
TOPS-10/TOPS-20
FORTRAN Language Manual

AA-N383B-TK,AD-N383B-T1

February 1 987

This document describes the language elements of
FORTRAN-10 and FORTRAN-20.

This manual supersedes the TOPS-10jTOPS-20
FORTRAN Language Manual, order number
AA-N383B-TK.

Operating System and Version: TOPS-10 V7.03
TOPS-20 V4.1 (KS)
TOPS-20 V6. 1 (KL)

Software Version: FORTRAN-10 V 11
FORTRAN-20 V 11
LlNK-10 V5.1
LlNK-20 V6
RMS-20 V3

digital equipment corporation
maynard, massachusetts

First Printing, February 1983
Revised, May 1985
Updated, February 1987

Copyright © 1983, 1987 by Digital Equipment Corporation. All Rights Reserved.

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear in
this document.

The software described in this document is furnished under a license and may only
be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that
is not supplied by Digital Equipment Corporation or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

DEC PjOS VAX
DECmate Professional VAXBI
DECUS Q-BUS VAXELN
DECwriter Rainbow VMS
DIBOL RSTS VT
MASSBUS RSX Work Processor
MicroVAX RT

~DrnDIl~D PDP UNIBUS

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist us in preparing future documentation.

PREFACE

CHAPTER 1

1.1
1.2
1.2.1
1.2.2
1.2.3
1.2.4

CHAPTER 2

2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.4

CHAPTER 3

3.1
3.2
3.3
3.4
3.4.1
3.5
3.6
3.7
3.8
3.9
3.10

CHAPTER 4

4.1
4.2
4.3
4.3.1
4.3.2
4.3.3
4.4

CHAPTER 5

5.1
5.1.1

CONTENTS

INTRODUCTION

OVERVI EW • • • • • • • • • • • • • •
MANUAL ORGANIZATION ••• • • • • • •

FORTRAN Language Elements (Part I) ••••
FORTRAN Statements (Part II) ••••
FORTRAN Language Usage (part III)
APPENDIXES • • • • • •

CHARACTERS AND LINES

• • • 1-1
• 1-1

• • • 1-2
• 1-2

• • 1-3
1-4

CHARACTER SET • • • • • • • • • • • • • • • 2-1
STATEMENT DEFINITION AND FORMAT • • • • • • • • • 2-2

Statement Label Field and Statement Numbers 2-3
Line Continuation Field • • 2-3
Statement Field •••• • • 2-4
Remark Field • • • • • • • • • • 2-4

LINE TYPES • • • • • • • • • • • • • • • 2-4
Initial and Continuation Lines • 2-4
Multi-Statement Lines • • • • • 2-5
Comment Lines and Remarks •••• • • 2-5
Debug Lines ••••••• • • • • 2-6
Blank Lines ••••••••••••• • 2-7

LINE-SEQUENCED SOURCE FILES • • • • • • 2-7

CONSTANTS

INTRODUCTION • • • • • • • • • • • • • • • • 3-1
INTEGER CONSTANTS •••• • • • • 3-1
REAL CONSTANTS • • • • • • • 3-2
DOUBLE-PRECISION CONSTANTS • • • • • • • • • • • • 3-2

Comparison of Real, D-floating, and G-floating • 3-3
COMPLEX CONSTANTS • • • • • • • 3-4
CHARACTER CONSTANTS ••••••••••• •• 3-4
OCTAL AND DOUBLE-OCTAL CONSTANTS • 3-5
LOGICAL CONSTANTS •••• • 3-6
HOLLERITH CONSTANTS •••• ••• • 3-6
STATEMENT LABEL CONSTANTS • • • • • • 3-7

SYMBOLIC NAMES, VARIABLES, AND ARRAYS

SYMBOLIC NAMES • • • • • •
VARIABLES •••••••••
ARRAYS • • • • • • • • • • • • • •

Array Element Subscripts ••••••••
Dimensioning Arrays • • • •
Order of Stored Array Elements •

• • 4-1
4-2

• 4-3
• • • • 4-3

• 4-4
• 4-5

CHARACTER SUBSTRINGS • • • • • • • • • • • • • 4-6

EXPRESSIONS

ARITHMETIC EXPRESSIONS • • • • • • • • • •
Rules for Writing Arithmetic Expressions

• • 5-1
• 5-2

iii February 1987

5.1.2
5.1.2.1
5.2
5.2.1
5.3
5.3.1
5.4
5.5
5.5.1
5.5.2
5.5.3
5.5.4

5.6

CHAPTER 6

6.1
6.2
6.3
6.4
6.4.1
6.4.2

CHAPTER 7

7.1
7.1.1
7.1.2
7.2
7.2.1
7.2.2
7.3
7.4
7.4.1
7.4.2
7.5
7.5.1
7.6
7.7
7.8
7.9
7.10

CHAPTER 8

8.1
8.2
8.3
8.4

CHAPTER 9

9.1
9.1.1
9.1.2
9.1.3
9.2
9.2.1
9.2.2

Arithmetic Constant Expressions •••••• 5-5
Integer Constant Expression • 5-5

CHARACTER EXPRESSIONS ••••••••• • • 5-6
Character Con~tant Expression •••••• 5-7

LOGICAL EXPRESSIONS ••• • • • • • • • ••• 5-7
Logical Constant Expression •••• 5-10

RELATIONAL EXPRESSIONS • • • • • 5-11
EVALUATION OF EXPRESSIONS 5-13

Parenthetical Subexpressions • • 5-13
Hierarchy of Operators • • • • • • 5-14
Mixed-Mode Expressions • • ••• 5-15
Use of Logical Operands in Mixed-Mode
Expressions • • •• •••• 5-15

CONSTANT EXPRESSIONS • • • • • • • • • • • 5-15

EXECUTABLE AND NONEXECUTABLE STATEMENTS

EXECUTABLE STATEMENTS
NONEXECUTABLE STATEMENTS • • • • • • • •
ORDERING OF FORTRAN STATEMENTS •
COMPILATION CONTROL STATEMENTS •

PROGRAM Statement
INCLUDE Statement •••••

SPECIFICATION AND DATA STATEMENTS

DIMENSION STATEMENT •••• • • • • •
Adjustable Dimensions •••••
Assumed-size Arrays •••••••••

TYPE SPECIFICATION STATEMENTS
Numeric Type Specification Statements
Character Type Specification Statements

IMPLICIT STATEMENTS ••••••••••••
COMMON STATEMENT • • • • • • • • • • • • • •

Dimensioning Arrays 'in COMMON Statements •
Character Data in COMMON • • • • • •

EQUIVALENCE STATEMENT • • • • • • •

• • 6-1
• • • 6-2

• 6-2
• • • 6-4

• • 6-4
• • 6-4

• • • 7-1
• • • 7-3
• • • 7-4

• • 7-4
• • 7-5

• 7-6
• 7-7

• • • 7-8
7-10
7-10

EQUIVALENCE and Extended Addressing •••••
EXTERNAL STATEMENT • •

7-11
7-17
7-17

INTRINSIC STATEMENT
PARAMETER STATEMENT
DATA STATEMENT •
SAVE STATEMENT • • •

ASSIGNMENT STATEMENTS

7-18
7-20
7-21
7-24

• 8-1
8-3

ARITHMETIC ASSIGNMENT STATEMENT •• • • • • • •
LOGICAL ASSIGNMENT STATEMENTS • • • • • • • •
ASSIGN (STATEMENT LABEL) ASSIGNMENT STATEMENT
CHARACTER ASSIGNMENT STATEMENT • • • • • • • •

8-3
• • 8-4

CONTROL STATEMENTS

GO TO STATEMENTS • • • • • • • • • •
Unconditional GO TO Statements •
Computed GO TO Statements
Assigned GO TO Statements

IF STATEMENTS ••••••••••••••
Arithmetic IF Statements ••••••••
Logical IF Statements

• • 9-1
• 9-2

• • • 9-2
9-3
9-3
9-3

• 9-4

iv February 1987

9.2.3
9.2.4
9.2.4.1
9.2.4.2
9.2.4.3
9.3
9.3.1
9.3.1.1
9.3.1.2
9.3.2
9.3.3
9.3.4
9.3.5
9.3.6
9.4
9.5
9.6
9.7
9.8

CHAPTER 10

10.1
10.2
10.2.1
10.2.2
10.2.3
10.3
10.3.1
10.3.1.1
10.3.2
10.3.3
10.4
10.4.1
10.4.2
10.4.3
10.4.3.1
10.4.3.2
10.4.4

10.4.5
10.4.5.1
10.4.5.2
10.4.5.3
10.4.6

10.4.7
10.4.8

Logical Two-Branch IF Statements •
Block IF Statements •••••

Statement Blocks • • • • •

• • 9-4
• • 9-5
• • 9-8

9-8 Block IF Examples •••••••••••
Nested Block IF Constructs • • • • 9-9

DO STATEMENT • • • • • •
Indexed DO Statement • • • • • • • •

Executing an Indexed DO Statement
DO Iteration Control • • • •

DO WHILE Statement • • • • •
The Range of a DO Statement
Nested DO Statements • • • • •
Extended Range • • • • • • • •
Permitted Transfer Operations •••••

END DO STATEMENT •
CONTINUE STATEMENT •
STOP STATEMENT • • • • •
PAUSE STATEMENT • • • •
END STATEMENT • • • •

DATA TRANSFER STATEMENTS

DATA TRANSFER OPERATIONS
DATA ACCESS ••••••

Sequential Access
Direct Access ••••
Keyed Access (TOPS-20 RMS)

FORMATTED AND UNFORMATTED DATA TRANSFERS • •
Formatted Data Transfers • •

9-10
9-10
9-12
9-12
9-13
9-14
9-14
9-15
9-16
9-17
9-17
9-18
9-19
9-20

10-5
10-5
10-6
10-6
10-6
10-6

Internal Files • • • • • • • • • •
10-7
10-8
10-8 Unformatted Data Transfers • •

Unformatted Data Transfer to ASCII Devices
DATA TRANSFER STATEMENT FORMS • • • •

Data Transfer Statement Names • • • • • •

10-8
10-9
10-9
10-9 Data Transfer Control-Information List • •

Unit References in Data Transfer Statements
FORTRAN Logical Unit Identifier •••••
Internal File Identifier • • • • • • • • •

Record Number References In Data Transfer

• 10-11
• 10-11
• 10-13

Statements • • • • • • • • • • • • • • • • • • 10-13
Format References in Data Transfer Statements 10-14

FORMAT-Statement Formatting •••••••• 10-15
List-Directed Formatting • • • • • 10-16
NAMELIST-Statement Formatting ••••••• 10-17

Optional End-of-File Transfer of Control
(END=) • • • • • • • • • • • • • • • • • • 10-18
Optional Data Transfer Error Control (ERR=) • 10-19
Optional Error Variable For Error Reporting
(IOSTAT=) •••••••••••••••••• 10-20

10.4.9 Key-Field-Value Specifier (TOPS-20 RMS) • 10-21
10.4.9.1 Key Attributes. • • • • • • • • • • • 10-23
10.4.10 Key-of-Reference Specifier. • • • • • •• 10-23
10.4.11 Data Transfer Statement Input/Output Lists •• 10-23
10.4.11.1 Simple List Elements. • • • • • • • 10-24
10.4.11.2 Implied DO Lists. • • • • • • • • 10-25
10.5 READ STATEMENT • • • • • • • • • • • • • • 10-27
10.5.1 Formatted READ Transfers. • • • • • • • 10-29
10.5.1.1 Sequential FORMAT-Statement READ •••••• 10-29
10.5.1.2 Direct-Access FORMAT-Statement READ •• 10-30
10.5.1.3 Sequential List-Directed READ • 10-30
10.5.1.4 Sequential NAMELIST-Statement READ. • 10-31
10.5.2 Unformatted READ Transfers. • • •• 10-32
10.5.2.1 sequential Unformatted READ • 10-32

v February 1987

CHAPTER

10.5.2.2 Direct-Access Unformatted READ. • ••• 10-33
10.5.3 Indexed READ Transfers (TOPS-20) ••• 10-33
10.5.3.1 Sequential Indexed READ •••••••••• 10-34
10.5.3.2 Formatted Indexed READ •••• 10-34
10.5.3.3 Unformatted Indexed READ •••• • 10-35
10.6 WRITE STATEMENT • • • • • • • • 10-35
10.6.1 Formatted WRITE Transfers • • • • • 10-37
10.6.1.1 Sequential FORMAT~Statement WRITE ••• 10-37
10.6.1.2 Direct-Access FORMAT-Statement WRITE •••• 10-38
10.6.1.3 Sequential List-Directed WRITE ••••••• 10-39
10.6.1.4 Sequential NAMELIST-Statement WRITE •• 10-40
10.6.2 Unformatted WRITE Transfers •• 10-40
10.6.2.1 Sequential Unformatted WRITE. • • • •• 10-41
10.6.2.2 Direct-Access Unformatted WRITE ••• 10-41
10.6.3 Writing to RMS Files (TOPS-20) • • • ••• 10-42
10.7 REREAD STATEMENT. • • • • • • • • • • 10-43
10.7.1 Sequential FORMAT-Statement REREAD. • 10-43
10.7.2 Sequential List-Directed REREAD ••••• 10-44
10.8 ACCEPT STATEMENT. • • • • • • • • • • • •• 10-45
10.8.1 Sequential FORMAT-Statement ACCEPT • 10-45
10.8.2 Sequential List-Directed ACCEPT •• 10-46
10.9 TYPE STATEMENT. • • • • • • • • • • • 10-47
10.9.1 Sequential FORMAT-Statement TYPE. • • 10-48
10.9.2 Sequential List-Directed TYPE • 10-49
10.10 PRINT STATEMENT ••• • • • • • • • • • 10-50
10.10.1 Sequential FORMAT-Statement PRINT • • •• 10-50
10.10.2 Sequential List-Directed PRINT. •• • •• 10-51
10.11 PUNCH STATEMENT • • • • • • • • • • • 10-52
10.11.1 Sequential FORMAT-Statement PUNCH •••••• 10-53
10.11.2 Sequential List-Directed PUNCH. • • • • 10-53
10.12 INTERNAL FILES AND ENCODE/DECODE STATEMENTS •• 10-54
10.12.1 Internal READ and WRITE Statements • 10-55
10.12.2 ENCODE and DECODE Statements. • •••• 10-56
10.13 DELETE STATEMENT (TOPS-20) • • • •••• 10-59
10.13.1 Current-Record DELETE •••••••••• 10-60
10.13.2 Direct-Access DELETE. • • • • •••• 10-60
10.14 REWRITE STATEMENT (TOPS-20) •••• • 10-60
10.14.1 Formatted REWRITE • • • • • • 10-61
10.14.2 Unformatted REWRITE Statement ••••• 10-61
10.15 UNLOCK STATEMENT (TOPS-20) • • • • 10-62

11 FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

11.1 FILE-CONTROL STATEMENTS · · · · 11-1
11.2 OPEN STATEMENT . . · · · · · 11-1
11.2.1 Impl ic i t OPEN . · · · · · 11-3
11.2.2 OPEN on a Connected Unit · 11-4
11.3 OPEN STATEMENT SPECIFIERS · · · · 11-4
11.3.1 ACCESS Specifier · · · · · · · 11-7
11.3.2 ASSOCIATEVARIABLE Spec! f ier 11-8
11.3.3 BLANK Specifier · · · · · · . · 11-9
11.3.4 BLOCKSIZE Specifier · · · · . · · · 11-10
11.3.5 BUFFERCOUNT Specifier · 11-11
11.3.6 BYTESIZE Specifier · · · · 11-12
11.3.7 CARRIAGECONTROL Specifier · · · · · · · 11-12
11.3.8 DEFAULTFILE Specifier (TOPS-20) · · 11-14
11.3.9 DENSITY Specifier · · · · · · · · · · 11-15
11.3.10 DEVICE Specifier · · · · · · · · · · 11-15
11.3.11 DIALOG Specifier · · · · · · · · · · · · 11-16
11.3.12 DIALOG= Specifier · · · · · · · · · · · · 11-16
11.3.13 DIRECTORY Specifier (TOPS-10) · 11-17
11.3.14 DIRECTORY Specifier (TOPS-20) · · 11-18
11.3.15 DISPOSE Specifier · · · · · · · · · 11-19

vi February 1987

ERR Specifier •••••••••••••••• 11-20
FILE Specifier •••••••••••••••• 11-20

Remote File Specifications (TOPS-20) •••• 11-21
FILESIZE (INITIALIZE) Specifier (TOPS-10) •• 11-21
FORM Specifier • • • • • • • • • • 11-22
IOSTAT Specifier • • • • • • • 11-23
KEY Specifier (TOPS-20) • • • • • • • 11-24
LIMIT Specifier ••••• • 11-25
MAXREC Specifier (TOPS-20) • • • • • 11-25
MODE Specifier • • • • • •••• 11-26
NAME Specifier ••• ~ • • • • • • 11-28
NOSPANBLOCKS Specifier (TOPS-20) • • • • • 11-28
ORGANIZATION Specifier (TOPS-20) • 11-29
PADCHAR Specifier •••••••••••• 11-29
PARITY Specifier • • • • • • • • •• 11-30
PROTECTION Specifier (TOPS-10) •••••••• 11-30
PROTECTION Specifier (TOPS-20) 11-32
READONLY Specifier • • • • • • •• 11-34
RECL (RECORDSIZE) Specifier ••••••• 11-34
RECORDTYPE Specifier • • • • • • • • • • 11-36
SHARED Specifier (TOPS-20) •••• I1-j8
STATUS (TYPE) Specifier •••••• • 11-39
TAPEFORMAT SPECIFIER • • • • • 11-41
UNIT Specifier (Required) •• • ••••• 11-42
USEROPENSpecifier (TOPS-20) •• 11-42
VERSION Specifier (TOPS-10) ••••••••• 11-43

11.3.16
11.3.17
11.3.17.1
11.3.18
11.3.19
11.3.20
11.3.21
11.3.22
11.3.23
11.3.24
11.3.25
11.3.26
11.3.27
11.3.28
11.3.29
11.3 .. 30
11.3.31
11.3.32
11.3.33
11.3 .. 34
11.3.35
11.3.36
11.3.37
11.3.38
11.3.39
11.3.40
11.4
11.4.1
11.5
11.5.1

CLOSE STATEMENT •• • • • • • • • 11-43
Impl ic it CLOSE • '. • • • • • • • 11-44

CLOSE STATEMENT SPECIFIERS • • • • • • 11-44
DEVICE, DIRECTORY, FILE, NAME, and PROTECTION
Specifiers • • • •• • •••••••••• 11-46
DIALOG Specifier • • ••••• 11-46
DIALOG= Specifier ••••• 11-47
DISPOSE Specifier • 11-47
ERR Specifier •• • •••••••• 11-49
IOSTAT Specifier • • • • • • • • 11-49
LIMIT Specifier • • •••• 11-49
STATUS Specifier • • • • • • •••• 11-50
UNIT Specifier (Required) •• 11-51

11.5.2
11.5.3
11.5.4
11.5.5
11.5.6
11.5.7
11.5.8
11.5.9
11.6 OPEN AND CLOSE STATEMENT EXAMPLES • 11-51

INQUIRE STATEMENT • • • • • • 11-52 11.7
11.7.1
11.,7.2
11.7.3
11.7.3.1
11.7.3.2
11.7.3.3
11.7.3.4
11.7.3.5
11. 7 • 3 .. -6
11.7.3.7
11.7.3.8
11.7.3.9
11.7.3.10
11.7.3.11
11.7.3.12
11.7.3.13
11.7.3.14
11.7.3.15
11.7.3.16
11.7.3.17
11.,7.3.18
11.7.3.19
11.7.3.20

INQUIRE by File • • • • • • 11-52
INQUIRE by Unit •• • • • • • • 11-53
INQUIRE Specifiers • • • • • •• 11-54

ACCESS Specifier • • • 11-54
BLANK Specifier. •• • • • 11-54
BYTESIZE Specifier • • • • • • • • • •• 11-54
CARRIAGECONTROL Specifier •••• • • 11-54
DIRECT Specifier • • • 11-55
ERR Specifier • • • • • 11-55
EXIST Specifier • • • • • • • 11-55
FORM Specifier • • • • • • • • • • • • • 11-56
FORMATTED Specifier ••• 11-56
IOSTAT Specifier • • • • • •• 11-56
KEYED Specifier • 11-56
NAME Specifier • • • • • • • • • • • • 11-57
NAMED Specifier • • • • • 11-58
NEXTREC Specifier' • 11-58
NUMBER Specifier • • 11-58
OPENED Specifier •• • • • 11-58
ORGANIZATION Specifier • • • •••• 11-59
RECL (RECORDSIZE) Specifier •••••••• 11-59
RECORDTYPE Specifier 11-59
SEQUENTIAL Specifier • • • • • • • 11-60

vi i February 1987

11.7.3.21 UNFORMATTED Specifier ••••••• 11-60
11.8 DEVICE CONTROL STATEMENTS ••• 11-61
11.8.1 FIND Statement. • • • • • • •• 11-62
11.8.2 REWIND Statement.. •••••• • 11-63
11.8.3 UNLOAD Statement. • • • • • 11-64
11.8.4 BACKSPACE Statement •••••••••• 11-64
11.8.5 ENDFILE Statement • • • • • • • • • 11-65
11.8.6 SKIPRECORD Statement •••• 11-66
11.8.7 SKIPFILE Statement. • •••••••••• 11-67
11.8.8 BACKFILE Statement • • • • • • 11-67

CHAPTER 12 FORMATTED DATA TRANSFERS

12.1
12.1.1
12.1.2

FORMAT-STATEMENT FORMATTING •••••••••• 12-2
Specifying a Format List in a FORMAT Statement 12-2
Specifying a Format Specification as a

12.1.3

12.1.4

12.1.5

Character Expression • • • • • • • • • • • •• 12-3
Specifying a Format Specification in a Numeric
Array • • • • • • • • • • • • • • • •• 12-4
Specifying a FORMAT Statement Using an ASSIGNed
Variable • • •••••• • • • • • •• 12-4
The Ordering and Interpretation of Format List
Items • • • • • • • • • • • • 12-5

EDIT DESCRIPTORS • • • • • • • • • • • • •• 12-6 12.2
12.2.1
12.2.2
12.2.3
12.3
12.3.1
12.3.2
12.3.3
12.3.4
12.4
12.4.1
12.4.2
12.4.3
12.4.3.1
12.4.3.2
12.4.4
12.4.5
12.4.6
12.4.7
12.4.8
12.4.9
12.4.10
12.4.11
12.4.11.1
12.4.11.2
12.4.11.3
12.4.11.4
12.4.11.5
12.4.11.6
12.4.11.7
12.4.12
12.4.13
12.4.14
12.5
12.6
12.7
12.7.1
12.7.2

Repeatable Edit Descriptors • • • • • 12-7
Nonrepeatab1e Edit Descriptors • 12-8
Carriage-Control Specifiers •• • • •• 12-9

INTERACTION OF INPUT/OUTPUT LIST AND FORMAT LIST 12-11
General Description •••••• • 12-11
Formatted Input ••••••• • • • • • 12-14
Formatted Output • • • • • • • • • • • • • • • 12-15
Embedded Format Specifications • • • • • • 12-15

FORMAT EDITING • • • • • • • • • 12-16
Apostrophe (I) Editing • • • • • • • 12-16
H Editing •••••••• •• • 12-17
positional Editing • • • • • • • • 12-18

T, TL, and TR Editing ••••••• • 12-19
X Editing •••••••••••••• • 12-21

$ (Dollar Sign) Editing •• 12-22
/ (S 1 ash) Ed i t i ng • • • • • • • • 12 - 23
: (Colon) Editing •• • ••• 12-24
S, SP,and SS Editing • • • • • • • • •• 12-24
P Editing •••• • ••• 12-25
BN and BZ Editing ••••••••••• 12-28
Q Editing • • • 12-29
Numeric Editing • • • • • • 12-29

I Editing • • • • • • ••• 12-31
F Editing • • • • • ••• 12-32
E and D Editing • • • • • • • • •• 12-32
G Editing •••••••••••••• 12-33
Complex Editing •••••••••• 12-36
o (Octal) Editing • • • • •• 12-36
Z Editing •••• 12-37

L Editing • • • • • • • • • • • • • 12-38
A Editing • • • • • • • • • • • ••• 12-39
R Editing • • • • • • • • • • • • • 12-40

LIST-DIRECTED FORMATTING • • • • • 12-41
NAME LIST-STATEMENT FORMATTING • • 12-44
NAMELIST STATEMENT • • • • • • • • • • • • • 12-44

NAMELIST-Contro11ed Data Input Transfer ••• 12-45
NAMELIST-Contro11ed Data Output Transfers •• 12-46

vi ii February 1987

CHAPTER 13 FUNCTIONS AND SUBROUTINES

INTRINSIC FUNCTIONS • • • • • • • • • 13-1 13.1
13.1.1
13.1.2
13.1.3
13.1.4
13.2
13.2.1
13.2.2
13.2.3
13.3
13.3.1
13.3.2
13.3.3
13.3.4
13.4
13.4.1
13.4.1.1
13.4.1.2
13.4.1.3
13.4.1.4
13.4.1.5
13.4.1.6
13.4.1.7
13.4.1.8
13.4.1.9
13.4.1.10
13.4.1.11
13.4.1.12
13.4.1.13
13.4.1.14
13.4.1.15
13.4.1.16
13.4.1.17
13.4.1.18
13.4.1.19
13.4.1.20
13.4.1.21
13.4.1.22
13.4.1.23
13.4.1.24
13.4.1.25
13.4.1.26
13.4.1.27
13.4.1.28
13.4.1.29
13.4.1.30
13.4.1.31
13.4.1.32
13.4.2
13.4.2.1
13.4.2.2
13.4.2.3
13.4.2.4
13.4.3
13.4.4
13.4.5
13.4.5.1

13.4.5.2

Using an Intrinsic Function • • • •• 13-2
Character Intrinsic Functions •••••••• 13-12
Character Comparison Functions •••••••• 13-14
Bit Manipulation Functions • • 13-14

STATEMENT FUNCTIONS ••••••• • 13-15
Defining a Statement Function ••••••• • 13-16
Using a Statement Function •• • • •• 13-16
Statement Function Restrictions •••• 13-17

EXTERNAL FUNCTIONS • • • • • • .. • • • • 13-18
FORTRAN-Supplied External Functions • 13-18
User-Defined External Functions • 13-20
Function Subprogram Restrictions • • 13-21
Using a Function Subprogram ••••• 13-21

SUBROUTINES ••••••••••••••• • • • 13-22
FORTRAN-Supplied Subroutines. • • • • • • 13-24

ALCCHR Subroutine • • • • • 13-24
CDABS Function • • 13-25
CDCOS Subroutine • • • • • • • • 13-25
CDSXP Subroutine. • • • • • • • 13-26
CDLOG Subroutine • ••• • • • • • • 13-26
CDSIN Subroutine • • • • • • • • 13-27
CDSQRT Subroutine • • • • • • • • 13-28
CHKDIV Subroutine • • • • • • 13-28
CLRFMT Subroutine • • 0 • • • • 13-29
DATE Subroutine • • • • • 13-29
DIVERT Subroutine • 13-30
DTOGA • • • • • • • • • • •• ••• • • 13-30
DUMP Subroutine •••• • • • • 13-30
ERRSET Subroutine • • • • • • • • 13-31
ERRSNS Subroutine • • • • • • • • 13-32
EXIT Subroutine • 13-33
FFUNIT Subroutine • • • • • • 13-33
GTODA Subroutine • • • 13-34
ILL Subroutine •• • • • • • • • • • • • 13-34
LEGAL Subroutine • 13-34
MVBITS Subroutine • • • • • 13-35
OVERFL Subroutine • • • • • 13-35
PDUMP Subroutine • 13-36
QUIETX Subroutine • • • • • 13-36
SAVFMT Subroutine ••••••• • • • 13-37
SAVRAN Subroutine • • • • •• • • • 13-37
SETRAN Subroutine • • • • • • • 13-38
SORT Subroutine • • • • • • •• • 13-38
SRTINI Subroutine •••• • • • • • • • 13-39
TIME Subroutine • • • • • • 13-39
TOPMEM Subroutine ••••• 13-40
TRACE Subroutine • • • • • • • • 13-41

User-Defined Subroutines •••• • 13-42
SUBROUTINE Statement • • • • • • • • 13-43
CALL Statement • • • • 13-44
Execution of a CALL Statement • • • • • 13-44
Actual Arguments for a Subroutine • • • 13-45

ENTRY Statement •••••••••• • 13-45
RETURN Statement • • • • • • • • • • • • • 13-47
Dummy and Actual Arguments • • • • • • • • • • 13-49

Length of Character Dummy and Actual
Arguments ••••••••••••••••• 13-51
Character and Hollerith Constants as Actual
Arguments ••••••••••••••••• 13-51

ix February 1987

CHAPTER 14

14.1

CHAPTER 15

15.1
15.1.1
15.1.2

15.1.2.1
15.1.2.2
15.1.3
15.1.4
15.1.5
15.1.6
15.1.7
15.2
15.2.1
15.2.1.1
15.2.1.2
15.2.1.3
15.2.1.4
15.2.1.5
15.2.1.6
15.2.1.7
15.2.1.8
15.2.1.9
15.2.2

15.3
15.4
15.4.1
15.4.2
15.4.3
15.4.4
15.4.5
15.4.6
15.4.7
15.4.7.1

15.4.7.2

15.4.8
15.4.8.1

15.4.8.2
15.4.9
15.4.10
15.4.11

15.5
15.5.1
15.5.2
15.5.2.1
15.5.2.2

15.5.3
15.5.4
15.5.5
15.5.6
15.5.7

BLOCK DATA SUBPROGRAMS

BLOCK DATA STATEMENT • 14-1

WRITING USER PROGRAMS

GENERAL PROGRAMMING CONSIDERATIONS • • • • • •• 15-1
Accuracy and Range of Double-Precision Nu.mbers 15-1
Writing FORTRAN Programs for Use on Other
Computers •••••••••• • • • •

Remote Links • • • • • • • • • • •
Reducing Network Overhead ••••

Using Floating-Point DO Loops ••••
Computation of DO Loop Iteratio~s ••••
Subroutines - Programming Considerations •
Reordering of Computations • • .- ••
Dimensioning of Dummy Arrays • • • • • • •

FORTRAN GLOBAL OPTIMIZATION •••••••
Optimization Techniques ••••••••

Elimination of Redundant Computations
Reduction of Operator Strength • • •
Removal of Constant Computation from Loops •
Constant Folding and Propagation •
Removal of Inaccessible Code • • • • • • • •
Global Register Allocation •••
I/O Optimization •••••••••
Uninitia1ized Variable Detection
Test Replacement •• •• • • • • • • • •

programming Techniques for Effective

15-2
15-2
15-2
15-2
15-2 .. 1
15-3
15-4
15-5
15-6
15-6
15-6
15-7
15-7
15-8
15-9
15-9
15-9
15-9
15-9

Optimization 15-10
FUNCTION SIDE EFFECTS ••••••••••••• 15-10
INTERACTING WITH NON-FORTRAN PROGRAMS AND FILES 15-10

Using The Sharable High-Segment FOROTS • • • • 15~10
Calling Sequences ••• 15-11
Accumulator Usage •••• • • • 15-11
Argument Lists • • • • • • • • • • • • • 15-12
Argument Types • • • • • • • • • • • 15-14
Description of Arguments • • • 15-14
Interaction with COBOL. • • • • • • • 15-16

Calling FORTRAN Subprograms from COBOL
Programs • • • • • • • • • • • • • • • 15-16
Calling COBOL Subroutines from FORTRAN
Programs • • • • • • • • • • • • • •• 15-18

Interaction with BLISS-36 •••••••••• 15-18
Calling FORTRAN Subprograms From BLISS-36
Programs • • • • • • • • • • • • • • • • • • 15-18
Calling BLISS-36 Routines From FORTRAN ••• 15-19

LINK Overlay Facilities ••••••••••• 15-19
FOROTS and Overlay Memory Management • • • • • 15-20
Extended Addressing Memory Layout (TOPS-20
only) •••••••••• • • • 15-22

• 15-24
• • • 15-24

USING INDEXED FILES (TOPS-20 ONLY) ••••
Creating an Indexed File ••••••••
Writing Indexed Files •••••••••

Duplicate Values in Key Fields •••
Preventing the Indexing of Alternate Key

• 15-26
15-26

Fields • • • • • • • • 15-27
Reading Indexed Files • • • • • • 15-28
Updating Records • • • • • • • • • •• •• 15-29
Deleting Records • • • • • • • • • • • • 15-29
Current Record and Next Record Pointers ••• 15-29
Exception Conditions ••••••••••••• 15-30

x February 1987

CHAPTER 16 USING THE FORTRAN COMPILER

CHAPTER

CHAPTER

16.1
16.1.1
16.1.2
16.1.3
16.2
16.2.1
16.2.2
16.2.3
16.3
16.4
16.5
16.5.1
16.5.2

16.5.2.1
16.5.2.2
16.5.3
16.5.4
16.6
16.7
16.7.1
16.8
16.8.1
16.8.2
16.9

17

17.1
17.1.1
17.1.2
17.1.3
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9

18

18.1
18.2
18.3
18.3.1

I

USING THE FORTRAN-10 COMPILER • • • • 16-1
TOPS-10 COMPILE-Class Commands • • 16-1
RUNNING THE FORTRAN-10 COMPILER • • •• 16-2
TOPS-10 Compiler Command Switches • • •• 16-2·

USING THE FORTRAN-20 COMPILER 16-5
TOPS-20 COMPILE-Class Commands • • 16-5
RUNNING THE FORTRAN-20 COMPILER • 16-6
TOPS-20 Compiler Commands Switches ••••• 16-8

THE /DEBUG SWITCH ••••• • • • • • • 16-11
THE /NOWARN SWITCH • • • • • • • • • • • 16-15
THE /EXTEND SWITCH (TOPS-20 ONLY) ••••••• 16-16

/EXTEND and Applications with Large Arrays •• 16-17
/EXTEND and Applications with Large Executable
Code • • • • • • • • • • • • • • •

/EXTEND PSECT Placement •••••
Building Large-Code Applications ••

Arguments to /EXTEND • • • • • • • • •
Linking with TWOSEG REL Files

• •• 16-17
16-18

• • 16-19
16-19

• • • 16-21
THE /FLAG (/FLAG-NON-STANDARD) SWITCH
READING A FORTRAN COMPILER LISTING • •

Compiler-Generated Variables ••••
ERROR REPORTING ••••••••••

Fatal Errors and Warning Messages

• • • • • 16-21
• • • 16-22
• • • 16-24

• 16-33
• 16-34

Message Summary • • • • • 16-34
CREATING A SHARABLE HIGH SEGMENT FOR A FORTRAN
PROGRAM • • • • • • • • • • • • • • • • • 16-35

USING THE FORTRAN INTERACTIVE DEBUGGER (.FORDDT)

INPUT FORMAT . . · · · · · · · · · 17-2
Variables and Arrays · · · · · · 17-2
Constant Conventions · · · · · · 17-3
Statement Labels and Source Line Numbers · 17-4

FORDDT AND THE FORTRAN /DEBUG SWITCH . · · · 17-4
LOADING AND STARTING FORDDT · · · · 17-5
SCOPE OF NAME AND LABEL REFERENCES · 17-6
FORDDT COMMANDS · · · · · · · · · · · · · · 17-7
ENVIRONMENT CONTROL · · · · · · 17-16
FORTRAN /OPTIMIZE SWITCH · · · · . · · · · · 17-17
CALLING FORDDT . · · · · · · · · 17-17
FORDDT AND FORTRAN-20 EXTENDED ADDRESSING · 17-17

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

FEATURES OF FOROTS • • • ••• • • • • • •• 18-1
ERROR PROCESSING • • •• ••• • • • • • •• 18-2
INPUT/OUTPUT FACILITIES •••••••••• 18-2.1

Input/Output Channels Used By FOROTS (TOPS-10
Only) •••••••••• • •••• 18-2.1

18.3.2 File Access ••••••• • • • •• 18-3
18.3.3 Closing Files After Non-standard Termination. 18-3
18.3.3.1 Sequential Access •••••• • • •• 18-3
18.3.3.2 Direct (Random) Access Mode •••••••• 18-4
18.4 ACCEPTABLE TYPES OF DATA FILES AND THEIR FORMATS 18-4
18.4.1 ASCII Data Files. • • • • • • • 18-4
18.4.2 FORTRAN Binary Data Files • • • • • • •• 18-4
18.4.2.1 Format of Binary Files. • • • • • •• 18-4
18.4.3 RMS Data Files (TOPS-20 only) •••• 18-14
18.5 USING FOROTS • • • •• ••••• • 18-15
18.5.1 FOROTS Entry Points ••••• • • 18-15

xi February 1987

18.S.2
18.S.3
18.S.3.1
18.S.3.2
18.S.3.3

18.S.3.4
18.S.3.S

18.S.3.6

Calling Sequences •••••••••••
MACRO Calls for FOROTS Functions •••• *

Sequential-Access Calling Sequences
Internal File Calling Sequences •••
NAMELIST I/O, Sequential-Access Calling

18-16.1
•• 18-17

• 18-18
• 18-19

Sequences •••••••••••••• • 18-20
Array Offsets and Factoring •••••••• 18-20
I/O Statements, Direct-Access Calling
Sequences •••••••••••••• • 18-22
Default Devices Statements, Calling
Sequences ••••••••••••• 18-23

18.5.3.7 Statements to position Files. • • • • • 18-24
18.5.3.8 List-Directed Input/Output Statements ••• 18-24
18.5.3.9 Input/Output Data Listg ••••••• • 18-25
18.5.3.10 OPEN and CLOSE Statements, Calling Sequences 18-28
18.S.3.11 Memory Allocation Routines ••••••••• 18-29
18.S.3.12 Channel Allocation and Dea11ocation Routines 18-30
18.6 FUNCTIONS TO FACILITATE OVERLAYS • • • •• 18-31
18.7 LOGICAL/PHYSICAL DEVICE ASSIGNMENTS •• 18-36
18.8 FOROTS AND INQUIRE BY FILE STATEME~T •••••• 18-36
18.9 USEROPEN PROCEDURES •••••• • • • • •• 18-38
18.9.1 Example of a USEROPEN •••••••••••• 18-38
18.9.2 RMS/FOROTS Data and Control Structures. • 18-40

CHAPTER 19

19.1
19.2
19.2.1
19.2.2
19.2.3
19.2.4
19.3
19.3.1
19.3.2
19.3.3
19.3.4
19.3.S
19.3.6
19.3.7
19.3.8
19.3.9
19.3.10
19.3.11
19.3.12
19.3.13
19.3.14
19.3.1S

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

D.1

USING THE FORTRAN REAL-TIME SOFTWARE (TOPS-10 ONLY)

INTRODUCTION
USING FORRTF • • • •

Memory • • • • • • • • • • •
Modes •••••••
priority-Interrupt Levels
Masks • • • • • • • • • • • •

SUBROUTINES
LOCK • • • • • • • • • •
RTINIT • • • • • •
CONECT • • • • •
RTSTRT •
BLKRW • • • • • • • • • •
RTREAD • • • • • • •
RTWRIT ••••
STATO
STATI ••••
RTSLP
RTWAKE
DISMIS • • • • • • • • •
DISCON
UNLOCK • • • • • • • • • • • • • • • • • •
Error Messages •

SUMMARY OF FORTRAN STATEMENTS

ASCII-1968 CHARACTER CODE SET

COMPILER MESSAGES

FOROTS ERROR MESSAGES

ALPHABETICAL DESCRIPTION OF FOROTS MESSAGES

19-1
19-2
19-2
19-2
19-2
19-2
19-3
19-3
19-3
19-4
19-4
19-4
19-5
19-5
19-5
19-6
19-6
19-6
19-6
19~7
19-7
19-7

D-10

xii February 1987

APPENDIX E

APPENDIX F

F.1
F.2
F.3
F.4
F.5
F.5.1
F.5.1.1
F.5.1.2
F.5.1.3
F.5.1.4
F.6
F.7
F.8
F.9
F.10
F.11

. INDEX

FIGURES

2-1
4-1
6-1
7-1
7-2
7-3
7-4
7-5
9-1
10-1
11-1
11-2
15-1
F-1
F-2
F-3

TABLES

2-1
3-1

4-1
5-1
5-2

5-3
5-4
5-5
5-6
5~
8-1
10-1
10-2
10-3

INTERACTIVE DEBUGGER (FORDDT) ERROR MESSAGES

FORTRAN-SUPPLIED PLOTTER SUBROUTINES

PLOTS SUBROUTINE • • • F-2
AXIS SUBROUTINE • • • • • • F-2
CAXIS SUBROUTINE • • • • • • • • • • F-3
LINE SUBROUTINE • • • • • • F-4
MKTBL SUBROUTINE • • F-5

Character Tables • • F-5
Creating a Character Table • F-6
Creating a Stroke Table • • • • • F-6
Sample Character Stroke Table •••••••• F-7
FORTRAN- and User-Defined Character Sets ••• F-9

NUMBER SUBROUTINE •••• • • • • • F-9
PLOT SUBROUTINE F-10
SCALE SUBROUTINE • • F-10
SETABL SUBROUTINE F-11
SYMBOL SUBROUTINE • • • • • F-12
WHERE SUBROUTINE • • • • • • F-12

Fields Within a FORTRAN Line • • • • • • • • • 2-3
A 3 x 3 x 2 Array • • • • • • • • • • • • • • 4-4
Ordering of FORTRAN Statements • • • • •• •• 6-3
Shared Storage using EQUIVALENCE Statement • 7-12
Equivalence of Substrings •••• 7-13
Equivalence of Character Arrays ••••• 7-14
Valid Equivalencing •••••• 7-16
Invalid Equivalencing •••••• • • •• 7-16
Examples of Block IF Constructs ••••• •• 9-7
Components of Data Transfer Statements • • 10-9
TOPS-10 File Protection Number • • • • 11-31
TOPS-20 Protection Number •••• • • 11-33
Run-time Memory Layout for Section Zero • • 15-21
Plotter Character Table Entry • • • F-6
Character Stroke Table Entry • • • • • • F-6
Sample Character Stroke Table •••••• • F-8

FORTRAN Character Set •••••••••••• • • 2-2
Comparison of Real, D-f1oating, and G-floating
Numbers •••••••••••••••••••
Use of Symbolic Names •••••••••••
Arithmetic Operations and Operators ••••
Type of the Result Obtained from Mixed-Mode

3-4
• 4-1
• 5-2

Operations • • • • • • • • • • • • • • • • • • 5-3
Permitted Base/Exponent Type Combinations
Logical Operators ••••••••••

• • 5-5
• • • 5-8

Logical Operations Truth Table ••••••
Relational Operators and Operations ••••
Hierarchy of FORTRAN Operators • • • • • • • • •
Rules for Conversion in Mixed-Mode Assignments •
FORTRAN I/O Statement Categories • • •••

• 5-9
5-11
5-14

• 8-2
10-2

Summary of Data Transfer Statement Forms
FORTRAN Logical Device Assignments

xiii

10-3
• 10-12

February 1987

10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11

10-12
10-13
10-14
11-1

11-2
11-3
11-4
11-5

11-6
12-1
12-2
12-3
12-4
12-5

12-6

13-1
13-2
15-1
15-2
16-1
16-2
16-3
16-4

16-5

16-6
16-7
16-8
16-9
17-1
18-1
18-2
19-1

D-1

Summary of READ Statement Forms • • • • 10-28
Summary of WRITE Statement Forms • • • 10-36
Summary of REREAD Statement Forms • 10-43
Summary of ACCEPT Statement Forms •••• • 10-45
Summary of TYPE Statement Forms • • 10-48
Summary of PRINT Statement Forms • • 10-50
Summary of PUNCH Statement Forms • • • • • • • • 10-52
Summary of Internal READ/WRITE and ENCODE/DECODE
Statement Forms ••••• • • • • • • • 10-54
Summary of DELETE Statement Forms • 10-59
Summary of REWRITE Statement Forms • • • • • • • 10-61
Summary of UNLOCK Statement Forms •••• • 10-62
Summary of OPEN Statement Specifiers and
Arguments •••••••••• • • • •
DEVICE and MODE Cross-Table ••••
TOPS-10 Protection Code Values •••
TOPS-20 Protection Code Values •••
Summary of CLOSE Statement Specifiers and
Arguments •••••••••••••

11-5
• 11-27
• 11-32
• 11-33

11-45
• 11-61

• • •• 12-8
Summary of Device-Control Statements •
Repeatable FORTRAN Edit Descriptors
Nonrepeatable FORTRAN Edit Descriptors •
Carriage-Control Specifiers ••••••
Record, Format List, and I/O List Interaction
Default Field Widths for Numeric Edit

12-9
• 12-11
• 12-13

Descriptors •••••••••••••••••• 12-30
Effect of Data Magnitude on G-Format Output
Conversion • • • • • •• •
FORTRAN Instrinsic Functions •
FORTRAN-Supplied Subroutines.
Argument Types and Types Codes
Memory Allocations for /EXTEND
FORTRAN-10 Compiler Switches •
FORTRAN-20 Compiler Switches •
Arguments to /DEBUG Switch ••

• 12-35
• • • • 13-4

• • • • • • • 13-23
• • • • • • • 15-14

and /NOEXTEND • • 15-23
• • • •• 16-3

16-9
• • • • • 16-12

Legal Dummy and Actual Argument Type
Associations • • • • • • • • • • •• • ••• 16-14
Legal Dummy and Actual Argument Structure
Associations • • • • • • • • • • • •••• 16-15
Arguments to /NOWARN Switch ••• 16-15
/EXTEND Default Memory Layout ••• 16-16
Arguments to /EXTEND Switch •••••••••• 16-20
Arguments to /FLAG Switch •••••• 16-22
FORDDT Commands •••••••••••••••• 17-1
FOROTS Entry Points •••••••••••••• 18-15
Function Numbers and Function Codes • 18-32
Error Messages - Code Format and Full Message
Format • • • •
FOROTS Error Codes • • • • •

xiv

19-8
• • D-3

February 1987

PREFACE

The TOPS-10/TOPS-20 FORTRAN Language Manual reflects the software as
of Version 11 of the FORTRAN-10/20 compiler, the FORTRAN-10/20 Object
Time System (FOROTS), and the FORTRAN-10/20 debugging program
(FORDDT) •

This manual describes the FORTRAN language as implemented for the
TOPS-10 operating system (FORTRAN-10) and the TOPS-20 operating system
(FORTRAN-20). Any differences between FORTRAN-10 and FORTRAN-20 are
noted in this manual.

Since this is a reference manual, we assume that you have used FORTRAN
before. If you haven't, you should read one of the many introductory
FORTRAN texts.

CONVENTIONS

The following conventions are used throughout the manual:

Braces {

Brackets []

Ellipsis or •

Lowercase letters

UPPERCASE LETTERS

indicate that a choice must be made from one
of the enclosed lines.

indicate an optional feature.

indicate the omission of information from a
programming example or that items in a
command line can be optionally repeated.

indicate variable information you supply in a
command string.

indicate fixed (or literal) information that
you must enter as shown in a command string.

indicates a blank.

The standard for FORTRAN is the American National Standards Institute
(ANSI) FORTRAN, X3.9-1978 (also known as FORTRAN-77). FORTRAN-10/20
extensions and additions to ANSI FORTRAN are in blue print in this
manual.

FORTRAN-10/20 VII xv February 1987

MANUALS REFERENCED

The following manuals are referenced from TOPS-10 publications:

• TOPS-10 Operating System Comma!1ds Manual

• SOS Reference Manual

• TOPS-10 Monitor Calls Manual

• TOPS-10 Hardware Reference Manual

• TOPS-10 LINK Reference Manual

• TOPS-10 SORT/MERGE User's Guide

• TOPS-10 FORTRAN Installation Guide ---
The following manuals are referenced from TOPS-20 publications:

• TOPS-20 Commands Reference Manual

• TOPS-20 EDIT Reference Manual

• TOPS-20 User's Guide

• TOPS-20 Monitor Calls Manual

• TOPS-20 Link Reference Manual

• TOPS-20 SORT/MERGE Use r' s Guide ---
• TOPS-20 FORTRAN Installation Guide

• TOPS-20 RMS User's Guide

• RMS-20 Pro9rammer's Reference Manual

The following TOPS-10/TOPS-20 manual are referenced:

• FORTRAN-10/20 and VAX FORTRAN Compatibility Manual

• TOPS-10/TOPS-20 FORTRAN Pocket Guide

• TOPS-10/TOPS-20 COBOL-74 Language Manual

• TOPS-10/20 BLISS Lan9uage Guide

• TOPS-10/20 Common Math Library Manual

FORTRAN-10/20 VII xvi February 1987

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

The FORTRAN language, as implemented on the TOPS-IO and TOPS-20
operating systems, is compatible with and encompasses the standard
described in "American National Standard FORTRAN, X3.9-l978" (referred
to as the FORTRAN-77 standard) at the full-language level.

FORTRAN-IO/20 provides many extensions and additions to the FORTRAN-77
standard that greatly enhance the usefulness of FORTRAN and increase
its compatibility with FORTRAN languages implemented by other computer
manufacturers. The extensions and additions to the standard
FORTRAN-77 are printed in this manual in blue print.

A FORTRAN source program consists of a set of statements constructed
using the language elements and the syntax described in this manual.
A given FORTRAN statement performs anyone of the following functions:

1. It causes operations such as multiplication, division, and
branching to be carried out.

2. It specifies the type and format of the data being processed.

3. It specifies the characteristics of the source program.

FORTRAN statements are composed of keywords (words that are recognized
by the compiler) used with elements of the language set: constants,
variables, and expressions. There are two basic types of FORTRAN
statements: executable and nonexecutable.

Executable statements specify the actions of the program;
nonexecutable statements describe the characteristics and arrangement
of data, editing information, statement functions, and the kind of
subprograms that may be included in the program. The compilation of
executable statements results in the creation of executable code in
the object program. Nonexecutable statements provide information only
to the compiler; they do not create executable code.

1.2 MANUAL ORGANIZATION

This manual is divided into three parts: Language Elements,
State~~nts, and Language Usage. Sections 1.2.1 through 1.2.3 contain
general descriptions for each of these three parts. Section 1.2.4
contains a general description of the appendixes.

1-1

INTRODUCTION

1.2.1 FORTRAN Language Elements (Part I)

Part I of this manual describes the fundamental elements of FORTRAN
programs, including (by chapter):

Chapter 2, CHARACTERS AND LINES, describes FORTRAN source program
characters and lines. The FORTRAN compiler interprets your
source program and translates it into machine code (executable
code) •

Chapter 3, CONSTANTS, describes FORTRAN data types and constants.
FORTRAN enables you to manipulate information (data) in a variety
of ways. This chapter describes the techniques for defining
FORTRAN constants of various data types.

Chapter 4, SYMBOLIC NAMES, VARIABLES, AND ARRAYS, describes
symbolic names, variables, and arrays in FORTRAN. The symbolic
name is used in a variety of ways in a source program; this
chapter describes the conventions for using symbolic names to
define both variables and arrays.

Chapter 5, EXPRESSIONS,
operators. Expressions
constants, and operators.

introduces and describes FORTRAN
in FORTRAN are formed using variables,

1.2.2 FORTRAN Statements (Part II)

Part II of this manual describes all the statements in the FORTRAN
language. The following list describes (by chapter) the information
presented in Part II:

Chapter 6, EXECUTABLE AND NONEXECUTABLE STATEMENTS, defines the
term "FORTRAN Statement", and describes the "Compilation Control
Statements".

Chapter 7, SPECIFICATION AND DATA STATEMENTS, describes all the
statements within the category "Specification and Data
Statements". The specification statements enable you to
explicitly define the data types of variables used within your
program; the DATA statement enables you to create initially
defined constants within your program.

Chapter 8, ASSIGNMENT STATEMENTS, describes
within the category "Assignment Statements".
statements enable you to assign values to
assign statement labels to symbolic names.

all the statements
FORTRAN assignment

variables, and to

Chapter 9, CONTROL STATEMENTS, describes all the statements
within the category "Control Statements". The default execution
sequence of lines in a FORTRAN program is each line from
left-to-right, and all lines from top-to-bottom. You use the
FORTRAN control statements to alter the default execution
sequence, to stop or pause during program execution, or to mark
the end of an executable program.

Chapter 10, DATA TRANSFER STATEMENTS, describes the data transfer
category of "FORTRAN Input/Output (I/O) Statements". As the term
implies, a data transfer statement moves data from one place to
another.

1-2

INTRODUCTION

Chapter 11, FILE-CONTROL AND DEVICE-CONTROL STATEMENTS, describes
file-control and device-control categories of "FORTRAN I/O
Statements". The file-control statements enable you to associate
a unit number with a file. Device-control statements enable you
to position a storage medium (for example, magnetic tape) on a
connected unit.

Chapter 12, FORMATTED DATA TRANSFERS, describes three types of
data formatting. During certain types of data transfer
operations, you must specify the format of the data being
transferred. FORTRAN provides three techniques for specifying
the format of data: FORMAT-Statement, List-Directed, and
NAMELIST-Statement formatting.

Chapter 13, FUNCTIONS AND SUBROUTINES, describes FORTRAN
functions and subprograms. Functions and subprograms provide a
technique for producing clear and concise FORTRAN programs.
FORTRAN-lO/20 provides both predefined functions and subprograms,
and the statements for defining your own functions and
subprograms.

Chapter 14, BLOCK DATA SUBPROGRAMS, describes
subprogram. This type of subprogram enables
initial values for variables in COMMON.

1.2.3 FORTRAN Language Usage (Part III)

the block-data
you to define

Parts I and II of the manual contain complete descriptions of FORTRAN
elements and statements. Part III of the manual contains explanations
of how you use FORTRAN-lO/20. The following usage topics are covered
in Part III:

Chapter 15, WRITING USER PROGRAMS, presents some general
considerations that you should follow when you are creating
FORTRAN source programs. In addition, this chapter contains a
description of the FORTRAN optimizer.

Chapter 16, USING THE FORTRAN COMPILER, describes how to use the
FORTRAN compiler and contains descriptions on how to compile,
load, and execute a FORTRAN program. In addition, this chapter
contains descriptions of how to read a compiler-generated program
listing, and how to create a reentrant FORTRAN program. This
Chapter also describes how to use FORTRAN-20 extended addressing.

Chapter 17, USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT),
describes how to use the FORTRAN interactive debugging program
(FORDDT) to test and debug a running program. This chapter also
contains a brief explanation of how to debug a running FORTRAN
program using DDT, the system debugger.

Chapter 18, USING THE FORTRAN OBJECT-TIME SYSTEM (FOROTS),
describes the FORTRAN Object-Time System (FOROTS). This chapter
also contains descriptions of how you can use the FOROTS
software.

Chapter 19, USING THE FORTRAN REAL-TIME SOFTWARE (TOPS-lO ONLY),
describes how to use the FORTRAN real-time software. This
chapter is for TOPS-lO installations only.

1-3

INTRODUCTION

1.2.4 APPENDIXES

The appendixes describe various useful information.
tqpics are covered in the appendixes:

The following

Appendix A, SUMMARY OF FORTRAN STATEMENTS, summarizes the forms
of all FORTRAN statements and provides a section reference where
each statement is described in detail.

Appendix B, ASCII-1968 C~ARACTER CODE SET, lists the character
code set defined in the X3.4-1968 version of the American
National Standard Code for Information Interchange (ASCII).

Appendix C, COMPILER MESSAGES, describes the FORTRAN compiler
messages.

Appendix D, FOROTS ERROR MESSAGES, describes the FOROTS error
messages.

Appendix E, FORDDT ERROR MESSAGES, describes the FORDDT error
messages.

Appendix F, FORTRAN-SUPPLIED PLOTTER SUBROUTINES, describes the
FORTRAN-supplied plotter subroutines.

1-4

CHAPTER 2

CHARACTERS AND LINES

The basic elements of the FORTRAN source program are its characters
and lines. Characters are used to form statements, expressions, and
comments in FORTRAN source programs. Lines, and fields within lines,
are used to define the context in which characters are interpreted by
the FORTRAN compiler.

This chapter describes the relationships among source
characters, lines, and fields within source program lines.

2.1 CHARACTER SET

program

Table 2-1 lists the digits, letters, and symbols recognized by
FORTRAN. The remainder of the ASCII-1968 character set is acceptable
within character or Hollerith constants or comment text, but these
characters cause fatal errors in other contexts.

NOTE

The complete ASCII character set is defined in the
X3.4-1968 version of the "American National Standard
Code for Information Interchange". A summary of the
standard ASCII set is also contained in Appendix B of
this manual.

Lowercase alphabetic
upper-case outside
character constants.

NOTE

characters are
the context of

2-1

treated as
Hollerith or

CHARACTERS AND LINES

Table 2-1: FORTRAN Character Set

Letters

Uppercase: ABC D E F G H I J K L M N 0 P Q R STU V W X Y Z

Lowercase: abc d e f g h i j k 1 m n 0 p q r stu v w x y z

Digits

o 1 234 5 6 789

Symbols

! Exclamation point , Comma
" Quotation Mark - Hyphen (Minus)
Number Sign . Period (Decimal Po i nt)
$ Dollar Sign / Slant (Slash)
& Ampersand : Colon , Apostrophe i Semicolon
(Left Parenthesis < Less Than
) Right Parenthesis = Equal To
* Asterisk > Greater Than
+ Plus

... Circumflex
Underscore -

Line Termination Characters

Line Feed (LF), Form Feed (FF), Vertical Tab (VT)

Line Formatting Characters

Carriage Return (RET), Horizontal Tab (TAB), Blank

Note that horizontal tabs normally advance the character position
pointer to the next position that is an even mUltiple of 8. An
exception to this is the initial tab, which is defined as a tab that
either includes or starts in character position 6. (Refer to Section
2.3.1 for a description of initial and continuation line types.) Tabs
with~n character specifications count as one character, even though
they may advance the character position as many as eight places.

2.2 STATEMENT DEFINITION AND FORMAT

Source program statements are divided into physical lines. A line is
defined as a string of adjacent character positions, terminated by the
first occurrence of a line termination character, regardless of
context. As shown in Figure 2-1, each source program line is divided
into four fields.

FORTRAN-10/20 VII 2-2 February 1987

CHARACTERS AND LINES

I ------------ Line Character Positions ----------11 1

\1 2 3 4 5~.1 8 70 71 72 " 73 • J y ...
Statement Continuation Statement Field Remarks
Label Field Field

MR-S-1 761 -81

Figure 2-1: Fields Within a FORTRAN Line

2.2.1 Statement Label Field and Statement Numbers

You can place a number ranging from 1 to 99999 in the statement label
field of an initial line to identify the statement. Any source
program statement that is referenced by another statement must have a
statement number. Leading zeros and all blanks in the label field are
ignored; for example, the numbers 00105 and 105 are both accepted as
statement number 105.

You can assign the statement numbers in a source program in any order;
however, each statement number must be unique with respect to all
other statements in the program or subprogram.

A main program and a subprogram can contain identical statement
numbers. In this case, references to these numbers are understood to
mean the numbers in the same program unit in which the reference is
made. An example follows:

Assume that main module MAINMD and subprogram SUBI both
contain statement number 105. A GO TO 105 statement, for
instance, in MAINMD will refer to statement 105 in MAINMD,
not to 105 in SUBI. A GO TO 105 in SUBI will transfer
control to 105 in SUBI.

An initial tab may be used to skip all or part of the label field. If
an initial tab is encountered during compilation, FORTRAN-IO/20
examines the character immediately following the tab to determine the
type of line being entered. If this character is one of the digits 1
through 9, FORTRAN-lO/20 considers the line as a continuation line and
uses the second character after the tab as the first character of the
statement field.

If the character following the tab is not one of the digits I through
9, FORTRAN-IO/20 considers the line to be an initial line and the
character following the tab is considered to be the first character of
the statement field. The character following the initial tab is
considered to be in character position 6 for a continuation line, and
in character position 7 for an initial line.

2.2.2 Line Continuation Field

Any character of the FORTRAN character set (except a blank, a zero, or
an exclamation point) placed in the line continuation field (position
6) identifies the line as a continuation line (see Section 2.3.1).
Whenever you use an initial tab to skip all or part of the label field
of a continuation line, the next character you enter must be one of
the digits 1 through 9 to identify the line as a continuation line.

2-3

CHARACTERS AND LINES

2.2.3 Statement Field

Any FORTRAN statement can appear in the statement field. Blanks
(spaces) and tabs do not affect compilation of the statement. Blanks
and tabs may be used freely in this field for appearance purposes,
with the exception of textual data given within either a character or
Hollerith specification, where blanks and tabs are significant
characters.

2.2.4 Remark Field

In lines consisting of 73 or more character positions, only the first
72 character positions are interpreted by FORTRAN. Note that tabs
generally occupy more than one character position, usually advancing
the cursor to the next character position that is an even multiple of
8. The exception is the tab in a label field, which advances the
cursor either to column 6 or 7, depending on the character following
the tab (see Section 2.2.1).

All other characters after character position 72 are treated as
remarks and do not affect compilation.

Note that remarks may also be added to a line in character positions 1
through 72, provided the text of the remark is preceded by the symbol
"!" (see Section 2.3.3).

2.3 LINE TYPES

A line in a FORTRAN source program may be:

1. An initial line

2. A continuation line

3. A multi-statement line

4. A comment line

5. A debug line

6. A blank line

These lines are described in Sections 2.3.1 through 2.3.5.

2.3.1 Initial and Continuation Lines

A FORTRAN statement may occupy the statement fields of up to 100
consecutive lines. The first line in a multi-line statement is
referred to as the initial line; the succeeding lines are referred to
as continuation lines. Initial lines may be assigned a statement
number and must have either a blank or a zero in character position 6.

An initial tab may be used to skip all or part of the label field. If
you use an initial tab for this purpose, you must immediately follow
it with a nonnumeric character; that is, the first character of the
statement field must be nonnumeric.

FORTRAN-10/20 VII 2-4 Feb!:'uary 1987

CHARACTERS AND LINES

You cannot assign a statement label to a continuation line. Instead,
you identify a continuation line by placing a character from the
FORTRAN character set (except blank, zero, or exclamation point) in
character position 6 of that line. This position is the line
continuation field. The label field of a continuation line must be
blank.

Note that blank lines, comments, and debug lines that are treated like
comments (that is, debug lines that are not compiled with the rest of
the program) are legal continuation lines and do not terminate a
continuation sequence (see Section 2.3.4).

The following is an example of a 3-line FORTRAN FORMAT statement with
two continuation lines:

105 FORMAT (lX,'This example shows how continuation lines',
2 'are used to accommodate FORTRAN statements that do not'
3 'entirely fit on a single line.')

In this example the characters 2 and 3 in position 6 identify those
lines as continuation lines.

2.3.2 Multi-Statement Lines

You may write more than one FORTRAN statement in the statement field
of one line. The rules for structuring a multi-statement line are:

1. Successive statements must be separated by a semicolon (;).

2. Only the first statement in the series can have a statement
number.

3. The last statement in a line is continued to the next line if
that next line is made a continuation line.

An example of a multi-statement line is:

450 DIST=RATE * TIME; TIME=TIME+0.05; CALL PRIME(TIME,DIST)

NOTE

If a statement sequence in a
multi-statement line consists of a
logical IF (see Section 9.2.2) followed
by any other executable statement, then
the statement following the IF will be
executed in all cases, even if the IF
expression evaluates as false.

2.3.3 Comment Lines and Remarks

Lines that contain descriptive text only are called comment lines.
Comment lines commonly identify and introduce a source program,
describe the purpose of a particular set of statements, and introduce
subprograms.

2-5

CHARACTERS AND LINES

To structure a comment line:

1. You must place one of the characters C (or c), *, $, I, or
in character position 1 of the line to identify it as a
comment line.

2. You place the text of the comment in the remainder of the
line.

3. You may place comment lines anywhere in the source program,
including preceding a continuation line.

4. You may write a large comment as a sequence of any number of
lines; however, each line must carry the identifying
character (C (or c), *, $, I, or !) in its first character
position.

The following is an example of a comment that occupies more than one
line:

C SUBROUTINE - A12
C This subroutine formats
c and stores the results of
c the HEAT-TEST program

Comment lines are printed on all listings, but are otherwise ignored
by the compiler.

You may add a remark to any statement field, in character positions 7
through 72, provided the symbol! precedes the text. For example, in
the line

IF(N.EQ.O)STOP ! Stop if card is blank

the text "Stop if card is blank" is identified as a remark by the
preceding ! symbol. The compiler ignores all characters from the
exclamation point to the end of the line. The characters following
the exclamation point, however, appear in the source program listing.
To be treated as a remark symbol, the exclamation point must not
appear in a Hollerith or character constant.

Note that characters appearing in character positions 73 and beyond
are automatically treated as remarks, so that you need not use the
symbol! (see Section 2.2.4).

2.3.4 Debug Lines

As an aid in program debugging, a D (or d) in character position 1 of
any line causes the line to be interpreted as a comment line; that is,
not compiled with the rest of the program unless the IINCLUDE switch
is present in the compiler command string. (See Chapter 16 for a
description of the compiler switches.)

When the IINCLUDE switch is present in the compiler command string,
the 0 (or d) in character position 1 is treated as a blank so that the
remainder of the line is compiled as an ordinary (noncomment) line. A
debug line can have a label following the 0 (or d). Note that if the
debug statement is an initial line, all of its continuation lines must
contain a 0 (or d) in character position 1.

2-6

CHARACTERS AND LINES

2.3.5 Blank Lines

You may insert lines consisting of only blanks, tabs, or no characters
anywhere in a FORTRAN source program. Blank lines that contain
remarks only, are considered as blank lines. Blank lines are used for
formatting purposes only; they cause blank lines to appear in their
corresponding positions in source program listings; otherwise, they
are ignored by the compiler.

2.4 LINE-SEQUENCED SOURCE FILES

FORTRAN-IO/20 accepts line-sequenced files as produced by
line-oriented text editors (for example, SOS on TOPS-IO or EDIT on
TOPS-20). These sequence numbers are used in place of the listing
line numbers normally generated by FORTRAN. The listing line numbers
are not the same as FORTRAN statement numbers.

2-7

CHAPTER 3

CONSTANTS

3.1 INTRODUCTION

Constants are quantities that do not change value during the execution
of the object program. The data types you can use for constants in
FORTRAN-10/20 source programs are:

1. Integer

2. Real

3. Double-precision

4. Complex

5. Character

6. Logical

7. Octal

8. Double-octal

9. Hollerith

10. Statement label

The use and format of each of these data types are discussed in
Sections 3.2 through 3.10.

3.2 INTEGER CONSTANTS

An integer constant is a string of one to eleven digits that
represents a whole decimal number (a number without a fractional
part). Integer constants must be within the range of -(2**35-1) to
(+2**35)-1 (-34359738367 to +34359738367). Positive integer constants

may optionally be signed; negative integer constants must always be
signed. You cannot use decimal points, commas, or other symbols in
integer constants (except for a preceding sign, + or -).

Examples of valid integer constants are:

345
+345
-345

3-1

CONSTANTS

Examples of invalid integer constants are:

+345.
3,450
34.5

(use of decimal point)
(use of comma)
(use of decimal point; not a whole number)

3.3 REAL CONSTANTS

A real constant can have any of the following forms:

1. A basic real constant: a string of decimal digits followed
by a decimal point, followed optionally by a decimal
fraction, for example, 1557.42.

2. A basic real constant followed by a decimal integer exponent
written in E notation (exponential notation) form, for
example, 1559.E2 or 1559.e2. The number following the E (or
e) specifies a power of ten by which the basic real constant
will be multiplied.

3. An integer constant (no decimal point) followed by a decimal
integer exponent written in E notation, for example, 1559E2
or l55ge2.

Real constants may be of any size; however, each will be rounded to
fit the precision of 27 bits (7 to 9 decimal digits).

Precision for real constants is maintained to approximately eight
significant digits; the absolute precision depends upon the numbers
involved.

The exponent field of a real constant written in E notation cannot be
empty (blank); it must be either a zero or an integer constant. The
range of magnitude permitted a real constant is from approximately
1.47 * 10**(-39) to 1.70 * 10**(+38).

The following are examples of valid real constants:

-98.765
7.0E+0
.7E-3
5E+5
50115.
50.E1

(= 7.)
(= .0007)
(= 500000.)

(= 500.)

The following are examples of invalid real constants:

72.6E512
.375E
500

(exponent is too large)
(exponent incorrectly written)
(no decimal point given)

3.4 DOUBLE-PRECISION CONSTANTS

Double-precision constants are similar to real constants written in E
notation form; the differences between these two constants are:

1. Double-precision constants, depending on their magnitude,
have precision from 16 to 18 places, rather than the 8-digit
precision obtained for real constants.

3-2

CONSTANTS

2. Each double-precision
locations.

constant occupies two storage

3. The letter 0 (or d), instead of E, is used in
double-precision constants to identify a decimal exponent.

On KL model B systems, there are two forms of double-precision number
formats. If the /GFLOATING compiler switch is specified (see Chapter
16), the double-precision number format is called G-floating. If the
/OFLOATING compiler switch (the default) is specified (see Chapter
16), the double-precision number format is called O-floating. See
Section 3.4.1 for a comparison of the different double-precision
number formats.

On KS systems, only the O-floating double-precision number format is
provided.

You must use both the letter 0 and an exponent (including zero) in
writing a double-precision constant. The range of magnitude permitted
a double-precision constant is from approximately:

1.47 * 10**(-39) to 1.70 * 10**(+38) for O-floating

or

2.78 * 10**(-309) to 8.99 * 10**(+307) for G-floating

The following are examples of valid double-precision constants:

7.9003
7.90+03
7.90-3
79003
7900

(= 7900.)
(= 7900.)
(= .0079)
(= 79000.)
(= 79.)

The following are examples of invalid double-precision constants:

7.90999
7.9E5

(exponent is too large)
("E" denotes single precision; "0" denotes double
precision)

3.4.1 Comparison of Real, D-floating, and G-floating

For KL model B systems, G-floating double-precision is provided as an
alternative double-precision number format. You must specify the
/GFLOATING compiler switch (see Chapter 16) to invoke the G-floating
double-precision format. If you specify the /OFLOATING compiler
switch (the default), the O-floating format is used. Table 3-1
summarizes the comparisons among real, O-floating, and G-floating.

3-3

CONSTANTS

Table 3-1: Comparison of Real, D-floating, and G-floating Numbers

Bits of Bits of Digits of
Exponent Mantissa Range Precision

Real 8 27 1.47 * 10**(-39) 8.1
to 1.70 * 10**(+38)

D-floating 8 62 1.47 * 10**(-39) 18.7
to 1.70 * 10**(+38)

G-floating 11 59 2.78 * 10**(-309) 17.8
to 8.99 * 10**(+307)

3.5 COMPLEX CONSTANTS

You can represent a complex constant by an ordered pair of integer,
real, or octal constants written within parentheses and separated by a
comma. For example, (.70712, -.70712) and (8.763E3, 2.297) are
complex constants.

In a complex constant, the first (leftmost) constant of the pair
represents the real part of the number; the second constant represents
the imaginary part of the number. Both the real and imaginary parts
of a complex constant can be signed.

The constants that represent the real and imaginary parts of a complex
constant occupy two consecutive storage locations in the object
program.

3.6 CHARACTER CONSTANTS

A character constant is a string of printable ASCII characters
enclosed by apostrophes. Both delimiting apostrophes must be present,
and the string must be at least one character in length. The compiler
accepts control characters in character constants with the following
exceptions:

Character Octal Value

"@
"J
"K
"L
"M

- NUL "0
- LF "12
- VT 1113
- FF 1114
- CR 1115

NOTE

The CHAR function (see Chapter 13) can be used to
build variables that contain these control characters.

The value of a character constant is the string of characters between
the delimiting apostrophes. The value does not include the delimiting
apostrophes, but does include all spaces or tabs within the
apostrophes.

Within a character constant, the apostrophe character is represented
by two consecutive apostrophes (with no space or other character
between them).

3-4

CONSTANTS

The length of the character constant is the number of characters
between the apostrophes, except that two consecutive apostrophes count
as a single apostrophe.

Each character in the string has a character position that is numbered
consecutively starting at one. The number indicates the sequential
position of a character in a string, from left to right. There is one
character storage location for each character in the string.

If a character constant appears in a numeric context (for example, as
the expression on the right side of an arithmetic assignment
statement), it is considered a Hollerith constant (see Section 3.9).

Examples of valid character constants and their lengths are:

Length Value

'WHAT? ' 5 WHAT?

'TODAYS"S DATE IS: 18 TODAY'S DATE IS:

'He said, "hello'" 16 He said, "hello"

, , , , 1

Examples of invalid character constants are:

'HEADINGS

, ,

"Now or Never"

(no trailing apostrophe)

(a character constant must contain at least
one character)

(quotation marks cannot be used in place of
apostrophes)

3.7 OCTAL AND DOUBLE-OCTAL CONSTANTS

You may use octal numbers (radix 8) as constants in arithmetic
expressions, logical expressions, and data statements. Octal numbers
up to 12 digits in length are considered standard octal constants;
they are stored right-justified in one storage location. When
necessary, standard octal constants are padded with leading zeros to
fill their storage location.

If you specify more than 12 digits in an octal number, it is
considered a double-octal constant. Double-octal constants occupy two
storage locations and may contain up to 24 right-justified octal
digits; leading zeros are added to fill any unused digits.

If you assign a single-octal constant to a double-precision or complex
variable, it is stored right-justified in the high-order word of the
variable. The low-order portion of the variable is set to zero. If
you assign a double-octal constant to a double-precision or complex
variable, it is stored right-justified in the two words.

All octal constants must:

1. Be preceded by a double quote (") to identify the digits as
octal, for example, "777

2. Be signed if negative, but optionally signed if positive

3. Contain one or more of the digits 0 through 7, but not 8 or 9

3-5

CONSTANTS

The following are examples of valid octal constants:

"123456700007
+"12345 (optional sign)
-"7777
"-7777

The following are examples of invalid octal constants:

(contains an 8) "12368
7777 (no identifying double quote)

When you use an octal constant as an operand in an expression, its
form (bit pattern) is not converted to accommodate it to the type of
any other operand. For example, the subexpression (A + "202400000000)
has as its result the sum of A with the floating point number 2.0;
while the subexpression (I + "202400000000) has as its result the sum
of I with a large integer.

You cannot use octal constants as stand-alone arguments for library
functions that require non-octal arguments. MINO, for instance,
requires integer arguments and cannot accept octal arguments.

When you combine a double-octal constant in an expression with (or
assign it to) either an integer or real variable, only the contents of
the high order location (leftmost) are used.

3.8 LOGICAL CONSTANTS

The Boolean values of truth and falsehood are represented in FORTRAN
source programs as the logical constants .TRUE. and .FALSE.. Always
write logical constants enclosed by periods, as in the preceding
sentence.

You may use logical quantities in arithmetic and logical statements.
Only the sign of a numeric value used in a logical IF statement is
tested to determine if it is true (negative) or false (nonnegative).

3.9 HOLLERITH CONSTANTS

A Hollerith constant is a string of alphanumeric and/or special
characters preceded by nH (for example, nHstring). In the prefix nH,
the letter n represents a number that specifies the exact number of
characters (including blanks) that follow the letter H.

NOTE

If a character constant appears in a numeric context
it is considered a Hollerith constant (see Section
3.6) •

The following are examples of Hollerith constants:

2HAB
14HLOAD TEST #124
6H#124-A

3-6

You may

1.

2.

CONSTANTS

NOTE

A tab in a Hollerith constant is counted as one
character; for example, 3H AB.

enter Hollerith constants into DATA statements as a string

Up to ten 7-bit ASCII characters for complex
double-precision type variables

Up to five 7-bit ASCII characters for all other
variables

of:

or

type

The 7-bit ASCII characters that comprise a Hollerith constant are
stored left-justified (starting in the first word of a
double-precision constant (the high-order word) or the real part of a
complex constant) with blanks placed in empty character positions.
Hollerith constants that occupy more than one variable are stored as
successive variables in the list. The following example illustrates
how the string of characters is stored in a six-element array called
A:

DIMENSION A(6)
DATA A/27HA string of many characters/

A (1) is set to 'A str'
A(2) is set to ling 0'
A (3) is set to 'f man'
A(4) is set to 'y chat
A (5) is set to 'racte'
A (6) is set to Irs

3.10 STATEMENT LABEL CONSTANTS

Statement labels are numeric identifiers that represent program
statement numbers.

You write statement label constants as strings of one to five decimal
digits, that are preceded by either an asterisk (*), a dollar sign
($), or an ampersand (&). For example, *11992, $11992, and &11992 are
all valid statement label constants. You use statement label
constants only in the argument list of CALL statements to identify the
number of the executable statement to return to in a multiple RETURN
statement (see Chapter 13).

3-7

CHAPTER 4

SYMBOLIC NAMES, VARIABLES, AND ARRAYS

4.1 SYMBOLIC NAMES

Symbolic names consist of any alphanumeric combination of one to 31
characters, the first of which must be a letter. The special
characters dollar sign ($) and underscore () are allowed. If you use
more than 31 characters in a symbolic name, the compiler prints a
warning message and ignores all but the first 31 characters. The
compiler interprets lowercase letters in symbolic names as uppercase
letters.

The following are examples of legal symbolic names:

A12345
IAMBIC PENTAMETER
ABLE
C

The following are examples of illegal symbolic names:

.AMBIC
8AB

(first character is not a letter)
(first character is not a letter)

You use symbolic names to identify specific items of a FORTRAN source
program; Table 4-1 lists these items, together with an example of a
symbolic name and text reference for each.

Table 4-1: Use of Symbolic Names

For a Detailed
Symbolic Names Description

Can Identify For Example See Section

1. Variables PI, CONST, LIMIT 4.2
2. Arrays TAX 4.3
3. Array elements TAX (3,5) 4.3.1
4. Substrings FOO (1: N) 4.4
5. Functions MYFUNC, VAL FUN 13.2
6. Subroutines CALCSB, SUB2, LOOKUP 13.4
7. Intrinsic functions SIN, ATAN, COSH 13.1
8. PROGRAM Statement TEST 6.4.1
9. PARAMETER Statement Vl,C2,K 7.8

10. COMMON block names DATAR, COMDAT 7.4
11. NAMELIST list DATA3 12.6

FORTRAN-10/20 VII 4-1 February 1987

SYMBOLIC NAMES, VARIABLES, AND ARRAYS

4.2 VARIABLES

A variable is a data storage location identified by a symbolic name; a
variable is not a constant, an array, or an array element& Variables
specify values that are assigned to them in such ways as assignment
statements (Chapter 8), DATA statements (Chapter 7), or at run time
through I/O data transfers (Chapter 10). Before you assign a value to
a variable, its value is undefined; and you should not reference it
except to assign a value to it.

The value you assign to a variable can be either a constant or the
result of a calculation that is performed during the execution of the
object program. For example, the statement IAB=5 assigns the constant
5 to the variable lAB. In the statement IAB=5+IB, however, the value
assigned lAB depends on the value of variable IB at the time the
statement is executed.

The type of a variable determines the interpretation of its contents.
Variables can be:

1. Integer

2. Real

3. Logical

4. Double-precision

5. Complex

6. Character

The type of a variabLe is determined either implicitly, by the first
letter of the variable name (described below), or explicitly, by
declaring the variable type in a type declaration statement (see
Chapter 7).

FORTRAN uses the following default conventions for variables whose
types are not explicitly declared:

1. Variable names that begin with the letters I, J, K, L, M, or
N are integer variables.

2. Variable names that begin with any letter other than I, J, K,
L, M, or N are real variables.

NOTE

These default conventions can be altered by
use of the IMPLICIT statement, which is
described in Section 7.3.

The following are examples of determining the type of a variable
according to the preceding conventions:

variable Beginning Letter Assumed Data Type

ITEMP I Integer
OTEMP 0 Real
KA123 K Integer
AABLE A Real

4-2

SYMBOLIC NAMES, VARIABLES, AND ARRAYS

4.3 ARRAYS

An array is an ordered set of data identified by an array name. Array
names are symbolic names and must conform to the rules for writing
symbolic names (see Section 4.1).

Arrays are made up of smaller units of data called array elements. As
with variables, you may assign a value to an array element. Before
you assign a value to an array element it has an undefined value. You
should not reference an array element until you have assigned it a
value.

An array element is referenced by using the array name together with
some number of subscripts that describe the position of the element
within the array.

4.3.1 Array Element Subscripts

The general form of an array element name is AN (Sl, S2, ••• Sn), where
AN is the array name and Sl through Sn represent 1 through n subscript
expressions. You may use any number of subscript quantities in an
element name; however, the number used must always equal the number of
dimensions (see Section 4.3.2) specified for the array.

A subscript can be any constant or expression (see Chapter S), for
example:

1. Subscript quantities may contain arithmetic expressions that
involve addition, subtraction, multiplication, division, and
exponentiation. For example, (A+B,C*S,D/2) and
(A**3,(B/4+C)*E,3) are valid subscripts.

2. Arithmetic expressions (see Chapter 5) used in array
subscripts may be of any type, but noninteger expressions
(including complex) are converted to integer when the
subscript is evaluated.

3. A subscript may contain function references (see Chapter 13).
For example, TABLE (SIN(A)*B,2,3) is a valid array element
identifier.

4. Subscripts may contain array element identifiers nested to
any level as subscripts. For example, in the subscript
(I(J(K(L»),A+B,C) the first subscript expression given is a
nested 3-level array reference.

Some examples of valid array elements are:

1. IAB(1,S,3)

2. ABLE (A)

3. TABLEl(lO/C+K**2,A,B)

4. MAT(A,AB(2*L),.3*TAB(A,M+l,D) ,55)

4-3

SYMBOLIC NAMES, VARIABLES, AND ARRAYS

4.3.2 Dimensioning Arrays

You must declare the size (number of elements) of an array to enable
FORTRAN to reserve the number of locations needed to store the array.
Arrays are stored as a series of sequential storage locations.
Arrays, however, are visualized and referenced as if they were single
or multi-dimensional, rectilinear matrices dimensioned on a row,
column, and plane basis. For example, Figure 4-1 represents a 3-row,
3-column, 2-plane array.

3 ROWS

~ 'l-~
q,v

____ --~v------_J
3 COLUMNS MR-S-1755-81

Figure 4-1: A 3 x 3 x 2 Array

You specify the size of an array by an array declarator written as a
subscripted array name. In an array declarator each subscript
quantity is a dimension of the array and must be either an integer
expression, an integer variable, or an asterisk (*).

Only the upper bound in the last dimension declarator in a list of
dimension declarators can be an asterisk. An asterisk marks the
declarators as an assumed-size array declarator (see Section 7.1.2).

NOTE

Variable array dimensions are only
subprograms. See adjustable dimension
Section 7.1.1.

allowed in
statements,

For example, TABLE(I,J,K) and MATRIX(lO,7,3,4) are valid
declarators.

array

The total number of elements that comprise an array is the product of
the dimension quantities given in its array declarator. For example,
the array lAB dimensioned as IAB(2,3,4) has 24 elements (2 * 3 * 4
24) •

You dimension arrays only in the specification statements DIMENSION,
COMMON, and type declaration (see Chapter 7). Subscripted array names
appearing in any of the these statements are array declarators;
subscripted array names appearing in any other statements are always
array element identifiers.

4-4

SYMBOLIC NAMES, VARIABLES, AND ARRAYS

In array declarators, the position of a given subscript quantity
determines the particular dimension of the array (for example, row,
column, or plane) that it represents. The first three subscript
positions specify the number of rows, columns, and planes that
comprise the named array; each following subscript given then
specifies a set comprised of n-number (value of the subscript) of the
previously defined sets. For example:

The Dimension Declarator Specifies the Array(s)

TAB(2) 2

TAB(2,2) 1,1 1,2

2,1 2,2

TAB(2,2,2)
...... 1,1,2 1,2,2 2,1,2 2,2,2

1,1,1 1,2,1
_

......

2,1,1 2,2,1 ,,-_ --
) -" --_ T AB(2,2,2,2 1,1,2,1 1,2,2,1 ------- .~ 1,1,2,2 1,2,2,2 --- I 2,1,2,1 2,2,2,1

_- I
2,1,2,2 2,2,2,2

1,1,1,1 1,2,1,1 --
2,1,1,1 2,2,1,1 -------

1,1,1,2 1,2,1,2

-2,1,1,2 2,2,1,2 ---_

NOTE

FORTRAN-10/20 permits up to 127 dimensions in an array
declarator. (The FORTRAN-77 Standard allows a maximum
of 7 dimensions.)

4.3.3 Order of Stored Array Elements

-' --
MR-S-1762-81

The elements of an array are stored in ascending order. The value of
the first (leftmost) subscript varies between its minimum and maximum
values most rapidly. The value of the last (rightmost) subscript
increases to its maximum value least rapidly. For example, the
elements of the array dimensioned as 1(2,3) are stored in the
following order:

1(1,1) 1(2,1) 1(1,2) 1(2,2) 1(1,3) 1(2,3)

In the following list, the elements of the three-dimensional array
(B(3,3,3» are stored row by row from left to right and from top to
bottom.

4-5

SYMBOLIC NAMES, VARIABLES, AND ARRAYS

8(1,1,1) 8(2,1,1) 8(3,1,1)--1
r------------------------
- - 8(1,2,1) 8(2,2,1) 8(3,2,1)-,
,------------------------
--8(1,3,1) 8(2,3,1) 8(3,3,1)-,

[:B(1 ~ ~2) - -- B(2~1 ~2) - - -8(3,1 ~)= =,
[------------- -----------

- 8(1,2,2) 8(2,2,2) 8(3,2,2)-"'j
1------------- - - - ---------
--8(1,3,2) 8(2,3,2) 8(3,3,2)-"'j

[" : B(1,1 ~3) - - - B(2~ ~3) - - -8(3,1 ~3): J
r- ------------ ----------
=-.:~~,~~3~ ___ ~~~~~ ___ ~(~,~~3~:J
L - 8(1,3,3) 8(2,3,3) 8(3,3,3)

MR-S-1756-81

Thus B(3,1,1) is stored before B(1,2,1), and so forth.

Character array elements are stored in successive character positions,
and do not necessarily start on a word boundary. Character array
elements are stored five characters per word (seven bits per
character), and the low order bit is never used, for example:

CHARACTER*3 A(4)

The array A will be stored in the following way:

A(1) A(2) A(3) A(4) Unused
A. A. ~ '" A

" " " '(,
I x I I x I x I x I x I x I

0 7 14 21 28 35 0 7 14 21 28 35 0 7 14 21 28 35
MR·S·2528-83

where:

x means bits are not used. The value in bit 35 is zero.

4.4 CHARACTER SUBSTRINGS

A character substring is a contiguous segment of a character variable
or character array element. A character substring is identified by a
substring name and can be assigned values and referenced.

A character substring reference has one of the following forms:

v([el]:[e2])

or

a(s[,s] •••) ([el]:[e2])

4-6

SYMBOLIC NAMES, VARIABLES, AND ARRAYS

where:

v is a character variable name.

a is a character array name.

s is a subscript expression.

el

e2

is an optional numeric expression that specifies
leftmost character position of the substring.

is an optional numeric expression that specifies
rightmost character position of the substring.

the

the

Character positions within a character variable or array element are
numbered from left to right, beginning at 1. For example, LABEL(2:7)
specifies the substring beginning with the second character position
and ending with the seventh character position of the character
variable LABEL.

If the value of the numeric
integer, FORTRAN converts
fractional part before use.

expression el or e2 is not of type
it to an integer value by truncating any

The values of the numeric expression el and e2 must meet the following
conditions:

1 • LE. e 1 • LE. e 2 • LE • 1 en

where:

len is the length of the character variable or array element.

If e1 is omitted, FORTRAN assumes that e1 is 1.
FORTRAN assumes that e2 equals len.

If e2 is omitted,

For example, NAMES(1,3) (:7) specifies the substring starting with the
first character position and ending with the seventh character
position of the character array element NAMES(1,3).

4-7

CHAPTER 5

EXPRESSIONS

5.1 ARITHMETIC EXPRESSIONS

An arithmetic expression is formed with arithmetic operands and
arithmetic operators. The evaluation of such an expression produces a
numeric value.

Arithmetic expressions may be either simple or compound.
arithmetic expression consists of an operand that can be:

1. A numeric constant

2. A numeric variable

3. A numeric array element

4. An arithmetic function reference (see Chapter 13)

5. An arithmetic
parentheses

or logical expression written

A simple

within

Operands may be of integer, real, double-precision, complex, logical,
octal, double-octal, or Hollerith type.

The following are examples of valid simple arithmetic expressions:

105
lAB
TABLE(3,4,5)
SIN (X)
(A+B)

(integer constant)
(integer variable)
(array elemen t)
(function reference)
(a parenthetical expression)

A compound arithmetic expression consists of two or more operands
combined by arithmetic operators. Table 5-1 lists the arithmetic
operations permitted in FORTRAN and the operator recognized for each
operation.

5-1

EXPRESSIONS

Table 5-1: Arithmetic Operations and Operators

Operation Binary Operator Example

Addition + A+B
Subtraction - A-B
Multiplication * A*B
Division I AlB
Exponentiation **

A

A**B or A B or

Operation Unary Operator Example

Identity + +A
Negation - -B

5.1.1 Rules for Writing Arithmetic Expressions

Observe the following rules in structuring arithmetic expressions:

1. The operands comprising an arithmetic expression can be of
different types. Tables 5-2 and 5-3 illustrate all permitted
combinations of data types and the type assigned to the
result of each.

NOTE

All combinations of numeric data types except
double-precision with complex are allowed in
FORTRAN.

2. If you specify two adjacent operators, and the second is a
minus or a plus, the second operator is considered a unary
operator and acts only on the term immediately following it.
Thus, in the example (A*X+B)*+C, the subexpression, *+C, is
interpreted as the binary operator * and the unary +.

You cannot, however, have two adjacent binary operators in an
expression. For example, the expression A*/B is not
permitted.

3. All operators must be included; no operation is implied. For
example, the expression A(B) does not specify multiplication,
although this is implied in standard algebraic notation. The
expression A*(B) is required to specify a multiplication of
the operands.

5-2

V1
I

w

~
::J

~
<C
'0
8.
~

Table 5--2: Type of the Result Obtained from Mixed-Mode Operations

Type of Argument 2

For operators Double
+,-,\1 Integer Real Precision Complex

1. Type of operation 1. Integer 1. Real 1. Double Precision 1. Complex
used

2. Type associated 2. Integer 2. Real 2. Double Precision 2. Complex
with result

3. Conversion on 3. None 3. From Integer 3. From Integer to 3. From Integer to
Integer Argument 1 to Real Double Precision Complex. Value

used as Real part
4. Conversion on 4. None 4. None 4. None 4. None

Argument 2

1. Type of operation 1. Real 1. Real 1. Double Precision 1. Complex
used

2. Type associated 2. Real 2. Real 2. Double Precision 2. Complex
with result

3. Conversion on 3. None 3. None 3. Used directly as 3. Used directly as
Real Argument 1 the high order the Real part;

word; low order imaginary part
word is zero. is zero

4. Conversion on 4. From Integer 4. None 4. None 4. None
Argument 2 to Real

1. Type of operation 1. Double Precision 1. Double Precision 1. Double Precision
used

2. Type associated 2. Double Precision 2. Double Precision 2. Double Precision
with result

3. Conversion on 3. None 3. None 3. None
Double Argument 1
Precision 4. Conversion on 4. From Integer to 4. Used directly as 4. None

Argument 2 Double Precision the high order
word; low order
word is zero

1. Type of operation 1. Complex 1. Complex 1. Complex
used

2. Type associated 2. Complex 2. Complex 2. Complex
with result

3. Conversion on 3. None 3. None 3. None

Complex
Argument 1

4. Conversion on 4. From Integer to 4. Used directly as 4. None
Argument 2 Complex. Value the Real part;

used as Real part. imaginary part
is zero.

1. Type of operation 1. Integer 1. Real 1. Double Precision 1. Complex
used

2. Type assocleted 2. Integer 2. Real 2. Double Precision 2. Complex
with result

3. Conversion on 3. None 3. None 3. Used directly as 3. Used directly as

Logical
Argument 1 the high order the Real part;

word; low order imaginary part
word Is zero is zero

4. Conversion on 4. None 4. None 4. None 4. None
Argument 2

1. Type of operation 1. Integer 1. Real 1. Double Precision 1. Complex
used

2. Type associated 2. Integer 2. Real 2. Double Precision 2. Complex
with result

3. Conversion on 3. None 3. None 3. Used directly as 3. Used directly as

Octal Argument 1 the high order the Real part;
word; low order Imaginary part
word is zero. is zero.

4. Conversion on 4. None 4. None 4. None 4. None
Argument 2

1. Type of operation 1. Integer 1. Real 1. Double Precision 1. Complex
used

2. Type associated 2. Integer 2. Real 2. Double Precision 2. Complex
with result

Double
3. Conversion on 3. High order word 3. High order word 3. None 3. None

Argument 1 is used direclly; is used direclly;
Octal low order word low order word

is Ignored is ignored
4. Conversion on 4. None 4. None 4. None 4. None

Argumenl2

1. Type of operation ,. Integer 1. Real 1. Double Precision 1. Complex
used

2. Type associated 2. Integer 2. Real 2. Double Precision 2. Complex
with result

3. Conversion on 3. High order word 3. High order word 3. First two words 3. First two words

Literal Argument 1 Is used direclly; Is used directly; are used directly; are used directly;
further words further words further words further words
are ignored are ignored are ignored are ignored

4. Conversion on 4. None 4. None 4. None 4. None
Argument 2

Double
Logical Octal Octal Literal

1. Integer 1. Integer 1. Integer 1. Integer

2. Integer 2. Integer 2. Integer 2. Integer

3. None 3. None 3. None 3. None

4. None 4. None 4. High order word 4. High order word
is used directly; is used directly;
low order word further words are
is Ignored ignored.

1. Real 1. Real I. Real 1. Real

2. Real 2. Real 2. Real 2. Real

3. None 3. None 3. None 3. None

4. None 4. None 4. High order word 4. High order word
is used directly; is used directly;
low order word further words
is ignored. are ignored.

1. Double Precision 1. Double Precision 1. Double Precision 1. Double Precision

2. Double Precision 2. Double Precision 2. Double Precision 2. Double Precision

3. None 3. None 3. None 3. None

4. Used directly as 4. None 4. First two words
the high order are used directly
word; low order further words
word is zero are ignored

I

1 Complex 1. Complex 1. Complex 1. Complex

2. Complex 2. Complex 2. Complex 2. Complex

3. None 3. None 3. None 3. None

4. Used directly as 4. Used directly as 4. None 4. First two words
the Real part; the Real part; are used directly.
imaginary part imaginary part Further words
is zero. is zero. are ignored.

1. Integer 1. Integer I. Integer I. Integer

2. Octal 2. Octal 2. Octal 2. Octal

3. None 3. None 3. None 3. None

4. None 4. None 4. High order word 4. High order word
is used directly; is used directly;
low order word further words
is ignored are ignored

1. Integer 1. Integer 1. Integer 1. Integer

2. Octal 2. Octal 2. Octal 2. Octal

3. None 3. None 3. None 3. None

4. None 4. None 4. High order word 4. High order word
is used directly; is used directly;
low order word further words
is ignored are ignored

1. Integer 1. Integer 1. Integer 1. Integer

2. Octal 2. Octal 2. Octal 1. Octal

3. High order word 3. High order word 3. High order word 3. High order word
is used directly; is used direclly; is used directly; is used directly;
low order word low order word low order word low order words
is ignored is ignored is ignored are ignored

4. None 4. None 4. High order word 4. High order word
is used directly. is used directly;
low order word low order words
is ignored are ignored

1. Integer 1. Integer 1. Integer 1. Integer

2. Octal 2. Octal 2. Octal 2. Octal

3. High order word 3. High order word 3. High order word 3. High order word
is used directly; is used directly; is used directly; is used directly;
further words further words further words further words
are ignored are ignored are ignored are ignored

4. None 4. None 4. High order word 4. High order word
is used directly. is used directly;
low order word further words
is ignored are Ignored

MR-S·17S1-81

EXPRESSIONS

Table 5-3: Permitted Base/Exponent Type Combinations

Base Operand Exponent Operand

Double-
Integer Real Precision Complex

Integer Integer Real Double- Complex
Precision

Real Real Real Double- Complex
Precision

Double- Double- Double- Double-
Precision Precision Precision Precision (Illegal)

Complex Complex Complex (I llega 1) Complex

5.1.2 Arithmetic Constant Expressions

An arithmetic constant expression is an arithmetic expression in which
each operand is one of the following:

1. A numeric constant

2. A symbolic name of a numeric constant

3. An arithmetic constant expression enclosed in parentheses

4. A call to the function ICHAR (see Chapter 13) where the
argument is a character constant expression

The exponentiation operator is not permitted unless the exponent is of
type integer. Note that variables, array elements, and function
references are not allowed.

Example:

5+6*(ICHAR('Z')-ICHAR('A')+1)*4.1**3

5.1.2.1 Integer Constant Expression - An integer constant
is an arithmetic constant expression in which each
symbolic name of a constant is of type integer.

Example:

3+4**6+2

5-5

expression
constant or

EXPRESSIONS

5.2 CHARACTER EXPRESSIONS

Character expressions consist of character operands and character
operators. The evaluation of a character expression yields a single
value of character data type.

A character operand can be anyone of the following:

1. A character constant

2. A symbolic name of a character constant

3. A character variable

4. A character array element

5. A character substring

6. A character expression, optionally enclosed in parentheses

7. A character function reference

The only character operator is the concatenation operator (//).

A character expression has the form:

character operand [//character operand] •••

The value of a character expression is a character string formed by
successive left-to-right concatenations of the value of the elements
of the character expression. The length of a character expression is
the sum of the lengths of the character elements. For example, the
value of the character expression 'AB'//'CDE' is 'ABCDE', which has a
length of 5.

Note that the expression:

A=A//B

has no effect on A, since the concatenation result is truncated to the
length of A.

Parentheses do not affect the value of a character expression. For
example, the following character expressions are equivalent:

('ABC'//'DE')//'F'
'ABC'//('DE'//'F')
'ABC'//'DE'//'F'

Each of these character expressions has the value 'ABCDEF'.

If a character element in a character expression contains spaces, the
spaces are included in the value of the character expression. For
example, 'ABC '//'D E'//'F' has a value of 'ABC D EF'.

5-6

EXPRESSIONS

5.2.1 Character Constant Expression

A character constant expression is a character expression in which
each operand is one of the following:

1. A character constant

2. The symbolic name of a character constant

3. A character constant expression enclosed in parentheses

4. A call to the function CHAR (see Chapter 13) where the
argument is an integer constant expression

Variables, array elements, substrings, and function references are not
allowed.

Example:

'HELLO'//CHAR(13)//CHAR(lO)//'GOODBYE'

5.3 LOGICAL EXPRESSIONS

Logical expressions can be either simple or compound. Simple logical
expressions consist of a logical operand, which can be one of the
following:

1. A constant

2. A variable

3. An array element

4. A function reference (see Chapter 13)

5. An expression written within parentheses

Compound logical expressions consist of two or more logical or numeric
operands combined by logical operators. The evaluation of a logical
expresslon produces a truth value (type logical, true or false) as
determined by the resulting bit pattern.

Table 5-4 gives the logical operators permitted by FORTRAN and a
description of the operation each provides.

5-7

EXPRESSIONS

Table 5-4: Logical Operators

Operator Description

.AND. AND operator. Both of the logical operands combined by
this operator must be true to produce a true result •

• OR. Inclusive OR operator. If either or both of the logical
operands combined by .OR. are true, the result will be
true.

.NEQV.

.EQV.

.NOT.

Exclusive OR operator (also .XOR.). If either but not
both of the logical operands combined by .NEQV. is
true, the result will be true.

Equivalence operator. If the logical operands being
combined by .EQV. are both the same (both are true or
both are false), the result will be true.

Complement operator. This operator specifies
complementation (inversion) of the item (operand or
expression) that it modifies. The original item, if
true by itself, becomes false, and vice versa.

Logical expressions are of the general form P .op. Q, where P and Q
are logical operands and .op. is any logical operator except ".NOT.".
The .NOT. operator complements the value of an operand; it must
appear immediately before the operand that it modifies, for example,
.NOT.P.

Table 5-5 is
combinations
combination.

a truth table illustrating all possible logical
of two logical operands (P and Q) and the result of each

5-8

EXPRESSIONS

Table 5-5: Logical Operations Truth Table

When P is And Q is: Then the Expression:

True ----- .NOT. P

False ----- .NOT. P

True True P .AND.

True False P .AND.

False True P .AND.

False False P .AND.

True True P .OR. Q

True False P .OR. Q

False True P .OR. Q

False False P .OR. Q

True True P .NEQV.

True False P • NEQV.

False True P .NEQV.

False False P • NEQV.

True True P .EQV.

True False P .EQV.

False True P. EQV.

False False P • EQV.

For example, consider the following variables:

Variables

PHETT, RUN
I,J,K
DP,D
L,A,B
CPX,C

Type

Real
Integer
Double-Precision
Logical
Complex

5-9

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Is:

False

True

True

False

False

False

True

True

True

False

False

True

True

False

True

False

False

True

EXPRESSIONS

Examples of valid logical expressions consisting of the preceding
variables are:

L.AND.B
(PHETT*I).NEQV. (DP+K)
L.AND.A.OR •• NOT. (I-K)

Logical operations are performed on the full 36-bit binary
representation of the operands involved. However, when an operand of
a logical expression is double-precision or complex, only the first
word of a double-precision operand (the high-order word) or the real
part of the complex operand is used in the specified logical
operation.

The result of a logical operation is found by performing the specified
operation simultaneously for each of the corresponding bits in each
operand. For example, consider the expression A=C.OR.D, where C="456
and D="201. The operation performed by the processor and the result
is:

Word
Bits 0 I --24 25 26 27 28 29 30 31 32 33 34 35
Operand C 0 0 ·0 0 0 1 0 0 1 0 1 I I 0
Operand D 0 0 ·0 0 0 0 1 0 0 0 0 0 0 I
Result A 0 0 .0 0 0 1 1 0 1 0 1 1 1 1

Table 5-5 also illustrates all possible logical combinations of two
one-bit binary operands (P and Q) and glves the result of each
combination. Simply read 1 for true and 0 for false.

If a logical expression is used as an operand in an arithmetic
expression, its value is not converted to accommodate it to the type
of any other operand.

5.3.1 Logical Constant Expression

A logical constant expression is a logical expression in which each
operand is one of the following:

1. A logical constant

2. The symbolic name of a logical constant

3. A relational expression in which each operand is a constant
expression

4. A logical constant expression enclosed in parentheses

Variables, array elements, and function references are not allowed.

Example:

.NOT. (PARML1.NE.PARML2)

where PARMLI and PARML2 are specified in a PARAMETER statement (see
Section 7.8).

5-10

EXPRESSIONS

5.4 RELATIONAL EXPRESSIONS

Relational expressions consist of two arithmetic expressions or two
character expressions combined by a relational operator. The
relational operator allows you to test the relationship between two
arithmetic or two character expressions.

The result of a relational expression is always a logically true or
false value.

You can write relational operators either as
enclosed within periods (for example, .GT.)
equivalent, for example, >, instead of .GT.

a 2-1etter mnemonic
or use the symbolic

Table 5-6 lists the mnemonic and symbolic forms of the FORTRAN-lO/20
relational operators and specifies the type of test performed by each.

Table 5-6: Relational Operators and Operations

Operators Relation Tested

Mnemonic Symbolic

.GT. > Greater than

.GE. >= Greater than or equal to

.LT. < Less than

.LE. <= Less than or equal to

.EQ. -- Equal to

.NE. # Not equal to

Relational expressions are of the general form A .op. B, where A and B
represent arithmetic or character operands, and .op. is a relational
operator.

You can mix arithmetic operands of type
double-precision in relational expressions.

integer, real, and

A relational expression cannot be used to compare the value of an
arithmetic expression with the value of a character expression.
However, you can compare a numeric expression to a character constant.
In this case, the character constant is considered to be a Hollerith
(see Section 3.9).

You can compare complex operands using only the operators .EQ. (==)
and .NE. (#) • Complex quantities are equal if the corresponding
parts of both words are equal.

For example, assume the following variables:

Variables

PHETT, RON
I,J,K
DP,D
L,A,B
CPX,C
CHR,RA

Type

Real
Integer
Double-Precision
Logical
Complex
Character

5-11

Examples of valid
variables are:

(PHETT) .GT.IO
[-- 5

C.EQ.CPX
CHR.LT.RA

Examples of invalid
variables are:

(PHETT) .GT 10

C.GT.CPX

RA.EQ.RON

EXPRESSIONS

relational expressions consisting of the

relational expressions consisting of the

(closing period missing from operator)

(complex operands can only be compared by
and .NE. operators)

(you cannot compare arithmetic
character operands)

operands

above

above

.EQ.

and

Examples of valid expressions that use both logical and relational
operators to combine the preceding variables are:

(I.GT. 10) .AND. (J.LE.K)
((I * RON) • EQ. (I / J)) • OR • L
(I. AND. K) # ((PHETT) • OR. (RON))
C#CPX.OR.RON

rf a logical expression is used as an operand in an arithmetic
expression, its value is not converted to accommodate it to the type
of any other operand.

In character relational expressions "less than" means "precedes in the
ASCII collating sequence," and "greater than" means "follows in the
ASCII collating sequence", for example:

, AB ' / / ' Z Z Z' • LT. 'CCCCC'

This expression tests whether 'ABZZZ' is less than 'CCCCC'. Since
that relationship does exist, the value of the expression is true. If
the relationship stated does not exist, the value of the expression is
false.

If the two character expressions in a relational expression are not
the same length, the comparison is performed as if the shorter one is
paddad on the right with spaces until the lengths are equal, for
example:

, ABC' • EQ. ' ABC

, AB ' • LT • ' C '

The first relational expression has a value of true even though the
lengths of the expressions are not equal, and the second has a value
of true even though 'AB' is longer than 'C'.

5-12

EXPRESSIONS

NOTE

The rule that character relationals extend the shorter
operand with spaces to match the length of the longer
operand has an interesting effect when the longer
string ends with characters in the range CHAR(O) to
CHAR(31) (ASCII control characters such as 'bell' and
line feed).

Since space is CHAR(32) , the trailing spaces supplied
as filler by FORTRAN compare being greater than
trailing control characters. Thus, the string 'FOO'
is .GT. 'FOO G' (FOO followed by a bell).

5.5 EVALUATION OF EXPRESSIONS

The following considerations determine the order of computation of a
FORTRAN expression:

1. The use of parentheses

2. An established hierarchy for the execution of arithmetic
relational, and logical operations

3. The location of operators within an expression

5.5.1 Parenthetical Subexpressions

In an expression, all subexpressions enclosed within parentheses are
evaluated first. When parenthetical subexpressions are nested (one
contained within another), the most deeply nested subexpression is
evaluated first; the next most deeply nested subexpression is
evaluated second; and so on, until the value of the final
parenthetical expression is computed.

When more than one operator is contained in a parenthetical
subexpression, the required computations are performed according to
the hierarchy assigned to operators by FORTRAN (see Section 5.5.2).

For example, the separate computations performed in evaluating the
expression A+B/«A/B)+C)-C are:

1. Rl=A/B

2. R2=Rl+C

3. R3=B/R2

4. R4=A+R3

5. R5=R4-C

where:

Rl through R5 represent the interim and final results of the
computations performed.

5-13

EXPRESSIONS

5.5.2 Hierarchy of Operators

The following hierarchy (order of execution)
classes of FORTRAN operators:

is assigned to the

first,
second,
third,

arithmetic operators
relational operators
logical operators

Table 5-7 specifies the precedence assigned to the
operators of the above classes.

individual

With the exception of exponentiation and integer division, all
operations on expressions or subexpressions involving operators of
equal precedence are computed in any order that is algebraically
correct.

A subexpression of a given expression may be computed in any order.
For example, in the expression (F(X) + A*B), the function reference
may be computed either before or after A*B.

Table 5-7: Hierarchy of FORTRAN Operators

Class Level Symbol or Mnemonic

EXPONENTIAL First ** or '"

Second -(negation) and + (identity)
ARITHMETIC Third *,/

Fourth +,-

RELATIONAL Fifth .GT.,.GE.,.LT.,.LE.,.EQ.,.NE.
or

>,>=,<,<=,==,#

Sixth .NOT.
Seventh .AND.

LOGICAL Eighth • OR.
Ninth .EQV.,.NEQV.

Operations specifying integer division are evaluated from left to
right. For example, the expression I/J*K is evaluated as if it had
been written as (I/J)*K), but this left-to-right evaluation process
can be overridden by parentheses. I/J*K (evaluated as(I/J) *K) does
not equal I/(J*K).

When a series of exponentiation operations occurs in an expression, it
is evaluated in order from right to left. For example, the expression
A**2**B is evaluated in the following order:

first Rl = 2**B (intermediate result)
second R2 = A**Rl (final result).

As with other expressions, parentheses alter the evaluation of the
above expression. The expression (A**2)**B is evaluated in these two
steps:

first Rl = A**2 (intermediate result)
second R2 = Rl**B (final result)

5-14

EXPRESSIONS

5.5.3 Mixed-Mode Expressions

Mixed-mode expressions are evaluated on a basis of
subexpression-by-subexpression, with the type of the results obtained
converted and combined with other results or terms according to the
conversion procedures described in Table 5-2.

For example, assume the following variables and data types:

Variables

D
X
I,J

Type

Double-Precision
Real
Integer

The mixed-mode expression D+X*(I/J)
manner:

is evaluated in the following

1. Rl I/J Rl is integer

2. R2 X*Rl Rl is converted to type real and is multiplied by X
to produce R2

3. R3 D+R2 R2 is converted to type double-precision and is
added to D to produce R3

where:

Rl and R2, and R3 represent the interim and final results
respectively of the computations performed.

5.5.4 Use of Logical Operands in Mixed-Mode Expressions

When you use logical operands in mixed-mode expressions, the value of
the logical operand is not converted in any way to accommodate it to
the type of the other operands in the expression. For example, in
L*R, where L is type logical and R is type real, the expression is
evaluated without converting L to type real.

5.6 CONSTANT EXPRESSIONS

A constant expression is an arithmetic constant expression (see
Section 5.1.2), a character constant expression (see Section 5.2.1),
or a logical constant expression (see Section 5.3.1).

5-15

CHAPTER 6

EXECUTABLE AND NONEXECUTABLE STATEMENTS

Each statement is classified as executable or nonexecutable.
Executable statements specify actions and form an execution sequence
in a program. Nonexecutable statements do the following:

1. Specify characteristics, arrangement, and initial values of
data

2. Contain editing information

3. Specify statement functions

4. Classify program units

5. Specify entry points within subprograms

Nonexecutable statements are not part of the execution sequence.
Nonexecutable statements may be labeled, but such statement labels
must not be used to control the execution sequence.

6.1 EXECUTABLE STATEMENTS

The following statements are classified as executable:

1. Arithmetic, logical, statement label (ASSIGN), and character
assignment statements

2. Unconditional GO TO, assigned GO TO, and computed GO TO
statements

3. Arithmetic IF, logical IF statements, and two-branch logical
IF statements, IF THEN, ELSE, and ELSE IF THEN statements

4. CONTINUE statement

5. STOP and PAUSE statements

6. DO and DO WHILE statements

7. READ, REREAD, WRITE, REWRITE, and PRINT statements

8. DELETE and UNLOCK statements

9. OPEN and CLOSE statements

10. REWIND, BACKSPACE, ENDFILE, BACKFILE, SKIPRECORD, SKIPFILE,
FIND and UNLOAD statements

FORTRAN-10/20 Vll 6-1 February 1987

EXECUTABLE AND NONEXECUTABLE STATEMENTS

11. CALL and RETURN statements

12. END, END IF, and END DO statements

13. DECODE and ENCODE statements

14. ACCEPT, PUNCH, and TYPE statements

15. INQUIRE statement

6.2 NONEXECUTABLE STATEMENTS

The following statements are classified as nonexecutable:

1. PROGRAM, FUNCTION, SUBROUTINE, ENTRY,
statements

and

2. DIMENSION, COMMON, EQUIVALENCE, IMPLICIT,
INTRINSIC, EXTERNAL, and SAVE statements

BLOCK DATA

PARAMETER,

3. INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, and
CHARACTER type-specification statements

4. DATA statement

5. FORMAT statement

6. Statement function statement

7. INCLUDE statement

8. NAMELIST statement

6.3 ORDERING OF FORTRAN STATEMENTS

The order in which you place FORTRAN statements in a program unit is
important. Certain types of statements must be processed before
others to guarantee that compilation takes place as you expect.

Figure 6-1 shows the required order of statements and comment lines
within a program unit. Horizontal lines indicate (from the top of the
diagram to the bottom) the order in which statements and comment lines
must appear in a program. Tor example, a PROGRAM statement must occur
before FORMAT statements. FORMAT statements, in turn, must occur
before an END statement.

vertical lines in the diagram indicate how comment lines and
statements may be interspersed in the program. For example, PARAMETER
statements must be placed after all PROGRAM, FUNCTION, or SUBROUTINE
statements, and before all statement function and executable
statements. PARAMETER statements can be placed before, after, or
between all IMPLICIT and other specification statements. Comment
lines may be interspersed anywhere in a program.

Generally if FORTRAN encounters statements that are out of place, it
prints warning messages and continues compilation. In some cases,
however, out-of-place statements cause the compiler to terminate
compilation or generate unexpected results.

6-2 February 1987

EXECUTABLE AND NONEXECUTABLE STATEMENTS

Comment
Lines
and
INCLUDE3

Statements

PROGRAM, FUNCTION, SUBROUTINE, or
BLOCK DATAl Statements

FORMAT
and
Entry2

Statements

IMPLICIT
Statements

NAMELIST
and
DATA
Statements

END Statement

Other
Specification
Statements

PARAMETER
Statements

Statement
Function
Definitions

Executable
Statements

1 BLOCK DATA subroutines cannot contain any executable statements, statement
functions, FORMAT statements, EXTERNAL statements, INTRINSIC statements,
or NAMELIST statements (See Section 14.1).

2 The ENTRY statement is allowed only in functions or subroutines. All executable
statements which reference any dummy parameters must physically follow the
ENTRY statement unless the references appear in the FUNCTION statement, the
SUBROUTINE statement, or in a preceding ENTRY statement.

3 The placement of an INCLUDE statement is dictated by the types of statements to
be included.

Figure 6-1: Ordering of FORTRAN Statements

NOTE

In FORTRAN-IO/20, a DATA statement
PARAMETER statement or another
statement.

6-3

MR-S-3822-85

can precede a
specification

EXECUTABLE AND NONEXECUTABLE STATEMENTS

6.4 COMPILATION CONTROL STATEMENTS

You use compilation control statements to identify FORTRAN programs
and to specify their termination. Statements of this type do not
affect either the operations performed by the object program, or the
manner in which the object program is executed. The three compilation
control statements are:

1. PROGRAM statement

2. INCLUDE statement

3. END statement

The PROGRAM statement and the INCLUDE statement are described in the
following sections. The END statement is described in Section 9.8.

6.4.1 PROGRAM Statement

This statement allows you to give the main program a name
the compiler-assumed name "MAIN." The general form
statement is:

other than
of a PROGRAM

PROGRAM name

where:

name is a symbolic name that begins with an alphabetic
character and contains a maximum of six characters.
(See Section 4.1 for a description of symbolic names.)

The PROGRAM statement must be the first statement in a program unit.
(see Section 6.3 for a discussion of the ordering of FORTRAN
statements.)

6.4.2 INCLUDE Statement

This statement allows you to include code segments or external
declarations in a program unit without having them in the same file as
the primary program unit. When an INCLUDE statement is encountered
during compilation, the compiler replaces the INCLUDE statement with
the contents of the specified file. The general form of the INCLUDE
statement is:

INCLUDE 'filespec [/switch]'

where:

filespec

switch

is a TOPS-I0 or TOPS-20 file specification (refer
to the TOPS-IO or TOPS-20 Operating System
Commands manual). The only restrlction is that
unde~'fOPS-IO you cannot specify subdirectory
information.

is one of the following optional switches:

/CREF indicates the included statements
are to be used to augment the
cross-reference listing (default).

6-4

EXECUTABLE AND NONEXECUTABLE STATEMENTS

/LIST

/NOLIST

/NOCREF

indicates that the statement in the
specified file is to be listed in
the compilation source listing. A
number indicating the depth of
nesting of include files precedes
each statement listed (default).

indicates that the included
statements are not to be printed in
the compilation listing.

indicates
statements
augment
listing.

that the included
are not to be used to
the cross-reference

The following rules govern the use of the INCLUDE statement:

1. The INCLUDEd file can contain any legal FORTRAN statement
except a statement that terminates the current program unit,
such as the END, PROGRAM, FUNCTION, SUBROUTINE, or BLOCK DATA
statements.

The INCLUDEd file can contain other INCLUDE statements. This
is called nesting INCLUDE statements. The number of nested
levels is restricted to 12.

2. The proper placement of the INCLUDE statement within a
program unit depends upon the types of statements to be
INCLUDEd. (See Section 6.3 for information on the ordering
of FORTRAN statements.)

3. The file to be INCLUDEd must be on disk.

Note that an asterisk (*) is appended to the line numbers of the
INCLUDEd statements on the compilation listing. The level of nesting
is indicated following the asterisk.

6-5

CHAPTER 7

SPECIFICATION AND DATA STATEMENTS

Specification statements are used to specify
storage allocation, and data arrangement.
specification statements:

1. DIMENSION

type characteristics,
There are ten types of

2. Statements that explicitly specify type, including INTEGER,
REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, or CHARACTER

3. IMPLICIT

4. COMMON

5. EQUIVALENCE

6. EXTERNAL

7. INTRINSIC

8. PARAMETER

9. DATA

10. SAVE

Specification statements are nonexecutable and must conform to the
ordering guidelines described in Section 6.3.

7.1 DIMENSION STATEMENT

The DIMENSION statement provides FORTRAN with information needed to
identify and allocate the space required for arrays. You may specify
any number of subscripted array names as array declarators in a
DIMENSION statement. The general form of a DIMENSION statement is:

DIMENSION a(d) [,a(d) •••]

where:

each a(d) is an array declarator. An array declarator
provides the name and dimension(s) of an array.
An array declarator is written in the following
form:

a(d [,d •••])

7-1

SPECIFICATION AND DATA STATEMENTS

where:

a is the symbolic name of the array.

d is the array dimension declarator. The form of a dimension
declarator is as follows:

dl:] d2

where:

dl is an optional integer expression or integer
variable specifying the lower dimension bound.
The lower dimension bound is the first element in
that dimension of the array. If dl is not
specified the default is 1.

d2 is an integer expression or integer variable that
specifies the upper dimension bound. The upper
dimension bound is the greatest element in that
dimension of the array. You must have at least
one d2 specification in each array declaration.

If both dl and d2 are specified, dl cannot have a
value greater than d2. The values dl and d2 can,
however, be the same.

An asterisk (*) can also occur as an upper bound,
but only as the last dimension. An asterisk marks
the declarator as an assumed-size array declarator
(see Section 7.1.2).

NOTE

A dimension bound expression must not contain a
function or array element reference.

If the array is a dummy argument to a subprogram, then dl and d2 can
be integer dummy arguments and d2 can be an asterisk; otherwise, they
must be constants.

If the symbolic name of a constant or variable that appears in a
dimension bound expression is not of implicit default integer type
(see Section 4.2), it must be specified integer by an IMPLICIT
statement or a type-statement.

Examples:

DIMENSION EDGE (-1:1,4:8), NET (5,10,4), TABLE (567)
DIMENSION TABLE (IAB:J,K,M,10:20)

where:

lAB, J, K, and M are of type integer.

7-2

SPECIFICATION AND DATA STATEMENTS

7.1.1 Adjustable Dimensions

When used within a subprogram, a declarator for an array that is a
dummy argument can use integer dummy arguments as dimension bounds.
The following rules govern the use of adjustable dimensions in a
subprogram:

1. The array name must be a dummy argument. Each variable that
is used as a dimension bound must be either a dummy argument
or in COMMON (see Section 7.4).

