TOPS-20
DDT Manual

AA-M273A-TM

May 1985

This manual describes the use of TOPS-20 DDT, the Dynamic
Debugging Tool for MACRO-20 programs.

This is a new document.

OPERATING SYSTEM: TOPS-20 V6.1

SOFTWARE: DDT V43

Software and manuals shouild be ordered by title and order number. In the United States. send orders
to the nearest distribution center. Outside the United States, orders should be directed to the nearest
DIGITAL Field Sales Office or representative.

Northeast/Mid—-Atlantic Region Central Region Western Region

Digital Equipment Corporation Digital Equipment Corporation Digital Equipment Corporation
PO Box CS2008 Accessories and Supplies Center Accessories and Supplies Center
Nashua, New Hampshire 03061 1060 East Remington Road 632 Caribbean Drive
Telephone:(603)884-6660 Schaumburg, llinois 60195 Sunnyvale, California 94086

Telaphone:(312)640-5612 Telephone:(408)734-4915

First Printing, May 1985

© Digital Equipment Corporation 1985. All Rights Reserved.

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

lilgliltlal

DEC MASSBUS RSX

DECmate PDP RT
DECsystem-10 P/OS UNIBUS
DECSYSTEM-20 Professional VAX

DECUS Q-BUS VMS

DECwriter Rainbow vT

DIBOL RSTS Work Processor

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in preparing future
documentation.

CONTENTS

PREFACE

CHAPTER 1 INTRODUCTION TO DDT

l.1 SYMBOLIC DEBUGGING & « o ¢ o« o« o o o o o o o o o

1.2 TOPS-20 VARIANTS OF DDT . &+ ¢ v ¢ o o o o o« o o

CHAPTER GETTING STARTED WITH DDT

N

INTRODUCTION . . ¢« ¢ o « o o o o
LOADING DDT . ¢ & o o o o o o &
BASIC FUNCTIONS . ¢ &+ ¢ « ¢ o &
Error Conditions
Basic Concepts e s e s 8 e
Starting and Stopplng the Program e e e e e
Examining and Modifying Memory
Executing Program Instructions
A SAMPLE DEBUGGING SESSION USING DDT . +.
PROGRAMMING WITH DDT IN MIND . . . ¢ & ¢« o o +

e & s o
¢ o o
e o o &
.
.
.
.
.
.
.

Nd WwwwwwN +—

Ul W N

NN NONDNDN
e o

CHAPTER DDT COMMAND FORMAT

w

COMMAND SYNTAX v & ¢ ¢ o ¢ o o o o o o o o o o @
INPUT TO DDT ¢ . ¢ ¢ ¢ o o ¢ o o o o o o o o« o
.1 Values in DDT Expressions + « o « . .
.2 Operators in DDT Expressions

wwww
o« o
NN -

CHAPTER DISPLAYING AND MODIFYING MEMORY

L3

DISPLAY MODES . . . e e e e e 6 4 e s e o e
Default Display Modes e,
Selecting Display Modes . . . ¢« v & o o« o . .

DISPLAYING EXPRESSIONS . . . + ¢ ¢« ¢ o« o v o o .

DISPLAYING BYTE POINTERS . . ¢ v ¢ ¢ o o o o o .

DISPLAYING AND DEPOSITING IN MEMORY e e e s e .
Commands That Use the Current Location . . .
Commands That Use the Location Sequence Stack
Commands That Use an Address Within the Command

DISPLAYING ASCIZ STRINGS . ¢ v ¢ ¢ o o o o o o

ZEROING MEMORY . & v v v ¢ o & o o o o o o o o .

AUTOMATIC WRITE-ENABLE . . . & ¢ ¢ o & o o o o« .

AUTOMATIC PAGE CREATION . . ¢ v & o o o o o o .

PAGE ACCESS . . .« « .+ . e e e e s e e e e e

WATCHING A MEMORY LOCATION e e s e e e 8 e e e .

TTY CONTROL MASK . ¢ & o ¢ o o o o o o o o o« o

s o

OO AU D DD NWN
.

= O

.
N

s s e e & e e o & o o
o .
w N =

[A A N S S S T g SNt L S C g N

P

CHAPTER CONTROLLING PROGRAM EXECUTION

wn

BEGINNING EXECUTION . . « « « .
USING BREAKPOINTS . . ¢ « « «
Setting Breakpoints
Proceeding from Breakpoints .
Conditional Breakpoints . . .
The "Unsolicited" Breakpoint
EXECUTING EXPLICIT INSTRUCTIONS . . . « .« . . .
SINGLE-STEPPING INSTRUCTIONS + o « . .

s 2

B whoNpDDNDND

e s o s
e o o o
oW
e ¢ s o o
. .
. .
. .
. .
e o o o o
. .
. .

oo uoonn;
°

iii

=
[N

NN N
I oo
[
HNOOAWUIO WN - =

[N

DD N S D
i el S R Y N |
N WO NSOV

N OO D =

[BC N, N, T,]

1
[y

(S NG, N0,

CONTENTS

5.5 EXECUTING SUBROUTINES AND RANGES OF INSTRUCTIONS 5-14
5.6 SINGLE-STEPPING "DANGEROUS" INSTRUCTIONS 5-16
5.7 USER-PROGRAM CONTEXT e s e = s s s s s s e = 5-17

CHAPTER 6 SEARCHING FOR DATA PATTERNS IN DDT

CHAPTER 7 MANIPULATING SYMBOLS IN DDT
7.1 OPENING AND CLOSING SYMBOL TABLES .+« ¢« 4 & « o & o 7-1
7.2 DEFINING SYMBOLS v ¢ ¢« ¢ o o o o o o o o o o o o o 1=2
7.3 KILLING SYMBOLS T]
7.4 SUPPRESSING SYMBOL TYPEOUT e o + o o e o s o e o o 1-3
7.5 CREATING UNDEFINED SYMBOLS . & & ¢ ¢ o o o o o ¢ o« 1=3
7.6 SEARCHING FOR SYMBOLS e s s o s e s e e o s e e o 1-4
7.7 LISTING UNDEFINED SYMBOLS . . e o o o o 1-4
7.8 LOCATING SYMBOL TABLES WITH PROGRAM DATA VECTORS . 7-5

CHAPTER 8 INSERTING PATCHES WITH DDT

CHAPTER 9 FILDDT
9.1 INTRODUCTION & & & & 4+ ¢ & o o « o s o o o o o o o 9-1
9.2 USING FILDDT v « v « « o o o s o e o o« o o o o o » 9=2
9.2.1 FILDDT CommandsS « &+ « ¢ o o « o o o o« » o o o o« 9=3
9.2.2 Symbols & ¢ i ¢ v 4 4 e e e e e . e e o s 9-3
9.2.3 Commands to Establish Formats and Parameters . o 9-4
9.2.4 Commands to Access the Target and Enter DDT . . 9-5
9.2.5 EXiting FILDDT v « +v 4 v o o« o « o o o o o o « + 9-8

CHAPTER 10 PRIVILEGED MODES OF DDT
10.1 MDDT & ¢ ¢ o ¢« o o o o o o o o o o o o o o s o o 10-2
10.2 KDDT o v ¢« ¢ 4 ¢ o o o o o o o o o o o o o o o« o 10-3
10.3 EDDT & & ¢« 4 « o« o« o o o o o o o« o o o o o « o« » 10-4
CHAPTER 11 PHYSICAL AND VIRTUAL ADDRESSING COMMANDS
11.1 INTRODUCTION « o+ ¢ ¢ o « o o o o o . . . 11-1
11.2 COMMANDS THAT SWITCH BETWEEN PHYSICAL AND VIRTUAL
ADDRESSING . « « « ¢ ¢ o o o & . o e e o s s 11-2
11.3 COMMANDS THAT CONTROL VIRTUAL ADDRESSING e o o o 11-3
CHAPTER 12 EXTENDED ADDRESSING
12.1 LOADING DDT INTO AN EXTENDED SECTION 12-1
12.2 EXAMINING AND CHANGING MEMORY . « « + & « » » - 12-1
12.3 BREAKPOINTS e e s e e e s e s e e o 12-2
12.3.1 The Breakpoint Block e e e e e e e e e e e e e 12-2
12.3.2 Enabling and Disabling Inter-section
Breakpoints e e e e . 12-2
12.4 DISPLAYING SYMBOLS IN NONZERO SECTIONS e e e .o . 12-4
12.5 DEFAULT SECTION NUMBERS . ¢ &« &« « o « « o o « o 12-5
12.5.1 Permanent Default Section + ¢« « o « - 12-5
12.5.2 Floating Default Section + 12-6
12.6 EXECUTING SINGLE INSTRUCTIONS . e o & s o s 12-8
12.7 ENTERING PATCHES IN EXTENDED SECTIONS s s 0« « o 12-8

iv

APPENDIX A

GLOSSARY

INDEX

FIGURES

TABLES

eSS DN WW
N WN N

CONTENTS

ERROR MESSAGES

Sample Program X.MAC . . . & v ¢ o & o o o o o o 2=12
Annotated Debugging Session 2-19
Terminal Display of Debugging Session 2-20
DDT Session Showing Columnar Output with

Commentary « o o o « « o o o o o o o o o o o o o 4-32
Annotated Patching Session 8-4
Terminal Display of Patching Before an Instruction 8-5
Terminal Display of Patching After an Instruction 8-5

Commands That Return Values 3-3
Effects of Operators When Evaluating Expressions . 3-9
Evaluation of Symbolic Display Mode 4-1
DDT Display ModeS ¢« & « o o o o o o o o o o o« « o 4-4
Commands to Display Expressions 4-6
DDT Commands to Display Memory « « « « « . 4-9
TTY Control Mask . . + +« + ¢ ¢ ¢ o o« o« « « « « « 4-30
Breakpoint Locations of Interest 5-3
User-Program Context Values 5-18

PREFACE

MANUAL OBJECTIVES AND AUDIENCE

This manual explains and illustrates the features of TOPS-20 DDT, the
debugger for MACRO-20 programs. Although TOPS-20 DDT can be used to
debug the compiled code of programs written in higher-~level languages,
this manual illustrates only the use of TOPS-20 DDT to debug programs
written in MACRO-20.

This manual is both an introduction to the basic functions of TOPS-20
DDT and a reference gquide to all TOP5-20 DDT commands and functions.

This manual assumes that the reader is familiar with TOPS-20, has done
some programming in MACRO-20, and 1is familiar with the format of
MACRO-20 instructions.

STRUCTURE OF THIS DOCUMENT

This manual has 12 chapters, one appendix, and one glossary.

e Chapter 1 introduces the concept of symbolic debugging and
describes the variants of TOPS-20 DDT.

e Chapter 2 describes loading TOPS-20 DDT with vyour program,
discusses basic TOPS-20 DDT commands, and 1illustrates a
sample debugging session.

e Chapter 3 explains the syntax of a DDT command. Chapter 3
also describes expressions to enter data and explains how
TOPS-20 DDT evaluates expressions,

e Chapter 4 discusses how to examine and modify a program using
TOPS~20 DDT.

e Chapter 5 describes the use of TOPS-20 DDT to control program
execution: how to start, stop, and monitor the running of a
program.

e Chapter 6 explains how to perform searches of a program's
address space using TOPS-20 DDT.

e Chapter 7 discusses the manipulation of program symbols using
TOPS-20 DDT.

vii

PREFACE

e Chapter 8 describes how to wuse the TOPS-20 DDT patching
function to insert and test a new series of instructions in

your program without reassembling the program.

e Chapter 9 describes the use of FILDDT.

e Chapter 10 describes the use of the privileged DDTs; KDDT and

MDDT.

e Chapter 11 describes special-use commands that

physical and wvirtual addressing. These commands are useful

primarily when running EDDT and FILDDT.

® Chapter 12 describes commands that are used when debugging

programs that use extended addressing.
e Appendix A explains DDT and FILDDT error messages.

e The glossary defines important TOPS-20 DDT terms.

OTHER DOCUMENTS
Other documents to which the reader should have access are:

e MACRO Assembler Reference Manual

e TOPS-20 LINK Reference Manual

e TOPS-20 Commands Reference Manual

e DECsystem-10/DECSYSTEM-20 Processor Reference Manual

e TOPS-10/TOPS-20 RSX-20F System Reference Manual

CONVENTIONS

The following conventions are used in this manual in the description

of DDT commands and concepts.

{1 Curly brackets (braces) indicate that the
enclosed item is optional.

