BLISS-36

User’s Guide
Order No. AA-H712D-TK

February 1984

This document describes the BLISS-36 compiler and its use, gives basic
information about linking, executing, and debugging BLISS-36 programs,
and describes BLISS-36 machine-specific functions, BLISS tools, and other
topics relevant to BLISS-36 programming.

SUPERSESSION/UPDATE INFORMATION: BLISS-36 V4(216)

OPERATING SYSTEMS AND VERSIONS: TOPS-10 V7.01A
TOPS-20 V5.1(KL)
TOPS-20 V4.1(KS)

SOFTWARE VERSION: BLISS-36 V4(216) implementing
BLISS language V4.0

digital equipment corporation - maynard, massachusetts

First Printing, June 1979
Revised, September 1980
Revised, February 1982
Revised, February 1984

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license

and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on

equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright (:) 1979,1980, 1982, 1984 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Eguipment Corporation:

DEC DIBOL RSTS
DEC/CMS EduSystem RSX
DEC/MMS IAS UNIBUS
DECnet MASSBUS VAX
DECsystem-10 MICRO/PDP-11 VMS
DECSYSTEM-20 Micro/RSX

VT
DECwr iter boT clifgliltlall

ZK2260

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710 DIRECT MAIL ORDERS (CANADA)
In New Hampshire, Alaska, and Hawaii call 603-884-6660 Digitat Equipment of Canada Ltd.
940 Belfast Road
In Canada call 613-234-7726 (Ottawa-Hull) Ottawa, Ontario K1G 4C2
800-267-6146 (all other Canadian) Attn: A&SG Business Manager

DIRECT MAIL ORDERS (USA & PUERTO RICO)* DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation Digital Equipment Corporation

P.O. Box CS2008 A&SG Business Manager

Nashua. New Hampshire 03061 c/o Digital's local subsidiary or

approved distributor

*Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Northboro, Massachusetts 01532

CONTENTS

Page

PREFACE v

SUMMARY OF TECHNICAL CHANGES XV
CHAPTER 1 TOPS-20 OPERATING PROCEDURES

. COMPILING A BLISS PROGRAM P e

1.1 Command-Line SyntaXx .« « « « « « « « « &+ « « « o 1=3

1.2 Command-Line Semantics . . + + « « « ¢« « « « + . 1=3

. FILE SPECIFICATIONS e e s e e s s e e s e a4 e e 1-4

. COMMAND-LINE SWITCHES e e e s s 4 4 4 e« e 4 s e+ & 1-5

.3. Output Switches + « + + « « .+ . 1-6

.3.1.1 SYNtax .« « ¢ ¢ v v e e e e e e e e e e e e e . 17

.3.1.2 Defaults . . + « ¢ v v 4 o 4 4 e 4 e e e e« o 1=7

.3.1.3 Semantics « + v v e e v e e e e e e e e e e . 1=7

.3. General Switches . . . + + +« ¢ v ¢ « « « « « + . 1-8

.3.2.1 Syntax .« .« ¢ 4 e e e v v e e 4 e e e e e o« . 1-9

2.2 Defaults . . . + + ¢ « 4« v « v « o o s+ « o « « 1-9

.3.2.3 Semantics « + 4 s ¢ 4 4 e 4 4 4 4 e e e e o o« 1=9

.3. Check Switch .« « ¢« v + v v v o v o o o o o 1-10

.3.3.1 Syntax . .+ .« + ¢+ ¢ 4o 4 4w e v e e e e 4 . . 1-10

.3.3.2 Defaults . + + ¢« + ¢ v v +« « 4+ 4 « « + 4+ . .« 1-10

.3.3 Semantics « + + 4 e e e e e e e e e e e . 1-10

.3. Terminal Switche e e e e e e e e e e e e e e 1-11

.3.4.1 Syntax . . .+ . . o 4 e e 4 e e e e e e e e .o 1-11

.3.4.2 Defaults . + +« v + v ¢ ¢ o 4+ e e e e e e e . 1-11

.3.4.3 Semantics « + 4 ¢ 4 4 4 e e e e e e e e e o« 1-11

Optimization Switches 1-12
Syntax .« .+« ¢ 4 v e e e e e e e e e e e e e e 1-12
Defaults . .+ « + « v v o ¢ + « o « s 4 4 e . 1-12
Semantics . . .+ 4 v o e 4 4 e e e e e o+ . 1-13

Listing Switches « +« « + ¢« « + +« « « 1-14

1 Syntax .« « + ¢ ¢ o v 4 e e 4 e e e e e e .. 1-14

.2 Defaults . . + « + « & 4 « « o o o & o o + « 1-15

3 Semantics . ¢« + ¢ ¢ 4 4+ 4 4 4« e« + 4 4 « .+ 1-15
Reference Switches « . « . « « « + « « 1-17
1 Syntax . .+ ¢« « ¢ ¢ ¢+ v 4+ 4 e+ e « + « « . 1-18
.2 Defaults . « « + ¢« & « & & « o o + o + « « « 1-18
3 Semantics . . .+ + .+ 4 4 4+« 4 s+« « « . 1-18

Environment Switches« . . . 1-18

1 Syntax . .+ ¢ ¢+ ¢ o 4 e e 4 e e e e e v s o. 1-19

.2 Defaults . « + ¢« o ¢ « o & « o o « « 2 4 s+ . 1-19

3 Semantics .+ .+ 4 ¢ ¢ 4 4 4 4 e e 4 e e e o« . 1-19
Placement of Switches 1=20
Switches and Default Module Switch Settings . 1-20
Positive and Negative Forms of Switches . . . 1-22
Abbreviations of Switch and Value Names . . . 1-22

SPECIAL FEATURES . . + « v o o o« o« o o o o & o 1-22

. s . « s e
. ¢ o

.

HFEFEFOODOOONNNINOOOOOOMUIO AL DMBRMDBWWWWNNNNEE
w N

N = O

® e & e s e e e s @
. e o e e

I e e e I i e e e e e S e N el el el el el e N T Sl S
.
DA RLWLWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWNH -
. . .

4.1 Indirect F1les .+« « « « « + o o o o o o« o o« o« o« 1=22
4.2 EXEC Command « « « &« o o « o o o o« o o o o o 1-23
CHAPTER 2 TOPS-10 OPERATING PROCEDURES

2.1 COMPILING A BLISS PROGRAM e e e 4 e & e e 4 e e 2-1
2.1.1 Command-~Line Syntax « +« « « + « & « « « o« « o« o+ 2=-3
2.1.2 Command-Line SemanticCs . + +« « &+ « & o+ « o » « .« 2=-3
2.2 FILE SPECIFICATIONS e s e e e e e e e e e e e e . 2=3
2.2.1 Syntax .« .« « ¢ v 4 e e e e e e e 2-4
2.2.2 SemanticCs + v ¢ v v s e e bt e e e e e e e e e . 2-4

iii

CHAPTER

CHAPTER

a

CONTENTS

2.2.3 Default Extension
2.3 OUTPUT SPECIFICATIONS c e e e e e e . .
2.4 COMMAND~LINE SWITCHES e 4 e e e e e .
2.4.1 Library Switches
2.4.1.1 Syntax « + ¢ 4 ¢ e 4 e e e e e e .
2.4.1.2 Defaults« « « + « « « .« .
2.4.2 General Switches
2.4.2.1 Syntax .+ v ¢ 4 4 e e e e e e e e .
2.4.2.2 Defaults . . +« ¢« ¢ o « o« o« o o o .
2.4.2.3 Semantics N .
2.4.3 Check Switch « « « « + .« .
2.4.3.1 Syntax . .+« ¢ .0 0 e e e e e e . .
2.4.3.2 Defaults «
2.4.3.3 Semantics . .« ¢ 4 4 4 e e e e .
2.4.4 Terminal Switches e .
2.4.4.1 Syntax . . . 4 e e e e e e e e e .
2.4.4.2 Defaults + . + + + « .+ .
2.4.4.3 Semantics 0 0
2.4.5 Optimization Switches
2.4.5.1 Syntax .« .« ¢« o+ e 4 e e e .. .
2.4.5.2 Defaults «
2.4.5.3 Semantics v e e 4 e e e W .
2.4.6 Listing Switches
2.4.6.1 Syntax « + + 4 4 e e e e e e e e W .
2.4.6.2 Defaults . « . « + « « « ¢« « « « .
2.4.6.3 Semantics . . 4 v 0 4 4 e e a e .
2.4.7 Reference Switches
2.4.7.1 Syntax « .« . ¢ v e 4 e e e e e e .
2.4.7.2 Defaults+« « « + o « o . .
2.4.7.3 Semantics . . . 4 4 e 4 e e e e .
2.4.8 Environment SW1tches o e s e e e e .
2.4.8.1 Syntax .+ .+ o« v e v e e e e e e e .
2.4.8.2 Defaults . . . « « « « ¢ « « o . . .
2.4.8.3 Semantics .« . . ¢ 0 v 0 0 e 0. .
2.4.9 Placement of Switches
2.4.10 Switches and Default Settlngs .« e . .
2.4.11 Positive and Negative Forms of Switches .
2.4.12 Abbreviations e e .
2.5 SPECIAL FEATURES e .
2.5.1 Indirect Files . . . +« « + « « « o« . .
2.5.2 Option File . . . « ¢« + + « . . .
3 COMPILER OUTPUT

3.1 TERMINAL OUTPUT . . . &« + v o o @+ o

3.2 OUTPUT LISTING . . « « « « « o « o« «

3.2.1 Listing Header . . « . « + « « « « .

3.2.2 Source Listing
3.2.3 Object Listing « « « + .+ . .
3.2.4 Source Part Options o .
3.2.4.1 Default Source Listing o e N
3.2.4.2 Listing with LIBRARY/REQUIRE Information
3.2.4.3 Listing with Macro Expansions . . .
3.2.4.4 Listing with Macro Tracing

3.3 CROSS-REFERENCE LISTING e e e e . .
3.3.1 Cross-Reference Header
3.3.2 Cross-Reference Entries
3.3.3 Output Listing with Cross-Reference Listing
3.4 COMPILATION SUMMARY s s e s e e e e .
3.5 ERROR MESSAGES o s .
4 LINKING, EXECUTING, AND DEBUGGING

4.1 LINKING v e e e e s e e S .

iv

1
QOWVWWOWYWOWIHODRONNINONO U1

NNNMNDNNOMNNONNDNNODNNDNND
1

o

CHAPTER

CHAPTER

W=

O N N N
WWWN -
N =

wn

. .
.

. e
B W+

« o e .
HHEFOONOOOMP,WNHERFREF

= O

oo ouon

ul
=
w N

5.14

. P
NN

[N e Wl el o) We I o)) [o)}

.

Noubh W

CONTENTS

Syntax .+ « « ¢ o o e 0 4 0 e e e e e e e e e

Defaults « o ¢ o ¢ ¢« o ¢« e e 0 e 4 e 4 e e e
Semantics « « 4 4 e 4 e e e e e e e e e e e
EXECUTING e e e e e e e e e e s e e e e e e e
DEBUGGING . e s e e e s e e e e e e e e e

Debug Example e e e e e e e e e e e e e e e
Other SIX12 Commands .« « « o« « o o o o o o o &

MACHINE-SPECIFIC FUNCTIONS

GENERAL CONVENTIONS e e e s s s e e e s s e e
Machine Code Insertion Functions
Logical Functions .. .+ .« + +« o o o o o o« o &
Arithmetic Functions . . . + + + « « « « « 4
System Interface Functions

ADDD (ADD DOUBLE OPERANDS) . « « + o « &« « « o+ &

ADDF (ADD FLOATING OPERANDS) . . =« « « « &« « o .

