
TOPS-20
DDT Manua~
AA-M273A-TM

May 1985

This manual describes the use of TOPS-20 DDT, the Dynamic
Debugging Tool for MACR0-20 programs.

This is a new document.

OPERATING SYSTEM: TOPS-20 V6.1

SOFTWARE: DDT V43

Software and manuals should be ordered by title and order number. In the United States. send orders
to the nearest distribution center. Outside the United States. orders should be directed to the nearest
DIGITAL Field Sales Office or representative.

Northeast/MId-Atlantic Region Central Region Western Region

Digital Equipment Corporation
PO Box CS2008
Nashua, N'9W Hampshire 03061
Telephone:(603)884-6660

Digital Equipment Corporation Digital Equipment Corporation
Accessories and Supplies Center Accessories and Supplies Center
1050 East Remington Road 632 Caribbean Drive
Schaumburg, Illinois 60195 Sunnyvale, California 94086
Telephone:(312)64D-5612 Telephone:(408)734-4915

First Printing, May 1985

© Digital Equipment Corporation 1985. All Rights Reserved.

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

~DmDD~DTM
DEC MASSBUS RSX
DECmate PDP RT
DECsystem-10 P/OS UNIBUS
DECSYSTEM-20 Professional VAX
DECUS Q-BUS VMS
DECwriter Rainbow VT
DIBOL RSTS Work Processor

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in preparing future
documentation.

PREFACE

CHAPTER 1

1. 1
1.2

CHAPTER 2

CHAPTER

CHAPTER

CHAPTER

2.1
2.2
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.4
2.5

3

3.1
3.2
3.2.1
3.2.2

4

4.1
4.1.1
4.1.2
4.2
4.3
4.4
4.4.1
4.4.2
4.4.3
4~5
4.6
4,.7
4,.8
4~9
4~10
4~11

5

501
502
5 .. 2.1
502.2
5 .. 2.3
5 .. 2.4
503
5,,4

CONTENTS

INTRODUCTION TO DDT

SYMBOLIC DEBUGGING ..
TOPS-20 VARIANTS OF DDT

GETTING STARTED WITH DDT

INTRODUCTION
LOADING DDT
BASIC FUNCTIONS

Error Conditions
Basic Concepts • • • •
Starting and Stopping the Program
Examining and Modifying Memory
Executing Program Instructions

A SAMPLE DEBUGGING SESSION USING DDT •
PROGRAMMING WITH DDT IN MIND • •

DDT COMMAND FORMAT

COMMAND SYNTAX • • • . • • . . • • • .
INPUT TO DDT • . . • • . . •

Values in DDT Expressions
Operators in DDT Expressions .

DISPLAYING AND MODIFYING MEMORY

· 1-1
• 1-2

• 2-1
• • 2-1
• • 2-2

• 2-3
• 2-4

• • 2-5
• • 2-6

. • •• 2-10
2-12
2-21

• • • . . . 3-1
• 3-2
• 3-2

· • 3-9

DISPLAY MODES .• . . • • • 4-1
Default Display Modes . 4-1
Selecting Display Modes . • . . • • 4-2

DISPLAYING EXPRESSIONS • • . 4-5
DISPLAYING BYTE POINTERS • . • . • • 4-6
DISPLAYING AND DEPOSITING IN MEMORY • . • • . 4-7

Commands That Use the Current Location ••.•• 4-9
Commands That Use the Location Sequence Stack 4-13
Commands That Use an Address Within the Command 4-17

DISPLAYING ASCIZ STRINGS • 4-26
ZEROING MEMORY • • . . •. • . . • 4-26
AUTOMATIC WRITE-ENABLE . . • • . . . 4-27
AUTOMATIC PAGE CREATION . . • . 4-27
PAGE ACCESS • . . • . . . 4-28
WATCHING A MEMORY LOCATION 4-29
TTY CONTROL MASK . • • • • 4-30

CONTROLLING PROGRAM EXECUTION

BEGINNING EXECUTION . • • . • •
USING BREAKPOINTS • • • • • . .

Setting Breakpoints •••••
proceeding from Breakpoints
Conditional Breakpoints
The "Unsolicited" Breakpoint

EXECUTING EXPLICIT INSTRUCTIONS
SINGLE-STEPPING INSTRUCTIONS

iii

• • • • . • 5-1
. . • • • • 5-1

. • • • . 5-4
. • 5-7
. . 5-9

5-10
5-11
5-12

5.5
5.6
5.7

CHAPTER 6

CHAPTER 7

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

CHAPTER 8

CHAPTER 9

9.1
9.2
9.2.1
9.2.2
9.2.3
9.2.4
9.2. 5

CHAPTER 10

10.1
10.2
10.3

CHAPTER 11

11.1
11.2

11.3

CHAPTER 12

12.1
12.2
12.3
12.3.1
12.3.2

12.4
12.5
12.5.1
12.5.2
12.6
12.7

CONTENTS

EXECUTING SUBROUTINES AND RANGES OF INSTRUCTIONS
SINGLE-STEPPING "DANGEROUS" INSTRUCTIONS
USER-PROGRAM CONTEXT •••••••••••••

SEARCHING FOR DATA PATTERNS IN DDT

MANIPULATING SYMBOLS IN DDT

5-14
5-16
5-17

OPENING AND CLOSING SYMBOL TABLES
DEFINING SYMBOLS • • • • •
KILLING SYMBOLS • • • • •

. 7-1
• • • • • 7- 2

• • • 7-2
SUPPRESSING SYMBOL TYPEOUT •• • • • 7-3
CREATING UNDEFINED SYMBOLS • 7-3
SEARCHING FOR SYMBOLS • • • • • 7-4
LISTING UNDEFINED SYMBOLS
LOCATING SYMBOL TABLES WITH PROGRAM DATA

• 7-4
VECTORS • 7-5

INSERTING PATCHES WITH DDT

FILDDT

INTRODUCTION • 9-1
USING FILDDT ••••• 9-2

FILDDT Commands • 9-3
Symbols ••.• ••• 9-3
Commands to Establish Formats and Parameters •• 9-4
Commands to Access the Target and Enter DDT •• 9-5
Exiting FILDDT •••.••••••••••••• 9-8

PRIVILEGED MODES OF DDT

MDDT •
KDDT ..
EDDT .

PHYSICAL AND VIRTUAL ADDRESSING COMMANDS

10-2
10-3
10-4

INTRODUCTION • • • • • • • • • • • • • • • • •• 11-1
COMMANDS THAT SWITCH BETWEEN PHYSICAL AND VIRTUAL
ADDRESSING • • • • • • • • • • • • • • • • 11-2
COMMANDS THAT CONTROL VIRTUAL ADDRESSING • • •• 11-3

EXTENDED ADDRESSING

LOADING DDT INTO AN EXTENDED SECTION •
EXAMINING AND CHANGING MEMORY • • • • • • •
BREAKPOINTS • • . • • • • . • • • . . • • •

The Breakpoint Block •••••••••.•••
Enabling and Disabling Inter-section
B rea k po i n t s • . • • • • • • • • • • • • • • •

DISPLAYING SYMBOLS IN NONZERO SECTIONS • • • • •
DEFAULT SECTION NUMBERS • • • •

Permanent Default Section ••• ~

Floating Default Section.
EXECUTING SINGLE INSTRUCTIONS
ENTERING PATCHES IN EXTENDED SECTIONS

iv

12-1
12-1
12-2
12-2

12-2
12-4
12-5
12-5
12-6
12-8
12-8

CONTENTS

APPENDIX A ERROR MESSAGES

GLOSSARY

INDEX

FIGURES

TABLES

2-1 Sample Program X.MAC . • • • • . . • • . • 2-12
2-2 Annotated Debugging Session . • • • • • • 2-19
2-3 Terminal Display of Debugging Session 2-20
4-1 DDT Session Showing Columnar Output with

Commentary • • • • • • • • • • • • • . 4-32
8-1 Annotated Patching Session • • • • • . .. •• 8-4
8-2 Terminal Display of patching Before an Instruction 8-5
8-3 Terminal Display of patching After an Instruction 8-5

3-1
3-2
4-1
4-2
4-3
4-4
4-5
5-1
5-2

Commands That Return Values ••••
Effects of Operators When Evaluating
Evaluation of Symbolic Display Mode
DDT Display Modes • • • . • • •
Commands to Display Expressions
DDT Commands to Display Memory •
TTY Control Mask • • • • • • • •
Breakpoint Locations of: Interest
User-Program Context Values

v

• • • • • • • 3- 3
Expressions • 3-9

• 4-1
4-4

• 4-6
· 4-9
4-30

. • • • • 5- 3
5-18

PREFACE

MANUAL OBJECTIVES AND AUDIENCE

This manual explains and illustrates the features of TOPS-20 DDT, the
debugger for MACRO-20 programs. Although TOPS-20 DDT can be used to
debug the compiled code of programs written in higher-level languages,
this manual illustrates only the use of TOPS-20 DDT to debug programs
written in MACRO-20.

This manual is both an introduction to the basic functions of TOPS-20
DDT and a reference guide to all TOPS-20 DDT commands and functions.

This manual assumes that the reader is familiar with TOPS-20, has done
some programming in MACRO-20, and is familiar with the format of
MACRO-20 instructions.

STRUCTURE OF THIS DOCUMENT

This manual has 12 chapters, one appendix, and one glossary.

• Chapter 1 introduces the concept of symbolic debugging and
describes the variants of TOPS-20 DDT.

• Chapter 2 describes loading TOPS-20 DDT
discusses basic TOPS-20 DDT commands,
sample debugging session.

with
and

your program,
illustrates a

• Chapter 3 explains the syntax of a DDT command. Chapter 3
also describes expressions to enter data and explains how
TOPS-20 DDT evaluates expressions.

• Chapter 4 discusses how to examine and modify a program using
TOPS-20 DDT.

• Chapter 5 describes the use of TOPS-20 DDT to control program
execution: how to start, stop, and monitor the running of a
program.

• Chapter 6 explains how to perform searches of a program's
address space using TOPS-20 DDT.

• Chapter 7 discusses the manipulation of program symbols using
TOPS-20 DDT.

vii

PREFACE

• Chapter 8 describes how to use the TOPS-20 DDT patching
function to insert and test a new series of instructions in
your program without reassembling the program.

• Chapter 9 describes the use of FILDDT~

• Chapter 10 describes the use of the privileged DDTs; KDDT and
MDDT.

• Chapter 11 describes special-use commands that control
physical and virtual addressing. These commands are useful
primarily when running EDDT and FILDDT.

• Chapter 12 describes commands that are used when debugging
programs that use extended addressingy

• Appendix A explains DDT and FILDDT error messages.

• The glossary defines important TOPS-20 DDT terms.

OTHER DOCUMENTS

Other documents to which the reader should have access are:

• MACRO Assembler Reference Manual

• TOPS-20 LINK Reference Manual

• TOPS-20 Commands Reference Manual

• DECsystem-IO/DECSYSTEM-20 Processor Reference Manual

• TOPS-IO/TOPS-20 RSX-20F System Reference Manual

CONVENTIONS

The following conventions are used in this manual in the description
of DDT commands and concepts.

{ }

• (period)

addr

c

expr

filnam

Curly brackets (braces) indicate that the
enclosed item is optional .

The address contained in DDT's location counter;
called the current location.

also

A symbolic location within a program, a
absolute address in memory, an AC, or ".",
loaation.

symbolic or
the current

A single ASCII or SIXBIT character.

Any expression that is legal in DDT.

One or more components of a file specification.

viii

instr

PREFACE

Any instruction in the PDP-IO (KLIO) machine
instruction set.

location sequence stack

n

page

symbol

text

word

<ESC>

<ESC><ESC>

<CTRL/X>

<BKSP>

<LF>

<RET>

<TAB>

A circular stack of memory locations that is used to
store the addresses of certain previously referenced
locations.

A numeric argument.

A page in memory. A page equals 512 words of memory.

A symbol name of up to 6 RADIX50 characters.

Any string of ASCII or SIXBIT characters.

Any 36-bit value occupying one word of memory.

Represents pressing the ESCAPE or ALTMODE key once.

Represents pressing the ESCAPE or ALTMODE key twice.

Represents pressing a key (represented by X) at the
same time as you press the key labeled CTRL.

Represents pressing the BACKSPACE key or <CTRL/H>.

Represents pressing the LINE FEED key.

Represents pressing the RETURN key.

Represents pressing the TAB key or <CTRL/I>.

Numbers are in octal radix unless otherwise specified.

ix

PREFACE

Examples of interaction between the user and DDT show user input in
lowercase and DDT output in uppercase.

The symbols <BKSP), <CTRL/x), <ESC), <LF), <RET), and <TAB) always
represent user input.

NOTE

The descriptions of many DDT commands
list the actions and effects of those
commands. The actions and effects may
not occur in precisely the order
specified, but this has no effect on the
results.

x

CHAPTER 1

INTRODUCTION TO DDT

DDT is a utility program for debugging MACRO-20 programs. This manual
describes how to use DDT.

1.1 SYMBOLIC DEBUGGING

It is sometimes difficult to understand precisely the operation of a
program by reading the source code. DDT is a tool for interactively
examining the operation of a MACRO-20 program while it is running.
DDT is useful for finding programming errors (bugs) in programs that
do not run correctly. You can also use DDT to analyze the flow of
control in a program that is to be revised or rewritten.

With DDT, you can interrupt the execution of your program at locations
(breakpoints) you choose, and then examine and modify the program's
address space as required. You can execute instructions one-by-one to
check whether the effect of each instruction is what is intended. You
can then set other breakpoints in your program before continuing
execution.

When you refer to program locations and values, DDT allows you to use
the symbols that are defined in the program rather than absolute
values and addresses. This makes it much easier to refer to the
source listing and to find specific locations in memory.

After modifying the program's instructions or data, you can exit DDT
and save (with the EXEC's SAVE command) the changed version of the
program for further testing.

1-1

INTRODUCTION TO DDT

1.2 TOPS-20 VARIANTS OF DDT

There are several variants of DDT, each useful under specific
circumstances or for specific tasks.

The variants of TOPS-20 DDT are:

• EDDT

• FILDDT

• KDDT

• MDDT

• RDDT

• SDDT

• UDDT

• XDDT

EDDT is used to debug programs that run in executive mode (such as
BOOT), and is described in Chapter 10.

FILDDT is used to examine and patch disk files and structures. You
can also use FILDDT to examine the running monitor. FILOOT is
described in Chapter 9.

KDDT is used to debug and patch monitor .EXE files and the running
monitor, and is described in Chapter 10.

MDDT is used to debug and patch the running monitor, and is described
in Chapter 10.

RDDT is a relocatable variant of DDT that can be used to debug
programs in user mode. If your program is in memory (and has been
loaded with RDDT as below), you invoke RDDT by typing in (at TOPS-20
command level):

START

You load RDDT with your program by running LINK as follows:

@LINK
*MYPROG,SYS:RDDT.REL/GO

where MYPROG is the name of your program. Loading RODT.REL with your
program does not prevent you from using other LINK features. You must
load RDDT.REL last, or its start address is lost. ROOT.REL is useful
in situations where you do not wish to have DOT loaded at its default
location.

This example shows only the minimal steps required to load the
relocatable DOT with your program. See the LINK Reference Manual for
further information about using LINK.

1-2

INTRODUCTION TO DDT

SOOT is a "stub" that places XODT in its own section, with system
symbols defined as in MONSYM and MACSYM. SDDT is the DDT variant
invoked when, at TOPS-20 command level, you type in

SODT

SOOT exists so that typing in SDDT will invoke DOT version 43 in the
same manner as previous versions.

UOOT is a "stub" that resides in your user program's section if the
program has a TOPS-IO-style entry vector and the program entry vector
is in section zero. This is done for compatibility with programs that
use locations 770000, 770001 and 770002. If you load a program in
section zero and the program has a TOPS-IO-style entry vector, when
you use the OOT command, the EXEC loads the UOOT stub into your
program's section at address 770000. UDDT then loads XDDT into the
highest-numbered free (nonexistent) section (if XDDT is not already
loaded), and starts XDDT.

XOOT is the OOT variant normally used to debug user programs. If you
load your program in a nonzero section or the program does not have a
TOPS-IO-style entry vector, the DDT command causes the EXEC to load
XDOT directly into the highest-numbered free section. XDDT is also
invoked by the SDDT and UOOT stubs. If you type in XDDT while at
TOPS-20 command level, the EXEC loads XDDT into section zero, with
system symbols defined.

1-3

,

CHAPTER 2

GETTING STARTED WITH DDT

2.1 INTRODUCTION

This chapter describes how to load DOT with your progr~ffl and shows how
to perform basic DDT functions. It than illustrateq a sample session
debugging a simple MACRO-20 program usin9 basic DDT fynctions. You
can debug programs using only the OPT commands ~@§cribed in this
chapter. Once you are familiar with th~se commands, YQY may wish to
learn how to use the commands and functions descrig@g jn the rest of
the manual to perform more sophisticated debugging.

The commands used in this chapter are described only in sufficient
detail for the debugging task being performed; ell commands are
thoroughly described in Chapters 3 throU9h 12 of this dgcument.

The best way to learn is by doing. y~y will learn th@ commands and
techniques discussed in this manual if you use them 95 you read about
them. If you have a MACRO-20 program th~t you wish tQ ~~bug, use it
to practice the commands discussed here. If not, type in the program
X.MAC listed in Figure 2-1.

2.2 LOADING DDT

If your program is already in memory
using LINK or the GET command), load
If you have run your program, and
abnormally, you can also use the DDT
loaded, it displays

DDT

on your terminal.

2-1

(for example, qe a result of
DDT with the TOP$~20 DDT command.
it has terminat~d normally or
CQmmand to load OPT. When DDT is

GETTING STARTED WITH DDT

2.3 BASIC FUNCTIONS

You must be able to perform certain basic functions to debug a program
interactively. Basic DDT functions are:

• accepting your commands

• deleting incorrect commands

• starting the program

• stopping the program at specified locations

• examining and modifying memory

• executing program instructions one at a tim~

• continuing execution of the program

• exiting DDT

You give commands to tell DDT what functions to perform. DDT does not
wait for a line terminator (such as a carriage return) to indicate the
end of your command. Instead, DDT reads your commands character by
character as you type them in. When you type in a DDT command, you
almost never have to press the RETURN key. This manual explicitly
indicates the occasions when a command requires you to press the
RETURN key.

NOTE

You must press the ESCAPE key as part of
typing ln many DDT commands. This
manual uses the symbol <ESC> to indicate
where you press the ESCAPE key. When
you press the ESCAPE key, DDT displays a
dollar sign ($) on the screen. DDT
never displays <ESC> when you press the
ESCAPE key.

NOTE

This manual uses the character sequences
<BKSP>, <ESC>, <LF>, <RET>, and <TAB> as
symbols to indicate where you press the
BACKSPACE, ESCAPE, LINE FEED, RETURN,
and TAB keys, respectively. This manual
also uses the symbol <CTRL/X> to
indicate where you simultaneously press
the CONTROL key and the key indicated by
X. These symbols ALWAYS indicate where
you press the keys noted here. You
NEVER type the individual characters
<BKSP>, <ESC>, <LF>, <RET>, <TAB>, or
<CTRL/X> , to type --rn-a DDT comma-ncr:-

2-2

GETTING STARTED WITH DDT

Your commands appear on the screen as you type them. Use the DELETE
key to delete partially typed-in commands character by character. If
you try to delete more characters than you have typed in, DDT displays

xxx

and waits for your next command.

You can delete an entire command line with <CTRL/U>.
<CTRL/U> DDT displays

XXX

To exit DDT, press

<CTRL/Z>

When you type

The other basic DDT functions are described in the rest of this
chapter.

2.3.1 Error Conditions

If DDT cannot execute a command, it displays a message to let you
know. The message may be only a single character (such as M or U, for
Multiply-defined symbol or Undefined symbol), a question mark (?), or
a complete message string: For most errors, DDT also sets a pointer
to the error string, so that if DDT does not display it, you can type
in a command to display the error string. You can display the error
string at any time before another error occurs, at which time DDT
updates the pointer (to point to the new error string). To display
the error string produced by the last DDT error, type in

<ESC>?

(press the ESCAPE key, followed by a question mark). You can also
display the last TOPS-20 process error. To do this, type in

<ESC><ESC>?

(press the ESCAPE key twice, followed by a question mark) •

See Appendix A (Error Messages) for more information about DDT error
messages and commands to give information about error conditions.

2-3

GETTING STARTED WITH DDT

2.3.2 Basic Concepts

A very important DDT concept is that of the current location. The
current location is a memory location that you have referenced, either
implicitly or explicitly, with your last command, and that is the
default point of reference of your next command. You can think of the
current location as the location "where you are." The 'symbol "It

(period) refers to the address of the current lo~ation, and can be
used as an argument in DDT commands.

The location counter is a DDT pointer that contains the address of the
current location. The location counter performs a function similar to
that of a bookmark. Some DDT commands display the contents of a
specific location but do not change the address of the current
location, in order to maintain a specific point of reference for your
next command. Most DDT commands change the address of the current
location, and therefore also change the location counter. The
commands that do not change the current location are so indicated.

The open location is a memory location that you can modify with your
next command. DDT "opens" a location as a result of most commands you
give to examine or modify memory. These commands often also change
the current location to the word that is "opened", so that the open
location is usually also the current location. There is never more
than one location open at any given time.

To find the symbolic address of the current location, type in

(a period followed by an underscore)

This causes DDT to display the following:

ADDRl+n

where ADDRI is a label defined in your program, and n is the offset of
the current location from that label (if the current location is
ADDRl, DDT does not display +0) •

Another important DDT concept is that of the current quantity. This
is a value that represents the contents of the last word that DDT
displayed, or the value that you last deposited in memory. The
current quantity is the most recent of those values. Many DDT
commands take arguments that default to the current quantity.

The location sequence stack is a DDT storage area for the addresses of
previous current locations. Certain DDT commands that change the
current location store the address of the current location on the
location sequence stack. Other DDT commands change the address of the
current location to an address that has already been stored on the
location sequence stack. The location sequence stack functions
similarly to inserting place-markers in a source code listing, in
order to return to prior references.

2-4

GETTING STARTED WITH DDT

2.3.3 Starting and Stopping the Program

When your program is loaded and DDT is ready to accept your commands,
as indicated by DDT appearing on the terminal display, you can begin
execution of your program at its start address by typing in

<ESC>G

Unless you set one or more breakpoints before you start the program,
your program runs either to completion or until it commits a fatal
error. A breakpoint is a memory location in a program's executable
code that has been modified so that if the program attempts to execute
the instruction at that location, control passes to DDT before the
instruction is executed.

The command to set a breakpoint is

addr<ESC>B

where addr is the address at which to stop execution. If the
user-program PC reaches addr, DDT interrupts execution of the program
before the program executes the instruction at the specified address.
When DDT interrupts program execution at a breakpoint, DDT opens the
breakpoint, and the breakpoint becomes the current location.

While program execution is stopped at a breakpoint, you can display
and change the contents of instruction and data words, remove
breakpoints, set new breakpoints, and execute instructions one at a
time (single-step) • As you examine memory, you may find an
instruction that is incorrect, and modify it. You can also examine
and modify data words in memory. After modifying incorrect
instructions and data in memory, you can immediately execute the
instructions to check the effects of the modifications, without having
to reassemble the source code.

Once you have made your changes, you can continue program execution at
the place where execution was interrupted, restart the program at the
beginning, or start execution at any other location you choose. The
program will run to completion unless it reaches a breakpoint or
commits a fatal error.

2-5

GETTING STARTED WITH DDT

2.3.4 Examining and Modifying Memory

One command you can use to examine memory is

addrl

where addr is the address of the memory word you wish to examine
(display), and can be numeric or symbolic. DDT displays the contents
of the word located at addr. If the opcode field (bits 0-8) of the
memory word matches a recognized instruction or user-defined OPDEF,
DDT displays the contents of addr as an instruction (or OPDEF). If
DDT finds (in the symbol table) any of the values to be displayed, DDT
displays those symbols rather than the numeric values. For example,
either of the following display lines might appear on your terminal,
depending on the address and contents of the word:

ADDRll MOVE 2,SYMl

ADDRl+51 SYMl"SYM2

where ADDRl, SYMl, and SYM2 have been defined in the program.

If you type in a symbol that DDT does not find in the symbol table,
DDT sounds the terminal buzzer or bell, and displays U on the screen.
If you type in a symbol that is defined as a local symbol in more than
one module, DDT sounds the terminal buzzer or bell and displays M.
You can eliminate the multiply-defined symbol problem by "opening" tEe
symbol table of the module in which the correct symbol is defined.
See Chapter 7 (Manipulating Symbols in DDT) for more informatiDn.