2. For multiple entry subprograms, if any variables that specify
dimension bounds are dummy arguments which do not occur in
the formal argument list of the entry point used, the value
of the variables as passed for a previous call are used.
However, this is only permitted if the subprogram has not
changed those dummy arguments. Futhermore, when overlays are
used, a SAVE statement that preserves the local variables of
the subprogram is needed.

3. If the value of an array dimension variable is altered within
the program, the dimensionality of the array is not affected.

4. The size of an array within a subprogram cannot
size of the original array, as defined in
program.

Example 1:

SUBROUTINE SBR (ARRAY,Ml,M2,M3,M4)
DIMENSION ARRAY{Ml:M2,M3:M4)
DO 27 L=M3,M4
DO 27 K=Ml,M2
ARRAY (K,L)=VALUE

27 CONTINUE
END

exceed the
the calling

In the example above, the dimensions of ARRAY will be re-specified
each time the subroutine SBR is entered.

Example 2:

SUBROUTINE SBI (ARRl,M,N)
DIMENSION ARRl{M,N)
ARRl{M,N)=VALUE
ENTRY SB2{ARRl,M)
ENTRY SB3{ARRl,N)
ENTRY SB4{ARRl)

END

In the example above, the first call made to the subroutine must be
made to S81 so that all of the dimension bounds have defined values.
If a call is made to SBI with the values M=ll and N=13, a succeeding
call to SB2 will use the value N=13, but will give M a new value. If
a succeeding call is made to SB4, the last values passed through
entries SBl, SB2, or SB3 are used for M and N.

7-3

SPECIFICATION AND DATA STATEMENTS

7.1.2 Assumed-size Arrays

An assumed-size array is a dummy array for which the upper bound of
the last dimension is specified as an asterisk(*), for example:

SUBROUTINE SUB(A,N)
DIMENSION A(1:N,1:*)

Since storage for array A is allocated in the calling routine, the
upper bound of the rightmost dimension of A does not affect the
subscript calculations or storage allocation for A.

Therefore, subroutine SUB can be written to handle arguments with any
rightmost dimension (the last subscript is never range checked for
being too large, even when the /DEBUG:BOUNDS compiler switch is
specified). Such a subroutine can declare assumed-size arrays.

The size of an assumed-size array, and the number of elements that can
be referenced, are determined as follows:

1. If the actual argument corresponding to the dummy array is a
noncharacter array name, the size of the dummy array is the
size of the actual-argument array.

2. If the actual argument corresponding to the dummi argument is
a noncharacter array element name, with a subscript value of
s in an array of size a, the size of the dummy array is:
a+l-s.

3. If the actual argument is a character-array name,
character-array element name, or character-array element
substring name, and begins at character storage unit b of an
array with n character storage units, the size of the dummy
array is INT«n+l-b)/y). Where y is the length of an element
of the dummy array.

Because the actual size of an assumed-size array is not known, an
assumed-size array name cannot be used as:

1. An array name in the list of an I/O statement

2. A unit identifier for an internal file in an I/O statement

3. A format specifier in an I/O statement

4. A NAMELIST statement element

7.2 TYPE SPECIFICATION STATEMENTS

Type specification statements explicitly declare the data type of
variables, arrays, or function names. You can give an array name in a
type specification statement, either alone (unsubscripted) to declare
the type of all its elements, or with dimension bounds, to specify
both its type and dimensions.

There are two forms of type specification statements: numeric type
specification (see Section 7.2.1) and character type specification
(see Sec t i on 7. 2. 2) •

7-4

SPECIFICATION AND DATA STATEMENTS

7.2.1 Numeric Type Specification Statements

The general form of numeric type specification statements is:

type v [,v •••]

where:

type

v

Examples:

can be anyone of the following declarators:

1. INTEGER

2. REAL

3. DOUBLE PRECISION

4. COMPLEX

5. LOGICAL

is a variable, array, or function name to be declared
the specified type. The names listed must be separated
by commas and can appear in only one type statement
within a program unit.

INTEGER A, B, TABLE, FUNC
REAL R, M, ARRAY(5:l0,lO:20,5)

If a name that is the same as an intrinsic FORTRAN function name
appears in a conflicting type statement, it is assumed that the name
refers to a user-defined routine, variable, or array of the given
type. If you place a generic FORTRAN function name in an explicit
type statement, it loses its generic properties.

NOTE

The data type size modifier, *n, is accepted by
FORTRAN-lO/20 to be compatible with the type
statements used by other manufacturers. You may
append this size modifier to the declarators, causing
some to elicit messages warning users of the form of
the variable specified by FORTRAN-IO/20:

Declarator

INTEGER*2
INTEGER*4
LOGICAL*l
LOGICAL*2
LOGICAL*4
REAL*4
REAL*8
COMPLEX*8
COMPLEX*16
REAL*16
COMPLEX*32

Form of Variable Specified

Full word integer with warning message
Full word integer
Full word logical with warning message
Full word logical with warning message
Full word logical
Full word real
Double-precision real
Complex
Complex with warning message
Double-precision real with warning message
Complex with warning message

7-5

SPECIFICATION AND DATA STATEMENTS

In addition, you can append the data
type size modifier to individual
variables, arrays, or function names.
Its effect is to override, for the
particular element, the size modifier
(explicit or implicit) of the primary
type. For example,

REAL*4 A, B*8, C*8(lO), 0

A and 0 are single-precision (one word)
real, and Band C are double-precision
(two words for each element) real.

7.2.2 Character Type Specification Statements

The form of the character type specification statement is:

CHARACTER [*len [,]] v [*len] [,v [*len]] •••

where:

v is one of the following:

• The name of a symbolic constant, variable, array, or
function subprogram

• An array declarator

len is the length of the character data item and is one of the
following:

• An unsigned, nonzero integer constant

• An integer constant expression enclosed in parentheses
and with a positive value

• An asterisk enclosed in parentheses

If you specify CHARACTER*len, len is the default length specification
for that list. If an item in that list does not have a length
specification, the item's length is len. But if an item does have a
length specification, it overrides the default length specified in
CHARACTER*len.

A length specification of asterisk (for example, CHARACTER*(*»
specifies that a dummy argument or function name assumes the length
specification of the corresponding actual argument or function
reference (see Chapter 13). A length specification of asterisk for
the symbolic name of a constant specifies that the symbolic constant
assumes the actual length of the constant that it represents.

If you do not specify a length, a length of one is assumed. Note that
a length specification of zero is invalid. You can use a character
type declaration statement to define arrays by including array
declarators (see Section 4.3.2) in the list. If you specify both an
array declarator and a length, the array bounds precede the length,
the form is:

a [(d)] [*len]

7-6

SPECIFICATION AND DATA STATEMENTS

where:

a is an array name, and a(d) is an array declarator.

Examples of character type specification statements follow:

CHARACTER*32 SOCSEC(100)*9, NAMES (100)

The above statement specifies an array SOCSEC comprising one hundred
9-character elements, and an array NAMES comprising one hundred
32-character elements.

PARAMETER (LENGTH=4)
CHARACTER*(4+LENGTH) LAST, FIRST

The above statements specify two 8-character variables, LAST and
FIRST. (The PARAMETER statement is described in Section 7.8.)

SUBROUTINE Sl(BUBBLE)
CHARACTER LETTER(26), BUBBLE*(*)

The above statements specify an array LETTER comprising twenty-six
I-character elements and a dummy argument, BUBBLE, which has a length
defined by the calling program.

CHARACTER*16 QUEST*(5*INT(A»

The above statement is invalid. The length specifier for QUEST is not
an integer constant expression.

7.3 IMPLICIT STATEMENTS

IMPLICIT statements declare the data type of variables and functions
according to the first letter of each symbolic name. The IMPLICIT
statement has two forms:

IMPLICIT type (a[,a] •••)[,type (a[,a] •••)] •••

IMPLICIT NONE

As shown in the statement above, an IMPLICIT statement consists of one
or more type declarators separated by commas. Each type declarator
has the form:

type (a [, a] •••)

where:

type can be anyone of the following declarators:

1. INTEGER

2. REAL

3. DOUBLE PRECISION

4. COMPLEX

5. LOGICAL

6. CHARACTER [*len]

7-7

SPECIFICATION AND DATA STATEMENTS

a is an alphabetic specification in either of the general
forms: c or cl-c2, where c, cl, or c2 is an alphabetic
character. The latter form specifies a range of
letters, from cl through c2, which must occur in
alphabetical order.

When you specify type as CHARACTER*len, len specifies the length for
character data type. Len is an unsigned, nonzero integer constant or
an integer constant expression enclosed in parentheses and with a
positive value. If you do not specify a length, a length of one is
assumed.

Each letter in a type declarator list specifies that each symbolic
name (not declared in an explicit type specification statement)
starting with that letter is assigned the data type named in the
declarator. For example, the statement:

IMPLICIT REAL (R,M,N,O)

declares that all names that begin with the letters R, M, N, or ° are
type REAL names, unless declared otherwise in an explicit type
statement.

NOTE

Type declarations given in an explicit type
specification override those also given in an IMPLICIT
statement. IMPLICIT declarations do not affect
intrinsic functions. The length is also overridden
when a particular name appears in a CHARACTER or
CHARACTER FUNCTION statement (see Chapter 13).

You may specify a range of letters within the alphabet by writing the
first and last letters of the desired range separated by a dash, for
example, A-E for A,B,C,D,E.

Thus, the statement:

IMPLICIT INTEGER (I,L-P)

declares that all symbolic names that begin with the
I,L,M,N,O, and P are of type INTEGER.

letters

You may use more than one IMPLICIT statement, but they must appear
before any other declaration statement in the program unit. (See
Section 6.3 for a discussion on ordering FORTRAN statements.)

The same letter must not appear as a single letter, or be included in
a range of letters, more than once in all of the IMPLICIT statements
in a program unit.

You can use an IMPLICIT NONE statement to provide warning messages for
variables not explicitly declared, including variables implicitly
declared by other IMPLICIT statements. If you specify IMPLICIT NONE,
no other IMPLICIT statement should be included in the program unit.

7.4 COMMON STATEMENT

The COMMON statement enables you to establish storage that may be
shared by two or more programs and/or subprograms, and to name the
variables and arrays that are to occupy the common storage. The use
of common storage conserves storage and provides a means to reference
the same data in different subprograms without passing arguments.

7-8

SPECIFICATION AND DATA STATEMENTS

COMMON statements have the following form:

COMMON [/cb/] nlist[[,]/[cb]/nlist] •••

where:

cb is an optional common block name.
the rules for symbolic names.)

(See Section 4.1 for

nlist is a list of variable names, array names, and array
declarators that are to occupy the common area. The
items specified for a common area (block) are ordered
within storage as .they are listed in the COMMON
statement.

The items in nlist must
character data type.
character data.

be either all numeric data type or all
A common block cannot contain both numeric and

A symbolic name can be used to identify each block. However, you can
omit the symbolic name for one block in a program unit. This
unlabeled block is called the blank common block.

The elements of a named common block can be assigned initial values by
DATA statements appearing in the BLOCK DATA subprograms (see Chapter
14). In standard-conforming programs, the elements of the blank
common block may not be assigned initial values. However,
FORTRAN-I0/20 allows any common block elements to be defined in a DATA
statement in any program unit.

A given common block name may appear more than once in the same COMMON
statement, and in more than one COMMON statement within the same
program or subprogram.

When extended addressing is in effect, COMMON blocks reside in the
large data area by default. However, the /EXTEND:COMMON or
/EXTEND:NOCOMMON switches can be used to explicitly allocate COMMON
blocks in the large data area or small data area (see Section 16.5).

During compilation of a source program, FORTRAN strings together all
items listed for each common block in the order in which they appear
in the source program. For example:

COMMON X,Y,Z/ST1/A,B

COMMON/ST1/TST(3,4)/ST2/TAB(2,2)

COMMON/ST2/C,D,E//P,Q

COMMON W

has the same effect as the single statement:

COMMON X,Y,Z,P,Q,W/ST1/A,B,TST(3,4)/ST2/TAB(2,2),C,D,E

All elements specified for a common block are placed into one area.
Common block names must be unique with respect to all subroutine,
function, and entry point names.

7-9

SPECIFICATION AND DATA STATEMENTS

NOTE

If you use overlays, you can use the SAVE statement to
retain the value of variables in a named common across
overlays (see Section 7.10). (Blank common is always
saved.)

For example:

Main Program

COMMON DELTA, LENGTH
COMMON /COMl/KILOS,PRICE

CALL CALC

Subprogram

SUBROUTINE CALC
COMMON/COMl/N,A
COMMON Z,KOUNT

The COMMON statements in the main program put DELTA and LENGTH into
the blank common block, and put KILOS and PRICE into a common block
named COMl.

The COMMON statements in the subroutine make Z correspond to DELTA in
the main program, KOUNT correspond to LENGTH, N correspond to KILOS,
and A correspond to PRICE.

To prevent conflict with other COMMON blocks, LINK requires that the
largest definition for each common block be loaded first.

7.4.1 Dimensioning Arrays in COMMON Statements

Array names with dimension bounds can be given in COMMON statements.
However, variables cannot be used as dimension bounds in a declarator
appearing in a COMMON statement; adjustable dimensioning is not
permitted in COMMON.

Each array name given in a COMMON statement must be dimensioned either
by the COMMON statement or by another dimensioning statement within
the program or subprogram that contains the COMMON statement, but not
both.

For examples,

COMMON /A/B(lOO), C(lO,lO)
COMMON X(5,15),Y(5)

7.4.2 Character Data in COMMON

Each character variable in a COMMON block is allocated to start at the
first available character position.

For example,

CHARACTER B*3,C*3,D(3)*2
COMMON B,C,D

7-10

SPECIFICATION AND DATA STATEMENTS

The COMMON block will be allocated in the following way:

B C 0(1) 0(2) 0(3) Unused
Ito Ito \~~ ~(A

" \

I x I I x I I x I x I x I x I
0 7 14 21 28 35 0 7 14 21 28 35 0 7 14 21 28 35

MR-S-2527-83

where x means the bits are not used.

7.5 EQUIVALENCE STATEMENT

The EQUIVALENCE statement associates two or more variables with the
same storage location.

The format of the EQUIVALENCE statement is:

EQUIVALENCE (nlist) [,(nlist •••)]

where:

nlist is a list of variable names, array elements, array
names, and character substring references separated by
commas and enclosed in parentheses. You must specify
two or more of these items in each list.

In an EQUIVALENCE statement, each expression in a subscript or a
substring reference must be an integer constant expression.

The EQUIVALENCE statement allocates
parenthesized list beginning at the
example, the statements:

EQUIVALENCE (A,B,C)
EQUIVALENCE (LOC,SHARE(3»

all of the items in
same storage location.

one
For

specify that the variables A, B, and C are to share the same storage
location, and that the variable LOC and the array element SHARE(3) are
to share the same location.

The relationship of equivalence is transitive.
following statements have the same effect:

EQUIVALENCE (A,B), (B,C)
EQUIVALENCE (A,B,C)

For example, the

The following EQUIVALENCE statement makes the first character of the
character variables KEY and STAR share the same storage location. The
character variable STAR is equivalent to the substring KEY (1:10):

CHARACTER KEY*16, STAR*lO
EQUIVALENCE (KEY,STAR)

You can equivalence variables of different numeric data types.
Character variables must not be equivalenced to numeric variables.
For example, you can equivalence a real variable equivalent to a
complex variable. In this case, since ea~h complex variable occupies

7-11

SPECIFICATION AND DATA STATEMENTS

two words of storage, and each single-precision variable occupies one
word of storage, if you equivalence a real and a complex variable, the
real variable shares storage with the real part of the complex
variable. Figure 7-1 depicts the shared storage when a complex
variable is equivalenced with a real variable.

Source Program Statements~

COMPLEX A
REAL B
EQUIVALENCE (A,B)

1. Memory Location
A or B

2. Second Part of
Memory Location A

Stores: Real Part of Complex A
or Entire Real B

Stores: Imaginary Part of
Complex A

1----36-8il WO,d---!
MR-S-1764-81

Figure 7-1: Shared Storage using EQUIVALENCE Statement

The EQUIVALENCE statement does not imply (or perform) any type
conversions. If you equivalence a real variable and an integer
variable, the data within the equivalenced location will be treated as
a real or integer number, depending on whether it is referenced by the
real or integer variable.

If you equivalence a real variable with a double-precision variable,
the data in the high-order word of the double-precision variable will
be used by the real variable. For positive D-floating
double-precision numbers (see Section 3.4), the high-order word is in
the same format as a single-precision number.

For G-floating double-precision numbers (KL model B only - see Section
3.4), the high-order word is not in the format of a single-precision
number. Thus, equivalencing a real variable and a G-floating
double-precision variable will produce incorrect results.

Equivalencing a negative D-floating number and a real variable may not
produce correct results either, for example the number:

577000000000 000000000001
777777777777, almost 1.0)

(the negative of 200777777777

does not have a valid single-precision number in its high-order word.

If you equiva~ence an array and a variable, the array does not assume
any of the properties of the variable, and the variable does not
assume any of the properties of the array.

When you use an array element in EQUIVALENCE statements, it must have
either as many subscripts as dimensions of the array, or only one
subscript. In either case, the subscripts must be integer constants.
Note that the single subscript case treats the array as a
one-dimensional array of the given type.

7-12

SPECIFICATION AND DATA STATEMENTS

The following example shows the effect
I-dimensional and a 2-dimensional array:

DIMENSION A(3,2),B(6)
EQUIVALENCE (A(l,l) ,B(l»

or
EQUIVALENCE (A(l) ,B(l»

of equivalencing a

In this example, each array element of array A shares the same storage
area with an element of array B:

A(l,l) B(l)
A(2,1) B(2)
A(3,1) B(3)
A(1,2) B(4)
A(2,2) B(5)
A(3,2} B(6}

Specifying an array name without subscripts in an EQUIVALENCE
statement is the same as specifying the first element of the array.

When you make one character substring equivalent to another character
substring, the EQUIVALENCE statement also sets equivalences between
the other corresponding characters in the character strings, for
example,

CHARACTER NAME*16, 10*9
EQUIVALENCE (NAME(lO:13), ID(2:5})

As a result of these statements, the character variables NAME and 10
share space as illustrated in Figure 7-2.

NAME
Character
Position

1
2
3

4
5
6
7

8

9

10
11
12
13
14
15
16

10
Character
Position

1

2

3

4

5

6

7

8

9
MR·S·2523·83

Figure 7-2: Equivalence of Substrings

7-13

SPECIFICATION AND DATA STATEMENTS

The following statement also aligns the variables as shown in Figure
7-2:

EQUIVALENCE (NAME(9:9) ,ID(1:1»

If the character substring references are array elements, the
EQUIVALENCE statement sets equivalences between the other
corresponding characters in the complete arrays.

Character elements of arrays can overlap at any character position,
for example:

CHARACTER FIELDS(6)*4, STAR(5)*5
EQUIVALENCE (FIELDS (1) (2:4), STAR (2) (3: 5»

As a result of these statements, the character arrays FIELDS and STAR
share storage space as shown in Figure 7-3.

STAR

Character
Position Subscript

1 1

2

3
FIELDS 4

Character 5
Subscript Position 1 2

1 1 2

2 3

3 4

4 5
2 1 1 3

2 2

3 3

4 4

3 1 5

2 1 4

3 2

4 3
4 1 4

2 5
3 1 5
4 2

5 1 3
2 4

3 5

4

6 1

2

3

4
MR-S-2524-83

Figure 7-3: Equivalence of Character Arrays

7-14

SPECIFICATION AND DATA STATEMENTS

General EQUIVALENCE Restrictions:

1. You cannot cause two different elements of an array to become
equivalenced to each other. Thus, the following statement
sequence is prohibited because it specifies the same storage
location (B) for A(l) and A(2):

DIMENSION A(2)
EQUIVALENCE (A(l) ,B), (~(2) ,B)

2. An EQUIVALENCE statement must not specify that two
consecutive locations are nonconsecutive. For example, the
following statement sequence is prohibited because B(l) takes
two storage locations, the second of which would make A(2)
nonconsecutive to A(l):

INTEGER A(2)
DOUBLE PRECISION B(2)
EQUIVALENCE (A(l) ,B(l», (A(2) ,B(2»

3. An EQUIVALENCE statement in a SUBROUTINE or FUNCTION
subprogram must not refer to an argument of the subprogram.
For example, the following statement sequence is prohibited:

SUBROUTINE A(B,C)
EQUIVALENCE (B,X)

4. You cannot cause two different substrings of the same
character variables or arrays to become equivalenced to each
other. For example, the following statement sequence is
prohibited because it specifies the same substring B(1:3) for
A (1 : 3) and A (2 : 4) :

CHARACTER A(3)*4,B*4
EQUIVALENCE (A(l) (1:3) ,B(1:3», (A(l) (2:4) ,B(1:3»

5. You also cannot use the EQUIVALENCE statement to assign
memory locations in a way that is inconsistent with the
normal linear storage of character variables and arrays. For
example, the following statement sequence is prohibited
because it would require the character variable B(2:2) to be
equivalent to both A(l) (2:2) and A(l) (1:1):

CHARACTER A(2)*lO,B*lO
EQUIVALENCE (A(l) (1:3) ,B(1:3», (A(l) (4:6) ,B(5:7»

Restrictions on EQUIVALENCE and COMMON:

1. You cannot use the EQUIVALENCE statement to equivalence two
elements in different common blocks. Thus, the following
statement sequence is prohibited:

COMMON /BLOCKl/A,B,F/BLOCK2/C,D,E
EQUIVALENCE (A,C)

2. You cannot set two quantities declared in a COMMON block to
be equivalent to one another. Thus, the following statement
sequence is prohibited:

COMMON A,B,C
EQUIVALENCE (A,C)

7-15

SPECIFICATION AND DATA STATEMENTS

3. Quantities placed in a common area by means of an EQUIVALENCE
statement are permitted to extend the end of the common area
forward. For example, the statements:

COMMON/R/X,y,Z
DIMENSION A(4)
EQUIVALENCE (A,Y)

cause the common block R to extend from Z to A(4) arranged as
shown in Figure 7-4.

Location X

Location Y and A(1) }

1----------1 Shared Locations

Location Z and A(2)

Location A(3)

Location A(4)

MR-S-1746-S1

Figure 7-4: Valid Equivalencing

4. You cannot use EQUIVALENCE statements that cause the start of
a common block to be extended backwards. For example, the
invalid sequence:

COMMON/R/X,Y,Z
DIMENSION A(4)
EQUIVALENCE(X,A(3»

would require A(l) and A(2) to extend the starting location
of block R in a backwards direction as illustrated in Figure
7-5.

Location A(1)

Location A(2)

Location X and A(3) }

t-----------I Causes COMMON R to Extend Backward

Location Y and A(4)

Location Z

MR-S-'1747-S1

Figure 7-5: Invalid Equivalencing

7-16

SPECIFICATION AND DATA STATEMENTS

7.5.1 EQUIVALENCE and Extended Addressing

When extended addressing is in effect, and an EQUIVALENCE statement
causes a variable to be in COMMON, that variable resides in the same
psect as the rest of the COMMON block.

For variables not in COMMON, if you equivalence a large variable
(default 10,000 or more words) with other variables (including
scalars), all these variables will reside in the large data psect.
For example,

REAL A(20000),X
EQUIVALENCE (A{l),X)

causes variable X to be placed in the large data psect, since it is
equivalenced with a large array.

Conversely, if each equivalence variable is small (default less than
10,000 words), they will reside in the small data psect, even if the
total size of the equivalence class is over the small variable limit.
For example,

REAL A(8000) ,B(8000)
EQUIVALENCE (A(8000), B(l»

The arrays will reside in the small data psect, because each one is
smaller than 10,000 words.

See Sections 15.4.11 and 16.5 for more information on extended
addressing.

7.6 EXTERNAL STATEMENT

Any user subprogram name to be used as an argument to another
subprogram must appear in an EXTERNAL statement in the calling
subprogram. The EXTERNAL statement declares names to be subprogram
names to distinguish them from other variable or array names.

The subprograms mentioned in the EXTERNAL statement cannot be FORTRAN
intrinsic functions; they can be only user-supplied functions,
subroutines, or block data subprograms. (The INTRINSIC statement
discussed in Section 7.7 allows intrinsic function names to be used as
arguments.) The EXTERNAL statement has the following form:

EXTERNAL proc[,proc •.•]

where:

proc is the symbolic name of a user-supplied subprogram, the
name of a dummy argument associated with the name of a
subprogram, or a block data subprogram.

The EXTERNAL statement declares each symbolic name included in it to
be the name of an external procedure, even if a name is the same as
that of an intrinsic function. For example, if SIN is specified in an
EXTERNAL statement (EXTERNAL SIN), all subsequent references to SIN
are to a user-supplied function name SIN, not to the intrinsic
function of the same name.

The name specified in an EXTERNAL statement can be used as an actual
argument to a subprogram, which can then use the corresponding dummy
argument in a function reference or a CALL statement.

7-17

SPECIFICATION AND DATA STATEMENTS

NOTE

Note that a complete function reference
argument, for instance, FUNC (B) in
(A(FUNC(B) ,C», represents a value, not a
A complete function reference is not,
defined in an EXTERNAL statement.

used as an
CALL SUBR

subpro.gram.
therefore,

The interpretation of the EXTERNAL statement described above is
different from that of earlier versions of FORTRAN-10/20. If the
/NOF77 compiler switch is specified (see Sections 16.1.3 and 16.2.3),
the subprogram names can be intrinsic functions.

For compatibility with previous versions of FORTRAN-10/20, the names
of external subprograms can be preceded by an asterisk (*) or an
ampersand (&) within an EXTERNAL statement. For example,

EXTERNAL *SIN, &COS

declares SIN and COS to be user subprograms. (If a prefixed name is
not an intrinsic function, then the prefix is ignored.)

Note that specifying an intrinsic function in an EXTERNAL statement
without a prefix (that is, EXTERNAL SIN) has no effect upon the usage
of the function name outside of actual argument lists. If the name
has generic properties, they are retained outside the actual argument
list. (The name has no generic properties within an argument list.)

The names declared in a program EXTERNAL statement are reserved
throughout the compilation of the program, and cannot be used in any
declarator statement other than a type statement.

7.7 INTRINSIC STATEMENT

The INTRINSIC statement allows you to use intrinsic function names as
arguments to subprograms. See Section 13.1 for further information on
intrinsic functions.

The INTRINSIC statement has the form:

INTRINSIC fun[,funJ •••

where:

fun is the symbolic name of an intrinsic function.

The INTRINSIC statement declares each symbolic name included in it to
be the name of an intrinsic procedure. This name can then be used as
an actual argument to a subprogram, which can use the corresponding
dummy argument in a function reference or a CALL statement.

The appearance of a generic function name in an INTRINSIC statement
does not cause that name to lose its generic property.

7-18

SPECIFICATION AND DATA STATEMENTS

NOTE

You cannot use a generic-only name in an INTRINSIC
statement. The generic name must be the same as an
instrinic function name. For example,

INTRINSIC LOG

is illegal because there is no function named 'LOG'.
LOG is the generic name that selects between functions
such as ALOG, DLOG, or CLOG.

Only one appearance of a symbolic name is permitted in all of the
INTRINSIC statements of a program unit. Also, a symbolic name must
not appear in both an EXTERNAL and an INTRINSIC statement in a program
unit.

An example of the use of the EXTERNAL and INTRINSIC statements
follows:

Main Program

EXTERNAL CTN
INTRINSIC SIN, COS

CALL TRIG(ANGLE,SIN,SINE)

CALL TRIG(ANGLE,COS,COSINE)

CALL TRIG(ANGLE,CTN,COTANT)

Subprograms

SUBROUTINE TRIG(X,F,Y)
Y = F(X)
RETURN
END

FUNCTION CTN(X)
CTN = COS(X)/SIN(X)
RETURN
END

In this example, when TRIG is called with a second argument of SIN or
COS, the function reference F(X) references the math library functions
SIN and COS; but when TRIG is called with a second argument of CTN,
F(X) references the user function CTN.

7-19

SPECIFICATION AND DATA STATEMENTS

7.8 PARAMETER STATEMENT

The PARAMETER statement allows you to define constants symbolically
during compilation.

The general form of the PARAMETER Statement is:

PARAMETER (p= c [, p= c J •••)

where:

p is a symbolic name.

c is a constant expression (except for expressions involving
multiplication, division, or exponentiation of complex
numbers). (See Chapter 3 for a description of FORTRAN
constants.)

The constant acquires the same data type as the symbolic name. If the
symbolic name is of type integer, real, double precision, or complex,
the corresponding expression (c) must be an arithmetic constant
expression (see Section 5.1.2). If the symbolic name is of type
character or logical, the corresponding expression (c) must be a
character constant expression (see Section 5.2.1) or a logical
constant expression (see Section 5.3.1), respectively.

The data type of a symbolic name defined to be a constant is specified
by a type-statement or IMPLICIT statement preceding the defining
PARAMETER statement. Also, if the length specified for the symbolic
name of a character constant is not the default length of one, its
length must be specified by a type-statement or IMPLICIT statement
preceding the symbolic name of the constant.

NOTE

The form and the interpretation to the PARAMETER
statement described above are different from those of
the PARAMETER statement provided in earlier versions
of FORTRAN-IO/20. The earlier version is described
below. This form and interpretation can still be
used, however a warning message will be issued. This
form of the PARAMETER statement is:

PARAMETER p=c[,p=c •••]

The symbolic name acquires the same data type as the
constant.

During compilation, the symbolic names are replaced by their
associated constants, provided the following rules are observed:

1. Symbolic names may appear only where FORTRAN constants are
acceptable.

2. Symbolic name references must appear after the PARAMETER
statement definition.

3. Symbolic names must be unique with respect to all ather names
in the program unit.

7-20

SPECIFICATION AND DATA STATEMENTS

4. Symbolic names must not be redefined in subsequent PARAMETER
statements.

5. Symbolic names must not be used as part of another constant,
such as within a character constant or as the count for a
Hollerith constant.

6. Symbolic names must not be used as part of a format
specification.

7.9 DATA STATEMENT

DATA statements are used to supply the initial values of variables,
arrays, array elements, substrings, and COMMON areas.

The form of the data statement is:

DATA nlist/clist/ [[,]nlist/clist/] •••

where:

nlist identifies a set of items to be initialized.

clist contains the set of values to be assigned the items in
nlist.

For example, the statement:

DATA IA/5/,IB/10/,IC/15/

initializes variable IA to the value 5, variable IB to the value 10,
and variable IC to the value 15. The number of storage locations you
specify in the list of variables must be equal to the number of
storage locations you specify in its associated list of values. If
not, a warning message is output.

When the value list specifies more storage locations than the variable
list, the excess values are ignored. When the value list specifies
fewer storage locations than the variable list, the excess variables
are not initialized.

The nlist portion of each nlist/clist/ set can contain the names of
one or more variables, array names, array elements, character
substring names, or labeled COMMON variables. You may specify an
entire array (unsubscripted array name) or a portion of an array in a
DATA statement nlist as an implied DO loop construct. (See Section
10.4.9.2 for a description of implied DO loops.)

The form of an implied-DO list in a DATA statement is:

(dlist,i=~1,n2[,n3])

where:

dlist

i

is a list of array element names, character substring
names, or implied-DO lists.

is the name of an integer variable, called the loop
index variable.

nl,n2,n3 are integer expressions that can contain
constants and loop index variables.

integer

7-21

SPECIFICATION AND DATA STATEMENTS

For example, the statement:

DATA (NARY(I),I=1,5)/1,2,3,4,5/

initializes the first five elements of array NARY as NARY(l)=l,
NARY(2)=2, NARY(3)=3, NARY(4)=4, and NARY(5)=5.

When you use an implied DO loop in a DATA statement, the loop index
variable must be of type INTEGER, and the Initial, Terminal, and
Increment parameters of the loop must be of type INTEGER.

In a DATA statement, references to an array element or substring must
be integer expressions in which all terms are either integer constants
or indices of embracing implied DO loops. These types of integer
expressions can include the exponentiation operator.

The clist portion of each nlist/clist/ set can contain one
numeric, logical, Hollerith, octal, hexadecimal, or
constants. You may specify literal data as either a
specification, for example, 5HABCDE, or a string enclosed
quotes, for example, 'Abcde'. Each ASCII data item
left-justified and is padded with blanks if necessary.

or more
character
Hollerith
in single

is stored

When you assign the same value to more than one item in nlist, a
repeat specification may be used. The repeat specification has the
form:

n*d

where:

n is an integer that specifies how many times the value d is
to be used. For example, a clist specification of /3*20/
specifies that the value 20 is to be assigned to the first
three items named in the preceding list. The statement:

DATA M,N,L/3*20/

assigns the value 20 to the variables M, N, and L.

When the specified data type is not the same as that of the variable
to which it is assigned, FORTRAN converts the data item to the type of
the variable. The type conversion is performed using the rules given
for type conversion in arithmetic assignments. (See Table 8-1.)
Octal, logical, Hollerith, hexadecimal, and character constants are
not converted.

Sample Statement Result

DATA PRINT,I,O/'TEST' ,30,"77/,(TAB(J) ,J=1,30)/30*5/ The first 30
elements of
array TAB are
initialized to
5.0.

DATA«A(I,J),I=1,5),J=1,6)/30*l.0/ No conversion
required.

DATA«A(I,J),I=5,10),J=6,15)/60*2.0/ No conversion
required.

7-22

SPECIFICATION AND DATA STATEMENTS

When character variables are initialized, length conversions are made.
The conversion is based on the following rules:

1. If the constant contains fewer characters than the length of
the element in nlist, the rightmost character positions of
the element are initialized with spaces.

2. If the constant contains more characters than the length of
the element in nlist, the character constant is truncated to
the right.

Character constants and Hollerith constants can also be used to
initialize numeric variables. The character string is stored left
justified in the numeric variable. When the character string
specified is longer than one numeric variable can hold, the string is
stored left justified across as many variables as are needed to hold
it. If necessary, the last variable used is padded with blanks up to
its right boundary.

For character variables, each variable or array element must have
exactly one character constant in the data list.

For example, assuming that X, Y, and Z are single-precision, the
statement:

DATA X,Y,Z/'abcdefghijkl'/

causes:

X to be initialized to 'abcde'
Y to be initialized to 'fghij'
Z to be initialized to 'klbbb'

When a character string is to be stored in double-precision and/or
complex variables, and the specified string is only one word long, the
second word of the variable is padded with blanks.

For example, assuming that the variable C is complex, the statement:

DATA C/'ABCDE','FGHIJ'/

causes the first word of C to be initialized to 'ABCDE' and its second
word to be initialized to 'bbbbb'. The string 'FGHIJ' is ignored.
The first word contains the real part of the complex variable; the
second word contains the imaginary part.

In addition, the following two forms of bit data constants are allowed
in DATA statements:

O'di ••• dn'

Z'hi ••• hn'

where di are octal digits and hi are hexadecimal digits with A-F
representing the decimal equivalent of 10-15. These constants are
right-justified. Note that you can also use the double quote (") form
of octal constants as described in Section 3.7.

7-23

SPECIFICATION AND DATA STATEMENTS

7.10 SAVE STATEMENT

The SAVE statement retains the values stored in a variable, array, or
common block after execution of a RETURN or END statement in a
subprogram.

The SAVE statement has the following form:

SAVE [a[,a] •••]

where:

a is a named common block name (preceded and followed by a
slash), a variable name, or an array name.

NOTE

Ordinarily, the values of a~l variables are retained
after execution of a RETURN or END statement.
However, when overlays are used, the SAVE statement
must be used to ensure retention of values.

An entity specified by a SAVE statement within a program unit does not
become undefined upon execution of a RETURN or END statement in that
unit. If the entity is in a common block, however, it may be
redefined in another program unit that references that common.

Procedure names, the names of variables and arrays in a common block,
and dummy argument names cannot be used in a SAVE statement.

A SAVE statement that does not explicitly contain a list is treated as
though it contained a list of all allowable items in the program unit
that contains the SAVE statement.

If a particular common block name is specified by a SAVE statement in
a subprogram of an executable program, it must be specified by a SAVE
statement in every subprogram in which that common block appears.

NOTE

It is not necessary to use the SAVE statement to
retain the value of a blank common block; the
definition status of blank common is automatically
retained after a RETURN or END statement.

Also, when the SAVE statement is used, it is not
necessary to specify the LINK switch /OVERLAY:WRITABLE
when loading a program.

7-24

CHAPTER 8

ASSIGNMENT STATEMENTS

Assignment statements assign values to variables, array elements, or
character substrings. There are four kinds of assignment statements:

1. Arithmetic assignment statements (see Section 8.1)

2. Logical assignment statements (see Section 8.2)

3. Statement Label assignment (ASSIGN) statements (see Section
8.3)

4. Character assignment statements (see Section 8.4)

8.1 ARITHMETIC ASSIGNMENT STATEMENT

You use statements of this type to assign numeric values to numeric
variables or array elements. Arithmetic assignment statements have
the form:

v=e

where:

v is the name of the numeric variable or array element that is
to receive the specified value.

e is an arithmetic expression.

In assignment statements, the equal symbol (=) does not imply equality
as it would in algebraic expressions; it implies replacement. For
example, the expression v=e is interpreted as "the contents of the
location identified as v are to be replaced by the value of expression
e; the previous contents of v are lost."

When the type of the specified variable or array element name differs
from that of its assigned value, FORTRAN converts the value to the
type of its assigned variable or array element. Table 8-1 describes
the type conversion operations performed by FORTRAN for each possible
combination of variable and value types.

8-1

ASSIGNMENT STATEMENTS

Table 8-1: Rules for Conversion in Mixed-Mode Assignments

Expression Variable Type (v)
Type (e)

REAL INTEGER COMPLEX DOUBLE- LOGICAL CHARACTER
PRECISION

Real D C R,I H,L D X

Integer F D R,F,I M D X

Complex R C,R D R,L R X

Double- 0 N H,I D H X
precision

Logical D D R,I H,L D X

Octal D D R,I H,L D X

Hollerith D% D% D& D& D% X

Character X X X X X D

Double- H H D# D H X
Octal*

Legend

D = Direct replacement
C = Conversion from real to integer with truncation, overflow is

possible
F = Conversion from integer to real with rounding
R = Real part only
I = Set imaginary part to 0
H = High-order only
L = Set low-order part to 0
M = Convert with no truncation and no rounding
N = Convert with rounding; truncation can occur and overflow is

possible
0 = Round to one word of precision, overflow is possible
X = Not allowed

Notes

* Octal numbers with 13 to 24 digits are termed double-octal.
Double-octals require two storage locations. They are stored
right-justified and are padded with zeros to fill the
locations.

8-2

ASSIGNMENT STATEMENTS

& Use the first two words of the Hollerith constant. If the
Hollerith constant is only one word long, the second word is
padded with blanks.

% Use the first word of the Hollerith constant.

To convert double-octal numbers to complex, the low-order octal
digits are assumed to be the imaginary part, and the high-order
digits are assumed to be the real part of the complex value.

8.2 LOGICAL ASSIGNMENT STATEMENTS

Statements of this type are used to assign values to variables and
array elements of type logical. Logical assignment statements have
the following form:

v=e

where:

v is the name of a variable or array element

e is a logical expression

For example, assuming that the variables L, F, M, and G are of type
logical, the following statements are valid:

Sample Statement

L=.TRUE.

F=.NOT.G

M=A.GT.T
or

M=A)T

L = ((I • GT • H) • AND. (J < = K))

Results

The contents of L are replaced by
logical truth.

The contents of F are replaced by
the complement of the contents of
G.

If A is greater than T, the
contents of M are replaced by
logical truth; if A is less than or
equal to T, the contents of Mare
replaced by logical false. This
can also be read: If A is greater
than T, then·M is tru~, otherwise,
M is false.

The contents of L are replaced by
either the true or false resultant
of the expression.

8.3 ASSIGN (STATEMENT LABEL) ASSIGNMENT STATEMENT

The ASSIGN statement is used to assign a statement label constant (a 1
to 5 digit statement number) to a variable name. The form of the
ASSIGN statement is:

ASSIGN s TO i

8-3

ASSIGNMENT STATEMENTS

where:

s is a statement number in the current program unit.

i is a variable name.

For example, the statement:

ASSIGN 2000 TO LABEL

specifies that the variable LABEL references the statement number
2000.

With the exception of complex, double-precision, or character, you can
use any type of variable in an ASSIGN statement.

Use the ASSIGN statement in conjunction with assigned GO TO control
statements (see Chapter 9), or as a format identifier in an I/O
statement (See Chapter 10). The ASSIGN statement sets up statement
label variables that are then referenced in subsequent GO TO control
statements, or in format specifiers in I/O statements. The following
sequence illustrates the use of the ASSIGN statement:

555 TAX=(A+B+C)*.05

ASSIGN 555 TO LABEL

GO TO LABEL

8.4 CHARACTER ASSIGNMENT STATEMENT

The character assignment statement assigns the value of the character
expression on the right of the equal sign to the character variable,
array element, or substring on the left of the equal sign.

The form of the character assignment statement is:

v=e

where:

v is a character variable, array element, or substring.

e is a character expression.

If the length of the expression on the right side of the assignment is
greater than the length of the variable on the left side, the
character expression is truncated on the right.

If the length of the expression on the right side of the assignment is
less than the length of the variable on the left side, the character
expression is filled on the right with blanks.

8-4

ASSIGNMENT STATEMENTS

FORTRAN-10/20 allows overlap between the character expression and the
character variable, array element, or substring. (That is, the
character positions defined in the character variable, array element,
or substring can be referenced in the character expression.) For
example, the following assignments are allowed:

CHARACTER *4 A,B
DATA A/'abcd'/,B/'efgh'/

A(1:3) A(2:4)
B(2:4) = B(1:3)

After the above assignment statements, A is 'bcdd', and B is 'eefg'.

The expression must be of character data type. You cannot assign a
numeric value to a character variable, array element, or substring.

Note that assigning a value to a character substring does not affect
character positions in the character variable or array element not
included in the substring. If a character position outside of the
substring has a value previously assigned, it remains unchanged. If
the character position is undefined, it remains undefined.

Examples of valid and invalid character assignment statements
All variables and arrays in the examples are assumed
character data type.

Valid

FILE = 'PROG2'

REVOL(l} = 'MAR'//'CIA'

LOCA(3:8) = 'PLANT5'

TEXT(I,J+l) (2:N-l) NAME//X

Invalid

follow.
to be of

'ABC' CHARS (the left side must be a character variable,
array element, or substring reference)

CHARS 25 (expression on the right must be of character
da ta type)

8-5

CHAPTER 9

CONTROL ST1\TE.MENTS

FORTRAN object programs normally execute statement by statement in the
order in which they were presented to the compiler. The following
control statements, however, enable you to alter the normal sequence
of statement execution:

1. CALL (Section 13.4.2.2)

2. CONTINUE (Section 9.5)

3 • DO (Sec t ion 9. 3)

4. DO WHILE (Section 9.3.2)

5. ELSE (Section 9.2.4)

6. ELSE IF THEN (Section 9.2.4)

7. END (Section 9.8)

8. END DO (Section 9.4)

9. END IF (Section 9.2.4)

10 • GO TO (Sec t ion 9. 1)

11. IF (Section 9.2)

12. IF THEN (Section 9.2.4)

13. STOP (Section 9.6)

14. PAUSE (Section 9.7)

15. RETURN (Section 13.4.4)

The CALL and RETURN statements are described in Sections 13.4.2.2 and
13.4.4, respectively. The remaining statements are described in this
chapter.

9.1 GO TO STATEMENTS

A GO TO statement causes the statement that it identifies to be
executed next, regardless of its position within the program.

There are three kinds of GO TO statements:
9.1.1), Computed (see Section 9.1.2),
9.1.3).

9-1

Unconditional
and Assigned

(see Section
(see Section

CONTROL STATEMENTS

9.1.1 Unconditional GO TO Statements

An unconditional GO TO statement transfers program control to the
specified statement label.

The form of the unconditional GO TO statement is:

GO TO s

where:

s is a statement label of an executable statement.

For example:

GO TO 300

You can position an unconditional GO TO statement anywhere in the
source program, except as the terminating statement of a DO loop.

9.1.2 Computed GO TO Statements

The form of a computed GO TO statement is:

GO TO (s [, s J •••) [, J e

where:

(s[,s] •••) is a list of statement labels.

e is an integer expression.

You may include any number of statement labels in the list of a
computed GO TO statement. However, each statement label must appear
within the program unit containing the GO TO statement. The same
statement label can appear more than once in the list.

The value of the expression must be an integer value (it will be
truncated if necessary) that is greater than 0 and less than or equal
to the number of statement labels given in the list. If the value of
the expression is not within this range, the next sequential statement
is executed.

When a computed GO TO statement is executed, the value of the
expression is computed first. The value of the expression specifies
the position of the label (within the given list of statement labels)
that identifies the statement to be executed next. For example, in
the statement sequence:

GO TO (20, 10, 5)K
CALL XRANGE(K)

the variable K acts as a switch, causing a transfer to statement 20 if
K=l, to statement 10 if K=2, or to statement 5 if K=3. The subprogram
XRANGE is called if K is less than 1 or greater than 3.

9-2

CONTROL STATEMENTS

9.1.3 Assigned GO TO Statements

The form of an assigned GO TO statement is:

GO TO i [[,] (s [, s] •••)]

where:

i is a variable name and the optional parenthesized list is a
list of statement labels. The statement labels specified
must appear within the program unit containing the GO TO
statement.

Assigned GO TO statements must be logically preceded by an ASSIGN
statement (see Section 8.3) that assigns a statement label value to
the variable i. The assigned GO TO statement transfers program
control to the label that has been ASSIGNed.

The statement label value assigned must appear within the same program
unit as the GO TO statement that uses that value. In statements with
a specified list, if i is not assigned one of the statement label
values given in the list, the next sequential statement is executed.

Examples:

ASSIGN 300 TO STAT1
GO TO STATl
GO TO STAT1, (177,300,777)

9.2 IF STATEMENTS

There are four kinds of IF statements: arithmetic (see Section
9.2.1), logical (see Section 9.2.2), logical two-branch (see Section
9.2.3), and block IF (see Section 9.2.4).

9.2.1 Arithmetic IF Statements

The form of the arithmetic IF statement is:

IF (e) sl, s2, s3

where:

e is an expression enclosed within parentheses and sl, s2, and
s3 are statement labels of three executable statements
appearing within the program unit containing the IF
statement. The expressIon e must not be of type complex.
The same statement label can appear more than once in the IF
statement.

This type of IF statement transfers control of the program to one of
the given statements according to the computed value of the given
expression. If the value of the expression is:

1. Less than 0, control is transferred to the
identified by label sl.

2. Equal to 0, control is transferred to the
identified by label s2.

9-3

statement

statement

CONTROL STATEMENTS

3. Greater than 0, control is transferred to the statement
identified by label s3.

Examples:

IF(ETA)4, 7, 12

IF(KAPPA-L(10»20, 14, 14

9.2.2 Logical IF Statements

Transfers control to statement 4 if
ETA is negative, to statement 7 if
ETA is 0, and to statement 12 if
ETA is greater than O.

Transfers control to statement 20
if KAPPA is less than the 10th
element of array L and to statement
14 if KAPPA is greater than or
equal to the 10th element of array
L.

The form of the logical IF statement is:

IF (e) st

where:

e is any expression. The expression must not be of type
complex.

st is an executable statement.

If the value of the expression is true (negative), control is
transferred to the executable statement within the IF statement. If
the value of the expression is false (nonnegative), control is
transferred to the next sequential executable statement. The
statement you give in a logical IF statement may be any executable
statement except a DO statement, an END statement, or another logical
IF statement.

Examples:

IF(T.OR.S) X=Y+l

IF(Z.GT.X(K» CALL SWITCH(S,Y)

IF(K.EQ.INDEX) GO TO 15

9.2.3 Logical Two-Branch IF Statements

Performs an arithmetic
assignment operation if the
result of the IF is true.

Performs a subroutine call if
the result of the IF is true.

Performs an unconditional
transfer if the result of the
IF is true.

The format of a logical two-branch IF statement is:

[F (e) sl, s2

9-4

CONTROL STATEMENTS

where:

e is any expression, and sl and s2 are statement labels
appearing within the program unit containing the IF
statement. The expression must not be of type complex.

Logical two-branch IF statements transfer control to either statement
sl or s2, depending on the computed value of the given expression. If
the value of the given logical expression is true (negative), control
is transferred to statement sl. If the value of the expression is
false (nonnegative), control is transferred to statement s2.

Examples:

IF (LOGl) 10,20 Transfers control to
if LOGl is true
otherwise transfers
statement 20.

statement 10
(negative) ;

control to

IF (A.LT.B.AND.A.LT.C) 31,32 Transfers control to statement 31
if A is less than both Band Ci
transfers control to statement 32
if A is greater than or equal to
either B or C.

9.2.4 Block IF Statements

Block IF statements conditionally execute blocks (or groups) of
statements. The four block IF statements are:

• IF THEN

• ELSE IF THEN

• ELSE

• END IF

These statements are used in block
construct has the following form,
statements are optional:

IF (e) THEN
block

ELSE IF (e) THEN
block

ELSE
block

END IF

where:

e is a logical expression.

IF constructs. The block IF
where the ELSE IF THEN and ELSE

block is a sequence of zero or more complete FORTRAN statements.
This sequence is called a statement block.

9-5

CONTROL STATEMENTS

Each block IF statement, except the END IF statement, has an
associated statement block. The statement block consists of all the
statements following the block IF statement up to (but not including)
the next block IF statement in the block IF construct. The statement
block is conditionally executed based on the values of logical
expressions in the preceding block IF statements. A statement block
can be empty.

The IF THEN statement begins
following it is executed if the
IF THEN statement is true. The
directly follow the THEN on the
is illegal:

IF (T.LT.X) THEN T X

The correct form is:

IF (T.LT.X) THEN
T = X

a block IF construct. The block
value of the logical expression in the
first statement of the block cannot
same line. For example, the following

The ELSE statement specifies a statement block to be executed if no
preceding statement block in the block IF construct was executed. The
ELSE statement is optional.

The ELSE IF THEN statement is similar to the ELSE statement, except it
requires an additional condition for execution. The ELSE IF THEN
statement specifies a statement block to be executed if both the value
of the logical expression in the ELSE IF THEN statement is true, and
no preceding statement block in the block IF construct was executed.
A block IF construct can contain any number of ELSE IF THEN
statements. The ELSE IF THEN statement is optional.

The END IF statement terminates the block IF construct.

Figure 9-1 describes the flow of control for four examples of block IF
constructs.

9-6

Construct

IF (e) THEN
block

END IF

IF (e) THEN
block1

ELSE
block2

END IF

IF (e1) THEN
block1

ELSE IF (e2) THEN
block2

END IF

IF (e1) THEN
block1

ELSE IF (e2) THEN
block2

ELSE IF (e3) THEN
block3

ELSE
block4

END IF

CONTROL STATEMENTS

CONTROL STATEMENTS

Flow of Control

Execute
block

Execute
block1

Execute
block1

Execute
block1

False

Execute
block2

Execute
block2

Execute
block2

Figure 9-1: Examples of Block IF Constructs

Execute
block3

False

Execute
block4

MR-S-2525-83

After the last statement in a statement block is executed, control
passes to the next executable statement following the END IF
statement. Consequently, at most one statement block in a block IF
construct is executed each time the IF THEN statement is executed.

9-7

CONTROL STATEMENTS

ELSE IF THEN and ELSE statements can have statement labels, but these
labels cannot be referenced. The END IF statement can have a
statement label to which control can be transferred, but only from
within the block IF construct.

Section 9.2.4.1 describes restrictions on statements in a statement
block. Section 9.2.4.2 describes examples of block IF constructs.
Section 9.2.4.3 describes nested block IF constructs.

9.2.4.1 Statement Blocks - A statement
executable FORTRAN statement except an
9.8). You can transfer control out of a
cannot transfer control back into the
transfer control from one statement block

block can contain any
END statement (see Section

statement block, but you
block. Note that you cannot
into another.

DO loops cannot overlap statement blocks. When a statement block
contains a DO statement (see Section 9.3), it must also contain the DO
loop's terminal statement or END DO statement. Conversely, if a block
IF construct appears within the range of a DO loop, the corresponding
END IF statement must also appear within the range of that DO loop.

9.2.4.2 Block IF Examples - The simplest block IF construct consists
of the IF THEN and END IF statements; this construct conditionally
executes one statement block.

Form

IF (e) THEN
block

END IF

Example

IF (LOWER.LE.UPPER) THEN
MIDDLE=(LOWER+UPPER)/2

END IF

The statement block consists of all the statements between the IF THEN
and END IF statements.

The IF THEN statement first evaluates the logical expression (e),
(LOWER.LE.UPPER). If the value of e is true, the statement block is
executed. If the value of e is false, control transfers to the next
executable statement after the END IF statement; the block is not
executed.

The following example contains a block IF construct with an ELSE IF
THEN sta teme'nt:

Form

IF (el) THEN
blockl

ELSE IF (e2) THEN
block2

END IF

Example

IF (ITEM.LT.A(MIDDLE» THEN
UPPER=MIDDLE-l

ELSE IF (ITEM.GT.A(MIDDLE» THEN
LOWER=MIDDLE+l

END IF

Blockl consists of all statements between the IF THEN and the ELSE IF
THEN statements; block2 consists of all the statements between the
ELSE IF THEN and the END IF statements.

If ITEM is less than A(MIDDLE) , blockl is executed.

If ITEM is not less than A(MIDDLE) , but ITEM is greater than
A(MIDDLE) , block2 is executed.

9-8

CONTROL STATEMENTS

If ITEM is not less than A(MIDDLE) and ITEM is not greater than
A(MIDDLE), neither blockl nor block2 is executed; control transfers
directly to the next executable statement after the END IF statement.

The following example contains a block IF construct with an ELSE
statement:

Form

IF (e) THEN
blockl

ELSE
block2

END IF

Example

IF (ITEM.GT.A(MIDDLE» THEN
LOWER=MIDDLE+I

ELSE
SEARCH=MIDDLE
RETURN

END IF

Blockl consists of all the statements between the IF THEN and the ELSE
statements; block2 consists of all the statements between the ELSE and
the END IF statements.

If ITEM is greater than A(MIDDLE), blockl is executed.

If ITEM is not greater than A(MIDDLE), block2 is executed.

9.2.4.3 Nested Block IF Constructs - A block IF construct can be
included in a statement block of another block IF construct. But the
nested block IF construct must be completely contained within a
statement block; it must not overlap statement blocks.

The following example contains a nested block IF construct.

Form

IF (e) THEN

Example

FUNCTION SEARCH(A,N,ITEM)
CHARACTER*(*) A(N),ITEM
INTEGER SEARCH,N,LOWER,MIDDLE,UPPER

LOWER=l
UPPER=N

IF(LOWER.LE.UPPER) THEN
MIDDLE=(LOWER+UPPER)/2

IF (e) THEN 10 IF (ITEM.LT.A(MIDDLE» THEN
UPPER=MIDDLE-1

blockl

END IF

blocka
ELSE IF (e) THEN

blockb
ELSE

blockc

END IF

ELSE IF (ITEM.GT.A(MIDDLE» THEN
LOWER=MIDDLE+l

ELSE
SEARCH=MIDDLE
RETURN

END IF

GOT010

END IF
20 SEARCH=O

RETURN

END

9-9

CONTROL STATEMENTS

If LOWER is less than or equal to UPPER, blockl is executed. Blockl
contains a nested block IF construct. If ITEM is less than A(MIDDLE) ,
blocka is executed. If ITEM is greater than A(MIDDLE) blockb is
executed. If ITEM is equal to A(MIDDLE) , blockc is executed.

If LOWER is greater than UPPER, control is transferred to the first
executable statement after the last END IF statement. The nested IF
construct is not executed.

9.3 DO STATEMENT

The two types of DO statements are:

1. Indexed DO (DO statement)

2. Pretested indefinite DO (DO WHILE statement)

The indexed DO statement is described in Section 9.3.1, and the DO
WHILE statement is described in Section 9.3.2.

9.3.1 Indexed DO Statement

DO statements simplify the coding of iterative procedures; that is,
the statements in the DO statement range are executed repeatedly a
specified number of times.

The form of an indexed DO statement is:

where:

Indexing Parameters /[,
----=--
TERMINAL
STATEMENT
LABEL

INDEX
VARIABLE

I = el, \~~IN~C~R~EM~EN~T~
\ (OPTIONAL)

TERMINAL PARAMETER
PARAMETER

INITIAL
PARAMETER

MR-S-1760-81

s Terminal statement label s identifies the last statement of
the DO statement range. The statement must follow the DO
statement in the same program unit. If s is omitted, then
the loop must be terminated by an END DO statement (see
Section 9.4).

The terminal statement can be any executable statement other
than one of the following:

• Unconditional or assigned GO TO statement

• Arithmetic IF or logical two-branch IF statement

• Block IF, ELSE IF, ELSE, or END IF statement

9-10

CONTROL STATEMENTS

• RETURN statement

• STOP statement

• END statement

• DO statement

If the terminal statement is a logical IF, it can contain any
executable statement except one of the following:

• DO statement

• Block IF, ELSE IF, ELSE, or END IF statement

• END statement

• Another logical IF statement

i Index variable i is an unsubscripted numeric variable whose
value is defined at the start of the DO statement operations.
The index variable must not be of type complex.

The index variable is available for use throughout each
execution of the range of the DO statement, but altering its
value within the DO loop does not change the number of times
the DO loop will execute. The DO loop index variable is also
available for use in the program when:

a. Control is transferred outside the range of the DO loop
by a GO TO, IF, or RETURN statement located within the DO
range

b. Control is transferred outside the range of the DO loop
by an I/O statelnent with either or both the options END=
or ERR= (see Chapter 10)

c. A subprogram is executed from within the DO statement
range having the index variable as an argument or in
COMMON

e1 Initial parameter e1 assigns the index variable i its initial
value. This parameter can be any expression, but cannot be
of type complex.

e2 Terminal parameter e2 provides the value used to determine
how many repetitions of the DO statement range are performed.
This parameter can be any expression, but cannot be of type
complex.

e3 Increment parameter e3 specifies the value to be added to the
initial parameter (e1) on completion of each cycle of the DO
loop. The increment parameter is optional. If e3 and its
preceding comma are omitted, e3 is assumed to be equal to 1.
This parameter can be any expression, but cannot be of type
complex.

9-11

CONTROL STATEMENTS

9.3.1.1 Executing an Indexed DO Statement - The indexing parameters
e1, e2 or e3 can be any expressions. Their values are calculated only
once, at the start of each DO loop operation, to determine the values
for the initial, terminal, and increment parameters. If necessary,
the initial, terminal, and increment parameters are converted, before
use, to the data type of the index variable.

The number of times that a DO loop will execute, called the iteration
count, is specified by the formula:

MAX (INT «e2-e1+e3)/e3) ,0)

If the iteration count is less than or equal to zero, the body of the
loop is not executed. The index variable retains its assigned value
(e1) •

NOTE

The interpretation of the iteration count described
above is different from that of earlier versions of
FORTRAN-IO/20. If the /NOF77 compiler switch is
specified (see Sections 16.1.3 or 16.2.3), and the
iteration count is less than or equal to zero, the
body of the loop is executed once.

Since the iteration count is computed at the start of a DO loop
operation, changing the value of the loop index variable within the
loop cannot affect the number of times that the loop is executed.

At the start of a DO loop operation, the index value is set to the
value of the initial parameter (el); and the iteration count is
established.

9.3.1.2 DO Iteration Control - At the end of each DO loop cycle, the
following steps are executed:

1. The value of the increment parameter (e3)
index variable.

2. The iteration count is decremented.

is added to the

3. If the iteration count is greater than zero, control
transfers to the first executable statement after the DO
statement for another iteration of the loop.

4. If the iteration count is less than or equal to zero,
execution of the DO loop terminates.

Exit from a DO loop upon completion of the number of iterations
specified by the loop count is referred to as a normal exit. If no
other DO loop shares the terminal statement, or if this DO loop
statement is outermost, control passes to the first executable
statement after the terminal statement of the DO loop.

The final value of the index variable is the value determined by step
1.

9-12

CONTROL STATEMENTS

NOTE

The interpretation of the index variable described
above is different from that of earlier versions of
FORTRAN-IO/20. If the /NOF77 compiler switch is
specified (see Sections 16.1.3 or 16.2.3), the final
value of the index variable of the DO statement is
undefined after a normal loop exit.

Exit from a DO loop may also be accomplished by a transfer of control
by a statement within the DO loop range to a statement outside the
range of the DO statement. This is called an extended range DO loop
(see Section 9.3.5).

When execution of a DO loop terminates, and other DO loops share its
terminal statement, control transfers outward to the next most
enclosing DO loop in the DO nesting structure (see Section 9.3.4).

Examples of DO Iteration Control:

DO 100 I = 1,10
100 J=I

After execution of these statements, 1=11 and J=lO.
switch is specified, I is undefined and J=lO).

L=O
DO 200 K 5,1

200 L=K

After execution of these statements, K=5 and L=O.
switch is specified, K is undefined and L=5).

9.3.2 DO WHILE Statement

(If the /NOF77

(If the /NOF77

The DO WHILE statement is similar to the DO statement described in
Section 9.3.1. Instead of executing a fixed number of iterations, the
DO WHILE statement executes for as long as a logical expression
contained in the statement continues to be true.

The form of the DO WHILE statement is:

DO [s[,]] WHILE (e)

where:

s is the label of an executable statement that must physically
follow in the same program unit.

e is a logical expression.

The DO WHILE statement tests the logical expression at the beginning
of each execution of the loop, including the first. If the value of
the expression is true, the statements in the body of the loop are
executed; if the expression is false, control transfers to the
statement following the loop.

If no label appears in a DO WHILE statement, the DO WHILE loop must be
terminated with an END DO statement (see Section 9.4).

9-13

CONTROL STATEMENTS

The following example demonstrates the use of the DO WHILE statement:

CHARACTER*132 LINE
1=1
LINE (132:) = 'X,
DO WHILE (LINE (I: I) .EQ. ' ')

I = I + 1
END DO

9.3.3 The Range of a DO Statement

The range of a DO statement is defined as the series of statements
that follows the DO statement, up to and including the specified
terminal statement or END DO statement.

If another DO statement appears within the range of a DO statement,
the range of that statement must be entirely contained within the
range of the first DO statement. More than one DO statement may have
the same labeled terminal statement but not unlabeled END DO
statement. (See Section 9.3.4, Nested DO Statements.)

If a DO statement appears within an IF block, ELSE IF block, or ELSE
block (see Section 9.2.4), the range of the DO statement must be
contained entirely within that block.

If a block IF statement appears within the range of a DO statement,
the corresponding END IF statement must also appear within the range
of the DO statement.

9.3.4 Nested DO Statements

One or more DO statements can be contained within the range of another
DO statement. This is called nesting. The following rules govern the
nesting of DO statements:

1. The number of nested levels (DO loop within DO loop) is
restricted to 79 DO loops.

2. The range of each nested DO statement must be entirely within
the range of the containing DO statement (such as, they
cannot overlap).

For example:

Valid Invalid

DO 1 DO 1

DO 2

C
DO 3

c:::=

9-14

The ranges of
loop DO 2 and
DO 3 overlap

MR-S-17SB-B 1

CONTROL STATEMENTS

3. More than one DO loop within a nest of labeled DO loops can
end on the same statement. When this occurs, the terminal
statement is considered ·to belong to the innermost DO
statement that ends on that statement. Only a statement that
occurs within the range of the innermost DO statement can use
the statement label of the shared terminal statement for
transfer of control.

For example:

r°..;;;0_4.;..... ___ -411- Outermost DO Loop

004

DO 4

I pO 4 ____ Innermost DO Loop
l-..I.--'--.l-___ ---- Terminal Statement

MR·S·1759·81

Although all four DO loops share the same terminal statement,
the terminal statement "belongs" to the innermost DO loop.

4. Nested loops cannot share an unlabeled END DO statement.
Each unlabeled END DO terminates exactly one DO loop.

For example:

Correctly Nested
DO Loops

DO 10 1=1,20

DO J=1,5

[

DO K= 1,10

END DO

END DO

10 CONTINUE

9.3.5 Extended Range

Incorrectly Nested
DO Loops

DO 10 1=1,5

DO J= 1,10

CONTINUE

END DO

MR·S·2526·83

By following certain rules, it is possible to transfer out of a DO
loop, perform a series of statements elsewhere in the program, and
then transfer back into the DO loop. The statements that are executed
after a transfer out of a DO loop and before a transfer back into the
same DO loop are collectively known as the "extended range." A DO loop
that permits transfer in and out of its range is called an extended
range DO loop.

9-15

CONTROL STATEMENTS

NOTE

This feature makes the flow of a program difficult to
follow, does not conform to the FORTRAN-77 standard,
and is therefore discouraged.

The following rules govern the use of extended range DO loops:

1. The statement that causes the transfer out of the DO loop
must be contained within the most deeply nested DO (innermost
loop having the same terminal statement). This loop must
also contain the statement to which the extended range
returns.

2. A transfer into the range of a DO statement is permitted only
if the transfer is made from the extended range of that DO
statement.

~. The extended range of a DO statement must not contain another
DO statement.

4. The extended range of a DO statement cannot change the index
variable or indexing parameters of the DO statement.

5. You can call a subprogram within an extended range.

The following exampLe illustrates the use of an extended range DO
loop:

DIMENSION TABLE(10,5),
LOGICAL LOGARR(10)

VALUE (10)

200

500

1000

2000
2100

DO 1000 I = 1, 10
IF (LOGARR(I» GOTO 500
I=K
CALL SUBROT(K)

no 200 J= 1, 5
'rABLE (I ,J) 0
CONTINUE

GOTO 2000
VALUE(I) GETVAL(K)

CONTINUE

STOP
TYPE 2100, I
FORMA T (' I = " I 2)
LOGARR(I) = .TRUE.
GOTO 500

END

9.3.6 Permitted Transfer Operations

An extended range DO loop
Test logical array item

Invoke subroutine using
current index value
Nonextended range loop

Extended range invocation
Invoke function GETVAL with
current index
Terminal statement for outer
loop

Extended range starts

Extended range ends and
returns

The following rules govern the transfer of program control from within
a DO statement range or the ranges of nested DO statements:

1. A transfer out of the range of any DO loop is permitted at
any time. When such a transfer occurs, the value of the
controlling DO loop's index variable is defined as the
current value.

9-16

CONTROL STATEMENTS

2. A transfer into the range of a DO statement is permitted if
it is made from the extended range of the DO statement.

3. You can call a subprogram from within the range of any:

a. DO loop
b. nested DO loop
c. extended range loop (in which you leave the loop through

a GO TO, execute statements in the extended range, and
return to the original loop)

The following examples illustrate the transfer operations permitted
from within the ranges of nested DO statements:

Valid
Transfers

01

9.4 END DO STATEMENT

•
extendedt range

Invalid
Transfers

01

MR-S-1757-Bl

The END DO statement terminates the range of a DO or DO WHILE
statement. The END DO statement must be used to terminate a DO block
if the DO or DO WHILE statement defining the block does not contain a
terminal-statement label. The END DO statement may also be used as a
labeled terminal statement if the DO or DO WHILE statement does
contain a terminal-statement label.

The form of the END DO statement is:

END DO

9.5 CONTINUE STATEMENT

The form of the CONTINUE statement is:

CONTINUE

Execution of the CONTINUE statement has no effect. It may be used as
the terminating statement of a DO loop.

9-17

CONTROL STATEMENTS

In the following example, the labeled CONTINUE statement provides a
legal termination for the range of the DO loop.

DIMENSION STOCK(100)
DO 20 1=1,100
STOCK(I)=O
CALL UPDATE (STOCK(I»
IF(STOCK (I) .EQ. 0) GO TO 30

20 CONTINUE
STOP

30 TYPE 35
35 FORMAT (' UPDATE ERROR')

END

9.6 STOP STATEMENT

Execution of the STOP statement causes program execution to be
terminated. A descriptive message may optionally be included in the
STOP statement to be output to your terminal immediately before
program execution is terminated.

The form of the STOP statement is:

STOP [n]

where:

n is an optional decimal integer constant of up to 6 digits,
or a character constant. The constant is printed at the
terminal when the STOP statement is executed.

You can have any number of characters in the character
constant. You can use continuation lines to accommodate
large character strings. The constant is printed without
leading zeroes, unless they are specified in the statement.

NOTE

The word STOP is not printed when the STOP statement
is executed unless the word STOP is included in the
statement as a character constant.

The following examples show the results of executing STOP statements
that contain a 6-digit decimal string and a character constant.

PROGRAM TEST
10 STOP 123456

END

EXECUTE STOP1.FOR
FORTRAN: STOPI
TEST
LINK: Loading
[LNKXCT TEST execution]
123456
CPU time 0.1 Elapsed time 0.3

9-18

CONTROL STATEMENTS

PROGRAM TEST
10 STOP 'The program has stopped'

END

EXECUTE STOP2.FOR
FORTRAN: STOP2
TEST
LINK: Loading
[LNKXCT TEST execution]
The program has stopped
CPU time 0.1 Elapsed time 0.3

9.7 PAUSE STATEMENT

Execution of a PAUSE statement suspends the execution of the object
program and gives you the option of continuing execution of the
program, exiting from the program, or beginning a TRACE operation.

The form of the PAUSE statement is:

PAUSE [n]

where:

n is an optional integer constant of up to 6 digits, or a
character constant. The constant is printed at the terminal
when the PAUSE statement is executed.

You can have any number of characters in the character
constant. You can use continuation lines to accommodate
large character strings. The constant is printed without
leading zeros, unless they are specified in the statement.

If execution of the program is resumed after a PAUSE, program control
continues as if a CONTINUE had been executed. Execution of the PAUSE
statement causes the word PAUSE, the optionally specified constant,
and the following prompt to be printed at the terminal:

Type G to Continue, X to Exit, T to Trace

The responses to this prompt are:

G continues program execution at the statement immediately
following the PAUSE statement.

X causes program termination.

T produces a trace back list at the terminal. This list
consists of invoked routine names and locations, plus the
location and module names of the callers of those routines.
Using this information you can track the active path of
execution from the main program to the PAUSE trace routine.
(See Section 13.4.1.32 for a detailed description of this
feature.)

9-19

CONTROL STATEMENTS

PROGRAM PTEST
PAUSE
PAUSE 234
PAUSE 'Character String'
END

EXECUTE PTEST.FOR
FORTRAN: PTEST
PTEST
LINK: Loading
[LNKXCT PTEST execution]
PAUSE
Type G to Continue, X to Exit, T to Trace.
G
PAUSE
234
Type G to Continue, X to Exit, T to Trace.
G
PAUSE
Character String
Type G to Continue, X to Exit, T to Trace.
X

CPU time 0.3 Elapsed time 18.8

9.8 END STATEMENT

This statement signals FORTRAN that the physical end of a program unit
has been reached. END is an executable statement. The general form
of an END statement is:

END

The following rules govern the use of the END statement:

1. This statement must be the last physical statement of a
source program unit (main program or subprogram).

2. When executed in a main program, the END statement has the
effect of a STOP statement; in a subprogram, END has the
effect of a RETURN statement.

3. An END statement may be labeled, but it must not be continued
(that is, it must appear only on an initial line).

9-20

CHAPTER 10

DATA TRANSFER STATEMENTS

FORTRAN I/O statements are divided into three categories by function,
as follows:

1. Data Transfer Statements transfer data between memory and
files. The "files" can be devices such as TTY: or MTA:.
Internal files and ENCODE/DECODE statements are used for
memory-to-memory data transfers.

2. File Control Statements associate and disassociate files
and FORTRAN logical unit numbers, and can specify
characteristics of such an association.

3. Device Control Statements position files. For example,
using the device control statements you can position magnetic
tape to a particular file or record.

This chapter describes data transfer statements. Chapter 11 describes
file-control and device-control statements.

Table 10-1 lists the three categories of I/O statements, the
statements within each category, and the sections in which each I/O
statement is further described.

10-1 February 1987

DATA TRANSFER S.TATEMENTS

Table 10-1 FORTRAN I/O Statement Categories

Categories Statements Sections

Data Transfer READ 10.5
WRITE 10.6
REREAD 10.7
ACCEPT 10.8
TYPE 10.9
PRINT 10.10
PUNCH 10.11
I<~NCODE 10.12
DECODE 10.12
Internal READ 10.12
Internal WRITE 10.12
DELETE 10.13
HEWRITE 10.14
UNLOCK 10.15

File Control OPEN 1l.2
CLOSE 1l.4
INQUIRE 1l.7

Device Control FIND 1l.8.1
REWIND 1l.8.2
UNLOAD 11.8.3
BACKSPACE 11.8.4
ENDFILE 1l.8.5
SKIPRECORD 1l.8.6
SKIPFILE 1l.8.7
BACKFILE 11.8.8

Table 10-2, on the tab-divider, summarizes all the data transfer
statement forms.

FORTRAN-10/20 VII 10-2 February 1987

DATA TRANSFER STATEMENTS

Table 10-2 Summary of Data Transfer Statement Forms

Data
Access

Sequential
Formatted
(FORMAT
Statement)

Sequential
Formatted
(List
Directed)

Sequential
Formatted
(NAMELIST
Statement)

Statement Construct

READ(UNIT=un,FMT=f[,END=s][,ERR=s][,10ST AT=ios])[iolist]
READ(un,FMT=f[,END=s][,ERR=s][,IOSTAT=ios])[iolist]
READ(un, f[,END=s][,ERR=s][,10STAT=ios]) [iolist]
READ f[,iolist]
REAp (UNIT=*,FMT=f[,END=s] [,ERR=s][,IOSTAT=ios])[iolist]

WRITE(UNIT=un,FMT=f[,ERR=s][,10STAT=ios])[iolist]
WRITE(un,FMT=f[,ERR=s][,IOSTAT=ios]) [iolist]
WRITE(un, f[,ERR=s][,IOSTAT=ios]) [iolist]
WRITE fl,iolist]
WRITE(UNIT=*,FMT=f[,ERR:"s][,IOSTAT=ios]) [iolist]

REREAD(FMT=fl,END=s] [,ERR=s] [,IOSTAT=ios]) [iolist]
REREAD fl,iolist]

ACCEPT(FMT=f[,END=s][,ERR=s][,IOSTAT=ios])[iolist]
ACCEPT fl,iolist]

TYPE(FMT=fl,ERR=sj[,10STAT=ios]) [iolist]
TYPE f[,iolistj

PRINT(FMT=fl,ERR=s][,IOST A T=ios]) [iolist j
PRINT f[,iolist]

PUNCH(FMT=fl,ERR=s][,IOSTAT=ios]) [iolistj
PUNCH fl,iolistj

ENCODE(c,f,a[,ERR=s][,IOSTAT=ios]) [iolist]
DECODE(c,f,a[,ERR=s][,IOSTAT=ios])[iolist]

READ (UNIT=un,FMT=* [,END=sj [,ERR=s][,IOSTAT=iosj)[iolistj
READ(un,FMT=*[,END=s][,ERR=s][,IOSTAT=ios]) [iolist]
READ (un, * [,END=s][,ERR=s][,IOSTAT=ios])[iolistj
READ *[,iolistj
READ (UNIT=*,FMT=*[,END=s][,ERR=s][,IOSTAT=ios]) [iolistj

WRITE(UNIT=un,FMT=*[,ERR=s][,IOSTAT=ios])[iolist]
WRITE(un,FMT=*[,ERR=s][,IOSTAT=ios]) [iolist]
WRITE (un, *[,ERR=s][,IOSTAT=ios]) [iolistj
WRITE *[,iolist]
WRITE(UNIT=*,FMT=*[,ERR=s] [,IOSTAT=ios]) [iolistj

REREAD(FMT=*[,END=s][,ERR=s][,IOSTAT=ios]) [iolistj
REREAD *[,iolist]

ACCEPT(FMT=*[,END=s][,ERR=s][,IOSTAT=ios]) [iolist]
ACCEPT *[,iolistj

TYPE(FMT=* [,ERR=sj [,IOSTAT=ios]) [iolist]
TYPE *[,iolist]

PRINT(FMT=*[,ERR=s][,IOSTAT=ios]) [iolistj
PRINT *[,iolist]
PUNCH(FMT=*[,ERR=s][,IOSTAT=ios])[iolist]
PUNCH *[,iolistj

READ (UNIT=un,FMT=name[,END=s][,ERR=s] [,IOSTAT=ios])
READ (UNIT=un,NML=name[,END=s][,ERR=s j[,IOST AT=ios])
READ(un,FMT=name[,END=s][,ERR=s] [,IOSTAT=ios])
READ (un,NML=name[,END=s][,ERR=s][,IOSTAT=ios])
READ (un, name[,END=s][,ERR=s][,IOST AT=ios])

WRITE(UNIT=un,FMT=name[,ERR=s] [,IOSTAT=ios])
WRITE(UNIT=un,NML=name[,ERR=s][,IOST AT=ios])
WRITE(un,FMT=name[,ERR=s][,IOSTAT=ios])
WRITE(un,NML=name[,ERR=s][,IOST AT=ios])
WRITE(un, name[,ERR=s][,IOST AT=ios])

10-3

Section

10.5.1.1

10.6.1.1

10.7.1

10.8.1

10.9.1

10.10.1

10.11.1

10.12

10.5.1.3

10.6.1.3

10.7.2

10.8.2

10.9.2

10.10.2

10.11.2

10.5.1.4

10.6.1.4

February 1987

DATA TRANSFER STATEMENTS

Table 10-2 (Cont.) Summary of Data Transfer Statement Forms

Data
Access Statement Construct

Sequential READ(UNIT=un[,END=s][,ERR=sj[,IOSTAT=iosj)[iolist]
Unformatted READ (un[,END=s][,ERR=s][,I OST A T=ios]) [iolist]

Direct
Formatted

WRITE(UNIT=un[,ERR=s][,IOSTAT=ios]) [iolist]
WRITE(un[,ERR=s][,IOSTAT=ios])[iolist]

READ (UNIT=un,FMT=f,REC=rn[,ERR=s][,IOSTAT=ios]) [iolist]
READ(un,FMT=f,REC=rn[,ERR=s][,IOSTAT=ios])[iolist]
READ(un, f,REC=rn[,ERR=s][,IOSTAT=ios])[iolist]
READ(un'm,FMT=f, [,ERR=sjf,lOSTAT=iosl)[iolist]
READ(un'rn, f, r,ERR=s][JOSTAT=ios]) [iolistj

WRITE(UNIT=un,FMT=f,REC=rn[,ERR=s] [,IOST A T=ios])[iolist]
WRITE(un,FMT=f,REC=rn[,ERR=s][,IOSTAT=ios])[iolist]
WRITE(un, f,REC=rn[,ERR=s][,IOSTAT=ios]) [iolist]
WRITE(un'rn,FMT=f, [,ERR=s][,lOST A T=ios])[iolistl
WRITE(un'rn. f. [.ERR=s][,10STAT=ios])[iolistl

Direct READ (UNIT=un ,REC=rn[,ERR=s][,I OST A T=ios])[iolist]
Unformatted READ(un,REC=rn[,ERR=s][,IOST AT=ios])[iolist]

HEAD(un'm [,ERR=s][JOSTAT=ios])[iolistj

WRITE(UNIT=un,REC=rn[,ERR=s][,IOSTAT=ios]) [iolist]
WRITE(un,REC=rn[,ERR=s][,IOSTAT=ios]) [iolist]
WRITE(un,rn r,ERR=s][JOSTAT=ioslHiolistj

Section

10.5.2.1

10.6.2.1

10.5.1.2

10.6.1.2

10.5.2.2

10.6.2.2

Indexed READ(UNIT=un,FMT=f,key=val[,KEYID=kn j[,ERR=s][,IOST A T=ios]) [iolist] 10.5.3.2
Formatted READ(un, FMT=f,key=val[,KEYID=kn j[,ERR=s][,lOST A T=ios])[iolist]

HEAD(un, f,key=val[,KEYID=knj[,ERR=s][,IOSTAT=ios]) [iolist]

Indexed READ (UNIT=un,key=val[,KEYID=kn] [,ERR=s] [,I OST A T=ios]) [iolist] 10.5.3.3
Unformatted READ(un,key=val[,KEYID=knj[,ERR=s][,10STAT=ios]) [iolist]

Current- DELETE(UNIT=un[,ERR=s][,IOST AT=ios j) 10.13.1
record DELETE(un[,ERR=s][,IOSTAT=iosj)
DELETE

Direct DELETE (UNIT=un,REC=rn[,ERR=s I [,IOSTAT=iosj) 10.13.2
DELETE DELETE(un,REC=rn[,ERR=s][,IOSTAT=iosl)

DELETE(un'rn [,ERR=s][,IOSTAT=ios])

Formatted REWRITE(UNIT=un,FMT=f[,ERR=s j[,IOST A T=ios]) [iolist] 10.14.1
REWRITE REWRITE(un, f[,ERR=s][,10STAT=iosj)[iolist]

Unformatted REWRITE(UNIT=un[,ERR=s][,IOSTAT=ios])[iolistj 10.14.2
REWRITE REWRITE(un[,ERR=sH,IOSTAT=iosl)[iolistj

UNLOCK UNLOCK(UNIT=un[,ERR=sj[,IOSTAT=ios)) 10.15

Key:

UNIT=un

REC=rn

un'rn

FMT=f

UNLOCK(un[,ERR=s][,IOSTAT=iosj)
UNLOCK un

is a FORTRAN logical unit number or internal file specifier (Section 10.4.3).

is a default unit specification with the READ Statement to read from CDR:, and with the
WRITE Statement to write to LPT: (Section 1004.3).

is a direct-access record number (Section 10.4.4).

is an alternate way of specifying Logical Unit Number and record number of a direct-access
transfer (Section 10.4.4).

is FORMAT-statement formatting; iolist is optional (Section 10.4.5.1).

FORTRAN-10/20 VII 10-4 February 1987

DATA TRANSFER STATEMENTS

FMT=* is list-directed formatting; iolist is optional (Section 10.4.5.2).

FMT=name is NAMELIST-statement formatting; iolist is prohibited (Section 10.4.5.3).

NML= is the alternative form of the NAMELIST-statement format specifier (Section 10.4.5.3).

END=s is an optional end-of-file transfer specifier (Section 10.4.6).

ERR=s is an optional error transfer specifier (Section 10.4.7).

10STAT=ios is an optional I/O status specifier (Section 10.4.8).

key=val is an optional key-field-value specifier (Section 10.4.9).

KEYID=kn is an optional key-of-reference specifier (Section 10.4.10).

iolist is a data transfer I/O list (Section 10.4.11).

10.1 DATA TRANSFER OPERATIONS

Data transfer statements are used to transfer data between memory and
files or between memory and memory. Data can be transferred
sequentially (sequential access) or randomly (direct access). The
areas in memory from which data is to be taken during output (write)
operations, and into which data is stored during input (read)
operations are specified by:

1. A list in the data transfer statement

2. A list defined by a NAMELIST statement

3. FORMAT specifications referenced in the
statement

data transfer

The appearance and arrangement of transferred data can be specified
by:

1. Format specifications located in either a FORMAT statement or
an array (FORMAT-statement I/O)

2. The contents of an I/O list (list-directed I/O)

3. An I/O list defined in a NAMELIST statement (NAMELIST I/O)

These three methods are known collectively as formatted I/O.

In contrast to formatted I/O transfers, FORTRAN has several methods
for transferring data without regard for the type and arrangement of
the data being transferred. These methods are known collectively as
unformatted I/O. Unformatted I/O transfers are particularly useful
when you want the internal (memory) representation of the data being
transferred to be the same as the external (file) representation of
the data.

In addition, unformatted data transfers are generally faster than
formatted transfers. This is because unformatted data transfers do
not convert the data to or from its ASCII representation during the
transfer.

The following sections describe the types of access available, the
types of data transfers available, and the statements used for I/O
transfer operations.

10.2 DATA ACCESS

There are three forms of access available - sequential, direct, and
keyed. These forms are described in the following sections.

FORTRAN-10/20 Vll 10-5 February 1987

DATA TRANSFER STATEMENTS

10.2.1 Sequential Access

If the data access is sequential, the data records are transferred in
a serial fashion to or from the external data file. Each
sequential-access input statement transfers the next record(s) from
the accessed data file, such that data records are transferred in the
same order that they appear in the file.

10.2.2 Direct Access

If the data access is direct, the data records are transferred to or
from a file in any desired order, as specified by a record number in
the data transfer statement. (Section 10.4.4 describes specifying
records in data transfer statements.)

Direct-access transfers, however, can be made only to files residing
on disk that have been previously set up (using an OPEN statement) for
direct access. Direct-access files must contain identically sized
records that are accessed by a record number.

You must use the OPEN statement to establish direct access (see
Section 11.2). Execution of the OPEN statement must precede the first
data transfer statement for the specified logical unit.

10.2.3 Keyed Access (TOPS-20 RMS)

If the data access is keyed, the data records are transferred to or
from an indexed file as specified by character values or integer
values called keys. The keys are defined as permanent attributes of
the file when the file is created. Each READ statement contains the
key that locates the record. The key value in the I/O statement is
compared with index entries until the record is located.

When you insert a new record, the values contained in the key fields
of the record determine the record's placement in the file; you do not
have to indicate a key.

You can use keyed access only for RMS files with an indexed
organization.

Your program can mix keyed access and sequential access I/O statements
on the same file. You can use keyed I/O statements to position the
file to a particular record and then use sequential I/O statements to
access records with increasing key values in the current
key-of-reference.

10.3 FORMATTED AND UNFORMATTED DATA TRANSFERS

The term "formatted data transfer" describes an intermediate step that
occurs during a data transfer. This intermediate step, which does not
occur in an unformatted data transfer, converts the data from its
internal (memory) representation to a different external (file)
representation. (Formatted data transfers are described in Section
10.3.1.)

An unformatted data transfer refers to the transfer of data with no
change to the data during the transfer. In an unformatted data
transfer, the internal (memory) representation of the data and the
external (file) representation of the data are the same. (Unformatted
data transfers are described in Section 10.3.2.)
FORTRAN-10/20 VII 10-6 February 1987

DATA TRANSFER STATEMENTS

10.3.1 Formatted Data Transfers

In a formatted data transfer, the internal and external format of the
data is controlled during the data transfer in one of three ways:

1. FORMAT-Statement Formatting The data transfer
contains a statement number, a numeric array
character expression, or an integer, real, or
variable as a format identifier.

statement
name, a
logical

The statement number references a line that contains a FORMAT
statement. The array name references an array that contains
a format specification. The value of the character
expression is a format specification. The integer, real, or
logical variable references a FORMAT statement number that
was assigned with an ASSIGN statement.

In the following example, the data transfer statement
contains a statement number of a FORMAT statement. The
FORMAT statement, in turn, contains edit descriptors that
control the formatting of the data during the transfer:

WRITE (22,101)X,J,Z
101 FORMAT (lX,F10.5,I5,F6.4)

See Section 10.4.5.1 for more information on FORMAT-statement
formatting.

2. List-Directed Formatting The data transfer statement
contains an asterisk as the format identifier. The asterisk
signifies that the transfer is controlled by the data type of
the variables in the data transfer statement I/O list.

In the following example, the data transfer is controlled by
the I/O list items X, J, and Z:

WRITE (22,*)X,J,Z

In this example, unless the data types of X, J,
been set explicitly to a type other than the
type, the transferred values of X and Z
floating-point form, and the transferred value
in integer form.

and Z have
default data

appear in
of J appears

See Section 10.4.5.2 for more information on list-directed
formatting.

3. NAMELIST-Statement Formatting The data transfer statement
contains a NAMELIST name as the format identifier. This
NAMELIST name associates the data transfer statement with a
NAMELIST I/O list defined in the NAMELIST statement elsewhere
in the same program unit. Elements in the NAMELIST I/O list,
in turn, dictate the formatting of the data during the data
transfer.

In the following example, the data transfer is controlled by
the NAMELIST.

PROGRAM NAMLST
NAMELIST/VAR/X,y,Z
READ(22,VAR)
WRITE(5,VAR)
END

See Section 10.4.5.3 for more information on NAMELIST-statement
formattjng.

10-7 February 1987

DATA TRANSFER STATEMENTS

1m.3.1.1 Internal Files - Internal files provide the capability to
perform formatted data transfers between character variables and the
elements of an I/O list. Their use with formatted sequential READ and
WRITE statements reduces the need to use the ENCODE and DECODE
statements for internal I/O (see Section 10.12).

An internal file consists of a character variable, a character array
element, a character array, or a character substring; a record in an
internal file consists of any of the above except a character array.

If an internal file is a character variable, array element, or
substring, that file comprises a single record whose length is the
same as the length of the variable, array element, or substring.

If an internal file is a character array, that file comprises a
sequence of records, with each record consisting of a single array
element. The sequence of records in an internal file is determined by
the order of subscript progression (see Section 4.3.2). Every record
of the file has the same length, which is the length of an array
element in the array.

The character variable, array element, or substring that is the record
of the internal file becomes defined by writing the record. If the
number of characters written in a record is less than the length of
the record, the remaining portion of the record is left-justified and
filled with blanks.

A record in an internal file can be read only if the character
variable, array element, or substring comprising the record has been
defined (that is, a value has been assigned to the record). Prior to
data transfer, an internal file is always positioned at the beginning
of the first record.

1m.3.2 Unformatted Data Transfers

Unformatted data is transferred in two forms on TOPS-20 (BINARY or
IMAGE), and three forms on TOPS-1m (BINARY, IMAGE, or DUMP). In an
explicit OPEN statement (Section 11.2.1), you can specify one of these
forms as an argument to the MODE specifier. (Section 11.3.24
describes the MODE specifier and its arguments.)

On disk devices and CORE-DUMP tapes, numeric data items are
transferred directly as 36-bit words. Character data items are
transferred as 7-bit bytes. Numeric and character items can be
interpersed in the same I/O list. Numeric data items and, for BINARY
files, record markers (LSCWS) are always word-aligned (see Section
18.4.2). On INDUSTRY tapes, numeric data items should not be used.
Character data items are transferred one character per frame (see
Section 11.3.37).

1m.3.3 Unformatted Data Transfer to ASCII Devices

Unformatted data transfer can be done to and from ASCII devices (such
as line printer, plotter, or terminal). Character data is transferred
exactly as it appears in the input/output list, with no formatting or
carriage control.

The method for transferring numeric data items depends on the device.
For non-terminal devices (such as, line printer or plotter), numeric
data is treated as if it were packed (Hollerith) data,
1eft-justifited, five characters per word. For the terminal, the data
is treated as if it were right-justified, one character per word.

1m-8 February 1987

DATA TRANSFER STATEMENTS

10.4 DATA TRANSFER STATEMENT FORMS

Table 10-2, on the tab divider, summarizes the forms of all the
FORTRAN data transfer statements. Figure 10-1 shows the three major
components of data transfer statements.

Statement
Name (Control-Information List) flO List I

"----v-----'\ I \ I

(See Section 1 0.4.1) . 1 (See Section 1 0.4.11)

(See Section 10.4.2 - 10.4.10)
MR-S-4649-87

Figure 10-1: Components of Data Transfer Statements

10.4.1 Data Transfer Statement Names

In a data transfer statement, the statement name indicates whether the
operation is an input (read) or output (write) operation.

The FORTRAN data transfer statements described in this chapter are:

1. READ (see Section 10.5)

2. WRITE (see Section 10.6)

3. REREAD (see Section 10.7)

4. ACCEPT (see Section 10.8)

5. TYPE (see Section 10.9)

6. PRINT (see Section 10.10)

7. PUNCH (see Section 10.11)

8. ENCODE (see Section 10.12)

9. DECODE (see Section 10.12)

10. Internal READ (see Section 10.12)

11. Internal WRITE (see Section 10.12)

12. DELETE (see Section 10.13)

13. REWRITE (see Section 10.14)

14. UNLOCK (see Section 10.15)

10.4.2 Data Transfer Control-Information List

A control-information list is included in every data transfer
statement. Each control-information list (including those having an
implicit definition of device) can contain:

1. One unit specifier (see Section 10.4.3)

2. One format specifier (see Section 10.4.5)

3. One record specifier (see Section 10.4.4)

FORTRAN-10/20 VII 10-9 February 1987

DATA TRANSFER STATEMENTS

4. One I/O status specifier (see Section 10.4.8)

5. One error specifier (see Section 10.4.7)

6. One end-of-file specifier (see Section 10.4.6)

7. One key-field-value specifier (see Section 10.4.9)

8. One key-of-reference specifier (see Section 10.4.10)

The following rules govern the placement and inclusion of items in a
control-information list:

1. If the keyword UNIT= is omitted from the unit specifier, the
unit specifier must be the first item in the
control-information list.

2. If the control-information list contains a format specifier
(FMT= or NML=), the statement is a formatted data transfer
statement. Otherwise, it is an unformatted data transfer
statement. The NML= keyword is used for NAMELIST formatting
only, although you can also use the FMT= keyword for NAMELIST
formatting.

If the keywords FMT= or NML= is omitted from the format
specifier, the format specifier must be the second item in
the control-information list, and the first item must be the
unit specifier without the keyword UNIT=.

3. If the control-information list contains a record specifier
(REC=), the statement is a direct-access data transfer
statement. Otherwise, it is a sequential-access data
transfer statement.

If the keyword REC= is omitted from the record specifier, the
unit specifier (without the keyword UNIT=) must appear first
in the control-information list, followed by a single quote
(I), and then the record specifier.

4. A control-information list cannot contain both a record
specifier and an end-of-file specifier.

5. If the format specifier is an asterisk or a NAMELIST name, a
record specifier must not be included in the
control-information list.

6. A control-information list in an internal file or ENCODE or
DECODE statement must contain a format specifier other than
an asterisk or NAMELIST name, and must not contain a record
specifier.

7. If the control-infQrmation list contains a key-of-reference
specifier (KEYID=), the statement must also contain a
key-field-value specifier. If a key-field-value specifier is
present, KEYID= may be omitted; the current key-of-reference
as specified by a previous KEYID= specifier is used (or the
primary index, if never set).

FORTRAN-10/20 VII 10-10 February 1987

DATA TRANSFER STATEMENTS

10.4.3 Unit References in Data Transfer Statements

The unit specifier is used to refer to a file or device. The form of
a unit specifier is:

UNIT = un

where:

un is a logical unit identifier or an internal file identifier.

A logical unit identifier (see Section 10.4.3.1) is used to refer to
an external file. An internal file identifier (see Section 10.4.3.2)
is used to refer to an internal file.

The keyword UNIT= is optional if the unit specifier is the first item
in the control-information list.

10.4.3.1 FORTRAN Logical Unit Identifier - The FORTRAN logical unit
identifier is associated with the file to or from which data is being
transferred. This identifier is an integer expression whose value is
in the range of 0 to 99, or an asterisk.

For example, the following WRITE statement contains the reference to
logical unit number 22 as the first item in the control-information
list:

WRITE (22,101)

Table 10-3 lists the default logical unit number assignments. Note
that logical unit number 22 identifies the file as DSK:FOR22.DAT.
Thus, the sample WRITE statement references a disk. The unit
identifier asterisk corresponds to the card reader for the READ
statement, and to the line printer for the WRITE statement.

The compiler automatically assigns default logical unit numbers for
the REREAD, READ, ACCEPT, PRINT, PUNCH, TYPE, and WRITE statements.
Default unit numbers are negative integers that cannot be accessed.
For example:

1. OPEN(UNIT=n) or READ/WRITE (UNIT=n) where n is a negative
integer is illegal.

2. Assigning a negative decimal number to a device at command
level is illegal.

You can, however, from monitor command level,
default device to another device. For example,
TOPS-20 DEFINE command (or TOPS-10 ASSIGN command) ,
assign LPT: (line printer) to DSK: (disk). If you
then any I/O statements that reference the line
actually reference the disk.

assign a
us ing the

you can
do this,

printer

You can optionally make the logical device assignments at runtime, or
you can use the default assignments contained by the FORTRAN Object
Time System (FOROTS). Table 10-3 lists the default logical device
assignments. You should specify the device explicitly in an OPEN
statement (see Section 11.2) if you wish to override the default
assignment.

10-11 February 1987

DATA TRANSFER STATEMENTS

Table 10-3 FORTRAN Logical Device Assignments

Device

PLT

Device last
read

CDR

TTY

LPT

PTP

TTY

Device

DSK

DSK

CDR

LPT

CTY

TTY

PTR

PTP

DIS

DTA1

DTA2

DTA3

DTA4

DTA5

DTA6

DTA7

MTAO

MTA1

MTA2

FORTR

Default
Filename

Default Devices (inaccessible to the user)
Logical Unit

FORPLT.DAT

File last read

FORCDR.DAT

FORTTY.DAT

FORLPT.DAT

FORPTP.DAT

FORTTY.DAT

Default
Filename

FOROO.DAT

FOROl.DAT

Number Use

-7 For use by FORPLT

-6 REREAD statement

-5 READ statement

-4 ,ACCEPT statement

-3 PRINT statement

-2 PUNCH statement

-1 TYPE statement

Standard Devicest
Logical Unit
Number Use

00 Disk

01 Disk

02 Card Reader

03 Line Printer

04 Console Teletype

05 User's Teletype

06 Paper Tape Reader

07 Paper Tape Punch

08 Display

09 DECtape

10

11

12

13

14

15

16 Magnetic Tape

17

18

19 Assignable Device

tThe device table can be altered when FOROTS is installed or by the system administrator. The supplied
options are either values in the default table pictured above. or all positive logical unit numbers default to
disk. Check to see which device table is being used at your installation.

10-12 Februa ry 1987

DATA TRANSFER STATEMENTS

Table 10-3 (Cont.) FORTRAN Logical Device Assignments

Device

DSK

DSK

DSK

DSK

DSK

DEVI

DEV2

DEV3

DEV4

DEV5

DSK

DSK

DSK

Default
Filename

FOR25.DAT

FOR99.DAT

Standard Devicest
Logical Unit
Number Use

20 Disk

21

22

23

24

25 Assignable Devices

26

27

28

29

30 Disk

31

99 Disk

tThe device table can be altered when FOROTS is installed or by the system administrator. The supplied
options are either values in the default table pictured above, or all positive logical unit numbers default to
disk. Check to see which device table is being used at your installation.

10.4.3.2 Internal File Identifier - The internal file identifier
specifies the internal file to be used. This identifier is the name
of a character variable, character array, character array element, or
character substring.

Example:

CHARACTER*132 LINE
WRITE(UNIT=LINE,FMT=' (F) ') 3.14159

10.4.4 Record Number References In Data Transfer Statements

All direct-access data transfer statements must contain a record
specifier, which is used in the transfer to identify the number of the
record to be accessed.

The form of the record specifier in the control-information list is:

REC=rn

where:

rn is a positive integer expression that indicates the
record number.

10-13 February 1987

DATA TRANSFER STATEMENTS

When you use the REC=rn form to specify the record number, you can
place the record specifier anywhere in the control-information list.

An alternative way for including the record specifier is:

un'rn

where:

un

rn

is a positive integer constant, variable, or array
element that represents the logical unit number of the
device to or from which the data transfer is being
made. When you use. this form for specifying the
logical unit number, you cannot use the UNIT= keyword.

is an apostrophe delimiting the logical unit number
from the record number.

is a positive integer constant, variable, or array
element that represents the record number.

When you use the alternative form for specifying the record number,
you cannot use the keyword REC=.

10.4.5 Format References in Data Transfer Statements

All formatted data transfer statements must contain a format specifier
in the control-information list. The general form of the format
specifier is:

FMT=f

or

NML= a NAMELIST name

where:

FMT=

NML=

f

is the keyword used in the keyword form of the
specifier. Using the keyword form of the
specifier makes it positionally independent
control-information list.

format
format

in the

is the keyword that can be used instead of FMT= for
NAMELIST formatting. Either FMT= or NML= can be used
for NAMELIST formatting.

is a format identifier. Depending on the type of
formatting chosen, f can be one of the following:

1. A statement number

2. A numeric array name

3. A character expression

4. An integer, real, or logical variable

5. An asterisk

6. A NAMELIST name

10-14 February 1987

DATA TRANSFER STATEMENTS

If you do not use the keyword form of the format specifier, you
place the format specifier as the second item of
control-information list (immediately following the logical
number specifier) (see Section 10.4.2).

must
the

unit

Sections 10.4.5.1 through 10.4.5.3 describe all forms of the format
specifier.

1~.4.5.1 FORMAT-Statement Formatting - The FORMAT-statement format
specifier has the following form:

FMT=f

where:

FMT=

f

is the optional keyword in the format specifier.

is one of the following:

1. The statement number of a FORMAT statement
appearing in the same program unit as the data
transfer statement

2. The name of a numeric array

3. A character expression

4. An integer, real, or logical variable that has been
assigned a FORMAT statement number with an ASSIGN
statement (see Section 8.3)

(See Section 12.1 for more
FORMAT-statement formatting.) bold)

information on

The following examples show all forms of the FORMAT-statement format
specifier. In the first example, the format specifier (FMT=101)
references the FORMAT statement 101 in the same program unit.

PROGRAM TEST
I=67
P=90.8
WRITE (UNIT=22,FMT=101) I,P

101 FORMAT (lX,'FIRST VALUE IS: ',I,' SECOND VALUE IS: ',F)
END

10-15 February 1987

DATA TRANSFER STATEMENTS

In the second example, the same format list used in the first example
is stored in an 10-element array. Note that the word "FORMAT" is not
included in the array.

PROGRAM TESTB
DIMENSION MYARAY(10)

MYARAY (1) =' (IX, , , ,
MYARAY(2)='FIRST '
MYARAY(3)=' VALU'
MYARAY(4)='E IS:'
MYARAY (5) =' ", I, ,
MYARAY(6)='" SEC'
MYARAY(7)='OND V'
MYARAY(8)='ALUE '
MYARAY (9) = , IS: '"
MY A RAY (10) =' , F) I

1==67
P=90.8

WRITE (UNIT=22,FMT=MYARAY)I,P
END

In the third example, the same format list used in the first two
examples is stored in a character expression.

PROGRAM TESTC
INTEGER I
REAL P
CHARACTER WORDl*5,WORD2*6

1=67
P=90.8
WORDl=' FIRST'
WORD2='SECOND'
WRITE(UNIT=22,FMT=' (IX," '//WORDI//' VALUE IS: ",I," '//
1 WORD2//' VALUE IS: ",F) ') I,P
END

In the fourth example, the format specifier (FMT=IFORMT) references a
variable that has been assigned a statement number.

PROGRAM TESTD
ASSIGN 101 TO IFORMT
1=67
P=90.S"
WRITE (UNIT=22,FMT=IFORMT) I,P

101 FORMAT (lX,'FIRST VALUE IS: ',I, 'SECOND VALUE IS: ',F)
END

For more information on FORMAT-statement formatting, see Section 12.1.

10.4.5.2 List-Directed Formatting - In list-directed formatting, the
variables in the I/O list of the data transfer statement dictate the
formatting of the data during the transfer.

The form of the list-directed format specifier is:

FMT=*

10-16 February 1987

where:

FMT=

*

DATA TRANSFER STATEMENTS

is the optional keyword part of the format specifier.
Including this keyword in the format specification
makes the specification positionally independent in the
control-information list. If you omit the FMT=
keyword, the format specifier must be the second
specifier (the unit specifier must be first).

is an asterisk that indicates that the formatting is
list-directed.

In the following example, the variables I and P are formatted by
list-directed formatting.

PROGRAM TESTLD
I=67
P=90.8
WRITE (UNIT=22,FMT=*) I,P
END

List-directed formatting is further described in Section 12.5.

10.4.5.3 NAMELIST-Statement Formatting - If the formatting is
NAMELIST, the format specifier in the control-information list
contains a reference to a NAMELIST name defined in a NAMELIST
statement in the same program unit. Since the NAMELIST name
definition contains an I/O list, a data transfer statement that
contains a NAMELIST name in the format specifier cannot also contain
an I/O list.

The form of the NAMELIST format specifier is:

FMT=name

or

NML=name

where:

FMT=

NML=

name

is the optional keyword part of the format specIfier.
Including the keyword in the format specification makes
it positionally independent in the control-information
list. If you do not include the keyword part of the
format specifier, you must place the format specifier
second (after the logical unit number specifier) in the
control-information list.

is an alternative keyword that can be used in place of
FMT.

is the NAMELIST name. The NAMELIST name is defined in
a NAMELIST statement in the same program unit.

10-17 February 1987

DATA TRANSFER STATEMENTS

In the following example, the data transfer statement uses a NAMELIST
name in its format reference:

PROGRAM TESTNL
NAMELIST/MYIOLT/I,P
READ (UNIT=5,NML=MYIOLT)
WRITE (UNIT=5,FMT=MYIOLT)
END

The execution of this sample program is as follows:

~~XECUTE TEST. FOR
LINK: Loading
[LNKXCT TESTNL execution]
$MYIOLT I=675,P=34.71$

$MYIOLT
1= 675, P= 34.71000
$END

CPU time 0.2 Elapsed time 32.0

For further information on the NAMELIST statement, see Section 12.7.

1~.4.6 Optional End-of-File Transfer of Control (END=)

The optional end-of-file transfer specifier (END=) specifies a
statement number to which control passes if this statement attempts to
read past the last data record of a file.

If you include an ERR= specifier (Section 1~.4~7) and no END=
specifier, control passes to the statement indicated in the ERR=
specifier whenever an end-of-file condition occurs. Note that an END=
specifier on any output statement and on an input statement of a
direct-access file is ignored.

If no END= specifier, IOSTAT= specifier, or ERR= specifier is included
in the data transfer statement, and an end-of-file condition is
encountered, an error message is "displayed on the controlling
terminal, and program execution is terminated.

The form of the END specifier is:

END=s

where:

END=

s

is the keyword part of the END= specifier.
portion of the END= specifier is required.

The END=

is the statement number of an executable statement in
the current program unit.

In the following example, the end-of-file specifier causes a transfer
of control to statement 5~ after the data transfer statement
encounters an end-of-file on unit 22.

10-18 February 1987

DATA TRANSFER STATEMENTS

PROGRAM TESTEN
READ (UNIT=22,FMT=30,END=50) A,B,C

30 FORMAT (F/F/F)
GO TO 100

50 WRITE (UNIT=5,FMT=75)
75 FORMAT (lX,'END-OF-FILE HAS BEEN ENCOUNTERED')
100 WRITE (UNIT=5,FMT=105)
105 FORMAT (lX,'EXECUTION HAS ENDED')

END

The following shows the sample program being executed and the
end-of-file branch being taken. In this example, the READ statement
reads from the default filename, FOR22.DAT. To demonstrate the
end-of-file branch, FOR22.DAT is an empty file. Thus, when the READ
statement attempts to read records from FOR22.DAT, an immediate
end-of-file condition is detected.

EXECUTE TEST. FOR
FORTRAN:TESTEN
TESTEN
LINK: Loading
[LNKXCT TESTEN execution]

END-OF-FILE HAS BEEN ENCOUNTERED
EXECUTION HAS ENDED
CPU time 0.2 Elapsed time 0.5

I When sequentially reading records from an RMS indexed file, the
I end-of-file branch, if specified, will be taken if the statement
I· attempts to read past the last data record of the current index.

10.4.7 Optional Data Transfer Error Control (ERR=)

The optional error specifier (ERR=) enables you to specify a statement
to which control passes if an error occurs during the data transfer.
If an error occurs other than for end-of-file, the file is positioned
after the record containing the error.

NOTE

If the program attempts to read from the same unit
after an ERR= branch occurs, the record following the
record containing the error will be read. To read a
record containing the error, the program must execute
either a REREAD statement (Section 10.7) or a
BACKSPACE (Section 11.8.4) followed by a READ
statement.

If no ERR= specifier or IOSTAT= specifier is present and an error
occurs during the data transfer, the program is aborted.

The form of the error specifier is:

ERR=s

where:

ERR= is the keyword portion of the error specifier.

s is the statement number of an executable statement in
the same program unit.

FORTRAN-10/20 VII 10-19 February 1987

DATA TRANSFER STATEMENTS

The following example shows the error specifier being used to pass
control to the statement at line 85 if an error occurs during the data
transfer.

PROGRAM TESTEN
READ (UNIT=22,FMT=30,END=50,ERR=85) A,B,C

30 FORMAT (F/F/F)
GO TO 100

50 WRITE (UNIT=5,FMT=75)
75 FORMAT (lX,'END-OF-FILE HAS BEEN ENCOUNTERED')

GO TO 100
85 WRITE (UNIT=5,FMT=86)
86 FORMAT (lX,'THE TRANSFER ENCOUNTERED AN ERROR')
100 WRITE (~,105)
105 FORMAT (' EXECUTION HAS ENDED')

END

TYPE FOR22.DAT
100.
200.
AAAA BBBB CCCC DDDD

EXECUTE TESTEN.FOR
FORTRAN: TESTEN
TESTEN
LINK: Loading
[LNKXCT TESTEN execution]

THE TRANSFER ENCOUNTERED AN ERROR
EXECUTION HAS ENDED
CPU time 0.2 Elapsed time 2.8

In this example, the error branch is taken when the input routine
detects a nonnumeric data item while attempting to read a
floating-point number into variable C. If the file FOR22.DAT contains
more than three records, the next READ accesses record 4 in the file.

10.4.8 Optional Error Variable For Error Reporting (IOSTAT=)

The optional I/O status specifier enables you to designate an integer
variable which receives a value indicating the success or failure of
the data transfer.

When the data transfer statement is successfully executed, the
variable is assigned a value of zero. If an error occurs during the
data transfer, the variable is assigned a positive value indicating
which error occured (see Appendix D). In this case, if there is no
ERR= specifier, the program proceeds to the statement after the data
transfer statement.

If an end-of-file occurs during the data transfer, the variable is set
to -1. In this case, if there is no END= or ERR= specifier, the
program proceeds to the statement after the data transfer statement.

The form of the error variable specifier is:

IOSTAT=ios

where:

ios is an integer variable that is the
specifier.

10-20

I/O status

February 1987

DATA TRANSFER STATEMENTS

The following example shows the I/O status specifier being used to
report the number of the error on default unit 5 if the error branch
is taken.

PROGRAM TESTEN
10 READ (UNIT=22,FMT=30,END=50,ERR=85,IOSTAT=J)A,B,C
30 FORMAT (F4.1/F4.1/F4.1)

WRITE (UNIT=5,FMT=40)A,B,C
40 FORMAT (lX,'THE VALUES ARE: ',3F6.1)

GO TO 100
50 WRITE (UNIT=5,FMT=75)
75 FORMAT (lX,'END-OF-FILE HAS BEEN ENCOUNTERED')

GO TO 100
85 WRITE (UNIT=5,FMT=86)J
86 FORMAT (lX,'THE TRANSFER ENCOUNTERED AN ERROR; STATUS: ',I5)

IF(J.GT.0) GO TO 10
100 WRITE (5,105)
105 FORMAT (' EXECUTION HAS ENDED')

END

TYPE FOR22.DAT
100.
200.
AAAA BBBB CCCC DDDD
80.
90.
95.

EXECUTE TESTEN.FOR
FORTRAN: TESTEN
TESTEN
LINK: Loading
[LNKXCT TESTEN execution]
THE TRANSFER ENCOUNTERED AN ERROR; STATUS: 307
THE VALUES ARE: 80.0 90.0 95.0
EXECUTION HAS ENDED

CPU time 0.2 Elapsed time 1.5

In this example, the IOSTAT variable J is set when the first READ
detects a nonnumeric data item while trying to input the data for
variable C. In this case, the value of IOSTAT represents the
processor specific error number (the second value listed in the FOROTS
error messages in Section D.l), and indicates that an illegal
character has been detected in the data. After the error status has
been printed, the second READ successfully executes using records 4,
5, and 6 from the file.

10.4.9 Key-Field-Value Specifier (TOPS-20 RMS)

The key-field-value specifier is used to specify the key field value
of a record to be accessed in an indexed file. Indexed files are
composed of records that have one or more fields in common; that is,
the byte offset, type and length of the field(s) are the same in each
record in any given indexed file.

A key-field-value specifier has two components:

• An expression, which specifies the key field value to be used
in locating the record to be transferred

• A match criterion, which specifies the selection conditions

FORTRAN-10/20 VII 10-21 February 1987

DATA TRANSFER STATEMENTS

A key-field-value specifier has one of the following forms:

KEY=val
KEYEQ=val
KEYGE=val
KEYGT=val

where:
val is a character expression or an integer expression.

Character expressions must be used with character key
fields, and integer expressions must be used with
integer key fields.

An integer expression in a key-field-value specifier cannot contain
real or complex values.

The match criterion specifies which key values in the record can match
the expression. There are three possible criteria:

• Equal - the key field value must be equal to the expression
specified.

• Greater - the key field value must be greater than the
expression specified.

• Greater than or equal - the key field value must be greater
than or equal to the expression specified.

The following parameters are used to establish the desired match
criterion:

KEY=val
KEYEQ=val
KEYGT=val
KEYGE=val

specifies an equal match
specifies an equal match
specifies a greater than match
specifies a greater than or equal match

For character expressions, the comparison is made according to the
ASCII collating sequence. For integer expressions, the comparison is
made according to the signed integer value.

For character keys, either generic match or exact match can be used.
A generic match compares only a specified number of leading characters
in the key. The length of the search key determines how many
characters are compared.

For example, if the expression is 'ABCD' and the key field is 10
characters long, then an equal match is obtained for the first record
containing 'ABCD' as the first 4 bytes of the key field. The
remaining six characters are arbitrary.

An approximate-generic match occurs when approximate match (KEYGT or
KEYGE) is selected in addition to generic match. In that case, only
the leftmost characters are used for comparison. For example, if the
expression is 'ABCD', the key field is five characters long, and a
greater-than match is selected, then the value 'ABCDA' does not match;
'ABCEx' does match.

FORTRAN-10/20 VII 10-22 February 1987

DATA TRANSFER STATEMENTS

10.4.9.1 Key Attributes - By default, FOROTS creates new indexed
files with the "No duplicate" and "No change" attributes set for the
primary index. Secondary indexes default to the duplicates and
allowed changes. Thus, new records containing a primary key that,
when written, produces a duplicate primary key in the index, cause an
error message or the ERR= branch to be taken. Records updated with a
REWRITE statement that results in a revised primary key, also produce
an error.

The default "No duplicate" attribute for primary key
only in a USEROPEN routine (see Section 11.3.39).
primary keys cannot be changed.

10.4.10 Key-of-Reference Specifier

can be changed
RMS requires that

The key-of-reference specifier may optionally be included with a
key-field-value specifier; it is used to specify the key field index
that is to be searched for the specified key field value.

The form of the key-of-reference specifier is:

KEYI·D=kn

where:

kn is an integer expression, called the key-of-reference
number, which designates the key field index to be searched.

The key-of-reference number is an integer value in the range zero to
the maximum key number defined for the file. A value of zero
specifies the primary key, a value of one specifies the first
alternate key, and so forth.

If no key-of-reference number is given, it defaults to the last
specification given in a keyed I/O statement for that logical unit, or
the primary key-of-reference, if never set.

10.4.11 Data Transfer Statement Input/Output Lists

The I/O list in an input or output statement contains the names of
variables, arrays, array elements, or character substrings. The I/O
list in an output statement can also contain expressions, function
references, or constants.

An I/O list has the following form:

e[,e] •••

where:

e is a simple input or output item (see Section 10.4.11.1) or
an implied DO list (see Section 10.4.11.2).

The I/O statement assigns values to, or transfers values from, the
list elements in the order in which they appear (from left to right).

FORTRAN-10/20 VII 10-23 February 1987

DATA TRANSFER STATEMENTS

10.4.11.1 Simple List Elements - A simple input list item can be one
of the following:

1. A variable name

2. An array element name

3. A character substring name

4. An array name

For example:

READ (5,10) J, K (3) , CH (1 : 3)

A simple output list item can be one of the above, or it can be one of
the following:

1. A constant

2. A function reference

3. An expression

For example:

WRITE (5,10) J,K(3) ,(L+4)/2,CH(1:3)

An input list item cannot be an expression. However, it can contain
expressions as subscripts or substring bounds.

I/O list items can be of the following types:

1. Integer

2. Real

3. Double-precision

4. Complex

5. Log ical

6. Character

7. Octal

8. Double Octal

9. Hollerith

10-24 February 1987

DATA TRANSFER STATEMENTS

When you use an unsubscripted array name in an I/O list, an input
statement reads enough data to fill every element of the array; an
output statement writes all the values in the array. Data transfer
begins with the initial element of the array and proceeds in the order
of subscript progression, with the leftmost subscript varying most
rapidly from lower to upper bound. For example, the following defines
a two-dimensional array:

DIMENSION ARRAY(3,3)

If the name ARRAY with no subscripts appears in a READ statement, that
statement assigns values from the input record(s) to ARRAY(l,l),
ARRAY(2,1), ARRAY(3,1), ARRAY(1,2), and so on through ARRAY(3,3).

In an input statement, variables in the I/O list can be used in array
subscripts later in the list, for example:

1250
READ (1,1250) J,K,ARRAY(J,K)
FORMAT (Il,lX,Il,lX,F6.2)

The input record contains the following values:

1,3,721.73

When the READ statement is executed, the first input value is assigned
to J and the second to K, thereby establishing the actual subscript
values for ARRAY(J,K). Then the value 721.73 is assigned to
ARRAY(1,3) • Variables that are to be used as subscripts in this way
must appear before (to the left of) their use as the array subscripts
in the I/O list.

10.4.11.2 Implied DO Lists - An implied DO list is an I/O list
element that functions as though it were part of an I/O statement
within a DO loop. Implied DO lists can be used to:

1. Specify iteration of part of an I/O list

2. Transfer part of an array

3. Transfer array elements in a sequence different from the
order of subscript progression

As in explicit DO loops, zero-trip implied DO loops are possible (see
Sect jon 9.3).

An implied DO list has the form:

(dlist,i=el,e2[,e3])

where:

dlist

i

el,e2,e3

is an I/O list. Dlist can also contain other
implied DO lists.

is the index control variable that can represent a
subscript appearing in a preceding subscript list.

are the indexing parameters that specify,
respectively, the initial, terminal, and increment
values that control the range of i. If e3 is
omitted (with its preceding comma), a value of 1
is assumed.

10-25 February 1987

DATA TRANSFER STATEMENTS

The variable i and the parameters el, e2, and e3 have the same forms
and the same functions that they have in the DO statement (see Section
9.3). The list immediately preceding the DO loop control variable is
the range of the implied DO loop. Elements in that list can reference
the index, but they must not alter it. Some examples are:

WRITE (3,200) (A,B,C, 1=1,3)

The statement in this example functions as though you had written:

WRITE (3,200) A,B,C,A,B,C,A,B,C

The following two statements are the same:

WR I T E (3, 2 00) (X (I) , I = 1, 3 }

WR I T E (3 , 20 0) X (1) , X (2) , X (3)

Another example is:

WR I T E (6) (I , (J , P (I) , Q (I , J) , J = I , L) , I = I , M)

The I/O list in this example consists of an implied DO list containing
another implied DO list nested with it. The implied DO lists together
write a total of (1+3*L) *M fields, varying values of J for each value
of I.

In a series of nested implied DO lists, the parentheses indicate the
nesting (see Section 9.3.4). Execution of the innermost list is
repeated most often. For example:

WRITE (6,150) «FORM(K,L), L=1,10}, K=1,10,2}
150 FORMAT (F10.2)

Because the inner DO loop is executed 10 times for each iteration of
the outer loop, the second subscript, L, advances from 1 through 10
for each increment of the first subscript. This is the reverse of the
order of subscript progression. In addition, K is incremented by 2,
so only the odd-numbered rows of the array are output.

The entire list of an implied DO list is transmitted before the
control variable is incremented, for example:

READ (5 , 9 99) (P (I), (Q (I , J), J = 1 , 10), I = 1 , 5 }

In this example, P(l), Q(1,1}, Q(1,2} , ••• ,Q(1,10) are read before I is
incremented to 2.

When processing multidimensional arrays, you can use a combination of
fixed subscripts and subscripts that vary according to an implied DO
list, for example:

READ (3,5555) (BOX(1,J), J=1,10)

This statement assigns input values to BOX(l,l) through BOX(1,10) and
then terminates without affecting any other element of the array.

The value of the control variable can also be output directly. For
example:

WR I T E (6, 1111) (I, 1=1, 20)

This statement simply outputs the integers 1 through 20.

10-26 February 1987

DATA TRANSFER STATEMENTS

1~.5 READ STATEMENT

READ
Statement

The READ statement transfers data from a file into memory. There are
two categories of READ statements: formatted (see Section 1~.5.l) and
unformatted (see Section 1~.5.2). An indexed READ statement (see
Section 1~.5.3) applies only to RMS indexed files, and can be either
formatted or unformatted.