ADDG (ADD FLOAT-G OPERANDS) e e e e e e e e e

ASH (ARITHMETIC SHIFT) « « + o o o o o o o o o

CMPD (COMPARE DOUBLE OPERANDS) o e s e e s e e

CMPF (COMPARE FLOATING OPERANDS) e e e e s e e e

CMPG (COMPARE FLOAT-G OPERANDS) o s s e e s e s

COPYII, COPYIN, COPYNI, AND COPYNN (COPY A BYTE)

CVTDF (CONVERT DOUBLE TO FLOATING)

CVTDI (CONVERT DOUBLE TO INTEGER) e s e e e e

CVTFD (CONVERT FLOATING TO DOUBLE)

CVTFG (CONVERT FLOATING TO FLOAT-G) e e e e e e

CVTF1I (CONVERT FLOATING TO INTEGER) e s e e e e

CVTGF (CONVERT FLOAT-G TO FLOATING) e e s e e s

CVTGI (CONVERT FLOAT-G TO INTEGER)

CVTID (CONVERT INTEGER TO DOUBLE) e e s e s e e

CVTIF (CONVERT INTEGER TO FLOATING) e e e e e

CVTIG (CONVERT INTEGER TO FLOAT-G) . . .« . « . .

DIVD (DIVIDE DOUBLE OPERANDS) e e e e e e e e .

DIVF (DIVIDE FLOATING OPERANDS) e e e e e e e

DIVG (DIVIDE FLOAT-G OPERANDS) . . =+ + « « « « =

FIRSTONE (FIND FIRST BIT) e e e s e e e e e s s

INCP (INCREMENT A BYTE POINTER) e e e e e s e e

JSYS (INVOKE A TOPS-20 SYSTEM SERVICE)

LSH (LOGICAL SHIFT) e s e e 4 s e e e e e e e e

MACHOP AND MACHSKIP (EMIT AN INSTRUCTION) . e e

MULD (MULTIPLY DOUBLE OPERANDS) e s e e s s e

MULF (MULTIPLY FLOATING OPERANDS) e e e e e e

MULG (MULTIPLY FLOAT-G OPERANDS)

POINT (BUILD A BYTE POINTER) . . . e e e e e

REPLACEI AND REPLACEN (STORE A BYTE) e e e e e e

ROT (ROTATE A VALUE) . « + v o & o o « o o o o &

SCANN AND SCANI (FETCH A BYTE)+ .« .

SUBD (SUBTRACT DOUBLE OPERANDS) o . . .

SUBF (SUBTRACT FLOATING OPERANDS) e e e e s e

SUBG (SUBTRACT FLOAT~-G OPERANDS) . . .« +« +« +« .+« .

UUO (INVOKE A TOPS-10 SYSTEM SERVICE) o e e e

PROGRAMMING CONSIDERATIONS

LIBRARY AND REQUIRE USAGE DIFFERENCES e 4 e e e
FREQUENT BLISS CODING ERRORS . . .« « « « « + o« &
Missing DOtS . « « ¢ v « v ¢ o 4 e e e a0 e s
vValued and Nonvalued Routines
Semicolons and Values of Blocks« . .
Complex Expressions Using AND, OR, and NOT . .
Computed Routine Calls . . . « .« « ¢« « « « « .
Signed and Unsigned Fields . . . « « « .« « « .
Complex Macros e e e e e e s e e e e

i

B R
B wWwWwWwNN

L T T R A T A A L L e P T I |
COVOVOVWDDONNNONTONOTTULUERAPWWWWHH

gguuuuuounuauonoouaounuanununa
|

g u
11
=

(el e We e W)W e e Mo Wel
1
b hbhwwwh -

CONTENTS

6.2.8 Missing Code . .« +« + + ¢« & « o v 4 4 4 e 0.
6.2.9 Conflicting Names« .« « « « « « o & o &
6.2.10 Routines Within Routines
6.2.11 Indexed Loop Coding Error . . « « « « « « « .
6.3 ADVANCED USE OF BLISS MACROS . e e e e e e e e
6.3.1 Advantageous Use of Machine Dependenc1es . e .
6.3.2 Dealing with Enumeration Types . . « .« « .« .« .
6.3.2.1 The SET Data-TyPe « + « « o « « o« o« o + &

6.3.2.2 Creating a Set . . . C e e e e e e e e
6.3.2.3 Placing Elements in Sets e e e e e e e e e
6.3.2.4 Membership in a Set « . .+ .« . . .
6.4 EXTENDED ADDRESSING DIFFERENCES e e & e o o o @

CHAPTER 7 TRANSPORTABILITY GUIDELINES
7.1 INTRODUCTION . « + o ¢« s o o o o o o o o « o o
7.2 GENERAL STRATEGIES .« . ¢ ¢ « + « ¢ o « o o« o « =
7.2.1 Isolation+ .+ v 4 0 0 0 e h e e e e e
7.2.2 Simplicity .« « « ¢ v ¢« ¢ v v e v e e e e e e
7.3 TOOLS e e e s e s s s s s e s s e e o & e & o
7.3.1 Literals . . +« ¢ v ¢ v v ¢ e e e e e e e e e
7.3.1.1 Predeclared Literals e e s e s e e 4 e e .
7.3.1.2 User-Defined therals . . e e e e e e e
7.3.2 Macros and Conditional Compllatlon e e e e e
7.3.3 Module Switches+ « « « ¢« « & « o o .
7.3.4 Reserved Names . . .« + + o ¢« o o o « o « o« o«
7.3.5 Require and Library Files« « . . .
7.3.6 Routines . . .« v v v v v v o v v v e e e e e
7.4 TECHNIQUES . . + ¢ « + ¢ o & o o o o o o « o« o =
7.4.1 Data « o ¢ v v v 6 v e e e h e e e e e e e e
7.4.1.1 Problem Origin . . .« « « + ¢« « o & « o « o« &
7.4.1.2 Transportable Declarations
7.4.1.3 Length of Externally Used Names
7.4.2 Data: Addresses and Address Calculations . . .
7.4.2.1 Addresses and Address Calculations
7.4.2.2 Relational Operators and Control Expressions
7.4.2.3 BLISS-10 Addresses Versus BLISS-36 Addresses
7.4.3 Data: Character Sequences « +« +
7.4.3.1 Usage as Numeric vValues . . + « « « « « + .
7.4.3.2 Usage as Character Strings
7.4.4 PLITs and Initialization
7.4.4.1 PLITs in General« + « « & « « &+ o« &
7.4.4.2 Scalar PLIT ItemsS .« ¢« ¢« o« ¢ o « o o o o «
7.4.4.3 String Literal PLIT Items . . +« + + ¢ « o« .
7.4.4.4 An Example of Initialization
7.4.4.5 Initializing Packed Data « . . .
7.4.5 Structures and Field Selectors . . . +« + « .« .
7.4.5.1 Structures . . .+ . o« 4 v e e e e e e e e
7.4.5.2 FLEX VECTOR e e e e e e e e s e e e e e e
7.4.5.3 Field SelectOorS .« + « « « « o o o o+ o o o
7.4.5.4 GEN VECTOR .« + « & v « ¢« o« « o o « o o o o =«
7.4.5.5 SUMIMATY « o ¢ o+ o o & o+ o« & o o o« « « o
CHAPTER 8 COMPILER OVERVIEW AND OPTIMIZATION SWITCHES

8.1 COMPILER PHASES o e e e s a e s e e e e e e
8.1.1 Lexical and Syntactic Analysis
8.1.2 Flow Analysis « +« « « « o o o o o o o o o o
8.1.2.1 Knowing When a Value Changes
8.1.2.2 Accounting for Changes « « . .+ . .
8.1.3 Heuristics . . « ¢« +« « v v v « v v v v e .
8.1.4 Temporary Name Binding « « « « « « o+ .
8.1.5 Code Generation . . . + « +« « « 4 e e e e .
8.1.6 Code Stream Optimization

vi

[N NoRoONO N NN
WNHFOWYWOYUONIOOWU

11
N

()¢ i e N e)

R L T T A
QOWVWOOOAUTD BDWWWNN -

NN NNNNNNNNNNN

|
=

| S O O A T B
NN D W

WO Eomaowooo

CONTENTS

8.1.7 Output File Production« « « « + « .+ . . 8-8
8.2 SUMMARY OF SWITCH EFFECTS . « +« « « + « « o+ + + . 8-8
CHAPTER 9 TOOLS, LIBRARIES, AND SYSTEM INTERFACES
9.1 TRANSPORTABLE PROGRAMMING TOOLS (XPORT) e e e e o« 9-1
9.1.1 XPORT Data Structures . . « « ¢ &+ o ¢ o« o « o « 9=2
9.1.2 XPORT Input/Output e e e e e e e . 92
29.1.3 XPORT Dynamic Memory Management e s e e e e e . 9-3
9.1.4 XPORT Host System Services . . . « « « « « « « . 9-3
9.1.5 XPORT String Handling Facilities 9-3
2.2 BCREF - BLISS MASTER CROSS REFERENCE PROGRAM . . . 9-4
9.2.1 Command-Line Format . « « « + « ¢« « « &+ « «+ « o+ 9-4
9.2.2 Command SemantiCs .« « &+ « o « « o o o o« o« ¢ + o« 9-5
9.2.3 Building a Master Cross Reference 9-5
9.2.4 Command Switches . . . « « « « « « « & & & o« « o« 9-5
2.3 CVT10 - BLISS-10 TO BLISS-36 CONVERSION PROGRAM . 9-6
9.3.1 CVT10 Command-Line Syntax . . . « « « « « « = 9-6
9.3.2 BLISS-10 Translations . . . « « ¢« ¢« « « « o « .« 9-7
9.3.2.1 Normal Declarations . . . + « +« « ¢« « « « « .« 9-8
9.3.2.2 REQUIRE Declarations « + « ¢« « « « « .+ 9-8
9.3.2.3 SWITCHES Declarations . . . « « ¢« +« « « « « . 9-8
9.3.2.4 BIND Declarations « « « « « « + + . 9-8
9.3.2.5 ROUTINE Declarations +« ¢« + « ¢« « « « « 9-9
9.3.2.6 SELECT Expressions« « « ¢« ¢« « o« « « « + 9-9
9.3.2.7 CASE Expressions« « « ¢ « ¢ ¢« « « o« « « 9-9
9.3.2.8 MACROs e e e e
9.4 TUTIO - TUTORIAL TERMINAL INPUT/OUTPUT PACKAGE . 9-10
9.5 SYSTEM INTERFACES e e e e s e e s e e e s e e W« 9-10
2.5.1 Precompiled Declaration Libraries 9-10
9.5.2 TENDEF.L36 Library . . . « +« « « « « « « « « o« 9-11
29.5.2.1 POINTR MACYO « v « o « o o o s o o o o + « « 9-11
9.5.2.2 FLD Macro . . - B V]
9.5.2.3 MONWORD and MONBLOCK Structures 9-12
9.5.2.4 Other Symbols+ +« ¢« « « « « « « « « « 9-12
9.5.3 UUOSYM.L36 Library . . « « « + « « « o « « + + 9-13
9.5.4 MONSYM.L36 Library . . . « « « « « « « « « « « 9-13
2.5.5 Generation Procedure . . .+ « + &+ « s+ o + « o« o« 9-14
9.5.6 TOPS-10 System Interface Example ©9-14
9.5.7 TOPS-20 System Interface Example 9-17
CHAPTER 10 BLISS-36 CODING EXAMPLES
10.1 EXAMPLE 1: THE PSINT PROGRAM . . .« « « « ¢« « « & 10-1
10.1.1 Module PSINT =« « o« o o o o o o o o o o o o o 10-2
10.1.2 Routine REPLAY .+ « + ¢« o o o o o o o o« o o o 10-4
10.1.3 Routine DISPLAY + « + « o o o o o o o o o & = 10-4
10.1.4 Routine ENAPSI . + &« &« o o o o o o o o o« « « « 1l0-4
10.1.5 Routine TTYSET . « + + « « « « « o« o s o« +« +« + 10-5
10.1.6 Routine FILIO . + v + o o s o « o o « o« + +« « 10-6
10.1.7 Routine TTYRES .« ¢« + + « « « o« « o o o« o « « « 10-7
10.1.8 Routine DISPSI . + « + &« &« + « & +« « « + « « » 10-8
10.1.9 Routine CTRLC +« + &« & +« o « o o s+ o« o « « « « 10-8
10.1.10 Routine CTRLY ¢« + « « o « o o s o o o o o o =« 10-9
10.1.11 Routine DSPHDL .« « & + o o o o o o o o o o o 10-9
10.1.12 Routine PSIHDL « + &« +« & « o « « s « o o« & « « 10-9
10.2 EXAMPLE 2: THE TRANS PROGRAM . « + +« « +« +« « + . 10-10
10.2.1 Module TRANS . . .« ¢ « ¢« « o o o o o o s « « + 10-11
10.2.2 Routine TRANSMAIN e 4+« 4 4 e s+« « « + +« « 10-16
10.2.3 Routine CMDINIT . .« &+ « « + « o « o « o« & « « 10-17
10.2.4 Routine LEXGET . « + « + « « + &« & o » « +» « . 10-18
10.2.5 Routine OPENFILES e e e e e e e e e e e e e e 10-21
10.2.6 Routine BUILDTBL &« « « &« + « o « o o o« « &+ « » 10=-22

