
FORTRAN Reference Manual

Order No. AA-4158B-TM

April 1977

This document describes the language elements of the
FORTRAN-20 compiler for the DECSYSTEM-20.

This document supersedes the document of the
same name, Order No. DEC-20-LFMRA-A-D,

.. published January 1976.

OPERATING SYSTEM AND VERSION:

SOFTWARE VERSION:

Any Digital-supported operating system for the
DECSYSTEM-20.

FORTRAN-20, Version 5

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

diaital eauioment corcoration · maunard, massachusetts,,

First Printing, January 1976
Revised: April 1977

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright © 1976, 1977 by Digi tal Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre­
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM

DECsystem-10
DEC tape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECsystem-20

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-10
TYPESET-II

5/77-15

CHAPTER 1

1.1

CHAPTER 2

2.1
2.2
2.2.1

2.2.2
2.2.3
2.2.4
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.4

CHAPTER 3

3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
3.2.8
3.3
3.4
3.5
3.5.1
3.5.2
3.5.3

CHAPTER 4

4.1
4.1.1

4.2
4.2.1
4.3
4.3.1

CONTENTS

PROLOGUE

BACKGROUND

CHARACTERS AND LINES

CHARACTER SET
STATEMENT, DEFINITION, AND FORMAT

Statement Label Field and Statement
Numbers
Line Continuation Field
Statement Field
Remarks

LINE TYPES
Initial and Continuation Line Types
Multi-Statement Lines
Comment Lines and Remarks
Debug Lines
Blank Lines
Line-Sequenced Input

ORDERING OF STATEMENTS

DATA TYPES, CONSTANTS, SYMBOLIC NAMES,
VARIABLES, AND ARRAYS

DATA TYPES
CONSTANTS

Integer Constants
Real Constants
Double-Precision Constants
Complex Constants
Octal Constants
Logical Constants
Literal Constants
Statement Label Constants

SYMBOLIC NAMES
VARIABLES
ARRAYS

Array Element Subscripts
Dimensioning Arrays
Order of Stored Array Elements

EXPRESSIONS

ARITHMETIC EXPRESSIONS
Rules for Writing Arithmetic
Expressions

LOGICAL EXPRESSIONS
Relational Expressions

EVALUATION OF EXPRESSIONS
Parenthesized Subexpressions

iii

Page

1-1

1-1

2-1

2-1
2-2

2-3
2-3
2-3
2-4
2-4
2-4
2-5
2-5
2-6
2-6
2-6
2-7

3-1

3-1
3-2
3-2
3-2
3-3
3-3
3-4
3-5
3-5
3-6
3-6
3-7
3-7
3-8
3-9
3-10

4-1

4-1

4-2
4-4
4_-7
4-9
4-9

4.3.2
4.3.3
4.3.4

CHAPTER 5

5.1
5.2
5.3
5.4

CHAPTER 6

6.1
6.2
6.2.1
6.3
6.4
6.5
6.5.1

6.6
6.7
6.8

CHAPTER 7

7.1

CHAPTER 8

8.1
8.2
8.3
8.4

CHAPTER 9

9.1
9.2
9.2.1
9.2.2
9.2.3
9.3
9.3.1
9.3.2
9.3.3
9.4
9.4.1
9.4.2
9.4.3
9.5
9.6
9.7
9.7.1

CONTENTS (CONT.)

Hierarchy of Operators
Mixed Mode Expression

Use of Logical Operands in Mixed Mode
Expressions

COMPILATION CONTROL STATEMENTS

INTRODUCTION
PROGRAM STATEMENT
INCLUDE STATEMENT
END STATEMENT

SPECIFICATION STATEMENTS

INTRODUCTION
DIMENSION STATEMENT

Adjustable Dimensions
TYPE SPECIFICATION STATEMENTS
IMPLICIT STATEMENTS
COMMON STATEMENTS

Dimensioning Arrays in COMMON
Statements

EQUIVALENCE STATEMENT
EXTERNAL STATEMENT
PARAMETER STATEMENT

DATA STATEMENT

INTRODUCTION

ASSIGNMENT STATEMENTS

INTRODUCTION
ARITHMETIC ASSIGNMENT STATEMENTS
LOGICAL ASSIGNMENT STATEMENTS
ASSIGN (STATEMENT LABEL) ASSIGNMENT
STATEMENT

CONTROL STATEMENTS

INTRODUCTION
GO TO CONTROL STATEMENTS

Unconditional GO TO Statements
Computed GO TO Statements
Assigned GO TO Statements

IF STATEMENTS
Arithmetic IF Statements
Logical IF Statements
Logical Two-Branch IF Statements

DO STATEMENT
Nested DO Statements
Extended Range
Permitted Transfer Operations

CONTINUE STATEMENT
STOP STATEMENT
PAUSE STATEMENT

T (TRACE) Option

iv

Page

4-9
4-10

4-11

5-1

5-1
5-1
5-1
5-1

6-1

6-1
6-1
6-2
6-3
6-5
6-5

6-7
6-7
6-8
6-9

7-1

7-1

8-1

8-1
8-1
8-4

8-4

9-1

9-1
9-1
9-1
9-2
9-2
9-3
9-3
9-4
9-4
9-5
9-6
9-8
9-9
9-10
9-10
9-11
9-12

CHAPTER 10

10.1
10.2
10.2.1
10.2.2
10.2.3
10.3

10.3.1
10.3.2
10.3.3
10.3.4
10.3.4.1
10.3.4.2
10.3.5

10.3.6
10.3.7
10.4

10.5
10.5.1
10.5.2

10.5.3

10.5.4

10.5.5
10.5.6

10.6
10.7
10.8
10.8.1
10.8.2

10.8.3
10.8.4

10.8.5
10.8.6

10.9
10.10
10.10.1
10.10.2
10.11
10.12
10.13
10.14
10.14.1
10.14.2
10.14.3
10.15

CONTENTS (CONT.)

I/O STATEMENTS

DATA TRANSFER OPERATIONS
TRANSFER MODES
Sequential Mode
Random Access Mode

Append Mode
I/O STATEMENTS, BASIC FORMATS AND
COMPONENTS

I/O Statement Keywords
FORTRAN Logical unit Numbers
FORMAT Statement References
I/O List
Implied DO Constructs
Formatted Record Handling
The Specification of Records for
Random Access
List-Directed I/O
NAMELIST I/O Lists

OPTIONAL READ/WRITE ERROR EXIT AND
END-OF-FILE ARGUMENTS
READ STATEMENTS

Sequential Formatted READ Transfers
Sequential Unformatted Binary READ
Transfers
Sequential List-Directed READ
Transfers
Sequential NAMELIST-Contro11ed READ
Transfers
Random Access Formatted READ Transfers
Random Access Unformatted READ
Transfers

SUMMARY OF READ STATEMENTS
REREAD STATEMENT
WRITE STATEMENTS

Sequential Formatted WRITE Transfers
Sequential Unformatted Binary WRITE
Transfer
Sequential List-Directed WRITE Transfers
Sequential NAMELIST-Contro11ed WRITE
Transfers
Random Access Formatted WRITE Transfers
Random Access Unformatted WRITE
Transfers

SUMMARY OF WRITE STATEMENTS
ACCEPT STATEMENT

Formatted ACCEPT Transfers
ACCEPT Transfers Into FORMAT Statements

PRINT STATEMENT
TYPE STATEMENT
FIND STATEMENT
ENCODE AND DECODE STATEMENTS

ENCODE Statement
DECODE Statement
Example of ENCODE/DECODE Operations

SUMMARY OF I/O STATEMENTS

v

Page

10-1

10-1
10-1
10-1
10-1
10-2

10-2
10-3
10-3
10-3
10-6
10-6
10-7

10-7
10-8
10-10

10-10
10-11
10-11

10-12

10-12

10-13
10-13

10-13
10-14
10-14
10-16
10-16

10-16
10-17

10-17
10-17

10-17
10-18
10-18
10-18
10-19
10-19
10-20
10-21
10-21
10-22
10-22
10-23
10-24

CHAPTER 11

11.1
11.2
11.2.1
11.2.2

CHAPTER 12

12.1
12.2
12.2.1
12.2.2

CHAPTER 13

13.1
13.1.1
13.2
13.2.1
13.2.2

13.2.3
13.2.4
13.2.5
13.2.6
13.2.7
13.2.8
13.2.9
13.2.10
13.2.11
13.2.12
13.3

CHAPTER 14

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9

CHAPTER 15

15.1
15.1.1
15.2
15.3

15.4
15.4.1

15.4.2

CONTENTS (CONT.)

NAMELIST STATEMENTS

INTRODUCTION
NAMELIST STATEMENT

NAMELIST-Controlled Input Transfers
NAMELIST-Controlled Output Transfers

FILE CONTROL STATEMENTS

INTRODUCTION
OPEN AND CLOSE STATEMENTS

Options for OPEN and CLOSE Statements
Summary of OPEN/CLOSE Statement Options

FORMAT STATEMENT

INTRODUCTION
FORMAT Statement, General Form

FORMAT DESCRIPTORS
Numeric Field Descriptors
Interaction of Field Descriptors
With I/O Variables
G, General Numeric Conversion Code
Numeric Fields with Scale Factors
Logical Field Descriptors
Variable Numeric Field widths
Alphanumeric Field Descriptors
Transferring Alphanumeric Data
Mixed Numeric and Alphanumeric Fields
Multiple Record Specifications
Record Formatting Field Descriptors
$ Format Descriptor

CARRIAGE CONTROL CHARACTERS FOR PRINTING
ASCII RECORDS

DEVICE CONTROL STATEMENTS

INTRODUCTION
REWIND STATEMENT
UNLOAD STATEMENT
BACKSPACE STATEMENT
END FILE STATEMENT
SKIP RECORD STATEMENT
SKIP FILE STATEMENT
BACKFILE STATEMENT
SUMMARY OF DEVICE CONTROL STATEMENTS

SUBPROGRAM STATEMENTS

INTRODUCTION
Dummy and Actual Arguments

STATEMENT FUNCTIONS
INTRINSIC FUNCTIONS (FORTRAN DEFINED
FUNCTIONS)
EXTERNAL FUNCTIONS

Basic External Functions (FORTRAN-20
Defined Functions)
Generic Function Names

vi

Page

11-1

11-1
11-1
11-2
11-3

12-1

12-1
12-1
12-2
12-10

13-1

13-1
13-1
13-2
13-4

13-6
13-7
13-7
13-10
13-10
13-11
13-12
13-14
13-14
13-15
13-16

13-16

14-1

14-1
14-1
14-2
14-2
14-2
14-3
14-3
14-3
14-3

15-1

15-1
15-1
15-3

15-3
15-6

15-7
15-7

15.5
15.5.1
15.5.2
15.6
15.6.1

15.7

CHAPTER 16

16.1
16.2

APPENDIX A

APPENDIX B

B.1
B.1.1
B.1.1.1
B.1.2
B.2
B.2.1
B.3
B.3.1
B.3.2
B.4

APPENDIX C

C.1
C.1.1

C.1.2

C.1.3
C.1.4
C.1.5
C.1.6
C.1.7
C.2
C.2.1
C.2.1.1
C.2.1.2
C.2.1.3

C.2.1.4
C.2.1.5
C.2.1.6
C.2.1.7
C.2.1.8
C.2.1.9
C.2.2
C.2.3

CONTENTS (CONT.)

SUBROUTINE SUBPROGRAMS
Referencing Subroutines (CALL Statement)
FORTRAN-20 Supplied Subroutines

RETURN STATEMENT AND MULTIPLE RETURNS
Referencing External FUNCTION
Subprograms

MULTIPLE SUBPROGRAM ENTRY POINTS (ENTRY
STATEMENT)

BLOCK DATA SUBPROGRAMS

INTRODUCTION
BLOCK DATA STATEMENT

ASCII-1968 CHARACTER CODE SET

USING THE COMPILER

RUNNING THE COMPILER
Switches Available with FORTRAN-20
The /DEBUG Switch
COMPIL-C1ass Commands

READING THE LISTING
Compiler-Generated Variables

ERROR REPORTING
Fatal Errors and Warning Messages
Message Summary

CREATING A REENTRAN'I' FORTRAN PROGRAH
WITH LINK

WRITING USER PROGRAMS

GENERAL PROGRAMMING CONSIDERATIONS
Accuracy and Range of Double-Precision
Numbers
Writing FORTRAN-20 Programs for
Execution on Non-DEC Machines
Using Floating-Point DO Loops
Computation of DO Loop Iterations
Subroutines - Programming Considerations
Reordering of Computations
Dimensioning of Formal Arrays

FORTRAN-20 GLOBAL OPTIMIZATION
Optimization Techniques
Elimination of Redundant Computations
Reduction of Operator Strength
Removal of Constant Computation From
Loops
Constant Folding and Propagation
Removal of Inaccessible Code
Global Register Allocation
I/O Optimization
Uninitia1ized Variable Detection
Test Replacement
Improper Function References
Programming 'I'echniques for Effective
Optimization

vii

Page

15-8
15-11
15-12
15-12

15-14

15-15

16-1

16-1
16-1

A-I

B-1

B-1
B-1
B-3
B-4
B-5
B-6
B-17
B-17
B-18

B-18

C-1

C-1

C-1

C-1
C-2
C-2
C-2
C-3
C-4
C-4
C-5
C-5
C-5

C-6
C-7
C-7
C-7
C-8
C-8
C-8
C-8

C-9

C.3

C.3.1
C.3.2
C.3.3
C.3.4
C.3.S
C.3.6

C.3.7
C.3.7.1

C.3.7.2

C.3.8
C.3.8.1

APPENDIX D

D.l
D.2
D.3
D.4
D.4.1

D.4.2
D.4.2.1
D.4.2.2
D.S

D.S.l
D.S.2
D.S.2.1
D.S.3
D.S.4
D.6
D.6.1
D.6.2
D.6.3
D.6.3.1

D.6.3.2

D.6.3.3
D.6.3.4

D.6.3.S

D.6.3.6

D.6.3.7
D.6.3.8
D.6.3.9

D.6.3.10
D.6.3.11

D.7
D.8

CONTENTS (CONT.)

INTERACTING WITH NON-FORTRAN PROGRAMS
AND FILES

Calling Sequences
Accumulator Usage
Argument Lists
Argument Types
Description of Arguments
Converting Existing MACRO Libraries
for use with FORTRAN-20
Interaction with COBOL
Calling FORTRAN-20 Subroutines from
COBOL Programs
Calling COBOL Subroutines from
FORTRAN-20 Programs
LINK Overlay Facilities
Conventions

FOROTS

HAROWARE AND SOFTWARE REQUIREMENTS
FEATURES OF FOROTS
ERROR PROCESSING
INPUT/OUTPUT FACILITIES

Input/Output Channels Used Internally by
FOROTS
File Access Modes
Sequential Transfer Mode
Random Access Mode

ACCEPTABLE TYPES OF OATA FILES ANO THEIR
FORMATS

ASCII Data Files
FORTRAN Binary Oata Files
Format of Binary Files
Mixed Mode Oata Files
Image Files

USING FOROTS
FOROTS Entry Points
Calling Sequences
MACRO Calls for FOROTS Functions
I/O Statements, Sequential Access
Calling Sequences
NAMELIST I/O Sequential Access Calling
Sequences
Array Offsets and Factoring
I/O Statements Random Access Calling
Sequences
Calling Sequences for Statements That
Use Oefault Oevices
Statements to position Magnetic
Tape Units
List Oirected Input/Output Statements
Input/Output Oata Lists
OPEN and CLOSE Statements,
Calling Sequences
Memory Allocation Routines
Software Channel Allocation and
Oe-allocation Routines

FUNCTIONS TO FACILITATE OVERLAYS
LOGICAL/PHYSICAL OEVICE ASSIGNMENTS

viii

Page

C-9
C-9
C-IO
C-ll
C-12
C-13

C-14
C-20

C-21

C-22
C-22
C-23

D-l

D-l
0-2
0-3
0-3

D-3
0-4
0-4
0-4

0-4
D-4
D-S
O-S
D-12
0-13
0-13
0-14
0-14
O-IS

0-16

0-17
D-18

0-20

0-20

0-22
0-22
0-23

0-26
0-27

0-28
0-29
0-32

APPENDIX E

E.l
E.l.l
E.l.2
E.l.3
E.2
E.2.1
E.3
E.4
E.S
E.6
E.7
E.8
E.9

APPENDIX F

APPENDIX G

APPENDIX H

INDEX

TABLE 1-1
2-1
3-1
3-2
4-1
4-2

4-3
4-4
4-S
4-6
4-7
8-1

10-1
10-2
10-3
10-4
12-1
13-1
13-2

13-3
13-4

13-S
14-1

lS-l

CONTENTS (CONT.)

FORDDT

INPUT FORMAT
Variables and Arrays
Numeric Conventions
Statement Labels and Source Line Numbers

NEW USER TUTORIAL
Basic Commands

FORDDT AND THE FORTRAN-20/DEBUG SWITCH
LOADING AND STARTING FORDDT
SCOPE OF NAME AND LABEL REFERENCES
FORDDT COMMANDS
ENVIRONMENT CONTROL
FORTRAN-20/0PTIMIZE SWITCH
FORDDT MESSAGES

COMPILER MESSAGES

FOROTS ERROR MESSAGES

DECSYSTEM-10 COMPATABILITY

TABLES

FORTRAN Statement Categories
FORTRAN Character Set
Constants
Use of Symbolic Names
Arithmetic Operations and Operators
Type of the Result Obtained From
Mixed Mode Operations
Permitted Base/Exponent Type Combinations
Logical Operators
Logical Operations, Truth Table
Relational Operators and Operations
Hierarchy of FORTRAN-10 Operators
Rules for Conversion in Mixed Mode
Assignments
FORTRAN-20 Logical Device Assignments
Summary of READ Statements
Summary of WRITE Statements
Summary of I/O Statements
OPEN/CLOSE Statement Arguments
FORTRAN-20 Conversion Codes
Action of Field Descriptors On
Sample Data
Numeric Field Codes
Descriptor Conversion of Real and Double
Precision Data According to Magnitude
FORTRAN-20 Print Control Characters
Summary of FORTRAN-20 Device Control
Statements
Intrinsic Functions (FORTRAN-20 Defined
Functions)

ix

Page

E-l

E-2
E-2
E-3
E-3
E-3
E-3
E-7
E-7
E-8
E-8
E-17
E-17
E-17

F-l

G-l

H-l

Index-l

1-2
2-1
3-1
3-6
4-1

4-3
4-4
4-S
4-6
4-7
4-10

8-2
10-4
10-lS
10-17
10-24
12-11
13-3

13-S
13-6

13-8
13-17

14-4

lS-4

15-2

15-3
B-1
B-2
C-l
D-l
D-2
E-l
G-l

G-2

CONTENTS (CaNT.)

Basic External Functions (FORTRAN-20
Defined Functions)
FORTRAN-20 Library Subroutines
FORTRAN-20 Compiler Switches
Modifiers to /DEBUG Switch
Argument Types and Type Codes
Function Numbers and Function Codes
FORTRAN Device Table
Table of Commands
FOROTS I/O Error Messages and ERRSNS
Returned Values
FOROTS Arithmetic and Library Error
Messages

x

Page

15-9
15-17

B-2
B-3
C-12
D-30
D-33
E-l

G-2

G-5

CHAPTER 1

PROLOGUE

1.1 BACKGROUND

A FORTRAN source program consists of statements constructed using the
language elements and the syntax described in this manual. A
statement performs one of the following functions:

1. Causes operations such as multiplication, division, and
branching to be carried out.

2. Specifies the type and format of data being processed.

3. Specifies the characteristics of the source program.

FORTRAN statements are composed of keywords, i.e., words that are
recognized by the compiler, used with elements of the language set:
constants, variables, and expressions. There are two basic types of
FORTRAN statements: executable and nonexecutable.

Executable statements specify the action of the program;
nonexecutable statements describe the characteristics and arrangement
of data, editing information, statement functions, and the kind of
subprograms that may be included in the program. The compilation of
executable statements results in the creation of executable code in
the object program. Nonexecutable statements provide information only
to the compiler; they do not create executable code.

In this manual, the FORTRAN statements are grouped into 12 categories,
each of which is described in a separate chapter. The name,
definition, and chapter reference for each statement category are
given in Table 1-1.

The basic FORTRAN language elements, (constants, variables, and
expressions), the character set from which they may be formed, and the
rules that govern their construction and use are described in Chapters
2 through 4.

1-1

Chapter
Reference

5

6

7

8

9

10

11

12

13

14

15

16

PROLOGUE

Table 1-1
FORTRAN Statement Categories

Category
Name

Compilation Control
Statements

Specification
Statements

DATA
Statements

Assignment
Statements

Control
Statements

Input/Output
Statements

NAME LIST
Statements

File Control
Statements

FORMAT
Statements

Device Control
Statements

Subprogram
Statements

BLOCK DATA
Statements

Function

Identify programs
their beginning
points.

and
and

indicate
ending

Declare the properties of
variables, arrays, and functions.

Assign initial values to
variables and array elements.

Assign values to named variables
and array elements.

Determine the order of execution
of the object program and
terminate its execution.

Transfer data between
storage and
input/output devices.

internal
specified

Establish lists that are used
with certain input/output
statements to transfer data that
appears in a special type of
record.

Identify, open, and close files
and set parameters for input and
output operations between files
and the processor.

Specify formats for data
input/output devices.

on

Control the positioning of
records or files on certain
input/output devices.

Define functions and subroutines
and their entry points.

Define data specification
subprograms that may initialize
common storage areas.

1-2

PREFACE

This manual describes the FORTRAN language as implemented for the
DECsystem-20 FORTRAN Language Processing System. In the text, the
language is called FORTRAN-20 (to distinguish it from ANSI FORTRAN),
or simply FORTRAN.

Since this is a reference manual, we assume that you have used FORTRAN
before. If you haven't, you should read one of the many introductory
FORTRAN texts.

Your use of FORTRAN may also require use of other DECsystem-20
programs: the monitor, the CREF program, the debugging program, a
text editor, and the BATCH program. These are described in the
following manuals:

User's Guide
DEC-20-0UGAA-A-D

Monitor Calls User's Guide
DEC-20-UMUGA-A-D

EDIT User's Guide
DEC-20-UEUGA-A-D

BATCH Reference Manual
DEC-20-0BRMA-A-D

The standard for FORTRAN is the American National Standards Institute
(ANSI) FORTRAN, X3.9-1966. FORTRAN-20 extensions and additions to

ANSI FORTRAN are gray shaded.

xi

CHAPTER 2

CHARACTERS AND LINES

2.1 CHARACTER SET

Table 2-1
FORTRAN.
acceptable
characters
CONTROL-Z,

lists the digits, letters, and symbols recognized by
The remainder of the ASCII-1968 character set (1) , is
within literal constants or comment text, but these
cause fatal errors in other contexts. An exception is

which, when used in terminal input, means end-of-file.

NOTE

Lower-case alphabet characters are
treated as upper-case outside the
context of Hollerith constants, literal
strings, and comments.

Table 2-1
FORTRAN Character Set

Letters

A,a J, j S,s
B,b K,k T,t
C,c L,l U,u
D,d M,m V,v
E,e N,n W,w
F,f 0,0 X,x
G,g P,p Y,y
H,h Q,q Z,z
I,i R, r

Digits

0 5
1 6
2 7
3 8
4 9

1. The complete ASCII-1968 character set is defined in the X3.4-l968
version of the "American National Standard for Information
Interchange," and is given in Appendix A.

2-1

! Exclamation

CHARACTERS AND LINES

Table 2-1 (Cont.)
FORTRAN Character Set

Symbols

Point , Comma
1/ Quotation Marks - Hyphen (Minus)
Number Sign . Period (Decimal
$ Dollar Sign / Slant (slash)
& Ampersand : Colon
I Apostrophe ; Semicolon
(Opening Parenthesis < Less Than
) Closing Parenthesis = Equals
* Asterisk > Greater Than
+ Plus "- Circumflex

Line Termination Characters

Line Feed
Form Feed
vertical Tab

Line Formatting Characters

Carriage Return
Horizontal Tab
Blank

Point)

Note that horizontal tabs normally advance the character position
pointer to the next position that is an even multiple of 8. An
exception to this is the initial tab, which is defined as a tab that
includes or starts in character position 6. (Refer to Section 2.3.1
for a description of initial and continuation line types.) Tabs within
literal specifications count as one character even though they may
advance the character position as many as eight places.

2.2 STATEMENT, DEFINITION, AND FORMAT

Source program statements are divided into physical lines. A line is
defined as a string of adjacent character positions, terminated by the
first occurrence of a line termination character regardless of
context. Each line is divided into four fields:

Line Character Positions -----------------+1_\
234 5 6 7 8 70 71 72

~ __ ~~--~'~'~---------y----------J
Statement
Label Field

Continuation
Field

Statement Field

2-2

73

Remarks

CHARACTERS AND LINES

2.2.1 Statement Label Field and State~ent Numbers

You may place a number ranging from 1 to 99999 in the statement label
field of an initial line to identify the statement. Any source
program statement that is referenced by another statement must have a
statement number. Leading zeros and all blanks in the label field are
ignored, e.g., the numbers 00105 and 105 are both accepted as
statement number 105. You may assign the statement numbers in a
source program in any order; however, each statement number must be
unique with respect to all other statements in the program or
subprogram. You cannot label non-executable statements other than
FORMAT and END statements.

A main program and a subroutine may contain identical statement
numbers. In this case, references to these numbers are understood to
mean the numbers in the same program unit in which the reference is
made. An example:

Assume that main module MAINMD
contain statement number 105.
instance, in MAINMD will refer to
NOT to 105 in SUBI. A GO TO in
to 105 in SUBI.

and subprogram SUBI both
A GO TO statement, for

statement 105 in MAINMD,
SUBI will transfer control

When you enter source programs into the system via a standard user
terminal, you may use an initial tab to skip all or part of the label
field.

If an initial tab is encountered during compilation, FORTRAN examines
the character immediately following the tab to determine the type of
line being entered. If the character following the tab is one of the
digits 1 through 9, FORTRAN considers the line as a continuation line
and the second character after the tab as the first character of the
statement field. If the character following the tab is other than one
of the digits 1 through 9, FORTRAN considers the line to be an initial
line and the character following the tab is considered to be the first
character of the statement field. The character following the initial
tab is considered to be in character position 6 in a continuation
line, and in character position 7 in an initial line.

2.2.2 Line Continuation Field

Any alphanumeric character (except a blank or a zero) placed in
field (position 6) identifies the line as a continuation line.
Section 2.3.1 for description.)

this
(See

Whenever you use a tab to skip all or part of the label field of a
continuation line, the next character you enter must be one of the
digits 1 through 9 to identify the line as a continuation line.

2.2.3 Statement Field

Any FORTRAN statement may appear in this field. Blanks (spaces) and
tabs do not affect compilation of the statement and may be used freely
in this field for appearance purposes, with the exception of textual
data given within either a literal or Hollerith specification where
blanks and tabs are significant characters.

2-3

CHARACTERS AND LINES

2.2.4 Remarks

In lines consisting of 73 or more character positions, only the first
72 characters are interpreted by FORTRAN. (Note that tabs generally
occupy more than one character position, usually advancing the counter
to the next character position that is an even multiple of eight.) All
other characters in the line (character positions 73, 74 ... etc.) are
treated as remarks and do not affect compilation.

Note that remarks may also be added to a line in character positions 7
through 72, provided the text of the remark is preceded by the symbol
"!" (Refer to Section 2.3.3.)

2.3 LINE TYPES

A line in a FORTRAN source program may be:

1. An initial line,

2. A continuation line,

3. A m'u"i'tI~:";'sWtatement line,

4. A comment line,

5. A debug line, or

6. A blank line.

Each of these line types is described in the following paragraphs.

2.3.1 Initial and Continuation Line Types

A FORTRAN statement may occupy the statement fields of up to 20
consecutive lines. The first line in a multi-line statement group is
referred to as the initial line; the succeeding lines are referred to
as continuation lines.

An initial line may be assigned a
either a blank or a zero in
character position 6.

statement number and must
its continuation line field,

have
i . e • ,

If you enter an initial line via a keyboard input device, you may use
an initial tab to skip all or part of the label field. If you use an
initial tab for this purpose, you must immediately follow it with a
non-numeric character, i.e., the first character of the statement

,field must be non-numeric.

Continuation lines cannot be assigned statement numbers; they are
identified by any alphanumeric character (except for a blank or zero)
placed in character position 6 of the line, i.e., continuation line
field. The label field of a continuation line is treated as remark
text.

If vou are entering a continuation line via a keyboard, you may use an
;initial tab to skip all or part of the label field; however, the tab
imust be followed immediately by a numeric character other than zero.
lThe tab-numeric combination identifies the line as a continuation
jline.

2-4

CHARACTERS AND LINES

Note that blank lines, comments, and debug lines that are treated like
comments, i.e., debug lines that are not compiled with the rest of the
program (refer to Section 2.3.4) terminate a continuation sequence.

Following is an example of a 4-1ine FORTRAN FORMAT statement using
initial tabs:

105 FORMAT (lHl,17HINITIAL CHARGE = ,FIO.6,10H COULOMB,6X,
213HRESISTANCE = ,F9.3,6H OHM/ISH CAPACITANCE = ,FIO.6,
38H FARAD,11X,13HINDUCTANCE = ,F7.3,8H HENRY///
421H TIME CURRENT/7H MS,10X.2HMA///)

Continuation Line Characters, i.e., 2, 3, and 4

2.3.2 Multi-Statement Lines

You may write more than one FORTRAN statement in the statement field
of one line. The rules for structuring a multi-statement line are:

1. Successive statements must be separated by semicolons (;).

2. Only the first statement in the series can have a statement
number.

3. Statements following the first statement cannot
continuation of the preceding statement.

be a

4. The last statement in a line may be continued to the next
line if that next line is made a continuation line.

An example of a multi-statement line is:

450 DIST=RATE * TIME ;TIME=TIME+0.05 iCALL PRIME(TIME,DIST)

2.3.3 Comment Lines and Remarks

Lines that contain descriptive text only are referred to as comment
lines. Comment lines are commonly used to identify and introduce a
source program, to describe the purpose of a particular set of
statements, and to introduce subprograms.

To structure a comment line:

1. You must place one of the characters C (or c), $,/,*, or
in character position 1 of the line to identify it as a
comment line.

2. You may write the text into character positions 2 through the
end of the line.

3. You may place comment lines anywhere in the source program,
but they cannot precede a continuation line because comments
terminate a continuation sequence.

4. You may write a large comment as a sequence of any number of
lines; however, each line must carry the identifying
character (C,$,/,*, or 1) in its first character position.

2-5

CHARACTERS AND LINES

The following is an example of a comment that occupies more than one
line.

CSUBROUTINE - A12
CTHE PURPOSE OF THIS SUBROUTINE IS
CTO FORMAT AND STORE THE RESULTS OF
CTEST PROGRAM HEAT TEST-llOl

Comment lines are printed on all listings, but are otherwise ignored
by the compiler.

You may add a remark to any statement field, in character positions 7
through 72, provided the symbol! precedes the text. For example, in
the line

IF(N.EQ.O)STOP! STOP IF CARD IS BLANK

the character group "Stop if card is blank" is identified as a remark
by the preceding! symbol. Remarks do not result in the generation
of object program code, but they will appear on listings. The symbol
1, indicating a remark, must appear outside the context of a literal
specification.

Note that characters appearing in character positions 73 and beyond
are automatically treated as remarks, so that the symbol need not
be used. (Refer to Section 2.2.4.)

2.3.4 Debug Lines

As an aid in program debugging, a D (or d) in character position 1 of
any line causes the line to be interpreted as a comment line, i.e.,
not compiled with the rest of the program unless the /INCLUDE switch
is present in the command string. (Refer to Appendix C for a

,description of the file switch options.) When the /INCLUDE switch is
f present in the command string, the D (or d) in character position 1 is
, treated as a blank so that the remainder of the line is compiled as an
ordinary (noncomment) line. Note that the initial and all
continuation lines of a debug statement must contain a D (or d) in
character position 1.

2.3.5 Blank Lines

You may insert lines consisting of only blanks, tabs, or no characters
anywhere in your source program except immediately preceding a
continuation line, because blank lines are by definition initial lines
and as such terminate a continuation sequence. Blank lines are used
for formatting purposes only; they cause blank lines to appear in
their corresponding positions in source program listings; otherwise,
they are ignored by the compiler.

2.3.6 Line-Sequenced Input
pr\nmn7\,...,. __: ___ ,,_ ... _____ i.._ ,..: _____ ... ____ ..:1 ..c.:, __ ___ * __ ..:1 __ ...:1 '- __ M1""\Trrt __

L·V~"J.J:\.r\LII V1:''-.LVllct.L.1.,Y ctl,,;l,,;t::1:''-;:' .1..Lllt::-i:)t::YUt::lll,,;t::U LJ..1.t::i:) cti:) 1:'LVUUI,,;t::U U,Y I:.1.J.1.J. UL

BASIC. These sequence numbers are used in place of the listing line
numbers normally generated.

2-6

CHARACTERS AND LINES

2.4 ORDERING OF STATEMENTS

The order in which you place statements in a program unit is
important. That is, certain types of statements have to be processed
before others to guarantee that compilation takes place as you expect.
The proper sequence for statements is summarized by the following
diagram.

Comment Lines

PROGRAM, FUNCTION, SUBPROGRAM, or
BLOCK DATA Statements

FORMAT Statements

IMPLICIT Statements

PARAMETER Statements

DIMENSION, COMMON,
EQUIVALENCE, EXTERNAL
NAMELIST, or Type
Specification Statements

Statement
Function
Definitions

DATA Statements

END Statement

Executable
Statements

Horizontal lines indicate the order in which statements must appear.
That is, you cannot intersperse horizontal sections. For example, all
PARAMETER statements must appear after all IMPLICIT statements and
before any DATA statements, i.e., PARAMETER, IMPLICIT, and DATA
statements cannot be interspersed. Statement function definitions
must appear after IMPLICIT statements and before executable
statements.

Vertical lines indicate the way in which certain types of statements
may be interspersed. For example, you may intersperse DATA statements
with statement function definitions and executable statements. you
may intersperse FORMAT statements with IMPLICIT statements, parameter
statements, other specification statements, DATA statements, statement
function definitions, and executable statements. The only restriction
on the placement of FORMAT statements is that they must appear after
any PROGRAM, FUNCTION, subprogram, and BLOCK DATA statements, and
before the END statement.

2-7

CHARACTERS AND LINES

Special Cases:

1. The placement of an INCLUDE statement is dictated by the
types of statements to be INCLUDEd.

2. The ENTRY statement is allowed only in functions or
subroutines. All executable references to any of the dummy
parameters must physically follow the ENTRY statement unless
the references appear in the function definition statement,
the subroutine, or in a preceding ENTRY statement.

3. BLOCK DATA subprograms cannot contain any executable
statements, statement functions, FORMAT statements, EXTERNAL
statements, or NAMELIST statements. (Refer to Section 16.1.)

When statements are out of place, FORTRAN issues messages, some of
which may indicate fatal errors.

2-8

CHAPTER 3

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

3.1 DATA TYPES

The data types you may use in FORTRAN source programs are:

1. integer,

2. real,

3. double-precision,

4. complex,

5. octal,

6. d~llble-oct:al, ,

7. literal t

8. statement label, and

9. logical.

The use and format of each of the foregoing data types are
in the descriptions of the constant having the same
(Sections 3.2.1 through 3.2.8).

3.2 CONSTANTS

discussed
data type

Constants are quantities that do not change value during the execution
of the object program.

The constants you may use in FORTRAN are listed in Table 3-1.

Category

Numeric Integer,
octal

Truth Values Logical
Literal Data Literal
S.tatement~. Label Address

Table 3-1
Constants

Constant(s) Types

real, double-precision,

of statement lap.~l

3-1

complex, and

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

3.2.1 Integer Constants

An integer constant is a string of from one to eleven digits that
represents a whole decimal number (a number without a fractional
part). Integer constants must be within the range of (-2**35)-1 to
(+2**35)-1 (-34359738367 to +34359738367). positive integer constants

may optionally be signed; negative integer constants must be signed.
You cannot use decimal points, commas, or other symbols on integer
constants (except for a preceding sign, + or -). Examples of valid
integer constants are:

345
+345
-345

Examples of invalid integer constants are:

(use of decimal point)
(use of comma)

+345.
3,450
34.5 (use of decimal point; not a whole number)

3.2.2 Real Constants

A real constant may have any of the following forms:

1. A basic real constant: a string of decimal
immediately by a decimal point followed
decimal fraction, e.g., 1557.42.

digits followed
optionally by a

2. A basic real constant followed immediately by a decimal
integer exponent written in E notation (exponential notation)
form, e.g., 1559.E2.

3. An integer constant (no decimal point) followed by a decimal
integer exponent written in E notation, e.g., l559E2.

Real constants may be of any size; however, each will be rounded to
fit the precision of 27 bits (7 to 9 decimal digits).

Precision for real constants is maintained to approximately eight
significant digits; the absolute precision depends upon the numbers
involved.

The exponent field of a real constant written in E
cannot be empty (blank); it must be either a zero
constant. The magnitude of the exponent must be greater
equal to or less than +38 (i.e., -38<n<+38). The
examples of valid real constants.

-98.765
7.0E+0
.7E-3
5E+5
50115.
50.El

(7 •)
(.0007)
(500000.)

(500.)

The following are examples of invalid real constants.

72.6E75
.375E
500

(exponent is too large)
(exponent incorrectly written)
(no decimal point given)

3-2

notation form
or an integer
than -38 and
following are

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

3.2.3 Double-Precision Constants

Constants of this type are similar to real constants written in E
notation form; the direct differences between these two constants
are:

1. Double-precision constants, depending on their magnitude,
have precision of 16 to 18 places rather than the 8-digit
precision obtained for real constants.

2. Each double-precision
locations.

constant occupies two storage

3. The letter D, instead of E, is used in double-precision
constants to identify a decimal exponent.

You must use both the letter D and an exponent (even of zero) in
writing a double-precision constant. The exponent need only be signed
if it is negative; its magnitude must be greater than -38 and equal
to or less than +38 (i.e., -38<n~+38). The range of magnitude
permitted a double-precision constant is 0.14 X 10**(-38) to 3.4 X
10**(+38)

The following are examples of valid double-precision constants.

7.9D03 (= 7900)
7.90+03 (= 7900)
7.9D-3 (= .0079)
79D03 (= 79000)
79DO (= 79)

The following are examples of invalid double-precision constants.

7.9D99 (exponent is too large)
7.9ES (" E" denotes a single-precision constant)

3.2.4 Complex Constants

You can represent a complex constant by an ordered pair of integer,
real, or octal constants written within parentheses and separated by a
comma. For example, (.70712, -.70712) and (8.763E3, 2.297) are
complex constants.

In a complex constant the first (leftmost) real constant of the pair
represents the real part of the number; the second real constant
represents the imaginary part of the number. Both the real and
imaginary parts of a complex constant can be signed.

The real constants that represent the real and imaginary parts of a
complex constant occupy two consecutive storage locations in the
object program.

3-3

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

3.2.5 Octal Constants

You may use octal numbers (radix 8) as constants in arithmetic,
expressions, logical expressions, and data statements. Octal numbers
up to 12 digits in length are considered standard octal constants;
they are stored right-justified in one processor storage location.

;When necessary, standard octal constants are padded with leading zeros
to fill their storage location.

~If you specify more than 12 digits in an octal number, it is
considered a double octal constant. Double octal constants occupy two
storage locations and may contain up to 24 right-justified octal
digits; zeros are added to fill any unused digits.

If you assign a single octal constant to a double precision or complex'
variable, it is stored, right-justified, in the high-order word of the

!variable. The low-order portion of the variable is set to zero.

'If you assign a double octal constant to a double precision or complex
,variable, it is stored right-justified starting in the low-order

(rightmost) word and proceeds leftwards into the high-order word.

All octal constants must:

1. be preceded by a double quote (") to identify the digits as
octal, e.g., 11777, and

2. be signed if negative, but optionally signed if positive.

3. contain one or more of the digits a through 7, but not 8 or
9.

The following are examples of valid octal constants:

"123456700007
" 1234567000 a 7
+"12345
-"7777
"-7777

The following are examples of invalid octal constants:

"12368
7777

(contains an 8)
(no identifying double quotes)

When you use an octal constant as an operand in an expression, its
form (bit pattern) is not converted to accommodate it to the type of
any other operand. For example, the subexpression (A+"202 400 000
000) has as its result the sum of A with the floating point number
2.0; while the'subexpression (1+'1202 400 000 OOO) has as its result
the sum of I with a large integer.

iOctal constants may not be used as stand-alone arguments for library
. functions that require non-octal arguments. MINO, for instance,
requires INTEGER arguments and cannot accept octal arguments.

When you combine a double octal constant in an expression with either:
. an integer or real variable, only the contents of the high order:
location (leftmost) are used.

3-4

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

3.2.6 Logical Constants

The Boolean values of truth and falsehood are represented in FORTRAN
source programs as the logical constants .TRUE. and .FALSE .• Always
write logical constants enclosed by periods as in the preceding
sentence.

Logical quantities may be operated on in arithmetic and logical
statements. Only the sign bit of a numeric used in a logical IF
statement is tested to determine if it is true (sign is negative) or
false (sign is positive) .

3.2.7 Literal Constants

A literal constant may be either of the following:

1. A string of alphanumeric and/or special characters contained
within apostrophes, e.g., 'TEST#S'.

2. A Hollerith literal, which is written as a string of
alphanumeric and/or special characters preceded by nH (e.g.,
nHstring). In the prefix nH, the letter n represents a
number that specifies the exact number of characters
(including blanks) that follow the letter Hi the letter H
identifies the literal as a Hollerith literal. The following
are examples of Hollerith literals:

2HAB
14HLOAD TEST #124
6H#124-A

NOTE

A tab (-I) in a Hollerith literal is counted as one
character, e.g., 3H -I AB.

You may enter literal constants into DATA statements as a string of:

1. up to ten 7-bit ASCII characters for complex or double
precision type variables, and

2. up to five 7-bit ASCII characters for all other type
variables.

The 7-bit ASCII characters that comprise a literal constant are stored
left-justified (starting in the high-order word of a 2-word precision
or complex literal) with blanks placed in empty character positions.
Literal constants that occupy more than one variable are stored as
successive variables in the list. The following example illustrates
how the string of characters

A LITERAL OF MANY CHARACTERS

is stored in a six-element array called A.

DIMENSION A(6)
DATA A/' A LITERAr. OF MANY CHARAC.TERS '/.,<.

3-5

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

A (1) is set to 'A LIT'
A (2) is set to 'ERAL ,
A (3) is set to 'OF MA'
A (4) is set to 'NY CHi
A (5) is set to 'ARACT'
A (6) is set to 'ERS

3.2.8 Statement Label Constants

Statement labels are numeric identifiers that represent program
statement numbers.

: You write statement label constants as strings of from one to five
: decimal digits, which are preceded by either a dollar sign ($) or an

ampersand (&). For example, either $11992 or &11992 may be used as a
< statement label constant.

You use statement label constants only in the argument list of CALL
statements to identify the statement to return to in a multiple RETURN
statement. (Refer to Chapter 15.)

3.3 SYMBOLIC NAMES

Symbolic names may cq~sist of ~~y ~lphanumer~c .~ombin~tion of from one
to six~ characters. You may use more than six characters I but FORTRAN
will ignore all but .th~ first six. The first character of a symbolic
name must be an alphabetic "6haiacter.

The following are examples of legal symbolic names:

A12345
IAMBIC
ABLE

The following are examples of illegal symbolic names:

iAMBIC
lAB

(symbol used as first character)
(number used as first character)

You use symbolic names to identify specific items of a source program;
Table 3-2 lists these items, together with an example of a symbolic
name and text reference for each.

Table 3-2
Use of Symbolic Names

For a Detailed
Symbolic Names Description

Can Identify For Example See Section

1. Variables PI, CONST, LIMIT 3.4
2. Arrays TAX 3.5
3. Array elements TAX (NAME, INCOME) 3.5.1
4. Functions MYFUNC, VALFUN 15.2
5. Subroutines CALCSB, SUB2, LOOKUP 15.5
6. External library SIN, ATAN, COSH 15.4

functions
7. COMMON block names DATAR, COMDAT 6.5

3-6

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

3.4 VARIABLES

A variable is a datum (storage location) that is identified by a
symbolic name and is not a constant, an array or an array element.
Variables specify values that are assigned to them by either
arithmetic statements (Chapter 8), DATA statements (Chapter 7), or at
run time via I/O references (Chapter 10). Before you assign a value
to a variable, it is termed an undefined variable, and you should not
reference it except to assign a value to it.

If you reference an undefined variable, an unknown value (garbage)
will be obtained.

The value you assign to a variable may be either a constant or the
result of a calculation that is performed during the execution of the
object program. For example, the statement IAB=5 assigns the constant
5 to the variable lAB; in the statement lAB=5+B, however, the value
of lAB at a given time will depend on the value of variable B at the
time the statement was last executed.

The type of a variable is the type of the contents of the datum that
it identifies. Variables may be:

1. integer

2. real

3. logical

4. double-precision, or

5. complex.

You may declare the type of a variable by using either implicit or
explicit type declaration statements (Chapter 6). However, if you do
not use type declaration statements, FORTRAN assumes the following
convention:

1. Variable names that begin with the letters I, J, K, L, M, or
N are normally integer variables.

2. Variable names that begin with any letter other than I, J, K,
L, M, or N are normally real variables.

Examples of determining the type of a variable according to the
foregoing convention are given in the following table:

Variable Beginning Letter Assumed Data Type

ITEMP I Integer
OTEMP 0 Real
KA123 K Integer
AABLE A Real

3.5 ARRAYS

An array is an ordered set of data identified by an array name. Array
names are symbolic names and must conform to the rules given in
Section 3.3 for writing symbolic names.

3-7

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

Each datum within an array is called an array element. As with
variables, you may assign a value to an array element. Before you
assign a value to an array element it is considered to be undefined;
you should not reference it until you have assigned it a value. If
you reference an undefined array element, the value of the element
will be unpredictable.

Name each element of an array by using the array name together with a
subscript that describes the position of the element within the array.

3.5.1 Array Element Subscripts

Give the subscript of an array element identifier within parentheses,
as either one subscript quantity or a set of subscript quantities
delimited by commas. write the parenthesized subscript immediately
after the array name. The general form of an array element name is AN
(Sl, S2, ... Sn), where AN is the array name and Sl through Sn represent
nnumber of subscript quantities. 'You may use any number of subsriiip~~

: quantities in an element 'name; however, the number used must always
. eq~al ~he' number of dimensions (Section 3.5.2) specified for the
array.

A subscript can be any compound expression (Chapter 4), for example:

1. Subscript quantities may contain arithmetic expressions that
involve addition, subtraction, multiplication, division, and
exponentiation. For example, (A+B,C*S,D/2) and
(A**3, (B/4+C)*E,3) are valid subscripts.

2. Arithmetic expressions used in array subscripts may be of any
type, but noninteger expresslons (including complex) are
~onverted to integer when the subscript is evaluated.

3. A subscript may contain function references (Chapter 14).
For example: TABLE (SIN (A) *B,2,3) is a valid array element
identifier.

4. Subscripts may contain array element identifiers nested to
any level as subscripts. For example, in the subscript
(I(J(K(L))) ,A+B,C) the first subscript quantity given is a
nested 3-level subscript.

Here are examples of valid array element subscripts:

1. IAB(l,S,3)

2. ABLE(A)

! 3. TABLEl(lO/C+K**2,A,B)

'4. MAT(A,AB(2*L),.3*TAB(A,M+l,D) ,55)

3-8

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

3.5.2 Dimensioning Arrays

You must declare the size (number of elements) of an array in order to
reserve the needed amount of locations in which to store the array.
Arrays are stored as a series of sequential storage locations.
Arrays, however, are visualized and referenced as if they were single
or multi-dimensional rectilinear matrices, dimensioned on a row,
column, and plane basis. For example, the following figure represents
a 3-row, 3-column, 2-plane array.

3 ROWS

~~ ~C:J ~~
<?"

'/,

3 COLUMNS

10-1058

You specify the size of an array by an array declarator written as a
subscripted array name. In an array declarator, however, each
subscript quantity is a dimension of the array and must be either an
integer variable or an integer constant.

For example, TABLE(I,J,K) and MATRIX (10,7,3,4) are valid array
declarators.

The total number of elements that comprise an array is the product of
the dimension quantities given in its array declarator. For example,
the array lAB dimensioned as lAB (2,3,4) has 24 elements (2 X 3 X 4
24) .

Dimension arrays only in the specification statements DIMENSION,
COMMON, and type declaration (Chapter 6). Subscripted array names
appearing in any of the foregoing statements are array declaratorsi
subscripted array names appearing in any other statements are always
array element identifiers. In array declarators the position of a
given subscript quantity determines the particular dimension of the
array (e.g., row, column, or plane) that it represents. The first
three subscript positions specify the number of rows, columns, and
planes that comprise the named arraYi each following subscript given
then specifies a set comprised of n-number (value of the subscript) of
the previously defined sets.

3-9

For exa~ple:

The Dimension Declarator Specifies the Array(s)

TAB (2)

TAB (2,2)

TAB (2,2,2)

TAB (2,2,2, 2) r-::.=-=--r----t:;-;-:;~;_:;_:;t1

NOTE

FORTRAN-20 permits any number of
dimensions in an array declarator.

3.5.3 Order of Stored Array Elements

The elements of an array are arranged in storage in ascending order.
The value of the first subscript quantity varies between its m1n1mum
and maximum values most rapidly. The value of the last given
subscript quantity increases to its maximum value least rapidly. For
example, the elements of the array dimensioned as 1(2,3) are stored in
the following order:

1(1,1) 1(2,1) 1(1,2) (2,2) (1,3) (2,3)

In the following list, the elements of the three-dimensional array
B(3,3,3) are stored row by row from left to right and from top to
bottom.

B (1,1,1) B (2,1,1) B (3,1,1) -,

Thus B(3,1,1) is stored before B(1,2,1), and so forth.

3-10

CHAPTER 4

EXPRESSIONS

4.1 ARITHMETIC EXPRESSIONS

Arithmetic expressions may be either simple or compound.
arithmetic expressions consist of an operand that may be:

1. a constant

2. a variable

3. an array element

Simple

4. a function reference (see Chapter 14 for description), or

5. an arithmetic
parentheses.

or logical expression written within

Operands may be of integer, real, double precision, complex, ~9£!;'~:l<L .9£1
JjJ:j~ru~lj type.

The following are valid examples of simple arithmetic expressions:

105
lAB
TABLE(3,4,5)
SIN (X)
(A+B)

(integer constant)
(integer variable)
(array element)
(function reference)
(a parenthetical expression)

A compound arithmetic expression consists of two or more operands
combined by arithmetic operators. Table 4-1 lists the arithmetic
operations permitted in FORTRAN and the operator recognized for each.

Table 4-1
Arithmetic Operations and Operators

Operation Operator Example

''>'., ,

o r "~~"""_~~~_~uj 1. Exponentiation **~or
,.

A**B
~ v> .~~ A

2. Multiplication * A*B
3. Division / A/B
4. Addition + A+B
5. Subtraction - A-B

4-1

EXPRESSIONS

4.1.1 Rules for Writing Arithmetic Expressions

Observe the following rules in structuring compound
expressions:

arithmetic

1. The operands compr1s1ng a compound arithmetic expression may
be of different types. Table 4-2 illustrates all permitted
combinations of data types and the type assigned to the
result of each.

2.

NOTE

one combination of data types, double-precision
complex, is prohibited in FORTRAN-20.

An expression cannot contain
operators. For example,
permitted.

two adjacent and unseparated
the expression A*/B is not

3. All operators must be included; no operation is implied.
For example, the expression A(B) does not specify
multiplication although this is implied in standard algebraic
notation. The expression A* (B) is required to obtain a
multiplication of the elements.

4. When you use exponentiation, the base quantity and its
exponent may be of different types. For example, the
expression ABC** 13 involves a real base and an integer
exponent. The permitted base/exponent type combinations and
the type of the result of each combination are given in Table
4-3.

4-2

~

I
w

Integer

Real

Double

Precision

Complex

Logical

Octal

Double

Oclal

Literal

For operator;

+. -. *. /

I. Type of operation

used

2. Type associated

with result

3. Conversion on

Argument I

4. Conversion on

Argument 2

I. Type of operation

used

2. Type associated

with result

3. Conversion on

Argument I

4. Conversion on

Argument 2

L Type of operation

used

2. Type associated

with result

3. Conversion on

Argument 1
4. Conversion on

Argument 2

I. Type of operation

used
2. Type associated

with result

3. Conversion on

Argument I
4. Conversion on

Argument 2

I. Type of operation

used

2. Type associated

with result

3. Conversion on

Argument I

4. Conversion on

Argument 2

L Typ~ of operation

used

, Type associated

with result

3. Conversion on

Argument I

4. Conversion on

Argument 2

I. Type of operation

used
, Type associated

with result

Con\"erslon on

Argument I

4. Conversion on

Argument 2

J. Type of operation

used

, Type associated

with result

3. Conversion on

Argument 1

Conversion on

Argument 2

Table 4-2
Type of the Result Obtained From Mixed Mode Operations

Integer

1. Integer

2. Integer

3. None

4. None

I. Real

, Real

J. None

4. From Integer to

Real

I. Double Precision

., Double Precision

3. None

4. From Integer to

Double Precision

I. Complex

C. Complex

3. None

4. From Integer to

Complex. Value

used as Real part.

I. Into~er

Intq~er

3. None

4. None

I. Integer

2. Integer

3. None

~. Non\?

I. Integer

2. Integer

3. lIigh order word

is used directly:

low ord er word

is ignored.

4. None

I. Integer

2. Integer

3. High order word

is used directly;

further words

ar e ignored.

4. None

Real

I. Real

, Real

3. From Integer to

Real

4, None

I. Real

, Real

3. None

4. None

I. Double l'recision

Double Precision

3. None

4. Used directly 'as

the hit:h order

,vend ~ low order

\'rard is zero.

1. Complex

_. Complex

3. 1\one

4. Used diredly as

the Real part:

unar-mary pari

2. Rf:tl

3. None

4. None

I. I{eal

, Real

J. Nont'

4. None

I. Real

.., Real

lIi,h order "mel
is used directly;

low order word

is ignored.

4. None

I. Real

_. Real

3. lIigh order word
is used directly;

further words

are ignored.

4. None

Type of Argument 2

Double

Precision

1. Douhle Precision

2. Double Precision

3. From Integer to

Double Precision

4. None

I. Double PreCision

, Double Precision

3. Used directly as
the high order

word: low order

word is zero.

4. None

I. Double Precision

2. Double Precision

3. None

4. None

Double Precision

_. [)l)uble PreciSion

J. lsed directly as

the high order

word; low order

word is zero.
4 1'>'one

Double Precision

, Double Precis,on

Used dire:tI>' 35

the high order

word: low order

word is zero.

4. l\one

I. Double Precision

2. Double Precision

3. :\ono

4. None

I. Double Precision

2. Double Precisi,'n

3. First two words

are used directly;

further words

are ignoretl.

4. None

Complex

I. ~'Ol1lplex

_. Complex

3. From lnte~er to

::omplex. Value

used as Real part
4. ','one

I. Complex

'1 ('ompJe~

3. Used directly as

the Real part:

,OlaVnar,. part

is zero.

4. None

I. Complex

2. Complex

3. None

4. None

I. Complex

, Complex

J. Used directly as

the R cal part;

imal'inary part

is zero

4. None

1. Complex

, Complex

.~. Used directly 3'

the Real part:

ima,:inary part

tS-ll'Tu

4. NOM

I. Complex

:!. Complex

3. Sone

4. None

1. Complex

, Complex

3. First two words

are used directly;

further words

are ignored.

4. t"one

Logical

Integer

Integer

3. None

..\. None

Real

3. ~one

4. ~onc

1. Douhle Precision

2. Double PreCISion

3. None

4. Used directly as

the high crder

word: low order

word is zero.

I. Compkx

2. Complex

3. t"one

4. Used d [rectlr as

the Real port;

i mag;~..!iY part
1") lero

I. Integer

2. Octal

3. None

4. None

I. Integer

, Octal

3. None

4. None

I. Integer

, Octal

3. lIi[t." order word

is used diredly:

low order word

is ignored.