For RMS relative files that are accessed sequentially, RMS reads the
next existing record, skipping any deleted or empty record cells.
Relative files accessed randomly return a "?Record not found" error
(or take the ERR= branch) for deleted or non-existent records.

Table 1~-4 summarizes the various forms of the READ statement.

FORTRAN-10/20 VII 10-27 February 1987

DATA TRANSFER STATEMENTS

Table 10-4 Summary of READ Statement Forms

Data Access Statement Construct

Sequential Formatted
(FORMAT Statement)

Sequential Formatted
(List Directed)

Sequential Formatted
(NAMELIST
Statement)

Sequential Formatted
(Default Unit)

Sequential
Unformatted

Direct Formatted

Direct Unformatted

READ(UNIT=un,FMT=f[,END=s][,ERR=s][,IOST A T=ios]) [iolist]
READ (un,FMT=f[,END=s)[,ERR=s)[,IOSTA T=ios]) [iolist]
READ (un, f[,END=s][,ERR=s][,IOSTAT=ios])[iolist]

READ(UNIT=un,FMT=*[,END=s][,ERR=s][,IOSTAT=ios]) [iolist]
READ(un,FMT=*[,END=s][,ERR=s)[,IOST A T=ios])[iolist]
READ(un, *[,END=s][,ERR=s][,IOSTAT=ios]) [iolist]

READ(UNIT=un,FMT=name[,END=s][,ERR=s][,IOSTAT=ios])
READ(UNIT=un,NML=name[,END=s][,ERR=s][,IOSTAT=ios])
READ(un,FMT=name[,END=s][,ERR=s][,IOSTAT=ios))
READ(un,NML=name[,END=s][,ERR=s][,IOSTAT=ios])
READ(un, namef,END=s][,ERR=s][,IOSTAT=ios])

READ f[,iolist]
READ *[,iolist]
READ (UNIT=*,FMT=f[,END=s][,ERR=s][,IOSTAT=ios]) [iolist]
READ (UNIT=*,FMT=*[,END=s][,ERR=s][,IOSTAT=ios])[iolist]

READ (UNIT=un[,END=s] [,ERR=s] [,IOSTAT=ios]) [iolist]
READ (un[,END=s)[,ERR=s){,IOSTA T=ios])[iolist]

READ(UNIT=un,FMT=f,REC=rn[,ERR=s][,IOSTAT=ios]) [iolist]
READ (un,FMT=f,REC=rn[,ERR=s)[,IOST AT=ios]) [iolist]
READ (un, f,REC=rn[,ERR=s)[,IOST AT=ios]) [iolist]
READ(un'rn,FMT=f [,ERR=s][,IOSTAT=ios])[iolist]
READ(un'rn, f [,ERR=sH,IOSTAT=ios])[iolist]

READ(UNIT=un,REC=rn[,ERR=s] [,IOSTA T=ios]) [iolist]
READ (un,REC=rn[,ERR=s][,IOSTAT=ios])[iolist]
READ(un'rn [,ERR=s][,IOSTAT=ios])[iolist]

Indexed Formatted READ(UNIT=un,FMT=f,key=val[,KEYID=kn][,ERR=s)[,IOST AT=ios])[iolist]
READ (un, FMT=f,key=val[,KEYID=kn][,ERR=s H,IOST A T=ios]) [iolist]
READ(un, f,key=val[,KEYID=kn][,ERR=s] [,IOSTAT=ios]) [iolist]

Indexed Unformatted

Key:

READ (UNIT=un,key=val[,KEYID=kn H ,ERR=s][,IOST A T=ios]) [iolist]
READ(un,key=val[,KEYID=kn][,ERR=s][,IOST AT=ios])[iolist]

UNIT=un is a FORTRAN logical unit number (Section 10.4.3).

UNIT=* is a default unit specification (Section 10.4.3).

REC=rn is a direct-access record number (Section 10.4.4).

un'rn is an alternate way of specifying Logical Unit Number and record number for a direct-access
transfer (Section 10.4.4).

FMT=f is FORMAT-statement formatting; iolist is optional (Section 10.4.5.1).

FMT=* is list-directed formatting; iolist is optional (Section 10.4.5.2).

FMT=name is NAME LIST -statement formatting; iolist is prohibited (Section 10.4.5.3).

NML=name is the alternative form of the NAMELIST-statement format specifier (Section 10.4.5.3).

END=s is an optional end-of-file transfer specifier (Section 10.4.6).

ERR=s is an optional error transfer specifier (Section 10.4.7).

10STAT=ios is an optional I/O status specifier (Section 10.4.8).

key=val is an optional key-field-value specifier (Section 10.4.9).

KEYID=kn is an optional key-of-reference specifier (Section 10.4.10).

iolist is a data transfer I/O list (Section 10.4.11).

FORTRAN-10/20 VII 10-28 February 1987

DATA TRANSFER STATEMENTS

l~.S.l Formatted READ Transfers

A formatted READ transfer uses a READ statement that specifies that
the transferred data is edited during the transfer, such that the
external and internal representation of the data are different. The
three types of formatted READ statements are: FORMAT-statement,
list-directed, and NAMELIST-statement.

There are two types of access to the device from which the READ
statement transfers data. They are sequential and direct. If you
want to perform a direct-access formatted READ from a device, you must
use FORMAT-statement formatting. List-directed and NAMELIST
formatting can only be used with sequential-access formatted READ
statements.

l~.S.l.l Sequential FORMAT-Statement READ - This section describes
the sequential-access (FORMAT-statement) formatted READ statement.

This statement has the following forms:

READ (UNIT=un,FMT=f[,END=S] [,ERR=s] [,IOSTAT=ios]) [iolist]

READ (un,FMT=f[,END=s] [,ERR=s] [,IOSTAT=ios]) [iolist]

READ (un,f[,END=s] [,ERR=s] [,IOSTAT=ios]) [iolist]

If an I/O list is included in these forms, it specifies that
transferred from logical unit un, formatted according
specification given by f, and transferred into the elements
specified I/O list.

data
to
of

is
the
the

If an I/O list is not included, the input record is skipped. (If the
FORMAT statement specifies slash editing, more than one record can be
skipped. H or apostrophe editing can cause data transfers to occur to
the FORMAT statement itself. See Section 12.4.)

The following example contains two READ statements:
contains an I/O list; the second does not:

READ (22,5) A,Z,J
5 FORMAT (2Fl~.2,I5)

READ (22,5)
END

the first

In this example, the first READ statement reads one record from
logical unit 22, formats the data according to the FORMAT statement,
and assigns the values to the variables A, Z, and J. The second READ
statement skips one input record on logical unit 22.

The default unit forms of this READ statement operates in the same way
as the first forms, except that data transfers reference the card
reader, which is the default logical unit for these forms.

The default unit forms of this statement are:

READ f[,iolist]

READ (UNIT=* ,FMT=f[,END=s] [,ERR=S] [,IOSTAT=ios]) [iolist]

1~-29 February 1987

DATA TRANSFER STATEMENTS

10.5.1.2 Direct-Access FORMAT-Statement READ - This section describes
the direct-access (FORMAT-statement) formatted READ statement.

The forms of this statement are:

READ (UNIT=un,FMT=f,REC=rn[,ERR=s] [,IOSTAT=ios]) [iolist]

READ (un,FMT=f,REC=rn[,ERR=s] [,IOSTAT=ios]) [iolist]

READ (un, f , REC= rn [, ERR=S] [, IOSTAT= ios]) [iol i st]

If an I/O list is included in these forms, the data specified by
record rn is transferred, according to the format specifications given
in f, into the elements of the I/O list. These forms can be used only
with disk files that have been opened by an OPEN statement that
specifies ACCESS='DIRECT', ACCESS='RANDOM ' , or ACCESS='RANDIN ' (see
Sec t ion 11. 3 • 1) •

If the record specified by rn has not been written, an error results
(~xcept for IMAGE mode files).

The following example shows this form of the READ statement.

OPEN(22,RECORDSIZE=25,ACCESS='DIRECT')
READ (22,5,REC=10)A,Z,J

5 FORMAT (2F10.2,I5)
END

In this example, the READ statement reads record 10 from logical unit
22, formats the data according to the FORMAT statement, and assigns
the values to variables A, Z, and J.

The alternative forms of this READ statement operate in the same way
as the first forms. The only difference between the .forms is the way
in which the unit and record specifications are expressed.

The alternative forms for this statement are:

READ (un' rn,FMT=f[,ERR=s] [,IOSTAT=ios]) [iolist]

READ (un' rn,f[,ERR=S] [,IOSTAT=ios]) [iolist]

In the alternative forms, the unit and record references do not
contain the keywords UNIT= and REC=. Instead the unit number is
specified first; a single quote C I

) is specified next; followed by a
record number, a comma, and finally the format reference.

10.5.1.3 Sequential List-Directed READ - This section describes the
sequential-access (list-directed) formatted READ statement.

This statement has the following forms:

READ (UNIT=un,FMT=*[,END=s] [,ERR=s] [,IOSTAT=ios]) [iolist]

READ (un,FMT=*[,END=S] [,ERR=s] [,IOSTAT=ios]) [iolist]

READ (un,* [,END=s] [,ERR=s] [,IOSTAT=ios]) [iolist]

With these forms, the data is transferred from logical device un and
is formatted according to the data types of the elements of the I/O
list. If the I/O list is not included, a record is skipped.

10-30 February 1987

DATA TRANSFER STATEMENTS

The default unit forms of this statement are:

READ * [, iol ist]

READ (UNIT=* ,FMT=* [,END=s] [,ERR=s] [,IOSTAT=ios]) [iolist]

With these forms, the data is transferred from the card reader (the
default device), and is formatted according to the data types of the
elements in the specified I/O list.

The following example shows this form of the READ statement:

CHARACTER*14 C
DOUBLE PRECISION T
COMPLEX D,E
LOGICAL L,M
READ (1,*) I,R,D,E,L,M,J,R,S,T,C,A,B
END

The external record to be read contains the following:

4 6.3 (3.4,4.2), (3,2) , T,F,,3*14.6 ,'ABC,DEF/GHI' 'JR'/

Upon execution of the program unit, the following values are assigned
to the I/O list elements:

I 4
R 6.3
D (3.4,4.2)
E (3.0,2.0)
L .TRUE.
M .FALSE.
R 14
S 14.6
T 14.600
C ABC,DEF/GHI'JR

A, B, and J are unchanged.

10.5.1.4 Sequential NAMELIST-Statement READ - This section describes
the sequential-access (NAMELIST-statement) formatted READ statement.

This statement has the following forms:

READ (UNIT=un,FMT=name[,END=s] [,ERR=s] [,IOSTAT=ios])

READ (UNIT=un,NML=name[,END=s] [,ERR=s] [,IOSTAT=ios])

READ (un, FMT=name [, END=s] [, ERR=s] [, IOSTAT= ios])

READ (un,NML=name[,END=s] [,ERR=S] [,IOSTAT=ios])

READ (un,name[,END=s] [,ERR=s] [,IOSTAT=ios])

With these forms, the data is transferred from the specified unit into
the locations specified by the NAMELIST list. The formatting is
controlled by the implicit data types of the NAMELIST list items. We
suggest that you use the NAMELIST form of the READ statement to
transfer data from files created by the NAMELIST form of the WRITE
statement (Section 10.6.1.4).

10-31 February 1987

DATA TRANSFER STATEMENTS

The following example shows this form of the READ statement:

NAMELIST /DATA/A,Z,J
READ (22, DATA)
END

In this example, the NAMELIST statement associates the NAMELIST name
DATA with a list of three items. The corresponding READ statement
reads input data and assigns values. to the specified namelist items.

10.5.2 Unformatted READ Transfers

Unformatted READ transfers move data from a specified file to
locations in memory. Unlike formatted READ transfers, unformatted
transf~rs do not involve any editing of the data.

The two types of unformatted data transfers enable you to access a
specified file either sequentially or directly.

NOTE

The OPEN statement MODE specifier enables you to
specify in which form the unformatted data file exists
(see Section 11.3.24). If you execute an unformatted
READ statement without having first specified the MODE
in an OPEN statement, the data file is assumed to be
BINARY. (For additional information on unformatted
data file forms, see Section 11.2.)

10.5.2.1 Sequential Unformatted READ - This section describes the
sequential-access unformatted READ statement.

This statement has the following forms:

READ (UNIT=un[,END=s] [,ERR=s] [, IOSTAT=ios]) [iolist]

READ (un [, END=s] [,ERR=s] [,IOSTAT= ios]) [io list]

If the I/O list is present, the data is transferred as one logical
record from the specified logical unit. This type of read should only
be used to read files that have been created by unformatted WRITE
statements.

If you omit the I/O list portion of the statement, the statement skips
one logical record on input from the specified unit.

The following example shows this type of READ statement used both with
and without the I/O list:

READ (22)A,Z,J
READ (22)
END

In this example, the first READ statement reads one record from
logical unit 22 and assigns values to variables A, Z, and J. The
second READ statement skip one record from logical unit 22.

10-32 February 1987

DATA TRANSFER STATEMENTS

le.S.2.2 Direct-Access Unformatted READ - This section describes the
direct-access unformatted READ statement.

This statement has the following forms:

READ (UNIT=un,REC=rn[,ERR=s] [,IOSTAT=ios]) [io1ist]

READ (un,REC=rn[,ERR=s] [,IOSTAT=ios]) [io1ist]

If an I/O list is included in these forms, the data, in the form of
one logical record, is transferred from the specified unit into the
elements of the I/O list. Only files that have been output by an
unformatted WRITE statement should be transferred by this form of the
READ statement. In addition, for FORTRAN binary files, if the record
specified by rn has not been written, an error results.

These forms can be used only with disk files that have been opened by
an OPEN statement that specifies ACCESS=' DIRECT' , ACCESS='RANDOM', or
ACCESS='RANDIN' (see Section 11.3.1).

The alternative form of this READ statement functions the same as the
first forms. The only difference between the forms is in the way that
the unit and record are specified.

The alternative form of this statement is:

READ (un' rn[,ERR=s] [,IOSTAT=ios]) [io1ist]

In this form, the unit and record references do not contain the
keywords UNIT= and REC=. Instead the unit number is specified first;
a single quote (') is specified next; then the record number is
specified last.

The following example demonstrates the use of the unformatted READ
statement:

OPEN (22,ACCESS='DIRECT' ,RECORDSIZE=3)
READ (22,REC=le)A,Z,J
READ {22'12)B,X,K
END

In this example, the first READ statement reads record 1e from logical
unit 22 and assigns values to the variables A, Z, and J. The second
READ statement reads record 12 from logical unit 22 and assigns values
to the variables B, X, and K.

1e.S.3 Indexed READ Transfers (TOPS-2g)

RMS indexed files can be read either sequentially or randomly by
key-of-reference and key-fie1d-va1ue. The access mode is determined
by the READ statement, and can be switched from one mode to the other
in successive read statements.

Keyed or random READ statements from an indexed file require the
specification of a key relational value (match criterion), and
optionally, a key-of-reference. Keyed or random READ statements can
be formatted or unformatted.

FORTRAN-1e/2e V11 1e-33 February 1987

DATA TRANSFER STATEMENTS

le.S.3.l Sequential Indexed READ - Indexed files
sequentially on any index defined when the file
sequential indexed read does not require any new syntax
statement.

can be read
i s c rea ted • A

in the READ

Sequential reads retrieve successive records in an indexed file by
ascending key value for a specific key of reference. The key of
reference can be established by a prior keyed read (the key of
reference remains unchanged until the next keyed read changes it), or
defaults to the primary key of reference.

A sequential read on a key of reference returns end-of-file when no
records with a higher key value exist in that index.

le.S.3.2 Formatted Indexed READ - This
formatted indexed READ statement.

section describes the

This statement has the following forms:

READ (UNIT=un ,FMT=f, key=val [,KEYID=kn] [, ERR=S] [, IOSTAT=ios]) [iol ist]

READ (un, FMT=f, key=va 1 [, KEYID=kn] [, ERR=s] [, IOSTAT= ios]) [iol i st]

READ (un,f ,key=val [,KEYID=kn] [,ERR=s] [,IOSTAT=ios]) [iolist]

where key= can be either KEY=, KEYEQ=, KEYGT=, or KEYGE=.

The formatted indexed READ statement can
files. If the I/O list and format
additional records are to be read,
additional records sequentially using
value.

be used only on indexed
specifications specify that

the statement reads those
the current key-of-reference

If the KEYID= keyword is omitted, the key-of-reference remains
unchanged from the most recent specification. If the KEYID= keyword
is omitted from the first keyed read, the key-of-reference is the
primary key.

If the specified key value is shorter than the key field referred to,
the key value is matched against the leftmost characters of the
appropriate key field until a match is found; the record supplying the
match is then read.

An example of the use of the formatted indexed READ statement is:

READ (1 ,KAT(2S) ,KEY=' ABCD') A,B,C,D

In this example, the READ statement retrieves a record with a key
value of "ABCD' in the primary key, and then uses the format contained
in the array item KAT(2S) to read the first four fields from the
record into variables A,B,C, and D.

FORTRAN-10/20 VII 10-34 February 1987

DATA TRANSFER STATEMENTS

10.5.3.3 Unformatted Indexed READ - This section
unformatted indexed READ statement.

This statement has the following forms:

describes

READ (UNIT=un ,key=val [,KEYID=kn] [, ERR=s] [, IOSTAT=ios]) [iol ist]

READ (un,key=val[,KEYID=kn] [,ERR=s] [,IOSTAT=ios]) [iolist]

where key= can be either KEY=, KEYEQ=, KEYGT=, or KEYGE=.

the

The unformatted indexed READ statement can be used only on indexed
files. If the number of the I/O list elements is less than the number
of fields in the record being read, the unused fields in the record
are discarded.

If a specified key value is shorter than the key field referred to,
the key value is matched against the leftmost characters of the
appropriate key field until a match is found; the record supplying the
match is then read.

The following example demonstrates the use of the unformatted indexed
READ statement:

OPEN (UNIT=l,STATUS='OLD',
1 ACCESS=' KEYED' ,ORGANIZATION=' INDEXED'
2 FORM='UNFORMATTED' ,
3 KEY=(1:5,30:37,18:23»

READ (l,KEY='SMITH') ALPHA, BETA

In this example, the READ statement reads from the indexed file
connected to logical unit 1 and retrieves the record with the value
'SMITH' in the primary key field (bytes 1 to 5). The first two fields
of the record retrieved are placed in variables ALPHA and BETA,
respectively.

READ (l,KEYGE='XYZDEF' ,KEYID=2,ERR=99) IKEY

In this example, the READ statement retrieves the first record having
a value equal to or greater than 'XYZDEF' in the second alternate key
field (bytes 18 to 23). This first field of that record is placed in
the variable IKEY.

10.6 WRITE STATEMENT

WRITE
Statement

WRITE statements transfer data from memory to a file. The various
forms of the WRITE statement enable it to be used in sequential,
append, and direct-access transfer modes for formatted, unformatted,
list-directed, and NAMELIST-controlled data transfers.

WRITE statements cannot write to existing records in an indexed file.
For statements that can perform this function in indexed files, see
the REWRITE statement (Section 10.14).

Table 10-5 summarizes all forms of the WRITE statement.
FORTRAN-10/20 VII 10-35 February 1987

DATA TRANSFER STATEMENTS

Table 10-5 Summary of WRITE Statement Forms

Data Access Statement Construct

Sequential Formatted
(FORMAT Statement)

Sequential Formatted
(List Directed)

Sequential Formatted
(NAMELIST Statement)

Sequential Formatted
(Default Unit)

Sequential Unformatted

Direct Formatted

Direct Unformatted

Key:

WRITE(UNIT=un,FMT=f[,ERR=s] [,IOSTAT=ios])[iolist]
WRITE(un,FMT=f[,ERR=s][,IOSTAT=ios]) [iolist]
WRITE(un, f[,ERR=s][,IOSTAT=ios]) [iolist]

WRITE(UNIT=un,FMT=* [,ERR=s][,IOSTAT=ios]) [iolist]
WRITE(un,FMT=* [,ERR=s)[,IOST A T=ios])[iolist]
WRITE(un, *[,ERR=s][,IOSTAT=ios])[iolist]

WRITE(UNIT=un,FMT=name[,ERR=s][,IOSTAT=ios])
WRITE(UNIT=un,NML=name[,ERR=s][,IOSTAT=ios])
WRITE(un,FMT=name[,ERR=s][,IOSTAT=ios])
WRITE(un,NML=name[,ERR=s][,IOSTAT=ios])
WRITE(un, name[,ERR=s][,IOSTAT=ios])

WRITE f[,iolist]
WRITE *[,iolist]
WRITE(UNIT=*,FMT=f[,ERR=s][,IOSTAT=ios]) [iolist]
WRITE(UNIT=*,FMT=*[,ERR=s] [,IOSTAT=ios]) [iolist]

WRITE(UNIT=un[,ERR=s H,IOST A T=ios])[iolist]
WRITE(un[,ERR=sH,IOSTAT=ios]) [iolist]

WRITE(UNIT=un,FMT=f,REC=rn[,ERR=s] [,IOSTA T=ios D[iolist]
WRITE(un,FMT=f,REC=rn[,ERR=s][,IOSTA T=ios])[iolist]
WRITE(un, f,REC=rn[,ERR=s] [,IOSTAT=ios]) [iolist]
WRITE(un'rn,FMT=f [,ERR=s][,IOSTAT=ios])[iolist]
WRITE(un'rn, f [,ERR=s][,IOSTAT=ios])[iolist]

WRITE(UNIT=un,REC=rn[,ERR=s][,IOSTAT=ios]) [iolist]
WRITE(un,REC=rn[,ERR=s)[,IOSTA T=ios]) [iolist]
WRITE(un'rn [,ERR=s][,IOSTA T=ios])[iolist]

UNIT=un is a FORTRAN logical unit number (Section 10.4.3).

UNIT=* is a default unit specification (Section 10.4.3).

REC=rn is a direct-access record number (Section 10.4.4).

un'rn is an alternate way of specifying Logical Unit Number and record number for a direct-access
transfer (Section 10.4.4).

FMT=f is FORMAT-statement formatting; iolist is optional (Section 10.4.5.1).

FMT=* is list-directed formatting; iolist is optional (Section 10.4.5.2).

FMT=name is NAMELIST-statement formatting; iolist is prohibited (Section 10.4.5.3).

NML=name . is the alternative form of the NAMELIST -statement format specifier (Section 10.4.5.3).

ERR=s is an optional error transfer specifier (Section 10.4.7).

IOSTAT=ios is an optional I/O status specifier (Section 10.4.8).

iolist is a data transfer I/O list (Section 10.4.11).

10-36 February 1987

DATA TRANSFER STATEMENTS

1~.6.l Formatted WRITE Transfers

A formatted WRITE transfer uses a WRITE statement that specifies that
the transferred data is edited during the transfer, such that the
external and internal representations of the data are different. The
three types of formatted WRITE statements are: FORMAT-statement,
list-directed, and NAMELIST-statement.

There are two types of access to the device to which the WRITE
statement transfers data. They are sequential and direct. If you
want to perform a direct-access formatted WRITE to a device, you must
use FORMAT-statement formatting. List-directed and NAMELIST-statement
formatting can only be used for sequential-access formatted WRITE
statements.

1~.6.1.l Sequential FORMAT-Statement WRITE - This section describes
the sequential-access (FORMAT-statement) formatted WRITE statement.

This statement has the following forms:

WRITE (UNIT=un,FMT=f[,ERR=S] [,IOSTAT=ios]) [io1ist]

WRITE (un,FMT=f[,ERR=s] [,IOSTAT=ios]) [iolist]

WRITE (un, f [, ERR=S] [, IOSTAT= ios]) [iol i st]

If the I/O list is included in these forms, the data specified by the
elements of the I/O list are output to a file on logical unit un. The
output data is formatted in this file according to the FORMAT
specifications given in f.

A blank record is written if the I/O list is not specified, and one of
the following is true:

1. The FORMAT statement is empty.

2. No slash, H, or apostrophe editing descriptors occur alone.

3. No slash, H, or apostrophe editing descriptors precede the
first repeatable edit descriptors.

See Section 12.4.

The following example contains a sequential formatted WRITE that
contains an I/O list, and one that does not:

A=11.4
Z=13.9
J=5
WRITE (22,5)A,Z,J

5 FORMAT (lX,2F10.2,I5)
WRITE (22,15)

15 FORMAT (' PAGE NO. I')
END

The following is written to logical unit 22:

11.40
PAGE NO. 1

13.90 5

10-37 February 1987

DATA TRANSFER STATEMENTS

The default unit forms of this statement are:

WRITE f(,iolist]

WRITE (UNIT=*,FMT=f[,ERR=s) [,IOSTAT=ios) [iolist]

If an I/O list is included in these forms, the data, specified by the
elements within the I/O list, are transferred to the default device
(line printer). The transferred data are formatted according to the
FORMAT specification given by f.

The following example shows both forms of this WRITE transfer:

A=11.4
Z=13.9
J=5
WRITE S,A,Z,J

5 FORMAT (lX,2F10.2,I5)
WRITE 15

15 FORMAT (I PAGE NO. 11)
END

The following is written to the default device (line printer):

11.40
PAGE NO. 1

13.90 5

10.6.1.2 Direct-Access FORMAT-Statement WRITE - The direct-access
(FORMAT-statement) formatted WRITE statement is described in this
section.

This statement has the following forms:

WRITE(UNIT=un,FMT=f,REC=rn[,ERR=s) [,IOSTAT=ios]) [iolist)

WRITE(un,FMT=f,REC=rn[,ERR=s) [,IOSTAT=ios) [iolist]

WRITE(un,f,REC=rn[,ERR=s] [,IOSTAT=ios])[iolist)

If you include an I/O list in these forms, the data in the I/O list is
written starting at record rn to a file on logical unit un. The
formatting is controlled by the FORMAT spe6ifications given at f.

Only disk files that have been opened by an OPEN statement that
specifies ACCESS=IDIRECT I or ACCESS=IRANDOM I (see Section 11.3.1) can
be accessed by a WRITE statement of this form. This form is not
permitted for RMS indexed files.

If you omit the I/O list portion of this statement, at least one blank
record (specified by REC=rn) is written to logical unit un.

The following example shows a direct-access formatted WRITE statement
that contains an I/O list, and one that does not:

A=11.4
Z=13.9
J=5
OPEN(22,RECORDSIZE=25,ACCESS=IRANDOM I)
WRITE (22,5,REC=10)A,Z,J

5 FORMAT (2F10.2,I5)
WRITE (22,15,REC=11)

15 FORMAT (I PAGE NO. 11)
END

FORTRAN-10/20 VII 10-38 February 1987

DATA TRANSFER STATEMENTS

The following is written to logical unit 22:

11.40
PAGE NO. 1

13.90 5

The alternative forms of this WRITE statement operate the same way as
the first forms. The only difference between the forms is in the way
that the logical unit and the record number are expressed.

The alternative forms of this statement are:

WRITE (un' rn,FMT=f[,ERR=s] [,IOSTAT=ios]) [iolist]

WRITE (un'rn,f[,ERR=s] [,IOSTAT=ios]) [iolist]

In these forms, the unit and record references do not contain the
keywords UNIT= and REC=. Instead the unit number is specified first;
a single-quote (') is specified next, followed by a record number, a
comma, and finally the format reference.

10.6.1.3 Sequential List-Directed WRITE - This section describes the
sequential-access (list-directed) formatted WRITE statement.

This statement has the following forms:

WRITE (UN IT=un, FMT=* [, ERR=s] [, IOSTAT= ios]) [iol i st]

WRITE (un, FMT=* [, ERR=s] [, IOSTAT= ios]) [iol i st]

WRITE (un, * [, ERR=s] [, IOSTAT= ios]) [io 1 i st]

These forms of the WRITE statement specify that the data identified in
the I/O list is written to logical unit un. Because the transfer is
list-directed (FMT=*), the data is formatted according to the implicit
data types of the variables in the I/O list. If the I/O list is not
included, a blank record is written.

The default unit forms of this statement are:

WRITE * [, iol i st]

WRITE (UNIT=* ,FMT=* [,ERR=s] [, IOSTAT=ios]) [iolist]

The default unit forms function in the same way as the
except that the output is written to the default
printer) •

first forms,
device (line

The following example shows the list-directed WRITE statement:

DIMENSION A(4)
DATA A/4*3,4/
WRITE (1,*) 'ARRAY VALUES FOLLOW'
WR I TE (1 , *) A, 4
END

The following is written to logical unit 1:

ARRAY VALUES FOLLOW
4*3,400000, 4

10-39 February 1987

DATA TRANSFER STATEMENTS

10.6.1.4 Sequential NAMELIST-Statement WRITE - This section describes
the sequential-access (NAMELIST-statement) formatted WRITE statement.

This statement has the following forms:

WRITE (UNIT=un,FMT=name[,ERR=s] [,IOSTAT=ios])

WRITE (UNIT=un,NML=name[,ERR=s] [,IOSTAT=ios])

WRITE (un,FMT=name[,ERR=s] [,IOSTAT=ios])

WRITE (un, NML=name [, ERR=S] [, IOSTAT= ios])

WRITE (un,name[,ERR=s] [,IOSTAT=ios])

These forms of the WRITE statement transfer data defined in the
referenced NAMELIST statement (FMT=name or NML=name) to the file on
the logical unit specified by un.

The following example demonstrates the NAMELIST form of the WRITE
statement:

CHARACTER*19 NAME(2)
DATA NAME/2*' 1/
REAL PITCH, ROLL, YAW, POSIT(3)
LOGICAL DIAGNO
INTEGER ITERAT
NAMELIST /PARAM/ NAME, PITCH, ROLL, YAW, POSIT, DIAGNO, ITERAT
ACCEPT (FMT=PARAM)
WRITE (UNIT=l,FMT=PARAM)
END

The input contains the following:

b$PARAM NAME(2) (10:)='HEISENBERG ' ,
bPITCH=5.0, YAW=0.0, ROLL=5.0,
bDIAGNO=.TRUE.
bITERAT=10$END

The WRITE statement writes the following:

$PARAM
NAME= I , HEISENBERG ' , PITCH=
5.000000, ROLL= 5.000000,
DIAGNO= T, ITERAT= 10
$END

YAW= 0.0000000E+00, POSIT= 3*0.0000000E+00,

10.6.2 Unformatted WRITE Transfers

Unformatted WRITE transfers move data from memory to a file. Unlike
formatted WRITE transfers, unformatted WRITE transfers do not involve
any editing of the data.

The two types of unformatted data transfers enable you to write to a
file either sequentially or directly.

10-40 February 1987

DATA TRANSFER STATEMENTS

NOTE

The MODE specifier of the OPEN statement enables you
to specify the type of unformatted data file you want
to create (see Section 11.3.24). If you execute an
unformatted WRITE statement without having first
specified the MODE in an OPEN statement, the data file
is by default BINARY. For additional information on
unformatted data file forms, see Section 11.2.

10.6.2.1 Sequential Unformatted WRITE - This section describes the
sequential-access unformatted WRITE statement.

This statement has the following forms:

WRITE (UNIT=un[,ERR=s] [,IOSTAT=ios]) [iolist]

WRITE (un[,ERR=s][,IOSTAT=ios])[iolist]

If the I/O list is present in these forms, the data is written as one
logical record to the file contained on the specified logical unit un.

If you omit the I/O list in this statement, the statement writes one
blank logical record to the file contained on the specified logical
unit un.

The following example shows this form of the WRITE statement with the
I/O list and without the I/O list:

WRITE (22)A,Z,K
WRITE (22)
END

In this example, the first WRITE statement writes a record to the file
connected to logical unit 22 containing the values of the variables A,
Z, and K. The second WRITE statement writes one blank record to the
file connected to logical unit 22.

10.6.2.2 Direct-Access Unformatted WRITE - This section describes the
direct-access unformatted WRITE statement.

This statement has the following forms:

WRITE (UNIT=un,REC=rn[,ERR=s] [,IOSTAT=ios]) [iolist]

WRITE (un,REC=rn[,ERR=s] [,IOSTAT=ios]) [iolist]

These forms can be used only with non-indexed disk files which have
been opened by an OPEN statement that specifies ACCESS='DIRECT' or
ACCESS='RANDOM' (see Section 11.3.1). If an I/O list is included in
these forms, the data, in the form of one logical record, is
transferred from the memory to record rn of the file on the specified
logical unit.

If the I/O list is not specified, the statement outputs one logical
bl ank reco rd.

FORTRAN-10/20 VII 10-41 February 1987

DATA TRANSFER STATEMENTS

The following example shows this type of WRITE statement with an I/O
list and without an I/O list:

OPEN(22,ACCESS=' DIRECT' ,RECORDSIZE=3)
WRITE (22,REC=10)A,Z,K
WRITE (22,REC=12)

In this example, the first WRITE statement writes the values of the
variables A, Z, and K to record 10 on logical unit 22. The second
WRITE statement writes one logical blank record to record 12 on
logical unit 22.

The alternative form of this type of WRITE statement operates in the
same way as the first forms. The difference between the forms is in
the way that the unit and the record are specified.

The alternative form of this statement is:

WRITE (un' rn[,ERR=S] [,IOSTAT=ios]) [iolist]

In this f~rm, the unit and record references do not contain the
keywords UNIT= and REC=. Instead the unit number is specified first;
a single quote (') is specified next; then the record number is
specified last.

10.6.3 Writing to RMS Files (TOPS-20)

WRITE statements to RMS files can be either formatted or unformatted.

Records written to RMS files that have a RECORDSIZE value (see Section
11.3.33), cannot be larger than the size specified at file creation
time. Formatted records that are shorter are padded by FOROTS to
RECORDSIZE with the character specified in PADCHAR before being
written. Unformatted records are padded with nulls. Records that are
larger than the size specified at file creation are truncated with a
warning.

WRITE statements to indexed files are indistinguishable from normal
sequential WRITE statements. WRITE statements to indexed files must
not contain key-relational or key-of-reference data. RMS examines the
record being written and determines the position of the new record on
the basis of the record's primary key. New records cannot be larger
than the size specified at the file creation time; FOROTS pads shorter
formatted records to RECORDSIZE with the character specified in
PADCHAR (see Section 11.3.28).

An indexed WRITE statement writes a new record; the REWRITE statement
must be used to update an existing record. Each new record in an
indexed file must contain a complete primary key. Alternate keys can
be partially or completely absent. RMS does not make an entry for the
new record in the associated alternate indexes.

When performing a formatted WRITE to an indexed file that contains
integer key data types, the key is translated from internal binary
form to external character form. A subsequent attempt to read the
record using an integer key produces unpredictable results.

FORTRAN-10/20 VII 10-42 February 1987

DATA TRANSFER STATEMENTS

10.7 REREAD STATEMENT

REREAD
Statement

The REREAD statement causes the last record read from the last
sequential formatted READ or ACCEPT statement to again be accessed and
processed. You cannot use the REREAD feature until an input (READ)
transfer has been accomplished. You can use the REREAD statement only
for sequential-access formatted data transfers. The REREAD statement
can be used with both FORMAT-statement formatting and list-directed
formatting.

Once a record has been accessed by a formatted READ statement, the
record transferred can be reread as many times as desired. You can
use the same or a new format specification for each successive REREAD
statement.

Table 10-6 summarizes all the forms of the REREAD statement.

Table 10-6 Summary of REREAD Statement Forms

Data Access

Sequential Formatted
(FORMAT Statement)

Sequential Formatted
(List Directed)

Statement Construct

REREAD (FMT=f[,END=s] [,ERR=s][,IOST A T=ios])[iolist]
REREAD f[,iolist]

REREAD (FMT=*[,END=s][,ERR=s][,IOSTAT=ios])[iolist]
REREAD *[,ioIist]

--- ------------------------------- --------

Key:

FMT=f is FORMAT-statement formatting; iolist is optional (Section 10.4.5.1).

FMT=* is list-directed formatting; iolist is optional (Section 10.4.5.2).

END=s is an optional end-of-file transfer specifier (Section 10.4.6).

ERR=s is an optional error transfer specifier (Section 10.4.7).

IOSTAT=ios is an optional I/O status specifier (Section 10.4.8).

iolist is a data transfer I/O list (Section 10.4.11).

----------------------- ---

10.7.1 Sequential FORMAT-Statement REREAD

This section describes the sequential-access (FORMAT-statement) REREAD
statement.

The first form of this statement is:

REREAD (FMT= f [, END=s] [, ERR= s] [, IOSTAT= ios]) [iol i st]

10-43 February 1987

DATA TRANSFER STATEMENTS

If the I/O list is specified in this form, the previous record is
transferred from the logical unit (specified in the previous formatted
READ statement) to the memory locations specified by the elements in
the I/O list. The transferred record is formatted according to the
FORMAT specifications given in f.

If you omit the I/O list from this statement, the input record is
skipped. (If the FORMAT statement specifies slash editing, more than
one record can be skipped. H or apostrophe editing can cause data
transfers to occur to the FORMAT statement itself. See section 12.4.)

The second form of this REREAD statement operates in the same way as
the first form. The difference between the two forms is in the way
the FORMAT specifiers are expressed.

The second form of this statement is:

REREAD f[,iolist]

In this form, the keyword form of the FORMAT specifier (FMT=) is not
used in the FORMAT reference. Whenever you use the keyword form of
this specifier, you must enclose the keyword list in parentheses.

The following example shows the formatted REREAD being used:

CHARACTER J*5
DIMENSION J(5)

1 READ (20,5)A,X,I
5 FORMAT (2F10.2,I5)
10 REREAD 15,J
15 FORMAT (5A5)

END

In the above sequence, statement 1 reads the two real variables A and
X, a~ the integer I. Statement 10 rereads the last record input from
unit 5 as a character string of 25 characters, five per word, and puts
five characters per element into the array J.

10.7.2 Sequential List-Directed REREAD

This section describes the sequential-access (list-directed) REREAD
statement.

The first form of this statement is:

REREAD (FMT=*[,END=s] [,ERR=s] [,IOSTAT=ios]) [iolist]

In this form, the last record read by a formatted READ statement is
transferred from the logical unit (specified in the formatted READ
statement) into the memory locations identified by the elements of the
I/O list. Since the formatting is list-directed, the format of the
data is controlled by the data types of the elements in the I/O list.
If no I/O list is included, no data is transferred.

The second form of this statement operates in the same way as the
first form. The difference between the two forms is the way in which
the formatting is specified.

The second form of this statement is:

REREAD *[,iolist]

10-44 February 1987

DATA TRANSFE'R STATEMENTS

The following example shows the list-directed form of the REREAD
statement:

READ (20,*) A
REREAD *,B
END

In this example, the READ statement reads data from logical unit 20
into variable A. The REREAD statement rereads the data from logical
unit 20 into variable B.

10.8 ACCEPT STATEMENT

ACCEPT
Statement

The ACCEPT statement enables you to input data from your terminal into
memory. You can use the ACCEPT statement only for sequential-access
formatted data transfers. This statement can be used with both
FORMAT-statement and list-directed formatting.

Table 10-7 summarizes all forms of the ACCEPT statement.

Table 10-7 Summary of ACCEPT Statement Forms

Data Access Statement Construct

Sequential Formatted
(FORMAT Statement)

Sequential Formatted
(List Directed)

Key:

ACCEPT(FMT=f[,END=s] [,ERR=s][,IOSTAT=ios]) [iolist]
ACCEPT f[,iolist]

ACCEPT(FMT=*[,END=s][,ERR=s][,IOSTAT=ios])[iolist]
ACCEPT *[,iolist]

FMT=f is FORMAT-statement formatting; iolist is optional (Section 10.4.5.1).

FMT=* is list-directed formatting; iolist is optional (Section 10.4.5.2).

END=s is an optional end-of-file transfer specifier (Section 10.4.6).

ERR=s is an optional error transfer specifier (Section 1O.4.7).

10STAT=ios is an optional I/O status specifier (Section 10.4.8).

iolist is a data transfer I/O list (Section 10.4.11).

18.8.1 Sequential FORMAT-Statement ACCEPT

This section describes the sequential-access (FORMAT-statement) ACCEPT
statement.

The first form of this statement is:

ACCEPT (FMT=f[,END=s] [,ERR=s] [,IOSTAT=ios])[iolist]

10-45 February 1987

DATA TRANSFER STATEMENTS

If you include the I/O list in this form, the data is taken from the
terminal and stored in the memory locations identified in the I/O
list. The transferred data is formatted according to the FORMAT
specifications given in f.

If you omit the I/O list from this form, the input record is skipped.
(If the FORMAT statement specifies slash editing, m~re than one record
can be skipped. H or apostrophe editing can cause data transfers to
occur to the FORMAT statement itself. See Section 12.4.)

The second form of this statement operates in the same way as the
first form. The difference between the two forms is in how the FORMAT
reference is expressed.

The second form of this statement is:

ACCEPT f[,iolist]

In this form, the keyword portion of the FORMAT specifier (FMT=) is
omitted.

The following example shows both forms of the FORMAT-statement ACCEPT.

ACCEPT (FMT=35)A,Z,J
35 FORMAT (2F10.2,I5)

ACCEPT 15,B
15 FORMAT (F10.2)

END

In this example, the first ACCEPT statement accepts the values of the
variables A, Z, and J from the terminal in the form of FORMAT
statement 35. The second ACCEPT statement accepts the value of
variable B from the terminal in the form of FORMAT statement 15.

10.8.2 Sequential List-Directed ACCEPT

The list-directed ACCEPT statement transfers data entered from the
terminal into variables specified in the I/O list. The formatting of
the transferred data is controlled by the data types of the items in
the I/O list.

The first form of this statement is:

ACCEPT (FMT=*[,END=s] [,ERR=s] [,IOSTAT=ios])[iolist]

In this form, the data is transferred from the terminal into the
memory locations identified in the I/O list. Since the transfer is
list-directed, the data is formatted according to the data types of
the items in the I/O list. If no I/O list is included, a line is
skipped.

The second form of this statement operates in the same way as the
first form. The difference in the two forms is in how the
list-directed formatting reference is specified.

The second form of this statement is:

ACCEPT *[,iolist]

10-46 February 1987

DATA TRANSFER STATEMENTS

In the following example, both forms of the list-directed ACCEPT
statement are used to take information, character-by-character, from
the terminal. This example additionally shows the list-directed TYPE
statement being used to print the ACCEPTed data at the terminal:

PROGRAM ACCTST
ACCEPT *,I,J,K
TYPE *,K,I,J
ACCEPT (FMT=*)G,H,F
TY P E *, H , F , G
END

EXECUTE ACCEPT. FOR
FORTRAN: ACCEPT
ACCTST
LINK: Loading
[LNKXCT ACCTST execution]
23456 9876 12
12, 23456, 9876
12.34 98.16 789.67
98.16000, 789.6700, 12.34000
CPU time 0.2 Elapsed time 40.4

10.9 TYPE STATEMENT

TYPE
Statement

The TYPE statement enables you to output data to your terminal.
the TYPE statement only for sequential-access formatted
transfers. This statement can be used with both FORMAT-statement
list-directed formatting.

Table 10-8 summarizes all the forms of the TYPE statement.

Use
data

and

10-47 February 1987

DATA TRANSFER STATEMENTS

Table 10-8 Summary of TYPE Statement Forms

Data Access Statement Construct

Sequential Formatted
(FORMAT Statement)

Sequential Formatted
(List Directed)

Key:

TYPE(FMT=f[,ERR=s][,IOSTAT=ios]) [iolist]
TYPE f[,iolistl

TYPE(FMT=*[,ERR=s][,IOST A T=ios]) [iolist]
TYPE *[,iolist]

FMT=f is FORMAT-statement formatting; iolist is optional (Section 10.4.5.1).

FMT=* is list-directed formatting; iolist is optional (Section 10.4.5.2).

ERR=s is an optional error transfer specifier (Section 10.4.7).

IOSTAT=ios is an optional I/O status specifier (Section 10.4.8).

iolist is a data transfer I/O list (Section 10.4.11).

10.9.1 Sequential FORMAT-Statement TYPE

This section describes the sequential-access (FORMAT-statement)
statement.

TYPE

The first form of this statement is:

TYPE (FMT=f[,ERR=s] [, IOSTAT=ios]) [iolist]

If you include the I/O list in this form, the data is transferred from
the I/O list to your terminal. The transferred data is formatted
according to the FORMAT specifications given in f.

A blank record is written if the I/O list is not specified, and one of
the following is true:

1. The FORMAT statement is empty.

2. No slash, H, or apostrophe editing descriptors occur alone.

3. No slash, H, or apostrophe editing descriptors precede the
first repeatable edit descriptors.

(See Section 12.4 for more information on format editing).

The second form of this statement operates in the same way as the
first form. The difference between the two forms is in how the FORMAT
reference is expressed.

The second form of this statement is:

TY P E f [, i 0 1 i s t]

In this form, the keyword portion of the FORMAT specifier
omitted.

(FMT=) is

10-48 February 1987

DATA TRANSFER STATEMENTS

The following example shows both forms of the FORMAT-statement TYPE:

A=11.4
Z=13.9
J=5
K=10
TYPE (FMT=5)A,Z,J

5 FORMAT (lX,2F10.2,I5)
TYPE l5,K

15 FORMAT (lX,I10)
END

The following is typed on your terminal upon execution:

LINK: Loading
[LNKXCT TEST40 execution]

11.40 13.90 5
10

CPU time 0.22 Elapsed time 2.00

10.9.2 Sequential List-Directed TYPE

The list-directed TYPE statement transfers data from a program to the
terminal. The formatting of the transferred data is controlled by the
data types of the items in the I/O list.

The first form of this statement is:

TYPE(FMT=*[,ERR=s] [,IOSTAT=ios]) [iolist]

In this form, the data is transferred from the program to the
terminal. Since the transfer is list-directed, the data is formatted
according to the data types of the items in the I/O list. If no I/O
list is included, a blank record is written.

The second form of this statement operates in the same way as the
first form. The difference between the two forms is in how the
list-directed formatting reference is specified.

The second form of the statement is:

TY P E * [, i 0 1 i s t]

The following example shows both forms of the list-directed TYPE
statement:

A=11.4
Z=13.9
J=5
K=10
TYPE (FMT=*) ,A,Z,J
TYPE *,K
END

The following is typed on the terminal upon execution:

LINK: Loading
[LNKXCT TEST4l execution]
11.40000, 13,90000, 5
10
CPU time 0.20 Elapsed time 0.87

10-49 February 1987

PRINT
Statement

10.10 PRINT STATEMENT

DATA TRANSFER STATEMENTS

The PRINT statement transfers data from memory to the line printer.
You can use the PRINT statement only for sequential-access formatted
data transfers. This statement can be used with both FORMAT-statement
formatting and list-directed formatting.

Table 10-9 summarizes all forms of the PRINT statement.

Table 10-9 Summary of PRINT Statement Forms

Data Access

Sequential Formatted
(FORMAT Statement)

Sequential Formatted
(List Directed)

Key:

Statement Construct

PRINT(FMT=f[,ERR=sj [,IOSTAT=ios]) [iolistj
PRINT f[,iolistj

PRINT(FMT=*[,ERR=s][,IOSTAT=iosj)[iolistj
PRINT *[,iolistj

FMT=f is FORMAT-statement formatting; iolist is optional (Section 10.4.5.1).

FMT=* is list-directed formatting; iolist is optional (Section 10.4.5.2).

ERR=s is an optional error transfer specifier (Section 10.4.7).

IOSTAT=ios is an optional I/O status specifier (Section 10.4.8).

iolist is a data transfer I/O list (Section 10.4.11).

10.10.1 Sequential FORMAT-Statement PRINT

This section describes the sequential-access (FORMAT-statement) PRINT
statement.

The first form of this statement is:

PRINT (FMT=f[,ERR=S] [,IOSTAT=ios]) [iolist]

If the I/O list is included in this form, the data identified by the
I/O list is transferred from memory to the line printer. The
formatting of the transferred data is controlled by the FORMAT
specifications given in f.

10-50 February 1987

DATA TRANSFER STATEMENTS

A blank record is written if the I/O list is not specified, and one of
the following is true:

1. The FORMAT statement is empty.

2. No slash, H, or apostrophe editing descriptors occur alone.

3. No slash, H, or apostrophe editing descriptors precede the
first repeatable edit descriptor.

See Section 12.4.

The second form of this statement operates in the same way as the
first form. The difference between the two forms is in how the FORMAT
specifier is expressed.

The second form of this statement is:

PRINT f [, iol ist]

The following example shows two PRINT statements; one with an I/O list
and one wi tho ut:

A=7.6
B=12.5
C=20.9
PRINT 10
PRINT 20,A,B,C

10 FORMAT (' Beginning of test')
20 FORMAT (' Values are:' ,3F)

END

The following is printed to the line printer upon execution:

Beginning of test
Values are: 7.6000000 12.5000000 20.9000001

l0.le.2 Sequential List-Directed PRINT

This section describes the sequential-access (list-directed) PRINT
statement.

The first form of this statement is:

PRINT (FMT=*[,ERR=s] [,IOSTAT=ios])[iolist]

This form of the PRINT statement specifies that the data identified by
the elements of the I/O list is output on the line printer. The data
is formatted according to the data types of the elements in the I/O
list. If no I/O list is included, a blank record is written.

The second form of the list-directed PRINT statement operates in the
same way as the first form. The difference between the two forms is
in the way that the formatting is expressed.

The second form of this statement is:

PRINT *[,iolist]

10-51 February 1987

DATA TRANSFER STATEMENTS

The following example shows the use of the list-directed PRINT
statement:

D=l
E=40
F=23.3
PRINT *,D,E,F
END

The following is printed to the line printer upon execution:

1.000000, 40.00000, 23.30000

PUNCH
Statement

10.11 PUNCH STATEMENT

The PUNCH statement transfers data from memory to the paper tape
punch. You can use the PUNCH statement only for sequential-access
formatted data transfers. This statement can be used with both
FORMAT-statement formatting and list-directed formatting.

Table 10-10 summarizes all forms of the PUNCH statement.

Table 10-10 Summary of PUNCH Statement Forms

Data Access

Sequential Formatted
(FORMAT Statement)

Sequential Formatted
(List Directed)

Key:

Statement Construct

PUNCH (FMT=f[,ERR=sj [.IOSTAT=ios]) [iolistj
PUNCH f[,iolist)

PUNCH(FMT=* [,ERR=s) [,IQSTAT=ios]) [iolistj
PUNCH *[,iolist)

FMT=f is FORMAT-statement formatting; iolist is optional (Section 10.4.5.1).

FMT=* is list-directed formatting; iolist is optional (Section 10.4.5.2).

ERR=s is an optional error transfer specifier (Section 10.4.7).

IOSTAT=ios is an optional I/O status specifier (Section 10.4.8).

iolist is a data transfer 1/0 list (Section 10.4.11).

10-52 February 1987

DATA TRANSFER STATEMENTS

10.11.1 Sequential FORMAT-Statement PUNCH

This section describes the sequential-access (FORMAT-statement) PUNCH
statement.

The first form of this statement is:

PUNCH (FMT=f[,ERR=s] [,IOSTAT=ios])[iolist]

If the I/O list is specified in this form, the data identified by the
items in the I/O list are transferred to the paper tape punch. The
formatting of the data is controlled by the FORMAT specifications
given in f.

A blank record is written if the I/O list is not specified, and one of
the following is true:

1. The FORMAT statement is empty.

2. No slash, H, or apostrophe editing descriptors occur alone.

3. No slash, H, or apostrophe editing descriptors precede the
first repeatable edit descriptor.

See Section 12.4.

The second form of this statement operates in the same way as the
first form. The difference between the two forms is in the way that
the format specification is referenced.

The second form of this statement is:

PUNCH f[,iolist]

The following example shows the formatted PUNCH statement:

PUNCH l0,A,B,C
10 FORMAT (3F)

10.11.2 Sequential List-Directed PUNCH

This section describes the sequential-access (list-directed) PUNCH
statement.

The first form of this statement is:

PUNCH (FMT=*[,ERR=s] [,IOSTAT=ios]) [iolist]

This form of the PUNCH statement transfers the data identified by the
elements of the I/O list to the paper tape punch. Since the transfer
is list-directed, the formatting of the data is controlled by the data
types of the items within the I/O list. If no I/O list is included, a
blank record is written.

10-53 February 1987

DATA TRANSFER STATEMENTS

The second form of this statement operates in the
first form. The difference between the two forms
the list-directed format reference is written.

same way as the
is in the way that

The second form of this statement is:

PUNCH * [, iol i st]

The following example shows the list-directed PUNCH statement:

PUNCH *,D,E,F

INTERNAL FILES AND
ENCODE/DECODE

Statements

10.12 INTERNAL FILES AND ENCODE/DECODE STATEMENTS

Internal READ/WRITE statements and ENCODE/DECODE statements are used
for internal I/O.

Table 10-11 summarizes all the forms of the internal READ/WRITE and
ENCODE/DECODE statements.

Table 10-11 Summary of Internal READ/WRITE and ENCODE/DECODE
Statement Forms

Data Access

Sequential Formatted
(FORMAT Statement)

Key:

Statement Construct

ENCODE(c,f,a[,ERR=sj[,IOSTAT=iosj)[iolist]
DECODE(c,f,a[,ERR=sj[,IOSTAT=ios])[iolistj

READ (UNIT=un,FMT=f[,END=s][,ERR=s][,IOSTAT=ios]) [iolist]
READ (un,FMT=f[,END=s][,ERR=s][,IOSTAT=ios]) [iolist]
READ(un,f[,END=sH,ERR=s][,IOSTAT=ios]) [iolist]

WRITE(UNIT=un,FMT=f[,ERR=s][,IOSTAT=ios]) [iolist]
WRITE(un,FMT=f[,ERR=s][,IOSTA T=ios]) [iolist]
WRITE(un,f[,ERR=s][,IOSTA T=ios])[iolist]

UNIT=un is an Internal File identifier (Section 10.4.3.2).

c is the total number of characters being transferred.

f is a FORMAT -statement formatting reference.

a is the name of the array from which or to which data is being transferred.

END=s is an optional END-of-file specifier (Section 10.4.6).

ERR=s is an optional error transfer specifier (Section 10.4.7).

IOSTAT=ios is an optional I/O status specifier (Section 10.4.8).

iolist is a data transfer I/O list (Section 10.4.11).

10-54 February 1987

DATA TRANSFER STATEMENTS

le.12.l Internal READ and WRITE Statements

The internal READ statement transfers data from an internal file to
I/O list elements. The internal WRITE statement transfers data from
I/O list elements to an internal file. Internal READ and WRITE
statements are always formatted.

NOTE

The DECODE statement c~n be used as an alternative to
the internal READ statement, and the ENCODE statement
can be used as an alternative to the internal WRITE
statement. (See Section 10.3.1.1 for more information
on internal files.)

The internal READ statement has the following forms:

READ (UNIT=un,FMT=f[,END=s] [,ERR=s] [,IOSTAT=ios]) [iolist]

READ (un,FMT=f[,END=S] [,ERR=s] [,IOSTAT=ios]) [iolist]

READ (un,f[,END=s] [,ERR=s] [, IOSTAT=ios]) [iolist]

In the above forms, un is an internal file identifier (see Section
le.4.3.2) •

If an I/O list is included in these forms, it spe~ifies that data is
transferred from internal file identifier, un, formatted according to
the specification given by f, and transferred into the elements of the
specified I/O list.

If an I/O list is not included, the input record is skipped. (If the
FORMAT statement specifies slash editing, more than one record can be
skipped. Apostrophe or H editing can cause data transfers to occur to
the FORMAT statement itself. See Section 12.4.)

The following example demonstrates the use of the internal READ
statement:

CHARACTER*9 STRING
STRING = '3.14 6.e2'
READ(STRING,le) PI, A

Ie FORMAT(F4.2, IX, F4.2)
WRITE(5,2e) PI, A, PI+A

2e FORMAT(' PI=', F6.3, 5X, 'A=', F6.3, 5X, 'PI+A=', F6.3)
STOP
END

The READ statement in this example is an internal file read. It
extracts the two numbers that are encoded in the character variable
STRING, converts the numbers to floating point, and then stores them
into the two variables PI and A. The following is printed at the
terminal when the above program is executed:

EXECUTE IR.FOR
LINK: Load ing
[LNKXCT IR execution]

PI= 3.14e A= 6.02e PI+A= 9.160
CPU time 0.19 Elapsed time 0.4e

Ie-55 February 1987

DATA TRANSFER STATEMENTS

The internal WRITE statement has the following forms:

WRITE (UNIT=un,FMT=f[,ERR=s] [,IOSTAT=ios]) [iolist]

WRITE (un,FMT=f[,ERR=s] [,IOSTAT=ios]) [iolist]

WRITE (un,f[,ERR=s] [,IOSTAT=ios])[iolist]

If the I/O list is included in these forms, the data specified by the
elements of the I/O list are output to a file on internal file
identifier un. The output data is formatted in this file according to
the FORMAT specifications given in f.

A blank record is written if the I/O list is not specified, and one of
the following is true:

1. The FORMAT statement is empty.

2. No slash, H, or apostrophe editing descriptors occur alone.

3. No slash, H, or apostrophe editing descriptors preceded the
first repeatable edit descriptors.

See Section 12.4.

The following example demonstrates the use of the internal WRITE
statement:

CHARACTER*20 CHARS(3)
INTEGER PHNE(3}
PHNE{l) = 617
PHNE{2} = 481
PHNE(3} = 4054
WRITE{CHARS,10} (I, PHNE{I), I=1,3}

10 FORMAT ('PHNE(', II, ')=', 14)
WRITE(5,20} (I, CHARS{I), I=1,3)

20 FORMAT{' Record " II, , of CHARS is"' A20, "")
STOP
END

The first WRITE statement in the above program is an internal file
write. Since the character variable being written to is a three
element array, the internal file is a file of three records. When
this program is executed, the following is output to the terminal:

EXECUTE IW.FOR
LINK: Loading
[LNKXCT IW exedution]

Record lof CHARS is "PHNE(l)= 617
Record 2 of CHARS is "PHNE(2}= 481
Record 3 of CHARS is "PHNE(3}=4054
CPU time 0.24 Elapsed time 0.82

10.12.2 ENCODE and DECODE Statements

"
"
"

The DECODE statement can be used as an alternative to an internal
READ, and the ENCODE statement can be used as an alternative to the
internal WRITE.

10-56 February 1987

DATA TRANSFER STATEMENTS

The ENCODE statement transfers data from the variables of a specified
I/O list into a specified array. ENCODE operations are similar to
those performed by a WRITE statement.

The DECODE statement transfers data from a specified array into the
variables of an I/O list. DECODE operations are similar to those
performed by a READ statement.

ENCODE and DECODE statements have the following forms:

ENCODE (c, f , a [, ERR=s] [, IOSTAT= ios]) [iol i st]

DECODE (c,f ,a[,ERR=s] [, IOSTAT=ios]) [iolist]

where:

c

f

a

iolist

specifies the number of characters in each internal
record of the array. This argument can be any integer
expression, and must be the first specification in the
statement.

NOTE

Five characters per word are stored in the
array without regard to the type of the array.

specifies either a FORMAT-statement or a numeric array
that contains format specifications. This must be the
second specification.

specifies the array, array element, variable, or
character substring reference that is to be used in the
transfer operations, and it must contain at least c
characters. More than one element of the array can be
used by the ENCODE/DECODE.

specifies an I/O list of the standard form.

When multiple records are stored by ENCODE or read by DECODE, each new
record starts c characters after the previous record; no CR/LF
(carriage return/line feed) is inserted between records.

NOTE

If the array contains fewer characters than required
by the format and the I/O list, the variables
following the array in memory are used. If the
processing of the I/O list requires more characters in
a single record than are specified by the character
count c, blanks are used.

The following example shows how the ENCODE and DECODE statements are
used:

DIMENSION B(4) ,A(2)
A(1)=300.45
A(2)=3.0
C='12345'

DO 2 J=1,2

ENCODE(16,10,B)J,A(J)
10 FORMAT (IX, , A (' , II, ') = " F8. 2)

10-57 February 1987

DATA TRANSFER STATEMENTS

5 TYPE 11,B
11 FORMAT(4A5)

2 CONTINUE

DECODE(5,12,C)B
12 FORMAT(3Fl.0,lX,Fl.0)

TYPE 13,B
13 FORMAT(4F5.2)

END

During the first iteration of the DO loop, the ENCODE statement has
transferred the contents of variable J and array element A(l) into
array B. The formatting of the data being transferred is specified by
the FORMAT statement at line 10.

After the first iteration of the DO loop, the contents of array Bare:

B(l) 'A(l)'
B(2) '=
B(3) '300.4'
B(4) '5

The TYPE statement at line 5 types array B on the terminal during the
first iteration of the DO loop.

During the second iteration of the DO loop, the data
from variable J and array element A(2) into array B.
iteration, the contents of array Bare:

B(l) 'A(2)'
B(2) '=
B(3) 3.0'
B(4) '0

is transferred
After the second

The TYPE statement at line 5 types array B on the terminal during the
second iteration of the DO loop.

The DECODE statement:

1. Extracts the digits 1, 2, and 3 from C

2. Converts them to floating-point values

3. Stores them in B(l), B(2), and B(3)

4. Skips the next character (the digit 4)

5. Extracts the digit 5 from C

6. Converts it to a floating-point value

7. Stores the value in B(4)

10-58 February 1987

DATA TRANSFER STATEMENTS

The following shows what is printed at the terminal when the above
program is executed:

EXECUTE T.FOR
LINK: Load ing
[LNKXCT T execution]
A(l) 300.45
A(2) = 3.00
1.00 2.00 3.00 5.00
CPU time 0.1 Elapsed time 0.8

10.13 DELETE STATEMENT (TOPS-20)

DELETE (TOPS-20)
Statement

The DELETE statement deletes records from RMS relative and indexed
files. It logically removes the appropriate record from the specified
file by locating the record and marking it as a deleted record. The
position occupied by the deleted record becomes available so that a
new record can be written into that position.

The DELETE statement is illegal for RMS files with sequential
organization, and for non-RMS files.

Table 10-12 summarizes all forms of the DELETE statement.

Table 10-12 Summary of DELETE Statement Forms

Data Access Statement Construct

Current-record DELETE(UNIT=un[,ERR=s][,IOSTAT=ios))
DELETE DELETE(un[,ERR=s][,IOSTAT=ios))

Direct DELETE DELETE(UNIT=un,REC=rn[,ERR=s][,IOSTAT=ios))
DELETE(un,REC=rn[,ERR=s][,IOSTAT=ios))
DELETE(un'rn [,ERR=s][,IOSTAT=ios))

Key:

UNIT=un is a FORTRAN logical unit number or internal file specifier (Section 10.4.3).

REC=rn is a direct-access record number (Section 10.4.4).

un'rn is an alternate way of specifying Logical Unit Number and record number of a direct-access
transfer (Section 10.4.4).

END=s is an optional end-of-file transfer specifier (Section 10.4.6).

ERR=s is an optional error transfer specifier (Section 10.4.7).

IOSTAT=ios is an optional 1/0 status specifier (Section 10.4.8).

iolist is a data transfer 1/0 list (Section 10.4.11).

FORTRAN-10/20 V11 10-59 February 1987

DATA TRANSFER STATEMENTS

10.13.1 Current-Record DELETE

The current-record DELETE statement has the following forms:

DELETE (UNIT=un[,ERR=s] [,IOSTAT=ios])

DELETE (un[,ERR=S] [,IOSTAT=ios])

This form of the DELETE statement deletes the last record from an
indexed or sequentially-accessed relative file that has been
successfully accessed by a previous READ or FIND statement. The
current-record DELETE is the only form of the DELETE statement that is
permitted for indexed files.

10.13.2 Direct-Access DELETE

The direct-access DELETE statement has the following forms:

DELETE (UN~T=un,REC=rn[,ERR=s] [,IOSTAT=ios])

DELETE (un,REC=rn[,ERR=s] [,IOSTAT=ios])

DELETE (un' rn [, ERR=s] [, IOSTAT= ios])

The direct-access DELETE is permitted only for direct-access RMS
relative files. It deletes the record specified by rn. After a
direct-access DELETE statement, any associate variable is set to the
next record number.

The alternative form of this type of DELETE statement (the last form
shown) operates in the same way as the first two forms. The
difference between the forms is in the way that the unit and the
record are specified. In this form, the unit and record references do
not contain the keywords UNIT= and REC=. Instead the unit number is
specified first; a single quote (') is specified next; then the record
number is specified last.

REWRITE (TOPS-20)
Statement

10.14 REWRITE STATEMENT (TOPS-29)

The REWRITE statement transfers data from internal storage to the
current record (the record most recently accessed by a READ or FIND
statement) of an RMS indexed or relative file. The REWRITE statement
can be formatted or unformatted.

Table 10-13 summarizes all forms of the REWRITE statement.

FORTRAN-10/20 VII 10-60 February 1987

DATA TRANSFER STATEMENTS

I
Table 10-13 Summary of REWRITE Statement Forms

Data Access

Formatted REWRITE

Unformatted REWRITE

Key:

Statement Construct

REWRITE(UNIT=un,FMT=f[,ERR=sjLIOSTAT=iosj)[iolistj
REWRITE(un, f[,ERR=s][,lOST A T=ios]) [iolist j

REWRITE(UNIT=un[,ERR=s][,lOSTAT=ios]) [iolistJ
REWRITE(un[,ERR=s][,IOST AT=ios]) [iolist]

UNIT=un is a FORTRAN logical unit number (Section 10.4.3).

FMT=f is FORMAT-statement formatting; iolist is optional (Section 10.4.5.1).

ERR=s is an optional error transfer specifier (Section 10.4.7).

IOSTAT=ios is an optional I/O status specifier (Section 10.4.8).

iolist is a data transfer I/O list (Section 10.4.11).

10.14.1 Formatted REWRITE

The formatted REWRITE statement has the following forms:

REWRITE (UNIT=un, FMT= f [, ERR=s] [, IOSTAT= ios]) [iol i st]

REWRITE (un,f[,ERR=s] [,IOSTAT=ios]) [iolist]

Note that a WRITE to an indexed file always writes a new record. If
the primary key for the new record is changed, an error results.
Records rewritten with the REWRITE statement cannot exceed the length
of the record being updated, or an error results.

An example of the use of a formatted REWRITE statement follows:

REWRITE (1,10,ERR=99) NAME, AGE, BIRTH
10 FORMAT (A16,I2,A8)

In this example, the REWRITE statement updates the current record
contained in the indexed file connected to logical unit 1 with the
values represented by NAME, AGE, and BIRTH.

10.14.2 Unformatted REWRITE Statement

The unformatted REWRITE statement has the following forms:

REWRITE (UNIT=un[,ERR=ios] [,IOSTAT=ios]) [iolist]

REWRITE (un[,ERR=ios] [,IOSTAT=ios]) [iolist]

The unformatted REWRITE statement retrieves binary values
internal storage and writes those values to an existing record
RMS file with indexed or relative organization. The values are
translated.

from
in a
not

FORTRAN-10/20 VII 10-61 February 1987

UNLOCK (TOPS-20)
Statement

DATA TRANSFER STATEMENTS

19.1S UNLOCK STATEMENT (TOPS-2g)

The UNLOCK statement unlocks a record in a RMS relative or indexed
file locked by a previous READ or FIND statement, without performing
any other I/O operations. If no record is locked, the operation has
no effect. This statement is illegal for RMS sequential and non-RMS
files.

Table Ig-14 summarizes all forms of the UNLOCK statement.

Table 10-14 Summary of UNLOCK Statement Forms

Data Access

UNLOCK

Key:

Statement Construct

UNLOCK(UNIT=un[,ERR=sj[,IOSTAT=iosj)
UNLOCK(un[,ERR=s][,IOSTAT=iosj)
UNLOCK un

UNIT=un is a FORTRAN logical unit number (Section 1004.3).

ERR=s is an optional error transfer specifier (Section 1004.7).

IOSTAT=ios is an optional I/O status specifier (Section 10.4.8).

FORTRAN-10/20 VII 10-62 February 1987

CHAPTER 11

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

11.1 FILE-CONTROL STATEMENTS

Prior to transferring any data using one of the forms of data transfer
statements, you can establish a connection between a logical unit and
a file by using the OPEN statement. After the completion of a data
transfer, you can terminate the connection between the logical unit
and the file before ending the program by using the CLOSE statement.

The OPEN statement enables you to explicitly connect a logical unit to
a file prior to the first data transfer, and also to specify a variety
of characteristics about the file and the data transfers.

After the last data transfer is completed, the CLOSE statement enables
you to explicitly disconnect the logical unit from the file and,
optionally, to specify a variety of characteristics about the CLOSE.

If you do not precede an I/O statement with an OPEN statement, FOROTS
automatically performs an "implicit OPEN" {see Section 11.2.1}.

Similarly, if you do not specify a CLOSE statement to explicitly
disconnect a file from a logical unit, FOROTS performs an "implicit
CLOSE" {see Section 11.4.1} when your program terminates.

You need not specify the OPEN and CLOSE statements if the actions
performed by the implicit OPEN or CLOSE are satisfactory.

11.2 OPEN STATEMENT

OPEN
Statement

The OPEN statement is used to specify characteristics of a file that
you wish to read or write. An example of an OPEN statement is:

OPEN {UNIT=20,FILE='MYDATA.DAT'}

The specifiers inside the parentheses give information about the file
and determine how the file is opened.

11-1 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

The UNIT specifier (in the example above, "UNIT=20") is required in an
OPEN statement. All other specifiers are optional, including the FILE
specifier in the example shown above. You can supply many other
optional specifiers (see Section 11.3 for a description of OPEN
statement specifiers). The order in which the specifiers appear does
not affect the execution of the OPEN statement.

By using the OPEN specifiers, you are able to define certain
characteristics of each data transfer, including:

1. The name of the data file

2. The type of access required

3. The data format of the file

4. The disposition of the data file

5. The data file record and block sizes

In addition, a DIALOG argument permits you to establish a dialog mode
of operation when the OPEN statement containing it is executed. In a
dialog mode, interactive terminal/program communication is
established,enabling the user to define or redefine the values of the
OPEN statement specifiers.

When a file is open for output (STATUS='NEW' or ACCESS-'SEQOUT'), a
null file is created on the device specified by FILE= or DEVICE-, or
if none, the first structure in the job's search list.

An OPEN statement is referred to as a "defer red" OPEN statement if
both of the following are true:

• The OPEN statement specifies STATUS='UNKNOWN'
specify a STATUS value).

(or does not

• The OPEN statement specifies ACCESS='SEQINOUT' or
'SEQUENTIAL' (or does not specify an ACCESS value).

The actual opening of the file is deferred until the first data
transfer statement (READ, WRITE, PRINT, PUNCH, or SKIPRECORD). The
actual opening of the file means the determination of the physical
device, and for TOPS-20, the generation number (if not explicitly
specified) •

If the first data transfer statement is a READ or SKIPRECORD, the
first file that matches the file specification given in the OPEN
statement is opened. If no file exists that matches the file
specification given, a null file is created on the device specified by
FILE= or DEVICE=, or if none, the first structure in the job's search
list. The file is positioned as if a READ or SKIPRECORD statement had
been executed, and an end-of-file error will be generated (see END=,
Section 10.4.6).

If the first data transfer statement is a WRITE, PRINT, or PUNCH
statement, a new file (with a new generation on TOPS-20) will be
created on the device specified by FILE= or DEVICE=, or if none, the
first structure in the job's search list.

If the file specified in the OPEN statement does not exist, and either
a CLOSE statement Is executed or the program runs to completion, a
null file is created on the device specified by FILE= or DEVICE=, or
if none, the first structure in the job's search list.

11-2 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

11.2.1 Implicit OPEN

When the OPEN statement has not been executed before a data transfer
that references the unit number, an implicit OPEN is performed.

An implicit OPEN has almost exactly the same effect as if you had put
an OPEN statement with the following format in the program just before
the data transfer statement:

OPEN (UNIT=un,STATUS=' UNKNOWN' ,FORM=fm)

where:

un

fm

is the unit number specified in the data transfer
statement.

is 'UNFORMATTED' if the data transfer statement is an
unformatted READ or WRITE statement; otherwise fm is
, FORMATTED' •

In addition, if the data transfer statement has an ERR specifier, the
implicit OPEN has this same qualifier included. This is also true of
the IOSTAT specifier.

NOTE

The default for the BLANK specifier is different
depending on whether the OPEN is implicit or explicit
(see Section 11.3.3).

11-3 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

11.2.2 OPEN on a Connected unit

If the OPEN statement contains a STATUS=OLD specifier (see Section
11.3.36), then its action depends on whether a file is already OPEN on
the unit, and whether the file specified by the OPEN is the same f1le
that is currently on the unit. If the file specified by the OPEN is
different from the OPEN file, the connected file is closed and the new
file is opened. If the file specified by the OPEN is the same as the
connected file, the file is not closed, and the file pointer is not
moved. This action is not affected by the /F66 compiler switch
(described in Chapter 16).

11.3 OPEN STATEMENT SPECIFIERS

All of the OPEN statement specifiers are optional, except the UNIT
specifier, which is required. Some specifiers have default values
that can depend oD the unit number or the values of other specifiers.

Table 11-1 summarizes the specifiers in the OPEN statement and the
type of value required by each. A section number is provided to refer
to detailed descriptions of each specifier. The CLOSE statement
specifiers are summarized in Table 11-5.

11-4 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

Table 11-1 Summary of OPEN Statement Specifiers and Arguments

Argument Possible Value

ACCESS= Character expression with one of the following values:
'SEQIN', 'SEQOUT', 'SEQINOUT', 'SEQUENTIAL',
'DIRECT', 'RANDOM', 'RANDIN' 'APPEND',
'KEYED'

ASSOCIA TEV ARIABLE= Integer variable or integer array element

BLANK= Character expression with one of the following values:
'NULL', 'ZERO'

BLOCKSIZE= Integer expression

BUFFERCOUNT= Integer expression

BYTESIZE= Integer expression

CARRIAGECONTROL= Character expression with one of the following values:
'FORTRAN', 'LIST', 'DEVICE', 'TRANSLATED',
'NONE'

DEFAULTFILE= Character expression
(TOPS-20)

DENSITY= Character expression with one of the following values:
'200', '556', '800', '1600', '6250', 'SYSTEM'

DEVICE= Character expression

DIALOG

DIALOG=

DIRECTORY=
(TOPS-lO)

DIRECTORY=
(TOPS-20)

DISPOSE=

ERR=

FILE=

FILESIZE=
INITIALIZE=

FORM=

IOSTAT=

KEY=
(TOPS-20)

LIMIT=

MAXREC=
(TOPS-20)

MODE=

NAME=

NOSPANBLOCKS=
(TOPS-20)

Character expression

Character expression

Character expression

Character expression with one of the following values:
'SAVE', 'DELETE', 'PRINT', 'KEEP', 'LIST',
'PUNCH', 'EXPUNGE'

Statement number

Character expression

Integer expression

Character expression with one of the following values:
'FORMATTED', 'UNFORMATTED'

Integer variable or integer array element

Keyspec

Integer expression

Integer expression

Character expression with one of the following values:
'ASCII', 'LINED', 'BINARY', 'IMAGE', 'DUMP'

Character expression

FORTRAN-10/20 VII 11-5

Section

11.3.1

11.3.2

11.3.3

11.3.4

11.3.5

11.3.6

11.3.7

11.3.8

11.3.9

11.3.10

11.3.11

11.3.12

11.3.13

11.3.14

11.3.15

11.3.16

11.3.17

11.3.18

11.3.19

11.3.20

11.3.21

11.3.22

11.3.23

11.3.24

11.3.25

11.3.26

February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

Table 11-1 (Cont.) Summary of OPEN Statement Specifiers and Arguments

Argument Possible Value Section

ORGANIZATION=
(TOPS-20)

Character expression with one of the following
values: 'SEQUENTIAL', 'RELATIVE', 'INDEXED',
'UNKNOWN'

11.3.27

PADCHAR=

PARITY=

A character expression in which the first character is
used

Character expression with one of the following values:
!ODD', 'EVEN'

11.3.28

11.3.29

PROTECTION=
(TOPS-10)

Integer expression 11.3.30

PROTECTION=
(TOPS-20)

Integer expression 311.3.31

READONLY 11.3.32

RECL=
HECORDSIZE=

Integer expression 11.3.33

HECORDTYPE= Character expression with one of the following values:
'FIXED', 'STREAM!, 'VARIABLE',

11.3.34

SHARED
(TOPS-20)

STATUS=
TYPE

'UNKNOWN'

11.3.35

Character expression with one of the following 11.3.36
values: 'OLD', 'NEW', 'SCRATCH', 'EXPUNGE',
'UNKNOWN', 'KEEP', 'DELETE!

TAPEFORMAT= Character expression with one of the following values: 11.3.37
CORE-DUMP or INDUSTRY

UNIT= Integer expression 11.3.38

USEROPEN=
(TOPS-20)

Function name 11.3.39

VERSION= Octal constant, integer variable, or integer array element 11.3.40

NOTE

For compatibility with previous versions of
FORTRAN-10/20, you can specify a numeric array name as
the value of each of the following specifiers:

DIALOG=
DIRECTORY
NAME

When a numeric array name is used, FOROTS assumes that
it contains a string of characters terminated by a
null character.

In addition, you can specify a numeric variable as the
value of the DEVICE and FILE specifiers. If the
variable is single precision, FOROTS assumes that it
contains 5 characters; if it is double precision,
FOROTS assumes that is contains 10 characters.

The use of numeric array names and
in place of character variables
feature.

numeric variables
is a nonstandard

FORTRAN-10/20 VII 11-6 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

ACCESS
Specifier

11.3.1 ACCESS Specifier

The ACCESS specifier describes the type of data transfer statements
allowed. Records within files can be accessed directly (randomly),
sequentially, or by specified key (RMS).

The form of the ACCESS specifier is:

ACCESS = acc

where:

acc is a character expression having a value equal to one of
the following:

'SEQIN'
'SEQOUT'
'SEQINOUT'
'SEQUENTIAL'
'DIRECT'
'RANDOM'
'RANDIN'
'APPEND'
'KEYED'

ACCESS has a number of arguments, each of which specifies a method of
data access. SEQUENTIAL is the default access unless the device
(UNIT) opened is a read-only device, in which case the default is
SEQIN. If the device opened is a write-only device, the default
access is SEQOUT.

The arguments to the ACCESS specifier are:

SEQIN

SEQOUT

SEQUENTIAL

FORTRAN-10/20 VII

(Implies STATUS='OLD') The specified
opened for read-only sequential
ACCESS='SEQIN' is specified, it is
specifying ACCESS='SEQUENTIAL' and
Section 11.3.32).

da ta file is
access. When
equivalent to
READONLY {see

The specified data file is opened for output and
sequential access. If the specified file already
exists, it is superseded (TOPS-U~n, or a new
generation is created (TOPS-20).

The specified data file is opened for sequential
access. Records can be read from or written to the
file in sequential order. However, when a record is
written to the file, it becomes the last record of
the file. Any data following that record becomes
inaccessible.

Records can also be written to the file and then
read, as long as a device-positioning statement
(BACKSPACE or REWIND, Section 11.8) is used before
the READ statement.

11-7 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

SEQINOUT

DIRECT

RANDIN

RANDOM

APPEND

KEYED

Same as SEQUENTIAL

The specified data file may be read from and/or
written to in units of fixed-length records. The
record to be accessed next is specified in the data
transfer statement by a record number.

The relative position of each record is independent
of the previous READ or WRITE statement. The RECL
specifier (see Section 11.3.33) is required for
random-access oper~tions. You must specify a disk
device when the DIRECT argument is used.

(Implies STATUS='OLD') The specified data file is
opened for read-only direct access. More than one
user can read the same file at the same time with
ACCESS='RANDIN'. When ACCESS='RANDIN' is specified,
it is equivalent to specifying ACCESS='RANDOM' and
READONLY (see Section 11.3.32).

Same as DIRECT

The specified file is opened for sequential
write-only access. APPEND is the same as SEQOUT
except that the file is positioned at its end after
the OPEN statement. Reading an APPEND mode file is
illegal. REWIND and BACKSPACE are illegal for files
opened with APPEND access.

The specified data file is an RMS indexed file
opened for either random keyed access or sequential
access. The file is accessed by a specified key.
Invokes RMS (as if ORGANIZATION=' INDEXED' is
specified) •

ASSOCIATEVARIABLE
Specifier

11.~.2 ASSOCIATEVARIABLE Specifier

This specifier enables you to declare a variable whose value is the
number of the next record that will be read from· or written to the
file. For RMS files, this specifier is ignored unless
ACCESS='DIRECT' •

For example, after the execution of an OPEN statement and prior to the
first data transfer, the associate variable is set to 1.

In a data transfer after the first record is transferred, the value of
the associate variable is 2.

The form of the ASSOCIATEVARIABLE specifier is:

ASSOCIATEVARIABLE= Integer variable or integer array element

If you are using the ASSOCIATEVARIABLE specifier in a program that
makes use of the LINK overlay facility, please read the paragraphs
that follow.

FORTRAN-10/20 VII 11-8 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

If the variable you specify as the ASSOCIATEVARIABLE is declared in a
FORTRAN subroutine, then that subroutine must be loaded in the root
link of the overlay structure. If the subroutine cannot be loaded in
the root link of the overlay structure, declare your ASSOCIATEVARIABLE
in a COMMON statement so that the ASSOCIATEVARIABLE will operate
properly.

The reasons for these steps are:

1. When the overlay facility is used to load FORTRAN modules,
the local variables in the modules are grouped with the
routine in which they are declared.

2. When FORTRAN subroutines are loaded by the overlay facility,
they are divided into sets called overlay links.

3. Only one overlay link, the one specified to be the root link,
1S always resident in memory. The other overlay links are
read in memory as required.

Accessing a file opened with an ASSOCIATEVARIABLE changes the value of
the specified variable. If this variable is in a nonresident overlay
link when the access is made, program execution produces unpredictable
results. Moreover, this variable is reset to zero each time its
overlay link is removed from memory.

Only variables declared in routines loaded into the root link are
always resident. variables declated in COMMON statements and those
declared in the main program are always resident and can always be
used as an associate variable.

NOTE

For more information on the LINK overlay facility, see
the LINK Programmer's Reference Manual, and Chapter 15
of this manual.

BLANK
Specifier

11.3.3 BLANK Specifier

The BLANK specifier applies only when reading formatted
(FORMAT-statement) numeric fields that have a field width specified.
BLANK enables you to specify how blanks in formatted numeric fields
are treated in a read transfer (either as zero or ignored).

The form of the BLANK specifier is:

BLANK = blnk

where:

blnk is a character expression having a value equal to either
'NULL' or 'ZERO'.

11-9 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

The arguments to the BLANK specifier are:

NULL specifies that all blank characters within numeric
formatted input fields are ignored_ The exception is
that a field of all blanks has a value of zero.

ZERO specifies that all blanks are treated as zeros.

If an OPEN statement is executed and the BLANK specifier is not given,
the default is BLANK='NULL'.

If no explicit OPEN statement is executed before a data transfer on a
unit, the default is BLANK='ZERO' for all devices except terminals.
For terminals, the default is always BLANK='NULL' regardless of
whether or not the OPEN statement is given.

The BLANK specifier is overridden if a corresponding data transfer
statement references a format list that contains either the BN or BZ
descriptor. In this case, the BN or BZ descriptor in the format list
overrides the setting in the OPEN statement until the end of the
format list, or until the setting is changed within the format list.
(The BN or BZ descriptors are described in Section 12.4.9.)

Example:

OPEN(UNIT=l,DEVICE='DSK' ,FILE='FOO.DAT' ,BLANK='ZERO')
READ(1,10)K

10 FORMAT (I 5)
CLOSE (UNIT=l)

OPEN(UNIT=l,DEVICE='DSK' ,FILE='FOO.DAT' ,BLANK='NULL')
READ(1,10)L
CLOSE(UNIT=l)

END

In the above example, if FOO.DAT contains 123bb, K has the value 12300
and L has the value 123.

BLOCKSIZE
Specifier

11.3.4 BLOCKSIZE Specifier

The BLOCKSIZE specifier enables you to specify a physical storage
block size for magnetic tape files.

NOTE

BLOCKSIZE specifies the physical record length, and
RECL(RECORDSIZE) specifies the logical record length.

11-10 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

The argument is an integer expression, and for CORE-DUMP tape format,
the value assigned represents the number of words in the physical
block. For INDUSTRY tape format, the value represents the number of
bytes in the physical block. (See the TAPEFORMAT specifier, Section
11.3.37.)

The form of the BLOCKSIZE specifier is:

BLOCKSIZE= Integer expression

11.3.5 BUFFERCOUNT Specifier

BUFFERCOUNT
SpecH~r

The BUFFERCOUNT specifier enables you to define the number of I/O
buffers used in the data transfer.

The BUFFERCOUNT is the number of pages used in disk transfers, and is
ignored for nondisk transfers.

For RMS files, BUFFERCOUNT specifies the MBF (Multi-Buffer Count) for
RMS internal buffering.

The form of the BUFFERCOUNT specif~er is:

BUFFERCOUNT= Integer expression

If a BUFFERCOUNT is not specified, or is assigned a value of zero:

• For non-RMS files, the buffercount is four pages.

• For RMS files, the RMS default is used.

NOTE

If MODE='DUMP' is specified, BUFFERCOUNT is ignored.

The BUFFERCOUNT specifier does not affect the operation of the
program, but it can affect execution time and memory requirements.

For random I/O, the
buffers which are
operations.

buffercount specifies the maximum number of
in memory (not yet written to disk) during I/O

NOTE

For TOPS-20 extended addressing, all I/O buffers must
fit in FOROTS's section.

FORTRAN-10/20 VII 11-11 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

BYTESIZE
Specifier

11.3.6 BYTESIZE Specifier

The BYTESIZE specifier determines the integer byte size for the file.
For existing RMS files, this value must agree with the actual byte
size of the file.

The form of the BYTESIZE specifier is:

BYTESIZE = Integer expression

If no BYTESIZE is specified, FOROTS defaults to 7 for TOPS-10/20 files
(defaults to 8 for VMS files). If BYTESIZE is specified for a remote
VMS file, the bytesize must be 8. If BYTESIZE is specified when
creating a new TOPS-20 RMS indexed file that has CHARACTER keys
defined, the bytesize must be 7.

CARRIAGECONTROL
Specifier

11.3.7 CARRIAGECONTROL Specifier

The CARRIAGECONTROL specifier enables you to decide how the first
character of each record encountered during an output data transfer
operation is treated. (Section 12.2.3 describes carriage-control
spec i f i ers.)

The form of the CARRIAGECONTROL specifier is:

CARRIAGECONTROL = cc

where:

cc is a character expression having a value equal to one of
the following:

FORTRAN-10/20 VII

'FORTRAN'
'LIST'
'TRANSLATED'
'DEVICE'
'NONE'

11-12 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

The arguments to the CARRIAGECONTROL specifier are:

FORTRAN

LIST

TRANSLATED

DEVICE

NONE

specifies that the FORTRAN data file attribute is
set in the file's access information, so that when
the file is printed, the first character of each
record is replaced with a carriage return and the
corresponding printer-control vertical motion
character(s) (see Table 12-3) • The record
terminator at the end of the record will be
discarded.

specifies that the first character is output with no
replacement.

Since RMS sequential files do not have record
terminators, when LIST is used, you cannot specify
that a record should not have a CRLF added when it
is printed. Thus, the dollar sign format edit
descriptor, which eliminates the CRLF after a
record, has no effect for RMS files with LIST
specified.

specifies that the first character of each record is
replaced with a carriage return and the
corresponding printer-control vertical motion
character(s) (see Table 12-3). No record terminator
is written at the end of the record.

Note that the last data record in the file has no
ending carriage return/line feed sequence unless a
blank record is written.

For fixed-length files, TRANSLATED is treated as
LIST.

For RMS files, TRANSLATED is treated as FORTRAN.

specifies that the first character will only be
replaced for a carriage-control device (such as LPT
or TTY).

specifies that no carriage-control action is taken.

The default value is CARRIAGECONTROL='DEVICE'.

NOTE

The line printer software assumes that the first
character of all data files is a carriage-control
character if the file has the extension .DAT or if the
/FILE:FORTRAN switch is specified.

FORTRAN-10/20 VII 11-13 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

[

EFAUL TFILE (TOPS-20)
Specifier

--_._. ---_ .. _-_._-_._.---

11.3.8 DEFAULTFILE Specifier (TOPS-20)

The DEFAULTFILE specifier defines a default file specification string.
If you do not specify either FILE or DEFAULTFILE, FORTRAN uses the
default value FORnn.DAT, where nn is the unit number with leading
zeros.

The DEFAULTFILE specifier can be used in place of, or in addition to
the FILE or NAME specifier. If DEFAULTFILE is used without FILE or
NAME, it replaces the FILE or NAME specifier. If DEFAULTFILE is used
with FILE or NAME, the DEFAULTFILE file specification is merged with
the FILE or NAME value to form the full file specification.

The form of the DEFAULTFILE specifier is:

DEFAULTFILE = ce

where:

ce is a character expression that contains a default file
name specification string.

You can specify defaults for one or more of the following file
specification components:

• node (if the file specification contains a node name, RMS
will be used to access the file)

• device

• directory

• filename

• filetype

• file generation number

• network attributes

When yo u spec i fy any of the above components in the FILE or NAME
specifier, they override those values specified in DEFAULTFILE. Since
FOROTS processes DEFAULTFILE, FILE, and NAME in that order, the
components specified in NAME supercede all previous corresponding
components.

FORTRAN-10/20 VII 11-14 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

11.3.9 DENSITY Specifier

DENSITY
Specifier

The DENSITY specifier is ignored except when used with magnetic tape;
it permits you to specify the tape density. If you do not specify a
tape density, FORTRAN assumes that you have set the density at monitor
level or that you are satisfied with the system default for the
device.

The form of the DENSITY specifier is:

DENSITY = dens

where:

dens is a character expression having a value equal to one of
the following:

'200'
'556'
'800'
'1600'
'6250'
'SYSTEM'

SYSTEM specifies that the density is the default density for the
magnetic tape device being used.

11.3.10 DEVICE Specifier

DEVICE
Specifier

The DEVICE specifier enables you to specify the name of the device
involved in the data transfer. A logical name always takes precedence
over a physical name. The DEVICE arguments can specify I/O devices
located at remote stations, as well as logical devices.

The form of the DEVICE specifier is:

DEVICE= Character expression

If you omit this option, the logical name un (where un is the decimal
unit number} is tried. If this is not successful, the standard
(default) device associated with the unit is used (see Table 10-3).

11-15 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

DIALOG
Specifier

11.3.11 DIALOG Specifier

The DIALOG specifier enables you to type in additional OPEN specifiers
when the OPEN statement is actually executed.

If the DIALOG specifier is found in an OPEN list, then each time the
OPEN statement is executed FOROTS suspends execution and prompts the
terminal with an asterisk.

The form of the DIALOG specifier is:

DIALOG

You can respond to the asterisk prompt by entering a file
spec if ica t ion, DIALOG swi tches (see below), or a file spec if ica t ion
followed by DIALOG switches. The file specification may be a full
file specification including the device, directory name, and so on.

NOTE

A DIALOG switch is any OPEN specifier (except DIALOG,
DIALOG=, UNIT, NAME, FILE, IOSTAT, or ERR) preceded by
a slash (/).

For example, when FOROTS enters DIALOG mode, you can type a string
such as:

*DSK:FOO.BAR/MODE:BINARY/ACCESS:DIRECT

DIALOG =
Specifier

11.3.12 DIALOG= Specifier

The DIALOG= specifier enables you to include all or a portion of the
OPEN specifiers in a character expression. The contents of the
character expression are interpreted as if you had given the DIALOG
specifier (see above); and, when the asterisk prompt was given, you
had typed in the same string as is contained in the character
expression, followed by a carriage return.

The form of the DIALOG= specifier is:

DIALOG= Character expression

11-16 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

Example:

OPEN(UNIT=l,DIALOG=' DSK:FOOeBAR/ACCESS:SEQOUT/MODE:ASC II')
I=22
WRITE(1,100)I

10 0 FORMAT (I5)
END

DIRECTORY (TOP5-10)
Specifier

11.3.13 DIRECTORY Specifier (TOPS-10)

On TOPS-10, the DIRECTORY specifier is ignored except for disk files.
It specifies the location of the User File Directory (UFD) and,
optionally, the Sub File Directory (SFD), either of which can contain
the file specified in the OPEN statement.

The form of the DIRECTORY specifier is:

DIRECTORY= Character expression

The UFD is the directory in which a user's files are stored; the SFD
exists within the UFD. An SFD is often used to group files into
separate subdirectories.

The following is a sample of the UFD and SFD specification:

10,7,SFDA,SFDB

In the sample specification, 10,7 is the project-programmer
This is an adequate directory specification if the file is in
specified by 10,7. The SFDA and SFDB specify two levels of
directories. The complete directory specification indicates
file is located in subfile directory SFDB. As indicated, the
SFDB is through the UFD 10,7 and through the SFD SFDA.

Refer to the TOPS-10
complete description
directory structures.

NOTE

Monitor Calls
of directories

Manual for a
and multilevel

number.
the UFD
subfile

that the
path to

The following is an example of a character expression specification:

DIRECTORY='10,7,SFD1,SFD2,SFD3' ---.--~
project SubFile
Programmer Directory
Number Path

11-17 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

The following is an example of how to assemble a specification from
individual elements:

CHARACTER*10 PROJ,PROG,PATHl,PATH2
CHARACTER*l COMM

PROJ= '10'
PROG= '7'
PATHl= 'SFDA'
PATH2= 'SFDB'
COMM= ','
OPEN(UNIT=I,DIRECTORY=PROJ//COMM//PROG//COMM//PATHI//COMM//PATH2)

The above specification is equivalent to the following character
expression:

'10,7,SFDA,SFDB'

DIRECTORY (TOPS-20)
Specifier

11.3.14 DIRECTORY Specifier (TOPS-2~)

On TOPS-20, the DIRECTORY specifier is ignored except for disk files.
The DIRECTORY specifier enables you to define the path through the
directory structure to a file specified in the OPEN statement.

The form of the DIRECTORY specifier is:

DIRECTORY= Character expression

The argument to the DIRECTORY specifier is a character expression
whose elements comprise the directory path specification, for example:

OPEN(UNIT=22,DIRECTORY= 'GUEST')
!Looks for DSK:<GUEST)FOR22.DAT

or

CHARACTER*12 ID
ID= 'GUEST.CLASS3'
OPEN(UNIT=22,DIRECTORY=ID)
!Looks for DSK:(GUEST.CLASS3>FOR22.DAT

FORTRAN-10/20 VII 11-18 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

DISPOSE
Specifier

11.3.15 DISPOSE Specifier

The DISPOSE specifier enables you to specify an action to occur when
the file is closed.

The form of the DISPOSE specifier is:

DISPOSE = dis

where:

dis is a character expression having a value equal to one of
the following:

'KEEP'
'SAVE'
'DELETE'
'EXPUNGE'
'PRINT'
, LIST'
'PUNCH'

The DISPOSE specifier must have one of the following values:

KEEP

-SAVE

DELETE

EXPUNGE

PRINT

LIST

PUNCH

Specifies that the file is to be left where the OPEN
statement specifies. DISPOSE='KEEP' is the default.

Same as KEEP.

Specifies on TOPS-10 that, if the device is either a
DECtape or disk, delete the file; otherwise, take no
action.

On TOPS-20, if the device involved is a disk, delete
the file; otherwise, take no action.

On TOPS-10, same as DELETE. On TOPS-20, if the device
involved is a disk, expunge the file; otherwise, take
no action.

Specifies that the file will be printed and kept.
file must be on disk.

The

Specifies that the file will be printed and deleted.
The file must be on disk.

Specifies that the file will be punched on the paper
tape punch and kept. -The file must be on disk.

11-19 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

ERR
Specifier

11.3.16 ERR Specifier

The ERR specifier enables you to designate a statement number of an
executable statement, in the current program unit, to which control
passes if an error occurs during the execution of an I/O statement.

If an error occurs and no ERR specifier or IOSTAT specifier (see
Section 11.3.20) is supplied, the program types an error message. If
the program is running under batch, it is aborted.

If the program is not running under batch, it enters DIALOG mode after
processing all of the other specifiers, as if you had supplied the
DIALOG specifier (see Section 11.3.11). This is true regardless of
whether or not the OPEN statement was explicitly executed or implied
by the execution of the first data transfer statement for a unit.

The form of the ERR specifier is:

ERR= s

where:

s is the number of an executable statement to which program
control passes if an error occurs during the execution of
the statement that includes the ERR specifier.

The subroutine ERRSNS can be called to pinpoint the error. See
Appendix D for FOROTS error values returned by ERRSNS.

FILE
Specifier

11.3.17 FILE Specifier

The FILE specifier enables you to name the file involved in the data
transfer operation. You can specify a full file specification.

The form of the FILE specifier is:

FILE= Character expression

The value of the character expression Is any legal TOPS-10 or TOPS-20
file specification. (See the TOPS-10 Operating System Commands Manual
or the TOPS-20 User's Guide.)

11-20 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

If you omit the period and extension, the extension .DAT is assumed.
If just the extension is omitted, a null extension is assumed. Thus,
if you want a filename without an extension, remember to use the
per iod.

If a filename is not specified, a default name is generated that has
the fo rm:

FORxx.DAT

where:

xx is the FORTRAN logical unit number (decimal) or the logical
unit name for the default statements ACCEPT, PRINT, PUNCH,
READ, WRITE, or TYPE.

11.3.17.1 Remote File Specifications (TOPS-20) - A remote file
specification is a file specification that contains a nodename and
optionally, network access information in the following format:

node::dev:<dir>file[.ext.gen;USERID:id;PASSWORD:pwdiACCOUNT:act]

USERID, PASSWORD, and ACCOUNT attributes may be optional depending on
the default access privileges of the remote directory or file. DEVICE
may be optional depending on the defaults in effect at the remote
host. When the file specification is remote, RMS is used to access
the file. For all remote access, RMS uses the default protection of
the remote directory or system.

NOTE

FORTRAN supports remote file access only to other
TOPS-20 and VMS systems. Note that logical names
defined at the local host will not be expanded or
interpreted by FORTRAN/RMS before transmission to the
remote host.

11.3.18 FILESIZE (INITIALIZE) Specifier (TOPS-10)

FILESIZE
(INITIALIZE)

Specifier
(TOPS-10 only)

The FILESIZE (or INITIALIZE) specifier is used for disk operations
only. It enables you to estimate the number of words that an output
file is going to contain.

The form of the FILESIZE specifier is:

FILESIZE= Integer expression

The value assigned as a FILESIZE argument can be a integer expression,
and is rounded up to the next higher block boundary (multiple of 128).

FORTRAN-10/20 VII 11-21 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

The value specified by FILESIZE= is used as an estimate only. The
effect of FILESIZE= is to help the monitor try to choose the best
place on the disk to put the file.

FORM
Specifier

11.3.19 FORM Specifier

The FORM specifier designates whether the records in a data transfer
operation are formatted or unformatted. You should not mix formatted
(character) and unformatted (binary) records in the same file.

The form of the FORM specifier is:

FORM ft

where:

ft is a character expression having a value equal
'FORMATTED' or 'UNFORMATTED'.

The arguments to the FORM specifier are:

to

FORMATTED specifies that the records being
contain character (formatted) data.

transferred

UNFORMATTED specifies that the records being
contain binary (unformatted) data.

transferred

If FORM is not specified and MODE is'ASCII' or
value for FORM is 'FORMATTED'. Otherwise,
'IMAGE', or 'DUMP' (TOPS-10 only), the default
'UNFORMATTED'.

, LIN ED', the de fa u 1 t
if MODE is 'BINARY',
value for FORM is

If both FORM and MODE are specified and they are incompatible, then
DIALOG mode is entered, and you are asked to correct the
incompatibility. In the following example, MODE='BINARY' and
FORM='FORMATTED' are specified in the same OPEN statement. As shown
below, when the program is executed, interactive DIALOG mode is
automatically entered to enable the user to correct the
incompatibility.

PROGRAM TRIMP
OPEN(UNIT=l,MODE='BINARY' ,FORM='FORMATTED')
WRITE(UNIT=1,FMT=101)

101 FORMAT(lX,'This is a test.')
END

EXECUTE TRIMP
LINK: Loading
[LNKXCT TRIMP execution]
?OPEN unit 1 DSK:FOR01.DAT at MAIN.+4 in TRIMP (PC 165)
?Incompatible attributes /MODE:BINARY /FORM:FORMATTED

11-22 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

[Enter correct file specs]
*/MODE:ASCII
CPU time 0.3 Elapsed time 11.4
TYPE FOR01.DAT
This is a test.

If neither FORM nor MODE is specified the default value for FORM
depends on the access. If the access is SEQUENTIAL (or is defaulted),
the default for FORM is FORMATTED. If the access is DIRECT or RANDOM,
the default for FORM is UNFORMATTED.

NOTE

For ASCII devices (line printer, plotter, terminal,
industry magnetic tape), the FORM= specifier has no
meaning and is ignored; both formatted and unformatted
data transfers are legal (see Section 10.3.3).

11.3.20 IOSTAT Specifier

IOSTAT
Specifier

The IOSTAT specifier identifies an integer variabie that is used to
store the I/O status code during the execution of a statement.

The form of ,the IOSTAT specifier is:

IOSTAT= Integer variable or integer array element

If no error occurs during the execution of the statement, the defined
variable is set to zero.

If an error does occur during the execution of the statement, the
defined variable is assigned a positive integer value that corresponds
to the number of the FOROTS error that occurred (see Appendix D for
FOROTS error codes).

When an error occurs, no error message is typed; instead, the program
either continues at the ERR= statement number (if the ERR specifier is
included), or continues at the statement immediately following the
OPEN statement (if no ERR specifier is included).

11-23 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

KEY (TOPS-20)
Specifier

11.3.21 KEY Specifier (TOPS-20)

The KEY specifier defines the keys used by RMS to access records in an
i n de xed f i 1 e •

For new RMS indexed files the KEY specifier is mandatory. The
presence of KEY= causes RMS to be invoked, whether or not
ORGANIZATION= is specified. If the KEY specifier is present without
the ORGANIZATION= being specified, ORGANIZATION= defaults to
'INDEXED'. If ORGANIZATION= and KEY= are both specified,
ORGANIZATION= must be 'INDEXED', or an error occurs or the ERR= branch
is taken.

For existing RMS indexed files, the KEY specifier is optional; if
given, it is ignored, although RMS does update the KEY XAB chain given
by the user with the key information from the file. (See Chapter 18
for more information on RMS data structures.)

The form of the KEY specifier is:

KEY = (kspec[,kspec] •••)

where:

kspec

where:

has the form:

e1:e2[:dt]

el is an integer expression specifying the first byte
position of the k~y.

e2 is an integer expression specifying the last byte
position of the key.

dt is the optional data type of the key: either
INTEGER or CHARACTER.

The default data type of a key is CHARACTER. The position of a key
specification in the list determines a key's key-of-reference number.
This number is used in any subsequent I/O statement to specify the
same key. The primary key is key-of-reference number 0, the first
alternate key is key-of-reference number 1, and so forth.

The key fields and key-of-reference numbers are permanent attributes
of an indexed file and are established when the file is created. When
an existing file is opened, key definitions and key-of-reference
numbers are obtained from the file itself.

FORTRAN-10/20 VII 11-24 February 1987

FI LE-CONTROL AND DEVICE-CONTROL STATEM.ENTS

The KEY specifier defines the access key for records in an indexed
file. The key starts at position el in the record and has a length of
e2-el+l. The values of el and e2 must be such that:

1 .LE. (el) .LE. (e2) .LE. record-length
1 .LE. (e2-el+l) .LE. 255

You must define at least one key for a new indexed file. This
mandatory key is called the primary key of the file and usually has a
unique value of each record (this is the default condition). You can
also define other keys, called alternate keys. RMS allows up to 254
alternate keys.

When using keys of type INTEGER, RMS requires that key length e2-el+l
equals 4. INTEGER key lengths other than 4 generate an error.

11.3.22 LIMIT Specifier

LIMIT
Specifier

The LIMIT specifier designates the number of output units (such as
pages) for spooled print or punch requests, which result from using
DISPOSE='PRINT', DISPOSE='PUNCH', or DISPOSE='LIST' (see Section
11.3.15) •

The form of the LIMIT specifier is:

LIMIT= Integer expression

11.3.23 MAXREC Specifier (TOPS-20)

MAXREC (TOPS-20)
Specifier

The MAXREC specifier defines the maximum number of records permitted
in a direct access RMS file. If MAXREC is omitted, the maximum number
is unlimited. If MAXREC is specified, RMS returns an error when a
record number greater than the value specified is written to the file.
This keyword is ignored for non-RMS files.

The form of the MAXREC specifier is:

MAXREC = Integer expression

FORTRAN-10/20 VII 11-25 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

MODE

~ ____ s_p_e_C_if_ie_r ____ J
11.3.24 MODE Specifier

The MODE specifier defines the data mode of an external file or
record.

The form of the MODE specifier is:

MODE mod

where:

mod is a character expression having a value equal to one of
the following:

'ASCII'
'LINED'
'BINARY'
, IMAGE'
'DUMP'

After a MODE has been assigned (either explicitly or by default), it
cannot be changed until the file is closed and then reopened.

The default value of MODE depends on the values of FORM and ACCESS.
If FORM is FORMATTED, then the default MODE is ASCII. If FORM is
UNFORMATTED, then the default MODE is BINARY. If ACCESS is SEQUENTIAL
and no FORM= is specified, then the default MODE is ASCII; if ACCESS
is DIRECT or RANDOM, and no FORM= is specified, then the default MODE
is BINARY. (See Section 11.3.19 for details on FORM, and Section
11.3.1 for details on ACCESS.)

Character data is supported in formatted BINARY and IMAGE mode files;
it is not supported in DUMP mode files.

The possible values of MODE are:

ASCII

LINED

Specifies the data to be 7-bit ASCII characters.
Records are terminated with a line feed, form feed, or
vert i c'al tab.

Takes effect on input only. For output, this mode
defaults to ASCII. LINED specifies the data to be
7-bit ASCII characters with optional line sequence
numbers. FORTRAN removes the line sequence numbers, if
present, before supplying the data to the user. (The
1 ine sequence number can be obtained by using the
function LSNGET, see Section 13.3.1.)

Note that a page mark in a file containing line
sequence numbers is a separate record. FORTRAN removes
the blank sequence number, and the carriage return/form
feed sequence is read as a blank record.

This value is ignored for RMS files.

FORTRAN-10/20 VII 11-26 February 1987

BINARY

IMAGE

DUMP
TOPS-10

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

specifies that data is formatted as a FORTRAN binary
data file. A BINARY file is composed of 36-bit words
(see Section 10.3.2). The first word of each record is
written by FOROTS and specifies the beginning of the
binary record; this 36-bit value is called a type 1
Logical Segment Control' Word (LSCW).

Each binary record can contain one or more type 2
LSCWs. The type 2 LSCW, written by FOROTS under
certain conditions, is used to mark a record that spans
internal buffer boundaries.

A third FOROTS-written word, the type 3 LSCW, is always
written as the last 36-bit value in each BINARY record.

All data in a "BINARY" transfer remains equivalent in
its external form with its internal representation.

For RMS files, specifying BINARY is equivalent to
specifying IMAGE. RMS files do not contain LSCWs.

Specifies an unformatted binary mode. Like the BINARY
form of unformatted transfers, IMAGE specifies that
data is transferred as 36-bit values, with the internal
and external representation of the data remaining the
same.

Unlike BINARY files, IMAGE files do not contain record
information (LSCWs); they contain only the data
transferred. IMAGE files can be backspaced if a record
size is specified.

Corresponds to TOPS-10 DUMP mode
Monitor Calls Manual.) Record
Character data cannot be written
mode files. Note that there
performance advantage to using
DUMP mode internally for all disk

NOTE

I/O. (See the TOPS-10
size is ignored.

into or read from DUMP
is little or no

DUMP, as FOROTS uses
files.

For ASCII devices (line printer, plotter, terminal,
industry magnetic tape), the MODE= specifier has no
meaning and is ignored; both formatted and unformatted
data transfers are legal (see Section 10.3.3).

Table 11-2 summarizes the different MODE arguments that are supported
on different devices.

Table 11-2: DEVICE and MODE Cross-Table

MODE =
--

(TOPS-10)
Device 'ASCII' 'LINED' 'BINARY' 'IMAGE' 'DUMP'

Disk (sequential) X X X X X
Disk (direct) X X X
DECtape X X X X
Terminal X
Magtape X X X X
Line Printer X X
Card Reader X .x X
Card Punch X X X
Paper Tape Reader X X X
Paper Tape Punch X X X

~-- ._--, . .,--

FORTRAN-10/20 VII 11-27 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

NAME
Specifier

11.3.25 NAME Specifier

The NAME specifier is used to specify a full file specification. You
can use this specifier instead of the DEVICE, FILE, and/or DIRECTORY
specifiers.

The form of the NAME specifier is:

NAME= Character expression

Examples of the NAME specifier are:

(TOPS-H~): NAME='DSK:FOO.BAR[10,34]'

(TOPS-20): NAME='PS:<SMITH)BILLING.DAT'

The NAME specifier can not be given in DIALOG mode. Also, the OPEN
statement cannot have both a DIALOG= specifier and a NAME specifier.

NOSPANBLOCKS (TOPS-20)
Specifier

11.3.26 NOSPANBLOCKS Specifier (TOPS-20)

The NOSPANBLOCKS specifier enables you to specify that RMS records are
not to cross disk block (page) boundaries. If any record exceeds the
size of the physical block, an error occurs.

The form of the NOSPANBLOCKS specifier is:

NOSPANBLOCKS

This specifier has no effect on non-RMS files or on RMS files other
than new relative or sequential files.

FORTRAN-10/20 VII 11-28 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

11.3.27 ORGANIZATION Specifier (TOPS-20)

ORGANIZATION (TOPS-20]
Specifier

The ORGANIZATION specifier determines the internal organization of an
RMS file. This specifier invokes RMS (unless 'UNKNOWN' is specified).

The form of the ORGANIZATION specifier is:

ORGANIZATION org

where:
org is a character expression having a value equal to one

of the following:

'SEQUENTIAL'
'RELATIVE'
'INDEXED'
'UNKNOWN'

For new files, the default file organization is SEQUENTIAL. For
existing files, the value specified must be the same value as that of
the existing file, or an error message is displayed or the ERR= branch
is taken.

11.3.28 PADCHAR Specifier

PADCHAR
Specifier

The PADCHAR specifier is used only with formatted output data transfer
operations. PADCHAR enables you to specify a character that will be
used to pad fixed-length formatted records, on output only, to their
specified record length (see the RECL(RECORDSIZE) specifier, Section
11.3.33) •

The form for the PADCHAR specifier is:

PADCHAR= A character expression in which the first character is
used

FORTRAN-10/20 VII 11-29 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

The default pad character is space. The pad character is
fixed-length records are not being used (that
RECL(RECORDSIZE) specifier is absent), or if formatted
being done.

NOTE

ignored
is, if
I/O is

To specify a null character for the pad character, you
must use the function CHAR (see Chapter 13), since the
compiler does not allow null character constants, for
example:

OPEN (UNIT=1,PADCHAR=CHAR(0))

PARITY
Specifier

11.3.29 PARITY Specifier

if
the
not

The PARITY specifier is only used for magnetic tape operations. It
permits you to specify parity to be observed (odd or even) during the
transfer of data.

The form of the PARITY specifier is:

PARITY = par

where:

par is a character expression having a value equal to 'ODD' or
'EVEN' •

PROTECTION (TOP5-10)
Specifier

11.3.30 PROTECTION Specifier (TOPS-10)

This option specifies a protection code to be assigned to the data
file being transferred. The protection code is a 3-digit octal value
indicating the level of access to the file.

Each of the three numbers in the protection code has a specific
meaning. The number in the leftmost position designates the file
owner's protection; the middle number designates the project member's
protection; and the rightmost number designates the protection for all
others users on the system. The system default for the file
protection is assigned if a protection is not specified.

11-30 February 1987

FILE~CONTROLAND DEVICE-CONTROL STATEMENTS

On TOPS-10, the form of the PROTECTION specifier is:

PROTECTION= Integer expression

Figure 11-1 illustrates the TOPS-10 3-digit octal file protection
code.

NOTE

When setting the protection code for a file open for
output, be sure not to set the protection such that
the file is protected against writing by the program;
if you should do this, the OPEN statement will fail.

To protect the file against writing by the owner, you
should give the PROTECTION specifier in the CLOSE
statement.

tr---- File Owner

PROTECTION = nnn....-Other Users

+I----prOject Members

File owner

Project Members

Other Users

Figure 11-1:

An octal digit in the first position specifies the file access for the file owner. The file owner
is the user whose programmer number matches the directory in which the file is
contained.

An octal digit in the second position specifies the file access for the project members.
Project members are users whose project number matches the directory in which the file
is contained.

An octal value in the third position specifies the file access for all users other than the file
owner or a project member.

MR-S-1748-B1

TOPS-10 File Protection Number

Table 11-3 lists all
protection code.
information.

the possible values for each field of the
Refer to the TOPS-10 Monitor Calls Manual for more

NOTE

The File Daemon referred to in Table
11-3 provides extended file protection.
The File Daemon allows any user to
specify who can and who cannot access
their files (if applicable). (Refer to
the TOPS-10 Operating System Commands
Manual.)

11-31 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

Table 11-3: TOPS-lO Protection Code Values
,-

Octal
Value Meaning in Owner Field

1---
0 The file owner can execute, read, append to, update, write, rename, or change the protection of

the file. The File Daemon is not called on a protection failure.

1 The file owner can execute, read, append to, update, write, or rename the file. The File Daemon
is not called on a protection failure.

2 The file owner can execute, read, append to, update, or write the file. The File Daemon is not
called on a protection failure.

3 The file owner cannot access the file. However, the owner can use the RENAME monitor call to
change the file protection. The File Daemon is not called on a protection failure.

4 The file owner can execute, read, append to, update, write, rename, or change the protection of
the file. The monitor calls the File Daemon on a protection failure.

5 The file owner can execute, read, append to, update, or write the file. The monitor calls the File
Daemon on a protection failure.

6 The file owner can execute or read the file. The monitor calls the File Daemon on a protection
failure.

7 The file owner cannot access the file. However, the owner can use the RENAME monitor call to
change the file protection. The monitor calls the File Daemon on a protection failure.

Octal
Value Meaning in Project Member and Other User Fields

0 The project member (or other) can execute, read, append to, update, write, rename, or change the
protection of the file.

1 The project member (or other) can execute, read, append to, update, write, or rename the file.

2 The project member (or other) can execute, read, append to, update, or write the file.

3 The project member (or other) can execute, read, append to, or update the file.

I 4 The project member (or other) can execute, read, or append to the file.

l
The project member (or other) can execute or read the file.

The project member (or other) can only execute the file.

The project member (or other) has no access to the file.

On TOPS-10, PROTECTION can be an integer expression. If the argument
is assigned a zero value or is not specified, the default protection
code established for the TOPS-10 installation is used.

PROTECTION (TOPS-20)
Specifier

11.3.31 PROTECTION Specifier (TOPS-29)

The PROTECTION specifier enables you to designate an octal protection
code for the file. The protection code is a 6-digit octal value that
designates the access to the file of the owner, group members, and
other system users.

11-32
February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

On TOPS-20, the form of the PROTECTION specifier is:

PROTECTION= Integer expression

Figure 11-2 illustrates a TOPS-20 protection code.

[fr==
File Owner

r:==Group Member
+ + Other Users

PROTECTION = nnnnnn

File Owner The leftmost two digits designate the file access for the file owner. The file owner is the
user who is connected to the directory in which the file resides.

Group Member The middle two digits designate the file access for group members. Group members are
established by the system administrator. A group membership enables a user to share
files among other users in the same group.

Other Users The rightmost two digits designate the file access for all users on the system, other than
the file owner or a group member.

Figure 11-2: TOPS-20 Protection Number

NOTE

This specifier is ignored for remote files. Instead,
the default protection of the remote directory or
system is used.

MA-S-1749-81

Table 11-4 lists the possible protection values and their meanings in
the TOPS-20 file protection code.

Table 11-4: TOPS-20 Protection Code Values

Octal
Value Meaning in Owner, Group Member, or Other User Fields

77 Permits full access to the file.

40 Permits read-only access to the file.

20 Permits write and delete access to the file.

10 Permits execute-only access to the file.

04 Permits append-only access to the file.

02 Permits listing of the file specification using the DIRECTORY command.

00 Permits no access to the file.

FORTRAN-10/20 VII 11-33 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

On TOPS-20, PROTECTION specifies a protection code to be assigned to
the data file being transferred. The protection code determines the
level of access that three classes of users have to the file.

PROTECTION takes an integer expression as an argument. If PROTECTION
is assigned a zero value or is not specified, the default protection
code established for your connected directory is used.

READONlY
Specifier

11.3.32 READONLY Specifier

For local non-RMS files, the READONLY specifier is used to specify
that the program will only read from the file. The accessing process
can read but not write to the file. Output to the file is illegal and
will cause an error at execution time.

For RMS or remote files, if the first process to access the file
specifies READONLY, the file is open for read-only access by that
process, as for non-RMS files. Any subsequent accessing process must
specify READONLY to obtain any a~cess to the file. If READONLY is not
specified by the subsequent accessor, or if SHARED (see Section
11.3.35) is specified, access to the file is denied with a "?File is
locked" error. Thus, the access-sharing capabilities of the file are
determined by the first process to access the file.

The form of the READONLY specifier is:

READONLY

RECl
(RECORDSIZE)

Specifier

11.3.33 RECL (RECORDSIZE) Specifier

For non-RMS files, the RECL (or RECORDSIZE) specifier enables you to
specify the number of characters or words in each record transferred.
RECL lS required for all files opened for direct access
(ACCESS='DIRECT', 'RANDOM', or 'RANDIN'). (See Section 11.3.1.)

For RMS files, RECL specifies the Maximum Record Size (MRS).

The form of the RECL specifier is:

RECL= Integer expression

FORTRAN-10/20 VII 11-34 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

For non-RMS files:

• In an ASCII transfer (MODE='ASCII' or 'LINED'), the value
assigned to RECL specifies the number of characters in each
record.

For output to disk or CORE-DUMP tape files, in addition to
these characters, FOROTS adds a carriage return/line feed to
each record, followed by enough null characters to fill the
current word, so that records are word-aligned. RECL is
enforced on output by padding short records with the padding
character for formatted records. Long records are truncated.

• FORTRAN enforces a specified RECL for all input operations.
If the RECL specified in an OPEN statement is different from
the actual size of the records, FOROTS reads the number of
characters specified by RECL.

• For input to disk or CORE-DUMP tape files, specifying a
record size directs FOROTS to read records that are
word-aligned. The calculation of the actual recordsize is
the size specified, plus two for the carriage return/line
feed, plus the number of nulls necessary to word-align the
record.

• For INDUSTRY tapes, with RECORDTYPE='FIXED', RECL specifies
the exact number of characters in each record; there are no
terminators or padding characters. For INDUSTRY tapes with
RECORDTYPE='VARIABLE', RECL specifies the maximum record size
in the file, excluding the RCW.

When the record is read, regardless of the contents of the
record, it is interpreted as specified by the rules above;
there are RECL characters of data, and the rest are ignored.
No interpretation is done of the characters in the data part
of the record. These characters appear in the FOROTS line
buffer exactly as they appear in the file, including nulls
and control characters.

• In the case of MODE='LINED', the value of RECL excludes the
five characters and tab in each line-sequence number.

• In a binary transfer (MODE='BINARY', or 'IMAGE'), the value
assigned to RECL specifies the number of 36-bit words in each
record. For MODE='BINARY', the value in RECL excludes the
LSCWs written by FOROTS.

NOTE

If MODE=' DUMP' is specified, RECL is ignored.

For RMS files:

• If the file contains fixed-length records, RECL specifies the
size of each record.

• If the file is a sequential file and contains variable-length
records, RECL is optional and specifies the maximum length
for each record. If no RECL has been specified, RMS does not
perform maximum-length checking.

FORTRAN-10/20 V11 11-35 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

• As with non-RMS files, if the records are formatted, the
length is in bytes; if unformatted, in words.

• If RECL is not specified, the MRS value specified when the
file was created is used.

