider the programs in Example 6–1 and
Example 6–2. Example 6–1 calls the routine mysub that is defined in
Example 6–2.

6–2

Ensuring Interoperability Between Native and Translated Images
6.2 Creating a Native Image That Can Call a Translated Image

Example 6–1 Source Code for Main Program (MYMAIN.C)

#include <stdio.h>

int mysub();

main()
{

int num1, num2, result;

num1 = 5;
num2 = 6;

result = mysub(num1, num2);
printf("Result is: %d\n", result);

}

Example 6–2 Source Code for Shareable Image (MYMATH.C)

int myadd(value_1, value_2)
int value_1;
int value_2;
{

int result;

result = value_1 + value_2;
return(result);

}

int mysub(value_1,value_2)
int value_1;
int value_2;
{
int result;

result = value_1 - value_2;
return(result);
}

int mydiv(value_1, value_2)
int value_1;
int value_2;

{
int result;

result = value_1 / value_2;
return(result);

}

int mymul(value_1, value_2)
int value_1;
int value_2;

{
int result;

result = value_1 * value_2;
return(result);

}

To create VAX images from these examples, compile the source modules using a
C compiler on a VAX system. To implement Example 6–2 as a shareable image,
link the module, specifying the /SHAREABLE qualifier on the LINK command
line and declaring the universal symbols in the shareable image by using the
UNIVERSAL= option or by creating a transfer vector file. (See the OpenVMS
Linker Utility Manual for information about how to create a shareable image.)

6–3

Ensuring Interoperability Between Native and Translated Images
6.2 Creating a Native Image That Can Call a Translated Image

The following example illustrates a LINK command that creates the shareable
image MYMATH.EXE:

$ LINK/SHAREABLE MYMATH.OBJ,SYS$INPUT/OPT
GSMATCH=LEQUAL,1,1000
UNIVERSAL=myadd
UNIVERSAL=mysub
UNIVERSAL=mydiv
UNIVERSAL=mymul

Ctrl/Z

You can then link the main program with the shareable image to create the
executable image MYMAIN.EXE, as in the following example:

$ LINK MYMAIN.OBJ,SYS$INPUT/OPT
MYMATH.EXE/SHAREABLE

Ctrl/Z

Note that you may need to specify the /BPAGE qualifier on the LINK command
line to force the linker to create image sections using a larger page size than the
default page size on VAX systems (512 bytes). Otherwise, when VEST translates
your VAX image, VEST may collect a number of these 512-byte image sections on
a single AXP page. When VEST puts neighboring image sections with conflicting
protection attributes on the same AXP page, it assigns the most permissive
protection to all the image sections and issues a warning. (See the OpenVMS
Linker Utility Manual for more information about using the /BPAGE qualifier.)

After creating the VAX images, translate them using VEST. Note that you must
translate the shareable image first. (For more information about using the VEST
command, see DECmigrate for OpenVMS AXP Systems Translating Images.) The
following example creates the translated files named MYMATH_TV.EXE and
MYMAIN_TV.EXE (VEST appends the characters ‘‘_TV’’ to the end of the image’s
file name):

$ VEST MYMATH.EXE
$ VEST MYMAIN.EXE

To replace the translated main executable image MYMAIN_TV.EXE with a
native version, compile the source module in Example 6–1 using a compiler that
generates AXP code, specifying the /TIE qualifier on the compile command line.
Then link the native object module MYMAIN.OBJ to create a native AXP image,
specifying the translated shareable image in the linker options file as you would
any other shareable image, as in the following example:

$ LINK/NONATIVE_ONLY MYMAIN.OBJ,SYS$INPUT/OPT
MYMATH_TV.EXE/SHAREABLE

Ctrl/Z

You can run the native main image as you would any other AXP image. Define
the name of the translated shareable image, MYMATH_TV, as a logical name
that points to the location of the translated shareable image (unless it is located
in the directory pointed to by the SYS$SHARE logical name) and execute the
RUN command, as in the following example:

$ DEFINE MYMATH_TV YOUR$DISK:[YOUR_DIR]MYMATH_TV.EXE
$ RUN MYMAIN

6–4

Ensuring Interoperability Between Native and Translated Images
6.3 Creating a Native Image That Can Be Called by a Translated Image

6.3 Creating a Native Image That Can Be Called by a Translated
Image

To create a native AXP shareable image that can be called by a translated VAX
image, perform the following steps:

1. Translate the VAX shareable image. Even though you are replacing
the VAX version of the shareable image with a native version, you must
still translate the shareable image to create a VEST interface information
file (IIF). VEST needs the IIF associated with the shareable image when
it translates an image that calls the shareable image. See DECmigrate for
OpenVMS AXP Systems Translating Images for information about IIF files
and about using VEST to translate VAX images. (Note that you may have to
repeat this step to control the layout of the symbol vector in the translated
shareable image. See Section 6.3.1 for more information.)

2. Translate the VAX executable image that calls the shareable image.

3. Create a native AXP version of the shareable image. Compile the
source modules using a compiler that generates AXP code, specifying the /TIE
qualifier on the command line.

4. Link the object module to create a native AXP shareable image. Use
the SYMBOL_VECTOR= option to declare the universal symbols in the
shareable image. For compatibility, declare the universal symbols in the
SYMBOL_VECTOR= option in the same order as they were declared in the
VAX shareable image.

Note

When creating a native AXP shareable image to replace a translated VAX
shareable image, always leave the first entry of a symbol vector empty
by specifying the SPARE keyword as the first entry in the SYMBOL_
VECTOR= option. VEST reserves the first symbol vector entry in the
translated VAX image for its own use.

The following example creates a native shareable image from the source
module in Example 6–2:

$ LINK/SHAREABLE MYMATH.OBJ,SYS$INPUT/OPT
GSMATCH=LEQUAL,1,1000 1
SYMBOL_VECTOR=(SPARE,-

myadd=procedure,- 2
mysub=procedure,-
mydiv=procedure,-
mymul=procedure)

Ctrl/Z

1 Specifies the major and minor identification numbers of the shareable
image. The values of these identification numbers must match the values
specified in the VAX shareable image. (For more information about using
the GSMATCH= option, see the OpenVMS Linker Utility Manual.)

2 Specifies the universal symbols in the shareable image.

6–5

Ensuring Interoperability Between Native and Translated Images
6.3 Creating a Native Image That Can Be Called by a Translated Image

5. Make sure the layout of the symbol vector in the native AXP image
matches the symbol vector in the translated VAX image. Section 6.3.1
describes how to determine the offsets of symbols in these symbol vectors and
how to control the layout of these symbol vectors to ensure they match.

You can run the translated main image, MYMAIN_TV.EXE, with either the
translated VAX shareable image, MYMATH_TV.EXE, or with the native AXP
shareable image, MYMATH.EXE. By default, the translated executable image
calls the translated shareable image. (The translated executable image contains
a global image section descriptor [GISD] that points to the translated shareable
image. The image activator activates the shareable images to which the image
has been linked.)

To run the translated main image with the native shareable image, define the
name of the shareable image MYMATH_TV as a logical name that points to the
location of the native AXP shareable image, MYMATH.EXE, as in the following
example:

$ DEFINE MYMATH_TV YOUR_DISK:[YOUR_DIR]MYMATH.EXE
$ RUN MYMAIN_TV

6.3.1 Controlling Symbol Vector Layout
To create a native AXP shareable image that can replace a translated VAX
shareable image in an application, you must ensure that the universal symbols
in the shareable images appear at the same offsets in the symbol vectors in both
images. When a VAX shareable image is translated, VEST creates a symbol
vector for the image that includes the universal symbols declared in the original
VAX shareable image. (A translated image is actually an AXP image, created
by VEST, and, like any other AXP shareable image, it lists universal symbols in
a symbol vector.) To create a native shareable image that is compatible with a
translated shareable image, you must make sure that the same symbols appear
at the same offsets in the symbol vector in the native AXP shareable image and
in the translated VAX shareable image it replaces.

To control how VEST lays out the symbol vector it creates in the translated VAX
image, create a symbol information file (SIF) and include it in the translation
operation. A SIF file is a text file with which you can specify the layout of entries
in the symbol vector VEST creates for the translated image and to determine
which symbols should appear in the global symbol table (GST) of the translated
shareable image. If you do not specify the layout of the symbol vector, VEST may
change the layout in subsequent retranslations of the shareable image. Note that
VEST reserves the first symbol vector entry for its own use. For more information
about SIF files, see DECmigrate for OpenVMS AXP Systems Translating Images.

You control the layout of the symbol vector in a native shareable image by
specifying the SYMBOL_VECTOR= option. The linker lays out the entries in a
symbol vector in the order in which you specify the symbols in the SYMBOL_
VECTOR= option statement. Make sure you list the symbols in the SYMBOL_
VECTOR= option in the same order as they appear in the transfer vector used
to create the VAX shareable image. For more information about using the
SYMBOL_VECTOR= option, see the OpenVMS Linker Utility Manual.

6–6

Ensuring Interoperability Between Native and Translated Images
6.3 Creating a Native Image That Can Be Called by a Translated Image

To make sure the symbol vector in a translated shareable image matches the
symbol vector in a native shareable image, perform the following steps:

1. Translate the VAX shareable image, specifying the /SIF qualifier.
When you specify the /SIF qualifier, VEST generates a SIF file that lists
the contents of the symbol vector. (For more information about creating
and interpreting a SIF file, see DECmigrate for OpenVMS AXP Systems
Translating Images.) The following example is the SIF file created by VEST
for the shareable image MYMATH.EXE. Note that the entries start at the
second position in the symbol vector (offset 10 hexadecimal):

! .SIF Generated by VEST (V1.0) on
! Image "MYMATH", "V1.0"
MYDIV 00000018 +S +G 00000030 00 4e
MYSUB 1 0000000c +S +G 00000020 2 00 4e
MYADD 00000008 +S +G 00000010 00 4e
MYMUL 00000010 +S +G 00000040 00 4e

1 The entry for the universal symbol MYSUB.

2 The offset of the entry for MYSUB in the translated image’s symbol
vector.

2. Determine the symbol vector offsets in the native shareable image.
Use the ANALYZE/IMAGE utility to determine the offsets of the symbols in
the symbol vector in the native shareable image. The following excerpt from
an analysis of the shareable image MYMATH.EXE shows the offset of the
symbol MYSUB:

.

.

.
4) Universal Symbol Specification (EGSD$C_SYMG)
data type: DSC$K_DTYPE_Z (0)
symbol flags:
(0) EGSY$V_WEAK 0
(1) EGSY$V_DEF 1
(2) EGSY$V_UNI 1
(3) EGSY$V_REL 1
(4) EGSY$V_COMM 0
(5) EGSY$V_VECEP 0
(6) EGSY$V_NORM 1
psect: 0
value: 16 (%X’00000020’)
symbol vector entry (procedure)
%X’00000000 00010000’
%X’00000000 00000050’
symbol: "MYSUB"
.
.
.

3. Edit the offsets in the SIF file, if necessary. Use a text editor to change
the offsets listed in the SIF file if they do not match the offsets in the native
shareable image. Remember that the first entry in the symbol vector is
reserved for use by the VEST utility.

6–7

Ensuring Interoperability Between Native and Translated Images
6.3 Creating a Native Image That Can Be Called by a Translated Image

4. Retranslate the VAX shareable image, including the SIF file in the
translation operation. In this translation operation, VEST creates the
symbol vector in the translated image using the offsets specified in the
SIF file. VEST looks for the SIF file in the current device and directory.
(See DECmigrate for OpenVMS AXP Systems Translating Images for more
information about using the VEST utility.)

6.3.2 Creating Stub Images
In some cases, it is not possible to completely replace a VAX shareable image
with an AXP shareable image. For example, there may be functions in the VAX
shareable image that are specific to the VAX architecture. In this situation,
it may be necessary to build both a translated image and a native image that
together provide the functionality of the original VAX shareable image. In
other cases, there may be a need to define a relationship between a translated
VAX shareable image and a new AXP shareable image. In both situations, the
translated VAX image must be a jacket image.

When building a jacket image, create a stub version of the new AXP image on a
VAX system. Then create a modified VAX shareable image that depends on it and
translate it, specifying the /JACKET=shrimg qualifier, where shrimg is the name
of the new AXP shareable image. Note that a throwaway translation of the stub
image must be performed in advance so that there is an IIF file that describes
it. For complete information about creating stub images, see DECmigrate for
OpenVMS AXP Systems Translating Images.

6–8

A
OpenVMS AXP Compilers

This appendix provides information about the features that are specific to the
native OpenVMS AXP compilers. In addition, the appendix lists the features of
the OpenVMS VAX compilers that are not supported by or that have changed
behavior in their OpenVMS AXP counterparts.

The following lists the compilers covered in this appendix (in alphabetical order)
with pointers to the sections in which they are described.

• DEC Ada (Section A.1)

• DEC C (Section A.2)

• DEC COBOL (Section A.3)

• DEC Fortran (Section A.4)

• DEC Pascal (Section A.5)

A.1 Compatibility of DEC Ada Between AXP Systems and VAX
Systems

DEC Ada includes nearly all the standard and extended Ada language features
included in VAX Ada. These features are documented in the following manuals:

• DEC Ada Language Reference Manual

• Developing Ada Programs on OpenVMS Systems

• DEC Ada Run-Time Reference Manual for OpenVMS Systems

However, owing to differences in the platform hardware, some features are
not supported or are implemented differently on VAX systems than on AXP
systems. To aid in porting programs from one system to another, the following
list highlights these differences.

Note

Not all of these features may be implemented on all systems for each
release. See the DEC Ada release notes for more information.