10.2.7 Routine EXTBL . « + o « « o« o« o o o o« « « + . 10-23

vii

10.
10.

APPENDIX A

APPENDIX B

APPENDIX C

[eReNeNe]
DW=

APPENDIX D

.l

D
D.2

APPENDIX E

E.1
APPENDIX F
APPENDIX G
APPENDIX H

FIGURES

WWwWwwww
|
~Nond wN

w
| |
o0}

W
[
— O

TABLES

2.8
2.9

CONTENTS

Routine CHRVAL . . ¢ ¢ « « o o o o o o o o o
Routine FILIO « &« + ¢ « « o o o o o o o o o

SUMMARY OF COMMAND SYNTAX
TOPS-20
TOPS-20
TOPS-10
TOPS-10

COMMAND SUMMARY . +« ¢ ¢ « « + « o« « + « « A
SWITCH DEFAULTS . . « « « « « o « « + o« o+ A-
COMMAND SUMMARY . . « « ¢« « + « « « « + « A
SWITCH DEFAULTS . . +« &« « +« +« « « « « « « A

SUMMARY OF FORMATTING RULES

MODULE TEMPLATE

MODULE PREFACE . .« « « o ¢« o o o o o o o o o o o
DECLARATIVE PART OF MODULE « « + &+ + «
EXECUTABLE PART OF MODULE . . .« ¢« « « « & « o &+
CLOSING FORMAT . . . + ¢ « o o o o o o o o o o o«

IMPLEMENTATION LIMITS

BLISS-36 LANGUAGE +« « ¢« ¢ + « « « +» «» o D
SYSTEM INTERFACES . . . ¢« « ¢« « + + « o « @« « « « D=

ERROR MESSAGES

BLISS COMPILER FATAL ERRORS« . « .
SAMPLE OUTPUT LISTING

MIXING BLISS-36 MODULES AND BLISS-10 MODULES

USER-GENERATED OTS FILES

Compiler Output Listing Sequence
Listing Header Format . . « « « « + o « o o o o« =
Default Object Listing Example « « « . .
Default Source Listing Example 3
Output Listing with Library and Require File
Output Listing with Macro Expansion Data . .
Output Listing with Macro Expansion and Tracing
Data . .« ¢ + v ¢ o 4 e e e e e e e e e e e e e
Output Listing with Cross-Reference Listing
Included . . @ ¢ + « ¢ o ¢ 4 e 4 e 4 e e .. e
Error Messages in Source Listing Example . . .
Sample Output Listing+ « « « « « « « . .

Command Line, Module Switch, and SWITCH Names on
TOPS-20 e s e e e e e e e e e e e e e e e e e
Command Line, Module Switch, and SWITCH names on
TOPS~10 e e e e e e e e e e e e e e .

Format of Preface String in Source Listing

1-21

2-19
3-6

viii

CONTENTS

Symbol Type Abbreviations
Machine-Specific Functions
BLISS-10 Language Features
Depiction of the Command State Table

ix

3

10

-17
5-2
9-7
-13

PREFACE

MANUAL OBJECTIVES

This manual is a user's guide for the BLISS-36 compiler, which runs on
TOPS-10 and TOPS-20 operating systems. It provides three kinds of
information: basic operating instructions, advanced material, and
reference information. This manual is intended as a companion manual
to the BLISS Language Guide. As such, they have certain structural
similarities, and the discussions of organization and syntax notation
given in the language guide apply to this manual.

INTENDED AUDIENCE

This guide is intended for users of the BLISS-36 programming language.
It presupposes some familiarity with the TOPS-10 or TOPS-20 operating
system, its command language, and file-system conventions.

STRUCTURE OF THIS DOCUMENT
Chapters 1 through 4 describe basic operating instructions:
® Chapters 1 and 2 present procedures for compiling a BLISS
program, define file specifications, and describe command
switches that can be used in the TOPS-20 and TOPS-10 operating
system environments. ‘
® Chapter 3 considers output produced by the compilation. The
format and meaning of each of the possible compiler outputs
are described and illustrated.
® Chapter 4 is concerned with linking, executing, and debugging.
Chapters 5 through 10 supply advanced material:

® Chapter 5 describes machine-specific functions.

® Chapter 6 describes programming considerations, such as the
use of LIBRARY and REQUIRE facilities.

® Chapter 7 gives guidelines for writing transportable BLISS
programs.

® Chapter 8 presents a discussion of the compiler architecture

and provides insight into the effects that result from command
switches related to optimization.

xi

® Chapter 9 describes some tools related to BLISS programming.

® Chapter 10 provides coding examples in the form of complete
and annotated programs.

The appendices contain reference information:

e Appendix A summarizes command line syntax, including command
switches and their default settings.

® Appendix B summarizes formatting rules suggested for your use.

e Appendix C provides a model template. Appendix D 1lists
current implementation limits.

e Appendix E contains error messages generated by the compiler.
® Appendix F illustrates a sample output listing.
® Appendix G describes methods for interfacing with BLISS-10.

® Appendix H describes the use of user-generated OTS files.

RELATED MANUALS

BLISS Language Guide (AA-H275C-TK)

This manual completely describes the BLISS-16, BLISS-32, and
BLISS-36 languages. It can be used both as a learning tool for
the languages and as a reference guide.

BLISS Language Guide Update Package (AD-H275C-T1)

The update package provides Version 4.0 of the BLISS Language
Guide.

BLISS Primer (order from Educational Services)

The BLISS Primer is a guide to a self-paced BLISS learning
course. The language features are described and exemplified.
Each section is followed by a quiz and suggested solutions. This
document 1is strongly recommended for the BLISS novice.

BLISS Pocket Guide (AV-AT45A-TK)

This guide presents a concise syntax summary for the family of
BLISS languages. A summary of the command line syntax for the
respective compilers is also provided.

XPORT Programmer's Guide (AA-J201A-TK)

The guide is a tutorial and reference manual for the XPORT
transportable-programming tools package. XPORT is a collection
of source-level tools that provide input/output and
operating-system services for BLISS-32 and BLISS-36.

xii

PREFACE

SYNTAX NOTATION

Syntax notation used for defining BLISS-36 is explained thoroughly in
Chapter 2 of the BLISS Language Guide. The following is a summary of
the syntax notation used in this manual:

{ item-=1 | item-2 | item-3 } Select exactly one of the items separated
by vertical bars within the braces.

‘ item-1 I Select exactly one of the items in
item-2 | braces on separate but contiguous

l item-3 ‘ lines.

item ... The item directly preceding the "..." can

be replicated zero or more times.

item ,... The item directly preceding the pe e
can be replicated zero or more times,
with the items separated by commas.

item+. .. The item directly preceding the "+..."
can be replicated zero or more times,
with the items separated by plus signs.

In addition, the red portions of a syntax line or system-user dialog
identify information keyed in by the user.

xiii

SUMMARY OF TECHNICAL CHANGES

This manual provides BLISS-36 user information for Version 4.0 of the

BLISS-36

compiler. This section summarizes technical changes,

additions, and deletions to the guide since Version 3.0.

/CHECK, / CROSS -REFERENCE (DECsystem-20), and /CREF
(DECsystem-10) switches have been added as general-qualifiers
to the BLISS-36 command lines.

/MASTER-CROSS-REFERENCE has been added as an output-qualifier
to the BLISS-36 compiler for both TOPS-10 and TOPS-20.

An extended addressing capability has Dbeen added to the
BLISS-36 compiler for TOPS-20 along with an extended
addressing SECTION-INDEPENDENT option.

A new cross-reference capability (BCREF) has Dbeen added to
replace BLSCRF.

Additions have been made to the Programming Considerations
chapter (6), which include the use of BUILTIN PC, indexed loop
coding errors, the advanced use of BLISS macros, and extended
addressing coding differences.

Changes and additions have been made to the compiler 1listing
formats to update the examples and provide an example of
cross-reference listings.

An Examples chapter (10) has Dbeen included to provide
additional coding examples.

XV

CHAPTER 1

TOPS-20 OPERATING PROCEDURES

This chapter discusses the TOPS-20 operating procedures used to
compile a BLISS program. Compilation, including command-line syntax
and semantics, is considered first. Next, file specifications for
input to a BLISS-36 compilation are described and illustrated.
Finally, the command-line switches relevant to a BLISS-36 compilation
are given.

Compiling, 1linking, and executing a BLISS-36 program is a
straightforward procedure. In the simplest case, to compile and
execute a program that consists of a single module, you enter the
module in a file (for example, ALPHA.B36), compile it with the

BLISS-36 compiler, link it using LINK, and then execute the linked
image. The EXECUTE command automatically invokes LINK as follows:

@BLISS
BLISS>ALPHA
BLISS> /EXIT
@EXECUTE ALPHA

The first command invokes the BLISS compiler to compile the module in
the file ALPHA.B36 and to produce an object file ALPHA.REL. The
second command uses the object module in the file ALPHA.REL to produce
an executable image in memory and to execute the image.

To save the 1linked 1image, invoke LINK explicitly and save the
resulting image as follows:

@BLISS
BLISS>ALPHA/EXIT
@LOAD ALPHA
@SAVE ALPHA

You can control the compiler by using command-line switches. These
switches add a 1level of complexity to the compilation process, but
they also provide a significant number of options by which you can
vary the performance of the compiler in the production of output, the
formatting of 1listings, and the degree of optimization to be
performed.

1.1 COMPILING A BLISS PROGRAM

The BLISS compiler uses the standard TOPS-20 command interpreter, the
COMND% JSYS, to parse the command line. As such, various features of
command line processing that are common to many programs and EXEC

commands on TOPS-20 are also common to the BLISS compiler. Some of
these include command recognition, file specification completion,
editing characters, and the question mark character (?). Refer to the

TOPS-20 User's Guide for a description of these facilities.

