
TOPS-20

Monitor Calls User’s Guide

AA-D859C-TM

September, 1985

This manual describes the use of TOPS—20 monitor calls,
which provide user programs with system services such as
input/output, process control, file handling, and device control.

This manual supersedes the DECSYSTEM-20 Monitor Calls
User’s Guide, order number AA-D859B-~TM

Change bars in the margins indicate material that has been
added or changed since the previous printing of this manual.
Bullets indicate that material has been deleted.

OPERATING SYSTEM: TOPS—20 V6.1

Software and manuals should be ordered by title and order number. In the United States. send orders
to the nearest distribution center. Outside the United States. orders should be directed to the nearest
DIGITAL Field Sales Office or representative.

Northeast/Mid—Atlantic Region Central Region ' Western Region

Digital Equipment Corporation Digital Equipment Corporation Digital Equipment Corporation
PO Box CS2008 Accessories and Supplies Center Accessories and Supplies Center
Nashua, New Hampshire 03061 1050 East Remington Road 632 Caribbean Drive
Telephone:(603)884-6660 Schaumburg, Illinois 60195 Sunnyvale, California 94086

Telephone:(312)640-5612 Telephone:(408)734-4915

digital equipme:m corporatione marlboro, mossochUSefis



First Printing, May 1976

Revised, April 1982

Revised, September 1985

© Digital Equipment Corporation 1976, 1982, 1985. All Rights Reserved.

The information in this document is subject to change without notice and should

not be construed as a commitment by Digital Equipment Corporation. Digital

Equipment Corporation assumes no responsibility for any errors that may

appear in this document.

The software described in this document is furnished under a license and may

only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment

that is not supplied by DIGITAL or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

dlililtlal1
DEC MASSBUS RSX

DECmate PDP RT

DECsystem—10 P/OS UNIBUS

DECSYSTEM-20 Professional VAX

DECUS Q-BUS vMS

DECwriter Rainbow vT

DIBOL RSTS Work Processor

The postage-prepaid READER'S COMMENTS form on the last page of this

document requests the user’s critical evaluation to assist us in preparing future

documentation.



PREFACE

CHAPTER

CHAPTER

CHAPTER

]
N

I
M
R
 

R
N
 

D
D
 
N
N
 
N
N

e
 

&
 

2
 

&
 

@
 

*
»
 

=

(
S
R

 U
U
R

 V
L
R
 V
I
R
 U
V
R
 V
I
R
 
V
I
R
 S
U
R
U
L

 R
 
V
T
R
 
V
I
R
 
V
I
R
 U
L
 
R
S
 R
 
V
I
R
 
U
U
R
 
L
R
 
Y

(
S
A
R
C
A
R
V
I
R
V
,
 R
N
 
R
V
 
R
V
 
R
V
 
R
N
,
 B
N 

g 
S
l
 U
V
R
 U
L 
R 

UL
 R

 U
V
 
V
R
N
 
N 
P

O
N
C
N
O
N
\
J
T

B
 
N
 
—

s
 

e
 

o
 

e

w
 
N
 
o
D

—
 
W
0
 
O
~

 
W

N

—
p
a
—

—
—
_
 
i
 
e
t
 
]

«
 

o
 

e

CONTENTS

INTRODUCT1 ON

OVERVIEW . . . .

MONITOR CALLS

Calling Sequence .

Error Returns

PROGRAM ENVIRONMENT

INPUT AND OUTPUT USING THE TERMINAL

OVERVIEW . .

PRIMARY 1/0 DESIGNATORS

PRINTING A STRING

READING A NUMBER .

WRITING A NUMBER .

INITIALIZING AND TERMINATING THE PROGRAM .

RESET% Monitor Call

HALTF% Monitor Call

READING A BYTE

WRITING A BYTE

READING A STRING .

SUMMARY

USING FILES

OVERVIEW . .

JOB FILE NUMBER .

ASSOCIATING A FILE WITH A JFN

GTJFN% Monitor Call

Short Form Of GTJFN% .

Long Form Of GTJFN%

Summary Of GTJFNZ%

OPENING A FILE

OPENF% Monitor Call

TRANSFERRING DATA

File Pointer .

Source And Dest:natlon DeS|gnators

Transferring Sequential Bytes

Transferring Strings e e

Transferring Nonsequentia] Bytes

Mapping Pages

Mapping File Pages TO A Process

Mapping Process Pages To A File

I 
O
O
 
N
N
 
N
N
D
 
D
D
 
N
N

!

N
N

I

1

A
N

—

I 
I 

| 
1

N
 
O
W
W
O
W
W
O
 
O
O
0
 
W

—

3-27

3-30



CHAPTER

CHAPTER

(
V
Y
R
 V
I
R
V
I
R
 V
I
R

 U
L
 R

 U
L
V
 
V
E
R
V
E
 
V
A

O
 
O
~
~
~

 
o
o
V

L]
 

L]
 

- 
- 

Ld

Po
r
e
e
e
s
r
r
r
r
r
e
r
e
s
r
r
r
e
r
r
e
r
e
s
r
e
s
r
e
s
re

—
 
—
 
W
0
 
o
o
~
 
O
O
 N
~

o

i
li

O
 
O
 
o
0

L.1o.

L.10.

L.10.

L.vo.

L.

L.12

(S
 A
RC

AR
UL
 
V
A

 R
UA
RC
AR
CA

 R
V
 
RV
 
RV

, 
u
n

T
y
 
F
F
w
 
N

 
N
N

—

o

o
 

F
F
w
 
N
N
 
N
 
—

W
 
R
 
—

. —
L
l

Y
R
 
&
 R

.6.3 Unmapping Pages In A Process

Mapping File Sections to a Process .

CLOSING A FILE . + « ¢« v v v v v v v v v o

CLOSF% Monitor Call

ADDITIONAL FILE 1/0 MONITOR CALLS

GTSTS% Monitor Call .

JFNS% Monitor Call

GNJFN% Monitor Call v e e e e

SUMMARY v v & v e v e et e e e e e e e e e

FILE EXAMPLES . v v v ¢ v v v v o ¢« o o o o &

| 
-|

T
 

-
 
O
O
0
 
I
m
w
W
w
w

—
 
=

\
V
I
R
 V
I
R
 V
I
R
U
L
R
U
I
R
U
L
I
R
U
V
I
R
U
I
R

V
I
R
V

1

L
l
 

A 
Y
 
A
V
I
R
V
I
R
V
I
R
V
I
R
V
I
RV
L

USING THE SOFTWARE INTERRUPT SYSTEM

OVERVIEW . . .

INTERRUPT CONDITIONS .

SOFTWARE INTERRUPT CHANNELS AND PRIORITIES

SOFTWARE INTERRUPT TABLES

Specifying the Software Interrupt TabIes

Channel Tabie .

Priority Level Table . e e e e

ENABLING THE SOFTWARE INTERRUPT SYSTEM .

ACTIVATING INTERRUPT CHANNELS

GENERATING AN INTERRUPT

PROCESSING AN INTERRUPT

Dismissing An Interrupt e e e e e e

TERMINAL INTERRUPTS . . . « ¢ v ¢ ¢ ¢ ¢ v ¢« « « k=13

!

O
 
O
\
W
 
o
o
~
~
~
W

 
—

I 
g
 

g 
o
 
o
 
O

]

I
2
 
e
t

f
 

i 
o
 i
N
 o
l
 

.

1
1

I

N

ADDITIONAL SOFTWARE INTERRUPT MONITOR CALLS L-17

Testing for Enablement . . L-17

Obtaining Interrupt Table Addresses L-17

The RIR% Monitor Call I

The XRIR% Monitor Call . . . . . . . . . . . L-18

Disabling the Interrupt System . . . . . . . . L-18

Deactivating a Channel . . . . . . . . . . . . bL=-19

Deassigning Terminal Codes . . . . . . . . . . L-19

Clearing the Interrupt System . . . . . . . . L=-19

SUMMARY . & & o v v e v e e e e e e e e e e e k=20

SOFTWARE INTERRUPT EXAMPLE . . . . . . « « . . . L4=27

PROCESS STRUCTURE

USES FOR MULTIPLE PROCESSES . 5-2

PROCESS COMMUNICATION . 5-3

Direct Process Control . 5-4

Software Interrupts . . 5-4

IPCF and ENQ/DEQ FaCI]Itles . 5=4

Memory Sharing . . . b-§

PROCESS IDENTIFIERS . 5-§

OVERVIEW OF MONITOR CALLS FOR PROCESSES . 5-8

CREATING A PROCESS . . 5-8

Process Capabilities 5-11



CHAPTER

CHAPTER

CHAPTER

v
t
t
t
 
o
o
t

 o
 
U

O
 
0
O
~
 
O
O
 
o

L]
 

L]

s
 
S
I
S
 
S
~
 
S
 
S
I
S
 
S
I
S
 
S
 
S
I
S
~

A
A
N
U
T
'
O
T
U
N
 
-
 
w
w
i
w
o
w
i
w
w
N
 
—

o
o
 
o
o

.12

Lo
 A
R
V
 
I
S
 

i 
i 
-
 

o
 
i
 

e 
R 
P
R
 
N

.
 

.
 

.
 

.
 

-
 

[

A
 

R 
e
 
O

. W
 
R
N
 
N
N
 
e
t
 

N
«
 

e
 

o
 

o

N

SPECIFYING THE CONTENTS OF THE ADDRESS SPACE OF A

PROCESS . . .

GET% Monitor Cal]

PMAP% Monitor Call . .

STARTING AN INFERIOR PROCESS .

INFERIOR PROCESS TERMINATION .

INFERIOR PROCESS STATUS

PROCESS COMMUNICATION

DELETING AN INFERIOR PROCESS

PROCESS EXAMPLES .

ENQUEUE/DEQUEUE FACILITY

OVERVIEW . .

RESOURCE OWNERSHIP . .

PREPARING FOR THE ENQ/DEQ FACILITY .

USING THE ENQ/DEQ FACILITY .

Requesting Use of a Resource .

ENQ% Functions .

ENQ% Argument Block

Releasing a Resource .

DEQ% Functions .

DEQ% Argument Block .

Obtaining Information About Resources

SHARER GROUPS

AVOIDING DEADLY EMBRACES

INTER-PROCESS COMMUNICATION FACILITY

OVERVIEW .

QUOTAS .

PACKETS

Flags

PiDs .

Length And Address Of Packet Data Block

Directories and Capabilities

Packet Data Block

SENDING AND RECEIVING MESSAGES

Sending a Packet .

Receiving a Packet .

SENDING MESSAGES TO <SYSTEM>INFO .

Format of <SYSTEM>INFO Requests

Format of <SYSTEM>INFO Responses

PERFORMING IPCF UTILITY FUNCTIONS

USING EXTENDED ADDRESSING

OVERVIEW . .

ADDRESSING MEMORY AND ACS

5-11

5-11

5-16

5-16

5-17
5-18

5-22

5-23
5-24

a
o
a
o
o
N
o
N
O
o
O
O

[ 
B 

B 
N
 
e 
N

 B
 
N
 

N 
| 

1 
T 
o
~
o
~
n
O
h
"
O
N
O
N
O
Y
O
D

1 
—
 
e
t
 
am
ad
 
am

d 
a
d
 
o
t
 

t

S
I
S
 
N
I

]
P
O
 

R 
S 

—
1

1 
1
1

O
 
o
o

 
W
O
 

E
 
N
N
 
—

1

L 
R 

|

O
~
 

F
 
O
 
O
N
S
N
N
N
N
T
O
O
W

N
 
—



Instruction format .

IndeXxing .« « « « v v « « v o« .

Indirection .

Instruction Format lndlrect WOrd (IFIW)

Extended Format Indirect Word (EFIW)

Macros for Indirection . e e e e e e

AC References . ¢« « ¢ ¢« ¢ ¢ ¢ ¢ o o o o o

Extended Addressing Examples . . . . . . . ..

Immediate Instructions . . .« + ¢« ¢« ¢ ¢ « ¢ + o

XMOVED ¢ & ¢« v ¢ ¢ ¢ ¢ o o o o« o &

XHLLT o v v v o v o 6 0 v o o o

Other Instructions .

.

w
W
w

N
 
—

1

. 
. 

. 
L]
 

. 
- 

. 
. 

. 
. 

L]
 

-
 

-
 

L]
 

.
 

- 
L 

d 
L]
 

. 
.

N
S
N
S

 
O
O
V

 
L
W

N
 
—

1 
O
O
 
0
0
0
0
0
0
0
0
0
0
0
0

| 
|

O
 
O
\
W
w
W
 
o
o
~
~
~
V
U

—
 
—

N
 
s

Program Data Vectors . . . e e e e e e e o . B8-22

Manipulating PDV Addresses e e e e e e e e . 8-22]

8

8

8

7.1 Instructions that Affect the PC . 8-11

.2 Stack Instructions . . . . . . .« .« .« « . . 8-11

.3 Byte Instructions 8-11

USING MONITOR CALLS e e e e e e e e . B-12

] Mapping Memory . . . . e e e e e+ .+ . 8-13

1.1 Mapping File Sectaons to a Process . . 8-13

1.2 Mapping Process Sections to a Process 8-14

1.3 Creating Sections . 8-16

1.h Unmapping a Process Sectlon 8-16

2 Starting A Process In Any Section . 8-17

3 Setting the Entry Vector In Any Section 8-18

L Obtaining Information About a Process 8-18

L. Memory Access Information . . . . . . . . . 8-18

b2 Entry Vector Information . . . . . . . . . . 8-21

b3 Page-Failure Information . . . . . . . . . . 8-21

.5
5.

5.2 PDV Names « ¢« v v v ¢ ¢« ¢ o o« « o« o « o o . 8-23

5.3 Version Number . . . e e e e e e 4 e . . B8-23

MODIFYING EXISTING PROGRAMS e e e e e e e e . . 8-23

] Data Structures . . « ¢ v « v « o« o « « « « . 8-24

1.1 Index Words . v « ¢ « ¢ ¢ v & v o « « W« . . 8-24

1.2 Indirect Words . . + « +« « « v « v « « « . . 8-24

1.3 Stack Pointers . . . e e e e e e .. 8-24

0
0
 
0
0
 
0
0
0
0
0
0
 
0
0
 
O
O
0
D
 
0
0
0
0
0
0
0
0
0

 
C
O
0
0
0
0
0
0
 
0
0
 
0
0
0
0
0
 
0
0
0
0
0
0
0
2
0
0
 
0
O
 
0
0
 
0
0
 
0
0
 
0
0
 
0
2
 
0
0
0
0
 
C
o
 
O
 
0
O

WRITING MULTISECTION PROGRAMS c e e e e e e . 8-24

INDEX

FIGURES

L-1 Basic Operational Sequence of the Software

Interrupt System . . L=2

L-2 Channels and Priority Levels . L-6

6-1 Deadly Embrace Situation . v e e e s e e . . . 6-5

6-2 Use of Sharer Groups . « « + « « « « & « « « . . 6-18

7-1 |PCF Packet . 7-2

8-1 Program Counter Address F:elds . 8-3

8-2 Instruction Word Address Fields . 8-4



Instruction Format Indirect Word . .« « « .« . . 8-6

Extended Format Indirect Word . . . . . . . . . . 8-6(?
OC

D
£
 
w

TABLES

NOUT% Format Option . « + ¢« v « v ¢« ¢ « v v o o + 2=7

RDTTY% Control Bits . . . . 2-11

Standard System Values For Flle Specnflcatlons . . 3-4

GTJFN% Flag Bits . . . . . T

Bits Returned on GTJFN% Call e e e e e e e e e e 3-11

Long Form GTJFN% Argument Block . . . . . . . . 3-14

OPENF% Access Bits « « v ¢« ¢ + « o o o « « « « . 3-19

PMAPE Access Bits . ¢« ¢« v ¢ v v v « o« o« « o « . 3=29

SMAP% Access Bits . + « v + + v ¢ v v v e v o . 3-32

CLOSF% Flag Bits . . . « v e « o & e« & « . 3-33

Bits Returned on CTSTS% Call e+ « o e & « o o« . 3-35

0 JFNS% Format Options . .« + « « « « « « « « « . . 3-38

] GNJFN% Return Bits . . . e e e e e . 3=l

Software Interrupt Channe] Assngnments R )

Terminal Codes and Conditions . . . . . . . . . L-14

Process Handles . . . « « « « +« . . 5-6

Inferior Process Characterlstlc BltS e e e e e . . 5-9

GET% Flag Bits « » « ¢« « v ¢« « v v v « « o « « . B-12

GET% Argument Block . . « « « v « v v « v « +« . bB=-13

GET% Argument Block Flags . . . . . . . « « . . 5-14

Process Status Word . . G« vt e e 4 v e e e o b-19

RFSTS% Status-Return Block e+ s e e 4 e 4 e e o+ b-27

ENQZ FUNCLIONS « v ¢ v v v v v« o v v o v v v v o . b-7

ENQ% Argument Block . . . . . . . . .+« . . . . . 6-9

Lock Specification Flags . . . . « « « « « « « . 6-11

DEQ¥ FUNCLionS . &+ « & « v v « v « v v « o o« o« « 6-14

DEQ% Argument Block . . . . . . . . . . . . . . 6-15

I 
[N 

D 
D 

D 
R 

D 
R 

D
R
 

R 
R 

R 
R 

R 
R 

|

S
N
 
O
V
 
E
W
N
 
—
—
O
V
V
T
E
F
W
N
 
S
N
0
V
 
W
N
 
N

 
—
 
=
 
0
0
N
N
 
E
W
N
 
=
N
 
—

- ENQC% Flag Bits . . . C e e e e e e e . B-17

- Packet Descriptor Block Flags N

- Flags Meaningful on a MSEND% Call . . . . . . . . 7-9

- Flags Meaningful on a MRECV% Call . . . . . . . 7-12

- MRECV% Return Bits . . . e« « o« « . 7-14

<SYSTEM>INFO Functions and Arguments B [

<SYSTEM>INFO Responses . . . « . +« « « v « v « « 171-17

MUTIL% FUNCLions + « v « v « « v « « v « v « « . 7-19N
 
A
 
S

 
e
 
B
 e

 A
o

 A
N
 o
o

 A
N
 e

 R
N
 e

 A
R
V
 
U
L
V
 
I
V
 
U
L

 B
V
 
G
 s

 B
 

i 
S 

U
N
 R
 V
I
R
 
V
L
R
 
V
I
R
 
V
I
R
 
V
I
R
 V
I
R
 
V
I
R
 
V
S
R
 
V
I
R
 
V
U
 

N 
3
 
U

1





PREFACE

The TOPS-20 Monitor Calls User's Guide is written for the assembly

language user who is unfamiliar with the DECSYSTEM-20 monitor calls.

The manual introduces the user to the functions that he can request of

the monitor from within his assembly language programs. The manual

also teaches him how to use the basic monitor calls for performing

these functions.

This manual is not a reference document, nor is it complete

documentation of the entire set of monitor calls. |t is organized

according to functions, starting with the simple and proceeding to the

more advanced.

Each chapter should be read from beginning to end. A user who skips

around in his reading will not gain the full benefit of this manual.

Once the user has a working knowledge of the monitor «calls in this

document, he should then refer to the TOPS-20 Monitor Calls Reference

Manual for the complete descriptions of all the calls.

To understand the examples in this manual, the user must be familiar

with the MACRO language and the DECSYSTEM-20 machine instructions.

The TOPS-20 MACRO Assembier Reference Manual documents the MACRO

language. The TOPS-20 LINK Reference Manual describes the linking

loader. The DECsystem-10/DECSYSTEM-20 Processor Reference Manual

contains the information on the machine instructions. These three

manuals should be used together with the Monitor Calls User's Guide,

and should be referred to when questions arise on the MACRO language

or the instruction set. Another useful reference is Introduction to

DECSYSTEM-20 Assembly Language Programming by Ralph €E. Gorin,

published by the Digital Press. |t provides a thorough treatment of

assembly language programming for the DECSYSTEM-20, emphasizing the

analysis of programs and various methods of program synthesis.

In addition, some of the examples in this manual contain macros and

symbols (MOVX, TMSG, JSERR, or JSHLT, for example) from the MACSYM

system file. This file is a universal file of definitions available

to the user as a means of producing consistent and readable programs.

Finally, the user should be familiar with the TOPS-20 Command Language

to enter and run the examples. The TOPS-20 User's Guide describes the

TOPS-20 commands and system programs. The TOPS-20 Commands Reference

Manual describes all operating system commands available to the

nonprivileged user of TOPS-20.





CHAPTER 1

INTRODUCTI ON

1.1 OVERVIEW

A program written in MACRO assembly language consists of a series of

statements, each statement wusually corresponding to one or more

machine language instructions. Each statement in the MACRO program

may be one of the following types:

1. A MACRO assembler directive, or pseudo-operation (pseudo-op),

such as SEARCH or END. These pseudo-ops are commands to the

MACRO assembler and are performed when the program is

assembled. Refer to the DECSYSTEM-20 MACRO Assembler

Reference Manual for detailed descriptions of the MACRO

pseudo-ops.

2. A MACRO assembler direct assignment statement. These

statements are in the form

symbol=value

and are wused to assign a specific value to a symbol.

Assignment statements are processed by the MACRO assembler

when the program is assembled. These statements do not

generate instructions or data in the assembled program.

3. A MACRO assembler constant declaration statement, such as

ONE: EXP 1

These statements are processed when the program is assembled.

L. An instruction mnemonic, or symbolic instruction code, such
as MOVE or ADD. These symbolic instruction codes represent

the operations performed by the central processor when the

program is executed. Refer to the DECsystem-10/DECSYSTEM-20

Processor Reference Manual for detailed descriptions of the

symbolic instruction codes.

-1



INTRODUCTION

5. A monitor call, or JSYS, such as RESET or BIN. These calls

are commands to the monitor and are performed when the

program is executed. This manual describes the commonly-used

monitor calls. However, the user should refer to the TOPS-20

Monitor Calls Reference Manual for detailed descriptions of

all the calls. -

When the MACRO program is assembled, the MACRO assembier processes the

statements in the program by

e translating symbolic instruction codes to binary codes.

e relating symbols to numeric values.

@ assigning relocatable or absolute memory addresses.

The MACRO assemblier also converts each symbolic call to the monitor

into a Jump-to-System (JSYS) instruction.

1.2 MONITOR CALLS

Monitor calls are used to request monitor functions, such as input or

output of data (1/0), error handling, and number conversions, during
the execution of the program. These calls are accomplished with the

JSYS instruction (operation code 104), where the address portion of
the instruction indicates the particular function.

Each monitor call has a predefined symbol indicating the particular

monitor function to be performed (for example, OPENF% to indicate

opening a file). The symbols are defined in a system file called
MONSYM. Monitor calls defined in Release 4 and later require a
percent sign (%) as the final character in the call symbol. Monitor
calls defined prior to Release 4 do not require the %, but do accept

it. The current convention is that all monitor calls use the % as
part of the call symbol. This manual follows that convention. To use

the symbols and to cause them to be defined correctly, the user's

program must contain the statement

SEARCH MONSYM

at the beginning of the program. During the assembly of the program,

the assembler replaces the monitor call symbol with an instruction

containing the operation code 104 in the left half and the appropriate

function code in the right half.

Arguments for a JSYS instruction are placed in accumulators (ACs).
Any data resulting from the execution of the JSYS instruction are
returned in the accumulators or in an address in memory to which an
accumulator points. Therefore, before the JSYS instruction can be
executed, the appropriate arguments must be placed in the specific

accumulators.

1-2



INTRODUCTI ON

The system file MACSYM.MAC contains a number of useful macros for the

assembly language programmer. To wuse MACSYM macros, the user's

- program must contain the statements

SEARCH MACSYM

.REQUIRE SYS:MACREL ;include support routines

at the beginning of the program. Since most bits defined for use with

the monitor have symbolic names, macros enable the programmer to

utilize these bits without knowledge of their exact position. Several

MACSYM macros that are especially valuable to the TOPS-20 assembly

language programmer are MOVX, TXnn (where nn indicates one of the 64

test instructions provided by the hardware), and FLD. MOVX loads an

AC with a constant using the proper MOVE instructions, depending on

the constant's position in the word. The TXnn macros expand to allow

all combinations of modification and testing to be defined. For

example

TXNN AC1,GS%EOF

tests ACl for the presence of GS¥EOF, no modification, and skip if not

equal to zero. This instruction will work regardless of the actual

bit position of GS¥EOF. The FLD macro causes a value to be right

Justified in a field. For example

FLD (7,0F%BSZ)

places the value 7 in position OF%BSZ, right justified at bit 5

(OF%BSZ is defined as bits 0-5). These macros will be used

consistently throughout this document.

]72.1 Calling Sequence

Arguments for the calls are placed in accumulators 1 through L

(ACT-ACL) . I f more than four arguments are required for a particular
call, the arguments are placed in a 1list to which an accumulator

points. The arguments for the <calls are specific bit settings or

values. These bit settings and values are defined in MONSYM with

symbol names, which can be wused in the program. |In fact, it is

recommended that the user write his program using symbols whenever

possible. This makes the program easier to read by another user. Use

of symbols also allows the values of the symbols to be redefined

without requiring the program to be changed. In this manual, the

arguments for the monitor <calls are described with both the bit

settings and the symbol names. All program examples are written using

the symbol names.

The set of instructions that place the arguments in the accumulators

is followed by one 1line of code giving the particular monitor call

symbol. During the program's execution, control is transferred to the

monitor when this line of code is reached.

1-3



INTRODUCTI ON

1.2.2 Error Returns

TOPS-20 provides a consistent way to handle all JSYS errors. For most

monitor calls upon a successful return, the instruction following the

call is executed. |f an error occurs during the execution of the

call, the monitor examines the instruction following the call. |f the

instruction is a JUMP instruction with the AC field specified as

12-17, the monitor transfers control to a user-specified address. |f

the instruction is not a JUMP instruction, the monitor generates an

illegal instruction trap indicating an illegal instruction, which the

user's program can process via the software interrupt system (refer to

Chapter &4). If the wuser's program is not prepared to process the
instruction trap, the program execution halts, and a message is output

stating the reason for failure.

To place a JUMP instruction in his program, the user can include a

statement using one of six predefined symbols. These symbols are

ERJMPR address

ERCALR address

ERJMPS address

ERCALS address

ERJMP address

ERCAL address

= JUMP 12,address)

= JUMP 13,address)

= JUMP 14,address)

= JUMP 15, address)

= JUMP 16, address)

= JUMP 17,address)A
A
A
T
A
A

and cause the assembler to generate a JUMP instruction. The JUMP

instruction is a non-operation instruction (that is, a no-op) as far
as the hardware is concerned. However, the monitor executes the JUMP

instruction by transferring control to the address specified, which is
normaily the beginning of an error processing routine written by the

user., If the user includes the ERJMP symbol, control is transferred
as though a JUMPA instruction had been executed, and control does not

return to his program after the error routine is finished. |f the

user includes the ERCAL symbol, control is transferred as though a
PUSHJ 17, address instruction had been executed. I|f the error routine
executes a POPJ 17, instruction, control returns to the user's program

at the location following the ERCAL.

If the user includes the ERJMPR symbol, the monitor behaves the same
as it would if the ERJMP symbol had been included, except that the
last error encountered by the process is stored in the user's ACl.
(Refer to Appendix B of the TOPS-20 Monitor Calls Reference Manual for
the list of error codes, mnemonics, and message strings.) The ERCALR
symbol functions the same as ERCAL except the error code encountered
is returned in the user's ACl. ERJMPS and ERCALS function similarly
except the monitor suppresses the storing of the error code in the

user's ACT1. Instead, AC1 is preserved and contains either the
original contents from when the monitor call was given, or a partially
updated value prior to the error.



INTRODUCTI ON

Prior to the implementation of the ERJMP/ERCAL facilities, certain

monitor calls returned control to the user's program at various

locations after the calling address. Approximately one third of the

JSYSs return to the +1 address only on failure, and to the location

immediately following that (the +2 address) on successful execution of
the «call. A few calls return +1, +2, or +3, dependent on varying

conditions of success or failure (for examples, see ERSTR% or GACTF%

in the TOPS-20 Monitor Calls Reference Manual); and some calls do not

return at all (see HALTF% or- WAIT%). Refer to Chapter 3 of the
TOPS-20 Monitor Calls Reference Manual for the possible returns for

each monitor call.

When a failure occurs during the execution of a monitor call, the

monitor stores an error code. The error code indicates the cause of

the failure. This error code is usually stored in the right half of

ACl, but can also be stored in the monitor's data base or a user's

data block. In either case, you can obtain the message associated

with the error by using the GETER¥ or ERSTR% call.

The ERJMP/ERCAL facilities can also be used following a machine
instruction, and will trap for the following conditions:

e I|llegal instruction

e |lilegal memory read

e Illegal memory write

® Pushdown list overflow

The ERJMP/ERCAL facilities can be used after all monitor calls,

regardless of whether the call has one or two returns. To handle

errors consistently, users are encouraged to employ either the ERJMPR,

ERCALR, ERJMPS, or ERCALS symbol with all calls. All of the six

predefined jump symbols are no-ops, unless they immediately follow a

monitor call or instruction that fails. Error codes can be obtained

by the program and translated into their corresponding error mnemonic

and message strings with the GETER¥ and ERSTR% monitor calls.

TOPS-20 provides convenient macros and subroutines for handling

monitor call error routines. They can be found in the system file

MACSYM.MAC. Two such macros are EJSERR and EJSHLT. EJSERR prints out

an error message and returns control to the next instruction following

the failing monitor call. EJSHLT prints out an error message and

halts processing of the program.

1-5



INTRODUCTI ON

The following is an example of executing the BIN% monitor call (see

Chapter 3 for more information on this monitor call) that has a single

return. |f the execution of the call is successful, the program reads

and stores a character. If the execution of the <call is not

successful, the program transfers control to an error routine. This

routine processes the error and then returns control back to the main

program sequence. Note that ERCALS stores the return address on the

stack.

DOIT: MOVE T1, INJFN ;obtain JFN for input file

BIN% ; input one character

ERCALS ERROR s;call error routine if problem

MOVEM T2,CHAR ;store character

JRST DOIT ;and get another

ERROR: GTSTS% ;read file status

TXNE T2,GS%EOF send of file?

JRST EOF ;yes, process end-of-file condition

HRRO | T, [ASClZ/

7INPUT ERROR, CONTINUING

/] ;no, data error
PSOUT% ;print message

RET sreturn to program (POPJ 17,)

The ASCIZ pesudo-op specifies a left-justified ASCII| string terminated

with a null (that is, a byte containing all bits equal to zero) byte.

1.3 PROGRAM ENVIRONMENT

The user program environment in the TOPS-20 operating system consists

of a job structure that can contain many processes. A process is a

runnable or schedulable entity capable of performing computations in

parailel with other processes. This means that a runnable program is

associated with at least one process.

Each process has its own address space for storing its computations.

This address space is called virtual space because it is actually a

"window'" into physical storage. The address space is divided into 32

(decimal) sections. Each section is divided into 512 (decimal) pages,

and each page contains 512 (decimal) words. Each word contains 36

bits.

A process can communicate with other processes in the following ways:

e explicitly, by software interrupts or system facilities (the

inter-process communication facility, or IPCF, for example).

e implicitly, by changing parts of its environment (its address

space, for instance) that are being shared with other
processes.

1-6



INTRODUCTI ON

A process can create other processes inferior to it, but there is one

control process from which the chain of creations begins. A process

is said to exist when a superior process creates it and is said to end

when a superior process deletes it. Refer to Chapter 5 for more

information on the process structure.

A set of one or more related processes, nhormally under control of a

single user, is a job. Each active process is part of some job on the

system. A job is defined by a user name, an account number, some open

files, and a set of running and/or suspended processes. A job can be

composed of several running or suspended programs.

The following diagram illustrates a job structure consisting of four

processes.

/ TOP PROCESS \ Job

Process A Process B '

\ Process C /

e —— MR-S-2037-82

Both process A and 1 process B are created by the TOP PROCESS and thus

are directly inferior to it. Process C is created by process B and

thus is directly inferior to process B only. Process C is indirectly

inferior to the TOP PROCESS.

In summary, processes can be considered as independent virtual jobs

with well-defined relationships to other processes in the system, and

a job is a collection of these processes.

1-7





CHAPTER 2

INPUT AND OUTPUT USING THE TERMINAL

One of the main reasons for using monitor calls is to transfer data

from one location to another. This chapter discusses moving data to

and from the user's terminal.

2.1 OVERVIEW

Data transfers to and from the terminal are in the form of either

individual bytes or text strings. The bytes are 7-bit bytes. The

strings are ASCI| strings ending with a 0 byte. These strings are

called ASCIZ strings.

To designate the desired string, the user's program must include a

statement that points to the beginning of the string being read or

written. The MACRO pseudo-op, POINT, can be used to set up this

pointer, as shown in the following sequence of statements:

MOVE ACI1,PTR

PTR: POINT 7,MSG

MSG: ASCIZ/TEXT MESSAGE/

Accumulator 1 contains the symbolic address (PTR) of the pointer. At

the address specified by PTR is the pointer to the beginning of the

string. The pointer is set up by the POINT pseudo-op. The general

format of the POINT pseudo-op is:

POINT decimal-byte-size,address,decimal-byte-position

(Refer to the TOPS-20 MACRO Assembler Reference Manual for more

information on the POINT pseudo-op.) |n the example above, the POINT

pseudo-op has been written to indicate 7-bit bytes starting before the

left-most bit in the address specified by MSG.



INPUT AND OUTPUT USING THE TERMINAL

Another way of setting up an accumulator to contain the address of the

pointer is with the following statement:

HRRO! AC1, [ASCIZ/TEXT MESSAGE/]

The instruction mnemonic HRROI| causes a -1 to be placed in the left

half of accumulator 1 and the address of the string to be placed in

the right half. However, in the above statement, a literal (enclosed
in square brackets) has been used instead of a symbolic address. The

literal causes the MACRO assembler to:

e store data within brackets (the string) in a table.

@ assign an address to the first word of the data.

e insert that address as the operand to the HRROI instruction.

Literals have the advantage of showing the data at the point in the

program where it will be used, instead of showing it at the end of the

program.

As far as the |/0 monitor calls are concerned, a word in this format

(-1 in the left half and an address in the right half) designates the

system's standard pointer (that is, a pointer to a 7-bit ASCIZ string

beginning before the leftmost byte of the string). The result of the

HRROI statement is interpreted by the monitor as functionally

equivalent to the word assembled by the POINT 7, address pseudo-op and

is the recommended statement to use in preparation for a monitor call.

However, byte manipulation instructions (for example, |LDB, IBP,

ADJBP) will not operate properly with this type of pointer.

After a string is read, the pointer is advanced to the character

following the terminating character of the string. After a string is

written, the pointer is advanced to the character following the last

non-null character written.

Most TOPS-20 monitor calls accept one-word global byte pointers when

executed from a nonzero section (see Section 8.3). Global byte

pointers are used with extended addressing and are fully explained in

Chapter 8 of this document. Unless specifically stated, TOPS-20

monitor calls do not accept two-word giobal byte pointers.



INPUT AND OUTPUT USING THE TERMINAL

2.2 PRIMARY 1/0 DESIGNATORS

To transfer data from one location to another, the user's program must
indicate the source from which the data js to be obtained and the
destination where the data is to be placed. By default, the user's
terminal is defined as the source and destination. The default can be
overridden by using the SPJFN% monitor call (refer to the TOPS-20
Monitor Calls Reference Manual). Examples in this book assume the
user's terminal to be the source (input) and destination (output)
device. Two designators are used to represent the user's terminal:

1. The symbol .PRIIN to represent the user's terminal as the
source (input) device.

2. The symbol .PRIOU to represent the user's terminal as the
destination (output) device.

These symbols are called the primary input and output designators and
by default are used to represent the terminal running the program.
They are defined in the system file MONSYM.MAC and do not have to be
defined in the wuser's program as long as the program contains the
statement

SEARCH MONSYM

2.3 PRINTING A STRING

Many times a program may need to print an error message or some other
string, such as a prompt to request input from the user at the
terminal. The PSOUT¥ (Primary String Output) monitor call is used to
print such a string on the terminal. This call copies the designated
string from the program's address space. Thus, the source of the data
is the program's address space, and the destination for the data is
the terminal. The program need only supply the pointer to the string
being printed.

Accumulator 1 (AC1) is used to contain the address of the pointer.
After AC1 is set up with the pointer to the string, the next line of
code is the PSOUT% call. Thus, an example of the PSOUT% call is:

HRRO1 AC1, [ASCIZ/TEXT MESSAGE/] ;string to print
PSOUT% sprint TEXT MESSAGE

2-3



INPUT AND OUTPUT USING THE TERMINAL

The PSOUT% call prints on the terminal all the characters in the

string until it encounters a null byte. Note that the string is

printed exactly as it is stored in the program, starting at the

current position of the terminal's print head or cursor and ending

with the last character in the string. |f a carriage return and line

feed are to be output, either before or after the string, these

characters should be inserted as part of the string. For example, to

print TEXT MESSAGE on one line and to output a carriage return-line

feed after it, the user's program includes the call

HRROI AC1,[ASCIZ/TEXT MESSAGE

/]
PSOUT%

After the string is printed, the instruction following the PSOUT% call

in the wuser's program is executed. Also, the pointer in AC1 is

updated to point to the character following the last non-nul |

character written.

The macro TMSG, found in the system file MACSYM, does the same thing

as the example above. This macro offers the programmer a convenient

way for printing messages on the terminal. For example

TMSG <TEXT MESSAGE

>

caused the text message contained between the angle brackets,

including the carriage return and line feed, to print on the terminal.

The TMSG macro, along with others previously mentioned, will be used

consistently in examples throughout this document. Refer to the

system file MACSYM.MAC for further information on MACSYM macros.

Refer to Section 1.2.2 for information concerning error returns.

2.4 READING A NUMBER

The NIN% (Number Input) monitor call is used to read an integer. This

call does not assume the terminal as the source designator; therefore,

the user's program must specify this. The NIN% call accepts the

number from any valid source designator, including a string in memory.

This section discusses reading a number directiy from the terminal.

Refer to Section 2.9 for an example of using the NIN¥ call to read the

number from a string in memory. The destination for the number is

AC2, and the NIN% call places the binary value of the number read into

this accumulator. The user's program also specifies a number in AC3

that represents the radix of the number being input. The radix given

can be in the range 2-36.

2-4



INPUT AND OUTPUT USING THE TERMINAL

Thus, the setup for the NIN% monitor call is the following:

MOVEI AC1,.PRIIN ;AC1 contains the primary input designator

; (the user's terminal)

MOVE| AC3,AD10 ;AC3 contains the radix of the number being

;input (in this case a decimal number)

NIN% ;The call to input the number

After completion of the NIN¥ call, control returns to the program at
one of two places (refer to Section 1.2.2). If an error occurs during
the execution of the call, control returns to the instruction
following the call. This instruction should be a jump-type
instruction to an error processing routine (see Section 1.2.2). Also,
an error code is placed in AC3 (refer to Appendix B of the TOPS-20

Monitor Calls Reference Manual for the error codes). |f the execution
of the NIN¥ call is successful, control returns to the second
instruction following the call. The number input from the terminal is
placed in AC2.