A.1.1 Differences in Data Representation and Alignment
In general, DEC Ada supports the same data types on all platforms. However,
keep in mind the following differences:

• H_float data

Supported on VAX systems but not supported on AXP systems.

A–1

OpenVMS AXP Compilers
A.1 Compatibility of DEC Ada Between AXP Systems and VAX Systems

• IEEE floating formats

Supported on AXP systems but not supported on VAX systems.

• Natural alignment

On AXP systems, DEC Ada aligns record and array components on natural
boundaries by default. On VAX systems, DEC Ada aligns record and array
components on byte boundaries. Note that you can specify the alignment with
the pragma COMPONENT_ALIGNMENT. The record representation clause
maximum alignment is 29 on both VAX and AXP systems.

A.1.2 Tasking Differences
Task priorities and scheduling and task control block size are architecture
specific. See the release notes for specifics.

A.1.3 Differences in Language Pragmas
Note the following differences in language pragmas:

• pragma COMPONENT_ALIGNMENT

On AXP systems, COMPONENT_SIZE is the default choice. On VAX systems,
STORAGE_UNIT is the default.

• pragma FLOAT_REPRESENTATION

On AXP systems, this pragma supports two choices, IEEE_FLOAT and VAX_
FLOAT. On VAX systems, this pragma supports the VAX_FLOAT choice.

• pragma LONG_FLOAT

On AXP systems, the LONG_FLOAT pragma is supported when the value of
the FLOAT_REPRESENTATION pragma is VAX_FLOAT.

• pragma SHARED

There are type restrictions that are different between the systems. See
the DEC Ada Run-Time Reference Manual for OpenVMS Systems for more
information.

• pragma MAIN_STORAGE

Not supported on AXP systems.

• pragma SHARE_GENERIC

Not supported on AXP systems.

• pragma TIME_SLICE

There are some implementation differences between the support of this
pragma on VAX systems and on AXP systems. See the DEC Ada Run-Time
Reference Manual for OpenVMS Systems for more information.

A.1.4 Differences in the SYSTEM Package
Note the following changes to the system package:

• SYSTEM.IEEE_SINGLE_FLOAT and
SYSTEM.IEEE_DOUBLE_FLOAT

Supported on AXP systems but not on VAX systems.

• SYSTEM.H_FLOAT

Supported on VAX systems but not on AXP systems.

A–2

OpenVMS AXP Compilers
A.1 Compatibility of DEC Ada Between AXP Systems and VAX Systems

• SYSTEM.MAX_DIGITS

The value is 33 on VAX systems and 15 on AXP systems.

• SYSTEM.NAME

Specific enumerals are supported for each system on which DEC Ada is
available.

• SYSTEM.SYSTEM_NAME

The name OpenVMS_AXP is supported on AXP systems.

• SYSTEM.TICK

The value is 10.0�3 (1 ms) on AXP systems. The value on VAX systems is
10.0�2 (10 ms).

In addition, the following types and subprograms, which are supported on VAX
systems, are not supported on AXP systems:

SYSTEM.READ_REGISTER
SYSTEM.WRITE_REGISTER
SYSTEM.MFPR
SYSTEM.MTPR
SYSTEM.CLEAR_INTERLOCKED
SYSTEM.SET_INTERLOCKED
SYSTEM.ALIGNED_WORD
SYSTEM.ADD_INTERLOCKED
SYSTEM.INSQ_STATUS
SYSTEM.REMQ_STATUS
SYSTEM.INSQHI
SYSTEM.REMQHI
SYSTEM.INSQTI
SYSTEM.REMQTI

A.1.5 Differences Between Other Language Packages
Note the following differences in these other packages:

• package CALENDAR

Implementation differences between systems; see the DEC Ada Language
Reference Manual for more information.

• package MATH_LIB

Implementation differences between systems; see individual package
specifications.

• package SYSTEM_RUNTIME_TUNING

This package is supported on VAX systems and, with some restrictions, on
AXP systems. See the DEC Ada Run-Time Reference Manual for OpenVMS
Systems or the release notes for more information.

A.1.6 Changes to Predefined Instantiations
The following two predefined instantiations, which are supported on VAX systems,
are not supported on AXP systems:

• LONG_LONG_FLOAT_TEXT_IO

• LONG_LONG_FLOAT_MATH_LIB

A–3

OpenVMS AXP Compilers
A.2 Compatibility of DEC C for OpenVMS AXP Systems with VAX C

A.2 Compatibility of DEC C for OpenVMS AXP Systems with VAX C
To support the Alpha AXP architecture, a compiler is being added to the set of C
compilers known collectively as DEC C. The set of compilers that comprise DEC
C define a core, ANSI-conforming C language that can be used on all strategic
Digital platforms, including the Alpha AXP architecture.

A.2.1 Language Modes
DEC C for OpenVMS AXP systems conforms to the ANSI C standard, with
optional support for VAX C and Common C (pcc) extensions. You invoke these
optional extensions, called modes, using the /STANDARD qualifier. Table A–1
describes these modes and the command-qualifier syntax needed to invoke them.

Table A–1 Modes of Operation of the DEC C for OpenVMS AXP Systems

Mode Command Qualifier Description

Default /STANDARD=RELAXED_ANSI89 Follows ANSI C standard but also allows
additional Digital keywords and predefined
macros that do not begin with an underscore

ANSI C /STANDARD=ANSI89 Accepts only strictly conforming ANSI C
language

VAX C /STANDARD=VAXC Allows use of VAX C extensions to the ANSI C
standard, even where the extensions may be
incompatible with the ANSI C standard

Common C (pcc) /STANDARD=COMMON Allows use of Common C extensions to the
ANSI C standard, even where the extensions
may be incompatible with the ANSI C standard

Combination
of VAX C and
Common C

/STANDARD=(VAXC,COMMON) Allows use of both VAX C and Common C
extensions to the ANSI C standard, even where
the extensions may be incompatible with the
ANSI standard

A.2.2 DEC C for OpenVMS AXP Systems Data-Type Mappings
The DEC C for OpenVMS AXP systems compiler supports most of the same
data-type mappings as its VAX counterpart. Table A–2 lists the sizes of the C
arithmetic data types on the Alpha AXP architecture.

Table A–2 Arithmetic Data-Type Sizes in DEC C for OpenVMS AXP Compiler

C Data Type
VAX C
Mapping

DEC C
Mapping

pointer 32 32 or 641

long 32 32

int 32 32

short 16 16

char 8 8

1When implemented, you will be able to select the size by using a pragma in your source file or by
using a command line qualifier.

(continued on next page)

A–4

OpenVMS AXP Compilers
A.2 Compatibility of DEC C for OpenVMS AXP Systems with VAX C

Table A–2 (Cont.) Arithmetic Data-Type Sizes in DEC C for OpenVMS AXP
Compiler

C Data Type
VAX C
Mapping

DEC C
Mapping

float 32 322

double 642 642

long double 642 642

_ _int16 NA 16

_ _int32 NA 32

_ _int64 NA 64

2You select how this maps to an AXP D, F, G, S, or T floating point by using a command line qualifier.
See Section A.2.2.1.

To aid portability, the DEC C for OpenVMS AXP systems compiler provides a
header file that defines macros for each data type. These macros map a generic
data-type name, such as int64, to the machine-specific data type, such as –64. For
example, if you must have a data type that is 64 bits long, use the int64 macro.

A.2.2.1 Specifying Floating-Point Mapping
The mapping between the C floating-point data types and the Alpha AXP
floating-point data types is controlled by command line qualifiers. The Alpha
AXP architecture supports the following floating-point types:

• F_floating (same as on OpenVMS VAX systems)

• D_floating (53-bit precision)

• G_floating (same as on OpenVMS VAX systems)

• S_floating (IEEE single precision)

• T_floating (IEEE double precision)

By using a command line qualifier, you control which of the Alpha AXP floating-
point data types the standard C data types float and double map to. For example,
if you specify the /FLOAT=G_FLOAT qualifier, DEC C maps the float data type
to the Alpha AXP F_float data type and maps the double data type to the Alpha
AXP G_float data type. Table A–3 describes the complete list of floating-point
options. Note that you can specify only one floating-point qualifier in a command
line.

Table A–3 DEC C Floating-Point Mappings

Compiler Option Float Double

/FLOAT=F_GLOAT F_float format G_float format

/FLOAT=D_FLOAT F_float format D-53 floating point

/FLOAT=IEEE_FLOAT S_float format T_float format

A–5

OpenVMS AXP Compilers
A.2 Compatibility of DEC C for OpenVMS AXP Systems with VAX C

A.2.3 Features Specific to AXP Systems
DEC C includes features, summarized in Table A–4, that are specific to AXP
systems. The following sections describe these features.

Table A–4 DEC C Compiler Features Specific to AXP Systems

Feature Description

Access to some Alpha AXP instructions Available as built-ins

Access to some VAX instruction equivalents Available through Alpha AXP PALcode

Atomicity built-ins Ensures the atomicity of AND, OR, and ADD
operations

A.2.3.1 Accessing Alpha AXP Instructions
DEC C supports certain Alpha AXP instructions to provide functions that
cannot be expressed in the C language, especially for system-level programming.
Currently, DEC C plans to support the following Alpha AXP instructions:

• TRAPB—Drain the instruction pipeline

• MB—Memory barrier

A.2.3.2 Accessing Alpha AXP Privileged Architecture Library (PALcode) Instructions
The Alpha AXP architecture implements certain VAX instructions as privileged
architecture library (PALcode) instructions. DEC C allows access to the following
PALcode instructions:

• INSQUEx—Insert entry into longword or quadword queue

• INSQxI—Insert entry in queue, interlocked

• REMQUEx—Remove entry from longword or quadword queue

• REMQxI—Remove from queue, interlocked

Note, however, that the following VAX instructions that are supported as built-ins
in VAX C are not supported as built-ins by DEC C:

ADAWI BBCCI BBSSI FFC

FFS LDPCTX LOCC MFPR

MTPR MOVC3 MOVPSL PROBER

PROBEW READ_GPR SCANC SIMPLE_READ

SKPC SPANC SCSVPCTX WRITE_GPR

A–6

OpenVMS AXP Compilers
A.2 Compatibility of DEC C for OpenVMS AXP Systems with VAX C

A.2.3.3 Ensuring the Atomicity of Combined Operations
In the VAX architecture, certain combined operations, such as incrementing
a variable, are guaranteed to be atomic (that is, they complete without
interruption). To provide an equivalent function on AXP systems, DEC C provides
built-ins that perform the operations with the guarantee of atomicity. Table A–5
lists these atomic built-ins.

Table A–5 Atomicity Built-Ins

Atomicity Built-In Description

_ _ADD_ATOMIC_LONG(ptr, expr, retry_count)
_ _ADD_ATOMIC_QUAD(ptr, expr, retry_count)

Add the expression expr to the data segment
pointed to by ptr. The optional retry_count
parameter specifies the number of times the
operation should be attempted (the default is
forever).

_ _AND_ATOMIC_LONG(ptr, expr, retry_count)
_ _AND_ATOMIC_QUAD(ptr, expr, retry_count)

Fetch the data segment pointed to by ptr,
perform a logical AND operation with the
expression expr, and store the resulting
value. The retry_count parameter specifies
the number of times the operation should be
attempted (the default is forever).

_ _OR_ATOMIC_LONG(ptr, expr, retry_count)
_ _OR_ATOMIC_QUAD(ptr, expr, retry_count)

Fetch the data segment pointed to by ptr,
perform a logical OR operation with the
expression expr, and store the resulting
value. The retry_count parameter specifies
the number of times the operation should be
attempted (the default is forever).

These built-ins guarantee only that the operation completes without interruption.
If you perform an atomic operation on a variable that might be subject to
concurrent write access (for example, from an AST and mainline code or from
two concurrent processes), you must still protect it with the volatile attribute.

In addition, DEC C for OpenVMS AXP systems supports the following equivalents
to the VAX interlocked instructions:

• TESTBITSSI

• TESTBITCCI

These built-ins use the retry_count parameter, as do the atomicity built-ins, to
avoid getting stuck in an endless loop.

A.2.4 Differences Between the VAX C and DEC C for OpenVMS AXP Systems
Compilers

The following features, present in VAX C, have different default behavior in DEC
C for OpenVMS AXP systems. Note, however, that for some of these features,
you can retain the VAX C behavior by using command line qualifiers and pragma
instructions.

A.2.4.1 Controlling Data Alignment
Because accesses to data that is not aligned on natural boundaries cause severe
performance degradation on AXP systems, DEC C for OpenVMS AXP systems
aligns data on natural boundaries by default. To override this feature and retain
VAX (packed) alignment, specify the nomember_alignment pragma in your source
file or use the /NOMEMBER_ALIGNMENT command line qualifier.

A–7

OpenVMS AXP Compilers
A.2 Compatibility of DEC C for OpenVMS AXP Systems with VAX C

A.2.4.2 Accessing Argument Lists
Taking the address of an argument, such as &argv1, causes DEC C for OpenVMS
AXP systems to generate prologue code for the function that moves all the
arguments onto the stack (called homing arguments), causing a performance
degradation. Also, argument list ‘‘walking’’ can be accomplished only by using the
functions in the VARARGS.H or STDARGS.H include files.

A.2.4.3 Synchronizing Exceptions
Because the Alpha AXP architecture does not provide for immediate reporting of
arithmetic exceptions, do not expect an assignment to a static variable (even with
the volatile attribute) to occur before a subsequent exception is signaled.

A.2.5 VAX C Features Not Supported by /STANDARD=VAXC Mode
While most programming practices supported by VAX C are supported by DEC C
for OpenVMS AXP systems in /STANDARD=VAXC mode, certain programming
practices that conflict with the ANSI standard are not supported. The following
list highlights some of these differences; see the DEC C compiler documentation
for more information.