4. None

I. Integer

~ Octal

3. High order word

is used directly;

further words

are ignored.

4. None

Octal

I. Integer

, Integer

3. l\one

4. t\onc

I. Real

2. Real

J. None

4. \"on"

I. Double PreCISion

Double Precision

3. None

4. Used directly as
the Jllgh order

v.onl: low order

word I~: leTO.

I: Complex

_. Complex

3. None

4. Used d itectly as

the Real rart:
imaginary part

Ie; 7l.'fO.

!. Integer

, Octal

.t. i\on~

I. Integer

_. Octal

3. None

4. :-';one

I. Integer

2. Octal

3. High order word

is used directly;

low order word

is ignored.

4. None

I. Integer

2. Oelal

3. High order word

is used directly:

further words

are ignored.

4. None

Double Octal

1. Intc~cr

j. :--one

4. lIigh order word

is used dirc('Uy:

lov; order word

is ignored.

L Real

3. \"onc

... lIi;:h order word

is used directly;

10"" order word

is ignored.

I. Double Precision

2. Double Precision

3. None

4. None

I. Complex

, Complex

3. NOM

4. None

I. Integer

, Octal

3. None

4. High order word

is used directly;

low order word

is ignured.

I. Integer

2. Octal

3. None

4. High order word

is used directly;

low order ,,"ord

is ignored.

I. Inter,er

2. Octal

3. High order word

is used directly:

low order word

is ignored.

4. High order word

is used directly;

low ordIT word

is ignored.

I. Integer

2. Octal

3. lIigh order wortl

is used directly:

further words

are ignored_

4. lIigh order word

is used directly:

low order word

is ignored.

I. Ir.:c;;:r

_. Integer

Snnc

4. !11;:h orJ ~r word

is u:;ed directly;

further \lords

::::.re i;nor~Ll.

1. Real

4. llj;~ ardor word

is lli('d directly;

further v.ords

are 19nored.

I. Double I'recision

2. Double !'recision

3. None

4. First two words

are used directly;

furth':! lNords

:lIe i::;ncred.

I. Complex

3. None

4. Firsl two "iords

are U"ed dir ectly.
Further words

are ignored.

I. Integor

, Octal

3. None

4. High order word

is used directly;

ftuther words

are ignored.

1. Integer

2. Octal

3. None

4. High order word

is used directly;

further words

are i~norcd.

L Integer

2. Octal

3. .1i~h mUe r worol
is u,cd directly:

lo,w order worlh

He it,IHHt:U.

4. rlii'h 'order word
is lIsed directly;

Ill'" ,,,dcr worJ,

'fC L:llor;'?d.

~. Octal

3. lIig:h order word

is used Girectly;

further words

arc ignored.

4. High order word

is used directly;

further words'

are ignored.

EXPRESSIONS

Table 4-3
Permitted Base/Exponent Type Combinations

Base Operand Exponent Operand

Integer Real Double Complex
Precision

Integer Integer Real Double Complex
Precision

Real Real Real Double Complex
Precision

Double Double Double Double (Prohibited)
Precision Precision Precision Precision
Complex Complex Complex (Prohibited) Complex

4.2 LOGICAL EXPRESSIONS

Logical expressions may be either simple or compound. Simple logical
expressions consist of a logical operand, which may be a logical type:

1. constant

2. variable

3. array element

4. function reference (see Chapter 15), or

5. another expression written within parentheses.

Compound logical expressions consist of two or more operands combined
by logical operators.

Table 4-4 gives the logical operators and a description of the
operation each provides.

4-4

Operator

.AND.

EXPRESSIONS

Table 4-4
Logical Operators

Description

AND operator. Both of the logical operands combined by
this operator must be true to produce a true result .

• OR. Inclusive OR operator. If either or both of the logical
operands combined by .OR. are true, the result will be
true.

• XOR.

.EQV.

.NOT.

Exclusive OR operator. If either but
logical operands combined by .XOR.
will be true.

not both of the
is true, the result

Equivalence operator. If the logical operands being
combined by .EQV. are both the same (both are true or
both are fa~se), the result will be true.

Complementation operator. This operator is used as a
prefix that specifies complementation (inversion) of the
item (operand or expression) that it modifies. The
original item, if true by itself, becomes false, and vice
versa.

write logical expressions in the general form P .OP. Q, where P and
Q are logical operand and .OP. is any logical operator but ".NOT.II.
The .NOT. operator complements the value of a logical operand; you
must write it immediately before the operand that it modifies, e.g.,
.NOT.P. Table 4-5 is a truth table illustrating all possibie logical
combinations of two logical operands (P and Q) and the resultant of
each combination.

When an operand of a logical
complex, only the high-order
specified logical operation.

expression is double-precision or
word of the operand is used in the

The assignment of a .TRUE. or a .FALSE. value to a given operand is
based only on the sign of the numeric representation of the operand.

4-5

EXPRESSIONS

Table 4-5
Logical Operations, Truth Table

When P is And Q is: Then the Expression:

True ----- .NOT.P

False ----- .NOT.P

True True P .AND. Q

True False P .AND. Q

False True P .AND. Q

False False P .AND. Q

True True P .OR. Q

True False P .OR. Q

False True P .OR. Q

False False P .OR. Q
,," "" . , ,. , ~ '" . " , ~ '>' .. , y' ~ 'v , y,,- '" ~

True True P .XOR. Q

True False P .XOR. Q

False True P . XOR. Q
,

False False P .XOR. Q

True True P .EQV. Q

True False P .EQV. Q

False True P. EQV. Q

False False P .EQV. Q

Examples

Assume the following variables:

variable

REAL, RUN
I,J,K
DP,D
L, A, B
CPX,C

Type

Real
Integer
Double Precision
Logical
Complex

Is:

False

True

True

False

False

False

True

True

True

False

False

True

True

False

True

False

False

True

Examples of valid logical expressions consisting of the foregoing
variables are:

L.AND.B
(RE"ACkI)"~"x6R'~"(Dp'+kf
L.AND'.A.OR .. NOT. (I"":K)

4-6

EXPRESSIONS

Logical functions are performed on the full 36-bit binary processor
representation of the operands involved. The result of a logical
operation is found by performing the specified function,
simultaneously, for each of the corresponding bits in each operand.
For example, consider the expression A=C.OR.D, where C=1I456 and
D=1I20l. The operation performed by the processor and the result are:

Word
Bits
Operand
Operand
Result A

o
C 0
D 0

o

1 ---t.~ 24
o ... 0
o t:o 0
o t:o 0

25 26
o 0
o 0
o 0

27
1
o
1

28
o
1
1

29
o
o
o

30
1
o
1

31
o
o
o

32
1
o
1

33
1
o
1

34 35
1 0
o 1
1 1

Table 4-5 also illustrates all possible logical combinations of two
one-bit binary operands (P and Q) and gives the result of each
combination. Just read 1 for true and 0 for false.

4.2.1 Relational Expressions

Relational expressions consist of two expressions combined by a
relational operator. The relational operator permits the programmer
to test, quantitatively, the relationship between two arithmetic
expressions.

The result of a relational expression is always a logically true or
false value.

In FORTRAN-20, you may write relational operators either as a 2-letter
.mnemonic enclosed. within ,periods, e.g., .GT., or _sy~bplicallyusing;
.thesymbols, ~, <, =_a~d #~ Table 4-6 lists both the mnemonic and
symbolic forms of the relational operators and specifies the type of
quantitative test performed by each operator.

Table 4-6
Relational Operators and Operations

Operators Relation Tested

Mnemonic Symbolic

.GT. > Greater than

.GE. >= Greater than or equal to

.LT. < Less than

.LE. <= Less than or equal to

.EQ. -- Equal to

.NE. # Not equal to

4-7

EXPRESSIONS

Write relational expressions in the general form A(l) .OP.A(2), where
A represents an arithmetic operand and .oP. is a relational operator.

You may mix arithmetic operands of type integer, real, and double
precision in relational expressions.

You may compare complex operands using only the operators .EQ. (==)
and .NE. (#) . Complex quantities are equal if the corresponding
parts of both words are equal.

Examples

Assume the following variables:

Variables

REAL, RON
I,J,K
DP,D
L,A,B
CPX,C

Type

Real
Integer
Double Precision
Logical
Complex

Examples of valid relational expressions consisting of the foregoing
variables are:

(REAL) . GT . 10
I == 5
C.EQ.CPX

Examples of invalid relational expressions consisting of the foregoing
variables are:

(REAL) .GT 10 (closing period missing from operator)

C>CPX (complex operands can only be combined by .EQ.
.NE. operators)

and

Examples of valid expressions that use both logical and relational
operators to combine the foregoing variables are:

(I.GT.IO).AND·t(J<=K);
«I*RON):;;~:(I/J» .OR*."K
(I • AND. K f#', ((REAL) . OR. (RON))
C:#CPX.OR.'R'ON

4-8

EXPRESSIONS

4.3 EVALUATION OF EXPRESSIONS

The following determine the order of computation of an expression:

1. the use of parentheses

2. an established hierarchy for the execution of arithmetic,
relational, and logical operations and

3. the location of operators within an expression.

4.3.1 Parenthetical Subexpressions

In an expression, all subexpressions written within parentheses are
evaluated first. When parenthetical subexpressions are nested (one
contained within another) the most deeply nested subexpression is
evaluated first, the next most deeply nested subexpression is
evaluated second, and so on, until the value of the. final
parenthetical expression is computed. When more than one operator is
contained by a parenthetical subexpression, the required computations
are performed according to the hierarchy of assigned operators
(Section 4.3.2).

Example:

The separate computations performed in evaluating the expression

A+B/((A/B)+C)-C are:

1. Rl=A/B

2. 2=Rl+C

3. R3=B/R2

4. R4=R3-C

S. RS=A+R4

where: Rl through RS represent the interim and final results of the
computations performed.

4.3.2 Hierarchy of Operators

The following hierarchy (order of execution) is assigned to the
classes of FORTRAN operators:

first,
second,
third,

arithmetic operators,
relational operators, and

logical operators.

4-9

EXPRESSIONS

Table 4-7 specifies the precedence assigned to the
operators of the foregoing classes.

individual

With the exception of integer division and exponentiation, all
operations on expressions 'or subexpressions involving operators of
equal precedence are computed in any order that is algebraically
correct.

A sUbexpression of a given expression may be computed in any order.
For example, in the expression (F(X) + A*B}, the function reference
may be computed either before or after A*B.

Class Level

EXPONENTIAL First

Second
ARITHMETIC Third

Fourth

RELATIONAL Fifth

Sixth
Seventh

LOGICAL Eighth
'Nint'h

,~, ~. ~

Table 4-7
Hierarchy of Operators

Symbol or

**

Mnemonic

-(unary minus) and + (unary
*,/
+,-

plus)

~~T.,~GE,.".LT~".LE., .EQ., .NE.
or

"> , >= , < ,~= , == , #, ..

.NOT.

.AND.

.OR .
~ ,."'>"' "'-

• EQV .. 1. ~X6if.

Operations specifying integer division are evaluated from left to
right. For example, the expression I/J*K is evaluated as if it had
been written as (I/J}*K. But this left-to-right evaluation process
can be overridden by parentheses. I/J*K(evaluated as(I/J) *K} does
not equal I/(J*K} ,which is evaluated as written here.

When a series of exponentiation operations occurs in an expression, it
is evaluated in order from right to left. For example, the expression
A**2**B is evaluated in the following order:

first Rl = 2**B (intermediate result)
second R2 = A**Rl (final result).

Similarly, here too, parentheses alter the evaluation
expression. (A**2}**B is evaluated in these two steps:

first Rl = A**2 (intermediate result)
second R2 = Rl**2 (final result)

4.3.3 Mixed Mode Expressions

of the

Mixed mode expressions are evaluated on a
subexpression-by-subexpression basis, with the type of the results
obtained converted and combined with other results or terms according

: to the conversion procedures described in Table 4-2.

4-10

EXPRESSIONS

Example

Assume the following:

Variable Type

D Double-Precision
X Real
I,J Integer

The mixed mode expression D+X* (I/J) is evaluated in the following
manner:

1.Rl I/J Rl is integer

2.R2 =X*Rl Rl is converted to type real and is multiplied by X
to produce R2

3.R3 D+R2 R2 is converted to type double precision and is added
to D to produce R3

where Rl and R2, and R3 represent the interim and final results
respectively of the computations performed.

4.3.4 Use of Logical Operands in Mixed Mode Expressions

When you use logical operands in mixed
the logical operand is not converted
the type of the other operands in the
L*R, where L is type logical and R
evaluated without converting L to type

4-11

mode expressions, the value of
in any way to accommodate it to
expression. For example, in
is type real, the expression is
real.

CHAPTER 5

COMPILATION CONTROL STATEMENTS

5.1 INTRODUCTION

You use compilation control statements to identify FORTRAN programs
and to specify their termination. Statements of this type do not
affect either the operations performed by the object program or the
manner in which the object program is executed. The three compilation
control statements descr ibed in this chapter are: . PROGRAM . state.ment I.

,"IN.CLUPE. statem~l'}t,: and END statement.

5.2 PROGRAM STATEMENT

· This statement allows you to give the main program a name other than
,the compiler-assumed name "MAIN.". The general form of a PROGRAM
statement is:

PROGRAM name

· where:

name is a symbolic name that
character and contains
(Refer to Section 3.3 for
names.)

begins with an alphabetic
a maximum of six characters.

a description of symbolic

: The following rule governs the use of the PROGRAM statement:

The PROGRAM statement must be the first statement in a program
unit. (Refer to Section 2.4 for a discussion of the ordering of
statements.)

5.3 INCLUDE STATEMENT

i This statement allows you to include code segments or predefined
· declarations in a program unit without having them reside in the same
i physical file as the primary program unit. The general form of the

INCLUDE statement is

INCLUDE 'dev:filename.ext[proj,prog]/NOLIST'

where:

dev: is a device
specified, DSK:

name. When
is assumed.

5-1

no device name is

filename.ext

[proj , pr og]

/NOLIST

COMPILATION CONTROL STATEMENTS

is the filename and extension of the statements
that you wish to include. The name of the file is
required; the extension is optional. If you
specify II filename" only, .FOR is the assumed
extension. If you specify the filename and period
(filename.), the null extension is assumed. You
may not specify wild (*) information.

is the project-programmer number. Your project­
programmer number is assumed if none is specified.
You cannot specify subdirectory information.

is an optional switch indicating that the included
statements are not to be included in the
compilation listing.

The following rules govern the use of the INCLUDE statement:

1. The INCLUDEd file may contain any legal statement except;
another INCLUDE statement, or a statement that terminates the
current program unit, such as the END, PROGRAM, FUNCTION,
SUBROUTINE, or BLOCK DATA statements.

2. The proper placement of the INCLUDE
program unit depends upon the types
INCLUDEd. (Refer to Section 2.4 for
ordering of FORTRAN statements.)

statement within a
of statements to be

information on the.

3. The file(s) to be INCLUDEd must be on disk.

Note that an asterisk (*) is appended to the line numbers of the
INCLUDEd statements on the compilation listing, provided /NOLIST is.

; ~ot specified.

5.4 END STATEMENT

Use this statement to show the physical end of
subprogram. END is a nonexecutable statement.
END statement is:

END

a source program or
The general form of an

The following rules govern the use of the END statement:

1. This statement must be the last physical statement of a
source program or subprogram.

:2. When used in a main program, the END statement implies a STOP
statement operation; in a subprogram, END implies a RETURN
statement operation.

3. You may label an END statement.

5-2

CHAPTER 6

SPECIFICATION STATEMENTS

6.1 INTRODUCTION

Use specification statements to specify the type characteristics,
storage allocations, and data arrangement. There are seven types of
specification statements:

1. DIMENSION

2. Statements that explicitly specify type, such as REAL or
INTEGER

3. IMPLICI'r

4. COMMON

5. EQUIVALENCE

6. EXTERNAL

7 • PARAMETER:

Specification statements are nonexecutable and conform to the ordering
guidelines described in Section 2.4.

6.2 DIMENSION STATEMENT

DIMENSION statements identify and allocate the space required for
source program arrays. You may specify any number of subscripted
array names as array declarators in a DIMENSION statement. The
general form of a DIMENSION statement is

DIMENSION Sl, S2, .•. ,Sn

where Si is an array declarator. Array declarators are names of the
following form:

name(max, ... ,max) or name (min :m~x ' .. ' .. ,min : max);

where name is the symbolic name of the array, and each min:max value
represents the lower and, upper bounds of an array dimension.

6-1

SPECIFICATION STATEMENTS

min:max value for an array dimension may be either an integer
constant or, if the array is a dummy argument to a subprogram, an
integer variable. The value given the mlnlmum specification for a
dimension must not exceed the value given the maximum specification.
Minimum values of 1 with their following colon delimiters may be
omitted from a dimension subscript. This is because minimum values
are assumed to be ~ inth~ f~rst place.

Examples

DIMENSION EDGE (':"1:1,"4:8), NET (5,10,4), TABLE (567)
DIMENSION TABLE (lAB:J,K,M,XO£tO)

(where lAB, J, K, and M are of type integer).
~ .. O' 'h "« ' ~

Note that you may use a slash in place of a colon as the delimiter
between the upper and lower bounds of an array dimension.

Adjustable Dimensions

When used within a subprogram, an array declarator may use type
integer parameters· as dimension subscript quantities. The £ollowing
rules govern the use of adjustable dimensions in a subprogram:

1. For single entry subprograms, the array name and each
subscript variable must be given by the calling program as
parameters when the subprogram is called. The subscript
variables may also be in COMMON.

2. For multiple entry subprograms in which the array name is a
parameter, any subscript variables may be passed. If all
subscript variables are not passed or in COMMON, the value of
the subscript as passed for a previous entry will be used.

3. The type of the arra~ dimension variables cannot be altered
within the program.

4. If the value of an array dimension variable is altered within
the program, the dimensionality of the array will not be
affected.

5. The original size of the array cannot exceed the array
dimensions assigned within a subprogram, i.e., the size of an
array is not dynamically expandable.

Examples

SUBROUTINE SBR (ARRAY,Ml,M2,M3,M4)
DIMENSION ARRAY (Ml:M2,M3:M4)
DO 27 L=M3,M4
DO 27 K=Ml,M2
ARRAY (K,L)=VALUE

27 CONTINUE
END

SUBROUTINE SBI (ARRl,M,N)
DIMENSION ARRl(M,N)
ARRl(M,N)=VALUE
ENTRY SB2(ARRl,M)
ENTRY SB3(ARRl,N)
ENTRY SB4JARRl) >

6-2

SPECIFICATION STATEMENTS

In the foregoing c~~mplc, the first call made to the subroutine must
be made to SBI. Assuming that the call is made at SBI with the values
M=ll and N=13, any succeeding call to SB2 should give M a new value.
If a succeeding call is made to SB4, the last values passed through
entries SBl, SB2, or SB3 will be used for M and N.

Note that for the calling program of the form:

CALL SBl(A,ll,13)
M=15
CALL SB3(A,13)

the value of M used in the dimensionality of the array for the
execution of SB3 will be 11 (the last value passed).

6.3 TYPE SPECIFICATION STATEMENTS

Type specification statements declare explicitly the data type of
variable, array, or function symbolic names. You may give an array
name in a type statement either alone (unsubscripted) to declare the
type of all its elements or in a subscripted form to specify both its
type and dimensions.

write type specification statements in the following form:

type list

where type may be anyone of the following declarators:

1. INTEGER

2. REAL

3. DOUBLE PRECISION

4. COMPLEX

5. LOGICAL

NOTE

In order to be compatible with the type
statements used by other manufacturers,
the data type size modifier, *n, is
accepted by FORTRAN-20. You may append
this size modifier to the declarators,
causing some to elicit messages warning
users of the form of the variable
specified by FORTRAN-20:

6-3

SPECIFICATION STATEMENTS

Declarator Form of Variable Specified

INTEGER*2 Full word integer with warning message
INTEGER*4 Full word integer
LOGICAL*l Full word logical with warning message
LOGICAL*4 Full word logical
REAL*4 Full word real
REAL*8 Double-precision real
COMPLEX*8 Complex
COMPLEX*16 Complex with warning message

In addition, you may append the data
type size modifier to individual
variables, arrays, or function names.
Its effect is to override, for the
particular element, the size modifier
(explicit or implicit) of the primary
type. For example,

REAL*4 A, B*8, C*8(10), D

A and D are single-precision (one full
word) real, and Band Care
double-precision (two full words) real.

The list consists of any number of variable, array, or function names
that are to be declared the specified type. The names listed must be
separated by commas and can appear in only one type statement within a
program unit.

Examples

INTEGER A, B, TABLE, FUNC
REAL R, M, ARRAY (5:10,10:20,5)

NOTE

Variables, arrays, and functions of a
source program, which are not typed
either implicitly or explicitly by a
specification statement, are typed by
the following conventions:

1. Variable names, array names, and
function names that begin with the
letters I, J, K, L, M, or N are type
integer.

2. Variable names, array names, and
function names that begin with any
letter other than I, J, K, L, M, or
N are type real.

If a name that is the same as a predefined FORTRAN-20 function name
appears in a conflicting type statement, it is assumed that the name
refers to a user-defined routine of the given type. If you place a
generic function name in an explicit type statement, it loses its
generic properties.

6-4

SPECIFICATION STATEMENTS

6.4 IMPLICIT STATHMHNTS

IMPLICIT statements declare the data type of variables and
according to the first letter of each variable name.
statements are written in the following form:

functions
IMPLICIT

IMPLICIT type (Al,A2, ... ,An), type (Bl,B2, ... ,Bn), ... ,type

As shown in the foregoing form statement, an IMPLICIT statement
consists of one or more type declarators separated by commas. Each
type declarator has the form

type (Al,A2, ... ,An)

where type represents one of the declarators listed in Section 6.3,
and the parenthetical list represents a list of different letters.

Each letter in a type declarator list specifies that each source
program variable (not declared in an explicit type specification
statement) starting with that letter is assigned the data type named
in the declarator. For example, the IMPLICIT type declarator REAL
(R,M,N,O) declares that all names that begin with the letters R, M, N,
or a are type REAL names, unless declared otherwise in an explicit
type statement.

NOTE

Type declarations given in an explicit
type specification override those also
given in an IMPLICIT statement.
IMPLICIT declarations do not affect the
FORTRAN supplied functions.

You may specify a range of letters within the alphabet by writing the
first and last letters of the desired range separated by a dash, e.g.,
A-E for A,B,C,D,E. For example, the statement IMPLICIT INTEGER
(I,L-P) declares that all variables which begin with the letters
I,L,M,N,O, and P are INTEGER variables.

You may use more than one IMPLICIT statement, but they must appear
before any other declaration statement in the program unit. Refer to
Section 2.4 for a discussion on ordering FORTRAN statements.

6.5 COMMON STATEMENT

The COMMON statement enables you to establish storage that may be
shared by two or more programs and/or subprograms and to name the
variables and arrays that are to occupy the common storage. The use
of common storage conserves storage and provides a means to implicitly
transfer arguments between a calling program and a subprogram. Write
COMMON statements in the following form:

COMMON/Al/Vl,V2, ... ,Vn ... /An/Vl,V2, ... ,Vn

where the enclosed letters /Al/, ... , /An/ represent optional name
constructs (referred to as common block names when used).

6-5

SPECIFICATION STATEMENTS

The list (e.g., VI,V2 ... ,Vn) appearing after each name construct lists
the names of the variables and arrays that are to occupy the common
area identified by the construct. The items specified for a common
area are ordered within the storage area as they are listed in the
COMMON statement.

Either label COMMON storage areas or leave them blank (unlabeled). If
the common area is to be labeled, give a symbolic name within slashes
immediately before the list of items that is to occupy the names area.
For example, the statement

COMMON/AREAI/A,B,C/AREA2/TAB(13,3,3)

establishes two labeled common areas (i.e., AREAl and AREA2). Common
block names bear no relation to internal variables or arrays that have
the same name.

If a common area is to be declared as unlabeled, give either nothing
or two sequential slashes (//) immediately before the list of items
that is to occupy blank common. For example, the statement

COMMON/AREAI/A,B,C//TAB(3,3,3)

establishes one labeled (AREAl) and one unlabeled common area.
Unlabeled common area is also called "blank common".

A given labeled common name may appear more than once in the same
COMMON statement and in more than one COMMON statement within the same
program or subprogram.

Each labeled common area is treated as a separate, specific storage
area. The contents of a common area, i.e., variables and arrays, may
be assigned initial values by DATA statements in BLOCK DATA
subprograms. Declarations of a given common area in different
subprograms must contain the same number, size, and order of variables
and arrays as the reference area.

Items to be placed in a blank common area may also be given in COMMON
statements throughout the source program.

During compilation of a source program, FORTRAN will string together
all items listed for each labeled common area and for blank common
areas in the order in which they appear in the source program
statements. For example, the series of source program statements:

COMMON/STI/A,B,C/ST2/TAB(2,2)//C,D,E

COMMON/STI/TST(3,4)//M,N

COMMON/ST2/X,y,Z//O,P,Q

has the same effect as the single statement

COMMON/STI/A,B,C,TST(3,4)/ST2/TAB(2,2) ,X,Y,Z//C,D,E,M,N,O,P,Q

All items specified for blank common are placed into one area. Items
within blank common are ordered as they are given throughout the
source program. Common block names must be unique with respect to all
subroutine, function, and entry point names.

The largest definition of a given common area must be loaded first.

6-6

SPECIFICATION STATEMENTS

6.5.1 Dimensioning Arrays in COMMON Statements

Subscripted array names may be given in COMMON statements as array
dimension declarators. However, variables cannot be used as subscript
quantities in a declarator appearing in a COMMON statement; variable
dimensioning is not permitted in COMMON.

Each array name given in a COMMON statement must be dimensioned either
by the COMMON statement or by another dimensioning statement within
the program or subprogram that contains the COMMON statement but not
both.

Example

COMMON /A/B(lOO) , C(lO,lO)
COMMON X (5 , 15) ,Y (5)

6.6 EQUIVALENCE STATEMENT

The EQUIVALENCE statement enables you to control the allocation of
shared storage within a program or subprogram. This statement causes
specific storage locations to be shared by two or more variables of
either the same or different types. Write the EQUIVALENCE statement
in the following form:

EQUIVALENCE (Vl,V2, ... ,Vn) , (Wl,W2, ... ,Wn), (Xl,X2, ... ,Xn)

where each parenthetical list contains the names of variables and
array elements that are to share the same storage locations. For
example, the statements

EQUIVALENCE (A,B,C)
EQUIVALENCE (LOC,SHARE(l))

specify that the variables named A, B, and C are to share the same
storage location, and that the variable LOC and array element SHARE(l)
are to share the same location.

The relationship of equivalence is transitive; for example, the two
following statements have the same effect:

EQUIVALENCE (A,B), (B,C)
EQUIVALENCE (A,B,C)

When you use array elements in EQUIVALENCE statements, they must
either as many subscript quantities as dimensions of the array or
one subscript quantity. In either of the foregoing cases,
subscripts must be integer constants. Note that the single
treats the array as a one-dimensional array of the given type.

You may use the items given
EQUIVALENCE statement and
following rules are observed:

in
in

an
a

EQUIVALENCE list
COMMON statement

in both
providing

have
only

the
case

the
the

1. You cannot set two quantities declared in a COMMON statement
to be equivalent to one another.

6-7

SPECIFICATION STATEMENTS

2. Quantities placed in a common area by means of an EQUIVALENCE
statement are permitted to extend the end of the common area
forwards. For example, the statements

COMMON/R/X,y,Z
DIMENSION A(4)
EQUIVALENCE (A,y)

cause the common block R to extend from Z to A(4) arranged as
follows:

x
Y A (I)
Z A (2)

(shared location)
(shared location)

A (3)
A(4)

3. You cannot use EQUIVALENCE statements that cause the start of
a common block to be extended backwards. For example, the
invalid sequence

COMMON/R/X,y,Z
DIMENSION A(4)
EQUIVALENCE{X,A(3))

would require A{l) and A(2) to extend the starting location
of block R in a backwards direction as illustrated by the
following diagram:

t A (I)
A (2)

X A(3)
Y A (4)
Z

6.7 EXTERNAL STATEMENT

Any subprogram name to be used as an argument to another subprogram
must appear in an EXTERNAL statement in the calling subprogram. The
EXTERNAL statement declares names to be subprogram names to
distinguish them from other variable or array names. Write the
EXTERNAL statement in the following form:

EXTERNAL namel,name2, ... ,namen

where each name listed is declared to be a subprogram name. If
desired, these subprogram names may be FORTRAN defined functions.

You may also use FORTRAN defined function names for your subprograms
by prefixing the names by an asterisk (*) or an ampersand (&) within
an EXTERNAL statement. For example,

EXTERNAL *SIN, &COS

6-8

SPECIFICATION STATEMENTS

declares SIN and COS to be user subprograms. (If a prefixed name is
not a FORTRAN defined function, then the prefix is ignored.)

Note that specifying a predefined FORTRAN function in an EXTERNAL
statement without a prefix, i.e., EXTERNAL SIN, has no effect upon the
usage of the function name outside of actual argument lists. If the
name has generic properties, they are retained outside of the actual
argument list. (The name has no generic properties within an argument
list.)

The names declared in a program EXTERNAL statement are reserved
throughout the compilation of the program and cannot be used in any
other declarator statement, with the exception of a type statement.

6.8 PARAMETER STATEMENT

The PARAMETER statement allows you to define constants symbolically
during compilation.

The general form of the PARAMETER Statement is as follows:

where

PARAMETER PI=Cl,P2=C2, ...

pi is a standard user-defined identifier (referred to in this
section as a parameter name)

Ci is any type of constant (including literals) except a label
or complex constant. (Refer to Chapter 3 for a description
of FORTRAN constants.)

During compilation, the parameter names are replaced by their
associated constants, provided the following rules are observed:

1. Place parameter names only within the statement field of an
initial or continuation line type, i.e., not within a comment
line or literal text.

2. Place parameter names only where constants are acceptable.

3. Place parameter name references after the PARAMETER statement
definition.

4. Use parameter names that are unique with respect to all other
names in the program unit.

5. Do not redefine parameter names in subsequent PARAMETER
statements.

6. Do not use parameter names as part of some larger syntactical
construct (such as a Hollerith constant count or a data type
size modifier).

6-9

CHAPTER 7

DATA STATEMENT

7.1 INTRODUCTION

DATA statements are used to supply the initial values of variables,
arrays, array elements, and labeled common. (1) write DATA statements
as follows:

DATA Listl/Datal/,List2/Data2/, ... ,Listn/Datan/

where the List portion of each List/Data/ pair identifies a set of
items to be initialized and the /Data/ portion contains the list of
values to be assigned the items in the List. For example, the
statement

DATA IA/S/,IB/IO/,IC/1S/

initializes variable IA to the value S, variable IB to the value 10,
and the variable IC to the value IS. The number of storage locations
you specify in the list of variables must be less than or equal to the
number of storage locations you specify in its associated list of
values. If the list of variables is larger (specifies more storage
locations) than its associated value list, a warning message is
output. When the value list specifies more storage locations than the
variable list, the excess values are ignored.

The List portion of each List/Data/ set may contain the names of one
or more variables, array names, array elements, or labeled common
variables. You may specify an entire array (unsubscripted array name)
or a portion of an array in a DATA statement List as an implied DO
loop construct. (See Section 10.3.4.1 for a description of implied DO
loops.) For example, the statement

DATA (NARY(I),I=1,S)/1,2,3,4,S/

initializes the first five elements of array NARY as NARY(l)=l,
. NARY(2)=2, NARY(3)=3, NARY(4)=4, NARY(S)=S.

When you use an implied DO loop in a DATA statement, the loop index
variable must be of type INTEGER and the loop Initial, Terminal, and
Increment parameters must also be of type INTEGER. In a DATA
statement, references to an array element must be integer expressions
in which all terms are either integer constants or indices of
embracing implied DO loops. Integer expressions of the foregoing
types cannot include the exponentiation operator.

The /Data/ portion of each List/Data/ set may contain one or more
numeric, logical, ,literal, or octal constants and/or alphanumeric
strings.

1. Refer t6 Section 6.S for a description of labeled common.

7-1

DATA STATEMENT

~ You must identify octal constants by preceding them with a double
; quote (n) symbol, e.g, "777.

You may specify literal data as either a Hollerith specification,
e.g., SHABCDE, or a string enclosed in single quotes, e.g., 'ABCDE'.
Each ASCII datum is stored left-justified and is padded with blanks up
to the right boundary of the variable being initialized.

When you assign the same value to more than one item in List, a repeat
specification may be used. Write the repeat specification as N*D
where N is an integer that specifies how many times the value of item
D is to be used. For example, a /Data/ specification of /3*20/
specifies that the value 20 is to be assigned to the first three items
named in the preceding list. The statement

DATA M,N,L/3*20/

assigns the value 20 to the variables M, N, and L.

; When the specified data type is not the same as that of the variable
to which it is assigned, FORTRAN-20 converts the datum to the type of
the variable. The type conversion is performed using the rules given
for type conversion in arithmetic assignments. (Refer to Chapter 8,
Table 8-1.) Octal, logical, and literal constants are not converted.

Sample Statement Use

DATA PRINT,I,O/'TEST' ,30,:1177/, (TAB(J) ,J=1,30)/30*S/ The first 30
elements of array
TAB are
initialized to
S.O.

DATA((A(I,J),I=1,S),J=l,6)/30*1.0/ No conversion
required.

DATA((A(I,J),I=S,10),J=6,lS)/60*2.0/ No conversion
required.

When a literal string is specified that is longer than one variable
can hold, the string will be stored left-justified across as many
variables as are needed to hold it. If necessary, the last variable
used will be padded with blanks up to its right boundary.

Example

Assuming that X, Y, and Z are single-precision, the statement

DATA X,Y,Z/'ABCDEFGHIJKL'/

will cause

X to be initialized to 'ABCDE'
Y to be initialized to 'FGHIJ'
Z to be initialized to 'KL~~~'

When a literal string is to be stored in double-precision and/or
complex variables and the specified string is only one word long, the
second word of the variable is padded with blanks.

7-2

DATA STATEMENT

Example

Assuming that the variable C is complex, the statement

DATA C/'ABCDE ' , 'FGHIJ'/

will cause the first word of C to be initialized to 'ABCDE ' and its
second word to be initialized to I~~~~~I. The string 'FGHIJ ' is
ignored.

7-3

CHAPTER 8

ASSIGNMENT STATEMENTS

8.1 INTRODUCTION

Use assignment statements to assign a specific value to one or more
program variables. There are three kinds of assignment statements:

1. Arithmetic assignment statements

2. Logical assignment statements

3. Statement Label assignment (ASSIGN) statements.

8.2 ARITHMETIC ASSIGNMENT STATEMENT

You use statements of this type to assign specific numeric
variables and/or array elements. Write arithmetic
statements in the form

v=e

values to
assignment

where v is the name of the variable or array element that is to
receive the specified value and e is a simple or compound arithmetic
expression.

In assignment statements, the equal symbol (=) does not imply equality
as it would in algebraic expressions; it implies replacement. For
example, the expression v=e is correctly interpreted as "the current
contents of the location identified as v are to be replaced by the
final value of expression e; the current contents of v are lost."

When the type of the specified variable or array element name differs'
from that of its assigned value, FORTRAN-20 converts the value to the
type of its assigned variable or array element. Table 8-1 describes 1

the type conversion operations performed by FORTRAN-20 for each
possible combination of variable and value types.

8-1

ex>
I

t\.)

Expression Type

REAL

INTEGER

COMPLEX

DOUBLE-
PRECISION

LOGICAL

OCTAL

LITERAL

DOUBLE
OCTAL*

Table 8-1
Rules for Conversion in Mixed Mode Assignments

(e) Variable Type (v)

Real Integer Complex Double-Precision

D C R,I H,L

C D R,C,I H/C/L

R C,R D prohibited

H C,H,L prohibited D

D D R,I H,L

D D R,I H,C,L

D,H% C,H% D& D&

H H D# D

Logical

D

D

R

H

D,H

D

D%

H

I

I

>
til
til
H
Cil
§!
tzl
Z
8

til :;;
8
tzl
3:
tzl
Z
8
til

(X)

I
w

Table 8-1 (Cont.)
Rules for Conversion in Mixed Mode Assignments

Legend

D Direct replacement
C = Conversion between integer and floating-point with truncation
R Real part only
I Set imaginary part to 0
H High-order only
L Set low-order part to 0

Notes

* Octal numbers with 13 to 24 digits are termed double octal.
Double octals require two storage locations. They are stored
right-justified and are padded with zeros to fill the locations.

& Use the first two words of the literal. If the literal is only
one word long, the second word is padded with blanks.

% Use the first word of the literal.

To convert double octal numbers to complex, the low-order octal
digits are assumed to be the imaginary part, and the high-order
digits are assumed to be the real part of the complex value.

:J:>I
til
til
H
G)
Z ::::
tzl
z
1-3

til
1-3
~
1-3
tzl
:::
tzl z
1-3
en

ASSIGNMENT STATEMENTS

8.3 LOGICAL ASSIGNMENT STATEMENTS

Use this type of assignment statement to assign values to variables
and array elements of type logical. Write the logical assignment
statement in the form

v=e

where v is one or more variables and/or array element names, and e is
a logical expression.

Examples

Assuming that the variables L, F, M, and G are of type logical, the
following statements are valid:

Sample Statement

L=.TRUE.

F=.NOT.G

M=A.GT.T or M=A)T

L= ((I. GT. H)' • AND. (J<=K))

The contents of L is replaced by logical
truth.

The contents of L is replaced by the
logical complement of the contents of G.

If A is greater than T, the contents of
M is replaced by logical truth: if A is
less than or equal to T, the contents of
M is replaced by logical false. This
can also be read: If A is greater than
T, then M is true, otherwise, M is
false.

The contents of L are replaced by either
the true or false resultant of the
expression.

8.4 ASSIGN (STATEMENT LABEL) ASSIGNMENT STATEMENT

Use the ASSIGN statement to assign a statement label constant, i.e., a
1- to 5-digit statement number, to a variable name. Write the ASSIGN
statement in the form

ASSIGN n TO I

where n represents the statement number and I is a variable name. For
example, the statement

ASSIGN 2000 TO LABEL

specifies that the variable LABEL represents the. statement number
2000.

with the exception of complex and double-precision, you may use any
type of variable in an ASSIGN statement.

Once a variable has been assigned a statement number, FORTRAN-20 will
consider it a label variable. If a label variable is used in an
arithmetic statement, the result will be unpredictable.

8-4

ASSIGNMENT STATEMENTS

Use the ASSIGN statement in conjunction with assigned GO TO control
statements (Chapter 9). The ASSIGN verb sets up statement label
variables that are then referenced in subsequent GO TO control
statements. The following sequence illustrates the use of the ASSIGN
statement:

555 TAX=(A+B+C) *.05

ASSIGN 555 TO LABEL

GO TO LABEL

8-5

CHAPTER 9

CONTROL STATEl·tENTS

9.1 INTRODUCTION

FORTRAN object programs normally execute statement-by-statement in the
order in which they were presented to the compiler. The following
source program control statements, however, enable you to alter the
normal sequence of statement execution:

1. GO TO

2. IF

3. DO

4. CONTINUE

5. STOP

6. PAUSE

9.2 GO TO CONTROL STATEMENTS

There are three kinds of GO TO statements:

1. Unconditional

2. Computed

3. Assigned

A GO TO control statement causes the statement that it identifies to
be executed next, regardless of its position within the program. The
following paragraphs describe each type of GO TO statement.

9.2.1 Unconditional GO. TO Statements

write GO TO statements of this type in the form

GO TO n

where n is the label, i.e., statement number, of an executable
statement, e.g., GO TO 555. When executed, an unconditional GO TO
statement transfers control of the program to the statement that it
specifies.

9-1

CONTROL STATEMENTS

You may position an unconditional GO TO statement anywhere in the
source program except as the terminating statement of a DO loop.

9.2.2 Computed GO TO Statements

Write GO TO statements of this type in the form

GO TO (Nl,N2, ••• ,Nk)E

where the parenthesized list is a list of statement numbers and E is
an arithmetic expression. You may include any number of statement
numbers in the list of this type of GO TO statement; however, each
number you give must be used as a label within the program or
subprogram containing the GO TO statement.

NOTE

A comma may optionally
parenthesized list.

follow the

The value of the expression E must be reducible to an integer value
that is greater than 0 and less than or equal to the number of
statement numbers given in the statement list. If the value of the
expression E does not compute within the foregoing range, the next
statement is executed.

When a computed GO TO statement is executed, the value of its
expreSS1on, i.e., E, is computed first. The value of E specifies the
position within the given list of statement numbers of the number that
identifies the statement to be executed next. For example, in the
statement sequence

GO TO (20, 10, 5)K
CALL XRANGE(K)

the variable K acts as a switch, causing a transfer to statement 20 if
K=l, to statement 10 if K=2, or to statement 5 if K=3. The subprogram
XRANGE is called if K is less than 1 or greater than 3.

9.2.3 Assigned GO TO Statements

Write GO TO statements of this type in either of the following forms:

GO TO K
GO TO K, (Ll,L2, ••• Ln)

where K is a variable name and the parenthesized list of the second
form contains a list of statement labels, i.e., statement numbers.
The statement numbers you give must be within the program or
subprogram containing the GO TO statement.

Assigned
preceded
variable
variable
which it

GO TO statements of either foregoing form must be logically
by an ASSIGN statement that assigns a statement label to the

name represented by K. The value of the assigned label
must be in the same program unit as the GO TO statement in

is used. In statements written in the form

GO TO K, (Ll,L2, ••• Ln)

9-2

CONTROL STATEMENTS

if K is not assigned one of the statement numbers given in the
statement list, the next sequential statement is executed.

Examples

GO TO STATI
GO TO STATl, (177,207,777)

9.3 IF STATEMENTS

There are three kinds of IF statements:
logical two-branch.

arithmetic, logical, and

9.3.1 Arithmetic IF Statements

Write IF statements of this type in the form

IF(E)Ll,L2,L3

where (E) is an expression enclosed within parentheses and Ll, L2, L3
are the labels, i.e., statement numbers, of three executable
statements.

This type of IF statement transfers control of the program to one of
the given statements according to the computed value of the given
expression. If the value of the expression is:

1. Less than 0, control is transferred to the statement
identified by Ll;

2. Equal to 0, control is transferred to the statement
identified by L2;

3. Greater than 0, control is transferred to the statement
identified by L3.

You must give all three statement numbers in arithmetic IF statements;
the expression given may not compute to a complex value.

Examples

Sample Statement

IF (E TA) 4, 7, 12

IF(KAPPA-L(10))20, 14, 14

Transfers control to statement 4 if
ETA is negative, to statement 7 if
ETA is 0, and to statement 12 if
ETA is greater than O.

Transfers control to statement 20
if KAPPA is less than the 10th
element of array L and to statement
14 if KAPPA is greater than or
equal to the 10th element of array
L.

9-3

CONTROL STATEMENTS

NOTE

You must label the statement following
an arithmetic IF; otherwise the
statement can never be executed.

9.3.2 Logical IF Statements

Write IF statements of this type in the form

IF(E)S

where E is any expression enclosed in parentheses and S is a complete
executable statement.

Logical IF statements transfer control of the program either to the
next sequential executable statement or to the statement given in the
IF statement, i.e., S, according to the computed logical value of the
given expression. If the value of the given logical expression is
true (negative), control is given to the. executable statement within
the IF statement. If the value of the expression is false (positive
or zero), control is transferred to the next sequential executable
program statement.

The statement you give in a logical IF statement may be any executable
statement except a DO statement or another logical IF statement.

Examples

Sample Statement

IF (T.OR.S) X=Y+l

IF (Z.GT.X(K)) CALL SWITCH(S,Y)

IF (K.EQ.INDEX) GO TO 15

9.3.3 Logical Two-Branch IF Statements

Performs an arithmetic
replacement operation if the
result of IF is true.

Performs a subroutine call if
the result of IF is true.

Performs
transfer
is true.

an unconditional
if the result of IF

Write IF statements of this type in the form

IF (E) Nl, N2

where E is any expression, and Nl and N2 are statement labels defined
within the program unit.

Logical two-branch IF statements transfer control of the program to
either statement Nl or N2, depending on the computed value of the
given expression. If the value of the given logical expression is
true (negative), control is transferred to statement Nl. If the value
of the expression is false (positive or zero), control is transferred
to statement N2.

9-4

CONTROL STATEMENTS

Note that you must number the statement immediately following the
logical two-branch IF so that control can later be transferred to the
portion of code that was skipped.

Examples

Sample Statement

IF (LOGl) 10,20 Transfers control to statement 10
if LOGI is negative; otherwise
transfers control to statement 20.

IF (A.LT.B.AND.A.LT.C) 31,32 Transfers control to statement 31
if A is less than both Band C;
transfers control to statement 32
if A is greater than or equal to
either B or C.

9.4 DO STATEMENT

DO statements simplify the coding of iterative procedures; write them
in the following form:

where

Indexing Parameters

DO N I =

~fL TERMINAL
STATEMENT
LABEL

INDEX
VARIABLE

~
Ml,M2,M3

~~ PARAMETER
TERMINAL
PARAMETER

INI-TIAL
PARAMETER

1. Terminal Statement Label N is the statement number of the
last statement of the DO statement range. The range of a DO
statement is defined as the series of statements that follows
the DO statement up to and including its specified terminal
statement.

2. Index Variable I is an unsubscripted variable whose value is
defined at the start of the DO statement operations. The
index variable is available for use throughout each execution
of the range of the DO statement, but its value should not be
altered within this range. It is also available for use in
the program when:

a. control is transferred outside the range of the DO loop
by a GO TO, arithmetic IF or RETURN statement located
within the DO range,

b. a CALL is executed from within the DO statement range
that uses the index variable as an argument, and

9-5

3.

CONTROL STATEMENTS

c. if an input-output statement with either or both the
options END= or ERR= (Chapter 10) appears within the DO
statement range.

Initial Parameter Ml assigns the
initial value. This parameter
element, or expression.

index variable, I, its
may be any variable, array

4. Terminal Parameter M2 provides the value that determines how
many repetitions of the DO statement range are performed.

5. Increment Parameter M3 specifies the value to be added to the
initial parameter (Ml) on completion of each cycle of the DO
loop. If M3 and its preceding comma are omitted, M3 is
assumed to be equal to 1.

An indexing parameter may be any: ar ifhme'E:i.c expression resul ting in
either a positive or negativ~- ~~lti~: "The values of the indexing
parameters are calculated only once, at the start of each DO-loop
operation. The number of times that a DO loop will execute is
specified by the formula:

MAX(l, ((M2-Ml)/M3)+1)

Since the count is computed at the start of a DO loop operation,
changing the value of the loop index variable within the loop cannot
affect the number of times that the loop is executed. At the start of
a DO loop operation, the index value is set to the value of the
initial parameter (Ml), and a count variable (generated by the
compiler) is set to the negative of the calculated count. At the end
of each DO loop cycle, the value of the increment parameter (M3) is
added to the index variable, and the count variable is incremented by
1. If the number of specified iterations has not been performed
(i.e., if the count variable is still negative), another cycle of the
loop is initiated.

One execution of a DO loop range is always performed regardless of the
initial values of the index variable and the indexing parameters.

Exit from a DO loop operation on completion of the number of
iterations specified by the loop count is referred to as a normal
exit. In a normal exit, control passes to the first executable
statement after the DO loop range terminal statement, and the value of
the DO statement index variable is considered undefined.

Exit from a DO loop may also be accomplished by a transfer of control
by a statement within the DO loop range to a statement outside the
range of the DO statement (Section 9.4.3).

9.4.1 Nested DO Statements

One or more DO statements may be contained, i.e., nested, within the
range of another DO statement. The following rules govern the nesting
of DO statements.

9-6

CONTROL STATEMENTS

1. The range of each nested DO statement must be entirely within
the range of the containing DO statement.

Example

Valid Invalid

001 DO 1

~~ The range of
DO 2 is outside
that of DO 1.

2. The ranges of nested DO statements cannot overlap.

Example

Valid Invalid

001 DO 1

002 002

C

~ 003 The ranges of

c= loop DO 2 and
DO 3 overlap.

3. More than one DO loop within a nest of DO loops may end on
the same statement •• When this occurs, the terminal statement
is considered to belong to the innermost DO statement that
ends on that statement. The statement label 4 of the shared
terminal statement cannot be used in any GO TO or arithmetic
IF statement that occurs anywhere other than within the range
of the DO statement to which it belongs.

Example

004

004

004

9-7

All the DO statements
share the same terminal
statement, however, it
belongs to the first
DO 4.

CONTROL STATEMENTS

9.4.2 Extended Range

The extended range of a DO statement is defined as the set of
statements that execute between the transfers out of the innermost DO
statement of a set of nested DOs and the transfer back into the range
of this innermost DO statement. The extended range of a nested DO
statement is as follows:

DO 1

002

003

Extended- Range

The following rules govern the use of a DO statement extended range:

1. The transfer out statement for an extended range operation
must be contained by the most deeply nested DO statement that
contains the location to which the return transfer is to be
made.

2. A transfer into the range of a DO statement is permitted only
if the transfer is made from the extended range of that DO
statement.

3. The extended range of a DO statement must not contain another
DO statement.

CONTROL STATEr·tENTS

4. The extended range of a DO statement cannot change the index
variable or inde.xing parameters of the DO statement.

5. You may use and return from a subprogram within an extended
range.

9.4.3 Permitted Transfer Operations

The following rules govern the transfer of program control from within
a DO statement range or the ranges of nested DO statements:

1. A transfer out of the range of any DO loop is permitted at
any time. When such a transfer executes, the value of the
controlling DO statement's index variable is defined as the
current value.

2. A transfer into the range of a DO statement is permitted if
it is made from the extended range of the DO statement.

3. You may use and return from a subprogram from within the
range of any:

a. DO loop,
b. nested DO loop, or
c. extended range loop (in which you leave the loop via a GO

TO, execute statements elsewhere, and return to the
original loop).

The following examples illustrate the transfer operations permitted
from within the ranges of nested DO statements:

Valid Transfers

Invalid Transfer

Dl

[

D2 • +

extended range
~4-<I --,'

Dl

9-9

CONTROL STATEMENTS

9.5 CONTINUE STATEMENT

You may place CONTINUE statements anywhere in the source program
without affecting the program sequence of execution. CONTINUE
statements are commonly used as the last statement of a DO statement
range in order to avoid ending with a GO TO, PAUSE, STOP, RETURN,
arithmetic IF, another DO statement, or a logical IF statement
containing any of the foregoing statements. Write this statement as

12 CONTINUE

Example

In the following sequence, the labeled CONTINUE statement provides a
legal termination for the range of the DO loop.

DO 45 ITEM=l,lOOO
STOCK=NVNTRY (ITEM)
CALL UPDATE (STOCK,TALLY)
IF (ITEM.EQ.LAST) GO TO 77

45 CONTINUE

77 PRINT 20, HEADING,PAGENO

9.6 STOP STATEMENT

Execution of the STOP statement causes the execution of the object
program to be terminated and returns control to the monitor. A
descriptive message may optionally be included in the STOP statement
to be output to your I/O terminal immediately before program execution
is terminated. Write this statement like this:

or

STOP
:'8,'1'01',' 'N I

where 'N' is a string of ASCII characters enclosed by single quotes
and n is an octal string up to 12 digits. The string N or the value n
is printed at your I/O terminal when the STOP statement executes. The'
string N may be of any length. (Continuation lines may be used for
1 arge messages.)

9-10

CONTROL STATEMENTS

Examples

STOP 'Termination of the Program'

or

STOP 7777

9.7 PAUSE STATEMENT

Execution of a PAUSE statement suspends the execution of the object
program and gives you the option to:

1. Continue execution of the program

2. Exi t

3. Initiate a TRACE operation (Section 9.7.1).

The permitted forms of the PAUSE statements are:

1. PAUSE

2. PAUSE 'literal string'

3. PAUSE n, where n is an octal string up to 12 digits.

Execution of a PAUSE statement of any of the foregoing forms caUSes
the standard instruction:

TYPE G TO CONTINUE, X TO EXIT, T TO TRACE

to be printed at your terminal. If the form of the PAUSE statement
contains either a literal string or an integer constant, the string or
constant prints on a line preceding the standard message. For
example, the statement

PAUSE 'TEST POINT A'

causes the following to be printed at your terminal:

TEST POINT A
TYPE G TO CONTINUE, X TO EXIT, T TO TRACE

The statement

PAUSE 1

causes the following to be printed at your terminal:

PAUSE 000001
TYPE G TO CONTINUE, X TO EXIT, T TO TRACE

9-11

CONTROL STATEMENTS

9.7.1 T(TRACE) Option

, The entry of the character T in response to the message output by the
execution of a PAUSE statement starts a TRACE routine. This routine
causes a complete history of all subroutine calls made during the
execution of the program, up to the execution of the PAUSE statement
to be printed at your terminal. The history printed by the TRACE
routine consists of:

1. The names of all subroutines called, arranged in the reverse
order of their call;

2. The absolute location (written within parentheses) of the
called subroutine;

3. The name of the calling subroutine plus an offset factor and
the absolute location (written within parentheses) of the
statement within the routine that initiated the calli

4. The number of arguments involved (written within angle
brackets);

5. An alphabetic code (written within square brackets)
specifies the types of each argument involved.
alphabetic codes used and the meaning of each are:

Code Char acter. Type Specified

that
The

U

L
I
F
o
S
D
C
K

Undefined typei the use of the
argument will determine its type.
Logical

: Example

INTEGER
Single-precision REAL
Octal
Statement Number
Double-precision REAL
COMPLEX
A literal or constant

,The following printout illustrates the execution of the PAUSE
: statement "PAUSE 'TEST POINT AI", the entry of a T character to
initiate the TRACE routine, the resulting trace printout, and the

, entry of the character G to continue the execution of the program.

TEST POINT A
TYPE G TO CONTINUE, X TO EXIT, T TO TRACE.
*T

NAME (LOC) «--- CALLER (LOC) <#ARGS> [ARG TYPES]
TRACE. (414056) «--- PAUSe +141 (376) <#1> [U]
PAUSe (235) «--- MAIN.+4(151) <#1> [U]
TYPE G TO CONTINUE, X TO EXIT, T TO TRACE.
*G

9-12

CONTROL STATEMENTS

In addition to its use with the PAUSE s\:.a\:.emenl:, you hlay call the
TRACE routine directly, using the form

CALL TRACE

or as a function, using the form

X=TRACE(x)

Execution of the foregoing statements starts the TRACE routine, which
prints the history of all subprogram calls made during the execution
of the program, up to the execution of the CALL statement or up to the
execution of the function, respectively. The history printed by the
TRACE routine under these circumstances is as described in the
preceding paragraph.

9-13

CHAPTER 10

I/O STATEMENTS

10.1 DATA TRANSFER OPERATIONS

FORTRAN I/O statements permit the transfer of data between processor
'storage (memory) and peripheral devices and/or between storage
locations. Data in the form of logical records may be transferred by
use of an a) sequential, b) random access, c) append ,transfer mode, or
d) dump mode., The areas in memory from which data is to be taken
during output (write) operations and into which data is stored during
input (read) operations are specified by:

1. A list in the I/O statement that initiated the transfer

2. A list defined by a NAMELIST statement, or

3. Between a specified FORMAT statement and the external medium.

The type and arrangement of transferred data may be specified by
format specifications located in either a FORMAT statement or an array
(formatted I/O), or by the contents of an I/O list (list-directed
I/O).

The following sections describe the statements and data format
required to initiate I/O transfer operations.

10.2 TRANSFER MODES

The characteristics and requirements of the a) sequential, b) random
access, and c) append data modes are described in the following
paragraphs.

10.2.1 Sequential Mode

Records are transferred during a sequential mode of operation in the
same order they appear in the external data file. Each I/O statement
executed ln a sequential mode transfers the record immediately
following the last record transferred from the accessed source file.

10.2.2 Random Access Mode

This mode permits access to and transfer of records from a file in any
desired order. Random access transfers, however, may be made only to
(or from) a device that permits random-type data addressing
operations, i.e., disk, and to files that have previously been set up

10-1

I/O STATEMENTS

for random access transfer operation. Files for random access must
contain a specified number of identically sized records that may be

· accessed, individually, by a record number.

You may use the FORTRAN-20 OPEN statement - see Chapter 12 - or a
· subroutine call to DEFINE FILE to set up random access files.

