
dec

DATA BASE MANAGEMENT
SYSTEM (DBMS-10)
ADMINISTRATOR'S
PROCEDURES MANUAL
AA-0899C-TB

June 1977

OPERATING SYSTEM AND VERSION: TOPS-10 V6.02, 6.03

SOFTWARE VERSION: DBMS V5
COBOL V11
FORTRAN V5

To order additional copies of this manual, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation · maynard. massachusetts

First Printing, June 1977 '

The information in this document is subject to change without notice and should not be construed as a commit­
ment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors
that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its software on equipment
that is not supplied by DIGITAL.

Copyright © 1977 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this document requests the user's critical
evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-IO MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL OS/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-I 0
DECCOMM DECSYSTEM-20 TYPESET-II

6/77-14

CONTENTS
Page

PREFACE " ... ix

CHAPTER

CHAPTER

1
1.1
1.2
1.3
1.3.1
1.3.2
1.3.3
1.3.4
1.4
1.4.1
1.4.2
1.4.3
1.4.4

2
2.1
2.2
2.2.1
2.2.1.1
2.2.1.2
2.2.1.3
2.2.2
2.2.2.1
2.2.2.2
2.2.2.3
2.2.2.4
2.2.2.5
2.2.3
2.2.3.1
2.2.3.2
2.2.3.3
2.2.3.4
2.2.4
2.2.4.1
2.2.4.2
2.2.4.3
2.2.5
2.2.5.1
2.2.5.2
2.2.5.3
2.2.6
2.2.7
2.2.7.1
2.2.8
2.3
2.4

INTRODUCTION ... 1-1
ADVANTAGES OF DBMS 1-1
COMPONENTS OF DBMS 1-1
CONCEPTS OF DBMS. .. 1-2

Records .. 1-2
Sets ... 1-2
Areas ... 1-5
Schemas and Sub-Schemas 1-6

ACCESSING THE DATA BASE 1-6
Data Base Accessing Language 1-6
Data Base/Run-unit Interaction .. 1-7
Backup/Recovery During a Run-Unit .. 1-7
Exception Handling During a Run-Unit 1-9

RESPONSIBILITIES OF THE DATA BASE ADMINISTRATOR 2-1
DESIGNING THE DATA BASE 2-1
CREATING THE DATA BASE .. 2-1

Describing the Logical Attributes of Areas 2-2
Naming Areas in the Schema DDL .. 2-2
Specifying Privacy Locks for Areas 2-2
Specifying an Area as Schema Temporary 2-3
Describing the Physical Attributes of Areas. .. 2-3
Specifying an Area's File Specification 2-3
Specifying Sizes for an Area .. 2-3
Specifying the Number of Buffers for an Area. 2-4
Specifying the Number ot CALC-Chains per Page for an Area 2-4
Specifying Ranges for Records in an Area 2-5
Describing Records 2-6
Specifying the Name of a Record 2-6
Specifying the Location Mode for a Record 2-6
Specifying Areas for Records 2-7
Specifying Data-Items in Records 2-7
Describing Sets ... 2-7
Specifying the Mode of a Set 2-7
Specifying the Order of a Set 2-10
Specifying the Owner of a Set 2-10
Describing the Members of a Set 2-10
Set Membership ... 2-10
S~rt Keys ... 2-11
Set Occurrence Selection 2-11
Describing Sub-Schemas 2-11
Describing the Journal .. 2-11
Specifying Backup/Recovery. .. 2-12
Requesting Exception Interception. .. 2-13

RUNNING THE SCHEMA PROGRAM 2-13
CHANGING THE SCHEMA 2-14

iii

CONTENTS (Cont.)

Page

2.5 USING SIMULTANEOUS UPDATE; DATA BASE DESIGN CONSIDERATIONS. 2-15
2.6 USING THE DBMS UTILITIES. .. 2-18
2.7 USING THE STATS SUBPROGRAM 2-18

CHAPTER 3 THE DEVICE MEDIA CONTROL LANGUAGE (DMCL) 3-1
DMCL ENVIRONMENT ENTRY 3-2
IMAGES ... 3-3
INTERCEPT/NOTE. .. 3-4
JOURNAL. .. 3-5
RECORDS-PER-PAGE. .. 3-6
DMCL AREA ENTRY 3-7
ASSIGN. .. 3-8
RECORDS-PER-PAGE .. 3-9
BACKUP ... 3-10
BUFFER COUNT 3-11
CALC ... 3-12
FIRST PAGE/LAST PAGE 3-13
PAGE SIZE ... 3-14
RANGE. .. 3-15

CHAPTER 4 THE SCHEMA DATA DESCRIPTION LANGUAGE (DDL) 4-1
SCHEMA ENTRY 4-2
SCHEMA AREA ENTRY .. 4-3
SCHEMA RECORD ENTRY 4-4
RECORD NAME. .. 4-5
LOCATION MODE .. 4-6
WITHIN. .. 4-7
SCHEMA DATA ENTRY 4-8
SCHEMA SET ENTRY 4-11
SET NAME ... 4-12
MODE ... 4-13
ORDER ... 4-14
OWNER ... 4-17
SCHEMA MEMBER ENTRY. .. 4-18
MEMBERSHIP ... 4-19
LINKED TO OWNER 4-20
ASCENDING/DESCENDING 4~1
SET OCCURRENCE SELECTION .. 4-22

CHAPTER 5 THE SUB-SCHEMA DATA DESCRIPTION LANGUAGE (DDL) 5-1
SUB-SCHEMA ENTRY 5-2
SUB-SCHEMA AREA SECTION 5-3
SUB-SCHEMA RECORD SECTION 5-4
SUB-SCHEMA SET SECTION 5-7
END-SCHEMA ... 5-8

5.1 EXAMPLE OF A SCHEMA WITH SUB-SCHEMAS 5-9

CHAPTER 6 DBMS UTILITIES ... 6-1
6.1 THE DBINFO PROGRAM 6-1

iv

6.1.1
6.1.2

6.1.3
6.1.4
6.2
6.2.1
6.2.1.1
6.2.2
6.2.2.1
6.2.2.2
6.2.2.3
6.2.3

6.2.4
6.2.4.1
6.2.4.2
6.2.4.3
6.2.5
6.2.5.1
6.2.5.2
6.2.6
6.2.7

CONTENTS (Cont.)

Page

Using DBINFO .. 6-1
DBINFO Commands 6-1
APPEND .. 6-3
CLOSE ... 6-4
DISPLAY. .. 6-5
OPEN .. 6-6
PAGES. .. 6-7
SS. .. 6-8
SUPERSEDE ... 6-9
SCHEMA .. 6-10
DBINFO Error Messages. .. 6-11
Sample DBINFO Output. .. 6-12

THE DBMEND PROGRAM AND JOURNAL USAGE. 6-28
DBMS Journal. .. 6-29
Appending/Overwriting the Journal. .. 6-29
DBMEND Functions 6-30
Merging BEFORE/AFTER Images into the Data Base 6-30
Obtaining Abstracts. .. 6-33
Adjusting the Area Status Record 6-34
DBMEND Commands 6-34
ABSTRACT .. 6-36
BUILD. .. 6-37
CLOSE. .. 6-38
COMPLETE .. 6-39
DISPLAY. .. 6-40
END. .. 6-41
EXCLUDE. .. 6-42
FORCEOPEN 6-43
JOURNAL. .. 6-44
LABEL. .. 6-45
MERGE " 6-46
NOTRACE .. 6-47
OPEN ... 6-48
POSITION 6-49
REELS. .. 6-50
REWIND .. 6-51
SCHEMA .. 6-52
START. .. 6-53
TRACE. .. 6-54
UNLOAD. .. 6-55
Boundaries, Direction, and Positioning of the Journal File. 6-56
Start and End Boundaries. .. 6-56
Direction of Motion. .. 6-57
Positioning .. 6-58
Physical Aspects of the Journal File. .. 6-58
Format of the Journal File. .. 6-58
. TMP Files .. 6-61
DBMEND Messages .. 6-61
Incremental Error Recovery. 6-64

v

APPENDIX

APPENDIX

APPENDIX

APPENDIX

6.3
6.3.1
6.3.2
6.3.2.1
6.3.2.2
6.3.3

6.3.4
6.3.5

A

8

C
C.l
C.2
C.3
C.4
C.5
C.6
C.7
C.8
C.9
C.10
C.11
C.12
C.13

D
0.1
0.2
0.2.1
0.2.2
0.2.3
0.2.4

CONTENTS (Cont.)

Page

THE DAEMDB PROGRAM. .. 6-66
Initiating Magnetic-Tape Journalling .. 6-66
Running DAEMDB 6-67
Running OAEMDB as a Timesharing Job. .. 6-68
Running DAEMDB Under OPSER .. 6-68
DAEMDB Commands. .. 6-69
ABORT. .. 6-71
CREATE , 6-72
CURRENT , 6-73
EXIT. .. 6-74
GO ... , 6-75
HELP. .. 6-76
MOUNT .. , 6-77
POLL. .. 6-78
RESET .. , 6-79
RETRY ... 6-80
SHUTDOWN. .. 6-81
STOP. .. 6-82
THRESHOLD. .. 6-83
WHAT .. 6-84
Performing Page Recovery with a Magnetic-Tape Journal. 6-85
DAEMDB Messages .. 6-86

RESERVED WORDS. .. A-I

SCHEMA ERROR MESSAGES 8-1

ORGANIZATION OF SCHEMA FILES C-1
SCH AREA LINE ... C-3
SCH CONTROL LINE ... C-5
SCH DATA LINE ... C-6
SCH FILE LINE .. C-8
SCH ITEM LINE ... C-9
SCH MEMBER LINE ... C-10
SCH OWNER LINE. .. C-ll
SCH RECORD LINE ... C-12
SCH SCHEMA LINE ... C-14
SCH SUB-SCHEMA LINE C-15
SCH TEXT LINE ... C-16
SCH VIA LINE ... C-17
SCH WITHIN LINE. .. C-18

DATA ORGANIZATION AND ACCESS D-I
FORMAT OF A PAGE D-1
IN-CORE BLOCKS. .. 0-2

In-Core AREA Block D-3
In-Core DATA Block 0-5
In-Core FILE Block. .. 0-6
In-Core MEMBER Block D-7

vi

CONTENTS (Cont.)

Page

D.2.5 In-Core OWNER Block. .. D-8
D.2.6 In-Core RECORD Block D-I0
D.2.7 In-Core VIA Block D-12
D.2.8 In-Core WITHIN Block. .. D-13
D.3 OVERHEAD. .. D-14
D.3.1 Record Overhead. .. D-14
D.3.2 Page Overhead ... D-14
D.3.3 File Overhead. .. D-15
D.3,4 Run-unit Overhead D-15
D,4 STORE ALGORITHM. .. D-15

INDEX Index-l

FIGURE 1-1
1-2
1-3
1-4
1-5
1-6
2-1
2-2
2-3
2-4
2-5
2-6
2-7
5-1
5-2
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6'-8
C-I
C-2

C-3
C4
C-5
C-6
C-7
C-8
C-9

FIGURES

Relation Between Types and Occurrences 1-2
Relationship in a Set ... 1-3
Tree Structure ... 14
Network Structure ... 1-4
Program Building Process for FORTRAN Programs 1-8
Program Building Process for COBOL Programs 1-8
Following a Single CALC-chain .. 2-4
Following Several CALC-chains. .. 2-5
Example of a Multilevel Structure .. 2-7
Chain with NEXT Pointers ,................... 2-8
Chain with NEXT and PRIOR Pointers 2-9
Chain with NEXT, PRIOR and OWNER Pointers .. 2-9
Data Definition Process 2-14
Set Relationships in Example Schema 5-9
Schema/Sub-schema Example 5-10
Generation and Usage of a Journal File 6-28
DBMEND Boundaries on Forward Processing 6-56
DBMEND Boundaries on Backward Processing. .. 6-56
Format of a Journal Page. .. 6-58
Logical Block Header ... 6-59
Format of an Information Block 6-59
Format of a Label Block 6-60
DBMEND Actions When Skipping Bad Data 6-65
Set Relationships in the Schema File .. C-2
SCH AREA Line .. C-3
SCH CONTROL Line ... C-5
SCH Data Line ... C-6
SCH FILE Line ... C-8
SCH ITEM Line ... C-9
SCH MEMBER Line ... C-IO
SCH OWNER Line ... C-II
SCH RECORD Line. .. C-12

vii

TABLE

CONTENTS (Cont.)

Page

C-I0 SCH SCHEMA Line. .. C-14
C-ll SCH SUB-SCHEMA Line .. C-15
C-12 SCH TEXT Line. .. C-16
C-13 SCH VIA Line ... C-17
C-14 SCH WITHIN Line ... C-18
0-1 Format of a Page Header .. 0-1
0-2 Format of a Line Header .. 0-2
0-3 Format of a Database Key 0-2
0-4 Format of an Area Status Record 0-2
0-5 In-Core AREA Block ... 0-3
D-6 In-Core OAT A Block ... 0-5
0-7 In-Core FILE Block. .. 0-6
0-8 In-Core MEMBER Block 0-7
D-9 In-Core OWNER Block. .. 0-8
D-I0 In-Core RECORD Block 0-10
D-ll In-Core VIA Block ... 0-12
D-12 In-Core WITHIN Block 0-13

2-1
2-2
4-1
4-2
4-3
4-4
6-1
6-2
6-3
6-4
6-5
C-l

TABLES

Usage-Modes with OPEN; Suggestions for Advantageous Use 2-16
Levels of Simultaneity Related to Data Base Design Considerations. 2-17
Usage-Modes for FORTRAN and COBOL. .. 4-9
Numeric Types for FORTRAN and COBOL. .. 4-10
Relation Between Binary and Decimal Precision. .. 4-10
Relationships Between ORDER and MEMBER Clauses. 4-16
DBINFO Commands and Abbreviations. .. 6-2
DBMEND Commands. .. 6-35
DBMEND Commands Affecting Direction .. 6-57
DAEMDB Interaction Codes 0 • • • •• 6-67
DAEMDB Commands and Acceptable Abbreviations. 6-70
Record Type IDs for SCH Record Types. .. C-I

viii

PREFACE

This manual describes the DECsystem-IO Data Base Management System (DBMS) for the data base administrator
who must create and maintain the data base. Chapter 1 briefly describes the components, concepts, terms, and
functions of DBMS. Chapter 2 gives details on designing and creating the data base, while Chapters 3,4, and 5
describe the syntax and rules for the DBMS languages. Chapter 6 contains descriptions of the DBMS utility
programs. The appendices include reserved words, error messages, organization of files, and directories.

The DBMS administrator should have some knowledge of data base management systems, DECsystem-l0 COBOL
and FORTRAN languages, and the TOPS-I0 operating system. The following manuals can provide this knowl­
edge.

1. CODASYL Data Base Task Group April 1971 Report
2. DBMS Programmer's Procedures Manual
3. DECsystem-10 COBOL Programmer's Reference Manual
4. DECsystem-10 FORTRAN Reference Manual

ix

CHAPTER 1

INTRODUCTION

The DECsystem-l0 Data Base Management System (DBMS) is a group of programs that enable an installation to
create, access, and maintain one or more data bases. DBMS is based on the 1971 CODASYL Data Base Task Group
proposal.

A DBMS data base is a collection of interrelated data records structured and linked so that run-units can access them
without regard to the physical storage medium. (A run-unit is the execution of a program; see Section 1.4.)

1.1 ADVANTAGES OF DBMS
DBMS data bases have two inherent advantages: removal of the data descriptions from the application programs,
and centralization of data management.

Removal of the data descriptions from the application programs means that only one description of the data need
exist. As a result, the programs accessing the data do not have to describe it. If the data changes, the programs do
not have to change unless procedures for accessing the data change. Also, both FORTRAN and COBOL programs
can access the same data because DBMS automatically gives a language-compatible form of the data to each program.
In addition, you can add new data to the data base and write new programs to access the new data without changing
the existing data and programs.

Centralization of the data management means that you have conceptually gathered your permanent data in one
place. When the data is centralized, you can eliminate most of the duplication of the data and more easily control
the integrity of your data resource. For example, you could have an employee record in the data base containing
all of the necessary information for payroll, personnel, union, and government agencies.

The fact that the data is centralized does not necessarily mean that run-units can access all of the data in all of the
records in the data base. You can specify the portions of the data that you will permit the run-units to access and
thereby stop them from accessing the rest of the data.

A CODASYL DBMS data base has the following additional advantages.

1. It allows you to structure data in the manner most suitable to each application program although
that data may be used by many programs.

2. It allows more than one run-unit to concurrently retrieve the data in the data base even while a run-unit
is updating it.

3. It provides a variety of search strategies that can be used on the entire data base or portions of it.
4. It provides protection of the data base from unauthorized access as well as from destructive interaction

by run-units.
5. It provides a number of ways in which you can relate the data records to each other.

1.2 COMPONENTS OF DBMS
DBMS consists of the following programs and modules.

SCHEMA -

DBMEND -

the translator that processes the languages used to describe data bases. It also
allocates and initializes the storage space for the data base. SCHEMA is described
in this manual.
a utility program for backup and recovery of portions of the data base. DBMEND
is described in this manual.

I-I

DBINFO -

FORDML -

Introduction

a utility program that produces several reports such as cross reference listings and
dumps of the data base. DBINFO is described in this manual.
a FORTRAN preprocessor that translates data base ac~essing statements into
FORTRAN statements. FORDML is described in the DBMS Programmer's
Procedures Manual

COBOL DBMS module - the module of the COBOL compiler that processes data base accessing statements.
The COBOL DBMS module is described in the DBMS Programmer's Procedures
Manual. (FORDML and this module are analogous.)

DBCS - the object-time module of DBMS used with the FORTRAN and COBOL object­
time systems to access the data base. DBCS is described in the DBMS Programmer's
Procedures Manual and referred to in this manual.

1.3 CONCEPTS OF DBMS
The terms record, set, area, and schema have a specific meaning when used with DBMS. These terms and the con­
cepts they define are described in the following sections.

1.3.1 Records
A record is the basic retrievable unit of information in a data base. It consists of a named collection of data-items
and/or data aggregates.

A data-item is the smallest unit of data in the data base. It is a subdivision of a record. For example, name, address,
wage class, etc. could be data-items in an employee record.

A data-aggregate is a named collection of data-items in a record. For example, you could represent the date as a
data-aggregate consisting of the data-items month, day, and year.

With traditional file processing methods, there is usually only one type of record in a file and its record description
is included in the program. With data base processing, however, there can be many different types of records, so a
distinction must be made between the description of the record and the actual record. In DBMS, you call the
description of the record the record type and the actual record the record occurrence. Any number of occurrences
of a record type can be present in a data base. Thus, if you take a file of employee records and put them into the
data base, you consider the description of those records as the record type and the actual records as the occurrences.

Figure 1-1 shows the relation between a record type and record occurrences.

EMPLOYEE
RECORD

Sue

I
I

I
Laurie

Maria

Ted

\~------------------~----------------~
Type Occurrences

Figure 1-1 Relation Between Types and Occurrences

1.3.2 Sets
The records in a data base are not randomly arranged. They are organized into logical units called sets. A set is the
mechanism by which only one physical occurrence of a record suffices for the many ways in which the programs can

1-2

Introduction

access it. With an individual data file, there is no need for sets because the file itself defines the logical as well as the
physical relationship among the records. However, to define another relationship, you would have to duplicate the
data in another file. In a data base, on the other hand, you do not have to duplicate the records, you merely create
another set. Each set defines a logical order for the records by means of pointers in the records. These pointers are
described in Section 1.3.3. Because a logical relationship is described by a set, the physical location of the records
on the storage device is not necessarily related to the logical order of any of the records' sets.

Like records, sets have types and occurrences. The type of a set is its description; the occurrence of a set is a group
of actual records that have the relationship specified in the set description.

A set has two kinds of records in it - owner and members. A set type must have an owner record type and at least
one member record type. A set occurrence does not exist until an occurrence of its owner exists. However, a set
occurrence need not have any occurrences of its members. The owner of a set is somewhat like the header record
on an individual file. It defines the relationship of the records in that set and is a means by which a run unit gains
access to the members. For example, you could have set occurrences of employee records in which each owner is
a department record and the members are employee records. The same employee records could be grouped
differently in set occurrences in which each owner is a softball team record. For both sets and all other sets in
which these records participate, there is only one physical occurrence of each employee record with a pointer in
each for each set occurrence in which the record participates.

In DBMS, the relationship in a set occurrence is illustrated as a ring of records as shown in Figure 1-2.

Figure 1-2 Relationship in a Set

The ring shown in Figure 1-2 has only one set of pointers; they are indicated by the arrows. Other pointers are allowed;
they are described in Section 2.2.4.1.

Besides relationships among records in sets, DBMS allows relationships among sets. These relationships are the side­
effect of allowing a single record type to be a member in some set types and the owner in other set types. The forms
these relationships can take are illustrated in the tree structure shown in Figure 1-3 and the network structure shown
in Figure 1-4.

1-3

Introduction

Figure 1-3 Tree Structure

Figure 1-4 Network Structure

1-4

Introduction

When a record type has no particular relationship with any other record types, you store this record type in the data
base without connecting it to any sets. It can still be accessed by run-units, but not through any sets. Record types
like this one must be accessed in another way. The way that records can be accessed is described in Section 1 .4.1 .

The following items characterize.a set type:

1. A set type is a named collection of record types.
2. You can specify any number of set types.
3. You must name each set and you must specify one owner record type and one or more member record

types for it.
4. You must specify a SET ORDER for each set. (See Section 2.2.4.2.)
5 . You can specify any record type as the owner record type of one or more sets.
6. You can specify any record type as a member record type of one or more sets.
7 . You can specify any record as both an owner record type in one or more set types and a member record

type in one or more different set types. However, DBMS does not allow a record type to participate as
both owner and member in the same set type.

The following items characterize a set occurrence:

1. A record occurrence cannot appear in more than one occurrence of the same set.
2. The existence of the owner record occurrence distinguishes that set occurrence from all other occur­

rences of that set type.
3. In addition to the occurrence of its owner record, a set occurrence can have any number of occurrences

of each of its member record types.
4. A set occurrence that contains only an occurrence of its owner record is known as an empty set

occurrence.
5. You can specify a set type in which the owner is SYSTEM. There is only one occurrence of this set type

and it is called a singular set.

1.3.3 Areas
An area is a named subdivision of the storage space in a data base. The occurrences of records are stored in areas.

DBMS provides the ability to subdivide the data base so that you can segregate data according to its use. Then, each
run-unit need only access selected areas rather than the entire data base. In addition, you can perform backup
selectively according to the frequency of use of the data. For example, an area containing data for retrieval only
(e.g., tax tables) need not be backed up as often as an area containing data that is frequently updated.

Each area is divided into fixed-length physical units called pages. You specify the size of a page when you define
each area (see Section 2.2.2.2). A page logically consists of some number of lines. Each line is a group of 36-bit
words large enough to contain a single record occurrence and its set pointers. The size of a record occurrence, and
therefore of the line containing it, depends on the data-items and data-aggregates that you specify it to contain and
the number of set pointers in it. All occurrences of the same record type are the same size, but size varies among
record types.

Every page in an area is numbered consecutively starting and ending with the numbers you specify in the DMCL
area entry (see Chapter 3). A page's page number is stored in the header at the beginning of the page. (See Appendix
D for the format of the header.) Each line on each page is numbered consecutively starting with 1 ; and lines cannot
cross pages. There are as many lines on a page as will fit into the page size you specified.

Because each record occurrence is one line, the combination of the page number and the line number for any record
occurrence is its address (Le., uniquely identifies it). This address is called the database key. Every record occur­
rence stored in the data base is assigned a database key and thus can be located by means of its database key. Con­
sequently, database keys are used as the set pointers in a record occurrence. That is, each record occurrence contains
the database key of at least one other record occurrence for each set in which the record occurrence is an owner or
member. The SCHEMA program automatically creates the space for the set pointers in each line and DBCS auto-

1-5

Introduction

matically puts the database keys into that space when a run-unit manipulates a record occurrence. You need only
specify the sets in which the records participate.

1.3.4 Schemas and Sub-Schemas
A schema is a description of a data base. It contains definitions of all the areas, set types, and record types
(including data-items and data-aggregates) in the data base. A schema does not contain the data, only the descrip­
tion of the data. You must describe each data base with a separate schema.

A sub-schema is a subset of a schema and contains descriptions of those areas, set types, record types, data-items,
and data-aggregates known to one or more run-units. You can define up to 36 sub-schemas in conjunction with
each schema. That is, the sub-schema can only contain areas, set types, and record types that are in the schema.
You define a sub-schema to restrict a run-unit's access to only those portions of the data base that it needs. Each
sub-schema that you define can contain the same or different portions of the schema as another sub-schema. That
is, the information in sub-schema can overlap.

In a sub-schema, you can include a record type and omit some or all of its data-items or data aggregates. However,
you cannot include a data-item or data-aggregate without including its record type. Also, you can define the com­
ponents of a data-aggregate differently in each sub-schema. This means that you can specify the data-aggregate in
COBOL terms for COBOL programs and in FORTRAN terms for FORTRAN programs.

The statements used to define the schema are divided into three languages, but are processed by one translator (the
SCHEMA program). The three languages are:

1. Device Media Control Language (DMCL)
2. Schema Data Description Language (DDL)
3. Sub-schema Data Description Language (DDL)

You use the DMCL to describe the overall characteristics of the schema and the physical characteristics of the areas
in the schema. For example, you can name the journal used with that schema (see Section 1.4.3) and the size of an
area's pages. Use of the DMCL is described in Chapter 2 and its syntax and rules are given in Chapter 3.

You use the DDLs to describe the schema and the sub-schemas. The use of both DDLs is described in Chapter 2.
The syntax and rules for the schema DDL are given in Chapter 4, for the sub-schema DDL in Chapter 5.

1.4 ACCESSING THE DATA BASE
Once you have designed your data base, you must design the applications that will use it. Each application can be
one or more programs written in COBOL or FORTRAN. These programs will become the run-units that access the
data in the data base.

A run-unit is the execution of a program. That is, it is the compiled, linked, and running program. The distinction
between a run-unit and a program is made in this manual in keeping with the CODASYL Data Base Task Group's
distinction.

1.4.1 Data Base Accessing Language
When the programmers write the data base application programs, they must include statements of the DBMS
language that accesses the data base. This language is the Data Manipulation Language (DML).

The DML is not a complete language by itself, but a host-language extension. In other words, the DML relies on the
host language (COBOL or FORTRAN) to offer the framework from which the DML can provide the interface with
the data base. In an application program, the DML statements and the host language statements coexist freely, and
the distinction between them is merely conceptual. From the programmer's point of view, he is using one, unified
language that has the capabilities of both the host language and the DML. Chapter 3 of the DBMS Programmer's
Procedures Manual contains the syntax and rules for the DML.

1-6

Introduction

The DML provides the statements that access the data in the data base. With these statements, the run-unit can:

1. Specify the sub-schema it will use (INVOKE).
2. Open and close areas (OPEN and CLOSE).
3. Find a record occurrence in the data base (FIND). The run-unit can use one of several search strategies

(called record-selection-expressions) to find the record occurrence:

a. by means of any set occurrence in which the record occurrence participates as long as the set occurrence
is in the sub-schema.

b. by means of a search of an area.
c. by means of the record occurrence's database key.
d. by means of data-items in the record occurrence itself.

4. Get the record occurrence from the data base (GET).
S. Store a record occurrence in the data base and insert it into one or more sets (STORE).
6. Insert a previously stored record occurrence into one or more sets (INSERT).
7. Delete a record occurrence from the data base and thus remove it from all set occurrences (DELETE).
8. Remove a record occurrence from one or more set occurrences, but not delete it from the data base

(REMOVE).

In addition, the run-unit can modify data, save the contents of special registers, test for errors or other conditions,
and perform error recovery.

The COBOL compiler contains a DML module that directly processes the DML statements. Thus, the COBOL
programmer can include DML statements in his program and compile it like any other COBOL program. The
FORTRAN programmer, however, must pass his program through a preprocessor called FORDML before he com­
piles it. This is because the FORTRAN compiler does not contain a OML module.

1.4.2 Data Base/Run-unit Interaction
Any run-unit must work through an object-time system to communicate with the TOPS-IO operating system. A data­
base accessing run-unit must then work through a OBMS object-time system. This object-time system is called the Oata
Base Control System (OBCS). It is the interface between the run-unit and the data base; i.e., OBCS is the module
that actually performs the actions defined by the OML statements.

When the run-unit invokes a sub-schema, OBCS creates a User Working Area (UWA) for the program. The UWA is a
loading and unloading zone where all data provided by OBCS in response to a call for data is delivered and where all
data to be picked up by OBCS must be placed. Each program or subprogram has access to the UWA, which contains
a declaration (Le., local copy) of each record in the invoked sub-schema. The data in the UWA is not disturbed except
in response to the execution of a OML command or by the run-unit's host language statements. UWA locations are
not necessarily contiguous.

The UW A is set up by OBCS in accordance with the invoked sub-schema. Each data-item included in the sub-schema
is assigned a location in the UW A and may be referenced by its name as declared in the sub-schema. Oata items
included in the data base, but not in the sub-schema invoked, arc not in the UW A and cannot be referenced.

OBCS also provides for a number of System Communication Locations. These locations are used for run-unit/OBCS
interaction and are part of the UW A. There are locations for OBCS to monitor the names of the current area and
record; the error status; the names of the set, record, and area in which the error occurred; and the error count.

The diagrams in Figures 1-5 and 1-6 illustrate the program building processes from source to run-unit.

1.4.3 Backup/Recovery During a Run-Unit
When an updating run-unit accesses the data base, it has the potential of making damaging changes to the data
there; so OBMS provides a means for backing up the changes made during a run-unit. It involves use of a journal
file. Each time the run-unit updates a page in the data base, OBCS writes a BEFORE image of that page in the
journal. A BEFORE image is a copy of a data base page before the page is changed. You must make provisions to
use this feature; see Section 2.2.7. Also see Chapter 6 for a description of DBMENO, the recovery utility program.

1-7

Introduction

FORTRAN AND
FORDML SCHEMA

DML
PREPROCESSOR -- FILE

STATEMENTS

!
FORTRAN SOURCE

PROGRAM WITH
DBCS CALLS

~
FORTRAN
COMPILER

l
\
I RELOCATABLE I

OBJECT CODE

J

l
[FOROTS AND DBCS LlNK-10 RUN-UNIT

ROUTINES
-..

Figure 1-5 Program Building Process for FORTRAN Programs

COBOL AND
COBOL SCHEMA

DML
COMPILER - FILE

STATEMENTS

!
\
)RELOCATABLE

OBJECT CODE

J

~
L IBOL AND DBCS

ROUTINES
LlNK-10 RUN-UNIT

Figure 1-6 Program Building Process for COBOL Programs

1-8

Introduction

You can also have AFTER images in the journal file. They are copies of data base pages after the pages have been
changed. You would use the DBMEND program to process the AFTER images if you wished to bring an old copy
of a data base up to date.

The run-unit can also specify characteristics of and cause information to be placed in the journal file. See Section
2.3 in the DBMS Programmer's Procedures Manual.

1.4.4 Exception Handling During a Run-Unit
In addition to backup/recovery, DBMS also provides for exception handling during a run-unit. The mechanism of
exception handling is that DBCS notifies the run-unit if an error (called an exception) occurs. DBCS signals an excep­
tion to a run-unit by placing an error status code in one of the special registers. The run-unit can then test this regis­
ter after each DML statement in case an exception occurred. See Appendix B in the DBMS Programmer's Procedures
Manual for a description of the error codes.

Also, you can have DBCS notify the programmer of any or all exceptions and then wait for the programmer to decide
to continue the run-unit or stop it, depending on the nature of the exception. See Section 2.2.8 for more informa­
tion about specifying exception interception.

1-9

CHAPTER 2

RESPONSIBILITIES OF THE DATA BASE ADMINISTRATOR

As the Data Base Administrator, you have the responsibility to control the data base(s) at your installation. Some of
the duties that this entails are described in this chapter. They include designing the data base, creating and maintain­
ing the schema, and using the DBMS utilities to protect and document the data base. Additional functions may be
required at your installation such as training and personnel management. Since such functions are installation­
dependent, they are not discussed in this manual.

2.1 DESIGNING THE DATA BASE
The first duty you must perform is design of the data base(s) according to the applications that are currently in use
or planned for your installation. You should examine the data and the usage of that data to determine its relationships.
Depending on the usages and relationships among the data, you may decide to establish one or more data bases.

Once you have decided on the relationships among the data, you should define the actual set relationships that exist
among the record types and define the owners and members in the sets. You can use the tree or network structures
to show the set relationships and you automatically use the ring structure to show the relationships of members in
each set.

You must also define the application programs that will access the data base. If programs exist that access the data in
its current form, these programs will have to be revised to interact properly with the data base.

You will have to maintain close communication with the programmers writing the application programs. For example,
you will want to give them copies of the schema and sub-schemas that their programs will use. Once they have exam­
ined the schema and sub-schemas, you should explain the way in which their programs will use the information in the
schema and sub-schemas.

You should also consider two points about future growth of the data base:

1. Allocating enough space
2. Adding new record and set types

You should allocate enough space in the data base for future growth of existing applications and for new applications.
You can do so by specifying a page range for your areas larger than you currently need. See Section 2.2.2.2 for
detailed information about specifying page ranges.

If you know that you will need new record and set types and know what they will look like, you should put them
in the schema when you create it. Their existence in the schema does not mean that you have to include them in
any sub-schemas until you need them. This is easier than adding new record and set types to an existing schema; see
Section 2.4 for more information.

2.2 CREATING THE DATA BASE
Once you have designed your data base, you must create it. To do so, you will perform the following steps:

1. Write the schema using a text editor.
2. Process this file using the SCHEMA program.
3. Load data into the resulting data base.

2-1

Responsibilities of the Data Base Administrator

To write the input schema file, you must include the DMCL and DDL statements that describe your data base. You
can use a system editor to create this file. The contents of the schema file are described in this chapter. The DMCL
and DDL statements are described in Chapters 3,4, and 5.

To process the file, you run the SCHEMA program with the source schema file as input. SCHEMA produces an ob­
ject schema file and one zero-length file for each area in the data base. Section 2.3 describes how to process the
schema file.

To load the data base, you must write one or more application programs that store data in the data base. These pro­
grams can be your installation's application programs or special ones that are used only for this purpose. Because
loading is specific to each installation's data base, it is not described further in this manual.

When planning the schema file, you should consider the following points:

1. How to describe areas
2. How to describe records
3. How to describe sets
4. How to describe sub-schemas
5. How to describe the journal
6. How to describe exception handling.

These points are covered in detail in the following sections. They are not necessarily ordered in the way in which
you must write the schema. The order that must be maintained in the schema is:

1. DMCL entries
2. Schema DDL entries
3. Sub-schema DDL entries

2.2.1 Describing the Logical Attributes of Areas
You define the logical attributes of an area in the Schema DDL Area Entry. You can specify the name of the area,
the privacy locks for each usage-mode, and whether or not the area is temporary.

2.2.1.1 Naming Areas in the Schema DDL - An area-name can be up to 30 char,acters long. The name you give
in the DDL must match one of the area-names in the DMCL. You must specify af'.least one area for the data base. If
you specify only one, that area is, in effect, the entire data base.

2.2.1.2 Specifying Privacy Locks for Areas - An area can be opened by a run-unit in one of six usage-modes. You
can specify a privacy lock for each usage-mode, one for all usage-modes, or none. The usage-modes are as follows:

1. EXCLUSIVE RETRIEVAL - only that run-unit can access the area, but cannot update it.
2. EXCLUSIVE UPDATE - only that run-unit can access the area, and can update it.
3. PROTECTED RETRIEV AL- all run-units can access the area, but none can update it.
4. PROTECTED UPDATE - all run-units can access the area, but only that run-unit can update it.
S . RETRIEVAL - all run-units can access the area and run-units open for PROTECTED UPDATE can

update it.

6. UPDATE - all run-units can access and update the area.

The privacy locks are a means of protection for the areas of the data base. The application program must give a
privacy key that will match the lock before it can open the area. The key has the same value as the lock, and DBCS
compares them before opening the area. As long as they remain known only to those using the data base, these locks
and keys can help to ensure the privacy of the data base. You will have to give the values of the privacy keys to the
programmers writing the applications so they can use the correct ones in their programs.

2-2

Responsibilities of the Data Base Administrator

2.2.1.3 Specifying an Area as Schema Temporary - When you specify an area as TEMPORARY, you are specifying
an area that does not have permanent data in it. Each run-unit receives its own copy of the area and must load data
into its copy. When the run-unit closes the area, DBCS discards the data and any changes made to it. Thus, a tempo­
rary area is a useful debugging tool because new run-units can access the data base without disturbing the actual data
in it.

2.2.2 Describing the Physical Attributes of Areas
The DMCL Area Entry allows you to describe the physical attributes of each area in the data base. You can describe
an area's me specification, its size, the size of its pages, its number of buffers, its number of CALC-chains per page
(see Section 2.2.3.2), and the page range of individual record types in it.

2.2.2.1 Specifying an Area's File Specification - When you create an area, you are actually assigning that area to a
file; you must, therefore, give the file specification for the area. The specification can contain up to six characters;
you cannot specify the extension. SCHEMA automatically assigns the extension .DBS to the file. A DBS file is thus
one area of the data base. When you create files in this way, you must give them unique names under the project and
programmer numbers to which you have assigned the data base. You can, in turn, create the data base under any num·
ber of project and programmer numbers known to the monitor.

Note then that the programmers running the application programs must be able to access the project and programmer
number you have assigned the data base. You can ensure this in three ways.

1. Assign the programmers to the same project programmer number as the data base. Set the protection code
for the data base to 077 so that no other users can access it.

2. Assign the programmers to the same project number as the data base, but to different programmer numbers.
Set the protection code for the data base to 027. This allows all programmers with the same project number
as the data base to access it, but no others to access it. You should then request that the project number you
assigned to the data base be reserved for data base use only; this prevents non-data base users from accessing
the data base. Note that to allow a programmer to create a file in the data base directory, you must set the
protection code for the directory to 770.

3. Assign the programmers to project programmer numbers different from those you assign to the data base.
Set the protection code for the data base to 022 so that all project programmer numbers can access the data
base. Then set the User File Directory protection code to 777 so that all project-programmer numbers can
create files in the directory of the data base. Be aware, however, that users other than your application pro­
grammers can access - and possibly alter - the data base.

When you assign the area to a file, you can specify that the area will be used as the SYSTEM area; that is, the
SYSTEM record will be stored in this area along with the other records you designate. The SYSTEM record is de­
clared in the OWNER clause in the schema DDL. If you do not explicitly designate a SYSTEM area but do specify
a SYSTEM record, DBCS will store the SYSTEM record in the first area that you assigned.

2.2.2.2 Specifying Sizes for an Area - In the DMCL you must specify the size of the area in terms of its range of
pages. That is, you give the number of its first page (FIRST PAGE clause) and that of its last page (LAST PAGE
clause). When you have more than one area in a data base, you cannot overlap the page ranges, but neither do you
have to number them consecutively. Thus, each area has its page range within an overall page range for the data
base. By defining each area's range, you implicitly define the range of the data base. For example, if you have three
areas with ranges 1 to 100, 125 to 250, and 300 to 500, the range of the data base is 1 to 500. Note that non­
contiguous page ranges will provide you with a mechanism for expanding the size of an area if the need arises. How­
ever, read Section 2.2.2.5 carefully for more information about expanding an area's page range.

You must also specify the page size and a limit to the number of records that can be stored on a page in the area.
You give the page size in terms of 36-bit words and SCHEMA automatically rounds up to the next multiple of 128
words to match the monitor block size. The limit of records per page means the limit of lines on a page. You can
specify this number for all the areas, or for each one separately. You must balance the number of records per page
against the number of words you specify for a page. If you specify too small a number of records per page, you may
have extra space on the page after the maximum number of records is reached.

2-3

Responsibilities of the Data Base Administrator

When you are designing your data base, you should plan for future growth. One possible way is by making the page
size and/or possibly the page range larger than you currently need. To calculate the amount of space you want, add
the amount of space you currently need and the rate of growth over the time you wish this data base to exist with­
out reloading. Remember the page size you specify is actually the logical page size. OBCS will not place more than
this number of words of data on a data-base page. Having a logical page size that is less than the physical page size
allows you to distribute the data across pages such that you can allow for future growth.

2.2.2.3 Specifying the Number of Buffers for an Area - You can also specify the number of buffers that OBCS
will use for the area. The size of the buffer is set equal to the size of a page, so you may want to consider the amount
of memory required for each buffer before you calculate the number of buffers. If you do not specify the number
of buffers, OBCS will use three.

OBCS allocates the buffers when a run-unit opens the area. It returns the buffer space to free storage when the run­
unit closes the area.

2.2.2.4 Specifying the Number of CALC-Chains per Page for an Area - You can specify the number of CALC­
chains for each page of an area. If you do not, the SCHEMA program will assign one CALC-chain to each page. A
CALC-chain is a group of pointers, the first of which is a word in the page header. This word points to the first
CALC record in the chain, and that record has a pointer to the second record in the chain and so on. (For more
information about CALC records see the discussion of CALC LOCATION MOOE in Section 2.2.3.2.) To find a
record by means of its CALC key, OBCS must perform a linear search of the chain for the CALC record by starting
with the CALC-chain header and following the chain from one CALC-record to the next until it finds the desired
CALC record. Figure 2-1 shows an example of this.

PAGE I
HEADER

CALC-CHAIN HEADER

CALC RECORD

--)

CALC RECORD

CALC RECORD

-~
•
•
•
•

Lr~ -~

- ~

•
•

LJ desired
CALC-RECORD

~

~ -
Figure 2-1 Following a Single CALC-chain

However, when you increase the number of CALC-chains per page, you increase the number of initial pointers in the
page header so that the chains through the CALC records tend to be shorter than if only one CALC -chain existed.

2-4

Responsibilities of the Data Base Administrator

DBCS would then have to search through fewer CALC records to find the desired record. Thus, you can trade off
fast CALC-record access and space overhead per page. Use of multiple CALC-chains (2) is shown in Figure 2-2.

If you do not plan to have any CALC records in an area, you can specify no CALC-chain headers and save the space
on each page of the area. Note that you should not specify so many CALC-chains per page that many will never be
used. For example, if you have 100 pages and will never have more than 200 CALC records in the area, (100*n CALC­
chains) should not be greater than 200.

CALC·CHAIN HEADER 1

CALC-CHAIN HEADER 2

CALC RECORD

CALC RECORD

CALC RECORD

CALC RECORD

CALC RECORD

desired

CALC RECORD

Figure 2-2 Following Several CALC-chains

2.2.2.5 Specifying Ranges for Records in an Area - Within each area, you can specify a page range for each record
type that can be stored in the area. The range specifies the pages on which occurrences of the record type can be
stored. If you do not specify a page range for a record type, its range is the entire area. This capability is useful for
planning for CALC records and for clustering occurrences of records.

When you plan for CALC records, you should specify a page range for each CALC record type. If you thus limit the
page range for each CALC record type, you can increase the last page of the area without losing the ability to access
the previously-stored occurrences of the CALC records. This is because the CALC algorithm uses the number of pages
in the CALC record's range to store and retrieve the record occurrences. If you do not specify a page range for the
CALC record, its page range would be the entire area. If you then increased the last page of the area, DBCS could
not locate the previously-stored record occurrences.

When you specify the page range for a CALC record (either implicitly or explicitly), you should make the number
of pages an odd number. Because of the way the CALC algorithm works, the odd number will tend to cause a more
even dispersion of the CALC record occurrences throughout the area. (You will always get an odd number of pages
if you make the first page and last page of the range both odd numbers or both even numbers.)

You can also use the page range to cluster the occurrences of a record type into a chosen sequence of pages.

2-5

Responsibilities of the Data Base Administrator

2.2.3 Describing Records
In the Schema Record Entry in the DDL, you define each of the record types that can reside in the data base. You
name the record and give its location mode, the areas in which it can reside, and its data-items and data-aggregates.