• The inclusion of text after an #endif statement, as in the following example:

#ifdef a
.
.
.

#endif a

Delete the text or surround it with comment delimiters, as in the following:

#endif /* a */

• Modification of string constants, while always a questionable programming
practice, was accepted by VAX C. DEC C for OpenVMS AXP systems places
all string constants in a read-only program section so that they cannot be
modified.

• Structure-initialization values must be enclosed within braces ({}):

array[SIZE] = NULL; /* accepted by VAX C */
array[SIZE] = {NULL}; /* required by DEC C */

• Redefinitions of symbols are now flagged with a warning-level diagnostic
message:

#define x a
#define x b /* generates a warning message in DEC C */

• Use of text libraries is no longer recommended. While supported by VAX C,
text libraries are not portable.

#include stdio

Instead, use the following syntax:

#include <stdio.h>

• You must have one, and only one, declaration of an external variable. This is
the definition of this variable. Other modules can use it by declaring it with
the extern semantics.

A–8

OpenVMS AXP Compilers
A.3 Compatibility of DEC COBOL with VAX COBOL

A.3 Compatibility of DEC COBOL with VAX COBOL
The DEC COBOL Version 1.0 compiler, running on an OpenVMS AXP system,
is based on and is highly compatible with the VAX COBOL Version 4.4 compiler
running on an OpenVMS VAX system. The DEC COBOL compiler supports
many, but not all, VAX COBOL features. The following list summarizes some of
the major differences betweeen the DEC COBOL and VAX COBOL compilers:

• A new alignment qualifier that selects Alpha AXP data alignment to optimize
performance or VAX COBOL data alignment to ensure compatibility with
VAX COBOL record alignment

• A new qualifier that provides both IEEE and VAX floating-point data types
for single- and double-precision data items

• A new qualifier to generate code that allows native images to call translated
images and translated images to call native images

• A new qualifier to recognize additional COBOL reserved words defined by the
X/Open Portability Guide

• A new screen manager for ACCEPT/DISPLAY extensions

• Support for only the most important features of the VAX COBOL
/STANDARD=V3 qualifier option

• No support for the VAX DBMS (Database Management System) Data
Manipulation Language (DML)

• No support for intrinsic functions, which are included in VAX COBOL Version
5.0 and higher

• No support for multibyte characters and other Japanese-language features,
which are included in Version 5.0 and higher of VAX COBOL (Japanese
version)

• Support for file status values that are compatible with VAX COBOL Version
5.1, which differ from those of VAX COBOL Version 5.0 and previous versions

The information provided in this section is intended to help you write COBOL
applications that are compatible with both VAX COBOL and DEC COBOL as well
as to help you convert your existing COBOL applications from VAX COBOL to
DEC COBOL.

This section describes similarities and differences between VAX COBOL Version
4.4 and DEC COBOL Version 1.0. Differences between DEC COBOL and later
versions of VAX COBOL are noted when warranted.

For the latest information about product features and future release
enhancements of the DEC COBOL compiler, refer to the most recent version
of the DEC COBOL release notes. For information about VAX COBOL features,
refer to the VAX COBOL release notes and other documentation. You can obtain
an online version of the release notes for your installed COBOL compiler by
entering the HELP COBOL RELEASE_NOTES command at the system prompt.

For reference information about DEC COBOL language features, see the DEC
COBOL Reference Manual. For reference information about VAX COBOL
language features, see the VAX COBOL Reference Manual. For information about
DEC COBOL command line qualifiers, invoke the online help system for COBOL
at the operating system prompt. For information about VAX COBOL command
line qualifiers, see the VAX COBOL User Manual.

A–9

OpenVMS AXP Compilers
A.3 Compatibility of DEC COBOL with VAX COBOL

A.3.1 Command Line Qualifiers
Tables A–6, A–7, and A–8 compare and contrast the DEC COBOL and
VAX COBOL command line qualifiers.

A.3.1.1 Qualifiers Shared by DEC COBOL and VAX COBOL
Table A–6 lists the command line qualifiers shared by DEC COBOL and
VAX COBOL. For more information about the command line qualifiers available
in DEC COBOL, refer to Table A–7 or invoke the DEC COBOL online help
system. For more information about the VAX COBOL command line qualifiers,
refer to Table A–8 and the VAX COBOL User Manual.

Table A–6 Qualifiers and Options Shared by DEC COBOL and VAX COBOL

Qualifier Comments

/ANALYSIS_DATA Equivalent.

/ANSI_FORMAT Equivalent.

/AUDIT Equivalent.

/CHECK A new option (/CHECK=[NO]DECIMAL) is available
for DEC COBOL. (See Table A–7 and Section A.3.2.2.)

/CONDITIONALS Equivalent.

/COPY_LIST Equivalent.

/CROSS_REFERENCE Equivalent.

/DEBUG Equivalent.

/DEPENDENCY_DATA Equivalent.

/DIAGNOSTICS Equivalent.

/FIPS Minor differences in functionality exist. (Invoke the
DEC COBOL online help system for information about
the behavior of the /FIPS=74 qualifier option.)

/FLAGGER Equivalent.

/LIST Equivalent.

/MACHINE_CODE Equivalent.

/MAP Equivalent.

/OBJECT Equivalent.

/SEQUENCE_CHECK Equivalent.

/STANDARD Some VAX COBOL options are available in DEC
COBOL. (See Section A.3.2.7 for information about the
behavior of the /STANDARD=V3 qualifier option.)

/TRUNCATE Equivalent.

/WARNINGS Minor differences in functionality exist. (See
Section A.3.2.7.2 and invoke the DEC COBOL online
help system for information about the behavior of the
/WARNINGS qualifier.)

A.3.1.2 DEC COBOL Qualifiers Not Available in VAX COBOL
Table A–7 lists the command line qualifiers and options that are specific to DEC
COBOL. These qualifiers and options are not available in VAX COBOL. For more
information about the command line qualifiers available in DEC COBOL, invoke
the DEC COBOL online help system.

A–10

OpenVMS AXP Compilers
A.3 Compatibility of DEC COBOL with VAX COBOL

Table A–7 DEC COBOL Qualifiers Not Available in VAX COBOL

Qualifier Comments

/ALIGNMENT=([NO]BINARY,
[NO]DECIMAL)

Specifies the data alignment for numeric data
items. (See Section A.3.2.1.)

/CHECK=[NO]DECIMAL Validates numeric digits when using display
numeric items in a numeric context. (See
Section A.3.2.2.)

/CONVERT=LEADING_BLANKS Changes leading blanks to zeros in numeric display
items. (See Section A.3.2.3.)

/FLOAT=[D_FLOAT],[IEEE_
FLOAT]

Specifies the floating-point data format to be used
in memory for single- and double-precision data
items. (See Section A.3.2.4.)

/OPTIMIZE Controls whether the compiler optimizes the
compiled program to generate more efficient code.
(See Section A.3.2.5.)

/RESERVED_WORDS=[NO]XOPEN Controls whether or not the compiler recognizes
X/Open COBOL words as reserved words. (See
Section A.3.2.6.)

/TIE Generates code that allows native images to call
translated images and translated images to call
native images. (See Section A.3.2.8.)

A.3.1.3 VAX COBOL Qualifiers Not Available in DEC COBOL
Table A–8 lists the command line qualifiers and options that are specific to
VAX COBOL. These qualifiers and options are not available in DEC COBOL. For
detailed information about the VAX COBOL command line qualifiers, refer to the
VAX COBOL User Manual.

Table A–8 VAX COBOL Qualifiers Not Available in DEC COBOL

Qualifier Comments

/DESIGN Controls whether the compiler processes the input
file as a detailed design.

/INSTRUCTION_SET[=option] Improves run-time performance on single-chip VAX
processors, using different portions of the VAX
instruction set.

/STANDARD=[NO]OPENVMS_AXP Produces informational messages about language
features that are not supported by the DEC
COBOL compiler. (See Section A.3.2.9 and the
VAX COBOL Version 5.1 release notes.)

/STANDARD=[NO]PDP11 Produces informational messages about language
features that are not supported by the COBOL–81
compiler.

/WARNINGS=[NO]STANDARD Produces informational messages about language
features that are Digital extensions. The DEC
COBOL equivalent is /STANDARD=[NO]SYNTAX.
(See Section A.3.2.7.2.)

A–11

OpenVMS AXP Compilers
A.3 Compatibility of DEC COBOL with VAX COBOL

A.3.2 Behavior Differences
This section describes differences in behavior between VAX COBOL Version
4.4 and DEC COBOL Version 1.0, including new DEC COBOL command line
qualifiers and options, as well as behavior that is specific to DEC COBOL Version
1.0.

A.3.2.1 Specifying Alignment for Numeric Data Items with the DEC COBOL /ALIGNMENT
Qualifier and Alignment Directives

You can use the /ALIGNMENT qualifier and alignment directives to specify the
alignment of binary and decimal data items within record structures. Refer to the
DEC COBOL Reference Manual for specific information about alignment.

Proper data alignment is needed to optimize your COBOL applications on Alpha
AXP systems. Manipulating binary data is significantly faster if the data lies
within natural boundaries. Just as important, manipulating decimal data is
significantly faster if you align the data along the preferred boundaries for the
system you are using.

The primary goal of alignment specification is optimum performance. In addition,
the /ALIGNMENT qualifier and alignment directives meet the following goals:

• Ease of use and conversion—You need to make only a minimal number of
changes to your existing source files. In some cases, all you need to do is add
the /ALIGNMENT qualifier when you invoke the DEC COBOL compiler.

• VAX COBOL source compatibility—You can compile the same source files
with VAX COBOL and DEC COBOL. DEC COBOL directives are structured
comments that the VAX COBOL compiler ignores.

• Flexibility—You can specify VAX byte alignment or natural alignment on a
record-by-record basis. For example, you can specify byte alignment for files
that are shared by both compilers and natural alignment for DEC COBOL
files and records.

The /ALIGNMENT qualifier, alignment directives, and the SYNCHRONIZED
clause affect the alignment of items within a group (group elements) as shown in
the following figure:

/ALIGNMENT qualifier
|

Alignment directive | SYNCHRONIZED clause
| | |
|_______________|________ |

| |
| |

Align binary and decimal Align binary
group elements group elements

As with the VAX COBOL compiler, you can use the SYNCHRONIZED clause to
align binary components of records on natural boundaries. Thus, for the DEC
COBOL compiler operating on binary data, the SYNCHRONIZED clause, the
/ALIGNMENT qualifier, and alignment directives can exhibit equivalent behavior.

A–12

OpenVMS AXP Compilers
A.3 Compatibility of DEC COBOL with VAX COBOL

A.3.2.1.1 Using the /ALIGNMENT Qualifier The /ALIGNMENT qualifier allows
you to specify natural alignment for binary data and preferred alignment for
numeric decimal data in your program.

Binary and decimal alignment are separate options (a useful feature for
programs that alias decimal and string data, but that can still benefit
from the alignment of binary data). For example, when you specify
/ALIGNMENT=(BINARY,NODECIMAL) (or /ALIGNMENT), the DEC COBOL
compiler aligns binary data along natural boundaries and decimal data along
byte boundaries. Use /ALIGNMENT to ensure that your data is aligned for
optimum performance on OpenVMS AXP systems.

Use /NOALIGNMENT, the default, to specify byte data alignment (including
programs that align binary data items with the SYNCHRONIZED clause). Also
use /NOALIGNMENT for portability and compatibility with data files produced
on an OpenVMS VAX system.

A.3.2.1.2 Using Alignment Directives The alignment properties specified by the
/ALIGNMENT qualifier remain in effect throughout a given compilation, except
as modified by alignment directives. Directives are structured comments that
the DEC COBOL compiler interprets. (DEC COBOL directives are ignored by the
VAX COBOL compiler.) All directives begin with ‘‘*DC’’, where the ‘‘*’’ signals the
beginning of the structured comment.

You can use the following alignment directives anywhere within your COBOL
source program to change the current set of alignment porperties:

• *DC SET ALIGNMENT[=(option,...)] (where option is [NO]BINARY
or [NO]DECIMAL)—Specifies a new alignment. Specifying
*DC SET ALIGNMENT is equivalent to specifying *DC SET
ALIGNMENT=(BINARY,NODECIMAL).

• *DC END-SET ALIGNMENT—Restores the alignment to the previous setting.
(Use of this alignment directive is optional.)

• *DC SET NOALIGNMENT—Specifies byte alignment.

You can nest alignment directives within your program to turn alignment on or
off for specific numeric data items. Although the *DC END-SET ALIGNMENT
directive is optional, you must use it to indicate the end of each nested alignment
directive.

A.3.2.2 Validating Numeric Data with the DEC COBOL /CHECK=NODECIMAL Qualifier Option
The /CHECK=[NO]DECIMAL qualifier option validates numeric characters when
you use display numeric items in a numeric context. Use /CHECK=DECIMAL
when you want the system to generate an error for any invalid, or nonnumeric,
characters.

This feature is primarily intended to help validate data produced by other
systems that might use a different internal representation for numeric data.
A secondary consideration is that this qualifier can also be used to detect logic
errors in programs that result in text data being moved to numeric data items.
The disadvantage of this feature is that extra instructions are needed to perform
the checks, resulting in slightly larger images and slightly longer execution times.

Use /CHECK=NODECIMAL, the default, when you do not want the system to
check for numeric characters in numeric display items.

A–13

OpenVMS AXP Compilers
A.3 Compatibility of DEC COBOL with VAX COBOL

A.3.2.3 Converting Leading Blanks to Zeros with the DEC COBOL
/CONVERT=LEADING_BLANKS Qualifier Option

The /CONVERT=LEADING_BLANKS qualifier and option generates code to
check for and change leading blanks to zeros in numeric display items.