TOPS-20 OPERATING PROCEDURES

To compile a BLISS program, you run the BLISS compiler from the
command level and wait for the 'BLISS>' prompt. (The simplest way to
run the BLISS compiler is to have the compiler, BLISS.EXE, reside on
logical device 8YS:; for the rest of this chapter, the compiler is
assumed to be invoked by typing 'BLISS' at the command 1level.) Input
specs and global switches, if supplied, are then supplied.

Global switches apply to all input specs and precede them in the
command line. They override default switch settings. Input-specs
consist of one or more file names followed by switch settings that
apply to an individual file or concatenated file. Switch settings in
an input-spec override global switch settings.

® To compile a program, use the following command:
BLISS>MYPROG

The BLISS compiler uses the file MYPROG.B36 or MYPROG.BLI as
its input, compiles the source 1in that file, and produces
object file MYPROG.REL.

.

e To produce a listing file, use the output switch /LISTING:
BLISS>MYPROG/LISTING

In addition to the object file, the BLISS compiler produces
the listing file MYPROG.LST.

® To compile more than one module, include a list of input files
separated by commas, as follows:

BLISS>ALPHA, BETA, GAMMA

The compiler compiles ALPHA.B36, producing the object file
ALPHA.REL; then BETA.B36, producing BETA.REL; and then
GAMMA.B36, producing GAMMA.REL.

® To compile a program that consists of several pieces, each in
a separate file, use the concatenation indicator (+):

BLISS>ALPHA+BETA+GAMMA

The BLISS compiler compiles the program formed by the
concatenation of ALPHA.B36, BETA.B36, and GAMMA.B36, and
produces the single object file ALPHA.REL.

e To perform a multifile compilation in which one command-line
switch is common to all source files in an input-spec, include
the appropriate switch before the input-spec:

BLISS>/LIBRARY ALPHA,BETA,GAMMA/NOLIBRARY, DELTA

The command line consists of four input-specs, which must be
separated by commas. Placing the /LIBRARY switch before the
first input-spec has the effect of overriding the default
switch settings of /NOLIBRARY and /OBJECT for all input-specs,
unless it, in turn, is superseded by a switch setting that
applies to an individual input-spec. A switch setting that

follows an input-spec applies only to that input-spec. Thus,
the command 1line above causes the compiler to produce three
library files and one object file: ALPHA.L36, BETA.L36,

DELTA.L36, and GAMMA.REL.

TOPS-20 OPERATING PROCEDURES

® To produce an object file with a name different from that of
the source file, specify the new object file name in the
command
BLISS>ALPHA/OBJECT : GAMMA
The BLISS compiler produces the object file GAMMA.REL.

® To produce a library file instead of an object file, use the
/LIBRARY command switch:

BLISS>ALPHA/LIBRARY

The BLISS compiler compiles the input file ALPHA.R36 and
produces the library file ALPHA.L36.

NOTE

The TOPS-20 EXEC does not support BLISS-36 in
LOAD-class commands. Therefore, the following
commands will not compile ALPHA as a BLISS-36
module. However, they will attempt to use
BLISS~10 to compile ALPHA.BLI.

@EXECUTE ALPHA.BLI
@QLOAD ALPHA.BLI

1.1.1 Command-Line Syntax

bliss-compilation BLISS>bliss-command-line ...

bliss-command-

line { switch ... } space input-spec ,...
input-spec file-spec+... { switch ... }
space blank ...

output-switch
general-switch
check-switch

switch terminal-switch
optimization-switch
listing-switch
reference-switch
environment-switch

1.1.2 Command-Line Semantics

The BLISS-36 compiler uses switches given in the bliss~command-line to
modify the initial defaults for each compilation. Then, the
concatenated input is compiled in the context of the initial defaults.
The switches and the initial default for each switch are described in
Section 1.3.

Unless a switch to change the compiler's behavior is given, the output
from a compilation initiated from your terminal or batch file is the
object file; no listing is generated.

TOPS-20 OPERATING PROCEDURES

The compiler begins processing with the first file given and continues
until an end-of-file is reached. It continues to read input until all
files specified in the input-spec have been read.

Command-line switches can appear in two places in a command line:

before the first input-spec, and after individual input-specs. Those
appearing before the first input-spec have a global application to all
input-specs in the command line. For example:

BLISS>/LIBRARY ALPHA,BETA+ETA+THETA, OMEGA

Those appearing at the end of an input-spec apply only to the
input-spec they follow. For example:

BLISS>/LIBRARY ALPHA,BETA/LIST,IOTA
If no command-line switches exist in a command 1line, default switch
settings are assumed for all input-specs in the command line. All

switches have an assigned default setting or value.

The only required space 1in the command line separates the first
input-spec from preceding global command-line switches.

1.2 FILE SPECIFICATIONS

File specifications are used to name the source of program text to be
compiled and the destination of output from the compilation. More
precisely, file specifications can occur in four contexts:

® In the input-specs of a bliss-command-line

e As the values of the switches /OBJECT, /LIBRARY, /LISTING, or
/MASTER—CROSS—REFERENCE

e In REQUIRE or LIBRARY declarations in the module being
compiled

e In the object-time system (OTS) module switch (for TOPS-10
style file specs only)

The file-spec is a standard TOPS-20 file specification, as described
in the DECSYSTEM-20 User's Guide, and is interpreted as follows:

1. Logical name translation occurs.

2. If a file type 1is not given, a default file type is used (see

below) .

3. If the file-spec applies to an output file and a file name is
not given, the name of the first input file in the input-spec
is used.

This same interpretation is also used by the compiler when it
processes the file specification given in a REQUIRE or LIBRARY
declaration.

The file-spec must be fully specified in the OTS module switch. That
is, no defaults are applied by the compiler.

TOPS-20 OPERATING PROCEDURES

The compiler has two ordered lists of default file types to be tried
for an input-spec that does not include a file type. The list the
compiler applies depends on the output specified for the compilation,
as indicated in the following list:

Input-Spec Used to Produce : Default Type List
An object module .B36, .BLI
A library file .R36, .REQ, .B36, .BLI

If the program being compiled contains a REQUIRE or LIBRARY
declaration, the compiler uses the following list to search for the
appropriate file type according to the type of declaration:

File Use Default Type List

File given in a .R36, .REQ, .B36, .BLI
REQUIRE declaration

File given in a .L36
LIBRARY declaration

For example, suppose you have entered the following program in the
file ALPHA.BLI:

MODULE MYTEST =
BEGIN
REQUIRE 'CBLISS';
LIBRARY 'TBLISS';
END
ELUDOM

and you use the following command line to compile it:

BLISS>ALPHA

Since the bliss-command-line contains no switch requesting that a
library file be produced, the output of the compilation is an object
module. Therefore, the compiler chooses the 1list of default types
associated with object module output and searches first for ALPHA.B36,
then, not finding that file, for ALPHA.BLI, which it finds and
compiles. In processing the module MYTEST in that file, the compiler
encounters the REQUIRE declaration for the file CBLISS. Since no file
type for CBLISS is given, the compiler uses the list of default types
for files in a REQUIRE declaration and searches for CBLISS.R36, then
CBLISS.REQ, then CBLISS.B36, and finally CBLISS.BLI. When the
compiler processes the LIBRARY declaration, it uses the default type
list associated with library declarations and searches for TBLISS.L36.

1.3 COMMAND-LINE SWITCHES

Command-line switches provide control over many aspects of the
compilation. Valid command-line switches and their functions are:

® Output switch -- defines the types of output to be produced

® General switch -- sets a %VARIANT value and specifies code and
debug information

TOPS—-20 OPERATING PROCEDURES
® Check switch -- controls the level of semantic checking done
during compilation.
® Terminal switch -- controls output produced on a terminal

e Optimization switch -- supplies code optimization strategies
and directions

e Listing switch -- ©provides output listing information
concerning the source and machine code

® Reference switch —-- includes cross-reference information in
output listing and/or a master cross-reference data file

® Environment switch -- identifies the processor model and
target operating system of the generated code

1.3.1 Output Switches

Output switches are used to indicate the type of output to be produced
from a BLISS-36 compilation and to give names for the files to be
produced when you do not want to use the default names. Some examples
of output switches are given in the following list:

@ To suppress the production of an object file, use the
/NOOBJECT switch in the bliss-compilation, as follows:

BLISS>ALPHA/NOOBJECT
The BLISS-36 compiler reads the source in the file ALPHA.B36
and produces no output files. The only outputs are the error

messages and summary information produced at the terminal.

e To obtain a list file for a single source file, use the
/LISTING switch, as follows:

BLISS>ALPHA/LISTING

The BLISS-36 compiler produces an object file ALPHA.REL and a
list file ALPHA.LST.

However, to obtain list files in a multifile compilation, use
the /LISTING switch before the input-specs, as follows:

BLISS> /LISTING ZETA,ETA, THETA

The BLISS-36 compiler generates both object and list files for
each input file.

® To use a different name for the object or list files, use the
following switches:

BLISS>ALPHA/OBJECT:BETA/LISTING : GAMMA

The compiler reads the input file ALPHA.B36, and produces the
object file BETA.REL and the list file GAMMA.LST.

® To produce a master cross-~reference data file, use the
following:

BLISS>ALPHA/MASTER-CROSS-REFERENCE :MASTER

TOPS-20 OPERATING PROCEDURES

The compiler reads the input file ALPHA.B36, and produces the
object file ALPHA.REL and master cross-reference file
MASTER.CRF.

® To produce a library file rather than an object file, use the
/LIBRARY switch, as follows:

BLISS>ALPHA/LIBRARY

The compiler reads the input file ALPHA.B36 and produces the
library file ALPHA.L36.

1.3.1.1 Syntax - Output-switch syntax is:

/OBJECT {:file-spec]) | /NOOBJECT
output- /JLISTING {:file-spec} | /NOLISTING
switch /LIBRARY {:file-spec} ; /NOLIBRARY

/MASTER-CROSS-REFERENCE {:file-spec} /NOMASTER-CROSS-REFERENCE

The compiler can produce either a library or an object file, but not
both. Therefore, the switches JOBJECT and /LIBRARY must not be
applied to the same input-spec.

1.3.1.2 Defaults - In the absence of an explicit choice of output
switch, the following are assumed:

/OBJECT /NOLISTING /NOLIBRARY /NOMASTER-CROSS~-REFERENCE

If a file-spec is not given, the file name of the first file-spec 1in
the input-spec 1is combined with the default file type to form the
file-spec. If a file-spec is given but the file-spec does not include
a file +type, the following defaults are supplied, according to the
file-designator:

File-Designator Default Type
/OBJECT .REL
/LISTING .LST
/LIBRARY .L36

/MASTER-CROSS-REFERENCE .CRF

1.3.1.3 Semantics - Output switches have the following

interpretation:

/OBJECT: file-spec Produce an object file in the file
specified by file-spec.

/OBJECT Produce an object file in the file
specified by
'input-file-name.REL'.

/NOOBJECT Do not produce an object file.

/LISTING: file-spec v Produce a list file in the file

specified by file-spec.

7

TOPS-20 OPERATING PROCEDURES

/LISTING Produce a list file in the file
specified by
'‘input-file-name.LST'.

/NOLISTING Do not produce a list file.

/LIBRARY:file-spec Produce a library file in the file
specified by file-spec.

/LIBRARY Produce a library file in the file
specified by
'input-file-name.L36"'.

/NOLIBRARY Do not produce a library file.

/MASTER-CROSS-REFERENCE: file-spec Produce a master cross-reference

file in the file specified by
file-spec.