• If RECL is specified for an existing file with fixed-length
records or relative organization, and the value is different
from the actual length of the records in the file, an error
message is displayed, or the ERR= branch is taken.

• If a program attempts to write a variable-length record that
is longer than the non-zero MRS value specified when the file
was created, an error is displayed or the ERR= branch is
taken. Writing fixed-length records that exceed RECL
produces a run-time warning, and the record is truncated to
the specified size.

• RECL is required when creating a new relative or indexed
file, or when the RECORDTYPE is (or defaults to) FIXED.

For local RMS files, RMS allows the following maximum record sizes for
file/record formats:

Organization

Sequential
Sequential
Relative
Relative
Indexed
Indexed

Record format

Fixed-length
Variable-length
Fixed-length
Variable-length
Fi x ed-leng th
Variable-length

Maximum

262,143 bytes
262,143 bytes
262,143 bytes
262,143 bytes
3,579 words
3,578 words

For remote files, the maximum size for an RMS record transfer cannot
exceed RMS's DAP buffer size. If the record exceeds this limit, a
"?Record too big" error is displayed or the ERR= branch is taken.

RECORDTVPE
Specifier

11.3.34 RECORDTYPE Specifier

The RECORDTYPE specifier defines the format of the records in a file.

The form of the RECORDTYPE specifier is:

RECORDTYPE = rtype

where:

rtype is a character expression having a value equal to one
of the following:

FORTRAN-10/20 VII

'FIXED'
'STREAM'
'VARIABLE'
'UNKNOWN'

11-36 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

The possible values for RECORDTYPE are:

FIXED

STREAM

VARIABLE

UNKNOWN

is not defined for 36-bit format (CORE-DUMP). For
INDUSTRY magnetic tape, this is the standard ANSI
"F" tape record format. Thus, the record data is
written with no terminators or carriage control
characters, one record directly after another, to
fill exactly fixed-length blocks. For this record
format, a RECORDSIZE must be specified in the OPEN
statement.

With this record format, all physical blocks on the
tape are the same size except for the last block,
which may be a short block.

For all tape formats, this record format specifies
that for formatted files, a standard stream record
terminator (CRLF) is placed at the end of each
record, and that a standard stream terminator is
expected on input to delimit records. For
unformatted files, the behavior is identical to that
of MODE='IMAGE'.

With this record format, all physical blocks on the
tape are the same size except for the last block,
which may be a short block.

For 36-bit mode (CORE-DUMP), the bytes in the last
36-bit word after the last character of data will be
nulls. For all tape formats, if a RECORDSIZE is
specified for a formatted file, the actual record
read or written consists of the data, CRLF, and the
number of nulls necessary to word-align the record.

is not defined for 36-bit tape format (CORE-DUMP).
For INDUSTRY magnetic tape, this is the standard
ANSI "D" tape record format. Thus, records are
variable in length, and the record data is written
with no terminators or carriage-control characters,
and preceded by a 4-byte record size (referred to as
the Record Control Word or RCW).

Blocks are variable length, not to exceed the block
length specified in the OPEN statement. If a
RECORDSIZE is specified in the OPEN statement, this
is the maximum number· of bytes specified in the
4-byte RCW that precedes each record. The record
actually read or written is four characters less
than specified in the RCW.

If the record type cannot be determined.

If no RECORDTYPE specifier is used, its value is UNKNOWN, and the
default record types are the following:

File Type Default Record Type

Non-RMS files 'STREAM'

RMS relative and indexed files 'FIXED'

All other RMS files 'VARIABLE'

FORTRAN-10/20 VII 11-37 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

NOTE

VMS FORTRAN may write special 'segmented' RMS
sequential files with embedded record control bytes as
part of the data for each RMS record in the file (VMS
FORTRAN RECORDTYPE='SEGMENTED').

These files can be read correctly only from VMS
FORTRAN. Attempts to read these files from a remote
TOPS-20 system using FORTRAN-10/20 VII will return two
bytes of control information as part of the data.

SHARED (TOPS-20)
Specifier

11.3.35 SHARED Specifier (TOPS-20)

The SHARED specifier, for RMS and remote non-RMS files, specifies that
the file is opened for write sharing: at least one program is writing
a file and at least one other program is either reading or writing the
same file. For write sharing to occur, all programs that access the
file must specify SHARED. Attempts by a subsequent accessor to write
a record that has already been locked results in a "?Record locked"
error, or the ERR= branch is taken.

The form of the SHARED specifier is:

SHARED

If neither READONLY nor SHARED is specified, the file is open for
exclusive access; that is, the initial accessor can read and write to
the file, but subsequent accessors are denied any access.

This specifier is ignored for local non-RMS files.

FORTRAN-10/20 VII 11-38 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

STATUS
(TYPE)

Specifier

11.3.36 STATUS (TYPE) Specifier

The STATUS (or TYPE) specifier lets you specify whether or not the
file being opened must exist, or what to do with the opened file when
it is closed.

The form of the STATUS specifier is:

STATUS = sta

where:

sta is a character expression whose value is equal to one of
the following:

'EXPUNGE'
'OLD'
'NEW'
'SCRATCH'
'UNKNOWN'
'KEEP'
'DELETE'

The arguments to STATUS are:

EXPUNGE On TOPS-10, this specifies that the file is deleted
when it is closed. On TOPS-20, this specifies that the
file is deleted and expunged when it is closed.

NOTE

On TOPS-10, any delete also expunges a file
from storage. On TOPS-20, a DELETE operation
marks the file as deleted; an EXPUNGE operation
immediately erases the file from storage.

OLD Specifies that the file being opened must already
exist. If the file does not exist, an error results.

NEW On TOPS-10, STATUS='NEW' specifies that the file must
not exist. If the file does exist, an error results.
An error also occurs if you specify STATUS='NEW' with
ACCESS='SEQIN' ,'SEQUENTIAL' ,'SEQINOUT' (to a read-only
device), or 'RANDIN' (see Section 11.3.1).

On TOPS-20, the STATUS=' NEW' specifier acts
differently, depending on what you have in the
directory before STATUS=' NEW' is executed.

11-39 February 1987

SCRATCH

UNKNOWN

KEEP

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

Also, the way you specify the file in the OPEN
statement which contains the STATUS='NEW' specifier
influences the way the STATUS=' NEW' specifier operates.
The following list describes the ways that this
specifier can operate when used on TOPS-20.

1. If the file specified in the OPEN statement does
not currently exist in the directory, and no
generation number is specified, then the
STATUS='NEW' specifier creates the specified file
and gives it a generation number of 1.

2. If the file specified in the OPEN statement
contains a name, extension, and generation number
that does not exist, the specified file is used.

3. If the file specified in the OPEN or CLOSE
statement contains a name, extension, and
generation number that is exactly the same as an
existing file in your directory, then STATUS='NEW'
causes an error, and no file is created.

4. If you did not specify a generation number, but the
file specified has the same name and extension as
an existing file in your directory, then the file
with the same name and extension and the next
highest generation will be created.

Specifies that the file will be automatically
when the file is closed. STATUS='SCRATCH'
DISPOSE='EXPUNGE' •

deleted
impl ies

A SCRATCH file is always given a name by
name of the file is inaccessible to
program.

FOROTS. The
the FORTRAN

If STATUS=' SCRATCH' is used, you must not specify FILE,
DIRECTORY, PROTECTION, or VERSION. If your program is
writing a file with STATUS='SCRATCH', and the file is
being written to disk, you can retain it by executing a
CLOSE statement that renames the file to a specified
name.

If a file is opened with STATUS='SCRATCH', the access
must be ACCESS='SEQUENTIAL' (or 'SEQINOUT') or
ACCESS='DIRECT' (or 'RANDOM') (see Section 11.3.1).

Specifies that a file opened for an input operation
must exist. When a file is opened for output with
STATUS='UNKNOWN', if the file exists, it is superseded;
if it does not exist, it is created.

UNKNOWN is the default for STATUS. This value is used
unless you specify STATUS or unless the value of STATUS
is otherwise determined by the ACCESS specifier.

Specifies that the file is not deleted.
STATUS='KEEP' is equivalent to
DISPOSE='SAVE' and STATUS='UNKNOWN'.

11-40

Specifying
specifying

February 1987

DELETE

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

On TOPS-10, specifies that the file will be erased when
the file is closed.

On TOPS-20, specifies that the file will be deleted
when the file is closed. The file is erased when a
TOPS-20 EXPUNGE command is given. To undelete a
deleted file, use the TOPS-20 UNDELETE command.

TAPEFORMAT]
Specifier .

11.3.37 TAPEFORMAT SPECIFIER

The TAPEFORMAT specifier defines the physical format of the magnetic
tape.

The form of the TAPEFORMAT specifier is:

TAPEFORMAT = tmode

where:

tmode is a character expression having a value equal to
'CORE-DUMP' or 'INDUSTRY'.

The values for the TAPEFORMAT specifier are:

CORE-DUMP specifies the "DIGITAL-compatible" tape format, which
is 36-bits. stored in five frames on a 9-track tape.
The SET TAPE RECORDSIZE (TOPS-20) or SET BLOCKSIZE
(TOPS-10) command is interpreted to be the number of
36-bit words in the magnetic tape blocks on the tape,
and is used if no BLOCKSIZE specifier is given in the
OPEN statement. If a BLOCKSIZE specifier is given in
the OPEN statement, it is interpreted to be the number
of 36-bit words for both formatted and unformatted
files.

INDUSTRY specifies characters are read or written in standard
industry tape format, one character per tape frame.

11-41 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

UNIT
Specifier
(required)

11.3.38 UNIT Specifier (Required)

The UNIT specifier defines the FORTRAN logical unit number to be used.
FORTRAN devices are identified by assigned decimal numbers within the
range 0-99 (see Table l0-3). UNIT must be an integer expression.

The form of the UNIT specifier is:

UNIT= Integer expression

If the unit specifier is the first specifier given in the OPEN
statement, the keyword UNIT= is optional. For example the following
statement opens a file on unit 20:

OPEN (20,FILE='MYFILE')

NOTE'

The FORTRAN standard logical unit assignments are
described in Section 10.4.3.1. Although the range of
logical unit numbers shown in Table 10-3 is 0-99, the
range of UNIT numbers is an installation-defined
parameter.

USER OPEN (TOPS-20)
Specifier

11.3.39 USEROPEN Specifier (TOPS-20)

The USEROPEN specifier is used to specify the name of an optional
user-supplied external function. This function can set various RMS
parameters that FORTRAN otherwise defaults, and must perform the
actual OPEN in place of FOROTS. This function is intended for use
with RMS files only; a USEROPEN function used with a remote non-RMS
file can produce indeterminate results.

The form of the USEROPEN specifier is:

USEROPEN proc ed ur e- name

where:

proced ure-name

FORTRAN-10/20 VII

is the symbolic name of the USEROPEN function.
The function name must be declared EXTERNAL.

11-42 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

The function must perform both $OPEN and $CONNECT RMS service calls,
returning AC0 non-zero on any non-recoverable failure. If AC0 is
returned zero, FOROTS assumes the function has succeeded, and program
execution continues. If AC0 is returned non-zero, FOROTS assumes the
USEROPEN function has failed, and issues an error (or takes the ERR=
branch) based on the STS and STV values returned by RMS to FOROTS.

See Section 18.9 for more information on USEROPEN.

11.3.40 VERSION Specifier (TOPS-10)

VERSION (TOP5-10)
Specifier

Use the VERSION specifier for disk operations only; it enables you to
assign a 12-digit octal version number to an output file.

The form of the VERSION specifier is:

VERSION=Integer expression

11.4 CLOSE STATEMENT

The CLOSE statement disassociates an active file from a logical unit
and releases the memory occupied by I/O buffers and other unit-related
data. The CLOSE statement can also change some of the file
characteristics that were assigned during the OPEN, such as the name,
protection, directory, and disposition of the file.

Once a CLOSE statement has been executed, you must use another OPEN
statement (or implicit OPEN) to regain access to the closed file.

The form of the CLOSE statement is:

CLOSE (closelist)

where:

closelist

FORTRAN-10/20 VII

is a list of CLOSE statement specifiers. This
list must contain the UNIT specifier (see Section
11.5.9) and can optionally contain other
specifiers.

11-43 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

11.4.1 Implicit CLOSE

An implicit CLOSE occurs when FOROTS automatically closes a logical
unit without execution of a CLOSE statement. This can happen when a
program terminates, or when you execute an OPEN for a unit that is
already connected to another file.

11.5 CLOSE STATEMENT SPECIFIERS

All of the CLOSE statement specifiers are optional, except the UNIT
specifier which is required. Some CLOSE statement specifiers have the
same formats as the corresponding specifiers in the OPEN statement.

Table 11-5 summarizes the specifiers in the CLOSE statement, and the
type of value required by each. A section number is provided to refer
to detailed descriptions of each specifier.

11-44 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

Table 11-5: Summary of CLOSE Statement Specifiers and Arguments

Argument Possible Value Section

DEVICE = Character expression 11.5.1

DIALOG 11.5.2

DIALOG = Character expression 11.5.3

DIRECTORY = Character expression 11.5.1

DISPOSE = Character expression with one of the following values: 11.5.4
'SAVE', 'DELETE', 'PRINT', 'KEEP', 'LIST', 'PUNCH',
'EXPUNGE'

ERR = Statement number 11.5.5

FILE = Character expression 11.5.1

IOSTAT= Integer variable or integer array element 11.5.6

LIMIT = Integer expression 11.5.7

NAME = Character expression 11.5.1

PROTECTION = Integer expression 11.5.1

STATUS =
TYPE =

UNIT =

Character expression with one of the following values: 11.5.8
'KEEP', 'DELETE', 'EXPUNGE'

Integer expression 11.5.9

NOTE

For compatibility with previous versions of
FORTRAN-10/20, you can specify a numeric array name as
the value of each of the following specifiers:

DIALOG=
DIRECTORY
NAME

When a numeric array name is used, FOROTS assumes that
it contains a string of characters terminated by a
null character.

In addition, you can specify a numeric variable as the
value of the DEVICE and FILE specifiers. If the
variable is single precision, FOROTS assumes that it
contains 5 characters; if it is double precision,
FOROTS assumes that is contains 10 characters.

The use of numeric array names and
in place of character variables
feature.

11-45

numeric variables
is a nonstandard

February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

DEVICE, DIRECTORY,
FILE, NAME, and

PROTECTION
Specifiers

11.5.1 DEVICE, DIRECTORY, FILE, NAME, and PROTECTION Specifiers

The CLOSE statement file identification specifiers can be used when
you want to rename the output file when it is closed. Their formats
are the same as the corresponding specifiers in the OPEN statement.

If any of these specifiers are given in the CLOSE statement, the file
is renamed when it is closed. If some, but not all of the file
identification parameters are specified on a CLOSE statement, only the
specified parameters are changed when the file is renamed.

Example:

OPEN(20,ACCESS='SEQOUT' ,FILE='FOO.BAR')

CLOSE(20,FILE='NEWFIL')

The above sequence renames the output file to DKSB:NEWFIL.BAR.

Refer to the following sections under the OPEN statement:

FILE - see Section 11.3.17
NAME - see Section 11.3.25
DEVICE - see Section 11.3.10
DIRECTORY (TOPS-10) - see Section 11.3.13
DIRECTORY (TOPS-20) - see Section 11.3.14
PROTECTION (TOPS-10) - see Section 11.3.30
PROTECTION (TOPS-20) - see Section 11.3.31

DIALOG
Specifier

11.~.2 DIALOG Specifier

The DIALOG specifier enables you to type in additional
specifiers when the CLOSE statement is actually executed.

CLOSE

If the DIALOG specifier is found in the CLOSE list, then each time the
CLOSE statement is executed, FOROTS suspends execution and prompts the
terminal with an asterisk.

The form of the DIALOG specifier is:

DIALOG

FORTRAN-10/20 Vll 11-46 February 1987

FILE-CONTROL AND DEV~CE-CONTROL STATEMENTS

You can respond to the asterisk prompt by entering a file
specification, DIALOG switches' (see below), or a file specification
followed by DIALOG switches. The file specification can be a full
file specification including the device,.directory name, and so on.

If you enter a file specification that is different from the file
specification currently assigned to the file, FOROTS RENAMEs the file
after it is closed to the new name.

NOTE

A DIALOG switch is any CLOSE specifier (except DIALOG,
DIALOG=, UNIT, NAME, FILE, IOSTAT, or ERR) preceded by
a slash (/).

11.5.3 DIALOG= Specifier

DIALOG =
Specifier

The DIALOG= specifier enables you to include all or a portion of the
CLOSE specifiers in a character expression. The contents of the
character expression are interpreted as if you had given the DIALOG
specifier (see above); and, when the asterisk prompt was given, you
had typed in the same string as is contained in the character
expression, followed by a carriage return.

The form of the DIALOG= specifier is:

DIALOG= Character expression

Example:

CLOSE (UNIT=20,ERR=10,DIALOG='/DISPOSE:DELETE')

When DIALOG= is given in the CLOSE list, it is processed after all
other specifiers except DIALOG.

11.5.4 DISPOSE Specifier

DISPOSE
Specifier

The DISPOSE specifier enables you to specify an action to occur when
the file is closed.

The form of the DISPOSE specifier is:

DISPOSE = dis

FORTRAN-10/20 VII 11-47 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

where:

The

dis

DISPOSE

KEEP

SAVE

DELETE

EXPUNGE

PRINT

LIST

PUNCH

is a character expression having a value equal to one of
the following:

'KEEP'
, SAVE'
'DELETE'
'EXPUNGE'
'PRINT'
'LIST'
'PUNCH'

specifier must have one of the following values:

Specifies that the file is to be left on the connected
unit. DISPOSE='KEEP' is the default. You can not
specify DISPOSE='KEEP' if in the corresponding OPEN
statement you specified STATUS='SCRATCH' (see Section
11.3.36) •

Same as KEEP.

Specifies on TOPS-10 that, if the device is either a
DECtape or disk, delete the file; otherwise, take no
action.

On TOPS-20, if the device involved is a disk, delete
the file; otherwise, take no action.

On TOPS-10, same as DELETE. On TOPS-20, if the device
involved is a disk, expunge the file; otherwise, take
no action.

EXPUNGE deletes but does not expunge a local RMS file.
Depending on the capabilities of the remote system,
EXPUNGE may also expunge a remote RMS or non-RMS file.

Specifies that the file will be printed and kept (the
file will not be kept if you specify the CLOSE
statement STATUS=' DELETE' or 'EXPUNGE'). The file must
be on disk. This value is not supported for TOPS-20
RMS files; however, it is supported for VMS RMS files.

Specifies that the file will be printed, deleted, and
expunged (the file will not be deleted if you specify
the CLOSE statement STATUS='KEEP'). The file must be
on disk. This value is not supported for TOPS-20 RMS
files; however, it is supported for VMS RMS files.

Specifies that the file will be punched on the paper
tape punch and kept. The file must be on disk. This
value is not supported for RMS or remote non-RMS files.

NOTE

The value of the CLOSE statement DISPOSE specifier
supersedes the value of the OPEN statement DISPOSE
specifier and the OPEN statement STATUS specifier if
STATUS='EXPUNGE', 'KEEP', and 'DELETE'.

FORTRAN-10/20 VII 11-48 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

11.5.5 ERR Specifier

ERR
Specifier

The ERR specifier enables you to designate a statement label of an
executable statement, in the current program unit, to which control
passes if an error occurs during the execution of an I/O statement.

The form of the ERR specifier is:

ERR= s

where:

s is the number of an executable statement to which program
control passes if an error occurs during the execution of
the statement in which the ERR specifier is included.

The ERR specifier works the same way when it is given in a CLOSE as it
does when given in an OPEN statement (see Section 11.3.16).

11.5.6 IOSTAT Specifier

IOSTAT
Specifier

The IOSTAT specifier identifies an integer variable that is used to
store the I/O status code during the execution of a statement.

The form of the IOSTAT specifier is:

IOSTAT= Integer variable or integer array element

11.5.7 LIMIT Specifier

LIMIT
Specifier

The LIMIT specifier designates the number of output units (such as
pages) for spooled print or punch requests, which result from using
DISPOSE=' PRINT', DISPOSE=' PUNCH', or DISPOSE=' LIST' (see Section
11.5.4) •

11-49 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

The form of the LIMIT specifier is:

LIMIT= Integer expression

STATUS
Specifier

11.5.8 STATUS Specifier

The STATUS specifier tells FOROTS what to do with a file
closed. In the CLOSE statement, STATUS values are a
DISPOSE specifier (see Section 11.5.4) values.

when it is
subset of the

NOTE

The ANSI-77 standard does not have DISPOSE and only
allows STATUS='KEEP' or STATUS='DELETE'.

The form of the STATUS specifier is:

STATUS = sta

where:

sta is a character expression having a value equal to one of
the following:

'KEEP'
'DELETE'
'EXPUNGE'

The arguments to STATUS are:

KEEP

DELETE

EXPUNGE

Specifies that the file is not deleted.

On TOPS-10, specifies that the file is deleted.

On TOPS-20, specifies that the file is marked for
deletion when the file is closed. The file is erased
when a TOPS-20 EXPUNGE command is given. To undelete a
deleted file, use the TOPS-20 UNDELETE command.

On TOPS-10, the same as delete. On TOPS-20, this
specifies that the file is deleted and expunged.

EXPUNGE deletes but does not expunge a local RMS file.
Depending on the capabilities of the remote system,
EXPUNGE may also expunge a remote RMS or non-RMS file.

NOTE

The value of the CLOSE statement STATUS specifier
supersedes the value of the OPEN statement DISPOSE
specifier and OPEN statement STATUS specifier if
STATUS=' EXPUNGE' , 'KEEP', and 'DELETE'.

FORTRAN-10/20 VII 11-50 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

11.5.9 UNIT Specifier (Required)

UNIT
Specifier

(Required)

The UNIT specifier tells FOROTS which logical unit number is to be
closed. This specifier corresponds to the UNIT specifier in the OPEN
statement (see Section 11.3.38) and to the UNIT specifiers in the data
transfer statements (see Section 10.4.3).

The form of the UNIT specifier is:

UNIT= Integer expression

If the unit specifier is the first specifier given in the CLOSE
statement, the keyword UNIT= is optional. For example, to close a
file on unit 20, you can use the following command:

CLOSE (20)

11.6 OPEN AND CLOSE STATEMENT EXAMPLES

The following are examples of OPEN and CLOSE statements:

OPEN (UNIT=l,DEVICE='DSK' ,ACCESS='SEQIN' ,MODE='BINARY')

causes a disk file named FOR01.DAT (since no FILE= option was
specified) to be opened on unit 1 for sequential input in binary mode.

OPEN (UNIT=3,DEVICE='DSK' ,FILE='PAYROL.DAT',
1 ACCESS='RANDOM' ,MODE='ASCII' ,RECORDSIZE= 80,
2 ASSOCIATEVARIABLE=I,ERR=240)

Causes a disk file named PAYROL.DAT to be opened on unit 3 for random
I/O operations in ASCII mode. The records in PAYROL.DAT are 80
characters long; the ASSOCIATE VARIABLE for this file is I. If an
error occurs during the execution of this OPEN statement, the OPEN
terminates, and control is transferred to the statement labeled 240.

OPEN
1
1

(UNIT=I, FILE='IDX.DAT',
ORGANIZATION='INDEXED' ,STATUS='NEW',
KEY=(1:15:CHARACTER) ,RECORDSIZE=80)

Invokes RMS and causes an RMS indexed disk file named IDX.DAT to be
created on unit 1. A primary index of datatype CHARACTER, specifying
character positions 1 through 15 of each record has been defined for
the file.

CLOSE (UNIT=3,DISPOSE='DELETE')

The above statement causes the file associated with unit 3 to be
closed and deleted.

FORTRAN-10/20 VII 11-51 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

11.7 INQUIRE STATEMENT

The INQUIRE statement inquires about specific properties of a file
name or of a logical unit number on which a file might be opened. The
INQUIRE statement has two forms: one inquires by file, and the other
inquires by unit.

11.7.1 INQUIRE by File

An INQUIRE by file is an INQUIRE statement containing the following:

• A FILE= keyword

• An associated file specification

• No UNIT= keyword

It is used to obtain information about a file based on the file name.
INQUIRE by file can be used to get information on the following files:

• Files that are "connected"; meaning files for which an OPEN
statement has been executed or for which a data transfer
statement has been executed.

• Files that are not "connected."

INQUIRE by file has the following form:

INQUIRE (FILE=fi[DEFAULTFILE=dfi] ,flist)

where:

fi

flist

is a character expression whose value specifies the
name of the file to be inquired about.

is a list that can contain at most one of each of the
inquiry specifiers (see Section 11.7.3).

dfi is a character expression specifying a default file
name specification string.

DEFAULTFILE=dfi can be used in
used in connection with an
DEFAULTFILE are used, then the
with FILE to obtain the
specification fields in FILE
DEFAULTFILE.

addition to or in place of FILE=fi when
inquiry about a file. If both FILE and

DEFAULTFILE specification is merged
full fIle specification, with file
superceding corresponding fields in

NOTE

If the file specification is remote, RMS is used to
access the file.

INQUIRE by file may be used any time during the execution of a
program. It can be used before a file is opened to find out about the
existence of the file, or after the file is opened to find out other
attributes of the file. It can also be used to find the unit number
on which the file is opened. If the same file is opened on more than
one unit, the smallest number on which the file is opened is returned.

FORTRAN-10/20 VII 11-52 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

The determination of whether a file specified in an INQUIRE statement
is opened on a unit is the following:

1. The file specification given in the INQUIRE statement is used
to lookup the file.

2. If the file exists, the file specification, expanded with the
physical device name and generation (TOPS-20 only), is
compared with the file specification for each open unit, in
ascending order, until there is an exact string match.

3. If the file does not exist, the specification given in the
INQUIRE statement (with a default of DSK: added if necessary
for the device name), is compared with the file specification
for each open unit, in ascending order, until there is an
exact string match. Note that this match will only be
successful for 'deferred' OPEN files, since non-deferred OPEN
files are always established in the specified directory
immediately. Therefore, the file exists (see item 2 above) •

NOTE

If a file exists, INQUIRE by file will not generally
match the file with a unit for which a 'deferred' OPEN
has been done, since the file specification for the
unit has not been expanded. For example, the file's
logical device name has not been replaced by a
physical device name.

(See Section 18.8 for information on FOROTS and INQUIRE by file.)

11.7.2 INQUIRE by Unit

INQUIRE by unit is an INQUIRE statement containing a UNIT= keyword and
no FILE= keyword. It is used to find out information about the file
that may be "connected" to the specified unit.

INQUIRE by unit has the following form:

INQUIRE ([UNIT=]u,ulist)

where:

u is the number of the logical unit to be inquired about.
The unit need not exist, nor need it be connected to a
file. If the unit is connected to a file, the inquiry
encompasses both the connection and the file.

ulist is a list that can contain at most one of each of the
inquiry specifiers (see Section 11.7.3).

If the optional UNIT= keyword if omitted, u must be the first item in
the list.

INQUIRE by unit can be used at any time during the execution of a
program. It can be used before a file is opened to find out if there
is another file open on the unit, or after the file is opened to find
out other attributes of the file.

11-53 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

11.7.3 INQUIRE Specifiers

The specifiers described in the following sections may be used in
either farm of the INQUIRE statement.

11.7.3.1 ACCESS Specifier - The ACCESS specifier has the following
form:

ACCESS acc

where:

acc is a character variable, array element, or substring
reference. It is assigned the value 'SEQUENTIAL' if the
file is connected for sequential access, 'DIRECT' if the
file is connected for direct access, or 'KEYED' if the
file is connected for keyed access. If there is no
connection, acc is 'UNKNOWN'.

11.7.3.2 BLANK Specifier - The BLANK specifier has the following
form:

BLANK blk

where:

blk is a character
reference. It
was last opened
value' ZERO' if
the file is not

variable, array element, or substring
is assigned the value 'NULL' if the file

with BLANK='NULL', and is assigned the
the file was opened with BLANK='ZERO'. If
open, blk is 'UNKNOWN'.

11.7.3.3 BYTESIZE Specifier - The
follow i ng form:

BYTESIZE specifier has the

BYTESIZE byte

where:

byte is the integer bytesize of the file (or 0 if the file
is not open).

11.7.3.4 CARRIAGECONTROL Specifier - The CARRIAGECONTROL specifier
has the following form:

CARRIAGECONTROL = cc

where:

cc is a character variable, array element, or substring
reference. It is assigned the following values:

1. 'FORTRAN' if the file has the FORTRAN carriage-control
attribute

FORTRAN-10/20 VII 11-54 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

2. 'LIST' if the file has the implied carriage-control
attribute

3. 'NONE' if the file has no carriage-control attribute

4. 'TRANSLATED' if the file has FORTRAN carriage-control
characters being translated directly into vertical
motion characters.

5. 'UNKNOWN' if the CARRIAGECONTROL value cannot be
determined, or the file is not open.

11.7.3.5 DIRECT Specifier - The DIRECT specifier has the following
form:

DIRECT dir

where:

dir is a character variable, array element, or substring
reference. It is assigned the following values:

1. 'YES' if DIRECT is an allowed access method for the
file

2. 'NO' if DIRECT is not an allowed access method for the
file

3. 'UNKNOWN' if the processor is unable to determine
whether DIRECT is an allowed access method

11.7.3.6 ERR Specifier - The ERR specifier has the following form:

ERR = s

where:

s is the label of an executable statement. ERR is a control
specifier; if an error occurs during execution of the
INQUIRE statement, control is transferred to the statement
whose label is s.

11.7.3.7 EXIST Specifier - The EXIST specifier has the following
form:

EXIST ex

where:

ex is a logical variable or logical array element. It is
assigned the value .TRUE. if the specified file or unit
exists, and the value .FALSE. if the specified file or
unit does not exist.

11-55 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

11.7.3.8 FORM Specifier - The FORM specifier has the following form:

FORM = fm

where:

fm is a character variable, array element, or substring
reference. It is assigned the value 'FORMATTED' if the
file is connected for formatted I/O, and 'UNFORMATTED' if
the file is connected for unformatted I/O. If there is no
connection, fm is 'UNKNOWN'.

11.7.3.9 FORMATTED Specifier - The FORMATTED specifier
follow i ng form:

has the

FORMATTED fmd

where:

fmd is a character variable, array element, or substring
reference. It is assigned the value 'YES' if formatted is
an allowed form for the file. It is assigned the value
'NO' if formatted is not an allowed form of the file, and
the value 'UNKNOWN' if the form cannot be determined.

11.7.3.10 IOSTAT Speci~ier - The IOSTAT specifier has the following
form:

IOSTAT ios

where:

ios is an integer variable or integer array element. It is
assigned a processor-dependent positive integer value if
an error occurs during execution of the INQUIRE statement,
or assigned the value zero if there is no error condition.

11.7.3.11 KEYED Specifier - The KEYED specifier has the following
form:

KEYED kyd

where:

kyd is assigned the value 'YES' if KEYED is an allowed
access method for the file (that is, the file is
indexed), 'NO' if KEYED is not an allowed access
method, and 'UNKNOWN' if the file is not open.

FORTRAN-10/20 VII 11-56 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

11.7.3.12 NAME Specifier - The NAME specifier has the following form:

NAME = nme

where:

nme is a character
reference. It
inquired about.

variable, array
is assigned the

element, or substring
name of the file being

The value assigned to nme is not necessarily identical to
the value specified with FILE=. For example, the value
that the processor returns may contain a directory name or
generation number (TOPS-20 only). However, the value that
is assigned is always valid for use with FILE= in an OPEN
statement.

NOTE

FILE and NAME are synonyms when used with the OPEN
statement, but not when used with the INQUIRE
statement.

For INQUIRE by unit, FOROTS returns the full, expanded
file specification if any of the following is true:

• If there is a file open on the specified unit with
STATUS other than UNKNOWN or SCRATCH.

• If there is a file open on the specified unit with
ACCESS other than SEQUENTIAL.

• An I/O transfer statement has been executed using the
specified unit and the unit has not been closed.

FOROTS returns the string given in the OPEN for NAME= with
defaults applied if both of the following are true:

• If the file is open on the specified unit as a result
of an OPEN statement in which STATUS='UNKNOWN' and
ACCESS='SEQUENTIAL' are specified or implied.

• No I/O transfer statement has been executed using the
specified unit.

If STATUS='SCRATCH', FOROTS returns blanks for NAME=.

If there has been no OPEN statement, and no I/O transfer
statement has been executed using the specified unit,
FOROTS returns for NAME= the default file specification
for that unit.

For INQUIRE by file, FOROTS returns the full, expanded
file specification if the file exists in the specified
directory. If the file does not yet exist on the
specified directory, but has been opened by a 'deferred'
OPEN, FOROTS returns the string given in the INQUIRE
statement, with defaults applied for the device and
generation number (TOPS-20 only). Otherwise, blanks are
returned.

NOTE

INQUIRE on a remote file that returns a full file
specification, returns the network attributes.

FORTRAN-10/20 VII 11-57 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

11.7.3.13 NAMED Spec~fier - The NAMED specifier has the following
form:

NAMED = nmd

where:

nmd is a logical variable or logical array element. It is
assigned the value .TRUE. if the specified file has a
name, and the value .FALSE. if the file does not have a
name.

11.7.3.14 NEXTREC Specifier - The NEXTREC specifier has the following
form:

NEXTREC nr

where:

nr is an integer variable or integer array element. It is
assigned an integer value that is one more than the last
record number read or written on the specified direct
access file. If no records have been read or written, the
value of nr is one. If the file is not connected for
direct access, or if the position is indeterminate because
of an error condition, nr is zero.

11.7.3.15 NUMBER Specifier - The NUMBER specifier has the following
form:

NUMBER = num

where:

num is an integer variable or integer array element. It is
assigned the number of a logical unit currently connected
to the specified file. If there is no logical unit
connected to the file, num is not defined. If more than
one unit is connected to the file, the smallest unit
number is returned.

11.7.3.16 OPENED Specifier - The OPENED specifier has the following
form:

OPENED = od

where:

od is a logical variable or logical array element. It is
assigned the value .TRUE. if the specified file is opened
on a unit or if the specified unit is opened; it is
assigned the value .FALSE. if the file or unit is not
open.

11-58 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

11.7.3.17 ORGANIZATION Specifier - The ORGANIZATION specifier has the
following form:

ORGANIZATION org

where:

org is a character variable, array element, or substring
reference. It is assigned the value 'SEQUENTIAL' if
the file is a sequential file, 'RELATIVE' if the file
is a relative file, 'INDEXED' if the file is an indexed
file, or 'UNKNOWN' if the file is not open or the file
is not an RMS file.

11.7.3.18 RECL (RECORDSIZE) Specifier - The RECL (RECORDSIZE)
specifier has the following form:

RECL = rcl

where:

rcl is an integer variable or integer array element.

For non-RMS files, if the file (or unit) is opened, rcl is
the record length for fixed-length record files. In all
other cases, rcl is zero. If the file is opened for
formatted I/O, rcl is expressed in characters, and in
words if the file is unformatted.

For RMS files, if the file is open, RECL returns the
maximum record size value associated with the file in
either bytes (for formatted I/O) or words (for unformatted
I/O). If the file is not open, RECL returns zero.

11.7.3.19 RECORDTYPE Specifier - The RECORDTYPE specifier has the
following form:

RECORDTYPE rtype

where:

rtype is a character variable, array element, or substring
reference. It is assigned the value 'FIXED' if the file
has fixed-length records, assigned the value 'VARIABLE' if
the file has variable-length records, and assigned the
value 'STREAM' if the file is a stream file (default for
disk and magnetic tape). If the file is not open, rtype
is assigned the value 'UNKNOWN'.

FORTRAN-10/20 VII 11-59 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

11.7.3.20 SEQUENTIAL Specifier - The SEQUENTIAL specifier has the
following form:

SEQUENTIAL seq

where:

seq is a character variable, array element, or substring
reference. It is assigned the following values:

1. 'YES' if SEQUENTIAL is an allowed access method for
the specified file

2. 'NO' if SEQUENTIAL is not an allowed access method

3. 'UNKNOWN' if the processor cannot determine whether
SEQUENTIAL is an allowed access method

11.7.3.21 UNFORMATTED Specifier - The UNFORMATTED specifier has the
following form:

UNFORMATTED unf

where:

unf is a character variable, array element, or substring
reference. It is assigned the value 'YES' if unformatted
is an allowed form for the file. It is assigned the value
'NO' if unformatted is not an allowed form of the file,
and the value 'UNKNOWN' if the form cannot be determined.

11-60 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

Table 11-6 summarizes the form and use of the FORTRAN device control
statements.

Table 11-6: Summary of FORTRAN Device Control Statements

Statement Form Section

FIND (UNIT = un,REC = rnf,ERR = s][,IOSTAT = ios]) 11.8.1
FIND (un'rn[,ERR=sl[,IOSTAT=iosD

REWIND un 11.8.2
REWIND (UNIT = un[,ERR = s][,IOSTAT = ios])
REWIND (un[,ERR=s][,IOSTAT=ios])

UNLOAD un 11.8.3
UNLOAD (UNIT = un[,ERR = s][,IOSTAT = ios])
UNLOAD (un[,ERR = s If,IOSTAT = iosD

BACKSPACE un 11.8.4
BACKSPACE (UNIT = un[,ERR = s][,IOSTAT = ios])
BACKSPACE (un[,ERR = s][,IOSTAT = ios])

ENDFILE un 11.8.5
END FILE (UNIT = un[,ERR = s][,IOSTAT = ios])
ENDFILE (un[,ERR=s][,IOSTAT=ios])

SKIPRECORD un 11.8.6
SKIPRECORD (UNIT = un[,END = s][,ERR = s][,IOSTAT = ios 1)
SKIPRECORD (un[,END= s][,ERR=s][,IOSTAT=ios])

SKIPFILE un 11.8.7
SKIPFILE (UNIT = un[,ERR = s][,IOSTAT = ios])
SKIPFILE (un[,ERR=s][,IOSTAT=iosD

BACKFILE un 11.8.8
BACKFILE (UNIT = un[,ERR = s][,IOSTAT = ios 1)
BACKFILE (unLERR= sl[,IOSTAT= ios])

11.8 DEVICE CONTROL STATEMENTS

Device control statements enable you to position external devices.
For example, when performing data transfers with magnetic tape, you
use device control statements to position the tape. The device
control statements may be used for both formatted and unformatted
files.

The following list contains all of the device control statements, and
the section in which each statement is described.

1. FIND (Section 11.8.1)

2. REWIND (Section 11.8.2)

3. UNLOAD (Section 11.8.3)

4. BACKSPACE (Section 11.8.4)

5. ENDFILE (Section 11.8.5)

6. SKIPRECORD (Section 11.8.6)

7. SKIPFILE (Section 11.8.7)

8. BACKFILE (Section 11.8.8)

11-61 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

NOTE

The results of the BACKSPACE and SKIPRECORD statements
are unpredictable when used on list-directed and
NAMELIST formatted data.

The general form of every device control statement is:

keyword un

or

keyword (UNIT=un[,END=s] [,ERR=s] [,IOSTAT=ios])

or

keyword (un[,END=s] [,ERR=S] [,IOSTAT=ios])

where:

keyword

un

END=s

ERR=s

IOSTAT=ios

is the statement name.

is the FORTRAN logical unit number. Table 10-3
lists the default logical unit numbers. If you
enclose the logical unit specification in
parentheses, you can include the keyword portion
(UNIT=) of the logical unit specification. The
keyword form of the unit specifier makes the
specification posi.tional1y independent in the
parenthetical list.

is the optional end-of-file specifier (see Section
10.4.6) •

is the optional error specifier (see Section
10.4.7) •

is the optional I/O error status specifier (see
Section 10.4.8).

The operations performed by the device control statements are usually
used only for magnetic tape devices (MTA). In FORTRAN, however, the
device control operations are simulated for disk devices.

FIND
Statement

11.8.1 FIND Statement

In earlier versions of FORTRAN-10/20, the FIND statement could be used
during direct-access READ/WRITE operations to reduce the time
necessary to do data transfers and to locate records in a
direct-access file. For FORTRAN-10/20 Version 11, the FIND statement
has no effect on non-RMS files, except for setting the current record
number and, therefore, the associate variable.

FORTRAN-10/20 VII 11-62 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

For an RMS relative file, the FIND statement positions the file at the
record number specified. This establishes the record as the current
record, sets th€ associate variable, and returns. The file on the
specified unit must be a relative file opened for direct access.

The first form of the FIND statement is:

FIND (UNIT=un,REC=rn[,ERR=s] [,IOSTAT=ios])

The second form of the FIND statement operates in the same way as the
first form. The difference between the two forms is in the way that
the unit number and record number are specified.

The second form of this statement is:

FIND(un' rn[,ERR=s] [, IOSTAT=ios])

In this form, the unit number and record number do not contain the
keywords UNIT= and REC=. Instead, the unit number is specified first,
followed by a single quote ('), and finally the record number.

The following example demonstrates how the FIND statement is used:

FIND(UNIT=1,REC=100)

This statement positions the file so that the next READ statement
reads record 100.

11.8.2 REWIND Statement

REWIND
Statement

The REWIND statement, used for disk files, causes a specified file to
be positioned at its initial point. For magnetic tape, execution of
the REWIND statement positions the magnetic tape at its initial point.

The REWIND
sequential
files.

statement can be used with
access RMS relative files.

The forms of the REWIND statement are:

REWIND un

or

REWIND (UNIT=un[,ERR=s] [,IOSTAT=ios])

or

REWIND (un [, ERR=S] [,IOSTAT= ios])

FORTRAN-10/20 VII 11-63

RMS sequential files or
It is illegal for indexed

February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

where:

un is the logical unit number of the device on which the REWIND
is being performed. Table 10-3 lists the default logical
unit numbers.

REWIND is illegal for files opened with ACCESS='APPEND'.

I UNLOAD]
Statement

'-----

11.8.3 UNLOAD Statement

The UNLOAD statement rewinds and unloads the magnetic tape associated
with the specified unit.

The forms of the UNLOAD statement are:

UNLOAD un

or

UNLOAD (UNIT=un[,ERR=s] [,IOSTAT=ios])

or

UNLOAD (un[,ERR=s] [,IOSTAT=ios])

where:

un is the logical unit number of the device on which the UNLOAD
is being performed. Table 10-3 lists the default logical
unit numbers.

BACKSPACE
Statement

11.8.4 BACKSPACE Statement

Execution of a BACKSPACE statement causes the file connected to the
specified unit to be positioned before the preceding record. If there
is no preceding record, the position of the file is not changed. If
the preceding record is an ENDFILE record (see Section 11.8.5), the
file is positioned before the ENDFILE record.

For RMS files, this statement repositions a file with sequential
organization to the beginning of the previous record. When the next
I/O statement is executed, this preceding record is available for
processing.

FORTRAN-10/20 VII 11-64 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

The BACKSPACE statement cannot be used for direct-access files,
append-access files, or files that are formatted with list-directed or
NAMELIST-statement formatting.

For RMS files, BACKSPACE cannot be used for files open ACCESS='APPEND'
or with ORGANIZATION='RELATIVE' or 'INDEXED'.

The forms of the BACKSPACE statement are:

BACKSPACE un

or

BACKSPACE (UNIT=un[,ERR=s] [,IOSTAT=ios])

or

BACKSPACE (un[,ERR=s] [,IOSTAT=ios])

where:

un is the logical unit number of
BACKSPACE is being performed.
logical unit numbers.

11.8.5 ENDFILE Statement

the device on which the
Table 10-3 lists the default

ENDFILE
Statement

The ENDFILE statement closes the file on the specified unit. On
magnetic tape, an 'ENDFILE record' is written and is then positioned
after the end-of-file mark.

For RMS files, ENDFILE is supported only for files with sequential
organization.

For disk, the file is closed and then positioned at the end of the
file, and an end-of-file status is set. This status is the equivalent
of the file being positioned after an 'ENDFILE record'.

FORTRAN-10/20 VII 11-65 February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

Thus, for both disk and magnetic tape, a BACKSPACE operation given
after an end file operation positions the file after the last data
record (that is, before the physical (or virtual) 'ENDFILE record').

The ENDFILE statement can be used only with sequential access files.

The forms of the ENDFILE statement are:

ENDFILE un

or

ENDFILE (UNIT=un[,ERR=s] [,IOSTAT=ios])

or

ENDFILE (un[,ERR=s]J ,IOSTAT=ios])

where:

un is the logical unit number of
ENDFILE is being performed.
logical unit numbers.

SKIPRECORD
Statement

11.8.6 SKIPRECORD Statement

the device on which the
Table 10-3 lists the default

The SKIPRECORD statement skips the record immediately following the
current (last accessed) record. If the SKIPRECORD statement is
executed prior to accessing any records, then the first record in the
file is skipped. You cannot use SKIPRECORD on direct-access files.
You can use SKIPRECORD on RMS indexed files; it does a sequential read
on the current index as established by a previous indexed READ, or the
primary index if no current index has been set.

The forms of the SKIPRECORD statement are:

SKIPRECORD un

or

SKIPRECORD(UNIT=un[,END=s] [,ERR=s] [,IOSTAT=ios])

or

SKIPRECORD (un [,END=s] [,ERR=S] [,IOSTAT=ios])

where:

un is the logical unit number of
SKIPRECORD is being performed.
logical unit numbers.

FORTRAN-10/20 VII 11-66

the device on which the
Table 10-3 lists the default

February 1987

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

11.8.7 SKIPFILE Statement

SKIPFILE
Statement

This statement is used only for magnetic tape operations. Unless an
end-of-file has been encountered, the SKIPFILE statement advances to
the beginning of the next file. If an end-of-file has been
encountered, SKIPFILE skips the next file. If the number of SKIPFILE
executions exceeds the number of files available to be skipped, an
error occurs.

The forms of the SKIPFILE statement are:

SKIPFILE un

or

SKIPFILE (UNIT=un[,ERR=s] [,IOSTAT=ios])

or

SKIPFILE (un[,ERR=s] [,IOSTAT=ios])

where:

un is the logical unit number of
SKIPFILE is being performed.
logical unit numbers.

11.8.8 BACKFILE Statement

the device on which the
Table 10-3 lists the default

BACKFILE
Statement

This statement is used only for magnetic tape operations. If an
end-of-file has been encountered, the BACKFILE statement positions to
the start of the file whose end-of-file was detected. Otherwise, the
BACKFILE statement positions to the start of the file that precedes
the current (last accessed) file.

The forms of the BACKFILE statement are:

BACKFILE un

or

BACKFI LE (UNIT=un [,ERR=S] [,IOSTAT= ios])

or

BACKFILE (un [,ERR=s] [,IOSTAT=s])

FORTRAN-10/20 VII 11-67 February 1987

where:

un

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

is the logical unit number of
BACKFILE is being performed.
logical unit numbers.

NOTE

the device on which the
Table 10-3 lists the default

On a magnetic tape with multiple files, the position
of the tape after an ENDFILE record of one file is
equivalent to the position at the beginning of the
next file.

11-68 February 1987

CHAPTER 12

FORMATTED DATA TRANSFERS

Data transfers can be either formatted or unformatted. When the
internal (memory) representation of the data is translated to a
different external (peripheral storage) representation during a data
transfer, that data transfer is considered formatted.

Conversely, when the internal and external representations of the data
are the same, that data transfer is considered unformatted.

A formatted data transfer involves editing of data as it is
transferred to and from memory. FORTRAN provides you with three ways
for specifying how the data is formatted during a formatted data
transfer. These are:

1. FORMAT-Statement Formatting

2. List-Directed Formatting

3. NAMELIST-Statement Formatting

Of the three types, FORMAT-statement formatting provides you with the
most control over how the data is formatted. Section 12.1 describes
FORMAT-statement formatting.

List-directed formatting means that the formatting is controlled by
the data types of the I/O list elements. Section 12.5 describes
list-directed formatting.

NAMELIST-statement formatting is the third method for formatting the
data; the formatting is controlled by the data types of the namelist
elements. In this form, the I/O list is defined in a NAMELIST
statement and referenced by the data transfer statement. Section 12.6
describes NAMELIST-statement formatting.

NOTE

FOROTS/RMS supports transparent data transfers to and
from VMS systems for all formatted data, and for
unformatted character data. Numeric data transfers
are not supported. DIL (Data interchange Library)
routines or DIU (Data Interchange Utility) should be
used to correctly exchange numeric data between
TOPS-20 and VMS systems.

FORTRAN-10/20 VII 12-1 February 1987

FORMAT-Statement
Formatting

FORMATTED DATA TRANSFERS

12.1 FORMAT-STATEMENT FORMATTING

A FORMAT statement directs the editing of data during its transfer
between internal and external storage. Every formatted (FORMAT
statement) data transfer statement contains a reference to one of the
following:

1. A line containing a FORMAT statement with a format list

2. A numeric array containing a format list

3. A character expression containing a format list

4. An integer, real, or logical variable that has been assigned
a FORMAT statement number with an ASSIGN statement

The format list is made up of format specifiers.

During execution of a formatted data transfer statement, items in the
I/O list are associated with specifiers in the referenced format list.
The specifiers dictate how the various data items are formatted.

Section 12.1.1 describes how to create a format list in a FORMAT
statement; Section 12.1.2 describes how to create a format
specification as a character expression. Section 12.1.3 describes how
to create a numeric array that contains a format list. Section 12.1.4
describes how to specify a FORMAT statement using an ASSIGNed
variable.

12.1.1 Specifying a Format List in a FORMAT Statement

The general form of a FORMAT statement is:

n FORMAT fs

where:

n

fs

is the required statement number. This number,
referenced in the control-information list of an
I/O statement (see Section 10.4.2) provides the
association between the data transfer statement
and the FORMAT statement.

is a format specification. The form of a format
specification is:

([format list])

12-2

FORMATTED DATA TRANSFERS

where:

format list is a list of items which may take any of the
following forms:

where:

r

ed

ned

fl

[r] ed

or

ned

or

[r] (fl)

is a nonzero, unsigned, integer constant called a
repeat specification.

is a repeatable edit descriptor (see Section
12.2.1) •

is a non repeatable edit descriptor (see Section
12.2.2) •

is a nonempty format list.

The only placement restrictions for FORMAT statements are that they
follow PROGRAM, FUNCTION, SUBPROGRAM, or BLOCK DATA statements, and
that they precede the END statement.

The following example illustrates FORMAT-statement formatting. The
FMT specifier in the WRITE statement references the label of FORMAT
statement 101. This FORMAT statement contains a list of edit
descriptors (X, I, and F) that dictate the formatting of the data in
I/O list (variables J, Y, and Z).

J=2
Y=3.0
Z=5.1
WRITE{UNIT=5,FMT=101)J,Y,Z

101 FORMAT(1X,I,F,F)

12.1.2 Specifying a Format Specification as a Character Expression

You can store format specifications in character variables, character
arrays, character array elements, character substrings, or character
expressions.

A character format specification must be of the form described in
Section 12.1.1. Note that the form begins with a left parenthesis and
ends with a right parenthesis. Character data may follow the right
parenthesis that ends the format specification, with no effect on the
format specification. Blank characters may precede the format
specification.

If the format identifier is a character array name, the format
specification may be contained in more than the first element of the
array. {A character array format specification is considered to be a
concatenation of all the array elements of the array in the order
given by array element ordering (see Section 4.3.3).)

12-3

FORMATTED DATA TRANSFERS

However, if a character array element name is specified as a format
identifier, the length of the format specification must not exceed the
length of the array element.

The following example shows the same format specification used in the
examples in Section 12.1.1. This time, however, instead of
referencing the format specification by statement number, or
referencing the name of a numeric array, the data transfer statement
references the name of the character variable in which the format
specification is contained.

J=2
Y=3.0
Z=5.1
CHARACTER FORNAM*lO
FORNAM = I (1 X, I , F , F) I

WRITE(UNIT=5,FMT=FORNAM)J,Y,Z

12.1.3 Specifying a Format Specification in a Numeric Array

An alternative to using FORMAT statements is to store the format
specification in a numeric array.

The format specifications are associated with a data transfer
statement by referencing the array name containing the format
specification, instead of a statement label of a FORMAT statement.

The following example shows the same format specification used in the
example in Section 12.1.1. This time, however, instead of referencing
the format specification by statement number, the data transfer
statement references the name of the numeric array in which the format
specification is contained.

INTEGER FORNAM(2)
FORNAM(l)=' (lX,I'
FORNAM(2)=' ,F,F)'
,J'=2
Y==3.0
2=5.1
WRITE(UNIT=5,FMT=FORNAM)J,Y,Z
END

In the above example the format specification is stored in both words
of array FORNAM. This is because the format contains ten characters:
the first five are in FORNAM(l); and the last five are in FORNAM(2).

NOTE

When storing a format specification in an array,
always include the outer most parentheses enclosing
the format specifiers. Note that the word FORMAT
should not be included in the string.

12.1.4 Specifying a FORMAT Statement Using an ASSIGNed Variable

Integer, real, or logical variables that have been ASSIGNed FORMAT
statement numbers can be used as format specifiers. (See Section 8.3
for information on the ASSIGN (statement label) assignment statement.)

12-4

FORMATTED DATA TRANSFERS

The variable is assigned a statement number by an ASSIGN statement.
The format specifier references the variable that refers to the
statement number it has been assigned.

The following example shows the same format specification used in the
examples in Sections 12.1.1, 12.1.2, and 12.1.3. This time, however,
instead of referencing the format specification by statement number,
the data transfer statement references a variable that has been
assigned a statement number by an ASSIGN statement.

ASSIGN 101 TO IFORMT
WRITE(UNIT=5,FMT=IFORMT}J,Y,Z

101 FORMAT(lX,I,F,F}

12.1.5 The Ordering and Interpretation of Format List Items

For standard conforming programs, all items within the format list
should be separated by commas, with the exception of the following
cases:

1. Between a P edit descriptor and an immediately following F,
E, D, or G edit descriptor (See Section l2.4.ll)

2. Before or after a slash edit descriptor (See Section 12.4.5)

3. Before or after a colon edit descriptor (See Section l2.4.6)

In FORTRAN-10/20, the use of commas to delimit format edit descriptors
within a format list is optional as long as no ambiguity exists. For
example,

FORMAT (3X,A2)

can be written as

FORMAT (3XA2)

But the specification

FORMAT (I22I5)

is ambiguous, since it can represent

FORMAT (I22,I5) or FORMAT (I,22I5)

and requires the comma to eliminate ambiguity.

12-5

FORMATTED DATA TRANSFERS

FORMAT -Statement
Edit Descriptors

12.2 EDIT DESCRIPTORS

Edit descriptors within the format list describe the manner of editing
performed on the data being transferred.

For example, when you transfer integers from a file to memory, you use
an I edit descriptor. When the data transfer statement is executed,
an item in the I/O list is associated with the I edit descriptor in
the format list, and the following results:

1. Before being stored in memory, the data is converted to an
internal integer format by the I edit descriptor in the
format list.

2. The memory location in which the data is stored is identified
by the I/O list element.

The following sample program demonstrates how an integer is read from
the terminal (external device) into the memory location identified in
the I/O list of the ACCEPT statement.

PROGRAM FORMAT

TYPE *,'Please enter a two digit numbera'
ACCEPT 101,K

101 FORMAT(I2)

TYPE 102,K
102 FORMAT(lX,I5)

END

The sample output below shows what happens when the user executes the
above program. The user enters 78 in response to the ACCEPT
statement. This causes the integer value to be stored in the variable
K according to the I edit descriptor in FORMAT statement 101. Then
the type statement causes the value of variable K to be printed at the
terminal according to the I edit descriptor in FORMAT statement 102.

EXECUTE TEST
LINK: Loading
(LNKXCT FORMAT execution]

Please enter a two digit number:
78

78
CPU Time 0.1 Elapsed Time 8.7

The I edit descriptor is an example of a repeatable edit descriptor.
FORTRAN has two types of edit descriptors: repeatable (Section
12.2.1) and nonrepeatable (Section 12.2.2). The third type of item
that appears in a format list is the carriage-control specifier
(Se c t ion 12.2.3).

12-6

FORMATTED DATA TRANSFERS

12.2.1 Repeatable Edit Descriptors

Repeatable Edit
Descriptors

A repeatable edit descriptor may be preceded by an optional, unsigned,
nonzero, integer constant that specifies a repeat count. This integer
is called a repeat specification.

Using a repeat specification in an edit descriptor gives you a
shorthand way to specify multiple fields with a single specification.
For example, without using the repeat specification, if you wanted to
specify four fields, each of which contain an integer value that is
six characters long, you might construct the following FORMAT
statement:

101 FORMAT (lX,I6,I6,I6,I6)

If you use the repeat specification, however, you need only specify
the edit descriptor and field width a single time, as follows:

101 FORMAT (lX,4I6)

These two FORMAT statements are equivalent.

Table 12-1 lists the repeatable edit descriptors. Each descriptor
listed in the table is shown in its complete form. The key at the
bottom of Table 12-1 describes all the optional elements in each edit
descriptor. The right-most column of Table 12-1 references the
section in which each edit descriptor is discussed.

12-7

FORMATTED DATA TRANSFERS

Table 12-1: Repeatable FORTRAN Edit Descriptors

Edit Descriptor Descriptor Type Refer to:

[r]lfw[.m]l Integer Section 12.4.11.1

[r]Flw.dl Floating Point Section 12.4.11.2

[r]E[w.d[Ee]l Scientific Notation Section 12.4.11.3

[r]D! w .d[Ee 1] Scientific Notation Section 12.4.11.3

[r]G[w.d[Ee]] General Conversion Section 12.4.11.4

F,E,D,G
(Two successive) Complex Section 12.4.11.5

I r JO[w[.m]] Octal Section 12.4.11.6

!rlZ[w[.mll Hexadecimal Section 12.4.11.7

[rlUwl Logical Section 12.4.12

[r]A[wl Character or Hollerith Section 12.4.13

lrlR[w] Hollerith Section 12.4.14

Key:

r is a nonzero, unsigned, integer constant called a repeat specification.

w

.m

.d

e

is a nonzero, unsigned, integer constant which is equal to the total number of characters in the numeric field
being described. The numeric edit descriptors are described in Section 12.4.11.

is an unsigned, integer constant which specifies the minimum number of digits to be output to the field
being described. If necessary, leading zeros are output. The value of m must not exceed the value of w.

If m is zero and the value of the internal data item is zero, the output field consists of only blank characters,
regardless of the sign control in effect.

is a nonzero, unsigned, integer constant which specifies the total number of digits to the right of the decimal
point in the numeric field being described. If.d is specified, w must also be specified. The maximum value is
63 digits.

is a nonzero, unsigned, integer constant which is equal to the total number of digits in the exponent field of
the numeric field being described. The maximum value is 15 digits.

Nonrepeatable Edit
Descriptors

12.2.2 Nonrepeatable Edit Descriptors

A nonrepeatable edit descriptor can not be preceded by a repeat
specification. The nonrepeatable edit descriptors provide a variety
of editing possibilities, such as positioning within a record,
including character constants in a FORMAT statement, and delimiting
records within a single format descriptor.

Table 12-2 lists the nonrepeatable edit descriptors. The format,
function, and section number where each descriptor is discussed are
listed in the table.

12-8

FORMATTED DATA TRANSFERS

Table 12-2: Nonrepeatable FORTRAN Edit Descriptors

Edit Descriptor Function Refer to:

'hl. .. hn' Character Data Section 12.4.1

nHh Hollerith Data Section 12.4.2

Tc
TLc
TRc In-Record Positioning Section 12.4.3.1

InlX In-Record Positioning Section 12.4.3.2

$ (Dollar sign) Prevents record from terminating with END Section 12.4.4
OF LINE

/ (Slash) Record Delimiter Section 12.4.5

: (Colon) Format-Control Termination Section 12.4.6

S
SP
SS Plus sign control for output of positive numeric fields Section 12.4.7

kP Scaling Factor for Numeric Fields Section 12.4.8

BN Specifies the handling of blanks during the input of Section 12.4.9
BZ Numeric Fields

Q Input Only Descriptor - returns the number of charac- Section 12.4.10
ters left in the current record.

Key:

n is a nonzero, unsigned, integer constant which is equal to a number of spaces (X descriptor) or the total

h

c

k

number of characters (H descriptor).

is a character capable ofrepresentation by the processor. This type of character is described in Appendix B.

is a nonzero, unsigned, integer constant which is equal to a number of characters within a record relative to
the current position.

is an optionally signed integer constant which declares the scaling factor for the field being described.

Carriage-Control
Specifiers

12.2.3 Carriage-Control Specifiers

In a data output transfer, the first character of each reco~d can be
used for carriage control. A carriage-control specifier dictates the
action of the printing mechanism on output devices. For example,
carriage-control specifiers determine the vertical spacing for
line-printer output.

12-9

FORMATTED DATA TRANSFERS

NOTE

The CARRIAGECONTROL specifier of the OPEN statement
enables you to decide how the first character of each
record is treated. Depending on the value of the
CARRIAGECONTROL specifier, the first character can be:

1. Replaced with the appropriate
character (s) •

printer-control

2. Disregarded as a carriage-control character and,
instead, be transferred as part of the record.

For more information on the CARRIAGECONTROL specifier,
see Section 11.3.6

The carriage-control specifier may be written as a character constant.
The following example shows the blank carriage-control character in a
FORMAT statement:

WRITE(5,101)

101 FORMAT(' ','This is a string')

END

When this example is executed, the string in the format list is
printed on unit 5, the terminal, as follows:

This is a string

If you omit the carriage-control specifier from a data output transfer
format list, FOROTS interprets the first character to be output to the
record as the carriage-control character. Using the example above, if
we omit the blank specifier, FOROTS assumes that the first character
encountered (in this case, the "T" in "This") is the carriage-control
character. Executing this example, after removing the
carriage-control specifier, causes the first character to be stripped
from the character constant. Thus, the output at the terminal is:

his is a string

The carriage-control characters are summarized in Table 12-3. The $
(dollar sign) output edit descriptor modifies the action of the
carriage-control specifier (see Section 12.4.4).

12-10

FORMATTED DATA TRANSFERS

Table 12-3: Carriage-Control Specifiers

Specifier Format List Form Printer Character Octal Value Effect on Carriage Control

blank ' , LF 012 Skip to next line (form feed after
60 lines on printer).

plus '+' Suppress line feed; overprint the
line.

zero '0' LF,LF 012,012 Skip a line.

one* '1' FF 014 Form feed to top of next page.

two* '2' DLE 020 Space to next half page.

three* '3' VT 013 Space to next one-third of a page.

minus '-' LF,LF,LF 012,012,012 Skip two lines.

asterisk* ,*, DC3 023 Skip to next line; suppress form
feed. (Continous print)

period* ' , DC2 022 Triple space, with a form feed
after every 20 lines printed.

comma* ' , DC1 021 Double space, with a form feed ,
after every 30 lines printed.

slash* '1' DC4 024 Space to next one-sixth of a page.

* Indicates carriage-control specifiers for which the effect on carriage control is device dependent. The effect
described is for a line printer with a standard form setup.

Note - This table assumes a standard form setup for your line printer (or other output device).

I/O List & FORMAT List
Interaction

12.3 INTERACTION OF INPUT/OUTPUT LIST AND FORMAT LIST

This section describes how the I/O list and the format list interact
during a data transfer.

12.3.1 General Description

Format control is initiated by execution of a formatted data transfer
statement. The actions performed by format control depend on the
interaction of the edit descriptors in the format specification and
the I/O list elements in the data transfer statement.

The following example shows how the I/O list elements in a data
transfer statement interact with the edit descriptors in the format
list in a simple data transfer.

READ (5,100) N,X,Y
100 FORMAT (I5,F12.0,FlO.0)

12-11

FORMATTED DATA TRANSFERS

In this example, the I/O list is

N,X,Y

and the format specification is

(IS,F12.0,FI0.0)

The variables in the I/O list and the specifiers in the format are
matched up as follows:

N IS
X F12.0
Y FI0.0

A formatted data transfer statement matches elements of the I/O list
and specifiers in the format specification. The matching proceeds
from left to right, one I/O list element to one repeatable edit
descriptor.

In the above example, there are three elements in the I/O list and
three format specifiers. However, the interactions can be more
complicated than those in the example. A format specifier can be
preceded by a repeat count, in which case it corresponds to more than
one element in the I/O list. Also, an element of the I/O list can be
an array name, in which case it can correspond to more than one format
specifier. The number of elements in the I/O list and in the format
specification do not have to be the same.

Table 12-4 details what happens in these more complex cases.

12-12

FORMATTED DATA TRANSFERS

Table 12-4: Record, Format List, and 110 List Interaction

1. Record ends
Format specification continues
1/0 list continues

Action:

The transfer continues as if the record was extended with blanks.

Example:

READ (S dO) A ,6 ,C
10 FORMAT (3Fl0.0)

Record contains:

40 10

Resulting values:

A = 40.0
B 10.0
C = 0.0

Note that this situation is not applicable to an output transfer.

2. 110 list ends
Format specification continues

Action:

The format scan continues until it encounters a repeatable edit descriptor, a colon, or until the rightmost right
parenthesis of the format is reached.

Nonrepeatable edit descriptors up to and including the first colon, if present, are processed if they are encoun­
tered during the scan.

Example:

A = 12
B = 123
C = 1234
D = 12345

WRITE (S ,20) A ,6 ,C
20 FORMAT (' A=' ,F3.0, ',6=' ,FLI.O, ',C=' ,FS.O, "

1 D=' ,F8.0)

Resulting output:

A = 12., B = 123., C = 1234., D =

Note that the I, D = I descriptor was processed. The format scan does not terminate until it encounters a descrip­
tor which requires an I/O list element, and there is no I/O list element to supply. However, the colon edit
descriptor will cause the format scan to stop if there is nothing left in the I/O list (see Section 12.4.6).

3. Format specification ends
1/0 list continues

Action:

A new record is started. The format scan continues, starting at the beginning of the last complete parenthesized
group within the format specification. If there is no parenthesized group within the format, the format is
restarted from the beginning (see Section 12.3.4).

Example:

A=123.
6=78SLI.12S
C=1.812S

WRITE (SilO) A,6,C
10 FORMAT (F1S.8)

12-13

FORMATTED DATA TRANSFERS

Table 12-4: Record, Format List, and 1/0 List Interaction (Cont.)

Resulting output:

123.000000
7654.125000

1.612500

4. 1/0 list ends
Format specification ends

Action:

On input, if there are any characters remaining in the record, they are ignored. On output, the record is simply
terminated without any extra characters added.

Example:

READ (5 t1 0) GAMMA
10 FORMAT (F5. 2)

Record contains:

12.34 value of GAMMA

Resulting values:

GAMMA = 12.34

The extra data (the comment) in the input record is ignored.

The execution of a formatted I/O statement proceeds by matching I/O
list elements and FORMAT edit descriptors. The edit descriptors I, 0,
Z, R, F, E, 0, G, L, A, and Q each correspond to one element of the
I/O list. No I/O list element corresponds to H, X, P, T, :, $, S, SP,
SS, BN, BZ, or apostrophe edit descriptors. If one of these
descriptors is encountered, it is executed and the format scan
continues.

12.3.2 Formatted Input

A formatted input statement begins by reading a record from the
specified unit. The format is scanned from left to right. X, P, T,
BN, BZ, and / edit descriptors are executed as they are encountered.
If an I, 0, Z, R, F, E, 0, G, L, A, or Q descriptor is encountered,
data is read into the corresponding I/O list element as specified by
the edit descriptor.

If the I/O list contains no more elements, execution of the READ
statement ends. Additional records will be read from the specified
unit when a slash occurs in the format, or when the last right
parenthesis of the format is reached, and I/O list elements remain to
be filled.

When an input record is terminated by a slash or by the end of the
format, any data left in the input record is discarded. If the input
record is exhausted before the data transfers are completed, the
remainder of the transfer is completed as if the record were extended
with blanks.

12-14

FORMATTED DATA TRANSFERS

12.3.3 Formatted Output

A formatted output statement begins by scanning the format. The H, X,
P, T, BN, BZ, :, /, $, S, SS, SP, and apostrophe edit descriptors are
executed as they are encountered. If an I, 0, Z, R, F, E, D, G, L, or
A descriptor is encountered, data is translated from the corresponding
I/O list element, as specified by the edit descriptor, and placed in
the output record.

If the I/O list contains no more elements, the output record is
written to the specified unit, and execution of the WRITE statement
ends. Additional records will be written to the specified unit when a
slash occurs in the format, or when the last right parenthesis is
reached, and I/O list elements remain to be transferred.

12.3.4 Embedded Format Specifications

Format specifications may contain embedded format specifications with
optional repeat specifications. If a repeat specification is used,
the entire format specification that it precedes is scanned the
specified number of times during the I/O transfer. In the example:

WR I TE (1, 100) A, B, C , D, E , F , G , H, I , J
100 FORMAT (FlO.2,4 (I5,lX,I3) ,18)

the variable A is matched with the format item F10.2. Then, the
variable B is matched with 15, variable C with 13, variable D with IS,
and so on for four iterations of the embedded format specification.
Finally, the variable J is matched with the format item 18.

If no repeat specification is used preceding an embedded format
specification, a repeat count of 1 is implied.

When the last right parenthesis of the format is reached, and more I/O
list elements remain to be transferred, a new record is started and
format scanning continues. The scanning continues at the beginning of
the format specification whose right parenthesis is the next to last
right parenthesis in the format. If there are no embedded format
specifications, format scanning continues at the beginning of the
format.

For example:

DIMENSION A(lOO)
INTEGER CASE
CASE=33

WRITE (1,100)CASE, (A(I) ,1=1,100)
100 FORMAT ('THIS IS CASE' ,I6,//,4(lX,FlO.5»

After A(l) through A(4) are written, a new line is started and format
scanning continues at the beginning of the embedded format
specification. Thus, A(5) through A(8) are written; a new record is
started, and so forth.

12-15

FORMATTED DATA TRANSFERS

The output file would appear as follows:

THIS IS CASE 33

A(l)
A(5)
A(9)

Example:

A (2)
A(6)
A(lO)

A(3)
A(7)
A (11)

A(4)
A(8)
A (12)

DIMENSION A(5) ,DATl(lOO) ,B(4,100) ,DAT2(100)
WRITE (1,100) CASE, (A(K) ,K=1,5), (DATI (J), (B(I,J) ,I=1,4),

1 DAT2 (J) ,J=l, 100)
100 FORMAT ('CASE' ,I5,11,5(lX,FlO.3) ,1,(FI0.3,4(3X,F15.5)

1 ,lX,FlO.3»

In this example, after A(l) through A(5), DATl(l), B(l,l) through
B(4,1), and DAT2(1) are written, a new record is started, and format
scanning begins. The format scanning begins at the embedded format
specification following the 'I' (the specification whose right
parenthesis is the next to last right parenthesis).

The output file would appear as follows:

CASE 33

A (1) A(2) A(3) A(4) A (5)
DATI (1) B(l,l) B(2,1) B(3,1) B(4,1) DAT2(1)
DATl(2) B(1,2) B(2,2) B (3 ,2) B(4,2) DAT2(2)
DAT1(3) B(1,3) B(2,3) B(3,3) B(4,3) DAT2(3)

12.4 FORMAT EDITING

Tables 12-1 and 12-2 describe forms of all the FORMAT edit
descriptors. The edit descriptors enable you to specify the form of a
record and to specify the editing of the data as it is transferred.

The edit descriptors are described according to the character used to
accomplish a particular modification to the data or record in which
the data are stored.

APOSTROPHE (')
Editing

12.4.1 Apostrophe (I) Editing

The apostrophe (') edit descriptor (single-quote) enables you to
include a character constant in a format list.

12-16

FORMATTED DATA TRANSFERS

The form of the apostrophe edit descriptor is:

'hl ••• hn'

where:

'hl ••. hn' is a character constant.

To include an apostrophe as part of the character constant, you must
use two successive apostrophes.

This descriptor is only used for output; the characters enclosed by
the apostrophes are written.

Example:

TYPE 10
10 FORMAT (' That' 's the way!')

will output

That's the way!

12.4.2 H Editing

H
Editing

The H edit descriptor (also called the Hollerith descriptor) enables
you to include character strings in a format list.

The form of the H edit descriptor is:

nHhl ••• hn

where:

n

hl ••• hn

is a nonzero, unsigned, integer constant that indicates
the total number of ASCII characters included in the
string.

is a string of ASCII characters. (The ASCII character
set is described in Appendix B.)

You may transmit alphanumeric data directly from the FORMAT statement
using either the H or apostrophe specifiers.

This descriptor is only used for output; the n characters that follow
the H are written. For example, you can use the following statement
sequence to print the words PROGRAM COMPLETE on the printer:

PRINT 101
101 FORMAT (17HiPROGRAM)iCOMPLETE)

12-17

FORMATTED DATA TRANSFERS

The result of apostrophe editing is the same as Hollerith editing.
For example, you may use the descriptors:

101 FORMAT (17H~PROGRAM~COMPLETE)

and

101 FORMAT ('~PROGRAM~COMPLETE')

in the same manner.

Apostrophes can appear anywhere within a Hollerith edit descriptor
without having to be represented by two apostrophes. However, if the
H edit descriptor occurs within a character constant, the apostrophe
is written as two apostrophes, which are counted as one character.

POSITIONAL
Editing

12.4.3 Positional Editing

The positional edit descriptors specify the position at which the next
character will be transmitted to or from the record. The positional
edit descriptors are: T, TL, TR, and X.

The T edit descriptor specifies the character position within a record
where the next character will be transmitted (see Section 12.4.3.1).

The TL and TR descriptors specify the number of character positions to
the left or right, respectively, of the current position for the
character position of the next character (see Section 12.4.3.1).

The X descriptor specifies the number of character positions to the
right of the current position for the character position of the next
character (see Section 12.4.3.2).

NOTE

On output, a record is initially filled with blanks.
Therefore, fields skipped by the positional editing
descriptors will be blank-filled. However, the output
record length is determined by actual output. Merely
specifying a positional editing descriptor with no
output will not change the record size. Thus, the
record written with:

FORMAT (I6,SOX,TIO,I3)

will have a record length of 13 characters, since no
output was done after the SOX.

Examples:

The statement sequence:

PRINT 2
2 FORMAT (TSO,'BLACK' ,T30,'WHITE')

12-18

FORMATTED DATA TRANSFERS

causes the following line to be printed:

rHITE

(print position 30)

The statement sequence:

1 FORMAT (T35,'MONTH')
READ (2,1)

fLACK

(print position 50)

causes the first 34 characters of the input data associated with
logical unit 2 to be skipped, and the next five characters to replace
the characters M, 0, N, T, and H in storage.

If an input record containing:

ABC}J)i~XYZ

is read with the format specification:

10 FORMAT (T7,A3,T1,A3)

then the characters XYZ and ABC are read in that order.

You can use the field descriptor nX to introduce blanks into output
records or to skip characters of input records. The letter X
specifies the operation, and n is "a positive integer that specifies
the number of character positions to be either made blanks (output) or
skipped (input).

The statement:

FORMAT (5H~STEP,I5,10X,2Hy~,F7.3)

may be used to print the line:

T, TL, and TR
Editing

12.4.3.1 T, TL, and TR Editing - The T edit descriptor specifies that
the transmission of the next character to or from a record is to occur
at the specified character position.

The form of the T descriptor is:

Tc

where:

c is a positive, unsigned, integer constant that indicates the
character position to or from which the next character will
be transferred.

For example:

FORMAT (T20,I5,T8,I2)
12-19

FORMATTED DATA TRANSFERS

specifies that the characters read or written for the 15 descriptor
will start in character position 20, and the characters read or
written for the 12 descriptor will start in character position 8. For
output to carriage-control devices (line printer and terminal), Tn
specifies that n-l will be the next character written, since the
character position 1 is the carriage-control character position.

The TL edit descriptor specifies that the transmission of the next
character to or from the record is to occur at a position which is a
specified number of positions backward from the current position.

The form of the TL edit descriptor is:

TLc

where:

c is a positive, unsigned, integer constant that indicates the
character position, c positions backward from the current
position, to or from which the next character will be
transferred. If c would cause transmission to start at a
position before the beginning of the current record,
transmission will start instead at position one.

For example:

FORMAT (I5,T13,A5,TLlO,I2)

specifies that the characters read or written for the A5 descriptor
will start at character position 13, and that the characters read or
written for the 12 descriptor at will start at character position 8.

The TR edit descriptor specifies that the transmission of the
character to or from a record will occur at a position that
specified number of positions forward from the current position.
function of this form is identical to that of the X descriptor
Section 12.4.3.2).

The form of the TR edit descriptor is:

TRc

where:

next
is a
The

(see

c is a positive, unsigned, integer constant that indicates the
character position, c positions forward from the current
position, from which the next character will be transferred.

Example using all three types of T descriptor:

TYPE 10
10 FORMAT(' 234567890123456789012345678901234567890')

TYPE 20
20 FORMAT(T29,'BLACK' ,TlO,'WHITE')

TYPE 30
30 FORMAT(TlO,'90l2' ,TR5,'890l')

TYPE 10

TYPE 40
40 FORMAT(T20,'(SECOND)' ,TLI0,')FIRST(')

END

12-20

EXECUTE TEST2.FOR
FORTRAN: TEST2
MAIN.
LINK: Loading

FORMATTED DATA TRANSFERS

[LNKXCT TEST2 execution]

234567890123456789012345678901234567890
WHITE BLACK
9012 8901

234567890123456789012345678901234567890
)FIRST<ND)

CPU time 0.1 Elapsed time 0.5

In FORMAT 20, 'BLACK' is written, then 'WHITE' is written to the left
of it. In FORMAT 30, five positions are skipped between the two
character strings being printed. In FORMAT 40, '<SECOND)' is written,
the format goes back ten positions and writes ')FIRST<' over the
previously written character string.

X
Editing

12.4.3.2 X Editing - The X edit descriptor specifies that the
transmission of characters to or from a record will occur a specified
number of characters forward from the current position.

The form of the X edit descriptor is:

[n] X

where:

n is an optional, unsigned, positive, integer constant that
indicates the number of characters forward from the current
position, at which the next character will be transmitted.
The default value is 1.

Example:

TYPE 10
10 FORMAT(' 1234567890123456789012345678901234567890')

TYPE 20
20 FORMAT(' A WORD OR TWO',10X,'OR THREE')

END

EXECUTE TEST3.FOR
FORTRAN: TEST3
MAIN.
LINK: Loading
[LNKXCT TEST3 execution]

1234567890123456789012345678901234567890
A WORD OR TWO OR THREE

CPU time 0.2 Elapsed time 2.1

12-21

FORMATTED DATA TRANSFERS

In this example, ten positions are skipped between the printing of
'A WORD OR TWO' and 'OR THREE'.

c:--- '--'--;-":J
(DOLLAR SIGN)

Editing

12.4.4 $ (Dollar Sign) Editing

The $ (dollar sign) output edit descriptor suppresses all carriage
control at the end of the current record (for CARRIAGECONTROL='LIST')
or at the beginning of the next record (for CARRIAGECONTROL='FORTRAN'
or 'TRANSLATED').

This descriptor is used for interactive I/O; it leaves the terminal
position at the end of the text so that a response will follow the
output on the same line.

Example:

WRITE (5,10)
READ (5,*) N

10 FORMAT (' Number of samples:' $)
WRITE (5,20)
READ (5,*) X

20 FORMAT (I Mean value: $)
END

If the user enters 100 for Nand 1.23 for X, executing the program
will produce the typescript:

Number of samples: 100
Mean value: 1.23

The $ edit descriptor can be used to append the output of several
statements into a single line. For example:

DO 10 I = 1,10
10 WR I TE (5 , 20) I
20 FORMAT (lX,I3,$)

WRITE (5,20)
END

will produce one line of output:

1 2 3 4 5 6 7 8 9 10

The $ edit descriptor is ignored for input.

12-22

FORMATTED DATA TRANSFERS

12.4.5 / (Slash) Editing

/ (SLASH)
Editing

The / (slash) edit descriptor indicates the end of data transfer for a
record. Two consecutive slashes indicate the transmission of an empty
record.

On input to a file connected for sequential access, the remaining
portion of the current record is skipped, and the file is positioned
at the beginning of the next record. This new record becomes the
current record. On output to a file connected for sequential access,
the current record is terminated, and a new record is created, which
becomes the current and last record of the file.

A record that contains no characters may be written. Also, an entire
record may be skipped on input.

If the file is connected for direct access, the record number is
increased by one, and the file is positioned at the beginning of the
record that has that record number. This record becomes the current
record.

The following statements will write a record with no characters:

WRITE (1,100)
100 FORMAT(/)

To handle a group of I/O records where different records have
different field descriptors, use a slash to indicate a new record.
For example, the statement

FORMAT (308/15,2F8.4)

is equivalent to

FORMAT (308)

for the first record, and

FORMAT (I5,2F8.4)

for the second record.

You may
appear
written
middle
records

omit separating commas when you use a slash. When n slashes
at the beginning or end of a format, n blank records will be
on output or skipped on input. When n slashes appear in the
of a format, n-l blank records are written on output or n-l
are skipped on input.

12-23

12.4.6

: (COLON)
Editing

FORMATTED DATA TRANSFERS

(Colon) Editing

The: (colon) edit descriptor terminates format control if there are
no more items in the I/O list of the corresponding data transfer
statement. The colon edit descriptor has no effect if there are any
items left in the I/O list of the corresponding data transfer
statement.

Example:

Xl 100
X2 200
X3 300

TYPE 10, Xl,X2
10 FORMAT(F6.1,F6.1,:,'THIS SHOULD NOT PRINT' ,F6.1)

TYPE 20,X1,X2,X3
20 FORMAT(F6.1,F6.1,:,' BUT THIS SHOULD' ,F6.1)

END

EXECUTE TEST4.FOR
FORTRAN: TEST4
MAIN.
LINK: Loading
[LNKXCT TEST4 execution]

100.0 200.0
100.0 200.0 BUT THIS SHOULD 300.0
CPU time 0.1 Elapsed time 1.5

S, SP, and 5S
Editing

12.4.7 S, SP,and SS Editing

The S, SP , and SS edit descriptors control the output of the optional
plus sign in numeric output fields. These descriptors are used as
follows:

S indicates that the system-defined action is taken. The
system-defined specification for Digital FORTRAN is SSe

SP indicates that the plus sign is printed in all positive
numeric output fields.

SS indicates that the plus sign is not printed in positive
numer ic output fields. This descriptor is the default.

12-24

FORMATTED DATA TRANSFERS

The S, SP, and SS edit descriptors affect only I, F, E, D, and G
editing during the execution of a data transfer output statement;
these edit descriptors have no effect during input transfers. These
descriptors stay in effect until the end of the I/O transfer or until
another S, SP, or SS is encountered.

Example:

Xl 100
X2 200
X3 300
X4 400

TYPE 10, XI,X2,X3,X4
10 FORMAT(" ,S,F7.l, SP,F7.1, SS,F7.l, SP,F7.l)

END

EXECUTE TEST5.FOR
FORTRAN: TEST5
MAIN.
LINK: Loading
[LNKXCT TEST5 execution]

100.0 +200.0
CPU time 0.1

300.0 +400.0
Elapsed time 0.2

In this example, X2 and X4 have plus signs because of the SP
descriptors in front of the F descriptors that correspond to them.

12.4.8 P Editing

p
Editing

The P edit descriptor is used to specify a scale factor for F, E, D,
and G edit descriptors.

The form of the P edit descriptor is:

kP

where:

k is an optionally signed integer constant representing the
scale factor.

If a scale factor is not specified in a format list, a scale factor of
zero is assumed. Once a scale factor is specified in a format list,
that scale factor remains in effect for all F, E, D, and G edit
descriptors until a new scale factor is specified, or to the end of
the execution of the current I/O statement. Scale factors have no
effect on I, Z, and 0 edit descriptors.

12-25

FORMATTED DATA TRANSFERS

The scale factor affects the F, E, D, and G data transfers as follows:

On input:

If there is an exponent field, the scale factor k has no effect. If
there is no exponent field on the number read in, the number is
multiplied by 10**(-k) before being assigned to the input variable.

On output:

The basic real constant part of the quantity, in E and D editing only,
is multiplied by 10**k and the exponent is reduced by k. For G
editing, the scale factor has no effect unless the magnitude of the
data item to be edited is outside of the range that permits the use of
F editing. If G editing is specified, and the magnitude of the data
item to be edited is such that E editing is required, the scale factor
has the same effect as with E output editing (see Section 12.4.11.3).

The comma is optional between a P edit descriptor and immediately
following F, E, D, or G edit descriptors.

For example, assume the data involved is the real number 26.451; the
edit descriptor

F8.3

produces the external field

The addition of the scale factor of -lP, as in

FORMAT (-lP,F8.3)

produces the external field

When you add a scale factor to D, E, and G (external field not a
decimal fixed-point) edit descriptors, the scale factor multiplies the
number by the specified power of ten, and the exponent is changed
accordingly.

In input operations, type F (and type G, if the external field is
decimal fixed-point) conversions are the only ones affected by scale
factors.

When you add a scale factor to a D or E edit descriptor, it specifies
a power of 10 so that the external form of the number has its mantissa
multiplied by the specified power of 10; its exponent is adjusted
accordingly.

For example, assume the data involved is the real number 12.49; the
edit descriptor

Ell.3

produces the external field

1jO.125E+02

The addition of the scale factor 2P, as in

FORMAT (2P,Ell.3)

12-26

FORMATTED DATA TRANSFERS

produces the external field

.J2fj512.49E+00

with a scale factor of zero, the number of significant digits printed
by a format of the form:

Ew.d

or

Dw.d

is the number of digits to the right of the decimal point.

For a negative scale factor nP, for -d<n<O, there will be ABS(n)
leading zeros and d-ABS(n) significant digits after the decimal point
(for a total of d digits after the decimal point). If n<-d, there
will be d insignificant digits (zeros) to the right of the decimal
point.

If the scale factor nP is positive, for 0<n<d+2 there will be n
significant digits to the left of the decimal point and d-n+l
significant digits to the right of the decimal point (for a total of
d+l significant digits). If n>d+2, there will be d+l significant
digits and n-d-l insignificant trailing zeros on the left of the
decimal point.

If the data to be printed is 12.493, these formats produce results as
follows:

FORMAT

E15.3
lPE15.3
-lPE15.3
2PE15.3
-3PE15.3
4PE15.3
6PE15.3

Example:

OUTPUT

}6p5J6J6J6~0.125E+02
J'6t6J6)6,lSjSl.249E+Ol
~J'6t6J6}6,kS0.012E+03
t6t6J6J6J6J6l2.49E+00
t6.kS.kSJ6.kS)60.000E+05
J6J6)6,sJ'6jS1249.E-02
Jz$JzSJDjlS124900.E-04

TYPE 10

SIGNIFICANT
DIGITS

3
4
2
4
o
4
4

10 FORMAT(' Type in a real number')

ACCEPT 20,Xl
20 FORMAT(2P,F)

TYPE 30,Xl
30 FORMAT(' Number read with P=2 =' ,F,

1 I,' (Number read)*10**(-2) ')

TYPE 40,Xl

REASON

n=O
n<d+2
-d<n
n<d+2
n<-d
n<d+2
n>d+2

40 FORMAT(/,' The above number written with P=2' ,I,
1 ' i s =' , 2 P , F , I " (N urn b era b 0 v e) * 1 0 * * (2) ,)

END

12-27

FORMATTED DATA TRANSFERS

EXECUTE TESTP.FOR
FORTRAN: TESTP
MAIN.
LINK: Loading
[LNKXCT TESTP execution]

Type in a real number
5.

Number read with P=2 =
(Number read)*10**(-2)

0.0500000

The above number written with P=2
is = 5.0000000
(Number above)*10**(2)
CPU time 0.2 Elapsed time 5.1

The number the program receives is (5.)*(10**(-2» and the value typed
out is (.05) * (10** (2» •

BN and BZ
Editing

12.4.9 BN and BZ Editing

The BN and BZ edit descriptors specify how blanks other than leading
blanks are interpreted only for numeric input fields where a width has
been specified. These edit descriptors have no effect on numeric
output fields.

The BZ descriptor specifies that blanks will be read as zeroes. The
BN descriptor specifies that blanks will not be read as zeroes. The
use of the BN or BZ edit descriptors in a format overrides the BLANK=
specifier in the OPEN statement for the duration of the use of that
format. (The BLANK= specifier is described in Section 11.3.3.)

For example:

ACCEPT (FMT=101)A,B,C,D
101 FORMAT (BN,I5,FIO.2,BZ,FIO.2,F8.5)

reads the first two numbers of data, ignoring blanks embedded in the
numbers. Then the program reads the second two numbers, substituting
zeroes for blanks embedded in the numbers.

12-28

FORMATTED DATA TRANSFERS

12.4.10 Q Editing

~
--.. ------J
Q

Editing

.. _---------

The Q edit descriptor sets a corresponding integer variable in the I/O
list to the number of characters left in the record being transferred.
This descriptor is for use with input transfers only. You can use
multiple Q descriptors in the same format list. The Q edit descriptor
is useful when you need to know the number of characters remaining in
a record.

For example:

TYPE *,'Enter text:'
ACCEPT 100,L,Jl

100 FORMAT (AS,Q)

when used to read the data

Enter text:
HELLO THIS IS A TEST

would yield the value IS for variable Jl, since there are 20
characters in the data, and AS reads S of them.

12.4.11 Numeric Editing

Numeric
Editing

The I, F, E, D, G, Z, and a edit descriptors are used to specify the
input and output of integer, real, complex, double-precision,
hexadecimal, and octal data.

The numeric edit descriptors are repeatable, and can be used without
specifying size. For output, if you use a numeric edit descriptor
without specifying a field width, the defaults shown in Table l2-S are
used.

For input, the data is scanned until a blank, comma, or character
illegal for the specified edit descriptor is encountered, except for A
format, which uses the defaults shown in Table 12-S.

12-29

FORMATTED DATA TRANSFERS

Table 12-5: Default Field Widths for Numeric Edit Descriptors
r------------.. -.- .-.--.. -.-.. ---....... ---.. -.-----------------------------,

Edit Descriptor Default Field Width
----.----- --.- .---... -----.- ... -.----.. -.. --... -. -- _ .. __ ._. __ ._ _._-_._--_._._._-------------1

115
-_._-----_._-_ .. _._+ .. _ _._

F (single prec.) *1<'15.7

F (double prec.) *F25.18
. -.---.----.- - .-.- ._._ ... _-... _-_._._--_._------------------1

E (single prec.) E15.7
-... --.-.----------------.--.--------.--.------------------I

E (double prec.) E25.18
-------.. --.--- --.--.-----.---- .--.----.. ----.--.. -----------.----------------1

D (single prec.l D15.7

D25.l8
... ---- ._-_._._._--------_._----------------1

D (double prec.l
r----------.---+-.----.-.--.--.-.-.------.-------.---------------------/

G (single prec.) GI5.7
1-----_._-------- .-.--------.. ---.--.------... ----- -.. ---.-.--.-.- .. -... ---.-- ... ----------------------1

G (double prec.) G25.18
----.-.. --.-------.-.-.. ---------------1

o (single prec.) 015
--.------..... ------.------.. -. -----_._---_._----------------1

o (double prec.) 025
------_._._--_._---_. __ ._-------------------------1

L LI5
r---------- --+-------------.--- -.----.. --.------.-------.----------1

Z (single prec.l Z15
-----------.--.---------------------1

Z (double prec.) Z25
-.. --.---.. -- .---.---.-.------------------1

A (single prec.l A5

A (double prec.) Ala
.-.-- .. --.. -.-.-----.-.--.---.-.-.---.-.--.. -.---------.--.--.-----f

R (single prec.l R5
---.-.. -------.-------------------------f

1------------_._- .-.. ----.----- .. --.-------------.--------------------1
R (double prec.) RIO

If the default field width for F tormat is too small for the data, the field width expands to fit the data.

The following conventions apply to all I/O transfers using the numeric
edit descriptors:

1. The interpretation of blanks is determined by a combination
of any BLANK= specifier in the corresponding OPEN statement
(see Section 11.3.3), and any BN or BZ edit descriptor (see
Section 12.4.9) that is currently in effect in the format
list. A field of all blanks is always equal to zero.

2. On input transfers, with F, E, D, and G editing, a decimal
point appearing in the input field overrides the portion of
the edit descriptor that specifies the location of the
decimal point.

3. On output transfers, the representation of a positive or zero
value in the field may be prefixed with a plus, as controlled
by the S, SP, and SS edit descriptors (see Section 12.4.7).
The representation of a negative value in the field is
prefixed with a minus sign.

4. On output transfers, the representation of the transferred
datum is right-justified in the specified field. If the
number of characters produced by the editing is smaller than
the specified field width, leading blanks are inserted in the
field.

12-30

FORMATTED DATA TRANSFERS

5. On output transfers, if the number of characters produced
exceeds the field width, or if an exponent exceeds its length
(as specified in the Ew.dEe or Gw.dEe forms), the entire
field width, represented by w, is filled with asterisks.

The next sections describe the individual numeric edit descriptors.

12.4.11.1 I Editing - The I edit descriptor
editing.

The form of the I edit descriptor is:

[r]I[w[.m]]

where:

I
Editing

specifies integer

r is an optional, nonzero, unsigned, integer constant
indicating how many fields of I are being specified. The
default is one field.

w is an optional, nonzero, unsigned, integer constant that is
equal to the total number of digits in the integer field
being described. If w is not specified, for output, the
value is 15 (the default); for input, the data is scanned
until a blank, comma, or character illegal for the I edit
descriptor is encountered •

• m is an optional, unsigned, integer constant (separated from w
by a period) that indicates the minimum number of digits to
be output to the integer field being described. The default
is one digit (I15.l). If necessary, leading zeroes are
output.

The value of m must not exceed the value of w. If m is zero
and the value of the internal data item is zero, the output
field consists of only blank characters, regardless of the
sign control in effect.

On input, the Iw.m and the Iw forms of the I edit descriptor are
treated the same.

Example:

10 FORMAT(I,I8,219.5)

The first data item is output as a 1- to IS-digit right-justified
integer in the first 15 columns. The second item is a 1- to 8-digit
integer occupying the next 8 columns. The third and fourth items are
5- to 9-digit integers occupying 9 columns each, with leading zeroes
appended to the data to make them 5 digits if necessary.

12-31

FORMATTED DATA TRANSFERS

F
Editing

12.4.11.2 F Editing - The
(floating-point) editing.

F edit

The form of the F edit descriptor is:

[r] F[w.d]

where:

descriptor specifies real

r is an optional, nonzero, unsigned, integer constant
indicating the number of fields of F being specified. The
default is one field.

w is an optional, nonzero, unsigned, integer constant equal to
the total number of digits in the F field being described.
This total includes the digits to the right and left of the
decimal point, the decimal point itself, and (if included)
the sign. On input, if the decimal point is omitted, the
rightmost d digits of the string, with leading zeros assumed
if necessary, are interpreted as the fractional part of the
value represented.

If w is not specified, for output, the value for
single-precision is 15 (the default), and the value for
double-precision is 25 (the default). For input, the data
is scanned until a blank, comma, or character illegal for
the F edit descriptor is encountered •

• d is an optional, nonzero" unsigned, integer constant that
specifies the total number of fractional digits in the field
of width w. The default for single-precision is 7 digits;
the default for double-precision is 18. The maximum is 63
digits.

NOTE

If the default field width for F format (with no width
specified) is too small for the data, the field width
expands to fit the data.

E and 0
Editing

12.4.11.3 E and D Editing - The E and D edit descriptors specify
editing of real data.

The form of the E edit descriptor is:

[r]E[w.d[Ee]]

12-32

FORMATTED DATA TRANSFERS

The form of the D edit descriptor is:

[r]D[w.d[Ee]]

where:

r is an optional, nonzero, unsigned, integer constant that
equal to the number of E or D fields being described.
defaults are one single-precision E field and
double-precision D field.

is
The
one

w is an optional, nonzero, unsigned, integer constant equal to
the total number of digits in the E or D field being
described. The total for both types of fields is equal to:

1. The total number of digits on both sides of the decimal
point

2. The decimal point itself

3. The sign for the number (if included)

4. The exponent character (if included)

5. The digits in the exponent

If w is not specified, for output, the value for single
precision is 15 (the default), and the value for double
precision is 25 (the default). For input, the data is
scanned until a blank, comma, or character illegal for the E
or D edit descriptor is encountered.

d is an optional, nonzero, unsigned integer constant equal to
the total number of fractional digits in the field being
described (unless a scale factor greater than one is in
effect). The defaults for both the E and D edit descriptors
are 7 digits if single precision, and 18 if double
precision. The maximum is 63 digits.

e is an optional, nonzero, unsigned, integer constant equal to
the total number of digits in the E or D field being
described. The default for both types of edit descriptors
is two digits. The maximum is 15 digits.

For KL model B systems, if the program is compiled with the
/GFLOATING switch (see Section 16.1.3 or 16.2.3), you may
want to specify three digits to accommodate the exponent
field of double-precision numbers.

G
Edmng

12.4.11.4 G Editing - The G edit descriptor allows editing of
integer, real, double-precision, logical, complex, or character data.
with the exception of real, double-precision, and complex data, the
type of conversion performed by the G edit descriptor depends on the
type of the corresponding variable in the I/O list.

12-33

FORMATTED DATA TRANSFERS

The form of the G edit descriptor is:

[r]G [w.d [Ee]]

where:

r is an optional, nonzero, unsigned, integer constant that
equal to the number of G fields being described.
default is one.

is
The

w is an optional, nonzero, unsigned, integer constant equal to
the total number of digits in the G field being described.
The total for both types of fields is equal to:

1. The total number of digits on both sides of the decimal
point

2. The decimal point itself

3. The sign for the number (if included)

4. The exponent character (if included)

5. The digits in the exponent

If w is not specified, for output, the value for single
precision is 15 (the default), and the value for double
precision is 25 (the default). For input, the data is
scanned until a blank, comma, or character illegal for the G
edit descriptor is encountered.

d is an optional, nonzero, unsigned integer constant equal to
the total number of fractional digits in the field being
described (unless a scale factor greater than one is in
effect). The defaults are 7 digits if single precision, and
18 if double precision. The maximum is 63 digits.

e is an optional, nonzero, unsigned, integer constant equal to
the total number of digits in the G field being described.
The default is two digits. The maximum is 15 digits.

For KL model B systems, if the program is compiled with the
/GFLOATING switch (see Section 16.1.3 or 16.2.3), you may
want to specify three digits to accommodate the exponent
field of double-precision numbers.

For input, in the case of real, double-precision, and complex data,
the G-format conversion is the same as for E-format conversion. For
output, however, the type of conversion performed depends on the
magnitude of the data items. Table 12-6 illustrates the conversion
performed for various ranges of real, double-precision, and complex
data.

12-34

FORMATTED DATA TRANSFERS

Table 12-6: Effect of Data Magnitude on G·Format Output
Conversions

Data Magnitude (m) Effective Conversion

m .LT. 0.1. Ew.d
0.1 .LE. m .LT. 1.0 F(w - n).d,n(x)
1.0 .LE. m .LT. 10.0 F(w - n).(d-1),n(x)

10**d-2 .LE. m .LT. 10**d-1 F(w - n).l,n(x)
10**d-1 .LE. m .LT. 10**d F(w - n).O,n(x)
m .GE. 10**d Ew.d

where:

x is a blank

n is 4 for Gw.d and e + 2 for Gw.dEe

where:

x is a blank.

n is 4 for Gw.d and e+2 for Gw.dEe

NOTE

In all numeric field conversions, the field width (w)
you specify should be large enough to include the
decimal point, sign, and, where applicable, the
exponent character (E), the exponent sign, plus the
exponent digits. This is in addition to the number of
digits in the number to be represented.

If the specified width is t~o small to accommodate the
converted number, the field will be filled with
asterisks (*). If the number converted occupies fewer
character positions than specified by w, it will be
right-justified in the field, and leading blanks will
be used to fill the field.

If the numeric data representation cannot fit into the
field width F{w-n), the n spaces (n{x» are removed
from the right, and the numeric data representation is
again processed into the field width Fw.

Examples of G output conversions (where the ~ signifies a blank) are:

Format Internal Value External Representation

G13.6 0.01234567 9I0.123457E-01
G13.6 -1.12345678 -0. 123457J6Jb;5»
G13.6 1.23456789 Jb)51. 23457t6~)5J6
G13.6 12.34567890 y.sp512.3457)5J6t5JzS:
G13.6 123.45678901 J6t6123.457j2S}6.J6~
G13.6 -1234.56789012 t6-1234.57J6J6J6~
G13.6 12345.67890123 ,t6,t612 345. 7p5J6,l6iz{
G13.6 123456.78901234 J2Sj2S123457.J6J2S}6'P{
G13.6 -1234567.89012345 -0.123457E+07

12-35

FORMATTED DATA TRANSFERS

For comparison, consider the following example of the same values
output under the control of an equivalent F field descriptor.

Format

F13.6
F13.6
F13.6
F13.6
F13.6
F13.6
F13.6
F13.6
F13.6

Complex
Editing

Internal Value

0.01234567
-0.12345678

1.23456789
12.34567890

123.45678901
-1234.56789012
12345.67890123

123456.78901234
-1234567.89012345

External Representation

~J6)6)5;S0 • 012346
,JzS)6)S)S-0.123457
Jzl)6JlSJ6J61.234568
J6Jl5JlSJzH2.345679
~Jijp5123.456789
J2l-1234.567890
~12345.678901
123456.789012

12.4.11.5 Complex Editing - A complex number consists of a pair of
separate real numbers. The first number of the pair is the real part
of the complex number; the second number is the imaginary part.

The editing of a complex number involves specifying two successive F,
E, D, or G edit descriptors. The edit descriptors need not be the
same.

A sample format list description for a complex number is:

101 FORMAT (FI0.2,EI0.2)

In this sample, the FI0.2 edit descriptor provides editing for the
real part of the complex number; the E10.2 edit descriptor provides
editing for the imaginary part.

You may include any nonrepeatab1e edit descriptors between the real
and imaginary edit descriptors for a complex number.

(O~al)]
Editing

'----------"~-.-.--.-----'"-

12.4.11.6 a (Octal) Editing - The 0 (octal) edit descriptor specifies
octal editing.

The form of the a edit descriptor is:

[r]O[w[.m]]

12-36

FORMATTED DATA TRANSFERS

where:

r is an optional, nonzero, unsigned, integer constant
specifying the number of successive octal fields being
described. The default is one octal field.

w is an optional, nonzero, unsigned, integer constant
specifying the total number of digits in the octal field
being described.

If w is not specified, for output, the value for a
single-precision octal field is 15 (the default), and the
value for a double-precision octal field is 25 (the
default). For input, the data is scanned until a blank,
comma, or character illegal for the 0 edit descriptor is
encountered.

m is an optional, unsigned, integer constant specifying the
minimum number of digits to be output to the field. The
defaults are 12 for single-precision octal values and 24 for
double-precision octal values.

c;
- ~--"----

Z
(Hexadecimal)

Editing
--~.-,-,---,- ------_. __ ...

12.4.11.7 Z Editing - The Z edit descriptor specifies input and
output of hexadecimal values. Hexadecimal is a base 16 number system
where the characters 0-9 and A-F (or a-f) represent the numbers 0-9
and 10-15, respectively. (On output, A-F only.)

The form of the Z edit descriptor is:

[r] Z [w[.m]]

where:

r is an optional, unsigned, nonzero, integer constant
specifying the number of consecutive hexadecimal fields
being specified. The default is one hexadecimal field.

w is an optional, unsigned,
specifying the total number
field being described.

nonzero, integer constant
of digits in the hexadecimal

If w is not specified, for output, the value for a
single-precision hexadecimal field is 15 (the default), and
the value for a double-precision hexadecimal field is 25
(the default). For input, the data is scanned until a
blank, comma, or character illegal for the Z edit descriptor
is encountered.

m is an optional, unsigned, integer constant specitying the
minimum number of digits to be output in the field. The
default for single-precision hexadecimal fields is 9 digits;
the default for double-precision fields is 18 digits.

12-37

L
Editing

FORMATTED DATA TRANSFERS

12.4.12 L Editing

The L edit descriptor provides editing of logical data.

The form of the L edit descriptor is:

[r] L[w]

where:

r is an optional, unsigned, nonzero, integer constant
specifying the number of consecutive logical fields being
described. The default is one logical field.

w is an optional, unsigned,
specifying the total number
field being described.

nonzero, integer constant
of characters in the logical

If w is not specified, for output, the value is 15 (the
default) For input, the data is scanned until a blank,
comma, or character illegal for the L edit descriptor is
encountered.

You may transfer logical data under format control in a manner similar
to numeric data transfer by use of the field descriptor

Lw

where:

L is the control character and w is an integer specifying the
field width. The data is transmitted as the value of a
corresponding logical variable in the associated I/O list.

The input field consists of optional blanks, optionally followed by a
period, followed by a T for true or F for false, optionally followed
by any series of characters (such as, .TRUE. for true or .FALSE. for
false) • If the enti re input data field is blank or empty, a value of
false is stored.

On output, w minus 1 blanks followed by T or F will be output if the
value of the logical variable is true or false, respectively.

12-38

FORMATTED DATA TRANSFERS

12.4.13 A Editing

A
Editing

The A edit descriptor specifies the editing of character or Hollerith
data. The data are stored left-justified in a word and padded with
blanks to the right.

NOTE

The R edit descriptor performs the same function for
Hollerith data, only it stores the data
right-justified in a word with leading nulls. The R
edit descriptor is not supported for character data.
For a description of the R edit descriptor, see
Section 12.4.14.

The form of the A edit descriptor is:

[r]A[w]

where:

r is an optional, unsigned, integer constant specifying the
number of consecutive A fields being defined. The default
is one A field.

w is an optional, unsigned, integer constant specifying
total number of characters in the field being defined.
default for single-precision values is 5 characters;
default for double-precision and complex values is
characters.

the
The
the

10

Depending on the I/O operation, the A edit descriptor transfers
character or Hollerith data into or from a variable in an I/O list. A
list variable may be of any type. For example,

READ (6,5) V
5 FORMAT (A4)

causes four character or Hollerith characters to be read from unit 6
and stored in the variable v.

The A descriptor deals with variables containing left-justified,
blank-filled characters. The following list summarizes the result of
character or Hollerith data transfer (both internal and external
representations) using the A descriptor. These explanations assume
that w represents the field width and m represents the total number of
characters possible in the variable. Double-precision and complex
variables contain 10 characters (m=lO); integer, real, and logical
variables contain 5 (m=5).

12-39

FORMATTED DATA TRANSFERS

A Descriptor

1. INPUT, where w > m -- The rightmost m characters of the field
are read in and stored in the corresponding variable.

2. INPUT, where w < m -- All w characters are read in and stored
left-justified and blank-filled in the corresponding
var iable.

3. OUTPUT, where
right-justified
blank-filled.

w > m m characters are output and
in the field. The remainder of the field is

4. OUTPUT, where w < m -- The leftmost w characters of the
corresponding variable are output.

R
Editing

12.4.14 R Editing

The R edit descriptor specifies the editing of Hollerith data.
Hollerith data are stored right-justified with leading nulls.
edit descriptor is not supported for character data.

NOTE

The A edit descriptor, described in Section 12.4.13,
performs the same function as the R descriptor except
that it left-justifies the data in storage with
trailing spaces.

The form of the R edit descriptor is:

[r]R[w]

where:

The
The R

r is an optional, unsigned, nonzero, integer constant
specifying the number of consecutive R fields being defined.
The default is one R field.

w is an optional, unsigned, nonzero, integer constant that
specifies the total number of characters in the R field.

If w is not specified, for output,
single-precision field is 5 (the default),
a double-precision or complex field is 10.
data is scanned until a blank, comma, or
for the R edit descriptor is encountered.

12-40

the value for a
and the value for

For input, the
character illegal

FORMATTED DATA TRANSFERS

The R descriptor deals with variables containing right-justified,
zero-filled characters. The following list summarizes the result of
Hollerith data transfer (both internal and external representations)
using the R descriptor. These explanations assume that w represents
the field width and m represents the total number of characters
possible in the variable. Double-precision and complex variables
contain 10 characters (m=lO)i integer, real, and logical variables
contain 5 (m=5).

NOTE

When more than five characters are stored, bit zero of
the low-order word is skipped. Thus, a
double-precision or complex variable filled by an
R-format data transfer is of the form:

, 0 I da ta I '0 I da ta

R Descriptor

1. INPUT, where w > m -- The rightmost m characters of the field
are read in and stored in the corresponding variable.

2. INPUT, where w < m -- All w characters are read in and stored
right-justified and zero-filled in the corresponding
variable.

3. OUTPUT, where
right-justified
zero-filled.

w > m m characters are output and
in the field. The remainder of the field is

4. OUTPUT, where w < m -- The rightmost w characters of the
corresponding variable are output.

12.5 LIST-DIRECTED FORMATTING

List-Directed
Formatting

The use of an asterisk in a data transfer statement in place of a
FORMAT statement label specifies list-directed formatting. For this
type of formatting, the type of each transferred data item is
specified by the types of respective elements in the I/O list.

List-directed input data transfers are performed without regard for
column, card, or line boundaries. List-directed output transfers
produce records with a maximum length of 72 characters (the default)
or the length specified by the RECL specifier (see Section 11.3.27 for
devices other than the terminal). Otherwise, the maximum length of
the current terminal width is used.

The following is a sample list-directed data transfer statement:

READ (5,*)I,IAB,M,L

12-41

FORMATTED DATA TRANSFERS

You may use list-directed transfers to read data from any acceptable
input device, including a terminal. However, do not use
device-positioning commands in conjunction with list-directed data
transfers. If you do, the results are unpredictable.

Data for list-directed transfers should consist of alternate constants
and delimiters. The constants used should have the following
characteristics:

1. Input constants must be of a form acceptable to FORTRAN.

2. Character constants must be enclosed within single quotes,
for example, 'ABLE'. Each apostrophe in a character constant
must be represented by two apostrophes.

3. The end of a record is equivalent to a blank except when it
occurs in a character constant. In this case, the end of the
record is ignored and the character constant is continued
with the next record. The first character of the continued
record must be blank, which is ignored.

4. If the string of a character constant exceeds the length of
the data item, the string is truncated. If the string is
shorter than the data item, the string is left-justified and
remaining character positions are blank filled.

5. Blanks are used as delimiters in
Embedded blanks are, therefore,
list-directed data item, with the
constants.

list-directed input.
not permitted in any

exception of character

6. Decimal points may be omitted from real constants that do not
have a fractional part. In this case, it is assumed that the
decimal point follows the rightmost digit of a real constant.

7. Complex constants must be enclosed within parentheses.

8. Octal constants must be preceded with a double quote (").

9. A numeric data item can correspond only to a numeric
constant, and a character data item can correspond only to a
character constant.

A delimiter in a list-directed list of data items separates one data
item from another. Delimiters in data for list-directed input must
comply with the following:

1. Delimiters may be commas, blanks, or slashes.

2. Delimiters may be either preceded by or followed by any
number of blanks, carriage return/line feed characters, tabs,
or line terminators; any such combination is treated as a
single delimiter.

3. A null item (the complete absence of a data item) is
represented by two consecutive commas that have no
intervening constant(s). You may place any number of blanks,
tabs, or carriage return/line feed characters between the
commas of a null item. Each time you specify a null item in
the input data, its corresponding list element is skipped
(unchanged) •

12-42

FORMATTED DATA TRANSFERS

The following illustrates the effect of the input of a null
item:

I/O List A,B,IAB,N

Data input 101,'A' ,,20

Resulting contents of I/O list items:

A 101.
B 'A'
lAB unchanged
N 20

4. Slashes (/) cause the current input operation to terminate
even if all the items of the I/O list are not filled. The
contents of items of the I/O list that either are skipped (by
null items) or have not received an input data item before
the transfer is terminated remain unchanged. Once the I/O
list of the data transfer statement is satisfied, the use of
the / delimiter is optional.

5. Once the I/O list has been satisfied (values have been
transferred to each item of the list), any items remaining in
the input record are skipped.

Constants or null items in data for list-directed input may be
assigned a repeat count so that an item is repeated.

A constant with a repeat count is written as:

r*K

where:

r is an integer constant that specifies the number of
times the constant is repeated, the asterisk delimits
the repeat count from the constant, and K represents
the constant.

A null item with a repeat count is written as an integer, which
specifies the repeat count, followed by an asterisk.

The following are examples of constants and null items:

10*5
3*'ABLE'
3*

represents 5,5,5,5,5,5,5,5,5,5
represents 'ABLE' ,'ABLE' ,'ABLE'
represents null,null,null

NOTE

The asterisk form representing nulls must be delimited
by a comma or slash; in this case spaces are ignored
and not treated as delimiters.

12-43

FORMATTED DATA TRANSFERS

t2.6 NAMELIST-STATEMENT FORMATTING

The data transfer statements described in Chapter 10 usually include
~n I/O list, which is a list of variable, array, or array element
names that identify the names of the data being transferred.

An alternative way of creating I/O lists is to use the NAMELIST
statement. Using this method, you can specify the I/O list in a
NAMELIST statement and then reference the list by name in the
appropriate data transfer statement.

When you use NAMELIST-statement formatting, as opposed to
fORMAT-statement or list-directed formatting, you need only reference
an I/O list by NAMELIST name in a data transfer statement.

["---------------"-""]
NAMELIST
Statement

----"-.------.-~.~-.. ".,- .. ,~-,-- -.---~~-

12.7 NAMELIST STATEMENT

The form of the NAMELIST statement is:

NAMELI ST /name/ list [/name/l i st] •••

where:

name

1 i st

is the name of the NAMELIST I/O list. This is the name
referenced in data transfer statements. Each NAMELIST
name must be enclosed in slashes.

is the list of items comprising the NAMELIST I/O list.
[terns within the list may be variable names or array
names. Separate multiple list items with commas.

Each list of a NAMELIST statement is identified and
referenced by the name immediately preceding the list.

The following is an example of creating two NAMELIST I/O lists having
the names TABLE and SUMS.

DIMENSION C(2,4) ,TOTAL(lO)
NAMELIST/TABLE/A,B,C/SUMS/TOTAL

In this example, the name TABLE identifies the list consisting of the
scalars A and B and the array C, and the name SUMS identifies the list
consisting of the array TOTAL.

12-44

FORMATTED DATA TRANSFERS

Once a list has been defined in a NAMELIST statement, one or more I/O
statements may reference its name.

The rules for structuring a NAMELIST statement are:

1. You may use a maximum of six characters for a NAMELIST name.

2. You must begin the list name with an alphabetic character.

3. You must enclose the NAMELIST name in slashes.

4. You should use NAMELIST names that are unique within the
program.

5. You may define a NAMELIST name only once, and you must define
it by a NAMELIST statement. Once defined, you may use the
name only in I/O transfer statements.

6. You must define the NAMELIST name before the data transfer
statements in which it is used.

7. You must define any dimensioned variable contained in a
NAMELIST statement in an array declaration statement
preceding the NAMELIST statement.

12.7.1 NAMELIST-Controlled Data Input Transfer

During data input transfers in which a NAMELIST-defined name is
referenced, records are read until a record is found that begins with
a blank, then $ (dollar sign), and then the desired NAMELIST name.
The dollar sign must be the second character in the record; the first
character in the record must be a blank.

NOTE

You may use "&" instead of "$" in NAMELIST-controlled
input.

Data items of records to be input (read) using NAMELIST-defined lists
must be separated by commas and may be of the following form:

V=Kl,K2, ••• ,Kn

where:

v

Kl, ••• ,Kn

may be a variable, array, or array element name.

are constants. A series of identical constants
may be represented as a single constant preceded
by a repetition count (5*5 represents 5,5,5,5,5).
You can specify more than one constant only if V
is an array. If V is a scalar, then you may have
only Kl.

The input data is always converted to the type of the list variable
when there is a conflict of types. A character constant is truncated
from the right, or extended on the right with blanks, if necessary, to
yield a constant of the same length as the variable, array, or
substring.

12-45

FORMATTED DATA TRANSFERS

The input operation continues until another $ symbol is detected. If
variables appear in the NAMELIST record that do not appear in the
NAMELIST list, an error condition will occur.

A character constant must have delimiting apostrophes. If an
apostrophe is part of a character constant, it must be represented by
two consecutive apostrophes, which must be contained in the same
record (one apostrophe cannot end a record, and the other apostrophe
start a record).

For example, assume:

1. A is a 2-dimensional real array

2. B is a I-dimensional integer array

3. C is an integer variable

4. D is a character variable of length 5.

5. The program contains the NAMELIST declaration:

NAMELIST /FRED/ A,B,C,D

6. The input data is as follows:

~$FRED A{7,2)=4, B=3,6*2.8, C=3.32, D='RON'$

A READ statement referring to the NAMELIST-defined name FRED will
result in the following:

1. The integer 4 will be converted to floating point and placed
in A{7 ,2) •

2 • Th e in t e g e r 3 will be pIa c ed in B (1) •

3. The integer 2 (after being truncated) will be placed in
B(2) ,B(3) , ••• ,B(7).

4. The floating point number 3.32 will be converted to the
integer 3 and placed in C.

5. The character string 'RON~~' will be placed in D.

12.7.2 NAMELIST-Controlled Data Output Transfers

When a WRITE statement refers to a NAMELIST-defined name, all
variables and arrays and their values belonging to the named list are
written out, each according to its type. Character constants are
written with delimiting apostrophes. Arrays are written out by
columns. Output data is written so that:

1. The fields for the data will be large enough to contain all
the significant digits.

2. The output can be read by an input statement referencing a
NAMELIST-defined list.

12-46

FORMATTED DATA TRANSFERS

For example, if ARRAY is a 2 X 3 real array, Al is a real variable, Kl
is an integer variable, and D is a character variable containing the
five characters AB'CD, the statements:

REAL ARRAY(2,3)
CHARACTER D*5
DATA ARRAY,Al,KI,D/-6.75, 0.234E-04, 680.0, -17.8,0.0,00,
1 73 • 1, 3, 'AB' I CD' /
NAMELIST/NAMl/ARRAY,Al,Kl,D
WRITE (u,NAM1)

generate the following form of output:

I01umn 1

9f$NAMl
ARRAY= -6.750000, 0.2340000E-04, 680.0000, -17.80000, 2*0.0000000,

Al= 73.10000, Kl= 3, D='AB' 'CD I

$END

NOTE

Do not use device-positioning commands such as
BACKSPACE or SKIPRECORD with NAMELIST-controlled I/O
operations. If you do, the results are unpredictable.

12-47

CHAPTER 13

FUNCTIONS AND SUBROUTINES

Procedures you use repeatedly in a program can be written once and
then referenced each time you need the procedure. Procedures that may
be referenced are either contained within the program in which they
are referenced, or self-contained executable procedures that can be
compiled separately. The kinds of procedures that can be referenced
are:

1. Intrinsic functions (FORTRAN-defined functions)

2. Statement functions

3. External functions

4. Subroutines

The first three of these categories are referred to collectively as
functions or function procedures; procedures of the last category are
referred to as subroutines or subroutine procedures.

Intrinsic functions perform a predefined computation with a specific
number and type of arguments. These functions are provided by FORTRAN
(see Section 13.1).

Statement functions are user-defined, single statement procedures that
resemble assignment statements. The appearance of a statement
function reference in an expression causes the user-defined
computation to be performed (see Section 13.2).

External functions are separate program units that generally compute a
single value using one or more parameters. There are two types of
external functions available: user-defined and FORTRAN-supplied. A
user-defined external function is defined with a FUNCTION statement.
Both types of external functions are invoked by including a function
reference in an expression (see Section 13.3).

Subroutines are external program units that are used to perform
multiple computations or alter variables. There are two types of
subroutines available: user-defined and FORTRAN-supplied.
User-defined subroutines are defined with a SUBROUTINE statement (see
Section 13.4.2.1). Both types of subroutines are invoked with a CALL
statement (see Section 13.4.2.2).

13.1 INTRINSIC FUNCTIONS

Intrinsic functions are supplied with the FORTRAN software. Each
intrinsic function performs a predefined computation. There are two
types of intrinsic functions: specific and generic.

13-1

FUNCTIONS AND SUBROUTINES

Specific functions have an implicitly defined data type. Each
specific function requires arguments of a particular type and returns
results of a predefined type. The IMPLICIT statement cannot be used
to change the type of a specific intrinsic function.