This feature is primarily intended to help users convert existing COBOL
programs to run on an OpenVMS AXP system by changing leading blanks in
the data to zeros at run time. The disadvantage of this feature is that extra
instructions are needed to perform the data conversions. This results in slightly
larger images and slightly longer execution times.

Use /NOCONVERT=LEADING_BLANKS, the default, when you do not want the
compiler to change leading blanks to zeros in numeric display items.

A.3.2.4 Specifying a Floating-Point Data Format with the DEC COBOL /FLOAT Qualifier
The /FLOAT=[option] qualifier specifies the floating-point data format to be used
in memory for single- and double-precision data items. Specify either /FLOAT=D_
FLOAT or /FLOAT=IEEE_FLOAT within a single program.

Because the Alpha AXP architecture is IEEE-compliant, you can run existing
COBOL programs containing IEEE floating-point data formats on DEC COBOL.

Use the /FLOAT=D_FLOAT qualifier option, the default, at compile time to
specify the VAX F_floating memory format for single-precision (COMP-1) data
and the VAX D_floating memory format for double-precision (COMP-2) data.

The IEEE standard for binary floating-point arithmetic, ANSI/IEEE 754-1985,
defines four floating-point formats in two groups, basic and extended, each group
having two widths, single and double. The Alpha AXP architecture supports the
basic single and double formats.

Use the /FLOAT=IEEE_FLOAT qualifier option at compile time to specify the
IEEE S_floating memory format for single-precision (COMP-1) data and the IEEE
T_floating memory format for double-precision (COMP-2) data.

Refer to the Alpha Architecture Handbook for more information about using
floating-point data types with the Alpha AXP architecture.

A.3.2.5 Optimizing Your Code with the DEC COBOL /OPTIMIZE Qualifier
The /OPTIMIZE qualifier controls whether the compiler optimizes the compiled
program to generate more efficient code.

Use /OPTIMIZE, the default, when you want your program to run faster. Note
that using this qualifier may cause the compiler to produce larger object modules
and result in longer compile times.

Use /NOOPTIMIZE for a debugging session to ensure that the machine code
occurs in the same order as the program lines in your source program.

A.3.2.6 Checking for Special Reserved Words with the DEC COBOL /RESERVED_WORDS
Qualifier

The /RESERVED_WORDS qualifier controls whether or not the compiler
recognizes certain COBOL words as reserved words.

Use /RESERVED_WORDS=NOXOPEN if your program uses one or more of the
COBOL words defined by the X/Open Portability Guide as an identifier.

A–14

OpenVMS AXP Compilers
A.3 Compatibility of DEC COBOL with VAX COBOL

Use /RESERVED_WORDS=XOPEN, the default, if none of the following X/Open
COBOL words appears in your program:

AUTO
BACKGROUND-COLOR
BELL
BLINK
EOL
EOS
ERASE
FOREGROUND-COLOR
FULL
HIGHLIGHT
LOWLIGHT
REQUIRED
REVERSE-VIDEO
SCREEN
SECURE
UNDERLINE

A.3.2.7 Calling Out Language Feature Extensions to the COBOL ANSI Standard with the DEC
COBOL /STANDARD Qualifier

The /STANDARD qualifier controls whether the compiler prints informational
messages associated with specific language features. To receive these
messages, specify /STANDARD or /STANDARD=85 (and /WARNINGS=ALL or
/WARNINGS=INFORMATIONAL) or /STANDARD=SYNTAX.

Use /STANDARD=85, the default, to instruct the DEC COBOL compiler to
compile and generate code according to the ANSI 1985 COBOL standard.

Use /STANDARD=SYNTAX to instruct the DEC COBOL compiler to produce
informational messages about language features that are Digital extensions to
the ANSI 1985 COBOL Standard. The default, NOSYNTAX, suppresses these
messages.

Use /STANDARD=V3 to instruct the DEC COBOL compiler to compile and
generate code in the manner of VAX COBOL Version 3.4 in specific instances.
Section A.3.2.7.1 describes the /STANDARD=V3 qualifier option in more detail.

A.3.2.7.1 /STANDARD=V3 Qualifier Option DEC COBOL Version 1.0, as with
VAX COBOL Version 4.0 and higher versions, is based on the ANSI 1985 COBOL
standard. As such, DEC COBOL provides full support for the /STANDARD=85
qualifier option. DEC COBOL also provides support for some features of the
/STANDARD=V3 qualifier option that were available with VAX COBOL Version
4.0 and higher.

VAX COBOL versions prior to Version 4.0 were based on the ANSI 1974 COBOL
standard. While most of the enhancements made to VAX COBOL Version 4.0 and
higher versions are compatible with earlier versions of the VAX COBOL compiler,
some differences exist, which causes results to vary in some instances.

To minimize conflicts with existing VAX COBOL programs, VAX COBOL allows
you to compile programs according to the rules for either VAX COBOL Version
4.0 and later versions or according to the rules for VAX COBOL Version 3.4.
Specifying /STANDARD=V3 instructs the VAX COBOL compiler to compile and
generate code in the manner of VAX COBOL Version 3.4 in specific instances, as
described in the VAX COBOL User Manual.

A–15

OpenVMS AXP Compilers
A.3 Compatibility of DEC COBOL with VAX COBOL

When compared with the features that are available with VAX COBOL Version
4.0 and higher, DEC COBOL provides limited support for the /STANDARD=V3
qualifier option. When you specify /STANDARD=V3, the DEC COBOL behavior
is identical to the VAX COBOL Version 4.0 and higher behavior in the following
four specific instances:

• EXIT PROGRAM statement in a main program

• I-O file status codes

• No valid next record condition

• Opening nonoptional files in I-O and EXTEND mode

The following four subsections describe this DEC COBOL behavior in more detail.

EXIT PROGRAM Statement
If you specify /STANDARD=V3, an EXIT PROGRAM statement is treated as a
return in both main programs and subprograms.

Specifying /STANDARD=85 bypasses an EXIT PROGRAM statement in the body
of a main program and executes the statements following the EXIT PROGRAM
statement. If the program is a subprogram, the EXIT PROGRAM statement acts
as a return to the program that called the subprogram.

I-O File Status Codes
If you specify /STANDARD=V3, you receive the file status codes listed in the
left-hand column, labeled V3, and your program acts accordingly.

If you specify /STANDARD=85, you receive the file status codes listed in the
right-hand column, labeled 85, and your program acts accordingly.

Table A–9 explains the I-O file status codes for VAX COBOL Version 3.4 and DEC
COBOL.

Table A–9 I-O File Status Codes for the /STANDARD Qualifier

I-O Error Condition
Status Code

V3 85

READ successful—record shorter than fixed file attribute. 00 04

CLOSE reel/unit attempted on nonreel/unit device. 00 07

READ fails—relative key digits exceed relative key. 00 14

WRITE fails—relative key digits exceed relative key. 00 24

OPEN I-O on file that is not mass storage. 00 37

WRITE fails—attempt to write a record of a different size than
in the file description.

00 44

READ fails—no next logical record (EOF detected). 13 10

READ fails—no next logical record (EOF on OPTIONAL file). 15 10

READ fails—no valid next record (already at EOF). 16 10

READ NEXT or sequential READ—no valid next record pointer. 161 461

READ or START fails—optional input file not present. 25 23

1See the subsection No Valid Next Record Condition.

(continued on next page)

A–16

OpenVMS AXP Compilers
A.3 Compatibility of DEC COBOL with VAX COBOL

Table A–9 (Cont.) I-O File Status Codes for the /STANDARD Qualifier

I-O Error Condition
Status Code

V3 85

READ successful—record longer than fixed file attribute. 30 04

OPEN on relative or indexed file that is not mass storage. 30 37

REWRITE fails—attempt to rewrite record of different size. 30 44

CLOSE fails—file not currently open. 93 42

DELETE or REWRITE fails—previous I-O not successful READ. 93 43

OPEN fails—file previously closed with LOCK. 94 38

OPEN fails—file created with different organization. 94 39

OPEN fails—file created with different prime record key. 94 39

OPEN fails—file created with different alternate record keys. 94 39

OPEN fails—file currently open. 94 41

READ or START fails—file not opened INPUT or I-O. 94 47

WRITE fails—file not opened OUTPUT, EXTEND, or I-O. 94 48

DELETE or REWRITE fails—file not opened I-O. 94 49

OPEN INPUT on a nonoptional file—file not found. 97 35

No Valid Next Record Condition
This subsection describes what happens when you compile your program using
either /STANDARD=V3 or /STANDARD=85 and when all the following conditions
exist:

• The no valid next record (NVNR) condition exists.

• Your program attempts a sequential READ statement.

• Your program includes an AT END branch associated with the READ
statement.

When you use /STANDARD=V3 to compile your program, the following occurs:

• The file status code variable, if any, for the file is set to 16.

• The statements associated with the AT END statement are executed.

• The program continues to execute normally.

If you use /STANDARD=85 to compile your program, the following occurs:

• The file status code variable, if any, for the file is set to 46.

• The statements associated with the AT END statement are not executed.

• The program terminates execution abnormally (unless you have provided for
this situation with a USE AFTER STANDARD EXCEPTION procedure).

OPEN I-O and EXTEND Modes
If you specify /STANDARD=V3, nonoptional files opened in
I-O or EXTEND mode are created, if the files are unavailable.

If you specify /STANDARD=85, nonoptional files opened in I-O or EXTEND mode
are not created if the files are unavailable. Instead, a run-time error is issued.

A–17

OpenVMS AXP Compilers
A.3 Compatibility of DEC COBOL with VAX COBOL

A.3.2.7.2 /STANDARD and /WARNINGS Qualifiers VAX COBOL provides
two qualifiers that specify the same behavior: /STANDARD=[NO]SYNTAX and
/WARNINGS=[NO]STANDARD.

DEC COBOL does not support the [NO]STANDARD option of the /WARNINGS
qualifier. Therefore, specifying /WARNINGS=ALL with the DEC COBOL
compiler will not produce the informational messages that point out Digital
extensions. To receive messages such as the following one, you must specify
/STANDARD=SYNTAX.

%COBOL-I-EXTENSION

Note

For VAX COBOL and DEC COBOL, the FIPS messages about
Digital extensions that the compiler produces when you specify
/FLAGGER[(=option, . . .)] continue to be controlled by the
/WARNINGS=INFORMATION qualifier option.

A.3.2.8 Calling Native and Translated Images with the DEC COBOL /TIE Qualifier
The /TIE (Translated Image Environment) qualifier generates code that allows
native OpenVMS AXP images to call translated images and translated images to
call native OpenVMS AXP images. This qualifier is supported on OpenVMS AXP
systems only.

Specifying /TIE enables you to use compiled code with shared translated images,
either because the code might call into a translated image or because it might
be called from a translated image. If you specify /TIE, you should link the
object module using the LINK command qualifier /NONATIVE_ONLY. (See the
OpenVMS Linker Utility Manual for information about the /NONATIVE_ONLY
qualifier.)

Specifying /NOTIE, the default, indicates that your compiled code will not be
associated with a translated image.

For information about interoperability, see Chapter 6. For information about
translated images, see DECmigrate for OpenVMS AXP Systems Translating
Images.

A.3.2.9 VAX COBOL to DEC COBOL Program Conversion
VAX COBOL Version 5.1 provides a new flagging system, via the
/STANDARD=OPENVMS_AXP qualifier option, to identify language features
in your existing VAX COBOL programs that are not available in DEC COBOL on
OpenVMS AXP.

When you specify /STANDARD=OPENVMS_AXP (and /WARNINGS=ALL
or /WARNINGS=INFORMATIONAL), the VAX COBOL compiler generates
informational messages to flag language constructs that are not available in DEC
COBOL. You can use this information to modify your program before running it
on DEC COBOL.

Use /STANDARD=NOOPENVMS_AXP, the default, to suppress these
informational messages.

A–18

OpenVMS AXP Compilers
A.3 Compatibility of DEC COBOL with VAX COBOL

A.3.2.10 Program Structure
In some cases, the DEC COBOL compiler generates more complete messages
about unreachable code or other logic errors than does the VAX COBOL compiler.

The following example illustrates a sample program and the messages issued by
the DEC COBOL compiler.

Source fi le:
IDENTIFICATION DIVISION.
PROGRAM-ID. T1.
ENVIRONMENT DIVISION.
PROCEDURE DIVISION.
P0.

GO TO P1.
P3.

GO TO P2.
P2.

DISPLAY "This is unreachable code".
P1.

STOP RUN.
IDENTIFICATION DIVISION.
PROGRAM-ID. T2.
ENVIRONMENT DIVISION.
PROCEDURE DIVISION.
P0.

DISPLAY "This is unreachable code".
EXIT PROGRAM.

END PROGRAM T2.
END PROGRAM T1.

On VAX systems:
$ COBOL /ANSI/WARNINGS=ALL T1.COB

On AXP systems:
$ COBOL/ANSI/OPT/WARNINGS=ALL T1.COB

PROGRAM-ID. T2.
..................^
%COBOL-I-UNCALLED, routine T2 can never be called
at line number 14 in file DISK$YOURDISK:[TESTDIR]T1.COB;1

P2.
.......^
%COBOL-I-UNREACH, code can never be executed at label P2
at line number 9 in file DISK$YOURDISK:[TESTDIR]T1.COB;1

For the same program, the VAX COBOL compiler produces no messages even
though the compiler does detect both the unreachable label and the unreachable
contained program.

Use the /OPTIMIZE qualifier to direct the DEC COBOL compiler to do the
uncalled routine analysis. The compiler performs the unreachable code analysis
for the default (lowest) level of optimization.