The NIN¥ call terminates when it encounters a nondigit character (for
example, a letter, a punctuation character, or a control character) .
This means that if 32X1 were typed on the terminal, on return AC2
contains a 40 (octal) because the NIN% call terminated when it read
the X.

The following program prints a message and then accepts a decimal
number from the user at the terminal. Note that the NIN% call
terminates reading on any nondigit character; therefore, the user
cannot edit his input with any of the editing characters (for example,
DELETE, CTRL/W). The RDTTY% call (refer to Section 2.9) should be
used in programs that read from the terminal because it allows the
user to edit his input as he is typing it.

SEARCH MONSYM

HRRO! AC1,[ASCIZ/
Enter # of seconds: /]

PSOUT% joutput a prompt message
MOVE! AC1, .PRIIN ;input from the terminal

MOVE!I AC3,AD10 suse the decimal radix

NIN% ;input a decimal number
ERJMP NINERR serror-go to error routine

MOVEM AC2, NUMSEC ; save number entered

*

NUMSEC:BLOCK 1



INPUT AND OUTPUT USING THE TERMINAL

2.5 WRITING A NUMBER

The NOUT% (Number Output) monitor call is used to output an integer.

The user's program moves the number to be output into AC2. The

program must specify the destination for the number in ACI and the

radix in which the number is to be output in AC3. The radix given

cannot be greater than base 36. In addition, the user's program can

specify certain formatting options to be used when printing the

number.

Thus, the general setup for the NOUT% monitor call is as follows:

AC1: output designator

AC2: number being output

AC3: format options in left half and radix in right half

The format options that can be specified in the left half of AC3 are

described in Table 2-1.

2-6



INPUT AND OUTPUT USING THE TERMINAL

Table 2-1: NOUT% Format Option

Bit Symbol Meaning

0 NOBMAG Print the number as a positive 36-bit

number . For example, -1 would be printed

as 777777 777777 if radix=8).

] NO%SGN Print the appropriate sign (+ or -) before
the number. If bits NOYMAG and NO%SGN are

both on, a plus sign is always printed.

2 NO%LFL Print leading filler. |If this bit 1is not

set, trailing filler is printed and bit

NO%ZRO is ignored.

3 NO%ZRO Use 0O's as the 1leading filler if the

specified number of columns allows filling.

If this bit is not set, blanks are used as

the leading filler if the number of columns

allows filling.

4 NO%O0O0V Output on column overflow and return an

error. If this bit 1is not set, column

overflow is not output.

5 NO%AST Print asterisks when the column overflows.

If this bit is not set, and bit & (NO%OOV)

is set, all necessary digits are printed

when the columns overflow.

6-10 Reserved for Digital (must be 0).

11-17 NO%COL Print the number of columns indicated.

This value includes the sign column. |If

this field is 0, as many columns as

necessary are printed.

2-7



INPUT AND OUTPUT USING THE TERMINAL

The following instruction sequence is an example of the NOUT%¥ monitor

call. This sequence prints a number, stored in location NUMB, on the

user's terminal. The number can be positive, negative or 2zero, with
no special formatting.

MOVX AC1,.PRIOU suse primary output

MOVE AC2,NUMB sget number from location NUMB

MOVX AC3,AD10 syno special format,decimal radix

NOUT% sprint number
EJSHLT sunexpected fatal error. Halt

sand print message.

Refer to Section 1.2.2 for information concerning error returns. The

following example illustrates the use of the three monitor calls

described so far, as well as the TMSG macro. The RESET% and HALTF%

monitor calls are described in Section 2.6.

SEARCH MONSYM

SEARCH HACSYTM

+REQUIRE SYSIMACREL

ACL==1

AC2==2

ACT==]

START! RESETXZ irrerare rrodgram environment

HRROI AC1,LASCIZ/FLEASE TYFE A DECIMAL NUMERER: /1

FSOUTZ

MOVEI ACls .FRIIN isource desidgnator

MOVEI AC3,"D10 idecimal radix

NINYZ

ERJMFS ERROR 1if inrut error print messadger halt,
TMSG «THE OCTAL EQUIVALENT IS8

MOVEI ACLl,.FRIQU idestination desidgnator

MOVEI AC3,"08 taoctasl radix

NOUTZ

EJSHLT ifatal error, Same 3s ERJMFS ERROR.

HALTFZ yreturn to command landuade

JRST START ibegin ada2iny if continued

ERRQR?! TMSG-

TERROR-TYFE START TO HEGIN AGAIN:

HALTFZ

JRST START suser tures continue-start adgain

ENDII START

2.6 INITIALIZING AND TERMINATING THE PROGRAM

Two monitor calls that have not yet been described were used in the

above program - RESET% and HALTF%.

2-8



INPUT AND OUTPUT USING THE TERMINAL

2.6.1 RESET% Monitor Call

A good programming practice is to include the RESET% monitor call at

the beginning of every assembly language program. This call closes

any existing open files and releases their JFNs, kills any inferior

processes, clears the software interrupt system (see Chapter L), and

performs various other process initilization functions. For a

compiete 1list of the functions provided by the RESET% monitor call,

refer to the description of the call in the TOPS-20 Monitor Calls

Reference Manual. The format of the call is

RESET%

and control always returns to the next instruction following the call.

2.6.2 HALTF% Monitor Call

To stop the execution of a program and return control to the TOPS-20

Command Language, the user must include the HALTF% monitor call as the

last instruction performed in the program. The user can then resume

execution of the program at the instruction following the HALTF% call

by typing the CONTINUE command after control has returned to command

level.

2.7 READING A BYTE

The PBIN% (Primary Byte Input) monitor call is used to read a single

byte (that is, one character) from the terminal. The user's program

does not have to specify the source and destination for the byte

because this «call uses the primary input designator (that is, the

user's terminal) as the source and accumulator 1 as the destination.

After execution of the PBIN% call, control returns to the instruction

following the PBIN%. |f execution of the call is successful, the byte

read from the terminal is right-justified in ACl. |f execution of the

call is not successful, an illegal instruction trap is generated, as

explained in Section 1.2.2.

2.8 WRITING A BYTE

The PBOUT% (Primary Byte Output) monitor <call is used to write a

single byte to the terminal. This call wuses the primary output

designator (that is, the user's terminal) as the destination for the

byte; thus, the wuser's program does not have to specify the

destination. The source of the byte being written is accumulator 13

therefore, the wuser's program must place the byte right-justified in

AC1 before the call.

2-9



INPUT AND OUTPUT USING THE TERMINAL

After execution of the PBOUT% call, control returns to the instruction

following the PBOUT%. If execution of the call is successful, the

byte is written to the user's terminal. |If exetution of the call s

not successful, an illegal instruction trap is generated, as explained

in Section 1.2.2.

2.9 READING A STRING

Up to this point, monitor calls have been presented for printing a

string, reading and writing an integer, and reading and writing a

byte. The next call to be discussed obtains a string from the

terminal and, in addition, allows the user at the terminal to edit his

input as he is typing it.

The RDTTYZ (Read from Terminal) monitor call reads input from the

user's terminal (that is, from .PRIIN) into the program's address

space. |Input is read until the wuser either types an appropriate

terminating (break) character or inputs the maximum number of
characters allowed in the string, whichever occurs first. OQutput

generated as a result of character editing is printed on the user's

terminal (that is, output to .PRIOU).

The RDTTY% call handles the following editing functions:

1. Delete the last character in the string if the user presses

the DELETE key while typing his input.

2. Delete back to the last punctuation character in the string

if the user types CTRL/W while typing his input.

3. Delete the current line if the user types CTRL/U while typing

his input.

L. Retype the current line if the user types CTRL/R while typing
his input.

Because the RDTTY%Z call can handle these editing functions, a program
can accept input from the terminal and allow this input to be

corrected by the user as he is typing it. For this reason, the RDTTY

call should be used to read input from the terminal before processing

that input with calls such as NIN%.



INPUT AND OUTPUT USING THE TERMINAL

The RDTTY% call accepts three words of arguments in AC1 through AC3.

AC1: pointer to area in program's address space where input is

to be placed. This area is called the text input buffer.

AC2: control bits in the left half, and maximum number of bytes

in the text input buffer in the right half.

AC3: pointer to buffer for text to be output before the wuser's

input if the user types a CTRL/R, or O if only the user's

input is to be output on a CTRL/R.

The control bits in the left half of AC2 specify the characters on

which to terminate the input. These bits are described in Table 2-2.

Table 2-2: RDTTY% Control Bits

Bit Symbol | Meaning

0 RD¥BRK Terminate input when user types a

CTRL/Z or presses the ESC key.

1 RDXTOP Terminate input when user types one of

the following:

CTRL/G

CTRL/L

CTRL/Z

ESC key

RETURN key

Line feed key

N

¥ 11



INPUT AND OUTPUT USING THE TERMINAL

Table 2-2: RDTTY% Control Bits (Cont.)

Bit Symbol Meaning

2 RD%PUN Terminate input when user types one of

the following:

CTRL/A-CTRL/F

CTRL/H-CTRL/|

CTRL/K

CTRL/N-CTRL/Q

CTRL/S-CTRL/T

CTRL/X-CTRL/Y

ASCI| codes 34-36

ASC!| codes LO-57

ASC!1 codes 72-100

"ASCI1 codes 133-140

ASCI| codes 173-176

The ASCI| codes listed above represent

the punctuation characters in the

ASCI| character set. Refer to the

ASC!I character set table in Appendix

A of the TOPS-20 Monitor Calls

Reference Manual for these characters.

3 RD%BEL Terminate input when user types the

RETURN or line feed key (that is, end

of line).

b RD%CRF Store only the line feed in the input

buffer when the user presses the

RETURN key. A carriage return will

still be output to the terminal but

will not be stored in the buffer. |If

this bit is not set and the wuser

presses the RETURN key, both the

carriage return and the line feed will

be stored as part of the input.

5 RDZRND Return to program if the user attempts

to delete past the beginning of his

input. This allows the program to

take control if the wuser tries to

delete all of his input. |[|f this bit

is not set, the program waits for more

input.

6 Reserved for Digital (must be 0).

2-12



INPUT AND OUTPUT USING THE TERMINAL

RDTTY% Control Bits (Cont.)

Meaning

Table 2-2:

Bit Symbol

7 RDXRIE

8

9 RD¥BEG

10 RDZRA|

11 RD%SUI

15 RDENED

Return to program when there is no
input (that is, the text input buffer
is empty). |If this bit is not set,
the program waits for more input.

Reserved for Digital (must be 0).

Return to user program if the user
attempts to edit beyond the beginning

of the input buffer.

Convert lower case input to upper
case,

Suppress the CTRL/U indication on the
terminal when a CTRL/U is typed by the
user. This means that if the user

types a CTRL/U, XXX will not be

printed and, on display terminals, the
characters will not be deleted from
the screen. If this bit is not set
and the user types a CTRL/U, XXX will

be printed and, if appropriate, the
characters will be deleted from the
screen. |In neither case is the CTRL/U

stored in the input buffer.

Disable editing characters in user
break mask. |If this bit is set, then
any editing character (AR, AU, AV, Ay,

and DELETE) in the user supplied break
mask does not have its editing

function.



INPUT AND OUTPUT USING THE TERMINAL

If no control bits are set in the left half of AC2, the input will be

terminated when the user presses the RETURN or line feed key (that is,

terminated on an end-of-line condition only).

The count in the right half of AC2 specifies the number of bytes

available for storing the string in the program's address space. The

input is terminated when this count is exhausted, even if a specified

break character has not yet been typed.

The pointer in AC3 is to the beginning of a buffer containing the text

to be output if the user types a CTRL/R. When this happens, the text

in this separate buffer is output, followed by any text that has been

typed by the user. The text in this buffer cannot be edited with any

of the editing characters (that is, DELETE, CTRL/W, or CTRL/V) . |

the contents of AC3 is zero, then no such buffer exists, and if the

user types CTRL/R, only the text in the input buffer will be output.

|f execution of the RDTTY% call is successful, the input is in the

specified area in the program's address space. The character that

terminated the input is also stored. (If the terminating character is

a carriage return followed by a line feed, the line feed is also

stored.) Control returns to the user's program at the second location

following the <call. The pointer in ACl is advanced to the character

following the last character stored. The count in the right half of

AC2 is updated to reflect the remaining bytes in the buffer, and

appropriate bits are set in the left half of AC2. The bits that can

be set on a successful return are:

Bit 12 RD%BTM The input was terminated because one

of the specified break characters was

typed. This break character is placed

in the input buffer. |If this bit is

not set, the input was terminated

because the byte count was exhausted.

Bit 13 RD%BFE Control was returned to the program

because there 1is no more input and

RD%RIE was set in the call.

Bit 14 RD%BLR The 1limit to which the user can backup

for editing his input was reached.

For consistent handling of error returns refer to Section 1.2.2.



o
 
—

 
r
—
 
—
—
—
 
t
—
—
 
—

 
—
—
 
—

 
—
—
—
 
—
—
 
—
—
—
 
Y

 
—

 
—

 
S
—
 
Y
—
—
—
—
—
—
—
 
—
—
 
—
—
—
 
—
 
—
—
 
—
—
—
—
 
—
—
—

 
—
—
—
—
—
—
—
—
 
—
—
—
—
 
—
—
—
 
—

 
w
—
—
—
 
—
—
—
—
—
r
:
 
S
r
t
—
 
—
—
—
i
n
 
—
—
—
—
—

INPUT AND OUTPUT USING THE TERMINAL

The following example illustrates the recommended method for reading

data from the terminal. This example is essentially the same as the

one in Section 2.5; however, the RDTTY%¥ call is used to read the

number before the NIN% call processes it. This program stores the

last error encountered in 1location LASTER and therefore uses the

ERJMPR pseudo-op.

SEARCH MONSYM

SEARCH MACSYM

.REQUIRE SYS:MACREL

ACl==

AC2==

AC3==3

START: RESET% ;prepare program environment

HRRO| AC1,PROMPT

PSOUT% ; type prompt

HRROI AC1,BUFFER slocation to store number

MOVE!l AC2,BUFLEN%*5S ;size of buffer

HRRO| AC3,PROMPT ;pointer to prompt

RDTTY% ;read number from term. with editing

ERJMPR ERROR ;jsave error code, print message and halt

HRRO! AC1,BUFFER ;source designhator

MOVE!| AC3,AD10 ;decimal radix

NIN%

ERJMPR ERROR ;if input error, print message and halt

TMSG <THE OCTAL EQUIVALENT IS >

MOVEI AC1,.PRIOU ;destination designator

MOVE! AC3,~D8 soctal radix

NOUT%

ERJMPR ERROR ;save error code, print message and halt

HALTF% ;return to command language

JRST START ;begin again, if continued

PROMPT: ASCIZ/PLEASE TYPE A DECIMAL NUMBER: /

' BUFLEN==10

BUFFER: BLOCK BUFLEN

LASTER: BLOCK 1

ERROR: MOVEM AC1,LASTER ;save error code

TMSG <

7ERROR-TYPE START TO BEGIN AGAIN>;print general error message

HALTF% shalt

JRST START sstart over if continued

END START



INPUT AND OUTPUT USING THE TERMINAL

2.10 SUMMARY

Data transfers of sequential bytes or text strings can be made to and

from the terminal. The monitor calls for transferring bytes are PBIN%
and PBOUTY and for transferring strings are PSOUT%¥ and RDTTY%. The

NIN¥ and NOUT% monitor calls can be used for reading and writing a

number. In general, the user's program must specify a source from

which the data is to be obtained and a destination where the data is

to be placed. in the case of terminal 1/0, the symbol .PRIIN

represents the wuser's terminal as the source, and the symbol .PRIOU

represents the user's terminal as the destination.



CHAPTER 3

USING FILES

3.1 OVERVIEW

All information stored in the DECSYSTEM-20 s kept in files. The
basic unit of storage in a file is a page containing bytes from 1 to
36 bits in length. Thus, a sequence of pages constitutes a file. In
most cases, files have names. Although all files are handled in the
same manner, certain operations are unavailable for files on

particular devices.

Programs can reference files by several methods:

e In a sequential byte-by-byte manner.

® In a multiple byte or string manner.

e In a random byte-by-byte manner if the particular

file-storage device allows it.

® In a page-mapping or section-mapping manner for files on

disk.

Byte and string input/output are the most common types of operations.

Generally, all programs perform 1/0 by moving bytes of data from one
location to another. For example, programs can move bytes from one
memory area to another, from memory to a disk file, and from the

user's terminal to memory. In addition, a program can map multiple
512-word pages or 512-page sections from a disk file into memory or
vice versa.

3~1



USING FILES

Data transfer operations on files require four steps:

1. Establishing a correspondence between a file and a Job File

Number (JFN), because all files are referenced by JFNs.

2. Opening the file to establish the data mode, access mode, and

byte size and to set up the monitor tables that permit data

to be accessed.

3. Transferring data either to or from the file.

L, Closing the file to complete any 1/0, to update the directory

if the file is on the disk, and to release the monitor table

space used by the file.

Some operations on files do not require the execution of all four

steps above. Examples of these operations are: deleting or renaming

a file, or changing the access code or account of a file. Although

these operations do not require all four steps, they do require that

the file has a JFN associated with it (step 1 above).

It is possible for disk files on the DECSYSTEM-20 to be simultaneously

read or written by any number of processes. To make sharing of files

possible, all instances of opening a specific file in a specific

directory cause a reference to the same data. Therefore, data written

into a file by one process can immediately be seen by other processes

reading the file.

Access to files is controlled by the 6-digit (octal) file access code
assigned to a file when it is created. This code indicates the types

of access allowed to the file for the three <classes of users: the

owner of the file, the users with group access to the file, and all

other users. (Refer to the TOPS-20 User's Guide for more information

on the file access codes.) If the user is allowed access to a file, he

requests the type of access desired when opening the file with the

OPENF% monitor call (refer to Section 3.4.1) in his program. If the

access requested in the OPENF% call does not conflict with the current

access to the file, the wuser is granted access. Essentially, the

current access to the file is set by the first user who opens it.

Thus, for a user to be granted access to a specific file, two

conditions must be met:

1. The file access code must allow the user to access the file

in the desired manner (for example, read, write).

2. The file must not be opened for a conflicting type of access.

3-2



USING FILES

3.2 JOB FILE NUMBER

The Job File Number (JFN) is one of the more important concepts in the

operating system because it serves as the identifier of a particular

file on a particular device during a process' execution. It is a

small integer assigned by the system upon a request from the user's

program. JFNs are usually assigned sequentially starting with 1.

The JFN is valid for the job in which it is assigned and may be used

by any process in the job. The system uses the JFN as an index into

the table of files associated with the job and always assigns a JFN

that is unique within the job. Even though a particular JFN within

the job can refer to only one file, a single file can be associated

with more than one JFN. This occurs when two or more processes are

using the same file concurrently. In this case, each of the processes

will probably have a different JFN for the file, but all of the JFNs

will be associated with the same file.

3.3 ASSOCIATING A FILE WITH A JFN

In order to reference a file, the first step the user program must

complete is to associate the specific file with a JFN. This

correspondence is established with the GTJFN% (Get Job File Number)
monitor call. One of the arguments to this call is the string

representing the desired file. The string can be specified within the

program (that 1is, come from memory) or can be accepted as input from

the user's terminal or from another file. The string can represent

the complete specification for the file:

dev:<directory>name.typ.gen;T(temporary) ;P (protection) ;A (account) ;

(device dependent attributes)

If you omit any fields of the specification, the system can provide

values for all except the name field. Refer to the TOPS-20 User's

Guide for a complete explanation of the specification for a file.

Table 3-1 lists the values the system will assign to fields not

specified by the input string.



USING FILES

Table 3-1: Standard System Values For File Specifications

Field Value

Device DSK:

Directory Directory to which user is currently

connected.

Name No default; this field must be

specified.

Type Null.

Generation number The highest existing generation number
if the file 1is an input file. The

next higher geéneration number if the

file is an output file.

Protection Protection of next lower generation of
file, if one exists; otherwise,

protection as specified in the

directory.

Account Account specified when user logged in.

If the string specified identifies a single file, the monitor returns

a JFN that remains associated with that file until either the process

releases the JFN or the job logs off the system. After the assignment

of the JFN 1is complete, the wuser's program uses the JFN in all

references to that file.

The user's program can set up either the short or the long form of the

GTJFN¥ monitor call. The long form of the GTJFN% call requires an

argument block; the short form does not. The long form of GTJFN% has
functions and flexibility not available in the short form of the call.

The short form of GTJFN% allows a file specification to be obtained

from a string in memory or from a file, but not from both. Fields not

specified by the input are taken from the standard system values for

those fields (refer to Table 3-1). This form is sufficient for most

uses of the call. The long form allows a file specification to be

obtained from both a string in memory and a file. |[|f both are given

as arguments, the string is used first, and then the file is wused if

more fields are needed to complete the specification. This form also

allows the user's program to specify nonstandard values to be used for

fields not given and to request the assignment of a specific JFN.

3-4



USING FILES

3.3.1 GTJFN% Monitor Call

The GTJFN% monitor call assigns a JFN to the specified file. It

accepts two words of arguments. These argument words are different

depending on the form of GTJFN¥ being used. The wuser's program

indicates the desired GTJFN¥ form by setting bit 17(GJYSHT) of AC1 to

1 for the short form or by clearing bit 17 (GJ%SHT) for the long form.

3.3.1.1 Short Form Of GTJFN% - The short form of the GTJFN% monitor

call requires the following two words of arguments.

0 17 18 35

! !

AC1 ! flag bits | default generation number !

! !

0 35

AC2

!

source designator for file specification per !

bit 16 (GJ%FNS) of ACI !
]

The flag bits that can be specified in ACl1 are described in Table 3-2.

Table 3-2: GTJFN% Flag Bits

Bit Symbol Meaning

0 GJZFOU The file specification given is to be

assigned the next higher generation

number. This bit indicates that a new

version of a file is to be created and

is normally set if the file 1is for

output use.

] GJENEW The file specification given must not

refer to an existing file (that is,

the file must be a new file).

2 GJXOLD The file specification given must

refer to an existing file. This bit

has no effect on a parse-only JFN.

(See bit GJ%OFG.)

3-5



USING FILES

Table 3-2: GTJFN% Flag Bits (Cont.)

Bit Symbol Meaning

3 GJEMSG One of the appropriate messages is to

be printed after the file

specification is obtained. The

message is printed only if the user

types the ESC key to end his file

specification (that 1is, he is using

recognition input).

[NEW FILE]
[NEW GENERATION]
[OLD GENERATION]

[OK] if GJYCFM (bit L) is off
[CONFIRM] if GJ%CFM (bit Lb) is on

L GJBCFM Confirmation from the wuser will be

required to verify that the file

specification obtained is correct. To

confirm the file specification, the

user can press the RETURN key.

5 GJYTMP The file specified is to be a

temporary file.

6 GJXNS Only the first file specification in a

muitiple logical name assignment is to-

be searched for the file.

7 GJXACC The JFN specified is not to be

accessed by inferior processes in this

job. However, any process can access

the file by acquiring a different JFN.

To prevent the file from being

accessed by other processes, the

user's program can set OF%RTD (bit 29)

in the OPENF call (refer to Section

3.L.1).

8 GJXDEL The file specified is not to be

considered as deleted, even if it is

marked as deleted.

9-10 GJ%JFN These bits are off in the short form

of the GTJFN call (refer to Section

3.3.1.2 for their description).

3-6



Table 3-2:

USING FILES

GTJFN% Flag Bits (Cont.)

Bit Symbol Meaning

11

12

13

GJZIFG

GJ%OFG

GJ%FLG

The file specification given is

allowed to have one or more of its

fields specified with a wildcard

character (% or %). This bit is used

to process a group of files and is

generally used for input files. The

monitor verifies that at least one

value exists for each field that

contains a wildcard and assigns the

JFN to the first file in the group.

The monitor also verifies that fields

not containing wildcards reprsent a

new or old file according to the

setting of GJYNEW and GJ%OLD.

The JFN is to be associated with the

given file specification string only

and not to the actual file. The

string may contain a wildcard

character (% or %) in one or more of

its fields. It is checked for correct

punctuation between fields, but is not

checked for the validity of any field.

This bit allows a JFN to be associated

with a file specification even if the

file specification does not refer to

an actual file. The JFN returned

cannot be used to refer to an actual

file (for example, cannot be used in

an OPENF call) but can be wused to

obtain the original input string via

the JFNS monitor call (refer to

Section 3.7.2).

Flags are to be returned in the left

halif of AC1 on a successful return.

3-7



USING FILES

Table 3-2: GTJFN% Flag Bits (Cont.)

Bit Symbol Meaning

14 GJSPHY Logical names specified for the

current job are to be ignored and the

physical device is to be used.

15 GJEXTN This bit is off in the short form of

the GTJFN call (refer to Section

3.3.1.2 for its description).

16 GJXFNS The contents of AC2 are to be

interpreted as follows:

1. |If this bit is on, AC2 contains an

input JFN in the left half and an

output JFN in the right half. The

input JFN is used to obtain the

file specification to be

associated with the JFN. The

output JFN is used to indicate the

destination for printing the names

of any fields being recognized.

To omit either JFN, the user's

program must specify the symbol

NUL1O (377777).

2. |If this bit is off, AC2 contains a

pointer to a string in memory that

specifies the file to be

associated with the JFN.

17 GJZSHT This bit must be on (set) for the

short form of the GTJFN% call; it must

be off for the long form of the call.

3-8



USING FILES

Table 3-2: GTJFN% Flag Bits (Cont.)

Bit Symbol Meaning

18-35 The generation number of the file

(between
following:

0 (.GJDEF)

-1 (.GJINHG)

-2 (.GJLEG)

-3(.GJALL)

and 377777) or one of the

to indicate that the next

higher generation number

of the file is to be used

if GJZFOU (bit 0) is on,
or to indicate that the

highest existing

generation number of the

file is to be wused if

GJRFOU is off. (This
value is wusually used in

this field.)

to indicate that the next

higher generation number

of the file is to be wused

if no generation number is

supplied.

to indicate that the

lowest existing generation

number of the file is to

be used.

to indicate that all

generation numbers (%) of

the file are to be used

and that the JFN is to be

assigned to the first file

in the group. (Bit GJ%IFG

must be set.)

3-9



USING FILES

|f the GTJFN% call is given with the appropriate flag bit set (GJXIFG

or GJ%0FG), the file specification given as input can have a wildcard

character (either an asterisk or a percent sign) appearing in the

directory, name, type, or generation number field. (The percent sign

cannot appear in the generation number field.) The wildcard character

is interpreted as matching any existing occurrence of the field. For

example, the specification

<L I BRARY>%,MAC

identifies all the files with the file type .MAC in the directory

named <LIBRARY>. The specification

<L I BRARY>MYFI LE.F0%

identifies all the files in directory <LIBRARY> with the name MYFILE

and a three-character file type in which the first two characters are

.FO. Upon completion of the GTJFN <call, the JFN returned is

associated with the first file found in the group according to the

following:

® in numerical order by directory number

® in alphabetical order by filename

® in alphabetical order by file type

@ in ascending numerical order by generation number

The GNJFN¥ (Get Next JFN) monitor call can then be given to assign the

JFN to the next file in the group (refer to Section 3.7.3). Normally,

a program that accepts wildcard characters in a file specification -

will successively reference all files in the group using the same JFN

and not obtain another JFN for each one.

|f execution of the GTJFN% call is not successful because problems

were encountered in performing the call, the JFN is not assigned and

an error code is returned in the right half of ACi. The execution of

the program continues at the instruction following the GTJFN% call.

If execution of the GTJFN% call is successful, the JFN assigned is

returned in the right half of AC1 and various bits are set in the left

half, if flag bits 11, 12, or 13 were on in the call. (The bits

returned on a successful call are described in Table 3-3.) If bit 11,

12, or 13 was not on in the call, the left half of ACl is zero. The

execution of the program continues at the second instruction after the

GTJFN% call.



USING FILES

Table 3-3: Bits Returned on GTJFN% Call

Bit Symbol Meaning

0 GJYDEV The device field of the file

specification contains wildcard

characters.

1 GJXUNT The unit field of the file
specifications contains wildcard

characters. This bit is never set

because wildcard characters are not

allowed in unit fields.

2 GJEDIR The directory field of the file
specification contains wildcard

characters.

3 GJENAM The filename field of the file

specification contains wildcard

characters.

L GJXEXT The file type field of the file

specification contains wildcard

characters.

5 GJXVER The generation number field of the

file specification contains wildcard.

characters.

6 GJEUHV The file used has the highest

generation number because a generation

number of O was given in the call.

7 GJENHV The file used has the next higher

generation number because a generation

number of 0 or -1 was given in the

call.

8 GJIULV The file used has the lowest

generation number because a generation

number of -2 was given in the call.

9 GJ%PRO The protection field of the file

specification was given.

10 GJXACT The account field of the file

specification was given.

3-11



USING FILES

Table 3-3: Bits Returned on GTJFN% Call (Cont.)

Bit Symbol Meaning

1 GJXTFS The file specification is for a

temporary file.

12 GJXGND Files marked for deletion are not

considered when assigning JFNs in

subsequent calls. This bit is set if

GJ%XDEL was not set in the call.

13 GJENOD The node name field of the file
specification was given.

17 GJXGIV Invisible files were not considered
when assigning JFNs.

Examples of the short form of the GTJFN% monitor call are shown in the
following paragraphs.

The following sequence of instructions is used to obtain, from the

user's terminal, the specification of an existing file.

MOVX AC1,GJYOLD+GJIY¥FNS+GJSSHT

MOVE AC2,[.PRIIN,,.PRIOU]

GTJFN%

The bits specified for ACl1 indicate that the file specification given

must refer to an existing file (GJ%0LD), that the file specification

is to be accepted from the input JFN in AC2 (GJ%FNS), and that the

short form of the GTJFN% call is being used (GJ%¥SHT). Because the
right half of AC1 is zero, the standard generation number algorithm

will be used. In this GTJFN% call, the file with the highest existing

generation number is used. Because GJYFNS is set in ACl1, the contents

of AC2 are interpreted as containing an input JFN and an output JFN.

In this example, the file specification is obtained from the terminal

(.PRIIN).

The following sequence of instructions is used to obtain, from the

user's terminal, the specification of an output file and to require

confirmation from the user once the file specification has been

obtained.

MOVX AC1,GJZFOU+GJIEMSG+GJECFM+GISFNS+GISSHT

MOVE AC2,[.PRIIN,,.PRIOU]
GTJFN%



USING FILES

in this example, the bits specified for ACl1 indicate that

@ the file obtained is to be an output file (GJ¥FOU),

e after the file specification is obtained, a message is to be

typed (GJ%MSG),

e the user is required to confirm the file specification that

was obtained (GJZCFM),

e the file specification is to be obtained from the input JFN

in AC2 (GJ%FNS),

e the short form of the GTJFN% call is being used (GJ¥SHT).

Because the right half of ACl1 is zero, the generation number given to

the file will be one greater than the highest generation number

existing for the file. The contents of AC2 are interpreted as

containing an input JFN and an output JFN because GJZFNS is set in

AC1.

The following sequence of instructions is used to obtain the name of

an existing file from a location in the user's program.

MOVX AC1,GJBOLD+GJ%SHT

MOVE AC2,[POINT 7,NAME]

GTJFN%

NAME:ASCIZ/MYFILE.TXT/

The bits specified for ACl1 indicate that the file obtained is to be an

existing file (GJ¥OLD) and that the short form of the GTJFN¥ call is

being used (GJ¥SHT). Since the right half of ACl is =zero, the file

with the highest generation number will be used. Because GJBFNS is

not set, the contents of AC2 are interpreted as containing a pointer

to a string in memory that specifies the file to be associated with

the JFN. The setup of AC2 indicates that the string begins at

location NAME in the user's program. The file specification obtained

from location NAME is MYFILE.TXT.



USING FILES

An alternate way of specifying the same file is the sequence

MOVX AC1,GJREOLD+GJESHT

HRRO! AC2, [ASCIZ/MYFILE.TXT/]
GTJFN%

3.3.1.2 Long Form Of GTJFN% - The long form of the GTJFN% monitor
call requires the following two words of arguments:

0 17 18 35

! = !

AC1 ! 0 ! address of argument table !
! !

0 35

! !

AC2 ! pointer to ASCIZ file specification string, or O !

The argument block for the long form is described in Table 3-L4.

Table 3-4: Long Form GTJFN% Argument Block

Word Symbol Meaning

0 .GJGEN Flag bits appear in the left half and

generation number appears in the right

half.

1 .GJSRC An input JFN appears in the left half

and an output JFN appears in the right

half. To omit either JFN, the wuser's

program must specify the symbol .NULIO

(377777).

2 .GJDEV Pointer to ASCIZ string that specifies

the device to be wused when none is

given. |If this word is O, DSK will be

used.



USING FILES

Table 3-4: Long Form GTJFN%® Argument Block (Cont.)

Word Symbol Meaning

3 .GJDIR Pointer to ASCIZ string that specifies

the directory to be used when none is

given. |If this word is 0, the wuser's

connected directory will be used.

L .GJINAM Pointer to ASCIZ string that specifies
the filename to be used when none is

given. If this word is 0, the input

must specify the filename.

5 LGJEXT Pointer to ASCIZ string that specifies

the file type to be used when none is

given. |If this word is 0, a null type

will be used.

6 .GJPRO Pointer to ASCIZ string or 3B2+octal
protection code. This word indicates

the protection to be used when none is

given. | f this word is 0, the
protection as specified in the

directory will be used.

7 .GJACT Pointer to ASCIZ string or 3B2+decimal

account number. This word indicates

the account to be used when none is

given. |If this word is 0, the account

specified when the user logged in will

be used.

10 .GJJFN The JFN to assign to the file

specification if flag bit GJ%¥JFN is

set in word .GJGEN (word 0) of the

argument block.

11-17 Additional words allowed if flag bit

GJEXTN (bit 15) is set in word .GJGEN
(word 0) of the argument block. These
additional words are used when

performing command input parsing and

are described in the TOPS-20 Monitor

Calls Reference Manual.



USING FILES

The flag bits accepted in the left half of .GJGEN (word 0) of the

argument block are the same as those accepted in the short form of the

GTJFN% call. The entire set of flag bits is listed in Table 3-2.

The generation number values accepted in the right half of .(GJGEN

(word 0) of the argument block can be 0, -1, -2, -3, or a specified

number, although O is the normal case. Refer to Bits 18-35 of Table

3-2 for explanations of these values.

|f execution of the GTJFN%¥ call is successful, the JFN assigned is

returned in the right half of ACl and various bits are set in the left

half if flag bits 11, 12 or 13 were on in the call. Refer to Table

3-3 for the explanations of the bits returned. Execution of the

program continues at the second instruction following the call.

If execution of the GTJFN call is not successful, the JFN is not

assigned and an error code is returned in the right half of ACl. The

execution of the program continues at the instruction following the

GTJFN% call.

The following sequence of instructions obtains a specification for an

existing file from the user's terminal, assigns the JFN to the next

higher generation of that file, and specifies default fields to be

used if the user omits a field when he gives his file specification.

MOVE! AC1,JFNTAB

SETZ AC2,

GTJFN%

JFNTAB: GJ%FOU

XWD .PRIIN,.PRIOU
O .

POINT 7,[ASCIZ/TRAIN/] sdefault directory

0

POINT 7, [ASCIZ/MEM/] ;default file type

0

0

0

3-16



USING FILES

The address of the argument table for the GTJFN% call (JFNTAB) is

given in the right half of AC]. AC2 contains 0, which means no
pointer to a string is given; thus, fields for the file specification

will be taken only from the user's terminal. The first word of the
argument block contains a flag bit for the GTJFN% call. This bit

(GJ%FOU) indicates that the next higher generation number is to be
assigned to the file. The second word of the argument block indicates

that the file specification is to be obtained from the user's

terminal, and any output generated because of the user employing
recognition is to be printed on his terminal. |If the user does not

supply a directory name as part of his file specification, the

directory <TRAIN> will be used. And if the user does not give a file

type, the type MEM will be used. |f the user omits other fields from

his specification, the system standard value (refer to Table 3-1) will

be used.

3.3.1.3 Summary Of GTJFN% - The GTJFN% monitor call is required to

associate a JFN with a particular file. In most cases, the short form

of the GTJFN% call is sufficient for establishing this association.
However, the long form is more powerful because it provides the user's

program more control over the file specification that is obtained.

The following summary compares the characteristics of the two forms of

the GTJFN% monitor call.

Short Form Long Form

Assigns a JFN to a file.

System decides the JFN

Assigns a JFN to a file.

User program may request

to assign.

Accepts the file specification

from a string in memory

or a file.

Uses standard system values

for fields not given

in the file

specification.

a particular JFN.

Accepts the file specification

from a string in memory

and a file.

Allows user-supplied values

to be used for fields not

given in the file

specification.

3.4 OPENING A FILE

Once a JFN has been obtained for a file, the user's program must open

the file in order to transfer data. The user's program supplies the

JFN of the file to be opened and a word of bits indicating the desired

byte size, data mode, and access to the file.



USING FILES

The desired access to the file is specified by a separate bit for each

type of access. The file is successfully opened only if the desired

access does not conflict with the current access to the file (refer to
Section 3.1). For example, if the user requests both read and write

access to the file, but write access is not allowed, then the file s

not opened for this user. The allowed types of access to a file are:

® Read access. The file can be read with byte, string, or

random input.

@ Write access. The file can be written with byte, string, or

random output.

e Append access. The file can be written only with sequential

byte or dump output, and the current byte pointer (refer to

Section 3.5.1) cannot be changed. The initial position of

the file pointer is at the end of the file.

® Frozen access. The file can be concurrently accessed by at

most one wuser writing the file, but by any number of users

reading the file. This is the default access to a file.

e Thawed access. The file can be accessed even if other users

are reading and writing the file.

® Restricted access. The file cannot be accessed if another

user already has opened the file.

® Unrestricted read access. The file can be read regardless of

what other users might be doing with the file.

3.4.1 OPENF% Monitor Call

The OPENF% (Open File) monitor call opens: a specified file. It
requires the following two words of arguments.

0 17 18 35
| ===== —— P —— 1

AC1 ! 0 ! JFN of file to be opened !

= == ==]

0 56 9 18 30 31 35
| ======== = == — 1

AC2 ! byte !data ! 0 ! access bits ! 0 !

I size Imode ! ! ! !

!

3-18



USING FILES

If the left half of AC1 is not O, the contents of ACl is interpreted

as a pointer to a string, not as a JFN. |f the user's program

requests bits returned in AC1 from the GTJFN% call, these bits must be

cleared before executing the OPENF% call.

