FORTRAN Reference Manual

Order No. AA-4158B-TM

April 1977

This document describes the language elements of the
FORTRAN-20 compiler for the DECSYSTEM-20.

This document supersedes the document of the

same name, Order No. DEC-20-LFMRA-A-D,
“ published January 1976.

OPERATING SYSTEM AND VERSION: Any Digital-supported operating system for the
DECSYSTEM-20.

SOFTWARE VERSION: FORTRAN-20, Version 5

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maunard, massachusetts

First Printing, January 1976
Revised: April 1977

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use

or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright C) 1976, 1977 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0Ss/8

DECUS EDUSYSTEM PHA

UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10

DECCOMM DECsystem-20 TYPESET-11

5/77-15

CHAPTER

CHAPTER

CHAPTER

CHAPTER

1

(=
.
(=]

N

DN
. . ¢« o e

N
=W =

¢« e o

LW

MDD DD
.
BWwWWwWwwwwwddo N

w

. . . . 3 .
« e e e
Oo~JouTbd W

CGUOOUEBWNDNNNODNDNDNDNDND NN
. o e « e o e

wnN =

> WWWwWwwWwwwwuwwwwwwww
.

CONTENTS

PROLOGUE
BACKGROUND
CHARACTERS AND LINES

CHARACTER SET
STATEMENT, DEFINITION, AND FORMAT
Statement Label Field and Statement
Numbers
Line Continuation Field
Statement Field
Remarks
LINE TYPES
Initial and Continuation Line Types
Multi-Statement Lines
Comment Lines and Remarks
Debug Lines
Blank Lines
Line-Sequenced Input
ORDERING OF STATEMENTS

DATA TYPES, CONSTANTS, SYMBOLIC NAMES,
VARIABLES, AND ARRAYS

DATA TYPES
CONSTANTS
Integer Constants
Real Constants
Double-Precision Constants
Complex Constants
Octal Constants
Logical Constants
Literal Constants
Statement Label Constants
SYMBOLIC NAMES
VARIABLES
ARRAYS
Array Element Subscripts
Dimensioning Arrays
Order of Stored Array Elements

EXPRESSIONS

ARITHMETIC EXPRESSIONS
Rules for Writing Arithmetic
Expressions
LOGICAL EXPRESSIONS
Relational Expressions
EVALUATION OF EXPRESSIONS
Parenthesized Subexpressions

iii

Page

[N)
11
N =

NNNNNMNI\)NNM[\[.\
| |
N oo oUW W

W
I
=

WWWWWwWwWwWwwwwwwwww
[
FRFOYooINJOoOOoOUUIdWWNDNDNDH

CONTENTS (CONT.)

Page

Hierarchy of Operators 4-9
Mixed Mode Expression 4-10
Use of Logical Operands in Mixed Mode
Expressions 4-11

[S N

. e

www
.

= w N

CHAPTER

w

COMPILATION CONTROL STATEMENTS 5-1

INTRODUCTION
PROGRAM STATEMENT
INCLUDE STATEMENT
END STATEMENT

oo,
« e o o
oW

11

CHAPTER

o

o uvuuuu
1

I

SPECIFICATION STATEMENTS

I
—

INTRODUCTION

DIMENSION STATEMENT
Adjustable Dimensions

TYPE SPECIFICATION STATEMENTS

IMPLICIT STATEMENTS

COMMON STATEMENTS

.1 Dimensioning Arrays in COMMON
Statements

EQUIVALENCE STATEMENT

EXTERNAL STATEMENT

PARAMETER STATEMENT

[« Mol Mo o) el

LW N
-

L I I |

Lo wNn ==

|
[YelNe o JE N REN|

(o)} *) W)
« o e
(oo JE le)}

OOy O AN
|

CHAPTER

~

DATA STATEMENT

=

7.1 INTRODUCTION

oo} ~ ~
|

CHAPTER 8 ASSIGNMENT STATEMENTS

I
=

1 INTRODUCTION

2 ARITHMETIC ASSIGNMENT STATEMENTS
3

4

@ © ©
|
Ry

LOGICAL ASSIGNMENT STATEMENTS
ASSIGN (STATEMENT LABEL) ASSIGNMENT
STATEMENT

x®
|

CHAPTER

\e]

CONTROL STATEMENTS

[Ye)
|

|
FHHHOOOUBRBRWWINNHFEHEE &

INTRODUCTION
GO TO CONTROL STATEMENTS
Unconditional GO TO Statements
Computed GO TO Statements
Assigned GO TO Statements
IF STATEMENTS
Arithmetic IF Statements
Logical IF Statements
Logical Two-Branch IF Statements
DO STATEMENT
Nested DO Statements
Extended Range
Permitted Transfer Operations
CONTINUE STATEMENT
STOP STATEMENT
PAUSE STATEMENT
T (TRACE) Option

o o o
w N -

« e e o o o
|

~NJdous bbb wWLWWLWdDDONDNDE

o o o
wN =
[

. e
w N -
11

WWOWOWWOVWWYWLWWWYWWLWWWYWWWYWOLWWLY
WWOWWOWWOWVWWWWWOLWLWWYOOWOOY
I

.
[

iv

CHAPTER

10.5
10.5.1
10.5.2

10.5.3
10.5.4

10.5.5
10.5.6

10.6
10.7
10.8
10.8.1
10.8.2

wN -

CONTENTS (CONT.)

I/0 STATEMENTS

DATA TRANSFER OPERATIONS
TRANSFER MODES
Sequential Mode
Random Access Mode
Append Mode
I/0 STATEMENTS, BASIC FORMATS AND
COMPONENTS
I/0 Statement Keywords
FORTRAN Logical Unit Numbers
FORMAT Statement References
I/0 List
Implied DO Constructs
Formatted Record Handling
The Specification of Records for
Random Access
List-Directed I/0
NAMELIST I/0 Lists
OPTIONAL READ/WRITE ERROR EXIT AND
END-OF-FILE ARGUMENTS
READ STATEMENTS
Sequential Formatted READ Transfers
Sequential Unformatted Binary READ
Transfers
Sequential List-Directed READ
Transfers
Sequential NAMELIST-Controlled READ
Transfers
Random Access Formatted READ Transfers
Random Access Unformatted READ
Transfers
SUMMARY OF READ STATEMENTS
REREAD STATEMENT
WRITE STATEMENTS
Sequential Formatted WRITE Transfers
Sequential Unformatted Binary WRITE
Transfer
Sequential List-Directed WRITE Transfers
Sequential NAMELIST-Controllied WRITE
Transfers
Random Access Formatted WRITE Transfers
Random Access Unformatted WRITE
Transfers
SUMMARY OF WRITE STATEMENTS
ACCEPT STATEMENT
Formatted ACCEPT Transfers
ACCEPT Transfers Into FORMAT Statements
PRINT STATEMENT
TYPE STATEMENT
FIND STATEMENT
ENCODE AND DECODE STATEMENTS
ENCODE Statement
DECODE Statement
Example of ENCODE/DECODE Operations
SUMMARY OF I/0 STATEMENTS

Page
10-1

10-1
10-1
10-1
10-1
10-2

10-2
10-3
10-3
10-3
10-6
10-6
10-7

10-7
10-8
10-10

10-10
10-11
10-11

10-12
10-12

10-13
10-13

10-13
10-14
10-14
10-16
10-16

10-16
10-17

10-17
10-17

10-17
10-18
10-18
10-18
10-19
10-19
10-20
10-21
10-21
10-22
10-22
10-23
10-24

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

11

11.1
11.2
11.2.1
11.2.2

12

12.
12.
12.
12.

DN
« .
N

13

13.
13.
13.
13.
13.

[SS RO SO
. .
=

.
[\SR o]

13.
13.
13.
13.
13.
13.2.8
13.2.9
13.2.10
13.2.11
13.2.12
13.3

NN N
N oYU s W

14

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9

15
15.1
15.1.1
15.2
15.3

15.4
15.4.1

15.4.2

CONTENTS (CONT.)

NAMELIST STATEMENTS

INTRODUCTION

NAMELIST STATEMENT
NAMELIST-Controlled Input Transfers
NAMELIST-Controlled Output Transfers

FILE CONTROL STATEMENTS

INTRODUCTION

OPEN AND CLOSE STATEMENTS
Options for OPEN and CLOSE Statements
Summary of OPEN/CLOSE Statement Options

FORMAT STATEMENT

INTRODUCTION
FORMAT Statement, General Form
FORMAT DESCRIPTORS
Numeric Field Descriptors
Interaction of Field Descriptors
With I/0 variables
G, General Numeric Conversion Code
Numeric Fields with Scale Factors
Logical Field Descriptors
Variable Numeric Field Widths
Alphanumeric Field Descriptors
Transferring Alphanumeric Data
Mixed Numeric and Alphanumeric Fields
Multiple Record Specifications
Record Formatting Field Descriptors
$ Format Descriptor
CARRIAGE CONTROL CHARACTERS FOR PRINTING
ASCII RECORDS

DEVICE CONTROL STATEMENTS

INTRODUCTION

REWIND STATEMENT

UNLOAD STATEMENT

BACKSPACE STATEMENT

END FILE STATEMENT

SKIP RECORD STATEMENT

SKIP FILE STATEMENT

BACKFILE STATEMENT

SUMMARY OF DEVICE CONTROL STATEMENTS

SUBPROGRAM STATEMENTS

INTRODUCTION
Dummy and Actual Arguments
STATEMENT FUNCTIONS
INTRINSIC FUNCTIONS (FORTRAN DEFINED
FUNCTIONS)
EXTERNAL FUNCTIONS
Basic External Functions (FORTRAN-20
Defined Functions)
Generic Function Names

vi

Page
11-1

11-1

14-1

14-1
14-1
14-2
14-2
14-2
14-3
14-3
14-3
14-3

15-1
15-1
15-1
15-3

15-3
15-6

15-7
15-7

CHAPTER

APPENDIX

APPENDIX

APPENDIX

15.5
15.5.1
15.5.2
15.6
15.6.1

15.7

....

. . .

N b b
[

....
.. .
Y S

DWW wwmw ww
W WWwdhNDEFEEEE

@]

[eX@]
=
[

.
=
.

8]

.

.

NMNNMNMDNDNFERFEFHE-
.

ol ol ol ~SNouds w

.
.
w N+

DY
. .
o s

O 00 ~JOo) Ul

OOO0O0O0O0O000n OO0 000n (@}

.
DN NN NN
.« e e e

WNHH e

CONTENTS (CONT.)

SUBROUTINE SUBPROGRAMS
Referencing Subroutines (CALL Statement)
FORTRAN-20 Supplied Subroutines

RETURN STATEMENT AND MULTIPLE RETURNS
Referencing External FUNCTION
Subprograms

MULTIPLE SUBPROGRAM ENTRY POINTS (ENTRY

STATEMENT)

BLOCK DATA SUBPROGRAMS

INTRODUCTION
BLOCK DATA STATEMENT

ASCII-1968 CHARACTER CODE SET
USING THE COMPILER

RUNNING THE COMPILER
Switches Available with FORTRAN-20
The /DEBUG Switch
COMPIL~-Class Commands
READING THE LISTING
Compiler-Generated Variables
ERROR REPORTING
Fatal Errors and Warning Messages
Message Summary
CREATING A REENTRANT FORTRAN PROGRAM
WITH LINK

WRITING USER PROGRAMS

GENERAL PROGRAMMING CONSIDERATIONS
Accuracy and Range of Double-Precision
Numbers
Writing FORTRAN-20 Programs for
Execution on Non-DEC Machines
Using Floating-Point DO Loops
Computation of DO Loop Iterations
Subroutines - Programming Considerations
Reordering of Computations
Dimensioning of Formal Arrays

FORTRAN-20 GLOBAL OPTIMIZATION
Optimization Techniques
Elimination of Redundant Computations
Reduction of Operator Strength
Removal of Constant Computation From
Loops
Constant Folding and Propagation
Removal of Inaccessible Code
Global Register Allocation
I/0 Optimization
Uninitialized Variable Detection
Test Replacement
Improper Function References
Programming Techniques for Effective
Optimization

vii

Page
15-8
15-11
15-12
15-12
15-14
15-15
l6-1

16-1
l6-1

. T
HiE U S WH R

0~

wmcumolnwmmm

L U I I |
U WNDNN -

L L L |
(o] [eelioclye oo BUN RN ILN B o)}

Q OO0 00n ?OO(’)OOOOOO

APPENDIX

ooouoooooouo

(@]
w

OOO0nn
Wwwwww
AW

.

.
w w
.
N~

.
—

aon @] [eN @]
W W
©o N

N

=

w)

Douooo
bW N

[}

lvBvieRw]

NS
NI
Ny

.
wwN - > wdh N
.
-

aonooouvtuonu,

w}
D)
o e e e)
.
=

(o))
w
.

N

- -

oo
(S e

ww
.
W

CONTENTS (CONT.)

INTERACTING WITH NON-FORTRAN PROGRAMS
AND FILES
Calling Sequences
Accumulator Usage
Argument Lists
Argument Types
Description of Arguments
Converting Existing MACRO Libraries
for use with FORTRAN-20
Interaction with COBOL
Calling FORTRAN-20 Subroutines from
COBOL Programs
Calling COBOL Subroutines from
FORTRAN-20 Programs
LINK Overlay Facilities
Conventions

FOROTS

HARDWARE AND SOFTWARE REQUIREMENTS
FEATURES OF FOROTS

ERROR PROCESSING

INPUT/OUTPUT FACILITIES

Input/Output Channels Used Internally by

FOROTS

File Access Modes
Sequential Transfer Mode
Random Access Mode

ACCEPTABLE TYPES OF DATA FILES AND THEIR

FORMATS
ASCII Data Files
FORTRAN Binary Data Files
Format of Binary Files
Mixed Mode Data Files
Image Files
USING FOROTS
FOROTS Entry Points
Calling Sequences
MACRO Calls for FOROTS Functions
I/0 Statements, Sequential Access
Calling Sequences

NAMELIST I/O0 Sequential Access Calling

Sequences
Array Offsets and Factoring
I/0 Statements Random Access Calling
Sequences
Calling Sequences for Statements That
Use Default Devices
Statements to Position Magnetic
Tape Units
List Directed Input/Output Statements
Input/Output Data Lists
OPEN and CLOSE Statements,
Calling Sequences
Memory Allocation Routines
Software Channel Allocation and
De-allocation Routines
FUNCTIONS TO FACILITATE OVERLAYS
LOGICAL/PHYSICAL DEVICE ASSIGNMENTS

viii

)
V)]
Q
o

[|
wWN=O

OO0
1
e -

N
[N2
O b

Cc-21

U??U
wwio -

[|
b s W

11 | [}
0O

UUUUIUU oo oo

D-26
D-27

D-28
D-29
D-32

APPENDIX E

s o e o e
o« o e
w N -

.
[

e e o .

[l sl sl el o Bl o3 i o B o Bl e B oo B oo 3 i 3
WO~ WNDNOERF

APPENDIX F

APPENDIX G

APPENDIX H

INDEX

TABLE

s W W N
1
NN

QO o> b oD
1
Hdoudes w

CONTENTS (CONT.)

Page

FORDDT

i
—

INPUT FORMAT

Variables and Arrays

Numeric Conventions

Statement Labels and Source Line Numbers
NEW USER TUTORIAL

Basic Commands
FORDDT AND THE FORTRAN-20/DEBUG SWITCH
LOADING AND STARTING FORDDT
SCOPE OF NAME AND LABEL REFERENCES
FORDDT COMMANDS

mmmmmmrlzjmmmmmm
HEMFOO~NNWWWWwNN

ENVIRONMENT CONTROL -17
FORTRAN-20/0PTIMIZE SWITCH -17
FORDDT MESSAGES -17
COMPILER MESSAGES F-1
FOROTS ERROR MESSAGES G-1
DECSYSTEM-10 COMPATABILITY H-1
Index~1

TABLES

FORTRAN Statement Categories 1-2
FORTRAN Character Set 2-1
Constants 3-1
Use of Symbolic Names 3-6
Arithmetic Operations and Operators 4-1
Type of the Result Obtained From

Mixed Mode Operations 4-3

Permitted Base/Exponent Type Combinations 4-4

Logical Operators 4-5

Logical Operations, Truth Table 4-6

Relational Operators and Operations 4-7

Hierarchy of FORTRAN-10 Operators 4-10
Rules for Conversion in Mixed Mode

Assignments 8-2

FORTRAN-20 Logical Device Assignments 10-4

Summary of READ Statements 10-15
Summary of WRITE Statements 10-17
Summary of I/O Statements 10-24
OPEN/CLOSE Statement Arguments 12-11
FORTRAN-20 Conversion Codes 13-3

Action of Field Descriptors On

Sample Data 13-5

Numeric Field Codes 13-6

Descriptor Conversion of Real and Double

Precision Data According to Magnitude 13-8

FORTRAN-20 Print Control Characters 13-17
Summary of FORTRAN-20 Device Control

Statements 14-4

Intrinsic Functions (FORTRAN-20 Defined

Functions) 15-4

ix

[
w
{
[38}

[
() OnmooOwoowm

N

NN W

CONTENTS (CONT.)

Basic External Functions (FORTRAN-20
Defined Functions)

FORTRAN-~20 Library Subroutines
FORTRAN-20 Compiler Switches
Modifiers to /DEBUG Switch

Argument Types and Type Codes
Function Numbers and Function Codes
FORTRAN Device Table

Table of Commands

FOROTS I/0 Error Messages and ERRSNS
Returned Values

FOROTS Arithmetic and Library Error
Messages

Page

15-9
15-17

B-3
Cc-12
D-30
D-33
E-1

G-2

CHAPTER 1

PROLOGUE

1.1 BACKGROUND

A FORTRAN source program consists of statements constructed using the
language elements and the syntax described in this manual. A
statement performs one of the following functions:

1. Causes operations such as multiplication, division, and
branching to be carried out.

2. Specifies the type and format of data being processed.
3. Specifies the characteristics of the source program.

FORTRAN statements are composed of Kkeywords, 1i.e., words that are
recognized by the compiler, used with elements of the language set:
constants, variables, and expressions. There are two basic types of
FORTRAN statements: executable and nonexecutable.

Executable statements specify the action of the program;
nonexecutable statements describe the characteristics and arrangement
of data, editing information, statement functions, and the kind of
subprograms that may be included in the program. The compilation of
executable statements results in the creation of executable code in
the object program. Nonexecutable statements provide information only
to the compiler; they do not create executable code.

In this manual, the FORTRAN statements are grouped into 12 categories,
each of which 1is described in a separate chapter. The name,
definition, and chapter reference for each statement category are
given in Table 1-1.

The basic FORTRAN language elements, (constants, wvariables, and
expressions), the character set from which they may be formed, and the
rules that govern their construction and use are described in Chapters
2 through 4.

PROLOGUE

Table 1-1
FORTRAN Statement Categories

Chapter Category
Reference Name Function
5 Compilation Control | Identify programs and indicate
Statements their beginning and ending
points.
6 Specification Declare the properties of
Statements variables, arrays, and functions.
7 DATA Assign initial values to
Statements variables and array elements.
8 Assignment Assign values to named variables
Statements and array elements.
9 Control Determine the order of execution
Statements of the object program and
terminate its execution.
10 Input/Output Transfer data between internal
Statements storage and specified

input/output devices.

'¢Establlsh lists that are wused
| with oo certalnffu‘ input/output

‘:statements to transfer data that
'appears spe01al type 'of i

open, and close files
parameters for 1nput “and
; Op! between files
:and the processor

13 FORMAT Spec1fy formats for data on

Statements input/output devices.
14 Device Control Control the positioning of
Statements records or files on certain

input/output devices.

15 Subprogram Define functions and subroutines
Statements and their entry points.

16 BLOCK DATA befine data specification
Statements subprograms that may initialize

common storage areas.

PREFACE

This manual describes the FORTRAN language as implemented for the
DECsystem-20 FORTRAN Language Processing System. In the text, the
language is called FORTRAN-20 (to distinguish it from ANSI FORTRAN),
or simply FORTRAN.

Since this is a reference manual, we assume that you have used FORTRAN
before. If you haven'‘t, you should read one of the many introductory
FORTRAN texts.

Your use of FORTRAN may also require use of other DECsystem-20
programs: the monitor, the CREF program, the debugging program, a
text editor, and the BATCH program. These are described in the
following manuals:

User's Guide
DEC-20-0UGAA-A-D

Monitor Calls User's Guide
DEC-20-UMUGA-A-D

EDIT User's Guide
DEC—ZO—UEUGAfA—D

BATCH Reference Manual
DEC-20-OBRMA~-A-D

The standard for FORTRAN is the American National Standards 1Institute

(ANSI) FORTRAN, X3.9-1966. FORTRAN-20 extensions and additions to
ANSI FORTRAN are gray shaded.

xi

CHAPTER 2

CHARACTERS AND LINES

2.1 CHARACTER SET

Table 2-1 1lists the digits, letters, and symbols recognized by
FORTRAN. The remainder of the ASCII-1968 character set(l), |is
acceptable within 1literal constants or comment text, but these
characters cause fatal errors in other contexts. An exception is
CONTROL-%Z, which, when used in terminal input, means end-of-file.

NOTE

Lower-case alphabet characters are
treated as upper-case outside the
context of Hollerith constants, 1literal
strings, and comments.

Table 2-1
FORTRAN Character Set
Letters
A,a J,J S,s
B,b K,k T,t
C,c L,1 U,u
D,d M,m v,v
E,e N,n W,w
F,f 0,0 X,x
G,g P,p Y,y
H,h Q,q 2,2
I,1 R,r
Digits
0 5
1 6
2 7
3 8
4 9

1. The complete ASCII-1968 character set is defined in the X3.4-1968
version of the "American National Standard for Information
Interchange," and is given in Appendix A.

2-1

CHARACTERS AND LINES

Table 2-1 (Cont.)
FORTRAN Character Set

Symbols
! Exclamation Point , Comma
" Quotation Marks ~ Hyphen (Minus)
Number Sign . Period (Decimal Point)
$ Dollar Sign / Slant (slash)
& Ampersand : Colon
' Apostrophe ; Semicolon
(Opening Parenthesis < Less Than
) Closing Parenthesis = Equals
* Asterisk > Greater Than
+ Plus ® Circumflex

Line Termination Characters

Line Feed
Form Feed
Vertical Tab

Line Formatting Characters

Carriage Return
Horizontal Tab
Blank

Note that horizontal tabs normally advance the character position
pointer to the next position that is an even multiple of 8. An
exception to this is the initial tab, which is defined as a tab that
includes or starts in character position 6. (Refer to Section 2.3.1
for a description of initial and continuation line types.) Tabs within
literal specifications count as one character even though they may
advance the character position as many as eight places.

2.2 STATEMENT, DEFINITION, AND FORMAT

Source program statements are divided into physical lines. A line is
defined as a string of adjacent character positions, terminated by the
first occurrence of a 1line termination character regardless of
context. Each line is divided into four fields:

%: Line Character Positions ={
1 2 3 4 5 6 7 8 70 71 72 73 . .
~ — J&..V—J — r o « v J
Statement Continuation Statement Field Remarks

Label Field Field

CHARACTERS AND LINES

2.2.1 Statement Label Field and Statement Numbers

You may place a number ranging from 1 to 99999 in the statement label
field of an initial 1line to 1identify the statement. Any source
program statement that is referenced by another statement must have a
statement number. Leading zeros and all blanks in the label field are
ignored, e.g., the numbers 00105 and 105 are both accepted as
statement number 105. You may assign the statement numbers in a
source program in any order; however, each statement number must be
unique with respect to all other statements in the program or
subprogram. You cannot label non-executable statements other than
FORMAT and END statements.

A main program and a subroutine may contain identical statement
numbers. In this case, references to these numbers are understood to
mean the numbers in the same program unit in which the reference 1is
made. An example:

Assume that main module MAINMD and subprogram SUBl1 both
contain statement number 105. A GO TO statement, for
instance, in MAINMD will refer to statement 105 in MAINMD,
NOT to 105 in SUB1. A GO TO in SUBl will transfer control
to 105 in SUBL.

‘When you enter source programs 1nto the system ‘via W 1
terminal, you may use an 1n1t1al tab to Sklp all or: p rt of the 1abel,
field. : ‘

If an initial tab is encountered during compilation, FORTRAN examines.
the character immediately following the tab to determine the type of
line being entered. 1If the character following the tab is one of the
digits 1 through 9, FORTRAN considers the line as a continuation line
and the second character after the tab as the first character of the
statement field. 1If the character following the tab is other than one:
of the digits 1 through 9, FORTRAN considers the line to be an initial
line and the character following the tab is considered to be the first.
‘character of the statement field. The character following the initial.
tab 1is considered to be in character p051t10n;6 1n~aycont1nuatlon;
line, and in character p051t10n 7 in an 1n1t1a L ' é

2.2.2 Line Continuation Field

Any alphanumeric character (except a blank or a zero) placed in this
field (position 6) identifies the line as a continuation line. (See
Section 2.3.1 for description.)

Whenever you use a tab to skip all or part of the 1label field of a}
continuation 1line, the next character you enter must be one of the
dlglts 1 through 9 to 1dent1fy the llne as a contlnuatlon llne. ~ ‘

2.2.3 Statement Field

Any FORTRAN statement may appear in this field. Blanks (spaces) and
tabs do not affect compilation of the statement and may be used freely
in this field for appearance purposes, with the exception of textual
data given within either a literal or Hollerith specification where
blanks and tabs are significant characters.

CHARACTERS AND LINES

2.2.4 Remarks

In lines consisting of 73 or more character positions, only the first
72 characters are interpreted by FORTRAN. (Note that tabs generally
occupy more than one character position, usually advancing the counter
to the next character position that is an even multiple of eight.) All
other characters in the line (character positions 73, 74 ...etc.) are
treated as remarks and do not affect compilation.

Note that remarks may also be added to a line in character positions 7

through 72, provided the text of the remark is preceded by the symbol
“1" (Refer to Section 2.3.3.)

2.3 LINE TYPES
A line in a FORTRAN source program may be:
1. An initial line,

2. A continuation line,

6. A blank line.

Each of these line types is described in the following paragraphs.

2.3.1 1Initial and Continuation Line Types

A FORTRAN statement may occupy the statement fields of up to 20
consecutive lines. The first line in a multi-line statement group is
referred to as the initial line; the succeeding lines are referred to
as continuation lines.

An initial line may be assigned a statement number and must have
either a blank or a =zero in its continuation line field, i.e.,
character position 6.

kkeyboard”lnput dev1ce,ﬁyou may Gsei
O If you use an

character of the statement

non- numerlc‘ character,
ffleld must be non-numer

s e.,,

the flrs,

Contlnuatlon llnes cannot be a581gned statement numbers; they are
identified by any alphanumeric character (except for a blank or zero)
placed in character position 6 of the line, i.e., continuation 1line
field. The 1label field of a continuation line is treated as remark
text.

CHARACTERS AND LINES

Note that blank lines, comments, and debug lines that are treated like
comments, i.e., debug lines that are not compiled with the rest of the
program (refer to Section 2.3.4) terminate a continuation sequence.

Following is an example of a 4-line FORTRAN FORMAT statement using
initial tabs:

105 FORMAT (1H1,17HINITIAL CHARGE = ,F10.6,10H COULOMB, 6X,
213HRESISTANCE = ,F9.3,6H OHM/15H CAPACITANCE = ,F10.6,

384 FARAD,11X,13HINDUCTANCE = ,F7.3,8H HENRY///
421H TIME CURRENT/7H MS,10X.2HMA///)

Continuation Line Characters, i.e., 2, 3, and 4

2.3.2 Multi-Statement Lines

“You may write more than one FORTRAN statement in the statement field
of one line. The rules for structuring a multi-statement line are:

1. Successive statements must be separated~by semicolons (;).

2. Only the first statement in the serieéﬂéaﬁghQ ‘~:$pétement

number . -

3. Statements following the first statement cannot be a
continuation of the preceding statement.

4. The last statement in a line may be continued to the next
line if that next line is made a continuation line. :

‘An example of a multi-statement line is:

450 DIST=RATE * TIME ;TIME=TIME+0.05 ;CALL PRIME(TIME,DIST)

2.3.3 Comment Lines and Remarks

Lines that contain descriptive text only are referred to as comment
lines. Comment 1lines are commonly used to identify and introduce a
source program, to describe the purpose of a particular set of
statements, and to introduce subprograms.

To structure a comment line:

1. You must place one of the characters C (or ¢), $,/,*, or !
in character position 1 of the 1line to identify it as a
comment line.

2. You may write the text into character positions 2 through the
end of the line.

3. You may place comment lines anywhere in the source program,
but they cannot precede a continuation line because comments
terminate a continuation sequence.

4., You may write a large comment as a sequence of any number of
lines; however, each 1line must carry the identifying
character (C,$,/,*, or 1) in its first character position.

. specification.

zby the preceding ! symbol. ‘Remarks do not result ‘in: the generation'

CHARACTERS AND LINES

The following is an example of a comment that occupies more than one
line.

CSUBROUTINE - Al2

CTHE PURPOSE OF THIS SUBROUTINE IS
CT0 FORMAT AND STORE THE RESULTS OF
CTEST PROGRAM HEAT TEST-1101

Comment lines are printed on all listings, but are otherwise ignored
by the compller.

You may add a remark to any statement fleld, in character p051t10ns 7
through 72, prov1ded the, symbol : precedes the text For example, in:
the line , e W ~ : , . , '

IF(N EQ O)STOP' STOP IF CARD IS BLANK

he character group "Stop if card is’ blank" is 1dent1fled as a remark

f object program code, but they will appear on listings. The symbol
+ indicating a remark, must appear outside the context of a literal

Note that characters appearing in character positions 73 and beyond
are automatically treated as remarks, so that the symbol ! need not
be used. (Refer to Section 2.2.4.)

f2;3;4 'Debug hinesr

'As an aid in program debugging, a D (or d) in character position 1 of .

~any line -causes the line to be interpreted as a comment-line, i. e.,.

echaracter p051t10n 1.

not compiled with th
is present in the
“descrlptlon of the file switch options.) When the /INCLUDE switch
_present in the command string, the D (or d) in character position 1 1s
treated as a blank so that the remainder of the line is compiled as - an

jrest of the program unless the /INCLUDE ‘switch
command string. (Refer to Appendix C for a

ordinary "(noncomment) llne.'” ‘Note that the initial and allf
continuation lines of a debug statement must contaln a DH“OKT da) ‘

2.3.5 Blank Lines

You may insert lines consisting of only blanks, tabs, or no characters
anywhere in your source program except immediately preceding a
continuation line, because blank lines are by definition initial lines
and as such terminate a continuation sequence. Blank lines are used
for formatting purposes only; they cause blank lines to appear in
their corresponding positions in source program listings; otherwise,
they are ignored by the compiler.

12.3.6 Dine-Sequenced Input

CHARACTERS AND LINES

2.4 ORDERING OF STATEMENTS

The order in which you place statements in a program unit 1is
important. That is, certain types of statements have to be processed
before others to guarantee that compilation takes place as you expect.
The proper sequence for statements 1is summarized by the following
diagram.

PROGRAM, FUNCTION, SUBPROGRAM, or
BLOCK DATA Statements

IMPLICIT Statements

PARAMETER Statements

DIMENSION, COMMON,
Comment Lines FORMAT Statements EQUIVALENCE, EXTERNAL
NAMELIST, or Type
Specification Statements

Statement
Function
Definitions
DATA Statements

Executable
Statements

END Statement

Horizontal lines indicate the order in which statements must appear.
That is, you cannot intersperse horizontal sections. For example, all
PARAMETER statements must appear after all IMPLICIT statements and
before any DATA statements, i.e., PARAMETER, IMPLICIT, and DATA
statements cannot be interspersed. Statement function definitions
must appear after IMPLICIT statements and before executable
statements.

Vertical lines indicate the way in which certain types of statements
may be interspersed. For example, you may intersperse DATA statements
with statement function definitions and executable statements. you
may intersperse FORMAT statements with IMPLICIT statements, parameter
statements, other specification statements, DATA statements, statement
function definitions, and executable statements. The only restriction
on the placement of FORMAT statements is that they must appear after
any PROGRAM, FUNCTION, subprogram, and BLOCK DATA statements, and
before the END statement.

Special

1.

2.

CHARACTERS AND LINES

Cases:

The placement of an INCLUDE statement is dictated by the
types of statements to be INCLUDEd.

The ENTRY statement 1is allowed only in functions or
subroutines. All executable references to any of the dummy
parameters must physically follow the ENTRY statement unless
the references appear in the function definition statement,
the subroutine, or in a preceding ENTRY statement.

BLOCK DATA subprograms cannot contain any executable

statements, statement functions, FORMAT statements, EXTERNAL
statements, or NAMELIST statements. (Refer to Section 16.1.)

When statements are out of place, FORTRAN issues messages, some of
which may indicate fatal errors.

2-8

CHAPTER 3

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

3.1 DATA TYPES
The data types you may use in FORTRAN source programs are:
1. integer,
2. real,
3. double-precision,
4. complex,
5. octal,
EQQaWWééuple?oéséi}f

iteral,

8. kstatement';épel,wandg

9. logical.
The use and format of each of the foregoing data types are discussed

in the descriptions of the constant having the same data type
(Sections 3.2.1 through 3.2.8).

3.2 CONSTANTS

Constants are quantities that do not change value during the execution
of the object program.

The constants you may use in FORTRAN are listed in Table 3-1.

Table 3-1
Constants
Category Constant (s) Types
Numeric Integer, real, double-precision, complex, and
octal
_Truth Values | Logical
~Literal Data Literal

_Statement Label | Address of statemer

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

3.2.1 Integer Constants ”

An integer constant is a string of from one to eleven digits that
represents a whole decimal number (a number without a fractional

. part). Integer constants must be within the range of (-2%*35)=1" to
+ (+2*%35)-1 (-34359738367 to +34359738367). Positive integer constants

@may:optionally be signed; negative integer constants must be signed.
. You "cannot use decimal points, commas, or other symbols on integer .
nstants (except for a preceding 51gn, +. 0or -). Examples of. valid:
teger constants are: ' 1

345
+345
-345

Examples of 1nva11d integer constants are:

+345.':'(use of decimal point)
3,450 (use of comma)
34.5 (use of decimal point; not a whole number)

:3 2. 2 Real Constants

A real constant may have any of the follow1ng forms-

1. A basic real constant: a string of decimal digits followed ;
© immediately by a decimal ‘point followed optionally by a
‘decimal fraction, e.g., 1557.42. ‘ R '

: 2. A basic real"constant "followed immediately by a decimal
SR - integer exponent written in E notation (exponential notatlon)
S form, e.g., 1559.E2.

3,*aAn@1nteger'cons£ant (no decimal point) followed by a decimalfz
”integerfexPonent written in E notation, e.g., 1559E2. '

Real constants may,be of any size; -however, each will be rounded to E
fit the pre0151on of 27 b1ts (7 to 9 decimal digits). i

gPrec151on for real constants is maintained to- approximately eight
. significant dlgltS' ~-the absolute precision depends upon the numbers .
~involved. - SR , o

The exponent field of a real constant written in E notation form .
“cannot be empty (blank); it must Dbe either 'a zero or an integer
_constant. The magnitude of the exponent must be greater than -38 -and
equal to or less than +38 (i.e., =-38<n<+38). The following are
- examples of valid real constants. ~ ' ,

-98.765
7.0E+0 (7.)
~ L7E-3. (.0007)
 5E+5 ;;,.(sooooo)
©50115.
S 50.E1 (500.)

1lowing are examplesfof'invalid real constants.

2,6E75 (exponent is too large)
75E ~“(exponent incorrectly written)
- (no decimal point given)

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

3.2.3 Double-Precision Constants

Constants of this type are similar to real constants written in E
notation form; the direct differences between these two constants
are:

1. Double-precision constants, depending on their magnitude,
have precision of 16 +to 18 places rather than the 8-digit
precision obtained for real constants.

2. Each double-precision constant occupies two storage
locations.

3. The letter D, instead of E, 1is wused 1in double-precision
constants to identify a decimal exponent.

You must use both the letter D and an exponent (even of zero) in
writing a double-precision constant. The exponent need only be signed
if it is negative; its magnitude must be greater than -38 and equal
to or less than +38 (i.e., -38<n<+38). The range of magnitude
permitted a double-precision constant is 0.14 X 10**(-38) to 3.4 X
10** (+38)

The following are examples of valid double-precision constants.

7.9D03 (= 7900)
7.9D+03 (= 7900)
7.9D-3 (= .0079)
79D03 (= 79000)
79D0 (= 79)

The following are examples of invalid double-precision constants.

7.9D99 (exponent is too large)
7.9E5 ("E" denotes a single-precision constant)

3.2.4 Complex Constants

You can represent a complex constant by an ordered pair of integer,
real, or octal constants written within parentheses and separated by a
comma. For example, (.70712, -.70712) and (8.763E3, 2.297) are
complex constants.

In a complex constant the first (leftmost) real constant of the pair
represents the real part of the number; the second real constant
represents the imaginary part of the number. Both the real and
imaginary parts of a complex constant can be signed.

The real constants that represent the real and imaginary parts of a
complex constant occupy two consecutive storage locations in the
object program.

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

'3.2.5 Octal Constants

You .may use. . octal = numbers (radix 8) as constants in arithmetic
expressions, loglcal expre351ons, and data statements. Octal numbers.
up to 12 digits in length are- consrdered standard octal constants-”
‘they are stored right- justified in one processor storage location.
When. necessary, standard octal constants ‘are padded w1th leadlng Zeros
to fill thelr storage locatlon .

~If you spec1fy more than 12 dlglts in- an
‘considered a double octal" constant Double octa vconstants occupy two
‘storage locations and may contain up to 24 rlght]ustlfled octal‘
dlglts,,‘zeros are added to flll any unused dlglts ‘ , et

SIf you aSSLgn a slngle octal constant to a double pre0151on or complexé
variable, it is:stored, rlght Justlfled, in the h1gh-order word of the%
;varlable.m The‘low order portlon of ‘the varlable is set to zero.f]

"If you aSSLgn akdouble octal constant to a double prec151on or complexk
variable, it 1is stored right-justified starting in the low- order
:(rlghtmost) word and proceeds leftwards into the hlgh-order word.

kAll octal constants must-“P

;f‘dl.“ be preceded by A double quote (“) to
: "octal*ge g.[ﬂ'777, and

o identity the aigits as

.l*be‘51gned 1f negatlve, but optlonally 51gned;1f p051t1ve;

é“'contaln one or more of the dlgltS 0 through 7 but not

‘The following are examples of valid octal constants:

© o "123456700007
ot l23456700007. = i vt et T G e e B b

- +"12345 ‘ fae s 47 psti -y i « e e
L ="7777
S M=7777

“ 'ollow1ng are . examples of 1nva11d octal constant L

:(contalns an 8) k
(no 1dent1fy1ng double quotes)

%When you use an octal constant asan. operand in an: expre551on,',1tsp
form (bit pattern) is not converted to accommodate it to the type of
any: other ‘operand. . For. example, the, subexpre551on (A+"202 400 000
f000) _has as its result the sum of A with the floating. p01nt number,
'2.0; while the subexpress1on (I+"202 400 000 000) - has as its results
sum- of I w1th ‘a large. 1nteger : , : e S aE

cta oonstants may not)€
functions that require “non-octal ;arguments
‘requires INTEGER arguments and cannot ept.

:f MINO, for 1nStanCe
arguments;? ¥

an 1nteger ~or real varlable/‘
location- (leftmost) ‘are used.

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

3.2.6 Logical Constants

The Boolean values of truth and falsehood are represented in FORTRAN
source programs as the logical constants .TRUE. and .FALSE.. Always
write logical constants -enclosed by periods as 1in the preceding
sentence.

Logical quantities may be operated on in arithmetic and 1logical
statements. Only the sign bit of a numeric used in a logical IF
statement is tested to determine if it is true (sign is negative) or
false (sign is positive).

3.2.7 Literal Constants

A literal constant may be either of the following:

~within apostrophes, e.g., 'TEST#5'.

2. A Hollerith 1literal, which 1is written as a string of
alphanumeric and/or special characters preceded by nH (e.g.,
nHstring). 1In the prefix nH, the letter n represents a
number that specifies the exact number of characters
(including blanks) that follow the letter H; the 1letter H
identifies the literal as a Hollerith literal. The following
are examples of Hollerith literals:

2HAB
14HLOAD TEST #124
6H#124-A

NOTE

A tab (-]) in a Hollerith literal is counted as one
character, e.g., 3H - AB.

You may enter literal constants into DATA statements as a string of:

1. up to ten 7-bit ASCII characters for complex or double
precision type variables, and ‘

2. up to five 7-bit ASCII characters for all other type§
variables.

" The 7-bit ASCII characters that comprise a literal constant are stored
" left-justified (starting in the high-order word of a 2-word precision
or complex literal) with blanks placed in empty ' character positions.
- Literal constants that occupy more than one variable are stored as
. successive variables in the list. The following example illustrates |
. how the string of characters ST L o

A LITERAL OF MANY CHARACTERS

- is stored in a six-element array called A.

DIMENSION A(6)
DATA A/'A LITERAI. OF MANY CHARACTERS'/

3-5

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

A(l) is set to 'A LIT'

- ~A(2) is set to 'ERAL ‘'
.A(3) is set to 'OF MA'.
A(4) is set to' 'NY CH'
'A(5) is set to 'ARACT'

-~ A(6) 1is set to.'ERS !

l3{2;8 Statement Label Constantsk

that

Statement labels kare nnumerlc identifiers represent program
statement numbers. , o f

You write statement label constants as strings of from one to five
_decimalufdigits,, which are preceded by either a dollar sign ($) or an
:ampersand (&) . For example, elther $1l992 or &11992 may be used as a

statement label constant

(You use statement label constants only in the argument list of ”ALL?
. statements to identify the statement to return to in a multlple RETURN?
1statement. (Refer to Chapter 15) : : ; F

3.3 SYMBOLIC NAMES

Symbolic names may consist of any alphanumeric combination of from one

,,,,,, to six characters. You may use more than six characters, but FORTRAN
1 will ignore all but the first six. The first character of a symbolic

name must be an alphabetic character.

The following are examples of legal symbolic names:

A12345
IAMBIC
ABLE

The following are examples of illegal symbolic names:

#AMBIC (symbol used as first character)
1AB (number used as first character)

You use symbolic names to identify specific items of a source program;
Table 3-2 1lists these items, together with an example of a symbolic
name and text reference for each.

Table 3-2
Use of Symbolic Names

For a Detailed

Symbolic Names
Can Identify

For Example

Description
See Section

1. Variables PI, CONST, LIMIT 3.4
2. Arrays TAX 3.5
3. Array elements TAX (NAME, INCOME) 3.5.1
4. Functions MYFUNC, VALFUN 15.2
5. Subroutines CALCSB, SUB2, LOOKUP 15.5
6. External library SIN, ATAN, COSH 15.4
functions
7. COMMON block names DATAR, COMDAT 6.5

3-6

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

3.4 VARIABLES

A variable is a datum (storage location) that 1is identified by a
symbolic name and 1is not a constant, an array or an array element.
Variables specify values that are assigned to them by either
arithmetic statements (Chapter 8), DATA statements (Chapter 7), or at
run time via I/0 references (Chapter 10). Before you assign a value
to a variable, it is termed an undefined variable, and you should not
reference it except to assign a value to it.

If you reference an undefined variable, an unknown value (garbage)
will be obtained.

The value you assign to a variable may be either a constant or the
result of a calculation that is performed during the execution of the
object program. For example, the statement IAB=5 assigns the constant
5 to the variable IAB; in the statement IAB=5+B, however, the value
of IAB at a given time will depend on the value of variable B at the
time the statement was last executed.

The type of a variable is the type of the contents of the datum that
it identifies. Variables may be:

1. integer

2. real

3. logical

4, double-precision, or

5. complex.
You may declare the type of a variable by using either implicit or
explicit type declaration statements (Chapter 6). However, if you do
not use type declaration statements, FORTRAN assumes the following

convention:

1. Variable names that begin with the letters I, J, K, L, M, or
N are normally integer variables.

2. Variable names that begin with any letter other than I, J, K,
L, M, or N are normally real variables.

Examples of determining the type of a variable according to the
foregoing convention are given in the following table:

Variable Beginning Letter Assumed Data Type
ITEMP I Integer

OTEMP 0 Real

KAl123 K Integer

AABLE A Real

3.5 ARRAYS

An array is an ordered set of data identified by an array name. Array
names are symbolic names and must conform to the rules given in
Section 3.3 for writing symbolic names.

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

Each datum within an array is called an array element. As with
variables, you may assign a value to an array element. Before you
assign a value to an array element it is considered to be wundefined;
you should not reference it until you have assigned it a value. If
you reference an undefined array element, the value of the element
will be unpredictable.

Name each element of an array by using the array name together with a
subscript that describes the position of the element within the array.

3.5.1 Array Element Subscripts

Give the subscript of an array element identifier within parentheses,
as either one subscript quantity or a set of subscript quantities
delimited by commas. Write the parenthesized subscript immediately
after the array name. The general form of an array element name is AN
(sl, s2,...5n), where AN is the array name and S1 through Sn represent

,,,,,,,, ber”

n number of subscript quantities. You may use any number bs
‘quantities in an element name;’ however, the number used must
equal the number of dimensions (Section 3.5.2) specified for the
array.

A subscript can be any compound expression (Chapter 4), for example:

1. Subscript quantities may contain arithmetic expressions that
involve addition, subtraction, multiplication, division, and
exponentiation. For example, (A+B,C*5,D/2) and
(A**3,(B/4+C)*E 3) are valid subscripts.

=3Ar1thmetlc expre581ons used 1n array subscrlpts may be of anyf
type, but noninteger expressions. (1ncludlng complex) areﬁ
*‘onverted to integer when ‘the subscrlpt is evaluated T 1y

3. A subscript may contain function references (Chapter 14).
For example: TABLE (SIN (A) *B,2,3) is a valid array element
identifier.

4. Subscripts may contain array element identifiers nested to
any level as subscripts. For example, in the subscript
(I(J(K(L))),A+B,C) the first subscript quantity given 1is a
nested 3-level subscript.

Here are examples of valid array element subscripts:

1. 1IAB(1,5,3)

2. ABLE(A)

HMAT(A AB(Z*L),.3*TAB(A M+l D),55)

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

3.5.2 Dimensioning Arrays

You must declare the size (number of elements) of an array in order to
reserve the needed amount of locations in which to store the array.
Arrays are stored as a series of sequential storage locations.
Arrays, however, are visualized and referenced as if they were single
or multi-dimensional rectilinear matrices, dimensioned on a row,
column, and plane basis. For example, the following figure represents
a 3-row, 3-column, 2-plane array.

3 ROWS 4

)
&
\/D‘\
Q
?

3 COLUMNS

10-1058

You specify the size of an array by an array declarator written as a
subscripted array name. In an array declarator, however, each
subscript quantity is a dimension of the array and must be either an
integer variable or an integer constant.

For example, TABLE(I,J,K) and MATRIX (10,7,3,4) are valid array
declarators.

The total number of elements that comprise an array is the product of
the dimension quantities given in its array declarator. For example,
the array IAB dimensioned as IAB (2,3,4) has 24 elements (2 X 3 X 4 =
24) .

Dimension arrays only in the specification statements DIMENSION,
COMMON, and type declaration (Chapter 6). Subscripted array names
appearing in any of the foregoing statements are array declarators;
subscripted array names appearing in any other statements are always
array element identifiers. 1In array declarators the position of a
given subscript quantity determines the particular dimension of the
array (e.g., row, column, or plane) that it represents. The first
three subscript positions specify the number of rows, columns, and
planes that comprise the named array; each following subscript given .
‘then specifies a set comprised of n-number (value of the subscrlpt) of
%the prev1ous1y deflned sets. ~ |

For example:

-

The Dimension Declarator Specifies the Array(s)
TAB(2)
TAB (2,2)
: TAB(222)
TAB(2,2,2,2) e [i221222
; ’ iR e = i :
; i ; B LLL22J22 2,222

-

SR
e PEB I RN] R

FORTRAN-20 permits any number of
dimensiOnsjinganwa:ray“declarator;, LT

3.5.3 Order of Stored Array Elements

The elements of an array are arranged in storage in ascending order.
The value of the first subscript quantity varies between its minimum
and maximum values most rapidly. The value of the 1last given
subscript quantity increases to its maximum value least rapidly. For
example, the elements of the array dimensioned as I(2,3) are stored in
the following order:

I(1,1) 1I(2,1) 1I(1,2) (2,2) (1,3) (2,3)

In the following list, the elements of the three-dimensional array

B(3,3,3) are stored row by row from left to right and from top to
bottom.

B(1,1,1) B(2,1,1) BG3,1,1) -+
LSB(2) B@2D) BG2D --
L-+B(1,3,1) B(2,3,1) B(33,1) —5
TR BGID___BELD) -
L-+B(1,2,2) B(2,2,2) B(3,22) -~
L+B(132) B(32 BG32 -~
L-+B(1,1,3) B(2,1,3) B(3,13) -~
L+B(123) B(223) BG23) -
L+B(133) B(233) BG33)

Thus B(3,1,1) is stored before B(1l,2,1), and so forth.

3-10

CHAPTER 4

EXPRESSIONS

4.1 ARITHMETIC EXPRESSIONS

Arithmetic expressions may be either simple or compound. Simple
arithmetic expressions consist of an operand that may be:

1. a constant

2. a variable

3. an array element

4. a function reference (see Chapter 14 for description), or

5. an arithmetic or logical expression written within
parentheses.

nds may be of integer, real, double precision, complex,
1] type.

The following are valid examples of simple arithmetic expressions:

105 (integer constant)

IAB (integer variable)

TABLE (3,4,5) (array element)

SIN (X) (function reference)

(A+B) (a parenthetical expression)

A compound arithmetic expression consists of two or more operands
combined by arithmetic operators. Table 4-1 lists the arithmetic
operations permitted in FORTRAN and the operator recognized for each.

Table 4-1
Arithmetic Operations and Operators

Operation Operator Example

1. Exponentiation * A**B or A
2. Multiplication * A*B
3. Division / A/B
4, Addition + A+B
5. Subtraction - A-B

EXPRESSIONS

4.1.1 Rules for Writing Arithmetic Expressions

Observe

the following rules in structuring compound arithmetic

expressions:

1.

The operands comprising a compound arithmetic expression may
be of different types. Table 4-2 illustrates all permitted
combinations of data types and the type assigned to the
result of each.

- Only one combination of
. with complex, is prohibi

An expression cannot contain two adjacent and unseparated
operators. For example, the expression A*/B 1is not
permitted.

All operators must be included; no operation 1is implied.
For example, the expression A(B) does not specify
multiplication although this is implied in standard algebraic
notation. The expression A* (B) 1is required to obtain a
multiplication of the elements.

When you use exponentiation, the base quantity and its
exponent may be of different types. For example, the
expression ABC** 13 involves a real base and an integer
exponent. The permitted base/exponent type combinations and
the type of the result of each combination are given in Table
4-3.

Type of Argument |

Type

Table 4-2

Type of Argument 2

of the Result Obtained From Mixed Mode Operations

Double
Octal

hresult -
Conversion on

[

Argument 1

“w

. High order word

15 usad directly;
low order word
is ignored... - .