Use the OPEN statement to establish a random access mode to permit the
· execution of random access data transfer operations. The OPEN
statement should logically precede the first I/O statement for the

'specified logical unit in the user source program.

10.2.3 Append Mode

· This mode is a special version of the sequential transfer mode: Use
· it only for sequential output (write) operations. The append mode
permits you to write a record immediately after the last logical

· record of the accessed file. During an append transfer, the records
already in the accessed file remain unchanged. The only function
performed is the appending of the transferred records to the end of
the file.

· You must use an OPEN statement to establish an append mode before
· append I/O operations can be executed.

10.3 I/O STATEMENTS, BASIC FORMATS AND COMPONENTS

The majority of the I/O statements described in this chapter are
written in one of the following basic forms or in some modification of
these forms:

Basic Statement Forms

Keyword (u,f}list
K~yw~rd (u#R,tjlist
Keyword (u,*}list
Keyword (u,N)
Keyword (u}list

Use

: keyword (u#R)list

F.orma t ted I/O Transfer... ...
Random Access Formatted I/O Transfer
List-Directed I/O Transfer
NAMELIST-Controlled I/O Transfer
Binary I/O Transf~r
~and~m_Acceis-Binary I/b fianife~

where

Keyword

u

f

list

#R

*
N

the statement name (READ or WRITE)

logical unit number

FORMAT statement number in the current program
unit or the name of an array that contains the
desired format specifications

I/O list

= the delimiter # followed by the number of a
record in an established random-access file

= symbol specifying a list-directed I/O transfer

= the name of an I/O list defined by a NAMELIST
statement

The following paragraphs provide details of the foregoing components.

10-2

I/O STATEHENTS

10.3.1 I/O Statement Keywords

The keywords (names) of the FORTRAN-IO I/O statements described in
this chapter are:

1. READ 6. WRITE
2. REREAD 7. PRINT
3. ACCEPT 8. TYPE
4. FIND 9. ENCODE
5. DECODE

10.3.2 FORTRAN Logical Unit Numbers

Decimal numbers identify the physical devices used for most FORTRAN
I/O operations. During compilation, the compiler assigns default
logical unit numbers for the REREAD, READ, ACCEPT, PRINT, and TYPE
statements. Default unit numbers are negatively signed decimal
numbers that you cannot access.

You may make the logical device assignments at run time, or you may
use the standard assignments contained by the FORTRAN-20 Object Time
System (FOROTS). Table 10-1 lists the standard logical device
assignments. We recommend that you specify the device explicitly in
the OPEN statement.

10.1.3 FORMAT Statement References

A FORMAT statement contains a set of format specifications that
defines the structure of a record and the form of the data fields
comprising the record. Format specifications may also be stored in an
array rather than in a FORMAT statement. (Refer to Chapter 13 for a
complete description of the FORMAT statement.)

The execution of an I/O statement that includes either a FORMAT
statement number or the name of an array that contains format
specifications causes the structure and data of the transferred record
to assume the form specified in the referenced format. Records
transferred under the control of a format specification are referred
to as "formatted" records. Conversely, records transferred by I/O
statements that do not reference a format specification are referred
to as "unformatted" records. During unformatted transfers, data is
transferred on a one-to-one correspondence between internal
(processor) and external (device) locations, with no conversion or
formatting operations.

Unformatted files are binary files divided into records by FORTRAN-20
embedded control words; the control words are invisible to you. You
cannot prepare files of this type without using FOROTS. Unformatted
files are for use only within the FORTRAN environment.

10-3

f-'
o
I
~

Table 10-1
FORTRAN-20 Logical Device Assignments

Device/Function Default Filename FORTRAN Logical Unit Number

Standard Devices*

o
DSK
CDR
LPT
CTY
TTY

MTAO
MTAl
MTA2
FORTR
DSK
DSK
DSK
DSK
DSK

FORxx.DAT
00
01
02
03
04
05

06 through 15 not valid
16
17
18
19
20
21
22
23
24

Use

ILLEGAL
Disk
Card Reader
Line Printer
Console Teletype
User's Teletype

Magnetic Tape

!
Assignable Device
DISK

j
*The total number of standard devices permitted is an installation
parameter.

H
.........
o
(J)

~
J-3
ttl
3:
ttl
Z
J-3
(J)

~
a
I

Ul

Table 10-1 (Cont.)
FORTRAN-20 Logical Device Assignments

Device/Function Default Filename FORTRAN Logical Unit Number

Standard Devices*

DEVl
DEV2
DEV3
DEV4

DE(S

DEV63

FORxx.DAT

FOR63.DAT

Default Devices (inaccessible to the user)

REREAD Current file
CDR FORCDR.DAT
TTY FORTTY.DAT

LPT FORLPT.DAT
TTY FORTTY.DAT

25
26
27
28

2(
63

-6
-5
-4
-2
-3
-1

Use

Assignable Devices

Disk

REREAD statement
READ statement
ACCEPT statement
Not Valid
PRINT statement
TYPE statement

*The total number of standard devices permitted is an installation
parameter.

H

" o
C/l
1-3
:t:­
t-:3
tI:l
3:
tI:l
:z:
t-:3
C/l

I/O STATEMENTS

10.3.4 I/O List

An I/O list specifies the names of variables, arrays, and array
elements to which input data is to be assigned or from which data is
to be output. Implied DO constructs (Section 10.3.4.1), which specify
sets of array elements, may also be included in I/O lists. The number
of items in a statement list determines the amount of data to be
transferred during each execution of the statement.

10.3.4.1 Implied DO Constructs - When an array name is given in an
I/O list, all elements of the array are transferred in the order
described in Chapter 3 (Section 3.5.3). If only a specific set of
array elements is involved, they may be specified in the I/O list
either individually or in the form of an implied DO construct.

Write implied DOs within parentheses in a format similar to that of DO
statements. They may contain one or more variable, array, and/or
array element names, delimited by commas and followed by indexing
parameters that are defined as for DO statements.

The general form of an implied DO is

where

(name{SL) ,I=Ml,M2,M3)

name

SL

I

Ml,M2,M3

an array name

the subscript list of an array or an array
element identifier

the index control variable that may represent a
subscript appearing in a preceding subscript list

the indexing parameters that specify,
respectively, the initial, terminal, and
increment values that control the range of I. If
M3 is omitted (with its preceding comma), a value
of 1 is assumed.

Examples

S must be an integer variable

(A{S) ,S=1,5)

(A{2,S) ,S=1,10,2)

(I, 1=1 , 5)

Specifies the first five elements of the
one-dimension array A, i.e., A{l), A(2),
A(3), A(4), A(5).

Specifies the elements A{2,l), A{2,3),
A{2,5), A{2,7), A{2,9) of array A.

Specifies the integers 1,2,3,4, and 5.

As stated previously, implied DO constructs may also contain one or
more variable names.

Example (B and C must be integer variables):

({A{B,C) ,B=l,lO),C=l,lO) ,I,J Specifies a 10 X 10 set of elements
of array A, the location identified
by I, and the location identified
oy J.

10-6

I/O STATEMENTS

You may also nest implied DO constructs. Nested implied DOs may share
one or more sets of indexing parameters.

Example

((A(J,K),J=1,5) ,D(K) ,K=l,lO) Specifies a 5 X 10 set of elements
of array A and the first 10
elements of array D.

When you specify an array or set of array elements as either a storage
or transmitting area for I/O purposes, the array elements involved are
accessed in ascending order with the value of the first subscript
quantity varying most rapidly and the value of the last given
subscript increasing to its maximum value least rapidly. For example,
the elements of an array dimensioned as TAB(2,3) are accessed in the
order:

TAB(l,l)
TAB(2,l)
TAB(1,2)
TAB(2,2)
TAB(1,3)
TAB(2,3)

10.3.4.2 Formatted Record Handling - Data is processed under format
control so that each item in the I/O list is matched with a field
descriptor in the FORMAT statement. If the end of the FORMAT
specification is reached and more items remain in the I/O list, a new
line or record is established and the data processing is restarted,
either:

1. at the first item in the FORMAT specification or,

2. (if parenthesized sets of FORMAT specifications exist within
the FORMAT specification) with the last set within the FORMAT
specification.

On input, if the record is exhausted before the data transfers are
completed, the remainder of the transfer is completed as if the record
were extended with blanks. See Section 13.2.2 for more details.

10.3.5 Specification of Records for Random Access

You must identify records to be transferred in a random access mode in
an I/O statement by an integer expression or variable preceded by an
apostrophe used as a delimiter, e.g., 1101.

NOTE

You may use a pound sign (#) in place of
the apostrophe (I), e.g., both #101 and
'101 are accepted by FORTRAN-20.

10-7

I/O STATEMENTS

10.3.6 List-Directed I/O

'The use of an asterisk in an I/O statement in place of a FORMAT
'statement number causes the specified transfer operation to be
"list-directed". In a list-directed transfer, the data to be

'transferred and the type of each transferred datum are specified by
,the contents of the I/O list included in the I/O command used. The
· transfer of data in this mode is performed without regard for column,
,card, or line boundaries. The list-directed mode is specified by the
substitution of an asterisk (*) for the FORMAT statement reference,
i.e., f, of an I/O statement. The general form of a list-directed I/O
statement is

keyword (u,*}list

: Example

READ (5,*)I,IAB,M,L

· You may use list-directed transfers to read data from any acceptable
· input device, including an input keyboard terminal.

NOTE

Do not use device positioning commands,
such as BACKSPACE, SKIP RECORD, etc., in
conjunction with list-directed I/O
operations. If you do, the results are
unpredictable.

Data for list-directed transfers should consist of alternate constants
• and delimiters. The constants used should have the following
, characters:

1. Input constants must be of a type acceptable to FORTRAN-20.
Octal constants, although acceptable, are not permitted in
list-directed I/O operations.

2. Literal constants must be enclosed within single quotes,
e.g., 'ABLE'. A quoted string which is too long to fit in
one element of the input list will be placed in adjacent
elements and will be padded with blanks. If a quoted string
is being placed in an array and it fills more than one
element of the array, the remaining elements of the array
will be unchanged. In this case, it is assumed that the user
meant for the long string to go into the array and for any
following data to go into the rest of the input list. If the
string fits into one element of the array, the array will
continue to be filled.

3. Blanks are delimiters; therefore, they are not permitted in
any but literal constants.

4. You may omit decimal points from real constants that do not
have a fractional part. FORTRAN-20 assumes that the decimal
point follows the rightmost digit of a real constant.

5. Complex constants must be enclosed in parentheses.

10-8

I/O STATEMENTS

Delimiters in data for list-directed input must comply with the
following:

1. Delimiters may be either commas or blanks.

2. Delimiters may be either preceded by or followed by any
number of blanks, carriage return/line feed characters, tabs,
or line terminators; any such combination is considered by
FORTRAN-20 as being only a single delimiter.

3. Represent a null (the complete absence of a datum) by two
consecutive commas that have no intervening constant(s). You
may place any number of blanks, tabs, carriage return/line
feed characters, or end-of-input conditions between the
commas of a null. Each time you specify a null item in the
input data, its corresponding list element is skipped
(unchanged). The following illustrates the effect of a null
input:

INPUT Items

Corresponding
I/O List Items

Resulting
Contents of
List Items

101, 'A I ,tab, 'NOl',

I I I /
\ 'Lr'7B'NjBER
101.A un- NOI

changed
lAB

4. Slashes (/) cause the current input operation to terminate
even if all the items of the directing list are not filled.
The contents of items of the directing I/O list that either
are skipped (by null inputs) or have not received an input
datum before the transfer is terminated remain unchanged.
Once the I/O list of the controlling I/O statement is
satisfied, the use of the / delimiter is optional.

5. Once the I/O list has been satisfied (values have been
transferred to each item of the list), any items remaining in
the input record are skipped.

Constants or nulls in data for list-directed input may be assigned a
repetition factor so that an item is repeated.

The repetition of a constant is written as

r*K

where r is an integer constant that specifies the number of times the
. constant represented by K is to be repeated.

The repetition of a null is written as an integer followed by an
asterisk.

Examples

10*5
3*'ABLE'
3*

represents 5,5,5,5,5,5,5,5,5,5
represents 'ABLE', 'ABLE', 'ABLE'
represents null,null,null

10-9

I/O STATEMENTS

10.3.7 NAMELIST I/O Lists

You may define one or more lists by a NAMELIST statement (Chapter 11).
Each I/O list defined in a NAMELIST statement is identified by a
unique (within the routine) 1- to 6-character name that may be
referenced by one or more READ or WRITE statements. The first
character of each I/O list name must be alphabetic. By using the
NAMELIST statement, you eliminate the need for specifying the entire
I/O list.

I/O statements that reference a NAMELIST-defined I/O list cannot
contain either a FORMAT statement reference or an I/O list. You
canno~ use NAMELIST-controlled I/O operation to transfer octal numbers
or literal strings.

You may use only NAMELIST-controlled READ/WRITE statements to
in/write out records formatted in the following manner.
records for NAMELIST-controlled input operations as follows:

bring
Format

\vhere

$NAME Dl,D2,D3 ... Dn$

1. $ symbols delimit the beginning and end of the record. The
first $ must be in column 2 of the input record; column 1
must be blank.

2. NAME is the name of a NAMELIST-defined input list. The named
list identifies the processor storage locations that are to
receive the data items read from the accessed record.

3. Dl through Dn are pairs of the form "variable=value"
the value is assigned to the associated variable.
items cannot be octal numbers or literal strings.

NOTE

Do not use device positioning commands
such as BACKSPACE, SKIP RECORD, etc., in
conjunction with NAMELIST-controlled I/O
operations. If you do, the results are
unpredictable.

where
These

See Chapter 11 for more information on NAMELIST I/O transfers.

10. 4 OPTIONAL READ/WRITE ERROR EXIT AND END-OF-FILE ARGUr.lENTS

You may optionally add either or both an error exit or an end-of-file
argument to the portion in parentheses of any form of the READ and
WRITE statements when a unit is specified.

Write the error exit argument as ERR=c where c is a statement number
in the current program unit. Using this argument terminates the
current I/O operation and transfers program control to the statement
identified by the argument if an error is detected. For example, the
detection of an error during the execution of

READ(10,77,ERR=101)TABLE,I,M,J

10-10

I/O STl\TEMENTS

terminates the input operation anu transfers program control to
statement 101. See the Library Subroutine ERRSNS (Chapter 15) to find
out how to identify the actual error that occurred.

When an ERR= transfer occurs, all items on the input list and all
implied DO indexes on input or output lists become undefined.

Write the end-of-file argument as END=d, where d is a statement number
in the current program unit. This branch, when taken, stops the
current I/O operation and transfers program control to the statement
identified by the argument. In the example below, the detection of an
end-of-file condition during the execution of

READ(10,77,END=50)TABLE,I,M,J

results in the transfer of control to statement 50.

When an END= transfer occurs, all items on the input list receive the
value zero and all implied DO indices on input lists become undefined.

If the END= argument is not present, but an ERR= argument is, an
end-of-file (EOF) condition is treated as a user-trappable error. If
neither the ERR= nor the END= argument is present and an end-of-file
condition is detected, a message is printed, the file is closed,
program execution is terminated, and control is returned to the
monitor.

10.5 READ STATEMENTS

READ statements transfer data from peripheral devicgs into specified
processor storage locations. The permitted forms of this type of
input statment permit READ statments to be used in both sequential and
random access transfer modes for formatted, unformatted,
list-directed, and NAMELIST-controlled data trans

10.6 SEQUENTIAL FORMATTED READ TRANSFERS

Descriptions of the READ statements that may be used for the
sequential transfer of formatted data follow:

1. Form:

Use:

Example:

2. Fo rm:

Use:

Example:

READ (u,f)list

Input data from logical unit u, formatted
according to the specification given in f, into
the processor storage locations identified in
input list.

READ (10,555)TABLE(10,20) ,ABLE, BAKER, CHARL

READ (u, f)

Input the data from logical unit u directly into
either a Hollerith (H) field descriptor or a
literal field descriptor given within the format
specifications of the referenced FORMAT statement.
If the referenced FORMAT statement does not
contain either of the foregoing types of format
field descriptors, the input record is skipped.
If a required field descriptor is present, its
contents are replaced by the input data.

READ{15,101)
10-11

3. Form:

Use:

Example:

4. Form:

Use:

Example:

I/O STATEMENTS

READ f

Input the data from the READ default device (card
reader) directly into either a Hollerith (H) field
descriptor or a literal field descriptor given
within the format specifications of the referenced
FORMAT statement. If the referenced FORMAT
statement does not contain either of the foregoing
types of format field descriptors, the input
record is skipped. If a required field descriptor
is present, its contents are replaced by the input
data.

READ 66

READ f,list

Input the data from the READ default device (card
reader) into the processor storage locations
identified in the input list. The input data is
formatted as specified in f.

READ 15, ARRAY (20,30)

10.6.1 Sequential Unformatted Binary READ Transfer

You may use only the following form of the READ statement for the
sequential transfer of unformatted input of FORTRAN binary data:

Form:

Use:

Example:

READ (u)list

Input one logical record of data from logical unit
u into processor storage as the value of the
location identified in list. You may read only
binary files output by a FORTRAN-20 unformatted
WRITE statement with this type of READ statement.

NOTE

If you use the form READ (u) , one
unformatted input record will be skipped.

READ (10) BINFIL (10,20,30)

(10.6.2 Sequential List-Directed READ Transfer

;You may use the following forms of the READ statements to control a
sequential, list-directed input transfer:

1. Form:

Use:

Example:

READ{u,*)list

Read data from logical device u into processor
storage as the value of the locations identified
in list. Each input datum is converted, if <

necessary, to the type of its assigned list <

variable.

READ(10,*)IARY(20,20},A,B,M

10-12

2. Fo rm:

Use:

Example:

I/O STATEHENTS

READ *,list

Read the data from the READ default device (card
reader) into the processor storage locations
identified in the input list. Each input datum is
converted, if necessary, to the type of its
assigned list variable.

READ *,ABEL(10,20),I,J,K

10.6.3 Sequential NAMELIST-Controlled READ Transfers

You may use only the following form of the READ statement to initiate
a sequential NAMELIST-controlled input transfer:

Form:

Use:

READ(u,N)

Read data from logical unit u into processor
storage as the value of the locations identified
by the NAMELIST input specified by the name N.
The input data is converted to the type of'
assigned variable if type conflicts occur. Only
input files that contain records formatted and
identified for NAMELIST operations (Paragraph
10.3.7) may be read by READ statements of this
form.

10.6.4 Random Access Formatted READ Transfers

You may use only the following form of the READ statement to initiate'
a random access formatted input transfer:

Form:

Use:

Example:

READ (u#R,f)list

Input data from record R of logical unit u.:
Format each input datum according to the format
specifications of f and place into processor
storage as values of the locations identified in.
list. Only disk files that have been set up by
either an OPEN or DEFINE FILE statement may be
accessed by a READ statement of this form. (If
record R has not been written, an error results.)

READ(1#20,100) I, X(J)

10.6.5 Random Access Unformatted READ Transfers

You may use only the following form of the READ statement to initiate
a random access unformatted input transfer:

10-13

Form:

Use:

Example:

I/O STATEMENTS

READ (u#R)list

Input data from record R of logical unit u. Place
the input data into processor storage as the value
of the locations identified in list. Only binary
files that have been output by an unformatted
random access WRITE statement may be accessed by a
READ statement ·of this form. (If record R has not
been written, an error results.)

READ (1#20) BINFIL

Read record number 20 into array BINFIL.

NOTE

If the form READ (u#R) is used,
cause logical input record
skipped.

it will
R to be

10.7 SUMMARY OF READ STATEMENTS

Table 10-2 summarizes the various forms of the READ statements.

Table 10-2
Summary of READ Statements

Type of Transfer

Formatted

Unformatted

List-Directed

NAMELIST

Transfer Mode

Sequential

READ(u,f)list
READ(u,f)
READ f,list
READ f

READ(u)list
READ(u)

READ(u,*)list
READ *,list

READ{U,N)

Random Access

READ(u#R,f)list

READ(u#R)list
READ(u#R)

Note: You may include the ERR=c and END=d arguments in any of
the ,above READ statements. When included, the
foregoing arguments must be last, e.g., READ
(lO,20,END=lOl,ERR=500)ARRAY(50,lOO) .

10.8 REREAD STATEMENT

. The REREAD statement causes the last record read from the last active
input device to again be accessed and processed.

10-14

I/O STl':.TEMENTS

You cannot use the REREAD feature of FORrl'RAi~-20 until iill inpul (READ)
transfer from a file has been accomplished. If you use REREAD
prematurely, an error results.

Once a record has been accessed by a formatted READ statement, the
record transferred may be reread as many times as desired. In a
formatted transfer, you may use the same or new format specification
by each successive REREAD statement.

You may use the REREAD statement only for sequential formatted data
transfers. The form of the REREAD statement is:

Form: REREAD f,list

Use: Reread the last record read during the last
initiated READ operation and input the data
contained by the record into the processor storage
locations specified in the input list. Format the
data read according to the format specificatiOns
given in statement f.

Example: DIMENSION ARRAY(lO,lO) ,FORMA(lO,lO) ,FORMB(lO,lO),
1 FORMC(lO,lO)

90 READ(16,100)ARRAY

100 FORMAT (-----)

110 REREAD 100,FORMA
115 REREAD 150,FORMB
120 REREAD 160,FORMC

150 FORMAT(-----)
160 FORMAT (-----)

In the above sequence, statement 90 inputs data formatted according to
statement 100 into the array ARRAY. Statement 110 reads the record
read by statement 90 and inputs the data formatted as in the initial
READ operation into the array FORMA.

Statement 115 reads the record read by statement 90 and inputs the
data formatted according to statement 150 into the array FORMB.

Statement 120 reads the record read by statement 90 and inputs the
data formatted according to statement 160 into the array FORMC.

NOTE

If you try to REREAD a record input from
the teletype, you will get either the
current record or the last 150
characters of the current record,
whichever is the lesser.

10-15

I/O STATEMENTS

10.9 WRITE STATEMENTS

WRITE statements transfer data from specified processor storage
locations to peripheral devices. The various forms of the WRITE
statement enable it to be used in sequential, appen~, and random

'access transfer modes for formatted, unformatted, list-directed, and
'NAMELIST-controlled data transfers.

10.9.1 Sequential Formatted WRITE Transfers

You may use the following forms of the WRITE statement for the
sequential transfer of formatted data:

1. Form:

Use:

Example:

2. Form:

Use:

Example:

3. Form:

Use:

Example:

WRITE(u,f)list

Output the values of the processor storage
locations identified in list into the file
associated with logical unit u. Convert and
arrange the output data according to the
specifications given in f.

WRITE(06,500)OUT(10,20) ,A,B

WRITE f,list

Output the values of the processor storage
locations identified in list to the default device
(line printer). Convert and arrange the output
data according to the specifications given in f.

WRITE 10,SEND(5,10) ,A,B,C

WRITE f

Output the contents of any Hollerith (H) or
literal (' I) field descriptor(s) contained by f to
the default device (line printer). If neither of
the foregoing types of field specifications is
found in f, no output transfer is performed.

WRITE 10

10.9.2 Sequential Unformatted Binary WRITE Transfer

You may use the following form of the WRITE statements for the
sequential transfer of unformatted data:

Form:

Use:

Example:

WRITE (u)list

Output the values of the processor storage
locations identified in list into the file
associated with logical unit u. No conversion or
arrangement of output data is performed.

WRITE(12)ITAB(20,20) ,SUMS(lO,5,2)

10-16

I/O STATEMENTS

10.9.3 Sequential List-Directed WRITE Transfers

You may use the following form of the WRITE statement to initiate a
sequential list-directed output transfer.

Form:

Use:

Example:

WRITE(u,*)list

Output the values of the processor storage
locations identified in list into the file
associated with logical unit u. The conversion of
each datum from internal to external form is
performed according to the type of the list
variable from which the datum is taken.

WRITE(12,*)C,X,Y,ITAB(lO,10)

10.9.4 Sequential NAMELIST-Controlled WRITE Transfers

You may use only the following form of the WRITE statement to initiate
a sequential NAMELIST output transfer.

Form:

Use:

Example:

WRITE(u,N)

Output the values of the processor storage
locations identified by the contents of the
NAMELIST-defined list specified by name N into the
file associated with logical unit u.

WRITE(12,NMLST)

10.9.5 Random Access Formatted WRITE Transfers

You may use only the following form of the WRITE statement to initiate
a random access type formatted output transfer:

Form:

Use:

WRITE(u#R,f)list

Output the values of the processor storage
locations identified by the contents of list to
record R of the file associated with logical
device u. Only disk files that have been set up
by either an OPEN statement or a call to the
subroutine DEFINE FILE may be accessed by a WRITE
transfer of this form. The data transferred will
be formatted according to the specifications given
in f. Only those records that have been
specifically written are available to be read.

10.9.6 Random Access Unformatted WRITE Transfers

You may use only the following form of the WRITE statement to initiate
a random access unformatted output transfer:

Form:

Use:

WRITE(u#R)list

Output the values of the processor storage
locations identified by the contents of list to
record R of the file associated with logical

10-17

I/O STATEMENTS

device unit u. Only disk files that have been set·
up by either an OPEN or a call to the DEFINE FILE
subroutine may be accessed by a WRITE transfer of·
this form. Only those records that have been
specifically written are available to be read.

10.10 SUMMARY OF WRITE STATEMENTS

Table 10-3 summarizes the various forms of the WRITE statements.

Table 10-3
Summary of WRITE Statements

Type of Transfer Transfer Mode

Sequential Random Access

Formatted WRITE(u,f)list WRITE(u#R,f)list
WRITE f,list
WRITE f

Unformatted WRITE(u)list WRITE(u#R)list

List-Directed HRITE(u,*)list

NAMELIST-controlled WRITE(u,N)

Note: You may include the ERR=c and END=d arguments in
any WRITE statement which has a unit number;
however, they must be last.

10.11 ACCEPT STATEMENT

The ACCEPT statement enables you to input data via either a terminal
keyboard or a batch control file directly into specified processor
storage locations. Use this statement only in the sequential transfer
mode for the formatted transfer of inputs from your terminal keyboard
during program execution. The following paragraphs describe the
permitted forms of the ACCEPT statement.

• 10.11.1 Formatted ACCEPT Transfers

: Use the following forms of the ACCEPT statement for the sequential
transfer of formatted data.

1. Form:

Use:

Example:

ACCEPT f,list

Input data character-by-character from the user's
terminal into the processor storage locations
identified by the contents of list. Format the
input data according to the format specifications
given in f.

ACCEPT lOl,LINE(73)

10-18

2. Form:

Use:

Example:

I/O STATEMENTS

ACCEPT *,list

Input data character-by-character from the user's
terminal into the processor storage locations
identified by the contents of list. Convert the
input characters, where necessary, to the type of
its assigned list variable.

ACCEPT *,IAB,ABE,KAB,MAR

10.11.2 ACCEPT Transfers Into FORMAT Statements

You may use the following form of the ACCEPT statement to input data
from your terminal keyboard directly into a specified FORMAT statement
if the FORMAT statement has either or both a Hollerith (H), or a
literal ('s') field descriptor. If the referenced statement has
neither of the foregoing descriptors, the input record is skipped.

Form:

Use:

Example:

ACCEPT f

Replace the contents of the appropriate fields of
statement f with the data entered at the user's
terminal keyboard.

ACCEPT 101

10.12 PRINT STATEMENT

The PRINT statement causes data from specified processor storage
locations to be output on the standard output device (line printer).
Use this statement only for sequential formatted data transfer
operation; write it in either of the three following forms:

1. Form:

Use:

Example:

2. Form:

Use:

Example:

3. Form:

Use:

PRINT f,list

Output the values of the processor storage
locations identified by the contents of list to
the line printer. The values output are to be
formatted and arranged according to the format
specifications given in f.

PRINT 55,TABLE(10,20) ,I,J,K

PRINT *,list

Output the values of the processor storage
locations identified by the contents of list to
the line printer. The conversion of each datum
from internal to external form is performed
according to the type of the list variable from
which the datum is taken.

PRINT *,C,X,Y,ITAB(lO,lO)

PRINT f

Output the contents of the FORMAT statement
Hollerith (H) or literal field descriptors to the
line printer. If neither an H nor a literal field

10-19

Example:

I/O STATEMENTS

descriptor is present in the referenced FORMAT
statement, no operation is performed.

PRINT 55

The third form of the PRINT statement is particularly useful when
employed with ACCEPT f statements to cause desired data (comments or
headings) to be inserted into reports at program execution time.

Example

The sequence

55 FORMAT(' END OF ROUTINE')

PRINT 55

results in the printing of the phrase "END OF .ROUTINE" on the line
printer.

10.13 TYPE STATEMENT

The TYPE statement causes data from specified processor storage
locations to be output to your (control) terminal printing or display·
device. Use this statement only for sequential formatted data
transfers; write it in one of the following forms:

1. Form:

Use:

Example:

2. Form:

Use:

Example:

3. Form:

Use:

Example:

TYPE f,list

Output the values of the processor storage
locations identified by the contents of list to
the user's terminal. The values output are to be
formatted according to the format specifications
given in f.

TYPE 101,TABLE(10,20)I,J,K

TYPE f

Output the contents of the referenced FORMAT
statement Hollerith (H) or literal field
descriptors to the user's terminal device. If the
referenced FORMAT statement does not contain
either an H or a literal field descriptor, no
operation is performed.

TYPE 101

TYPE *,list

Output the values of the processor storage
locations identified by the contents of list to
the user's terminal. The conversion of each datum
from internal to external form is performed
according to the type of the list variable from
which the datum is taken.

TYPE *,IAB(l,S) ,A,B

10-20

I/O STATEMENTS

10.14 FIND STATEMENT

The FIND statement does not initiate a data transfer operation; use
it during random access read operations to locate the next record to
be read while the current record is being input. The program does not
have access to the "found" record until the next READ statement is
executed.

The form of the FIND statement is

FIND(u#R)

Example:

In the sequence

READ(Ol#90)
FIND(Ol#lOl)

READ(Ol#lOl)

the FIND statement will locate record #101 on device 01 after record
90 has been retrieved. Record #101 is not processed until the second
READ statement in the sequence is executed.

10.15 ENCODE AND DECODE STATEMENTS

Use the ENCODE and DECODE statements to perform sequential formatted
data transfer between two defined areas of processor storage, i.e., an
I/O list and a user-defined buffer; no peripheral I/O device is
involved in the operations performed by these statements.

The ENCODE statement transfers data from the variables of a specified
I/O list into a specified storage area. ENCODE operations are similar
to those performed by a WRITE statement.

The DECODE statement transfers data from a specified storage area into
the processor storage locations identified by the variables of an I/O
list. DECODE operations are similar to those performed by a READ
statement.

write the ENCODE and DECODE statements in the following forms:

where

ENCODE(c,f,s)list
DECODE(c,f,s)list

c specifies the number of characters to be in each internal
storage area. This argument may be an integer, an integer
expression, or either a real or double precision expression that
is converted to an integer form.

NOTE

5 characters per storage location are stored in the
buffer without regard to the type of variable given as
the starting location.

10-21

I/O STATEMENTS

f specifies either a FORMAT statement or an array that contains
format specifications.

s specifies the address of the first storage location that is to
be used in the transfer operations. When multiple records are
specified by the format being used, the succeeding records follow
each other in order of increasing storage addresses.

list specifies an I/O list of the standard form (Paragraph
10.3.4).

When multiple records are stored by ENCODE, each new record starts on
a new storage location boundary rather than there being a CRLF
inserted between records.

10.15.1 ENCODE Statement

A description of the form and use of the ENCODE statement follows:

Form:

Use:

Example:

ENCODE(c,f,s)list

The values of the processor storage locations
identified by the contents of list are converted
to ASCII character strings according to the format
specifications given in f. The converted
characters are then written into the destination
area starting at location s. If you try to
transfer more characters than the specified area
can contain, the excess characters are ignored.

If you transfer fewer characters than specified
for the record size, the empty character locations
are filled with blanks.

ENCODE(500,101,START)TABLE

10.15.2 DECODE Statement

A description of the form and use of the DECODE statement follows:

Form:

Use:

Example:

DECODE(c,f,s)list

The character strings are taken starting at
location s, converted (decoded) according to the
format specifications given in f, and stored as
the values of the processor storage locations
identified in list.

If the format specification requires more
characters from a record than are specified by c,
the extra characters are assumed to be blanks. If
fewer characters are required from a record than
are specified by c, the extra characters are
ignored.

DECODE(50,50,START)GET(5,10)

10-22

I/O STATEMENTS

10.15.3 Example Of ENCODE/DECODE Operations

The following program illustrates the use of both the ENCODE and
DECODE statements:

Example

Assume the contents of the variables to be as follows:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)

A(l) contains the floating point number 300.45
A(2) contains the floating point number 3.0
J is an integer variable
B is a 4-word array of indeterminate contents
C contains the ASCII string 12345

DO 2 J=l,2
ENCODE(16,10,B)J,A(J)

10 FORMAT(lX,2HA(,I1,4H) ,FB,2)
TYPE 11,B

11 FORMAT (4A5)
2 CONTINUE

DECODE(5,12,C)B
12 FORMAT(3Fl.0,lX,F1.0)

TYPE 13,B
13 FORMAT (4 F 5. 2)

END

Array B can contain 20 ASCII characters. The result of the ENCODE
statement after the first iteration of the DO loop is:

B(l)
B (2)
B (3)
B (4)

'A (1) Typed at line 4 as
'=
'300.4'
• 5

A (1) =

The result after the second iteration is:

300.45

B(l)
B (2)

'A (2) Typed at line 4 as

B (3) =
B (4)

'=
'3.0

The DECODE statement:

A(2) = 3.0

1. Extracts the digits 1, 2, and 3 from C
2. Converts them to floating point values
3. Stores them in B(l), B(2), and B(3)
4. Skips the next character (the digit 4)
5. Extracts the digit 5 from C
6. Converts it to a floating-point value, and,
7. Stores it in B(4)

The output from the TYPE statement at line 9 is:
1.00 2.00 3.00 5.00

10.16 SUMMARY OF I/O STATEMENTS

Table 10-4 summarizes all permitted forms of the I/O statement.

10-23

f--J
0
I

tv
.t:.

'fable 10-4
Summary of I/O Statements

Formatted Unformatted Namelist
I/O Statements Transfer Format Control

READ
Sequential READ (u,f)list READ(u)list READ(u,N)

READ f,list
READ f

Random READ (u#R,f)list READ(u#R)list

WRITE
Sequential or WRITE (u,f)list WRITE(u)list WRI'rE (u,N)
Append(l) WRITE f,list

WRITE f

Random(2) v~RI'rE (u#R,f)list WRITE (u#R)list

REREAD
Sequential REREAD f,list

FIND
Random-only FIND (u#R) FIND (u#R)

ACCEPT
Sequential only ACCEPT f,list

ACCEPT" f

1. You must use an OPEN statement to set up an append mode.

2. You must use either the OPEN statement or a call to the DEFINE
FILE subroutine to set up a random 'access mode.

List-Directed

READ(u,*)list
READ *,list

,\'lRITE (u, *) list
H
"-0

m
t-3
~
t-3
trl

~
Z
t-3
m

ACCEP'f *, list

f-'
o
I

tv
lJ1

Table 10-4 (Cont.)
Summary of I/O Statements

I/O Statements Transfer Format Control
Formatted Unformatted Namelist List-Direction

PRINT
Sequential only PRINT f,list

PRINT f

TYPE
Sequential only TYPE f,list

TYPE f

ENCODE
Sequential only ENCODE (c,f,s)list

DECODE
Sequential only I DECODE (c,f,s)list

Legend:
u
f

list
N

logical unit number *
statement number of FORMAT
statement or name of array #R
containing format information
I/O list c
name of specific NAMELIST s
I/O list

PRIN1' *, list

TYPE *,list

symbol used to specify list-directed I/O
operator
variable which specifies logical record
position
number of characters per internal record
address of the first storage location to
be used

H
"­o
Ul
1-3
~
1-3
tlj

Ei3 z
1-3
Ul

CHAPTER 11

NAMELIST STATEMENTS

11.1 INTRODUCTION

Use the NAMELIST statement to define I/O lists similar to those
described in Chapter 10 (Paragraph 10.3.4). Reference defined
NAMELIST I/O lists in special forms of the READ and WRITE statements
to provide a method of transferring and converting data without
referencing format specifications or specifying an I/O list in the I/O
statement.

11.2 NAMELIST STATEMENT

Write NAMELIST statements in the following form:

where

NAMELIST/Nl/Al,A2, ... ,An/N2/Bl,B2, ... ,Bn/Nn/ ...

/Nl/ through /Nn/

Al through An
and

Bl through Bn

represents names of
Always enclose the
(/N/)

individual lists.
name with slashes

are the items of the lists identified,
respectively, by names Nl and N2. A
list may contain one or more variable,
array, or array element names. Delimit
the items of a list by commas. Each
list of a NAMELIST statement is
identified (and referenced) by the name
immediately preceding the list.

Example

DIMENSION C(2,4)
NAMELIST/TABLE/A,B,C/SUMS/TOTAL

In the foregoing example, the name TABLE identifies the list
A,B,C(2,4), and the name SUMS identifies the list consisting of the
array TOTAL.

Once a list has been defined in a NAMELIST statement, one or more I/O
statements may reference its name.

11-1

NAMELIST STATEMENTS

The rules for structuring a NAMELIST statement are:

1. You may use a maximum of six characters for a NAMELIST name.

2. You must begin it with an alphabetic character.

3. You must enclose it in slashes.

4. The NAMELIST name must precede the list of entries to which
it refers.

5. The NAMELIST name must be unique within the program.

6. You may define a NAMELIST name only once, and you must define
it by a NAMELIST statement. Once defined, you may use a name
only in READ or WRITE statements.

7. You must define the NAMELIST name in advance of the I/O
statement in which it is used.

8. You cannot use a variable used in a NAMELIST statement as a
dummy argument in a SUBROUTINE definition.

9. You must define any dimensioned variable contained in a
NAMELIST statement in an array declaration statement
preceding the NAMELIST statement.

11.2.1 NAMELIST-Controlled Input Transfers

During input (READ) transfer operations in which a NAMELIST-defined
name is referenced, the records are read until a record is found that
begins with the sequence 1 $1 (a space followed by a dollar sign)
followed by the referenced name. The dollar sign must be the second
character in the record; the first character in the record must be a
blank. Once the proper symbol-name combination is found, the data
items following it are transferred on a one-to-one basis to the
processor storage locations identified by the contents of the
referenced list. The input data is always converted to the type of
the list variable when there is a conflict of types. The input
operation continues until another $ symbol is detected. If variables
appear in the NAMELIST record that do not appear in the NAMELIST list,
an error condition will occur. Data items of records to be input
(read) using NAMELIST-defined lists must be separated by commas and

may be of the following form:

where

V=Kl,K2, ... ,Kn

1. V may be a variable, array, or array element name.

2. Kl through Kn are constants of type integer, real, double
precision, complex (written as (A,B) where A and B are real),
or logical (written as T for true or F for false). A series
of identical constants may be represented as a single
constant preceded by a repetition factor (5*5 represents
5,5,5~5,5) .

11-2

NAMELIST STATEMENTS

In transfers of this type, logical and complex constants must be
equated to variables of their own type. Other type constants (real,
double-precision, and integer) may be equated to any other type of
variable (except logical or complex), and will be converted to the
variable type. For example, assume A is a 2-dimensional real array, B
is a I-dimensional integer array, C is an integer variable, and that
the input data is as follows:

$FRED A(7,2)=4, B=3,6*2.8, C=3.32$

A READ statement referring to the NAMELIST defined name FRED will
result in the following: The integer 4 will be converted to floating
point and placed in A(7,2). The integer 3 will be placed in B(l), and
the integer 2 (converted) will be placed in B(2) ,B(3), ... ,B(7). The
floating point number 3.32 will be converted to the integer 3 and
placed in C.

NOTE

"&" may be used instead of 11$" in
NAMELIST-controlled input.

11.2.2 NAMELIST-Controlled Output Transfers

When a WRITE statement refers to a NAMELIST-defined name, all
variables and arrays and their values belonging to the named list are
written out, each according to its type. Arrays are written out by
columns. Output data is written so that:

1. The fields for the data will be large enough to contain all
the significant digits.

2. The output can be read by an input statement referencing a
NAMELIST- defined list.

For example, if JOE is a 2 X 3 real array, the statement

NAMELIST/NAMl/JOE,Kl,ALPHA
~~RITE (u, NAMl)

generates the following form of output:

Column

l
$NAMEI

JOE= -6.750000
O.OOOOOOOE+OO,

ALPHA= 3.000000

, 0.2340000E-04,
-1970000. Kl=

, $

NOTE

680.0000
73.10000

Do not use device positioning commands
such as BACKSPACE, SKIP, RECORD, etc.,
with NAMELIST-controlled I/O operations.
If you do, the results are
unpredictable.

11-3

-17.80000

CHAPTER 12

FILE CONTROL STATEMENTS

12.1 INTRODUCTION

This chapter describes the OPEN and CLOSE statements.

They are file control statements used to set up files and establish
parameters for I/O operations and to terminate I/O operations.

12.2 OPEN AND CLOSE STATEMENTS

Both the OPEN and CLOSE statements are unique to FORTRAN-20; they
both use the same format and have the same options and arguments.

The OPEN statement enables you to define all of the important aspects
of each desired data transfer operation; it provides an extensive.
list of required and optional arguments that define in detail: .

1. the name and location of the data file

2. the type of access required

3. the data format within the file

4. the protection code(l) to be assigned an output data file

5. the disposition of the data file

6. data file record, block and file sizes

7. a data file version identifier

In addition, a DIALOG argument is provided that permits you to
establish a dialogue mode of operation when the OPEN statement
containing it is executed. In a dialogue mode, interactive
terminal/program communication is established. This enables you to
define, redefine, or defer the values of the optional arguments
contained by the current OPEN statement during program ,execution.

The general form of the OPEN statement is:

OPEN(Argl,Arg2, ... ,Argn)

1. Refer to the Monitor Calls Manual, for a description of file access
protection codes.

12-1

FILE CONTROL STATEMENTS

Use the CLOSE statement in the termination of an I/O operation to
dissociate the I/O device being used from the active file and
file-related information, and to restore the core occupied by I/O
buffers and other transfer-related operations. All required device
dependent termination functions are also performed on the execution of
a CLOSE statement. Note that the CLOSE statement can change the name,
protection, directory, and disposition of the file being closed.

Once a CLOSE statement has been executed, you must use another OPEN
statement to regain access to the closed file.

The general form of the CLOSE statement is:

CLOSE(Argl.,Arg2., ... ,Argn}

CAUTION

If you use a filename argument in a
CLOSE statement that is different from
the current filename, the file will be
renamed.

12.2.1 Options for OPEN and CLOSE Statements

The options and their arguments, which you may use in both the OPEN
and CLOSE statements, are:

1. UNIT

2. DEVICE

This option is required; it defines the
FORTRAN I/O unit number to be used. FORTRAN
devices are identified by assigned decimal
numbers within the range 1-63; however, UNIT
may be assigned an integer variable or
constant. The general form of this argument
is:

UNIT= An integer variable or constant

NOTE

FORTRAN-20 standard logical unit
assignments are described in Chapter 10
(Table 10-1). The range, i.e., 1-63, of
the possible UNIT numbers is an
installation-defined parameter.

This option may specify either the physical
or the logical name of the I/O device
involved. (A logical name always takes:
precedence over a physical name.) The DEVICE
arguments may specify I/O devices located at
remote stations, as well as logical devices.
The general form of the DEVICE argument is:

DEVICE= A literal constant or variable

12-2

3. ACCESS

FILE CONTROL STATEMENTS

If you omit this option, the logical name u
(where u is the decimal unit number) is
tried; if this is not successful, the
standard (default) device is attempted.

ACCESS describes the type of input and/or
output statements and the file access mode to
be used in a specified data transfer
operation. You may assign ACCESS anyone of
six possible names, each of which specifies a
specific type of I/O operation. The
assignable names and the operations specified
are:

a. SEQIN

b. SEQOUT

The specified data file is
to be read in sequential
access mode.

The specified data file is
to be written in a
sequential access mode.

c. SEQINOUT The specified data file may
be first read, then written
(READ/WRITE sequence)
record-by-record in a
sequential access mode.
When you specify SEQINOUT, a
WRITE/READ sequence is
illegal. If no access is
specified, SEQINOUT is
assumed.

d. RANDOM The specified data file may
be either read or written
into, one record at a time.
In a random access mode of
operation, the relative
position of each record is
independent of the previous
READ or WRITE statement;
all records accessed must
have a fixed logical record
length. The RECORD SIZE
option is required for
random access operations.
You must specify a disk
device when the random
argument is used.

e. RANDIN This argument enables you to
establish a special,
read-only random access mode
with a named file. During a
RANDIN mode, you may read
the named file
simultaneously with other
users who have also
established a RANDIN mode
and with the owner of the
file. The use of RANDIN
enables a data base to be
shared by more than one user
at the same time.

12-3

4. MODE

FILE CONTROL STATEMENTS

f. APPEND The record specified by a
corresponding WRITE
statement is to be added to
the logical end of a named
file. You must close and
then reopen the modified
file to permit it to be
read.

The general form of the
ACCESS argument is:

'SEQIN'
'SEQOUT'
'SEQINOUT'

ACCESS= 'RANDOM'
'RANDIN'
'APPEND'
variable (set to
literal)

This option defines the character set of an
external file or record. The use of this
argument is optional; if you do not use it,
one of the following is assumed:

a. ASCII for a formatted I/O file transfer
b. Binary for an unformatted I/O file

transfer.

NOTE

Refer to the Monitor Calls Manual for a
detailed description of the data modes
given in the following list.

You must use one of the following character
set specifications with the MODE argument:

Literal Action Indicated

'ASCII' Specifies an ASCII character set.

'BINARY' Specifies data formatted
FORTRAN binary data file.

as a

'IMAGE' Specifies an image (I) mode data
transfer for the associated READ or
WRITE statements. IMAGE is an
unformatted binary mode.

'DUMP' The data file to be
to be handled in
operation.

transferred is
a DUMP mode of

The general form of the MODE argument is:

MODE=

12-4

'ASCII'
'BINARY'
'IMAGE'
'DUMP'
variable (set to literal)

5. DISPOSE

6. FILE

FILE CONTROL STATEMENTS

This option specifies an action to be taken
regarding a file at close time. When used,
DISPOSE must be either a variable or one of
the following literals:

Literal Action Indicated

'SAVE' Leave the file on the device.

'DELETE' If the device involved is a disk,
remove the file: otherwise, take no
action.

'PRINT' If the file is on disk, queue it for
printing; otherwise, take no
action.

'LIST' If the file is on disk, queue it for
printing and delete the file:
otherwise take no action.

'RENAME' Change filename. (This is redundant
if a new filename is given.)

If the DISPOSE argument is not given, the
argument DISPOSE 'SAVE' is assumed. The
general form of the DISPOSE argument is:

'SAVE'
'DELETE'

DISPOSE= 'PRINT'
'LIST'
'RENAME'
variable (set to literal)

This option specifies the name of the file
involved in the data transfer operation.
FILE must be either a literal,
double-precision, complex, or
single-precision variable. Single-precision
variables are assumed to contain a 1- to
5-character file specification:
double-precision variables permit
10-character file specification. The format
is a 1- to 6-character filename optionally
followed by a period and a 0- to 3-character
extension. Any excess characters in either
the name or extension are ignored. If you
omit the period and extension, the extension
.DAT is assumed; if just the extension is
omitted, a null extension is assumed. So if
you want a filename without an extension,
remember to use the period.

If a filename is not specified or is zero, a
default name is generated that has the form

FORxx.DAT

where xx is the FORTRAN logical unit number
(decimal) or is the logical unit name for the
default statements ACCEPT, PRINT, READ, or
TYPE. The general form of a FILE argument
is:

12-5

7. PROTECTION

8. DIRECTORY

FILE CONTROL STATEMENTS

FILE= A literal or variable set to a
literal

This option specifies a protection code to be
assigned the data file being transferred.
The protection code determines the level of
access to the file that three possible
classes of users (owner, member, or other)
will have. PROTECTION may be a 3-digit octal
literal or a variable; if the argument is
assigned a zero value or is not given, the
default protection code established for the
installation is used. The general form of
the PROTECTION argument is:

PROTECTION= 3-digit octal constant or
integer variable

Use this option for disk files only. It
specifies the location of the user file
directory (UFD) or the sub-file directory
(SFD) that contains the file specified in the

OPEN statement. A directory identifier may
consist of either:

a. Your project programmer number that
identifies the UFD, for example, 10,7, or

b. A UFD/SFD directory path specification. A
path specification lists the UFD and the
names of its SFDs that form a path to the
desired SFD. For example, the following
path specification identifies the path
leading to SFD 1234:

lO,7,SFDA,SFDB,1234

NOTE

Refer to the Monitor Calls Manual for a
complete description of directories and
multilevel directory structures.

The general form of a DIRECTORY argument is:

DIRECTORY= Literal or
containing
specification

array
directory

name
path

You may also establish an array containing
the directory specification as its elements,
and reference the array in the DIRECTORY
argument. Single-precision arrays permit
5-character directory names to be used;
double-precision arrays permit 6-character:

12-6

FILE CONTROL STATEHENTS

names to be used. You must use a zero
entry to terminate a directory
specification given in an array.

(0)
path

Examples of the use of single- and
double-precision arrays in an OPEN statement
DIRECTORY specification follow:

a. Single-Precision Array

OPEN (UNIT 5, DIRECTORY = PATH, ...)

where PATH and its elements are:

DIMENSION PATH (5)
PATH (1) = "10 ! (PROJECT NUMBER)
PATH (2)= "7 ! (PROGRAHMER NUMBER) UFO
PATH (3)='SFDA' Names of sub-file
PATH (4)='SFDB' directories (SFD's)
PATH (5)=0

b. Double-Precision Array

OPEN (UNIT=5, DIRECTORY = PATH, ...)

where PATH and its elements are:

DOUBLE PRECISION PATH (5)

PATH (1) =11000000000010000000000007
! (PROJ.,PROG. NUMBERS=UFD)

PATH (2)='SFDABC'
PATH (3)='MYAREA'
PATH (4)='YOURIT'
PATH (5)=0

!names of sub-file
!directories (SFDs)

The elements of a directory specification
may then be either a literal or a single­
or double-precision array.

The following is an example of a literal
specification:

DIRECTORY='lO,7,SFDl,SFD2,SFD3'
'---..--l \ j

, / b '/l'v"'"
ProJect Su -Fl e
Programmer Directory
Number Path

Whenever the specification is an array, you
may specify the required project and
programmer numbers either of two ways. You
can use one word with the project number in
the left half and the programmer number in
the right half, or, use the right halves of
separate sequential word locations.

12-7

9. BUFFER COUNT

10. FILE SIZE

11. VERSION

12. BLOCK SIZE

13. RECORD SIZE

FILE CONTROL STATEMENTS

This option enables you to specify the number
of I/O buffers to be assigned to a particular
device. If this argument is not given or is,
assigned a value of zero, the Monitor default
is assumed. The general form of this
argument is:

BUFFER COUNT= An integer constant or
variable

Use this option for disk operations only: it
enables you to estimate the number of words
that an output file is going to contain. The
use of FILE SIZE enables you to ensure at the
start of a program that enough space is
available for its execution. If the size
specified is found to be too small during
program executions, the Monitor allocates
additional space according to the normal
Monitor algorithms. The value assigned to
the FILE SIZE arguments may be an integer
constant or variable and will be rounded up ,
to the next higher block boundary (multiple
of 200 octal). The general form of this
argument is:

FILE SIZE= An integer
variable

constant or

Use this option for disk operations only; it
enables you to assign a 12-digit octal
version number to a file when it is output.
The quantity assigned to the VERSION argument
may be either an octal constant or variable.
The general form of the argument is:

VERSION= An octal constant or integer
variable

You can use this option for all storage media
except disk. It enables you to specify a i
physical storage block size for a device.
The value assigned the BLOCK SIZE arguments
may be an integer constant or variable. The
size specified must be greater than or equal
to 3 and less than or equal to 4095. The
general form of this argument is:

BLOCK SIZE= An integer
variable

constant or

This option enables you to force all logical
records to be a specified length. If a
logical record exceeds the specified length,
it is truncated; if a logical record is less'
than the specified size, nulls are added to
pad the record to its full size. The RECORD
SIZE argument is required whenever a random'
access mode is specified. The value assigned
to this argument may be either an integer
constant or variable, and may be expressed as

12-8

14. ASSOCIATE
VARIABLE

15. PARITY

16. DENSITY

17. DIALOG

FILE CONTROL STATEMENTS

the number of words or characters, depending
on the mode of the file being described. The
general form of this argument is:

RECORD SIZE= An integer
variable

constant or

Use this option for disk random access
operations only. It provides storage for the
number of the record to be accessed next if
the program being executed were to continue
to sequentially access records starting from
the current READ. For example, if record
number 3 were read, the ASSOCIATE VARIABLE
would be equal to 4. The general form of
this argument is:

ASSOCIATE VARIABLE = Integer variable

Use this option for magnetic tape operations
only; it permits you to specify the type of
parity to be observed (odd or even) during
the transfer of data. The general form of
this option is:

PARITY= 'ODD'
'EVEN'
variable (set to literal)

Use this option for magnetic tape operations
only; it permits you to specify any of four
possible bit-per-inch (bpi) tape density
parameters for magnetic tape transfer
operations. The general form of this option
is:

DENSITY=
'200'
'556'
'800'
'1600'

The use of
enables
execution
assigned
There are
first is:

DIALOG

variable (set to literal)

this option in an OPEN statement
you to supersede or defer, at

time, the values previously
to the arguments of the statement.
two forms of this argument. The

This form establishes a dialogue with your
terminal when the OPEN statement is executed.
FOROTS outputs the following messages at the
user's terminal.

UNIT=n:/ACCESS=SEQINOUT/MODE=ASCII
ENTER NEW FILE SPECS. END WITH A $ (ALT)

Once the message and defined file
specification are output, you may enter any
desired changes. You need enter only the
arguments that are to be changed.

12-9

18. ERR

Examples:

FILE CONTROL STATEMENTS

The second form of the argument is:

DIALOG= Literal or array

The value assigned to DIALOG may be a literal
or an array containing a file specification
with the desired information.

The use of this option in an OPEN or CLOSE
statement enables you to transfer program
control to an executable statement when an
error is detected during the processing of
the OPEN or CLOSE statement. The general
form of this option is:

ERR= s

where s is the statement label of an
executable statement (that appears in the
same program unit as the error specifier) to
which program control is transferred when an
error is detected.

Associated with the ERR= option on OPEN/CLOSE
is the subroutine ERRSNS that enables you to
pinpoint the error. See Appendix H for
FOROTS error values returned by ERRSNS.

OPEN (UNIT= 1, DEVICE= 'DSK', ACCESS= 'SEQIN ' , MODE= 'BINARY')

causes a disk file named FOR01.DAT (since no FILE= option was
specified) to be opened on unit 1 for sequential input in binary mode.

OPEN (UNIT= 3, DEVICE= 'DSK', FILE= 'PAYROL.DAT',
1 ACCESS= 'RANDOM', MODE= 'ASCII', RECORD SIZE= 80,
2 ASSOCIATE VARIABLE= I, ERR= 240)

causes a disk file named PAYROL.DAT to be opened on unit 3 for random
input/output operations in ASCII mode. The records in PAYROL.DAT are
80 characters long; the ASSOCIATE VARIABLE for this file is I. If an
error occurs during the execution of this OPEN statement, the OPEN
will terminate and control will transfer to the statement labeled 240.

CLOSE (UNIT= 3, DISPOSE= 'DELETE')

causes the file on unit 3 to be closed and removed if the file is on
disk.

12.2.2 Summary of OPEN/CLOSE Statement Options

Table 12-1 summarizes the options permitted and required in the OPEN
and CLOSE statements and the type of value required by each.