The byte size (OF%BSZ) in AC2 specifies the number of bits in each

| byte of the file and can be between 1 and 36 (decimal). If this field

| is O a byte size of 36 (decimal) is assumed.

| The file data mode field (OF%¥MOD) usually has one of two values:

Value Meaning

0 Normal data mode of the file (that is, byte

1/0). Dump 1/0 is illegal.

17 Dump mode (that 1is, unbuffered word 1/0).

Byte 1/0 is illegal and the byte size is

ignored.

The access bits are described in Table 3-5.

Table 3-5: OPENF% Access Bits

Bit Symbol Meaning

| 0-5 OF%BSZ Byte size (maximum of 36 decimal).

l
| 6-9 OF%MOD Data mode in which to open file.

18 OF3HER Halt on the occurrence of an 1/0

device or medium error during

subsequent |/0 to the file. If this

bit is not set, a software interrupt

is generated if a device or medium

error occurs during subsequent /0.

19 OF%RD Allow read access.

20 OF ZWR Allow write access.

| 21 OF %EX Allow execute access.

22 OF%APP Allow append access.

3-19



USING FILES

Table 3-5: OPENF% Access Bits (Cont.)

Bit Symbol Meaning

23 OF%RDU Allow unrestricted read access.

2L Reserved for Digital.

25 OFXTHW Allow thawed access. |f this bit is

not set, the file is opened for frozen

access.

26 OFZAWT Block (that is, temporarily suspend)

the program until access to the file

is permitted.

27 OF%PDT Do not update the access dates of the

file.

28 OF 3NWT Return an error if access to the file

cannot be permitted.

29 OF%RTD Allow access to the file to only one

process (that is, restricted access).

30 OF%PLN Do not check for line numbers in the

file.

31 OF%DUD | Suppress system updating of modified
pages in memory to thawed files on

disk unless CLOSF or UFPGS issued.

32 OF%O0FL Open device even if off-line.

33 OF%FDT Force update of .FBREF (last read) in

FDB and increment RH of .FBCNT (number

of references).

34 OF%ZRAR Wait if file off-line.

If bits OF¥AWT and OFYNWT are both off, an error code is returned if
access to the file cannot be permitted (that is, the action taken is

identical to OF%NWT being on).

3-20



USING FILES

If execution of the OPENF% monitor call is successful, the file is

opened, and the execution of the program continues at the second

instruction after the OPENF% call.

| f execution of the OPENF% call is not successful, the file is not

opened, and an error code is returned in ACl. The execution of the

program continues at the next instruction after the OPENF% call.

Two samples of the OPENF% call follow.

The sequence of instructions below opens a file for input.

HRRZ AC1,JFNEXT

MOVX AC2,FLD (LL,0F%BSZ)+0F%RD+0F%PLN

OPENF%

The JFN of the file to be opened is contained in the location

indicated by the address in AC1 (JFNEXT). The bits specified for AC2

indicate that the byte size is one word FLD(L4L,0F¥BSZ), that read

access is being requested to the file (OP%RD), and that no check will

be made for line numbers in the file; that is, the line numbers will

not be discarded (OF¥PLN). Because bit OFXTHW is not set, the file

can be accessed for reading by any number of processes.

The following sequence of instructions can be used to open a file for

output.

MOVE AC1,JFN

MOVX FLD (7,0F%BSZ)+OF ¥HER+OF ¥WR+OF XAWT

OPENF%

The right half of AC1 contains the address that has the JFN of the

file to be opened. The bits specified for AC2 indicate that the byte

size is 7-bit bytes FLD(7,0F%BSZ), that the program is to be halted

when an 1/0 error occurs in the file (OF¥HER), that write access is

being requested to the file (OF¥WR), and that the program is to be

blocked if access cannot be granted (OF¥AWT). Because bit OFXTHW is

not set, if another user has been granted write access to the file,

this user's program will be blocked until access can be granted.

3.5 TRANSFERRING DATA

Data transfers of sequential bytes are the most common form of

transfer and can be used with any file. For disk files, nonsequential

bytes and entire pages can also be transferred.

3-21



USING FILES

3.5.1 File Pointer

Every open file is associated with a pointer that indicates the last

byte read from or written to the file. When the file is initially

opened, this pointer is normally positioned before the beginning of

the file so that the first data operation will reference the first

byte in the file. The pointer is then advanced through the file as

data is transferred. However, if the file is opened for append-only

access (bit OF¥APP set in the OPENF% call), the pointer is positioned

after the last byte of the file. This allows the first write

operation to append data to the end of the file.

For disk files, the pointer may be repositioned arbitrarily throughout

the file, such as in the case of nonsequential data transfers. When

the pointer is positioned beyond the end of the file, an end-of-file

indication is returned when the program attempts a read operation

using byte input. When the program performs a write operation beyond

the end of the file using byte output, the end-of-file indicator is

updated to point to the end of the new data. However, if the program

writes pages beyond the end of the file with the PMAP% monitor call

(refer to section 3.5.6), the byte count is not updated. Therefore,

it is possible for a file to contain pages of data beyond the

end-of-file indicator. To allow sequential |1/0 to be performed later

to the file, the program should update the byte count before closing

the file. (Refer to the CHFDB%¥ monitor <call description in the

TOPS-20 Monitor Calls Reference Manual.)

3.5.2 Source And Destination Designators

Because |1/0 operations occur by moving data from one location to

another, the user's program must supply a source and a destination for

any 1/0 operation. The most commonly-used source and destination

designators are the following:

1. A JFN associated with a particular file. The JFN must be

previously obtained with the GTJFN% or GNJFN% monitor call

before it can be used.

2. The primary input and output designators .PRIIN and .PRIOU,

respectively (refer to Section 2.2). These designators

should be used when referring to the terminal.

3-22



USING FILES

3. A byte pointer to the beginning of the string of bytes in the

program's address space that is being read or written. The

byte pointer can take one of two forms:

® A word with a -1 in the left half and an address in the

right half. This form is used to designate a 7-bit ASCIZ

string starting in the left-most byte of the specified

address. A word in this form is functionally equivalent

to a word assembled by the POINT 7,ADR pseudo-op.

e A full word byte pointer with a byte size of 7 bits.

Most monitor calls dealing with strings deal specifically with ASCII

strings. Normally, ASCII| strings are assumed to terminate with a byte
of 0 (that is, are assumed to be ASC|Z strings). However some calls
optionally accept an explicit byte count and/or terminating byte.
These calls are generally ones that handle non-ASCI!I strings and byte
sizes other than 7 bits.

3.5.3 Transferring Sequential Bytes

The BIN% (Byte Input) and BOUT% (Byte Output) monitor calls are used
for sequential byte transfers. The BIN%¥ call takes the next byte from

the given source and places it in AC2. The BOUT% call takes the byte

from AC2 and writes it to the given destination. The size of the byte

is that given in the OPENF% call for the file.

The BIN% monitor call accepts a source designator in ACl, and upon
successful execution of the call, the byte is right-justified in AC2.

If execution of the call is not successful, an illegal instruction

trap is generated. Control returns to the user's program at the

instruction following the BiIN% call. If the end of the file is
reached, AC2 contains O instead of a byte. The program can process

this end-of-file condition if a jump style error return is the next
instruction following the BIN% call.

The BOUT% monitor call accepts a destination designator in ACl1 and the
byte to be output, right-justified in AC2. Upon successful execution

of the call, the byte is written to the destination. |If execution of

the call is not successful, an illegal instruction trap is generated

Control returns to the user's program at the instruction following the

BOUT% call.

3-23



USING FILES

The following sequence shows the transferring of bytes from an input

file to an output file. The bytes are read from the file indicated by

INJFN and written to the file indicated by OUTJFN.

LOOP: MOVE 1,iINJFN ;get source designator from INJFN

BIN% ;read a byte from the source

ERJMP DONE ;check for end of file, if O

LOOP2: MOVE 1,0UTJFN ;get destination from OUTJFN

BOUT% swrite the byte to the destination

JRST LOOP scontinue until O byte is found

DONE: GTSTS% ;obtain status of source

TXNN 2,GS%EOF ;test for end of file

JRST NOTYET s;nho, test for O in input file

: ;yes, process end of file condition

NOTYET:MOVEI 2,0 30 in input file

JRST LOOP2

3.5.4 Transferring Strings

The SIN% (String Input) and SOUT% (String Output) monitor calls

are wused for string transfers. These calls transfer either a

string of a specified number of bytes or a string terminated with

a specific byte.

The SIN% monitor call reads a string from the specified source

into the program's address space. The call accepts four words of

arguments in AC1 through ACL.

AC1: source designator

AC2: pointer to area in program's address space

AC3: count of number of bytes to read, or 0

ACL: byte on which to terminate input (optional)

The contents of AC3 are interpreted as the number of characters to

read.

e |If AC3 is O, then reading continues until a 0 byte is found

in the input.

e |[f AC3 is positive, then reading continues until either the

specified number of bytes is read, or a byte equal to that

given in ACL is found in the input, whichever occurs first.

e If AC3 is negative, then reading continues wuntil minus the

specified number of bytes is read.

The contents of ACL needs to be specified only if the contents of AC3

is a positive number. The byte in ACL is right-justified.

3-2k



USING FILES

The input is terminated when one of the following occurs:

e The byte count becomes zero.

® The specified terminating byte is reached.

e The end of the file is reached.

® An error occurs during the transfer (for example, a data

error occurs).

Control returns to the user's program at the instruction following the
SIN¥ call. If an error occurs (including the end of the file is
reached), an illegal instruction trap is generated. In addition,
several locations are updated:

1. The position of the file's pointer is updated for subsequent
1/0 to the file.

2. The pointer to the string in AC2 is updated to reflect the

last byte read or, if AC3 contained 0, the last nonzero byte

read.

3. The count in AC3 is updated, if pertinent, by subtracting the
number of bytes actually read from the number of bytes

requested to be read (that is, the count is updated toward
zero). From this count, the user's program can determune the
number of bytes actually transferred.

The SOUT% monitor call writes a string from the program's address
space to the specified destination. Like the SINY call, this call

accepts four words of arguments in AC1 through ACL.

AC1: destination designator

AC2: pointer to string to be written

AC3: count of the number of bytes to write, or 0

ACL: byte on which to terminate output (optional)

The contents of AC3 and ACL are interpreted in the same manner as they

are in the SIN% monitor call.

The transfer is terminated when one of the following occurs.

e The byte count becomes zero.

e The specified terminating byte is reached. This terminating

byte is written to the destination.

® An error occurs during the transfer.

3-25



USING FILES

Control returns to the user's program at the instruction following the

SOUT% call. If an error occurs, an illegal instruction trap is

generated. In addition, the position of the file's pointer, the

pointer to the string in AC2, and the count in AC3, if pertinent, are

also updated in the same manner as in the SIN% monitor call.

The following code sequence shows transferring a string from an input

file to an output file. The procedure is the same as at the end of

Section 3.5.3, using SIN% and SOUT% calls instead of BIN%¥ and BOUT%.

LOOF: MOVE 1yINJFN saet source Trom INJFN

HRROI 2yRBUF128 svointer to string to read into (128

sword buffer)

MOVUNTI 3,711 28%% sirmeut 3 masimum of 640 hutes

SINZ stransfer until end of buffer or end of
sfile

ERCAL EOQOFQ serror ocourred

ANDT 3y "ND128XS jdetermine negative rnumber of bwtes transferraed

MOUN 303 sconvert to rositive

MOVE 1y0UTJFN $get destination from QUTJIFN

HRROI 2yRUFI128 srointer to string to write from

SOUTH stransfer as many bytes as read

EQOFQ: MOVE 1 INJFN

GTSTSZ sobtain status of source

TXNN 2yGSZEOF stest for end of file

RET srmoy continue corwing

3.5.5 Transferring Nonsequential Bytes

As discussed in Section 3.5.3, the BIN% and BOUT% calls transfer bytes

sequentially, starting at the current position of the file's pointer.

The RIN% (Random Input) and ROUT% (Random Output) monitor calls allow

the wuser's program to specify where the transfer will begin by

accepting a byte number within the file. The size of the byte is the

size given in the OPENF% call for the file. The RIN¥ and ROUT% calls

can only be used when transferring data to or from disk files.

The RIN% monitor call takes a byte from the specified location in the

file and places it into the accumulator. The call accepts the JFN of

the file in ACl and the byte number within the file in AC3. Upon

successful completion of the call, the byte is right-justified in AC2,

and the file's pointer is updated to point to the byte following the

one just read. If an error occurs, an illegal instruction trap is

generated. Control returns to the user's program at the instruction

following the RIN% call.

The ROUT% monitor call takes a byte from the accumulator and writes it

into the specified location in the file. The call accepts the JFN of

the file in AC1, the byte to write right-justified in AC2, and the

byte number within the file in AC3. Upon successful completion of the

call, the byte is written into the specified byte in the file, and the

file's pointer is updated to point to the byte following the one just

written. If an error occurs, an illegal instruction trap is

generated. Control returns to the user's program at the instruction

following the ROUT% call.

3-26



USING FILES

3.5.6 Mapping Pages

Up to this point, monitor calls have been presented for transferring

bytes and strings of data. The next call to be discussed is used to

transfer entire pages of data between a file and a process.

Both files and process address spaces are divided into pages of

512 (decimal) words. A page within a file can be identified by one
word, where the JFN of the file is in the 1left half and the page

number within the file is in the right half. A page within a process

address space can also be identified by one word, where the identifier

of the process (refer to Section 5.3) is in the left half and the page
number within the process' address space is in the right half. Each

one-word identifier for the pages in the process address space is

placed in what is called the process page map. When identifiers for

file pages are placed in the process page map, references to the

process page actually refer to the file page. The following diagram

illustrates a process map that has identifiers for pages from two

files.

File1

Process Map

JFN1 Page 1 -+1 Page 1

File2

JFN2 Page 2 =1 Page 2

MR-5-2033-82

The PMAP% (Page Mapping) monitor call is used to map one or more
entire pages from a file to a process (for input), from a process to a

file (for output), or from one process to another process. In
general, this call changes the entries in the process map by accepting

file page identifiers and process page identifiers as arguments.
Mapping pages between a file and a process is described below; mapping

pages between two processes is described in Chapter 5.

3-27



USING FILES

3.5.6.1 Mapping File Pages To A Process - This use of the PMAP¥ call

changes the map of the process so that references to pages in the

process reference pages in a file. This does not actually cause data

to be transferred; it simply changes the contents of the map. Later

when changes are made to the actual page in the process, the changes

will also be made to the page in the file, if write access has been

specified for the file.

Note that you cannot map file pages to pages in a process section that

does not exist in the the process map. |f you use PMAP¥ to input file

pages to pages in a nonexistent section of a process, the monitor

generates an illegal instruction trap.

In addition, you can map one or more file sections (of 512 pages each)

into a process. See Section 8.3.1 for details.

The PMAP% call accepts three words of arguments in AC1 through AC3.

AC1l: JFN of the file in the left half, and the page number in

the file in the right half

AC2: process identifier (refer to Section 5.3) in the left

half, and page number in the process in the right half

AC3: repetition count and access

The repetition count and access bits that can be specified in AC3 are

| described in Table 3-6.

3-28



USING FILES

Table 3-6: PMAP% Access Bits

MeaningBit Symbol

0 PMECNT

2 PMIRD

3 PMZWR

L PM%EX

5 PM%PLD

9 PM3CPY

10 PMZEPN

11 PMXABT

18-35 PMZRPT

Repeat the mapping operation the number of

times specified by the right half of AC3. The

file page number and the process page number

are incremented by 1 each time the operation

is performed.

Allow read access to the page.

Allow write access to the page.

Reserved.

The symbol PM3RWX can be used to set B2-4,

Preload page being mapped (move the page

immediately instead of waiting until it is

referenced).

Create a private copy of the page. if the

process writes into the page. This is called

copy-on-write and causes the map to be changed

so that it identifies the copy instead of the

original. Write access is allowed to the copy

even if it was not allowed to the original.

This allows a process to change a page of data

without changing the data for other processes

that have also mapped the page.

Bits 18-35 of AC2 contain extended (18-bit)

process page number . | f the section

containing the page does not exist, a private

section is created.

Unmap page and discard (abort) changed

contents.

The number of times to repeat the mapping

operation if bit O(PM¥CNT) is set.

3-29



USING FILES

With this use of the PMAP% call, the present contents of the page in

the process are removed. If the page in the file is currently

nonexistent, it will be created when it is written.

This use of the PMAP% call is valid only if the file is opened for at

least read access. |f write access is requested in the PMAP% call, it

is not granted unless it was also specified in the OPENF% call when

the file was opened.

A file cannot be closed while any of its pages are mapped into any

process. Thus, before a file is closed, its pages must be unmapped

(refer to Section 3.5.6.3).

After execution of the PMAP% call, control returns to the user's

program at the instruction following the call. |f an error occurs, an

illegal instruction trap is generated.

3.5.6.2 Mapping Process Pages To A File - This use of the PMAP% call

actually transfers data by moving the specified page in the process to

the specified page in the file. The process map for the page is now

empty. Both the page in the process and the page in the file must be

private; that is, no other process can have the page mapped into its

address space. The ownership of the process page is transferred to

the file page. The previous contents of the page in the file are

deleted.

The three words of arguments are as follows:

AC1: process identifier (refer to Section 5.3) in the left

half, and page number in the process in the right half

AC2: JFN of the file in the left half, and the page number in

the file in the right half

AC3: repetition count and access (refer to Section 3.5.6.1)

The access requested in the PMAP¥ call is granted only if it does not

conflict with the access specified in the OPENF% call when the file

was opened.

This use of the PMAP% call does not automatically update the files

byte count and the byte size. To allow the file to be read later with

sequential 1/0 monitor calls, the program should update the file's

byte count and the byte size. (Refer to the CHFDB% monitor call in

the TOPS-20 Monitor Calls Reference Manual).

3-30



USING FILES

3.5.6.3 Unmapping Pages In A Process - As stated previously, a file

cannot be closed if any of its pages are mapped in any process. To

unmap a file's pages from a process, the program must execute the

SMAP% call, or the following form of the PMAP% call:

AC1: -1

AC2: process identifier in the left half, and page number in

the process in the right half.

AC3: the repeat count for the number of pages to remove from

the process (refer to Section 3.5.6.1).

3.5.7 Mapping File Sections to a Process

A section of memory is a unit of 512 pages of process address space.

File sections also contain 512 pages. The first page of each file

section has a page number that is an integral multiple of 512. Like

memory pages, sections can be mapped from one process to another, from

a process to itself, or from a file to a process. Chapter 8 describes

the SMAP% call completely.

The SMAP% (Section Mapping) monitor call is similar to the PMAP% call.

The SMAP% call maps one or more sections from a file to a process (for

input), or from one process to another process. To map a process

section to a file, you must use the PMAP% call as described in Chapter

5 to map each page.

Mapping a file section to a process section with SMAP%¥ does not cause

data to move from the disk to memory. Instead, SMAP% changes the

contents of the process memory map so that the process section pointer

points to a file section. The monitor transfers data only when your

program references a memory page to which a file page is mapped.

3-31



USING FILES

To map a file section to a process section, SMAP% requires three
arguments:

AC1:

AC2:

AC3:

source identifier: a JFN in the left half, and a file
section number in the right half. |If several contiguous
sections are to be mapped, the number in the right half is
that of the first section in the group of contiguous
sections.

destination identifier: process identifier in the left
half, and a process section number in the right half. |f
several contiguous sections are to be mapped, the number
in the right half is the number of the first section into
which SMAP% maps a file section.

flags that control access to the process section in the
left half, and, in the right half, the number of sections
to map into the process. The number of sections to map
cannot be less than 1 nor more than 32 (decimal).

The flags in the left half of AC3 are described in Table 3-7.

Table 3-7: SMAPX Access Bits

Bit Symbol Meaning

2 SM3RD Allow read access.

3 SM%WR Allow write access.

L SMIEX Allow execute access.

6 SMZIND Map the destination section using an indirect
section pointer.

3-32



USING FILES

3.6 CLOSING A FILE

Once data has been transferred to or from a file, the user's program

must close the file. When a file is closed, the system automatically

performs the following:

1. Updates the directory information for the file. For example,

for a file to which sequential bytes had been written, the

byte size and byte count are updated when the file is closed.

2. Releases the JFN associated with the file. However, the

user's program can request to close the file, but retain the

JFN assignment. This is wuseful if the program plans to

reopen the same file later, but does not want to execute

another GTJFN% call.

3.6.1 CLOSF% Monitor Call

The CLOSF% (Close File) monitor call closes either the specified file

or all files that are opened for the process executing the call. The

CLOSF% call accepts one word of arguments in ACl1 - flag bits in the

left. half and the JFN of the file to be closed in the right half. The

flag bits are described in Table 3-8.

Table 3-8: CLOSF% Flag Bits

Bit Symbol Meaning

0] CO%NRJ Do not release the JFN from the file.

6 CZ%ABT Abort any output operations currently being

done. That is, <close the file but do not

perform normal cleanup operations (for example,

do not output any data remaining in the

buffers). |f output to a new disk file that has

not been closed is aborted, the file is closed

and then deleted.

7 CS%NUD Do not update the copy of the directory on the

disk (refer to the CHFDB% description in the

TOPS-20 Monitor Calls Reference Manual for more

information).

3-33



USING FILES

If the contents of ACl is -1, all files that are opened for this

process are closed.

|f the execution of the CLOSF% call is successful, the specified

file is closed, and the JFN associated with the file is released if

CO%NRJ was not set in the call. The execution of the user's program

continues at the second location after the CLOSF% call,

If the execution of the CLOSF% call is not successful, the file is

not closed and an error code is returned in the right half of ACl.

The execution of the user's program continues at the instruction

following the CLOSF% call.

The following sequence illustrates the closing of two files.

CLOSIF: HRRZ 1, INJFN sobtain input JFN

CLOSF% ;close input file

ERJMP FATAL ;if error, print message and stop

CLOSOF: HRRZ 1,0UTJFN ;obtain output JFN

CLOSF% ;close output file

ERJMP FATAL ;if error, print message and stop

3.7 ADDITIONAL FILE 1/0 MONITOR CALLS

3.7.1 GTSTS% Monitor Call

The GTSTS% (Get Status) monitor call obtains the status of a file.

This call accepts one argument word - the JFN of the file in the

right half of the ACl1. The left half of AC] is zero.

Control always returns to the user's program at the instruction

following the GTSTS% call. Upon return, appropriate bits reflecting

the status of the specified JFN are set in AC2. These bits, and

their meanings, are described in Table 3-9. Note that if the JFN is

illegal or unassigned, bit 10 (GS3NAM) will not be set.

3-34



USING FILES

Table 3-9: Bits Returned on GTSTS% Call

Bit Symbol Meaning

0 GSYOPN The file is open. If this bit is not

set, the file is not open.

] GS%RDF If the file is open (for example,

GS%0PN is set), it is open for read
access.

2 GS%WRF If the file is open, it is open for
write access.

3 GS¥XCF File is open for execute access.

A GSZRND If the file is open, it is open for

non-append access (that is, its

pointer can be reset).

5-6 Reserved for Digital.

7 GSZLNG File has pages in existence beyond
page number 511.

8 GSYEOF The last read operation to the file
was at the end of the file.

9 GSZERR The file may be in error (for example,

the bytes read may be erroneous).

10 GSENAM A file specification is associated
with this JFN. This bit will not be

set if the JFN is in any way illegal.

R GSBAST One or more fields of the file
' specification associated with this JFN

contain a wildcard character.

12 GSZASG The JFN is currently being assigned

(that is, a process other than the one
executing the GTSTS call is assigning

this JFN).

13 GSSHLT An |/0 error is considered to be a

terminating condition for this JFN.

That is, the OPENF% call for this JFN

had bit OF3HER set.

3-35



USING FILES

Table 3-9: Bits Returned on GTSTS% Call (Cont.)

Bit Symbol Meaning

14-16 Reserved for Digital.

17 GS%FRK Access to the file is restricted to

only one process.

18 GS%PLN If on, file line numbers are passed

during input; if 2zero, line numbers

are stripped before input.

19-31 Reserved for Digital.

32-35 GS%MOD The data mode of the file (refer to

the OPENF% call).

Value Symbol Meaning

0 .GSNRM Normal (sequential) 1/0

1 .GSSMB Small buffer mode

10 .GSIMG Image (binary) 1/0

17 .GSDMP Dump 1/0

An example of the GTSTS% call is shown in the first program in Section

3.9.

'3.7.2 JFNS% Monitor Call

The JFNS% (JFN to String) monitor call returns the file specification

currently associated with the specified JFN. The call accepts three

words of arguments in AC1 through AC3.

AC1: destination designator where the file specification

associated with the JFN is to be written. This

specification is an ASCIZ string.

AC2: JFN or pointer to string (see below)

AC3: format to be used when returning the specification (see

below)

3-36



USING FILES

The contents of ACl can be any valid destination designator (refer to

Section 3.5.2).

The contents of AC2 can be one of two formats. The first format is a

word with either flag bits or 0 in the left half and the JFN in the

right half. The bits that can be given in the left half of AC2 are

the ones returned from the GTJFN% call (refer to Table 3-3). When the

left half of AC2 is nonzero (that is, contains the bits returned from

the GTJFN% call), the string returned will contain wildcard characters

for appropriate fields and O, -1, or -2 as a generation number if the

corresponding bit is on in the JFNS¥ call. When the left half of AC2

is 0, the string returned is the exact specification for the file (for

example, wildcard characters are not returned for any fields). |If the

JFN is associated only with a file specification and not with an

actual file (that 1is, bit GJ¥0OFG was set in the GTJFN% call), the

string returned will contain null fields for unspecified fields and

the actual values for specified fields. The second format alliowed for

ACZ is a pointer to the string in the program's address space that s

to be returned upon execution of the call. Refer to the TOPS-20

Monitor Calls Reference Manual for the explanation of this format.

The contents of AC3 specify the format in which the specification is

written to the destination. Bits O through 20 are divided into 3-bit

bytes, each byte representing a field in the file specification. The

value of the byte indicates the format for that field. The possible

values are:

Value Symbol Meaning

0 .JSNOF Do not return this field when returning the

file specification.

1 «JSAOF Always return this field when returning the

file specification.

2 .JSSSD Suppress this field if it is the standard

system value for this field (refer to Table

3-1).

If the contents of AC3 is zero, the file specification is written in

the format

dev:<directory>name.typ.gen;T

with fields the same as the standard system value (see Table 3-1) not

returned and protection and account fields returned only if bit 9 and

bit 10 in AC2 are on, respectively. The temporary attribute (GT) s

returned only if the file is temporary.

3-37



USING FILES

Table 3-10 describes the bits that can be set in AC3.

Table 3-10: JFNS% Format Options

Bit Symbol Meaning

0 JSEZNOD Print node name if node name is

present.

1-2 JSEDEV Format for device field.

3-5 JS%DIR Format for directory field.

6-8 JSENAM Format for filename field. A value of

2 (that is, bit 7 set) for this field

is illegal.

9-11 JSETYP Format for file type field. A value

of 2 (that is, bit 10 set) for this

field is illegal.

12-14 JSIGEN Format for generation number field.

0-14 JSESPC Output for all file specification

fields named above. This field should

have the same bits set as would be set

in the fields above. (See B35

(JSYPAF) below.)

15-17 JS%PRO Format for protection field.

18-20 JSXACT Format for account field.

21 JSZTMP Return temporary file indication ;T if

the file specification is for a

temporary file.

22 JS%S1Z Return size of file in pages (see

below).

23 JS%CDR Return creation date of file (see

below).

24 JSZLWR Return date of last write operation to

file (see below).

3-38



USING FILES

Table 3-10: JFNS% Format Options (Cont.)

Bit Symbo1 Meaning

25 JS%LRD Return date of last read operation

from file (see below).

26 JSEPTR AC2 contains a pointer to the string

containing the field to be returned

(refer to the TOPS-20 Monitor Calls

Reference Manual for a description of

this use of the JFNS% call).

27 JSZATR Return file specification attributes

if appropriate.

28 JSZATI Return specification attribute

referenced in ACAL.

29 JSEOFL Return the "OFF-LINE" attribute.

30-31 Reserved for Digital.

32 JS%PSD Punctuate the size and date fields

(see below) in the file specification

returned.

33 JSETBR Place a tab before all fields returned

(that is, fields whose value is given

as 1 in the 3-bit field) in the file

specification, except for the first

field.

34 JSXTBP Place a tab before all fields that may

be returned (that 1is, fields whose

value is given as 1 or 2 in the 3-bit

field) in the file specification,

except for the first field.

35 JSXPAF Punctuate all fields (see below)

returned in the file specification

from the device field through the ;T

field.

If bits 32 through 35 are not set, no

punctuation is used between the

fields.

3-39



USING FILES

The punctuation used on each field is shown below.

dev:<directory>name.typ.gen;A(account) ;P (protection) ; T (temporary)
,Size,creation date,write date,read date

Refer to Section 1.2.2 for information on error returns.

3.7.3 GNJFN% Monitor Call

Occasionally a program may be written to perform similar operations on

a group of files instead of only on one file. However, the program

should not require the user to give a file specification for each

file. Because the GTJFN% call associates a JFN with only one file at

a time, the program needs a method of assigning a JFN to all the files

in the group. By using the GTJFN% call to initially obtain the JFN

and the GNJFN% call to assign the same JFN to each subsequent file in

the group, a program can accept a specification for a group of files

and process each file in the group individually. After the user gives

the initial file specification, the program requires no additional

input.

Before an example showing the interaction of these two calls is given,

a description of the GNJFN% (Get Next JFN) monitor call s

appropriate.

The GNJFN% monitor call assigns a JFN to the next file in a group of

files that have been specified with wildcard characters. The next

file is determined by searching the directory in the order described

in Section 3.3.1.1 wusing the current file as the first item. This

call accepts one argument word in AC1 - the flags returned from the

GTJFN% call in the left half and the JFN of the current file in the

right half. |In other words, the information returned in AC1 from the

GTJFN% call is given as an argument to the GNJFN% call. Therefore,

the program must save this information for use with the GNJFN% call.

If execution of the GNJFN% call is successful, the same JFN s

assigned to the next file in the group. The left half of AC1 contains

various flags and the right half contains the JFN. The execution of

the program continues at the second instruction after the GNJFN% call.

Table 3-11 describes the bits that can be returned in ACl on a

successful GNJFN% call.

3-40



USING FILES

Table 3-11: GNJFN% Return Bits

Bit Symbol Meaning

13 GN%STR ~ A change in structure occurred between

the previous file and this file.

GN%DIR A change in directory occurred between

the previous file and this file.'

GNINAM A change in filename occurred between

the previous file and this file.

GNIEXT A change in file type occurred between

the previous file and this file. |If

GNZNAM is on, this bit will also be on

because the system considers two files

with different filenames but with the

same file type as a change in both the

name and type.

| f execution of the GNJFN% call is not successful, an error code is

returned in the right half of AC1, Conditions that can cause an error

return are:

1. The file currently associated with the JFN must be closed,

and it is not. This means that the program must execute a

CLOSF% call (with CO%NRJ set to retain the JFN) before

executing a GNJFN% call.

There are no more files in this group. This return occurs on

the first GNJFN% call after all files in the group have been

stepped through. The JFN is released when there are no more

files. (Note: This error may occur if the file currently

associated with the JFN is deleted or renamed.)

The execution of the program continues at the next instruction after

the GNJFN% call.

3=k



USING FILES

Consider the following situation. The user wants to write a program

that will accept from his terminal a specification for a group of

files and then perform an operation on each file individually without

requiring additional input. Assume the wuser's directory <TRAIN>

contains the following files:

FIRST.MAC.1

FIRST.REL.1

SECOND.REL.1

THIRD.EXE.1

As discussed in Section 3.3.1.1, a group of files can be given to the

GTJFN call by supplying a specification that contains wildcard

characters in one or more of its fields. Thus, the specification

<TRAIN>*%

would refer to all four files in the user's directory <TRAIN>,

in his program, the user includes a GTJFN% call that will accept the

above specification.

The call is

MOVX AC1,GJ%OLD+GJ%I FG+GJEFLG+GJEFNS+GJESHT

MOVE AC2,[.PRIIN,,.PRIOU]

GTJFN%

and indicates that

1. The file specification given must refer to an existing file

(GJ%OLD).

2. The file specification given is allowed to contain wildcard

characters (GJ%IFG).

3. Flags will be returned in AC1 on a successful call (GJ¥FLG).
The flags must be returned because they will be given to the

GNJFN% call as arguments.

L, The contents of AC2 will be interpreted as containing an

input and output JFN (GJ%FNS).

5. The short form of the GTJFN% call is being used (GJYSHT).

6. The file specification is to be read from the user's terminal

(.PRIIN,,.PRIOU).

When the user types the specification <TRAIN>%.,% as input, the system

associates the JFN with one file only. This file is the first one

found when searching the directory in the order specified in Section

3.3.1.1. Thus the JFN returned is associated with the file
FIRST.MAC.1.

3-42



USING FILES

After the GTJFN¥ call is successfully executed, AC1 contains
appropriate flags in the left half and the JFN assigned in the right

half. The flags that will be returned in this particular situation

are:

GJINAM (bit 3) A wildcard character appeared in the name
field of the file specification given.

GJRZEXT (bit &) A wildcard character appeared in the type

field of the file specification given.

GJXGND (bit 12) Any files marked for deletion will not be

considered.

These flags inform the program of the fields that contained wildcard

characters. The wuser's program must now save the contents of ACI

because this word will be used as the argument to the GNJFN% call.

The program then performs its desired operation on the first file.

Once its processing is completed, the program is ready for the

specification of the next file. But instead of requesting the

specification from the user, the program executes the GNJFN% call to

obtain it. The argument to the GNJFN% call is the contents of ACI

returned from the previous GTJFN% call. Thus, the call in this case

is equivalent to:

MOVE AC1, [GJENAM+GIBEXT+GJ%GND,, JFN]

GNJFN%

Upon successful execution of the GNJFN¥ call, the JFN is now

associated with the next file in the group (that is, FIRST.REL.1).

AC1 contains appropriate flags in the left half and the same JFN in

the right half. In this example, the flag returned is GNYEXT (bit 16)

to indicate that the file type changed between the two files.

After processing the second file, the user's program executes another

GNJFN¥ call wusing the original contents of AC] returned from the

GTJFN% call. The original contents must be used because this word

indicates the fields containing wildcard characters. |f the current

contents of AC1 (that is, the flags returned from the GNJFN% call) are

used, a subsequent GNJFN% call would fail because there are no flags

set indicating fields containing wildcard characters. This second

GNJFN% call associates the JFN with the file SECOND.REL.1. The flags

returned in ACl are GN¥NAM (bit 15) and GNZEXT (bit 16) indicating

that the filename and file type changed between the two files.

(Remember that a change in filename implies a change in file type even
if the two file types are the same.)

3-43



USING FILES

After processing this third file, the user's program executes another

GNJFN% call using the original contents of AC1. Upon execution of the

call, the JFN is now associated with THIRD.EXE.1, and the flags

returned are GN%NAM and GNZEXT, indicating a change in the filename

and file type.

After processing the file THIRD.EXE.1, the user's program executes a

final GNJFN% call, Since there are no more files in the group, the

call returns an error code and releases the JFN. Execution of the

user's program continues at the instruction following the GNJFN% call.

3.8 SUMMARY

To read from or write to a file, the user's program must:

1. Obtain a JFN on the file with the GTJFN% monitor call (refer

to Section 3.3.1).

2. Open the file with the OPENF% monitor call (refer to Section

3.4.1).

3. Transfer the data with byte, string, or page 1/0 monitor

calls (refer to Section 3.5).

L, Close the file with the CLOSF% monitor call (refer to Section

3.6.1).

3-bi



USING FILES

3.9 FILE EXAMPLES

Example 1 - This program assigns JFNs, opens an input file and an

output file, and copies data from the input file to the output file.

Data is copied until the end of the input file is reached. Refer to

the TOPS-20 Monitor Calls Reference Manual for explanation of the

ERSTR% monitor call.

PRRK FROGRAM TO COPY INFUT FILE TO QUTFUT FILE. XkX

’ (USING BINZ/ROUTZ AND IGNORING NULLS)

TITLE FILEIQ sTITLE OF PROGRAM

SEARCH MONSYM FOEARCH SYSTEM JSYS-SYMROL LIBRARY

HEARCH MACSYM

+REQUIRE SYSIMACREL

PRkk ITMPURE DATA STORAGE AND DEFINITIONS XXX

INJFN? RBRLOCK 1 sHTORAGE FOR INFUT JFN

DUTJFN: RLOCK 1 FHTORAGE FOR QUTFUT JFN

FIOLEN:=3 PETACK HAS LLENGTH 3

FOLST?: RLOCK PFIDLEN FOET ASIDE STORAGE FOR STACK

STHAC . SDEFINE STANUARD ACs. SEE MACSYM.

PRRK FROGRAM INITILIZATION XXX

BTART: RESETX yOLOSE FILESy ETC.

MOVE FyLTOWD FOLENFOLET] SESTARLISH STACK

XXXk GET INFUT FILE XXX

INFTL FRROMPT FOR INFUYT FILE

TMEG =

INFUT FILESD = sON CONTROLILLING TERMINAL

MOVX TLyGJZOLDHEGIZFNSHOGILEHT $§8EARCH MODES FOR GTJFN

SEXTETING FILE ONLY» FILE-NRs IN R

sEHORT CALL

MOVE T2y LoFRIINy» FRIOUDT SGTIFN/G T/0 WITH CONTROLLING TERM

GTJFNZ OGET JOB FILE NUMRBER C(JFND

ERJMFG [ FUSHJ FyWARN §1F ERRORy GIVE WARNING

SJRET INF I $AND LET HIM TRY AGAIN

MOVEM T1sINJFN FOUCCESSy SAVE THE JFN

sAkX GET OUTPUT FILE *kx

DUTFIL: SFRINT FROMPT FOR

TMSG <

QUTFUT FILED = FOUTHUT FILE

MOVX T1yGJIZFOUFGILMEGHEGIACFMEGIZFNSHGIZLEBHT SGTUFN SEARCH MODES

sEDEFAULT TO NEW GENERATIONy PRINT

¥ MESSAGEy REQUIRE CONFIRMATION

¥OFTLE-NR‘S IN T2y SHORT CALL 1

MOVE T2y L FRIINy» JFRIOUT 5170 WITH CONTROLLING TERMINAL

GTJFNZ yOET JOB FILE NUMRER

ERJMFEG [ FUSHJ FyWARN 5TF ERRORy GIVE WARNING

JRET QUTFIL sAND LET HIM TRY AGAIN

MOVEM T1y0QUTJFN FSAVE THE JFN

3-L5



FNOWy OFEN THE FILES WE JUST

i INFUT

MOVE T1yINJFN

MOVUX T2yFLOC7yOFZRSZ) HOFZRD

OFENF%

ERJMFS FATAL

’ OUTFUT

MOVE T1»0UTJFN

MOUX T2yFLLUCZyOFARSZ)+OF ZWR

OFENFZ

ERJMFS FATAL

FXkk¥ MAIN LOOF: COFPY RYTES FROM

LOOF? MOVE

BINZ

JUMPE T2y DONE

MOVE T1s0QUTJFN

BOUT

ERCALS ERROR

JRET L.OOF

T1sINJFN

FXx¥ TEST FOR END OF FILEy ON

NONE ¢ GTSTSZ

TXNN T2yG8XZEQF

JRST 1L.OOF

CLOSIF: MOVE T1,yINJFN

CLOSFZ%

ERJMFS FATAL

CLLOSOF: MOVE T1iyQUTUJFN

CL.OSFX%

ERJMFS FATAL

TMSG =

COONED

JRET ZAF

XXX ERROR HANDLING *kxX

FATAL?