. (period) The address contained in DDT's location counter;
called the current location.

addr A symbolic location within a program, a symbolic

absolute address in memory, an AC, or ".", the
location.

c A single ASCII or SIXBIT character.
expr Any expression that is legal in DDT.
filnam One or more components of a file specification.

viii

instr

PREFACE

Any instruction in the PDP-10 (KL10) machine
instruction set.

location sequence stack

page

symbol

text

word

<ESC>

<ESC><ESC>

<CTRL/X>

<BKSP>

<LF>

<RET>

<TAB>

A circular stack of memory locations that 1is wused to
store the addresses of certain previously referenced
locations.

A numeric argument.

A page in memory. A page equals 512 words of memory.
A symbol name of up to 6 RADIX50 characters.

Any string of ASCII or SIXBIT characters.

Any 36-bit value occupying one word of memory.
Rep;esents pressing the ESCAPE or ALTMODE key once.
Represents pressing the ESCAPE or ALTMODE key twice.

Represents pressing a key (represented by X) at the
same time as you press the key labeled CTRL.

Represents pressing the BACKSPACE key or <CTRL/H>.
Represents pressing the LINE FEED key.
Represents pressing the RETURN key.

Represents pressing the TAB key or <CTRL/I>.

Numbers are in octal radix unless otherwise specified.

ix

PREFACE

Examples of interaction between the user and DDT show wuser input in
lowercase and DDT output in uppercase.

The symbols <BKSP>, <CTRL/x>, <ESC>, <LF>», <RET>, and <TAB> always
represent user input.

NOTE

The descriptions of many DDT commands
list the actions and effects of those
commands. The actions and effects may

not occur in precisely the order
specified, but this has no effect on the
results.

CHAPTER 1

INTRODUCTION TO DDT

DDT is a utility program for debugging MACR0-20 programs. This manual
describes how to use DDT.

1.1 SYMBOLIC DEBUGGING

It is sometimes difficult to understand precisely the operation of a
program by reading the source code. DDT is a tool for interactively
examining the operation of a MACRO-20 program while it 1is running.
DDT is useful for finding programming errors (bugs) in programs that
do not run correctly. You can also use DDT to analyze the flow of
control in a program that is to be revised or rewritten.

With DDT, you can interrupt the execution of your program at locations
(breakpoints) you choose, and then examine and modify the program's
address space as required. You can execute instructions one-by-one to
check whether the effect of each instruction is what is intended. You
can then set other breakpoints in your program before continuing
execution.

When you refer to program locations and values, DDT allows you to use
the symbols that are defined 1in the program rather than absolute
values and addresses. This makes it much easier to refer to the
source listing and to find specific locations in memory.

After modifying the program's instructions or data, you can exit DDT
and save (with the EXEC's SAVE command) the changed version of the
program for further testing.

INTRODUCTION TO DDT

1.2 TOPS-20 VARIANTS OF DDT

There are several variants of DDT, each useful under specific
circumstances or for specific tasks.

The variants of TOPS-20 DDT are:

e EDDT
e FILDDT
e KDDT
e MDDT
e RDDT
e SDDT
e UDDT
e XDDT

EDDT is used to debug programs that run in executive mode (such as
BOOT), and is described in Chapter 10.

FILDDT is used to examine and patch disk files and structures. You
can also use FILDDT to examine the running monitor. FILDDT is
described in Chapter 9.

KDDT is used to debug and patch monitor .EXE files and the running
monitor, and is described in Chapter 10.

MDDT is used to debug and patch the running monitor, and is described
in Chapter 10.

RDDT is a relocatable variant of DDT that can be wused to debug
programs in user mode. If your program is in memory (and has been
loaded with RDDT as below), you invoke RDDT by typing in (at TOPS-20
command level):

START
You load RDDT with your program by running LINK as follows:

@LINK
*MYPROG,SYS:RDDT.REL/GO

where MYPROG is the name of your program. Loading RDDT.REL with your
program does not prevent you from using other LINK features. You must
load RDDT.REL last, or its start address is lost. RDDT.REL is useful
in situations where you do not wish to have DDT loaded at its default
location.

This example shows only the minimal steps required to 1load the
relocatable DDT with your program. See the LINK Reference Manual for
further information about using LINK.

~

INTRODUCTION TO DDT

SDDT is a "stub" that places XDDT in its own section, with system
symbcls defined as in MONSYM and MACSYM. SDDT is the DDT variant
invoked when, at TOPS-20 command level, you type in

SDDT

SDDT exists so that typing in SDDT will invoke DDT version 43 in the
same manner as previous versions.

UDDT is a "stub" that resides in your user program's section if the
program has a TOPS-10-style entry vector and the program entry vector
is in section zero. This is done for compatibility with programs that
use locations 770000, 770001 and 770002. If you load a program in
section zero and the program has a TOPS-10-style entry vector, when
you wuse the DDT command, the EXEC loads the UDDT stub into your
program's section at address 770000. UDDT then loads XDDT into the
highest-numbered free (nonexistent) section (if XDDT is not already
loaded), and starts XDDT.

XDDT is the DDT variant normally used to debug user programs. If vyou
load your program in a nonzero section or the program does not have a
TOPS-10-style entry vector, the DDT command causes the EXEC to 1load
XDDT directly into the highest-numbered free section. XDDT is also
invoked by the SDDT and UDDT stubs. If you type in XDDT while at
TOPS-20 command level, the EXEC loads XDDT into section zero, with
system symbols defined.

CHAPTER 2

GETTING STARTED WITH DDT

2.1 INTRODUCTION

This chapter describes how to load DDT with your program and shows how
to perform basic DDT functions. It then illustrates a sample session
debugging a simple MACRO-20 program using basic DDT fuynctions. You
. can debuyg programs using only the DDT commands described in this
chapter. Once you are familiar with these commands, yoy may wish to
learn how to use the commands and functions described in the rest of
the manual to perform more sophisticated debugging.

The commands used in this chapter are described only in sufficient
detail for the debugging task being performed; all commands are
thoroughly described in Chapters 3 through 12 of this decument.

The best way to learn is by doing. Y¥ou will learn the commands and
techniques discussed in this manual if you use them 3s you read about
them. If you have a MACRO-20 program that you wish te debug, use it
to practice the commands discussed here, If not, type in the program
X.MAC listed in Figure 2-1.

2.2 LOADING DDT

If your program is already in memory {for example, as a result of
using LINK or the GET command), load DPT with the TOPS-20 DDT command.
If you have run your program, and [t has terminated normally or
abnormally, you can also use the DDT command to load DPT. When DDT is
loaded, it displays

DDT

on your terminal.

GETTING STARTED WITH DDT

2.3 BASIC FUNCTIONS

You must be able to perform certain basic functions to debug a program
interactively. Basic DDT functions are:

e accepting your commands

e deleting incorrect commands

e starting the program

e stopping the program at specified locations
e examining and modifying memory

e executing program instructions one at a time
e continuing execution of the program

e exiting DDT

You give commands to tell DDT what functions to perform. DDT does not
wait for a line terminator (such as a carriage return) to indicate the
end of your command. Instead, DDT reads your commands character by
character as you type them in. When you type in a DDT command, you
almost never have to press the RETURN key. This manual explicitly
indicates the occasions when a command reguires you to press the
RETURN key.)

NOTE

You must press the ESCAPE key as part of
typing in many DDT commands. This
manual uses the symbol <ESC> to indicate
where you press the ESCAPE key. When
you press the ESCAPE key, DDT displays a
dollar sign ($) on the screen. DDT
never displays <ESC> when you press the
ESCAPE key.

NOTE

This manual uses the character sequences
<BKSP>, <ESC>, <LF>, <RET>, and <TAB> as
symbols to indicate where you press the
BACKSPACE, ESCAPE, LINE FEED, RETURN,
and TAB keys, respectively. This manual
also uses the symbol <CTRL/X> to
indicate where you simultaneously press
the CONTROL key and the key indicated by
X. These symbols ALWAYS indicate where
you press the keys noted here. You
NEVER type the individual characters
<BKSP>, <ESC>, <LF>, <RET>, <TAB>, or
<CTRL/X>, to type in a DDT command.

GETTING STARTED WITH DDT

Your commands appear on the screen as you type them. Use the DELETE

key to delete partially typed-in commands character by character. If

you try to delete more characters than you have typed in, DDT displays
XXX

and waits for your next command.

You can delete an entire command line with <CTRL/U>. When you type
<CTRL/U> DDT displays

XXX

To exit DDT, press

<CTRL/Z>

The other basic DDT functions are described in the rest of this
chapter.

2.3.1 Error Conditions

If DDT cannot execute a command, it displays a message to let vyou
know. The message may be only a single character (such as M or U, for
Multiply-defined symbol or Undefined symbol), a question mark (?), or
a complete message string. For most errors, DDT also sets a pointer
to the error string, so that if DDT does not display it, you can type
in a command to display the error string. You can display the error
string at any time before another error occurs, at which time DDT
updates the pointer (to point to the new error string). To display
the error string produced by the last DDT error, type in

<ESC>?

({press the ESCAPE key, followed by a question mark). You can also
display the last TOPS-20 process error. To do this, type in

<ESC><ESC>?
(press the ESCAPE key twice, followed by a question mark).

See Appendix A (Error Messages) for more information about DDT error
messages and commands to give information about error conditions.

GETTING STARTED WITH DDT

2.3.2 Basic Concepts

A very important DDT concept is that of the current location. The
current location is a memory location that you have referenced, either
implicitly or explicitly, with your last command, and that 1is the
default point of reference of your next command. You can think of the
current location as the 1location "where you are." The symbol "."
(period) refers to the address of the current location, and can be
used as an argument in DDT commands.

The location counter is a DDT pointer that contains the address of the
current location. The location counter performs a function similar to
that of a bookmark. Some DDT commands display the contents of a
specific 1location but do not change the address of the current
location, in order to maintain a specific point of reference for your
next command. Most DDT commands change the address of the current
location, and therefore also change the location counter. The
commands that do not change the current location are so indicated.

The open location is a memory location that you can modify with your
next command. DDT "opens" a location as a result of most commands you
give to examine or modify memory. These commands often also change
the current location to the word that is "opened", so that the open
location is usually also the current location. There 1is never nmore
than one location open at any given time.

To find the symbolic address of the current location, type in

. (a period followed by an underscore)

This causes DDT to display the following:
ADDR1+n

where ADDR1 is a label defined in your program, and n is the offset of
the current 1location from that 1label (if the current location is
ADDR1, DDT does not display +0).

Another important DDT concept is that of the current quantity. This
is a wvalue that represents the contents of the last word that DDT
displayed, or the value that you last deposited 1in memory. The
current quantity is the most recent of those wvalues. Many DDT
commands take arguments that default to the current quantity.

The location sequence stack is a DDT storage area for the addresses of
previous current 1locations. Certain DDT commands that change the
current location store the address of the <current 1location on the
location sequence stack. Other DDT commands change the address of the
current location to an address that has already been stored on the
location sequence stack. The 1location sequence stack functions
similarly to inserting place-markers in a source code 1listing, in
order to return to prior references.

GETTING STARTED WITH DDT

2.3.3 Starting and Stopping the Program

When your program is loaded and DDT is ready to accept your commands,
as indicated by DDT appearing on the terminal display, you can begin
execution of your program at its start address by typing in

<ESC>G

Unless you set one or more breakpoints before you start the program,
your program runs either to completion or until it commits a fatal
error. A breakpoint is a memory location in a program's executable
code that has been modified so that if the program attempts to execute
the instruction at that location, control passes to DDT before the
instruction is executed.

The command to set a breakpoint is
addr<ESC>B

where addr is the address at which to stop execution. I1f the
user-program PC reaches addr, DDT interrupts execution of the program
before the program executes the instruction at the specified address.
When DDT interrupts program execution at a breakpoint, DDT opens the
breakpoint, and the breakpoint becomes the current location.

While program execution is stopped at a breakpoint, you can display
and change the contents of instruction and data words, remove
breakpoints, set new breakpoints, and execute instructions one at a
time (single-step). As you examine memory, you may find an
instruction that is incorrect, and modify it. You can also examine
and modify data words in memory. After modifying incorrect
instructions and data in memory, you can immediately execute the
instructions to check the effects of the modifications, without having
to reassemble the source code.

Once you have made your changes, you can continue program execution at
the place where execution was interrupted, restart the program at the
beginning, or start execution at any other location you choose. The
program will run to completion wunless it reaches a breakpoint or
commits a fatal error.