The data type of the return value of a generic function is determined
by the data type of its arguments. The FORTRAN generic functions are:

ABS
ACOS
AINT
ALOG
ALOGIO
AMAXI
AMINI
ANINT
ASIN
ATAN
ATAN2
CMPLX
COS
COSH
DBLE

DIM
EXP
INT
LOG
LOGIO
MAX
MIN
MOD
NINT
REAL
SIGN
SIN
SINH
SQRT
TAN
TANH

NOTE

Table 13-1 lists all the specific and generic
intrinsic functions. For ease of identification, each
generic function name in the table is indicated by an
asterisk.

13.1.1 Using an Intrinsic Function

An intrinsic function is used in a FORTRAN expression by referencing
the name of the function in an expression. For example, the following
program contains two intrinsic functions: ABS (returns the absolute
value of the argument) and SQRT (returns the square root of the
argument) •

PROGRAM TEST

Y = -64
A = ABS (Y)
TYPE ,A

B = SQRT CA)
TYPE ,B

END

When the preceding program is executed, variable Y is assigned the
value -64. The ABS function in the second expression calculates the
absolute value of -64. Next, in the third expression, the SQRT
function calculates the square root of the absolute value of Y, which
is A. The square root of A is assigned to B in the third expression.
Executing the program yields the following results:

13-2

FUNCTIONS AND SUBROUTINES

EXECUTE TEST. FOR
FORTRAN: TEST
TEST
LINK: Loading
[LNKXCT TEST execution]
64.00000
8.000000
CPU time 0.1 Elapsed time 4.0

The following example contains specific and generic functions. In the
example, the generic function SQRT is used to find the square root of
the double-precision value 64.0. Next, the specific function DSQRT is
used to find the square root of the double-precision value 64.0. If
the argument supplied to DSQRT was not a double-precision number, a
fatal compilation error would result.

PROGRAM TESFUN

DOUBLE PRECISION A,B,AR,BR
REAL C,CR

A 64.00DO
B 64.00DO
C 64.00

C GENERIC SQRT RETURNS DP
C SQRT BECAUSE ARG TYPE IS DP

AR = SQRT(A)

C SPECIFIC DSQRT PERFORMS THE
C SAME FUNCTION WHEN GIVEN A DP
C ARGUMENT

BR = DSQRT(A)

C SPECIFIC SQRT RETURNS A REAL
C VALUE RESULT

CR = SQRT(C)

TYPE , AR,BR,CR
END

Executing the program above yields the following results:

EXE TESFUN
LINK: Loading
[LNKXCT TESFUN Execution]
8.0000000000000000, 8.0000000000000000, 8.000000
CPU time 0.1 Elapsed time 0.7

Table 13-1 lists the FORTRAN intrinsic functions. This table gives
function definitions, argument and function types, and ranges of
acceptable values. Each function contains a description of the range
for valid arguments(s) and the range within which the function returns
valid results. If function arguments do not fall within the specified
range, the result of the function is undefined.

For more information on the precision and accuracy of the FORTRAN
intrinsic functions, refer to the TOPS-IO/TOPS-20 Common Math Library
Manual.

13-3

FUNCTIONS AND SUBROUTINES

Table 13-1: FORTRAN Intrinsic Functions

Argument Function Result
Name Definition Type Argument Restrictions Type Range

Exponential

EXP* y = e**x Real -89.415 .LE. x Real y .GT. 0
.LE. 88.029

DEXP** y= e**x Double D-floating: Double D-floating:
-89.415 .LE. x y .GT. 0
.LE. 88.029

G--floating: G-floating:
-710.475 .LE. x y .GT. 0
.LE. 709.089

CEXP w = e**z Complex -89.415 .LE. REALCz) Complex All COMPLEX Numbers
.LE.88.029
IAIMAG(z)1 .LE. 36394.429

Logarithm (LOG, LOG10=Generic Functions)

ALOG* y = log(x) [base e) Real x .GT. 0 Real -89.415 .LE. y .LE. 88.029

DLOG** y = log(x) [base e) Double D-floating: Double D-floating:
x .GT. 0 -89.415 .LE. y .LE. 88.029

G--floating: G-floating:
x .GT. 0 -710.475 .LE. y .LE. 709.089

CLOG w = log(z) [base e) Complex z .NE. (0,0) Complex -89.415 .LE. REAL(w) .LE. 88.029

-PI .LT. AIMAG(w) .LE. PI

ALOGlO* y = log(x) [base 10] Real x .GT. 0 Real -38.832 .LE. y .LE. 38.230

DLOGIO** y = log(x) [base 10] Double D-floating: Double D-floating:
x .GT. 0 -38.832 .LE. y .LE. 38.320

G-floating: G-floating:
x .GT. 0 -308.555 .LE. y .LE. 307.953

Square Root

SQRT* y = SQRT(x) = x**112 Real x .GE. 0 Real y .GE. 0

DSQRT** y = SQRT(x) = x**112 Double D-floating: Double D-floating:
x .GE. 0 y .GE. 0

G-floating: G-floating:
x .GE. 0 y .GE. 0

CSQRT w = SQRT(z) = z**112 Complex Any COMPLEX Number Complex All COMPLEX Numbers
REAL(w) .GE. 0

13-4

FUNCTIONS AND SUBROUTINES

Table 13-1: FORTRAN Intrinsic Functions (Cont.)

Argument Function Result
Name Definition Type Argument Restrictions Type Range

Trigonometric

SIN* y = sin(x) Real Ixl .LE. 210828714 Real -1 .LE. y .LE. 1

SIND y = sin(x) (degrees) Real Ixl .LE. 47185919 Real --1 .LE. y .LE. 1

DSIN** y = sin(x) Double D-floating: Double D-floating:
Ixl .LE. 6746518852 -1 .LE. y .LE. 1

G-floating: G-floating:
Ixl .LE. 1686629713 -1 .LE. y .LE. 1

CSIN w = sin(z) Complex IREAL(z)1 .LE. 210828714 Complex All COMPLEX Numbers
IAIMAG(z)1 .LE. 88.895

COS* y = cos(x) Real Ixl .LT. 210828714 Real -1 .LT. y .LE. 1

COSD y = cos(x) (degrees) Real Ixl .LT. 47185919 Real -1 .LT. y .LE. 1

DCOS** y = cos(x) Double D-floating: Double D-floating:
Ixl .LT. 6746518852 -1 .LE. y .LE. 1

G-floating: G-floating:
Ixl .LT. 1686629713 -1 .LE. y .LE. 1

CCOS w = cos(z) Complex IREAL(z)1 .LE. 210828714 Complex All COMPLEX Numbers
IAIMAG(z)1 .LE. 88.895

TAN* y = tan(x) Real Ixl .LE. 36396 Real All REAL Numbers

DTAN** y = tan(x) Real D-floating: Double D-floating:
Ixl .LE. 3373259426 All D-FLOATING Numbers

G-floating: G-floating:
Ixl .LE. 843314856 All G-FLOATING Numbers

COTAN y = cot(x) Real Ixl .LE. 36396 Real All REAL Numbers

DCOTAN** y = cot(x) Double D--floating: Double D-floating:
Ixl .LE. 3373259426 All D-FLOATING Numbers

G-floating: G-floating:
Ixl .LE. 843314856 All G-FLOATING Numbers

13-5

FUNCTIONS AND SUBROUTINES

Table 13-1: FORTRAN Intrinsic Functions (Cont.)

Argument Function Result
Name Definition Type Argument Restrictions Type Range

Inverse
Trigonometric

ASIN* y = arcsin(x) Real -1 .LE. x .LE. 1 Real -PI/2 .LE. y .LE. PII2

DASIN** y = arcsin(x) Double D-floating: Double D-floating:
-1 .LE. x .LE. 1 -PI/2 .LE. y .LE. PI/2

G-floating: G-floating:
-1 .LE. x .LE. 1 -PI/2 .LE. y .LE. PII2

ACOS* y = arccos(x) Real -1 .LE. x .LE. 1 Real o .LE. y .LE. PI

DACOS** y = arccos(x) Double D-floating: Double D-floating:
-1 .LE. x .LE. 1 o .LE. y .LE. PI

G-floating: G-floating:
-1 .LE. x .LE. 1 o .LE. y .LE. PI

ATAN* y = arctan(x) Real x = any Real -P1/2 .LE. y .LE. PII2
REAL Numbers

DATAN** y = arctan(x) Double D-floating: Double D-floating:
x = any D-FLOATING -PI/2 .LE. y .LE. PII2
Numbers

G-floating: G-floating:
x = any G-FLOATING -PII2 .LE. y .LE. PII2
Numbers

ATAN2* y = arctan(argllarg2) Real arg1,arg2 = any Real -PI .LE. y .LE. PI
REAL Numbers

DATAN2** y = arctan(argllarg2) Double D-floating: Double D-floating:
argl,arg2 = any -PI .LE. y .LE. PI
D-FLOATING Numbers

G-floating: G-floating:
argl,arg2 = any -PI .LE. y .LE. PI
G-FLOATING Numbers

Hyperbolic

SINH* y = sinh(x) Real Ixl .LE. 88.722 Real All REAL Numbers

DSINH** y = sinh(x) Double D-floating: Double D-floating:
Ixl .LE. 88.722 All D-FLOATING

Numbers

G-floating: G-floating:
Ixl .LE. 709.782 All G-FLOATING

Numbers

COSH* y = cosh(x) Real Ixl .LE. 88.722 Double y .GE. 1

DCOSH** y = cosh(x) Double D-floating: Double D-floating:
Ixl .LE. 88.722 y .GE. 1

G-floating: G-floating:
Ixl .LE. 709.782 y.GE.l

TANH* y = tanh(x) Real Any REAL Numbers Real -1 .LE. y .LE. 1

DTANH** y = tanh(x) Double D-floating: Double D-floating:
Any D-FLOATING -1 .LE. y .LE. 1
Numbers

G-floating: G-floating:
Any G-FLOATING -1 .LE. y .LE. 1
Numbers

13-6

FUNCTIONS AND SUBROUTINES

Table 13-1: FORTRAN Intrinsic Functions (Cont.)

Argument Function Result
Name Definition Type Argument Restrictions Type Range

Absolute Value

ABS* y = Ixl Real Any REAL Numbers Real y .GE. 0

lABS y = Iii Integer Any INTEGER Numbers Integer y .GE. 0

DABS** y = Ixl Double D-floating: Double D-floating:
Any D-FLOATING y .GE. 0
Numbers

G-floating: G-floating:
Any G-FLOATING y .GE. 0
Numbers

CABS y = Izl Complex Any COMPLEX Numbers Real y .GE. 0

Truncation

AINT* Sign of arg * Real Any REAL Numbers Real All REAL Numbers
largest integer
.LT.largl

INT* Sign of arg * Real Any REAL Numbers Integer All INTEGER Numbers
largest integer
.LT·largl

IDINT Sign of arg * Double Any DOUBLE Integer All INTEGER Numbers
largest integer PRECISION Numbers
.LT·largl

DlNT** Sign of arg* Double D-floating: Double D-floating:
largest integer Any D-FLOATING All D-FLOATING
.LT·largl Numbers Numbers

G-floating: G-floating:
Any G-FLOATING All G-FLOATING
Numbers Numbers

Nearest Whole Number

ANINT* y = int(x + .5) if Real Any REAL Numbers Real All REAL Numbers
x .GE. 0 else
y = int(x -.5)

DNINT** y = int(x + .5) if Double D-floating: Double D-floating:
x .GE. 0 else Any D-FLOATING All D-FLOATING
y = int(x -.5) Numbers Numbers

G-floating: G-floating:
Any G-FLOATING All G-FLOATING
Numbers Numbers

Nearest Integer

NINT* y = int(x + .5) if Real x .LE. (2**35)-1 Integer All INTEGER Numbers
x .GE. 0 else x .GE. -(2**35)
y = int(x -.5)

IDNINT y = int(x + .5) if Double x .LE. (2**35)-1 Integer All INTEGER Numbers
x .GE. 0 else x .GE. -(2**35)
y = int(x -.5)

13-7

FUNCTIONS AND SUBROUTINES

Table 13-1: FORTRAN Intrinsic Functions (Cont.)

Argument Function Result
Name Definition Type Argument Restrictions Type Range

Remaindering

AMOD Remainder when Real arg2 .NE. 0 Real o .LE. y .LT. arg2
argi is divided
byarg2

MOD* Remainder when Integer arg2 .NE. 0 Integer o .LE. y .LT. arg2
argi is divided
byarg2

DMOD** Remainder when Double D-floating: Double D-floating:
argi is divided arg2 .NE. 0 o .LE. y .LT. arg2
byarg2

G-floating: G-floating
arg2 .NE. 0 o .LE. y .LT. arg2

Maximum Value (MAX = Generic Function)

AMAXO Argument with Integer Any INTEGER Numbers Real All REAL Numbers
greatest value

AMAXI* Argument with Real Any REAL Numbers Real All REAL Numbers
greatest value

MAXO Argument with Integer Any INTEGER Numbers Integer All INTEGER Numbers
greatest value

MAXI Argument with Real Any REAL Numbers Integer All INTEGER Numbers
greatest value

DMAXl** Argument with Double D-floating: Double D-floating:
greatest value Any D-FLOATING All D-FLOATING:

Numbers Numbers

G-floating: G-floating:
Any G-FLOATING All G-FLOATING
Numbers Numbers

Minimum Value (MIN = Generic Function)

AMINO Argument with Integer Any INTEGER Numbers Real All REAL Numbers
least value

AMINI* Argument with Real Any REAL Numbers Real All REAL Numbers
least value

MINO Argument with Integer Any INTEGER Numbers Integer All INTEGER Numbers
least value

MINI Argument with Real Any REAL Numbers Integer All INTEGER Numbers
least value

DMINl** Argument with Double D-floating: Double D-floating:
least value Any D-FLOATING All D-FLOATING

Numbers Numbers

G-floating: G-floating:
Any G-FLOATING All G-FLOATING
Numbers Numbers

13-8

FUNCTIONS AND SUBROUTINES

Table 13-1: FORTRAN Intrinsic Functions (Cont.)

Argument Function Result
Name Definition Type Argument Restrictions Type Range

Transfer of Sign

SIGN* If arg2 .GE. 0 Real Any REAL Numbers Real All REAL Numbers
then largll
else -Iargll

ISIGN If arg2 .GE. 0 Integer Any INTEGER Numbers Real All INTEGER Numbers
then larg11
else -Iargll

DSIGN** If arg2 .GE. 0 Double D-floating: Double D-floating:
then larg11 Any D-FLOATING All D-FLOATING
else -larg11 Numbers Numbers

G-floating: G-floating:
Any G-FLOATING All G-FLOATING
Numbers Numbers

Positive Difference

DIM* If argl .GT. arg2 Real Any REAL Numbers Real y .GE. 0
then arg1 - arg2
else 0

IDIM If argl .GT. arg2 Integer Any INTEGER Numbers Integer y .GE. 0
then arg1 - arg2
else 0

DDIM** If arg1 .GT. arg2 Double D-floating: Double D-floating:
then arg1 - arg2 Any D-FLOATING y .GE. 0
else 0 Numbers

G-floating: G-floating:
Any G-FLOATING y .GE. 0
Numbers

Double Precision Product

DPROD arg1*arg2 Real Any REAL Numbers Double ALL DOUBLE PRECISION
Numbers

Conversion Routines

CONJG arg = x + i*y, Complex Any COMPLEX Numbers Complex All COMPLEX Numbers
CONJG = x - i*y

REAL* arg = x + i*y Complex Any COMPLEX Numbers Real All REAL Numbers
returns x

AIMAG arg = x + i*y Complex Any COMPLEX Numbers Real All REAL Numbers
returns y

CMPLX* Returns Real Any REAL Numbers Complex All COMPLEX Numbers
arg1 + i*arg2

DFLOAT Integer to double Integer Any INTEGER Numbers Double Iyl .LT. 2**35
precision

DBLE* Real to double Real Any REAL Numbers Double All DOUBLE PRECISION
precision Numbers

SNGL Double precision Double Any DOUBLE Real All REAL Numbers
to real PRECISION Numbers

FLOAT Integer to real Integer Any INTEGER Numbers Real IYI .LT. 2**35

IFIX Real to integer Real Ixl .LT. 2**35 Integer All INTEGER Numbers

ICHAR Character to Character First character of Integer o .LE. y .LE. 127
Integer character value

CHAR Integer to Integer o .LE. y .LE. 127 Character All Single Character
Character

13-9

FUNCTIONS AND SUBROUTINES

Table 13-1: FORTRAN Intrinsic Functions (Cont.)

Argument Function Result
Name Definition Type Argument Restrictions Type Range

Length

LEN Length of Character Any CHARACTER Value Integer y .GE. 1
character entity

Index of a Substring

INDEX Return location of Character Size of character Integer y .GE. 0
arg2 within argl string argl must
if not found be larger than
return 0 or equal to arg2

Character Comparisons

LGE argl .GE. arg2 Character Any CHARACTER Value Logical .TRUE. or .FALSE.

LGT argl .GT. arg2 Character Any CHARACTER Value Logical .TRUE. or .FALSE.

LLE argl .LE. arg2 Character Any CHARACTER Value Logical .TRUE. or .FALSE.

LLT argl .L T. arg2 Character Any CHARACTER Value Logical .TRUE. or .FALSE.

Bit Manipulation

lAND Performs a logical Integer argl,arg2 = any Integer All Integer Numbers
AND on corresponding Integer Numbers
bits of argl and arg2

lOR Performs an inclusive Integer argl,arg2 = any Integer All Integer Numbers
OR on corresponding Integer Numbers
bits of argl and arg2

lEaR Performs an exclusive Integer arg1,arg2 = any Integer All Integer Numbers
OR on corresponding Integer Numbers
bits of argl and arg2

NOT Complements each bit Integer Any Integer Number Integer All Integer Numbers
of argument

ISHFT Logically shifts argl Integer argl = any Integer All Integer Numbers
left arg2 bits if arg2 Integer Number
is positive; argl is -36 .LE. arg2 .LE. 36
logically shifted right
arg2 bits if arg2 is
negative

ISH FTC Circularly shifts (rotates) Integer argl = any Integer All Integer Numbers
rightmost arg3 bits of Integer Number
arg1 by arg2 places. -36 .LE. arg2 .LE. 36
If arg2 is positive, 1 .LE. arg3 .LE. 36
the rotation is to the
left; if arg2 is negative,
the rotation is to the
right

13-10

FUNCTIONS AND SUBROUTINES

Table 13-1: FORTRAN Intrinsic Functions (Cont.)

Argument Function Result
Name Definition Type Argument Restrictions Type Range

Bit Manipulation

IBITS Extracts bits arg2 Integer argl = any Integer All Integer Numbers
through arg2 + arg3-1 Integer Number
from argl o .LE. arg2 .LE. 35

arg2 + arg3 .LE. 36

IBSET Returns the value of Integer argl = any Integer All Integer Numbers
argl with bit arg2 of Integer Number
argl set to 1 o .LE. arg2 .LE. 35

IBCLR Returns the value of Integer argl = any Integer All Integer Numbers
argl with bit arg2 of Integer Number
,argl set to 0 o .LE. arg2 .LE. 35

BTEST Returns .TRUE. if bit Integer argl = any Logical .TRUE. or .FALSE.
arg2 of argl equals 1; Integer Number
returns .F ALSE. if o .LE. arg2 .LE. 35
bit arg2 of argl is 0

Notes:

* = Generic function

•• = G-floating double-precision functions (KL model B only) - are used if IGFLOATING compiler switch is
specified (see Section 16.1.3 or 16.2.3).

"'.* = See also the MVBITS Subroutine, Section 13.4.1.21

(2**35)-1 = 34359738367
-(2**35) = -34359738368

13-11

FUNCTIONS AND SUBROUTINES

13.1.2 Character Intrinsic Functions

Character intrinsic functions are functions that take character
arguments or return character values. Character comparison intrinsic
functions are functions that take character arguments and return
logical values.

FORTRAN provides four character intrinsic functions:

1. LEN

The LEN function returns the length of a character
expression. The LEN function has the following form:

LEN(arg)

where:

arg is a character
indicates how
expression.

expression. The
many characters

value returned
there are in the

The following example illustrates the LEN function:

2. INDEX

C This subroutine reverses an entire character
C string.

SUBROUTINE REVERS(S)
CHARACTER T, S*(*)

J = LEN(S)
DO 10 I=1,J/2

T = S(I:I)
S(I:I) = S(J:J)
S(J:J) = T
J = J - 1

10 CONTINUE

RETURN
END

The INDEX function searches for a substring (arg2) in a
specified character string (argl), and, if it finds the
substring, returns the substring's starting position. If
arg2 occurs more than once in argl, the starting position of
the first (leftmost) occurrence is returned. If arg2 does
not occur in argl, the value zero is returned. The INDEX
function has the following form:

INDEX(argl,arg2)

where:

arg1

arg2

is a character expression specifying the string
to be searched for the substring specified by
arg2.

is a character expression specifying
substring that is searched for.

13-12

the

FUNCTIONS AND SUBROUTINES

The following example illustrates the INDEX function:

3. ICHAR

C This subroutine places the symbol i into the
C variable MARKS at places corresponding to the
C beginning of all occurrences of the substring
C SUB within the string S.

SUBROUTINE FINSTR(SUB,S)
CHARACTER*(*) SUB, S
CHARACTER*132 MARKS
INTEGER I,J

I = 1
MARKS

, ,

10 J = INDEX(S(I:), SUB)
IF (J • NE. 0) THEN

I = 1 + J
MARKS(I-l:I-l) = 'i'
IF (I .LE. LEN(S)) GO TO 10

END IF

WRITE (5,91) S, MARKS
91 FORMAT (2(/lX,A))

END

The ICHAR function converts a character expression to its
equivalent ASCII code and returns the ASCII value. The
ICHAR function has the following form:

ICHAR(arg)

where:

4. CHAR

arg is the character to be converted to an ASCII
code. If arg is longer than one character, only
the value of the first character is returned;
the remaining characters are ignored.

The CHAR function returns the single character whose ASCII
code is the integer or octal argument. The CHAR function
has the following form:

CHAR(arg)

where:

arg is an integer expression.

The following example illustrates the CHAR and ICHAR functions:

CHARACTER C*l
INTEGER I

C Convert number between 0 and 9 in I to a character
C digit

C = CHAR(I+ICHAR('O'))

END

13-13

FUNCTIONS AND SUBROUTINES

13.1.3 Character Comparison Functions

The four character comparison functions provided with FORTRAN are:

LLT, where LLT(argl,arg2) is equivalent to (arg1.LT.arg2)

LLE, where LLE(argl,arg2) is equivalent to (argl.LE.arg2)

LGT, where LGT(argl,arg2) is equivalent to (argl.GT.arg2)

LGE, where LGE(argl,arg2) is equivalent to (argl.GE.arg2)

The comparison functions have the following form:

func(argl,arg2)

where:

arg is a character expression.

The character comparison functions defined by the FORTRAN-77 standard
are guaranteed to make comparisons according to the ASCII collating
sequence, even on non-ASCII processors. On TOPS-10/20 systems, the
character comparison functions are identical to the corresponding
character relationals.

An example of the use of a character comparison function follows:

CHARACTER*lO CH2
IF (LGT(CH2,'SMITH'» STOP

The IF statement in this example is equivalent to:

IF (CH2.GT.'SMITH') STOP

13.1.4 Bit Manipulation Functions

Intrinsic bit manipulation functions are used for manipulation of the
bits in the binary patterns that represent integers. Integer data
types are represented internally in binary two's complement notation.
Bit positions in the binary representation are numbered from right
(least significant bit) to left (most significant bit); the rightmost
bit position is numbered 0, and the leftmost bit position is numbered
35. A bit in a binary pattern has a value of 0 or 1.

The intrinsic functions lAND, lOR, lEaR, and NOT perform bitwise
operations on all the bits of their arguments. Bit ° of the result is
the result of applying the specified logical operation to bit ° of the
arguments. Bit I of the result is the result of applying the
specified logical operation to bit 1 of the arguments, and so on for
all the bits of the result.

The shift functions ISHFT and ISHFTC shift binary patterns. A
positive shift count indicates a left shift, while a negative shift
count indicates a right shift. A shift count of zero means no shift.
ISHFT specifies a logical shift; bits shifted out of one ~nd are lost
and zeros are shifted in at the other end. ISHFTC perform~ a circular
shift; bits shifted out at one end are shifted back in at the other
end.

13-14

FUNCTIONS AND SUBROUTINES

The function IBITS and the subroutine MVBITS (see Section 13.4.1.21)
operate on bit fields. A bit field is a contiguous group of bits
within a binary pattern. Bit fields are specified by a starting bit
position and a length. A bit field must be entirely contained in its
source operand.

For example, the integer 79 is represented by the following binary
pattern:

0 ••• 0101111

n ••• 6543210 (bit position)

where:

n is 35 (the number of bit positions in an integer).

You can refer to the bit field contained in bits 3 through 6 by
specifying a starting position of 3 and a length of 4. In the above
example, the selected bit pattern would be the following:

0 ••• 000101

Negative integers are represented in two's complement notation. The
integer -79 is represented by the following binary pattern:

1 ••• 1010001

n ••• 6543210 (bit position)

where:

n is 35 (the number of bit positions in an integer).

NOTE

The value of bit position 35 is 1 for a
number and 0 for a non-negative. Also,
high-order bits of the pattern to the left
value up to bit 35 are the same as bit 35.

negative
all the
of the

IBITS and MVBITS operate on bit fields. Both the starting position of
a bit field and its length are arguments to these intrinsics. IBSET,
IBCLR, and BTEST operate only on one bit. Thus, they do not require a
length argument.

13.2 STATEMENT FUNCTIONS

A statement function is a procedure specified by a single statement
that is similar in form to an arithmetic, character, or logical
assignment statement. The statement function enables you to define a
single-line computation once in your program, give it a name, and have
that calculation performed each time you reference the statement
function in the program. A statement function is classified as a
nonexecutable statement.

13-15

FUNCTIONS AND SUBROUTINES

13.2.1 Defining a Statement Function

Statement functions have the following form:

fun ([d [, d] •••]) = e

where:

fun is the symbolic name for the statement function. The
function name follows the rules for forming symbolic names
in FORTRAN (see Chapter 4).

d is an optional dummy argument. Separate multiple dummy
arguments with commas. (Dummy arguments are described in
Section 13.4.5.) The parentheses are still required if no
dummy arguments are specified.

e is any type of FORTRAN expression. The expression part of
the statement function (to the right of the equal sign)
defines the computation performed using the dummy arguments.

The relationship between fun and e must conform to the assignment
rules in Sections 8.1, 8.2, and 8.4. Note that the type of the
expression may be different from the type of the statement function
name.

The following rules govern the formation and use of statement
functions:

1. The dummy argument list in the statement function serves only
to indicate the order, number, and type of arguments for the
statement function.

2. The dummy arguments used in a statement function are local to
that statement function. It is valid to use the same names
in multiple statement functions in the same program unit. A
dummy argument name may also be used elsewhere in the program
unit to identify a variable of the same type, including its
appearance as a dummy argument in a FUNCTION, SUBROUTINE, or
ENTRY statement.

3. Each dummy argument in a statement function dummy argument
list must be unique; the same dummy argument cannot appear
twice in a single list.

Each variable reference in the function can be either a reference to a
dummy argument of the statement function, or a reference to a variable
that appears within the same program unit as the statement function
statement.

If a statement function dummy argument name is the same as the name of
another entity, the appearance of that name in the expression of a
statement function statement is a reference to the statement function
dummy argument.

13.2.2 Using a Statement Function

Statement functions are used in FORTRAN programs by referencing the
name of the statement function in an expression that is in the same
program unit as the statement function definition. If a character
function is referenced in a program unit, the function length
specified in the program unit must be an integer constant expression.

13-16

FUNCTIONS AND SUBROUTINES

For example, the following program uses a statement function (called
PROFIT) to determine the profit for a product. In the statement
function definition, PROFIT is defined as the difference between
wholesale and retail prices minus .05 sales tax.

PROGRAM STAFUN

PROFIT (A,B) = ((A - B) - (A * .05»

WRITE(UNIT=5,FMT=100)
100 FORMAT(lX,'Enter Wholesale Price and Retail Price')

ACCEPT*,WHOSAL,RETAIL

150 C = PROFIT (RETAIL,WHOSAL)

WRITE(UNIT=5,FMT=101) C
101 FORMAT(lX,'The Profit (minus sales tax) is: ',F8.2)

END

When the program is executed, the retail and wholesale values are
entered at the terminal. Next, the expression at statement number 150
uses the values of RETAIL and WHOSAL to calculate the profit as
defined in the PROFIT statement function. A sample execution of this
program yields the following results:

EXECUTE STATE
LINK: Loading
[LINKXCT STAFUN execution]
Enter Wholesale Price and Retail Price
31.67 45.95
The profit (minus sales tax) is: 11.98
CPU time 0.2 Elapsed time 18.5

When a FORTRAN expression that contains a statement function reference
is executed, the following happens:

1. The actual arguments contained in the statement function
reference are evaluated.

2. The actual arguments in the statement function are associated
with the dummy arguments in the statement function
definition.

3. The expression portion of the statement function is evaluated
using the actual arguments.

4. If necessary, the value of the expression is converted to the
type of the statement function. Finally, the value resulting
from the expression evaluation is substituted in the
expression containing the statement function reference.

13.2.3 Statement Function Restrictions

The following rules and restrictions must be adhered to when using
statement functions:

1. The actual arguments in a function reference must agree in
type and number with the corresponding dummy arguments in the
statement function dummy argument list.

13-17

FUNCTIONS AND SUBROUTINES

2. An actual argument in a statement function reference can
itself be an expression; all actual arguments must be defined
when a statement function reference is evaluated.

3. A statement function can only be referenced in the program
unit that contains the statement function statement.

4. A statement function must not contain a reference to another
statement function that appears later in the program unit,
but can contain a reference to another statement function
that appears earlier in the program.

5. The symbolic name used to identify a statement function must
not appear as a symbolic name in any specification statement
except a type statement (to specify the type of the function)
or as the name of a common block in the same program unit.

6. An external function reference (see Section 1383) in the
expression part of a statement function statement must not
cause a dummy argument of the statement function to become
undefined or redefined.

7. The symbolic name of a statement function may not be an
actual argument. It must not appear in an EXTERNAL statement
(see Section 7.6).

8. A statement function statement in a function subprogram (see
Section 13.3.4.) must not contain a function reference to the
name of the function subprogram or an entry name in the
function subprogram.

9. An actual argument in a statement function reference can be
any expression, including a character expression involving
concatenation of an operand whose length specification is an
asterisk in parentheses.

10. The length specification of a character statement function
must be an integer constant expression.

13.3 EXTERNAL FUNCTIONS

An external function is a procedure that is defined externally to the
program unit that references it. FORTRAN offers two types of external
functions: FORTRAN-supplied and user-defined. The FORTRAN-supplied
external functions are described in Section 13.3.1; the user-defined
functions are described in Sections 13.3.2 through 13.3.4.

13.3.1 FORTRAN-Supplied External Functions

FORTRAN-supplied external functions are similar to intrinsic
functions. To use a FORTRAN-supplied function, you reference its name
in an expression.

13-18

FUNCTIONS AND SUBROUTINES

The following are the FORTRAN-supplied external functions:

x=DTOG (y)

x=GTOD (y)

x=LSNGET(unit)

x=RAN(O)

x=RANS(O)

y=SECNDS(x)

x=TIM2GO(O)

returns a G-floating double-precision number
in the range 1.47 x 10**-39 to 1.70 x
10**+38. The argument y is aD-floating
double-precision number. (Also, see the
DTOGA subroutine, Section 13.4.1.12.)

returns a D-floating double-precision number
in the range 1.47 x 10**-39 to 1.70 x
10**+38. The argument y is a G-floating
double-precision number. (Also, see the
GTODA subroutine, Section 13.4.1.18.)

returns the last line number read in a line
sequenced file. LSNGET returns a positive
integer if the last line has a valid line
number; returns zero if the last line is a
page mark; or returns -1 if the last line
number is invalid (such as, AAAA with bit 35
set) • It also returns -1 if the file
contains no line number, or was opened with a
mode other than LINED (see Section 11.3.20).

returns a pseudo random floating-point number
in the range of O.LT.x.LT.l. The argument is
a dummy (not used) and may be any number.
Refer to the related subroutines SETRAN (see
Section 13.4.1.27) and SAVRAN (see Section
13.4.1.26) •

returns a pseudo random floating-point number
in the range of O.LT.x.LT.l. RANS is a
prime-modulus random number generator with
shuffling capability. It calls RAN to
generate its. initial table of random
deviates. Refer to related subroutins SETRAN
(see Section 12.4.1.27) and SAVRAN (see
Section 12.4.1.26).

returns the system time in seconds as a
single-precision, floating-point value, minus
the value of its single-precision,
floating-point argument. The argument y is
set equal to the time in seconds since
midnight, minus the user-supplied value of x.

returns the number of seconds remaining in
the job's run-time limit. The time l~mit is
set by the /TIME switch when submitting the
batch job. The argument is a dummy (not
used) and may be any number.

You may also specify a time limit for an
interactive job by using the SET TIME-LIMIT
command on TOPS-20, or the SET TIME command
on TOPS-lO.

FORTRAN-supplied external functions are treated in the same manner as
user-defined functions. Implicit or explicit type declarations affect
these functions, and no argument checking (type or number) is
performed at compile time.

13-19

FUNCTIONS AND SUBROUTINES

13.3.2 User-Defined External Functions

An external user-defined function is a procedure that is external to
the program unit that references it. The function subprogram enables
you to define a multiline function. By referencing the name of that
function in an expression, the lines of the function are automatically
executed.

The FUNCTION statement is always the first statement in a function
subprogram. The form of the FUNCTION statement is:

[type] FUNCTION fun ([argl [,arg2] •••])

where:

type is an optional type specification for the external
function. This may be INTEGER, REAL, DOUBLE PRECISION,
COMPLEX, LOGICAL, or CHARACTER (plus the optional size
modifier *len).

fun

arg

For CHARACTER, len is the length specification of the
result of the character function. If you specify
CHARACTER*(*), the function assumes the length declared
for it in the program unit that invokes it. If len is
an integer constant, the value of len must agree with
the length of the function specified in the program
unit that invokes the function. If a length is not
specified in a CHARACTER FUNCTION statement, a length
of one is assumed.

If you do not specify a type, the type of the
subprogram name determines the data type
external function.

function
of the

is the symbolic name of the external function
subprogram. Unless the optional data type is specified
in the FUNCTION statement, the type of the function
name determines the data type of the function
subprogram.

is an optional dummy argument. Arg may be a variable
name, array name, or dummy procedure name. Separate
multiple dummy arguments with commas. The parentheses
are optional if no dummy arguments are specified.

You must define the symbolic name assigned a function subprogram as a
variable name in the function. During each execution of the function,
this variable can be redefined. The value of the variable at the time
of execution of any RETURN statement is the value of the function.

NOTE

The RETURN statement returns control to the statement
that referenced the function subprogram (see Section
13.4.4). Additionally, you may desire to have a
function start executing at a statement other than the
first executable statement in the function subprogram.
The ENTRY statement (see Section 13.4.3) enables you
to define an alternate entry point in the function
subprogram.

13-20

FUNCTIONS AND SUBROUTINES

13.3.3 Function Subprogram Restrictions

The following rules govern the structuring of a function subprogram:

1. You can not use the symbolic name of a function subprogram in
any nonexecutable statement in the subprogram except in the
initial FUNCTION statement or a type statement.

2. Dummy argument names cannot appear in any EQUIVALENCE,
COMMON, or DATA statement used within the subprogram.

3. The function subprogram can define or redefine one or more of
its arguments so as to return results in addition to the
value of the function.

4. The function subprogram can contain any FORTRAN statement
except BLOCK DATA, SUBROUTINE, PROGRAM, or another FUNCTION
statement.

5. The function subprogram should contain at least one RETURN
statement and must be terminated by an END statement. The
RETURN statement signifies a logical conclusion of the
computation made by the subprogram, and returns the computed
function value and control to the calling program. A
subprogram can have more than one RETURN statement.

The END statement specifies the physical end
subprogram and implies a return.

of the

6. If the type of a function is specified in a FUNCTION
statement, the function name must not appear in a type
statement. Note that a name must not have its type
explicitly specified more than once in a program unit.

7. A function specified in a subprogram may be referenced within
any other procedure subprogram or the main program of the
executable program. A function subprogram must not reference
itself, either directly or indirectly.

8. If the name of a function subprogram is of type character,
each entry name in the function subprogram must be of type
character. If the name of the function subprogram or any
entry in the subprogram has a length of (*) declared, all
such items must have a length of (*) declared; otherwise, all
such items must have a length specification of the same
integer value.

13.3.4 Using a Function Subprogram

After defining a function subprogram, you use it by referencing the
name of the function subprogram in an expression. Function
subprograms are referenced in expressions using the following form:

fun ([argl,arg2, ••• argn])

where:

fun is the function subprogram name. This is the same name
that appears in the corresponding FUNCTION statement.
The length of the character function in a character
function reference must be the same as the length of
the character function in the referenced function.

13-21

FUNCTIONS AND SUBROUTINES

arg is an optional list of actual arguments. These
arguments must agree in type and number with the dummy
argument list of the corresponding FUNCTION statement.
If the actual and dummy arguments do not agree, no type
conversion is done; and the results are unpredictable.
The parentheses are required even if no actual
arguments are specified.

When an expression that contains a function subprogram reference is
executed, the following happens:

1. Evaluation of actual arguments that are expressions

2. Association of actual arguments with the corresponding dummy
arguments

3. Execution of the referenced function subprogram

Section 13.3.3 describes all the restrictions that must be adhered to
when using function subprograms.

13.4 SUBROUTINES

A subroutine subprogram is a procedure that is external to the program
units that reference it. FORTRAN offers two types of subroutines:
user-defined and FORTRAN-supplied. FORTRAN-supplied subroutines are
described in Sections 13.4.1 - 13.4.1.32; user-defined subroutines are
described in Sections 13.4.2 through 13.4.2.4.

NOTE

The FORTRAN-supplied subroutines are described in this
manual in two sections. Section 13.4.1 describes the
general FORTRAN subroutines; Appendix F describes the
subroutines that enable you to use a plotter.

Program units reference subroutines with the CALL statement (see
Section 13.4.2.2). The subroutine reference in the CALL statement
contains the unique name of the subroutine, as defined in a SUBROUTINE
statement (see Section 13.4.2.1). The SUBROUTINE statement is always
the first statement in a subroutine.

When a CALL statement reference is made to a subroutine subprogram,
program execution transfers from that CALL statement to the referenced
subroutine subprogram.

By including the ENTRY statement (see Section 13.4.3) within the body
of a subroutine subprogram, you can enter the subroutine at a point
other than the first statement in the subroutine. In this case, the
CALL statement used to reference an entry point in a subroutine
contains a reference to an entry point name, as opposed to the
subroutine name.

Return of program control from the subroutine to the calling program
unit occurs when the RETURN statement is executed (see Section
13.4.4). The RETURN statement is always the last statement executed
in a subroutine subprogram.

13-22

FUNCTIONS AND SUBROUTINES

Table 13-2: FORTRAN-Supplied Subroutines

Form

CALL ALCCHR(size)

dpres = CDABS(dparg)

CALL CDCOS(dparg,dpres)

CALL CDEXP(dparg,dpres)

CALL CDLOG(dparg,dpres)

CALL CDSIN(dparg,dpres)

CALL CDSQRT(dparg,dpres)

CALL CHKDIV(unitvar)

CALL CLRFMT(arrayname)

CALL DATE(name)

CALL DIVERT(un)

CALL DTOGA(sname,dname,n)

CALL DUMP(LB1,UB1,formatl
I ... ,LBn, UBn,formatn 1)

CALL ERRSET(n)
CALL ERRSET(n,1)
CALL ERRSET(n,1,subr)

CALL ERRSNS(l)
CALL ERRSNSO,J)
CALL ERRSNS(l,J,MSG)

CALL EXIT

CALL FFUNIT

CALL GTODA(sname,dname,n)

CALL ILL

CALL LEGAL

CALL MVBITS(m,l,len,n,j)

CALL OVERFUIANS)

CALL PDUMP(LB1,UB1,formatl
1 ... ,LBn,UBn,formatn1)

QUIETX

Function

Allocates space for dynamic character concate­
nation operations.

Returns the double-precision absolute value of
the specified double-precision complex number.

Finds the complex cosine of the specified
double-precision complex number.

Finds the complex exponential of the specified
double-precision complex number.

Returns the complex logarithm of a specified
double-precision complex number.

Returns the complex sine of the double­
precision complex number specified.

Returns the complex square root of the double
precision complex number specified.

Returns the number of the unit to which error
messages are being written.

Discards the FORMAT statement saved by the
execution of the SA VFMT subroutine.

Places the current data, left-justified, in a char­
acter variable.

Enables you to redirect error messages from
the current device to an open file on a specified
device.

Converts elements of double-precision arrays
from D--floating double-precision format to
G-floating double-precision format.

Causes specified portions of memory to be
dumped to the line printer (LPT:).

Controls the output of arithmetic error mes­
sages during program execution.

Determines the reason for an error trapped by
ERR = on an OPEN, CLOSE, or data transfer
operation.

Terminates the program and returns control to
the monitor.

Returns the number of the first available
FORTRAN logical unit.

Converts elements of double-precision arrays
from G-floating double-precision format to
D-floating double-precision format.

Sets the ILLEG flag.

Clears the ILLEG flag.

Transfers a bit field from one storage location
to a second storage location.

Returns information about overflow, under­
flow, and divide check.

Functions exactly like DUMP subroutine ex­
cept that control returns to the calling program
after the dump has been executed.

Section

13.4.1.1

13.4.1.2

13.4.1.3

13.4.1.4

13.4.1.5

13.4.1.6

13.4.1.7

13.4.1.8

13.4.1.9

13.4.1.10

13.4.1.11

13.4.1.12

13.4.1.13

13.4.1.14

13.4.1.15

13.4.1.16

13.4.1.17

13.4.1.18

13.4.1.19

13.4.1.20

13.4.1.21

13.4.1.22

13.4.1.23

13.4.1.24 Suppresses all summary type out when the pro­
gram terminates. L-___________ L-_______________ --JL..-___ . ___ .. _.

13-23

FUNCTIONS AND SUBROUTINES

Table 13-2: FORTRAN-Supplied Subroutines (Cont.)
.-------'--------,,-------------,._------------'-.--------..

Form

CALL SA VFMT(namel ,arraysize j)

CALL SAVRAN(n)

CALL SETRAN(n)

CALL SORT('sort string')

CALL SRTINHn)

CALL TIME(x}
CALL TIME(x,y)

CALL TOPMEM(n)

CALL TRACE

Function

Directs FOROTS to encode format specifica­
tions contained in the specified character vari­
able or array.

Saves the last internal integer seed value gen­
erated by the RAN function.

Specifies the internal integer seed value for the
RAN function,

Sorts one or more files using the SORT
program,

Directs FOROTS to start allocating memory
from top downward to account for large overlay
programs and preallocates pages 600:677 for
SORT.

Returns the current time of day in left-justified
ASCII.

Directs FOROTS to start allocating memory
from top downward to account for large overlay
programs.

Generates a list of active subprograms on the
terminal.

13.4.1 FORTRAN-Supplied Subroutines

Section

13.4.1.25

13.4.1.26

13.4.1.27

13.4.1.28

13.4.1.29

13.4.1.30

13.4.1.31

13.4.1.32

The FORTRAN software includes a set of predefined subroutines. This
section describes the general FORTRAN subroutines (and a function that
is similar) in alphabetical order. (See Appendix F for the
FORTRAN-supplied plotter subroutines.)

NOTE

sections 13.4.1.2 through 13.4.1.7 describe
subroutines (and a function) that are used for
calculations on double-precision complex numbers. You
must supply. your own subroutines for performing
addition, subtraction, multiplication, and division of
double-precision complex numbers.

FORTRAN does not support the In addition,
double-precision
COMPLEX*16). These
cannot be used in
generic routines.

ALCCHR
Subroutine

complex data type (called
numbers are kept as arrays and
expressions or as the arguments of

13.4.1.1 ALCCHR Subroutine - The ALCCHR subroutine allocates space
for dynamic character concatenation operations. You do not normally
need to allocate space for this purpose unless you are doing very
large character concatenation operations.

13-24

FUNCTIONS AND SUBROUTINES

The form of the ALCCHR subroutine is:

CALL ALCCHR(size)

where:

size is the integer size in characters for either creating
or expanding the character stack.

COABS
Function

13.4.1.2 COABS
double-precision
complex number.
subroutine, it
subroutines.)

Function - The COABS function returns the
absolute value of the specified double-precision

(Although COABS is a function and is not a
is included here because it is similar to some

The form of the CDABS function is:

dpres = COABS(dparg)

where:

dparg

dpres

is a 2-element double-precision array containing the
complex value whose absolute value you want calculated.
The first element of dparg contains the real part of
the double-precision complex number; the second element
contains the imaginary part.

is a double-precision variable that is set to the
absolute value of the complex number.

COCOS
Subroutine

13.4.1.3 COCOS Subroutine - The COCOS subroutine finds the complex
cosine of the specified double-precision complex number.

The form of the COCOS subroutine is:

CALL COCOS(dparg,dpres)

where:

dparg is a 2-element double-precision array containing the
complex value whose cosine you want calculated. The
first element of dparg contains the real part of the
double-precision complex number; the second element
contains the imaginary part.

13-25

dpres

Example:

FUNCTIONS AND SUBROUTINES

is a 2-element double-precision array in which the
subroutine returns the result of the calculation. The
first element of dpres contains the real part of the
double-precision complex number; the second element
contains the imaginary part.

DOUBLE PRECISION dparg(2) ,dpres(2)
dparg(l) = IDa !arg is (1,-1)
dparg(2) = -IDa
CALL CDCOS(dparg,dpres)

COEXP
Subroutine

13.4.1.4 CDEXP Subroutine - The CDEXP subroutine finds the complex
exponential of the specified double-precision complex number.

The form of the COEXP subroutine is:

CALL CDEXP(dparg,dpres)

where:

dparg

dpres

Example:

is a 2-element double-precision array that contains the
complex argument to the subroutine. The first element
of dparg contains the real part of the double-precision
complex number; the second element contains the
imaginary part.

is a 2-element double-precision array that stores the
result of the calculation. The first element of dpres
stores the real part of the result; the second element
stores the imaginary part.

DOUBLE PRECISION dparg(2) ,dpres(2)
dparg(l) = 000
dparg(2) = 100 !arg is (0,1)
CALL CDEXP(dparg,dpres)

COLOG
Subroutine

13.4.1.5 COLOG Subroutine - The COLOG subroutine returns the complex
logarithm of a specified double-precision complex number.

13-26

FUNCTIONS AND SUBROUTINES

The form of the CDLOG subroutine is:

CALL CDLOG(dparg,dpres)

where:

dparg

dpres

Example:

is a 2-element double-precision array that contains the
double-precision complex number whose logarithm you
want calculated. The first element of dparg contains
the real part of the complex number; the second element
contains the imaginary part.

is a 2-element double-precision array that stores the
result returned by CDLOG. The first element of dpres
contains the real part of the double-precision complex
number; the second element contains the imaginary part.

DOUBLE PRECISION dparg(2) ,dpres(2)
dparg(l) = 100 !arg is (1,0)
dparg(2) = 000
CALL CDLOG(dparg,dpres)

CDSIN~
Subroutine

1--_____ _

13.4.1.6 CDSIN Subroutine - The CDSIN subroutine returns the complex
sine of the double-precision complex number specified.

The form of the CDSIN subroutine is:

CALL CDSIN(dparg,dpres)

where:

dparg

dpres

Example:

is a 2-element double-precision array that contains the
number whose sine you want calculated. The first
element of dparg contains the real part of the
double-precision complex number; the second element
contains the imaginary part.

is a 2-element double-precision array in which the
result of the calculation is returned. The first
element of dpres contains the real part of the result;
the second element contains the imaginary part.

DOUBLE PRECISION dparg(2) ,dpres(2)
dparg(l) = -lDO !arg is (-1,01)
dparg(2) = IDa
CALL CDSIN(dparg,dpres)

13-27

CDSQRT
Subroutine

FUNCTIONS AND SUBROUTINES

13.4.1.7 CDSQRT Subroutine - The CDSQRT subroutine returns the
complex square root of the specified double-precision complex number.

The form of the CDSQRT subroutine is:

CALL CDSQRT(dparg,dpres)

where:

dparg

dpres

Example:

is a 2-element double-precision array that contains the
double-precision complex number whose square root you
want calculated. The first element of dparg contains
the real part of the double-precision complex number;
the second element contains the imaginary part.

is a 2-element double-precision array that contains the
result of the calculation. The first element of dpres
contains the real part of the complex square root; the
second element contains the imaginary part.

DOUBLE PRECISION dparg(2) ,dpres(2)
dparg(l) = 1000
dpres(2) = -1000 !arg is (10,-10)
CALL CDSQRT(dparg,dpres)

CHKDIV
Subroutine

13.4.1.8 CHKDIV Subroutine - The CHKDIV subroutine returns the number
of the unit to which error messages are being written. This
subroutine returns the value -1 if the messages are being sent to the
terminal.

The form of the CHKDIV subroutine is:

CALL CHKDIV(unitvar)

where:

unitvar is the variable in which the unit number is stored.

13-28

FUNCTIONS AND SUBROUTINES

13.4.1.9 CLRFMT Subroutine - The CLRFMT subroutine discards the
encoded form of the FORMAT statement saved by the execution of the
SAVFMT subroutine (see Section 13.4.1.25).

The form of the CLRFMT subroutine is:

CALL CLRFMT(arrayname)

where:

arrayname is the name of the array that contains the encoded
form of the FORMAT specifications saved by the
SAVFMT subroutine.

13.4.1.10 DATE Subroutine - The DATE subroutine stores the current
date as a left-justified ASCII string in a character variable. The
date is in the form:

dd-mmm-yyb

where:

dd is a 2-digit day (if the first digit is 0, it is converted
to a blank), mmm is a 3-letter month abbreviation (such as,
Jan,Feb) , yy is a 2-letter year, and b is a blank. The data
is stored in ASCII, left-justified, and blank filled.

The form of the DATE subroutine is:

CALL DATE(name)

where:

name is the name of a character variable. The date returned
by the subroutine is stored in this variable.

NOTE

For compatibility with previous versions of
FORTRAN-IO/20, you can specify a numeric array name as
the argument for the DATE subroutine. The current
date is stored as a left-justified ASCII string in a
2-word array or data item (double-precision or
complex). The array must have at least two elements.

13-29

FUNCTIONS AND SUBROUTINES

DIVERT]
Subroutine

'-----_.

13.4.1.11 DIVERT Subroutine - The DIVERT subroutine enables you to
redirect error messages from the current device to an open file on a
specified device.

The form of the DIVERT subroutine is:

CALL DIVERT(un)

where:

un is the logical device number of the file on which the open
file resides.

Subroutine
DTOGA 1

'-------

13.4.1.12 DTOGA - The DTOGA subroutine
double-precision arrays fromD-floating
G-floating double-precision format.

The form of the DTOGA subroutine is:

CALL DTOGA (sname,dname,n)

where:

converts elements of
double-precision format to

sname is the name of the source array.

dname is the name of the destination array.

n is the number of elements to convert.

(See Section 13.4.1.18 for the GTODA subroutine.)

DUMP
Subroutine

13.4.1.13 DUMP Subroutine - The DUMP subroutine causes specified
portions of memory to be dumped to the line printer (LPT:).

13-30

FUNCTIONS AND SUBROUTINES

The form of the DUMP subroutine is:

CALL DUMP(LBl,UBl,formatl[••• ,LBn,UBn,formatn])

where:

LBl,UBl are the integer values of the upper and lower memory
addresses to be dumped.

formatl is an integer that indicates the dump format.
possible specifications are:

a octal
1 real
2 integer
3 ASCII

The

If no arguments are supplied, all of user memory is dumped in octal.
If only the bounds arguments are specified, or if the format value is
out of range, the dump format is octal. If only the first bound
argument is specified, all locations from that address to the end of
memory are dumped.

The dump is terminated by a call to EXIT.

ERRSET
Subroutine

13.4.1.14 ERRSET Subroutine - The ERRSET subroutine controls the
output of warning messages during program execution.

The ERRSET subroutine has three forms:

1. CALL ERRSET(n)

2. CALL ERRSET(n,i)

3. CALL ERRSET(n,i,subr)

where:

n

i

is the maximum number of error messages to type.

is the code to which error the call applies; one of the
following:

-1 any of the following
a integer overflow
1 integer divide
2 input integer overflow
3 input floating overflow
4 floating overflow
5 floating divide check
6 floating underflow
7 input floating underflow
8 library routine error

13-31

subr

FUNCTIONS AND SUBROUTINES

9 output field width too small
21 FORLIB warnings
22 nonstandard usage warnings
23 Bounds check warnings

if i is not specified, -1 is assumed

is the name of the user-defined error handling routine
to be invoked each time any of the above errors occur.
The effect is as if

CALL SUBR (I,IPC,N2,ITYPE,UNFIXD,FIXED)

were placed in the program just after the instruction
causing the trap.

I = error number of trap, same as above

IPC PC of trap instruction (if code 9 is
trapped, IPC = PC of the IOLST. call

N2 = second error number (reserved for Digital)

ITYPE = data type of value

UNFIXD = value returned by the hardware

FIXED = value after fixup (SUBR can change this
val ue)

If SUBR is not specified, no routine is called on
the APR trap.

ERRSNS
Subroutine

13.4.1.15 ERRSNS Subroutine - The ERRSNS subroutine returns integer
values that describe the status (success or failure) of the last I/O
operation (see Appendix D). This subroutine can be used to determine
the reason for an error trapped by ERR= on an OPEN, CLOSE, or data
transfer operation. Both return values are always cleared after a
successful data transfer operation.

The forms of the ERRSNS subroutine are:

CALL ERRSNS (I)

or

CALL ERRSNS (I,J)

or

CALL ERRSNS (I,J,MSG,K)

FORTRAN-10/20 VII 13-32 February 1987

where:

I

J

MSG

K

FUNCTIONS AND SUBROUTINES

returns a FORTRAN-supplied number that describes the
class of failure that occurred.

optionally returns
further describes
error.

a processor-specific number that
or qualifies the type of the last

If present,
ASCII text
for MSG is
truncated;
characters,
blanks.

is a character variable used to return the
of the last error message. If the variable
less than 80 characters, the text is
if the variable is greater than 80

the text is padded to the right with

NOTE

For compatibility with previous
FORTRAN-10/20 , you can specify a
as the MSG argument. The numeric
as a l6-word array to return the
the last error message.

versions of
numeric array
array is used
ASCII text of

optionally returns the RMS STV code that explains the
reason for the last RMS error.

EXIT
Subroutine

13.4.1.16 EXIT Subroutine - The EXIT subroutine terminates the
program and returns control to the monitor. The EXIT subroutine takes
no arguments.

The form of the EXIT subroutine is:

CALL EXIT

FFUNIT
Subroutine

13.4.1.17 FFUNIT Subroutine - The FFUNIT subroutine returns the
lowest available FORTRAN logical unit number (see Table 10-3).

The form of the FFUNIT subroutine is:

CALL FFUNIT (n)

FORTRAN-10/20 VII 13-33 February 1987

GTODA
Subroutine

FUNCTIONS AND SUBROUTINES

13.4.1.18 GTODA Subroutine - The GTODA subroutine converts elements
of double-precision arrays from G-f1oating double-precision format to
D-f1oating double-precision format.

The form of the GTODA subroutine is:

CALL GTODA(sname,dname,n)

where:

sname is the source array name.

dname is the destination array name.

n is the number of array elements to convert.

(See Section 13.4.1.12 for the DTOGA subroutine.)

ILL
Subroutine

13.4.1.19 ILL Subroutine - The ILL subroutine sets the ILLEG flag.
If this flag is set and an illegal character is encountered in
floating-point, double-precision input, the corr~sponding value is set
to zero and no error message is issued. The ILL subroutine takes no
arguments. The ILLEG flag is not set initially.

The form of the ILL subroutine is:

CALL ILL

LEGAL
Subroutine'

13.4.1.20
flag set
arguments.

LEGAL Subroutine - The LEGAL subroutine clears the ILLEG
by the ILL subroutine. The LEGAL subroutine takes no

The form of the LEGAL subroutine is:

CALL LEGAL

13-34

FUNCTIONS AND SUBROUTINES

MVBITS
Subroutine

13.4.1.21 MVBITS Subroutine - The MVBITS subroutine transfers a bit
field from one storage location (source) to a field in a second
storage location (destination).

The form of the MVBITS subroutine is:

CALL MVBITS(m,i,len,n,j)

where:

m is an integer expression that represents the source location
from which a bit field is transferred.

i is an integer expression that identifies the first bit
position in the source field transferred from m.

len is an integer expression that identifies the length of the
field transferred from m.

n is an integer variable or array element that is the
destination location to which a bit field is transferred.

j is an integer expression that identifies the first bit
position in the destination field transferred from m.

The MVBITS subroutine transfers len bits from position i through
i+1en-l of the source location (m) to positions j through j+1en-l of
the destination location (n). Other bits of the destination location
and all of the bits of the source location remain unchanged. The
values of i+1en and j+1en must not be greater than 36.

(See Section 13.1.4 for information on bit manipulation functions.)

~ _____ O_V_E_R_F_L________] ~ Subroutine

13.4.1.22 OVERFL Subroutine - The OVERFL subroutine returns
information about overflow, underflow, and divide check.

The form of the OVERFL subroutine is:

CALL OVERFL(IANS)

13-35

where:

fANS

FUNCTIONS AND SUBROUTINES

is an integer variable whose value specifies whether an
overflow, underflow, or divide check has occurred since
the last call to OVERFL. The values returned are:

1 = at least one overflow, underflow, or divide
check occurred.

2 none occurred.

13.4.1.23 PDUMP Subroutine - The PDUMP subroutine functions exactly
like the DUMP subroutine (see Section 13.4.1.13) except that control
returns to the calling program after the dump has been executed.

The form of the PDUMP subroutine is:

CALL PDUMP(LBl,UBl,formatl[••. ,LBn,UBn,formatn)

where:

LBl,UBl are the integer values of the upper and lower memory
addresses to be dumped.

formatl is an integer that indicates the dump format.
possible specifications are:

o octal
1 real
2 integer
3 ASCII

The

If no arguments are supplied, all of user memory is dumped in octal.
If only the bounds arguments are specified, or if the format value is
out of range, the dump format is octal. If only the first bound
argument is specified, all locations from that address to the end of
memory are dumped.

aUIETX
Subroutine

13.4.1.24 QUIETX Subroutine - The QUIETX subroutine suppresses all
summary typeout when the program terminates, including library error
summaries and CPU times. The QUIETX subroutine takes no arguments.

The form of the QUIETX subroutine is:

CALL QUIETX

13-36

FUNCTIONS AND SUBROUTINES

13.4.1.25 SAVFMT Subroutine - The SAVFMT subroutine directs FOROTS to
encode the FORMAT specifications contained in the specified character
variable or array, and to save the encoded form. This action improves
the performance of any future I/O statements which that character
variable or array is the format identifier.

FOROTS saves the encoded form of the format until a call to CLRFMT
(see Section 13.4.1.9) is executed for that variable or array, or
until another call to SAVFMT is executed for that variable or array.

NOTE

After a call to SAVFMT, you must not change the value
of the variable or array. If the value is changed,
the new value may be ignored. A call to SAVFMT with a
variable or array whose address is identical to that
in a previous call, does an implied call to CLRFMT.

The form of the SAVFMT subroutine is:

CALL SAVFMT(name[,arraysize])

where:

name is the name of the character variable or array
that contains the FORMAT descriptors that you want
encoded.

arraysize is the number of array elements if an array is
specified.

NOTE

For compatibility with previous versions of
FORTRAN-IO/20, you can specify a numeric array name as
the argument for the SAVFMT subroutine.

13.4.1.26
internal
function,
time it
to SETRAN

~
-----.'"--.----.. _-_ ... - ...

SAVRAN
Subroutine

SAVRAN Subroutine - The SAVRAN subroutine saves the last
integer seed value generated by the RAN function. The RAN
described in Section 13.3.1, returns a random number each
is called. This value can be used at a later time in a call
to reestablish the same random number sequence.

13-37

FUNCTIONS AND SUBROUTINES

The form of the SAVRAN subroutine is:

CALL SAVRAN(n)

where:

n is an integer variable into which the SAVRAN subroutine
stores the last internal integer seed value generated.

SETRAN
Subroutine

13.4.1.27 SETRAN Subroutine - The SETRAN subroutine specifies the
internal integer seed value for the RAN function. If the SETRAN
argument is zero, RAN uses its own default starting value.

The form of the SETRAN subroutine is:

CALL SETRAN(n)

where:

n is a nonnegative integer constant or variable (less than
2**31) •

SORT
Subroutine

13.4.1.28 SORT Subroutine - The SORT subroutine sorts one or more
files using the SORT program. You can successfully use this
subroutine only if the SORT software has been installed (see the
FORTRAN Installation Guide). The SORT software is sold as a separate
pr-od-uc-E and may not be available at your installation.

The form of the SORT subroutine is:

CALL SORT('sort string')

where:

sort string is a command line containing file specifications
and SORT switches. For specific information about
the SORT command line, see the SORT/MERGE User's
Guide.

13-38

FUNCTIONS AND SUBROUTINES

NOTE

The sort string must be compatible with
the current version of the standalone
SORT. Therefore, the string is not the
same for TOPS-IO and TOPS-20 (see the
SORT/MERGE User's Guide) •

SRTINI ·-----l
Subroutine

13.4.1.29 SRTINI Subroutine - The SRTINI subroutine directs FOROTS to
start allocating memory from top downward to account for large overlay
programs and preallocates pages ~OO:677 (octal) for SORT.

The form of the SRTINI routine is:

CALL SRTINI(n)

where:

n is top page number to use when allocating memory.

Note that FOROTS will not allocate pages (including DDT pages)
have been marked as unavailable at memory initialization.

TIME
Subroutine

that

13.4.1.30 TIME Subroutine - The TIME subroutine returns the current
time of day in left-justified ASCII.

The TIME subroutine has two forms:

CALL TIME(x)

or

CALL TIME(x,y)

where:

x is a character variable. In the one argument form, TIME
returns the time in x in the form: hh:mm, where hh is the
hour (24-hour time) and mm is the minutes.

Y is a character variable. When the two argument form of the
TIME subroutine is used, the forms of the time returned in x
is the same as the one argument form, and the value returned
in y has the form: bss.t, where b is a blank, S5 is the
current seconds, and t is the current tenths of seconds.

13-39

FUNCTIONS AND SUBROUTINES

NOTE

For compatibility with previous versions of
FORTRAN-IO/20, you can specify a numeric variable or
array element as an argument of the TIME subroutine.

The following example demonstrates using the one and the two argument
forms of the TIME subroutine in a program.

PROGRAM TIMTST
CHARACTER*lO X,Y

CALL TIME(X,Y)

WRITE(UNIT=5,FMT=101)X,Y

CALL TIME(X)

WRITE (UNIT=5, FMT=102)X
L02 FORMAT(lX,'THE ONE ARGUMENT TIME RETURNS: ',A)

END

EXECUTE
LINK:
[LNKXCT
THE TWO
THE ONE
CPU time

TIMTST
Loading
TIMTST execution]
ARGUMENT TIME RETURNS: 09:00 20.9
ARGUMENT TIME RETURNS: 09:00

0.1 Elapsed time 0.2

TOPMEM --]
Subroutine

13.4.1.31 TOPMEM Subroutine - The TOPMEM subroutine directs FOROTS to
start allocating memory from a specified page number downward to
account for large overlay programs.

The form of the TOPMEM subroutine is:

CALL TOPMEM(n)

where:

n is the top page number to use in allocating memory_

Note that FOROTS will not allocate pages (including DDT pages)
have been marked as unavailable at memory initialization.

13-40

that

FUNCTIONS AND SUBROUTINES

TRACE
Subroutine

------_ .. __ ._------- j

13.4.1.32 TRACE Subroutine-- The TRACE subroutine generates a list of
active subprograms on the terminal. An active subprogram is one that
has been called but has not yet returned. The main program is always
active. The trace listing starts at the currently active routine (the
one containing the call to TRACE) and proceeds back to the main
program.

The form of the TRACE subroutine is:

CALL TRACE

The information produced by the TRACE routine consists of, for each
subprogram:

1. The name of the routine

2. The address of the routine (in octal)

3. The address of the subprogram call (expressed as routine-name
+ offset)

4. The address of the subprogram call (expressed as label +
offset with the calling routine)

5. The number of arguments passed to the called routine

6. The types of the arguments passed including:

C - Character string descriptor
D - D-floating double precision
F - Real
G - G-floating double precision
I - Integer or double integer
K - Literal string
L - Logical
a - Octal or double octal
S - Statement label
U - Unknown argument type
X - Complex

If there are too many arguments to display, the 'types' column will
contain ' ••• '.

If local symbols are loaded with the program, the label+offset
information will be much more informative. A label of the form 12345P
refers to FORTRAN statement number 12345; a label of the form 56789L
refers to line number 56789 in the compiler listing. Line number
labels only appear if the program was compiled with /DEBUG:LABELS (see
Chapter 16).

The traceback listing is sent to the error-message unit, which is
normally the terminal. You can use the DIVERT subroutine (Section
13.4.1.11) to change where the listing is sent.

13-41

FUNCTIONS AND SUBROUTINES

Example:

PROGRAM MAIN
TYPE 10

10 FORMAT (I' Calling 8UB1:')
CALL 5UB1
TYPE 20

20 FORMAT (I' Calling 5UB2:')
CALL 5UB2 (A,B)
END

SUBROUTINE SUB1
Y = F(X)
END

SUBROUTINE 5UB2 (G,H)
CALL 5UB3 (G,H,I)
END

SUBROUTINE 5UB3 (Al,A2,A3)
CALL TRACE

EXECUTE
LINK:

END

FUNCTION F(Y)
CALL 5UB2 (Y,O)
F=2.
END

TRC.FOR
Load ing

(LNKXCT TRC execut ion]

Calling 5UB1:

Name (Loc) «--- Caller
TRACE. (426373) «--- 5UB3+2
SUB3 (256) «--- 5UB2+6
5UB2 (232) «--- F+20
F (307) «--- 5UB1+2
8UB1 (214) «--- MAIN.+7

Calling 8UB2:

Name (Loc) «--- Caller
TRACE. (426373) «--- 5UB3+2
5UB3 (256) «--- 5UB2+6
SUB2 (232) «--- MAIN.+14

CPU time 0.4 Elapsed time 3.1

13.4.2 User-Defined Subroutines

(Loc)
(5UB3+2)
(5U82+6)
(F+20)
(5U8l+2)
(MAIN.+7)

(Loc)
(5U83+2)
(8U82+6)
(MAIN.+14)

Args
0
3
2
1
0

Args
o
3
2

Types

FFI
FI
F

Types

FFI
FF

A subroutine subprogram is a separate ptogram unit. The FORTRAN CALL
statement is used in a program unit to call a subroutine subprogram.
The CALL statement contains the name of the subroutine to which
control passes when the CALL statement is executed. The CALL
statement can also optionally contain actual arguments that are passed
to the called subroutine. The CALL statement is described in Section
13.4.2.2.

13-42

FUNCTIONS AND SUBROUTINES

The SUBROUTINE statement is always the first statement in a subroutine
subprogram. The SUBROUTINE statement defines the name and,
optionally, any dummy arguments used by the subroutine. The
SUBROUTINE statement is described in Section 13.4.2.1.

The ENTRY statement enables you to enter a subroutine subprogram at a
statement other than the first statement of the subroutine. The ENTRY
statement is described in Section 13.4.3.

The last logical statement of a subroutine subprogram is always the
RETURN statement. By default, the RETURN statement always returns
control to the first executable statement in the calling program that
immediately follows the CALL statement. Optionally, you may use the
alternate return form of the RETURN statement to return control to a
statement other than the default. Both forms of the RETURN statement
are described in Section 13.4.4.

13.4.2.1 SUBROUTINE Statement - The SUBROUTINE statement is always
the first statement in a subroutine subprogram. It is used to define
the name of the subroutine and, optionally, to define dummy arguments
that are used by the subroutine.

The form of the SUBROUTINE statement is:

SUBROUTINE sub [([dl[,d2] •••])]

where:

sub is the symbolic name of the subroutine or dummy procedure.

d is an optional dummy argument for the subroutine subprogram.
This argument can be a variable name, an array name, a dummy
procedure name, or any combination of these separated by
commas. The parentheses are. optional if no dummy arguments
are specified.

The following rules control the structuring
subprogram:

of a subroutine

1. You can not use the symbolic name of the subprogram in any
statement within the defined subprogram except the SUBROUTINE
statement itself. The symbolic name of a subroutine is a
global name and must not be the same as any other global name
or any local name in the program unit.

2. The symbolic name of a dummy argument is local to the program
unit and must not appear in an EQUIVALENCE, PARAMETER, SAVE,
INTRINSIC, COMMON, or DATA statement except as a common block
name.

3. The subroutine subprogram may define or redefine one or more
of its dummy arguments so as to return results.

4. If the actual argument is a constant or expression, the
subroutine must not change the value of that argument.

5. The subroutine subprogram may contain any FORTRAN statement
except BLOCK DATA, FUNCTION, PROGRAM, another SUBROUTINE
statement, or any statement that either directly or
indirectly references the subroutine being defined or any of
the subprograms in the chain of subprogram references leading
to this subroutine.

13-43

FUNCTIONS AND SUBROUTINES

6. Dummy arguments that represent statement labels may be either
an *, $, 0 r &.

7. The subprogram should contain at least one RETURN statement
and must be terminated by an END statement. The RETURN
statement indicates a logical end of the routine; the END
statement signifies the physical end of the subroutine. If
no RETURN precedes the END statement, then the RETURN
statement is implicit.

8. Subroutine subprograms can have as many entry points as
desired (see description of ENTRY statement given in Section
13.4.3) •

9. A character dummy argument whose length specification is an
asterisk in parentheses may appear as an operand for
concatenation.

13.4.2.2 CALL Statement - The CALL statement is used in a program
unit to reference a subroutine. Execution of the CALL statement
causes a transfer of program control to the subroutine referenced in
the CALL statement.

The CALL statement can also contain a list of arguments that is used
by the computation performed in the referenced subroutine.

The form of the CALL statement is:

CAL L sub [([a 1 [, a 2] •••])]

where:

sub is the symbolic name of a subroutine or dummy procedure.

a is an optional actual argument that is used by the
subroutine. The actual arguments in the CALL statement must
agree in position and type with the dummy arguments in the
referenced SUBROUTINE statement. The parentheses are
optional if no actual arguments are specified.

13.4.2.3 Execution of a CALL Statement - When a CALL statement is
executed, the following results occur:

1. Any actual arguments in the CALL statement argument list that
are expressions are evaluated.

2. The actual arguments are then associated with the dummy
arguments in the referenced SUBROUTINE statement.

3. Control passes to the subroutine and it is executed.

4. Return of control
calling program
statement.

from the
completes

referenced subroutine to
the execution of the

the
CALL

A subroutine can be referenced within any other procedure or the main
program of the executable program. A subprogram cannot, however,
reference itself, either directly or indirectly.

13-44

FUNCTIONS AND SUBROUTINES

13.4.2.4 Actual Arguments for a Subroutine - Actual arguments can
appear in the CALL statement argument list. Actual arguments must
agree in order, number, and type with the corresponding dummy
arguments in the dummy argument list of the referenced subroutine.
The exception to the agreement rules between actual and dummy argument
lists is the use of a subroutine name or an alternate return specifier
as an actual argument.

Actual arguments in CALL statements can be any of the following:

1. Any expression, including a character expression whose length
specification is an asterisk in parentheses.

2. An array name

3. An intrinsic function name

4. An external procedure name

5. A dummy procedure name

6. An alternate return label

An actual argument in a subroutine reference may be a dummy argument
name that appears in a dummy argument list within the subprogram
containing the reference. An asterisk dummy argument must not be used
as an actual argument in a subprogram reference.

13.4.3 ENTRY Statement

The ENTRY statement provides you with a method for entering a function
or subroutine subprogram at any executable statement. The ENTRY
statement can appear anywhere within a function subprogram after the
FUNCTION statement, or within a subroutine subprogram after the
SUBROUTINE statement. An ENTRY statement cannot appear between a DO
statement and the terminal statement of its DO-loop or inside a
block-IF statement.

A subprogram may optionally have one or more ENTRY statements. An
ENTRY statement is classified as a nonexecutable statement.

The form of the ENTRY statement is:

ENTRY en [(dl [,d2 •••])]

where:

en is the symbolic name of an entry in a function or subroutine
subprogram. This symbolic name is called an entry name. If
the entry name appears in a subroutine subprogram, it is
referred to as a subroutine name; if the entry name appears
in a function subprogram, it is called an external function
name.

d is a variable name, array name, dummy procedure name, or the
symbols: *, $, or & (these symbols can represent a dummy
argument which is an alternate return label). The symbol
references (asterisk,. ampersand, and dollar sign) are
permitted only when the ENTRY statement appears in a
subroutine subprogram.

13-45

FUNCTIONS AND SUBROUTINES

If you do not specify any parentheses after the entry name, you need
not specify any dummy arguments. If, however, you include the
parentheses, you must specify at least one dummy argument. The rules
for the use of an ENTRY statement follow:

1. The ENTRY statement allows entry into a subprogram at a place
other than that defined by the SUBROUTINE or FUNCTION
statement. You may include more than one ENTRY statement in
an external subprogram.

2. Execution begins at the first executable statement following
the ENTRY statement.

3. Appearance of an ENTRY statement in a subprogram does not
negate the rule that statement functions in subprograms must
precede the first executable statement.

4. ENTRY statements are nonexecutable and do not affect the
execution flow of a subprogram.

5. You can not use an ENTRY statement in a main program or have
a subprogram reference itself through its entry points.

6. You can not use an ENTRY statement in the range of a DO
statement construction.

7. The dummy arguments in the ENTRY statement need not agree in
order, number, or type with the dummy arguments in SUBROUTINE
or FUNCTION statements or any other ENTRY statement in the
subprogram. However, the arguments for each call or function
reference must agree with the dummy arguments in the
SUBROUTINE, FUNCTION, or ENTRY statement that is referenced.

8. Entry into a subprogram initializes only the dummy arguments
of the referenced ENTRY statement.

9. You can not reference a dummy argument unless it
the dummy list of the ENTRY, SUBROUTINE,
statement by which the subprogram is entered.

appears in
or FUNCTION

10. The source subprogram must be ordered such that references to
dummy arguments in executable statements follow the
appearance of the dummy argument in the dummy list of a
SUBROUTINE, FUNCTION, or ENTRY statement.

11. Dummy arguments that were defined for a
previous reference to the subprogram
subsequent entry into the subprogram.

subprogram by
are undefined

some
for

12. The value of a function must be returned by use of the
current entry name.

13. If an entry name in a function subprogram is of type
character, each entry name and the name of the function
subprogram must be of type character. If the name of the
function subprogram or any entry in the subprogram has a
length of (*) declared, all such items must have a length
specification of the same integer value.

13-46

FUNCTIONS AND SUBROUTINES

13.4.4 RETURN Statement

The RETURN statement returns control to the referencing
and may appear only in a function subprogram or
subprogram.

prog ram un i t
a subroutine

The RETURN statement has two possible forms, depending on whether it
is the last statement in a function subprogram or a subroutine
subprogram.

The form of the RETURN statement in a function subprogram is:

RETURN

The form of the RETURN statement in a subroutine subprogram is:

RETURN [e]

where:

e is an integer constant, variable, or expression. This form
of the RETURN statement is called an alternate return. The
alternate return form enables you to select any labeled
statement in the calling program unit as a return point
after execution of the program unit in which the alternate
RETURN statement appears.

The value of e should be a positive integer that is equal to
or less than the number of statement labels given in the
argument list of the calling statement. If e is less than 1
or is larger than the number of available statement labels,
a standard return is performed. (A standard return
transfers control back to the first executable statement
immediately following the calling statement in the calling
prog ram un it) •

NOTE

A dummy argument for a statement label must be either
an asterisk (*), a dollar sign ($), or an ampersand
(&) •

You may use more than one RETURN (standard return)
subprogram. The use of the alternate return
statement is restricted to subroutine subprograms.

13-47

statement in any
form of the RETURN

FUNCTIONS AND SUBROUTINES

For example, assume the following statement sequence in a main
program:

CALL EXAMP(I,*10,K,*15,M,*20)
GO TO 101

10 alternate return #1

15 alternate return #2

20 alternate return #3

END

SUBROUTINE EXAMP (L, *,M, *,N,*)

RETURN

RETURN

RETURN(I+J)

END

Each occurrence of RETURN returns control to the statement GO TO 101
in the calling program.

If, on the execution of the RETURN(I+J) statement, the value of (I+J)
is:

Value The following is performed:

less than one a standard return to the GO TO 101
statement is made

1 the return is made to statement 10
2 the return is made to statement 15
3 the return is made to statement 20

Greater than 3 a stahdard return to the GO TO 101
statement is made.

13-48

FUNCTIONS AND SUBROUTINES

13.4.5 Dummy and Actual Arguments

Since you may reference subprograms at more than one point throughout
a program, many of the values used by the subprogram may be changed
each time it is used. Dummy arguments in subprograms represent the
actual values to be used, which are passed to the subprogram when it
is called.

For example, shown belaw is a subroutine (TEST) being called from the
maln program by a CALL statement. In this example, the variables in
the CALL statement, A, B, and C(2), represent actual values in the
main program. They are therefore called actual arguments.

On the other hand, the variables in the SUBROUTINE statement, R, X,
and Z, do not represent any values until they have values passed to
them from the CALL statement. They are therefore called dummy
arguments.

(The CALL, SUBROUTINE, and RETURN statements are described in Sections
13.4.2.2, 13.4.2.1, and 13.4.4, respectively.)

CALL TEST (A,B,C(2»

END
SUBROUTINE TEST (R,X,Z)

RETURN
END

Functions and subroutines use dummy arguments to indicate the type of
the actual arguments they represent and whether the actual arguments
are variables, arrays, subroutine names, or the names of external
functions. Each dummy argument must be used within a function or
subroutine as if it were a variable, array, subroutine, or external
function identifier.

Dummy arguments are given in an argument list associated with the
identifier assigned to the subprogram; actual arguments are normally
given in an argument list associated with a call made to the desired
subprogram.

The position, number, and type of each dummy argument in a subprogram
list must agree with the position, number, and type of each argument
list of the subprogram reference.

NOTE

If the /DEBUG:ARGUMENTS compiler switch is specified
(see Section 16.3) , optional type checking is
performed at load time on dummy and actual arguments.

13-49

FUNCTIONS AND SUBROUTINES

Dummy arguments may be:

1. variables

2. array names

3. subroutine identifiers

4. function identifiers

5. the symbols *, $, or & that are used to denote the position
of alternate return labels

When you reference a subprogram, its dummy arguments are replaced by
the corresponding actual arguments supplied in the reference. All
appearances of a dummy argument within a function or subroutine are
related to the given actual arguments. Except for subroutine
identifiers and character constants, a valid association between dummy
and actual arguments occurs only if both are of the same type;
otherwise, the results of the subprogram computations will be
unpredictable.

Argument association may be carried through more than one level of
subprogram reference if a valid association is maintained through each
level. The dummy/actual argument associations established when a
subprogram is referenced are terminated when the desired subprogram
operations are completed.

The following rules govern the use and form of dummy arguments:

1. The number and type of the dummy arguments of a procedure
must be the same as the number and type of the actual
arguments given each time the procedure is referenced.

2. Dummy argument names may not appear in EQUIVALENCE, DATA, or
COMMON statements.

3. A variable dummy argument should have a variable, an array
element identifier, an expression, or a constant as its
corresponding argument.

4. An array dummy argument should have either an array name or
an array element identifier as its corresponding actual
argument. If the actual argument is an array, the length of
the dummy array should be less than or equal to that of the
actual array. Each element of a dummy array is associated
directly with the corresponding elements of the actual array.

5. A dummy argument representing a subroutine identifier should
have a subroutine name as its actual argument.

6. A dummy argument representing an external function must have
an external function as its actual argument.

7. A dummy argument may be defined or redefined in a referenced
subprogram only if its corresponding actual argument is a
variable. If dummy arguments are array names, then elements
of the array may be redefined.

Additional information regarding the use of dummy and actual arguments
is given in the description of how subprograms are defined and
referenced.

13-50

FUNCTIONS AND SUBROUTINES

13.4.5.1 Length of Character Dummy and Actual Arguments - The length
of a dummy argument of type character must not be greater than the
length of its associated actual argument. Note that if the character
dummy argument's length is specified as *(*), the length used is
exactly the length of the associated actual argument. This is known
as a passed length character argument.

The length of the dummy argument is determined each time control
transfers to the function. The length of the actual argument can be
the length of a character variable, array element, substring, or
expression.

A character array dummy argument can have passed length. The length
of each element in the dummy argument is the length of the elements in
the actual argument. The passed length and the array declaractor
together determine the size of the passed length character array.

The following example of a function subprogram uses a passed length
character argument. The function finds the position of the character
with the highest ASCII code value; it uses the length of the passed
length character argument to control the iteration. (Note that the
intrinsic function LEN is used to determine the length of the
argument. See Table 13-1 for a description of the LEN function.)

INTEGER FUNCTION ICMAX(CVAR)
CHARACTER*(*) CVAR
ICMAX = 1
DO 10 I = 2, LEN (CVAR)

10 IF (CVAR(I:I) .GT. CVAR(ICMAX:ICMAX» ICMAX =1
RETURN
END

Each of the following function references specifies a different length
for the dummy argument:

CHARACTER VAR*lO, CARRAY(3,5)*20

II ICMAX (VAR)
12 ICMAX(CARRAY(2,2»
13 ICMAX(VAR(3:8»
14 ICMAX(CARRAY (1,3) (5:15»
15 ICMAX (VAR(3:4)//CARRAY(3,5»

13.4.5.2 Character and Hollerith Constants as Actual Arguments­
Actual arguments and their corresponding dummy arguments must agree in
data type. If the actual argument is a Hollerith constant (for
example, 4HABCD) , the dummy argument must be of numeric data type.

In FORTRAN-IO/20, if an actual argument is a character constant (for
example 'ABCD'), the corresponding dummy argument can have either
numeric or character data type. If the dummy argument has a numeric
data type, the character constant 'ABCO' is, in effect, converted to a
Hollerith constant by the FORTRAN compiler and the loader.

An exception to this occurs when the function or subroutine name is
itself a dummy argument. It is not possible to determine at compile
time or load time whether a character constant or Hollerith constant
is required. In this case, a character constant actual argument can
correspond only to a character dummy argument.

13-51

CHAPTER 14

BLOCK DATA SUBPROGRAMS

Block data subprograms provide initial values for variables and array
elements in named common blocks.

A block data subprogram must start with the BLOCK DATA statement. The
only valid statements within a block data subprogram are the
specification and DATA statements (COMMON, DIMENSION, EQUIVALENCE,
IMPLICIT, PARAMETER, SAVE, type statements, and DATA statements). The
last statement of a block data subprogram must be an END statement.

You can enter initial values into more than one labeled common block
in a single subprogram of this type.

An executable program can contain more than one block data subprogram.

14.1 BLOCK DATA STATEMENT

The form of the BLOCK DATA statement is:

BLOCK DATA [sub]

where:

sub is the optional symbolic name of a block data subprogram in
which the BLOCK DATA statement appears.

The name sub is a global name and must therefore be a unique
symbolic name within the executable program.

The following is an example of a block data subprogram:

BLOCK DATA TEST
COMMON /SQUARE/ CIRCLE,RECTAN,PI
DATA CIRCLE,RECTAN,PI/l.,2.,3.14159/
END

This example initializes the COMMON variables CIRCLE, RECTAN, and PI
to 1., 2., and 3.14159 respectively.

14-1

CHAPTER 15

WRITING USER PROGRAMS

This chapter is a guide for writing effective programs with FORTRAN.
It contains techniques for optimization, interaction with non-FORTRAN
programs, and other useful programming hints.

15.1 GENERAL PROGRAMMING CONSIDERATIONS

The following
should observe
FORTRAN.

paragraphs describe
when preparing a

programming considerations you
FORTRAN program to be compiled by

15.1.1 Accuracy and Range of Double-Precision Numbers

Floating-point and real numbers may consist of up to 16 digits in a
double-precision mode. Their range is specified in Chapter 3, Section
3.2. You must be careful when testing the value of a number within
the specified range, since, although numbers up to 10**38 may be
represented, FORTRAN can only test numbers of up to eight significant
digits (REAL precision) and 16 significant digits (DOUBLE precision).

NOTE

For KL model B systems, if the /GFLOATING compiler
switch is specified (see Section 16.1.3 or 16.2.3),
double-precision numbers up to 10**307 can be
represented.

You must also be careful when testing floating-point computations for
a result of O. In most cases the anticipated result, that is, 0 will
be obtained; however, in some cases the result may be a very small
number that approximates O. Such an approximation of 0 will cause
tests for equality to 0 to fail.

To increase the accuracy of its cO~Rile-time arithmetic, the compiler
does all floating point arithmetic in double precision (it converts
back to single precision when necessary). For KL model B systems, if
the /GFLOATING compiler switch is specified (see Section 16.1.3 or
16.2.3), the compiler does its compile-time arithmetic in G-floating
double-precision. If the /DFLOATING compiler switch is specified (the
default), the compiler does its compile-time arithmetic in D-floating
double-precision.

Compile-time arithmetic done in G-floating double-precision may not
overflow or underflow as it might with D-floating double-precision
arithmetic. G-floating double-precision has a greater range than
D-floating double-precision (see Section 3.4).

15-1

WRITING USER PROGRAMS

15.1.2 Writing FORTRAN Programs for Use on Other Computers

If you prepare a program to run on both TOPS-10 or TOPS-20 and another
manufacturer's computer, you should:

1. Avoid using any blue print language extensions in this
manual. (All information in blue print represents aspects of
FORTRAN that are extensions to the FORTRAN-77 Standard.)

2. Consider the accuracy and size of the numbers that another
manufacturer's computer is capable of handling.

You can use the /FLAG compiler switch to invoke the compatibility
flagger. This feature provides warning messages for language elements
that are extensions to the FORTRAN-77 standard or that are
incompatible with VAX FORTRAN (see Section 16.6).

15.1.2.1 Remote Links - A remote network link is established each
time an OPEN statement or INQUIRE-by-file for a remote file is
performed. The link remains open until the file is closed or the
INQUIRE statement completes. The maximum number of simultaneous open
links available to a user process is a site-dependent monitor
parameter.

15.1.2.2 Reducing Network Overhead - A substantial part of the
overhead associated with 'remote file access consists in establishing
the remote link. Since a READ, READ, WRITE sequence for a file opened
for read access causes FOROTS to close and reopen the file for
read/write access, network overhead can be reduced by ensuring that
remotes files to be written to are opened with an ACCESS specifying
both read and write access. Likewise, file specifications in CLOSE
statements for remote files, which cause FOROTS to establish a link
for a network rename operation, should not be routinely used unless a
full remote rename is required.

15.1.3 Using Floating-Point DO Loops

FORTRAN permits you to use noninteger, single- or double- precision
numbers as the parameter variables in a DO statement. This lets you
generate a wider range of values for the DO loop index variables,
which may, in turn, be used inside the loop for computations.

WARNING

If a noninteger index is used, accumulation of
rounding errors may lead to unexpected values for the
loop variable.

FORTRAN-10/20 VII 15-2 February 1987

WRITING USER PROGRAMS

15.1.4 Computation of DO Loop Iterations

The number of times through a DO loop is computed outside the loop and
is not affected by any changes to the DO index parameters within the
loop. The formula for the number of times a DO loop is executed is:

DO 10 I=Ml,M2,M3

Number of cycles=MAX (INT((M2-Ml+M3)/M3) ,O)

The values of the parameters Ml, M2, M3 can be of any type except
complex. If the iteration count is less than or equal to zero, the
body of the loop is not executed. The index variable retains its
assigned value (Ml). (See Section 9.3.)

NOTE

The interpretation of the iteration count and the
index variable described above is different from that
of earlier versions of FORTRAN-10/20. If the /NOF77
compiler switch is specified (see Section 16.1.3 or
16.2.3), and the iteration count is less than or equal
to zero, the body of the loop is executed once. In
addition, the final value of the index variable of the
DO statement is undefined after a normal exit.

15-2.1 February 1987

WRITING USER PROGRAMS

This page intentionally left blank.

15-2.2 February 1987

WRITING USER PROGRAMS

15.1.5 Subroutines - Programming Considerations

Consider the following items when preparing and executing subroutines:

1. During execution, no check is made to see if the proper
number of arguments is passed (unless the /DEBUG:ARGUMENTS
compiler switch. is specified, see Section 16.3).

2. If the number of actual arguments passed to a subroutine is
less than the number of dummy arguments specified, the values
of the unspecified arguments are undefined (unless the
/DEBUG:ARGUMENTS compiler switch is specified, see Section
16.3) •

3. If the number of actual arguments passed to a subroutine is
greater than the number of dummy arguments given, the excess
arguments are ignored (unless the /DEBUG:ARGUMENTS compiler
switch is specified, see Section 16.3).

4. If an actual argument is a constant and its corresponding
dummy argument is set to another value (an illegal usage),
all references made to the constant in the calling program
may be changed to the new value of the dummy argument.

5. No check is made to see if the arguments passed are of the
same type as the dummy arguments (unless the /DEBUG:ARGUMENTS
compiler switch is specified, see Section 16.3).

NOTE

An exception is that a check is always made
for G-floating and D-floating type mismatches
regardless of the /DEBUG:ARGUMENTS switch
being specified.

In addition, when you pass character data to
a subroutine or function that is compiled
with the /EXTEND switch, the calling program
must also be compiled with the /EXTEND
switch.

If an actual parameter is a constant and the corresponding
dummy is of type real, be sure to include the decimal point
In the constant. If the dummy is double-precision, be sure
to specify the constant with a "D".

NOTE

You are given no warning if any of the situations
described In items 1,2,3,4, or 5 occur (unless the
/DEBUG:ARGUMENTS compiler switch is specified, see
Section 16.3).

Examples:

If a function F has a single dummy argument of type real, and that
function is called with:

F(2)

15-3

WRITING USER PROGRAMS

F interprets the integer 2 as an unnormalized floating-point number.
In this instance, F(A) should be called with:

F(2.0)

Similarly, if the function Fl(D) is called with:

Fl(2.S)

and D is double-precision, Fl assumes that its parameters have been
specified with two words of precision and picks up whatever follows
the constant 2.S in memory. The proper method is to use:

Fl(2.SDO)

lS.1.6 Reordering of Computations

Computations that are not enclosed within parentheses may be reordered
by the compiler. Sometimes it is necessary to use parentheses to
ensure proper results from a specific computation.

For example, assuming that:

1. RLI represents a large number, such that RLl*RL2 will cause
an overflow condition, and

2. RSI is a very small number, that is, less than 1, the program
sequence:

A=RSl*RLl*RL2
B=RS2*RL2*RLl

will not produce an overflow when evaluated left to right,
since the first computation in each expression (that is,
RS1*RLl and RS2*RL2) will produce an interim result that is
smaller than either large number (RLI or RL2).

However, the compiler may recognize RLl*RL2 as a common sUbexpression
(see Section lS.2.1.l) and generate the following sequence:

temp
A
B

RLl*RL2
RSl*temp
RS2*temp

The computation of temp will cause an overflow.

You should write the program as follows to ensure that the desired
results are obtained:

A=(RSl*RLl)*RL2
B=(RS2*RL2)*RLI

Computations may be reordered even when global optimization is not
selected.

lS-4

WRITING USER PROGRAMS

15.1.7 Dimensioning of Dummy Arrays

When you specify an array as a dummy argument to a subprogram unit,
you must indicate to the compiler that the parameter is an array by
dimensioning the array in a specification statement. This is the only
way the compiler is able to distinguish a reference to such an array
from a function reference. A dummy array can be dimensioned the
following ways:

1. Assumed size

2. Adjustable dimensioned

3. Fixed'dimension bound

Dimensioning the array with a size of
dangerous, practice. The alternative
assumed-size arrays (see Section 7.1.2).

1
to

is a
this

common, although
practice is to use

Example:

SUBROUTINE SUBl(A,B)
DIMENSION A(l)

There are disadvantages to using the above technique because it may
prevent the compiler from diagnosing illegal programs, specifically:

1. Reading or writing the array by name

DIMENSION ARRAY (10)
READ (1) ARRAY

The above is a binary read that will read ten words into
ARRAY.

SUBROUTINE SUBl(A)
DIMENSION A (1)
READ(l)A

This binary read will cause one word to be read into A.

2. Using the array as a format

3.

SUBROUTINE SUB2(FMT)
DIMENSION FMT(l)
READ (l,FMT)

Only the first word of the format specification contained in
FMT is used.

Using the /DEBUG:BOUNDS compilation switch
16.3), the dimension information used is
specified in the array declaration

SUBROUTINE SUB3(A)
DIMENSION A(l)
A(2)=0

(see Section
that which is

The reference to A(2) will cause the out-of-bounds warning
message to be generated.

15-5

WRITING USER PROGRAMS

15.2 FORTRAN GLOBAL OPTIMIZATION

You have the option of invoking the global optimizer during
compilation. The optimizer treats groups of statements in the source
program as a single entity. The purpose of the global optimizer is to
prepare a more efficient object program that produces the same results
as the original unoptimized program, but takes significantly less
execution time.

The output of the lexical and syntactic analysis phase of the compiler
is developed into an optimized source program equivalent (in results)
to the original. The optimized program is then processed by the
standard compiler code generation phase.

15.2.1 Optimization Techniques

15.2.1.1 Elimination of Redundant Computations - Often the same
sUbexpression will appear in more than one computation throughout a
program. If the values of the operands of such a common expression
are not changed between computations, the sUbexpression may be written
as a separate arithmetic expression. Also, the variable representing
its resultant may then be substituted where the sUbexpression appears.
This eliminates unnecessary recomputation of the subexpression. For
example, the instruction sequence:

A=B*C+E*F

H=A+G-B*C

IF«B*C)-H) 10,20,30

contains the sUbexpression B*C three times when it really needs to be
computed only once. Rewriting the preceding sequence as:

T=B*C
A=T+E*F

H=A+G-T

IF(T-H) 10,20,30

eliminates two computations of the subexpression B*C from the overall
sequence.

Decreasing the number of arithmetic operations performed in a source
program by the elimination of common subexpressions shortens the
execution time of the resulting object program.

15-6

WRITING USER PROGRAMS

15.2.1.2 Reduction of Operator Strength - The
execute arithmetic operations varies according
involved. The hierarchy of arithmetic operations
amount of execution time required is:

MOST TIME

LEAST TIME

OPERATOR
**
/
*
+,-

time required to
to the operator(s)
according to the

During program optimization, the global optimizer replaces, where
possible some arithmetic operations that require the most time
with operations that require less time. For example, consider the
following DO loop that is used to create a table for the conversion of
from 1 to 20 miles to their equivalents in feet:

DO 10 MILES=1,20
10 IFEET(MILES)=5280*MILES

The execution time of the loop wo~ld be shorter if the time-consuming
multiply operation, that is, 5280*MILES, could be replaced by a faster
operation. Since you increment MILES on each pass, you can replace
the multiply operation by an add and total operation.

In its optimized form, the loop would be replaced by a sequence
equivalent to:

K=5280
DO 10 MILES=1,20
IFEET(MILES)=K

10 K=K+5280

In the optimized form of the loop, the value of K is set to 5280 for
the first iteration of the loop, and is increased by 5280 for each
succeeding iteration of the loop.

This situation occurs frequently in subscript calculations that
implicitly contain multiplications.

15.2.1.3 Removal of Constant Computation from Loops - The speed with
which a given algorithm may be executed can be increased if
instructions and/or computations are moved out of frequently traversed
program sequences into less frequently traversed program sequences.

Movement of code is possible only if none of the arguments in the
items to be moved are redefined within the code sequences from which
they are to be taken. Computations within a loop consisting of
variables or constants that are not changed in value within the loop
may be moved outside the loop. Decreasing the number of computations
made within a loop greatly decreases the execution time required by
the loop.

For example, in the sequence:

DO 10 I=1,100
10 F=2.0*Q*A(I)+F

INumerical analysis considerations severely limit the number of
cases where this is possible.

15-7

WRITING USER PROGRAMS

the value of the computation 2.0*Q, once calculated on the first
iteration, will remain unchanged during the remaining 99 iterations of
the loop. Reforming the preceding sequence to:

QQ=2.0*Q
DO 10 1=1,100

10 F=QQ*A(I)+F

moves the calculation 2.0*Q outside the scope of the loop.
movement of code eliminates 99 multiply operations.

This

In addition, it is possible to remove entire assignment statements
from loops. This action can be easily detected from the macro
expanded listings. The internal sequence number remains with the
statement and appears out of order in the leftmost column of the macro
expanded listing (LINE).

15.2.1.4 Constant Folding and Propagation - In this method of
optimization, expressions containing determinate constant values are
detected and the constants are replaced, at compile time, by their
defined or calculated value. For example, assume that the constant PI
is defined and used in the following manner:

PI=3.14159

X=2*PI*Y

At compile time, the optimizer will have used the defined value of PI
to calculate the value of the sUbexpression 2*PI. The optimized
sequence would then be:

PI=3.14159

X=6.28318*Y

thereby eliminating a multiply operation from the object code program.

The evaluation of constant expressions at compile time is called
"folding"; the replacement of variables with their constant values is
called "constant propagation".

NOTE

For KL model B systems, use of the /GFLOATING compiler
switch (see Section 16.1.3 or 16.2.3) may affect
compile-time arithmetic.

15-8

WRITING USER PROGRAMS

15.2.1.5 Removal of Inaccessible Code - The optimizer detects and
eliminates any code within the source program that cannot be accessed.
In general, this will not happen since programmers do not normally
include such code in their programs; however, inaccessible code may
appear in a program during the debugging process. The removal of
inaccessible code by the optimizer reduces the size of the object
program.

A warning message is generated for each inaccessible line removed.

15.2.1.6 Global Register Allocation - During the compilation of a
source program, the optimizer controls the allocation of registers to
minimize computation time in the optimized object program. The
allocation process is designed to minimize the number of MOVE and
MOVEM machine instructions that will appear in the most frequently
executed portions of the code.

15.2.1.7 I/O Optimization - Every effort is made to minimize the
number of required calls to the FOROTS system. This is done primarily
through extensive analysis of implied DO loop constructs on I/O data
transfer statements. The formats of these special blocks are
described in Chapter 18. These optimizations reduce the size of the
program (argument code plus argument block size is reduced) and
greatly improve the performance of programs that use implied DO loop
I/O statements.

15.2.1.8 Uninitialized Variable Detection - A warning message may be
generated when a scalar variable is referenced before it has received
a value (only when optimizing).

15.2.1.9 Test Replacement - If the only use of a DO loop index is to
reduce operator strength (see Section 15.2.1.2) and the loop does not
contain exits (GO TOs out of the loop), the DO loop index is not
needed and can be replaced by the reduced variable.

For example:

DO 10 1=1,10
K=K+7*I

10 CONTINUE

Reduction of operator strength and test replacement together transform
this loop into:

DO 10 1=7,70,7
K=K+I

10 CONTINUE

This situation occurs frequently in subscript computation.
execution of these statements, 1=11.

15-9

After

WRITING USER PROGRAMS

15.2.2 Programming Techniques for Effective Optimization

Observe the following recommendations during the coding of a FORTRAN
source program. They will improve the effectiveness of the optimizer:

1. Do not use DO loops with an extended range.

2. Specify label lists when using assigned GO TOs.

3. Nest loops so that the innermost index is the one with the
largest range of values.

4. Avoid the use of associated I/O variables.

5. Avoid unnecessary use of COMMON and EQUIVALENCE.

15.3 FUNCTION SIDE EFFECTS

Unpredictable results can occur if a statement includes calls to
different functions that modify the same variables.

Consider the following example:

COMMON A
A=5.
P=F(1.)+Q(2.)
END

FUNCTION F(X)
COMMON A
A=O.
F=X+l
END

FUNCTION Q(Y)
COMMON A
Q=A
END

In the preceding sequence, if P is evaluated by calling F before Q,
the value of P will be 2. If P is evaluated by calling Q before F,
the value of P will be 7.

15.4 INTERACTING WITH NON-FORTRAN PROGRAMS AND FILES

15.4.1 Using The Sharable High-Segment FOROTS

If your program does not contain a FORTRAN main program module, and
you wish to have the sharable FOROTS GETSEGed at run time, you must do
the following:

1. Force the loading of the FOROTS initialization routine RESET.
by declaring it as an external.

2. Define the symbol FOROT% as a global with a positive, nonzero
value before FORLIB.REL is searched.

15-10

WRITING USER PROGRAMS

3. Initialize FOROTS by the appropriate initialization call:

JSP 16, RESET.
EXP 0

15.4.2 Calling Sequences

The following paragraphs describe the standard procedures for writing
subroutine calls.

1. Procedure

a. The calling program must load the accumulator (AC) 16
with the address of the first argument in the argument
list.

b. The subroutine is then called by a PUSHJ instruction
using AC 17.

c. The return will be made to the instruction immediately
after the PUSHJ 17 instruction.

d. The FOROTS trace facility requires the calling sequence
to be:

XMOVEI 16,AP
PUSHJ 17,F

where AP is the pointer to the argument list and F is the
subprogram name. The word preceding the first word of an
entry point should have its name in SIXBIT.

2. Restrictions

a. Skip returns are not permitted.

b. The contents of the pushdown stack located before the
address specified by AC 17 belong to the calling program;
they cannot be read by the called subprogram.

c. FOROTS assumes that it has control of the stack;
therefore, you must not create your own stack. The
FOROTS stack is initialized by the call to RESET. (See
Section 15.4.1).

15.4.3 Accumulator Usage

The specific functions performed by accumulators (AC) 17,16,0, and 1
are:

1. Pushdown Pointer - AC 17 is always maintained as a pushdown
pointer. In section zero, its right half points to the last
location in use on the stack, and its left half contains the
negative of the number of words allocated to the unused
remainder of the stack.

In non-zero sections, the pushdown pointer contains the
global address of the last location in use on the stack.

15-11

WRITING USER PROGRAMS

2. Argument List Pointer - AC 16 is used as the argument
pointer. The called subprogram does not need to preserve its
contents. The calling program cannot depend on getting back
the address of the argument list passed to the called
subprogram. AC 16 cannot point to the ACs or to the stack.

3. Temporary and Value Return Registers - AC 0 and 1 are used as
temporary registers and for returning values. The called
subprogram does not need to preserve the contents of AC 0 or
1 (even if not returning a value). The calling program must
never depend on getting back the original contents of the
data passed to the called subprogram.

4. Returning Values - A subroutine subprogram may pass back
results by modifying arguments.

A numeric function subprogram always returns the value of the
function in AC 0 (or ACs 0-1 if the value is double precision
or complex). A function subprogram may also pass back
additional results by modifying the arguments. (See Section
15.4.4 for a description of character functions.)

5. Preserved ACs - FORTRAN function subprograms preserve ACs 2
through 15; subroutine subprograms do not.

The design of the called subprogram cannot depend on the contents of
any of the ACs being set up by the calling subprogram, except for ACs
16 and 17. Passing information must be done explicitly by the
argument list mechanism. Otherwise, the called subprograms cannot be
written in either FORTRAN or COBOL.

15.4.4 Argument Lists

Since the FORTRAN compiler uses the indirect bits on argument lists
(note that this permits shared, pure code argument lists), it is
essential for code that accesses parameters to take this into account.
Specifically, sequences that obtained the values of parameters through
use of operations such as:

HRRZ R,1(16)

to pick up the address of the second argument should be changed to

XMOVEI R,@1(16)

The latter operation will work when interfacing with FORTRAN.

The format of the argument list is as follows:

Arg count word
Arg list addr.---First arg entry

Second arg entry

Last arg entry

The format of the arg count word is:

bits 0-17 These contain -n, where n is the number of arg
entries.

bits 18-35 Reserved for future DIGITAL development, and must be
o.

15-12

WRITING USER PROGRAMS

The format of an arg entry is as follows (each entry is a single
word) :

bit

bits
bits
bit
bits
bits

o

1-8
9-12
13
14-17
18-35

IFIW (Instruction Format Indirect Word) flag, must be
1.
Reserved for future DIGITAL development, must be O.
Arg type code.
Indirect bit if desired.
Index field, must be O.
Address of the argument.

For character functions, the first argument points to the return
value, which is a character string descriptor (see Section 15.4.6).
The actual arguments to the function start in the second argument
entry.

The following restrictions should be observed:

1. Neither the argument list nor the arguments themselves can be
on the stack. The same restriction applies to any indirect
argument pointers.

2. The called program may not modify the argument list itself.

Example:

The argument list may be in a write-protected segment.

Note that the arg count word is at position -1 with respect
to the contents of AC 16. This word is always required even
if the subroutine does not handle a variable number of
arguments. A subroutine that has no arguments must still
provide an argument list consisting of two words, that is,
the argument count word with a 0 in it and a zero argument
word.

XMOVEI 16,AP
PUSHJ 17,SUB

iARGUMENT LIST
-3,,0

iSET UP ARG POINTER
iCALL SUBROUTINE
iRETURN HERE

AP: IFIW 4,A
IFIW 4,B
IFIW 4,C

iSUBROUTINE TO SET THIRD ARG TO SUM OF FIRST TWO ARGS

SUB: MOVE
ADD
MOVEM
POPJ

T,@0(16)
T,@1(16}
T,@2(16}
17,

15-13

iGET FIRST ARG
iADD SECOND ARG
iSET THIRD ARG
iRETURN TO CALLER

WRITING USER PROGRAMS

15.4.5 Argument Types

Table 15-1: Argument Types and Types Codes

Type Code Description
(Octal)

FORTRAN Use COBOL Use

o
1
2
3
4
5
6
7

10

11
12
13

14
15
16
17

Unspecified
FORTRAN Logical
Integer
Reserved
Real
Reserved
Octal
Label
Double real
(D-floating)
Not applicable
Double octal
Double real
(G-floating)
Complex
Character
Reserved
Hollerith

Unspecified
Not applicable
I-word CaMP
Reserved
COMP-l
Reserved
Reserved
Procedure address
Not applicable

2-word CaMP
Not applicable
Not applicable

Not applicable
Byte string descriptor
Reserved
Not applicable

Literal arguments are permitted, but they must reside in a writable
segment. This is because the FORTRAN compiler makes a local copy of
all non array elements and may copy dummy arguments back to the actual
arguments. All unused type codes are reserved for future DIGITAL
development.

15.4.6 Description of Arguments

The types of the arguments that may be passed are:

1. Type 0 - Unspecified

The calling program has not specified the type. The called
subprograms should assume that the argument is of the correct
type if it is checking types. If several types are possible,
the called subprogram should assume a default as part of its
specification. If none of the above conditions is true, the
called subprogram should handle the argument as an integer
(type 2).

2. Type 1 - FORTRAN logical

A 36-bit binary value containing 0 or positive to specify
.FALSE. and negative to specify .TRUE ••

3. Type 2 - Integer and l-word-COMP

A 36-bit 2's complement signed binary integer.

15-14

WRITING USER PROGRAMS

4. Type 4 - Real 'and COMP-l

A 36-bit floating-point number.

bit 0
bits 1-8
bits 9-35

sign
excess 128 exponent
mantissa

5. Type 6 - Octal

A 36-bit unsigned binary value.

6. Type 7 - Label and procedure address

The address of the parameter is the address of an alternate
return label or a subprogram.

7. Type 10 - Double real (D-floating)

A double-precision floating-point number represented in
D-floating form. (See Section 3.4.)

8. Type 11 - 2-word COMP

A 2-word (72-bit) 2's complement signed binary integer.

word 1, bit 0 sign
word 1, bits 1-35 high order
word 2, bit 0 same as word 1, bit 0
word 2, bits 1-35 low order

9. Type 12 - Double octal

A 72-bit unsigned binary value.

10. Type 13 - Double real (G-floating) (KL model B only)

A double-precision floating-point number represented in
G-floating form. (See Section 3.4.)

11. Type 14 - Complex

A complex number represented as an ordered pair of 36-bit
floating-point numbers. The first represents the real part,
and the second represents the imaginary part.

12. Type 15 - Character string descriptor

The format of the character string descriptor is:

word 1: ILDB-type pointer, that is, aimed at the
character preceding the first character of the
string

word 2: EXP character count

The character descriptor may not be modified by the called
program. The character string itself must consist of a
string of contiguous 7-bit ASCII characters.

15-15

WRITING USER PROGRAMS

13. Type 17 - Hollerith

A string of contiguous 7-bit ASCII characters left justified
on the word boundary of the first word and terminated by a
null character in the last word.

The FORTRAN compiler emits constants that are padded with
spaces to a word boundary, followed by a full-word containing
zero.

15.4.7 Interaction with COBOL

FORTRAN programs
conversely, the
subprograms.

can call COBOL
COBOL programs

programs as subprograms, and,
can call FORTRAN programs as

Note that I/O operations can be performed only in subprograms that are
written in the same language as the main program. Also note that APR
trap handling will be done in a manner consistent with the language
used in the main program.

15.4.7.1 Calling FORTRAN Subprograms from COBOL Programs - COBOL
programmers may write subprograms in FORTRAN to use the conveniences
and facilities provided by this language. The COBOL verb ENTER is
used to call FORTRAN subroutines. The form of ENTER is as follows:

ENTER FORTRAN program name~SING
{

identifier-l }
literal-l
procedure-name-l [{ i~entifier-2}J ' Ilteral-2 •••

procedure-2

The USING clause names the data within the COBOL program that is to be
passed to the called FORTRAN subprogram. The passed data must be in a
form acceptable to FORTRAN (see Table 14-1).

NOTE

G-floating double-precision does not exist as a data
type in COBOL.

The calling sequence used by COBOL in calling a FORTRAN subprogram is:

MOVEI 16, address of first entry in argument list
PUSHJ 17, subprogram address

If the USING clause appears in the ENTER statement, the compiler
creates an argument list that contains ·an entry for each identifier or
literal in the order of appearance in the USING clause. It is
preceded by a word containing, in its left half, the negative number
of the number of entries in the list. If no USING clause is present,
the 'argument list contains an empty word, and the preceding word is
set to 0. Each entry in the list is one 36-bit word of the form:

0-8

0

where:

type

9-12 13-35

type Effective address (E)

is a 4-bit code that indicates the USAGE of the
argument, and bits 13-35 contain the effective address
(E) of the first word of the argument.

FORTRAN-10/20 VII 15-16 February 1987

WRITING USER PROGRAMS

If the passed argument is a I-word COMP item, the type code is 2 and E
is the location of the argument.

If the passed argument is a 2-word COMP item, the type code is 11
(octal) and E is the location of the first word of the argument; the
second word of the argument is at E+l.

If the passed argument is a COMP-l item, the code is 4 and E is the
location of the argument.

if the passed argument is a COMP-2 item, the code is 10 (octal) and E
is the location of the first word of the argument; the second word of
the argument is at E+l.

If the passed argument is a DISPLAY-6, DISPLAY-7, DISPLAY-9, or COMP-3
item, the code is 15 (octal) and E is the location of a 2-word
descriptor for the argument. The first word of the descriptor is a
byte pointer word pointing to the argument. Its byte-size is 6 for
DISPLAY-6, 7 for DISPLAY-7, and 9 for DISPLAY-9 or COMP-3.

The second word of the descriptor is of the form:

Bit 0

Bit 1-4

Bit 5

Bit 6

Bit 7

if bit 7

Bit 8-11

Bit 12-35

If bit 7

Bit 8

Bit 9

Bit 10

If bit 9

Bits 11-25

Bits 26-30

Bits 31-35

If bit 9

Bits 11-25

FORTRAN-10/20 VII

=

Reserved

Type code:
1= DISPLAY-6
2= DISPLAY-7
3= DISPLAY-9
4= COMP-3

Item is a literal

Item is a figurative constant (such as SPACES)

Item is numeric

0;

Reserved

Size of item in bytes

1;

Item is signed

Item is scaled (such as PICTURE contains "PiS" to
left of implied decimal point, for example,
999PP)

Item is numeric edited

0;

Reserved

Number of decimal places

Size of item in bytes

1;

Reserved

15-17 February 1987

WRITING USER PROGRAMS

Bits 26-30 Scale factor (such as, 2 if picture was 999PP)

Bits 31-35 Size of item in bytes (such as, 3 if picture was
999PP)

The return from a subprogram (through POPJ 17,) is to the statement
after the call.

15.4.7.2 Calling COBOL Subroutines from FORTRAN Programs - To call
COBOL subprograms use the CALL statement:

CALL sub (args •••)

where sub is a COBOL subprogram.

NOTE

COBOL l2C subroutines called from FORTRAN programs
must be compiled with the /R COBOL switch to prevent
an undefined global error at LINK time.

15.4.8 Interaction with BLISS-36

FORTRAN programs can call BLISS-36 routines as subprograms, and,
conversely, BLISS-36 programs can call subprograms written in FORTRAN.

BLISS routines called by FORTRAN programs must be able to coexist
compatibly with FOROTS. For instance, they must use FUNCT. functions
(see Section 18.6) for dynamic memory management within the section
that FOROTS is in, since FOROTS assumes that it has control of that
section.

One problem that the BLISS routines can encounter is stack overflow.
The size of the program stack as set up by FOROTS may be too small for
BLISS routines which have several STACKLOCAL variables. The only
supported way to increase the size of the stack is to use a copy of
FORLIB that has been assembled with a larger stack.

15.4.8.1 Calling FORTRAN Subprograms From BLTSS-36 Programs - To call
a FORTRAN subprogram from a BLISS-36 program, the FORTRAN subprogram
must be declared an EXTERNAL ROUTINE in any module that contains a
call to the subprogram. In addition, if the FORTRAN subprogram is a
subroutine, it must 'be declared with a linkage type of FORTRAN SUB.
If the FORTRAN subprogram is a function, then it must be declared-with
a linkage of FORTRAN_FUNC. For example:

EXTERNAL ROUTINE FOO: FORTRAN SUB,
BAR: FORTRAN=FUNC;

declares FOO to be the name of a FORTRAN subroutine which will be
called in this module, and declares BAR to be the name of a FORTRAN
function. After the FORTRAN subprogram has been declared
appropriately, it can be called just like any function written in
BLISS.

FORTRAN-10/20 VII 15-18 February 1987

WRITING USER PROGRAMS

15.4.8.2 Calling BLISS-36 Routines From FORTRAN - A BLISS-36 routine
that is to be called from a FORTRAN program must have either the
FORTRAN SUB linkage attribute (if the routine is to be used as a
subroutTne) or the FORTRAN FUNC linkage attribute (if the routine is
to be used as a function).

The programmer that wishes to write a BLISS-36 routine to be called
from FORTRAN must be familiar with the calling sequence used by
FORTRAN to call subprograms (see Section 15.4.2), FORTRAN argument
lists (see Section 15.4.4), and FORTRAN argument descriptors (see
Sections 15.4.5 and 15.4.6). This knowledge is necessary because the
values of the formal arguments of the BLISS-36 routine are the FORTRAN
argument list entries that correspond to actual arguments of the BLISS
routine.

In general, the BLISS routines must be
ADDRESSING MODE (INDIRECT) , or MACHOP calls must
any instruction that references formals since all
must be accessed through indirect addressing.
because the FORTRAN compiler frequently sets the
argument lists (see Section 15.4.4).

compiled with
be used to generate

FORTRAN arguments
This must be done
indirect bit in

See the BLISS-36 Language Guide for more information.

NOTE

ADDRESSING_MODE (INDIRECT) can have far reaching
effects on your program, which you should understand
fully before using.

15.4.9 LINK Overlay Facilities

LINK provides several routines that are accessible directly from a
FORTRAN program. These routines are presented here briefly, together
with the FORTRAN specification of their parameters. In general, LINK
performs these functions automatically. These routines are available
only for your convenience. Full details of the use of the overlay
facilities can be found in the LINK Reference Manual.

NOTE

Overlays are not allowed when TOPS-20 extended
addressing is used. In addition, the overlay handler
does not support programs using long symbols (symbols
longer than six characters).

The following terms are used to describe the parameters to LINK
overlay routines.

File spec A character expression consisting
'dev:file.ext[directory]' (TOPS-10),
'dev:<directory>file.typ.gen' (TOPS-20).

of
or

Name A quoted string giving a link name, or an
integer constant or variable giving a link
number.

List of link names A sequence of name items separated by commas.

FORTRAN-10/20 VII 15-19 February 1987

WRITING USER PROGRAMS

The routines available are:

CLROVL Specifies a non-writable overlay.

GETOVL(List of link names) Used to change the overlay
structure in core.

INIOVL(File spec) Used to specify the overlay file to
be found if the load time
specification is to be overridden.

LOGOVL(File spec) Used to specify where the log file
is to be written. If no arguments
are given, the log file is closed.

REMOVL(List of link names) Removes the specified links from
core.

RUNOVL (Name)

SAOVL

Loads the specified link
transfers to that LINK.

Specifies a writable overlay.

and

For a full description of these routines, refer to the LINK Reference
Manual.

NOTE

The SAVE statement retains the values stored in a
variable, array, or common block after execution of a
RETURN or END statement in a subprogram. When
overlays are used, the SAVE statement must be used to
ensure retention of values. When the SAVE statement
is used, it is not necessary to specify the LINK
switch /OVERLAY:WRITABLE when loading a program (see
Section 7.10).

15.4.10 FOROTS and Overlay Memory Management

For sharable FOROTS, the FOROTS static data area is several pages
located at the top of FOROTS. FOROTS dynamic memory is allocated at
runtime below FOROTS and in a downward direction (toward the user's
program) •

For nonsharable FOROTS (FOROTS loaded from FORLIB), the FOROTS data
area is located in the low segment, so that it will be linked with
variables used by the user's program. FOROTS dynamic memory is
allocated at runtime starting at the page designated by the symbol
STARTP in FORPRM.MAC, downward toward the user program. The
distributed value for this page number is 577. If the user's program
has two segments, FOROTS allocates memory down to the user's high
segment, skips over the high segment, and begins allocating memory
below the user's high segment toward the user's low segment.

For both sharable and nonsharable FOROTS, when FOROTS can no longer
allocate memory downward toward the user's low segment, it allocates
memory starting at the top of memory downward. When FOROTS can no
longer allocate any memory, it reports:

?Memory full

and returns to the monitor after attempting to close all files.

15-20

WRITING USER PROGRAMS

Figure 15-1 illustrates the run-time memory layout.

Page

777

600

500

o

Reserved for SORT, DBMS, and DDT

FOROTS

FOROTS Static Data

FOROTS Dynamic Data -1- - - - - --

-1- - - - ---

Used for Dynamic
Character Concatenations

User Program

MR-S-3878-85

Figure 15-1: Run-time Memory Layout for Section Zero

FOROTS has a separate memory manager specifically designed for use by
OVRLAY. This memory manager allocates memory at the top of the
users's low segment. In general, user programs that use overlays
should not use the FUNCT. calls GAD, COR, and RAD. OVRLAY expects to
be able to use memory beginning at the top of the user's low segment,
allowing for a special FOROTS scratch space allocated by the /SPACE
switch.

Under certain circumstances, notably when concatenating character
expressions whose length is not known until runtime, FOROTS
dynamically allocates a special scratch area using the FUNCT. COR
function (see Section 18.6). This area is allocated the first time a
dynamic concatenation is performed.

The /SPACE switch to LINK determines the
"dynamic concatenations" if overlays are
given by LINK for this value is 4000 (octal).
Manual.)

15-21

maximum size for such
used. The default value

(See the LINK Reference

WRITING USER PROGRAMS

You can allocate space for dynamic character concatenation using the
ALCCHR subroutine (see Section 13.4.1.1).

15.4.11 Extended Addressing Memory Layout (TOPS-20 only)

The FORTRAN compiler must determine which psect every word of data or
code should reside in. For non-extended addressing compilations, the
data and code reside in either the low segment or the high segment.
For extended addressing compilations, there are three segments
(psects) in which the data and code can be allocated:

1. The code psect corresponds to the non-extended high segment.
The default name is .CODE ••

2. The data psect corresponds to the non-extended low segment.
The default name is .DATA ••

3. The .LARG. psect is where large data resides. (Note that the
name of this psect cannot be changed.)

A data item can be placed in the .LARG. psect by either of the
following ways:

1. The data item is an array or any character scalar whose size
is greater or equal to the value of the /EXTEND:DATA switch
(de fa u 1 t 10, a a a wo r d s). (See Sec t ion 16. 5) •

2. The data item is placed in a COMMON block or EQUIVALENCE
group that is in the .LARG. psect.

Table 15-2 describes the various memory allocations for extended and
non-extended compilations.