L

TMEG

FUSHJ FyERROR

JRET ZAF

WARN

[

TMGEG <

ERROR: MOVETL Tiy FRIOU

MOVE TR L FHELFyv -1

GETZ T3

ERSTRZ

JECL

JFCL

FOFS Py

LAk HAL.TFZ

JRBT START

END BTART

GOT

BUCCESS

USING FILES

FRETRIEVE THE INFUT JFN

FMODES FOR OPENF L7-BIT

FOFEN THE FILE

$IF ERRORy GIVE MESSAGE

BRYTES + INFUTI

ANIY STOF

SOET THE QUTFUT JFN

FMODES FOR OFENF

sOFEN THE FILE

§1F ERRORy GIVE

C7-BIT RYTES + OQUTFUTI

MESSAGE AND GTOF

INFUT TO QUTFUT XokxX

FGET THE INFUT JFN

FTAKE A RYTE FROM THE

$IF Oy CHECK FOR END

FGET THE QUTFUT JFN

FOUTFUT THE RYTE TO DESTINATION

SOURCE

OF FILE

STOF ONLY ON A O RBYTE

AT LOOF+2)

$ LOOF»

§ (CFOUND

FINISH UF Kokk

sOET THE STATUS OF

AT END OF FILE®

iNOy FLUSH NULL

INFUT FILE

ANI' CONTINUE COFY

PYESy

5 CLOSE

5IF

RETRIEVE INFUT

INFUT FILE

ERRORy GTVE MESSAGE

JEN

AND STOF

SRETRIEVE OUTFUT JFN

SCLOSE QUTRFUT FILE

5TF ERROR> GIVE MESSAGE AND STOF

5 SUCCESSFULLY DONE

$GTOF

FFATAL ERRORS FRINT 7 FIRST

FTHEN FRINT ERROR MESSAGE

FANDL STOF

FWARNINGS FRINT % FIRST

SAND FALL THRU “ERROR‘ BACK TO CALLER

s NECLARE FRINCIFAL

FFOR ERROR MESSAGE

FOURRENT FORKs» LAST ERROR

NG LIMITs» FULL MESSAGE

SPRINT THE MESSAGE

FIGNORE UNDEFINED ERROR NUMEBER

P IGNORE ERROR DURING EXE OF ERSTR

FRETURN TO CallER

OUTFUT DEVICE

FSTOF

sWE OARE

FTELL

RESTORTARLE

LINKING LOADRER START AINMRESS

3-L6



—
—
 
—

 
—
—
 

S
 —
—
 
S
—
—
—
 
—
 
—
—

 
—
—
—
 
—
—
 
S
—
—
—
-
 
—
 
—
—
 
A
—
—
 
—
—
 
—
—
 
—
—
—
—
 
D
 
r
—
—
—
 
—
 
—
—
 
—
—
 
—
—
—
 
—
—
-
 
A
 
—

 
—
—
 
—
—
 
—
 
—
—
—
 
—
—
 
—
 
—

 
—
—
—
 
W
A
S
—
—
 
—

 
—
—

USING FILES

Example 2 - This program accepts input from a user at the terminal and

then outputs the data to the line printer. Refer to Section 2.9 for

explanation of the RDTTY% call.

TITLE LFTRNT sPROGRAM TO PRINT TERMINAL INFUT ON PRINTER

SEARCH MONSYM FHEARCH SYSTEM JSYS-SYMEBOL LIBRARY

SEARCH MAGCHYM

JRECQUTRE SYSIMACREL

STHACG . $TEFINE STANDARD ACs

PHLENwmfid

COUNT: RLOCK 1

LETJFNG BLOCK 1

BUFFERS RILOCK RUFS1Z

I, ¢ BLOGK PRLEN

STARTS REGETX 5 [ T 1700 ETC,

MOVE P CIOWD PILENPDL] Uk STACK

TMSEG CENTER TEXT TO BE PRINTED (END WITH "Z)¢

FOUTFUT FROMPFTING TEXT

HRROT T1yRUFFER FGET FOINTER TO BUFFER

MOVE T3y TROZBRICHRBUFSTZEE] SGET FLAG AND MAX # OF CHARS TO READ

BETIM T3 PNO RE-TYPE BUFFER

ROTTYZ FTNFUT TEXYT FROM TERMINAL

EJSHLT v RO STOF

HRIRZSG T2 SOET CHARS REMAINING IN BUFFER

MOVET Ti1yBUFSTZRS SCOMPUTE NUMBER OF CHARS READ = BUFFERGIZE

SUE T1,T2 5 MINUS CHARS REMAINING

808 T1 SOONT INCLUDE TM2

MOVEM T1yCOUNT sGAVE & OF CHARS INFUT

FGET A JFN FOR THE FRINTER AND OFEN THE FRINTER

MOVX T1yGJREHTIGIAFOU sOUTFUT FILE, SHORT CaAlL

HRROT T2y LAGCTZ ZLPTIZ0 SGET FOINTER TO NAME OF FILE

GTJFNZ PGET A JFN FOR THE FRINTER

ERJMPS JFNERR PERRORy FRINT ERROR MESSAGE

MOVEM T1sLPTJUFN sREMEMBER FRINTER JFN

MOUX T2y FLICZyQF ARSI FOFZWR 3 7-BIT BYTESy WRITE ACCESS WANTED

OFENFZ% sOFEN THE FRINTER FOR OQUTPUT

ERJMES OFNERR PERRORs PRINT ERROR MESGAGE

NOW OQUTFUT THE TEXT THAT WAS INFUT FROM THE TERMINAL

HRROT T2y RUFFER sGET POINTER TO TEXT (FRINTER JFN STILL IN T1)

MOUN T3y COUNT sGET NUMBER OF CHARS TO OQUTFUT

HOUTH sOUTEUT STRING OF CHARS TO THE FRINTER

ERJIMFS BATERR FERRORy FRINT ERROR MESSAGE

TMSG «

QUTFUT HAS BEEN SENT TO THE FRINTER...

i SOUTFUT CONFIRMATION MESSAGE

MOVE TLeLFTUFN sOGET FRINTER JFN

CLOSFZ CLOSE 1T

ERJMPS DATERR 5 LINEX TED ERRORs FRINT ERROR MESSAGE

HALTFZ §FINTSHED

JRET START $IF CONTINUEDY GO BACK TO START

3-47





CHAPTER L

USING THE SOFTWARE INTERRUPT SYSTEM

L.1 OVERVIEW

Program execution wusually occurs in a sequential manner, where

instructions are executed one after another. But sometimes a program

must be able to receive asynchronous signals from terminals, the

monitor, or other programs, or as a result of its own execution. By

using the software interrupt system, the user can specify conditions

that will cause his program to deviate from its sequential method of

execution,

An interrupt is defined as a break in the normal flow of control

during a program's execution. The break, or interrupt, is caused by

the occurrence of a prespecified condition. By specifying the

conditions that can cause an interrupt, the program has the capability

of dynamically responding to external events and error conditions and

of generating requests for services. Because the program can respond

to special conditions as they occur, it does not have to explicitly

and repeatedly test for them. |In addition, the program's execution is

faster because the program does not have to include a special test

after the possible occurrence of the condition.

When an interrupt occurs, the system transfers control from the main

program sequence to a previously-specified routine that will process

the interrupt. After the routine has completed its processing of the

interrupt, the system can transfer control back to the program at the

point it was interrupted, and execution can continue. See Figure L-1.



USING THE SOFTWARE INTERRUPT SYSTEM

User

Program

|S

Executing

Interrupt

Condition
Occurs

Execute

Enabled for Yes Higher Priority | User's
Condition on This, Being Interrupt

Channel? Processed? Routine

No

Wait Until

Higher Priority

L Interrupt
A Finishes

Perform System

Default Action

(e.g., stop job,

print message)

\

User Program

Continues if Job
Has Not Been

Terminated

MR-S-2027-82

Figure L-1: Basic Operational Sequence of the Software Interrupt

System

4-2



USING THE SOFTWARE INTERRUPT SYSTEM

L.2 INTERRUPT CONDITIONS

Conditions that cause the program to be interrupted when the interrupt
system is enabled are:

1. Conditions generated when specific terminal keys are typed.

There are 36 possible codes; each one specifies the

particular terminal character or condition on which an

interrupt is to be initiated. Refer to Table 4-2 for the

possible codes.

Invalid instructions (for example, |/0 instructions given in

user mode) or privileged monitor calls issued by a non
privileged user.

Memory conditions, such as illegal memory references.

Arithmetic processor conditions, such as arithmetic overflow

or underflow.

Certain file or device conditions, such as end of file.

Program-generated software interrupts.

Termination of an inferior process.

System resource unavailability.

Interprocess communication (I1PCF) and Enqueue/Dequeue
interrupts.

b-3



USING THE SOFTWARE INTERRUPT SYSTEM

4.3 SOFTWARE INTERRUPT CHANNELS AND PRIORITIES

Each condition is associated with one of 36 software interrupt

channels. Most conditions are permanently assigned to specific

channels; however, the user's program can associate some conditions

(for example, conditions generated by specific terminal keys) to any

one of the assignablie channels. (Refer to Table L-1 for the channel

assignments.) When the condition associated with a channel occurs, and

that channel has been activated, an interrupt is generated. Control

can then be transferred to the routine responsible for processing

interrupts on that channel.

The user program assigns each channel to one of three priority levels.

Priority levels allow the occurrence of some conditions to suspend the

processing of other conditions. The levels are referred to as level

1, 2, or 3 with level 1 having the highest priority. Level O is not a

legal priority level.!

! [f an interrupt is generated in a process where the priority

level is 0, the system considers that the process is not

prepared to handle the interrupt. The process is then suspended

or terminated according to the setting of bit 17 (SCZFRZ) in its

capability word.

L-4



USING THE SOFTWARE INTERRUPT SYSTEM

Table L-1: Software Interrupt Channel Assignments

Channel Symbol Meaning

0-5 Assignable by user program

6 . ICAQV Arithmetic overflow

7 .ICFOV Arithmetic floating point overfiow

8 Reserved for Digital

9 . 1CPOV Pushdown list (PDL) overflow!

10 . |CEOF End of file condition

11 . | CDAE Data error file condition!

12 .1CQTA Disk quota exceeded

13-14 Reserved for Digital

15 .ACILI I1legal instruction!

16 .1CIRD I11egal memory read!

17 .ACIWR I1legal memory write'!

18 Reserved for Digital

19 JACIFT Inferior process termination

20 . |CMSE System resources exhausted!

21 Reserved for Digital

22 . |CNXP Nonexistent page reference

23-35 Assignable by user program

1 These channels (called panic channels) cannot be completely

deactivated. An interrupt generated on one of these channels

terminates the process if the channel is not activated.

b5



USING THE SOFTWARE INTERRUPT SYSTEM

The software interrupt system processes interrupts on activated

channels only, and each channel <c¢an be activated and deactivated

independently of other channels. When activated, the channel can

generate an interrupt for its associated priority level. An interrupt

for any priority level is initiated only if there are no interrupts in

progress for the same or higher priority levels. |f there are, the

system remembers the interrupt request and Iinitiates it after all

equal or higher priority level interrupts finish. This means that a

higher priority level request can suspend a routine processing a lower

level interrupt. Thus, the user must be concerned with several items

when he assigns his priority levels. He must consider 1) when one

interrupt request can suspend the processing of another and 2) when

the processing of a second interrupt cannot be deferred until the

completion of the first. See Figure L-2,.

Level 1

Channel 4

Interrupt

Routine

Level 2 - — - = ==

Channel 6 Waiting Channel 6 Interrupt
Interrupt Routine Continues

Routine

Level 3 - - - - -

Waiting Channel 35
Interrupt

Routine

Waiting

User Program User Program
Execution Continues

Interrupt on

Channel 4
Interrupt on that Has a Interrupt on Channel 6 Channel 35
Channel 6 Priority Level Channel 35 Interrupt Interrupt
that Has a of 1 Channel 4 that Has a Completes Completes
Priority Level Interrupt Priority Level

of 2 Completes of 3 MF-5-2030-82

Figure L-2: Channels and Priority Levels

L-6



USING THE SOFTWARE INTERRUPT SYSTEM

L.h SOFTWARE INTERRUPT TABLES

To process interrupts, the user includes, as part of his program,

special service routines for the channels he will be using. He must

then specify the addresses of these routines to the system by setting

up a channel table. In addition, the wuser must also include a

priority level table as part of his program. Finally, he must declare

the addresses of these tables to the system.

L.4.1 Specifying the Software Interrupt Tables

Before using the software interrupt system, the user's program must

set up the contents of the channel table and the priority level table.

The program must then specify their addresses with either the SIR% or

XSIR% monitor calls.

These calls are similar, but their differences are important. The

SIR%Z call can be used in single-section programs, but the XSIR% call
must be used in programs that use more than one section of memory.

The SIR% call works in non-zero sections only if the tables are in the
same section as the code that makes the call. The code that causes

the interrupt must also be in that section, as must the code that

processes the interrupt. Because of the limitations of the SIR% call,

you should use the XSIR% call.

The SIR% monitor call accepts two words of arguments: the identifier
for the program (or process) in ACl, and the table addresses in AC2.
Refer to Section 5.3 for the description of process identifiers.

The following example shows the use of the SIR% call.

MOVEI 1, .FHSLF ;identifier of current process

MOVE 2, [LEVTAB,,CHNTAB] ;addresses of the tables
SIR%

The XSIR¥ call accepts the following arguments: in ACI1, the
identifier of the process for which the interrupt channel tables are

to be set; in AC2, the address of the argument block.

The argument block is a three-word block that has the following

format:

! Length of the argument block, including this word !

! Address of the channel table !

b-7



USING THE SOFTWARE INTERRUPT SYSTEM

Control always returns to the wuser's program at the instruction

following the SIR% and XSIR% calls. |If the call is successful, the
table addresses are stored in the monitor. |f the call is not

successful, an illegal instruction trap is generated.

Any changes made to the contents of the tables after the XSIRY or SIR%
calls have been executed will be in effect at the time of the next
interrupt.

L.,4L.2 Channel Table

The channel table, CHNTAB, 2 contains a one-word entry for each
channel; thus, the table has 36 entries. Each entry corresponds to a
particular channel, and each channel is associated at any given time
with only one interrupt condition. (Refer to Table L-1 for the
interrupt conditions associated with each channel.)

The CHNTAB table is indexed by the channel number (0 through 35). The
general format, for use with the XSIR% and XRIR% monitor calls, can be
used in any section of memory. The left half of each entry contains
the priority 1level (1, 2, or 3) in bits 0-5 (SI%LEV) to which the
channel is assigned. Bits 6-35 (SI%¥ADR) of each entry contain the
starting address of the routine to process interrupts generated on
that channel. |If a particular channel is not used, the corresponding
entry in the channel table should be zero.

In the older format, for use with the SIR% and RIR% calls by any
single-section program, the left half of each word contains the
priority level (1, 2, or 3) for that channel. The right half contains
the address of the interrupt routine that will handle interrupts on
that channel.

2 The user can call his priority channel table any name he
desires; however, it is good practice to call it CHNTAB.

L-8



USING THE SOFTWARE INTERRUPT SYSTEM

The following example is for use with the XSIR% monitor call.

CHNTAB: FLD(2,SI%LEV)+FLD (CHNOSV,SI%ADR) ;channel 0
FLD(2,S1%LEV)+FLD (CHN1SV,S|%ADR) ;channel 1
FLD (2,S1%LEV)+FLD (CHN2SV, S1%ADR) schannel 2
FLD (2,SI%LEV)+FLD (CHN3SV,SI1%ADR) ;channel 3
0 ;channel 4

0 s;channel 5

FLD(1,SI%LEV)+FLD (APRSRV, SI%ADR) schannel 6
0 schannel 7

0 ;channel 8

FLD(1,SIBLEV)+FLD (STKSRV, SI%ADR) schannel 9
0 schannel 10

0 schannel 35

In this example, channels 0 through 3 are assigned to priority level
2, with the interrupt routine at CHNOSV servicing channel 0, the
routine at CHNISV servicing channel 1, the routine at CHN2SV servicing
channel 2, and the routine at CHN3S5V servicing channel 3. Channels 6
and 9 are assigned to priority level 1, with the routine at APRSRV
servicing channel 6 and the routine at STKSRV servicing channel 9.
All remaining channels are not assigned.

L,4L.,3 Priority Level Table

The priority level table, LEVTAB,3 is a three-word table, containing
a one-word entry for each of the three priority levels. In the

general form, each word contains the 30-bit address of the first word
of the two-word block in the process address space. The block
addressed by word n of LEVTAB is used to store the global PC flags and
address when an interrupt of level n+l occurs.

The PC flags are stored in the first word of the PC block, and the PC
address is stored in the second. This form of the table must be used
with the XSIR%¥ and XRIR%¥ monitor calls, and can be used in any
section.

The user can call his priority level table any name he desires;
however, it is good practice to call it LEVTAB.

4-9



USING THE SOFTWARE INTERRUPT SYSTEM

The older form of the interrupt level table can be used in any

single-section program, and must be used with the SIR% and RIR% calls.

This table also contains three words, indexed by the priority level

minus 1. Each word contains zero in the left half, and the 18-bit

address of the word in which to store the one-word section-relative PC

in the right half. This address is assumed to be in the same program

section that contained the SIR%¥ monitor call. (For more information

see Chapter 8.) The system must save the value of the program counter

so that it can return control at the appropriate point in the program

once the interrupt routine has completed processing an interrupt. |If

a particular priority level! is not used, its corresponding entry in

the level table should be zero.

The following is a sample of a level table.

LEVTAB: 0,,PCLEV] ;Addresses to save PC for interrupts

0,,PCLEV2 sjoccurring on priority levels 1 and 2.

0,,0 tNo priority level 3 interrupts are

splanned

L.5 ENABLING THE SOFTWARE INTERRUPT SYSTEM

Once the interrupt tables have been set up and their addresses defined

with the XSIR%Z monitor call, the user's program must enable the

interrupt system. When the interrupt system is enabled, interrupts

that occur on activated channels are processed by the user's interrupt

routines. When the interrupt system is disabled, the moni tor

processes interrupts as if the channels for these interrupts were not

activated.

The EIR%Z monitor call, used to enable the system, accepts one
argument: the identifier for the process in ACI.

MOVE! 1, .FHSLF sidentifier of current process

EIR%

Control always returns to the instruction following the EIR call.

L.6 ACTIVATING INTERRUPT CHANNELS

Once the software interrupt system is enabled, the channels on which

interrupts can occur must be activated (refer to Table L-1 for the

channel assignments). The channels to be activated have a nonzero

entry in the appropriate word in the channel table.

The AIC% monitor call activates one or more of the 36 interrupt
channels. This call accepts two words of arguments - the identifier
for the process in ACl, and the channels to be activated in AC2.

L-10



USING THE SOFTWARE INTERRUPT SYSTEM

The channels are indicated by setting bits in AC2. Setting bit n

indicates that channel n is to be activated. The AIC% call activates

only those channels for which bits are set.

MOVE! 1, .FHSLF ;identifier of current process

MOVE 2, [1B<.ICAOV>+1B<.|CPOV>] sactivate channels 6 and 9

AIC%

Control always returns to the instruction following the AIC¥ call.

Some channels, called panic channels, cannot be deactivated by

disabling the channel or the entire interrupt system. (Refer to Table

L-1 for these channels.) This is because the occurrence of the

conditions associated with these channels cannot be completely ignored

by the monitor.

|f one of these conditions occurs, an interrupt is generated whether

the channel is activated or not. |[f the channel is not activated, the

process is terminated, and usually a message is output before control

returns to the monitor. |If the channel is activated, control is given

to the user's interrupt routine for that channel.

L.7 GENERATING AN [NTERRUPT

A process generates an interrupt by producing a condition for which an

interrupt channel is enabled, such as arithmetic overflow, or by using

the |1C% monitor call. This call can generate an interrupt on any of

the 36 interrupt channels of the process the calling process

specifies. See Section 5.10 for a description of the II1C% call.

L.8 PROCESSING AN INTERRUPT

When a software interrupt occurs on a given priority level, the

monitor stores the current program counter (PC) word in the address

indicated in the priority level table (refer to Section L.4.3). The

monitor then transfers control to the interrupt routine associated

with the channel on which the interrupt occurred. The address of this

routine is specified in the channel table (refer to Section L.L4.2).

Since the user's program cannot determine when an interrupt will

occur, the interrupt routine must preserve the state of the program so

the program can be resumed properly. First, the routine stores the

contents of any user accumulators for wuse while processing the

interrupt. After the accumulators are saved, the interrupt routine

processes the interrupt.



USING THE SOFTWARE INTERRUPT SYSTEM

Occasionally, an interrupt routine may need to alter locations in the
main section of the program. For example, a routine may change the
stored PC word to resume execution at a location different from where

the interrupt occurred. Or it may alter a value that caused the
interrupt. It is important that care be used when writing routines
that alter data because any changes will remain when control is

returned to the main program. For example, if data 1is inadvertently

stored in the PC word, return to the main section of the program would

be incorrect when the system attempted to use the word as the value of

the program counter.

|f a higher-priority interrupt occurs during the execution of an
interrupt routine, the execution of the lower-priority routine is
suspended. The value of its program counter is stored at the location

indicated in the priority level table for the new interrupt. When the

routine for this new interrupt is completed, the suspended routine
resumes.

If an interrupt of the same or Jlower priority occurs. during the
execution of a routine, the monitor holds the interrupt until all

higher or equal level interrupts have been processed.

The system considers the user's program unable to process an interrupt
on an activated channel if any of the following is true:

1. The priority level associated with the channel is 0.

2. The program has not defined its interrupt tables by executing

an XSIR%¥ or SIR% monitor call.

3. The process has not enabled the interrupt system by executing

an EIR% monitor call, and the channel on which the interrupt
occurs is a panic channel.

In any of these cases, an interrupt on a panic channel terminates the

user's program. All other interrupts are ignored.

4L.8.1 Dismissing An Interrupt

Once the processing of an interrupt is complete, the interrupt routine
should restore the user accumulators to their initial values. Then it

should return control to the interrupted code by using the DEBRK%

monitor call. This call restores the PC word and resumes the program.

The call has no arguments, and must be the 1last statement in the
interrupt routine.



USING THE SOFTWARE INTERRUPT SYSTEM

|f the interrupt-processing routine has not changed the PC of the

user's program, the DEBRK% call restores the program to the same state
the program was in just before the interrupt occurred. If the program

was interrupted while waiting for 1/0 to complete, for example, the

program will again be waiting for 1/0 to complete when it resumes

execution after the DEBRK% call.

|f the PC word was changed, the program resumes execution at the new

PC location. The state of the program is unchanged.

L.9 TERMINAL INTERRUPTS

The user's program can associate channels O through 5 and channels 2k
through 35 with occurrences of various conditions, such as the

occurrence of a particular character typed at the terminal or the

receipt of an |[IPCF message. This section discusses terminal

interrupts; refer to Chapters 6 and 7 for other types of assignable

interrupts.

There are 36 codes used to specify terminal characters or conditions
on which interrupts can be initiated. These codes, along with their

associated conditions, are shown in Table L-2.

4-13



USING THE SOFTWARE INTERRUPT SYSTEM

Table L-2: Terminal Codes and Conditions

Code Symbol Character or Condition

0 .TICBK CTRL/@ or break

] .TICCA CTRL/A

2 .TICCB CTRL/B

3 .TICCC CTRL/C

L .TICCD CTRL/D

5 .TICCE CTRL/E

6 .TICCF CTRL/F

7 .TICCG CTRL/G

8 .TICCH CTRL/H

9 .TICCI CTRL/

10 .TICCJ CTRL/J

11 .TICCK CTRL/K

12 .TICCL CTRL/L

13 .TICCM CTRL/M

14 .TICCN CTRL/N

15 .TICCO CTRL/0O

16 .TICCP CTRL/P

17 .TICCQ . CTRL/Q

18 .TICCR CTRL/R

19 .TICCS CTRL/S



USING THE SOFTWARE INTERRUPT SYSTEM

Table L-2: Terminal Codes and Conditions (Cont.)

Code Symbol Character or Condition

20 .TICCT CTRL/T

21 .TICCU CTRL/U

22 .TICCV CTRL/V

23 .TICCW CTRL/W

24 .TICCX CTRL/X

25 .TICCY CTRL/Y

26 .TICCZ CTRL/Z

27 .TICES ESC key

28 .TICRB Delete (or rubout) key

29 .TICSP Space

30 . TICRF Dataset carrier off

31 LTICTI Typein

32 .TICTO Typeout

33 .TITCE Two-character escape sequence

3L4-35 Reserved



USING THE SOFTWARE INTERRUPT SYSTEM

To cause terminal interrupts to be generated, the user's program must

assign the desired terminal code to one of the assignable channels.

The ATI% monitor call is used to assign this code. This call accepts
one word of arguments: the terminal code in the left half of AC1 and

the channel number in the right half.

MOVE 1, [.TICCE,,INTCH1] ;assign CTRL/E to channel INTCH]
ATI%

Control always returns to the instruction following the ATI% call. |If

the current job is not attached to a terminal (there is no terminal

controlling the job), the terminal code assignments are remembered;

they will be in effect when a terminal is attached.

The monitor handles the receipt of a terminal interrupt character in

either immediate mode or deferred mode. In immediate mode, the

terminal character causes the system to initiate an interrupt as soon

as the wuser types the character (that s, as soon as the system

receives it). In deferred mode, the terminal character is placed in
either immediate mode or deferred mode. In immediate mode, the

terminal character causes the system to initiate an interrupt as soon

as the wuser types the character (as soon as the system receives it).

In deferred mode, the terminal character is placed in the input stream

in sequence with other characters of the input, unless two of the same

character are typed in succession. In this case, an interrupt occurs

at the time the second one is typed. |If only one character enabled in

deferred mode is typed, the system initiates an interrupt only when

the program attempts to read the character. Deferred mode allows

interrupt actions to occur in sequence with other actions specified in

the input (for example, when characters are typed ahead of the time
that the program actually requests them). In either mode, the

character is not passed to the program as data. The system assumes

that interrupts are to be handled immediately unless a program has

issued the STIWY (Set Terminal Interrupt Word) monitor call. (Refer
to TOPS-20 Monitor Calls Reference Manual for a description of this

call.) |



USING THE SOFTWARE INTERRUPT SYSTEM

L.10 ADDITIONAL SOFTWARE INTERRUPT MONITOR CALLS

Additional monitor calls are available that allow the user's program
to check and to clear various parts of the software interrupt system.
Also, there is a call useful for interprocess communication (refer to
the 11C% call in Section 5.10).

L.10.1 Testing for Enablement

The SKPIR% monitor call tests the software interrupt system to see if
it is enabled. The call accepts in AC1 the identifier of the process.
After execution of the call, control returns to the next instruction
if the system is off, and to the second instruction if the system is
on.

MOVE!l 1, .FHSLF ;identifier of current process
SKPIR% ;jtest interrupt system
return ;system is off

return ;jsystem is on

4L.10.2 Obtaining Interrupt Table Addresses

The RIR% and XRIR% monitor calls obtain the channel and priority level
table addresses for a process. These calls are useful when several
routines in one process want to share the interrupt tables.

L.10.2.1 The RIR% Monitor Call - The RIR% monitor call can be used in
any section of memory, but is only useful for obtaining table
addresses if those tables are in the same section of memory as the
code that makes the «call. Furthermore, it can only obtain table
addresses that have been set by the SIR call.

The call accepts the identifier of the process in ACl. |t returns the
table addresses in AC2. The left half of AC2 contains the
section-relative address of the priority level table, and the right
half contains the section-relative address of the channel table. |f
the process has not set the table addresses with the SIR% monitor
call, AC2 contains zero.

Control always returns to the instruction following the RIR% call.

The following example shows the use of the RIR% call.

MOVE!I 1, .FHSLF sidentifier of current process
RIR% sreturn the table addresses

L-17



USING THE SOFTWARE INTERRUPT SYSTEM

L.,10.2.2 The XRIR% Monitor Call - This call obtains the addresses of

the interrupt tables defined for a process. The tables can be in any

section of memory. The code that makes the call can also be in any

section. This call can only obtain addresses that have been set by

the XSIR% call.

The call accepts the identifier of the process in ACl, and the address

of the argument block in AC2. The argument block is three words long,

word zero must contain the number 3. The call returns the addresses

into words one and two. The block has the following format:

| ====== S === N ——
L] .

! Length of the argument block, including this word !

! Address of the interrupt level table !

! Address of the channel table !

Control always returns to the instruction following the XRIR% call.

If the process has not set the table addresses with the XSIR% monitor

call, words one and two of the argument block contain zero.

L.,10.3 Disabling the Interrupt System

The DIR% monitor call disables the software interrupt system for the

process. |t accepts the identifier of the process in AC1.

MOVEI 1, .FHSLF sidentifier of current process

DIR% ;disable system

Control always returns to the instruction following the DIR% call.

If interrupts occur while the interrupt system is disabled, they are

remembered until the system is reenabled. At that time, the

interrupts take effect unless an intervening CI1$% monitor call (refer

to Section 4.10.6) has been issued.

Software interrupts assigned to panic channels are not completely

disabled by the DIR% call. These interrupts terminate the process,

and the superior process is notified if it has enabled channel .ICIFT.

In addition, if the terminal code for CTRL/C (.TICCC) is assigned to a

channel, it causes an interrupt that cannot be disabled by the DIR%

call. However, the CTRL/C interrupt can be disabled by deactivating

the channel assigned to the CTRL/C terminal code.



USING THE SOFTWARE INTERRUPT SYSTEM

L.10.4 Deactivating a Channel

The DIC% monitor call is used to deactivate interrupt channels. The
call accepts two words of arguments: the process identifier in ACI,

and the channels to be deactivated in AC2. Setting bit n in AC2

indicates that channel n is to be deactivated.

MOVE! 1, .FHSLF sidentifier of current process
MOVE 2, [1B<.|CAOV>+1B<.|CPOV>] ;jdeactivate channels 6 and 9
DIC%

Control always returns to the instruction following the DIC% call.

When a channel is deactivated, interrupt requests for that channel are

ignored except for interrupts generated on panic channels (refer to

Section 4.6).

L.10.5 Deassigning Terminal Codes

The DTI% monitor call deassigns a terminal code. This call accepts
one argument word: the terminal code in ACI.

MOVE! 1, .TICCE ;deassign CTRL/E

DTI%

Control always returns to the instruction following the DTI% call.

This monitor call is ignored if the specified terminal code has not

been defined by the current job.

4L.10.6 Clearing the Interrupt System

The CIS% monitor call clears the interrupt system for the current
process. This <call <clears interrupts in progress and all waiting

interrupts. This call requires no arguments, and control always

returns to the instruction following the CIS call. The RESET% monitor

call (refer to Section 2.6.1) performs these same actions as part of
its initializing procedures.



USING THE SOFTWARE INTERRUPT SYSTEM

L.11 SUMMARY

To use the software interrupt system, the user's program must:

1. Supply routines that will process the interrupts.

2. Set up a channel table containing the addresses

routines (refer to Section L4.L4.2) and a priority level table

containing the addresses for storing the program counter (PC)

values (refer to Section L4.L.3).

3. Specify the addresses of the tables with the XSIR% monitor

call (refer to Section 4.4.3).

L. Enable the software interrupt system with the EIR%¥ monitor

call (refer to Section L.5).

5. Activate the desired channels with the AIC%¥ monitor

(refer to Section 4.6).

L-20



USING THE SOFTWARE INTERRUPT SYSTEM

L.12 SOFTWARE INTERRUPT EXAMPLE

This program copies one file to another. It accepts the input and

output filenames from the user. The end of file is detected by a

sof tware interrupt, and CTRL/E is enabled as an escape character.

GETIF?

GETOF3

OFNIF:

OFNOF¢

CRYRYT?

LONE

TITLE SOFTWARE INTERRUFT EXAMPLE

SEARCH MONGYM

SEARCH MACSYM

+REQUIRE SYSIMACREL

STHAC. YREFINE STANDARD ACs

INTCHL=21

RESET FRELEASE FILESy ETC.

XHLLIT Ti1sEOFINT YGET CURRENT FROCESS SECTION NUMBER

HLLZS Ti STSOLATE SECTION NUMBER ONLY

TORM T1sCHNTAREFINTCHI §OAND AN IT TO SERVICE ROUTINE ADDRESSES

TORM TL1yCHNTARY. ICEQF i FOR OUR ROUTINES

TORM T1y L EVTARYL 3

MOVET T1s FHSLF FCURRENT FROCESS

MOVET T23 FNUMBER OF WORDG IN ARG BLOCK

MOVEM T2y ARGRILK SFUT NUMRER IN WORD ZERCD

XMOVET T25LEVTAR $GLOBAL ADDRESS OF LEVEL TARLE

MOVEM T2sARGRLK+, SMOVE 1T TO ARGRLK WORI ONE

XMOVET T2yCHNTAR FGLOBAL ADDRESS OF CHANNEL TARLE

MOVEM T2y ARGBLKA42 FMOVE IT TO ARGRLK WORD TWO

XMOVETL T2y ARGRLK $GLORAL ADNRESS OF ARGUMENT BLOCK

XSIRZ

EITRZ FENARLE SYSTEM
MOVE T2y DIBCINTCHLIEHAIRTCEOF =1 SACTIVATE CHANNELS

ATCH

MOVE T1yL.TICCEsy INTCHLT $ASSIGN CTRLZE TO CHANNEL 1

ATTA

TMEG IINFUT FILES >

MOVUX T1yGJZOLDHGIAMEGHGILCFMHGIAFNSHGIZASHT

MOVE T2y LFPRITNy» « FRIOU

GTJUFNX SOET FILENAME FROM USER
ERJMF ERRORL

MOVEM Ti1y INJFN

THSG <OUTFUT FILES &

MOVX TLyGJZFOUAGIZMSGHOJLCFMAGIAFNSHGILGHT

MOVE T2y FRITNyv «FRIQU

GTUFNZL FOET FILENAME FROM USER
ERJMF ERROR2

MOVEM T120UTJFN

MOVE T1» INJFN

MOUX T2y FLDCZ s OFZRSZ)Y+OF ZR]

OFENF X FOFEN INFUT FILE

ERJIMF ERRORE

MOVE T1+0UTJFN

MOVX T2»FLIC7v QFZREZ) +OF LWR

OFENF X% FOFEN OQUTFUT FILE
ERJMF ERROR3

MOVE T1>INJFN

BRINZ sREAD INFUT RBYTE
MOVE TLsOUTJFN

BROUTZ SWRITE OQUTRUT RYTE
JRET CRYRYT sLOOF UNTIL EOF

MOVE T1yINJFN

CLOSFX FCLOSE INFUT FILE

JFCL

MOVE T1,0UTJFN

CLOSFZ sCLOSE QUTPUT FILE

JFCL

HALTFX%

h-21



# ROUT ENE

CTRLE?

$ROUTINE

EOFINT?

JLEVEL T

LEVTARS

FO23

5 CHANNEL

CHNTARS

ARGELK?

INJFN?

DUTJFN?

INTACTS

ERRORL¢

PINVALID

ERROR2?

TINVALID

ERRORZS

FTCANNCT

USING THE SOFTWARE INTERRUPT SYSTEM

TO HANDLE TM - ARORTS (FERATION

MOVET Ti» FRIOU

CFORFZ FCLEAR OUTFUT BUFFER

TMSGE <ARORTEX §INFORM USER

CIs% FCLEAR SYSTEM

JRET 8TART

TO HANDLE EQOF - COMPLETES OFERATION NORMALLY

MOVEM T1»INTACL FHAVE My

XMOVET T1yDONE § CHANGE FC

MOVEM 710241 FTO NONE

MOVE T1yINTACL FRESTORE ACs

NERRKZ FUIHMISS INTERRUFT

ARLE

O

FC2

0

RL.OCK 2

TARLE

0

FLOCR2eSTALEWVY TFLOCCTRLE » STZADR)

REFEAT I8y Ok

FLOC2 STALEWV IFLDCEQF INT» 8EZADR)D

REFEAT “N2% <0k

RLOCK 3

ELOCK 1

RLOCK 1

RLOCK 1

TMSG =

FILE SPECIFICATION:

HALTFZ

TMSG

FILE SFECIFICATION

HALTF%

THMEG <«

OFEN FLLE:

HALTE

LET

END START

L-22



CHAPTER 5

PROCESS STRUCTURE

As stated in Chapter 1, the TOPS-20 operating system allows each Job
to have multiple processes that can run simultaneously. Each process

has its own environment called its address space. Associated with the
environment. is the program counter (PC) of the process and a
well-defined relationship with other processes in the job. In

TOPS-20, the term fork is synonymous with the term process.

The TOPS-20 operating system schedules the running of processes, nhot
entire jobs. A process can be scheduled independent of other
processes because it has a definite existence: its beginning is the

time at which it is created, and its end is the time at which it is
killed. At any point in its existence, a process can be described by
its state, which is represented by a status word and a PC word (refer
to Section 5.9).



PROCESS STRUCTURE

The relationships among processes in a job are shown in the diagram

below. Each process has one immediate superior process (except for

the top-level process) and can have one or more inferior processes.

Two processes are parallel if they have the same immediate superior.

A process can create an inferior process but not a parallel or

superior process,

Top—Level

Process

Process Process Process

1 2 3

Process Process
4

MR-8-2036-82

Process 1 is the superior process of process 4, and process 3 is the

superior of process 5. Processes 4 and 5 are the inferiors of

processes |1 and 3, respectively. Process 2 has no inferior process.

Processes 1, 2 and 3 are parallel because they have the same superior

process (the top-level process). Processes 4 and 5, although at the

same depth in the structure, are not parallel because they do not have

the same superior process. Process 1 created process L4 but could not

have created any other process shown in the structure above.

5.1 USES FOR MULTIPLE PROCESSES

A multiple-process job structure allows:

1. One job to have more than one program runnable at the same

time. These programs can be independent programs, each one

compiled, debugged, and loaded separately. Each program can

then be placed in a separate process. These processes can be

parallel to each other, but are inferior to the main process

that created them. This use allows parallel execution of the

individual programs.