12-10

FILE CONTROL STATEMENTS

Table 12-1
OPEN/CLOSE Statement Arguments

Argument

ACCESS=

ASSOCIATE VARIABLE=
BLOCK SIZE=
BUFFER COUNT=
DENSITY=
DEVICE=
DIALOG=
DIRECTORY=
DISPOSE=
ERR=
FILE=
FILE SIZE=
MODE=
PARITY=
PROTECTION=

RECORD SIZE=

UNIT=
VERSION=

*
R = Required
o = Optional
I = Ignored

Possible Value

I SEQIN I, I SEQOUT I, I SEQINOUT I ,

I RANDIN I, I RANDOM I, I APPEND I,
or variable
Integer variable
Integer constant or variable
Integer constant or variable
Literal constant or variable
Literal constant or variable
Literal or array or none
Literal or variable or array
Literal constant or variable
Statement Number
Literal constant or variable
Integer constant or variable
Literal constant or variable
Literal constant or variable
An octal constant or
integer variable
Integer constant or integer
variable
Integer variable or constant
Octal constant or variable

12-11

Open* Close*

0 I

0 I
0 I
0 I
0 I
0 I
0 I
0 0
0 0
0 0
0 0
0 I
a I
0 I
0 0

0 I

R R
0 0

CHAPTER 13

FORMAT STATEMENT

13.1 INTRODUCTION

Use FORMAT statements in conjunction with the I/O list of I/O
statements during formatted data transfer operations. The FORMAT
statements contain field descriptors that, together with the list
items of associated I/O statements, specify the forms of the data and
data fields that comprise each record.

FORMAT statements may appear almost anywhere in a source program. The
only placement restrictions are that they follow PROGRAM, FUNCTION,
SUBPROGRAM, or BLOCK DATA statements; and that they precede the END
statement. (Refer to Section 2.4.)

You must label FORMAT statements so that I/O statements can reference
them.

13.1.1 FORMAT Statement, General.Form

The general form of a FORMAT statement follows:

where

k FORMAT(SAl,SA2, ... ,SAn/SBl,SB2, ... ,SBn/ ...)

k = the required statement label (which can only
be referenced by I/O statements).

SAl through SAn = individual field descriptor sets
and

SBI through SBn

In the foregoing statement form, the individual field descriptors are
delimited by commas (,). Field descriptor sets and records are
delimited by slashes (/). For example, a FORMAT statement of the
form:

FORMAT(SAl,SA2/SBl,SB2/SCl,SC2)

contains format specifications for three records with each record
containing two field descriptor sets.

Adjacent slashes (//) in a FORMAT statement specify that a record is
to be skipped during input or is to consist of an empty record on
output. For example, a FORMAT statement of the form:

FORMAT (SA1,SA2///SBl,SB2)

13-1

FORMAT STATEMENT

specifies four records are to be processed; however, the second and
third records are to be skipped.

You may represent repeated field descriptors or groups of field
descriptors by using a repeat form. Indicate the repetition of a
single field descriptor by preceding the descriptor with an integer
constant that specifies how many times the descriptor is to be
repeated. For example, a FORMAT statement of the form:

FORMAT(SA1,SA2,SA3,SA1,SA2,SA3,SA1,SA2,SA3)

may be written as

FORMAT(3(SA1,SA2,SA3))

You may nest the repeat forms of field descriptors to any depth. For
example~ a FORMAT statement of the form:

FORMAT(SA1,SA2,SA2,SA3,SA1,SA2,SA2,SA3)

may also be written in the form:

FORMAT(2(SA1,2SA2,SA3))

The following paragraphs discuss the manner in which you may
foregoing statement forms and the effect each has on
involved.

13.2 FORMAT DESCRIPTORS

use the
the data

FORMAT statement descriptors describe the record structure of the
data, the format of fields within the record, and the conversion,
scaling, and editing of data within specific fields. The following
descriptors can be used with FORTRAN-20:

Descriptors

rFw.d
rEw.d
rDw.d
rGw.d

rIw

rLw

rAw
rRw

kHs
'text'

nP

/

$

raw

Comments

Floating point numeric field descriptors

Integer field descriptor

Logical field descriptor

Alphanumeric data field descriptor

Alphanumeric data in a FORMAT statement field
descriptor

Field formatting descriptors

Numerical scale factor descriptor

Record delimiter

Carriage return suppression for terminal

Octal field descriptor

13-2

where

FORHAT STATEt·1ENT

r an optional unsigned integer representing a repeat count.
This option enables a field descriptor to be repeated r
times.

w an optional integer constant representing the width (total
number of characters contained) of the external form of
the field being described. All characters, including
digits, decimal points, signs, and blanks that are to
comprise the external form of the field, must be included
in the value of w .

. d an optional unsigned integer specifying the number of
fractional digits that are to appear in the external
representation of the field being described. Note that w
must be specified if .d is included in the descriptor.

k an unsigned integer specifying the number of characters to
be processed during the transfer of alphanumeric data.

s represents a string of ASCII (alphanumeric) characters.

n a signed integer constant (plus signs are optional).

The characters A, D, E, F, G, H, I, L, 0, P, and R indicate the manner
of conversion and editing to be performed between the internal
(processor) and external representations of the data within a specific
field; these characters are referred to as conversion codes. Table
13-1 gives the FORTRAN-20 conversion codes and a brief description of
the function of each.

Table 13-1
FORTRAN-20 Conversion Codes

Code Function

A
D
E
F
G
H
I
L
Q
P
R

Transfer alphanumeric data
Transfer real data with a D exponent{l)
Transfer real data with an E exponent{l)
Transfer real data without an exponent
Transfer integer, real, complex, or logical data
Transfer literal data
Transfer integer data
Transfer logical data
Transfer octal data
Numer icals'caling' factor
Transfer alphanumeric data

1. An exponent of 0 is assumed if none is given.

The use of commas to delineate
specification is optional as
example,

FORMAT (3X, A2)

can be written as

FORMAT (3XA2)

format
long

13-3

descriptors within a format
as no ambiguity exists. For

FORMAT STATEMENT

Since interpretation of a format specification is left associative,
the specification

FORMAT(I22,I5)

can be written as

FORMAT(I22I5)

However, a comma is required when you wish to specify

FORMA T (12 , 2 I 5)

The following paragraphs provide detailed descriptions of the "various
types of format descriptors, the manner in which they are written and
employed, and their use in FORMAT statements.

13.2.1 Numeric Field Descriptors

The forms of the field descriptors used to specify the format and
conversion of numeric data follow.

Description

Dw.d
Ew.d
Ew.d,Ew.d

Fw.d
Fw.d,Fw.d

Type of Data Used For

Double-precision data with a D exponent
Real data with an E exponent
For the real and imaginary parts of a complex
datum
Real or double-precision data without an exponent
For the real and imaginary parts of a complex
datum

Iw Integer data
r"Ow-"'-~~-"~-"'~~"'~ ~~'~'~':.J;:j'~I~~f·~"?I'at:~ 'J
~Gw'.'d '" ',' Real or double-precision data

Gw For integer (or logical) data
Gw.d,Gw.d For the real and imaginary parts of a complex

datum

NOTE

The G conversion code may be used for
all but octal numeric data types.

Examples

Consider the; following program segment:

INTEGER 11,12
REAL Rl,R2,R3
DOUBLE PRECISION Dl,D2
II 506
12 8
Rl 506.0
R2 18.1
R3 506001.0
Dl 18.0
D2 -504.0

13-4

FORMAT STATEMENT

Table 13-2
formatted
segment.

describes the actions performed by several types of
WRITE statements on the data given in the foregoing program

Table 13-2
Action of Field Descriptors On Sample Data

Item Descriptor
Form

Sample
Descriptor

WRITE
Statement
Using the
Sample
Descriptor

External
Form External

Appearance
of Sample
Data

1
2
3
4
S

~_ 6
7
S
9

10

Dw.d
Ew.d
Fw.d
Iw
Iw

, , Ow",~_"
Gw.d
Gw.d
Gw.d
Gw

DS.2
ES.2
FS.2
IS
I2
OS

"'-GS' ~-i"'
GS.2
GS.2
GS

WRITE(-,-)Dl
WRITE(-,-)Rl
WRITE(-,-)R2
WRITE(-,-)Il
WRITE(-,-)Il

,, WRITE '(-: '-: }1?'
"WRITE"(::~ :Yb'i"
WRITE(-,-)R3
WRITE(-,-)R2
WRITE(-,-)Il

of Sample
Field
Described

Z.nnD
Z.nnE
aa.nn
aaaan
an
nnnnn
Z.nnD
Z.nnE
aa.nn
aaan

nn
nn

0.lSD+02
0.SlE+03
lS.lO
,kS,l6s 0 6
**
,9,Q~Q<~ ,9~ .,~ "A_~'_~M"Y'A'~h~J
-.SOD+02
0.SlE+06
)5}6iS1S.lO
iSiS 50 6

where: a. n represents a numeric character.

Notes:

b. Z represents either a - or O. (Note that if n-d>6,
a negative number cannot be output.)

c. a represents a digit, leading blank (¥) or a minus
sign depending on the numeric output.

1. In Item 1, the value Dl has only two significant digits and
d=2, so no rounding will occur on input.

2. In Item 2, since Rl has 3 significant digits, it is rounded
to fit into the specified field.

3. In Item S, the width (w) part of a format descriptor
specifies an exact field that permits no rounding of its
contents. If the w specification is too small for the
datum to be transferred, asterisks are output to indicate
that the transfer was not made.

S. In Items Sand 9, the relationship between G and fixed and
floating real data is discussed in Paragraph 13.2.3.

6. In Items 1, 2, 3, 7, and S, the D and E exponent prefixes
are optional in the external form of the floating point
constants. For example, 1.lE+3 may be written as 1.1+3.

Table 13-3 summarizes the internal and external forms of the data
specified by the numeric format conversion code.

13-S

Internal Form

Binary floating-point
double-precision

Binary floating-point

Binary floating-point

Binary integer

Binary word

One of the following:
single-precision
binary floating-point,
binary integer, binary
logical, or binary
complex

FORMAT STATEMENT

Table 13-3
Numeric Field Codes

Conversion External Form
Code

D Decimal floating-point with D
exponent

E Decimal floating-point with E
exponent

F Decimal fixed-point

I Decimal integer

o

G

Octal value

Single-precision decimal
floating-point, decimal
integer, logical (T or F), or
complex (two decimal
floating-point numbers),
depending upon the internal
form

Complex quantities transfer as two independent real quantities. The
format specification for complex quantities consists of either two
successive real field descriptors or one repeated real field
descriptor. For example, the statement

FORMAT(2E15.4,2(F8.3,F8.5))

may transfer up to three complex quantities.

The equivalent of the foregoing statement is

FORMAT(E15.4,E15.4,F8.3,F8.5,F8.3,F8.5)

13.2.2 Interaction of Field Descriptors With I/O Variables

The execution of an I/O statement that specifies a formatted data
transfer operation initiates format control. The actions performed by
format control depend on information provided by the elements of the
I/O statement's list of variables and the field descriptors that
comprise the referenced FORMAT statement's format specifications.

In processing each FORMAT controlled I/O statement that has an I/O
list, FORTRAN scans the contents of the list and the format
specific?tions in step. Each time another variable or array element
name is obtained from the list, the next field specification is
obtained from the format specification. If the end of the format
specification is reached and more items remain in the list, a new line
or record is established and the scan process is restarted, either at
the first item in the format specification or, if parenthesized, sets
of format specifications exist within the format specification, with
the last set within the format specification.

13-6

FORMAT STATEMENT

When the I/O list is exhausted, control proceeds to the next statement
in the program, but not before the FORMAT statement is scanned either
to its end or to the next variable transfer format descriptor. (That
is, the FORMAT statement is scanned past slashes, literal constants,
Hollerith field descriptors, and spacing descriptors, but not past
data field descriptors.)

A record is terminated by one of the following:

1. a slash in the FORMAT specification

2. the delimiting right parentheses,), of the FORMAT statement

3. a lack of items in the I/O list

4. a lack of Hollerith or literal field descriptors in the
FORMAT statement

On input, an additional record is read only when a single slash, /, is
encountered in the FORMAT statement. A record is skipped when two
slashes, //, are encountered or a slash is followed by the end of the
FORMAT statement. If the FORMAT statement finishes a record by a
slash or the end of the FORMAT statement, any data left in the input
record is ignored. If the input record is exhausted before the data
transfers are completed, the remainder of the transfer is completed as
if the record were extended with blanks.

On output, an additional record is written only when a
encountered in the FORMAT statement. If a pair
slashes, //, or a single slash followed by the end
statement is encountered, an empty record.is written.

13.2.3 G, General Numeric Conversion Code

slash, /, is
of consecutive

of the FORMAT

You may use the G conversion code in field descriptors for the format
control of real, double-precision, integer, logical, or complex data.

With the exception of real and double-precision data, the type of
converSlon performed by a type G field descriptor depends on the type
of its corresponding I/O list variable. In the case of real and
double-precision data, the kind of conversion performed is a function
of the external magnitude of the datum being transferred. Table 13-4
illustrates the conversion performed for various ranges of magnitude
(external form) of real and double-~recision data.

13.2.4 Numeric Fields with Scale Factors

You may add scale factors to 0, E, F, and G conversion codes in field
descriptors. The scale factor has the form

nP

where n is a signed integer (+ is optional) and P identifies the
operation. When used, a scale factor is added as a prefix to field
descriptors.

13-7

Examples

-2PFIO.5
IPE8.2

FORMAT STATEMENT

When you add a scale factor to an type F field descriptor (or type G
if the external field is a fixed point decimal) a power of 10 is
specified so that

External Form of Number = (Internal Form)*lO**(scale factor)

For example, assuming the data involved to be the real number 26.451,
the field descriptor

F8.3

produces the external field

,k>J2f26.451

Table 13-4
Descriptor Conversion of Real and Double-Precision

Data According to Magnitude

Magnitude of Data in
External Form (M)

Equivalent Method of
Conversion Performed

0.1 M~l
1 M~lO

F (w-4) . d , 4X
F (w- 4) • (d -1) ,4 X

10d-2 M<lOd-l
10d-l M<lOd
ALL OTHERS

F (w-4) .1, 4X
F(w-4).0,4X
Ew.d

NOTE

In all numeric field conversions, the
field width (w) you specify should be
large enough to include the decimal
point, slgn, and exponent character in
addition to the number of digits. If
the specified width is too small to
accommodate the converted number, the
field will be filled with asterisks (*).
If the number converted occupies fewer
character positions than specified by w,
it will be right-justified in the field
and leading blanks will be used to fill
the field.