. High order word
is used directly:
ow order word

w

o
rd

o
=3

o

[

. Hig,h‘order word

is used directly:

High order word
is used directly;
ow order word

For operators Double
+.- %] Integer Real Precision Complex Logical Octal Double Octal Literal
1. Type of operation 1. integer 1. Real 1. Double Precision 1. Complex I. Integer 1. Integer 1. Integer 1. Intege
used
2. Type associated 2. Integer 2. Real 2. Double Precision 2. Complex 2. Integer 2. Integer 2. Integer 2. Integer
with result
3. Conversion on 3. None 3. From Integer to 3. From Integer to 3. From Integer to 3. None 3. None 3. None 3. None
Integer Argument | Real Double Precision Complex. Value
used as Real part
4. Conversion on 4. None 4. None 4. None 4. None 4. None 4, None 4. High order word 4. High order word
Argument 2 is used directly; is used directly;
low order word further words
is ignored. are iznorad.
1. Type of operation 1. Real 1. Real 1. Double Precision 1. Complex 1. Real 1. Real 1. Real 1. Real
used
2. Type associated 2. Real 2. Real 2. Double Precision 2. Complex * 2. Real 2. Real 2 Real 2. Real
with result Fnigr?
3. Conversion on 3. None 3. None 3. Used directly as 3. Used directly us 3. None 3. None 3. None 3. None
Real Argument | the high order the Real part:
word; low order tmaginary part
is zero.
4. Conversion on 4. From Integer to 4. None 4. None 4. None, 4. None 4. Hich order word 4. Hizh ordsr word
Argument 2 Real e is used directly; is used directly;
low order word further words
is iznored. are ignored. .
1. Type of operation 1. Double Precision 1. Double Precision 1. Double Precision 1. Double Precision 1. Double Precision 1. Double Precision Double recision
used ¥ . :
2. Type associated Double Precision 2. Double Prcqsxo 2. Double Precision 2. Double Precision 2. Double Precision 2. Double Precision - Double Frecision
with result "o SR e I B B
Double 3. Conversion on 3. None “None.
Precision Argument | ; : A o1
4. Conversion on N 4. None ‘Useddirectlyas 4, First two words -~
Argument 2 Doubte Precision the high order the high order are used directly;
word; low order word; low order further words
word is zero. word s zero; o are ignored. -
1. Type of operation “1, Complex™ ‘Complex 1. Complex 1. Complex 1. Complex 1. Complex 1. Complex
used
2. Type associated 2. Complex .- 2. Complex 2. Complex + 2. .Complex 2. Complex 2. Complex 2. Compiex
with result
Complex 3. Conversion on 3. None . Nane 3. None 3. None 3. None
Argument | : : : e
4. Conversion on Erom [njcger te -Used directly as 4. None 4, Used directly g 4 First two words'
Argument 2 ~Complex. Value ‘the Real part: the Real part; © - arc used directly.
“used as Real part. imaginary part imaginary part " Further words .
is zero. 5 zero. Careignored.
1. Type of operation 4. Integer “1 Real 1. Double Precision 1. Complex = 1. Integer 1. Integer 1. Integer 1. Integer
used n A) ' . ; . 57 .
2. Type associated 2. Integer 2 Real 2., Double Precision Complex 2. Octal 2. Octal 2. Octal 2. Octal
with result 7 . - P
3. Conversion on 3. None 3. Used 'dix"ec;l 3. None 2. None 3. None 3. None
Argument 1 - the high order
Logical word; low order
S word is zero / :
4. Conversion on 4. None 4. None 4. None 4. None 4. None 4. High order word 4. High order word
Argument 2 S : is used directly; is used directly
low order word further words = =
is ignored. are ignpred,
. Integer 1. Real 1. Doubie Precision 1. Complex 1. Integer 1. Integer 1. Integer 1.
2. Integer 2. Double Precision . 2. Coﬁxplex 2. Octal 2. Octal 2. Octal -
None . - ~3.-Used directly as Used directly as 3. None 3. None 3. Non . None
IR - the high order he Real part: :
word; low order im:iginary part
word is zero. - is'zero. |
. None " 4. None 4. None) 4. None 4. None 4. High order word 4. High order word
is used directly; is used directly;
low order word further words
is ignored. are iznored.
Integer 1. Integer 1. Integer 1. Integer
2. Octal 2

Octal-

digh order word
is used directly:
Jow arder words
arevignored

Arg,urnent 2

.:None

is used directly:
fow order word
is ignored.

. High order word -4, digh order word -
is used directly; is used directly:
low order word Tow order words
is ignored. e iznored.

1. Type of operatidn 1. lritcger 1. Real 1. Double Precision 1. Complex 1. Integer 1. Integer 1. Integer 1. Integer
used - -
2. Type associated - 2. Integer 2. Real 2. Double Precision 2. Complex 2. Octal 2. Octal 2. Octal 2. Octal
withresult o AP
. 3. Conversion on 3. High order word 3. High order word 3. First two words 3. ‘First two words 3. High order word 3. High order word 3. High order word 3. High order word
Li!‘!fﬁl : . Argumeﬁt 1 is used directly; is used directly; are used directly; are used directly, is used directly; is used directly: is used directly; is used directly;
k further words further words® further words iy further words further words further words further words further words
are ignored. are ignored.- are ignored. are ignored. are ignored. are ignored. are ignored. are ignored.
- Conversion on 4. Nome - 4. None : . None ‘4 4. None 4. None 4. High order word 4. High order word

is used directly;
further words
are ignored.

EXPRESSIONS

Table 4-3
Permitted Base/Exponent Type Combinations
Base Operand Exponent Operand
Integer Real Double Complex

Precision

Integer Integer Real Double Complex
Precision

Real Real Real Double Complex
Precision

Double Double Double Double (Prohibited)

Precision Precision|Precision|Precision

Complex Complex Complex (Prohibited) Complex

4.2 LOGICAL EXPRESSIONS

Logical expressions may be either simple or compound. Simple 1logical
expressions consist of a logical operand, which may be a logical type:

1. constant

2. variable

3. array element

4. function reference (see Chapter 15), or

5. another expression written within parentheses.

Compound logical expressions consist of two or more operands combined
by logical operators.

Table 4-4 gives the logical operators and a description of the
operation each provides.

EXPRESSTONS

Table 4-4
Logical Operators

Operator Description

.AND. AND operator. Both of the logical operands combined by
this operator must be true to produce a true result.

.OR. Inclusive OR operator. If either or both of the 1logical
operands combined by .OR. are true, the result will be

true.

. XOR. Exclusive OR operator. If either but not both of the |
logical operands combined by .XOR. 1is true, the result
will be true.

LEQV. Equivalence operator. If the logical operands being
combined by .EQV. are both the same (both are true or
|both are false), the result will be true.

.NOT. Complementation operator. This operator 1is wused as a
prefix that specifies complementation (inversion) of the
item (operand or expression) that it modifies. The
original item, if true by itself, becomes false, and vice
versa.

Write logical expressions in the general form P .0OP. Q, where P and
Q are logical operand and .0OP. 1is any logical operator but ".NOT.".
The .NOT. operator complements the value of a logical operand; you
must write it immediately before the operand that it modifies, e.g.,
.NOT.P. Table 4-5 is a truth table illustrating all possible logical
combinations of two logical operands (P and Q) and the resultant of
each combination.

When an operand of a 1logical expression 1is double-precision or
complex, only the high-order word of the operand is used in the
specified logical operation.

The assignment of a .TRUE. or a .FALSE. value to a given operand is
based only on the sign of the numeric representation of the operand.

EXPRESSIONS

Table 4-5
Logical Operations, Truth Table

When P is And Q is: Then the Expression: Is:
True | = ====- .NOT.P False
False | = ====- .NOT.P True
True True P .AND. Q True
True False P .AND. Q False
False True P .AND. Q False
False False P .AND. Q False
True True P .OR. Q True
True False P .OR. Q True
False True P .OR. Q True
False False P .OR. Q False

. True

 FalSé;i%

,”:éé;sé,ii[}lj‘

Examples

Assume the following variables:

Variable Type
REAL, RUN Real
I,J,K Integer
DP,D Double Precision
L, A, B Logical
CpX,C Complex

Examples of valid logical expressions consisting of the
variables are:

L.AND.B
' (REAL*I) .XOR. (DP+K)
L.AND.A.OR..NOT. (I-K)

foregoing

EXPRESSIONS

Logical functions are performed on the full 36-bit binary processor
representation of the operands involved. The result of a logical
operation is found by performing the specified function,
simultaneously, for each of the corresponding bits in each operand.
For example, consider the expression A=C.OR.D, where C="456 and
D="201. The operation performed by the processor and the result are:

Word

Bits 0 1 —»24 25 26 27 28 29 30 31 32 33 34 35
Operand C 0 0 — 0 0 0 1 0 0 1 0 1 1 1 0
Operand D0 0 —= 0 0 o 0 1 0 0 0 0 0 0 1
Result A 0 0 — 0 0 0 1 1 0 1 0 1 1 11

Table 4-5 also illustrates all possible logical combinations of two
one-bit binary operands (P and Q) and gives the result of each
combination. Just read 1 for true and 0 for false.

4.2.1 Relational Expressions

Relational expressions consist of two expressions combined by a
relational operator. The relational operator permits the programmer
to test, quantitatively, the relationship between two arithmetic
expressions.,

The result of a relational expression is always a 1logically true or
false value.

In FORTRAN-20, you may write relational operators either as a 2-letter
mnemonic enclosed within periods, e.g., .GT., or symbolically using
'the symbols, >, <, = and #.| Table 4-6 lists both the mnemonic and
symbolic forms of the relational operators and specifies the type of
quantitative test performed by each operator.

Table 4-6
Relational Operators and Operations
Operators Relation Tested
Mnemonic Symbolic

.GT. > Greater than
.GE. >= Greater than or equal to
.LT. < Less than
.LE. <= Less than or equal to
.EQ. == Equal to
.NE. # Not equal to

EXPRESSIONS
Write relational expressions in the general form A(l) .OP.A(2), where
A represents an arithmetic operand and .OP. 1is a relational operator.

You may mix arithmetic operands of type integer, real, and double
precision in relational expressions.

You may compare complex operands using only the operators .EQ. (==
and .NE. (#) . Complex quantities are equal if the corresponding
parts of both words are equal.

Examples

Assume the following variables:

Variables Type

REAL, RON Real

I,J,K Integer

DP,D Double Precision
L,A,B Logical

CpPX,C Complex

Examples of valid relational expressions consisting of the foregoing
variables are:

(REAL) .GT. 10
I ==
C.EQ.CPX

Examples of invalid relational expressions consisting of the foregoing
variables are:

(REAL) .GT 10 (closing period missing from operator)

C>CPX nds can only be combined by .

Examples of valid expressions that use both logical and relational
operators to combine the foregoing variables are:

EXPRESSIONS

4.3 EVALUATION OF EXPRESSIONS
The following determine the order of computation of an expression:
1. the use of parentheses

2. an established hierarchy for the execution of arithmetic,
relational, and logical operations and

3. the location of operators within an expression.

4.3.1 Parenthetical Subexpressions

In an expression, all subexpressions written within parentheses are
evaluated first. When parenthetical subexpressions are nested (one
contained within another) the most deeply nested subexpression is
evaluated first, the next most deeply nested subexpression is
evaluated second, and so on, until the value of the. final
parenthetical expression is computed. When more than one operator .is
contained by a parenthetical subexpression, the required computations
are performed according to the hierarchy of assigned operators
(Section 4.3.2).

Example:
The separate computations performed in evaluating the expression

A+B/((A/B)+C)-C are:

1. R1=A/B
2. 2=Rl+C
3. R3=B/R2
4. R4=R3-C

5. R5=A+R4

where: Rl through R5 represent the interim and final results of the
computations performed.

4.3.2 Hierarchy of Operators

The following hierarchy (order of execution) 1is assigned to the
classes of FORTRAN operators:

first, arithmetic operators,

second, relational operators, and
third, 1logical operators.

4-9

EXPRESSIONS

Table 4-7 specifies the precedence assigned to the individual
operators of the foregoing classes.

With the exception of integer division and exponentiation, all
operations on expressions or subexpressions involving operators of
equal precedence are computed in any order that is algebraically
correct.

A subexpression of a given expression may be computed in any order.
For example, 1in' the expression (F(X) + A*B), the function reference
may be computed either before or after A*B.

Table 4-7
Hierarchy of Operators

Class Level Symbol or Mnemonic
EXPONENTIAL | First %
Second —(unary minus) and + (unary plus)
ARITHMETIC | Third *, /
Fourth +,-
RELATIONAL |Fifth .GT.,.GE.,.LT.,.LE.,.EQ.,.NE.

or -

>=,<,<
Sixth .NOT.
Seventh .AND.
LOGICAL Eighth .OR.
INinth | T UEQV.,.ROR.’

Operations specifying integer division are evaluated from 1left to
right. For example, the expression I/J*K 1is evaluated as if it had
been written as (I/J)*K. But this left-to-right evaluation process
can be overridden by parentheses. I/J*K{(evaluated as(I/J) *K) does
not equal I/(J*K),which is evaluated as written here.

When a series of exponentiation operations occurs in an expression, it
is evaluated in order from right to left. For example, the expression
A**2%*B js evaluated in the following order:

first Rl = 2**B (intermediate result)
second R2 = A**R1 (final result).

Similarly, here too, parentheses alter the evaluation of the
expression . (A**2)**B is evaluated in these two steps:

first R1 = A**2 (intermediate result)

second R2 = R1**2 (final result)

the type of
otiterne

Example

EXPRESSIONS

Assume the following:

Variable

X
I,J

Type

Double-Precision
Real
Integer

The mixed mode expression D+X* (I/J) is evaluated in the following

‘manner : ~
1.R1 = 1/J R1
2.R2 =X*R1 R1

to
3.R3 = D+R2 R2
to

is integer

is converted to type real and is multiplied by X |
produce R2

is converted to type double precision and is added
D to produce R3 :

where Rl and R2, and R3 represent the interim and final results
: respectively of the computations performed. : :

4.3.4 Use of Logical Operands in Mixed Mode Expressibﬁs

‘When you use logical operands in mixed mode expressions, the value of
‘the 1logical operand is not converted in any way to accommodate it to
‘the type of the other operands in the expression. For example, 1in |

L*R, where L is

‘evaluated without converting L to type real.

type logical and R is type real, the expression is

CHAPTER 5

COMPILATION CONTROL STATEMENTS

5.1 INTRODUCTION

You use compilation control statements to identify FORTRAN programs
and to specify their termination. Statements of this type do not
affect either the operations performed by the object program or the
manner in which the object program is executed. The three compilation

~control statements described in this chapter are: PROGRAM statement, !
. INCLUDE statement, and END statement.

' 5.2 PROGRAM STATEMENT

- This statement allows you to give the main program a name other than |

the compiler-assumed -name "MAIN.". The general form of a PROGRAM

~statement is:

PROGRAM name
where:

name is a symbolic name that begins with an alphabetic
character and contains a maximum of six characters.
(Refer to Section 3.3 for a description of symbolic
names.) ‘

The following rule governs the use of the PROGRAM statement:
The PROGRAM statement must be the first statement in 'a program

unit. (Refer to Section 2.4 for a discussion of the ordering of
statements.)

5.3 INCLUDE STATEMENT

This statement allows you to include code segments or -predefined.
declarations in a program unit without having them reside in the same’
physical file as the primary program unit. The general form of the
INCLUDE statement is - ; ; , ,

 INCLUDE 'dev:filename.ext[proj,prog]/NOLIST'

where:

dev: 'is 'a device name. When no device name is

specified, DSK: is assumed. =

i
|

i

COMPILATION CONTROL STATEMENTS

- filename.ext = is the fllename and extension of the statements
Sl ‘that you wish to.include. The name of the file is
required; -“the extension is (optlonal.,; If you
specify "filename" only, , the assumed
~-extension. - If you specify. the fllename and period
(filename.), the null extension is assumed. You
may not speC1fy wild (*) 1nformat10n. : N

[proj,progl is the prOJect—programmer number.s Your pro;ect—
" 'programmer number is assumed if none is specxfled i
WYou cannot spec1fy subdlrectory 1nformat10n.

/NCLIST , ‘1s an optlonal switch 1ndlcat1ng that the 1ncluded
peeniesiee e statements are . not ' be included ~the
compilation listing., '

The follow1ng rules govern the use of the INCLUDE statement

~T;l;*1The INCLUDEd file may contaln, ‘any legal statement except
. another INCLUDE statement, or a statement that terminates the
current program unit, such as the END, . PROGRAM, FUNCTION,
SUBROUTINE, or BLOCK DATA statements.”:"‘ : o N

The;proper placement of the INCLUDE statement within a
program unit depends upon,,theuktypes, of statements to be
INCLUDEd. (Refer to "Section = 2. 4~'for_‘information on - the
,orderlng of FORTRAN statements) B R B S R b e A o

3. The flle(s) to be INCLUDEd must be on disk.

thte that an asterlsk (*) is appended to the llne numberskVOE the
% ' ' the compllatlon llstlng, prov1ded NOLIST 1sk

5.4 END STATEMENT
Use this statement to show the physical end of a source program or

subprogram. END is a nonexecutable statement. The general form of an
END statement is:

END
The following rules govern the use of the END statement:

1. This statement must be the last physical statement of a
source program or subprogram.

When used in a main program,;the END statement 1mp11es a STOP{
“jstatementw operation; :1n a. subprogram, END 1mplles a RETURNF
~statement operation. i e

3. You may label an END statement.

CHAPTER 6

SPECIFICATION STATEMENTS

6.1 INTRODUCTION

Use specification statements to specify the type characteristics,
storage allocations, and data arrangement. There are seven types of
specification statements:

1. DIMENSION

2. Statements that explicitly specify type, such as REAL or
INTEGER

5 T
4. COMMON
5. EQUIVALENCE
6. EXTERNAL
7. ‘PARAMETBRé

Specification statements are nonexecutable and conform to the ordering
guidelines described in Section 2.4.

6.2 DIMENSION STATEMENT
DIMENSION statements identify and allocate the space required for
source program arrays. You may specify any number of subscripted

array names as array declarators in a DIMENSION statement. The
general form of a DIMENSION statement is

DIMENSION S1, S2, ...,Sn

where Si is an array declarator. Array declarators are names of the
following form:

name (max,...,max) or name(min:max,...,min:max)

where name is the symbolic name of the array, and each min:max value
represents the lower and upper bounds of an array dimension.

SPECIFICATION STATEMENTS

‘dimension must not exceed the value given the maximum specification.
‘Minimum values of 1 with their following colon delimiters may be

‘Each min:max value for an array dimension may be either an integer
constant or, - if:- the -array - is a dummy argument to a subprogram, an-
integer variable. The value given the minimum spec1f‘ ation for a !

omitted from a. dlmen31on subscript. Thls 1s because~m1n1mum values;

are assumed to be 1 in-the first place.

Examples

DIMENSION EDGE (:8), NET (5,10,4), TABLE (567)
DIMENSION TABLE (IAB:J,K,M,10:20)

(where IAB, J, K, and M are of type integer).

3

Note that you may use a slash in place of a colon as the delimiter

6. 2 1 Adjustable Dlmen51ons

ﬂWhen used w1th1n a- subprogram, an ;array declarator may use tybé?

Examples f

between the upper'and 1ower bounds of an array dlmen51on.~

“integer parameters -as dimension subscrlpt quantltles. The. follow1ng5
rules govern the use of adjustable dlmen31ons in-a subprogram.~3;,gk :

51ngle; entry subprograms, the ‘array name and each,

, fparameters when the subprogram is- called.: The subscrlptj
~;_'var1ables may also be in COMMON.lryJ* :

2. For: multlple entry subprograms in whlch the array name :
:parameter, ‘any subscrlpt ‘variables may be passed. If allﬂ
‘subscript variables are not passed or in 'COMMON, the value of
‘ffthe subscrlpt as passed for a prev1ous entry w111 be used. i

ff3}w:The type of the array dlmen51on varlables cannot be altered"
‘ ;’lw1thln the program.,y‘ , . AT , ~

,"If the value of an array dlmen31on varlable is altered w1th1nf
. the program, the dlmen51onallty; of the array w111 not: be~
'faffected..~ o I S o : i ‘.

”l}The orlglnal size of‘ tne,'array cannot ‘axcsed” the array"
fi;dlmen51ons assigned within a subprogram, i. e.,,the 51ze of an
c,array is not dynamlcally expandable.:,t~: . ; - , e

‘“,SUBROUTINE SBR (ARRAY Ml M2 M3 M4)
DIMENSION ARRAY (leMZ M3 M4)
DO 27 L=M3,M4
DO 27 K= Ml M2

DIMENSION ARRl(M N)
ARRI (M, N)=VALUE :
- ENTRY SB2(ARR1,M)
- ENTRY SB3(ARR1,N)
- ENTRY SB4 (ARRL)

SPECIFICATION STATEMENTS

In the foregoing cxample, the first call made to the subroutine must
be made to SBl. Assuming that the call is made at SBl with the values
M=11 and N=13, any succeeding call to SB2 should give M a new value.
If a succeeding call is made to SB4, the last values passed through
entries SB1l, SB2, or SB3 will be used for M and N.

Note that for the calling program of the form:

CALL SB1(A,11,13)
M=15
CALL SB3(A,13)

the value of M used in the dimensionality of the array for the
’execution of SB3’willkb¢ lly(the last value passed).

6.3 TYPE SPECIFICATION STATEMENTS

Type specification statements declare explicitly the data type of
variable, array, or function symbolic names. You may give an array
name in a type statement either alone (unsubscripted) to declare the
type of all its elements or in a subscripted form to specify both its
type and dimensions.

Write type specification statements in the following form:
type list
where type may be any one of the following declarators:
1. INTEGER
2. REAL
3. DOUBLE PRECISION
4. COMPLEX
5. LOGICAL
,,,,, NOTE
- In order to be compatible with the type
statements wused by other manufacturers,
the data type size modifier, *n, 1is
accepted by FORTRAN-20. You may append |
. this size modifier to the declarators, '
- causing some to elicit messages warning -

~users of the form of the variable
| specified by FORTRAN-20: ' ’

SPECIFICATION STATEMENTS

Declarator , Form of Varlable Spec1f1ed f“*

'INTEGER*Z ;Full word 1nteger with warnlng m ssa
"INTEGER*4 Full word integer , o
LOGICAL*1 Full word logical with warnlng mess ge
LOGICAL*4 Full word logical wn Lo

_REAL*4 _Full ‘word real o

~“ REAL*8 Double—prec151on real"

" COMPLEX*8 Complex = - '

COMPLEX*lG Complex w1th warnlng message

In addltlon, you ‘may append the .data
-~ type - size modlfier to individual -
e,e.yarlables, arrays, ~or function names.
. Its “effect is' to overrlde, " for the
- particular element, the size modifier
~ (explicit or. 1mp11c1t) of the primary.
. type. For example,‘“ F piid

. REAL*4 A, B*8, C*8(10)

A and D are 51ngle—prec151on (ene[
~fword) © real, and B _ and e
_double—pre0151on (two full word

The list consists of any number of variable, array, or function names
that are to be declared the specified type. The names listed must be

separated by commas and can appear in only one type statement within a
program unit.

Examples

INTEGER A, B, TABLE, FUNC
REAL R, M, ARRAY (5:10,10:20,5)

NOTE

Variables, arrays, and functions of a
source program, which are not typed
either implicitly or explicitly by a
specification statement, are typed by
the following conventions:

1. Variable names, array names, and
function names that begin with the
letters I, J, K, L, M, or N are type
integer.

2, Variable names, array names, and
function names that begin with any
letter other than I, J, K, L, M, or
N are type real.

SPECIFICATION STATEMENTS

6.4 IMPLICIT STAYTEMENYS

IMPLICIT statements declare the data type of variables and functions
according to the first 1letter of each variable name. IMPLICIT
statements are written in the following form:

IMPLICIT type (Al,A2,...,An), type (B1,B2,...,Bn),...,type.....

As shown in the foregoing form statement, an IMPLICIT statement
consists of one or more type declarators separated by commas. Each
type declarator has the form

type (Al,A2,...,An)

where type represents one of the declarators listed in Section 6.3,
and the parenthetical list represents a list of different letters.

Each letter in a type declarator 1list specifies that each source
program variable (not declared in an explicit type specification
' statement) starting with that letter is assigned the data type named
in the declarator. For example, the IMPLICIT type declarator REAL
(R,M,N,0) declares that all names that begin with the letters R, M, N,
or O are type REAL names, unless declared otherwise in an explicit
~type statement.

NOTE

Type declarations given in an explicit
type specification override those also
given in an IMPLICIT statement.
IMPLICIT declarations do not affect the
FORTRAN supplied functions.

You may specify a range of letters within the alphabet by writing the
~first and last letters of the desired range separated by a dash, e.g., |
‘A-E for A,B,C,D,E. For example, the statement IMPLICIT INTEGER

(I,L-P) declares that all variables which begin with the letters
I,L,M,N,0, and P are INTEGER variables.

You may use more than one IMPLICIT statement, but they must appear .
before any other declaration statement in the program unit. Refer to
"Section 2.4 for a discussion on ordering FORTRAN statements.

6.5 COMMON STATEMENT

The COMMON statement enables you to establish storage that may be
shared by two or more programs and/or subprograms and to name the
variables and arrays that are to occupy the common storage. The use
of common storage conserves storage and provides a means to implicitly
transfer arguments between a calling program and a subprogram. Write
COMMON statements in the following form:

COMMON/Al1/V1,V2,...,Vn.../An/V1,V2,...,Vn

where the enclosed letters /Al/, ..., /Bn/ represent optional name
constructs (referred to as common block names when used).

SPECIFICATION STATEMENTS

The list (e.g., V1,V2...,Vn) appearing after each name construct lists
the names of the variables and arrays that are to occupy the common
area identified by the construct. The items specified for a common
area are ordered within the storage area as they are listed in the
COMMON statement.

Either label COMMON storage areas or leave them blank (unlabeled). If
the common area is to be labeled, give a symbolic name within slashes
immediately before the list of items that is to occupy the names area.
For example, the statement ’

COMMON/AREALl/A,B,C/AREA2/TAB(13,3,3)
establishes two labeled common areas (i.e., AREAl and AREA2). Common

block names bear no relation to internal variables or arrays that have
the same name.

If a common area is to be declared as unlabeled, give either nothing
or two sequential slashes (//) immediately before the list of items
that is to occupy blank common. For example, the statement

COMMON/AREAl/A,B,C//TAB(3,3,3)

establishes one 1labeled (AREAl) and one unlabeled common area.
Unlabeled common area is also called "blank common®.

A given labeled common name may appear more than once 1in the same
COMMON statement and in more than one COMMON statement within the same
program or subprogram.

Each labeled common area is treated as a separate, specific storage

area. The contents of a common area, i.e., variables and arrays, may
be assigned 1initial wvalues by DATA statements in BLOCK DATA
subprograms. Declarations of a given common area in different

subprograms must contain the same number, size, and order of variables
and arrays as the reference area.

Items to be placed in a blank common area may also be given in COMMON
statements throughout the source program.

During compilation of a source program, FORTRAN will string together
all items 1listed for each labeled common area and for blank common
areas in the order in which they appear in the source program
statements. For example, the series of source program statements:

COMMON/ST1/A,B,C/ST2/TAB(2,2)//C,D,E

COMMON/ST1/TST(3,4)//M,N

COMMON/ST2/X,Y,2//0,P,Q
has the same effect as the single statement
COMMON/ST1/A,B,C,TST(3,4)/ST2/TAB(2,2) ,X,Y¥,2//C,D,E,M,N,0,P,Q
All items specified for blank common are placed into one area. Items
within blank common are ordered as they are given throughout the
source program. Common block names must be unique with respect to all

subroutine, function, and entry point names.

The largest definition of a given common area must be loaded first.

SPECIFICATION STATEMENTS

6.5.1 Dimensioning Arrays in COMMON Statements

Subscripted array names may be given in COMMON statements as array
dimension declarators. However, variables cannot be used as subscript
quantities in a declarator appearing in a COMMON statement; variable
dimensioning is not permitted in COMMON.

Each array name given in a COMMON statement must be dimensioned either
by the COMMON statement or by another dimensioning statement within
the program or subprogram that contains the COMMON statement but not
both.

Example

COMMON /A/B(100), C(10,10)
COMMON X (5,15),Y(5)

6.6 EQUIVALENCE STATEMENT

The EQUIVALENCE statement enables you to control the allocation of
shared storage within a program or subprogram. This statement causes
specific storage locations to be shared by two or more variables of
either the same or different types. Write the EQUIVALENCE statement
in the following form:

EQUIVALENCE(V1,V2,...,Vn), (Wl,W2,...,Wn), (X1,X2,...,Xn)

where each parenthetical list contains the names of variables and
array elements that are to share the same storage locations. For
example, the statements

EQUIVALENCE (A,B,C)
EQUIVALENCE (LOC,SHARE (1))

specify that the variables named A, B, and C are to share the same
storage location, and that the variable LOC and array element SHARE (1)
are to share the same location.

The relationship of equivalence is transitive; for example, the two
following statements have the same effect:

EQUIVALENCE (A,B), (B,C)
EQUIVALENCE (A,B,C)

When you use array elements in EQUIVALENCE statements, they must have
either as many subscript quantities as dimensions of the array or only
one subscript quantity. In either of the foregoing cases, the
subscripts must be integer constants. Note that the single case
treats the array as a one-dimensional array of the given type.

You may use the items given in an EQUIVALENCE 1list 1in both the
EQUIVALENCE statement and in a COMMON statement providing the
following rules are observed:

1. You cannot set two quantities declared in a COMMON statement
to be equivalent to one another.

SPECIFICATION STATEMENTS

2. Quantities placed in a common area by means of an EQUIVALENCE
statement are permitted to extend the end of the common area
forwards. For example, the statements

COMMON/R/X,Y,2
DIMENSION A(4)
EQUIVALENCE (A,Y)

cause the common block R to extend from Z to A(4) arranged as
follows:

X
Y A(l) (shared location)
Z A(2) (shared location)
A(3)
A(4)

3. You cannot use EQUIVALENCE statements that cause the start of
a common block to be extended backwards. For example, the
invalid sequence

COMMON/R/X,Y,2
DIMENSION A(4)
EQUIVALENCE (X,A(3))

would require A(l) and A(2) to extend the starting 1location
of block R in a backwards direction as illustrated by the
following diagram:

? A(l)
A(2)
X A(3)
Y A(4)
Z

6.7 EXTERNAL STATEMENT

Any subprogram name to be used as an argument to another subprogram
must appear in an EXTERNAL statement in the calling subprogram. The
EXTERNAL statement declares names to be subprogram names to
distinguish them from other variable or array names. Write the
EXTERNAL statement in the following form:

EXTERNAL namel,name2,...,namen

where each name listed is declared to be a subprogram name. If
desired, these subprogram names may be FORTRAN defined functions.

You may also use FORTRAN defined function names for your subprograms

by prefixing the names by an asterisk (*) or an ampersand (&) within
an EXTERNAL statement. For example,

EXTERNAL *SIN, &COS

SPECIFICATION STATEMENTS

declares SIN and COS to be user subprograms. (If a prefixed name is
not a FORTRAN defined function, then the prefix is ignored.)

Note that specifying a predefined FORTRAN function in an EXTERNAL
statement without a prefix, i.e., EXTERNAL SIN, has no effect upon the
usage of the function name outside of actual argument lists. If the
name has generic properties, they are retained outside of the actual
argument list. (The name has no generic properties within an argument
list.)

The names declared in a program EXTERNAL statement are reserved

throughout the compilation of the program and cannot be used in any
other declarator statement, with the exception of a type statement.

1 6.8 PARAMETER STATEMENT

'The PARAMETER statement allows you to define constants symbolically
during compilation. '

The general form of the PARAMETER Statement is as follows:
PARAMETER P1=Cl,P2=C2,...
" where
Pi is a standard user-defined identifier (referred to in this
section as a parameter name)
Ci is any type of constant (including literals) except a label

or complex constant. (Refer to Chapter 3 for a description
of FORTRAN constants.) ‘

During compilation, the parameter names are replaced by their
~associated constants, provided the following rules are observed:

1. Place parameter names only within the statement field of an
initial or continuation line type, i.e., not within a comment
line or literal text. f

2. Place parameter names only where constants are acceptable.

3. Place parameter name references after the PARAMETER statement
definition.

4. Use parameter names that are unique with respect to all other
names in the program unit.

5. Do not redefine parameter names in subsequent PARAMETER
statements. ' , ,

6. Do not use parameter names as part of some larger syntactical |
construct (such as a Hollerith constant count or a data type
size modifier). ' oo ,

6-9

CHAPTER 7

DATA STATEMENT

7.1 INTRODUCTION

DATA statements are used to supply the initial values of variables,
arrays, array elements, and labeled common.(l) Write DATA statements
as follows:

DATA Listl/Datal/,List2/Data2/,...,Listn/Datan/

where the List portion of each List/Data/ pair identifies a set of
items to be initialized and the /Data/ portion contains the list of
values to be assigned the items in the List. For example, the
statement

DATA IA/5/,IB/10/,IC/15/

initializes variable IA to the value 5, variable IB to the wvalue 10,
and the variable IC to the value 15. The number of storage locations
you specify in the list of variables must be less than or equal to the
number of storage 1locations you specify in its associated list of
values. If the list of variables is larger (specifies more storage
locations) than 1its associated value 1list, a warning message is
output. When the value list specifies more storage locations than the
variable list, the excess values are ignored.

The List portion of each List/Data/ set may contain the names of one
or more variables, array names, array elements, or labeled common

variables. You may specify an entire array (unsubscripted array name)
‘or a portion of an array in a DATA statement List as an implied DO |
loop construct. (See Section 10.3.4.1 for a description of implied DO

"loops.) For example, the statement
DATA (NARY(I),I=1,5)/1,2,3,4,5/

“initializes the first five elements of array NARY as NARY(1l)=1l, .
 NARY (2)=2, NARY(3)=3, NARY(4)=4, NARY(5)=5.

'When you use an implied DO loop in a DATA statement, the 1loop index |
~variable must be of type INTEGER and the loop Initial, Terminal, and
Increment parameters must also be of type INTEGER. In a DATA .
" statement, references to an array element must be integer expressions-.
~in which all terms are either integer constants or indices of
~embracing implied DO 1loops. = Integer expressions of the foregoing |
- types cannot include the exponentiation operator.

The /Data/ portion of each List/Data/ set may contain one or more
numeric, logical, literal, or octal constants and/or alphanumeric
strings.

1. Refer to Section 6.5 for a description of labeled common.

7-1

DATA STATEMENT

1USt 1dent1fy octal constants by precedlng them!7Wi£h"'alwdbﬁble;
uote (") symbol, e.qg, "777. .. oo S e

You may specify literal data as either a Hollerith specification,
e.g., OSHABCDE, or a string enclosed in single quotes, e.g., 'ABCDE'.
Each ASCII datum is stored left-justified and is padded with blanks up
to the right boundary of the variable being initialized.

When you assign the same value to more than one item in List, a repeat
specification may be used. Write the repeat specification as N*D
where N is an integer that specifies how many times the value of item
D is to be |used. For example, a /Data/ specification of /3*20/
specifies that the value 20 is to be assigned to the first three items
named in the preceding list. The statement

DATA M,N,L/3%20/

a351gns the value 20 to the varlables M, N, and L.

;When the spec1f1ed data type is not the ‘same as that of ‘the vafleblzz
~to which it is as51gned FORTRAN-20 converts the datum to. the type of
~the Varlable. The type conversion is performed u51ng the rules give

kfor~ type” conver51on in-arithmetic as51gnments.w (Refer to Chapter 8,
1Ta’1ewA—l) Octal loglcal, and llteral constants are not converted.“;

Sample Statement Use

DATA PRINT,I,O/'TEST',30,"77/,(TAB(J),J=1,30)/30%5/ The first 30

elements of array

TAB are
initialized to
5.0.
DATA((A(I,J),I=1,5),d=1,6)/30*%1.0/ No conversion

required.

DATA((A(I,J),I=5,10),d=6,15)/60%2.0/ No conversion
required.
When a literal string is specified that is longer than one variable
can hold, the string will be stored left-justified across as many
variables as are needed to hold it. If necessary, the 1last variable
used will be padded with blanks up to its right boundary.

Example
Assuming that X, Y, and Z are single-precision, the statement
DATA X,Y,%/'ABCDEFGHIJKL'/
will cause
X to be initialized to 'ABCDE’
Y to be initialized to 'FGHIJ'
%Z to be initialized to 'KLBPB'
When a literal string is to be stored in double-precision and/or

complex variables and the specified string is only one word long, the
second word of the variable is padded with blanks.

Example
Assuming that the variable C is complex, the statement
DATA C/'ABCDE','FGHIJ'/

will cause the first word of C to be initialized to 'ABCDE' and 1its
second word to be initialized to 'PBBYBW'. The string 'FGHIJ' is
ignored.

CHAPTER 8

ASSIGNMENT STATEMENTS

8.1 INTRODUCTION

Use assignment statements to assign a specific value to one or more
program variables. There are three kinds of assignment statements:

1. Arithmetic assignment statements
2. Logical assignment statements

3. Statement Label assignment (ASSIGN) statements.

8.2 ARITHMETIC ASSIGNMENT STATEMENT

You use statements of this type to assign specific numeric values to
variables and/or array elements. Write arithmetic assignment
statements in the form

v=e

where v is the name of the variable or array element that 1is to
receive the specified value and e is a simple or compound arithmetic
expression.

In assignment statements, the equal symbol (=) does not imply equality
as it would in algebraic expressions; it implies replacement. For
example, the expression v=e is correctly interpreted as "the current
contents of the location identified as v are to be replaced by the
final value of expression e; the current contents of v are lost."

_When the type of the specified variable or array element name differs
from that of its assigned value, FORTRAN-20 converts the value to the
. type of its assigned variable or array element. Table 8-1 describes:
- the type conversion operations performed by FORTRAN ~-20 for each
590351ble comblnatlon of varlable and value types.

Variable Type (v)

Double-Precision

Logical

DOUBLE~

PRECISION

wpfohibifed;i

SINIWILVLS INJIWNDISSV

€-8

Table 8-1 (Cont.)
Rules for Conversion in Mixed Mode Assignments

Legend
D = Direct replacement
C = Conversion between integer and floating-point with truncation
R = Real part only
I = Set imaginary part to 0
H = High-order only
L = Set low-order part to 0
Notes
* Octal numbers with 13 to 24 digits are termed double octal.
Double octals require two storage locations. They are stored
right-justified and are padded with zeros to fill the locations.
& Use the first two words of the literal. If the literal 1is only
one word long, the second word is padded with blanks.
% Use the first word of the literal.
4 To convert double octal numbers to complex, the 1low-order octal

digits are assumed to be the imaginary part, and the high-order
digits are assumed to be the real part of the complex value.

SINIHILVYLS LNIWNDISSY

ASSIGNMENT STATEMENTS

8.3 LOGICAL ASSIGNMENT STATEMENTS

Use this type of assignment statement to assign values to variables
and array elements of type logical. Write the logical assignment
statement in the form

v=e

where v is one or more variables and/or array element names, and e is
a logical expression.

Examples

Assuming that the variables L, F, M, and G are of type logical, the
following statements are valid:

Sample Statement

L=.TRUE. The contents of L is replaced by logical
truth.
F=.NOT.G The contents of L is replaced by the

logical complement of the contents of G.

M=A.GT.T or | If A is greater than T, the contents of
M is replaced by logical truth; if A is
less than or equal to T, the contents of
M is replaced by logical false. This
can also be read: If A is greater than
T, then M 1is true, otherwise, M is

false.

L=((I.GT.H).AND.(§ The contents of L are replaced by either
the true or false resultant of the

expression.

8.4 ASSIGN (STATEMENT LABEL) ASSIGNMENT STATEMENT

Use the ASSIGN statement to assign a statement label constant, i.e., a
1- to 5-digit statement number, to a variable name. Write the ASSIGN
statement in the form

ASSIGN n TO I

where n represents the statement number and I is a variable name. For
example, the statement

ASSIGN 2000 TO LABEL

specifies that the variable LABEL represents the statement number
2000.

With the exception of complex and double-precision, you may use any
type of variable in an ASSIGN statement.

Once a variable has been assigned a statement number, FORTRAN-20 will

consider it a label wvariable. If a label variable is used in an
arithmetic statement, the result will be unpredictable.

8-4

ASSIGNMENT STATEMENTS

Use the ASSIGN statement in conjunction with assigned GO TO control
statements (Chapter 9). The ASSIGN verb sets up statement label
variables that are then referenced in subsequent GO TO control
statements. The following sequence illustrates the use of the ASSIGN
statement:

555 TAX=(A+B+C)*.05

ASSIGN 555 TO LABEL

GO TO LABEL

CHAPTER 9

CONTROL STATEHENTS

9.1 INTRODUCTION

FORTRAN object programs normally execute statement-by-statement in the
order in which they were presented to the compiler. The following
source program control statements, however, enable you to alter the
normal sequence of statement execution:

1. GO TO
2. 1IF
3. DO

4. CONTINUE
5. STOP

6. PAUSE

9.2 GO TO CONTROL STATEMENTS
There are three kinds of GO TO statements:
1. Unconditional
2. Computed
3. Assigned
A GO TO control statement causes the statement that it identifies to

be executed next, regardless of its position within the program. The
following paragraphs describe each type of GO TO statement.

9.2.1 Unconditional GO TO Statements
Write GO TO statements of this type in the form
GO TO n
where n is the 1label, i.e., statement number, of an executable
statement, e.g., GO TO 555. When executed, an unconditional GO TO

statement transfers control of the program to the statement that it
specifies.

CONTROL STATEMENTS

You may position an unconditional GO TO statement anywhere in the
source program except as the terminating statement of a DO loop.

9.2.2 Computed GO TO Statements
Write GO TO statements of this type in the form
GO TO (N1l,N2,...,NK)E

where the parenthesized list is a list of statement numbers and E is
an arithmetic expression. You may include any number of statement
numbers in the list of this type of GO TO statement; however, each
number you give must be used as a label within the program or
subprogram containing the GO TO statement.

NOTE

A comma may optionally follow the
parenthesized list.

The value of the expression E must be reducible to an integer value
that 1is greater than 0 and 1less than or equal to the number of
statement numbers given in the statement list. If the value of the
expression E does not compute within the foregoing range, the next
statement is executed.

When a computed GO TO statement is executed, the wvalue of its
expression, i.e., E, is computed first. The value of E specifies the
position within the given list of statement numbers of the number that
identifies the statement to be executed next. For example, in the
statement sequence

GO TO (20, 10, 5)K
CALL XRANGE (K)

the variable K acts as a switch, causing a transfer to statement 20 if
K=1, to statement 10 if K=2, or to statement 5 if K=3. The subprogram
XRANGE 1is called if K is less than 1 or greater than 3.

9.2.3 Assigned GO TO Statements
Write GO TO statements of this type in either of the following forms:

GO TO K
GO TO K, (L1,L2,...Ln)

where K is a variable name and the parenthesized list of the second
form contains a 1list of statement labels, i.e., statement numbers.
The statement numbers you give must be within the program or
subprogram containing the GO TO statement.

Assigned GO TO statements of either foregoing form must be logically
preceded by an ASSIGN statement that assigns a statement label to the
variable name represented by K. The value of the assigned 1label
variable must be in the same program unit as the GO TO statement in
which it is used. 1In statements written in the form

GO TO K, (L1,L2,...Ln)

CONTRQOL STATEMENTS
if K is not assigned one of the statement numbers given 1in the
statement list, the next sequential statement is executed.
Examples

GO TO STAT1
GO TO STAT1, (177,207,777)

9.3 IF STATEMENTS

There are three kinds of IF statements: arithmetic, 1logical, and
logical two-branch.

9.3.1 Arithmetic IF Statements

Write IF statements of this type in the form
IF(E)L1,L2,L3

where (E) is an expression enclosed within parentheses and L1, L2, L3
are the labels, i.e., statement numbers, of three executable
statements.

This type of IF statement transfers control of the program to one of
the given statements according to the computed value of the given
expression. If the value of the expression is:

1. Less than 0, control 1is transferred to the statement
identified by L1;

2. Equal to 0, control is transferred to the statement
identified by L2;

3. Greater than 0, control 1is transferred to the statement
identified by L3.

You must give all three statement numbers in arithmetic IF statements;
the expression given may not compute to a complex value.

Examples
Sample Statement
IF (ETA)4, 7, 12 Transfers control to statement 4 if
ETA 1is negative, to statement 7 if
ETA is 0, and to statement 12 if
ETA is greater than O.
IF (KAPPA-L(10))20, 14, 14 Transfers control to statement 20

if KAPPA 1is 1less than the 10th
element of array L and to statement
14 if KAPPA 1is greater than or
equal to the 10th element of array
L.

CONTROL STATEMENTS

NOTE

You must label the statement following
an arithmetic IF; otherwise the
statement can never be executed.

9.3.2 Logical IF Statements
Write IF statements of this type in the form
IF (E)S

where E is any expression enclosed in parentheses and S is a complete
executable statement.

Logical IF statements transfer control of the program either to the
next sequential executable statement or to the statement given in the
IF statement, i.e., S, according to the computed logical value of the
given expression. If the value of the given logical expression is
true (negative), control is given to the executable statement within
the IF statement. If the value of the expression is false (positive
or zero), control is transferred to the next sequential executable
program statement.

The statement you give in a logical IF statement may be any executable
statement except a DO statement or another logical IF statement.

Examples
Sample Statement

IF (T.OR.S) X=Y¥+1 Performs an arithmetic
replacement operation if the
result of IF is true.

IF (Z2.GT.X(K)) CALL SWITCH(S,Y) Performs a subroutine call if
the result of IF is true.

IF (K.EQ.INDEX) GO TO 15 Performs an unconditional
transfer if the result of IF

is true.

9.3.3 Logical Two-Branch IF Statements
Write IF statements of this type in the form
IF (E) N1, N2

where E is any expression, and N1 and N2 are statement labels defined
within the program unit.

Logical two-branch IF statements transfer control of the program to
either statement N1 or N2, depending on the computed value of the
given expression. If the value of the given logical expression |is
true (negative), control is transferred to statement Nl. If the value
of the expression is false (positive or zero), control is transferred
to statement N2,

9-4

CONTROL STATEMENTS

Note that you must number the statement immediately following
logical two-branch IF so that control can later be transferred to the

portion of code that was skipped.
Examples

Sample Statement

IF (LOGl) 10,20 Transfers control to statement
if LOGl 1is negative; otherwise
transfers control to statement 20.

IF (A.LT.B.AND.A.LT.C) 31,32 Transfers control to statement
if A 1is less than both B and C;
transfers control to statement
if A 1is greater than or equal to

either B or C.

9.4 DO STATEMENT

DO statements simplify the coding of iterative procedures; write them

in the following form:
Indexing Parameters

r—— e~
DO N I = M1,M2,M3

TERMINAL INCREMENT
STATEMENT PARAMETER
LABEL TERMINAL
INDEX PARAMETER
VARIABLE
INITIAL
PARAMETER

where

1. Terminal Statement Label N is the statement number

last statement of the DO statement range. The range of a DO
statement is defined as the series of statements that follows
the DO statement up to and including its specified terminal

statement.

2, Index Variable I is an unsubscripted variable whose value 1is
defined at the start of the DO statement operations.
index variable is available for use throughout each execution
of the range of the DO statement, but its value should not be

altered within this range. It is also available for
the program when:

a. control is transferred outside the range of the DO 1loop
by a GO TO, arithmetic IF or RETURN statement located

within the DO range,

b. a CALL is executed from within the DO statement
that uses the index variable as an argument, and

CONTROL STATEMENTS

c. if an input-output statement with either or both the
options END= or ERR= (Chapter 10) appears within the DO
statement range.

3. Initial Parameter M1 assigns the index wvariable, I, its
initial wvalue. This parameter may be any variable, array
element, or expression.

4. Terminal Parameter M2 provides the value that determines how
many repetitions of the DO statement range are performed.

5. Increment Parameter M3 specifies the value to be added to the
initial parameter (Ml) on completion of each cycle of the DO
loop. If M3 and its preceding comma are omitted, M3 is
assumed to be equal to 1.

An indexing parameter may be any arithmetic expression resulting in
either a positive or negative value. The values of the indexing
parameters are calculated only once, at the start of each DO-loop
operation. The number of times that a DO 1loop will execute is
specified by the formula:

MAX (1, ((M2-M1) /M3)+1)

Since the count is computed at the start of a DO 1loop operation,
changing the value of the loop index variable within the loop cannot
affect the number of times that the loop is executed. At the start of
a DO 1loop operation, the index value 1is set to the value of the
initial parameter (M1l), and a count variable (generated by the
compiler) is set to the negative of the calculated count. At the end
of each DO loop cycle, the value of the increment parameter (M3) |is
added to the index variable, and the count variable is incremented by
1. If the number of specified iterations has not been performed
(i.e., 1if the count variable is still negative), another cycle of the
loop is initiated.

One execution of a DO loop range is always performed regardless of the
initial values of the index variable and the indexing parameters.

Exit from a DO 1loop operation on completion of the number of
iterations specified by the 1loop count is referred to as a normal
exit. In a normal exit, control passes to the first executable
statement after the DO loop range terminal statement, and the value of
the DO statement index variable is considered undefined.

Exit from a DO loop may also be accomplished by a transfer of control
by a statement within the DO loop range to a statement outside the
range of the DO statement (Section 9.4.3).

9.4.1 Nested DO Statements

One or more DO statements may be contained, i.e., nested, within the
range of another DO statement. The following rules govern the nesting
of DO statements.

1.

2.

CONTROL STATEMENTS

The range of each nested DO statement must be entirely within
the range of the containing DO statement.

Example

Valid Invalid
DO 1 DO 1
DO 2 DO 2
[The range of

DO 2 is outside
that of DO 1.

The ranges of nested DO statements cannot overlap.

Example
Valid Invalid
DO 1 DO 1
DO 2 DO 2
DO 3 DO 3 The ranges of
[:: i - loop DO 2 and
| —— DO 3 overlap.

More than one DO loop within a nest of DO loops may end on

the same statement.. When this occurs, the terminal statement
is considered to belong to the innermost DO statement that

ends on that statement. The statement label 4 of the shared

terminal statement cannot be used in any GO TO or arithmetic

IF statement that occurs anywhere other than within the range

of the DO statement to which it belongs.

Example

DO 4
DO 4 All the DO statements
share the same terminal
DO 4 statement, however, it
belongs to the first
DO4 DO 4.
[

9-7

CONTROL STATEMENTS

9.4.2 Extended Range

The extended range of a DO statement 1is defined as the set of
statements that execute between the transfers out of the innermost DO
statement of a set of nested DOs and the transfer back into the range
of this innermost DO statement. The extended range of a nested DO
statement is as follows:

DO 1

DO 2

DO 3

——— (out)

e

Extended- Range

The following rules govern the use of a DO statement extended range:

1. The transfer out statement for an extended range operation
must be contained by the most deeply nested DO statement that
contains the location to which the return transfer is to be
made.

2. A transfer into the range of a DO statement is permitted only
if the transfer 1is made from the extended range of that DO
statement.

3. The extended range of a DO statement must not contain another
DO statement.

CONTROL STATEMENTS

4. The extended range of a DO statement cannot change the index
variable or inde.xing parameters of the DO statement.

5. You may use and return from a subprogram within an extended
range.

9.4.3 Permitted Transfer Operations

The following rules govern the transfer of program control from within
a DO statement range or the ranges of nested DO statements:

1. A transfer out of the range of any DO loop 1is permitted at
any time. When such a transfer executes, the value of the
controlling DO statement's index variable is defined as the
current value.

2. A transfer into the range of a DO statement is permitted if
it is made from the extended range of the DO statement.

3. You may use and return from a subprogram from within the
range of any:

a. DO loop,

b. nested DO loop, or

c. extended range loop (in which you leave the loop via a GO
TO, execute statements elsewhere, and return to the
original loop).

The following examples illustrate the transfer operations permitted
from within the ranges of nested DO statements:

Valid Transfers

D1

D2

—_—

extended range

—)

Invalid Transfer

D1
D2

D3

CONTROL STATEMENTS

9.5 CONTINUE STATEMENT

You may place CONTINUE statements anywhere in the source program
without affecting the program sequence of execution. CONTINUE
statements are commonly used as the last statement of a DO statement
range in order to avoid ending with a GO TO, PAUSE, STOP, RETURN,
arithmetic IF, another DO statement, or a logical IF statement
containing any of the foregoing statements. Write this statement as

12 CONTINUE
Example

In the following sequence, the labeled CONTINUE statement provides a
legal termination for the range of the DO loop.

DO 45 ITEM=1,1000

STOCK=NVNTRY (ITEM)

CALL UPDATE (STOCK,TALLY)

IF (ITEM.EQ.LAST) GO TO 77
45 CONTINUE

77 PRINT 20, HEADING, PAGENO

9.6 STOP STATEMENT

Execution of the STOP statement causes the execution of the object
program to be terminated and returns control to the monitor. A
descriptive message may optionally be included in the STOP statement
to be output to your I/O terminal immediately before program execution
is terminated. Write this statement like this:

or

where N' s a strlng of ASCII characters enclosed by s1ngle quotesi
and n is an octal strlng up to 12 digits. The string N or the value n.
is prlnted at your ~I/0. termlnal when the STOP statement executes.f Thef
: ~ (Contlnuatlon llnes may be used forf

CONTROL STATEMENTS

Examples
STOP 'Termination of the Program'
or

STOP 7777

9.7 PAUSE STATEMENT

Execution of a PAUSE statement suspends the execution of the object
program and gives you the option to:

1. Continue execution of the program
2. Exit
3. Initiste a TRACE operation (Section 9.7.1).
The permitted forms of the PAUSE statements are:
1. PAUSE
2. PAUSE 'literal string’

3. PAUSE n, where n is an octal string up to 12 digits.

. Execution of a PAUSE statement of any of the foregoing forms causes
- the standard instruction:

TYPE G TO CONTINUE, X TO EXIT, T TO TRACE

_ to. be printed at your terminal. ‘If,the form of the PAUSE statement

contains either a literal string or an integer constant, the string or
constant prints on a line preceding the standard message. For
example, the statement

PAUSE 'TEST POINT A‘

. causes the following to be printed at your terminal:

TEST POINT A
TYPE G TO CONTINUE, X TO EXIT, T TO TRACE

' The statement

PAUSE 1

; causes the following to be printed at your terminal:

PAUSE 000001 e
TYPE G TO CONTINUE, X TO EXIT, T TO TRACE

9-11

CONTROL STATEMENTS

9 7 l T(TRACE) Optlon

nThe entry of the character T in r'
:executlon of ~a PAUSE statement i
causes a complete hlstory of all~ subroutlne calls “made
_execution of the program, up to ‘the executlon of the PAUSE s ;
~to be printed at your terminal. The hlstory prlnted by ‘the
routlne consists of. : . ‘ :)

5 Te anes o E all subroutlnes called, arranged in the ;evérséf
s 'order of .their call,, = o

“,”2Lr‘The absolute locatlon (wrltten fwithinn“parentheses)',cf 'thef
L :gcalled subroutlne, ' , - : '~f~‘: e : et
'h'The name of the calllng subroutlne plus an offset factor’ and

- the absolute location (written within parentheses) of the
"statement w1th1n the routlne that 1n1t1ated the call, : :

i 4;h:The number 'cf*~arguments “involved -

(written within angle

“‘hAn alphabetlc code '(written~~Within: square brackets) thatf
.specifies ~the - types . o0of each. argument -involved. - The,
9ualphabet1c codes used and the meanlng of each are' L

":Type Spe01f1ed

:{Code Character‘

Undeflned type, the use of‘ the
B rargument w1ll determlne 1ts type.,.g
. Logical Sl ~ ‘

 INTEGER L -
Single- prec151on REAL
Octal =
Statement Nu be g
;Double—prec151on REALr~
- COMPLEX

fA llteral or. constant

s

mOUwomMHE

Examplef'g

The follow1ng prlntout illuStrates 'the"executlon df;:the,“ PAUSE
statement "PAUSE . 'TEST. "POINT _A'", the . entry of.a T ch‘araycter to
‘initiate the TRACE routlne, the resulting trace printout, and 'theé
entry of the character G to. contlnue the executlon of the program._f‘“f

,c'TEST POINT A P”p,#n P D e
ffTYPE G TO CONTINUE XsTOVEXIT,fT TO TRACE.
T*T . R R R ‘,j,:f"'» N

CALLER ~(LOC) .. <#ARGS>
_“PAUS. +l4l(376) <#1>
- "MAIN. +4(151) <#l>
X TO,EXIT T TO TRACE

JNAME ""(LOC) : <<-—;}

[ARG TYPES]
‘TRACE.;,(414056) K== .