2. One process to wait for an event to occur (for example, the

completion of an 1/0 operation) while another process

continues its computations. Communication between the two

processes is such that when the event occurs, the process

that is computing can be notified via the software interrupt

system. This use allows two processes within a job to

overlap |/0 with computations.

5-2



PROCESS STRUCTURE

One application of a multiple-process Job structure is the following
situation: a superior process is responsible for accepting input from
various terminals. After receiving this input, the process sends it
to various inferior processes as data. These inferior processes can
then initiate other processes, for example, to write reports on the
data that was received.

Process that
TTY Accepts Input TTY

from Terminals

Processes that
Receive the
input as Data

Processes that
Write Reports
on the Data

MR-S-2035-82

Another application is that used for the user interface on the
DECSYSTEM-20. On the DECSYSTEM-20, the top-level process in the job
structure is the Command Language. This process services the user at
the terminal by accepting input. When the user runs a program (for
example, MACRO, FORTRAN), the Command Language process creates an
inferior process, places the requested program in it, and executes it.
The Command Language can then wait for an event to occur, either from
the program or from the user. An event from the program can be its
completion, and an event from the user can be the typing of a certain
terminal key (CTRL/C, for example).

5.2 PROCESS COMMUNICATION

A process can communicate with or control other processes in the
system in several ways:

® direct process control

® software interrupts

e |PCF and ENQ/DEQ facilities

® memory sharing

5-3



PROCESS STRUCTURE

5.2.1 Direct Process Control

A process can create and control other processes inferior to it within

the job structure. The superior process can cause the inferior

process to begin execution and then to suspend and later resume

execution. After the inferior process has completed its tasks, the

superior process can delete the inferior from the job structure.

Some of the monitor calls used for direct process control are:

CFORK%, to create a process; SFORK%, to start a process; WFORKX, to

wait for a process to terminate; RFSTS%, to obtain the status of a

process; and KFORK%, to delete a process. Refer to the TOPS-20

Monitor Calls Reference Manual for descriptions of additional monitor

calls dealing with process control.

5.2.2 Software Interrupts

The software interrupt facility enables a process to receive

asynchronous signals from other processes, the system, or the terminal

user or to receive signals as a result of its own execution. For

example, a superior process can enable the interrupt system so that it

receives an interrupt when one of its inferiors terminates. In

addition, processes within a job structure can explicitly generate

interrupts to each other for communication purposes.

Some of the monitor calls used when communication occurs via the

software interrupt system are: SIR%, to specify the interrupt tables;

EIR%, to enable the interrupt system; AIC%, to activate the interrupt

channels; and |I1C%, to initiate an interrupt on a channel. Refer to

Chapter L4 and Section 5.10 for more information.

5.2.3 IPCF and ENQ/DEQ Facilities

The Inter-Process Communication Facility (IPCF) enables processes and

jobs to communicate by sending and receiving informational messages.

The MSEND% call is used to send a message, the MRECV% call is used to

receive a message, and the MUTIL% call is used to perform utility

functions. Refer to Chapter 7 for descriptions of these calls.

The ENQ/DEQ facility allows cooperating processes to share resources

and facilitates dynamic resource allocation. The ENQ% call is used to
obtain a resource, the DEQ% call is used to release a resource, and

the ENQC% <call is used to obtain status about a resource. Refer to

Chapter 6 for descriptions of these calls.

51



PROCESS STRUCTURE

5.2.4 Memory Sharing

Each page or section in a process' address space is either private to

the process or shared with other processes. Pages are shared among

processes when the same page is represented in more than one process'

address space. This means that two or more processes can identify and

use the same page of physical storage. Even when several processes

have identified the same page, each process can have a different

access to that page, such as access to read or write that page.

A type of page access that facilitates sharing is the copy-on-write

access. A page with this access remains shared as long as all

processes read the page. As soon as a process writes to the page, the

system makes a private copy of the page for the process doing the

writing. Other processes continue to read and execute the original

page. This access provides the capability of sharing as much as

possible but still allows the process to <c¢hange its data without

changing the data of other processes. A monitor call used when

sharing memory is PMAP%. Refer to Section 5.6.2 for more information.

5.3 PROCESS IDENTIFIERS

In order for processes to communicate with each other, a process must

have an identifier, or handle, for referencing another process. When

a process creates an inferior process, it is given a handle on that

inferior. This handle is a number in the range 400001 to 400777 and

is meaningful only to the process to which it is given (that is, to

the superior process). For example, if process A creates process B,

process A is given a handle (for example, L400003) on process B.

Process A then specifies this handle when it uses monitor calls that

refer to process B. However, process B is not known by this handle to

any other process in the structure, including itself. The handle

LOOO0O3 may in fact be known to process B, but it would describe a

process inferior to process B. For this reason, process handles are

sometimes called ''relative fork handles' because they are relative to

the process that created them.

There are several standard process handles that are never assigned by

the system but have a specific meaning when used by any process in the

structure. These handles are used when a process needs to communicate

with a process other than its immediate inferior or with multiple

processes at once. These handles are described in Table 5-1.

5-5



PROCESS STRUCTURE

Table 5-1: Process Handles

Number Symbol Meaning

400000 .FHSLF The current process (or self).

LO0O00O+n Process n, relative to the current
process.

200000 FHZEPN Extended page number (see PM¥EPN in

PMAP%). When used in conjunction with
the above two forms, this bit

indicates that addresses and/or page

numbers are interpreted as absolute,

not relative to the PC section of the

program executing the JSYS. This bit

has no meaning for programs that do

not use extended addressing.

-1 .FHSUP The immediate superior of the current

process.

-2 .FHTOP The top-level process in the job

structure.

-3 .FHSAI The current process and all of its

inferiors.

-4 FHINF A1l of the inferiors of the current

process.

-5 .FHJOB A1l processes in the job structure.

5-6



PROCESS STRUCTURE

Consider the job structure below.

A

l

B c D

|
I l

E F

l

G H

MR-S-2031-82

The following indicates the specific process or processes being

referenced if process E gives the handle:

.FHSLF refers to process E

.FHSUP refers to process D

.FHTOP refers to process A

.FHSAI refers to processes E, G, and H

.FHINF refers to processes G and H

.FHJOB refers to processes A through H

The process must have the appropriate capability enabled in its

capability word to use the handles .FHSUP, .FHTOP, and .FHJOB (refer

to Section 5.5.1).

Process E can reference one of its inferiors (for example, G) with the

handle it was given when it created the inferior. Process E can

reference other processes in the structure (for example, F) by

executing the GFRKS%¥ monitor call to obtain a handie on the desired

process. Refer to the TOPS-20 Monitor Calls Reference Manual for a

description of the GFRKS% call.

5-7



PROCESS STRUCTURE

5.4L OVERVIEW OF MONITOR CALLS FOR PROCESSES

Monitor calls exist for creating, 1loading, starting, suspending,

resuming, interrupting, and deleting processes. When a process is

created, its address space is assigned, and the process 1is added to

the job structure of the creating process. The contents of its

address space can be specified at the time the process is created or

at a later time. The process can also be started at the time it is

created. A process remains potentially runnable wuntil it is

explicitly deleted or its superior is deleted.

A process may be suspended if one of the following conditions occurs:

1. The process executes an instruction that causes a software

interrupt to occur, and it is not prepared to process the

interrupt.

2. The process executes the HALTF% monitor call.

3. The superior process requests suspension of its inferior.

L, The superior process is suspended. When a process s

suspended, all of its inferior processes are also suspended.

5. A monitor call is trapped. (Refer to TFORK%Z monitor call in

the TOPS-20 Monitor Calls Reference Manual).

5.5 CREATING A PROCESS

A process creates an inferior process by executing the CFORK®Z (Create

Process) monitor call. This monitor call allows the caller to specify

the address space, capabilities, initial contents of the ACs, and PC

for the inferior process and to start the execution of the inferior.

The CFORK% call accepts two words of arguments in ACl and AC2.

AC1: characteristics for the inferior in the left half, and PC

address for the inferior in the right half.

AC2: address of a 20 {octal) word block containing the AC

values for the inferior.

The characteristics for the inferior process are described in Table

5-2.

5-8



Table 5-2:

PROCESS STRUCTURE

Inferior Process Characteristic Bits

Bit Symbol Meaning

18-35

CREMAP

CR%CAP

CR%ACS

CR%ST

CRZPCV

Set the map of the inferior process to the

same as the map of the superior (creating)

process. This means that the superior and

the inferior will share the same address

space. Changes made by one process will be

seen by the other process.

|f this bit is not on in the call, the

inferior's map will contain all zeros. |If

desired, the creating process can then use

PMAP or GET to add pages to the inferior's

map.

Set the capability word of the inferior

process to the same as the capability word of

the superior process. (Refer to Section

5.5.1 for the description of the capability

word.)

If this bit is not on in the «call, the

inferior will have no special capabilities.

Reserved for Digital (must be 0).

Set the ACs of the inferior process to the

values beginning at the address given in AC2.

If this bit is not on in the call, the

inferior's ACs will be set to zero, and the

contents of AC2 is ignored.

Set the PC for the inferior process to the

address given in the right half of ACl and

start execution of the inferior.

If this bit is not on in the call, the right

half of ACl is ignored, and the inferior is

not started. If desired, the creating

process can then use SFORK¥ or XSFRK% to

start the newly created process.

PC value for inferior process if CR%ST is on.

5-9



PROCESS STRUCTURE

| f execution of the CFORK%¥ call is not successful, the inferior

process is not created and an error code is returned, as described in

Section 1.2.2.

| f execution of the CFORK%¥ call is successful, the inferior process is

created and its process handle is returned in the right half of ACI.

This handle is then used by the superior process when communicating

with its inferior process. The execution of the program in the

superior process continues at the second instruction following the

CFORK%Z call. The inferior begins execution at the location contained

in bits 18-35 (CR%PCV) if CR%ST is specified.

Assume that process A executes the CFORK% monitor call twice to create

two parallel inferior processes. This is represented pictorially

below.

Process A

Creates Process B

by Executing a CFORK

Process B Is Created
and Its Handle Is

Given to Process A

Process A Executes

Another CFORK to

Create Process C

—

Process C Is Created
Process B and Its Handle

Given to Process A

MR-S-2034-82

Note that process A has been given two handles, one for process B and

one for process C. Process A can refer to either of its inferiors by

giving the appropriate handle or to both of its inferiors by giving a

handle of -4 (.FHINF).

5-10



PROCESS STRUCTURE

5.5.1 Process Capabilities

When a new process is created, it is given the same capabilities as

its superior, or it is given no special capabilities. This is

indicated by the setting of the CR%CAP bit in the CFORK% call. The

capabilities for a process are indicated by two capability words. The

first word indicates if the capability is available to the process,

and the second word indicates if the capability is enabled for the

process. This second word is the one being set by the CR%¥CAP bit in

the CFORK% call.

Types of capabilities represented in the capability words are job,

process, and user capabilities. Each capability corresponds to a

particular bit in the capability words and thus can be activated and

protected independently of the other capabilities. Refer to the

TOPS-20 Monitor Calls Reference Manual for more information on the

capability words.

5.6 SPECIFYING THE CONTENTS OF THE ADDRESS SPACE OF A PROCESS

Once a process is created, the contents of its address space can be

specified. This can be accomplished in one of three ways. As

mentioned in Section 5.5, bit CR¥MAP can be set in the CFORKY call to

indicate that the address space of the inferior process is to be the

same as the address space of the creating process. In addition, the

creating process can execute the GET% monitor call to map specified

pages from a file into the address space of the inferior process.

Finally, the <creating process can execute the PMAP% monitor call to

map specified pages from another process into the address space of the

inferior process.

If the creating process does not specify the contents of the

inferior's address space, the address space will be filled with zeros.

5.6.1 GET% Monitor Call

The GET% monitor call gets a save file, copying or mapping it into the
process as appropriate. |t updates the monitor's data base for the

process by copying the entry vector and the list of program data

vector addresses (PDVAs) from the save file. (See the .POADD function
of the PDVOP% monitor call.)

This call can be executed for either sharable or nonsharable save

files that were created with the SSAVE¥ or SAVE% monitor call,

respectively. The file must not be open by any process in the user's

job. (Refer to the TOPS-20 Monitor Calls Reference Manual for more
information regarding the PDVOP%, SSAVE%, and SAVEX% monitor calls.)

5-11



—
 
—
—
 
—

 
—
—
—
—
"
 
—
—
 
—

 
—
—
—
—
—
 
—

 
—

 
—
—
—
 
—
—
 
—
 
—
—

 
—

 
—
—
 
S
—
—

 
S
 
o
—
—
—

PROCESS STRUCTURE

The GET% monitor call accepts two words of arguments in AC1 and AC2,

The first word specifies the handle of the desired process, flag bits,

and the JFN of the desired file. The second word specifies where the

pages from the file are to be placed in the address space of the

process. Thus,

AC1: process handle,,flag bits and a JFN

AC2: lowest process page number in left half, and highest

process page number in right half; or the address of an

argument block. If this AC contains page numbers, those

page numbers control the parts of memory that are loaded

when GT%ADR is on in ACI.

Table 5-3 describes the bits that can be set in ACI.

Table 5-3: GET% Flag Bits

Bit Symbol Meaning

19 GT%ADR Use the memory address limits given in AC2,

If this bit is off, all existing pages of

the file (according to its directory) are

mapped.

20 GT%PRL Preload the pages being mapped (move the

pages immediately.) If this bit is off, the

pages are read in from the disk when they

are referenced.

21 GTENOV Do not overlay existing pages and do return

an error. If this bit is off, existing

pages will be overlaid.

22 GT%ARG If this bit is on, AC2 contains the address

of an argument block.

2L-25 GT%JFN JFN of the save file.

5-12



PROCESS STRUCTURE

The format of the argument block is described in Table 5-4,.

Table 5-4: GET% Argument Block

Word Symbol Meaning

0 .GFLAG Flags that indicate how the rest of the

argument block is to be used.

1 .GLOW Number of the lowest page in the process

into which a file page gets loaded. This

page must be within the section specified

by .GBASE.

2 .GHIGH Number of the highest page in the process

into which a file page gets loaded. This

page must be within the section specified

by .GBASE.

3 .GBASE Number of the section into which the file

pages are loaded. You can specify the

section for single-section save files only;

use of this word with a multiple-section

save file causes an error. The file pages

are Jloaded into this section of memory

regardless of the section specified in the

save file.



PROCESS STRUCTURE

Table 5-5 describes the flag bits defined for use in .GFLAG.

Table 5-5: GET% Argument Block Flags

Bit Symbol Meaning

0 GT¥LOW .GLOW contains the number of the lowest

page within the process to use.

] GT%HGH .GHIGH contains the number of the highest

page within the process to use.

2 GT%BAS .GBASE contains the number

to use.

of the section



PROCESS STRUCTURE

When the pages of the file are mapped into pages in the process's
address space, the previous contents of the process pages are
overwritten. Any full pages in the process that are not overwritten
are unchanged. Any portions of process pages for which there is no
data in the file are filled with zeros.

For example, a GET% call executed for a file that contains 2 1/2 pages
sets up the process' address space as shown in the following diagram.

Process File

Page1 | Data Data Page 1

GET

Call

Page 2 | Data - Data Page 2

Page 3 | Data Data Page 3

ST T T 0= EOF

0

gggg 2'1_2 Unchanged
MR-§-2032-82

After execution of the GET% call, control returns to the user's
program at the instruction following the call. |If an error occurs, a
software interrupt is generated, which the program can process via the
software interrupt system.

5-15



PROCESS STRUCTURE

5.6.2 PMAP% Monitor Call

The PMAP% monitor call is used to map pages from one process to the

address space of a second process. Data is not actually transferred;

only the contents of the page map of the second (that is, destination)

process are changed.

The PMAP% monitor call accepts three words of arguments in ACl through

AC3, The first word contains the handle and page number of the first

page to be mapped in the source process (that is, the process whose

pages are being mapped). The second word contains the handle and page

number of the first page to be mapped in the destination process (that
is, the process into which the pages are being mapped). The third
word contains a count of the number of pages to map and bits

indicating the access that the destination process will have to the

pages mapped. Thus,

AC1: source process handle in the left half, and page number in

the process in the right half,

AC2: destination process handle in the left half, and page

number in the process in the right half.

AC3: count of number of pages to map and the access bits.

The count and access bits that can be specified in AC3 are described

in Section 3.5.6.1.

Upon successful execution of the PMAP% <call, addresses in the

destination process actually refer to addresses in the source process.

The contents of the destination page previous to the execution of the

call have been deleted. The access requested in the PMAP% call is

granted if it does not conflict with the current access of the

destination page (that is, an AND operation is performed between the

specified access and the current access). Control returns to the

user's program at the instruction following the PMAP% call. |If an

error occurs, an illegal instruction trap is generated, which the

program can process via the software interrupt system or with an ERJMP

or ERCAL instruction.

5.7 STARTING AN INFERIOR PROCESS

A program in an inferior process can be started in one of two ways.

As mentioned in Section 5.5, the superior process can specify in the

CFORK% call the PC for the inferior process and start its execution.

Alternatively, the superior process, after executing the CFORK% call

to create an inferior process, can execute the SFORK% (Start Process)

monitor call to start it.



PROCESS STRUCTURE

The SFORK% monitor call accepts two words of arguments in AC1 and AC2.

ACl: flags,,process handie

Flags:

SF%CON (1B0) - Used to continue a process that has

previously halted. If SFZCON is set, the

address in AC2 is ignored, and the process

continues from where it was halted.

AC2: the PC of the process being started. The PC contains flags

in the left half and the process starting address in the

right half. This call obtains the section number of the

PC from the entry vector of the process.

There are two alternative ways to start processes: XSFRK% (see
Section 8.3.2) or SFRKVZ (see the TOPS-20 Monitor Calls Reference

Manual).

The process handle given in ACl cannot refer to a superior process, to

more than one process (for example, .FHINF), or to a process that has

already been started.

After execution of the SFORK% call, control returns to the wuser's

program at the instruction following the call. [If an error occurs, a

software interrupt is generated, which the program can process via the

software interrupt system.

5.8 INFERIOR PROCESS TERMINATION

The superior process has one of two ways in which it can be notified

when one or more of its inferiors terminate execution: via the

software interrupt system or by executing the WFORKZ monitor call. An
inferior process will terminate normally when it executes a HALTF%

monitor call. Alternatively, the process will terminate abnormally

when it executes an instruction that generates a software interrupt,

such as an illegal instruction, and it has not activated the

appropriate channel.

By activating channel .ICIFT (channel 19) for inferior process

termination and enabling the software interrupt system, the superior

process will receive an interrupt when one of its inferiors

terminates. (Refer to Section L4.6 for information on activating

channel .ICIFT.) The interrupt occurs when any inferior process

terminates. Use of the interrupt system allows the superior to do

other processing until an interrupt occurs, indicating that an

inferior process has terminated.

5-17



PROCESS STRUCTURE

In some cases, however, the superior cannot do additional processing
until either a specific process or all of its inferior processes have
completed execution. |If this is the case, the superior process can

execute the WFORKZ (Wait Process) monitor call. This call blocks the
superior until one or all of its inferiors have terminated.

The WFORK% monitor call accepts one argument in ACl, the handle of the
desired process. This handle can be .FHINF (-4) to block the superior
until all inferiors terminate, but cannot be a handle on a superior
process.

After execution of the WFORK% monitor call, control returns to the
user's program at the instruction following the <call, when the
specified process or all of the inferior processes terminate. If an
error occurs, it generates a software interrupt, which the program can
process via the software interrupt system.

5.9 INFERIOR PROCESS STATUS

The superior process can obtain the status of one of its inferiors by
executing the RFSTS® (Read Process Status) monitor call. This call
returns the status and PC words of the given inferior process.

The short form of the RFSTS% monitor call accepts one argument in ACIl,
the handle of the desired process. This handle cannot refer to a
superior process or to more than one process. The long form accepts
two argument words: flags,, process handle in AC1 and the address of

the status return block in AC2. In the long form, RFYLNG (bit O) is
set in AC1 and bits 1-17 are unused (must be zero).

After execution of the short form of the RFSTS% call, control returns
to the wuser's program at the instruction following the call. |If the
RFSTS% call is successful, ACl! contains the status word of the given
process and AC2 contains the PC word. The status word is shown in

Table 5-6.



PROCESS STRUCTURE

Table 5-6: Process Status Word

Bit Symbol Meaning

0 RFYFRZ The process is suspended (that is, frozen).

If this bit is not on, the process is not

suspended,

1-17 RFESTS The status of the process.

Value Symbol

0 .RFRUN

] .RFI0

2 «RFHLT

3 .RFFPT

L -RFWAT

5 .RFSLP

Meaning

The process is

runnable.

The process is halted

waiting for 1/0

The process is halted

by a HFORK% or HALTF%

monitor call or was

never started.

The process is halted

by the occurrence of a

sof tware interrupt for

which it was not

prepared to handle.

The right half of the

status word contains

the number of the

channel on which the

interrupt occurred.

The process is halted

waiting for another

process to terminate.

The process is halted

for a specified amount

of time.



PROCESS STRUCTURE

Table 5-6: Process Status Word (Cont.)

Bit Symbol Meaning

Value Symbol Meaning

6 .RFTRP The process is

dismissed because it

was intercepted by its

superior.

7 .RFABK The process is

dismissed because

address break was

encountered.

18-35 RF%SIC The channel number on which an interrupt

occurred, which the process was not

prepared to handle (see process status code

.RFFPT above).

The RFSTS% call returns with -1 (fullword) in AC3 if the specified

handle is assigned but refers to a deleted process. The call

generates an illegal instruction interrupt |if the handie is

unassigned.

In the long form of the RFSTS% monitor call, RF¥LNG is set in AC1 and

AC2 contains the address of a status-return block. On the return, AC]

and AC2 are not modified. The status-return block is described in

Table 5-7.

5-20



|
I
I

PROCESS STRUCTURE

Table 5-7: RFSTS% Status-Return Block

MeaningWord Symbol

0 RFCNT

] .RFPSW

2 .RFPFL

3 .RFPPC

L .RFSFL

Count of words returned in this block in the

left half, and count of maximum number of

words to return in right half (including this

word). The right half of this word s

specified by the user.

Process status word. This word has the same

format as ACl1 on a return from a short call.

If a valid, but wunassigned, process handle

was specified in ACl, then this word contains

-] and no other words are returned.

Process PC flags. These are the same flags

returned in AC2 on a short call.

Process PC. This is the address; no flags

are returned in this word.

Status flag word.

Flags:

Bit Symbol Meaning

BO RFZEXO Process is execute-only.

|f an error occurs during execution of the RFSTS%¥ call, a software

interrupt is generated which the program can process via the software

interrupt system.

5-21



PROCESS STRUCTURE

5.10 PROCESS COMMUNICATI!ION

A superior process can communicate with its inferiors by sharing the
same pages of memory. This sharing is accomplished with the CFORK%

(bit CR¥MAP) or the PMAP% monitor call. When the superior executes
either of these calls, both the superior and the inferior share the
same pages. Changes made to the shared pages by either process will

be seen by the other process.

Alternatively, processes can communicate via the software interrupt
system. The superior process can cause a software interrupt to be
generated in an inferior process by executing the 11C%¥ (lnitiate
Interrupt on Channel) monitor call. For this type of communication to
occur, the inferior's interrupt channels must be activated and its
interrupt system enabled.

The |1C% monitor call accepts two words of arguments in AC1 and AC2.
The handle of the process to receive the interrupt is given in the
right half of ACI. AC2 contains a 36-bit word, with each bit
representing one of the 36 software channels. |f a bit is on in AC2,
a software interrupt is initiated on the corresponding channel. For
example, if bit 5 is on in AC2, an interrupt is initiated on channel
5. Thus,

AC1: process handle in the right half

AC2: 36-bit word, with bit n on to initiate a software interrupt
on channel n

The process handle given cannot refer to a superior process or to more
than one process.

After execution of the |IC% call, control returns to the wuser's
program at the instruction following the call. |f an error occurs, it
generates a software interrupt which the program can process via the
software interrupt system.

5-22



PROCESS STRUCTURE

5.11 DELETING AN INFERIOR PROCESS

A process is deleted from the job structure when the superior process
executes the KFORKZ (Kill Process) monitor call. When a process is
deleted, its address space, its handle, and any JFNs acquired by the
process are released. |f the process being deleted has processes
inferior to it, the inferiors are also deleted. For example, in the
structure:

Process A

Process B

Process C

MR-5-2028-82

if process A deletes process B by executing a KFORK% call, process C
is also deleted.

The KFORK% monitor call accepts one argument in the right half of ACI1,
the handle of the process to be deleted. This handle cannot refer to
@ superior process, to more than one process (for example, .FHINF), or
to the process executing the call (that is, .FHSLF). The RESETY
monitor call is used to reinitialize the current process; refer to
Section 2.6.1.

After execution of the KFORK%¥ call, control returns to the user's
program at the instruction following the call. |If an error occurs, a
software interrupt is generated, which the program can process via the
software interrupt system.

5-23



5.12 P

PROCESS STRUCTURE

ROCESS EXAMPLES

Example 1 - This program creates an inferior process to provide timing

interrupts.

STARTY¢

sHERE TO

STFROCS

§oMAIN F

L O3

¢ HERE WH

Counter

# FROGEA

SLEEF?

§ CONSTA

8

HANTIL.E¢

Fil.afke

TITLE TIMINT -~ AN INFERIOR PROCESS PFROVIDING TIMING INTERRUFTS

SEARCH MONSYM

SEARGCH MACHEYM

REQUIRE SY53IMACREL

2
pw

[

aTnac. SHEFINE STANDARD ACH

RESETR sRELEASE FILESy ETC.

MOVE P ET0WD POLSTZyFOLT SINITIALTZE STACK

MOWVX T CRZEMAF FMAKE NEW PROCESS SHARE THIS FROCESSS MEMORY

CHFORKEY FOREATE A NEW PRUF”:p

ELSHLT FUNEXFECTED FATAL ;'7

MOUVEM T4y HANDLE SEAVE PROCESE HANIILE

START THE ITNFERIOR PFROCESS

SETLR T4y Fl.al FINITIALLZE COUNTER AND FLAG

MOVE T1 e HANDLE SHET FROCESS HANDLE

MOVET T2 SLEER SOET ADORESS TO START FROCESS

SFORRKY SHTART THE NEW FROGESS

EJGHLT SUNEXPECTED FaTal., ERROR

ROCESSTMNG LOOF

A0%E T S IMOCREMENT COUNTER

HERTFN e SHAS TIME ELAFSED YETT

SRET LOOF SNCy GO 00 MORE FROCESSTRG

HEN LOWER PROCESS HAS INTERRUPTED

THMSH <

has reached = sOUTHFUT FIRST FART OF MESHAGE

MOVK Tl FRIOU JOET FRIMARY QUTFUT DESTIGNATOR

MOVE T24T4 SOET VALUE QF COUMTER

MOVET TXe"N10 sUSE DECTMAL RADITX

NOUTY SOUTEFUY CURRENT COUNTER VALUE

EJSERR FRRINT ERROR MESSAGE AND CONTINUE

THM&GG

sMOVE TO A& NEW LEINE

JERET STHROC SCONTINUE COUNTING

M FERFORMED BY INFERTOR FROCESS T0 WALT FOR ONE-HALF MINUTE

MOVX TLy D3R000 § ONE-HALF MINUTE IN MILLISECONDS

DIGMEY sWATT FOR SPECTFIED TIME

SETOM FLAG STELL JUIthun”““'fi HAS ELAFSED
HALTE Y SETNTGHE

NTSG AN STORAGE

FRLST 2w FHIZE OF THE STACK

BLUCK FOLSTYE PHTACK

BLOCK 1 S INFERTOR FROCESS HANDILE

BLOCK 1 PINTERRUFT FLAG

END START

5-24



PROCESS STRUCTURE

Example 2 - This program illustrates how an inferior process may be

used as a source of timer interrupts. The main program increments a

counter. |t has an inferior process running for the sole purpose of

timing 10 second intervals. Each time the inferior process has timed

10 seconds, it stops and interrupts the main program. The main

program then reports how many more times it has incremented the

counter since the last 10 second interrupt.

TITLE TRMINT = FORK TERMINATTON INTERRUFTS

SEARCH MONSYM

SEARCH MACHYM

JREQUIRE SYSIMACKEL

STOAC . FPREFINE STANDARD ACS

STARTY RESETX SRELEASE FILES, ETC.

MOVE FeDIOWD FRLETZePOLD §INITIALLZE STACK

§OBET UP THE INTERRUPT SYSTEM

MOVUX TLy FHSILF sGET PROCESS HANDLE FOR THIS FORK

MOVE T2y LLEVTARy yCHNTARY SGET TARLE ADDRESSES

SIRA FHET INTERRUPT TARLE ALDRESSES

EJSHLT FUNEXFECTED FATAL ERROR

MOUX T2y 1B, TCEFT PGET PROCESS TERMINATION CHANNEL BIT

ALCZ SACTIVATE FROCESS TERMINATION CHANNEL

EJSHLT FUNEXFECTEDR FATAL ERROR

ETRX SENABLE INTERRUFT SYSTEM

ELdGHLT SUNEXFECTED FATAL ERKOR

# CREATE AND START THE INFERIOR PROCESS

CFORKE sOREATE AND START TIMER AT SLEER

EJSHLT FUNEXPECTED FATAL ERROR

MOVEM TI1yHANDLE $§85AVE PROCESS HANDILE

FINITIALTZE THE COUNTER

STEROCSE SETZER T4,0L.0T4 s CLEAR COUNTER

FMAIN LOOF OF THE FROGRAM WHICH JUST KEEFS COUNTING. (REAL

FAFFLICATION WOULIDY PRESUMARLY HAVE A MORE UBEFUL MAIN FROGRAM.)

LOOF AQJA T4y1.O00F $JUST KEEF INCREMENTING

F HERE WHEN LOWER FROCESS HAS INTERRUFTED

FROINT: MOVEM Py ITACSHF PHAVE S8TACK FOINTER

MOVET FyIACSH sMARE FOINTER FOR REST OF ACS

RLT Py IALSHOX sHAVE REST OF ACH

MOVE FeTACSHF $RESTORE F

THMEE NUMEBER OF COLUNTSE

HOUX Tle RIOU s GET FRIMARY QUTRUT

EXCH TA4yQLOTAS s EAVE NEW COUNTER VYall

SUR T4»01L.0T4 o NI NUMBER QF COUNTE

MOUM T2+7T4 ' IT FOSTTEVE

MOVET T3=70010 JEE OECTHMAL RAOTX

NOUTZ FOUTEUT CURRENT COUNTER VALUE

EJSERR sPRINT ERROR MESSAGE AND CONTINUE

TMEG

FEEGNATOR

SIMCE LaST TIME

SAOVE TO & NEW LINE

MOVE T1»HANDLE SOLET PROCESS HAMDLE

MOVET T2y SLEEF SHET ADDRESS TO START FROCESS

GFORKZ UTART THE NEW PROCESS

SJSHLT b FECTED FaTal ERROR

MOVAT e IACS s GF FOINTER TO SAVED ACS

BLT ol SAVED aCH

DEBRRKY ITNTERRURT

5-25



—
—
—
 
—
—
—
 
—
—
—
—
 
—
—
 
—
—

 
—
 
—
—
 
—
—
 
—
—
—
—
—
 
—

 
—
—
—
 
—
 
—
—

PROCESS STRUCTURE

$THE FOLLOWENG 18 EXECUTED A% A LOWER PROCESS TO 00O THE

FTIMING. IT SLEEFS FOR 10 SECONDS AND THEN STOFS.

SLEEF: MOUX T1e"DLOXTMILOOO 10 GECGONDS TN MILLYISECONDS

RISMEH § GLEEF

HALTEZ FOTOR AND INTERRUFT THE MAIN PROGRAM

i CONSTANTS AND STORAGE

FOLG Y Z el FOLZE OF THE STACK

I ¢ BLOCK PILSYTZ PRTACK

CHNTARS REFEAT 7U1L9Dy JEXF O #OCHANNELS O-18 ARE NOT USED

Lo y FROINT sLEVEL 1 FROCESS TERMINATION CHANNEL

REFEAT “01L8s EXE Ok SHEMATNING CHANNELS ARE NOT USED

LEVTAR: RETHC PRETURN FC STORED AT RETFCL FOR LEVEL 1

0 s LEVEL 2 NOT L [\

0 EVEL 3 NOT L

HANIH.ES BLOCK 1 FINFERTOR PROCESS

RETFCL: BLOCK 1 RETURN FC STORED HERE ON INTERR :

OLOT4: RLOCK 1 FHOLDG TIMER VALUE AT La8T INTERRUFT

LACS BLOCK 20 PSTORAGE FOR ACS BURING INTERRUFTS

ENDN START

5-26



PROCESS STRUCTURE

Example 3 - This program creates an inferior process which waits until
a line has been typed on the terminal.

TITLE FRRIOC - AN INFERIOR FROCESS WAITS UNTIL A& LINE I8 TYPED

SEARCH MONSYM

SEARCH MACSYM

+REQUIRE SYSIMACREL

SThAC. FUOEFINE STANDARD ACS

START? RESETX FRELEASE FILESy ETC.
MOVE FyDIOWD FOLSTZyFDLY SINITIALIZE STACK
MOUX Tl CREMAF SMARE NEW FROCESS SHARE THIS PROCESS’S MEMORY
CFORKY SOREATE A NEW PROCESS
ELJEHLT FUNEXPECTED FATAL ERROR
SETZR T4»FLAG FINLTIALYZE COUNTER AN FLAG
MOVET T2yGETCOM SGET ADDRESS TO START FROCESS
SFORKY POTART THE NEW FROCESS
EJSHLT FUNEXFECTED FaTal ERROR

# MAIN FROCESSING LOOP

L.OOF 3 AlS T4 P INCREMENT COUNTER
SRKIFN FLAG sHAS TIME ELAFSED YET®
JRET LOOF NOy GO DO MORE FROCESSING

PHERE WHEN INFERIOR FROCESS HAS INFUT A LINE OF TEXT

|
|
I
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|

I THSG
Counter has reasched » POUTEUT FIRST FART OF MESSAGE| MOUX T1s.PRIOU SHET FRIMARY OUTFUT DESIGNATOR

| MOVE T2,T4 SGET VALUE OF COUNTER
I MOVET T3,"1[110 SUSE DECTMAL RADIX

NOUT SOUTFUT CURRENT COUNTER VALUE
| EJSERR SFRINT ERROR MESSAGE AND CONTINUE
| THSG

| Feho Check: SOUTFUT FIRST FART OF MESSAGE
HRROL 71y BUFFER SGET FOINTER TO BUFFER

| FEOUTY SOUTFUT TEXT JUST ENTEREI
. HAL TFY FGTOR

| JRST START PIN CASE FROGRAM CONTINUED

|
|
|
I
|
I
|
|
|
|
|
|
|
I

¢ FROGRAM FERFORMED RY INFERIOR PROCESS TO INFUT & LINE OF TEXT

GETCOM? HRROI TiyBUFFER FOET FOINTER TO TEXT RUFFER
MOVET T2y BUFSTZXE SOET COUNT OF MAX 4 OF CHARACTERS
GETZM T3 NGO RETYPE BUFFER
ROTTYX FREAL A LINE FROM THE TERMINAL
EJSERR FUNEXFECTED ERROR

SETOM FLAG FTELL SUFERTOR TIME HAS FLAFSED
HALTF X PFINTSHED

vODONSTANTS AND STORAGE

PGT L) sOLZE OF THE STaCK
F1i. ¢ BLOCK PLRILSLZ FGT

BUF ST L=t FRUFFER SIT2E
BUFFERS BLOCK BUFSITZ

FlL.ag: BLOCK 1 FINTERRUPFT FLAG

END START

5-27





CHAPTER 6

ENQUEUE/DEQUEUE FACILITY

6.1 OVERVIEW

Many times users are placed in situations where they must share files

with other users. Each user wants to be guaranteed that while reading

a file, other users are reading the same data and while writing a

file, no users are also writing, or even reading, the same portion of

the file.

Consider a data file used by members of an insurance company. When

many agents are reading individual accounts from the data file, they

can all access the file simultaneously because no one is changing any

portion of the data. However, when an agent desires to modify or

replace an individual account, that portion of the file should be

accessed exclusively by that agent. None of the other agents wants to

access accounts that are being changed until after the changes are

made.

By using the ENQ/DEQ facility, cooperating users can insure that

resources are shared correctly and that one user's modifications do

not interfere with another user's. Examples of resources that can be

controlled by this facility are devices, files, operations on files

(for example, READ, WRITE), records, and memory pages. This facility

can be wused for dynamic resource allocation, computer networks, and

internal monitor queueing. However, control of simultaneous updating

of files by multiple users is its most common application.

The ENQ/DEQ facility insures data integrity among processes only when

the processes cooperate in their wuse of both the facility and the

physical resource. Use of the facility does not prevent

non-cooperating processes from accessing a resource without first

enqueueing it. Nor does the facility provide protection from

processes using it in an incorrect manner.



ENQUEUE/DEQUEUE FACILITY

A resource is defined by the processes using it and not by the system.

Because there 1is competition among processes for use of a resource,

each resource is associated with a queue. This queue is the ordering

of the requests for the resource. When a request for the resource is

granted, a lock occurs between the process that made the request and

the resource. For the duration of the lock, that process is the owner

of the resource. O0ther processes requesting access to the resource

are placed in the queue until the owner relinquishes the lock.

However, there can be more than one owner of a resource at a time;

this is called shared ownership (refer to Section 6.2). Processes

obtain access to a specific resource by placing a request in the queue

for the resource. This request is generated by the ENQ% monitor call.

When finished with the resource, the process then issues the DEQ%

monitor call. This call releases the lock by removing the request

from the queue and makes the resource available to the next waiting

process. This cycle continues until all requests in the queue have

been satisfied.

6.2 RESOURCE OWNERSHIP

Ownership for a resource can be requested as either exclusive or

shared. Exclusive ownership occurs when a process requests sole use

of the resource. When a process is granted exclusive ownership, no

other process will be allowed to use the resource until the owner

relinquishes it. This type of ownership should be requested if the

process plans on modifying the resource (for example, the process is

updating a record in a data file). Shared ownership occurs when a

process requests a resource, specifying that it will share the use of

the resource with other processes. When a process is given shared

ownership, other processes also specifying shared ownership are

allowed to simultaneously use the resource. Access to a resource

should be shared as 1long as any one process is not modifying the

resource.