When searching for a symbol to display, DDT uses global symbols in
preference to local symbols. However, DDT searches the "open" symbol
table first, and treats local symbols found in the open symbol table
as global symbols. If DDT finds only a local symbol that is not in
the open symbol table, DDT appends a number sign (#) to the symbol
when displaying it. For example, DDT might display

ADDRI MOVE 2,SYMI#

See Chapter 7 (Manipulating Symbols in DDT) for more information on
symbols and symbol tables.

The command addrl changes the current location to addr and opens the
word at addr. If you omit addr from an examine-memory command, such
as addr/, DDT uses the current quantity to determine the address of
the location to display. For example, after DDT displays the contents
of ADDRI+5 as above, if you type in I, DDT displays the contents of
the word located at SYM2. The display line then appears:

ADDRI+51 SYMI"SYM2 I VALUE

where VALUE is the contents of the word located at SYM2. By default,
DDT displays VALUE symbolically if it can.

The command I by itself (without addr) does not change the current
location. Both forms of the I command open the location displayed,
enabling you to modify the location with your next command.

2-6

GETTING STARTED WITH DDT

Another very useful command for examining memory is <TAB>. This
command changes the current location to addr (whether given or
defaulted), opens the location at addr, and changes the current
quantity to the contents of addr. <TAB> also starts a new display
line before displaying the contents of addr, making the display easier
to read. For example, if you type in <TAB> after DDT displays the
address and contents of ADDRI+5 (as above) on your terminal, the
terminal display appears:

ADDRl+51 SYMI"SYM2
SYM21 VALUE

<TAB>

where VALUE is the contents of the word located at SYM2. The current
location is SYM2, which is open. «TAB> does not appear on the
screen, but is shown above to indicate where you press the <TAB> key.)

<TAB> also stores the address of the current location (ADDRI+5) on the
location sequence stack before changing the current location to the
location just displayed (SYM2). DDT uses the location sequence stack
to "remember" previous values of the location counter. To "get back"
to the previous current location, type in

<ESC><RET>

In the above example, after you press <TAB> at ADDRl+5, DDT displays
the contents of SYM2 and changes the current location to SYM2. When
you type in <ESC><RET>, DDT changes the current location to ADDRl+5,
opens the location at ADDRI+5, and again displays the contents of
ADDRI+5. The terminal display then appears as follows:

ADDRI+51 SYMI"SYM2 <TAB>
SYM21 VALUE <ESC><RET>
ADDRI+51 SYMI"SYM2

If you use the command addr<TAB>, DDT deposits addr in the open
location (if there is one) and closes the location before opening the
location at addr and displaying its contents. <TAB> by itself does
not deposit anything, but does save the current location on the
location sequence stack, making <TAB> more useful than I, depending on
what you do next.

2-7

GETTING STARTED WITH DDT

You can display and open the word after the current location by typing
in

<LF>

DDT changes the current location to the next word in memory, starts a
new line, displays the address of the (new) current location, displays
the contents of the current location, and opens the current location.
DDT displays the address as a symbol or a symbol plus an offset, if it
can find a corresponding symbol in the symbol table. For example, to
display the next word in memory after ADDRI+5, type in

<LF>

DDT changes the current location to ADDRI+6, starts a new line, and
displays the address and contents of ADDRI+6. The screen display then
appears as follows:

ADDRI+5/
ADDRI+6/

SYMI"SYM2
-1"SYM3

<LF>

Note that DDT does not display the characters <LF>.
affect the location sequence stack.

<LF> does not

Typing in another <LF> causes DDT to display and open the next word.

To display and open the word previous to the current location, type in

<BKSP>

DDT changes the current location to the previous word, starts a new
line, displays the address and contents of the (new) current location,
and opens the current location. <BKSP> does not affect the location
sequence stack. DDT also displays

to indicate that you pressed <BKSP>. For example, if you type in
<BKSP> to open and display the word before ADDRI+5, the screen appears
as follows:

ADDRl+5/
ADDRI+4/

SYMI"SYM2
-3" SYM2

2-8

GETTING STARTED WITH DDT

To change the contents of the open location, type in

expr<RET>

where expr can be an instruction, a 8ymbol, or a numeric expression.
For example, if you type in the command LABL2/, DDT displays the
contents of the memory word at LABL2, and "opens" that word. If the
word at LABL2 contains

MOVE I,SYMI

and you wish to change SYMI to SYM2, type in

MOVE I,SYM2<RET>

DDT stores the new instruction in the location at LABL2 and "closes"
the location. DDT does NOT display <RET>. The terminal display
appears as follows (your input is in lowercase):

labl2/ MOVE I,SYMI move l,sym2<RET>

The current location is still LABL2, but there is no open location.
To check whether the instruction is now correct, you can type in

./

DDT displays the contents of the current location, and the screen
display now appears (your input is in lowercase):

labl2/ MOVE 1,SYMI
./ MOVE 1,SYM2

move I, sym2<RET>

After typing in a command to display and open a location, if you type
in

value<LF>

DDT stores the new value in the open location, as for value<RET>. DDT
then changes the current location to the next location in memory,
starts a new display line and displays the address and contents of the
(new) current location. DDT also opens the current location. The
example above would then appear as follows (your input is in
lowercase) ~

labl2/ MOVE 1,SYMl
LABL2+1/ CONTENTS

move 1,sym2<LF>

where CONTENTS is the value stored at LABL2+1.
opening a location, if you type in

value<BKSP>

Similarly, after

DDT stores the new value in the open location, and changes the current
location to the previous location in memory. DDT then starts a new
display line, displays the address and contents of the current
location, and opens the current location.

2-9

GETTING STARTED WITH DDT

2.3.5 Executing Program Instructions

When you have interrupted program execution at a breakpoint, you can
execute the next instruction by typing in

<ESC>X

DDT executes the instruction, displays the results of executing the
instruction, and displays the address and contents of the next
instruction to be executed. If you have not begun program execution
with the <ESC>G command, the <ESC>X command is illegal, and DDT
displays? and sounds the terminal buzzer or bell. <ESC>X changes
the current location to the next instruction to be executed. For
example, assume that the next instruction to be executed is located at
LABELl, which contains

MOVE I,VARIBL

If the word at VARIBL contains SYMl, when you type in <ESC>X,r DDT
starts a new line and displays

1/ SYMI VARIBL/
LABELl+l/ instr

SYMI

where instr is the contents of LABELl+l, and is the next instruction
to be executed. You can continue to execute instructions one at a
time by typing in successive <ESC>X commands. This is known as
single-stepping.

If instr is a call to a subroutine, such as

PUSHJ P,SUBRTN

you can execute the subroutine without
instruction in the subroutine. Type in

<ESC><ESC>X

single-stepping each

and DDT executes the subroutine. If the program does not commit a
fatal error before the user-program PC returns to a location +1, +2,
or +3 from the instruction that calls the subroutine, DDT displays the
address and contents of the location where the program returns and
waits for your next command. DDT also changes the current location to
the address of the next instruction to be executed. If the PC does
not return to a location +1, +2, or +3 from the instruction that calls
the subroutine, the program runs until it commits a fatal error, or
until it completes normally.

Because DDT controls the execution of each instruction, the subroutine
can take a long time to complete. You can check DDT's progress
through the subroutine by typing

?

DDT responds by displaying

Executing: ADDR/ INSTR

where ADDR is the address of the next instruction to be executed, and
INSTR is the instruction at ADDR.

2-10

GETTING STARTED WITH DDT

NOTE

If a subroutine begins at a location
that is +1, +2, or +3 from the
instruction that calls the subroutine,
DDT returns control to you at the first
instruction of the subroutine, without
executing the subroutine.

To continue execution of the program until the next breakpoint or
until proqram completion, type in

<ESC)P

DDT starts the program running again, beginning with the next
instruction to be executed. If you did not single-step any
instructions, the program begins by executing the instruction at the
breakpoint. If you have executed any instructions by single-stepping,
the! progrc3m continues where you stopped. The effect is as if the
program were running without DDT in control. If the program reaches a
breakpoint, DDT again interrupts execution. You can then examine and
modify memory, set and remove breakpoints, and continue execution.

I.

2-11

GETTING STARTED WITH DDT

2.4 A SAMPLE DEBUGGING SESSION USING DDT

This section describes a debugging session using DDT. The program
being debugged is X.MAC, shown in Figure 2-1. The program and the
sample session are for illustration only. There are many styles of
programming and debugging, and these examples are descriptive rather
than prescriptive in intent.

You will understand this section and learn the commands described more
easily if you type in the program listed in Figure 2-1 and use the
commands as they are described. The sample program in Figure 2-1 is
designed to pass the address of a table to a subroutine. The table
contains three elements. The subroutine is to add the first two
elements of the table and store the result in the third element before
returning to the main program. There are no input or output routines
in the program. The table is initialized using DDT, and the result is
checked while in DDT.

RO=O
IDX=6
P=l7
START: :

SEARCH MONSYM
TITLE X

P, PWORD
IDX,TABLEl
P,ADDEM
IDX,TABLE1

MOVE
MOVEI
PUSHJ
MOVEI
MOVE
JFCL
HALTF%
MOVE
ADD
MOVE
POPJ
BLOCK

RO, ANSWER (IDX)
o

ADDEM: RO,X(IDX)
RO, Y (lOX)
RO,ANSWER(IDX)

TABLE1:
x==o
Y==1
ANSWER==2
STKSIZ==10

P,
3

PWORD: IOWD STKSIZ,STACK
STACK: BLOCK STKSIZ

END START

Figure 2-1: Sample Program X.MAC

2-12

;ACO
; INDEX REGIS'l'ER
;STACK COUNTER
;Set up stack counter
;Address, of table with X & y
; Do the addi tion
;Address of table
;Answer to RO

;All done!
; Load X
;X + Y
;Store answer
;Return
i 3 words
;Offset for X
;Offset for Y
iOffset for answer
;Stack size
;Stack pointer
iStack

GETTING STARTED WITH DDT

Figure 2-2 is an annotated session debugging X.MAC, the program in
Figure 2-1. In the annotated session, the DDT terminal display is on
the left, user input is in the center in lowercase, and explanatory
comments about the session are on the right. This is not always the
way it appears on the terminal. Figure 2-3 shows the session as it
actually appears on the terminal.

Note that DDT does not display the AC field of an instruction if it is
zero. This means that if your program contains the instruction
MOVE RO,LABL1, where RO=O, DDT displays the instruction as MOVE LABLl.

NOTE

DDT does not display <LF>, <RET>, or
<TAB>. These are shown in the sample
session to indicate user input.

Screen Display

@

MACRO: X
program LINK: Loading
[LNKDEB DDT execution]

User Input

debug x<RET>

DDT displays the "DDT" prompt.

start/

MOVE P,PWORD'

<LF>

.JBDA+l/ MOVEI IDX,TABLEl#

2-13

Explanation

TOPS-20 prompt.

Begin the session by typing
in "debug x<RET>", where x
is the name of your MACRO
program.

MACRO reassembles your
(if needed), and LINK loads
your program with DDT. DDT

Begin examining code at
label "START".

DDT displays the instruction
at START.

Press <LF> to display the
next instruction.

The first symbol in this
program happens to coincide
with .JBDA, a JOBDAT symbol.
When DDT scans the symbol
table, it finds .JBDA before
it finds START, and displays
.JBDA instead. DDT still
accepts START as an input
symbol.

Also note the number sign
(#) appended to TABLEl and
PWORD. A number sign means
that PWORD and TABLEl are
local symbols that are not
in the open symbol table.

TABLE1/ a

TABLE1+l/ a

TABLE1+2/ a

GETTING STARTED WITH DDT

• j bd a < ESC> k

x<ESC>:

<TAB>

2<LF>

3<LF>

2-14

Type in .jbda<ESC>k to
suppress DDT typeout of
symbol .JBDA.' DDT will
display START rather than
.JBDA from now on. See
Chapter 7 (Manipulating
Symbols is DDT) for more
information.

Type in the module name (X)
followed by (ESC> and a
colon to open the symbol
table associated with X.
DDT will not append any more
n urn b e r s i g n s •

Press <TAB> to start a new
display line, evaluate the
current quantity as if it
were an instruction, and
display the contents of the
location addressed by the Y
field of the instruction.
(Typing in / (slash)
displays the same word as
<TAB>, but does not start a
new line.) <TAB> also saves
your place (like a bookmark)
on the location sequence
stack, so you can get back
here easily.

When you type in the (TAB>
command, DDT displays the
address and the contents of
the location. The first
element of the table
contains zero. The <TAB>
command also opens the
location.

Type in "2" followed by <LF)
to deposit the value "2" in
the first element, and to
open and display the second
element.

The second element contains
zero.

Type in "3" followed by <LF>
to deposit the value "3" in
the second element and open
and display the third
element. The addition to be
performed by the program is
2+3.

The third element (the
answer) contains zero.

START+l/

START+2/

GETTING STARTED WITH DDT

<ESC><RET> Press <ESC>, then press
<RET> to return to the
address you saved on the
location sequence stack with
the <TAB> command, above.

MOVEI IDX,TABLEl DDT displays the address and
contents of the last
location you displayed
before you typed in <TAB>.

<LF>

PUSHJ P,ADDEM

.<ESC>b

<ESC>g

Press <LF> to look at the
next location.

This is the call to the
subroutine that does the
computation.

Type in ".", press <ESC>,
and type in "b" to set a
breakpoint at the current
location.

Type in <ESC>g to start
program execution.

$lB»START+2/ PUSHJ P,ADDEM DDT displays the breakpoint
number, the address of the
breakpoint, and the
instruction at the
breakpoint. This
instruction has not yet been
executed.

<ESC><ESC>x

START+3/ MOVEI IDX,TABLEl

<ESC>x

IDX/ TABLEl TABLEl

2-15

Press <ESC> twice, then type
in "x" to let DDT execute
the subroutine.

DDT returns from the
subroutine at the next
instruction, and displays
the address and contents of
the instruction. If there
is a "skip return," DDT
displays "<SKIP>" if the
program skipped one
instruction. If the program
skips 2 or 3 instructions,
DDT displays "<SKIP n>",
where n is the number of
instructions skipped.

Press <ESC> and type in "x"
to execute the instruction.

DDT displays the address and
contents of IDX (the result
of executing the
instruction), and also
displays "TABLEl" (the
result of evaluating the
effective address of the
instruction) •

GETTING STARTED WITH DDT

START+4/ MOVE 2(IDX)

(ESC>(TAB>

TABLE1+2/ o

(BKSP>

TABLE1+l/ 3

(BKSP>

TABLE1/ 2

start(ESC>b

(ESC>g

$2B»START/ MOVE P,PWORD

(ESC>x

2-16

DDT then starts a new line
and displays the address and
contents of the next
instruction. Note that DDT
does not display the zero in
the AC field of the
instruction.

Press (ESC>, then (TAB) to
display the contents of the
location addressed by the
instruction, using any
indexing and indirection.
(If you omit (ESC>, DDT uses
only the Y field, without
indexing and indirection.)

The location addressed by
the instruction is TABLEl+2,
which contains zero. This
is the table element that
contains the answer, which
should be 5.

Press (BKSP> to see the
previous element in the
table (DDT echoes (BKSP> as
.. H) •

This element contains 3.
That is correct.

Press (BKSP> again to check
the previous element.

This element contains 2.
That is also correct. One
way to find the error is to
single-step through the
program $

Type in "start", press
(ESC>, and type in "b" to
set a breakpoint at the
beginning of the program.

Press (ESC> and type in "g"
to start the program again.

DDT displays the breakpoint
number, and the address and
contents of the instruction
at the breakpoint.

Press (ESC>, then type in
"x" to execute the
instr uct ion. Thi s
instruction moves a memory
word to a register.

P/

START+l/

lDX/

START+2/

P/

<JUMP>

ADDEM/

0/

ADDEM+l/

GETTING STARTED WITH DDT

-lO"PWORD PWORD/ -lO"PWORD

MOVEl lDX,TABLEl

<ESC>x

TABLEl TABLEl

PUSHJ P,ADDEM

<ESC>x

-7"STACK

MOVE 0 (lOX)

<ESC>x

2 TABLE1/ 2

ADD l(IDX)

(ESC>x

2-17

DDT displays the address and
new contents of the
register, and the address
and contents of the memory
word.

DDT then displays the
address and contents of the
next instruction.

Press (ESC>, then type in
"x" to execute this
instruction, which moves an
immediate value to a
register.

DDT displays the address and
new contents of the
register, and the immediate
val ue.

DDT then displays the
address and contents of the
next instruction. Note that
when you reach a breakpoint
by single-stepping, DDT does
not display the breakpoint
number.

Press (ESC>, then type in
"x" to execute the
instr uct ion.

DDT displays the address and
new contents of the stack
pointer used by the PUSHJ.

DDT displays "(JUMP>" if the
change in PC is less than
one or greater than 4.

DDT displays the address and
contents of the next
instruction to be executed.

Press (ESC> and type in "x"
to execute the instruction.

The instruction moved the
contents of the word at
TABLEl (which is 2) to ACO.

DDT displays the next
instruction.

Press (ESC> and type in "x"
to execute the instruction.

GETTING STARTED WITH DDT

0/ 5 TABLEl+l/

ADDEM+2/ MOVE 2(IDX)

0/ o TABLEl+2/

ADDEM+3/ POPJ P,O

ADDEM+2/ MOVE 2(IDX)

3

(ESC>x

o

(BKSP>

The instruction added the
contents of the word at
TABLEl+l (which is 3) to
ACO, which now contains 5.
OK.

DDT displays the next
instruction.

Press (ESC> and type in "x"
to execute the instruction.

The instruction moved the
contents of the word at
TABLEl+2 to ACO. The MOVE
instruction at ADDEM+2
should be MOVEM.

DDT displays the next
instruction (as a result of
the (ESC>x).

Press (BKSP> to display and
open the location with the
incorrect instruction.

DDT displays the previous
instruction. This is the
incorrect instruction.

movem rO,answer(idx)(RET>

. /

MOVEM 2 (IDX)

.(ESC>b

(ESC>g

$2B»START/ MOVE P,PWORD

(ESC>p

$lB»START+2/ PUSHJ P,ADDEM

(ESC>p

$3B»ADDEM+2/ MOVEM 2(IDX)

(ESC>x

2-18

Type in the new instruction
and press (RET> •

Check the current location
to see what you deposi ted '.

Looks OK.

Set a breakpoint at
current location.

" " . , the

Restart the program at the
beginning.

DDT displays the breakpoint
information.

Press (ESC> and type in "pH
to proceed from breakpoint 2
to the next breakpoint.

DDT displays the breakpoint
information.

Proceed from breakpoint 1.

DDT displays the breakpoint
information. This is the
instruction you changed.

Single-step the instruction
to watch what it does.

GETTING STARTED WITH DDT

0/ 5 TABLE1+2/ 5

ADDEM+3/ POPJ P,O

start+4<ESC>b

S4B»START+4/

<ESC>p

MOVE 2 (lOX)

<ESC>x

0/ 5 TABLE1+2/ 5

STAR'r+5/ JFCL 0

<CTRL/Z>

@

Figure 2·-2: Annotated Debugging Session

2-19

The instruction moves the
contents of ACO to the word
at TABLE1+2. OK!!

DDT also displays the
address and contents of the
next instruction.

Set a breakpoint at START+4
to check the results.

Proceed from breakpoint 3.

DDT displays the breakpoint
information.

Single-step the instruction.

The instruction moves the
contents of the word at
TABLEl+2 to ACO. The new
value of ACO is 5. OK!

DDT displays the address and
contents of the next
instruction.

Quit.

You are now back at TOPS-20
command level.

GETTING STARTED WITH DDT

Figure 2-3 shows the session as it actually appears on the terminal.
Again, user input 1S in lowercase. Comments on the right indicate
where you type in characters that do not echo.

Screen Display

@debug x
MACRO: X
LINK: Load i ng
[LNKDEB DDT execution]
DDT
start/ MOVE P,PWORD'
.JBDA+l/ MOVEI IDX,TABLEl
TABLEl/ 0 2
TABLEl+l/ 0 3
TABLEl+2/ 0 $
START+l/ MOVEI IDX,TABLEl
START+2/ PUSHJ P,ADDEM .$b
$lB»START+2/ PUSHJ P,ADDEM
START+3/ MOVEI IDX,TABLEl

IDX/ TABLEl TABLEl
START+4/ MOVE 2(IDX) $
TABLEl+2/ 0 ~H
TABLEl+l/ 3 ~H

.jbda$k

$g
$$x

$x

TABLEl/ 2 start$b $g
$2B»START/ MOVE P,PWORD

P/ -lO"PWORD PWORD/
START+l/ MOVEI IDX,TABLEl

$x
-lO"PWORD
$x

lDX/ TABLEl TABLEl
START+2/ PUSHJ P,ADDEM

P/ -7"STACK
<JUMP>
ADDEM/ MOVE O(lDX) $x

2 0/ 2 TAB LEI/
ADDEM+l/ ADD l{IDX) $x

0/ 5 TABLEl+l/ 3
ADDEM+2/ MOVE 2{IDX) $x

0/ 0 TABLEl+2/ 0
ADDEM+3/ POPJ P,O ~H

$x

x$:

ADDEM+2/ MOVE 2{IDX) movem rO,answer{idx)
./ MOVEM 2{IDX) .$b $g
$2B»START/ MOVE P,PWORD $p
$lB»START+2/ PUSHJ P,ADDEM
$3B»ADDEM+2/ MOVEM 2{IDX)

$p
$x

0/ 5 TABLEl+2/ 5
ADDEM+3/ POPJ P,O start+4$b
$4B»START+4/ MOVE 2{IDX) $x

0/ 5 TABLEl+2/ 5
START+5/ JFCL 0 A Z
@

$p

Figure 2-3: Terminal Display of Debugging Session

2-20

Comments

Type in <LF>.
Type in <TAB>.
Type in <LF>.
Type in <LF>.
Type in <ESC><RET>.
Type in <LF>.

Type in <ESC><TAB>.
Type in <BKSP>.
Type in <BKSP>.

Type in <BKSP>.
Type in <RET>.

GETTING STARTED WITH DDT

2.5 PROGRAMMING WITH DDT IN MIND

There are a few MACRO-20 programming techniques that make debugging
with DDT easier. These techniques primarily concern the use of labels
and symbol s.

Labels that meaningfully describe (perhaps mnemonically, such as
GETCHR for "get character") the function of the code are more helpful
when examining code and setting breakpoints than labels that are
alphanumerically coded (such as AOOOI) •

When using symbols as offsets into tables, you can prevent DDT from
displaying the offset symbol in place of the symbol's numeric value if
you define the symbol in this way:

symbol==expression

The symbol table still contains symbol, and you can use symbol as
input to DDT, but DDT does not display symbol on output.

For example, if you have defined

OI~FSET==3

DDT displays the contents of a word that contains the value of 3 as

addr/ 3

rather than

addr/ OFFSET

where addr is the address of the word. See the MACRO Assembler
Reference Manual for more information about defining symbols.

2-21

CHAPTER 3

DDT COMMAND FORMAT

3.1 COMMAND SYNTAX

The complete syntax of a DDT command is

{argl<}{arg2>}{arg3}{<ESC>{<ESC>}{arg4}}c{arg5}

where argl, arg2, arg3, arg4, and arg5 are arguments to the command c;
argl, arg2, and arg3 can be any legal DDT expression; argl must be
followed by a left angle bracket «), and arg2 must be followed by a
right angle bracket (»; arg4 can only be a number; arg5 is a text
argument of the form

Itext:1 or c<ESC>

where text: is a string of characters (not beginning with <ESC», the
slashes <I) are delimiters that can be any character not contained in
text, and c is a single character.

DDT commands never use all five arguments. Each argument is optional
or required according to the syntax of the specific command. Most DDT
commands are as simple as

arg3<ESC>c or arg3<ESC>arg4c

You can type in alphabetic commands and text arguments in uppercase or
1 0 w'e rca s e •

An argument to a command can be the result of executing another
command. For example, you can type in a command to evaluate a text
string, and then type in another command to deposit in memory the
result of the evaluation. The entire command line would be

"/abcd/<RET>

where labcdl is the argument to the command " (quotation mark). The
function of the quotation mark command is to evaluate the string
(abcd) within the delimiters (I) as a left-justified ASCII string.
The left-justified ASCII string abcd is then the argument to the
command <RET> (entered by pressing the RETURN key). The function of
the <RET> command is to deposit an argument (in this case, the string
abcd) into the open location. The" command is described in this
chapter, and the <RET) command is described in Chapter 4 (Displaying
and Modifying Memory).

3-1

DDT COMMAND FORMAT

Most commands produce results that are immediately visible; for
example, commands that display the contents of memory locations.
However, commands such as those that invoke search functions or
execute a range of instructions may not produce immediately visible
results. If you type in a question mark (?) while DDT is performing a
function invoked by one of these commands, DDT displays a message that
tells you what it is currently doing. For example, such a message
might be

Searching: ADDR/ VALUE

where ADDR is the address that DDT is to next test as part of a
search, and VALUE is the contents of the memory location at ADDR.
Still other commands return values that DDT does not display, but can
use as arguments to other commands.