/MASTER-CROSS—-REFERENCE Produce a master cross-reference

file in the file specified Dby
‘input-file-name.CRF'.

/NOMASTER-CROSS-REFERENCE Do not produce a master

1.3.2

cross—-reference file.

General Switches

General switches are used to specify code and debug information and to

set the

value for the lexical function %VARIANT. Some examples of

using general switches follow:

To include the necessary debug linkage in the compiled
program, use the /DEBUG switch in the bliss-compilation:

BLISS>ALPHA/DEBUG
The compiler reads the source from ALPHA.BLI and creates an
object file ALPHA.REL, which includes additional code for
interface with SIX12.

To syntax-check a program that you do not intend to execute,
use the /NOCODE switch to save compilation time, as follows:

BLISS>ALPHA/NOCODE

To set the value of the lexical function $¥VARIANT to 17, use
the /VARIANT switch as follows:

BLISS>ALPHA/VARIANT:17

To limit the number of errors diagnosed to 10, use the
/ERROR-LIMIT switch as follows:

BLISS>ALPHA/ERROR-LIMIT:10

TOPS-20 OPERATING PROCEDURES

1.3.2.1 Syntax - General-switch syntax is:

/DEBUG | /NODEBUG
/CODE | /NOCODE
general-switch /VARIANT { : value }
/ERROR-LIMIT { : value]}
/EXIT
1.3.2.2 Defaults - In the absence of explicit choices of general

switches, the following are assumed:
/NODEBUG /CODE /VARIANT:0 /ERROR-LIMIT:30

The compiler produces code, does not include the additional debugging
information in the object file, and sets the value of ¥VARIANT to O.

If the general switch /VARIANT is given without a specified value, a
value of 1 is assumed.

If the /ERROR-LIMIT is given without a specified value, a value of 1
is assumed.

1.3.2.3 Semantics - The interpretation of the command switches |is
given in the following list:

/DEBUG Generate debugging linkage and do not do certain
optimization so that a user may effectively use
SIX12. Also, include symbolic information in the
object file produced, and maintain the frame
pointer (FP) in routine prologs and epilogs.

/NODEBUG Produce symbolic information but no debug linkage,
and do not limit optimizations for effective use
of SIX1l2.

/ CODE Generate object code for the BLISS source module.

/NOCODE Perform only a syntax check of the program.

/VARIANT Set RVARIANT to 1.

/VARIANT :n Set %$VARIANT to n, where n is a decimal integer in

the range:

-(2**35) < n < (2%*35)-1

JEXIT Terminate the compiler operation and returns
control to the system. /EXIT «can appear in a
command line or on a separate line.

/ERROR-LIMIT Set error limit to 1.

/ERROR-LIMIT:n Limit to n the number of errors diagnosed Dbefore
terminating compilation.

TOPS-20 OPERATING PROCEDURES

1.3.3 Check Switch

The check switch controls the level of semantic checking done during
compilation. The switch allows all legal BLISS syntax to be examined
for semantic irregularities. Some examples of the use of the check
switch are as follows:

® To suppress field-name checking on structure accesses if the
data-segment declaration has no field-attribute, use the check
switch as follows:

BLISS>ALPHA/CHECK:NOFIELD

® To check for the use of uninitialized storage, use the check
switch as follows:

BLISS>ALPHA/CHECK:INITIAL

1.3.3.1 Syntax - Check switch syntax is defined as follows:

{(check—value e ee)
check switch /CHECK : check~value
FIELD | NOFIELD
check-value INITIAL | NOINITIAL
OPTIMIZE | NOOPTIMIZE
REDECLARE | NOREDECLARE
1.3.3.2 Defaults - In the absence of specific choices of

check-values, the following values are assumed by default:

FIELD INITIAL OPTIMIZE NOREDECLARE

1.3.3.3 Semantics - The /CHECK switch indicates that one or more
check-values follow. The check-values have the following meanings:

Check-Value Meaning

FIELD Do not suppress field-name checking.

NOFIELD If the data-segment declaration has no
field-attribute, suppress field-name checking on

the structure accesses.

INITIAL Check for the use of uninitialized storage.
NOINITIAL Do not check for uninitialized storage.
OPTIMIZE Check for suspicious optimizations. For example,

constant folding expressions of a form that is
always false, such as:

.X<0,8,1> EQL %X'FF'

TOPS-20 OPERATING PROCEDURES

NOOPTIMIZE Do not check for suspicious optimizations.

REDECLARE Check for the redeclaration of a name within a
nested scope.

NOREDECLARE Do not check for the redeclaration of a name.

1.3.4 Terminal Switches
Terminal switches are used to control the output that is sent to the
terminal. You can have errors or statistics printed or suppressed on
the terminal during the compilation of a BLISS program. Some examples
of using the terminal switches are as follows:

® To see the statistics for each routine as they are produced

during the compilation, use +the /STATISTICS switch, as
follows:

BLISS>ALPHA/STATISTICS

® To suppress error messages and to get statistics, wuse the
following:

BLISS>ALPHA/STATISTICS/NOERRS

/NOERRS is useful when there are too many errors to be listed
on the terminal and the user is requesting a listing.

1.3.4.1 sSyntax - Terminal-switch syntax is:

{ /ERRS | /NOERRS }
terminal-switch /STATISTICS | /NOSTATISTICS
1.3.4.2 Defaults - In the absence of explicit choices of terminal

switches, the following are assumed:
/ERRS /NOSTATISTICS

Errors are reported on the terminal during the compilation, but
statistics are suppressed.

1.3.4.3 Semantics - The terminal switches have the following
meanings:

Switch Meaning

/ERRS List each error on the terminal as it is

encountered in the compilation.
/NOERRS Do not list errors on the terminal.

/STATISTICS List the name and size (in words) of each routine
on the terminal after each routine is compiled.

/NOSTATISTICS Do not list routine names and sizes.

TOPS-20 OPERATING PROCEDURES

1.3.5 Optimization Switches

Optimization switches are used to supply directions to the compiler
about the degree and type of optimization wanted, and to make
assertions about the program so that the compiler can select the
appropriate optimization strategies. Some examples of using the
optimization switches are as follows:

e To increase the compilation speed by omitting some standard
optimizations, use the /QUICK switch, as follows:

BLISS>ALPHA/QUICK

® To get minimum optimization, use the /OPTLEVEL switch with the
value 0, as follows:

BLISS>ALPHA/OPTLEVEL:0

® To obtain maximum optimization, use the /OPTLEVEL switch with
the value 3, as follows:

BLISS>ALPHA/OPTLEVEL: 3
® To direct the compiler to use techniques that may use more
storage for the program to increase its operating speed, use
the /ZIP switch, as follows:
BLISS>ALPHA/ZIP

e To inform the compiler that the program uses pointers to
manipulate named data, use the /NOSAFE switch, as follows:

BLISS>ALPHA/NOSAFE

A detailed discussion of the optimizations resulting from using the
optimization switches is given in Chapter 8.

1.3.5.1 Syntax - Optimization-switch syntax is:

optimize-switch
{ optlevel-switch I
optimization-switch + safe-switch :
(zip-switch j

quick-switch

optimize-switch { /OPTIMIZE | /NOOPTIMIZE }
optlevel-switch /OPTLEvgi :{ol 112131}
safe-switch { /SAFEIW /NOSAFE }
zip-switch { /ziPp | /NOZIP }
quick-switch { /QUICK | /NOQUICK }
1.3.5.2 Defaults - In the absence of an explicit optimization switch,

the following are assumed:

/NOQUICK /NOZIP /OPTLEVEL: 2 /SAFE /OPTIMIZE

TOPS-20 OPERATING PROCEDURES

The compiler is directed:

e To perform

normal optimization, balancing the time/space

trade-off in favor of space

® To assume that all variables are addressed by name

e To perform optimization across mark points

® To perform flow analysis. (Refer to Section 8.1.2.2.)
1.3.5.3 Semantics - Optimization switches indicate that one or more
optimize options are specified. The optimize switches have the
following meanings.
Optimize-vValue Meaning

/QUICK

/NOQUICK

/Z1P

/NOZIP

/OPTLEVEL:n

/ SAFE

/NOSAFE

/OPTIMIZE

/NOOPTIMIZE

Omit some standard optimizations to increase the
compilation speed.

Include standard optimizations.

Increase the execution efficiency of the program
being compiled by using more space where
appropriate. For more information on the effect
of this value, see Section 8.1.4.

Do not increase the space occupied by the program
to improve its operating speed. For more
information on the effect of this wvalue, see
Section 8.1.2.2.

Optimize the program being compiled according to
the optimize-level n, as follows:

Optimize-Level Meaning
0 Minimum optimization
1 Subnormal optimization
2 Normal optimization
3 Maximum optimization

n=3 optimizes speed at the expense of space in the
same way as /2IP. /OPTLEVEL:3 is equivalent to
/OPTLEVEL:2/ZIP. For more information on the
effect of this value, see Section 8.1.2.

Assume that all named data-segments are referenced
by name and not manipulated in any way indirectly,
and use optimization techniques that exploit this
fact. For more information on the effect of this
value, see Section 8.1.2.1.

Assume that sometimes a named data-segment 1is
referenced by means of a computed expression and,
therefore, some optimization techniques cannot be
used.

Perform full flow analysis over an entire routine.
Restrict flow analysis so that all data is assumed

to be changed across mark points. (See Chapter 8
for a more complete discussion.)

TOPS-20 OPERATING PROCEDURES

1.3.6 Listing Switches

Listing switches are used to supply information about the form of the
output listing and are used in conjunction with the /LISTING output
switch. Some examples of using the listing switches follow:

® To obtain a paged listing with 44 lines on each page, give the
following command line:

BLISS>ALPHA/LISTING/PAGSIZ:44

e To obtain an unpaged listing, in which the macro expansions
are given, use the following switches:

BLISS>ALPHA/LISTING/NOHEADER/FORMAT : EXPAND
® To obtain a listing that contains the contents of the REQUIRE
files given 1in REQUIRE declarations, use the following
switches:

BLISS>ALPHA/LISTING/FORMAT:REQUIRE

® To obtain an output listing that is intended to be assembled
by the MACRO assembler, use the ASSEMBLY option, as follows:

BLISS>ALPHA/LISTING/FORMAT :ASSEMBLY

@ To obtain a listing that is intended to be assembled and that
does not contain binary, include the NOBINARY option:

BLISS>ALPHA/LISTING/FORMAT: (ASSEMBLY, NOBINARY)

The form of the output listing is described in Section 3.2.

1.3.6.1 Syntax - Listing-switch syntax is:

(/PAGSIZ: number-of-lines I
/HEADER | /NOHEADER
listing-switch /UNAMES | /NOUNAMES
/FORMAT : format-option-list
number-of-lines {20 | 21 | 22 | ... | 521}
(option, ...)
format-option-list { }
option
(ASSEMBLY | NOASSEMBLY
BINARY | NOBINARY
COMMENTARY | NOCOMMENTARY
EXPAND | NOEXPAND
option LIBRARY | NOLIBRARY
OBJECT | NOOBJECT ?
REQUIRE | NOREQUIRE
SOURCE | NOSOURCE
SYMBOLIC | NOSYMBOLIC
TRACE | NOTRACE }

TOPS-20 OPERATING PROCEDURES

1.3.6.2 Defaults - In the absence of an explicit choice of 1listing
switches, the following are assumed:

/PAGSIZ:52 /NOUNAMES /NOHEADER
/FORMAT : (NOASSEMBLY, BINARY, COMMENTARY , NOEXPAND, NOLIBRARY,
OBJECT, NOREQUIRE, SOURCE, SYMBOLIC,NOTRACE)

The compiler produces a listing with 52 1lines on each page; the
listing includes no expansion or tracing. The listing resembles a
typical macro source file but cannot be assembled.