GETTING STARTED WITH DDT

2.3.4 Examining and Modifying Memory
One command you can use to examine memory is
addr/

where addr is the address of the memory word vyou wish to examine
(display), and can be numeric or symbolic. DDT displays the contents
of the word located at addr. If the opcode field (bits 0-8) of the
memory word matches a recognized instruction or user-defined OPDEF,
DDT displays the contents of addr as an instruction (or OPDEF). If
DDT finds (in the symbol table) any of the values to be displayed, DDT
displays those symbols rather than the numeric values. For example,
either of the following display lines might appear on your terminal,
depending on the address and contents of the word:

ADDR1/ MOVE 2,SYM1
ADDR1+5/ SYM1,,85YM2
where ADDR1, SYM1l, and SYM2 have been defined in the program.

If you type in a symbol that DDT does not find in the symbol table,
DDT sounds the terminal buzzer or bell, and displays U on the screen.
If you type in a symbol that is defined as a local symbol in more than
one module, DDT sounds the terminal buzzer or bell and displays M.
You can eliminate the multiply-defined symbol problem by "opening" the
symbol table of the module in which the correct symbol is defined.
See Chapter 7 (Manipulating Symbols in DDT) for more information.

When searching for a symbol to display, DDT uses global symbols in
preference to local symbols. However, DDT searches the "open" symbol
table first, and treats local symbols found in the open symbol table
as global symbols. If DDT finds only a local symbol that is not in
the open symbol table, DDT appends a number sign (#) to the symbol
when displaying it. For example, DDT might display

ADDR/ MOVE 2,SYM1#

See Chapter 7 (Manipulating Symbols in DDT) for more information on
symbols and symbol tables.

The command addr/ changes the current location to addr and opens the
word at addr. If you omit addr from an examine-memory command, such
as addr/, DDT uses the current quantity to determine the address of
the location to display. For example, after DDT displays the contents
of ADDR1+5 as above, if you type in /, DDT displays the contents of
the word located at SYM2. The display line then appears:

ADDR1+5/ SYM1, ,SYM2 / VALUE

where VALUE is the contents of the word located at SyM2. By default,
DDT displays VALUE symbolically if it can.

The command / by itself (without addr) does not change the current
location. Both forms of the / command open the location displayed,
enabling you to modify the location with your next command.

~

GETTING STARTED WITH DDT

Another very useful command for examining memory is <TAB>. This
command changes the current location to addr (whether given or
defaulted), opens the 1location at addr, and changes the current
quantity to the contents of addr. <TAB> also starts a new display
line before displaying the contents of addr, making the display easier
to read. For example, 1if you type in <TAB> after DDT displays the
address and contents of ADDR1+5 (as above) on your terminal, the
terminal display appears:

ADDR1+5/ SYM1, ,SYM2 <TAB>
symM2/ VALUE

where VALUE is the contents of the word located at SYM2. The current
location 1s S¥YM2, which 1is open. (<TAB> does not appear on the
screen, but is shown above to indicate where you press the <TAB> key.)

<TAB> also stores the address of the current location (ADDR1+5) on the
location sequence stack before changing the current location to the
location just displayed (SYM2). DDT uses the location sequence stack
to "remember" previous values of the location counter. To "get back"
to the previous current location, type in

<ESC><RET>

In the above example, after you press <TAB> at ADDR1+5, DDT displays
the contents of SYM2 and changes the current location to SYM2. When
you type in <ESC><RET>, DDT changes the current location to ADDR1+5,
opens the location at ADDR1+5, and again displays the contents of
ADDR1+5. The terminal display then appears as follows:

ADDR1+5/ SYM1, ,SYM2 <TAB>
sym2/ VALUE <ESC><RET>
ADDR1+5/ SYM1, ,SYM2

If you use the command addr<TAB>, DDT deposits addr in the open
location (if there is one) and closes the location before opening the
location at addr and displaying its contents. <TAB> by itself does
not deposit anything, but does save the current location on the
location sequence stack, making <TAB> more useful than /, depending on
what you do next.

GETTING STARTED WITH DDT

You can display and open the word after the current location by typing
in

<LF>

DDT changes the current location to the next word in memory, starts a
new line, displays the address of the (new) current location, displays
the contents of the current location, and opens the current location.
DDT displays the address as a symbol or a symbol plus an offset, if it
can find a corresponding symbol in the symbol table. For example, to
display the next word in memory after ADDR1+5, type in

<LF>
DDT changes the current location to ADDR1+6, starts a new 1line, and

displays the address and contents of ADDR1+6. The screen display then
appears as follows:

ADDR1+5/ SYM1l, ,SYM2 <LF>

Note that DDT does not display the characters <LF>. <LF> does not
affect the location sequence stack.

Typing in another <LF> causes DDT to display and open the next word.

To display and open the word previous to the current location, type in
<BKSP>

DDT changes the current location to the previous word, starts a new
line, displays the address and contents of the (new) current location,
and opens the current location. <BKSP> does not affect the 1location
sequence stack. DDT also displays

“H
to indicate that you pressed <BKSP>. For example, if you type in

<BKSP> to open and display the word before ADDR1+5, the screen appears
as follows:

ADDR1+5/ SYM1, ,SYM2 “H
ADDR1+4/ -3,,5YM2

GETTING STARTED WITH DDT

To change the contents of the open location, type in
expr<RET>

where expr can be an instruction, a symbol, or a numeric expression.
For example, if you ¢type in the command LABL2/, DDT displays the
contents of the memory word at LABL2, and "opens" that word. If the
word at LABL2 contains

MOVE 1,S¥YM1
and you wish to change SYM1l to SYM2, type in
MOVE 1,SYM2<RET>

DDT stores the new instruction in the location at LABL2 and "closes"
the 1location. DDT does NOT display <RET>. The terminal display
appears as follows (your input is in lowercase):

labl2/ MOVE 1,SYM1 move 1,sym2<RET>

The current location is still LABL2, but there is no open location.
To check whether the instruction is now correct, you can type in

o/

DDT displays the contents of the current 1location, and the screen
display now appears (your input is in lowercase):

labl2/ MOVE 1,SYM1 move 1,sym2<RET>
./ MOVE 1,SYM2

After typing in a command to display and open a location, if you type
in

value<LF>

DDT stores the new value in the open location, as for value<RET>. DDT
then changes the current location to the next location in memory,
starts a new display line and displays the address and contents of the
(new) current location. DDT also opens the current location. The
example above would then appear as follows (your input 1is in
lowercase) s

labl2/ MOVE 1,SYM1 move 1,sym2<LF>
LABL2+1/ CONTENTS

where CONTENTS is the value stored at LABL2+1. Similarly, after
opening a location, if you type in

value<BKSP>

DDT stores the new value in the open location, and changes the current
location to the previous location in memory. DDT then starts a new
display line, displays the address and contents of the current
location, and opens the current location.

GETTING STARTED WITH DDT

2.3.5 Executing Program Instructions

When you have interrupted program execution at a breakpoint, you can
execute the next instruction by typing in

<ESC>X

DDT executes the instruction, displays the results of executing the
instruction, and displays the address and contents of the next
instruction to be executed. If you have not begun program execution
with the <ESC>G command, the <ESC>X command 1is illegal, and DDT
displays ? and sounds the terminal buzzer or bell. <ESC>X changes
the current location to the next instruction to be executed. For
example, assume that the next instruction to be executed is located at
LABEL1, which contains

MOVE 1,VARIBL

If the word at VARIBL contains SYM1l, when you type in <ESC>X, DDT
starts a new line and displays

1/ SYM1 VARIBL/ SYM1
LABEL1+1/ instr

where instr is the contents of LABEL1+l, and is the next instruction
to be executed. You can continue to execute instructions one at a
time by typing in successive <ESC>X commands. This is known as
single-stepping.

If instr is a call to a subroutine, such as
PUSHJ P,SUBRTN

you can execute the subroutine without single-stepping each
instruction in the subroutine. Type in

<ESC><ESC>X

and DDT executes the subroutine. If the program does not commit a
fatal error before the user-program PC returns to a location +1, +2,
or +3 from the instruction that calls the subroutine, DDT displays the
address and contents of the location where the program returns and
waits for your next command. DDT also changes the current location to
the address of the next instruction to be executed. If the PC does
not return to a location +1, +2, or +3 from the instruction that calls
the subroutine, the program runs until it commits a fatal error, or
until it completes normally.

Because DDT controls the execution of each instruction, the subroutine

can take a long time to complete. You can check DDT's progress
through the subroutine by typing

?
DDT responds by displaying
Executing: ADDR/ INSTR

where ADDR is the address of the next instruction to be executed, and
INSTR is the instruction at ADDR.

GETTING STARTED WITH DDT

NOTE

If a subroutine begins at a 1location
that is +1, +2, or +3 from the
instruction that calls the subroutine,
DDT returns control to you at the first
instruction of the subroutine, without
executing the subroutine.

To continue execution of the program wuntil the next breakpoint or
until program completion, type 1n

<ESC>P

DDT starts the program running again, beginning with the next
instruction to be executed. If you did not single-step any
instructions, the program begins by executing the instruction at the
breakpoint. If you have executed any instructions by single-stepping,
the program continues where you stopped. The effect 1is as if the
program were running without DDT in control. If the program reaches a
breakpoint, DDT again interrupts execution. You can then examine and
modify memory, set and remove breakpoints, and continue execution.

GETTING STARTED WITH DDT

2.4 A SAMPLE DEBUGGING SESSION USING DDT

This section describes a debugging session wusing DDT. The program
being debugged is X.MAC, shown in Figure 2-1. The program and the
sample session are for illustration only. There are many styles of
programming and debugging, and these examples are descriptive rather
than prescriptive in intent.

You will understand this section and learn the commands described more
easily 1if you type in the program listed in Figure 2-1 and use the
commands as they are described. The sample program in Figure 2-1 is
designed to pass the address of a table to a subroutine. The table
contains three elements. The subroutine 1is to add the first two
elements of the table and store the result in the third element before
returning to the main program. There are no input or output routines
in the program. The table is initialized using DDT, and the result is
checked while in DDT.

SEARCH MONSYM

TITLE X
R0=0 :ACO
IDX=6 ;s INDEX REGISTER
P=17 ;STACK COUNTER
START:: MOVE P, PWORD ;Set up stack counter
MOVEI IDX, TABLEl ;Address, of table with X & Y
PUSHJ P,ADDEM ;Do the addition
MOVEI IDX, TABLE1l ;Address of table
MOVE RO ,ANSWER (IDX) ;Answer to RO
JFCL 0
HALTF% ;All done!
ADDEM: MOVE RO, X (IDX) ;Load X
ADD RO, Y (IDX) X+ Y
MOVE RO ,ANSWER (1IDX) ;Store answer
POPJ P, ;Return
TABLE1l: BLOCK 3 ;3 words
== ;0ffset for X
Y== ;0ffset for Y
ANSWER==2 ;0ffset for answer
STKSIZ==10 ;Stack size
PWORD: IOWD STKSIZ,STACK ;Stack pointer
STACK: BLOCK STKS1IZ ;Stack
END START

Figure 2-1: Sample Program X.MAC

GETTING STARTED WITH DDT

Figure 2-2 is an annotated session debugging X.MAC, the program in
Figure 2-1. 1In the annotated session, the DDT terminal display is on
the left, user input is in the center in lowercase, and explanatory
comments about the session are on the right. This is not always the
way it appears on the terminal. Figure 2-3 shows the session as it
actually appears on the terminal.

Note that DDT does not display the AC field of an instruction if it is
zero. This means that if your program contains the instruction
MOVE RO,LABL1, where R0O=0, DDT displays the instruction as MOVE LABLIl.
NOTE
DDT does not display <LF>, <RET>, or

<TAB>. These are shown in the sample
session to indicate user input.

Screen Display User Input Explanation
e TOPS-20 prompt.
debug x<RET> Begin the session by typing

in "debug Xx<RET>", where x
is the name of your MACRO

program.
MACRO: X MACRO reassembles your
program LINK: Loading (if needed), and LINK loads
{LNKDEB DDT execution] your program with DDT. DDT
DDT displays the "DDT" prompt.
start/ Begin examining code at

label "“START".

MOVE P, PWORD# DDT displays the instruction
at START.
<LF> Press <LF> to display the

next instruction.

.JBDA+1/ MOVEI IDX,TABLEl# The first symbol in this
program happens to coincide
with .JBDA, a JOBDAT symbol.
When DDT scans the symbol
table, it finds .JBDA before
it finds START, and displays
.JBDA instead. DDT still
accepts START as an input
symbol.