13-8

FORMAT SThTEMENT

The addition of the scale factor of -IP

-lPF8.3

produces the external field

~~~2.645 

When you add a scale factor to D, E, and G (external field not a 
decimal fixed-point) type field descriptors, it multiplies the number 
by the specified power of ten and the exponent is changed accordingly. 

In input operations, type F (and type G, if the external field is 
decimal fixed-point) conversions are the only ones affected by scale 
factors. 

When you specify no scale factor, it is understood to be zero. Once 
you specify a scale factor, however, it holds for all subsequent types 
D, E, F, and G field descriptors within the same format specification 
unless another scale factor is specified. A scale factor is reset to 
zero when you specify a scale factor of zero. Scale factors have no 
effect on I and 0 type field descriptors. 

When you add a scale factor to a D or E field descriptor, it specifies 
a power of 10 so that the external form of the number has its mantissa 
multiplied by the specified power of 10; its exponent is adjusted 
accordingly. 

For example, assuming the data involved to be the real number 12.493, 
the field descriptor 

Ell.3 

produces the external field 

~~0.125E+02 

The addition of the scale factor 2P 

2PEll.3 

produces the external field 

~~12.49E+00 

with a scale factor of zero, the number of significant digits printed 
by a format of the form 

Ew.d 

or 

Dw.d 

is the number of digits to the right of the decimal point. 

For a negative scale factor nP, for -d<n<O, there will be ABS(n) 
leading zeros and d-ABS(n) significant digits after the decimal point, 
for a total of d digits after the decimal point. If n~-d, there will 
be d insignificant digits (zeros) to the right of the decimal point. 

If the scale factor nP is positive, for 0<n<d+2 there will be n 
significant digits to the left of the decimal point and d-n+l 
significant digits to the right of the decimal point (for a total of 

13-9 



FORMAT STATEMENT 

d+l significant digits). If n~d+2, there will be d+l significant 
digits and n-d-l insignificant trailing zeros on the left of the 
decimal point. 

If the data to be printed is 12.493, these formats produce results as 
follows: 

FORMAT OUTPUT SIGNIFICANT REASON 
DIGITS 

ElS.3 ~~~~~~0.12SE+02 3 n=O 
IPElS.3 ~~~~~~1.249E+Ol 4 n<d+2 
-lPElS.3 ~~~~~~.012E+03 3 -d<n 
2PElS.3 ~~~~~~12.49E+00 4 n<d+2 
-3PElS.3 ~~~~~~0.OOOE+05 0 n~-d 
4PElS.3 ~~~~~~1249.E-02 4 n<d+2 
6PElS.3 ~~~~124900.E-04 4 n~d+2 

13.2.S Logical Field Descriptors 

You may transfer logical data under format control in a manner similar 
to numeric data transfer by use of the field descriptor 

Lw 

where L is the control character and w is an integer specifying the 
field width. The data is transmitted as the value of a corresponding 
logical variable in the associated input/output list. 

On input, the first non-blank character in the logical data field must 
be T or F, the value of the logical variable is stored in the list 
variable as true or false, respectively. If the entire input data 
field is blank or empty, a value of false is stored. 

On output, w minus 1 blanks followed by T or F will be output if the 
value of the logical variable is true or false, respectively. 

13.2.6 Variable Numeric Field Widths 

Several of the conversion codes are acceptable 
without field width specifications, the 
specification so that can be omitted(l). 

in FORMAT statements 
w.d portion of the 

On input, the conversion codes D, E, F, G, I, L, and 0 are acceptable 
without field width specifications. The field begins with the first 
non-blank character encountered and ends with the first illegal 
character in the given field. (Blanks and tabs also terminate a 
field.) Note that for conversion code L (logical data), all 
consecutive alphabetics following a T (true) or an F (false) are 
considered part of the field and are ignored. In succeeding fields 
the input stream is scanned until a non-blank character is 
encountered. If the character is a comma (,), the next field is 
skipped, and the following input field begins with the character 
following the comma. Any character other than a comma is assumed to 
be the first character in the next input field. Null fields are 

1. If d is given, w must also be specified. 

13-10 



FORMAT STATEMENT 

denoted by successive commas optionally separated by blanks or tabs. 
A null field is equivalent to a fixed-field input of blanks. For 
example, the source code 

READ 1, X, Y, Z, L, I, J 
1 FORMAT (3F, L, I, A3) 

with data as follows 

,1.OE+S"TRUEXXXl~~~~ABC 

results in 

X 0.0 
Y 1.OE+S 
Z 0.0 
L TRUE 
I 1 
J 'ABC' 

Note that if a comma is included in the input data after the XXXI and 
before the blanks, i.e., the data is 

,1.OE+S " TRUEXXXl,~~~~ABC 

then J = '~~~' 

On output, the format codes A, D, E, F, G, 
acceptable without field width specifications. 
are assumed: 

I, L, 0, and Rare 
The following defaults 

Format Code Assumed Default 

A single-precision 
A double-precision 
o 
E 
F 
G single-precision 
G double-precision 
I 
L 
o 
R single-precision 
R double-precision 

13.2.7 Alphanumeric Field Descriptors 

AS 
AIO 
02S.18 
ElS.7 
FlS.7 
GlS.7 
G2S.18 
lIS 
LIS 
OIS 
RS 
RIO 

You may accomplish the formatted transfer of alphanumeric data in a 
manner similar to the formatted transfer of numeric data by use of the 
field descriptors Aw and Rw, where A and R are the control characters 
and w is the number of characters in the field. 

The A and R descriptors both transfer alphanumeric data into or from a 
variable in an input/output list depending on the I/O operation. A 
list variable may be of any type. For example, 

READ (6,S) V 
S FORMAT (A4) 

13-11 



FORMAT STATEMENT 

causes four alphanumeric characters to be read from unit 6 and stored 
in the variable v. 

The A descriptor deals with variables containing left-justified, 
blank-filled characters; the R descriptor deals with variables 
containing right-justified, zero-filled characters. The following 
paragraphs summarlze the result of alphanumeric data transfer (both 
internal and external representations) using the A and R descriptors. 
These paragraphs assume that w represents the field width and m 
represents the total number of characters possible in the variable. 
Double precision variables contain 10 characters (m=lO); all other 
variables contain 5 (m=5). 

A Descriptor 

1. INPUT, where w ~ m -- The rightmost m characters of the field 
are read in and stored left-justified and blank-filled in the 
associated variable. 

2. INPUT, where w < mAll w characters are read in and stored 
left-justified and blank-filled in the associated variable. 

3. OUTPUT, where 
right-justified 
blank-filled. 

w ~ m m characters are output and 
in the field. The remainder of the field is 

4. OUTPUT, where w < m -- The left most w characters of the 
associated variable are output. 

R Descriptor 

1. INPUT, where w ~m -- The right most m characters of the field 
are read in and stored right-justified, zero-filled in the 
associated variable. 

2. INPUT, where w < m -- All w characters are read in and stored 
right-justified, zero-filled in the associated variable. 

3. OUTPUT, where w ~ m -- m 
justified in the field. 
filled. 

characters are output and right 
The remainder of the field is blank 

4. OUTPUT, where w < m -- The right most w characters of the 
associated variable are output. 

13.2.8 Transferring Alphanumeric Data 

You may transmit alphanumeric data directly into or from the FORMAT 
stat:,eme,Ilt9Y .. ' t:wo di~ferent . methods: .' ... H~conversion, r:QI">Ili~~"u~~~(),f] 

• si n gTe' . 9~U 0 t e s ',"1 .wEi: w;w.,:a" .~ f~f ~ y~ii'~'> ~ rEird~~dei~ ciI~ ~ 0 r . : 

In H-conversion, the alphanumeric string is specified in the form nH, 
where H is the control character and n is the total number of 
characters (including blanks) in the string. For example, you may use 
the following statement sequence to print the words PROGRAM COMPLETE 
on the device LPT: 

PRINT 101 
101 FORMAT (17H~PROGRAM~COMPLETE) 

13-12 



FORMAT STATEMENT 

Read and write operations of this type are initiated by I/O statements 
that reference a format statement and a logical device, but do not 
contain an I/O list (see preceding example). 

write transfers from a FORMAT statement cause the contents of the 
statement field descriptor to be output to a specified logical device. 
The contents of the field descriptor, however, remain unchanged. 

Read transfers with a FORMAT statement cause the contents of the field 
descriptors involved to be replaced by the characters input from the 
specified logical device. 

Alphanumeric data is stored in a field descriptor left-justified. If 
the data input into a field has fewer characters than the field, 
trailing blanks are added to fill the field. If the data input is 
larger than the field of the descriptor, the excess rightmost 
characters are lost. 

Examples 

WRITE (1,101) 
101 FORMAT (l7H~PROGRA~COMPLETE) 

cause the string PROGRAM COMPLETE to be output to the file on device 
1. 

Assuming the string START on device 1, the sequence 

READ (1,101) 
101 FORMAT (l7H~PROGRAM~COMPLETE) 

would change the contents of statement 101 to 

101 FORMAT (17HSTART~~~~~~~~~~~~) 

The foregoing functions may also be accomplished by a literal field 
descriptor consisting of the desired character string enclosed within 
apostro~hes, i.e., 'string'. For example, you may use the descriptors 

101 FORMAT (l7H~PROGRAM~COMPLETE) 

and 

101 FORMAT ('~PROGRA~COMPLETE') 

in the same manner. 

The result of literal conversion is the same as H-conversion. On 
input, the characters between the apostrophes are replaced by input 
characters, and on output, the characters between the apostrophes 
(including blanks) are written as part of the output data. 

An apostrophe character within a literal field should be represented 
by two successive apostrophe marks; otherwise, the statement will not 
compile. For example, the statement sequence 

50 FORMAT ('DON' 'T') 
PRINT 50 

will compile and will cause the word DON'T to be output on the line 
printer. The statement 

50 FORMAT ('DON'T') 

however, will cause a compile error. 

13-13 



FORMAT STATEMENT 

13.2.9 Mixed Numeric and Alphanumeric Fields 

You may place an alphanumeric field descriptor among other fields of 
the format. For example, you may use the statement: 

FORMAT (I4,7H~FORCE=FlO.5) 

to output the line: 

~~22~FORCE=~~l7.6890l 

You may omit the separating comma after an alphanumeric format field, 
as shown in the foregoing statement. 

When you omit a comma delimiter from a format specification, format 
control associates as much information as possible with the leftmost 
of the two field descriptors. 

13.2.10 Multiple Record Specifications 

To handle a group of input/output records where different records have 
different field descriptors, use a slash to indicate a new record. 
For example, the statement 

FORMAT (308/I5,2F8.4) 

is equivalent to 

FORMAT (308) 

for the first record, and 

FORMAT (I5,2F8.4) 

for the second record. 

You may 
appear 
written 
middle 
records 

omit separating commas when you use a slash. When n slashes 
at the end or beginning of a format, n blank records will be 
on output or skipped on input. When n slashes appear in the 
of a format, n-l blank records are written on output or n-l 
skipped on input. 

Both the slash and the closing parenthesis at the end of the format 
indicate the termination of a record. If the list of an input/output 
statement dictates that the transmission of data is to continue after 
the closing parenthesis of the format is reached, the format is 
repeated, starting with: 

1. that group repeat specification terminated by the last right 
parenthesis of the next lower level group, or 

2. level zero if no higher level group exists. 

Thus, the statement 

FORMAT (F7.2, (2{E15.5,E15.4) ,17» 

leveI6' / ! /-vet a 
level 1 level 1 

level 2 

13-14 



FORMAT STATEMEN'l' 

causes the format 

2(E15.5,E15.4) ,17 

to be used after the first record. 

As a further example, consider the statement 

FORMAT (F7.2/(2(E15.5,E15.4) ,17)) 

The first record has the format 

F7.2 

and the next 5 records have the format 

2( E 15 . 5 , E 15 . 4) ,17 

13.2.11 Record Formatting Field Descriptors 

You may use two field descriptors, Tw and nX, to position data within 
a record. 

You may use the field descriptor Tw to specify the character position. 
(external form) in which a record begins. In the Tw field descriptor, . 
the letter T is the control character, and w is an unsigned integer 
constant that specifies the character position, in a record, where the; 
transfer of data is to begin. When the output is printed, w 
corresponds to the (w-l)th print position, since the first character> 
of the output buffer is a forms control character and is not printed. 
It is recommended that the first field specification of the output 
format be IX, except where a forms control character is used. . 

Examples 

Two successive 
will result 
overwriting the 
fields overlap. 

The statement sequence 

PRINT 2 

NOTE 

T field 
in the 

first 

2 FORMAT (T50, 'BLACK',T30, 'WHITE') 

causes the following line to be printed 

WHITE BLACK 

t t 

specifications 
second field 

field if the 

(print position 29) (print position 49) 

The statement sequence 

1 FORMAT (T35, 'MONTH') 
READ (2,1) 

13-15 



FORMAT STATEMENT 

causes the first 34 characters of the input data associated with < 

logical unit 2 to be skipped, and the next five characters to replace 
the characters M, 0, N, T, and H in storage. If an input record 
containing 

ABC~~~XYZ 

is read with the format specification 

10 FORMAT (T7,A3,Tl,A3) 

then the characters XYZ and ABC are read in that order. 

You may use the field descriptor nX to introduce blanks into output 
records or to skip characters of input records. The letter X 
specifies the operation, and n is a positive integer that specifies 
the number of character positions to be either made blanks (output) or 
skipped (input). 

Example 

The statement 

FORMAT (5H~STEP,I5,lOX,2Hy=,F7.3) 

may be used to print the line 

13.2.12 $ Format Descriptor 

A $ format descriptor at the end of an output FORMAT is used to 
suppress the carriage return at the end of the current record. It is 
mainly used on terminal output but will work on non-terminal devices. 
A $ format descriptor is ignored in input FORMATs and has no effect if 
embedded in an output FORMAT. The $ format descriptor must be the 
next format descriptor to be processed when the corresponding output 
list is exhausted for the $ descriptor to have the defined effect. 

13.3 CARRIAGE CONTROL CHARACTERS FOR PRINTING ASCII RECORDS 

You may use the first character of an ASCII record to control the 
spacing operations of the line printer or Teletype terminal printer 
unit on which the record is being printed. Specify the control 
character desired by beginning the FORMAT field specification for the 
ASCII record to be output with IHa .•. where a is the desired control 
character. Table 13-5 describes the control characters permitted in 
FORTRAN-20 and the effect each has on the printing device. 

13-16 



FORMA'l' S'l'ATEMENT 

Table 13-5 
FORTRAN-20 Print Control Characters 

FORTRAN Character Printer Character Octal Value 

space LF 012 

o zero LF,LF 012 

lone FF 014 

+ plus 

* asterisk DC3 023 

- minus LF,LF,LF 012 

2 two DLE 020 

3 three VT 013 

/ slash DC4 024 

period DC2 022 

, comma DCl 021 

NOTE 

Effect 

Skip to next 
line with form 
feed after 
60 lines 

Skip a line 

Form feed - go 
to top of next 
page 

Suppress 
skipping -
overprint the 
line 

Skip to next 
line with no 
form feed 

Skip two lines 

Space 1/2 of a 
page 

Space 1/3 of a 
page 

Space 1/6 of a 
page 

Triple space 
with a form 
feed after 
every 20 lines 
printed 

Double space 
with a form 
feed after 
every 
30 lines 
printed 

Printer control characters DLE, DCl, 
DC2, DC3, and DC4 affect only the line 
printer. 

13-17 





CHAPTER 14 

DEVICE CONTROL STATEMENTS 

14.1 INTRODUCTION 

You may use the following device control statements in FORTRAN-20 
source programs: 

1. REWIND 

, 2. UNLOAD 

3. BACKSPACE (1) 

4. ENDFILE 

, 5. SKIPRECORD (1) : 

6. SKIPFILE 

7. BACKFILE 

The general form of the foregoing device control statements is 

where 

keyword u 
keyword (u) 

keyword 
u 

is the statement name 
is the FORTRAN logical device number (Chapter 10, Table 
10-1) 

The operations performed by the device control statement are normally 
used only for magnetic tape devices (MTA). In FORTRAN-20, however, 
the device control operations are simulated for disk devices. 

The following paragraphs describe the form and use of the device 
control statements. 

14.2 REWIND STATEMENT 

Form: 

Use: 

REWIND u 

Move the file contained by device u to its initial 
(load) point. If the medium is already at its load 
point, this statement has no effect. Subsequent READ 

1. The results of these commands are unpredictable when used on list­
directed and NAMELIST-controlled data. 

14-1 



DEVICE CONTROL STATEMENTS 

or WRITE statements that reference device u will 
transfer data to or from the first record located on 
the medium mounted on device u. 

Example: REWIND 16 

14.3 UNLOAD STATEMENT 

Form: UNLOAD u 

Use: Move the medium contained on device u past its load: 
point until it has been completely rewound onto the i 
source reel. 

Example: UNLOAD 16 

14.4 BACKSPACE STATEMENT 

Form: 

Use: 

BACKSPACE u 

Move the medium contained on device u to the start of 
the record that precedes the current record. If the 
preceding record prior to execution of this statement 
was an endfile record, the endfile record becomes the 
next record after execution. If the current record is 
the first record of the file, this statement has no 
effect. 

NOTE 

You cannot use this statement for files 
set up for random access, list-directed, 
or NAMELIST-controlled I/O operations. 

Example: BACKSPACE 16 

14.5 END FILE STATEMENT 

Form: END FILE u 

Use: Write an endfile record in the file located on device 
u. The endfile record defines the end of the file that 
contains it. If an endfile record is reached during an 
I/O operation initiated by a statement that does not 
contain an END= option, the operation of the current 
program is terminated. 

Example: END FILE 16 

14-2 



DEVICE CONTROL STATEMENTS 

14.6 SKIP RECORD STATEMENT 

Form: 

Use: 

SKIP RECORD u 

In accessing the file located on 
record immediately following 
accessed) record. 

NOTE 

device 
the 

u, skip the 
current (last 

You cannot use this statement for files set up 
for random access, list-directed, or 
NAMELIST-controlled I/O operations. 

Example: SKIP RECORD 16 

14.7 SKIP FILE STATEMENT 

Form: SKIP FILE u 

Use: In accessing the medium located on unit U , skip the 
file immediately following the current (last accessed) 
file. If there is no file after the current file, an 
error will occur. 

Example: SKIP FILE 01 

14.8 BACKFILE STATEMENT 

Form: 

Use: 

BACKFILE u 

Move the medium mounted on device u to the start of the 
file that precedes the current (last accessed) file. 

If there is no file before the current file, completion 
of the last operation will move the medium to the start 
of the first file on the medium. 

Example: BACKFILE 20 

14.9 SUMMARY OF DEVICE CONTROL STATEMENTS 

Table 14-1 summarizes the form and use of device control statements. 

14-3 



DEVICE CONTROL STATEMENTS 

Table 14-1 
Summary of FORTRAN-20 Device Control Statements 

Statement Form 

REWIND u 
UNLoAb"u 
END FILE u 
SKIP RECORD u 
SKIP FILE u 
BACKFILE u 
BACKSPACE u 

Use 

1_ Rewi~d medium to its loadpoi~t 
Rewind medium on't:o' its s'olirce reel 
Write an endfile record into the curient ,file, 
Skip the next record 
Skip the next file 
Move medium backwards one file 
Move medium back 6ne recoid 

14-4 



CHAPTER 15 

SUBPROGRAM STATEMENTS 

15.1 INTRODUCTION 

Procedures you use repeatedly in a program may be written once and 
then referenced each time you need the procedure. Procedures that may 
be referenced are either internal (written and contained within the 
program in which they are referenced) or external (self-contained 
executable procedures that may be compiled separately). The kinds of 
procedures that may be referenced are: 

1. statement functions, 

2. intrinsic functions (FORTRAN-defined functions), 

3. external functions, and 

4. subroutines. 

The first three of the foregoing categories are referred to 
collectively as functions or function procedures; procedures of the 
last category are referred to as subroutines or subroutine procedures. 

15.1.1 Dummy and Actual Arguments 

Since you may reference subprograms at more than one point throughout 
a program, many of the values used by the subprogram may be changed 
each time it is used. Dummy arguments in subprograms represent the 
actual values to be used, which are passed to the subprogram when it 
is called. 

Functions and subroutines use dummy arguments to indicate the type of 
the actual arguments they represent and whether the actual arguments 
are variables, array elements, arrays, subroutine names, or the names 
of external functions. Each dummy argument must be used within a 
function or subroutine as if it were a variable, array, array element, 
subroutine, or external function identifier. Dummy arguments are 
given in an argument list associated with the identifier assigned to 
the subprogram; actual arguments are normally given in an argument 
list associated with a call made to the desired subprogram. (Examples 
of argument lists are given in the following paragraphs.) 

The position, number, and type of each dummy argument in a subprogram 
list must agree with the position, number, and type of each argument 
in the argument list of the subprogram reference. 

15-1 



SUBPROGRAM STATEMENTS 

Dummy arguments may be: 

1. variables, 

2. array names, 

3. subroutine identifiers, 

4. function identifiers, or 

5. statement labei identi"fiers that are den()ted by the sym"S"of 
"*", "$", or u&". 

When you reference a subprogram, its dummy arguments are replaced by 
the corresponding actual arguments supplied in the reference. All 
appearances of a dummy argument within a function or subroutine are 
related to the given actual arguments. Except for subroutine 
identifiers and literal constants, a valid association between dummy 
and actual arguments occurs only if both are of the same type; 
otherwise, the results of the subprogram computations will be 
unpredictable. Argument association may be carried through more than 
one level of subprogram reference if a valid association is maintained 
through each level. The dummy/actual argument associations 
established when a subprogram is referenced are terminated when the 
desired subprogram operations are completed. 

The following rules govern the use and form of dummy arguments: 

1. The number and type of the dummy arguments of a procedure 
must be the same as the number and type of the actual 
arguments given each time the procedure is referenced. 

2. Dummy argument names may not appear in EQUIVALENCE, DATA, or 
COMMON statements. 

3. A variable dummy argument should have a variable, an array 
element identifier, an expression, or a constant as its 
corresponding argument. 

4. An array dummy argument should have either an array name or 
an array element identifier as its corresponding actual 
argument. If the actual argument is an array, the length of 
the dummy array should be less than or equal to that of the 
actual array. Each element of a dummy array is associated 
directly with the corresponding elements of the actual array. 

5. A dummy argument representing a subroutine identifier should 
have a subroutine name as its actual argument. 

6. A dummy argument representing an external function must have 
an external function as its actual argument. 

7. A dummy argument may be defined or redefined in a referenced 
subprogram only if its corresponding actual argument is a 
variable. If dummy arguments are array names, then elements 
of the array may be redefined. 

Additional information regarding the use of dummy and actual arguments 
is given in the description of how subprograms are defined and 
referenced. 

15-2 



SUBPROGR~M STATEMENTS 

15.2 STATEMENT FUNCTIONS 

Statement functions define an internal subprogram in a 
statement. The general form of a statement function is: 

single 

where 

name(argl,arg2, ... ,argn)=E 

name is a name you assign that consists of one to six 
characters. The name you use must conform to the 
rules for symbolic names given in Section 3.3. 

The type of a statement function is determined 
either by the first character of its name or by it 
being explicitly declared in a type statement. 

(argl ... argn) represents a list of dummy arguments. 

E is an arbitrary expression. 

The expression E of a statement function may be any legitimate 
arithmetic expression that may use the g1ven dummy arguments and 
indicates how they are combined to obtain the desired value. You may 
use the dummy arguments as variables or indirect function references; 
but you cannot use them as arrays. The dummy argument names bear no 
relation to their use outside the context of the statement function 
except for their data type. The expression may reference 
FORTRAN-defined functions (Section 15.3) or any other defined 
statement function, or call an external function. It may not 
reference any function that directly or indirectly references the 
given statement function or any subprogram in the chain of references. 
That is, recursive references are not allowed. Statement functions 
produce only one value, the result of the expression that it contains. 
A statement function cannot reference itself. 

You must define all statement functions within a program unit before 
the first executable statement of the program unit. When used, the 
statement function name must be followed by an actual argument list 
enclosed within parentheses and may appear in any arithmetic or 
logical expression. 

Examples: 

SSQR(K)=(K*(K+l)*2*K+l)/6 
ACOSH(X)=(EXP(X/A)+EXP(-X/A»/2.0 

15.3 INTRINSIC FUNCTIONS (FORTRAN DEFINED FUNCTIONS) 

Intrinsic functions are subprograms supplied by FORTRAN. Reference an 
intrinsic function by using its name as an operand in an expression. 
The name always refers to the intrinsic function unless it is preceded 
by an asterisk (*) or ampersand (&) in an EXTERNAL statement, declared 
in a conflicting explicit type statement, or specified as a routine 
dummy parameter. 

Table 15-1 describes FORTRAN-20 intrinsic functions and their 
arguments. Notice that octal constants are not allowed as arguments. 

15-3 



I-' 
U1 
I 
~ 

Table 15-1 
Intrinsic Functions (FORTRAN-20 Defined Functions) 

Function Mnemonic Definition Number of Type of 
Arguments Argument Functl.on 

Absolute value: 
Real ABS* arg 1 Real Real 
Integer IABS* arg 1 Integer Integer 
Double- precision DABS* arg 1 Double Double 
Complex to real CABS c=(x**2+Y**2)**(1/2) 1 Complex Real 

Conversion: 
Integer to real FLOAT* 1 Integer Real 
Real to integer IFIX* Sign of arg * 1 Real Integer 

largest integer 
~ arg 

Double to real SNGL 1 Double Real 
Real to double DBLE* 1 Real Double 
Integer to double DFLOAT 1 Integer Double 
Complex to real REAL* 1 Complex Real 
(obtain real part) 
Complex to real AIMAG 1 Complex Real 
(obtain imaginary 
part) 
Real to complex CMPLX* c=Arg + i*Arg 2 Real Complex 

Truncation: 
Real to real AINT Sign of arg* 1 Real Real 

largest integer 
~ arg 

Real to integer INT* 1 Real Integer 
Double to integer IDINT 1 Double Integer 

* In line functions. 
-------- --- -- -- - -

i 

I 

I 

I 

I 

til 
c:: 
~ 
tU 
!:O o 
G1 

~ 
3: 

til 

~ 
t-3 
til 
3: 
til 
Z 
t-3 
til 



I-' 
Ul 
I 

Ul 

Table 15-1 (Cont.) 
Intrinsic Functions (FORTRAN-20 Defined Functions) 

Function Mnemonic Definition Number of Type of 
Arguments Argument Functlon 

Remaindering: 
Real AMOD {The remainder } 2 Real Real 
Integer MOD* when Arg 1 is 2 Integer Integer 
Double- precision DMOD divided by Arg 2 2 Double Double 

Maximum value: 
AMAXO 

!Max (Argl ,Arg2, • • . )1 

>1 Integer Real 
AMAXl* >1 Real Real 
MAXO* >1 Integer Integer 
MAXI >1 Real Integer 
DMAXI >1 Double Double 

Minimum Value: 
AMINO 

!Min(Argl'Arg2'···)1 

>1 Integer Real 
AMINl* >1 Real Real 
MINO* >1 Integer Integer 
MINI >1 Real Integer 
DMINI >1 Double Double 

Transfer of Sign: 
Real SIGN* 

{Sign(Arg 2) * Argl} 
2 Real Real 

Integer ISIGN 2 Integer Integer 
Double precision DSIGN 2 Double Double 

Positive Difference: 
Real DIM* {Ar g l-Min(Arg l,Arg 2)} 2 Real Real 
Integer IDIM 2 Integer Integer 

* In line functions. 
----- - -

til 
c:: 
OJ 
~ 

~ 
G) 

~ 
3! 
((J 

1-3 
~ 
I-J 
ttJ 
3: 
ttJ z 
1-] 
til 



SUBPROGRAM STATEMENTS 

15.4 EXTERNAL FUNCTIONS 

External functions are function subprograms that consist of a FUNCTION 
statement followed by a sequence of statements that define one or more 
desired operations; subprograms of this .type may contain one or more 
RETURN statements and must be terminated by an END statement. 
Function subprograms are independent programs that may be referenced 
by other programs. 

The FUNCTION statement that identifies an external function has the 
form: 

where 

type FUNCTION name (argl,arg2, ... ,argn) 

type 

name 

(argl, .•. ,argn) 

is an optional type specification as 
described in Section 6.3. These include 
INTEGER, REAL, DOUBLE PRECISION, COMPLEX or 
LOGICAL (plus the optional size modifier, *n, 
for compatibility with other manufacturers.) 

is the name you assign to the function. The 
name may consist of from one to six 
characters, the first of which must be 
alphabetic. You may include the optional 
size modifier (*n) with the name if the type 
is specified. (Refer to Section 6.3.) 

is a list of dummy arguments. 

If you omit type in the FUNCTION statement, the type of the function 
may be assigned, by default, according to the first character of its 
name, or may be specified by an IMPLICIT statement or by an explicit 
statement given with the subprogram itself. 

Note that if you want to use the same name for a user-defined function 
and the name of a FORTRAN-20 defined function (library basic external 
function), the desired name must be declared in an EXTERNAL statement 
and prefixed by an asterisk (*) or ampersand (&) in the referencing 
routine. (Refer to Section 6.7 for a description of the EXTERNAL 
statement.) 

The following rules govern the structuring of a FUNCTION subprogram: 

1. You must use the symbolic name assigned a FUNCTION subprogram 
as a variable name in the subprogram. During each execution 
of the subprogram, this variable must be defined and, once 
defined, may be referenced or redefined. The value of the 
variable at the time of execution on any RETURN statement is 
the value of the subprogram. 

NOTE 

A RETURN statement returns control 
statement that initiated the 
subprogram. See Section 15.6 for 
this statement. 

15-6 

to the calling 
execution of the 
a description of 



SUBPROGP~M SThTEMENTS 

2. You may not use the symbolic name of a FUNCTION subprogram in 
any nonexecutable statement in the subprogram except in the 
initial FUNCTION statement or a type statement. 

3. Dummy argument names may not appear in any EQUIVALENCE, 
COMMON, or DATA statement used within the subprogram. 

4. The function subprogram may define or redefine one or more of 
its arguments so as to effectively return results in addition 
to the value of the function. 

5. The function subprogram may contain any FORTRAN statement 
except BLOCK DATA, SUBROUTINE PROGRAM, another FUNCTION 
statement, or any statement that directly or indirectly 
references the function being defined or any subprogram in 
the chain of subprograms leading to this function. 

6. The function subprogram should contain at least one RETURN 
statement and must be terminated by an END statement. The 
RETURN statement signifies a logical conclusion of the 
computation made by the subprogram and returns the computed 
function value and control to the calling program. A 
subprogram may have more than one RETURN statement. 

The END statement specifies the physical end 
subprogram and implies a return. 

of 

15.4.1 Basic External Functions (FORTRAN-20 Defined Functions) 

the 

FORTRAN-20 contains a group of predefined external functions that are 
called basic functions. Table 15-2 describes each basic function, its 
name, and its use. These names always refer to the basic external 
functions unless declared in an EXTERNAL or conflicting explicit type 
statement. 

15.4.2 Generic Function Names 

The compiler generates 
function, depending on 
generic function names: 

ABS 
AMAXI 
AMINI 
ATAN 
ATAN2 
COS 
INT 
MOD 
SIGN 
SIN 
SQRT 
EXP 
ALOG 
ALOGIO 

In the following example 

K=ABS(I) 

a call to the proper FORTRAN-20 defined 
the type of the arguments, for the following 

15-7 



SUBPROGRAM STATEMENTS 

the type of I determines which function is called. If I is an 
integer, the compiler generates a call to the function lABS. If I is 
real, the compiler generates a call to the function ABS. If I is 
double precision, the compiler generates a call to the function DABS. 

The function name loses its generic properties if it appears in an 
explicit type statement, if it is specified as a dummy routine 
parameter, or if it is prefixed by n*n or n&" in an EXTERNAL 
statement. When a generic function name that was specified unprefixed 
in an EXTERNAL statement is used as a routine parameter, it is assumed 
to reference a FORTRAN-20 defined function of the same name, or if 
none exists, a user-defined function. Note that IMPLICIT statements 
have no effect upon the data type of generic function names unless the 
name has been removed from its class by use of an EXTERNAL statement. 

15.5 SUBROUTINE SUBPROGRAMS 

A subroutine is an external computational procedure that is identified 
by a SUBROUTINE statement and mayor may not return values to the 
calling program. The SUBROUTINE statement used to identify a 
subprogram of this type has the form: 

where 

SUBROUTINE name(argl,arg2, ... ,argn) 

name 

(argl, ... ,argn) 

is the symbolic name of the subroutine to be 
defined. 

is an optional list of dummy arguments. 

15-8 



I--' 
Ul 
I 

\D 

Function 

Exponential: 
Real 
Double 
Complex 

Logarithm: 
Real 

Double 

Complex 

Square Root: 
Real 
Double 
Complex 

Sine: 
Real (radians) 
Real (degrees) 
Double (radians) 
Complex 

Cosine: 
Real (radians) 
Real (degrees) 
Double (radians) 
Complex 

*Generic functions 

Table 15-2 
Basic External Functions (FORTRAN-20 Defined Functions) 

Mnemonic Definition Number of 
Arguments 

EXP t9} 1 
DEXP 1 
CEXP 1 

ALOG In (Arg) 1 
ALOGIO log (Arg) 1 
DLOG In (Arg) 1 
DLOGIO log (Arg) 1 
CLOG In (Arg) 1 

SQRT* (Arg)**1/2 1 
DSQRT (Arg)**1/2 1 
CSQRT (Arg)**1/2 1 

SIN* 1 
SIND 

{Sin (Ar9 )} 
1 

DSIN 1 
CSIN 1 

COS* 

{COS (Ar9 )} 

1 
COSD 1 
DCOS 1 
CCOS 1 

Type of 
Argument Funct~on 

Real Real 
Double Double 
Complex Complex 

Real Real 
Real Real 
Double Double 
Double Double 
Complex Complex 

Real Real 
Double Double 
Complex Complex 

Real Real 
Real Real 
Double Double 
Complex Complex 

Real Real 
Real Real 
Double Double 
Complex Complex 

UJ 
C 
ttl 
It! 

~ 
G'l 

~ s: 
Ul 
t-3 
:tJ 

t-3 
j:l1 

~ 
Z 
1-3 
(fl 



I-' 
U1 
I 

I-' 
a 

Table 15-2 (Cont.) 
Basic External Functions (FORTRAN-20 Defined Functions) 

Function Mnemonic 

Hyperbolic: 
Sine SINH 
Cosine COSH 
Tangent TANH 

Arc sine ASIN 

Arc cosine ACOS 

Arc tangent 
Real ATAN* 
Double DATAN 
Two REAL arguments ATAN2* 
Two DOUBLE arguments DATAN2 

Complex Conjugate CONJG 

Random Number RAN 

*Generic functions 

Definition 

sinh(Arg} 
cosh(Arg) 
tanh(Arg} 

asin(Arg} 

acos(Arg} 

atan(Arg} 
datan(Arg} 
atan(Argl/Arg2} 
atan(Argl/Arg2} 

Arg=X+iY,CONJG=X-iY 

Result is a random I 
number in the range 
of 0 to 1.0 

Number of 
Arguments 

1 
1 
1 

1 

1 

1 
1 
2 
2 

1 

1 Dummy 
Argument 

Type of 
Argument I Function 

Real Real 
Real Real 
Real Real 

Real Real 

Real Real til 
c: 
III 
td 

~ Real Real (j) 
Double Double 

~ Real Real 
Double Double til 

1-3 

Complex Complex ~ 
1-3 
t%j 

Integer, Real ~ 
Z Real, 1-3 

Double, til 

or Complex 



SUBPROGRAM STATEHENTS 

The following rules control the structuring 
subprogram: 

of a subroutine 

1. You may not use the symbolic name of the subprogram in any 
statement within the defined subprogram except the SUBROUTINE 
statement itself. 

2. You may not use the given dummy arguments in an EQUIVALENCE, 
COMMON, or DATA statement within the subprogram. 

3. The subroutine subprogram may define or redefine one or more 
of its arguments so as to effectively return results. 

4. The subroutine subprogram may contain any FORTRAN statement 
except BLOCK DATA, FUNCTION, another SUBROUTINE statement, or 
any statement that either directly or indirectly references 
the subroutine being defined or any of the subprograms in the 
chain of subprogram references leading to this subroutine. 

5. Dummy arguments that represent statement labels may be either 
an *, $, or &. 

6. The subprogram should contain at least one RETURN statement 
and must be terminated by an END statement. The RETURN 
statements indicate the logical end of a computational 
routine; the END statement signifies the physical end of the 
subroutine. 

7. Subroutine subprograms may have as many entry points as 
desired (see description of ENTRY statement given in Section 
15.7) . 

15.5.1 Referencing Subroutines (CALL Statement) 

You must reference subroutine subprograms by using a CALL statement of 
the following form: 

where 

CALL name(argl,arg2, ... ,argn) 

name 

(argl, ... ,argn) 

is the symbolic name 
subroutine subprogram. 

of the desired 

is an optional list of actual arguments. If 
the list is included, the given actual 
arguments must agree in order, number, and 
type with the corresponding dummy arguments 
given in the defining SUBROUTINE statement. 

The use of literal constants is an exception to the rule 
agreement of type between dummy and actual arguments. 
argument in a CALL statement may be: 

requiring 
An actual 

1. a constant 

2. a variable name 

15-11 



SUBPROGRAM STATEMENTS 

3. an array element identifier 

4. an array name 

5. an expression 

6. the name of an external subroutine, or 

7. a statement label. 

Example: 

The subroutine 

SUBROUTINE MATRIX (I, J , K, M ':*) 

END 

may be referenced by 

CALL MATRIX(lO,20,30,40,§lOl) 

15.5.2 FORTRAN-20 Supplied Subroutines 

FORTRAN-20 provides you 
subroutines. Table 15-3 
predefined subroutines. 

with an extensive group of predefined 
gives the descriptions and names of these 

15.6 RETURN STATEMENT AND MULTIPLE RETURNS 

The RETURN statement causes control to be returned from a subprogram 
to the calling program unit. This statement has the form: 

RETURN (standard return) 

or 

RETURN e (multiple returns) 

: where e represents anintege~constant,variable! or expression. The 
executi6n of this st~t~m~nt in the first of the friiegoing f6rm~ '(i.e., 
standard return) causes control to be returned to the statement of the 
calling program that follows the statement that called the subprogram. 

,... " ~, ,." , v~ 

The multiple returns form of this statement, i.e., RETURN e, enables 
you to select any labeled statement of the calling program as a return' 
point. When the multiple returns form of this statement is executed,' 
the assigned or calculated value of e specifies that the return is to; 
be made to the eth statement label in the argument list of the calling 

,statement. The value of e should be a positive integer that is equal' 
to or less than the number of statement labels given in the argument, 

'list of the calling statement. If e is less than 1 or is larger than 
the number of available statement labels, a standard return operation: 
is performed. 

15-12 



SUBPROGRl\M STl\TEMENTS 

NorrE 

A dummy argument for a statement label 
must be either a *, $, or & symbol. 

You may use any number 
subprogram. The use 
statement, however, is 
execution of a RETURN 
program. 

Example 

of RETURN (standard return) statements in any 
of the multiple returns form of the RETURN 
restricted to subroutine subprograms. The 
statement in a main program will terminate the 

Assume the following statement sequence in a main program: 

CALL EXAMP(1,$lO,K,$15,M,'$20) 
GO TO 101 ' 

10 

15 

20 

15-13 



SUBPROGRAM STATEMENTS 

Assume the following statement sequence in the called SUBROUTINE 
subprogram: 

SUBROUTINE EXAMP (L, ;*,M, ;*,N,::X) 

RETURN 

RETURN 

:RETURN(CjD) . 

END 

Each occurrence of RETURN returns control to the statement GO TO 101 
in the calling program. 

If, on t'he exe~ution of' th~ RETURN (C/D) stateme'nt,'0 the value of 0. (C/I)f*~ 
is: 

Less than or equal to: 

o 

1 
2 
3 

Greater than or equal to: 
4 

The following is performed: 

a standard return to the GO TO 101 
statement is made 
the return is made to statement 10 
the return is made to statement 15 
the return is made to statement 20 

The following is performed: 
a standard return to the GO TO 101 
statement is made. 

15.6.1 Referencing External FUNCTION Subprogram 

Reference an external function subprogram by using its assigned name 
as an operand in an arithmetic or logical expression in the calling 
program unit. The name must be followed by an actual argument list. 
The actual arguments in an external function reference may be: 

1. a variable name, 

2. an array element identifier, 

3. an array name, 

4. an expression, 

5. a statement number, or 

15-14 



SUI3PROGRAr·1 STATEMENTS 

6. the name of another 
SUBROUTINE) . 

external 

NOTE 

procedure 

Any subprogram name to be used as an 
argument to another subprogram must 
first appear in an EXTERNAL statement 
(Chapter 6) in the calling program unit. 

Example 

The subprogram defined as: 

INTEGER FUNCTION ICALC(IX,IY,IZ) 

RETURN 
END 

may be referenced in the following manner: 

TOTAL=ICALC(IAA,IAB,IAC)+SOO 

15.7 MULTIPLE SUBPROGRAM ENTRY POINTS (ENTRY STATEMENT) 

FUNCTION or 

FORTRAN-20 provides an ENTRY statement that enables you to specify 
additional entry points into an external subprogram. This statement< 
used in conjunction with a RETURN statement enables you to employ only 
one computational routine of a subprogram that contains several such 
routines. The form of the ENTRY statement is: 

where 

ENTRY name(argl,arg2, ... ,argn) 

name 

(argl, ... ,argn) 

is the symbolic name to be assigned the 
desired entry point 

is an optional list of dummy arguments. This 
list may contain 

1. variable names, 

2. array declarators, 

15-15 



SUBPROGRAM STATEMENTS 

3. the name of an external 
(SUBROUTINE or FUNCTION), or 

procedure 

4. statement label 
denoted by either 

identifiers that are 
a *, $, or & symbol. 

The rules for the use of an ENTRY statement follow: 

1. The ENTRY statement allows entry into a subprogram at a place 
other than that defined by the subroutine or function 
statement. You may include any number of ENTRY statements in 
an external subprogram. 

2. Execution is begun at the first 
following the ENTRY statement. 

executable statement 

3. Appearance of an ENTRY statement in a subprogram does not. 
negate the rule that statement functions in subprograms must· 
precede the first executable statement. 

4. Entry statements are nonexecutable and do not affect the 
execution flow of a subprogram. 

5. You may not use an ENTRY statement in a main program or have. 
a subprogram reference itself through its entry points. 

6. You may not use an ENTRY statement in the range of a DO or an 
extended DO statement construction. 

7. The dummy arguments in the ENTRY statement need not agree in 
order, number, or type with the dummy arguments in SUB~OUTINE 
or FUNCTION statements of any other ENTRY statement 1n the 
subprogram. However, the arguments for each call or function 
reference must agree with the dummy arguments in the: 
SUBROUTINE, FUNCTION, or ENTRY statement that is referenced. 

8. Entry into a subprogram initializes only the dummy arguments 
of the referenced ENTRY statement. 

9. You may not reference a dummy argument unless it appears in 
the dummy list of an ENTRY, SUBROUTINE, or FUNCTION statement 
by which the subprogram is entered. 

10. The source subprogram must be ordered such that references to 
dummy arguments in executable statements follow the 
appearance of the dummy argument in the dummy list of a 
SUBROUTINE, FUNCTION, or ENTRY statement. 

11. Dummy arguments that were defined for a 
previous reference to the subprogram 
subsequent entry into the subprogram. 

subprogram by 
are undefined 

some· 
for 

12. The value of the function must be returned by use of the 
current entry name. 

15-16 



SUBPROGRAM STATEMENTS 

Table 15-3 
FORTRAN-20 Library Subroutines 

Subroutine Name Effect 

AXIS 

DATE 

DEFINE FILE 

CALL AXIS(X,Y,ASC,NASC,S,THETA,XMIN,DX) 

AXIS causes an axis with tick marks and scale values 
at I-inch increments to be drawn. An identifying 
label may also be plotted along the axis. Parameters 
X and Y specify the start of the axis. The axis is 
plotted, starting at X, Y, at an angle of THETA 
degrees for a distance of S inches. The angle THETA 
is usually either 0 (X axis) or 90.0 (Y axis). 
Characters ASC of array ASC are plotted as a label 
for the axis drawn. If NASC is positive, the tic 
marks, label, and scale values are placed on the 
counterclockwise side of the axis; if NASC is 
negative, the foregoing items are placed on the 
clockwise side of the axis. 

Parameter XMIN is the value of the scale at the 
beginning of the axis; parameter DX is the change in 
scale for a I-inch increment. The values of XMIN and 
DX may be determined by subroutine SCALE. 

CALL DATE (array) 

This subroutine places today's date as left-justified 
ASCII characters into a dimensioned 2-word array. 
The date is in the form: 

dd-mmm-yy 

where dd is a 2-digit day (if the first digit is 0, 
it is converted to a blank), mmm is a 3-letter month 
abbreviation, e.g., Mar, and yy is a 2-digit year. 
The data is stored in ASCII code, left-justified, in 
the two words. 

CALL DEFINE FILE (u,s,v,f,pj,pg) 

The arguments of this subroutine are defined as 
follows: 

u = logical device numbers. 

s = the size of the records comprising the file 
being defined. The argument s may be an integer 
constant or variable. 

v = an associated variable. The associated variable 
is an integer variable that is set to a value 
that points to the record that immediately 
follows the last record transferred. This 
variable is modified by the FIND statement 
(Chapter 10) . At the end of each FIND 
operation, the variable is set to a value that 
points to the record found. The variable v 
cannot appear in the I/O list of any I/O 
statement that accesses the file set up by the 
DEFINE FILE statement. 

15-17 



SUBPROGRAM STATEMENTS 

Table 15-3 (Cont.) 
FORTRAN-20 Library Subroutines 

Subroutine Name Effect 

DUMP 

f = filename to be given the file being defined. 

pj = your project number. 

pg your programmer's number. 

NOTE 

Numbers pj and pg identify your File 
Directory. 

Example 

The statement 

CALL DEFINE FILE (l,lO,ASCVAR, 'FORTFL.DAT',O,O) 

establishes a file named FORTFL.DAT on device 01, a 
disk, which contains ten word records. The 
associated variable is ASCVAR, and the file is in 
your area. 

A DEFINE FILE call can be used 
define the structure of each 
random access 1/0 operations. 

NOTE 

to establish and 
file to be used for 

The OPEN statement may be used to perform the 
same functions as DEFINE FILE. 

CALL DUMP (L ( I) , U (1) , F (I) , ... , L (n) I U (n) ,F (n) ) 

DUMP causes particular portions of memory to be 
dumped. L(l) and U(l} are the variable names that 
give the limits of memory to be dumped. Either L(l} 
or U(l} may be upper or lower limits. F(l) is a 
number indicating the format in which the dump is to 
be performed: 0 = octal, 1 = real, 2 = integer, and 
3 = ASCII. 

If F is not 0, 1, 2, 3, the dump is in octal. If 
F(n) is missing, the last section is dumped in octal. 
If U(n} and F(n} are missing, an octal dump is made 
from L to the end of the job area. If L(n}, U(n), 
and F(n) are missing, the entire job area is dumped 
in octal. 

The dump is terminated by a call to EXIT. 

15-18 



SUBPROGR~M STATEMENTS 

Tctble lS-3 (Cant.) 
FORTRAN-20 Library Subroutines 

Subroutine Name Effect 

ERRSET 

ERRSNS 

EXIT 

ILL 

LEGAL 

LINE 

CALL ERRSET(N) 

ERRSET allows you to control the typeout of 
execution-time arithmetic error messages. ERRSET is 
called with one integer argument. 

Typeout of all arithmetic and library error messages 
is suppressed after N occurrences of these error 
messages. If ERRSET is not called, the default value 
of N is 2. 

CALL ERRSNS(I,J) 

ERRSNS allows you to determine the exact nature of an 
error on READ, WRITE, OPEN, or CLOSE that was trapped 
with the "ERR= statement label" option. ERRSNS 
returns one or two integer values that describe the 
status of the last I/O operation performed by FOROTS. 
(The second integer value is optional.) 

CALL ERRSNS(I,J) 

returns a FORTRAN-standardized number in I and a 
processor-dependent number in J to describe the last 
I/O operation. See Appendix H and Table H-l for more 
information and a detailed description of the values 
returned. 

EXIT 

EXIT returns control to the Monitor and, therefore, 
terminates the execution of the program. 

CALL ILL 

ILL sets the ILLEG flag. If the flag is set and an 
illegal character is encountered in floating­
point/double- precision input, the corresponding word 
is set to zero. 

CALL LEGAL 

LEGAL clears the ILLEG flag. If the flag is set and 
an illegal character is encountered in the floating­
point/double- precision input, the corresponding word 
is set to zero. 

CALL LINE (X,Y,N,K) 

LINE causes a line to be drawn through the N points 
specified by (X(l) ,Y(l», (X(2) ,Y(2» ... (X(N) ,Y(N» 
where the elements of X and Y are spaced K words 
apart in storage. 

15-19 



SUBPROGRAM STATEMENTS 

Table 15-3 (Cont.) 
FORTRAN-20 Library Subroutines 

Subroutine Name Effect 

MKTBL 

NUMBER 

PDUMP 

PLOT 

PLOTS 

CALL MKTBL{I,J) 

MKT~L specifies a special character set where I is 
the number to be assigned the set and J contains the 
starting address of a character table of 200(8) 
consecutive words. In each character table word, the 
left half contains the number of strokes in the 
character (0 if nothing is to be plotted fOL the 
wOLd) and the right half contains the address of the 
table of strokes for the character. 

CALL NUMBER(X,Y,SIZE,FNUM,THETA,NDIGIT) 

NUMBER causes a floating- point number to be plotted 
as text. PaLameters X, Y, SIZE, and THETA have the 
same meanings as for the SYMBOL call. PaLameter 
NDIGIT is the number of digits plotted to the right 
of the decimal point. If NDIGIT is a negative value, 
only the integeL part of the number is plotted. FNUM 
specifies the number to be plotted. 

CALL PDUMP (L (1) I U ( 1) ,F (1) , •.. I L (n) I U (n) ,F (n) 

The arguments of PDUMP are the same as those of 
DUMP. PDUMP is the same as DUMP except that control 
returns to the calling program after the dump has 
been executed. 

CALL PLOT(X,Y,IPEN) 

PLOT moves the pen in a straight line from its 
current position to the position specified by X,Y. 
If IPEN=3, the pen is raised before the movement; if 
IPEN=2 the pen is loweLed before movement; if IPEN=l 
the pen is left unchanged from its previous state. 
If the value of IPEN is negative (-1, -2 or -3) the 
pen action is the same as for the corresponding 
positive values except that on completion of the 
indicated motion, the new pen position is taken as a 
new origin and the output buffer is sent to the 
plotteL. 

The plotter is not released on completion of the 
specified movement. 

CALL PLOTS (I) 

PLOTS is the plotter setup routine. If the 
LS not available, I is set to -1; if 
available, I is set to O. This call must 
first plotter routine called. 

15-20 

plotter 
it is 

be the 



SUBPROGRAH STATm·mNTS 

Table 15-3 (Cont.) 
FORTRAN-20 Library Subroutines 

Subroutine Name Effect 

RELEAS 

SAVRAN 

SCALE 

SETABL 

SETRAN 

SORT 

CALL RELEAS(unit) 

RELEAS closes out I/O on a device initialized by the 
FORTRAN Object Time System and returns it to the 
uninitialized state. RELEAS should be the last call 
referencing that device. 

CALL SAVRAN(I) 

SAVRAN is called with one integer argument. SAVRAN 
sets its argument to the last random number 
(interpreted as an integer) that has been generated 
by the function RAN. 

CALL SCALE(X,N,S,XMIN,DX) 

SCALE selects scale values for an AXIS call where X 
and N specify a I-dimensional array X with the length 
N. Parameter S specifies the length of the desired 
axis, SCALE determines a value of DX that allows X to 
be plotted in S inches. XMIN is selected as the 
smallest element of the array X, and is truncated to 
be a multiple of DX. 

CALL SETABL(I,J) 

SETABL specifies a character set where I 
integer that gives the number of the 
character set. If a character set has been 
by I, the value of J is set to 0; if not, 
to -1. The standard ASCII character set is 
as 1. 

CALL SETRAN (I) 

is an 
desired 
defined 

J is set 
defined 

SETRAN has one argument, which must be a non-negative 
integer <2**(31). The starting value of the function 
RAN is set to the value of this argument, unless the 
argument is zero. In this case, RAN uses its normal 
starting value. 

CALL SORT ('OUTPUT/SWS=INPUT/SWS,INPUT/SWS') 

SORT sorts one or more files using the SORT program. 
The argument is an ASCII string that represents 
(version 3 or later) the standard SORT command 
string. Its components are: 

OUTPUT 
INPUT 
SWS 

file specification of the output file. 
file specification of the input file(s). 
one or more switches for the output file, 
the input file(s), the sorting process, and 
sometimes SCAN. The switches not allowed 
in the FORTRAN call are:/BLOCK, /COMP3, 
/EBCDIC, /INDUSTRY, /LABEL, /SIXBIT, and 
/VERSION. 

15-21 



SUBPROGRAM STATEMENTS 

Table 15-3 (Cont.) 
FORTRAN-20 Library Subroutines 

Subroutine Name Effect 

SYMBOL 

TIME 

WHERE 

Wild card format is not allowed in the SORT call. 

For information about using the SORT program, see the 
SORT Userls Guide. Example: .. 

CALL SORT('SRTFIL.SRT=INSTRT/REC:80/KEY:l:2'} 

CALL SYMBOL(X,Y,SIZE,ASC,THETA,NASC) 

SYMBOL raises the plotter pen and moves it to 
position specified by X and Y. Lower pen and plot' 
characters found in array ASC. Parameter ~IZE 
specifies the height of the characters plotted in 
inches (floating- point values); THETA specifies the 
direction of the base line on which the text of array 
ASC is to be plotted, and NASC specifies the number 
of characters in array ASC.' 

CALL TIME(X) or CALL TIME(X,Y) 

TIME returns the current time in its argument(s) in 
left-justified ASCII characters. If TIME is called 
with one argument, 

CALL TIME(X) 

the time is in the form 

hh:mm 

where hh is the hours (24-hour time) and mm is the 
minutes. If a second argument is requested, 

CALL TIME(X,Y) 

the first argument is returned in the same form as 
the one-argument call, and the second has the form 

bss.t 

where b is a blank, ss is in seconds, and t is in. 
tenths of a second. 

CALL WHERE(X,Y) 

Variables X and Yare set to the values which 
identify the current position of the pen. 

15-22 



CHAPTER 16 

BLOCK DATA SUBPROGRAl>1S 

16.1 INTRODUCTION 

Use block data subprograms to initialize data to be stored in any 
common areas. You may use only specification and DATA statements, 
i.e., DATA, COMMON, DIMENSION, EQUIVALENCE, and TYPE, in BLOCK DATA 
subprograms. A subprogram of this type must start with a BLOCK DATA 
statement. 

You may enter initial values into more than one labeled common block 
in a single subprogram of this type. 

An executable program may contain more than one block data subprogram. 

16.2 BLOCK DATA STATEMENT 

The form of the BLOCK DATA statement is: 

BLOCK DATA name 

where 

name is a symbolic name given 
subprogram. 

16-1 

to identify the 





APPENDIX A 

ASCII-1968 CHARACTER CODE SET 

The character code set defined 
American National Standard for 
given in the following matrix. 

in the X3.4-l968 Version of the 
Information Interchange (ASCII) is 

1st 2 
octal 
digits 

OOX 
Olx 
02x 
03x 
04x 
05x 
06x 
07x 
lOx 
llx 
l2x 
13x 
l4x 
l5x 
l6x 
17x 

Last octal digit 
o 1 2 3 4 5 6 7 

NUL SOH STX ETX EOT ENQ ACK BEL 
BS HT LF VT FF CR SO SI 
DLE DCl DC2 DC3 DC4 NAK SYN ETB 
CAN EM SUB ESC FS GS RS US 
~ ! " # $ % & 

, 

( ) * + / , 
0 1 2 3 4 5 6 7 
8 9 : ; < = > ? 
@ A B C D E F G 
H I J K L M N 0 
p Q R S T U V W 
X Y Z [ \ 1 A(t) (*-) 

b d f -grave a c e g 
h i j k I m n 0 

p q r s t u v w 
x y z { I } -(ESC) DEL 

Characters inside parentheses are ASCII·1963 Standard. 

NUL Null DLE Data Link Escape 
SOH Start of Heading DCl Device Control 1 
STX Start of Text DC2 Device Control 2 
ETX End of Text DC3 Device Control 3 
EOT End of Transmission DC4 Device Control 4 
ENQ Enquiry NAK Negative Acknowledge 
ACK Acknowledge SYN Synchronous Idle 
BEL Bell ETB End of Transmission Block 
BS Backspace CAN Cancel 
HT Horizontal Tabulation EM End of Medium 
LF Line Feed SUB Substitute 
VT Vertical Tabulation ESC Escape 
FF Form Feed FS File Separator 
CR Carriage Return GS Group Separator 
SO Shift Out RS Record Separator 
SI Shift In US Unit Separator 

DEL Delete (Rubout) 

A-I 

Graphic 
subsets 
64 95 





APPENDIX B 

USING THE COMPILER 

This appendix explains how to access FORTRAN-20 and how to make use of 
the information it provides. You should be familiar with the 
FORTRAN-20 language and the DECsystem-20 TOPS-20 monitor. 

B.l RUNNING THE COMPILER 

The command to run FORTRAN-20 is: 

@FORTRA 

The compiler responds with an asterisk (*) and is then ready to accept 
a command string. A command is of the general form: 

object filename, listing filename=source filename(s) 

You are given the following options: 

1. The filenames can be fully specified with SFD paths. 

2. You may specify more than one input file in the compilation 
command string. These files will be logically concatenated 
by the compiler and treated as one source file. 

3. Program units need not be terminated at file boundaries and 
may consist of more than one file. 

4. If no object filename is specified, no relocatable binary 
file is generated. 

5. If no listing filename is specified, no listing is generated. 

6. If no extension is given, the defaults 
.REL (relocatable binary), and .FOR 
respective files. 

B.l.l Switches Available with FORTRAN-20 

are .LST 
(source) 

(listing) , 
for their 

Switches to FORTRAN-20 are accepted anywhere in the command string. 
They are tQtally position- and file-independent. Table B-1 lists the 
switches. '. 

B-1 



Switch 

CROSSREF 

DEBUG 

EXPAND 

INCLUDE 

LNMAP 

MACROCODE 

NOERRORS 

NOWARNINGS 

OPTIMIZE 

SYNTAX 

USING THE COMPILER 

Table B-1 
FORTRAN-20 Compiler Switches 

Meaning 

Generates a file that can be input to 
the CREF program 

(See Section B.l.l.l.) 

Includes the octal-formatted version of 
the object file in the listing. 

Compiles a D in column 1 as space. 

Produces a line number/octal location 
map in the listing only if /MACROCODE 
was not specified. 

Adds the mnemonic translation of the 
object code to the listing file. 

Does not print error messages 
on the terminal. 

Does not output warning messages. 

Performs global optimization. 

Performs syntax check only. 

Defaults 

OFF 

OFF 

OFF 