1.3.6.3 Semantics - The listing switches indicate that one or more
listing options are given for the compilation. Command-line switches
are preceded by a slash, while switches that can appear as a part of

the /FORMAT switch are not. The source-values have the following

meanings:

Source-Value Meaning

/HEADER Page the listing produced on the 1list file and
include a heading on each page.

/NOHEADER Do not page the listing, do not include headings,
and do not produce statistics in the compilation
summary .

/PAGSIZ:1lines Use the number of lines specified for each page of
the 1list file. The number of lines must lie in

the range: 20 < lines < 52.

/UNAMES Replace names by machine-generated names so that
all names are unique and independent of scope,
resulting in a 1listing that can be correctly

assembled.

/NOUNAMES Do not replace names by unique names.

/FORMAT: One (or more in parentheses) of the following
options:

LIBRARY
Produce a trace in the listing file identifying the library after
a LIBRARY declaration and the first wuse of each name whose
definition is obtained from a library file. For an example of a
library trace, see Section 3.2.4.2.

NOLIBRARY

Do not produce a trace identifying any 1libraries and their
contributions.

REQUIRE

Include the contents of the specified file in the 1listing file.
For an example, see Section 3.2.4.2.

NOREQUIRE

Do not include the contents of the specified REQUIRE file in the
listing.

TOPS-20 OPERATING PROCEDURES

EXPAND

Include the expansion of each macro call in the 1listing file.
For an example of a macro expansion, see Section 3.2.4.3.

NOEXPAND

Do not include the expansion of macros.

TRACE
Include a trace of each macro expansion; that 1s, include the
parameter binding and any intermediate forms of expansion, as
well as the result of the expansion. For an example of a macro

trace, see Section 3.2.4.4.

NOTRACE
Do not include a trace of macro expansions.

SOURCE
Increment the listing control counter. Output is listed when the
listing control counter 1is positive and not listed when the
counter is zero or negative.

NOSOURCE
Decrement the listing control counter.

OBJECT
Produce the object part of the output listing.

NOOBJECT
Suppress the object part of the output listing.

ASSEMBLY
Produce a listing that can be assembled, by listing the assembler
instructions produced as a result of compiling the BLISS program
and including all other information within comments.

NOASSEMBLY
Do not list the assembler instructions.

SYMBOLIC

Include a machine code listing that uses names from the BLISS
source program.

NOSYMBOLIC

Do not include a machine code listing that uses source program

names.

COMMENTARY
Include a machine-generated commentary in the object code
listing. At this time, the machine-generated commentary is

limited to a cross-reference.

TOPS-20 OPERATING PROCEDURES

NOCOMMENTARY
Do not include a commentary field in the object code listing.
BINARY

Include a listing of the binary for each instruction in the
object code listing.

NOBINARY
Do not include a listing of the binary.

Each of the code-values is described and illustrated in Section 3.2.2
in connection with the discussion of the output listing produced by a
BLISS compilation. Understanding the purpose of these code-values
requires knowledge of the format and purpose of the output listing, as
discussed in that section.

1.3.7 Reference Switches

The reference switches allow a cross-reference listing to be included
with the compiler 1listing, and/or a cross-reference data file to be
created (refer to Section 1.3.1) to produce a master cross-reference
listing (refer to master cross-reference utility program BCREF in
Section 9.3). Some examples of using the reference switches are as
follows:

® To have a cross-reference listing included with the normal
source compiler 1listing, use the /CROSS-REFERENCE switch in
the command line as follows:

BLISS>ALPHA/LISTING/CROSS-REFERENCE

The compiler produces an object file and list file ALPHA.LST,
to which a cross-reference listing is appended.

® To have only a cross-reference listing produced (without the
normal source compiler listing), use the following:

BLISS>ALPHA/LIST/FORMAT : (NOSOURCE, NOOBJECT) /CROSS-REF

The compiler produces an object file and list file ALPHA.LST,
which contains only the cross-reference listing.

® To create only a master cross-reference data file, use the
/MASTER-CROSS-REFERENCE switch as follows:

BLISS>ALPHA/MASTER-CROSS~-REFERENCE

The compiler produces an object file and, as suitable input
for BCREF, master cross-reference file ALPHA.CRF.

® To produce a compiler listing which includes a cross-reference
listing, and a master cross-reference data file, use the
following:

BLISS>ALPHA/LIST/CROSS—REFERENCE/MASTER—CROSS—REFERENCE
The compiler produces an object file and list file ALPHA.LST,

to which a cross-reference 1listing is appended, and master
cross-reference file ALPHA.CRF.

TOPS~20 OPERATENG PROCEDURES

® To produce a listing with cross-references that include
multiple references to the same type symbol, occurring on the
same source line, use the following:

BLISS>ALPHA/LIST/CROSS-REFERENCE: (MULTIPLE)
The compiler produces an object file and list file ALPHA.LST,

to which a cross-reference listing is appended that includes
multiple references to the same symbol.

1.3.7.1 Syntax - Reference switch syntax is defined as follows:

{ { (reference-value ,...) } }
reference- /CROSS-REFERENCE : { reference-value }
switch /MASTER-CROSS-REFERENCE {:file-spec }
reference- { MULTIPLE | NOMULTIPLE }
value
1.3.7.2 Defaults - In the absence of an explicit choice of reference

value, the following value is assumed by default:

NOMULTIPLE

1.3.7.3 Semantics - The /CROSS-REFERENCE switch indicates that a
reference-value may be given for the compilation. The reference-value
has the following meaning:

Reference-Value Meaning

MULTIPLE Allow all multiple references (of the same
reference-type) to a symbol that occurs on the
same source line to Dbe included in the

cross~-reference listing.

NOMULTIPLE Exclude from the cross-reference listing
multiple references to symbols that occur on the
same source line.

1.3.8 Environment Switches

Environment switches are used to specify the processor model and the
operating system of the target system for which code 1is to be
generated. Some examples of using the environment switches are as
follows:

® To generate code that uses instructions available only on a
KL10 processor, use the following command line:

BLISS>ALPHA/KL10

TOPS-20 OPERATING PROCEDURES

The compiler reads the source from ALPHA.B36 or ALPHA.BLI and
creates an object file ALPHA.REL, which makes use of KL10O
instructions, such as ADJSP, to make stack adjustments and the
EXTEND instruction to ' implement various character-handling
functions.

® To generate code that makes cails on the TOPS-20 monitor using
JSYS instructions, use the following command-line:

BLISS>ALPHA/TOPS20

If ALPHA contains the main routine of the program, the
compiler generates a RESET% JSYS before the call to the main
routines and a HALTF% JSYS immediately after the call to the
main routine.

1.3.8.1 Syntax - Environment-switch syntax is:

JkA10 | /KI10 | /KL10 | /KS10 I

environment-switch /TOPS10 | /TOPS20 _
/EXTENDED | /NOEXTENDED
/EXTENDED : SECTION-INDEPENDENT
1.3.8.2 Defaults - If no environment switches are specified, the
following are assumed:
/KL10 /TOPS20 /NOEXTENDED

1.3.8.3 Semantics - Environment switches identify the target system
for which code 1is Dbeing generated. Environment switches have the
following meanings:

/KAL0 Generate code that uses only the KAlO
instruction set; this code executes on
all processor models.

/KI10 Generate code that uses only the KI10
instruction set; this code executes on
KI10, KL10, and KS10 processor models.

/KL10 Generate code that uses the KL10
instruction set; this code executes on
KL10 and KS10 processor models.

/KS10 Generate code that uses the KS10
instruction set; this code executes on
the KI10 and KS10 processor models.

/TOPS10 Generate code that makes calls to the
TOPS-10 monitor.

/TOPS20 Generate code that makes calls to the
TOPS~20 monitor.

/ EXTENDED Give partial support for the extended
addressing option for the KL10 Model
B. This switch is valid only when the

/KL10 and /TOPS20 switches are
specified or implied.

TOPS-20 OPEBATING PROCEDURES

/EXTENDED : SECTION~INDEPENDENT The same as /EXTENDED, except code is
generated that can be executed from
any section.

NOTE

A compiler-state-function is a 1lexical-function that
expands to a numeric-literal of 1 or O during
compilation to indicate whether a certain condition
exists. The $SWITCHES lexical-function can be tested
during compilation to determine the setting of one or
more environment switches. For example, the following
command line causes the $SWITCHES function to return
the indicated numeric-literal:

BLISS>ALPHA/KL10/TOPS10

$SWITCHES (KA10)
$SWITCHES (KI10)
$SWITCHES (KL10)
$SWITCHES (KS10)
$SWITCHES (TOPS10)
2SWITCHES (TOPS20)

1
OrHrFHFHFOO

For additional information, refer to "Module-Switches"
in the BLISS Language Guide.

The preceding discussion also relates to the options of the same name
to the module-head switch ENVIRONMENT.

1.3.9 Placement of Switches

Some directions can be given to the compiler either by command-line
switches or by switch settings contained in the module being compiled.
In some cases, the command-line switch name is the same as the switch
name contained in the module (module switches and SWITCHES
declaration), and in other cases, it is similar but not identical.
Names of common switches are given in Table 1-1.

1.3.10 sSwitches and Default Module Switch Settings

The switches given in the command 1line alter the default settings
assumed for module switches. A switch setting given in the module
head overrides the corresponding switch given in the command-line; any
switch setting given for a switches-declaration overrides the setting
given in the module head.

Suppose you are compiling two programs. The first program ALPHA.BLI
has a module switch CODE. The second program BETA has no switches.
The bliss-command-line is as follows:

BLISS> /NOCODE ALPHA,BETA

The switch /NOCODE changes the initial default from /CODE to /NOCODE.
When the program ALPHA.BLI is compiled, code is produced because
ALPHA.BLI has the module head switch CODE, which overrides the default
setting. When the program BETA.BLI is compiled, no code is produced
because it takes its setting of that switch from the initial default
established in the command line.

TOPS-20 OPERATING PROCEDURES

Table 1-1: Command Line, Module Switch, and SWITCH Names on TOPS~20

Command Line Name Module Switch Name SWITCHES Name
/CHECK n/a n/a
/CODE CODE n/a
/CROSS-REFERENCE n/a n/a
/DEBUG DEBUG n/a

/EXTENDED{ :ext-option}t ENVIRONMENT (EXTENDED{ : ext-option}) n/a

/ERRS ERRS ERRS

/FORMAT : ASSEMBLY LIST(ASSEMBLY) LIST (ASSEMBLY)
/FORMAT : BINARY LIST(BINARY) LIST{BINARY)
/FORMAT : COMMENTARY LIST (COMMENTARY) LIST (COMMENTARY)
/FORMAT : EXPAND LIST(EXPAND) LIST(EXPAND)
/FORMAT : LIBRARY LIST(LIBRARY) LIST(LIBRARY)
/FORMAT : OBJECT LIST(OBJECT) LIST(OBJECT)
/FORMAT : REQUIRE LIST(REQUIRE) LIST (REQUIRE)
/FORMAT : SOURCE LIST(SOURCE) LIST (SOURCE)
/FORMAT : SYMBOLIC LIST(SYMBOLIC) LIST(SYMBOLIC)
/FORMAT : TRACE LIST(TRACE) LIST(TRACE)
/KALO ENVIRONMENT (KA10) n/a

/KI10 ENVIRONMENT (KI10) n/a

/KL10 ENVIRONMENT (KL10) n/a

/KS10 ENVIRONMENT (KS10) n/a
/MASTER-CROSS—~REFERENCE n/a n/a
/OPTLEVEL:n OPTLEVEL=n n/a

/SAFE SAFE SAFE

/TOPS10 ENVIRONMENT (TOPS10) n/a

/TOPS20 ENVIRONMENT (TOPS20) n/a

/UNAMES UNAMES UNAMES

/Z1P ZIP Z1p

1. The EXTENDED{:ext—option} implies EXTENDED:SECTION-INDEPENDENT for the
command-line and EXTENDED:SECTION_ INDEPENDENT for the module switch.

n/a (not applicable) indicates that no corresponding switch exists.