Also note the number sign
(#) appended to TABLEl and
PWORD. A number sign means
that PWORD and TABLEl are
local symbols that are not
in the open symbol table.

GETTING STARTED WITH DDT

.jbda<ESC>k
x<ESC>:
<TAB>
TABLEl/ 0

2<LF>
TABLEl+1l/ 0

3<LF>

TABLEl1+2/ 0

2-14

Type in .jbda<ESC>k to
suppress DDT typeout of
symbol .JBDA. DDT will
display START rather than
.JBDA from now on. See
Chapter 7 (Manipulating
Symbols is DDT) for more
information.

Type in the module name (X)
followed by <ESC> and a
colon to open the symbol
table associated with X.

DDT will not append any more
number signs.

Press <TAB> to start a new
display line, evaluate the
current quantity as if it
were an instruction, and
display the contents of the
location addressed by the Y
field of the instruction.
(Typing in / (slash)
displays the same word as
<TAB>, but does not start a
new line.) <TAB> also saves
your place (like a bookmark)
on the location sequence
stack, so you can get back
here easily.

When you type in the <TAB>
command, DDT displays the
address and the contents of
the location. The first
element of the table
contains zero. The <TAB>
command also opens the
location.

Type in "2" followed by <LF>
to deposit the value "2" in
the first element, and to
open and display the second
element.

The second element contains
Zero.

Type in "3" followed by <LF>
to deposit the value "3" in
the second element and open
and display the third
element. The addition to be
performed by the program is
2+3.

The third element (the
answer) contains zero.

GETTING STARTED WITH DDT

<ESC><RET>

START+1/ MOVEI IDX,TABLEl

<LF>

START+2/ PUSHJ P,ADDEM

.<ESC>b

<ESC>q

$1B>>START+2/ PUSHJ P,ADDEM

<ESC><ESC>x

START+3/ MOVEI IDX,TABLE1l

<ESC>x

IDX/ TABLE1 TABLE1l

Press <ESC>, then press
<RET> to return to the
address you saved on the
location sequence stack with
the <TAB> command, above.

DDT displays the address and
contents of the last
location you displayed
before you typed in <TAB>.

Press <LF> to look at the
next location.

This is the call to the
subroutine that does the
computation.

Type in ".", press <ESC>,
and type in "b" to set a
breakpoint at the current
location.

Type in <ESC>g to start
program execution.

DDT displays the breakpoint
number, the address of the
breakpoint, and the
instruction at the
breakpoint. This
instruction has not yet been
executed.

Press <ESC> twice, then type
in "x" to let DDT execute
the subroutine.

DDT returns from the
subroutine at the next
instruction, and displays
the address and contents of
the instruction. 1If there
is a "skip return," DDT
displays "<SKIP>" if the
program skipped one
instruction. If the program
skips 2 or 3 instructions,
DDT displays "<SKIP n>",
where n is the number of
instructions skipped.

Press <ESC> and type in "x"
to execute the instruction.

DDT displays the address and
contents of IDX (the result
of executing the
instruction), and also
displays "TABLEL" (the
result of evaluating the
effective address of the
instruction).

GETTING STARTED WITH DDT

START+4/ MOVE 2 (IDX)

<ESC><TAB>
TABLE1+2/ 0
<BKSP>
TABLEl+1/ 3
<BKSP>
TABLEl/ 2
start<ESC>b
<ESC>g

$2B>>START/ MOVE P,PWORD

<ESC>x

2-16

DDT then starts a new line
and displays the address and
contents of the next
instruction. Note that DDT
does not display the zero in
the AC field of the
instruction.

Press <ESC>, then <TAB> to
display the contents of the
location addressed by the
instruction, using any
indexing and indirection.
(If you omit <ESC>, DDT uses
only the Y field, without
indexing and indirection.)

The location addressed by
the instruction is TABLEl+2,
which contains zero. This
is the table element that
contains the answer, which
should be 5.

Press <BKSP> to see the
previous element in the
table (DDT echoes <BKSP> as
“H).

This element contains 3.
That is correct.

Press <BKSP> again to check
the previous element.

This element contains 2.
That is also correct. One
way to find the error is to
single-step through the
program.

Type in "start", press
<ESC>, and type in "b" to
set a breakpoint at the
beginning of the program.

Press <ESC> and type in "g"
to start the program again.

DDT displays the breakpoint
number, and the address and
contents of the instruction
at the breakpoint.

Press <ESC>, then type in
"x" to execute the
instruction. This
instruction moves a memory
word to a register.

GETTING STARTED WITH DDT

P/ -10, ,PWORD PWORD/

START+1/ MOVEI IDX,TABLE1l

<ESC>x
IDX/ TABLE1 TABLE1l
START+2/ PUSHJ P,ADDEM
<ESC>x
p/ "7' 'STACK
<JUMP>
ADDEM/ MOVE 0 (IDX)
<ESC>x
0/ 2 TABLEl/ 2
ADDEM+1/ ADD 1 (IDX)
<ESC>x

"1 0 7 PWORD

DDT displays the address and
new contents of the
register, and the address
and contents of the memory
word.

DDT then displays the
address and contents of the
next instruction.

Press <ESC>, then type in
"x" to execute this
instruction, which moves an
immediate value to a
register.

DDT displays the address and
new contents of the
register, and the immediate
value.

DDT then displays the
address and contents of the
next instruction. Note that
when you reach a breakpoint
by single-stepping, DDT does
not display the breakpoint
number.

Press <ESC>, then type in
"x" to execute the
instruction.

DDT displays the address and
new contents of the stack
pointer used by the PUSHJ.

DDT displays "<JUMP>" if the
change in PC is less than
one or greater than 4.

DDT displays the address and
contents of the next
instruction to be executed.

Press <ESC> and type in "x"
to execute the instruction.

The instruction moved the
contents of the word at
TABLEl (which is 2) to ACO.

DDT displays the next
instruction.

Press <ESC> and type in "x"
to execute the instruction.

GETTING STARTED WITH DDT

0/ 5 TABLEl+1/ 3
ADDEM+2/ MOVE 2 (IDX)
<ESC>x
0/ 0 TABLE1+2/ 0
ADDEM+3/ POPJ P,0
<BKSP>
ADDEM+2/ MOVE 2 (IDX)

The instruction added the
contents of the word at
TABLE1+1 (which is 3) to
ACO, which now contains 5.
OK.

DDT displays the next
instruction.

Press <ESC> and type in "x"
to execute the instruction.

The instruction moved the
contents of the word at
TABLE1+2 to ACO. The MOVE
instruction at ADDEM+2
should be MOVEM.

DDT displays the next
instruction (as a result of
the <ESC>x).

Press <BKSP> to display and
open the location with the
incorrect instruction.

DDT displays the previous
instruction. This is the
incorrect instruction.

movem r0,answer (idx)<RET>

./
MOVEM 2 (IDX)

.<ESC>b

<ESC>g
$2B>>START/ MOVE P,PWORD

<ESC>p
$1B>>START+2/ PUSHJ P,ADDEM

<ESC>p
$3B>>ADDEM+2/ MOVEM 2(IDX)

<ESC>x

Type in the new instruction
and press <RET>.

Check the current location
to see what you deposited.

Looks OK.

Set a breakpoint at ".", the
current location.

Restart the program at the
beginning.

DDT displays the breakpoint
information. :

Press <ESC> and type in "p"
to proceed from breakpoint 2
to the next breakpoint.

DDT displays the breakpoint
information.

Proceed from breakpoint 1.
DDT displays the breakpoint
information. This is the
instruction you changed.

Single-step the instruction
to watch what it does.

GETTING STARTED WITH DDT

0/ 5 TABLEl+2/ 5
ADDEM+3/ POPJ P,0
start+4<ESC>b
<ESC>p
$4B>>START+4/ MOVE 2 (IDX)
<ESC>x
0/ 5 TABLE1+2/ 5
'START+5/ JFCL 0
<CTRL/Z>

Figure 2-2: Annotated Debugging Session

The instruction moves the
contents of ACO to the word
at TABLEl+2. OK!!

DDT also displays the
address and contents of the
next instruction.

Set a breakpoint at START+4
to check the results.

Proceed from breakpoint 3.

DDT displays the breakpoint
information.

Single-step the instruction.

The instruction moves the
contents of the word at
TABLEl+2 to ACO. The new
value of AC0O is 5. OK!

DDT displays the address and
contents of the next
instruction.

Quit.

You are now back at TOPS-20
command level.

GETTING STARTED WITH DDT

Figure 2-3 shows the session as it actually appears on the terminal.
Again, user input is in lowercase. Comments on the right indicate
where you type in characters that do not echo.

Screen Display Comments
@debug x
MACRO: X
LINK: Loading
[LNKDEB DDT execution]
DDT
start/ MOVE P,PWORD# Type in <LF>.
.JBDA+1/ MOVEI IDX,TABLEl .jbdask x$: Type in <TAB>.
TABLEl/ 0 2 Type in <LF>.
TABLE1l+1/ 0 3 Type in <LF>.
TABLEl1+2/ 0 $ Type in <ESC><RET>.
START+1/ MOVEI IDX,TABLEl Type in <LF>.

START+2/ PUSHJ P,ADDEM .$b $qg

$1B>>START+2/ PUSHJ P,ADDEM $$x

START+3/ MOVEI IDX,TABLE1l $x
I1DX/ TABLE1 TABLE1

START+4/ MOVE 2(IDX) $ Type in <ESC><TAB>.
TABLEl1+2/ 0 “H Type in <BKSP>.
TABLEl+l/ 3 “H v Type in <BKSP>.

TABLEl/ 2 start$b $Sg
$2B>>START/ MOVE P,PWORD $x

p/ -10, , PWORD PWORD/ -10, ,PWORD
START+1/ MOVEI IDX,TABLEl $x

IDX/ TABLE1l TABLE1l
START+2/ PUSHJ P,ADDEM Sx

p/ -7,,STACK
<JUMP>
ADDEM/ MOVE 0 (IDX) $x

o/ 2 TABLEl/ 2
ADDEM+1/ ADD 1(IDX) $x

0/ 5 TABLEl1+1/ 3
ADDEM+2/ MOVE 2(IDX) $x

0/ 0 TABLE1+2/ 0
ADDEM+3/ POPJ P,0 “H Type in <BKSP>.
ADDEM+2/ MOVE 2 (IDX) movem r0,answer (idx) Type in <RET>.
./ MOVEM 2(IDX) .$b $g
$2B>>START/ MOVE P,PWORD Sp
$1B>>START+2/ PUSHJ P,ADDEM $p
$3B>>ADDEM+2/ MOVEM 2 (IDX) $x

0/ 5 ' TABLEl+2/ 5
ADDEM+3/ POPJ P,0 start+4$b Sp
$4B>>START+4/ MOVE 2(IDX) $x

0/ 5 TABLE1+2/ 5
START+5/ JFCL 0 A
e

Figure 2-3: Terminal_Display of Debugging Session

GETTING STARTED WITH DDT

2.5 PROGRAMMING WITH DDT IN MIND
There are a few MACRO-20 programming techniques that make debugging

with DDT easier. These techniques primarily concern the use of labels
and symbols.

Labels that meaningfully describe (perhaps mnemonically, such as
GETCHR for "get character") the function of the code are more helpful
when examining code and setting breakpoints than 1labels that are
alphanumerically coded (such as A0001).

When using symbols as offsets into tables, you can prevent DDT £from
displaying the offset symbol in place of the symbol's numeric value if
you define the symbol in this way:

symbol==expression

The symbol table still contains symbol, and you can use symbol as
input to DDT, but DDT does not display symbol on output.

For example, if you have defined
OFFSET==

DDT displays the contents of a word that contains the value of 3 as
addr/ 3

rather than
addr/ OFFSET

where addr is the address of the word. See the MACRO Assembler
Reference Manual for more information about defining symbols.

2~-21

CHAPTER 3

DDT COMMAND FORMAT

3.1 COMMAND SYNTAX

The complete syntax of a DDT command is
{argl<}{arg2>}{arg3}{<ESC>{<ESC>}{argd}}c{arg5}

where argl, arg2, arg3, argd4, and arg5 are arguments to the command c;
argl, arg2, and arg3 can be any legal DDT expression; argl must be
followed by a left angle bracket (<), and arg2 must be followed by a
right angle bracket (>); arg4 can only be a number; arg5 is a text
argument of the form

/text/ or c<ESC>

where text is a string of characters (not beginning with <ESC>), the
slashes (/) are delimiters that can be any character not contained in
text, and ¢ is a single character.