2.2.3.1 Specifying the Name of a Record - For each record type in your data base, you must give a name up to 30
characters long. When you name the record type, you also implicitly give it a record type ID. The SCHEMA program
actually creates this internal, numeric record type ID for each record type that you specify. It assigns the record
type IDs in ascending numeric order as you specify the record types. For example, the first record type you define
gets the first available record type ID; the second record type, the second record type ID; and so on. (The system
uses the beginning record type IDs for the system record types.) The record type ID is a permanent identifier of
the record type and cannot be altered unless you completely recreate and reload the data base. Consequently, you
cannot add a record type among those that already exist; you must place new record types after the last existing
record type (see Section 2.4).

2.2.3.2 Specifying the Location Mode for a Record - The LOCATION MODE clause allows you to specify how a
record is to be stored in the data base. You can specify one of three location modes for a record:

1. DIRECT - the record occurrence will be stored according to the database key in its DIRECT key . You
must provide an identifier for the DIRECT key because the database key is not a part of the record.

2. CALC - the record occurrence will be stored according to data-items in the record. You must identify
these data-items. You must also specify if these data-items can have the same value in different records.

3. VIA - the record occurrence is stored according to one of the sets in which the record resides.

DBCS uses a different algorithm for each location mode to try to find the appropriate page on which to store the
record occurrence. If there is no space left on the page it finds, DBCS uses another algorithm to find a page on which
to store the record occurrence. (See Appendix D.)

When you specify DIRECT, DBCS uses the value in the DIRECT identifier, which can be a database key supplied
by the run-unit or zero. If the value is not zero, DBCS uses the page number portion of the database key to locate
the appropriate page. If the value is zero, DBCS uses the page number of the current record of the area to locate
the appropriate page. If there is no current record of the area, DBCS uses the first page of the area's page range.

When you specify CALC, DBCS hashes the values in the data-items you specified as the CALC keys and uses the
result to locate the appropriate page and the CALC-chain on the page.

When you specify VIA, DBCS locates the page of the member that is logically prior to the new record in the VIA
set. If the logical prior record is not in an area that the new record can be within, DBCS uses the page of the cur­
rent record of the area for the new record. If there is no current record of the area or if the current record of the
area is not in the new record's page range, DBCS uses the first page of the range for the new record.

You should declare the location mode as VIA for each member type that is usually accessed serially (i.e., when the
application program usually specifies FIND NEXT). This will physically localize each set occurrence and reduce
page accesses by DBCS. You should only declare records as CALC when they must be accessed randomly. Other­
wise, there is no justification for the overhead involved in maintaining the CALC-chains.

You can best create multilevel structures that span areas if you specify the location mode as VIA for the member
records in the sets in the structures. An example of a multilevel structure is shown in Figure 2-3.

2-6

Responsibilities of the Data Base Administrator

Area 1

Set 1

Area 2

Set 2

Area 3

Figure 2-3 Example of a Multilevel Structure

Because each area has its own set of buffers, the run-unit accessing the sets in the structure has many windows into
the data. That is, DBCS can go serially through the members of one set in one area, without losing its place in
another set in another area.

2.2.3.3 Specifying Areas for Records - You must declare the areas in which occurrences of a record type can be
stored. If you specify more than one area, you must also specify an identifier that is known as the area-ID. The
run-unit uses this area-ID to tell DBCS the particular area where the record occurrence will be stored (or, in some
cases, accessed).

2.2.3.4 Specifying Data-Items in Records - You specify the structure of a record by naming the data-fields that make
up the record. You can specify the data as elementary numeric or alphanumeric items or as data-aggregates. You
use the PICTURE clause to describe elementary alphanumeric data-items, the SIZE clause to describe data-aggregates,
and the TYPE clause to describe elementary numeric items. The exact structure of these clauses and their meanings
can be found in Chapter 4. While numeric and alphanumeric data-items cannot be further subdivided, data-aggregates
can. However, you can describe the components of a data-aggregate only in the sub-schema DDL. This allows you
to change the description of the data in the data-aggregate according to the use that will be made of it.

2.2.4 Describing Sets
Once you have defined the records in the data base, you then define the relationships among these records by means
of the Set Entry in the schema. With the Set Entry you can define the mode, order, and owner of the set.

2.2.4.1 Specifying the Mode of a Set - The current implementation of DBMS provides for only one set mode -
CHAIN. For each occurrence of a set, a chain of pointers is created that provides for serial access to all records in
the set occurrence. The pointers are embedded in the records themselves. An illustration of an embedded pointer
chain is shown in Figure 24. It represents a set occurrence with two member records. The owner record of the set
occurrence contains a pointer to the first member record in the set which in turn contains a pointer to the second

2-7

Responsibilities of the Data Base Administrator

member which points back to the owner. If the set occurrence contained n member records, the chain of pointers

would pass through the n member records.

t
OWNER
RECORD

\N
!

MEMBER

RECORD

IN
~

MEMBER
RECORD

IN f--

N NEXT POINTER

Figure 24 Chain with NEXT Pointers

The linkage provided between the records in a chain is only in the NEXT direction unless you specify the optional
clause LINKED TO PRIOR. When you specify LINKED TO PRIOR, links in the reverse (i.e., PRIOR) direction are
also present. Figure 2-5 is a representation of an embedded chain that is LINKED TO PRIOR.

In addition, you can specify that the occurrences of any of the member record types specified for a set are LINKED
TO OWNER. This causes the owner record of the set occurrence to be accessible directly from each of the member
record occurrences. Figure 2-6 illustrates this.

The database keys are used as pointers. DBCS assigns space for a minimum of one pointer (the NEXT pointer) for
each record occurrence for each set occurrence in which the record occurrence participates as owner or member.
DBCS assigns additional pointers and space if you specify the chain to be LINKED TO PRIOR or you specify the
set's members to be LINKED TO OWNER.

When records in a set are frequently updated (particularly when they are being deleted), PRIOR pointers in those
records in addition to the always-present NEXT pointers will improve run-unit efficiency.

2-8

Responsibilities of the Data Base Administrator

P

OWNER

RECORD

P

N = NEXT POINTER

P PRIOR POINTER

MEMBER

RECORD

MEMBER

RECORD

Figure 2·5 Chain with NEXT and PRIOR Pointers

P

OWNER

RECORD

P

N = NEXT POINTER
P = PRIOR POINTER

o = OWNER POINTER

MEMBER
RECORD

MEMBER

RECORD

Figure 2·6 Chain with NEXT, PRIOR and OWNER Pointers

2·9

Responsibilities of the Data Base Administrator

2.2.4.2 Specifying the Order of a Set - You must specify a SET ORDER clause for each set you name in the schema.
The SET ORDER controls the logical order of the member record occurrences within each set occurrence. The logi­
cal order of the member records of a set is completely independent of the physical placement of the records them­
selves. Thus, the same record occurrences could participate as members in occurrences of two different set types and
be ordered differently in each of those set types.

The member records of each occurrence of a given set may be ordered in one of two ways:

1. SORTED in ascending or descending sequence based on the values of specified keys. The keys specified
may be data-items in each of the member records, the member records' type IDs, or their database keys,
or any combination of these.

2. In the order resulting from inserting new member record occurrences into the set:

a. FIRST, that is, as the immediate successor to the owner record occurrence.
b. LAST, that is, as the immediate predecessor to the owner record occurrence.
c. NEXT, PRIOR, that is, after or before the current record of the set.

Unless sorted order is necessary (e.g., for sorted reports), the overhead that it involves is not justified.

2.2.4.3 Specifying the Owner of a Set - With the OWNER clause, you can specify the name of a record that will be
the owner of the set or that the owner is SYSTEM. If you specify SYSTEM, you create an inherently singular set,
Le., a set that has only one occurrence. The SYSTEM record is stored in the area that you specified for it in the DMCL
or by default in the first area you declared (if you did not explicitly specify a SYSTEM area).

2.2.5 Describing the Members of a Set
You use the MEMBER entry to specify the names and characteristics of the member records in the set. You must
completely define each member before you define another member. The characteristics of a member are the type
of membership, its keys, and the method of set occurrence selection.

2.2.5.1 Set Membership - You can specify the membership of a record type in a set as AUTOMATIC or MANUAL,
and MANDATORY or OPTIONAL. A record type can have different forms of membership in different sets.

AUTOMATIC/MANUAL refers to how a run-unit puts record occurrences into the data base and into set occurrences.
AUTOMATIC means that a run-unit uses a STORE statement to automatically insert a record occurrence into the
set occurrences in which it is an automatic member as well as to store the record occurrence in the data base.
MANUAL means that a run-unit must use an INSERT statement to manually insert a record occurrence into the
set occurrences in which it is a manual member. A run-unit must have previously stored a record occurrence in the
data base before that record occurrence can be manually inserted into a set occurrence. For example, if you have
an employee record type, you could give it automatic membership in the company set type and manual membership
in the department and stock-option set types. When an occurrence of ~he employee record is stored, it will auto­
matically become a member of the company set occurrence. It becomes a member of the department and stock­
option set occurrences only when a run-unit inserts it into those set occurrences.

MANDATORY/OPTIONAL refers to how permanent a member record occurrence is in a set occurrence. MANDA­
TORY means that membership in a set is permanent. A run-unit cannot use a REMOVE statement to remove a
record occurrence from any set occurrence in which it is a mandatory member. However, the run-unit can use a
DELETE statement to eliminate the record occurrence from the data base and thus from all set occurrences in which
it is a member. The run-unit can also eliminate a mandatory member from the data base by deleting its owner record.
OPTIONAL means that membership in a set is not permanent. The run-unit can use a REMOVE statement to
remove a record occurrence from any set occurrence in which it is an optional member. The run-unit can use a DELETE
statement to eliminate the record occurrence from the data base and thus from all set occurrences in which it is a
member. The run-unit can also eliminate an optional member from the data base by deleting its owner record using
a special form of the DELETE command. For example, with an occurrence of the employee record mentioned
above, a run-unit can reI,llove it from an occurrence of the stock-option set as long as it is an optional member of
that set. However, the employee record should be a mandatory member of the company set so that a run-unit can
remove an occurrence of that record from that set only when it deletes that occurrence from the data base.

2-10

Responsibilities of the Data Base Administrator

2.2.5.2 Sort Keys - You can specify the sort keys for a member of a sorted set by means of the ASCENDING/
DESCENDING phrase. You can also specify that the keys are RANGE KEYs. This means that the keys will be
used in the process of set occurrence selection to provide a range of values that will be used to locate the owner
of a set occurrence.

2.2.5.3 Set Occurrence Selection - Each time DBCS references a particular set type implicitly during a STORE
of an automatic member of that set type, DBCS must choose the occurrence of that set type into which it will
insert the new record. You can specify one of two methods of set occurrence selection for a member record:
CURRENT OF SET and LOCATION MODE OF OWNER.

If you specify CURRENT OF SET, DBCS chooses the current set occurrence (Le., the one in which the CURRENT
OF SET record belongs).

If you specify LOCATION MODE OF OWNER, OBCS selects the appropriate set occurrence by locating an owner
record occurrence according to the location mode specified for the owner record. If the location mode of the owner
is DIRECT, OBCS uses the DIRECT identifier to locate the owner of the set. If the location mode of the owner is
CALC, OBCS uses the CALC key to locate the owner of the set. Note that the run-unit must initialize the DIRECT
identifier or the CALC key in the UW A before referencing a set type. If the location mode of the owner is VIA
set-name-2, OBCS must locate the owner of the set on the basis of its membership in set-name-2. If the new owner
also has a location mode of VIA, OBCS repeats the process until it finds a set occurrence selection of CURRENT
OF SET, or an owner with a location mode of DIRECT or CALC, or the SYSTEM record. DBCS then calculates
set occurrences back down the hierarchy until it reaches the owner originally specified. OBCS then stores the new
record in relation to its owner record according to the SET ORDER. Note that in the case of LOCATION MODE
OF OWNER, set order NEXT is equivalent to set order FIRST and that set order PRIOR is equivalent to set order
LAST.

You should avoid set occurrence selection using LOCATION MODE OF OWNER unless you have a specific reason
for using it. Such set occurrence selection can cause DBCS to unnecessarily search the data base for the correct
owner. For instance, if the program were to store two member records one right after the other into the same set
occurrence, OBCS would have to redundantly reselect the owner record during execution of the second STORE
statement.

2.2.6 Describing Sub-Schemas
You use the Sub-schema ODL to define those areas, records, and sets from the schema that will be included in each
sub-schema. Since an application program can only access a sub-schema, you are essentially limiting the program to
those parts of the data base defined in the sub-schema. You can, however, copy all areas, records, and sets from the
schema to a sub-schema, thus allowing a program to access the entire data base.

You can specify a privacy lock for a sub-schema. This lock is similar to the privacy locks for an area. It must be
matched with a privacy key before a program can be compiled using that sub-schema.

Within the Sub-schema Record Entry, you can specify the data-items that are included in a data-aggregate. These
can be COBOL data descriptions (level 03 and greater) or FORTRAN statements. Thus you can isolate the COBOL­
and FORTRAN-specific data descriptions in each sub-schema.

Refer to Chapter 5 for a complete description of the syntax and rules for the sub-schema DDL.

2.2.7 Describing the J oumal
A journal is a file in which a run-unit writes images of data base pages whenever it executes an updating DML com­
mand (STORE, DELETE, INSERT, REMOVE, MODIFY). There can be two kinds of images in a journal - BEFORE
and AFTER. A BEFORE image is a copy of a data base page before it is changed. An AFTER image is a copy of a
data base page after it is changed. At any time during a run-unit, the latest images in the journal match the pages in
the data base. That is, DBCS always synchronizes writing to the journal with writing to the data base.

2-11

Responsibilities of the Data Base Administrator

Although the images are the primary units of information in the journal, they can be grouped into larger units called
commands or even larger units called transactions. A command contains all of the BEFORE/AFTER images that
result from the execution of one updating DML command. Each command is delimited by a command header and
trailer. A transaction is a user-specified group of commands. It is delimited by a transaction header and trailer.
The size of the smallest transaction is one command, while the size of the largest possible transaction is the entire
journal. The run-unit defines the bounds of a transaction by calling the JSTRAN and JETRAN subprograms to
write the transaction headers and trailers. (See Section 2.3 in the DBMS Programmer's Procedures Manual for more
information.)

You use the BEFORE images in the journal for backup/recovery of the data base either during a run-unit or during
execution of the DBMEND program. (See Section 6.2 for information about DBMEND.)

You use AFTER images to bring an old copy of the data base up to date during the execution of the DBMEND pro­
gram.

There is usually only one journal for each data base. You define its characteristics with DMCL statements. However,
a run-unit can override the name you specified for the journal by means of a subprogram call. (See Section 2.3 in the
DBMS Programmer's Procedures Manual.) The characteristics of the journal are its file specification, the kind of
images in it, and its unit of backup/recovery (command or transaction).

2.2.7.1 Specifying Backup/Recovery - The CODASYL Data Base Task Group specification requires that DBMS
provide automatic recovery of the data base if an error occurs during updating by a DML command. That is, if an
error (exception) occurs while a DML command is updating the data base, DBMS must recover the data base by
restoring it to the state it was in prior to the initiation of the command. DECsystem-20 DBMS uses the journal to
provide the backup necessary for this recovery.

To perform backup, DBCS writes a command header and BEFORE images into the journal as a DML command up­
dates the data base. When the DML command is successfully completed, DBCS writes the command trailer. If an
exception occurs during a DML updating command, DBCS automatically restores the data base back to the last com­
mand header in the journal.

Support of this automatic recovery causes the run-unit to perform extra I/O. This is because it must write out all of
its buffers into the journal as well as to the data base after each DML updating command is completed. This is to
ensure that the journal and the data base are up to date and synchronized.

You can control the amount of backup/recovery and thus the amount of extra I/O by means of the DMCL IMAGES
statement (see Chapter 3). With this statement you can specify that images in the journal are or are not ordered by
command. If you specify ordering by command, DBCS performs the backup and automatic recovery described above.
If you specify that images are not ordered by command, the run unit must perform recovery manually.

For a run-unit to perform manual recovery, it must create transactions by calling JSTRAN and JETRAN to write the
transaction headers and trailers. If an exception occurs during updating, the run-unit must call the JBTRAN sub­
program to restore the data base back to the last transaction header.

Backup using transactions can reduce the amount of extra I/O because DBCS will write out the journal and data base
buffers only at the end of every transaction rather than at the end of every DML command. The most economical
way, however, for a run-unit to perform 1/0 is to write the buffers only when necessary (Le., only when a buffer
must be overwritten to make room for a new data-base page). If you have a run-unit that cannot recover from an
exception unless it is started again (from the beginning) you can specify that no recovery be performed during that
run-unit and avoid the extra I/O. The run-unit should still write BEFORE images in the journal, however, so that
you can use DBMEND to restore the data base.

2-12

Responsibilities of the Data Base Administrator

2.2.8 Requesting Exception Interception
You can specify in the DMCL Environment Entry that you want DBCS to type a message and optionally exit when a
particular kind of exception occurs. The note clause tells DBCS just to type a message. The INTERCEPT clause tells
DBCS to type a message and exit to TOPS-lO command level; the run-unit can continue if the programmer types
the TOPS-lO system CONTINUE command. The intercept facility gives you the ability to trace exceptions, debug new
programs, or reduce the amount of procedural exception checking by the run-unit.

The kinds of exceptions that you can have noted and/or intercepted are BIND, CALL, UPDATE, SYSTEM, ALL,
or UNANTICIPATED exceptions. BIND exceptions are those that can occur when DBCS binds the sub-schema to
the run-unit. Binding occurs when the UW A is set up and the records from the data base are made accessible to the
program. CALL exceptions are those that can occur when the run-unit calls a DBCS subprogram (e.g., SETDB,
JSTRAN). UPDATE exceptions are those that can occur when a verb that updates the data base is executed (e.g.,
STORE, DELETE). SYSTEM exceptions are those that occur when there is a software error in DBCS or a data error
in one of the files (data base, schema, or journal). ALL exceptions means all of the above plus exceptions that occur
during execution of any other DML verb (e.g., IF, FIND). UNANTICIPATED means all of the above except 0307
and 0326.

You can specify both a NOTE and an INTERCEPT statement in the DMCL. Thus, you can note one class of excep­
tions (or all) and intercept another. Specifying NOTE ALL and INTERCEPT ALL, however, would be redundant,
because INTERCEPT subsumes NOTE.

2.3 RUNNING THE SCHEMA PROGRAM
Once you have created the file containing the description of the schema, you must process it using the SCHEMA pro­
gram. To do so, you must run SCHEMA and give it a command string as follows .

• RSCHEMA
* [output file-spec=] input file-spec [lswitch]

The input file specification consists of the device, filename, and extension. If you omit the device, SCHEMA assumes
DSK. You cannot omit the filename; but if you omit the extension, SCHEMA assumes .DDL. You can specify wild­
carding in the input file specification.

The output file specification consists of the device, filename, and extension. If you omit the device, SCHEMA assumes
that of the input file. If you omit the filename, SCHEMA assumes that of the input file. SCHEMA always uses the ex­
tension .SCH even if you specify a different one. If you omit the entire file specification. SCHEMA uses that of the
input file except that it changes the extension to .SCH.

When you run SCHEMA, it creates not only the .SCH file, but also the .DBS files. As explained above, the .DBS files
are the files containing the areas; thus, as a group, they are the data base. Two switches are provided that control
whether or not the .DBS files are created. They are the /CREATE and /NOCREATE switches. If you do not include
either switch, the .DBS files are created only if they do not already exist. If you include the /CREATE switch,
SCHEMA always creates the .DBS files, even if they already exist. This will cause the previous version of the .DBS
files to be superseded and to be lost to DBMS. If you include the /NOCREATE switch, the .DBS files are not created,
even if they do not exist.

When SCHEMA first creates the .DBS files, they are zero-length. You must load them with data to have a functional
data base. However, if you wish to rerun SCHEMA because you have made a change to the schema file, you will not
wish to have the .DBS files created again unless you want to change and reload the data base. Thus, you would use
the /NOCREATE switch (or no switch). When you do want to change the schema and the data base, you use the
/CREATE switch to cause SCHEMA to write over each existing .DBS file with an empty file. To save the existing
data, you should unload the data from the .DBS files to other files before you recreate them. Section 2.4 describes
the changes to the schema that will and will not necessitate recreating the .DBS files.

The data definition process described in this Chapter is shown in Figure 2-7.

2-13

DMCL
STATEMENTS

Responsibilities of the Data Base Administrator

SCHEMA DDL
STATEMENTS

.SCH
FILE

Figure 2-7 Data Definition Process

SUB-SCHEMA DDL
STATEMENTS

.DBS
FILE(S)

Every time you rerun SCHEMA and create a new .SCH file, SCHEMA changes the internal version number of the file.
If an existing relocatable binary version of an application program accessing the schema is used, DBCS will issue an
exception code of 1500 (see Appendix B of the DBMS Programmer's Procedures Manual) stating that a version dis­
crepancy exists. This is because the REL file of the application program has the version of the schema that was avail­
able when the program was compiled. If the changes to the schema do not affect the portion of the data base that
the program accesses, the run-unit need not be aborted. If this is not the case, the program should be recompiled.

2.4 CHANGING THE SCHEMA
There are two kinds of changes that you can make to the schema - those that require you just to rerun SCHEMA and
those that require you to recreate the .DBS files and thus reload the data base as well. (Changes that require recom­
pilation of the application programs are noted individually.)

The changes that do not require reloading of the data base are the following.

1. Any name currently in the schema. This may require changes in the application programs.
2. The buffer count.
3. An increased number of records per page.
4. The upper end of the range of an area; i.e., the number of the last page in the area. However, this change

is meaningful only if you either have a no CALC records in the area or have a RANGE clause for each
CALC record.

5. Any sub-schema. This will probably require changes in the application programs.
6. The kind of images in the journal.
7. Image ordering, i.e., whether or not images will be ordered by command.
8. Privacy locks. This may require changes to the application programs.
9. An area's temporary stat us.

lO. Additional areas in a record's WITHIN clause. This may require changes in the application programs (i.e.,
they may have to add area-IDs).

11. New record types, but only after the last existing Record Entry. Otherwise, you would change the existing
records' record type IDs.

12. Additional new set types as long as no existing records are used in them. This is because you would have to
add new pointers to the existing records.

2-14

Responsibilities of the Data Base Administrator

13. A record's set membership, i.e., from MANDATORY to OPTIONAL or vice versa and from AUTO­
MATIC to MANUAL or vice versa. This may affect the application program logic, so you should con­
sider it carefully.

14. The form of set occurrence selection, i.e., from LOCATION MODE OF OWNER to CURRENT OF
SET or vice versa.

15. The types of errors to be noted or intercepted.

Any change that requires a change in the record type 10, size, and division between pointers on one hand and data
in a record on the other hand will require you to reload the data base. Other changes that would require reloading
the data base are those that change existing set relationships, those that interfere with CALC-chains, or any changes
to the description of the data-items in the records.

Although you can change neither the order of the record types as they appear in the schema nor their set relation­
ships, you can add new record and set types. You must note the following restrictions, however, on adding new
record and set types.

1. Add all new records to the schema at the end of the existing record types.
2. Add all new sets to the schema at the end of the existing set types.
3. Only new set types can contain new record types. Do not add existing record types to new set types.
4. Do not add new record types to existing set types.

2.S USING SIMULTANEOUS UPDATE; DATA BASE DESIGN CONSIDERATIONS
As described in Section 2.2.1.2, DBMS allows a concurrent run-unit to update or retrieve data while another run­
unit updates or retrieves in the same area. Concurrency is supported through use of the ENQUEUE/DEQUEUE
facility of the TOPS-I0 operating system. (Refer to Chapter 16 of the DECsystem-10 Monitor Calls Manual for a dis­
cussion of ENQUEUE/DEQUEUE.)

Note that this facility can be used to its best advantage for discrete programmer-initiated operations (for example,
updates and interrogations). It is less efficient for generating reports that involve essentially sequential processing of
sets.

A run-unit specifies how it intends to access data in the area with the syntax of the DML OPEN statement. (See Chap­
ter 3 of the DBMS Programmer's Procedures Manual for a description of the Data Manipulation Language.) Depending
on the concurrency it needs, a run-unit can choose one of three usage-modes allowing simultaneous update/retrieval:

UPDATE
PROTECTED UPDATE
RETRIEVAL

If a run-unit updates an area simultaneously with other run-units, it also updates the journal file. When you are using
DBMEND, you must be able to isolate the changes each run-unit has made to the journal file. This is done through
the mechanism of run-unit IDs.

Refer to Section 2.2.7, which describes the journal and to Chapter 6, which describes DBMEND.

Because sharing a journal involves DBCS in a certain amount of extra maintenance, it is important that each run­
unit indicate to DBCS when it does not intend to share the journal. To do this, the programmer can specify the
OPEN JOURNAL USAGE-MODE EXCLUSIVE UPDATE statement before opening any areas for update. (See
Chapter 3 of the DBMS Programmer's Procedures Manual for a detailed description of the syntax.)

2-15

Responsibilities of the Data Base Administrator

If the programmer has not specified an open-journal statement, the system simulates one depending on whether the
area is being opened for update (shared) or for exclusive or protected update (exclusive).

The level of sharing (the resource shared) within the three simultaneous usage-modes (as maintained by ENQUEUE/
DEQUEUE) is the data base. When a run-unit is executing an updating statement (and possibly sharing the journal
file), other run-units are locked out of the data base. For this reason, use of the simultaneous-update usage-modes
by run-units impacts the efficiency of DBMS. It's important, therefore, that run-units use the simultaneous-update
modes in a discriminating way; in general, this means not unless such a mode is functionally necessary.

When a run-unit is within the framework of simultaneous update, then, its use of the data base as a resource is either
exclusive or shared:

• Exclusive during execution of updating commands. This means that during the duration of an updating
command no other run-unit can access the data base. (The updating commands are STORE, MODIFY,
INSERT, REMOVE, and DELETE.)

• Exclusive during transactions if images are not ordered by command.
• Shared otherwise (FIND, GET, IF ...).

This is true even when run-units are opening disjoint areas of the data base. If Run-unit A opens area 1 for update,
for example, and Run-unit B opens area 2, Run-unit B will be locked out of the data base during the duration of
execution of an updating command issued by Run-unit A.

You can influence the duration during which concurrent run-units are guaranteed exclusive control of the data base.
You can do this with the IMAGES statement of the DMCL. (See Chapter 3.) If you specify that images are in order
by command, this duration is the command. If you specify that images are not in order by command, this duration
is the user-defined transaction (that is, a logical operation bounded by calls to JSTRAN and JETRAN). For efficient
use of transactions, the application programmer should define transactions such that they are mainly calls to DBCS.
A command executed outside of an entire transaction is, in effect, a default transaction. The duration of control over
the data base .- for a default transaction - is the command duration. Having default transactions facilitates certain
types of application programs:

• those that only retrieve. They do not have to define transactions since they do not update the data base.
• those that want to define only a few transactions but otherwise want the minimum-duration control

over the data base (and therefore minimum duration lockout of other run-units) otherwise provided by
specifying IMAGES BY COMMAND.

If you omit the IMAGES statement, the system assumes that IMAGES are by command.

The following tables provide an overview of significant trade-offs you can make when deciding to use the simulta­
neous-update capability at your facility. The tables are intended to complement the text. Table 2-1 lists the six
usages-modes and gives suggestions for using each.

Table 2-1
Usage-Modes with OPEN; Suggestions for Advantageous Use

RETRIEVALl

UPDATEl

PROTECTED RETRIEVAL

PROTECTED UPDATE 1

EXCLUSIVE RETRIEVAL

EXCLUSIVE UPDATE
1----

1 Simultaneous-update usage-mode.

You intend other run-units to open simultaneously with UPDATE or
PROTECTED UPDATE.

You intend other run-units to open simultaneously with UPDATE.

You expect concurrent retrievers but no concurrent updaters.

You intend other run-units to open with RETRIEVAL.

You really need this exclusiveness.

You really need this exclusiveness.

2-16

Responsibilities of the Data Base Administrator

Table 2-2 relates the level of simultaneity you can implement at your facility - and how you can achieve it - to
overall design implications you must consider. The table is arranged in terms of levels of increasing duration of con­
trol of the data base resource by a run-unit when it opens an area in a simultaneous-update usage-mode.

Table 2-2
Levels of Simultaneity Related to Data Base Design Considerations

Level of Simultaneity How to Achieve Design Considerations

None Use EXCLUSIVE RETRIEV AL/ Inexpensive in terms of CPU time.
EXCLUSIVE UPDATE usage-modes.

Simultaneous retrievers Use PROTECTED RETRIEVAL Inexpensive in terms of CPU time.
usage-mode.

Pseudo-simul taneous Specify that run-units simultaneously Inexpensive in terms of CPU time.
updaters open disjoint areas in EXCLUSIVE It does, however, complicate the

UPDATE usage-mode. design/control problem. You must,
for example, ensure that areas are
truly disjoint and journals are
properly managed at the applica-
tions level.

Begins Involvement of Simultaneous-Update Facility

Duration of con trol of the Specify IMAGES BY COMMAND. Minimizes the duration during
data base resource is the Optionally allow applications to which a run-unit can have exclusive
command. define transactions. control of the data base (and there-

by possibly lock out other run-units
from the data base. (Those run-units
outside the framework of simulta-
neous update must also consider
efficiency implications related to
the IMAGES statement.) See also
Section 2.2.7.1.

Duration of control of the Specify IMAGES NOT IN ORDER Minimizes the duration during which
data base resource is the BY COMMAND. Ensure applications a run-unit can have exclusive control
transaction plus default define transactions using JETRAN - of the data base while it allows def-
transactions. JSTRAN only for those operations inition of logical operations in terms

that must not have interference during of transactions. In effect, you have
execution. Other commands remain both command-duration and trans-
outside the scope of transactions. action-duration control over the

data base.

Duration of control of the Specify IMAGES NOT IN ORDER Minimizes simultaneous-update
data base resource is the BY COMMAND. Ensure application CPU usage and is the most
transaction. programs divide all operations on the efficient for overall throughput.

data base into logical units using This is the most easily recoverable
JETRAN - JSTRAN. Ensure transac- form of simultaneous-update usage;
tions are composed mainly of calls it is also the easiest to design be-
to DBCS. cause control issues are simple.

2-17

Responsibilities of the Data Base Administrator

2.6 USING THE DBMS UTILITIES
DBMS provides three utility programs to help you utilize the data base. These utilities are DBINFO, DBMEND, and
DAEMDB.

DBINFO is a utility program that gives you information about the contents of the data base. With DBINFO, you
can get a dump of the data, a cross reference listing of the names in the data base, statistical information about the
data base, and the amount of free space left in the data base. You can use DBINFO to provide documentation of
the data base for yourself, your staff, and the programmers accessing the data base. DBINFO has the facility for
limiting the data that it outputs to a specific sub-schema and a specific range of pages in an area. Thus, you need not
give the information about the entire data base to those who only need to know about a portion of it. DBINFO is
described in detail in Chapter 6.

DBMEND is the utility program that allows you to perform page recovery using the BEFORE images in the journal
file. Although DBCS can use the journal file to automatically restore data base pages if an exception occurs during
a run-unit (see Section 2.2.7.1), DBMEND is available if automatic restoration is not possible or too restricted. For
example, DBCS cannot restore the data base from the journal when the run-unit terminates abnormally (e.g.,
crashes). In such cases you must use DBMEND to restore the data base. You can also use DBMEND to bring an old
copy of the data base up-to-date by using a journal file with AFTER images. In addition to page recovery, DBMEND
is useful for getting abstracts of the journal and for adjusting the Area Status Record of a .DBS file. For more in­
formation about DBMEND, see Chapter 6.

DAEMDB is a utility program that allows you to perform magnetic-tape journaling. The program copies data from
the temporary journal file on disk (see Section 6.2.5.2) to magnetic tape. DAEMDB can be run under OPSER or
as a normal time~sharing job from a terminal; it can control up to eight journals. Refer to Chapter 6 for a descrip­
tion of DAEMDB.

2.7 USING THE STATS SUBPROGRAM
ST ATS is a DBCS subprogram that a run-unit can call to obtain a printed summary of the stat us of the data base
activity for each sub-schema.

The statistics produced arc:

1. The cumulative run-time for each sub-schema.
2. The number of calls made to DBCS for each class of verb and the total of all calls to DBCS.
3. The number of data-base page accesses.
4. The number of times DBCS accessed a page twice or more in a row. This provides a measure of access

locality.
5. The number of reads and writes performed on data base pages.
6. The number of times DBCS wrote a journal page.
7. The amount of run-time used for each call to DBCS (optional because it is costly to generate).

The amount of run-time used for each call to DBCS is shown as 0 on the printed summary unless you set the global
symbol "STATS." to a nonzero value. One way you can accomplish this is by means of the /DEFINE switch to LINK.
You can specify the "ST ATS." symbol as the argument to the switch. For example:

.R LINK
*prog-name, /DEFINE:ST ATS.: I, ...

A COBOL program calls the ST ATS routine as follows:

ENTER MACRO STATS.

A FORTRAN program calls the ST ATS routine as follows:

CALL STATS

2-18

Responsibilities of the Data Base Administrator

An example of the printed summary produced by ST ATS is as follows.

OBCS USAGE STATISTICS

STATISTICS FOR SUB-SCHEMA SUBS1
(CUMULATIVE RUNTIMF. 1817 MILLI-SECONDS)

CLASS
OBCS-rOTAL
HOST
CLOSE
FIND
GET
INSERT
OPEN
STORE
BIND
CALL
• OSPAGE ACCESSES

CALLS
660
too

t
197

99
tOO

t
t50

1 1
1

• OF SAME-OBPAGE ACCESSES
• OF OBPAGE READS
• OF DePACE WRITES
• OF JOURNAL PAGE WPITES

2-19

PUNTIME(MS)
o
o
o
o
o
o
o
o
o
o

1867
1592

15
165
119

CHAPTER 3

THE DEVICE MEDIA CONTROL LANGUAGE (DMCL)

The Device Media Control Language (DMCL) enables you to select individual areas, assign them to files, and
allocate storage for them. The DMCL is an extension to the Schema DDL, and thus, the DMCL state men ts must
be executed by the DDL processor, SCHEMA. You include the DMCL entries in your schema file before the
Schema DDL entries.

There are two types of DMCL entry that you can use to:

1. Specify parameters that apply to the schema as a whole, e.g., the number of records on a page and the
name of the journal (Environment Entry).

2. Assign areas to files and specify the physical characteristics of these files (Area Entry).

For each area specified in the schema, you must have a DMCL Area Entry. On the other hand you can only specify
one DMCL Environment Entry for each schema. The DMCL Environment Entry must precede the DMCL Area
Entries.

The DMCL entries are described on the following pages. Each entry starts on a new page.

Certain conventions have been used in the descriptions of the DMCL and DDL statements in this chapter and
Chapters 4 and 5. These conventions and their meanings are as follows.

Lower-case characters

Upper-case characters,
underscored

Upper-case characters,
not underscored

Braces

Brackets

{ }

[J
Ellipsis ...

Double vertical lines II II

Information that you must supply (values, names, and other param­
eters).'

Key words in the DMCL and DDL lexicons you must use when using
the formats of which they are a part.

Other words in the lexicons that serve only to make the statements more
readable. Their use is optional and has no effect on the meaning of the
formats of which they are a part.

A choice. Choose from the two or more lines enclosed.

A choice, optional. The contents of the brackets are used according
to the rules above if you choose the feature.

Repetition. The information contained within the preceding pair of
braces or brackets can be repeated at your option.

A choice. Choose one, several, all, or none of the lines enclosed.

Note that the semicolon (;) and comma (,) are treated as spaces in all DMCL and DDL statements. The only
punctuation required in these statements is a period to end the statement. In the examples in this manual, a
semicolon or comma is used for readability only and does not affect the meaning of the statement.

3-1

The Device Media Control Language (DMCL)

DMCL ENVIRONMENT ENTRY

Function
Use the DMCL environment entry to specify those parameters that apply to the entire schema.

General Format

[IMAGES [NOT] IN ORDER BY COMMANDJ

~I;CEPTII
ALL

BIND
CALL
SYSTEM
UPDATE
UNANTICIPATED I

[

JOURNAL IS file-spec]
[SIZE IS integer-I TRANSACTIONS] .:.

Q~ORDS-PER-PAGE} IS integer -I.]
Technical Notes

EXCEPTIONS]

I. The DMCL environment entry must precede all DMCL area entries.
2. The statements in the DMCL environment entry can appear in any order. They are shown here and

described on succeeding pages in alphabetical order.
3. The entire DMCL environment entry can be omitted.

Example

IMAGES BY COMMAND.
NOTE ALL.
INTERCEPT BIND.
JOURNAL IS JRN :SCHAM
SIZE IS 1 TRANSACTIONS.
RPP 25.

3-2

The Device Media Control Language (DMCL)

IMAGES

Function

Use the IMAGES statement to specify whether DBCS or the run-unit defines the minimum unit of recovery of the
data base.

General Format

[IMAGES [NOT] IN ORDER BY COMMANDJ

Technical Notes

1. IMAGES IN ORDER BY COMMAND means that DBCS will define commands as a unit of recovery
during a run-unit. DBCS uses the journal's BEFORE images to perform the backup necessary for the
recovery. A command in the journal is the group of BEFORE images associated with one DML up­
dating command and delimited by a command header and trailer.

2. IMAGES IN ORDER BY COMMAND also means that if an exception occurs during execution of a
DML updating command, DBCS will automatically restore the data base to its state prior to that
command.

3. IMAGES IN ORDER BY COMMAND also defines the command as the duration of control of the data
base within the framework of simultaneous update. See also Section 2.2.1.3.

4. IMAGES NOT IN ORDER BY COMMAND means that when the run-unit defines transactions they
will be the unit of recovery during a run-unit. The run-unit uses the journal's BEFORE images to per­
form the backup necessary for the recovery. A transaction in the journal is the group of BEFORE
images delimited by a transaction header and trailer. The run-unit defines the size of the transaction
by means of calls to the JSTRAN and JETRAN subprograms, which write the transaction headers and
trailers.

5. IMAGES NOT IN ORDER BY COMMAND also means that if an exception occurs during execution of
a DML updating command, the run-unit must call the JBTRAN subprogram to restore the data base to
its state prior to the transaction in which the exception occurred. In the framework of simultaneous­
update, however, a command outside defined transactions does conform to the rules pertaining to
IMAGES IN ORDER BY COMMAND.

6. IMAGES NOT IN ORDER BY COMMAND also defines the transaction as the duration of control of
the data base within the framework of simultaneous update. See also Section 2.2.1.3.

7. If the run-unit does not define transactions in the journal and you have specified IMAG ES NOT IN
ORDER BY COMMAND, recovery cannot occur during the run-unit. Instead, you must run the
DBMEND program to restore the data base using the BEFORE images in the journal. Refer to
Section 6.2 for information about DBMEND.

8. Either you (in the DMCL BACKUP statement) or the run-unit (with a subprogram call) must specify
BEFORE images in the journal if recovery is to be possible.

9. Refer to Section 2.2.7 for information about the journal and to Section 2.3 ill the DBMS Programmer's
Procedures Manual for information about the subprogram calls.

10. The IMAGES statement can appear anywhere in the DMCL environment entry.
11. If you omit the IMAGES statement, SCHEMA assumes IMAGES IN ORDER BY COMMAND.

Example

IMAGES BY COMMAND.

3-3

The Device Media Control Language (DMCL)

INTERCEPT /NOTE

Function
Use the INTERCEPT or NOTE statement to specify the exceptions that DBCS will intercept or note during
a run-unit.

General F onnat

ALL

I/;CEPT II BIND
CALL EXCEPTIONS.:.
SYSTEM
UPDATE
UNANTICIPATED

Technical Notes

Example

1. INTERCEPT causes DBCS to type an error message and force the run-unit to exit to the monitor if an
exception of the specified class occurs. The user of the run-unit can continue execution by typing
the CONTINUE system command.

2. NOTE causes DBCS to type a message if an exception of the specified class occurs. DBCS does not
stop the run-unit as it will when you specify INTERCEPT.

3. The classes of exceptions have the following meanings:
a. BIND - exceptions that occur during binding of the sub-schema (i.e., when DBCS enters the SBIND,

EBIND, BIND, and SETUSE routines).
b. CALL - exceptions that occur during a call to one of the journalling, SETDB, or UNSET

subprograms.
c. SYSTEM - exceptions with a code number greater than 55. See Table B-2 of the DBMS Program­

mer's Procedures Manual.
d. UPDATE - exceptions that occur during execution of the DML updating verbs (DELETE, INSERT,

MODIFY, REMOVE, or STORE).
e. UNANTICIPATED - all exceptions other than 0307 and 0326.
f. ALL - all exceptions that can occur during the run-unit.

4. You can specify both the INTERCEPT and NOTE statements in the DMCL environment entry.
5. If you do not specify an INTERCEPT or NOTE statement DBCS will not intercept or note any

exceptions that occur during the run-unit.
6. The INTERCEPT or NOTE statement can appear anywhere in the DMCL environment entry.

NOTE ALL.
INTERCEPT BIND.

3-4

The Device Media Control Language (DMCL)

JOURNAL

Function
Use the JOURNAL statement to specify the file specification for the journal.

General Format

[
JOURNAL IS file-spec]

[SIZE IS integer-I TRANSACTIONS] ..:.

Technical Notes

Example

I. The file specification is of the form:
dev:filename [p,pn]

where:
dev: is the device. If you omit it, SCHEMA will use DSK:.
filename is the filename of the journal. You cannot omit the filename for a disk file. At run-time, the de­

vice resolves either to disk or to magnetic tape.
[p,pn] is the project programmer number. If you omit it, SCHEMA uses that of the logged-in user.

SCHEMA appends a file extension of .JRN to the filename. Thus, you cannot specify a file extension.
2. The JOURNAL statement can appear anywhere in the DMCL environment entry.
3. If you omit the JOURNAL statement, SCHEMA creates a file specification in which the device is JRN,

the filename is the schema-name, and the project programmer number is that of the logged-in user.
4. The SIZE clause allows you to control the size of a journal file.
S. The SIZE clause applies to any run-unit that has a disk journal which is not shared, and to any shared

journal for which images have not been ordered by command (that is, they are ordered by transaction).
6. Integer-I indicates the maximum number of transactions you want in the journal at anyone time. After

the number of transactions you specify, DBCS repositions the journal file pointer to the beginning of
the journal file.

JOURNAL IS JRN :SCHAM
SIZE IS 1 TRANSACTIONS.

3-5

The Device Media Control Language (DMCL)

RECORDS-PER-PAGE

Function
Use the RECORDS-PER-PAGE statement to specify the maximum number of records that can be stored on a page
for all areas in the schema.

General Format

IS integer-lj

Technical Notes

Example

1. Integer.} is an unsigned positive decimal number in the range 2 through 51l.
2. You can place this statement anywhere in the DMCL environment entry.
3. You can omit this statement as long as you include a RECORDS-PER-PAGE statement in each DMCL

area entry.
4. If you specify the RECORDS-PER-PAGE statement in the DMCL environment entry and a RECORDS­

PER-PAGE statement in a DMCL area entry, the statement in the DMCL area entry will override the
statement in the DMCL environment entry.

RPP 25.

3-6

The Device Media Control Language (DMCL)

DMCL AREA ENTRY

Function
Use the DMCL area entry to describe each area in the schema. You can specify the area-name, the number of
records on a page, the number of buffers, the number of CALC-chains per page, the first and last pages, the page
size, and the pages where a particular record type can be stored.

General Format

ASSIGN [SYSTEM AREA] area-name TO file-spec

8 ~ORDS-PER-PAGE}
~ACKUP II !~i~~E II

IS integer-~

IMAGE~
[BUFFER COUNT IS integer-2]

[CALC AT MOST integer-3 {~O RDS-PER-P AGE U
FIRST PAGE IS integer-4

LAST PAGE IS integer-5

PAGE SIZE IS integer-6 WORDS

[RANGE OF record-name-l IS PAGE integer-7 TO PAGE integer-8,
[RANGE OF record-name-2 IS PAGE integer-9 TO PAGE integer-l0] ... 1.:.

Technical Notes

1. You must specify a DMCL area entry for each area in the schema.
2. The statements in the DMCL area entry are specified in the order shown, except that the RECORDS­

PER-PAGE, BACKUP, BUFFER, and CALC statements can appear in any order between the ASSIGN
and FIRST PAGE statements.