3.2 INPUT TO DDT

You type in arguments to DDT as expressions. An expression can be a
single value, or a combination of one or more values with one or more
operators.

3.2.1 Values in DDT Expressions

Values in DDT expressions can be:

• octal or decimal integers

• floating point numbers

• symbols

• values that are returned by commands

• text

To type in an octal integer value, simply type in the integer in octal
digits. For example:

70707065

To type in a decimal integer value, type in the integer in decimal
digits and follow the value w~ decimal point. For example:

9876.

To type in a
notation. For
following:

floating point number, use regular or scientific
example, you can type in the value .034 as one of the

.034
3.4E-2

Note that 1. is a decimal integer, while 1.0 is a floating point
number.

3-2

DDT COMMAND FORMAT

To type in a ~bol as a value in an expression, type in the symbol
name as definea-rn your program. To type in an undefined symbol that
you can define later, type in

symbol.

where ~bol is the symbol that you will later define. See Chapter 7
(ManipUTciting Symbols in DDT) for more information about using
undefined symbols.

You can type in a command that returns a
e>l:pressi()n. DDT commandSth~return
return are listed in Table 3-1.

value as a value in an
values, and the values they

Table 3-1: Commands That Return Values

Command Value Returned Value Also
Known As

. The address of the current location. .
<ESC>. The address of the next user program $.

instruction to be executed.

<ESC><ESC>. The previous val ue of .. <ESC> $$ •

<ESC)nB The. address of the DDT location that $nB
contains the address of breakpoint n.

<ESC>nI The address of the DDT location that
contains the saved machine state flags
(user-program context) •

<ESC>nM The address of DDT "mask" n.

<ESC>Q The current quantity. $0

<ESC><ESC>Q The current quantity, with halves $$0
swapped.

<ESC>nU The address of the DDT location that
contains the argument (or default) that
was given in the virtual addressing
command: expr<ESC>nU.

3-3

DDT COMMAND FORMAT

The commands <ESC>nB, <ESC>nI, <ESC>nM, and <ESC>nU «ESC>nU is legal
only in EDDT, KDDT and FILDDT), return values that are the addresses
of locations internal to DDT, which contain information that you can
use and modify. For brevity, these commands are said to address those
internal DDT locations.

For example, the command <ESC>nB returns (but does not display) the
address of the DDT location that contains the address of breakpoint n,
and the command addr/ (address followed by slash) displays the
contents of the location at addr. To display the address of
breakpoint n, type in

<ESC>nB/

where you type in the command <ESC>nB as the expression for DDT to
evaluate as addr.

You can type in text to be interpreted in the following ways:

• left-justified text strings of byte-size n, where 6<=n<=36

• left-justified 7-bit ASCII strings

• left-justified SIXBIT strings

• single right-justified text characters of byte-size n, where
6<=n<=36

• single right-justified 7-bit ASCII characters

• single right-justified SIXBIT characters

• Radix-50 words

You can type in text
translates strings
required.

expressions
to uppercase

in uppercase or
for SIXBIT or

3-4

lowercase. DDT
Radix-50 text as

DDT COMMAND FORMAT

The term long text string refers to an expression in a DDT command
that is a-string of text characters that requires more than one 36-bit
expression for full evaluation. You can type in long text strings in
SIXBIT and ASCII as DDT expressions. If you use a long text string as
an expression, DDT assumes that you will type in a command that
deposits the expression in memory.

DDT evaluates the string one 36-bit expression at a time. After
evaluating the first 36-bit expression, DDT deposits the expression in
the open location, closes the open location, and opens the next
location.

DDT then evaluates the next 36-bit expression contained in the string,
and deposits that expression in the (new) open location. This process
continues until you type in c, the command. If you type in a command
that does deposit to memory, DDT deposits the final 36-bit expression
in the open location, and updates the location counter according to
the rules of that particular command. The current quantity is the
last 36-bit expression that DDT evaluated.

If you do not type in a command that deposits to memory, DDT uses, as
the argument to the command, the 36-bit expression that was last
evaluated. All other 36-bit expressions that were evaluated as part
of the string have been deposited, and the current and open locations
were updated accordingly. The current quantity is then the last
36-bit expression that DDT evaluated.

If there is no open location when you begin typing the long text
string, DDT evaluates only the first 36-bit expression, ignores the
rest of the string, and uses the first ·36-bit expression as the
argument to the command. The current quantity is then the first
36-bit expression that DDT evaluated in the string. If you type in a
command that deposits to memory, it has no effect because there was no
open location.

3-5

DDT COMMAND FORMAT

The syntax to type in a left-justified text string with bytes of size
n is

<ESC>n"/textl

where 6<=n<=36 (default = 6), text is the string, and the slashes (I)
represent any printing character that is not contained within text.
DDT evaluate$ the string as a series of 36-bit expressions, in n-bit
ASCII format with all unused bits zero. Each character is
right-justified within the byte; each string of bytes is
left-justified within the 36-bit expression. No expression contains a
partial byte. If n = 6, DDT evaluates the text string as for the
command to type in a SIXSIT string «ESC>"/text/) , below. If n = 7,
DDT evaluates the text string as for the command to type in a 7-bit
ASCII string ("/text/) , below.

For example, if you type in

<ESC>8"+abc/def+

DDT evaluates one 36-bit expression as the 8-bit ASCII string abel in
bi ts 0-31, and bi ts 32-35 zero. If there is no open locatlo:rl; DDT
uses that expression as the argument to the command, and that
expression becomes the current quantity.

If there is an open location, DDT deposits abcZ in the open location,
closes it, and opens the next location in memory. DDT then evaluates
a second 36-bit expression as the 8-bit ASCII string def in bits 0-23,
and bits 24-35 zero. The last 36-bit expression evaluated becomes the
current quantity.

NOTE

You cannot use this format to type in a
string that begins with the ESCAPE
character, because <ESC) terminates the
command that types in a single
right-justified n-bit character (in this
case, your intended delimiter).

3-6

DDT COMMAND FORMAT

For compatibility with previous versions of DDT, you can type in a
7-bit ASCII strin,9. with the command

"/textl

where text is the string, and the slashes (I) represent any printing
character that is not contained within text. DDT evaluates the string
as a series of 36-bit expressions, each in 7-bit ASCII format
(IE!ft-justified), with all unused bits zero.

For example, if you type in

"+abc/def+

DDT evaluates one 36-bit expression as the 7-bit ASCII string abc/d in
bits 0-34, and bit 35 zero. If there is no open location, DDT uses
that expression as the argument to the command, and that expression
becomes the current quantity.

If there is an open location, DDT deposits abc/d in the open location,
closes it, and opens the next location in memory. DDT then evaluates
a second 36-bit expression as the 7-bit ASCII string ef in bits 0-13,
and bits 14-35 zero. The last 36-bit expression evaluated becomes the
current quantity.

NOTE

You cannot use this format to type in an
ASCII string that begins with the ESCAPE
character, because <ESC> terminates the
command that types in a single
right-justified ASCII character (in this
case, your intended delimiter).

For compatibility with previous versions of DDT, you can type in a
SIXBIT string with the command

<ESC> II Itex tl

where text is the string, and the slashes (I) represent any printing
character that is not contained within text. DDT evaluates the string
as a series of 36-bit expressions, each in SIXBIT format
(left-j usti fied), wi th any unused bi ts in the last 36-bi t expression
cleared (zero). DDT translates lowercase characters to uppercase; all
other non-SIXBIT characters cause DDT to sound your terminal buzze~ or
bell and display a question mark.

For example, if you type in

<ESC>">qwertyu>

DDT evaluates one 36-bit expression as the SIXBIT string QWERTY in
bits 0-35. If there is no open location, DDT uses that expression as
the argument to the command, and that expression becomes the current
quantity.

If there is an open location, DDT deposits QWERTY in
location, closes it, and opens the next location in memory.
evaluates a second 36-bit expression as the SIXBIT character
0-5, with bits 6-35 zero. The last 36-bit expression
becomes the current quantity.

3-7

the open
DDT then

U in bits
evaluated

DDT COMMAND FORMAT

The syntax to type in a right-justified character of byte size n is

<ESC>n"c<ESC>

where 6<=n<=36 (default = 6), and c is the character.

If n = 6, this command functions as for the command to type in a
right-justified SIXBIT character «ESC>"c<ESC», otherwise this
command functions as for the command to type 1n a right-justified
7-bit ASCII character ("c<ESC». These commands are described below.

For compatibility with previous versions of DDT, you can type in a
right-justified 7-bit ASCII character with the command

"c<ESC>

where c is the character. DDT evaluates this as one 36-bit expression
with the 7-bit ASCII character c in bits 29-35, and bits 0-28 zero.

For compatibility with previous versions of DDT, you can type in a
right-justified SIXBIT character with the command

<ESC>"c<ESC>

where c is the character. DDT evaluates one 36-bit expression with
the SIXBIT character c in bits 30-35, and bits 0-29 zero. DDT
translates lowercase characters to uppercase; all other non-SIXBIT
characters cause DDT to sound your terminal buzzer or bell and display
a question mark.

The syntax to type in a Radix-50 word is

text<ESC>5"

where text is any string of Radix-50 characters up to six characters
long. DDT evaluates one 36-bit expression with bits 0-3 cleared
(zero) and the Radix-50 string text in bits 4-35. DDT ignores any
characters in text after the sixth.

For example, if you type in

poiuytr<ESC>5"

DDT evaluates one 36-bit expression with bits 0-3 cleared (zero) and
the Radix-50 string POIUYT in bits 4-35. DDT ignores the character r.
DDT translates lowercase characters to uppercase. If a character In
text is not in the Radix-50 character set but is a DDT command, DDT
tries to execute the command. DDT uses, as an argument to the
command, the characters in text that precede or follow it, as
appropriate to the command. If DDT cannot execute the command, it
will sound your terminal buzzer or bell, and display the appropriate
error message. If DDT can execute the command, it is possible that a
Radix-50 evaluation of some remaining characters can take place, but
the results will not be what you intend.

Characters in text not in the Radix-50 character set that are not DDT
commands cause DDT to sound your terminal buzzer or bell and display a
question mark.

3-8

DDT COMMAND FORMAT

3.2.2 Operators in DDT Expressions

When you type in an expression, DDT evaluates the expression to create
a 36-bit quantity but does not necessarily use all 36 bits when it
executes the command. For example, you can type in a complete MACRO
instruction when giving an argument to a command that requires an
address, but DDT uses only the address specified by the instruction
(and ignores the rest of the evaluated expression) when it executes
the command.

Table 3-2 lists DDT's expression operators and the effects those
operators produce on the evaluation. The term value so far represents
the accumulated 36-bit value that results from--evaluation of the
expression to that point.

The nonarithmetic operators allow you to type in expressions in
instruction format as well as in data format.

Table 3-2: Effects of Operators When Evaluating Expressions

Operator Effect on Eval uation

+ Adds the 36-bit value on the left to the 36-bit
value on the right, using two's compl emen t
addition.

- Subtracts the 36-bit value on the right from the
36-bit value on the left, using two's complement
subtraction.

* Multiplies the 36-bit value on the left by the
36-bit value on the right, uSlng PDP-IO
full-word integer multiplication. DDT uses only
the low-order 36 bits of the result.

, (apost rophe) Divides the 36-bit value on the left by the
36-bit value on the right, using PDP-IO
full-word integer division. DDT ignores any
remainder.

NOTE

Apostrophe is DDT's division
operator. / (slash) is a DDT
command to examine memory, and is
never used in DDT to indicate
division.

space Adds the previous expression (normally an
opcode) to the value so far, and adds the
low-order 18 bi ts 0 f the value at the right of
the space to the low-order 18 bi ts 0 f the value
so far. DDT ignores carries resulting from the
addition, and does not change the left hal f 0 f
the value so far.

3-9

DDT COMMAND FORMAT

Table 3-2 (Cont.): Effects of Operators When Evaluating
Expressions

Operator Effect on Evaluation

, (comma)

" (two commas)

()

@

If you are entering an I/O instruction, DDT
shifts the low-order 18 bits of the expression
at the left of the comma 26 bits to the left (to
the device field of the instruction), otherwise
DDT shifts the low-order 18 bits of the
expression at the left of the comma 23 bits to
the left (to the A field of an instruction). DDT
then logically ORs the result into the value so
far.

NOTE

DDT does not check whether the
value at the left of the comma is a
legitimate device or AC address,
and may overwrite other parts of
the instruction.

Moves the low-order bits of the expression at
the left of the commas to bits 0-17, and builds
a new 18-bit expression in bits 18-35.

Swaps the halves of the expression within the
parentheses and adds the resulting expression to
the value so far. This makes it possible to
enter an instruction that uses an index
register.

NOTE

DDT does not check whether the
value within the parentheses is a
legitimate AC address, and may
overwrite other parts of the
instruction.

Sets the indirect bit (bit 13) of the value so
far. This lets you type in instructions.

3-10

DDT COMMAND FORMAT

To type in an instruction, format the instruction as you would in a
MA,CRO-20 program. For example:

MOVE R4,@VAR1+OFFSET(RS)

NOTE

Follow an opcode (such as MOVE) with a
space, not a <TAB>.

To enter halfwords, type in the values (numbers or symbols) separated
by two commas (,;r. The halfwords can be symbolic or absolute values.
Fo r exampl e:

-1, ,SYMl

NOTE

DDT is not designed to evaluate
complicated arithmetic expressions. The
nonarithmetic operators are implem~nted
to enable DDT to evaluate expressions
you type in as MACRO-20 instructions and
halfwords. Using values and operators
for other purposes may not produce the
results you intend.

3-11

CHAPTER 4

DISPLAYING AND MODIFYING MEMORY

4.1 DISPLAY MODES

A major function of DDT is displaying the contents of memory words,
both data and instructions. You can choose whether to display the
contents of memory words as symbols or as numeric values. You can
also select the radix in which DDT displays numeric values.

DDT .displays symbols, labels, and most messages in uppercase.

4.1.1 Default Display Modes

There is no sure way for DDT to distinguish between instruction and
data ,words, or between data words of different formats.

DDT displays memory words in symbolic mode by default. Symbolic mode
is described in Table 4-1. DDT tests for the condition on the left,
and if the condition is met, displays the word in the format described
on the right. DDT performs the tests in descending order (as they
appear in the table).

Table 4-1: Evaluation of Symbolic Display Mode

Cond it ion DDT Displays Example

Bits 0-18 are all set. A negative number -45
in the current
radix.

The 36-bit value is def ined in The symbol. SYMBLI
the user program symbol table. HALT

The opcode field is zero. Halfwords. 345, ,-27

The opcode and I, X, and Y The OPDEF. CORE 6,
fields, or the opcode and A
fields match an OPDEF in the
user program symbol table.

The opcode matches a The instruction. MOVE 3,SYMBL
definition in DDT's internal
hardware instruction table.

No match. Halfwords. 3445,,-23

4-1

DISPLAYING AND MODIFYING MEMORY

By default, DDT displays numeric values in octal. Leading zeros are
always suppressed.

4.1.2 Selecting Display Modes

You can select display modes to control:

• the format in which DDT tries to interpret the contents of
memory locations; for example, as instructions, or as
floating-point numbers.

• whether add resses are d ispl ayed as symbol ic or numer ic
val ues.

• the radix in which numeric values are displayed.

In addition, you can specify these modes on a short-term (temporary
mode) or long-term (prevailing mode) basis.

A prevailing display mode remains in effect until you select another
prevail ing mode, but may be overr idden by a temporary mode until you
type in a command that restores the prevailing display mode. DDT
commands that restore the prevailing display mode are:

• {expr}<RET> (deposit expr and close location)

• <ESC>G (start program execution)

• <ESC>P (proceed from a breakpoint)

• <ESC>W, <ESC>E, <ESC>N (perform a search)

• <ESC>Z (zero memory)

• instr<ESC>X (execute instr)

• <ESC>V (watch a location)

The syntax of commands that set the prevailing mode is

<ESC><ESC>mode

where mode is one of the display modes shown in Table 4-2.

The syntax of commands that set a temporary mode is

<ESC>mode

where mode is one of the display modes shown in Table 4-2.

4-2

DISPLAYING AND MODIFYING MEMORY

The curr~~nt display mode is the mode (prevailing or temporary) in
whic~DT will dispray-the next word (unless you type in a command to
change the display mode) •

DDT has two "masks" that control the action of two of the display
modes.

(ESC>3M is a command that addresses a DDT location that contains the
output byte size mask. When the current display mode is 0, each bit
tha1:Ts set in-rhe mask indicates the position of a low order bit of a
byte in the word being displayed. In this mode, bit 35 is always
assumed to be set. For example, if the output byte size mask contains

510410100400 (octal)

the byte sizes specified are, from left to right, 1, 2, 3, 4, 5, 6, 7,
and 8. When displaying a word in 0 mode that contains 777777,,777777,
and the current radix is 8, DDT displays

1,3,7,17,37,77,177,377 The default value of the output byte size
mask is zero, specifying one 36-bit byte.

You can set the output byte size mask with the command

explC'(ESC>3M

where expr evaluates to the bit pattern required.

You can also examine and change the output byte size mask with
examine and deposit commands described later in this chapter.
manual uses the symbol $3M to refer to the mask addressed by
command <ESC>3M.

the
This
the

(ESC>2M is a command that addresses a DDT location that contains the
maximum sFbolic offset. When DDT displays an address in R(elative)
mode, it dlsplays the address symbolically, that is, as a symbol, or
as a symbol + the numeric offset of the address from that symbol. The
maximum symbolic offset (minus 1) determines the maximum offset
address that DDT displays symbolically, and defaults to 1000 (octal).
DDT displays addresses beyond that offset in A(bsolute) mode. For
example, assume that the maximum symbolic offset is 2, and that you
are examining subroutine ADD EM in program X.MAC (refer to Figure 2-1) ,
using (LF> to display. instructions in sequence. DDT displays

ADDEM/ MOVE 0(6)
ADDEM+l/ ADD 1(6)
addr/ MOVE 2(6)

where addr is the absolute address (for example, 14414) of the
location.

You can set the maximum symbolic offset with the command

expr(ESC>2M

where expr evaluates to the offset required. This manual uses the
s~(ffibol $2M to refer to the mask addressed by the command (ESC>2M.

You can also examine and change the maximum symbolic offset with the
examine and deposit commands described later in this chapter.

4--3

DISPLAYING AND MODIFYING MEMORY

DDT display modes and the commands that select them are described in
Table 4-2.

Table 4-2: DDT Display Modes

Format Modes

Mode Effect

C Displays memory word as numbers in the current radix
(see Radix Mod es) •

F Displays memory word as a floating point dec imal
number.

2F Displays two contiguous memory words as a double
precision float ing point dec imal number.

H Displays memory word as two halfword addresses (see
Address Modes) separated by two commas (, ,) .

0 Displays memory word as numer ic bytes of sizes that
are spec if ied by the $3M mask.

nO Displays memory word as n-bit numer ic bytes
(left-justified, with trailing remainder byte, as
requi red) •

S Displays memory word in symbol ic mode (defaul t) •

IS Searches DDT's internal hardware opcode table before
searching the user's symbol table, otherwise follows
rules for S (symbolic) mode.

IT Displays memory word(s) as a byte po inter (one-word
local, one-word global, or two-word byte pointer, as
specified by the byte po in ter fo'rmat) •

nT Displays memory word as ASCII text, using n-bit bytes
(S<=n<=36) •

n=S: RADIXSO

n=6: SIXBIT

n=7: 7-bit ASCII (I)

8<=n<=36: n-bit ASCII (2)

4-4

DISPLAYING AND MODIFYING MEMORY

Table 4-2 (Cont.): DDT Display Modes

Address Modes

Mode Effect

A Displays addresses as absolute values in the current
radix.

-

R Displays addresses as val ues relative to symbol s
(default) • DDT displays the offsets in the current
radix. The max imum offset is controlled by the value
stored in the $2M mask, and defaults to 1000 (octal) •

Radix Modes

Mode Effect

nR Displays numeric values in radix n (default=8) , where
n is a decimal n urn be r g rea t e r than 1. If n=8, DDT
displays the word as octal hal fwords, otherwise DDT
displays the word as one number. If n=lO (dec imal) ,
DDT displays a decimal po int after the value.

(1) If bits 0-28 are all zero, DDT assumes the word contains a
single right-justified 7-bit ASCII character. Otherwise, DDT
displays the word as a left-justified 7-bit ASCII string, and
if bit 35 is set, DDT displays @ immediately following the
five 7-bit ASCII ~haracters.

(2) DDT ignores all bits in each n-bit byte other than the
rightmost 7 bits, and ignores any leftover bits at the right
end of the word. To display a right-justified 7-bit ASCII
character in a word that has one or more of bits 0-28 set,
type in <ESC>36T.

4.2 DISPLAYING EXPRESSIONS

DDT has three commands you can use to display expressions in different
modes. They are:

(semicolon)

(equal sign)

(underscore)

The syntax of these commands is

{expr} c

where expr is the expression to
current quantity), and c is one
are useful for redispla~ing the
current display mode. Table
expressions and their effects.

be displayed {expr defaults to the
of the above commands. These commands
current quantity without affecting the

4-3 lists the commands to display

4-5

DISPLAYING AND MODIFYING MEMORY

Table 4-3: Commands to Display Expressions

Command Effect

; Displays the current quantity in the current display
mode.

expr; Displays expr in the current display mode.

= Displays the current quantity as a number in the
current radix.

expr= Displays expr as a number in the current rad ix.

- Displays the current quantity in IS mode.

expr - Displays expr in IS mode.

4.3 DISPLAYING BYTE POINTERS

If you set the display mode to IT, DDT displays the contents of the
memory location as a byte pointer. DDT can display one-word local,
one-word global, and two-word byte pointers. DDT displays the P and S
fields, and the address as determined by the I, X, and Y fields of the
byte pointer.

In section ~ero, DDT displays only one-word byte pointers (local and
global) .

For example, if the contents of the location at ADDR2 is 100702"addr,
wh~re addr is the value of symbol LABL2, the following illustrates
one-word local byte pointer display:

addr2/ 100702"addr <ESC>lt; 10 7 LABL2(2)

The following illustrates one-word global byte pointer display, where
addr is the value of symbol LABL2:

1"addr2/ 610002"LABL2 <ESC>lt; 44&7 2" LABL2

The following illustrates two-word global byte pointer display, where
addr is the value of symbol LABL2 (DDT echoes <BKSP> as A H):

1"addr2/
1"addr2+1/
1, ,add r2/

440740,,0 <LF>
3"addr <ESC>ltAH

44 7 3"MAIN. <2>

4-6

DISPLAYING AND MODIFYING MEMORY

4.4 DISPLAYING AND DEPOSITING IN MEMORY

DDT allows you to display the contents of memory locations and deposit
a new value in the open location. In performing these functions, you
must understand the concept of the open location, the current
location, the location sequence stack, and the current quantity.

The open location is a memory location (or AC) that can be modified by
the next command. There is never more than one location open at a
time. DDT always closes the open location before opening another.

The location counter contains the address of a word in memory that has
been referenced--yTmplicitly or explicitly) by the previous command,
and that is the default point of reference for the next command. That
word is known as the current location. DDT uses the address of the
current location as the default address in most commands. The current
location is often, but not always, the open location.

Most DDT commands change the current location to a word specified by
an address given (explicitly or by default) in the command. Commands
that do not are so indicated.

"." (period) is a command that returns (but does not display) the
address of the current location.

When you first enter DDT, the current location is zero.

The location sequence stack is a OI r ing" of seventeen words, each
contaTnTng--t~ addreSS--Cf a prior current location, or of a match
found during a search. The present value of the current location is
not placed in the ring.

Entries are made to and retrieved from the location sequence stack in
a last-in, first-out manner. Most commands that change the location
counter by values other than +1 and -1 cause DDT to store the address
of the current location (before the change) on the location sequence
stack. Addresses of matching locations found during searches are also
stored on the location sequence stack.

When DDT stores a new value in the next word on the stack, the new
value becomes the current location stack entry. This is similar to
PUSHing entries on a stack.

When the current location stack entry is the last location on the
location sequence stack, DDT stores a new value on the stack by
"wrapping around" to the beginning of the stack and overwriting the
value in the first location on the stack. The first location on the
stack then contains the current location stack entry.

Certain DDT commands change the address of the current location to the
current location stack entry, and then change the current location
stack entry to the previous entry. This is similar to POPping entries
off a stack, and allows you to "return" to locations that have
previously been the current location.