DDT commands never use all five arguments. Each argument is optional
or required according to the syntax of the specific command. Most DDT
commands are as simple as

arg3<ESC>c or arg3<ESC>argdc

You can type in alphabetic commands and text arguments in uppercase or
lowercase.

An argument to a command can be the result of executing another
command. For example, you can type in a command to evaluate a text
string, and then type in another command to deposit in memory the
result of the evaluation. The entire command line would be

"/abcd/<RET>

where /abcd/ is the argument to the command " (quotation mark). The
function of the quotation mark command 1is to evaluate the string
(abcd) within the delimiters (/) as a 1left-justified ASCII string.
The 1left-justified ASCII string abcd 1is then the argument to the
command <RET> (entered by pressing the RETURN key). The function of
the <RET> command is to deposit an argument (in this case, the string
abcd) into the open location. The " command 1is described 1in this
chapter, and the <RET> command is described in Chapter 4 (Displaying
and Modifying Memory).

DDT COMMAND FORMAT

Most commands produce results that are immediately visible; for
example, commands that display the contents of memory locations.
However, commands such as those that 1invoke search functions or
execute a range of instructions may not produce immediately visible
results. If you type in a question mark (?) while DDT is performing a
function invoked by one of these commands, DDT displays a message that
tells you what it is currently doing. For example, such a message
might be

Searching: ADDR/ VALUE
where ADDR is the address that DDT is to next test as part of a
search, and VALUE 1is the contents of the memory location at ADDR.

Still other commands return values that DDT does not display, but can
use as arguments to other commands.

3.2 INPUT TO DDT

You type in arguments to DDT as expressions. An expression can be a
single value, or a combination of one or more values with one or more
operators.

3.2.1 Values in DDT Expressions
Values in DDT expressions can be:
e octal or decimal integers
e floating point numbers
® symbols
e values that are returned by commands
e text

To type in an octal integer value, simply type in the integer in octal
digits. For example:

70707065

To type in a decimal integer value, type in the integer in decimal
digits and follow the value with a decimal point. For example:

9876.

To type 1in a floating point number, use regular or scientific
notation. For example, you can type in the value .034 as one of the
following:

.034
3.4E-2

Note that 1. is a decimal integer, while 1.0 is a floating point
number.

DDT COMMAND FORMAT

To type in a sxgbol as a value in an expression, type in the symbol
name as defined In your program. To type in an undefined symbol that
you can define later, type in

symbol#

where §¥pbol is the symbol that you will later define. See Chapter 7
(Manipulating Symbols in DDT) for more information about using
undefined symbols,

You can type in a command that returns a value as a value in an
expression, DDT commands that return values, and the values they
return are listed in Table 3-1.

Table 3-1: Commands That Return Values

Command Value Returned Value Also
Known As
. The address of the current location. .
<ESC>. The address of the next user program S.
instruction to be executed.
<ESC><ESC>. The previous value of "<ESC>.". $s.
<ESC>nB The . address of the DDT location that $nB

contains the address of breakpoint n.

<ESC>nlI The address of the DDT location that
contains the saved machine state flags
(user-program context).

<ESC>nM The address of DDT "mask" n.
<ESC>Q The current quantity. $0
<ESC><ESC>Q The current quantity, with halves $$0
swapped.
<ESC>nU The address of the DDT location that

contains the argument (or default) that
was given in the wvirtual addressing
command: expr<ESC>nuU.

DDT COMMAND FORMAT

The commands <ESC>nB, <ESC>nI, <ESC>nM, and <ESC>nU (<ESC>nU is 1legal
only in EDDT, KDDT and FILDDT), return values that are the addresses
of locations internal to DDT, which contain information that you can
use and modify. For brevity, these commands are said to address those
internal DDT locations.

For example, the command <ESC>nB returns (but does not display) the
address of the DDT location that contains the address of breakpoint n,
and the command addr/ (address followed by slash) displays the
contents of the 1location at addr. To display the address of
breakpoint n, type in

<ESC>nB/
where you type in the command <ESC>nB as the expression for DDT to
evaluate as addr.
You can type in text to be interpreted in the following ways:

o left-justified text strings of byte-size n, where 6<=n<=36

o left-justified 7-bit ASCII strings

e left-justified SIXBIT strings

e single right-justified text characters of byte-size n, where
6<=n<=36

e single right-justified 7-bit ASCII characters
e single right-justified SIXBIT characters
e Radix-50 words
You can type in text expressions 1in uppercase or lowercase. pDT

translates strings to uppercase for SIXBIT or Radix-50 text as
required.

DDT COMMAND FORMAT

The term long text string refers to an expression in a DDT command
that is a string of text characters that requires more than one 36-bit
expression for full evaluation. You can type in long text strings in
SIXBIT and ASCII as DDT expressions. If you use a long text string as
an expression, DDT assumes that you will type in a command that
deposits the expression in memory.

DDT evaluates the string one 36-bit expression at a time. After
evaluating the first 36-bit expression, DDT deposits the expression in
the open location, closes the open 1location, and opens the next
location.

DDT then evaluates the next 36-bit expression contained in the string,
and deposits that expression in the (new) open location. This process
continues until you type in ¢, the command. If you type in a c¢ommand
that does deposit to memory, DDT deposits the final 36-bit expression
in the open location, and updates the location counter according to
the rules of that particular command. The current quantity is the
last 36-bit expression that DDT evaluated.

If you do not type in a command that deposits to memory, DDT uses, as
the argument to the command, the 36-bit expression that was last
evaluated. All other 36-bit expressions that were evaluated as part
of the string have been deposited, and the current and open locations
were updated accordingly. The current quantity is then the last
36-bit expression that DDT evaluated.

If there is no open location when you begin typing the 1long text
string, DDT evaluates only the first 36-bit expression, ignores the
rest of the string, and wuses the first .36-bit expression as the
argument to the command. The current quantity is then the first
36-bit expression that DDT evaluated in the string. If you type in a
command that deposits to memory, it has no effect because there was no
open location.

DDT COMMAND FORMAT

The syntax to type in a left-justified text string with bytes of size
n is

<ESC>n"/text/

where 6<=n<=36 (default = 6), text is the string, and the slashes (/)
represent any printing character that is not contained within text.
DDT evaluates the string as a series of 36-bit expressions, in n-bit
ASCII format with all unused bits zero. Each character is
right-justified within the byte; each string of bytes is
left-justified within the 36-bit expression. No expression contains a
partial byte. If n = 6, DDT evaluates the text string as for the
command to type in a SIXBIT string (<ESC>"/text/), below. If n = 7,
DDT evaluates the text string as for the command to type in a 7-bit
ASCII string ("/text/), below.

For example, if you type in
<ESC>8"+abc/def+

DDT evaluates one 36-bit expression as the 8-bit ASCII string abc/ in
bits 0-31, and bits 32-35 zero. If there is no open location, DDT
uses that expression as the argument to the command, and that
expression becomes the current quantity.

If there is an open location, DDT deposits abc/ in the open 1location,
closes 1it, and opens the next location in memory. DDT then evaluates
a second 36-bit expression as the 8-bit ASCII string def in bits 0-23,
and bits 24-35 zero. The last 36-bit expression evaluated becomes the
current quantity.

NOTE

You cannot use this format to type in a
string that begins with the ESCAPE
character, because <ESC> terminates the
command that types in a single
right-justified n-bit character (in this
case, your intended delimiter).

DDT COMMAND FORMAT

For compatibility with previous versions of DDT, you can type 1in a
7-bit ASCII string with the command

"/text/

where text is the string, and the slashes (/) represent any printing
character that is not contained within text. DDT evaluates the string
as a series of 36-bit expressions, each in 7-bit ASCII format
(left-justified), with all unused bits zero.

For example, if you type in
"+abc/def+

DDT evaluates one 36-bit expression as the 7-bit ASCII string abc/d in
bits 0-34, and bit 35 zero. If there is no open location, DDT uses
that expression as the argument to the command, and that expression
becomes the current quantity.

If there is an open location, DDT deposits abc/d in the open location,
closes 1it, and opens the next location in memory. DDT then evaluates
a second 36-bit expression as the 7-bit ASCII string ef in bits 0-13,
and bits 14-35 zero. The last 36-bit expression evaluated becomes the
current quantity.

NOTE

You cannot use this format to type in an
ASCII string that begins with the ESCAPE
character, because <ESC> terminates the
command that types in a single
right-justified ASCII character (in this
case, your intended delimiter).

For compatibility with previous versions of DDT, you can type 1in a
SIXBIT string with the command

<ESC>"/text/

where text is the string, and the slashes (/) represent any printing
character that is not contained within text. DDT evaluates the string
as a series of 36-bit expressions, each in SIXBIT format
(left-justified), with any unused bits in the last 36-bit expression
cleared (zero). DDT translates lowercase characters to uppercase; all
other non-SIXBIT characters cause DDT to sound your terminal buzze& or
bell and display a question mark.

For example, if you type in
<ESC>">qwertyu>

DDT evaluates one 36-~bit expression as the SIXBIT string QWERTY in
bits 0-35. 1If there is no open location, DDT uses that expression as
the argument to the command, and that expression becomes the current
quantity.

If there is an open location, DDT deposits QWERTY in the open
location, closes it, and opens the next location iIn memory. DDT then
evaluates a second 36-bit expression as the SIXBIT character U in bits
0-5, with bits 6-35 =zero. The 1last 36-bit expression evaluated
becomes the current quantity.

DDT COMMAND FORMAT

The syntax to type in a right-justified character of byte size n is

<ESC>n"c<ESC>
where 6<=n<=36 (default = 6), and c¢ is the character.

If n = 6, this command functions as for the command to type in a
right-justified SIXBIT character (<ESC>"c<ESC>), otherwise this
command functions as for the command to type in a right-justified
7-bit ASCII character ("c<ESC>). These commands are described below.

For compatibility with previous versions of DDT, you can type in a
right-justified 7-bit ASCII character with the command

"c<ESC>
where ¢ is the character. DDT evaluates this as one 36-bit expression
with the 7-bit ASCII character c¢ in bits 29-35, and bits 0-28 zero.

For compatibility with previous versions of DDT, you can type 1in a
right-justified SIXBIT character with the command

<ESC>"c<ESC>

where ¢ is the character. DDT evaluates one 36-bit expression with
the SIXBIT character ¢ in bits 30-35, and bits 0-29 zero. DDT
translates lowercase characters to uppercase; all other non-SIXBIT
characters cause DDT to sound your terminal buzzer or bell and display
a question mark.

The syntax to type in a Radix-50 word is

text<ESC>5"

where text is any string of Radix-50 characters up to six characters
long. DDT evaluates one 36-bit expression with bits 0-3 cleared
(zero) and the Radix-50 string text in bits 4-35. DDT ignores any
characters in text after the sixth.

For example, if you type in
poiuytr<ESC>5"

DDT evaluates one 36-bit expression with bits 0-3 cleared (zero) and
the Radix-50 string POIUYT in bits 4-35. DDT ignores the character r.
DDT translates lowercase characters to uppercase. If a character 1in
text 1is not in the Radix-50 character set but is a DDT command, DDT
tries to execute the command. DDT uses, as an argument to the
command, the characters 1in text that precede or follow 1it, as
appropriate to the command. If DDT cannot execute the command, it
will sound vyour terminal buzzer or bell, and display the appropriate
error message., If DDT can execute the command, it is possible that a
Radix-50 evaluation of some remaining characters can take place, but
the results will not be what you intend.

Characters in text not in the Radix-50 character set that are not DDT
commands cause DDT to sound your terminal buzzer or bell and display a
question mark.

DDT COMMAND FORMAT

3.2.2 Operators in DDT Expressions

When you type in an expression, DDT evaluates the expression to create
a 36-bit quantity but does not necessarily use all 36 bits when it
executes the command. For example, you can type in a complete MACRO
instruction when giving an argument to a command that requires an
address, but DDT uses only the address specified by the instruction
(and ignores the rest of the evaluated expression) when it executes
the command.

Table 3-2 lists DDT's expression operators and the effects those
operators produce on the evaluation. The term value so far represents
the accumulated 36-bit value that results from evaluation of the
expression to that point.

The nonarithmetic operators allow you to type in expressions in
instruction format as well as in data format.

Table 3-2: Effects of Operators When Evaluating Expressions

Operator Effect on Evaluation

+ Adds the 36-bit value on the left to the 36-bit
value on the right, using two's complement
addition.