[U]"

CONTROL STATEMEMNTS

- In addition to its use with the PAUSE statement, you may call the
" TRACE routine directly, using the form

CALL TRACE

- or as a function, using the form
X=TRACE (x)

- Execution of the foregoing statements starts the TRACE routine, which '
c prints the history of all subprogram calls made during the execution
. of the program, up to the execution of the CALL statement or up to the
- execution of the function, respectively. The history printed by the
- TRACE routine under these circumstances 1is as described in the
' preceding paragraph. '

CHAPTER 10

I/0 STATEMENTS

10.1 DATA TRANSFER OPERATIONS

FORTRAN I/O statements permit the transfer of data between processor

‘storage (memory) and peripheral devices and/or between storage

locations. Data in the form of logical records may be transferred by
~use of an a) sequential, b) random ‘access, c) append transfer mode, or
d) dump mode. The areas in memory from which data is to be taken

durlng output (write) operations and into which data is stored during

input (read) operations are specified by:

1. A list in the I/O statement that initiated the transfer
2. A llSt deflned by a NAMELIST statement, or
3. Between a specified FORMAT statement and the external medium.

The type and arrangement of transferred data may be specified by
format specifications located in either a FORMAT statement or an array
(formatted I/0), or by the contents of an I/0 1list (list-directed
. 1/0) ..

The following sections describe the statements and data format
required to initiate I/0 transfer operations.

10.2 TRANSFER MODES

The characteristics and requirements of the a) sequential, 'b) random
~access, and c) append data modes are described in the following
paragraphs.

10.2.1 Sequential Mode

Records are transferred during a sequential mode of operation in the
same order they appear in the external data file. Each I/O statement
executed 1in a sequential mode transfers the record immediately
following the last record transferred from the accessed source file.

~10.2.2 Random Access Mode

" This mode permits access to and transfer of records from a. flle in. anyg
desired order. Random access transfers, however, may be 5
(or from) a device that permits random~-type dat

‘operations, i.e., dlSk, and to flles that have prev1ously

10-1

1/0 STATEMENTS

iforkrandom‘access:tfanSfer operation. Files for random
ontain a specified number of 1den;1cally 51zedf
ccessed, 1nd1v1dually, by a record number. ‘

3You may use the FORTRAN- 20 OPEN statement —f see Chapter 12 -
subroutlne call to DEFINE FILE to set up random access f11es.~f

LUse ‘the OPEN statement to establlsh a random access mode to permlt the
- execution of random- access data -transfer operatlons. - The
statement should logically precede the first I/0 statement _for':
speclfled_1oglcalﬂun1tf1n the user source programyﬂ, R

:ThlS mode is a spe01al ver51on of the sequent1a1 transfer‘ mode: - Use
it only ,for. sequential output (write) operatlons.' The. append mode
“permits’ you to write a record 1mmed1ate1y after the last. loglcalﬁ
record ~of the accessed file. - Durlng an- append ‘transfer, the records
dalready 1n the’ accessed file remain unchanged. The only function
~performed 4 pendlng of the transferred records to the end ofﬁ
)the flle RN : % e TS .

gYou nust use an OPENJstatement to establlsh faa:kappehd"Lmodéchbeforé

10.3 I/O STATEMENTS, BASIC FORMATS AND COMPONENTS

The majority of the I/O statements described in this chapter are
written in one of the following basic forms or in some modification of
these forms:

Basic Statement Forms Use

_Keyword (u,f)list _Formatted I/O Transfer
&Keywordf(u#R f)list ~ Random Access Formatted 1/0 Transfer{
“Keyword (u)llSt . List-Directed I/O Transfer ‘
;Keywo;dgju N) - . NAMELIST-Controlled I/0 Transfer
yword (u)llst ~ Binary I/O Transfer

eyword (u#R)list _Random Access Binary 1/0 Transfer.

Keyword = the statement name (READ or WRITE)

u = logical unit number

f = FORMAT statement number in the current program
unit or the name of an array that contains the
desired format specifications

list = 1/0 11st

The follow1ng paragraphs prov1de details of the foregoing components.

10-2

»
.

1/0 STATEHENTS

-

10.3.1 I/0 Statement Keywords

The keywords (names) of the FORTRAN-10 I/0 statements described 1in
this chapter are:

1. READ 6. WRITE
2. REREAD 7. PRINT
3. ACCEPT 8. TYPE

4. FIND 9. ENCODE
5. DECODE

10.3.2 FORTRAN Logical Unit Numbers

Decimal numbers identify the physical devices used for most FORTRAN

"I/0 operations. During «compilation, the compiler assigns default

logical unit numbers for the REREAD, READ, ACCEPT, PRINT, and TYPE
~statements. Default wunit numbers are negatively signed decimal

numbers that you cannot access.

"You may make the logical device assignments at run time, or you may
‘use the standard assignments contained by the FORTRAN-20 Object Time
System (FOROTS). Table 10-1 1lists the standard 1logical device

~assignments. We recommend that you specify the device explicitly in
the OPEN statement. '

10.3.3 FORMAT Statement References

A FORMAT statement contains a set of format specifications that
defines the structure of a record and the form of the data fields
comprising the record. Format specifications may also be stored in an
array rather than in a FORMAT statement. (Refer to Chapter 13 for a
complete description of the FORMAT statement.)

The execution of an I/O statement that includes either a FORMAT
statement number or the name of an array that contains format
specifications causes the structure and data of the transferred record
to assume the form specified in the referenced format. Records
transferred under the control of a format specification are referred
to as "formatted" records. Conversely, records transferred by I/0
statements that do not reference a format specification are referred
to as "unformatted" records. During unformatted transfers, data is
transferred on a one-to-one correspondence between internal
(processor) and external (device) locations, with no conversion or
formatting operations.

Unformatted files are binary files divided into records by FORTRAN-20
embedded control words; the control words are invisible to you. You
cannot prepare files of this type without using FOROTS. Unformatted
files are for use only within the FORTRAN environment.

10-3

=0T

Table 10 1

“', FORTRAN 20 Log1cal Dev1ce A531gnments

‘fbéﬁiéé/Fdndtioh DefauIthilename k FQRTRAN‘Logiéai Unit~Number' ‘Use

Standard Devices* -

 FORxx.DAT

' ILLEGAL

Disk ‘

Card Reader
Line Printer
User's Teletype

‘Magnetic Tapef

"DISK

Console Teletype

A351gnab1e Dev1ce_kf

n-

ihsEallétiOnz

SILNAWALVLS O/1I

G-0T

Table 10-1 (Cont.)
FORTRAN-20 Logical Device Assignments

Device/Function Default Filename FORTRAN Logical Unit Number Use

Standard Devices*

DEV1 , FORxx.DAT
DEV2 '

DEV3

DEV4

DEV5

DEV63 FOR63.DAT

Default Devices (inaccessible to the user)

REREAD Current file
CDR FORCDR.DAT
TTY FORTTY.DAT
LPT FORLPT.DAT

TTY FORTTY.DAT

63

Assignable Devices

Disk

REREAD statement
READ statement
ACCEPT statement
Not Valid

PRINT statement
TYPE statement

- *The total number of standard devices permitted is
~parameter.

an 1installation

SINTWALYILS 0/1

I/0 STATEMENTS

10.3.4 I/0 List

An I/0 list specifies the names of variables, arrays, and array
elements to which input data is to be assigned or from which data is
to be output. Implied DO constructs (Section 10.3.4.1), which specify
sets of array elements, may also be included in I/O lists. The number
of items in a statement list determines the amount of data to be
transferred during each execution of the statement.

10.3.4.1 1Implied DO Constructs - When an array name is given in an
I/0 1list, all elements of the array are transferred in the order
described in Chapter 3 (Section 3.5.3). If only a specific set of
array elements 1is involved, they may be specified in the I/O list
either individually or in the form of an implied DO construct.

Write implied DOs within parentheses in a format similar to that of DO
statements. They may contain one or more variable, array, and/or
array element names, delimited by commas and followed by indexing
parameters that are defined as for DO statements.

The general form of an implied DO is

(name (SL) ,I=M1,M2,M3)

where
name = an array name
SL = the subscript 1list of an array or an array
element identifier
I = the index control variable that may represent a
subscript appearing in a preceding subscript list
M1,M2,M3 = the indexing parameters that specify,
respectively, the initial, terminal, and
increment values that control the range of I. If
M3 is omitted (with its preceding comma), a value
of 1 is assumed.
Examples

S must be an integer variable
(A(S),S5=1,5) Specifies the first five elements of the
one-dimension array A, i.e., A(l), A(2),
A(3), A(4), A(5).

(A(2,S8),8=1,10,2) Specifies the elements A(2,1), A(2,3),
A(2,5), A(2,7), A(2,9) of array A.

(I,I=1,5) Specifies the integers 1,2,3,4, and 5.

As stated previously, implied DO constructs may also contain one or
more variable names.

Example (B and C must be integer variables):
((a(8B,C),B=1,10),C=1,10),I,J Specifies a 10 X 10 set of elements
of array A, the location identified

by I, and the 1location identified
vy J.

10-6

1/0 STATEMENTS

You may also nest implied DO constructs. Nested implied DOs may share
one or more sets of indexing parameters.

Example

((A(J,K),J=1,5),D(K),K=1,10) Specifies a 5 X 10 set of elements
of array A and the first 10
elements of array D.

When you specify an array or set of array elements as either a storage
or transmitting area for I/O purposes, the array elements involved are
accessed in ascending order with the wvalue of the first subscript
quantity wvarying most rapidly and the value of the 1last given
subscript increasing to its maximum value least rapidly. For example,
the elements of an array dimensioned as TAB(2,3) are accessed in the
order:

TAB(1,1)
TAB(2,1)
TAB (1, 2)
TAB(2,2)
TAB (1, 3)
TAB(2, 3)

10.3.4.2 Formatted Record Handling - Data is processed under format
control so that each item in the I/0 list is matched with a field
descriptor in the FORMAT statement. If the end of the FORMAT
specification 1is reached and more items remain in the I/O list, a new
line or record is established and the data processing 1is restarted,
either:

1. at the first item in the FORMAT specification or,

2. (if parenthesized sets of FORMAT specifications exist within
the FORMAT specification) with the last set within the FORMAT
specification.

On input, if the record is exhausted before the data transfers are

completed, the remainder of the transfer is completed as if the record
were extended with blanks. See Section 13.2.2 for more details.

- 10.3.5 Specification of Records for Random Access
You must identify records to be transferred in a random access mode in
ran I/O statement by an integer expression or variable preceded by an
. apostrophe used as a delimiter, e.g., '101. :
NOTE
You may use a pound sign (#) in place of

the apostrophe ('), e.g., both #1011 and
'101 are accepted by FORTRAN-20.

10-7

1/0 STATEMENTS

1 10.3.6 List-Directed I/0

The use of an asterisk in an I/0O statement in place of a FORMAT
statement number causes the specified transfer operation to be
‘"list-directed". = In a list-directed ‘transfer, the data to be
transferred and - ”the type of each transferred datum are specified by
~the contents of the I/O list 1ncluded in the I/0 - command -used. The _
.transfer of data .in this mode is performed without regard for column,
'card, or line boundaries. The list-directed mode is specified by the
substitution of an ‘asterisk (*) for the FORMAT statement reference,
i.e., £, of an I/0 statement The general form of a list-directed I/O,f
- statement is el e ‘ : '

~~ukeyword~(u,*)liSt
EExample ' g
READ (5 *)I IAB M L

;You may use list- dlrected transfers to- read data from ‘any;lacceptable
Elnput device, including an 1nput”keyboardutermlnal_” S B R

:,NQTEl;h

- Do not use device positioning commands, =
such as BACKSPACE, SKIP RECORD, etc., in
conjunction with list-directed I/0

-operations. - If you do, the results are
:unpredlctable.f R Sl

Data for list- dlrected transfers should con51st of alternate constantsy
~and - ‘delimiters ‘The constants usedykshould;,have the” follow1ng:
characters' S T e SR , : :

c 1. 'Input constants must be of a type acceptable tof FORTRAN?ZO.f
- .. Octal constants, although acceptable, are not permitted in
‘,~llSt dlrected I/O Operatlons.:k TR k k ’

L2 theral constants must be enclosed ‘within single quotes,
~e.g., 'ABLE'. A - quoted string which is too long to fit in

. one element of the input list will be placed in adjacenty

- elements and w1ll be” padded with blanks. If a quoted string
"is being placed in an array and it fllls ‘more - than one

.~ element of the array, the remaining elements of the array

* will be unchanged. In this case, it is assumed that the user
meant for the long string to go into the array and for any
following data to go 1nto the rest of the input list. If the
string . fits into one . element of the array, the array‘willf
,contlnue to be fllled ' C ' SRR

5;3}fiBlanks are de11m1ters,” therefore, they are not permltted in
**»;any but llteral constants. ' e SR R B
‘You may omlt dec1mal p01nts from real constants that do ‘not

~ have a fractional part. FORTRAN-20 assumes that the dec1malg
”“;fp01nt follows the rlghtmost dlglt of a real constant.k‘ R

:fuComplex constants must be enclosed 1n parentheses.

10-8

I/0 STATEMENTS

Delimiters in data for list-directed inpult must comply with the
following:

1. Delimiters may be either commas or blanks.

2. Delimiters may be either preceded by or followed by any
number of blanks, carriage return/line feed characters, tabs,
or line terminators; any such combination is considered by
FORTRAN-20 as being only a single delimiter.

3. Represent a null (the complete absence of a datum) by two
consecutive commas that have no intervening constant(s). You
may place any number of blanks, tabs, carriage return/line .
feed characters, or end-of-input conditions between the
commas of a null. Each time you specify a null item in the
input data, 1its <corresponding 1list element 1is skipped
(unchanged). The following illustrates the effect of a null |

input:
INPUT Items t?l,'A',tab,‘NOl',
Corresponding A ,LIT,IAB,NUMBER
I/0 List Items \' l / /
Resulting 101.A un- NO1
Contents of changed
List Items IAB

4. Slashes (/) cause the current input operation to terminate
even if all the items of the directing list are not filled.
The contents of items of the directing I/O list that either
are skipped (by null inputs) or have not received an input
datum before the transfer 1is terminated remain unchanged.
Once the I/0 1list of the controlling I/O statement is
satisfied, the use of the / delimiter is optional. ‘

5. Once the I/O 1list has been satisfied (values have been
transferred to each item of the list), any items remaining in
the input record are skipped.

Constants or nulls in data for list-directed input may be assigned a%
repetition factor so that an item is repeated.

. The repetition of a constant is written as
r*K

~where r is an integer constant that specifies the number of times thef
~constant represented by K is to be repeated.

The repetition of a null is written as an integer followed by an
asterisk. :

Examples
10%5 represents 5,5,5,5,5,5,5,5,5,5
3*'ABLE' represents 'ABLE','ABLE', 'ABLE'

3% represents null,null,null

10-9

I/0 STATEMENTS

10.3.7 NAMELIST I/O Llsts

You may define one or more llStS by a NAMELIST statement (Chapter ll) -
ﬂEach I/0 list defined in a NAMELIST statement is 1dent1f1ed by a
unique (within the -~routine) 1= to 6-character - name that may be
' referenced by one or more READ or WRITE - statements. The first
- character of each I/O list name must be alphabetic. By - using the

' NAMELIST statement, you eliminate the need for specifying the entire
~I/0 list. , ‘ N g

. I/0 statements that reference a NAMELIST-defined I/0 "1list -cannot
~contain either a FORMAT statement reference or an I/O list. You
. cannot use NAMELIST-controlled I/0 operatlon to transfer octal numbersj
~or literal strings. .

éYou may use only NAMELIST-controlled READ/WRITE statements to bring
~in/write out records formatted in the following manner. Format
frecords for NAMELIST- controlled 1nput operatlons as follows: =~
 $NAME D1,D2, D3...Dn$

where

'$ symbols delimit the beglnnlng and end of the ~recofd}‘, Thef
: ,flrst $ must be in column 2 of the input record;j column 1.
oy mUSt be blank. : ~ R ek

2. QNAME is the name of a NAMELIST defined input llst.k‘The namedf
. list identifies the processor storage locations that are toﬁ
‘receive the data 1tems read from the accessed record. E

"

; 3. DI through Dn are pairs of the form "var1able=value where
. the wvalue 1is assigned to the associated variable. These
: ~items cannot be octal numbers or literal strings.

NOTE

Do not use device positioning - commands
such as BACKSPACE, SKIP.RECORD; etc., in
conjunction with NAMELIST-controlled I/O
~operations. = If you do, the results are
unpredictable. ' . ‘ o

;See'Chapter 11 for more information on NAMELIST I/O transfers.

’10.4: OPTIONAL READ/WRITE ERROR EXIT AND END OF FILE ARGUMENTS

QYou may optlonally add elther or both an error ex1t or an end of- fll&g
~argument to the portion in parentheses of any form of the READ andf
;WRITE statements when a unit 1s spe01f1ed.f o : e

erlte the error exit argument as ERR=c where c is a ‘statement number-
in the current program unit. Using this argument terminates the

jcurrent I/0 operation and transfers’ program control to the statement
~identified by the argument if an error is detected. - For example; the -
detectlon of an error durlng the executlon of ”;¢;w:, S

READ(lO 77 ERR lOl)TABLE I M J

10-10

I/0 STATEMENTS

terminates the input operation and transfers program control to
statement 10l1. See the Library Subroutine ERRSNS (Chapter 15) to find
out how to identify the actual error that occurred.

When an ERR= transfer occurs, all items on the input 1list and all
implied DO indexes on input or output lists become undefined.

Write the end-of-file argument as END=d, where d is a statement number
in the «current program unit. This branch, when taken, stops the
current I/0 operation and transfers program control to the statement
identified by the argument. 1In the example below, the detection of an
end-of-file condition during the execution of

READ (10, 77,END=50)TABLE, I ,M,J
results in the transfer of control to statement 50.

When an END= transfer occurs, all items on the input list receive the
value zero and all implied DO indices on input lists become undefined.

If the END= argument is not present, but an ERR= argument 1is, an
end-of-file (EOF) condition is treated as a user-trappable error. If
‘neither the ERR= nor the END= argument is present and an end-of-file
condition 1is detected, a message 1is printed, the file is closed,
‘program execution is terminated, and control is returned to the .
monitor.

10.5 READ STATEMENTS

READ statements transfer data from peripheral devicgs into specified
processor storage locations. The permitted forms of this type of
input statment permit READ statments to be used in both seguential and
random access transfer modes for formatted, unformatted,
list-directed, and NAMELIST-controlled data trans

10.6 SEQUENTIAL FORMATTED READ TRANSFERS

Descriptions of the READ statements that may be wused for the
sequential transfer of formatted data follow:

1. Form: READ (u,f)list

Use: Input data from logical unit u, formatted
according to the specification given in £, into
the processor storage 1locations identified 1in
input list.

Example: READ (10,555)TABLE(10,20),ABLE,BAKER,CHARL
2. Form: READ (u, f)

Use: Input the data from logical unit u directly into
either a Hollerith (H) field descriptor or a
literal field descriptor given within the format
specifications of the referenced FORMAT statement.
If the referenced FORMAT statement does not
contain either of the foregoing types of format
field descriptors, the input record 1is skipped.
If a required field descriptor is present, its
contents are replaced by the input data.

Example: READ(15,101)
10-11

I/0 STATEMENTS

3. Form: READ f

Use: Input the data from the READ default device (card
reader) directly into either a Hollerith (H) field
descriptor or a 1literal field descriptor given
within the format specifications of the referenced
FORMAT statement. If the referenced FORMAT
statement does not contain either of the foregoing
types of format field descriptors, the input
record is skipped. 1If a required field descriptor
is present, its contents are replaced by the input
data.

Example: READ 66

4, Form: READ f,list
Use: Input the data from the READ default device (card
reader) into the processor storage 1locations

identified in the input list. The input data is
formatted as specified in f.

Example: READ 15, ARRAY (20,30)

10.6.1 Sequential Unformatted Binary READ Transfer

You may use only the following form of the READ statement for the
sequential transfer of unformatted input of FORTRAN binary data:

Form: READ (u)list

Use: Input one logical record of data from logical unit
u 1into processor storage as the wvalue of the
location identified in l1list. You may read only
binary files output by a FORTRAN-20 unformatted
WRITE statement with this type of READ statement.

NOTE
If you wuse the form READ (u), one

unformatted input record will be skipped.

Example: READ (10) BINFIL (10,20,30)

of the READ statement
transfer“; e

, into processor
; :storage as the value of the locatlons identified.

‘~“inf~list 'vlnput datum is converted, if
‘ - of 1ts a551gned llSt

~ Example:

I/0 STATEMENTS

2. FPorm: READ *,list
Use: Read the data from the READ default device (card’
reader) into the processor storage locations

identified in the input list. Each input datum is
converted, if necessary, to the type of its:
assigned list variable.

Example: READ *,ABEL(10,20),I,J,K

10.6.3 Sequential NAMELIST-Controlled READ Transfers

You may use only the following form of the READ statement to initiate
a sequential NAMELIST-controlled input transfer: '

Form: READ (u,N)

Use: Read data from logical wunit u into . processor.
storage as the value of the locations identified:
by the NAMELIST input specified by the name N.
The input data is converted to the type of’
assigned variable if type conflicts occur. Only:
input files that contain records formatted and
identified for NAMELIST operations (Paragraph .
10.3.7) may be read by READ statements of this.
form.

- 10.6.4 Random Access Formatted READ Transfers

You may use only the following form of the READ statement to initiate:
~a random access formatted input transfer:

Form: READ (u#R,f)list

Use: Input data from record R of logical wunit wu. |
Format each input datum according to the format
specifications of ‘£ and place into processor:
storage as values of the locations identified in.
list. Only disk files that have been set up by
either an OPEN or DEFINE FILE statement may be.
accessed by a READ statement of this form. (If
record R has not been written, an error results.)

Example: READ(1#20,100) I, X(J)

1 10.6.5 Random Access Unformatted READ Transfers

- You may use only the follow1ng form of the READ statement to 1n1t1ate‘
;a random access unformatted 1nput transfer. ’ : ; ; : ;

10-13

1/0 STATEMENTS

~Form: READ'(u#R)list‘

Use: - Input data from record R of loglcal un1t u.” Place
: _the input data into processor storage as the value
of the locatlons identified in list. Only blnaryi

~ files that have been output by an unformatted

random access WRITE statement may be. accessed by a-

READ statement -of this form. (If record R has not‘

‘been ertten, an error results) =

 Example: READ (1420) BINFIL

"Read record number 20 1nto array BINFIL

 If the form READ (u#R) is used, it will
~cause logical input record R to Dbe
akippod i~ 0 : - T e SR

10.7 SUMMARY OF READ STATEMENTS

Table 10-2 summarizes the various forms of the READ statements.

Table 10-2
Summary of READ Statements

Type of Transfer Transfer Mode
Sequential ' 'fkRandomrAccess,
Formatted READ (u,f)list READ(u#R,f)list
READ(U,f) a0
READ f,list
Unformatted READ(u)list E READ(u#R)llst
READ (u) B READ(u#R)
. List-Directed “h',,r“RhAD(u,*)llst Sl
S T e T ;READ * 11st B
”.“NAMELIST S LA READ(u;N)
VwNoteiQ~ You may 1nc1ude ‘the ERR=c and 'END= =d . arguments in. any ofT

iﬁthe - above READ’;;statements. When“ilncluded, the
fore901ng arguments T must oo be last “‘elg;,“,"READri
(10 20 END 101 ERR 500)ARRAY(50 lOO SRR

_ REREAD STATEMENT

“ eadwfrom the last 'actiVeug
nput dev1ce to agaln be accessed -and processed.” . e

10-14

I/0 STATEMENTS

You cannot use the REREAD feature of FORTRAN-20 until an input (READ)
transfer from a file has been accomplished. If vyou use REREAD
prematurely, an error results.

Once a record has been accessed by a formatted READ statement, the
record transferred may be reread as many times as desired. 1In a
formatted transfer, you may use the same or new format specification
by each successive REREAD statement.

You may use the REREAD statement only for sequential formatted data
transfers. The form of the REREAD statement is: ‘

Form: REREAD f,list

Use: Reread the 1last record read during the 1last .
initiated READ operation and input the data
contained by the record into the processor storage
locations specified in the input list. Format the
data read according to the format specifications ;
given in statement f. '

Example: DIMENSION ARRAY(lO,lO),FORMA(lO,lO),FORMB(lo,lo),i
1 FORMC (10,10) i
90 READ(16,100)ARRAY

.

100 FORMAT (-~——-—-)

110 REREAD 100,FORMA
115 REREAD 150,FORMB
120 REREAD 160,FORMC

150 FORMAT (=—=---)
160 FORMAT (-———-—)

~ In the above sequence, statement 90 inputs data formatted according to
statement 100 into the array ARRAY. Statement 110 reads the record
read by statement 90 and inputs the data formatted as in the initial
- READ operation into the array FORMA. !

- Statement 115 reads the record read by statement 90 and inputs the
- data formatted according to statement 150 into the array FORMB. i

 Statement 120 reads the record read by statement 90 and inputs the
- data formatted according to statement 160 into the array FORMC. :

NOTE

If you try to REREAD a record input from
the teletype, vyou will get either the
current record or the last 150
characters of the current record,
whichever is the lesser.

10-15

1/0 STATEMENTS

10.9 WRITE STATEMENTS

WRITE statements transfer data from specified processor storage
locations to peripheral devices. The various forms of the WRITE
statement enable it to be wused in seguential, append, and random
"access transfer modes for formatted, unformatted, list-directed, and
‘NAMELIST-controlled data transfers.

10.9.1 Sequential Formatted WRITE Transfers

You may use the following forms of the WRITE statement for the
sequential transfer of formatted data:

1. Form: WRITE (u,f)list

Use: Output the values of the processor storage
locations identified in 1list into the file
associated with logical unit u. Convert and
arrange the output data according to the
specifications given in £.

Example: WRITE (06,500)0UT(10,20) ,A,B
2. Form: WRITE f,list
Use: Output the values of the processor storage
locations identified in list to the default device
(line printer). Convert and arrange the output
data according to the specifications given in f.
Example: WRITE 10,SEND(5,10),A,B,C
3. Form: WRITE £
Use: Output the contents of any Hollerith (H) or
literal ('') field descriptor(s) contained by £ to
the default device (line printer). If neither of
the foregoing types of field specifications is
found in £, no output transfer is performed.

Example: WRITE 10

10.9.2 Sequential Unformatted Binary WRITE Transfer

You may use the following form of the WRITE statements £for the
seqguential transfer of unformatted data:

Form: WRITE (u)list

Use: Output the values of the processor storage
locations identified in 1list into the file
associated with logical unit u. No conversion or
arrangement of output data is performed.

Example: WRITE(12)ITAB(20,20),SUMS(10,5,2)

10-16

I/0 STATLEMENTS

10.9.3 ©Sequential List-Directed WRIYE Transiers

You may use the following form of the WRITE statement to initiate a
sequential list-directed output transfer.

Form: WRITE (u,*)1list
Use: Output the wvalues of the processor storage
locations identified in 1list into the file

associated with logical unit u. The conversion of
each datum from internal to external form is
performed according to the type of the 1list
variable from which the datum is taken.

Example: WRITE(12,*)C,X,Y,ITAB(10,10)

10.9.4 Sequential NAMELIST-Controlled WRITE Transfers

You may use only the following form of the WRITE statement to 1n1t1ate~
a sequential NAMELIST output transfer.

Form: WRITE (u,N)

Use: Output the wvalues of the processor storage .
locations identified by the contents of the
NAMELIST-defined list specified by name N into the
file associated with logical unit u.

Example: WRITE (12 ,NMLST)

-10.9.5 Random Access Formatted WRITE Transfers

‘You may use only the following form of the WRITE statement to initiate |
‘a random access type formatted output transfer: ; ;

Form: WRITE (u#R,f)list

Use: Output the values of the processor storage |
locations identified by the contents of list to |
record R of the file associated with logical
device u. Only disk files that have been set up
by either an OPEN statement or a call to the
subroutine DEFINE FILE may be accessed by a WRITE |
transfer of this form. The data transferred will
be formatted according to the specifications given |
in f. Only those records that have been
specifically written are available to be read.

-10.9.6 Random Access Unformatted WRITE Transfers

iYou may use only the following form of the WRITE statement to initiatef
a random access unformatted output transfer: :

Form: WRITE (u#R)1list

Use: Output the values of the processor _’storagef
locations 1identified by the contents of list to |
record R of the file associated with logical

10-17

I/0 STATEMENTS

'fdevice,unitkﬁ;~iOnlyEdisk’filesfthat;have'been set
~up by either an OPEN or a call to the DEFINE FILE

subroutine may be. accessed by a WRITE transfer off‘

“this form. :Only . thosek*records _that have beena
, ,fspec1f1cally wrltten are avallable to be read,,“‘

10.10 SUMMARY OF WRITE STATEMENTS

Table 10-3 summarizes the various forms of the WRITE statements.

Table 10-3
Summary of WRITE Statements
Type of Transfer Transfer Mode
Sequential - Random Access
Formatted WRITE (u,f)list | WRITE(u#R,f)list
WRITE f£,list A , SR s
WRITE £ ; ;
Unformatted WRITE(u)llst WRITE (u#R)list
“’Llst Dlrected f“: j] f,WRITE(u,*)llsta :
f"NAMELIST controlled ; WRITE(u,N)
jthote;;‘i You may 1nclude the ERR =c and END d arguments in

~any WRITE statement which has a unlt number,f
“however, they must be 1ast ' : :

10 ll ACCEPT STATEMENT

The ACCEPT statenent enables you to 1nput data via elther’ja termlnal
' keyboard or a batch control file dlrectly into specified processorn
~storage ‘locations. Use this statement only in the sequential transfer
mode for the formatted transfer of inputs- from your “terminal - keyboard“
'durlng program execution. The following paragraphs descrlbe “the
Permltted forms of the ACCEPT statement.wt : T

‘10 11 1 Formatted ACCEPT Transfers

}Use the follow1ng forms of the ACCEPT sﬁatementV‘fdéf*thé?fséquenfielﬂ
;transfer of formatted data , L RS 5 S s

?ACCEPTffjiist;

~Input dataacharacter by—characterufrom the user,s,
~ terminal “into ‘the processor storage‘ locations
,.1dent1f1ed by the contents ‘of list. Format the |
j*lnput datamaccordlng to the format spec1f1cat10n 5
'”Q;glven 1n f. : _;

~ Example: ,ACCEPT 101 LINE(73)

10-18

I/0 STATEMENTS

2. Form: ACCEPY *,list

Use: Input data character-by-character from the user's
terminal into the processor storage locations
identified by the contents of list. Convert the
input characters, where necessary, to the type of
its assigned list variable.

Example: ACCEPT *,IAB,ABE,KAB,MAR

10.11.2 ACCEPT Transfers Into FORMAT Statements

You may use the following form of the ACCEPT statement to input data
~from your terminal keyboard directly into a specified FORMAT statement
1f the FORMAT statement has either or both a Hollerith (H), or a
‘literal ('s') field descriptor. If the referenced statement has
‘neither of the foregoing descriptors, the input record is skipped.

Form: ACCEPT £

Use: Replace the contents of the appropriatekfields of{
statement f with the data entered at the user's
terminal keyboard.

Example: ACCEPT 101

10.12 PRINT STATEMENT

The PRINT statement causes data from specified processor storage
locations to be output on the standard output device (line printer).
Use this statement only for sequential formatted data transfer
operation; write it in either of the three following forms:

1. Form: PRINT f,list

Use: Output the values of the processor storage
locations 1identified by the contents of list to
the line printer. The values output are to be
formatted and arranged according to the format
specifications given in f.

Example: PRINT 55,TABLE(10,20),I,J,K
2. Form: PRINT *,list
Use: Output the values of the processor storage

locations identified by the contents of list to
the line printer. The conversion of each datum
from internal to external form is performed
according to the type of the 1list wvariable from
which the datum is taken.

Example: PRINT *,C,X,Y,ITAB(10,10)
3. Form: PRINT £
Use: Output the contents of the FORMAT statement

Hollerith (H) or literal field descriptors to the
line printer. If neither an H nor a literal field

10-19

I/0 STATEMENTS
descriptor is ©present in the referenced FORMAT
statement, no operation is performed.
Example: PRINT 55 .

The third form of the PRINT statement 1is particularly useful when
employed with ACCEPT f statements to cause desired data (comments or
headings) to be inserted into reports at program execution time.
Example

The sequence

55 FORMAT(' END OF ROUTINE')

PRINT 55

results in the printing of the phrase "END OF ROUTINE" on the 1line
printer.

10.13 TYPE STATEMENT

'The TYPE statement - causes ‘data from specified processor storage.
.locations to be output to your (control) terminal printing or display
~device. Use this statement only for sequential formatted data-
~transfers; write it 1n one of the followxng forms: : : s

1. Form: TYPE f 1lst

- Use: ; Output the“values o the : processor storagez
RN locatlons'kidentified by the contents of list to

the user's terminal.: The values output are to be"

formatted according to the format specifications.

- given in'f.‘ i S g

‘eiEﬁémple:‘o'TYPE 101 TABLE(lO 20)1 3K
2. Form: TYPE £ T

‘Use: Output the contents of the referenced FORMAT
~ statement = Hollerith (H) or 1literal field
‘descriptors to the user's terminal device. . If the
referenced - FORMAT. -statement does. not contain
- either an H or a ‘literal field descriptor, no:
~operatlon 1s performed Bt R ‘

Example: TYPE 101

:oo;3;f:Fcrm{i e;fﬁTYPéo*f1i§tw

~Use: o Output the values of the processor storage
i f”ylocatlons ‘identified by the contents of list toé
“the user's terminal. The conver51on of each datum
rom internal ; external form performedy
- uaccordlng to the type of the 1lst;vvariable:ffrom'
 “wh1ch the;datum 1s taken.m FE iy T

‘I“Egamplé,: e

10-20

I/0 STATEMENTS

10.14 FIND STATE!NENT

The FIND statement does not initiate a data transfer operation; use
it during random access read operations to locate the next record to
be read while the current record is being input. The program does not
have access to the "found" record until the next READ statement is
executed.

The form of the FIND statement is
FIND (u#R)

Example:

In the seguence

READ (01490)
FIND(O014#101)

.

READ (014101)

- the FIND statement will locate record #101 on device 01 after record
90 has been retrieved. Record #101 is not processed until the second
READ statement in the sequence is executed.

10.15 ENCODE AND DECODE STATEMENTS

Use the ENCODE and DECODE statements to perform sequential formatted
data transfer between two defined areas of processor storage, i.e., an
I/0 list and a user-defined buffer; no peripheral I/0 device 1is
involved in the operations performed by these statements.

. The ENCODE statement transfers data from the variables of a specified
- I/0 list into a specified storage area. ENCODE operations are similar
to those performed by a WRITE statement. e e

. The DECODE statement transfers data from a specified storage area into
" the processor storage locations identified by the variables of an I/O
~ list, DECODE operations are similar to those performed Dby a READ

- statement.

' Write the ENCODE and DECODE statements in the following forms:

ENCODE (c,f,s)list
DECODE (c,£f,s)1list

- where

¢ specifies the number of characters to be in each internal
storage area. This argument may be an integer, an integer
expression, or either a real or double precision expression that
‘is converted to an integer form. ;

NOTE

5 characters per storage location are stored in the
buffer without regard to the type of variable given as
the starting location. L

10-21

I/0 STATEMENTS

'f specifies either a FORMAT statement or an array that containsl
format specifications. i W e ynd

s specifies the address of the flrst storage locatlon that is to
be used in the transfer’ operations. When multlpl” records are
specified by the format belng used, the succeeding ecords follow
each other 1n order. Of 1ncrea51ng storage addresse S i

list spec1f1es an 1/0 llstkeof“the standard form (Paragraph
10.3.4). R T S R 5 ta B ;

When multlple records are stored by ENCODE, each new record starts onf

a new storage location boundary rather than there belng a CRLF'
- inserted between records. . GE LTI e e e e il

: 110.15.1 ENCODE Statement . ,
A descrlptlon of: the form and use of the~ ENCODE statement follows-~

. Form: ENCODE(c,f,s)list

Use: " " The values. of the" processor storage ~locations’
. identified by the contents of list are converted

. to ASCII character strings accordlng to the format
1‘spe01flcat10ns given ~ in " £, The kconvertedg
-..characters are then written into the destlnatlon,
area starting at location s. If you try to
transfer more characters than the specified areag
“can contaln, the excess characters are 1gnored. L

'fIf youotransfer,fewer characters than“spec1f1edf
~..for the record size," the empty character locatlonsf
“are fll]ed w1th blanks. R e , ~

 Example: ENCODE(SOO 101 START)TABLE

510 15 2 DECODE Statement,,“d'

’A descrlptlon of the form and use of the DECODE statement follow5'”rﬁ

~Eorm.f;~‘ﬁ DECODE(C f s)llst

 Use: :The character 4str1ngs ~are taken startlng ‘at
i . location s, converted (decoded) according to. the-
format’ spec1f1cat10ns ‘given in £, and stored- as
~ the values of the _processor storageilocationsﬁ

,1dent1f1ed in 11st.‘ I N EEOR T

~TIf the R format ;fspe01f1catlon % requlres,m:mOreﬁ
; charactersikfrom a record than are specified by ¢,
i the extra characters are assumed to be“blanks.,,If~
“fewer 'characters :
-are’ spec1f1ed by

1gnored., : et

Example ;QDECODE(SO 50 START)GET(S 10)

10-22

I/0 STATEMENTS

statement
B(l) = 'A(1l)
B(2) = t= !
B(3) = '300.4"
B(4) = '5 !

' The result after the second

after the first iteration of the DO loop is:

Typed at line 4 as

A(l) = 300.45

iteration is:

B(l) = 'A(2) Typed at line 4 as
B(2) = '= !
B(3) = '3.0 A(2) = 3.0
B(4) = ' '
The DECODE statement:
1. Extracts the digits 1, 2, and 3 from C
2. Converts them to floating point values
3. Stores them in B(l), B(2), and B(3)
4. Skips the next character (the digit 4)
5. Extracts the digit 5 from C
6. Converts it to a floating-point value, and,

7. Stores it in B(4)

gThe output from the TYPE statement at line 9 is:

1.00 2.00 3.00 5.00

10.16 SUMMARY OF I/0 STATEMENTS

Table 10-4 summarizes all permitted forms of the I/O statement.

10-23

10.15.3 Example Of ENCODE/DECODE Operations
The following program illustrates the use of both the ENCODE and
DECODE statements:
Example
Assume the contents of the variables to be as follows:
A(1l) contains the floating point number 300.45
A(2) contains the floating point number 3.0
J is an integer variable
B is a 4-word array of indeterminate contents
C contains the ASCII string 12345
(1) DO 2 J=1,2
(2) ENCODE(16,10,B)J,A(J)
(3) 10 FORMAT (1X,2HA(,I1,4H) = ,F8,2)
(4) TYPE 11,B
(5) 11 FORMAT (4A5)
(6) 2 CONTINUE
(7) DECODE(5,12,C)B
(8) 12 FORMAT (3F1.0,1X,F1.0)
(9) TYPE 13,B
(10) 13 FORMAT (4F5.2)
(11) END
" Array B can contain 20 ASCII characters. The result of the ENCODE

Table 10-4
Summary of I/0 Statements

I/0 Statements Transfer Format Control

vZ-0T

Sequential or

Random only

E'ACCEPT
: Sequentlal only”

WRITE (u,f)list

‘FINDE(u#R)f;T

ACCEPT f,list
ACCEPT £

WRITE(u)list

Append (1) WRITE f,list
WRITE f
~ Random (2). WRITb VVVVVV (u#R f)llstw’ WRITE (u#R)list
REREAD
Sequentlal REREAD f,1list
sFIND

FIND (u#R)

WRITE (u,N)

Formatted Unformatted Namelist List-Directed
READ S
Sequential READ (u,f)list READ(u)list READ(u,N) READ (u,*)1list
READ f,list : READ *,1list
READ £ 8 o
Random ' READ (u#R,f)list | READ(u$R)list
WRITE

WRITE (u,*)1list

ACCEPT #*,list

‘ 1 You nust use an OPEN statenent to set up an aopeno mode.

~2. You must use eltqor fne OPEN statement or a call to the DEFINE

FILE subroutlne to set up a random access mode.

SINAWALYILS O/I

GZ-0T

Table 10-4 (Cont.)

Summary of I/0 Statements

I/0 Statements Transfer Format Control
Formatted Unformatted Namelist List-Direction
PRINT
Seguential only PRINT £,list PRINT *,list
PRINT £
TYPE
Sequential only TYPE f,list TYPE *,list
TYPE f
ENCODE
Sequential only ENCODE (c,f,s)list
DECODE
Sequential only DECODE (c,f,s)list
Legend:
u logical unit number Cx symbol used to specify list-directed I/0
f statement number of FORMAT : operator
statement or name of array #R variable which specifies logical record
containing format information position
Clist I1/0 list ; ‘ c number of characters per internal record
N name of specific NAMELIST S address of the first storage location to
e I/0 1list be used

SINIWALYILS O/I

CHAPTER 11

NAMELIST STATEMENTS

11.1 INTRODUCTION

" Use the NAMELIST statement to define I/0 1lists similar to those
~described in Chapter 10 (Paragraph 10.3.4). Reference defined !
NAMELIST I/O lists in special forms of the READ and WRITE statements
to provide a method of transferring and converting data without
~referencing format specifications or specifying an I/0 list in-the I/O

- statement.

~11.2 NAMELIST STATEMENT
Write NAMELIST statements in the following form:
NAMELIST/N1/Al,A2,...,An/N2/B1,B2,...,Bn/Nn/.

“where

/N1/ through /Nn/ represents names of individual lists. .

Always enclose the name with slashes

(/N/)

Al through An are the items of the lists identified, |

and respectively, by names N1 and N2. A

Bl through Bn list may contain one or more variable,
array, or array element names. Delimit
the items of a 1list by commas. Each °
list of a NAMELIST statement is |

identified (and referenced) by the name
immediately preceding the list.

:Example

DIMENSION C(2,4)
NAMELIST/TABLE/A,B,C/SUMS /TOTAL

"In the foregoing example, the name TABLE identifies the list
‘A,B,C(2,4), and the name SUMS identifies the list consisting of the

Zarray TOTAL.

11-1

1lSt has been deflned in a NAMELIST statement,jone oﬁ more /0

NAMELIST STATEMENTS

%kThe rules for strueturlng akNAMELIST etatenent are:

e l;, You may use a max1mum of 51x characters for a NAMELIST name.
2., 'You must begin it w1thfan’alphabetlcWcharacter. :
3.rtYourmustrenclose it in slashes;:f“’ S

4. The NAMELIST name must precede the list of entries to which
“ooit-refers. , . : , i

[,5" The NAMELIST name must bekuniqae within the,program.

6. You may define a NAMELIST hame only once, and you must define
it by a NAMELIST statement. Once deflned, you may use- a name
“only in READ or WRITE statements.r B

7. You must define the NAMELIST name in advance of the 1/0
& statement‘in which it is used. e

8. You cannot use a variable used in a NAMELIST statement as - aé
' ‘rdummy argument in a SUBROUTINE deflnltlon. ‘

9. You must define any dlmen51oned varlable contained in a7
~ NAMELIST statement in an array declaratlon statement .
precedlng the NAMELIST statement. i S I L

11.2.1 NAMELIST-Controlled Input Transfers

During ‘input (READ) transfer operations-in ' which ~a NAMELIST-defined :
‘name ..is referenced, the records are read until a record is found that"
~begins with the sequence ' $' (a space ~followed by a ‘dollar sign)
_followed by ~the referenced name. The dollar sign must be the second
character. in the record; the first character in the record must be a
‘blank. Once the proper ‘symbol-name*combination is found, the data
‘items following it are transferred on 'a one-to-one basis to the
_processor storage locations identified by the contents of the
‘referenced list. The input data is always converted to the type of -
‘the 1list variable when there is a <conflict of types. The input
yoperatlon continues until another $ symbol is detected. If variables
-appear in the’ NAMELIST record that do not appear in the NAMELIST list,
an - error condltlon will occur. Data items ‘of records to. be input
(read) using NAMELIST-defined lists must be separated by commas and
“may be of the follow1ng form: SPIOTRR SRR I SRR .

V= Kl K2,...,Kn e
;where

V may be a varlable, array, or array element name.:"'

: Kl through Kn are constants of type 1nteger, freal double
‘rprec151on, complex‘(wrltten as (A,B) where A and B are real)ji
or loglcal (wrltten as T for true or F for false). A series
of identical constantsz may ‘be frepresented ‘as a “single
g:/constant preceded b‘““a repetltlon factor (5%*5. ,represents?
-5,5,545, 5) : H : RS TERDE I IRTE TR R RIS R k .

11-2

NAMELIST STATEMENTS

In transfers of this type, 1logical and complex constants must be
equated to variables of their own type. Other type constants (real,
double-precision, and integer) may be equated to any other type of
variable (except logical or complex), and will be converted to the
variable type. For example, assume A is a 2-dimensional real array, B
is a 1l-dimensional integer array, C is an integer variable, and that .
the input data is as follows:

SFRED A(7,2)=4, B=3,6%2.8, C=3.32%

A READ statement referring to the NAMELIST defined name FRED will
result 1in the following: The integer 4 will be converted to floating
point and placed in A(7,2). The integer 3 will be placed in B(l), and
the integer 2 (converted) will be placed in B(2),B(3),...,B(7). The
floating point number 3.32 will be converted to the integer 3 and
placed in C.

NOTE

"&" may be used instead of "$" in
NAMELIST-controlled input.

11.2.2 NAMELIST-Controlled Output Transfers

When a WRITE statement refers to a NAMELIST-defined name, all .
variables and arrays and their values belonging to the named list are .
written out, each according to its type. Arrays are written out by
columns. Output data is written so that: : !

1. The fields for the data will be large enough to contain all
the significant digits. ‘

2. The output can be read by an input statement referencing a
NAMELIST- defined list.

"For example, if JOE is a 2 X 3 real array, the statement

NAMELIST/NAM1/JOE,K1,ALPHA
WRITE (u,NAM1)

. generates the following form of output:

ALPHA= 3.000000 , §

- Column
$NAME1 : ; |
JOE= -6.750000 +. 0.2340000E-04, 680.0000 -17.80000 .
'0.0000000E+00, -1970000. r Kl= 73.10000 ‘ ‘ .

NOTE

Do not use device positioning commands .
such as BACKSPACE, SKIP, RECORD, etc.,
with NAMELIST-controlled I/O operations..
If you do, the = results are
unpredictable. ‘

11-3

CHAPTER 12

FILE CONTROL STATEMENTS

12.1 INTRODUCTION
" This chapter describes the OPEN and CLOSE statements.

. They are file control statements used to set up files and establish
parameters for I/O operations and to terminate I/O operations. ‘

- 12.2 OPEN AND CLOSE STATEMENTS

" Both the OPEN and CLOSE statements are unique to FORTRAN-20; theyi
. both use the same format and have the same options and arguments. ‘

- The OPEN statement enables you to define all of the important aspectsf
‘of each desired data transfer operation; it provides an extensive
. list of required and optional arguments that define in detail:

i

1. the name and location of the data file

2. the type of access required

3. the data format within the file

4, the protection code(l) to be assigned an output data file
5. the disposition of the data file

6. data file record, block and file sizes

i

7. a data file version identifier

- In addition, a DIALOG argument 1is provided that permits vyou to
~establish a dialogue mode of operation when the OPEN statement
- containing it is executed. In a dialogue mode, interactive-
~terminal/program communication is established. This enables you to
~define, redefine, or defer the wvalues of the optional arguments
_contained by -the current OPEN statement during program execution.

eneral form of the OPEN statement is:

OPEN(Argl,Arg2,...,Argn})

;l. Refer to the Monitor Calls Manual, for a description o
‘protection codes. : E

12-1

FILE CONTROL STATEMENTS

: Use the CLOSE statement in the termlnatlon of ~an I/O operation to
dissociate the 1/0 device being wused. from the -active file and
~file-related information, and to restore the «core occupied by I/0:
buffers ..and other <transfer-related operations.. All required device
dependent termination functions are also performed on the execution of;
a CLOSE statement. Note that the CLOSE statement can change the name,
_protection; dlrectory, and dlSpOSltlon of the flle belng closed.’

_Once a CLOSE statement has been executed, you must use 'another, OPENf
statement to- regaln access to the closed file. B : I

;The general form of the CLOSE statement is:

,'CLOSE(Argl.,Arg2.,.g.,Argn)

 CAUTION

If you use. . a filename argument in ‘a
 CLOSE - statement that is different from
the current fllename, the file will be
renamed. N e el

12 2. 1 Optlons for OPEN and CLOSE Statements

zThe optlons and thelr arguments, whlch you may use in botn:]the;eOPENi
’ and CLOSE statements, are: ; R

4”1. %UNIT L - This Option is‘krequiréd;‘,,itgedefines ‘the

. FORTRAN 1I/0 unit number to be used. FORTRAN

" devices are identified by assigned decimal’

“numbers within the range 1-63; -however, UNIT

may be assigned an integer variable or

k~kconstant. The general form of thlS argumentg
is: ,

~ UNIT= “~f1Ankintegerivatiable or constant

Cwors

~ FORTRAN-20 standard logical unit
~ assignments are described in Chapter 10
_(Table 10-1). The range, i.e., 1-63, of

the possible UNIT numbers is an
',1nsta11at10n deflned parameter. o

2.f”DEVICENH'*WVWf *ThlS optlon may spec1fy elther ‘the physical
A e e i op T the: loglcal ‘name of the I/0 device
';*,1nvolved (A loglcal ‘name always “takes
- precedence over a ‘physical name.) The DEVICE;
“arguments:may specxfy /0 dev1ces located -
remote stations, as well as loglcal dev1ces
VThe general form of the DEVICE argument iss:

byl DEVICE?7 A llteral constant or Varlable

12-2

3.

ACCESS

FILE CONTROL STATEMENTS

If you omit this option, the logical name u
(where u 1s the decimal unit number) is
tried; if this 1is not successful, the
standard (default) device is attempted.

ACCESS describes the type of input and/or
output statements and the file access mode to
be used in a specified data transfer
operation. You may assign ACCESS any one of
six possible names, each of which specifies a
specific type of 1/0 operation. The
assignable names and the operations specified
are:

a. SEQIN The specified data file is
to be read in sequential
access mode.

b. SEQOUT The specified data file is
to be written in a
sequential access mode.

c. SEQINOUT The specified data file may !
be first read, then written

(READ/WRITE sequence)
record-by~-record in a
sequential access mode.
When you specify SEQINOUT, a
WRITE/READ sequence is ¢
illegal. If no access is
specified, SEQINOUT is
assumed.

d. RANDOM The specified data file may .

be either read or written
into, one record at a time.
In a random access mode of
operation, the relative
position of each record is
independent of the previous
READ or WRITE statement; .
all records accessed must
have a fixed logical record
length. The RECORD SIZE

option is required for |
random access operations.
You must specify a disk
device when the random |
argument is used. f

e. RANDIN This argument enables you to
establish a special, |
read-only random access mode !
with a named file. During a
RANDIN mode, you may read

the -~ named file |
simultaneously with other
users ' who have also

established a RANDIN mode |
‘and with {
file.