When the first location on the location sequence stack contains the
current location stack entry and DDT changes the address of the
current location to the current location stack entry, DDT "wraps
around" to the end of the stack, and the value contained in the last
word of the stack becomes the current location stack entry (whether or
not the stack was previously "full").

4-7

DISPLAYING AND MODIFYING MEMORY

The current quantity is a value that is the more recent of:

• the last 36-bit quantity that DDT displayed (an expression or
the contents of a memory location)

• the last expression that you typed in as an argument to a
command that deposits to memory

This value is also known as the last value typed. <ESC>Q is a command
that returns (but does not display) the current quantity. DDT issues
an implicit <ESC>Q to return this value for use as the default
argument for some commands.

You can give the current quantity as an argument to a command by
typing in the command <ESC>Q as the argument.

The command <ESC><ESC>Q returns the current quantity with the right
and left halves swapped.

This manual uses the term $Q to refer to the value that is returned by
the command <ESC>Q, and the term $$Q to refer to the value that is
returned by the command <ESC><ESC>Q.

Some commands calculate the address of the location to be opened from
an expression given or defaulted in the command. Other commands use
the address of the current location or entries on the location
sequence stack.

The general syntax of these commands is

{expr}{<ESC>}c

where expr is any legal DDT expression, and c is the command. See
Section 3.2.1, Values in DDT Expressions, for a discussion of long
text strings as values in DDT expressions.

4-8

DISPLAYING AND MODIFYING MEMORY

Table 4-4 summarizes the commands and their effects.
descriptions of the commands follow the table.

Table 4-4: DDT Commands to Display Memory

Command Display Display Open Change Deposi t
Content Mode Word n n Expr .

/ Yes Current Yes Yes(l) No

[Yes Numeric Yes Yes(l) No

] Yes Symbolic Yes Ye s (1) No

! No Suppress Yes Yes(l) No

\ Yes(2) Current Yes No Ye s (1)

<TAB) Yes(2) Current Yes Yes Yes(l)

<RET) No Restore No No Ye s (1)

<LF) Yes(2) Current Yes Yes Yes(1)
.+1

<BKSP) Yes(2) Current Yes Yes Ye s (1)
or

.-1

<ESC) Yes Current Yes Yes Ye s (1)
<TAB)

<ESC) Yes Restore No Yes Yes(1)
<RET) Current

<ESC) Yes Current Yes Yes Yes (1)
<LF) Old.+l

<ESC) Yes Current Yes Yes Yes(l)
<BKSP) 01d.-l

or
<ESC)

(1) If you type in expr.

(2) If not suppressed by ! •

4.4.1 Commands That Use the Current Location

Complete

Loc/Seq
Stack

PUSH(1)

PUSH (l)

PUSH (l)

PUSH(l)

No

PUSH

No

No

No

POP

POP

POP

POP

The commands <RET), <LF), and <BKSP) use the address of the current
location to determine the next address of the current location. These
commands do not make entries to the location sequence stack.

These commands are described in detail on the next pages.

4-9

DISPLAYING AND MODIFYING MEMORY

{expr}<RET>

• deposits expr (if given) in the open location

• closes the open location

• starts a new display line

• resets the current typeout mode to the prevailing typeout
mode

• does not change the address of the current location

4-10

DISPLAYING AND MODIFYING MEMORY

{expr}<LF>

• deposits expr (if given) in the open location

• closes the open location

• increments the location counter

• opens the current location

• starts a new line and displays the address of the open
location, followed by:

• [(left square bracket), if the current display mode is
C (numeric), and the prevailing mode is not

.. 1 (right square bracket), if the current display mode is
S (symbolic), and the prevailing display mode is not

.. (exclamation point), if display has been suppressed by

• / (sl ash), in all other cases

• the contents of the open location (unless display has been
suppressed by !)

4-11

DISPLAYING AND MODIFYING MEMORY

{expr}<BKSP> and {expr}A

• deposit expr (if given) in the open location

• close the open location

• decrement the location counter

• open the current location

• start a new line and display the address of the open
location, followed by:

• [(left square bracket), if the current display mode is
C (numeric), and the prevailing mode is not

•] (right square bracket), if t~e current display mode is
S (symbolic), and the prevailing display mode is not

• (exclamation point), if display has been suppressed by

• / (slash), in all other cases

• the contents of the open location (unless display has been
suppressed by !)

4-12

DISPLAYING AND MODIFYING MEMORY

4.4.2 Commands That Use the Location Sequence Stack

The commands <ESC><RET>, <ESC><LF>, and <ESC><BKSP> use the current
location stack entry to determine the next address of the current
location.

Repetitions of these commands refer to successively earlier entries on
the stack, until you again address the most recent entry.

These commands do not make entries t() the location sequence stack.

These commands are described in detail on the following pages.

4-13

DISPLAYING AND MODIFYING MEMORY

{expr}<ESC><RET>

• deposits expr (if given) in the open location

• closes the open location

• changes the value contained in the location counter to the
current location stack entry

• opens the current location

• starts a new line and displays the address and contents of
the open location in the current display mode

• causes the previous entry on the location sequence stack to
become the current location stack entry

NOTE

If display is suppressed as a result of
using the ! command, the command
{expr}<ESC><RET> restores the current
display mode, which can be either a
temporary or prevailing display mode.

4-14

DISPLAYING AND MODIFYING MEMORY

{expr}<ESC><LF>

• deposits expr (if given) in the open location

• closes the open location

• changes the value contained in the location counter to the
current location stack entry

• increments the location counter

• opens the current location

• starts a new line and displays the address of the open
location, followed by:

• [(left square bracket), if the current display mode is
C (numeric), and the prevailing mode is not

•] (right square bracket), if the current display mode is
S (symbolic), and the prevailing display mode is not

• (exclamation point), if display has been suppressed by

• / (slash), in all other cases

• displays the contents of the open location (unless display
has been suppressed by 1)

• causes the previous entry on the location sequence stack to
become the current location stack entry

4-15

DISPLAYING AND MODIFYING MEMORY

{expr}<ESC><BKSP> and {expr}<ESC>A

• deposit expr (if given) in the open location

• close the open location

• change the value contained in the location counter to the
current location stack entry

• decrement the location counter

• open the current location

• start a new line and display the address of the open
location, followed by:

•

•

• [(left square bracket), if the current display mode' is
C (numeric), and the prevailing mode is not

•] (right square bracket), if the current display mode is
S (symbolic), and the prevailing display mode is not

• (exclamation point), if display has been suppressed by

• / (slash) , in all other cases

display the contents of the open location (unless display has
been suppressed by !)

cause the previous entry on the location sequence stack to
become the current location stack entry

4-16

DISPLAYING AND MODIFYING MEMORY

{expr}<ESC><LF>

• deposits expr (if given) in the open location

• closes the open location

• changes the value contained in the location counter to the
current location stack entry

• increments the location counter

• opens the current location

• starts a new line and displays the address of the open
location, followed by:

• [(left square bracket) , if the current display mode is
C (numeric) , and the prevailing mode is not

•] (right square bracket) , if the current display mode is
S (symbolic), and the prevailing display mode is not

• (exclamation point) , if display has been suppressed by

• / (slash), in all other cases

• displays the contents of the open location (unless display
has been suppressed by 1)

• causes the previous entry on the location sequence stack to
become the current location stack entry

4-15

DISPLAYING AND MODIFYING MEMORY

{expr}<ESC><BKSP> and {expr}<ESC>A

• deposit expr (if given) in the open location

• close the open location

• change the value contained in the location counter to the
current location stack entry

• decrement the location counter

• open the current location

• start a new line and display the address of the open
location, followed by:

•

•

• [(left square bracket), if the current display mode is
C (numeric), and the prevailing mode is not

•] (right square bracket), if the current display mode is
S (symbolic), and the prevailing display mode is not

• (exclamation point), if display has been suppressed by

• / (slash) , in all other cases

display the contents of the open location (unless display has
been suppressed by 1)

cause the prev ious entry on the location sequence stack to
become the current location stack entry

4-16

DISPLAYING AND MODIFYING MEMORY

4.4 .. 3 Commands That Use an Address Within the Command

The commands:

/
[
]

\

(slash)
(left square bracket)
(right square bracket)
(exclamation point)
(backslash)

<TAB>

use an expression given
defaul t) to determine
open location.

in the command (either explicitly or by
the addresses of the current location and the

The complete syntax of these commands is

{expr}{<ESC>{<ESC>}}c

where expr may be an address, ".", a symbol, or any expression that is
legal in DDT, and c is the command.

When you use the commands /, [,], !, \, and <TAB>:

• If you omit expr

• DDT uses the current quantity as a default.

• <TAB> en ter s the add ress 0 f the cur ren t loca t ion on. the
location sequence stack and changes the current location
to the address determined from the current quantity.

• If you type in expr, DDT enters the address of the current
location on the location sequence stack (except \) .

• DDT treats expr (whether given or defaulted) as if it were in
instruction format and performs the effective address
calculation as follows:

• If you omit <ESC>, DDT does not perform indexing or
indirection.

• If you include one <ESC>, DDT treats expr as an IFIW
(instruction format ind irect word), and uses the I and Y
fields of expr to perform indexing and indirection when
appropriate.

~ If you use <ESC><ESC> in a nonzero section, DDT utilizes
EFIWs (extended format indirect words), as appropriate,
when performing effective address calculations, and can
thereby calculate 30-bit addresses.

~ If you use <ESC><ESC> in section zero, DDT treats the
command as if you had typed in one <ESC>. See Chapter 12
(Ext end ed Ad d res sin g), f () r a des c rip t ion 0 f t his for m 0 f
these commands.

4-17

DISPLAYING AND MODIFYING MEMORY

The commands I, [,], 1, \, and <TAB> always do the following:

• close the open location

• open the location at the address indicated by expr

• change the current quantity to the value displayed (all
commands except 1)

The following pages describe the effects of each of these commands.

4-18

DISPLAYING AND MODIFYING MEMORY

/

• closes the open location

• opens the location at the address calculated from the current
quantity

• displays the contents of the open location in the current
display mode

• sets the current quantity to the value displayed

expr/

• closes the open location

• opens the location at the address calculated from expr

• enters the address of the current location on the location
sequence stack

• changes the current location to the location at the address
calculated from expr

• displays the contents of the open location in the current
display mode

• sets the current quantity to the value displayed

4-19

DISPLAYING AND MODIFYING MEMORY

• closes the open location

• opens the location at the address calculated from the current
quantity

• displays the contents of the open location in numeric mode in
the current radix

• sets the current display mode to numeric mode in the current
radix

• sets the current quantity to the value displayed

expr[

• closes the open location

• opens the location at the address calculated from expr

• enters the address of the current location on the location
sequence stack

• changes the current location to the location at the address
calculated from expr

• displays the contents of the open location in numeric mode in
the current radix

• sets the current display mode to numeric mode in the current
radix

• sets the current quantity to the value displayed

4-20

DISPLAYING AND MODIFYING MEMORY

• closes the open location

• opens the location at the address calculated from the current
quantity

• displays the contents of the open location in symbolic mode

• sets the current display mode to symbolic mode

• sets the current quantity to the value displayed

expr]

• closes the open location

• opens the location at the address calculated from expr

• enters the address of the current location on the location
sequence stack

• changes the current location to the location at the address
calculated from expr

• displays the contents of the open location in symbolic mode

• sets the current display mode to symbolic mode

• sets the current quantity to the value displayed

4-21

DISPLAYING AND MODIFYING MEMORY

• closes the open location

• opens the location at the address calculated from the current
quantity

• does not display the contents of the open location

• suppresses display of the open location by the \, <TAB>,
<LF>, and <BKSP) commands (any other display command restores
the current display mode)

• does not change the current quantity

exprl

• closes the open location

• opens the location at the address calculated from expr

• enters the address of the current location on the location
sequence stack

• changes the current location to the location at the address
calculated from expr

• does not display the contents of the open location

• suppresses display of the open location by the \, <TAB),
<LF), and <BKSP) commands (any other display command restores
the current display mode)

• does not change the current quantity

4-22

DISPLAYING AND MODIFYING MEMORY

\

• closes the open location

• opens the location at the address calculated from the current
quantity

• displays the contents of the open location in the current
display mode (unless display has been suppressed by!)

• sets the current quantity to the value displayed

expr\

• deposits expr in the open location

• closes the open location

• opens the location at the address calculated from expr

• does not change the address of the current location (and does
not enter the address of the current location on the location
sequence stack)

• displays the contents of the open location in the current
display mode (unless display has been suppressed by!)

• sets the current quantity to the value displayed

4-23

DISPLAYING AND MODIFYING MEMORY

<TAB)

• closes the open location

• opens the location at the address calculated from the current
quantity

• enters the address of the current location on the location
sequence stack

• changes the current location to the location at the address
calculated from the current quantity

• starts a new line and displays the address of the open
location (which is also the current location)

• displays the contents of the open location in the current
display mode (unless display has been suppressed by!)

• sets the current quantity to the value displayed

expr<TAB>

• deposits expr in the open location

• closes the open location

• opens the location at the address calculated from expr

• enters the address of the current location on the location
sequence stack

• changes the current location to the location at the address
calculated from expr

• starts a new line and displays the address of the open
location (which is also the current location)

• displays the contents of the open location in the current
display mode (unless display has been suppressed by!)

• sets the current quantity to the value displayed

4-24

DISPLAYING AND MODIFYING MEMORY

You can treat expr as an IFIW (instruction format indirect word), and
use any indexing and indirection specified by expr to compute the
effective address of the location to be opened. Use the command form

{expr}<ESC>c

where c is I, [,], 1, \, or <TAB>.

For example, assume the following conditions as indicated by the
display commands:

Command Display Explanation

LABLII SYMI Displays contents of LABLI.
LABLl+ll SYM2 Displays contents of LABLl+l.
SYM21 SYM3 Displays contents of SYM2.
21 1 Displays contents of AC 2.
@LABLl(2}/ SYMI DDT uses Y field only.
@LABL1(2)<ESC>1 SYM3 <ESC> causes indexing and

indirection.

Note that DDT does not start a new line unless you type in <TAB>,
<RET>, <LF> or <BKSP>, or until the display wraps around the end of
the line. DDT also displays three spaces (or a tab, depending on the
TTY control mask) before and after its output. Thus, an actual DDT
terminal display might be the following (user input is lowercase; <LF>
and <TAB> do not appear on the screen, but are shown to indicate where
you pressed the corresponding keys):

2/ 1 lablll SYMI <LF>
LABLl+ll SYM2 <TAB>
SYM21 SYM3 sym41 MOVE 1,@LABLl(2)
SYM21 SYM3

<ESC><TAB>

You can treat expr as an EFIW (extended format indirect word) and use
any indexing and indirection specified by expr to compute the (global)
effective address of the location to be opened. Use the command form

{expr}<ESC><ESC>c

where c is I, [,], !, \, or <TAB>.

4-25

DISPLAYING AND MODIFYING MEMORY

4.5 DISPLAYING ASCIZ STRINGS

You can display memory as an ASCIZ string. The command

addr<ESC>OT

where addr defaults to the open location (if there is one, otherwise
addr defaults to the current location), displays memory, beginning
with addr, as an ASCIZ string. The display stops when DDT finds a
zero byte, or when you type in any character, which DDT displays, but
otherwise ignores. The current location remains unchanged.

4.6 ZEROING MEMORY

To deposit the same value in each of a string of memory locations
(useful for initializing memory to zero), type in

addrl<addr2>{expr}<ESC>Z

where expr is any legal DDT expression, addrl is the first word to
receive expr, and addr2 is the last. Follow addrl with a left angle
bracket «) and addr2 with a right angle bracket (». Both addrl and
addr2 are required. If you omit expr, it defaults to zero. Prior to
execution, DDT enters the address of the current location on the
location sequence stack and closes the open location. When DDT has
completed execution of the command, the current location is the word
at addr2. There is no open location. This command restores the
prevailing display mode.

If you type in

?

while DDT is executing the <ESC>Z command, DDT displays

De po sit i ng : add r / value

where addr is the location where DDT will make the next deposit, and
value is the contents of addr before the deposit.

If you type in any other character, DDT stops executing the <ESC>Z
command, and waits for your next command. The current location is the
last memory location that received a deposit. There is no open
location. The character that you type in to terminate the <ESC>Z
command is otherwise ignored.

4-26

DISPLAYING AND MODIFYING MEMORY

4.7 AUTOMATIC WRITE-ENABLE

If you attempt to deposit a value in
write-protected, DDT returns the message

?NOT WRITABLE

This is the TOPS-20 default condition.

a location

To allow DDT to modify write-protected memory, type in

<ESC>{O}W

that is

If you now attempt to deposit a value in a location that is
write-protected, DDT removes the protection, deposits the value, and
then reinvokes the protection.

Note that you cannot use this command to enable patching in FILDDT.

To prevent DDT from modifying write-protected memory, type in

<ESC><ESC>{O}W

The zero in the above commands is optional and has no effect on the
operation of the commands. DDT allows the zero for compatibility with
prior versions of DDT.

4.8 . AUTOMATIC PAGE CREATION

If you attempt to deposit a value in a location within a nonexistent
page, DDT creates the page and deposits the value. If you attempt to
deposit a value within a nonexistent section, DDT creates the section
as well as the page. This is the default condition.

To prevent DDT from creating a page when you attempt to deposit a
value within a nonexistent page, type in

<ESC><ESC>lW

If you now attempt to deposit a value in a location within a
nonexistent page, DDT returns the error message

CAN'T CREATE PAGE

To allow DDT to create the page (and the section, as required) when
you attempt to deposit a value within a nonexistent page, type in

<ESC>lW

4-27

DISPLAYING AND MODIFYING MEMORY

4.9 PAGE ACCESS

You can get information about the access requirements of pages and
sections in the program you are debugging. This information is
similar in form and content to the information produced when you use
the TOPS-20 INFORMATION (ABOUT) MEMORY-USAGE command.

The command syntax is

{{ ar 9 l <}arg2}{<ESC>}<ESC>L

where argl and arg2 are section numbers. Using one <ESC> causes DDT
to display access information abQut the section and about individual
pages. Using <ESC> twice causes DDT to display access information
only about the section(s). If you include both argl and arg2, DDT
displays the information for all sections that your program and DDT
are using, in the range argl to arg2, inclusive. If you include only
arg2, DDT displays access information for that section only. If you
omit both argl and arg2, DDT displays access information for all
sections that your program and DDT are using.

For example, the command <ESC>L might produce the following display:

Section 0
000-012
014-025
770

Read, Write, Execute, Private
Read, Copy-on-write, Execute
Read, Copy-on-write, Execute
Read, Execute

771
Section

700-701
703-727
736-737
740-753

Read, Write, Execute, Private
37 Read, Write, Execute, Private

Read, Copy-on-write, Execute
Read, Copy-on-write, Execute
Read, Write, Execute, Private
Read, Execute

The command <ESC><ESC>L might produce the following display:

Sect ion 0
Section 37

Read, Write, Execute, Private
Read, Write, Execute, Private

The text for each kind of access is:

Text Explanation

Read page is readable
Write page is writable
Co py-on-wr i te page is copy-on-write
Execute page is executable
Private page is private
Zero page is allocated but zero (FILDDT only)

See the SET PAGE-ACCESS command in the TOPS-20 Commands Reference
Manual for more information about access to pages.

4-28

DISPLAYING AND MODIFYING MEMORY

4.10 WATCHING A MEMORY LOCATION

If you wish to have DDT monitor or "watch"
your program is running, and display
contents change, type in

a memory location while
the location whenever its

addr<ESC>V

where addr is the address of the location to be watched, and defaults
to the current location. When you type in the command, DDT starts a
new line and displays

ADDR/ VALUE

where ADDR is the address of the location being watched, and VALUE is
the contents of the location. DDT displays VALUE in the current
display mode. This command restores the prevailing display mode when
you terminate the watch.

DDT checks ADDR every "jiffy" (about 20 milliseconds), and displays
the address and contents of AD DR whenever those contents change.
(Executive mode EDDT and KDDT watch ADDR continuously.)

If you type in a question mark (?) while DDT is watching, DDT displays

Watching: ADDR/ VALUE

where ADDR is the address of the location being watched, and VALUE is
the contents of ADDR.

To terminate the watch, type in any
monitoring the location, starts a
character you type in, starts another
The character that you type in to
ignored.

other character. DDT stops
new display line, echoes the

line, and waits for more input.
terminate the watch is otherwise

Because any input character terminates the watch, you cannot continue
execution and watch your own user program. The <ESC>V command is
useful to watch activity in a separate process (such as the running
monitor or other job, for which you must be using EDDT, MDDT, or
FILDDT). The page that contains the location you wish to watch must
be mapped into your own process (the one that contains DDT and your
program) •

4-29

DISPLAYING AND MODIFYING MEMORY

4.11 TTY CONTROL MASK

You can control certain aspects of DDT's display by setting DDT's TTY
control mask. The command <ESC>lM returns a value that is the address
of the DDT location that contains this mask. Table 4-5 summarizes the
features controlled by the bits in the TTY control mask.

Table 4-5: TTY Control Mask

Bit Value Effect
~.

16 0 When interrupting program execution at a
breakpoint, DDT displays the address and contents
of the breakpoint (default) •

1 When interrupting program execution at a
breakpoint, DDT displays only the address of the
breakpoint.

17 0 DDT displays 3 spaces when spacing output { 1 } •
-

1 DDT displays output fields at tab stops (I) •
- --.. --- -.-~--

34 0 The terminal does not have a tab mechanism (2) •

1 The terminal has a tab mechanism (2) •

35 0 DDT echoes deleted characters (3) •

1 DDT backspaces over deleted characters (3) •

(1) If bit 17 is zero (default) , DDT displays 3 spaces between
output fields (such as between the address of a location
and the contents of the location) , and at the end of
display lines. If bit 17 is set, DDT lines up the output
fields in col umns beginning at tab stops (see bit 34) •

Figure 4-1 illustrates the two different modes.

(2) If bit 34 is set, DDT displays a tab character «CTRL/I>)
between fields. If bit 34 is zero, DDT displays enough
spaces to start the field at the next tab stop. When
starting up, DDT checks whether your terminal can handle
TAB characters «CTRL/I » , and sets this bit accordingly.

{3} When starting up, DDT checks whether your terminal can
backspace to delete characters, and sets this bit
accordingly.

To change the settings of the TTY control mask, use the command

expr<ESC>lM

where expr evaluates to the required bit pattern.

You can also open the location addressed by <ESC>lM with one of the
DDT display commands, and deposit an expression that contains the new
bit settings.

4-30

DISPLAYING AND MODIFYING MEMORY

Figure 4-1 is an illustration of the effects of bit 17 in the TTY
control mask. The code being examined is the first few lines of
X.MAC, listed in Figure 2-1. The example is not a complete debugging
session; only enough is shown to illustrate the effects of bit 17 of
the TTY control mask. The numbers at the left of the DDT display
lines are to assist you in following the commentary below. User input
is in lowercase.

Line Screen Display

1 DDT
2 start/ MOVE P,PWORD x$: .$b $g
3 $lB»START/ MOVE P,PWORD $x
4 P/ -lO"STACK PWORD/ -lO"STACK
5 START+l/ MOVEI IDX,TABLEI $x
6 IDX/ TABLEI TABLEI $lm/ 2 1, ,2
7 start$g
8 $lB»START/ MOVE P,PWORD $x
9 P/ -lO"STACK PWORD/ -lO"STACK

10 START+l/ MOVEI IDX,TABLEI $x
11 IDX/ TABLEI TABLEI

Commentary

Line 1:

DDT is loaded and waiting for a command.

Line 2:

Type in ~tart/ to examine location start.

Type in x<ESC>: to open the symbol table for module X.

Type in .<ESC>b to set breakpoint at location START.

Type in <ESC>g to begin execution.

Line 3:

DDT displays breakpoint information.

Type in <ESC>x to execute the next instruction.

Line 4:

DDT displays results of executing the instruction.

Line 5:

DDT displays the next instruction.

Type in <ESC>x to execute the instruction.

4-31

DISPLAYING AND MODIFYING MEMORY

Line 6:

DDT displays the results of executing the instruction.

Type in <ESC>lm/ to display and open the TTY control mask.

DDT displays the mask. Bit 34 is setQ

Type in 1,,2(RET> to set bits 17 and 34.

Line 7:

Type in start(ESC>g to restart the program.

Line 8:

DDT displays the breakpoint information.

Type in (ESC>x to execute the instruction.

Line 9:

DDT displays the results of executing the instruction.

Line 10:

DDT displays the next instruction.

Type in (ESC>x to execute the next instruction.

Line 11:

DDT displays the results of executing the instruction.

Figure 4-1: DDT Session Showing Col umnar Output wi th Commentary

4-32

CHAPTER 5

CONTROLLING PROGRAM EXECUTION

5.1 BEGINNING EXECUTION

To begin execution of your program, type in

<ESC>G

Your program will run, beginning at its start address. If you have
not set any breakpoints, your program runs to completion, or until it
makes a fatal error. You can then use the TOPS-20 DDT command to
reenter DDT and examine your program.