Two conditions determine when a lock to a resource is given to a

process:

1. The position of the process's request in the queue for the

resource. '

2. The type of ownership specified by the process's request.

Because each resource has only one queue associated with it, requests

for both exclusive and shared ownership of the resource are placed in

the same queue. Requests are placed in the queue in the order in

which the ENQ facility receives them, and the first request in the

queue will be the first one serviced (except in the case of single

requests for multiple resources; refer to Section 6.4.1). |In other

words, the ENQ facility processes requests on a first in, first out

basis. If this first request is for shared ownership, that request

6-2



ENQUEUE/DEQUEUE FACILITY

will be serviced along with all following shared ownership requests up

to but not including the first exclusive ownership request. |f the

first request is for exclusive ownership, no other processes are

allowed wuse of the resource until the first process has released the

lock.

Consider the following queue for a particular resource.

! request 1 (shared) !

! request 5 (shared) !
! 

= 

!

Request 1 will be serviced first because it is the first request in

the queue. However, since this request is for shared ownership,

request 2 can also be serviced. Request 3 cannot be serviced until

the processes with request 1 and request 2 release the lock on the

resource. Eventually the lock is released by the two processes, and

the first two requests are removed from the queue. The queue now has

the following entries:

! request 4 (shared) !

Request 3 is now first in the queue and is given a lock on the

resource. Because the request is for exclusive ownership, no other

requests will be serviced. Once the process associated with request 3

releases the lock, both request 4 and request 5 can be serviced

because they both are for shared ownership.

6-3



ENQUEUE/DEQUEUE FACILITY

6.3 PREPARING FOR THE ENQ/DEQ FACILITY

Before using the ENQ/DEQ facility, the user must obtain an ENQ quota

from the system administrator and must obtain the name of the resource

desired, the type of protection required, and the level number

associated with the resource.

The ENQ quota indicates the total number of requests that can be

outstanding for the wuser at any given time. Any request that would

cause the quota to be exceeded results in an error. The wuser cannot

use the ENQ facility if the quota is set to zero.

The resource name has a meaning agreed upon by all wusers of the

specific resource and serves as an identifier of the resource. The

system makes no association between the resource name and the physical

resource itself; it is the responsibility of the user's process to

make that association. The system merely uses the resource name to

process requests and handles different resource names as requests for

different resources.

The resource name has two parts. |In most cases, the first part is the

JFN of the file being accessed. Before using the ENQ facility, the

user must initialize the file wusing the appropriate monitor calls

(refer to Section 3.1). The second part of the name is a modifier,

which is either a pointer to a string or a 33-bit wuser code. The

string uniquely identifies the resource to all users. The pointer can

either be a standard byte pointer or be in the form

-1,,ADR

where ADR is the location of the left-justified ASCIZ text string.

The 33-bit user code similarly identifies the resource by representing

an item such as a record number or block number. The ENQ facility

considers these modifiers as logical strings and does not check for

cooperation among the users. Thus, users must be careful when

assigning these modifiers to prevent the occurrence of two different

modifiers referring to the same resource.

The type of protection desired for the resource is indicated by the

first part of the resource name. This part of the name can be one of

four values. When the user specifies the JFN of the desired file, the

file is subject to the standard access protection of the system. This

is the most typical case. When the user specifies -1 instead of a

JFN, it means that resources defined within a job are to be accessed

only by processes of that job. Other jobs requesting resources of the

same name are queued to a different resource. When the user specifies

-2 instead of a JFN, it means that the resource can be accessed by any

job on the system. A process must have bit SC¥ENQ enabled in its

capability word to specify this type of protection. If the wuser

specifies -3 instead of a JFN, it means the same type of protection as

that given when -2 is specified. However, this is reserved for the

moni tor and requires that the process have WHEEL or OPERATOR

capability enabled. Quotas are not checked when -3 is given instead

of a JFN. '

6-4



ENQUEUE/DEQUEUE FACILITY

in addition to specifying the resource name and type of protection,

the user also assigns a level number to each resource. The use of

level numbers prevents the occurrence of a deadly embrace situation:

the situation where two or more processes are waiting for each to

complete, but none of the processes can obtain a lock on the resource

it needs for completion. This situation is represented by Figure 6-1.

Process A Is

Waiting for a

Resource Process

B Has.

i

Process B Is

Waiting for a

Resource Process

C Has.

Process C Is
Waiting for a

Resource Process

A Has.

MR-S-2029-82

Figure 6-1: Deadly Embrace Situation

Each process is in the queue waiting for the resource it needs, but no

request is being serviced because the desired resources are

unavailable.

The use of level numbers forces cooperating processes to order their

use of resources by requiring that processes request resources in an

ascending numerical order and that all processes assign the same level

number to a specific resource. This means that the order in which

resources are requested is the same for all processes and therefore,

requests for the first resource will always precede requests for the

second one.

| f both of the above requirements are not met, the process requesting

the resource receives an error, unless the appropriate flag bit is set

(refer to Section 6.4.1.2), and the request is not placed in the

gqueue. Thus, instead of waiting for a resource it will never get, the

process is informed immediately that the resource is not available.



ENQUEUE/DEQUEUE FACILITY

6.4 USING THE ENQ/DEQ FACILITY

There are three monitor calls available for the ENQ/DEQ facility:

ENQ%, to request use of a resource; DEQ%, to release a lock on a

resource; and ENQC%¥, to obtain information about the queues and to

specify access to these gueues.

6.4.1 Requesting Use of a Resource

The user issues the ENQ% monitor call to place a request in the queue

associated with the desired resource. This call is used to specify

the resource name, level number, and type of protection required.

A single ENQ% monitor call can be used to request any number of

resources. |In fact, when desiring multiple resources, the user should

request all of them in one call. This method of requesting resources

guarantees that the user gets either none or all of the resources

requested because the ENQ/DEQ facility never allocates only some of

the resources specified in one call. Because all resources in a

single call must be available at the same time, the first user

requesting a resource (that is, the first user in the queue for the

resource) may not be the first user obtaining it if other resources in

the request are currently not available.

A single call for multiple resources is not functionally the same as a

series of single calls of those resources. In a single call, the

entire request is rejected if an error is returned for one of the

resources specified. In a series of single calls, each request that

did not return an error will be queued.

The ENQ% monitor call accepts two words of arguments in AC1 and AC2.

The first word contains the code of the desired function, and the

second contains the address of the argument block. Thus,

ACl1: function code

AC2: address of argument block

6.L.1.1 ENQ% Functions - The functions that can be requested in the

ENQ% call are described in Table 6-1.

6-6



ENQUEUE/DEQUEUE FACILITY

Table 6-1: ENQ% Functions

Code Symbol Meaning

0 .ENQBL Queue the requests and block the

process until all requested locks are

acquired. This function returns an

error code only if the ENQ% call is

not correctly specified.

1 .ENQAA Queue the requests and acquire the

locks only if all requested resources

are immediately available. If the

resources are available, all will be

allocated to the process. If any one

of the resources is not available, no

requests are queued, no locks are

acquired, and an error code is

returned in ACI1.

2 .ENQS! Queue the requests for all specified

resources. I f all resources are

available, this function is identical

to the .ENQBL function. If all

resources are not immediately

available, the requests are queued,

and a software interrupt is generated

when all requested resources have been

given to the process.

6-7



ENQUEUE/DEQUEUE FACILITY

Table 6-1: ENQ% Functions (Cont.)

Code Symbol Meaning

3 .ENQMA Change the ownership access of a

previously-queued request (refer to

bit EN¥SHR below). The access for

each lock in this request is compared

with the access for each lock in the

request already queued. No action is

taken if the two accesses are the

same, If the access in this request

is shared and the access in the

previous request is exclusive, the

ownership access is changed to shared

access. Otherwise, an error is

returned if:

1. The process tries to change

the ownership access from

shared to exclusive. |If this

is desired, the process should

issue a DEQ%¥ monitor call for

the shared request and then

issue another ENQ% moni tor

call for exclusive ownership.

2. Any one of the specified locks

does not have a pending

request.

3. Any one of the specified locks

is a pooled resource (refer to

Section 6.4.1.2).

Each lock specified is checked, and

the access is changed for all locks

that were correctly given. On

receiving an error, the process

should issue the ENQC%¥ monitor call

to determine the current state of

each lock (refer to Section 6.4.3).

6-8



ENQUEUE/DEQUEUE FACILITY

6.4.1.2 ENQ% Argument Block - The format of the argument block s

described in Table 6-2.

Table 6-2: ENQ% Argument Block

Word Symbol Meaning

0 .ENQLN Number of locks being requested in the left

half, and length of argument block (including

this word) in the right half.

1 LENQID Number of software interrupt channel in the

left half, and request ID in the right half.

2 LENQLV Flags and level number in the left half, and

JFN, -1, -2 or -3 (refer to Section 6.3) in

the right half.

3 .ENQUC Pointer to string or 5B2+33-bit wuser code

(refer to Section 6.3).

L .ENQRS Number of resources in the pool in the left

half, and number of resources requested in

the right half.

5 .ENQM5 Address of a resource mask block.

Words .ENQLV, .ENQUC, and .ENQRS (words 2 through L) are repeated for

each lock being requested. These three words are called the lock

specification.

Software Interrupts

The software interrupt system is used in conjunction with the .ENQSI

function (refer to Section 6.4.1.1). |If all locks are not available

when the user requests them, the .ENQS! function causes a software

interrupt to be generated when the locks become available. The user

specifies the software channel on which to receive the interrupt by

placing the channel number in tfthe left half of word .ENQID in the

argument block.

6-9



ENQUEUE/DEQUEUE FACILITY

When the user is waiting for more than one lock to become available,

he will receive an interrupt when the last lock is available. |If he

desires to be informed as each lock becomes available, he can assign

the locks to separate channels by issuing multiple ENQ% calls. The

availability of each lock will then be indicated by the occurrence of

an interrupt on each channel.

When the user requests the .ENQSI function, he must initialize the

interrupt system first or else an interrupt will not be generated when

the locks become available (refer to Chapter L).

Request ID

The 18-bit request ID is currently not used by the system, but is

stored for use by the process. Thus, the process can supply an ID to

use as identification for the request. This ID is wuseful on the

.DEQID function of the DEQ% monitor call (refer to Section 6.4.2.1).

Flags and Level Numbers

Table 6-3 describes the flags that can be used in the left half of the

first word of each lock specification (.ENQLV).



ENQUEUE/DEQUEUE FACILITY

Table 6-3: Lock Specification Flags

Bit Symbol Meaning

0 ENZSHR Ownership for this resource is to be

shared. If this bit is not on,

ownership for this resource is to be

exclusive.

] ENZBLN fgnore the level number associated

with this resource. If this bit is

set, sequencing errors in level

numbers are not considered fatal, and

execution of the call continues.

On successful completion of the call,

ACl1 contains either an error code if a

sequencing error occurred, or zero if

a sequencing error did not occur.

WARNING

A deadly embrace situation may

occur when level numbers are

not wused. Use of these

numbers guarantees that such a

situation cannot arise; for

this reason bit EN%BLN should

not be set.

2 ENINST Allow ownership of this lock to be

nested.

3 ENZLTL Allow a long-term lock on this

resource.

L-8 Reserved for Digital.

9-17 EN%LVL Level number associated with this

resource., This number is specified by

the user and must be agreed wupon by

all wusers of the resource. |In order

to eliminate a deadly embrace

situation, users must request

resources in numerically increasing

order.



ENQUEUE/DEQUEUE FACILITY

The request is not queued, and an error is given, if EN¥BLN is not set

and

1. The user requests a resource with a level number less than or

equal to the highest numbered resource he has requested so

far.

2. The level number of this request does not match the level

number supplied in previous requests for this resource.

Pooled Resources

wWord .ENQRS of each lock specification is used to allocate multiple

copies from a pool of identical resources. Bit EN%SHR, indicating

shared ownership, is meaningless for pooled resources because each

resource in the pool can be owned by only one process at a time. A

process can own ohe or more resources in the pool; however, it cannot

own more than there are in the pool or more than there are unowned in

the pool.

The left half of word .ENQRS contains the total number of resources

existing in the pool. This number is previously agreed upon by all

users of the pooled resource. The first user who requests the

resource sets this number, and all subsequent requests must specify

the same number or an error is given.

The right half of word .ENQRS contains the number of resources being

requested by this process. This number must be greater than zero if a

pool of resources exists and cannot be greater than the number in the

left half. This means that if a pool of resources exists, the user

must request at least one resource, but cannot request more than are

in the pool.

Once the number of pooled resources is determined, the resources are

allocated until the pool is depleted or until a request specifies more

resources than are currently available. In the latter case, the user

making the request is not given any resources until his entire request

can be satisfied. Subsequent requests from other users are not

granted wuntil this request is satisfied even though there may be

enough resources to satisfy these subsequent requests. As users

release their resources, the resources are returned to the pool. When

all resources have been returned, they cease to exist, and the next

request completely redefines the number of resources in the new pool.



ENQUEUE/DEQUEUE FACILITY

The system assumes that the resource is in a pool if the left half of

word L.ENQRS of the lock specification is nonzero. Thus the user

should set the left half to zero if only one resource of a specific

type exists. |If this is the case, then the right half of this word is

a number defining the group of users who can simultaneously share the

resource, This means that when the resource is allocated to a user

for shared ownership, only other users in the same group will be

allowed access to the resource. The use of sharer groups restricts

access to a resource to a set of processes smaller than the set for

shared ownership (which is sharer group 0) but larger than the set for

exclusive ownership. (Refer to Section 6.5 for more information on

sharer groups).

6.4.2 Releasing a Resource

The user issues the DEQ% monitor call to remove a request from the

queue associated with a resource. The request is removed whether or

not the user actually owns a lock on the resource or is only waiting

in the queue for the resource.

The DEQ% monitor call can be used to remove any number of requests

from the queues. If one of the requests cannot be removed, the

dequeueing procedure continues until all lock specifications have been

processed. An error code is then returned for the last request found

that could not be dequeued. The process can then execute the ENQC%

call (refer to Section 6.4.3) to determine the status of each lock.

Thus, unlike the operation of the ENQ%¥ call, the DEQ¥ call will

dequeue as many resources as it can, even if an error is returned for

one of the lock specifications in the argument block. However, when a

user attempts to dequeue more pooled resources than he originally

allocated, an error code is returned and none of the resources are

dequeued.

The DEQ% monitor call accepts two words of arguments in AC1 and AC2.

The first word contains the code for the desired function, and the

second word contains the address of the argument block. Thus,

ACl: function code

AC2: address of argument block



ENQUEUE/DEQUEUE FACILITY

6.4.2.1 DEQ¥ Functions - The DEQ¥ functions are described in Table

6-4

Table 6-4: DEQ% Functions

Code Symbol Meaning

0 .DEQDR Remove the specified requests from the queues.

This function is the only one that requires an

argument block.

1 .DEQDA Remove all requests for this process from the

queues. This action is taken on a RESET

monitor call. An error code is returned if

this process has not requested any resources

(that is, if this process has not issued an

ENQX).

2 .DEQID Remove all requests that correspond to the

specified request identifier. When this

function is specified, the user must place the

18-bit request ID in AC2 on the DEQ%¥ call.

This function aliows the user to release a

class of 1locks in one call without itemizing

each lock in an argument block. The function

should be used when dequeueing in one call the

same locks that were enqueued in one call.

For example, with this function the user can

specify the ID to be the same as the JFN used

in the ENQ% call and thus remove all locks to

that file at once. |



ENQUEUE/DEQUEUE FACILITY

6.4.2.2 DEQ¥ Argument Block - The format of the argument block for
function .DEQDR is described in Table 6-5.|

{

| Table 6-5: DEQ% Argument Block

|
|
|

Word Symbol Meaning

0 .ENQLN Number of locks being requested in the left

half, and length of argument block

(including this word) in the right half.

] .ENQID Number of software interrupt channel in the

left half, and request 1ID in the right

half.

2 .ENQLV Flags and level number in the left half,

and JFN, -1, -2 or -3 (refer to Section

6.3) in the right half.

3 .ENQUC Pointer to string or 5B2+33-bit user code

(refer to Section 6.3).

L .ENQRS Number of resources in the pool in the left
half, and number of resources requested in

the right half.

5 .ENQMS Address of a resource mask block.

Words .ENQLV, .ENQUC, and .ENQRS (words 2 through 4) are repeated for
each request being dequeued. These three words are called the lock
specification.

6-15



ENQUEUE/DEQUEUE FACILITY

6.4.3 Obtaining Information About Resources

The user issues the ENQC% monitor call to obtain information about the

current status of the given resources. This call can also be used by

privileged users to perform various utility functions on the queue

structure. The format of the ENQC% call is different for these two
uses. (Refer to the TOPS-20 Monitor Calls Reference "Manual for the

~explanation of the privileged use of the ENQC%¥ call.)

The ENQCZ% monitor call accepts three words of arguments in ACl through

AC3:

AC1: function code (.ENQCS)

AC2: address of argument block

AC3: address of area to receive status information

The format of the argument block is identical to the format of the

ENQ¥ and DEQ% argument blocks. The area in which the status is to be

returned should be three times as long as the number of locks

specified in the argument block.

On successful execution of the ENQC% call, the current status of each
lock specified is returned as a three-word entry. This three-word

entry has the following format.

! Flag bits indicating status of lock !

! Reserved ! Request |D !



ENQUEUE/DEQUEUE FACILITY

Table 6-6 describes the flag bits that can be used in a ENQC% call.

Table 6-6: ENQC% Flag Bits

Bit Symbol Meaning

0 EN%QCE An error has occurred in the

corresponding lock request. Bits

18-35 contain the appropriate error

code.

] EN%QCO The process issuing the ENQC% call s

the owner of this lock.

2 EN%QCQ The process issuing the ENQC% call s

in the queue waiting for this

resource. This bit will be on when

EN%QCO is on because a request remains

in the queue wuntil a DEQ¥ call s

given.

3 EN%QCX The lock has been allocated for

exclusive ownership. When this bit is

off, there is no way of determining

the number of sharers of the resource.

L EN%QCB The process issuing the ENQC% call s

in the queue waiting for exclusive

ownership to the resource. This bit

will be off if EN%QCQ is off.

5-8 Reserved for Digital.

9-17 EN¥LVL The level number of the resource.

18-35 EN%JOB The number of the job that owns the

lock. For locks with shared

ownership, this value will be the job

number of one of the owners. However,

this value will be the current job's

number if the current job is one of

the owners. If this lock is not

owned, the value is -1.

| f EN%QCE is on, this field contains

the appropriate error code.

6-17



resource.

ENQUEUE/DEQUEUE FACILITY

The 36-bit time stamp indicates the last time a process locked the

The time is in the universal date-time standard. |If no one

currently has a lock on the resource, this word is zero.

The request ID returned in the right half of the third word is either

the request ID of the current process if that process is in the queue

or the request ID of the owner of the lock.

6.5 SHARER GROUPS

Processes can specify the sharing of resources by using

(refer

restricts the ownership for a resource to a set of

set

numbers

than the

sharer

sharer groups

processes smaller

than the set for

group

to Section 6.4.1.2). The use of

for shared ownership but larger

exclusive ownership.

Sharer group

processes of

is specified

group number

Consider the

number O is used to indicate the group of all cooperating

the resource. This group number is assumed when no group

in the ENQ% call. To restrict use of the resource, a

other than O must be explicitly specified in the call.

The resource is the WRITEfollowing example. operation

on a file. There are four types of uses of this resource as shown in

Figure 6-2.

Process’ Own Use of
the Resource

Not Aliowed
Write to Write

Other

Process’ Use

of the Resource

Writ ! :rite

Shared, Group 0 Efig/%?oto Use

Not Allowed 3 4
to Write Exclusive Shared, Group 1

MR-S-2038-82

Figure 6-2: Use of Sharer Groups



ENQUEUE/DEQUEUE FACILITY

In block 1 of the figure, the process owning the lock wishes to allow

all cooperating processes to also lock the resource (that is, to

perform the WRITE operation). Therefore, in the ENQ¥ call, the
process specifies the resource can be locked by all cooperating

processes. |In block 2 of the figure, the process does not plan on

locking the resource and does not care if other processes lock it.
Thus, there is no need for the process to use the ENQ/DEQ facility.

In block 3 of the figure, the process desires to lock the resource

exclusively and does not want other processes to lock it. Thus, the

process obtains exclusive ownership for the resource. |In block 4 of

the figure, the process does not want to lock the resource immediately

but also does not want other processes to lock it because it soon

plans to request a lock on the resource. |f the process were the only

one requesting this type of use, exclusive ownership would be

sufficient, because the resource would be unavailable to others as

long as the process owned the 1lock. However, if other processes

desire this same type of use, exclusive ownership is not sufficient,

because once one process releases the lock, another process with a

different type of use could obtain its own lock. Thus, in this

example, sharer group 1 is defined to include all processes with the

same type of use (that is, all processes who do not want to lock the
resource immediately but also do not want other processes to lock it).

This elimates the problem of another user obtaining the resource for a

different type of use.

Sharer group O should be sufficient for most uses of the ENQ/DEQ

facility. Additional groups should only be needed in those situations

where a subset of the cooperating processes must have a specific use

of a resource, as in the above example.

6.6 AVOIDING DEADLY EMBRACES

Processes can interact in many undesirable ways if improper

communication occurs among the processes or if resources are

incorrectly shared. An example of one undesirable situation is the

occurrence of a deadly embrace: when two processes are waiting for

each other to complete but neither one can gain accessto the resource

it needs for completion. This situation can be avoided when processes

consider the following guidelines.

1. Processes should request resources at the time they need

them. |If possible, processes should request resources one at

a time and release each resource before requesting the next

one.

2. Processes should request shared ownership whenever possible.

However, the process should not request shared ownership if

it plans on modifying the resource.

6-19



ENQUEUE/DEQUEUE FACILITY

When a process needs more than one resource, it should

request these resources in one ENQX¥ call instead of muitiple

calls for each resource. The process should also release the

entire set of resources at once with a single DEQ¥ call.

When the use of one resource depends on the use of a second

one, the process should define the two resources as one in

the ENQ% and DEQ% calls. However, there is no protection of

the resources if they are also requested separately.

Occasionally processes use a set of resources and require a

lock on the second resource while retaining the lock on the

first. In this case, the order in which the locks are

obtained should be the same for all users of the set of

resources. The same ordering of locks is accomplished by the

processes assigning level numbers to each resource. The

requirements that processes request resources in ascending

numerical order and that all processes use the same level

number for a specific resource ensure that a deadly embrace

situation will not occur.

6-20



CHAPTER 7

INTER-PROCESS COMMUNICATION FACILITY

7.1 OVERVIEW

The Inter-Process Communication Facility (IPCF) allows communication

among jobs and system processes. This communication occurs when

processes send and receive information in the form of packets. Each

sender and receiver has a Process ID (PID) assigned to it for

identification purposes.

When the sender sends a packet of information to another process, the

packet is placed into the receiver's input queue. The packet remains

in the queue until the receiver checks the queue and retrieves the

packet. Instead of periodically checking its input gqueue, the

receiver can enable the software interrupt system (refer to Chapter 4)

to generate an interrupt when a packet is placed in its input queue.

The <SYSTEM>INFO process is the information center for the

Inter-Process Communication Facility. This process performs system

functions related to PIDs and names, and any process can request these

functions by sending <SYSTEM>INFO a packet.

7.2 QUOTAS

Before using IPCF, the user must acquire the ability to use IPCF

privileges from the system administrator: a send packet quota and a

receive packet quota. These quotas designate, on a per process basis,

the number of sends and receives that can be outstanding at any one

time. For example, if the process has a send quota of two and it has

sent two packets, it cannot send any more until at least one packet

has been retrieved by its receiver. A send packet quota of two and a

receive packet quota of five are assumed as the standard quotas. |If

these quotas are zero, the process cannot use IPCF.



INTER-PROCESS COMMUNICATION FACILITY

7.3 PACKETS

Information is transferred in the form of packets. Each packet s
divided into two portions: a packet descriptor block of four to six
words and a packet data block the length of the message. The format
of the packet is shown in Figure 7-1.

Packet Descriptor Block

IPCFL ! flags !
eit T T T Ty !

.IPCFS ! PID of sender !
e e e e !

.IPCFR | ‘ PID of receiver !
et LT O !

JAPCFP | length of message ! address of message !
! n ! ADR !
e e

 !

.IPCFD ! sender's connected ! sender's logged in !
! directory ! directory !
f e e e !

.IPCFC ! enabled capabilities of sender !
e e e e

 !

.IPCSD ! connected directory of sender !
f o e e e e e !

. |PCAS !} account string of sender !
e e e e e ]

.IPCLL ! logical location of sender !

ADR ! message word 1 !

! o !
! message word n !

Figure 7-1: IPCF Packet

7-2



INTER-PROCESS COMMUNICATION FACILITY

7.3.1 Flags

There are two types of flags that can be set in word .IPCFL of the

- packet descriptor block. The flags in the left half of the word are

instructions to IPCF for packet communication, and the flags in the

right half are descriptions of the data message. The flags in the

"right half are returned as part of the associated variable (refer to

Section 7.4.2). The packet descriptor block flags are described in

Table 7-1.

Table 7-1: Packet Descriptor Block Flags

Bit Symbol Meaning

0 IP¥CFB Do not block the process if there are no

messages in the queue. |[f this bit is on, the

process receives an error if there are no

messages.

] IP%CFS Use the PID obtained from the address in word

.IPCFS of the packet descriptor block as the

sender's PID.

2 IP¥CFR Use the PID obtained from the address in word

.IPCFR of the packet descriptor block as the

receiver's PID.

3 | PECFO Allow the process one send above the send quota.

(The standard send quota is two.)

h | PETTL Truncate the message if it is longer than the

area reserved for it in the packet data block.

If this bit is not on, the process receives an

error if the message is too long.

;5 | P%CPD Create a PID to use as the sender's PID. The

PID created is returned in word .IPCFS of the

packet descriptor block.

b | PEJWP Make the PID created be permanent until the job

logs out (if both bits IP¥CPD and IP%JWP are

on). Make the PID created be temporary until

the process executes a RESET% monitor call (if

bit IP¥CPD is on and bit IP¥JWP is not on). | f

bit IP¥CPD is not on, bit IP¥JWP is ignored.

7-3



INTER-PROCESS COMMUNICATION FACILITY

Table 7-1: Packet Descriptor Block Flags (Cont.)

Bit Symbol Meaning

7 | PENOA Do not allow other processes to usé the PID
created when bit IP%CPD is on. |If bit IP¥CPD is

not on, bit IPENOA is ignored.

8-17 Reserved for Digital.

18 | P%CFP The packet is privileged. This bit can be set

only by a process with WHEEL capability enabled.

Refer to the TOPS-20 Monitor Calls Reference

Manual for a description of this bit.

19 IP%CFV The packet is a page of 512 (decimal) words of

data.

20 IPECFZ A zero-length message was sent.

21 Reserved for Digital.

22 | PXEPN Page number in word .IPCFP of the packet

descriptor block is 18 bits long

23 Reserved for Digital.

24-29 IP%CFE Field for error code returned from <SYSTEM>

INFO.

Code Symbol Meaning

15 .IPCPI insufficient privileges

16 .IPCUF invalid function

66 .IPCKM PID has been deleted

67 .IPCSN <SYSTEM>INFO needs name

72 .IPCFF <SYSTEM>INFO free space exhausted

74 .IPCBP PID has no name or is invalid

75 .IPCDN duplicate name has been specified

76 . IPCNN unknown name has been specified

77 .IPCEN invalid name has been specified

7-



INTER-PROCESS COMMUNICATION FACILITY

Table 7-1: Packet Descriptor Block Flags (Cont.)

Bit Symbol Meaning

30-32 {PSCFC System and sender code. This code can be set

only by a process with WHEEL capability enabled,

but the monitor will return the code so a

nonprivileged process can examine it.

Code Symbol Meaning

] .IPCCC Sent by <SYSTEM>IPCF

2 .IPCCF Sent by system-wide <SYSTEM>INFO

3 .IPCCP Sent by receiver's <SYSTEM>INFO

L .IPCCG Sent by monitor for QUEUE% JSYS

33-35 |PECFM Field for special messages. This code can be

set only by a process with WHEEL capability

enabled, but the monitor will return the code so

that a nonprivileged process can examine it.

Code Symbol Meaning

1 .IPCFN Process' input queue contains a

packet that could not be delivered

to intended PID.

7-5



INTER-PROCESS COMMUNICATION FACILITY

7-3.2 PlDs

Any process that wants to send or receive a packet must obtain a PID.

The process can obtain a PID by sending a packet to <SYSTEM>INFO

requesting that a PID be assigned. The process must also include a

symbolic name that is to be associated with the assigned PID.

The symbolic name can be a maximum of 29 characters and can contain

any characters as long as it is terminated by a zero word. There

should be mutual understanding among processes as to the symbolic

names wused in order to initiate communication. Once the name is

defined, any process referring to that name must specify it exactly

character for character.

Before a process can send a packet, it must know the receiver's

symbolic name or PIiD. If only the receiver's name is known, the

sender must ask <SYSTEM>INFO for the PID associated with the name,

since all communication is via PIDs.

The association between a PID and a name is broken:

1. On a RESET% monitor call.

2. When the process is killed or the job logs off the system.

3. When a request to disassociate the PID from the name is made

to <SYSTEM>INFO.

<SYSTEM>INFO will not allow a name already associated with a PID to be

assigned again unless the owner of the name makes the request. Nor

will <SYSTEM>INFO assign a PID once it has been used. This action

protects against messages being sent to the wrong receiver by

accident.

The PIDs of the sender and the receiver are indicated by words .IPCFS

and .IPCFR, respectively, of the packet descriptor block.

7.3.3 Length And Address Of Packet Data Block

Word .IPCFP of the packet descriptor block contains the length and the

beginning address of the message. The length specified is one of two

types, depending on the type of message (refer to Section 7.3.5). I f

the message is a short-form message, the length is the actual word

length of the message. |If the message is a long-form message, the

length is 1000 (octal) words, that is, one page.

The address specified is either an address or a page number, depending

on the type of message (refer to Section 7.3.5). When a message is

sent, it is taken from this address. When a message is received, it

is placed in this address.

7-6



INTER-PROCESS COMMUNICATION FACILITY

7.3.4 Directories and Capabilities

Words .IPCFD and .IPCFC describe the sender at the time the message

was sent and are used by the receiver to validate messages sent to it.

These two words are not used when a message is sent, and if the sender

of the packet supplies them, they are ignored. However, when a

message is received, if the receiver of the packet has reserved space

for these words in the packet descriptor block, the system supplies

the appropriate values of the sender of the packet. The receiver of

the packet does not have to reserve these words iif it is not

interested in knowing the sender's directories and capabilities.

7.3.5 Packet Data Block

The packet data block contains the message being sent or received.

The message can be either a short-form message or a long-form message.

A short-form message is one to n words long, where n is defined by the

installation. (Usually, n is assumed to be 10 words.) When a

short-form message is sent or received, word .IPCFP of the packet

descriptor block contains the actual word length of the message in the

left half and the address of the first word of the message in the

right half. A process always uses the short form when sending

messages to <SYSTEM>INFO.

A long-form message is one page in length (1000 octal words). When a

long-form message is sent or received, word .IPCFP of the packet

descriptor block contains 1000 (octal) in the left half and the page

number of the message in the right half. To send and receive a

long-form message, both the sender and receiver must have bit |P%CFV

(bit 19) set in the first word of the packet descriptor block, or else

an error code is returned.

7.4 SENDING AND RECEIVING MESSAGES

To send a message, the sending process must set up the first four

words of the packet descriptor block. The process then executes the

MSEND% monitor call. After execution of this call, the packet is sent

to the intended receiver's input queue.

To receive a message, the receiving process must also set up the first

four words of the packet descriptor block. The last two words for the

directories and capabilities of the sender can be supplied, and the

system will fill in the appropriate values. The process then executes

the MRECV% monitor call. After execution of this call, a packet is

retrieved from the receiver's input queue. The input queue is emptied

on a first-message-in, first-message-out basis.

71-17



INTER-PROCESS COMMUNICATION FACILITY

7.b.1 Sending a Packet

The MSEND% monitor call is used to send a message via |PCF. Messages

are in the form of packets of information and can be sent to a

specified PID or to the system process <SYSTEM>INFO. Refer to Section

7.5 for information on sending messages to <SYSTEM>INFO.

The MSEND% call accepts two words of arguments. The length of the

packet descriptor block is given in ACl, and the beginning address of

the packet descriptor block is given in AC2. Thus,

ACl: length of packet descriptor block. The length cannot be

less than 4.

AC2: address of packet descriptor block

The packet descriptor block consists of the following four words:

.IPCFL Flags

. IPCFS Sender's PID

. IPCFR Receiver's PID

. IPCFP Pointer to packet data block containing the

message being sent.

Refer to Section 7.3 for the details on the packet descriptor and

packet data blocks.

The flags that are meaningful when sending a packet are described in

Table 7-2. Refer to Table 7-1 for the complete list of flag bits.

7-8



INTER-PROCESS COMMUNICATION FACILITY

Table 7-2: Flags Meaningful on a MSEND% Call

Bit Symbol Meaning

0 | P%CFB Do not block process if no messages in queue;

if set, error return if no messages.

] | PZCFS The sender's PID is given in word .IPCFS of

the packet descriptor block.

2 | P%CFR The receiver's PID is given in word .IPCFR of

the packet descriptor block.

3 | PECFO Allow the sender to send one message above its

send quota.

L IPETTL Truncate message if larger than space

reserved.

) IP%CPD Create a PID for the sender and return it in

word .IPCFS of the packet descriptor block.

The PID created is to be permanent and useable

by other processes according to the setting of

bits IP¥JWP and |P3NOA.

6 | PZJWP The PID created is to be job wide and

permanent until the job logs out. |[f this bit

is not on, the PID created is to be temporary

until the process executes the RESET monitor

call.

7 | PENOA The PID created is not to be used by other

processes.

18 IP%ZCFP The message being sent is privileged (refer to

the TOPS-20 Monitor Calls Reference Manual).

19 | P%CFV The message being sent is a long-form message

(that is, a page). The page the message is

being sent to cannot be a shared page; it must

be a private page.

22 | PXEPN Page number in word .IPCFP of the packet

descriptor block is 18 bits long.



INTER-PROCESS COMMUNICATION FACILITY

When bit IPECFS is on in the flag word, the sender's PID is taken from
word L.IPCFS of the packet descriptor block. This word is zero if bit
IPZCPD is on in the flag word, indicating that a PID is to be created
for the sender. In this case, the PID created is returned in word
. |PCFS.

When bit IPZCFR is on in the flag word, the receiver's PID is taken
from word .IPCFR of the packet descriptor block. |I|f this word is O,

then the receiver of the message is <SYSTEM>INFO. Refer to Section
7.5 for information on sending messages to <SYSTEM>INFO.

On successful execution of the MSEND% monitor call, the packet is sent
to the receiver's input queue. Word .IPCFS of the packet descriptor

block is updated with the sender's PID. Execution of the wuser's
program continues at the second location after the MSEND% call.

(MSEND%)

If execution of the MSEND% call is not successful, the message is not
sent, and an error code is returned in ACl. The execution of the

user's program continues at the instruction following the MSEND% call.

7.4.2 Receiving a Packet

The MRECV%Z monitor call is used to retrieve a message from the
process' input queue. Before a process can retrieve a message, it
must know if the message is a long-form message and also must set up a
packet descriptor block.

The MRECVX monitor call accepts two words of arguments. The length of
the packet descriptor block is given in ACl1, and the beginning address
of the packet descriptor block is given in AC2. Thus,

AC1: 1length of packet descriptor block. The length cannot be
less than L.

AC2: address of packet descriptor block

7-10



INTER-PROCESS COMMUNICATION FACILITY

The packet descriptor block can consist of the following nine words.

The last five words are optional, and if supplied by the receiver, the

values of the sender will be filled in by the system.

.IPCFL Flags

. IPCFS Sender's PID

. IPCFR Receiver's PID

.IPCFP Pointer to packet data block where the message s

to be placed.

.IPCFD Connected and logged-in directories of the sender.

. IPCFC Enabled capabilities of the sender.

. IPCSD Number of sender's connected directory.

. IPCAS Account string of sender.

. IPCLL Byte pointer for destination of sender's node.

Refer to Section 7.3 for the details on .the packet descriptor and

packet data blocks..

The flags that are meaningful when receiving a packet are described in

Table 7-3. Refer to Table 7-1 for the complete list of flag bits.

7-11



INTER-PROCESS COMMUNICATION FACILITY

Table 7-3: Flags Meaningful on a MRECV%Z Call

Bit Symbol Meaning

0 | P%CFB If there are no packets in the receiver's

input queue, do not block the process and

return an error code if the queue is empty.

If this bit is not on, the process waits until

a packet arrives, if the queue is empty.

1 | PECFS Use PID referenced in word .IPCFS as sender's

2 | P%CFR The receiver's PID is given in word .IPCFR of

the packet descriptor block.

3 IP%CFO Allow one send request above quota. (Default

send quota is 2.)

4 IPYTTL Truncate the message if it is larger than the

space reserved for it in the packet data

block. |If this bit is not on and the message

is too large, an error code is returned and no

message is received.

5 | PXCPD Create PID for sender and return in word

. IPCFS.

6 | PZJWP Make created PID job wide (ignored wunless

IP¥CPD set).

7 I PZNOA Do not allow other processes to use created

PID (ignored unless IP¥CPD set).

18 | PECFP Packet is privileged (requires IPCF capability

enabled).

19 | PXCFV The message is expected to be a long-form

message (that 1is, a page). The page the

message is being stored into cannot be a

shared page; it must be a private page.

22 | PXEPN Page number in word .IPCFP of the packet

descriptor block is 18 bits long.



INTER-PROCESS COMMUNICATION FACILITY

The information in word .IPCFS is not supplied by the receiver when

the MRECVZ call is executed. The system fills in the PID of the

sender of the packet when the packet is retrieved.

Word .IPCFR is supplied by the receiver. |If bit IP¥CFR is on in the

flag word, then the PID receiving the packet is taken from word .|PCFR

of the packet descriptor block. |If bit IP%¥CFR is not on in the flag

word, then word .IPCFR contains either -1, to receive a packet for any

PID belonging to this process, or -2, to receive a packet for any PID

belonging to this job. When -1 or -2 is given, packets are not

received in any particular order except that packets from a specific

PID are received in the order in which they were sent. Any other

values in this word cause an error code to be returned.

The information in words .IPCFD and .IPCFC is also not supplied by the

receiver. |f these two words have been specified by the receiver, the

system fills in the information when the packet is retrieved. Word

.IPCFD contains the sender's connected directory in the left half and

the sender's logged-in directory in the right half, Word .IPCFC

contains the enablied capabilities of the sender. These words describe

the sender at the time the message was sent.

On successful execution of the MRECV% monitor call, the packet s

retrieved and placed into the packet data block as indicated by word

. IPCFP of the packet descriptor block. ACl1 contains the length of the

next packet in the queue in the left half and flags from the next

packet in the right half (see below). This word returned in ACl1 s

called the associated variable of the next packet in the queue. |f

there 1is not another packet in the queue, ACl1 contains zero.