3. The individual clauses are described on the following pages in the order shown.

Example

ASSIGN PERSONNEL-AREA TO FILE 1
RPP50
BACKUP BEFORE IMAGES
BUFFER 4
CALC 10 RPP
FIRST PAGE 1
LAST PAG E 600
PAGE SIZE 512 WORDS
RANGE OF CUST IS 15 TO 30.

3-7

The Device Media Control Language (DMCL)

ASSIGN

Function
Use the ASSIGN statement to specify the file specification for an area. You can also specify that an area is the

SYSTEM area.

General Format

ASSIGN [SYSTEM AREA] area-name TO file spec

Technical Notes

Example

1. The ASSIGN statement must be the first entry in each DMCL area entry.
2. The area named in the ASSIGN statement must be an area defined in the schema.
3. The file specification is of the form:

dev:filename [p,pn]
where:
dey: is the device. If you omit it, SCHEMA will use DSK:.
filename is the filename for the area. You cannot omit the fIlename.
[p,pn] is the project and programmer number. If you omit it, SCHEMA uses that of the logged-in user.

SCHEMA appends a file extension of .DBS to the filename. The filename must be unique in the directory.
4. The SYSTEM AREA phrase causes the SYSTEM record to be stored in this area. If you do not specify

the SYSTEM AREA phrase and you do specify OWNER IS SYSTEM at least once, SCHEMA uses the
area specified in the area entry as the SYSTEM area. If you do not specify OWNER IS SYSTEM and
do specify the SYSTEM AREA phrase, SCHEMA will ignore the SYSTEM AREA phrase.

5. Only one area entry can contain the SYSTEM AREA phrase.

ASSIGN PERSONNEL-AREA TO FILE 1

3-8

The Device Media Control Language (DMCL)

RECORDS-PER-PAGE

Function
Use the RECORDS-PER-PAGE statement to specify the maximum number of records that can be stored on a page
for an individual area.

General F onnat

[{~ORDS.PER.PAGE } IS integer]

Technical Notes

Example

1. Integer-I is a positive unsigned decimal number in the range 2 through 511.
2. The RECORDS-PER-PAGE statement can appear anywhere between the ASSIGN and FIRST PAGE

statements in the DMCL area entry.
3. You can omit this statement from the DMCL area entry as long as you have specified a RECORDS­

PER-PAGE statement in the DMCL environment entry.
4. If you specify a RECORDS-PER-PAGE statement in the DMCL environment entry and also in a

DMCL area entry, the RECORDS-PER-PAGE statement in the DMCL area entry will override that
in the DMCL environment entry.

RPP50

3-9

The Device Media Control Language (DMCL)

BACKUP

Function
Use the BACKUP statement to specify the kind of images that will be written into the journal during an updating
run-unit.

General Format

~ACKUP
Technical Notes

II AFTER II
BEFORE IMAGES]

Example

1. The BACKUP statement can appear anywhere in the OMCL area entry between the ASSIGN and
FIRST PAGE statement.

2. The BACKUP statement causes OBCS to write BEFORE and/or AFTER images in the journal during
a run-unit that updates the data base.

3. BEFORE images are copies of data base pages before updating is done. AFTER images are data base
pages after updating is done.

4. If you want both BEFORE and AFTER images, you can specify both in a single BACKUP statement.
5. If you omit this statement or if a run-unit needs to change the kind of images, it can call subprograms

to request the images it needs. Refer to Section 2.3 of the DBMS Programmer's Procedures Manual.

BACKUP BEFORE IMAGES

3-10

The Device Media Control Language (DMCL)

BUFFER COUNT

Function
Use the BUFFER COUNT statement to specify the number of buffers for the area.

General Format

[BUFFER COUNT IS integer-2]

Technical Notes

1. Integer-2 is positive unsigned decimal number equal to or greater than 2.

Example

2. The BUFFER COUNT statement can appear anywhere in the DMCL area entry between the ASSIGN
and FIRST PAGE statements.

3. If you omit a BUFFER COUNT statement for an area, the default for that area is three buffers.

BUFFER 4

3-11

The Device Media Control Language (DMCL)

Function
Use the CALC statement to specify the number of CALC-chain headers on each page of the area.

General Format

[CALC AT MOST integer-3 {~ORDS-PER-PAGE D
Technical Notes

Example

1. Integer-3 is an unsigned positive decimal number equal to or greater than O.
2. The CALC statement can appear anywhere in the DMCL area entry between the ASSIGN and FIRST PAGE

statements.
3. By specifying the number of CALC-chain headers on each page, you can ba.lance space overhead against

access/store time for CALC records. That is, if you specify several CALC-chain headers, you will
increase the size of the page header for the area but reduce the access/store time for CALC records.
Conversely, if you specify few CALC-chain headers, you will reduce the size of the page header for the
area, but may increase the access/store time for CALC records. If you do not have any CALC records
that can be within an area, you should specify 0 as the number of CALC-chains per page. See Section
2.2.2 for more information.

4. If you omit the CALC statement, SCHEMA will use one CALC-chain for each page in the area.

CALC 10 RPP

3-12

The Device Media Control Language (DMCL)

FIRST PAGE/LAST PAGE

Function
Use the FIRST PAGE and LAST PAGE statements to specify the number of the first and last pages of the area.

General Format

FIRST PAGE IS integer4
LAST PAGE IS integer-S

Technical Notes

Example

1. Integer-4 and integer-S must be unsigned positive decimal numbers.
2. The FIRST PAGE and LAST PAGE statements must appear in the order shown. The FIRST PAGE

statement must follow the ASSIGN statement and all of the RECORDS-PER-PAGE, BACKUP,
BUFFER, and CALC statements.

3. The range of the page numbers specified for one area cannot overlap the range of page numbers of
another area in the same data base. That is, if the range of one area is pages 1 through 120, no other
area in the same data base can contain a page number less than 121. The numbering need not be
continuous between areas. That is, if one area is numbered 1 through 120, another area's first page
need not start at 121.

4. There is no default for the FIRST PAGE and LAST PAGE statements. You must specify them.

FIRST PAGE 1
LAST PAGE 600

3-13

The Device Media Control Language (DMCL)

PAGE SIZE

Function
Use the PAGE SIZE statement to specify the amount of data that can go on a page. You will also be implicitly specify-
ing the buffer size for the area, since the buffers for an area are set to the same number.

General F onnat

PAGE SIZE IS integer-6 WORDS

Technical Notes

Example

1. Integer-6 is an unsigned positive decimal number.
2. The PAGE SIZE statement must appear after the LAST PAGE statement.
3. You can specify any number of words as the page size. However, because the TOPS-20 operating

system works only with device pages, DBCS will derive a data base page size that is the smallest
multiple of device page size if you do not specify such a value (Le., if you specify a page size of 1000,
DBCS will make the physical page size 1024).

4. The size you actually specify is called the logical page size. DBCS will not place more than this
number of words of data on a data-base page. Having a logical page size that is less than the physi­
cal page has two benefits. One, it allows you to layer your data if you gradually increase the page
size. Two, it allows you to (eventually) increase the record size without increasing the physical
page size.

5. There is no intrinsic limitation on page size; it is suggested that page size not exceed 4096.

PAGE SIZE 512 WORDS

3-14

The Device Media Control Language (DMCL)

RANGE

Function
Use the RANGE statement to specify the location in an area where a particular record can be stored.

General Format

[RANGE OF record-name-l IS PAGE integer-7 TO PAGE integer-8,
[RANGE OF record-name-2 IS PAGE integer-9 TO PAGE integer-lO] ...];.

Technical Notes

Example

I. Record-name-I, record-name-2 ... are the names of record types that can be stored in this area.
2. Integer-7 through integer-lO ... are unsigned positive decimal numbers. They specify valid page

numbers in the particular area.
3. Integer-7 and integer-9 define the beginning of the range for a record type. Integer-8 and integer-IO

define the end of the range for a record type.
4. The RANGE statement must appear after the PAGE SIZE statement.
5. You can use the RANGE statement to cluster record occurrences of the same type. If you specify it

for CALC record types, you will also have the ability to increase the number of the last page of the
area because the calc algorithm will use your specified range rather than the first/last page of the
area. See Section 2.2.2 for more information.

6. You do not have to specify a RANGE statement for any record types. If you do not specify a
RANGE statement for a record type, OBCS will treat the entire area as that record type's range.

RANGE OF CUST IS 16 TO 30.
RANGE OF SALESMAN IS 26 TO 200.

3-15

CHAPTER 4

THE SCHEMA DATA DESCRIPTION LANGUAGE (DDL)

The Schema Data Description Language (DOL) enables you to describe the logical and physical mapping of a data
base in terms of a schema. A schema written in the Schema DOL consists of four types of entry that serve to:

1. Identify the schema (Schema Entry);
2. Define areas (Area Entry);
3. Define records (Record Entry);
4. Define sets (Set Entry).

For each area, record type, and set type described in the schema, a separate entry is required. However, only one
Schema Entry can appear in a s'chema. When you construct a schema, you must maintain the following ordering of
the en tries:

1. The Schema Entry must always be the first entry;
2. An Area Entry must precede the Record Entries for all record types within that area;
3. A Record Entry must precede the Set Entries for all record types that participate in those sets as either

owners or members.

The Schema DOL entries are described on the following pages. Each entry begins on a new page.

4-1

The Schema Data Description Language (DDL)

SCHEMA ENTRY

Function
Use the schema entry to initiate the schema portion of a DOL program and to provide documentation.

General Format

SCHEMA NAME IS schema-name.

Technical Notes

Example

1. The schema-name given here is for documentation only. The name of the schema file is taken from the
command line you give to the SCHEMA program. All schema-names are limited to a maximum of six
characters.

2. The schema identified by the specified schema-name consists of the DOL entries that appear after this
entry and before the first sub-schema entry.

SCHEMA NAME IS BARHEX.

4-2

The Schema Data Description Language (DDL)

SCHEMA AREA ENTRY

Function
Use the area entry to name an area, optionally specify privacy locks and usage-modes, and optionally specify that
the area is temporary.

General Format

AREA NAME IS area-name-I
-- [AREA IS TEMPORARY]

W PRIVACY LOCK [OR ~;~~~~~~~J {~~~~:VAL}J IS lock-l ill~
Technical Notes

Example

1. All area names must be unique among names within the schema, and can be from 1 to 30 characters
long.

2. You must specify at least one area-name in a schema. If you specify only one area-name, that area and
the data base are, in effect, equivalent.

3. A temporary area is not shared among concurrent run-units. Any run-unit that opens an area defined as
temporary is allocated a private unique occurrence of that area. This is true even when multiple run­
units refer to the same area-name. When a temporary area is closed, record and set occurrences in the
area are no longer accessible, and the space occupied by the temporary area is again available to the
TOPS-IO file system.

4. PRIVACY LOCK specifies the privacy lock that applies to the use of an area. You can use a separate
PRIVACY clause for each usage-mode. However, you should not specify the same usage-mode in more
than one PRIVACY clause.

5. Lock-I is a privacy lock that the run-unit must match with a privacy key, which is identical to the lock.
Each lock must be a single alphanumeric name up to five characters long.

6. You can specify the same lock for one or more options included in the PRIVACY clause. If you omit
the optional FOR clause, lock-l applies to any use of the area.

7. If you do not specify a PRIVACY clause with one of the usage-modes, there is no restriction on who
can open the described area with that usage-mode.

8. The privacy lock associated with a usage-mode must be satisfied by the run-unit so that it can open the
area with that usage-mode.

AREA NAME IS PERSONNEL-AREA
PRIV ACY LOCK EXCLUSIVE UPDATE IS PAXUP
PRIVACY FOR RETRIEVAL IS PARER.

4-3

The Schema Data Description Language (DDL)

SCHEMA RECORD ENTRY

Function
Use the record entry to name a record type in the schema (and thus specify a generic name for all occurrences of the
record type in the data base); and to give the characteristics of all record occurrences of that type within a data base.

General Format

RECORD NAME IS record-name-1

LOCATION MODE IS

DIRECT identifier-l [%pseudonym-l]

CALC USING data-name-l [data-name-2]
--[DlJiiUCATES ARE [NOT] ALLOWED]

VIA set-name-1

WITHIN area-name-l [area-name-2 ... AREA-ID IS identifier-2 [%pseudonym-2] L

{

PICTURE ... }
02 data-name-3 [%pseudonym-3] SIZE .. . [OCCURS ... t.

TYPE .. .

Technical Notes

Example

1. You must use a separate record entry to describe each record type in the schema.
2. A record entry must precede the set entries for all record types that participate in those sets as either

owners or members.
3. For each record declared in a record entry, SCHEMA creates a record type 10. This record type 10 is a

number that is assigned in sequence, i.e., 33, 34, 35 ... (DBCS uses the first 32 record type IDs, see
Appendix C), according to the order in which you declare each record. Thus, the first record declared
has a record type JD of 33 and the fifth record declared has a record type 10 of 37. SCHEMA uses
the record type IDs as major sort keys when you declare that ORDER IS SORTED. Refer to the
ORDER clause for information about ORDER IS SORTED.

4. Each of the clauses in the record entry is described separately on one of the following pages.

RECORD NAME IS CUSTOMER-RECORD
LOCATION MODE IS CALC USING ACCOUNT
WITHIN MARKETING-AREA.

02 ACCOUNT PIC X(6).

4-4

The Schema Data Description Language (DDL)

RECORD NAME

Function
Use the RECORD NAME clause to specify the name of the record type.

General Format

RECORD NAME IS record-name-l

Technical Notes

1. Each record name must be unique among the names in a schema, and can be 1 to 30 characters long.

Example

RECORD NAME IS CUSTOMER-RECORD

4-5

The Schema Data Description Language (DDL)

LOCATION MODE

Function
Use the LOCATION MODE clause to define how a record occurrence is physically stored in the data base, and to
define the set occurrences into which a record occurrence is stored when the set occurrence selection is LOCATION
MODE OF OWNER.

General Format

LOCATION MODE IS CALC USING data-name-I [data-name-2] ... I
DIRECT identifier-I [%pseudonym-I] l

[DUPLICATES ARE [NOT] ALLOWED]
VIA set-name-I

Technical Notes

Example

I. Identifier-} is a variable used to hold a database key. It is not part of a record, but will appear in the
UW A. Pseudonym-I, if specified, must be preceded by a percent sign. It can contain up to six characters
and cannot contain hyphens. You should provide a pseudonym for FORTRAN use when identifier-I
contains more than six characters and/or hyphens.

2. Data-name-} and data-name-2 must refer to data-items included in the record being described.
3. Set-name-} must be a set in which the record is defined as a member.
4. You use the LOCATION MODE clause to control placement of records according to the options

selected. DIRECT or CALC causes placement to be controlled by identifier-lor by data-name-}, 2 ...
respectively. VIA set-name-I causes placement to be as close as possible to the logical insert point of the
record in set-name-} thus permitting clustering of data. (See also Section 2.2.3.2.)
a. The DIRECT option directs DBCS to physically store the record on the same page as the record that

is current of area if identifier-} is initialized to 0. If identifier-I is not 0, DBCS attempts to store the
record according to the page number of the database key in identifier-I. In other words, by placing
a database key in identifier-}, the run-unit directs DBCS to place the record on the first empty line
on the page specified.

b. The CALC option directs DBCS to physically store the record according to the CALC keys (Le., data­
name-} , data-name-2 ...). Using these keys, DBCS calculates a page and stores the record in the first
empty line on the page. The run-unit can retrieve the record by specifying the correct CALC keys
in data-name-l, data-name-2 ... DBCS calculates the page and then searches the CALC-chain until
it finds the record.

c. The VIA set-name-} option directs DBCS to physically store the record as close as possible to the
record it will (probably) be NEXT OF after DBCS applies the set type's set order.

5. DBCS uses the LOCATION MODE clause logically when the set occurrence selection .specified in a MEMBER
statement is LOCATION MODE OF OWNER. Refer to the SET OCCURRENCE SELECTION clause for
further information.

6. The DUPLICATE clause refers to the CALC keys. If you specify that DUPLICATES ARE NOT ALLOWED,
DBCS returns exception 1205 if an attempt is made to store a record whose CALC key values are identical
to those of an occurrence already in the data base. When you omit this clause, the default is DUPLICATES
ARE ALLOWED. However, if record-name-l owns any set in which SET OCCURRENCE SELECTION is
LOCATION MODE OF OWNER, you must specify DUPLICATES NOT ALLOWED for its CALC keys.

LOCATION MODE IS CALC USING ACCOUNT

4-6

The Schema Data Description Language (DDL)

WITHIN

Function
Use the WITHIN clause to tell DBCS the area where occurrences of the record will be allowed.

General Format

WITHIN area-I [area-name-2 . .. AREA-ID IS identifier-2 [%pseudonym-2]].:..

Technical Notes

Example

I. Area-name-I, area-name-2 must be the names of areas that you have already defined in a schema DOL
area entry. If present, identifier-2 will cause the INVOKE processor to allocate a variable of that name
in the UWA. This variable (or its pseudonym) will be PIC X(30) USAGE DISPLAY-7 in COBOL and
INTEGER (5) in FORTRAN. See also Table 4-1 for the usage-modes in the schema declarations and
in FORTRAN and COBOL.

2. When you specify more than one area-name, the contents of identifier-2 at the time of a DML STORE
command determine the area into which a record occurrence is placed. Also, when the run-unit uses
FIND rse 5 (FIND for CALC records), the area-ID tells DBCS the area in which to apply the CALC
algorithm.

3. The pseudonym must be preceded by a percent sign. It can contain up to six characters and cannot con­
tain hyphens. You should provide a pseudonym for FORTRAN use when the AREA-ID identifier con­
tains more than six characters and/or hyphens.

4. The run-unit must initialize identifier-2 with an appropriate area-name prior to the execution of a STORE
command. Identifier-2 can be initialized to ° for records with location mode VIA. If identifier-2 is initial­
ized with 0, DBCS stores that record occurrence in the area of the record occurrence that the new record
will be NEXT OF, provided that record can be stored in that area.

WITHIN MARKETING-AREA

4-7

17le Schema Data Description Language (DDL)

SCHEMA DATA ENTRY

Function
Use the data entry to name a data-item or data-aggregate.

General Format

Format 1

Format 2

02 data-name-3 [%pseudonym-3] SIZE IS in teger-2 ::.:: J ~:~:~~ ~ -61
) DISPLAY-7
~ DISPLAY-9

[OCCURS integer-I TIMESL.

Format 3

02 data-name- 3 [%pseudonym-31 TYPE IS

[integer-3] [, integer-4] [OCCURS integer-I TIMESL

Technical Notes

I. A data-name is a name that is not identical to any reserved word (see Appendix A), and may be up to
30 characters long. A data-name must be unique within a schema and cannot be the same as any data­
name in a program that accesses the data base.

2. A pseudonym, if present, must be preceded by a percent sign (%). It can be up to six characters long
and cannot contain hyphens. You should provide the pseudonym for FORTRAN use when the data-name
contains more than six characters and/or hyphens.

3. A data entry names and describes a numeric or alphanumeric data-item, or allocates space for a data­
aggregate.

4. You can use Format 1 to describe elementary alphanumeric data-items that are not part of a data­
aggregate. The 02 level number is required; the picture string must conform to the rules of ANSI COBOL
picture-strings, but it can only contain the symbols S9AXPV and ().

4-8

The Schema Data Description Language (DDL)

By specifying the USAGE phrase, you can describe the usage-mode of the alphanumeric data - SIXBIT
(DISPLAY or DISPLA Y-6), ASCII (DISPLA Y-7), or EBCDIC (DISPLAY-9). Table 4-1 shows the allocation
mechanism for FORTRAN and COBOL for each usage-mode described in the schema.

Table 4-1
Usage-Modes for FORTRAN and COBOL

Schema No. of Characters FORTRAN COBOL
Declaration in Field Declara tion Declaration

DISPLAY N INTEGER (N/5) DISPLAY-6 PIC X(N)

DISPLAY-6 N INTEGER (N/5) Same as schema

DISPLAY-7 N INTEGER (N/5) Same as schema

DISPLAY-9 N INTEGER (N/4) Same as schema

Note: If the value of the expression in the FORTRAN usage-mode is a fraction, it is always
rounded up to the next whole number (e.g., 7/5 = 2).

5. You can use Format 2 to describe a data-aggregate. When you specify the WORDS phrase, you declare
the number of 36-bit computer words that will hold the data-aggregate. When you specify the USAGE
phrase, you declare the representation of the data-aggregate. The size of each character is related to the
usage-mode selected. DISPLAY or DISPLAY-6 (SIXBIT) means 6-bit characters, six to a 36-bit word;
DISPLA Y-7 (ASCII) means 7-bit characters, five to a 36-bit word; and DISPLA Y-9 (EBCDIC) means
9-bit characters, four to a 36-bit word.
To further describe a data-aggregate, you can include text with it in its sub-schema declarations. This
text will be supplied to the run-unit when it invokes that sub-schema.

6. You can use Format 3 to describe elementary numeric data or database keys. Only certain combina­
tions of numeric keywords are supported; they are shown in Table 4-2. If you specify an unsupported
combination (e.g., FLOAT DECIMAL COMPLEX), SCHEMA will give you an error message. If you
do not specify one of each of the numeric keyword pairs, SCHEMA uses FIXED, BINARY, and
REAL as the defaults.
You can specify integer-3 as the precision of the data-item. The precision is treated as decimal or binary
digits depending on whether you have specified BINARY or DECIMAL. Table 4-2 gives the default pre­
cisions for the supported combinations of numeric types. Not every supported combination of numeric
keywords is intrinsically supported in both host languages. Table 4-2 shows the numeric types as they
are declared for the host languages. Note the COBOL precisions for BINARY numeric types are derived
from Table 4-3.
When you specify FIXED BINARY REAL for COBOL programs, you should use either 35 (single) or
70 (double) as the precision. If you use a different precision, the COBOL object-time system will have
to perform extra work to keep your specified precision, and left-most truncation may occur if the
data-item is carelessly moved or used in computations.
To specify a scale factor for a fixed-point number, you can include integer4. A scale factor indicates
that the internal form of the number is different from the external form by some number of powers-of-
10. That is, the decimal point is moved to the right or left of the internal number depending on whether
the scale factor is positive or negative. For example +6 means that the decimal point is moved six places
to the right on the internal number and -6 means that the decimal point is moved six places to the left
on the internal number. If you do not specify a scale factor, SCHEMA assumes that there is no scale
factor.
If you specify TYPE DBKEY, SCHEMA generates a data-item that is INTEGER in FORTRAN and
USAGE DATABASE-KEY in COBOL. The data-item declared as TYPE DBKEY can be used to store
a database key.

4-9

The Schema Data Description Language (DDL)

Table 4-2
Numeric Types for FORTRAN and COBOL

Default
Schema Precision Precision FORTRAN COBOL

Declaration Range (Bits) (Bits) type type

FIXED BIN REAL <36 35 INTEGER COMP PIC S9 (1-10)
FIXED BIN REAL 36-70 -- INTEGER (2) COMP PIC S9 (11-18)
FLOAT BIN REAL <28 27 REAL COMP-l
FLOAT BIN REAL 28-62 --- REAL*8 COMP PIC S9 (18)
FLOAT BIN COMPLEX <28 27 COMPLEX COMP PIC S9 (18)
FIXED DEC REAL <19 10 INTEGER (prec/4) COMP-3 PIC S9 (prec)

Table 4-3
Relation Between Binary and Decimal Precision

Binary Precision Decimal Precision
declared in Schema in COBOL

]4 PIC S9 (1)
5-7 PIC S9 (2)
8-10 PIC S9 (3)

11-14 PIC S9 (4)
15-17 PIC S9 (5)
18-20 PIC S9 (6)
21-24 PIC S9 (7)
25-27 PIC S9 (8)
28-30 PIC S9 (9)
31-35 (default) PIC S9 (10)
36-38 PIC S9 (11)
3941 PIC S9 (12)
4244 PIC S9 (13)
4548 PICS9(14)
49-51 PIC S9 (15)
52-54 PIC S9 (16)
55-58 PIC S9 (17)
59-70 PIC S9 (18)

7. You can use the OCCURS clause to declare that the data item/aggregate is an array (or table).

Example

02 ACCOUNT PIC X (12) USAGE DISPLAY-7.

4-10

The Schema Data Description Language (DDL)

SCHEMA SET ENTRY

Function
Use the set entry to describe a set type in the schema. This description will be used by DBCS to store and find rec­
ord occurrences in the set occurrence of this type.

General Format

SET NAME IS set-name-l

MODE IS CHAIN [LINKED TO PRIOR]

ALWAYS
{

FIRST l LAST
NEXT
PRIOR

ORDER IS

SORTED

[

WITHIN RECORD-NAME
BY DATABASE-KEY

FIRST

J DUPLICATES ARE LAST
NOT

OWNER IS {record-name-l} r.!.J
SYSTEM l.:

Technical Notes

1. You must include a set entry for each set in the schema.
2. You must define the records described in the set entry before you define the set entry.
3. You can specify the clauses in the set entry in any order.
4. You can optionally end the set entry with a period.
S. Each of the clauses in the set entry is described on a separate page below.

Example

SET NAME IS ORDER-SET
MODE IS CHAIN LINKED TO PRIOR
ORDER IS ALWAYS LAST
OWNER IS CUSTOMER-RECORD.

4-11

The Schema Data Description Language (DDL)

SET NAME

Function
Use the SET NAME clause to specify the generic name for all occurrences of the set type in the data base.

General Format

SET NAME IS set-name-l

Technical Notes

1. Each set-name must be unique among the names of the schema, and can contain up to 30 characters.

Example

SET NAME IS ORDER-SET

4-12

The Schema Data Description Language (DDL)

MODE

Function
Use the MODE clause to specify the mechanism for the manipulation of a set.

General Fonnat

MODE IS CHAIN [LINKED TO PRIOR]

Technical Notes

Example

1. Each set within a schema can have only one MODE clause. All participating records of a set are linked
to the next record.

2. The optional LINKED TO PRIOR clause causes DBCS to generate an additional pointer in the prior
direction for the owner record and for each member record of each occurrence of the set.

3. DBCS automatically adds PRIOR pointers to members of sorted sets. See the ORDER clause for
more information about sorted sets.

4. If the set order is ORDER IS LAST, the OWNER record always contains a PRIOR pointer.

MODE IS CHAIN LINKED TO PRIOR

4-13

The Schema Data Description Language (DDL)

ORDER

Function
Use the ORDER clause to specify the insertion point of a member record occurrence within a set occurrence and
thereby define the order of 10gical1inkage.

General Format

ALWAYS

ORDER IS

SORTED

Technical Notes

{

FIRST 1 LAST
NEXT
PRIOR

WITHIN RECORD-NAME
BY DATABASE-KEY

U
FIRSTj

DUPLICATES ARE LAST
NOT

ALLOWED

1. ORDER FIRST refers to the position within the set occurrence that immediately follows the owner
record occurrence. Thus, the newest member record inserted into the set occurrence becomes the first
member of the set occurrence.

2. ORDER LAST refers to the position within the set occurrence that immediately precedes the owner
record occurrence. Thus, the newest member record occurrence becomes the last member in the set
occurrence.

3. When you specify ORDER IS LAST and do not specify LINKED TO PRIOR, the owner record of each
set occurrence will have a pointer to the last member record of that set occurrence.

4. ORDER PRIOR/NEXT refer to insertion points relative to the current record of the set. If the SET
OCCURRENCE SELECTION is LOCATION MODE OF OWNER, ORDER IS PRIOR/NEXT is equi­
valent to ORDER IS FIRST/LAST.

5. The ORDER IS SORTED clause allows you to specify a data-dependent set order. However, this
clause closely interacts with the ASCENDING/DESCENDING phrase of the MEMBER clause, which
is described later in this chapter. Table 4-4 shows the relationship between the ORDER and MEMBER
clauses depending on the syntax chosen for each.
a. If you specify the ORDER IS SORTED clause, but do not use the WITHIN RECORD-NAME, BY

DATABASE-KEY, or DUPLICATES phrase, the record type ID of each member record type is used
as its major sort key. (See the Record Entry for a description of record type IDs.) Since the record
type IDs are assigned sequentially on a first-come basis, the record types might not be sorted alpha­
betically. You can force an alphabetical sort by declaring the record types in alphabetical order by
their names. That is, the first record-name in alphabetical order should be in the first Record Entry
and so forth. You specify minor sort keys by the ASCENDING/DESCENDING phrase with the
DUPLICATES option required for each member record type. But, if you do not use the ASCENDING/
DESCENDING phrase for a member record type, the database key of each occurrence of that record
type is used as its minor sort key. (This is not recommended.)

4-14

Example

The Schema Data Description Language (DDL)

b. The optional WITHIN RECORD-NAME phrase causes each member record's occurrences to be
sorted without regard to the record occurrences of other record types in the set occurrence. This
does not mean that there is an implied major sort by record type. It means that when a given type
of record is considered independently of any other member record-type, it is in sequence by its own

sort keyes). If you do not use the ASCENDING/DESCENDING phrase with the DUPLICATES
option for a member record type, the database keys of the occurrences of that record type are
used as its ascending sort keys. (This is not recommended.)

c. The optional BY DATABASE-KEY phrase specifies that the member records of a set occurrence are
kept in ascending (record-name independent) sequence by their database keys. This and the other
cases of database keys used as sort keys should be avoided unless you expect single set occurrences
to densely (i.e., several record occurrences per page) cover several data base pages. In such a case,
FIND NEXT will operate more efficiently.

d. Use of the optional DUPLICATES phrase means that the member records in a set occurrence are to
be maintained in a single sequence regardless of the number of different member record types
specified in the set entry. You specify the common sort keyes) in the ASCENDING/DESCENDING
phrases for each record type; they should agree in size and mode (however, SCHEMA does not
enforce this). The DUPLICATES phrase specifies the action to be taken when a new record
occurrence is to be added to the set and the values of its sort control data-items are duplicates of
sort control data-items of a record occurrence that currently participates as a member of the set
occurrence. For sets with only one member, this is the type ORDER SORTED to specify.

ORDER IS ALWAYS LAST

4-15

Table 4-4 Relationships Between ORDER and MEMBER Clauses

SCHEMA Syntax Chosen Effect of Syntax Chosen

ORDER Clause ASCENDING/DESCENDING DUPLICA TES on Major Sorting/Ordering Minor Sorting/Ordering Overview of Ordering in
Specified in SCHEMA on MEMBER Clause MEMBER Clause Sequence Sequence Set Occurrence

ORDER IS ALWAYS Not allowed N/A None None Not sorted
[FIRST, LAST,
NEXT, PRIOR]

ORDER IS SORTED Allowed for If ASCENDING/ Major sort key is member Minor sort keys as given Hierarchically keyed lists,
each member DESCENDING record type as ordered by user in MEMBER i.e., a list of lists with
record type present on Required previously in user's clause minor keys as specified

MEMBER Clause. schema by user.
then .,
If ASCENDING/

Database key for each Hierarchically ordered lists

DESCENDING member record occur- in sequence within member-

N/A
rence record type. (Minor lists are not present on

in ascending sequence by
MEMBER Clause,
then ., database key.)

ORDER IS SORTED Allowed for If ASCENDING/ None. Note that member- Within each record type, Several independent keyed
WITHIN RECORD- each member DESCENDING record occurrences ordered sort keys as specified by lists within the set occurrence.
NAME record type present on Required within record type are in user in member clause

MEMBER Clause, effect ordered by record
then • type . Database key for each Several independent ordered

member record occur- lists within the set occurrence
If ASCENDING/ rence within its own (in ascending sequence by
DESCENDING record type within the database key).
not present on N/A set occurrence.
MEMBER Clause,
then ~

ORDER IS SORTED Not allowed N/A Database key for all mem- None A unified ordered list for the
BY DATABASE-KEY ber occurrences independ- entire set occurrence (in ascend-

ent of record type. ing sequence by database-key).

ORDER IS SORTED Required on each member clause Not allowed Only one sort sequence for None A unified list keyed by a common
DUPLICA TES ARE for each member record type. entire set occurrence is member-record key. This is

[FIRST] These are the common sort keys maintained. Major sort keys suggested for single member sets.
LAST ALLOWED that must agree among all record are as specified by user in
NOT types on size and mode. ASCENDING/DESCEND-

ING clauses for members.

The Schema Data Description Language (DDL)

OWNER

Function
Use the OWNER clause to specify the name of the owner record or to specify that the owner record of the set is
the system.

General F onnat

OWNER IS

Technical Notes

{
record-name-l }
SYSTEM

1. Record-name-l must be previously defined in a record entry.
2. When you name a record as the owner, you are specifying that each occurrence of that record will

establish an occurrence of the set to which it belongs.
3. When you specify OWNER IS SYSTEM, you are specifying an inherently singular set; i.e., one that has

a single occurrence. Because of this, certain efficiencies result (e.g., the owner record can always be
located quickly). See the DMCL Area entry for information on specifying the SYSTEM area.

4. If the LOCATION MODE of record-name-} is VIA, you must define the set referenced in the VIA
phrase before you define any sets in which record-name-! is OWNER.

4-17

The Schema Data Description Language (DDL)

SCHEMA MEMBER ENTRY

Function
Use the MEMBER entry to name each record type that can be a member of the set named and to specify the type
of membership in that set.

General Format

MEMBER IS record-name-}
{

MANDATORY} {AUTOMATIC}
OPTIONAL MANUAL

[LINKED TO OWNER]

~I
ASCENDING l
DESCENDING
ASCENDING RANGE
DESCENDING RANGE

KEY IS data-name-} [data-name-2] ...

[DUPLICATES ARE [t~~~J ALLOWED~
[

SET OCCURRENCE SEL~ON IS THRU {CURRENT OF SET
LOCATION MODE OF OWNER

IJ{ USING data-name-2 [data-name-3] ...
~ ALIAS FOR data-name-4 IS identifier-l [%pseudonym-l]. . .}J~u

Technical Notes

Example

1. Record-name-l must be previously defined in a record entry.
2. Record-name-! cannot be the name of the record specified in the OWNER clause of the set entry to

which this member entry belongs.
3. You must specify a MEMBER clause for each record type that can participate as a member in the set

being described. You can declare more than one record type as a member of any given set.
4. You can define a record as a member in more than one set.
5. Each occurrence of a member record can participate in only one occurrence of a particular set type.

That is, within a set, each member record occurrence may not have more than one owner.
6. You cannot define a record as both an owner and a member of sets such that a cycle is formed in

which all records participate as automatic members in the sets included in the cycle.
7. Each of the phrases used to describe the member record types is described separately on the following

pages.

MEMBER IS ORDER-RECORD OPTIONAL MANUAL

4-18

The Schema Data Description Language (DDL)

MEMBERSHIP

Function
Use the MEMBERSHIP phrases to specify the ways in which occurrences of the record type can be added and
removed from occurrences of the set type.

General Format

MEMBER IS record-name-l
{

MANDATORY}
OPTIONAL {

AUTOMATIC}
MANUAL

Technical Notes

Example

1. AUTOMATIC/MANUAL refers to the way in which an occurrence of the record type is added to an
occurrence of the set type. MANDATORY/OPTIONAL refers to whether an occurrence of the record
type can be removed from an occurrence of the set type by means of the DML REMOVE command.

2. If you use AUTOMATIC, an occurrence of record-name-l is inserted into the selected occurrence of
the set at the time the record occurrence is stored.

3. If you use MANUAL, an occurrence of record-name-l can only be inserted into an occurrence of the
set by means of the DML INSERT command.

4. If you use MANDATORY, the run-unit cannot use the DML REMOVE command to remove an
occurrence of record-name-l from an occurrence of the set. The record occurrence can be de­
leted from the data base by means of the DELETE command. It will be deleted from the data base
if its owner is deleted.

5. If you use OPTIONAL, an occurrence of record-name-l can be removed from an occurrence of the set
by means of the DML REMOVE command.

MEMBER IS ORDER-RECORD AUTOMATIC OPTIONAL

4-19

The Schema Data Description Language (DDL)

LINKED TO OWNER

Function
The LINKED TO OWNER phrase causes each member record occurrence of this record type to contain a pointer
to its owner.

General Format

[LINKED TO OWNER]

Technical Notes

Example

1. This phrase is optional. If you do not specify it, the member record occurrences of this record type
will not be directly linked to the owner record occurrence of this set type. However, the owner record
will always be indirectly accessible through the forward linkages in the set. Note that you need not
specify LINKED TO OWNER if the owner is SYSTEM because DBCS can always locate the SYSTEM
record quickly.

LINKED TO OWNER

4-20

The Schema Data Description Language (DDL)

ASCENDING/DESCENDING

Function
Use the ASCENDING/DESCENDING phrase to specify the sort control keys for the member records of a sorted set.
You can also specify the action to be taken when a new record occurrence is to be added to the set whose sort key
values are duplicates of sort key values of a record occurrence that currently participates as a member of the set
occurrence.

General Format

[{ {

ASCENDING j
DESCENDING
ASCENDING RANGE
DESCENDING RANGE

U
FIRST] ALLOWED~

j KEY IS data-name-l [,data-name-2]

[DUPLICATES ARE LAST
NOT

Technical Notes

Example

1. Data-name-}, data-name-2 ... must refer to data-items specified in the record entry for this member
record. The data-items as a group are the sort key; each individual data-item is a sub-key. The order in
which you specify the keys will define the major to minor sequence for sorting.

2. Within a member record, you can subdivide a sort key into subkeys. You can define some of the sub­
keys as ascending keys and others as descending keys.

3. If you have defined multiple member record types for a set, the keys of different record types are
completely independent unless you have specified ORDER SORTED DUPLICATES ALLOWED.
Also, you can intermix the ASCENDING/DESCENDING KEY phrases among record types. That is,
you can define one record type with an ASCENDING KEY phrase and another with a DESCENDING
KEY phrase.

4. If you use the DUPLICATES ARE NOT ALLOWED phrase, DBCS will reject the insertion into any
given set occurrence of member record occurrences with duplicate values for the specified ascending/
descending keys. This may occur when DBCS attempts to store a new record occurrence in the data
base, insert an existing record occurrence into a set, or modify the value of a data item specified in an
ASCENDING or DESCENDING KEY phrase.

S. If you use the DUPLICATES ARE FIRST or the DUPLICATES ARE LAST phrase, member record
occurrences with duplicate values for the specified ascending/descending keys will be inserted by DBCS
respectively before or after any existing member occurrence with such duplicate values.

6. If you do not include any of the optional words FIRST, LAST or NOT in the DUPLICATES phrase,
the insertion point of duplicate member record occurrences relative to existing duplicates is unpredictable.

7. If you specify the keyword RANGE for an ascending or descending key, all following keys will also be
treated as range keys.

8. Specifying the optional keyword RANGE does not affect the way in which keyes) are used in the process
of maintaining set order. The effect of range keys occurs during set occurrence selection and is discussed
in the description of that phrase.

ASCENDING KEY IS RATE DUPLICATES ARE FIRST

4-21

The Schemll Data Description Language (DDL)

SET OCCURRENCE SELECTION

Function
Use the SET OCCURRENCE SELECTION phrase to define the rules governing the selection of the appropriate
occurrence of a set for the purpose of inserting an automatic member record during the execution of a STORE
statement.

General Format

[SET OCCURRENCE SELECTION IS THRU
{

CURRENT OF SET
LOCATION MODE OF OWNER

8 USING data-name-2 [data-name-3]. . .
ALIAS FOR data-name-4 IS identifier-l [%pseudonym-l] . . .}J~ ~

Technical Notes

1. The SET OCCURRENCE SELECTION phrase for the appropriate member record will govern the
selection of the specific set occurrences when a STORE command is executed and the object record is
an AUTOMATIC member of the sets.

2. If you do not explicitly specify a SET OCCURRENCE SELECTION phrase for a record, SCHEMA will
assume SET OCCURRENCE SELECTION CURRENT OF SET. If the owner of the set is SYSTEM, you
cannot specify a SET OCCURRENCE SELECTION phrase.

3. All data-names (except for the DIRECT key) must refer to declared data-items of the owner record of
the set the clause is imbedded within.

4. The CURRENT OF SET option causes DBCS to select the current occurrence of the set named in the
set entry (set-name-I) as the set occurrence into which to insert the (AUTOMATIC) member occurrence
that is being stored. In other words, DBCS assumes that the set occurrence to be used has already been
procedurally pre-selected by the run-unit.

S. When you specify the LOCATION MODE OF OWNER option, DBCS will choose the appropriate set
and record occurrences by using the va) ues of various UW A variables at the time the STORE statement
is executed. In other words, prior to the execution of a statement involving set occurrence selection
LOCATION MODE OF OWNER, the run-unit must initialize any data-names or identifiers specified in
this phrase.

6. The LOCATION MODE OF OWNER option causes DBCS to select a particular set occurrence of
set-name-I on the basis of the LOCATION MODE clause specified in the record entry for the owner
of set-name-I. There are essentially two cases:
a. The owner record of the set occurrence can be uniquely identified on the basis of its LOCATION

MODE clause alone (i.e., the record entry for the owner record contains LOCATION MODE is
DIRECT or CALC).

b. The owner record of the set occurrence to be selected cannot be determined except in terms of its
membership in some other set. This will occur when the LOCATION MODE clause in the record
entry for the owner is VIA set-name. In this circumstance, selection is governed by the USING
option of this SET OCCURRENCE SELECTION phrase and by the SET OCCURRENCE SELECTION
phrase for the "VIA set" named in the LOCATION MODE clause of the owner record. The data­
items specified in the USING option must uniquely identify a specific record occurrence within an
occurrence of the set named in the LOCATION MODE clause of the owner record. There is only one
way in which a record occurrence can be uniquely identified in terms of its membership in a set
occurrence in DBMS, and that is by its sort key(s). Thus, if the SET OCCURRENCE SELECTION is

4-22

Example

The Schema Data Description Language (DDL)

LOCATION MODE OF OWNER and the owner's LOCATION MODE is VIA set-name-2, the owner's
MEMBER clause in set-name-2 must contain the ORDER IS SORTED phrase and some form of
DUPLICATES NOT ALLOWED option. In addition, each data-name specified a~ a sort key of that
MEMBER clause must appear in a USING phrase within this SET OCCURRENCE SELECTION
phrase. Additionally, the SET OCCURRENCE SELECTION phrase for set-name-2 named in the
owner's LOCATION MODE clause may, in turn, specify LOCATION MODE OF OWNER and the
LOCATION MODE may again be VIA set-name. This condition may occur to an arbitrary number
of levels, but must eventually terminate with a SET OCCURRENCE SELECTION phrase that does
not specify a LOCATION MODE OF OWNER for which the LOCATION MODE is VIA set-name.
At each level other than the first, the arguments specified in a USING phrase are used to select an
owner record in its capacity as a member of another set. The arguments specified must be the
appropriate sort keys in the record(s) to be selected.

7. The optional ALIAS phrase provides for the situation where you have defined a given record as a
member in more than one set type, and each such set type has the same owner record type, and each
member clause has a SET OCCURRENCE SELECTION of LOCATION MODE OF OWNER. In this
situation, more than one argument value may be required for the data-item named as an argument.
The ALIAS phrase provides the UWA locations for such values.
a. Data-name-4. . . must, if the LOCATION MODE clause in the record entry for the owner record is

DIRECT or CALC, refer to data-items specified in that LOCATION MODE clause. If, however, the
LOCATION MODE is VIA set-name, data-name4 ... must refer to data-items specified in the
USING phrase of a SET OCCURRENCE SELECTION phrase for another set with the same defined
owner record type.

b. By their appearance in an ALIAS phrase, all identifiers/pseudonyms are implicitly defined as having
the same characteristics as their corresponding data-names. That is, an identifier specified in an
ALIAS phrase defines an identifier in the run-unit's User Working Area. Pseudonym-!, if specified,
must be preceded by a percent sign. It can contain up to six characters and cannot cont'ain hyphens.
You should provide it for FORTRAN use when identifier-! contains more than six characters and/or
hyphens.

c. If a sort or CALC key consists of more than one data item, you need not specify an ALIAS for every
item.

8. If you use the LOCATION MODE OF OWNER option, the record entry for the owner record type being
referenced must have a DUPLICATES NOT ALLOWED phrase if its LOCATION MODE is CALC. Simi­
larly, you would specify the DUPLICATES NOT ALLOWED phrase for the sort key specified in the
USING (or ALIAS) option.