- Subtracts the 36-bit value on the right from the
36-bit value on the left, using two's complement
subtraction.

* Multiplies the 36-bit value on the left by the
36~-bit value on the right, wusing PDP-10
full-word integer multiplication. DDT uses only
the low-order 36 bits of the result.

' (apostrophe) Divides the 36-bit wvalue on the left by the
36-bit value on the right, wusing PDP-10
full-word integer division. DDT ignores any
remainder.

NOTE
Apostrophe is DDT's division
operator. / (slash) is a DDT

command to examine memory, and is
never used 1in DDT to indicate
division.

space Adds the previous expression (normally an
opcode) to the wvalue so far, and adds the
low-order 18 bits of the value at the right of
the space to the low-order 18 bits of the value
so far. DDT ignores carries resulting from the
addition, and does not change the left half of
the value so far.

3-9

DDT COMMAND FORMAT

Table 3-2 (Cont.): Effects of Operators When Evaluating

Expressions

Operator

Effect on Evaluation

, (comma)

If you are entering an I/0 instruction, DDT
shifts the low-order 18 bits of the expression
at the left of the comma 26 bits to the left (to
the device field of the instruction), otherwise
DDT shifts the 1low-order 18 bits of the
expression at the left of the comma 23 bits to
the left (to the A field of an instruction). DDT
then 1logically ORs the result into the value so
far.

NOTE

DDT does not <check whether the
value at the left of the comma is a
legitimate device or AC address,
and may overwrite other parts of
the instruction.

r

(two commas)

Moves the low-order bits of the expression at
the left of the commas to bits 0-17, and builds
a new 18-bit expression in bits 18-35.

()

Swaps the halves of the expression within the
parentheses and adds the resulting expression to
the value so far. This makes it possible to
enter an instruction that uses an index
register.

NOTE

DDT does not <check whether the
value within the parentheses is a
legitimate AC address, and may
overwrite other parts of the
instruction.

Sets the indirect bit (bit 13) of the wvalue so
far. This lets you type in instructions.

DDT COMMAND FORMAT

To type in an instruction, format the instruction as you would in a
MACRO-20 program. For example:

MOVE R4,@VAR1+OFFSET(RS)

NOTE

Follow an opcode (such as MOVE) with a
space, not a <TAB>.

To enter halfwords, type in the values (numbers or symbols) separated
by two commas (,,). The halfwords can be symbolic or absolute values.
For example:

-1,,S¥YM]

NOTE

DDT is not designed to evaluate
complicated arithmetic expressions. The
nonarithmetic operators are implemented
to enable DDT to evaluate expressions
you type in as MACRO-20 instructions and
halfwords. Using values and operators
for other purposes may not produce the
results you intend.

3-11

CHAPTER 4

DISPLAYING AND MODIFYING MEMORY

4.1 DISPLAY MODES

A major function of DDT is displaying the contents of memory words,
both data and instructions. You can choose whether to display the
contents of memory words as symbols or as numeric values., You can
also select the radix in which DDT displays numeric values.

DDT displays symbols, labels, and most messages in uppercase.

4.1.1 Default Display Modes

There is no sure way for DDT to distinguish between instruction and
data words, or between data words of different formats.

DDT displays memory words in symbolic mode by default. Symbolic mode
is '‘described in Table 4-1. DDT tests for the condition on the left,
and if the condition is met, displays the word in the format described
on the right. DDT performs the tests in descending order (as they
appear in the table).

Table 4-1: Evaluation of Symbolic Display Mode

Condition DDT Displays Example

Bits 0-18 are all set. A negative number =45

in the current

radix.
The 36-bit value is defined in The symbol. SYMBL1
the user program symbol table. HALT
The opcode field is zero. Halfwords. 345, ,-27
The opcode and I, X, and Y The OPDEF. CORE 6,

fields, or the opcode and A
fields match an OPDEF in the
user program symbol table.

The opcode matches a The instruction. MOVE 3,SYMBL
definition in DDT's internal
hardware instruction table.

No match. Hal fwords. 3445, ,-23

DISPLAYING AND MODIFYING MEMORY

By default, DDT displays numeric values in octal. Leading =zeros are
always suppressed.

4.1.2 Selecting Display Modes
You can select display modes to control:

e the format in which DDT tries to interpret the contents of
memory locations; for example, as instructions, or as
floating-point numbers.

e whether addresses are displayed as symbolic or numeric
values,

e the radix in which numeric values are displayed.

In addition, you can specify these modes on a short-term (temporary
mode) or long-term (prevailing mode) basis.

A prevailing display mode remains in effect until you select another
prevailing mode, but may be overridden by a temporary mode until you
type in a command that restores the prevailing display mode. DDT
commands that restore the prevailing display mode are:

e {expr}<RET> (deposit expr and close location)
® <ESC>G (start program execution)

e <ESC>P (proceed from a breakpoint)

e <ESC>W, <ESC>E, <ESC>N (perform a search)

e <ESC>Z (zero memory)

® instr<ESC>X (execute instr)

e <ESC>V (watch a location)

The syntax of commands that set the prevailing mode is
<ESC><ESC>mode

where mode is one of the display modes shown in Table 4-2.

The syntax of commands that set a temporary mode is
<ESC>mode

where mode is one of the display modes shown in Table 4-2.

DISPLAYING AND MODIFYING MEMORY

The current display mode is the mode (prevailing or temporary) in
which DDT will display the next word (unless you type in a command to
change the display mode).

DDT has two "masks" that control the action of two of the display
modes.,

<ESC>3M is a command that addresses a DDT location that contains the
output byte size mask. When the current display mode is 0, each bit
that is set in the mask indicates the position of a low order bit of a
byte in the word being displayed. In this mode, bit 35 is always
assumed to be set. For example, if the output byte size mask contains

510410100400 (octal)

the byte sizes specified are, from left to right, 1, 2, 3, 4, 5, 6, 7,
and 8. When displaying a word in 0 mode that contains 777777,,777777,
and the current radix is 8, DDT displays

1,3,7,17,37,77,177,377 The default value of the output byte size
mask is zero, specifying one 36-bit byte.

You can set the output byte size mask with the command
expr<ESC>3M
where expr evaluates to the bit pattern required.

You can also examine and change the output byte size mask with the
examine and deposit commands described later in this chapter. This
manual uses the symbol $3M to refer to the mask addressed by the
command <ESC>3M.

<ESC>2M is a command that addresses a DDT location that contains the
maximum symbolic offset. When DDT displays an address in R(elative)
mode, it displays the address symbolically, that is, as a symbol, or
as a symbol + the numeric offset of the address from that symbol. The
maximum symbolic offset (minus 1) determines the maximum offset
address that DDT displays symbolically, and defaults to 1000 (octal).
DDT displays addresses beyond that offset in A(bsolute) mode. For
example, assume that the maximum symbolic offset is 2, and that you
are examining subroutine ADDEM in program X.MAC (refer to Figure 2-1),
using <LF> to display instructions in sequence. DDT displays

ADDEM/ MOVE 0(6)
ADDEM+1/ ADD 1(6)
addr/ MOVE 2(6)

where addr is the absolute address (for example, 14414) of the
location.

You can set the maximum symbolic offset with the command
expr<ESC>2M

where expr evaluates to the offset required. This manual wuses the
symbol $2M to refer to the mask addressed by the command <ESC>2M.

You can also examine and change the maximum symbolic offset with the
examine and deposit commands described later in this chapter.

DISPLAYING AND MODIFYING MEMORY

DDT display modes and the commands that select them are described in
Table 4-2.
Table 4-2: DDT Display Modes
FPormat Modes
Mode Effect
C Displays memory word as numbers in the current radix
(see Radix Modes).
F Displays memory word as a floating point decimal
number .
2F Displays two contiguous memory words as a double
precision floating point decimal number.
H Displays memory word as two halfword addresses (see
Address Modes) separated by two commas (,,).
0 Displays memory word as numeric bytes of sizes that
are specified by the $3M mask.
no Displays memory word as n-bit numeric bytes
(left-justified, with trailing remainder byte, as
required).
S Displays memory word in symbolic mode (default).
1S8 Searches DDT's internal hardware opcode table before
searching the user's symbol table, otherwise follows
rules for S (symbolic) mode.
1T Displays memory word(s) as a byte pointer (one-word
local, one-word global, or two-word byte pointer, as
specified by the byte pointer format).
nT Displays memory word as ASCII text, using n-bit bytes
(5<=n<=36) .
n=5: RADIXS50
n=6: SIXBIT
n=7: 7-bit ASCII (1)
8<=n<=36: n-bit ASCII (2)

DISPLAYING AND MODIFYING MEMORY

Table 4-2 (Cont.): DDT Display Modes

Address Modes

Mode Effect
A Displays addresses as absolute values in the current
radix.
R Displays addresses as values relative to symbols

(default). DDT displays the offsets in the current
radix. The maximum offset is controlled by the value
stored in the $2M mask, and defaults to 1000 (octal).

Radix Modes

Mcde Effect

nR Displays numeric values in radix n (default=8), where
n 1is a decimal number greater than 1. If n=8, DDT
displays the word as octal halfwords, otherwise DDT
displays the word as one number. If n=10 (decimal),
DDT displays a decimal point after the value.

(1) If bits 0-28 are all zero, DDT assumes the word contains a
single right-justified 7-bit ASCII character. Otherwise, DDT
displays the word as a left-justified 7-bit ASCII string, and
if bit 35 1is set, DDT displays @ immediately following the
five 7-bit ASCII characters.

(2) DDT ignores all bits in each n-bit byte other than the
rightmost 7 bits, and ignores any leftover bits at the right
end of the word. To display a right-justified 7-bit ASCII

character in a word that has one or more of bits 0-28 set,
type in <ESC>36T.

4.2 DISPLAYING EXPRESSIONS

DDT has three commands you can use to display expressions in different
modes. They are:

; (semicolon)
= (equal sign)

(underscore)

The syntax of these commands is
{exprlc

where expr is the expression to be displayed (expr defaults to the
current quantity), and c is one of the above commands. These commands
are useful for redisplaying the current quantity without affecting the
current display mode. Table 4-3 1lists the commands to display
expressions and their effects.

DISPLAYING AND MODIFYING MEMORY

Table 4-3: Commands to Display Expressions

Command Effect
; Displays the current quantity in the current display
mode.
expr; Displays expr in the current display mode.

= Displays the current quantity as a number in the
current radix.

expr= Displays expr as a number in the current radix.

Displays the current quantity in 1S mode.

expr_ Displays expr in 1S mode.

4.3 DISPLAYING BYTE POINTERS

If you set the display mode to 1T, DDT displays the contents of the
memory location as a byte pointer. DDT can display one-word local,
one-word global, and two-word byte pointers. DDT displays the P and S
fields, and the address as determined by the I, X, and Y fields of the
byte pointer.

In section zero, DDT displays only one-word byte pointers (local and
global).

For example, if the contents of the location at ADDR2 is 100702, ,addr,
where addr 1is the value of symbol LABL2, the following illustrates
one-~word local byte pointer display:

addr2/ 100702, ,addr <ESC>1¢t; 10 7 LABL2(2)
The following illustrates one-word global byte pointer display, where
addr is the value of symbol LABL2:

1, ,addr2/ 610002, ,LABL2 <ESC>1lt; 4487 2,,LABL2
The following illustrates two-word global byte pointer display, where
addr ts the value of symbol LABL2 (DDT echoes <BKSP> as "“H):

1, ,addr2/ 440740,,0 <LF>

1,,addr2+1/ 3, ,addr <ESC>1t"H
1, ,addr2/ 44 7 3,,MAIN. <2>

DISPLAYING AND MODIFYING MEMORY

4.4 DISPLAYING AND DEPOSITING IN MEMORY

DDT allows you to display the contents of memory locations and deposit
a new value in the open location. 1In performing these functions, you
must understand the concept of the open location, the current
location, the location sequence stack, and the current quantity.

The open location is a memory location (or AC) that can be modified by
the next command. There 1is never more than one location open at a
time. DDT always closes the open location before opening another.

The location counter contains the address of a word in memory that has
been referenced (implicitly or explicitly) by the previous command,
and that is the default point of reference for the next command. That
word is known as the current location. DDT uses the address of the
current location as the default address in most commands. The current
location is often, but not always, the open location.

Most DDT commands change the current location to a word specified by
an address given (explicitly or by default) in the command. Commands
that do not are so indicated.

"." (period) is a command that returns (but does not display) the
address of the current location.

When you first enter DDT, the current location is zero.