-

TOPS-20 OPERATING PROCEDURES

1.3.11 Positive and Negative Forms of Switches

In general, two forms of a switch are allowed: a positive form and a

negative form. For example, /CODE (the positive form) directs the
compiler to generate code, and /NOCODE (the negative form) directs the
compiler to suppress code generation. Positive and negative forms of

a switch are mutually exclusive; only one form for any switch should
be given in a bliss-command-line.

1.3.12 Abbreviations of Switch and Value Names

The command switch names and value names can be abbreviated as long as
the COMND% JSYS can complete the command unambiguously. This is true
both for switches that can take values and switches that take no
value. (Refer to Appendix A for a summary of positive and negative
forms of switches and values.)

1.4 SPECIAL FEATURES

1.4.1 Indirect Files

An indirect file is a file referenced within a BLISS command line; it
is used to complete a BLISS command. The indirect file may contain a
complete or partial BLISS command line: for example, file names and
switch settings. You reference the file by specifying an "at sign"
(@) followed by the file-spec, the contents of which expand and
complete the command line. For example, if the file TTY.CMD contains
one line with the following switch settings:

/LISTING:TTY:/FORMAT: (NOBINARY, NOCOMMENTARY) /NOHEADER

and the following command, using the indirect file TTY.CMD to specify
the remainder of a command line, is issued:

BLISS>ALPHAGTTY .CMD
The compiler compiles ALPHA and sends the listing to the terminal
without the Dbinary, commentary, and page headers. This 1is a
convenient shorthand method of specifying a commonly used set of

switches.

For another example, assume that the file LIB.CMD contains the
following command line:

LIB1+LIB2+LIB3/LIBRARY:LIB.L36

and that a reference to the indirect file 1is specified in a BLISS
command line:

BLISS>@LIB.CMD

The compiler uses the concatenation of files LIBl, LIB2, and LIB3 as
input and produces a library file, LIB.L36.

TOPS-20 OPERATING PROCEDURES

l1.4.2 EXEC Command

A bliss-command-line may be specified on the same line as that of a
command invoking the compiler as follows:

@BLISS bliss-command-1line

The compiler will be invoked, compile the specified file or files, and
then exit back to the EXEC. Command recognition, file specification
completion, and the question mark character features are not available
in this mode of operation.

CHAPTER 2

TOPS-10 OPERATING PROCEDURES

This chapter discusses the TOPS-10 operating procedures used to
compile a BLISS program. The form of the command line is considered
first. Then, the input to a BLISS-36 compilation is described and
illustrated. Finally, the command-line switches relevant to a
BLISS-36 compilation are given.

Compiling, 1linking, and executing a BLISS-36 program is a
straightforward procedure. In the simplest case, to compile and
execute a program that consists of a single module, you enter the
module in a file (for example ALPHA.B36) and then compile it with the
BLISS-36 compiler, link it using LINK, and then run the linked image.
The EXECUTE command automatically invokes LINK as follows:

-R BLISS
*ALPHA=ALPHA
*“C

-EXECUTE ALPHA

The first command invokes the BLISS compiler to compile the module in
the file ALPHA.B36 and to produce an object file ALPHA.REL. The
second command uses the object module in the file ALPHA.REL to produce
an executable image in memory and to execute the image.

To save the linked image, use the LOAD command and save the resulting
image as follows:

-R BLISS
*ALPHA=ALPHA
*“C

-LOAD ALPHA
.SAVE ALPHA

You can control the compiler by using command-line switches. These
switches add a level of complexity to the compilation process, but
they also provide a significant number of options by which you can
vary the performance of the compiler in the production of output, the
formatting of listings, and the degree of optimization performed.

2.1 COMPILING A BLISS PROGRAM

The BLISS compiler uses the standard TOPS-10 command interpreter,

SCAN, to parse the command line. As such, various features of command
line processing that are common to many programs and the TOPS-10
monitor are also common to the BLISS compiler. Some of these include

formats for file specifications and common switches.

TOPS-10 OPERATING PROCEDURES

To compile a BLISS program, you run the BLISS compiler from the
command level and wait for the '*' prompt. (The simplest way to run
the BLISS compiler is to have the compiler, BLISS.EXE, reside on
logical device SYS:. For the remainder of this chapter, it is assumed
that you have invoked the compiler by +typing 'R BLISS' in monitor
mode.) You then provide a source-file list, an optional
output-file-list, and the number of switches desired; some examples
are given in the following list:

® To compile a program, give the following command:
*MYPROG=MYPROG
The BLISS compiler uses the file MYPROG.B36 or MYPROG.BLI as
its 1input, compiles the source in that file, and produces

object file MYPROG.REL.

e To produce a listing file, specify the 1listing file as
follows:

*MYPROG, MYPROG=MYPROG

The BLISS compiler produces, in addition to the object f£file,
listing file MYPROG.LST.

® To produce an object file with a name different from that of
the source file, give the name in the command as follows:

*GAMMA=ALPHA

The BLISS compiler produces the object file GAMMA.REL.

]
A

e To produce a library file instead of an object file, wuse the
command switch /LIBRARY as shown in the following:

*ALPHA=ALPHA/LIBRARY

The BLISS compiler compiles input file ALPHA.R36 and produces
library file ALPHA.L36.

e To compile a program that consists of several pieces, each in
a separate file, include all file names on the command line

*ALPHA=ALPHA, BETA, GAMMA
The BLISS compiler compiles the program formed by the
concatenation of ALPHA.B36, BETA.B36, and GAMMA.B36, and
produces the single object file ALPHA.REL.
NOTE

The TOPS-10 EXEC does not support BLISS-36 in
COMPIL-class commands. Therefore, the command

.EXECUTE ALPHA.BLI
will not compile and execute ALPHA as a

BLISS-36 module. However, it will attempt to
use BLISS-10 to compile ALPHA.BLI.

TOPS-10 OPERATING PROCEDURES

2.1.1 Command-Line Syntax

bliss-command-line {output-file-list} =
source~file-list {switch...}
source-file-1list source-file-spec, ...
object-file-spec ,...
output-file-list ,listing-file-spec ,...
,master-cref-spec

source-file-spec
object-file-spec
listing-file-spec file-spec
master-cref-spec

file-spec See Section 2.2

switch See Section 2.4

2.1.2 Command-Line Semantics

The BLISS-36 compiler uses any switches given in the
bliss-command-line to modify the initial defaults for each
compilation. Then, the concatenated input is compiled in the context
of the initial defaults. The switches and the initial default for
each switch are described in Section 2.4.

Unless a switch is used to change the compiler's behavior, the output
compilation initiated from your terminal (or batch file) will consist
of an object file (if specified), a listing file (if specified), and a
terminal listing.

The compiler begins with the first file given and continues until an
end-of-file is reached. The compiler continues reading input from the

next file specified, and so on, until all the files in the source file
list are used.

2.2 FILE SPECIFICATIONS
File specifications are used to name the source of program text to be
compiled and the destination of output from the compilation. More
precisely, file specifications can occur in three contexts:

@ The source-file-list of a bliss-command-line

® REQUIRE and LIBRARY declarations in the module being compiled

® The OTS module switch

TOPS-10 OPERATING PROCEDURES

2.2.1 Syntax

The standard TOPS-10 file specification is:

file-spec { device: } file-name { .extension } { [ppn] }

device any logical or physical device name
of 1 to 6 alphanumeric characters

file~name 1 to 6 alphanumeric characters
extension 0 to 3 alphanumeric characters
ppn project-number, programmer-number

2.2.2 Semantics
A file specification is interpreted as follows:

1. If an extension is not given a default extension is used, as
described in the next section.

2. If the file-spec applies to an output file and a file name is
not given, the name of the first input file in the
source-file-1list is used.

This same interpretation is also used by the compiler when processing
the file specification given in a REQUIRE or LIBRARY declaration.

The file-spec must be fully specified in the OTS module switch. That
is, no defaults are supplied by the compiler.

2.2.3 Default Extension

The compiler has two ordered lists of default extensions to be tried
for a source-file-spec that does not include an extension. The list
that the compiler applies depends on the output specified for the
compilation, as indicated in the following list:

File Use Default Extension List

Input-spec used to .B36, .BLI
produce an object module

Input-spec used to .R36, .REQ, .B36, .BLI
produce a library file

If the program being compiled contains a REQUIRE or LIBRARY
declaration, the compiler uses the following list to search for the
appropriate extension according to the type of declaration:

File Use Default Extension List

File given in a .R36, .REQ, .B36, .BLI
REQUIRE declaration

File given in a .L36
Library declaration

TOPS-10 OPERATING PROCEDURES

For example, suppose you have entered the following program in the
file ALPHA.BLI:

MODULE MYTEST =
BEGIN

REQUIRE 'CBLISS';
LIBRARY 'TBLISS';

END
ELUDOM

And, suppose further that you compile it as follows:

*ALPHA=ALPHA

Since the Dbliss-command-line shown does not contain a switch
requesting the production of a library file, the output of the
compilation is an object module. The compiler, therefore, chooses the

list of default extensions associated with object module output and
searches first for ALPHA.B36, then, not finding that file, for
ALPHA.BLI, which it finds and compiles. 1In processing the module
MYTEST in that file, the compiler encounters the REQUIRE declaration
for the file CBLISS. Since an extension for CBLISS is not given, the
compiler uses the list of default extensions for files in a REQUIRE
declaration and searches for CBLISS.R36, then CBLISS.REQ, then
CBLISS.B36, and finally CBLISS.BLI. When the compiler processes the
LIBRARY declaration, it uses the default extensions list associated
with library declarations and searches for TBLISS.L36.

2.3 OUTPUT SPECIFICATIONS

An output specification is used to indicate the type of output to be
produced from a BLISS-36 compilation and to give names for the files
to be produced when you do not want to use the default names. There
are two ways of specifying output specifications to the compiler. The
first is to specify an object or 1list file specification in the

bliss-command-line. The second 1is to specify both an object file
specification and the /LIBRARY switch, in which case the compiler
creates a library file, rather than an object file. Thus, the syntax

for the output-specification could appear as follows:

library-spec
= ... {library-switch }

output-spec {file—spec—list
nothing

file-spec-1list ,list-spec ,...

object-spec ,... }
;master-cref~spec

Some examples of ways to give output specifications to the compiler
are given in the following list:

e To suppress the production of an object file, omit the object
file specification as follows:

*=ALPHA

The BLISS-36 compiler reads the source file ALPHA.B36 but
produces no output files. However, error messages and summary
information are produced at the terminal.

TOPS-10 OPERATING PROCEDURES

® To obtain a list file, give a listing file specification:
*ALPHA, ALPHA=ALPHA

The BLISS-36 compiler produces an object file ALPHA.REL and a
list file ALPHA.LST.

® To use a different name for the object or list files, use the
following command line:

*BETA, GAMMA=ALPHA

The compiler reads the source file ALPHA.B36 and produces the
object file BETA.REL and the list file GAMMA.LST.