9. Where you have specified LOCATION MODE OF OWNER in a SET OCCURRENCE SELECTION
phrase and the LOCATION MODE is VIA, the use of the optional word RANGE in any of the sort
subkeys of the OWNER causes a value of such a subkey to represent a range of values and has the
following implications for the process of set occurrence selection.
An equality match between the range key, which is in the record to be selected, and the input argument
value in the User Working Area is not required for a record to be selected as being the owner of the
sought set occurrence.
A match will occur (regardless of whether the range key has been specified as ascending or descending)
under the following conditions:
a. If the input argument value in the User Working Area equals the value of any specific range key.
b. If the input argument value in the User Working Area is less than the value of any specific range key.

A match will occur on the range key with the lowest value.
c. If the input argument value in the User Working Area lies between two adjacent range key values.

The match will occur with the larger range key value.

SET OCCURRENCE SELECTION CURRENT.

4-23

CHAPTER 5

THE SUB-SCHEMA DATA DESCRIPTION LANGUAGE (DOL)

The Sub-Schema Data Description Language (DDL) enables you to describe the subset of a data base known to one
or more application programs. A sub-schema description written in the Sub-Schema DDL consists of the Sub-Schema
Identification and three sections:

AREA SECTION

RECORD SECTION

SET SECTION

The sections must appear in the above order; they consist of an entry for each area, record, or set to be included in
the sub-schema being defined.

Sub-schema descriptions must appear after the schema description, but before the END-SCHEMA indicator. They
are passed through the DDL processor, SCHEMA, along with the DMCL and Schema DOL statements.

5-1

The Sub-Sche11Ul Data Description Language (DDL)

SUB-SCHEMA ENTRY

Function
Use the sub-schema entry to define and name a sub-schema within a schema, and to specify the privacy lock for
access to the sub-schema by run-units.

General Format

SUB-SCHEMA NAME IS sub-schema-name
£rRIV ACY LOCK IS lock-I 1.:.

Technical Notes

I. Sub-schema-name must be unique among the sub-schema-names at your installation.
2. Lock-I must be a single alphanumeric name up to five characters long.
3. Up to 36 sub-schemas are allowed in a schema.

Example

SUB-SCHEMA NAME IS SUBOI PRIVACY SALEX.

5-2

The Sub-Schema Data Description Language (DDL)

SUB-SCHEMA AREA SECTION

Function
Use the area section to declare the areas of the schema that are to be included in the sub-schema and, by implica­
tion, to remove from view all other areas of the schema.

General Format

Format 1

AREA SECTION. --- -
COPYarea-name-l [area-name-2]:.

Format 2

AREA SECTION. -- -
COpy ALL AREAS. --------

Format 3

AREA SECTION.
COpy TEMPORARY area-name-3 [area-name-4] .:..

Technical Notes

Example

1. Area-name-l, area-name-2, ... must refer to areas defined in the schema.
2. If Format 2 is used, Formats 1 and 3 entries are not allowed. Otherwise land 3 may be repeated as

needed.
3. Format 1 causes the entries for the referenced areas in the schema to be included in the sub-schema.
4. Format 2 causes all areas for which entries are included in the schema to be included in the sub-schema.
5. Format 3 designates the named areas to be sub-schema temporary. A sub-schema temporary area is a

private unique occurrence of a normal area. Any changes made to the area will be discarded when
the run-unit closes the area or terminates. This is used to permit program testing on "live" data with­
out loss of data base integrity.

AREA SECTION.
COpy MARKETING-AREA, INVENTORY-AREA.

5-3

The Sub-Schema Data Description Language (DDL.J

SUB-SCHEMA RECORD SECTION

Function
Use the record section to define the records of the schema that are to be included in the sub-schema. By implica­
tion, you will also be removing from view all other records of the schema. However, you must be aware that when
DBCS is, for example, searching for the owner record of a set and the current of a set is not linked directly to the
owner, it must go through every record in the set until it reaches the owner. If DBeS finds a record during its search
that is not in the sub-schema, it issues an error. Thus, you must make certain that the record linkages, at least, are
present for the sets in the sub-schema.

General Fonnat

Format 1

RECORD SECTION.

01 record-name-I.

[II ~~ ~:~~~:~::r2. lin
[Copy sub-schema-name TEXTJ IJ
[COpy OTHERS .:1

Format 2

RECORD SECTION.
COpy ALL RECORDS.:

Technical Notes

1. All record-names must be the names of records "declared in the schema.
2. Each record named must be located within an area named in the Area Section. If a record type is located

in more than one area, and not all of these areas are included in the sub-schema, only the record occur­
rences located in the included areas are accessible from the sub-schema ..

3. Format 1 causes the entries for the referenced records in the schema to be included in the sub-schema.
4. Format 2 causes all records included in the areas specified in the Area Section to be included in the

sub-schema.
5. If you use Format 2, you cannot use Format 1; otherwise you can repeat Format I as needed.
6. You can use Format 1 in the following ways.

a. You can specify just the record-name and all of the data-items in that record will be included in the
sub-schema. For example:

01 CUSTOMER-REC.

b. You can specify the data-items to be included in the sub-schema either explicitly or by means of the
COpy OTHERS phrase. If you do not specify a data-item and you do not use the COPY OTHERS
phrase, the data-item will not be included in the sub-schema. For example:

5-4

The Sub-Schema Data Description Language (DDL)

01 CUSTOMER-REC.
02 CUST-NAME.
02 CUST-ADD.
02 CUST-ID.
COpy OTHERS.

will cause all of the data-items in CUSTOMER-REC to be included in the sub-schema. However,

01 CUSTOMER-REC.
02 CUST-NAME.
02 CUST-ADD.
02 CUST-ID.

will cause only the data-items specified to be included in the sub-schema.

If you do not include data-items that are CALC keys, DBCS will not be able to store the CALC record
nor find it using FIND rse 5. Set occurrence selection can be affected if the CALC key is used in an
ALIAS phrase or the record is the owner of a set with set occurrence selection LOCATION MODE
OF OWNER. Similarly. if you do not include data-items that are sort keys, set occurrence selection
can be affected, new records cannot be stored in the set. no sort data-items can be modified, and
the record cannot be inserted or deleted.

c. You can specify the record-name followed by a line containing just 02 and a period (.). This causes
the linkages in the record, but not the data, to be included in the sub-schema. For example:

01 CUSTOMER-REC.
02.

d. You can specify text that will accompany a data-aggregate in the sub-schema. The text can be any
information that you wish to include. It can be a 03- or greater level item (for COBOL applications),
a FORTRAN declaration, or a comment. You specify the text on a line-by-line basis. Thus, any line
following a 02-level data-item will be treated as text unless it begins with COPY, 02, 01, or SET. If
you wish to begin a text line with one of these words, you must prefix the line with a plus sign (+).
You can enter a line of null text (to override an implicit COpy TEXT) by typing a plus sign followed
by a carriage-return.

When you specify text for a data-item in a sub-schema, any following sub-schemas containing that
data-item wilJ also include that text unless you change it. You can change it by including different
text for that data item in one of the subsequent sub-schemas. This new text will then be used for
the following sub-schemas until you change it again. You can change back to a previous text for a
data-item by including the COpy sub-schema-name TEXT statement following the line containing
the data-item. The text for the data-item from the named sub-schema will be used in the current
sub-schema and all subsequent sub-schemas that contain that data item until you change the text
again. For example:

RECORD NAME IS R 1

02 01 SIZE 4 WORDS.
02 02 TYPE FLOAT BIN.
02 D3 PIC X(5) OCCURS 4.

5-5

Example

The Sub-Schema Data Description Language (DDL)

SUB-SCHEMA NAME IS SSI.

01 Rl.
02 DI.

03 DDI PIC X(l2).
03 DD2 PIC S9(18) USAGE COMPo

COpy OTHERS.

SUB-SCHEMA NAME IS SS2.

01 RI.
02 DI.

EQUIVALENCE (DI(l),D6BIT),(Dl(3),DPINT)
02 D2.

SUB-SCHEMA NAME IS SS3.
01 Rl.

02 Dl.
COpy SSI.

COpy OTHERS.

Sub-schemas SS 1 and SS3 have the same record descriptions and would be used for COBOL applica­
tion programs. Sub·schema SS2 would be used for a FORTRAN application. If another sub·schema
were declared and DI were included, the COBOL text would be used for DI unless you explicitly
changed it.

RECORD SECTION.
01 CUSTOMER·RECORD.
01 ORDER·RECORD.
01 STOCK·RECORD.
01 SUPPLIER·RECORD.

02 NAME.
02 ADDR.
02 RATE.

5-6

The Sub-Schema Data Description Language (DDL)

SUB-SCHEMA SET SECTION

Function
Use the set section to define the sets of the schema that are to be included in the sub-schema and, by implication,
to remove from view all other sets of the schema.

General F onnat

Format 1

SET SECTION.
COpy set-name-l [set-name-2]:.

Format 2

SET SECTION. -- -
COpy ALL SETS. -------

Technical Notes

Example

1. All set names must refer to sets defined in the schema.
2. You can repeat Format 1 entries as required. If you use Format 2, no Format 1 entries are allowed.
3. Format 1 causes the entries for the referenced sets in the schema to be included in the sub-schema.
4. Format 2 causes all sets for which entries are included in the schema to be included in the set section.
5. You must include an entry in the Record Section for the owner record of each set included in a sub­

schema.
6. If a set included in a sub-schema is sorted on one or more keys, you should include all the record

types containing those keys in the sub-schema if you want record modification to be permitted for
members of that set.

SET SECTION.
COpy ORDER-SET, INVENTORY-SET, SUPPLIER-SET.

5-7

The Sub-Schema Data Description Language (DDL)

END-SCHEMA

Function
Use the END-SCHEMA statement to end your DDL file.

General Format

END-SCHEMA ..:.

Technical Notes

1. You must include the descriptions of aU sub-schemas before the END-SCHEMA statement.

5-8

The Sub-Schema Data Description Language (DDL)

5.1 EXAMPLE OF A SCHEMA WITH SU8-SCHEMAS
Consider a research company that is organized into departments. Some of these departments are actively engaged in
research; others are support departments (e.g., accounting, payroll, legal, etc.). Each research department is broken
up into research project groups, although there are some special projects that overlap departments. The research
projects are supported by contracts and grants that come from external sources - some projects receiving funds
from more than one contract or grant. The employees of the company are grouped according to department, project,
and personnel classification. Research personnel (other than project leaders) work only at one project at a time.
There are, though, some project leaders who administer more than one project. The following example shows how
to create a data base that contains the data and the data relationships that describe this activity. Figure 5-1 shows
the set relationships defined in the example schema and sub-schema illustrated in Figure 5-2.

DEPARTMENT
RECORD

PROJLDR-SET
EMPLOYEE

RECORD
------------------------~

I

: CLASS-SET
I
I
I

CLASSIFICATION
RECORD

Note: Dotted lines indicate
OPTIONAL MANUAL
membership.

PROJECT-SET

Figure 5-1 Set Relationships in Example Schema

5-9

PROJECT
RECORD

FUNDS-SET

,

CONTRACT
RECORD

SOURCE-SET

SOURCE
RECORD

00:1.00
0()200
00300
00400
O()~::! 00

00600
00'/00
OO}:~OO

00900
0:1.000
o :1. :1. () ()
OJ.;?OO
0:1.300
0:1.400
() :1. :::iOCI
0:1. {.()O
0:1. '/00
O:l.DOO
o t ':';>00
o ::?()O ()
O:::~:I. 00

02jOO
0:,:':"400
o ::? ~.::i () 0
02,~':,OO

O::?/OO
02HOO
O:::.~900
("1 "J {' n ('I , ,) ", "

()3 :1.00

() :,~~ :::~ () ()

() 3 :5(1()

03600
() ~~~ >' () ,~)
03HOO
(~I ::~; (? (') ()
() 4 0 OCt
0·4:1.00
() .(~ .:20 ()

Oi~ ·:·l·OO

() ",~ (~':, 0 0
(:1 l~. '.:,:., 0 0

() (~. <) 00
() I:.:j () <) 0
I> !:.:.i 1 () ()
() ::,:.i :~.? () ',)

The Sub-Schema Data Description Language (DDt)

IMAGES BY COMMAND.
NOTE (:)1 ... 1... (.
I NTEI:~CEF:·T BIND (.
..JDUI:~N,~/... ...IF~N:I. <-

F;~ E CDF:D ~::~ PEF~, .. ·PAC-)E 3~:.:i y

An:::;; I (3 N P E F~ ~:) (] NNE I... (:) F~ EAT [) F I I... EO :I.
BI~CI<UF' BEFOF~E I MAGE~:)
l::UFFEFi: 4
C(.':)I...C 2 HPP
F I F~ ~:~ T F:' (', GEl ~:) :I.
I...I:~E;·I PAGE I ~::) :1.00
F'AGF n I ZE:: I ~:~ ::) :1. 2 I,JOF:D~:)

F,: (.) N G E 0 F C I... (~, ~:) ~:) I FIe A TID N h: E CD F:: D I ~:) 2 T n ~:5 0 t

i:)nn I UN F;:[nEAF:cH· .. ·,~I:~:E(~ TO F II...E02
BI~CI\~UF' BEFnl:;~[I ~'1f:)GL~::;

C,~I...C ::.~ r;~pp

t::' I r~~3T f't,GF J n 300
t., (~,nT 1"'(IGE I ~::, 3f.)()
p t} G F ~:~ I Z E I ~:) ~:.;! :I. 2 l.rJ (] F;: D ~;~
h' (.~) N G L CJ F P r;~ D J E C T F~ E C 0 I:~ DIn 300 T D 340 (.

tlF:E(~~1 Nr,f"iE J ~:) P[h:~:)DNNEI... I:)I:;:EI~
F' I:~ T I) (:) C y [>< C 1...1...1 ~:) I I.) E U F' II (1 T F I !:~ P F;: E X P
F' F: J I . .) ,:,:) C Y r:' r~ D 'r E C TED U F' II (~ TEl !:;: P F: r:' T P
P P J 'vi (:1 C Y r:: I::: "r r:: I E I ..) (, I... I ~:) P F: T 1...1":': ,.

(', F: F p, (,1 ,(:, i'1 E I ~;) r;: I:.: ~:) E (:) r~ C H .' tl F: [: (:1

r:' F;: J 'v' (:1 C: \' l... 0 r: 1< F;~ r; C 1...1< v

h: [C U F: II (.J (1 iv, :::: J ~:) :u E F' (~ F~ T ~"i E f'-.J T F;~ F C: D F: D
!... DC (:) T TO,···! j"'j D II E I!::: D I r;~ I::: C T II P T 1< F Y
kl I 'r H I i') r:' E: I:;: ~::; D N N L I (~ P E (I .,

F:CCOh:L, Nt",i"-.'ir: J ~:;, Er"iF·I ... DyEE h:ECDI:;:D
I... C) C (, T J (] , ! ;V; 0 n E I ..) I (~ C: I... (1 n ~:; ~:) E T
[J,I'I. ",' H J j\J F' [F: ~:) D N p·l E I , . (:1 F: E (I y

o ::? r:: ("1 F' I ... 0 'yo [: F PIC >< (::? ~.:S) .;
o ::.~ H (] M [' tl It II r;: F r) ~:) F:' I C: >< (·4 0) .:.
o ::? H n r"l [.... F' H 0 N I::: r:' T C (?.:: :1. 0) v

I) :::.~ ~::; ~:) '···1 U j'--"; E·: E F~ F' 1 C ().:: ':?) ~

0':':;: 1'1 (:1 F: J T tIl n T t, T I. J ~:) r;. J ex.;
(I ::.:.:: H T F: F '0 F' Ie') (n) y

o :::.~ XI F F' E i"'~ 0 [: (1 T :3 PIC 9 (.? <.

(;; ::.:.:: [: (, ~:~ F ~3 () I... (:'1 F: \' ''1'' 'y' F' I::: F' 1 >< I::: D n I , ... J t, F: Y F;~ I::: () I... :I. !::j ~! ::.~ <.

Figure 5-2 Schema/Sub-schema Example

5-10

O:::.i40()
() ::.:1 ::.:.1 (, ()

O~.:.i(:;.OO

() ~.:.i '.? 0 ()
O~.:5 O()O
O::.:,;<}OO
0600()
Ull :1. 00
o ,~/:2 () 0

() (i !::.i 0 0
Oo:~:,(:;.OO

06UOO
() (, ~:.) 0 ()
() ',? () () ()
() ~.'? ~1. () ':.,"
() '.?~? () ()
O~./·"l;OO

() /400
() / ~::i () ()

o)'·.?O()

() ?!) () (~I

':)0000
on:l. O()

00300
OF:400
()o::.:;oo

0:':) .lOO
OBB()O
OD900
09000
0(;'> 100

09200
09:'~;()O

09·400
o (j'!:':; 0 0
09600
09'./00
09D()O

The Sub-8chema Data Description Language (DDL)

h~ E C: [I F~ II N f~) r'j E I ~::; C I... (:) ~:) ~:) I FIe (:~) T I (] N F: E C n F: n
I.. (] C (:) T J D ;\! ('1 () n E Inc (:',1 ... C U ~:) Jr···! Gel ... (~, ~:) ~:) I FIe A TID N
:0 U F' LIe I~~I T F ~:) ,~~, F;: [' NOT p, 1...1 ... n t.,.J E n
1,,1 I T H I N j.;, F I';~ n [) ("'! N E L. (.i I:;: F tl f

0:.::" c L f~', ~:) n I FIe (~ T I I] r"'! PIC: >< (:I. ::.:.i) .:.

() ::.? I... E t) [: I.. PIC (/? .:.

e[C:OF~n (\'t,l il::: :I b r:'F;~D ... JEel · .. ·F;:ECOF;:D
L 0 C (', T I [I j\J ('1 D nEe () I... C U ~::; I t\! n F' F~ D J E C: T I :0
DIJr:'!... I C:(:l T[~::, ()I·;:L j\!o'r t, I... I... CJ~,I[D
1;.11 'r H Jr·! F:: F ~ ::: E·: (:1 PC H· .. · (', r:;: F (:1 v

02 I:' F: 01 F C T ... J D PIC '} (? ' . .) <? <) 0:.;> (? ,.
() :~'.~ F' F: 1'.1 ...I [: CT· .. · TIT I... F F' I C ><.: : .. ~;; 0) .;.

F~~ [c:: C) F: n !\! t'l h F I ~::; L: D I\J "I' r:: r:~ C T · .. ·1::: F C 0 F:: II
I... 1...1 C ,::) T I U r"'! i",; u :n [: I.) It·, FUN II ~:) ~:) F l
,-\1 I T H I (\1 r:: E E E (, r;: C H (:) F:~ F (:1 .;

() >~ C 0 t-..J T r;; t1 cr· .. · j'-.J U jvj E·: E F~ F' Ie') ('.7) {.
() :::.:0 L 0 j\! T h: (:1 C: T n (:" T L F' Ie? (J (») .:.

0:::: CD' iPI...ETICJN· .. :Ot·,TF PIC? (:l.0).~
(I :,? T N I: T I I;') I... (1 r"'j D U , ! T T ''1'' r' E F I X E It ::~ J !) 2 "
() ::,:.: t·: ('j L (, (,! C I::: T "(r:' I::: r:' J >< En::? I. !! :? .:.

F:~FCOF:.:O N(.~'1E I U nnur::CE hELnF~[t
L. [) c,~ T ION n I F\: E C T ~:) F: C 1'< E Y
IAI I T H J N r~ F ~:) E (:) r~ C H· .. · (:':) r;: I::: (:':) ~

o ~.:.~ n D I...II:~ C I::: N f:~ 1"1 E F' I C >< (2 ~.::.i) ~

o 2 ~:) 0 I..J F~ C E (:1 D D F\~ C' S ~:) PIC X (-4 0) ~

o 2 ~:) [) I..J F~ C E PH n N F F' I C 9 (:1. 0) ,.
o ;? ~3 0 U F~ C [: C (] N T ACT PIC X (;.:.~ !:.~) y

o 2 ~:) D U 1·\ C E TIT I... E F' I ex.: :I. 0) (.

nET N(.~,i·YIE 1 f) DFF'l !:)FT
(vi (] n E J ~:~ C H (:1 I N LIN 1< EDT (] P F: I D F;:
OF:VEF< I ~:~ ~:::OF::TED DUPI... I Cf:~,TEn NOT 1~I...I...(JkIED

o l"! N E r;: I ~:) f! I::: P (:':) F< T t"j EN T h: E cor;: [I
1"jEi··1BEh: I ~:~ Fi"·if'l... DYEE r;:EcDF;~D OF'T I DNI~L. r1ANUAI ...

I... J NI{FD TO UI;JNEF~

(:1 !:) C F N 0 I (.. ~ CJ I,{ [: Y I ~:) ~:) ~:) N U /"1 r: E F~
~:;['r ~:::~ I::: 1... LC: T J D p·l C UF~F~E N'r !.

Figure 5-2 (Cont.) Schema/Sub-schema Example

5-11

O<l'?O()
10000
lOJOO
10200
:1.0300
lO·400
:J. 0 ~:.:.i () ()

10600
:/.O·lOt)
lODOO
:/. () ")00
1 :/.000
J.J:f.OO
t t ::.'00
:1.1300
:I :1·400
J:I. ~::iOO
J 1,1)()O
:/. :/./00
:I.:/, no.:")
11 ()OO
:I. ~.:.:OOO
:1.2 t ()O
J:?200
:1. :? :?; () ()
J /l~·O(1
:1 :2!.:.:.iOO

l 2 ':';-'00
1 ~.?POO
l·:.:.::?C·'O
.I. 3 ()O()

l:·:r.:r. 00
:r. J::?O()
:I. :.·.).:}OO
:1. / l~ () 0
:i. :':~; ~::j (0 ()

l?, t,O()
:/.:;::,)'00
:r. J:::;:()n
J:':i::;;-OO
14()O()

J 4:r. ()r:>

:1.·,1 ::::00

l4':'::·,:)O
:I. l~ ~.::j (j ()

The Sub-Schema Data Description Language (DDL.J

~:) [: . r N (} ;'.1 E I ~') C I ... ,~ ~:) n ~:) E T
f10DE :I. G CH,~:r: N I ... I NI<ED TO Pr:~ I Ol:~
ORDER IS SORTED DUPLICATES
o l,,1 N E H 1 ~3 C /... ,~, S H I FIe (.-, T I () N r~ E CD F< D
MEMBFFi' I ~:) [r1PI ... ClYEE····HECOh:D OPT I DNAI ... MANUAl ...

1 ... 1 NKED TO OWNEI:;~

ASCENDING KEY IS BASE-SALARY
~:) E T ~:) E I ... F C T I (J N C U F~ r;~ E r·J T ~

~::;FT '\'(.l~·1E J n PF:D .. .J[C·"" ... f:;ET
i100E 1 n CH,~ I N I ... :r: NI··:.:ED TO PI;: J OF<
C I r~: It E r;~ :r: n (.~ I ... ~J (~ Y ~:) I ... A ~3 T
DlJJN[r~ 1 ~:) PI:<D IE c'r ····I:~ECOf\~r:r
t·il: :t·1.BFf~ I r) EhPI...OYFE ····r~ECDF~n OPT I DNI~I... t·1(~Nl.J(.:ll ...

I ... I NI<Crr TO OWNEF<
~:)FT ~3F! .. FCT I: ON CUI:;~F~FNT (.

nET NtlM[J ~:) F'1:;;O .. .JI...DFi~···· ~:;[T
t1DDF J ~:) CH,~ I N I ... I N/':.:FD Tn F'F~ I on
n f~ D E f~ J ~:) (11... ~J (:) '{ ~:) N EXT
OI lj····/EF: J n E'··1PI ... DYF F ····F<[COF~n
MFr-1BEI:;~ I ~:) r-Fi:O,JEC T····nFcDF~D DPT I DNr:~,L.. r1p.,NU(.~II ...

1...1 NI<ED TO Ut"lj"'~FF~
~';:;FT ~::;F::I ... ECTIDI) CU/::':F;~[NT (.

~3E T ""~(:" (v'j[T r; DLr" T .. F'ri: (J1 ~:)F T
f/iD :elF :1: ~:; C Htl I j\.! I... J Nh: [: n TD F'F;~ I 01:;:
n F,: II [: F;: T ~:) ~:) u r;~ T [n II U P I ... I C f~' T F S
CJl.dNEF'~ In DEF't,F;T l"iENT ····F:FCDF(D
t'i r:: (1 B E Fi: :r: ~::; r:' h: 0 J [CT···· F~ Leu F~ II t1'~~1 N It (~II...1 T D

1...1 ;--'~/<[D Tn Ot...JNEF~

(~ n C L i\.! D I r··.! c~ I':.: E \' :r: ~;:) ,::' F;~ n "..1 E CT···· :r: D
~::; E . r ~::;; I:: I. .. L: C: T I Cr N C 1...1 r;: r;: [1"·1 T ~

:;::; L T N ("f ;vi r : I :;.;: ':::; F' Eel (:)1... P F; C.l ,J ~::; F 'r
IVI I] n F J S C H i~' T N I ... J N 1< [: It T U F' F: J C) r;:
OF<DEr~ IB ,~,I...l.rJ(.:lYE) L(.:l!:>T
D \J,I {.~ [: ::;.: I ~::; p F~ 0 "..1 F CT···· r;: [C D h: :cr

1. :r: NI'':':F:D TU DIJ../(.!Fh:
~::; [" T ~:::. F:: I ... r:: C l :r: 0 j\.! C /...1 F: F: F (.J T ,.

UF:OFF: J:;:: (:·,I ... kl(:l Yf) /...()~:) T
C) I.J,! (·.!F r:: J ~3 F;'h fJ . ./[CT ····h:E::C CJF:D

I....r: j"--•. II"<[D 'rei DlJJi""-JEF'
~::: ['r ::::; C 1... Fer I 0 j\.1 C: U r: F: F NT.:.

Figure 5-2 (Cont.) Schema/Sub-schema Example

5-12

:/·t.!·O:)OO

:1 ::.:i()OO
:1 !'.:; 'I. ()O
1 ~:5 .::: . .:.) \)

:I. !:.:;~.:.:.;OO

J!::.il>OO
:1.!::.i·.?OO
:I.!:.:.OOO
:I.~:.:;900

:1.6000
:l. ,:~:,:I. 00

:I.b400
l/;.!::i!,)O
1 (~)hOO
J 6 '.:-"00
1,hGOO
:1.6900
:I. '.:?OO()
:I. ')':1.00
:I. '/::.? () 0

:l. ':,;.' l~. () 0
:1.:. 1 '.':.;00

1/)'00
1 ,? f:: '.) ()
:J. .: ~? (~()

1 n :I. () ()

1 H·--} () ()
1 f:~ ~:) 0 ()
t :::;:(,00
:l.U·::'OO
:1 nooo

The Sub-Schema Data Description Language (DDL)

~::; [: T t.! (\ ;"1 F I ~'::; ~::; 0 I...II:~ C F ... ~:; E T
~'I(.IDF I~::: CH(\ IN/", I NI'~:E::D "rD Ph~ I OF~
fJ F: II F F;~ I ~::: (~ 1...1".1 tly' n I... t, n T
Ot,li\.!EF: J 3 bUl.IF;~CE F~[CDF~:D
r'iLr'iBI'::F: I H CUi\!TF~(lCT""F~ECDF:D ~"'i":~N[I ,:~,UTD

I... I i\JI'~:F:O TO OI!,INFF:
~:) E T ~::; E I... E C T I [) N (: U F~ Fi: F NT.:.

~:)I . ..Ir{""~3CHEi\·1{) N(lf"jE:: T ~:) FUND I NC:I
F'F\: J V,.:~C:Y I ... OCI< I ~:) DNUF ~

,.:) F: F I~~ ~:~ r. C: l ION 0)

COP y F~ESF(.lF~CH""I~F~EA.>
F~ E I::: 0 Fi: :0 ~3 F C T J D N .:.

0.1. ~:~DUF:CE""F\:ECOI:~D ~

0:1. CDNTI:i:(~CT Fi:ECDI:~D 0)

0:1. PF~DI[CT h:ECDF~D"
~:) E T SEC 'r .I: (J N <-

COP 'y' ~:)DUF;:CI::: ~:)ET!I FUNn~:)" .. ~::;ET.;

'::)u:e SCH[fv'i(~1 N"~'Ii"'lF In DEF'T F'r~o..J
r:' F: J I.) (~, C 'y' 1... 0 C: 1< I ~:) :0 I::: F' F;: '''.1 .:.

(IF;:I:::I':~' ~:;[CT I ur···J .)
COP Y . r [: (',1 f' D h: I:~ F~ Y F' E h: h D N N I::: I... tl h: E tl:1 Fi: E !:) E A F~ C H (.ll:~ E ,.:~) (.
h:FCC)F~n ~:)Er::'r T ()j'-,,! (.

o 1 D[P(~F: ThFr·.!T I·;:FCOF:D (.
o :1. F' r;: (] . ../ I::: C .. ,.. ... I? F C: U r;::o .:.
Ole 0 t· ... ! T r< (i C T F: E C U h::O .:.

~:) F T ~::: L r~'l 11] (., .\

CUF"{ DF P T Ph: D . ..J ~:::;F T!! ~:)F'EC I tll ·ppu . ..J ~:)ET:I F UN D~:) · .. ·~:)ET ~

~::; 1 . ..1 :1:": ~::) C H E ('j (:'~, (.... ! "~, ,.,Ij E J r; T D T tll ...
F' F~ I I ..) (~ C .. (I... 0 C 1< L T H N G .;

tll? F ,~~) ~::; F C T JON .;.
c:or''y'' (:'11.. I.. t",h:E ('IH .;­

r;:EC:IJh:O ~:::;LCT I Di"'~ .:.
COpy ,.:\1...1... h:Ecur~:o~::;.;

~:::; [: T r; E C::'f I UN y

r::UPY t,I.I. ~3ET~:::; v

Figure 5-2 (Cont.) Schema/Sub-schema Example

5-13

DBMS includes utility routines that can help you maintain the data base. They are:

CHAPTER 6

DBMS UTILITIES

DBINFO - a program that gives information about the data base and the schema.
DBMEND - a program that uses the journal file to perform page recovery.
DAEMDB - a program that copies the journal file onto magnetic tape.

6.1 THE DBINFO PROGRAM
DBINFO is a utility program that you can use to obtain information about the data base such as:

• a cross-reference listing of all symbolic names in a sub-schema.
• a map of each record type in a sub-schema.
• the usage of record occurrences on a page or set basis.
• the actual data values of the record occurrences.
• the amount of free space on pages of the data base.

6.1.1 Using DBINFO
DBINFO works with one sub-schema at a time. For example, if you open all areas, you will open only those areas in
that sub-schema. If you want information about the entire data base, you can equate the schema to a sub-schema by
using a variation of the SS command.

The DISPLAY command is the means by which you can specify exactly what kind of information you want from
DBINFO. If you want to process the data base as opposed to the schema (e.g., find out the amount of free space),
you must specify the scope of what DBINFO will display by specifying the range (or ranges) of pages that you desire
to process. If you do not explicitly give any page ranges, DBINFO will give you information from all pages in the open
areas.

When you run DBINFO, you must give the specification of the file into which DBINFO will put the information you
request. If you specify an existing file, DBINFO will append to the file (if you use the APPEND command), or super­
sede the file (if you use the SUPERSEDE command). If the file does not exist, DBINFO will create it, whether you
use the APPEND or SUPERSEDE command.

You can use the output file for more than one report from the same or different sub-schemas. You must be sure to
open the relevant areas for the particular sub-schema you are processing.

If you wish to write more than one information file during the running of DBINFO, just open each file by means of the
APPEND or SUPERSEDE command.

6.1.2 DBINFO Commands
The commands to DBINFO are described on the following pages in alphabetical order, each command starting a new
page. However, the command line format is described before the commands because it applies to all of them. DBINFO
uses the SCAN program to process the command lines; the following rules conform to SCAN requirements.

A keyword can be arbitrarily abbreviated as long as no other keyword within the same context has the same abbrevi­
ation. The context of a keyword is the set of all keywords that can appear in the same place. Thus, all commands are in
one context, and the set of possible arguments to each command is each in a separate context. For example, you must
spell out ALL when you use it as the argument to the CLOSE command because you could use an area-name in the

6-1

DBMS Utilities

same context. On the other hand, you can use DISPLAY C instead of DISPLAY CREF, even though C is the
abbreviation for the CLOSE command, because C is in the context of an argument to the DISPLAY command.
The allowable minimum abbreviations for command are shown in Table 6-1.

Table 6-1
DBINFO Commands and Abbreviations

Command Abbreviation

APPEND A
CLOSE C
DISPLAY D
OPEN 0
PAGES P
SCHEMA SC
SS SS
SUPERSEDE SU

Spaces and tabs are ignored in a command line; and you must separate items in lists (e.g., a list of area-names) with
commas. You can use either upper or lower case in a command line. However, DlBINFO will treat a value as all
upper case in a comparison. For example, if you give an area-name in lower case, DBINFO will use its upper-case
equivalent when checking the name against the area-name in the schema. All commands and their modifiers are
shown in upper case in this chapter.

DBINFO will accept only names composed of alphanumeric characters. Thus, if you use a special character such as
hyphen (-), you must enclose the entire name in double quotation marks so that DBINFO will treat it as a name.
For example, CLOSE A-B will not be accepted, but CLOSE "A-B" will.

You can continue a command on another line by placing a hyphen as the last (rightmost) character on the line before
the carriage return. The next line is then considered to be a continuation of the hyphen-ended line.

DBINFO will accept indirect command files. That is, you can store one or more commands in a file and then submit
the file to DBINFO by putting its file specification preceded by an at sign (@) on the command line .

. RDBINFO
/@file specification

The file specification is the device, filename, extension, and project-programmer number of the indirect file.

You can exit from DBINFO by typing CTRL/C(AC).

6-2

DBMS Utilities

APPEND

Use the APPEND command to give the file specification of the output file. This file will contain the information
that you request from DBINFO. If there is already a file containing information, DBINFO will append the new
information to it. If there is no existing file, DBINFO will create one. The form of the APPEND command is:

APPEND file specification

The file specification is of the form:

dev: fIle.extension

where:

dev:
fIle
extension

is a device-name. If you do not specify a device, DBINFO will use DSK:.
is the name of the fIle. You must specify the name if the device is DSK:.
is the extension for the file. If YOl.\ do not specify an extension, DBINFO will use .DBI.

Example

/APPEND INFO.DBI

6-3

DBMS Utilities

CLOSE

Use the CLOSE command to close one or more data-base areas that you have previ.ously opened. The formats of
the CLOSE command are:

1. CLOSE area-name-l [,area-name-2]
2. CLOSE ALL

The first format causes DBINFO to close the named data-base area or areas. The second format causes DBINFO
to close all open data-base areas within the current sub-schema.

The CLOSE command does not affect the information file, only data-base areas.

Example

/CLOSE AREAl, PERSONNEL

6-4

DBMS Utilities

DISPLAY

Use the DISPLAY command to specify to DBINFO the kind of information you want about the data base or the
schema. You can give only one keyword argument at a time to the DISPLAY command. But you can use the
DISPLAY command as many times as you wish during the running of DBINFO. DBINFO will just append the re­
quested report to the current information file. In this way, you can get all of the possible forms of information
about the data base in the same information file.

The formats of the DISPLAY command are:

1. DISPLAY CREF
2. DISPLAY MAP
3. DISPLAY USAGE [:set-name]
4. DISPLAY DATA [:set-name]
5. DISPLAY FREE [:integer]

DISPLAY CREF causes DBINFO to output an alphabetical listing of each symbolic name in a sub-schema. With
each name, DBINFO includes its kind (e.g., record-name), how it is used (e.g., owner), and where it is used
(e.g., the set in which it is the owner).

DISPLAY MAP causes DBINFO to output a map containing each record type in the sub-schema. Included in the
map are the record type IDs of the records, their pointers, and data-fields.

DISPLAY USAGE causes DBINFO to output the usage of the record types. If you do not include an argument,
DBINFO describes the number of record occurrences for each record type on each object page (see the PAGE com­
mand). If a page is empty, DBINFO does not include any information. If you give a set-name as an argument, DBINFO
gives you the pages on which the occurrences of the set's owner are located and the number of members that are on
each owner's page. It also gives the total number of occurrences of the set and the total number of member records.

DISPLAY DATA causes DBINFO to output a symbolic dump of the actual values in each record. If you do not
specify an argument, DBINFO dumps each record occurrence on each object page. If a page is empty, DBINFO
does not include any information. If you specify a set-name as an argument, DBINFO dumps each record
occurrence in order according to its place in each object set occurrence. DBINFO processes a particular set
occurrence if its owner record is on an object page.

DISPLAY FREE causes DB INFO to output a list of free data space per page. If you specify an argument, DBINFO
uses the integer to determine what constitutes a full page. Any page that has fewer free words than the integer
you specified is considered full and will not be included in the list. If you do not specify an argument,
DBINFO uses an argument of O. For the pages listed, DBINFO gives the page number, the number of free words,
and asterisks that each signify ten free words. If there are at least three totally empty or full pages in a row,
DBINFO will output the range of their page numbers and specify whether they are empty or full. Otherwise, those
pages will not be included in the list.

Example

IDISPLA Y CREF

6-5

DBMS Utilities

Use the OPEN command to open one or more data-base areas in PROTECTED RETRIEVAL mode. The formats
of the OPEN command are:

1. OPEN area-name-l [,area-name-2] ... [:key-l]
2. OPEN ALL [:key-l]

The first format causes DBINFO to open the specified area or areas in PROTECTED RETRIEVAL mode. You can
specify up to eight areas in one command. The second format causes DBINFO to open all areas of the sub-schema
currently being used. In either form of the command, you must specify the privacy key for PROTECTED
RETRIEVAL (key-I) if the areas have privacy locks. The areas must all have the same privacy lock (or none) if
you specify them together in one OPEN command. If the areas that you wish to use have different privacy locks,
you wi11 have to use separate OPEN commands to open them.

Example

jOPEN AREAl, PERSONNEL:PRETV

6-6

DBMS Utilities

PAGES

Use the PAGES command to restrict the pages (Le., the object pages) of the data base that DBINFO will use
when applying the DISPLAY command. That is, DBINFO will only include the specified pages when it outputs
the information requested in a DISPLAY command. If you do not give a PAGES command before a DISPLAY
command, DBINFO will use all pages of all open areas.

The formats of the PAGES command are:

1. PAGES

2. PAGES
integer
integer-integer
area-name

The first form of the PAGES command causes DBINFO to use all pages in all open areas.

The second form of the PAGES command allows you to specify up to 16 page ranges separated by commas.
If you specify an integer, the range is only that page. If you specify two integers separated by a hyphen,
you specify all the pages from the first integer through the second (e.g., 13-25 includes pages 13 through 25).
If you include an area-name, you include all the pages in that area.

Example

/PAGES 4,7,13-25, "CUST-AREA"

6-7

DBMS Utilities

Use the SS command to specify the sub-schema to be used by DBINFO. This means that DBINFO will be aware
of only those areas, record-types, and data-items included in the specified sub-schema. You must issue an SS com­
mand before issuing your first DISPLAY command so that DBINFO will list the information for the sub-schema you
want.

The format of the SS command is:

SS [sub-schema-name]

If you do not specify an argument, DBINFO will use the entire schema as the sub-schema. If you specify a sub­
schema-name, DBINFO will use the specified sub-schema. You can only specify up to eight sub-schemas during
one run of DBINFO.

Example

ISS SUBSCHI

6-8

DBMS Utilities

SUPERSEDE

Use the SUPERSEDE command to give the fIle specification of the output fIle. This fIle will contain the
information that you request from DBINFO. If there is already a file of that name containing information,
DBINFO will supersede that information. If there is no existing fIle, DBINFO will create one.

The form of the SUPERSEDE command is:

SUPERSEDE file specification

The me specification is of the form:

dev: file .extension

where:

dev:
file
extension

is a device-name. If you do not specify a device, DBINFO will use DSK:.
is the name of the file . You must specify the name if the device is DSK: .
is the extension for the file. If youdo not specify an extension, DBINFO will use .DBI.

Example

/SUPERSEDE DBINF.SSI

6-9

DBMS Utilities

SCHEMA

Use the SCHEMA command to identify to DBINFO the schema that you wish to use. The format of the
SCHEMA command is:

SCHEMA schema-name

Schema-name is the name of an existing schema.

Example

/SCHEMA SCHEX

6-10

DBMS Utilities

6.1.3 DBINFO Error Messages
%INF AAD AREA STATUS ALREADY DESIGNATED FOR area-name

You tried to open an area already open. Close the area and try again.

?INFAAO AREA area-name NOT IN "READY" STATE -- SEE FORCEOPEN IN DBMEND MANUAL
The area cannot be opened because its Area Status Record is bad. Use the DBMEND FORCEOPEN command
(Section 6.2.3) to adjust the Area Status Record and try DBINFO again.

?INFACS AREA area-name IN CREATION STATE - SEE EXCEPTION 43 IN MANUAL
The area is currently being used. See Appendix B in the DBMS Programmer's Procedures Manual for
exception code 43.

?INFANO PAGE TO DISPLAY IN CLOSED AREA area-name
The page you specified is in an area that is not open. Open the area or specify another page.

?INFAOE ATTEMPT TO OPEN EMPTY AREA ... FOR RETRIEVAL
You tried to open an empty area. Put data into the area before you use DBINFO on it.

?INFCDP CAN'T DEFAULT PAGE TUPLES -- NO AREAS OPEN
DBINFO cannot use a default page range because no areas are open. Open at least one area and try again.

?INFDAC DATA CHANNELS ALL IN USE
DBINFO cannot open all files specified because not enough JFNs are available. Try again with fewer areas.

?INFDAF DATA BASE ACCESS FAILURE -- IS DBMS PROBLEM IF IT RECURS
DBINFO could not access the data base. Check that the DBS files are in an accessible directory. If the error
recurs, submit an SPR.

?INFIAN INY ALID AREA NAME area-name
You specified an invalid area-name. Try again with a valid area-name.

?INFNNA page-range NOT NUMERIC OR AN AREA-NAME
You specified a page-range that was neither numeric nor an area-name. Try again with a correct page-range.

?INFNOS NO OUTPUT FILE HAS BEEN SUPPLIED AS YET
You tried to get a report before specifying an output file. Use the APPEND or SUPERSEDE command to
specify a file.

?INFNSK NO SCHEMA NAME HAS BEEN SUPPLIED AS YET
You tried to get a report before specifying the schema. Use the SCHEMA command to specify the schema.

?lNFNSS NO SUB-SCHEMA NAME HAS BEEN SUPPLIED AS YET
You tried to get a report before specifying a sub-schema. Use the SS command to specify a sub-schema (or to
specify that the schema will be used as the sub-schema).

?lNFPKI PRIVACY KEY INCORRECT FOR area-name
You specified an incorrect privacy key for an area. Determine the correct privacy key and try again.

?INFSSN SUB-SCHEMA NAME IS NOT IN SPECIFIED SCHEMA
You specified a sub-schema that is not in the schema you specified. Determine the correct sub-schema and
try again.

?INFTMA TOO MANY AREAS ON ONE COMMAND LINE
You specified more than eight areas in one OPEN command. Try again with fewer than eight areas.

6-11

DBMS Utilities

?INFTMS TOO MANY SUB-SCHEMAS ACCESSED

You specified more than eight sub-schemas for this run of DBINFO. Return to the monitor (Control C);
type R DBINFO; and continue as before.

?INFTMT TOO MANY PAGE TUPLES SPECIFIED/IMPLIED
You specified (or implied if using the default) more than 16 page-ranges in one PAGE command. Try again
with fewer than 16 page-ranges.

?INFTNS UNSUPPORTED DATA TYPE ENCOUNTERED
DBINFO found a data type that DBMS does not support. This is either an error in the schema or a software
error. Correct the schema or submit an SPR.

?INFWCP WILDCARDING IS PROHIBITED
DB INFO does not accept wildcard format in its commands.

6.1.4 Sample DBINFO Output
The following pages contain samples of the output from the DB INFO program. They show the following:

1. Symbolic cross reference
2. Record-occurrence maps
3. Summary of free-space per page
4. Record usage per page
5. Set usage per page
6. Page data dump
7. Set occurrence data dump

You could use the following sequence of commands to DBINFO to obtain similar output.