OFF 

OFF 

OFF 

OFF 

OFF 

OFF 

OFF 

Each switch must be preceded by a slash (/). Switch names need only 
contain those letters that are required to make the switch name 
unique. You are encouraged to use at least three letters to prevent 
conflict with switches in future implementations. 

Example 

@FORTRA 
*OFILE,LFILE=SFILE/MAC,S2FILE 

The /MAC switch will cause the MACRO code equivalent of SFILE.FOR and 
S2FILE.FOR to appear in LFILE.LST. 

All switches used or implied are printed at the top of each listing 
page. 

B-2 



USING THE COMPILER 

B.l.l.l The /DEBUG Switch - The /DEBUG switch tells FORTRAN-20 to 
compile a series of debugging features into your program. Several of 
these features are specifically designed to be used with FORDDT. 
Refer to Appendix E for more information. By adding the modifiers 
listed in Table B-2, you can include specific de~ugging features. 

Modifiers 

:DIMENSIONS 

: TRACE 

:LABELS 

:INDEX 

:BOUNDS 

:NONE 

:ALL 

Table B-2 
Modifiers to /DEBUG Switch 

Meaning 

Generates dimension information in .REL file for 
FORDDT. 

Generates references to FORDDT required for its 
trace features (automatically activates :LABELS). 

Generates a label for each statement of the form 
"line-number L." (This option may be used without 
FORDDT.) 

Forces DO LOOP indices to be stored at the 
beginning of each iteration rather than held in a 
register for the duration of the loop. 

Generates the bounds checking code for all array 
references. Bounds violations will produce 
run-time error messages. Note that the technique 
of specifying dimensions of 1 for subroutine 
arrays will cause bounds check errors. (You may 
use this option without FORDDT.) 

Do not include any debug features. 

Enable all debugging aids. 

The format of the /DEBUG switch and its modifiers is as follows: 

/DEBUG:modifier 

or 

/DEBUG: (modifier list) 

Options available with the /DEBUG modifiers are: 

1. No debug features - Either do not specify the /DEBUG switch 
or include /DEBUG:NONE. 

2. All debug features - Either /DEBUG or /DEBUG:ALL. 

3. Selected features - Either a series of modified switches; 
i.e., 

/DEBUG:BOU/DEBUG:LAB 

or a list of modifiers 

/DEBUG: (BOU,LAB, •.. ) 

B-3 



USING THE COMPILER 

4. Exclusion of features (if you wish all but one or 
modifiers and do not wish to list them all, you may use 
prefix "NO" before the switch you wish to exclude). 
exclusion of one or more features implicitly includes all 

two 
the 
The 
the 

others, i.e., /DEBUG:NOBOU is the same as 
/DEBUG: (DIM,TRA,LAB,IND). 

If you include more than one statement on a single line, only the 
first statement will receive a label (/DEBUG:LABELS) or FORDDT 
reference (/DEBUG:TRACE). (The /DEBUG option and the /OPTIMIZE option 
cannot be used at the same time.) 

NOTE 

If a source file contains line sequence 
numbers that occur more than once in the 
same subprogram, the /DEBUG option 
cannot be used. 

The following formulas may be used to determine the increases in 
program size that will occur as a result of the addition of various 
/DEBUG options. 

:DIMENSIONS 

: TRACE 

:LABELS 

:INDEX 

:BOUNDS 

For each array, 3+3*N words where N is the number 
of dimensions, and up to three constants for each 
dimension. 

One instruction per executable statement. 

No increase. 

One instruction per 
instruction for some 
index of the loop. 

inner 
of the 

loop plus one 
references to the 

For each array, the formula is the same as 
DIMENSIONS:. 

For each reference to an array element, use 5+N 
words where N is the number of dimensions in the 
array. If you do not specify :BOUNDS, 
approximately 1+3*(N-l) words will be used. 

B.l.2 LOAD-Class Commands 

You can invoke FORTRAN-20 by using LOAD-class commands. These 
commands cause the monitor to interpret the command and construct new 
command strings for the system programs actually processing the 
command. 

COMPILE 
LOAD 
EXECUTE 
DEBUG 

B-4 



USING THE COMPILER 

Example 

.EXEC ROTOR 

The compiler switches OPT, CREF, and DEBUG may be specified in 
LOAD-class commands and may be used globally or locally. 

Example 

.EXECUTE/CREF Pl.FOR,P2.FOR/DEBUG:NOBOU 

The other compiler switches must be passed in parentheses for each 
specific source file. 

Example 

.EXECUTE Pl.FOR(M,I) 

Refer to the Monitor Calls User's Guide for further information. 

B.2 READING THE LISTING 

When you request a listing from the FORTRAN compiler, it contains the 
following information: 

1. A printout of the source program plus an internal sequence 
number assigned to each line by the compiler. This internal 
sequence number is referenced in any error or warning 
messages generated during the compilation. If the input file 
is line-sequenced, the number from the file is used. If code 
is added via the INCLUDE statement, all INCLUDEd lines will 
have an asterisk (*) appended to their line-sequence number. 

2. A summary of the names and relative 
octal) of scalars and arrays in 
compiler generated variables. 

program locations (in 
the source program plus 

3. All COMMON blocks and the relative locations (in octal) of 
the variables in each COMMON block. 

4. A listing of all equivalenced variables or arrays and their 
relative locations. 

5. A listing of the subprograms referenced (both user defined 
and FORTRAN defined library functions). 

6. A summary of temporary locations generated by the compiler. 

7. A heading on each page of the listing containing the program 
unit name (MAIN., program, subroutine or function, principal 
entry), the input filename, the list of compiler switches, 
and the date and time of compilation. 

8. If you used the /MACRO switch, a mnemonic printout of the 
generated code (in a format similar to MACRO) is appended to 
the listing. This section has four fields: 

B-5 



USING THE COMPILER 

LINE: This column contains the internal sequence number 
of the line corresponding' to the mnemonic code. It 
appears on the first instruction of the code sequence 
associated with that internal sequence number. An 
asterisk indicates a compiler inserted line. 

LOC: The relative location in the object program of the 
instruction. 

LABEL: Any program or compiler generated label. 
Program labels have the letter "P" appended. Labels 
generated by the compiler are followed by the letter 
i'M". Labels generated by the compiler and associated 
with the /DEBUG:LABELS switch consist of the internal 
sequence number followed by an "L". 

GENERATED CODE: The MACRO mnemonic code. 

If you used the /LNMAP switch and did NOT use the /MACRO 
switch, a line number/octal location map is appended to the 
listing. This section lists the line numbers in increments 
of 10 on subsequent lines and each number from 0 through 9 
for each line in adjacent columns. The numbers appearing 
inside the matrix are the relative octal locations of the 
statements in the FORTRAN program unit. For example, to find 
the relative octal location of line number 001043, find the 
row marked 001040 and then column 3 on that line. The number 
in that place is the desired relative location. This listing 
can be very large and sparse for line-numbered files with 
large increments, such as those produced by EDIT. 

NOTE 

One FORTRAN line can produce multiple octal 
locations. In this case the line number map lists 
only the first location. 

9. A list of all argument blocks generated by the compiler. A 
zero argument appears first followed by argument blocks for 
subroutine calls and function references {in order of their 
appearance in the program}. Argument blocks for all I/O 
operations follow this. 

10. Format statement listings. 

11. A summary of errors detected or warning messages issued 
during compilations. 

B.2.l Compiler Generated Variables 

In certain situations the compiler will generate internal variables. 
Knowing what these variables represent can help you read the macro 
expansion. The variables are of the form: 

.letter digit digit digit digit 

i.e., .50001 

B-6 



USING THE COMPILER 

where: 

Letter Function of Variable 

A Register save area. 

F Arithmetic statement function formal parameters. 

I Result of a DO LOOP initial value expression or 
parameter of an adjustably dimensioned array. 

o Result of a common subexpression (see Section C.2.1.1) 
or constant computation (C.2.1.3). 

Q Temporary storage for expression values. 

R Result of 
(C.2.1.2). 

reduced operator strength expression 

S Result of the DO LOOP step size expression of computed 
iteration count for a loop. 

You may find these variables on the listing under SCALARS and ARRAYS. 

The following example shows a listing where all these features are 
pointed out. 

B-7 



tp 
I 

co 

Program Source 
Name Filename 

+ + 
MAIN. T If<l 1 

00001 
00002 
00003 
00004 
00005 
00006 
00007 
QOOOH 
00009 
00010 
00011 
00012 
00013 
00014 

compiler Compiled for KI processor 
verlion 1 ~CRO Code equivalent included 

f'OHTKAfII v.~(~15) IKI/M 1o-MAk-77 16:05 PAGE 1 

IMPLICIT IhTEG~R (A-ZJ 
DIMENSION A(lUO,2u0J,H(100,200) 
.':iUt-i1=O 
SIJM2=O 
DO 100 J=1,20() 
00 100 1=1,100 
Kl=r·J 
IfCK1.LT.500.uR.Kl.GT.1500) Kl=O 
A(I,J)=Kl 
K2=1+J 
1 f (1\2. ElJ • 100. OR • K 2 • E(~ • 200 • OI~ .1\ 2. EO. 300 ) 
8(I,J)=K2 
SUM1=SLJM1+Kl 
S{)H2=SUM2+K2 

K2=K2+1 

0001~ 100 CUNTlfllLiE 
00016 
00017 
00018 
00019 

C 

10 
TYPE 10,SUMl,5UM2 
FORMAT(7H SUM1= ,19,10H 
EfIIV 

SUfv12= ,19) 

c:: 
en 
H 
Z 
G1 

1-3 
tI:: 
tJl 

(') 

o 
3: 
"0 
H 
t"t 
tJl 
~ 



tJj 
I 
~ 

5VI:1Pi-<lJGRAr"lS CALLi(; 

SCALARS AND ARRAYS 

*K1 1 B 
.50000 110104 *suM2 

"*" NO r.:Xt-'l.JICl'l' Ot:l'"I{liI'l'lUN 

2 *J 
116105 *1 

47042 
116106 

n%" 

A 

*"'2 

NOT Rt:Ft:RENCED J 
~Compiler Generated Variable 

47043 .50001 116103 
11b107 *SUM1 116110 

~ _________________________ ~Internal sequence n~ber of first 
+ instruction that goes with this line 

LINE 

3 
4 
5 

b 

7 

B 

8 

GENt:kATEO COD£<.: LABt:L IJUC 
• Octal displacement of instruction 

o 
1 
2 
3 
4 
5 
6 
7 

10 

11 

12 
13 
14 
15 
16 
17 
20 

2 {Ill : 

3~1 : 

4M: 

JFCL 
JSP 

SETZ~ 
l·iOVEN 
HOVt: 
HLkEM 

HRkZH 

MUVE 

MOVE 
J.MULI 
MOVEt-l 
CAlL 
CAIL~ 

Jk5T 
JRS'I 

0,0 
16,RE5ET. 
0,0 
2,SUMl 
2,SUM2 
2, (7774', 0000001 J 
2,.50000 

2,J 

2,[777b3400(001) 

.3,J 
3,0(2) 
3,1<1 
3,764 
3,2734 
O,oM 
O,5""J Compiler 

6rYl: .. Generated 
SETZB 4,Kl Label 

C 
til 
H 
:z 
Gl 

1-3 
::c 
[tl 

() 
o 
ra 
H 
t"" 
t::l 
~ 



l-lAlfII. TIMl fUKTKAN 'v.~(51~) IKI/M 1 b-MAk--' I 1b:05 PAGE 1-1 

9 21 51>"1 : 
MOV~l 3,144 

22 IMUI, 3 , ~J 
:t3 AlJDI 3,0(2) 
2,* MOV~ 4,Kl 
2!J HOVEM 4,A-145(3) 

10 26 "',uVE 3,J 
27 AOD! 3,OCD 
30 ;v,uVt:M 3,K2 

11 31 i·IOVE 5,K2 
3:l CAlE 5,144 
33 CAIN 5,310 
34 JRS'f O,BM 
35 Yt-\ ; c:: 

til 
CAIN 5,454 ..... 

z 
11 36 Hr-. : G') 

AUS 3,K2 8 
tp 12 37 7 (vI: :c 
I ttl 

I--' NOV~: 1 3,144 
0 40 II1UL 3,J 

(") 
0 

41 ADDI 3,0(2) 3: 
I'C 

42 tviOVE 5,K2 ..... 
43 MUVEtvl 5,8-145(3) t'1 

ttl 
13 44 ADlJM 4,SUlw11 ~ 

14 45 A()DM 5,SlJM2 
15 46 lOOP: .. Program label 

AOHJN 2,4M 
47 AOS 2,J 
50 AOSG£ O,.SOOOO 
51 JRSl' 0,3/1'1 

17 52 i'tlQVEI 16,lOM 
53 PUSHJ 17,UUT. 
54 MOVEl 16,11M 
55 PUSHJ 17,IOLST. 

19 56 MUVE! Ib,lM 
57 PUSrlJ 17,t:XI'r. 



tJ:l 
I 

I-' 
I-' 

ARGUMENT BLOCKS: 

MAIN. 

60 
61 
62 
63 
64 
65 
66 
67 
70 
71 
72 
73 

TIMl 

1M: 

10M: 

11M: 

0,,0 
0, ,0 
777773,,0 
0,,777777 
0, ,0 
0,,0 
340,,10P 
0,,7 
0,,0 
ll00"SUM1 
1l00"SUM2 
4000,,0 

FORTRAN V.~(515) IKI/M 

FORMAT STATEMENTS (IN LOW SEGMENT): 

18 

MAIN. 

116111 lOP: 
116112 
116113 
116114 
116115 
116116 
116117 

(7H S 
UM1= 
,19,1 
OH 

SUM2 
= ,19 

[ NU ERRORS DETECTED ] 

16-MAR-77 16:05 PAGE 1-2 

c: 
til 
H 
Z 
G1 

8 
tIl 
tZl 

() 
o 
:J: 
td 
t-t 
t-t 
tZl 
~d 



tJj 
I 

I-' 
t\J 

MAIN. TIM1 

00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 100 
00016 C 
00017 
00018 10 
00019 

FORT~AN V,S(S15) IKI 16-rAAH-77 

IMPLICIT INTEGER (A-Z) 
DIMENSION A(10Q,200),B(lOO,200) 
SUMl=O 
SUM2=O 
DO 100 J=1,200 
DO 100 1=1,100 
Kl=l*J 
IF(Kt.LT.500.0R,Kl.GT,1500) Kl=O 
ACI,J)=Kl 
K2=I+J 
IF(K2,~Q,100.0R.K2,EQ.200,OR.K2.EQ,300) 
BCI,J)=K2 
SUM1=SUM1+Kl 
SUM2=SUM2+K2 
CONTINUt 

TYPE 10,SUM1,SUM2 
fORMAT(7H SUMl= ,I9,lOH 
END 

SUN2;: ,19) 

SUBPROGRAMS CALLED 

16:09 PAGE 1 

K2=K2+1 

SCALARS AND ARRAYS [ "*" NO EXPLICIT DEFINITION • "%" NOT REFERENCED] 

*Kl 1 B 
,50000 116104 *SUM2 

2 *~l 
116105 *1 

47042 A 
11610b *K2 

47043 ,SOOOI 116103 
11b107 *SUM1 116110 

C 
til 
H 
Z 
G'l 

t-3 
::c 
tzJ 

n 
o 
3: 
"0 
H 
t"" 
tzJ 
~ 



LINE NUMBER/OCTAL LOCATION MAP 

I 0 1 2 3 4 5 6 7 8 9 

.·~·-~I·---·-----··-·---------·-------·---------·--~··~~.-- ... ~ .. --.----.. ---------... -
00000 3 4 5 10 11 14 21 
00010 26 31 37 44 45 46 52 56 
MAIN, [ NO ERRORS DETECTED 

Line number 11 starts at location 31. 
The previous listing shows that line 11 
uses locations 31 through 36, but only 
the first location is shown here. 

MAIN. TIM1 FORTRAN V,5(515) /KI/OPT/M 16.MAR .. 77 16:07 PAG~ 1 c 
til 
H 
~ 

00001 IMPLICIT INTEGER CA~Z) G') 

to 00002 DIMENSION A(100,200),BC1OO,200) 8 

I 00003 SU"l1 =0 == tlj 
~ 00004 SUM2=O w n 

00005 DO 100 J=1,200 0 

00006 DO 100 1=1,100 :: 
to 

00007 1\1=1*J H 

00008 IF(Kl.LT.500,OR.Kl.GT,1500) K1=0 
tot 
tlj 

00009 ACI,J)=Kl ~ 

00010 K2=I+J 
00011 IFCK2,EQ.I00.QR,K2.EQ.200.0R.K2,EQ.300) K2=K2+1 
00012 B(I,J)=K2 
00013 SUM 1 =sur-1 1 +K 1 
00014 SUM2=SUM2+K2 
00015 100 CONTINUE 
00016 C 
00017 TYPE 10,SUM1,SUM2 
00018 10 FORMAT(7H SUM1= ,I9,10H SUM2= ,19) 
00019 END 



SUBPROGRAMS CALLED 

SCALARS AND ARRAYS ( "*" NO EXPLICIT DEfINITION - "I" NOT REfERENCED 

*Kl 1 B 2 ~.ROOOI 47042 ,ROOOO 47043 *J 47044 
A 47045 ,50001 116105 ,SOOOO 116106 * 5 U t-1 2 + 11 6 1 0 7 *1 116110 
,00001 116111 *K2 116112 *SUM1 116113 

t 
LINE LOC LABEL GENERATED CODE 

0 Jf"CL 0,0 L Optimizer 1 JSP 16,RESET, 
2 0,0 Created 

4 3 SETZB 10,11 Variables c 
til 

* 4 MOV£<:l 12,144 t-t 

5 MOVE:M 12"ROOQl z 
(j) 

5 6 M()VNI l2,3tO ~ 
ll:I 

1_-
7 MOVe;! 7,1 tIl 

I 
10 MOVEM 12,,50000 ~ 

~ 
~ 11 4M. () 

,0 
MOVE 6,7 3: 

6 12 MOVE 2,[777634000001] I"d 
t-t 

* 13 SMa t"t 
~ 

MOV!':I 4,0(2) ~ 

14 ADD 4"ROOOl 
7 15 MOVE 5,6 
8 16 CALL 5,764 

17 CAlLE 5,2734 
20 JRST 0,7M 
21 JRST O,6 M 

8 22 7M, 

Optimizer 
Created 
Statements 



lJj 
I 

I--' 
U'1 

MAIN, 

9 

10 

11 

11 

12 

13 
14 

* 15 

* 
* 

* 
* 
* 
* 17 

* 
19 

TIM1 

23 

24 
25 
26 
27 
30 
31 

32 

33 

34 
35 
36 
37 

40 
41 
42 

43 
44 
45 
46 
47 
50 
51 
52 
53 
54 
55 

56 

FORTRAN V,5(515) IKI/OPT/N 

6M: 

10MI 

9MI 

8MI 

tOOPI 

1MI 

2M. 

:-.10VEI 5,0 

~10VEM 

MOVE 
ADDI 
CAIE: 
CAIN 
JRST 

5,1\""145(4) 
3,7 
3,0(2) 
3,144 
3,310 
O,9M 

CAIN 3,454 

ADDI 3,1 

HOVEM 
ADD 
ADD 
ADD 

AOBJN 
MOVEl 
ADDM 

ADOI 
AOSGE 
JRST 
MOVEM 
MOVEM 
MOVEM 
MOVEM 
MOVEl 
PUSHJ 
MOVEI 
PUSHJ 

MOVEI 
PUSHJ 

3,a"'145(4) 
11,5 
10,3 
6,7 .. 

11 2,5 
12, 
12, 

144 
IRooot 

4 

7,1 
0, IS 0000 
O,4M 
11, UM14 
10, UM24 
5,K • 
.),K 4 
16, 1M 
17,0 UTI 

2M 4 16, 
17,IOLST. 

16,3M 
17,EXIT. 

16 .. t"'AR"7 7 16:07 

Optimizer 
Created 
Statements 

PAGE 1-1 

o 
(J) 
H 
Z 
Gl 

1-3 
lJl 
tzl 

(') 

o 
3: 
I'C 
1-1 
t'1 
tzl 
:;0 



IJ:I 
I 

...... 
0'1 

ARGUMr~NT BLOCKS: 

MAIN, 

57 
60 
61 
62 
63 
64 
65 
66 
67 
70 
71 
72 

TIM1 

3t-i: 

U,M; 

12HZ 

0, ,0 
0,,0 
777773,,0 
0,,777777 
0, ,0 
0,,0 
340,,10P 
0,,7 
0,,0 
1100"SUMl 
1100"SUM2 
4000,,0 

FORTRAN V.5(515) /KI/OPT/M 

FORMAT STATEMENTS (IN LOW SEGMENT): 

18 

MAIN. 

116114 lOP: 
116115 
116116 
116117 
116120 
116121 
116122 

(7H S 
UM1= 
,19,1 
OH 

5UM2 
= ,19 
) 

[ NO ERRORS OETECTED ] 

16",r';AR",77 16:07 PAGF: 1-2 

c::: 
en 
I-f 
Z 
(j) 

1-3 
ta 
tzl 

(') 
o 
3: 
to 
I-f 
t"" 
tzl 
~ 



USING THE COMPILER 

B.3 ERROR REPORTING 

If an error occurs during the initial pass of the compiler (while the 
actual source code is being read and processed), an error message is 
printed on the listing immediately following the line in which the 
error occurred. Each error references the internal sequence number of 
the incorrect line. The error messages along with the statement in 
error are output to the user terminal. For example: 

.EXECUTE DAY.FOR 
FORTRAN: DAY 
01300 
?FTNNRC LINE:01300 
01500 100 
?FTNMSP LINE:01500 
01600 ? 
?FTNICL LINE:01600 

?FTNFTL MAIN. 
LINK: LOADING 
[LNKNSA NO START ADDRESS] 

EXIT 

Kl 
STATEMENT NOT RECOGNIZED 
CONTINE 
STATEMENT NAME MISSPELLED 

ILLEGAL CHARACTER C IN LABEL FIELD 

3 FATAL ERRORS AND NO WARNINGS 

If errors are detected after the initial pass of the compiler, they 
appear in the list file after the end of the source listing. They are 
output to your terminal without the statement in error, but they may 
reference its internal sequence number. 

B.3.1 Fatal Errors and Warning Messages 

There are two levels of messages, warning and fatal error. Warning 
messages are preceded by "%" and indicate a possible problem. The 
compilation will continue, and the object program will probably be 
correct. Fatal errors are preceded by a"?". If a fatal error is 
encountered in any pass of the compiler, the remaining passes will not 
be called. Additional errors that would be detected in later compiler 
passes may not become apparent until the first errors are corrected. 
It is not possible to generate a correct object program for a source 
program containing a fatal error. 

The format of messages is 

?FTNXXX LINE:n text 

or 

%FTNXXX LINE:n text 

where: 

? 
% 
FTN 
XXX 
LINE:n 
text 

fatal 
warning 
FORTRAN mnemonic 
3-letter mnemonic for the error message 
line number where error occurred 
explanation of error 

B-17 



USING THE COMPILER 

The printing of fatal errors and warning messages on your terminal can 
be suppressed by the use of the /NOERRORS switch; however, messages 
will still appear on the listing. The /NOWARNINGS switch will 
suppress warning messages on both user terminal and listing. 

B.3.2 Message Summary 

At the end of the listing file and on the terminal, a message summary 
is printed after each program unit is compiled. This message has two 
forms: 

1. when one or more messages were issued 

{
?FTNFTL} 
%FTNWRN name NO/number FATAL ERRORS AND NO/number WARNINGS 

or 

2. when no messages were issued 

name [NO ERRORS DETECTED] 

where name is the program or subprogram name. ([NO ERRORS DETECTED] 
appears on the listing only.) Appendix G is a complete list of fatal 
errors and warning messages. 

B.4 CREATING A REENTRANT FORTRAN PROGRAM WITH LINK 

To produce a sharable program from the .REL file, such as MAIN.REL, 
give one of the following commands to LINK: 

1. /SEG:DEFAULT MAIN/G 

2. /OTS:SHAR MAIN/G 

The resulting core image can be SSAVEd or the /SSAVE switch can be 
used to produce a .SHR file. 

B-18 



APPENDIX C 

WRITING USER PROGRAMS 

This appendix is a guide for writing effective programs with 
FORTRAN-20. It contains techniques for optimization, interaction with 
non-FORTRAN programs, and other useful programming hints. 

C.l GENERAL PROGRAMMING CONSIDERATIONS 

The following 
should observe 
FORTRAN-20. 

paragraphs describe 
when preparing a 

programming considerations you 
FORTRAN program to be compiled by 

C.l.l Accuracy and Range of Double-precision Numbers 

Floating-point and real numbers may consist of up to 16 digits in a 
double-precision mode. Their range is specified in Chapter 3, Section 
3.2 of this manual. You must be careful when testing the value of a 
number within the specified range since, although numbers up to 10**38 
may be represented, FORTRAN-20 can only test numbers of up to eight 
significant digits (REAL precision) and 16 significant digits (DOUBLE 
precision) • 

You must also be careful when testing the floating-point 
for a result of O. In most cases the anticipated result, 
be obtained; however, in some cases the result may be a 
number that approximates o. Such an approximation of 
tests within statements, i.e., an arithmetic IF, to fail. 

computation 
i.e., 0 will 
very small 

o will cause 

C.l.2 Writing FORTRAN-20 Programs for Execution On Non-DEC Machines 

If you prepare a program to run on both a DECsystem-20 computer and a 
non-DIGITAL machine, you should: 

1. Avoid using the non-ANSI standard features of FORTRAN-20, and 

2. Consider the accuracy and size of the numbers that the 
non-DIGITAL machine is capable of handling. 

C-l 



WRITING USER PROGRAMS 

C.l.3 Using Floating-Point DO Loops 

FORTRAN-20 permits you to employ non-integer single- or double­
precision numbers as the parameter variables in a DO statement. This 
enables you to generate a wider range of values for the DO loop index 
variables, which may, in turn, be used inside the loop for 
computations. Be sure to consider the loss of precision that may 
occur. 

C.l.4 Computation of DO Loop Iterations 

The number of times through a DO loop is computed outside the loop and 
is not affected by any changes to the DO index parameters within the 
loop. The formula for the number of times a DO loop is executed is: 

DO 10 I=Ml,M2,M3 

MAX (1, ((M2-Ml)/M3)+l)=Number of cycles 

The values of the parameters Ml, M2, M3 may be of any type; however, 
you must consider the foregoing formula, particularly when using 
logicals. One pass through each DO loop is always performed EVEN IF 
THE RESULT OF THE FOREGOING CALCULATION IS LESS THAN OR EQUAL TO ZERO. 

C.l.5 Subroutines - Programming Considerations 

Consider the following items when preparing and executing subroutines: 

1. During execution, no check is made to see if the proper 
number of parameters was passed. 

2. If the number of actual arguments passed to a subroutine is 
less than the number of dummy arguments specified, the values 
of the unspecified arguments are undefined. 

3. If the number of actual arguments passed to a subroutine is 
greater than the number of dummy arguments given, the excess 
arguments are ignored. 

4. If an actual parameter is a constant and its corresponding 
dummy argument is set to another value, all references made 
to the constant in the calling program may be changed to the 
value of the dummy argument. 

5. No check is made to see if the parameters passed are of the 
same type as the dummy parameters. If an actual parameter is 
a constant and the corresponding dummy is of type real, be 
sure to include the decimal point with the constant. If the 
dummy is double-precision, be sure to specify the constant 
with a "D". 

Examples 

If the function F(A) is called by inputting F(2) and A is 
type real, F interprets the integer 2 as an unnormalized 
floating-point number. In this instance, F(A) should be 
called with F(2.0). 

Similarly, if the function Fl(D) is called by inputting 
Fl(2.5) and D is double-precision, Fl assumes that its 

C-2 



HRITING USER PROGRAr·1S 

parameters have been specified with two words of precision 
and picks up whatever follows the constant 2.5 in memory. 
The proper method is to use Fl(2.5DOO). 

NOTE 

You are given no notice if any of the situations 
described in items 1,2,3,4, ana 5 occur. 

C.l.6 Reordering of Computations 

Computations that are not enclosed within parentheses may be reordered 
by the compiler. Sometimes it is necessary to use parentheses to 
ensure proper results from a specific computation. 

For example, assuming that 

1. RLI represents a large number such that RLl*RL2 will cause an 
overflow condition, and 

2. RSI is a very small number, i.e., less than 1, the program 
sequence 

A=RSl*RLl*RL2 
B=RS2*RL2*RLI 

will not produce an overflow when evaluated left to right, 
since the first computation in each expression, i.e., RSl*RLl 
and RS2*RL2, will produce an interim result that is smaller 
than either large number (RLI or RL2). 

However, the compiler will recognize RLl*RL2 as a common subexpression 
(see Section C.2.I.l) and generate the following sequence: 

temp 
A 
B 

RLl*RL2 
RSl*temp 
RS2*temp 

The computation of temp will cause an overflow. 

You should write the program as follows to ensure that the desired 
results are obtained: 

A=(RSI*RLl)*RL2 
B=(RS2*RL2)*RLI 

Computations may be reordered even when global optimization is not 
selected. 

C-3 



WRITING USER PROGRAMS 

C.l.7 Dimensioning of Formal Arrays 

When you specify an array as a formal parameter to a subprogram unit, 
you must indicate to the compiler that the parameter is an array. 
Dimension the array in a specification statement. This is the only 
way the compiler is able to distinguish a reference to such an array 
from a function reference. Designating the array with a dimension of 
1 is a common practice. 

Example 

SUBROUTINE SUBl(A,B) 
DIMENSION A(l) 

There are disadvantages to using 
dimension information provided 
specifically: 

the above technique because the 
is not adequate in some cases, 

1. Reading or writing the array by name 

DIMENSION ARRAY (10) 
READ (1) ARRAY 

The above is a binary read that will read ten words into 
ARRAY. 

SUBROUTINE SUBl(A) 
DIMENSION A(l) 
READ(l)A 

This binary read will cause one word to be read into A. 

2. Reading the array as a format 

SUBROUTINE SUB2 (FMT) 
DIMENSION FMT(l) 
READ (l,FMT) 

This will cause one word of the array FMT to be written over 
with the characters read from the record on unit 1. 

When you use the /DEBUG:BOUNDS compilation switch, the dimension 
information used is that which is specified in the array declaration. 

SUBROUTINE DO IT(A) 
DIMENSION A(l) 
A(2)=0 

The reference to A(2) will cause the out-of-bounds warning message to 
be generated. 

C.2 FORTRAN-20 GLOBAL OPTIMIZATION 

You have the option of invoking the global optimizer during 
compilation. The optimizer treats groups of statements in the source 
program as a single entity. The purpose of the global optimizer is to 
prepare a more efficient object program that produces the same results 
as the original unoptimized program, but takes significantly less 
execution time. The output of the lexical and syntactic analysis 
phase of the compiler is developed into an optimized source program 
equivalent (in results) to the original. The optimized program is 
then processed by the standard compiler code generation phase. 

C-4 



WRITING USER PROGRAMS 

C.2.l Optimization Techniques 

C.2.l.l Elimination of Redundant Computations Often the same 
sUbexpression will appear in more than one computation throughout a 
program. If the values of the operands of such a common expression 
are not changed between computations, the subexpression may be written 
as a separate arithmetic expression, and the variable representing its 
resultant may then be substituted where the subexpression appears. 
This eliminates unnecessary recomputation of the subexpression. For 
example, the instruction sequence: 

A=B*C+E*F 

H=A+G-B*C 

IF((B*C)-H) 10,20,30 

contains the subexpression B*C three times when it really needs to be 
computed only once. Rewriting the foregoing sequence as: 

T=B*C 
A=T+E*F 

H=A+G-T 

DIF((T)-H) 10,20,30 

eliminates two computations of the sUbexpression B*C from the overall 
sequence. 

Decreasing the number of arithmetic operations performed in a source 
program by the elimination of common subexpressions shortens the 
execution time of the resulting object program. 

C.2.l.2 Reduction of Operator Strength - The time required to execute 
arithmetic operations will vary according to the operator(s) involved. 
The hierarchy of arithmetic operations according to the amount of 
execution time required is: 

MOST TIME 

LEAST TIME 

OPERATOR 
** 
/ 
* 
+,-

During program optimization, the global optimizer replaces, where 
possible (1), some arithmetic operations that require 
the most time with operations that require less time. For example, 
consider the following DO loop that is used to create a table for the 
conversion of from 1 to 20 miles to their equivalents in feet. 

DO 10 MILES=1,20 
10 IFEET(MILES)=5280*MILES 

1. Numeri~al analysis considerations severely limit the number of 
cases where this is possible. 

C-5 



WRITING USER PROGRAMS 

The execution time of the foregoing loop would be shorter if the 
time-consuming multiply operation, i.e., 5280*MILES, could be replaced 
by a faster operation. Since you increment MILES on each pass, you 
can replace the multiply operation by an add and total operation. 

In its optimized form, the foregoing loop would be replaced by a 
sequence equivalent to: 

K=5280 
DO 10 MILES=1,20 
IFEET(MILES)=K 

10 K=K+5280 

In the optimized form of the loop, the value of K is set to 5280 for 
the first iteration of the loop and is increased by 5280 for each 
succeeding iteration of the loop. 

This foregoing situation occurs frequently in subscript calculations 
that implicitly contain multiplications whenever the size is two or 
greater. 

C.2.l.3 Removal of Constant Computation From Loops - The speed with 
which a given algorithm may be executed can be increased if 
instructions and/or computations are moved out of frequently traversed 
program sequences into less frequently traversed program sequences. 
Movement of code is possible only if none of the arguments in the 
items to be moved are redefinea within the code sequences from which 
they are to be taken. Computations within a loop consisting of 
variables or constants that are not changed in value within the loop 
may be moved outside the loop. Decreasing the number of computations 
made within a loop greatly decreases the execution time required by 
the loop. 

For example, in the sequence: 

DO 10 1=1,100 
10 F=2.0*Q*A(I)+F 

the value of the computation 2.0*Q, once calculated on the first 
iterations, will remain unchanged during the remaining 99 iterations 
of the loop. Reforming the foregoing sequence to: 

QQ=2.0*Q 
DO 10 1=1,100 

10 F=QQ*A(I)+F 

moves the calculation 2.0*Q outside the scope of the loop. 
movement of code eliminates 99 multiply operations. 

This 

In addition, it is possible to remove entire assignment statements 
from loops. This action can be easily detected from the macro 
expanded listings. The internal sequence number remains with the 
statement and appears out of order in the leftmost column of the macro 
expanded listing (LINE). 

C-6 



~1RITING USER PROGR.z\MS 

C.2.1.4 Constant Folding and Propagation In this method of 
optimization, expressions containing determinate constant values are 
detected and the constants are replaced, at compile time, by their 
defined or calculated value. For example, assume that the constant PI 
is defined and used in the following manner: 

PI=3.14IS9 

X=2*PI*Y 

At compile time, the optimizer will have used the defined value of PI 
to calculate the value of the subexpression 2*PI. The optimized 
sequence would then be: 

PI=3.14IS9 

X=6.28318*Y 

thereby eliminating a multiply operation from the object code program. 

The computation of determinate constant values at compile time is 
termed "folding"; the use of the defined value of a constant for 
replacement purposes throughout a program sequence is termed 
"propagation of the' constants." The execution time saved by the 
foregoing type of compile time optimization is particularly important 
when the modified instruction occurs in a loop. 

C.2.I.S Removal of Inaccessible Code The optimizer detects and 
eliminates any code within the source program that cannot be accessed. 
In general, this will not happen since programmers do not normally 
include such code in their programs; however, inaccessible code may 
appear in a program during the debugging process. The removal of 
inaccessible code by the optimizer will reduce the size of the object 
program. A warning message is generated for each inaccessible line 
removed. 

C.2.1.6 Global Register Allocation - During the compilation of a 
source program, the optimizer controls the allocation of registers to 
minimize computation time in the optimized object program. The 
allocation process is designed to minimize the number of MOVE and 
MOVEM machine instructions that will appear in the most frequently 
executed portions of the code. 

C-7 



WRITING USER PROGRAMS 

C.2.1.7 I/O Optimization - Every effort is made to minimize the 
number of required calls to the FOROTS system. This is done primarily 
through extensive analysis of implied DO loop constructs on READ, 
WRITE, ENCODE, DECODE, and REREAD statements. The formats of these 
special blocks are described in Appendix E. These optimizations 
reduce the size of the program (argument code plus argument block size 
is reduced) and greatly improve the performance of programs that use 
implied DO loop I/O statements. 

C.2.1.S Uninitialized Variable Detection A warning message is 
generated when a scalar variable is referenced before it has received 
a value. 

C.2.1.9 Test Replacement - If the only use of a DO loop index is to 
reduce operator strength (D.2.1.2) and the loop does not contain exits 
(GO TOs out of the loop), the DO loop index is not needed and can be 
replaced by the reduced variable. 

For example: 

DO 10 1=1,10 
K=K+7*I 

10 CONTINUE 

Reduction of operator strength and test replacement together transform 
this loop into 

DO 10 1=7,70,7 
K=K+I 

10 CONTINUE 

This occurs frequently in subscript computation. 

C.2.2 Improper Function References 

Consider this statement: 

If: 

P = F(X) + Q(Y) 

1. the evaluation of F(X) defines or changes the variables A, B, 
and C, and 

2. the evaluation of Q(Y) defines or changes the values of B, C, 
and D, 

then it is possible that different values of P could result, depending 
on which function is evaluated first. Let's see how this works. 
Let's assign some values (to begin with) to A, B, C, and D and define 
the functions F{X) and Q(Y): 

Let: 
F (X) : Q (Y) : 

A 2. A 6. B 10. 
B 3. B 7. C 11. 
C 4. C S. D 12. 
D 5. F D + 9. Q A + 13. 

C-S 



WRITING USER PROG~~MS 

Now play computer and evaluate P, calling first F(X), then Q(Y). Now 
re-evaluate P, calling Q(Y) first, then F(X). Notice that you got 
different values for P because the variables A, B, C, and D changed 
value depending on the order in which the functions were called. (Our 
answers were 33 when F(X) was called first and 36 when Q(Y) was called 
first.) 

The ANSI FORTRAN standard prohibits this kind of situation. But the 
compiler won't catch it unless you mention the affected variables in 
the function call itself. The compiler depends on strict adherence to 
this rule. There's a strong possibility that you won't get the 
results you want if you don't look for situations of this type and 
avoid them. Your best bet is to define your variables OUTSIDE the 
function and not change them in the course of the evaluation of the 
function itself. 

C.2.3 Programming Techniques for Effective Optimization 

Observe the following recommendations during the coding of a FORTRAN 
source program. They will improve the effectiveness of the optimizer. 

1. Do not use DO loops with an extended range. 

2. Specify label lists when using assigned GO TOs. 

3. Nest loops so that the innermost index is the one with the 
largest range of values. 

4. Avoid the use of associated input/output variables. 

5. Avoid unnecessary use of COMMON and EQUIVALENCE. 

C.3 INTERACTING WITH NON-FORTRAN PROGRAMS AND FILES 

C.3.1 Calling Sequences 

The following paragraphs describe the standard procedures for writing 
subroutine calls. 

1. Procedure 

a. The calling program must load 
accumulator (AC) 16 with the 
argument in the argument list. 

the right 
address of 

b. The left half of AC 16 must be set to zero. 

half of 
the first 

c. The subroutine is then called by a PUSHJ instruction to 
AC 17. 

d. The return will be made to the instruction immediately 
after the PUSHJ 17 instruction. 

e. If you use the FOROTS trace facility, the calling 
sequence to a routine F must be 

MOVEI 16,AP 
PUSHJ 17,F 

C-9 



WRITING USER PROGRAMS 

where AP is the pointer to the argument list. If you use 
the trace facility, the word preceding the first word of 
an entry point should have its name in SIXBIT. 

2. Restrictions 

a. Skip returns are not permitted. 

b. The contents of the pushdown stack located before the 
address specified by AC 17 belong to the calling program; 
they cannot be read by the called subprogram. 

c. FOROTS assumes that it has control 
therefore, you must not create your 
FOROTS stack is initialized by: 

JSP l6,RESET. 

C.3.2 Accumulator Usage 

of the stack; 
own stack. The 

The specific functions performed by accumulators (AC) 17,16,0, and 1 
are as follows: 

1. Pushdown Pointer - AC 17 is always maintained as a pushdown 
pointer. Its right half points to the last location in use 
on the stack, and its left half contains the negative of the 
number of (words-I) allocated to the unused remainder of the 
stack. {A trap occurs when something is pushed into the next 
to last location. A positive left half is not permitted. 

2. Argument List Pointer - AC 16 is used as the argument 
pointer. The called subprogram does not need to preserve its 
contents. The calling program cannot depend on getting back 
the address of the argument list passed to the callee. AC 16 
cannot point to the ACs or to the stack. 

3. Temporary and Value Return Registers - AC ° and 1 are used as 
temporary registers and for returning values. The called 
subprogram does not need to preserve the contents of AC ° or 
1 (even if not returning a value). The calling program must 
never depend on getting back the original contents of the 
data passed to the called subprogram. 

4. Returning Values - At the option of the designer of a called 
subprogram, a subroutine may pass back results by modifying 
the arguments, returning a single-precision value in AC ° or 
a double-precision or complex value in AC ° and 1. A 
combination of the above may be used. However, two 
single-precision values cannot be returned in AC ° and 1, 
since FORTRAN would not be able to handle it. 

C-lO 



WRITING USER PROGRAMS 

5. Preserved ACs - FORTRAN-20 FUNCTION subprograms preserve ACs 
2 through 15; subroutine subprograms do not. 

The design of the called subprogram cannot depend on the 
contents of any of the ACs being set up by the calling 
subprogram, except for ACs 16 and 17. Passing information 
must be done explicitly by the argument list mechanism. 
Otherwise, the called subprograms cannot be written in either 
FORTRAN-20 or COBOL. 

C.3.3 Argument Lists 

The format of the argument list is as follows: 

Arg count word 
Arg list addr.---First arg entry 

Second arg entry 

Last arg entry 

The format of the arg count word is: 

bits 0-17 These contain -n, where n is the number of arg 
entries. 

bits 18-35 These are reserved and must be O. 

The format of an arg entry is as follows (each entry is a single 
word) : 

bits 0-8 

bits 9-12 
bit 13 
bits 14-17 
bits 18-35 

Reserved for future DEC development 
now) . 
Arg type code. 
Indirect bit if desired. 
Index field, must be a for present. 
Address of the argument. 

The following restrictions should be observed: 

(set to a for 

1. Neither the argument list nor the arguments themselves can be 
on the stack. This restriction is imposed so that the stack 
can be moved. The same restriction applies to any indirect 
argument pointers. 

2. The called program may not modify the argument list itself. 
The argument list may be in a write-protected segment. 

Note that the arg count word is at position -1 with respect 
to the contents of AC 16. This word is always required even 
if the subroutine does not handle a variable number of 
arguments. A subroutine that has no arguments must still 
provide an argument list consisting of two words, i.e., the 
argument count word with a a in it and a zero argument word. 

C-ll 



Example 

MOVEI l6,AP 
PUSHJ 17,SUB 

iARGUMENT LIST 
-3,,0 

AP: A 
B 
C 

WRITING USER PROGRAMS 

iSET UP ARG POINTER 
iCALL SUBROUTINE 
iRETURN HERE 

iSUBROUTINE TO SET THIRD ARG TO SUM OF FIRST TWO ARGS 

SUB: MOVE 
ADD 
MOVEM 
POPJ 

C.3.4 Argument Types 

T,@0(16) 
T,@1(16) 
T,@2(16) 
17, 

Table C-l 

iGET FIRST ARG 
iADD SECOND ARG 
iSET THIRD ARG 
iRETURN TO CALLER 

Argument Types and Type Codes 

Type Code Description 

o 
1 
2 
3 
4 
5 
6 
7 

10 
11 
12 
13 
14 
15 
16 
17 

FORTRAN Use COBOL Use 

Unspecified 
FORTRAN Logical 
Integer 
Reserved 
Real 
Reserved 
Octal 
Label 
Double real 
Not applicable 
Double Octal 
Reserved 
Complex 
Not applicable 
Reserved 
ASCIZ string 

Unspecified 
Not applicable 
I-word COMP 
Reserved 
COMP-l 
Reserved 
Reserved 
Procedure address 
Not applicable 
2-word COMP 
Reserved 
Reserved 
Not applicable 
Byte string descriptor 
Reserved 
Not applicable 

Literal arguments are permitted, but they must reside in a writable 
segment. This is because the FORTRAN-20 compiler makes a local of all 
non-array elements and copies all formals back to the caller's 
arguments. All unused type codes are reserved for future DIGITAL 
development. 

C-12 



WRITING USER PROG~~MS 

C.3.5 Description of Arguments 

The types of the arguments that may be passed are: 

1. Type 0 - Unspecified 

The calling program has not specified the type. The called 
subprograms should assume that the argument is of the correct 
type if it is checking types. If several types are possible, 
the called subprogram should assume a default as part of its 
specification. If none of the above conditions is true, the 
called subprogram should handle the argument as an integer 
(type 2). 

2. Type 1 - FORTRAN logical 

A 36-bit binary value containing 0 or positive to specify 
.FALSE. and negative to specify .TRUE .. 

3. Type 2 - Integer and l-word-COMP 

A 36-bit 2's complement signed binary integer. 

4. Type 4 - Real and COMP-l 

A 36-bit DECsystem-20 format floating-point number. 

sign bit 0 
bits 1-8 
bits 9-35 

excess 128 exponent 
mantissa 

5. Type 6 - Octal 

A 36-bit unsigned binary value. 

6. Type 7 - Label and procedure address 

A 23-bit memory address. 

bits 0-12 
bit 13 
bits 14-17 
bits 18-35 

always 0 
indirect flag 
o 
the address 

7. Type 10 - Double precision real 

8. Type 11 - 2-word COMP 

A 2-word (72-bit) 2's complement signed binary integer. 

word 1, bit 0 
word 1, bits 1-35 
word 2, bit 0 
word 2, bits 1-35 

9. Type 12 - Double octal 

sign 
high order 
same as word 1, bit 0 
low order 

A 72-bit unsigned binary value. 

C-13 



WRITING USER PROGRAMS 

10. Type 14 - Complex 

A complex number represented as an ordered pair of 36-bit 
floating-point numbers. The first represents the real part, 
and the second represents the imaginary part. 

11. Type 15 - Byte String Descriptor 

The format of the byte string descriptor is: 

word 1: ILDB-type pointer, i.e., aimed at the byte 
preceding the first byte of the string 

word 2: EXP byte count 

The byte descriptor may not be modified by the called 
program. The byte string itself must consist of a string of 
contiguous bytes of uniform size. The byte size may be any 
number of bits from 1 to 36. The byte count must be large 
enough to encompass 256K words of storage, i.e., 24 bits for 
I-bit bytes. (See COBOL Program Reference Manual.) 

12. Type 17 - ASCIZ string 

A string of contiguous 7-bit ASCII bytes left justified on 
the word boundary of the first word and terminated by a null 
byte in the last word. The length of the string may be from 
1 to 256K words. 

C.3.6 Converting Existing MACRO Libraries for use with FORTRAN-20 

The following simple example illustrates the FORTRAN-20 calling 
sequence. 

C-14 



MAIN" EX1 FORTRAN V,5(515) IKt/~ 1 n .. f~AR-7 7 16:02 PAGE: 1 

00001 C AN EXAMPLE OF A CALL TO A SUBROUTINE WITH A VARIETY'OF ARGUMENTS 
00002 
00003 DOUBLE PRECISION DP 
00004 DIMENSION B(10) 
00005 
00006 C THE ARGUMENTS ARE, 
00007 C 1 , A REAL VARIABIJE 
00008 C 2, AN ARRAY NANE 
00009 C 3, AN APRAY ~LEMF.NT 

00010 C 4. AN INTEGER VARIABLE 
00011. C 5, A DOUBLE PRECISION VARIABLE 
00012 C 6, AN OCTAL CONSTANT ~ 
00013 C 7, A LITERAL ~ 

H 
00014 8 

00015 CALL SUS1(A,B,B(I),K,DP,"777,'ABC') H 
~ 

00016 Gl 

00017 END c 
(") tf) 

I t=l 
I-' ~ 
U1 SUBPROGRAMS CALLED to 

~ 
0 

SUB1 Gl 

S; 
~ 
(fl 

SCALARS AND ARRAYS "*" NO EXPLICIT DEFINITION • "%" NOT REFERENCED 

DP 1 *K 3 S 4 *A 16 *1 17 



(') 
I 

...... 
0\ 

LINE Loe LABEL GENERATED CODE 

0 JFCIJ 0,0 
1 JSP 16,RESET. 
2 0,0 

15 3 MOVE: 2,1 
4 MOVEl 2,S-1(2) 
5 MOVEM 2,,00000 
6 MOVEI 16,2M 
7 PUSHJ 17,SUBl 

17 10 MOVEI 1.6,lM 
11 PLJSHJ 17,EXIT. 

ARGUMENT BLOCKS, 

MAIN, 

MAIN. 

12 
13 
14 
15 
16 
17 
20 
21 
22 

EXl 

1M: 

2M; 

0,,0 
0,,0 
777771,,0 
200"A 
200"S 
220",QOOOO 
100"K 
400"DP 
)00,,[000000000777] 

FORTRAN V.5(515) IKI/M 16-MAR-77 

23 740,,[406050320100) 
[ NO ERRORS DETECTED 1 

16102 PAGE 1-1 

~ 
~ 
H 
~ 
H 
Z 
Cj) 

o 
en 
trl 
~ 

"tI 
~ o 
Cj) 

~ 
:::c 
en 



(') 
I 

I-' 

" 

MAIN. 'EX1 

00001 
00002 
00003 
00004 
00005 
00006 C 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 
00023 
00024 
00025 

fOHTRAN V.5(515) IKI/M 16~MAR~77 16:02 PAGE 1 

SUBROUTINE BUB1(REAL1,ARYNAM,ARYELM,INT1,DBLPRC,OCT,LIT) 
DOUBLE PRECISION DBLPRC 
DIMENSION ARYNAM(lO) 

AN EXAMPLE Of THE USE AND MODIFICATION OF FORMAL PARAMETERS 

Xl=REALl 
X2=ARYNAM(J) 
X3=ARY~;LM 

11=INTl 
X4=DBLPRC 
12::0CT 
13=LIT 

REALt=Xl 
APYNAM(J)=X2 
ARYELM=X3 
INT1=11 
OBLPRC=CMPLX(X4,0.) 
OCT="55 
LIT::'Z¥XW' 

RETU~N 
END 

SUBPROG~AMS CALLED 

CMPLX. 

SCALARS AND ARRAYS [ "*" NO EXPLICIT DEFINITION • "%" NOT REFERENCED 

*LIT 1 *OCT 2 *X4 3 *ARYELM 4 .X3 5 
DBLPRC 6 *13 10 *REAL! 11 *J 12 *X2 13 

*INTl 14 *12 15 *X1 16 *11 17 ARYNAt<\ 20 

:e: 
~t:I 
.-i 
.-3 
.-i 
t~ 
G'l 

C 
tJ) 
tr;] 
~t:I 

ttl 
~a o 
G'l 
.t:I 
~ :1:: 
tJ) 



LINE LOC LABEL GENERATED CODE 

0 636542,,210000 

SUB1: 
2 0 MOVEM lb,.AOOlf> 

1 r-iOVE O,@O(16) 
2 ,',mVEt1 O,REALl 
3 r.10Vf-~I 1,@1(16) 
4 MOVr:r" 1,ARY.NAM 
5 MOVI': 1,@2(16) 
6 i.,OVEM 1 , ARYEI.JH 
7 .MOVE 2,@3(16) 
10 MOVEM 2,INTl 
11 DHOVE 4,@4(t6) ~ 
12 DMOVEM 4,OBLPRC lX' 

H 
8 
H 
Z 
Ci) 

SUB1 . EX1 FORTRAN V,5(515) IKJ/M lbI"HAR",,77 16:02 PAGE bill c 
() en 
I 

tzl 

I-' ~ 
ex> 13 '>10VE 3,@5(16) "'0 

14 MOVEM 3,oer lX' 
0 

15 MOVE 6,@6(16) Ci) 

16 MOVEM 6,LIT ~ 
8 17 3MI 

3: 
en 

MOVEM O,Xl 
9 20 MOVE 7, \..1 

21 ADO 7, ARYNAt,1 
22 t·lOVE 7,777777(7) 
23 MOVEM 7,X2 

10 24 MOVEM I,X] 
11 25 ~~OVEM 2,11 
12 26 PUSHJ 17,SNG.4 

27 MOVEM 4,X4 
13 30 FIX 3,3 

31 MOVEN 3,12 
14 32 MOVr~M 6,13 
16 33 ~~nVEM 0, lU:ALl 



/ 

17 34 r·mVE 3, ,1 
35 ADD 3,ARYNAH 
36 ~\oVEM 7,777777(3.1 

18 37 MOVEM 1,ARYELM 
19 40 MOVEM 2,INTl 
20 41 MOVEr 5,0 

42 f.l0VEI 5,0 
43 D~1OVEM 4,DBLPRC 

21 44 r10VEI 2,55 
45 MOVEM 2,OC'l' 

22 46 MOVE 2,[552633053500] 
47 MOVEM 2,LIT 

25 50 2M; 
MOVE 16,.AOO16 

51 HOVE O,REALl ~ 
52 MOVEM O,@O(16) ~ 

H 
53 MOVE O,ARYt:LM 8 
54 MOVEM O,ca2(16) H z 
55 MOVE O,INT! Cil 

56 MOVEM 0,(a3(16) c::: 
() 57 or-.10VE O,DRLPRC til 

tIj I 
60 DMOVEN O,@4(16) ~ ...., 

\0 61 MOVE a,OCT I'd 

62 MOVEM O,@5(16) ~ 
63 MOVE O,LIT Cil 

64 ~1OVEM O,@6(16) ~ 65 POPJ 17,0 

ARGUMENT BLOCKS. 

66 0,,0 
67 H1= 0,,0 

SUBl [ NO ERRORS DETECTED 



WRITING USER PROGRAMS 

To convert existing MACRO programs conveniently so that they will 
still load and execute correctly when called from FORTRAN-20: 

1. Transfer the initial entry sequence for a routine to 

entry: CAIA 
PUSH l7,CEXIT.## 

2. Change all returns to POPJ 17,0 

These are the functions performed by the HELLO and GOODBY macros. 
These macros (available in the file FORPRM.MAC, part of the FOROTS 
release) were successfully used to convert the library routines to run 
with FORTRAN-20. 

In addition, since the FORTRAN-20 compiler uses the indirect bits on 
argument lists (note that this permits shared, pure code argument 
lists), it is essential for code that accesses parameters to take this 
into account. Specifically, sequences that obtained the values of 
parameters through use of operations such as 

HRRZ R,1(16) 

to pick up the address of the second argument should be changed to 

MOVEI R,@1(l6) 

The latter operation will work when interfacing with FORTRAN-20. 

Refer to the previous example, which illustrates the code generated by 
the FORTRAN-20 compiler, for specific details of how each argument IS 
accessed. Note that in the case of the formal array, it is the 
address of the array that is accessed. 

C.3.7 Interaction with COBOL 

The FORTRAN programmer may call COBOL programs as subprograms, and, 
conversely, the COBOL programmers may call FORTRAN-20 programs as 
subprograms. 

In either of the foregoing cases, I/O operation must not be performed 
in the called subprogram. 

C-20 



WRITING USER PROGRAHS 

C.3.7.l Calling FORTRAN-20 Subprograms from COBOL Programs COBOL 
programmers may write subprograms in FORTRAN to use the conveniences 
and facilities provided by this language. The COBOL verb ENTER is 
used to call FORTRAN-20 subroutines. The form of ENTER is as follows: 

ENTER FORTRAN program name rUSING {if~~;!iierl } [ {if~~;!i~er2}J ] L procedure namel procedure2 

The USING clause of the foregoing forms names the data within the 
COBOL program that is to be passed to the called FORTRAN subprogram. 
The passed data must be in a form acceptable to FORTRAN-20. 

The calling sequence used by COBOL in calling a FORTRAN subprogram is: 

MOVEI 16, address of first entry in argument list 
PUSHJ 17, subprogram address 

If the USING clause appears in the ENTER statement, the compiler 
creates an argument list that contains an entry for each identifier or 
literal in the order of appearance in the USING clause. It is 
preceded by a word containing, in its left half, the negative number 
of the number of entries in the list. If no USING clause is present, 
the argument list contains an empty word, and the preceding word is 
set to O. Each entry in the list is one 36-bit word at the form: 

0-8 9-12 13-35 

0 type address 

Bits 0-8 are always O. 

Bits 9-12 contain a type code that indicates the USAGE of the 
argument. 

Bits 13-35 contain the address of the argument of the first 
word of the argument; the address can be indexed or indirect. 

Following is a description of the types, their codes, how the codes 
appear in the argument list, and the locations specified by the 
addresses. 

1. For I-word COMPUTATIONAL items 

CODE: 2 
IN ARGUMENT LIST: XWD 100, address 
ADDRESS: that of the argument itself 

C-21 



WRITING USER PROGRAMS 

2. For 2-word COMPUTATIONAL items 

CODE: 
IN ARGUMENT LIST: 
ADDRESS: 

11 
XWD 440, address 
that of the high-order word of 
argument 

the 

3. For COMPUTATIONAL-l items 

CODE: 4 
IN ARGUMENT LIST: XWD 200, address 
ADDRESS: that of the argument itself 

4. For procedure names (which cannot be used for calls to COBOL 
subprograms) 

CODE: 7 
IN ARGUMENT LIST: XWD 340, address 
ADDRESS: that of the procedure 

The return from a subprogram (via POPJ 17,) is to the statement after 
the call. 

C.3.7.2 Calling COBOL Subroutines from FORTRAN-20 Programs - To call 
COBOL subroutines use the standard subroutine calling mechanism: 

CALL COBOLS (args ... ) 
X=COBOLS (args ... ) 

subroutine call 
function call 

You must have compiled the COBOL subroutine using the COBOL compiler 
described in the DECsystem-20 COBOL Programmer's Reference Manual. 

C.3.8 LINK Overlay Facilities 

LINK provides several routines that are accessible directly from a 
FORTRAN-20 program. These routines are presented here briefly, 
together with the FORTRAN-20 specification of their parameters. In 
general, LINK performs these functions automatically. These routines 
are available only for your convenience. Full details of the use of 
the overlay facilities can be found in the LINK Reference Manual. 

C.3.8.1 Conventions - The following terms are used to describe. the 
parameters to LINK overlay routines. 

File spec 

Name 

List of link names 

The routines available are: 

INIOVL 

GETOVL 

A literal constant consisting of device: 
filename. ext [directory] 
A LINK name or number that is a literal 
constant or variable. 
A sequence of name items separated by 
commas. 

(File spec) Used to specify the overlay 
file to be found if the load time 
specification is to be overridden. 

(List of link names) Used to change the 
overlay structure in memory. 

C-22 



RUNOVL 

REMOVL 

LOGOVL 

WRITING USER PROGRAi-iS 

(Name) Loads the specified 
transfers to that LINK. 

LINK and 

(List of link names) Removes the specified 
LINKs from memory. 

(File spec) Used to specify where the log 
file is to be written. If no arguments are 
given, the log file is closed. 

For a full description of these routines, refer to the LINK Reference 
Manual. 

C-23 





APPENDIX D 

FOROTS 

This appendix describes the facilities that FOROTS provides for the 
FORTRAN user. FOROTS implements all standard FORTRAN I/O operations 
as set forth in the IIAmerican National Standard FORTRAN, ANSI 
X3.9-l966. 11 In addition it provides the user with capabilities and 
programming features beyond those defined in the ANSI standard. 

The primary function of FOROTS is to act as a direct interface between 
user object programs and the DECsystem-20 monitor during input and 
output operations. Other capabilities include: 

1. Job initialization 

2. Channel and memory management 

3. Error handling and reporting 

4. File management 

5. Formatting of data 

6. Mathematical library 

7. User library (non-mathematical) 

8. Specialized applications packages 

9. Overlay facilities 

D.l HARDWARE AND SOFTWARE REQUIREMENTS 

FOROTS may interface with all DECsystem-20 peripheral devices. In 
addition to monitor or user program requirements, a minimum of 14 
pages of user memory is needed to run FOROTS. 

D-1 



FOROTS 

The software required with FOROTS is the TOPS-20 monitor, version 1. 
Other software items that can be associated with FOROTS include: 

1. The MACRO assembler 

2. The LINK loader 

3. The FORTRAN-20 compiler 

D.2 FEATURES OF FOROTS 

The following list briefly describes many specific features; more 
detailed information concerning the implementation of these features 
is given later in this appendix. 

1. Your program may run in either batch or timesharing mode 
without requiring a program change. All differences between 
batch mode and timesharing mode operations are resolved by 
FOROTS. 

2. Your programs may access both directory and non-directory 
devices in the same manner. 

3. FOROTS helps provide complete data file compatibility between 
all system devices. 

4. FOROTS does not require line-blocking (a requirement that 
each output buffer must contain only an integral number of 
lines) . 

5. Up to 15 data files may 
number or all of the 
randomly. 

be accessed simultaneously. Any 
open data files may be accessed 

6. FOROTS treats devices located at remote stations similarly to 
local devices. 

7. Programs written for magnetic tape operations will run 
correctly on disk under FOROTS supervision. FOROTS simulates 
the commands needed for magnetic tape operations. 

8. You may change or specify object program device and file 
specifications via a FOROTS interactive dialogue mode. 

9. Non-FORTRAN binary data files may be read in image mode by 
FOROTS. 

10. FOROTS provides interactive program/operating system error 
processing routines. These routines permit you to route the 
execution of the program to specific error processing 
routines whenever designated types of errors are detected. 

11. An error traceback facility for fatal errors provides a 
history of all subprogram calls made back to the main program 
at the address of the point where the error occurred. 

D-2 



FOROTS 

12. FOROTS provides a trap handling system for arithmetic 
functions, including default values and error reports. 

13. You may mix ASCII and binary records in the same file, and 
both may be accessed in either sequential or random access 
mode. 

14. FOROTS permits your program to switch from READ to WRITE on 
the same I/O device without loss of data or buffering. 

15. Although primarily designed for use with the FORTRAN-20 
compiler, you may also use FOROTS as an independent I/O 
system, as an I/O system for MACRO object programs, and for 
FORTRAN-20 object programs. 

D.3 ERROR PROCESSING 

Whenever a run-time error is detected, the FOROTS error processing 
system takes control of program execution. This system determines the 
class of the error and either outputs an appropriate message at the 
controlling terminal or branches the program to a predesignated 
processing routine. 

D.4 INPUT/OUTPUT FACILITIES 

FOROTS uses monitor-buffered I/O during all modes of access except 
DUMP mode. Display devices are supported in dump mode; formatted 
text is handled in ASCII line mode; unformatted files are accessed as 
FORTRAN binary files. (Refer to the Monitor Calls User's Guide.) 

The following paragraphs describe I/O data channel and access modes. 

D.4.1 Input/Output Channels Used Internally by FOROTS 

Fifteen software channels (1 through 15) are available in I/O 
operations. Software channel 0 is reserved for the following system 
functions: 

1. The printing of error messages, and 

2. The loading and initialization of FOROTS 
operations) 

(GETSEG UUO 

Software 
transfer 
table is 
channel 
assigned 
FOROTS. 

channels 1 through 15 are available for user program data 
operations. When a request is made for a data channel, a 

scanned until a free channel is found. The first free 
is assigned to the requesting program; on completion of the 
transfer, control of the software channel is returned to 

D-3 



FOROTS 

D.4.2 File Access Modes 

Data may be transferred between processor storage and peripheral 
devices in two major modes - sequential and random. 

D.4.2.1 Sequential Transfer Mode In sequential data transfer 
operations, the records involved are transferred in the same order as 
they appear in the source file. Each I/O statement executed in this 
mode transfers the record immediately following the last record 
transferred from the accessed source file. A special version of the 
sequential mode (referred to as APPEND) is available for output 
(write) operations. The special APPEND mode permits you to write a 
record immediately after the last logical record of the accessed file. 
During the APPEND operation, the records already in the accessed file 
remain unchanged; the only function performed is the appending of the 
transferred records to the end of the file. 

You must specify transfer modes (other than SEQINOUT) by setting the 
ACCESS option of a FORTRAN-20 OPEN statement to one of several 
possible arguments. For the sequential mode, the arguments are 

ACCESS='SEQIN' (sequential read-only mode) 
ACCESS='SEQOUT ' (sequential write-only mode) 
ACCESS='SEQINOUT' (sequential read followed by a sequential 

write) 
ACCESS='APPEND' (sequential Append mode) 

D.4.2.2 Random Access Mode - This transfer mode permits records to be 
accessed and transferred from a source file in any desired order. 
Random access transfers must be made between processor memory and a 
device (disk) that permits random addressing operations to files that 
have been set up for random access. Files for random access must 
contain a specified number of identically sized records that may be 
individually accessed by a record number. 

You may accomplish random access transfers in either a read/write mode 
or a special read-only mode. You must specify random transfer modes 
by setting the ACCESS option of an OPEN statement to one of several 
possible arguments. 

ACCESS='RANDOM' (random read/write mode) 
ACCESS='RANDIN' (random special read-only mode) 

D.S ACCEPTABLE TYPES OF DATA FILES AND THEIR FORMATS 

The following paragraphs describe the types of data files that are 
acceptable to FOROTS. 

D.S.l ASCII Data Files 

Each record within an ASCII data file consists of a set of contiguous 
7-bit characters. A vertical paper-motion character, such as, a Form 
Feed, a vertical Tab, or a Line Feed, terminates each set. All ASCII 