12-3

FILE CONTROL STATEMENTS

f. APPEND - The record specified by a
T corresponding . WRITE.
statement is to be added to .

" the “logical end of a named

- file. You must. Jclosei~~‘

then = reopen . the !

. file to permlt :

‘read. Sl

" The general form of the
ACCESS argument 1s.ﬁ‘,1f” R

?,'SEQIN'
AV'SEQOUT',
. ‘'sEQiNoUT'
~ACCESS= 'RANDOM' I
o URANDIN' e
- variable (set to
llteral) e e

4. MODE '~~Thls option deflnes the character set of

L S ~ external - file or record. = The- use of'thlS‘

: argument is optlonal,, 1f youdo
~one of the- follow1ng 1s assumed'

k,ha;i¢ASCII for a- formatted I/O flle transfer o
~ _b.. ‘Binary for an unformatted I/O‘ flle

_transfer..

NOTE
o Refer to the Monltor Calls Manual fou

detalled ‘description of the data modes
glven in the follow1ng llst.;' :

i Lf“You;mustﬁuse'One of the followrng characterd
“‘g;set spec1f1catlons w1th the MODE argument : ‘

”"~f L1teral rrj*;;~ Actlon Indlcated

?VrfgglASCII’~ Spe01f1es an ASCII character set

' “r ff'BINARY"Spec1f1es, data formatted g;an
T dFORTRAN blnary data flle. B

yflMAGEF“Spec1f1es an '1mage f(I) mode data
P transfer for the assoc1ated READ or

' WRITE statements. IMAGE is an

S unformatted blnary mode-ﬁ'~ = e

rd_The'aata file to be‘
- to be handled
operatlon

transferred

= varlable (Set to 11teral)

5.

6.

DISPOSE

FILE

default statements ACCEPT, - PRINT

is:

FILE CONTROL STATEMENTS

This option specilies an action to be taken
regarding a file at close time. When used,
DISPOSE must be either a variable or one of
the following literals:

Literal Action Indicated

'SAVE' Leave the file on the device.

'DELETE' If the device involved 1is a disk,
remove the file; otherwise, take no

action.

'PRINT' If the file is on disk, queue it for

printing; otherwise, take no
action.
'LIST! If the file is on disk, queue it for .

printing and delete the file;
otherwise take no action.

'RENAME' Change filename. (This is redundant
if a new filename is given.)

If the DISPOSE argument is not given, the
argument DISPOSE = 'SAVE' is assumed. The
general form of the DISPOSE argument is:

'SAVE'
'DELETE'
DISPOSE= "PRINT®
'LIST'
'RENAME'
variable (set to literal)

This option specifies the name of the file
involved in the data transfer operation.

FILE must be either a literal,
double-precision, complex, or
single-precision variable. Single-precision
variables are assumed to contain a 1- to
5-character file specification;
double-precision variables permit

l0-character file specification. The format
is a 1- to 6-character filename optionally
followed by a period and a 0- to 3-character
extension. Any excess characters in either
the name or extension are ignored. If you
omit the period and extension, the extension
.DAT is assumed; if just the -extension is
omitted, a null extension is assumed. So if .
you want a filename without an extension,
remember to use the period.

If a filename is not specified or is zero, a
default name is generated that has the form

FORxxX . DAT

where xx is the FORTRAN logical .unit number |
(decimal) or is the logical unit name for the

EA

TYPE. The general form of

12-5

FILE CONTROL STATEMENTS

FILE= A llteral or varlable set to a§
11tera1 , . , i
7. PROTECTION ‘This option spe01f1es a protection code to bef

assigned the data file being transferred.
The protectionycode~detern1nes the level of
access to the file that ~three possible
classes of users. {owner, member, or other)

will have. PROTECTION may be a 3- dlglt octal
literal or a variable; if the ‘argument 1is
assigned ‘a. zero value or is not given, the .
default protectlon code established for the -
installation is used. The general form of -
the PROTECTION argument is: LA i

 PROTECTION= 3-digit o6tal . constant or .
integer variable . i

8. DIRECTORY Use this option ' for disk files only. It
‘ T ~specifies the ‘location of the wuser file
‘directory (UFD) "~ or the sub-file dlrectoryﬂ

(SFD) that contains the file spec1f1ed in the

OPEN statement. A dlrecto Y ”dentlfler “may

“f;con51st of elther.f % : wi

a; kYour prOJeCt . programmer L number . thatyr:?
”fldentlfies the UFD for example, 10 7, or

by A UFD/SFD dlrectory path spec1f1catlon.'fA'
. path specification lists the UFD and the
‘names of its SFDs that form a path to the:
~desired SFD. For example, the following

- path specification ~1dent1f1es “the ' path

. leadlng to SFD 1234'~”‘w~ : T T e

10 7 SFDA SFDB 1234

‘ NOTE

, Refer to the Monltor Calls Manual for‘”a~
~complete description of directories. and
multllevel dlrectory structures.~ ‘ ;

The general form of a DIRECTORY argument 15'

DIRECTORY“ leteral, ~”0ry':~array . name
, ‘containing directory 5_path;
spec1flcat10n B T e

p

L You may also establlsh an ,array contalnlng
© the dlrectory spe01f1catlon as its elements
"~ and reference ‘the array ~in the DIRECTORY
~argument. Slngle -precision arrays “permit
-~ 5-character dlrectory 'names to 'be used;
double pre0131on arrays permlt,f6+character

12-6

FILE CONTROL STATEMENTS

names to be used. You must use a zero (0)
entry to terminate a directory path
specification given in an array.

Examples of the use of single- and
double-precision arrays in an OPEN statement
DIRECTORY specification follow:
a. Single-Precision Array
OPEN (UNIT = 5, DIRECTORY = PATH,...)
where PATH and its elements are:
DIMENSION PATH (5)
PATH (l)= "10 ! (PROJECT NUMBER)
PATH (2)= "7 ! {PROGRAMMER NUMBER) UFD
PATH (3)='SFDA' Names of sub-file
PATH (4)='SFDB' directories (SFD's)
PATH (5)=0
b. Double-Precision Array
OPEN (UNIT=5, DIRECTORY = PATH,...)
where PATH and its elements are:

DOUBLE PRECISION PATH (5)

PATH (1)="000000000010000000000007
! (PROJ.,PROG. NUMBERS=UFD)

PATH (2)='SFDABC'

PATH (3)='MYAREA' !names of sub-file
PATH (4)='YOURIT' !directories (SFDs)
PATH (5)=0

The elements of a directory specification
may then be either a literal or a single-
or double-precision array.

The following is an example of a literal
specification:

DIRECTORY='10,7,5FD1,SFD2,SFD3"
e/

- A
Project Sub-File
Programmer Directory
Number Path

Whenever the specification is an array, you
may specify the required project and
programmer numbers either of two ways. You
can - use one word with the project number in
the left half and the programmer number in
the right half, or, use the right halves of
separate sequential word locations.

12-7

9,

10.

11,

12

BT o

VERSION

BLOCK SIZE You can use thl

'RECORD SIZE

FILE CONTROL STATEMENTS

BUFFER COUNT f,~Thls optlon enables you to specxfy the numberg
: S - 0f I/0 buffers to be a881gned to a partlcular
device. If this argument is not given ‘or is.
a551gned a value of zero, the Monlto , '

~is - assumed. The ,general -for of
argument is: ‘ erit R L

BUFFER COUNT“‘ e integer constante
S e a varlablee : R

FILE "SIZE. -‘,Use this optlon for disk operatlons only,;ﬁit;
... enables you “to estlmate the number of words

that an output flle is going to contaln._ The
~_use of FILE SIZE enables you to ensure at the
. start of a program that ~enough space is.
~~avallable - for ;itsajexecution"~~If;the sizef
specified is found to be too small during
]prbgram,~éxeCUtions;] the Monltor ~allocates
additional space accordlng to. the normaly
~Monitor 'algorlthms ' The value assigned to

~ the FILE SIZE arguments ,may be ~an_ integer
~constant or variable and will be rounded up .
" to the next. hlgher bloc und “~(mu1t1ple(
- of 200 octal) ‘The ' 1
argument-is:

FILE SIZE= An integer
i varlable

”Use th1s optlon for disk peratrons only,* it
~enables = you to assign a 12-digit octalh

' version number to a file when it is output.

. The quantlty a551gne ‘t he VERSION argument

' may be either an octal constant or varlable.;
_The general orm of the argument 1s.nf ;

An octal constant *oreginteQeré
,varlable it o B

:optlon for all storage medlaﬁ
”f~except dlsk It enables jyou to spec1fy a’
. physical storage block ‘size for a device.-

- The ~value,ra551gned ‘the BLOCK SIZE. argumentsi
" may ~an integer constant or varlable.r ‘The:
size spec1f1ed must be greater than or equal
~ to 3 and less than or ~equal to 4095.bf The
~;;pgeneral form of thls argument ise el

BLOCK SIZE ‘An 1ntegergl ,constéﬁt“
o Varlable Qlﬂ‘ S O

;!Thls optlon enables you to force all loglcalv
~records to be a specified length. - If a
wloglcal record exceedsuthe specified ngth,
loglcal‘record sflessf
added. to

, i The RECORDj
SIZE argument is requ1red whene er - a‘ random
access mode is. specrfled : The;value a551gnedf
3 § i r an integer.
xpressed

kbconstant or. varlable eand;maYYb?

12

!
(o 0]

FILE CONTROL STATEMENTS

the number of words or characters, depending
on the mode of the file being described. The
general form of this argument is:

RECORD SIZE= An integer constant or
variable

14. ASSOCIATE

VARIABLE Use this option for disk random access
operations only. It provides storage for the
number of the record to be accessed next 1if
the program being executed were to continue
to sequentially access records starting from
the current READ. For example, if record
number 3 were read, the ASSOCIATE VARIABLE
would be equal to 4. The general form of
this argument is:

ASSOCIATE VARIABLE = Integer variable

15. PARITY Use this option for magnetic tape operations
only; it permits you to specify the type of
parity to be observed (odd or even) during
the transfer of data. The general form of
this option is:

PARITY= 'ODD!
'EVEN"
variable (set to literal)

16. DENSITY Use this option for magnetic tape operations
' only; it permits you to specify any of four

possible Dbit-per-inch (bpi) tape density

parameters for magnetic tape transfer
operations. The general form of this option .

is:
1200
DENSITY= ‘556"
§ '800"
{ '1600"
! variable (set to literal)
17. DIALOG The use of this option in an OPEN statement
enables you to supersede or defer, at
execution time, the values previously .
assigned to the arguments of the statement. .
There are two forms of this argument. The
first is: ‘
DIALOG

- This form establishes a dialogue with your
““terminal when the OPEN statement is executed.
" FOROTS outputs the following messages at the

user's terminal. {

= ' UNIT=n:/ACCESS=SEQINOUT/MODE=ASCII
o ENTER NEW FILE SPECS. END WITH A $ (ALT)

Once the message :éhd;figdeﬁiued J, file
specification are output, you may enter any
desired changes. You need ‘the

12-9

FILE CONTROL STATEMENTS

The second form of7the'argument is:
DIALOG= . Literal or array

The value assigned ‘to DIALOG may be a 1iteral&
or an array containing a file spe01flcat10nl
with the desired information.

18. ERR ~ The use of this option in an OPEN or CLOSE.
statement enables you. to transfer program
control to an executable statement when an:
error is detected during the processing of
the OPEN or CLOSE statement. The general.
form of thlS optlon is: :

ERR=~s

where s is the statement label = of an
executable statement (that appears in the
‘same program unit as the error specifier) to
which program control is transferred when an
error is. detected.

:JAssoc1ated w1th the ERR= optlon on OPEN/CLOSEQ

is the subroutine ERRSNS that enables you to
k ,pinpointf the error. See Appendix H - for
- 'FOROTS error values returned by ERRSNS. '

-Examples: :
OPEN (UNIT= 1, DEVICE= 'DSK', ACCESS= YSEQIN‘, MODE=”'BINARY‘)‘

f'causes a disk file named FOROl. DAT (since no FILE*;‘option was
‘spec1f1ed) to be opened on unlt 1 for sequentlal 1nput in binary mode.

OPEN (UNIT— 3, DEVICE= 'DSK'E FILE= 'PAYROL. DAT" ‘ '
1 ACCESS= 'RANDOM', MODE= 'ASCII', RECORD SIZE= 80,
2 ASSOCIATE VARIABLE= I, ERR~ 240) ,

causes a disk file named PAYROL.DAT to be opened on unlt 3 for random
input/output operations in ASCII mode. The records in PAYROL. DAT are
80 characters long; - the ASSOCIATE VARIABLE for this file is I. ..If an
‘error occurs during the execution of this OPEN statement, the OPEN
"w1ll termlnate and control w1ll transfer to the statement labeled 240

: CLOSE (UNIT= 3, DISPOSE= ‘DELETE')' B

causes the file on unlt 3 to be closed and removed 1f the flle is on
‘dlsk ;) . i Do

‘12 2 2 Summary of OPEN/CLOSE Statement Optlons

Table 12-1 summarizes the optlons permltted and requlred in ﬁthe iOPEN;
-and CLOSE statements and the type of value requ1red by each. SO '

12-10

FILE CONTROL STATEMENTS

Table 12-1

OPEN/CLOSE Statement Arguments

Argument Possible Value Open* | Close*
ACCESS= 'SEQIN', 'SEQOUT', 'SEQINOUT', O I
'RANDIN', 'RANDOM', 'APPEND',
or variable
ASSOCIATE VARIABLE= | Integer variable 0] I
BLOCK SIZE= Integer constant or variable 0] I
BUFFER COUNT= Integer constant or variable 0] I
DENSITY= Literal constant or variable 0 I
DEVICE= Literal constant or variable o] 1
DIALOG= Literal or array or none 0 I
DIRECTORY= Literal or variable or array 0 0
DISPOSE= Literal constant or variable 0 0
ERR= Statement Number 0] 0O
FILE= Literal constant or variable 0 0]
FILE SIZE= Integer constant or variable o} I
MODE= Literal constant or variable O I
PARITY= Literal constant or variable o I
PROTECTION= An octal constant or (O 0
integer variable
RECORD SIZE= Integer constant or integer 0] 1
variable
UNIT= Integer variable or constant R R
VERSION= Octal constant or variable 0 0
*
R = Required
0 = Optional
I = Ignored

12-11

CHAPTER 13

FORMAT STATEMENT

13.1 INTRODUCTION

Use FORMAT statements in conjunction with the I/0 1list of 1I/0
statements during formatted data transfer operations. The FORMAT
statements contain field descriptors that, together with the 1list
items of associated I/0 statements, specify the forms of the data and
data fields that comprise each record.

FORMAT statements may appear almost anywhere in a source program. The
only placement restrictions are that they follow PROGRAM, FUNCTION,
SUBPROGRAM, or BLOCK DATA statements; and that they precede the END
statement. (Refer to Section 2.4.)

You must label FORMAT statements so that I/0 statements can reference
them.

13.1.1 FORMAT Statement, General Form
The general form of a FORMAT statement follows:

k FORMAT (SAl,sa2,...,SAn/SB1,SB2,...,SBn/...)

where
k = the required statement label (which can only
be referenced by I/0 statements).
SAl through SAn = individual field descriptor sets

and
SB1 through SBn

In the foregoing statement form, the individual field descriptors are

delimited by commas (,). Field descriptor sets and records are
delimited by slashes (/). For example, a FORMAT statement of the
form:

FORMAT (SAl1,SA2/5B1,SB2/SC1,SC2)

contains format specifications for three records with each record
containing two field descriptor sets.

Adjacent slashes (//) in a FORMAT statement specify that a record is
to be skipped during input or is to consist of an empty record on
output. For example, a FORMAT statement of the form:

FORMAT (SAl1,SA2///SB1,SB2)

13-1

FORMAT STATEMENT

specifies four records are to be processed; however, the second and
third records are to be skipped.

You may represent repeated field descriptors or groups of field
descriptors by using a repeat form. Indicate the repetition of a
single field descriptor by preceding the descriptor with an integer
constant that specifies how many times the descriptor 1is to be
repeated. For example, a FORMAT statement of the form:

FORMAT (SA1,SA2,SA3,SA1,SA2,SA3,5A1,SA2,SA3)
may be written as

FORMAT (3 (SA1,SA2,SA3))

You may nest the repeat forms of field descriptors to any depth. For
example, a FORMAT statement of the form:

FORMAT (SA1,SA2,SA2,SA3,SA1,8A2,5A2,SA3)
may also be written in the form:
FORMAT (2 (SAl,25A2,5A3))
The following paragraphs discuss the manner in which you may use the

foregoing statement forms and the effect each has on the data
involved.

13.2 FORMAT DESCRIPTORS

FORMAT statement descriptors describe the record structure of the
data, the format of fields within the record, and the conversion,
scaling, and editing of data within specific fields. The following
descriptors can be used with FORTRAN-20:

Descriptors Comments
rFw.d
rEw.d Floating point numeric field descriptors
rDw.d
rGw.d
rIw Integer field descriptor
rLw Logical field descriptor
rAw . Alphanumeric data field descriptor
r Rw
kHs Alphanumeric data in a FORMAT statement field
‘text' descriptor

Field formatting descriptors

nP Numerical scale factor descriptor

/ Record delimiter

- Octal field descriptor

13-2

FORMAT STATEMENT

where

r = an optional unsigned integer representing a repeat count.
This option enables a field descriptor to be repeated r
times.

w = an optional integer constant representing the width (total
number of characters contained) of the external form of
the field being described. All characters, 1including
digits, decimal points, signs, and blanks that are to
comprise the external form of the field, must be included
in the value of w.

.d = an optional unsigned integer specifying the number of
fractional digits that are to appear in the external
representation of the field being described. ©Note that w
must be specified if .d is included in the descriptor.

k = an unsigned integer specifying the number of characters to
be processed during the transfer of alphanumeric data.

S = represents a string of ASCII (alphanumeric) characters.
n = a signed integer constant (plus signs are optional).

The characters A, D, E, F, G, H, I, L, 0, P, and R indicate the manner
of conversion and editing to be performed between the internal
(processor) and external representations of the data within a specific
field; these characters are referred to as conversion codes. Table
13-1 gives the FORTRAN-20 conversion codes and a brief description of
the function of each.

Table 13-1
FORTRAN-20 Conversion Codes

Code Function

Transfer alphanumeric data

Transfer real data with a D exponent (1)

Transfer real data with an E exponent (1)
Transfer real data without an exponent

Transfer integer, real, complex, or logical data
Transfer literal data

Transfer integer data

Transfer logical data

oo .Transfer octal data

Numerical scaling factor
Transfer alphanumeric data

WRHORHTQME O P

1. An exponent of 0 is assumed if none is given.

The use of commas to delineate format descriptors within a format
specification is optional as 1long as no ambiguity exists. For
example,

FORMAT (3X,A2)
can be written as

FORMAT (3XA2)

13-3

FORMAT STATEMENT

Since interpretation of a format specification 1is 1left associative,
the specification

FORMAT (I22,1I5)
can be written as

FORMAT (I221I5)
However, a comma is required when you wish to specify

FORMAT (I2,21I5)
The following paragraphs provide detailed descriptions of the various

types of format descriptors, the manner in which they are written and
employed, and their use in FORMAT statements.

13.2.1 Numeric Field Descriptors

The forms of the field descriptors used to specify the format and
conversion of numeric data follow.

Description Type of Data Used For

Dw.d Double-precision data with a D exponent

Ew.d Real data with an E exponent

Ew.d,Ew.d For the real and imaginary parts of a complex
datum

Fw.d Real or double-precision data without an exponent

Fw.d,Fw.d For the real and imaginary parts of a complex
datum

Iw Integer data

Ow .~ Octal data

Gw.d Real or double-precision data

Gw For integer (or logical) data

Gw.d,Gw.d For the real and imaginary parts of a complex
datum

NOTE

The G conversion code may be used for
all but octal numeric data types.
Examples
Consider the, following program segment:
INTEGER Il,I2

REAL R1,R2,R3
DOUBLE PRECISION D1,D2

I1 = 506

I2 = 8

Rl = 506.0

R2 = 18.1

R3 = 506001.0
Dl = 18.0

D2 = -504.0

13-4

FORMAT STATEMENT

Table 13-2 describes the actions performed by several types of
formatted WRITE statements on the data given in the foregoing program
segment.
Table 13-2
Action of Field Descriptors On Sample Data
Item|Descriptor | Sample WRITE External
Form Descriptor Statement Form External
Using the of Sample | Appearance
Sample Field of Sample
Descriptor Described | Data
1 Dw.d D8.2 WRITE(-,-)Dl1 | Z.nnD nn | 0.18D+02
2 Ew.d E8.2 WRITE(-,-)Rl1 | Z.nnE nn | 0.51E+03
3 Fw.d F5.2 WRITE (-,-)R2 | aa.nn 18.10
4 |Iw 15 WRITE(~,-) Il | aaaan ¥B506
S w12 | WRITE(-,-)Il\an | **
6 |Ow. 05 WRITE (-,-)I2 | nnnnn | 00010]
7 Gw.d G8.2 WRITE(-,-)D2 | Z.nnD nn | -.50D+02
8 Gw.d G8.2 WRITE(-,-)R3 | Z.nnE nn | 0.51E+06
9 |Gw.d G8.2 WRITE (-,-)R2 | aa.nn BBr18.10
10 |[Gw G5 WRITE(-,-)I1 | aaan Bp506
where: a. n represents a numeric character.
b. 2 represents either a - or 0. (Note that if n-d>6,
a negative number cannot be output.)
c. a represents a digit, leading blank (M) or a minus
sign depending on the numeric output.
Notes:

1. In Item 1, the value D1 has only two significant digits and
d=2, so no rounding will occur on input.

2. In Item 2, since Rl has 3 significant digits, it is rounded

to fit into the specified field.

3. In Item 5, the width (w) part of a format descriptor
specifies an exact field that permits no rounding of its
contents. If the w specification 1is too small for the
datum to be transferred, asterisks are output to indicate

that the transfer was not made.

~W74Tfffhff€éﬁ”6}”ihtégét”8 ¥“dcta1~1b; s 1k‘u‘f : Hﬁiu‘g

5. In Items 8 and 9, the relationship between G and fixed and

floating real data is discussed in Paragraph 13.2.3.

6. In Items 1, 2, 3, 7, and 8, the D and E exponent prefixes
are optional in the external form of the floating point
constants. For example, 1.1E+3 may be written as 1.1+3.

Table 13-3 summarizes the internal and external forms of the data

specified by the numeric format conversion code.

13-5

FORMAT STATEMENT

Table 13-3
Numeric Field Codes
Internal Form Conversion External Form
Code
Binary floating-point D Decimal floating-point with D
double-precision exponent
Binary floating-point E Decimal floating-point with E
exponent
Binary floating-point F Decimal fixed-point
Binary integer I Decimal integer
\Binary word | 0 |oOctal value
One of the following: G Single-precision decimal
single-precision floating-point, decimal
binary floating-point, integer, logical (T or F), or
binary integer, binary complex (two decimal
logical, or binary floating-point numbers),
complex depending upon the internal
form

Complex quantities transfer as two independent real gquantities. The
format specification for complex quantities consists of either two
successive real field descriptors or one repeated real field
descriptor. For example, the statement

FORMAT (2E15.4,2(F8.3,F8.5))
may transfer up to three complex quantities.
The equivalent of the foregoing statement is

FORMAT (E15.4,E15.4,F8.3,F8.5,F8.3,F8.5)

13.2.2 1Interaction of Field Descriptors With I/O Variables

The execution of an I/O statement that specifies a formatted data
transfer operation initiates format control. The actions performed by
format control depend on information provided by the elements of the
I/0 statement's 1list of wvariables and the field descriptors that
comprise the referenced FORMAT statement's format specifications.

In processing each FORMAT controlled I/0 statement that has an 1I/0
list, FORTRAN scans the contents of the 1list and the format
specifications in step. Each time another variable or array element
name is obtained from the 1list, the next field specification is
obtained from the format specification. If the end of the format
specification is reached and more items remain in the list, a new line
or record is established and the scan process is restarted, either at
the first item in the format specification or, if parenthesized, sets
of format specifications exist within the format specification, with
the last set within the format specification.

13-6

FORMAT STATEMENT

When the I/0 list is exhausted, control proceeds to the next statement
in the program, but not before the FORMAT statement is scanned either
to its end or to the next variable transfer format descriptor. (That
is, the FORMAT statement is scanned past slashes, literal constants,
Hollerith field descriptors, and spacing descriptors, but not past
data field descriptors.)

A record is terminated by one of the following:

1. a slash in the FORMAT specification
2. the delimiting right parentheses,), of the FORMAT statement
3. a lack of items in the I/0O list

4, a lack of Hollerith or 1literal field descriptors in the
FORMAT statement

On input, an additional record is read only when a single slash, /, is
encountered in the FORMAT statement. A record is skipped when two
slashes, //, are encountered or a slash is followed by the end of the
FORMAT statement. If the FORMAT statement finishes a record by a
slash or the end of the FORMAT statement, any data left in the input
record 1is ignored. If the input record is exhausted before the data
transfers are completed, the remainder of the transfer is completed as
if the record were extended with blanks.

On output, an additional record is written only when a slash, /, is
encountered in the FORMAT statement. If a pair of consecutive
slashes, //, or a single slash followed by the end of the FORMAT
statement is encountered, an empty record.is written.

13.2.3 G, General Numeric Conversion Code

You may use the G conversion code in field descriptors for the format
control of real, double-precision, integer, logical, or complex data.

With the exception of real and double-precision data, the type of
conversion performed by a type G field descriptor depends on the type
of its corresponding I/O list variable. In the case of real and
double-precision data, the kind of conversion performed is a function
of the external magnitude of the datum being transferred. Table 13-4
illustrates the conversion performed for various ranges of magnitude
(external form) of real and double-precision data.

13.2.4 Numeric Fields with Scale Factors

You may add scale factors to D, E, F, and G conversion codes in field
descriptors. The scale factor has the form

nP
where n is a signed integer (+ 1is optional) and P identifies the

operation. When wused, a scale factor is added as a prefix to field
descriptors.

13-7

FORMAT STATEMENT

Examples

-2PF10.5
1PES.2

When you add a scale factor to an type F field descriptor (or type G
if the external field 1is a fixed point decimal) a power of 10 is
specified so that

External Form of Number = (Internal Form)*10**(scale factor)

For example, assuming the data involved to be the real number 26.451,
the field descriptor

F8.3

produces the external field

Bp26.451

Table 13-4
Descriptor Conversion of Real and Double-Precision
Data According to Magnitude

Magnitude of Data in Equivalent Method of
External Form (M) Conversion Performed
0.1 Mgl F(w-4).d,4X
1 M10 F(w-4).(d-1) ,4X
10d-2 M¢10d-1 F(w-4).1,4X
104-1 Mglod F(w—-4).0,4X
ALL OTHERS Ew.d

NOTE

In all numeric field conversions, the
field width (w) you specify should be
large enough to include the decimal
point, sign, and exponent character in
addition to the number of digits. If
the specified width 1is too small to
accommodate the converted number, the
field will be filled with asterisks (*).
If the number converted occupies fewer
character positions than specified by w,
it will be right-justified in the field
and leading blanks will be used to fill
the field.

13-8

FORMAT STATEMENT

The addition of the scale factor of -1P
-1PF8.3

produces the external field

B¥Kp2.645

When you add a scale factor to D, E, and G (external field not a
decimal fixed-point) type field descriptors, it multiplies the number
by the specified power of ten and the exponent is changed accordingly.

In input operations, type F (and type G, if the external field is
decimal fixed-point) conversions are the only ones affected by scale
factors.

When you specify no scale factor, it is understood to be =zero. Once
you specify a scale factor, however, it holds for all subsequent types
D, E, F, and G field descriptors within the same format specification
unless another scale factor is specified. A scale factor is reset to
zero when you specify a scale factor of zero. Scale factors have no
effect on I and O type field descriptors.

When you add a scale factor to a D or E field descriptor, it specifies
a power of 10 so that the external form of the number has its mantissa
multiplied by the specified power of 10; its exponent 1is adjusted
accordingly.

For example, assuming the data involved to be the real number 12.493,
the field descriptor

E11.3

produces the external field
B0.125E+02

The addition of the scale factor 2P
2PE11l.3

produces the external field
B¥12.49E+00

With a scale factor of zero, the number of significant digits printed
by a format of the form

Ew.d
or

Dw.d
is the number of digits to the right of the decimal point.
For a negative scale factor nP, for =-d<n<0, there will be ABS(n)
leading zeros and d-ABS(n) significant digits after the decimal point,
for a total of d digits after the decimal point. If n<-d, there will
be d insignificant digits (zeros) to the right of the decimal point.
If the scale factor nP is positive, for 0<n<d+2 there will be n

significant digits to the 1left of the decimal point and d-n+l
significant digits to the right of the decimal point (for a total of

13-9

FORMAT STATEMENT

d+l significant digits). If n>d+2, there will be d+1 significant
digits and n-d-1 insignificant trailing zeros on the left of the
decimal point.

If the data to be printed is 12.493, these formats produce results as
follows:

FORMAT OUTPUT SIGNIFICANT REASON
DIGITS

E15.3 BBBBBEB0.125E+02 3 n=0
1PE15.3 BYYYYBY1.249E+01 4 n<d+2
-1PE15.3 BYBBBY . 012E+03 3 -d<n
2PE15.3 BBBBBE12.49E+00 4 n<d+2
-3PE15.3 BYBBBE0.000E+05 0 n<-d
4PE15.3 BYYBBEY 1249 .E-02 4 n<d+2
6PE15.3 BBYKE124900.E-04 4 n>d+2

13.2.5 Logical Field Descriptors

You may transfer logical data under format control in a manner similar
to numeric data transfer by use of the field descriptor

Lw

where L is the control character and w is an integer specifying the
field width. The data is transmitted as the value of a corresponding
logical variable in the associated input/output list.

On input, the first non-blank character in the logical data field must
be T or F, the value of the logical variable is stored in the list
variable as true or false, respectively. If the entire input data
field is blank or empty, a value of false is stored.

On output, w minus 1 blanks followed by T or F will be output if the
value of the logical variable is true or false, respectively.

13.2.6 Variable Numeric Field Widths

Several of the conversion codes are acceptable in FORMAT statements
without field width specifications, the w.d portion of the
specification so that can be omitted(1l).

On input, the conversion codes D, E, F, G, I, L, and O are acceptable
without field width specifications. The field begins with the first
non-blank character encountered and ends with the first 1illegal
character in the given field. (Blanks and tabs also terminate a
field.) Note that for conversion code L (logical data), all
consecutive alphabetics following a T (true) or an F (false) are
considered part of the field and are ignored. In succeeding fields
the input stream is scanned wuntil a non-blank character is
encountered. If the character is a comma (,), the next field is
skipped, and the following input field begins with the character
following the comma. Any character other than a comma is assumed to
be the first character in the next input field. Null fields are

1. If 4 is given, w must also be specified.

13-10

FORMAYT STATEMENT

denoted by successive commas optionally separated by blanks or tabs.
A null field 1is equivalent to a fixed-field input of blanks. For
example, the source code

READ 1, X, ¥, 2, L, I, J
1 FORMAT (3F, L, I, A3)

with data as follows
,1.0E+5, , TRUEXXX1BBBBABC

results in

X =10.0

Y = 1.0E+5
zZ =0.0

L = TRUE

I =1

J = 'ABC'

Note that if a comma is included in the input data after the XXX1 and
before the blanks, i.e., the data is :

,1.0E+5 ,, TRUEXXX1,BPPPABC
then J = 'BEB'
On output, the format codes A, D, E, F, G, I, L, O, and R are

acceptable without field width specifications. The following defaults
are assumed:

Format Code Assumed Default
A single-precision AS
A double-precision Al0
D D25.18
E E15.7
F F15.7
G single-precision Gl15.7
G double-precision G25.18
I 115
L L15
0 015
R single-precision RS
R double-precision R10

13.2.7 Alphanumeric Field Descriptors

You may accomplish the formatted transfer of alphanumeric data in a
manner similar to the formatted transfer of numeric data by use of the
field descriptors Aw and Rw, where A and R are the control characters
and w is the number of characters in the field.

The A and R descriptors both transfer alphanumeric data into or from a
variable in an input/output list depending on the I/O operation. A
list variable may be of any type. For example,

READ (6,5) V
5 FORMAT (A4)

13-11

FORMAT STATEMENT

causes four alphanumeric characters to be read from unit 6 and stored
in the variable V.

The A descriptor deals with variables containing left-justified,
blank-filled characters; the R descriptor deals with variables
containing right-justified, zero-filled characters. The following
paragraphs summarize the result of alphanumeric data transfer (both
internal and external representations) using the A and R descriptors.
These paragraphs assume that w represents the field width and m
represents the total number of characters possible in the variable.
Double ©precision variables contain 10 characters (m=10); all other
variables contain 5 (m=5).

A Descriptor

1. INPUT, where w>m —-- The rightmost m characters of the field
are read in and stored left-justified and blank-filled in the
associated variable.

2. INPUT, where w < m -- All w characters are read in and stored
left-justified and blank-filled in the associated variable.

3. OUTPUT, where w>m -- m characters are output and
right-justified 1in the field. The remainder of the field is
blank-filled.

4. OUTPUT, where w < m -— The left most w characters of the
associated variable are output.

R Descriptor

1. INPUT, where w>m -- The right most m characters of the field
are read in and stored right-justified, zero-filled in the
associated variable.

2. INPUT, where w < m -- All w characters are read in and stored
right-justified, zero-filled in the associated variable.

3. OUTPUT, where w>m -- m characters are output and right
justified in the field. The remainder of the field is blank
filled.

4. OQUTPUT, where w < m -— The right most w characters of the

associated variable are output.

13.2.8 Transferring Alphanumeric Data

You may transmit alphanumeric data directly into or from the FORMAT
statement by two different methods: H-conversion, ;or the use of

. single quotes, i.e., a literal field descriptor.:

In H~conversion, the alphanumeric string is specified in the form nH,
where H 1is the <control <character and n 1is the total number of
characters (including blanks) in the string. For example, you may use
the following statement sequence to print the words PROGRAM COMPLETE
on the device LPT:

PRINT 101
101 FORMAT (l17HBPROGRAMBCOMPLETE)

13-12

FORMAT STATEMENT

Read and write operations of this type are initiated by I/O statements
that reference a format statement and a logical device, but do not
contain an I/0 list (see preceding example).

Write transfers from a FORMAT statement cause the contents of the
statement field descriptor to be output to a specified logical device.
The contents of the field descriptor, however, remain unchanged.

Read transfers with a FORMAT statement cause the contents of the field
descriptors involved to be replaced by the characters input from the
specified logical device.

Alphanumeric data is stored in a field descriptor left-justified. If
the data input into a field has fewer characters than the field,
trailing blanks. are added to f£ill the field. If the data input 1is
larger than the field of the descriptor, the excess rightmost
characters are lost.

Examples

WRITE (1,101)
101 FORMAT (17HBPROGRAMPCOMPLETE)

cause the string PROGRAM COMPLETE to be output to the file on device
1.

Assuming the string START on device 1, the sequence

READ (1,101)
101 FORMAT (17HPPROGRAMPCOMPLETE)

would change the contents of statement 101 to
101 FORMAT (l7HSTARTRBYBYEBBBYBBELE)
. The foregoing functions may also be accomplished by a literal field .

- descriptor «consisting of the desired character string enclosed within
. apostrophes, i.e., 'string'. For example, you may use the descriptors

101 FORMAT (l7HPPROGRAMPCOMPLETE)

and
in the same manner.
- The result of literal conversion is the same as H-conversion. on
~input, the characters between the apostrophes are replaced by input
- characters, and on output, the <characters between the apostrophes .
(including blanks) are written as part of the output data.

fAn apostrophe character within a literal field should be represented%
' by two successive apostrophe marks; otherwise, the statement will not .
~compile. For example, the statement sequence ' ‘ ~

50 FORMAT ('DON''T')
PRINT 50 ‘

j~will'compile and will cause the word DON'T to be output
- printer. The statement

50 FORMAT ('DON'T')

13-13

FORMAT STATEMENT

13.2.9 Mixed Numeric and Alphanumeric Fields

You may place an alphanumeric field descriptor among other fields of
the format. For example, you may use the statement:

FORMAT (14,7HYFORCE=F10.5)
to output the line:
BB22BFORCE=}K17.68901

You may omit the separating comma after an alphanumeric format field,
as shown in the foregoing statement.

When you omit a comma delimiter from a format specification, format

control associates as much information as possible with the leftmost
of the two field descriptors.

13.2.10 Multiple Record Specifications
To handle a group of input/output records where different records have
different field descriptors, use a slash to indicate a new record.
For example, the statement

FORMAT (308/15,2F8.4)
is equivalent to

FORMAT (308)
for the first record, and

FORMAT (I5,2F8.4)
for the second record.
You may omit separating commas when you use a slash. When n slashes
appear at the end or beginning of a format, n blank records will be
written on output or skipped on input. When n slashes appear in the
middle of a format, n-1 blank records are written on output or n-1
records skipped on input.
Both the slash and the closing parenthesis at the end of the format
indicate the termination of a record. If the list of an input/output
statement dictates that the transmission of data is to continue after
the closing parenthesis of the format 1is reached, the format is
repeated, starting with:

1. that group repeat specification terminated by the last right
parenthesis of the next lower level group, or

2. level zero if no higher level group exists.
Thus, the statement
FORMAT (F7.2,(2(E15.5,E15.4),17))
level 0 level 0
level 1 level 1

level 2

13-14

FORMAT STATEMENT

causes the format
2(E15.5,E15.4),17

to be used after the first record.

As a further example, consider the statement
FORMAT (F7.2/(2(E15.5,E15.4),17))

The first record has the format
F7.2

and the next 5 records have the format

2(E15.5,E15.4),17

13.2.11 Record Formatting Field Descriptors

You may use two field descriptors,i?wgand nX, to position data within
a record.

You may use the field descriptor Tw to specify the acter position.
- {external form) in which a record begins. 1In the ‘T eld descriptor, !

the letter T is the control character, and w is ‘an 1signed integer |
: constant that specifies the character position, in a record, where the .
- transfer of data 1is to begin. When - the output 1is printed, W
. corresponds to the (w 1l)th print position, since the first character
- of the output buffer is a forms control character and is not rlnted
It 1is recommended that the first field spec1f1cat;on
. format be 1X, except where a forms control character"

NOTE

Two successive T field specifications
will result in the second field
overwriting the first field if the
fields overlap. ;
- Examples

~ The statement sequence ‘ - S

PRINT 2
2 FORMAT (T50, 'BLACK',T30,'WHITE')

% causes the following line to be printed

WHITE ~ BLACK

(print position 29) (print position 49)

? The statement sequence

1 FORMAT (T35,'MONTH')
READ (2, 1)

13-15

FORMAT STATEMENT

causes ‘the flrst 34 characters of the input data assocxated* with
loglcal unit 2 tokbe sklpped,~and the next five characters to replace
the characters M 0 ,N T, and H in storage. = If an lnput 'record
;contalnlng L S S Sl e SR e

- ABCHBXYZ

then the characters XYZ and ABC are read in that order.

You may use the field descriptor nX to introduce blanks into output
records or to skip characters of input records. The 1letter X
specifies the operation, and n is a positive integer that specifies
the number of character positions to be either made blanks (output) or
skipped (input).

Example
The statement

FORMAT (5HYSTEP,I15,10X,2HY=,F7.3)
may be used to print the line

STEPPBI 286 BBYBBBBIEY=}~3.872

13.2.12 §$ Format Descriptor

A $ format descriptor at the end of an output FORMAT 1is wused to
suppress the carriage return at the end of the current record. It is
mainly used on terminal output but will work on non-terminal devices.
A $§ format descriptor is ignored in input FORMATs and has no effect if
embedded in an output FORMAT. The $ format descriptor must be the
next format descriptor to be processed when the corresponding output
list is exhausted for the $ descriptor to have the defined effect.

13.3 CARRIAGE CONTROL CHARACTERS FOR PRINTING ASCII RECORDS

You may use the first character of an ASCII record to control the
spacing operations of the line printer or Teletype terminal printer
unit on which the record 1is being printed. Specify the control
character desired by beginning the FORMAT field specification for the
ASCII record to be output with 1lHa...where a is the desired control
character. Table 13-5 describes the control characters permitted in
FORTRAN-20 and the effect each has on the printing device.

13-16

FORMAT STATEMENT

Table 13-5
FORTRAN-20 Print Control Characters

FORTRAN Character | Printer Character | Octal Value Effect

space

0 zero

1 one

+ plus

* asterisk

- minus

2 two

3 three

/ slash

period

, Comma

LF 012 Skip to next
line with form
feed after

60 lines

LF,LF 012 Skip a line

FF 014 Form feed - go
- to top of next
page

Suppress
skipping -
overprint the
line

DC3 ‘ 023 Skip to next
o line with no
form feed

LF,LF,LF Skip two lines

DLE Space 1/2 of a

page
VT Space 1/3 of a
page ‘

Space 1/6 of a
page

DC4

DC2 022 Triple space
with a form
feed after
every 20 lines
printed

DC1 N 021 Double space

with a form

feed after

every

30 lines
printed

 NOTE

“Printer control ,characters DLE, ‘DCl;u

'DC2, DC3, and DC4 affect only the line

- printer.

13-17

CHAPTER 14

DEVICE CONTROL STATEMENTS

14.1 INTRODUCTION

You may use the following device control statements in FORTRAN-20
source programs:

1. REWIND

2. owomD
3. BACKSPACE (1)
4. ENDFILE

5. SKIPRECORD(1)

6. SKIPFILE

7. BACKFILE

The general form of the foregoing device control statements is

keyword u
keyword (u)

where
keyword is the statement name
u is the FORTRAN logical device number (Chapter 10, Table
10-1)
The operations performed by the device control statement are normally
used only for magnetic tape devices (MTA). In FORTRAN-20, however,
the device control operations are simulated for disk devices.

The following paragraphs describe the form and use of the device
control statements.

14.2 REWIND STATEMENT

Form: REWIND u

Use: Move the file contained by device u to 1its initial
(load) point. If the medium is already at its load
point, this statement has no effect. Subsequent READ

1. The results of these commands are unpredictable when used on 1list-
directed and NAMELIST-controlled data.
14-1

Example:

DEVICE CONTROL STATEMENTS

or WRITE statements that reference device u will
transfer data to or from the first record located on
the medium mounted on device u.

REWIND 16

114;3

Exanple:

:pNLOADiéTATEMEnfgk

' UNLOAD u
 Move the medium cont ’i;; ;'e: u,ﬂpast1ﬂits7‘load'

point unt:
~source reel

etely rewound onto the

UNLOAD 16

14.4

14.5

BACKSPACE STATEMENT

Form:

Use:

Example:

END FILE

Form:

Use:

Example:

BACKSPACE u

Move the medium contained on device u to the start of
the record that precedes the current record. If the
preceding record prior to execution of this statement
was an endfile record, the endfile record becomes the
next record after execution. If the current record is
the first record of the file, this statement has no
effect.

NOTE
You cannot use this statement for files

set up for random access, list-directed,
or NAMELIST-controlled I/O operations.

BACKSPACE 16

STATEMENT

END FILE u

Write an endfile record in the file located on device
u. The endfile record defines the end of the file that
contains it. If an endfile record is reached during an
I/0 operation 1initiated by a statement that does not
contain an END= option, the operation of the current
program is terminated.

END FILE 16

14-2

DEVICE CONTROL STATEMENTS
14.6 SKIP RECORD STATEMENT

Form: SKIP RECORD u

Use: In accessing the file located on device u, skip the
record immediately following the current (last .
accessed) record. : :

NOTE

You cannot use this statement for files set up
for random access, list-directed, - or
NAMELIST-controlled I/O operations :

Example: SKIP RECORD 16

. 14.7 SKIP FILE STATEMENT

Form: SKIP FILE u

Use: In accessing the medium located on ‘unit u, skip the
file immediately following the current (last accessed)
file. If there is no file after the current file, an .
error will occur. o , ‘

Example: SKIP FILE 01

©14.8 BACKFILE STATEMENT

Form: BACKFILE u

Use: Move the medium mounted on device u to the start of thei
file that precedes the current (last accessed) file.

If there is no file before the current file, completion |
of the last operation will move the medium to the start '
of the first file on the medium.

Example: BACKFILE 20

14.9 SUMMARY OF DEVICE CONTROL STATEMENTS

Table 14-1 summarizes the form and use of device control statements.

14-3

DEVICE CONTROL STATEMENTS

Table 14-1

Summary of FORTRAN-20 Device Control Statements

Statement Form

Use

Rewind medium to its load 901nt .

'REWIND u

SKIP?FILE u

'BACKFILE u

BACKSPACE u

:eW1nd ‘medium onto its source. reel
ite an endfile record into" the current file

Sklp ‘the next record

 Skip the next file

_Move medium backwards one" f11e
Move medium back one record

14-4

CHAPTER 15

SUBPROGRAM STATEMENTS

15.1 INTRODUCTION

Procedures you use repeatedly in a program may be written once and
then referenced each time you need the procedure. Procedures that may
be referenced are either internal (written and contained within the
program in which they are referenced) or external (self-contained
executable procedures that may be compiled separately). The kinds of
procedures that may be referenced are:

1. statement functions,

2. intrinsic functions (FORTRAN-defined functions),
3. external functions, and

4. subroutines.

The first three of the foregoing categories are referred to
collectively as functions or function procedures; procedures of the
last category are referred to as subroutines or subroutine procedures.

15.1.1 Dummy and Actual Arguments

Since you may reference subprograms at more than one point throughout
a program, many of the values used by the subprogram may be changed
each time it is used. Dummy arguments in subprograms represent the
actual values to be used, which are passed to the subprogram when it
is called.

Functions and subroutines use dummy arguments to indicate the type of
the actual arguments they represent and whether the actual arguments
are variables, array elements, arrays, subroutine names, or the names
of external functions. Each dummy argument must be used within a
function or subroutine as if it were a variable, array, array element,
subroutine, or external function identifier. Dummy arguments are
given in an argument list associated with the identifier assigned to
the subprogram; actual arguments are normally given in an argument
list associated with a call made to the desired subprogram. (Examples
of argument lists are given in the following paragraphs.)

The position, number, and type of each dummy argument in a subprogram

list must agree with the position, number, and type of each argument
in the argument list of the subprogram reference.

15-1

SUBPROGRAM STATEMENTS

Dummy arguments may be:
1. wvariables,
2. array names,
3. subroutine identifiers,

4, function identifiers, or

 statement label 1dent1f1ers that are denoted by the s‘yn)b?ol’“z
T "*ll ~ll$"' u&u . i : i : :

When you reference a subprogram, its dummy arguments are replaced by
the corresponding actual arguments supplied in the reference. All
appearances of a dummy argument within a function or subroutine are
related to the given actual arguments. Except for subroutine
identifiers and literal constants, a valid association between dummy
and actual arguments occurs only if both are of the same type;
otherwise, the results of the subprogram computations will be
unpredictable. Argument association may be carried through more than
one level of subprogram reference if a valid association is maintained
through each level. The dummy/actual argument associations
established when a subprogram is referenced are terminated when the
desired subprogram operations are completed.

The following rules govern the use and form of dummy arguments:

1. The number and type of the dummy arguments of a procedure
must be the same as the number and type of the actual
arguments given each time the procedure is referenced.

2. Dummy argument names may not appear in EQUIVALENCE, DATA, or
COMMON statements.

3. A variable dummy argument should have a variable, an array
element identifier, an expression, or a constant as its
corresponding argument.

4. An array dummy argument should have either an array name or
an array element identifier as 1its corresponding actual
argument. If the actual argument is an array, the length of
the dummy array should be less than or equal to that of the
actual array. Each element of a dummy array is associated
directly with the corresponding elements of the actual array.

5. A dummy argument representing a subroutine identifier should
have a subroutine name as its actual argument.

6. A dummy argument representing an external function must have
an external function as its actual argument.

7. A dummy argument may be defined or redefined in a referenced
subprogram only if 1its corresponding actual argument is a
variable. If dummy arguments are array names, then elements
of the array may be redefined.

Additional information regarding the use of dummy and actual arguments

is given in the description of how subprograms are defined and
referenced.

15-2

SUBPROGRAM STATEMENTS

15.2 STATEMENT FUNCTIONS

Statement functions define an internal subprogram in a single
statement. The general form of a statement function is:

name (argl,arg2,...,argn)=E

where

name is a name you assign that consists of one to six
characters. The name you use must conform to the
rules for symbolic names given in Section 3.3.
The type of a statement function is determined
either by the first character of its name or by it
being explicitly declared in a type statement.

(argl...argn) represents a list of dummy arguments.

E is an arbitrary expression.

The expression E of a statement function may be any legitimate
arithmetic expression that may use the given dummy arguments and
indicates how they are combined to obtain the desired value. You may
use the dummy arguments as variables or indirect function references;
but you cannot use them as arrays. The dummy argument names bear no
relation to their use outside the context of the statement function

except for their data type. The expression may reference
FORTRAN-defined functions (Section 15.3) or any other defined
statement function, or call an external function. It may not

reference any function that directly or indirectly references the
given statement function or any subprogram in the chain of references.
That 1is, recursive references are not allowed. Statement functions
produce only one value, the result of the expression that it contains.
A statement function cannot reference itself.

You must define all statement functions within a program unit before
the first executable statement of the program unit. When used, the
statement function name must be followed by an actual argument 1list
enclosed within parentheses and may appear in any arithmetic or
logical expression.

Examples:

SSQR (K)=(K* (K+1) *2*K+1) /6
ACOSH (X) =(EXP (X/A)+EXP (-X/A)) /2.0

15.3 1INTRINSIC FUNCTIONS (FORTRAN DEFINED FUNCTIONS)

Intrinsic functions are subprograms supplied by FORTRAN. Reference an
intrinsic function by using its name as an operand in an expression.
The name always refers to the intrinsic function unless it is preceded
by an asterisk (*) or ampersand (&) in an EXTERNAL statement, declared
in a conflicting explicit type statement, or specified as a routine
dummy parameter.

Table 15-1 describes FORTRAN-20 intrinsic functions and their
arguments. Notice that octal constants are not allowed as arguments.

15-3

v-ST

Table 15-1

Intrinsic Functions (FORTRAN-20 Defined Functions)

Function Mnemonic Definition Number of Type of
Arguments Argument Function
Absolute value:
Real ABS* arg 1 Real Real
Integer IABS* arg 1 Integer Integer
Double- precision DABS* arg 1 Double Double
Complex to real CABS C=(x**2+Y**2) %% (] /2) 1 Complex Real
Conversion:
Integer to real FLOAT* 1 Integer Real
Real to integer IFIX* Sign of arg * 1 Real Integer
largest integer
< arg
Double to real SNGL 1 Double Real
Real to double DBLE* 1 Real Double
Integer to double DFLOAT 1 Integer Double
Complex to real REAL* 1 Complex Real
(obtain real part)
Complex to real AIMAG 1 Complex Real
(obtain imaginary
part)
Real to complex CMPLX* c=Arg + i*Arg 2 Real Complex
Truncation:
Real to real AINT Sign of arg* 1 Real Real
largest integer
< arg
Real to integer INT* 1 Real Integer
Double to integer IDINT 1 Double Integer

* In line functions.

SINIWILVLS WVID0¥ddns

S-G1

Table 15-1 (Cont.)

Intrinsic Functions (FORTRAN-20 Defined Functions)

Function Mnemonic Definition Number of Type of
Arguments Argument Function
Remaindering:
Real AMOD The remainder 2 Real Real
Integer MOD* when Arg 1 is 2 Integer Integer
Double- precision DMOD divided by Arg 2 2 Double Double
Maximum value:
AMAXO0 >1 Integer Real
AMAX1* >1 Real Real
MAXO#* Max (Argl,Arg2,...) >1 Integer Integer
MAX1 >1 Real Integer
DMAX1 >1 Double Double
Minimum Value:
AMINO >1 Integer Real
AMIN1* { >1 Real Real
MINO* Min(Argl,Arg2,...) >1 Integer Integer
MIN1 >1 Real Integer
DMIN1 >1 Double Double
Transfer of Sign:
Real SIGN* 2 Real Real
Integer ISIGN Sign(Arg2)* Argl 2 Integer Integer
Double precision DSIGN 2 Double Double
Positive Difference:
Real DIM* {Argl—Min(Argl,ArgZ)} 2 Real Real
Integer IDIM 2 Integer Integer

* In line functions.

SINTIWALYILS WYIDOYJdNS

SUBPROGRAM STATEMENTS

15.4 EXTERNAL FUNCTIONS

External functions are function subprograms that consist of a FUNCTION
statement followed by a sequence of statements that define one or more
desired operations; subprograms of this .type may contain one or more
RETURN statements and must be terminated by an END statement.
Function subprograms are independent programs that may be referenced
by other programs.

The FUNCTION statement that identifies an external function has the
form:

type FUNCTION name (argl,arg2,...,argn)
where

type is an optional type specification as
described in Section 6.3. These include
INTEGER, REAL, DOUBLE PRECISION, COMPLEX or
LOGICAL (plus the optional size modifier, *n,
for compatibility with other manufacturers.)

name is the name you assign to the function. The
name may consist of from one to six
characters, the first of which must be
alphabetic. You may include the optional
size modifier (*n) with the name if the type
is specified. (Refer to Section 6.3.)