This difference from VAX COBOL can help you when debugging a program.
Because these messages are informational, the compiler produces an object
file, which you can link and execute. However, these messages may point out
otherwise undetected logic errors (that is, the structure of the program is probably
not what you intended).

A–19

OpenVMS AXP Compilers
A.3 Compatibility of DEC COBOL with VAX COBOL

A.3.2.11 COPY and REPLACE Statements
The DEC COBOL compiler produces different output when listing annotations for
the COPY statement in COBOL programs.

The two following examples illustrate the difference in the position of the
listing annotations, represented by the letter L, in a COBOL program using
the VAX COBOL compiler and the DEC COBOL compiler.

VAX COBOL source fi le:

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. DCOP1B.
3 *
4 * This program tests the copy library file.
5 * with a comment in the middle of it.
6 * It should not produce any diagnostics.
7 COPY
8 * this is the comment in the middle
9 LCOP1A.
10L ENVIRONMENT DIVISION.
11L INPUT-OUTPUT SECTION.
12L FILE-CONTROL.
13L SELECT FILE-1
14L ASSIGN TO "FILE1.TMP".
15 DATA DIVISION.
16 FILE SECTION.
17 FD FILE-1.
18 01 FILE1-REC PIC X.
19 WORKING-STORAGE SECTION.
20 PROCEDURE DIVISION.
21 PE. DISPLAY "***END***"
22 STOP RUN.

DEC COBOL source fi le:

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. DCOP1B.
3 *
4 * This program tests the copy library file.
5 * with a comment in the middle of it.
6 * It should not produce any diagnostics.
7 COPY
8 * this is the comment in the middle
9 LCOP1A.

L 10 ENVIRONMENT DIVISION.
L 11 INPUT-OUTPUT SECTION.
L 12 FILE-CONTROL.
L 13 SELECT FILE-1
L 14 ASSIGN TO "FILE1.TMP".

15 DATA DIVISION.
16 FILE SECTION.
17 FD FILE-1.
18 01 FILE1-REC PIC X.
19 WORKING-STORAGE SECTION.
20 PROCEDURE DIVISION.
21 PE. DISPLAY "***END***"
22 STOP RUN.

The DEC COBOL compiler also produces different output when listing a COBOL
program with multiple COPY statements on a single line, as shown in the next
two examples. When the compiler issues a message on a replaced line, the
message pointer calls out the original text, not the replacement text.

A–20

OpenVMS AXP Compilers
A.3 Compatibility of DEC COBOL with VAX COBOL

VAX COBOL source fi le:

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. DCOP1J.
3 *
4 * Tests copy with three copy statements on 1 line.
5 *
6 ENVIRONMENT DIVISION.
7 DATA DIVISION.
8 PROCEDURE DIVISION.
9 THE.
10 COPY LCOP1J.
11L DISPLAY "POIUYTREWQ".
12C COPY LCOP1J.
13L DISPLAY "POIUYTREWQ".
14C COPY LCOP1J.
15L DISPLAY "POIUYTREWQ".
16 STOP RUN.

DEC COBOL source fi le:

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. DCOP1J.
3 *
4 * Tests copy with three copy statements on 1 line.
5 *
6 ENVIRONMENT DIVISION.
7 DATA DIVISION.
8 PROCEDURE DIVISION.
9 THE.
10 COPY LCOP1J. COPY LCOP1J. COPY LCOP1J.

L 11 DISPLAY "POIUYTREWQ".
L 12 DISPLAY "POIUYTREWQ".
L 13 DISPLAY "POIUYTREWQ".

14 STOP RUN.

The diagnostics for the COBOL source statements REPLACE and DATE-
COMPILED result in compiler listings that contain multiple instances of the
source line.

For a REPLACE statement listing in a DEC COBOL program, if the compiler
issues a message on the replacement text, the compiler message corresponds
to the original text in the program. In a VAX COBOL program, however, the
compiler message corresponds to the replacement text.

The compiler listing for a DEC COBOL program and a VAX COBOL program
differs when a COPY statement inserts text in the middle of a line as shown in
the following two examples.

DEC COBOL source fi le:

13 P0. MOVE COPY LCOP5D. TO ALPHA.

L 14 "O"

A–21

OpenVMS AXP Compilers
A.3 Compatibility of DEC COBOL with VAX COBOL

VAX COBOL source fi le:

13 P0. MOVE COPY LCOP5D.
14L "O"
15C TO ALPHA.

LCOP5D.LIB contains "O". The DEC COBOL compiler keeps the same line and
inserts the COPY file contents below the source line. The VAX COBOL compiler
splits the original source line into parts.

For the REPLACE and COPY REPLACING statements, program listing line
numbers differ between DEC COBOL and VAX COBOL. For DEC COBOL,
the line number for the replacement line corresponds to its line number in the
original source text, while subsequent line numbers differ. The VAX COBOL
compiler arranges the line numbers consecutively.

The following source program can result in listings with different ending line
numbers, depending on whether you compile it with the DEC COBOL or the
VAX COBOL compiler.

Source fi le:

REPLACE ==A VERY LONG STATEMENT== by ==EXIT PROGRAM==.
A
VERY
LONG
STATEMENT.
DISPLAY "To REPLACE or not to REPLACE".

DEC COBOL version:

1 REPLACE ==A VERY LONG STATEMENT== by ==EXIT PROGRAM==.
2 EXIT PROGRAM.
6 DISPLAY "To REPLACE or not to REPLACE".

VAX COBOL version:

1 REPLACE ==A VERY LONG STATEMENT== by ==EXIT PROGRAM==.
2 EXIT PROGRAM.
3 DISPLAY "To REPLACE or not to REPLACE".

A.3.2.12 MOVE Statement
Unsigned computational fields can hold larger values than signed computational
fields. In accordance with the ANSI COBOL Standard, the values for unsigned
items should always be treated as positive. VAX COBOL, however, treats
unsigned items as signed, while DEC COBOL treats them as positive. Therefore,
in some rare cases, a mixture of unsigned and signed data items in MOVE or
arithmetic statements can produce different results between VAX COBOL and
DEC COBOL.

The following sample program produces different results for VAX COBOL and
DEC COBOL.

A–22

OpenVMS AXP Compilers
A.3 Compatibility of DEC COBOL with VAX COBOL

Source fi le:

IDENTIFICATION DIVISION.
PROGRAM-ID. SHOW-DIFF.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 A2 PIC 99 COMP.
01 B1 PIC S9(5) COMP.
01 B2 PIC 9(5) COMP.
PROCEDURE DIVISION.
TEST-1.

MOVE 65535 TO A2.
MOVE A2 TO B1.
DISPLAY B1 WITH CONVERSION.
MOVE A2 TO B2.
DISPLAY B2 WITH CONVERSION.
STOP RUN.

VAX COBOL results:
B1 = -1
B2 = -1

DEC COBOL results:
B1 = 65535
B2 = 65535

A.3.2.13 ACCEPT and DISPLAY Statements
When you use any extended feature of ACCEPT or DISPLAY within your
program, the DEC COBOL compiler uses the DEC SMG (Screen Manager).
The visible differences in behavior between DEC COBOL and VAX COBOL are as
follows:

• When you run your program, the screen is automatically erased when it
encounters the first ACCEPT or DISPLAY statement.

• Because the DEC SMG manages terminal I-O use with extended ACCEPT
and DISPLAY statements as screen entities rather than as line by line I-O,
you may not be able to redisplay information that appears to have scrolled off
the screen by using the DECterm scroll bar.

• The DCL RECALL command is not supported during screen accepts.

• Escape sequence processing is limited to the use of an escape sequence that
occupies the leftmost positions of a DISPLAY string. (Sample programs are
located in the DEC COBOL User Manual.)

• When you mix ANSI ACCEPT statements and extended ACCEPT statements
in a program, the editing keys used by the extended ACCEPT statements will
also be used by the ANSI ACCEPT statements. (See the DEC COBOL User
Manual for a complete list of editing keys.)

A.3.2.14 LINAGE Statement
The DEC COBOL and VAX COBOL compilers exhibit different behavior when
handling large values for the LINAGE statement. If the line count for the
ADVANCING clause of the WRITE statement is larger than 127, DEC COBOL
advances one line. VAX COBOL results are undefined.

A–23

OpenVMS AXP Compilers
A.3 Compatibility of DEC COBOL with VAX COBOL

A.3.2.15 File Status Differences
The DEC COBOL and VAX COBOL compilers report different file status codes
when you open a file in EXTEND mode and then try to REWRITE it. DEC
COBOL reports a 49 (incompatible open mode). VAX COBOL reports an error 43
(no previous READ).

DEC COBOL sets the file status to 46 after a START fails. VAX COBOL does not
produce these results.

A.3.2.16 System Return Codes
The following example illustrates an illegal coding practice that exhibits a certain
behavior on OpenVMS VAX systems but that does not produce the same behavior
on OpenVMS AXP systems. This difference in behavior points to an architectural
difference in the register sets between the VAX and Alpha AXP architectures.
Specifically, the difference in behavior on the AXP system is due to the separate
set of registers used for floating-point data types.

IDENTIFICATION DIVISION.
PROGRAM-ID. BADCODING.
ENVIRONMENT DIVISION.

DATA DIVISION.
FILE SECTION.

WORKING-STORAGE SECTION.

01 FIELDS-NEEDED.
05 CYCLE-LOGICAL PIC X(14) VALUE ’A_LOGICAL_NAME’.

01 EDIT-PARM.
05 EDIT-YR PIC X(4).
05 EDIT-MO PIC XX.

01 CMR-RETURN-CODE COMP-1 VALUE 0.

LINKAGE SECTION.

01 PARM-REC.
05 CYCLE-PARM PIC X(6).
05 RETURN-CODE COMP-1 VALUE 0.

PROCEDURE DIVISION USING PARM-REC GIVING CMR-RETURN-CODE.

P0-CONTROL.

CALL ’LIB$SYS_TRNLOG’ USING BY DESCRIPTOR CYCLE-LOGICAL,
OMITTED,
BY DESCRIPTOR CYCLE-PARM
GIVING RETURN-CODE.

IF RETURN-CODE GREATER 0
THEN

MOVE RETURN-CODE TO CMR-RETURN-CODE
GO TO P0-EXIT.

MOVE CYCLE-PARM TO EDIT-PARM.

IF EDIT-YR NOT NUMERIC
THEN

MOVE 4 TO CMR-RETURN-CODE, RETURN-CODE.

IF EDIT-MO NOT NUMERIC
THEN

MOVE 4 TO CMR-RETURN-CODE, RETURN-CODE.

A–24

OpenVMS AXP Compilers
A.3 Compatibility of DEC COBOL with VAX COBOL

IF CMR-RETURN-CODE GREATER 0
OR

RETURN-CODE GREATER 0
THEN

DISPLAY "***************************"
DISPLAY "** BADCODING.COB **"
DISPLAY "** A_LOGICAL_NAME> ", CYCLE-PARM, " **"
DISPLAY "***************************".

P0-EXIT.

EXIT PROGRAM.

In the sample program, the programmer incorrectly defined the return value for
a system service call to be F_floating when it should have been binary (COMP).
The programmer was depending on the following VAX behavior: in the VAX
architecture, all return values from routines are returned in register R0. The
VAX architecture has no separate integer and floating-point registers. The Alpha
AXP architecture defines separate register sets for floating-point and binary data.
In particular, routines that return floating-point values return them in register
F0; routines that return binary values return them in register R0.

The DEC COBOL compiler has no method for determining what data type an
external routine may return. You must specify the correct data type for the
GIVING-VALUE item in the CALL statement. On OpenVMS AXP systems, the
generated code is testing F0 instead of R0 because of the different set of registers
used for floating-point data items.

In the sample program, the value in F0 is completely random in this code
sequence. In some cases, this coding practice may produce the expected behavior,
but in most cases it will not.

A.3.2.17 Storage Differences for Double-Precision Data Items
The difference in storage of D_floating items between the VAX and Alpha AXP
architectures produces slightly different answers when validating execution
results. The magnitude of the difference depends upon how many D-float
computations and stores the compiler performed before outputing the final
answer. This behavior difference may cause some difficulty if you attempt to
validate output generated by your program running on OpenVMS AXP systems
against output generated by OpenVMS VAX systems where they output COMP-2
data to a file.

For information about storage for floating-point data types, see the Alpha
Architecture Handbook.

A.3.2.18 RMS Special Registers
The DEC COBOL run-time system checks some I-O error situations before
attempting the RMS operation. VAX COBOL does the RMS calls without doing
any checking, resulting in different values for RMS special registers. When the
DEC COBOL run-time system does not attempt an RMS operation, the register
value retains its previous value.

For example, in the case of a file that was not successfully opened, any DEC
COBOL record operation (READ, WRITE, START, DELETE, REWRITE, or
UNLOCK) will fail without invoking RMS.

A–25

OpenVMS AXP Compilers
A.4 Compatibility of DEC Fortran for OpenVMS AXP with VAX FORTRAN

A.4 Compatibility of DEC Fortran for OpenVMS AXP with VAX
FORTRAN

This section discusses the compatibility between DEC Fortran for OpenVMS AXP
systems and VAX FORTRAN in the following areas:

• Language features (Section A.4.1)

• Command line qualifiers (Section A.4.2)

• Interoperability with translated shared images
(Section A.4.3)

• Porting VAX FORTRAN data (Section A.4.4)

A.4.1 Language Features
DEC Fortran includes ANSI FORTRAN–77 standard features, as well as the
VAX FORTRAN extensions to the FORTRAN–77 standard, including:

• RECORD statement and STRUCTURE statement

• CDEC$ directives and the OPTIONS statement

• BYTE, INTEGER*1, INTEGER*2, INTEGER*4, LOGICAL*1, LOGICAL*2,
LOGICAL*4

• REAL*4, REAL*8, COMPLEX*8, COMPLEX*16

• IMPLICIT NONE statement

• INCLUDE statement

• NAMELIST I/O

• Names up to 31 characters including use of dollar sign ($) and underscore
(_)

• DO WHILE and END DO statements

• Use of the exclamation point (!) for end-of-line comments

• Built-in functions %DESCR, %LOC, %REF, and %VAL

• VOLATILE statement

• Other language elements identified in the DEC Fortran Language Reference
Manual

For detailed information about extensions, see the DEC Fortran Language
Reference Manual, which visually shows extensions of the FORTRAN–77
standard.