+ F< DBINFfJ
/SCHEMA t11:~DENT

/SS SUBSl
/SUPERSEDE EXAMP
/(JPEN AREAl
.lDISPI ... AY CF<EF
lDISPL.AY MAP
/DISPL.AY Ff<EE: 10
ID I SPI ... AY USAGE
IDISPLAY USAGE:nSLSCUS-SET n
IDISPL.AY DATA
/DISPLAY DATA:nSL.SCUS-SETH

6-12

DBINFO report:
Context:

SYMBOL

Symbolic Cross
Schel'/'l~ name

its t'd1t
its run ID

Sub-schema

DBMS Utilities

Reference
OPDfo~N T
74
t 51
SUBS1

TYPE HrlW USEO USf:D WITH --._-.-_._.--------._. __ _-._._ .. _.------------------------._._---- ... -
AIJJJn PI) -SF T
AREAl

AREA2

AREA]
CUSO~O-SET
CUST-AODRESS
CUST-K~'I
CUST-NAME
CUSTO~1

[DAREA
ITEM

ITEM-LINE

ITEM-Nf:T
ITEM-P~l1D ... NO
ITEM-QTY
ORDER-DATE
ORDER-LINES
ORDf.f<-NE.T
ORO I T ~1 - SET
ORDNI.}!tv'
ORD~(J~1
ORDSUM-I<E'i
Of<DSUM -~W
ORDSU~' -OR [) f~ S
PROD
PROD-DESC
PROD-li'J-PPOC
PROD-INSTALLI::D
PROD-ITEM-SET
PRO D - L £ An. ... T I ~1 E
PROD-NO
PROD-ON-HArJD
PROD-nN-nPDER
PROD-PRICE
PURORD

SLSCLlS-SFT
SL5ENG
S L 51:: N G ... N A \1 E
SLSENG-OFfTCF
SLSENG-PHONF.
S'iSTEr.1

SFT NAMf.
ARFA NAME

A~EA tJAMF

AREA f\iAME
SET NM"'E·
DATA ~IA~~fi:

DAT.~ fliAME
D,aTA NAME
~~,CORD NAME

P F; fER E.: N C F: N .A M F
PFC'ORD NA~1E

DATA f~ A ME~
DllTA NAI"'E
DATA tvAME
D ,\ T A f'.; A r·~ f':
DATA tvAfv1F:
DATA NAME
SET NAtv'E
DATA rJAME
R~:CORn NAME
P f; ~. ERE N C E N A r..., f
DATA t"Arv~E

DATA NAME
R E C n R DNA ,...., f~
DATA NAMf.
DATA N A~1f
DATA NAt-'F:
SET NA~·1E

DATA NAME
nATA NAt""E
DATA NAME
DATA I\JM·1E
DATA N/IME
RECORD NAMF:

SE:T N M~E
PE"cnPD NM·~F'

['ATA NA~1E

DATA NAM"~

C' ATA bAf\1E
PF:CURD NAr.~E

6-13

WITHIN-phrase
WITHlrJ-phrase
wITHIN-phrase
wIT H I ~I - ph r a s e
~ilTHJN-phrase

w]THIN-phraSfil
wITHIN-phrase

COt-1PONE"JT
cnMPO~F.NT

CALC KFY
MEMHEP
Dt'iNER
AREA TO
MEr·1REP
MEr"~ER

SOPT "'~:Y
cor·, PON EN T
cnMPONENT
C£WPONF'NT
cn~~FONENT

cur,'PONENT
C nr-.1 PON E r'JT
CrJl'-1PONENT
VIA SFT
CALC KEY
Oi'J~lFP

DIRt~CT KEY
C or'l PO N ENT
(,rltv1pnNENT
(JwN~-'P

CU~1PONENT

C n~ PO~JFN T
CO!"PONENT

CflMFOtIJENT
CALC I(~~Y

cn~PUNENT

CrtMPONENT
crH1PONENT
r-AFMHEP
r·1F~1REP

Ot~NER

OWNF'R
CALC KF.Y
COrv'PONENT
cmAPONENT

SLSENG
CUSTOM
ORDSUM
ITEM
PURllRD
CIJSTOM
PROD

CUSTOM
CUSTOM
CUSTOM
SLSCUS-SET
CUSORD-SF.T
CUSTOM
ORO ITt..., -SFT
PROD-ITEM-SET
ORDITM-SET
ITEM
rTEM
ITEM
ITEM
PURORD
PURORD
PURORD
ITEM
PURORD
ALLORD-SET
ORDSUM
ORDSUM
ORO SUM
PROD-ITEM-SET
PROD
PROD
PROD

PROD
PROD
PROD
PROD
PROD
CUSORD-SET
ALLORD-SET
ORDITM-SET

SLSCUS-SET
SLSENG
SLSENG
SLSENG

DBMS Utilities

OBINFO report: ~ecord-occurence Maps
Contexta Schema name QRDENT

Sy S"~-M

ClJSTm1
01
11
21
31
41
51
61

its edit 74
its run ID 1,1

Sub-schema SLlBS1

(TYPE 1D:32)

(TYPt': 10:3.n
CALC CHAIN
NfXT of
PRIOR of
NfXT of

CUSORD-SET((J) }
CUfiORD-SE1 (0) ----------­
S L S r (J S .. SET (~-1)
1: (" llS T .. N A M E

Pointers

71 ****** ---------- Data Fields
81 ******
91 * 2: CUST-KEY
101 ******
111 ******

3: CUST-ADDRESS Used as ID in a dump. JI-------
121 ******
131 ******
141 ******
\51 ******
161 ******
171 ******

_______________________ ~~y~~fuW
Ll AsterIsk = 1 Byte 181 ******

191 ******
201 ******
211 ****If*
221 ******
231 ******
241 ******

PURORD (TYPE 11):34)
01
tl
21
31
41
51
61
71
81
91
101

111

ITEM
01
11
21
31
41
51

CALC CHAIN
NEXT of
PRIOR of
O~~ER of
NEXT of
PRTOP of
INDt:X-TRFf.
NEXT of

(TYPE 1D:35)
NEXT of
PRIOR of
OWNER of
NEXr of

of

C U SO R D - S E: T (~J,)

C U SO R D .. Sf: T (~1)
CUSORD-SF:T
OPDITM-SfTCO)
OPDTTM-SET(O)
ORDITM-SrT
ALL 0 R D .. 5 E T (,.")
1: fJRDNlIM
2: ORDE~-DATE

3: ORDER-LINES
4: ORDF.P-rJET

OPl)ITM-SFT(M)
o R D I T M - SET (f~)

ORDITM-SET
PROD-ITEM-SET(M)
1: ITEM-LINE

21 ITEM-PROD-NO

6-14

61 *****

71 *
*

81 ****

PROD
01
11
21
31

(TYPE ID=36)
CALC CHAIN
NEXT of

**

41 ******
51 ******
01
71
81
91
101
111

*4****

**

121 ****

**
131 *

** .. **
141 *

151 ***** ..
161 ****

ORDSUM
01
11
21
31

SLSENG
01
11
21
31
41
51
61
71
81
91
101
111
121
131

(TYPE: ID=l7)
NE.XT of
PRIOR of ..

(TYPf, ID=38)
CALC CHAIN
NEXT of

******'

DBMS Utilities

3: J TE~-QTY

PPOD-1TEM-SET(O)
1: PROD-NO

2: PROD-DESC

3 : PROD-PRler

4: PROD -LF.: A n -T I ~lE

5 : F'}.t 0 [) - () tJ - hAN n

6 : FROD-1N-PROC
7 : ppon-ON-ORDF.P
R: PROD-INSTALLED

ALL(JPO-SE:r (n)

AI, IJ (I R 0 - SET (0)
1: f1PDSUM-ORDERS
2: URDSU/vl-NO

SLSCUS-SETCr)
1: SLSFNG-NAME

2: SLSENG-OFF'ICE;

3: SLSENG-PHOr-I~

6-15

------- Explicitly shows starting and
ending in the middle of a word.

DBMS Utilities

DI::iINFO report: Summary Of rree-space/Paae
Context: Schema name OROENT

its edit 74
Its run TD 151

Sub-schema SUBS1

Ob1ect pageCs): 1 - 20 ,...----------- Argument Given in Command

PAGE NUMBER
1
4
7

8 - 10
1 1
1 4
16

17 - 20

FREE ~ORDS(GTR 10)
2~4
238
21 ~

238
212
227

• OF ~MPTY PAGES: 14
Of' rU[.L PAGES: 0

6-16

ON[ASTEPISK(*1=10 FREE WORDS

n~MPT'y PAGES)

(EMPTY PAr.~S)

DBMS Utilities

DBINfO report: Record-Usaqe/Paqp
Context: Schema nalTle OPDENT

its edit 74
its run If') 151

Sub-schema SllASl

Object paqe(s): 1 - 20

Paqe AF<I!:At
1 of type CUSTOM

Page 4 A14EAl
1 of type SLSENG

Paqe 7 APF:Al
1 of type CUSTOM
1 of type S LSE: ~~ G

Paqe 11 ARE.:A1
1 of type SI./SfNG

Paqe t 4 AkE;Al
1 of type CUSTOM
1 of type SI,SF;NG

Page 16 APEAt
1 Of type CUSTOM

(TOTALS)
4 of type CUSTO~

4 Of type SLSE:NG

6-17

DBINFO report:
Context:

Set-usaqe/Pao£t
ScherT'a nalTe

its edit
Its run rr

SUb-schema

DBMS Utilities

for SIJSCUS-SET
ORDENT
74
151
SURSl

Object pa~e(s): I - 20

OWNER LIN~

4/001
MEMBERS O~ PAG~(' IN S~T OCCURRE~C~)

o (ot 1)

7/001 (0 t 1)

11/001 () (of 1)

14/001 o (of 0)

• 0 F SET {J C C lJ JJ R E (.J C F S : 4
• OF M~MRFR PECOPDS: t (of 3)

6-18

DBINfO report: Data Du~p
Cont~xt: Schema name

its edit
its run 10

Sub-SChema

Object paa~(s): 1 - 20

DBMS Utilities

ORDENT
74
151
SU~Sl

6-19

0\
N o

Page
WordS tree:
Calc chains:

224
1/002

AREAl

Line 1/002: at +5 uses 25 words. ('115101"1
References: 1/000 107/001 107/001
1: COPLEY
2: 8193
1: 2525 PACIfIC BEACH HLVD. SAN DIEGO

L ThemapID.

11/001

CALIF. 07111

Page 4
worriS free:
Calc chains:

Line 4/001:
References:

BRAr~DT, D.
CAMBRIDGE

238
4/{)01

at +3 USPS 14 words.
4/000 14/002

1 :
2:
3: 61 ; 4 q 1-61 302522

AREAl

SLSFNG

Page 7
WordS free:
Calc chains:

212
7/002

L1ne 7/001: at +3 us~s 14 worrls.
R@ferpnces: 7/000 7/002
1: CUTHRFRTsnN, f.
21 CAM8RIDGE
3: 617491·61307~22

Line 7/002:
References:
l: SPAN
2: 7170
3: 25 TU~~PIKE

at +17 uses 25 ~ords.

7/001 7/002

PUAD

AREAl

SLSENG

CIJSTOM
7/002

PFWV I OENCE

7/001

RHODE ISLAND 01800

Page 11
Words free:
Calc chains:

238
11/001

Line 11/0011 at +3 uses 14 words.
References: 11/000 11002
1: CARMICHAEL, R.
2: SANTA ANNA
31 714979-24602

APEAl

SLSENG

Page 14
Words free:
Calc chains:

212
14/002

Line 14/001: at +3 uses 14 ~ords.
References: \4/000 14/001
1: HOGA~, R.
2: rvlAyrllARD
3: 6178 Q 7-51112969

ARE~1

SLSENG

Line 14/002: at +17 uses 25 words. CUSTO~
References: 14/001 105/001 10~/OOl

1: FIPST CHURCH
2: 511
3: 25 HUNTINGTON AVE. HnSTn~

4/001

MASS. 02139

Paqe 16
Words free:
Calc chains:

Line 16/001:
References:
1 : DEC
2: 0

227
16/001

at +3 uses 25 words.
16/000 10bl00l

3 : 146 MATN ST.

A~EAl

CUSTO'"
101/001 0/000

~ASS. 01754

DBINFO reportl
Cont@xt:

Data Dump for
Sch@ma name

its edit
its run JD

Sub-sch@ma

Object paqeCs)1 1 - 20

DBMS Utilities

srJSCUS-SET
ORDENT
74
151
SUBS1

6-26

Page 4
Words free:
Calc chains:

239
4/001

Line 4/001: at +3 uses 14 words.
References: 4/000 14/002
1: BPANDT, D.
2: CAMBPIDGE
3: b174Ql-b1302522

Af.1EAl

SLSfNG

Line 14/002: ~t +17 uses 25 words. CUSTn~
References: 14/001 105/001 105/001
1: FIRST CHURCH
2: 5 t 1
3: 25 HUNTINGTON AVE. HOSTOM

4/001

MASS. 02139

DBMS Utilities

6.2 THE DBMEND PROGRAM AND JOURNAL USAGE
The DBMEND utility program allows you to perform page recovery on a data base. Page recovery refers to the
backup and restoration of individual pages in the data base, rather than backup and recovery of entire areas (Le.,
DBS files).

To perform page recovery on a data base, the DBMEND program must have a journal containing all page changes in
the form of images before each change (BEFORE images) and/or after each change (AFTER images). A journal is
created by a running application program as it changes the data base. Figure 6-1 shows the generation and usage of a
journal file.

You can also use DBMEND to gain an abstract of the journal me or adjust the Area Status Record of the DBS me.
This may be necessary if a run-unit terminates abnormally.

The journal me, the primary functions performed by DBMEND, the DBMEND commands, and DBMEND error
messages are described on the following pages.

GENERATION PHASE

INFORMATION
SCHEMA FILE L

TELLS WHAT
IMAGES TO
GENERATE

JOURNAL FILE(S)
IS BRIDGE

0 BETWEEN PHASES

RECOVERY PHASE

COMMANDS

DBS[~
FILES ~

GIVES COMMANDS
WHICH CAUSE DBCS

TO ACT

USER
PROGRAM

DBCS

WRITE

(ACCESSES.
CHANGES
DATA BASE.
OPTIONALLY
GENERATES
JOURNAL

OR 0
READ

DBMEND

o
Figure 6-1 Generation and Usage of a Journal File

6-28

DBMS Utilities

6.2.1 DBMS Journal
A journal is a file on disk or magnetic tape that contains images of pages from the data base plus additional informa­
tion that delimits these pages. It is created during the execution of application run-units that open permanent areas
in the update usage-modes. Each piece of information in a journal contains a run-unit ID, which enables you to
isolate the changes made by a particular run-unit when you are using DBMEND. A journal me can be specified in
one of two ways. You can include the BACKUP clause in the desired area DMCL entries or the application program
can request BEFORE and/or AFTER images in a subprogram call. (See Section 2.3 in the DBMS Programmer's
Procedures Manual.)

The additional information in the journal file will be some or all of the following:

1. A label block, which is the first block on each reel (a disk journal is one reeI). The label block contains
the schema-name, the run number, the reel number and the date and time when the run was started.

2. Command headers and trailers when images are ordered by command or constitute default transactions.
(See Section 2.2.7.1.) They serve to delimit the BEFORE/AFTER data base images. They contain the
DML command type that changed the data base page(s) between them and an index. The index is the
number of the DML command in the journal file. DBCS increments it automatically each time the
application program executes an updating DML command.

3. Transaction headers and trailers, which are optionally included by the program. These headers and
trailers contain a transaction name and a transaction index. The transaction name identifies the type
of transaction that occurred. The index uniquely identifies the occurrence of the transaction.

4. Comments that are optionally included by the program. These comments can contain any ASCII text
and can occur anywhere in the file. This text is printable.

5. Data that is optionally included by the program. This data can be in any data mode (e.g., data-aggregate,
SIXBIT, etc.) because it is transferred to the journal as is. This is non-printing text.

If concurrent run-units have opened areas in UPDATE usage-mode, and are using the journal file, the file is shared
among them. (See also Section 2.5, which discusses simultaneous update.)

Because of the extra work involved in maintaining a shared journal, run-units should inform DBCS whether or not
they intend to share the journal file. Before opening an area, therefore, the run-unit should execute the following
statement;

OPEN JOURNAL USAGE-MODE [EXCLUSIVE] UPDATE.

If the journal is to be shared, the run-unit omits the keyword EXCLUSIVE. (Refer to Section 3 of the Programmer's
Procedures Manual for the full description of the OPEN JOURNAL statement.)

Should a run-unit omit the OPEN JOURNAL statement, DBCS will simulate such a statement as follows:

• If the run-unit is opening an area in EXCLUSIVE or PROTECTED UPDATE usage-modes, an OPEN
JOURNAL USAGE-MODE UPDATE, is simulated. The journal is not shared.

• If the run-unit is opening an area in UPDATE usage-mode, an OPEN JOURNAL USAGE-MODE
UPDATE is simulated. The journal is shared.

6.2.1.1 Appending/Overwriting the Journal - When a run-unit opens a journal file, DBCS must decide whether
(1) it should append to the journal, (2) start at the beginning and overwrite pre-existing information, or (3) abort
because the journal is in an undefined state.

DBCS overwrites the journal only if it has been informed that the existing information on the journal file is no
longer needed. A journal file is no longer needed if

• the images it contains have been merged into the data base (see the DBMEND UNLOAD and
COMPLETE commands), or

6-29

DBMS Utilities

• you have indicated that all run-units have successfully completed execution.

By using the CLOSE JOURNAL statement, the last or only active run-unit can cause DBCS to alter the journal's
label page to indicate that the journal is no longer needed. (See Section 3 of the Programmer's Procedures Manual
for a full description of the CLOSE JOURNAL statement.)

DBCS appends to the journal when the journal's label page indicates it is appropriate to do so. Appending will occur
under the following circumstances:

• yours is the only run-unit, and the previous run-unit had successfully executed a CLOSE RUN-UNIT
statement.

• a concurrent run-unit has dequeued the data base, which it had maintained exclusively for the duration
of either a command or a transaction. (See Section 2.5 on simultaneous update.)

• DBCS aborts the journal with exceptions xx61 or xx63 if one or more run-units have previously
aborted and their images have not been merged into the data base. Should this occur, delete the
journal file or use DBMEND to correct the situation.

6.2.2 DBMEND Functions
The three main functions of DBMEND allow you to:

1. merge BEFORE and/or AFTER images into the data base,
2. obtain an abstract of the journal file, and
3. adjust the Area Status Record of the DBS file.

Each of these functions is described below. The DBMEND commands relevant to the functions are mentioned with
them, but are described in detail in Section 6.2.3.

6.2.2.1 Merging BEFORE/AFTER Images into the Data Base - To perform page recovery for the data base,
you merge images from the journal file into the data base. You use BEFORE images to restore the data base to an
earlier state. This would be necessary if the application program had put erroneous data in the data base, or if the
system had crashed and the state of the data base were unknown. You use AFTER images to take the changes from
the journal file and merge them into the data base (Le., bring it to a later state). AFTER images are only necessary
if you have to bring an old copy of the data base up to date.

You can merge all BEFORE or AFTER images from the journal file, or merge just images from selected portions of
the journal file. You define the limits of the merge operations with the START and END commands. Refer to
Section 6.2.4 for more information about start and end boundaries.

You can also specify that areas of the data base be excluded from the merge operation.

To merge BEFORE or AFTER images from a complete journal file, you should perform the following steps. You
should have some knowledge of the contents of the journal file. You can gain this by performing an abstracting
operation (see Section 6.2.2.2).

1. Run DBMEND (DBMEND).
2. Open the journal file (JOURNAL).
3. Rewind the journal file, if necessary (REWIND).
4. Open areas of the data base (OPEN).
5. Specify the portion of the journal that you will use by setting the start and end boundaries (START

and END).
6. Specify that BEFORE or AFTER images will be merged (MERGE BEFORE or MERGE AFTER).
7. Close the open data base areas (CLOSE).
8. Close the journal file, if desired (UNLOAD).
9. Exit from DBMEND (AC) or start another operation.

6-30

DBMS Utilities

An example of a merge of BEFORE images is as follows:

.RDBMEND
/JOURNAL MTAI :SCHEX
/REWIND
/OPEN MARKETING, PERSONNEL
/START
/END
/MERGE BEFORE
/CLOSE MARKETING, PERSONNEL
/UNLOAD
/"C

The above example assumes that the journal file is complete (Le., no crash occurred and the application program ran
to completion), but that the changes made by the program were incorrect. Thus, you wanted to merge all the
BEFORE images in the journal file (Le., undo the run entirely). However, many times you would only want to
merge some of the images from the journal file. One reason c.ould be that the system crashed during execution of
the application program leaving the data base in an undefined state. You might then wish to restore only those data
base pages at the end of the journal file.

If the system crashed before an application pr.ogram was able t.o run to completion, the journal file, if it is on magnetic
tape, is still sitting at the point where the crash occurred and d.oes not have an end-of-me marker. In addition, some of
the data in the temporary j.ournal file may still be unmerged. Use the COMPLETE c.ommand t.o merge the as yet un­
merged data and t.o put an end-.of-file marker .on the tape. You must n.ot rewind the tape before y.ou put the end-of­
file on it because y.ou will lose the current p.osition and cause DBMEND t.o take l.onger t.o find the end .of the usable
data. You can rewind the tape after you have used the COMPLETE c.ommand, but y.ou probably sh.ould n.ot if y.ou
are going to work with the end .of the j.ournal file. N.ote that if you d.o not rewind the tape, y.ou must specify the name
of the schema t.o DBMEND by means .of the SCHEMA c.ommand because the schema name is at the beginning of the
tape in the label bl.ock and DBMEND will n.ot have seen it.

The steps for merging BEFORE images back t.o the last c.ompleted DML command in the j.ournal file and f.or
putting the end-of-file on the tape are as f.oll.ows:

I. Run DBMEND (DBMEND).
2. Open the j.ournal file (JOURNAL). .
3. Put the end-of-me on the journal, if necessary (COMPLETE).
4. Specify the start and end b.oundaries (START and END).
S. Specify the name .of the schema, if necessary (SCHEMA).
6. Open the data base areas using the FORCEOPEN c.ommand t.o adjust the Area Status Rec.ord. Refer

t.o Section 6.2.2.3 (FORCEOPEN).
7. Specify that BEFORE images will be merged (MERGE BEFORE).
8. Cl.ose the .open data base areas (CLOSE).
9. Cl.ose the journal file, if desired (UNLOAD).

10. Exit from DBMEND C"C) or start another .operati.on.

An example .of merging in the ab.ove case is as f.oll.ows:

.RDBMEND
/JOURNAL MTA1 :SCHEX
/COMPLETE
/SCHEMA SCHEM03
/START LAST
/END
/FORCEOPEN MARKETING, PERSONNEL
/MERGE BEFORE

6-31

DBMS Utilities

ICLOSE MARKETING, PERSONNEL
IUNLOAD
lAC

If you wish to merge AFTER images up to the last completed DML command or transaction, you can perform the
following steps:

1. Run DBMEND (DBMEND).
2. Open the journal me (JOURNAL).
3. Putthe end-of-me on the journal, if necessary (COMPLETE).
4. Rewind the journal (REWIND).
S. Specify the start and end boundaries (START and END).
6. Open the data base areas using the FORCEOPEN command to adjust the Area Status Record. Refer to

Section 6.2.2.3 (FORCEOPEN).
7. Specify that AFTER images will be merged (MERGE AFTER).
8. Close the open data base areas (CLOSE).
9. Close the journal me, if desired (UNLOAD).

10. Exit from DBMEND (AC) or start another operation.

An example of this procedure is as follows:

.RDBMEND
IJOURNAL
ICOMPLETE
IREWIND
ISTART
lEND LAST
IFORCEOPEN MARKETING, PERSONNEL
IMERGE AFTER
ICLOSE MARKETING, PERSONNEL
/UNLOAD
/AC

When performing merge operations, you may want to keep track of the operation so that if anything happens (e.g., a
system crash) you can continue from where the merge left off rather than duplicate some of the merge. You can use
the TRACE command to cause DBMEND to type the command or transaction ID that has just been processed. An
example of using the TRACE command and continuing after a crash is as follows:

.RDBMEND
/JOURNAL MTAI :SCHEX
/START
/END
/TRACE
/MERGE BEFORE
[BACK TO COMMAND 134]
[BACK TO COMMAND 133]

[BACK TO COMMAND 12]
(system crash)
.RDBMEND
/JOURNAL MTAI :SCHEX
/START
/END 12
/TRACE
/MERGE BEFORE

6-32

DBMS Utilities

6.2.2.2 Obtaining Abstracts - Before performing merge operations, you may need to know what is in the
journal file. The ABSTRACT command is used for this purpose.

Like the MERGE command, the ABSTRACT command requires that you specify start and end boundaries. You
can also control the type of information in the abstract by means of the DISPLAY command. You can get such
information as data-base-pages updated, transaction names and indexes, DML command indexes, any comments added
to the flle and the ID of the run-unit that performed these actions. Refer to the DISPLAY command for a complete
description of this information. If you do not give a DISPLAY command, DBMEND will put command indexes, trans­
action names and indexes, data base page numbers, and comments into the abstract.

Because an ABSTRACT command need not deal with data base pages, you need open data base areas only when
page information is to be displayed.

Often, you would want an abstract of the entire journal file. You can obtain one by performing the following steps.

1. Run DBMEND (DBMEND).
2. Open the journal file (JOURNAL).
3. Specify start and end boundaries (START and END).
4. Specify the information in the abstract, if desired (DISPLAy).
5. Specify that an abstract will be performed (ABSTRACT).
6. Close the journal file, if desired (UNLOAD).
7. Exit from DBMEND (A C) or start another operation.

An example of this procedure is as follows:

.RDBMEND
IJOURNAL MTA! :SCHEX
ISTART
lEND
IDISPLAY ALL
I ABSTRACT SCHX.ABS
IUNLOAD
r'C

Note that an abstract should not be performed on a journal file that does not have an EOF. That is, if the program
creating the journal file terminated abnormally so that there is no EOF on the end of the magnetic tape, you should
put the EOF on the tape (using the COMPLETE command) before performing the abstract.

Once you use the COMPLETE command to put the EOF on the tape, however, you can get an abstract of the journal.
The procedure to do this is as follows. (Note that if you do lose the location of the end of the usable data, running an
abstract until a data error occurs is a good way of finding that location again.)

1. Run DBMEND (DBMEND).
2. Open the journal file (JOURNAL).
3. Put an EOF on the tape (COMPLETE).
4. Rewind the journal (REWIND).
5. Specify start and end boundaries (START and END).
6. Specify the information in the abstract, if desired (DISPLAY).
7. Specify that an abstract will be performed (ABSTRACT).
8. Close the journal file, if desired (UNLOAD).
9. Exit from DBMEND (AC) or start another operation.

An example of this procedure follows.

6-33

.RDBMEND
/JOURNAL MTAI :SCHEX.JRN
/COMPLETE
/REWIND
/START
/END
/ ABSTRACT SCHX
/UNLOAD
/"C

DBMS Utilities

6.2.2.3 Adjusting the Area Status Record - If an application program terminates abnormally, the Area Status
Record of each data base fIle that was opened for update by that program could contain erroneous data. If this occurs,
whether or not a journal file exists, you will want to fix the Area Status Record so that the DBS file can be accessed
again by application programs or by DBMEND. You would use the FORCEOPEN command in this case so that
DBMEND will override the bad information in the Area Status Record.

To use DBMEND to perform just this function, you can follow the steps below. Note that you do not have to open
a journal file; but if you do not, you must specify the name of the schema to DBMEND.

1. Run DBMEND (DBMEND).
2. Specify the name of the schema (SCHEMA).
3. Open the areas in the data base (FORCEOPEN).
4. Close the areas in the data base (CLOSE).
5. Exit from DBMEND (,'C) or start another operation.

An example of this procedure follows .

• RDBMEND
/SCHEMA SCHE03
/FORCEOPEN ALL: EXCLKEY
/CLOSE ALL
/"C

Note that many of the earlier examples (Sections 6.2.2.1 and 6.2.2.2) inherently accomplished Area Status Record
cleanup because it is the sequence of FORCEOPEN and CLOSE commands that is relevant even if there are other
commands intervening.

6.2.3 DBMEND Commands
The commands to DBMEND are described on the following pages in alphabetical order, each command starting a
new page. Command line format is described before the commands because it applies to all of them. DBMEND
uses the SCAN program to process the command lines; the following rules conform to SCAN requirements.

As long as no other keyword within the same context has the same abbreviation, a keyword can be abbreviated.
The context of a keyword is the set of all other keywords that can appear in the same place. Thus, all commands
are in one context, and the set of possible arguments to each command is each in a separate context. For example,
you must spell out ALL when you give it as an argument to the CLOSE command because you could use an area­
name in the same context. On the other hand, you can use MERGE A instead of MERGE AFTER, even though A
is the abbreviation for the ABSTRACT command, because A is in the context of an argument to the MERGE
command.

Spaces and tabs are ignored in a command line; and you must separate items in lists (e.g., a list of area-names) with
commas. You can use either upper or lower case in a command line. However, DBMEND will treat a value as all
upper case in a comparison. For example, if you give an area-name as lower case, DBMEND will use its upper-case
equivalent when checking the name against the area-name in the schema. All commands and their modifiers are
shown in upper case in this chapter.

6-34

DBMS Utilities

DBMEND will only accept names composed of alphanumeric characters. Thus, if you use a special character such
as hyphen (-) in a name, you must enclose the entire name in double quotation marks so that DBMEND will treat
it as a name. For example, CLOSE A-B will not be acceptable, but CLOSE "A·B" will.

You can continue a command on another line by placing a hyphen as the last (rightmost) character of the line
before the carriage return. The next line is then considered to be a continuation of the hyphen-ended line.

You can exit from DBMEND by entering a CTRL-C ('" C). If you wish to return to DBMEND after exiting, you
can issue the CONTINUE system command (or the REENTER system command to abort unwanted output) as
long as you have not run any program that destroyed the core-image.

DBMEND will accept indirect command files. That is, you can store one or more sets of commands in a file and
then submit the file to DBMEND by putting its file specification preceded by an at sign (@) on the command line .

• RDBMEND
/@me specification

The me specification is the device, filename, extension and project programmer number of the indirect file.

The DBMEND functions are merging, abstracting, and DBS file Area Status Record manipulation. For ease of
reference, Table 6-2 gives a list of the commands with the DBMEND functions to which they are relevant. The
minimum abbreviation for each command is shown in parentheses following the command.

Command

ABSTRACT
BUILD
CLOSE
COMPLETE
DISPLAY
END
EXCLUDE
FORCEOPEN
JOURNAL
LABEL
MERGE
NOTRACE
OPEN
POSITION
REELS
REWIND
SCHEMA
START
TRACE
UNLOAD

Table 6-2
DBMEND Commands

DBMEND Function

(A) abstracting
(B) abstracting
(C) all
(CO) abstracting, merging
(D) abstracting
(E) abstracting, merging
(EX) merging
(F) all
(1) abstracting, merging
(L) abstracting, merging
(M) merging
(N) merging
(0) merging, abstracting
(P) merging, abstracting
(R) merging, abstracting
(REW) merging, abstracting
(SC) all
(S) abstracting, merging
(T) merging
(UN) abstracting, merging

6-35

DBMS Utilities

ABSTRACT

Use the ABSTRACT command to cause DBMEND to output an abstract of information from the journal file
according to your specified boundaries. The ABSTRACT command has the format:

ABSTRACT fIle specification

The file specification is the device, fIlename, and extension of the file for the abstract. If you omit the device,
DBMEND assumes DSK. You must specify the filename (if applicable), but you can omit the extension. If so,
DBMEND assumes .ABS.

Before you issue the ABSTRACT command, you must set the boundaries for the abstract by specifying them in the
START and END commands. If you have not previously given a DISPLAY command during the current execution
of DBMEND, the abstract will include DML commands, page numbers, transactions, and text blocks. Otherwise,
the types of information specified in the DISPLAY command are included in the abstract. Refer to the START
and END commands for more information about boundaries and to the DISPLAY command for more information
about what you can place in an abstract.

Example

/ABSTRACT DSK: JRNLl.ABS

6-36

DBMS Utilities

BUILD

Use the BUILD command to cause DBMEND to generate an image-mode me from the journal me according to your
specified boundaries. An image-mode me is one in which the data from the journal is put into the me exactly as it
appears in the journal. You would use it to transfer non-textual data from the journal to a separate me. The BUILD
command has the format:

BUILD me specification

The me specification is the device, filename, and extension of the file. If you omit the device, DBMEND assumes DSK.
You must specify the filename (if applicable) but you can omit the extension. If you do, DBMEND assumes .ABS.

Before you issue the BUILD command, you must set the boundaries by specifying them in the START and END
commands. If you have not previously given a DISPLAY command during the current execution of DBMEND, the
me will include DML commands, page numbers, transactions, and text blocks. Otherwise, the types of information
specified in the DISPLAY command are included in the me. Refer to the START and END commands for more
information about boundaries and to the DISPLAY command for more information about what you can place in an
image-mode me.

Example

/BUILD DSK:CKPNT .ABS

6-37

DBMS Utilities

CLOSE

Use the CLOSE command to cause DBMEND to close those areas in the data base that are in an opened or excluded
state. The CLOSE command has the following formats:

1. CLOSE area-! [,area-2] ...
2. CLOSE ALL

The first format causes DBMEND to close the specified area or areas. The second format causes DBMEND to close
all open and excluded areas.

The CLOSE command does not affect the status of the journal file, only the status of areas in the data base. You
should issue it for all open (or excluded) areas before you terminate execution of the DBMEND program. The
closing of an open area causes its Area Status Record to be set to O.

Example

/CLOSE MARKETING, PERSONNEL

6-38

DBMS Utilities

COMPLETE

Use the COMPLETE command to cause DBMEND to mark the end of the current journal. For magnetic tape, this
means DBMEND places two end-of-file (EOF) markers at the appropriate position in the journal fIle. For disk, this
means that DBMEND sets the appropriate journal page headers to denote EOF. The formats of the COMPLETE
command are

Format 1

COMPLETE

Format 2

COMPLETEn

Use Format 1 of the COMPLETE command when an application run-unit that was appending to a magnetic-tape
journal terminates abnormally, and the journal fIle is not closed. This form of the command causes uncopied data
from the temporary journal file to be merged and end-of-file markers to be placed at the appropriate place.

Use Format 2 to truncate the journal file immediately after the page you specify. This form of the command causes
an end-of-fIle marker to be placed immediately after the page (n) you specify.

When using the COMPLETE command, issue it immediately after you identify the journal with a JOURNAL
command. After execution of the COMPLETE command, the journal file is still positioned at its end; it is open
and available for all operations. DBMEND returns to command level.

Example

.RDBMEND
/JOURNAL MTAI :SCHESJRN
/COMPLETE

6-39

DBMS Utilities

DISPLAY

Use the DISPLAY command to define the kind of information that you want to be included in an abstract of the
journal file. The formats for the DISPLAY command are:

1. DISPLAY

2. DISPLAY ALL

COMMAND
TRANSACTION
PAGENUM
TEXT
DATA

{
BEFORE}
AFTER
HEADERS
RUNUNITID

The arguments to the DISPLAY command have the following meanings.

1. COMMAND - The abstract will identify each DML command executed and its index.
2. TRANSACTION - The abstract will con tain start-of-transaction and end-of-transaction lines for

each user-defined transaction in the journal me.
3. PAGENUM - The abstract will contain the page number and area of the pages that are in the

journal me. If you specify neither BEFORE nor AFTER, DBMEND will assume both types of images.
4. TEXT - The abstract will contain any text comments placed in the journal file.
S . DATA - The abstract will contain any non-textual data that the application program put in the

journal file. If you specify DATA for an ABSTRACT command rather than for a BUILD command,
DBMEND will include the following message in the abstract.

[NON-TEXTUAL INFORMATION]

If you specify DATA for a BUILD command, DBMEND will copy the non-textual data as is to the file
specified in the BUILD command.

6. BEFORE - The abstract will contain page-related information for BEFORE images only.
7. AFTER - The abstract will contain page-related information for AFTER images only.
8. HEADERS - The file specified in a BUILD command will contain the logical block header as well as

the information normally given with the other arguments. You can only specify this argument if you
are going to use the BUILD command.

9. RUNUNITID - The abstract will show which run-unit generated transactions, text, and commands.
10. ALL - The abstract will contain all of the information that the arguments in column one specify.

If you do not give an argument, DBMEND will assume COMMAND, TRANSACTION, PAGENUM, and TEXT. A
DISPLAY command with no argument is internally generated by DBMEND when it is started. It remains in effect
until you issue a DISPLAY command.

Example

/DISPLAY COMMAND, PAGENUM

640

DBMS Utilities

Use the END command to define the right boundary (Le., the boundary closer to the end of the me) of the portion
of the journal file from which DBMEND will take an abstract or on which DBMEND will perform a merge. The
formats of the END command are:

1. END

2. END
{integer-l }

LAST [run -unit ID]

{~teral-l } { integer~2 } [run~unit ID]
3. END ,LAST

Integer-l is a DML command index. Literal-l is a transaction-name as it is found in the user-specified transaction
header. Integer-2 is a transaction index, also from the transaction header. Run-unit ID identifies the run-unit that
generated the commands and transactions.

The first format specifies the end of the journal. The second specifies that the rightmost 'boundary will be either the
specified command index or LAST, which means the last completed DML command in the file. The third format
specifies that the rightmost boundary will be one of the following:

1. The specified transaction with the specified index (Le., name:index).
2. The last completed transaction of the specified type (Le., name: LAST).
3. The first encountered transaction with the specified index (i.e., * :index).
4. The last transaction in the file (Le., *:LAST).

The boundary you specify in an END command must be to the right of (Le., closer to the end of the journal than)
the boundary you specify in the START command at the time that you give a MERGE or ABSTRACT command.
You must explicitly give at least one pair of start and end boundaries for each journal that you manipulate during
any execution of DBMEND. If you do not include run-unit IDs in the boundary indicators DBMEND ignores the
run-unit IDs in the journal file when attempting a boundary match.

Refer to Section 6.2.4 for an overview of start and end boundaries, tape direction, and tape positioning.

641

DBMS Utilities

EXCLUDE I

Use the EXCLUDE command to specify that some or all areas of the data base will not be affected by subsequent
merges that would otherwise affect them. The formats for the EXCLUDE command are:

1. EXCLUDE area-l [,area-2] ... [:key-l]
2. EXCLUDE ALL [:key-l]

The first format allows you to exclude one or more areas from journal file operations. The second format allows
you to exclude all areas from journal file operations. For either format, you must specify the privacy key for
EXCLUSIVE UPDATE (key-I) if you have specified a privacy lock in the schema. If you specify several areas
together in one EXCLUDE command, the areas must all have the same privacy lock (or none). If the areas that
you wish to use have different privacy locks, you must use separate EXCLUDE commands to exclude them.

The EXCLUDE command has two purposes.

Example

1. To pass over certain areas if they cannot be restored or if they do not need to be restored.
2. To cause DBMEND to try to perform a merge operation without the data base being disturbed. If the

merge operation is successful, you can then issue the CLOSE ALL command, open some or all areas,
and perform the actual merge.

/EXCLUDE PERSONNEL:EXCLK

6-42

DBMS Utilities

FORCE OPEN

Use the FORCEOPEN command to open one or more areas of the data base for EXCLUSIVE UPDATE after a
crash has occurred. This is necessary because the Area Status Record after a crash or abnormal termination could
have a value other than O. A DML OPEN command could not open the area in such a case. The FORCEOPEN
command causes DBMEND to override the bad Area Status Record. The formats of the FORCEOPEN command
are:

1. FORCEOPEN area-l [,area-2] ... [:key-l]
2. FORCEOPEN ALL [:key-l]

You use the first format to open one or more areas and, if necessary, override a bad Area Status Record. You use
the second format to open all areas and, if necessary, override a bad Area Status Record in each. For either format,
key-l specifies the privacy key for EXCLUSIVE UPDATE. You must provide it if you specified a privacy lock in
the schema. If you specify several areas together in a FORCEOPEN command, the areas must all have the same
privacy lock (or none). If the areas that you wish to use have different privacy locks, you must use separate
FORCEOPEN statements to open them.

/FORCEOPEN SALESAREA:EXULK

643

DBMS Utilities

JOURNAL

Use the JOURNAL command to cause DBMEND to open the specified journal me. Its format is:

JOURNAL me specification

The me specification contains the device and filename of the journal file in the form:

dev:me[p,pn]

If you omit the device, DBMEND assumes DSK. You cannot omit the filename for a disk file. You should not use a
filename extension because DBMEND always assumes .JRN. If you omit the project programmer number, DBMEND
uses that of the logged-in user.

You must give the JOURNAL command before any other command that performs actions on the journal file. You
can open only one journal file at anyone time for DBMEND operations.

If you are opening a magnetic-tape journal and are using Format 1 of the COMPLETE command, specify the filename
of the temporary journal file as well as the device field. This enables DBMEND to locate your temporary journal fIle
and perform the COMPLETE command.

Example

/JOURNAL JRN:SCHEX

6-44

DBMS Utilities

LABEL

Use the LABEL command to cause DBMEND to type the label of the reel of the journal file currently being used.
Its format is:

LABEL

You can give the LABEL command at any time during DBMEND processing as long as a journal file is open. The
information in the label includes:

1. schema-name
2. reel number
3. run number
4. date/time journal was created

A journal file on disk always consists of one reel.

Example

/LABEL
SCHEX
REEL 3
RUN 2
30-DEC-76 1115:25

645

DBMS Utilities

MERGE

Use the MERGE command to cause DBMEND to copy either BEFORE or AFTER images from the journal file into
the data base. DBMEND merges only those images between the start and end boundaries. The MERGE command
has the format:

MERGE {
BEFORE}
AFTER

Before you give the MERGE command, you must specify start and end boundaries.

MERGE BEFORE causes DBMEND to replace pages in the data base with BEFORE images taken from the journal
fIle. The BEFORE images are copies of the pages before they were changed by the application program. When
performing a merge of BEFORE images, DBMEND reads the journal file backward from the end (right) boundary
to the start (left) boundary. This is because the earliest BEFORE images are at the beginning of the file. If
DBMEND were to read the fIle forward, it might incorrectly merge later images of the same pages into the data
base, replacing the correct earlier images.

MERGE AFTER causes DBMEND to replace pages in the data base with AFTER images from the journal file. The
AFTER images are copies of the pages after they were changed by the application program. When performing a
merge of AFTER images, DBMEND reads the journal file forward from the start boundary to the end boundary.
This is because the latest AFTER images are at the end of the file.

Examples

/MERGE BEFORE
/MERGE AFTER

646

DBMS Utilities

NOTRACE

Use the NOTRACE command to cause DBMEND not to trace the progress of subsequent merge operations. Its
format is:

NOTRACE

You need only specify the NOTRACE command if you had previously given the TRACE command and you wish
to stop tracing. DBMEND, when you start it, assumes that no tracing will be done.

Example

/NOTRACE

6-47

DBMS Utilities

Use the OPEN command to open one or more areas in the data base. Its formats are:

1. OPEN area-1 [,area-2] ... [:key-1]
2. OPEN ALL [:key-1]

You can specify a maximum of 12 areas.

The first format causes the specified area or areas to be opened in EXCLUSIVE UPDATE mode. The second format
causes all areas to be opened in EXCLUSIVE UPDATE mode. For either option, key-1 is the privacy key for
EXCLUSIVE UPDATE. You must specify it if the schema declaration contains a privacy lock for the area or areas.
If you specify several areas together in one OPEN command, the areas must all have the same privacy lock (or none).
If the areas you wish to use have different privacy locks, you must use separate OPEN commands to open them. If
you cannot open anyone area, you may have to issue a CLOSE ALL to avoid deadly embrace (waiting for an area
while the user of that area is waiting for one of the areas that you have open).

The OPEN command opens data base areas only. It does not affect the journal file.