(argl,...,argn) is a list of dummy arguments.

If you omit type in the FUNCTION statement, the type of the function
may be assigned, by default, according to the first character of its
name, or may be specified by an IMPLICIT statement or by an explicit
statement given with the subprogram itself.

Note that if you want to use the same name for a user-defined function
and the name of a FORTRAN-20 defined function (library basic external
function), the desired name must be declared in an EXTERNAL statement
and prefixed by an asterisk (*) or ampersand (&) in the referencing
routine. (Refer to Section 6.7 for a description of the EXTERNAL
statement.)

The following rules govern the structuring of a FUNCTION subprogram:

1. You must use the symbolic name assigned a FUNCTION subprogram
as a variable name in the subprogram. During each execution
of the subprogram, this variable must be defined and, once
defined, may be referenced or redefined. The value of the
variable at the time of execution on any RETURN statement is
the value of the subprogram.

NOTE

A RETURN statement returns control to the <calling
statement that initiated the execution of the
subprogram. See Section 15.6 for a description of
this statement.

SUBPRCGRAM STATEMENTS

2. You may not use the symbolic name of a FUNCTION subprogram in
any nonexecutable statement in the subprogram except in the
initial FUNCTION statement or a type statement.

3. Dummy argument names may not appear in any EQUIVALENCE,
COMMON, or DATA statement used within the subprogram.

4. The function subprogram may define or redefine one or more of
its arguments so as to effectively return results in addition
to the value of the function.

5. The function subprogram may contain any FORTRAN statement
except BLOCK DATA, SUBROUTINE PROGRAM, another FUNCTION
statement, or any statement that directly or indirectly
references the function being defined or any subprogram in
the chain of subprograms leading to this function.

6. The function subprogram should contain at 1least one RETURN
statement and must be terminated by an END statement. The
RETURN statement signifies a 1logical conclusion of the
computation made by the subprogram and returns the computed
function wvalue and control to the calling progranm. A
subprogram may have more than one RETURN statement.

The END statement specifies the physical end of the
subprogram and implies a return.

15.4.1 Basic External Functions (FORTRAN-20 Defined Functions)

FORTRAN-20 contains a group of predefined external functions that are
called basic functions. Table 15-2 describes each basic function, its
name, and its use. These names always refer to the basic external
functions unless declared in an EXTERNAL or conflicting explicit type
statement.

15.4.2 Generic Function Names

The compiler generates a call to the proper FORTRAN-20 defined
function, depending on the type of the arguments, for the following
generic function names:

ABS
AMAX1
AMIN1
ATAN
ATAN2
Cos
INT
MOD
SIGN
SIN
SQRT
EXP
ALOG
ALOG10

In the following example

K=ABS (I)

15-7

SUBPROGRAM STATEMENTS

the type of I determines which function 1is called. If I 1is an
integer, the compiler generates a call to the function IABS. 1If I is
real, the compiler generates a call to the function ABS. If I |is

double precision, the compiler generates a call to the function DABS.

The function name loses its generic properties if it appears in an
explicit type statement, 1if it 1is specified as a dummy routine
parameter, or if it 1is prefixed by "*" or "&" in an EXTERNAL
statement. When a generic function name that was specified unprefixed
in an EXTERNAL statement is used as a routine parameter, it is assumed
to reference a FORTRAN-20 defined function of the same name, or if
none exists, a user-defined function. Note that IMPLICIT statements
have no effect upon the data type of generic function names unless the
name has been removed from its class by use of an EXTERNAL statement.

15.5 SUBROUTINE SUBPROGRAMS

A subroutine is an external computational procedure that is identified
by a SUBROUTINE statement and may or may not return values to the
calling program. The SUBROUTINE statement used to identify a
subprogram of this type has the form:

SUBROUTINE name (argl,arg2,...,argn)

where
name is the symbolic name of the subroutine to be
defined.
(argl,...,argn) is an optional list of dummy arguments.

15-8

6-GT

Basic External Functions (FORTRAN-20 Defined Functions)

Table 15-2

Function Mnemonic Definition Number of Type of
: Arguments Argument Function

Exponential:

Real EXP 5Arg} 1 Real Real

Double DEXP 1 Double Double

Complex CEXP (1 Complex Complex
Logarithm:

Real ALOG 1n (Arg) 1 Real Real

ALOG10 log (Arg) 1 Real Real
Double DLOG 1In (Arg) 1 Double Double
DLOG10 log (Arg) 1 Double Double

Complex CLOG In (Arg) 1 Complex Complex
Square Root:

Real SQRT* (Arg)**1/2 1 Real Real

Double DSQRT (Arg)**1/2 1 Double Double

Complex CSQRT (Arg)**1/2 1 Complex Complex
Sine:

Real (radians) SIN¥* 1 Real Real

Real (degrees) SIND 1 Real Real

Double (radians) DSIN {sin(Arg)} 1 Double Double

Complex CSIN 1 Complex Complex
Cosine:

Real (radians) COs* 1 Real Real

Real (degrees) COSD 1 Real Real

Double (radians) DCOS cos (Arg) 1 Double Double

Complex CCos 1 Complex Complex

*Generic functions

SINTHILWLS WRIDOVWJENS

0T-ST

Basic External Functions (FORTRAN-20 Defined Functions)

Table 15-2 (Cont.)

Function Mnemonic Definition Number of Type of
Arguments Argument Function
dyperbolic:
Sine SINH sinh(Arg) 1 Real Real
Cosine COSH cosh(Arg) 1 Real Real
Tangent TANH tanh (Arg) 1 Real Real
Arc sine ASIN asin(Arg) 1 Real Real
Arc cosine ACOS acos (Arg) 1 Real Real
Arc tangent
Real ATAN* atan (Arg) 1 Real Real
Double DATAN datan (Arg) 1 Double Double
Two REAL arguments ATAN2* atan(Argl/Arg2) 2 Real Real
Two DOUBLE arguments DATAN2 atan(Argl/Arg2) 2 Double Double
Complex Conjugate CONJG Arg=X+i¥,CONJG=X-1iY 1 Complex Complex
Random Number RAN Result is a random Integer, Real
number in the range 1 Dummy Real,
of 0 to 1.0 Argument | Double,
or Complex

*Generic functions

SINTWILYLS WYdD0dddns

The foll
subprogra

1.

SUBPROGRAM STATEMENTS

owing rules control the structuring of a subroutine
m:

You may not use the symbolic name of the subprogram in any
statement within the defined subprogram except the SUBROUTINE
statement itself.

You may not use the given dummy arguments in an EQUIVALENCE,
COMMON, or DATA statement within the subprogram.

The subroutine subprogram may define or redefine one or more
of its arguments so as to effectively return results.

The subroutine subprogram may contain any FORTRAN statement
except BLOCK DATA, FUNCTION, another SUBROUTINE statement, or
any statement that either directly or indirectly references
the subroutine being defined or any of the subprograms in the
chain of subprogram references leading to this subroutine.

Dummy arguments that represent statement labels may be either
an *, §, or &.

The subprogram should contain at least one RETURN statement
and must be terminated by an END statement. The RETURN
statements indicate the 1logical end of a computational
routine; the END statement signifies the physical end of the
subroutine.

Subroutine subprograms may have as many entry points as
desired (see description of ENTRY statement given in Section
15.7).

15.5.1 Referencing Subroutines (CALL Statement)

You must
the follo

CALL
where

name

(arg

reference subroutine subprograms by using a CALL statement of

wing form:
name (argl,arg2,...,argn)
is the symbolic name of the desired
subroutine subprogram.
l1,...,argn) is an optional list of actual arguments. If
the list is included, the given actual
arguments must agree in order, number, and

type with the corresponding dummy arguments
given in the defining SUBROUTINE statement.

The use of literal constants is an exception to the rule requiring
agreement of type between dummy and actual arguments. An actual

argument
1.

2.

in a CALL statement may be:
a constant

a variable name

15-11

SUBPROGRAM STATEMENTS

3. an array element identifier
4. an array name
5. an expression

6. the name of an external subroutine, or

_a statement label.

Example:

The subroutine

END

may be referenced by

CALL MATRIX(10,20,30,40,

15.5.2 FORTRAN-20 Supplied Subroutines
FORTRAN-20 provides you with an extensive group of predefined

subroutines. Table 15-3 gives the descriptions and names of these
predefined subroutines.

15.6 RETURN STATEMENT AND MULTIPLE RETURNS

The RETURN statement causes control to be returned from a subprogram
to the calling program unit. This statement has the form:

RETURN (standard return)

or

| RETURN e (multiple returns)

there e represents an 1nteger constant, varlable,w ‘xpreSSLOn‘5 The
execution of this statement in the first of the foreg ing forms (i.e.,
standard return) causes control to be returned to the statement of the
calling program that follows the statement that called the subprogram.

The mult1p1e returns form o thls statement, 1 e., RETURN ‘e,, enables
_you to select any labeled statement of the calllng program as. a return.
p01nt., When the: multlple returns form of this statement 'is executed,
“the fa551gned or: calculated value of e spe01f1es thatVthe*return is to.
be made to > ‘ gL ' '

statement

calllng statemen
'vallable statement labels,

, . ‘or larger than
_the number of a standard return operat1onr

-%SfPerformed'

15-12

SUBPROGRAM STATEMENTS

NOTE
A dummy argument for a statement 1label
must be either a *, $, or & symbol.

You may use any number of RETURN (standard return) statements in any
subprogram. The use of the nmultiple returns form of the RETURN
statement, however, is restricted to subroutine subprograms. The
execution of a RETURN statement in a main program will terminate the
program.
Example

Assume the following statement sequence in a main program:

.

CALL EXAMP(1,$10,K,$1 5,M,$20)
GO TO 101 abd A e LT e

10 ceeieeenenn

15 i,

1

15-13

SUBPROGRAM STATEMENTS

Assume the following statement sequence in the called SUBROUTINE
subprogram:

SUBROUTINE EXAMP (L, *

RETURN

RETURN

END
Each occurrence of RETURN returns control to the statement GO TO 101
in the calling program.

;:If;*Qn)ﬁhe?executiéneofftﬁe RETURN (C/D) statement, the value of
st e e S

Less than or equalkto.',"f

ca standard“ return'f'”
statement is made
" the return is made ,

the return is made to statement 15
“the" return is made to statement 20

The follow1ng is performed'ﬁg
he GO O 101

?GfeaﬁerithanQOrWequaiﬁto:: i, 1
TR R S £ A R | standard ~return - |

;ef:statement Ls made

15.6.1 Referencing External FUNCTION Subprogram
Reference an external function subprogram by using its assigned name
as an operand in an arithmetic or logical expression in the calling
program unit. The name must be followed by an actual argument list.
The actual arguments in an external function reference may be:

l. a variable name,

2. an array element identifier,

3. an array name,

4. an expression,

a statement number, or

15-14

SUBPROGRAM STATEMENTS

6. the name of another external procedure FUNCTION or
SUBROUTINE) .

NOTE
Any subprogram name to be used as an
argument to another subprogram must

first appear in an EXTERNAL statement
(Chapter 6) in the calling program unit.

Example

The subprogram defined as:

INTEGER FUNCTION ICALC(IX,IY,IZ)

RETURN
END

may be referenced in the following manner:

TOTAL=ICALC (IAA,IAB,IAC)+500

15.7 MULTIPLE SUBPROGRAM ENTRY POINTS (ENTRY STATEMENT)

- FORTRAN-20 provides an ENTRY statement that enables you to specify
- additional entry points into an external subprogram. This statement.
- used in conjunction with a RETURN statement enables you to employ only
one computational routine of a subprogram that contains several such
- routines. The form of the ENTRY statement is:

ENTRY name (argl,arg2,...,argn)

- where

name is the symbolic name to be assigned the.
desired entry point. E
(argl,...,argn) is an optional list of dummy arguments. This:

list may contain
1. wvariable names,

2. array deciarators,

15-15

SUBPROGRAM STATEMENTS

3. the name of an external 'prooedure“E

(SUBROUTINE or FUNCTION), or

4. statement label 1dent1f1ersn'that‘ are

denoted by either a *, §, or & symbolr

:The rules for the use of an ENTRY statement follow.

1.

g

The ENTRY statement allows entry 1nto a subprogram at a placeu
- other than that defined by the subroutine or function
" statement. You may include any number of ENTRY statements 1nf

an external suborogram.

Execut10n'~1s‘ begun ,at‘[the_ first executable statement
- following the ENTRY statement. i, : T et '

 Appearance of an ENTRY statement in a Subprogram"does not
negate” the rule that statement functions in subprograms must*
'precede the first executable statement

”grYou may- not use an ENTRY statementkln a ‘main program or have?
,;fa subprogram reference 1tse1f throug

ts entry p01nts.,;"ﬁp

rkYou may not’ use an ENTRY statement in the range of a DO ‘or anf
. extended DO statement constructlon. r

”ﬁrThe dummy arguments in the ENTRY Statement need not agree ‘in

f‘Entry statements are nonexecutable and do, not - affect thej
‘y,executlon flow of a subprogram, , k ST T 5

order, number, or type with the dummy arguments in SUBROUTINE§

‘:Entry 1nto a subprogram 1n1t1allzes only the dummy ;arguments?

of the referenced ENTRY statement.r

,The source subprogram must be ordered such that references toﬁ
k ‘dummy arguments'~ in = executable statements ,follow,,thei
_appearance of the dummy argument in . the - dummy 1istf,of ca

~ SUBROUTINE, FUNCTION, or ENTRY statement.k.~u‘

U li;‘}
. previous reference the - subprogram . are nundeflnedf‘forg

~or FUNCTION statements of any other ENTRY statement in the
subprogram. However, the arguments for each call or functloné
~ reference must “agree w1th the dummy arguments “in - “the:
“SUBROUTINE, FUNCTION, or ENTRY statement that 1s referenced

:'You may not ‘reference a dummy argument unless it appears‘ in
- the dummy 1list-.of an ENTRY, “SUBROUTINE, or FUNCTION statementf
by which the subprogram is entered. : PR ‘ o

c

Dummy'arguments that were defined for a subprogram by deOmef

d?’subsequent entry 1nto the subprogram.u

”LThe value of the functlon;must be returned by k :[jofm;theg
‘current entry name.g ;~w,;»ﬁ' : . u' A T

15-16

SUBPROGRAM STATEMENTS

Table 15-3
FORTRAN-20 Library Subroutines

Subroutine Name Effect

AXIS

DATE

DEFINE FILE

CALL AXIS(X,Y,ASC,NASC,S,THETA,XMIN,DX)

AXIS causes an axis with tick marks and scale values
at 1l-inch increments to be drawn. An identifying
label may also be plotted along the axis. Parameters
X and Y specify the start of the axis. The axis is
plotted, starting at X, Y, at an angle of THETA
degrees for a distance of S inches. The angle THETA
is usually either 0 (X axis) or 90.0 (Y axis).
Characters ASC of array ASC are plotted as a label
for the axis drawn. If NASC 1is positive, the tic
marks, label, and scale values are placed on the
counterclockwise side of the axis; if NASC is
negative, the foregoing items are placed on the
clockwise side of the axis.

Parameter XMIN is the value of the scale at the
beginning of the axis; parameter DX is the change in
scale for a l-inch increment. The values of XMIN and
DX may be determined by subroutine SCALE.

CALL DATE (array)

This subroutine places today's date as left-justified
ASCII characters into a dimensioned 2-word array.
The date is in the form:

dd-mmm-yy

where dd is a 2-digit day (if the first digit 1is O,
it 1is converted to a blank), mmm is a 3-letter month
abbreviation, e.g., Mar, and yy is a 2-digit vyear.
The data is stored in ASCII code, left-justified, in
the two words.

CALL DEFINE FILE (u,s,v,f,pj,pg)

The arguments of this subroutine are defined as
follows:

u = logical device numbers.

s = the size of the records comprising the file
being defined. The argument s may be an integer
constant or variable. :

v = an associated variable. The associated variable
is an 1integer variable that is set to a value
that - points to the record that immediately
follows = the last record transferred. This
variable is modified by the FIND statement
(Chapter 10). At the end of each FIND
operation, the variable is set to a value that
points to the record found. The variable v
cannot appear in the 1I/0 1list of any I/0
statement that accesses the file set up
DEFINE FILE statement. ’ 2

15-17

SUBPROGRAM STATEMENTS

~ Table 15-3 (Cont)
VQFORTRAN =20 lerary Subroutlnes

Subroutine Name

your programmer's nUmber.'

';[,,NOTE

Numbefs pj and pg 1dent1fY your Filé;?QETe
~Directory. - e

Example

§,estab11she, a file named’ FORTFL DAT on dev1ce 01;;,éﬁ§
~ disk, which contains ten word records.;eeTheg;

associated varlable is ASCVAR, and the file is in
your area. . Hoi R R : S
A DEFINE FILE call éan"~be' used to establish and

~define the structure of each
frandom access I/O operatlons E

flle o be used for*

e cAL‘L"‘DUMp '(L”(’l) U‘<i>'f(i‘)“"‘

~ DUMP causes partlcular portlonsf v o
;‘dumped., L(l) ~and’ U(l) are. the"varlable ‘names that
fglve the- llmlts of memory to be: dumped Either L(l){
- or U(l) may be upper or lower limits. F(l) is a '
*«:number indicating the format in whlch the dump is “to
- performed.f 0. = ctal, 1. —freal, = lnteger, and-.
‘3 ASCII ey i o P

Z”If F 1s not <
jF(n) is mlSSlng, ,
'UIf U(n) ‘and F(n) are

15-18

SUBPROGRAM STATEMENTS

Table 15-3 (Cont.)
FORTRAN-20 Library Subroutines

Subroutine Name Effect

ERRSET CALL ERRSET (N)

ERRSET allows you to control the typeout of
execution-time arithmetic error messages. ERRSET is
called with one integer argument.

Typeout of all arithmetic and library error messages
is suppressed after N occurrences of these error
messages. If ERRSET is not called, the default value
of N is 2.

ERRSNS CALL ERRSNS(I,J)

ERRSNS allows you to determine the exact nature of an
error on READ, WRITE, OPEN, or CLOSE that was trapped
with the "ERR= statement 1label" option. ERRSNS
returns one or two integer values that describe the
status of the last I/0 operation performed by FOROTS.
(The second integer value is optional.) ,

CALL ERRSNS(I,J)

returns a FORTRAN-standardized number in I and a
processor-dependent number in J to describe the last
I/0 operation. See Appendix H and Table H-1 for more
information 'and a detailed description of the values
returned.

EXIT .o ExIT

XIT returnskc ol to the Monitor and, therefore,
erminates the executlon of the program.

ILL

he,ILLEG flag If the flag is set and an
racter:: 1s encountered .in floating-
poxnt/dou the corresponding word
is set to
LEGAL : - CALL LEGAL
LEGAL clears the ILLEG flag. If the flag is set and
an illegal character is encountered in the floating—
‘p01nt/doub1e-fprec181on input, the corresponding word
S is set to zero.
LINE CALL LINE (X,Y,N,K)

LINE causes a line*t6f5e3dfaWn*through the N pbints"
‘ spe01f1ed by (X(1),Y (1)), (X(2),Y(2)) ... (X(N),Y(N))
: are -spaced K words-

15-19

SUBPROGRAM STATEMENTS

- Table lS 3 (Cont) £
 FORTRAN~- 20 lerary Subroutlnes

.Subroutine‘Named' : " , 'Effectff

MKTBL

NUMBER

PDUMP

 PLOT

_pLoTS

ftable of strokes for the character.
‘NUMBER causes a floating- poxnt number to be plotted

~of the decimal point. If NDIGIT is a negative Value,g’
:~spec1f1es the. number to be plotted
The arguments of PDUMP are the samec as' those of

k been executed

 PLOT moves the
‘current p051t10n . to the position s :
If IPEN=3, the pen is raised before the movement; if
IPEN=2 the pen:-is lowered before movement; - if IPEN=1

"~ pen action is the same the corresponding
~ positive = values . except

‘The plotter is not released“;on“fcompletion”nofh:the'
speclfledkmovement. : o e

| Eirst ploteer

CALL MKTBL(I J)

MKTBL spec1f1es a spec1al character set where I is

the number to be assigned the set and J contains the
starting address . of ga~ character ‘table of 200(8) -
consecutive words. 1In each character table word, the -
left half contains the number of strokes in the
character (0 if nothing 1s‘~to be plotted for the -
word) ‘and the right half contains the address of “the

CALL NUMBER(X Y SIZE FNUM THETA NDIGIT)

as text. Parameters X, Y, SIZE, and THETA have the
same meanings as for the SYMBOL call. Parameter
NDIGIT is ‘the number of dlglts plotted to the right.

only the 1nteger part of the number 1s plotted FNUM,,

CALL PDUMP(L(l) U(l) F(l),...,L(n) U(n) F(n)

DUMP.- “PDUMP - is the same as DUMP except that control
returns to the calllng program after the dump hasu

o CALL PLOT(X,Y,IPEN)"‘

from 1tsf

in“wa; stralght ne.
fled by X, Y.

the pen is left unchanged from its previous state.
If thej value of IPEN is. negatlvec(tl, -2 or -3) the

,gCOmpletlon of the
indicated motion, the new pen pos1tlon is taken as ~a-
new —origin: and. the output buffer ~is sent to the
plotter. ‘>¢ ﬂ~;7 g : s e el

 CALL PLOTS (I)

o ThlS call
outlne called.p,,f';ff~

15-20

SUBPROGRAI!M STATEMENTS

Table 15-3 (Cont.)
FORTRAN-20 Library Subroutines

Subroutine Name Effect

RELEAS

SAVRAN

SCALE

SETABL

SETRAN

SORT

CALL RELEAS (unit)

RELEAS closes out I/0 on a device initialized by the
FORTRAN Object Time System and returns it to the
uninitialized state. RELEAS should be the last call
referencing that device.

CALL SAVRAN (I)

SAVRAN is called with one integer argument. SAVRAN
sets its argument to the 1last random number
(interpreted as an integer) that has been generated
by the function RAN.

. CALL SCALE (X,N,S,XMIN,DX)

SCALE selects scale values for an AXIS call where X
and N specify a l-dimensional array X with the length
N. - Parameter S specifies the length of the desired
axis, SCALE determines a value of DX that allows X to
be plotted in S inches. XMIN 1is selected as the
smallest element of the array X, and is truncated to
be a multiple of DX.

CALL SETABL(I,J)

SETABL specifies a character set where I 1is an
integer that gives the number of the desired

~character set. If a character set has been defined

by
to =l. The standard ASCII character set is defined

I, the value of J is set to 0; if not, J is set

as 1.

CALL SETRAN (I)

SETRAN has one argument, which must be a non-negative

: The starting value of the function
1the value of this argument, unless the
‘ zero. In this case, RAN uses its normal

CALL SORT ('OUTPUT/SWS=INPUT/SWS, INPUT/SWS"')

SORT sorts one or more files using the SORT program.
The argument is an - ASCII .string that represents
(version 3 or later) - the standard SORT command

string. Its components are:

file specification of the output file.

ouTPUT =
INPUT = file specification of the input file(s).
SWS = one or more switches for the output file,

the input file(s), the sorting process, and
sometimes SCAN. The switches not allowed
in the FORTRAN call are:/BLOCK, /COMP3,
/EBCDIC, /INDUSTRY, /LABEL, /SIXBIT, and -
/VERSION. - .

15-21

SUBPROGRAM STATEMENTS

= Table 15 3 (Cont)
FORTRAN 20 leracy Subroutlnes

P

“fSﬁbtoutihé'Name‘ '

'Wild card format

‘For information
,~SORT User s Gu16e.

Example.

CALL SORT(SRTFIL SRT'INSTRT/REC 80/KBY 1: 2'_f

;CALL SYMBOL(X Y,

swmor

‘SYMBOL ralses the plotter' pen and moves' it tof
pos1t10n~‘spec1f1ed by X and Y. Lower pen and plotﬂf
~characters found. ”array ASC.~ Parameter , SIZEV'
‘specifies the - helght :
~inches (floating- p
direction of the
ASC is to b
of characte

the text of array”T
‘ - number

TIME

“;w1th one argument,

CALL TIME(X)

*fithe one- argument cal

,1;;lwhere b lS a blank,
~~ftenths of a secondf

hl_CALL WHERE(X Y) e

15-22

CHAPTER 16

BLOCK DATA SUBPROGRAMS

16.1 INTRODUCTION
Use block data subprograms to initialize data to be stored in any
common areas. You may use only specification and DATA statements,

i.e., DATA, COMMON, DIMENSION, EQUIVALENCE, and TYPE, in BLOCK DATA
subprograms. A subprogram of this type must start with a BLOCK DATA

statement.

You may enter initial values into more than one labeled common block
in a single subprogram of this type.

An executable program may contain more than one block data subprogram.

16.2 BLOCK DATA STATEMENT
The form of the BLOCK DATA statement is:
BLOCK DATA name

where

name is a symbolic name given to identify the
subprogram.

l6-1

APPENDIX A

ASCII-1968 CHARACTER CODE SET

The character code set defined in the X3.4-1968 Version of the
American National Standard for Information Interchange (ASCII) is
given in the following matrix.

Ist 2 Last octal digit
octal 0 1 2 3 4 5 6 7
digits
00x NUL SOH STX ETX EOT ENQ ACK BEL
0lx BS HT LF VT FF CR SO SI Graphic
02x DLE DC1 DC2 DC3 DC4 NAK SYN ETB subsets
03x CAN EM SUB ESC FS GS RS uUs 64 95
04x | ! » # $ % & ’ [y
05x () * + , - . /
06x 0 1 2 3 4 5 6 7
07x 8 9 : ; < = > ?
10x @ A B C D E F G
11x H I J K L M N (0]
12x P Q R S T U \Y% W
13x X Y Z [\] A («)
14x grave a b c d e f 7
15x h i j k 1 m n o
16x p q r s t u v w
17x X y 2 { | } ~(ESC) DEL X
Characters inside parentheses are ASCII-1963 Standard.
NUL Null DLE Data Link Escape
SOH Start of Heading DC1 Device Control 1
STX Start of Text DC2 Device Control 2
ETX End of Text DC3 Device Control 3
EOT End of Transmission DC4 Device Control 4
ENQ Enquiry NAK Negative Acknowledge
ACK Acknowledge SYN Synchronous Idle
BEL Bell ETB End of Transmission Block
BS Backspace CAN Cancel
HT Horizontal Tabulation EM End of Medium
LF Line Feed SUB Substitute
VT Vertical Tabulation ESC Escape
FF Form Feed FS File Separator
CR Carriage Return GS Group Separator
SO Shift Out RS Record Separator
SI Shift In Us Unit Separator

DEL Delete (Rubout)

APPENDIX B

USING THE COMPILER

This appendix explains how to access FORTRAN-20 and how to make use of
the information it provides. You should be familiar with the
FORTRAN-20 language and the DECsystem-20 TOPS-20 monitor.

B.1l RUNNING THE COMPILER
The command to run FORTRAN-20 is:
@FORTRA

The compiler responds with an asterisk (*) and is then ready to accept
a command string. A command is of the general form:

object filename, listing filename=source filename (s)
You are given the following options:
1. The filenames can be fully specified with SFD paths.
2. You may specify more than one input file in the compilation
command string. These files will be logically concatenated

by the compiler and treated as one source file.

3. Program units need not be terminated at file boundaries and
may consist of more than one file.

4., 1If no object filename is specified, no relocatable binary
file is generated.

5. If no listing filename is specified, no listing is generated.
6. If no extension is given, the defaults are .LST (listing),

.REL (relocatable binary), and .FOR (source) for their
respective files.

B.1l.1 Switches Available with FORTRAN-20

Switches to FORTRAN-20 are accepted anywhere in the command string.
They are toQtally position- and file-independent. Table B-1 lists the
switches.

USING THE COMPILER

Table B-1
FORTRAN-20 Compiler Switches

Switch Meaning Defaults

CROSSREF Generates a file that can be input to OFF
the CREF program

DEBUG (See Section B.1l.1.1.) OFF

EXPAND Includes the octal-formatted version of OFF
the object file in the listing.

INCLUDE Compiles a D in column 1 as space. OFF

LNMAP Produces a line number/octal location OFF

map in the listing only if /MACROCODE
was not specified.

MACROCODE Adds the mnemonic translation of the OFF
object code to the listing file.
NOERRORS Does not print error messages OFF
on the terminal.
NOWARNINGS Does not output warning messages. OFF
OPTIMIZE Performs global optimization. OFF
SYNTAX Performs syntax check only. OFF
Each switch must be preceded by a slash (/). Switch names need only

contain those 1letters that are required to make the switch name
unique. You are encouraged to use at least three letters to prevent
conflict with switches in future implementations.

Example

@FORTRA
*QFILE,LFILE=SFILE/MAC,S2FILE

The /MAC switch will cause the MACRO code equivalent of SFILE.FOR and
S2FILE.FOR to appear in LFILE.LST.

All switches used or implied are printed at the top of each 1listing
page.

USING THE COMPILER

B.1.1.1 The /DEBUG Switch - The /DEBUG switch tells FORTRAN-20 to
compile a series of debugging features into your program. Several of
these features are specifically designed to be wused with FORDDT.
Refer to Appendix E for more information. By adding the modifiers
listed in Table B-2, you can include specific debugging features.

Table B-2
Modifiers to /DEBUG Switch

Modifiers Meaning

:DIMENSIONS Generates dimension information in .REL file for
FORDDT.

: TRACE Generates references to FORDDT required for its
trace features (automatically activates :LABELS).

:LABELS Generates a label for each statement of the form
"line-number L." (This option may be used without
FORDDT.)

:INDEX Forces DO LOOP indices to be stored at the

beginning of each iteration rather than held in a
register for the duration of the loop.

:BOUNDS Generates the bounds checking code for all array
references. Bounds violations will produce
run-time error messages. Note that the technique
of specifying dimensions of 1 for subroutine
arrays will cause bounds check errors. (You may
use this option without FORDDT.)

:NONE Do not include any debug features.

:ALL Enable all debugging aids.

The format of the /DEBUG switch and its modifiers is as follows:
/DEBUG:modifier

or
/DEBUG: (modifier list)

Options available with the /DEBUG modifiers are:

1. No debug features - Either do not specify the /DEBUG switch
or include /DEBUG:NONE.

2. All debug features - Either /DEBUG or /DEBUG:ALL.

3. Selected features - Either a series of modified switches;
i.e.,

/DEBUG:BOU/DEBUG: LAB
or a list of modifiers

/DEBUG: (BOU,LAB,...)

USING THE COMPILER

4. Exclusion of features (if you wish all but one or two
modifiers and do not wish to list them all, you may use the
prefix "NO" before the switch you wish to exclude). The
exclusion of one or more features implicitly includes all the
others, i.e., /DEBUG:NOBOU is the same as
/DEBUG: (DIM,TRA,LAB,IND).

If you include more than one statement on a single 1line, only the
first statement will receive a label (/DEBUG:LABELS) or FORDDT
reference (/DEBUG:TRACE). (The /DEBUG option and the /OPTIMIZE option
cannot be used at the same time.)

NOTE

If a source file contains line sequence
numbers that occur more than once in the
same subprogram, the /DEBUG option
cannot be used.

The following formulas may be used to determine the increases 1in
program size that will occur as a result of the addition of various
/DEBUG options.

:DIMENSIONS For each array, 3+3*N words where N is the number
of dimensions, and up to three constants for each
dimension.

:TRACE One instruction per executable statement.

:LABELS No increase.

: INDEX One instruction per inner loop plus one

instruction for some of the references to the
index of the loop.

:BOUNDS For each array, the formula is the same as
DIMENSIONS:.

For each reference to an array element, use 5+N
words where N is the number of dimensions in the
array. If you do not specify :BOUNDS,
approximately 1+3*(N-1l) words will be used.

B.1.2 LOAD-Class Commands

You can invoke FORTRAN-20 by using LOAD-class commands. These
commands cause the monitor to interpret the command and construct new
command strings for the system programs actually processing the
command.

COMPILE
LOAD
EXECUTE
DEBUG

Example

USING THE COMPILER

.EXEC ROTOR

The compiler switches OPT, CREF, and DEBUG may be specified in
LOAD-class commands and may be used globally or locally.

Example

.EXECUTE/CREF Pl.FOR,P2.FOR/DEBUG:NOBOU

The other compiler switches must be passed in parentheses for each
specific source file.

Example

.EXECUTE P1.FOR(M,I)

Refer to the Monitor Calls User's Guide for further information.

B.2 READING THE LISTING

When you request a listing from the FORTRAN compiler, it contains the
following information:

1.

A printout of the source program plus an internal sequence
number assigned to each line by the compiler. This internal
sequence number 1is referenced in any error or warning
messages generated during the compilation. If the input file
is line-sequenced, the number from the file is used. 1If code
is added via the INCLUDE statement, all INCLUDEd lines will
have an asterisk (*) appended to their line-sequence number.

A summary of the names and relative program locations (in
octal) of scalars and arrays in the source program plus
compiler generated variables.

All COMMON blocks and the relative locations (in octal) of
the variables in each COMMON block.

A listing of all equivalenced variables or arrays and their
relative locations.

A listing of the subprograms referenced (both user defined
and FORTRAN defined library functions).

A summary of temporary locations generated by the compiler.

A heading on each page of the listing containing the program
unit name (MAIN., program, subroutine or function, principal
entry), the input filename, the list of compiler switches,
and the date and time of compilation.

If you used the /MACRO switch, a mnemonic printout of the
generated code (in a format similar to MACRO) is appended to
the listing. This section has four fields:

USING THE COMPILER

LINE: This column contains the internal sequence number
of the 1line corresponding to the mnemonic code. It
appears on the first instruction of the code sequence
associated with that internal sequence number. An
asterisk indicates a compiler inserted line.

LOC: The relative location in the object program of the
instruction.

LABEL: Any program or compiler generated label.
Program labels have the 1letter "P" appended. Labels
generated by the compiler are followed by the letter
™", Labels generated by the compiler and associated
with the /DEBUG:LABELS switch consist of . the internal
sequence number followed by an "L".

GENERATED CODE: The MACRO mnemonic code.

If you used the /LNMAP switch and did NOT use the /MACRO
switch, a line number/octal location map is appended to the
listing. This section lists the line numbers in increments
of 10 on subsequent lines and each number from 0 through 9
for each line in adjacent columns. The numbers appearing
inside the matrix are the relative octal locations of the
statements in the FORTRAN program unit. For example, to find
the relative octal location of line number 001043, find the
row marked 001040 and then column 3 on that line. The number
in that place is the desired relative location. This listing
can be very large and sparse for 1line-numbered files with
large increments, such as those produced by EDIT.

NOTE

One FORTRAN 1line can produce multiple octal
locations. In this case the line number map lists
only the first location.

9. A list of all argument blocks generated by the compiler. A
zero argument appears first followed by argument blocks for
subroutine calls and function references (in order of their
appearance in the program). Argument blocks for all I/0
operations follow this.

10. Format statement listings.

11. A summary of errors detected or warning messages issued
during compilations.

B.2.1 Compiler Generated Variables
In certain situations the compiler will generate internal wvariables.
Knowing what these variables represent can help you read the macro
expansion. The variables are of the form:

.letter digit digit digit digit

i.e., .S0001

where:
Letter
A

F

USING THE COMPILER

Function of Variable
Register save area.
Arithmetic statement function formal parameters.

Result of a DO LOOP initial wvalue expression or
parameter of an adjustably dimensioned array.

Result of a common subexpression (see Section C.2.1.1)
or constant computation (C.2.1.3).

Temporary storage for expression values.

Result of reduced operator strength expression
(C.2.1.2).

Result of the DO LOOP step size expression of computed
iteration count for a loop.

You may find these variables on the listing under SCALARS and ARRAYS.

The following example shows a listing where all these features are

pointed out.

Program Source

Name

MALRN,.

006001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019

Compiler Compiled for KI processor

Filename Version MACRO Code equivalent included

TLM]

100

10

FORTRAN V,5(515) /K1/i4 1lo=®AK=77 16:05

IMPLICIT INTEGER (A=2Z)

DIMENSION A(1G0,200),B(100,20G0)
SUM1=0

SuymM2=0

DO 100 J=1,200

L0 100 1=1,100

K1=1%J
IF(K1,LT.500,UR.K1.GT.1500) K1=0
A(I,J)=K1

K2=1+J
IF(K2.,EQe1004,0R,K2.,EQ.200.0KR.KR2.EQ,300) K2=K2+1
B(I,J)=K2

SuUM1=SUmMi+K1

SUM2=SUM2+K2

CUNTINUE

TYPE 10,SUM1,SUM2
FORMAT (78 SuMi= ,19,10H SuM2= ,19)
END

PAGE 1

¥YATIAWOD ITHL ONISN

SUBPRUGRAMS CALLED

SCALARS AND ARRAYS { "*" KU EXPLICIT DEFINITION = "$" NOT REFERENCED) . .
r——Compller Generated Variable
¥K1 1 B 2 *J 47042 A 47043 «S50001 116103
«S0000 116104 *SUM2 116105 *]1 116106 *K2 116107 *5UM1 110110

Internal sequence number of first
instruction that goes with this line

LINE L.UC LABEL GENERATED CODE
A Octal displacement of instruction
0 JFCL 0,0
1 JSP 16,RESET.
2 0,0
3 3 SETZB 2,5UmMl
4 4 MOVEM 2,5UM2
5 5 MOVE 2,0777470000001]
6 HLREM 2,,80000
7 2M3
HRRZM 2,43
(<] 10 Ime .
MOVE 2,0777634000001)
7 11 aM
MOVE 3,J
12 1MULI 3,0(2)
13 MOVEM 3,K1
8 14 CaAlL 3,764
15 CAILE 3,2734
16 JRST 0,6M
17 JRST 0,5m Compiler
8 20 bl - Generated

SETZB 4,K1 Label

JITIJHOO IHL ONISN

0T-4

MAIN,

10

11

11

12

13
14
15

17

19

Timl

21

22
23
24
25
26
27
30
31
32
33
34
35

36
37

40
41
42
43
44
45
46

47
50
51
52
53
54
55
50
57

FURTRAN V.5(515) /K1/M 16=MAk=71 16:05
S5Ms
MOVE L 3,144
imMor 3,4
ADDI 3,002)
MOVE 4,K1
MOVEM 4,A=145(3)
MOVE 3,4
ADDI 3,002)
MUuvVeEb 3,Kz
MOVE 5,KR2
CAlE 5,144
CAIn 5,310
JRST 0,8M
gp 3
CAIN 5,454
8
AQS 3,K2
I
MOVEL 3,144
IMuL 3,J
ADDI 3,002)
MGVE 5,K2
MUVEM 5,B8=145(3)
ADDMm 4,5UM1
ADDMm 5,5UM2
100P: - Program label
ANBJN 2,4M
AQS 2,J
AQSGE 0,.50000
JRST 0,3mM
MOVETL 16,10M
PUSHJ i7,00T.
MOVEL 16,11M
PUSHJ 17,10LST.
MOVEL 16,1M
PUSHJ 17,EXIT,.

YITIANOD JHIL ONISN

11-49

ARGUMENT BLOCKS:

MAIN,

FORMAT

18

MAIN,

60 0,,0

61 1M: 0,,0

62 777773,,0
63 10M: 0,,7777717
64 0,,0

65 0,,0

66 340,,10P

67 0,,7

70 0,,0

71 11M: 1100, ,5UM1

72 1100, ,SUM2

73 4000,,0
TIM1 FORTRAN V,5(515) /KI/M 16=MAR=77 16305

STATEMENTS (IN LOW SEGMENT):

116111 10P:¢ (7R S
116112 UMi=
116113 1 19,1
116114 OH
116115 SUM2
116116 = ,19
116117)

{ NO ERRORS DETECTED }

PAGE 1=2

HHL ONISN

WOD

AR

MAIN, TIM1

00001
00002
00003
00004
gooos
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015 100
00016 c
00017
00018 10
00019

FORTRAN V,5(515) /KI 16=tiAR=77 16:09

IMPLICIT INTEGER (A=Z)

DIMENSION A(100,200),B(100,200)
StiMi=0

SLiM2=0

DO 100 J=1,200

po 100 I=1,100

KizsIxd
IF(K{,LT,500,0R,K1,GT,1500) Ki=0
A(I,J)=K1

K2=I+J
1IF(K2,EQ,100,0R,K2,EQ,200,0R,K2,FQ,300) K2=K2+1
B(1,J)=K2

SUMI=SUML+K]

SUM2=8UNM2+K2

CONTINUE

TYPE 10,8U41,5UM2
FORMAT(7H SUM1= ,19,10R SuUM2= ,I19)
END

SUBPROGRAMS CALLED

PAGE 1

SCALARS AND ARRAYS ["#" NO EXPLICIT DEFIHITION = "g" NOT REFERENCED)

¥K1 1
,50000 116104

B 2 *J 47042 A 47043
*SUM2 116105 %I 11106 #K2 116107

50001 116103

#SUMY

YITIdAWO0O IHL ONISN

€T-4

LINE NUMBER/OCTAL LOCATION MAP

LI 1 2 3 4 5 6 7 8 9
SR NNEN] R R RPN R E S e S TR R R R NN RN PN R RS PR R RN AN RSRERRE R T w e Se "
H
00000 3 4 5 10 i1 14 21
00010 ¢ 26 31 37 44 45 46 52 56

MAIN, { NO ERRORS DETECTED]

Line number 1l starts at location 31.
The previous listing shows that line 11
uses locations 31 through 36, but only
the first location is shown here.

MAIN, TIM1 FORTRAN V,5(515) /KI/OPT/M 16«MAR=77 16107 PAGE 1
00001 IMPLICIT INTEGER (AwZ)

00002 DIMENSION A(100,200),B(100,200)

00003 SUM1=0

00004 SUM2=0

00005 DO 100 J=1,200

00006 DO 100 I=1,100

00007 KizIxJd

00008 IF(K1,LT,500,0R,K1,6T,1500) K1=0

00009 A(I,J)=K1

00010 K22I+J

00011 IF (K2 ,EQ,100,0R,K2,EQ,200,0R,K2,EQ,300) K2=K2+1
00012 B(I,J)=K2

00013 SUM1=SUML+K1

00014 SUM2=SUM2+K2

00015 100 CONTINUE

00016 C

00017 TYPE 10,5UM1,SUM2

00018 10 FORMAT(TH SUMi= ,I9,10H sumMz2= ,19)

00019 END

dHL DNISN

J3TIdROD

vi-4g

SUBPROGRAMS CALLED

SCALARS AND ARRAYS (

#K1 1 B 2
A 47045 50001 116105
200001 116111 #K2 116112

"#" NO EXPLICIT DEFINITION = ng® NOT REFERENCED)

LRO001 47042 ,R0000 47043 »J
50000 116106 #SUM2 A 116107 I
#SUM1 116113

LINE LoC LABEL
0
1
2
4 3
- 4
5
5 6
7
10
- % 11 4M3
6 12
e % 13 5M3
14
7 15
8 16
17
20
21
8 22 M3
Optimizer
Created

Statements

GENERATED CODE

JFCL
JSP

SETZB
MOVEIL
MOVEHM
MOVNT
MOVEI
MOVEM

MOVE
MOVE

MOVET
ADD
MOVE
CAIL
CAILE
JRST
JRST

0,0

16 ,RESET,
0,0

10,11
12,144
12, ,R0001}
12,310
7,1
12,,50000

Optimizer
——Created
Variables

6,7
2,(777634000001]

4,0(2)
4,,R0001
5,6
5,764
5,2734
0,7M
0,6M

47044
116110

JdTIdWOD JHL ONISN

ST-d

MAIN,

10
11

11
12

13
14

15

- Xk & %

19

TIMY

FORTRAN V,5(515) /KI/OPT/H

6M13

10Mg
9M3

8M3

100P¢

iMg

2Myg

MOVEL

MOVEM
MOVE
ADDI
CALE
CAIN
JRST

CAIN
ADDI

HMOVEM
ADD
ADD
ADD

AOBJN
MOVEI
ADDM

ADDI

AOSGE
JRST

MOVENM
MOVEM
MOVEM
MOVEM
MOVEI
PUSHJ
MOVEIL
PUSHJ

MOVETL
PUSHJ

3)K2 +——

5,0

5,1\"'145(4)
3,7

3,0(2)
3,144
3,310

0,9M

3,454
3,1
3,B=145(4)

11,5
10,3

6,7 -————

2,5M
12,144
12, ,R0001
-
Tel
0,,50000
0,4M

11,5UMt-——+H

10, 8UM2e—r

5 /Ki -a—

16,114
17,0UT,

16,12 @«—-—
17,10LST,

16,34
17,EXIT.

16«MARmT 7 16:07

Optimizer
Created
Statements

PAGE 1=}

JdTIdWOD HHL ODNISN

91-4

ARGUMENT BLOCKS:

57 0,,0

60 3IM: 0,00

61 777713,,0
62 11M¢ 0,.777777
63 0,,0

64 0,,0

65 3404,10P
66 0,,7

67 0,,0

70 12M2 1100, ,SUM1
71 1100, ,5UM2
72 4000,,0

MAIN, TIMt

FORMAT STATEMENTS (IN LOW SEGMENT):

18 116114 §0P¢ (7H S
116115 UMi=
1161146 1 19,1
116117 OH
116120 suM2
116121 = ,19
116122)

MAIN, [NO ERRORS DETECTED 1

FORTRAN V,5(515) /KI/OPT/M 16=MARm77

16:07

PAGE

1=2

JITIAWOD JHL ONISN

USING THE COMPILER

B.3 ERROR REPORTING

If an error occurs during the initial pass of the compiler (while the
actual source code is being read and processed), an error message is
printed on the listing immediately following the 1line in which the
error occurred. Each error references the internal sequence number of
the incorrect line. The error messages along with the statement in
error are output to the user terminal. For example:

.EXECUTE DAY.FOR
FORTRAN:DAY

01300 K1l

?FTNNRC LINE:01300 STATEMENT NOT RECOGNIZED

01500 100 CONTINE

?FTNMSP LINE:01500 STATEMENT NAME MISSPELLED

01600 2

?FTNICL LINE:01600 ILLEGAL CHARACTER C IN LABEL FIELD
?FTNFTL MAIN. 3 FATAL ERRORS AND NO WARNINGS

LINK: LOADING
[LNKNSA NO START ADDRESS]

EXIT

If errors are detected after the initial pass of the compiler, they
appear in the list file after the end of the source listing. They are
output to your terminal without the statement in error, but they may
reference its internal sequence number.

B.3.1] Fatal Errors and Warning Messages

There are two levels of messages, warning and fatal error. Warning
messages are preceded by "3%" and indicate a possible problem. The
compilation will continue, and the object program will probably be
correct. Fatal errors are preceded by a "?". If a fatal error is
encountered in any pass of the compiler, the remaining passes will not
be called. Additional errors that would be detected in later compiler
passes may not become apparent until the first errors are corrected.
It is not possible to generate a correct object program for a source
program containing a fatal error.

The format of messages is

?FTNXXX LINE:n text

or
$FTNXXX LINE:n text
where:
? = fatal
% = warning
FTN = FORTRAN mnemonic
XXX = 3-letter mnemonic for the error message
LINE:n = line number where error occurred
text = explanation of error

B-17

USING THE COMPILER

The printing of fatal errors and warning messages on your terminal can
be suppressed by the use of the /NOERRORS switch; however, messages
will still appear on the 1listing. The /NOWARNINGS switch will
suppress warning messages on both user terminal and listing.

B.3.2 Message Summary

At the end of the listing file and on the terminal, a message summary
is printed after each program unit is compiled. This message has two
forms:

1. when one or more messages were issued

?FTNFTL
{%FTNWRN} name NO/number FATAL ERRORS AND NO/number WARNINGS

or
2. when no messages were issued
name [NO ERRORS DETECTED]
where name is the program or subprogram name. ([NO ERRORS DETECTED]

appears on the listing only.) Appendix G is a complete list of fatal
errors and warning messages.

B.4 CREATING A REENTRANT FORTRAN PROGRAM WITH LINK

To produce a sharable program from the .REL file, such as MAIN.REL,
give one of the following commands to LINK:

1. /SEG:DEFAULT MAIN/G
2. /OTS:SHAR MAIN/G

The resulting core image can be SSAVEd or the /SSAVE switch can be
used to produce a .SHR file.

APPENDIX C

WRITING USER PROGRAMS

This appendix 1is a guide for writing effective programs with
FORTRAN-20. It contains techniques for optimization, interaction with
non-FORTRAN programs, and other useful programming hints.

C.1 GENERAL PROGRAMMING CONSIDERATIONS

The following paragraphs describe programming considerations you
should observe when preparing a FORTRAN program to be compiled by
FORTRAN-20.

C.1l.1 Accuracy and Range of Double-precision Numbers

Floating-point and real numbers may consist of up to 16 digits in a
double-precision mode. Their range is specified in Chapter 3, Section
3.2 of this manual. You must be careful when testing the value of a
number within the specified range since, although numbers up to 10**38
may be represented, FORTRAN-20 can only test numbers of up to eight
significant digits (REAL precision) and 16 significant digits (DOUBLE
precision).

You must also be careful when testing the floating-point computation
for a result of 0. In most cases the anticipated result, i.e., 0 will
be obtained; however, in some cases the result may be a very small
number that approximates 0. Such an approximation of 0 will cause
tests within statements, i.e., an arithmetic IF, to fail.

C.1.2 Writing FORTRAN-20 Programs for Execution On Non-DEC Machines

If you prepare a program to run on both a DECsystem-20 computer and a
non-DIGITAL machine, you should:

1. Avoid using the non-ANSI standard features of FORTRAN-20, and

2. Consider the accuracy and size of the numbers that the
non-DIGITAL machine is capable of handling.

WRITING USER PROGRAMS

C.1.3 Using Floating-Point DO Loops

FORTRAN-20 permits you to employ non-integer single- or double-

‘precision numbers as the parameter variables in a DO statement. This
enables you to generate a wider range of values for the DO loop index
variables, which may, in turn, be used inside the 1loop for
computations. Be sure to consider the loss of precision that may
occur.

C.1.4 Computation of DO Loop Iterations

The number of times through a DO loop is computed outside the loop and
is not affected by any changes to the DO index parameters within the
loop. The formula for the number of times a DO loop is executed is:

DO 10 I=M1,M2,M3
MAX (1, ((M2-M1) /M3)+1)=Number of cycles

The values of the parameters M1, M2, M3 may be of any type; however,
you must consider the foregoing formula, particularly when using
logicals. One pass through each DO loop is always performed EVEN IF
THE RESULT OF THE FOREGOING CALCULATION IS LESS THAN OR EQUAL TO ZERO.

C.1.5 Subroutines - Programming Considerations
Consider the following items when preparing and executing subroutines:

1. During execution, no check is made to see 1if the proper
number of parameters was passed.

2. If the number of actual arguments passed to a subroutine 1is
less than the number of dummy arguments specified, the values
of the unspecified arguments are undefined.

3. If the number of actual arguments passed to a subroutine is
greater than the number of dummy arguments given, the excess
arguments are ignored.

4, If an actual parameter is a constant and 1its corresponding
dummy argument is set to another value, all references made
to the constant in the calling program may be changed to the
value of the dummy argument.

5. No check is made to see if the parameters passed are of the
same type as the dummy parameters. If an actual parameter 1is
a constant and the corresponding dummy is of type real, be
sure to include the decimal point with the constant. If the
dummy is double-precision, be sure to specify the constant
with a "Db".

Examples

If the function F(A) is called by inputting F(2) and A is
type real, F interprets the integer 2 as an unnormalized
floating-point number. In +this instance, F(A) should be
called with F(2.0).

Similarly, if the function F1(D) is called by inputting
F1(2.5) and D is double-precision, Fl assumes that its

Cc-2

WRITING USER PROGRAMS

parameters have been specified with two words of precision
and picks up whatever follows the constant 2.5 in memory.
The proper method is to use F1(2.5D00).

NOTE

You are given no notice if any of the situations
described in items 1,2,3,4, and 5 occur.

C.1.6 Reordering of Computations

Computations that are not enclosed within parentheses may be reordered
by the compiler. Sometimes it 1is necessary to use parentheses to
ensure proper results from a specific computation.

For example, assuming that

1. RL1 represents a large number such that RL1*RL2 will cause an
overflow condition, and

2. RSl is a very small number, i.e., less than 1, the program
sequence

.

A=RS1*RL1*RL2
B=RS2*RL2*RL1

will not produce an overflow when evaluated 1left to right,
since the first computation in each expression, i.e., RS1*RL1
and RS2*RL2, will produce an interim result that is smaller
than either large number (RL1 or RL2).

However, the compiler will recognize RL1*RL2 as a common subexpression
(see Section C.2.1.1) and generate the following sequence:

temp = RL1*RL2
A = RS1l*temp
B = RS2*temp

The computation of temp will cause an overflow.

You should write the program as follows to ensure that the desired
results are obtained:

A= (RS1*RL1) *RL2
B= (RS2*RL2) *RL1

Computations may be reordered even when global optimization is not
selected.