The remainder of this section summarizes language features specific to
VAX FORTRAN and DEC Fortran, language features that are shared but
interpreted differently in each language, DEC Fortran restrictions that do not
apply to VAX FORTRAN, and data porting considerations.

For complete details about language features, see the DEC Fortran Language
Reference Manual.

A–26

OpenVMS AXP Compilers
A.4 Compatibility of DEC Fortran for OpenVMS AXP with VAX FORTRAN

A.4.1.1 Language Features Specific to DEC Fortran
The following language features are available in DEC Fortran but are not
supported in VAX FORTRAN Version 5.0:

• Quotation marks (") as delimiters for character constants. This can be
disabled by specifying the /VMS qualifier.

• The AUTOMATIC and STATIC statements

• Recursion

• Naturally aligned or packed boundaries for fields of records and items in
COMMON blocks

• The POINTER statement data type

• The INTEGER*1, INTEGER*8, and LOGICAL*8 data types

• Support for floating-point S_floating and T_floating IEEE data types as well
as support for nonnative unformatted data file formats, including big-endian
numeric format. For a description of the native floating-point data types for
Alpha AXP systems, see the Alpha Architecture Reference Manual.

• LIB$ESTABLISH and LIB$REVERT are provided as intrinsic functions for
compatibility with VAX FORTRAN condition handling.

• Bit constants of the form ’0..1’B and B’0..1’.

• The MIL-STD 1753 syntax for octal constants (O’0..7’) and hexadecimal
constants (X’0..F’ or Z’0..F’).

• The alternate ‘‘Z’’ spelling for double-precision complex intrinsic functions.
(For example, the square root double-precision intrinsic function can be
spelled as CDSQRT or ZSQRT.)

• The following intrinsic functions:

IMAG
AND
OR
XOR
LSHIFT
RSHIFT

• Certain run-time errors are specific to DEC Fortran.

• Warning message ‘‘feature not available on this platform’’ provided for
platform-specific features not supported on AXP systems.

• Case-sensitive names

• I/O unit numbers can be any nonnegative integer in DEC Fortran. In
VAX FORTRAN, the values for I/O unit numbers can range from 0 to 99.

For an explanation of DEC Fortran language features, see the DEC Fortran
Language Reference Manual.

A–27

OpenVMS AXP Compilers
A.4 Compatibility of DEC Fortran for OpenVMS AXP with VAX FORTRAN

A.4.1.2 Language Features Specific to VAX FORTRAN
The following language features are available in VAX FORTRAN but are not
supported in DEC Fortran:

• Automatic decomposition features of FORTRAN/PARALLEL=(AUTOMATIC)

• Manual (directed) decomposition features of FORTRAN
/PARALLEL=(MANUAL) using the CPAR$ directives, such as CPAR$ DO_
PARALLEL

• The DICTIONARY statement (Common Data Dictionary support is not
available in the first release of DEC Fortran).

• The following I/O and error subroutines for PDP–11 compatibility:

ASSIGN
CLOSE
ERRSET

ERRTST
FDBSET
IRAD50

RAD50
R50ASC
USEREX

When porting existing programs, calls to ASSIGN, CLOSE, and FBDSET
should be replaced with the appropriate OPEN statement. (You might
consider converting DEFINE FILE statements at the same time, even though
DEC Fortran does support the DEFINE FILE statement.)

In place of ERRSET and ERRTST, VMS condition handling might be used.
Note that DEC Fortran supports the ERRSNS subroutine.

• Radix–50 constants in the form nRxxx

For existing programs being ported, radix-50 constants and the IRAD50,
RAD50, and R50ASC routines should be replaced by data encoded in ASCII
using CHARACTER declared data.

The following language features are available in VAX FORTRAN but are not
supported in DEC Fortran because of differences between the Alpha AXP
architecture and the VAX architecture:

• Certain FORSYSDEF symbol definition modules may be specific to the VAX
or Alpha AXP architecture.

• Precise exception control

The handling of certain exceptions differs between OpenVMS VAX and
OpenVMS AXP systems.

• The REAL*16 (H_floating) data type and the REAL*16 Q intrinsic functions

• VAX support for D_floating

Because the Alpha AXP instruction set does not support the D_floating
REAL*8 format, D_floating data is converted to G_floating by software during
computations and then converted back to D_floating format. Thus, there will
be differences in D_floating arithmetic between VAX and AXP systems.

For optimal performance on AXP systems, consider using REAL*8 data
in VAX G_floating or IEEE T_floating format, perhaps using the /FLOAT
qualifier to specify the format. To create a DEC Fortran application program
to convert D_floating data to G_floating or T_floating format, use the file
conversion methods described in the DEC Fortran Language Reference
Manual.

A–28

OpenVMS AXP Compilers
A.4 Compatibility of DEC Fortran for OpenVMS AXP with VAX FORTRAN

• Vectorization capabilities

Vectorization associated with the VAX FORTRAN High-Performance Option
(HPO), including /VECTOR and its related qualifiers, and the CDEC$ INIT_
DEP_FWD directive are not supported. The Alpha AXP processor provides
pipelining and other features that resemble vectorization capabilities.

A.4.1.3 Interpretation Differences
The following language features are interpreted differently between
VAX FORTRAN and DEC Fortran:

• Octal notation for integer constants

• Random number generator (RAN)

The RAN function generates a different pattern of numbers in DEC Fortran
than in VAX FORTRAN for the same random seed. (The RAN and RANDU
functions are provided for VAX FORTRAN compatibility.)

• Hollerith constants in formatted I/O statements

VAX FORTRAN and DEC Fortran behave differently if either of the following
occurs:

Two different I/O statements refer to the same CHARACTER
PARAMETER constant as their format specifier. For example:

CHARACTER*(*) FMT2
PARAMETER (FMT2=’(10Habcdefghij)’)
READ (5, FMT2)
WRITE (6, FMT2)

Two different I/O statements use the identical character constant as their
format specifier. For example:

READ (5, ’(10Habcdefghij)’)
WRITE (6, ’(10Habcdefghij)’)

In VAX FORTRAN, the value obtained by the READ statement is the output
of the WRITE statement (FMT2 is ignored). However, in DEC Fortran, the
output of the WRITE statement is "abcdefghij". (The value read by the READ
statement has no effect on the value written by the WRITE statement.)

A.4.1.4 DEC Fortran Restrictions
Certain VAX FORTRAN features have restricted use or are not available in DEC
Fortran:

• Numeric local variables are sometimes, but not always, initialized to a zero
value, depending on the level of optimization used. To guarantee that a value
will be initialized to zero under all circumstances, use an explicit assignment
or DATA statement.

• Character constants must be associated with character dummy arguments,
not numeric dummy arguments. (VAX FORTRAN passed ’A’ by reference if
the dummy argument was numeric.)

A–29

OpenVMS AXP Compilers
A.4 Compatibility of DEC Fortran for OpenVMS AXP with VAX FORTRAN

• Saved dummy arrays do not work:

SUBROUTINE F_INIT (A, N)
REAL A(N)
RETURN
ENTRY F_DO_IT (X, I)
A (I) = X ! No: A no longer visible
RETURN
END

• Hollerith actual arguments must be associated with numeric dummy (formal)
arguments, not character dummy arguments.

A.4.2 Command Line Qualifiers
This section summarizes the differences between DEC Fortran and
VAX FORTRAN command line qualifiers.

For complete details about the DEC Fortran compilation command and options,
see the DEC Fortran User Manual for OpenVMS AXP Systems. For complete
details about the VAX FORTRAN compilation command and options, see the ***
WARNING: OBSOLETE. Use DEC_FORT_VMS_VAX_UM. ***.

To initiate compilation on either VAX or AXP systems, use the FORTRAN
command.

While some compiler qualifiers are specific to each language, DEC Fortran and
VAX FORTRAN share many qualifiers.

A.4.2.1 Shared Qualifiers
Table A–10 lists the compiler qualifiers that are shared by DEC Fortran and
VAX FORTRAN. For detailed information about DEC Fortran qualifiers, see the
DEC Fortran Language Reference Manual.

Table A–10 Qualifiers Shared by DEC Fortran and VAX FORTRAN

Qualifier Comments

/ASSUME /ASSUME was not available in VAX FORTRAN Version 5.0,
but /ASSUME=([NO]ACCURACY_SENSITIVE,[NO]DUMMY_
ALIAS) are now available in VAX FORTRAN HPO.

Certain keyword values are specific to DEC Fortran.

/ANALYSIS_DATA Equivalent.

/CHECK All VAX FORTRAN /CHECK= keywords are available in DEC
Fortran. The DEC Fortran /WARNINGS=ALIGNMENT qualifier
and the VAX FORTRAN HPO /CHECK=ALIGNMENT qualifier
are equivalent.

/CROSS_REFERENCE Equivalent.

/DEBUG All VAX FORTRAN /DEBUG= keywords are available in DEC
Fortran.

/D_LINES Equivalent.

/DIAGNOSTICS Equivalent.

/DML Equivalent.

/EXTEND_SOURCE Equivalent.

(continued on next page)

A–30

OpenVMS AXP Compilers
A.4 Compatibility of DEC Fortran for OpenVMS AXP with VAX FORTRAN

Table A–10 (Cont.) Qualifiers Shared by DEC Fortran and VAX FORTRAN

Qualifier Comments

/F77 Equivalent.

/G_FLOATING Although DEC Fortran supports /G_FLOATING, use the DEC
Fortran /FLOAT qualifier instead. Note that differences exist for
D_floating computations on VAX and AXP systems, as described
in the description of /FLOAT in Section A.4.2.2.

/I4 Equivalent. With DEC Fortran, you can use the /INTEGER_
SIZE qualifier to specify the size of INTEGER declarations.

/LIBRARY Equivalent.

/LIST Equivalent.

/MACHINE_CODE Equivalent.

/OBJECT Equivalent.

/OPTIMIZE Equivalent, although DEC Fortran also supports the use of
optimization levels such as /OPTIMIZE=LEVEL=1 for only local
optimizations (see Section A.4.2.2). Actual compiler optimization
techniques may differ.

/SHOW Most VAX FORTRAN /SHOW= keywords are available in DEC
Fortran.

/STANDARD All VAX FORTRAN /STANDARD= keywords are available in
DEC Fortran.

/WARNINGS Most /WARNINGS= keywords are available; however, certain
keyword values are specific to DEC Fortran.

Consider using the DEC Fortran /VMS qualifier (the default) when porting
VAX FORTRAN source programs.

A.4.2.2 Qualifiers Specific to DEC Fortran
Table A–11 lists DEC Fortran compiler qualifiers that have no equivalent
VAX FORTRAN options and are not supported in VAX FORTRAN Version 5.0.

Table A–11 DEC Fortran Qualifiers Not in VAX FORTRAN

Qualifier Description

/ALIGN Controls alignment of record structures and common
blocks. (VAX FORTRAN handles the default
alignment for common blocks and also recognizes a
CDEC$ directive.)

/ASSUME Certain keywords are not provided by VAX FORTRAN
Version 5.0, including BIG_ENDIAN, CRAY, IBM,
LITTLE_ENDIAN, RECURSIVE, VAXD, and VAXG.

/FLOAT Controls the format used for floating-point data
(REAL or COMPLEX), allowing use of VAX G_floating,
VAX D_floating, or IEEE (S_floating and T_floating)
floating-point data.

/INTEGER_SIZE Controls the size of INTEGER declarations.

/NAMES Controls whether external names are converted to
uppercase, lowercase, or left as is.

(continued on next page)

A–31

OpenVMS AXP Compilers
A.4 Compatibility of DEC Fortran for OpenVMS AXP with VAX FORTRAN

Table A–11 (Cont.) DEC Fortran Qualifiers Not in VAX FORTRAN

Qualifier Description

/OPTIMIZE=LEVEL=n Controls the level of optimization
between /NOOPTIMIZE and /OPTIMIZE (
/OPTIMIZE=LEVEL=4). VAX FORTRAN (and DEC
Fortran) supports /OPTIMIZE and /NOOPTIMIZE.

/POINTER_SIZE Controls the size (addressable range) of pointer data.

/RECURSIVE Allocates local data on the run-time process stack and
prepages procedures for possible recursive execution.

/VMS Requests that DEC Fortran use certain
VAX FORTRAN conventions.

/WARNING=(ALIGNMENTS,
TRUNCATED_SOURCE)

Requests that warning messages appear for any data
that is not naturally aligned and any source lines
that are truncated. These keywords are available in
VAX FORTRAN HPO.

A.4.2.3 Qualifiers Specific to VAX FORTRAN
This section summarizes VAX FORTRAN compiler options that have no
equivalent DEC Fortran options.

Table A–12 lists compilation options that are specific to VAX FORTRAN Version
5.0.

Table A–12 VAX FORTRAN Options Not in DEC Fortran

VAX FORTRAN Qualifier Description

/BLAS=(INLINE,MAPPED) Specifies whether VAX FORTRAN recognizes and inlines or maps
the Basic Linear Algebra Subroutines (BLAS). Available only for the
VAX FORTRAN High Performance Option (HPO).