records start on a word boundary; the last word in a record is padded 
with nulls, if necessary, to ensure that the record also ends on a 
word boundary. Logical records may be split across physical blocks. 
There is no implied maximum length for logical records. 

D-4 



FOROTS 

NOTE 

On sequential input, FOROTS does not 
require conformation to word boundaries; 
it reads what it sees. Therefore, any 
file that is written by FOROTS will 
conform to the foregoing format 
requirements. 

D.S.2 FORTRAN Binary Data Files 

Each logical record in a FORTRAN binary data file contains data that 
the executing program may reference with either a READ or WRITE 
statement. A logical record is preceded by a control word and may 
have one or more control words embedded within it. In FORTRAN binary 
data files, there is no relationship between logical records and 
physical device block sizes. There is no implied maximum length for 
logical records. 

D.S.2.1 Format of Binary Files - A FOROTS binary file may contain 
three forms of Logical Segment Control Words (LSCW). These LSCWs give 
FOROTS the ability to distinguish ASCII files from binary files. 

START 

CONTINUE 

END 

LSCW 
001+ the number of words in the segment (exclusive of 

any "ENDII LSCWs) 
002 indicates that the segment of a disk block 

boundary continues 
003+ number of words in the preceding segment including 

LSCWs. 

If the access you specify for a file (through the OPEN statement 
ACCESS parameter) is 'SEQIN', 'SEQOUT', or 'SEQINOUT', all three 
LSCWs may appear in a record. If the access you specify is 'RANDIN', 
or 'RANDOM', all records are of the same length, and there are no 
CONTINUE LSCWs. 

The following examples illustrate the LSCW. The random access binary 
file contains only 001 and 003 LSCWs. 

C ~OOK AT A BINARY rl~E AND SEE THE ~OGICAL SEGMENT 
C CONTROL WOROS. 

OP~N(UNIT=1,ACCESS='RANDOM',MODt~i81NA~V'. 
1 RECORD~l~~) 

I~5 

WRIT~(l'~) (I, J=l,l~~) 

J=' 
WRtTE(1'2) (J,K=1,10~) 
END 

D-5 



FOROTS 

000000 rlI2I1000 21 00145 -Number of words 210~064 kH"H~~0 ~0"005 
007.001 ~"~0021 2100""5 in record counting 0'H~065 0~HHHJ0 21"0005 
00001212 02100210 0"0"05 END LSCW or the 21O')066 121000021 a"21~05 
210k-.;003 21021121"0 21"'00215 number of words 2121f!067 ~021000 ~H"0~05 
002-004 ~0210Z21 "~00"5 

following this 
0e;~07" "0,,1212121 02'0005 word to the 

002005 00~0021 21~21~05 END LSCW. 0lrH'12I7l 00"'''''21 21~21005 

"000"6 ~0210"21 0"'21"05 00\~072 0000rl10 eHHHH"5 
000007 202121021 0002105 "'1210073 0"0"021 211210"05 
002~1" ~HHH?J00 ~""'''10 5 

00001~ """""0 12100"215 
00~1011 ~"0"'021 0"'21005 0"~"75 "000210 0210005 
000012 r2l000021 000"05 21~hH~ 7 6 0"H:HH~0 02'0"05 
00Z013 

'" 0 ~"'" 0 """"05 
01210077 0"21 07H!J 2Iel0"05 

00 ~.H2l14 0000"0 01210"05 00011210 ~00121~0 200"1215 
000~15 "021-02121 ""0"05 00~11211 ~0121021" 0""005 
0"~;016 1210002121 0"0"05 0121 ;:1102 00210~21 ael0"'''5 
00Jel17 0000"21 ~CJl2I"05 "0~1r213 12100""0 ~0""05 
00ll?l20 "021000 0~"'005 ""01214 ';:'0210"0 0"121"1215 
0~h~021 0021121"" ~"""05 007105 "0001210 ~"02105 
00;~022 "000"" 000005 00?1216 r2J0~"0" 0"001215 
~~h;023 "002100 0"0"'1215 ""~~107 "0210"0 0e0005 
2lrch~024 0~H.~0~0 ~0"005 "~H~110 ""HI""" ~""'r2105 
",,(3025 ~00""0 ""0"1215 ""00111 2l"0~00 0"0""5 
00 ;'1026 000"0" ~00005 ""00112 "rcHJ" 2l" 00""05 
2l0(:H~27 00~00" 21"0"05 00['113 "121"000 0021"215 
00~~030 012100"0 0"0"05 "0'~ 114 o rcHc~ 0 0 21 21"'0"05 
"0~J031 "0"0t1l0 0r2l0"05 00<1115 "1210"00 121 0 0005 
2l01Z'032 "000"" 000"1215 000116 1i10,,0"0 12100"05 
"0r.033 000"'~H~ ""0"05 00L~117 "00000 0"0"05 
"01.034 0000021 0"0"05 l2Iek3120 ""0012121 ~r2J0005 
002035 012100"" 0"001215 000121 00000121 0"'001215 
00(::036 0021000 0"'0"05 "0~122 00121000 0"0005 
"0~037 "0"000 0"012105 000123 0121"00" 00""11,,5 
""H,040 00~02l0 ""0"05 000124 "0"0""0 121"0"1215 
"02041 0121"""'0 0"0"05 00C125 """""''' 0"0121215 
000042 00"0'-"0 00 00"5 r210~126 ""BeeQJ 21"~~05 
000043 000"03 0"0"05 210"127 21"10e10 021QJ"05 
"00044 01210003 0"021215 "0~13" ""00000 2100"215 
210'~045 02102100 121~0035 "0"131 "210"021 3021"21' 
~0'~046 "'0~~00 210"01215 21e~lJ2 1211210021121 21"2101215 
"0~12147 0121~H'2I2I 0"0'1'05 21121121133 2100121el0 21£1"""'5 
3"~~2I50 000121~121 1210001215 "0121134 "3121~0121 0021"1215 
210012153, "0"'''00 0021"215 00~135 2121!2112100 0021"05 
2100052 "0"9'rlI2I ""'001215 000136 02100321 1210121"121' 
1210:3053 0012103121 000005 21"~131 1212100"21 o "'HH!I 5 
210.~054 ~2100~21 ~"'I2I01215 012101421 rc'J000 121" 0""~05 
0121e12l55 ~21000" 0~00"5 01210141 [2!2I0000 0021"05 
000056 ~I2I0"~3 0000215 00~142 0121"0"121 i2l"'121~"5 
210012157 :2J000~3 0~I,H~12I5 2101.143 012100021 ~Q!0005 

00~060 02112100" rc'J00el05 210·1)144 0~0"00 00121"05 
00212161 ~0002l21 000005 00r}145 "03000 121"0146 -END LSCW 

"0;i~062 00~rc'J~0 002101215 00 ;'~146 02110~121 0021145 Containing the 

210?-063 ~HH"~~3 002101215 r210 .. ~147 "000~"" 000"1217 number of words 

00 (.~ 15121 rc'J00eJt'l2I eJ~21007 
in the record 
including LSCW's. 

D-6 



FOROTS 

'210'~ 151 00((H1~0 ~H'002J7 00J233 0000321 0021007 
00:~152 00t'10210 0"21001 00~234 021000121 121012101217 
00~153 0021"00 21(210~07 00~)235 00210021 000001 
QJ0;~154 o 2"H~ ~0 0121~HHP 00~236 0""~00121 000001 
00/1155 000000 ~0121QJ01 00e237 0000121121 ""121"1217 
"0:~156 012!QJI2!~0 ~00~01 00i~240 2112!02100 2101210121" 
21rzL~157 00QJI2!QJ0 ~fZl0012J7 00iJ241 0"H:10,-,,, 1210121007 
1210216" 12100000 ~e'0012!7 001/,242 0012!00121 0012!001 
'00/161 0000210 00001217 000243 0121000121 0"0001 
0rcH'.162 00121000 ~"'00"7 00 ~~ 244 00~0et0 01210007 
00 '1163 0000"121 ~00007 2100245 0021021121 0"0001 
00J164 0012J0012! 00 0007 00 ~~ 246 00Ql0012! ~0001211 
002'165 ~kH"0012! ~~001211 0,,,;::247 000000 121~12112!2J1 
00·;166 00012!0121 00121007 002.250 00e!~eJl2! 00121007 
00~1167 000000 ~H~I2I001 00J251 21000121121 \I5~0e101 
00~1170 0000~0 ~"121007 00Z252 00000121 1210121~~" 
00"~ 171 2l0~HHH' 0"0007 00~253 001211210121 0210007 
00t~172 012!012100 0~0"'07 00.~ 2 54 ell2J~0~0 00121~flI7 
000173 002'0~12! 00121007 000255 VJI2!0"~0 0~0007 
00(1114 ~00Q!~0 e!00~07 00;'256 0000012! 0~12101217 
00D175 "'''0~~12I ""0007 00?257 "00~00 02)12!007 
001176 2l0~000 0~00"7 00;1260 0210000 12!" ',H~ 0 7 
00.'~177 ~0021~0 000~01 00Z261 2!12I0~0121 0"0007 
00 ;;200 ~0el000 0~0~07 1lJ~ ~') 262 ~12100"0 0"'02107 
eJ~W201 00Q!l2ltJl2! ~00"07 00{1263 0"~0"" 0"0"07 
1210,~ 202 012!0eJ2!0 "l'0007 00/264 210210210 21"0007 
00~~ 203 eJ000al2! ""'0007 00~A 2 65 0000"0 0"121007 
00/2214 2ll2!el000 2"0~01 0eh'.i266 0000~" 0e'0~07 
1?10?205 2100000 ~00eJ01 1?10~· 267 21000210 0~0001 

007206 00k""~eJ ,,00~07 00~27121 2l0"0~0 ,,012! 012! 7 
0~H2217 2!12!~H~0" 000"07 0~H'271 012!~00" 2100001 
00,'210 2100000 2100"1217 00,)212 2!(CH100121 1t1~121007 
00'~1211 o 121 I(HHJ 0 eJ00~"7 002273 "0"210121 ~"'~"~1211 
00 ~~ 212 000000 2100"01 1?10t1214 ~HHH'!"12! ~0121007 
1210~J213 210012l~0 0~0eJ07 2102275 ~00""0 eJ00001 
0r,P214 21012102121 0"'0"1217 eJ0J276 012!02121I2J 00 02107 
00!~215 <H'" 21 121 0 ~H"0"07 2102277 21I2!eJ00121 000012!7 
~ 0 ~,~ 216 i2l~~~~0 0"'0~01 (2)0J30121 i2l12!~0012! 00012107 
00(1217 0000~0 a00001 001.:301 00fZ10eJ0 0~0"'01 
i2l0~2221 i2l0i2l0~0 ;;'021007 rai2l~302 00 ra i2l 0121 000007 
002221 2112121030 ~~00"1 i2lraZ303 0000121121 0~0e!01 
00~222 0"Ql0~21 0~000? 00~3i2l4 ~00~012! 00121007 
00~;223 "0"""0 000210' (2)0;~305 000000 12100""7 
O00224 0121012100 0000"7 0(0312)6 12l0I(H~~H' 00"0,,7 
00;3225 o 121121 12! 1210 0(2)012101 i2l0~307 0~H~0~0 121"0007 
0210226 00"12130 121"001211 00~31I2J i2leJ"0"0 0021'1107 
00~'227 00210121121 ~~012J01 000311 012100021 ,,00 121 12! 1 
0i21~230 00001210 0(2)012)07 000312 2102112100 12100007 
00~231 i2l 0 r,Hl' 1210 000~i217 000313 "121300121 00121146 
00J232 000000 000007 

D-7 



FOROTS 

In the sequential access binary file, the second record crosses the 
l28-word disk boundary and contains a 002 (CONTINUE) LSCW. 

C ~OOK AT A BINARY r!~E AND SEE THE ~O$!CA~ SE~MENT 
C CONTROL WOReS. 

~ fi" "21 0 0 
001}001 
00,~002 
00.3003 
0"V004 
00;J005 
00 ;~006 
0~.~007 
00,~01~ 
00'.~P.!11 
00 .. :012 
~0~013 
0~/014 
00;'.015 
00\1;016 
00'017 
2101,020 
210,~021 
21~H:'022 
fZl0;~fZl23 
I2lfZl.~024 
12l0ll2l25 
00/026 
"0.~ 027 
"0~~ 12130 
021~~031 
00:JfZl32 
000033 
0fZlG034 
021\32135 
021I.H3-36 
00?2137 
00~:~0421 
021;)2141 
12'21;;'042 

OPENCUNIT z1,MODEa I BINARY' ) 

1-' 
WRIT(C1) (I, J=~'l~~) 

J-, 
WRIT((1) (J,K=1,100) 
END 

~010'H~ ~0~145 
0~~"00 ~"0005 
~000~0 (J00005 
00~00~ ~0121"05 
0~"H"~0 21012101215 
~"0tJ~0 0"12101215 
0"~2J'HI 000~05 
00~0~" ,,01212J0S 
00~Ql30 0~'HH~5 
00r.00~ 00121005 
~000~0 00 0005 
000~00 0"'''H~5 
e,"0Ql0~ 1210001215 
002J"~0 00 '''Hl 5 
000~~0 0'-"0005 
00210~21 "~0~215 
~21e;0~0 0"0005 
2l0"'0~121 0002105 
2l2l~0~21 0P102105 
2l2l00(Hl 017'0~05 
2!0~02J0 0~0~05 
2100212'21 ~H'!" eI 05 
0000~21 0021005 
21000~0 ~0121005 
0"00~21 ZI~0"21S 
2102101210 ~H'0"'''5 
2121212100 0~00"5 
0I{H~0021 02'0005 
0000021 0"0005 
0210000 00121305 
21121000121 00210215 
00210"''' ~e!0~215 
v"H'I000 1Zl12!12l005 
~elI2I0W3e1 2100005 
~00000 0"-'0",,5 

D-8 

00~}043 0~2'~00 ~00005 
00k'044 ~000"0 00'''~05 
00(1045 000~210 ~00005 
00.:.~046 00012100 000~"5 
00~H~47 ~'HHH'0 ~00""5 
00i1050 0000eJ0 a"'0~05 
00J051 0~H~ra00 ,,00005 
00J052 0"0121"0 ~00005 
002053 00000121 ~01210~5 
00,~054 0~H'HH'0 ~0012105 
00;~055 000000 000005 
00 .. H2!56 0'HH31210 0~0005 
1210.:~057 0000~H3 000~H35 
00~' 060 ~0~000 r2l~12I005 
00l~61 ~H'0t100 00031215 
021 ~·;2162 0000210 0~00"5 
00:'063 ~"'0021121 ~Z0005 
2121;~2164 0000",,, ~000"5 
210.1065 021~210121 ~0121005 
00~2166 000000 0"'121005 
"'022167 0012!r2!00 2J00005 
0r2!~070 02100P121 1Zl"0005 
021:'071 0002'021 00121005 
00?kl72 021~0~0 12l"'H~"5 
12l0r~~073 "liH' " 0121 0"'~H3215 
12!0~~74 002'000 21°"1210' 12l0r075 r2!02'~30 02121"'" 
210?076 0210"0121 0~12"'05 
0rcH~2177 00e'''021 3"0005 
12l0;:l100 00~012l0 ~~00"5 
210"101 ~000021 ~0"12l2l5 
021;~1"2 012l~000 0012l0et5 
210,}'103 ° 21tH'I2I 21 0"'121005 
a001f(}4 2J0~0"0 a 000e15 
~0Jl215 "r3021~121 ~0e1005 



FOROTS 

001106 01210~~121 21"'121"1215 ~0Z17J 1Zl0~H'0121 2'''1211211217 
00Jl"7 ~12I0~eJl2I ;301211211215 1Zl0;~174 0121 00 el 121 00 ItH' 121 7 
"'0~11121 012100"121 121012101215 0~H'1'5 0121 IZllZl eJ 121 ~"I2I"Ql' "'12I~~111 IZl 121 121121 0 121 121"'1211211215 00Z176 12112101Zlell2l i£I 0 121 "121 7 
"'00112 ~121"k:1121121 121 0 1211Zl!2l5 "0~177 IZl~H~"0121 (30121"1211 
01Zl~11J 0121"121"121 1210121"1215 "'121 ~120121 1Zl12l2~"12I 00121114 ... -Continue LSCW. 

1Zl0~l114 12112101210121 0012101215 "'1Zl~~201 1210012121" 3"'12101217 
00;:115 001211210121 12100"05 1Zl0i21Zl2 "'1211210"121 ~0""12I7 
000116 1Zl01Zl1Zl0121 121012101215 1Zl0e:21ZlJ 1Zl01Zl1Zl1Zl" 00~HHH 
01ZlJ117 121012112100 12101211211215 "'002(214 000~HHI 0"12101217 
1Zl1Zl012121 0001210121 121"'0""5 00,..'121215 "0,,0121" ~1Zl"1Zl1217 
12I1Zl~1121 "0",121"0 000""5 1Zl1Zl0206 ""1211210121 1210121eJI2I7 
1Zl0~122 "0121""121 00001215 I2I'H~ 21217 0"2'0~121 121"'121007 
12I1Zl~123 0121001('JI2I ~0001215 1Zl1Zl;: 210 01211Zl1Zl1Zl121 121012112107 
"'1Zl;.'124 1Zl01Zl1Zl1Z1121 2'012112105 00~211 "",,21"121 121"121"07 
003125 ""1210210 0"'121121"5 1Zl0~212 01211210121121 00"0"7 
00~126 """0"121 1210121""5 00C213 1211210000 1210121"1217 
12100127 

" " QJ 'Hila 121"12101215 002214 elI2I00~" 0~HH'12I7 
00013" 0"~00" """00' 002215 "0Q10~" ~00~"7 
"0~131 00"""" 0"'''00!5 "0~216 ~"2!~00 ""0"2'1 
"00132 "1210""0 0"001215 00Z21' rJl2I"0"0 0"121"'" 
"0~133 "121"""" ~"'00"5 1Zl0~22~ ""rJ0 21 121 "~121"'" 
"00134 ~0121"0" """""5 00~221 ""130~" 0"""0' 
"0~135 "00"1ZI0 0"0"05 0"0222 ""e"~" 021""0' 
00~a36 0"0"00 021""05 00e22:5 

o " '''' 121 " 121"0"01 
"00137 ~""02!" 00 0"05 000224 0""0"0 00""07 
"0~~14" """""" 0~"005 "0e225 01210~0" 0"0""7 
"0r.141 21""0",, """""5 2100226 0""""" 0""007 
00e142 ""121000 121"001215 002227 00"0~" 0~"00? 
"0~143 "0"""0 0"12101215 002!230 01210""0 0"'0"07 
"'0~144 "",,0"0 ~2!"0"5 000231 0000"" 0"121"01 
"'''~~145 el03""" 021121146 002232 "0"121"" 0"00"7 
210[1146 "1211121"" ~ ~ " " 3 2 - Number of 000233 "121"0"" ~""007 
00J147 ~"""00 "'~""'" 

words to 0~h~234 el0e10"0 2100211217 
00~-150 "0,,000 0"'0"1217 next LSCW. 002235 ~0""121" ""0007 
"00151 el0eJ0"0 00~HH:'!7 00~236 2l"HH'~" 00 121"07 
1Zl0~~ 152 "000"0 121"'''''''7 00;3237 "0"""0 0"121"1217 
"02153 "000"0 21~0rJ07 00;)240 el0210021 ,,00~01 
"0'~154 el02'~00 "n0"01 00e241 O000"" "r1121~01 
"0~' 155 IZl~HlJ021121 "~"0~7 000242 ""0"~21 (1301210211 
000156 elf2Jel012J12I ~00007 00~24J "00000 0"0"07 
00?151 ~0000k'1 0~f2J0f2J7 002244 0eJet0021 00 001211 
001160 00000121 00"'12101 00~245 000{2J",,,, "''''''''01 
00~161 0~0~00 ~01210'" f2J0l246 ~H:H"0"" 0"0e107 
00;1162 i2lf2J0~~0 '-"~0~12l7 0~H~247 00210021 002121121' 
00 ~~ 163 i21000~121 ~eJ00"7 00/250 012100"'0 21"'''00' 
"'f2J;~164 21121000121 ~012101217 00e251 J12I0"00 f2J~"~01 
001165 0000021 (10rcHl!{2J7 00~l252 000~00 0"1212101 
1Z102166 021210"'121 ~0"12107 12'0;1253 12112100021 00"001 
"00167 ~00~"12I ~0"'001 00~~254 "1210000 000Ql01 
1Z10~l1'0 1210121000 ,,000~7 1Zl0~255 121121000121 2100"'" 
"~H3171 0121021210 121~"0217 00J256 0000"" 00012107 
00~.l172 000021121 0"0"'1217 00;~257 ~"00"" 0~~0'" 

D-9 



FOROTS 

~0026" """""" "~"eJ07 "0i!27? "01210"" 21"00", 
1Z10~261 ~,,~""" 0~"""7 "0e3"0 0000"" 0"""0' 
"E"~262 000""" """"07 "003"1 2100""0 ~"0"0' 
"0Z263 ~"00~" 0~"""7 "0;;'3""2 "00000 0"0"07 
"~"3264 "~HH'J"" "0"0,,, 0~H~303 "0"1lI1ZI0 "et0"0' 
IlIrtH~265 "0021"" ""'0"0' "00304 ""r2J0"" ,,~""'" 00~~266 r2J ~HHH'I " 0 '" '''' 0 7 000305 """00"" 00 rtH'l 07 
"0.,267 

"""""" 000""7 00J306 "0""00 21"""07 
00:~ 27" 00""00 000"07 00~307 "0"0"" ""0"07 
000271 "1c:I00"" 0""21211 "0~310 0210""" 0~1c:I"07 
00i272 "0"0"" 0~0"07 "00311 00"""" 0""""7 
00;1;273 "000"0 0"'0"0' "00312 "0"0021 0""""7 
12l0~~214 """~"0 000"21' 00i'l313 "0"0210 ,,0"2107 
00Z275 

"""""" 0"0"07 0el314 "Ql3"~" ""0147 
"0~j276 "'00000 0"0"'''7 

Image mode files contain no LSCWs. You cannot backspace this file. 

C ~OOK AT AN IMAGE MODE rI~E AND SEE NO LOGJCA~ SEGMENT 
C CONTROL WORDS. 

"0 k~"" 0 121121~12I01 
00"01212 
0121001213 
00?01214 
0~HH'''5 
0001211216 
00.~1210? 
1210001121 
0121~011 
l2I~hJ12I12 
0121~12113 
00~12I14 
1210~312115 
00:1016 
00012117 
0121002121 
12l0J021 
001022 
e10.?1023 

OPENCUNI Tc 1,MODED'IMAGE') 

Ia5 
WRITE(1) (I, J=l,l21'" 

J='7 
WRITE(1) (J,K=1,1210) 
END 

210""00 000""5 
1211210121121121 0012112105 
"121~00121 1210''12105 
~121"00121 001211211215 
1211211211210121 00121005 
ell2l00 121121 0001211215 
QI~}210 ~H' 0"'01211215 
I21121e'000 0012101215 
121121012100 00 01!ll2l5 
el0000121 ~2!"12l05 
1211211211210121 el2ll2l~12I5 
e!12I000121 12100"1215 
0121000121 ~00005 
01210kl"0 ~001211215 
0121121000 12Ie!~H!l12I5 
0"001211Zl 12101Zl01215 
~000~0 00 0r2J05 
~121"000 1210001215 
e1121121121~0 0121121005 
"0I2HH,,,, 0r;,0~05 

D-IO 

00J024 00001210 fc.1"0121121~ 
12100025 012100~121 ~12l001215 
1210e12l26 12101210121121 00 21005 
0121~12121 0000121" ~O12l005 
1210 Il 121 3121 "0000" 0"1211211215 
00012131 12100121121121 001Zl00S 
12102!12132 ~12It:!l000 021121005 
0121012133 rtHHH~12I0 12112112101215 
1!ll2l~034 "00121"121 ~~001215 
121021035 00001210 001211211215 
00J036 1210121121121121 00 01211215 
00012131 01Zl00~0 0"0"'1215 
11'001214121 01211211210121 0001211215 
121 0012141 001210~0 ~00"05 
000042 00,,1212'121 o "'1Zl 121 1215 
00;312143 0012leJI2I0 0"'012105 
00""044 00021121121 01Z1001Zl5 
00~12145 01Zl1210121" 00001215 
00~046 "l2IkHHHJ ~0001215 
000"41 0002!~0 el2!1Zl005 



FOROTS 

~~0"5~ ~~~0~~ """'0~9 ~00135 0~HI~00 0"e~05 
~00"51 k"iH'l 'H~" Qlk'J"'''05 ~00136 ~"HH'I00 ~"~Hl05 
~~0052 k""H~ ~'" ~0"00~ 00e137 ~00~00 000005 
00~"53 ~~02100 0r2l0QJ05 00~14" ~"~"000 00"~05 
0"H'!054 0~0000 .,00005 00~141 ~0012100 0"'0~"'5 
00;'055 ~0210QJ0 21 002105 12100142 0~"1211210 21i21ICHH;'15 
210J056 0001210121 0001211215 1210ta43 121002100 ~00"H!l5 
12100057 000121~0 ~00"0~ 0r,h~144 00000a 000007 
~0~060 ~0"0~121 eI r2I 0121 05 I2I~H~145 1Zl00000 ,,0"~"7 
1210?061 000000 000005 0~.a46 ~0000'" 211210001 
0~H~062 000"~121 0e1riHH~5 210{,147 1Zl!,H~"00 Ql0012107 
00~063 01210"00 ~0000~ 00~150 0210"1210 0002107 
~0~~064 2'00e'~0 ~00"05 1210,1;151 ~0"01210 0~01210' 
00\~065 00001210 JeJ00~5 2100152 002101210 0~012107 
00.1066 0"~~~" .J~"~05 00:a53 0021121"0 21"'0~07 
1210~·067 0'H'''~0 ~"~0005 "'H:154 00121f2Jel0 ~HHHl07 
1210~07" 0riHHHljl2l ~~0005 00~1155 ~1210"1210 00012107 
121 02071 "0~"'~0 0"'00215 12102156 00121"00 ~eJ"12I07 
121 0 ;~072 012100~0 J"0005 0~H'.157 0~00210 el00007 
"0:'2173 ~""'0~12I "~12I~0~ 00k')16121 ~12I0~~21 0012101217 
00 ,;~" 7 4 0fZl~~~0 '" el 0 v,,~ 5 00\?161 "'''~000 ~~00~1 
00~075 ~000"0 ~Q!0~12I5 008162 ~"~0k"121 ""'0007 
1210~0'6 00e'1fZl00 0011:H'l12l5 00~16J 000"~" 00121007 
00~077 0000e10 ,,00(;'l05 0~W164 0~0Q11210 0~012107 

l2Ie<110" et12l00~121 0~0~12I5 el0J165 ~12I0~~0 0et0007 
00()101 0~H'I00121 ~~~01215 12102166 012121021121 0e1121007 
1210?lel2 002101210 01210005 1210 ~~ 16 7 000000 000007 
"0011213 0~Hl000 000005 1210 ~~ 17" 0012100~ 00121007 
003104 ~1,Hl!00~ 3eJ 012105 1210;·~171 '" 0 2J 0 ~H?J 000~07 

00~~105 el00000 210012105 00.~172 001210"'0 ~""0007 

00?11216 "''' ~H'"'' 0~"'0fZl5 1210l17J Ql~H~000 0012112107 
000107 ~1,H~12I00 000121~5 1210~174 021 0r,H~"~ 000"1217 
1210ell'" 02100121121 eHi'l0 0 1215 00~175 000~~0 0"'001217 
01210111 000000 ~eJ001215 00(~176 0000~H?J ~Ql0eJ"'7 

002112 ~00"00 0 e1 00215 2100177 ~~0000 00012107 
"01113 0~HH'12I121 01211211211215 001~2~" 021021210 21121001217 
1210~114 00000121 21"12112105 12100201 0021121e10 00121007 
0121~115 ~02112100 0~001215 00~202 0021000 Qj02Jk'l07 
"0v~116 02Jel002J ~0"12I2J5 1210:'1203 el2J00~0 121210"07 
00~11' 02J0"12I0 2J001212J5 00~2Q14 012!00~12I (21121012107 
00~122J 1212J12I'''~0 000121"9 0(21('.205 2I0~i2I~0 ""'12100' 
0~H'121 0"121121121121 3"'''005 00;)206 0"'~12102J ~"2J007 
01210122 "0012100 ~0"0"5 k"h~21217 00e1i21"0 00121e!07 
000123 1212J0121~0 0"'01211215 0121"~21121 0000~'" 0121001211 
000124 ~012121"'0 121"''''005 00~211 12I"'0121~0 121"'012107 
"'12I{l12, 21 Q""~ I2IPJ 012101211219 1210\-1212 02J 121121 121 0 1ZI"'''l'l07 
00~126 ""1210121121 121 e 0121 121 5 12100213 211210000 0Q\l2Iet07 
00~127 121""""", ~0"0"9 00~214 ~01211211212J (21001211211 
0"~132J 0"1211211210 0~2J2I1215 01210215 0012121"0 0~"et07 
1210e131 012112101210 0"'~H"05 1211210216 ~ 2J 121 ~H"'J 012112112112!1 
0121~132 12l121I212JPJ0 121012112105 0"~217 12112I~l2Iell2I 20"007 
1210fl13J 121012101210 0121012105 121121~22121 ~0121000 elet0"'217 
12100134 0"12I~12I121 121~"005 00iJ221 ""~12I1210121 ~21012107 

D-ll 



FOROTS 

1lJ"~222 """""~ 0""~~1 "'02255 0~""00 000007 
0"~223 0~"~0" 0""0", 002256 ~0000~ 00""'0' 
~00224 """"''''' "",,,,,,,,, "'02257 2!kHH' 210 ""'021!2J'1 
0"~225 """""" ""'''''''' "0~26" :2'!2J~0"!2J 0"""'" "eJ226 """""" "'0""'" "'01('261 0",,0Z10 ,,00"'" 
"0~22' riHH.H~"" 0"'''''''' 00'~262 0"0~"~ "0"",,., 00023" 0~"",,,,, ""0"07 "0~~26J 0!2JeI""" 0"0007 
""H~231 "0"""" Z"""07 000264 ~""""0 01l1 """1 "0~232 1210"""" 000"07 "0~~265 "'kHI""0 "0"""" "0~233 "~00~" r210iH'", 0010266 "'0"0210 00 0"07 
""H~234 0~"""0 0~""07 "0?26, ""21021~ ,,00~0T 
"0Ql235 0"0""0 0"""'" 000270 "0000" 0P.!00217 
"0~236 0~"000 "'-'''''''7 "0~~2'1 "0"0"" 0"'''007 
"0~~237 00(('100" 0"0"0' "0:?272 ""0f21~"~ 0"'''''0' 
"0~240 00"0e'0 0"""0' "0~27J 0"""~Hl' "'''''''07 
"0l241 "00000 ""'~0"7 "0r1274 "000"0 0"'0"07 
"0·~ 242 21000"0 "~~00' 00~'275 000000 ~eI"0~7 
000243 "000~12J ~00~12I7 I2IlZlil276 I2IkHH:'l2l0 0"""01 
12101'244 0~Q!00" ~002l07 12J0'~217 01210"0121 12I~01210' 
12J0~245 211210000 ~01210'" 000300 "121000121 """'0'" 
"1210246 00k'0~121 c,~21e!1Zl7 0020301 0121"0~", a0121l'11217 
00,3247 00(2100121 Z0121eJ07 001~ 30 2 etl2l1210"0 0'='''1210'' 
00e25121 000121~0 121 0 01210' eJ0~~3eJJ 0"0"00 1210"121121' 
I2IrcH'251 ~00000 00~0"7 0~h~304 21001210121 1210121001 
001252 0121021121121 00 0007 00~305 01210"00 1Zl~00"7 
12102253 ~0000~ ~000"7 1210 ;~306 12102101210 0001210' 
"0?254 el02'0~121 02!el~e'i 012103",., 01211Zleel0 12I~"007 

0.5.3 Mixed Mode Data Files 

FOROTS permits files containing both ASCII and binary data records to 
be read. Mixed files may be accessed in either sequential or random 
access mode. Logical ASCII and binary records have the same format as 
described in the preceding paragraphs. In random access mode, the 
record size must be large enough to contain the largest record, either 
ASCII or binary. 

0-12 



FOROTS 

D.S.4 Image Files 

The image data transfer mode is a buffered mode in which data is 
transferred in a blocked format consisting of a word count located in 
the right half of the first data word of the buffer followed by the 
number of 36-bit data words. The devices that permit image data 
transfers and the form in which the data is read or written are: 

Device 

Card Reader 

Disk 

Magnetic Tape 

Plotter 

D.6 USING FOROTS 

Data Forms 

All 12 punches in all 80 columns are packed into 
the buffer as 12-bit bytes. The first 12-bit byte 
contains column 1. The last word of the buffer 
contains columns 79 and 80 as the left and middle 
bytes, respectively. Cards are not split between 
two buffers. 

Data is written on the disk exactly as it appears 
in the buffer. Data consists of 36-bit words. 

Data appears on magnetic tape exactly as it 
appears in the buffer. No processing or 
checksumming of any kind is performed by the 
serV1ce routine. The parity checking of the 
magnetic tape system is sufficient assurance that 
the data is correct. All data, both binary and 
ASCII, is written with odd parity and at 800 bits 
per inch unless changed by the installation. 

Six 6-bit characters per word are transmitted to 
the plotter exactly as they appear in the buffer. 

FOROTS has been designed to lend itself for use as an I/O system for 
programs written in languages other than FORTRAN. Currently, MACRO 
programmers may employ FOROTS as a general I/O system by writing 
simple MACRO calls that simulate the calls made to FOROTS by a FORTRAN 
compiler. The calls made to FOROTS are to routines that implement 
FORTRAN I/O statements such as READ, WRITE, OPEN, CLOSE, RELEASE, etc. 

FOROTS will provide automatic memory allocation, data conversion, I/O 
buffering, and device interface operations to the MACRO user. 

D-13 



FOROTS 

D.6.l FOROTS Entry Points 

FOROTS provides the following entry points for calls from either a 
FORTRAN compiler or a non-FORTRAN program: 

Entry Point 

ALCHN. 
ALCOR. 
CLOSE. 
DBMS. 
DEC. 
DECHN. 
DECOR. 
ENC. 
EXIT. 
FIN. 
FIND. 
FORER. 
FUNCT. 
IN. 
IOLST. 
MTOP. 
NLI. 
NLO. 
OPEN. 
OUT. 
RELEA. 
RESET. 
RTB. 
TRACE. 
WTB. 

Function 

Allocate software channels 
Allocate dynamic memory blocks 
Close a file 
DBMS interface 
DECODE routine 
De-allocate software channels 
De-allocate dynamic memory blocks 
ENCODE routine 
Terminate program exeuction 
Input/Output list termination routine 
position to the next record (RANDOM ACCESS) 
Error processor 
Overlay interface 
Formatted input routine 
Input/Output list routine 
File utility processing routine 
NAMELIST input routine 
NAMELIST output routine 
Open a file 
Formatted output routine 
Release a device (CLOSE implied) 
Job initialization entry 
Binary input routine 
Trace subroutine calls 
Binary output routine 

D.6.2 Calling Sequences 

You must use the following general form for all calls made to FOROTS: 

MOVEI l6,ARGBLK 
PUSHJ l7,Entry Point 

(control is returned here) 

where: 

1. ARGBLK is the address of a specifically formatted argument 
block that contains information needed by FOROTS to 
accomplish the desired operation. 

2. Entry Point is an entry point identifier (see list given in 
Paragraph D.6.l) that specifies the entry point of the 
desired FOROTS routine. 

with three exceptions, all returns from FOROTS will be made to the 
program instruction immediately following the call (PUSHJ 17, entry 
point instruction). The exceptions are: 

D-14 



FOROTS 

1. An error return to a specified statement number, i.e., READ 
or WRITE statement ERR=option, 

2. An end-of-file return to a statement number, i.e., READ or 
WRITE statement END=option, 

3. A fatal error that returns to the monitor or to a debug 
package. 

Paragraphs 0.6.3.1 through D.6.3.ll give the MACRO calls and required 
argument block formats needed to initialize FOROTS and FOROTS I/O 
operations. 

Argument blocks conform to the subprogram calling convention described 
in Appendix C. However, there is one exception in dealing with the 
first word of an I/O initialization call, i.e., WTB., ENC., RTW., 
etc., for a FORTRAN logical unit number. In previous versions of 
FOROTS and FORTRAN-20, if the indirect bit was not set, the argument 
was immediate; if it was set to 1 (one), the argument was the address 
of the variable. The type field was always a (zero). 

with Version 4 of FORTRAN-20 and Version 4 of FOROTS this convention 
has been changed. If the type field of the first word of an I/O 
initialization call for the FORTRAN logical unit number is 0 (zero), 
the argument is an immediate mode (18 bit) constant wherever possible. 
If the type field is integer, the argument is indirect (see Appendix 
C, Table C-l, Type 2). 

This exception should not cause any upward compatibility 
since all previously working programs will still function. 
feature with this convention is that it permits the 
construct to be correctly implemented: 

100 

N=-4 
READ (N, 100 ) I, J 
FORMAT (215) 

!SET FOR TERMINALS 

0.6.3 MACRO Calls for FOROTS Functions 

problems, 
An added 

following 

The following paragraphs describe the forms of the MACRO calls to 
FOROTS that are made by the FORTRAN-20 compiler. The calls described 
are identified according to the language statement that they 
implement. The following terms and abbreviations may be used in the 
description of the argument block (ARGBLK) of each call: 

u 

f 

v· 

list 

pointer to the second word in the argument block. (This 
is the address pointed to by the argument ARGBLK in the 
calling sequence.) 

a FORTRAN logical unit number 

FORMAT statement address, 

the name of an array containing ASCII characters, 

an Input/Output list, 

D-15 



c 

d 

name 

R 

* 
type 

FOROTS 

the statement to which control is transferred on an "END 
OF FILE" condition, 

the statement to which control is transferred on an 
"ERROR" condition, 

a NAMELIST name, 

a variable specifying the logical record number for 
random access mode, 

list directed I/O; the FORMAT statement is not used, 

type specification of a variable or constant, 

where ARGBLK is 

0-8 9-12 13 14-17 18-35 

-6 0 

Reserved type I X u 

7 I X c 

7 I X d 

type I X f 

type I X Format Size (in words) 

Reserved type I X v 

D.6.3.l I/O Statements, Sequential Access Calling Sequences The 
READ and WRITE statements for formatted sequential data transfer 
operations and their calling sequences are: 

and 

READ(u,f,END=C, ERR=d) list 
MOVEI 16, ARGBLK 
PUSHJ 17, IN. 

WRITE(u,f,END=C, ERR=d) list 
MOVEI 16, ARGBLK 
PUSHJ 17, OUT. 

D-16 



,-

POROTS 

where ARGBLK is 

0-8 9-12 13 14-17 18-35 

-5 0 

Reserved type I X u 

7 I X c 

7 I X d 

type I X f 

Reserved type I X Format Size (in words) 

The READ and WRITE statements for unformatted sequential data transfer 
operations and their calling sequences are: 

and 

READ(u,END=C, ERR=d) list 
MOVEI 16, ARGBLK 
PUSHJ 17, RTB. 

WRITE(u,END=c, ERR=d) list 
MOVEI 16, ARGBLK 
PUSHJ 17, WTB. 

where ARGBLK is 

0-8 9-12 13 

-3 

Reserved type I 

1 
7 I 

Reserved 7 I 

14-17 18-35 

0 

X u 

X c 

X d 

0.6.3.2 NAMELIST I/O, Sequential Access Calling Sequences - The READ 
and WRITE statements for NAMELIST-directed sequential data transfer 
operations and their calling sequences are: 

RE.AD (u,name) 
READ (u, name, END=c, ERR=d) 

MOVEI 16, ARGBLK 
PUSHJ 17, NLI. 

and 

WRITE (u, name) 
WRITE (u, name, END=c, ERR=d) 

MOVEI 16, ARGBLK 
PUSHJ 17, NLO. 

0-17 



FOROTS 

where ARGBLK is 

0-8 9-12 13 14-17 18-35 

-4 0 

Reserved type I X u 

j 
7 I X c 

7 I X d 

Reserved type I X NAMELIST table address 

The NAMELIST table is generated from the FORTRAN NAMELIST. The first 
word of the table is the NAMELIST name; following that are a number 
of 2-word entries for scalar variables, and a number of {N+3)-word 
entries for array variables, where N is the dimensionality of the 
array. 

The names you specify in the NAMELIST statement are stored, in SIXBIT 
form, first in the table. Each name is followed by a list of 
arguments associated with the name; this argument list may be of any 
length and is terminated by a zero entry. The name argument list may 
be in either a scalar or an array form (refer to the following 
diagrams). 

D.6.3.3 Array Offsets and Factoring - Address calculations used to 
reference a given array element involve factors and offsets. For 
example: 

Array A is dimensioned 

DIMENSION A (Ll/Ul,L2/U2,L3/U3, ... Ln/Un) 

The size of each dimension is represented by 

Sl = Ul-Ll+l 
52 = U2-L2+l 
etc. 

In order to calculate the address of an element referenced by 

A (Il,I2,I3, ... In) 

the following formula is used: 

A+{Il-L1)+(I2-L2)*Sl+{I3-L3)*S2*Sl+ ... +{In-Ln)*S[n-l]* ... *S2*Sl 

The terms are factored out depending on the dimensions of the array 
and not on the element referenced to arrive at the formula 

A+{-L-L2*Sl-L3*S2*Sl ... )+Il+I2*Sl+I3*S2*Sl ... 

The parenthesized part of this formula is the offset for a single 
precision array and it is referred to as the Array Offset. 

D-18 



FOROTS 

For each dimension of a given array, there is a corresponding factor 
by which a subscript in that position will be multiplied. From the 
last expression, one can determine the factor for dimension n to be 

S[n-l]*S[n-2]* ... *S2*Sl 

For double-precision and complex arrays, the expression becomes 

A+2*(Il-Ll)+2*(I2-L2)*Sl+2*(I3-L3)*S2+Sl+ ... 

Therefore, the array offset for a double-precision array is 

2*(-Ll-L2*Sl-L3*S2*Sl ... ) 

and the factor for the nth dimension is 

2*S[n-l]*S[n-2]* ... *S2*Sl 

The factor for the first dimension of a double-precision array is 
always 2. The factor for the first dimension of a single-precision 
array is always 1. 

SCALAR ENTRY in a NAMELIST Table 

o. .8 9. .11 12. .14 15. .17 18. . .35 

SIXBIT/SCALAR NAME/ 

a a I X Scalar addr 

ARRAY ENTRY in a NAMELIST Table 

0-8 9-11 12-14 15-17 18-35 

SIXBIT/ARRAY NAME/ 

#DIMS type I X 

ARRAY SIZE OFFSET 

I X Factor 1 

I X Factor 2 

I X Factor 3 

. 

. 
I X Factor n 

D-19 



FOROTS 

D.6.3.4 I/O Statements, Random Access Calling Sequences The READ 
and WRITE statements for random access data transfer operations and 
their calling sequences are: 

and 

READ (u#R,f,END=c, ERR=d) list 
READ (u#R,END=c, ERR=d) list 
MOVEI 16, ARGBLK 
PUSHJ 17, RTB. 

WRITE (u#R,f,END=c, ERR=d) list 
wRITE (u#R,END=c, ERR=d) list 
MOVEI 16, ARGBLK 
PUSHJ 17, WTB. 

where ARGBLK is 

0-8 9-12 13 14-17 

-6 

Reserved type I X 

7 I X 

7 I X 

type I X 

type I X , 
Reserved 2 I X 

18-35 

0 

u 

c 

d 

f 

format size (in words) 

address of 
Record Number 

f and the format size in words are 0 if the I/O statement is 
unformatted. 

D.6.3.5 Calling Sequences for Statements That Use Default Devices -
The FORTRAN-20 statements that require the use of a reserved system 
default device and their calling sequences are: 

ACCEPT f, list 
READ f, list 
REREAD f, list 

MOVEI 16, ARGBLK 
PUSHJ 17, IN. 

Default Device 

UNIT=-4 
UNI'I'=-5 
UNIT=-6 

D-20 

(TTY) 
(CDR) 
(REREAD) 



\'-....._. 

where ARGBLK is 

0-8 

-5 

Reserved 

, 
Reserved 

PRINT f, list 
TYPE f, list 

9-12 

2 

7 

7 

type 

type 

MOVEI 16, ARGBLK 
PUSHJ 17, OUT. 

where ARGBLK is 

0-8 9-12 

-5 

Reserved 2 

7 

7 

type 

Reserved type 

FOROTS 

13 14-17 18-35 

a 

I X u 

I X c 

I X d 

I X f 

I X Format Size 
(in words) 

Default Device 

UNIT=-3 
UNIT=-l 

13 

I 

I 

I 

I 

I 

14-17 

X 

X 

X 

X 

X 

D-21 

(LPT) 
(TTY) 

18-35 

a 

u 

c 

d 

f 

format size (in words) 



FOROTS 

D.6.3.6 Statements to Pos~ition Magnetic Tape Units - The FORTRAN-20 
statements that may be used to control the positioning of a magnetic 
tape device and their calling sequences are: 

CALL: 

Function 
(FORTRAN Statement) 

SKIPFILE (u) 
BACKFILE (u) 
BACKSPACE (u) 
ENDFILE (u) 
REWIND (u) 
SKIPRECORD (u) 
UNLOAD (u) 

MOVEI 16, ARGBLK 
PUSHJ 17, NTOP. 

where ARGBLK is 

0-8 9-12 13 14-17 

-4 

Reserved type I X 

j 7 I X 

7 I X 

Reserved type I X 

FOROTS Code 

7 
3 
2 
4 
o 
5 
1 

18-35 

0 

u 

c 

d 

FOROTS code 

D.6.3.7 List Directed Input/Output Statements - You may write any 
form of a sequential Input/Output statement as a list-directed 
statement by replacing the referenced FORMAT stateme~t number with an 
asterisk (*) . The list-directed forms of the READ and WRITE 
statements and their calling sequences are: 

and 

READ (u, *, END=c, ERR=d) list 

MOVEI 16, ARGBLK 
PUSHJ 17, IN. 

WRITE (u, *, END=c, ERR=d) list 

MOVEI 16, ARGBLK 
PUSHJ 17, OUT. 

D-22 



POROTS 

where ARGBLK is 

0-8 9-12 13 14-17 18-35 

-5 a 

Reserved 2 I X u 

7 I X c 

7 I X d 

a a a a 

Reserved a a a a 

D.6.3.8 Input/Output Data Lists - The compiler generates a calling 
sequence to the runtime system if an I/O list is defined for the READ 
or WRITE statement. The argument block associated with the calling 
sequence contains the addresses of the variables and arrays to be 
transferred to or from an I/O buffer. The general form of an I/O list 
calling sequence is: 

MOVEI 16, ARGBLK 
PUSHJ 17, IOLST. 

Any number of elements may be included in the ARGBLK. The end of the 
argument block is specified by a zero entry or a call to the FIN. 
entry. 

The 

Mnemonic Name FOROTS Value 

DATA 1 
SLIST 2 
ELIST 3 
FIN 4 

elements of an I/O list are: 

1. DATA 

The DATA element converts one sing1e- or double-precision or 
complex item from external to internal form for a READ 
statement and from internal to external form for a WRITE 
statement. Each DATA element has the following format. 

0-8 9-12 13 14-17 18-35 

DATA type I X SCALAR ADDR 

D-23 



FOROTS 

2. SLIST 

The SLIST argument converts an entire array from internal to 
external form or vice versa, depending on the type of 
statement, i.e., READ or WRITE, involved. An SLIST table has 
the following form: 

0-8 9-12 

SLIST 

0 type 

For example, the sequence: 

DIMENSION A(100) ,8(100) 
READ(-,-)A 

or 

13 14-17 18-35 

I X #ELEMENTS 

I X INCREMENT 

I X 8ASE ADDR1. 

READ(-,-) (A(I) ,1=1,100) !only when the IOPT switch is used 

develops an SLIST argument of the form: 

0-8 9-12 13 14-17 18-35 

0 

2 0 0 0 144 
0 0 0 0 1 
0 2 0 0 A 
4 0 0 0 0 

More than one base address may appear in a SLIST as long as 
the increment is the same. The sequence 

DIMENSION A(lOO), 8(100) 
WRITE (-,-) (A(I) ,8(1) ,1=100) ! only when the IOPT 

switch is used 

develops a SLIST argument of the form: 

0-8 9-12 13 14-17 18-35 

0 

2 0 0 0 144 
0 0 0 0 1 
0 2 0 0 A 
0 2 0 0 8 
4 0 0 0 0 

D-24 



FOROTS 

3. ELIST 

The SLIST format permits only a single increment for a number 
of arrays to be specified while the ELIST permits different 
increments to be specified for different arrays. 

The format of the ELIST is 

0-8 9-12 13 14-17 

ELIST type I X 

type I X 

type I X 

type I X 

For example, the FORTRAN sequence 

DIMENSION IC (6,100), IB (100) 
WRITE(-,-) (IB(I) ,IC(l,I) ,1=1,100) 

produces the ELIST 

0-8 9-12 13 14-17 

3 0 0 0 
0 0 0 0 
0 2 0 0 
0 0 0 0 
0 2 0 0 
4 0 0 0 

18-35 

No. Elements to 
transfer 
increment 1 

Base ADDR 1 
increment 2 

Base ADDR 2 
increment N 

Base ADDR N 

18-35 

144 
1 

IB 
12 
IC 

0 

The increment may be zero. This could be produced by the 
sequence 

DIMENSION A(lOO) 
WRITE(-,-) (K,I=100) !on1y when the IOPT switch is used 

The zero may not appear as an immediate constant in the 
argument block. The ELIST for the previous example would be 

0-8 9-12 13 14-17 18-35 

3 0 0 0 144 

0 2 0 0 Pointer to a word 
containing a zero 

0 type 0 0 K 

4 0 0 0 0 

D-25 



FOROTS 

4. FIN 

The end of an I/O list is indicated by a call to the FIN 
routine in the object time system. This call must be made 
after each I/O initialization call, including calls with a 
null I/O list. The FIN rout~ine may be entered by an explicit 
call or by an argument in the I/O list argument block. If 
both calls are used, the explicit call has no meaning. The 
FIN .element has the following format: 

EXPLICIT CALL: 

PUSHJ 17, FIN. 

D.6.3.9 OPEN and CLOSE Statements, Calling Sequences - The form and 
calling sequences for the OPEN and CLOSE statements are: 

OPEN STATEMENT CALL 

MOVEI 16, ARGBLK 
PUSHJ 17, OPEN. 

CLOSE STATEMENT CALL 

MOVEI 16, ARGBLK 
PUSHJ 17, CLOSE. 

where ARGBLK is 

0-8 

Negative of 
the number 
of words in 
block not 
including 
this one. 

0 
0 
0 
G 
G 
G 

· 
· · 
· 
G 

9-12 13 14-17 18-35 

0 

2 I X u 
7 I X c 
7 I X d 

type I X H 
type I X H 
type I X H 

· · · · . · 
· · . 

type I X H 

The G field (bits 0 through 8) contains a 2-digit numeric that defines 
the argument name; the H field (bits 18 through 35) contains an 
address which points to the value of the argument. 

D-26 



FOROTS 

The numeric codes that may appear in the G field and the argument that 
each identifies are: 

G Field Open Argument G Field Open Argument 

01 DIALOG 12 MODE 
02 ACCESS 13 FILE SIZE 
03 DEVICE 14 RECORD SIZE 
04 BUFFER COUNT 15 DISPOSE 
as BLOCK SIZE 16 VERSION 
06 FILENAME 22 ASSOCIATE VARIABLE 
07 PROTECTION 23 PARITY 
10 DIRECTORY 24 DENS I'I'Y 

D.6.3.10 Memory Allocation Routines - The memory management module is 
called to allocate or de-allocate memory blocks. There are two entry 
points, ALCOR. and DECOR., that control memory allocation and 
de-allocation. 

Use the ALCOR. entry to allocate the number of words specified in the 
argument block variable. Upon return, AC a will contain either the 
address of the allocated memory block or a -1 value, which indicates 
that memory is not available. The calling sequence for ALCOR. call 
is: 

MOVEI 16, ARGBLK 
PUSHJ 17, ALCOR. 

where ARGBLK is 

0-8 9-12 

-1 

Reserved type 

13 

I 

14-17 18-35 

a 

X Address of 
Number of Words 

Use the DECOR. entry to de-allocate a previously allocated block of 
memory; the argument variable must be loaded with the address of the 
memory block to be returned. Upon return AC a is set to O. 

If the number of desired words is N, ALCOR. actually removes N+l 
words from free storage. The pointer returned points to the second 
word (word 1 as opposed to word 0) removed from free storage. The a 
word contains the negative value of N in its left half. This word is 
used by FOROTS to maintain linked lists of allocated (using ALCOR.) 
and free storage. 

The calling sequence for a DECOR. call is: 

MOVEI 16, ARGBLK 
PUSHJ 17, DECOR. 

D-27 



FOROTS 

where ARGBLK is 

0-8 9-12 13 14-17 18-35 

-1 a 

Pointer to word 
Reserved type I X containing 

address of block 
to be returned 

D.6.3.ll Software Channel Allocation and De-allocation Routines - You 
may allocate software channels in MACRO programs via calls to the 
ALCHN. routine and de-allocate them by calls to the DECHN. routine. 
Values are returned in AC o. 

Use the ALCHN. entry to allocate a particular channel or the next 
available channel. The channel to be allocated is passed to ALCHN. 
in the argument block variable. Zero is passed in the argument block 
variable to allocate the next available channel. Allowed channels are 
1 through 17 (octal). If the channel requested is not available, or 
all channels are in use, ALCHN. returns with a -1 in AC O. In normal 
returns, AC a contains the assigned number. 

The calling sequence of an ALCHN. routine is: 

MOVEI 16, ARGBLK 
PUSHJ 17, ALCHN. 

where ARGBLK is 

0-8 9-12 

-1 
\ 

Reserved type 

13 

I 

14-17 18-35 

a 

Pointer to 
X containing 

the channel 
or zero 

a word 

# 

Use the DECHN. entry to de-allocate a previously assigned channel. 
The channel to be released is passed to DECHN. in the argument block 
variable. If the channel to be de-allocated was not assigned by 
ALCHN. and thus cannot be de-assigned, AC a is set to -1 on return. 

The calling sequence for a DECHN. routine is: 

MOVEI 16, ARGBLK 
PUSHJ 17, DECHN. 

D-28 



FOROTS 

\vhere ARGBLK is 

0-8 9-12 13 14-17 18-35 

-1 0 

Pointer to a word 
Reserved type I X containing 

the channel # 
to be released 

D.7 FUNCTIONS TO FACILITATE OVERLAYS 

FOROTS provides a subroutine (FUNCT.) to serve as an interface with 
the LINK overlay handler. This subroutine consists of a group of 
functions that allow the overlay handler to perform I/O, memory 
management, and error message handling. These functions have only one 
entry point, FUNCT., and they are called by the sequence 

MOVEI 16, ARGBLK 
PUSHJ 17, FUNCT. 

The general form of the ARGBLK is 

where 

0-17 18-35 

Negative of the 0 
number of words 
in block 

ARGBLK~ 

type 
function number 
error code 

status 

type function number 
type error code 
type status 
type argument 1 
type argument 2 
type argument 3 . . . . 
type argument n 

the FORTRAN argument type (see Appendix C) 
the number of one of the required functions 
the 3-letter mnemonic output by the object 
time system after ?, %, or [. (See Table 
D-l. ) 
undefined on the call and set on the return 
with one of the values below. 

-1 
o 
1 .... n 

D-29 

Function not implemented 
Successful return 
Specific error message 



Function 
Number 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

FOROTS 

Table D-l 
Function Numbers and Function Codes 

Function 
Mnemonic 

ILL 
GAD 
COR 
RAD 
GCH 
RCH 
GOT 
ROT 
RNT 
IFS 

CBC 

Function Description 

Illegal function 
Allocates memory from a specific address 
Allocates memory from available core 
De-allocates memory 
Gets or assigns an I/O channel 
Releases an I/O channel 
Allocates memory from FOROTS 
De-allocates memory from FOROTS 
Returns the initial runtime from FOROTS 
Returns initial runtime file spec. from 
FOROTS 
Cuts back memory if possible 

FUNCTION 0 (ILL) - This function is illegal. The argument block is 
ignored, and the function always returns a status of -1. 

FUNCTION 1 (GAD) - This function allocates memory from a specific 
address. The arguments are: 

arg 1 
arg 2 

address at which to begin core allocation 
number of words of memory to allocate 

The return statuses are: 

o core allocated (arg 1 and 2 unchanged) 
1 not enough memory available in system (arg 1 and arg 2 

unchanged) 
2 cannot allocate memory at specified address (arg 1 and arg 2 

unchanged) 
3 illegal arguments (i.e., address + size is greater than 256K) 

(arg 1 and arg 2 unchanged) 

FUNCTION 2 (COR) - This function allocates memory from any address. 
The arguments are: 

undefined arg 1 
arg 2 size of core to allocate 

The returned statuses are: 

o core allocated (arg 2 unchanged, arg 1 beginning address of the 
allocated memory) 

1 not enough memory available in system (arg 2 unchanged) 
3 illegal argument (i.e., size is greater than 256K) 

FUNCTION 3 (RAD) - This function de-allocates memory at the specified 
address. The arguments are: 

arg 1 
arg 2 

address of core to be de-allocated 
number of words to be de-allocated 

The returned statuses are: 

o memory de-allocated 
1 memory cannot be de-allocated 
3 illegal argument (i.e., both the address and the size are 

greater than 256K) 
D-30 



FOROTS 

FUNCTION 4 (GCH) - This function assigns an I/O channel. The argument 
is: 

arg 1 undefined 

The returned statuses are: 

o I/O channel assigned (arg 1 channel number) 
1 no I/O channels available 

FUNCTION 5 (RCH) - This function releases an I/O channel. The 
argument is: 

arg 1 I/O channel number to be released 

The returned statuses are: 

o channel released 
1 invalid channel number 

FUNCTION 6 (GOT) - This function gets memory from the object time 
system list. The arguments are: 

arg 1 
arg 2 

address at which to allocate memory 
number of words of memory to allocate 

The returned statuses are: 

0 memory allocated (arg 1 and arg 2 unchanged) 
1 not enough memory available in system (arg 

unchanged) 
2 cannot allocate memory at specified address (arg 

unchanged) 
3 illegal argument(s) 

1 and arg 2 

1 and arg 2 

This function differs from function 1 in that if the object time 
system has two free memory lists, then function 1 is used to allocate 
space for links, and this function is used to allocate space for I/O 
buffers. Function 1 uses the free memory list for LINK, and function 
6 uses the list for the object time system. 

FUNCTION 7 (ROT) - This function returns memory to the object time 
system. The arguments are: 

arg 1 
arg 2 

address of memory to be de-allocated and returned 
size of memory to be de-allocated and returned 

The returned statuses are: 

o memory de-allocated 
1 memory cannot be de-allocated 
3 illegal argument 

FUNCTION 8 (RNT) - This function returns the initial runtime from the 
object time system. The argument is: 

arg 1 undefined 

The returned status is: 

o always (arg 1 - runtime from the object time system) 

This function is used only if the user desires a log file. 

D-31 



FOROTS 

FUNCTION 9(IFS) - This function returns the initial runtime file 
specification from the object time system. The specification is 
obtained from accumulators 0, 7, and 11 after the initial RUN command. 
The arguments are: 

arg 1 
arg 2 
arg 3 

undefined 
undefined 
undefined 

The returned status is: 

o always (arg 1 - device from accumulator 11, arg 2 - filename 
from accumulator 0, and arg 3 - directory from accumulator 7) 

This function tells the overlay handler which file to read after the 
initial RUN command. 

FUNCTION 10 (CBC) - This function cuts back memory if possible and is 
used to reduce the size of the user job. There are no arguments. 

The returned status is: 

o always 

0.8 LOGICAL/PHYSICAL DEVICE ASSIGNMENTS 

You make FORTRAN logical and physical device assignments at run time, 
or standard system assignments are made according to a FOROTS Device 
Table, i.e., DEVTB. Table D-2 shows the standard assignments 
contained by the Device Table. 

0-32 



Device/Function 

REREAD 
CDR 
TTY 
LPT 

TTY 
o 
DSK 
CDR 
LPT 
CTY 
TTY 

MTAO 
MTAl 
MTA2 
FORTR 
DSK 
DSK 
DSK 
DSK 
DSK 
DEVl 
DEV2 
DEV3 
DEV4 
DEV5 

DEV39 

FOROTS 

Table D-2 
FORTRAN Device Table 

FORTRAN Logical 
Unit Number Use 

-6 REREAD statement 
-5 READ statement 
-4 ACCEPT statement 
-3 PRINT statement 
-2 Not valid 
-1 TYPE statement 
00 ILLEGAL. 
01 DISK 
02 Card Reader 
03 Line Printer 
04 Console Teletype 
05 User's Teletype 

06 through 15 not valid 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

63 

D-33 

t1agnetic Tape 
Magnetic Tape 
Magnetic Tape 
Assignable Device 
DISK 
DISK 
DISK 
DISK 
DISK 
Assignable Devices 





APPENDIX E 

FORDDT 

FORDDT is an interactive program used to debug FORTRAN programs and 
control their execution. By using the symbols created by the FORTRAN 
compiler, FORDDT allows you to examine and modify the data and FORMAT 
statements in your program, set breakpoints at any executable 
statement or routine, trace your program statement-by-statement, and 
make use of many other debugging techniques described in this 
appendix. 

Table E-I lists all the commands available to the user of FORDDT. 

Command 

Data Access Commands 

ACCEPT 

TYPE 

Declarative Commands 

GROUP 

MODE 

OPEN 

PAUSE 

REMOVE 

DIMENSION 

DOUBLE 

Table E-I 
Table of Commands 

Purpose 

Modifies data locations. 

Displays data locations. 

Defines indirect lists for TYPE statements. 

Specifies format of typeout. 

Accesses program unit symbol table. 

Places pause requests. 

Removes pause requests. 

Defines dimensions of arrays for FORDDT 
references. (Unnecessary if 
/DEBUG:DIMENSIONS was used. See Table 
B-2.) 
Defines dimensions of double-precision 
arrays for FORDDT references. (Unnecessary 
if /DEBUG: DIMENSIONS was used. See Table 
B-2.) 

E-l 



Command 

Control Commands 

START 

CONTINUE 

GOTO 

NEXT 

STOP 

Other Commands 

LOCATE 

STRACE 

WHAT 

E.l INPUT FORMAT 

FORDDT 

Table E-l (Cont.) 
Table of Commands 

Purpose 

Begins execution of FORTRAN program. 

Continues execution after a pause. 

Transfers control to some program statement 
within the open program unit. 

Traces execution of the program. 

Terminates program and returns to monitor 
mode. 

Lists program unit names in which a given 
symbol is defined. 

Displays routine backtrace 
program status. 

of current 

Displays current DIMENSION, GROUP, 
PAUSE information. 

and 

FORDDT commands are made up of alphabetic FORTRAN-like identifiers and 
need consist of only those characters required to make the command 
unique. If you wish to specify parameters, a space or tab is required 
following the command name. FORDDT expects a parameter if a delimiter 
(i.e., space or tab) is found. Comments may be appended to command 
lines by preceding the comment with an !. 

E.l.l Variables and Arrays 

FORDDT allows you to access and modify the data locations in your 
program by using standard FORTRAN symbolic names. Variables are 
specified simply by name. Array elements are specified in the 
following format: 

name (Sl, ... ,Sn) 

where 

name a FORTRAN variable or array name 
(Sl, ... ,Sn) the subscripts of the particular array. 

You may reference an entire array simply by its unsubscripted name; 
you may specify a range of array elements by inputting the first and 
last array.elements of the desired range, separated by a dash(-). 

E-2 



Examples 

ALPHA 
ALPHA(7) 
ALPHA (PI) 
ALPHA(2)-ALPHA(5) 

E.l.2 Numeric Conventions 

FORDDT 

FORDDT accepts optionally signed numeric data in the 
FORTRAN-20 input formats: 

1. INTEGER - A string of decimal digits. 

standard 

2. FLOATING-POINT A string of decimal digits optionally 
including a decimal point. Standard engineering and 
double-precision exponent formats are also accepted. 

3. OCTAL - A string of octal digits optionally preceded by a 
double quote (II). 

4. COMPLEX - An ordered pair of integer or real constants 
separated by a comma and enclosed in parentheses. 

E.l.3 Statement Labels and Source Line Numbers 

FORTRAN statement labels are input and output by straightforward 
numeric reference, i.e., 1234. However, source line numbers must be 
input to FORDDT with a number sign (#) preceding them. This mandatory 
sign distinguishes statement labels from source line numbers. 

E.2 NEW USER TUTORIAL 

The new FORDDT user can rely on the commands described below as a 
basis for debugging FORTRAN programs. These commands are easy to 
understand and apply. 

E.2.l Basic Commands 

The easiest method of loading and starting FORDDT is: 

@DEBUG filename.ext/FORTRAN/DEBUG 

FORDDT will respond with 

ENTERING FORDDT 
» 

Just as an asterisk (*) 
angle brackets signify 
commands: 

signifies FORTRAN-20's readiness, the two 
that FORDDT is awaiting one of the following 

OPEN Makes available to FORDDT the symbol names in a 
particular program unit of the FORTRAN program. When a 
program unit symbol table is opened, the previously 

E-3 



START 

STOP 

MODE 

TYPE 

FORDDT 

open program unit is automatically closed. When FORDDT 
is entered, the MAIN program is automatically opened. 
The command format is: 

OPEN name 

This will open the particular program unit named and 
allow all variables within that subprogram to be 
accessible to FORDDT. 

OPEN 

with no arguments will reopen the symbol table of the 
main program unit. 

Starts your program at the main program entry point. 
The command format is: 

START 

Terminates program execution, causes all files to be 
closed, and exits to the monitor. The command format 
is: 

STOP 

Defines the display format for succeeding FORDDT TYPE 
commands. You need type only the first character of 
the mode to identify it to FORDDT. The modes are: 

Mode Meaning 

A ASCII (left-justified) 
C COMPLEX 
D DOUBLE-PRECISION 
F FLOATING-POINT 
I INTEGER 
o OCTAL 
R RASCII (right-justified) 

Unless the MODE command is given, the default typeout 
mode is the floating-point format. 

The command format is: 

MODE list 

where list contains one or more of the mode identifiers 
separated by commas. The current setting can be 
changed by issuing another MODE command. If more than 
one mode is given, the values are typed out in the 
order: F,D,C,I,O,A,R 

MODE 

with no arguments will reset FORDDT to the original 
setting of floating-point format. 

Allows you to display the contents of one or more data 
locations. They are displayed on your terminal 
formatted according to the last MODE specification. 
The command format is: 

TYPE list 

E-4 



ACCEPT 

PAUSE 

FORDDT 

where list may contain one or more arrays, variables, 
array elements, or array element ranges separated by 
commas. For example: 

TYPE I, ALPHA, BETA(2) ,J(3)-J(5) 

Each item will be displayed in each of the currently 
active typeout modes as set by the last MODE command. 

Allows you to change the contents of a FORTRAN 
variable, array, array element, or array element range. 
The command format is: 

ACCEPT name/mode value 

where 

name the name of the variable, array, array 
element, or array element range to be 
modified. If the field contains an 
unsubscripted array name or an element 
range, it causes all the elements to be 
set to the given value (see special case 
for ASCII in Section E. 6) . 

mode the format of the data value to be 
entered. If given, it must be preceded by 
a slash (/) and immediately follow the 
name. (Note tha t /mode does not apply to 
FORMAT modification.) 

value the new value to be assigned. It must 
correspond in format to the given mode. 

Data Modes 

You need type only the first character of a data mode 
to identify it to FORDDT. If not specified, the 
default mode is REAL. The following input modes are 
available: 

Mode Meaning 

A ASCII(left-justified) 
C COMPLEX 
D DOUBLE-PRECISION 
F REAL 
I INTEGER 
o OCTAL 
R RASCII(right-justified) 
S SYMBOLIC 

Example 

/FOO/ 
(l.25,-78.E+9) 
123.4567890 
123.45678 
1234567890 
76543210 
\BAR\ 
PSI(2,4) 

An example of the ACCEPT command format is: 

ACCEPT ALPHA 100.6 

This changes the value of the variable ALPHA to 100.6 
with the default input mode of REAL, since mode was not 
specified. 

Allows you to set a breakpoint at any label, line 
number, or subroutine entry in your program. You may 
set up to ten pauses at one time. When one of these 
pauses is encountered, execution of the FORTRAN program 

E-5 



FORDDT 

is suspended and control is transferred to FORDDT. 
Also, when a pause is encountered, the symbol table of 
that subprogram is automatically opened. The command 
format is: 

PAUSE P 

where P is a statement label number, line number, or 
routine entry point name; for example, 

PAUSE 100 

will cause a breakpoint at statement label 100 of the 
currently open program unit. 

Note that subprogram parameter values will be displayed 
when a pause is encountered at a subprogram entry 
point. 

CONTINUE Allows the program to resume execution after a FORDDT 
pause. After a CONTINUE is executed, the program 
either runs to completion, or it runs until another 
pause is encountered. If you include a value with this 
command, the program will run until the nth occurrence 
of the given pause or until a different pause is 
encountered. The command formats are: 

REMOVE 

WHAT 

CONTINUE 
or 

CONTINUE n 

Example 

CONTINUE 15 

will continue execution until the fifteenth occurrence 
of the pause. 

Used to remove those pauses from the program previously 
set up by the PAUSE command. The command format is 

REMOVE P 

where P is the number of the statement label where the 
pause was set, i.e., 

REMOVE 100 

will remove the pause at statement label 100. 

Note that REMOVE with no arguments will remove all 
pauses; therefore, no abbreviation of the command is 
allowed in this instance. This precaution prevents the 
accidental removal of all pauses. 

Displays on your terminal the name of 
open program unit and any currently 
settings. The command format is: 

WHAT 

E-6 

the currently 
active pause 



FORDDT 

E.3 FORDDT AND THE FORTRAN-20/DEBUG SWITCH 

Most facilities of FORDDT are available without the FORTRAN-20 /DEBUG 
features; however, if you do not use the /DEBUG switch when compiling 
a FORTRAN program, the trace features (NEXT command) will not be 
available, and several of the other commands will be restricted. 

Using the /DEBUG switch tells FORTRAN-20 to compile extra information 
for FORDDT. (See Appendix B, Using the Compiler, for a complete 
description of each feature.) The additional features include: 

1. /DEBUG:DIMENSIONS, which will generate dimension information 
to the REL file for all arrays dimensioned in the subprogram. 
The dimension information will automatically be available to 
FORDDT if you wish to reference an array in a TYPE or ACCEPT 
command. This feature eliminates the need to specify 
dimension information for FORDDT by using the DIMENSION 
command. 

2. /DEBUG:LABELS, which will generate labels for every 
executable source line in the form "line-number L". If these 
labels are generated, they may be used as arguments with the 
FORDDT commands PAUSE and GOTO. 

This switch will also generate labels at the last location 
allocated for a FORMAT statement so that FORDDT can detect 
the end of the statement. These labels have the form 
IIformat-label F". If they are generated, you will be able to 
display and modify FORMAT statements via the TYPE and ACCEPT 
commands. 

Note that the :LABELS switch is automatically activated with 
the :TRACE switch, since labels are needed to accomplish the 
trace features. 

3. /DEBUG:TRACE, which will generate a reference to FORDDT 
before each executable statement. This switch is required 
for the trace command NEXT to function. 

Note that if more than one FORTRAN statement has been placed 
on a single input line, only the first statement will have a 
FORDDT reference and line-number label associated with it. 
This also applies to the :LABELS switch. 

4. /DEBUG:INDEX, which will force the compiler to store in its 
respective data location as well as a register the index 
variable of all DO loops at the beginning of each loop 
iteration. You will then be able to examine DO loops by 
using FORDDT. If you modify a DO loop index using FORDDT, it 
will not affect the number of loop iterations because a 
separate loop count is used. (See Section D.l.5.) 

Note that this switch has no direct affect on any of the 
commands in FORDDT. 

E.4 LOADING AND STARTING FORDDT 

1. The simplest method of loading and starting FORDDT is with 
the following command string: 

@DEBUG filename.ext/FORTRAN/DEBUG 

E-7 



FORDDT responds with 

ENTERING FORDDT 
» 

FORDDT 

The angle brackets indicate that FORDDT is ready to receive a 
command, just as an asterisk (*) signifies FORTRAN-20's 
readiness. 

The DEBUG command to the monitor will also load DDT (standard 
system debugging program). DDT can be used or ignored. 

2. You may wish to load your compiled program and FORDDT 
directly with the LINK loader. (Loading with LINK was 
accomplished implicitly in the previous command string.) The 
command sequence is as follows: 

@LINK 
*filename.ext /DEB/G 
*filename.ext /DEB: FORDDT /G 

FORTRA 

*filename.ext /DEB: (DDT, FORDDT )/G 
FORTRA 

(loads DDT) 
(loads FORDDT) 

loads both DDT 
and FORDDT 

If the total FORTRAN program consists of many subroutines and 
insufficient memory is available to complete loading with 
symbols, it is possible to load with symbols just those 
sections expected to give trouble. The remaining routines 
need not be loaded. 

E.5 SCOPE OF NAME AND LABEL REFERENCES 

Each program unit has its own symbol table. When you initially enter 
FORDDT, you automatically open the symbol table of the main program. 