You can start or continue program execution at any address with the
command

addr(ESC>G

where addr is the address at which you want to begin program
execution.

5.2 USING BREAKPOINTS

A breakpoint is a program location that has been altered such that if
your program PC reaches the address of the breakpoint, your program
transfers control to DDT.

When you set a breakpoint, DDT stores the address of the breakpoint in
an internal table. When you command DDT to begin or continue program
execution, DDT stores the instructions from all breakpoints in the
table, and replaces them with JSRs into a DDT entry table.

While program execution is suspended at a breakpoint, you can examine
and modify memory, remove breakpoints, insert new breakpoints, execute
individual instructions, and continue program execution.

During this time, the command "<ESC>." re~urns the value that is the
address of the next instruction to be executed. The command
"<ESC><ESC>." returns a value that is the previous value returned by
"<ESC>.".

When you first receive control at the breakpoint, "<ESC>." returns the
address of the breakpoint and "<ESC><ESC>." returns zero. Before you
start execution with <ESC>G, "<ESC>." and "<ESC><ESC>." are illegal
commands. If you try to execute them, DDT sounds the terminal buzzer
or bell and displays a question mark.

5-1

CONTROLLING PROGRAM EXECUTION

NOTE

This manual uses the term "$." to
represent the value returned by the
command "<ESC>.", and the term "$S." to
represent the value returned by the
command "<ESC><ESC>.".

You can set up to 12 breakpoints at a time (this is a DDT assembly
parameter) in your program. These breakpoints are numbered I through
12. There is also one breakpoint (the unsolicited breakpoint,
numbered zero) that can be used by your MACRO program to "call" DDT.

When your user-program PC reaches a breakpoint, your program executes
the JSR into DDT. When this occurs, DDT does the following:

• saves your user-program context

• replaces the JSR instructions at all breakpoints with the
original program instructions

• displays the breakpoint number, breakpoint address, and the
contents of the breakpoint (depending on bit 16 of the TTY
control mask)

• sets "$." to the breakpoint address

• sets "$$." to zero

• enters the address of the current location (set before you
started the program or proceeded from a breakpoint) on the
location sequence stack

• changes the current location to the breakpoint

• waits for you to give a DDT command

5-2

CONTROLLING PROGRAM EXECUTION

Each breakpoint has several internal DDT locations associated with it,
which contain information to control DDT action with respect to the
breakpoint. You can examine and modify these DDT locations wi-th the
same DDT commands that you use to examine and modify locations in your
user program. (ESC)nB is a command that returns the value that is the
address of the first DDT word associated with breakpoint n. The
symbol $nB is used here to represent that address.

Table 5-1 contains a list of the breakpoint locations of interest to
you, and their contents.

Table 5-1: Breakpoint Locations of Interest

Locat:ion Contents

$nB Address of breakpoint n.

$nB+I Instruction for conditional breakpoint n.

$nB+2 Proceed count for conditional breakpoint n.

$nB+3 Address of a location to be opened and displayed when
the breakpoint is reached.

When you command DDT to restart or continue program execution, DDT
does the following:

• saves the program instructions from all breakpoints

• replaces the program instructions at all breakpoints with JSR
instructions to DDT

• if you have not executed the instruction at the breakpoint
with (ESC)X, simulates execution of the instruction at the
breakpoint

• restores your user-program contQxt

• performs a JRSTF (if in section zero, otherwise XJRSTF) to
the next instruction to be executed

5-3

CONTROLLING PROGRAM EXECUTION

5.2.1 Setting Breakpoints

To set ~ breakpoint, type in

addr<ESC>{n}B

where addr is the address where you want to suspend execution and n is
the number of the breakpoint. You can use ".", th~ command that
returns the address of the current location, for addr. DDT defaults n
to the lowest unused breakpoint number.

If you do not specify n, it defaults to the lowest available (unset)
breakpoint. If you have already set twelve breakpoints, DDT displays
"?" and sounds the terminal buzzer or bell.

If you specify n, it must be greater than zero and less than 13. DDT
restores the original contents of any (previously set) breakpoint
designated as breakpoint n before setting new breakpoint n.

You cannot set more than one breakpoint at the same address. DDT
simply sets the same breakpoint again, even if you explicitly specify
a breakpoint number the second time.

You cannot set a breakpoint at AC zero.

Assume the following conditions:

• location LABLl+3 contains the instruction MOVE 1,LABL2

• breakpoint 2 is set at LABLl+3

If your program reaches LABLl+3 it executes the JSR to DDT, and DDT
does the following:

• saves your user-program context

• restores the original program instructions to the breakpoints

• sets "S." to LABLl+3

• sets "SS." to zero

• enters the address of the current location on the location
sequence stack

• changes the current location to LABLl+3 (the breakpoint)

• opens location LABLl+3

• displays: S2B»LABLl+3/ MOVE 1,LABL2

5-4

CONTROLLING PROGRAM EXECUTION

To set ~ breakpoint and have DDT display ~ additional location when
your program reaches-rfie-sreakpoint, type In

addrl<addr2<ESC>{n}B

where addrl is the location to be displayed, and addr2 is the location
of the breakpoint. Follow addrl with a left angle bracket «).
Assume the following conditions:

• location LABLI+3 contains the instruction MOVE I,LABL2

• location LABL3 contains value SYMBLI

• breakpoint 2 was set by the command

LABL3<LABLI+3<ESC>B

If your program reaches LABLI+3 it executes the JSR to DDT, and DDT
does the following:

• saves your user-program context

• restores the original program instructions to the breakpoints

• sets "$." to LABLI+3

• sets "$$." to zero

• enters the address of the current location on the location
sequence stack

• changes the current location to LABLI+3 (the breakpoint)

• enters the address of the current location (the breakpoint)
on the location sequence stack

• changes the current location to LABL3

• opens location LABL3

• displays: $2B»LABLl+3/ MOVE 1,LABL2 LABL3/ SYMBLI

Note that, because DDT placed the breakpoint address on the location
sequence stack, you can type in <ESC><RET> to change the current
location back to the breakpoint.

5-5

CONTROLLING PROGRAM EXECUTION

To display the address of any breakpoint, type in

(ESC>nB/

where n is the address of the breakpoint. DDT displays the address of
breakpoint n, and you can use the examine commands to open and display
the instruction at breakpoint n. If breakpoint n is not set, DDT
displays zero.

To remove breakpoint n, type in

O(ESC>nB

To remove all breakpoints, type in

(ESC>B

5-6

CONTROLLING PROGRAM EXECUTION

5.202 proceeding from Breakpoints

After your program has reached a breakpoint, you can continue
execution at "$." by typing in

<ESC>P

DDT saves the program instructions from all breakpoints, replaces the
program instructions with JSRs to DDT, restores your user-program
context, and if you have not executed any program instructions with
the <ESC>X command, simulates execution of the instruction at the
breakpoint. DDT then executes a JRSTF (in section zero, otherwise DDT
executes an XJRSTF) to the next instruction to be executed.

You can cause the program to start execution at a different location
with the {addr}<ESC>G command, where addr defaults to the program's
start address.

Once your program has reached a breakpoint and DDT has interrupted
execution, you can cause DDT to continue execution but NOT stop at
that breakpoint until your program has reached that breakpoint a
specified number of times. To do this, type in

expr<ESC>p

where expr is the proceed count. DDT places expr at location $nB+2,
where n is the number of the breakpoint at which your program has
stopped. DDT resumes execution of your program. Each time your
program reaches breakpoint n, DDT decrements the proceed count stored
at $nB+2. Your program continues execution until:

• it reaches a different breakpoint

• it terminates normally

• it commits a fatal error

• the proceed count reaches zero

Each breakpoint has an associated automatic proceed flag. If this
flag is set and the program reaches the breakpoint, DDT decrements the
proceed count at $nB+2 (where n is the number of the breakpoint) and
displays the breakpoint information if the proceed count is less than
one~ DDT then automatically continues program execution.

The <ESC>P command clears the automatic proceed flag associated with
the breakpoint at which DDT has suspended program execution.

5-7

CONTROLLING PROGRAM EXECUTION

To set a breakpoint and set the associated automatic proceed flag,
type-Tn- --- --- ---

{addrl<}addr2<ESC><ESC>{n}B

where addr2 is the address of the breakpoint and may be ".", addrl is
an (optional) additional location to be displayed, and n is optional
and defaults to the lowest unused breakpoint.

Each time your program reaches breakpoint n, DDT decrements the
associated proceed count, and if the result is less than one, displays

$nB»addr2/ instr

where n is the breakpoint number, addr2 is the address of the
breakpoint, and instr is the contents of the word at addr2.

If you typed in addrl< when you gave the command, DDT displays

$nB»addr2/ instr addrl/ contents

where n is the breakpoint number, addr2 is the address of the
breakpoint, instr is the contents of the word at addr2, addrl is the
additional location to be displayed, and contents is the contents of
the word at addrl.

DDT then automatically continues program execution unti 1 :

• your program reaches a different breakpoint

• your program terminates normally

• your program commits a fatal error

• you type any character while your program is at breakpoint n

You can interrupt the automatic proceed function if you type in a
character while your program is at breakpoint n. DDT then resets the
automatic proceed flag and suspends program execution at the
breakpoint. DDT echoes the character that you typed in, which is
otherwise ignored.

To proceed from a breakpoint and set the associated automatic proceed
flag, give the command

{expr}<ESC><ESC>P

where expr is the proceed count. DDT stores the proceed count at
$nB+2.

5-8

CONTROLLING PRO~RAM EXECUTION

5.2.3 Conditional Breakpoints

To cause DDT to interrupt program execution at a breakpoint only if a
specific condition is satisfied, you must store a single test
instruction or a call to a test routine in DDT's breakpoint table.
You can use a test routine in your program, or one that you enter in
DDT's patching area. See Chapter 8 {Inserting Patches with DDT} for
more information about the patching area. To type in the test
instruction (or the call to the test routine), open the DDT location
addressed by the command (ESC)nB+I by typing in

(ESC)nB+I/

where n is the number of the breakpoint. You must type in n, or DDT
interprets the command as (ESC)B, and removes all breakpoints.
Deposit the test instruction or the call to the test subroutine. The
instruction must result in a PC {program counter} skip when the
condition to trigger the breakpoint is true. If your program reaches
breakpoint n, DDT executes the instruction at $nB+I. DDT then
proceeds as follows:

• If a program counter skip does occur, DDT
execution at breakpoint n.

interrupts

• If the instruction does not cause a program counter skip, DDT
decrements the proceed count at $nB+2. If the result is zero
or less, DDT interrupts execution at breakpoint n.

• If the conditional instruction is a call to a subroutine that
returns by skipping over two instructions, DDT does not
interrupt program execution.

If DDT interrupts execution because the test instruction resulted in a
program counter skip, DDT displays only one angle bracket after the
breakpoint identification, as

$3B)LABLI/ MOVE I,LABL2

5-9

CONTROLLING PROGRAM EXECUTION

5.2.4 The "Unsolicited" Breakpoint

You can cause your MACRO program to "call" DDT by inserting the
following instruction in your program:

JSR $OBPT##

The two number signs (##) appended to $OBPT in your MACRO program
declare the symbol as EXTERNAL.

NOTE

The "$" in "$OBPT" represents the dollar
sign character, which is part of the
symbol, and is not the DDT echo of the
ESCAPE key.

For your program to "call" DDT, you must load ROOT.REL with your
program or you will get a LINK error when you load your program
(?LNKUGS undefined global symbol). Load ROOT.REL with your program
as follows (your input is in lowercase; MYPROG is the name of your
program; the last line indicates that DDT is loaded and ready to
accept your commands):

@link
*sys:rddt.rel,myprog/go
@save myprog.exe

Load your program after ROOT.REL to ensure that the saved prog~am
module has your program's start address. Start your program runnIng
with the START or RUN commands. If your program executes the JSR
instruction, DDT interrupts program execution and displays

$OB»addr+l/ instr

where addr+l is the first location after the JSR $OBPT instruction,
and instr is the contents of that location.

5-10

CONTROLLING PROGRAM EXECUTION

5.3 EXECUTING EXPLICIT INSTRUCTIONS

To execute a specific instruction, type in the instruction followed by
<ESC>X, as follows:

instr<ESC>X

Fo r exampl e:

MOVE 1,@LABLl(3)<ESC>X

After executing the instruction, DDT starts a new line and displays:

• <>

• <SKIP>

• <SI(IP

• <SI<IP

if in-line execution of instr would
skipping no instructions.

if in-line execution of instr would
skipping 1 instruction.

2> if in-line execution of instr would
skipping 2 instructions.

3> if in-line execution of instr would
skipping 3 instructions.

NOTE

"In-line execution" means execution of
the instruction as part of normal
program flow. The execution of
instructions with this command has no
effect on your user-program pc.

This command restores the prevailing display mode.

5-11

result in

result in

result in

result in

CONTROLLING PROGRAM EXECUTION

5.4 SINGLE-STEPPING INSTRUCTIONS

After your program has transferred control to DDT from
you can execute program instructions one at a time.
"single-stepping."

a breakpoint,
This is called

"<ESC>." is a command that returns the address of the next instruction
to be executed.

To execute the instruction whose address is returned by "(ESC>.", type
in

<ESC>X

For example, breakpoint 3 is set at LABLl+3. If your program PC
reaches LABLl+3, control passes to DDT, which displays

$3B»LABLl+31 ADD l,LABL2(2)

Examining the environment, you learn the following:

• AC 1 contains 1

• AC 2 contains 3

• LABLl+4 contains MOVEM l,@LABL2(3)

• LABL2+3 contains SYM3

as shown by the following terminal display (DDT does not display (LF>
or <ESC»:

$3B»LABLl+31 ADD 1,LABL2(2)
LABLl+41 MOVEM 1,@LABL2(3)
21 3

(ESC>\ SYM3
II 1 (LF>

(LF>

If you now type in the command (ESC>X, DDT does the following:

• changes "$$." to LABLl+3

• executes the instruction at LABLl+3

• changes "$." to LABLl+4

• changes the current location to LABLl+4

• opens LABLl+4

• displays

II SYM3+1 LABL2+31 SYM3
LABLl+41 MOVEM 1,@LABL2(3)

5-12

CONTROLLING PROGRAM EXECUTION

If single-stepping an instruction results in a value of ($. minus $$.)
not equal to 1, DDT also begins a new line and displays:

• <SKIP> if ($ • minus $ $.) .- 2

• <SKIP 2> if ($ • minus $$.) 3

• <SKIP 3> if ($ • minus $ $.) 4

• <JUMP> if ($ • minus $$.) is greater than 4 or less than 1

before displaying the address and contents of the next instruction to
be executed. For example, the
display where you type in <ESC>X to
at a breakpoint (DDT echoes <ESC>

$4B»LABLl+5/ AOSN 3 /
3/ 1

<SKIP)
LABLl+7/ MOVEM 1,LABL2

as

o

following shows a typical terminal
single-step the first instruction

$) :

<ESC>x

If the instruction that you execute is followed by an ERCAL or an
ERJMP instruction and DDT executes the instruction successfully, DDT
displays <ERSKP) before displaying the next instruction to be
executed. For example:

ADDRI/ GTJFN <ESC>x
<EHSKP>

ADDRl+2/ instr

where instr is the instruction at location ADDR1+2.

If DDT does not execute the instruction successfully, it displays (in
the case of an ERJMP)

ADDR1/ GTJFN <ESC>x

ADDR1+l/ ERJMP EROUTN
EROUTN

<JUMP)
EROUTN/ instr

where instr is the instruction at location EROUTN.

5-13

CONTROLLING PROGRAM EXECUTION

5.5 EXECUTING SUBROUTINES AND RANGES OF INSTRUCTIONS

To execute a series of n instructions beginning with the instruction
whose address is returned by the command "<ESC>.", type in

n<ESC>X

where n is the number of instructions to execute.

DDT then does the following for each instruction:

• starts a new display line

• executes the instruction

• displays the address
referenced by the
contents of those
instruction

of any
execution
locations

register
of the
after

or memory location
instruction, and the
execution of the

• changes the current location to the next instruction to be
executed

• opens the current location

• displays the address and contents of the next instruction to
be executed

• changes "S." to the address of the next instruction to be
executed

• changes "SS." to the address of the instruction just executed

To suppress typeout of all but the last instruction executed, use the
command

n<ESC><ESC>X

where n is the number of instructions to execute.

To continue program execution until the PC (program counter) enters a
range of instructions, type in

{addrl<}{addr2>}<ESC><ESC>X

where addrl is the lower end of the range, and addr2 is the upper end.
Addrl defaults to I + "S." and addr2 defaults to addrl + 3. Follow
addr1 with a left angle bracket «) and addr2 with a right angle
bracket (».

This command also indicates skips and jumps.

This command is useful for executing a loop or a subroutine call
quickly and without typeout.

For example, breakpoint 3 is at location LABLI.

S3B»LABLI/ PUSHJ 17,SUBRTN
<SKIP>
LABLI+2/ ADD 1,2

5-14

<ESC><ESC>X iType in <ESC><ESC>X
iSUBRTN returns + 2

CONTROLLING PROGRAM EXECUTION

If you type in a question mark (?) while DDT is executing an
<ESC><ESC>X command, DDT displays

Executing: addr/ instr

where addr is the address of the next instruction to be executed, and
instr is the instruction.

To terminate the execution of the series of instructions, type in any
cha'racter other-than? (question mark). -COT does the following:

• echoes the character

• displays <SKIP>, <SKIP 2), <SKIP 3>,
appropriate

• starts a new display line

or <JUMP>, as

• changes the current location to the address of the next
instruction to be executed

• displays the address and contents of the current location

• opens the current location

• waits for. your next command

5-15

CONTROLLING PROGRAM EXECUTION

5.6 SINGLE-STEPPING "DANGEROUS" INSTRUCTIONS

DDT classifies the following as "dangerous" instructions:

• instructions that can modify memory

• instructions that can cause an arithmetic trap

• instructions that can cause a stack overflow

• a monitor call or I/O instruction

Before single-stepping one of these instructions, DDT saves and
replaces the original instructions at the breakpoints with JSRs to
DDT, and restores the full user-program context (including interrupt
system and terminal characteristics) before executing the instruction.
After executing the instruction, DDT replaces the JSRs at the
breakpoints with the original program instructions, and saves the full
user-program context.

DDT does not check whether the instruction actually results in one of
these conditions, only whether the opcode is in the class of
instructions that can cause these effects. This can make executing
subroutines and ranges of instructions under DDT control extremely
time-consuming.

To execute an instruction, a series of instructions, or a subroutine
without checking for dangerous instructions, substitute "IX" for "X"
in any of the DDT commands described in this chapter. For example, to
execute a subroutine or series of instructions without checking for
dangerous instructions, use the command

{addrl<}{addr2>}<ESC><ESC>IX

where addrl is the lower end of the range, and addr2 is the upper end.
Addrl defaults to 1 + "$." and addr2 defaults to 3 + addrl. Follow
addrl with a left angle bracket «), and addr2 with a right angle
bracket (».

DDT executes your commands much faster when not checking for dangerous
instructions, but if the execution of an instruction causes a software
interrupt, the error and trap handling mechanism may not function
correctly. In addition, program instructions that change or rely on
terminal or job characteristics that are also used by DDT can cause
unpredictable results.

5-16

CONTROLLING PROGRAM EXECUTION

5.7 USER-PROGRAM CONTEXT

When DDT interrupts your program's execution at a breakpoint, and
after it has executed a dangerous instruction during an <ESC>X or
<ESC><ESC>X command, it saves the user-program context. The command
<ESC>I+n, where O<=n<=lO (octal), returns the address of the word that
contains the information for "fonction" n (if n = 0, you can omit "+n"
from the command). You can use this address to display and modify
these values. Most of these values are useful only in executive mode.
DDT displays the address of the word that contains the information for
funGtion n as

$I+n

where l<=n<=lO (octal). If n = 0, DDT displays only $1. This command
is illegal in FILDDT.

Table 5-2 lists the functions and tpe associated user-context values.

5-17

CONTROLLING PROGRAM EXECUTION

Table 5-2: User-Program Context Values

FUNCTION VALUE

0 Executive mode CONI PI.

1 Executive mode PI channels turned off.

2 Executive mode CONI APR.

3 User PC fl ag s.

4 User PC address.

5 EPT page address.

6 UPT page address.

7 CST base virtual address.

10 SPT base virtual address.

DDT restores the user-program context whenever you execute <ESC>G,
<ESC>P, and when you execute <ESC>X, or <ESC><ESC>X of dangerous
instructions.

Functions 5 through 10 (octal} affect DDT's interpretation of your
program's virtual address space. You can alter DDT's interpretation
of your program's virtual address space with the physical and virtual
addressing «ESC>nU) commands described in Chapter 11 (Physical and
Virtual Addressing Commands). However, any alterations that you make
do not become part of your user-program context, and do not affect
TOPS-20's interpretation of your program's virtual address space.

DDT also saves and restores the user-program ACs as part of the
user-program context. DDT stores the contents of the ACs in an
internal "register" block. Any references you make to addresses 0-17
refer to the relative locations in DDT's internal register block.
These actions are totally transparent to you. .

5-18

CHAPTER 6

SEARCHING FOR DATA PATTERNS IN DDT

With DDT you can search for memory locations that contain a specific
value, and conversely, for words that do not contain a specific value.
You can also set a mask to indicate to DDT that only specified bits
are to be considered when performing the search. In addition, you can
search for words that reference a specific address. You can specify a
range within which to perform the search, or default the range to all
of your program's address space. In either case, DDT compares the
contents of each location within the range with the specified value.

To search for words that match a specific value, type in

{addrl<}{addr2>}expr<ESC>W

where expr is the value for which DDT is to search (expr can be any
legal DDT expression), and addrl and addr2 delimit the range in which
the search is to be conducted. Follow addrl with a left angle bracket
«) and addr2 with a right angle bracket (». Addrl defaults to zero
and addr2 defaults to 777777 in the current section, unless you are in
FILDDT, and:

• the target is an .EXE file and you are using normal virtual
addressing OR

• the target is a disk structure or data file.

In these cases, addr2 defaults to the last word of the target. See
Chapter 9 (FILDDT), and Chapter 11 (Physical and Virtual Addressing
Commands), for more information.

6-1

SEARCHING FOR DATA PATTERNS IN DDT

When you search for a specific value, DDT does the following:

• compares each location (after ANDing it with the search mask)
within the search range with the 36-bit value resulting from
evaluating expr

• starts the search by comparing the contents of addr1 with
expr

• stops the search after comparing the contents of addr2 with
expr

• displays (on a new line) the address and contents of each
location that matches expr

• enters the address of each matching location on the location
sequence stack

• sets the current location to addr2

• displays a blank line to indicate the search is over

• restores the prevailing display mode

NOTE

If DDT finds more matching locations
than there are words on the location
sequence stack, each new entry
overwrites the earliest entry.

If you type in a question mark (?) while DDT is performing this
search, DDT displays

Searching: addr/ value

where addr is the address of the location that will next compare, and
value is the contents of addr.

To terminate the search, type in any character
mark (?). DDT stops searching, and waits
character that you type in to terminate the
ignored.

6-2

other than question
for more input. The
search is otherwise

SEARCHING FOR DATA PATTERNS IN DDT

To search ~Eor words that do NO,! match a specified value, type in

{addrl<}{addr2>}expr<ESC>N

where expr is the value that is not to be matched (expr can be any
legal DDT expression), and addrl and addr2 delimit the range within
which DDT is to search. Follow addrl with a left angle bracket «)
and addr2 with a right angle bracket (». Addrl defaults to zero and
addr2 defaults to 777777 in the current section unless you are in
FILDDT, and:

• the target is an .EXE file and you are using normal virtual
addressing OR

• the target is a disk structure or data file.

In these cases, addr2 defaults to the last word of the target. See
Chapter 9 (FILDDT), and Chapter 11 (Physical and Virtual Addressing
Commands), for more information.

DDT functions as for the <ESC>W command, except:

• DDT searches for and displays the address and contents of any
word within the address range that does NOT match the 36-bit
value resulting from evaluating expr.

• DDT enters the locations of non-matching words on the
location sequence stack.

This search command restores the prevailing display mode.

NOTE

If DDT finds more nonmatching locations
than there are words on the location
sequence stack, each new entry
overwrites the earliest entry.

If you type in a question mark (1) while DDT is performing this
search, DDT displays

Searching: addr/ value

where addr is the address of the location that will next compare, and
value is the contents of addr.

To terminate the search, type in any character
mar'k (1). DDT stops searching, and waits
character that you type in to terminate the
ignored.