/CHECK=ASSERTIONS Enables or disables assertion checking. Available only for
VAX FORTRAN HPO.

/CONTINUATIONS=n Specifies the number of continuation lines allowed in a statement.
DEC Fortran allows up to 99 continuation lines.

/DESIGN=[NO]COMMENTS
/DESIGN=[NO]PLACEHOLDERS

Analyzes program for design information.

/DIRECTIVES=DEPENDENCE Specifies whether specified compiler directives are used at
compilation. Available only for VAX FORTRAN HPO.

/MATH_LIBRARY=(FAST or
ACCURATE)

Controls the selection of math library routines used to implement
certain mathematical intrinsic functions. /MATH_LIBRARY also
affects vectorized references to the exponentiation operator ** for
real data types. Available only in VAX FORTRAN HPO.

/PARALLEL=(MANUAL or
AUTOMATIC)

Supports parallel processing.

(continued on next page)

A–32

OpenVMS AXP Compilers
A.4 Compatibility of DEC Fortran for OpenVMS AXP with VAX FORTRAN

Table A–12 (Cont.) VAX FORTRAN Options Not in DEC Fortran

VAX FORTRAN Qualifier Description

/SHOW=(DATA_DEPENDEN-
CIES,DICTIONARY,LOOPS)

Control whether the listing file includes:

• Diagnostics about loops that are ineligible for dependence
analysis and data dependencies that inhibit vectorization or
autodecomposition (DATA_DEPENDENCIES)

• Source lines from included Common Data Dictionary records
(DICTIONARY)

• Reports about loop structures after compilation (LOOPS)

The keywords DATA_DEPENDENCIES and LOOPS are available
only for VAX FORTRAN HPO.

/VECTOR Requests vector processing. Available only with VAX FORTRAN
HPO.

/WARNINGS=INLINE Controls whether the compiler prints informational diagnostic
messages when it is unable to generate inline code for a reference to
an intrinsic routine. Available only for VAX FORTRAN HPO.

All CPAR$ directives and certain CDEC$ directives associated with directed
(manual) decomposition and their associated qualifiers or keywords are also
specific to VAX FORTRAN, as described in the DEC Fortran Language Reference
Manual.

For details about the VAX FORTRAN compilation commands and options, see the
*** WARNING: OBSOLETE. Use DEC_FORT_VMS_VAX_UM. ***.

A.4.3 Interoperability with Translated Shared Images
Using DEC Fortran, you can create images that can interoperate with translated
images at image activation (run time).

To allow the use of translated shared images:

• On the FORTRAN command line, specify the /TIE qualifier.

• On the LINK command line, specify the /NONATIVE_ONLY qualifier
(default).

The created executable image contains code that allows the resulting executable
image to interoperate with shared images, including allowing the VAX FORTRAN
RTL (FORRTL) to work with the DEC Fortran RTL (DEC$FORTRTL). The native
(DEC Fortran RTL) and translated (VAX FORTRAN RTL) programs can perform
I/O to the same unit number, as long as the RTL that opens the file also closes it.

Programs should use the intrinsic names (without the prefix) rather than calling
routines by their complete (fac$xxxx) name.

A.4.4 Porting VAX FORTRAN Data
Record types are identical for VAX FORTRAN and DEC Fortran. If needed,
transport the data using the EXCHANGE command with the /NETWORK and
/TRANSFER=BLOCK qualifiers. To convert the file to Stream_LF format during
the copy operation, use /TRANSFER=(BLOCK,RECORD_SEPARATOR=LF)
instead of /TRANSFER=BLOCK, or specify the /FDL qualifier to the EXCHANGE
command to change the record type or other file characteristics.

A–33

OpenVMS AXP Compilers
A.4 Compatibility of DEC Fortran for OpenVMS AXP with VAX FORTRAN

If you need to convert unformatted floating-point data, keep in mind that VAX
FORTRAN programs (VAX hardware) store REAL*4 or COMPLEX*8 data in
F_floating format, REAL*8 or COMPLEX*16 data in either D_floating or G_
floating format, and REAL*16 data in H_floating format. DEC Fortran programs
(running on Alpha AXP hardware) store REAL*4, REAL*8, COMPLEX*8, and
COMPLEX*16 data in one of the formats shown in Table A–13.

Table A–13 Floating-Point Data on VAX and AXP Systems

Data Declaration VAX Formats AXP Formats

REAL*4 and
COMPLEX*8

VAX F_floating format IEEE S_floating or VAX F_floating format

REAL*8 and
COMPLEX*16

VAX D_floating or G_
floating format

IEEE T_floating, VAX D_floating1, or VAX
G_floating format

REAL*16 and
COMPLEX*32

VAX H_floating Not supported by DEC Fortran. Requires
conversion, perhaps using the RTL
routine CVT$CONVERT_FLOAT.

1On AXP systems, the use of VAX D_floating format involving many computations is not
recommended. Consider converting D_floating format to IEEE T_floating (or VAX G_floating) format
in a conversion program that uses the DEC Fortran conversion routines.

You may not be able to convert the VAX H_floating (REAL*16) data outside the
range of VAX D_floating or G_floating format (REAL*8). One option is to write a
conversion application to convert the files to VAX D_floating or G_floating format
(REAL*8) and then use the DEC Fortran conversion routines to convert the data
to IEEE T_floating format.

A.5 Compatibility of DEC Pascal for OpenVMS AXP Systems with
VAX Pascal

This section compares DEC Pascal to other Digital Pascal compilers and lists
the differences between DEC Pascal on VAX and AXP systems. For a complete
description of these features, see the DEC Pascal Language Reference Manual.

A.5.1 New Features of DEC Pascal
Table A–14 lists features not previously supplied in VAX Pascal.

Table A–14 New Features of DEC Pascal

Feature Description

Support for OpenVMS
systems

Including all the data types available on the OpenVMS
platforms.

Redefinable values for
predeclared constants

Values for MAXINT, MAXUNSIGNED, MAXREAL, MINREAL,
ESPREAL are defined by the platform and the compiler
switches for specifying the integer size and floating-point
format.

(continued on next page)

A–34

OpenVMS AXP Compilers
A.5 Compatibility of DEC Pascal for OpenVMS AXP Systems with VAX Pascal

Table A–14 (Cont.) New Features of DEC Pascal

Feature Description

An optional quoted
parameter to the
COMMON, EXTERNAL,
GLOBAL, PSECT,
WEAK_EXTERNAL,
and WEAK_GLOBAL
attributes

Allows you to pass an unmodified identifier to the linker.

Double-quoted strings DEC Pascal now accepts the double-quote characters as string
and character delimiters.

Embedded string values Inside of double-quoted strings, DEC Pascal now supports
constant characters specified with a backslash as in the
C programming language, such as ‘‘"\n"’’ for the linefeed
character.

Additional data types
and values

DEC Pascal now supports these data types: ALFA,
CARDINAL, CARDINAL16, CARDINAL32, INTEGER16,
INTEGER32, INTEGER64, INTSET, POINTER, UNIV_PTR,
UNSIGNED16, UNSIGNED32, and UNSIGNED64.

Assignment of
UNSIGNED values
to INTEGER variables

DEC Pascal now allows UNSIGNED values to be assignment-
compatible with INTEGER variables and array indices.

Assignment of string
values into unpacked
arrays of characters

DEC Pascal now allows ARRAY of CHAR variables to be
treated as fixed-length character strings.

Additional statements DEC Pascal now supports these statements: BREAK,
CONTINUE, EXIT, NEXT, and RETURN.

Additional predeclared
routines

DEC Pascal now supports these functions and procedures:
ADDR, ARGC, ARGV, ASSERT, BITAND, BITNOT, BITOR,
BITXOR, HBOUND, LBOUND, FIRST, FIRSTOF, LAST,
LASTOF, IN_RANGE, LSHIFT, RSHIFT, LSHFT, RSHFT,
MESSAGE, NULL, RANDOM, SEED, REMOVE, SIZEOF,
SYSCLOCK, and WALLCLOCK.

Optional second
parameter to RESET,
REWRITE, and
EXTEND

DEC Pascal now accepts a second parameter that is a literal
string expression for the file name to be associated with the file
variable.

Compiler command
switches

DEC Pascal now includes switches that allow you to specify
the storage and alignment allocation for data types. You can
also specify the level of optimization with a switch. On AXP
systems, an option controls the default meaning of the REAL
and DOUBLE data types. Arguments to the usage switch
enable messages relating to alignment, alignment compatibility
on different platforms, and features that are not available on a
specified platform.

A.5.2 Modifying Default Alignment Rules for Record Fields
DEC Pascal allows you to override field alignment and position with the POS,
ALIGNED, and DATA attributes and the data compiler switch.

A–35

OpenVMS AXP Compilers
A.5 Compatibility of DEC Pascal for OpenVMS AXP Systems with VAX Pascal

A.5.3 Recommended Use of Predeclared Identifiers
Although for backward compatibility DEC Pascal compiles programs that include
the predeclared identifiers listed in Table A–15, Digital recommends that you use
the listed replacements.

Table A–15 Recommended Use of Predeclared Identifiers

Identifier Recommended Usage

ADDR Use the ADDRESS function

ALFA Equivalent to TYPE ALFA = PACKED ARRAY [1..10]OF CHAR

BITAND Equivalent to the UAND statement

BITNOT Equivalent to the UNOT statement

BITOR Equivalent to the UOR statement

BITXOR Equivalent to the UXOR statement

EXIT Equivalent to the BREAK statement

FIRST,
FIRSTOF

Equivalent to the LOWER function

HBOUND Equivalent to the UPPER function

IN_RANGE Useful only when subrange checking is disabled. IN_RANGE(X) is
equivalent to (X�LOWER(X))AND(X�UPPER(X)).

INTSET Equivalent to TYPE INTSET = SET OF 0 .. 255;

LAST, LASTOF Equivalent to the UPPER function

LBOUND Equivalent to the LOWER function

LSHFT Equivalent to the LSHIFT function

MESSAGE Equivalent to WRITELN(ERR,expression)

NEXT Equivalent to the CONTINUE statement

NULL Equivalent to the empty statement

REMOVE Equivalent to the DELETE_FILE procedure

RSHFT Equivalent to the RSHIFT function

SIZEOF Equivalent to the SIZE function

STLIMIT Compiles but does not return an error

UNIV_PTR Equivalent to TYPE UNIV_PTR = POINTER;

A.5.4 Platform-Dependent Features
DEC Pascal can use an environment file only on the same platform (the
combination of operating system and hardware) on which it was compiled.

In addition, the following lists features of DEC Pascal supplied only on VAX
systems:

• QUADRUPLE data type

• H_floating-point data type

• VAX Pascal Version 1.0 dynamic arrays

• MFPR and MTPR predeclared routines

• [OVERLAID] attribute

A–36

OpenVMS AXP Compilers
A.5 Compatibility of DEC Pascal for OpenVMS AXP Systems with VAX Pascal

• Table of contents in listing

• Optimize attribute on routines

The following lists the features of DEC Pascal that are supplied only on AXP
systems:

• Abbreviations when reading enumerated data types

• Indexed file organization

• Relative file organization

A.5.5 Obsolete Features
This section describes features that are supported, but not recommended, by
Digital. They are provided only for compatibility with other Digital Pascal
compilers.

A.5.5.1 /OLD_VERSION Qualifier
The /OLD_VERSION qualifier directed the compiler to resolve differences
between VAX Pascal Version 1.0 and subsequent versions by using the
VAX Pascal Version 1.0 definition of the language. The qualifier is provided
so that existing programs continue to work.

A.5.5.2 /G_FLOATING Qualifier
The /G_FLOATING qualifier directs the compiler to use the G_floating
representation and instructions for values of type DOUBLE. The [[NO]G_
FLOATING] attribute can be specified on both OpenVMS VAX and OpenVMS
AXP systems.

If the use of the /G_FLOATING qualifier conflicts with a double-precision
attribute specified in the source program or module, an error occurs. Routines
and compilation units between which double-precision quantities are passed
should not mix floating-point formats. Not all OpenVMS VAX processors support
the G_floating data types.

See also the description of the /FLOAT qualifier, which is the preferred method
for specifying the floating-point format to the compiler. The /FLOAT qualifier also
allows you to select the IEEE floating-point format, which is supported only on
AXP systems.

A.5.5.3 OVERLAID Attribute
The OVERLAID attribute indicated how storage should be allocated for variables
declared within a compilation unit. If you specify OVERLAID on a compilation
unit, the variables declared at program or module level (unless they have the
STATIC or PSECT attribute) overlay the storage of static variables in all other
overlaid compilation units.

This attribute is intended for use only with programs that use the
decommitted separate compilation facility provided by VAX Pascal Version 1.0.