15-22

WRITING USER PROGRAMS

Table 15-2: Memory Allocations for /EXTEND and /NOEXTEND

Item

User subprogram

FORLIB

Argument blocks

Compile-time constant
character descriptors

Array dimension information

EFIWS

Symbol tables (from LINK)

FORMAT statements

Constants

Small arrays and scalars

Large arrays

COMMON variables

Variables EQUIVALENCED to
large arrays

PDV

/NOEXTEND /EXTEND

Hiseg Code

Hiseg .CODE.

Hiseg Code

Hiseg Code

Hiseg Code

N/A Code

Lowseg or Hiseg .DATA. (by default)

Lowseg Data

Lowseg Data

Lowseg Data

Lowseg .LARG.

Lowseg .LARG. (by default)

Lowseg .LARG.

N/A .DATA.

NOTE

When the sharable FOROTS is used, LINK loads the
/NOEXTEND high-segment into the low-segment. This
is done so that the sharable FOROTS can be used as
the high-segment (see Section 16.9)

15-23

WRITING USER PROGRAMS

lS.S USING INDEXED FILES (TOPS-2~ ONLY)

Traditionally, sequential and direct access have been the only file
access modes available to FORTRAN programs. To overcome some of the
limitations of these access modes', FORTRAN-20 supports a third access
mode, called keyed access (see Section 10.2.3). Keyed access allows
you to retrieve records, at random or in sequence, based on key fields
that are established when you create a file with indexed organization.

You can access files with indexed organization using either sequential
or keyed access, or a combination of both.

1. Keyed access retrieves records randomly bas~d on the
particular key fields and key values that you specify.

2. Sequential access retrieves records in an ascending sequence
based on the values within the particular key field that you
specify.

The combination of keyed and sequential access is commonly referred to
as the Indexed Sequential Access Method (ISAM). Once you have read a
record by means of an indexed read request, you can then use a
sequential read request to retrieve records with ascending key field
values, beginning with the key field value in the record retrieved by
the initial read request.

Indexed organization is especially suitable for maintaining complex
files in which you want to select records based on one of several
criteria. For example, a mail-order firm could use an indexed
organization file to store its customer list. Key fields could be a
unique customer order number, the customer's zip code, and the item
ordered. Reading sequentially based on the zip code key would enable
you to produce a mailing list sorted by zip code. A similar operation
based on customer order number or item number key would enable you to
list the records in customer order number or item number sequence.

The remainder of this section provides information on the following
topics:

• Creating an indexed file (Section IS.S.l)

• Writing records to an indexed file (Section IS.S.2)

• Reading records from an indexed file (Section IS.S.3)

• Updating records in an indexed file (Section IS.S.4)

• Deleting records from an indexed file (Section lS.S.5)

Information is also ~rovided about the effects of read and write
operations on positioning your program to records within an indexed
file (Section 15.5.6) and about how to build logic into your program
to handle exception conditions that commonly occur (Section 15.5.7).

lS.5.l Creating an Indexed File

You can create a file with an indexed organization by using either the
FORTRAN OPEN statement or the RMSUTL utility.

FORTRAN-10/20 VII 15-24 February 1987

WRITING USER PROGRAMS

• Use the OPEN statement to specify the file options supported
by FORTRAN.

• Use the RMSUTL utility to select features not directly
supported by FORTRAN.

When you create an indexed file, you define certain fields within each
record key fields. One of these key fields, called the primary key,
is identified as key number zero and must be present in every record.
Additional keys, called alternate keys, can also be defined; they are
numbered from 1 through a maximum of 254. An indexed file can have as
many as 255 key fields defined. In practice, however, few
applications require more than 3 or 4 key fields.

The data types used for key fields must be either INTEGER or
CHARACTER.

In designing an indexed file, you must decide the byte positions of
the key fields. For example, in creating an indexed file for use by a
mail-order firm, you might define a file record to consist of the
following fields:

INTEGER ORDER NUMBER
CHARACTER*20 NAME
CHARACTER*20 ADDRESS
CHARACTER*19 CITY
CHARACTER*2 STATE
CHARACTER*9 ZIPCODE
INTEGER ITEM NUMBER

positions 1:4, key 0
positions 5:24
positions 25:44
positions 45:63
positions 64:65
positions 66:74, key 1
positions 75:76, key 2

Given this record definition, you could use the following OPEN
statement to create an indexed file:

OPEN
1

(UNIT~l,FILE='CUSTOMER.DAT',STATUS='NEW' ,
ORGANIZATION=' INDEXED' ,ACCESS='KEYED',
RECORDTYPE='VARIABLE' ,FORM='UNFORMATTED',
RECL=19,

2
3
4
5

KEY=(1:4:INTEGER, 66:74:CHARACTER, 75:76:INTEGER) ,
IOSTAT=IOS, ERR=9999)

This OPEN statement establishes the attributes of the file, including
the definition of a primary key and two alternate keys. The data type
size is determined by the number of character positions allotted to
the key fields, which in this case are 4 and 2 character positions,
respectively.

If you specify the KEY= specifier (see Section 11.3.21) when opening
an existing file, the key specification that you give is ignored.
However, RMS does update the key XAB chain with key information from
the file. (See Chapter 18 for more information on RMS data
structures.)

FORTRAN uses RMS default key attributes when creating an indexed file.
These default are:

• The values in primary key fields cannot be changed when a
record is rewritten and cannot have duplicates.

• The values in alternate key fields can be changed and can
have duplicates.

FORTRAN-10/20 VII 15-25 February 1987

WRITING USER PROGRAMS

You can use the RMSUTL utility or a USEROPEN routine to override these
defaults and to specify other values not supported by FORTRAN-20, such
as null key field values, null key names, and key data types other
than integer and character.

See Section 18.9 for information on the use of the USEROPEN specifier
in OPEN statements. The RMS-20 programmer's Reference Manual has more
information on indexed file options. Use of the RMSUTL utility is
explaind in the TOPS-20 RMS User's Guide.

15.5.2 Writing Indexed Files

You can write records to an indexed file with either formatted or
unformatted indexed WRITE statements (see Section 10.6.3). Each write
operation inserts a new record into the file and updates the key
index(es) so that the new record can be retrieved in a sequential
order based on the values in the respective key fields.

For example, you could add a new record to the file for the mail-order
firm, described in Section 15.5.1, with the following ~tatement:

WRITE (UNIT=1,IOSTAT=IOS,ERR=9999)

The following two sections describe considerations that relate to
write operations:

• The effect of writing records with duplicate values in key
fields (Section 15.5.2.1)

• The method by which you can prevent an alternate key field in
a record from being indexed during a write operation (Section
15.5.2.2)

15.5.2.1 Duplicate Values in Key Fields - It is possible to write two
or more records with the same value in a single key field. The
attributes specified for the file when it is created determine whether
this duplication is allowed. By default, FORTRAN cr~ates files that
allow duplicate alternate key field values and prohibit duplicate
primary key field values. If duplicate key field values are present
in a file, the records with equal values are retrieved on a
first-in/first-out basis.

For example, assume that five records are written to an indexed file
in this order (for clarity, only key fields are shown):

ORDER NUMBER ZIP CODE ITEM NUMBER

1023 70856 375
942 02163 2736
903 14853 375

1348 44901 1047
1263 33032 690

FORTRAN-10/20 VII 15-26 February 1987

WRITING USER PROGRAMS

If the file is later opened and read sequentially by primary key
(ORDER NUMBER), the order in which the records are retrieved is not
affected by the duplicated value (375) in the ITEM NUMBER key field.
In this case, the records would be retrieved in the following order:

ORDER NUMBER ZIP CODE ITEM NUMBER

903 14853 375
942 02163 2736

1023 70856 375
1263 33032 6~0
1348 44901 1047

However, if the read operation is based on the second alternate key
(ITEM_NUMBER), the order is which the records are retrieved is
affected by the duplicate key field value. In this case, the records
would be retrieved in the following order:

ORDER NUMBER ZIP CODE ITEM NUMBER

1023 70856 375
903 14853 375

1263 33032 690
1348 44901 1047

942 02163 2736

Notice that the records containing the same key field value (375) are
retrieved in the order in which they were written to the file.

15.5.2.2 preventing the Indexing of Alternate Key Fields - When
writing to an indexed file that contains variable-length records, you
can prevent entries from being added to the key indexes for any
alternate key fields. This is done by omitting the names of the
alternate key fields from the WRITE statement. The ommitted alternate
key fields must be at the end of the record; another key field cannot
be specified after the omitted key field.

For example, assume that the last record (ORDER NUMBER 1263) in the
mail-order example is written with the following statement:

WRITE (UNIT=1,IOSTAT=IOS,ERR=9999) ORDER_NUMBER,
1 NAME, ADDRESS, CITY,
1 STATE, ZIP_CODE

Because the field name ITEM NUMBER is omitted from the WRITE
statement, an entry for that-key field is not created in the index.
As a result, an attempt to read the file using the alternate key
ITEM NUMBER would not retrieve the last record and would produce the
following listing:

ORDER NUMBER

1023
903

1348
942

ZIP CODE

70856
14853
44901
02163

ITEM NUMBER

375
375

1047
2736

You can omit only trailing alternate keys from a record; the primary
key must always be present.

FORTRAN-10/20 VII 15-27 February 1987

WRITING USER PROGRAMS

15.5.3 Reading Indexed Files

You can read records in an indexed file with either sequential or
indexed READ statements (formatted or unformatted) under the keyed
mode of access (see Section 10.5.3). By specifying ACCESS=' KEYED' in
the OPEN statement (see Section 11.3.1), you enable both sequential
and keyed access to the indexed file.

Indexed READ statements position the file pointers (see Section
15.5.6) at a particular record, determined by the key field value, the
key-of-reference, and the match criterion. Once you retrieve a
particular record by an indexed READ statement, you can then use
sequential access READ statements to retrieve records with increasing
key field values.

The form of the external record's key field must match the form of the
value you specify in the KEY= specifier (see Section 11.3.21). Thus,
if the key field contains character data, you should specify the KEY=
specifier value as a CHARACTER data type. If the key field contains
binary data, then the KEY= specifier value should be of INTEGER data
type.

Note that if you write a record to an indexed file with formatted I/O,
the data type is converted from its internal representation to an
external representation. As a result, the key value must be specified
in the external form when you read the data back with an indexed read.
Otherwise, a match will occur when you do not expect it.

The following FORTRAN program segment prints ths order number and zip
code of each record where the first five characters of the zip code
are greater than or equal to '10000' but less than '50000':

C Read first record with ZIP CODE key greater than or
C equal to '10000'. -

READ (UNIT=1,KEYGE='10000' ,KEYID=1,IOSTAT=IOS,ERR=9999)
1 ORDER NUMBER, NAME, ADDRESS,
1 CITY,STATE,ZIP_CODE,ITEM_NUMBER

C While the zip code previously read is within range, print
C the order number and zip code, then the next record.

DO WHILE (ZIP CODE .LT. '50000')
PRINT *, "Order number' ,ORDER_NUMBER, 'has zip code',

1 ZIP CODE
READ (UNI~=1,IOSTAT=IOS,END=200,ERR=9999)

1 ORDER NUMBER, NAME, ADDRESS
1 . CITY,-STATE, ZIP_CODE, ITEM_NUMBER

C END= branch will be taken if there are no more records
C in the file.

END DO
200 CONTINUE

The error branch on the keyed READ in this example is
record is found with a zip code greater that or equal
attempt to access a nonexistent record is an error. If
READ has accessed all records in the file, however,
status occurs, just as with other file organizations.

taken if no
to '10000'; An
the sequential
an end-of-file

If you wish to detect a failure of the keyed READ, you can examine the
I/O status variable (lOS) for the appropriate error number (see Table
D-l for a list of the returned error codes).

FORTRAN-10/20 VII 15-28 February 1987

WRITING USER PROGRAMS

15.5.4 Updating Records

The REWRITE statement (see Section 10.14) updates existing records in
an indexed file. You cannot replace an existing record simply by
writing it again; a WRITE statement would attempt to add a new record.

An update operation is accomplished in two steps. First, you must
read the record in order to make it the current record. Next, you
execute the REWRITE statement. For example, to update the record
containing ORDER NUMBER 903 (see prior examples) so that the NAME
field becomes 'Theodore Zinck', you might use the following FORTRAN
code segment:

READ (UNIT=1,KEY=903,KEYID=0,IOSTAT=IOS,ERR=9999)
1 ORDER NUMBER, NAME, ADDRESS, CITY, STATE, ZIP_CODE,
1 ITEM NUMBER
NAME = 'Theodore Zinck'
REWRITE (UNIT=1,IOSTAT=IOS,ERR=9999)

When you rewrite a record, key fields may change. The attributes
specified for the file when it was created determines whether this
type of change is permitted.

15.5.5 Deleting Records

To delete records from an indexed file, you use the DELETE statement
(see Section 10.13). The DELETE and REWRITE statements are similar; a
record must first be locked by a READ statement before it can be
operated on.

The following FORTRAN code segment deletes the second record in the
file with ITEM_NUMBER 375 (see previous examples):

READ (UNIT=1,KEY=375,KEYID=2,IOSTAT=IOS,ERR=9999)
READ (UNIT=1,IOSTAT=IOS,ERR=9999) (IOLIST)
IF (ITEM NUMBER .EQ. 375) THEN

DELETE (UNIT=l, IOSTAT=IOS, ERR= 9999)
ELSE

PRINT *, 'There is no second record,'
END IF

Deletion removes a record from all defined indexes in the file.

15.5.6 Current Record and Next Record Pointers

The RMS file system maintains two pointers into an open indexed file:
the "next record" pointer and the "current record" pointer.

• The next record pointer indicates the record to be retrieved
by a sequential read. When you open an indexed file, the
next record pointer indicates the record with the lowest
primary key field value. Subsequent sequential read
operations cause the next record pointer to be the one with
the next higher value in the same key field. In case of
duplicate key field values, records are retrieved in the
order in which they were written.

FORTRAN-10/20 VII 15-29 February 1987

WRITING USER PROGRAMS

• The current record pointer indicates the record most recently
retrieved by a READ operation; it is the record that is
locked from access by other programs sharing the file. The
current record is the one operated on by the REWRITE
statement and the DELETE statement. The current record is
undefined until a read operation is performed on the file.
Any file operation other than a read causes the current
record pointer to become undefined. Also, an erior results
if a rewrite or delete operation is performed when the
current record pointer is undefined.

15.5.7 Exception Conditions

You can expect to encounter certain exception conditions when using
indexed files. The two most common of these conditions involve valid
attempts to read locked records and invalid attempts to create
duplicate keys. Provisions for handling both of these situations
should be included in a well-written program.

When an indexed
may result in
error condition
read. If the
back to the READ

file is shared by several users,
a "record locked" error. One way
is to ask if the user would like

any ,read operation
to recover from this

to reattempt the
the program can go user's response is positive, then

statement.

You should avoid simply looping back to the READ statement without
first providing some type of delay (caused by a request to try again,
or to discontinue). If your program reads a record but does not
intend to modify the record, you should place an UNLOCK statement (see
Section 10.15) immediately after the READ statement. This technique
reduces the time that a record is locked and permits other programs to
access the record.

The second exception condition, creation of duplicate keys, occurs
when your program tries to create a record with a key field value that
is already in use. When duplicate key field values are not desirable,
you might have your program prompt for a new key field value whenever
an attempt is make to create a duplicate.

FORTRAN-10/20 VII 15-30 February 1987

CHAPTER 16

USING THE FORTRAN COMPILER

This chapter explains how to use the FORTRAN compiler. Section 16.1
describes using the FORTRAN-IO compiler and Section 16.2 describes
using the FORTRAN-20 compiler.

16.1 USING THE FORTRAN-IO COMPILER

This section describes how use the FORTRAN-IO compiler. You should be
familiar with the TOPS-IO operating system. The TOPS-IO Operating
System provides commands that enable you to compile, execute, and
debug FORTRAN programs. These commands are known as the COMPILE-Class
commands.

16.1.1 TOPS-IO COMPILE-Class Commands

You can invoke the FORTRAN-IO compiler by using TOPS-IO COMPILE-Class
commands. These commands enable you to compile, execute, and debug a
program by giving the commands at TOPS-IO command level.

The COMPILE-Class commands are:

COMPILE
LOAD
EXECUTE
DEBUG

Example:

.EXECUTE ROTOR. FOR

The compiler switches OPTIMIZE, CREF,
directly in COMPILE-Class commands
locally. (See Section 16.1.3 for
switches.)

Example:

.EXECUTE/CREF Pl.FOR,P2.FOR/DEBUG

and DEBUG may be specified
and may be used globally or
a description of FORTRAN-l 0

The other compiler switches must be passed in parentheses for each
specific source file.

16-1

USING THE FORTRAN COMPILER

Example:

.EXECUTE Pl.FOR(INCLUDE)

Refer to the TOPS-IO Operating System Commands Manual for further
information about the COMPILE-Class commands.

16.1.2 RUNNING THE FORTRAN-I0 COMPILER

On TOPS-lO, the command to run the FORTRAN compiler directly is:

.R FORTRA

The compiler responds with an asterisk (*), and is then ready to
accept a command string. The form of the FORTRAN compiler command
string is:

object filespec, listing filespec=source filespec(s)

You are given the following options:

1. File specifications consist of an optional device name, a one
to six character filename, an optional one to three character
file extension, and an optional directory path specification.
The path may include SFDs.

2. You may specify more than one source file in the compilation
command string. These files will be logically concatenated
by the compiler and treated as one source file.

3. More than one program unit may be contained in a single
source file.

4. A program unit may consist of more than one source file.

5. If no object file is specified, no relocatable binary file is
generated.

6. If no listing file is specified, no listing is generated.

7. If no extension is given, the defaults are the following for
the respective files:

.LST (listing)

.REL (relocatable binary)

.FOR (source)

.CRF (cross reference) if the /CROSSREF switch is
specified (see Section 16.1.3)

16.1.3 TOPS-IO Compiler Command Switches

Switches to the FORTRAN-IO compiler
command string. They are totally
Table 16-1 lists the switches.

16-2

are accepted anywhere in the
position and file independent.

USING THE FORTRAN COMPILER

Table 16-1: FORTRAN-10 Compiler Switches

Switch

/CROSSREF

/DEBUG

/DFLOATING

/EXPAND

/F66

/F77

/FLAG

/GFLOATING

/INCLUDE

/LNMAP

/MACROCODE

/NOFLAG

/NOF77

/NOERRORS

/NOWARN

/OPTIMIZE

/SYNTAX

Meaning

Generates a file with extension .CRF
that can be input to the CREF program.

Includes debugging information in your
program (see Section 16.3).

Indicates that double-precision
numbers are stored in D-floating
format. (See Section 3.4.)

Includes the octal-formatted version
of the object file in the listing.

The FORTRAN-66 standard rules apply for
DO loops and EXTERNAL statements. (Same
function as the /NOF77 switch.)

The FORTRAN-77 standard rules apply for
DO loops and EXTERNAL statements.

Invokes the compatibility flagger (see
Section 16.6).

Indicates that double-precision
numbers are stored in G-floating
format. (See Section 3.4.)

Compiles a D in card column 1 as
space.

Produces a line number/octal location
map in the listing only if /MACROCODE
was not specified.

Adds the mnemonic translation of the
object code to the listing file.

Indicates that no compatibility
flagging will be done (see Section
16.6) •

The FORTRAN-66 standard rules apply for
DO loops and EXTERNAL statements. (Same
function as the /F66 switch.)

Does not print error messages on the
terminal.

Suppresses warning messages (see
Section 16.4).

Performs global optimization.

Performs syntax check only.

16-3

Defaul ts

OFF

NONE

ON

OFF

OFF

ON

OFF

OFF

OFF

OFF

OFF

ON

OFF

OFF

NONE

OFF

OFF

USING THE FORTRAN COMPILER

Each switch must be preceded by a slash (/). Switch names need only
contain those letters that are required to make the switch name
unique. You are encouraged to use at least three letters to prevent
conflict with switches in future implementations.

Example:

.R FORTRA
*OFILE,LFILE=SFILE/MAC,S2FILE

The /MAC switch will cause the MACRO code generated for SFILE and
S2FILE to appear in LFILE.LST.

All switches, used or implied, are printed at the top of each listing
page.

16-4

USING THE FORTRAN COMPILER

16.2 USING THE FORTRAN-20 COMPILER

This section describes how to use the FORTRAN-20 compiler. You should
be familiar with the TOPS-20 Operating System. The TOPS-20 Operating
System provides commands that enable you to compile, execute, and
debug FORTRAN program. These commands are known as the COMPILE-Class
commands.

16.2.1 TOPS-20 COMPILE-Class Commands

The TOPS-20 COMPILE-Class commands enable you to initiate compilation,
execution, and debugging of FORTRAN programs from TOPS-20 command
level.

The TOPS-20 COMPILE-Class commands are:

COMPILE
LOAD
EXECUTE
DEBUG

Example:

@EXECUTE ROTOR. FOR

The following FORTRAN compiler switches (see Section 16.2.3) can be
specified directly in a COMPILE-Class command:

/ABORT
/BINARY
/CROSS-REFERENCE
/DEBUG
/LIST
/MACHINE-CODE
/NOWARNINGS
/OPTIMIZE
/WARNINGS

NOTE

When you specify the switches /BINARY, /DEBUG,
/LIST, and /NOWARNINGS directly in a
COMPILE-Class command, the switches cannot have
arguments as they can when running the compiler.

All other switches must be specified by using Language-switches,
as shown in the following example:

@COMPILE TEST.FOR/OPT/LANG:"/NOWARNINGS"

Refer to the TOPS-20 Commands Reference Manual
information about the COMPILE-Class commands.

NOTE

for

You cannot use long TOPS-20 filenames with the
COMPILE-Class commands.

16-5

more

USING THE FORTRAN COMPILER

16.2.2 RUNNING THE FORTRAN-20 COMPILER

On TOPS-20, the command to run the FORTRAN compiler directly is:

@FOR~RA

The compiler responds with the following prompt:

FORTRAN>

and is then ready to accept a command string.

You can use the question mark to list the commands beginning with
a specific letter or letters. Type the letter or letters
followed by a question mark. (Refer to the TOPS-20 User's
Guide.)

You can type commands to the system by using either full input,
recognition input, abbreviated input, or a combination of these
methods.

To give a command using full input, type the complete command
name, arguments, or switches (if any), using a space to separate
the fields.

To give a command using recognition input, type a portion of the
switch or filename and press the ESC key. You must type enough
of the switch or filename to make it unique. Continue typing and
pressing the ESC key until the switch or filename is complete.
Recognition input requires less typing than full input, so you
are less likely to make a mistake. You can use recognition in
typing switches, switches arguments, and file specifications.
When typing file specifications, you can also use CTRL/F to
complete the rest of a partial file specification.

To give a command using abbreviated input, type only enough of
the switch or filename to distinguish one switch or filename from
another. (Refer to the TOPS-20 User's Guide.)

You should enter a command string in one of the following forms:

1. [COMPILE]<source-file-spec> [switches]

If no switches are specified, the compiler produces a .REL
file, with the same filename as the source file. The user
must use a /LISTING switch to get a listing file (see Section
16.2.3 for a description of FORTRAN-20 compiler switches).
COMPILE is optional if the command begins with a switch or
begins with a file specification that cannot be confused with
the words EXIT, HELP, TAKE, or COMPILE.

16-6

USING THE FORTRAN COMPILER

2. [COMPILE]<source-file-spec>+<source-file-spec>+ •••
[swi tches]

The source files are treated as if they were concatenated
together prior to the beginning of compilation.

If no switches are specified, the compiler produces a .REL
file, with the same filename as the last source file in the
list. The user must use a /LISTING switch to get a listing
(see Section 16.2.3 for a description of FORTRAN-20 compiler
switches). COMPILE is optional if the command begins with a
switch or begins with a file specification that cannot be
confused with the words EXIT, HELP, TAKE, or COMPILE.

3. TAKE <file-spec> [/ECHO]

The compiler reads the file specified as the command input
stream. The TAKE command is legal within 'take' files. The
maximum nesting depth is 10 'take' files.

The /ECHO switch optionally causes commands to be displayed
on TTY: as they are executed. The optional /NOECHO switch
can be used on a nested take command to cancel the affect of
the /ECHO switch while processing that nested command file.

4. RUN <file-spec> [/OFFSET:<integer>]

This command runs another program (for example, LINK). It
causes an exit from the FORTRAN compiler and the start of
execution of the program indicated by the file specification,
with the additional option of starting that program at an
OFFSET relative to the normal starting address.

5. HELP

This command prints information on the user's terminal about
how to use the FORTRAN compiler.

6. EXIT

This command exits from FORTRA.

You are given the following options:

1. Filename specifications consist of the following:

An optional device name (the default device is DSK:)

An optional directory name

An up to 39 alphanumeric character filename

An optional up to 39 alphanumeric character file type

An optional generation number that identifies the
version of the file

An optional file attribute to specify distinctive
characteristics of a file specification

(Refer to the TOPS-20 User's Guide)

16-7

USING THE FORTRAN COMPILER

NOTE

LINK is restricted to 6-character filenames and
3-character extensions.

2. You may specify more than one source file in the compilation
command string. These files will be concatenated by the
compiler and treated as one source file. The name of the
last source file is used as the default name of the object
and listing files. If the last source file does not have a
name (such as, TTY:), FORTRAN-OUTPUT is used as the default
filename.

3. More than one program unit may be contained in a single
source file.

4. A program unit may consist of more than one file.

5. If no /LISTING switch is specified (see Section 16.2.3), no
listing is generated.

6. If no extension is given, the defaults are the following for
the respective files:

.LST (listing) if the /CROSSREF switch is not specified

.CRF (cross reference) if the /CROSSREF switch is
specified (see Section 16.2.3)

.REL (relocatable binary)

.FOR (source)

16.2.3 TOPS-20 Compiler Commands Switches

Switches to the FORTRAN-20 compiler
command string. They are totally
Table 16-2 lists the switches.

16-8

are accepted anywhere in the
position and file independent.

USING THE FORTRAN COMPILER

Table 16-2: FORTRAN-20 Compiler Switches

Switch

/ABORT

/BINARY[:relfile]

/CROSS-REFERENCE

/DEBUG [keys:]

/DFLOATING

/ECHO-OPTION

/EXPAND

/EXTEND[keys:]

/F66

/F77

/FLAG-NON-STANDARD

/GFLOATING

/INCLUDE

/LISTING[:listfile]

Meaning

Causes the compiler to exit at the
end of a compilation that contains
errors.

Indicates that a relocatable binary
file is generated. You can
optionally specify the file
specification.

Generates a file with extension
.CRF that can be input to the
CREF program.

Includes debugging information in
your program (see Section 16.3).

Indicates that double-precision
numbers are stored in D-floating
format. (See Section 3.4.)

Echo switches selected from the
SWITCH.INI file.

Includes the octal-formatted version
of the object file in the listing.

Indicates extended addressing.
Programs can have up to 30
sections of code and data (see
Section 16.5).

The FORTRAN-66 standard rules apply
for DO loops and EXTERNAL state­
ments. (Same function as the /NOF77
switch.)

The FORTRAN-77 standard rules apply
for DO loops and EXTERNAL
statements.

Invokes the compatibility flagger
(see Section 16.6).

Indicates that double-precision
numbers are stored in G-floating
format. (See Section 3.4.)

Compiles a D in card column 1 as
space.

Indicates a list file will be
generated. You can optionally
specify the file specification.

16-9

Defaul ts

OFF

ON

OFF

NONE

ON

OFF

OFF

OFF

OFF

ON

OFF

OFF

OFF

OFF

USING THE FORTRAN COMPILER

Table 16-2: FORTRAN-20 Compiler Switches (Cont.)

switch Meaning Defaults

/LNMAP Produces a line number/octal OFF
location map in the listing only
if /MACHINE-CODE was not specified.

/MACHINE-CODE Adds the mnemonic translation of OFF
the object code to the listing
file. This command will cause

a default /LISTING.

/NOBINARY Indicates that no relocatable OFF
binary file is generated.

/NOF77 The FORTRAN-66 standard rules apply OFF
for DO loops and EXTERNAL
statements. (Same function as
the /F66 switch.)

/NOFLAG-NON-STANDARD Indicates that no compatibility ON
flagging will be done (see Section
16.6) •

/NOERRORS Does not print error messages OFF
on the terminal.

/NOEXTEND Indicates extended addressing ON
is not in effect (see Section 16.5).

/NOWARN Suppresses warning messages (see NONE
Section 16.4).

/OPTIMIZE Performs global optimization. OFF

/OPTION [:option] Only read lines from the SWITCH.INI OFF
file that start with FORTRA:option.

/SYNTAX Performs syntax check only. OFF

Each switch must be preceded by a slash (/). Switch names need only
contain those letters that are required to make the switch name
unique. You are encouraged to use at least three letters to prevent
conflict with switches in future implementations.

NOTE

When using switches in control files, you are
encouraged to type the full name of the switch.

16-10

USING THE FORTRAN COMPILER

Example:

@FORTRA
FORTRAN>SFILE+S2FILE/MAC/LIST:LFILE

The /MAC switch will cause the MACRO code generated for SFILE and
S2FILE to appear in LFILE.LST. An relocatable binary file will be
created with the name S2FILE.REL.

All switches, used or implied, are printed at the top of each listing
page.

16.3 THE /DEBUG SWITCH

The /DEBUG switch tells FORTRAN to compile a series of debugging
features into your program. Several of these features are
specifically designed to be used with the FORTRAN debugging program
(FORDDT). Refer to Chapter 17 for more information. By using the
DEBUG switch arguments listed in Table 16-3, you can include specific
debugging features.

The form of the /DEBUG switch is:

/DEBUG:arg

or

/DEBUG: (argl,arg2, •••)

16-11

1

1

1
1

1
1

1

1
1
1

1
1
1

"I

1

1

1

USING THE FORTRAN COMPILER

Table 16-3: Arguments to /DEBUG Switch

Arguments Meaning

DIMENSIONS Includes dimension information in .REL file for
FORDDT.

TRACE

LABELS

INDEX

BOUNDS

Generates references to FORDDT required for its
trace features (automatically activates LABELS).

Generates a label for each statement of the form
<line-number>L. (This option can be used without
FORDDT.)

Forces DO LOOP indexes to be stored at the
beginning of each iteration rather than held in a
register for the duration of the loop.

In addition, this switch
values to be stored in memory
the function. If this switch
can set a FORDDT pause on
(see Sec t i on 13. 4 • 4) and t h en
be returned.

forces all function
prior to return from
is specified, you

the RETURN statement
examine the value to

Generates the bounds checking code for all array
references and substring references. Bounds
violations will produce run-time error messages.
Note that the technique of specifying dimensions
of 1 for subroutine arrays will cause bounds check
errors. (You may use this option without FORDDT.)

ARGUMENTS Generates type checking information at load time
for actual argument types and associated dummy
argument types. Type violations will produce
non-fatal load-time error messages. This switch
also performs type checking at compile-time for
statement functions.

NONE

ALL

Do not include any debug features.

Enable all debugging aids.

NOTE

If the /DEBUG switch is specified without arguments,
then the defaults are used for all the arguments. The
/DEBUG switch used without arguments is the same as
/DEBUG:(ARGUMENTS,BOUNDS,DIMENSIONS,INDEX,LABELS,
TRACE) •

You can invoke a single aspect of debugging without
affecting the other features controlled by the switch.
For example, specifying /DEBUG:ARGUMENTS does not
cause BOUNDS checking to also be invoked. However,
you can change multiple features of the /DEBUG switch
in the same command line. For example,
/DEBUG:ARGUMENTS /DEBUG:BOUNDS would invoke both
argument checking and bounds checking.

FORTRAN-10/20 VII 16-12 February 1987

USING THE FORTRAN COMPILER

Options available with the /DEBUG arguments are:

1. No debug features - Either "do not specify the /DEBUG switch
or include /DEBUG:NONE. .

2. All debug features - Either/DEBUG or /DEBUG:ALL.

3. Selected features - Either a series of modified switches,
that is:

/DEBUG:BOU/DEBUG:LAB

or a list of modifiers

/DEBUG:(BOU,LAB, •••)

4. Exclusion of features - If you wish all but one or two
modifiers and do not wish to list them all, you can use the
prefix "NO" before the switch you wish to exclude. The
exclusion of one or more features implicitly includes all the
others, that is, /DEBUG:NOBOU is the same as
/DEBUG: (DIM,TRA,LAB,IND,ARG).

If you include more than one statement on
first statement will receive a label
reference (/DEBUG:TRACE).

a single line, only the
(/DEBUG:LABELS) or FORDDT

NOTE

If a source file contains line sequence numbers that
occur more than once in the same subprogram, the
/DEBUG option cannot be used. Also, the /DEBUG option
and the /OPTIMIZE option cannot be used at the same
time.

The following formulas may be used to determine the increases in
program size that will occur as a result of the addition of various
/DEBUG options.

DIMENSIONS

TRACE

LABELS

INDEX

BOUNDS

ARGUMENTS

For each array, 3+3*N words where N is the number
of dimensions, and up to three constants for each
dimension.

One instruction per executable statement.

No increase.

One instruction per
instruction for some
index of the loop.
subprogram.

inner
of the

Also one

loop plus one
references to the
instruction per

For each array, the formula is the same as
DIMENSIONS.

For each reference to an array element, 5+N words
additional words are generated, where N is the
number of dimensions in the array. If you do not
specify BOUNDS, approximately 1+3*(N-l) words will
be used. For each reference to a substring, add 5
words.

No increase.

16-13 February 1987

USING THE FORTRAN COMPILER

If the /DEBUG:ARGUMENTS switch argument is specified, type checking is
performed at LINK time for calls to external programs and at compile
time for calls to statement functions." Non-fatal error messages are
issued at LINK time for the following cases:

1. If the number of arguments in the called subprogram and the
calling program unit are not equal.

2. If the length of an array or character scalar actual argument
is less than that of the corresponding dummy argument. (This
is checked only if the length of the actual is known at
compile time.)

3. If the associations of actual argument data types with dummy
argument data types are other than those indicated as legal
in Table 16-4.

4. If a non-routine name is passed where a routine name is
expected, or a routine name is passed where a non-routine
name is expected (see Table 16-5).

Non-fatal error messages are issued at compile time for the following
cases (only for statement functions):

1. If a non-routine name is
expected, or a routine
name is expected.

passed where a routine name is
name is passed where a non-routine

2. If the length of the actual character expression being passed
to a statement function is less than that of the
corresponding character expression dummy argument.

Table 16-4: Legal Dummy and Actual Argument Associations

Actual Argument Type

Alternate

Return Double

Label Logical Integer Real D-floating G-floating Complex Character Octal Hollerith Octal

Alternate
Return X

Label

Logical X X X

Integer X X X

Real X X X

D-floating X X X

G-floating X X X

Complex X X X

Character X

X indicates legal associations. All others will cause a warning to be issued if IDEBUG:ARGUMENTS is specified.

FORTRAN-10/20 VII 16-14 February 1987

USING THE FORTRAN COMP~LER

Table 16-5: Legal Dummy and Actual Argument Structure Associations

Actual Argument Structure

Singleton Array Routine

Singleton X X

Array X

Routine X

X indicates legal associations. All others will cause a
warning to be issued if /DEBUG:ARGUMENTS is specified.

16.4 THE /NOWARN SWITCH

The /NOWARN switch is used to suppress compiler warning messages. If
this switch is used with no arguments, all warning messages are
suppressed. The /NOWARN switch may also be used with arguments as
shown in Table 16-6.

Table 16-6: Arguments to /NOWARN Switch

Arguments Meaning

ALL Suppress all warning messages.

NONE Do not suppress warning messages.

xxx Where xxx is the three character error mnemonic
for the error message to be suppressed. This is
the three letters that follow %FTN, for example
%FTNABD.

For example,

/NOWARN:LID

will suppress all warnings of an identifier having more than six
characters.

A list of arguments is also allowed. For example,

/NOWARN:(LID,DIM)

would suppress both LID and DIM types of warning messages.

(See Appendix C for a list of all compiler error mnemonics.)

FORTRAN-10/20 VII 16-15 February 1987

USING THE FORTRAN COMPILER

16.5 THE /EXTEND SWITCH (TOPS-20 ONLY)

Support for extended addressing is almost completely transparent; a
program compiled with the /EXTENb switch will use extended addressing
without requiring changes to the FORTRAN source program.

When /EXTEND is specified, arrays ~nd COMMON blocks can extend across
multiple sections. Executable code can also reside in multiple
sections, with the restriction that a single subprogram must not cross
a section boundary. .

The /EXTEND switch can be specified without arguments to use the
default extended address space layout. This is suitable for most
applications in which the executable code fits within a single
section, but which may employ data structures that require more than a
section of memory. When such an application is compiled /EXTEND
without further arguments, a default memory layout is used that
depends on the default size settings for arrays and strings:

Table 16-7: /EXTEND Default Memory Layout

Section Pages Contents

1 O-477 Executable code
Argument blocks
Literals
Non-COMMON scalars
Non-COMMON arrays smaller than

10,000 words
Non-COMMON strings smaller than

10,000 words

1 50O-577 FOROTS

1 60O-777 Reserved

2-31 O-777 COMMON blocks
Arrays larger than 10,000 words
Strings larger than 10,000 words

Additional arguments to /EXTEND (COMMON:, DATA:, PSECT:, and CODE), in
conjunction with the /SET switch to LINK, can be supplied to override
these defaults and direct specific placement of COMMON blocks,
non-COMMON arrays and scalars, an~ executable code. For example, a
decimal argument can be specified for the DATA: keyword, which
overrides the 10,000 word default minimum size for large arrays and
character scalars. /EXTEND:COMMON.can be used to direct specific
named COMMON blocks to non-default sections of extended memory.
(Section 16.5.3 describes the /EXTEND arguments.)

16-16 February 1987

USING THE FORTRAN COMPILER

NOTE

If the /EXTEND switch is specified without arguments,
then the default-s are used for all the arguments. The
/EXTEND switch used without arguments is the same as
/EXTEND:(DATA:10000,COMMON,NOCODE,PSECT:.DATA.:.CODE.)
(See Section 16.5.3.)

You can invoke a single aspect 9f extended addressing
without affecting the other features controlled by the
switch. For example, specifying /EXTEND:DATA does not
cause COMMON blocks to be placed into the large psect,
which is done with the /EXTEND:COMMON argument.
However, you can change multiple features of the
/EXTEND switch in the same command line. For example,
/EXTEND:CODE:100/EXTEND:COMMON would place all
non-common data items not less than 100 words long and
all COMMON blocks into the large psect.

16.5.1 /EXTEND and Applications with Large Arrays

The simplest usage of extended addressing is for applications in which
the executable code fits in one section. These applications may have
very large arrays or common blocks. In many cases, these applications
can be compiled with the /EXTEND switch with no arguments, using the
default memory layout in Table 16-7.

In some cases, you may need to use the DATA or COMMON arguments to
/EXTEND to redirect the placement of variables in areas when default
placements cannot be used. Specifying a smaller /EXTEND:DATA size may
be necessary if the total size of non-COMMON scalars and arrays causes
them to overlap FOROTS pages. If such overlap occurs, program
execution will terminate with the error messages:

"?Can't get FOROll.EXE"

and

"?Can't overlay existing pages"

A smaller DATA size will force these d-ata structures into a non-FOROTS
section.

16.5.2 /EXTEND and Applications with _Large Executable Code

A more complex use of extended addressing is one where the
application's executable code is larger than a section. In order to
build an application that has more than one section of executable
code, you have to specify which program units will be linked together
in each section.

FORTRAN-10/20 VII 16-17 February 1987

USING THE FORTRAN COMPILER

When /EXTEND is specified, the extended code will be in three PSECTS,
one analogous to the present hiseg, one analogous to the present
lowseg, and one containing the larg~ variables. If the user does not
specify the extended addressing switch, FORTRAN will gene.rate a TWOSEG
REL file as it always has. The three PSECTS generated under /EXTEND
are:

1. The "large data area" psect (.LARG.) has a maximu~ size of 30
sections. It will consist of user-specified COMMON blocks,
arrays and character scalars that are larger than a
user-specified size (or default).

There is no restriction on the size of an individual array or
COMMON block, beyond the restriction on the total size of the
large data area.

2. The "small data area" psect (default name .DATA.) of a
program consists of user-specified COMMON blocks, and scalars
and arrays that are smaller than a user-specified size (or
default). If FORDDT is used, it will reside in the .DATA.
psect.

3. The "executable code and sharable data area" psect (default
name .CODE.) of a program consists of all executable code,
argument blocks and literals. Library functions and
subroutines used by the program are placed in the .CODE.
psect. This does not include space used by SORT, which
occupies its own section.

For each "executable code area" (code psect) there will be a
corresponding "small data area" (data psect). The combined size of
these two areas must not exceed 256K words. The default psect names
.DATA. and .CODE. can be changed at compile time by the /EXTEND:PSECT
command switch (see Section 16.5.3).

16.5.2.1 /EXTEND PSECT Placement - The three psects will be set up
according to the table below:

Psect Default Attributes
Origin

data 1001000 Single section, Non-zero section,
Concatenated, Writable

code 1300000 Single section, Non-zero section,
Concatenated, Read-only

.LARG. 2000000 Non-zero section, Concatenated, Writable

You can alter the default psect origins when loading programs by
glvlng a /SET switch to LINK (see the LINK Reference Manual). This
may be necessary if a program has too much code or local data to fit
in the regions alLocated for them by the default psect origins. This
would cause the psects to overlap, and would be indicated by a LINK
warning message (%LNKPOV). Altering the defaults is also useful if
the user wants to reserve one or more sections for some purpose (such
as telling the monitor where dynamic libraries should be loaded).

The first page (locations 000-777) of any section that contains code
is reserved for use by FORDDT. The LINK /SET switch should not
specify a psect origin less than 1000 for any such section.

16-18 February 1987

USING THE FORTRAN COMPILER

16.5.2.2 Building Large-Code Applications - When compiling large-code
applications, the following considerations apply:

1. The code and small data psects for a single program unit must
always reside together in the same section, since the PC will
no advance across section boundaries, and the small data area
is assumed to be in the same section.

2. You will need to use the /EXTEND:CODE keyword. This
specifies that the· object. code emitted by the compiler
assumes that all subprograms that it calls may be in a
separate section.

3. You must also use the PSECT argument to /EXTEND to specify
the psect names for code and small data. If you wish to link
the program units in several different compilations (source
files) together in the same section, you should use the same
psect names for those program units.

At link-time, you must specify the starting address for each psect
using the /SET switch, according to the following rules:

1. The code and small data psects for a program unit must be
linked in the same section with each other.

2. If a section contains any executable code, page 0 of that
section is reserved for FORDDT and FOROTS.

3. You must always allocate space for the .CODE. and .DATA.
psects, since FORLIB routines will be linked in these psects.

4. Pages 500-577 of the section that contains .CODE. and .DATA.
are reserved for FOROTS.

5. Pages 600-777 are reserved for FOROTS I/O buffers and DDT.

6. You must always allocate space for the .LARG. psect.

16.5.3 Arguments to /EXTEND

By using th~ /EXTEND switch arguments listed in Table 16-8, you can
include specific extended addressing features.

The form of the /EXTEND switch is:

/EXTEND: a rg

or

/EXTEND: (argl,arg2, •••)

16-19 February 1987

USING THE FORTRAN COMPILER

Table 16-8: Arguments to /EXTEND Switch

Arguments Meaning

CODE Specifies that the object code produced by the
compiler has to assume that any subprogram that
it calls could be in a separate section. NOCODE
is the default.

COMMON [: name]
or
COMMON: (name, •••)

Without a common block name specified, causes
all common blocks that have not already been
allocated by /EXTEND:[NO]COMMON to be allocated
in the .LARG. psect. This is the default.
Individual ·common blocks can be placed
explicitly in .LARG. by putting their names in a
list after COMMON:. When you explicitly place
an individual common block in .LARG., any common
blocks that have not already been allocated by
/EXTEND:[NO]COMMON are placed in the small data
psect.

DATA[:decimal number] Specifies a decimal argument that is the minimum
size (in words) for non-common arrays and
character scalars, which will be allocated to
the .LARG. psect. The default is 10,000.

NOCODE

NOCOMMON [: name]
or
NOCOMMON:(name, •••)

NODATA

PSECT[:[data psect]
[: [code psect]]]

Allows the compiler to assume that all of the
code will be in the same section. A program
compiled with the NOCODE argument cannot call
any subprograms compiled with the CODE argument.
This is the default.

Without a common block name specified, causes
all common blocks to be allocated in the data
psect. Individual common blocks can be placed
explicitly in the data psect by putting their
names in a list after COMMON:. COMMON is the
default.

Specifies that all non-common
reside in • DATA. This is
DATA:1073741823, which excludes
from • LARG.

variables will
equivalent to
all variables

Allows users to set the code and data psect
names explicitly (the large data psect is always
called .LARG.) If PSECT is specified with one
argument, that argument becomes the name of the
small data area psect. Any second argument
becomes the name of the code psect. This allows
separate program units to be put in separate
psects, then the psect can be placed in
different sections with the /SET switch at LINK
time (see the LINK Reference Manual).

NOTE

When using the PSECT argument, the small data psect
and code psect for any given program unit must be
loaded into the same memory section.

16-20 February 1987

USING THE FORTRAN COMPILER

16.5.4 Linking with TWOSEG REL Files

If a main program unit compiled with /EXTEND is linked with subprogram
units (FORTRAN or not) that were compiled for non-extended use, then
LINK will automatically place the LOWSEG of non-extended units in the
.DATA. psect, and the HISEG of such units into the .CODE. psect.

A program compiled with /EXTEND can call a subprogram that is not
compiled with /EXTEND; howeve~, it is illegal for a subprogram that is
not compiled with /EXTEND to call a subprogram that is.

Programs that were compiled by old versions of FORTRAN-10/20 (prior to
Version 7) will not work if loaded in a non-zero section.

Most MACRO routines written for non-extended use will require
conversion to run in non-zero sections. Data structures accessed with
18-bit address fields, indexed and indirect words, stack pointers and
some monitor calls may need modification to perform correctly in
extended sections. See the TOPS-20 Monitor Call User's Guide for more
information concerning extended MACRO progra~ -----

16.6 THE /FLAG (/FLAG-NON-STANDARD) SWITCH

The /FLAG switch invokes the compatibility flagger.

NOTE

For TOPS-20 systems,
/FLAG-NON-STANDARD and
/FLAG and /NOFLAG work.

the full switch names are
/NOFLAG-NON-STANDARD; however

This feature provides warning messages for language elements used that
are the following:

• Extensions to the ANSI FORTRAN-77 standard

• Features not found in VAX FORTRAN

• Features that could cause logically different results when
used on the VAX FORTRAN system

NOTE

VAX FORTRAN is used on the VAX/VMS and
operating systems.

ULTRIX

This allows the flagging of any element that could cause conversion
problems for programs written on the TOPS-10/20 system that might be
compiled and executed on a VAX/VMS system or an ANSI-compatible
system. This includes problems that could occur at object time, as
well as compilation incompatibilities.

FORTRAN-10/20 VII 16-21 February 1987

USING THE FORTRAN COMPILER

By using the FLAG switch arguments listed in Table 16-9, you can
specify which features to flag.

The form of the /FLAG switch is:

/FLAG [: arg]

or

/FLAG [: (argl ,arg2, •••)]

Table 16-9: Arguments to /FLAG Switch

Arguments Meaning

ALL Gives warning messages for language elements
incompatible with both FORTRAN-77 and VAX FORTRAN.

ANSI Gives warning messages whenever a language element is
an extension to the FORTRAN-77 standard.

NOANSI Does not flag FORTRAN-77 extensions.

NONE Does not flag.

NOVMS Does not flag VAX incompatibilities.

VMS Gives warning messages whenever a language element is
incompatible with VAX FORTRAN.

If no /FLAG switch is specified, no flagging is done. If no arguments
are given with the /FLAG switch, then flagging is done for both
FORTRAN-77 and VAX incompatibilities.

The /NOFLAG switch indicates that no flagging will be done.

16.7 READING A FORTRAN COMPILER LISTING

When you request a listing from the FORTRAN compiler, it may
the following information, depending on the switches
compilation time:

contain
used at

1. A printout of the source program plus an internal sequence
number assigned to each line by the compiler. This internal
sequence number is referenced in any error or warning
messages generated during the compilation. If the input file
is line-sequenced, the number from the file is used. If code
is added by means of the INCLUDE statement, all INCLUDEd
lines will have an asterisk (*) appended to their
line-sequence number.

2. A summary of the names and relative program locations (in
octal) of scalars and arrays (including unreferenced
character scalars and arrays~ in the source program plus
compiler-generated variables.

16-22 February 1987

USING THE FORTRAN COMPILER

3. All COMMON blocks and the relative locations (in octal) of
the variables in each COMMON block.

4. A listing of all equivalenced variables or arrays and their
relative locations. Note that all equivalenced variables
that are also in COMMON are listed only as being in COMMON.

S. A listing of the subprqgrams referenced (both user-defined
and FORTRAN-defined li~rary functions).

6. A summary of temporary locations generated by the compiler.

7. A heading on each page of the listing containing the program
unit name (MAIN., .BLOCK, program, subroutine or function,
principal entry), the input filename, the list of compiler
switches, and the date and time of compilation.

8. If you used the /MACRO switch, a mnemonic printout of the
generated code (in a format similar to MACRO) is appended to
the listing. This section has four fields:

LINE: This column contains the internal sequence number
of the line corresponding to the mnemonic code. It
appears on the first line of the code sequence
associated with that internal sequence number. An
asterisk indicates a compiler inserted line.

LOC: The relative location in the object program of the
instruction.

LABEL: Any program or compiler generated label.
Program labels have the letter UP" appended. Labels
generated by the compiler are followed by the letter
"M". Labels generated by the compiler and associated
with the /DEBUG:LABELS switch consist of the internal
sequence number followed by an "L".

GENERATED CODE: The MACRO mnemonic code.

If you use the /LNMAP switch and do NOT use the /MACRO
switch, a line number/octal location map is appended to the
listing. This section lists the line numbers ln increments
of 10 on subsequent lines and each number from 0 through 9
for each line in adjacent columns. The numbers appearing
inside the matrix are the relative octal locations of the
statements in the FORTRAN program unit.

For example, to find the relative octal location of line
number 001043, find the row marked 001040 and then column 3
on that line. The number in that place is the desired
relative location. This listing can be very large and sparse
for line-numbered files with large increments, such as those
produced by the editor SOS on TOPS-10 (or the editor EDIT on
TOPS-20) •

NOTE

A single FORTRAN line can produce multiple
machine instructions. In this case the line
number map lists only the first location.

16-23 February 1987

USING THE FORTRAN COMPILER

9. A list of all argument blocks generated by the compiler. A
zero argument appears first followed by argument blocks for
subroutine calls and function references (in order of their
appearance in the program) '. Argument blocks for all I/O
operations follow this.

10. FORMAT statement listings.

11. A summary of errors ,detected or warning messages issued
during compilations.

16.7.1 Compiler-Generated Variables

In certain situations the compiler generates internal variables.
Knowing what these variables represent can help you read the macro
expansion. The variables are of the form:

.letter digit digit digit digit

The function of these variables can be determined by the first letter
of the variable name as described below:

Letter

A

D

F

I

o

Function of Variable

Register save area.

Compile-time constant character descriptor

Arithmetic statement function formal parameters.

Result of a DO LOOP initial value expression or
parameter of an adjustable dimensioned array.

Result of a
computat ion.

common subexpression or constant

Q Temporary storage for expression values.

R Result of reduced operator strength expression.

S Result of the DO LOOP step size expression of computed
iteration count for a loop.

For example:

You may find these variables on the listing under SCALARS and ARRAYS.

The following examples show listings where all of these features are
pointed out.

16-24 February 1987

USING THE FORTRAN COMPILER

Example 1

Program
Name , Source

Name , Compiler Version

MAIN. TIM1.FOR FORTRAN V.11(4543)/F77/M 2-DEC-86 10:26

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021

100
C

t
IMPLICIT INTEGER (A-Z)
DIMENSION A(100,200)

MACRO code listing included

COMMON B(100,200)
OPEN(UNIT=22,FILE='TIM1.DAT')
INTEGER_SUM1=O
INTEGER_SUM2=0
DO 100 J=1,200
DO 100 1=1,100
K1=I*J
IF (K1 .LT. 500 .OR. K1 .GT. 1500) K1=O
A(I,J)=K1
K2=I+J
IF (K2 .EQ. 100 .OR. K2 .EQ. 200 .OR. K2 .EQ. 300) K2=K2+1
B(I,J)=K2
INTEGER_SUM1=INTEGER_SUM1+K1
INTEGER_SUM2=INTEGER_SUM2+K2
CONTINUE

WRITE(22,10)INTEGER_SUM1,INTEGER_SUM2
10 FORMAT('INTEGER_SUM1=' ,19,' INTEGER_SUM2=' ,19)

END

COMMON BLOCKS

/ . COMM. / (+47040) ... ___ Relative addresses of each variable _________

B +0 "*" N0 1 EXPLICIT DEFINITION -J"%,, NOT REFERENCED]

*K1 1 *J l::2 A 3 .S0001
*INTEGER_SUM2 47045 *1 47046 *K2 47047 *INTEGER_SUM1

47043
47050

.SOOOO 47044
t

Relative address of each character data descriptor

CHARACTER DATA l "*" NO EXPLICIT DEFINITION]

Compiler generated
variable

NAME DESCRIPTOR ADDRESS START OF DATA LENGTH
ADDR(POSITION)

'TIM1.DAT' . HSCHD+O 47b54(1) I 8 - # of characters

t Relative address of first character of string
Character position of first character of string

FORTRAN-10/20 VII 16-25 February 1987

USING THE FORTRAN COMPILER

Internal sequence number on first instruction
for this source line

1
Octal displacement of instruction ,

LINE LOC LABEL GENERATED CODE

0 JFCL 0,0
1 JSP 16,RESET.
2 0,0

4 3 XMOVEI 16,2M
4 PUSHJ 17,OPEN.

5 5 SETZB 2,INTEGER_SUMl
6 6 MOVEM 2,INTEGER_SUM2
7 7 MOVE 2, [777470000001]

10 HLREM 2, .SOOOO
11 3M:

HRRZM 2,J
8 12 4M:

MOVE 2, [777634000001]
9 13 5M:

MOVE 3,J
14 IMULI 3,0(2)
15 MOVEM 3,Kl

10 16 CAlL 3,764
17 CAlLE 3,2734
20 JRST O,7M
21 JRST O,6M

10 22 7M:
SETZB 4,Kl

11 23 6M: • Compiler generated label
MOVEI 3,144

24 ·IMUL 3,J
25 ADD I 3,0(2)
26 MOVE 4,Kl
27 MOVEM 4,A-145(3)

12 30 MOVE 3,J
31 ADD I 3,0(2)
32 MOVEM 3,K2

13 33 MOVE 5,K2
34 CAIE 5,144
35 CAIN 5,310
36 JRST O,9M
37 10M:

CAIN 5,454
13 40 9M:

ADS 3,K2
14 41 8M:

MOVEI 3,144
42 IMUL 3,J
43 ADD I 3,0(2)
44 MOVE 5,K2
45 MOVEM 5,B-145(3)

15 46 ADDM 4,INTEGER_SUMl
16 47 ADDM 5,INTEGER_SUM2
17 50 lOOP: • Program label

AOBJN 2,5M
51 HRRZM 2,1
52 ADS 2,J
53 AOSGE 0, .SOOOO
54 JRST ,O,4M

19 55 XMOVEI 16,l1M
56 PUSHJ 17,OUT.
57 XMOVEI 16,12M
60 PUSHJ 17,IDLST.

21 61 XMOVEI 16,lM
62 PUSHJ 17 ,EXIT.

FORTRAN-10/20 VII 16-26 February 1987

USING THE FORTRAN COMPILER

ARGUMENT BLOCKS: ... ---- Function, subroutine, and FOROTS argument blocks

63
64
65
66
67
70
71
72
73
74
75
76

1M:

2M:

11M:

12M:

0,,0
0,,0
777776, ,0
436000,,26
406640" . HSCHD+O
777776, ,0
401000, ,26
402340, ,lOP
777775, ,0
401100, ,INTEGER_SUMl
401100, ,INTEGER_SUM2
4000, ,0

FORMAT STATEMENTS (IN LOW SEGMENT):

20 47056 6
47057 lOP: (' INTEGER_SUM1= ',19,' INTEGER_SUM2=' ,19)

MAIN. [No errors detected] _ Summary of errors

Example 2

TIM1.FOR FORTRAN V.ll(4543)/F77/LN

IMPLICIT INTEGER (A-Z)
DIMENSION A(100,200)
COMMON B(100,200)
OPEN(UNIT=22,FILE='TIM1.DAT')
SUM1=0
SUM2=0
DO 100 J=l,200
DO 100 1=1,100
Kl=I*J

2-DEC-86

IF (Kl .LT. 500 .OR. Kl .GT. 1500) Kl=O
A(I,J)=Kl
K2=I+J

10:28 MAIN.

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021

IF (K2 .EQ. 100 .OR. K2 .EQ. 200 .OR. K2 .EQ. 300) K2=K2+1
BO, J)=K2
SUM1=SUM1+Kl
SUM2=SUM2+K2

100 CONTINUE
C

WRITE(22,10)SUM1,SUM2
10 FORMAT(' SUM= ',19,' SUM2=' ,19)

END

COMMON BLOCKS

/.COMM./(+47040)
B +0

SCALARS AND ARRAYS ["*" NO EXPLICIT DEFIIhTION - "%" NOT REFERENCED]

*Kl 1 2
47046

A
*K2

3
47047

.SOOOl 47043 .SOOOO 47044
*SUM2 47045 *SUMl 47050

LINE NUMBER/OCTAL LOCATION MAP ... ----Requested with /LNMAP

00000
00010
00020
MAIN.

: 0

16 23
61

2

30

[No errors detected]

3

33

4

3
41

5

5
46

6

6
47

7

7
50

8

12

9

13
55

Line #11 starts at octal offset 23 (from the previous example, note that line 11 uses locations 23 through 27,
but only the first location~is shown here).

FORTRAN-10/20 VII 16-27 February 1987

USING THE FORTRAN COMPILER

Example 3

MAIN. TIM1.FOR FORTRAN V.11(4543)/F77/0PT/M 2-DEC-86

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021

100
C

10

IMPLICIT INTEGER (A-Z)
DIMENSION A(100.200)
COMMON B(100.200)
OPENCUNIT=22.FILE='TIM1.DAT')
SUM1=O
SUM2=0
DO 100 J=1.200
DO 100 1=1.100
K1=hJ
IF (K1 .LT. 500 .OR. K1 .GT. 1500) K1=O
ACI.J)=K1
K2=I+J
IF (K2 .EQ. 100 .OR. K2 .EQ. 200 .OR. K2 .EQ. 300) K2=K2+1
B(I.J)=K2
SUM1=SUM1+K1
SUM2=SUM2+K2
CONTINUE

WRITE(22.10)SUM1.SUM2 '
FORMAT (, SUM1= '.19.'
END

SUM2= '.19)

COMMON BLOCKS

/.COMM./(+47040)
B +0

SCALARS AND ARRAYS [n"n NO EXPLICIT DEFINITION - n%n NOT REFERENCED]
• Optimizer,created variables

10:30

*K1 1 . R0001 2 .ROODO 3 *J 4 A 5
.S0001 47045 .S0001 47046 *SUM2 47047 *1 47050 .00001 47051

*K2 47052 *SUM1 47053

CHARACTER DATA
NAME

'TIM1.DAT'

[n*n NO EXPLICIT DEFINITION]
DESCRIPTOR ADDRESS START OF DATA LENGTH

ADDR(POSITION)

. HSCHD+O 47060(1) 8

FORTRAN-10/20 VII 16-28 February 1987

USING THE FORTRAN COMPILER

LINE LOC LABEL GENERATED CODE

0 JFCL 0.0
1 JSP 16,RESET.
2 0,0

4 3 XMOVEI 16,4M
4 PUSHJ 17,OPEN.

6 5 SETZB 10,11

* 6 MOVEI 12,144
Asterisks indicate optimizer 7 MOVEM 12, . ReOOl generated statements

7 10 MOVNI 12,310
11 MOVEI 7,1 -
12 MOVEM 12, . SOOOO

* 13 5M:
MOVE 6,7

8 14 MOVE 2, [777634000001]

* 15 6M:
MOVE I 4,0(2)

16 ADD 4, . ROOOl
9 17 MOVE 5,6
10 20 CAlL 5,764

21 CAlLE 5,2734
22 JRST O,8M
23 JRST O,7M

10 24 8M:
MOVEI 5,0

11 25 7M:
MOVEM 5,A-145(4)

12 26 MOVE 3,7
27 ADDI 3,0(2)

13 30 CAIE 3,144
31 CAIN 3,310
32 JRST O,10M
33 11M:

CAIN 3,454
13 34 10M:

ADDI 3,1
14 35 9M:

MOVEM 3,B-145(4)
15 36 ADD 11,5
16 37 ADD 10,3

* 40 ADD 6,7
17 41 lOOP:

AOBJN 2,6M
42 HRRZM 12,144

* 43 MOVEI 12,144
44 ADDM 12, . ROOOl

* 45 1M:
ADDI 7,1

46 AOSGE 0, .SOOOO
47 JRST O,5M
50 MOVEM 7,J

* 51 MOVEM 11, SUMl

* 52 MOVEM 10,SUM2

* 53 MOVEM 5,Kl

* 54 MOVEM 3,K2
19 55 XMOVEI 16,12M

56 PUSHJ 17,OUT.

* 57 XMOVEI 16,13M
60 PUSHJ 17,IDLST.

21 61 2M:
XMOVEI 16,3M

62 PUSHJ 17,EXIT.

FORTRAN-10/20 VII 16-29 February 1987

USING THE FORTRAN COMPILER

ARGUMENT BLOCKS:

63
64
65
66
67
70
71
72
73
74
75
76

3M:

4M:

12M:

13M:

0, ,0
0,,0
777776, ,0
436000, ,26
406640, , . HSCHD+O
777776, ,0
401000, ,26
402340, ,lOP
777775, ,0
401100, ,SUMl
401100, ,SUM2
4000, ,0

FORMAT STATEMENTS (IN LOW SEGMENT):

20 47062 6
47063 lOP: ('SUM1=' ,19,' SUM2=' ,19)

MAIN. [No errors detected]

FORTRAN-10/20 VII 16-30 February 1987

USING THE FORTRAN COMPILER

Example 4

TIM1.FOR FORTRAN V.ll(4543)/F77/M/EXT

IMPLICIT INTEGER (A-Z)
DIMENSION A(100,200)
COMMON B(100,200)
OPEN(UNIT=22,FILE='TIM1.DAT')
SUM1=0
SUM2=0
DO 100 J=l,200
DO 100 1=1,100
Kl=I*J
IF (Kl .LT. 500 .OR. Kl .GT. 1500) Kl=O
A(I,J)=Kl
K2=I+J

2-DEC-86 16:27 MAIN.

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021

IF (K2 .EQ. 100 .OR. K2 .EQ. 200 .OR. K2 .EQ. 300) K2=K2+1
B(I,J)=K2

100
C

10

SUM1=SUM1+Kl
SUM2=SUM2+K2
CONTINUE

WRITE(22,10)SUM1,SUM2
FORMAT (I SUM1= 1,19, I

END

COMMON BLOCKS ["!" STORED IN .LARG.

/.COMM./(+47040!)

SUM2= 1,19)

B +0 .L. _____ Large common block

SCALARS AND ARRAYS "*" NO EXPLICIT DEFINITION - "%"
"!" VARIABLE STORED IN .LARG.]

NOT REFERENCED]

*Kl 1
*J 2 ! J...----O-- Large variable

.SOOOl 3 .SOOOO 4 *SUM2 5
*1 6 *K2 7 *SUMl 10

CHARACTER DATA ["*" NO EXPLICIT DEFINITION - "!" VARIABLE STORED IN .LARG.]
NAME DESCRIPTOR ADDRESS START OF DATA LENGTH

ADDR(POSITION)

'TIM1.DAT'

LINE

4

5
6
7

8

9

10

10

LOC

o
1
2
3
4
5
6
7
10
11

12

13

14
15
16
17
20
21
22

. HSCHD+O 14(1)

LABEL GENERATED CODE

JFCL 0,0
JSP 16,RESET.

0,0
XMOVEI 16,2M
PUSHJ 17,OPEN.
SETZB 2,SUMl
MOVEM 2,SUM2
MOVE 2, [777470000001]
HLREM 2, .SOOOO

3M:
HRRZM 2,J

4M:
MOVE 2, [777634000001]

5M:
MOVE 3,J
lMULI 3,0(2)
MOVEM 3,Kl
CAlL 3,764
CAlLE 3,2734
JRST O,7M
JRST O,6M

7M:
SETZB 4,Kl

FORTRAN-10/20 VII

8

16-31 February 1987

LINE

11

LDC

23

24
25
26

LABEL

6M:

USING THE FORTRAN

GENERATED CODE

MOVE I 3,144
lMUL 3,J
ADDI 3,0(2)
MOVE 4,Kl

27 MOVEM 4,~[.EFIWA-145(3)
12 30 MOVE 3,J

31 ADDI 3,0(2)
32 MOVEM 3,K2

13 33 MOVE 5,K2
34 CAIE 5,144
35 CAIN 5,310
36 JRST O,9M
37 10M:

CAIN 5,454
13 40 9M:

ADS 3,K2
14 41 8M:

MoVEI 3,144
42 lMUL 3,J
43 ADDI 3,0(2)
44 MOVE 5,K2
45 MoVEM 5,~[.EFIW B-145(3)

15
16
17

19

21

46
47
50 lOOP:

51
52
53
54
55
56
57
60
61
62

ADDM
ADDM

AoBJN
HRRZM
ADS
AoSGE
JRST
XMOVEI
PUSHJ
XMoVEI
PUSHJ
XMoVEI
PUSHJ

4,SUMl
5,SUM2

2,5M
2,1
2,J
0, .SOOOO
O,4M
16,11M
17,oUT.
16,12M
17,IDLST.
16,lM
17,EXIT.

ARGUMENT BLOCKS:

63 0, ,0
64 1M: 0, ,0
65 777776, ,0
66 2M: 436100" [000000000026]
67 406640" . HSCHD+O
70 777776, ,0
71 11M: 401000, ,26
72 402340, , lOP
73 777775, ,0
74 12M: 401100"SUMl
75 401100, ,SUM2
76 4000, ,0

FORMAT STATEMENTS (IN LOW SEGMENT):

20 6 17
20 lOP: ('SUM1= ',19,' SUM2=' ,19)

MAIN. [No errors detected]

FORTRAN-10/20 VII 16-32

COMPILER

February 1987

USING THE FORTRAN COMPILER

NOTE

Note that in the scalars and arrays list, 'NO EXPLICIT
DEFINITION' indicates that the variable was never
explicitly defined, as in a TYPE or DIMENSION
statement. Also, 'NOT REFERENCED' indicates that the
variable was declared, but never used, and therefore
was never allocated any storage in the program.

Character variables that are declared, but not
referenced, appear under the scalars and arrays
section of the listing. No storage is allocated for
either the character descriptor or the character data.

16.8 ERROR REPORTING

If an error occurs during the initial pass of the compiler (while the
actual source code is being read and processed), an error message is
printed on the listing immediately following the line in which the
error occurred. When pertinent and possible, the error references the
internal sequence number of the incorrect line. The error messages
along wi th "the statement in error are output to the user terminal.

Example:

TYPE DAY.FOR
01000
01100
01200
01300
01400
01500 100
01600 C
01700
01800 200
01900

COMPILE DAY.FOR
FORTRAN: DAY

I=10
IMPLICIT INTEGER (X)
J=I**4
Kl
X=I+J+Kl
CONTNUE

TYPE 200,X
FORMAT (IX, I8)
END

IMPLICIT INTEGER (X) 01100
%FTNSOD
01300
?FTNNRC
01500
?FTNMSP
01600

LINE:01100 IMPLICIT statement out of order
Kl

LINE:01300 Statement not recognized
100 CONTNUE
LINE:01500 Statement name misspelled

?
?FTNICL LINE:01600 Illegal character C in label field

?FTNFTL MAIN. 3 fatal errors and 1 warning

If errors are detected after the initial pass of the compiler, they
appear in the list file after the end of the source listing. They are
output to your terminal without the statement in error, but they may
reference its internal sequence number.

16-33 February 1987

USING THE FORTRAN COMPILER

16.8.1 Fatal Errors and Warning Messages

There are two levels of messages, warning and fatal error. Warning
messages are preceded by "%" and indicate a possible problem. The
compilation will continue, and the object program may be correct.
Fatal errors are preceded by a "?". If a fatal error is encountered
in any pass of the compiler, the remaining passes will not be called,
and no relocatable binary file will be generated.

Additional errors that would be detected in later compiler passes may
not become apparent until the first errors are corrected. It is not
possible to generate a correct object program for a source program
containing a fatal error.

The format of messages is:

?FTNxxx Line:n text

or

%FTNxxx Line:n text

where:

?
%

indicates a fatal message
indicates a warning message
is the FORTRAN mnemonic FTN

xxx
Line:n
text

is the 3-letter mnemonic for the error message
is the optional line number where error occurred
is the explanation of error

The printing of fatal errors and warning messages on your terminal can
be suppressed by the use of the /NOERRORS switch; however, messages
will still appear on the listing. The /NOWARN switch will suppress
warning messages on both the user terminal and in the listing.
Specific warnings can be suppressed by using options to the /NOWARN
switch (see Section 16.4).

16.8.2 Message Summary

At the end of the listing file and on the terminal, a message summary
is printed after each program unit is compiled. This message has two
forms:

1. When one or more messages were issued

?FTNFTL name 1 fatal error and no warnings
name 2 fatal errors and no warnings

%FTNWRN name no fatal errors and 1 warning
name no fatal errors and 2 warnings

or

2. When no messages were issued

name [No errors detected]

where name is the program or subprogram name. Appendix C contains a
complete list of fatal errors and warning messages.

16-34 February 1987

USING THE FORTRAN COMPILER

16.9 CREATING A SHARABLE HIGH SEGMENT FOR A FORTRAN PROGRAM

For non-extended addressing programs, the FORTRAN compiler always
generates two segment code for a program unit. However, by default,
LINK loads all FORTRAN code into the low segment to allow the sharable
run-time system to be bound to the program at run-time rather than at
load-time.

This default action of LINK can be overridden by using the LINK switch
/OTSEGMENT:NONSHARABLE when loading the program. If this switch is
given, LINK loads the impure code (the data areas) in the low segment,
loads the pure code (the machine instructions) in the high segment,
and binds a private copy of the run-time system to the program at
load-time.

On TOPS-10, a program loaded with the /OTSEGMENT:NONSHARABLE switch
can be saved to produce an executable file with a sharable high
segment using the TOPS-10 SSAVE command or the TOPS-20 EXEC SAVE
command. (The LINK switch /SSAVE can also be used to produce the
sharable executable file.) This is an advantage if a large application
program is to be run by several users simultaneously. Both the code
unique to the program and the copy of the FORTRAN run-time system that
is private to the program are shared between all the program's users.

On TOPS-20, all pure and impure pages of all programs begin as
sharable pages, however, as impure pages are modified by stores,
TOPS-20 creates non-sharable copies of the pages. The default action
of LINK in programs that do not use extended addressing is to load all
FORTRAN code into the low segment. This results in the impure and
pure code of each program unit being loaded as one contiguous unit.

Since the presence of impure code on a page will ultimately result in
the page becoming non-sharable, the effective number of pages that are
sharable in the program is less that the maximum that could be
achieved. However, if the /OTSEGMENT:NONSHARABLE switch is used, all
of the pure code of the program is loaded with a private copy of
FOROTS into the high segment. Since the pure code in this case is not
mixed with the impure code, a greater number of pages remain sharable
in the program (also, the number of page faults may be reduced).

Note that extended addressing programs on TOPS-20 by default have
impure code and pure code loaded into disjoint areas so that
/OTSEGMENT~NONSHARABLE does not increase the sharability or decrease
the number of page faults of these programs. In addition, these
programs use the system-wide sharable FOROTS, and thus make the best
use of system resources.

On both TOPS-10 and TOPS-20, the possible benefits gained by the users
of the application program sharing the high segment of their program
containing both user and FOROTS code must be weighed against the loss
of not sharing the common copy of FOROTS with all other users.

(See the LINK Reference Manual for more information on the /OTSEGMENT
switch.)

FORTRAN-10/20 VII 16-35 February 1987

CHAPTER 17

USING THE FORTRAN INTERACTIVE DEBUGGER (PORDDT)

FORDDT is an interactive program used to debug FORTRAN programs and
control their execution. By using the symbols created by the FORTRAN
compiler, FORDDT allows you to examine and modify the data and FORMAT
statements in your program, set breakpoints at any executable
statement or routine, trace your program statement-by-statement, and
make use of many other debugging techniques described in this chapter.

Table 17-1 lists all the commands available to the user of FORDDT.

Table 17-1: FORDDT Commands

Command Purpose

Control Commands

CONTINUE

DDT

GOTO

NEXT

START

STOP

Data Access Commands

ACCEPT

TYPE

CHARACTER

Continues execution
breakpoint.

after a FOR DDT

Enters DDT.

Transfers control to some program statement
within the open program unit.

Traces execution of the program.

Begins execution of the FORTRAN program.

Terminates the program and returns
monitor mode.

Modifies variables or FORMAT statements.

Displays variables. Declarative Commands

to

Defines dimensions of character arrays for
FORDDT references. (This command is
unnecessary if /DEBUG is specified at
compile time. See Table 16-3.)

17-1

USING THE FORTRAN INTERACTIVE DEBUGGER (FORODT)

Table 17-1: FORDDT Commands (Cont.)

Command Purpose

DIMENSION

DOUBLE

GROUP

MODE

OPEN

PAUSE

PAUSE ON ERROR

REMOVE

REMOVE ON ERROR

Other Commands

LOCATE

STRACE

WHAT

Defines dimensions of real and integer
arrays for FORDDT references. (This
command is unnecessary if /DEBUG is
specified at compile time. See Table
16-3.)

Defines dimensions of double-precision and
complex arrays for FORDDT
(This command is unnecessary if
specified at compile time.
16-3.)

references.
/DEBUG is
See Table

Defines indirect lists for TYPE statements.

Specifies format of typeout.

Accesses program unit symbol table.

Sets FORDDT breakpoints.

Sets FORDDT breakpoints (for errors such as
arithmetic overflows).

Clears FORDDT breakpoints.

Clears PAUSE ON ERROR breakpoints.

Lists program unit names in which a given
symbol is defined.

Displays routine traceback
program status.

of current

Displays current DIMENSION, GROUP,
FORDDT breakpoint information.

and

The FORDDT commands are described in detail in Section 17.5.

17.1 INPUT FORMAT

FORDDT commands consist of alphabetic FORTRAN-like identifiers and
need consist of only those characters required to make the command
unique. If you wish to specify parameters, a space is required
following the command name. Comments may be appended to command lines
by preceding the comment with an exclamation point (!).

17.1.1 Variables and Arrays

FORDDT allows you to access and modify the data in your program using
standard FORTRAN symbolic names. Variables are specified simply by
name. For example:

name

17-2

USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT)

where:

name is a variable name.

Array elements are specified in the following formats:

name
name (sl, ••• ,sn)

where:

name is the name of the array

(sl, ••• ,sn) are the subscripts of a particular array. The
subscripts must be integer constants or variables.

You may reference an entire array simply by typing the array name
(without subscripts). You may specify a range of array elements by
typing the first and last element in the chosen range, separated by a
dash (-).

The following examples show the various ways of specifying variables
and arrays to FORDDT:

ALPHA
ALPHA(7)
ALPHA(PI)
ALPHA(2)-ALPHA(5)

17.1.2 Constant Conventions

FORDDT accepts optionally signed numeric data in the standard FORTRAN
input formats:

1. INTEGER - A string of decimal digits.

2. REAL - A string of decimal digits optionally including a
decimal point. Standard engineering and double-precision
exponent formats are also accepted.

3. OCTAL - A string of octal digits optionally preceded by a
double quote (").

4. COMPLEX - An ordered pair of integer or real constants
separated by a comma and enclosed in parentheses.

5. LOGICAL - A Boolean argument, either .TRUE. or .FALSE.

6. CHARACTER - A string of printable ASCII characters enclosed
by apostrophes.

7. HOLLERITH A string of alphanumeric and/or special
characters delimited by any alphanumeric or special
character, excluding the space character, which does not
occur with the string itself. Such as, # l2AB#, where # is
the delimiting character.

17-3

USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT)

17.1.3 Statement Labels and Source Line Numbers

FORTRAN statement labels are input and output by straightforward
numeric reference, such as 1234. However, source line numbers must be
input to FORDDT with a number sign (#) preceding them. This mandatory
sign distinguishes statement labels from source line numbers.

PAUSE #3 IThis causes a pause at source line number 3.

PAUSE 3 IThis causes a pause at the statement labeled 3.

17.2 FORDDT AND THE FORTRAN /DEBUG SWITCH

Most facilities of FOR DDT are available without the FORTRAN /DEBUG
features. However, if you do not use the /DEBUG switch when compiling
a FORTRAN program, the trace features (NEXT command) will not be
available, and several of the other commands will be restricted. In
addition, the /DEBUG switch must be used if long symbols are to be
made available to FORDDT. If long symbols are used in your FORTRAN
program, and you do not use the /DEBUG switch when compiling, only the
first six characters of each symbol is available to FORDDT.

Using the /DEBUG switch tells FORTRAN to compile extra information for
debugging. (See Chapter 16 for more information.) These features are:

1. /DEBUG:DIMENSIONS, which generates dimension information in
the .REL file for all arrays dimensioned in the subprogram.
The dimension information is automatically available to
FORDDT if you wish to reference an array in a TYPE or ACCEPT
command. This feature eliminates the need to specify
dimension information for FORDDT by using the DIMENSION
command.

2. /DEBUG:LABELS, which generates labels for every executable
source line in the form <line-number>L. If these labels are
generated, they may be 'used as arguments with the FORDDT
commands PAUSE and GOTO.

This switch also generates labels at the last location
allocated for a FORMAT statement so that FORDDT can detect
the end of the statement. These labels have the form
<format-label>F. If they are generated, you can display and
modify FORMAT statements with the TYPE and ACCEPT commands.

Note that the :LABELS switch is automatically activated with
the :TRACE switch, since labels are needed to accomplish the
trace features.

3. /DEBUG:TRACE, which generates a reference to FORDDT before
each executable statement. This switch is required for the
trace command NEXT to function.

Note that if more than one FORTRAN statement is placed on a
single input line, only the first statement has a FORDDT
reference and line-number label associated with it. This
also applies to the :LABELS switch.

4. /DEBUG:INDEX, which forces the compiler to store in its
respective data location, as well as a register, the index
variable of all DO loops at the beginning of each loop
iteration. You will then be abl~ to examine DO loops by
using FORDDT. If you modify a DO loop index using FORDDT, it
will not affect the number of loop iterations because a
separate loop count is used.

FORTRAN-10/20 Vll 17-4 February 1987

USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT)

In addition, this switch forces all function values to be
stored in memory prior to return from the function. If this
switch is specified, you can set a FORDDT pause on the RETURN
statement (see Section 13.4.4) and then examine the value to
be returned.

5. /DEBUG:BOUNDS, which generates the bounds checking code for
all array references. Bounds violations produce run-time
error messages. Note that the technique of specifying
dimensions of 1 for subroutine arrays causes bounds check
errors. (You can use this option without FORDDT.)

6. /DEBUG:ARGUMENTS, which performs type checking at load time
for actual argument types and associated dummy argument
types. Type violations produce non-fatal, load-time error
messages. This switch also performs type checking at
compile-time for statement functions.

17.3 LOADING AND STARTING FORDDT

1. On TOPS-IO, the simplest method of debugging with FORDDT is:

.DEBUG filespec (DEBUG)

On TOPS-20, the corresponding command is:

@DEBUG filespec /DEBUG

On both systems, FORDDT responds with:

STARTING FORTRAN DDT

Program name:

When FORDDT prompts you for a program name, type the same
name specified in the PROGRAM statement of the program being
debugged. If the PROGRAM statement is not used ln the
program being debugged, FORDDT uses MAIN., and will not
prompt for a program name.

FORDDT next prints its command prompt:

»

The angle brackets indicate that FORDDT is ready to receive a
command.

2. If you are on TOPS-20, you can type a question mark to the
prompt to get a list of all FORDDT commands, as follows:

»7 One
ACCEPT
GOTO
OPEN
TYPE

of the following:
CHARACTER CONTINUE
GROUP HELP
PAUSE REMOVE
WHAT

DDT
LOCATE
START

DIMENSION DOUBLE
MODE NEXT
STOP STRACE

Also on TOPS-20, you can use the ESCape key for recognition
of FORDDT commands. For example:

»CON<ESC>TINUE

17-5

3.

USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT)

On both systems, you need only type the unique abbreviation
of a specific FOR DDT command.

You may wish to load your compiled
directly with the linking loader.
accomplished implicitly in the DEBUG
command sequence is as follows:

On TOPS-IO, to start LINK, type:

.R LINK

On TOPS-20, type:

@LINK

program and FORDDT
(Loading with LINK is

command string.) The

On both systems, when LINK prompts you with an asterisk, you
can type a command string in any of the following forms:

*filespec /DEB/G (loads DDT)

*filespec /DEB:{FORDDT}/G (loads FORDDT)
{FORTRA}

*filespec /DEB:(DDT,{FORDDT})/G (loads DDT
{FORTRA} and FORDDT)

*filespec /DEB:({FORDDT},DDT)/G (loads FORDDT
{FORTRA} and DDT)

In the last two command forms shown, the first debugging
program specified (FORDDT or DDT) in the command string is
the one you communicate 'with after the LINK command string
is executed.

See Section 17.9 for information on loading
addressing programs.

extended

17.4 SCOPE OF NAME AND LABEL REFERENCES

Each program unit has its own symbol table. When you initially enter
FORDDT, you automatically open the symbol table of the main program.
All references to names or labels through FORDDT must be made with
respect to the currently open symbol table.

If you have given the main program a name other than MAIN. by using
the PROGRAM statement (see Section 6.4.1), FORDDT asks for the defined
program name. After you enter the program name, FORDDT opens the
appropriate symbol table. At this point, symbol tables in programs
other than the main program can be opened by using the OPEN command.

References to statement labels, line numbers, FORMAT statements,
variables, and arrays must have labels that are defined in the
currently open symbol table. However, FORDDT will accept variable and
array references outside the currently open symbol table, providing
the name is unique with respect to all program units in the given load
module.

17-6

USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT)

17.5 FORDDT COMMANDS

This section gives a detailed description of all commands in FORDDT.
The commands are given in alphabetical order:

ACCEPT Allows you to change the contents of a FORTRAN
variable, array, array element, array element range, or
FORMAT statement. The command format is:

ACCEPT name[/mode] value

where:

name

mode

value

is the variable, substring, array, array
element, array element range, or FORMAT
statement to be modified.

is the format of the data value to be
entered. The mode keyword must be preceded
by a slash (I) and immediately follows the
name. Intervening blanks are not allowed.
(Note that Imode does not apply to FORMAT
modification.)

is the new value to be assigned. The format
of the input value must correspond to the
specified mode.

DATA LOCATION MODIFICATION

Data Modes

The following data modes are accepted:

Mode Meaning Example

A
C
D
F
I
o
L
R
S
X

ASCII (left-justified)
CHARACTER
DOUBLE-PRECISION
REAL
INTEGER
OCTAL
LOGICAL
RASCII (right-justified)
SYMBOLIC
COMPLEX

IFOOI
'ABC'
123.4567890
123.45678
1234567890
7654321
.TRUE. or .FALSE.
\BAR\
PSI(2,4)
(1.25,-78.E+9)

If not specified, the default mode is REAL (F).

1. Two-Word Values

For the data modes
(R), and SYMBOLIC
modifier on the
indicates that the
interpreted as two

ASCII (A), OCTAL (O), RASCII
(S), FORDDT will accept a "/BIG"
mode switch. This modifier
variable and the value are to be
words long.

FORTRAN-10/20 VII 17-7 February 1987

USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT)

Example:

ACCEPT VAR/RASCII/BIG '1234567890'

assumes that VAR is two words long and stores the
given l0-character literal into it.

The /BIG modifier can also be used to display more
than the first 256 characters of long character
strings.

2. Character Variables

A character variable can be initialized by using an
ACCEPT command of the following form:

ACCEPT VAR/C 'string'

Note that the length of the variable is that which
is specified in the source program. If the string
is longer than the variable, the rightmost
characters are truncated. If the string is shorter
than the variable, it is stored left-justified and
padded on the right with blanks.

3. Initialization of Arrays

If the name field of an ACCEPT contains an
unsubscripted array name or a range of array
elements, all elements of the array or the
specified range are set to the given value.

Example:

ACCEPT ARRAY/F 1.0

or

ACCEPT ARRAY(5)-ARRAY(10)/F 1.0

Note that this applies only to modes other than
ASCII and RASCII.

For character arrays, if the value has fewer
characters than the length of the array element,
the rightmost character positions of the element
are initialized with spaces. If the value has more
characters than the length of the array element,
the value is truncated to the right.

4. Long Literals

FORTRAN-10/20 VII

When the value field of an ACCEPT contains an
unsubscripted array name or range of array
elements, and the specified data mode is ASCII, the
value field is expected to contain a long literal
string. ACCEPT stores the string linearly into the
array or array range. If the array is not filled,
the remainder of the array or range is filled with
zeroes. If the literal is too long, the remaining
characters are ignored.

17-8 February 1987

CHARACTER

CONTINUE

. DDT

USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT)

Example:

ACCEPT ARRAY/ASCII
'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

5. FORMAT Statement Modification

When the name field of an ACCEPT contains a label,
FORDDT expects this label to be a FORMAT statement
label and that the value field contains a new
format specification.

Example:

ACCEPT 10 (lHO,FIO.2,3(I2))

The new specification cannot be longer than the
space originally allocated to the FORMAT by the
compiler. The remainder of the area is cleared if
the new specification is shorter.

Note that FOROTS performs some encoding of FORMAT
statements when it processes them for the first
time. If any I/O statement referencing the given
FORMAT has been executed, the FORTRAN program has
to be restarted (re-initializing FOROTS).

Defines the dimensions of a character array. The
result of this command is the same as for the DIMENSION
command except that the array so dimensioned is
understood by FORDDT to be a character array. The
command format is:

CHARACTER arrayname ([Ll:]Ul[,[L2:]U2, •••])

NOTE

This declarator cannot be used to specify
element length. The length specified in the
user program will be used.

Allows the program to resume execution after a FORDDT
pause. After a CONTINUE is executed, the program
either runs to completion or until another pause is
encountered. The command format is:

CONTINUE [n]

where the n is optional and, if omitted, is assumed to
be one. If a value is provided, it can be a numeric
constant or program variable, but it is treated as an
integer. When the value n is specified, the program
continues execution until the nth occurrence of this
pause. For example,

CONTINUE 20

continues execution until the 20th occurrence of the
pause, or until a different pause is encountered.

Transfers control of the program to DDT, the standard
system debugging program. Any files currently opened
by FOROTS are unaffected, and a return to FORDDT is
possible so that program execution may be resumed.

17-9

DIMENSION

USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT)

%FDDT is the global symbol used to return control to
FORDDT. The command format is:

%FDDT<ESC)G

Your program will be in the same condition as before
unless you have modified your core image with DDT.

Sets, displays, or removes the user-defined dimensions
of an array for FORDDT access purposes. These
dimensions need not agree with those declared to the
compiler in the source code. FORDDT allows you to
redimension an array to have a larger scope than that
of the source program. If this is done, a warning is
given.

NOTE

The DIMENSION command cannot be used to declare
double-precision, . complex, or character arrays
(see the CHARACTER and DOUBLE commands) •

The command format is:

DIMENSION name ([Ll:] Ul [, [L2:] U2, .••])

where:

name

([Ll:]Ul •••)

For example:

is the name of the array

specifies the bounds of the
array, where L is the lower
bound and U is the upper
bound. The default value of L
is 1. The bounds must be
integer constants or
variables.

DIMENSION ALPHA(7,5:6,10)

FORDDT remembers the dimensions of the array until they
are redefined or removed.

The command:

DIMENSION

gives a full list of all the user-defined dimensions
for all arrays.

DIMENSION ALPHA

displays the current information for the array ALPHA
only.

DIMENSION ALPHA/REMOVE

removes any user-defined array information for the
array ALPHA.

17-10

DOUBLE

GOTO

GROUP

USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT)

Defines the dimensions of a double-precision or complex
array. The result of this command is the same as for
the DIMENSION command except that the array so
dimensioned is understood by FORDDT to be an array with
two-word elements.

The command format is:

DOUBLE arrayname ([Ll:]Ul[,[L2:]U2, •••])

Allows you to continue your program from a point other
than the one at which it last paused. The GOTO allows
you to continue at a statement label or source line
number provided that the IDEBUG:LABELS switch has been
used or the contents of a symbol previously ASSIGNed
during the program execution has been used.

Note that the program must be STARTed before this
command can be used, and also note that a GOTO is not
allowed after the <CTRL/C>, REENTER sequence (see
Sec t ion 17.6).

The command format is:

GOTO n

Sets up a string of text for input to a TYPE command.
You can store TYPE statements as a list of variables
identified by the numbers 1 through 8. This feature
eliminates the need to retype the same list of
variables each time you wish to examine the same group.
Refer to the TYPE command for the proper format of the
list.

The command format is:

GROUP [n list]

where:

n

list

GROUP

is the group number 1-8

is a list of group numbers preceded by a
slash (I) andlor variable names,
substrings, array elements, and array
elemerit ranges to be typed when you give
the command: TYPE In, where n is the
group number. The validity of the list
is not checked.

with no arguments causes FORDDT to type out the current
contents of all the groups.

GROUP n

types out the contents of the
requested.

particular

Note that one group may refer to another.

For example:

group

FORTRAN-10/20 V11

GROUP 2 VAR2,VAR3
GROUP 3 11,/2

17-11 February 1987

LOCATE

MODE

NEXT

USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT)

Lists the program unit names in which a given symbol is
defined. This is useful when the variable you wish to
locate is not in the currently open program unit and is
defined in more than one program unit. The command
forma t is:

LOCATE n

where n may be any FORTRAN variable, array, label, line
number, or FORMAT statement number.

Defines the display format for succeeding FOR DDT TYPE
commands. You need type only the first character of
the mode to identify it to FOR DDT because all
characters after the first are ignored. The modes are:

Mode Meaning

C CHARACTER
F REAL
D DOUBLE-PRECISION
X COMPLEX
I INTEGER
o OCTAL
A ASCII (left-justified)
R RASCII (right-justified)
L LOGICAL

Unless the MODE command is given, the default typeout
mode is the REAL (F) fo rma t •

The command format is:

MODE list

where list contains one or more of the mode identifiers
separated by commas. The current setting can be
changed by issuing another MODE command. If more than
one mode is given, the values are typed out in the
order: C, F, D, X, I, 0, A, R, L.

A typical command string might be:

MODE A,I,OCTAL

Allows you to cause FOR DDT to trac~ source lines,
statement labels, and entry point names during
execution of your program. This command only provides
trace facilities if the program is compiled with the
FORTRAN /DEBUG switch. If this switch is not used, the
NEXT command acts as a CONTINUE command. The command
format is:

NEXT [n] [/sw]

where:

n

sw

is a program variable or integer numeric
value

is one of the following switches

/S= statement label
/L= source line
/E= entry point

17-12

OPEN

PAUSE

USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT)

The default starting value of n is 1, a single
statement trace. T~e default switch is IL.

The command

NEXT 20/L

traces the execution of the next 20 source line numbers
or until another pause is encountered.

Note that if no argument is specified, the last
argument given is used.

For example:

NEXT /E

changes the tracing mode to trace only subprogram
entries using the numeric argument previously supplied.

Allows you to open a particular program unit of the
loaded program so that the variables are accessible to
FORDDT. Any previously opened program unit is closed
automatically when a new one is opened. Only global
symbols, symbols in the currently open unit, and unique
locals are available at anyone time. Note that
starting FOR DDT automatically opens the main program.

The command format is:

OPEN name

where name is the subprogram name.
arguments reopens the main program.

OPEN with no

Allows you to place a FORDDT breakpoint at a statement
number, source line number, or subroutine entry point.
Up to ten breakpoints may be set at anyone time. When
a breakpoint is encountered, execution is suspended at
that point and control is returned to FORDDT. The
symbol table of that subprogram is also automatically
opened.

The command formats are:

PAUSE
PAUSE P
PAUSE P AFTER n
PAUSE p IF condition
PAUSE p TYPING Ig
PAUSE P AFTER n TYPING /g
PAUSE P IF condition TYPING /g

where:

P

n

g

PAUSE 100

is the point where the breakpoint is
inserted
is an integer constant, variable, or
array element
is a group number

17-13

USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT)

sets a breakpoint at statement label 100, causes
execution to be suspended, and causes FORDDT to be
entered on reaching 100 in the program.

PAUSE #245 AFTER MAX(5)

causes a break to occur at source line number 245 after
encountering this point the number of times specified
by MAX(5). Note that AFTER can not be abbreviated.

PAUSE DELTA IF LIMIT(3,1) .GT.2.5E-3

causes a FOR DDT break to occur if the variable
LIMIT(3,1) is greater than the value 2.5E-3. The IF
can not be abbreviated, and the following FORTRAN
logical connectives are allowed:

.GT., .GE., .LT., .LE., .EQ., .NE.

Double-precision comparisons and arithmetic operations
are not allowed. However, comparisons can be made
between variables, constants, and logical constants
(such as .TRUE. and .FALSE.).

PAUSE 505 TYPING /5

sets a FORDDT breakpoint at label 505, and the
variables in group 5 are displayed. The TYPING
specification can not be abbreviated.

PAUSE #24 AFTER 16 TYPING /3

causes a break at source line number 24 after 16 times
through; however, the contents of group 3 are displayed
every time.

Whe~ the TYPING option is used with the PAUSE command,
control can be transferred to FORDDT at the next
typeout by typing any character on the terminal.

Note that pause requests remain after a <CTRL/C>
REENTER sequence, a START command, or a <CTRL/C> START
sequence.

PAUSE ON ERROR Causes the program to enter FORDDT whenever an error
occurs (such as an arithmetic overflow). It has the
same command format as the PAUSE command.

REMOVE Removes the previously set FORDDT breakpoints.
command format is:

REMOVE [p]

For example,

REMOVE L#123

The

removes a breakpoint from the program source line
number 123.

REMOVE ALPHA

17-14

USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT)

removes a breakpoint from the subroutine entry to
ALPHA.

REMOVE with no arguments
breakpoints, and, in this
REMOVE is allowed.

removes all your FORDDT
case, no abbreviation of

REMOVE ON ERROR Removes a PAUSE ON ERROR breakpoint. It has the same
command format as-the REMOVE command.

START

STOP

STRACE

TYPE

Starts your program at the normal FORTRAN main program
entry point. The command format is:

START

Terminates the program, closes all files
FOROTS, and causes an exit to the monitor.
command format is:

STOP

STOP /RETURN

opened by
The usual

allows a
devices
issued.

return to
or closing

monitor
files

mode without releasing
so that a CONTINUE can be

Displays a subprogram level traceback of the current
state of the program. The command format is:

STRACE

Displays FORTRAN defined variables, substrings, arrays,
or array elements on your terminal. The command format
is:

TYPE list

where list may be one or more variables, substrings, or
array references and/or group numbers. These
specifications must be separated by commas, and group
numbers must be preceded by a slash (/). The command
with no arguments uses the last argument list submitted
to FORDDT.

An array element range can also be specified. For
example:

TYPE PI(5)-PI(13)

displays the values from PI(5) to PI(13) inclusive. If
an unsubscripted array name is specified, the entire
array is typed.

There are several methods of choosing the form of
typeout in conjunction with the MODE command:

1. If you do not specify a format, the default is
real.

2. You can specify a format through the MODE command
described in this chapter.

FORTRAN-10/20 VII 17-15 February 1987

WHAT

USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT)

3. You can change the format(s) previously designated
by the MODE command by including print modifiers in
the TYPE or GROUP string. The print modifiers are:

A ASCII(left-justified)
B LONG
C CHARACTER
D DOUBLE-PRECISION
F REAL
I INTEGER
L LOGICAL
o OCTAL
R RASCII(right-justified)
X COMPLEX

4. If you type a variable in mode CHARACTER (C), the
number of characters printed is equal to the length
declared in the FORTRAN source program, up to a maximum
of 256 characters. The IB switch can be used to
override the 256 character maximum.

The B switch may be used in conjunction with the A, 0,
and R switches. This modifier indicates that the
variable is to be interpreted as two words long. The B
switch can also be used with the C switch to display
more than the first 256 characters of long character
strings. The B switch can not be used alone.

The first print modifier specified in a string of
variables determines the mode for the entire string
unless another mode is placed directly to the right of
a particular variable. For example, in:

TYPE II K,L/O,M,N/A,/2

the typeout mode is integer until another mode is
specified. Therefore,

K, M are integer - the default mode for group 2 is
integer
L is OCTAL
N is ASCII

Displays on your terminal the name of the currently
open program unit, any currently active breakpoints,
any group specifications, and any user-set array
dimensions. The command format is:

WHAT

17.6 ENVIRONM·ENT CONTROL

If a program enters an infinite loop, you can recover by
<CTRL/C> (twice) REENTER sequence. This action causes
simulate a pause at the point of reentry and allows you
your run-away program.

17-16

typing a
FORDDT to

to control

USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT)

Most commands can be used once the program has been reentered;
however, GOTO, STRACE, TYPE, and ACCEPT cause transfer of control to
routines external to FORDDT. No guarantee can be made to ensure that
any of these commands following a <CTRL/C> REENTER sequence will not
destroy the program integrity. The program must be returned to a
stable state before any of these four commands can be issued. In
order to restore program integrity, you should set a pause at the next
label and then CONTINUE to it. If the /DEBUG:TRACE switch is used, a
NEXT 1 command can be issued to restore program integrity.

17.7 FORTRAN /OPTIMIZE SWITCH

You should never attempt to use FOR DDT with a program that has been
compiled with the /OPTIMIZE switch. The global optimizer causes
variables to be kept in ACs. For this reason, attempts to examine or
modify variables in optimized programs will not work.

17.8 CALLING FORDDT

FORDDT can be called directly from a user FORTRAN program. The
appropriate statement is:

CALL FORDDT

where no argument is required. FORDDT must be loaded and initialized
before a CALL to FORDDT is made. This is done by starting the program
in debug mode prior to the first call (see Section 17.3, item 1). All
FORDDT commands are allowed. A CONTINUE will resume normal execution
of the user program (similar to a RETURN from a subroutine).

NOTE

Since FORDDT is defined as a global symbol, users
should be careful if they decide to use FOR DDT as a
program, subroutine, or function name.

17.9 FORDDT AND FORTRAN-20 EXTENDED ADDRESSING

FORDDT VI0 has been modified to be able to run in any section and
access data and code in all sections. The user interface to FORDDT is
the same regardless of whether or not a program uses extended
addressing.

FORDDT VI0 is section independent. The same FORDDT.REL will work in
either section 0 or a non-zero section.

If a program is loaded with the /DEBUG:FORDDT option, LINK loads
FORDDT.REL with the program. FORDDT.REL is a single-segment module
(it has only low segment code); therefore, when loaded with a FORTRAN
object program that was compiled with the /EXTEND switch (see Section
16.5), FORDDT, by default, is redirected to the .DATA. psect.

17-17

USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT)

FORDDT Version 10 will not be guaranteed to work with previous
versions of FORTRAN-IO/20.

FORDDT and FORLIB must be in the same section. Since they would by
default go into the .DATA./.CODE. section, the user normally would not
need to be concerned about this. However, you should be cautious when
you use the LINK /REDIRECT switch.

NOTE

The first page of any section that contains code is
reserved for FORDDT and FOROTS.

17-18

CHAPTER 18

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

This chapter describes the facilities that the FORTRAN Object Time
System (FOROTS) provides for the FORTRAN user. FOROTS implements all
standard FORTRAN I/O operations as set forth in the FORTRAN~77
standard. In addition, it provides the user with capabilities and
programming features beyond those defined in the ANSI standard.

The primary function of FOROTS is to act as a direct interface between
user-object programs and the TOPS-10 or TOPS-20 monitor during input
and output operations. Other capabilities include:

1. Job initialization

2. Channel and memory management

3. Error handling and reporting

4. File management

5. Formatt ing of data

6. Mathematical library

7. User library (nonmathematical)

8. Specialized applications packages

9. Overlay facilities

10. RMS-20 interface (TOPS-20 only)

11. Network file access (TOPS-20 only)

FOROTS runs on any TOPS-10 or TOPS-20 system. FOROTS interfaces with
all TOPS-l~ or TOPS-20 peripheral devices.

18.1 FEATURES OF FOROTS

The following list briefly describes many specific features of FOROTS;
more detailed information concerning the implementation of these
features is given later in this chapter.

1. Your program can run in either batch or timesharing mode
without requiring a program change. All differences between
batch-mode and timesharing-mode operations are resolved by
FOROTS.

FORTRAN-10/20 VII 18-1 February 1987

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

2. Your programs can access both directory and nondirectory
devices in the same manner.

3. FOROTS helps provide complete data file compatibility between
all system devices.

4. FOROTS treats devices located at remote stations in the same
way it treats local devices.

5. Programs written for magnetic tape operations will run
c~rrectly on disk under FOROTS supervision. FOROTS simulates
the commands needed for magnetic tape operations.

6. You may change or specify object program device and file
specifications with a FOROTS interactive dialogue.

7. Non-FORTRAN binary data files may be read in IMAGE mode by
FOROTS.

8. FOROTS provides interactive program/operating system
error-processing routines. These routines permit you to
route the execution of the program to specific
error-processing routines whenever designated types of errors
are detected.

9. An error traceback facility for fatal errors provides the
active execution path (by subroutine calls) between the main
program and the subroutine where the fatal error occurred.

10. FOROTS provides a trap-handling system for arithmetic
functions, including default values and error reports.

11. FOROTS permits your program to switch from READ to WRITE on
the same I/O device without loss of data or buffering.

12. Although primarily designed for use with the FORTRAN-10/20
object programs, you can also use FOROTS as an independent
I/O system, and as an I/O system for MACRO object programs.

13. FOROTS provides an interface to RMS-20 (TOPS-20 Record
Management Services) for I/O to RMS-20 sequential, relative,
and indexed file organizations.

14. FOROTS allows transparent access from TOPS-20 systems to
remote RMS and non-RMS files residing on other TOPS-20 and
VMS systems.

18.2 ERROR PROCESSING

Whenever a run-time error is detected, the FOROTS error-processing
system takes control of program execution. This system determines the
class of the error and either outputs an appropriate message at the
controlling terminal or branches the program to a predesignated
processing routine.

FORTRAN-10/20 VII 18-2 February 1987

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

18.3 INPUT/OUTPUT FACILITIES

On TOPS-10, FOROTS uses monitor-buffered I/O for SEQUENTIAL, SEQINOUT,
SEQIN, and SEQOUT files access, and uses dump mode I/O for
DIRECT (RANDOM) , RANDIN, and dump mode files access.

On TOPS-20, FOROTS uses PMAP monitor calls for disk files access other
than APPEND, and uses monitor-buffered I/O for all other file
accesses.

On TOPS-20, FOROTS uses the RMS-20 subsystem for disk I/O if the
ORGANIZATION keyword specifies an RMS file organization, or if the
file is remote.

The following sections describe I/O data channel and access modes.

18.3.1 Input/Output Channels Used By FOROTS (TOPS-10 Only)

FOROTS uses extended channels starting
operations. User programs can request
through the ALCHN. and FUNCT. routines.

FORTRAN-10/20 VII 18-2.1

at
I/O

channel 20 for I/O
channels 0 through 17

February 1987

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

This page intentionally left blank.

18-2.2 February 1987

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

When a request is made for an I/O channel, a table is scanned until a
free channel is found. The first free channel is assigned to the
requesting program. On completion of the assigned transfer, control
of the I/O channel is returned to FOROTS by using the DECHN. routine.

18.3.2 File Access

Data can be transferred between processor storage and peripheral
devices using either sequential or direct (random) access.

18.3.3 Closing Files After Non-standard Termination

When a FORTRAN program is aborted by <CTRL/C) or an error, open files
cannot be closed with the monitor command CLOSE. The following
command should be used:

REENTER

FOROTS then asks if you want the files to be closed.
YES, then, the files are closed.

If you answer

18.3.3.1 Sequential Access - In a sequential-access transfer
operation, the records involved are transferred in the same order as
they appear in the source file. Each I/O statement executed transfers
the record immediately following the last record transferred from the
accessed source file.

A type of the sequential access is available for output (write)
operations. This type of access is called APPEND and is specified by
the OPEN statement specifier ACCESS='APPEND' (see Section 11.3.1).
APPEND lets you write a record immediately after the last logical
record of the accessed file. During APPEND transfer, the records
already in the accessed file remain unchanged; the only function
performed is the appending of the transferred records to the end of
the file.

You must specify transfer types (other than SEQINOUT) by setting the
ACCESS option of a FORTRAN OPEN statement to one of several 'possible
arguments. For the sequential access, the arguments are:

ACCESS='SEQIN'
ACCESS='SEQOUT'
ACCESS='SEQUENTIAL'
ACCESS='SEQINOUT'
ACCESS='APPEND'

(file is opened for read-only access)
(file is opened for output)
(file is opened for input or output)
(same as SEQUENTIAL)
(sequential append access)

NOTE

A common way to append data to a file opened with
SEQUENTIAL access is to read past the end of file, and
then begin writing. The FORTRAN-77 standard requires
that a BACKSPACE operation be done to back over the
'end file record' preceding the WRITE.

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

l8.~.3~2 Direct (Random) Access' Mode - Direct access permits records
to be accessed and transferred from a source file in any desired
order. Direct access can only be used with disk files that have been
set up for direct access. Direct-access files must contain a
specified number of identically sized records that may be individually
accessed by a record number.

Direct-access transfers may be done in either a read/write direction
or a special read-only direction. You must specify random transfer
direction by setting the ACCESS option of an OPEN statement (see
Section 11.3.1) to one of several possible arguments.

ACCESS='DIRECT' (direct read/write access)
ACCESS='RANDOM' (same as DIRECT)
ACCESS='RANDIN' (direct read-only access)
ACCESS='KEYED' (direct indexed-file read/write access)

18.4 ACCEPTABLE TYPES OF DATA FILES AND THEIR FORMATS

The following sections describe the types of data files that are
acceptable to FOROTS.

18.4.1 ASCII Data Files

Each record within an ASCII data file consists of a set of contiguous
7-bit characters. A vertical paper-motion character (that is, a form
feed, a vertical tab, or a line feed) terminates each set. Logical
records may be split across physical blocks. There is no maximum
length for logical records.

18.4.2 FORTRAN Binary Data Files

Each logical record in a FORTRAN binary data file contains data that
the executing program can reference with either a READ or a WRITE
statement. A logical record is preceded and ended by a control word
and may have one or more control words embedded within it. In FORTRAN
binary data files, there is no relationship between logical records
and physical device block sizes. There is no implied maximum length
for logical records.

18.4.2.1 Format of Binary Files - A FOROTS binary file can contain
three forms of Logical Segment Control Words (LSCW). These LSCWs give
FOROTS the ability to distinguish ASCII files from binary files. The
value in the high-order 9 bits of an LSCW tells what kind of LSCW it
is: START, CONTINUE, or END.

LSCW
START 001+ the number of words in the segment including

the START LSCW word (exclusive of the END
LSCW)

CONTINUE 002+ the number of words in the segment including
the CONTINUE LSCW

END 003+ the number of words in the whole record
incl ud ing all LSCWs

FORTRAN-10/20 VII 18-4 "February 1987

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

If the access you specify for a file through the OPEN statement
ACCESS= argument is 'SEQIN', 'SEQOUT', 'SEQUENTIAL', or 'SEQINOUT',
all three LSCWs can appear in a record. If you specify a record size,
all records are of the same length, and there are no CONTINUE LSCWs.

The following examples illustrate the LSCW. The direct-access binary
file contains only 001 and 003 LSCWs.

C LOOK AT A BINARY FILE AND SEE THE LOGICAL SEGMENT
C CONTROL WORDS.

OPEN(UNIT=l,ACCESS='DIRECT' ,MODE='BINARY',
1 RECORDSIZE=lOO)

1=5
WR1TE(I'I) (I, J=l,lO)

J=7
WR1TE(l'2) (J,K=I,lO)
END

18-5

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

0/ 001000,000145~Number of 100/ 000000,000000
1/ 000000,000005 words in 101/ 000000,000000
2/ 000000,000005 record 102/ 000000,000000
3/ 000000,000005 counting 103/ 000000,000000
4/ 000000,000005 START LSCW 104/ 000000,000000
5/ 000000,000005 105/ 000000,000000
6/ 000000,000005 106/ 000000,000000
7/ 000000,000005 107/ 000000,000000
10/ 000000,000005 110/ 000000,000000
11/ 000000,000005 111/ 000000,000000
12/ 000000,000005 112/ 000000,000000
13/ 000000,000000 113/ 000000,000000
14/ 000000,000000 114/ 000000,000000
15/ 000000,000000 115/ 000000,000000
16/ 000000,000000 116/ 000000,000000
17/ 000000,000000 117/ 000000,000000
20/ 000000,000000 120/ 000000,000000
21/ 000000,000000 121/ 000000,000000
22/ 000000,000000 122/ 000000,000000
23/ 000000,000000 123/ 000000,000000
24/ 000000,000000 124/ 000000,000000
25/ 000000,000000 125/ 000000,000000
26/ 000000,000000 126/ 000000,000000
27/ 000000,000000 127/ 000000,000000
30/ 000000,000000 130/ 000000,000000
31/ 000000,000000 131/ 000000,000000
32/ 000000,000000 132/ 000000,000000
33/ 000000,000000 133/ 000000,000000
34/ 000000,000000 134/ 000000,000000
35/ 000000,000000 135/ 000000,000000
36/ 000000,000000 136/ 000000,000000
37/ 000000,000000 137/ 000000,000000
40/ 000000,000000 140/ 000000,000000
41/ 000000,000000 141/ 000000,000000
42/ 000000,000000 142/ 000000,000000
43/ 000000,000000 143/ 000000,000000
44/ 000000,000000 144/ 000000,000000
45/ 000000,000000 145/ 003000,000146~END LSCW
46/ 000000,000000 146/ 001000,000145 containing
47/ 000000,000000 147/ 000000,000007 the number
50/ 000000,000000 150/ 000000,000007 of words in
51/ 000000,000000 151/ 000000,000007 the record
52/ 000000,000000 152/ 000000,000007 including
53/ 000000,000000 153/ 000000,000007 all LSCWs.
54/ 000000,000000 154/ 000000,000007
55/ 000000,000000 155/ 000000,000007

.56/ 000000,000000 156/ 000000,000007
57/ 000000,000000 157/ 000000,000007
60/ 000000,000000 160/ 000000,000007
61/ 000000,000000 161/ 000000,000000
62/ 000000,000000 162/ 000000,000000
63/ 000000,000000 163/ 000000,000000
64/ 000000,000000 164/ 000000,000000
65/ 000000,000000 165/ 000000,000000
66/ 000000,000000 166/ 000000,000000
67/ 000000,000000 167/ 000000,000000
70/ 000000,000000 170/ 000000,000000
71/ 000000,000000 171/ 000000,000000
72/ 000000,000000 172/ 000000,000000
73/ 000000,000000 173/ 000000,000000
74/ 000000,000000 174/ 000000,000000
75/ 000000,000000 175/ 000000,000000
76/ 000000,000000 176/ 000000,000000
77/ 000000,000000 177/ 000000,000000

18-6

200/
201/
202/
203/
204/
205/
206/
207/
210/
211/
212/
213/
214/
215/
216/
217/
220/
221/
222/
223/
224/
225/
226/
227/
230/
231/
232/
233/
234/
235/
236/
237/
240/
241/
242/
243/
244/
245/

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000

246/
247/
250/
251/
252/
253/
254/
255/
256/
257/
260/
L61/
262/
263/
264/
265/
266/
267/
270/
271/
272/
273/
274/
275/
276/
277/
300/
301/
302/
303/
304/
305/
306/
307/
310/
311/
312/
313/

18-7

000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
000000,000000
003000,000146

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

On TOPS-10, in the sequential-access binary file, the second record
crosses the disk block boundary and contains an 002 (CONTINUE) LSCW.

On TOPS-20, the CONTINUE LSCW occurs on buffer boundaries, whose size
is determined by the BUFFERCOUNT keyword in the OPEN statement (see
Section 11.3.5) (default is four pages, 4000 octal words).

C LOOK AT A BINARY FILE AND SEE THE LOGICAL SEGMENT
C CONTROL WORDS.

OPEN(UNIT=l,MODE='BINARY')

1=5
WRI~E(l) (I, J=l,lOO)

J=7
WRITE(l) (J,K=l,lOO)
END

18-8

0/
1/
2/
3/
4/
5/
6/
7/
10/
11/
12/
13/
14/
15/
16/
17/
20/
21/
22/
23/
24/
25/
26/
27/
30/
31/
32/
33/
34/
35/
36/
37/
40/
41/
42/
43/
44/
45/
46/
47/
50/
51/
52/
53/
54/
55/
56/
57/
60/
61/
62/
63/
64/
65/
66/
67/
70/
71/
72/
73/
74/
75/
76/
77/

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

001000,000145
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005

100/
101/
102/
103/
104/
105/
106/
107/
110/
111/
112/
113/
114/
115/
116/
117/
120/
121/
122/
123/
124/
125/
126/
127/
130/
131/
132/
133/
134/
135/
136/
137/
140/
141/
142/
143/
144/
145/
146/
147/
150/
151/
152/
153/
154/
155/
156/
157/
160/
161/
162/
163/
164/
165/
166/
167/
170/
171/
172/
173/
174/
175/
176/
177/

18-9

000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
000000,000005
003000,000146
001000,000032~Number of
000000,000007 words to
000000,000007 next LSCW
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007

200/
201/
202/
203/
204/
205/
206/
207/
210/
211/
212/
213/
214/
215/
216/
217/
220/
221/
222/
223/
224/
225/
226/
227/
230/
231/
232/
233/
234/
235/
236/
237/
240/
241/
242/
243/
244/
245/

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

002000,000114~Continue 246/
247/
250/
251/
252/
253/
254/
255/
256/
257/
260/
261/
262/
263/
264/
265/
266/
267/
270/
271/
272/
273/
274/
275/
276/
277/
300/
301/
302/
303/
304/
305/
306/
307/
310/
311/
312/
313/
313/

000000,000007 LSCW
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007

18-10

000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
000000,000007
003000,000147

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

Image files contain no LSCWs. You can only backspace an IMAGE file
that is created with a record size.

C LOOK AT AN IMAGE MODE FILE AND SEE NO LOGICAL SEGMENT
C CONTROL WORDS.

OPEN(UNIT=l,MODE='IMAGE')

I=5
WRITE(l) (I, J=l,lOO)

J=7
WRITE(l) (J,K=l,lOO)
END

18-11

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

0/ 000000,000005 100/ 000000,000005
1/ 000000,000005 101/ 000000,000005
2/ 000000,000005 102/ 000000,000005
3/ 000000,000005 103/ 000000,000005
4/ 000000,000005 104/ 000000,000005
5/ 000000,000005 105/ 000000,000005
6/ 000000,000005 106/ 000000,000005
7/ 000000,000005 107/ 000000,000005
10/ 000000,000005 110/ 000000,000005
11/ 000000,000005 111/ 000000,000005
12/ 000000,000005 112/ 000000,000005
13/ 000000,000005 113/ 000000,000005
14/ 000000,000005 114/ 000000,000005
15/ 000000,000005 115/ 000000,000005
16/ 000000,000005 116/ 000000,000005
17/ 000000,000005 117/ 000000,000005
20/ 000000,000005 120/ 000000,000005
21/ 000000,000005 121/ 000000,000005
22/ 000000,000005 122/ 000000,000005
23/ 000000,000005 123/ 000000,000005
24/ 000000,000005 124/ 000000,000005
25/ 000000,000005 125/ 000000,000005
26/ 000000,000005 126/ 000000,000005
27/ 000000,000005 127/ 000000,000005
30/ 000000,000005 130/ 000000,000005
31/ 000000,000005 131/ 000000,000005
32/ 000000,000005 132/ 000000,000005
33/ 000000,000005 . 133/ 000000,000005
34/ 000000,000005 134/ 000000,000005
35/ 000000,000005 135/ 000000,000005
36/ 000000,000005 136/ 000000,000005
37/ 000000,000005 137/ 000000,000005
40/ 000000,000005 140/ 000000,000005
41/ 000000,000005 141/ 000000,000005
42/ 000000,000005 142/ 000000,000005
43/ 000000,000005 143/ 000000,000005
44/ 000000,000005 144/ 000000,000007
45/ 000000,000005 145/ 000000,000007
46/ 000000,000005 146/ 000000,000007
47/ 000000,000005 147/ 000000,000007
50/ 000000,000005 150/ 000000,000007
51/ 000000,000005 151/ 000000,000007
52/ 000000,000005 152/ 000000,000007
53/ 000000,000005 153/ 000000,000007
54/ 000000,000005 154/ 000000,000007
55/ 000000,000005 155/ 000000,000007
56/ 000000,000005 156/ 000000,000007
57/ 000000,000005 157/ 000000,000007
60/ 000000,000005 160/ 000000,000007
61/ 000000,000005 161/ 000000,000007
62/ 000000,000005 162/ 000000,000007
63/ 000000,000005 163/ 000000,000007
64/ 000000,000005 164/ 000000,000007
65/ 000000,000005 165/ 000000,000007
66/ 000000,000005 166/ 000000,000007
67/ 000000,000005 167/ 000000,000007
70/ 000000,000005 170/ 000000,000007
71/ 000000,000005 171/ 000000,000007
72/ 000000,000005 172/ 000000,000007
73/ 000000,000005 173/ 000000,000007
74/ 000000,000005 174/ 000000,000007
75/ 000000,000005 175/ 000000,000007
76/ 000000,000005 176/ 000000,000007
77/ 000000,000005 177/ 000000,000007

18-12

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

200/ 000000,000007 244/ 000000,000007
201/ 000000,000007 245/ 000000,000007
202/ 000000,000007 246/ 000000,000007
203/ 000000,000007 247/ 000000,000007
204/ 000000,000007 250/ 000000,000007
205/ 000000,000007 251/ 000000,000007
206/ 000000,000007 252/ 000000,000007
207/ 000000,000007 253/ 000000,000007
210/ 000000,000007 254/ 000000,000007
211/ 000000,000007 255/ 000000,000007
212/ 000000,000007 256/ 000000,000007
213/ 000000,000007 257/ 000000,000007
214/ 000000,000007 260/ 000000,000007
215/ 000000,000007 261/ 000000,000007
216/ 000000,000007 262/ 000000,000007
217/ 000000,000007 263/ 000000,000007
220/ 000000,000007 264/ 000000,000007
221/ 000000,000007 265/ 000000,000007
222/ 000000,000007 266/ 000000,000007
223/ 000000,000007 267/ 000000,000007
224/ 000000,000007 270/ 000000,000007
225/ 000000,000007 271/ 000000,000007
226/ 000000,000007 272/ 000000,000007
227/ 000000,000007 273/ 000000,000007
230/ 000000,000007 274/ 000000,000007
231/ 000000,000007 275/ 000000,000007
232/ 000000,000007 276/ 000000,000007
233/ 000000,000007 277/ 000000,000007
234/ 000000,000007 300/ 000000,0000'07
235/ 000000,000007 301/ 000000,000007
236/ 000000,000007 302/ 000000,000007
237/ 000000,000007 303/ 000000,000007
240/ 000000,000007 304/ 000000,000007
241/ 000000,000007 305/ 000000,000007
242/ 000000,000007 306/ 000000,000007
243/ 000000,000007 307/ 000000,000007

18-13

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

The following example illustrates the LSCWs for character data in
binary files.