Execution of the wuser's program continues at the second instruction

after the MRECV% call.

The flags returned in the right half of AC1 on successful execution of

the MRECVZ monitor call are described in Table 7-4.

7-13



INTER-PROCESS COMMUNICATION FACILITY

Table 7-4: MRECV% Return Bits

Bit Symbol Meaning

30-32 | P%CFC System and sender code, set only by a

privileged process. The packet was sent by

<SYSTEM>IPCF if the code is 1(.IPCCC). The

packet was sent by the system-wide

<SYSTEM>INFO if the code is 2(.IPCCF). The

packet was sent by the receiver's

<SYSTEM>INFO if the code is 3(.IPCCP).

33-35 IP%CFM Field for return of special messages. | f

the field contains 1(.IPCFN), then the

process' input queue contains a packet that

was sent to another PID, but was returned

to the sender because it could not be

delivered.

| execution'of the MRECVX call is not successful, a packet is not
retrieved, and an error code is returned in ACl. The execution of the

user's program continues at the instruction following the MRECV% call.

7.5 SENDING MESSAGES TO <SYSTEM>INFO

The <SYSTEM>INFO process is the central information utility for |PCF.

It performs functions associated with names and PiDs, such as,

assigning a PID or a name or returning a name associated with a PID.

A process can request functions to be performed by <SYSTEM>INFO by

executing the MSEND% monitor call (refer to Section 7.4.1). The

message portion of the packet (that is, the packet data block) sent to

<SYSTEM>INFO contains the request being made. In other words, the

total request to <SYSTEM>INFO is a packet consisting of a packet

descriptor block and a packet data block containing the request.

7-1k



INTER-PROCESS COMMUNICATION FACILITY

Packet Descriptor Block

! flag word !

! pointer to request !

Packet Data Block

!

! code ! function !

!

! function argument !

Refer to Section 7.4.1 for the descriptions of the words in the packet

descriptor block. The receiver's PID (word .IPCFR) is O when sending

a packet to <SYSTEM>INFO.

7.5.1 Format of <SYSTEM>INFO Requests

As mentioned previously, the packet data block (that is, the message

portion) of the packet contains the request to <SYSTEM>INFO.

The first word (word .IPCIO) contains a user-defined code in the left

half and the function being requested in the right half. The

user-defined code is used to associate the response from <SYSTEM>INFO

with the correct request. The functions that the process can request

of <SYSTEM>INFO are described in Table 7-5.

7-15



INTER-PROCESS COMMUNICATION FACILITY

The second word (word .IPCI1) contains a PID associated with a process

that is to receive a duplicate of any response from <SYSTEM>INFO., |If

this word is zero, the response from <SYSTEM>INFO is sent only to the

process making the request.

The third word (word .IPCI2) contains the argument for the function

specified in the right half of word .IPCI0O. The argument is different

depending on the function being requested. The arguments for the

functions are described in Table 7-5.

Table 7-5: <SYSTEM>INFO Functions and Arguments

Function Argument Meaning

+IPCIW name Return the PID associated with the

given name (refer to Section 7.3.2 for

the description of the name).

.APCIG PID Return the name associated with the

given PID.

LAPCII name in Assignh the given name to the PID

ASCIZ associated with the process making the

request. The PID is permanent if

IPXJWP was set in the flag word when

the PID was originally created (refer

to Table 7-1).

JAPCHJ name in Identical to .IPClI function.

ASCiZ

7-16



INTER-PROCESS COMMUNICATION FACILITY

7.5.2 Format of <SYSTEM>INFO Responses

Responses from <SYSTEM>INFO are in the form of a packet sent to the

process that made the request. A copy of the response is sent to the

PID given in word .IPCI1, if any.

The message portion (that is, the packet data block) of the packet

contains the response from <SYSTEM>INFO. The format of this response

is

! code ] function !

! response !

' S S T S S me e e v g T _'
. .

The first word (word .IPCI0) contains the user-defined code in the

left half and the function that was requested in the right half.

These values are copied from the values given in the request.

The second and third words (words .IPCI1 and .IPCI2) contain the

response from the function requested of <SYSTEM>INFO. The response is

different depending on the function requested. The responses from the

functions are described in Table 7-6.

Table 7-6: <SYSTEM>INFO Responses

Function Requested Response

.APCIW The PID associated with the name given in

the request is returned in word .IPCI1.

JAPCIG The name associated with the PID given in

the request is returned in word .IPCIl1.

JAPCHI No response is returned.



INTER-PROCESS COMMUNICATION FACILITY

7.6 PERFORMING IPCF UTILITY FUNCTIONS

A process can request various functions to be performed by executing

the MUTIL% monitor call. Some of these functions are enabling and
disabling PIDs, creating and deleting PIDs, and returning quotas.
Several of the functions that can be requested are privileged
functions. These are described in the TOPS-20 Monitor Calls Reference
Manual.

The MUTIL% monitor call accepts two words of argument. The length of
the argument block is given in ACl1, and the beginning address of the
argument block is given in AC2.

The argument block has the following format:

! function code !

! argument for function !

The arguments are different, depending on the function being
requested. Any values resulting from the function requested are

returned in the argument block, starting at the second word.

Table 7-7 describes the functions that can be requested, the arguments
for the functions, and the values returned from the functions.



INTER-PROCESS COMMUNICATION FACILITY

Table 7-7: MUTIL% Functions

Function Meaning

.MUENB Allow the PID given to receive packets. |If the

process executing the call is not the owner of

the PID, the process must be privileged.

Argument

PID

Value Returned

None

.MUDIS Disable the PID given from receiving packets.

If the process executing the call is not the

owner of the PID, the process must be

privileged.

Argument

PID

Value Returned

None

+MUGTI Return the PID associated with <SYSTEM>INFO.

Argument

PID or job number

Value Returned

PID of <SYSTEM>INFO

.MUCP| Create a private copy of <SYSTEM>INFO for the

specified job. The <caller must have |IPCF

capability enabled.

Argument

PID to be assigned to <SYSTEM>INFO

PID or number of job creating private copy

7-19



INTER-PROCESS COMMUNICATION FACILITY

Table 7-7: MUTIL% Functions (Cont.)

Function Meaning

+MUDES Delete the PID given. The process executing the

call must own the PID being deleted.

Argument

PID to be deleted

Value Returned

None

-MUCRE Create a PID for the process or job given. I f

the job number given is not that of the process

executing the call, the process must be

privileged. The flag bits that can be specified

are IP%JWP and IPYNOA (refer to Table 7-1 for

their descriptions).

Argument

flag bits in the left half, and process

handle or job number in the right half

Value Returned

PID that was created

+MUSSQ Set send and receive quotas for the specified

PID. The caller must have |IPCF capability

enabled. The new send quota is given in bits

18-26, and the new receive quota is given in

bits 27-35. The receive quota applies to the

specified PID, but the send quota applies to the

job to which that PID belongs.

Argumemts

PID

new quotas

.MUFOJ Return the number of the job associated with the

PID given.

Argument

PiD

Value Returned

Job number associated with PID given

7-20



INTER-PROCESS COMMUNICATION rne..

Table 7-7: MUTIL% Functions (Cont.)

Function Meaning

MUFJP Return all PIDs associated with the job given.

Argument

job number or PID belonging to the job

Values Returned

Two-word entries for each PID belonging to

the job. The first word of the entry is the

PiID, and the second word has bits IP%JWP and

[PENOA set if appropriate (refer to Table

7-1 for the descriptions of these bits).

The 1list of entries returned is terminated

by a zero word.

.MUFSQ Return the send quota and the receive quota for

the PID given.

Argument

PID

Values Returned

Send quota in bits 18-26 and receive quota

in bits 27-35.

MUFFP Return all PIDs associated with the process of

the PID given.

Argument

PID

Values Returned

Two-word entries for each PID belonging to

the process. The first word of the entry is

the PID, and the second word has bits |PZJWP

and |IPZNOA set if appropriate (refer to

Table 7-1 for the descriptions of these

bits). The 1list of entries returned is

terminated by a zero word.

+MUSPQ Set the maximum number of PIDs allowed for the

specified job. The caller must have |PCF

capability enabled.

Argument

job number or PID

PID quota

7-21





Table 7-7:

INTER-PROCESS COMMUNICATION FACILITY

MUTIL% Functions (Cont.)

Function Meaning

-MUPIC

-MUDF|

.MURSP

Place the specified PID on a software interrupt

channel. An interrupt is then generated when:

1. The MUPIC function is issued while the PID

has one or more messages in its receive

queue. :

2. The PID's receive queue changes its state

from empty to containing a message.

Subsequent entries to a queue that is not

empty do not cause an interrupt.

If the channel number is given as -1, the PID is

removed from its current channel.

The calling process and the process that owns

the specified PID must belong to the same job.

Arguments

PID

channel number

Set the PID of <SYSTEM>INFO. An error is given

if <SYSTEM>INFO already has a PID. The caller

must have |PCF capability enabled.

Arguments

PID of <SYSTEM>INFO

Return a PID from the system PID table. The PID

is returned in word 2 of the argument block.

The system PID table currently has the following

entries:

0 .SPIPC Reserved for Digital

1 .SPINF PID of <SYSTEM>INFO

2 J.SPQSR PID of QUASAR

3 .SPMDA PiD of QSRMDA

L .SPOPR PID of ORION

Argument

index into system PID table

7-23



INTER-PROCESS COMMUNICATION FACILITY

Table 7-7: MUTIL% Functions (Cont.)

Function Meaning

MUMPS Return the maximum packet size for the PID

given.

Argument

PID

Value Returned

Maximum packet size for PID

. MUSKP Set PID to receive deleted PID messages. Allows

a controller task to be notified if one of its

subordinate tasks crashes. After this function

is performed, if the subordinate PID is ever

deleted (via RESET or the .MUDES MUTIL

function), the monitor will send an IPCF message

to the controlling PID notifying it that the

subordinate PID has been deleted. This message

contains .IPCKP in word O and the deleted PID in

word 1.

Argument

Source (subordinate) PID

Object (controller) PID

. MURKP Return controlling PID for this subordinate PID.

Argument

Source (subordinate) PID

Object (controller) PID (returned)

On successful completion of the MUTIL%¥ monitor call, the function

requested is performed, and any value is returned are in the argument

block. Execution of the wuser's program continues at the second

location following the MUTIL% call.

If execution of the MUTIL%¥ monitor call is not successful, no

requested function is performed and an error code is returned in ACI.

Execution of the user's program continues at the location following

the MUTIL% call.

7-24



CHAPTER 8

USING EXTENDED ADDRESSING

The term "extended addressing'' refers to the size of the addresses

that TOPS-20 uses on the DECSYSTEM-20 Extended KL10 processor. Older

versions of TOPS-20 (Release L.l and before) used 18-bit addresses;

newer versions (Release 5 and after) use 30-bit addresses.

This chapter discusses the two main activities associated with wusing

TOPS-20 monitor calls with extended addressing:

1. Writing new programs for execution in sections of memory

other than section O

2. Converting existing programs so that they can be executed in

sections other than section O

This chapter also contains information on hardware instructions and

macros useful to MACRO programmers who use extended addressing.

The discussion in this chapter depends heavily on the material in the

DECsystem-10/DECSYSTEM-20 Processor Reference Manual. Refer to that

manual for a description of the format of 30-bit addresses, the

algorithm the processor uses to calculate effective addresses, and the

way that individual machine instructions work.

8.1 OVERVIEW

The TOPS-20 extended address space contains 32 (decimal) sections.

Each section contains 512 pages of 512 words each (256K words). An

18-bit address, called a local address, can reference any word in a

given section. A 30-bit, or global, address can reference any word in

any section of memory.



USING EXTENDED ADDRESSING

In contrast, TOPS-20 VL.l and earlier provided an 18-bit, 256K-word

address space. The Program Counter (PC) register was 18 bits. For

each instruction executed, the first action taken was the computation

of an 18-bit effective address. The algorithm for calculating the
effective address (including indexing and indirecting rules) was the
same for all instructions.

Because the TOPS-20 virtual address space is limited to 32 sections,

and section numbers longer than 5 bits are illegal, legal addresses

are effectively limited to 23 bits. When addressing data, you can

view this 32-section address space as one large memory area.

From the point of view of program execution, however, memory is

divided into 32 discrete sections. A program can have code in more

than one section of memory, and it can execute that code (assuming the

constraints discussed below), but it must change sections explicitly,
as discussed below.

Compatibility for existing programs is provided by section O. A

program running in section 0 behaves as though it were being executed

on a system without extended addressing, except for certain

instructions such as XJRSTF. For more information on the actions of

specific instructions, see the DECsystem-10/DECSYSTEM-20 Processor

Reference Manual.

8.2 ADDRESSING MEMORY AND ACS

The extended format PC contains a section field and a

word-within-section field. When an instruction is executed, only the

word field is incremented. Column overflow is never carried from the

word field to the section field. |If the last word of a section is

executed, and it is not a jump instruction, then the next instruction

is fetched from word O of the same section. Thus a program can only
change sections explicitly, by means of a PUSHJ, JRST, XJRST or XJRSTF

instruction, and only an XJRST or an XJRSTF can change control from
section O to another section.

8-2



USING EXTENDED ADDRESSING

Because a whole word cannot contain a 30-bit address and the program
flags, the PC and flags are a two-word entity. The flag bits are in
the first word, and the figure below represents the second word.
Figure 8-1 shows the format of the address fields of the PC.

I un- ! section ! word-within- !

! used ! number ! section !

Figure 8-1: Program Counter Address Fields

The word (word-within-section) field consists of 18 bits and thus
represents a 256K-word address space similar to the single-section
address space of release L4 and earlier. The section number field is

12 bits, of which only the right-hand five bits can be nonzero because

section numbers greater than 31 are illegal. The leftmost seven bits

of the section number field must be zero. This provides room to

address 32 separate sections, each of 256K words.

Each section is further divided into pages of 512 words, just as in

earlier releases. The paging facilities allow the monitor to

determine the existence and protection of each section.

The PC section field determines what section a program is running in.

If the section field contains zero, the program is running in section

0. Most extended addressing features are not available to a program

running in section 0. A1l quantities (including addresses), when

calculated from section 0, are considered to be local (18 bits).

1. A program executing in section 0O cannot address memory in any

other section. (One-word global byte pointers are an

exception to this rule. Refer to Chapter 1 of the TOPS-20

Monitor Calls Reference Manual for more information.)

2. The program cannot jump from section 0O to another section

unless it uses a monitor call or the XJRST or XJRSTF

instruction.

3. The program runs exactly as it would run on a machine without

extended addressing.

If the section field contains a number from 1 to 31 (decimal)

inclusive, the program is executing in a nonzero section (a section

other than section 0). The hardware considers addresses to be 30
bits, and the program can use extended addressing features.

8-3



USING EXTENDED ADDRESSING

A local address is defined as an 18-bit address in the same section as

the program counter (PC) of the instruction. Local addresses are

relative to the PC section. - A global address is a 30-bit address,

which therefore supplies its own section number.

The following paragraphs explain the way effective addresses are

calculated in nonzero sections. In addition, see the description in

the DECsystem-10/DECSYSTEM-20 Processor Reference Manual.

8.2.1 Instruction Format

The format of a machine instruction is the same as on an unextended

machine. The effective address calculation depends on the address

field (Y, 18 bits), the index field (X, 4 bits), and the indirect

field (I, 1 bit). Figure 8-2 shows these fields.

0 89 12 13 14 17 18 35

Figure 8-2: Instruction Word Address Fields

If | and X are 0, the instruction uses neither indexing nor

indirection, so the effective address is Y (18 bits). The section

number, since it is not specified in the address, is taken from the

section field of the PC. The PC section field contains the number of

the section from which the instruction was fetched. Such an 18-bit
address is called a local address.

The following is an example of an instruction whose |, X and Y fields

evaluate to an 18-bit effective address.

3,,L400/ MOVEM T, 1000

The effective address is word 1000 of the current section. The

section from which the instruction is fetched is section 3, so the

instruction moves the contents of register T into memory word 3,,1000.

8-4



USING EXTENDED ADDRESSING

8.2.2 Indexing

The first step in the effective address calculation is indexing. | f

the X field 1is nonzero, indexing is used. The calculation of the

effective address then depends on the contents of the specified index

register. Indexing may be local or global as follows:

e |f the left half of the index register contains a negative

number or zero, the contents of the right half (bits 18-35)

are added to Y (from the instruction word) to yield an 18-bit

local address.

This is the way indexing is done on an unextended machine.

It allows a program to use the usual AOBJN pointer and stack

pointer formats for tables and stacks that are in the same

section as the program. Note, however, that if the left half

of the index register contains a positive number, the results

are not the same.

e |f the left half of the index register contains a positive

number, the contents of bits 6-35 of the register are added

to Y to yield a 30-bit global address.

This means that instructions can reference 30-bit (global)

addresses by means of an index register. |If the Y field is

0, the instruction refers to the address contained in X. The

Y field can contain a positive or negative offset of

magnitude less than 2A17.

8.2.3 Indirection

If the | field contains 1, the instruction specifies indirection. An

indirect word is fetched from the address determined by Y and X. Two

types of indirect word exist, Instruction Format Indirect Word (IFIW)

and Extended Format Indirect Word (EFIW). They are described in the

following section.

8-5



USING EXTENDED ADDRESSING

8.2.3.1 Instruction Format Indirect Word (IFIW) - This word contains
Y, X, and | fields of the same size and in the same position as
instructions (in bits 13-35). Bit O must be 1, and bit 1 must be O0;
bits 2-12 are not used.

Figure 8-3 shows an instruction format indirect word.

012 12 13 14 17 18 35

by 1 ! !
11101 (not used) 1 ! X ! Y !
1o P ! !

Figure 8-3: Instruction Format Indirect Word

The effective address calculation continues with the quantities in
this word just as for the original instruction. Indexing can be
specified and can be local or global depending on the left half of the
index. Further indirection can also be specified.

Note that the default section for any local addresses produced from
this indirect word is the section from which the word itself was
fetched. This means that the default section can change during the
course of an effective address calculation that uses indirection. The
default section is always the section from which the last address word
was fetched.

8.2.3.2 Extended Format Indirect Word (EFIW) - This word also
contains Y, X, and | fields, but in a different format. Figure 8-4
shows an extended format indirect word.

1y | <mmmmmmemmmee- R > |

o1t x (section) ! (word) !
I ! ! !

Figure 8-L: Extended Format Indirect Word

8-6



USING EXTENDED ADDRESSING

If indexing is specified in this indirect word (bits 2-5 nonzero), the

contents of the entire index register are added to the 30-bit Y to

produce a global address. This type of indirect word never produces a

local address. The type of address calculation used does not depend

on the contents of the index register specified in the X field.

Hence either Y or Y(X) can be used as an address or an offset within

the extended address space, just as is done in the 18-bit address

space. |If further indirection is specified (bit 1 set), the next

indirect word is fetched from Y as modified by indexing (if any). The

next indirect word can be in instruction format or extended format,

and its interpretation does not depend on the format of the previous

indirect word.

8.2.3.3 Macros for Indirection - The system file MACSYM.MAC contains

several convenient macros for constructing indirect words. Macro

LFIWM generates local (instruction format) indirect words. Both the

macros EP. and GFIWM may be used to generate global (extended format)

indirect words.

8.2.4 AC References

A local address in the range 0-17 (octal) references the hardware ACs

as memory. This is true in every section of memory.

A global address in section 1 in the range 1,,0 to 1,,17 (octal) also

refers to the hardware ACs. A global address in any other section

refers to memory. This means that the following behavior occurs.

1. Addresses in the range 0-17 reference ACs as expected. The

instruction

MOVE 2,3

fetches the contents of hardware register 3 regardless of

what section the instruction executes in.

2. To make a global reference to an AC, the global address must

contain a section number of 0O or 1.

3. Arrays can cross section boundaries. Global addresses

specifying any section except section 1 always refer to

memory, never to the hardware ACs. For this reason,

incrementing the address 6,,777777, for example, yields

address 7,,000000, which is a memory location.

L. The ACs are regarded as local to any section; a local address

(0-17) references the ACs from any section. Hence, a jump

instruction which yields a local effective address of 0-17 in

any section will cause code to be executed from the ACs.

8-7



USING EXTENDED ADDRESSING

8.2.5 Extended Addressing Examples

These instructions make local references within the current PC

section:

3,,400/ MOVE T,1000 ; fetches from 3,,1000
JRST 2000 s jumps to 3,,2000

The following instructions scan table TABL, which is in the current

section:

MOVSI X,-SiZ

LP: CAMN T,TABL(X) : TABL in current section

JRST FOUND

AOBJN X,LP

The following instructions scan table TABL, which is in section TSEC,

by using a global address:

MOVE! X,0

LP: CAMN T,@[GFIWM TSEC,TABL(X)] ; extended format

JRST FOUND

CAIGE X,SI1Z-1

AOJA X,LP

Similarly, the EP. macro can be used for the same purpose:

MOVE! X,0

LP: CAMN T,@[EP.<TSEC>B17!TABL(X)]

JRST FOUND

CAIGE X,S1Z-1

AOJA X,LP

8-8



USING EXTENDED ADDRESSING

The following examples illustrate various aspects of indexing and

indirection in effective address calculation:

L/100

6,, 1000/MOVE 1,82000

6,,2000/LFIWM @4000

6,,4000/LFIWM 200 (4)

Effective address = 300 in section 6

6,,5SUB/ MOVE 1,@[LFIWM @2ZZ]

6,,ZZZ: LFIWM @XXX

XXX LF IWM ARRAY (4)

Effective address = ARRAY+100 in section 6

6/14,,ADDRX

11, ,ROU/MOVE 1,@[LFIWM (6)]

14, ,ADDRX: LFIWM 100

Effective address = 14,,100

8.2.6 Immediate Instructions

Each effective address calculation yields a 30-bit address, defaulting

the section if necessary. Immediate instructions use only the

low-order 18 bits of this as their operand, however, and set the

high-order 18 bits to 0. Hence instructions such as MOVElI and CAl

produce identical results regardless of the section in which they are

executed.

Two immediate instructions retain the section field of their effective

addresses. These are:

® XMOVE! (opcode 415) Extended Move Immediate

e XHLL! (opcode 501) Extended Half Word Left to Left Immediate

8-9



USING EXTENDED ADDRESSING

8.2.6.1 XMOVE! - The XMOVEI| instruction loads the 30-bit effective

address into the AC, and sets bits 0-5 to 0. If no indexing or

indirection is used, the number of the current section is copied from

the PC to the AC. This instruction can replace MOVEI when a global

address is needed.

The following example shows the use of the XMOVElI instruction in a

subroutine <call. The subroutine is in section XSEC, but the argument

list is in the same section as the calling program.

XMOVE| AP,ARGLIST

PUSHJ P,@[GFIWM XSEC,SUBR]

The subroutine can reference the arguments with the following

instruction,

MOVE T,@1 (AP)

To construct the addresses of arguments, the subroutine can use the

following instruction.

XMOVE| T,@2 (AP)

The last two instructions assume that register AP contains the

argument list pointer. |If the address the calling program placed in

AP is an IFIW, the section number in the effective address is that of

the <calling program. |f the address the calling program placed in AP

is an EFIW, the section number in the effective address of the

argument block is determined by the section number the calling program

placed in AP.

The argument list would be found in the caller's section because of

the global address in AP. The section of the effective address is

determined by the caller, and is implicitly the same as the caller if

an |IFiW is used as the arglist pointer, or is explicitly given if an

EFIW is used.

8.2.6.2 XHLL! - The XHLL! instruction replaces the left half of the
accumulator with the section number of the PC, and places zero in the

right half of the AC. This instruction is wuseful for constructing

global addresses. '

8.2.7 Other Instructions

The instructions discussed here are affected by extended addressing,

but not necessarily in the way that their effective addresses are

calculated. In addition to the material presented here, see the

DECsystem-10/DECSYSTEM-20 Processor Reference Manual regarding the

following instructions: LUUOs, BLT, XBLT, XCT, XJRSTF, XJEN, XPCW,

SFM.

8-10



USING EXTENDED ADDRESSING

8.2.7.1 Instructions that Affect the PC - These instructions are
PUSHJ, POPJ, JRST. PUSHJ stores a 30-bit PC address, but stores no

flags. It sets bits 0-5 of the destination word to O.

POPJ restores a 30-bit PC address from the stack, but does not restore

the flags. It also sets bits 0-5 of the destination word to O.

The JSA and JRA instructions can be used only within a section. In

section O the JSP and JSR instructions can store flags,,PC but then

cannot transfer out of section 0. The JSP and JSR instructions can

store flags,,PC in nonzero sections and then can transfer into any

other section (if the address is specified with indexing or

indirection).

8.2.7.2 Stack Instructions - PUSHJ, POPJ, PUSH, POP, and ADJSP.

These instructions use a local or global address for the stack

according to the contents of the stack pointer. Whether the stack

address is local or global depends on the same rules as those that

govern indexing in effective address calculation. (See section

8.2.2.) It is always best to use the ADJSP instruction when working
with stacks. This instruction works in any section and will indicate

when a pushdown overflow error occurs.

In brief, if the left half of the stack pointer is zero or negative

(prior to incrementing or decrementing), the pointer references a
local address and the address in its right half is the address of the

current item in the stack. The stack pointer is incremented or

decremented by adding or subtracting one from both sides,

respectively.

If the left half of the stack pointer is positive, the entire word is

taken as a global address. The stack pointer is incremented by adding

1, and decremented by subtracting1.

A stack that contains global addresses can be used the same way a

local stack is used. The global stack, however, can contain pointers

to routines in other sections.

To protect against stack overflow and underflow, make the pages before

and after the stack inaccessible. This method must be used because a

global stack has no room for a count in the left half of the pointer.

8.2.7.3 Byte Instructions - To reference a byte in another section,
you must use either a one-word, or a two-word, global byte pointer.

Both global and local byte pointers are legal arguments to monitor

calls from nonzero sections but there are some restrictions on the use

of one-word global byte pointers from section 0. See Section 8.3 for

further information.



USING EXTENDED ADDRESSING

Chapter 1 of the TOPS-20 Monitor Calls Reference Manual describes

ohe-word global byte pointers. The DECsystem-10/DECSYSTEM-20

Processor Reference Manual describes two-word global byte pointers.

8.3 USING MONITOR CALLS

|f a program runs in a single section, even though that section is not

section 0, most monitor calls execute exactly the way they do in

section 0. This is because when no section number is specified, the

current section is the default.

The GTFDB% call, for example, requires that AC3 contain the address of

the block in which to store the data it obtains from the file data

block. This address can be an 18-bit address regardless of what

section the monitor call is made from. When the monitor sees that the

address is local, it obtains the section number from the PC of the

process that makes the call.

The same is true of calls that accept page numbers. |If a 9-bit page

number is passed as an argument, the monitor obtains the section

number from the PC of the process that made the call. Monitor calls

arguments are discussed in Chapter 1 of the TOPS-20 Monitor Calls

Reference Manual.

It is sometimes desirable to specify addresses in section O when

executing a JSYS from a nonzero section. The bit PMY¥EPN for PMAPX,

and FH¥EPN for JSYSs that accept fork handles, prevent the current

section (the section in which a program is running) from being the

target section for the monitor call's arguments.

Another restriction on arguments passed to monitor calls executed in

sections other than section 0 concerns universal device designators,

which have the format B5XXXXX,,XXXXXX OF bXXXXX,,XXxxxx (.DVDES).

Universal device designators are not legal except in section 0. This

is because of the existence of one-word global byte pointers, which

can have the same format.

Thus monitor calls that accept either a device designator or a byte

pointer when called from section O do not accept universal device

designators in any other section. Other device designators, such as

.TTDES (0,,hkxxxxx), can be wused in any section. Conversely, these

monitor calls that can accept either universal device designators or

byte pointers do not accept one-word global byte pointers in section

0.

The calls SIR% and RIR% should not be used in sections other than

section 0. These calls work in other sections only if all the code

associated with these calls exists in the same section as the code

that makes the call.



USING EXTENDED ADDRESSING

For example, if an SIR% call is executed in section L4, it executes

correctly if and only if the code that generates the interrupts, the

interrupt-processing routines, and all associated tables are also

located in section 4. Thus, in programs intended to run in a section

other than section 0, the XSIR% and XRIR% calls, described in Chapter

L, should be used in place of SIR% and RIR¥. |In general, it is

recommended that the extended form of monitor calls be used since this

form works in any section, including section 0.

8.3.1 Mapping Memory

The PMAP% monitor call accepts an 18-bit page number, half of which is

a section number. Thus PMAP% can be used to map a page from one

section to another. |If the destination section does not exist, that

section will be created.

The SMAP% monitor call maps one or more sections of memory. |t works

like the PMAP call, but maps sections instead of pages. |If the

destination section does not exist, SMAP¥ creates the section.

Access to the sections in a process map is determined by the same

algorithm that determines access to a page within a given section. |If

a process section and a page in that section have different accesses,

the access privileges are ANDed together. The process requesting

access to the page gains access only if it has access rights at least

equal to the ANDed protections.

For example, if a process has read access toa section and maps a page
into that section for which the process has read and write access, the

page is mapped, but the process gets only read access to the mapped

page.

The following sections describe the SMAP% functions.

8.3.1.1 Mapping File Sections to a Process - This function maps one

or more sections of a file to a process. All pages that exist in the

source sections are mapped to the destination sections. Access to the

mapped pages is determined by ANDing the access allowed to the file

and the access specified in the SMAP% call.

Although files do not actually have section boundaries, this monitor

call views them as having sections that consist of 512 contiguous

pages. Each file section starts with a page number that is an integer

multiple of 512.

8-13



USING EXTENDED ADDRESSING

This call cannot map a process memory section to a file. To map a
process section to a file, use the PMAPY monitor call to map the
section page-by-page.

This function of the SMAP% call requires three words of arguments, as
follows:

AC1: source identifier: JFN,,file section number

AC2: destination identifier: fork handle, ,process section number

AC3: flags,,count

The flags determine access to the destination section, and the count
is the number of contiguous sections to be mapped. The count must be
between 0 and 37 (octal). The flags are as follows.

B2 (SM¥RD) Allow read access

B3 (SM¥WR) Allow write access

BL (SMY¥EX) Allow execute access

B18-35 The number of sections to map. This
number must be between 1 and 37 (octal).

8.3.1.2 Mapping Process Sections to a Process - The SMAP% monitor
call also maps sections from one process to another process. In
addition, you can map one section of a process to another section of
the same process. The SMAP% call maps all pages that exist in the
source section to corresponding pages in the destination section.

If you map a source section into a destination section with SM¥IND
set, SMAPX creates the destination section using an indirect pointer.
This means that the destination section will contain all pages that
exist in the source section, and the contents of the destination pages
will be identical to the contents of the source pages.

Furthermore, after SMAP% has mapped the destination section, changes
that occur in the source section map cause the same changes to be made
in the destination section map. This ensures that both the source
section and the destination section contain the same data.

If SMZIND is not set, SMAP% creates the new section using a shared
pointer. After SMAP% maps the destination section, changes that occur
in the source section's map do not cause any change in the destination
section's map. Thus after a short time the source and destination
sections might contain different data.



USING EXTENDED ADDRESSING

If you request a shared pointer (SMZIND not set) to the destination
section, what happens depends on the contents of the source section
when the SMAP% call executes. The outcome is one of the following.

1. If the source section does not exist, the SMAPY call creates

the section.

2. |If the source is a private section, a mapping to the private

section is established, and the destination process s
co-owner of the private section.

3. If the source section contains a file section, the source

section is mapped to the destination section.

L. If the source section map is made by means of an indirect
section pointer, SMAP% follows that pointer until the source
section is found to be nonexistent, a private section, or a
section of a file.

This SMAP%¥ function requires three words of arguments in AC1 through
AC3.

ACl: Source identifier: fork handle,,section number

AC2: Destination identifier: fork handle,,section number

AC3: access flags,,the number of contiguous sections to map.

The number of sections mapped, the number in the right
half of AC3, must be between 1 and 37.

The flags determine access to the destination section.

The flags are as follows:

B2 (SM%RD) Allow read access

B3 (SMZWR) Allow write access

BL (SMYEX) Allow execute access

B6 (SM¥ IND) Map the destination section using an indirect
section pointer. Once the destination section map

is created, the indirect section pointer causes
the destination section map to change in exactly

the same way that the source section map changes.

B18-35 Count of the number of contiguous sections to be
mapped.

8-15



USING EXTENDED ADDRESSING

8.3.1.3 Creating Sections - Before you can use a nonzero section of

memory, you must create it. If your program references a nonzero

section of memory that does not exist (that is not mapped), the

instruction that makes the reference fails.

This SMAP%Z function requires three words of arguments in AC] through

AC3, as follows:

AC1: 0

AC2: destination identifier: fork handle,,section number

AC3: flags,,count

The flags determine access to the destination section, and the count

is the number of contiguous private sections to be created. This

count must be between 1 and 37.

The flags in the left half of AC3 are as follows:

B2 (SM%RD) Allow read access

B3 (SMEWR) Allow write access

BL (SMZEX) Allow execute access

B6 (SMZIND) Create the section using an indirect pointer

B18-35 The number of sections to create. This number
must be between 1 and 37. All created sections

are contiguous.

8.3.1.4 Unmapping a Process Section - You can use the SMAP% monitor
call to wunmap one or more sections of memory in a process. The

contents of the section are lost.

If the section contains pages mapped from a file, this function does

not cause the unmapped sections to be written back to the file from

which they were mapped. Such pages must be mapped to the file by

means of the PMAP% call.



USING EXTENDED ADDRESSING

This function requires three words of arguments in AC1 through AC3, as

follows.

AC1: -1

AC2: Destination identifier: fork handle,,section number

AC3: 0,,count

The count is the number of contiguous sections to be

unmapped. This number must be between 1 and 37.

8.3.2 Starting A Process In Any Section

You can use most of the calls described in Chapter 5 to control

programs that run in a nonzero section. The SFORK® monitor call is an

exception, and will not start a program in a nonzero section.

The XSFRK%¥ monitor call starts a process in any section of memory. If

the process is frozen (by means of the FFORK% call), XSFRK%¥ changes

the double-word PC, but does not resume execution of the process. To

resume the execution of any frozen fork, use the RFORK% call.

The XSFRK® call requires three words of arguments in ACI through AC3.

ACl: flags,,process handle

Flags:

SF%CON (1BO) continue a process that has halted.

If SF%CON is set, the address in AC3

is ignored and the process continues

from where it was halted.

AC2: PC flags,,0

AC3: address to which this call is to set the PC

The XSFRK% call also starts a process in section 0. To do so, set the

left half of AC3 to zero and the right half of AC3 to the address in

section O at which you want the process to start.

Most other calls consider an address with a zero in the left half to

be a local address. The XSFRK% call, however, uses the contents of

AC3 to set the PC. A PC with zero in the 1left half indicates an

address in section O.

8-17



USING EXTENDED ADDRESSING

8.3.3 Setting the Entry Vector In Any Section

The SEVEC% monitor call has room in its argument ACs for only a
half-word address, so it cannot be used to set a process entry vector

to an address in a nonzero section. The XSVEC%¥ call, on the other

hand, wuses an AC for the address of the entry vector, and another AC

for the length of the entry vector, and can specify an entry vector in

any section of memory.

The XSVEC% call requires three words of arguments in AC1 through AC3.

AC1: process handle

AC2: length of the entry vector, or 0

AC3: address of the beginning of the entry vector

The length of the entry vector specified in AC2 must be less than 1000

words. If AC2 contains O, TOPS-20 assumes a default length of two

words.

8.3.4 Obtaining Information About a Process

Although the monitor calls described in Chapter 5 work in any section

of memory, several of them can only return information about the

section in which they are executed. The following paragraphs describe

the monitor calls you can use to obtain information about any section

of memory.

8.3.4.1 Memory Access Information - Several kinds of information
about memory are important. Among them are whether a page or section

exists (is mapped), and, if so, what the access to a page or section
is. The RSMAP¥ and XRMAP% calls provide this information.

The RSMAP% monitor call reads a section map, and provides information
about the mapping of one section of the address space of a process.

RSMAPZ requires one word of arguments in ACl: a fork handle in the
left half, and a section number in the right half. It returns the

access information in AC2.



USING EXTENDED ADDRESSING

| The map information that RSMAPZ returns in ACl can be the following:

-1

n,,m

nNo current mapping present (the section does not

exist)

the mapping is a private section

where n is a fork handle or a JFN, and m is a
section number. |If n is a fork handle,
the mapping is an indirect or shared
mapping to another fork's section. If n
is a JFN, the mapping is a shared
mapping to a file section.

| The access information bits returned in AC2 are the following:

B2 (SM%RD)

B3 (SM%WR)

Bl (SMXEX)

B5 (PAZPEX)

B6 (SMXIND)

Read access

Write access

Execute access

is allowed

is allowed

is allowed

The section exists

The section was created using an indirect pointer.

Although the RSMAP% call does not return information on individual
pages, the data it does return is useful in preventing error returns
from the XRMAP% monitor call.

8-19



USING EXTENDED ADDRESSING

The XRMAP% call returns access information on a page or group of pages

in any section of memory. Although the RMAP% call returns access data
about a page in the current section, and you can use the RSMAP¥ call

in any section of memory, you must use the XRMAP% call to obtain
information about pages in any section other than the current section.

The XRMAP% call requires_two words of arguments in AC1 and AC2.

AC1: process handie,,0

AC2: address of the argument block

The argument block addressed by AC2 has the following format:

| ======s=====ssscsszsss==s==s===s=== == !

! Length of the argument block, including this word !

! number of pages in this group on which to return data !

The number of words in the argument block is three times the number of

groups of pages for which you want access data, plus one. Each group

of pages requires three arguments: the number of pages in the group,

the number of the first page in the group, and the address at which

the monitor is to return the access data.

Note that the address to which the monitor returns data should be in a

section of memory that already exists. |If it does not exist, the call

will fail with an illegal memory reference.

8-20



USING EXTENDED ADDRESSING

The access information returned for each group of pages specified in

the argument block is the following:

B2 (RM%RD) read access allowed

B3 (RM¥WR) write access allowed

BL (RM¥EX) execute access allowed

B5 (RM¥PEX) page exists

B9 (RM%CPY) copy-on-write access

For each page specified in the argument block that does not exist,

XRMAP% returns a -1. It also returns a zero flag word for each such

page. The data block to which XRMAP% returns the access information

should therefore contain twice as many words as the number of groups

of pages about which you want information.

If you execute an XRMAP% call to obtain information about a page in a

nonexistent section, the XRMAP% call fails with an illegal memory

reference. For this reason it is recommended to execute an RSMAPY

call to determine that the section exists before you use XRMAP% to

obtain information about any page within that section.

8.3.4.2 Entry Vector Information - To obtain the entry vector of a

process in any section of memory, use the XGVEC¥ call. This call

returns the length of the entry vector in AC2 and the address of the

entry vector in AC3.