WRITING USER PROGRAMS

C.1.7 Dimensioning of Formal Arrays

When you specify an array as a formal parameter to a subprogram unit,
you must indicate to the compiler that the parameter is an array.
Dimension the array in a specification statement. This 1is the only
way the compiler is able to distinguish a reference to such an array
from a function reference. Designating the array with a dimension of
1l is a common practice.

Example

SUBROUTINE SUB1 (A,B)
DIMENSION A (1)

There are disadvantages to using the above technique Dbecause the
dimension information provided 1is not adequate in some cases,
specifically:

1. Reading or writing the array by name

DIMENSION ARRAY (10)
READ (1) ARRAY

The above is a binary read that will read ten words into
ARRAY.

SUBROUTINE SUB1(A)
DIMENSION A(1)
READ (1) A

This binary read will cause one word to be read into A.
2. Reading the array as a format

SUBROUTINE SUB2 (FMT)
DIMENSION FMT (1)
READ (1,FMT)

This will cause one word of the array FMT to be written over
with the characters read from the record on unit 1.

When you use the /DEBUG:BOUNDS compilation switch, the dimension
information used is that which is specified in the array declaration.

SUBROUTINE DO IT(A)
DIMENSION A (1)
A(2)=0

The reference to A(2) will cause the out-of-bounds warning message to
be generated.

C.2 FORTRAN-20 GLOBAL OPTIMIZATION

You have the option of invoking the global optimizer during
compilation. The optimizer treats groups of statements in the source
program as a single entity. The purpose of the global optimizer is to
prepare a more efficient object program that produces the same results
as the original unoptimized program, but takes significantly 1less
execution time. The output of the lexical and syntactic analysis
phase of the compiler is developed into an optimized source program
equivalent (in results) to the original. The optimized program is
then processed by the standard compiler code generation phase.

C-4

WRITING USER PROGRAMS
C.2.1 Optimization Techniques

C.2.1.1 Elimination of Redundant Computations - Often the same
subexpression will appear in more than one computation throughout a
program. If the values of the operands of such a common expression
are not changed between computations, the subexpression may be written
as a separate arithmetic expression, and the variable representing its
resultant may then be substituted where the subexpression appears.
This eliminates unnecessary recomputation of the subexpression. For
example, the instruction sequence:

A=B*C+E*F

H=A+G-B*C

.

IF((B*C)-H) 10,20,30

contains the subexpression B*C three times when it really needs to be
computed only once. Rewriting the foregoing sequence as:

T=B*C
A=T+E*F

.

H=A+G-T

DIF((T)-H) 10,20,30

eliminates two computations of the subexpression B*C from the overall
sequence.

Decreasing the number of arithmetic operations performed in a source
program by the elimination of common subexpressions shortens the
execution time of the resulting object program.

C.2.1.2 Reduction of Operator Strength - The time required to execute
arithmetic operations will vary according to the operator (s) involved.
The hierarchy of arithmetic operations according to the amount of
execution time required is:

MOST TIME OPERATOR
* %
/
*
LEAST TIME +,-

During program optimization, the global optimizer replaces, where
possible (1), some arithmetic operations that require

the most time with operations that require less time. For example,
consider the following DO loop that is used to create a table for the
conversion of from 1 to 20 miles to their equivalents in feet.

DO 10 MILES=1,20
10 IFEET(MILES)=5280*MILES

1. Numerical analysis considerations severely 1limit the number of
cases where this is possible.

C-5

WRITING USER PROGRAMS

The execution time of the foregoing 1loop would be shorter if the
time-consuming multiply operation, i.e., 5280*MILES, could be replaced
by a faster operation. Since you increment MILES on each pass, you
can replace the multiply operation by an add and total operation.

In its optimized form, the foregoing 1loop would be replaced by a
sequence equivalent to:

K=5280

DO 10 MILES=1,20

IFEET (MILES) =K
10 K=K+5280

In the optimized form of the loop, the value of K is set to 5280 for
the first iteration of the 1loop and is increased by 5280 for each
succeeding iteration of the loop.

This foregoing situation occurs frequently in subscript calculations
that implicitly contain multiplications whenever the size is two or
greater.

C.2.1.3 Removal of Constant Computation From Loops - The speed with
which a given algorithm may be executed can be increased if
instructions and/or computations are moved out of frequently traversed
program sequences into less frequently traversed program sequences.
Movement of code is possible only if none of the arguments 1in the
items to be moved are redefined within the code sequences from which
they are to be taken. Computations within a loop <consisting of
variables or constants that are not changed in value within the loop
may be moved outside the loop. Decreasing the number of computations
made within a 1loop greatly decreases the execution time required by
the loop.

For example, in the sequence:

DO 10 1=1,100
10 F=2.0*Q*A(I)+F

the value of the computation 2.0*Q, once calculated on the first
iterations, will remain unchanged during the remaining 99 iterations
of the loop. Reforming the foregoing sequence to:

Q0=2.0*Q
DO 10 I=1,100
10 F=QQ*A(I)+F

moves the calculation 2.0*Q outside the scope of the 1loop. This
movement of code eliminates 99 multiply operations.

In addition, it is possible to remove entire assignment statements
from 1loops. This action can be easily detected from the macro
expanded listings. The internal sequence number remains with the
statement and appears out of order in the leftmost column of the macro
expanded listing (LINE).

WRITING USER PROGRAMS

C.2.1.4 Constant Folding and Propagation - 1In this method of
optimization, expressions containing determinate constant values are
detected and the constants are replaced, at compile time, by their
defined or calculated value. For example, assume that the constant PI
is defined and used in the following manner:

PI=3.14159

X=2*PI*Y

At compile time, the optimizer will have used the defined value of PI
to calculate the wvalue of the subexpression 2*PI. The optimized
sequence would then be:

PI=3.14159

X=6.28318*Y

thereby eliminating a multiply operation from the object code program.

The computation of determinate constant values at compile time is
termed "folding"; the wuse of the defined value of a constant for
replacement purposes throughout a program sequence is termed
"propagation of the constants." The execution time saved by the
foregoing type of compile time optimization is particularly important
when the modified instruction occurs in a loop.

C.2.1.5 Removal of Inaccessible Code - The optimizer detects and
eliminates any code within the source program that cannot be accessed.
In general, this will not happen since programmers do not normally
include such code in their programs; however, inaccessible code may
appear in a program during the debugging process. The removal of
inaccessible code by the optimizer will reduce the size of the object
program. A warning message is generated for each inaccessible 1line
removed.

C.2.1.6 Global Register Allocation - During the compilation of a
source program, the optimizer controls the allocation of registers to
minimize computation time in the optimized object program. The
allocation process 1is designed to minimize the number of MOVE and
MOVEM machine instructions that will appear in the most frequently
executed portions of the code.

WRITING USER PROGRAMS

C.2.1.7 1I/0 Optimization - Every effort is made to minimize the
number of required calls to the FOROTS system. This is done primarily
through extensive analysis of implied DO 1loop <constructs on READ,
WRITE, ENCODE, DECODE, and REREAD statements. The formats of these
special blocks are described in Appendix E. These optimizations
reduce the size of the program (argument code plus argument block size
is reduced) and greatly improve the performance of programs that use
implied DO loop I/0 statements.

C.2.1.8 Uninitialized Variable Detection - A warning message is
generated when a scalar variable is referenced before it has received
a value.

C.2.1.9 Test Replacement - If the only use of a DO loop index 1is to
reduce operator strength (D.2.1.2) and the loop does not contain exits
(GO TOs out of the loop), the DO loop index is not needed and can be
replaced by the reduced variable.

For example:
DO 10 I=1,10
K=K+7*I
10 CONTINUE

Reduction of operator strength and test replacement together transform
this loop into

Do 10 1=7,70,7
K=K+I
10 CONTINUE

This occurs frequently in subscript computation.

C.2.2 Improper Function References
Consider this statement:

P = F(X) + Q(Y)
If:

1. the evaluation of F(X) defines or changes the variables A, B,
and C, and

2. the evaluation of Q(Y) defines or changes the values of B, C,
and D,

then it is possible that different values of P could result, depending
on which function 1is evaluated first. Let's see how this works.
Let's assign some values (to begin with) to A, B, C, and D and define
the functions F(X) and Q(Y):

Let:
F(X): Q(Y):
A = 2. A= 6. B = 10.
B = 3. B = 7. Cc = 11.
C = 4. Cc = 8. D = 12.
D = 5. F =D+ 9. Q =A + 13.

Cc-8

WRITING USER PROGRAMS

Now play computer and evaluate P, calling first F(X), then Q(Y). Now
re-evaluate P, calling Q(Y¥Y) first, then F(X). Notice that you got
different values for P because the variables A, B, C, and D changed
value depending on the order in which the functions were called. (Our
answers were 33 when F(X) was called first and 36 when Q(Y) was called
first.)

The ANSI FORTRAN standard prohibits this kind of situation. But the
compiler won't catch it unless you mention the affected variables in
the function call itself. The compiler depends on strict adherence to
this rule. There's a strong possibility that you won't get the
results you want if you don't look for situations of this type and
avoid them. Your best bet is to define your variables OUTSIDE the

function and not change them in the course of the evaluation of the
function itself.

C.2.3 Programming Techniques for Effective Optimization

Observe the following recommendations during the coding of a FORTRAN
source program. They will improve the effectiveness of the optimizer.

1. Do not use DO loops with an extended range.
2. Specify label lists when using assigned GO TOs.

3. Nest loops so that the innermost index is the one with the
largest range of values.

4. Avoid the use of associated input/output variables.

5. Avoid unnecessary use of COMMON and EQUIVALENCE.

C.3 INTERACTING WITH NON-FORTRAN PROGRAMS AND FILES
C.3.1 Calling Sequences

The following paragraphs describe the standard procedures for writing
subroutine calls.

1. Procedure
a. The calling program must load the right half of
accumulator (AC) 16 with the address of the first
argument in the argument list.

b. The left half of AC 16 must be set to zero.

c. The subroutine is then called by a PUSHJ instruction to
AC 17.

d. The return will be made to the instruction immediately
after the PUSHJ 17 instruction.

e. If you use the FOROTS trace facility, the <calling
sequence to a routine F must be

MOVEI 16 ,AP
PUSHJ 17,F

2.

c.3.2

WRITING USER PROGRAMS

where AP is the pointer to the argument list. If you use
the trace facility, the word preceding the first word of
an entry point should have its name in SIXBIT.

Restrictions

a. Skip returns are not permitted.

b. The contents of the pushdown stack 1located before the
address specified by AC 17 belong to the calling program;
they cannot be read by the called subprogram.

c. FOROTS assumes that it has control of the stack;
therefore, you must not create your own stack. The
FOROTS stack is initialized by:

JSP 16,RESET.

Accumulator Usage

The specific functions performed by accumulators (AC) 17,16,0, and 1
are as follows:

1.

Pushdown Pointer - AC 17 is always maintained as a pushdown
pointer. Its right half points to the last location in use
on the stack, and its left half contains the negative of the
number of (words-1) allocated to the unused remainder of the
stack. (A trap occurs when something is pushed into the next
to last location. A positive left half is not permitted.

Argument List Pointer - AC 16 1is used as the argument
pointer. The called subprogram does not need to preserve its
contents. The calling program cannot depend on getting back
the address of the argument list passed to the callee. AC 16
cannot point to the ACs or to the stack.

Temporary and Value Return Registers - AC 0 and 1 are used as
temporary registers and for returning values. The called
subprogram does not need to preserve the contents of AC 0 or
1 (even if not returning a value). The calling program must
never depend on getting back the original contents of the
data passed to the called subprogram.

Returning Values - At the option of the designer of a called
subprogram, a subroutine may pass back results by modifying
the arguments, returning a single-precision value in AC 0 or
a double-precision or complex value in AC 0 and 1. A
combination of the above may be used. However, two
single-precision values cannot be returned in AC 0 and 1,
since FORTRAN would not be able to handle it.

C.3.3

WRITING USER PROGRAMS

Preserved ACs - FORTRAN-20 FUNCTION subprograms preserve ACs
2 through 15; subroutine subprograms do not.

The design of the called subprogram cannot depend on the
contents of any of the ACs being set up by the calling
subprogram, except for ACs 16 and 17. Passing information
must be done . explicitly by the argument list mechanism.
Otherwise, the called subprograms cannot be written in either
FORTRAN-20 or COBOL.

Argument Lists

The format of the argument list is as follows:

Arg count word

Arg list addr.---First arg entry

Second arg entry

Last arg entry

The format of the arg count word is:

bits 0-17 These contain -n, where n 1is the number of arg

entries.

bits 18-35 These are reserved and must be 0.

The format of an arg entry is as follows (each entry 1is a single

word) :

bits 0-8 Reserved for future DEC development (set to 0 for

now) .

bits 9-12 Arg type code.

bit 13 Indirect bit if desired.

bits 14-17 1Index field, must be 0 for present.
bits 18-35 Address of the argument.

The following restrictions should be observed:

1.

Neither the argument list nor the arguments themselves can be
on the stack. This restriction is imposed so that the stack
can be moved. The same restriction applies to any indirect
argument pointers. i

The called program may not modify the argument 1list itself.
The argument list may be in a write-protected segment.

Note that the arg count word is at position -1 with respect
to the contents of AC 16. This word is always required even
if the subroutine does not handle a variable number of
arguments. A subroutine that has no arguments must still
provide an argument list consisting of two words, 1i.e., the
argument count word with a 0 in it and a zero argument word.

WRITING USER PROGRAMS

Example

MOVEI 16,AP ;SET UP ARG POINTER
PUSHJ 17,SUB ;CALL SUBROUTINE
ve s RETURN HERE

s ARGUMENT LIST
_3,'0
AP: A
B
C

; SUBROUTINE TO SET THIRD ARG TO SUM OF FIRST TWO ARGS

SUB: MOVE T,@0(16) ;GET FIRST ARG
ADD T,@1(16) ;ADD SECOND ARG
MOVEM T,82(16) ;SET THIRD ARG
POPJ 17, ; RETURN TO CALLER

C.3.4 Argument Types

Table C-1
Argument Types and Type Codes
Type Code Description
FORTRAN Use COBOL Use

0 Unspecified Unspecified

1 FORTRAN Logical Not applicable

2 Integer l1-word COMP

3 Reserved Reserved

4 Real ComMP-1

5 Reserved Reserved

6 Octal Reserved

7 Label Procedure address
10 Double real Not applicable

11 Not applicable 2-word COMP
12 Double Octal Reserved
13 Reserved Reserved

14 Complex Not applicable
15 Not applicable Byte string descriptor
16 Reserved Reserved

17 ASCIZ string Not applicable

Literal arguments are permitted, but they must reside 1in a writable
segment. This is because the FORTRAN~20 compiler makes a local of all
non-array elements and copies all formals back to the caller's
arguments. All wunused type codes are reserved for future DIGITAL
development. '

WRITING USER PROGRAMS

C.3.5 Description of Arguments

The types of the arguments that may be passed are:

1.

Type 0 - Unspecified

The calling program has not specified the type. The called
subprograms should assume that the argument is of the correct
type if it is checking types. 1If several types are possible,
the called subprogram should assume a default as part of its

specification. If none of the above conditions is true, the
called subprogram should handle the argument as an integer

(type 2).
Type 1 - FORTRAN logical

A 36-bit binary value containing 0 or positive to specify
.FALSE. and negative to specify .TRUE..

Type 2 - Integer and l-word-COMP
A 36-bit 2's complement signed binary integer.
Type 4 - Real and COMP-1

A 36-bit DECsystem=-20 format floating-point number.

bit 0 sign
bits 1-8 excess 128 exponent
bits 9-35 mantissa

Type 6 - Octal
A 36-bit unsigned binary value.
Type 7 - Label and procedure address

A 23-bit memory address.

bits 0-12 always 0

bit 13 indirect flag
bits 14-17 0

bits 18-35 the address

Type 10 - Double precision real
Type 11 - 2-word COMP

A 2-word (72-bit) 2's complement signed binary integer.

word 1, bit 0 sign

word 1, bits 1-35 high order

word 2, bit O same as word 1, bit 0
word 2, bits 1-35 low order

Type 12 - Double octal

A 72-bit unsigned binary value.

WRITING USER PROGRAMS

10. Type 14 - Complex

A complex number represented as an ordered pair of 36-bit
floating-point numbers. The first represents the real part,
and the second represents the imaginary part.

11. Type 15 - Byte String Descriptor
The format of the byte string descriptor is:

word 1: ILDB-type pointer, 1i.e., aimed at the byte
preceding the first byte of the string
word 2: EXP byte count

The byte descriptor may not be modified by the called
program. The byte string itself must consist of a string of
contiguous bytes of uniform size. The byte size may be any
number of bits from 1 to 36. The byte count must be large
enough to encompass 256K words of storage, i.e., 24 bits for
l-bit bytes. (See COBOL Program Reference Manual.)

12. Type 17 - ASCIZ string

A string of contiguous 7-bit ASCII bytes 1left Jjustified on
the word boundary of the first word and terminated by a null
byte in the last word. The length of the string may be from
1 to 256K words.

C.3.6 Converting Existing MACRO Libraries for use with FORTRAN-20

The following simple example 1illustrates the FORTRAN-20 <calling
sequence.

ST-D

MAIN, EX1 FORTRAN V,5(515) /KI/¥ 16«HAR=77 16:02 PAGE 1§

00001 C AN EXAMPLE OF A CALL TQ A SUBROUTINE WITH A VARIETY OF ARGUMENTS
00002

00003 DOUBLE PRECISION Dp

00004 DIMENSION B(10)

00005

00006 C THE ARGUMENTS AREj

00007 C 1, A REAL VARIABLE

00008 C 2, AN ARRAY NAME

00009 C 3, AN ARRAY ELEMENT

00010 C 4, AN INTEGER VARIABLE

00011 C 5, A DOUBLE PRECISION VARIABLE
00012 C 6, AN NCTAL CONSTANT

00013 ¢ 7. A LITERAL

00014

00015 CALL SUB1(A,B,B(I),K,DP,"777,7ABC*)
00016

00017 END

SUBPROGRAMS CALLED
SUB1

SCALARS AND ARRAYS ["#" NO EXPLICIT DEFIMITION = #gn NOT REFERENCED)

DP 1 *K 3 B 4 *A 16 »1 17

SHYUDOUd YdSN ONILIUM

91-2

LINE

15

17

LOC LABEL GENERATED CODE

0 JFCL 0,0

1 JSP 16,RESET,
2 0,0

3 MOVE 2,1

4 MOVEI 2,B=1(2)
5 MOVEM 2,,00000
6 MOVEI 16,2M

7 PUSHJ 17,SUBt
10 MOVEL 16,1M

11 PUSHJ 17,EXIT,

ARGUMENT BLOCKS$

MAIN,

MAIN,

[NO ERRORS DETECTED]

12 0,,0

13 1M3 0,,0

14 777771440

15 2M3 200, ,A

16 200, ,B

17 220,4,,00000

20 100, ,K

21 400, ,DP

22 300,,1000000000777]
EX1 FORTRAN V,5(515) /KI/M 16=MAR=»T7
23 740,,0406050320100])

16302

PAGE 1w~}

SHYYO0dd ¥YdSnN ONILIYM

LT-D

MAIN, EX1 FORTRAN V,5(515) /KI/M 16«MAR=77 16:102 PAGE 1

00001

00002 SUBROUTINE SUB1 (REAL1,ARYNAM,ARYELM,INT1,DBLPRC,0CT,LIT)
00003 DOUBLE PRECISION DBLPRC
00004 DIMENSION ARYNAM(10)
00005

00006 C AN EXAMPLE OF THE USE AND MDDIFICATION OF FORMAL PARAMETERS
00007

00008 X1=REAL1

00009 X2=ARYNAM(J)

00010 X3=ARYELM

00011 I1=INTY

00012 X4=DBLPRC

00013 12=0CT

00014 13=sLIT

00015

00016 REAL1=X1

00017 ARYNAM (J)=X2

00018 ARYELM=X3

00019 INT1=11

00020 DBLPRC=CMPLX(X4,0,)
00021 0CT=455

00022 LIT=?ZYXW®

00023

00024 RETURN

00025 END

SUBPROGRAMS CALLED

CMPLX,

SCALARS AND ARRAYS ["#" NO EXPLICIT DEFINITION = "§" NOT REFERENCED]

#LIT 1 #0CT 2 #X4 3 #ARYELM 4 #X3 5
DBLPRC 6 %13 10 #REALY 11 #J 12 #X2 13
#INTY 14 #12 15 #X1 16 #Ig 17 ARYNAM 20

8T-D

LINE Loc LABEL GENERATED CODE

0 636542,,210000
SUH13s

2 0 MOVEM 16, ,A0016
1 MOVE 0,80(16)
2 MOVEY 0,REALL
3 HOVEI 1,81(16)
4 MOVEM 1,ARYNAM
8 MOVE 1,82(16)
6 MOVEM 1,ARYELM
7 MOVE 2,83(16)
10 MOVEM 2,INTH
11 DMOVE 4,84(16)
12 DMOVEM 4,DBLPRC

SUB}Y - EX1 FORTRAN V,5(515) /KI/M 16=MAR=77 16802 PAGE 1=1
13 MOQVE 3,85(16)
14 MOVEM 3,0CT
15 MOVE 6,R6(16)
16 MOVEM 6,LIT

8 17 IMg

MOVEM 0,X1

9 20 MOVE 7.
21 ADD 7,ARYNAH
22 MOVE 7.777777C7)
23 MOVEM 7,X2

10 24 MOVEM 1,X3

11 25 MOVEM 2,11

12 26 PUSHJ 17,5NG,4
27 MOVEM 4,X4

13 30 FIX 3,3
3 MOVEM 3,12

14 32 MOVEM 6,13

16 33 MOVEM 0,REAL1

SHYIO0Yd JdasN ONILIUM

6T-D

17

18
19
20
21
22

25

34 HOVE

35 ADD
36 MOVEM
37 MOVEM
40 MOVEM
41 MOVET
42 MOVEI
43 DMOVEM
44 MOVEI
45 MOVEM
46 MOVE
47 MOVEM
50 2M3

MOVE
54 MOVE
52 MOVEM
53 MOVE
54 MOVEM
55 MOVE
56 MOVEM
57 DMOVE
60 DMOVEM
61 MOVE
62 MOVEM
63 MOVE
64 MOVEM
65 POPJ

ARGUMENT BLOCKS3

sUB1}

66 0,40
67 I1Me 0440
[NO ERRQORS DETECTED]

3,4

3, ARYNAM
T2777777(3)
1,ARYELM
2,INTY

5,0

5,0
4,DBLPRC
2+55

2,0CT
2,055%26330535Q001
2,LIT

16, ,A0016
0,REAL1
0,80(16)
0,ARYELM
0,02(16)
0,INTL
0,@3(16)
0,DRLPRC
0,84(16)
0,0CT
0,85(16)
0,LIT
0,86(16)
17,0

SWYUD0Yd ¥ISN ONILIUM

WRITING USER PROGRAMS

To convert existing MACRO programs conveniently so that they will
still load and execute correctly when called from FORTRAN-20:

1. Transfer the initial entry sequence for a routine to

entry: CAIA
PUSH 17 ,CEXIT. ##

2. Change all returns to POPJ 17,0

These are the functions performed by the HELLO and GOODBY macros.
These macros (available 1in the file FORPRM.MAC, part of the FOROTS
release) were successfully used to convert the library routines to run
with FORTRAN-20.

In addition, since the FORTRAN-20 compiler uses the indirect bits on
argument 1lists (note that this permits shared, pure code argument
lists), it is essential for code that accesses parameters to take this
into account. Specifically, sequences that obtained the values of
parameters through use of operations such as

HRRZ R,1(16)
to pick up the address of the second argument should be changed to
MOVEI R,@1(16)
The latter operation will work when interfacing with FORTRAN-20.
Refer to the previous example, which illustrates the code generated by
the FORTRAN-20 compiler, for specific details of how each argument is

accessed. Note that in the case of the formal array, it is the
address of the array that is accessed.

C.3.7 Interaction with COBOL

The FORTRAN programmer may call COBOL programsS as subprograms, and,
conversely, the COBOL programmers may call FORTRAN-20 programs as
subprograms.

In either of the foregoing cases, I/0 operation must not be performed
in the called subprogram.

WRITING USER PROGRAMS

C.3.7.1 Calling FORTRAN-20 Subprograms from COBOL Programs - COBOL
programmers may write subprograms in FORTRAN to use the conveniences
and facilities provided by this language. The COBOL verb ENTER is
used to call FORTRAN-20 subroutines. The form of ENTER is as follows:

identifierl identifier2
ENTER FORTRAN program name |USING {literall , $literal2
procedure namel procedure?2

The USING clause of the foregoing forms names the data within the
COBOL program that is to be passed to the called FORTRAN subprogram.
The passed data must be in a form acceptable to FORTRAN-20.

The calling sequence used by COBOL in calling a FORTRAN subprogram is:

MOVEI 16, address of first entry in argument list
PUSHJ 17, subprogram address

If the USING clause appears in the ENTER statement, the compiler
creates an argument list that contains an entry for each identifier or
literal in the order of appearance in the USING clause. It is
preceded by a word containing, in its left half, the negative number
of the number of entries in the list. 1If no USING clause is present,
the argument 1list contains an empty word, and the preceding word is
set to 0. Each entry in the list is one 36-bit word at the form:

0-8 9-12 13-35

0 type address

Bits 0-8 are always 0.

Bits 9-12 contain a type code that indicates the USAGE of the
argument.

Bits 13-35 contain the address of the argument of the first
word of the argument; the address can be indexed or indirect.

Following is a description of the types, their codes, how the codes
appear in the argument 1list, and the 1locations specified by the
addresses.

1. For l-word COMPUTATIONAL items

CODE: 2
IN ARGUMENT LIST: XWD 100, address
ADDRESS: that of the argument itself

WRITING USER PROGRAMS

2. For 2-word COMPUTATIONAL items

CODE: 11

IN ARGUMENT LIST: XWD 440, address

ADDRESS: that of the high-~-order word of the
argument

3. For COMPUTATIONAL-1 items

CODE: 4
IN ARGUMENT LIST: XWD 200, address
ADDRESS: that of the argument itself
4. For procedure names (which cannot be used for calls to COBOL
subprograms)
CODE: 7
IN ARGUMENT LIST: XWD 340, address
ADDRESS: that of the procedure

The return from a subprogram (via POPJ 17,) is to the statement after
the call.

C.3.7.2 Calling COBOL Subroutines from FORTRAN-20 Programs - To call
COBOL subroutines use the standard subroutine calling mechanism:

CALL COBOLS (args...) subroutine call
X=COBOLS (args...) function call

You must have compiled the COBOL subroutine using the COBOL compiler
described in the DECsystem-20 COBOL Programmer's Reference Manual.

C.3.8 LINK Overlay Facilities

LINK provides several routines that are accessible directly from a
FORTRAN-20 program. These routines are presented here briefly,
together with the FORTRAN-20 specification of their parameters. In
general, LINK performs these functions automatically. These routines
are available only for your convenience. Full details of the wuse of
the overlay facilities can be found in the LINK Reference Manual.

C.3.8.1 Conventions - The following terms are used to describe the
parameters to LINK overlay routines.

File spec A literal constant consisting of device:
filename.ext [directory]

Name A LINK name or. number that is a 1literal
constant or variable.

List of link names A sequence of name items separated by
commas.

The routines available are:

INIOVL (File spec) Used to specify the overlay
file to be found if the 1load time
specification is to be overridden.

GETOVL (List of link names) Used to change the
overlay structure in memory.

c-22

WRITING USER PROGRAMS

RUNOVL (Name) Loads the specified LINK and
transfers to that LINK.

REMOVL (List of link names) Removes the specified
LINKs from memory.

LOGOVL (File spec) Used to specify where the 1log
file is to be written. If no arguments are
given, the log file is closed.

For a full description of these routines, refer to the LINK Reference
Manual.

c-23

APPENDIX D

FOROTS

This appendix describes the facilities that FOROTS provides for the
FORTRAN user. FOROTS implements all standard FORTRAN I/O operations
as set forth in the "American National Standard FORTRAN, ANSI
X3.9-1966." In addition it provides the user with capabilities and
programming features beyond those defined in the ANSI standard.
The primary function of FOROTS is to act as a direct interface between
user object programs and the DECsystem-20 monitor during input and
output operations. Other capabilities include:

1. Job initialization

2. Channel and memory management

3. Error handling and reporting

4. File management

5. Formatting of data

6. Mathematical library

7. User library (non-mathematical)

8. Specialized applications packages

9. Overlay facilities

D.1 HARDWARE AND SOFTWARE REQUIREMENTS

FOROTS may interface with all DECsystem-20 peripheral devices. In
addition to monitor or user program requirements, a minimum of 14
pages of user memory is needed to run FOROTS.

FOROTS

The software required with FOROTS is the TOPS-20 monitor, Version 1.
Other software items that can be associated with FOROTS include:

1.
2.

3.

The MACRO assembler
The LINK loader

The FORTRAN-20 compiler

D.2 FEATURES OF FOROTS

The following list briefly describes many specific features; more
detailed information concerning the implementation of these features
is given later in this appendix.

1. Your program may run in either batch or timesharing mode
without requiring a program change. All differences between
batch mode and timesharing mode operations are resolved by
FOROTS.

2. Your programs may access both directory and non-directory
devices in the same manner.

3. FOROTS helps provide complete data file compatibility between
all system devices.

4. FOROTS does not require line-blocking (a requirement that
each output buffer must contain only an integral number of
lines).

5. Up to 15 data files may be accessed simultaneously. Any
number or all of the open data files may be accessed
randomly.

6. FOROTS treats devices located at remote stations similarly to
local devices.

7. Programs written for magnetic tape operations will run
correctly on disk under FOROTS supervision. FOROTS simulates
the commands needed for magnetic tape operations.

8. You may change or specify object program device and file
specifications via a FOROTS interactive dialogue mode.

9. Non-FORTRAN binary data files may be read in image mode by
FOROTS.

10. FOROTS provides interactive program/operating system error
processing routines. These routines permit you to route the
execution of the program to specific error processing
routines whenever designated types of errors are detected.

11. An error traceback facility for fatal errors provides a

history of all subprogram calls made back to the main program
at the address of the point where the error occurred.

FOROTS

12. FOROTS provides a trap handling system for arithmetic
functions, including default values and error reports.

13. You may mix ASCII and binary records in the same file, and
both may be accessed in either sequential or random access
mode.

14. FOROTS permits your program to switch from READ to WRITE on
the same I/O device without loss of data or buffering.

15. Although primarily designed for use with the FORTRAN-20
compiler, you may also use FOROTS as an independent I/O
system, as an I/0 system for MACRO object programs, and for
FORTRAN-20 object programs.

D.3 ERROR PROCESSING

Whenever a run-time error is detected, the FOROTS error processing
system takes control of program execution. This system determines the
class of the error and either outputs an appropriate message at the
controlling terminal or branches the program to a predesignated
processing routine.

D.4 INPUT/OUTPUT FACILITIES

FOROTS uses monitor-buffered I/0 during all modes of access except
DUMP mode. Display devices are supported in dump mode; formatted
text is handled in ASCII line mode; unformatted files are accessed as
FORTRAN binary files. (Refer to the Monitor Calls User's Guide.)

The following paragraphs describe I/0 data channel and access modes.

D.4.1 Input/Output Channels Used Internally by FOROTS

Fifteen software channels (1 through 15) are available in 1I/0
operations. Software channel 0 is reserved for the following system
functions:

1. The printing of error messages, and

2. The 1loading and 1initialization of FOROTS (GETSEG Uuo
operations)

Software channels 1 through 15 are available for wuser program data
transfer operations. When a request is made for a data channel, a
table is scanned until a free channel 1is found. The first free
channel 1is assigned to the requesting program; on completion of the
assigned transfer, control of the software channel 1is returned to
FOROTS.

FOROTS

D.4.2 File Access Modes

Data may be transferred between processor storage and peripheral
devices in two major modes - sequential and random.

D.4.2.1 Sequential Transfer Mode - In sequential data transfer
operations, the records involved are transferred in the same order as
they appear in the source file. Each I/O statement executed in this
mode transfers the record immediately following the last record
transferred from the accessed source file. A special version of the
sequential mode (referred to as APPEND) 1is available for output
(write) operations. The special APPEND mode permits you to write a
record immediately after the last logical record of the accessed file.
During the APPEND operation, the records already in the accessed file
remain unchanged; the only function performed is the appending of the
transferred records to the end of the file.

You must specify transfer modes (other than SEQINOUT) by setting the
ACCESS option of a FORTRAN-20 OPEN statement to one of several
possible arguments. For the sequential mode, the arguments are

ACCESS='SEQIN' (sequential read-only mode)

ACCESS='SEQOUT' (sequential write-only mode)

ACCESS='SEQINOUT' (sequential read followed by a sequential
write)

ACCESS='APPEND' (sequential Append mode)

D.4.2.2 Random Access Mode - This transfer mode permits records to be
accessed and transferred from a source file in any desired order.
Random access transfers must be made between processor memory and a
device (disk) that permits random addressing operations to files that
have been set up for random access. Files for random access must
contain a specified number of identically sized records that may be
individually accessed by a record number.

You may accomplish random access transfers in either a read/write mode
or a special read-only mode. You must specify random transfer modes
by setting the ACCESS option of an OPEN statement to one of several
possible arguments.

ACCESS='RANDOM' (random read/write mode)
ACCESS='RANDIN' (random special read-only mode)

D.5 ACCEPTABLE TYPES OF DATA FILES AND THEIR FORMATS

The following paragraphs describe the types of data files that are
acceptable to FOROTS.

D.5.1 ASCII Data Files

Each record within an ASCII data file consists of a set of contiguous
7-bit characters. A vertical paper-motion character, such as, a Form
Feed, a Vertical Tab, or a Line Feed, terminates each set. All ASCII
records start on a word boundary; the last word in a record is padded
with nulls, if necessary, to ensure that the record also ends on a
word boundary. Logical records may be split across physical blocks.
There is no implied maximum length for logical records.

D-4

FOROTS

NOTE

On sequential input, FOROTS does not
require conformation to word boundaries;

it reads what it sees. Therefore, any
file that 1is written by FOROTS will
conform to the foregoing format
requirements.

D.5.2 FORTRAN Binary Data Files

Each logical record in a FORTRAN binary data file contains data that
the executing program may reference with either a READ or WRITE
statement. A logical record is preceded by a control word and may
have one or more control words embedded within it. In FORTRAN binary
data files, there is no relationship between 1logical records and
physical device block sizes. There is no implied maximum length for
logical records.

D.5.2.1 Format of Binary Files - A FOROTS binary file may contain
three forms of Logical Segment Control Words (LSCW). These LSCWs give
FOROTS the ability to distinguish ASCII files from binary files.

LSCW
START 001+ the number of words in the segment (exclusive of
any "END" LSCWs)
CONTINUE 002 indicates that the segment of a disk block
boundary continues
END 003+ number of words in the preceding segment including
LSCWs.

If the access you specify for a file (through the OPEN statement
ACCESS = parameter) 1is ‘'SEQIN', 'SEQOUT', or 'SEQINOUT', all three
LSCWs may appear in a record. If the access you specify is 'RANDIN',
or 'RANDOM', all records are of the same length, and there are no
CONTINUE LSCWs.

The following examples illustrate the LSCW. The random access binary
file contains only 001 and 003 LSCWs.

c LOOK AT A BINARY FILE AND SEE THE LOGICAL SEGMENT
c CONTROL WORDS.

OPEN(UNIT=1,ACCESS='RANDOM’ ,MODEa/BINARY?,
1 RECQRD=109)

135
WRITE(4'1) (1., J=1,109)

J=7
WRITE(1'2) (J»K=%,100)
END

o000
dp70oy
Ppaoo2
2oc0e3
Popo4
op2005
2po0oge6
Ppueoo7
gpceie
0pa011
2920312
2p201L3
0pinL4
2guR1s
2gco16
2092017
fpco2p
fgcp2y
P22
20..023
20:'024
2p2025
0p#026
Qpc027
op203p
Pp2n31
2g7032
Ppre33
2p/034
2p035
2prRA36
2p2037
Ppapap
op2n41
Pp2p42
B4y
BorR44
2pr045
22046
0pp47
22050
PpuB5Y
2peos2
BpIBs53
22054
Po7055
2072056
022057
gpagép
Pp2R6Y
Pg062
Ppro6s

081800
200200
202200
200000
200220
IYELT)
200000
200200
002200
200000
002000
200200
L TTLLY:
907200
gpoRap
TELLY)
0o2000
002000
002200
TEEYT
082830
200200
000000
000200
082000
200000
pa0200
002C00
200200
282200
092030
0pe020
096020
802020
202200
202000
202200
200020
YILT
202000
002020
202000
CTTLLT,
022020
200020
207900
522020
200020
200280
200020
LLEET,
202220

FOROTS

0@ 1 45 <«— Number of words
in record counting
END LSCW or the
number of words
following this

gogeges
2002005
popBARs
220005
geeags
g2g025
gepoas
200085
g280@5
gopa0s
208305
go0005
peQee5
2000805
2200805
peeaps
220005
gepngs
geoaps
299025
pPpegs
200285
2900295
220085
292095
2080205
290005
geangs
220205
229095
peooes
pegegs
29p095
a2eges
Rop0e5
202895
p0@2@5
pegoos
pegeps
229225
ePPeps
22gep5
peeees
gegeas
g2gras
p2oegs
grengs
270005
202005
228295
2vpons

word to the
END LSCW.

292064
PPrR65
Ppr066
Pgrp67
Bp070
2pu071
2p'072
Pp2073
2e2n74
22075
2pIR076
2077
Peclop
092101
Ppa102
Pe2103
Rpzi04
Pe7105
dp2106
22107
Gpuilg
Ppriil
2p112
Aari13
2pc114
gga11%s
Pprile
Ppa117
gpel12p
Ppnl12]
Ppri22
Ag2123
PpRL24
Ppr12s
Ppr126
Ppoi2y
Pp2130
PpP13y
Ppn132
090133
2p0134
290135
2p213¢
290137
Ppi149
Ppe141
gpnid42
Pp2143
Pp2144
2pi145
2pr146
Bps147
dpir15p

0ge020
2ge0en
0@2200
2pe200
202200
oge2a0
2pp020
oggeee
gpofeo
200092

ogeden
200020
200020
202000
tpeoop
2022080
2000209
202208
oon0e0
29pPeg
290000
200200
2oeoap
2oe020
ope0o0
202000
2gg0e0
oge2e0
290000
2020282
200020
0ped00
2oooo0
égadop
0ggoge
200R00
2000008
280000
2gelon
2geceo
boo2o0
opedoe
200200
22929
200000
egpoop
290000
2020020
gpacop
2g3000
2919290
2pooap
fgedag

220005
oPpees
209205
a0pnp5
p200e5
208005
228005
290205
2008005
geRags

20205
pPeees
2000805
pogags
200205
208005
222005
209005
09p2n5
220005
290005
220005
p2@295
220025
200005
220295
pegaes
peaR2e5
200085
229285
2200085
200095
0920205
p2eRas
g2P205
200205
200205
299205
p0@90°%
poeRes
proaes
2epe05
gopeps
gppges
gopaps
200095
20g2p5
JPgags
299005

23@1 46 —END LSCW

p2@145
poe0a7
g2aanp7

Containing the
number of words
in the record
including LSCW’s.

Boir151
Apa152
Pp2153
22154
222155
Bp2i56
291157
292160
Pa2161
Apris2
Pp*163
292164
Ppz165
Pp2166
@p3167
Bp1i70
2pv171
Q9172
BRu173
29174
Pp175
2p2176
2177
0p1:200
o201
Pp. 202
Ppc283
28,204
2pr2p%
Bp2206
Bp2207
0pr21p
PApi1211
Bpv212
0p:213
22214
2p:i:216
Pgn217
Ppr220
Pp2221
Pp2222
Ppz223
Ppi224
Ppa22s
2pa226
Bpu227
Ppc23g
Ppa231
Pp2232

20e229
200020
2peoap
2pa02320
202000
2pzR29
opodon
200200
290020
290000
292029
200098
00000
292002
Ppodon
202030
292000
CoaRag
2@7d00
20p0220
fggoan
202000
200229
dgaoed
092030
oppagzg
@gpP20
2¢0030
2000020
2proen
Zgpeoo
fopeo0
200220
deeden
202220
200000
200270
230000
2200200
2ge0d00
gppeoo
2oeeee
2goR00
2000200
o@ppR00
2ged2D
02pPeR
29e000
20000
20p200

220207
soe2g7
220097
292207
°Bgep7
2008207
200007
geoea?
pegag7
200207
2900287
2900297
g9200@7
g2p2a7
aegea7
200097
aopag?
gopagy
200227
220207
278297
acgag?
220297
plang?
200007
208097
onpae7
20pea7
zepag?
goe2a7
aogog7
goeop7
gopag?
gneRn7
gPeea7
gegog7
gogep7
gegaop?
200007
290207
avoog7
pugeg?
gepeg?
200097
pPooa?
pogea?
200007
@287
2920097
p2e2p7

FOROTS

092233
Ppn234
Bpu23s
Ppa236
2pe237
Ppir240
Bpr241
Ppv242
8p:243
Ppr244
2pr245
Bp2246
Bpii247
2p2250
B3p::251
7252
22253
Bpa2s54
Pg2255
Pgs256
2p7257
Benr2sw
0pz261
Ppr262
2pn263
Ppii264
Pp«265
Pegi266
ges 267
202279
Ape271
#pa272
Per273
2pr274
2p227s5
2p3276
202277
Apa3og
Bpc3al
202302
pz383
Bac304
Ppr3gs
Apa3de
Qoc387
003310
Ppr31y
PRe312
Ppn313

2p0000
20e000
Apeden
292000
0pp009
2goRan
2peoan
opp0gR
2pooa0
200000
0pe000
200020
292020
2ppdep
Zgaooe
2p2oop
0pp2a0
202030
Zopeag
2ppoep
epooop
Zp00200
2¢p220
2o0009
2020292

200020
200000

“gpoap
200000
200009
200090
ggaeog
292000
2o0000
202000
ggeded
200200
2p02ap
2gaca0
2p0o0¢0R
202000
egnenp
090200
200000
2peo2e
200030
2pe0o2
2ge2e2
vo3ege

p2eap7
glpee7
220007
200007
pogag?
200007
20297
200087
20p02a7
2000237
g22007
200087
820087
ge0097
gloae7
epag?
220297
gogag?
gopop7
e9%0207
220297
ePpag7
g200087
pegog7
geoog7
goeea?
22902907
eraze7?
pRpae?
pepgeR7
g20ag7
geegn?
208007
20e007
pepog?
20207
eegee?
Ly
p0@eg7
220207
gnoag?
gvoag7
20p227
20007
popgen?
gep0a7
gopon7
pegee?
gepL4e

In the seguential access binary file, the second

FOROTS

record crosses

128-word disk boundary and contains a 002 (CONTINUE) LSCW.

c
c

Pp.ape
2p2001
PploR2
2p2003
2p:004
292206
2p.2007
fpre1p
fpin11
09.:012
297013
Pp.014
@p2p15
(4. FAR N)
2p 017
Pelo2g
2prp21
Pp:022
Pp2@23
20.:024
2g20825
Pp+n26
09.2027
20::039
2pc031
22032
PRsR33
2Q2034
PRc035
Ap3036
2p2037
Ppirpap
Ppuo4y
Pap42

LOOK AT A BINARY FILE AND SEE THE LOSICAL SEGMENT

CONTROL WORDS.,
OPEN(UN]T=1,MODE=/BINARY’)

1a58

WRITE(L) (1, J=1,180)

Ja?

WRITE(L) (J,K=1.1p0)

END

204390
200092
200290
202200
2oedee
2002290
202230
092020
g0
2pedz0
20n229
202320
2geean
292020
700029
¢oorae
20¢2008
2000230
207270
200220
292020
20a0e0
oppRan
2ge020
2pooap
200
opeRap
0govao
0g000@
Ak
oppeoe
282000
Pppr2a0
2000220
002000

320145
220ag5
220085
200025
200005
peReR5
gogeps
222995
22e205
2eQees5
g2p295
pEgegs
oregeps
200005
200005
220005
gleeps
2702gs
anP0p5
27285
preans
pegngs
peQees
200005
200005
2900895
pPPaARgsS
gegess
22oe25
200305
peoIps5
20082g5
2eepas
220295
0920005

Bp2043
297044
203045
PpcR46
Pp.047
Qp2050
PeL05%
gpars2
Pp2053
PpiR54
092055
292056
2p 5057
Pp060Q
20061
20062
2R7063
Pp2064
2R.1065
BR2066
2ae067
2gce7e
2peR7y
dpre72
202073
2,074
apro7s
207076
202077
093120
gpriny
2p:102
292103
PRu124
2ps1os

ooe292
2p0000
202000
202009
dpeoen
Ppeoap
ogpoee
Ppeoon
ogeRee
poogoR
0p0020
0g2000
200030
29p2082
290200
apecap
2000020
¢oplano
poeden
bgeoog
290022
20000
2gedap
0g2220
200020
202200
003220
2p2002
2o2000
[2YJodofo]
200228
2272020
200030
2pedag
¢coe200

gepags
200285
pRoOOYRS5
gogens
220205
299295
220305
200005
gogens
a2@995
208005
p7@005
2200805
pPeogs
pop2gs
290005
220005
22e2¢5
200005
208895
200905
000285
p020205
peeaes
229205

pepops
gopees

gveoes
270095
209205
220005
279825
peoees
200005
200285

the

0921086
2p2107
P11
Bpriiy
gpii112
PpA113
2g4114
goeiis
Ppalie
02117
2pr12g
Ppai2y
@pai122
Ppa123
0pa124
Ppa12s
Pp7126
2ep127
2p0213p
290131
0pu132
Ppr133
2p¢134
oprL35
22136
2pr137
Ppinl4g
2pri41
Par142
293143
Pp2144
Pps145
Pgiri46
PRi147
PRs159
Ppii151
222152
222153
201154
20155
D156
292157
202160
g 2161
Pgir162
Bp163
Pp164
0R216%
982166
epu167
Bpi17p
2pa171
Bpai172

200200
200000
dpe200
202000
200400
Ag0000
PeedoR
29p200
00poae
Pop20@
29000
200208
ogo200
oop200
goedae
0000200
dgpop2
L EET
poedoo
0pe200
voooae
200020
20pe0a0
2ga2ae
f9p0ag@
202030
goeoea
290200
opoRe0
200000
200029
203000
2010020
209020
200000
292900
2g0208
opedag
2geRag
202020
2gp0Q0
700000
d0e000
2oo200
2009000
200000
o) T Joll)
Popooe
200090
290220
2poda0
ooep2e
200000

pogags
200005
272005
290095
220295
290095
22g205
aegegs
220005
298025
222395
a0002%
pepnes
209005
200005
200005
200205
pPP2p35
gegops
p2330%
2022325
pPp2g5
229205
gogags
2200295
2080095
pReoes
220005
200205
0Ppogs
229205
pl@L46

FOROTS

2PQQA3I2 «— Number of

greop?
029287
229287
geg2p7
2290097
plgag?
uPgeg?
290097
2020007
22p0p7
208807
29gaa7
328007
200007
popag?
phgeg?
z9gaa7
gegeg?
920287
a29p@7

words to
next LSCW.

Po2173
P2:174
2pL7%
2pc176
Poil177
Ppv200
o201
dpv2p2
Ppr293
Pp2204
Ppr2ps
2p2206
Bp207
0p.210
gp2211
2pa212
2p0213
2p2214
Pp2215
Bpor2is
Pp2217
Ppr229y
Bpg221
gpa222
PpR223
0pa224
Rpr22s
Bpun226
2g2227
Pp223p
Ppr23y
Pp2232
Ppz233
2p2234
2p2235
Pp2236
Ppz237
Ppv240
Pgr24y
Bpp24d2
Pp2243
Pp2244
Ppc24s
Pp2246
@pr247
Pps259
Ppz2sy
Ppo2s2
Bg1253
2dpu254
2p1255
Ppy256
991257

Ppo0oo
208929
200220
200000
2po000
gp290p
0p002g
200229
opooop
0pe220p
2pooog
200030
ogrooe
Ppeoon
202200
2po0oe
09p0PeQ
0p0000
2ped0Q
2padoe
290000
2p0000
ppgaag
2geR20
2ggPeR
200000
vogoon
2p002p0
2pa020
Ppe0ee
Popo20
2p00020
29e200
2902090
2p0000
2920e0
o200
2ga0an
2geoap
PpeRog
opeeog
ogedog
2000028
pooCog
0900202
Ppoooe
200239
2002020
boopoap
2000230
voocap
2p0000
020020

pe0ea7
200987
pogog?
200007
gogear
282114~ —Continue LSCW.
pegeg7
aegag7
ergBE?7
299897
2eeeg?
290897
pogap7
pveRa7
2ogog7
298207
220097
aoe0@7
200207
gogea7
gogag?
po0027
208207
p2pen7
pogea7
pogag?
g9g09g7
g0o0a7
2290a7
220007
29gag7
20gap7
220007
zogag?
gogea7
popag7
@ep2g7
p2g2p7
preeg7
eeona7
229007
pepep7
geeeg?
gogea7
720027
200087
a0e3a7
e2g007
gogeg7
eRgae?
0227
pROBQ7
gegogn?

FOROTS

Ppu26p Pop0g0 020007 Ppi277 0QpPoR 200007
gpr26y 209Pee 202007 Pp¢30p 0QppR20Q 2920007
Ppr262 0pgp2eg 0900027 Pp23@1 202000 200287
Ppz263 @poe20 290007 Pp23pe 0P@gPgp 0V9P@7
Ppi264 0Oppdce 8VEAQ7 Pp2303 000C%0p 208007
Opr265 0@edgp 290087 9pu3p4 Q00020 020007
Ppc26s 0Qgpep@ 090027 Pp2305 0QoPo@ 090007
@pa267 0CppPeR 2P00R7 022306 000000 200087
Pp27p 0OQpPop BP20Q7 0g72307 O0@g2000 200007
Ppz271 0Qp0QQ Q29@e@7 Pp231g OCpolog 220207
Pp272 0pP00Q a90geQ? Pp2311 0Qg0gg 200007
2g273 0Q0Q000 29298027 292312 0poRee oPege7
Ppc274 0CpoRge 000027 Q2313 0QPeggo 000007
Pgc275 0pgdee 290027 Ppu3l1e OQ3I0PD 000147

Ppu276 Ppo0op 29907
Image mode files contain no LSCWs. You cannot backspace this file.

c LOOK AY AN IMAGE MODE FILE AND SEE NO LOGICAL SEGMENT
c CONTROL WORDS.

OPEN(UNIT=4{,MODE®’ IMAGE")

1a5

WRITE(1) (1, J=1,100)

Jz?