The location sequence stack is a "ring" of seventeen words, each
containing the address of a prior current location, or of a match
found during a search. The present value of the current location is
not placed in the ring.

Entries are made to and retrieved from the location sequence stack in
a last-in, first-out manner. Most commands that change the location
counter by values other than +1 and -1 cause DDT to store the address
of the current location (before the change) on the location sequence
stack. Addresses of matching locations found during searches are also
stored on the location sequence stack.

When DDT stores a new value in the next word on the stack, the new
value becomes the current location stack entry. This is similar to
PUSHing entries on a stack.

When the current location stack entry is the 1last 1location on the
location sequence stack, DDT stores a new value on the stack by
"wrapping around" to the beginning of the stack and overwriting the
value 1in the first location on the stack. The first location on the
stack then contains the current location stack entry.

Certain DDT commands change the address of the current location to the
current location stack entry, and then change the current location
stack entry to the previous entry. This is similar to POPping entries
off a stack, and allows you to “"return" to locations that have
previously been the current location.

When the first location on the location sequence stack contains the
current location stack entry and DDT changes the address of the
current location to the current location stack entry, DDT "wraps
around" to the end of the stack, and the value contained in the last
word of the stack becomes the current location stack entry (whether or
not the stack was previously "full").

4-7

DISPLAYING AND MODIFYING MEMORY

The current quantity is a value that is the more recent of:

e the last 36-bit quantity that DDT displayed (an expression or
the contents of a memory location)

e the last expression that you typed in as an argument to a
command that deposits to memory

This value is also known as the last value typed. <ESC>Q is a command
that returns (but does not display) the current quantity. DDT issues
an implicit <ESC>Q to return this wvalue for wuse as the default
argument for some commands.

You can give the current quantity as an argument to a command by
typing in the command <ESC>Q as the argument,

The command <ESC><ESC>Q returns the current quantity with the right
and left halves swapped.

This manual uses the term $Q to refer to the value that is returned by
the command <ESC>Q, and the term $$0 to refer to the value that is
returned by the command <ESC><ESC>Q.

Some commands calculate the address of the location to be opened from
an expression given or defaulted in the command. Other commands use
the address of the current location or entries on the location
sequence stack.

The general syntax of these commands is
{expr}{<ESC>}c
where expr is any legal DDT expression, and ¢ is the command. See

Section 3.2.1, Values in DDT Expressions, for a discussion of long
text strings as values in DDT expressions.

DISPLAYING AND MODIFYING MEMORY

Table 4-4 summarizes the commands and their effects. Complete
descriptions of the commands follow the table.

Table 4-4: DDT Commands to Display Memory

Command Display Display Open Change Deposit Loc/Seq
Content Mode Word "." Expr Stack
/ Yes Current Yes ~Yes(1) No PUSH (1)
[Yes Numeric Yes Yes (1) No PUSH (1)
] Yes Symbolic Yes Yes (1) No PUSH (1)
! No Suppress Yes Yes (1) No PUSH(1)
\ Yes (2) Current Yes No Yes (1) No
<TAB> Yes(2) Current Yes Yes Yes (1) PUSH
<RET> No Restore No No Yes (1) No
<LF> Yes(2) Current Yes Yes Yes(1l) No
.+l
<BKSP> Yes (2) Current Yes Yes Yes (1) No
or ° -1
<ESC> Yes Current Yes Yes Yes (1) POP
<TAB>
<ESC> Yes Restore No Yes Yes (1) POP
<RET> Current
<ESC> Yes Current Yes Yes Yes(1l) POP
<LF> 0ld.+1
<ESC> Yes Current Yes Yes Yes (1) POP
<BKSP> 0ld.-1
or
<ESC>”

(1) 1If you type in expr.

(2) If not suppressed by !.

4.4.1 Commands That Use the Current Location

The commands <RET>, <LF>, and <BKSP> use the address of the current
location to determine the next address of the current location. These
commands do not make entries to the location sequence stack.

These commands are described in detail on the next pages.

4-9

DISPLAYING AND MODIFYING MEMORY

{expr}<RET>

deposits expr (if given) in the open location
closes the open location
starts a new display line

resets the current typeout mode to the prevailing
mode

does not change the address of the current location

4-10

typeout

DISPLAYING AND MODIFYING MEMORY
{expr}<LF>

o deposits expr (if given) in the open location
e closes the open location
o Iincrements the location counter

e opens the current location

e starts a new line and displays the address of the open
location, followed by:

» [(left square bracket), if the current display mode |is
C (numeric), and the prevailing mode is not

»] (right square bracket), if the current display mode is
S (symbolic), and the prevailing display mode is not

» !

(exclamation point), if display has been suppressed by

» / (slash), in all other cases

e the contents of the open.location (unless display has been
suppressed by 1!)

DISPLAYING AND MODIFYING MEMORY
{expr}<BKSP> and ({expr}”

deposit expr (if given) in the open location
close the open location
decrement the location counter

open the current location

start a new 1line and display the address of the open
location, followed by:

®» [(left square bracket), if the current display mode is
C (numeric), and the prevailing mode is not

»] (right square bracket), if the current display mode is
S (symbolic), and the prevailing display mode is not

» !

(exclamation point), if display has been suppressed by
!

» / (slash), in all other cases

the contents of the open location (unless display has been
suppressed by !)

[S

DISPLAYING AND MODIFYING MEMORY

4.4.2 Commands That Use the Location Sequence Stack

The commands <ESC><RET>, <ESC><LF>, and <ESC><BKSP> use the current
location stack entry to determine the next address of the current
location.

Repetitions of these commands refer to successively earlier entries on
the stack, until you again address the most recent entry.

These commands do not make entries to the location sequence stack.

These commands are described in detail on the following pages.

DISPLAYING AND MODIFYING MEMORY

{expr}<ESC><RET>

deposits expr (if given) in the open location
closes the open location

changes the value contained in the location counter to the
current location stack entry

opens the current location

starts a new line and displays the address and contents of
the open location in the current display mode

causes the previous entry on the location sequence stack to
become the current location stack entry

NOTE

If display is suppressed as a result of
using the ! command, the command
{expr}<ESC><RET> restores the current
display mode, which can be either a
temporary or prevailing display mode.

DISPLAYING AND MODIFYING MEMORY
{expr}<ESC><LF>

deposits expr (if given) in the open location
closes the open location

changes the value contained in the location counter to the
current location stack entry

increments the location counter
opens the current location

starts a new line and displays the address of the open
location, followed by:

(left square bracket), if the current display mode |is

> I
C (numeric), and the prevailing mode is not
> (right square bracket), if the current display mode is

]
S (symbolic), and the prevailing display mode is not

» ! (exclamation point), if display has been suppressed by
!

» / (slash), in all other cases

displays the contents of the open location (unless display
has been suppressed by 1)

causes the previous entry on the location sequence stack to
become the current location stack entry

DISPLAYING AND MODIFYING MEMORY
{expr}<ESC><BKSP> and {expr}<ESC>”

deposit expr (if given) in the open location
close the open location

change the value contained in the 1location counter to the
current location stack entry

decrement the location counter
open the current location

start a new line and display the address of the open
location, followed by:

» [(left square bracket), if the current display mode is
C (numeric), and the prevailing mode is not

(right square bracket), if the current display mode is
(symbolic), and the prevailing display mode is not

W) —

» ! (exclamation point), if display has been suppressed by
!

» / (slash), in all other cases

display the contents of the open location (unless display has
been suppressed by !)

cause the previous entry on the location sequence stack to
become the current location stack entry

DISPLAYING AND MODIFYING MEMORY
{expr}<ESC><LF>

deposits expf (if given) in the open location
closes the open location

changes the value contained in the location counter to the
current location stack entry

increments the location counter

opens the current location

starts a new line and displays the address of the open
location, followed by:

» [(left square bracket), if the current display mode is
C (numeric), and the prevailing mode is not
» (right square bracket), if the current display mode is

]
S (symbolic), and the prevailing display mode is not

» ! (exclamation point), if display has been suppressed by
!

» / (slash), in all other cases

displays the contents of the open location (unless display
has been suppressed by !)

causes the previous entry on the location sequence stack to
become the current location stack entry

DISPLAYING AND MODIFYING MEMORY
{expr}<ESC><BKSP> and {expr}<ESC>"

deposit expr (if given) in the open location
close the open location

change the value contained in the 1location counter to the
current location stack entry

decrement the location counter
open the current location

start a new line and display the address of the open
location, followed by:)

» [(left square bracket), if the current display mode is
C (numeric), and the prevailing mode is not

» 1 (right square bracket), if the current display mode is
S (symbolic), and the prevailing display mode is not
» ! (exclamation point), if display has been suppressed by

!
» / (slash), in all other cases

display the contents of the open location (unless display has
been suppressed by 1!) '

cause the previous entry on the location sequence stack to
become the current location stack entry '

DISPLAYING AND MODIFYING MEMORY

4.4,3 Commands That Use an Address Within the Command

The commands:

/ (slash)
[(left square bracket)
] (right square bracket)
! (exclamation point)
\ (backslash)

<TAB>

use an expression given in the command (either explicitly or by
default) to determine the addresses of the current location and the
open location,

The complete syntax of these commands is
{expr}{<ESC>{<ESC>}}c

where expr may be an address, ".", a symbol, or any expression that is
legal in DDT, and ¢ is the command.

When you use the commands /, [, 1, !, \, and <TAB>:
e If you omit expr
» DDT uses the current quantity as a default.

» <TAB> enters the address of the current location on . the
location sequence stack and changes the current location
to the address determined from the current quantity.

e If you type in expr, DDT enters the address of the current
location on the location sequence stack (except \).

e DDT treats expr (whether given or defaulted) as if it were in
instruction format and performs the effective address
calculation as follows:

» If you omit <ESC>, DDT does not perform indexing or
indirection.

» If you include one <ESC>, DDT treats expr as an IFIW
(instruction format indirect word), and uses the I and Y
fields of expr to perform indexing and indirection when
appropriate.

» If you use <ESC><ESC> in a nonzero section, DDT utilizes
EFIWs (extended format indirect words), as appropriate,
when performing effective address calculations, and can
thereby calculate 30-bit addresses.

» If you use <ESC><ESC> in section zero, DDT treats the
command as if you had typed in one <ESC>. See Chapter 12
(Extended Addressing), for a description of this form of
these commands.

DISPLAYING AND MODIFYING MEMORY

The commands /, [, 1, !, \, and <TAB> always do the following:
e close the open location
e open the location at the address indicated by expr
e change the current quantity to the value displayed (all

commands except 1)

The following pages describe the effects of each of these commands.

DISPLAYING AND MODIFYING MEMORY

closes the open location

opens the location at the address calculated from the current
quantity

displays the contents of the open location 1in the current
display mode

sets the current quantity to the value displayed

expr/

closes the open location
opens the location at the address calculated from expr

enters the address of the current location on the 1location
sequence stack

changes the current location to the location at the address
calculated from expr

displays the contents of the open location in the current
display mode

sets the current quantity to the value displayed

DISPLAYING AND MODIFYING MEMORY

closes the open location

opens the location at the address calculated from the current
quantity

displays the contents of the open location in numeric mode in
the current radix

sets the current display mode to numeric mode in the current
radix

sets the current quantity to the value displayed

expr(

closes the open location
opens the location at the address calculated from expr

enters the address of the current location on the 1location
sequence stack

changes the current location to the location at the address
calculated from expr

displays the contents of the open location in numeric mode in
the current radix

sets the current display mode to numeric mode in the current
radix

sets the current quantity to the value displayed

DISPLAYING AND MODIFYING MEMORY

closes the open location

opens the location at the address calculated from the current
quantity

displays the contents of the open location in symbolic mode
sets the current display mode to symbolic mode

sets the current quantity to the value displayed

expr)

closes the open location
opens the location at the address calculated from expr

enters the address of the current location on the 1location
sequence stack

changes the current location to the location at the address
calculated from expr

displays the contents of the open location in symbolic mode
sets the current display mode to symbolic mode

sets the current quantity to the value displayed

DISPLAYING AND MODIFYING MEMORY

closes the open location

opens the location at the address calculated from the current
quantity

does not display the contents of the open location

suppresses display of the open 1location by the \, <TAB>,
<LF>, and <BKSP> commands (any other display command restores
the current display mode)

does not change the current quantity

expr!

closes the open location
opens the location at the address calculated from expr

enters the address of the current location on the 1location
sequence stack

changes the current location to the location at the address
calculated from expr

does not display the contents of the open location

suppresses display of the open 1location by the \, <TAB>,
<LF>, and <BKSP> commands (any other display command restores
the current display mode)

does not change the current quantity

DISPLAYING AND MODIFYING MEMORY

closes the open location

opens the location at the address calculated from the current
quantity

displays the contents of the open location in the current
display mode (unless display has been suppressed by !)

sets the current quantity to the value displayed

expr\

deposits expr in the open location

closes the open location

opens the location at the address calculated from expr

does not change the address of the current location (and does
not enter the address of the current location on the location

sequence stack)

displays the contents of the open 1location in the current
display mode (unless display has been suppressed by !)

sets the current quantity to the value displayed

DISPLAYING AND MODIFYING MEMORY

<TAB>

closes the open location

opens the location at the address calculated from the current
quantity

enters the address of the current location on the location
sequence stack

changes the current location to the location at the address
calculated from the current quantity

starts a new line and displays the address of the open
location (which is also the current location)

displays the contents of the open 1location in the current
display mode (unless display has been suppressed by !)

sets the current quantity to the value displayed

expr<TAB>

deposits expr in the open location
closes the open location
opens the location at the address calculated from expr

enters the address of the current location on the location
sequence stack

changes the current location to the location at the address
calculated from expr

starts a new line and displays the address of the open
location (which is also the current location)

displays the contents of the open location in the current
display mode (unless display has been suppressed by !)

sets the current quantity to the value displayed

DISPLAYING AND MODIFYING MEMORY

You can treat expr as an IFIW (instruction format indirect word), and

use any indexing and indirection specified by expr to compute the

effective address of the location to be opened. Use the command form
{expr}<ESC>c

where ¢ is /, [, 1, !, \, or <TAB>.