The XGVEC% call requires one word of argument: in ACl1, the handle of

the fork for which you want the entry vector.

8.3.4.3 Page-Failure Information - A page-fail word, described in the

DECsystem-10/DECSYSTEM-20 Processor Reference Manual, contains

information that allows a program to determine the cause of a page

trap and the address of the instruction that caused the trap. This

information allows a program to correct the cause of the page-fail

trap. Once the program has corrected the cause of the page-fail trap,

the program can continue execution,

The XGTPWX call obtains the page-fail word from the monitor's data

base, and returns it to the calling program's address space. The

XGTRP% call requires two words of arguments in AC1 and AC2.

AC1: process handle

AC2: address of the block in which to return data

8-21



USING EXTENDED ADDRESSING

8.3.5 Program Data Vectors

Program Data Vectors (PDVs) are data structures in a process that are
known to the monitor by name and location. They contain information

about the program segments within a process. The PDV is a block of

data that LINK writes into memory when loading and linking a program.

The PDV resides in memory as a part of the program, and starts at a

program data vector address (PDVA). PDVs are used to allow user

programs to obtain information about other programs that can be mapped

into a process. PDVs and PDVAs are manipulated by using the PDVOP%

monitor call. (Refer to the TOPS-20 Monitor Calls Reference Manual
for a complete description of the PDVOP% monitor call.) The PDVOP%

monitor call can be used to obtain information about an execute-only

process.

Certain words in the PDV (for example, .PVNAM) point to blocks of

information. These words are in either |IFIW or EFIW format (see

Sections 8.2.3.1 and 8.2.3.2) except that they cannot use indexing,
and any indirect chain pointed to by the word cannot go through an

accumulator. This allows a program to find the address of a block

pointed to by a PDV word by simply using an XMOVE! instruction. For

example,

XMOVEI AC1,@.PVNAM(AC2)

puts into AC1 the global address of the name of the PDV whose PDVA s

in AC2.

8.3.5.1 Manipulating PDV Addresses - For the process specified in

word .POPHD of the argument block, the .POGET function of the PDVOP%

monitor call returns all PDVAs within the range of addresses specified

in words .POADR and .POADE of the argument block. (See the

description of the PDVOP% monitor call in the TOPS-20 Monitor Calls

Reference Manual for the format of the argument block.) The address

range supplied by words .POADR and .POADE determines which PDVAs are

affected by any given call.

The .POADD function of the PDVOP¥ monitor call adds the PDVAs

specified in the data block to the system's data base for the

specified process. The PDVAs must be in ascending order within the

data block.

The .POREM function of the PDVOP% monitor call removes a set of PDVAs

from the system's data base for the specified process. Those removed

are the ones within the range specified by words .POADR and .POADE of

the argument block.

8-22



—
 
—
 
—

 
—

 
—
 
.

 S
 
S
—
—

 
A
 
S
—
 
.
 —

 
—
—
 
—
—
 
A
}

 
S
i
i
—
—
_
)
 S
 
—
 
P
O
 
E
E
—
 
—

 
—
—
 
—
—
 
T
 
T

 
S
—
—
—
—
 
—

 
—
—
 
—
—

 
—
—
 
—
—
—
 
—
—
—
 
—
—
 
O
 
S
t
—
 
—

 
—
—
 
—

USING EXTENDED ADDRESSING

8.3.5.2 PDV Names - The .PONAM function of the PDVOP¥ monitor call

returns the ASCIZ name of a PDV in memory. Word .POADR of the

argument block must contain a valid PDVA for the specified process.

The name returned is the one to which word .PVNAM of the PDV points.

The string returned by .PONAM is placed into the data block.

For the specified process, the .POLOC function returns in the data

block all the PDVAs of PDVs with the specified name. The byte pointer

in AC3 points to the PDV name. Function .POLOC is affected by

.POADR/.POADE words.

The following rules apply to the assignment of PDV names. If these

rules are followed, it is quite unlikely that two packages that want

to run in the same process will discover a conflict in PDV names.

1. PDV names assigned by DIGITAL will contain the character "%"

at the end (or eisewhere). No PDV names assigned by users

should contain the "%" character.

2. All PDV names containing the character "." are reserved to

DIGITAL for future use.

3. The character "$" is reserved for a special use: PDV names

of the form stringlSstring2 are reserved for the special

class of use named by stringl. Rules 1 and 2 still apply in

this case.

As a general principle, avoid using PDV names that are insufficiently

specific; use of such names invites conflicts with other packages.

8.3.5.3 Version Number - The .POVER function of the PDVOP% monitor

call returns in the data block the version of a program in memory.

Word .POADR must contain a valid PDVA for the specified process. The

version returned is the one that word .PVVER of the PDV contains.

For more information on program data vectors, including explanations

of the static memory map (pointed to by word .PVMEM) and the symbol

table vector (pointed to by word .PVSYM), refer to the TOPS-20 LINK

Reference Manual.

8.4 MODIFYING EXISTING PROGRAMS

Existing programs can be modified to run in any section of memory,

including both section O and all other sections. The sections that

follow discuss the changes that must be made to an existing program so

that it runs in a single nonzero section.

8-23



USING EXTENDED ADDRESSING

8.4.1 Data Structures

Stacks, tables, and other data structures used in the past have often

contained words with an address in the right half and a count in the

left half. The count could be positive or negative because all

programs ran only in section 0, and when the contents of a word were

evaluated for Effective Address calculation or address use in section

0, only the right half was considered.

in all other sections, the entire word is considered to be an address.

If the left half of the word is negative, the left half is ignored

when the address is evaluated, and the address is local. Thus for a

word to contain an address in the right half and a count in the left

half, the count must be negative.

8.4.1.1 |Index Words - Be sure the left halves of index words contain

a nonpositive quantity. To use the left half of an index register to

hold a count, the count must be negative. |f the left half is unused,

it must be zero so that the effective address is a local address. |If

the left half contains a positive number, the indexed address will be

global.

8.4.1.2 Indirect Words - To be sure that an indirect word in a

nonzero section is evaluated as a local address, always set bit 0 of

the indirect word. Argument lists that produce local addresses in

section 0, for example, will produce local addresses in any section if

bit O is set.

8.4.1.3 Stack Pointers - As mentioned above, the left halves of stack

pointers must contain 2zero or a negative number to produce local

addresses. A negative number in the left half is considered to be a

count. A positive number in the 1left half is considered to be a

section number.

8.5 WRITING MULTISECTION PROGRAMS

Multisection programs, programs that use more than one section of

memory, are similar to single-section programs that run in nonzero

sections. They allow you to place tables needed for processing

interrupts in any section of memory (See Chapter L4), to use very large

arrays, and to write modules of code that can be dynamically mapped

into a section of memory and executed.

8-24



USING EXTENDED ADDRESSING

In a single-section program, local addresses and byte pointers are

sufficient to specify any word or byte in the program's address space.

in a multisection program, local addresses and byte pointers cannot

specify any word or byte in the program's address space. Most monitor

calls use only one AC per argument, so passing two-word global byte

pointers is not possible. Thus, it is necessary to:

o keep monitor call arguments in the same section of memory as

the code making the call, or

e use global arguments, or

e use the global form of the monitor call.

In many multisection programs it is not necessary to keep all the

arguments required by a <call in the same section as the code that

makes the call. Global arguments are required, and they take several

forms. Chapter 1 of the TOPS-20 Monitor Calls Reference Manual gives

details on the use of these arguments.

The following program computes a file checksum by XORing the words in

all file pages. The program is loaded into section O and maps itself

into section 1. |t then jumps into section 1 to access the file data

loaded into section 15,

TITLE CHKSUM - COMPUTE A FILE CHECKSUM

SEARCH MONSYM SHETANDARD UNIVERSAHL FILES

SEARCH MACEYM

JREQUIRE SY&SIMACREL FOET JSERR SUFFORT ROUTINES

sSTHAC . s HEF INE STANDARD ACSH

i FROGRAM CONSTANTS

FOIZE OF STACK

§ ! TION TO Mafk CODE INTO

FHECTION TO MAP FILE DATA INTO

SFAGE WITHIN DATSEC FOR FILE DATA

SHIZE OF A PAGE

CHKRSUME RESETX FRESET THE WORLD

MOVE P LTOWD FRLSTZyFDRL

MOUVE TL1y Do FHELFy90O sMar THIS FORKS SECTION O

MOVED T2 Do FHSLF» » CODSECT 570 EXTENDED CODRE SECTION

MOVX TEySMZEDEMAWRISMAEX TEMAINDE L FINDIRECT POINTER RDyWRyEX 1 SECTION

HSMOF7

EJEHLT FUNEXFECTED FATAL ERROR

GETFILE SETIM FILJFN HAY NO FILE HEEN

TMEHG <

ENTER FILE SPEC TO CHECKSUM: > FPROMFT USER FOR FILE

MOUX TLyGIRSHTIGIZOLDT GUAFNG s0LD FILE

MOVE T2y PRIINy» dFRIQUT SREAD FILE SF

GT JFN FOET FILE SFE

EFRJIMPR BALF T PUANNOT GET FILE TELL UBER

MOVEM T1yFILJFN FOAVE FILE JFN

MOUX T2y FLOCT N3G OFZREZIVOFZRD FREQUEST READ ACCESS AND 346 RIT BYTES

CHFENF % FOFEN THE FILE

ERJMER BADFL. §CANNOT OFEN FILE TELL USER

SO FROM TERMINAL

XJRET LCOUSECyy DOCHKED FENTER EXTENDED SECTION aAND DO CHECKSUM

8-25



USING EXTENDED ADDRESSING

BRANFTL: JSERR SFRINT ERROR MESSAGE

SKIFE T1«FILJFN IS THERE A JFN

RLFNZ FYES. RELEASE IT

EJSERR PEFRINT ERROR TF ANY

JRET GETFIL PAND TRY TO GET FILE AGAIN

§ THE FOLLOWING COIE RUNS IN A NONZER(D SECTION AND DOES A CHECKSUM OF THE FILE

¢ STORED IN FILJFN

DNOCHKS: SETZR Q1,02 Q1L HOLDS THE CHECKSUM. INITIALLY ZEROD

A2 1S THE CURRENT FILE PAGE NUMRER

CHRKLOF: MOVE T1,Q2 JGET FILE FAGE NUMBER

HRL T1»FILJFN FAND FILE JFN

FFUFF% sFIND FIRST USEN FAGE

ERJMFR NOFAGE sCAN'T GO ANALYZE ERROR

HRRZ Q2»T1 PREMEMBER CURRENT FAGE NUMBER

A0S QA2 sUSE NEXT HIGHER FAGE NEXT TIME THROUGH LOOF

MOVE T2yL<DATSECHEBLG6+DATFAGT $TO DATA FAGE IN DATA SECTION

HRLI T2y .FHSLF sOF THIS FORK

MOVX T3»FMXRD sREAD ACCESS

FMaFr% sMAF THE FILE FAGE

EJSHLT FUNEXFECTED FATAL ERROR

HRLI T1sDATSEC FTL IS INLEX INTO DATA FAGE. SETUF SECTION

HRRI T1sDATFAGXFAGSITZ sANDY PAGE ADDRESS

MOVEI T2sFAGSIZ FT2 COUNTS THE WORDS IN A FAGE

# THE FOLLOWING LOOF DOES THE CHECKSUM FOR A FAGE

XORLOF? XOR Q1s<T1D s CHECKRSUM THIS WORID

AlDS T1 FSTEF TO NEXT WORD

S0JG T2 XORL.OF 00 THE WHOLE FAGE

SETO T1» sUNMAF THE FILE FAGE

MOVE T2y L<DATSECHR26FDATFAGT $T0 DATA FAGE IN DATA SECTION

HRLI T2y ,FHSLF sOF THIS FORK

MOUX TIEsFMZRI

FMAFZ

EJSHLT SUNEXFECTED FATAL ERROR

JRET CHKLOF iLOOF FOR MORE FAGES

# HERE WHEN FFUFFZ FATLS

NOFAGE: CATE T1,FFUFX3 NG USED FAGE FOUND?

JSHLLT sNO. UNEXFECTED FATAL ERROR

# PRINT THE CHECKSUM ANU QUIT

TMSEG -

THE FILE CHECKSUM I&t :

MOUX Tiy.FRIOU fFPRINT IT ON THE TERMINAL

MOVE T2,Q1 FOGET THE CHECKSUM

MOUX T3y NOZMAG!FLDCTMDOy NOZRIIX) SUNSIGNED QUTAL NUMRER

NOUTZ

EJSHLT SUNEXFECTEDR FATAL ERROR

MOVE T1yFILLJFN FOET FILE AGAIN

CLOSFZ sCLOSE IT

EJSHLT FUNEXFECTED FATAL ERROR

HALTFZ PSTOF FROGRAM

XJRST LCHRSUMI s JUME RACK TO SECTION O AND START OVER

FIF USER CONTINUES

¥ STORAGE

PIL: EBLOCK FDLSIZ FHTACK

FILJFN: ELOCK 1 SFILE JFN

ENII CHRKEUM

8-26



AC, 1-2

global reference, 8-7

references, 8-7

Access

copy-on-write, 5-5

file, 3-2, 3-17

file append, 3~-18

file frozen, 3-18

file read, 3-18

file restricted, 3-18

file thawed, 3-18

file unrestricted, 3-18

file write, 3-18

page, 5-5
Access bits

OPENF%, 3-19

PMAP%, 3-28

Accumulator (AC), 1-2

Accumulators, 1-3

global reference, 8-7

hardware, 8-7

references, 8-7

Acddress

global, 8-1, 8-7

local, 8-L4, 8-7

Address space, 8-1, 8-3

process, 1~6, 5-1, 5-1]

Addressing

extended, 8-1

Addressing ACs, 8-2

Addressing memory, 8-2

ADJSP instruction, 2-2, 8-11

AIC% JSYS, 4-10, L-20, 5-4

AOBJUN pointer, 8-5

Argument block

DEQ%, 6-15

ENQ%, 6-9

ENQC%, 6-16

GTJFN% long form, 3-14

Arguments

CFORK%, 5-8

DEQ%, 6-13

DIC%, L-19

ENQ% JSYS, 6-6

ENQC%, 6-16

GET%, 5-12

GTJFN% long form, 3-14

INDEX

Arguments (Cont.)

GTJFN% short form, 3-5

11C%, 5-22

JFNS%, 3-36

JSYS, 1-2, 1-3

monitor cails, 1-3

MRECV%, 7-10

MSEND%, 7-8

MUTIL%, 7-18

OPENF%, 3-18

PMAP%, 3-28, 3-30, 5-16

PMAP% JSYS, 8-16

RDTTY%, 2-10

SFORK%, 5-16

SIN%’ 3—2h

SIR%, L-7

SMAP%, 3-32, 8-14, 8-15, 8-16

SOUT%, 3-25

XGTPW%, 8-21

XRIR%, L-18

XRMAP% JSYS, 8-20

XSFRK%, 8-17

XSiR%, L-7

XSVEC% JSYS, 8-18

ASCIH! strings, 2-1, 3-23

ASCIZ pseudo-op, 1-6

ASCIZ strings, 2-1, 3-23

ATI% JSYS, L-16

BIN% JSYS, 1-6, 3-23

example, 1-6

Block

packet data, 7-2

packet descriptor, 7-2

BLT instruction, 8-10

BOUT% JSYS, 3-23

Byte, 2-1, 3-1

reading a, 2-9

transferring, 3-24

writing a, 2-9

Byte instructions, 8-11

Byte manipulation instructions,

2-2

ADJSP, 2-2

IBP, 2-2

ILDB, 2-2

Index-1



Byte pointer, 8-11

global, 8-11

local, 8-11

one-word global, 2-2, 8-11

system standard for JSYS, 2-2

two-word global, 2-2, 8-11

Calling sequence

monitor calls, 1-3

Capability words, 5-11

CFORK% JSYS, 5-4, 5-8, 5-16, 5-22

arguments, 5-8

execution, 5-10

Changing sections, 8-2

Channel

deactivating, 4-19

panic, 4=5, L-11, L4-12

Channel assignhments

sof tware interrupt, L-5

Channe! table (CHNTAB), L-8

CHNTAB, L-8

CI1S% JSYS, L-19

Clearing interrupt system, L-19

CLOSF% JSYS, 3-33

example, 3-34

execution, 3-34

flag bits, 3-33

Closing a file, 3-33

Communication

process, 1-6

Communication facility

inter-process, 7-1

Control bits

RDTTY%, 2-11

Control process, 1-7

Copy-on-write access, 5-5

Counter

program, 8-1

Creating sections, 8-16

Data block

packet, 7-2

Data transfer, 2-1

Data transfers, 3-21

Deactivating a channel, 4-19

Deadly embrace, 6-5, 6-19

Deassigning terminal codes, 4-19

DEBRK% JSYS, L-12, L4-13

Deferred mode

terminal interrupt, 4-16

Deleting inferior process, 5-23

DEQ% JSYS, 6-2, 6-6, 6-13

argument block, 6-15

arguments, 6-13

functions, 6-14

Descriptor block

packet, 7-2

Designator

destination, 3-22

primary input, 2-3, 3-22

primary output, 2-3, 3-22

source, 3-22

universal device, 8-12

Destination designator, 3-22

Device designator

universal, 8-12

DIC% JSYS, L-19

arguments, kL-19

DIR% JSYS, L-18

Direct process control, 5-L

Disabling interrupt system, L-18

DTi% JSYS, L-19

Editing functions, 2-10

Effective address, 8-1

Effective address calculation,

8-35 8-9
example, 8-9

indexing, 8-9

indirection, 8-9

extended, 8-4

immediate instructions, 8-9

indexing, 8-6

indirection, 8-6

nonzero sections, 8-4

EFIW, 8-6, 8-22

EIR% JSYS, L-10, L-12, 4-20, 5-L

EJSERR macro, 1-5

EJSHLT macro, 1-5

ENQ quota, 6-4

ENQ% JSYS, 5-L4, 6-2, 6-6, 6-18

argument block, 6-9

arguments, 6-6

functions, 6-7

ENQC% JSYS, 5-4, 6-6, 6-16

argument block, 6-16

arguments, 6-16

flag bits, 6-17

ENQUEUE /DEQUEUE (ENQ/DEQ)

facility, 5-L, 6-1

use of, 6-6

| ndex-2



Entry vector, 8-18

information, 8-21

EP. macro, 8-7, 8-8

ERCAL symbol, 1-4, 5-16

ERCALR symbol, 1-4

ERCALS symbol, 1-4, 1-6

ERJMP symbol, 1-4, 5-16

ERJMPR symbol, 1-L4, 2-1kL

ERJMPS symbol, 1-k

Error returns

monitor calls, 1-h

ERSTR% JSYS, 1-5

Execute-only process, 8-22

Extended addressing, 8-1, 8-3

examples, 8-8

using monitor calls with, 8-12

Extended format indirect word

(EFiIwW), 8-6

Extended instruction format, 8-4

Extended page number, 8-12

FHY¥EPN, 8-12

File

closing a, 3-33

examples, 3-45

opening a, 3-17

pointer, 3-22

reading from

summary, 3-hk

referencing, 3-3

sharing, 3-2, 6-1

writing to

summary, 3-L4Li

File access, 3-2, 3-17

codes, 3-2

File append access, 3-18

File frozen access, 3-18

File identifier, 3-3

File page mapping, 3-28

File pointer, 3-22

File read access, 3-18

File restricted access, 3-18

File section

mapping, 8-13

File section mapping, 3-31

File specification, 3-3

standard, 3-3

File thawed access, 3-18

File unrestricted access, 3-18

File write access, 3-18

Files, 3-1

Flag bits

CLOSF%, 3-33

ENQC%, 6-17

GTJFN% long form, 3-16

GTJFN% short form, 3-5

MRECV%, 7-12

MSEND%’ 7_9

SMAP%, 3-32

Flags

packet descriptor block, 7-3

Format

extended instruction, 8-k

|PCF packet, 7-2

<SYSTEM>INFO requests, 7-15

<SYSTEM>INFO responses, 7-17

Format options

JFNS%, 3-38

NOUT%, 2-7

Functions

DEQ%, 6-14

ENQ%, 6-7

MUTIL%, 7-19

PDVOP%, 8-22

RDTTY%, 2-10

GET% JSYS, 5-11, 5-15

arguments, 5-12

GETER% JSYS, 1-5

GF IWM macro, 8-7

GFRKS% JSYS, 5-7

Global address, 8-1, 8-5, 8-7

Global byte pointer, 8-11

Global stack, 8-11

GNJFN% JSYS, 3-10, 3-40O

bits returned, 3-40

© GTJFEN JSYS, 3-3, 3-k, 3-5
arguments

long form, 3-14

short form, 3-5

bits returned, 3-11

execution, 3-10, 3-16

flag bits

long form, 3-16

short form, 3-5

long form, 3-L, 3-14

argument block, 3-14

short form, 3-L4, 3-5

examples, 3-12

summary, 3-17

GTSTS% JSYS, 3-34

bits returned, 3-35

I ndex-3



HALTF% JSYS, 2-9, 5-19

example, 2-8

Handle section, 8-19

HFORK% JSYS, 5-19

{/0 monitor calls, 2-2

IBP instruction, 2-2

Identifier

file, 3-3

IFIW, 8-5, 8-22

}1C% JSYS, 4-11, 5-4, 5-22

arguments, 5-22

ILDB instruction, 2-2

i1legal instruction trap, 1-4

Immediate instructions, 8-9

Immediate mode

terminal interrupt, L-16

Indexing, 8-5, 8-22

example, 8-9

Indirection, 8-5, 8-22

example, 8-9

extended format indirect word

(EFIW), 8-6

instruction format indirect

word (IFIW), 8-5

Inferior process, 1-7, 5-2

characteristics, 5-8

communicating with superior,

5-10

creating, 5-8, 5-10

deleting, 5-23

parallel, 5-10

starting, 5-16

status, 5-18

termination, 5-17

Information

about process, §-18

entry vector, 8-21

page-failure, 8-21

Initialization

process, 2-9

Input

terminal, 2-1

Input designator

primary, 2-3

Instruction format

extended, 8-4

Instruction format indirect word

- (IFIW), 8-5

Instructions

byte, 8-11

Instructions (Cont.)

stack, 8-11

Inter-process communication

facility

receive quota, 7-1

send quota, 7-1

utility functions, 7-18

Inter-process communication

facility (IPCF), 1-6, 5-L,

7-1

Interrupt, L-1

generating, b4-11

Interrupt channel assignments,

L-5
Interrupt channels

activating, 4-10

Interrupt conditions, 4-3

Interrupt deferred mode

terminal, L-16

Interrupt dismissing, 4-12

Interrupt immediate mode

terminal, L-16

interrupt priority levels, L-6

Interrupt processing, 4-11

Interrupt service routines, L4-7

interrupt system

clearing, L4-19

disabling, 4-18

Interrupts

terminal, L4-13

|PCF, 1-6, 5-L, 7-1

packet data block, 7-2, 7-7,

7-15
address, 7-6

length, 7-6

packet descriptor block, 7-2,

7-15
flags, 7-3

receive quota, 7-1

send quota, 7-1

utility functions, 7-18

IPCF packet format, 7-2

JFN, 3-1, 3-2, 3-3

JFNS% JSYS, 3-36

arguments, 3-36

format options, 3-38

Jobh, 1-7

Job file number, 3-1, 3-3

Job structure, 1-6

exapmle, 1-7

I ndex-4



JRA instruction, 8-11

JRST instruction, 8-2, B-11

JSA instruction, 8-11

JSP instruction, 8-11

JSR instruction, 8-11

JSYS, 1-2

AtC%, L-10, 4-20, 5-4

arguments, 1-2, 1-3

ATI1%, L-16

BIN%, 1-6, 3-23

BOUT%, 3-23

CFORK%, 5-4, 5-8, 5-10, 5-16,

5-22

CLOSF%, 3-33

DEBRK%, L-12, 4-13

DEQ%, 6-2, 6-6, 6-13

DIC%, L-19

DIR%, L-18

DT1%, L-19

EIR%, L-10, L-12, 4-20, 5-L

ENQ%, 5-L, 6-2, 6-6, 6-18

ENQC%, 5-4, 6-6, 6-16

error returns, 1-4

ERSTR%, 1-5

GET%, 5-11, 5-15

GETER%, 1-5

GFRKS%, 5-7

GNJFN%, 3-10, 3-40

GTJFN%, 3-3, 3-4, 3-5, 3-10

GTSTS%, 3-34

HALTF%, 2-9, 5-19

HFORK%, 5-19

| /0, 2-2

l1¢c%, L-11, 5-4, 5-22

JFNS%, 3-36

KFORK%, 5-L, 5-23

MRECV%, 5-4, 7-7, 7-10

MSEND%, 5-4, 7-7, 7-8, 7-14

MUTIL%, 5-4, 7-18

NIN%, 2-L4, 2-5, 2-1k4, 2-16

NOUT%, 2-6, 2-16

OPENF%, 3-2, 3-18

PBIN%, 2-9, 2-16

PBOUT%, 2-9, 2-16

PDVOP%, 5-11, 8-22

PMAP%, 3-27, 3-28, 3-30, 3-31,

5-11, 5-16, 5-22, B8-13,

8-16

PSOUT%, 2-3, 2-16

RDTTY%, 2-5, 2-10, 2-1k4, 2-16

JSYS (Cont.)

RESET%, 2-9, 5-23, 7-6

RFSTS%, 5-4, 5-18

RFSTS% long form, 5-18, 5-20

RFSTS% short form, 5-18

RIN%, 3-26

RIR%, L-17, 8-12

ROUT%, 3-26

RSMAP%, 8-18

SAVE%, 5-11

SEVEC%, 8-18

SFORK%, 5-4, 5-16

SFRKV%, 5-17

SIN%, 3-24, 3-25

SIR%, L-7, L-12, 5-4, 8-12

SKPIR%, L-17

SMAP%, 3-31, 8-13

SOUT%, 3-24, 3-25

SPJFN%, 2-3

SSAVE%, 5-11

STIW%, L-16

WFORK%, 5-k4, 5-17, 5-18
XGTPW%, 8-21

XGVEC%, 8-21

XRIR%, L-18, 8-13

XRMAP%, 8-20

XSFRK%, 5-17, 8-17

XSIR%, L-7, L4-12, 4-20, 8-13

XSVEC%, 8-18

JUMP instruction symbols, 1-4

ERCAL, 1-4, 5-16

ERCALR, 1-h

ERCALS, 1-4, 1-6

ERJMP, 1-L, 5-16

ERJMPR, 1-L, 2-14

ERJMPS, 1-4

JUMP instructions, 1-4

Level number

resource, 6-5

LEVTAB, L-9

LF IWM macro, 8-7

LINK, 8-22

Literals, 2-2

Local

byte pointer, 8-11

Local address, 8-4, 8-5, 8-7

Local byte pointer, 8-11

index-5



Lock

resource, 6-2

Long form GTJFN%, 3-14

LUUO instructions, 8-10

MACSYM, 1-2

MACSYM macros, 1-2

EJSERR, 1-5

EJSHLT, 1-5

EP., 8-8

indirection, 8-7

EP., 8-7

GF IWM, 8-7

LFIWM, 8-7

TMSG, 2-4

Mapping, 8-13

file page, 3-28

file section, 3-31

file sections to a process,

8-13

memory, 8-13

page, 3-27, 5-15
process page, 3-30

process section, 8-1k

sections, 8-13

Memory, 8-2

Memory sharing, 5-5

Messages

receiving process, /-7

sending process, 7-7

Monitor calls, 1-2

arguments, 1-2, 1-3

calling sequence, 1-3

error returns, 1-4

for processes, 5-8

I /0, 2-2

operation code, 1-2

MONSYM, 1-2, 2-3

MRECV% JSYS, 5-L, 7-7, 7-10

arguments, 7/-10

execution, 7-13

flagbits, 7-12

flags returned, 7-13

MSEND% JSYS, 5-L, 7-7, 7-8, 7-14
arguments, 7-8

execution, 7-10

flag bits, 7-9

Multiple processes, 5-2

Multisection programs, 8-24

MUTIL% JSYS, 5-4, 7-18

arguments, 7-18

MUTIL% JSYS (Cont.)
execution, 7-24

functions, 7-19

NIN% JSYS, 2-L, 2-5, 2-1k4, 2-16

example, 2-8

NOUT% JSYS, 2-6, 2-16

example, 2-8

format options, 2-7

Number

reading a, 2-L

writing a, 2-6

One-word global byte pointer, 2-2,

8-11, 8-12

OPENF% JSYS, 3-2, 3-18, 3-30

access bits, 3-19

arguments, 3-18

examples, 3-21

Opening a file, 3-17

Operation code

monitor calls, 1-2

Qutput .

terminal, 2-1

Output designator

primary, 2-3

Ownership, 6-2, 6-18

exclusive, 6-2, 6-18

shared, 6-2, 6-18

Packet, 7-1, 7-2

receiving a, 7-10

sending a, 7-8

Packet data block, 7-2, 7-7, 7-15

address, 7-6

length, 7-6

Packet descriptor block, 7-2,

7-15

flags, 7-3

Packet format

|PCF, 7-2

Page, 3-1

Page access, 5-5

Page mapping, 5-15

file, 3-27

Page sharing, 5-5

Page-failure information, 8-21

Panic channel, L4-5, L-11, L-12

Parallel inferior processes, 5-10

PBIN% JSYS, 2-9, 2-16

PBOUT% JSYS, 2-9, 2-16

Index-6



PC, 5-1, 8-1, 8-2, B-1

address, 8-11

address fields, B8-2

PDV, 8-22 :

names, 8-23

rules, 8-23

PDVA, 8-22

manipulating, 8-22

PDVOP% JSYS, 5-11, 8-22

functions, 8-22

PID, 7-1, 7-6, 7-13

PMSEPN, 8-12

PMAP% JSYS, 3-27, 3-30, 3-31,

5-11, 5-16, 5-22, B-13, 8-16

access bits, 3-28

arguments, 3-28, 3-30, 5-16,

8-16

POINT pseudo-op, 2-1

Pointer

file, 3-22

Pooled resources, 6-12

POP instruction, 8-11

POPJ instruction, 8-11

PRIIN symbol, 2-3, 2-10, 2-16,

3-22

Primary input designator (.PRIIN),

2-3, 3-22
Primary output designator

(.PRIOU), 2-3, 3-22

Printing a string, 2-3

Priority level

interrupt, 4-12

software interrupt, L-4

Priority level table (LEVTAB),

4-9
.PRIOU symbol, 2-3, 2-10, 2-16,

3-22

Process, 1-6, 1-7

address space, 1-6, 5-11

capabilities, 5-11

communication, 1-6, 5-3, 5-22

control, 1-7, 5-k

deleting inferior, 5-23

examples, 5-2L4

execute-only, 8-22

handle, 5-5, 5-6, 5-10

identifiers, 5-5

inferior, 1-7, 5-2

information about, 8-18

JSYSs for, 5-8

multiple, 5-2

Process (Cont.)

parallel, 5-2

starting in any section, 8-17

starting inferior, 5-16

status word, 5-19

structure, 1-6, 5-1

superior, 1-7, 5-2

terminating inferior, 5-17

use of resources, 6-5

Process communication, 1-6, 5-3,

5-5, 5-22.
sharing pages, 5-22

sof tware interrupt, 5-4, 5-22

Process control, 5-4

Process handle, 5-5, 5-6

Process ID (PiID), 7-1, 7-6, 7-13
Process identifiers, 5-5

Process initialization, 2-9

Process mapping, 3-30

Process messages

receiving, /-7

sending, 7-7

Process relationships, 5-2

Process section, 3-31

unmapping, 8-16

Process status word, 5-19

Process structure, 1-6, 5-1

Process unmapping, 3-31

Program counter, 8-2

address fields, 8-2

Program counter (PC), 5-1, 8-1,

8-11

address, 8-11

Program data vector (PDV), 8-22

address (PDVA), 8-22

manipulating PDVAs, 8-22

names, 8-23

rules, 8-23

program version number, 8-23

Programs

multisection, 8-24

Protection

resource, 6-4

Pseudo-ops

ASCIZ, 1-6

POINT, 2-1

PSOUT% JSYS, 2-3, 2-16

example, 2-8

PUSH instruction, 8-11

PUSHJ instruction, 8-2, 8-11

I ndex-7



Queue, 6-2

Quota, 7-1

receive, 7-1

send, /-1

RDTTY% JSYS, 2-5, 2-10, 2-14&,

2-16

arguments, 2-10

control bits, 2-11

editing functions, 2-10

example, 2-1k

Reading a byte, 2-9

Reading a number, 2-4

Reading a string, 2-10

Reading from a file

summary, 3-4b

Receive quota, 7-1

Receiving a packet, 7-10

Referencing a file, 3-3

Releasing a resource, 6-13

RESET% JSYS, 2-9, 5-23, 7-6

example, 2-8

Resource, 6-2

level number, 6-5

obtaining information about,

6-16

ownership, 6-2, 6-18

pooled, 6-12

protection, 6-4

releasing a, 6-13

requesting use of, 6-6

sharing, 6-1, 6-18

use by process, 6-5

Resource lock, 6-2

Resource name, 6-4

Resource ownership, 6-2

RFSTS% JSYS, 5-4, 5-18

long form, 5-18, 5-20

status-return block, 5-20

process status word, 5-19

short form, 5-18

RIN% JSYS, 3-26

RIR% JSYS, 4-17, 8-12

example, L4-17

ROUT% JSYS, 3-26

RSMAP% JSYS, 8-18

information returned, 8-19

SAVE% JSYS, 5-11

Section

changing, 8-2

Section (Cont.)

creating, 8-16

nonzero, 8-16, 8-17

zero, 8-3, 8-12

Section handle, 8-19

Section mapping, 8-13

file, 3-31

file to process, 8-13

process, 8-14

Sections, 8-2

Send quota, 7-1

Sending a packet, 7-8

SEVEC% JSYS, 8-18

SFM instruction, 8-10

SFORK% JSYS, 5-4, 5-16

arguments, 5-16

SFRKV% JSYS, 5-17

Sharer groups, 6-18

use of, 6-18

Sharing files, 3-2, 6-1

Sharing pages, 5-22

Sharing resources, 6-1, 6-18

Short form GTJFN%, 3-5

examples, 3-12

SIN% JSYS, 3-24, 3-25

arguments, 3-24

SIR% JSYS, 4-7, L-12, 5-4, 8-12

arguments, L-7

SKPIR% JSYS, L-17

SMAP% JSYS, 3-31, 8-13

arguments, 3-32, 8-14, 8-15,

8-16

flag bits, 3-32

Software interrupt, 1-6, L4-11,

£-22

channel assignments, L-5

channels and priorities, L4-L,

L-6

disabling, 4-18

dismissing, L4-12

example, L-21

panic channel, L4-5, L4-11, L4-12

priority level, L-12

priority levels, L-4

process communication, 5-4

processing, L4-11

service routines, L-7

tables, L-7

Software interrupt system, 1-6,

L-1, 5-17

enabling, L4-10

| ndex-8



Software interrupt system (Cont.)

operational sequence, 4-2

summary, L-20

Source designator, 3-22

- SQUT% JSYS, 3-24, 3-25

arguments, 3-25

SPJFN% JSYS, 2-3

SSAVEZ JSYS, 5-11

Stack

address, 8-11

global, 8-11

pointer, 8-11

register, 8-11

Stack instructions, 8-11

ADJSP, 8-11

POP, 8-11

POPJ, 8-11

PUSH, 8-11

PUSHJ, 8-11

Standard file specification, 3-3

Starting a process, 8-17

Starting inferior process, 5-16

Status word

" process, 5-19

Status-return block, 5-20

STIW% JSYS, L-16

String

printing a, 2-3

reading a, 2-10

Strings

ASCIHt, 2-1, 3-23

ASClZ, 2-1, 3-23

text, 2-1

transferring, 3-2h4

example, 3-26

Structure

process, 1-6

Superior process, 1-7, 5-2

communicating with inferior,

5-10

<$YSTEM>INFO, 7-1, 7-6, 7-7, 7-8,

7-10, 7-14

~functions and arguments, 7-16

requests, 7-1b4

format, 7-15

responses, 7-17

<SYSTEM>INFO responses, 7-17

Table

channel (CHNTAB), L4-8

priority level (LEVTAB), L-9

Table (Cont.)

software interrupt, L-7

Terminal

input, 2-1

output, 2-1

Terminal codes

deassigning, 4-19

Terminal interrupts, 4-13

codes, L4-1b4

deferred mode, 4-16

generating, L-16

immediate mode, L-16

Terminating inferior process,

5-17
Text strings, 2-1

TMSG macro, 2-k

example, 2-8

Transferring bytes, 3-24

Transferring data, 3-21

Transferring strings, 3-24

example, 3-26

Trap

illegal instruction, 1-4

Two-word global byte pointer, 2-2,

8-11

Universal device designator, 8-12

Unmapping

process page, 3-31

process section, 8-16

Vector

entry, 8-18

Virtual address space, 8-1

Virtual space, 1-6

WFORK% JSYS, 5-L, 5-17, 5-18
Writing a byte, 2-9

Writing a number, 2-6

Writing to a file

summary, 3-Li

XBLT instruction, 8-10

XCT instruction, 8-10

XGTPW% JSYS, 8-21

arguments, 8-21

XGVEC% JSYS, 8-21

XHLL! instruction, 8-9, 8-10

XJEN instruction, 8-10

XJRST instruction, 8-2

XJRSTF instruction, 8-2, 8-10

Index-9



XMOVE| instruction, 8-9, 8-22 XSFRK% JSYS, 5-17, 8-17

XPCW instruction, 8-10 arguments, 8-17

XRIR% JSYS, 4-18, 8-13 XSIR% JSYS, 4-7, L-12, 4-20, 8-13

arguments, 4-18 arguments, L-7

XRMAP% JSYS, 8-20 XSVEC% JSYS, 8-18

arguments, 8-20 arguments, 8-18

Index-10



NOTE:

TOPS-20

Monitor Calls User’'s Guide

AA-D859C-TM

READER’S COMMENTS

This form is for document comments only. DIGITAL will use comments submitted on
this form at the company'’s discretion. If you require a written reply and are eligible to
receive one under Software Performance Report (SPR) service, submit your com-
ments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make sugges-
tions for improvement.

Did you find errors in this manual? if so, specify the error and the page number.

Please indicate the type of reader that you most nearly represent.

[l Assembly language programmer

[ Higher-level language programmer

[L] Occasional programmer (experienced)

_1 User with little programming experience[

[ Student programmer

[] Other (please specify)

Name Date

Organization Telephone

Street

City State —______ Zip Code

or Country



No Postage

Necessary

if Mailed in the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS

200 FOREST STREET MRO1-2/L12

MARLBOROUGH, MA 01752

C
u
t
 A
l
o
n
g
 D
o
t
t
e
d
 L
i
n
e


	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	index-07
	index-08
	index-09
	index-10
	replyA
	replyB