6-3

other than question
for more input. The
search is otherwise

SEARCHING FOR DATA PATTERNS IN DDT

To search _for references to an address, type in

{addrl<}{addr2>}expr<ESC>E

where addrl and addr2 delimit the range of the search, and expr
contains the address for which DDT is to search. Follow addrl with a
left angle bracket «) and addr2 with a right angle bracket (».
Addrl defaults to zero and addr2 defaults to 777777 in the current
section. Expr is any legal DDT expression.

DDT performs an IFIW effective address calculation on the value
contained in each word within the range, and uses the 30-bit result to
determine whether there is a match.

Thus, if bits 14-17 (the X field of an instruction) or bit 13 (the I
field of an instruction) are nonzero, indexing or indirection may
result in DDT finding different search results at different times.

DDT does not check whether the value is actually an instruction before
performing the effective address calculation.

This search command restores the prevailing display mode.

NOTE

If DDT finds more matching locations
than there are words on the location
sequence stack, each new entry
overwrites the earliest entry.

If you type in a question mark (?) while DDT is performing this
search, DDT displays

Searching: addr/ value

where addr is the address of the location that will next compare, and
value is the contents of addr.

To terminate the search, type in any character
mark (?). DDT stops searching, and waits
character that you type in to terminate the
ignored.

15-4

other than question
for more input. The
search is otherwise

SEARCHING FOR DATA PATTERNS IN DDT

<ESC>M is a command that addresses a DDT location that contains a
search mask used to prevent specified bits in the memory word from
being consIdered during the search. This mask is used only by <ESC>W
and <ESC>N, not by <ESC>E. DDT logically ANDs the search mask with
the memory word before making the comparison, but does not change the
memory word. If DDT finds a match, it displays the entire word.

DDT sets the search mask to 777777,,777777 (compare all 36 bits) by
default.

To set the search mask, type in

expr<ESC>M

where expr evaluates to the required bit pattern.

For example, to search for all of the RADIX50 references to MAIN., you
could use the following three commands:

<ESC><ESC>5t
37777,,777777<ESC>m
main.<ESC>5"<ESC>w

;Set typeout mode to RADIX50.
;Ignore the left 4 bits.
;Type in RADIX50 symbol, start search.

The following screen display is a typical result of the above search
(DDT does not display the comments on the right):

4112/
4775/

4 MAIN.
o MAIN.

;DDT displays match found.
;DDT displays match found.
;Search over, DDT displays blank line.

You can also examine and modify the search mask with the examine and
deposit commands described in Chapter 4 (Displaying and Modifying
Memory) •

6-5

CHAPTER 7

MANIPULATING SYMBOLS IN DDT

7.1 OPENING AND CLOSING SYMBOL TABLES

Each separate program module has its own symbol table. When
displaying a value symbolically, if more than one symbol is defined
with that value, DDT displays the first global symbol found. When
searching for a symbol, DDT searches the "open" symbol table first.
For display purposes, DDT treats local symbols found in the open
symbol table as global symbols. DDT appends a number sign (i) to
local symbol names that it finds in a symbol table that is not open.
For example, DDT might display

SYMBL1#

where SYMBLl is a local symbol that DDT found in a symbol table that
is not open.

If you type in an expression that contains a symbol that is defined in
more than one of your program modules, DDT uses the value of the
symbol that is contained in the open symbol table. If the symbol is
not defined in the open symbol table, or if there is no open module
and no global definition of the symbol, DDT displays

M

To ~pen th~ symbol table of a program module, type in

name<ESC):

where name is the name of the program module as specified by the TITLE
pseudo-op in your MACRO-10 program (or the equivalent mechanism in a
higher-level language program). DDT closes any currently open symbol
table and opens the symbol table associated with module name.

7-1

MANIPULATING SYMBOLS IN DDT

To find the name of the module associated with the open symbol table,
type in

<ESC>l:

If there is an open symbol table, DDT displays the name of module
associated with the open symbol table. For example, if the symbol
table for module X is open, the screen display 1S as follows (DDT
echoes <ESC> as $, and does not display any spaces between the command
and the module name) :

$l:/X

If there is no open symbol table, DDT displays three spaces (or a tab,
depending on the TTY control mask), and waits for your next command.

To close the open symbol table, type in

<ESC>:

7.2 DEFINING SYMBOLS

To redefine a symbol or to create a new symbol in the current symbol
table, type in

expr<symbol:

where expr is any legal DDT expression, and symbol is the symbol name.

To define symbol as the local address of the open location, type in
the command

symbol:

DDT defines symbol with a value of O"addr, where addr is the address
of the open location. If there is no open location, DDT uses the
address of the last location that was open. DDT defines symbol as a
global symbol even if it was previously ct local symbol. If you
previously used_ symbol as an undefined symbol, DDT inserts the correct
value in all the places you referenced symbol, and removes symbol from
the undefined symbol table.

To define symbol as the global (30-bit) address of the open location,
type in

• < symbol:

7.3 KILLING SYMBOLS

To remove a symbol from the symbol table, type in

symbol<ESC><ESC>K

DDT removes symbol from the symbol table, and no longer displays
symbol or accepts symbol as input.

7-2

MANIPULATING SYMBOLS IN DDT

7.4 SUPPRESSING SYMBOL TYPEOUT

To prevent: a symbol from being displayed, type in

symbol<ESC>K

where symbol is the symbol to be suppressed. DDT still accepts symbol
as input, !bUt no longer displays symbol as output.

To suppress the last symbol that DDT displayed (in an address, in the
contents of a memory word, or in the evaluation of an expression),
type in

<ESC>D

DDT suppresses the last symbol displayed, and then redisplays the
current quantity. DDT does not display its usual three spaces between
the command and the displayed value.

In the following example, assume that symbol SIZE is
User typein is lowercase «LF> does not appear
screen) •

start/
LOOP/
LOOP+l/
STAR'l'+3/

JFCL 0 <LF>
AOS 1 <LF>

MOVE 2,1 <ESC>dMOVE 2,1 <LF>
MULl 2,SIZE <ESC>dMULI 2,3

defined as 3.
on the terminal

To reactivate a symbol for typeout, redefine the symbol. For example,
to reactivate the display of symbol SIZE, above, type in

size<size:

Note that SIZE is now defined as a global symbol, even if it was
previously a local symbol.

7.5 CREATING UNDEFINED SYMBOLS

It is sometimes convenient to use symbols that have not yet been
defined. To create an undefined symbol, type in

symbol#

where symbol is the undefined symbol name. DDT enters symbol in the
undefined symbol table. When you later define the symbol, DDT enters
it into the defined symbol table, removes it from the undefined symbol
table, and enters the correct value in all locations where you
referenced the symbol.

You can use undefined symbols only as parts of expressions that you
are depositing to memory. Undefined symbols can be either fullword or
right-halfword values; they cannot be used as the A or X fields of an
instruction, or as the left-halfword of an expression.

7-3

MANIPULATING SYMBOLS IN DDT

7.6 SEARCHING FOR SYMBOLS

To determine the modules in which a symbol is defined, type in

symbol?

where symbol is the name of the symbol. DDT displays the name of each
program module in which symbol is defined. If the symbol is a global
symbol, DDT displays a "Gil, as in the following:

sym?
MAIN. G

DDT does not display G following a local symbol found in the open
symbol table. When DDT has searched the entire symbol table, it
displays a blank line. To search for all the symbols that begin with
a specific character pattern, use the command

sym<ESC>?

where sym is the character pattern for which you are searching, and
may be one to six characters long. DDT searches your symbol tables
and displays all symbols that begin with that pattern. DDT also
displays all modules in which the symbol is found, whether the symbol
is global, and the value of the symbol. In addition, if the symbol
represents a value in which only one bit is set, DDT displays the
number of the bit. For example, the command

fdb<ESC>?

might cause the following display:

FDBIN
FOB OUT
FOB

INOUT
INOUT
MODI

G
G

3
2
7

7.7 LISTING UNDEFINED SYMBOLS

(lB34)

To get a list of all currently undefined symbols, type in

?

DDT displays a list containing each undefined symbol.

7-4

MANIPULATING SYMBOLS IN DDT

7.8 LOCATING SYMBOL TABLES WITH PROGRAM DATA VECTORS

DDT Version 43 can access symbol tables pointed to by JOBDAT, by
(program data vectors) and by values you store in DDT.

The command <ESC>SM returns the address of a DDT location
contains information to direct DDT to the current symbol table.
symbol $SM refers to the memory location at the address returned
the (ESC>SM command.

PDVs

that
The

by

If the value contained in $SM is negative (bit 0 is set), the
right-halfword contains the number of the section that contains the
JOBDi\T area.

If the value contained in $SM is positive (bit zero is clear, and the
value in $SM is nonzero), $SM contains the 30-bit address of the PDV
currently in use by DDT.

If $SM contains zero, DDT uses values (which can be stored by the
user) pointed to by locations 770001 and 770002 of UDDT, to determine
which symbol table(s) to use. The algorithm that DDT uses is
described below.

ro set $SM to a PDV address, type in

addr<ESC>SM

where addr is the the PDV address. If you know the PDV name, you can
type in

<ESC><ESC>:/namel

where name is the name of the PDV, and the slashes (I) represent any
characters that do not appear in name. If name is a null string, DDT
searches for a PDV with no name or--a-- null name. DDT ignores any
characters in name beyond a length of 39.

DDT searches for a PDV named name, and places its address in SSM. If
DDT does not find the PD~t displays? and sounds the terminal
buzzer or bell.

You can learn the names of the PDVs associated with your program by
using the following sequence of TOPS-20 commands:

@GET program-name
@INFORMATION VERSION

To display the name of the PDV addressed by SSM, type in

<ESC><ESC>l:

If $SM contains the address of a PDV, DDT displays the name of the
PDVi otherwise, it does nothing.

7-S

MANIPULATING SYMBOLS IN DDT

Whenever DDT is entered from its start address or from a breakpoint,
if SSM is zero, DDT initializes SSM according to the following rules:

• If XDDT was started by the UDDT stub, AND the location
addressed by location 770001 in the stub has bit zero set:

~ DDT uses the location addressed by location 770001 (in
the stub) as an IOWD pointer to a symbol table in the
section that contains the stub.

• DDT uses the location addressed by location 770002 (in
the stub) as as IOWO pointer to the undefined symbol
table in the section that contains the stub.

• If XODT was not started by the UDDT stub, OR the location
addressed by location 770001 in the stub has bit zero clear:

... If no PDVs exist, DDT sets SSM to -1"n, where n is:

* the section that contains the UDDT stub (if the stub
exists) OR

* the section that contains the entry vector (if an
entry vector exists) OR

* section zero.

• If there is one (onl y) PDV, DDT sets SSM to the address
of the PDV.

• If there is more than one PDV, DDT examines word .PVSYM
of each PDV in ascending memory order (DDT first looks at
the PDV closest to 0,,0). DDT then sets SSM to:

* the address of the first (lowest in memory) PDV that
contains a .PVSYM word that contains a global address
(if there is one).

* the address of the first (lowest in memory) PDV that
exists in or above the section containing the entry
vector (if there is one) •

* the address of the first (lowest in memory) PDV.

NOTE

DDT ignores its own PDV when setting
SSM.

7-6

CHAPTER 8

INSERTING PATCHES WITH DDT

To replace the instruction at the open location with a series of
instructions and test the new instructions without reassembling your
program, you can use the DDT patch function. DDT deposits (in a
patching area) the replaced instruction, the new series of
instructions, and zero or more JUMPA instructions back to the main
line of your program. DDT also deposits (in the location that
contains the replaced instruction) a JUMPA instruction to the first
word of the patch.

To insert a patch that will be executed before the instruction at the
open locatIon, type-Tn

{expr}<ESC><

where expr is the start of the patching location, and defaults first
to PAT •• , then to PATCH. KDDT and MDDT default to FFF (an area
ere ate d d uri ng th e m 0 nit 0 r b u i 1 d), PA T •• , and PA TC H , in th at 0 r de r •
If you do not type in expr, and DDT finds none of the default symbols,
DDT uses the value contained in JOBDAT location .JBFF as the address
to begin the patch. If expr is a symbol (or the default), DDT updates
the symbol table when you terminate the patch, so that the symbol
identifies the first word after the patch that you just terminated.

If the left half of expr is zero, DDT defaults the section to the
section that contains the open location. If the left half of expr is
a value that is not the section that contains the open location, DDT
displays the message

?CAN'T PATCH ACROSS SECTIONS

If there is no open location when you start the patch, DDT displays
"?" and sounds the terminal buzzer or bell.

NOTE

If expr is an AC address, or resolves to
a value less than 0,,140, DDT displays
"?" and sounds the terminal buzzer or
bell.

8-1

INSERTING PATCHES WITH DDT

When you give a command to start a patch, DDT saves the address of the
open location, closes the open location, changes the current location
to the first word in the patching area, and opens that word. DDT also
displays the address and contents of the first word of the patching
area. For example:

<ESC><
PAT •• / 0

You can now type in the patch, using deposit instructions (the
expr<LF> format is probably most useful). DDT updates the current and
open locations according to the rules for the command that you use.

To terminate the patch, type in

{expr}<ESC>{n}>

where expr is the last word of the patch you are typing in, and n is
the number of returns possible from execution of the patch. The
default for n is 2, allowing for a return to 1 + the address of the
instruction being replaced, and for a "skip return" to 2 + the address
of the instruction being replaced.

When you terminate the patch, DDT
replaced into the first location
unless:

deposits the instruction being
following the current location,

• display is not suppressed by AND

• the current location is zero AND

• the current location is closed OR you omitted expr

in which case DDT deposits the instruction being replaced into the
current location. This prevents the patch from containing unint,ended
null words.

DDT deposits n JUMPA instructions in the locations immediately
following the one in which it deposited the original program
instruction. The first JUMPA instruction has 1 in its A field, and
jumps to 1 + the address of the replaced instruction, the second JUMPA
instruction has 2 in its A field and jumps to 2 + the address of the
replaced instruction, and so on. The AC numbers are used for
identification purposes only. Any JUMPA instruction beyond the
sixteenth contains 17 in its A field.

DDT then changes the current location to the location
when you initiated the patch, deposits in the current
instruction to the first word of the patch that you
displays the address, original contents, and new
current location. The current location is "open", and
by your next command.

8-2

that was open
location a ,JUMPA

typed in, and
contents of the
can be modified

INSERTING PATCHES WITH DDT

If you default expr, or type in a symbol in the {expr}<ESC>< command,
when you terminate the patch, DDT redefines the symbol that identifies
the start of the patch. If DDT used the value contained in JOBDAT
location .JBFF as the address of the patching area, DDT changes the
values contained in .JBFF and the left half of JOBDAT location .JBSA.
In all cases, the new value is the address of the memory location
after the last word of the patch.

By default, there are 100 (octal) words in the patching area. DDT
does not check whether your patch overflows the patching area. You
can control the size of the patching area with the /PATCHSIZE switch
in LINK.

NOTE

DDT allows you to use other DDT commands
while you are in the process of typing
in a patch. DDT does not check whether
the current and open locations are in
the patching area, or whether you are
typing in patch instructions in
sequence. When you terminate the patch,
DDT deposits the instruction being
replaced in the current location
regardless of whether the current
location is in the patching area.

To insert a patch that will be executed after the instruction at the
open locatTon, type-Tn

{expr}<ESC><ESC><

where expr is the address of the patching location (PAT.. is the
default) • The results are the same as inserting the patch before the
instruction as above, except:

• When you open the patch DDT deposits the replaced instruction
in the first word of the patch.

• When you terminate the patch, DDT deposits the first JUMPA
instruction (rather than the instruction being replaced) in
the first location following the current location unless:

• display is not suppressed by AND

• the current location contains zero AND

• the current location is closed OR you omitted expr

in which case DDT deposits the first JUMPA instruction in the
current location. This is to prevent the patch from
containing unintended null words.

NOTE

If expr is an AC address, or resolves to
a value less than 0,,140, DDT displays
"1" and sounds the terminal buzzer or
bell.

8-3

INSERTING PATCHES WITH DDT

Figure 8-1 illustrates the patching function. The program being
patched is X.MAC (see Figure 2-1). The patch inserts a SKIPN
instruction that is to be executed before the instruction at START+4.

DDT Output User Input Explanation

START+41 MOVE 2(IDX)

PAT • • 1 o

<ESC><

As a result of your last
command, DDT displays the
contents of START+4.

Type in <ESC>< to start the
patch.

DDT displays the address and
contents of the first word
word of the patch area .

• = Check the address of the
current location (PAT ••).

176 DDT displays the current
address of PAT •••

PAT • • +11

PAT • • +21

START+41

201

o

o

skipn 1,0<ESC>1> Type in the new instruction,
and terminate the patch with a
normal return and no skip
return by typing in <ESC>I>.

MOVE 2(IDX)

JUMPA 1, START+5

DDT displays the address and
contents of the next word of
the patch area, then deposits
and displays the instruction
from START+4 in the next word
of the patch area.

DDT displays the next word of
the patch area, then deposits
a JUMPA instruction to 1 + the
address of the replaced
instr uct ion.

MOVE 2(IDX) JUMPA STACK+17

pat •• =

DDT displays the address and
original contents of the
replaced instruction, then
deposits and displays a JUMPA
instruction to the first word
of the patch. START+4 is the
current location, and is
"open" •

Check the address of the patch
area.

DDT updated "PAT •• ".

Figure 8-1: Annotated Patching Session

8-4

INSERTING PATCHES WITH DDT

Figllre 8-2 shows the terminal display as it actually appears when you
insert the patch described above. Your input is in lowercase.

START+4/
PAT •• / 0
PAT •• +1/
PAT •• +2/
START+4/

MOVE 2{IDX) $<
.=176 skipn 1,0$1>

o MOVE 2{IDX)
o JUMPA 1,START+5
MOVE 2{IDX) JUMPA STACK+17 pat •• =201

Figure 8-2: Terminal Display of patching Before an Instruction

Figure 8-3 shows the terminal display when inserting the same patch
afte~r the instruction at START+4. You type in the instruction in the
forrrlexpr<LF> (user input is lowercase). Note the use of the patch
termination command without expr and without n (n defaults to 2) •

START+4/ MOVE 2 (IDX) $$<
PAT •• / 0 MOVE 2{IDX)
PAT •• +1/ 0 pa t •• =176 skipn 1,0
PAT •• +2/ 0 $>
PAT •• +2/ 0 JUMPA 1,START+5
PAT •• +3/ 0 JUMPA 2, START+6
START+4/ MOVE 2(IDX) JUMPA STACK+17 pat •• =202

Figure 8-3: Terminal Display of Patching After an Instruction

To ~bort th~ patch ~ are typing in, type in

<ESC>O<

DDT displays 3 spaces (or a tab, depending on the TTY control mask)
and changes the current location to the location that was open when
you initiated the patch. The symbol that denotes the start of the
patching area is unchanged. Any deposits that you made as part of the
patch remain in the patching area. This allows you to restart the
same patch, or to write over the patch with a new one.

8-5

CHAPTER 9

FILDDT

9.1 INTRODUCTION

FILDDT is a utility used to examine and change disk files and physical
disk blocks. You can also use FILDDT to examine monitor crash dumps,
and to examine the running monitor. With FILDDT, you can look at .EXE
files as if they had been loaded with the monitor GET command, or as
if they were binary data files.

In selecting a disk file, a disk, or the monitor with FILDDT, you are
really establishing the virtual address space that FILDDT accesses.
When discussing the" contents of that v:irtual address space, where the
contents can be any of the above objects, this chapter uses the term
target.

Once you have accessed a target, you can examine and modify it with
the DDT examine and modify commands (you cannot modify the running
monitor with FILDDT), and then save it with your modifications. You
can use all of DDTus commands for examining and modifying memory, but
you cannot use any commands that cause the execution of program
instructions, such as <ESC)X, <ESC)G, and so on. If you attempt to
execute a program instruction, FILDDT sounds the terminal buzzer or
bell.

9-1

FILDDT

9.2 USING FILDDT

There are two command levels in FILDDT. This document refers to these
two levels as FILDDT command level and DDT command level.

FILDDT command leval accepts FILDDT commands to control session
parameters and to select the target. FILDDT command level employs
TOPS-20 command recognition and help. When at FILDDT command level,
FILDDT displays the prompt

FILDDT)

Once you access a target, FILDDT enters DDT command level. At DDT
command level, use DDT commands to examine and modify the target.

The syntax of a FILDDT command-level command is

command {file-spec{/switch ••• }}

where command is a FILDDT command-level command, file-spec is a
TOPS-20 file specification, and switch invokes a specific function or
parameter about the function that you can perform (enable patching,
for example). You can use FILDDT commands to invoke functions and
parameters that are invoked by analogous FILDDT switches.

With a FILDDT command you can:

• request HELP on FILDDT

• specify the target to be examined

• invoke FILDDT functions

• establish certain parameters about the functions that you can
perform

• enter DDT command level

• exit FILDDT

A FILDDT command can have more than one of the above effects.

The commands and switches are described in detail in the rest of this
chapter.

To start FILDDT, type the TOPS-20 command

FILDDT

FILDDT enters FILDDT command level and prompts

FILDDT)

You can now use the FILDDT commands described on the following pages.

9-2

FILDDT

9.2ul FILDDT Commands

There are two classes of FILDDT-Ievel commands; those that select the
target that FILDDT is to access and those that establish what function
FILDDT is to perform for the target (enable patching, extract symbols,
and treat an .EXE file as data). The following are the targets
(virtual address spaces) that FILDDT can access, and the commands that
sel E~ct them:

• disk files GET

• disk structures DRIVE, STRUCTURE

• the running monitor PEEK

To examine and patch disk structures, you must have WHEEL, OPERATOR,
or MAINTENANCE privileges enabled. To examine the running monitor,
you must have WHEEL or OPERATOR privileges enabled.

Following are the parameters you can invoke for the target and the
commands and switches that select them:

• treat file as pure binary data

• enable patching

• enable thawed access

• load symbol table only from file

To get HELP, type in

HELP

ENABLE DATA-FILE

ENABLE PATCHING

ENABLE THAWED

LOAD

/DATA

/PATCH

/THAWED

/SYMBOL

FILDDT displays a very brief description of the FILDDT commands and
redisplays the FILDDT) prompt.

To return to TOPS-20 command level from FILDDT command level, type in

EXIT

9.2.,2 Symbols

To emhance performance, FILDDT uses a symbol table that it builds in
its own address space, rather than one which exists in the target
address space.

FILDDT automatically extracts symbols to build its internal symbol
table from the first .EXE file it loads during a session. Once FILDDT
has an internal symbol table, it ignores any symbols in subsequently
loaded .EXE files unless you use the LOAD command or the GET command
with the SYMBOL switch.

9-3

FILDDT

9.2.3 Commands to Establish Formats and Parameters

ENABLE DATA-FILE

If you specify an .EXE file, DDT (by default) loads the file in
virtual memory as if it were to be executed. You can use the
ENABLE DATA-FILE command to look at an .EXE file as if it were a
data file. FILDDT then loads the entire file (including the .EXE
directory block) as a binary file, starting at virtual location
zero. You can accomplish the same thing by appending the /DATA
switch to the file-spec when you use the GET command.

ENABLE PATCHING

The ENABLE PATCHING lets you modify the target. You can also
enable patching by appending the /PATCH switch to the file-spec
when you use the GET command. If you do not enable patching, you
can only examine the target. If you attempt to modify the target
but have not enabled patching, FILDDT displays

? Patching is not enabled

Note that you cannot enable patching in FILDDT with the <ESC>W
command.

ENABLE THAWED

LOAD

The ENABLE THAWED command lets you examine and modify (if you
enable patching) files that require thawed access. You can also
use the /THAWED switch when loading the file with the GET
command.

The LOAD command tells FILDDT to copy the symbol table from the
file named by file-spec. Once FILDDT has built its internal
symbol table, FILDDT displays

[n symbols loaded from file]

where n is the number of symbols that FILDDT extracted from the
file. FILDDT then again prompts you with FILDDT>.

You can also load symbols from the file you specify in the GET
command by appending the /SYMBOL switch to the file-spec.

If the file you specify is not an .EXE file, FILDDT displays

% Not in .EXE format -- Data file assumed.
? Symbols cannot be extracted from a data file

FILDDT then redisplays its prompt.

9-4

FILDDT

9.2,.4 Commands to Access the Target and Enter DDT

DRIVE

GET

The DRIVE command allows you to access a physical structure
directly. This may be useful if the home block has been damaged.
To access disk structures with FILDDT, you must have WHEEL,
OPERATOR, or MAINTENANCE privileges enabled.

If you wish to be able to patch the disk structure, you must give
the ENABLE PATCHING command before using the DRIVE command.

To access the disk structure, type in

DRIVE c k u

where c is the channel, k is the controller, and u is the unit,
in decimal.

If the unit is part of a mounted structure, FILDDT displays

[Unit is part of structure name]

where name is the logical name of the disk structure.