For example, assume the following conditions as indicated by the
display commands:

Command Display Explanation
LABL1/ SYM1 Displays contents of LABLl.
LABL1+1/ SYM2 Displays contents of LABLl+1.
SYM2/ SYM3 Displays contents of SYM2.
2/ 1 Displays contents of AC 2.
@LABL1(2)/ SYM1 DDT uses Y field only.
@LABL1 (2) <ESC>/ SYM3 <ESC> causes indexing and

indirection.

Note that DDT does not start a new line wunless you ¢type in <TAB>,
<RET>, <LF> or <BKSP>, or until the display wraps around the end of
the line, DDT also displays three spaces (or a tab, depending on the
TTY control mask) before and after its output. Thus, an actual DDT
terminal display might be the following (user input is lowercase; <LF>
and <TAB> do not appear on the screen, but are shown to indicate where
you pressed the corresponding keys):

2/ 1 labll/ SYM]1 <LF>

LABL1+1/ SYM2 <TAB>

syM2/ SYM3 sym4/ MOVE 1,@LABL1(2) <ESC><TAB>
SYM2/ SYM3

You can treat expr as an EFIW (extended format indirect word) and use

any indexing and indirection specified by expr to compute the (global)

effective address of the location to be opened. Use the command form
{expr}<ESC><ESC>c

where ¢ is /, [, 1, ', \, or <TAB>.

DISPLAYING AND MODIFYING MEMORY

4.5 DISPLAYING ASCIZ STRINGS
You can display memory as an ASCIZ string. The command
addr<ESC>0T

where addr defaults to the open location (if there is one, otherwise
addr defaults to the current location), displays memory, beginning
with addr, as an ASCIZ string. The display stops when DDT finds a
zero byte, or when you type in any character, which DDT displays, but
otherwise ignores. The current location remains unchanged.

4.6 ZEROING MEMORY

To deposit the same value in each of a string of memory 1locations
(useful for initializing memory to zero), type in

addrl<addr2>{expr}<ESC>2Z

where expr is any legal DDT expression, addrl is the first word to
receive expr, and addr2 is the last., Follow addrl with a left angle
bracket (<) and addr2 with a right angle bracket (>). Both addrl and
addr2 are required. If you omit expr, it defaults to zero. Prior to
execution, DDT enters the address of the current 1location on the
location sequence stack and closes the open location. When DDT has
completed execution of the command, the current location is the word
at addr2. There is no open location. This command restores the
prevailing display mode.

If you type in
?
while DDT is executing the <ESC>Z command, DDT displays

Depositing: addr/ value

where addr is the location where DDT will make the next deposit, and
value is the contents of addr before the deposit.

If you type in any other character, DDT stops executing the <ESC>Z
command, and waits for your next command. The current location is the
last memory location that received a deposit. There 1is no open
location. The character that you type in to terminate the <ESC>2Z
command is otherwise ignored.

DISPLAYING AND MODIFYING MEMORY

4.7 AUTOMATIC WRITE-ENABLE

If you attempt to deposit a wvalue in a location that is
write-protected, DDT returns the message

?NOT WRITABLE
This is the TOPS-20 default condition.
To allow DDT to modify write-protected memory, type in
<ESC>{0}W
If you now attempt to deposit a value in a location that Iis
write-protected, DDT removes the protection, deposits the value, and
then reinvokes the protection.
Note that you cannot use this command to enable patching in FILDDT.
To prevent DDT from modifying write-protected memory, type in
<ESC><ESC>{0}W
The zero in the above commands is optional and has no effect on the

operation of the commands. DDT allows the zero for compatibility with
prior versions of DDT.

4.8 AUTOMATIC PAGE CREATION

If you attempt to deposit a value in a location within a nonexistent
page, DDT creates the page and deposits the value. If you attempt to
deposit a value within a nonexistent section, DDT creates the section
as well as the page. This is the default condition.

To prevent DDT from creating a page when you attempt to deposit a
value within a nonexistent page, type in

<ESC><ESC>1W

If you now attempt to deposit a wvalue in a location within a
nonexistent page, DDT returns the error message

CAN'T CREATE PAGE

To allow DDT to create the page (and the section, as required) when
you attempt to deposit a value within a nonexistent page, type in

<ESC>1W

DISPLAYING AND MODIFYING MEMORY

4.9 PAGE ACCESS

You can get information about the access requirements of pages and
sections 1in the program you are debugging. This information is
similar in form and content to the information produced when you use
the TOPS-20 INFORMATION (ABOUT) MEMORY-USAGE command.

The command syntax is
{{argl<}arg2}{<ESC>}<ESC>L

where argl and arg2 are section numbers. Using one <ESC> causes DDT
to display access information about the section and about individual
pages. Using <ESC> twice causes DDT to display access information
only about the section(s). If you include both argl and arg2, DDT
displays the information for all sections that your program and DDT
are using, in the range argl to arg2, inclusive. If you include only
arg2, DDT displays access information for that section only. If you
omit both argl and arg2, DDT displays access information for all
sections that your program and DDT are using.

For example, the command <ESC>L might produce the following display:

Section 0 Read, Write, Execute, Private
000-012 Read, Copy-on-write, Execute
014-025 Read, Copy-on-write, Execute
770 Read, Execute
771 Read, Write, Execute, Private

Section 37 Read, Write, Execute, Private
700-701 Read, Copy-on-write, Execute
703-727 Read, Copy-on-write, Execute
736-737 Read, Write, Execute, Private
740-753 Read, Execute

The command <ESC><ESC>L might produce the following display:

Section 0 Read, Write, Execute, Private
Section 37 Read, Write, Execute, Private

The text for each kind of access is:

Text Explanation
Read page is readable
Write page is writable
Copy-on-write page is copy-on-write
Execute page is executable
Private page is private
Zero page is allocated but zero (FILDDT only)

See the SET PAGE-ACCESS command in the TOPS-20 Commands Reference
Manual for more information about access to pages.

DISPLAYING AND MODIFYING MEMORY

4.10 WATCHING A MEMORY LOCATION

If you wish to have DDT monitor or "watch" a memory Jlocation while
your program is running, and display the 1location whenever its
contents change, type in

addr<ESC>V

where addr is the address of the location to be watched, and defaults
to the current location. When you type in the command, DDT starts a
new line and displays

ADDR/ VALUE

where ADDR is the address of the location being watched, and VALUE is
the contents of the 1location. DDT displays VALUE in the current
display mode. This command restores the prevailing display mode when
you terminate the watch.

DDT checks ADDR every "jiffy" (about 20 milliseconds), and displays
the address and contents of ADDR whenever those contents change.
(Executive mode EDDT and KDDT watch ADDR continuously.)

If you type in a question mark (?) while DDT is watching, DDT displays
Watching: ADDR/ VALUE

where ADDR is the address of the location being watched, and VALUE 1is
the contents of ADDR.

To terminate the watch, type in any other character. DDT stops
monitoring the 1location, starts a new display 1line, echoes the
character you type in, starts another line, and waits for more input.
The character that vyou type in to terminate the watch is otherwise
ignored.

Because any input character terminates the watch, you cannot continue
execution and watch vyour own user program. The <ESC>V command is
useful to watch activity in a separate process (such as the running
monitor or other job, for which you must be using EDDT, MDDT, or
FILDDT). The page that contains the location you wish to watch must
be mapped into your own process (the one that contains DDT and your
program) .

DISPLAYING AND MODIFYING MEMORY

4.11 TTY CONTROL MASK

You can control certain aspects of DDT's display by setting DDT's TTY
control mask. The command <ESC>1M returns a value that is the address
of the DDT location that contains this mask. Table 4-5 summarizes the
features controlled by the bits in the TTY control mask.

Table 4-5: TTY Control Mask

Bit Value Effect

16 0 When interrupting program execution at a
breakpoint, DDT displays the address and contents
of the breakpoint (default).

1 When interrupting program execution at a
breakpoint, DDT displays only the address of the
breakpoint.

17 0 DDT displays 3 spaces when spacing output (1).
1 DDT displays output fields at tab stops (1l).

34 0 The téfminal does not have a tab mechanism (2).
1 The terminal has a tab mechanism (2).

35 0 DDT echoes deleted characters (3).
1 DDT backspaces over deleted characters (3).

(1) If bit 17 is zero (default), DDT displays 3 spaces between
output fields (such as between the address of a location
and the contents of the 1location), and at the end of
display lines. If bit 17 is set, DDT lines up the output
fields in columns beginning at tab stops (see bit 34).

Figure 4-1 illustrates the two different modes.

(2) If bit 34 is set, DDT displays a tab character (<CTRL/I>)
between fields. If bit 34 is zero, DDT displays enough
spaces to start the field at the next tab stop. When
starting up, DDT checks whether your terminal can handle
TAB characters (<KCTRL/I>), and sets this bit accordingly.

(3) When starting up, DDT checks whether vyour terminal can
backspace to delete characters, and sets this bit
accordingly.

To change the settings of the TTY control mask, use the command
expr<ESC>1M

where expr evaluates to the required bit pattern.

You can also open the location addressed by <ESC>1M with one of the

DDT display commands, and deposit an expression that contains the new
bit settings.

DISPLAYING AND MODIFYING MEMORY

Figure 4-1 is an illustration of the effects of bit 17 1in the TTY
control mask. The code being examined 1is the first few lines of
X.MAC, listed in Figure 2-1. The example is not a complete debugging
session; only enough is shown to illustrate the effects of bit 17 of
the TTY control mask. The numbers at the left of the DDT display
lines are to assist you in following the commentary below., User input
is in lowercase.

Line Screen Display

1 DDT .

2 start/ MOVE P, PWORD X$: .$b $9

3 $1B>>START/ MOVE P, PWORD $x

4 P/ -10,,STACK PWORD/ -10, ,STACK

5 START+1/ MOVEI IDX,TABLE1l $x

6 IDX/ TABLEl TABLEl $lm/ 2 1,,2

7 start$g

8 $1B>>START/ MOVE P, PWORD Sx

9 P/ -10,,STACK PWORD/ -10,,STACK

10 START+1/ MOVEI IDX,TABLEl $x

11 IDX/ TABLE1l TABLEl

Commentary

Line 1:
DDT is loaded and waiting for a command.

Line 2:
Type in start/ to examine location start.
Type in x<ESC>: to open the symbol table for module X.
Type in .<ESC>b to set breakpoint at location START.
Type in <ESC>g to begin execution.

Line 3:
DDT displays breakpoint information.
Type in <ESC>x to execute the next instruction.

Line 4:
DDT displays results of executing the instruction.

Line 5:

DDT displays the next instruction.

Type in <ESC>x to execute the instruction.

DISPLAYING AND MODIFYING MEMORY

Line 6:
DDT displays the results of executing the instruction.
Type in <ESC>1m/ to display and open the TTY control mask.
DDT