WRITE(1) (J,K=1,1p0)

END
@ps00g Q00000 290005 Ppid24 0Q2207 U20003
02001 0Qp00320 290005 Pore2s 0poengp 200005
Ppaopg2 0Opgdoe P2@ep5 PpzP26 0OQDQR@ 020205
Pp0003 9027200 290005 0p2p27 0PR2a@ 202005
Ppr004 Q00000 0C00Q5 2p203p 0QPpP2oP 200005
2eugos 0200000 0929005 Pp203y 0poPQs 200005
202006 7200020 272005 0p2032 9200000 220005
292007 Q00000 @0Q005 PpUP3I3 000PQ7 2200@S
0pJs01p 200QgQ 002GQE5 PpP034 Q00007 290005
0p7011 0pPRge 229005 Pp2035 0pP20eP Q220035
Bps012 0Qplo@ £99995 Ppl036 200020 Q298005
0272013 @gede@ 299005 Bp2037 0J0pP2p 2929995
0p7014 7200200 298025 Ppl04p 0QPP0P 229005
Pp2@215 000PeQ 270025 dooP4y 022023 22g0Qs
0p701¢ 0200000 00Q205 Ppro42 29p223p 200485
Pp2017 0000230 290085 PplR4AY 0OgaRae 292005
Pp2029 9200020 090205 2pJ044 0OQpo2p 020005
Qp2021 200000 2790025 gpup4s5 02QPp0p@ 022025
Pgze22 0QPR02@ 020005 00704 0OQpoEp PP0A2S5
Pp2023 92go0pp3 399805 Apnp4y 02p28p NOPARS

dpaP50
Apap@s5y
Qpaps2
202053
Pp2054
#p7055
3gJIese6
2p2057
027060
202061
Ppras?
32063
00064
222065
202066
2Q¢R67
2pc270
292071
29072
292073
22074
2p2R75
2p2276
22077
LI ERR
2ps101
2p2102
2pai1oy
Pe2104
2¢+105
Ppr106
Gp2107
Pp2iip
Pp2i11
Pp2112
Q92113
Bp2i14
dg2115
2pri1e
Pen1Ly
Bp212p
Ppai2a
@pa2i22
Ppy123
2pal24
Ppal12sy
Ppri26
Bpe127
2pe13g
290131
2pr132
Pp2133
Ppul134q

2pacag
2gnden
pgoRen
@padop
oggoan
200020
2920900
280000
2pp0¢0
292020
2gadog
2pedeg
200000
2gp000
ceoeope
2922290
Agolag
dgnope
Ag0229
200200
202220
2peasy
oge2e9
09e2q0
2200920
290029
2gedeR
gooeen
2002030
202029
cpaeon
2ge000
2ppeag
20n020
9poR00
2ge0a0
2podon
2000020
2paop@
292020
2p2ep0
2R2Re9
cgeegn
2gpong
292008
ogefpo
200009
2geRee
232009
%go0ep
292000
200000
00200

oepops
202005
IILITE
TLITE
200005
LLELE
099005
209205
222205
202005
30925
2000823
200025
200005
200005
2epegs
200005
090095
200005
020005
20aags
008325
300085
200005
020225
200005
200005
200005
309205
2200805
298205
028025
208205
308005
203025
208005
280225
002005
220005
TLErE
290005
200005
3080805
LITEE
208005
200205
200005
"LITTE
208225
p2B225
2090825
TLITE
200005

FOROTS

290135
292136
Ppr137
2214
2pa141
2p2142
2p2143
Pgeldq
Pp145
2p2146
Beri47
Pg2159
0p7151
Ppa1s52
Pp71153
PRrisg
2p7155
2pi156
2peis7
Qp216p
Ppri161
Ppc162
292163
297164
Pp2165
PB2166
PR2167
092179
292171
gpr172
Bp2173
202174
Ppa17%
P22176
22177
Bp209
2pi201
2pl2Q2
Qp2203
Pp2204
opr2o5
Ber206
dgaeny
Bpr21p
Ppa211
0pa212
293213
PpL214
gpn215
222216
292217
Pp2229
BpRr224

002299
0820292
200000
200020
200000
202020
000000
000000
002000
IYELY.
099029
030000
TILY.
2p0000
00029
2g0000
2002020
000200
200020
000029
200000
208200
0p202P
0p0ee0
200030
200009
¢p0020
900020
L EEEL
2goreg
200200
0029008
002320
000020
2930730
200020
202090
ITTLY.
000220
000020
287020
202200
L YLLY)
000220
0002390
LPTTLY
2pe0ep
2009000
PTTLEY.
200000
200200
200000
2go200

BRBees
308005
222005
020205
270205
200005
200005
200207
222707
002007
200007
gepog7
1LTTY
200297
p0g0g7
200097
200007
avgeg?
288807
200207
200007
209207
200007
200707
PLL LY
200007
220097
20@207
go00g7
370007
200307
002007
1LITY
200007
209007
000007
209207
209007
020207
200227
300007
200007
p90097
200227
292007
002007
220007
002007
222207
2002807
300007
200207
290007

FOROTS

PpR222 0ppldpEr APPRR7 992255 0gpdop 220%p7
epr223 02padap 20@eQ7 0p2256 000000 200007
290224 000200 000027 0pz257 OJ0007p 292207
Pp2225 0@godes o0QCp7 p226p 20pRQ@ @037
Ppd226 0goQope 220027 Pgr261 0@P230 292007
Pp2227 0Opoeoee o2%pRRY Ppr262 900000 200027
2p223p 0000gp 098007 Bp2263 0p0P20p 00PBQ7
0pz23y 2009002 200207 Opn264 2pQR00 020007
092232 CQgoPpp ©P@CQ7 @p2265 0QO0Qy CP00QY
Pp2233 0Qpe00@ 3P0GR7 Ppu266 0QOR20 27Q0Q7
2pr234 200000 0RGEQ7 2g7267 2p00gg C0ORQAT
Qpg235 0podoe 0929207 Qou27p Jpodeg 2707R7
Ppr236 2300np 000007 Pgr271 0@Qo@gp 2PPOQ7
Ppr237 000070 000R27 Pp2272 0pgedeg o090Q7
P9pe24p 0dg2dse cPpa@7 o273 0podep 2900207
Pp2241 0Jpeodgp 290007 R@274 0Q00Q@ ARQOO7
Pp1242 292020 2002007 Bpe275 OQQ00ee 290007
Bp2243 0p00239 220007 Ppr276¢ 0QpcG2pP P000Q7
pc244 0Q200p 200007 @p2277 0gedgo 0900207
Bp2245 200000 2900297 0p230p 0QPP200 2PQ007
Ppa246 200020 270007 Ppz3p1l 0QQeR22@ 200007
Pp2247 0QpePeo 290247 Pe302 Q00002 290007
001259 090020 2PPAD7 0po303 00r000 020087
2pr251 200003 920007 Pp 304 000000 2000g7
Pps252 0QPP0ap ¥00007 PpA3QS 002300 200087
202253 ©009200 2209027 0p2306 Q200000 200207
Pp7254 202020 090227 Pe2307 090oZoe 200007

D.5.3 Mixed Mode Data Files

FOROTS permits files containing both ASCII and binary data records to
be read. Mixed files may be accessed in either sequential or random
access mode. Logical ASCII and binary records have the same format as
described in the preceding paragraphs. 1In random access mode, the
record size must be large enough to contain the largest record, either
ASCII or binary.

FOROTS

D.5.4 1Image Files

The image data transfer mode is a buffered mode in which data is
transferred in a blocked format consisting of a word count located in
the right half of the first data word of the buffer followed by the
number of 36-bit data words. The devices that permit image data
transfers and the form in which the data is read or written are:

Device Data Forms

Card Reader All 12 punches in all 80 columns are packed into
the buffer as 12-bit bytes. The first 12-bit byte
contains column 1. The last word of the buffer
contains columns 79 and 80 as the left and middle
bytes, respectively. Cards are not split between
two buffers. :

Disk Data is written on the disk exactly as it appears
in the buffer. Data consists of 36-bit words.

Magnetic Tape Data appears on magnetic tape exactly as it
appears in the buffer. No processing or
checksumming of any kind is performed by the
service routine. The parity checking of the
magnetic tape system is sufficient assurance that
the data 1is correct. All data, both binary and
ASCII, is written with odd parity and at 800 bits
per inch unless changed by the installation.

Plotter Six 6-bit characters per word are transmitted to
the plotter exactly as they appear in the buffer.

D.6 USING FOROTS

FOROTS has been designed to lend itself for use as an I/O system for
programs written in languages other than FORTRAN. Currently, MACRO
programmers may employ FOROTS as a general I/0 system by writing
simple MACRO calls that simulate the calls made to FOROTS by a FORTRAN
compiler. The calls made to FOROTS are to routines that implement
FORTRAN 1/0 statements such as READ, WRITE, OPEN, CLOSE, RELEASE, etc.

FOROTS will provide automatic memory allocation, data conversion, I/O
buffering, and device interface operations to the MACRO user.

FOROTS

D.6.1 FOROTS Entry Points

FOROTS provides the following entry points for «calls from either
FORTRAN compiler or a non-FORTRAN program:

Entry Point

ALCHN.
ALCOR.
CLOSE.
DBMS.
DEC.
DECHN.
DECOR.
ENC.
EXIT.
FIN.
FIND.
FORER.
FUNCT.
IN.
IOLST.
MTOP.
NLI.
NLO.
OPEN.
OUuT.
RELEA.
RESET.
RTB.
TRACE.
WTB.

Function

Allocate software channels
Allocate dynamic memory blocks
Close a file

DBMS interface

DECODE routine

De-allocate software channels
De-allocate dynamic memory blocks
ENCODE routine

Terminate program exeuction
Input/Output list termination routine
Position to the next record (RANDOM ACCESS)
Error processor

Overlay interface

Formatted input routine
Input/Output list routine

File utility processing routine
NAMELIST input routine

NAMELIST output routine

Open a file

Formatted output routine

Release a device (CLOSE implied)
Job initialization entry

Binary input routine

Trace subroutine calls

Binary output routine

D.6.2 Calling Sequences

a

You must use the following general form for all calls made to FOROTS:

MOVEI 16,ARGBLK
PUSHJ 17,Entry Point
(control is returned here)

where:

1. ARGBLK is the address of a specifically formatted argument

block

that contains information needed by FOROTS

accomplish the desired operation.

2. Entry Point is an entry point identifier (see list given
Paragraph D.6.1l) that specifies the entry point of
desired FOROTS routine.

With three exceptions, all returns from FOROTS will be made to

program instruction
point instruction).

immediately following the call (PUSHJ 17, en
The exceptions are:

to

in
the

the
try

FOROTS

1. An error return to a specified statement number, 1i.e., READ
or WRITE statement ERR=option,

2. An end-of-file return to a statement number, i.e., READ or
WRITE statement END=option,

3. A fatal error that returns to the monitor or to a debug
package.

Paragraphs D.6.3.1 through D.6.3.11 give the MACRO calls and required
argument block formats needed to 1initialize FOROTS and FOROTS I/O
operations.

Argument blocks conform to the subprogram calling convention described
in Appendix C. However, there is one exception in dealing with the
first word of an I/0 initialization call, i.e., WTB., ENC., RTW.,
etc., for a FORTRAN 1logical wunit number. 1In previous versions of
FOROTS and FORTRAN-20, if the indirect bit was not set, the argument
was immediate; if it was set to 1 (one), the argument was the address
of the variable. The type field was always 0 (zero).

With Version 4 of FORTRAN-20 and Version 4 of FOROTS this convention
has been changed. If the type field of the first word of an I/O
initialization call for the FORTRAN logical unit number is 0 (zero),
the argument is an immediate mode (18 bit) constant wherever possible.
If the type field is integer, the argument is indirect (see Appendix
C, Table C-1, Type 2).

This exception should not cause any upward compatibility problems,
since all previously working programs will still function. An added
feature with this convention 1is that it permits the following
construct to be correctly implemented:

N=-4 ISET FOR TERMINALS
READ (N,100) I,J
100 FORMAT (215)

D.6.3 MACRO Calls for FOROTS Functions

The following paragraphs describe the forms of the MACRO calls to
FOROTS that are made by the FORTRAN-20 compiler. The calls described
are 1identified according to the 1language statement that they
implement. The following terms and abbreviations may be used in the
description of the argument block (ARGBLK) of each call:

— = pointer to the second word in the argument block. (This
is the address pointed to by the argument ARGBLK in the
calling sequence.)

u = a FORTRAN logical unit number

f = FORMAT statement address,

v - = the name of an array containing ASCII characters,
list = an Input/Output list,

FOROTS

c = the statement to which control is transferred on an "END
OF FILE" condition,
4 = the statement to which «control 1is transferred on an
"ERROR" condition,
name = a NAMELIST name,
R = a variable specifying the 1logical record number for
random access mode,
* = list directed I/0; the FORMAT statement is not used,
type = type specification of a variable or constant,
where ARGBLK is
0-8 9-12 13 14-17 18-35
-6 0
- Reserved type I X u
7 I X c
7 I X d
type I X £
} type I X Format Size (in words)
ReseLved type I X \Y
D.6.3.1 I/O Statements, Sequential Access Calling Sequences - The
READ and WRITE statements for formatted sequential data transfer

operations and their calling sequences are:

and

READ (u, £,
MOVEI 16,
PUSHJ 17,

END=c, ERR=d) list
ARGBLK
IN.

WRITE (u,f,END=c, ERR=d) list

MOVEI 16,
pUSHJ 17,

ARGBLK
OuT.

where ARGBLK is

FOROTS

0-8 9-12 13 14-17 18-35
-5 0
—»| Reserved type I X u
7 I X c
7 I X d
type I X f
Reserved type I X Format Size (in words)

The READ and WRITE statements for unformatted sequential data transfer

operations and their calling sequences are:

READ (u,END=c, ERR=d) list
MOVEI 16, ARGBLK
PUSHJ 17, RTB.
and
WRITE (u,END=c, ERR=d) list
MOVEI 16, ARGBLK
PUSHJ 17, WTB.
where ARGBLK is
0-8 9-12 13 14-17 18-35
-3 0
—»! Reserved type I X u
7 I X c
Reserved 7 I X d

D.6.3.2 NAMELIST I/O, Sequential Access Calling Sequences - The

and WRITE

statements

for NAMELIST-directed sequential data transfer

operations and their calling sequences are:

READ (u,name)

READ (u,

MOVEI 16,
PUSHJ 17,

and

WRITE
WRITE

(u,
(u,

MOVEI
PUSHJ

le,
17'

name,

ARGBLK
NLI.

name)
name,

ARGBLK
NLO.

END=c,

END=c,

ERR=4d)

ERR=4d)

FOROTS

where ARGBLK is

0-8 9-12 13 14-17 18-35
-4 0
—»| Reserved type I X u
7 I X c
7 I X d
Reserved type I X NAMELIST table address

The NAMELIST table is generated from the FORTRAN NAMELIST. The first
word of the table is the NAMELIST name; following that are a number
of 2-word entries for scalar variables, and a number of (N+3)-word
entries for array variables, where N is the dimensionality of the
array.

The names you specify in the NAMELIST statement are stored, in SIXBIT
form, first in the table. Each name 1is followed by a list of
arguments associated with the name; this argument list may be of any
length and is terminated by a zero entry. The name argument list may
be in either a scalar or an array form (refer to the following
diagrams).

D.6.3.3 Array Offsets and Factoring - Address calculations used to
reference a given array element involve factors and offsets. For
example:
Array A is dimensioned
DIMENSION A (L1/U1,L2/02,L3/U3,...Ln/Un)

The size of each dimension is represented by

S1 = Ul-Ll1+1
§2 = U2-L2+1
etc.

In order to calculate the address of an element referenced by
A (I1,1I2,13,...In)

the following formula is used:
A+(I1-L1)+(I2-L2)*S1+(I3-L3)*S2*S1+...+(In-Ln)*S[n-1]%*...*S2*S1

The terms are factored out depending on the dimensions of the array
and not on the element referenced to arrive at the formula

A+ (-L-L2*S1-L3*S2*S1...)+I1+I2*S1+I3*%S52*S]...

The parenthesized part of this formula is the offset for a single
precision array and it is referred to as the Array Offset.

FOROTS

For each dimension of a given array, there is a corresponding factor
by which a subscript in that position will be multiplied. From the
last expression, one can determine the factor for dimension n to be
S[n-1]1*S[n-2]*,..*32*351
For double-precision and complex arrays, the expression becomes
A+2* (I1-L1)+2* (I2-L2)*S1+2* (I3-L3)*S2+Sl+...
Therefore, the array offset for a double-precision array is
2% (~L1-L2*S1-L3*S2%S1...)
and the factor for the nth dimension is
2*S[n-1]*S[n-2]*,.,.*S2*S1
The factor for the first dimension of a double-precision array 1is
always 2. The factor for the first dimension of a single-precision

array is always 1.

SCALAR ENTRY in a NAMELIST Table

0. . .8 9. . .11 | 12. . .1l4|15. . .17 18. . .35

SIXBIT/SCALAR NAME/

0 0 I X Scalar addr

ARRAY ENTRY in a NAMELIST Table

0-8 9-11 12-14 15-17 18-35

SIXBIT/ARRAY NAME/

#DIMS type I X

ARRAY SIZE OFFSET
I X Factor 1
I X Factor 2
I X Factor 3
I X Facéor n

FOROTS

D.6.3.4 1I/0 Statements, Random Access Calling Sequences - The READ
and WRITE statements for random access data transfer operations and
their calling sequences are:

READ (u#R,f,END=c, ERR=d) list
READ (u$R,END=c, ERR=d) list
MOVEI 16, ARGBLK

PUSHJ 17, RTB.

and
WRITE (u#R,f,END=c, ERR=d) list
WRITE (u#R,END=c, ERR=d) list
MOVEI 16, ARGBLK
PUSHJ 17, WTB.

where ARGBLK is

0-8 9-12 13 14-17 18-35
-6 0
—»| Reserved type I X u
7 I X c
7 I X d
type I X f
type I X format size (in words)
Y
Reserved 2 I X address of
Record Number

f and the format size in words are 0 if the I/0 statement is
unformatted.

D.6.3.5 Calling Sequences for Statements That Use Default Devices -
The FORTRAN-20 statements that require the use of a reserved system
default device and their calling sequences are:

Default Device

ACCEPT f, list UNIT=-4 (TTY)
READ f, list UNIT=-5 (CDR)
REREAD f, list UNIT=-6 (REREAD)

MOVEI 16, ARGBLK
PUSHJ 17, IN.

FOROTS

where ARGBLK is

0-8 9-12 13 14-17 18-35

-5 0
—»| Reserved 2 I X u
7 I X c
7 I X d
type I X £

Reserved type I X Format Size

(in words)

Default Device

PRINT £, list UNIT=-3 (LPT)
TYPE £, list UNIT=-1 (TTY)

MOVEI 16, ARGBLK
PUSHJ 17, OUT.

where ARGBLK 1is

0-8 9-12 13 14-17 18-35
-5 0
—»!| Reserved 2 I X u
7 I X c
7 I X d
type I X f
Reserved type I X format size (in words)

FOROTS

D.6.3.6 Statements to Posgition Magnetic Tape Units - The FORTRAN-20
statements that may be used to control the positioning of a magnetic
tape device and their calling sequences are:

Function FOROTS Code
(FORTRAN Statement)
SKIPFILE (u) 7
BACKFILE (u) 3
BACKSPACE (u) 2
ENDFILE (u) 4
REWIND (u) 0
SKIPRECORD (u) 5
UNLOAD (u) 1
CALL:
MOVEI 16, ARGBLK
PUSHJ 17, MTOP.
where ARGBLK is
0-8 9-12 13 14-17 18-35
-4 0
—| Reserved type I X u
7 I X c
7 I X d
Reserved type I X FOROTS code
D.6.3.7 List Directed Input/Output Statements - You may write any

form of a sequential Input/Output statement as a 1list-directed
statement by replacing the referenced FORMAT statement number with an
asterisk (*). The list-directed forms of the READ and WRITE
statements and their calling sequences are:

READ (u, *, END=c, ERR=d) list

MOVEI 16, ARGBLK
PUSHJ 17, IN.

and
WRITE (u, *, END=c, ERR=d) list

MOVEI 16, ARGBLK
PUSHJ 17, OUT.

FOROTS

where ARGBLK is

0-8 9-12 13 14-17 18-35
-5 0
—»| Reserved 2 I X u
7 I X c
7 I X d
0 0 0 0
Reserved 0 0 0 0

D.6.3.8 Input/Output Data Lists - The compiler generates a calling
sequence to the runtime system if an I/0 list is defined for the READ
or WRITE statement. The argument block associated with the calling
sequence contains the addresses of the variables and arrays to be
transferred to or from an I/O buffer. The general form of an I/O list
calling sequence is:

MOVEI 16, ARGBLK
PUSHJ 17, IOLST.

Any number of elements may be included in the ARGBLK. The end of the
argument block is specified by a zero entry or a call to the FIN.
entry.

Mnemonic Name FOROTS Value
DATA 1
SLIST 2
ELIST 3
FIN 4

The elements of an I/0 list are:
1. DATA

The DATA element converts one single- or double-precision or
complex 1item from external to internal form for a READ
statement and from internal to external form for a WRITE
statement. Each DATA element has the following format.

0-8 9-12 13 14-17 18-35

DATA type I X SCALAR ADDR

SLIST

The SLIST argument converts an entire array from internal
external form
i.e.,

statement,

FOROTS

or vice

the following form:

versa,
READ or WRITE,

depending
involved.

on the

0-8 9-12 13 14-17 18-35
SLIST I X #ELEMENTS
I X INCREMENT
0 type I X BASE ADDRI.

For example, the sequence:

DIMENSION A(100),B(100)

READ (-, -)A

or

READ(~-,-) (A(I) ,I=1,100)

develops an SLIST argument of the form:

lonly when the /OPT switch is used

0-8 9-12 13 14-17 18-35
0
2 0 0 0 144
0 0 0 0 1
0 2 0 0 A
4 0 0 0 0

More than one base address may appear in a SLIST as
the increment is the same.

The sequence

DIMENSION A(100), B(100)

WRITE

(‘r")

(A(I),B(I),I=100)

! only when the /OPT

switch is used

develops a SLIST argument of the form:

long

0-8 9-12 13 14-17 18-35
0
2 0 0 0 144
0 0 0 0 1
0 2 0 0 A
0 2 0 0 B
4 0 0 0 0

to

type of
An SLIST table has

as

FOROTS

ELIST

The SLIST format permits only a single increment for a number
of arrays to be specified while the ELIST permits different
increments to be specified for different arrays.

The format of the ELIST is

0-8 9-12 13 | 14-17 18-35
ELIST type I X No. Elements to
transfer

increment 1

type I X Base ADDR 1
increment 2

type I X Base ADDR 2
increment N

type I X Base ADDR N

For example, the FORTRAN sequence

DIMENSION IC(6,100), IB(100)
WRITE(-,-) (IB(I),IC(1,I),I=1,100)

produces the ELIST

0-8 9-12 13 14-17 18-35
3 0 0 0 144
0 0 0 0 1
0 2 0 0 IB
0 0 0 0 12
0 2 0 0 IC
4 0 0 0 0

The increment may be zero. This could be produced by the
sequence

DIMENSION A(100)
WRITE (-,-) (K,I=100) tonly when the /OPT switch is used

The zero may not appear as an immediate constant in the
argument block. The ELIST for the previous example would be

0-8 9-12 13 14-17 18-35
3 0 0 0 144
0 2 0 0 Pointgr'to a word
containing a zero
0 type 0 0 K
4 0 0 0 0

FOROTS

4. FIN
The end of an I/0 list is indicated by a call to the FIN
routine in the object time system. This call must be made
atter each I/0 initialization call, including calls with a
null I/0 list. The FIN rout”ine may be entered by an explicit
call or by an argument in the I/0 list argument block. If

both <calls are used, the explicit call has no meaning. The
FIN element has the following format:

EXPLICIT CALL:

PUSHJ 17, FIN.

D.6.3.9 OPEN and CLOSE Statements, Calling Sequences - The form and
calling sequences for the OPEN and CLOSE statements are:

OPEN STATEMENT CALL

MOVEI 16, ARGBLK
PUSHJ 17, OPEN.

CLOSE STATEMENT CALL

MOVEI 16, ARGBLK
PUSHJ 17, CLOSE.

where ARGBLK is

0-8 9-12 13 14-17 18-35

Negative of

the number

of words in

block not 0

including

this one.
0 2 I X u
0 7 I X c
0 7 I X d
G type I X H
G type I X H
G type I X H
G type I X H

The G field (bits 0 through 8) contains a 2-digit numeric that defines
the argument name; the H field (bits 18 through 35) contains an
address which points to the value of the argument.

FOROTS

The numeric codes that may appear in the G field and the argument that
each identifies are:

G Field Open Argument G Field Open Argument
01 DIALOG 12 MODE
02 ACCESS 13 FILE SIZE
03 DEVICE 14 RECORD SIZE
04 BUFFER COUNT 15 DISPOSE
05 BLOCK SIZE 16 VERSION
06 FILENAME 22 ASSOCIATE VARIABLE
07 PROTECTION 23 PARITY
10 DIRECTORY 24 DENSITY

D.6.3.10 Memory Allocation Routines - The memory management module is
called to allocate or de—allocate memory blocks. There are two entry
points, ALCOR. and DECOR., that control memory allocation and
de—allocation.

Use the ALCOR. entry to allocate the number of words specified in the
argument block wvariable. Upon return, AC 0 will contain either the
address of the allocated memory block or a -1 value, which indicates
that memory is not available., The calling sequence for ALCOR. call
is:

MOVEI 16, ARGBLK
PUSHJ 17, ALCOR.

where ARGBLK is

0-8 9-12 13 14-17 18-35
-1 0
—»| Reserved type I X Address of
Number of Words

Use the DECOR. entry to de-allocate a previously allocated block of
memory; the argument variable must be loaded with the address of the
memory block to be returned. Upon return AC 0 is set to 0.

If the number of desired words is N, ALCOR. actually removes N+1
words from free storage. The pointer returned points to the second
word (word 1 as opposed to word 0) removed from free storage. The 0

word contains the negative value of N in its left half. This word is
used by FOROTS to maintain linked lists of allocated (using ALCOR.)
and free storage.

The calling sequence for a DECOR. call is:

MOVEI 16, ARGBLK
PUSHJ 17, DECOR.

FOROTS

where ARGBLK is

0-8 9-12 13 14-17 18-35

-1 0

Pointer to word
—»| Reserved type I X containing
address of block
to be returned

D.6.3.11 Software Channel Allocation and De-allocation Routines - You
may allocate software channels in MACRO programs via calls to the
ALCHN. routine and de-allocate them by calls to the DECHN. routine.
Values are returned in AC 0.

Use the ALCHN. entry to allocate a particular channel or the next
available channel. The channel to be allocated is passed to ALCHN.
in the argument block variable. Zero is passed in the argument block
variable to allocate the next available channel. Allowed channels are
1 through 17 (octal). 1If the channel requested is not available, or
all channels are in use, ALCHN. returns with a -1 in AC 0. In normal
returns, AC 0 contains the assigned number.

The calling sequence of an ALCHN. routine is:

MOVEI 16, ARGBLK
PUSHJ 17, ALCHN.

where ARGBLK is

0-8 9-12 13 14-17 18-35

-1 . 0

Pointer to a word
—»=| Reserved type I X containing

the channel #

or zero

Use the DECHN. entry to de-allocate a previously assigned channel.
The channel to be released is passed to DECHN. 1in the argument block
variable. If the channel to be de-allocated was not assigned by
ALCHN. and thus cannot be de-assigned, AC 0 is set to -1 on return.

The calling sequence for a DECHN. routine is:

MOVEI 16, ARGBLK
PUSHJ 17, DECHN.

FOROTS

where ARGBLK is

0-8 9-12 13 14-17 18-35

—»| Reserved type I X containing
the channel #

Pointer to a word

to be released

D.7 FUNCTIONS TO FACILITATE OVERLAYS

FOROTS provides a subroutine (FUNCT.) to serve as an interface with

the LINK overlay handler. This subroutine consists
functions that allow the overlay handler to perform
management, and error message handling. These functions
entry point, FUNCT., and they are called by the sequence

MOVEI 16, ARGBLK
PUSHJ 17, FUNCT.

The general form of the ARGBLK is

of a group of
I/0, memory
have only one

0-17 18-35
Negative of the 0
number of words
in block

ARGBLK— type function number
type error code
type status
type argument 1
type argument 2
type argument 3
type argument n

where

type
function number
error code

W

the FORTRAN argument type (see Appendix C)
the number of one of the required functions
the 3-letter mnemonic output by the object

time system after ?, %, or [. (See Table
D-1.)
status = undefined on the call and set on the return

with one of the values below.

-1 Function not implemented

0 Successful return

l....n Specific error message

FOROTS

Table D-1
Function Numbers and Function Codes
Function Function Function Description
Number Mnemonic
0 ILL Illegal function
1 GAD Allocates memory from a specific address
2 COR Allocates memory from available core
3 RAD De-allocates memory
4 GCH Gets or assigns an I/0 channel
5 RCH Releases an I/0 channel
6 GOT Allocates memory from FOROTS
7 ROT De-allocates memory from FOROTS
8 RNT Returns the initial runtime from FOROTS
9 IFS Returns initial runtime file spec. from
FOROTS
10 CBC Cuts back memory if possible
FUNCTION 0 (ILL) - This function is illegal. The argument block is

ignored, and the function always returns a status of -1.

FUNCTION 1 (GAD) - This function allocates memory from a specific
address. The arguments are:

arg 1 address at which to begin core allocation
arg 2 number of words of memory to allocate

The return statuses are:

0 core allocated (arg 1 and 2 unchanged)

1 not enough memory available in system (arg 1 and arg 2
unchanged)

2 cannot allocate memory at specified address (arg 1 and arg 2
unchanged)

3 illegal arguments {i.e., address + size is greater than 256K)
(arg 1 and arg 2 unchanged)

FUNCTION 2 (COR) - This function allocates memory from any address.
The arguments are:

arg 1 undefined
arg 2 size of core to allocate

The returned statuses are:

0 core allocated (arg 2 unchanged, arg 1 beginning address of the
allocated memory)

1 not enough memory available in system (arg 2 unchanged)

3 illegal argument (i.e., size is greater than 256K)

FUNCTION 3 (RAD) - This function de-allocates memory at the specified
address. The arguments are:

arg 1 address of core to be de-allocated

arg 2 number of words to be de-allocated

The returned statuses are:

0 memory de-allocated
1 memory cannot be de-allocated
3 illegal argument (i.e., both the address and the size are
greater than 256K)
D-30

FOROTS
FUNCTION 4 (GCH) - This function assigns an I/O channel. The argument
is:
arg 1 undefined
The returned statuses are:

0 I/0 channel assigned (arg 1 channel number)
1 no I/0 channels available

FUNCTION 5 (RCH) - This function releases an I/0 channel. The
argument is:

arg 1 I/0 channel number to be released
The returned statuses are:

0 channel released
1 invalid channel number

FUNCTION 6 (GOT) - This function gets memory £from the object time
system list. The arguments are:

arg 1 address at which to allocate memory

arg 2 number of words of memory to allocate

The returned statuses are:

0 memory allocated (arg 1 and arg 2 unchanged)

1 not enough memory available in system (arg 1 and arg 2
unchanged)

2 cannot allocate memory at specified address (arg 1 and arg 2
unchanged)

3 illegal argument(s)

This function differs from function 1 in that if the object time
system has two free memory lists, then function 1 is used to allocate
space for links, and this function is used to allocate space for 1I/0O
buffers. Function 1 uses the free memory list for LINK, and function
6 uses the list for the object time system.

FUNCTION 7 (ROT) - This function returns memory to the object time
system. The arguments are:

arg 1 address of memory to be de-allocated and returned

arg 2 size of memory to be de-allocated and returned

The returned statuses are:
0 memory de-allocated
1 memory cannot be de-allocated
3 illegal argument

FUNCTION 8 (RNT) - This function returns the initial runtime from the
object time system. The argument is:

arg 1 undefined
The returned status is:
0 always (arg 1 - runtime from the object time system)

This function is used only if the user desires a log file.

FOROTS

FUNCTION 9(IFS) - This function returns the initial runtime file
specification from the object time system. The specification is
obtained from accumulators 0, 7, and 11 after the initial RUN command.
The arguments are:

arg 1 undefined
arg 2 undefined
arg 3 undefined

The returned status is:

0 always (arg 1 - device from accumulator 11, arg 2 - filename
from accumulator 0, and arg 3 - directory from accumulator 7)

This function tells the overlay handler which file to read after the
initial RUN command.

FUNCTION 10 (CBC) - This function cuts back memory if possible and is
used to reduce the size of the user job. There are no arguments.

The returned status is:

0 always

D.8 LOGICAL/PHYSICAL DEVICE ASSIGNMENTS

You make FORTRAN logical and physical device assignments at run time,
or standard system assignments are made according to a FOROTS Device
Table, i.e., DEVTB. Table D-2 shows the standard assignments
contained by the Device Table.

FOROTS

Table D-2
FORTRAN Device Table

FORTRAN Logical

Device/Function Unit Number Use
REREAD -6 REREAD statement
CDR -5 READ statement
TTY -4 ACCEPT statement
LPT -3 PRINT statement

-2 Not valid
TTY -1 TYPE statement
0 00 ILLEGAL.
DSK 01 DISK
CDR 02 Card Reader
LPT 03 Line Printer
CTY 04 Console Teletype
TTY 05 User's Teletype
06 through 15 not valid
MTAOQ 16 Magnetic Tape
MTAl 17 Magnetic Tape
MTA2 18 Magnetic Tape
FORTR 19 Assignable Device
DSK 20 DISK
DSK 21 DISK
DSK 22 DISK
DSK 23 DISK
DSK 24 DISK
DEV1 25 Assignable Devices
DEV2 26
DEV3 27
DEV4 28
DEVS5 29
DEV39 63

APPENDIX E

FORDDT

FORDDT is an interactive program used to debug FORTRAN programs and
control their execution. By using the symbols created by the FORTRAN
compiler, FORDDT allows you to examine and modify the data and FORMAT
statements in your ©program, set breakpoints at any executable
statement or routine, trace your program statement-by-statement, and
make wuse of many other debugging techniques described in this
appendix.

Table E-1 lists all the commands available to the user of FORDDT.

Table E-1
Table of Commands
Command Purpose

ACCEPT

TYPE

Data Access Commands

Declarative Commands

GROUP Defines indirect lists for TYPE statements.

MODE Specifies format of typeout.

OPEN Accesses program unit symbol table.

PAUSE Places pause requests.

REMOVE Removes pause requests.

DIMENSION Defines dimensions of arrays for FORDDT
references. (Unnecessary if
/DEBUG:DIMENSIONS was used. See Table

DOUBLE gg%iies dimensions of double-precision

Modifies data locations.

Displays data locations.

arrays for FORDDT references.
if /DEBUG: DIMENSIONS was used.
B-2.)

(Unnecessary
See Table

FORDDT

Table E-1 (Cont.)
Table of Commands

Command Purpose

Control Commands

START Begins execution of FORTRAN program.
CONTINUE Continues execution after a pause.
GOTO Transfers control to some program statement

within the open program unit.

NEXT Traces execution of the program.
STOP Terminates program and returns to monitor
mode.

Other Commands

LOCATE Lists program unit names in which a given
symbol is defined.

STRACE Displays routine backtrace of current
program status.

WHAT Displays current DIMENSION, GROUP, and
PAUSE information.

E.1 INPUT FORMAT

FORDDT commands are made up of alphabetic FORTRAN-like identifiers and
need consist of only those characters required to make the command
unique. If you wish to specify parameters, a space or tab is required
following the command name. FORDDT expects a parameter if a delimiter
(i.e., space or tab) is found. Comments may be appended to command
lines by preceding the comment with an !.

E.1.1 Variables and Arrays
FORDDT allows you to access and modify the data locations in your
program by using standard FORTRAN symbolic names. Variables are
specified simply by name. Array elements are specified in the
following format:

name (S1,...,Sn)

where

name
(sl,...,Sn)

a FORTRAN variable or array name
the subscripts of the particular array.

i

You may reference an entire array simply by its unsubscripted name;
you may specify a range of array elements by inputting the first and
last array . elements of the desired range, separated by a dash(-).

FORDDT

Examples
ALPHA
ALPHA(7)

ALPHA (PI)
ALPHA (2) -ALPHA (5)

E.1.2 Numeric Conventions

FORDDT accepts optionally signed numeric data in the standard
FORTRAN-20 input formats:

1. INTEGER - A string of decimal digits.
2. FLOATING-POINT - A string of decimal digits optionally
including a decimal point. Standard engineering and

double-precision exponent formats are also accepted.

3. OCTAL - A string of octal digits optionally preceded by a
double quote (").

4. COMPLEX - An ordered pair of 1integer or real constants
separated by a comma and enclosed in parentheses.

E.1.3 Statement Labels and Source Line Numbers
FORTRAN statement labels are input and output by straightforward
numeric reference, i.e., 1234. However, source line numbers must be

input to FORDDT with a number sign (#) preceding them. This mandatory
sign distinguishes statement labels from source line numbers.

E.2 NEW USER TUTORIAL
The new FORDDT user can rely on the commands described below as a

basis for debugging FORTRAN programs. These commands are easy to
understand and apply.

E.2.1 Basic Commands

The easiest method of loading and starting FORDDT is:
@DEBUG filename.ext/FORTRAN/DEBUG

FORDDT will respond with

ENTERING FORDDT
>>

Just as an asterisk (*) signifies FORTRAN-20's readiness, the two
angle brackets signify that FORDDT is awaiting one of the following
commands:

OPEN Makes available to FORDDT the symbol names in a

particular program unit of the FORTRAN program. When a
program unit symbol table is opened, the previously

E-3

START

STOP

MODE

TYPE

FORDDT

open program unit is automatically closed. When FORDDT
is entered, the MAIN program is automatically opened.
The command format is:

OPEN name

This will open the particular program unit named and
allow all variables within that subprogram to be
accessible to FORDDT.

OPEN

with no arguments will reopen the symbol table of the
main program unit. :

Starts your program at the main program entry point.
The command format is:

START

Terminates program execution, causes all files to be
closed, and exits to the monitor. The command format
is:

STOP

Defines the display format for succeeding FORDDT TYPE
commands. You need type only the first character of
the mode to identify it to FORDDT. The modes are:

Mode Meaning

ASCII (left-justified)
COMPLEX
DOUBLE-PRECISION
FLOATING-POINT

INTEGER

OCTAL

RASCII (right-justified)

PWOHmOOYD

Unless the MODE command is given, the default typeout
mode is the floating-point format.

The command format is:
MODE 1list

where list contains one or more of the mode identifiers
separated by commas. The current setting can be
changed by issuing another MODE command. If more than
one mode is given, the values are typed out in the
order: F,D,C,I1,0,A,R

MODE

with no arguments will reset FORDDT to the original
setting of floating-point format.

Allows you to display the contents of one or more data
locations. They are displayed on your terminal
formatted according to the 1last MODE specification.
The command format is:

TYPE list

ACCEPT

PAUSE

FORDDT

where list may contain one or more arrays, variables,
array elements, or array element ranges separated by
commas. For example:

TYPE I, ALPHA, BETA(2),J(3)-J(5)

Each item will be displayed in each of the currently
active typeout modes as set by the last MODE command.

Allows you to change the contents of a FORTRAN
variable, array, array element, or array element range.
The command format is:

ACCEPT name/mode value

where

name the name of the wvariable, array, array
element, or array element range to be
modified. If the field contains an
unsubscripted array name or an element
range, it causes all the elements to be
set to the given value (see special case

for ASCII in Section E.6).

the format of the data value to be
entered. If given, it must be preceded by
a slash (/) and immediately follow the
name. (Note that /mode does not apply to
FORMAT modification.)

mode

[t}

value the new value to be assigned. It must

correspond in format to the given mode.
Data Modes

You need type only the first character of a data mode
to identify it to FORDDT. If not specified, the
default mode is REAL. The following input modes are
available:

Mode Meaning Example
A ASCII(left-justified) /F00/
C COMPLEX (1.25,-78.E+9)
D DOUBLE-PRECISION 123.4567890
F REAL 123.45678
I INTEGER 1234567890
0 OCTAL 76543210
R RASCII(right-justified) \BAR\
S SYMBOLIC PSI(2,4)

An example of the ACCEPT command format is:
ACCEPT ALPHA 100.6

This changes the value of the variable ALPHA to 100.6
with the default input mode of REAL, since mode was not
specified.

Allows you to set a breakpoint at any label, 1line
number, or subroutine entry in your program. You may
set up to ten pauses at one time. When one o0f these
pauses is encountered, execution of the FORTRAN program

E-5

CONTINUE

REMOVE

WHAT

FORDDT

is suspended and control is transferred to FORDDT.
Also, when a pause is encountered, the symbol table of
that subprogram is automatically opened. The command
format is:

PAUSE P

where P is a statement label number, 1line number, or
routine entry point name; for example,

PAUSE 100

will cause a breakpoint at statement label 100 of the
currently open program unit.

Note that subprogram parameter values will be displayed
when a pause 1is encountered at a subprogram entry
point.

Allows the program to resume execution after a FORDDT
pause. After a CONTINUE 1is executed, the program
either runs to completion, or it runs wuntil another
pause is encountered. If you include a value with this
command, the program will run until the nth occurrence
of the given pause or until a different pause is
encountered. The command formats are:

CONTINUE
or
CONTINUE n
Example

CONTINUE 15

will continue execution until the fifteenth occurrence
of the pause.

Used to remove those pauses from the program previously
set up by the PAUSE command. The command format is

REMOVE P

where P is the number of the statement label where the
pause was set, i.e.,

REMOVE 100
will remove the pause at statement label 100.

Note that REMOVE with no arguments will remove all
pauses; therefore, no abbreviation of the command is
allowed in this instance. This precaution prevents the
accidental removal of all pauses.

Displays on your terminal the name of the currently
open program unit and any currently active pause
settings. The command format is:

WHAT

FORDDT

E.3 FORDDT AND THE FORTRAN-20/DEBUG SWITCH

Most facilities of FORDDT are available without the FORTRAN-20 /DEBUG

features;

however, if you do not use the /DEBUG switch when compiling

a FORTRAN program, the trace features (NEXT command) will not be
available, and several of the other commands will be restricted.

Using the /DEBUG switch tells FORTRAN-20 to compile extra information
for FORDDT. (See Appendix B, Using the Compiler, for a complete
description of each feature.) The additional features include:

1.

/DEBUG:DIMENSIONS, which will generate dimension information
to the REL file for all arrays dimensioned in the subprogram.
The dimension information will automatically be available to
FORDDT 1if you wish to reference an array in a TYPE or ACCEPT
command. This feature eliminates the need to specify
dimension information for FORDDT by using the DIMENSION
command.

/DEBUG:LABELS, which will generate labels for every
executable source line in the form "line-number L". If these
labels are generated, they may be used as arguments with the
FORDDT commands PAUSE and GOTO.

This switch will also generate labels at the 1last location
allocated for a FORMAT statement so that FORDDT can detect
the end of the statement. These labels have the form
"format-label F". 1If they are generated, you will be able to
display and modify FORMAT statements via the TYPE and ACCEPT
commands.

Note that the :LABELS switch is automatically activated with
the :TRACE switch, since labels are needed to accomplish the
trace features.

/DEBUG:TRACE, which will generate a reference to FORDDT
before each executable statement. This switch is required
for the trace command NEXT to function.

Note that if more than one FORTRAN statement has been placed
on a single input line, only the first statement will have a
FORDDT reference and line-number label associated with it.
This also applies to the :LABELS switch.

/DEBUG: INDEX, which will force the compiler to store in its
respective data location as well as a register the index
variable of all DO loops at the beginning of each loop
iteration. You will then be able to examine DO loops by
using FORDDT. If you modify a DO loop index using FORDDT, it
will not affect the number of 1loop iterations because a
separate loop count is used. (See Section D.1.5.)

Note that this switch has no direct affect on any of the
commands in FORDDT.

E.4 LOADING AND STARTING FORDDT

1.

The simplest method of loading and starting FORDDT 1is with
the following command string:

@DEBUG filename.ext/FORTRAN/DEBUG

E-7

FORDDT

FORDDT responds with

ENTERING FORDDT
>>

The angle brackets indicate that FORDDT is ready to receive a
command, 3just as an asterisk (*) signifies FORTRAN-20's
readiness.

The DEBUG command to the monitor will also load DDT (standard
system debugging program). DDT can be used or ignored.

2. You may wish to 1load your compiled program and FORDDT
directly with the LINK loader. (Loading with LINK was
accomplished implicitly in the previous command string.) The
command sequence is as follows:

@LINK
*filename.ext /DEB/G (loads DDT)
*filename.ext /DEB: FORDDT /G (loads FORDDT)
FORTRA
*filename.ext /DEB:(DDT, FORDDT)/G loads both DDT
FORTRA and FORDDT

If the total FORTRAN program consists of many subroutines and
insufficient memory 1is available to complete loading with
symbols, it is possible to 1load with symbols Jjust those
sections expected to give trouble. The remaining routines
need not be loaded.

E.5 SCOPE OF NAME AND LABEL REFERENCES

Each program unit has its own symbol table. When you initially enter
FORDDT, you automatically open the symbol table of the main program.
All references to names or labels via FORDDT must be made with respect
to the currently open symbol table. If you have given the main
program a name other than MAIN by using the PROGRAM statement (see
Chapter 5, Section 5.2), FORDDT will ask for the defined program name.
After you enter the program name, FORDDT will open the appropriate
symbol table. At this point, symbol tables in programs other than the
main program can be opened by using the OPEN command. (See Section
F.5.)

References to statement labels, 1line numbers, FORMAT statements,
variables, and arrays must have 1labels that are defined in the
currently open symbol table. However, FORDDT will accept variable and
array references outside the currently open symbol table, providing
the name is unique with respect to all program units in the given load
module.

E.6 FORDDT COMMANDS

This section gives a detailed description of all commands in FORDDT.
The commands are given in alphabetical order.

ACCEPT

FORDDT

Allows you to change the contents of a FORTRAN variable,
array, array element, array element range, or FORMAT
statement. The command format is:

ACCEPT name/mode value

where

name = the variable array, array element, array
element range, or FORMAT statement to be
modified.

mode = the format of the data value to be entered.
The mode keyword must be preceded by a slash
(/) and immediately follow the name.
Intervening blanks are not allowed. (Note
that /mode does not apply to FORMAT
modification.)

value = the new value to be assigned. The format of

the input value must correspond to the
specified mode.

DATA LOCATION MODIFICATION
Data Modes

The following data modes are accepted:

Mode Meaning Example
A ASCII (left-justified) /F00/
C COMPLEX (1.25,-78.E+9)
D DOUBLE-PRECISION 123.4567890
F REAL 123.45678
I INTEGER 1234567890
0 OCTAL 76543210
R RASCII (right-justified) \BAR\
S SYMBOLIC PSI(2,4)

If not specified, the default mode is REAL.

Two-Word Values
For the data modes ASCII, RASCII, OCTAL, and SYMBOLIC,
FORDDT will accept a "/LONG" modifier on the mode switch.
This modifier indicates that the variable and the value
are to be interpreted as two words long.
Example

ACCEPT VAR/RASCII/LONG '1234567890"

will assume that VAR is two words long and store the given
l0-character literal into it.

Initialization of Arrays

If the name field of an ACCEPT contains an unsubscripted
array name or a range of array elements, all elements of
the array or the specified range will be set to the given
value.

CONTINUE

FORDDT

Example

ACCEPT ARRAY/F 1.0
or
ACCEPT ARRAY (5)=ARRAY (10)/F 1.0

Note that this applies only to modes other than ASCII and
RASCII.

Long Literals

When the value field of an ACCEPT contains an
unsubscripted array name or range of array elements, and
the specified data mode is ASCII or RASCII, the value
field 1is expected to contain a 1long literal string.
ACCEPT will store the string linearly into the array or
array range. If the array is not filled, the remainder of
the array or range will be set to zero. If the literal is
too long the remaining characters will be ignored.

Example
ACCEPT ARRAY/RASCII 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
FORMAT STATEMENT MODIFICATION

When the name field of an ACCEPT contains a label, FORDDT
expects this label to be a FORMAT statement label and that
the value field contains a new FORMAT specification.

Example
ACCEPT 10 (1HO,F10.2,3(I2))

The new specification cannot be longer than the space
originally allocated to the FORMAT by the compiler. The
remainder of the area is cleared if the new specification
is shorter.

Note that FOROTS performs some encoding of FORMAT
statements when it processes them for the first time. If
any I/0 statement referencing the given FORMAT has been
executed, the FORTRAN program has to be restarted
(re-initializing FOROTS).

Allows the program to resume execution after a FORDDT
pause. After a CONTINUE is executed, the program either
runs to completion or until another pause is encountered.
The command format is:

CONTINUE n

where the n is optional and, if omitted, will be assumed
to be one. If a value is provided, it may be a numeric
constant or program variable, but it will be treated as an
integer. When the value n is specified, the program will
continue execution until the nth occurrence of this pause.
For example,

CONTINUE 20

will continue execution after the 20th occurrence of the
pause. \

FORDDT

DIMENSION Sets the user-defined dimensions of an array for FORDDT

access purposes. These dimensions need not agree with
those declared to the compiler in the source code. FORDDT
will allow you to redimension an array to have a larger
scope than that of the source program. If this is done, a
warning is given. The command format is:

DIMENSION S
where S is the name of the array specified.
For example:

DIMENSION ALPHA(7,5/6,10)

FORDDT will remember the dimencions of the array until it
is redefined or removed.

The command
DIMENSION

will give a full list of all the user-defined dimensions
for all arrays.

DIMENSION ALPHA

will display the current information for the array ALPHA
only.

DIMENSION ALPHA/REMOVE

will remove any user defined array information for the
array ALPHA.

Arrays, Array Elements, and Ranges
Array elements are specified in the following format:
name [dl/d2,...]1(S1,...)

where

name the name of the array

[...] = optional, and contains dimension information.
This form is equivalent in effect to the
DIMENSION statement.

(...) = the subscripts of the specific element
desired.

The entire array is referenced simply by its unsubscripted
name. A range of array elements is specified by inputting
the first and last array elements of the desired range
separated by a dash (-) (A(5)-A(l0)).

DOUBLE

GOTO

GROUP

FORDDT

Defines the dimensions of a double-precision array. The
result of this command is the same as for the DIMENSION
command except that the array so dimensioned is understood
by FORDDT to be an array with two-word entries and,
therefore, reserves twice the space. The command format
is: :

DOUBLE arrayname

Allows you to continue your program from a point other
than the one at which it last paused. The GOTO allows you
to continue at a statement label or code-generating source
line number provided that the /DEBUG:LABELS switch has
been used or the contents of a symbol previously ASSIGNed
during the program execution.

Note that the program must be STARTed before this command
can be wused, and also note that a GOTO is not allowed
after the "C"C REENTER sequence. (See Section E.7.)

The command format is:
GOTO n

Sets up a string of text for input to a TYPE command. You
can store TYPE statements as a 1list of variables
identified by the numbers 1 through 8. This feature
eliminates the need to retype the same list of variables

- each time you wish to examine the same group. Refer to

the TYPE command for the proper format of the list.
The command format is:

GROUP n list

where
n = the group number 1-8
list = a string of TYPE statements to be <called in
future accessing of the current group number.
GROUP

with no arguments will cause FORDDT to type out the
current contents of all the groups

GROUP n

will type out the contents of the particular group
requested.

Note that one group may call another.

LOCATE

MODE

NEXT

FORDDT

Lists the program unit names in which a given symbol is
defined. This is wuseful when the variable you wish to
locate is not in the currently open program unit and is
defined in more than one program unit. The command format
is:

LOCATE n

where n may be any FORTRAN variable, array, 1label, 1line
number, or FORMAT statement number.

Defines the default formats of typeout from FORDDT. In
initial default mode, variables will Dbe typed in
floating-point format. If you wish to change the typeout
modes, the command format is:

MODE list

where list contains one or more of the modes in the
following table. (Only the first character of each mode
need be typed to identify it to FORDDT.)

Mode Meaning

FLOATING—-POINT
DOUBLE-PRECISION
COMPLEX

INTEGER

OCTAL

ASCII (left-justified)
RASCII (right-justified)

omPOHODM

A typical command string might be:
MODE A,I,OCTAL

Allows you to <cause FORDDT to trace source lines,
statement 1labels, and entry point names during execution
of your program. This command will only provide trace
facilities if the program was compiled with the FORTRAN-20
/DEBUG switch. If this switch was not wused, the NEXT
command will act as a CONTINUE command. The command
format is:

NEXT n/sw
where
n = a program variable or integer numeric value
and
SW = one of the following switches

/S= statement label
/L= source line
/E= entry point

The default starting value of n is 1, a single statement
trace. The default switch is /L.

The command

NEXT 20/L

OPEN

PAUSE

FORDDT

will trace the execution of the next 20 source 1line
numbers or until another pause is encountered.

Note that if no argument is specified, the 1last argument
given will be used. For example,

NEXT /E

will change the tracing mode to trace only subprogram
entries using the numeric argument previously supplied.

Allows you to open a particular program unit of the loaded
program so that the wvariables will be accessible to
FORDDT. Any previously opened program unit is closed
automatically when a new one 1is opened. Only global
symbols, symbols in the currently open unit, and unique
locals are available at any one time. Note that starting
FORDDT automatically opens the MAIN program. The command
format is:

OPEN name

where name is the subprogram name. OPEN with no arguments
will reopen the MAIN program.

If the PROGRAM statement was used in the FORTRAN program,
the name supplied by you will be requested upon entering
FORDDT.

Allows you to place a pause request at a statement number,
source line number, or subroutine entry point. Up to ten
pauses may be set at any one time. When a pause is
encountered, execution 1is suspended at that point and
control is returned to FORDDT. Also, when a pause is
encountered, the symbol table of that subprogram is
automatically opened.

The command formats include:

PAUSE P
PAUSE P AFTER n
PAUSE P IF condition
PAUSE P TYPING /g
PAUSE P AFTER n TYPING /g
PAUSE P IF condition TYPING /g
where
P = the point where the pause is requested,
n = an integer constant or variable or array
element
g = a group number
PAUSE 100

will set a pause at statement label 100, cause execution
to be suspended, and cause FORDDT to be -entered on
reaching 100 in the program.

PAUSE #245 AFTER MAX(5)

will cause a pause to occur at source 1line number 245
after encountering this point the number of times
specified by MAX(5). Note that AFTER may not be
abbreviated.

E-14

REMOVE

START

STOP

FORDDT

PAUSE DELTA IF LIMIT(3,1).GT.2.5E-3
If the variable LIMIT(3,1) 1is greater than the value
2.5E-3, the pause request will be granted. The IF may not
be abbreviated, but all the usual FORTRAN logical
connectives are allowed.

PAUSE 505 TYPING /5

will request a pause to be made at the first occurrence of
the 1label 505, and the wvariables in group 5 will be
displayed. The TYPING specification may not be
abbreviated.

PAUSE LINE#24 AFTER 16 TYPING 3
will place a request at source line number 24 after 16
(octal) times through; however, the contents of group 3
will be displayed every time.
When the TYPING option is used with the PAUSE command,
control <can be transferred to FORDDT at the next typeout
by typing any character on the terminal.