Example

/OPEN "MARKETING-AREA", "PERSONNEL-AREA":EXKEY

648

DBMS Utilities

POSITION

Use the POSITION command to cause DBMEND to move to the specified position in the journal file. You can
also use it to request typeout of the current position in the journal file. Refer to Section 6.2.4.3 for more informa­
tion about positioning. The formats of the POSITION command are:

1. POSITION

2. POSITION

The first format causes DBMEND to move to the page in the journal file specified by +n, -n or n. The arguments
have the following meanings.

1. +n specifies the journal page relative to the beginning of the current reel of the journal file. Thus,
POSITION +5 means the fifth journal page from the beginning of the current reel.

2. -n specifies the journal page relative to the end of the current reel of the journal file. Thus, POSITION
- 5 means the fifth journal page from the end of the current reel. Similarly, POSITION -1 means the
last journal page of the reel.

3. n specifies the actual journal page number in the file. Thus, POSITION 5 means journal page 5.

The POSITION command will not cause reels to be changed. If DBMEND cannot find the specified position on the
current reel, DBMEND makes journal motion directionless and issues an error message.

If DBMEND executes the POSITION command successfully, it sets journal motion to be for either direction. That
is, DBMEND does not have to initialize direction whether the next requested motion is forward or backward.

The second format causes DBMEND to type the number of the current journal page in the file; if EOJ was reached,
however, the position displays as 0 by convention. In most cases, the current journal page is not the page in which
DBMEND is logically positioned, but the page immediately following it. This is because the current journal page is
normally in the look-ahead buffer. However, if you specify a POSITION command with an argument and immediately
follow it by a POSITION command without an argument, DBMEND will be logically positioned in the journal page
in which it is physically positioned. For example, the sequence of commands:

POSITION -1
POSITION

will always cause DBMEND to type the number of the last journal page on the current reel.

Example

!pOSITION - 2

649

DBMS Utilities

REELS

Use the REELS command to specify to DBMEND the number of reels in a multi·reel journal. Its format is:

REELS [n]

You must specify the argument to the REELS command as an unsigned integer constant. If you do not give an
argument, DBMEND assumes 1. If you do not give the REELS command, DBMEND assumes that there is only
one reel of the journal file.

Example

/REELS 3

6·50

DBMS Utilities

REWIND

Use the REWIND command to position DBMEND at the beginning of the current reel of the journal me and to
initialize forward motion. Its format is:

REWIND

If the journal file is on magnetic tape, the REWIND command causes the tape to be physically rewound and
DBMEND's pointer to be set at the beginning of the tape.

If the journal file is on disk, the REWIND command causes DBMEND's pointer to be set at the beginning of the file.

Example

/REWIND

6-51

DBMS Utilities

SCHEMA

Use the SCHEMA command to specify the name of the schema to which the journal file applies. Its format is:

SCHEMA schema-name

Use the SCHEMA command to specify the name of the schema to DBMEND when it is not known. DBMEND will
not know the schema name if DBMEND has not yet read the journal page containing the label of the journal. For
example, after abnormal termination of a run-unit that created a magnetic tape journal, you might not want to
rewind the tape to find the label because you want to start merging from the end of the me (Le., do a MERGE
BEFORE).

You can also use the SCHEMA command to specify the name of the schema when you only want to use the
FORCEOPEN command to adjust the Area Status Record in one or more DBS files. You would need the SCHEMA
command in this case because you would not have opened a journal. You should give the SCHEMA command before
the FORCEOPEN command.

Example

/SCHEMA SCHEX

6-52

DBMS Utilities

START

Use the START command to define the left boundary (Le., the boundary closer to the·beginning of the file) of the
portion of the journal me on which DBMEND will take an abstract or perform a merge.

The formats of the START command are:

1. START

2. START

3. START

{
integer-}}
LAST

{~tera1-1 }

[run-unit ID]

{
integer-2 }
LAST [run-unit ID]

Integer-1 is the DML command index. Literal-} is a transaction-name as it is found in the user-specified transaction
header. Integer-2 is a transaction-index, also from the transaction header. Run-unit ID identifies the run-unit that
generated the commands and/or transactions.

Format} can mean one of two things. It will mean, to the ABSTRACT command only, the current position if
journal direction is currently forward. In all other cases, it will mean the start of the journal file.

Format 2 specifies that the beginning boundary will be either the specified command index or LAST, which means
the last completed DML command in the file.

Format 3 specifies that the start boundary will be one of the following:

1. The specified transaction-name with the specified index (Le., name:index).
2. The last complete transaction of the specified name (Le., name: LAST).
3. The first encountered transaction with the specified index (Le., * :index).
4. The last transaction in the file (Le., *:LAST).

The boundary that you specify in the START command must be to the left of (Le., closer to the beginning of the
me than) the boundary you specify in the END command at the time that you give a MERGE or ABSTRACT com­
mand. You must explicitly give at least one pair of start and end boundaries for each journal that you manipulate
during any execution of DBMEND. If a run-unit ID is missing from a boundary indicator, DBMEND ignores the
run-unit ID in the journal file when attempting a boundary match.

Refer to Section 6.2.4 for a description of start and .end boundaries, tape direction, and tape positioning in the
journal file.

Example

/START ADDCOM:4

6-53

DBMS Utilities

I TRACe]

Use the TRACE command to cause DBMEND, during subsequent merge operations, to type a progress report after
it processes the data base pages in each transaction (or DML command). The format of the TRACE command is:

TRACE

The message printed depends on whether the merge operation involves reading forward (MERGE AFTER) or
backward (MERGE BEFORE). For forward motion the message is:

[THRU name]

For backward motion, the message is:

[BACK TO name]

In either case, name is either a transaction or a command name, depending on the type of boundaries that you set
in the START and END conunands.

Messages from the trace operation allow you to resume a merge after a crash with a minimum of remerging. This
is because you can specify the appropriate boundary on the basis of the last trace message you received before the
crash.

DBMEND does not perform tracing unless you explicitly give the TRACE command. Tracing remains in effect
until you givt the NOTRACE command.

Example

/TRACE

6-54

DBMS Utilities

UNLOAD

Use the UNLOAD command to cause DBMEND to logically close the current journal and physically unload the
current reel of a magnetic tape journal. Its format is:

UNLOAD

The UNLOAD command causes the journal file to become unavailable. This means that DBMEND (in addition to
physically unloading a magnetic tape, if necessary) reinitializes all journal-related modes. These include tape motion,
which DBMEND sets to be directionless; start and end boundaries, which it sets to null; and the current journal
label, which it sets to null.

Specifying the UNLOAD command for a disk journal indicates the information in the journal is no longer necessary
and can be overwritten. (The journal is placed in a done-with-state.)

Example

/UNLOAD

6-55

DBMS Utilities

6.2.4 Boundaries, Direction, and Positioning of the Journal File
You must understand certain concepts if you want to perform relatively sophisticated operations with DBMEND.
These include boundaries, direction of processing, and positioning within the journal me.

6.2.4.1 Start and End Boundaries - The most important concept about boundaries is that START defines the
left boundary and END defines the right boundary (see Figure 6-2) in the sense that the boundary specified in the
START command always defines the boundary closer to the beginning of the journal me, even if the direction of
processing is backward. Similarly, the boundary specified in the END command is always the boundary closer to the
end of the journal me.

If you wish to get an abstract or perform a merge on the entire journal, the start and end boundaries are relatively
easy to determine. For an abstract or a merge of AFTER images, you need only specify START without an
argument and END LAST . START without an argument means the beginning of the journal, and END LAST means
the last completed DML command in the journal. If you wish just to merge BEFORE images from the end of the
journal to the last completed DML command, you can specify START LAST and END without an argument. END
without an argument means the end of the journal.

However, when you wish to merge or abstract arbitrary portions of the journal, you must have a more precise under­
standing of the arguments to the START and END commands.

When the direction of processing in the journal file is forward, the boundary indicators are always inclusive. That
is, DBMEND begins with the DML command or transaction specified as the left boundary and fmishes after the
DML command or transaction specified as the right boundary. This is shown in Figure 6-2.

Beginning(

of :
File

LEFT RIGHT

~~I_l_5~_16~1_7~18~_19~_~.~!_21~~{"'~
begin

START 15
END 20
MERGE AFTER

DBMEND processes
stop

Figure 6-2 DBMEND Boundaries on Forward Processing

When direction of processing in the journal file is backward, however, the left boundary indicator is exclusive. That
is, DBMEND finishes with the DML command or transaction immediately after the one specified as the left boundary
and begins at the right of the DML command or transaction given as the right boundary. Boundaries on backward
processing are shown in Figure 6-3.

Beginning
of

File

LEFT RIGHT

'~~15~lW~17~18~19 ~~ 1~}"'~
stop

START 15
END 20
MERGE BEFORE

DBMEND processes
begin

Figure 6-3 DBMEND Boundaries on Backward Processing

6-56

DBMS Utilities

6.2.4.2 Direction of Motion - When processing the journal file, DBMEND must determine where it should be
in the journal and in what direction the journal should be moving. Consequent!y, certain commands cause direction
to be set to forward, others cause direction to be set to backward, and others cause the journal to become direction­
less. In addition, DBMEND may have to initialize journal direction as well as set it before beginning command
processing. This means for forward motion that DBMEND is positioned at the beginning of the current reel, and
for backward motion that DBMEND is pOSitioned at the end of the current reel.

The ABSTRACT, BUILD, and MERGE AFTER commands initialize forward motion if the current direction is not
forward. If the current direction is forward, the ABSTRACT, BUILD, and MERGE AFTER commands cause
DBMEND to continue from where it is currently pOSitioned. The REWIND command always causes forward
initialization.

The MERGE BEFORE command initializes backward motion if the current direction is not backward. If it is
backward, MERGE BEFORE causes DBMEND to continue from where it is currently positioned.

The COMPLETE and JOURNAL commands cause the journal to become directionless. That is, after one of these
commands, DBMEND has no current direction and will always initialize direction with the next direction-setting
command.

The POSITION command is special in that it sets direction to either forward or backward, depending on the next
direction-setting command. In other words, after a POSITION command, MERGE AFTER or MERGE BEFORE
will cause DBMEND to continue rather than initialize forward or backward motion.

A general exception to the rules for initialization of direction is that if the boundary to be processed first (Le., the
start boundary for forward motion and the end boundary for backward motion) is relative to the end of the current
reel, the journal is always temporarily initialized at the end of the reel. For forward motion, this means a START
command with any form of LAST (START LAST, START *:LAST, START n:LAST). For backward motion, this
means an END command without an argument or an END command with any form of LAST (END LAST,
END*:LAST, END n:LAST).

Table 6-3 lists those commands that affect direction along with the direction that each sets. Also shown is whether
or not the command can initialize motion.

Table 6-3
DBMEND Commands Affecting Direction

Command Direction Initialization

ABSTRACT forward if necessary
BUILD forward if necessary
COMPLETE directionless no
JOURNAL directionless no
MERGE AFTER forward if necessary
MERGE BEFORE backward if necessary
POSITION forward or backward no
REWIND forward always

Note: Initialization is necessary if:

1. motion is currently directionless,
2. there is a change of direction, or
3. the end boundary for a merge of BEFORE images is relative to the end of the reel.

In summary, initialization does not occur when the current motion is the same as that
required, or if START LAST is the boundary for an operation in the forward direction.

6-57

DBMS Utilities

6.2.4.3 Positioning - DBMEND is inherently positioned in both a physical and logical sense. Physical positioning
deals with I/O - the last journal page that has been read in. Logical positioning deals with logical blocks (e.g., com­
mand headers, text blocks); it is the location of DBMEND's conceptual pointer in the journal. Refer to Section
6.2.5 for more information about journal pages and logical blocks.

You specify start and end boundaries in terms of a logical position, but you specify arguments to the POSITION
command in terms of a physical position. Thus, if you give POSITION 8, you cause DBMEND to physically position
after the eighth journal page in the file, not the eighth command or transaction. Note that physically positioning to a
page means that it becomes the last journal page on which DBMEND performed I/O. Also, as a side-effect of physically
repositioning the journal, you repOSition the journal logically . In particular, if the direction of motion becomes
forward, the logical position is the first complete block at the beginning of the physical page specified in the
POSITION command. Conversely, if direction of motion becomes backward, the logical position is the last com-
plete block at the end of the physical page specified in the POSITION command.

The POSITION command is useful for positioning DBMEND in relation to the beginning or end of the current reel
of the journal me. You can also use it to position DBMEND near to the journal page identified by a DBMEND error
message. Lastly, when you are requesting an abstract of a temporary journal me, specify POSITION 2 because page 2
of the temporary journal file is really at an arbitrary place in the actual journal file.

6.2.5 Physical Aspects of the Journal File

6.2.5.1 Fonnat of the Journal File - Physically, the journal me is divided into fixed-length pages. Each page con­
tains 512 words, with the first six words reserved for a page header that describes the information in the page. Into
each page, portions of one or more logical blocks are packed. Logical blocks are variable in length because they can
be DML commands, transactions, BEFORE or AFTER images, comments, or data. Thus, a logical block can start in
one journal page and continue into the next journal page. The format of a journal page is shown in Figure 64.

o INDEX

PAGE STATUS PAGE TYPE

2 LAST LOGICAL BLOCK DESCRIPTION

3 FI RST HEADER

4 SEQUENCE #

5 RESERVED

~ ----- - "'" '---~ - ~

506 words

511 ,

Figure 6-4 Format of a Journal Page

INDEX is the number of each page in the file. It is sequential, starting with 1.

PAGE STATUS describes the status of the page:

Portions of one or
more logical blocks

n<O - end of the page is potential waste in the sense that the last n words on the page start a logical block
that is completed on a later page.

6-58

DBMS Utilities

n~ - n words at the end of the page are unused.

PAGE TYPE describes the type of information in the page:

o - page is empty

- page contains data only

2 - page starts with a label

LAST LOGICAL BLOCK DESCRIPTION contains the size of the page's last logical block and its ID. A logical block
ID can be one of the following:

1. the logical block is a BEFORE image
2. the logical block is an AFTER image
3. the logical block is a command header
4. the logical block is a command trailer
5. the logical block is a label
6. the logical block is a transaction header
7. the logical block is a transaction trailer
8. the logical block is information
9. the currency indicator has changed (DBCS use only)

FIRST HEADER contains the offset of the first complete logical block in the page, or is 0 if there is none.

SEQUENCE # contains a number that is incremented each time DBCS goes to the beginning of the me.

Each logical block header has the format shown in Figure 6-5.

CURRo SIZE CURR.ID

PRY. SIZE PRV.ID

RUNUNITID

Figure 6-5 Logical Block Header

CURRo SIZE is the size of the current logical block.

CURRo ID is the ID of the current logical block.

PRV. SIZE is the size of the previous logical block.

PRY. ID is the ID of the previous logical block.

RUNUNITID is the ID of the run-unit that created the block.

The format of a logical information block is shown in Figure 6-6.

TYPE & POS LENGTH

'-
~

-. - -
INFORMATION

:.-;:

Figure 6-6 Format of an Information Block

6-59

DBMS Utilities

TYPE & POS contain the type of information and whether the block is the first, middle, or last block of
information.

Bit 0 describes the type of information:

o - textual (printable) information

- non-textual (non-printable) information

Bits 1 through 3 indicate the position of the block:

Bit 1 is 1 if this is the first block of the information.

Bit 2 is 1 if this is a middle block of the information.

Bit 3 is 1 if this is the last block of the information.

If all three bits are 0, this block contains all of the information specified in one call to the JRDATA or
JRTEXT subprogram in the run-unit.

Bits 4 through 17 are reserved for future expansion.

LENGTH is the length of this information block (in words for data or ASCII characters for text). Each block can
have a maximum of 16 words.

If the logical block is a label block, which is the first block in the first page on a reel, the block has the format
shown in Figure 6-7.

SCHEMA-NAME

RUN #

REEL #

} 4 words

~------------------------------~

DATE/TIME

VARIOUS DBCS-USED WORDS

Figure 6-7 Format of a Label Block

SCHEMA-NAME is the name of the schema accessed by the application program creating the journal file.

RUN # is the number of the run that accessed the schema when creating the journal file.

REEL # is the number of the current reel.

DATE/TIME is the date and time when the journal file was created.

6-60

DBMS Utilities

6.2.5.2 .TMP Files - DBMEND creates a temporary disk file for a magnetic tape journal file when it is processed
in the backward direction. As the journal is read backward, chunks of it are placed in the temporary file and proc­
essed there. (The size of a chunk is 32 journal pages.) The name of the temporary file is nnnMND.TMP, where nnn
is the job number. The temporary file resides in your directory. When the backward operation is complete, the
. TMP me is deleted.

6.2.6 DBMEND Messages
The following are the messages put out by DBMEND. Those errors that begin with a question mark (?) are fatal;
those with a percent sign (%) are warnings; and those enclosed in brackets are informational. Some data error
messages are followed by an informational message in which you are asked to perform an action. This is described
in Section 6.2.7.

[BEGINNING-OF-REEL n]
DBMEND has reached the beginning of the current reel while processing backward. It is followed by a
message requesting action. See Section 6.2.7.

[CURRENT JOURNAL PAGE IS n]
This message is the reply to a POSITION command without an argument.

[JOURNAL END-OF-FILE AFTER JOURNAL PAGE n]
DBMEND found the end-of-file while processing forward in the journal. This message is followed by a
message requesting action. See Section 6.2.7.

%MNDAAD AREA STATUS ALREADY DESIGNATED FOR area-name
You tried to open or exclude an area already opened or excluded. Close the area and try again.

?MNDAAE UNABLE TO: action area-name
This message covers a wide number of I/O actions that DBMEND cannot perform on an area.

?MNDAAO AREA area-name NOT IN "READY" STATE -- SEE "FORCE" IN MANUAL
The Area Status Record of the DBS file is bad and you must force an open by using the FORCEOPEN
command.

?MNDAED ABNORMAL END OF DATA IN JOURNAL AFTER PROCESSING PAGE n
DBMEND reached an abnormal end of data because there is an error in the file. This message will be printed
after you have typed A (attempt) after a data error and the attempt failed. See Section 6.2.7.

%MNDAPA ACTUALLY POSITIONED AT JOURNAL PAGE n: NON-CONSECUTIVE PAGES PASSED OVER
This message will be printed following a POSITION command if DBMEND finds that it is positioned at a
journal page other than the one it expected.

%MNDBAD ILLEGAL REQUEST -- TRY AGAIN
You typed an illegal command or argument to DBMEND during error recovery. See Section 6.2.7.

?MNDBSF. BAD SCHEMA FILE -- REFERENCE IS symbol-name
When DBMEND tried to reference the schema file, it was unusable. Rebuild the schema file. If this message
occurs again after the schema file is rebuilt, you should submit an SPR.

?MNDCLO IMAGE TO MERGE IN CLOSED AREA area-name
DBMEND attempted a merge operation, but the area was closed. Open the area and try again.

?MNDCOS. CANNOT OPEN/LOOKUP SCHEMA FILE schema-name
DBMEND cannot open the referenced schema file. Check that the correct name was used and that the schema
is in an accessible directory.

6-61

DBMS Utilities

?MNDCPJ CURRENT POSITION IN JOURNAL PAST INITIAL BOUNDARY
You set a beginning boundary that was beyond the current position in the journal. Either change the
boundary or change the position in the journal.

?MNDDCA DATA CHANNELS ALL IN USE
DBMEND cannot open all mes specified because no JFNs are available. Exclude some areas and try again.

?MNDDER JOURNAL DEVICE ERROR AFTER JOURNAL PAGE n
An error occurred on the device. This message is followed by a request for you to perform an action. See
Section 6.2.7.

?MNDDTE JOURNAL PARITY ERROR AFTER JOURNAL PAGE n
A parity error occurred on the journal device. This message is followed by a request for action. See Section
6.2.7.

%MNDEMA EOF BOUNDARY FOR "MERGE AFTER" DANGEROUS
Specifying END without an argument as the boundary for MERGE AFTER could be dangerous if the end of
the journal is incomplete.

%MNDEOD ENCOUNTERED EOD AFTER PROCESSING JOURNAL PAGE n BEFORE FINDING END BOUNDARY
DBMEND came to the end of the data in the journal me before it reached the end boundary.

%MNDF AE UNABLE TO: action
DBMEND was unable to perform the specified I/O action.

?MNDIAN INVALID AREA NAME area·name
You specified an invalid area·name. Try again with a valid area·name.

?MNDIBD INVALID BLOCK DESCRIPTOR ON JOURNAL PAGE n
The header of a logical block is bad. DBMEND types a request for action after this message. See Section 6.2.7.

?MNDIFB IMPROPERLY FORMED BOUNDARY VALUE
You entered a boundary value in the wrong form. The value must be LAST or an unsigned integer.

?MNDIFM INITIALIZE FORWARD TAPE MOTION FIRST·· EG. REWIND
You attempted to perform a LABEL command, but forward motion had never been initialized. REWIND to
initialize forward motion.

?MNDIJD IMPROPER JOURNAL DEVICE .. NOT MT A OR DSK
You specified an improper device in the JOURNAL command. Use a correct device in the JOURNAL
command.

?MNDIPI INVALID JOURNAL PAGE ID ON PAGE ADJACENT TO n
The header of a journal page is bad. DBMEND types a request for action after this message. See Section 6.2.7.

?MNDIPN INVALID DATA BASE PAGE n .. ENCOUNTERED ON JOURNAL PAGE n
DBMEND found a reference to an invalid data base page in the journal me.

?MNDIPX INVALID JOURNAL PAGE INDEX ON PAGE ADJACENT TO n
The header of a journal page is bad. DBMEND types a request for action after this message. See Section 6.2.7.

6-62

DBMS Utilities

%MNDJCI JUST COMPLETED REEL'S LABEL INCONSISTENT WITH PREVIOUS REEL'S LABEL
While going backward, DBMEND found that the label of the reel it just finished does not agree with the label
of the previous reel. This could mean that the merge operation put incorrect data in the data base.

?MNDJCN JOURNAL CONTAINS NO DATA
You attempted to work with an empty journal file.

?MNDJNI JOURNAL NOT YET IDENTIFIED
You attempted to perform an operation on the journal before giving a JOURNAL command. Issue a
JOURNAL command and try again.

?MNDJPI JOURNAL POSITIONED INCORRECTLY AFTER PROCESSING LAST-RELATIVE BOUNDARY
This is a system error. Submit an SPR.

?MNDMOP MONITOR OR PROGRAM ERROR AFTER JOURNAL PAGE n IF ERROR RECURS
An error occurred in processing the journal file, If the error recurs, submit an SPR.

?MNDNAD NO ACCESSIBLE DATA IN LAST JOURNAL CHUNK -- SEE MANUAL
The last chunk of the journal that was read into the .TMP file (see Section 6.2.5.2) starts with bad data.

?MNDNLI NEW REEL'S LABEL INCONSISTENT WITH CURRENT REEL'S LABEL
When processing a multi-reel journal forward, DBMEND found that the next reel was not the one that should
be next. DBMEND does not process the new reel, but asks for your action. See Section 6.2.7. Usual1y just
mount the correct reel and try again.

?MNDNNZ NON-NUMERIC OR ZERO POSITION SPECIFIED
The argument to the POSITION command was incorrect. Try again with the correct argument.

?MNDNSB. NO SCHEMA BLOCK IN .SCH FILE -- REBUILD IT
DBMEND cannot find the schema block for the schema file. Rebuild the schema file to rebuild the schema
block. If the problem recurs after the schema block is rebuilt, submit an SPR.

?MNDNSD NO SCHEMA NAME HAS BEEN DETERMINED/SUPPLIED AS YET
You attempted to access the data base before giving DBMEND the name of the schema either in the SCHEMA
command or in the label of the journal. Supply the schema name and try again.

?MNDOVN START OR END VALUE UNINITIALIZED
You did not supply a value for the START or END command. Give the command with a value and try again.

?MNDPIF JOURNAL'S LABEL PAGE HAS IMPROPER FORMAT
This is a system error if the file identified in the JOURNAL command is a valid journal. If such is the case,
submit an SPR.

?MNDPKI PRIVACY KEY INCORRECT FOR area-name
You supplied an incorrect privacy key for an area. Determine the correct privacy key and try again.

%MNDRNC RESUMED AFTER "SKIP" WITH NON-CONSECUTIVE PAGE n
When DBMEND skips a bad page, it still tries to keep track of the page number it should see next. This
message can be ignored.

?MNDSEM START/END BOUNDARIES NOT OF SAME CATEGORY
The value in the start boundary is not of the same type as that in the end boundary. Correct one of the
boundaries and try again.

6-63

DBMS Utilities

?MNDSSC SPURIOUS SCHEMA COMMAND -- DIFFERENT NAME IN JOURNAL LABEL
DBMEND found that the schema name used in the SCHEMA command does not agree with the schema named
in the label.

?MNDUPS UNREACHABLE JOURNAL POSITION SPECIFIED
You gave a value in the POSITION command that was not on the current reel.

?MNDURP UNABLE TO RESTORE DATA BASE PAGE IN AREA area-name
DBMEND cannot put a BEFORE or AFTER image into the specified area. If this error recurs, submit an SPR.

?MNDWCP WILDCARDING IS PROHIBITED
DBMEND does not accept wildcard formats in its commands.

?MNDWFT UNABLE TO READ JOURNAL PAGE n WHILE FILLING .TMP FILE
When writing chunks to the .TMP file (see Section 6.2.5.2) DBMEND could not read a journal page. DBMEND
asks for action after this message. See Section 6.2.7.

[NO CURRENT JOURNAL PAGE]
You entered a POSITION command without an argument, but DBMEND has no current journal page.

[TYPE CONTINUE TO RESUME EXECUTION]
After a new reel of the journal is mounted, you must type CONTINUE to the system to return to DBMEND
processing.

6.2.7 Incremental Error Recovery
Certain data errors can cause DBMEND to stop, type a message, and wait for a response because the error may be
recoverable. The classes of error are:

1. end of file on a reel
2. unreadable data on a journal page
3. bad control information in a logical block.

Following the message describing the error, DBMEND tells you the replies that you can make. The acceptable
replies are among the following:

A - attempt
S - skip
M - mount
Q - quit
E - end

A (attempt) can be a reply to DBMEND when it has encountered a journal page containing bad data in its look-ahead
buffer. A tells DBMI;:ND to continue processing the good data in the current buffer. However, if the DBMEND
operation (Le., a merge or abstract) is not completed by the time the good data is exhausted, DBMEND then gives
another message:

?MNDAED ABNORMAL END OF DATA

which is not recoverable.

S (skip) can also be a reply when DBMEND finds a bad journal page. S tells DBMEND to skip over (the rest of) the
bad journal page and continue processing beyond that page at the first good, complete logical block it sees. Figure
6-8 shows the data that DBMEND reads before and after you reply with S.

6-64

journal page

~

DBMEND processes,

DBMS Utilities

bad page
,.,,-_ _..,A _-.... ,

logical block

~

continues processing

Figure 6-8 DBMEND Actions When Skipping Bad Data

Note that S (skip) should be used cautiously. When data is skipped, DBMEND has no way of knowing if some of
the data skipped is crucial to the integrity of the data base - only you can know this. Thus, you should only use S
during a merge operation if you know that the data that will be skipped is not crucial.

M (mount) is a reply that should be given when DBMEND reaches logical end-of-reel. Logical end-of-reel normally
occurs when DBMEND detects EOF. (See example 2 below.) It also applies if there is a spurious bad journal page at
the end of a reel that is really not part of the journal and should be ignored. M tells DBMEND that another reel of
the journal is available so that DBMEND will unload the current reel and continue processing with the new reel when
it is mounted.

Q (quit) is a reply that can be given whenever you do not want to try to recover from a data error. Q tells DBMEND
to give up and return to command level.

E (end) is a reply that is applicable when a reel is being initialized at the end for a merge of BEFORE images. It
should be given when a bad journal page is at the end of a reel and you know that the real end of data on the reel
is the good page before that bad page. E tells DBMEND that it should ignore the bad page and treat the previous
page as the last good page on the reel.

Examples

1. .RDBMEND

/MERGE AFTER
[JOURNAL END-OF-FILE AFTER JOURNAL PAGE 168]
[TYPE Q(UIT) or (M)OVNT]
M
[TYPE CONTINUE TO RESUME EXECUTION]
.CONT

2 .• RDBMEND

/MERGE BEFORE
?MNDDTE JOURNAL PARITY ERROR AFTER JOURNAL PAGE 42
[TYPE (Q)UIT, (A)TTEMPT, (S)KIP]
S

6-65

DBMS Utilities

6.3 THE DAEMDB PROGRAM
The DAEMDB program is a utility that copies data from the temporary journal me (on disk) to magnetic tape. In
effect, it allows you to perform magnetic-tape journalling at your facility. The program can be run under OPSER,
as one of the subjobs controlled by OPSER, or it can be run as a normal timesharing job from a terminal.

Once you have specified magnetic-tape journalling (via the JOURNAL statement of the DMCL) DBCS initializes
your journal usage via an IPCF message to DAEMDB. DBCS also establishes a temporary journal file on disk by
replacing the device field in your journal specification with DSK. When journalling begins, DAEMDB reads data
from the temporary journal file on disk and writes the data onto the magnetic-tape unit chosen to hold the journal
me.

When DAEMDB copies the information from the temporary file onto magnetic tape, it also retains the data base
long enough to modify the journal label page thereby informing DBCS that this information in the temporary
journal is no longer needed. The next time DBCS writes to the journal, it starts at the beginning - overwriting the
information already copied to magtape. In this way, DAEMDB behaves like a concurrent run-unit operating within
the simultaneous update facility.

There are a number of advantages to the way that DAEMDB operates (as a background task) and to the fact that
the temporary journal file is an ordinary disk journal. These are as follows:

1. When DAEMDB reaches end-of-reel on a magtape, the application run-unit performing journalling
can continue processing while the current reel is being replaced. The temporary journal file (on disk)
simply continues to grow. When the reel has been replaced and DAEMDB indicates readiness to con­
tinue, the information on the temporary disk file is copied to magtape as usual.

2. If DAEMDB should abort, the application run-unit performing journalling can continue processing.
The reason is that the run-unit is actually writing to the temporary journal on disk.

3. When you are using DBMEND to perform page recovery on the data base, you do not need to involve
the magnetic-tape journal if the images you want are still on the temporary disk journal file. You can
specify the temporary journal file speCification to the DBMEND JOURNAL command. (See Section
6.2 for a discussion of DBMEND.)

4. Messages pertaining to management of the magnetic tape reels are not seen by the application run-units
performing journaUing. Only the job controlling DAEMDB is informed when a new reel is needed or
an error has occurred.

6.3.1 Initiating Magnetic-Tape Joumalling
To initiate magnetic-tape journalling for your data base, you must make the appropriate specification in the
JOURNAL statement of the DMCL. You must do this to be able to run DAEMDB at your facility. (See Chapter 3
of this manual for a description of the DMCL JOURNAL statement.)

You can initiate magnetic-tape journalling by specifying that the device in the journal-me specification is MTAn. If
you specify a unit number, that particular magnetic-tape unit will be suggested to the system operator. The
following example shows this method.

JOURNAL IS MTA2: MYJOUR.

If you do not specify a unit number, the system operator freely chooses the magnetic-tape unit. The following
example shows this method.

JOURNAL IS MTA: MYJOUR.

In either case, be sure to include the complete file specification so that the temporary journal file specification can
be derived. Remember that DBCS creates the temporary file on disk by replacing the device field in your specifica­
tion with DSK. Note that if DAEMDB is not running as a privileged job, the protection code of the temporary
journal me should be such that DAEMDB will be able to access it.

6-66

DBMS Utilities

If you, the DBA, have specified magnetic-tape journalling and the service is not available (exception condition 0946),
application run-units are given the opportunity to select disk journalling. DBCS types the following message,
including the appropriate DAEMDB interaction code.

%DBSODJ ONLY DISK JOURNAL FEASIBLE (DAEMDB CODE x)

(Note that the DAEMDB interaction codes are listed in Table 64.) You can then use the TOPS-lO command ASSIGN
to associate the journal name with a disk device. Then type CONTINUE. The following example shows this procedure.

%DBSODJ ONLY DISK JOURNAL FEASIBLE (DAEMDB CODE 1)
[TYPE CONTINUE TO RESUME]
.ASSIGN DSK: MTA2:
.CONTINUE

If an application run-unit wishes to continue processing when DBCS discovers that magtape service is not available,
that run-unit should include a USE procedure in its code for exception-condition 0946 (magtape service unavailable).
The run-unit can also associate exception-condition 0967 (unable to initialize magtape service) to the same USE
procedure. The USE procedure should be placed before the first OPEN statement in the application run-unit code.
(See Chapter 3 of the Programmer's Procedures Manual for a description of USE procedures.) The USE procedure
can call the subprogram JMDISK, which automatically specifies the journal device to be DSK.

Table 64 lists the DAEMDB interaction codes and describes the meaning of each. These codes will appear to the
application run-units as part of the %DBSODJ messages.

Code

2

3

4

5

6

7

6.3.2 Running DAEMDB

Table 64
DAEMDB Interaction Codes

Meaning

DAEMDB unavailable (SHUTDOWN already given)

Unable to open magnetic tape unit

Unable to open temporary journal me

Improper device type after DEFINE

DBCS software error during initialization

JMDISK already done once

Journal Quota already reached

You can run DAEMDB as a normal timesharing job from a terminal or as one of the subjobs controlled by the OPSER
program. The remainder of this section presents information applicable to both. Section 6.3.2.1 discusses the procedures
for running DAEMDB as a timesharing job from a terminal. Section 6.3.2.2 discusses the procedures for running

6-67

DBMS Utilities

DAEMDB as one of the subjobs under OPSER. To fully understand the procedures described in these two sections,
also read Section 6.3.3, which describes the DAEMDB commands and their functions.

Remember also that DAEMDB may be managing a number of journal fIles. (It can manage up to eight at one time.)
Each journal is associated with a specific schema-name. DAEMDB relies on its knowledge of the schema-name
associated with each journal file to work properly. This reliance is expressed in terms of volume-ids. A volume-id
has the form

aaaabb

where aaaa represents the first letters of the schema-name and bb represents the current magnetic-tape reel number.
For example, if the name of your schema is MYSKE and you have a 2-reel magnetic-tape journal, the volume-id of
the first reel would be MYSOl; that of the second reel would be MYS02. You can, therefore, pre-label each reel; in
this way, you ensure that the system operator mounts the correct (pre-labelled) reel.

On the other hand, if you have many schemas at your installation, be sure that the first letters of each schema-name
are unique. Each schema-name associated with a journal me as represented by the volume-id will then be unique.

The volume-id thus informs the system operator (or other DAEMDB user) which magnetic tape reel to mount. It
also has another use. When the ABORT, CREATE, and MOUNT commands are being issued, the volume-id (which
is a part of these commands), also informs DAEMDB which journal to make current. (Remember DAEMDB may be
managing many journals.) Unless DAEMDB has just issued an action-required message, therefore, containing a
volume-id, you must specify the volume-id to DAEMDB with the ABORT, CREATE, and MOUNT commands.

DAEMDB issues an action-required message when a magnetic-tape is initially opened and each time the current reel
requires replacing. The message looks this way.

[ACTION REQUIRED FOR VOLUME volume-id ON MTAx]

The volume-id in the message always refers to the current reel. If you want to mount a new volume, you should
specify the new reel via a volume-id when you issue the MOUNT command.

In addition, when you are replacing a magnetic-tape reel, do not consider the new reel to be a part of your journal
fIle until DAEMDB responds with the following message:

[VOLUME volume-id NOW INITIALIZED]

Examples of the circumstances discussed in this section, as they would occur during processing, are shown in the
following sections.

6.3.2.1 Running DAEMDB as a Timesharing Job - To run DAEMDB from a terminal, type R DAEMDB in
response to the DECsystem-lO prompt character (.); follow it with a carriage return (.J) .

• RDAEMDB~

You can then continue with the commands described in Section 6.3.3 just as you would with any program from
your terminal. Your job will receive messages from DAEMDB.

6.3.2.2 Running DAEMDB Under OPSER - To run DAEMDB under OPSER, read Chapter 4 of the
DECsystem-10 Operator's Guide, which explains OPSER conventions. (Note that DAEMDB would be one of the
subjobs controlled by OPSER.) Especially note that DAEMDB requires a 2-letter code to function under OPSER.

6-68

DBMS Utilities

The assigned code is DB. To run DAEMDB under OPSER, perform the following sequence:

.ROPSER

*:SLOGIN 1/2
*:DEF DB=
*DB-R DAEMDB

Run OPSER. Hit Carriage Return. OPSER responds with an asterisk (*). Note that
OPSER responds with an exclamation point if another subjob is running.
Login subjob DAEMDB under [1,2] .
Associate subjob n with the name DB.
Tell DB to run DAEMDB.

DAEMDB is now defined as a subjob under OPSER, logged-in, and started.

When DAEMDB is started, it behaves as ifit had just performed a polling (the initial polling period is 100 seconds);
it will then not poll the journals again until the number of seconds you specified as the frequency of polling has
passed.

When a magnetic tape is initially opened, DAEMDB issues an action -required message. Typically, you respond with
the MOUNT command. If the action-required message from DAEMDB has been preceded by a magnetic tape or
temporary journal me error message, however, you might respond with the MOUNT, the ABORT or the RETRY
command. The following example shows receipt of an error message during the process of copying data from the
temporary journal me to magnetic tape.

DAEMDB in process

[DABJME END-OF-TAPE REACHED FOR MTA2 JOURNAL OF MYSKE]
[ACTION REQUIRED FOR VOLUME MYSOI on MTA2]

Respond by mounting a new tape reel. Then type

MOUNT MTA2:MYS02

Waft until DAEMDB responds informing you that the new reel is officially part of the journal. The DAEMDB
response looks this way.

[VOLUME MYS02 NOW INITIALIZED]

Con tinue processing.

(Note that if the system crashed before printing the above message, you must mount MYS01 when issuing the
COMPLETE command to DBMEND.)

6.3.3 DAEMDB Commands
Table 6-5 lists the DAEMDB commands and their acceptable abbreviations. The commands ABORT, EXIT, and
STOP cannot be abbreviated. They must be typed out in full.

6-69

DBMS Utilities

Table 6-5
DAEMDB Commands and Acceptable Abbreviations

Command Abbreviations

ABORT ABORT

CREATE CR

CURRENT CU

EXIT EXIT

GO G

HELP H

MOUNT M

POLL P

RESET RES

RETRY RET

[NO] SHUTDOWN NOS or SH

STOP STOP

THRESHOLD T

WHAT W

The commands to DAEMDB are described in detail on the following pages. They are in alphabetical order; each
command starts on a new page.

6-70

DBMS Utilities .

ABORT

Use the ABORT command to stop processing of the magnetic tape portion of the journal. The ABORT command has
the following format:

ABORT [device] [volume id]

The ABORT command is used in response to a request from DAEMDB that its operator perform an action. DAEMDB
makes this request because of a magnetic tape error or because of end.of.tape.

Example

DAEMDB> ABORT

6·71

DBMS Utilities

CREATE

Use the CREATE command to pre-associate a magnetic tape unit to the schema for which journalling is being per­
formed. The format for the CREATE command is

CREATE [device] [volume id]

The device is MT A. The volume id has the form aaaabb where aaaa represents the first letters of the schema name;
bb represents the current reel number.

An application run-unit requesting this journal will not experience a real-time wait while the operator mounts a tape.

Example

DAEMDB> CREATE

6-72

DBMS Utilities

CURRENT

Use the CURRENT command to type out the current setting for each mode. The CURRENT command has the fol­
lowing format.

CURRENT

The CURRENT command is intended to be used as a tuning command. This means that once DAEMDB has informed
you what the current polling and threshold settings are, you can change them if you feel they need modifying.

Example

DAEMDB> CURRENT

6-73

DBMS Utilities

Use the EXIT command to return to monitor level. The format is

EXIT

The EXIT command clears all active queue requests before actually exiting. This means that application run-units will
not be left in a blocked state merely because DAEMDB execution was terminated.

:

You cannot continue the DAEMDB program after typing EXIT.

Example

DAEMDB> EXIT

6-74

DBMS Utilities

Use the GO command to continue processing after you have typed the STOP command. The format of the GO com­
mand is

GO

Example

DAEMDB> GO

6-75

DBMS Utilities

HELP

Use the HELP command to print a table of DAEMDB commands. The format for the HELP command is as follows.

HELP

Example

DAEMDB> HELP

6-76

DBMS Utilities

MOUNT

Use the MOUNT command to mount a new magtape. The MOUNT command format is as follows.

MOUNT [device] [volume id]

Use the MOUNT command in response to a DAEMDB request for action on a volume.

Example

DAEMDB> MOUNT

6·77

DBMS Utilities

POLL

Use the POLL command to define and initiate a new polling period. The format of the POLL command is as follows.

POLL number-of-seconds

Once each number-of-seconds you specify, DAEMDB polls the temporary journal files on disk for data not yet copied
to the magnetic-tape journal file. The default polling period is 100 seconds.

Polling minimizes the resources DAEMDB uses; DAEMDB remains inactive except when it copies from the temporary
journal file. The POLL command allows you to control the frequency with which DAEMDB polls the journals it is
managing for new data to copy.

Note that a longer polling period means less DAEMDB activity and longer temporary journal files. A shorter period
means more CPU and I/O accesses, but shorter temporary journal files.

Example

DAEMDB> POLL 50

6-78

DBMS Utilities

RESET

Use the RESET command to simulate starting DAEMDB. The format of the RESET command is as follows.

RESET

This command is intended to give the operator a means of getting DAEMDB back to a defined state without closing
the table of journals DAEMDB is managing.

Example

DAEMDB> RESET

6-79

DBMS Utilities

RETRY

Use the RETRY command to cause OAEMDB to ignore the error it reported and to repeat the operation that failed.
The format of the RETRY command is

RETRY [device] [vol ume-id]

The device argument is optional; provide it for clarity. The volume-id is required unless DAEMDB has just issued a
prompt for this volume.

The RETRY command prevents DAEMDB from aborting upon occurrence of spurious I/O errors.

Example

DAEMDB> RETRY

6-80

DBMS Utilities

SHUTDOWN

Use the SHUTDOWN command to tell DAEMDB (1) not to accept any new journals, and (2) to exit when all the
active magnetic-tape journals have been closed by the application run-units. The formats for the SHUTDOWN com­
mand are as follows.

Format 1

SHUTDOWN

Format 2

NOS HUT DOWN

If you specify format 2, you will take DAEMDB out of a shutdown state allowing it to accept new journals.

Example

DAEMDB> SHUTDOWN

6-81

DBMS Utilities

STOP

Use the STOP command to return to DAEMDB command level. The format for the STOP command is as follows.

STOP

Using the STOP command puts DAEMDB in a TTY-wait state. This allows you time, for example, to fix a magnetic
tape drive that may not be working properly.

Example

DAEMDB> STOP

6-82

DBMS Utilities

THRESHOLD

Use the THRESHOLD command to specify when (in terms number-of-pages) DAEMDB should copy information from
the temporary journal files on disk to magnetic tape. The format for this command is

THRESHOLD number-of-pages

The initial threshold is 50 pages. When the temporary journal file on disk has reached the number of pages you indi­
cate, DAEMDB copies the information onto the magnetic-tape journal and modifies the journal's label page to inform
DBCS that this information is no longer needed. The next time DBCS writes to the temporary journal, it starts at the
beginning, overwriting this information.

The purpose of a high threshold (large number-of-pages) therefore would be to minimize the number of times DAEMDB
retains the data base exclusively to modify the temporary journal's label page.

It follows then, that a small threshold would, over the run of an application program, increase the number of
ENQUEUEs and DEQUEUEs that program will require. This, in turn, will tend to increase CPU usage for the single
user (that application program opening an area in EXCLUSIVE UPDATE usage-mode).

Example

DAEMDB> THRESHOLD 30

6-83

DBMS Utilities

WHAT

Use the WHAT command to type the state of each journal DAEMDB is managing. The format of this command is as
follows:

WHAT

Example

DAEMDB> WHAT

SCHEMA MTA USE-CNT COMMENT

SIMUL MTAI 2

aRDENT MTA2 LOCKED

DAEMDB>

Note that this example also shows the DAEMDB response to the WHAT command.