If FILDDT successfully access the unit, FILDDT enters DDT command
level and displays

[Looking at unit u on controller k on channel c]

where c is the channel, k is the controller, and u is the unit,
in decimal.

The GET command tells FILDDT to load the file you name, invoke
any parameters for which you specify switches, and enter DDT
command level. Legal switches are /DATA, /PATCH, /SYMBOL, and
/THAWED, and correspond to the ENABLE DATA-FILE, ENABLE PATCHING,
LOAD, and ENABLE THAWED commands, respectively.

If FILDDT extracts symbols and builds an internal symbol table,
it displays

[n symbols loaded from filE~]

where n is the number of symbols loaded.

When FILDDT has loaded the file, it displays

[Looking at file file-spec]

where file-spec is the TOPS-20 file specification of the file.

If FILDDT does not find the file, it displays

? Invalid file specification, message

where message is a TOPS-20 error string.

9-5

PEEK

FILDDT

Use the PEEK command to examine the running monitor. To use
FILDDT to examine the running monitor, you must have WHEEL or
OPERATOR privileges enabled.

Once you have invoked FILDDT, if you wish to be able to use
monitor symbols when looking at the running monitor, you must use
the LOAD command first, as:

LOAD SYSTEM:MONITR.EXE

You cannot patch the running monitor with FILDDT.

To examine the running monitor, type in

PEE~

FILDDT displays

[Looking at running monitor]

and enters DDT command level.

NOTE

You cannot use FILDDT to PEEK at
the running monitor unless you are
using normal virtual addressing.
If you are PEEKing the monitor and
change memory mapping to a mode
other than normal virtual
addressing with the n(ESC>OU,
n(ESC>IU, n(ESC>2U, or $$U
commands, FILDDT does not give an
error. However, every page in the
monitor then appears to DDT to be
non-existent. In this case, most
attempts to reference memory causes
DDT to display?, sound the
terminal buzzer or bell, and set
the error string to "CAN'T PEEK
PHYSICAL". Searches do not cause
errors, but never discover matches.

9-6

FILDDT

s'rRUCTURE

The STRUCTURE command allows you to access a disk structure by
its logical name. To access disk structures with FILDDT, you
must have WHEEL, OPERATOR, or MAINTENANCE privileges enabled.

If you wish to be able to patch the disk structure, you must give
the ENABLE PATCHING command before using the STRUCTURE command.

To examine a disk structure, type in

STRUCTURE name

where name is the logical name of the structure. If the
structure contains more than one physical disk, you can access
the entire logical structure.

If FILDDT successfully accesses the structure, it enters DDT
command level and displays

[Looking at file structure name]

where name is the logical name of the structure.

9-7

FILDDT

9.2.5 Exiting FILDDT

When you are through examining and modifying the target, save the
modified file by typing in

<CTRL/E>

FILDDT closes the file, saving any changes that you have made, and
returns to FILDDT command level.

Any symbol table that you have loaded (explicitly or by default)
remains loaded until you specify another with the LOAD command or the
/SYMBOL switch.

If you have modified symbols, FILDDT also modifies the symbol table of
the disk file, if one of the following occurred:

• FILDDT automatically loaded the symbol table.

• you loaded the symbol table and entered DDT command level by
typing in

GET file-spec/SYMBOL

To close the file, save all modifications (as with <CTRL/E>, above)
and exit from FILDDT, type in

<CTRL/Z>

When you exit FILDDT, you can save FILDDT with its internal symbol
table. This saves time if you often use FILDDT to debug a specific
file (such as the monitor) that has a very large symbol table.

Start FILDDT, load the symbol table, then exit. Use the TOPS-20 SAVE
command to create a copy of FILDDT to be used with that specific file.

For example (your input is in lowercase):

@filddt
FILDDT>load system:monitr.exe
[34472 symbols loaded from file]
FILDDT>exit
@save

FILDDT.EXE.I Saved

9-8

CHAPTER 10

PRIVILEGED MODES OF DDT

NOTE

This chapter makes no attempt to explain
internal monitor mechanisms. This
chapter assumes that you are aware of
various monitor contexts. Certain
monitor contexts may interfere with or
be interfered with by DDT context
switching. It is up to you to be aware
of these. Note also that internal
monitor locations that are used in
examples in this chapter are subject to
change in subsequent monitor releases.

10-1

PRIVILEGED MODES OF DDT

10.1 MOOT

MOOT is used to debug and patch the running monitor
timesharing, and is an integral part of the swappable monitor.
MOOT, you must have WHEEL or OPERATOR privileges enabled.

during
To run

To invoke MOOT, start DOT and then execute the MOOT% JSYS. For
example (user input is lowercase):

@enable
$ddt
DDT
mddt%<ESC>x
MODT

You can also invoke MOOT by running a MACRO-20 program that executes
the MDOT% JSYS.

MOOT runs in the executive virtual address space of the process that
ex~cuted the MOOT% JSYS. While in MODT, you are still running in user
context, you are running under timesharing, and your process is
subject to being swapped out, as is any other user process.

If for some reason you cannot access system files, you can enter MODT
through the MEXEC, as follows:

@enable
$<CTRL/E>QUIT
MX>/

where the / (slash) command to MEXEC enters MOOT.

To exit MDDT, type in

mretn<ESC>g

or type in <CTRL/Z>.

10-2

PRIVILEGEO MOOES OF DOT

10.2 KOOT

You can run KOOT in executive mode or in user mode. KOOT in executive
mode is used to debug parts of the monitor which can not be debugged
interactively such as those modules that deal with physical memory or
paging. KOOT in user mode is used to debug and patch the monitor .EXE
file, which you can then save for BOOTing at a later time.

KOOT is part of the resident monitor. When running KOOT in executive
mode, you can exercise any normal OOT functions, such as changing
memory and setting breakpoints. When you stop at a breakpoint and
control passes to ROOT, timesharing (if in effect) ceases.

To run RODT in executive mode use the /E command when BOOTing the
monitor. For example (user input is in lowercase):

BOOT>/e
[BOOT: LOAOING]
EOOT

iType in /e
[OR]

iEOOT is loaded and waiting for your command

Your debugging may be easier if you lock the swappable monitor in
core. You can do this by executing the instruction that calls monitor
routine SWPMLR. For example:

CALL SWPMLR<ESC>X

To run KOOT in user mode:

@get system:monitr.exe
@start 140
DOT

You can use ROOT in user mode to patch the monitor (.EXE file) which
will be booted the next time the system is BOOTed up.

After you have started ROOT as above, use the ODT patching commands to
insert your patch. When your patch is complete, exit KOOT with
<CTRL/Z> and use the TOPS-20 SAVE command to save the patched version
of the monitor. For example:

<ESC><

<ESC»

<CTRL/Z>
@save system~monitr.exe

iESCAPE key followed by a left angle
;bracket.

;Type in the patch.
iESCAPE key followed by right angle
ibracket.
iExit ROOT
;Save the new version.

10-3

PRIVILEGED MODES OF DDT

10.3 EDDT

You can use EDDT to debug user programs that run in executive mode.
You must load EDDT.REL with your program, as follows:

@LINK
SYS:EDDT.REL,PROG/GO
@SAVE PROG

where PROG is the name of your MACRO-20 program.

10-4

CHAPTER 11

PHYSICAL AND VIRTUAL ADDRESSING COMMANDS

11.1 INTRODUCTION

FILDDT, EDDT and KDDT can do their own page mapping. The commands
described in this chapter allow you to set parameters to govern the
interpretation of the address space that you are examInIng. You can
control the mapping of the address space you are examining by choosing
to use or bypass the user process table (UPT) or the executive process
table! (EPT). You can choose which special pages table (SPT) to use,
and which hardware register block to use. Other commands allow you to
emulate either KI-paging or KL-paging, control address relocation, and
set memory protection limits. In each of the following commands, the
argument (page, addr, n) defaults to zero.

Note that the DDT commands <ESC>G, <ESC>P, and <ESC>X have side
effects that affect your control over physical and virtual addressing.
In addition to their normal functions, these commands also do the
following:

• restore normal virtual addressing as if <ESC>U had been given
«ESC>X does NOT do this)

• set the FAKEAC flag (as if <ESC>U had been given)

• clear the relocation factor (as if O<ESC>8U had been given)

• reset the address-protection
(377777,,777777)

address to infinity

• restore the active hardware register block to the one in use
before any <ESC>4U command was given

11-1

PHYSICAL AND VIRTUAL ADDRESSING COMMANDS

11.2 COMMANDS THAT SWITCH BETWEEN PHYSICAL AND VIRTUAL ADDRESSING

Command Description

<ESC>U

This command enables memory mapping by standard TOPS-20 virtual
addressing. When you give this command, DDT restores the virtual
addressing conditions that were in effect before any
{<ESC>}<ESC>nU (where 0<=n<=2) commands were given, and sets
DDT's FAKEAC flag, thereby forcing DDT to interpret memory
addresses 0-17 as DDT's own internal "registers", in which the
user's registers were saved.

<ESC><ESC>U

This command enables DDT to use actual physical addresses when
accessing memory, and clears DDT's FAKEAC flag, causing DDT to
interpret memory addresses 0-17 as the hardware registers 0-17.
This command is meaningful only when using KDDT in executive
mode, or when using FILDDT to look at the running monitor or a
core dump. Although DDT accepts <ESC><ESC>U at other times, this
command then produces the same effect as <ESC>U.

11-2

PHYSICAL AND VIRTUAL ADDRESSING COMMANDS

11.3 COMMANDS THAT CONTROL VIRTUAL ADDRESSING

The general syntax of the following virtual addressing commands is

arg<ESC>nU

where n is the function number of the command, and arg is dependent on
the function (see the function descriptions below).

Functions 0, 1, and 2 enable you to control
selecting the executive process table (EPT), user
or the section map through which mapping occurs.
condition with anyone of these functions (0, 1,
effect of clearing the effects of any prior use
functions (0, 1, and 2). .

memory mapping by
process table (UPT),
Setting a mapping
and 2) also has the
of one of these

You can also specify the offset into the special pages table (SPT)
with functions 0, 1, and 2 by using the command

arg<ESC><ESC>nU

where arg is the SPT offset, and 0<=n<=2. This form is legal only if
KL-paging is in effect.

Cc)mmand

pagE~<ESC>OU

NOTE

All forms of <ESC>B and <ESC>X are
illegal if you have used the page
mapping functions (0, 1, or 2) and have
not restored standard mapping with the
<ESC>U command.

Descript ion

This command causes memory mapping to occur through the executive
process table (EPT) that is located at physical page page.

offset<ESC><ESC>OU

This command produces the same effect as page<ESC>OU (above),
except that offset is an offset (in words) into the SPT.

pagel<page2<ESC>OU

This command is an exception to the general syntax, and is legal
only under KI-paging. You can select both the user page table
(UPT) and the executive page table (EPT) with this command, where
pagel is the page number of the UPT, and page2 is the page number
of the EPT. Follow pagel with a left angle bracket «).

This command causes memory mapping to occur through the user
process table (UPT) that is located at physical page page. With
this command, you can bypass the EPT.

11-3

PHYSICAL AND VIRTUAL ADDRESSING COMMANDS

offset<ESC><ESC>lU

This command produces the same effect as page<ESC>lU (above),
except tha t 0 ffset is an 0 ffset (in words) :in to the SPT.

page<ESC>2U

This command causes mapping to occur through the section map at
physical page page. This command is legal only if KL-paging is
in effect.

offset<ESC><ESC>2U

This command produces the same effect as page<ESC>2U (above),
except that offset is an offset (in words) into the SPT. This
command is legal only if KL-paging is in effect.

n<ESC>3U

This command determines whether DDT interprets references to
memory locations 0-17 as references to hardware registers, or to
DDT's own internal "registers" (which normally contain the
user-program ACs), by setting or resetting DDT's FAKEAC flag.

If n=O, reset FAKEAC flag (use the hardware registers 0-17).
If n is nonzero, set FAKEAC flag (use DDT's internal registers
0-17) •

If you type in a nonzero value for n, DDT stores the value -1.

n<ESC>4U

This command tells DDT to copy hardware register block n
(0<=n<=7) to its own internal register block, set the FAKEAC
flag, and use hardware register block n as :its own registers. If
the FAKEAC flag is set when you give this command, DDT first
restores the contents of its internal register block to the
hardware register block from which they were copied. This
command is legal in executive mode EDDT and KDDT only. Note that
the microcode uses register block 7, and any attempt to use this
block produces an almost immediate system crash.

addr<ESC>SU

This command copies the 20 (octal) word block located at addr to
DDT's internal "registers" and sets the FAKEAC flag.

addr<ESC>6U

This command sets the special pages table (SPT) to addr.

addr<ESC>7U

This command sets the core status table address (CST) to addr.

:).1-4

PHYSICAL AND VIRTUAL ADDRESSING COMMANDS

addr<ESC>8U

This command sets the address relocation factor to addr. DDT
adds addr to all user addresses that you type in.

addr<ESC>9U

This command read-and-write-protects all addresses above addr
(before adding relocation factor).

n<ESC>lOU

This command controls whether KI paging is enabled or cleared.

If n is nonzero, KI paging is enabled.
If n=O, KI paging is cleared.

If you type in a nonzero value for n, DDT stores the value -1.

n<ESC>llU

This command controls whether KL paging is enabled or cleared.

If n is nonzero, KL paging is enabled.
If n=O, KL paging is cleared.

If you type in a nonzero value for n, DDT stores the value -1.

You can interrogate DDT to determine the last virtual addressing
command that was given for a specific function. The command

<ESC>nU

where O<=n<=ll, returns the address of a DDT location that contains
the argument that was given if the command for that function was used,
and returns the default value-i~hat function was -not used. ---If--y0u
typed in a nonzero argument to a command that requires zero or nonzero
values (or if the default is nonzero) v this location contains -1. You
can use DDT commands to examine this location.

The command

<ESC><ESC>nU

where 0<=n<=2, returns the address of a DDT location that contains
information that indicates which function you used, and whether you
set a page address or an offset. You can use DDT commands to examine
this location. This command is illegal for all functions where n>2.
If you did not type in any commands affecting functions 0-2 since the
last <ESC>U command, the right half of this DDT location word contains
zero. Otherwise, the right half contains n+l, where n is the number
of the command function you used. If you set a page address (with
arg<ESC>nU), bit I of this word is zero. If you set an offset (with
a r g < ESC> < E SC > n U), bit 1 0 f the wo r dis set.

11-5

CHAPTER 12

EXTENDED ADDRESSING

12.1 LOADING DDT INTO AN EXTENDED SECTION

If ~)ur program is loaded in a nonzero section, merge DDT with your
program with the TOPS-20 command

@DDT

DDT :ls loaded into the highest-numbered free (nonexistent) section.
If your program has a TOPS-IO-style entry vector in section zero, the
EXEC merges the UDDT stub into the section that contains the entry
vector, and places that section's JOBDAT symbol table pointers (.JBSYM
and ~JBUSY) into the DDT locations pointed to by UDDT locations 770001
and 770002. UDDT then loads XDDT into the highest-numbered free
section. You can load DDT into a specific section with the EXEC's
fUSE-SECTION switch, as:

@DDT/USE-SECTION:n

where n is the (octal) section number of a section that does not
alrecldy exist.

You can load DDT into an existing section with the fUSE-SECTION and
/OVERLAY switches. You must be careful, however, that your program
does not use any pages that DDT uses. See the TOPS-20 COMMANDS
REFERENCE MANUAL for more information about the use of these switches.

12.2 EXAMINING AND CHANGING MEMORY

The commands /, [(left square bracket) , (right square bracket), !,
\ and <TAB> (see Section 4.4.3) open a memory location at an address
calculated from an expression typed in or defaulted in the command.
The syntax of the command is

{expr}{<ESC>{<ESC>}}c

where c is the command, and expr is any legal DDT expression (expr
defaults to $Q, the current quantity).

In nonzero sections, you can cause DDT to utilize all indirection and
indexing indicated by EFIWs (extended format indirect words) to
calculate 30-bit global addresses by using the format

{expr}<ESC><ESC>c

This format also recognizes and utilizes instruction format indirect
words (IFIW). These commands are thoroughly described in Chapter 4
(Displaying and Modifying Memory).

12-1

EXTENDED ADDRESSING

12.3 BREAKPOINTS

If DDT is running in a nonzero section, breakpoints can be set in any
section.

12.3.1 The Breakpoint Block

To set breakpoints in a section external to the one containing DDT,
DDT requires an area of contiguous storage in the section containing
the breakpoint. This area is known as the "breakpoint block". The
extra storage is required for saving global addresses for transfer of
control between your program and DDT, and also for the execution of
single-stepped instructions that reference memory locations that are
not in their section.

Each section within your program space that contains a breakpoint must
have one breakpoint block. Breakpoint blocks are located at the same
relative local address within each section (the default is 777700),
and are 100 (octal) words in si ze.

Each breakpoint block is always contiguous within one section.
Breakpoint blocks never extend across section boundaries and never
"wrap around" the end of a section to the beginning of the section.

DDT creates a breakpoint block in each section as required, if
inter-section breakpoints are enabled (see below).

You (or your program) can reference memory within a breakpoint block,
but any information stored there can be overwritten by DDT.

12.3.2 Enabling and Disabling Inter-section Breakpoints

The section-relative (18-bit) address of the breakpoint block(s) is
stored in an internal DDT location. The command <ESC>4M returns the
address of that DDT location. The symbol $4M refers to the DDT
location at the address returned by (ESC>4M. Inter-section
breakpoints are enabled as long as $4M contains the address of the
breakpoint block. At startup, DDT enables inter-section breakpoints
by default.

To change the address of the breakpoint block, type in

n<ESC>4M

where n is the address of the breakpoint block, and can be any legal
DDT expression (20<=n<=777700). DDT uses only the right half of n,
and changes only the right half of the DDT location at $4M.

By default, the section-relative breakpoint block address
placing the breakpoint block at the top of the section.
the address of the breakpoint block, type in

<ESC>4M/

is 777700,
To display

Inter-section breakpoints are disabled when $4M contains zero.

12-2

EXTENDED ADDRESSING

NOTE

In MDOT, $4M defaults to MDDBLK. In
KDDT, $4M defaults to EDDBLK. Each
symbol denotes the start of a lOO-word
(octal) block contained in page zero of
the monitor. Page zero of the monitor
is mapped into every section that
contains monitor code.

To disable inter-section breakpoints, type in

O<ESC>4M

While inter-section breakpoints are disabled, you cannot set a
breakpoint in a section external to DDT, and any breakpoints already
set in such a section are lost when you begin program execution with
<ESC>G, or continue program execution with <ESC>P. For each
breakpoint lost, DDT displays

% CAN'T INSERT $nB - IN NON-DDT SECTION

where n is the breakpoint number.

While inter-section breakpoints are disabled, DDT cannot execu~e the
<ESC>X command when:

• you try to execute the instr<ESC>X command, and the default
section is not the section that contains DDT, OR

• you try to single-step a dangerous instruction and the
user-program PC is not in the section that contains DDT

When this occurs, DDT displays

% CAN'T $X, NO $4M

12-3

EXTENDED ADDRESSING

12.4 DISPLAYING SYMBOLS IN NONZERO SECTIONS

DDT normally uses right-halfword values when searching symbol tables
for symbols to display. However, code linked in a nonzero section has
symbols defined with the section number in the left-halfword. DDT
uses a 30-bit value when searching for a symbol in the following
circumstances:

• when displaying the address of a location

• when displaying the contents of a location as an address

• when displaying the Y field of an instruction

When displaying an address, DDT searches for a symbol defined with the
30-bit value of the address. If such a symbol is not found, DDT
displays the address in halfword format.

When displaying the Y field of an instruction, DDT searches for a
symbol defined with a 30-bit value consisting of:

• the section number of the address of the word being displayed

• the section-relative address contained in the Y field of the
instruction

If DDT does not find a symbol defined with that 30-bit value, it looks
for a symbol defined with the l8-bit value contained in the Y field of
the instruction.

Assume a program with the following conditions:

Symbol LABLl is defined as 0,,300
Symbol LABL2 is defined as 3,,300
Location 1,,300 contains 3,,300
Location 1,,301 contains 2,,300
Location 3,,400 contains 200040,,300

(MOVE contents of location 300 to AC 1)

When displaying the contents of location 1,,300, DDT displays

1"LABLl/ LABL2

When displaying the contents of location 1,,301, DDT displays

1"LABL1+1/ 2"LABL1

When displaying the contents of location 3,,400, DDT displays

LABL2+100/ MOVE 1,LABL2

12-4

EXTENDED ADDRESSING

12.5 DEFAULT SECTION NUMBERS

i To reduce the need to type in the section number as part of the
address when you specify a location, DDT uses a default section number
when you do not specify one. DDT has two section defaulting options:

• permanent default section

• floating default section

The command <ESC>6M returns the address of an internal DDT location
that contains section default information. The symbol $6M refers to
the DDT location at the address returned by the command <ESC>6M.

When DDT is in section zero, the default section number is always
zero, regardless of the contents of $6M.

NOTE

When you use KDDT in user-mode, $6M
defaults to 0,,0. In all other cases,
$6M defaults to 1,,0.

12.5.1 Permanent Default Section

If the value contained in $6M is positive (bit zero is reset), the
permanent default section option is in effect. DDT then takes the
left half of $6M as the section number of any address that you type in
without a section number.

Set the permanent default section by typing in

n,,0<ESC>6M

where n is the section number, and can be any legal DDT expression.

12-5

EXTENDED ADDRESSING

12.5.2 Floating Default Section

If the value contained in $6M is negative (bit
floating default section option is in effect.
optio~ (at start-up, DDT initializes $6M to -1).
floating default section as follows:

zero is set), the
This is the default

DDT selects the

• If you enter DDT from its normal start address, DDT sets the
default section to:

• the section that contains the program entry vector (if
there is one) OR

• section zero.

• If you enter DDT from a breakpoint, DDT sets the default
section to the section that contains the breakpoint.

• If you open a local address between 20 and 777777, DDT sets
the default section to the section that contains the open
address.

• If you type in an address that contains a section number
(including a symbol that is defined with a section number) ,
DDT sets the default section to the one in the address you
typed in.

If you exit DDT with <CTRL/C> or <CTRL/Z>, and then reenter DDT, the
current location does not change. If you give a command that takes
the current location as its default address argument, DDT sets the
floating default section to the section of the current location.

12-6

EXTENDED ADDRESSING

In the following example, the DDT screen display is on the left, and
explamatory comments are on the right. The entry vector is in
section 1. Symbol START is not defined with a section number. User
typein is in lowercase.

Screen Display User Input

3"place/

LABLl

<LF)

3"PLACE+l/ LABLl+2

<CTRL/C)

@

@ddt

DDT

<LF)

3"START+2/ LABLl+4

start/

JFCL 0

<LF)

1"START+l/ MOVE l,LABLl

12-7

Explanation

Examine location 3"PLACE.

DDT displays the contents.

Type in <LF) to examine
the next location.

DDT displays the next
location. The floating
default section = 3.

Exit with <CTRL/C).
The current location is
3"PLACE+l.

TOPS-20 prompts you.

Reenter DDT.

DDT is loaded and ready
for your command. The
floating default section is
1, because the entry vector
is in section 1.

Type in <LF) to examine
the next location.

DDT displays the address
and contents of the next
location. DDT doesn't use
the floating default section,
because your <LF) command
defaults addr to the current
location, and uses its
section number (3).

Examine location START.
DDT uses the floating default
section number because symbol
START is defined with no
section number.

DDT displays the contents.

Type in <LF) to examine
the next location.

DDT displays the address
and contents of the location.

EXTENDED ADDRESSING

12.6 EXECUTING SINGLE INSTRUCTIONS

Instructions that are executed by means of the command

instr<ESC)X

where instr is the instruction for DDT to execute, are executed within
the current default section. If that section is not the one that
contains DDT, DDT uses the breakpoint block in that section to execute
instr. If the floating default section option is in effect and you
are unsure of the current default section, use the addr/ command to
open a location in the section in which you wish DDT to execute instr.
This sets the default section to the section specified by addr.

If DDT is to execute the instruction in a section other than the one
that contains DDT, inter-section breakpoints must be enabled.

If you try to execute instr outside DDT's section while intersection
breakpoints are disabled, DDT sounds the terminal buzzer or bell,
displays "?" and sets its error string to:

CAN'T $X, NO $4M

12.7 ENTERING PATCHES IN EXTENDED SECTIONS

You cannot type in a patch if a patching area does not exist in the
section that contains the word to be replaced" To ensure that there
is a patching area for each section that contains user-program code,
do one of the following:

• reserve the same part of each section for patches, and define
the patch symbol as O"addr, where addr is the local address
of the patching area

• use only one patching area and map it into all the sections
that contain user-program code. Define the patch symbol as
O"addr, where addr is the local address of the patching
area.