C LOOK AT BINARY MODE FILE WITH CHARACTER DATA AND SEE THE
C LOGICAL SEGMENT CONTROL WORDS

OPEN (UNIT=l,MODE='BINARY')

WRITE (I) 3, 'ABCDEF' ,4,'GHIJKL'

WRITE (1) 'MNOPQR' ,'STUVWX'
END

0/ 001000,000007
1/ 000000,000003
2/ 406050,342212
3/ 430000,000000
4/ 000000,000004
5/ 436211,145226
6/ 460000,000000
7/ 003000,000010
10/ 001000,0000e4
11/ 466351,750242
12/ 512472,452654
13/ 536600,000000
14/ 003000,000005

The following example illustrates the format of character data in
image files. Image 'files contain no LSCWs.

C LOOK AT IMAGE MODE FILE WITH CHARACTER DATA AND SEE
C NO LOGICAL SEGMENT CONTROL WORDS

OPEN (UNIT=l,MODE='IMAGE')

WRITE (1) 3, 'ABCDEF' ,4,'GHIJKL'

WRITE (1) 'MNOPQR' ,'STUVWX'
END

0/ 000000,000003
1/ 406050,342212
2/ 430000,000000
3/ 000000,000004
4/ 436211,145226
5/ 462331,647640
6/ 506452,352252
7/ 532573,000000

18.4.3 RMS Data Files (TOPS-20 only)

The FOROTS/RMS-20 interface can be used to access RMS-20 (and remote
VMS RMS-32) files with sequential, relative, or indexed organizations.

,An RMS record file consists of a prologue section and a data section.
The prologue section is the repository of the file's attributes. The
data section contains data records (and indexes, if applicable).

See the TOPS-20 RMS User's Guide for more information on RMS file
formats.

FORTRAN-10/20 VII 18-14 February 1987

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

18.5 USING FOROTS

FOROTS has been designed to lenq itself for use as an I/O system for
programs written in languages other than FORTRAN. Currently, MACRO
programmers may employ FOROTS as a general I/O system by writing
simple MACRO calls that simulate the calls made to FOROTS by a FORTRAN
compiler. The calls made to FOROTS are to routines that implement
FORTRAN I/O statements such as READ, WRITE, OPEN, or CLOSE.

FOROTS will provide automatic memory allocation, data conversion, I/O
buffering, and device interface operations to the MACRO user.

18.5.1 FOROTS Entry Points

FOROTS provides the following entry points for
FORTRAN compiler or a non-FORTRAN program.
contained in FORLIB.REL.

calls from either a
These entry points are

Table 18-1: FOROTS Entry Points

Entry Point Function

ALCHN.

ALCOR.

CLOSE.

DBMS.

DEC.

DECHN.

DECOR.

DELTR.

ENC.

EXIT.

EXITI.

FIN.

FORTRAN-10/20 VII

Allocates an I/O channel for use by a MACRO
subroutine (see Section 18.5.3.12)

Allocates memory (see Section 18.5.3.11)

Closes a file. In a FORTRAN program, this call is
made when the CLOSE statement is executed (see
Section 18.5.3.10)

DBMS interface.

DECODE routine. This call, coupled with an IOLIST
call, handles decoding.

Deallocates an I/O channel that was obtained from
ALCHN (see Section 18.5.3.12)

Deallocates memory that was allocated by an ALCOR
call (see Section 18.5.3.11)

Deletes an RMS relative or indexed file record. In
a FORTRAN program, this call is made when a DELETE
statement is executed (see Section 10.13).

ENCODE routine

Closes all files, clears interrupt system, and
terminates program execution. In a FORTRAN
program, this call is made when an END statement is
executed in the main program.

Writes out buffers, closes and unmaps all files

I/O list termination routine (see Section 18.5.3.9)

18-15 February 1987

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

Table 18-1: FOROTS Entry Points (Cont'd)

Entry Point Function

FIND. FIND statement

FORER. Error processor

FOROP. Miscellaneous FOROTS utilities

FUNCT. OTS-independent interface to provide common
functions (like memory and I/O channel management)
for programs such as overlay handler and DBMS.
FUNCT. is an interface that works the same way with
FORTRAN, COBOL, and ALGOL run-time systems (see
Section 18.6).

IFI. Internal file input (see Section 18.5.3.2)

IFO. Internal file output (see Section 18.5.3.2)

IN.

IOLST.

MTOP.

NLI.

NLO.

OPEN.

OUT.

RESET.

REWRF.

REWRU.

RTB.

TRACE.

UNLOC.

WTB.

FORTRAN-10/20 VII

Formatted input routine (see Sections 18.5.3.1,
18.5.3.5, 18.5.3.6, and 18.5.3.8)

I/O list routine (see Section 18.5.3.9)

REWIND, BACKSPACE, and ENDFILE statements (see
Section 18.5.3.7).

NAMELIST input routine (see Section 18.5.3.3)

NAMELIST output routine (see Section 18.5.3.3)

Opens a file. Connects FORTRAN Logical Unit Number
to a file for I/O (see Section 18.5.3.10)

Formatted output routine (see Sections 18.5.3.1,
18.5.3.5, 18.5.3.6, and·18.5.3.8)

Job initialization entry

Formatted REWRITE output routine. In a FORTRAN
program, this call is made when a formatted REWRITE
statement is executed for RMS files (see Section
10.14.1) •

Unformatted REWRITE output routine. In a FORTRAN
program, this call is made when an unformatted
REWRITE statement is executed for RMS files (see
Sec t i on 1 0 • 14 • 2) •

Binary input routine (see Sections 18.5.3.1 and
18.5.3.5)

Traces subroutine calls

UNLOCK record routine for RMS files.
UNLOCK statement, Section 10.15.)

(See the

Binary output routine (see Sections 18.5.3.1 and
18.5.3.5)

18-16 February 1987

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

18.5.2 Calling Sequences

You must use the following general form for all calls made to FOROTS:

XMOVEI
PUSHJ

where:

ARGBLK

16,ARGBLK
17,Entry Point
(control is returned here)

is the address of a specifically formatted
argument block that contains information needed by
FOROTS to accomplish the desired operation.

Entry Point is an entry point identifier (see Table 18-1) that
specifies the entry point of the desired FOROTS
routine.

With three exceptions, all returns from FOROTS will be made to the
program instruction immediately following the call (PUSHJ 17, entry
point instruction). The exceptions are:

1. An error return to a specified statement number, that is,
READ or WRITE statement ERR=option (see Section 10.4.7),

2. An end-of-file return to a statement number, that is, READ or
WRITE statement END=option (see Section 10.4.6),

3. A fatal error that returns to the monitor.

Sections 18.5.3.1 through 18.5.3.12 give the MACRO calls and required
argument block formats needed to initialize FOROTS and FOROTS I/O
operations.

18-16.1 February 1987

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

This page intentionally left blank.

18-16.2 February 1987

USING THE FORTRAN OBJ~CT TIME SYSTEM (FOROTS)

18.5.3 MACRO Calls for FOROTS Functions

The following sections describe the forms of the MACRO calls to FOROTS
that are made by the FORTRAN compiler. The calls described are
identified by the language statement that they implement. The
following terms and abbreviations are used in the description of the
argument block (ARGBLK) of each call:

pointer to the second word in the argument block (This
is the address pointed to by the argument ARGBLK in the
calling sequence.)

u FORTRAN logical unit number

n count of ASCII characters

f FORMAT statement address

list an Input/Output list

name a NAMELIST name

r a variable specifying the logical record number for
random access mode

* list-directed I/O (the FORMAT statement is not used)

type type specification of a variable or constant

The argument block for all I/O statements is a sequence of keyword
specifiers. Bits 2-8 of each argument specify which argument is being
supplied, as follows:

1 UNIT
2 FMT address
3 FMT size (in words)
4 END= address
5 ERR= address
6 IOSTAT= address
7 REC=
10 NAMELIST table address
11 File-positioning function code
12 ENCODE/DECODE array address
13 Internal record length
14 Relational type for indexed READ
15 Key number of key for indexed READ
16 Key relational value

FORTRAN-10/20 VII 18-17 February 1987

~

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

The format of ARGBLK is:

0-1 2-S 9-12

(-count - negative of number
block not including this one)

ARGBLK: 1 a kwd type

· · · · · · 1 a kwd type
wnere:

I = indirection bit
y = IS-bit address or data
kwd keyword number

NOTE

13 14-17 lS-35

of words in a

I a y

I a y

Future versions of FOROTS will not support argument
blocks with index registers specified either in the
arguments or in memory locations referenced indirectly
by these arguments. Arguments must not reside in the
ACs. In addition, so-called 'immediate' arguments
(those with a type code of zero) will not be
supported.

18.5.3.1 Sequential-Access Calling Sequences - The READ and WRITE
statements for formatted sequential data transfer operations and their
calling sequences are:

READ(u,f) list

XMOVEI 16, ARGBLK
PUSHJ 17, IN.

and

WR I T E (u , f) 1 i s t

XMOVEI 16, ARGBLK
PUSHJ 17, OUT.

The following arguments must be specified in ARGBLK:

1 UNIT
2 FMT address
3 FMT size

The following may also appear:

4 ERR
5 END
6 IOSTAT

18-18

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

The READ and WRITE statements for unformatted sequential data transfer
operations and their calling sequences are:

READ(u) list

XMOVEI 16, ARGBLK
PUSHJ 17, RTB.

and

WRITE(u) list

XMOVEI 16, ARGBLK
PUSHJ 17, WTB.

The following arguments must be specified in ARGBLK:

1 UNIT

The following may also appear:

4 END
5 ERR
6 IOSTAT

18.5.3.2 Internal File Calling Sequences - The READ and WRITE
statements for formatted sequential data transfer operations using
internal files and their calling sequences are:

READ (u , f) 1 i s t

XMOVEI 16, ARGBLK
PUSHJ 17, IFI.

and

WR I T E (u , f) 1 i s t

XMOVEI 16, ARGBLK
PUSHJ 17, IFO.

The following arguments must be specified in ARGBLK:

1 UNIT (must be a character scalar or array)
2 FMT address
3 FMT size

The following may also appear:

4 ERR
5 END
6 IOSTAT

18-19

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

lS.5.3.3 NAMELIST I/O, Sequential-Access Calling Sequences - The READ
and WRITE statements for NAMELIST-directed sequential data transfer
operations and their calling sequences are:

READ (u, name)

XMOVEI 16, ARGBLK
PUSHJ 17, NLI.

and

WRITE (u, name)

XMOVEI 16, ARGBLK
PUSHJ 17, NLO.

The following arguments must be specified in ARGBLK:

1 UNIT
10 NAMELIST address

The following may also appear:

4 END
5 ERR
6 IOSTAT

The NAMELIST table is generated from the FORTRAN NAMELIST statement.
The first word of the table is the NAMELIST name; following that are a
number of 2 word entries for scalar variables, and a number of (N+4)
word entries for array variables, where N is the dimensionality of the
array.

The names you specify in the NAMELIST statement are stored, in SIXBIT
format, first in the table. Each name is followed by a list of
arguments associated with the name. The NAMELIST table is terminated
by a zero entry. The name argument list can be in either a scalar or
an array form.

18.5.3.4
reference
example:

Array Offsets and Factoring - Address calculations used
a given array element involve factors and offsets.

Array A is dimensioned

DIMENSION A (Ll:Ul,L2:U2,L3:U3, ••• Ln:Un)

The size of each dimension is represented by:

Sl UI-Ll+l
S2 U2-L2+1

In order to calculate the address of an element referenced by:

A (Il,I2,I3, ••• In)

the following formula is used:

to
For

A+(I1-L1)+(I2-L2)*Sl+(I3-L3)*S2*Sl+ ••• +(In-Ln)*S[n-1]* ••• *S2*Sl

lS-20

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

The terms are factored out depending on the dimensions of the array,
not on the element referenced, to arrive at the formula:

A+(-Ll-L2*Sl-L3*S2*Sl •••)+Il+I2*Sl+I3*S2*Sl •••

The parenthesized part of this formula is the offset for a
single-precision array; it is referred to as the Array Offset.

For each dimension of a giverr array, there is a corresponding factor
by which a subscript in that position will be multiplied. From the
last expression, one can determine the factor for dimension n to be:

S[n-l]*S[n-2]* ••• *S2*Sl

For double-precision and complex arrays, the expression becomes:

A+2*(Il-Ll)+2*(I2-L2)*Sl+2*(I3-L3)*S2+Sl+ •••

Therefore, the array offset for a double-precision array is:

2*(-LI-L2*Sl-L3*S2*Sl •••)

and the factor for the nth dimension is:

2*S[n-l]*S[n-2]* ••• *S2*Sl

The factor for the first dimension of a double-precision array is
always 2. The factor for the first dimension of a single-precision
array is always 1.

For character arrays, the offset is calculated in bytes instead of
words. The byte offset from the start of a character array whose
elements are of length X is:

X*«II-Ll)+(I2-L2)*S2+ •••)

This offset is X times the offset of a single-precision numeric array.

NAMELIST Table

0 35

NAMELIST name in SIXBIT

NAMELIST entry 1

NAMELIST entry 2

·
·
·

NAMELIST entry n

4000,,0 (FOROTS FIN. word)

18-21

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

SCALAR ENTRY in a NAMELIST Table

o 1 9-12 18-35

SIXBIT/SCALAR NAME/

1 0 o Scalar addr

ARRAY ENTRY in a NAMELIST Table

0-1 1 2-8
1

9-12 1 13 1 14-17
1

18-35

SIXBIT/ARRAY NAME/

1 0 I IDIMS 1 type 1 I
1

0
1

BASE ADDR

ARRAY SIZE

OFFSET

Factor 1

Factor 2

· · · Factor n

18.5.3.5 I/O Statements, Direct-Access Calling Sequences - The READ
and WRITE statements for formatted direct-access data transfers and
their calling sequences are:

READ (u I r , f) 1 is t

XMOVEI 16, ARGBLK
PUSHJ 17, IN.

and

WRITE CUi r ,f) list

XMOVEI 16, ARGBLK
PUSHJ 17, OUT.

The following arguments must be specified in ARGBLK:

1 UNIT
2 FMT address
3 FMT size
7 REC

18-22

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

The following may also appear:

4 END
5 ERR
6 IOSTAT

The READ and WRITE statements for unformatted direct-access transfers
and their calling sequences are:

READ (u I r)

XMOVEI l6,ARGBLK
PUSHJ P,RTB.

and

WRITE (u I r)

XMOVEI l6,ARGBLK
PUSHJ P,WTB.

The following argument must be specified in ARGBLK:

1 UNIT
7 REC

The following may also appear.:

4 END
5 ERR
6 IOSTAT

18.5.3.6 Default Devices Statements, Calling Sequences - The FORTRAN
statements that require the use of a reserved system default device
and their calling sequences are:

ACCEPT f, list
READ f, 1 i st
REREAD f, list

XMOVEI 16, ARGBLK
PUSHJ 17, IN.

and

PRINT f, list
PUNCH f, list
TYPE f, list

XMOVEI 16, ARGBLK
PUSHJ 17, OUT.

Default Device

UNIT=-4
UNIT=-5
UNIT=-6

UNIT=-3
UNIT=-2
UNIT=-l

(TTY)
(CDR)
(REREAD)

(LPT)
(PTP)
(TTY)

The arguments for these calls are the same as for the standard
formatted sequential READ and WRITE statements.

18-23

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

18.5.3.7 Statements to Position Files - The formatted and unformatted
FORTRAN statements that can be used to control the positioning of
files and their calling sequences are:

CALL:

Function
(FORTRAN Statement)

SKIPFILE (u)
BACKFILE (u)
BACKSPACE (u)
ENDFILE (u)
REWIND (u)
SKIPRECORD (u)
UNLOAD (u)

XMOVEI 16, ARGBLK
PUSHJ 17, MTOP.

FOROTS Code

7
3
2
4
o
5
1

The following arguments must be specified in ARGBLK:

1 UNIT
11 FOROTS code

The following may also appear:

4 END
5 ERR
6 IOSTAT

NOTE

For disk files, UNLOAD is the same as REWIND; BACKFILE
and SKIPFILE are ignored.

18.5.3.8 List-Directed Input/Output Statements - You may write any
form of a sequential I/O statem~nt as a list-directed statement by
replacing the referenced FORMAT statement number with an asterisk (*).

The list-directed forms of the READ and WRITE statements and their
calLing sequences are:

READ (u, *) 1 i s t

XMOVEI 16, ARGBLK
PUSHJ 17, IN.

and

WR I T E (u, *) 1 i s t

XMOVEI 16, ARGBLK
PUSHJ 17, OUT.

The arguments for these calls are the same as for the standard
formatted sequential READ and WRITE statements, except that the FORMAT
statement address and FORMAT statement size must be specified as zero.

18-24

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

18.5.3.9 Input/Output Data Lists - The compiler generates a calling
sequence to the run-time system for the I/O list in a READ or WRITE
statement. The argument block associated with the calling sequence
contains the addresses of the variables and arrays to be transferred
to or from an I/O buffer.

The general form of an I/O list calling sequence is:

XMOVEI 16, ARGBLK
PUSHJ 17, IOLST.

Any number of elements may be included in the ARGBLK. The end of the
argument block is specified by a zero entry or a FIN entry.

Mnemonic Name FOROTS Value

DATA 1
SLIST 2
ELIST 3
FIN 4
F77 SLIST 5
F77 ELIST 6

The elements of an I/O list are:

1. DATA

The DATA element converts one single- or double-precision or
complex item from external to internal form for a READ
statement and from internal to external form for a WRITE
statement. Each DATA element has the following format:

0-1 2-8 9-12 13 14-17 18-35

1 a DATA type I a SCALAR AD DR

2. SLIST

The SLIST argument, converts an entire array from internal to
external form or vice versa, depending on the type of
statement (that is, READ or WRITE) involved. An SLIST
consist of a table of arguments that has the following form:

0-1 2-8 9-12 13 14-17 18-35

1 a SLIST type I a #ELEMENTS

1 a a type I a INCREMENT

1 a a type I a BASE ADDRI

18-25

3.'

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

For example, the sequence:

DIMENSION A(lOO) ,B(lOO)
READ(-,-)A

or

READ(-,-) (A(I) ,I=l,lOO) !only when the /OPT switch is used

develops an SLIST argument of the form:

0-1 2-8 9-12 13 14-17 18-35

1 0 2 2 0 0 [144]
1 0 0 2 0 0 [1]
1 0 0 2 0 0 A
0 0 4 0 0 0 0

More than one base address may appear in a SLIST as long as
the increment is the same. The sequence:

DIMENSION A(lOO), B(lOO)
WRITE (-,-) (A(I) ,B(I) ,I=lOO) !on1y when the /OPT

switch is used

develops an SLIST argument of the form:

0-1 2-8 9-12 13 14-17 18-35

1 0 2 2 0 0 [144]
1 0 0 2 0 0 [1]
1 0 0 2 0 0 A
1 0 0 2 0 0 B
0 0 4 0 0 0 0

ELIST

The SLIST format permits only a single increment
specified for a number of arrays, while the ELIST
different increments to be specified for different
An ELIST consists of a table of arguments that
following form:

The format of the ELIST is:

0-1 2-8 9-12 13 14-17 18-35

1 0 ELIST type I 0 No. Elements to
transfer
increment 1

1 0 0 type I 0 Base ADDR 1
increment 2

1 0 0 type I 0 Base AD DR 2
increment N

1 0 0 type I 0 Base ADDR N

18-26

to be
permits
arrays.
has the

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

For example, the FORTRAN sequence:

DIMENSION IC(6,100), IB(lOO)
WR I T E (- , -) (I B (I) , I C (1 , I) , I = 1 , 1 0 0)

produces the ELIST:

0-1 2-8 9-12 13 14-17 18-35

1 0 3 2 0 0 [144]
1 0 0 2 0 0 [1]
1 0 0 2 0 0 IB
1 0 0 2 0 0 [6]
1 0 0 2 0 0 IC
0 0 4 0 0 0 0

The increment may be zero. This could be produced by the
s~quence:

WRITE(-,-) (K,I=I,lOO) !only when the /OPT switch is used

Produces the ELIST:

0-1 2-8 9-12 13 14-17 18-35

1 0 3 2 0 0 [144]

1 0 0 2 0 0 [0]

1 0 0 2 0 0 K

0 0 4 0 0 0 0

4. FIN

The end of an I/O list is indicated by a FIN
the I/O processor interprets this element, it
to FIN to terminate the I/O. This call must
each I/O initialization call, including calls
list.

element. When
performs a call
be made after
with a null I/O

The FIN routine may be entered by an explicit call or by an
argument in this I/O list argument block. Both calls can not
be used. The FIN element has the following format:

9-12 13 14-17 18-35

o o o o

EXPLICIT CALL:

PUSHJ 17, FIN.

18-27

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

5. F77 SLIST

This is the same as SLIST except that if the number of
elements is less than or equal to zero, no I/O is done.

6. F77 ELIST

This is the same as ELIST except that is the number of
elements is less than or equal to zero, no I/O is done.

18.5.3.10 OPEN and CLOSE Statements, Calling Sequences - The form and
calling sequences for the OPEN and CLOSE FORTRAN statements are:

OPEN statement call:

XMOVEI 16, ARGBLK
PUSHJ 17, OPEN.

CLOSE statement call:

XMOVEI 16, ARGBLK
PUSHJ 17, CLOSE.

where ARGBLK is:

0-1 2-8 9-12

Negative of
the number
of words in
block not
including
this one.

1 0 G type
1 0 G type
1 0 G type

· · · · · · · · · · · · · · · · 1 0 G type

13 14-17 18-35

0

I X H
I X H
I X H

· · · · · · · · · · · · I X H

The G field (bits 2 through 8) contains a value that defines the
argument name; the H field (bits 18 through 35) contains an address
that points to the value of the argument. Note that the G field
values for OPEN and CLOSE statements are not the same as those for
other I/O statements.

18-28

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

The numer ic codes that may appear in the G field are:

G Field Open Argument G Field Open Argument

01 DIALOG 31 PADCHAR=
02 ACCESS= 32 RECORDTYPE=
03 DEVICE= 33 STATUS=
04 BUFFERCOUNT= 34 TAPEFORMAT=
05 BLOCKSIZE= 35 READONLY=
06 FILE= 36 UNIT=
07 PROTECTION= 37 ERR=
10 DIRECTORY= 40 EXIST=
11 LIMIT= 41 FORMATTED=
12 MODE= 42 NAMED=
13 FILESIZE= 43 NEXTREC=
14 RECORDSIZE= 44 NUMBER=
15 DISPOSE= 45 OPENED=
16 VERSION= 46 SEQUENTIAL=
17 ORGANIZATION= 47 UNFORMATTED=
20 SHARED 50 NAME=
21 IOSTAT= 51 KEY=
22 ASSOCIATEVARIABLE= 52 USEROPEN=
23 PARITY= 53 DIALOG=
24 DENSITY= 54 DEFAULTFILE=
25 BLANK= 55 KEYED=
26 CARRIAGECONTROL= 56 NOSPANBLOCKS
27 FORM= 57 MAXREC=
30 BYTESIZE=

18.5.3.11 MemQry Allocation Routines - The memory management module
is called to allocate or deallocate memory blocks. There are two
entry points (ALCOR. and DECOR.) that control memory allocation and
deallocation.

When TOPS-20 extended addressing is in effect, ALCOR. and DECOR. can
be used; however, memory will be allocated in FOROT's section instead
of in the user's section. You can use the LINK switch
/OTSEGMENT:NONSHARABLE to put FOROTS in the user's section.

Use the ALCOR. entry to allocate the number of words specified in the
argument block variable. Upon return, AC 0 will contain either the
address of the allocated memory block or -1, which indicates that
memory is not available.

The calling sequence for an ALCOR. call is:

XMOVEI 16, ARGBLK
PUSHJ 17, ALCOR.

where ARGBLK is:

0-1 2-8

-1

1 0 Reserved

FORTRAN-10/20 VII

9-12 13 14-17

type I 0

18-29

18-35

0

Address of
number of words

February 1987

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

Use the DECOR. entry to deallocate a previously allocated block of
memory; the argument variable must be loaded with the address of the
memory block to be returned.

If the number of desired words is N, ALCOR. actually removes N+2 words
from free storage. The pointer returned points to the third word
(word 2 as opposed to word 0) removed from free storage. The first
two words are used by FOROTS to maintain linked lists of allocated
(using ALCOR.) and free storage, and must not be modified.

The calling sequence for a DECOR. call is:

XMOVEI 16, ARGBLK
PUSHJ 17, DECOR.

where ARGBLK is:

0-1 2-8

-1

1 0 Reserved

9-12 13 14-17

type I 0

18-35

0

Pointer to word
containing
address of block
to be returned

18.5.3.12 Channel Allocation and Deallocation Routines - You may
allocate software channels in MACRO programs by means of calls to the
ALCHN. routine and deallocate them by calls to the DECHN. routine.
Values are returned in AC O.

Use the ALCHN. entry to allocate a particular channel or the next
available channel. The channel to be allocated is passed as an
argument to ALCHN. Zero is passed as an argument to allocate the next
available channel. Allowed channels are 1 through 17 (octal). If the
channel requested is not available, or all channels are in use, ALCHN.
returns with a -1 in AC O. In normal returns, AC 0 contains the
assigned number.

The calling sequence of an ALCHN. routine is:

XMOVEI 16, ARGBLK
PUSHJ 17, ALCHN.

where ARGBLK is:

0-1 2-8

-1

-.. 1 0 Reserved

9-12 13 14-17

type I 0

18-30

18-35

0

Pointer to a word
containing
the channel #
or zero

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

Use the DECHN. entry to deallocate a previously assigned channel. The
channel to be released is passed as an argument to DECHN. If the
channel to be deallocated was not assigned by ALCHN. and thus cannot
be deassigned, AC 0 is set to -Ion return.

The calling sequence for a DECHN. routine is:

XMOVEI 16, ARGBLK
PUSHJ 17, DECHN.

where ARGBLK is:

0-1 2-8 9-12 13 14-17 18-35

-1 0

Pointer to a word
1 0 Reserved type I 0 containing

the channel #
to be released

18.6 FUNCTIONS TO FACILITATE OVERLAYS

FOROTS provides a subroutine (FUNCT.) to serve as an interface with
the LINK overlay handler. This subroutine consists of a group of
functions that allow the overlay handler to perform I/O, memory
management, and error message handling.' These functions have only one
entry point, FUNCT.i and they are called by the sequence:

XMOVEI 16, ARGBLK
PUSHJ 17, FUNCT.

The format of the ARGBLK is:

ARGBLK:

where:

type
function code
error prefix
status

-<n+3>,,0
IFIW 2,address of integer function code
IFIW l7,address of 3-letter ASCII error prefix
IFIW 2,address of status code on return
IFIW type,address of first argument

IFIW type,address of nth argument

is the FORTRAN argument type (see Chapter 14)
is the number of one of the required functions
is ignored by FOROTS
is undefined on the call and set on the return
with one of the values below.

-1 Function not implemented
o Successful return
l •••• n Specific error message

When TOPS-20 extended addressing is in effect, FUNCT. can be used;
however, memory will be allocated in FOROTS's section instead of in
the user's section. You can use the LINK switch
/OTSEGMENT:NONSHARABLE to put FOROTS in the user's section.

18-31

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

Table 18-2: Function Numbers and Function Codes

Function
Number Function
(Octal) Mnemonic

0 ILL
1 GAD
2 COR

3 RAD
4 GCH
5 RCH
6 GOT

7 ROT
10 RNT

11 IFS

12 CBC

13 RRS
14 WRS
15 GPG
16 RPG

17 GPSI
20 RPSI
21 MPG
22 UPG

Function Description

Illegal function; returns -1 status
Gets a specific segment of memory
Gets a given amount of memory from
anywhere in the space allocated to the
overlay handler
Returns a specific segment of memory
Gets an~I/O channel
Returns an I/O channel
Gets memory from the space allocated to
the object-time system
Returns memory to the object-time system
Gets the initial run time from the
object-time system
Gets the initial
specification from
system

run
the

time file
object-time

Cuts back memory (if possible) to reduce
job size
Reads RETAIN status (DBMS)
Writes RETAIN status (DBMS)
Allocates memory on a page boundary
Deallocates memory obtained by function
15
Gets TOPS-20 PSI channel
Returns TOPS-20 PSI channel
Gets a contiguous set of pages
Returns a contiguous set of pages

Each function of the FUNCT. subroutine is described below. The
arguments described in each of the following functions are what should
be in the addresses pointed to by the argument block described above.

ILL CO) FUNCTION - This function is illegal. The argument block is
ignored, and the status returned is -1.

GAD (I) FUNCTION - This function gets memory from a specific address
in the space allocated to the overlay handler. The arguments are:

arg 1
arg 2

address of requested memory
address of number of words of memory to allocate

A call to GAD with arg 2 equal to -1 requests all available memory.

On return, the status is one of the following:

o
1
2
3

successful allocation
not enough memory available
memory not available at specified address
illegal arguments (such as, address + size is greater
than 256K)

18-32

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

COR (2) FUNCTION - This function gets memory from any available space
allocated to the overlay handler. The arguments are:

arg 1
arg 2

undefined (address of allocated memory on return)
address of size of requested allocation

On return, the status is one of the following:

memory allocated
not enough memory available

a
1
3 illegal argument (that is, size is greater than 256K)

RAD (3) function - This function returns
address within the space allocated to
arguments are:

memory at the specified
the overlay handler. The

arg 1
arg 2

address of memory to be return
address of size of memory to be returned (in words)

On return, the status is one of the following:

successful return of memory
memory cannot be returned

a
I
3 illegal argument (that is,the address or the size is

greater than 256K)

GCH (4) FUNCTION - This function gets an I/O channel.
are:

The arguments

arg I undefined (address of channel number allocated on
return)

arg 2 ignored

On return, the status is one of the following:

a
1

successful channel allocation
no I/O channels available

RCH (5) FUNCTION - This function returns an
arguments are:

I/O channel.

arg 1
arg 2

address of number of channel to be returned
ignored

On return, the status is one of the following:

a
1

channel released
invalid channel number

The

GOT (6) FUNCTION - This function gets memory from the space allocated
to the object-time system. The arguments are:

arg 1
arg 2

undefined (address of allocated memory on return)
address of size of memory requested

On return, the status is one of the following:

a
1
3

successful allocation
not enough memory available
illegal argument (such as, size is greater than 256K)

18-33

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

This function differs from function 1 in that if the object-time
system has two free memory lists, then function 1 is used to allocate
space for links, and this function is used to allocate space for I/O
buffers. Function 1 uses the free memory list for LINK, and function
6 uses the list for the object-time system.

ROT (7) FUNCTION - This function returns memory to the object-time
system. The arguments are:

arg 1
arg 2

address of memory to be returned
address of size of memory to be returned (in words)

On return, the status is one of the following:

successful return of memory
memory cannot be returned

o
1
3 illegal argument (such as, the address or the size is

greater than 256K)

RNT (10) FUNCTION - This function returns the initial run time from
the object-time system. (At the beginning of the program, the
object-time system will have executed a RUNT 1M UUO; that result is the
time returned by RNT.) The arguments are:

arg 1 undefined (contains address of initial run time on
return)

arg 2 ignored

On return, the run time is in arg 1, and the status is O. The status
is 0:
IFS (11) FUNCTION (TOPS-IO only) - This function returns the initial
run-time file specification from the object-time system. (This
initial file specification is the one used to begin the program; that
is, it was given with the system RUN command.) The arguments are:

arg 1
arg 2
arg 3

undefined (address of SIXBIT device on return)
undefined (address of SIXBIT filename on return)
undefined (project-programmer number on return
address of path block if run from SFD

On return, the status is one of the following:

o
1

successful return
error

or

This function tells the overlay handler which file to read after the
initial RUN command.

CBC (12) FUNCTION - This function cuts back memory if possible, which
reduces the size of the user job. There are no arguments.

The returned status is:

o always

RRS (13) FUNCTION
WRS (14) FUNCTION - These functions are reserved for use by DBMS.

GPG (15) FUNCTION - This function gets memory on a page boundary. The
arguments are the same as for FUNCTION 6, GOT.

arg 1
arg 2

ignored
address of number of words of memory to allocate

18-34

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

On return, arg 1 has the address of the allocated memory. It will be
on a page boundary. (That is, it will be a multiple of 1000 octal.)

On return, the status is one of the following:

a
1
3

successful
not enough memory available
illegal argument

RPG (16) FUNCTION - This function returns memory obtained by FUNCTION
15. The arguments are the same as for FUNCTION 7, ROT.

arg 1
arg 2

address of memory to be returned
address of size of memory to be returned (in words)

On return, the status is one of the following:

a
1
3

successful return of memory
was not allocated
illegal argument

GPSI (17) FUNCTION - This function gets the TOPS-20 PSI channel. It
assigns a software interrupt channel number. GPSI provides only
controlled access to the PSI tables. It arranges that the tables
exist and that SIR and EIR have been done, but does not do AIC or any
other JSYS necessary to set up the channel (ATI or MTOPR, for
example) •

arg 1

arg 2
arg 3

address of channel number to allocate, or -1 to
allocate any user-assignable channel
address of level number
address of interrupt routine (if the FORTRAN program is
running on a system that supports extended addressing,
the interrupt routine address may be a 30-bit address
in any section, including section O. Otherwise, the
interrupt address must be an IS-bit address.)

On return, the status is one of the following:

a

1
2
3

allocated OK (arg 1 is the channel number if -1 was
sent)
requested channel was already assigned
no free channels
argument error

RPSI (20) FUNCTION - This function returns the TOPS-20 PSI channel.
It returns a PSI channel allocated by FUNCTION 17. RPSI provides only
controlled access to the PSI tables. It removes the given channel
from the tables. This function does not do DIC or any other JSYS
necessary to remove an interrupt condition from a channel.

arg 1 address of channel number to return

On return, the status is one of the following:

a
1
3

OK
channel was not allocated
argument error

MPG (21) FUNCTION - This function gets a contiguous set of pages. The
pages requested are always allocated from the section FOROTS is in.
The user cannot depend upon this call to either create or destroy the
pages.

lS-35

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

arg 1 first page number to allocate. The page number must be
in the range 0 to 777.

arg 2 number of pages to allocate

On return, the status is one of the following:

o
1
3

successful allocation of all given pages
one or more pages were already allocated
illegal argument (bad page number or count)

UPG (22) FUNCTION- This function returns a contiguous set of pages.
The pages returned are considered to be in the section FOROTS is in.
The user cannot depend upon this call to either create or destroy the
pages.

arg 1 first page number to deallocate. The page number must
be in the range 9 to 777

arg 2 number of pages to deallocate

On return, the status is one of the following:

o successful deallocation of all given pages
1 one or more pages was not allocated by MPG
3 illegal argument (bad page number or count)

18.7 LOGICAL/PHYSICAL DEVICE ASSIGNMENTS

You make FORTRAN logical and physical device assignments at run time,
or standard system assignments are made according to a FOROTS Device
Table, that is, DEVTB. Table 10-3 in Section 10.4.3 shows the
standard assignments contained by the Device Table.

18.8 FOROTS AND INQUIRE BY FILE STATEMENT

See Section 11.7 for a description of the INQUIRE statement.

If no device is given for the FILE= specifier, FOROTS uses DSK: as the
default. If no extension is given, FOROTS uses .DAT. For TOPS-20, if
no generation number is given, FOROTS uses a generation number of O.

FOROTS determines if the device specified is a disk. If the device is
a disk, the following happens:

• FOROTS determines if a file exists with the file
specification given in the INQUIRE statement. It returns the
answer (either .TRUE. or .FALSE.) in the variable specified
by the EXIST= specifier, if any. If such a file exists,
FOROTS 'expands' the file specification as follows:

• A logical name is translated into a physical device name.

• For TOPS-20, the file specification, which is overlaid by
the user-specified directory, filename, extension, and
generation.

• For TOPS-20, an actual file generation number is
substituted for a generation number of 0, -1, or -2.

18-36

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

The resultant file specification, in string form, is called
the 'full (expanded) file·string.'

• FOROTS searches for a match between the file specification
given in the INQUIRE statement and a file specification
associated with a logical unit for which there is a
"connection." This is to determine the values to be returned
for the INQUIRE specifiers OPENED= and NUMBER= (see Section
11.7.3). FOROTS looks at all FORTRAN logical units for which
there is a connection in ascending order, starting with zero.

FOROTS compares the file specification given in the INQUIRE
statement (with FILE= defaults applied) with the exact file
specification given in the OPEN statement (with FILE=
defaults applied) if the following is true:

• The file does not exist on the directory.

• An OPEN statement has been executed and STATUS='UNKNOWN'
and ACCESS='SEQUENTIAL' (see Section 11.3.1).

• No data transfer statements have been executed using the
unit.

If the file exists, FOROTS compares the full file string
associated with the unit with the full (expanded) file string
given in the INQUIRE statement. The file exists if the
following is true:

• An OPEN has been executed with STATUS other
'UNKNOWN' or ACCESS other than 'SEQUENTIAL'.

• An I/O transfer statement has been executed.

than

If neither of these two comparisions are successful, FOROTS
returns the current unit number in the variable specified
with the NUMBER= specifier, and returns 'YES' in the variable
specified with the OPENED= specifier. If the same file is
connected on several units, the matching technique described
will return the smallest unit number for which there is a
match.

For non-disk devices specified in the INQUIRE statement file string
specification, FOROTS looks at all the FORTRAN logical units for which
there is a connection in ascending order, starting with zero.

If the device in the file string specified in the INQUIRE statement is
not the user's controlling terminal, FOROTS expands the file
specification given in the INQUIRE statement by translating a logical
name given as the device into its corresponding physical name. It
then compares the device part of this expanded file specification with
the device part of the full (expanded) file string associated with the
logical unit.

If the device is the user's controlling terminal (device 'TTY'),
FOROTS determines if the device associated with the logical unit is
also the user's controlling terminal.

18-37

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

18.9 USEROPEN PROCEDURES

The USEROPEN keyword in a FORTRAN OPEN statement (see Section 11.3.39)
provides a way to access RMS-20 facilities that are otherwise not
available to FORTRAN programs.

The USEROPEN keyword specifies a user-written external procedure that
controls the opening of a file. It has the form:

USEROPEN = procedure-name

where procedure-name is the symbolic name of a user-written function.
The procedure must be declared in an EXTERNAL statement (see Section
7.6) •

When an OPEN statement (wi th or wi thout the USEROPEN keyword) is
executed on an RMS file, FOROTS uses the OPEN statement keywords to
establish the RMS File Access Block (FAB), the Record Access Block
(RAB), and optionally one or more Extended Argument Blocks (XABs).

If a USEROPEN keyword is included in the OPEN statement, FOROTS
establishes defaults for some of the data structure fields, then calls
your USEROPEN routine instead of opening the file according to its
normal defaults. The USEROPEN routine can then provide additional
parameters to RMS, as well as read values from the FAB, RAB, and XABs
as returned by RMS.

FOROTS will call a USEROPEN routine with an argument list of the
following form:

-3, ,0
xM: IFIW TP%INT,address of unit

IFIW TP%LBL,address of FAB
IFIW TP%LBL,address of RAB

Using these arguments, the USEROPEN routine can then perform the
following operations:

1. Modify the FAB/RAB or XAB(s). (Optional)

2. Issue the $OPEN or $CREATE RMS service calls (depending on
whether the file exists or is to be created), followed by the
$CONNECT RMS service call to prepare the file for record I/O.
(Required)

3. Check the status indicators returned by RMS after each of the
above service calls. Your procedure should return
immediately with the RMS error code in AC0 if RMS returns a
failure status. (Required)

4. Read file attribute information returned by RMS to the FAB,
RAB, or XAB(s). (Optional)

5. Return a success or failure status value in AC0 to FOROTS.
AC0 must be zero on success. (Requi red)

18.9.1 Example of a USEROPEN

The following example shows a FORTRAN OPEN statement calling a
USEROPEN routine UOPN, which changes the default "No duplicate"
attribute for the primary index in an indexed file.

FORTRAN-10/20 VII 18-38 February 1987

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

EXTERNAL UOPN
OPEN (UNIT=l,FILE='IDX.DAT' ,ORGANIZATION='INDEXED',
1 STATUS='NEW' ,KEY=(1:10) ,RECL=40,
1 USEROPEN=UOPN)

A USEROPEN routine may cause a first-time invocation of RMS. To
ensure that RMS is invoked compatibly with FOROTS, the following code
must be placed in all USEROPEN and MACRO routines that may invoke RMS:

SEARCH RMSINJ

.REQUIRE SYS:RMSZER

.REQUIRE SYS:RTLZNM

.REQUIRE SYS:ZERBOO

.REQUIRE SYS:DYNBOO

iRMS/dynamic library universal file

iDynamic library boot-strap files

The following function UOPN creates an RMS indexed file after setting
the FLG XAB field in the primary index XAB to allow duplicate primary
keys:

UOPN:

TITLE UOPN
SEARCH RMSINJ,MACSYM,MONSYM
INTERN UOPN

.REQUIRE SYS:RMSZER

.REQUIRE SYS:RTLZER

.REQUIRE SYS:ZERBOO

.REQUIRE SYS:DYNBOO

STDAC.

T0==0

XMOVEI Tl,@1(16)
MOVX T2,FB$SUP
$STORE T2,FOP,«Tl»

$FETCH Tl,XAB,«Tl»
MOVX T2,XB$DUP
$STORE T2,FLG,«Tl»

$CREATE @1(16)
CAlL T2,ER$MIN

JRST BADRET

$CONNECT @2(16)
CAlL T2,ER$MIN

JRST BADRET

SETZ T2,
POPJ P,

BADRET: MOVE T0,T2
POPJ P,

END UOPN

iStandard AC definitions

iGet FAB address
i Get "Supersede existing" bit
i Set in FAB

iGet address of 1st XAB in chain
iGet "allow dupe" bit
;Set in XAB

;Create the file
;Error?
iYes

;CONNECT RAB
iError?
iYes

;Return success

;Return error code in AC0

To allow an existing file to be superseded with a higher generation,
the routine first turns on the FB$SUP bit in the FAB. It then fetches
the address of the first XAB in the XAB chain (in this case the only
XAB) and sets the XB$DUP bit in the FLG field to allow duplicate
primary keys (the RMS/FOROTS default is to disallow duplicate primary
keys) •

FORTRAN-10/20 VII 18-39 February 1987

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

For local RMS indexed files, the XAB field of the FAB will always
point to the first key XAB in any XAB chain. For all remote files,
the XAB field of the FAB points to a CONFIG XAB containing network
system information; the NXT field of the CONFIG XAB will point to the
start of the key XAB chain. Refer to the RMS-20 programmer's
Reference Manual and the TOPS-20 RMS User's Guide for more information
of RMS data structures.

18.9.2 RMS/FOROTS Data and Control Structures

When RMS is invoked to access a file on a particular unit, FOROTS
allocates and initializes the following RMS data structures for each
such uni t:

• FAB - File Access Block

• RAB - Record Access Block

• XAB - Extended Attribute Block. One or more are allocated if
the file is indexed or remote.

In addition, a statically allocated NAM and TYP block are linked to a
unit's FAB block during OPEN processing.

Values in these control structures are set or defaulted by FORTRAN as
described below. In addition, RMS may update these control structures
with information derived from the file after it is opened.

Unless an error intervenes, these data structures are not deallocated
until the unit is closed. User-written subroutines and USEROPEN
functions may alter or examine field values in these structures, but
they must not alter their allocation. Caution should be exercised
when changing fields that have been set as a result of FORTRAN
keywords (such as MRS or FAC values), since unpredictable results may
occur during subsequent I/O. In general, if a desired value can be
obtained through the use of a FORTRAN keyword, use the keyword.

The following RMS FAB, RAB and XAB fields are either initialized by
FORTRAN and/or examined upon return from an RMS service call. Fields
not listed here take the RMS defaults, or are returned by RMS.

FAB FIELDS

Field Name FORTRAN OPEN keyword/value

F$BSZ Bytesize n if BYTESIZE=n; else .., for
TOPS-20, 8 for VMS files

F$CTX Context Reserved for Digital

F$FAC File access Set at OPEN depending on STATUS,
ACCESS and READONLY or SHARED
keywords. Set to FB$GET for read
access files; else to
FB$GET+FB$PUT+FB$DEL+FB$UPD+FB$TRN

FB$BRO also for remote non-RMS
files

FORTRAN-10/20 VII 18-40 February 1987

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

F$FNA File specification
string address

FILE= filename + DEFAULTFILE= file
name if present, else FORnn.DAT if
neither given

F$FOP File-processing options

FB$SUP Supersede

FB$DLT Delete on close

FB$SPL Spool to printer

FB$SCF Submit command

Set at OPEN depending on STATUS and
ACCESS keywords

Set at CLOSE depending on DISPOSE
keyword in OPEN or CLOSE, or STATUS
keyword in CLOSE

Set at CLOSE depending on DISPOSE
keyword in OPEN or CLOSE, or STATUS
keyword in CLOSE

Set at CLOSE depending on DISPOSE
keyword in OPEN or CLOSE, or STATUS
keyword in CLOSE

F$MRS Maximum record size For RMS files, set to
RECORDSIZE=n; else to 0

n if

F$MRN Maximum record number For RM.8 files, set to
MAXREC=n; else to 0

n if

F$NAM Name block address

F$TYP Type block address

F$ORG File organization

F$RAT Record attributes

FB$BLK Do not cross page
boundaries

F$RFM Record format

F$SHR File sharing

FB$PUT Allow other PUTs
FB$GET Allow other GETs
FB$DEL Allow other DELETEs
FB$UPD Allow other UPDATEs

FORTRAN-10/20 VII

Set to address of name block; both
the expanded and resultant string
areas are set up

Set to address of type block for
remote non-RMS files. T$CLA is set
to TY$IMA

FB$IDX if ORGANIZATION='INDEXED'
FB$REL if ORGANIZATION='RELATIVE'
FB$SEQ if ORGANIZATION='SEQUENTIAL'
or omi tted

I if NOSPANBLOCKS

FB$FIX if RECORDTYPE='FIXED'
FB$VAR if RECORDTYPE='VARIABLE'
FB$STM if RECORDTYPE='STREAM'
FB$FIX if no RECORDTYPE and
ORGANIZATION is 'RELATIVE' or
'INDEXED'

I if SHARED
I if SHARED
I if SHARED
I if SHARED

18-41 February 1987

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

F$XAB Extended attribute o if the file is not indexed or is
not remote. For all remote files,
contains the address of a CONFIG
XAB, whose N$NXT points to the
beginning of the key XAB chain, if
any. For local indexed files,
contains the address of the first
key XAB.

RAB FIELDS

Field

R$BKT

R$CTX

R$FAB

R$KBF

R$KRF

R$KSZ

R$MBF

R$RAC

R$RBF

Name

Bucket code

Context

FAB address

Key buffer address

Key of reference

Key size

Multibuffer count

Record access mode

FORTRAN OPEN keyword/value

Set to n during remote non-RMS
processing

Reserved for DIGITAL

Set to address of file argument
block

Set to address of record number if
ACCESS='DIRECT' or address of key
data if ACCESS='KEYED'

Set to key of reference for indexed
files

Set to size of key for indexed
files

n if BUFFERCOUNT=n, else 0

RB$KEY if
cKEYED'

ACCESS='DIRECT' or

RB$SEQ if ACCESS='SEQUENTIAL',
'APPEND' or ACCESS is omitted.

RB$BLK for remote non-RMS files

Record buffer address Set during READ or WRITE

R$ROP Record-processing options

RB$EOF End-of-file I if ACCESS='APPEND'
RB$KGE Key .GE. If indexed READ

RB$KGT Key .GT. If indexed READ

R$RSZ Record size Set during READ and WRITE

R$UBF User record area Set during READ and WRITE address

R$USZ User record area size Set during READ and WRITE

FORTRAN-10/20 VII 18-42 February 1987

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

The following KEY XAB fields are set by FORTRAN for indexed files:

Field

X$DTP

X$FLG

X$REF

X$POS

X$SIZ

X$NXT

Name

Key datatype

Key options flags

Key of reference

Key position

Key size

Link address

FORTRAN-10/20 VII

XAB FIELDS

FORTRAN OPEN keyword/value

XB$STG if CHARACTER (default); else
XB$IN4 if INTEGER

XB$DUPIXB$CHG for each secondary
index

Set depending on OPEN KEY= position
of key specifier

From OPEN KEY= specifier

From OPEN KEY= specifier

Address of next XAB in chain, or 0

18-43 February 1987

CHAPTER 19

USING THE FORTRAN REAL-TIME SOFTWARE (TOPS-10 ONLY)

19.1 INTRODUCTION

The FORRTF library subroutines are designed to allow the timesharing
FORTRAN user to do real-time programming on TOPS-IO systems. These
subroutines, described in Section 19.3, are listed below:

LOCK
RTINIT
CONECT
RTSTRT
BLKRW
RTREAD
RTWRIT
STATO
STATI
RTSLP
RTWAKE
DISMIS
DISCON
UNLOCK

With these subroutines, the timesharing job can dynamically connect
real-time devices to the Priority Interrupt (PI) system, respond to
these devices at interrupt level, remove the devices from the PI
system, and change their PI level. Use of these routines requires
that you have real-time privileges and are able to lock your job in
core. The privilege bits required are:

JP.RTT (bit 13) - real-time privileges
JP.LCK (bit 14) - locking privileges

The number of real-time devices that can be handled at one time is an
assembly-t ime constant (RTDEVN) in the FORRTF source. The
DIGITAL-distributed software has RTDEVN equal to 2, but it can be
changed (up to 6) by editing the statement "RTDEVN==2" in FORRTF.MAC
and reassembling.

The error messages output by FORRTF can be in either full message
format or coded format (refer to Table 19-1). Use of the code and
format saves over 100 words of run-time core. If core is limited,
reassembly of FORRTF.MAC with the assembly-time constant SHORT changed
from the DIGITAL-distributed a (full format) to -1 (coded format)
accomplishes the core saving.

On multiprocessor systems, the real-time traps apply only to the
processor specified by the job's CPU specification. If the
specification indicates more than one processor, the specification is
changed to indicate CPUO. Note that the priority interrupt channel is
only for the indicated CPU.

19-1

USING THE FORTRAN REAL-TIME SOFTWARE (TOPS-IO ONLY)

19.2 USING FORRTF

Users of FORTRAN-IO real-time software must consider the following:

1. Use of memory

2. Device control in block or single mode

3. Priority-interrupt levels

4. Masks

19.2.1 Memory

The job being executed must be locked in memory with the LOCK
subroutine (see Section 19.3.1). Any data being read into memory can
only be read into the low segment and above the protected job data
area (the first 140 locations). The BLKRW subroutine (see Section
19.3.5) tests the validity of the locations specified to receive data
in block reading to ensure that no overwritings occur.

However, when in block mode, the block pointer must be reset before
dismissing the end-of-block interrupt; otherwise, all memory could be
overwritten.

19.2.2 Modes

Real-time jobs can control their devices in one of two ways: block
mode or single mode. In block mode, an entire block of data is read
or written before the user-interrupt routine is run; whereas, in
single mode, the user-interrupt program is run every time the device
interrupts.

There are two types of block mode:
mode. A device in fast-block
dedicated entirely to itself.

19.2.3 priority-Interrupt Levels

fast-block mode and normal-block
mode requires that a PI channel be

Priority-interrupt levels 1 through 6 are legal depending on the
system configuration. The lower the number of the level, the higher
the priority of that level. Programs that execute for a long time
should not be put on high-priority interrupt levels, since they could
cause other real-time programs on lower levels to lose data.
Specification of the PI level as zero for a particular device causes
the device to be removed from the PI system.

19.2.4 Masks

For a description of the bits included in the startmsk and intmsk
parameters of RTSTRT and the status word in STATO and STATI, see the
DECsystern-l0 Hardware Reference Manual.

19-2

USING THE FORTRAN REAL-TIME SOFTWARE (TOPS-IO ONLY)

19.3 SUBROUTINES

Each of the 14 subroutines associated with FORTRAN real-time software
is described briefly in Sections 19.3.1 through 19.3.14. These
subroutines have been programmed to be compatible with programs
written according to the TOPS-IO Monitor Calls Manual.

19.3.1 LOCK

LOCK locks the job in memory and allocates and initializes the
internal controlling tables for all real-time devices. LOCK must be
called before any of the other real-time routines, and must be called
exactly once.

The form of the LOCK subroutine is:

CALL LOCK

19.3.2 RTINIT

RTINIT initializes the internal tables controlling a real-time device.
RTINIT must be called for each iDdividual device being used.

The form of the RTINIT subroutine is:

CALL RTINIT (unit, dev, pi, trpadr, intmsk)

where:

unit

dev

pi

trpadr

is the real-time device unit number (any number from 1
to RTDEVN). This number is not connected in any way
with the FORTRAN logical unit number.

is the device code for the real-time device (see the
DECsystem-lO Hardware Reference Manual) •

is the priority-interrupt level on which the real-time
device is to be run. Each individual device in
fast-block mode must have a level dedicated to itself.
If the level is equal to zero, the device will be
removed from the priority-interrupt system altogether.

If it is necessary to connect one device to several
levels simultaneously, a negative value for PI tells
the system not to remove any other occurrences of the
device from any other (or the same) PI level. (Note
that this counts as another real-time device.)

is the address of a FORTRAN entry to which real-time
interrupts are to trap. This can be a function or
subroutine subprogram. Any variables that must be
shared between the user-level code and the
interrupt-level routine must be passed by means of
COMMON. Passing them as parameters causes disastrous
results.

19-3

USING THE FORTRAN REAL-TIME SOFTWARE (TOPS-IO ONLY)

intmsk

19.3.3 CONECT

is the mask of all interrupting flags for the real-time
devic~. This is actually set up by RTSTRT and should
be zero whenever the real-time device is inactive (that
is, in a call to RTINIT, except in the case of
fast-block mode). In fast-block mode, intmsk must be
set to -1.

CONECT tells the system to connect a real-time device to the proper PI
level and sets up several elements of the device-controlling tables.
Every device must be CONNECTED.

The form of the CONECT subroutine is:

CALL CONECT (unit, mode)

where:

unit

mode

19.3.4 RTSTRT

is the real-time device unit number (see RTINIT).

is either:

-2, write a block of data, fast mode; then interrupt.
-1, write a block of data, normal mode; then interrupt.
0, interrupt every word
+1, read a block of data, normal mode; then interrupt.
+2, read a block of data, fast mode; then interrupt.

RTSTRT can be used to start a real-time device, as well as to stop it
and zero its interrupt mask. A device must be started to be used and
should be stopped before it is disconnected. The form of the RTSTRT
subroutine is:

CALL RTSTRT (unit, startmsk, intmsk)

where:

unit

startmsk

intmsk

19.3.5 BLKRW

is the real-time device unit number (see RTINIT).

is the flags necessary to start the device (see
the DECsystem-lO Hardware Reference Manual). If
the device is being stopped, this parameter should
be zero.

is the mask of all interrupting bits for the
particular device (see the DECsystem-lO Hardware
Reference Manual). If the device is in fast-block
mode and being started, intmsk should equal -1;
if, however, the device in any mode is being
stopped, the parameter must be O.

BLKRW is used with either of the block modes. It sets up the size and
starting address of the data block being handled. A new count and
starting address must be set up each time the current one runs out.

19-4

USING THE FORTRAN REAL-TIME SOFTWARE (TOPS-IO ONLY)

The form of the BLKRW subroutine is:

CALL BLKRW (unit, count, blkadr)

where:

unit

count

blkadr

19.3.6 RTREAD

is the real-time device unit number (see RTINIT).

is the number of words to be read or written.

is the array into which the data is to be written or
from which it is to be read.

RTREAD, used with a device in single mode, reads a single word of data
from the device.

The form of the RTREAD subroutine is:

CALL RTREAD (unit, datadr)

where:

unit

datadr

19.3.7 RTWRIT

is the real-time device unit number (see RTINIT).

is the address of the location in which to store the
data read.

RTWRIT sends a single word of data to a real-time device in single
mode.

The form of the RTWRIT subroutine is:

CALL RTWRIT (unit, datadr)

where:

unit

datadr

19.3.8 STATO

is the real-time device unit number (see RTINIT).

is the location of the data word to be sent to the
device.

STATO sends the specified status word to the status register of a
real-time device.

The form of the STATO subroutine is:

CALL STATO (unit, statadr)

19-5

USING THE FORTRAN REAL-TIME SOFTWARE (TOPS-10 ONLY)

where:

unit is the real-time device unit number (see RTINIT).

statadr is the location of the word of status bits to be sent
to the real-time device.

19.3.9 STATI

STATI reads the current device status bits into the location specified
for inspection by the FORTRAN program.

The form of the STATI subroutine is:

CALL STATI (unit, adr)

where:

unit is the real-time device unit number (see RTINIT).

adr is the location into which the device status bits are
to be read.

19.3.10 RTSLP

RTSLP is called from the timesharing level and causes the FORTRAN job
to sleep until RTWAKE is called from interrupt level. The program
goes to sleep for the specified number of seconds (up to 60). When it
wakes up, it checks to see if RTWAKE has been called from interrupt
level. If RTWAKE has been called, RTSLP returns to the calling
program; otherwise the job goes back to sleep again.

The form of the RTSLP subroutine is:

CALL RTSLP (time)

where:

time is the length of sleep time in seconds.

19.3.11 RTWAKE

RTWAKE is called at interrupt level to wake up the FORTRAN program.

The form of the RTWAKE subroutine is:

CALL RTWAKE

19.3.12 DISMIS

DISMIS dismisses the interrupt
user-interrupt routine must be
causes its execution to begin.

currently being processed. The
sure to dismiss the interrupt that

The form of the DISMIS subroutine is:

CALL DISMIS

19-6

USING THE FORTRAN REAL-TIME SOFTWARE (TOPS-IO ONLY)

19.3.13 OISCON

DISCON disconnects a real-time device from its PI level. All devices
should be disconnected through calls to DISCON before the job is
terminated.

The form of the DISCON subroutine is:

CALL DISCON (unit)

where:

unit is the real-time device unit number (see RTINIT).

19.3.14 UNLOCK

UNLOCK unlocks the job from core. When execution of a job is
complete, the job is automatically unlocked before the return to the
monitor. The UNLOCK subroutine provides a method to unlock a job
before execution is complete. Note that all real-time device handling
must be finished before the job is unlocked.

The form of the UNLOCK subroutine is:

CALL UNLOCK

19.3.15 Error Messages

Table 19-1 lists real-time software error messages, including the code
format, the full message format, and the subroutine in which the
message occurs.

19-7

USING THE FORTRAN REAL-TIME SOFTWARE (TOPS-IO ONLY)

Table 19-1: Error Messages - Code Format and Full Message Format

Code Format

1

2

3

4

5

6

7

8

A

A

Full Message Format

?ILLEGAL UNIT NUMBER.
TO HANDLE MORE DEVICES,
REASSEMBLE FORRTF WITH A
LARGER
?ERROR COMES FROM THE
SUBROUTINE "subroutine name"

?RTINIT MUST BE CALLED BEFORE
CONECT

?CONECT MUST BE CALLED BEFORE
RTSTRT OR BLKRW

?REAL TIME BLOCK OUT OF BOUNDS
?END OF BLOCK TOO HIGH
[such as, overwrites some program
or in high segment]

B ?END OF BLOCK TOO LOW,

A
B

A
B

such as, start address less
than 140

?JOB CANNOT BE LOCKED IN
CORE
?JOB NOT PRIVILEGED
?NOT ENOUGH CORE AVATLABLE
FOR LOCKING

?APR ERROR AT INTERRUPT
LEVEL
?PDL OVERFLOW
?ILLEGAL MEMORY REFERENCE

?RTTRP ERROR
realtime trap error of the
followi ng so r t

A ?ILLEGAL PI NUMBER
PI channel not available

B ?TRAP ADDRESS OUT OF BOUNDS
C ?SYSTEM LIMIT FOR REALTIME

DEVICES EXCEEDED
D ?JOB NOT LOCKED IN CORE OR NOT

PRIVILEGED
E ?DEVICE ALREADY IN USE BY

ANOTHER JOB

A

B

o ?OCCURRED IN THE DISCON
ROUTINE

1 ?OCCURRED IN THE CONECT
ROUTINE

?NOT ENOUGH CORE AVAILABLE
FOR THE CONTROL BLOCKS
?NOT ENOUGH CORE AVAILABLE

19-8

Subroutine in
which message
occurs

" RTDEVN"

CONECT

RTSTRT,BLKRW

BLKRW

LOCK

DISCON

CONECT

LOCK

APPENDIX A

SUMMARY OF FORTRAN STATEMENTS

This appendix summarizes the forms of
provides a section reference where
detail.

Form

ACCEPT(FMT=f{,END=s][,ERR=s][,IOSTAT=ios]) [iolist]
ACCEPT(FMT=*[,END=s][,ERR=s][,IOSTAT=ios]) [iolist]
ACCEPT f{,iolist]
ACCEPT *[,iolist]

ASSIGN s to i

BACKFILE un
BACKFILE(UNIT=un[,ERR=][,IOSTAT=ios])
BACKFILE(un[,ERR=s][,IOST AT=ios])

BACKSPACE un
BACKSPACE(UNIT=un[,ERR=s][,IOST AT=ios])
BACKSPACE(un[,ERR=s][,IOSTAT=ios])

BLOCK DATA [sub]

CALL sub [([a1 [,a2] ...])J

CHARACTER [*len[,J] v[*len] [,v[*lenJ]

CLOSE (closelist)

COMMON [![cbJl]n~ist[[,]/[cb]/nlist] ...

COMPLEX v [,v ...]

CONTINUE

DATA nlist/clist/ [[,]nlist/clist/] ...

DECODE(c,f,a[,ERR=s][,IOSTAT=i'os]) [iolist]

DELETE(UNIT=un[,ERR=s][,IOSTAT=ios])
DELETE(un[,ERR=s][,IOSTAT=ios])
DELETE(UNIT=un,REC=rn[,ERR=s][,IOSTAT=ios J)
DELETE(un,REC=rn[,ERR=s][,IOSTAT=ios J)
DELETE(un'rn [,ERR=s][,IOSTAT=iosJ)

DIMENSION a(d) [,a(d) ...]

DO s[,] i=el,e2[,e3]

. DO s[,] WHILE(e)

DOUBLE PRECISION v[,v ...]

FORTRAN-10/20 VII A-I

all FORTRAN statements and
each statement is described in

Section
Reference

Section 10.8

Section 8.3

Section 11.8.8

Section 11.8.4

Section 13.1

Section 13.4.2.2

Section 7.2.2

Section 10.16

Section 7.4

Section 7.2

Section 9.4

Section 7.9

Section 10.12

Section 10.13

Section 7.1

Section 9.3.1

Section 9.3.2

Section 7.2

February 1987

SUMMARY OF FORTRAN STATEMENTS

Form

ELSE

ELSE IF (e) THEN

ENCODE(c,f,a[,ERR=s][,IOSTAT=iosj)[iolist]

END

END DO

END IF

ENDFILE un
ENDFILE(UNIT=un[,ERR=s][,IOSTAT=iosj)
ENDFILE(un[,ERR=s][,IOST AT=iosj)

ENTRY en [(dl [,d2 ...])]

EQUIVALENCE (nlist) [,(nlist) ...]

EXTERNAL proc [,proc] ...

FIND(UNIT=un,REC=rn[,ERR=s][,IOSTAT=iosj)
FIND(un'rn[,ERR=s][,IOSTAT=ios])

FORMAT (fs)

fun ([argl,arg2, ... argnj)

[typ] FUNCTION fun ([argl [,arg2] ... j)

GO TO i [[,](s [,s] ...)]

GO TO s

GO TO (s [,s] ...)[,] e

INCLUDE filespec/switch

IF (e) st

IF (e) sl, s2, s3

IF (e) sl, s2

IF (e) THEN

IMPLICIT type (a [,a ...])[,type (a[,a ...]) ...
IMPLICIT NONE

INQUIRE(FILE=fl[DEFAULTFILE=dfi][,fiistj)

INQUIRE([UNIT=]u,ulist)

INTEGER v [,v ...]

INTRINSIC fun[,fun]

LOGICAL v [,v ...]

NAMELIST /name/list[jname/list] ...

OPEN (openlist)

PARAMETER (p=c[,p=c ...])
PARAMETER p=c [,p=c ...]

FORTRAN-10/20 VII A-2

Section
Reference

Section 9.2.4

Section 9.2.4

Section 10.12

Section 9.7

Section 9.4

Section 9.2.4

Section 11.8.5

Section 13.4.3

Section 7.5

Section 7.6

Section 11.8.1

Section 12.1.1

Section 13.3.4

Section 13.3.2

Section 9.1.3

Section 9.1.1

Section 9.1.2

Section 6.4.2

Section 9.2.2

Section 9.2.1

Section 9.2.3

Section 9.2.4

Section 7.3

Section 11. 7 .1

Section 11.7.2

Section 7.2

Section 7.7

Section 7.2

Section 12.7

Section 10.14

Section 7.8

February 1987

SUMMARY OF FORTRAN STATEMENTS

Form

PAUSE [n]

PRINT(FMT=f[,ERR=s][,IOSTAT=ios]) [iolist]
PRINT(FMT=* [,ERR=s] [,IOSTAT=ios]) [iolist]
PRINT f[,iolist]
PRINT *[,iolist]

PROGRAM name

PUNCH(FMT=f[,ERR=s] [,IOSTAT=ios]) [iolist]
PUNCH(FMT=*[,ERR=s][,IOSTAT=ios]) [iolist]
PUNCH f[,iolist]
PUNCH *[,iolist]

READ (UNIT=un,FMT=f[,END=s] [,ERR=s][,IOSTAT=ios])[iolist]
READ (un,FMT=f[,END=s][,ERR=s] [,IOSTAT=ios]) [iolist]
READ(- un, f[,END=s][,ERR=s][,IOSTAT=ios]) [iolist]
READ (UNIT=un,FMT=*[,END=s][,ERR=s][,IOSTAT=ios]) [iolist]
READ (un,FMT=*[,END=s][,ERR=s][,IOSTAT=iosj)[iolist]
READ(un, * [,END=s][,ERR=s][,IOSTAT=ios])[iolist]
READ (UNIT=un,FMT=name[,END=s] [,ERR=s] [,lOST A T=ios])
READ (un,FMT=name[,END=s][,ERR=s][,IOSTAT=ios])
READ(un, name[,END=s][,ERR=s][,IOSTAT=ios])
READ f[,iolist]
READ *[,iolistj
READ (UNIT=*,FMT=f[,END=s] [,ERR=s][,IOSTAT=ios])[iolist]
READ(UNIT=*,FMT=*[,END=s] [,ERR=s][,IOSTAT=ios]) [iolist]
READ(UNIT=un[,END=s] [,ERR=s] [,IOSTAT=ios]) [iolist]
READ (un[,END=s][,ERR=s][;IOSTAT=ios]) [iolist]
READ(UNIT=un,FMT=f,REC=rn[,ERR=s] [,IOSTAT=ios])[iolist]
READ (un,FMT=f,REC=rn[,ERR=s][,IOSTA T=ios]) [iolist]
READ (un, f,REC=rn[,ERR=s][,IOSTAT=ios]) [iolist]
READ (un'rn,FMT=f [,ERR=s][,IOSTAT=ios]) [iolist]
READ (un'rn, f [,ERR=s][,IOSTAT=iosj)[iolist]
READ(UNIT=un,REC=rn[,ERR=s][,IOSTA T=ios]) [iolist]
READ (un,REC=rn[,ERR=s][,IOSTAT=iosj)[iolist]
READ (un'rn [,ERR=s][,IOSTAT=ios])[iolist]
READ(UNIT=un,FMT=f,key=val[,KEYID=kn] [,ERR=s][,IOSTAT=ios])[iolist]
READ(un, FMT=f,key=val[,KEYID=kn] [,ERR=s][,IOSTAT=ios]) [iolist]
READ(un, f,key=val[,KEYID=kn][,ERR=s][,IOST A T=ios]) [iolist]
READ (UNIT=un,key=val[,KEYID=kn] [,ERR=s] [,lOST AT=ios]) [iolist]
READ (un,key=val[,KEYID=kn][,ERR=s][,IOSTAT=ios]) [iolist]

REAL v [,v ...]

REREAD (FMT=f[,END=s][,ERR=s][,IOST A T=ios)) [iolist]
REREAD (FMT=* [,END=s][,ERR=s][,IOSTA T=ios]) [iolist]
REREAD f[,iolist]
REREAD *[,iolist]

RETURN [e)

REWIND un
REWIND(UNIT=un[,ERR=s][,IOST AT=ios))
REWIND (un[,ERR=s] [,IOSTAT=ios])

REWRITE(UNIT=un,FMT=f[,ERR=s] [,IOSTAT=ios]) [iolist]
REWRITE(un, f[,ERR=s][,IOSTAT=ios]) [iolist]
REWRITE(UNIT=un[,ERR=s] [,IOSTAT=ios]) [iolist]
REWRITE(un[,ERR=s][,IOST A T=ios]) [iolist]

SAVE [a[,a] ...]

SKIPFILE un
SKIPFILE(UNIT=un[,ERR=s][,IOSTA T=ios))
SKIPFILE(un[,ERR=s][,IOST AT=ios])

FORTRAN-10/20 VII A-3

Section
Reference

Section 9.6

Section 10.10

Section 6.4.1

Section 10.11

Section 10.5

Section 7.2

Section 10.7

Section 13.4.4

Section 11.8.2

Section 10.14

Section 7.10

Section 11.8.7

February 1987

SUMMARY OF FORTRAN STATEMENTS

Form

SKIPRECORD un
SKIPRECORD(UNIT=un[,ERR=s][,IOSTA T=ios])
SKIPRECORD(un[,ERR=s][,IOSTA T=ios])

STOP [n]

SUBROUTINE sub [([d1 [,d2] ...])]

TYPE(FMT=f[,ERR=s][,IOSTA T=ios]) [iolist]
TYPE(FMT=*[,ERR=s][,IOSTA T=ios])[iolist]
TYPE f[,iolist]
TYPE *[,iolist]

v=e

UNLOAD un
UNLOAD(UNIT""lln[,ERR=s][,IOSTA T=ios])
UNLOAD(un[,ERR=s][,IOSTAT=ios])

UNLOCK(UNIT=un[,ERR=s][,IOSTAT=ios])
UNLOCK(un[,ERR=s][,IOSTA T=ios])
UNLOCK un

WRITE(UNIT=un,FMT=f[,ERR=s] [,IOSTAT=ios]) [iolist]
WRITE(un,FMT=f[,ERR=s][,IOSTAT=ios]) [iolist]
WRITE(un, f[,ERR=s][,IOSTA T=ios]) [iolist]
WRITE(UNIT=un,FMT=*[,ERR=s][,IOSTA T=ios])[iolist]
WRITE(un,FMT=*[,ERR-=s][,IOSTAT=ios]) [iolist]
WRITE(un, *[,ERR=s][,IOSTAT=ios])[iolist]
WRITE(UNIT=un,FMT=name[,ERR=s] [,IOSTA T=ios])
WRITE(un,FMT=name[,ERR=s][,IOSTAT=ios])
WRITE(un, name[,ERR=s][,IOSTAT=ios])
WRITE f[,iolist]
WRITE *[,iolist]

WRITE(UNIT=* ,FMT=f[,ERR=s][,IOST A T=ios]) [iolist]
WRITE(UNIT=*,FMT=*[,ERR=s][,IOSTAT=ios]) [iolist]
WRITE(UNIT=un[,ERR=s][,IOSTA T=ios]) [iolist]
WRITE(un[,ERR=s][,IOSTA T=ios]) [iolist]
WRITE(UNIT=un,FMT=f,REC=rn[,ERR=s][,IOSTA T=ios]) [iolist]
WRITE(un,FMT=f,REC=rn[,ERR=s][,IOSTA T=ios]) [iolist]
WRITE(un, f,REC=rn[,ERR=s][,IOSTAT=ios])[iolist]
WRITE(un'rn,FMT=f, [,ERR=s][,IOSTA T=ios])[iolist]
WRITE (un'rn, f, [,ERR-s][,IOSTAT=ios]) [iolist]
WRITE(UNIT=un;REC=rn[,ERR=s] [,IOSTA T=ios]) [iolist]
WRITE(un,REC=rn[,ERR=s][,IOST A T=ios]) [iolist]
WRITE(un'rn [,ERR=s][,IOSTAT=ios])[iolist]

FORTRAN-10/20 V11 A-4

Section
Reference

Section 11.8.6

Section 9.5

Section 13.4.2.1

Section 10.9

Section 8.2

Section 11.8.3

Section 10.15

Section 10.6

February 1987

APPENDIX 8

ASCII-1968 CHARACTER CODE SET

The character code set defined
American National Standard for
given in this appendix.

in the X3.4-1968 Version of the
Information Interchange (ASCII) is

8-1

ASCII-1968 CHARACTER CODE SET

ASCII CODE

Control Characters

Even
Parity 7-Bit 7-Bit

Bit Decimal Octal Character Class· Remarks

0 000 000 NUL Null, tape feed. Control @ (control shift p2).

001 001 SOH CC Start of heading [SaM, start of message] . Control A.

002 002 STX CC Start of text [EOA, end of address] . Control B.

0 003 003 ETX CC End of text [EOM, end of message] . Control C.

1 004 004 EaT CC End of transmission; shuts off TWX machines and disconnects some
data sets. Control D.

0 005 005 ENQ CC Enquiry [WRU, "Who are you?"]. Triggers identification ("Here
is ... ") at remote station if so equipped. Control E.

0 006 006 ACK CC Acknowledge [RU, "Are you ... ?"]. Control F.

007 007 BEL Bell (audible or attention signal). Control G.

008 010 BS FE Backspace. Control H.

0 009 011 HT FE Horizontal tabulation. Control I.

0 010 012 LF3 FE Line feed. Control J.

1 011 013 VT3 FE Vertical tabulation. Control K.

0 012 014 FF3 FE Form feed (to top of next page). Control L.

013 015 CR FE Carriage return (to beginning of line). Control M.

014 016 so Shift out; change character set or change ribbon color to red.
Control N.

0 015 017 SI Shift in; return to standard character set or color. Control O.

1 016 020 DLE CC Data link escape [DCO]. Control P.

0 017 021 DCI Device control 1 , turns transmitter (reader) on. Control Q (X ON).

0 018 022 DC2 Device control 2, turns punch or auxiliary on. Control R (TAPE,
AUXON).

1 019 023 DC3 Device control 3, turns transmitter (reader) off. Control S (X OFF).

0 020 024 DC4 Device control 4 (stop), turns punch or auxiliary off. Control T
(--rAPE-, AUX OFF).

021 025 NAK CC Negative acknowledge [ERR, error]. Control U.

1 022 026 SYN CC Synchronous idle [SYNC]. Control V.

0 023 027 ETB CC End of transmission block [LEM, logical end of medium] . Control W.

0 024 030 CAN Cancel [So], Control X.

025 031 EM End of medium [S.]. Control Y.

1 026 032 SUB Substitute [S2]' Control Z.

0 027 033 ESC Escape, prefix [S3]' Control [(control shift K2).

1 028 034 FS IS File separator [S 4] . Control \ (control shift L 2).

0 029 035 GS IS Group separator [Ss]' Control] (control shift M2).

0 030 036 RS IS Record separator [S 6] . Control A (control shift N2).

031 037 US IS Unit separator [S71. Control- (control shift 0 2).

1 CC communication control, FE format effector, IS information separator.
20n LT33, LT35 and similar units.
3 Includes a carriage return on some equipment, but not on standard DEC units.

8-2

ASCII-1968 CHARACTER CODE SET

Even
Parity

Bit

1

o
o

o
1
1
o
o

1
o

o
o
1
o

o
1
o
o

1
o
o
1
o

o

Figures

7-Bit 7-Bit
Decimal Octal Character

032 040 SP
033 041
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063

042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077

/I

$

%
&

*
+

/
(/)1

1
2

3
4
5
6
7
8
9

<

>

1 Zero-slash absent on many units.

Even
Parity

Bit

1

o
o
1
o

1
o
o

1
o

o
o
1
o

1
o
1
o
o

1
o
o

o

1
o

Graphic Characters

Upper Case

7-Bit 7-Bit
Decimal Octal Character

064 100 @

065 101 A
066
067
068
069
070
071

072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095

102
103
104
105
106
107
110
111
112
113
114
115
116
117

120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137

B
C
D
E
F
G

H

I
J

K
L
M
N
a
p

Q

R
S
T
U
V
W
x
y

z
[
\2
]
,,2

Lower Case

Even
Parity 7-Bit 7-Bit

Bit Decimal Octal Character3

o 096 140 ,2

1

o
1
o
o

1
o
o
1
o

o
1
o
o

o

1
o
o

o
1
o
o

097 141 a
098 142 b
099 143 c
100 144 d
101 145 e
102 146 f
103 147 g
104 150 h
105 151
106 152 j
107 153 k
108 154 1
109 155 m

110 156 n

111 157 a

112 160 p

113 161 q

114 162
115 163
116 164
117 165 u
118 166 v
119 167 w
120 170 x
121 171 y
122 172 z
123 173 {
124 174 I
125 175 }4
126 176 ",,2,5

127 177 DEL6

2 Under study by responsible American National Standards Committee for possible change at next revision of ASCII
(ca. 1982}.

3 Codes 140-173 first defined in 1965. For a full ASCII character set the operating system accepts codes 140-176 as
lower case. For a program requiring a character set that lacks lower case, the operating system translates input codes
140-174 into the corresponding upper case codes (100-134) and translates both 175 and 176 into 033, escape.
Early versions of the DECsystem-l0 Monitor used 175 as the escape code and translated both 176 and 033 to it.

4Unassigned control character (usually ALT MODE) before 1965. Code generated by ALT MODE key on some DEC
units, especially earlier ones; on some more recent units, the ALT key generates the standard escape code, 033.

5 Control character ESC before 1965; code generated by ESC key on some DEC units designed at that time.

6 Delete, rub out (not part of lower case set).

B-3

ASCII-1968 CHARACTER CODE SET

Remarks on Special Graphic Characters

SP Space - normally nonprinting.

Exclamation point.

" Quotation mark, diaeresis.

Number sign. £ on some (non-DEC) units.

$ Dollar sign.

% Percent.

& Ampersand.

Apostrophe, closing single quotation mark,
acute accent. -- in appearance on some DEC
units.

Opening parenthesis.

Closing parenthesis.

* Asterisk.

+ Plus.

Comma, cedilla.

Hyphen, minus.

Period, decimal point.

Slant, slash, solidus.

Colon.

Semicolon.

< Less than.

Equals.

8-4

> Greater than.

Question mark.

(a) Commercial at. ' 1965-67, but never on DEC
units.

Opening bracket. Shift K on LT33, LT35 and
similar units.

\ Reverse slant. ~ 1965-67, but never on DEC
units. Shift Lon LT33, LT35 and similar units.

Closing bracket. Shift M on LT33, LT35 and
similar units.

Circumflex, upward arrow head. t before 1965,
but used until 1972 on DEC units.

Underline, underscore.- before 1965, but used
until 1972 on DEC units.

Grave accent, opening single quotation mark.
(w 1965-67, but never on DEC units.

Opening brace.

Vertical line. Control character ACK before
1965; ---, 1965-67, but never on DEC units;
: in appearance 1968-19-77, but generally not
on DEC units.

Closing brace. Unassigned control character
(usually ALT MODE) before 1965.

Overline, tilde, general accent. Control char­
after ESC before 1965; I 1965-67, but never
on DEC units.

APPENDIX C

COMPILER MESSAGES

The FORTRAN compiler issues two types of messages: warning and fatal
error. While compiling the program, if the compiler encounters a
situation that does not prevent it from completing the compilation,
but does warrant your knowing about, it prints a warning message and
continues compilation. If, however, the problem in your program is
such that compilation cannot continue, the compiler prints a
fatal-error message and stops compilation of the program. Whenever a
fatal error is generated a relocatable object module will not be
produced.

Compiler messages are printed in the following form:

?FTNxxx LINE:n text
or
%FTNxxx LINE:n flag: text

where:

? indicates a fatal message
% indicates a warning message
FTN is the FORTRAN mnemonic
xxx is the 3-letter mnemonic for the error message
Line:n is the optional line number where the error occurred
text is the explanation of error
flag: is the prefix for warning messages generated when the

compatibility flagger is invoked. This prefix describes
the type of incompatibility the message refers to, and can
be one of the following:

• Extension to Fortran-77:

• VMS incompatibility:

• Fortran-77 and VMS:

See Section 16.6 for more information on the compatibility flagger.

Square brackets ([]) in this appendix signify variables and are not
output on the terminal.

C-l

COMPILER MESSAGES

Fa tal Er ro rs

Each fatal error in the following list is preceded by ?FTN on the user
terminal and on listings. They are presented here in alphabetical
order.

ABD

AHE

AOA

ASA

ATL

AWN

BOV

CER

CEL

CEN

CEX

CFF

CFL

CNE

CPE

[symbolname] has already been defined [definition]

The usage given conflicts with current information about the
symbol. For example, a symbol defined in an EQUIVALENCE
statement cannot be referenced as a subprogram name.

IF at line [number] already has ELSE

Assumed-size arrays only allowed in subprograms

Assumed-size arrays cannot be used

ARRAY [name] too large

The total amount of memory necessary to accommodate this
array is greater than 512P.

Array reference [name] has wrong number of subscripts

The array was defined to have more or fewer dimensions than
the given reference.

Statement too large to classify

To determine statement type, some portion of the statement
must be examined by the compiler before actual semantic and
syntactic analysis begins. During this classification, the
entire portion of the required statement must fit into the
internal statement buffer (large enough for a normal 20-line
statement) •

This error message is issued when the portion of a given
statement required for classification is too larg~ to fit in
the buffer. Once FORTRAN-IO/20 has classified a statement,
there is no explicit restriction on its length.

Compiler error in routine [name]

Submit an SPR for any occurrence of this message.

Character entry points must have the same length

Character expression used where numeric expression required

Constant or constant expression required

Cannot find file

The file referenced in an INCLUDE statement was not found.

Reference to character function [name] must have a fixed
length

Character and numeric entry points cannot be mixed

Checksum or parity error in [source/listing/object]
[name]

C-2

file

COMPILER MESSAGES

CQL No closing quote in character constant

CSA Can't split string across numeric and character variables

CSF Illegal statement function reference in CALL statement

DDA [symbolname] is duplicate dummy argument

DDN DO loops too deeply nested - reduce nesting

DFC Variable dimension [name] must be scalar, defined as formal
or in COMMON

DFD Double [type] name illegal

Duplicate fields were encountered in an INCLUDE
specification.

file

DIA DO index variable [name] is already active

In any nest of DO loops, a given index variable may not be
defined for more than one loop.

DID Cannot initialize a dummy parameter in DATA

DLN Optional data value list not supported

The extended FORTRAN statement form that allows data values
to be defined in type specification statements is not
supported by FORTRAN-IO/20.

DNL Implied DO specification without
variables

associated

DPR Dummy parameter [name] referenced before definition

DSF Argument [name] is same as FUNCTION name

list

DTI The dimensions of [arrayname] must be of the type integer

DVE Cannot use dummy variable in EQUIVALENCE

of

ECS [variable] EQUIVALENCE-d to COMMON is illegal in SAVE
statement

ECT Attempt to enter [symbolname] into COMMON twice

EDN Expression too deeply nested to compile

EID ENTRY statement illegal inside a block IF or DO loop

ElL Expression illegal in an input list

ElM ENTRY statement illegal in main program

ENF

ETF

Label [number] must refer to an executable statement, not a
FORMAT

Enter failure [number] [filespec]

EXB EQUIVALENCE extends COMMON block [name] backwards

FEE Found [symbol] when expecting either [symbol] or [symbol]

General syntax error message.

C-3

FER

FlO

FNE

FWE

lAC

IAL

IAN

IBD

IBK

ICL

ICN

ION

IDS

lOT

IDV

lED

IFD

IFE

IFS

110

lIP

lIS

ILF

IND

COMPILER MESSAGES

[file error text]

An error has occured when processing a command
specification.

Can't initialize character function name

file

Label [number] must refer to a FORMAT, not an executable
statement

Found [symbol] when expecting [symbol]

Illegal ASCII character [character] in source

Incorrect argument type for library function [name]

Illegal assignment between character and numeric data

Illegal substring bound in DATA statement

Illegal statement in BLOCK DATA subprogram

Illegal character [character] in label field

Illegal combination of character and numeric data

DO loop at line: [number] is illegally nested

You are attempting to terminate a DO loop before terminating
one or more loops defined after the given one.

Implicit DO indices may not be subscripted

Illegal or misspelled data type

Implied DO index is not a variable

Inconsistent EQUIVALENCE declaration

The given EQUIVALENCE declaration would cause some symbolic
name to refer to more than one physical location.

INCLUDEd files must reside on disk

[INCLUDE file error]

This error occured while trying to open the specified
INCLUDE file on the DECSYSTEM-20.

Illegal format specifier

Non-integer implied DO index

Illegal implicit specification parameter

Incorrect INCLUDE switch

Illegal statement after logical IF

Refer to Section 9.2.2 for restrictions on logical IF object
statements.

Improper nesting: DO at line [number] has not terminated

C-4

INI

INN

IOC

IOD

ION

IOR

IQB

IQN

ISD

ISN

ISS

ITL

IUT

IVC

IVH

IVP

IXM

IXS

IZM

KA

KAS

LAD

LED

LFA

LGB

LLS

LND

COMPILER MESSAGES

Improper nesting: IF at line [number] has not terminated

INCLUDE statements may not be nested

Illegal operator for character data

Illegal statement used as object of DO

Numeric operand of concatenation operator

Substring bound out of range

INQUIRE - both UNIT and FILE keywords were specified

INQUIRE - neither UNIT nor FILE keywords were specified

Illegal subscript expression in DATA statement

Subscript expressions may be formed only
indexes and constants combined with +, -

[symbolname] is not [symbol type]

with implicit
*, or /.

The symbol cannot be used in the attempted manner.

[var iable] illegal in SAVE statement

Illegal transfer into loop to label [number]

Program units may not be terminated within INCLUDEd files

Invalid character constant

Invalid hollerith constant

Invalid PPN

Illegal mixed mode arithmetic

DO

Complex and double-precision cannot appear in the same
expression.

Illegal [OPEN specifier] specifier

Illegal [datatype] size modifier [number]

FORTRAN will not run on a KA

FORTRAN can not compile for a KA

Label [number] already defined at line: [number]

Illegal list directed [statement type]

Label arguments illegal in FUNCTION or array reference

Lower bound greater than upper bound for array [name]

Label too large or too small

Labels cannot be 0 or greater than five digits.

Label [number] must refer to a
declaration

C-5

[statement] , not a

LNI

LTL

MCE

MSP

MST

MWL

NCC

NCF

NEX

NFS

NGS

NIF

NIO

NIR

NIU

NLF

NLS

NMD

NNA

NNF

NNN

NRC

NUO

NWB

NWD

NYI

OAG

COMPILER MESSAGES

List directed I/O with no I/O list

Too many items in list - reduce number of items

In rare instances, a combination of long lists in a single
statement can exhaust the syntax stack.

More than 1 COMMON variable in EQUIVALENCE group

Statement name misspelled

[OPEN specifier] must be [integer or array]

Attempt to define multiple RETURN without formal label
arguments

Can't store numeric constant in character variable

Not enough core for the file specs.
[number]

No exponent after D or E in constant

No filename specified

Total K needed

The INCLUDE statement requires a filename.

Cannot get segment [segment name] - error code [GETSEG error
code]

This message means the system is unable to GETSEG one of the
compiler segments on the DECsystem-lO.

No matching IF

NAMELIST directed I/O with I/O list

Repeat count must be an unsigned integer

Non-integer unit number in I/O statement

Wrong number of arguments for library function [name]

[variable] may not be declared length star

No matching DO

NAMELIST not allowed in ENCODE, DECODE, and REREAD

No statement number on FORMAT

NML= must specify a NAMELIST

Statement not recognized

.NOT. is a unary operator

Numeric variable must be aligned on word boundary

Incorrect use of * or? in [filespec]

Not yet implemented

Octal or logical argument illegal to generic function

C-6

OBO

OPW

OUB

PD6

PIC

PN4

PRF

PTL

QEF

RDE

RFC

RIC

RUS

SAD

SMC

SNC

SNL

SOR

STD

TDO

TFL

UCE

UEC

UFC

UKW

UMP

UNS

COMPILER MESSAGES

[variable] may only be specified once

OPEN/CLOSE parameter [name] is of wrong type

Only upper bound of last dimension of [arrayname] may be
asterisk

FORTRAN will not run on PDP6

The DO parameters of [index name] must be integer constants

project number must be 4 in ppn

This error is for DECsystem-IO file specifications on the
DECSYSTEM-20. .

Pro t e c t ion fa i I u r e [n urn b e r] [f i I e s pe c]

Program too large

The program unit takes up more than 512P.

Quota exceeded or disk full [number] [filespec]

Rib or directory error [number] [filespec]

[function name] is a recursive function call

Complex constant cannot be used to represent the real or
imaginary part of a complex constant

Relational expression illegal as UNIT specifier

Array [name] - signed dimensions may appear only as constant
range limits

Size modifier conflict for variable [name]

Substring of non-character variable

[statement name] statements may not be labeled

Subscript out of range

Sta temen t [number] is a declaration

[symbol type] type declaration out of order

Too many FORMAT labels specified

User core exceeded at location [address] in phase [segment]
while processing statement [number]

Label [number] previously used in executable context

Label [number] previously used in FORMAT context

Unrecognized keyword

Unmatched parentheses

UNIT may not be specified

C-7

COMPILER,MESSAGES

USI [symbol type] [symbol name] used incorrectly

The given symbol cannot be used in this way.

VNA Subscripted variable in EQUIVALENCE, but not an array

VSE EQUIVALENCE subscripts must be integer constants

VSO Variable dimension allowed in subprograms only

WIF [I/O type] is illegal with internal files

ZLD Zero-trip DO loop illegal in DATA statement

Warning Messages

Each warning message in the following list is preceded by %FTN on the
user terminal and on listings. They are presented here in
alphabetical order.

ACB

ADS

AGA

AIL

AIS

ANS

CAl

CAO

CAP

CCC

CCN

CIS

CNM

CNS

COS

COV

CSM

Argument out of range of CHAR, high order bits ignored

Variable [name] already declared in SAVE statement

Opt - object variable, of assigned GOTO without optional
list, was never assigned

Illegal length argument for ICHAR, first character used

Extension to Fortran-77: Apostrophe in I/O specifier

VMS incompatibility: ASSOCIATEVARIABLE not set by VMS on
OPEN

COMPLEX expression used in arithmetic IF

Consecutive arithmetic operators illegal

Extension to Fortran-77: Consecutive arithmetic operators

Fortran-77 and VMS: Carriage control character

CHARACTER constant used where numeric expression required

Conflicting INCLUDE switches

Character and numeric variables mixed

Extension to Fortran-77: Concatenation with variable of
non-specific length

Extension to Fortran-77: Comment on statement

Extension to Fortran-77: Assigned variable appears
character expression

Extension to Fortran-77: Comma field separator is missing

C-8

in

COMPILER MESSAGES

CTR Complex terms used ina relational other than EO or NE

The result of the other relational operators with complex
operands is undefined.

CUO Constant underflow or overflow

DEB

This message is issued when overflow or underflow is
detected as the result of building constants or evaluating
constant expressions at compile time.

Extension to Fortran-77: DEBUG lines

DFN VMS incompatibility: Default file name on VMS differs from
Fortran-IO/20

DII

DIM

DIS

Previous declaration of intrinsic function is ignored

possible DO index modification inside loop

A program that does this may be incorrectly compiled by the
optimizer, since it assumes that indexes are never modified.
Note that the number of iterations is calculated at the
beginning of the loop and is never affected by modification
of the index within the loop.

Opt - program is disconnected - optimization discontinued

Submit an SPR if this message occurs.

DOW Extension to Fortran-77: DO WHILE statement

DPE VMS incompatibility: Different precedence in exponentiation

DWE Fortran-77 and VMS: Default widths with edit descriptor
[descriptor]

DWL Extension to Fortran-77: DO without statement label

DXB DATA statement exceeds bounds of array [name]

EDD Extension to Fortran-77: END DO statement

EDS Extension to Fortran-77: DECODE statement

EDS Extension to Fortran-77: ENCODE statement

EDX Fortran-77 and VMS: FORMAT edit descriptor [descriptor]

EOC Fortran-77 and VMS: Exponential operator A

EXD Extension to Fortran-77: Transfer of control into DO loop at
label [label]

FAR Extension to Fortran-77: Format in numeric array

FIF

FIN

Extension to Fortran-77: [function name] is not an intrinsic
function in Fortran-77

Extension to Fortran-77: FIND statement

FMR Multiple RETURNs defined in a FUNCTION

FMT VMS incompatibility: Keyword FMT instead of NML

C-9

COMPILER MESSAGES

FNA A function without an argument list

FNG Extension to Fortran-77: [function name] is not a generic
function in Fortran-77

FNS Extension to Fortran-77:
subroutine

[name] is not a FORTRAN-77

FOO Statement function declared out of order or array not
dimensioned

HCP VMS incompatibility: Hollerith constant padded with spaces

HCN Hollerith constant used where numeric expression required

HCU Extension to Fortran-77: Hollerith constant

IAT Illegal type for argument [number] for statement function

ICC Illegal character, continuation field of initial line

Continuation lines cannot follow comment lines.

ICD Inaccessible code. Statement deleted

ICS

The optimizer will delete statements that cannot be reached
during execution.

Illegal character in line sequence number

ION Opt - illegal DO nesting - optimization discontinued

A GO TO within a DO loop goes to the ending statement of an
inner, nested DO loop. The line number printed out with the
warning message is that of the OUTER DO.

DO 20

GO TO 10

DO 10

10 CONTINUE

20 CONTINUE

IFL Opt - infinite loop. Optimization discontinued

IMN IMPLICIT NONE

INC Extension to Fortran-77: INCLUDE statement

INS VMS incompatibility: /NOCREF switch

INS VMS incompatibility: /CREF switch

INS VMS incompatibility: Default for VMS is /NOLIST

C-IO

COMPILER MESSAGES

IUA Illegal use of an array - use scalar variable instead

KIS Obsolete switch /KI

KWU Fortran-77 and VMS: Keyword [keyword name]

KWV Fortran-77 and VMS: Keyword value for [keyword name]

LID Identifier [name] more than six characters

The remaining characters are ignored.

LNC Fortran-77 and VMS: Non-numeric operand in numeric context

LNE VMS incompatibility: Logical and numeric variables
EQUIVALENCE-d

LOL VMS incompatibility: List of labels

LSP Extension to Fortran-77: [data type] length specifier

MBD IMPLICIT NONE - [variable] must be explicitly declared

MLN Fortran-77 and VMS: Mixing logical and numeric

MSL Fortran-77 and VMS: Multi-statement line

MVC Number of variables [is less than/is greater than] the
numbers of constants in DATA statement

NAM Extension to Fortran-77: NAMELIST statement

NDP Fortran-77 and VMS: No decimal places with edit descriptor

NEC Extension to Fortran-77: Numeric expression in character
context

NED No END statement in program

NIB Extension to Fortran-77: Non-integer substring bounds

NIG Extension to Fortran-77: Non-integer as index to computed
GOTO

NIK Extension to Fortran-77: Non-integer used with [keyword]

NIS Extension to Fortran-77: Non-integer subscript

NIX Extension to Fortran-77: Non-integer as index to RETURN

NLC Fortran-77 and VMS: Non-logical operand in logical context

NLK Extension to Fortran-77: Use of NAMELIST

NOD Global optimization not supported with /DEBUG - /OPT ignored

NOF No output file given

NPC VMS incompatibility: Null padding before [symbolic name]

NPP

NSC

Extension to Fortran-77: No parentheses around PARAMETER
list

Fortran-77 and VMS: Non-standard character in column 1

C-ll

COMPILER MESSAGES

OCU Fortran-77 and VMS: Octal constant

OHC Octal or hexadecimal constant

010 Extension to Fortran-77: [statement name] statement

010 Fortran-77 and VMS: [statement name] statement

PAV PARAMETER used as associative variable

PLP PARAMETER list must be enclosed in parentheses

PPS PROGRAM statement parameters ignored

Used for compatibility purposes.

PSR Pound sign (i) in random access - use REC= or apostrophe (I)
instead

PWS Fortran-77 and VMS: PRINT (Specifiers) statement

RDI Attempt to redeclare implicit type

RIM RETURN statement illegal in main program

RLC Extension to Fortran-77: & used with return label

RLC Fortran-77 and VMS: $ used with return label

RLX Fortran-77 and VMS: Return label [label]

SSC Extension to Fortran-77: Substring bounds not constant

SEP VMS incompatibility: [symbolic name] is the same as program
name or entry point

SID Slash (I) in dimension bound - use colon (:) instead

SMD

SNN

SOD

Extension to Fortran-77: Single subscr i pt with
multi-dimensioned array [array name]

VMS incompatibility: [symbolic name] is the same as NAMELIST
name

[name] statement out of order

SOR Fortran-77 and VMS: Subscript out of range for array [array
name]

SPN VMS incompatibility: [symbolic name] is the
PARAMETER name

same as

SRO Fortran-77 and VMS: Symbolic relational operator [operator]

SVN VMS incompatibility: [symbolic name] is same as variable or
function name

TLF Fortran-77 and VMS: Two-branch logical IF

TSI Type of symbolic constant ignored

VAl [name] already initialized

C-12

VFS

VGF

VIF

VND

VNF

VNG

VNI

VNS

VSD

WDU

WNA

WOP

XCR

XEN

XOR

ZMT

COMPILER MESSAGES

VMS incompatibility: [function name] is a Fortran-supplied
routine on VMS

VMS incompa ti b i 1 i ty: [funct i on name] is a gener ic function
on VMS

VMS incompatibility:
function on VMS

[function name]

FUNCTION return value is never defined

is an intrinsic

VMS incompatibility: [function name]
function on VMS

is not an intrinsic

VMS incompatibility:
function on VMS

[func t ion name]

Opt - variable [name] is not initialized

is not a generic

The optimizer analysis determined that the given variable
was never initialized prior to its use in a calculation.

VMS incompatibility: [subroutine name] is not a VMS-supplied
subroutine

VMS incompatibility: Subroutine [subroutine name] may differ

Fortran-77 and VMS: WRITE with default unit

Wrong number of arguments for statement function

Opt - warnings given in Phase 1.
incorrect

Optimized code may be

One or more of the messages issued prior to this message
resulted from situations that violate assumptions made by
the optimizer, and thus may cause it to generate code that
does not execute as desired.

Extraneous carriage return

Carriage return was not immediately preceded or followed by
a line termination character.

Fortran-77 and VMS: [* or &] with external name

Extension to Fortran-77: Logical .XOR. operator

Size modifier [number] treated as [data type]

This message is issued when one of the data type size
modifiers that is accepted only for compatibility is used.

Internal Compiler Errors

An internal compiler error is an attempt by either the compiler or the
monitor to document an error inside the FORTRAN compiler. An
occurrence of an internal compiler error signifies that something is
wrong with the FORTRAN compiler.

C-13

COMPILER MESSAGES

Monitor-detected internal errors are of the form:

? Internal compiler error
? [message] at location [address] in phase [segment]
? While processing statement [line-number]

where [message] can be one of the following for TOPS-lO:

Illegal memory reference
A read or write was attempted to a non-existent page

stack exhausted
Monitor detected PDL overflow

Memory protection violation
Illegal reference to high segment

or where [message] can be one of the following for TOPS-20:

Illegal memory reference
A read was attempted to a non-existent page

Non-existent memory write
A write was attempted to a non-existent page

Illegal memory read
A memory read failed

Illegal memory write
A memory write failed

Stack exhausted
Monitor detected PDL overflow

Compiler-detected errors are of the form:

? Internal compiler error-processing statement [line-number]
? Call to [routine-name] from [address]

Submit an SPR if you receive an internal compiler error.

At the end of program unit compilation, the compiler prints an error
summary line, which is one of the following:

[No error detected]
%FTNWRN no warning{s)
%FTNWRN [warning count] warnings{s)
?FTNFTL [fatal count] fatal error{s) and no warning{s)
?FTNFTL [fatal count] fatal error{s) and [warning count]
warning{s)

C-14

APPENDIX D

FOROTS ERROR MESSAGES

Errors detected at run time by FOROTS fall into the following
categories:

1. System errors (SYS) - errors internal to FOROTS

2. Open errors (OPN) - I/O errors that occur during a file OPEN
and CLOSE

3. Arithmetic fault
calculations

errors (APR) - errors in numer ic

4. Library errors (LIB) - errors generated by FORLIB library
routines

5. Data errors (DAT) - errors in data conversion on I/O

6. Device errors (DEV) - I/O hardware errors

7. Compatibility errors
compatibility flagger

(COM) - errors generated by

8. RMS-returned errors - errors returned by RMS-20 to FOROTS

The messages generated by FOROTS contain the following elements:

the

1. A 3-letter code that identifies the type of message (TOPS-10
onl y)

2. The message itself, which describes
encountered

what FOROTS has

3. For I/O errors, two integer values which are retrieved by the
ERRSNS subroutine

4. For compatibility errors, a prefix precedes the message that
describes the type of incompatibility the messages refers to;
one of the following:

• Extenstion to FORTRAN-77:

• VMS incompatibility:

• FORTRAN-77 and VMS:

See Section 16.6 for more information on the compatibility
flagger.

5. For RMS errors, the RMS STS and STV codes, where available,
are included in the error message itself, and can be
retrieved by the ERRSNS subroutine.

FORTRAN-10/20 VII D-l February 1987

FOROTS ERROR MESSAGES

,The 3-letter code (TOPS-10 only) and the message are, by default,
printed at your terminal when an error occurs; the two ERRSNS values
are stored within the arguments you have supplied for the ERRSNS
subroutine. If you do not include a call to the ERRSNS subroutine in
your program, your program cannot have access to the two ERRSNS
values.

When an RMS-detected error occurs, the second ERRSNS value contains
the STS code from RMS (a number between 300000 and 377777 octal). The
STV code, which further amplifies the reason for an RMS error, is
available to your program through an additional argument to the ERRSNS
subroutine. For instructions on how to use the ERRSNS subroutine, see
Section 13.4.1.15.)

Table D-I contains a list of all the 3-letter message codes and the
ERRSNS values that are generated by FOROTS.

FORTRAN-10/20 VII D-2 February 1987

FOROTS ERROR MESSAGES

Table D-l: FOROTS Error Codes

1st
Value

o

1

2

3

4

5

6

7

9

21

2nd
Value(S)

o

n (7)

n (7)

n (7)

n (7)

n (7)

n (7)

n (7)

o

104

105
106

107

108

109

110

112

113
114
115

116

117

118

119
120
121

Code(l)

IDC (3)

IOV (3)

FOV (3)

FOV (3)

FDC (3)

FUN (3)

FUN (3)

FTS (3)

IDU

UNO
NOF

CWU

CLE

ICE

NCS

AQS

SSE (3)
SRE (3)
TMA

CGP

CRP (1)

NSS (2)

CFS (2)
CGS (2)
CPP (3)

D-3

Meaning

No error detected
No error detected

Arithmetic trap
Integer divide check

Input Conversion Error
Integer overflow

Input Conversion Error
Floating overflow

Arithmetic trap
Floating overflow

Arithmetic trap
Floating divide check

Arithmetic trap
Floating underflow

Input Conversion Error
Floating underflow

output Conversion Error
Output field width too
small

FORLIB errors and warnings
DIVERT: illegal to divert
to unit
DIVERT: unit not open
DIVERT: unit not open for
formatted I/O
DIVERT: Can't write to
unit
Concatenation result longer
than expected
Illegal length character
expression
No character stack
allocated
First argument of SORT must
be a quoted string
Substring range error
Subscript range error
Too many arguments in call
to SORT
Can't get pages 600:677 for
SORT
Can't return pages 600:677
after call to SORT
No free section available
for SORT
Can't find SYS:SORT.EXE
Can't get SYS:SORT.EXE
Can't preallocate pages
600:677 for SORT

February 1987

FOROTS ERROR MESSAGES

Table D-l: FOROTS Error Codes (Cont'd)

1st
Value

22

23

24

25

26

2nd
Va1ue(5)

122
123

124

125

126

509

532
583

584

590

113
114

-1

302
510

512
517

536

536

570

572

573

576

577

502

535

Code (1)

IPN
CCS

ECS

ALZ

DMA (2,3)

ETL (3)

ARC (3)
FVM (3)

RIF (3)

DQW (2,3)

SSE (3)
SRE (3)

EOF

BBF
RNR

IRN
RTL

CBI

CSI

ICD

RSM

FCL

WBA

SLN

CSF (2,3)

BSI (3)

D-4

Meaning

Illegal page number
Not enough memory for
creating character stack
Not enough memory for
expanding character stack
Argument less than or equal
to zero
Must give lower and upper
bounds to dump in non-zero
sections

I/O warnings
At tempt to WRITE beyond
fixed-length record
Ambiguous repeat count
Format and variable type do
not match
Reading into FORMAT
non-standard
Disk full or quota exceeded
- Please EXPUNGE, then type
CONTINUE

FORLIB bounds
warnings
Substring range error
Subscript range error

End of file
End of file

Record or record
error

check

number

Bad format binary file
Attempt to read a record
that has not been written
Illegal record number
Record too large - memory
full
Cannot backspace image file
with no RECORDSIZE
Cannot skiprecord image
file with no RECORDSIZE
Non-digit in record
delimiter
Record size different from
that specified in OPEN
Unexpected continuation
LSCW found
Attempt to WRITE beyound
variable or array
Record length negative or
zero

OPEN/CLOSE warnings
Can't set FORTRAN carriage
control attribute
BLOCKSIZE ignored: device
is not a maqnetic tape

February 1987

FOROTS ERROR MESSAGES

Table D-l: FOROTS Error Codes (Cont.)

1st 2nd
Value Value(5) Code (1) Meaning

541 UOA (3) Unknown OPEN keyword,
igno red

542 NCK (3) OPEN-only keyword specified
in CLOSE, ignored

550 CQF (1,3) Cannot QUEUE file
588 BSC (2,3) Bytesize in OPEN different

from FDB, FDB value used
595 OGX (1,3) Galaxy version 2 not

supported
609 NNI(1,3) Node name ignored

28 CLOSE error
J CLS (2) Cannot CLOSE file
J RNM (2) Cannot RENAME file
250+n CLS (1) " Close" FILOP. error n (4)
250+n DEL (1) "Delete" FILOP. error n (4)
250+n RNM (1) "Rename" FILOP. error n (4)
610 UDO (2) Unsupported /DISPOSE option

for RMS files

30 OPEN error
J APP (2) Cannot set up to append to

magnetic tape file
J UOF (2) USEROPEN failed
240 FRR /RECORDTYPE:FIXED requires

/RECORDSIZE
240 RR1 Random I/O requires

RECORDSIZE specifier in
OPEN statement

240 RRR Random I/O requires
/RECORDSIZE

242 NFC (1) Too many OPEN units
243 CIR /CARRIAGECONTROL:TRANSLATED

illegal with this
/RECORDTYPE

244 RLB /RECORDSIZE larger than
/BLOCKSIZE

245 NSD No such device
246 FBR BLOCKSIZE must be specified

for RECORDTYPE='FIXED'
247 BLZ BLOCKSIZE must be integral

multiple of RECL
248 lAC Specified ACCESS illegal

for this device
249 IDM Specified MODE is illegal

for this device
250+n OPN (1) Cannot OPEN file
405 PPN (2) JSYS error - PPN cannot be

translated
503 CEF (2) End of command file

encountered
506 ICA Incompatible attributes
540 SDO Same device open on another

unit with conflicting
specifiers

569 TFM Tape format conflicts with
OPEN statement or default

585 IAV Illegal value for OPEN
specifier

FORTRAN-10/20 VII D-5 February 1987

FOROTS ERROR MESSAGES

Table D-1: FOROTS Error Codes (Cont.)

1st
Value

31

32

33

2nd
Va1ue(5)

600

601

602
603
604

606
607
608

611

612

613

615

315

315

593

594

605

614

239

321

322

323

323

323

323

324

FORTRAN-10/20 VII

Cod e (1)

ATC (2)

URT (2)

URS (2)
BME (2)
MEU (2)

KER (2)
TKS (2)
RMS (2)

DFR (2)

KDB (2)

RIR (2)

RNA (2)

CDR

CDS

POI

CDF

KRI(2)

SIF(2)

IUN

CFC (3)

CFF (3)

CFR (2,3)

CFX (2,3)

CFR (I, 3)

CFX (1,3)

CFK (3)

D-6

Meaning

File's attribute different
from that specified in OPEN
RECORDTYPE value not
supported for this file
type
Unsupported remote system
Bytesize must be 8
Missing EXTERNAL for
USEROPEN routine
Missing required KEY=
Too many KEY= specifiers
RMS file requries
ORGANIZATION=
Default /RECORDTYPE:FIXED
requires /RECORDSIZE
KEY datatype CHARACTER
conflicts with BYTESIZE
New RELATIVE or INDEXED
file requires /RECL
RMS not available on SYS:

Mixed ACCESS modes
Can't do direct I/O to
sequential file
Can't do sequential I/O to
direct file
Illegal for DIRECT (RANDOM)
files
Can't determine whether
formatted or unformatted
Can't do keyed I/O to this
file type
Statement illegal for this
type of access

Illegal logical unit number
Illegal unit number

Compatibility error
FORTRAN-77 and VMS:
Carriage control character
VMS incompatibility:
Intrinsic routine invoked
incompatibly
FORTRAN-77 extension:
FORTRAN-20 supplied routine
invoked
FORTRAN-77 and VMS:
FORTRAN-20 supplied routine
invoked
FORTRAN-77 extension:
FORTRAN-10 supplied routine
invoked
FORTRAN-77 and VMS:
FORTRAN-10 supplied routine
invoked
FORTRAN-77 and VMS: Keyword
[keyword]

February 1987

FOROTS ERROR MESSAGES

Table D-l: FOROTS Error Codes (Cont.)

1st 2nd
Value Value(5) Code.(1) Meaning

325 CFT (3) FORTRAN-77 and VMS:
Trailing spaces in output
reco rd

326 CFO (3) FORTRAN-77 extension:
Overlap of character
assignments

327 CFG (3) FORTRAN-77: and VMS: G
format descriptor used with
character

328 CFD (3) VMS incompatibility: I
Format default width used

39 REREAD error
310 RBR REREAD not proceeded by

READ

45 OPEN/CLOSE statement syntax
errors

241 ESV Unknown or ambiguous
keyword

241 USW (1) Unknown swi tch
241 ASW (1) Ambiguous switch
533 DLT Dialog string too long
539 EDS/EDA (2) Error parsing DIALOG string
544 NDI (1) No device specified with

" : "
545 IPP (1) Illegal PPN
546 TMF (1) Too many SFDs
547 NSI (1) Null SFD
548 IDD (1) Illegal character in DIALOG

str ing
551 NQS (1) PADCHAR must be single

character in double quotes

47 WRITE on READ-only file
263 CDT Cannot WRITE to READ-only

file
554 CWL Cannot write a file with

MODE=LINED

62 Syntax error in FORMAT
301 ILF Illegal character in FORMAT
303 1FT Illegal FORMAT
306 DLF Data in I/O list but not in

FORMAT
524 RIC Reading into character

format illegal
538 IRC Illegal repeat count
552 IHC Illegal Hollerith constant
553 IFW III egal field width
575 UDT Undefined data type or

internal FOROTS error
583 FVF Format and variable type do

not match

FORTRAN-10/20 VII
D-7 February 1987

FOROTS ERROR MESSAGES

Table D-1: FOROTS Error Codes (Cont~)

1st
Value

64

81

96

97

2nd
value(5)

307

501
508
574
579
581
582

599

J
J
100

101

102

530
537

537

587

309
513

514
515

516
519

521
522

580
596

597

598

FORTRAN-10/20 VII

Code (1)

ILC

UNS
IOL
IMV
IDI (1)
DLL (1)
IWI

ICE

I LM (2)
UMO (2,3)
NLT

SLT

ALT

UTE (1)'
UTO (1)

UTO (1,3)

ITE (1)

VNN
NEQ

NRP
ILN

ILS
CCC

RPE
SNV

NLS
NEC

ISS

SNQ

D-8

Meaning

Input conversion error
Illegal character in data

FOROTS calling errors
Unit not specified
Bad I/O list
Illegal MTOP value
Illegal DUMP mode I/O list
Dump mode I/O list too long
Illegal to initiate another
I/O statement
Illegal length for
character expression

Error in magnetic tape
operations
Unexpected MTOPR% error (2)
Error trying to set tape
<statement> not allowed
with Labeled Magnetic tape
files
Input/Output switching not
allowed with Labeled
Magnetic tape file
/ACCESS='APPEND' not
allowed with Labeled
Magnetic tape files
Unexpected TAPOP. error
Unexpected TAPOP. error
trying to set parameters
Unexpected TAPOP. error
trying to set parameters
Tape is not usable by your
job

NAMELIST data errors
Variable not in namelist
"=" not found in namelist
data
Missing right paren
Variable or namelist does.
not start with letter
Illegal subscript
Cannot convert constant to
correct type
Illegal repeat count
Sign with null value

Null string illegal
Found character
expecting ":"

when

Substring descriptor
ill egal
String not within single
quotes

February 1987

FOROTS ERROR MESSAGES

Table D-l: FOROTS Error Codes (Cont.)

1st 2nd
Value Val ue (5)

98

J
J
J
250+n
250+n
400
586
590

(1) TOPS-10 only

(2) TOPS-20 only

Code (1)

ISW (2)
IOE (2)
OSW (2)
ISW (1)
OSW (1)
IOE (1)
MFU
DQE (2)

BLK (3 ,6)

CCP (1 ,6)
CDP (1,6)
CGD (6)
DBM (6)
DST (1 ,6)
EFS (6)
FFX (6)

IEM (6)
IJE (2,6)
MFU (6)
NOR (3,6)
PAG (3 ,6)

PGD (6)

POV (6)
SNH (6)
TDT (6)

Meaning

Unclassifiable device
errors
Cannot switch to input
General purpose I/O error
Cannot switch to output
Cannot switch to input
Cannot switch to output
General-purpose I/O error
Memory full
Disk full or quota exceeded

No ERRSNS values

Blocks allocated but not
deallocated
Cannot create page
Cannot destroy page
Can't get DBMS
DBMS not loaded
Error in dialog string
Enter correct file specs
FOROP function code exceeds
range
Error in memory management
"Impossible" JSYS error
Memory full
Error number out of range
Pages allocated but not
deallocated
Deallocating more pages
than allocated
PDL overflow
Internal FOROTS error
Trap occured during trap
processing

(3) This is a- warning, not an error. The error cannot be
trapped with an ERR= branch, but IOSTAT and ERRSNS will be
set.

(4) See the TOPS-10 Monitor Calls Manual for the list of
FILOP. error codes and their meanings.

(5) "J" means the TOPS-20 JSYS error code. This number will
be between 600000 and 610000 (octal).

(6) No ERRSNS values

(7) Where n is the number of times the error occurs

D-9

FOROTS ERROR MESSAGES

APR and LIB errors are usually reported as warnings, and the program
continues. The number of APR and LIB errors listed on the user's
terminal can be changed by the FORTRAN Library Subroutine ERRSET (see
Section 13.4.1.14). The I/O errors either cause messages to be
printed on the terminal or can be trapped by an error exit argument
(ERR=statement number) on OPEN, ~EAD, WRITE, and CLOSE.

The FORTRAN Library Subroutine ERRSNS (see Section 13.4.1.15) allows
you to find out which I/O error occurred. When called, ERRSNS returns
one or two integer values that describe the status of the last I/O
operation performed by FOROTS. (The second integer value is
opt ional .) Fo r exampl e,

CALL ERRSNS (I,J)

calls this subroutine. J, the second integer value, is optional.

D.l ALPHABETICAL DESCRIPTION OF FOROTS MESSAGES

This section contains alphabetical descriptions of each warning and
fatal error message that is generated by FOROTS during program
execution. Each message is first listed; then is followed by a brief
description of how it is generated; followed by, in some cases, a
recovery procedure; and finally, where applicable, followed by the
ERRSNS values associated with the message.

ALT? /ACCESS='APPEND' not allowed with Labeled Magnetic tape files

Cause: You specified ACCESS='APPEND' in an OPEN statement when
using a labeled magnetic tape file. This is not
allowed.

Recovery: Change the OPEN statement.

ERRSNS values: First Value = 96 Second Val ue 102

ALZ? Argument less than or equal to zero

Cause: An argument (such as a memory size) was specified with
a value less than or equal to zero.

Recovery: Specify the correct value for the argument.

ERRSNS values: First Value = 21 Second Value = 125

APP? Can't setup to append to magtape file <JSYS error> (TOPS-20
only)

Cause: The MTOPR% JSYS failed trying to position the magnetic
tape with the function .MOFWF or .MOBKR.

Recovery: Use the information provided to determine a recovery.

ERRSNS values: First Value = 30

FORTRAN-10/20 VII D-10

Second Value = JSYS error
number

February 1987

FOROTS ERROR MESSAGES

AQS? First argument to SORT -must be a quoted string

Cause: The SORT routine detected that the first argument was
of type CHARACTER, but the string was not word aligned.

Recovery: If the first argument to the SORT program is of type
CHARACTER, it must be word aligned and terminated by an
ASCII null. The most reliable way to generate such an
argument is to use,a character constant.

ERRSNS values: First Value 21 Second Value = ,112

ARC % Ambiguous repeat count

Cause: In a ,FORMAT statement, a number between two format
specifiers can be considered belonging to either one.

Recovery: Insert a comma before or after the number, depending on
which specifier the number belongs with.

ERRSNS values: First Value = 22 Second Value = 532

ASW? Ambiguous switch /<sw> (TOPS-10 only)

Cause: In dialog mode, a switch was specified, but not enough
of the switch was given to uniquely specify which
switch was intended.

Recovery: Retype the line, completely specifying which switch you
mean.

ERRSNS values: First Value 45 Second Value 241

ATC? File's <attribute> conflicts with OPEN statement or default
(TOPS-20 only)

Cause: You opened an RMS file with RECORDTYPE= or
ORGANIZATION= attributes in your OPEN statement, which
conflict with the actual attributes of the file.

Recovery: Specify the correct attributes, or omit them from OPEN
to use the file's attributes.

ERRSNS values: First Value = 30 Second Value = 600

BBF? Bad format binary file

Cause: The control information stored in a binary file is
incorrect. The file cannot be read using
MODE='BINARY'. This error can be caused when the file
you are reading was not written by FORTRAN using
MODE='BINARY'.

Recovery: Make sure that you are using the correct file and
mode. Any file can be read with MODE='IMAGE'.
Section 11.3.24)

ERRSNS values: First Value 25 Second Value 302

data
{See

FORTRAN-10/20 VII D-11 February 1987

FOROTS ERROR MESSAGES

BLK % Pages allocated but not deallocated

Cause: Internal FOROTS error in memory management.

Recovery: Submit an SPR and include your program.

BLZ? BLOCKSIZE must be integral multiple of RECL

Cause: You specified a BLOCKSIZE in an OPEN statement that was
not a multiple of the RECORDSIZE you specified when
using magnetic tape files.

Recovery: Change the BLOCKSIZE value to be a multiple of the
RECORDSIZE.

ERRSNS values: First Value 30 Second Value 247

BME? Bytesize must be eight (TOPS-20 only)

Cause: You specified a BYTESIZE= other than 8 when accessing a
VMS RMS file.

Recovery: Change BYTESIZE=, or omit the specifier to default VMS
files to 8.

ERRSNS values: First Value 30 Second Value 603

BSC % Bytesize in OPEN different from FOB, FOB value used

Cause: You specified a BYTESIZE= value in OPEN that was
different than the one in the File Descriptor Block
(FOB). The FOB value is used. ,.

Recovery: If FOB value is correct, do not specify a BYTESIZE
value in OPEN, else specify BYTESIZE value in OPEN.