6-84

DBMS Utilities

6.3.4 Performing Page Recovery with a Magnetic-Tape Journal
When the journal file is on magnetic tape and you are using DBMEND to perform page recovery, be sure to observe
the following rules.

1. Specify the same file specification to the DBMEND JOURNAL command as was specified by the aborted
application run-unit(s). This allows DBMEND to automatically locate the journal temporary file (on disk)
as well.

2. Specify the DBMEND REELS command if you have a multi-reel journal file.
3. Specify Format 1 of the DBMEND COMPLETE command to cause DBMEND to merge any unmerged

data on the journal temporary me with the magnetic tape journal. This will be necessary if the system
crashes during an active run-unit and all the data in the temporary journal file has not been copied to the
magnetic tape journal.

Note that when the magnetic tape is in an unknown position (and possibly positioned after the end-of­
data), you should also specify the DBMEND REWIND command before specifying the COMPLETE com­
mand.

4. Proceed as you would with a disk journal. Refer to Section 6.2 for a complete description of DBMEND.

The procedure for using DBMEND with a magnetic tape journal is as follows:

1. Run DBMEND (DBMEND).
2. Open the journal file (JOURNAL).
3. Specify the number of reels (REELS). Only for multi-reel journals.
4. Merge any unmerged data on the journal temporary file with the magnetic-tape journal and put an EOF

on the journal (COMPLETE).

[Error Message indicating cannot complete]
5. Rewind the journal. (REWIND). Because the journal was in an unknown position and possibly positioned

after the end-of-data.
6. Merge any unmerged data on the journal temporary file with the magnetic-tape journal and put an EOF

on the journal (COMPLETE).

The following example shows use of DBMEND with a magnetic-tape, multi-reel journal left in an unknown position
such that completion will not occur without rewinding .

. RDBMEND
/JOURNAL MTAl :SCHEX
/REELS3
/REWIND
/COMPLETE

[ERROR MESSAGE]

/REWIND
/COMPLETE

6-85

DBMS Utilities

6.3.5 DAEMDB Messages
This section lists the various messages you can receive from the DAEMDB program; briefly explains possible causes
for each; and, where appropriate, suggests responses for each. Those errors that begin with a question mark (?) are
fatal (in some way, they terminate processing); those that begin with a percent sign (%) are warnings; and those en­
closed in brackets are informational.

?DABAMB UNACCEPTABLE ABBREVIATION OF COMMAND

You have used an unacceptable abbreviation of a DAEMDB command. See Table 6-5 for a list of commands
and their acceptable abbreviations.

%DABBAD INAPPLICABLE REQUEST

You have attempted a response (either RETRY or MOUNT) to a prompt when no prompt was pending. You
may also have attempted to mount a magtape when a RETRY or an ABORT would have been appropriate.

?DABCRE "CREATE" REQUIRES BOTH MTA AND VOLUME ID.

You have specified the create command without specifying the device and volume id. Both are required.

[VOLUME volume-id NOW INITIALIZED]

The magnetic tape reel you have mounted can now be considered to be a part of the journal. This means that
DAEMDB has fully processed your MOUNT command.

%DABIMC INCONSISTENT MESSAGE CODE RECEIVED

This message indicates a spurious IPCF message.

?DABJAC JOURNAL ALREADY CREATED

The journal has been created.

[DABJME xxx FOR volume-id, JOURNAL OF schema-name]

This message informs you that ~nd-of-reel (or some other magnetic-tape error) has been reached for the volume­
id shown. The message can occur during process of copying from the temporary journal file on disk to the mag­
tape journal. The message is foUowed by an action-required message. In response, you can issue the RETRY,
MOUNT, or ABORT commands.

%DABJNO MESSAGE TO CLOSE NOT-OPEN JOURNAL SENT

A message has been sent to close the journal when the journal has been already closed. This indicates a possible
software error or an attempt to perform an action that is prohibited.

?DABJOM COULD NOT OPEN magtape unit

The attempt to open the magnetic-tape unit has been unsuccessful. If this message was the response to your
issuing a CREATE command, repeat the CREATE command. If it was the response to your issuing a MOUNT
command, and repeating the MOUNT does not solve the problem, issue the ABORT command.

?DABJSE PAG E SEQUENCING ERROR FOR JOURNAL OF schema-name

This message can indicate a software error in the interaction between DAEMDB and DBCS. If the error recurs,
send an SPR.

6-86

DBMS Utilities

[DABJTE xxx FOR TEMP JOURNAL OF schema-name)

This message can occur during the process of copying data from the temporary journal file on disk to the
magnetic-tape journal. The xxx indicates the particular disk error that has occurred. The message is followed
by an action-required message. In response, you can issue the RETRY or the ABORT commands.

?DABJQA JOURNAL QUOTA ALREADY REACHED

Initialization of the magnetic tape journal has failed because DAEMDB can manage only eight journal nIes at
one time. The application run-unit receives the DAEMDB interaction code number 7 (see Table 64) in the
DBCS %DBSODJ message. The run-unit can associate the journal me with a disk device, or it can have made
proviSion for such problems by having included a USE procedure in its code for exception-conditions 0946
and 0967 such that processing continues. See Section 6.3.1.

?DABJUN JUNK AT END OF COMMAND LINE

The last portion of your command line contains incomprehensible information, change it.

[ACTION REQUIRED FOR VOLUME volume id ON schema-name)

This message informs you that an action is required on the volume-id specified; the message follows the
[DABJME, ?DABJSE, and [DABJTE messages. The latter messages can occur during the process of copying
from the temporary disk journal to magnetic tape.

?DABNUM NUMBER WAS EXPECTED

The number specified with the POLL and THRESHOLD commands must be greater than o.

?DABOJT _ UNABLE TO OPEN JOURNAL TEMP OF schema-name

Initialization of the temporary journal file on disk has failed. The application run-unit receives the appropriate
DAEMDB interaction code in the DBCS %DBSODJ run-time message and can take necessary steps. See Section
6.3.1.

?DABPTL POLL-PERIOD GREATER THAN 600

You have specified a polling frequency that is more than 600 seconds. This is not acceptable. Change the fre­
quency of polling.

?DABSER DAEMDB ERROR - MESSAGE WILL REPEAT IF CANNOT FIX SELF

Repetition of this message indicates a problem with DAEMDB. Rerun DAEMDB.

[POLL= xxx, THRESHOLD= xxx]

You will receive this message in response to your CURRENT command request. The message tells you the
frequency of polling and the number of pages after which DAEMDB copies the temporary journal to magtape.

%DABSQR SPURIOUS QUEUE REQUEST RECEIVED

This message indicates a problem in the interrupt system; however, processing continues.

?DABVOL UNKNOWN VOLUME ID SPECIFIED

You have specified an unidentifiable volume-id. Repeat the command and include a valid volume-id.

6-87

APPENDIX A

RESERVED WORDS

The following words are reserved in DBMS. Reserved means that you cannot use these words as user-created names.
Refer to the COBOL Programmer's Reference Manual for COBOL reserved words. Those words in the list below
preceded by an asterisk refer to COBOL only; those preceded by two asterisks refer to FORTRAN only.

-A- COUNT -F- JMNONE
CURRENCY JOURNAL

ACCESS CURRENT FIND JRSYNC
AFTER FINDO JSTRAN
ALIAS -D- FIND!
ALL FIND2 -K-
ALLOWED DAT ABASE-KEY FIND3
ALWAYS DBKEY· FIND4 KEY
ARE DEC FINDS
AREA DECIMAL FIRST -L-
AREA-ID DELETE FIXED

*AREA-NAME DELETR FLOAT LAST
AREAS DESCENDING FOR LINKED

**ARNAM DIRECT FROM LOCATION
ASCENDING DISPLAY LOCK
ASSIGN DISPLAY-6 -G-
AT DISPLAY-7 -M-
AUTOMATIC DISPLAY-9 GET

DUPLICATES GETS MANDATORY
-B- MANUAL

-E- -1- MEMBER
BACKUP MODE
BEFORE EBIND IF MODIF
BIN *ELSE IMAGES MODIFY
BINARY EMPTY IN MOST
BIND ENCODING INSERT MOVE
BUFFER **END INSRT MOVEC
BY **ERAREA INTERCEPT

**ERCNT INTO -N-
-C- **ERREC INVOKE

*ERROR-AREA IS NAME
CALC *ERROR-COUNT NEXT
CALL *ERROR-RECORD -J- NOT
CHAIN *ERROR-SET NOTE
CLOSE * ERROR-ST ATUS JBTRAN
CLOSED **ERSET JETRAN -0-
COMMAND **ERSTAT JMAFT
COMPILE EXCEPTIONS JMBEF OCCURRENCE
COMPLEX EXCLUSIVE JMBOTH OCCURS
COpy JMNAME OF

A-I

ONLY
OPEN
OPEND
OPTIONAL
ORDER
OTHERS
OWNER

-P-

PAGE
PIC
PICTURE
PRIOR
PRIVACY
PROTECTED

-R-

RANGE
REAL
RECMEM
RECMO

**RECNAM
RECORD
RECORD-NAME
RECORDS
RECORDS-PER-PAGE
RECOWN
REMOV
REMOVE
RETRIEVAL
RPP
RUN-UNIT

-S-

SAVESS
SBIND
SCHEMA
SECTION
SELECTION
SELECTIVE

*SENTENCE
SET
SETCON
SETDB
SETS
SIZE
SORTED
STATS
STATUS
STORE
STORED

SUB-SCHEMA
SUPPRESS
SYSCOM
SYSTEM

-T-

TEMPORARY
TENANT
TEXT
THRU
TO
TYPE

-U-

**UNDEF
UNSET
UPDATE
UPDATES
USAGE
USAGE-MODE
USE
USING

-V-

VIA

-W-

WITHIN
WORDS

Reserved Words

A-2

APPENDIX B

SCHEMA ERROR MESSAGES

?DDLADI ASC/DESC PHRASE INCOMPATIBLE WITH ORDER ALWAYS AND ORDER SORTED DBKEY
You specified an ASCENDING or DESCENDING phrase for a member in a set that has ORDER
ALWAYS or ORDER SORTED BY DATABASE-KEY. Delete the ASCENDING/DESCENDING phrase
or change the order.

%DDLANA ASSIGNED NAME NEVER APPEARS IN AREA STATEMENT
You specified an area-name in the DMCL but never used it in a schema area entry. Create an area entry
for the area or let SCHEMA ignore the error.

%DDLASI. ALL MEANINGLESS SWITCHES ARE IGNORED
SCHEMA ignores all switches except /CREATE and /NOCREATE.

?DDLDPS DUPLICATE PSEUDONYM
You used the same pseudonym twice. Change one of them and try again.

?DDLDUP DUPLICATE name ENCOUNTERED
You used the same name twice. Change one of them and try again.

?DDLELW. ENCOUNTERED word WHILE action name
This is a general purpose message. SCHEMA has encountered one of the words in one of the phrases in
the DMCL or DDL while performing some action (or expecting a name). Correct the phrase and try again.

?DDLFTL FILE SPEC COMPONENT TOO LONG
One of the components of one of the file specifications is too long. Correct the component and try again.

%DDLICI ILLEGAL CHARACTER IN INPUT ON LINE n
You have a character that is not allowed. Correct the character and try again or let SCHEMA ignore the
error.

?DDLIFP ILLEGAL FACTORING IN A PICTURE
You used characters that are not allowed in the PICTURE phrase. Correct the phrase and try again.

?DDLILN IMPROPER LEVEL NUMBER
When specifying data-items you used an incorrect level number (i.e., not 02 in the schema record entry).
Correct the level number and try again.

?DDLIMC DATA NAMES INCORRECTLY MATCH CALC KEYS FOR record-name
When you specified the data-items in the record, you did not include all of the CALC keys specified in
the LOCATION MODE phrase. Correct the data-names and try again.

?DDLIOR INTEGER OUT OF RANGE n TO n INCLUSIVE
You specified a number that was out of the range previously specified (e.g., one of the numbers in the
page range for a record is not in the page range for that area). Correct the number and try again.

B-1

SCHEMA Error Messages

?DDLIZL PICTURED ITEM HAS ZERO LENGTH
You specified a length of zero in the PICTURE phrase. Correct the length and try again.

?DDLKNM KEY NOT A DATA-NAME IN MEMBER RECORD TYPE
You specified a data-name as a sort key, but it was not part of the record. Add the data-name to the
record or change the sort key.

?DDLKNO SOS KEY DOES NOT MATCH APPROPRIATE KEY OF OWNER RECORD TYPE
The key specified in the USiNG phrase in the SET OCCURRENCE SELECTION clause does not match
the DIRECT or CALC key ih the owner record. Correct the key and try again.

?DDLLDP LOGICAL LOCATION OF RECORD DEPENDS ON ITS PHYSICAL LOCATION -- BUT LOCATION
MODE IS VIA-SET

You specified the location of a record in such a way that its logical location depends on its physicalloca­
tion. However, you also declared the record with LOCATION MODE VIA, which means that the logical
location should not depend on the physical location. Correct either the dependence or the LOCATION
MODE.

?DDLLND LOCATION MECHANISM DURING SOS MUST HAVE NO DUPLICATES ALLOWED
You specified a USING or ALIAS phrase in the SET OCCURRENCE SELECTION clause, but did not
specify that duplicates were not allowed for the USING or ALIAS identifier. Correct the error and try
again.

%DDLLTL LINE n TOO LONG
You specified a line that is too long. Shorten the line and try again or let SCHEMA ignore the error.

%DDLLSE LINE SEQUENCE NUMBER n NOT FOLLOWED BY TAB
The line sequence number that EDIT put on the line was not followed by a tab. SCHEMA assumes that
the tab is missing and continues.

?DDLMSP MISSING SET PHRASE: jMODE OR OWNER OR ORDER
You did not include one of the phrases MODE, OWNER, or ORDER in the set entry. Correct the set
entry and try again.

?DDLNRP NO RECORDS-PER-PAGE SPECIFIED FOR AREA
You did not specify a RECORDS-PER-PAGE statement for an area. Add the statement and try again.

?DDLNTL DATA BASE NAME IS TOO LONG
One of the names used in the description of the data base is too long. Correct the name and try again.

?DDLOCD ONLY ASC/DESC WITHOUT DUPLICATES PHRASE COMPATIBLE WITH ORDER SORTED
DUPLICATES

You cannot specify that duplicates are allowed in the ASCENDING/DESCENDING clause for a record in
a set with ORDER SORTED DUPLICATES. Correct the ASCENDING/DESCENDING clause and try
again.

?DDLOMD ASC/DESC PHRASE FOR ORDER SORTED [WITHIN] MUST HAVE "DUPLICATES" SUB-
PHRASE

You must specify the DUPLICATES phrase in the ASCENDING/DESCENDING phrase for a record in a
set that has ORDER SORTED WITHIN or ORDER SORTED. Correct the ASCENDING/DESCENDING
phrase and try again.

B-2

SCHEMA Error Messages

?DDLOPF. OPEN FAILURE FOR filename
SCHEMA could not open one of the files (SCH or DBS). Check that the protection for the file or the
directory is compatible or that the device is available. If the error persists, submit an SPR.

?DDLOSI OWNER-IS-SYSTEM INCOMPATIBLE WITH SOS
You cannot specify a SET OCCURRENCE SELECTION if the owner of the set is SYSTEM. Delete
the SET OCCURRENCE SELECTION clause and try again.

?DDLPRO AREA'S PAGE RANGE OVERLAPS AN EARLIER PAGE RANGE
You specified a page range for one area that is within the range of another area. Correct the page range
and try again.

?DDLPSI PAGE SIZE OF area-name INSUFFICIENT TO ACCOMMODATE record-name RECORDS
The records that you specified to be within an area will not fit because you do not have a large enough
page size. Increase the page size or decrease the size of the record.

?DDLPSS PAGE SIZE OF area-name CANNOT ACCOMMODATE AREA-STATUS-RECORD AND SYSTEM
RECORD
You specified such a small page size that the area-status-record on the SYSTEM record cannot fit into
the area. Correct the page size and try again.

?DDLROD RECORD CAN CONTAIN ONE DISPLAY MODE ONLY
Only one DISPLAY (DISPLAY-6, DISPLA Y-7, DISPLA Y-9) mode can appear in all of the data-items
in a record. Correct the data-items and try again.

?DDLSAF SCHEMA ACCESS FAILURE -- CHECK SCHEMA FILE BEFORE RETRYING
SCHEMA could not access the DDL file. Check the protection on the file and directory. Also check that
the file is available. If the error recurs, submit an SPR.

?DDLSBR SET ENTRY FOR set-name MUST APPEAR BEFORE BEING REFERENCED IN SOS PHRASE
If you specify that SET OCCURRENCE SELECTION for a set is LOCATION MODE OF OWNER and the
owner of the set has a LOCATION MODE of VIA, you must have previously described the set specified
in the VIA phrase of the owner. Correct the schema file and try again.

%DDLSES ENCOUNTERED EOF -- SIMULATING END-SCHEMA ST ATEMFNT
You did not end the schema with the END-SCHEMA statement or the file was truncated. SCHEMA
assumes an END-SCHEMA statement.

?DDLSIE. SOURCE FILE INPUT ERROR -- TRY AGAIN
SCHEMA could not read the source file, probably because of a monitor error. Check the file and try
again.

%DDLSIF SCALE FACTOR INAPPLICABLE TO FLOATING POINT ITEMS
You specified a scale factor for a floating pointer data-item. SCHEMA ignores the scale factor.

?DDLSTL STATEMENT TOO LONG OR "." MISSING.
You specified a statement that was longer than 120 characters or you left off the period. Correct the
statement and try again.

?DDLTMO RECORD IS TENANT IN SET MORE THAN ONCE
You specified that a record is owner or member more than once in a set. Remove one description of the
record from the set and try again.

B-3

SCHEMA Error Messages

?DDLTMR TOO MANY RECORD TYPES DEFINED IN SCHEMA
You specified more than 480 record types in the schema. Reduce the number of record types and try
again.

?DDLTMS RECORD PARTICIPATES IN TOO MANY SETS
You have specified so many sets in which the record participates that the pointers will use more than
the maximum of 512 words. Remove the record from some sets or delete some of the PRIOR and
OWNER pointers in some sets.

?DDLTNS SPECIFIED DATA TYPE NOT SUPPORTED
You specified a data type that is not supported in DBMS. Change the data type and try again.

?DDLUCA UNABLE TO CREATE .DBS FILE FOR area-name
SCHEMA cannot create the DBS file for the specified area. Check that the file specification for the area
is correct or that the protedtion for the file or directory allows creation. If the problem recurs, submit
an SPR.

?DDLUIS UNABLE TO INITIALIZE SCHEMA FILE
SCHEMA cannot initialize the schema file. Check the file and its protection and try again. If the error
recurs, submit an SPR.

?DDLVSA WHEN LOCATION MODE IS VIA-SET A SORTED MEMBER MUST BE AUTOMATIC
You did not specify that the member of a sorted set, which is also a via-set, is an automatic member.
Make the membership automatic and try again.

?DDLVSN record-name's VIA-SET NEVER DEFINED IN SET ENTRY
You specified that the record was VIA a set, but you never defined that set in a set entry. Define the
set or change the VIA phrase and try again.

?DDLWCD. WILDCARDING IN OUTPUT DIRECTORY
You cannot specify wildcard format in the output directory specification. Correct the command string
and try again.

?DDLWNI. WILD-SPEC = NON-WI~D-SPEC IS UNDEFINED
You cannot specify that an, output specification has wild-card format and the input specification does
not have wild-card format. Correct the file specification and try again.

%DDLWRR "WITHIN" NOT ASSO~IATED WITH A RECORD RANGE OF record-name
You specified a page range !for a record in the DMCL area entry, but you did not include that area in a
WITHIN clause for that recbrd. Either move the page range to an area in a WITHIN clause or add the area
to a WITHIN clause or let SCHEMA ignore the error.

?DDLXCT EXPLICIT TEXT AND COPY-TEXT CANNOT BE UNDER SAME DATA-NAME
You put text and the COpy phrase for that text with the same data-name. Move the text or the COPY
phrase and try again.

%DDLXIS. EXTRA INPUT SPECS ARE IGNORED.
You included more than orie input file specifications in the command line to SCHEMA. SCHEMA ignored
all but the first.

%DDLXOS. EXTRA OUTPUT SPECS ARE IGNORED.
You included more than one output file specification in the command line to SCHEMA. SCHEMA
ignored all but the first.

B-4

APPENDIX C

ORGANIZATION OF SCHEMA FILES

As described in Chapter 2, the SCHEMA program creates a schema file (SCH) as well as the data base files. The SCH
me is structured like a data base file in that it contains pages and lines. It is thus itself a data base that describes the
data base it controls. Each page in an SCH file is 512 words long including a 2-word header. Each line contains an
occurrence of a record type that is SCHEMA-defined not user-defined. The record type IDs for these record types
are shown in Table C-1. SCHEMA reserves ID numbers 001 through 032 (408) and assigns user-defined record
type IDs starting with 033(41 8).

Table C-1
Record Type IDs for SCH Record Types

Record Type ID Record Type

001 Schema Line
002 Record Line
003 Data Line
004 Control Line
005 Member Line
006 Owner Line
007 Within Line
010 Area Line
011 Text Line
012 Sub-Schema Line
013 Via Line
014 Item Line
015 File Line

The records in the SCH files describe the attributes of the data in the data base. These lines are used by DBCS to
create the in-core representation of the data base. The set relationships among these lines are shown in Figure C-1.

The dotted arrows connecting the ITEM Line and the FILE Line to other lines indicate that a non-set relationship
exists (i.e., these records are pointed to).

The lines (records) shown in Figure C-1 contain data that describe the attributes of the data base. These lines, with
a detailed description of their contents, are described in alphabetical order in the following sections. Each line starts
on a new page.

The lines dealing with record, set, area, and data-item names each contain a numeric field called a name ID. A name
ID is an index into a table of these names. The name IDs for records, sets, and areas are passed to DBCS in place of
the actual names.

C-l

L..-__ ~T_I~_~ __Ir n - - '-r--...,......-......... ~

TEXT
LINE

DATA
LINE

D.C SET

MEMBER
LINE

M.V SET

VIA J
LINE

'------r---'

V.C SET

CONTROL
LINE

Organization of Schema Files

SCHEMA
LINE

S.S SET

SUB·SCHEMA
LINE

WITHIN
LINE

R.O SET

OWNER
LINE

- m J'----_ITE_M ----J L LINE

--------------------------,

"
"

"'~

~

Figure C-l Set Relationships in the Schema File

C-2

Organization of Schema Files

C.l scn AREA LINE
SCHEMA creates an AREA line for each area defined in the schema. The format of the SCH AREA line is shown
in Figure C-2.

o

2

3

4

5

6

7

8

9

10

II

12

13

14

IS

16

17

18

19

20

21

22

23

0

;tm////. ,//, ,//?///J

-
r---
~

-
r---

-
-
r---

r----
~

\18
'//' t//////&~
SUB-SCHEMAS USING THIS AREA

FIRST PAGE

LAST PAGE

PAGE SIZE

NUMBER OF BUFFERS

RECORDS-PER-PAG E

CALC RECORDS PER PAGE

IMAGE TYPES

LOCKS

FILE LINE DBKEY

SUB-SCHEMA USING AREA AS TEMP

AREA-NAME LENGTH

AREA-NAME

Figure C-2 SCH AREA Line

NAME ID contains the numeric identifier of the area-name.

35

NAME ID

SUB-SCHEMAS USING THIS AREA is a flag word each bit of which is set to 1 for each sub-schema in which the
area is defined.

FIRST PAGE contains the number of the first page of the area.

LAST PAGE contains the number of the last page of the area.

PAGE SIZE contains the maximum number of words on a page.

NUMBER OF BUFFERS contains the number of buffers allocated for the area.

RECORDS-PER-PAGE contains the maximum number of records allowed on a page.

CALC RECORDS PER PAGE contains the number of CALC-chain header words allocated for each page of the area.

C-3

Organization of Schema Files

IMAGE TYPES describes the types of images to be written in the journal file. The values are:
o - none
1 - AFfER images
2 - BEFORE images
3 - both BEFORE and AFTER images

LOCKS contains all the privacy locks for the area.

FILE LINE DBKEY contains the data base key of the FILE line for the area. The FILE line contains the file spec­
ification associated with the area.

SUB-SCHEMA USING AREA AS TEMP is a flag word each bit of which is set to 1 for each sub-schema in which
this area is declared as temporary.

AREA-NAME LENGTH contains the length of the area-name.

AREA-NAME contains the name of the area in ASCII.

C4

Organization of Sche11U1 Files

C.2 scn CONTROL LINE
The SCH CONTROL line describes each of the sub keys in a sort key or a key used in set occurrence selection. The
full key is described in a VIA line (see Section C.12). For each member in a sorted set or each member with a set
occurrence selection of LOCATION MODE OF OWNER, SCHEMA creates as many VIA lines as there are keys. For
each key, SCHEMA creates as many CONTROL lines as there are sub-keys in the key (or one if the key is not sub­
divided). If a member record has neither sort keys nor a set occurrence selection key, that member has no VIA nor
CONTROL lines associated with it. The format of a CONTROL line is shown in Figure C-3.

o

2

3

4

5

0

CASE

DATA NMIO

18

ALIAS

lOX

OFFSET

DBKEY OF CONTROLLED SET

Figure C-3 SCH CONTROL Line

CASE contains one of the following values:
o the subkey is a data field
1 the sub key is the database key of the actual record

KEY TYPE

SET NMIO

2 the sub key is the database key of the record as encoded in the index node
3 the sub key is the record type ID of the record
4 the subkey is the record type ID as encoded in the index node

KEY TYPE contains the following information:
Bit 30
Bit 31
Bit 32
Bit 33
Bit 34
Bit 35

the subkey is part of a sort key
the subkey controls a member not in the current sub-schema
the sub key is a CALC key
the sub key is a range key
the subkey is in descending sequence
the subkey is in ascending sequence

DATA NMID contains the name ID of the data-item used as the sUbkey.

SET NMID contains the name ID of the set controlled by the key.

ALIAS contains the database key of the ITEM line for the subkey's alias if one exists.

IDX contains the number of the subkey in the key (e.g, the first sub key is 1).

OFFSET contains the location of the key in the index node if the key is a sort key.

DBKEY OF CONTROLLED SET contains the database key of the set the key controls.

C-5

35

Organization of Schema Hies

C.3 SCH DATA LINE
An occurrence ofa DATA line is written for each 02-level data-name (whether data-item or data-aggregate) defined
for the schema. This line (Figure C-4) is used to generate the in-core DATA block.

o

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

0

NLEN

~

r---

r---

r---

r---

-
-
-
-
-
-
-
-

\6 112 18

RECORDNMID

OCCURS

I PSLEN I PILEN TYPE

SUB-SCHEMA

OFFSET TO ITEM IN RECORD

OAT A-ITEM SIZE

OAT A-ITEM STRINGS

Figure C-4 SCH Data Line

124 127 130

NAME ID

I PREC

I CALC I SCALE

RECORD NMID contains the numeric identifier of the record to which the data item belongs.

NAME 10 contains the numeric identifier of the data-name.

OCCURS contains the number of times the item occurs as specified in an OCCURS clause.

PREC contains the precision of the item, e.g., S9(10) in COBOL.

NLEN contains the length of the data item's name.

PSLEN contains the length of the data item's pseudonym.

PI LEN contains the length of the data item's PICTURE.

TYPE contains the data type of thei item:
o no data type, i.e., the item is a data-aggregate
1 the type is numeric, FI~ED BINARY REAL
2 the type is numeric, FLOAT BINARY REAL
3 the type is numeric, FrkED DECIMAL REAL
4 RESERVED
5 RESERVED

C-6

35

Organization of Schema Files

6 - the TYPE is numeric, FLOAT BINARY COMPLEX
7 - RESERVED
8 - RESERVED
9 - the type is database key

10 - the type is alphanumeric, DISPLAY-6
11 - the type is alphanumeric, DISPLAY-7
12 - the type is alphanumeric, DISPLAY-9

CALC contains the number of the CALC field in the data-item.

SCALE contains the scale factor.

SUB-SCHEMA is a flag word each bit of which is set to 1 for each sub-schema that includes the data item.

POINTER TO ITEM IN RECORD contains the byte pointer to the actual position of the item in the record.

DATA-ITEM SIZE contains the size of the data-item.

DATA-ITEM is a variable-length field of up to 66 characters that contains the data-item's strings (in ASCII). These
strings are the name of the data-item, its pseudonym if any, and its picture if any.

C-7

Organization of Schema Files

C.4 scn FILE LINE
An SCH FILE line is created for each DBS file and for the journal file. It contains the file specification of the fIle
and the file specification of the temporary file for a sub-schema temporary file. The FILE line format is shown in
Figure C-5.

o

2

3

4

5

0

DEVICE i

CNT

DIRECTORY

FILENAME

EXTENSION

PROTECTION

11 8 35

Figure C-5 SCH FILE Line

C-8

Organization of Schema Files

C.S SCH ITEM LINE
SCHEMA creates an ITEM line for each record-independent name. These names are the DIRECT identifiers, the
area-IDs, and the ALIAS identifiers. The format of an ITEM line is shown in Figure C-6.

o
I

2

3

4

5

6

7

8

9

o
SLEN

PSEUDONYM

LENGTH OF NAME

NAME

Figure C-6 SCH ITEM Line

SLEN contains the length of the name's pseudonym if one exists.

35

PSEUDONYM contains the pseudonym for the name (in ASCII) if you specified one. If there is no pseudonym,
word 1 contains O.

LENGTH OF NAME contains the number of characters in the name.

NAME contains the item's name (in ASCII). The name can be up to 30 characters long.

C-9

Organization of Schema Files

C.6 scn MEMBER LINE
Each record that participates as a member of a set has associated with it a MEMBER line that identifies it as a mem­
ber of that set. The SCH MEMBER line (Figure C-7) is used to form the in-core MEMBER block.

o ~ 18

°It====~~~R=E=~0=rRD==N=M-=I-D=-~-~-ii====jt=M-=E-'M=~==iiii====~;ii;iiiiiiii~~ . OWNER PRIOR

Figure C-7 SCH MEMBER Line

RECORD NMID contains the numeric identifier for the member record type.

MEM contains the type of membership - AUTOMATIC or MANUAL and MANDATORY or OPTIONAL.

SOS contains the form of set occUrrence selection:
1 - CURRENT OF SET
2 - LOCATION MODE OF OWNER

ORD contains the set order:
1 FIRST
2 LAST
3 NEXT
4 PRIOR
5 SORTED
6 SORTED BY DATABASE-KEY
7 - SORTED WITHIN
8 - RESERVED
9 - SORTED WITH USER KEYS

10 - RESERVED
11 - SORTED WITHIN WITH USER KEYS
12 - SORTED WITH USER KEYS AND DUPLICATES ALLOWED

DUP refers to how duplicate keys are treated:
o - duplicates are allowed
1 - duplicates are first
2 - duplicates are last
3 - duplicates are not allowed

OWNER contains the offset in the record of the OWNER pointer. This is 0 ~f you did not specify LINKED TO
OWNER.

PRIOR contains the offset in the record of the PRIOR pointer. This is 0 if you did not specify LINKED TO
PRIOR.

NEXT contains the offset in. the record of the NEXT pointer.

C-10

Organization of Schema Files

C.7 scn OWNER LINE
An OWNER line is written in the SCH file for each set type defined for the schema. The OWNER line is shown in
Figure C-8 and is used as the basis for the in-core OWNER block.

o
1

2

3

4

5

6

7

8

9

10

0

PRIOR
19 18 35

I NEXT NAME ID

KEY-NODE SIZE TOP INDEX-BLOCK

NUMBER OF MEMBERS

SUB-SCHEMAS

LENGTH OF NAME

SET-NAME

Figure C-8 SCH OWNER Line

PRIOR contains the offset in the owner record of its PRIOR pointer. If you did not specify LINKED TO PRIOR,
it is 0 unless ORDER IS LAST.

NEXT contains the offset in the owner record of its NEXT pointer.

NAME ID contains the numeric identifier of the set-name.

KEY-NODE SIZE contains the largest index-node size for members of this set.

TOP INDEX-BLOCK contains the offset of the pointer to the top index-block.

NUMBER OF MEMBERS contains the number of member records in the set.

SUB-SCHEMAS is a flag word each bit of which is set to 1 for each sub-schema in which the set is defined.

LENGTH OF NAME is the length of the set-name.

SET-NAME contains the name of the set (in ASCII). It can be up to 30 characters long.

C-11

Organization of Schema Files

c.s scn RECORD LINE
An SCH RECORD line is created for each record~ it identifies a record according to its type, name, and location.
figure C-9 shows the format of the SCH RECORD line.

0 ~ 19 18

fjjjjjllll//llllllfI/////!I///1111I/////!//////////1////////;
NDAT 1 NAREA NOWN

LM I DSIZE DOFF

SUB-SCIIEMAS

o
1

2

3

4

5

6

7

8

9

LM INFORMATION

WITHIN ID

NAME LENGTH

10

11

12

RECORD NAME

Figure C-9 SCH RECORD Line

NAME ID contains the numeric identifier of the record-name.

NDAT contains the number of data-items that are part of this record.

NAREA contains the number of areas in which this record can reside.

NOWNER contains the number of sets this record owns.

NMEM contains the number of sets in which this record is a member.

LM contains the location mode:
o - none (only applies to the system record)
1 - DIRECT
2 - VIA
3 - CALC with duplicates allowed
4 - CALC with duplicates not allowed

DSIZE contains the size of the data in words.

DOFF contains the offset in the record of the first word of the data.

TID contains the record type ID of the record type.

127 35

NAME ID

I NMEM

I TID

SU8-SCHEMAS is a flag word each bit of which is set to 1 for each sub-schema in which the record is defined.

LM INFORMATION contains information that depends on the location mode:
If it is CALC - number of CALC fields.
If it is VIA - database key of the OWNER line of the set named in the VIA phrase.
If it is DIRECT - database key of the ITEM line that describes the DIRECT identifier.

C-12

Organization of Schema Files

WITHIN ID contains the database key of the ITEM line for the area ID, if one exists.

NAME LENGTH contains the length of the record-name.

RECORD NAME contains the name of the record (in ASCII). The name can be up to 30 characters long.

C-13

Organization of Schema Files

C.9 SCH SCHEMA LINE
The SCH SCHEMA line contains information about the schema such as the number of sub-schemas, number of
areas, and the journal's FILE line. It is used to create the in-core SCHEMA block. The format of the SCH SCHEMA
line is shown in Figure ColO.

o

2

3

4

5

6

7

8

10

II

12

13

o

1--

'II,

.,..

fll

(II
1/

ASR

SYSTEM AREA NAME ID

HINMID

H1TID

NUMBER OF AREAS

EDIT

RUN

LAST SUB·SCHEMA

JOURNAL

CHECKPOINT

EXCEPTION ACTION FLAGS
(I,

'ff

Figure C-IO SCH SCHEMA Line

ASR contains an Area Status Record like the one in a DBS file.

35

SYSTEM AREA NAME ID contains the numeric identifier of the area that contains the system record.

HINMID contains the number that is the highest name ID used.

HITID contains the number that is the highest record type ID used.

NUMBER OF AREAS contains the number of areas defined for the schema.

EDIT contains the number of the last edit to the schema.

RUN contains the number of times the schema has been used by run-units.

LAST SUB-SCHEMA contains the number of the last sub-schema declared. The highest possible value is 36.

JOURNAL contains the database key of the journal's ALE line.

CHECKPOINT contains checkpointing flags:
bit 34 - VER flag (checkpointing by command)
bit 35 ~ TR flag (checkpointing by transaction)

EXCEPTION ACTION FLAGS is two half words of flags. The left half is for NOTE exceptions; the right half is for
INTERCEPT exceptions. The relevant bits are:
bits 13 and 30 - SYS flag (system exceptions will be noted/intercepted)
bits 14 and 31 - ALL flag (all exceptions will be noted/intercepted)
bits 15 and 33 - BIND flag (exceptions during binding will be noted/intercepted)
bits 16 and 34 - CALL flag (exceptions during calls will be noted/intercepted)
bits 17 and 35 - UPD flag (exceptions during updating will be noted/intercepted)

C-14

Organization of Schema Files

C.10 SCH SUB-SCHEMA LINE
An SCH SUB-SCHEMA line is created for each sub-schema using the schema. Its format is shown in Figure C-ll.

o
1

2

3

4

5

6

7

8

o 35

MASK

PRIV ACY LOCK

NAME LENGTH

SUB-SCHEMA NAME

Figure C-l1 SCH SUB-SCHEMA Line

MASK contains a mask that is ORed with other SCH lines. If the result is non-zero, the line is used in the sub-schema.

PRIVACY LOCK contains the privacy lock for the sub-schema if one exists.

NAME LENGTH contains the length of the sub-schema name.

SUB-SCHEMA NAME contains the sub-schema name in ASCII. The name can be up to 30 characters long.

C-lS

Organization of Schema Files

C.11 scn TEXT LINE
One or more TEXT lines are createdJor each data-aggregate in the schema. Figure C-I2 shows the format of an SCH
TEXT line.

o

2

3

4

5

o

~

~

-- - - - -...r-

35

SUB-SCHEMA

TEXT LENGTH

TEXT

- ".. -- ---~ ~ -

~~----~~~--~~~ ~ ~_J~'-____ ~ __ ~~~ __ ~~~ ___ ~_~-,-___ ~~_~~
17 -
18
~--

19
1----

20
f----

21 L-__ ~

Figure C-I2 SCH TEXT Line

SUB-SCHEMA contains the numbers of the sub-schema in which the text is defined. Each bit of the word represents
a sub-schema.

TEXT LENGTH contains the number of characters in the text.

TEXT contains the text in ASCII. The text can be up to 100 characters long.

C-16

Organization of Schema Files

C.12 scn VIA LINE
A SCH VIA line is created for each member that has a sort control key or a set occurrence selection key. If the
member has both keys, a VIA line is created for each. The VIA line points to the CONTROL lines for the sub-keys
in the key. The SCH VIA line is one word long and is shown in Figure C-13.

35 o [8
OI~ ___________ N_K_E_Y ____________ ~ _____________ T_YP __ E ____________ -J

Figure C-13 SCH VIA Line

NKEY contains the numbers of subkeys in each key.

TYPE contains the type of the key:
I - DIRECT key used in set occurrence selection
2 - CALC key used in set occurrence selection
3 - VIA key used in set occurrence selection
4 - SORTED key used in sort control

C-17

Organization of Schema Files

C.13 SCH WITHIN LINE
An SCH WITHIN line is created for each record that can be in each area. It contains the record-type and its page
ranges. Figure C-14 illustrates this line.

35 o p8
----------------------------+------------------------------,

O~~ ___________ R_E_C_O,_R_D ____________ I ____________ A_R_E_A __ N_M_ID ___________ ~ ,_ FIRST PAGE
LAST PAGE

Figure C-14 SCH WITHIN Line

RECORD contains -1 if the record type appeared in a page range clause for the area. If it does not, RECORD con­
tains O.

AREA NMID contains the numeric identifier of the area to which this line is connected.

FIRST PAGE contains the number of the first page of the range specified for the record. If you did not specify a
range, the first page of the area is used.

LAST PAGE contains the number of the last page of the range specified for the record. If you did not specify a
range, the last page of the area is used.

C-18

APPENDIX D

DATA ORGANIZATION AND ACCESS

As stated in Chapter 2, SCHEMA creates a DBS file for each area in the schema. The data base is composed of these
DBS files. This appendix describes the format of a page in a DBS file, the in-core representation of the data base,
and the overhead involved in accessing the DBS files.

D.I FORMAT OF A PAGE
A page in a DBS file contains a page header and lines containing records. The format of a page header is shown in
Figure D-l.

0 11 8 35

0 PAGE NUMBER

I HIGHEST USED#(i) I FIRST FREE# U)

2 CALC-CHAIN HEADERS

n

n + I DATA WORD

j - I LAST DATA WORD

j FIRST FREE WORD

p i LINE HEADER

p LINE !lEADER

Figure D-l Format of a Page Header

PAGE NUMBER contains the number of this page.

HIGHEST USED contains the highest line number used so far on this page.

FIRST FREE contains the offset of the first word on the page on which tnere is no data.

CALC CHAIN HEADERS is 0 or more words (depending on the value specified in the CALC RPP clause). Each
word is the database key of the first record in each (non-empty) CALC chain.

D-l

Data Organization and Access

Each line on a page begins and ends on a word boundary and covers as many words as necessary to contain the data.
Lines cannot cross page boundaries. Each line contains a line header, set pointers, and the data. The format of a
line header is shown in Figure 0-2.

o 35

RECORD SIZE TID OFFSET

Figure 0-2 Format of a Line Header

RECORD SIZE contains the size of the record occurrence on the line.

TID contains the record type 10 of the record occurrence.

OFFSET contains the offset from the beginning of the page to the first word of data in the record.

For each set link associated with the record occurrence on a line, DBCS includes a set pointer on the line. Each
pointer is one word, which is the database key of the line to which it points. A database key is the combination of
the number of the line and the number of the page on which a record resides. Figure 0-3 shows the format of a
database key.

35 o 127
1sT PAGE NUMBER D. _____________________________ ~ __________ ~ LINE NO.

Figure 0-3 Format of a Database Key

S is the sign of the key.

PAGE NUMBER contains the page number.

LINE NO contains the line number.

The first line of the first page in an area is the Area Status Record. Its format is shown in Figure 0-4.

o 35

Figure 0-4 Format of an Area Status Record

STATUS contains the status of the area. If the area is in a state of flux (Le., opened for update), this word is set to
-1. If the area is open and the run-unit accessing it aborts, the -1 indicates that the area is in an undefined
state. If the area is closed and available for normal use, this word is set to O.

D.2 IN-CORE BLOCKS
When an application program invokes a sub-schema, OBCS builds the in-core blocks for the data base according to
the SCH lines for the schema. These in-core blocks contain the descriptions of the records, sets, and areas in the
sub-schema. Each block is described below on a separate page.

Several of the blocks contain AOBJ pointers that point to tables. The tables consist of single-word entries. Each
table has its own format, but all the AOBJ pointers have the same format. The left half contains a negative count
of the entries in the table and the right half contains the pointer to the table.

0-2

Data Organization and Access

D.2.1 In-Core AREA Block
An AREA block is written in memory for each area known to the invoked sub-schema. Its format appears in
Figure D-5.

o

2

3

4

5

6

7

8

9

10

II

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

o
CURRENT OF AREA

JFN

USAGE MODE

LAST ALLOCATED PAG E

BUFFER POINTER

AREA'S FILE SPECIFICATION

BUFFER FOR TEMP AREA

JFN FOR TEMP AREA

LAST TEMP PAGE ALLOCATED

INITIAL TEMP PAGE ALLOCATED

FIRST PAGE

LAST PAGE

PAGE SIZE

NUMBER OF BUFFERS

RECORDS-PER-PAGE

NUMBER OF CALC LISTS

IMAGE TYPES

LOCKS

POINTER TO NAME TABLE

LENGTH OF AREA-NAME

AREA-NAME

Figure D-S In-Core AREA Block

CURRENT OF AREA contains the database key of the current record occurrence of this area.

JFN contains the JFN of the file to which this area belongs.

35

USAGE MODE refers to the USAGE MODE specified for the OPEN statement. The values and the modes they
represent are:

o - RETRIEVAL
1 - UPDATE
2 - PROTECTED RETRIEVAL
3 - PROTECTED UPDATE
4 - EXCLUSIVE RETRIEVAL
5 - EXCLUSIVE UPDATE

D-3

Data Organization and Access

LAST ALLOCATED PAGE contains the number of the last page allocated to the area.

BUFFER POINTER contains an AOBJ pointer to the list of buffer pointers for this area. The list of buffer pointers
contains as many words as there are buffers for this area. The right half of each word contains the pointer to
each buffer.

AREA'S FILE SPECIFICATION contains the pointer to the FILE block for the area.

BUFFER FOR TEMP AREA contains the address of an extra buffer allocated for the temporary area's directory.

JFN FOR TEMP AREA contains an additional JFN needed if the area is opened as temporary.

LAST TEMP PAGE ALLOCATED contains the number of the last page allocated in the temporary area.

INITIAL TEMP PAGE ALLOCATED contains the number of the initial last allocated page in the data base file.

FIRST PAGE is the number of the first page in the area.