All references to names or labels via FORDDT must be made with respect 
to the currently open symbol table. If you have given the main 
program a name other than MAIN by using the PROGRAM statement (see 
Chapter 5, Section 5.2), FORDDT will ask for the defined program name. 
After you enter the program name, FORDDT will open the appropriate 
symbol table. At this point, symbol tables in programs other than the 
main program can be opened by using the OPEN command. (See Section 
F.5.) 

References to statement labels, line numbers, FORMAT statements, 
variables, and arrays must have labels that are defined in the 
currently open symbol table. However, FORDDT will accept variable and 
array references outside the currently open symbol table, providing 
the name is unique with respect to all program units in the given load 
module. 

E.6 FORDDT COMMANDS 

This section gives a detailed description of all commands in FORDDT. 
The commands are given in alphabetical order. 

E-8 



ACCEPT 

FORDDT 

Allows you to change the contents of a FORTRAN 
array, array element, array element range, 
statement. The command format is: 

variable, 
or FORHAT 

ACCEPT name/mode value 

where 

name 

mode 

value 

the variable array, array 
element range, or FORHAT 
modified. 

element, 
statement 

array 
to be 

the format of the data value to be entered. 
The mode keyword must be preceded by a slash 
(/) and immediately follow the name. 
Intervening blanks are not allowed. (Note 
that /mode does not apply to FORHAT 
modification.) 

the new value to be assigned. The format of 
the input value must correspond to the 
specified mode. 

DATA LOCATION MODIFICATION 

Data Hodes 

The following data modes are accepted: 

Mode 

A 
C 
D 
F 
I 
o 
R 
S 

Heaning 

ASCII (left-justified) 
COMPLEX 
DOUBLE-PRECISION 
REAL 
INTEGER 
OCTAL 
RASCII (right-justified) 
SYMBOLIC 

Example 

/FOO/ 
(l.25,-78.E+9) 
123.4567890 
123.45678 
1234567890 
76543210 
\BAR\ 
PSI(2,4) 

If not specified, the default mode is REAL. 

Two-Word Values 

For the data modes ASCII, RASCII, OCTAL, and SYMBOLIC, 
FORDDT will accept a II/LONG II modifier on the mode switch. 
This modifier indicates that the variable and the value 
are to be interpreted as two words long. 

Example 

ACCEPT VAR/RASCII/LONG '1234567890' 

will assume that VAR is two words long and store the given 
10-character literal into it. 

Initialization of Arrays 

If the name field of an ACCEPT contains an unsubscripted 
array name or a range of array elements, all elements of 
the array or the specified range will be set to the given 
value. 

E-9 



FORDDT 

Example 

ACCEPT ARRAY/F 1.0 
or 

ACCEPT ARRAY(5)~ARRAY(10)/F 1.0 

Note that this applies only to modes other than ASCII and 
RASCII. 

Long Literals 

When the value field of an ACCEPT contains an 
unsubscripted array name or range of array elements, and 
the specified data mode is ASCII or RASCII, the value 
field is expected to contain a long literal string. 
ACCEPT will store the string linearly into the array or 
array range. If the array is not filled, the remainder of 
the array or range will be set to zero. If the literal is 
too long the remaining characters will be ignored. 

Example 

ACCEPT ARRAY/RASCII 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 

FORMAT STATEMENT MODIFICATION 

When the name field of an ACCEPT contains a label, FORDDT 
expects this label to be a FORMAT statement label and that 
the value field contains a new FORMAT specification. 

Example 

ACCEPT 10 (lHO,FlO.2,3(I2)) 

The new specification cannot be longer than the space 
originally allocated to the FORMAT by the compiler. The 
remainder of the area is cleared if the new specification 
is shorter. 

Note that FOROTS performs some encoding of FORMAT 
statements when it processes them for the first time. If 
any I/O statement referencing the given FORMAT has been 
executed, the FORTRAN program has to be restarted 
(re-initializing FOROTS). 

CONTINUE Allows the program to resume execution after a FORDDT 
pause. After a CONTINUE is executed, the program either 
runs to completion or until another pause is encountered. 
The command format is: 

CONTINUE n 

where the n is optional and, if omitted, will be assumed 
to be one. If a value is provided, it may be a numeric 
constant or program variable, but it will be treated as an 
integer. When the value n is specified, the program will 
continue execution until the nth occurrence of this pause. 
For example, 

CONTINUE 20 

will continue execution after the 20th occurrence of the 
pause. 

E-IO 



FORDDT 

DIMENSION Sets the user-defined dimensions of an array for FORDDT 
access purposes. These dimensions need not agree with 
those declared to the compiler in the source code. FORDDT 
will allow you to redimension an array to have a larger 
scope than that of the source program. If this is done, a 
warning is given. The command format is: 

DIMENSION S 

where S is the name of the array specified. 

For example: 

DIMENSION ALPHA(7,5/6,lO) 

FORDDT will remember the dimen~ions of the array until it 
is redefined or removed. 

The command 

DIMENSION 

will give a full list of all the user-defined dimensions 
for all arrays. 

DIMENSION ALPHA 

will display the current information for the array ALPHA 
only. 

DIMENSION ALPHA/REMOVE 

will remove any user defined array information for the 
array ALPHA. 

Arrays, Array Elements, and Ranges 

Array elements are specified in the following format: 

name [dl/d2, ... ] (Sl, ... ) 

where 

name 

[ ... ] 

( ... ) 

the name of the array 

optional, and contains dimension information. 
This form is equivalent in effect to the 
DIMENSION statement. 

the subscripts of 
desired. 

the specific element 

The entire array is referenced simply by its unsubscripted 
name. A range of array elements is specified by inputting 
the first and last array elements of the desired range 
separated by a dash (-) (A(5)-A(lO)). 

E-ll 



DOUBLE 

GOTO 

GROUP 

FORDDT 

Defines the dimensions of a double-precision array. The 
result of this command is the same as for the DIMENSION 
command except that the array so dimensioned is understood 
by FORDDT to be an array with two-word entries and, 
therefore, reserves twice the space. The command format 
is: 

DOUBLE arrayname 

Allows you to continue your program from a point other 
than the one at which it last paused. The GOTO allows you 
to continue at a statement label or code-generating source 
line number provided that the /DEBUG:LABELS switch has 
been used or the contents of a symbol previously ASSIGNed 
during the program execution. 

Note that the program must be STARTed before this command 
can be used, and also note that a GOTO is not allowed 
after the ~C~C REENTER sequence. (See Section E.7.) 

The command format is: 

GOTO n 

Sets up a string of text for input to a TYPE command. You 
can store TYPE statements as a list of variables 
identified by the numbers 1 through 8. This feature 
eliminates the need to retype the same list of variables 
each time you wish to examine the same group. Refer to 
the TYPE command for the proper format of the list. 

The command format is: 

GROUP n list 

where 

n 

list 

GROUP 

the group number 1-8 

a string of TYPE statements to be called in 
future accessing of the current group number. 

with no arguments will cause FORDDT to type out the 
current contents of all the groups 

GROUP n 

will type out the contents of the particular group 
requested. 

Note that one group may call another. 

E-12 



LOCATE 

MODE 

NEXT 

FORDDT 

Lists the program unit names in which a given symbol is 
defined. This is useful when the variable you wish to 
locate is not in the currently open program unit and is 
defined in more than one program unit. The command format 
is: 

LOCATE n 

where n may be any FORTRAN variable, array, label, line 
number, or FORMAT statement number. 

Defines the default formats of typeout from FORDDT. In 
initial default mode, variables will be typed in 
floating-point format. If you wish to change the typeout 
modes, the command format is: 

MODE list 

where list contains one or more of the modes in the 
following table. (Only the first character of each mode 
need be typed to identify it to FORDDT.) 

Mode Meaning 

F FLOATING-POINT 
D DOUBLE-PRECISION 
C COMPLEX 
I INTEGER 
o OCTAL 
A ASCII (left-justified) 
R RAseII (right-justified) 

A typical command string might be: 

MODE A,I,OCTAL 

Allows you to cause FORDDT to trace source lines, 
statement labels, and entry point names during execution 
of your program. This command will only provide trace 
facilities if the program was compiled with the FORTRAN-20 
/DEBUG switch. If this switch was not used, the NEXT 
command will act as a CONTINUE command. The command 
format is: 

NEXT n/sw 

where 

n a program variable or integer numeric value 
and 

sw one of the following switches 

/S= statement label 
/L= source line 
/E= entry point 

The default starting value of n is 1, a single statement 
trace. The default switch is /L. 

The command 

NEXT 20/L 

E-13 



OPEN 

PAUSE 

FORDDT 

will trace the execution of the next 20 source line 
numbers or until another pause is encountered. 

Note that if no argument is specified, the last argument 
given will be used. For example, 

NEXT /E 

will change the tracing mode to trace only subprogram 
entries using the numeric argument previously supplied. 

Allows you to open a particular program unit of the loaded 
program so that the variables will be accessible to 
FORDDT. Any previously opened program unit is closed 
automatically when a new one is opened. Only global 
symbols, symbols in the currently open unit, and unique 
locals are available at anyone time. Note that starting 
FORDDT automatically opens the MAIN program. The command 
format is: 

OPEN name 

where name is the subprogram name. OPEN with no arguments 
will reopen the MAIN program. 

If the PROGRAM statement was used in the FORTRAN program, 
the name supplied by you will be requested upon entering 
FORDDT. 

Allows you to place a pause request at a statement number, 
source line number, or subroutine entry point. Up to ten 
pauses may be set at anyone time. When a pause is 
encountered, execution is suspended at that point and 
control is returned to FORDDT. Also, when a pause is 
encountered, the symbol table of that subprogram is 
automatically opened. 

The command formats include: 

where 

PAUSE P 
PAUSE P AFTER n 
PAUSE P IF condition 
PAUSE P TYPING /g 
PAUSE P AFTER n TYPING /g 
PAUSE P IF condition TYPING /g 

P 
n 

the point where the pause is requested, 
an integer constant or variable or array 
element 

g a group number 

PAUSE 100 

will set a pause at statement label 100, cause 
to be suspended, and cause FORDDT to be 
reaching 100 in the program. 

PAUSE #245 AFTER MAX(5} 

will cause a pause to occur at source line 
after encountering this point the number 
specified by MAX(5}. Note that AFTER may 
abbreviated. 

E-14 

execution 
entered on 

number 245 
of times 

not be 



REMOVE 

START 

STOP 

FORDDT 

PAUSE DELTA IF LIMIT(3,l} .GT.2.5E-3 

If the variable LIMIT(3,l} is greater than the value 
2.5E-3, the pause request will be granted. The IF may not 
be abbreviated, but all the usual FORTRAN logical 
connectives are allowed. 

PAUSE 505 TYPING /5 

will request a pause to be made at the first occurrence of 
the label 505, and the variables in group 5 will be 
displayed. The TYPING specification may not be 
abbreviated. 

PAUSE LINE#24 AFTER 16 TYPING 3 

will place a request at source line number 24 after 16 
(octal) times through; however, the contents of group 3 
will be displayed every time. 

When the TYPING option is used with the PAUSE command, 
control can be transferred to FORDDT at the next typeout 
by typing any character on the terminal. 

Note that pause requests remain after a control C REENTER 
sequence, a START command, or a control C START sequence. 

Removes the previously requested pauses. 
format is: 

REMOVE P 

For example, 

REMOVE #123 

The command 

will remove a pause at program source line number 123. 

REMOVE ALPHA 

will remove a pause at the subroutine entry to ALPHA. 

REMOVE with no arguments will remove all your pause 
requests, and, in this case, no abbreviation of REMOVE is 
allowed. This prevents the unintentional removal of 
pauses. 

Starts your program at the normal FORTRAN main program 
entry point. The command format is: 

START 

Terminates the program, requests FOROTS to close all open 
files, and causes an exit to the monitor. The usual 
command format is: 

STOP 

STOP/RETURN 

will allow a return to monitor mode without releasing 
devices or closing files so that a CONTINUE can be issued. 

E-15 



STRACE 

TYPE 

wHAT 

FORDDT 

Displays a subprogram level backtrace of the current state 
of the program. The command format is: 

STRACE 

Causes one or more FORTRAN defined variables, arrays, or 
array elements to be displayed on your terminal. The 
command format is: 

TYPE list 

where list may be one or more variable or array references 
and/or group numbers. These specifications must be 
separated by commas, and group numbers must be preceded by 
a slash (/). The command with no arguments will use the 
last argument list submitted to FORDDT. 

An array element range can also be specified. For 
example: 

TYPE PI(S)-PI(13) 

will display the values from PI(S) to PI(13) inclusive. 
If an unsubscripted array name is specified, the entire 
array will be typed. 

There are several methods of choosing the form of typeout 
in conjunction with the MODE command. 

1. If you do not specify a format, the default is 
floating-point form. 

2. You can specify a format via the MODE command 
described in this appendix. 

3. You can change the format previously designated 
by the MODE command by including print modifiers 
in the TYPE or GROUP string. The print modifiers 
are: 

/A,/C,/D,/F,/I,/O,/R 

The first print modifier specified in a string of 
variables determines the mode for the entire 
string unless another mode is placed directly to 
the right of a particular variable. For example, 
in 

TYPE /IK,L/O,M,N/A,/2 

the typeout mode is integer until another mode is 
specified. Therefore, 

K,M,and/2 = Integer 
L OCTAL 
N = ASCII 

Displays the information saved by FORDDT. 
format is: 

The command 

WHAT 

E-16 



FORDDT 

E.7 ENVIRONMENT CONTROL 

If a program enters an indefinite loop, you can recover by typing a 
~C~C REENTER sequence. This action will cause FORDDT to simulate a 
pause at the point of reentry and allow you to control your run-away 
program. 

Most commands can be used once the program has been reentered; 
however, GOTO, STRACE, TYPE, and ACCEPT cause transfer of control to 
routines external to FORDDT. No guarantee can be made to ensure that 
any of these commands following a ~C~C REENTER sequence will not 
destroy the user profile. The program must be returned to a stable 
state before any of these four commands can be issued. In order to 
restore program integrity, you should set a pause at the next label 
and then CONTINUE to it. If the /DEBUG:TRACE switch was used, a NEXT 
1 command can be issued to restore program int8grity. 

E.8 FORTRAN-20/0PTIMIZE SWITCH 

You should never attempt to use FORDDT with a program that has been 
compiled with the /OPTIMIZE switch. The global optimizer causes 
variables to be kept in ACs. For this reason, attempts to examine or 
modify variables in optimized programs will not work. Also, since the 
optimizer moves statements around in your program, attempts to trace 
program flow will lead to great confusion. 

E.9 FORDDT MESSAGES 

FORDDT responds with two levels of messages - fatal error and warning. 
Fatal error messages indicate that the processing of a given command 
has been terminated. Warning messages provide helpful information. 
The format of these messages is: 

where 

?FDTXXX text 
or 

%FDTXXX text 

? 
% 
FDT 
XXX 
text 

fatal 
warning 
FORDDT mnemonic 
3-letter mnemonic for error message 
explanation of error 

Square brackets ([ ]) in this section signify variables and are not 
output on the terminal. 

Fatal Errors 

The fatal errors in the following list are each preceded by ?FDT on 
the user terminal and on listings. They are listed in alphabetical 
order. 

BDF [symbol] IS UNDEFINED OR IS MULTIPLY DEFINED 

BOI BAD OCTAL OUTPUT 

An illegal character was detected in an octal input value. 

E-l7 



FORDDT 

CCN CANNOT CONTINUE 

Pause has been placed on some form of skip instruction 
causing FORDDT to loop; should never be encountered in 
FORTRAN-20 compiled programs. 

CFO CORE FILE OVERFLOW 

The storage area for GROUP text has been exhausted. 

CNU THE COMMAND [name] IS NOT UNIQUE 

More letters of the command are required to distinguish it 
from the other commands. 

CSH CANNOT START HERE 

The specified entry point is not an acceptable FORTRAN-20 
main program entry point. 

DTO DIMENSION TABLE OVERFLOW 

FORDDT does not have the space to record any more array 
dimensions until some are removed. 

FCX FORMAT CAPACITY EXCEEDED 

An attempt was made to specify a FORMAT statement requiring 
more space than was originally allocated by FORTRAN-20. 

FNI FORMAL NOT INITIALIZED 

FNR 

Reference to a FORMAL parameter of some subprogram that was 
never executed. 

[array name] IS A FORMAL AND MAY NOT BE RE-DEFINED 

FORMAL parameters may not be DIMENSIONed. 

IAF ILLEGAL ARGUMENT FORMAT 

The parameters to the given command were not specified 
properly. Refer to the documentation for correct format. 

IAT ILLEGAL ARGUMENT TYPE = [number] 

An unrecognized subprogram argument type was detected. 
Submit an SPR if this message occurs. 

ICC COMPARE TWO CONSTANTS IS NOT ALLOWED 

Conditional test involves two constants. 

IER E (number) 

Internal FORDDT error - please report via an SPR. 

IGN INVALID GROUP NUMBER 

Group numbers must be integral and in the range 1 through S. 

INV INVALID VALUE 

A syntax error was detected in the numeric parameter. 

E-lS 



FORDDT 

ITM ILLEGAL TYPE MODIFIER - S 

LGU 

LNF 

MLD 

The mode S is only valid for ACCEPT statements. 

[array name] LOWER SUBSCRIPT.GE.UPPER 

The lower bound of any given dimension must be less than or 
equal to the upper bound. 

[label] IS NOT A FORMAT STATEMENT 

[array name] MULTI-LEVEL ARRAY DEFINITION NOT ALLOWED 

The same array cannot be dimensioned more than once (via the 
[dimensions] construct) in a single command. 

MSN MORE SUBSCRIPTS NEEDED 

The array is defined to have more dimensions than were 
specified in the given reference. 

NAL NOT ALLOWED 

An attempt has been made to modify something other than data 
or a FORMAT. 

NAR NOT AFTER A RE-ENTER 

NDT 

The given command is not allowed until program integrity has 
been restored via a CONTINUE or NEXT command. 

DDT NOT LOADED 

NFS CANNOT FIND FORTRAN START ADDRESS FOR [program name] 

NFV 

Main program symbols are not loaded. 

[symbol] IS NOT A FORTRAN VARIABLE 

Names must be 6-character alphanumeric strings beginning 
with a letter. 

NGF CANNOT GOTO A FORMAT STATEMENT 

NPH CANNOT INSERT A PAUSE HERE 

NSP 

NUD 

An attempt has been made to place a pause at other than an 
executable statement or subprogram entry point. 

[symbol] NO SUCH PAUSE 

An attempt has been made to REMOVE a pause that was never 
set up. 

[symbol] NOT A USER DEFINED ARRAY 

An attempt has been made to remove dimension information for 
an array that was never defined. 

PAR PARENTHESES REQUIRED ( .. ) 

Parentheses are required for the specification of FORMAT 
statements and complex constants. 

E-19 



FORDDT 

PRO TOO MANY PAUSE REQUESTS 

The PAUSE table has been exhausted. The maximum limit is 
10. 

SER SUBSCRIPT ERROR 

STL 

The subscript specified is outside the range of its defined 
dimensions. 

[array name] SIZE TOO LARGE 

An attempt has been made to define an array larger than 
256K. 

TMS TOO MANY SUBSCRIPTS 

The array is defined to have fewer dimensions than are 
specified in the given element reference. 

URC UNRECOGNIZED COMMAND 

Warning Messages 

Each warning message in this list is preceded by %FTN on your terminal 
and on listings. They are given here in alphabetical order. 

ABX [array name] COMPILED ARRAY BOUNDS EXCEEDED 

FORDDT has detected another symbol defined in the specified 
range of the array. Note that this will occur in certain 
EQUIVALENCE cases and can be ignored at that time. 

CHI CHARACTERS IGNORED: "[text]" 

The portion of the command string included in "text" was 
thought to be extraneous and was ignored. 

NAR [symbol] IS NOT AN ARRAY 

NSL NO SYMBOLS LOADED 

FORDDT cannot find the symbol table. 

NST NOT STARTED 

The specified command requires that a START be previously 
issued to ensure that the program is properly initialized. 

POV PROGRAM OVERLAYED 

The symbol table is different from the last time FORDDT had 
control. 

SFA SUPERSEDES FlO ARRAY 

The generated dimension is being superseded for the given 
array. 

SPO VARIABLE IS SINGLE-PRECISION ONLY 

XPA ATTEMPT TO EXCEED PROGRAM AREA WITH [symbol name] 

An attempt has been made to access memory outside the 
currently defined program space. 

E-20 



APPENDIX F 

COMPILER MESSAGES 

FORTRAN-20 responds with two levels of messages fatal error and 
warning. If a warning message is received, the compilation will 
continue, but a fatal error will stop the program f+om being compiled. 
The format of messages is: 

where 

?FTNXXX LINE:n text 
or 

%FTNXXX LINE:n text 

? 
% 
FTN 
XXX 
LINE:n 
text 

fatal 
warning 
FORTRAN mnemonic 
3-letter mnemonic for the error message 
line number where error occurred 
explanation of error 

Square brackets ([ ]) in this appendix signify variables and are not 
output on the terminal. 

Fatal Errors 

Each fatal error in the following list is preceded by ?FTN on the user 
terminal and on listings. They are presented here in alphabetical 
order. 

ABD [symbolname] HAS ALREADY BEEN DEFINED [definition] 

The usage given conflicts with current information about the 
symbol. For example, a symbol defined in an EQUIVALENCE 
statement cannot be referenced as a subprogram name. 

ATL ARRAY [name] TOO LARGE 

The total amount of memory necessary to accommodate this 
array is greater than 5l2P. 

AWN ARRAY REFERENCE [name] HAS WRONG NUMBER OF SUBSCRIPTS 

The array was defined to have more or fewer dimensions than 
the given reference. 

BOV STATEMENT TOO LARGE TO CLASSIFY 

To determine statement type, some portion of the statement 
must be examined by the compiler before actual semantic and 
syntactic analysis begins. During this classification the 
entire portion of the required statement must fit into the 

F-l 



COMPILER MESSAGES 

internal statement buffer (large enough for a normal 20-line 
statement). This error message is issued when the portion 
of a given statement required for classification is too 
large to fit in the buffer. Once FORTRAN-20 has classified 
a statement, there is no explicit restriction on its length. 

CER COMPILER ERROR IN ROUTINE [name] 

Submit an SPR for any occurrence of this message. 

CFF CANNOT FIND FILE 

The file referenced in an INCLUDE statment was not found. 

CPE CHECKSUM OR PARITY ERROR IN [source/listing/object] FILE 
[name] 

CQL NO CLOSING QUOTE IN LITERAL 

CSF ILLEGAL STATEMENT FUNCTION REFERENCE IN CALL STATEMENT 

DDA [symbolname] IS DUPLICATE DUMMY ARGUMENT 

DFC VARIABLE DIMENSION [name] MUST BE SCALAR, DEFINED AS FORMAL 
OR IN COMMON 

DFD DOUBLE [type] NAME ILLEGAL 

Duplicate fields were encountered in an INCLUDE file 
specification. 

DIA DO INDEX VARIABLE [name] IS ALREADY ACTIVE 

In any nest of DO loops, a given index variable may not be 
defined for more than one loop. 

DID CANNOT INITIALIZE A DUMMY PARAMETER IN DATA 

DLN OPTIONAL DATA VALUE LIST NOT SUPPORTED 

The extended FORTRAN statement form that allows data values 
to be defined in type specification statements is not 
supported by FORTRAN-20. 

DNL IMPLIED DO SPECIFICATION WITHOUT 
VARIABLES 

ASSOCIATED 

DPR DUMMY PARAMETER [name] REFERENCED BEFORE DEFINITION 

DSF ARGUMENT [name] IS SAME AS FUNCTION NAME 

LIST 

DTI THE DIMENSIONS OF [arrayname] MUST BE OF THE TYPE INTEGER 

DVE CANNOT USE DUMMY VARIABLE IN EQUIVALENCE 

DWL [source/listing/object] DEVICE [[device]] WRITE LOCKED 

ECT ATTEMPT TO ENTER [symbolname] INTO COMMON TWICE 

EDN EXPRESSION TOO DEEPLY NESTED TO COMPILE 

EID ENTRY STATEMENT ILLEGAL INSIDE A DO LOOP 

ElM ENTRY STATEMENT ILLEGAL IN MAIN PROGRAM 

F-2 

OF 



COMPILER MESSAGES 

ENF LABEL [number] MUST REFER TO AN EXECUTABLE STATEMENT, NOT A 
FORMAT 

ETF ENTER FAILURE [filename] 

EXB EQUIVALENCE EXTENDS COMMON BLOCK [name] BACKWARD 

FEE FOUND [symbol] WHEN EXPECTING EITHER [symbol] OR A [symbol] 

General syntax error message. 

FNE LABEL [number] MUST REFER TO A FORMAT, NOT AN EXECUTABLE 
STATEMENT 

FWE FOUND [symbol] WHEN EXPECTING [symbol] 

HDE HARDWARE DEVICE ERROR ON [source/listing/object] DEVICE 
[ [device] ] 

lAC ILLEGAL ASCII CHARACTER [character] IN SOURCE 

IAL INCORRECT ARGUMENT TYPE FOR LIBRARY FUNCTION [name] 

IBK ILLEGAL STATEMENT IN BLOCKDATA SUBPROGRAL1 

ICL ILLEGAL CHARACTER [character] IN LABEL FIELD 

IDN DO LOOP AT LINE: [number] IS ILLEGALLY NESTED 

You are attemping to terminate a DO loop before terminating 
one or more loops defined after the given one. 

IDS IMPLICIT DO INDICES MAY NOT BE SUBSCRIPTED 

IDT ILLEGAL OR MISSPELLED DATA TYPE 

IDV IMPLIED DO INDEX IS NOT A VARIABLE 

lED INCONSISTENT EQUIVALENCE DECLARATION 

The given EQUIVALENCE declaration would cause some symbolic 
name to refer to more than one physical location. 

IFD INCLUDED FILES MUST RESIDE ON DISK 

lID NON-INTEGER IMPLIED DO INDEX 

lIP ILLEGAL IMPLICIT SPECIFICATION PARAMETER 

lIS INCORRECT INCLUDE SWITCH 

ILF ILLEGAL STATEMENT AFTER LOGICAL IF 

Refer to Section 9.3.2 for restrictions on logical IF object 
statements. 

INN INCLUDE STATEMENTS MAY NOT BE NESTED 

IOD ILLEGAL STATEMENT USED AS OBJECT OF DO 

ISD ILLEGAL SUBSCRIPT EXPRESSION IN DATA STATEMENT 

Subscript expressions may be formed only 
indices and constants combined with +, -

F-3 

with implicit 
*, or /. 

DO 



COMPILER MESSAGES 

ISN [symbolname] IS NOT [symbol type] 

The symbol cannot be used in the attempted manner. 

IUT PROGRAM UNITS MAY NOT BE TERMINATED WITHIN INCLUDED FILES 

IVP INVALID PPN 

IXM ILLEGAL MIXED MODE ARITHMETIC 

Complex and double-precision cannot appear in the same 
expression. 

IZM ILLEGAL [datatype] SIZE MODIFIER [number] 

Refer to Section 6.3. 

LAD LABEL [number] ALREADY DEFINED AT LINE: [number] 

LED ILLEGAL LIST DIRECTED [statement type] 

LFA LABEL ARGUMENTS ILLEGAL IN FUNCTION OR ARRAY REFERENCE 

LGB LOWER BOUND GREATER THAN UPPER BOUND FOR ARRAY [name] 

LLS LABEL TOO LARGE OR TOO SMALL 

Labels cannot be 0 or greater than 5 digits. 

LNI LIST DIRECTED I/O WITH NO I/O LIST 

LTL TOO MANY ITEMS IN LIST - REDUCE NUMBER OF ITEMS 

In rare instances, a combination of long lists in a single 
statement can exhaust the syntax stack. 

MCE MORE THAN I COMMON VARIABLE IN EQUIVALENCE GROUP 

MSP STATEMENT NAME MISSPELLED 

MWL ATTEMPT TO DEFINE MULTIPLE RETURN WITHOUT FORMAL LABEL 
ARGUMENTS 

NCF NOT ENOUGH CORE FOR FILE SPECS. TOTAL K NEEDED= [number] 

NEX NO EXPONENT AFTER D OR E CONSTANT 

NFS NO FILENAME SPECIFIED 

The INCLUDE statement requires a filename. 

NIO NAMELIST DIRECTED I/O WITH I/O LIST 

NGS CANNOT GET SEGMENT [name] - ERROR CODE: [number] 

Refer to the Monitor Calls User's Guide for full description 
of codes. 

NIR REPEAT COUNT MUST BE AN UNSIGNED INTEGER 

NIU NON-INTEGER UNIT IN I/O STATEMENT 

NLF WRONG NUMBER OF ARGUMENTS FOR LIBRARY FUNCTION [name] 

F-4 



COMPILER MESSAGES 

NNF NO STATEMENT NUMBER ON FORMAT 

NRC STATEMENT NOT RECOGNIZED 

NUO .NOT. IS A UNARY OPERATOR 

NWD INCORRECT USE OF * OR? IN [filename] 

OPW OPEN PARAMETER [name] IS OF WRONG TYPE 

PD6 FORTRAN WILL NOT RUN ON A PDP-6 

PIC THE DO PARAMETERS OF [index name] MUST BE INTEGER CONSTANTS 

PRF PROTECTION FAILURE [filename] 

PTL PROGRAM TOO LARGE 

The program takes up more than 5l2P 

QEF QUOTA EXCEEDED OR DISK FULL [filename] 

QEX BLOCK TOO LARGE OR QUOTA EXCEEDED FOR 
[source/listing/object] FILE [name] 

RDE RIB OR DIRECTORY ERROR [filename] 

RFC [function name] IS A RECURSIVE FUNCTION CALL 

RIC COMPLEX CONSTANT CANNOT BE USED TO REPRESENT THE REAL OR 
IMAGINARY PART OF A COMPLEX CONSTANT 

SAD ARRAY [name] - SIGNED DIMENSIONS MAY APPEAR ONLY AS CONSTANT 
RANGE LIMITS 

SNL [statement name] STATEMENTS MAY NOT BE LABELED 

SOR SUBSCRIPT OUT OF RANGE 

TFL TOO MANY FORMAT LABELS SPECIFIED 

TOF MORE THAN 2 OUTPUT FILES ARE NOT ALLOWED 

Only a listing and a relocatable binary file may be 
specified as output files. 

UCE USER CORE EXCEEDED 

UMP UNMATCHED PARENTHESES 

USI [symbol type] [symbol name] USED INCORRECTLY 

The given symbol cannot be used in this way. 

VNA SUBSCRIPTED VARIABLE IN EQUIVALENCE BUT NOT AN ARRAY 

VSE EQUIVALENCE SUBSCRIPTS MUST BE INTEGER CONSTANTS 

VSO VARIABLE DIMENSION ALLOWED IN SUBPROGRAMS ONLY 

F-5 



COMPILER MESSAGES 

Warning Messages 

Each warning message in the following list is preceded by %FTN on the 
user terminal and on listings. They are presented here in 
alphabetical order. 

AGA OPT - OBJECT VARIABLE, OF ASSIGNED GOTO WITHOUT OPTIONAL 
LIST~ WAS NEVER ASSIGNED 

CAl COMPLEX EXPRESSION USED IN ARITHMETIC IF 

CTR COMPLEX TERMS USED IN A RELATIONAL OTHER THAN EQ OR NE 

The result of the other relational operators with complex 
operands is undefined. 

CUO CONSTANT UNDERFLOW OR OVERFLOW 

This message is issued when overflow or underflow is 
detected as the result of building constants or evaluating 
constant expessions at compile time. 

DIM POSSIBLE DO INDEX MODIFIED INSIDE LOOP 

A program that does this may be incorrectly compiled by the 
optimizer, since it assumes that indices are never modified. 
Note that the number of iterations is calculated at the 
beginning of the loop and is never affected by modification 
of the index within the loop. 

DIS OPT - PROGRAM IS DISCONNECTED - OPTIMIZATION DISCONTINUED 

Submit an SPR if this message occurs. 

DXB DATA STATEMENT EXCEEDS BOUNDS OF ARRAY [name] 

FMR MULTIPLE RETURNS DEFINED IN A FUNCTION 

FNA A FUNCTION WITHOUT AN ARGUMENT LIST 

ICC ILLEGAL CHARACTER, CONTINUATION FIELD OF INITIAL LINE 

Continuation lines cannot follow comment lines. 

ICD INACCESSIBLE CODE. STATEMENT DELETED 

The optimizer will delete statements that cannot be reached 
during execution. 

ICS ILLEGAL CHARACTER IN LINE SEQ# 

IDN OPT - ILLEGAL DO NESTING - OPTIMIZATION DISCONTINUED 

A GO TO within a DO loop goes to the ending statement of an 
inner, nested DO loop. The line number printed out with the 
warning message is that of the OUTER DO. 

DO 

GO TO 

F-6 



COMPILER MESSAGES 

DO 

CONTINUE 

CONTINUE 

IFL OPT - INFINITE LOOP. OPTIMIZATION DISCONTINUED 

LID IDENTIFIER [name] MORE THAN SIX CHARACTERS 

The remaining characters are ignored. 

MVC NUMBER OF VARIABLES DOES NOT EQUAL THE NUMBERS OF CONSTANTS 
IN DATA STATEMENT 

NED NO END STATEMENT IN PROGRAM 

NOD GLOBAL OPTIMIZATION NOT SUPPORTED WITH /DEBUG - /OPT IGNORED 

NOF NO OUTPUT FILES GIVEN 

PPS PROGRAM STATEMENT PARAMETERS IGNORED 

For compatibility purposes. 

RDI ATTEMPT TO REDECLARE IMPLICIT TYPE 

SOD [name] STATEMENT OUT OF ORDER 

VAl [name] ALREADY INITIALIZED 

VND FUNCTION RETURN VALUE IS NEVER DEFINED 

VNI OPT - VARIABLE [name] IS NOT INITIALIZED 

The optimizer analysis determined that the given variable 
was never initialized prior to its use in a calculation. 

WOP OPT - WARNING GIVEN IN PHASE 1. OPTIMIZED CODE MAY NOT BE 
CORRECT 

One or more of the messages issued prior to this message 
resulted from situations that violate assumptions made by 
the optimizer and thus may cause it to generate code that 
does not execute as desired. 

XCR EXTRANEOUS CARRIAGE RETURN 

Carriage return was not immediately preceded or followed by 
a line termination character. 

ZMT SIZE MODIFIER [number] TREATED AS [data type] 

Message is issued when one of the data type size modifiers 
is used that is accepted only for compatibility. 

F-7 



COMPILER MESSAGES 

Internal Compiler errors 

An internal compiler error is either an attempt by the compiler or the 
monitor to document an error inside the FORTRAN compiler. An 
occurrence of an internal compiler error signifies that something is 
wrong with the FORTRAN-20 compiler. 

Monitor-detected internal errors are of the form 

[message] AT LOCATION [address] IN PHASE [segment] 

WHILE PROCESSING STATEMENT [line-number] 

where [message] can be one of 

ILLEGAL MEMORY REFERENCE 

STACK EXHAUSTED 

MEMORY PROTECTION VIOLATION 

Compiler-detected errors are of the form 

? INTERNAL COMPILER ERROR PROCESSING STATEMENT NUMBER [line-number] 

? CALL TO [routine-name] FROM [address] 

Submit an SPR if you received an internal compiler error. 

F-8 



APPENDIX G 

FOROTS ERROR MESSAGES 

Errors detected at run-time by FOROTS fall into the following 
categories: 

1. system errors (SYS) - errors internal to FOROTS 

2. open errors (OPN) - I/O errors that occur during file OPEN 
and CLOSE 

3. arithmetic fault 
calculations 

errors (APR) - errors in numeric 

4. library errors (LIB) - errors generated by FORLIB library 
routines 

5. data errors (DAT) - errors in data conversion on I/O 

6. device errors (DEV) - I/O hardware errors 

APR and LIB errors are usually reported as warnings and the program 
continues. The number of APR and LIB errors listed on the user's 
terminal can be changed by the FORTRAN Library Subroutine ERRSET. See 
Table 15-3 for details. The I/O errors (SYS, OPN, DAT, and DEV) 
either cause messages to be printed on the terminal or can be trapped 
by an error exit argument (ERR=statement label) on OPEN, READ, WRITE, 
and CLOSE. 

Table G-l gives the text of the messages which can be printed for SYS, 
OPN, DAT, and DEV errors. The included footnotes give additional 
information. Table G-2 gives the text of the messages which can be 
printed for APR and LIB errors. 

The FORTRAN Library Subroutine ERRSNS allows you to find out which I/O 
error occurred. When called, ERRSNS returns one or two integer values 
that describe the status of the last I/O operation performed by 
FOROTS. (The second integer value is optional.) 

CALL ERRSNS (I,J) 

calls this subroutine. J is the second, optional integer value. 

G-1 



FOROTS ERROR MESSAGES 

Table G-l 
FOROTS I/O Error Messages and ERRSNS Returned Values 

First 
Value 

o 

1 

23 

24 

25 

26 

28 

29 

30 

Second 
Value 

o 
101 

243 
246 

312 

308 

302 

311 

252 

254 
262 
268 

250 

237 

238 
240 
242 
245 
248 
249 
251 

253 

Explanation 

No error detected 
Satisfactory completion (no error detected) 
Normal end of job (1) 
Invalid error call 
Unidentified entry in FORERR (3) 
Unidentified entry in FORERR (3) 
Backspace error 
BACKSPACE illegal for device (9) 
End-of-file during READ 
Attempt to READ beyond valid input (8) 
Invalid record number 
LSCW illegal in binary record or reading 
ASCII; or attempt to read unwritten ASCII 
RANDOM ACCESS record or unwritten or 
destroyed record number 
Direct access not specified 
Cannot RANDOM ACCESS a SEQUENIAL file 
CLOSE error 
DTA directory is full (2) or protection 
error 
Rename file already exists (2) 
No room or quota exceeded (2) 
Cannot delete or rename a non-empty 
directory (2) 
No such file 
File was not found 
OPEN failure 
DUMP mode RANDOM or APPEND access not 
implemented; try IMAGE MODE 
DIALOG file cannot be opened (3) 
Record length missing for RANDOM ACCESS 
Too many devices open: fifteen maximum 
Device not available (2) 
Illegal ACCESS for device (2) 
Illegal MODE or MODE switch (2) 
No directory for project, programmer 
number (2) 
File was being modified (2) 

1. Not currently implemented. 

2. OPEN errors 251 through 276 map directly onto error numbers 
returned by the OPEN UUO; see the Monitor Calls Manual. 

3. Error cannot currently occur. 

8. Occurs when simulating mag tape output; SKIP RECORD and SKIP FILE 
are illegal. Also occurs when a non-existent file is opened in MODE= 
SEQINOUT and the first operation on that file is a READ. 

9. Occurs if OPEN output with BACKSPACE is not a mag tape or disk. 

G-2 



FOROTS ERROR MESSAGES 

Table G-l (Cont.) 
FOROTS I/O Error Messages and ERRSNS Returned Values 

First 
Value 

31 

32 

39 

42 

45 

47 

59 

62 

63 

Second 
Value 

255 
256 
259 
265 
266 
267 
269 
270 
271 
272 
274 
277 

315 

239 

310 

244 
260 

241 

263 

313 

301 
306 
314 

305 

Explanation 

Illegal sequence of Monitor Calls (11) 
Bad UFD or bad RIB (2) 
Device not available (2) 
Partial allocation only (2) 
Block not free on allocation (2) 
Cannot supersede an existing directory (2) 
SFD not found (2) 
Search list empty (2) 
SFD nested too deeply (2) 
No CREATE flag for specified UFD (2) 
File cannot be updated (2) 
LOOKUP ENTER or RENAME error (2) 
Mixed access modes 
Cannot do SEQUENTIAL ACCESS on a RANDOM 
file 
Invalid logical unit number 
Illegal FORTRAN unit number (2) 
Error during READ 
REREAD before first READ is illegal (1) 
Device handler not resident 
No such device (2) 
No such device (2) 
OPEN statement keyword error 
Switch error during DIALOG or OPEN 
statement scan (2) 
write on read-only file 
Write-lock error (2) 
List-directed I/O syntax error 
Illegal delimiter in LIST DIRECTED input 
Syntax error in FORMAT 
Illegal character in FORMAT statement (4) 
I/O list without data conversion in FORMAT 
Missing width field for A or R on input 
Output conversion error 
Optional * fill: unidentified entry in 
FORERR (7) 

1. Not currently implemented. 

2. OPEN errors 251 through 276 map directly onto error numbers 
returned by the OPEN UUO; see the Monitor Calls Manual. 

4. In runtime FORMAT. 

7. * fill controlled by compile-time variable ASTFIL. 

11. Can occur on OPEN (MODE= 'APPEND') when file is found in LIB: or 
on [1,4] when device specified was SYS: and /NEW was in your search 
list. 

G-3 



FOROTS ERROR MESSAGES 

Table G-l (Cont.) 
FOROTS I/O Error Messages and ERRSNS Returned Values 

First 
Value 

64 

67 

81 

699 

799 

899 

999 

Second 
Value 

303 
307 

304 

102 
261 

247 
257 
258 
264 
273 
275 
276 

309 

400 
401 
402 
403 

404 
407 

100 
103 
104 
105 

106 

Explanation 

Input conversion error 
Checksum error reading binary records (5) 
Illegal character in data 
Record too small for I/O list 
I/O list greater than record size (6) 
Invalid argument 
Argument block not in correct format 
Argument block not in correct format (2) 
Unclassifiable error on OPEN 
FOROTS system error (2,3) 
FOROTS system error (2) 
FOROTS system error (2) 
Not enough monitor table space (2) 
FOROTS system error (2) 
FOROTS system error (2) 
FOROTS system error (2) 
Unclassifiable data error 
Variable cannot be found in NAMELIST block 
Unclassifiable device errors 
write protected 
Device error 
Parity error 
Block too large, quota exceeded, or file 
structure full. Nonexistent CDR reader. 
Spooled CDR file does not exist. 
End-of-file (10) 
End-of-tape 
Unclassified system error 
FOROTS system error 
Monitor not build to support FOROTS 
Fatal error 
User program has requested more code than 
is available 
Run time memory management error 

2. OPEN errors 251 through 276 map directly onto error numbers 
returned by the OPEN UUO; see the Monitor Calls Manual. 

3. Error cannot currently occur. 

5. Checksumming controlled by compile-time variable CHKSUM. 

6. Occurs when a type 2 LSCW is found in a FORSE binary record. 

10. Trappable if there is no END= clause. 

G-4 



FOROTS ERROR MESSAGES 

Table G-2 
FOROTS Arithmetic and Library Error Messages 

APR LIB 

Integer Overflow Attempt to take DLOG of Negative Arg. 

Integer Divide Check Attempt to take DSQRT of Negative Arg. 

Illegal APR Trap ACOS of Arg. > 1.0 in Magnitude 

Floating Divide Check ASIN of Arg. > 1.0 in Magnitude 

Floating Underflow Attempt to take SQRT of Negative Arg. 

Attempt to take LOG of Negative Arg. 

G-5 





APPENDIX H 

DECSYSTEM-lO COMPATIBILITY 

The following items are included in the DECsystem-20 FORTRAN software 
for compatibility with the DECsystem-lO. They are not supported on 
the DECsystem-20. Users must not specify these items because their 
actions are undefined and the results cannot be guaranteed. 

1. Logical Device Assignments. 
(Refer to pages 10-4 and E-27.) 

Device Logical unit number 

PTR 
PTP 
DIS 
DTAI 
DTA2 
DTA3 
DTA4 
DTA5 
DTA6 
DTA7 

2. PUNCH Statement 

06 
07 
08 
09 
10 
11 
12 
13 
14 
15 

3. KAlO and KIlO compiler switches 

4. The following Library Subroutines: 

SLITE(i) 
SLITET(i,j) 
SSWTCH(i,j) 

5. DDT command to FORDDT. 

H-l 

Use 

Paper Tape Reader 
Paper Tape Punch 
Display 
DEC tape 

DEC tape 





A format descriptor, 13-12 
ABS, 15-4 
ACCEPT statement, 10-18 
ACCEPT transfer, 

formatted, 10-18 
into FORMAT statement, 10-19 

ACCESS in file control 
statement, 12-3 

Accumulator usage, C-10 
Accuracy of double-precision 

numbers, C-1 
ACOS function, 15-10 
Addition, 4-1 
Adjustable dimensions, 6-2 
AlMAG, 15-4 
AINT, 15-4 
ALL with DEBUG, B-3 
Allocation, 

register, C-7 
ALOG function, 15-9 
ALOG10 function, 15-9 
Alphanumeric data transfer, 

13-12 
Alphanumeric FORMAT field 

descriptor, 13-11 
AMAX,0, 15-5 
AMAX1, 15-5 
AMIN,0, 15-5 
AMIN1, 15-5 
AMOD, 15-5 
.AND., 4-5 
ANSI standard, 1-1 
APPEND with ACCESS, 12-4 
Argument, 

subprogram, 15-1 
Argument type, 

COBOL/FORTRAN, C-12 
Arithmetic, 

mixed-mode, 4-2 
Arithmetic assignment statement, 

8-1 
Arithmetic expression, 4-1 
Arithmetic IF statement, 9-3 
Arithmetic operator, 4-1 
Array, 3-7 

dimensioning, 3-9, C-4 
Array elements, 

storage of, 3-10 
Array subscript, 3-8 
ASCII with MODE, 12-4 
ASCIZ string, C-14 
ASIN function, 15-10 
ASSIGN statement, 8-4 
Assigned GOTO statement, 9-2 

INDEX 

Assignment statement, 
arithmetic, 8-1 
label, 8-4 
logical, 8-4 
mixed-mode, 8-1 

ASSOCIATE VARIABLE in file 
control statement, 12-8 

ATAN function, 15-10 
ATAN2 function, 15-10 
AXIS subroutine, 15-17 

BACKFILE statement, 14-3 
BACKSPACE statement, 14-2 
BASIC, 

input from, 2-6 
Basic external function subpro-

gram, 15-7 
BINARY with MODE, 12-4 
Blank line, 2-6 
BLOCK DATA statement, 16-1 
BLOCK SIZE in file control 

statement, 12-8 
Block data subprogram, 16-1 
BOUNDS with DEBUG, B-3 
BUFFER COUNT in file control 

statement, 12-8 

CABS, 15-4 
Call, 

FUNCTION, 15-14 
subroutine, 15-11 

CALL statement, 15-11 
Carriage control character, 13-16 
Category, 

statement, 1-1 
CCOS function, 15-9 
CEXP function, 15-9 
Character code, A-1 
Character set, 2-1 
Character set with MODE, 12-4 
Characters, 

line formatting, 2-2 
line termination, 2-2 

CLOG function, 15-9 
CLOSE statement, 12-1 
CLOSE statement summary, 12-10 
CMPLX, 15-4 
COBOL, 

interaction with, C-18 

Index-1 



INDEX (CONT . ) 

COBOL/FORTRAN argument type, C-12 
Command, 

COMPILE, B-4 
DEBUG, B-4 
EXECUTE, B-4 
LOAD, B-4 

Comment line, 2-5 
Common block name, 6-5 
COMMON statement, 6-5 
Compatibility with FORTRAN-10, 

H-l 
COMPIL in FOROTS, D-2 
Compilation control statement, 5-1 
COMPILE command, B-4 
Compiler commands, B-4 
Compiler generated variable, B-6 
Compiler switches, B-1 
Compiler version, B-8 
Complex constant, 3-3 
Complex format, 13-4 
COMPLEX statement, 6-3 
Computation, 

redundant, C-5 
reordering, C-3 

Computation in DO-loop, 
constant, C-6 

Computed GO TO statement, 9-2 
CONJG function, 15-10 
Constant, 3-1 

complex, 3-3 
double-precision, 3-3 
integer, 3-2 
label, 3-6 
literal, 3-5 
logical, 3-5 
octal, 3-4 
real, 3-2 

Constant computation in DO-loop, 
C-6 

Constant folding, C-7 
Constant propagation, C-7 
Continuation field, 

line, 2-3 
Continuation line, 2-4 
Continue (G) option after PAUSE, 

9-11 
CONTINUE statement, 9-10 
Control statement, 9-1 

compilation, 5-1 
Control-Z, 2-1 
COS function, 15-9 
COSD function, 15-9 
COSH function, 15-10 
CROSSREF switch, B-2 
CSIN function, 15-9 
CSQRT function, 15-9 

D (double-precision notation) , 
3-3 

D format descriptor, 13-4 
DABS, 15-4 
.DAT extension, 12-5 
Data files, 

FOROTS, D-4 
DATA statement, 7-1 
Data transfer operations, 10-1 
Data type, 3-1 
DATAN function, 15-10 
DATAN2 function, 15-10 
DATE subroutine, 15-17 
DBLE, 15-4 
DCOS function, 15-9 
DEBUG command, B-4 
Debug line, 2-6 
DEBUG switch, B-2, B-3 
Debugger, 

FORDDT, E-l 
Debugger code size, B-4 
DECODE statement, 10-21 
DEFAULT, B-15 
DEFINE FILE subroutine, 15-17 
DELETE with DISPOSE, 12-5-
DENSITY in file control state-

ment, 12-9 
Descriptor, 

G format, 13-7 
Device control statement, 14-1 
Device control statement 

summary, 14-3 
DEVICE in file control state­

ment, 12-2 
Device number, 

logical, 10-3 
DEXP function, 15-9 
DFLOAT, 15-4 
DIALOG in file control state-

ment, 12-9 
DIM, 15-5 
DIMENSION statement, 6-1 
Dimensioning, 

array in COMMON, 6-7 
Dimensioning array, 3-9, C-4 
Dimensions, 

adjustable, 6-2 
DIMENSIONS with DEBUG, B-3 
Directory, 

sub-file, 12-6 
user file, 12-6 

DIRECTORY, 
in file control statement, 

12-6 
DISPOSE in file control state­

ment, 12-5 

Index-2 



INDEX (CONT . ) 

Division, 4-1 
DLOG function, 15-9 
DLOGIO function, 15-9 
DMAXl, 15-5 
DMINl, 15-5 
DMOD, 15-5 
DO statement, 9-5 
DO-loop, 

constant computation in, C-6 
execution, 9-6 
extended range, 9-S 
floating-point, C-2 
implied in I/O list, 10-5 
nested, 9-6 
parameters, 9-6 
permitted transfers, 9-9 
range, 9-5 

DO-loop iteration, C-2 
DO-loop replacement, C-S 
DOUBLE PRECISION statement, 6-3 
Double-precision constant, 3-3 
Double-precision format, 13-4 
Double-precision numbers, 

accuracy of, C-l 
range of, C-l 

DSIGN, 15-5 
DSIN function, 15-9 
DSQRT function, 15-9 
Dummy argument, 

subprogram, 15-1 
DUMP subroutine, IS-IS 
DUMP with MODE, 12-4 

E (exponential notation), 3-2 
E format descriptor, 13-4 
EDIT program, 2-6 
ENCODE statement, 10-21 
END argument in I/O statement, 

10-10 
END FILE statement, 14-2 
END statement, 5-2, 15-6 
ENTER in FOROTS, C-lS 
ENTRY statement, 15-15 
.EQ., 4-7 
EQUIVALENCE statement, 6-7 
.EQV., 4-5 
ERR argument in I/O statement, 

10-10 
ERR in file control statement, 

12-10 
Error, 

fatal, B-17 
Error processing, 

FOROTS, 0-3 
Error reporting, B-17 
ERRSET subroutine, 15-19 

ERRSNS subroutine, 15-19 
Evaluation of expression, 4-9 
EVEN with PARITY, 12-9 
Executable statement, 1-1 
EXECUTE command, B-4 
Execution on non-DEC machines, 

C-l 
Exit (X) option after PAUSE, 

9-11 
EXIT subroutine, 15-19 
EXP function, 15-9 
EXPAND switch, B-2 
Exponential notation, 3-2 
Exponentiation, 4-1 

permitted, 4-4 
Expression, 

arithmetic, 4-1 
evaluation of, 4-9 
logical, 4-4 
mixed-mode, 4-10, 4-11 
nested, 4-9 
relational, 4-7 

External function subprogram, 
15-6 

basic, 15-7 
EXTERNAL statement, 6-S 

F format descriptor, 13-4 
. FALSE., 3-5 
Fatal error, B-17 
Field, 

label, 2-3 
line continuation, 2-3 
remarks, 2-4 
statement, 2-3 

Field descriptor, 
alphanumeric FORMAT, 13-11 
FORMAT, 13-2 
logical FORMAT, 13-10 
numeric FORMAT, 13-4 

File, 
directory subfile, 12-6 
FOROTS data, 0-4 
non-FORTRAN, C-9 

File control statement, 12-1 
File directory, 

user, 12-6 
FILE in file control statement, 

12-5 
FILE SIZE in file control state-

ment, 12-S 
FIND statement, 10-21 
FLOAT, 15-4 
Floating-point DO-loop, C-2 
Folding, 

constant, C-7 

Index-3 



INDEX (CaNT.) 

FORDDT debugger, E-l 
FORDDT messages, E-17 
FORMAT field descriptor, 

alphanumeric, 13-11 
logical, 13-10 
numeric, 13-4 
record formatting, 13-15 

FORMAT statement, 13-1 
ACCEPT transfer into, 10-19 
transfer into, 10-3 

FORMAT statement descriptor, 
13-2 

Formatted ACCEPT transfer, 10-18 
Formatted READ transfer, 

random access, 10-13 
sequential, 10-11 

Formatted WRITE transfer, 
random access, 10-17 
sequential, 10-16 

FOROTS, 
using, D-13 

FOROTS data files, D-4 
FOROTS error processing, D-3 
FOROTS features, D-2 
FOROTS hardware requirements, 

D-l 
FOROTS input/output facility, 

D-3 
FOROTS messages, G-l 
FOROTS software requirements, 

D-l 
FOROTS/LINK interface, D-28 
FORTRAN compiler, B-1 
FORTRAN messages, F-l 
FUNCTION call, 15-14 
Function references, 

order, C-8 
FUNCTION statement, 15-6 
Function subprogram, 

basic external, 15-7 
external, 15-6 
intrinsic, 15-3 
statement, 15-3 

Function subprogram structure, 
15-7 

FUNCTION type, 15-6 

G (option after PAUSE), 9-11 
G format descriptor, 13-4, 13-7 
.GE., 4-7 
General (G) numeric format, 

13-7 
GETOVL in LINK, C-20 
Global optimization, C-4 

GOTO statement, 9-1 
assigned, 9-2 
computed, 9-2 
unconditional, 9-1 

• GT., 4-7 

H (literal notation), 3-5 
H format descriptor, 13-12 
Hardware requirements, 

FOROTS, D-l 
Hierarchy of operators, 4-9 
Hollerith literal, 3-5 

I format descriptor, 13-4 
I/O list, 10-5 
lABS, 15-4 
IDIM, 15-5 
IDINT, 15-4 
IF statement, 9-3 

arithmetic, 9-3 
logical, 9-4 

IF IX , 15-4 
ILL subroutine, 15-19 
IMAGE with MODE, 12-4 
IMPLICIT statement, 6-5 
In I/O list DO-loop, 

implied, 10-6 
Inaccessible code, C-7 
INCLUDE statement, 5-1 
INCLUDE switch, B-2 
INDEX with DEBUG, B-3 
INIOVL in LINK, C-20 
Initial line, 2-4 
Input, 

line-sequence, 2-6 
Input from BASIC, 2-6 
Input from EDIT, 2-6 
Input/output facility, 

FOROTS, D-3 
Input/output list, 10-2 

NAMELIST, 10-10 
Input/output optimization, C-8 
Input/output, 

format, 10-2 
list-directed, 10-8 
statement, 10-1 
summary, 10-24 

INT, 15-4 
Integer constant, 3-2 
Integer format, 13-4 

Index-4 



INDEX (CONT.) 

INTEGER statement, 6-3 
Intrinsic function subprogram, 

15-3 
ISIGN, 15-5 
Iteration, 

DO-loop, C-2 

Keyword, 1-1 

L format descriptor, 13-10 
Label assignment statement, 8-4 
Label constant, 3-6 
Label field, 2-3 
LABELS with DEBUG, B-3 
• LE., 4-7 
LEGAL subroutine, 15-19 
Line, 

blank, 2-6 
comment, 2-5 
continuation, 2-4 
debug, ° 2-6 
definition, 2-2 
fields, 2-2 
initial, 2-4 
multi-statement, 2-5 

Line continuation field, 2-3 
Line formatting characters, 2-2 
Line sequence number, B-5 
LINE subroutine, 15-19 
Line termination characters, 2-2 
Line types, 2-4 
Line-sequence input, 2-6 
LINK overlay facility, C-20 
LINK/FOROTS interface, D-28 
List, 

input/output, 10-2 
NAMELIST input/output, 10-10 

LIST with DISPOSE, 12-5 
List-directed input/output state­

ment, 10-8 
List-directed transfer, 

sequential READ, 10-12 
sequential WRITE, 10-17 

Listing, 
program, B-5 

Literal constant, 3-5 
Literal format conversion, 13-13 
LNMAP switch, B-2 
LOAD command, B-4 
Location in object program, B-5 
Logical assignment statement, 

8-4 
Logical constant, 3-5 
Logical expression, 4-4 

Logical FORMAT field descriptor, 
13-10 

Logical IF statement, 9-4 
Logical operator, 4-5 
LOGICAL statement, 6-3 
Logical unit number, 10-3 
LOGOVL in LINK, C-20 
. LT., 4-7 

MACRO in listing, B-5 
MACRO libraries, C-14 
MACROCODE switch, B-2 
MAX 0 , 15-5 
MAXI, 15-5 
Messages, 

FORDDT, E-17 
FOROTS, H-l 
FORTRAN, F-l 
realtime, G-7 

MINO, 15-5 
MINI, 15-5 
Mixed-mode arithmetic, 4-2 
Mixed-mode assignment statement, 

8-1 
Mixed-mode expression, 4-10, 

4-11 
MKTBL subroutine, 15-20 
MOD, 15-5 
MODE in file control statement, 

12-4 
Multi-statement line, 2-5 
Multiple record transfer, 13-14 
Multiplication, 4-1 

Name, 
symbolic, 3-6 

NAMELIST input/output list, 
10-10 

NAMELIST statement, 11-1 
NAMELIST-controlled transfer, 

input, 11-2 
output, 11-3 
sequential READ, 10-13 
sequential WRITE, 10-17 

. NE., 4-7 
Nested DO-loop, 9-6 
Nested expression, 4-9 
NOERRS switch, B-2 
NONE with DEBUG, B-3 
Nonexecutable statement, 1-1 
Non-FORTRAN files, C-9 
Non-FORTRAN programs, C-9 
NONSHAR, B-18 

Index-5 



INDEX (CONT . ) 

.NOT., 4-5 
NOWARNINGS switch, B-2 
NUMBER subroutine, 15-20 
Numeric, 

field width variable, 13-10 
Numeric format, 

general (G), 13-7 
Numeric FORMAT field descriptor, 

13-4 

o format descriptor, 13-4 
Object program, 

location in, B-5 
Octal constant, 3-4 
ODD with PARITY, 12-9 
OPEN statement, 12-1 
OPEN statement summary, 12-10 
Operator, 

arithmetic, 4-1 
hierarchy, 4-9 
logical, 4-5 

Operator strength, C-5 
Optimization, 

global, C-4 
program, C-9 

OPTIMIZE switch, B-2 
.OR., 4-5 
Order of statements, 2-7 
OTS, B-18 
Overflow, C-3 
Overlay facility, 

LINK, C-20 

PARAMETER statement, 6-9 
PARITY in file control state-

ment, 12-9 
PATH with DIRECTORY, 12-7 
PAUSE statement, 9-11 
PDUMP subroutine, 15-20 
PLOT subroutine, 15-20 
PLOTS subroutine, 15-20 
Precision for real constant, 3-2 
PRINT statement, 10-19 
PRINT with DISPOSE, 12-5 
Program listing, B-5 
PROGRAM statement, 5-1 
Programs, 

non-FORTRAN, C-9 
optimizing, C-9 
writing, C-1 

Propagation, 
constant, C-7 

PROTECTION in file control state­
ment, 12-6 

R format descriptor, 13-12 
RAN function, 15-10 
RANDIN with ACCESS, 12-3 
Random access data transfer, 

10-1 
Random access record specifica­

tion, 10-7 
Random access transfer, 

formatted READ, 10-13 
formatted WRITE, 10-17 
unformatted READ, 10-13 
unformatted WRITE, 10-17 

RANDOM with ACCESS, 12-3 
Range of double-precision 

numbers, C-1 
READ statement, 10-11 
READ statement summary, 10-14 
READ transfer, 

random access, 10-13 
sequential, 10-11, 10-12, 10-13. 

REAL function, 15-4 
Real constant, 3-2 
Real format, 13-4 
REAL statement, 6-3 
Record formatting (T and X), 

13-15 
RECORD SIZE in file control 

statement, 12-8 
Record specification, 

random access, 10-7 
Reentrant program, B-18 
Register allocation, C-7 
Relational expression, 4-7 
RELEAS subroutine, 15-21 
Remarks field, 2-4 
REMOVL in LINK, C-20 
RENAME with DISPOSE, 12-5 
Repeat for format descriptor, 

13-3 
Replacement, 

DO-loop, C-8 
REREAD statement, 10-14 
RESET in FOROTS, C-10 
RETURN statement, 15-7, 15-12 
REWIND statement, 14-1 
RUNOVL in LINK, C-20 

SAVE with DISPOSE, 12-5 
SAVRAN subroutine, 15-21 
Scale factor in FORMAT statement, 

13-7 
SCALE subrouti·ne, 15-21 
SEG, B-18 
SEQ IN with ACCESS, 12-3 
SEQINOUT with ACCESS, 12-3 
SEQOUT with ACCESS, 12-3 

Index-6 



'-" 

INDEX (CONT.) 

Sequence number, 
line, B-5 

Sequential data transfer, 10-1 
Sequential transfer, 

READ, 10-11, 10-12, 10-13 
WRITE, 10-16, 10-17 

SET RECORD statement, 14~3 
SETABL subroutine, 15-21 
SETRAN subroutine, 15-21 
SFD, 12-6 
Sharable program, B-18 
.SHR extension, B-18 
SIGN function, 15-5 
SIN function, 15-9 
SIND function, 15-9 
SINH function, 15-10 
SKIP FILE statement, 14-3 
SNGL, 15-4 
Software requirements, 

FOROTS, D-1 
SORT subroutine, 15-21 
Specification statement, 6-1 
SQRT function, 15-9 
SSAVE switch, B-18 
Statement, 

ACCEPT, 10-18 
Arithmetic assignment, 8-1 
arithmetic IF, 9-3 
ASSIGN, 8-4 
assigned GOTO, 9-2 
BACKFILE, 14-3 
BACKSPACE, 14-2 
BLOCK DATA, 16-1 
CALL, 15-11 
CLOSE, 12-1 
COMMON, 6-5 
COMPLEX, 6-3 
computed GOTO, 9-2 
CONTINUE, 9-10 
control, 9-1 
DATA, 7-1 
DECODE, 10-21 
device control, 14-1 
DIMENSION, 6-1 
DO, 9-5 
DOUBLE PRECISION, 6-3 
ENCODE, 10-21 
END, 5-2, 15-6 
END FILE, 14-2 
ENTRY, 15-15 
EQUIVALENCE, 6-7 
executable, 1-1 
EXTERNAL, 6-8 
file control, 12-1 
FIND, 10-21 
FORMAT, 13-1 
FUNCTION, 15-6 
GOTO, 9-1 

Statement (Cont.), 
IF, 9-3 
IMPLICIT, 6-5 
INCLUDE, 5-1 
input/output, 10-1 
INTEGER, 6-3 
label assignment, 8-4 
list-directed, 

input/output, 10-8 
LOGICAL, 6-3 
logical assignment, 8-4 
logical IF, 9-4 
mixed-mode assignment, 8-1 
NAMELIST, 11-1 
nonexecutable, 1-1 
OPEN, 12-1 
PARAMETER, 6-9 
PAUSE, 9-11 
PRINT, 10-19 
PROGRAM, 5-1 
READ, 10-11 
REAL, 6-3 
REREAD, 10-14 
RETURN, 15-6, 15-12 
REWIND, 14-1 
SET RECORD, 14-3 
SKIP FILE, 14-3 
STOP, 9-10 
SUBROUTINE, 15-8 
TYPE, 10-20 
type specification, 6-3 
unconditional GOTO, 9-1 
UNLOAD, 14-2 
WRITE, 10-16 

Statement category, 1-1 
Statement field, 2-3 
Statement function subprogram, 15-3 
Statement label constant, 3-6 
Statement numbers, 2-3 
Statement summary, 

CLOSE, 12-10 
device control, 14-3 
input/output, 10-24 
OPEN, 12-10 
READ, 10-14 
WRITE, 10-18 

Statements, 
order of, 2-7 

STOP statement, 9-10 
Storage of array elements, 3-10 
Sub-file directory, 12-6 
Subprogram, 

basic external function, 15-7 
block data, 16-1 
external function, 15-6 
intrinsic function, 15-3 
multiple entries to, 15-15 
multiple returns from, 15-12 

Index-7 



INDEX (CONT.) 

Subprogram, (Cont.) 
statement function, 15-3 
subroutine, 15-8 

Subprogram argument, 15-1 
Subprogram dummy argument, 15-1 
Subprograms, 15-1 
Subroutine, 

DATE, 15-17 
ERRSET, 15-19 
ERRSNS, 15-19 
EXIT, 15-19 
FORTRAN supplied, 15-12 
ILL, 15-19 
LEGAL, 15-19 
LINE, 15-19 
programming consideration, C-2 

Subroutine call, 15-11 
SUBROUTINE statement, 15-8 
Subroutine structure, 15-11 
Subroutine subprogram, 15-8 
Subscript, 

array, 3-8 
Subtraction, 4-1 
Switches, 

compiler, B-1 
SYMBOL subroutine, 15-22 
Symbolic name, 3-6 
SYNTAX switch, B-2 

T (trace after PAUSE), 9-12 
T format descriptor, 13-15 
TANH function, 15-10 
TIME subroutine, 15-22 
Trace (T) option after PAUSE, 

9-12 
TRACE function, 9-13 
TRACE subroutine, 9-13 
TRACE with DEBUG, B-3 
Transfer operations, 10-1 
.TRUE., 3-5 
Type, 

FUNCTION, 15-6 
Type specification statement, 

6-3 
TYPE statement, 10-20 

UFD, 12-6 
Unconditional GOTO statement, 

9-1 
Uninitia1ized variable, C-8 
UNIT in file control statement, 

12-2 
unit number, 

logical, 10-3 
Unformatted transfer, 

random access, 
READ, 10-13 
WRITE, 10-17 

sequential binary, 
READ, 10-12 
WRITE, 10-16 

UNLOAD statement, 14-2 
User file directory, 12-6 

Variable, 3-7 
compiler generated, B-6 
uninitia1ized, C-8 

VERSION in file control state­
ment, 12-8 

Warning message, B-17 
WHERE subroutine, 15-22 
WRITE statement, 10-16 
WRITE statement summary, 10-18 
WRITE transfer, 

random access, 10-16, 10-17 
sequential, 10-16, 10-17 

Writing programs, C-1 

X (option after PAUSE), 9-11 
X format descriptor, 13-15 
. XOR., 4-5 

tz, 2-1 

Index-8 



DECsystem-20 
FORTRAN Reference Manual 
AA-4l58B-TM 

READER'S COMMENTS 

NOTE: This form is for document comments only. DIGITAL will 
use comments submitted on this form at the company's 
discretion. Problems with software should be reported 
on a Software Performance Report (SPR) form. If you 
require a written reply and are eligible to receive 
one under SPR service, submit your comments on an SPR 
form. 

Did you find errors in this manual? If so, specify by page. 

Did you find this manual understandable, usable, and well-organized? 
~ Please make suggestions for improvement. 
c 

I::: 
I.~ 

1-£ 
Ig> 
I~ 
1° la 
1(1) 
I~ 

Q) 

10: Is there sufficient documentation on associated system programs 
required for use of the software described in this manual? If not, 
what material is missing and where should it be placed? 

Please indicate the type of user/reader that you most nearly represent. 

o Assembly language programmer 

o Higher-level language programmer 

o Occasional programmer (experienced) 

o User with little programming experience 

o Student programmer 

o Non-programmer interested in computer concepts and capabilities 

Name Date ________________________ __ 

Organization ________ ~------------------------------------------------------
Street ____________ , ________________________________________________________ __ 

City ____________________________ State ______________ Zip Code ______________ _ 

or 
Country 



-------------------------------------------------------------Fold flcrc------------------------------------------------------------

------------------------------------------------ Do Not Tear - Fold Here and Staple -----------------------------------------------

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Postage will be paid by: 

Software Documentation 
146 Main Street ML5-5/E39 
Maynard, Massachusetts 01754 

FIRST CLASS 

PERMIT NO. 33 

MAYNARD, MASS. 

_.j 

• 