Note that pause requests remain after a control C REENTER
sequence, a START command, or a control C START sequence.

Removes the previously requested pauses. The command
format is:

REMOVE P
For example,
REMOVE #123
will remove a pause at program source line number 123.
REMOVE ALPHA
will remove a pause at the subroutine entry to ALPHA.
REMOVE with no arguments will remove all your pause
requests, and, in this case, no abbreviation of REMOVE is
allowed. This prevents the unintentional removal of

pauses.

Starts your program at the normal FORTRAN main program
entry point. The command format is:

START
Terminates the program, requests FOROTS to close all open
files, and causes an exit to the monitor. The usual
command format is:

STOP

STOP/RETURN

will allow a return to monitor mode without releasing
devices or closing files so that a CONTINUE can be issued.

STRACE

TYPE

WHAT

FORDDT

Displays a subprogram level backtrace of the current state
of the program. The command format is:

STRACE

Causes one or more FORTRAN defined variables, arrays, or
array elements to be displayed on your terminal. The
command format is:

TYPE list

where list may be one or more variable or array references
and/or group numbers. These specifications must be
separated by commas, and group numbers must be preceded by
a slash (/). The command with no arguments will use the
last argument list submitted to FORDDT.

An array element range can also be specified. For
example:

TYPE PI(5)-PI(13)

will display the values from PI(5) to PI(13) inclusive.
If an unsubscripted array name is specified, the entire
array will be typed.

There are several methods of choosing the form of typeout
in conjunction with the MODE command.

1. If you do not specify a format, the default is
floating-point form.

2. You can specify a format via the MODE command
described in this appendix.

3. You can change the format previously designated
by the MODE command by including print modifiers
in the TYPE or GROUP string. The print modifiers
are:

/A./C,/D,/F,/1,/0,/R

The first print modifier specified in a string of
variables determines the mode for the entire
string unless another mode is placed directly to
the right of a particular variable. For example,
in)

TYPE /IK,L/O,M,N/A,/2

the typeout mode is integer until another mode is
specified. Therefore,

K,M,and/2 = Integer
L = OCTAL
N = ASCII
Displays the information saved by FORDDT. The command

format is:

WHAT

FORDDT

E.7 ENVIRONMENT CONTROL

If a program enters an indefinite loop, you can recover by typing a
"C"C REENTER sequence. This action will cause FORDDT to simulate a
pause at the point of reentry and allow you to control your run-away
program.

Most commands can be wused once the program has been reentered;
however, GOTO, STRACE, TYPE, and ACCEPT cause transfer of control to
routines external to FORDDT. No guarantee can be made to ensure that
any of these commands following a “C"C REENTER sequence will not
destroy the user profile. The program must be returned to a stable
state before any of these four commands can be issued. 1In order to
restore program integrity, you should set a pause at the next label
and then CONTINUE to it. 1If the /DEBUG:TRACE switch was used, a NEXT
1 command can be issued to restore program integrity.

E.8 FORTRAN-20/0PTIMIZE SWITCH

You should never attempt to use FORDDT with a program that has been
compiled with the /OPTIMIZE switch. The global optimizer causes
variables to be kept in ACs. For this reason, attempts to examine or
modify variables in optimized programs will not work. Also, since the
optimizer moves statements around in your program, attempts to trace
program flow will lead to great confusion.

E.9 FORDDT MESSAGES

FORDDT responds with two levels of messages - fatal error and warning.
Fatal error messages indicate that the processing of a given command
has been terminated. Warning messages provide helpful information.
The format of these messages is:

?FDTXXX text
or
SFDTXXX text

where
? = fatal
3 = warning
FDT = FORDDT mnemonic
XXX = 3-letter mnemonic for error message
text = explanation of error
Square brackets ([]) in this section signify variables and are not

output on the terminal.

Fatal Errors

The fatal errors in the following list are each preceded by ?FDT on
the wuser terminal and on listings. They are listed in alphabetical
order.

BDF [symbol] IS UNDEFINED OR IS MULTIPLY DEFINED

BOI BAD OCTAL OUTPUT

An illegal character was detected in an octal input value.

CCN

CFO

CNU

CSH

DTO

FCX

FNI

FNR

IAF

IAT

ICC

IER

IGN

INV

FORDDT

CANNOT CONTINUE

Pause has been placed on some form of skip instruction
causing FORDDT to loop; should never be encountered in
FORTRAN-20 compiled programs.

CORE FILE OVERFLOW

The storage area for GROUP text has been exhausted.

THE COMMAND [name] IS NOT UNIQUE

More letters of the command are required to distinguish it
from the other commands.

CANNOT START HERE

The specified entry point is not an acceptable FORTRAN-20
main program entry point.

DIMENSION TABLE OVERFLOW

FORDDT does not have the space to record any more array
dimensions until some are removed.

FORMAT CAPACITY EXCEEDED

An attempt was made to specify a FORMAT statement requiring
more space than was originally allocated by FORTRAN-20.

FORMAL NOT INITIALIZED

Reference to a FORMAL parameter of some subprogram that was
never executed.

[array name] IS A FORMAL AND MAY NOT BE RE-~DEFINED
FORMAL parameters may not be DIMENSIONed.
ILLEGAL ARGUMENT FORMAT

The parameters to the given command were not specified
properly. Refer to the documentation for correct format.

ILLEGAL ARGUMENT TYPE = [number]

An unrecognized subprogram argument type was detected.
Submit an SPR if this message occurs.

COMPARE TWO CONSTANTS IS NOT ALLOWED

Conditional test involves two constants.

E (number)

Internal FORDDT error - please report via an SPR.

INVALID GROUP NUMBER

Group numbers must be integral and in the range 1 through 8.
INVALID VALUE

A syntax error was detected in the numeric parameter.

E-18

ITM

LGU

LNF

MLD

MSN

NAL

NAR

NDT

NFS

NFV

NGF

NPH

NSP

NUD

PAR

FORDDT

ILLEGAL TYPE MODIFIER - S
The mode S is only valid for ACCEPT statements.
[array name] LOWER SUBSCRIPT.GE.UPPER

The lower bound of any given dimension must be less than or
equal to the upper bound.

[label] IS NOT A FORMAT STATEMENT
[array name] MULTI-LEVEL ARRAY DEFINITION NOT ALLOWED

The same array cannot be dimensioned more than once (via the
[dimensions] construct) in a single command.

MORE SUBSCRIPTS NEEDED

The array is defined to have more dimensions than were
specified in the given reference.

NOT ALLOWED

An attempt has been made to modify something other than‘data
or a FORMAT.

NOT AFTER A RE-ENTER

The given command is not allowed until program integrity has
been restored via a CONTINUE or NEXT command.

DDT NOT LOADED

CANNOT FIND FORTRAN START ADDRESS FOR [program name]
Main program symbols are not loaded.

[symbol] IS NOT A FORTRAN VARIABLE

Names must be 6-character alphanumeric strings beginning
with a letter.

CANNOT GOTO A FORMAT STATEMENT
CANNOT INSERT A PAUSE HERE

An attempt has been made to place a pause at other than an
executable statement or subprogram entry point.

[symbol] NO SUCH PAUSE

An attempt has been made to REMOVE a pause that was never
set up.

[symbol] NOT A USER DEFINED ARRAY

An attempt has been made to remove dimension information for
an array that was never defined.

PARENTHESES REQUIRED (..)

Parentheses are required for the specification of FORMAT
statements and complex constants.

PRO

SER

STL

TMS

URC

FORDDT

TOO MANY PAUSE REQUESTS

The PAUSE table has been exhausted. The maximum 1limit is
10.

SUBSCRIPT ERROR

The subscript specified is outside the range of its defined
dimensions.

[array name] SIZE TOO LARGE

An attempt has been made to define an array 1larger than
256K.

TOO MANY SUBSCRIPTS

The array is defined to have fewer dimensions than are
specified in the given element reference.

UNRECOGNIZED COMMAND

Warning Messages

Each warning message in this list is preceded by %FTN on your terminal
and on listings. They are given here in alphabetical order.

ABX

CHI

NAR

NSL

NST

POV

SFA

SPO

XPA

[array name] COMPILED ARRAY BOUNDS EXCEEDED

FORDDT has detected another symbol defined in the specified
range of the array. Note that this will occur in certain
EQUIVALENCE cases and can be ignored at that time.
CHARACTERS IGNORED: " [text]"

The portion of the command string included in ‘"text" was
thought to be extraneous and was ignored.

[symbol] IS NOT AN ARRAY

NO SYMBOLS LOADED

FORDDT cannot find the symbol table.
NOT STARTED

The specified command requires that a START be previously
issued to ensure that the program is properly initialized.

PROGRAM OVERLAYED

The symbol table is different from the last time FORDDT had
control.

SUPERSEDES F10 ARRAY

The generated dimension is being superseded for the given
array.

VARIABLE IS SINGLE-PRECISION ONLY .
ATTEMPT TO EXCEED PROGRAM AREA WITH [symbol name]
An attempt has been made to access memory outside the

currently defined program space.
E-20

APPENDIX F

COMPILER MESSAGES

FORTRAN-20 responds with two levels of messages - fatal error and
warning. If a warning message 1is received, the compilation will
continue, but a fatal error will stop the program from being compiled.
The format of messages is:

?FTNXXX LINE:n text
or
$FTNXXX LINE:n text

where
? = fatal
3 = warning
FTN = FORTRAN mnemonic
XXX = 3-letter mnemonic for the error message
LINE:n = line number where error occurred
text = explanation of error

Sguare brackets ([]) in this appendix signify variables and are not
output on the terminal.

Fatal Errors

Each fatal error in the following list is preceded by ?FTN on the user
terminal and on 1listings. They are presented here in alphabetical
order.

ABD [symbolname] HAS ALREADY BEEN DEFINED [definition]

The usage given conflicts with current information about the
symbol. For example, a symbol defined in an EQUIVALENCE
statement cannot be referenced as a subprogram name.

ATL ARRAY [name] TOO LARGE

The total amount of memory necessary to accommodate this
array is greater than 512P.

AWN ARRAY REFERENCE [name] HAS WRONG NUMBER OF SUBSCRIPTS

The array was defined to have more or fewer dimensions than
the given reference.

BOV STATEMENT TOO LARGE TO CLASSIFY

To determine statement type, some portion of the statement
must be examined by the compiler before actual semantic and
syntactic analysis begins. During this classification the
entire portion of the required statement must fit into the

F-1

CER

CFF

CPE

CQOL
CSF
DDA

DFC

DFD

DIA

DID

DLN

DNL

DPR
DSF
DTI
DVE
DWL
ECT
EDN
EID

EIM

COMPILER MESSAGES

internal statement buffer (large enough for a normal 20-line
statement). This error message is issued when the portion
of a given statement required for <classification 1is too
large to fit in the buffer. Once FORTRAN-20 has classified
a statement, there is no explicit restriction on its length.
COMPILER ERROR IN ROUTINE [name]

Submit an SPR for any occurrence of this message.

CANNOT FIND FILE

The file referenced in an INCLUDE statment was not found.

CHECKSUM OR PARITY ERROR 1IN [source/listing/object] FILE
[name]

NO CLOSING QUOTE IN LITERAL
ILLEGAL STATEMENT FUNCTION REFERENCE IN CALL STATEMENT
[symbolname] IS DUPLICATE DUMMY ARGUMENT

VARIABLE DIMENSION [name] MUST BE SCALAR, DEFINED AS FORMAL
OR IN COMMON

DOUBLE [type] NAME ILLEGAL

Duplicate fields were encountered in an INCLUDE file
specification.

DO INDEX VARIABLE [name] IS ALREADY ACTIVE

In any nest of DO loops, a given index variable may not be
defined for more than one loop.

CANNOT INITIALIZE A DUMMY PARAMETER IN DATA

OPTIONAL DATA VALUE LIST NOT SUPPORTED

The extended FORTRAN statement form that allows data values
to be defined 1in type specification statements 1is not

supported by FORTRAN-20.

IMPLIED DO SPECIFICATION WITHOUT ASSOCIATED LIST OF
VARIABLES

DUMMY PARAMETER [name] REFERENCED BEFORE DEFINITION
ARGUMENT [name] IS SAME AS FUNCTION NAME

THE DIMENSIONS OF [arrayname] MUST BE OF THE TYPE INTEGER
CANNOT USE DUMMY VARIABLE IN EQUIVALENCE
[source/listing/object] DEVICE [[device]] WRITE LOCKED
ATTEMPT TO ENTER [symbolname] INTO COMMON TWICE
EXPRESSION TOO DEEPLY NESTED TO COMPILE

ENTRY STATEMENT ILLEGAL INSIDE A DO LOOP

ENTRY STATEMENT ILLEGAL IN MAIN PROGRAM

F-2

ENF

ETF

EXB

FEE

FNE

FWE

HDE

IAC

IAL

IBK

ICL

IDN

IDS

IDT

IDV

IED

IFD

IID

I1IP

IIS

ILF

INN

IOD

ISD

COMPILER MESSAGES
LABEL [number] MUST REFER TO AN EXECUTABLE STATEMENT, NOT A
FORMAT
ENTER FAILURE [filename]
EQUIVALENCE EXTENDS COMMON BLOCK [name] BACKWARD
FOUND [symbol] WHEN EXPECTING EITHER [symbol] OR A [symbol]
General syntax error message.

LABEL [number] MUST REFER TO A FORMAT, NOT AN EXECUTABLE
STATEMENT

FOUND [symbol] WHEN EXPECTING [symbol]

HARDWARE DEVICE ERROR ON [source/listing/object] DEVICE
[[devicel]

ILLEGAL ASCII CHARACTER [character] IN SOURCE
INCORRECT ARGUMENT TYPE FOR LIBRARY FUNCTION [name]
ILLEGAL STATEMENT IN BLOCKDATA SUBPROGRAM

ILLEGAL CHARACTER [character] IN LABEL FIELD

DO LOOP AT LINE: [number] IS ILLEGALLY NESTED

You are attemping to terminate a DO loop before terminating
one or more loops defined after the given one.

IMPLICIT DO INDICES MAY NOT BE SUBSCRIPTED
ILLEGAL OR MISSPELLED DATA TYPE

IMPLIED DO INDEX IS NOT A VARIABLE
INCONSISTENT EQUIVALENCE DECLARATION

The given EQUIVALENCE declaration would cause some symbolic
name to refer to more than one physical location.

INCLUDED FILES MUST RESIDE ON DISK
NON-INTEGER IMPLIED DO INDEX

ILLEGAL IMPLICIT SPECIFICATION PARAMETER
INCORRECT INCLUDE SWITCH

ILLEGAL STATEMENT AFTER LOGICAL IF

Refer to Section 9.3.2 for restrictions on logical IF object
statements.

INCLUDE STATEMENTS MAY NOT BE NESTED

ILLEGAL STATEMENT USED AS OBJECT OF DO

ILLEGAL SUBSCRIPT EXPRESSION IN DATA STATEMENT

Subscript expressions may be formed only with implicit DO

indices and constants combined with +, -, *, or /.

F-3

ISN

IuT
Ivp

IXM

IZM

LAD

LED

LFA

LGB

LLS

LNI

LTL

MCE
MSP

MWL

NCF
NEX

NFS

NIO

NGS

NIR

NIU

NLF

COMPILER MESSAGES

[symbolname] IS NOT [symboltypel

The symbol cannot be used in the attempted manner.
PROGRAM UNITS MAY NOT BE TERMINATED WITHIN INCLUDED FILES
INVALID PPN

ILLEGAL MIXED MODE ARITHMETIC

Complex and double-precision cannot appear in the same
expression.

ILLEGAL [datatype] SIZE MODIFIER [number]

Refer to Section 6.3.

LABEL [number] ALREADY DEFINED AT LINE: [number]
ILLEGAL LIST DIRECTED [statement type]

LABEL ARGUMENTS ILLEGAL IN FUNCTION OR ARRAY REFERENCE
LOWER BOUND GREATER THAN UPPER BOUND FOR ARRAY [name]
LABEL TOO LARGE OR TOO SMALL

Labels cannot be 0 or greater than 5 digits.

LIST DIRECTED I/O WITH NO I/O LIST

TOO MANY ITEMS IN LIST - REDUCE NUMBER OF ITEMS

In rare instances, a combination of long lists in a single
statement can exhaust the syntax stack.

MORE THAN 1 COMMON VARIABLE IN EQUIVALENCE GROUP
STATEMENT NAME MISSPELLED

ATTEMPT TO DEFINE MULTIPLE RETURN WITHOUT FORMAL LABEL
ARGUMENTS

NOT ENOUGH CORE FOR FILE SPECS. TOTAL K NEEDED= [number]
NO EXPONENT AFTER D OR E CONSTANT

NO FILENAME SPECIFIED

The INCLUDE statement requires a filename.

NAMELIST DIRECTED I/O WITH I/0 LIST

CANNOT GET SEGMENT [name] — ERROR CODE: [number]

Refer to the Monitor Calls User's Guide for full description
of codes.

REPEAT COUNT MUST BE AN UNSIGNED INTEGER
NON-INTEGER UNIT IN I/0 STATEMENT

WRONG NUMBER OF ARGUMENTS FOR LIBRARY FUNCTION [name]

NNF
NRC
NUO
NWD
OPW
PD6
PIC
PRF

PTL

QEF

QEX

RDE
RFC

RIC

SAD

SNL
SOR
TFL

TOF

UCE
UMP

USI

VNA
VSE

A1)

COMPILER MESSAGES

NO STATEMENT NUMBER ON FORMAT
STATEMENT NOT RECOGNIZED

.NOT. IS A UNARY OPERATOR

INCORRECT USE OF * OR ? 1IN [filename]
OPEN PARAMETER [name] IS OF WRONG TYPE

FORTRAN WILL NOT RUN ON A PDP-6

THE DO PARAMETERS OF [index name] MUST BE INTEGER CONSTANTS

PROTECTION FAILURE [filename]

PROGRAM TOO LARGE

The program takes up more than 512P
QUOTA EXCEEDED OR DISK FULL [filename]

BLOCK TOO LARGE OR QUOTA EXCEEDED
[source/listing/object] FILE [name]

RIB OR DIRECTORY ERROR [filename]
[function name] IS A RECURSIVE FUNCTION CALL

COMPLEX CONSTANT CANNOT BE USED TO REPRESENT THE
IMAGINARY PART OF A COMPLEX CONSTANT

ARRAY [name] - SIGNED DIMENSIONS MAY APPEAR ONLY AS
RANGE LIMITS

[statement name] STATEMENTS MAY NOT BE LABELED
SUBSCRIPT OUT OF RANGE

TOO MANY FORMAT LABELS SPECIFIED

MORE THAN 2 OUTPUT FILES ARE NOT ALLOWED

Only a 1listing and a relocatable binary file
specified as output files.

USER CORE EXCEEDED

UNMATCHED PARENTHESES

[symbol type] [symbol name] USED INCORRECTLY

The given symbol cannot be used in this way.
SUBSCRIPTED VARIABLE IN EQUIVALENCE BUT NOT AN ARRAY
EQUIVALENCE SUBSCRIPTS MUST BE INTEGER CONSTANTS

VARIABLE DIMENSION ALLOWED IN SUBPROGRAMS ONLY

FOR

REAL OR

CONSTANT

may be

COMPILER MESSAGES

Warning Messages

Each warning message in the following list is preceded by %FTN on the
user terminal and on listings. They are presented here in
alphabetical order.

AGA OPT - OBJECT VARIABLE, OF ASSIGNED GOTO WITHOUT OPTIONAL
LIST, WAS NEVER ASSIGNED

CAl COMPLEX EXPRESSION USED IN ARITHMETIC IF

CTR COMPLEX TERMS USED IN A RELATIONAL OTHER THAN EQ OR NE

The result of the other relational operators with complex
operands is undefined.

Ccuo CONSTANT UNDERFLOW OR OVERFLOW

This message is 1issued when overflow or underflow is
detected as the result of building constants or evaluating
constant expessions at compile time.

DIM POSSIBLE DO INDEX MODIFIED INSIDE LOOP

A program that does this may be incorrectly compiled by the
optimizer, since it assumes that indices are never modified.
Note that the number of iterations 1is calculated at the
beginning of the loop and is never affected by modification
of the index within the 1loop.

DIS OPT - PROGRAM IS DISCONNECTED - OPTIMIZATION DISCONTINUED

Submit an SPR if this message occurs.

DXB DATA STATEMENT EXCEEDS BOUNDS OF ARRAY [name]

FMR MULTIPLE RETURNS DEFINED IN A FUNCTION

FNA A FUNCTION WITHOUT AN ARGUMENT LIST

ICC ILLEGAL CHARACTER, CONTINUATION FIELD OF INITIAL LINE

Continuation lines cannot follow comment lines.
ICD INACCESSIBLE CODE. STATEMENT DELETED

The optimizer will delete statements that cannot be reached
during execution.

ICS ILLEGAL CHARACTER IN LINE SEQ#

IDN OPT - ILLEGAL DO NESTING - OPTIMIZATION DISCONTINUED
A GO TO within a DO loop goes to the ending statement of an
inner, nested DO loop. The line number printed out with the

warning message is that of the OUTER DO.

DO

IFL

LID

MVC

NED
NOD
NOF

PPS
RDI
SOD
VAI

VND

VNI

WOoP

XCR

ZMT

COMPILER MESSAGES

DO

CONTINUE

.

éONTINUE
OPT - INFINITE LOOP. OPTIMIZATION DISCONTINUED
IDENTIFIER [name] MORE THAN SIX CHARACTERS
The remaining characters are ignored.

NUMBER OF VARIABLES DOES NOT EQUAL THE NUMBERS OF CONSTANTS
IN DATA STATEMENT

NO END STATEMENT IN PROGRAM

GLOBAL OPTIMIZATION NOT SUPPORTED WITH /DEBUG ~ /OPT IGNORED
NO OUTPUT FILES GIVEN

PROGRAM STATEMENT PARAMETERS IGNORED

For compatibility purposes.

ATTEMPT TO REDECLARE IMPLICIT TYPE

[name] STATEMENT OUT OF ORDER

[name] ALREADY INITIALIZED

FUNCTION RETURN VALUE IS NEVER DEFINED

OPT - VARIABLE [name] IS NOT INITIALIZED

The optimizer analysis determined that the given variable
was never initialized prior to its use in a calculation.

OPT - WARNING GIVEN IN PHASE 1. OPTIMIZED CODE MAY NOT BE
CORRECT

One or more of the messages issued prior to this message
resulted from situations that violate assumptions made by
the optimizer and thus may cause it to generate code that
does not execute as desired.

EXTRANEOUS CARRIAGE RETURN

Carriage return was not immediately preceded or followed by
a line termination character.

SIZE MODIFIER [number] TREATED AS [data type]

Message is issued when one of the data type size modifiers
is used that is accepted only for compatibility.

COMPILER MESSAGES

Internal Compiler errors
An internal compiler error is either an attempt by the compiler or the
monitor to document an error inside the FORTRAN compiler. An
occurrence of an internal compiler error signifies that something is
wrong with the FORTRAN-20 compiler.
Monitor-detected internal errors are of the form
[message] AT LOCATION [address] IN PHASE [segment]
WHILE PROCESSING STATEMENT [line-number]
where [message] can be one of
ILLEGAL MEMORY REFERENCE
STACK EXHAUSTED
MEMORY PROTECTION VIOLATION
Compiler-detected errors are of the form
? INTERNAL COMPILER ERROR PROCESSING STATEMENT NUMBER [line-number]
? CALL TO [routine-name] FROM [address]

Submit an SPR if you received an internal compiler error.

APPENDIX G

FOROTS ERROR MESSAGES

Errors detected at run-time by FOROTS fall into the following
categories:

1. system errors (SYS) - errors internal to FOROTS

2. open errors (OPN) - I/O errors that occur during file OPEN
and CLOSE

3. arithmetic fault errors (APR) - errors in numeric
calculations

4, library errors (LIB) - errors dgenerated by FORLIB 1library

routines
5. data errors (DAT) - errors in data conversion on I/O
6. device errors (DEV) - I/0 hardware errors

APR and LIB errors are usually reported as warnings and the program
continues. The number of APR and LIB errors listed on the user's
terminal can be changed by the FORTRAN Library Subroutine ERRSET. See
Table 15-3 for details. The I/O errors (SYS, OPN, DAT, and DEV)
either cause messages to be printed on the terminal or can be trapped
by an error exit argument (ERR=statement label) on OPEN, READ, WRITE,
and CLOSE.

Table G-1 gives the text of the messages which can be printed for SYS,
OPN, DAT, and DEV errors. The included footnotes give additional
information. Table G-2 gives the text of the messages which can be
printed for APR and LIB errors.

The FORTRAN Library Subroutine ERRSNS allows you to find out which I/0
error occurred. When called, ERRSNS returns one or two integer values
that describe the status of the 1last I/0 operation performed by
FOROTS. (The second integer value is optional.)

CALL ERRSNS (I,J)

calls this subroutine. J is the second, optional integer value.

FOROTS ERROR MESSAGES

Table G-1
FOROTS I/0 Error Messages and ERRSNS Returned Values

First Second Explanation
Value Value
0 No error detected
0 Satisfactory completion (no error detected)
101 Normal end of job (1)
1 Invalid error call
243 Unidentified entry in FORERR (3)
246 Unidentified entry in FORERR (3)
23 Backspace error
312 BACKSPACE illegal for device (9)
24 End-of-file during READ
308 Attempt to READ beyond valid input (8)
25 Invalid record number
302 LSCW illegal in binary record or reading

ASCII; or attempt to read unwritten ASCII
RANDOM ACCESS record or unwritten or
destroyed record number

26 Direct access not specified
311 Cannot RANDOM ACCESS a SEQUENIAL file
28 CLOSE error
252 DTA directory is full (2) or protection
error
254 Rename file already exists (2)
262 No room or quota exceeded (2)
268 Cannot delete or rename a non-empty
directory (2)
29 No such file
250 File was not found
30 OPEN failure
237 DUMP mode RANDOM or APPEND access not
implemented; try IMAGE MODE
238 DIALOG file cannot be opened (3)
240 Record length missing for RANDOM ACCESS
242 Too many devices open: fifteen maximum
245 Device not available (2)
248 Illegal ACCESS for device (2)
249 Illegal MODE or MODE switch (2)
251 No directory for project, programmer
number (2)
253 File was being modified (2)

1. Not currently implemented.

2. OPEN errors 251 through 276 map directly onto error numbers
returned by the OPEN UUO; see the Monitor Calls Manual.

3. Error cannot currently occur.

8. Occurs when simulating mag tape output; SKIP RECORD and SKIP FILE
are 1illegal. Also occurs when a non-existent file is opened in MODE=
SEQINOUT and the first operation on that file is a READ.

9. Occurs if OPEN output with BACKSPACE is not a mag tape or disk.

FOROTS ERROR MESSAGES

Table G-1 (Cont.)

FOROTS I/0 Error Messages and ERRSNS Returned Values

First Second Explanation
Value Value
255 Illegal sequence of Monitor Calls (11)
256 Bad UFD or bad RIB (2)
259 Device not available (2)
265 Partial allocation only (2)
266 Block not free on allocation (2)
267 Cannot supersede an existing directory (2)
269 SFD not found (2)
270 Search list empty (2)
271 SFD nested too deeply (2)
272 No CREATE flag for specified UFD (2)
274 File cannot be updated (2)
2717 LOOKUP ENTER or RENAME error (2)
31 Mixed access modes
315 Cannot do SEQUENTIAL ACCESS on a RANDOM
file
32 Invalid logical unit number
239 Illegal FORTRAN unit number (2)
39 Error during READ
310 REREAD before first READ is illegal (1)
42 Device handler not resident
244 No such device (2)
260 No such device (2)
45 OPEN statement keyword error
241 Switch error during DIALOG or OPEN
statement scan (2)
47 Write on read-only file
263 Write-lock error (2)
59 List-directed I/0 syntax error
313 Illegal delimiter in LIST DIRECTED input
62 Syntax error in FORMAT
301 Illegal character in FORMAT statement (4)
306 I/0 list without data conversion in FORMAT
314 Missing width field for A or R on input
63 Output conversion error
305 Optional * fill: unidentified entry in
FORERR (7)

1. Not currently implemented.

2. OPEN errors 251 through 276 map directly onto error numbers
returned by the OPEN UUO;

4, In runtime FORMAT.

see the Monitor Calls Manual.

7. * £i1ll controlled by compile-time variable ASTFIL.

11. Can occur on OPEN (MODE= 'APPEND') when file is found in LIB:

on [1,4]
list.

when device specified was SYS:

or

and /NEW was in your search

FOROTS ERROR MESSAGES

Table G-1 (Cont.)
FOROTS I/0 Error Messages and ERRSNS Returned Values

First Second Explanation
Value Value
64 Input conversion error
303 Checksum error reading binary records (5)
307 Illegal character in data
67 Record too small for I/0 list
304 I/0 list greater than record size (6)
81 Invalid argument
102 Argument block not in correct format
261 Argument block not in correct format (2)
699 Unclassifiable error on OPEN
247 FOROTS system error (2,3)
257 FOROTS system error (2)
258 FOROTS system error (2)
264 Not enough monitor table space (2)
273 FOROTS system error (2)
275 FOROTS system error (2)
276 FOROTS system error (2)
799 Unclassifiable data error
309 Variable cannot be found in NAMELIST block
899 Unclassifiable device errors
400 Write protected
401 Device error
402 Parity error
403 Block too large, quota exceeded, or file
structure full. Nonexistent CDR reader.
Spooled CDR file does not exist.
404 End-of-file (10)
407 End-of-tape
999 Unclassified system error
100 FOROTS system error
103 Monitor not build to support FOROTS
104 Fatal error
105 User program has requested more code than
is available
106 Run time memory management error

2. OPEN errors 251 through 276 map directly onto error numbers
returned by the OPEN UUO; see the Monitor Calls Manual.

3. Error cannot currently occur.
5. Checksumming controlled by compile-time variable CHKSUM.
6. Occurs when a type 2 LSCW is found in a FORSE binary record.

10. Trappable if there is no END= clause.

FOROTS ERROR MESSAGES

Table G-2
FOROTS Arithmetic and Library Error Messages

APR

LIB

Integer Overflow
Integer Divide Check
Illegal APR Trap
Floating Divide Check

Floating Underflow

Attempt
Attempt
ACOS of
ASIN of
Attempt

Attempt

to take DLOG of Negative Arg.

to take DSQRT of Negative Arg.
Arg. > 1.0 in Magnitude

Arg. > 1.0 in Magnitude

to take SQRT of Negative Arg.

to take LOG of Negative Arg.

APPENDIX H

DECSYSTEM-10 COMPATIBILITY

The following items are included in the DECsystem-20 FORTRAN software
for compatibility with the DECsystem-10. They are not supported on
the DECsystem-20. Users must not specify these items because their
actions are undefined and the results cannot be guaranteed.

l. Logical Device Assignments.
(Refer to pages 10-4 and E-27.)

Device Logical unit number Use

PTR 06 Paper Tape Reader
PTP 07 Paper Tape Punch
DIS 08 Display

DTAl 09 DECtape

DTA2 10

DTA3 11

DTA4 12

DTAS 13

DTA6 14

DTA7 15 DECtape

2. DPUNCH Statement

3. KAl0 and KI10 compiler switches

4. The following Library Subroutines:
SLITE (1)
SLITET (i, 3)
SSWTCH (i, 3)

5. DDT command to FORDDT.

INDEX

A format descriptor, 13-12 Assignment statement,
ABS, 15-4 arithmetic, 8-1
ACCEPT statement, 10-18 label, 8-4
ACCEPT transfer, logical, 8-4

formatted, 10-18 mixed-mode, 8-1

into FORMAT statement, 10-19 ASSOCIATE VARIABLE in file
ACCESS in file control control statement, 12-8

statement, 12-3 ATAN function, 15-10

Accumulator usage, C-10 ATAN2 function, 15-10
Accuracy of double-precision AXIS subroutine, 15-17

numbers, C-1
ACOS function, 15-10
Addition, 4-1
Adjustable dimensions, 6-2

4~
AIMAG, 15-4 BACKFILE statement, 14-3

BACKSPACE statement, 14-2

AINT, 15-4

i BASIC
ALL with DEBUG, B-3 - ’ _
Allocation, input from, 2-6

Basic external function subpro-
15-9 gram, 15-7
ALOG10 fungtion, 15-9 g{gﬁinY;:h gggE’ 12-4
Alphamumeric data transfer, BLOCK DATA statement, 16-1
Alphanumeric FORMAT field BLOCK SIZE in file control

i - statement, 12-8
AMAXgesigigtor, 13-11 Block data subprogram, 16-1
r

register, C-7
ALOG function,

_ BOUNDS with DEBUG, B-3
iﬁﬁﬁé’ ig_g BUFFER COUNT in file control
14
AMIN1, 15-5 statement, 12-8
AMOD, 15-5
.AND., 4-5
ANSI standard, 1l-1
APPEND with ACCESS, 12-4 CABS, 15-4
Argument, Call,
subprogram, 15-1 FUNCTION, 15-14
Argument type, subroutine, 15-11
COBOL/FORTRAN, C-12 CALL statement, 15-11
Arithmetic, Carriage control character, 13-16
mixed-mode, 4-2 Category,
Arithmetic assignment statement, statement, 1-1
8-1 Ccos function, 15-9
Arithmetic expression, 4-1 CEXP function, 15-9
Arithmetic IF statement, 9-3 Character code, A-1
Arithmetic operator, 4-1 Character set, 2-1
Array, 3-7 Character set with MODE, 12-4
dimensioning, 3-9, C-4 Characters,
Array elements, line formatting, 2-2
storage of, 3-10 line termination, 2-2
Array subscript, 3-8 CLOG function, 15-9
ASCII with MODE, 12-4 CLOSE statement, 12-1
ASCIZ string, C-14 CLOSE statement summary, 12-10
ASIN function, 15-10 CMPLX, 15-4
ASSIGN statement, 8-4 COBOL,
Assigned GOTO statement, 9-2 interaction with, C-18

Index-1

INDEX (CONT.)

COBOL/FORTRAN argument type, C-12 D (double-precision notation),

Command, 3-3
COMPILE, B-4 D format descriptor, 13-4
DEBUG, B-4 DABS, 15-4
EXECUTE, B-4 .DAT extension, 12-5
LOAD, B-4 Data files,
Comment line, 2-5 FOROTS, D-4
Common block name, 6-5 DATA statement, 7-1
COMMON statement, 6-5 Data transfer operations, 10-1
Compatibility with FORTRAN-10, Data type, 3-1
H-1 DATAN function, 15-10
COMPIL in FOROTS, D-2 . DATAN2 function, 15-10
Compilation control statement, 5-1 DATE subroutine, 15-17
COMPILE command, B-4 DBLE, 15-4
Compiler commands, B-4 DCOS function, 15-9
Compiler generated variable, B-6 DEBUG command, B-4
Compiler switches, B-1 Debug line, 2-6
Compiler version, B-8 DEBUG switch, B-2, B-3
Complex constant, 3-3 , Debugger,
Complex format, 13-4 FORDDT, E-1
COMPLEX statement, 6-3 Debugger code size, B-4
Computation, DECODE statement, 10-21
redundant, C-5 DEFAULT, B-15
reordering, C=-3 DEFINE FILE subroutine, 15-17
Computation in DO-loop, DELETE with DISPOSE, 12-5
constant, C-6 DENSITY in file control state-
Computed GOTO statement, 9-2 ment, 12-9
CONJG function, 15-10 Descriptor,
Constant, 3-1 G format, 13-7
complex, 3-3 Device control statement, 14-1
double-precision, 3-3 Device control statement
integer, 3-2 summary, 14-3
label, 3-6 DEVICE in file control state-
literal, 3-5 ment, 12-2
logical, 3-5 Device number,
octal, 3-4 logical, 10-3
real, 3-2 DEXP function, 15-9
Constant computation in DO-loop, DFLOAT, 15-4
C-6 DIALOG in file control state-
Constant folding, C-7 ment, 12-9
Constant propagation, C-7 DIM, 15-5
Continuation field, DIMENSION statement, 6-1
line, 2-3 Dimensioning,
Continuation line, 2-4 array in COMMON, 6-~7
Continue (G) option after PAUSE, Dimensioning array, 3-9, C-4
9-11 Dimensions,
CONTINUE statement, 9-10 adjustable, 6-2
Control statement, 9-1 DIMENSIONS with DEBUG, B-3
compilation, 5-1 Directory,
Control-Z, 2-1 sub-file, 12-6
COS function, 15-9 user file, 12-6
CosD function, 15-9 DIRECTORY,
COSH function, 15-10 in file control statement,
CROSSREF switch, B-2 12-6
CSIN function, 15-9 DISPOSE in file control state-
CSQRT function, 15-9 ment, 12-5

Index-2

INDEX (CONT.)

Division, 4-1
DLOG function, 15-9
DLOG1l0 function, 15-9
DMAX1l, 15-5
DMIN1l, 15-5
DMOD, 15-5
DO statement, 9-5
DO-1loop,
constant computation in, C-6
execution, 9-6
extended range, 9-8
floating=-point, C-2
implied in I/0 list, 10-5
nested, 9-6
parameters, 9-6
permitted transfers, 9-9
range, 9-5
DO-loop iteration, C-2
DO-loop replacement, C-8
DOUBLE PRECISION statement, 6-3
Double-precision constant, 3-3
Double-precision format, 13-4
Double~-precision numbers,
accuracy of, C-1
range of, C-1
DSIGN, 15-5
DSIN function, 15-9
DSQRT function, 15-9
Dummy argument,
subprogram, 15-1
DUMP subroutine, 15-18
DUMP with MODE, 12-4

E (exponential notation), 3-2

E format descriptor, 13-4

EDIT program, 2-6

ENCODE statement, 10-21

END argument in I/O statement,
10~-10

END FILE statement, 14-2

END statement, 5-2, 15-6

ENTER in FOROTS, C-18

ENTRY statement, 15-15

.EQ., 4-7

EQUIVALENCE statement, 6-7

.EQV., 4-5

ERR argument in I/O statement,
10-10

ERR in file control statement,
12-10

Error,

fatal, B-17
Error processing,
FOROTS, D-3
Error reporting, B-17
ERRSET subroutine, 15-19

ERRSNS subroutine, 15-19
Evaluation of expression, 4-9
EVEN with PARITY, 12-9
Executable statement, 1-1
EXECUTE command, B-4
Execution on non-DEC machines,
c-1
Exit (X) option after PAUSE,
9-11
EXIT subroutine, 15-19
EXP function, 15-9
EXPAND switch, B-2
Exponential notation, 3-2
Exponentiation, 4-1
permitted, 4-4
Expression,
arithmetic, 4-1
evaluation of, 4-9
logical, 4-4
mixed-mode, 4-10, 4-11
nested, 4-9
relational, 4-7
External function subprogram,
15-6
basic, 15-7
EXTERNAL statement, 6-8

F format descriptor, 13-4
.FALSE., 3-5
Fatal error, B-17
Field,
label, 2-3
line continuation, 2-3
remarks, 2-4
statement, 2-3
Field descriptor,
alphanumeric FORMAT, 13-11
FORMAT, 13-2
logical FORMAT, 13-10
numeric FORMAT, 13-4
File,
directory subfile, 12-6
FOROTS data, D-4
non-FORTRAN, C-9
File control statement, 12-1
File directory,
user, 1l2-6
FILE in file control statement,
12-5
FILE SIZE in file control state-
ment, 12-8
FIND statement, 10-21
FLOAT, 15-4
Floating-point DO-loop, C-2
Folding,
constant, C-7

Index-3

INDEX (CONT.)

FORDDT debugger, E-1
FORDDT messages, E-17
FORMAT field descriptor,
alphanumeric, 13-11
logical, 13-10
numeric, 13-4
record formatting, 13-15
FORMAT statement, 13-1
ACCEPT transfer into, 10-19
transfer into, 10-3
FORMAT statement descriptor,
13-2
Formatted ACCEPT transfer, 10-18
Formatted READ transfer,
random access, 10-13
sequential, 10-11
Formatted WRITE transfer,
random access, 10-17
sequential, 10-16
FOROTS,
using, D-13
FOROTS data files, D-4
FOROTS error processing, D-3
FOROTS features, D-2
FOROTS hardware requirements,
D-1
FOROTS input/output facility,
D-3
FOROTS messages, G-1
FOROTS software requirements,
D-1
FOROTS/LINK interface, D-28
FORTRAN compiler, B-1
FORTRAN messages, F-1
FUNCTION call, 15-14
Function references,
order, C-8
FUNCTION statement, 15-6
Function subprogram,
basic external, 15-7
external, 15-6
intrinsic, 15-3
statement, 15-3
Function subprogram structure,
15-7
FUNCTION type, 15-6

G (option after PAUSE), 9-11

G format descriptor, 13-4, 13-7

.GE., 4-7

General (G) numeric format,
13-7

GETOVL in LINK, C-20

Global optimization, C-4

GOTO statement, 9-1
assigned, 9-2
computed, 9-2
unconditional, 9-1

.GT., 4-7

H (literal notation), 3-5

H format descriptor, 13-12

Hardware requirements,
FOROTS, D=1

Hierarchy of operators, 4-9

Hollerith literal, 3-5

I format descriptor, 13-4
I/0 list, 10-5
IABS, 15-4
IDIM, 15-5
IDINT, 15-4
IF statement, 9-3
arithmetic, 9-3
logical, 9-4
IFIX, 15-4
ILL subroutine, 15-19
IMAGE with MODE, 12-4
IMPLICIT statement, 6-5
In I/0 list DO-loop,
implied, 10-6
Inaccessible code, C-7
INCLUDE statement, 5-1
INCLUDE switch, B-2
INDEX with DEBUG, B-3
INIOVL in LINK, C=-20
Initial line, 2-4
Input,
line-sequence, 2-6
Input from BASIC, 2-6
Input from EDIT, 2-6
Input/output facility,
FOROTS, D=3
Input/output list, 10-2
NAMELIST, 10-10
Input/output optimization, C-8
Input/output,
format, 10-2
list-directed, 10-8
statement, 10-1
summary, 10-24
INT, 15-4
Integer constant, 3-2
Integer format, 13-4

Index-4

INDEX (CONT.)

INTEGER statement, 6-3
Intrinsic function subprogram,
15-3
ISIGN, 15-5
Iteration,
DO-loop, C-2

Keyword, 1l-1

L format descriptor, 13-10
Label assignment statement, 8-4
Label constant, 3-6
Label field, 2-3
LABELS with DEBUG, B-3
.LE., 4-7
LEGAL subroutine, 15-19
Line, -

blank, 2-6

comment, 2=5

continuation, 2-4

debug, 2-6

definition, 2-2

fields, 2-2

initial, 2-4

multi-statement, 2-5
Line continuation field, 2-3
Line formatting characters, 2-2
Line sequence number, B-5
LINE subroutine, 15-19
Line termination characters, 2-2
Line types, 2-4
Line-sequence input, 2-6
LINK overlay facility, C-20
LINK/FOROTS interface, D-28
List,

input/output, 10-2

NAMELIST input/output, 10-10
LIST with DISPOSE, 12-5

List-directed input/output state-

ment, 10-8
List-directed transfer,
sequential READ, 10-12
sequential WRITE, 10-17
Listing,
program, B-5
Literal constant, 3-5
Literal format conversion, 13-13
LNMAP switch, B-2
LOAD command, B-4
Location in object program, B-5
Logical assignment statement,
8-4
Logical constant, 3-5
Logical expression, 4-4

Logical FORMAT field descriptor,
13-10

Logical IF statement, 9-4

Logical operator, 4-5

LOGICAL statement, 6-3

Logical unit number, 10-3

LOGOVL in LINK, C-=20

LLT., 4-7

MACRO in listing, B-5
MACRO libraries, C-14
MACROCODE switch, B-2
MAX0, 15-5
MAX1, 15-5
Messages,
FORDDT, E=17
FOROTS, H-1
FORTRAN, F-1
realtime, G-7
MINO, 15-5
MIN1, 15-5
Mixed-mode arithmetic, 4-2
Mixed-mode assignment statement,
8-1
Mixed-mode expression, 4-10,
4-11
MKTBL subroutine, 15-20
MOD, 15-5
MODE in file control statement,
12-4
Multi-statement line, 2-5
Multiple record transfer, 13-14
Multiplication, 4-1

Name,
symbolic, 3-6
NAMELIST input/output list,
10-10
NAMELIST statement, 11-1
NAMELIST-controlled transfer,
input, 11-2
output, 1l1-3
sequential READ, 10-13
sequential WRITE, 10-17
.NE., 4-7
Nested DO-loop, 9-6
Nested expression, 4-9
NOERRS switch, B-2
NONE with DEBUG, B-3
Nonexecutable statement, 1-1
Non-FORTRAN files, C-9
Non-FORTRAN programs, C-9
NONSHAR, B-18

Index-5

INDEX (CONT.)

.NOT., 4-5 R format descriptor, 13-12
NOWARNINGS switch, B-2 RAN function, 15-10
NUMBER subroutine, 15-20 RANDIN with ACCESS, 12-3
Numeric, Random access data transfer,
field width variable, 13-10 10-1
Numeric format, Random access record specifica-
general (G), 13-7 tion, 10-7
Numeric FORMAT field descriptor, Random access transfer,
13-4 formatted READ, 10-13

formatted WRITE, 10-17
unformatted READ, 10-13
unformatted WRITE, 10-17

O format descriptor, 13-4 RANDOM with ACCESS, 12-3
Object program, Range of double-precision
location in, B-5 numbers, C-1
Octal constant, 3-4 READ statement, 10-11
ODD with PARITY, 12-9 READ statement summary, 10-14
OPEN statement, 12-1 READ transfer,
OPEN statement summary, 12-10 random access, 10-13
Operator, sequential, 10-11, 10-12, 10-13.
arithmetic, 4-1 REAL function, 15-4
hierarchy, 4-9 Real constant, 3-2
logical, 4-5 Real format, 13-4
Operator strength, C-5 REAL statement, 6-3
Optimization, Record formatting (T and X),
global, C-4 13-15
program, C-9 RECORD SIZE in file control
OPTIMIZE switch, B-2 statement, 12-8
.OR., 4-5 Record specification,
Order of statements, 2-7 random access, 10-7
OoTS, B-18 Reentrant program, B-18
Overflow, C-3 Register allocation, C-7
Overlay facility, Relational expression, 4-7
LINK, C-20 RELEAS subroutine, 15-21

Remarks field, 2-4
REMOVL in LINK, C-20
RENAME with DISPOSE, 12-5

PARAMETER statement, 6-9 Repeat for format descriptor,
PARITY in file control state- 13-3

ment, 12-9 Replacement,
PATH with DIRECTORY, 12-7 DO-loop, C-8
PAUSE statement, 9-11 REREAD statement, 10-14
PDUMP subroutine, 15-20 RESET in FOROTS, C-10
PILOT subroutine, 15-20 RETURN statement, 15-7, 15-12
PL.OTS subroutine, 15-20 REWIND statement, 14-1
Precision for real constant, 3-2 RUNOVL in LINK, C-20

PRINT statement, 10-19
PRINT with DISPOSE, 12-5
Program listing, B-5

PROGRAM statement, 5-1 SAVE with DISPOSE, 12-5
Programs, SAVRAN subroutine, 15-21
non-FORTRAN, C-9 Scale factor in FORMAT statement,
optimizing, C-9 13-7)
writing, C-1 SCALE subroutine, 15-21
Propagation, SEG, B-18
constant, C-7 SEQIN with ACCESS, 12-3
PROTECTION in file control state- SEQINOUT with ACCESS, 12-3
ment, 12-6 : SEQOUT with ACCESS, 12-3

Index-6

INDEX (CONT.)

Sequence number, Statement (Cont.),
line, B-5 IF, 9-3
Sequential data transfer, 10-1 IMPLICIT, 6-5
Sequential transfer, INCLUDE, 5-1
READ, 10-11, 10-12, 10-13 input/output, 10-1
WRITE, 10-16, 10-17 INTEGER, 6-3
SET RECORD statement, 14-3 label assignment, 8-4
SETABIL subroutine, 15-21 list-directed,
SETRAN subroutine, 15-21 input/output, 10-8
SFD, 12-6 LOGICAL, 6-3
Sharable program, B-~18 logical assignment, 8-4
.SHR extension, B-18 logical IF, 9-4
SIGN function, 15-5 mixed-mode assignment, 8-1
SIN function, 15-9 NAMELIST, 1ll-1
SIND function, 15-9 nonexecutable, 1-1
SINH function, 15-10 OPEN, 12-1
SKIP FILE statement, 14-3 PARAMETER, 6-9
SNGL, 15-4 PAUSE, 9-11
Software requirements, PRINT, 10-19
FOROTS, D-1 PROGRAM, 5-1
SORT subroutine, 15-21 REaAD, 10-11
Specification statement, 6-1 REAL, 6-3
SQRT function, 15-9 REREAD, 10-14
SSAVE switch, B-18 RETURN, 15-6, 15-12
Statement, REWIND, 14-1
ACCEPT, 10-18 SET RECORD, 14-3
Arithmetic assignment, 8-1 SKIP FILE, 14-3
arithmetic IF, 9-3 STOP, 9-10
ASSIGN, 8-4 SUBROUTINE, 15-8
assigned GOTO, 9-2 TYPE, 10-20
BACKFILE, 14-3 type specification, 6-3
BACKSPACE, 14-2 unconditional GOTO, 9-1
BLOCK DATA, l6-1 UNLOAD, 1l4-2
CALL, 15-11 WRITE, 10-16
CLOSE, 12-1 Statement category, 1-1
COMMON, 6-5 Statement field, 2-3
COMPLEX, 6-3 Statement function subprogram, 15-3
computed GOTO, 9-2 Statement label constant, 3-6
CONTINUE, 9-10 Statement numbers, 2-3
control, 9-1 Statement summary,
DATA, 7-1 CLOSE, 12-10
DECODE, 10-21 device control, 14-3
device control, 1l4-1 input/output, 10-24
DIMENSION, 6-1 OPEN, 12-10
DO, 9-5 READ, 10-14
DOUBLE PRECISION, 6-3 WRITE, 10-18
ENCODE, 10-21 Statements,
END, 5-2, 15-6 order of, 2-7
END FILE, 14-2 STOP statement, 9-10
ENTRY, 15-15 Storage of array elements, 3-10
EQUIVALENCE, 6-7 Sub-file directory, 12-6
executable, 1-1 Subprogram,
EXTERNAL, 6-8 basic external function, 15-7
file control, 12-1 block data, 16-1
FIND, 10-21 external function, 15-6
FORMAT, 13-1 intrinsic function, 15-3
FUNCTION, 15-6 multiple entries to, 15-15
GOTO, 9-1 multiple returns from, 15-12

Index-7

INDEX (CONT.)

Subprogram, (Cont.)
statement function, 15-3
subroutine, 15-8

Subprogram argument, 15-1

Subprogram dummy argument, 15-1

Subprograms, 15-1

Subroutine,

DATE, 15-17

ERRSET, 15-19

ERRSNS, 15-19

EXIT, 15-19

FORTRAN supplied, 15-12
ILL, 15-19

LEGAL, 15-19

LINE, 15-19

programming consideration, C-2

Subroutine call, 15-11
SUBROUTINE statement, 15-8
Subroutine structure, 15-11
Subroutine subprogram, 15-8
Subscript,

array, 3-8
Subtraction, 4-1
Switches,

compiler, B-l
SYMBOIL subroutine, 15-22
Symbolic name, 3-6
SYNTAX switch, B-2

T (trace after PAUSE), 9-12

T format descriptor, 13-15

TANH function, 15-10

TIME subroutine, 15-22

Trace (T) option after PAUSE,
9-12

TRACE function, 9-13

TRACE subroutine, 9-13

TRACE with DEBUG, B-3

Transfer operations, 10-1

.TRUE., 3-5

Type,

FUNCTION, 15-6

Type specification statement,
6-3

TYPE statement, 10-20

UFD, 12-6
Unconditional GOTO statement,
9-1
Uninitialized variable, C-8
UNIT in file control statement,
12-2
Unit number,
logical, 10-3
Unformatted transfer,
random access,
READ, 10-13
WRITE, 10-17
sequential binary,
READ, 10-12
WRITE, 10-16
UNLOAD statement, 14-2
User file directory, 12-6

Variable, 3-7
compiler generated, B-6
uninitialized, C-8
VERSION in file control state-
ment, 12-8

Warning message, B-17
WHERE subroutine, 15-22
WRITE statement, 10-16
WRITE statement summary, 10-18
WRITE transfer,
random access, 10-16, 10-17
sequential, 10-16, 10-17
Writing programs, C-1

X (option after PAUSE), 9-11
X format descriptor, 13-15
.XOR., 4-5

4z, 2-1

Index-8

DECsystem-20
FORTRAN Reference Manual
AA-4158B~TM

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. Problems with software should be reported
on a Software Performance Report (SPR) form. If you
require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR
form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please cut along this line.

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience

Student programmer

000000

Non-programmer interested in computer concepts and capabilities

Name Date

Organization

Street

City State Zip Code
or
Country

Fold Here

- Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

dlilaliltlall

Software Documentation
146 Main Street ML5-5/E39
Maynard, Massachusetts 01754

llelielell]