LAST PAGE contains the number of the last defined page in the area.

PAGE SIZE contains the number of words in a page.

NUMBER OF BUFFERS contains the number of buffers that are allocated for this area.

RECORDS-PER-PAGE contains the maximum number of records that can be stored on a page.

NUMBER OF CALC-CHAINS contains the number of CALC-chains that are allowed on each page.

IMAGE TYPES contains the type of page images being written in the journal file. The value can be one of:
o - none
1 - AFTER images
2 - BEFORE images
3 - both BEFORE and AFTER images

LOCKS contains the text of all the privacy locks declared for this area.

POINTER TO NAME TABLE contains a pointer to the list of area name IDs.

LENGTH OF AREA NAME contains the length of the area-name.

AREA-NAME contains the area-name (in ASCII). It is a variable-length field up to 30 characters long.

0-4

Data Organization and Access

0.2.2 In-Core DATA Block
An in-core DATA Block is created for each 02 data-name belonging to a record in an invoked sub-schema. The
DATA block is created from the SCH DATA line. The format of a DATA block is shown in Figure D-6.

o

2

3

4

0 18

RECORD ID OCCURS

CASE

POINTER TO UW A

SIZE OF DATA

OFFSET OF ITEM IN RECORD

Figure D-6 In-Core DATA Block

127

I
KEY TYPE

RECORD ID contains the record type ID of the record in which the data-item belongs.

TYPE

OCCURS contains the number of times the data-item occurs as specified in an OCCURS clause.

TYPE contains the data type of the item:
o - no data type, i.e., the item is a data-aggregate
1 - the type is numeric, FIXED BINARY REAL
2 - the type is numeric, FLOAT BINARY REAL
3 - the type is numeric, FIXED DECIMAL REAL
4 - RESERVED
5 - RESERVED
6 - the type is numeric, FLOAT BINARY COMPLEX
7 - RESERVED
8 - RESERVED
9 - the type is database key

10 - the type is alphanumeric, DISPLAY-6
11 - the type is alphanumeric, DISPLA Y-7
12 - the type is alphanumeric, DISPLAY-9

CASE contains one of the following values:
o - the data-item is not a key (sort or set occurrence selection)
1 - the database key of the actual record is its key
2 - the database key of the record as encoded in the index list is the key
3 - the record type ID of the record is the key
4 - the record type ID as encoded in the index list is the key

KEY TYPE contains one of the following values:
Bit 30 the data-item is the entire key
Bit 31 the key controls a member not in the current sub-schema
Bit 32 the data-item is a CALC key
Bit 33 the data item is a range key
Bit 34 the key is in descending sequence
Bit 35 the key is in ascending sequence

Word 1 (CASE and KEY TYPE) is set to 0 if the data-item is not a key.

POINTER TO UW A contains a byte pointer to the data-item as it exists in the UW A.

35

SIZE OF DATA contains the size of the data-item in the applicable unit (e.g., characters, words, depending on the
data-type). This number is the product of the size of the data-item times the number of times it occurs.

OFFSET OF ITEM IN RECORD contains a byte pointer to the data item's offset in the record.

D-5

Data Organization and Access

D.2.3 In-Core FILE Block
A FILE block is created in memory for each DBS file and for the journal file. It is created from the SCH FILE line.
The format of a FILE block is shown in Figure D-7.

o
1

2

3

4

5

6

o 35

DEVICE

CNT

DIRECTORY

FILENAME

EXTENSION

PROTECTION

FILESIZE

Figure D-7 In-Core FILE Block

D-6

Data Organization and Access

0.2.4 In-Core MEMBER Block
A MEMBER block is created from the SCH MEMBER line for each member record in every set. Figure D-8 shows
the format of a MEMBER block.

o
I

2

3

4

0 JI8 121 124

OWNER OFFSET

PRIOR OFFSET

NEXT OFFSET

I MEM I SOS I
SOS CTL I

Figure D-8 In-Core MEMBER Block

po 35

ORO I oUP

KEYCTL

OWNER OFFSET contains the offset in the record of the OWNER pointer. This is 0 if you did not specify LINKED
TO OWNER.

PRIOR OFFSET contains the offset in the record of the PRIOR pointer. This is 0 if you did not specify LINKED
TO PRIOR.

NEXT OFFSET contains the offset in the record of the NEXT pointer.

MEM contains the type of membership - AUTOMATIC or MANUAL and MANDATORY or OPTIONAL.

SOS contains the form of set occurrence selection:
1 - CURRENT or SET
2 - LOCATION MODE OF OWNER

ORD contains the set order:
1 FIRST
2 LAST
3 - NEXT
4 - PRIOR
5 - SORTED
6 - SORTED BY DATABASE-KEY
7 - SORTED WITHIN
8 - RESERVED
9 - SORTED WITH USER KEYS

10 - RESERVED
11 - SORTED WITHIN WITH USER KEYS
12 - SORTED WITH USER KEYS AND DUPLICATES ALLOWED

DUP contains the description of how duplicate keys are treated:
o - duplicates are allowed
1 - duplicates are first
2 - duplicates are last
3 - duplicates are not allowed

SOS CTL contains a pointer to the VIA block for the set occurrence selection key.

KEY CTL contains pointers to the VIA blocks for the sort control keys.

0-7

Data Organization and Access

D.2.5 In-Core OWNER Block
An in-core OWNER block is created from the SCH OWNER line for each set referenced in the sub-schema. An
OWNER block is variable in length and its format is shown in Figure D-9.

o
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

o

r-----

r-----

OWNER DB KEY

PRIOR OFFSET

NEXT OFFSET

INDEX OFFSET

SIZE OF INDEX BLOCK

INDEX NODE SIZE

CURRENT VERB INDEX

OWNER RECORD BLOCK

CURRENT OF SET

NO CURRENT OF SET

POINTER TO MEMBERS

SYMBOL NODE

NAME LENGTH

SET·NAME

Figure D-9 In-Core OWNER Block

OWNER DBKEY contains the database key of the owner of the current set occurrence.

35

PRIOR OFFSET contains the offset in the owner record of its PRIOR pointer. If you did not specify LINKED TO
PRIOR, it is O.

NEXT OFFSET contains the offset in the owner record of its NEXT pointer.

INDEX OFFSET contains the offset to the pointer to the head of an index structure if the set is sorted.

SIZE OF INDEX BLOCK contains the number of words in the index block for the set.

INDEX NODE SIZE contains the size of a node in the index block.

CURRENT VERB INDEX is for error recovery purposes.

OWNER RECORD BLOCK contains the address of the RECORD block for the owner record of the set.

CURRENT OF SET contains the database key of the current record of the set.

NO CURRENT OF SET contains the canonical next of set if the current record was deleted or removed from the set.

POINTER TO MEMBERS contains an AOBJ pointer to a table of member blocks. Each word of the table contains
a pointer to the RECORD block of each member and a pointer to the MEMBER block of each member.

SYMBOL NODE contains a pointer to the symbol node.

D-8

Data Organization and Access

NAME LENGTH contains the length of the set-name.

SET NAME contains the set-name (in ASCII). It is a variable-length field up to 30 characters long.

0-9

Data Organization and Access

0.2.6 In-Core RECORD Block
A RECORD block is created in memory for each record type used in the sub-schema. The in-core RECORD block
is derived from the SCH RECORD line. The format of an in-core RECORD block is shown in Figure D-10.

o

2

3

4

5

6

7

8

9

10

II

12

13

14

15

16

17

18

0

LOC MODE

DOFF

~

~

~

~

~

~

18

FLAGS

TOTAL SIZE

DBKEY OF CURRENT RECORD

RECORD ID

PTR TO AREA TABLE

PTR TO DATA TABLE

PTR TO OWNER TABLE

PTR TO MEMBER TABLE

LOCATION INFORMATION

UW A LOCATION FOR

AREA-ID

SYMBOL NODE

NAME LENGTH

RECORD-NAME

Figure D-10 In-Core RECORD Block

LOC MODE contains the location mode:
o - none, i.e., the record is the system record
1 - DIRECT
2 - CALC
3 - VIA

FLAGS contains the following:
Bit 34 - record cannot be deleted because a set in which it belongs is not in the sub-schema.

35

Bit 35 - record cannot be stored/deleted because the set owned by the record is not in the sub-schema.

DOFF contains the data offset.

TOTAL SIZE contains the total number of words in the record.

DB KEY OF CURRENT RECORD contains the database key of the current occurrence of this record type.

RECORD ID contains the record type 10 of the record.

PTR TO AREA TABLE contains an AOBJ pointer to a table. Each word in the table contains two pointers. The
pointer in the right half points to an area in which the record can reside. The pointer in the left half points
to the WITHIN block associated with this area/record pair.

PTR TO DATA TABLE contains an AOBJ pointer to a table. Each word in the table contains a pointer in the right
half that points to each DATA block associated with the record.

0-10

Data Organization and Access

PTR TO OWNER TABLE contains an AOBJ pointer to a table. Each word in the table contains a pointer in the
right half to the owner block for the record.

PTR TO MEMBER TABLE contains an AOBJ pointer to a table. Each word in the table contains two pointers.
The pointer in the left half points to the MEMBER blocks for the record. The pointer in the right half points
to the OWNER blocks of the sets in which the record is a member.

LOCATION INFORMATION contains information that depends on the location mode:
If it is CALC - AOBJ pointer to a table of CALC keys.
If it is VIA - database key of the OWNER block of the set named in the VIA phrase.
If it is DIRECT - UW A address of the DIRECT identifier.

UWA LOCATION FOR AREA-ID contains a string pointer to the UWA location for the area-ID if one exists.

SYMBOL NODE contains a pointer to the symbol node that contains the record-name.

NAME LENGTH contains the length of the record-name.

RECORD-NAME contains the record-name in ASCII. It is a variable-length field up to 30 characters long.

D-II

Data Organization and Access

0.2.7 In-Core VIA Block
A VIA block is created in memory for each sort key or set occurrence selection key. It is created from the SCH VIA
line. The format of an in-core VIA block is shown in Figure 0-11.

o 35

°llr-____________________ ~ __ R_T_O __ DA_T_A __ SO_R_T __ FI_E_L_D_S ____________________ ~
. ~R TO INDEX SORT FIELDS

Figure 0-11 In-Core VIA Block

PTR TO OAT A SORT FIELDS contains an AOBJ pointer to a table. Each word in the table contains two values.
The value in the left half is the type of the key. The value in the right half is a pointer to the key in the record.

PTR TO INDEX SORT FIELDS contains an AOBJ pointer to a table. Each word in the table contains two values.
The value in the left half is the type of the key and the value in the right half is a pointer to the key in the
index node.

0-12

Data Organization and Access

0.2.8 In-Core WITHIN Block
For each area in which a record can reside, a WITHIN block is created in memory. Figure 0-12 shows this block.

o 35

°l~ ___ F_I_R_ST _____ P_A_G_E __ ~

. LAST PAGE

Figure 0-12 In-Core WITHIN Block

FIRST PAGE contains the number of the first page of the range of the record in the area. If you did not specify
a range, the first page of the area is used.

LAST PAGE contains the number of the last page of the range of the record in the area. If you did not specify a
range, the last page of the area is used.

0-13

Data Organization and Access

0.3 OVERHEAD
DBMS requires a certain amount of overhead to hold in memory such information as the linkages, the page headers,
and the line headers. You can estimate overhead in terms of records (lines), pages, files, and run-units.

0.3.1 Record Overhead
For each record type defined for the data base, you can use the following to determine the amount of overhead in
words for each record occurrence:

1. location mode is CALC 1 word
2. owner of set types
3. member of set types
4. LINKED TO OWNER in set types
5. LINKED TO PRIOR in set types

1 word per set
1 word per set
1 word per set
1 word per set

Add to the calculation 1 word for the line header, and you have found the overhead for each occurrence of this
record type. Consider the following examples:

EXAMPLE 1

The record type INVENTORY-RECORD is a CALC record, is the owner of 4 sets, participates as a member in
5 sets, is LINKED TO OWNER in 3 of these, and is LINKED TO PRIOR in one of them. Using the above overhead
determination you can calculate the record overhead as:

1 (for CALC chain)
4 (for owner of 4 sets)
5 (for member of 5 sets)
3 (for OWNER links)
1 (for PRIOR link)

14

Adding the word for the line header gives a total of 15 words of overhead for each occurrence of this record type.

EXAMPLE 2

The record type SUPPLIER-RECORD is a DIRECT record, and owns only one set. The line (record) overhead for
this record type would be one word for the line header and one word for being an owner. Thus each line on which
this record type appeared would have 2 words of overhead.

A stand-alone record - - i.e., one with no set linkages - - will have a minimum of two words of overhead.

There will be times when you will have to decide whether to repeat a certain item of data in more than one record
or to create a set to eliminate the data redundancy. If the redundant data would take up less than three or four
words in storage, the justification of set-link overhead would be questionable. That is, questionable from the point
of view of efficient use of storage. This has to be traded off against the undesirable aspect of having to update two
or more records in the data base.

D.3.2 Page Overhead
Page overhead consists of the number of words that compose the page header. In general, this overhead can be
calculated using the formula:

Page Overhead = 2 + number of CALC chains

The 2 is for the two fixed words in the page header. In Example 1, the page overhead would be 3 words; in
Example 2, it would be 2 words.

0-14

Data Organization and Access

D.3.3 File Overhead
In addition to page and line overhead, every OBS file has a three-word sector on the first page of the file used to
store the Area Status Record. This overhead is inherent to the system and cannot be altered.

If you have specified OWNER IS SYSTEM at all, overhead for the file will be increased by the number of pointers
in the system set.

D.3.4 Run-unit Overhead
For each run-unit, overhead depends on the number of sub-schemas invoked plus a fixed amount for OBCS. The
overhead consists of:

l. A OBCS internal control area (currently about 200 words).
2. An in-core data base (see Section 0.2) for each sub-schema. The size of this data base depends on the

number of blocks needed for the sub-schema.
3. A UWA for each sub-schema.
4. Buffers for each area opened at some time during execution of the run-unit. If an area is temporary, an

additional buffer is required for that area.

D.4 STORE ALGORITHM
As described in Section 2.2.3.2, OBCS uses the location mode specified for a record to locate the approximate page
on which to store a record. Once OBCS locates the approximate page, it stores a record in the same manner regard­
less of its location mode. That is, the location mode only specifies the algorithm that OBCS uses to find the page on
which to try to store the record occurrence. It tries to store a record occurrence on the first empty line on that page.
If there is no more room on the page, OBCS tries to store the record on the next page. If there is no room on that
page, OBCS calculates the next page on which to look for room by adding a prime number to the page number of
the last page it checked. It continues to do this (cycling back through the area from its beginning if necessary) until
either room is found for the record or all pages have been checked and there is no room, in which case OBCS returns
an exception code.

When OBCS finds an empty line for the record occurrence, it sets the record's pointers and, in the case of a CALC
record, adds the record to the CALC-chain on the page it originally calculated.

0-15

Abstract,
information in journal, 640
journal, 6-30, 6-33, 6-36

ABSTRACT DBMEND command, 6-36
Accessing the data base, 1-6
Activity,

status of data base, 2-15
Advantages of DBMS, 1-1
AFTER images, 1-9,2-11,3-10,6-28,6-46
Algorithm,

STORE, D-15
ALIAS phrase, 4-22
ALL exceptions, 3-4
Alphanumeric data-items,

elementary, 4-8
APPEND DBINFO command, 6-3
Appending to journal, 6-29
Area, 1-5

SYSTEM, 2-3, 3-8
AREA block,

in-core, D-3
Area entry,

schema, 4-3
sub-schema, 5-3

AREA line,
SCH, C-3

AREA SECTION statement, 5-3
AREA statement, 4-3
Area status record,

adjusting, 6-28, 6-34, 6-43
format, D-2

AREA TEMPORARY clause, 4-3
area-ID,2-7,4-7
Areas,

buffer in, 2-4,3-11
CALC-chains in, 2-4, 3-12
file specification of, 2-3, 3-8
naming, 2-2, 4-3
page ranges in, 2-3, 3-13
page sizes in, 2-3,3-14
privacy locks for, 2-2,4-3
record limits in, 2-3, 3-6, 3-9
record ranges in, 2-5, 3-15
sub-schema temporary, 5-3
temporary, 2-3,4-3
usage-modes of, 2-2,4-3

Areas (DBINFO),
closing, 6-4
opening, 6-6

INDEX

Index-1

Areas (DBMEND),
closing, 6-38
excluding, 6-42
forcing open, 6-43
opening, 6-48

Areas for records, 2-7, 4-7
Areas in sub-schemas, 5-3
ASCENDING/DESCENDING phrase, 4-21
ASSIGN statement, 3-8
AUTOMATIC set membership, 2-10, 4-19

Backup,
data base, 2-12, 3-3, 3-10, 6-28

Backup during a run-unit, 1-7
BACKUP statement, 3-1 °
BEFORE image, 1-7,2-11,3-10,6-28,6-46
Beginning of journal,

positioning at, 6-49
BIND exceptions, 3-4
Block,

format of a journal
information, 6-59

format of a journal label, 6-59
Block header,

format of a journal, 6-59
Boundaries,

journal, 6-56
Boundary,

end journal, 6-41, 6-56
leftmost journal, 6-53, 6-56
rightmost journal, 6-41, 6-56
start journal, 6-53, 6-56

BUFFER COUNT statement, 3-11
Buffers in areas, 2-4, 3-11
BUILD DBMEND command, 6-37

CALC location mode, 2-6, 4-6
CALC statement, 3-12
CALC-chains in areas, 2-4, 3-12
CALL exceptions, 34
CHAIN set mode, 2-7, 4-1 3
Changing the schema, 2-14
Characteristics,

set occurrence, 1-5
set type, 1-5

Clause,
AREA TEMPORARY, 4-3
LINKED TO OWNER, 4-20
LOCATION MODE, 4-6

CJause (Cont.),
MODE, 4-13
ORDER, 4-14
OWNER, 4-17
PICTURE, 4-8
PRIVACY, 4-3
RECORD NAME, 4-5
SET NAME, 4-12
SIZE, 4-8
TYPE, 4-8
WITHIN, 4-7

CLOSE DBINFO command, 6-4
CLOSE DBMEND command, 6-38
CLOSE DML statement, 1-7
Closing areas (DBINFO), 6-4
Closing areas (DBMEND), 6-38
Closing current journal, 6-55
COBOL DBMS module, 1-2
COBOL programs, 1-6
Command,

ABORT DAEMDB, 6-71
ABSTRACT DBMEND, 6-36
APPEND DBINFO, 6-3
BUILD DBMEND, 6-37
CLOSE DBINFO, 6-4
CLOSE DBMEND, 6-38
COMPLETE DBMEND, 6-39
CREATE DAEMDB, 6-72
CURRENT DAEMDB, 6-73
DISPLA Y DBINFO, 6-5
DISPLA Y DBMEND, 6-40
END DBMEND, 6-41
EXCLUDEDBMEND, 642
EXIT DAEMDB, 6-74
FORCEOPEN DBMEND, 6-43
GO DAEMDB, 6-75
HELP DAEMDB, 6-76
JOURNAL DBMEND, 644
LABEL DBMEND, 6-45
MERGE DBMEND, 646
MOUNT DAEMDB, 6-77
NOTRACE DBMEND, 6-47
OPEN DBINFO, 6-6
OPEN DBMEND, 6-48
PAGES DBINFO, 6-7
POLL DAEMDB, 6-78
POSITION DBMEND, 6-49
REELS DBMEND, 6-50
RESET DAEMDB, 6-79
RETRY DAEMDB, 6-80
REWIND DBMEND, 6-51

INDEX (Cont.)

Index-2

Command (Cont.),
SCHEMA DBINFO, 6-10
SCHEMA DBMEND, 6-52
SHUTDOWN DAEMDB, 6-81
SS DBINFO, 6-8
START DBMEND, 6-53
STOP DAEMDB, 6-82
SUPERSEDE DBINFO, 6-9
THRESHOLD DAEMDB, 6-83
TRACE DBMEND, 6-54
UNLOAD DBMEND, 6-55
WHAT DAEMDB, 6-84

Command units,
journal, 2-12

Commands,
DAEMDB, 6-71
DBINFO, 6-1
DBMEND, 6-33
image ordering by, 2-12, 3-3

COMPLETE DB MEND command, 6-39
Components of DBMS, 1-1
Concepts of DBMS, 1-2
Contents of journals, 6-29
CONTROL line,

SCH, C-5
/CREATE switch, 2-13
Creating the data base, 2-1
Current journal,

closing, 6-55
Current journal reel,

unloading, 6-55
CURRENT OF SET set occurrence selection,

2-11, 4-22

DAEMDB,
and temporary journal file, 6-66
as a timesharing job, 6-68
in teraction codes, 6-67
messages, 6-86
under PTYCON, 6-68

DAEMDB commands,
ABORT, 6-71
CREATE, 6-72
CURRENT, 6-73
EXIT, 6-74
GO, 6-75
HELP, 6-76
MOUNT, 6-77
POLL, 6-78
RESET, 6-79
RETRY, 6-80

DAEMDB commands (Cont.),
SHUTDOWN, 6-81
STOP, 6-82
THRESHOLD, 6-83
WHAT, 6-84

Data base, 1-1
accessing the, 1-6
backup, 2-12, 3-3, 6-28
creating the, 2-1
designing the, 2-1
getting information about, 6-5
10 cking the, 2-1 5
merging images into the, 6-29, 6-46
recovery, 2-12, 3-3, 6-28, 6-46
restoring the, 6-46

Data base abstracts, 6-33
Dat a base accessing language, 1-6
Data base activity,

status of, 2-15
Data base control system, 1-7
Data base description, 1-6
Data base design, 2-15
Data base line header,

format, D-l
Data Base Management System, 1-1
Data base page,

format, D-1
Data base resource, 2-15
Data base/run-unit interaction, 1-7
DATA block,

in-core, D-5
Data definition process, 2-14
Data description language,

schema, 1-6, 4-1
sub-schema, 1-6, 5-1

Data entry,
schema, 4-8

DATA line,
SCH, C-6

Data manipulation language, 1-6
Data-aggregate, 1-2,2-7,4-8,4-9
Data-items, 1-2

elementary alphanumeric, 4-8
elementary numeric, 4-9
precision of numeric, 4-9
scale factor of numeric, 4-9

Data-items in records, 2-7,4-8
Data-items in sub-schemas, 5-5
Database key, 1-5, 4-9

format, D-2
DBCS, 1-2, 1-7

INDEX (Cont.)

Index-3

DBINFO,
closing areas, 6-4
opening areas, 6-6
specifying page ranges for, 6-7
specifying schemas for, 6-10
specifying sub-schemas for, 6-8
using, 6-1

DBINFO commands, 6-1
APPEND, 6-3
CLOSE, 6-4
DISPLAY, 6-5
OPEN, 6-6
PAGES, 6-7
SCHEMA, 6-10
SS, 6-8
SUPERSEDE, 6-9

DBINFO error messages, 6-11
DBINFO example, 6-12
DBINFO output file,

specifying, 6-3, 6-9
DBINFO program, 1-2,2-15,6-1
DBMEND,

closing areas, 6-38
excluding areas, 6-42
forcing areas open, 6-43
identifying schema to, 6-52
opening areas, 6-48
stopping tracing during, 6-47
tracing during, 6-54

DBMEND commands, 6-34
ABSTRACT, 6-36
BUILD, 6-37
CLOSE, 6-38
COMPLETE, 6-39
DISPLA Y, 6-40
END, 6-41
EXCLUDE, 6-42
FORCEOPEN, 6-43
JOURNAL, 6-44
LABEL, 6-45
MERGE, 6-46
NOTRACE, 6-47
OPEN, 6-48
POSITION, 6-49
REELS, 6-50
REWIND, 6-51
SCHEMA, 6-52
START, 6-53
TRACE, 6-54
UNLOAD, 6-55

DBMEND error messages, 6-61

DBMEND error recovery, 6-64
DBMEND functions, 6-30
DBMEND program, 1-1, 2-15, 6-28
DBMS, 1-1

advantages of, 1-1
components of, 1-1
concepts of, 1-2

DBMS module,
COBOL, 1-2

DBMS object-time system, 1-7
DBMS utilities, 2-15,6-1
.DBS files, 2-3, 2-13

area status record, 6-28, 6-34, 6-43
DDL,

schema, 1-6, 4-1
sub-schema, 2-11, 5-1

Default transactions, 2-16
DELETE DML statement, 1-7
Designing the data base, 2-1
Device media control language, 1-6, 3-1
DIRECT location mode, 2-6, 4-6
Direction in the journal, 6-57
Directories, E-l
DISPLAY DBINFO command, 6-5
DISPLAY DBMEND command, 6-40
DISPLAY usage~mode, 4-9
DISPLA Y-6 usage-mode, 4-9
DISPLA Y-7 usage-mode, 4-9
DISPLA Y-9 usage-mode, 4-9
DMCL, 1-6,3-1
DMCL area entry, 3·7
DMCL environment entry, 3-2
DMCL INTERCEPT statement, 2-13
DMCL NOTE statement, 2-13
DML, 1-6
DML statement, 1·7

CLOSE, 1-7
DELETE, 1-7
FIND, 1-7
GET, 1-7
INSERT, 1-7
INVOKE, 1-7
OPEN, 1-7
REMOVE, 1-7
STORE, 1-7

DUPLICATES phrase, 4-14,4-21

Elementary alphanumeric data-items, 4-8
Elementary numeric data·items, 4-9
END DBMEND command, 6-41
End journal boundary, 6-41, 6-56

INDEX (Cont.)

Index-4

End of the journal,
marking, 6-39

END·SCHEMA statement, 5-8
Ending schemas, 5-8
ENQUEUE/DEQUEUE, 2-15
Error messages,

DBINFO, 6-11
DBMEND, 6-61
SCHEMA, B·l

Error recovery,
DBMEND, 6-64

Example,
DBINFO, 6-12
schema, 5-9
sub-schema, 5-9

Exception handling, 1-9
Exception interception, 1-9,2-13,3-4
Exceptions,

ALL, 34
BIND, 34
CALL, 3·4
SYSTEM, 34
UPDATE, 3-4

EXCLUDE DBMEND command, 642
Excluding areas (DBMEND), 6-42
EXCLUSIVE RETRIEVAL usage-mode, 2-2, 4-3
EXCLUSIVE UPDATE usage-mode, 2-2,4-3
Exception,

types of, 2-13

FILE block,
in-core, D-6

FILE line,
SCH, C-8

File overhead, D-15
File specification of areas, 2-3, 3-8
Files,

DBINFO output, 6-3, 6-9
.DBS, 2-3, 2-13
journal, 1-7,2-11,3-3,3-5,6-28
journal image-mode, 6-37
journal TMP, 6-61
opening journal, 6-44
.sCH, 2-13, C-1

FIND DML statement, 1-7
FIRST PAGE statement, 3-13
FIRST set order, 2-10,4-14
FORCEOPEN DBMEND command, 6-43
FORDML program, 1-2
Format of an area status record, D-l
Format of a data base line header, D-2

INDEX (Cont.)

Format of a data base page, D-l
Format of a database key, D-2
Format of a journal block header, 6-59
Format of a journal information block, 6-59
Format of a journal label block, 6-60
Format of a journal page, 6-58
Format of the journal, 6-58
FORTRAN programs, 1-6
FORTRAN usage-mode, 4-9

GET DML statement, 1-7
Getting information about data bases, 6-5

Header,
format of a journal block, 6-59

Host language, 1-6

Identifying schema to DBMEND, 6-52
Image ordering by command, 2-12, 2-16, 3-3
Image ordering by transaction, 2-12, 2-16, 3-3
Images,

AFTER, 1-9,2-11,3-10,6-28,6-46
BEFORE, 1-7,2-11,3-10,6-28,6-46

Images into the data base,
merging, 6-29, 6-46

IMAGES statement, 3-3
Including areas in sub-schemas, 5-3
Including data-items in sub-schemas, 5-5
Including records in sub-schemas, 5-4
Including sets in sub-schemas, 5-7
In-core blocks, D-2

AREA, D-3
DATA, D-5
FILE, D-6
MEMBER, D-7
OWNER, D-8
RECORD, D-I0
VIA, D-12
WITHIN, D-1 3

Information about data bases, 6-5
Information block,

format of a journal, 6-59
Information in journal abstracts, 6-40
INSERT DML statement, 1-7
INTERCEPT statement,

DMCL, 2-13, 3-4
Interception,

exception, 2-13, 3-4
Interleaving unit, 2-15
INVOKE DML statement, 1-7
ITEM line,

SCH, C-9

Index-5

Journal, 6-28
disk, 6-28, 6-66
magnetic tape, 6-66

Journal abstract, 6-28, 6-36, 6-40
Journal block header,

format of a, 6-59
Journal boundary, 6-56

end, 6-41, 6-56
leftmost, 6-53, 6-56
rightmost, 6-41, 6-56
start, 6-53, 6-56

Journal command units, 2-12
JOURNAL DBMEND command, 6-44
Journal files, 1-7,2-11,3-3,3-5,6-28

closing the current, 6-55
contents of, 6-29
direction in the, 6-57
format of the, 6-58
marking end of the, 6-39
motion in the, 6-57
opening, 6-44
positioning at beginning of, 6-51
positioning in the, 6-49, 6-58
rewinding the, 6-50
sharing the, 2-1 5
specifying, 6-29
temporary, 6-66

Journal image-mode file, 6-37
Journal information block,

format of a, 6-59
Journal label block,

format of a, 6-60
Journal label information, 6-45
Journal page,

format of a, 6-58
Journal reels,

specifying number of, 6-50
unloading current, 6-55

JOURNAL statement, 3-5
Journal TMP files, 6-61
Journal transaction units, 2-12

Keys,
database, 1-5, 4-9
range, 4-21
sort, 2-11, 4-20

Label block,
format of a journal, 6-60

LABEL DBMEND command, 6-45
Label information,

journal, 6-45

Language,
data base accessing, 1·6
data manipulation, 1·6
device media control, 1·6, 3·1
host, 1·6
schema data description, 1·6, 4·1
sub·schema data description, 5·1

LAST PAGE statement, 3·13
LAST set order, 2·10, 4·14
Leftmost journal boundary, 6·53, 6·56
Line in an area, 1·5
LINKED TO OWNER clause, 4·19
Location mode, 4·6

CALC, 2·6, 4·6
DIRECT, 2·6,4·6
VIA, 2·6, 4·6

Location mode of owner set occurrence
selection, 2·11, 4·22

Magnetic·tape journal, 6·66
page recovery with, 6·65
specifying, 6·66

MANDATORY set membership, 2·10,4·18
MANUAL set membership, 2·10,4-18
Marking end of the journal, 6·39
MEMBER block,

in·core, D· 7
Member entry,

schema, 4·17
MEMBER line,

SCH, C·10
Members,

naming, 4·17
set, 4-17

Membershi p,
AUTOMATIC set, 2-10,4·18
MANDATORY set, 2·10,4·18
MANUAL set, 2·10,4-18
OPTIONAL set, 2·10, 4·18

MERGE DBMEND command, 6·46
Merging images into the data base, 6-29, 646
Messages,

DAEMDB, 6-86
DBINFO error, 6-11
DBMEND error, 6-61
SCHEMA error, B-1

MODE clause, 4·13
Motion in the journal, 6·57

Naming areas, 2·2, 4·3
Naming members, 4-17

INDEX (Cont.)

Index·6

Naming owners, 4·16
Naming records, 2·6, 4·5
Naming schemas, 4-1
Naming sets, 2.7, 4-12
Naming sub·schemas, 5·2
Netword structure, 1-3
NEXT pointers, 2·8, 4·13
NEXT set order, 2·10, 4·14
/NOCREA TE switch, 2·13
NOTE statement, 34

DMCL, 2·13
NOTRACE DBMEND command, 6-47
Number of journal reels, 6·50
Numeric data·items,

e Ie men tary , 4·9
precision of, 4·9
scale factor of, 4-9

Object-time system,
DBMS, 1·7

Occurren ces,
record, 1·2
set, 1-3

OPEN DBINFO command, 6-6
OPEN DBMEND command, 6·48
OPEN DML statement, 1-7
OPEN JOURNAL statement, 6-29
Opening areas (DBINFO), 6·6
Opening areas (DBMEND), 6·48
Opening journal files, 6·44
OPTIONAL set membership, 2·10, 4-18
ORDER clause, 4·14
Output me,

DBINFO, 6-3, 6-9
Overhead, D-14

file, D·15
page, D·14
record, D-14
run-unit, D·15

OWNER block,
in-core, D·8

OWNER clause, 4-16
LINKED TO, 4-20

OWNER line,
SCH, C-l1

OWNER pointers, 2·8, 4-20
Owners,

naming, 4-16
set, 1·3,2·10,4-16

Page, 1-5
format of a journal, 6-58
logical, 3-14
physical, 3-14

Page overhead, D-14
Page ranges for DBINFO, 6-7
Page ranges in areas, 2-3, 3-13
PAGE SIZE statement, 3-14
Page sizes in areas, 2-3, 3-14
PAGES DBINFO command, 6-7
Phrase,

ALIAS, 4-22
ASCENDING/DESCENDING, 4-21
DUPLICATES, 4-14,4-21
SET OCCURRENCE SELECTION, 4-22
USING, 4-22

PICTURE clause, 4-8
Pointers,

NEXT, 2-8,4-13
OWNER, 2-8, 4-20
PRIOR, 2-8, 4-13
set, 1-3

POSITION DBMEND command, 6-49
Positioning at beginning of journal, 6-51
Positioning in the journal, 6-49, 6-58
Precision of numeric data-items, 4-9
PRIOR pointers, 2-8, 4-13
PRIOR set order, 2-10,4-14
PRIVACY clause, 4-3
Privacy locks,

areas, 2-2, 4-3
sub-schema, 2-11, 5-2

Program,
DAEMDB, 6-66
DBCS, 1-2
DBINFO, 1-2,2-15,6-1
DBMEND, 1-1,2-15,6-28
FORDML, 1-2'
SCHEMA, 1-1,2-13
TRANSL, E-1

Programs,
COBOL, 1-6
FORTRAN, 1-6

Project-programmer numbers, E-1
PROTECTED RETRIEVAL usage-mode,

2-2,4-3
PROTECTED UPDATE usage-mode, 2-2,2-15

Range keys, 4-20
RANGE statement, 3-15

Ranges in areas,
page, 2-3,3-13
record, 2-5, 3-15

RECORD block,
in-core, D-l °

Record en try,
schema, 4-4
sub-schema, 5-4

Record limits in areas, 2-3,3-6,3-9
RECORD line,

SCH, C-12
RECORD NAME clause, 4-5
Record occurrences, 1-2
Record overhead, D-14
Record ranges in areas, 2-5,3-15
RECORD SECTION statement, 5-4
Record type IDs, 2-6,4-5

in schema file, C-1
Record types, 1-2
Records, 1-2

areas for, 2-7,4-7
data-aggregates in, 2-7,4-8
data-items in, 2-7,4-8
location modes of, 2-6,4-6
naming, 2-6,4-5

Records in sub-schemas, 5-4
RECORDS-PER-PAGE statement, 3-6,3-9
Recovery,

data base, 2-12,3-3,6-28,6-46
DBMEND error, 6-64
during a run-unit, 1-7

Index-7

Reels,
specifying number of journal, 6-50
unloading current journal, 6-55

REELS DBMEND command, 6-50
REMOVE DML statement, 1-7
Reserved words, A-I
Restoring the data base, 6-46
RETRIEVAL usage-mode, 2-2, 2-15, 4-3
REWIND DBMEND command, 6-51
Rewinding the journal, 6-51
Rightmost journal boundary, 6-41,6-56
Ring structure, 1-3
Running DAEMDB, 6-67

as a timesharing job, 6-68
under PTYCON, 6-68

Running SCHEMA program, 2-13
Run-unit, 1-6

backup during a, 1-7
overhead, 0-15
recovery during a, 1-7

Run-unit IDs, 6-29,6-40,6-41

Scale factor of numeric data-items, 4-9
SCH files, 2-13, C-l
SCH lines, C-l

AREA, C-3
CONTROL, C-5
DATA, C-6
FILE, C-8
ITEM, C-9
MEMBER, C-10
OWNER, C-11
RECORD, C-12
SCHEMA, C-14
SUB-SCHEMA, C-15
TEXT, C-16
VIA, C-17
WITHIN, C-18

Schema, 1-6
changing the, 2-14
ending the, 5-8
naming the, 4-2

Schema area entry, 4-3
Schema data description language, 1-6,4-1
Schema data entry, 4-8
SCHEMA DBINFO command, 6-10
SCHEMA DBMEND command, 6-52
Schema DDL, 4··1
Schema entry, 4-2
SCHEMA error messages, B-1
Schema example, 5-9
Schema me, 2-13, C-l

set relationships in, C-2
SCHEMA line,

SCH, C-14
Schema member entry, 4-17
SCHEMA program, 1-1

running, 2-13
Schema record entry, 4-4
Schema record type IDs, C-l
Schema set entry, 4-10
SCHEMA statement, 4-2
Set, 1-2

naming, 2-7,4-12
singular, 1-5
SYSTEM, 1-5

Set entry,
schema, 4-10
sub-schema, 5-7

Set members, 2-10,4-17
Set membership, 2-10,4-18

AUTOMATIC, 2-10,4-18
MANDATORY, 2-10,4-18

INDEX (Cont.)

Index-8

Set membership (Cont.),
MANUAL, 2-10,4-18
OPTIONAL, 2-10,4-18

Set mode,
CHAIN, 2-7,4-13

SET NAME clause, 4-12
Set occurrence selection, 2-11

CURRENT OF SET, 2-11,4-21
LOCATION MODE OF OWNER, 2711,4-21

SET OCCURRENCE SELECTION phrase, 4-21
Set occurrence, 1-3

characteristics, 1-5
Set order, 2-10,4-14

ARST, 2-10,4-14
LAST, 2-10,4-14
NEXT, 2-10,4-14
PRIOR, 2-10,4-14
SORTED, 2-10, 4-14

Set owners, 1-3,2-10,4-16
Set pointers, 1-3
Set relationships in schema file, C-2
SET SECTION statement, 5-7
Set types, 1-3

characteristics, 1-5
Sets in sub-schemas, 5-7
Simultaneous-update, 2-15

design considerations, 2-15
ENQUEUE/DEQUEUE, 2-16
usage-modes, 2-15
using, 2-15

Singular set, 1-5
SIZE clause, 4-8
Sort keys, 2-11,4-20
SORTED set order, 2-10,4-14
Specifying DBINFO output file, 6-3,6-9
Specifying journals, 6-29
Specifying number of journal reels, 6-49
Specifying page ranges for DBINFO, 6-7
Specifying schemas for DBINFO, 6-10
Specifying sub-schemas for DBINFO, 6-8
SS DBINFO command, 6-8
START DBMEND command, 6-53
Start journal boundary, 6-53,6-56
Statement,

AREA, 4-3
AREA SECTION, 5-3
ASSIGN, 3-8
BACKUP, 3-10
BUFFER COUNT, 3-11
CALC, 3-12
CLOSE DML, 1-7

INDEX (Cont.)

Statement (Cont.),
DELETE DML, 1·7
DML, 1·7
END·SCHEMA, 5·8
FIND DML, 1·7
FIRST PAGE, 3·13
GET DML, 1·7
IMAGES, 3·3
INSERT DML, 1·7
INTERCEPT, 2·13,34
INVOKE DML, 1· 7
JOURNAL, 3·5
LAST PAGE, 3·13
NOTE, 2-13, 34
OPEN DML, 1-7
PAGE SIZE, 3-14
RANGE, 3-15
RECORD SECTION, 54
RECORDS-PER-PAGE, 3-6,3·9
REMOVE DML, 1-7
SCHEMA,4-2
SET SECTION, 5-7
STORE DML, 1-7
SUB-SCHEMA, 5-2

STATS subprogram, 2-15
Status of data base activity, 2-15
Stopping tracing during DBMEND, 647
STORE algorithm, D-15
STORE DML statement, 1-7
Structure,

netword, 1-3
ring, 1-3
tree, 1-3

Sub-schema, 1-6
Sub-schema area entry, 5-3
Sub-schema data description language, 2-11, 5-1
Sub-schema DDL, 2·11, 5-1
Sub-schema entry, 5-2
Sub-schema example, 5-9
SUB-SCHEMA line,

SCH, C-15
Sub-schema privacy locks, 2-11, 5-2
Sub-schema record entry, 54
Sub-schema set entry, 5-7
SUB-SCHEMA statement, 5-2
Sub-schema temporary areas, 5-3
Sub-schemas, 2·11

including areas in, 5-3
including data-items in, 5-5
including records in, 54
incl uding sets in, 5-7
naming, 5-2

Sub·schemas for DBINFO,
specifying, 6·8

Subprogram,
STATS, 2-15

SUPERSEDE DBINFO command, 6-9
Switch (SCHEMA),

/CREATE, 2·13
/NOCREATE, 2-13

SYSTEM area, 2·3,3-8
System communication locations, 1-7
SYSTEM exceptions, 34
SYSTEM record, 4-17
SYSTEM set, 1·5

Temporary areas, 2-3,4·3
sub-schema, 5-3

TEMPORARY clause,
AREA, 4-3

TEXT line,
SCH, C-16

TMP files,
journal, 6-61

TRACE DBMEND command, 6-54
Tracing during DBMEND, 6-54

stopping, 647
Transaction,

default, 2-16
image ordering by, 2·12,2-15,3-3
with simultaneous-update, 2-15

Transaction units,
journal, 2-12

TRANSL program, E-1
Tree structure, 1-3
TYPE clause, 4-8
Types,

Index-9

record, 1-2
set, 1-3

Types of exceptions, 2-13,34

UNLOAD DBMEND command, 6-55
Unloading current journal reel, 6-55
UPDATE exceptions, 2-15,34
Usage-mode,

DISPLAY, 4-9
DISPLAY·6, 4-9
DISPLAY·7, 4-9
DISPLAY-9, 4-9
EXCLUSIVE RETRIEVAL, 2-2,4-3
EXCLUSIVE UPDATE, 2-2, 4-3
PROTECTED RETRIEVAL, 2-2,4-3

Usage-mode (Cont.),
PROTECTED UPDATE, 2-2,2-15
RETRIEVAL, 2-2, 4-3, 2-15

Usage-modes,
FORTRAN, 4-9

Usage-modes of areas, 2-2,4-3
User working area, 1-7
Using DBINFO, 6-1
USING phrase, 4-22
Using project-programmer numbers, E-1
Utilities,

DBMS, 2-18,6-1
UWA, 1-7

INDEX (Cont.)

VIA block,
in-core, D-12

VIA line,
SCH, C-17

VIA location mode, 2-6,4-6
Volume-id, 6-68

WITH block,
in-core, D-13

WITHIN clause, 4-7
WITHIN line,

SCH, C-18

Index-l0

Q)

I::

I~
I:§
I§
~
.....
::3
u

READER'S COMMENTS

DECsystem-lO
Data Base Management
System Administrator's
Procedures Manual
AA-0899C-TB

NOTE: This form is for document comments only. Problems with software should be reported on a Software
Performance Report (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Is there sufficient documentation on associated system programs required for use of the software described in this
manual? If not, what material is missing and where should it be placed?

Q)
til ro
Q) Please indicate the type of user/reader that you most nearly represent. ee

D Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Non-programmer interested in computer concepts and capabilities

Name Date ____________________ _

Organization _____________________________________ _

Street ______________________________________ ~ ____________ __

City ___________________ State _______ _ Zip Code _________ _

or
Country

If you require a written reply, please check here. D

---Fold lIere--

-- Do Not Tear - Fold lIere and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Documentation

200 Forest Avenue MRI-2/E37

Marlboro, Massachusetts 01752

FIRST CLASS

PERMIT NO. 152

MARLBORO, MASS.

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	6-57
	6-58
	6-59
	6-60
	6-61
	6-62
	6-63
	6-64
	6-65
	6-66
	6-67
	6-68
	6-69
	6-70
	6-71
	6-72
	6-73
	6-74
	6-75
	6-76
	6-77
	6-78
	6-79
	6-80
	6-81
	6-82
	6-83
	6-84
	6-85
	6-86
	6-87
	6-88
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	index-07
	index-08
	index-09
	index-10
	replyA
	replyB