• define a different symbol for each section's patching area,
and use the symbol appropriate to the section being patched

If the left half of expr is zero, DDT defaults the section to the
section that contains the open location. If the left half of expr is
a value that is not the section that contains the open location, DDT
displays

?CAN'T PATCH ACROSS SECTIONS

12-8

APPENDIX A

ERROR MESSAGES

DDT and FILDDT have many error messages to indicate when and why they
cannot successfully execute your command. DDT sometimes (and FILDDT
usually) displays the appropriate message on the terminal, but at
other times displays only a question mark. When only a question mark
is displayed, a location internal to DDT usually points to a text
string that is the error message. To display the DDT error message,
type

<ESC>?

You can also display the last TOPS-20 error message for DDT's process.
Type

<ESC><ESC>?

To display a specific TOPS-20 error message, type

code<ESC><ESC)?

where code is the TOPS-20 error code.

To display the last process error message for another process, type

fork«ESC><ESC>?

where fork is the handle of the process. Note that there is a left
angle bracket «) between fork and the first <ESC>. Following is a
list of DDT messages together with explanations of what the messages
indicate.

? ABOVE PROTECTION REGISTER LIMIT

The address of the location you tried to display or modify is
above the protection register limit, which is set by n<ESC>9U.

? ACTUAL REFERENCE FAILED

A memory reference failed unexpectedly (the page exists and is
readable, but the reference failed anyway).

A-I

ERROR MESSAGES

? ADDRESS GREATER THAN 777777

An address to be mapped through a section table has a nonzero
section number. This can occur only if you specified a section
table with the n<ESC>{<ESC>}2U command.

? Bad format for .EXE file

You specified a file that appears to have an .EXE directory, but
the directory is badly formatted or DDT cannot read it because of
some other reason.

? BAD $4M VALUE

You used the n<ESC>4M command where 777700<n<20.

? BAD POINTER ENCOUNTERED

DDT does not recognize the type code contained in a page map
pointer. This can occur only if you are trying to do your own
virtual address mapping, and used the expr<ESC>{<ESC>}nU command,
where O<=n<=2.

? CAN'T BE WRITE ENABLED

Even though you have automatic write-enable turned on, DDT is
unable to write-enable a page that exists and is write-protected.

? CAN'T CREATE PAGE

DDT attempted to create a page and failed, or else cannot attempt
to create the page (see the <ESC>lW command) •

? CAN'T DEPOSIT INTO SYMBOL TABLE BECAUSE •••••

You tried to define or kill a symbol, but DDT was unable to
modify the symbol table. Look up the second part of the error
message in this appendix.

? CAN'T DEPOSIT INTO SYMBOL TABLE BECAUSE DEPOSIT FAILED

You tried to define or kill a symbol, but DDT was unable to
modify the symbol table, and cannot identify the specific reason.

% CAN'T INSERT $nB BECAUSE •.•••

DDT is not able to access the location where you inserted your
breakpoint. Look up the second part of the error message in this
appendix. This situation occurs before DDT tries to execute
<ESC>G, <ESC>P, <ESC>X, or <ESC><ESC>X.

A-2

ERROR MESSAGES

% CAN'T INSERT $nB BECAUSE IS IN DIFFERENT SECTION

DDT is not able to access the location where you inserted your
breakpoint because inter-section breakpoints are not enabled
«ESC>4M contains zero). This error occurs before DDT tries to
execute <ESC>G, <ESC>P, <ESC>X, or <ESC><ESC>X. To enable
inter-section breakpoints, deposit the breakpoint block address
in the location addressed by the command <ESC>4M.

% CAN'T INSERT $nB BECAUSE MEM REF FAILED

DDT is not able to access the location where you inserted your
breakpoint. DDT is not able to identify the reason. This occurs
before DDT tries to execute <ESC>G, <ESC>P, <ESC>X, or
<ESC><ESC>X. A typical occurrence is when you have a breakpoint
set in the swappable monitor (set in KDDT in executive mode), but
the swappable monitor is not locked in memory.

? CAN'T PATCH ACROSS SECTIONS

You tried to insert a patch in a section other than the one that
contains the patching area.

? CAN'T PEEK PHYSICAL

You attempted to PEEK at the monitor but have specified other
than normal virtual addressing (FILDDT only) •

% CAN'T REMOVE $nB BECAUSE •••••

DDT is not able to access the location where you inserted your
breakpoint. Look up the second part of the error message in this
appendix. This error occurs when your program enters DDT from a
breakpoint.

% CAN'T REMOVE $nB BECAUSE IS IN DIFFERENT SECTION

DDT is not able to access the location where you inserted your
breakpoint. because inter-section breakpoints are not enabled
«ESC>4M contains zero). This error occurs when your program
enters DDT from a breakpoint. To enable inter-section
breakpoints, deposit the breakpoint block address in the location
addressed by the command <ESC>4M.

% CAN'T REMOVE $nB BECAUSE MEM REF FAILED

DDT is not able to access the location where you inserted your
breakpoint. DDT is not able to identify the reason. This error
occurs when your program enters DDT from a breakpoint. A typical
occurrence is when you have a breakpoint set in the swappable
monitor (set in KDDT in executive mode), but the swappable
monitor is not locked in memory.

% CAN'T SET BREAKPOINT, $4M NOT SET

You attempted to set a breakpoint in a section other than the one
containing DDT while inter-section breakpoints were not enabled.

A-3

ERROR MESSAGES

? CAN'T $X, NO $4M

Inter-section breakpoints are not enabled, and:

• you tried to execute the command instr<ESC>X but the default
section is not the section that contains DDT, OR

• you tried to single-step· a dangerous instruction but the
user-program PC is not in the section that contains DDT

? Garbage at end-of-command

FILDDT encountered extra text at a place in the command where
there should have been only <RET>.

? I/O error

Some kind of I/O error occurred when FILDDT attempted to read or
write to the unit specified in a DRIVE or STRUCTURE command.

? Illegal channel number

You entered a DRIVE command that contained an illegal channel
number.

? Illegal controller number

You entered a DRIVE command that contained an illegal controller
number.

? Illegal unit number

You entered a DRIVE command that contained an illegal unit
number.

? Incorrect symbol table pointer

FILDDT is unable to read the symbol table specified by the symbol
table pointer in the file.

? Input device must be a disk

The device you specified is not a disk.

? Insufficient memory to read EXE file directory

FILDDT does not have enough free memory to read in the directory
section of the .EXE file that you specified.

A-4

ERROR MESSAGES

? Insufficient memory to read PDV list

FILDDT does not have enough free memory to read in the list of
PDVs in the .EXE file that you specified.

NOTE

FILDDT sometimes runs out of memory
when you use the <CTRL/E> command
to save files without exiting
FILDDT. If this is the case, exit
with the <CTRL/Z> command, and then
restart FILDDT with the TOPS-20
FILDDT command.

? INVALID DDT INTERNAL ADDRESS

You addressed an internal location that is not defined. This is
most likely to occur after you use a command that returns a value
(such as <ESC>M) to examine a DDT location and then use <LF> or
<BKSP> to look at nearby memory.

? Invalid file specification, message

where message is a TOPS-20 error string. FILDDT could not parse
a filespec given to a LOAD or GET command.

? Invalid guide phrase input

M

where input is a guide (or noise) phrase that you typed in, and
does not match FILDDT's guide phrase.

You entered a symbol that is defined in more than one module.
You can select the correct symbol by opening the symbol table
associated with that module, using the command module<ESC>:.

? MDDT BREAKPOINT BLOCK ALREADY IN USE

Only one fork may have breakpoints set in MDDT at one time. You
attempted to set a breakpoint in MDDT while another fork had
already set an MDDT breakpoint.

? Missing or extra units in structure

The number of units with the name supplied in a STRUCTURE command
does not agree with the number of ynits in the first structure
with that name returned by MSTR%.

? No keyword input

where input is a word that you typed in. You entered ENABLE
without the DATA, PATCHING, or THAWED qualifier.

A-5

ERROR MESSAGES

. ? NO READ ACCESS

You tried to display a word in a page to which you do not have
read access.

? No such command as input

where input is a word that you typed in. You entered a command
that FILDDT does not recognize.

? No such file structure

COMND% and DEVST% think you supplied a disk name in a STRUCTURE
command, but no unit with that name was returned by MSTR%.

? Not enough memory for file pages

FILDDT does not have enough free memory for its file page
buffers.

NOTE

FILDDT sometimes runs out of memory when
you use the <CTRL/E> command to save
files without exiting FILDDT. If this
is the case, exit with the <CTRL/Z>
command, and then restart FILDDT with
the TOPS-20 FILDDT command.

? Not enough memory for symbols

FILDDT does not have enough free memory to read in the symbol
table from the specified .EXE file. See the note above.

? NOT IN CORE

You tried to map through a page map pointer (in a UPT, SPT, or
section table) that addresses a page that is swapped out. This
can occur only if you are trying to do your own virtual address
mapping, and used the expr<ESC>{<ESC>}nU command, where O<=n<=2.

% Not in .EXE format -- Data file assumed.

A GET command without a /DATA switch or a previous ENABLE
DATA-FILE command specified a file which is not in .EXE file
format. FILDDT assumes it is a data file.

? NOT WRITABLE

You tried to modify a word in a write-protected page. To enable
writing on protected pages, use the <ESC>OW command.

A-6

ERROR MESSAGES

? PAGE DOES NOT EXIST

You tried to display a word in a nonexistent page.

? patching is not enabled

You attempted to modify (with FILDDT) a file, a disk, or the
monitor, but did not use the /PATCH switch or the ENABLE PATCHING
command.

% Patching the running monitor is illegal

You entered an ENABLE PATCHING command and then gave a PEEK
command.

? PEEK FAILED

You tried to PEEK at the monitor, but do not have WHEEL or
OPERATOR privileges enabled.

% Symbols cannot be extracted from a data file

You used the command GET filnam/SYMBOL. Either the file
specified by filnam is not an .EXE file, or you previously used
the command ENABLE DATA-FILE.

? Symbols cannot be extracted from a data file

U

You used the command LOAD filnam, and the file specified by
filnam is not an .EXE IIIe.

You entered a symbol that DDT cannot locate in any symbol table.
Cure this by entering the correct symbol, or by defining the
symbol with the command {expr<}symbol:.

? UNEXPECTED MOVEM FAILURE

DDT could not deposit to memory even though the page exists
exists and is write-enabled.

A-7

ERROR MESSAGES

NOTE

In the following messages, unit is one
of the following:

• "Un it" (if yo u used
command)

the DRIVE

• "Unit u on controller k on channel
c" (if you used the STRUCTURE
command, where u, k, and c are the
arguments you entered)

% Unit has a bad BAT block

The unit that you specified in a DRIVE or STRUCTURE command has a
bad BAT block.

% Unit has a bad HOME block

The unit that you specified in a DRIVE or STRUCTURE command has a
bad HOME block.

? Unit is off line

The unit that you specified in a DRIVE or STRUCTURE command is
off line.

% Unit is write locked

You used an ENABLE PATCHING command and then specified a
write-locked unit in a DRIVE or STRUCTURE command.

% Update of file's symbol table failed

FILDDT was unable to write the modified symbol table back to the
file after you gave a <CTRL/Z> or <CTRL/E> command. This may
also occur when you use the n<ESC>SM command.

A-8

bit

GLOSSARY

Bit is a contraction of "binary digit". A bit is the smallest
unit of information in a binary system of notation. It is the
choice between two possible states, usually designated as zero
and one. Bits of data are often used as flags to indicate
on/off or yes/no conditions.

breakpoint

A breakpoint is a location in a program's executable code that
has been modified so that if the program attempts to execute
the instruction at that location, control passes to DDT before
the instruction is executed.

breakpoint block

The breakpoint block is a contiguous block of memory required
by DDT for utilizing inter-section breakpoints in a program
running under extended addressing.

current display mode

The current display mode is the mode in which DDT displays the
next word (unless there is an intervening command that changes
the current display mode). Also known as the current typeout
mode.

current quantity

The current quantity is the most recent of:

• the last 36-bit quantity that DDT displayed

• the 36-bit evaluation of the last expression that you
entered as an argument to a command that deposits to memory

This value is often used as the default argument for the next
command. Also known as the last value typed.

current location

The current location is a memory word that has been referenced
by an earlier DDT command. The address of the current location
is the default address for most DDT commands.

Glossary-l

GLOSSARY

current location stack entry

The location that will become the current location as a result
of the next <ESC><RET> command.

current radix

The current radix is the radix in which DDT displays numeric
values.

current typeout mode

See current display mode.

debugg ing

EDDT

FILDDT

jiffy

KDDT

Debugging is the process of finding and removing programming
errors from programs.

EDDT is the DDT variant that is used to debug executive-mode
programs.

FILDDT is the DDT variant that is used to examine and modify
disk files and disk structures. FILDDT is also used to examine
(but not modify) the running monitor.

A jiffy is a unit of time defined as one AC (alternating
current) cycle. If your line power has a frequency of 60 Hz.,
a j iffy is one sixtieth of a second (about 16 mill iseconds) •
If your line power has a frequency of 50 Hz., a jiffy is one
fiftieth of a second (20 milliseconds) •

KDDT is the DDT variant used to debug the monitor. You can set
breakpo ints, single-step instr uct ions, and per form any 0 ther
DDT function.

last value typed

See current quantity.

location

A location is a numbered or named place in storage or memory
where a unit of data or an instruction can be stored. This
manual also uses the terms word and memory word.

location counter

The location counter is a memory word that contains the address
of the current location.

GlossarY-2

GLOSSARY

location sequence stack

MDDT

The location sequence stack is
addresses of locations used
access these locations again
enter the address of each
these addresses in a last-in,

a stack in which DDT stores the
earlier. DDT uses the stack to

without having you explicitly
of the locations. DDT references
first-out manner.

MDDT is the DDT mode used to examine and patch the running
monitor.

open location

The open location is a memory word that you can modify with
your next DDT command.

prevailing display mode

reset

set

The prevailing display mode is a user-defined default display
mode. DDT displays memory words in the prevailing mode unless
you specify a temporary display mode. You can restore the
prevailing mode with the <RET> command. See Chapter 4
(Displaying and Modifying Memory) for a list of other commands
that restore the prevailing display mode.

Reset refers to the zero condition of a bit or flag. A bit
that is zero is said to be reset. To reset is the verb that
refers to the act of turning the bit on, "clearing" the bit,
or making it zero.

Set refers to the nonzero condition of a bit or flag. A bit
that is nonzero is said to be set. To set is the verb that
refers to the act of turning the bit on,-or making it nonzero.

single-stepping

target

Single-stepping
instructions one
each instruction.

is the process of executing program
at a time using DDT, to verify the result of

Target refers to the contents of the virtual address space that
FILDDT is accessing. The virtual address space may contain a
disk structure, a disk file, or the running monitor.

temporary display mode

The temporary display mode is a short-term, user-selected
display mode which overrides the prevailing display mode.
Temporary display mode remains in effect until you enter <RET>
or <TAB>. Also known as the temporary typeout mode.

temporary typeout mode

See temporar.y display mode.

Glossary-3

INDEX

$, 2-2 Commands
$., 5-2
$$., 5-2
$$Q, 4-8
$OI3PT, 5-10
$nl3, 5-3
$ 2M, 4-3
$3M, 4-3
$4M, 12-2
$5M, 7-5
$6M, 12-5
$Q I' 4-8

-A-

Access, page, 4-28
Automatic page-creation, 4-27
Automatic proceed

terminating, 5-8
Automatic proceed flag, 5-7
Automatic write-enable, 4-27

-B-

BACKSPACE key, 2-2
<BKSP), 2-2
$OBPT, 5-10
Breakpoint block, 12-2
Breakpoints, 2-5, 5-1

conditional, 5-9
DDT action at, 5-2
display additional location at,

5-5
display address of, 5-6
executing instructions at, 5-11
executing subroutines at, 5-14
inter-section, 12-2
proceeding from, 5-3, 5-7
removing, 5-6
setting, 5-4
single-stepping at, 5-12
unsolicited, 5-10

Commands
DDT

-C-

, 4-5
1,4-9,4-17,4-22,4-23,

4-24, 12-1
", 3-7
"c<ESC), 3-8
., 4-7
I, 4-9, 4-17, 4-19, 12-1
;, 4-5
=, 4-5
?, 4-26, 4-29, 5-15, 6-2, 6-3,

6-·4, 7-4
[, 4-9, 4-17, 4-20, 12-1

Index·-1

DDT (Cont.)
\, 4-9, 4-17, 4-23, 12-1
], 4-9, 4-17, 4-21, 12-1

, 4-9
Backs1ash, 4-9, 4-17, 4-23,

12-1
<BKSP), 2-2, 4-9
<CTRL/U), 2-3
<CTRL/Z), 2-3
delet ing, 2-3
Equal sign, 4-5
<ESC), 2-2, 4-16, 7-1
<ESC)", 3-7
<ESC)5", 3-8
<ESC)"c<ESC), 3-8
<ESC)., 5-1
<ESC)l:, 7-2
<ESC):, 7-2
<ESC)<, 8-1
<ESC)O<, 8-5
<ESC», 8-2
<ESC)?, 2-3, A-I
<ESC)B, 5-6, 11-3
<ESC)<BKSP), 4-13, 4-16
O<ESC)nB, 5-6
<ESC)nB, 3-4, 5-4, 5-5, 5-6,

11-3
<ESC)C, 4-4
<ESC)D, 7-3
<ESC)E, 6-4
<ESC)F, 4-4
<ESC)G, 5-1, 5-7, 5-18, 11-1
<ESC)H, 4-4
<ESC)I, 3-4, 5-17
<ESC)K, 7-3
<ESC)L, 4-28
<ESC)<LF), 4-13, 4-15
<ESC)M, 3-4, 6-5
<ESC)lM, 4-30
<ESC)2M, 4-3
<ESC)3M, 4-3
<ESC)4M, 12-2
<ESC)5M, 7-5
<ESC)6M, 12-5
<ESC)N, 6-3
<ESC)O, 4-4
<ESC)P, 5-7, 5-18, 11-1
<ESC)Q, 4-8
<ESC)<RET), 4-13, 4-14
<ESC)S, 4-4
<ESC)lS, 4-4
<ESC)OT, 4-26
<ESC)lT, 4-4
<ESC)5T, 4-4
<ESC)6T, 4-4
<ESC)7T, 4-4
<ESC)8T, 4-4
<ESC)9T, 4-4

INDEX

Commands
DDT (Cont.)

<ESC>U, 3-4, 5-18, 11-2
<ESC>nU, 11-3
<ESC>V, 4-29
<ESC>W (search), 6-1
<ESC>W (write-protect), 4-27
<ESC>lW, 4-27
<ESC>X, 5-11, 5-12, 5-14,

5-17, 5-18, 11-1, 11-3
<ESC>Z, 4-26
<ESC><ESC>., 5-1
<ESC><ESC>:, 7-5
<ESC><ESC>l:, 7-5
<ESC><ESC><, 8-3·
<ESC><ESC>?, 2-3, A-I
<ESC><ESC>C, 4-4
<ESC><ESC>F, 4-4
<ESC><ESC>H, 4-4
<ESC><ESC>K, 7-2
<ESC><ESC>L, 4-28
<ESC><ESC>O, 4-4
<ESC><ESC>P, 5-8
<ESC><ESC>Q, 4-8
<ESC><ESC>S, 4-4
<ESC><ESC>lS, 4-4
<ESC><ESC>lT, 4-4
<ESC><ESC>5T, 4-4
<ESC><ESC>6T, 4-4
<ESC><ESC>7T, 4-4
<ESC><ESC>8T, 4-4
<ESC><ESC>9T, 4-4
<ESC><ESC>U, 11-2
<ESC><ESC>nU, 11-3
<ESC><ESC>W, 4-27
<ESC><ESC>lW, 4-27
<ESC><ESC>X, 5-14, 5-17, 5-18
<ESC><ESC>lX, 5-16
Exclamation point, 4-9, 4-17,

4-22, 4-23, 4-24, 12-1
Left square bracket, 4-9,

4-17, 4-20, 12-1
<LF>, 2-2, 4-9
Period, 4-7
<RET>, 2-2, 4-9
Reverse slash, 4-9, 4-17,

4-23, 12-1
Right square bracket, 4-9,

4-17, 4-21, 12-1
Semicolon, 4-5
Slash, 4-9, 4-17, 4-19, 12-1
<TAB>, 2-2, 4-9, 4-17, 4-24,

12-1
Underscore, 4-5

CONTROL key, 2-2
Current display mode, 4-3
Current location, 2-4, 4-7
Current location stack entry, 4-7
Current quantity, 2-4, 4-8

-D-

Dangerous instructions, 5-16

Default section
floating, 12-6
permanent., 12-5

Display mode
A, 4-5
C, 4-4
current, 4-3
F, 4-4
H, 4-4
0, 4-4
pr eva iIi ng, 4 - 2
R, 4-5
IS, 4-4
S, 4-4
symbol ic, 4-1
IT, 4-4, 4-6
5T, 4-4
6T, 4-4
7T, 4-4
8T, 4-4
9T, 4-4
temporary, 4-2

-E-

EFIW, 4-17, 4-25
<ESC>, 2-2
ESCAPE key, 2-2
Expression operators, 3-9
Expressions, 3-2
Extended format indirect word,

4-17

-I-

IFIW, 4-17, 4-25
Initializing memory, 4-26
Input

ASCII character, 3-8
ASCII string, 3-7
decimal integer, 3-2
floating point, 3-2
hal fwo rds, 3-11
instructions, 3-11
left-justified text string, 3-6
long text string, 3-5
octal integer, 3-2
Radix-50 word, 3-8
right-justified n-bit character,

3-8
SIXBIT character, 3-8
SIXBIT string, 3-7
text, 3-4
value returned by a command,

3-3
Input to DDT, 3-2
Instruction format indirect word,

4-17

-L-

Last quantity typed, 4-8
<LF>, 2-2

Index-2

INDEX

LINE FEED key, 2-2
Location counter, 2-4, 4-7
Location sequence stack, 2-4, 4-7

-M-

Mask
output byte size, 4-3
search, 6-5
TTY control, 4-30

Maximum symbolic offset, 4-3
Memory protection, 4-27
Memory watch, 4-29

-0-

Open location, 2-4, 4-7
OpE~rators

in expressions, 3-9
Output byte size mask, 4-3

-P-

Page access, 4-28
Patch

abort, 8-5
before instruction, 8-1
following instruction, 8-3
terminate, 8-2, 8-3

Prevailing display mode, 4-2
Proceed count, 5-7

$$Q, 4-8
$Q, 4-8

-Q-

-R-

<RET>, 2-2
RETURN key, 2-2

-S-

Search
for address, 6-4
for'matching value, 6-1
for non-matching value, 6-3
terminate, 6-2, 6-3, 6-4

Search mask, 6-5
Single-stepping, 5-12
Symbol table

closing, 7-2
finding name of, 7-2
opening, 7-1

Symbolic debugging, 1-1
Symbols

creating undefined, 7-3
defining new, 7-2
deleting, 7-2
listing undefined, 7-4
locating, 7-4
multiply-defined, 7-1
reactivating typeout of, 7-3
redefining old, 7-2
suppressing typeout of, 7-3

TAB key, 2-2
<TAB>, 2-2

-T-

Temporary display mode, 4-2
TTY control mask, 4-30

-U-

Unsolicited breakpoint, 5-10
User-program context, 5-17

-w-
Watching memory, 4-29

-Z-

Zeroing memory, 4-26

Index-3

f

READER'S COMMENTS

TOPS-20
DDT Manual

AA-M273A-TM

NOTE: This form is for document comments only. DIGITAL will use comments submitted on
this form at the company's discretion. If you require a written reply and are eligible to
receive one under Software Performance Report (SPR) service, submit your com­
ments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make sugges­
tions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of reader that you most nearly represent.

[] Assembly language programmer
[] Higher··level language programmer
[] Occasional programmer (experienced)
[] User with little programming experience
[] Student programmer
[] Other (please specify)~~~~~~~~~~~~~~~~~~~~~

Name ___________________ ~ __ ~ ________ ~~~~. ____ ~_ Date ___________ _

Organization Telephone ~--------

Street _____________________________ _

City ___ , _______________ State ___ Zip Code __ _

or Country

I
I
I
I

Do Not Tear - Fold Here and Tape - _.-,

"0-0"-0 111111 8~::e~:::~e:
~ ~ II~ If Mailed In the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS

200 FOREST STREET MR01-2/L12

MARLBOROUGH, MA 01752

I
,
,

- Do Not Tear - Fold Here and Tape - - - - - - - - - - - - - - -.- --,

(I

.:
"'t

(I ...
, C
Ie

t:
, C

,..s
1<1
, -:
'L ,
,
I