A–37

Index

A
_ _ADD_ATOMIC_LONG built-in, A–7
_ _ADD_ATOMIC_QUAD built-in, A–7
$ADJWSL system service

page-size dependencies, 2–2
Alignment

See Data alignment
Allocating memory

by expanding virtual address space
page-size dependencies, 2–6

freeing allocated memory
page-size dependencies, 2–9

page-size dependencies, 2–6
reallocating existing virtual addresses

page-size dependencies, 2–8
specifying address ranges, 2–8
specifying page counts, 2–6
using the $CRETVA system service, 2–9
using the $EXPREG system service, 2–7

Alpha AXP instructions
accessing from DEC C, A–6

_ _AND_ATOMIC_LONG built-in, A–7
_ _AND_ATOMIC_QUAD built-in, A–7
Applications

VAX dependency checklist, 1–2
ARCH_NAME keyword

determining host architecture, 1–6
ARCH_TYPE keyword

determining host architecture, 1–5
Argument lists

accessing from DEC C, A–8
Arithmetic exceptions

on AXP systems, 5–7
Atomic instructions

effect on synchronization, 3–2
Atomicity

DEC C support, A–7
preserving in translated images, 3–10

B
/BPAGE qualifier

linking VAX images to be translated, 6–4

Byte granularity
effect on synchronization, 3–2

C
Compilers

availability on AXP systems, 1–1
compatibility between compilers on VAX

systems and on AXP systems, A–1 to A–37
Condition code

matching, 5–5
Condition handling

alignment fault reporting, 5–9
arithmetic exceptions, 5–7
condition codes, 5–5
enabling overflow detection, 5–11
hardware exception conditions, 5–6
mechanism array format, 5–2
on AXP systems, 5–1
run-time library support routines, 5–10
signal array format, 5–1
specifying condition handlers, 5–11
unwinding, 5–4
VAX hardware exceptions, 5–6
with translated images, 5–6
writing condition handlers, 5–1

Conditional compilation directives
DEC C incompatibility with VAX C, A–8

CPU keyword
determining the host architecture, 1–6

$CREPRC system service
page-size dependencies, 2–2

$CRETVA system service
code example, 2–9
page-size dependencies, 2–2
reallocating memory on an AXP system, 2–8

$CRMPSC system service
mapping a single page section

page-size dependencies, 2–12
mapping into a defined address range

code example, 2–14
page-size dependencies, 2–13

page-size dependencies, 2–2
used to map into expanded virtual address

space
code example, 2–11
page-size dependencies, 2–10

Index–1

D
Data

See also Data alignment
porting between DEC Fortran and

VAX FORTRAN, A–33
shared

unintentional sharing, 3–8
Data alignment

DEC Ada support, A–2
DEC C support, A–7
DEC COBOL support, A–12

default alignment, A–13
DEC Pascal support, A–35
exception reporting, 5–9

Data types
differences between DEC Fortran and

VAX FORTRAN, A–33
portability between VAX and AXP systems, 4–1
supported by Alpha AXP architecture, 4–1
supported by VAX architecture, 4–1

Data-type sizes
DEC C portability macros, A–5
effect on protection of shared data, 3–9
supported by DEC C, A–4

DEC Ada
compatibility with VAX Ada, A–1
language pragma support on AXP systems,

A–2
system package support on AXP systems, A–2

DEC C
64-bit capabilities, A–4
accessing Alpha AXP instructions, A–6
accessing VAX instructions, A–6
ANSI conformance, A–4
atomicity built-ins, A–7
compatibility modes, A–4
controlling data alignment, A–7
data-type-size portability macros, A–5
features specific to AXP systems, A–6
specifying floating-point formats, A–5
/STANDARD qualifier, A–4
support for pcc mode, A–4
supported data-types, A–4
VAX C mode, A–4

incompatibilities with VAX C, A–8
DEC C for OpenVMS AXP systems

See DEC C
DEC COBOL

ACCEPT statement differences, A–23
/ALIGNMENT qualifier, A–13
/CHECK qualifier, A–13
command line qualifiers not supported by

VAX COBOL, A–10
command line qualifiers shared with

VAX COBOL, A–10
compatibility modes, A–15

DEC COBOL (cont’d)
compatibility with VAX COBOL, A–9
compiler messages, A–19
controlling data alignment, A–13
/CONVERT=LEADING_BLANKS qualifier,

A–14
converting VAX COBOL programs, A–18
COPY statement differences, A–20
defining storage for return values, A–25
differences in program structure, A–19
DISPLAY statment differences, A–23
EXIT PROGRAM statement, A–16
file status differences, A–24
/FLOAT qualifier, A–14
I-O file status codes, A–16
LINAGE statement differences, A–23
listing file differences, A–22
MOVE statement differences, A–22
moving unsigned data items, A–22
no valid next record condition, A–17
/OPTIMIZE qualifier, A–14
register set differences, A–24
relationship to DEC SMG (Screen Manager),

A–23
REPLACE statement differences, A–21
/RESERVED_WORDS qualifier, A–14
RMS special registers, A–25
/STANDARD qualifier, A–15
/STANDARD=OPENVMS_AXP qualifier option,

A–18
support for ANSI 1974 standard, A–15
support for ANSI 1985 standard, A–15
support for Version 3, A–16
system return codes, A–24
/TIE qualifier, A–18
unreachable code analysis, A–19
using data alignment directives, A–13
validating numeric data, A–13
/WARNINGS=STANDARD qualifier support,

A–18
WRITE statement, A–23
X/Open reserved words list, A–15

DEC Fortran
compatibility with VAX FORTRAN, A–26

architectural differences, A–28
command line, A–30
equivalent qualifiers, A–30
interpretation differences, A–29
language features, A–26
porting data, A–33
restrictions, A–29

differences with VAX FORTRAN, A–26
instrinsic names

prefixes, A–33
interoperability considerations, A–33
performing I/O from native and translated

images, A–33
porting data, A–33

Index–2

DEC Fortran (cont’d)
qualifiers not available in VAX FORTRAN,

A–31
qualifiers specific to VAX FORTRAN, A–32
support for floating-point data types, A–33

DEC Pascal
compatibility with VAX Pascal, A–36
differences with VAX Pascal, A–34
/G_FLOATING qualifier, A–37
identifiers included for compatibility, A–36
new features, A–34
obsolete features, A–37
/OLD_VERSION qualifier, A–37
OVERLAID attribute, A–37
specifying floating-point format, A–37
support for data alignment, A–35

DECmigrate utility
VEST command /PRESERVE qualifier, 3–10

$DELTVA system service
freeing allocated memory

page-size dependencies, 2–9
page-size dependencies, 2–3

DPML (Digital Portable Mathematics Library)
compatibility, 1–5

E
Exception handling

See Condition handling
$EXPREG system service

allocating memory on AXP systems, 2–6
code example, 2–7
page-size dependencies, 2–3

F
File types

on AXP systems, 1–3
/FLOAT qualifier

specifying floating-point format in DEC C, A–5
Floating-point data types

comparison of VAX and AXP types, A–34
converting H_floating data, A–34
CVT$CONVERT_FLOAT RTL routine, A–34
DEC COBOL storage differences, A–25
differences between VAX FORTRAN and DEC

Fortran, A–34
specifying in DEC COBOL, A–14
supported by DEC Ada, A–1
supported by DEC C, A–5
supported by DEC Pascal, A–37
VAX little-endian formats, A–33

free routine
memory allocation, 2–1

G
$GETJPI system service

page-size dependencies, 2–4
$GETQUI system service

page-size dependencies, 2–4
$GETSYI system service

determining host architecture, 1–5
obtaining the system page size, 2–20
page-size dependencies, 2–4

$GETUAI system service
page-size dependencies, 2–4

H
HW_MODEL keyword

determining the host architecture, 1–6

I
IEEE floating point

specifying in DEC COBOL, A–14
supported by DEC Ada, A–2
supported by DEC C, A–5

Images
creating, 1–3
translated

condition handling, 5–6
creating, 6–1
preserving atomicity in, 3–10
replacing with native AXP image, 6–6
using in a link operation, 6–4

inadr argument
used with $CRETVA system service, 2–8

Initializing data structures
DEC C incompatibility with VAX C, A–8

INSQUEx instruction
accessing from DEC C, A–6

Interlocked instructions
supported by DEC C, A–7

Interoperability
compile-time considerations, 6–2
compiling native AXP images, 6–1
controlling the layout of symbol vectors, 6–6
creating native images that can be called by

translated images, 6–5
creating native images that can call translated

images, 6–2
creating stub images, 6–8
DEC COBOL support, A–18
linking native AXP images, 6–2
of translated and native images, 6–1
using the /BPAGE qualifier, 6–4

Index–3

J
Jacket routines

creating stub images, 6–8

L
$LCKPAG system service

page-size dependencies, 2–4
LIB$ESTABLISH routine

support on AXP systems, 5–11
LIB$FREE_VM_PAGE routine

page-size dependencies, 2–6
LIB$GET_VM_PAGE routine

page-size dependencies, 2–6
LIB$MATCH_COND routine, 5–5
Linker

AXP-specific features, 1–3
Linking

creating native AXP images, 1–3
creating native images that can call translated

images, 6–2
$LKWSET system service

page-size dependencies, 2–4, 2–21
Load locked instruction (LDxL), 3–3
Locking pages

page-size dependencies, 2–21

M
malloc routine

memory allocation, 2–1
Mapping memory

See Memory mapping
Mapping sections

into expanded virtual address space
page-size dependencies, 2–10

mapping a single page
page-size dependencies, 2–12

mapping into a defined address range
page-size dependencies, 2–13

page-size dependencies, 2–10
Mathematic routines

compatibility, 1–5
MB instruction

accessing from DEC C, A–6
Mechanism array

format, 5–2
using the depth argument, 5–4

/MEMBER_ALIGNMENT qualifier
controlling data alignment in DEC C, A–7

Memory allocation
by expanding virtual address space

page-size dependencies, 2–6
finding page-size dependencies in, 2–6
freeing allocated memory

page-size dependencies, 2–9

Memory allocation (cont’d)
page-size dependencies, 2–1
reallocating existing virtual addresses

page-size dependencies, 2–8
specifying address ranges, 2–8
specifying page counts, 2–6
using the $CRETVA system service, 2–9
using the $EXPREG system service, 2–7

Memory barrier
See MB instruction

Memory locking
page-size dependencies, 2–1, 2–21

Memory management functions
page-size dependencies, 2–1

summary, 2–2 to 2–5
Memory mapping

into expanded virtual address space
page-size dependencies, 2–10

mapping a single page
page-size dependencies, 2–12

mapping into a defined address range
page-size dependencies, 2–13
required changes, 2–16

page-size dependencies, 2–1, 2–10
using the $CRMPSC system service, 2–11

Memory protection
page-size dependencies, 2–1

$MGBLSC system service
page-size dependencies, 2–4

MTH$ routines
compatibility, 1–5

N
/NATIVE_ONLY qualifier, 6–4, A–33

interoperability, 6–2

O
_ _OR_ATOMIC_LONG built-in, A–7
_ _OR_ATOMIC_QUAD built-in, A–7
OTS$CALL_PROC RTL routine

enabling callbacks to translated images, 6–1
Overflow detection

enabling, 5–11

P
Page sizes

compatibility with OpenVMS VAX, 2–1
dependencies on VAX page size, 2–1
supported by AXP systems, 2–1
using $GETSYI to obtain the page size at run

time, 2–20
Pagelets

definition, 2–1
using with $EXPREG system service, 2–6

Index–4

pcc
supported as DEC C compatibility mode, A–4

Porting checklist, 1–2
Processor status longword (PSL)

in signal array on AXP systems, 5–2
Program counter (PC)

in signal array on AXP systems, 5–2
Programming languages

See Compilers
PSB (procedure signature block)

generating, 6–1
$PURGWS system service

page-size dependencies, 2–5

R
Read/write ordering, 3–9

effect on synchronization, 3–3
REMQUEx instruction

accessing from DEC C, A–6
retadr argument

used with $CRETVA system service, 2–9
used with $CRMPSC system service, 2–11
used with $EXPREG system service, 2–7

Run-time library routines
page-size dependencies, 2–6

S
$SETPRT system service

page-size dependencies, 2–5
$SETUAI system service

page-size dependencies, 2–5
Shareable images

replacing a translated image with a native
image, 6–6

Shared data
unintentional sharing, 3–8

SIF (symbol information file), 6–6
format, 6–7

Signal array
format, 5–1

$SNDJBC system service
page-size dependencies, 2–5

SS$_ALIGN exception, 5–6
signal array format, 5–9

SS$_HPARITH exception, 5–6
signal array format, 5–7

SS$_INVARG exception
mapping memory, 2–12
returned when mapping memory, 2–13

Store conditional instruction (STxC), 3–3
String constants

modifying, A–8
Stub images

creating, 6–8

Symbol vectors
controlling the layout of, 6–6
declaring universal symbols on AXP systems,

1–3
Symbols

redefining
DEC C incompatibility with VAX C, A–8

SYMBOL_VECTOR= option
interoperability considerations, 6–6

Synchronization, 3–1 to 3–11
AXP compatibility features, 3–3
checking for VAX assumptions, 3–3
example program, 3–5
of translated images, 3–10
VAX architectural features, 3–2

SYS$UNWIND routine, 5–4
System services

memory management functions
page-size dependencies, 2–2

T
TESTBITCCI instruction

accessing from DEC C, A–7
TESTBITSSI instruction

accessing from DEC C, A–7
Text libraries

portability, A–8
Threads of execution

effect on synchronization, 3–1
/TIE qualifier

compiler interoperability qualifier, 6–1
DEC Fortran support, A–33

Translated images
creating, 6–1
enabling callbacks to, 6–1
preserving atomicity in, 3–10
using in a link operation, 6–4

TRAPB instruction
accessing in DEC C, A–6

U
$ULKPAG system service

page-size dependencies, 2–5
$ULWSET system service

page-size dependencies, 2–5
Unwinding in exception handlers, 5–4
$UPDSEC system service

page-size dependencies, 2–5

V
VAX Ada

See DEC Ada
VAX C

See DEC C

Index–5

VAX COBOL
See DEC COBOL

VAX Environment Software Translator
See VEST

VAX FORTRAN
See DEC Fortran

VAX instructions
accessing from DEC C, A–6
interlocked instructions

supported by DEC C, A–7
VAX Pascal

See DEC Pascal
VEST (VAX Environment Software Translator),

6–4
creating stub images, 6–8
interoperability, 6–1
/PRESERVE qualifier, 3–10, 5–9
using symbol information files (SIF), 6–6

VMS Mathematics Run-Time Library
compatibility, 1–5

Volatile attribute
protecting shared data, 3–3, 3–9
supported by DEC C, A–8

Index–6