ERRSNS values: First Value = 26 Second Value = 588

BSI % Blocksize ignored: device is not a magnetic tape

Cause: A BLOCKSIZE specifier was given in an OPEN statement
(see Section 11.3.4) but was not used because the
device being opened is not a magnetic tape.

ERRSNS values: First Value = 26 Second Value = 535

CBI? Can't BACKSPACE IMAGE file with no RECORDSIZE

Cause: An OPEN statement with the MODE=' IMAGE' specifier (but
not the RECORDSIZE= specifier) was executed prior to a
BACKSPACE statement that referred to the open unit.

Recovery: If you are using fixed-length records, specify the
RECORDSIZE parameter in the OPEN statement (see Section
11.3.~3). Otherwise, the BACKSPACE cannot be done.

ERRSNS values: First Value = 25 Second Value = 536

FORTRAN-10/20 VII 0-12 February 1987

FOROTS ERROR MESSAGES

CCC? Can't convert constant to correct type

Cause: In NAMELIST input, a variable was assigned a value that
does not match. For example, if C is a complex
variable, the input:

C=.TRUE.

is in error, since .TRUE. is not a legal complex
number.

Recovery: Correct the error in the source program.

ERRSNS values: First Value = 97 Second Value = 519

CCP? Can't create page <n> (PAGE. error <n» (TOPS-10 only)

Cause: FOROTS attempted to use a page of memory for some task,
but was unable to. The monitor error code gives the
reason. This can be caused by erroneous MACRO
subroutines. If no such cause is found, it is an
internal FOROTS error.

CCS? Not enough memory for creating character stack

Cause: A character stack was requested that was larger than 36
sections (larger that the maximum virtual memory
available) •

Recovery: Specify correct call argument.

ERRSNS values: First Value = 21 Second Value 124

COF? Can't determine whether formatted or unformatted

Cause: The specified file has had both formatted and
unformatted I/O operations (or OPENs) performed on it.

Recovery: Use I/O operations and OPENs with the same FORM=
specifier.

ERRSNS values: First Value 31 Second Value 594

COP? Can't destroy page <n> (PAGE. error <n» (TOPS-10 only)

Cause: FOROTS attempted to use a page of memory for some task,
but was unable to. The monitor error code gives the
reason. This can be caused by erroneous MACRO
subroutines. If no such cause is found, it is an
internal FOROTS error.

COR? Can't do direct I/O to sequential file

Cause: An attempt was made to perform I/O to a file that is
already open in a conflicting mode.

Recovery: Open file in the appropriate mode.

ERRSNS values: First Value = 31 Second Value 315

0-13 February 1987

FOROTS ERROR MESSAGES

CDS? Can't do sequential I/O to direct file

Cause: An attempt was made to perform I/O to a file that is
already open in a conflicting mode.

Recovery: Open file is the appropriate mode.

ERRSNS values: First Value = 31 Second Value 315

CDT? Can't <read/write> an <input/output>-only file

Cause: An attempt was made to perform I/O to a file, but the
file is not open for I/O in the appropriate direction.

Recovery: Open the file with ACCESS='SEQINOUT' or 'RANDOM', as
appropriate. It is not possible to open a file for
APPEND access and then read from it. (See Section
11.3.1.)

ERRSNS values: First Value 47 Second Value 263

CEF? End of command file encountered (TOPS-20 only)

Cause: An indirect file was specified as a DIALOG argument,
and the end of the file was encountered before a
terminator character (line-feed).

Recovery: Edit the file and insert a line-feed.

ERRSNS values: First Value = 30 Second Value = 503

CFC % Fortran-77 and VMS: Carriage control character

Cause: A carriage-control character was used that
incompatible with ANSI FORTRAN and VAX FORTRAN.

is

Recovery: If you want the program to be
FORTRAN or VAX FORTRAN,
carriage-control character.

compatible
use a

ERRSNS values: First Value = 33 Second Value = 321

CFD % VMS incompatibility: I format default width used

wi th ANSI
compatible

Cause: A format descriptor was used with a default width that
is incompatible with VAX FORTRAN.

Recovery: If you want your program to be compatible with VAX
FORTRAN, then do not default the width of this edit
descriptor.

ERRSNS values: First Value 33 Second Value 328

FORTRAN-10/20 VI) D-14 February 1987

FOROTS ERROR MESSAGES

CFF % VMS incompatibility: Intrinsic routine invoked incompatibly

Cause: An intrinsic routine was invoked in a method
incompatible with VAX FORTRAN (such as use of an
EXTERNAL statement for an intrinsic function).

Recovery: If you want the program to be compatible with VAX
FORTRAN, chang~ to a method of invoking intrinsic
routines that is compatible with VAX.

ERRSNS values: First Value = 33 Second Value 322

CFG % Fortran-77 and VMS: G format descriptor used with character

Cause: The G format descriptor was used with character data,
which is an extension to ANSI FORTRAN and VAX FORTRAN.

Recovery: If you want the program compatible with ANSI FORTRAN or
VAX FORTRAN, do not use the G format descriptor to edit
character data.

ERRSNS values: First Value 33 Second Value 327

CFK % Fortran-77 and VMS: Keyword [keyword]

Cause: An OPEN or CLOSE keyword was used that is incompatible
with ANSI FORTRAN and VAX FORTRAN.

Recovery: If you want the program compatible with ANSI FORTRAN or
VAX FORTRAN, use a compatible OPEN or CLOSE keyword.

ERRSNS values: First Value =33 Second Value = 324

CFO % Fortran-77 extension: Overlap of character assignments

Cause: A character assignment statement was used in which the
character positions defined in the character variable,
array element or substring on the left of the equal
sign are referenced in the character expression on the
right of the equal sign. This is incompatible with
ANSI FORTRAN.

Recovery: If you want the program to be compatible with ANSI
FORTRAN, use a character assignment statement that does
not overlap the character expression and the character
variable, array element, or substring.

ERRSNS values: First Value = 33 Second Value 326

CFR % Fortran-77 extension:
(TOPS-20 only)
CFR % Fortran-77 extension:
(TOPS-10 onl y)

FORTRAN-20 supplied routine invoked

FORTRAN-l 0 supplied routine invoked

Cause: A FORTRAN-10/20-supplied subroutine was invoked that is
not available with ANSI FORTRAN.

Recovery: If you want your program to be compatible to ANSI
FORTRAN, use a compatible subroutine.

ERRSNS values: First Value = 33 Second Val ue 323

D-15 February 1987

FOROTS ERROR MESSAGES

CFS? Can't find SYS:SORT.EXE - <JSYS error> (TOPS-20 only)

Cause: The file SORT.EXE cannot be found on SYS:. A monitor
supplied error message will give more detail.

Recovery: Use the information provided by the
determine the proper course of action.

monitor to

ERRSNS values: First Value = 21 Second Value = 119

CFT % Fortran-77 and VMS: Trailing spaces in output record

Cause: Your program contains a FORMAT that specifies trailing
blanks (X format and $ format). In this case,
FORTRAN-10/20 preserves the trailing spaces.

Recovery: If you want the program compatible with ANSI FORTRAN
and VAX FORTRAN, do not use this form of the FORMAT
statement.

ERRSNS values: First Value 33 Second Value 325

CFX % Fortran-77 and
(TOPS-20 onl y)

VMS: FORTRAN-20 supplied routine invoked

FORTRAN-10 supplied routine invoked (TOPS-10 CFX % Fortan-77 and VMS:
only)

Cause: A FORTRAN-10/20-supplied subroutine was invoked that is
not available with ANSI FORTRAN or VAX FORTRAN.

Recovery: If you want the program to be compatible with ANSI
FORTRAN or VAX FORTRAN, use a compatible subroutine.

ERRSNS values: First Value = 33 Second Value = 323

CGP? Can't get pages 600:677 for SORT

Cause: The SORT subroutine brings the SORT program into core
in pages 600 through 677. Some of these pages were
already occupied by programs or data at the time that
SORT was called.

Recovery: Decrease the size of your program. Having fewer files
open or using a BUFFERCOUNT=l specifier in OPEN
statement may help (see Section 11.3.5). If this does
not help, you can segment the program by using LINK's
overlay facility (see the LINK Reference Manual).

ERRSNS values: First Value = 21 Second Value = 116

CGS? Can't get SYS:SORT.EXE - <JSYS error> (TOPS-20 only)

Cause: The file SORT.EXE was found on SYS:, however for some
reason it could not be merged into your program in
order to sort files. A monitor supplied error message
will give more detail.

Recovery: Use the information provided by the
determine the proper course of action.

monitor to

ERRSNS values: First Value = 21 Second Value 120

0-16 February 1987

FOROTS ERROR MESSAGES

CIR? /CARRIAGECONTROL:TRANSLATED illegal with this /RECORDTYPE

Cause: You specified CARRIAGECONTROL='TRANSLATED', which is
not allowed for the RECORDTYPE you specified.

Recovery: Change the OPEN statement.

ERRSNS values: First Value = 30 Second Val ue 243

CLE? Concatenation result larger than expected

Cause: The specified substring bounds are out of range.

Recovery: Specify legal substring bounds.

ERRSNS values: First Value = 21 Second Value 108

CLS? CLOSE failed, <I/O error message> (TOPS-10 only)

Cause: A CLOSE UUO. or FILOP. CLOSE function failed.

Recovery: Use the information provided to determine a recovery.

ERRSNS values: First Value = 28 Second Value = 250+n

CPP % Can't preallocate pages 600:677 for SORT

Cause: A call to
preallocate
allocated.

the SRTINI subroutine
SORT's pages because

was
they

unable to
were already

Recovery: Decrease the size of your program. Having fewer files
open or using a BUFFERCOUNT=l specifier in the OPEN
statement may help (see Section 11.3.5).

ERRSNS values: First Value = 21 Second Value 121

CQF % Can't queue file: QUEUE. UUO ERROR <N> (TOPS-10 only)

Cause: This error may occur when executing a CLOSE statement
in which the DISPOSE specifier is given with one of the
values: 'LIST', 'PRINT', or 'PUNCH', and GALAXY
release 4 is running. (See Section 11.5.4.)

Recovery: Refer to the TOPS-10 Monitor Calls Manual for an
explanation of the QUEUE. error number <n>.

ERRSNS values: First Value = 26 Second Value = 550

CRP? Can't return pages 600:677 after call to SORT (TOPS-10 only)

Cause: Before the SORT subroutine returns to the user, it
tries to deallocate the pages that the SORT program
resides in. The pages could not be deallocated. This
is not expected to occur.

Recovery: Submit an SPR.

ERRSNS values: First Value 21 Second Value 117

D-17 February 1987

FOROTS ERROR MESSAGES

CSF % Can't set FORTRAN carriage control attribute (TOPS-20 only)

Cause: You are running a TOPS-20 system that does not have
Edit 2981, which allows support for the FORTRAN
carriage-control attribute.

Recovery: Autopatch the monitor to include Edit 2981.

ERRSNS values: First Value = 26 Second Value = 502

CSI? Can't skiprecord image file with no RECORDSIZE

Cause: A SKIPRECORD statement was executed for a file opened
with MODE=IMAGE, and the file did not have a
RECORDSIZE(RECL) specified. Since there are no record
markers in IMAGE mode files, FOROTS cannot determine
how far to skip. .

Recovery: Add a RECL= specifier (see Section 11.3.33) to the OPEN
statement.

ERRSNS values: First Value = 25 Second Value 536

CWL? Can't write a file with MODE='LINED'

Cause: The program attempted to execute an output operation
such as a WRITE statement after an OPEN statement for
the same unit. The OPEN statement contained a
MODE=' LINED' specifier.

Recovery: Change the OPEN statement specifier to MODE='ASCII'.
(See Section 11.3.24.)

ERRSNS values: First Value = 47 Second Value 554

CWU? DIVERT: Can't write to unit <n>

Cause: DIVERT file is not opened for output.

Recovery: Open DIVERT file for output.

ERRSNS values: First Value = 21 Second Value 107

DBM? DBMS not loaded

Cause: A DBMS call to a.sharable FOROTS was attempted without
DBMS.

Recovery: The system manager must build DBMS into sharable FOROTS
or remove the file from FORLIB that directs the DBMS
call to' the sharable FOROTS.

0-18 February 1987

FOROTS ERROR MESSAGES

DEL? Can't delete file:<FILOP. error message> (TOPS-10 only)

Cause: The "DELETE" FILOP. failed. The file is not deleted.

Recovery: Usually you can correct the problem when the program is
finished and delete the file with the monitor DELETE
command.

ERRSNS values: First Value 28 Second Value 250+n

DFR? Default RECORDTYPE:FIXED requires /RECORDSIZE (TOPS-20 only)

Cause: You attempted to create a new RMS relative or indexed
file with a default /RECORDTYPE of FIXED, but did not
specify /RECOROSIZE.

Recovery: Specify /RECORDSIZE.

ERRSNS values: First Value = 30 Second Value

DLF % Data in 10 list but not in format

Cause: An I/O statement has requested data to be
but the FORMAT statement does not
descriptor that would translate the data.

611

transferred,
specify any

Recovery: tix the FORMAT statement. It must contain one of the
following descriptors:

A,B,E,F,G,I,L,O,Q,R,Z

ERRSNS values: First Value = 62 Second Value 306

DLL? DUMP mode I/O list too long (TOPS-10 only)

Cause: The I/O list specified for a DUMP mode READ or WRITE
statement is too long for the FOROTS internal DUMP mode
control list.

Recovery: Split the I/O list across two or more READ or WRITE
statements.

ERRSNS values: First Value 81 Second Value 581

DMA % Must give lower and upper bounds to dump in non-zero sections
(TOPS-20 only)

Cause: A call to PDUMP or DUMP was made without specifying
memory bounds. In section zero, this is interpreted as
'all of memory'. For extended addressing, lower and
upper bounds must be specified.

Recovery: Specify lower and upper bounds for memory.

ERRSNS values: First Value = 21 Second Value = 126

FORTRAN-10/20 VII D-19 February 1987

FOROTS ERROR MESSAGES

DQE? Disk full or quota exceeded

Cause: The disk quota for the disk on which a file is being
written is exhausted, or the entire disk structure is
full. If this error is encountered while running under
batch, the program is aborted and an attempt is made to
close all files. If this error is encountered while
timesharing, the user is requested to type an EXPUNGE
command and then a CONTINUE command.

Recovery: EXPUNGE or create more room on the specified disk
structure.

ERRSNS values: First Value = 98 Second Value 590

DQW % Disk full or quota exceeded - please EXPUNGE, then type CONTINUE
(TOPS-20 only)

Cause: The file or files being written on the disk have either
exhausted your disk quota or filled the structure.

Recovery: FOROTS leaves the terminal at EXEC level so that you
have more options to use to provide space on the disk
structure. You can type CONTINUE to resume processing
if you don't reset the current fork.

ERRSNS values: First Value = 22 Second Value 590

DSS % DISPOSE='SAVE' assumed - device is not a disk

Cause: A DISPOSE value other than 'SAVE' was specified
file on a device other than disk. (See
11.3.15.)

ERRSNS values: Fi rst Val ue 26 Second Value = 549

DST? Error in dialog string (TOPS-10 only)

Cause: A syntax error in the DIALOG= specifier.

for a
Section

Recovery: Correct the error in the program or in DIALOG mode.
(See Section 11.5.3.)

DTL % Dialog string too long

Cause: The argument to DIALOG= cannot be parsed because it is
too long.

Recovery: Use a shorter strin~.

ERRSNS values: First Value = 45 Second Value 533

0-20 February 1987

FOROTS ERROR MESSAGES

ECS? Not enough memory for expanding character stack

Cause: More memory than is available on a KL10 was requested
by either a dynamic concatenation (concatenation of
character variables of length*) or by a call to the
ALCCHR subroutine.

Recovery: Reduce the size of your concatenation or argument to
ALCCHR. If you are running extended addressing, you
can present parts of the character stack by invoking
SORT and dynamic libraries at the beginning of the
program.

ERRSNS values: First value 21 Second Value = 124

EDS/EDA? Error in DIALOG string - <message> (TOPS-20 only)

Cause: A syntax error in the DIALOG= specifier. (See Section
11.5.3.)

Recovery: Retype the specifier correctly in DIALOG mode.

ERRSNS values: First Value = 45 Second Value = 539

EFS [Enter correct file specs]

Cause:

TOPS-10
TOPS-20

Dialog mode. You should respond to this message by
entering any information you wish to change about the
indicated file. This can include the device, filename,
directory, or any OPEN parameter. The form of a
response is:

DEV:FILE.EXT[DIRECTORY] /SWITCH:VAL /SWITCH:VAL
DEV:<DIRECTORY>FILE.EXT.GEN /SWITCH:VAL /SWITCH:VAL

All parts of this specification are optional.

EOF? End of file

Cause: An input statement has attempted to read more data than
the file contains.

Recovery: Use an END= specifi~r in the READ statement, or
lengthen the file.

ERRSNS values: First value 24 Second Value -1

ESV? <unknown/ambiguous> keyword value /<switch>:<value> (TOPS-20
only)

Cause: A switch entered in dialog mode was not recognized or
was not specified uniquely.

Recovery: Retype the line, specifying the correct switch.

ERRSNS values: First Value = 45 Second Value = 241

D-2l February 1987

FOROTS ERROR MESSAGES

ETL % Attempt to write beyond fixed-length record

Cause: In an ENCODE statement, the format specified more
characters than the string will hold. The excess
characters are ignored. (See Section 10.12.)

Recovery: Shorten the format or lengthen the string.

ERRSNS values: First Value = 22 Second Value = 509

FBR? BLOCKSIZE must be specified for RECORDTYPE='FIXED'

Cause: For magnetic tape files, a RECORDTYPE='FIXED' was
specified, and no BLOCKSIZE value was specified.

Recovery: If you specify RECORDTYPE='FIXED' for magnetic tapes,
you must specify a BLOCKSIZE, which must be a multiple
of the RECORDSIZE.

ERRSNS values: First Value = 30 Second Value 246

FCL? Found unexpected continuation LSCW

Cause: A RECL(RECORDSIZE) has been specified in an OPEN
statement, and FOROTS has encountered a continuation
(type 2) logical segment control word (LSCW). This
type LSCW is never written in fixed-length binary
records.

Recovery: Remove the RECL(RECORDSIZE) specification in the OPEN
statement.

ERRSNS values: First Value = 25 Seco'nd Val ue 573

FDC % Floating divide check

Cause: The program contains a floating-point division in which
the divisor is too small compared to the dividend to
yield a result that is in the floating-point range.

Recovery: Correct program so
floating-point range.

that division is within

ERRSNS values: First Value = 5 Second Value = n
where n is
the number
of times the
error occurs

FFX? FOROP. function code exceeds range

Cause: A library routine has called for an operation that is
not available. This can be caused by using a
mismatched FOROTS and FORLIB, or by an erroneous MACRO
subroutine.

Recovery: Make sure the versions of FOROTS.EXE and FORLIB.REL
that you are loading from are matching versions. If
this doesn't help, find the subroutine causing the
problem and alter or remove the erroneous call.

FORTRAN-10/20 VII February 1987

FOROTS ERROR MESSAGES

FOV % Floating overflow

Cause: A REAL or DOUBLE PRECISION number was read that is too
large in magnitude (see Chapter 3). This is only a
warning and does not stop execution of the program.
The results of a calculation that overflows are set to
the largest representable number with the sign of the
correct result.

Recovery: Modify the data so that its values fall in the range of
values that can be represented for the data type.

ERRSNS values: First Value = 3 or 4 Second Value = n
where n is
the number
of times the
error occurs

FRR? /RECORDTYPE:FIXED requries /RECORDSIZE

Cause: A RECORDTYPE='FIXED' was specified in an OPEN statement
without a RECORDSIZE (RECL) specifier.

Recovery: Specify RECL in the OPEN statement (see
11.3.33) •

Section

ERRSNS values: First Value 30 Second Value 240

FTS % Output field width too small

Cause: The field width specified in a FORMAT statement was not
large enough to allow the printing of the value being
output. For example, this error would occur if the
number 100 is output with the format specifier "12".

ERRSNS values: First Value = 9 Second Value = 0

FUN % Floating underflow

Cause: A REAL or DOUBLE PRECISION number was read that is too
small in magnitude (see Chapter 3). This only a
warning and does not stop execution of the program.
The result of a calculation that underflows is set to
zero.

Recovery: Modify the data so that its values fall in the range of
values that can be represented for the data type.

ERRSNS values: First Value = 6 or 7 Second Value = n

D-23

where n is
the number
of times the
error occurs

February 1987

FOROTS ERROR MESSAGES

FVF? Format and variable type do not match

Cause: An attempt was made to READ or WRITE character data
with other than A or G format.

Recovery: Specify A or G edit descriptors when reading character
data.

ERRSNS values: First Value 62 Second Value = 583

FVM % Format and variable type do not match

Cause: An I/O statement has been executed that uses a format
edit descriptor with a type that does not match the I/O
list item being processed.

Recovery: Specify the appropriate format edit descriptor for the
I/O list item.

ERRSNS values: First Value = 22 Second Value 583

lAC? /ACCESS illegal for this device

Cause: An attempt was made to OPEN a device for which the
access specified (or implied) is illegal.

Recovery: Change the ACCESS specifier in the OPEN statement or
data transfer statement. (See Section 11.3.1.)

ERRSNS values: First Value = 30 Second Value = 248

IAV? Illegal value for OPEN specifier

Cause: An OPEN statement specifier has a value illegal for
that specifier.

Recovery: Specify a legal value for that OPEN specifier.'

ERRSNS values: First Value = 30 Second Value = 585

ICA? Incompatible attributes

Cause: An illegal combination of open attributes has been
spec i f i ed.

Recovery: Change one or more of the conflicting specifiers.

ERRSNS values: First Value = 30 Second Value = 506

ICD? Non-digit in record delimiter

Cause: The format of the tape being read is not '0'
(DELIMITED). The Record Control Word (ReW) contained a
non-digit, or the data on the tape is incompatible.

Recovery: Specify the correct TAPEFORMAT in the OPEN statement.

ERRSNS values: First Value = 25 Second Value = 570

D-24 February 1987

FOROTS ERROR MESSAGES

ICE? Illegal length for character expression

Cause: A program has specified a zero length or negative
length character substring as an I/O list element.

Recovery: Fix program to specify a positive length substring.

ERRSNS values: First Value = 81 Second Value = 599

IDC % Integer divide check

IDD ?

IDI ?

Cause: Program contains an integer division by 0.

Recovery: Correct division in program.

ERRSNS values: First Value = 1 Second Value = n

Illegal character <chr> (TOPS-10 only)

Cause: An illegal character was encountered

Recovery: Retype the response without illegal

in

where n is
the number
of times the
error occurs

dialog mode.

characters.

ERRSNS values: First Value = 45 Second Value = 548

Illegal

Cause:

DUMP mode I/O list (TOPS-10 only)

An I/O list entry has been specified whose entry size
(number of words) is different from its increment.
This can only happen if an implied DO loop is specified
for the I/O list, the index increment is set to a value
other than 1, and the program is compiled with
/OPTIMIZE.

Recovery: Use an index increment of 1, or do not compile the
program with /OPTIMIZE.

ERRSNS values: First Value = 81 Second Value 579

IDM? /MODE:<mode> illegal for this device

Cause: Not all devices can do I/O in all modes. For example,
terminals cannot do binary I/O.

Recovery: Change the MODE= specifier or the device. (See Section
11.3.24.)

ERRSNS values: First Value 30 Second Value 249

IDU? DIVERT: illegal to divert to unit <n>

Cause: Unit specified is an input-only device.

Recovery: Specify a unit for which output is legal.

ERRSNS values: First Value = 21 Second Value = 104

D-25 February 1987

FOROTS ERROR MESSAGES

IEM? FOROTS internal error in memory management

Cause: This is an internal error that is not expected to
occur. It means that the memory management routines
have detected a problem with their control information.

Recovery: Submit an SPR.

1FT? Illegal FORMAT

Cause: Your program contains an illegal FORMAT statement.

Recovery: Correct FORMAT statement.

ERRSNS values: First Value = 62 Second Value = 303

IFW? Illegal field width

Cause: An illegal (negative) field width was specified in a
FORMAT statement.

Recovery: Specify a legal field width in the FORMAT statement.

ERRSNS values: First Value = 62 Second Value = 553

IHC? Illegal Hollerith constant

Cause: A format specification contains an H edit descriptor
that is not preceded by a length or does not contain
enough characters.

Recovery: Use the correct format for an H edit descript~r. (See
Section 12.4.2.)

ERRSNS values: First Value = 62 Second Value = 552

IJE? "Impossible" JSYS error at <PC) - <JSYS ERROR) (TOPS-20 only)

Cause: This is an internal FOROTS error that is not expected
to occur. A monitor call failed that was not expected
to. A monitor-supplied error message may be of
assistance in avoiding the problem.

Recovery: Submit an SPR.

ILC? Illegal character in data

Cause: A format descriptor that requires a number found a
nonnumeric character.

Recovery: Fix the input data or FORMAT statement.

ERRSNS values: First Value = 64 Second Value = 307

FORTRAN-10/20 VII 0-26 February 1987

FOROTS ERROR MESSAGES

ILF? Illegal character in format

Cause: A format specification contains a character with no
defined meaning.

Recovery: Correct the error in the format list and rerun the
program.

ERRSNS values: First Value 62 Second Value 301

ILM? Unexpected MTOPR% ERROR (TOPS-20 only)

Cause: An error was encountered during a file operation that
FOROTS did not expect.

Recovery: This type of error should not happen. Please submit an
SPR.

ERRSNS values: First Value 96 Second Value JSYS error
number

ILN? Variable or namelist does not start with letter

Cause: NAMELIST input contains something other than a legal
variable or NAMELIST name in a context where a variable
or NAMELIST name is required.

Recovery: Correct the source program with a legal variable or
NAMELIST name. (See Section 12.6.)

ERRSNS values: First Value = 97 Second Value 515

ILS? Illegal subscript

Cause: In NAMELIST I/O, an illegal subscript was given for an
array.

ERRSNS values: First Value 97 Second Value 516

IMV? Illegal MTOP value

Cause: A MARCO program has issued an MTOP call to FOROTS with
an illegal value for the function.

Recovery: Specify a legal function value in the call.

ERRSNS values: First Value = 81 Second Value = 574

IOE? <10 error message>

Cause: An I/O error has occurred. The monitor error code is
given, along with an interpretation of the probable
meaning of the error bits. This message normally
indicates that the data recorded on an external device
has been damaged and cannot be read correctly.

ERRSNS values: First Value = 98 Second Value = 400 (TOPS-10)

D-27

JSYS error
number
(TOPS-20)

February 1987

FOROTS ERROR MESSAGES

IOL? Bad format IO list

Cause: The code generated
not understood
erroneous entry in
probably indicates
in FOROTS.

by the compiler for an I/O list is
by this version of FOROTS. The

the I/O list is ignored. This
an internal error in the compiler or

Recovery: Locate the problem area of the I/O list and simplify
it.

ERRSNS values: First Value 81 Second Value 508

IOV % Integer overflow

Cause: An attempt was made to read data that was out of range
for an integer variable.

ERRSNS values: First Value = 2 Second Value = 0

IPP? Illegal PPN (TOPS-10 only)

Cause: A directory specification starts with something that is
not a legal PPN specification. The forms of legal PPNs
are:

[n,n], [n,], [,n], or [,]

where n represents a 1- to 6-digit octal number.

Recovery: Use a legal directory specification.

ERRSNS values: First Value = 45 Second Value 545

IPN? Illegal page number <n>

Cause: A call to TOPMEN or SRTINI has specified a page number
outside the range 1:777.

Recovery: Specify a correct page number

ERRSNS values: First Value = 21 Second Value

IRC? Illegal repeat count

Cause: An illegal repeat count was given in
statement.

Recovery: Correct the FORMAT statement.

ERRSNS values: First Value = 62 Second Value

IRN? Illegal record number <n>

538

122

a FORMAT

Cause: A direct-access I/O statement has specified a record
number that is zero or negative.

Recovery: Correct the invalid record number in the program.

ERRSNS values: First Value = 25 Second Value = 512

D-28 February 1987

FOROTS ERROR MESSAGES

ISS? Illegal substring descriptor

Cause: An I/O statement refers to an illegal substring
delimiter (substring not within bounds of string).

Recovery: Correct the substring specifier.

ERRSNS values: First Value = 97 Second Value 597

ISW? Can't switch to input

Cause: A file that was being written cannot be open for
output. The file is either protected against reading,
or has been deleted before the OPEN for read is
executed.

Recovery: Specify correct protection for OPEN write.

ERRSNS values: First Value = 98 Second Value = 250+n
(TOPS-10)

JSYS error
number
(TOPS-20)

ITE? Tape is not usable by your job (TOPS-10 only)

Cause: A tape unit was specified or implied that is not owned
by your job, and is probably owned by another job.

Recovery: ASSIGN the drive or MOUNT the tape.

ERRSNS values: First Value = 96 Second Value 587

IUN? Illegal unit number <n>

Cause: An I/O statement has specified a unit number that is
negative or too large.

Recovery: Change the UNIT specifier value and rerun the program.

ERRSNS values: First Value = 32 Second Value = 239

IWI? Illegal to initiate another I/O statement while processing
< I/O stat~ment)

Cause: An I/O statement, STOP statement, or PAUSE statement
has been initiated while processing another I/O
statement (such as in a function reference used as an
I/O list element), or while within a subroutine called
as a result of an I/O error through ERRSET.

Recovery: Remove the offending I/O statement, STOP statement, or
PAUSE statement.

ERRSNS values: First Value 81 Second Value 582

0-29 February 1987

FOROTS ERROR'MESSAGES

KDB? KEY datatype CHARACTER conflicts with BYTESIZE (TOPS-20 only)

Cause: You specified or defaulted a KEY=
CHARACTER, but specified a BYTESIZE
(TOPS-20 file) or 8 (VMS file).

datatype to
not equal to 7

Recovery: Specify correct BYTESIZE or omit to use system default.

ERRSNS values: First Value = 30 Second Value = 612

KER? New indexed file requires KEY= (TOPS-20 only)

Cause: You attempted to create a new RMS indexed file without
specifying a primary index.

Recovery: Specify one or more KEY= specifiers in your OPEN.

ERRSNS values: First Value = 30 Second Value = 606

KRI? Can't do keyed I/O to <sequential/relative> file (TOPS-20 only)

Cause: You attempted a keyed (indexed) READ to an
sequential or relative file.

Recovery: Correct the invalid READ statement in the program.

ERRSNS values: First Value = 31 Second Value = 605

RMS

MEU? Missing EXTERNAL declaration in a call to USEROPEN routine
(TOPS-20 only)

Cause: You specified a USEROPEN routine but did not declare it
EXTERNAL in the program.

Recovery: Supply the EXTERNAL declaration.

ERRSNS values: First Value = 30 Second Value = 604

MFU? Memory full

Cause: There is insufficient memory to complete execution of
the program.

Recovery: Some memory can be saved by opening fewer files at a
time, by using BUFFERCOUNT=1 in OPEN statements, and by
using minimal tape block sizes. If these techniques do
not help, you can segment the program using LINK's
overlay facility (see the LINK Reference Manual).

FORTRAN-10/20 VII D-30 February 1987

FOROTS ERROR MESSAGES

NCA? No memory available for character stack

Cause: For non-overlay programs, this message indicates that
the memory manager has allocated all available space
between the user's low segment and FOROTS. For overlay
programs, this messages indicates that /SPACE:0 has
been specified to LINK.

Recovery: For non-overlay programs, LINK with /OTS:NONSHARE. For
overlay programs, specify at least 1000 to the /SPACE
switch in LINK (see the LINK Reference Manual).

ERRSNS values: First Value = 21 Second Value = III

NCK % <keyword> in CLOSE is meaningless - ignored

Cause: Options have been included in the CLOSE statement that
are meaningless for closing the file.

Recovery: Use valid CLOSE options. (See Section 11.5.)

ERRSNS values: First Value = 26 Second Value = 542

NCS? No character stack allocated - compiler error

Cause: An internal compiler error has occurred.

Recovery: Submit an SPR.

ERRSNS values: First Value = 21 Second Value = 110

NDI? No device specified with ":" (TOPS-10 only)

Cause: An OPEN statement has specified a null device name.

ERRSNS values: First Value = 45 Second Value = 544

NEC? Found "<chr>" when expecting ":"

Cause: Substring parameters not separated by":"

Recovery: Insert a ":" between substring parameters.

ERRSNS values: First Value = 97 Second Value = 596

NEQ? Found "<chr>" when expecting "="

Cause: NAMELIST input found an illegal character in a context
that requires an equal sign.

Recovery: Replace illegal character with equal sign.

ERRSNS values: First Value = 97 Second Value = 513

D-3l February 1987

FOROTS ERROR MESSAGES

NFC? Too many open units (TOPS-10 only)

Cause: On TOPS-10 monitors before version 7.00, at most, only
16 units can be open at the same time.

Recovery: Arrange the program so that it never needs to have more
than 16 simultaneously open units.

ERRSNS values: First Value = 30 Second Val ue 242

NLS? Null string illegal

Cause: An attempt was made to input to a zero length string
during list-directed input.

Recovery: Insert characters into the string, or remove the string
delimiting quotes.

ERRSNS values: First Value = 97 Second Value = 580

NLT? <statement> not allowed with Labeled Magnetic tape files

Cause: When using labeled magnetic tape files, you used a
BACKSPACE or ENDFILE statement in your program, which
is no tall owed.

Recovery: Remove any BACKSPACE or ENDFILE statements from your
program.

ERRSNS values: First Value = 96 Second Value = 100

NNI % Node name ignored (TOPS-10 only)

Cause: Remote file access is not supported on TOPS-10.

Recovery: Omit the node specification from the filespec.

ERRSNS values: First Value = 26 Second Value = 609

NQS? PADCHAR must be single char in double quotes (TOPS-10 only)

Cause: In dialog mode, the PADCHAR specifier must be followed
by the pad character in double quotes.

ERRSNS values: First Value = 45 Second Value = 551

NRP? Missing right paren

Cause: In NAMELIST or list-directed complex input, the closing
right parenthesis that ends a complex number was not
found.

ERRSNS values: Fi rst Val ue 97 Second Value = 514

FORTRAN-10/20 VII D-32 February 1987

FOROTS ERROR MESSAGES

NSD? No such device <dev>

Cause: The specified device does not exist.

Recovery: Change the device name to one that does exist.

ERRSNS values: First Value = 30 Second Value = 245

NSI? Null SFD (TOPS-10 only)

Cause: A directory specification contains a null SFD.

ERRSNS values: First Value = 45 Second Value = 547

NSS? No free section available for SORT (TOPS-20 only)

Cause: SORT runs it its own section on machines that support
extended addressing. There are no free sections
available.

Recovery: There are 31 sections normally available when a
FORTRAN program runs. If your application
trying to use extended addressing, this error
not occur, and you should submit an SPR.

simple
is not
should

ERRSNS values: First Value = 21 Second Value = 118

OGX % Galaxy version 2 not supported (TOPS-10 only)

Cause: Your system is using an unsupported version of GALAXY.

Recovery: Inform the system administrator to upgrade to the
supported version of GALAXY.

ERRSNS values: First Value = 26 Second Value 595

OPN? Can't OPEN file

Cause: The specified file could not be opened. The reason
given is taken from the monitor error code (see the
TOPS-10 Monitor Calls Manual).

ERRSNS values: First Value = 30 Second Value = 250+n

OSW? FILOP. error n - can't switch to output

Cause: An attempt to open a file for write access which has
previously been open for read-only access failed.

Recovery: Change protection code; remove other file access.

ERRSNS values: First Value = 98

D-33

Second Value = 250+n
(TOPS-10)

JSYS error
number
(TOPS-20)

February 1987

FOROTS ERROR MESSAGES

PAG % Pages allocated but not deallocated

Cause: Internal FOROTS error in memory management.

Recovery: Submit an SPR and include your program.

PGD? Deallocating more pages than allocated

Cause: Internal FOROTS error in memory management.

Recovery: Submit an SPR and include your program.

POI? <file positioning operation> Illegal for DIRECT (RANDOM) file

Cause: A file positioning operation (such
BACKSPACE) was attempted on a
DIRECT{RANDOM) access.

as REWIND or
file open for

Recovery: Remove the file positioning statement.

ERRSNS values: First Value = 31 Second Value 593

PPN? <JSYS error> (TOPS-20 only)

Cause: A TOPS-20 OPEN statement has specified a PPN instead of
a directory name, but the PPN has no matching
directory.

Recovery: Specify the correct PPN, or better yet, specify the
directory name instead.

ERRSNS values: First Value = 30 Second Value 405

RBR? REREAD not preceded by READ

Cause: A REREAD statement was encountered before any READ
statement. A READ must be executed first so there is
something to reread.

Recovery: Cause a READ statement to be executed first.

ERRSNS values: First Value = 39 Second Value = 310

RLB? /RECORDSIZE larger than /BLOCKSIZE

Cause: A RECORDSIZE was specified in an OPEN statement that is
larger than the specified or implied BLOCKSIZE.

Recovery: Correct either RECORDSIZE or BLOCKSIZE, or specify
BLOCKSIZE if it is not specified.

ERRSNS values: First Value = 30 Second Value = 244

0-34 February 1987

FOROTS ERROR MESSAGES

RIC? Reading into character format illegal

Cause: An attempt was made to READ into a character format.

Recovery: Correct program to avoid this construct. READ
character variable and use this variable
concatenated with other character expressions)
modifiable format.

into a
(perhaps

for a

ERRSNS values: First Value 62 Second Value 524

RIF % Reading into FORMAT nonstandard

Cause: A READ statement was executed that reads data into a
Hollerith or quoted string in a FORMAT statement. This
is a practice contrary to the ANSI standard and is
likely not to work in future releases of FORTRAN-10/20.

Recovery: READ into character variables and use (perhaps
concatenated with character constants) as the FORMAT.

ERRSNS values: First Value = 22 Second Value = 584

RIR? New RELATIVE or INDEXED file requires /RECORDSIZE (TOPS-20
only)

Cause: You tried to create (STATUS='NEW') an RMS relative or
indexed file without specifying a record length.

Recovery: Specify /RECORDSIZE.

ERRSNS values: First Value = 30 Second Value = 613

RMS? RMS file requires ORGANIZATION in OPEN statement (TOPS-20 only)

Cause: The OPEN statement did not specify an RMS file by means
of ORGANIZATION=, but the file you tried to open is an
RMS file.

Recovery: Supply an ORGANIZATION attribute.

ERRSNS values: First Value = 30 Second Value 608

RNA? RMS not available on SYS:

Cause: Your program tried to invoke RMS (an OPEN specified a
remote or RMS file, or an INQUIRE-by-file specified a
remote file) when RMS is not available on your system.

Recovery: Make sure your system supports RMS V3 and/or RMSFAL VI.

ERRSNS values: First Value = 30 Second Value = 615

FORTRAN-10/20 VII D-35 February 1987

FOROTS ERROR MESSAGES

RNM? Can't rename file

Cause: An attempt to rename the specified file failed.

Recovery: Change file protection, remove other file access.

ERRSNS values: First Value = 28 Second Value = 250+n
(TOPS-10)

JSYS error
number
(TOPS-20)

RNR? Record <n> has not been written

Cause: In direct-access input, an attempt was made to read a
record that was never written. This may indicate the
use of an incorrect record number.

Recovery: Make sure you are requesting the correct record.

ERRSNS values: First Value = 25 Second Value = 510

RPE? Illegal repeat count

Cause: In NAMELIST or list-directed input, a repeated constant
was found, but the repeat count is not a positive
integer.

Recovery: Correct the input and try again.

ERRSNS values: First Value = 97 Second Value 521

RRl? Random I/b requires RECORDSIZE specifier in OPEN statement

Cause: Direct-access I/O was attempted to a file that has not
been opened with the RECL or RECORDSIZE specifier to
give the size of the record(s).

Recovery: Specify a record size. The record size is in
characters for formatted files, words for unformatted
files. (See Section 11.3.33.)

ERRSNS values: First Value = 30 Second Value = 240

RRR? Random 10 requires /RECORDSIZE

Cause: An OPEN statement was attempted that specified
ACCESS=DIRECT(RANDOM) with no record size specified

Recovery: Specify a record size.

ERRSNS values: First Value = 30 Second Value 240

D-36 February 1987

FOROTS ERROR MESSAGES

RSM? Record size different from that specified

Cause: A record size found in a binary record is different
than that specified in the OPEN statement.

Recovery: Specify the correct record size in the OPEN statement.

ERRSNS values: First Value = 25 Second Value = 572

SDO? Same device open on unit with conflicting specifiers

Cause: An OPEN statement was attempted for a device for which
another OPEN or data transfer statement had been
already executed, and the file specifications were in
conflict.

Recovery: Change file specifications

ERRSNS values: First Value = 30 Second Value 540

SIF? <statement> illegal for this file type or access (TOPS-20 only)

Cause: Your program attempted to execute a statement that is
legal only for RMS files on a non-RMS file; or a
file-positioning, DELETE, UNLOCK or REWRITE statement
was attempted on an RMS file when either /ACCESS or
/ORGANIZATION does not permit the operation.

Recovery: Correct the invalid statement in the program.

ERRSNS values: First Value = 31 Second Value = 614

SLN? Record length negative or zero

Cause: An ENCODE or DECODE statement was initiated that has a
negative or zero value for the record (string) length.

Recovery: Correct program to specify a legal record length.

ERRSNS values: First Value = 25 Second Value = 577

SLT? Input/Output switching not allowed with Labeled Magnetic tape
files

Cause: Your program attempted to switch between input and
output when using labeled magnetic tape files.

Recovery: Don't switch input and output when using labeled
magnetic tape files.

ERRSNS values: First Value = 96 Second Value = 101

SNH? Internal FOROTS error at <PC>

Cause: This error is not expected to occur.
consistency check has found a bug.

An internal

Recovery: Please submit an SPR if you get this message.

FORTRAN-10/20 VII D-37 February 1987

FOROTS ERROR MESSAGES

SNQ? String not within single quotes

Cause: A character data item read as list-directed or NAMELIST
input is not enclosed in single quotes.

Recovery: Enclose character data item in single quotes.

ERRSNS values: First Value = 97 Second Value = 598

SNV? Sign with null value

Cause: List-directed or NAMELIST input contains a + or - sign
not followed by a value.

Recovery: Correct the input and try again.

ERRSNS values: First Value = 97 Second Value 522

SRE % Subscript range error - subscript <n> of array <name> on line
<n>

Cause: An illegal subscript or range has been specified for an
array reference.

Recovery: Specify a legal array reference.

ERRSNS values: First Value = 23 Second Value = 114

SSE % substring range error <var(bound» on line <n>

Cause: An illegal substring bound or range has been specified
in a character expression.

Recovery: Specify a legal reference.

ERRSNS values: First Value = 23 Second Value 113

TFM? Tape format conflicts with OPEN statement or default

Cause: The actual format of the tape (either CORE-DUMP or
INDUSTRY) conflicts with the format specified in the
OPEN statement or by the monitor. At this point, the
file is already opened in the wrong format.

Recovery: Specify the correct TAPEFORMAT in the OPEN statement or
with the EXEC.

ERRSNS values: First Value 30 Second Value = 569

TKS? Too many KEY specifiers (TOPS-20 only)

Cause: RMS allows a maximum of 255 indexes for an indexed
file.

Recovery: Reduce the number of KEY= specifiers.

ERRSNS values: First Value = 30 Second Value = 607

FORTRAN-10/20 VII 0-38 February 1987

FOROTS ERROR MESSAGES

TMA? Too many arguments in call to SORT

Cause: When the first· argument in a call to SORT is a
character constant, the argument list must be copied in
order to convert the argument to a Hollerith constant.
At most, 10 arguments can be copied.

Recovery: Change the first argument to a Hollerith constant, or
use less than 10 arguments.

ERRSNS values: First Value = 21 Second Value 115

TMF? Too many SFDs (TOPS-10 only)

Cause: A directory specification contains more than five SFDs.

Recovery: Specify the correct directory.

ERRSNS values: First Value = 45 Second Value 546

UDO? Unsupported /DISPOSE:<option> for RMS files (TOPS-20 only)

Cause: A PRINT, LIST, PUNCH, SUBMIT or PLOT was specified for
a TOPS-20 RMS file; or PUNCH or PLOT specified for a
VMS RMS file.

Recovery: Correct the specifier.

ERRSNS values: First Value = 28 Second Value 610

UDT? Undefined data type or internal FOROTS error

Cause: Internal FOROTS error.

Recovery: Submit an SPR.

ERRSNS values: First Value 62 Second Value 575

UME? Unexpected MTCHR error <n> (TOPS-10 only)

Cause: This message is not expected to occur. It indicates
that a MTCHR UUO has failed. The monitor-supplied
error code may give some indication of the reason.

Recove~y: Submit an SPR.

ERRSNS values: First Value = 96 Second Value = 531

UMO % <JSYS error> trying to set tape <density/parity/data mode>
(TOPS-20 onl y)

Cause: It was not possible to set the indicated parameter of
the tape. The monitor error message gives the reason.

Recovery: Make sure you are using a drive that supports the
requested operations.

ERRSNS values: First Value = 96

FORTRAN-10/20 VII D-39

Second Value JSYS error
number

February 1987

FOROTS ERROR MESSAGES

UNO? DIVERT: unit <n> is not open

Cause: The file to which error messages are diverted must be
opened for output before DIVERT is called.

Recovery: Open the file for output before calling DIVERT.

ERRSNS values: First Value = 21 Second Value = 105

UNS? Unit not specified

Cause: A call was made to FOROTS which did not contain a unit
number.

Recovery: Correct calling code.

ERRSNS values: First Value = 81 Second Value 501

UOA % Unknown OPEN keyword <n>, ignored

Cause: The compiler has generated an OPEN call that contains
an unknown keyword. The keyword is ignored.

Recovery: Make sure you are using the correct versions of the
compiler, FORLIB, and FOROTS.

ERRSNS values: First Value = 26 Second Value = 541

UOF? USEROPEN failed

Cause: An RMS service call in a USEROPEN procedure has failed.

Recovery: Examine the STS and STV error values to determine the
exact cause.

ERRSNS values: First Value 30 Second Value

URS? Unsupported remote system (TOPS-20 only)

JSYS error
number

Cause: A remote file access specified a remote system that is
neither TOPS-20 or VMS.

Recovery: Specify a TOPS-20 or VMS node.

ERRSNS values: First Value = 30 Second Value 602

URT? Recordtype <type> not supported for this file type (TOPS-20
only)

Cause: /RECORDTYPE:STREAM was specified for a TOPS-20 RMS
file; or RMS returned a recordtype other than STREAM,
VARIABLE or FIXED for an existing remote file.

Recovery: Correct the invalid /RECORDTYPE.

ERRSNS Values: First Value = 30 Second Value 601

FORTRAN-10/20 VII D-40 February 1987

FOROTS ERROR MESSAGES

USW? Unknown switch /<sw> (TOPS-10 only)

Cause: In dialog mode, an unknown switch was specified.

Recovery: Retype the line, specifying the correct switch.

ERRSNS values: First Value = 45 Second Value = 241

UTE? Unexpected TAPOP error <n> (TOPS-10 only)

Cause: This message is not expected to occur. It indicates
that a TAPOP UUO has failed. The monitor-supplied
error code may give some indication of the reason.

Recovery: Submit an SPR.

ERRSNS values: First Value 96 Second Value = 530

UTO % Unexpected TAPOP. error <n> trying to set <density/parity/data
mode/blocksize> (TOPS-10 only)

Cause: It is not possible to set the indicated parameter of
the tape. The monitor error message gives the reason.

Recovery: Make sure you are using a drive that supports the
requested operation.

ERRSNS values: First Value = 96 Second Value = 537

VNN? Variable <var> not in namelist

Cause: NAMELIST input contains an assignment to a variable
that is not in the namelist.

Recovery: Correct the input and try again.

ERRSNS values: First Value = 97 Second Value 309

WBA? Attempt to WRITE beyond variable or array

Cause: An attempt was made to write beyond the end of a
character variable or array with an internal file WRITE
statement.

Recovery: Correct program to stay within limits of character
variable or array.

ERRSNS values: First Value 25 Second Value = 576

D-41 February 1987

APPENDIX E

INTERACTIVE DEBUGGER (FORDDT) ERROR MESSAGES

FORDDT responds with two levels of messages - fatal error and warning.
Fatal error messages indicate that the processing of a given command
has been terminated. Warning messages provide helpful information.
The format of these messages is:

? FDTxxx text
or
%FDTxxx text

where:

? indicates a fatal message
% indicates a warning message
FDT is the FORDDT mnemonic
xxx is the 3-letter mnemonic for error message
text is the explanation of error

Square brackets ([]) in this section signify variables and are not
output on the terminal.

Fatal Errors

The fatal errors in the following list are each preceded by ?FDT on
the user terminal. They are listed in alphabetical order.

BDF

BOI

CCN

CFO

CNU

[symbol] is undefined
[symbol] is multiply defined

Bad octal input

An illegal character was detected in an octal input value.

Cannot continue

A pause has been placed on some form of
causing FORDDT to loop; should never
FORTRAN-compiled programs.

Core file overflow

skip instruction
be encountered in

The storage area for GROUP text has been exhausted.

The command [name] is not unique

More letters of the command are required to distinguish it
from the other commands.

E-l

CSH

DNA

DTO

FCX

FNI

FNR

IAF

IAT

ICC

IER

IGN

INV

IPN

IRS

ITM

INTERACTIVE DEBUGGER (FORDDT) ERROR MESSAGES

Cannot START here

The specified entry point is not an acceptable FORTRAN main
program entry point.

Double-precision comparisons not allowed

Dimension table overflow

FORDDT does not have the space to record any more array
dimensions until some are removed.

Format capacity exceeded

An attempt was made to specify a FORMAT statement requiring
more space than was originally allocated by the FORTRAN
compiler.

Formal not initialized, please retype

There was a reference to a formal parameter of some
subprogram that was never executed.

[array name] is a formal and may not be redefined

Formal parameters may not be DIMENSIONed.

Illegal argument format [rest of user line]

The parameters to the given command were not specified
properly. Refer to the documentation for correct format.

Illegal argument type = [number]

An unrecognized subprogram argument type was detected.
Submit an SPR if this message occurs.

Comparison of two constants is not allowed

A conditional test involves two constants.

Internal FORDDT error [number]

Internal FOR DDT error - please report through an SPR.

Invalid group number

Group numbers must be integers and in the range one through
eight.

Invalid value [rest of user line]

A syntax error was detected in the numeric parameter.

Illegal program name

Illegal range specification

The particular range specified for an array is not defined.

Illegal type modifier - S

The mode S is only valid for ACCEPT statements.

E-2

IWI

JSE

LGU

LNF

MCD

MLD

MSN

NAL

NAR

NDT

NFS

NFV

NGF

NPH

NSP

INTERACTIVE DEBUGGER (FORDDT) ERROR MESSAGES

I/O within I/O error

An attempted TYPE or ACCEPT command cannot be executed
because a fatal "I/O within I/O" error from FOROTS would
result, since the user program is currently processing an
IOLST call.

[JSYS error message]

Error reading program name (on TOPS-20 or some other FORDDT
input) •

[array name] lower subscript .GE. upper

The lower bound of any given dimension must be less than or
equal to the upper bound.

[label] is not a FORMAT statement

Compile program with the DEBUG switch to type a FORMAT
statement

[array name] multi-level array definition not allowed

The same array cannot be dimensioned more than once (by
means of the [dimensions] construct) in a single command.

More subscripts needed

The array is defined to have more dimensions than were
specified in the given reference.

Not allowed

An attempt has been made to modify something other than data
or a FORMAT.

Not after a reenter

The given command is not allowed until program integrity has
been restored by means of a CONTINUE or NEXT command.

DDT not loaded

Cannot find FORTRAN start address for [program name]

Main program symbols are not loaded.

[symbol] is not a FORTRAN variable

Names must be 6-character alphanumeric strings beginning
with a letter.

Cannot GOTO a FORMAT statement

Cannot insert a PAUSE here

An attempt has been made to place a breakpoint at other than
an executable statement or subprogram entry point.

[symbol] no such PAUSE

An attempt has been made to REMOVE a breakpoint that was
never set up.

E-3

NUD

PAR

PRO

RGR

SER

STL

TMS

URC

INTERACTIVE DEBUGGER (FORDDT) ERROR MESSAGES

[symbol] not a user-defined array

An attempt has been made to remove dimension information for
an array that was never defined.

Parentheses required, please retype

Parentheses are required for the specification of FORMAT
statements and complex constants.

Too many PAUSE requests

The PAUSE table has been exhausted. The maximum limit is
10.

Recursive group reference

A group may not reference itself.

Subscript error

The subscript specified is outside the range of its defined
dimensions.

[array name] size too large

An attempt has been made to define an array larger than
256K.

Too many subscripts [dimensions]

The array is defined to have fewer dimensions than are
specified in the given element reference.

Unrecognized command [command]

Warning Messages

Each warning message is preceded by %FDT on your terminal. The
warning messages are listed here in alphabetical order.

ABX

CAB

CHI

ECI

EOH

IOE

[array name] compiled array bounds exceeded

FORDDT has detected another symbol defined in the specified
range of the array. Note that this will occur in certain
EQUIVALENCE cases and can be ignored at that time.

Cannot allocate buffer for help file

Characters ignored: "[text]"

The portion of the command string included in "text" was
thought to be extraneous and was ignored.

Buffer full - excess characters ignored

Error opening help file

I/O error reading help file

E-4

IWI

NAA

INTERACTIVE DEBUGGER (FORDDT) ERROR MESSAGES

I/O within I/O

FORDDT has PAUSEd at a breakpoint while the user program is
currently processing an IOLST call. TYPE and ACCEPT
commands cannot be processed at this breakpoint.

[s ym b 0 I] i s no tan a r r ,a y

NHF Cannot find help file; I'm sorry I can't help you

NSL No symbols loaded

FORDDT cannot find the symbol table.

NST Not STARTed

The specified command requires that a START be previously
issued to ensure that the program is properly initialized.

POV Program overlayed by [program name]
Program overlayed by ***

The symbol table is different from the last time FORDDT had
control. The program name is printed only if it has
changed, otherwise '***' is printed.

SCA Supersedes compiled array dimension

The FORTRAN generated dimension is being superseded for the
given array.

SPO Variable is single-precision only

WSP Writing to shared page

XPA Attempt to exceed program area with [symbol name]

An attempt has been made to access memory outside the
currently defined program space.

E-5

APPENDIX F

FORTRAN-SUPPLIED PLOTTER SUBROUTINES

The FORTRAN subroutine library contains a set of subroutines that are
used with plotting devices. To successfully use these routines, a
plotter must be connected to your system. The FORTRAN software
contains the following plotter subroutines:

PLOTS

AXIS

CAXIS

LINE

MKTBL

NUMBER

PLOT

SCALE

SETABL

SYMBOL

WHERE

The PLOTS subroutine initializes the plotter or reports if
the plotter is not available. This must be the first
plotter subroutine specified. (See Section F.I.)

The AXIS subroutine draws an axis with tic marks and scale
values at I-inch increments. An identifying label may also
be plotted along the axis. (See Section F.2.)

The CAXIS subroutine performs the same functions as the AXIS
subroutine. (See Section F.3.)

The LINE
specified.

subroutine draws a
(See Section F.4.)

line through the points

The MKTBL subroutine specifies a special character set.
(See Section F.5.)

The NUMBER subroutine causes floating-point numbers to be
plotted as text. (See Section F.6.)

The PLOT subroutine moves the plotter pen to a new position.
Raising and lowering the pen is also specified in the PLOT
subroutine. (See Section F.7.)

The SCALE subroutine selects scale values for the AXIS or
CAXIS subroutine. (See Section F.8.)

The SETABL subroutine specifies a character set.
Section F.9.)

(See

The SYMBOL subroutine raises the plotter pen, moves it to
the position .specified by x and y, and plots/a string of
characters. (See Section F.ID.)

The WHERE subroutine reports on the current position of the
plotter pen. (See Section F.II.)

F-I

PLOTS
Subroutine

FORTRAN-SUPPLIED PLOTTER SUBROUTINES

F.l PLOTS SUBROUTINE

The PLOTS subroutine initializes the plotter or reports if the plotter
is not available. This must be the first plotter subroutine
specified.

The form of the PLOTS subroutine is:

CALL PLOTS(i[,steps])

where:

i is an integer variable, which is set to -1 if the
plotter is not available, or set to a if the plotter is
available.

The plotter may not be available because: the system
does not have a plotter; the plotter is in use by
another user; the plotter is turned off; or the plotter
is being spooled, but you are trying to write to it
directly.

steps is an optional floating-point variable or constant that
specifies the number of steps (per inch) used by the
plotter. The default is 100 steps per inch, and may be
changed by the installation. Commonly, plotters plot
100 steps per inch, 200 steps per inch, or 100 steps
per centimeter (about 254 steps per inch).

AXIS
Subroutine

F.2 AXIS SUBROUTINE

The AXIS subroutine draws an axis with tic marks and scale values at
I-inch increments. An identifying label may also be plotted along the
axis.

NOTE

The AXIS subroutine is provided for compatibility with
previous versions of FORTRAN-IO/20. The AXIS
subroutine uses a numeric array to contain the label
that is plotted along the axis. The CAXIS subroutine
(see Section F.3) allows a character expression to
contain the label.

F-2

FORTRAN-SUPPLIED PLOTTER SUBROUTINES

The form of the AXIS subroutine is:

CALL AXIS(x,y,asc,nasc,size,theta,xmin,dx)

where:

x,y

asc

nasc

size

theta

xmin

dx

is a variable or constant pair that specifies the
starting point of the axis.

is the name of a numeric array that contains a label
that is plotted along the axis.

is an integer constant or variable that specifies
number of characters contained in array asc. If
is negative, the label in the array is placed on
clockwise side of the axis. If nasc is positive,
tic marks, label, and scale values are placed on
counterclockwise side of the axis.

is a constant or variable that specifies the length
the axis in inches.

the
nasc

the
the
the

of

is a constant or variable that specifies the angle at
which the axis is plotted. The value of theta is
usually 0.0 or 90.0.

is a variable or constant that specifies the value of
the scale at the beginning of the axis.

is a variable or constant that specifies the change in
scale for a I-inch increment.

NOTE

The proper values for xmin and dx may be
determined by calling the SCALE subroutine (see
Section F.8).

CAXIS
Subroutine

F.3 CAXIS SUBROUTINE

The CAXIS subroutine draws an axis with tic marks and scale values at
I-inch increments. An identifying label may also be plotted along the
axis.

The form of the CAXIS subroutine is:

CALL CAXIS(x,y,asc,sign,size,theta,xmin,dx)

F-3

FORTRAN-SUPPLIED PLOTTER SUBROUTINES

where:

x,y is a variable or constant pair that specifies the
starting point of the axis.

asc

sign

size

theta

xmin

dx

is the name of a character expression that contains a
label that is plotted along the axis.

If nasc is negative, the label in the array is placed
on the clockwise side of the axis. If nasc is
positive, the tic marks, label, and scale values are
placed on the counterclockwise side of the axis.

is a constant or variable that specifies the length of
the axis in inches.

is a constant or variable that specifies the angle at
which the axis is plotted. The value of theta is
usually 0.0 or 90.0.

is a variable or constant that specifies the value of
the scale at the beginning of the axis.

is a variable or constant that specifies the change in
scale for a I-inch increment.

NOTE

The proper values for xmin and dx may be
determined by calling the SCALE subroutine (see
Section F.8).

LINE
Subroutine

F.4 LINE SUBROUTINE

The LINE subroutine draws a continuous line through a set of points.

The form of the LINE subroutine is:

CALL LINE(x,y,n,k)

where:

x is the name of an array that contains the floating-point
x-coordinates of the points to be plotted.

Y is the name of an array that contains the floating-point
y-coordinates of the points to be plotted.

F-4

FORTRAN-SUPPLIED PLOTTER SUBROUTINES

n is an integer constant or variable that specifies the total
number of points to be plotted.

k is an integer constant or variable that equals the number of
elements of x and y. Since single-precision one-dimensional
arrays are usually used, this value is usually 1.

MKTBL
Subroutine

F.S MKTBL SUBROUTINE

The MKTBL subroutine defines a special character set to be used when
plotting; the SETABL subroutine (see Section F.9) enables you to use
the character set defined by the MKTBL subroutine.

The form of the MKTBL subroutine is:

CALL MKTBL(setnumber,tableaddress)

where:

setnumber

tableaddress

is an integer variable from 1 to 10 that specifies
the numeric identifier of the character set, for
example, the number of the ASCII character set is
1. If the character set cannot be defined by a
call to MKTBL, a value of zero is returned in this
variable.

is a constant or variable that specifies the
starting address of a character table that has 128
(200 octal) consecutive words. Each character
table word contains the number of strokes (line
segments) for the character in the left half, and
the address of the table of strokes in the right
half. See Section F.S.l for a description of
these tables.

F.S.l Character Tables

The next sections describe how to define and organize a character set
table. The character set, called by the MKTBL subroutine, enables you
to create and use a character set other than the default character set
that is used to plot characters. (Usually the default character set
is ASCI I.)

To create your own character set, you need to create a character table
and a character stroke table. These two tables are described in
Sections F.S.l.l and F.S.l.2, respectively.

F-S

FORTRAN-SUPPLIED PLOTTER SUBROUTINES

F.S.l.l Creating a Character Table - A character table contains 128
entries (200 octal). Each entry in the character table, regardless of
whether the table is defined in the plotter subroutine library or by
you through a call to the MKTBL subroutine, indicates the character to
be plotted for the ASCII character that has that numerical value.

Figure F-l is a diagram of an entry word in a character table.

Strokes Address

'----v-----I '----v-----I
18 bits 18 bits

MR-S-1752-81

Figure F-l: Plotter Character Table Entry

As shown in Figure F-l, each entry in the character table contains the
number of strokes (line segments) required to plot the character in
its left half and an address reference in the right half of the word.
The address in the right half of the entry references an entry in the
character stroke table for the character set. The character stroke
table is described in the next section.

F.S.l.2 Creating a Stroke Table - Each character in the character
table has a corresponding character stroke table. The purpose of the
character stroke table is to define the number and type of strokes
(drawn line segments) it takes to produce a character in the character
table.

Figure F-2 is a diagram of an entry in a character stroke table.

x

\ J

Three 5-bit bytes MR-S-1753-81

Figure F-2: Character Stroke Table Entry

As shown in Figure F-2, each stroke is
stroke table by three 5-bit bytes.
three bytes are:

described in the character
The possible values for these

Byte

1

2

3

a
1

Value and Meaning

pen is raised (off the paper)
pen is lowered (on the paper)

x-coordinate ~alue at end of stroke

y-coordinate value at end of stroke

F-6

FORTRAN-SUPPLIED PLOTTER SUBROUTINES

When determining the height and width of each character to be plotted,
consider the following conventions:

1. Characters are drawn within a grid that is IS units high by
eight units wide.

2. Characters are generally plotted six units above the base
line. Two units are generally left blank to the right of
each character; one unit is generally left blank on top of
each character. The spacing above, below, and on either side
of each character provides adequate spacing between
characters and between lines.

3. The plotter starts drawing each character at the lower left
corner of the character grid. If the grid is set up in the
conventional manner, the lower left corner is grid position
(0,6). Normal width characters end at the lower right corner
of the character grid after allowing spacing between
characters.

The last coordinate in each character grid is usually (8,6).
The character grid for the next character has as its origin
(0,0) at the ending coordinate in the previous grid (8,6).

4. Accents, circumflexes, underscores, and other characters that
are to be plotted in the same character grid as another
character should end at the same grid position as they began.
By doing this, for example, the ASCII character that
represents the accent character is plotted before the
character that is the letter to be accented.

F.S.l.3 Sample Character Stroke Table - In this sample, you want to
plot the Greek letter beta as a normal sized character. When plotted,
the letter is drawn on a IS x 8 unit grid above the base line,
allowing for spacing between characters and between lines.

The strokes (line segments) for beta, including the invisible
segments, are then determined. The character will be plotted more
smoothly if as many of the line segments as possible are connected,
and if doubled segments are avoided. Note that stroke 9 (the return
stroke for the crossbar of the beta) and stroke IS (moving the pen to
ending point (8,6) are not visible; the pen is raised.

F-7

FORTRAN-SUPPLIED PLOTTER SUBROUTINES

15
4

Y ~
6

2 8,9 lX
10 N°

11

~4 1V 15

1V 13 '" V Base Line

5

o
5

MR-S-1754-81

Figure F-3: Sample Character Stroke Table

If the address at the beginning of the table that includes the
character in Figure F-3 is called GREEK, then the FORTRAN call to set
up the table could be:

IGREEK=4
CALL MKTBL (IGREEK, GREEK)

The above call to the MKTBL subroutine defines the GREEK character
table to be the fourth character table. To use the GREEK table for
plotting, use the FORTRAN call:

CALL SETABL (IGREEK, IFLAG)

The entry in the character table for beta is:

RADIX ~ DIO iVALUES IN DECIMAL
BETA: IS"TBETA iCHARACTER TABLE ENTRY FOR BETA

Note that the character table entry for beta contains the starting
address of the character stroke table (TBETA) in its right half.

The character stroke table for beta is:

SEEN==l iIF 'SEEN' THEN THE STROKE MARKS THE PAPER
UNSEEN==O iIF 'UNSEEN' THEN THE STROKE IS INVISIBLE
RADIX ~DlO iALL VALUES ARE IN DECIMAL

TBETA: BYTE(S) SEEN,2,8,SEEN,2,13
BYTE(S) SEEN,3,14,SEEN,S,14
BYTE(S) SEEN,6,13,SEEN,6,12
BYTE(S) SEEN,S,11,SEEN,2,11
BYTE{S) UNSEEN,S,11,SEEN,6,10
BYTE(S) SEEN,6,9,SEEN,S,8
BYTE(S) SEEN,3,8,SEEN,2,9
BYTE(S) UNSEEN,8,6

F-8

FORTRAN-SUPPLIED PLOTTER SUBROUTINES

F.5.l.4 FORTRAN- and User-Defined Character Sets - The standard ASCII
character set is always defined and is character set 1 for calls to
the SETABL subroutine, unless character set 1 is redefined by a user
call to the MKTBL subroutine. If SETABL is not called, the ASCII
character set is the default.

The Cyrillic (Russian) character set is available as character set 2,
and the Feanorian character set is available as character set 3
(unless character sets 2 or 3 has been redefined by a user call to the
MKTBL subroutine). In order to use these character sets, the user
program must contain an EXTERNAL statement for variable PLOTF
(Feanorian) or PLOTC (Cyrillic).

User-defined character sets should use character sets 4 through 10 to
avoid conflicts with the standard character sets.

NUMBER
Subroutine

F.6 NUMBER SUBROUTINE

The NUMBER subroutine causes floating-point numbers to be plotted as
text.

The form of the NUMBER subroutine is:

CALL NUMBER(x,y,size,fnum,theta,ndigit)

where:

x,y

size

fnum

theta

ndigit

are variables or constants that specify the x and y
coordinates of the point to be plotted. The specified
point is the lower left corner of the first character
to be plotted.

is a variable or constant that specifies the size (in
inches) of the digits to be plotted. The specified
value should be a multiple of .08 inches (or
centimeters if plotter is metric) if a small value is
used.

is a variable or constant that is the floating-point
number to be plotted.

is a variable or constant that specifies the direction
(in degrees) of the base line on which the characters
are plotted.

is a variable or constant that specifies the number of
digits to be plotted to the right of the decimal point.
If ndigit is negative, only the integer part of the
number is plotted; the resulting integer is rounded.

F-9

FORTRAN-SUPPLIED PLOTTER SUBROUTINES

PLOT
Subroutine

F.7 PLOT SUBROUTINE

The PLOT subroutine moves the plotter pen to a new position. Raising
and lowering the pen is also specified in the PLOT subroutine.

NOTE

The plotter is not released after completion of the
specified movement.

The form of the PLOT subroutine is:

CALL PLOT(x,y,penup/down)

where:

x,y

pen up/down

SCALE
Subroutine

are the variables or constants that specify the x
and y coordinates for the point to which the pen
will be moved.

is an integer constant or variable that specifies
whether the pen is on the paper or above the
paper. The possible values for this variable are:

3 raise
2 lower
1 leave

-1, -2, or

pen
pen
pen

-3

before movement
before movement
in current state (raised or lowered)

same as corresponding positive
values except that on completion
of the indicated motion, the new
pen position is taken as a new
origin and the output buffer is
sent to the plotter~ Using the
negative values is helpful if you
are plotting consecutive
characters in the same program.

F.8 SCALE SUBROUTINE

The SCALE subroutine scales values for the AXIS subroutine.

The form of the SCALE subroutine is:

CALL SCALE(x,n,s,xmin,dx)

F-IO

where:

x

n

s

xmin

dx

FORTRAN-SUPPLIED PLOTTER SUBROUTINES

is an array name of a one-dimensional floating-point
array to be scaled for the AXIS subroutine.

is an integer constant or variable that specifies the
length of the array in words (36-bit).

is a constant or variable that specifies the length (in
inches) of the desired axis.

is a constant or variable that specifies the smallest
element in array x. The value of xmin will be the
value of the scale at the beginning of the axis.

is a constant or variable that
scale for a I-inch interval
plotted in inches.

equals the change in
so that array x can be

SETABL
Subroutine

F.9 SETABL SUBROUTINE

The SETABL subroutine enables you to select the character set that is
used to plot characters.

The form of the SETABL subroutine is:

CALL SETABL (setnum,status)

where:

setnum

status

is an integer constant or variable that equals the
number of the character set. The standard ASCII
character set is defined to be set 1 and is the
default. Character sets are defined by the MKTBL
subroutine (see Section F.5).

is an integer variable whose value after the call to
the SETABL subroutine is either 0, if the character set
specified in setnum is valid, or -1, if the character
set specified by setnum is invalid.

NOTE

If you use a character set other than the
character sets defined by default in the
plotter subroutine library, you must call the
MKTBL subroutine before calling the SETABL
subroutine.

F-ll

FORTRAN-SUPPLIED PLOTTER SUBROUTINES

SYMBOL
Subroutine

F.IO SYMBOL SUBROUTINE

The SYMBOL subroutine plots a specified string of characters (from
either the default character set or the character set specified by the
last successful call to the SETABL subroutine) •

The form of the SYMBOL subroutine is:

CALL SYMBOL(x,y,size,asc,theta[,nasc)

where:

x

y

size

asc

theta

nasc

is a constant or variable that equals the x coordinate
of the lower left corner of the first character to be
plotted.

is a constant or variable that equals the y coordinate
of the lower left corner of the first character to be
plotted. The plotter pen is raised and moved to
position x,y before the string of characters is
plotted.

is a constant or variable that specifies the height (in
inches) of the character to be plotted. The specified
value should be a multiple of .08 inches (or
centimeters if you have ~metric plotter).

is the name of a character expression or numeric array
that contains the ASCII characters to be plotted.

is a constant or variable that specifies the direction
(in degrees) of the base line on which the characters
are to be plotted.

is an integer constant or variable that is equal to the
number of characters in numeric array asc that are to
be plotted. This is ignored if a character expression
is specified for asc.

WHERE
Subroutine

F.II WHERE SUBROUTINE

The WHERE subroutine reports on the current position of the plotter
pen, in inches, relative to the origin.

F-12

FORTRAN-SUPPLIED PLOTTER SUBROUTINES

NOTE

The plotter origin is set by a call to the AXIS
subroutine or a call to the PLOT subroutine that has a
negative value for the penup/down variable. Also, the
WHERE subroutine does not allow you to determine
whether the plotter pen is raised or lowered.

The form of the WHERE subroutine is:

CALL WHERE(x,y)

where:

x is a variable in which the subroutine returns the x
coordinate of the current print position.

y is a variable in which the subroutine returns the y
coordinate of the current pen position.

F-13

IND.EX

A editing, 12-39
ABORT switch, 16-9
ACCEPT

sequential list-directed, 10-46
ACCEPT statement, 10-45

sequential FORMAT-statement,
10-45

Access
direct, 18-4
sequential, 18-3

ACCESS specifier
in INQUIRE, 11-54
in OPEN, 11-7

Accumulator usage, 15-11
Actual arguments, 13-49

length of character, 13-51
Adjustable dimensions, 7-3
ALCCHR subroutine, 13-24
ALL with DEBUG, 16-12
ALL with FLAG, 16-22
ALL with NOWARN, 16-15
.AND. logical operator, 5-8
ANSI standard, 1-1
ANSI with FLAG, 16-22
Apostrophe editing, 12-16
Argument lists, 15-12
Argument types, 15-14
Arguments

actual, 13-49
dummy, 13-49

Arguments to FLAG, 16-22
ARGUMENTS with DEBUG, 16-12
Arithmetic assignment statement,

8-1
Arithmetic constant expressions,

5-5
Arithmetic expressions, 5-1

writing, 5-2
Arithmetic IF statement, 9-3
Arithmetic operations, 5-2
Arithmetic operators, 5-2
Array declarator, 4-4, 7-1
Array element subscript, 4-3
Array elements

order of stored, 4-5
Array names, 4-3
Arrays, 4-3

assumed-size, 7-4
dimensioning, 4-4
dimensioning dummy, 15-5

ASCII character code, B-1
ASCII data files, 18-4
ASSIGN statement, 8-3
Assigned GO TO statement, 9-3
Assigned variables

in FORMAT statements, 12-4
Assignment statement, 8-1

arithmetic, 8-1
character, 8-4

Assignment statement (Cont.)
logical, 8-3

Assignments
mixed-mode, 8-2

ASSOCIATEVARIABLE specifier
in OPEN, 11-8

Assumed-size arrays, 7-4
AXIS subroutine, F-2

BACKFILE statement, 11-67
BACKSPACE statement, 11-64
Binary data files, 18-4
BINARY switch, 16-9
Bit data constants, 7-23
Bit manipulation functions, 13-14
Blank lines, 2-7
BLANK specifier

in INQUIRE, 11-54
in OPEN, 11-9

BLISS-36
calling routines, 15-19
interaction with, 15-18

BLKRW subroutine, 19-4
BLOCK DATA statement, 14-1
Block data subprograms, 14-1
Block IF constructs

indexed, 9-9
Block IF statements, 9-5
BLOCKSIZE specifier

in OPEN, 11-10
BN editing, 12-28
Boolean values, 3-6
BOUNDS with DEBUG, 16-12
BUFFERCOUNT specifier

in OPEN, 11-11
BYTESIZE specifier

in INQUIRE, 11-54
in OPEN, 11-12

BZ editing, 12-28

CALL statement, 13-44
Calling BLISS-36 routines, 15-19
Calling COBOL subroutines, 15-18
Calling FORDDT, 17-17
Calling sequences

FOROTS, 18-16.1
Carriage-control specifiers, 12-9
CARRIAGECONTROL specifier

in INQUIRE, 11-54
in OPEN, 11-12

CAXIS subroutine, F-3
CBC function, 18-34
CDABS function, 13-25
CDCOS subroutine, 13-25
CDEXP subroutine, 13-26
CDLOG subroutine, 13-26
CDSIN subroutine, 13-27
CDSQRT subroutine, 13-28

Index-I February 1987

Channel allocation routines,
18-30

Channel deal location routines,
18-30

CHAR function, 13-13
Character assignment statement,

8-4
Character code

ASCII, B-1
Character comparison functions,

13-14
Character constant expressions,

5-7
Character constants, 3-4
Character expressions, 5-6
Character intrinsic functions,

13-12
Character set, 2-1

FORTRAN-defined, F-9
user-defined, F-9

Character substrings, 4-6
Character tables, F-5
Character type specification

statements, 7-6
CHARACTER*len, 7-6
CHKDIV subroutine, 13-28
CLOSE statement, 11-43

exampl es, 11-51
implicit, 11-44

CLOSE statement specifiers, 11-44
DEVICE, 11-46
DIALOG, 11-46
DIALOG=, 11-47
DIRECTORY, 11-46
DISPOSE, 11-47
ERR, 11-49
FILE, 11-46
IOSTAT, 11-49
LIMIT, 11-49
NAME, 11-46
PROTECTION, 11-46
STATUS, 11-50
summary of, 11-45
UNIT, 11-51

CLRFMT subroutine, 13-29
CLROVL in LINK, 15-20
COBOL

calling subroutines, 15-18
interaction with, 15-16

CODE with EXTEND, 16-20
Colon editing, 12-24
Commands

COMPILE, 16-1, 16-5
DEBUG, 16-1, 16-5
EXECUTE, 16-1, 16-5
FORDDT, 17-1, 17-7
LOAD, 16-1, 16-5

Comment lines, 2-5
Common block, 7-9
COMMON statement, 7-8
Common storage, 7-9
COMMON with EXTEND, 16-20

Compilation control statements,
6-4

COMPILE command, 16-1, 16-5
Compiler

Running FORTRAN-10, 16-2
Running FORTRAN-20, 16-6
using, 16-1

Compiler errors
internal, C-13

Compiler generated label, 16-23
Compiler generated variables,

16-24
Compiler listing, 16-22
Compiler messages, C-1
Compiler switches

FORTRAN-10, 16-2
FORTRAN-20, 16~9

Compiling programs, 16-1, 16-5
Complex constants, 3-4
Complex editing, 12-36
Computed GO TO statements, 9-2
Concatenation operator, 5-6
CONNECT subroutine, 19-4
Constant expressions, 5-15

arithmetic, 5-5
character, 5-7
int~ger, 5-5
logical, 5-10

Constant folding, 15-8
Constant propagation, 15-8
Constants, 3-1

bit data, 7-23
character, 3-4
compl ex, 3-4
doub1e-oetal, 3-5
double-precision, 3-2
hollerith, 3-6
integer, 3-1
logical, 3-6
octal, 3-5
real, 3-2
statement label, 3-7

Continuation lines, 2-4
CONTINUE LSCW, 18-4
CONTINUE statement, 9-17
Control information list, 10-9
Control statements, 9-1
COR function, 18-33
Creating indexed files, 15-24
CROSSREF switch, 16-3, 16-9
Current-record DELETE, 10-60
Current-record pointer, 15-29

D editing, 12-32
D-floating double-precision

format, 3-3
Data access, 10-5

direct, 10-6
keyed, 10-6
sequential, 10-6

Data magnitude on G-format, 12-35
DATA statement, 7-21
Data transfer operations, 10-5

Index-2 February 1987

Data transfer statements, 10-1
summary, 10-3

Data transfers
formatted, 10-6, 12-1
unformatted, 10-8

DATA with EXTEND, 16-20
DATE subroutine, 13-29
DEBUG

and FORDDT, 17-4
DEBUG arguments, 16-12
DEBUG command, 16-1, 16-5
Debug lines, 2-6
DEBUG switch, 16-3, 16-9, 16-11
Debugger

FORDDT, 17-1
Debugging programs, 16-1, 16-5
DECODE statement, 10-56
Default memory layout

/EXTEND, 16-16
DEFAULTFILE specifier

in OPEN, 11-14
Deferred OPEN statement, 11-2
DELETE statement, 10-59

current record, ~0-60
direct, 10-60

Deleting records
in indexed files, 15-29

DENSITY specifier
in OPEN, 11-15

Device assignments
logical, 10-12

Device control statements, 10-1,
11-61

DEVICE specifier
in CLOSE, 11-46
in OPEN, 11-15

Devices
rea1-t ime, 19-1

DFLOATING switch, 16-3, 16-9
DIALOG specifier

in CLOSE, 11-46
in OPEN, 11-16

DIALOG= specifier
in CLOSE, 11-47
in OPEN, 11-16

Dimension declarator, 7-2
DIMENSION statement, 7-1
Dimensioning arrays, 4-4
Dimensioning dummy arrays, 15-5
DIMENSIONS with DEBUG, 16-12
Direct access, 10-6, 18-4
Direct DELETE, 10-60
Direct FORMAT-statement READ,

10-30
Direct FORMAT-statement WRITE,

10-38
DIRECT specifier

in INQUIRE, 11-55
Direct unformatted READ, 10-33
Direct unformatted WRITE, 10-41
DIRECTORY specifier

in CLOSE, 11-46
in OPEN, 11-17, 11-18

DISCON subroutine, 19-7
DISMIS subroutine, 19-6
DISPOSE specifier

in CLOSE, 11-47
in OPEN, 11-19

DIVERT subroutine, 13-30
DO iteration control, 9-12
DO lists

implied, 10-25
DO loop extended range, 9-15
DO loop iterations, 15-2.1
DO loops

floating-point, 15-2
DO statements

nested, 9-14
DO WHILE statement, 9-13
Dollar sign editing, 12-22
Double-octal constants, 3-5
Double-precision constants, 3-2
Double-precision format

D-f1oating, 3-3
G-floating, 3-3

Double-precision numbers
range and accuracy, 15-1

DTOG function, 13-19
DTOGA subroutine, 13-30
Dummy arguments, 13-49

length of character, 13-51
DUMP subroutine, 13-30

E (exponential notation), 3-2
E editing, 12-32
ECHO-OPTION switch, 16-9
Edit descriptors

FORMAT-statement, 12-6
nonrepeatab1e, 12-8
numer ic, 12-29
repeatable, 12-7

Ed i ti ng
A, 12-39
apostrophe, 12-16
BN, 12-28
BZ, 12-28
colon, 12-24
complex, 12-36
D, 12-32
dollar sign, 12-22
E, 12-32
F, 12-32
G, 12-33
H, 12-17
I, 12-31
L, 12-38
numer ic, 12-29
o (octal), 12-36
P, 12-25
positional, 12-18
Q, 12-29
R, 12-40
S, 12-24
slash, 12-23
SP, 12-24
SS, 12-24

Index-3 February 1987

Editing (Cont.)
T, 12-19
TL, 12-20
TR, 12-20
X, 12-21
Z (hexadecimal), 12-37

ELSE IF THEN statement, 9-5
ELSE statement, 9-5
Embedded format specifications,

12-15
ENCODE statement, 10-56
END DO statement, 9-17
END IF statement, 9-5
END LSCW, 18-4
END statement, 9-20
END= specifier, 10-18
ENDFILE statement, 11-65
Entry points

FOROTS, 18-15
ENTRY statement, 13-45
EQUIVALENCE and extended

addressing, 7-17
EQUIVALENCE statement, 7-11
.EQV. logical operator, 5-8
ERR specifier

in CLOSE, 11-49
in INQUIRE, 11-55
in OPEN, 11-20

ERR= specifier, 10-19
Error codes

FOROTS, D-3
Error messages

FORDDT, E-l
FOROTS, D-l
real-time, 19-7

Error processing
FOROTS, 18-2

Error reporting, 16-33
Errors

fatal, C-2
fatal compiler, 16-34

ERRSET subroutine, 13-31
ERRSNS subroutine, 13-32
ERRSNS values, D-2
Evaluation of expressions, 5-13
Executable statements, 1-1, 6-1
EXECUTE command, 16-1, 16-5
Executing programs, 16-1, 16-5
EXIST specifier

in INQUIRE, II-55,
EXIT subroutine, 13-33
EXPAND switch, 16-3, 16-9
Expressions

arithmetic, 5-1
arithmetic constant, 5-5
character, 5-6
character constant, 5-7
constant, 5-15
evaluation of, 5-13
integer constant, 5-5
log ical, 5-7
logical constant, 5-10
mixed-mode, 5-15

Expressions (Cont.)
relational, 5-11

EXTEND
applications with large arrays,

16-17
applications with large code,

16-17
EXTEND arguments, 16-19, 16-20
EXTEND psect placement, 16-18
EXTEND switch, 16-9, 16-16
Extended addressing, 16-16

and EQUIVALENCE, 7-17
and FORDDT, 17-17
default memory layout, 16-16
memory layout, 15-22

Extended attribute block
fields, 18-43

Extended attribute block (XAB) ,
18-40

Extended range DO loop, 9-15
External functions, 13-18

FORTRAN-supplied, 13-18
user-defined, 13-20

EXTERNAL statement, 7-17

F editing, 12-32
F66 switch, 16-3, 16-9
F77 switch, 16-3, 16-9
FAB block, 18-40

fields, 18-40
Fatal compiler errors, 16-34
Fatal errors, C-2
FFUNIT subroutine, 13-33
Field

line continuation, 2-3
remark, 2-4
statement, 2-4
statement label, 2-3

File access block
fields, 18-40

File access block (FAB), 18-40
File control statements, 10-1,

11-1
File identifier

internal, 10-13
File specifications

remote, 11-21
FILE specifier

in CLOSE, 11-46
in OPEN, 11-20

Files
ASCII data, 18-4
binary data, 18-4
internal, 10-8, 10-54
linking TWOSEG REL, 16-21
non-FORTRAN, 15-10

FILESIZE specifier
in OPEN, 11-21

FIND statement, 11-62
FLAG arguments, 16-22
FLAG switch, 16-3, 16-21
FLAG switch arguments, 16-22
FLAG-NON-STANDARD switch, 16-9

Index-4 February 1987

Floating-point
DO loops, 15-2

FORDDT
and extended addressing, 17-17
call i ng, 1 7 -1 7
loading, 17-5
starting, 17-5

FORDDT and DEBUG, 17-4
FORDDT commands~ 17-1, 17-7
FORDDT debugger, 17-1
FORDDT error messages, E-1
FORM specifier

in INQUIRE, 11-56
in OPEN, 11-22

Format control, 12-11
Format editing, 12-16
Format list, 12-3

I/O list interaction, 12-11
order and interpretation, 12-5

Format specifications, 12-3
embedded, 12-15

Format specifier, 10-14
FORMAT statement, 12-2

assigned variables in, 12-4
FORMAT-statement ACCEPT

sequential, 10-45
FORMAT-statement edit descriptors,

12-6
FORMAT-statement formatting,

10-15, 12-2
FORMAT-statement PRINT

sequential, 10-50
FORMAT-statement PUNCH

sequential, 10-53
FORMAT-statement READ

direct, 10-30
sequential, 10-29

FORMAT-statement REREAD
sequential, 10-43

FORMAT-statement TYPE
sequential, 10-48

FORMAT-statement WRITE
direct, 10-38
sequential, 10-37

Formatted data transfers, 10-6,
12-1

Formatted indexed READ, 10-34
Formatted input, 12-14
Formatted output, 12-15
Formatted READ transfers, 10-29
Formatted REWRITE, 10-61
FORMATTED specifier

in INQUIRE, 11-56
Formatted WRITE transfers, 10-37
Formatting

FORMAT-statement, 10-15, 12-2
list-directed, 10-16, 12-41
NAMELIST-statement, 10-17,

12-44
FOROTS, 18-1

and INQUIRE by file, 18-36
MACRO calls for, 18-17
RESET in, 15-11

FOROTS (Cont.)
sharable, 15-10
using, 18-15

FOROTS calling sequences, 18-16.1
FOROTS entry points, 18-15
FOROTS error codes, D-3
FOROTS error messages, D-l
FOROTS error processing, 18-2
FOROTS features, 18-1
FOROTS in~ut/output facility,

18-2.1
FOROTS memory management, 15-20
FOROTS/RMS

data and control structures,
18-40

FORRTF subroutine, 19-1
FORTRAN-10

compiler switches, 16-2
running the compiler, 16-2

FORTRAN-10/20, 1-1
FORTRAN-20

compiler switches, 16-9
running the compiler, 16-6

FORTRAN-20 compiler
using, 16-5

FORTRAN-77 standard, 1-1
FORTRAN-defined character set,

F-9
FORTRAN-supplied external

functions, 13-18
FORTRAN-supplied plotter

subroutines, F-1
FORTRAN-supplied subroutines,

13-24
Function effects, 15-10
FUNCTION statement, 13-20
Function subprogram, 13-20

restrictions, 13-21
Function subprograms

using, 13-21
Functions, 13-1'

bit manipulation, 13-14
CBC, 18-34
CDABS, 13-25
CHAR, 13-13
character comparison, 13-14
character intrinsic, 13-12
COR, 18-33
DTOG, 13-19
external, 13-18
FORTRAN-supplied external,

13-18
GAD, 18-32
GCH, 18-33
generic, 13-2
GOT, 18-33
GPG, 18-34
GPSI, 18-35
GTOD, 13-19
ICHAR, 13-13
IFS, 18-34
ILL, 18-32
INDEX, 13-12

Index-5 February 1987

Functions (Cont.)
intrinsic, 13-1
LEN, 13-12
LSNGET, 13-19
MPG, 18-35
RAD, 18-33
RAN, 13-19
RANS, 13-19
RCH, 18-33
RNT, 18-34
ROT, 18-34
RPG, 18-35
RPSI, 18-35
RRS, 18-34
SECNDS, 13-19
specific, 13-2
statement, 13-15
TIM2GO, 13-19
UPG, 18-36
user-defined external, 13-20
using intrinsic, 13-2
using statement, 13-16
WRS, 18-34

Functions for overlays, 18-31

G editing, 12-33
G-f10ating double-precision

format, 3-3
G-format

data magnitude on, 12-35
GAD function, 18-32
GCH function, 18-33
Generic functions, 13-2
GETOVL in LINK, 15-20
GFLOATING switch, 16-3, 16-9
Global optimization, 15-6
Global register allocation, 15-9
GO TO statement

ass ig ned, 9-3
GO TO statements, 9-1

computed, 9-2
unconditional, 9-2

GOT function, 18-33
GPG function, 18-34
GPSI function, 18-35
GTOD function, 13-19
GTODA subroutine, 13-34

H editing, 12-17
Hierarchy of operators, 5-14
High segment

sharable, 16-35
Hollerith constants, 3-6

I editing, 12-31
I/O

optimization, 15-9
I/O list, 10-23
I/O list and format list

interaction, 12-11
ICHAR function, 13-13
IF statement, 9-3

arithmetic, 9-3

IF statement (Cont.)
block, 9-5
logical, 9-4
logical two-branch, 9-4

IF THEN statement, 9-5
IFS function, 18-34
ILL function, 18-32
ILL subroutine, 13-34
Implicit CLOSE, 11-44
Implicit OPEN, 11-3
IMPLICIT statements, 7-7
Implied DO lists, 10-25
INCLUDE statement, 6-4
INCLUDE switch, 16-3, 16-9
INDEX function, 13-12
Index variable, 9-11
INDEX with DEBUG, 16-12
Indexed f i 1 es

creating, 15-24
defining keys, 11-24
deleting records in, 15-29
reading, 15-28
updating records in, 15-29
us i ng, 15 - 24
writing, 15-26

Indexed .HEAD, 10-33
formatted, 10-34
sequential, 10-34
unformatted, 10-35

Indexed sequential access method,
15-24 .

INIOVL in LINK, 15-20
Initial lines, 2-4
Initial tab, 2-3
INITIALIZE specifier

in OPEN, 11-21
Input

formatted, 12-14
NAMELIST-controlled, 12-45

Input/output facility
FOROTS, 18-2.1

Input/output statements, 10-1
INQUIRE by file and FOROTS, 18-36
INQUIRE specifiers

ACCESS, 11-54
BLANK, 11-54
BYTESIZE, 11-54
CARRIAGECONTROL, 11-54
DIRECT, 11-55
ERR, 11-55
EXIST, 11-55
FORM, 11-56
FORMATTED, 11-56
IOSTAT, 11-56
KEYED, 11-56
NAME, 11-57
NAMED, 11-58
NEXTREC, 11-58
NUMBER, 11-58
OPENED, 11-58
ORGANIZATION, 11-59
RECL, 11-59
RECORDSIZE, 11-59

Index-6 February 1987

INQUIRE specifiers (Cont.)
RECORDTYPE, 11-59
SEQUENTIAL, 11-60
UNFORMATTED, 11-60

INQUIRE statement, 11-52
by file, 11-52
by unit, 11-53

INQUIRE statement specifiers,
11-54

Integer constant expressions, 5-5
Integer constants, 3-1
Interaction with BLISS-36, 15-18
Interaction with COBOL, 15-16
Internal compiler errors, C-13
Internal file identifier, 10-13
Internal files, 10-8, 10-54
Internal READ

statement, 10-55
Internal WRITE statement, 10-55
Intrinsic functions, 13-1

character, 13-12
using, 13-2

INTRINSIC statement, 7-18
Invoking RMS, 11-29
IOSTAT specifier, 10-20

in CLOSE, 11-49
in INQUIRE, 11-56
in OPEN, 11-23

Iteration control
DO, 9-12

Key attributes, 10-23
KEY specifier

in OPEN, 11-24
Key-fie1d-va1ue specifier, 10-21
Key-of-reference specifier, 10-23
Keyed access, 10-6
KEYED specifier

in INQUIRE, 11-56
Keywords, 1-1

L editing, 12-38
Labels

compiler generated, 16-23
LABELS with DEBUG, 16-12
Large arrays

and extended addressing, 16-17
Large code applications, 16-19
Large executable code

and extended addressing, 16-17
LEGAL subroutine, 13-34
LEN function, 13-12
Length of character actual

arguments, 13-51
Length of character dummy

arguments, 13-51
Length specification, 7-6
LIMIT specifier

in CLOSE, 11-49
in OPEN, 11-25

Line continuation field, 2-3
LINE subroutine, F-4
Line types, 2-4

Line-sequence number, 16-22
Line-sequenced source files, 2-7
Lines

blank, 2-7
comment, 2-5
continuation, 2-4
debug, 2-6
initial, 2-4
multi-statement, 2-5

LINK overlay facilities, 15-19
LINK overlay handler, 18-31
LINK subroutines, 15-20
Linking TWOSEG REL files, 16-21
List-directed ACCEPT

sequential, 10-46
List-directed formatting, 10-16,

12-41
List-directed PRINT

sequential, 10-51
List-directed PUNCH

sequential, 10-53
List-directed READ

sequential, 10-30
List-directed REREAD

sequential, 10-44
List-directed TYPE

sequential, 10-49
List-directed WRITE

sequential, 10-39
LISTING switch, 16-9
LNMAP switch, 16-3, 16-10
LOAD command, 16-1, 16-5
Loading FORDDT, 17-5
Loading programs, 16-1, 16-5
LOCK subroutine, 19-3
Logical assignment statements,

8-3
Logical constant expressions,

5-10
Logical constants, 3-6
Logical device assignments, 10-12
Logical expressions, 5-7
Logical IF statements, 9-4
Logical operators, 5-8
Logical segment control words,

18-4
Logical two-branch IF statement,

9-4
Logical unit identifier, 10-11
LOGOVL in LINK, 15-20
LSCW, 18-4
LSNGET function, 13-19

MACHINE-CODE switch, 16-10
MACRO calls for FOROTS, 18-17
MACROCODE switch, 16-3
MAXREC specifier

in OPEN, 11-25
Memory allocation routines, 18-29
Memory layout

extended addressing, 15-22
Memory management

FOROTS, 15-20

Index-7 February 1987

Memory management (Cont.)
overlay, 15-20

Message summary, 16-34
Messages

compiler, C-1
warning, 16-34, C-8

Mixed-mode assignments, 8-2
Mixed-mode expressions, 5-15
Mixed-mode operations, 5-3
MKTBL subroutine, F-5
MODE specifier

in OPEN, 11-26
MPG function, 18-35
Multi-statement lines, 2-5
MVBITS subroutine, 13-35

NAME specifier
in CLOSE, 11-46
in INQUIRE, 11-57
in OPEN, 11-28

NAMED specifier
in INQUIRE, 11-58

NAMELIST statement, 12-44
NAMELIST-contro11ed input, 12-45
NAMELIST-contro11ed output, 12-46
NAMELIST-statement formatting,

10-17, 12-44
NAMELIST-statement READ

sequential, 10-31
NAMELIST-statement WRITE

sequential, 10-40
Names

array, 4-3
common block, 7-9
symbol ic, 4-1
variable, 4-2

.NEQV. logical operator, 5-8
Nested Block IF constructs, 9-9
Nested DO statements, 9-14
Next record pointer, 15-29
NEXTREC specifier

in INQUIRE, 11-58
NOANSI with FLAG, 16-22
NOBINARY switch, 16-10
NOCOMMON with EXTEND, 16-20
NODATA with EXTEND, lE-20
NOERRORS switch, 16-3, 16-10
NOEXTEND switch, 16-10
NOF77 switch, 16-3, 16-10
NOFLAG switch, 16-3
NOFLAG-NON-STANDARD switch, 16-10 ~
Non-FORTRAN files, 15-10
Non-FORTRAN programs, 15-10
NONE wi th

DEBUG, 16-12
NONE with FLAG, 16-22
NONE with NOWARN, 16-15
Nonexecutable statements, 1-1,

6-2
Nonrepeatable edit descriptors,

12-8
NOSPANBLOCKS specifier

in OPEN, 11-28

.NOT. logical operator, 5-8
NOVMS with FLAG, 16-22
NOWARN arguments, 16-15
NOWARN switch, 16-3, 16-10, 16-15
NUMBER specifier

in INQUIRE, 11-58
NUMBER subroutine, F-9
Numeric edit descriptors, 12-29
Numeric editing, 12-29
Numeric type specification

statements, 7-5

o (octal) editing, 12-36
Object time system, 18-1
Octal constants, 3-5
OPEN

TAPEFORMAT specifier in, 11-41
OPEN statement, 11-1

deferred, 11-2
examples, 11-51
implicit, 11-3
on connected unit, 11-4

OPEN statement specifiers, 11-4
ACCESS, 11-7
ASSOCIATEVARIABLE, 11-8
BLANK, 11-9
BLOCKSIZE, 11-10
BUFFERCOUNT, 11-11
BYTESIZE, 11-12
CARRIAGECONTROL, 11-12
DEFAULTFILE, 11-14
DENSITY, 11-15
DEVICE, 11-15
D I A L OG, 11-16
DIALOG=, 11-16
DIRECTORY, 11-17, 11-18
DISPOSE, 11-19
ERR, 11-20
FILE, 11-20
F I L E S I Z E, 11-21
FORM, 11-22
INITIALIZE, 11-21
IOSTAT, 11-23
KEY, 11-24
LIMIT, 11-25
MAXREC, 11-25
MODE, 11-26
NAME, 11-28
NOSPANBLOCKS, 11-28
ORGANIZATION, 11-29
PADCHAR, 11-29
PARITY, 11-30
PROTECTION, 11-30, 11-32
READONLY, 11-34
RECL, 11-34
RECORDSIZE, 11-34
RECORDTYPE, 11-36
SHARED, 11-38
STATUS, 11-39
summary of, 11-6
TYPE, 11-39
UNIT, 11-42
USEROPEN, 11-42

Index-8 February 1987

OPEN statement specifiers (Cont.)
VERSION, 11-43

OPENED specifier
in INQUIRE, 11-58

Operators
arithmetic, 5-2
concatenation, 5-6
hierarchy of, 5-14
logical, 5-8
relational, 5-11

Optimization
global, 15-6
I/O, 15-9

Optimization techniques, 15-6
OPTIMIZE switch, 16-3, 16-10,

17-17
OPTION switch, 16-10
.OR. logical operator, 5-8
Order of stored array elements,

4-5
Ordering of statements, 6-2
ORGANIZATION specifier

in INQUIRE, 11-59
in OPEN, 11-29

Output
formatted, 12-15
NAMELIST-controlled, 12-46

OVERFL subroutine, 13-35
Overlay facilities

LINK, 15-19
Overlay handler

LINK, 18-31
Overlay memory management, 15-20
Overlays

functions for, 18-31

P editing, 12-25
PADCHAR specifier

in OPEN, 11-29
PARAMETER statement, 7-20
Parenthetical subexpressions,

5-13
PARITY specifier

in OPEN, 11-30
PAUSE statement, 9-19
PDUMP subroutine, 13-36
PLOT subroutine, F-10
PLOTS subroutine, F-2
positional editing, 12-18
PRINT

sequential FORMAT-~tatement,
10-50

sequential list-directed, 10-51
PRINT statement, 10-50
priority interrupt levels, 19-2
Priority interrupt system, 19-1
PROGRAM statement, 6-4
Programs

compiling, 16-1, 16-5
debugging, 16-1, 16-5
executing, 16-1, 16-5
loading, 16-1, 16-5
non-FORTRAN, 15-10

Programs (Cont.)
source, 1-1
wr it i ng, 15-1

PROTECTION specifier
in CLOSE, 11-46
in OPEN, 11-30, 11-32

Psect placement
/EXTEND, 16-18

PSECT with EXTEND, 16-20
PUNCH

sequential FORMAT-statement,
10-53

sequential list-directed, 10-53
PUNCH statement, 10-52

Qed i t i ng, 12 - 2 9
QUIETX Subroutine, 13-36

R editing, 12-40
RAB block, 18-40

fields, 18-42
RAD function, 18-33
RAN function, 13-19
RANS function, 13-19
RCH function, 18-33
READ

direct FORMAT-statement, 10-30
direct unformatted, 10-33
formatted indexed, 10-34
indexed, 10-33
indexed sequential, 10-34
sequential FORMAT-statement,

10-29
sequential list-dJrected, 10-30
sequential NAMELIST-statement,

10-31
sequential unformatted, 10-32
unformatted indexed, 10-35

READ state~ent, 10-27
internal, 10-55

READ transfers
formatted, 10-29
unformatted, 10-32

Reading indexed files, 15-28
READONLY specifier

in OPEN, 11-34
Real constants, 3-2
Real-time devices, 19-1
Real-time error messages, 19-7
Real-time software, 19-1
RECL specifier

in INQUIRE, 11-59
in OPEN, 11-34

Record access block
fields, 18-42

Record access block (RAB) , 18-40
Record specifier, 10-13
Records

deleting, 15-29
updating, 15-29

RECORDSIZE specifier
in INQUIRE, 11-59
in OPEN, 11-34

Index-9 February 1987

RECORDTYPE specifier
in INQUIRE, 11-59
in 0 PEN, 11-3 6

Register allocation
global, 15-9

Relational expressions, 5-11
Relational operators, 5-11
Remark field, 2-4
Remarks, 2-6
Remote file specifications, 11-21
Remote links, 15-2
REMOVL in LINK, 15-20
Reordering computations, 15-4
Repeat specification, 7-22
Repeatable edit descriptors, 12-7
REREAD

sequential FORMAT-statement,
10-43

sequential list-directed, 10-44
REREAD statement, 10-43
RESET in FOROTS, 15-11
RETURN statement, 13-47
REWIND statement, 11-63
REWRITE

formatted, 10-61
unformatted, 10-61

REWRITE statement, 10-60
RMS

data files, 18-14
defining keys, 11-24
invoking, 11-29

RMS data structures, 18-40
RMS files

writing, 10-42
RMS indexed files

reading, 10-33
RMS/FOROTS

data and control structures,
18-40

RMSUTL utility, 15-24
RNT function, 18-34
ROT function, 18-34
Routines

calling BLISS-36, 15-19
channel allocation, 18-30
channel deallocation, 18-30
memory allocation, 18-29

RPG function, 18-35
RPSI function, 18-35
RRS function, 18-34
RTINIT subroutine, 19-3
RTREAD subroutine, 19-5
RTSLP subroutine, 19-6
RTSTRT subroutine, 19-4
RTWAKE subroutine, 19-6
RTWRIT subroutine, 19-5
Running the FORTRAN-10 compiler,

16-2
Running the FORTRAN-20 compiler,

16-6
RUNOVL in LINK, 15-20

S ed i t i ng, 12-24

SAOVL in LINK, 15-20
SAVE statement, 7-24
SAVFMT subroutine, 13-37
SAVRAN subroutine, 13-37
SCALE subroutine, F-10
SECNDS function, 13-19
Sequential access, 10-6, 18-3
Sequential FORMAT-statement

PUNCH, 10-53
Sequential FORMAT-statement

ACCEPT, 10-45
Sequential FORMAT-statement PRINT,

10-50
Sequential FORMAT-statement READ,

10-29
Sequential FORMAT-statement

REREAD, 10-43
Sequential FORMAT-statement TYPE,

10-48
Sequential FORMAT-statement WRITE,

10-37
Sequential indexed READ, 10-34
Sequential list-directed ACCEPT,

10-46
Sequential list-directed PRINT,

10-51
Sequential list-directed PUNCH,

10-53
Sequential list-directed READ,

10-30
Sequential list-directed REREAD,

10-44
Sequential list-directed TYPE,

10-49
Sequential list-directed WRITE,

10-39
Sequential NAMELIST-statement

READ, 10-31
Sequential NAMELIST-statement

WRITE, 10-40
SEQUENTIAL specifier

in INQUIRE, 11-60
Sequential unformatted READ,

10-32
Sequential unformatted WRITE,

10-41
SETABL subroutine, F-11
SETRAN subroutine, 13-38
Sharable high segment, 16-35
SHARED specifier

in OPEN, 11-38
SKIPFILE statement, 11-67
SKIPRECORD statement, 11-66
Slash editing, 12-23
Software

Real-time, 19-1
SORT subroutine, 13-38
Source files

line-sequenced, 2-7
Source program, 1-1
SP editing, 12-24
Specific functions, 13-2
Specification statements, 7-1

Index-10 February 1987

Specifiers
carriage-control, 12-9
CLOSE statement, 11-44
END=, 10-18
ERR=, 10-19
format, 10-14
INQUIRE statement, 11-54
IOSTAT, 10-20
key-field-value, 10-21
key-of-reference, 10-23
OPEN statement, 11-4
record, 10-13

SRTINI subroutine, 13-39
SS editing, 12-24
START LSCW, 18-4
Starting FORDDT, 17-5
Statement block, 9-8
Statement definition, 2-2
Statement field, 2-4
Statement format, 2-2
Statement function

restrictions, 13-17
Statement functions, 13-15

using, 13-16
Statement label constants, 3-7
Statement label field, 2-3
Statement numbers, 2-3
Statements

ACCEPT, 10-45
arithmetic assignment, 8-1
arithmetic IF, 9-3
ASSIGN, 8-3
assigned GO TO, 9-3
assignment, 8-1
BACKFILE, 11-67
BACKSPACE, 11-64
BLOCK DATA, 14-1
block IF, 9-5
CALL, 13-44
character assignment, 8-4
character type specification,

7-6
CLOSE, 11-43
COMMON, 7-8
compilation control, 6-4
computed GO TO, 9-2
CONTINUE, 9-17
control, 9-1
DATA, 7-21
data transfer, 10-1
data transfer summary, 10-3
DECODE, 10-56
DELETE, 10-59
device control, 10-1, 11-61
DIMENSION, 7-1
DO WHILE, 9-13
ELSE, 9-5
ELSE IF THEN, 9-5
ENCODE, 10-56
END, 9-20
END DO, 9-17
END IF, 9-5
ENDFILE, 11-65

Statements (Cont.)
ENTRY, 13-45
EQUIVALENCE, 7-11
executable, 1-1, 6-1
EXTERNAL, 7-17
file control, 10-1, 11-1
FIND, 11-62
FORMAT, 12-2
FUNCTION, 13-20
GO TO, 9-1
IF, 9-3
IF THEN, 9-5
IMPLICIT, 7-7
INCLUDE, 6-4
indexed DO, 9-10
input/output, 10-1
INQUIRE, 11-52
internal READ, 10-55
internal WRITE, 10-55
INTRINSIC, 7-18
logical assignment, 8-3
logical IF, 9-4
logical two-branch IF, 9-4
NAMELIST, 12-44
nested DO, 9-14
nonexecutable, 1-1, 6-2
numeric type specification, 7-5
OPEN, 11-1
ordering of, 6-2
PARAMETER, 7-20
PAUSE, 9-19
PRINT, 10-50
PROGRAM, 6-4
PUNCH, 10-52
READ, 10-27
REREAD, 10-43
RETURN, 13-47
REWIND, 11-63
REWRITE, 10-60
SAVE, 7-24
SKIPFILE, 11-67
SKIPRECORD, 11-66
specification, 7-1
STOP, 9-18
SUBROUTINE, 13-43
Summary of, A-I
TYPE, 10-47
type specification, 7-4
unconditional GO TO, 9-2
UNLOAD, 11-64
UNLOCK, 10-62
WRITE, 10-35

STATI subroutine, 19-6
STATO subroutine, 19-5
STATUS specifier

in CLOSE, 11-50
in OPEN, 11-39

STOP statement, 9-18
Storage

common, 7-9
Subexpressions

parenthetical, 5-13

Index-II February 1987

Subprogram
function, 13-20
subroutine, 13-22

Subprograms
block data, 14-1

Subroutine calls
writing, 15-11

SUBROUTINE statement, 13-43
Subroutine subprogram, 13-22
Subroutines, 13-1, 13-22

ALCCHR, 13-24
AXIS, F-2
BLKRW, 19-4
calling COBOL, 15-18
CAXIS, F-3
cncos, 13-25
CDEXP, 13-26
CDLOG, 13-26
CDSIN, 13-27
CDSQRT, 13-28
CHKDIV, 13-28
CLRFMT, 13-29
CONNECT, 19-4
DATE, 13-29
DISCON, 19-7
DISMIS, 19-6
DIVERT, 13-30
DTOGA, 13-30
DUMP, 13-30
ERRSET, 13-31
ERRSNS, 13-32
EXIT, 13-33
FFUNIT, 13-33
FORRTF, 19-1
FORTRAN-supplied, 13-24
FORTRAN-supplied plotter, F-l
GTODA, 13-34
ILL, 13-34
LEGAL, 13-34
LINE, F-4
LOCK, 19-3
MKTBL, F-5
MVBITS, 13-35
NUMBER, F-9
OVERFL, 13-35
PDUMP, 13-36
PLOT, F-10
PLOTS, F-2
programming considerations,

15-3 .
QUITEX, 13-36
RTINIT, 19-3
RTREAD, 19-5
RTSLP, 19-6
RTSTRT, 19-4
RTWAKE, 19-6
RTWRIT, 19-5
SAVFMT, 13-37
SAVRAN, 13-37
SCALE, F-10
SETABL, F-11
SETRAN, 13-38
SORT, 13-38

Subroutines (Cont.)
SRTINI, 13-39
STATI, 19-6
STATO, 19-5
SYMBOL, F-12
TIME, 13-39
TOPMEM, 13-40
TRACE, 13-41
UNLOCK, 19-7
user-defined, 13-42
WHERE, F-12

Subscript
array element, 4-3

Substrings
character, 4-6

Summary of CLOSE statement
specifiers, 11-45

Summary of OPEN statement
specifiers, 11-6

Summary of statements, A-I
Switches

ABORT, 16-9
BINARY, 16-9
CROSSREF, 16-3, 16-9
DEBUG, 16-3, 16-9, 16-11
DFLOATING, 16-3, 16-9
ECHO-OPTION, 16-9
EXPAND, 16-3, 16-9
EXTEND, 16-9
F66, 16-3, 16-9
F77, 16-3, 16-9
FLAG, 16-3, 16-21
FLAG-NON-STANDARD, 16-9
FORTRAN-20 compiler, 16-9
GFLOATING, 16-3, 16-9
INCLUDE, 16-3, 16-9
LISTING, 16-9
LNMAP, 16-3, 16-10
MACHINE-CODE, 16-10
MACROCODE, 16-3
NOBINARY, 16-10
NOERRORS, 16-3, 16-10
NOEXTEND, 16-10
NOF77, 16-3, 16-10
NOFLAG, 16-3
NOFLAG-NON-STANDARD, 16-10
NOWARN, 16-3, 16-10, 16-15
OPTIMIZE, 16-3, 16-10, 17-17
OPTION, 16-10
SYNTAX, 16-3, 16-10

SYMBOL subroutine, F-12
Symbolic names, 4-1
SYNTAX switch, 16-3, 16-10

T editing, 12-19
TAPEFORMAT specifier

in OPEN, 11-41
TIM2GO function, 13-19
TIME subroutine, 13-39
TL editing, 12-20
TOPMEM subroutine, 13-40
TR editing, 12-20
TRACE subroutine, 13-41

Index-12 February 1987

TRACE with DEBUG, 16-12
TYPE

sequential FORMAT-statement,
10-48

sequential list-directed, 10-49
Type declarators, 7-5
Type specification statements,

7-4
character, 7-6
numeric, 7-5

TYPE specifier
in OPEN, 11-39

TYPE statement, 10-47

Unconditional GO TO statements,
9-2

Unformatted data transfers, 10-8
to ASCII devices, 10-8

Unformatted Indexed READ, 10-35
Unformatted READ

direct, 10-33
sequential, 10-32

Unformatted READ transfers, 10-32
Unformatted REWRITE, 10-61
UNFORMATTED specifier

in INQUIRE, 11-60
Unformatted WRITE

direct, 10-41
sequential, 10-41

Unformatted WRITE transfers,
10-40

Unit identifier
logical, 10-11

UNIT specifier
in CLOSE, 11-51
in OPEN, 11-42

UNLOAD statement, 11-64
UNLOCK statement, 10-62
UNLOCK subroutine, 19-7
Updating records

in indexed files, 15-29
UPG function, 18-36
User-defined character set, F-9
User-defined external functions,

13-20
User-defined subroutines, 13-42
USEROPEN example, 18-38
USEROPEN procedures, 18-38
USEROPEN specifier

in OPEN, 11-42

Using FOROTS, 18-15
Using FORRTF, 19-2
Using function subprograms, 13-21
Using indexed files, 15-24

exceptions, 15-30
Using intrinsic functions, 13-2
Using statement functions, 13-16
Using the compiler, 16-1
Using the FORTRAN-20 compiler,

16-5

Variable names, 4-2
Variables, 4-2

compiler generated, 16-24
VERSION specifier

in OPEN, 11-43
VMS with FLAG, 16-22

Warning messages, 16-34, C-8
WHERE subroutine, F-12
WRITE

direct FORMAT-statement, 10-38
direct unformatted, 10-41
sequential FORMAT-statement,

10-37
sequential list-directed, 10-39
sequential NAMELIST-statement,

10-40
sequential unformatted, 10-41

WRITE statement, 10-35
internal, 10-55

WRITE transfers
formatted, 10-37
unformatted, 10-40

Writing arithmetic expressions,
5-2

Writing indexed files, 15-26
Writing programs, 15-1

for use on other computers,
15-2

Writing subroutine calls, 15-11
Writing to RMS files, 10-42
WRS function, 18-34

X editing, 12-21
XAB block, 18-40

fields, 18-43

Z (hexadecimal) editing, 12-37

Index-13 February 1987

READER'S COMMENTS

TOPS-10/TOPS-20
FORTRAN Language Manual

AA-N383B-TK

NOTE: This form is for document comments only. DIGITAL will use comments submitted on
this form at the company's discretion. If you require a written reply and are eligible to
receive one under Software Perfo'rmance Report (SPR) service, submit your com­
ments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make sugges­
tions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of reader that you most nearly represent.

o Assembly language programmer
o Higher-level language programmer
o Occasional programmer (experienced)
o User with little programming experience
o Student programmer
o Other (please specffy)~~~~~~~~~~~~~~~~~~~~~~

Name Date _~ __ ~_~~~~_

Organization _______________ Telephone ________ _

Street ____________________________________ _

City ___________________ State ____ Zip Code ___ _

or Country

- -- - -- -~.- -ODO ~.oto Tear t- F~He Ire and Tape- - - - - - --- -- - - - - - - - - - - -r ~ -111--------~~~~;:;~~ --

~ ~ ~ if Mailed in the
United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS

200 FOREST STREET MR01-2/L 12

MARLBOROUGH, MA 01752

I
1

1

Do Not Tear - Fold Here and Tape - __ I
1

1

1

1
1

1

1

UPDATE NOTICE

TOPS-10/TOPS-20
FORTRAN Language Manual
AD-N383B-T1

February 1987

Insert this Update Notice in the TOPS-10/TOPS-20
FORTRAN Language Manual to maintain an up-to-date record
of changes to the manual.

Changed Information:

The changed pages contained in this update package reflect
Version 11 of FORTRAN-1 0/20.

The instructions for inserting this update start on the next page.

©Digital Equipment Corporation 1987. All Rights Reserved.

~DmDDmD

wore

INSTRUCTIONS
AD-N383B-T1

The following list of page numbers specifies which pages are to be placed in the
TOPS-10/TOPS-20 FORTRAN Language Manual as replacements for, or additions to,
current pages.

Title Page Entire 17-3 18-37
Copyright Page Chapter 11 17-4 18-43

Entire 12-1 17-7 Entire
Contents 12-2 17-8 Appendix A

Entire 13-31 17-11 Entire
Preface 13-34 17-12 Appendix 0

2-1 15-1 17-15 Entire
2-4 15-2.2 17-16 Index

4-1 15-15 18-1 Readers Comment
4-2 15-20 18-4 Mailer

6-1 15-23 18-13
6-2 15-30 18-18

Entire 16-11 18-29
Chapter 10 16-35 18-30

KEEP THIS UPDATE NOTICE IN YOUR MANUAL TO MAINTAIN AN
UP-TO-DATE RECORD OF CHANGES.

TYPE AND IDENTIFICATION OF DOCUMENTATION CHANGES.
Five types of changes are used to update documents contained in the TOPS-10/TOPS-20
software manuals. Change symbols and notations are used to specify where, when,
and why alterations were made to each update page. The five types of update changes
and the manner in which each is identified are described in the following table.

The Following Symbols and/or Notations

1. Change bar in outside margin; version
number and change date printed
at bottom of page.

2. Change bar in outside margin; change date
printed at bottom of page.

3. Change date printed at bottom of page.

4. Bullet (e) in outside margin; version number
and change date printed at bottom of page.

5. Bullet (e) in outside margin; change date
printed at bottom of page.

Identify the Following Types of Update Changes

1 . Changes were required by a new version
of the software being described.

2. Changes were required to either clarify or
correct the existing material.

3. Changes were made for editorial purposes
but use of the software is not affected.

4. Data was deleted to comply with a new ver­
'sion of the software being described.

5. Data was deleted to eit~er clarify or correct
the existing material.

February 1987

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	10-37
	10-38
	10-39
	10-40
	10-41
	10-42
	10-43
	10-44
	10-45
	10-46
	10-47
	10-48
	10-49
	10-50
	10-51
	10-52
	10-53
	10-54
	10-55
	10-56
	10-57
	10-58
	10-59
	10-60
	10-61
	10-62
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	11-35
	11-36
	11-37
	11-38
	11-39
	11-40
	11-41
	11-42
	11-43
	11-44
	11-45
	11-46
	11-47
	11-48
	11-49
	11-50
	11-51
	11-52
	11-53
	11-54
	11-55
	11-56
	11-57
	11-58
	11-59
	11-60
	11-61
	11-62
	11-63
	11-64
	11-65
	11-66
	11-67
	11-68
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	12-28
	12-29
	12-30
	12-31
	12-32
	12-33
	12-34
	12-35
	12-36
	12-37
	12-38
	12-39
	12-40
	12-41
	12-42
	12-43
	12-44
	12-45
	12-46
	12-47
	12-48
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	13-26
	13-27
	13-28
	13-29
	13-30
	13-31
	13-32
	13-33
	13-34
	13-35
	13-36
	13-37
	13-38
	13-39
	13-40
	13-41
	13-42
	13-43
	13-44
	13-45
	13-46
	13-47
	13-48
	13-49
	13-50
	13-51
	13-52
	14-01
	14-02
	15-01
	15-02.0
	15-02.1
	15-02.2
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	15-24
	15-25
	15-26
	15-27
	15-28
	15-29
	15-30
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	16-17
	16-18
	16-19
	16-20
	16-21
	16-22
	16-23
	16-24
	16-25
	16-26
	16-27
	16-28
	16-29
	16-30
	16-31
	16-32
	16-33
	16-34
	16-35
	16-36
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	17-11
	17-12
	17-13
	17-14
	17-15
	17-16
	17-17
	17-18
	18-01
	18-02.0
	18-02.1
	18-02.2
	18-03
	18-04
	18-05
	18-06
	18-07
	18-08
	18-09
	18-10
	18-11
	18-12
	18-13
	18-14
	18-15
	18-16.0
	18-16.1
	18-16.2
	18-17
	18-18
	18-19
	18-20
	18-21
	18-22
	18-23
	18-24
	18-25
	18-26
	18-27
	18-28
	18-29
	18-30
	18-31
	18-32
	18-33
	18-34
	18-35
	18-36
	18-37
	18-38
	18-39
	18-40
	18-41
	18-42
	18-43
	18-44
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	D-22
	D-23
	D-24
	D-25
	D-26
	D-27
	D-28
	D-29
	D-30
	D-31
	D-32
	D-33
	D-34
	D-35
	D-36
	D-37
	D-38
	D-39
	D-40
	D-41
	D-42
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	F-13
	F-14
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	index-07
	index-08
	index-09
	index-10
	index-11
	index-12
	index-13
	index-14
	replyA
	replyB
	update1
	update2