® To produce a master cross-reference data file, use the master
cross—-reference file specification:

* , ,MASTER=ALPHA

The compiler reads the source file ALPHA.B36 and produces the
master cross-reference data file MASTER.CRF.

® To produce a library file rather than an object file wuse the
/LIBRARY switch, as follows:

* ALPHA=ALPHA/LIBRARY

The compiler reads the source file ALPHA.B36 and produces the
library file ALPHA.L36.

2.4 COMMAND-LINE SWITCHES

The switches in the command line allow you to give the compiler
information about the status of the compilation. A library switch,
for example, tells the compiler something about the kind of output you

want from the compilation. An optimization switch describes the
amount and type of optimization to be performed. A source-list switch
indicates the switch of the source part of the output, and so on. The

kinds of switches are indicated in the following syntax:

library-switch
general-switch
check-switch

switch terminal-switch
optimization-switch
listing-switch
reference-switch
environment-switch

2.4.1 Library Switches

Library switches are used to indicate whether an object spec refers to
an object file or to a library file. The object-spec can specify
either a program's object file or a library file, but not Dboth. The
/LIBRARY switch 1is used to specify that the object-spec refers to a
library file.

TOPS-10 OPERATING PROCEDURES

2.4.1.1 Syntax - Library-switch syntax is:

library-switch { /LIBRARY | /NOLIBRARY }

2.4.1.2 Defaults - If no output-specification 1is specified, the
following is assumed:

*, ,=source-file-spec/NOLIBRARY

Both the commas and equals sign are unnecessary 1f the object-spec,

list-spec, and master-cref-spec are omitted. The equals sign is
required but the commas are not, if only the object-spec is specified.
However, both are required if the list-spec and/or the

master-cref-spec is specified.

No object file is produced if the object-spec is omitted. No listing
file is produced if the 1list-spec 1is omitted. And no master
cross~reference data file is produced if the master-cref-spec is
omitted. /NOLIBRARY is assumed if the library switch is omitted.

If the file type is omitted from a file-spec, the following file-type
defaults are supplied, according to the file-designator:

File-Designator Default Extension
object-spec/NOLIBRARY .REL
object-spec/LIBRARY .L36
list-spec .LST
master-~cref-spec .CRF

2.4.2 General Switches

General switches are used to specify code and debug information and to
set the value for the lexical function $VARIANT. Some examples of
using general switches follow:

@ To include the necessary debug linkage 1in the compiled
program, use the /DEBUG switch in the bliss-compilation:

*ALPHA=ALPHA/DEBUG
The compiler reads the source from ALPHA.BLI and creates an
object file ALPHA.REL, which includes additional code for
interface with SIX12.

e To check the syntax of a program you do not intend to execute,
use the /NOCODE switch to save compilation time, as follows:

*=ALPHA/NOCODE

® To set the value of the lexical function %VARIANT to 17, use
the /VARIANT switch as follows:

*ALPHA=ALPHA/VARIANT:17

@ To limit the number of errors diagnosed to 10, use the /ERRLIM
switch as follows:

*ALPHA=ALPHA/ERRLIM: 10

2-7

TOPS-10 OPERATING PROCEDURES

2.4.2.1 Syntax - General-switch syntax is:

/DEBUG | /NODEBUG
general-switch /CODE | /NOCODE

/VARIANT {:value}

/ERRLIM {:value}

2.4.2.2 Defaults - If no general switches are specified, the
following are assumed:

/NODEBUG / CODE /VARIANT: O /ERRLIM: 30

The compiler produces code, does not include the additional debugging
information in the object file, and sets the value of $VARIANT to O.

If the general switch /VARIANT is given without a specified value, a
value of 1 is assumed.

If the general switch /ERRLIM is given without a specified value, a
value of 1 is assumed.

-

2.4.2.3 Semantics - General switches perform the following functions:

/DEBUG Generate debugging linkage and 1limit optimization so
that SIX12 optimizations may be effectively used.
Also, include symbolic information in the object file
produced.

/NODEBUG Produce symbolic information but no debug linkage, and
do not limit optimizations (required for the effective
use of SIX12).

/ CODE Generate object code fof the BLISS source module.

/NOCODE Perform only a syntax check of the program.

/VARIANT Set $VARIANT to 1.

/VARIANT :n Set $VARIANT to n, where n is a decimal integer in the
range:

-(2**35) < n < (2**35)-1
/ERRLIM Set limit to 1.

/ERRLIM:n Limit to n the number of errors diagnosed before
terminating the compilation.

2.4.3 Check Switch

The check switch controls the level of semantic checking done during
compilation. The switch allows all legal BLISS syntax to be examined
for semantic irregularites. Some examples of the use of the check
switch are as follows:

® To suppress field-name checking on structure accesses if the
data-segment declaration has no field-attribute, use the check
qualifier as follows:

*ALPHA=ALPHA/CHECK:NOFIELD

2-8

TOPS-10 OPERATING PROCEDURES

® To check for the use of uninitialized storage, use the check
qualifier as follows:

*ALPHA=ALPHA/CHECK: INITIAL

2.4.3.1 Syntax - Check switch syntax is defined as follows:

{(check-value s e)}
check switch /CHECK: check-value
FIELD | NOFIELD
check-value ‘ INITIAL | NOINITIAL
IOPTIMIZE | NOOPTIMIZE
REDECLARE | NOREDECLARE

2.4.3.2 Defaults - In the absence of a specific choice of
check-value, the following values are assumed by default:

FIELD INITIAL OPTIMIZE NOREDECLARE

2.4.3.3 Semantics - The /CHECK switch indicates +that one or more
check-values follow. The check-values have the following meanings:

Check-Value Meaning

FIELD Do not suppress field-name checking.

NOFIELD If the data-segment declaration has no
field-attribute, suppress field-name checking on

the structure accesses.

INITIAL Check for the use of uninitialized storage.
NOINITIAL Do not check for uninitialized storage.
OPTIMIZE Check for suspicious optimizations. For example,

constant folding expressions of a form that is
always false, such as:

.X<0,8,1> EQL %X'FF'
NOOPTIMIZE Do not check for suspicious optimizations.

REDECLARE Check for the redeclaration of a name within a
nested scope.

NOREDECLARE Do not check for the redeclaration of a name.

2.4.4 Terminal Switches

Terminal switches are used to control the output that is sent to the
terminal. You can have errors or statistics printed or not printed on

TOPS-10 OPERATING PROCEDURES
the terminal during the compilation of a BLISS program. Some examples
of using terminal switches follow:
® To see the statistics for each routine as they are produced
during the compilation, use the /STATISTICS switch, as
follows:

*ALPHA=ALPHA/STATISTICS

e To suppress error messages, use the /NOERRS switch. As an
example, consider the following:

*ALPHA=ALPHA/ST/NOERRS

Note that the /STATISTICS switch is abbreviated to /ST in the
above example.

/NOERRS is useful in preventing a profusion of error messages
from being listed on the terminal when a listing is requested.

2.4.4.1 Syntax - Terminal-switch syntax is:

{/ERRS | /NOERRS }
terminal-switch /STATISTICS | /NOSTATISTICS
2.4.4.2 Defaults - If no terminal switches are specified, the

following are assumed:
/ERRS /NOSTATISTICS

Errors are reported on the terminal during the compilation, but
statistics are suppressed. v

2.4.4.3 Semantics - Terminal switches perform the following
functions:

Switch Meaning

/ERRS List each error on the terminal as it is

encountered in the compilation.
/NOERRS Do not list errors on the terminal.

/STATISTICS List the name and size of each routine on the
terminal after each routine is compiled.

/NOSTATISTICS Do not list routine names and sizes.

2.4.5 Optimization Switches

Optimization switches are used to supply directions to the compiler
about the degree and type of optimization wanted, and to make
assertions about the program so that the compiler can select the

TOPS-10 OPERATING PROCEDURES
appropriate optimization strategies. Some examples of using
optimization switches are as follows:
® To increase the compilation speed by omitting some standard
optimizations, use the /QUICK switch in the command line, as
follows:

* ALPHA=ALPHA/QUICK

® To get minimum optimization, use the /OPTLEVEL switch with the
value 0, as follows:

* ALPHA=ALPHA/OPTLEVEL: 0

® To obtain maximum optimization, use the /OPTLEVEL switch with
the value 3, as follows:

* ALPHA=ALPHA/OPTLEVEL: 3
® To direct the compiler to use techniques that may use more
storage for the program to increase its operating speed, give
the /ZIP switch, as follows:
*ALPHA=ALPHA/ZIP

e To inform the compiler that the program uses pointers to
manipulate named data, use the /NOSAFE switch, as follows:

* ALPHA=ALPHA/NOSAFE

A detailed discussion of the optimizations resulting from the use of
the optimization switches is given in Chapter 8.

2.4.5.1 Syntax - Optimization-switch syntax is:

optlevel-switch
optimization-switch safe-~-switch

zip-switch

quick-switch

optlevel-switch /OPTLEVEL : optimization-level
optimization-level { o | 1 1 2 | 3 1}
safe-switch { /SAFE | /NOSAFE }
zip-switch { /zip | /NOZIP }
quick-switch { /QUICK | /NOQUICK }
2.4.5.2 Defaults - If no optimization switches are specified, the

following are assumed:
/NOQUICK /NOZIp /OPTLEVEL: 2 /SAFE

The compiler is directed to perform normal optimization, balancing the
time/space trade-off in favor of space, to assume that all variables
are addressed by name, to perform optimization across mark points, and
to perform flow analysis. (see Section 8.1.2.)

TOPS-10 OPERATING PROCEDURES

2.4.5.3 Semantics - The optimization switches indicate that one or
more optimize options are specified. The optimize switches have the

following meanings:

Optimize-Value Meaning

/QUICK Omit some standard optimizations to increase the
compilation speed.

/NOQUICK Include standard optimizations.

/Z1IP Increase the execution efficiency of the program
being compiled by using more space where
appropriate. For more information on the effect

of this value, see Section 8.1.4.

/NOZIP Do not increase the space occupied by the program
to improve its operating speed. For more
information on the effect of this value, see

Section 8.1.2.2.

/OPTLEVEL :n Optimize the program being compiled according to
the optimize-level n, as follows:
Optimize-~Level Meaning
0 Minimum optimization
1 Subnormal optimization
2 Normal optimization
3 Maximum optimization

n=3 optimizes speed at the expense of space in the
same way as /ZIP. For more information on the
effect of this value, see Section 8.1.2.

/SAFE Assume that all named data-segments are referenced
by name and not manipulated in any way indirectly,
and use optimization techniques that exploit this
fact. For more information on the effect of this
value, see Section 8.1.2.1.

/NOSAFE Assume that sometimes a named data-segment 1is
referenced by means of a computed expression and,
therefore, some optimization techniques cannot be
used.

2.4.6 Listing Switches

Listing switches are used to supply information about the form of the
source code on the output listing. Some examples of using the listing
switches are as follows:

e To obtain a paged listing with 44 lines on each page, give the
following listing switch:

* , ALPHA=ALPHA/PAGSI1Z:44

e To obtain an unpaged listing in which the macro expansions are

given but header information 1is not, use the following
switches:

* ALPHA=ALPHA/LIST :EXPAND/NOHEADER

TOPS-10 OPERATING PROCEDURES

® To obtain a listing that contains the contents of the REQUIRE

files given in REQUIRE declarations, use the following
switches:

* , ALPHA=ALPHA/LIST :REQUIRE

® To obtain an output listing that is intended to be assembled
by the MACRO assembler, use the ASSEMBLY option, as follows:

* , ALPHA=ALPHA/LIST:ASSEMBLY

e To obtain a listing that is intended to be assembled and that
does not contain binary, include the NOBINARY option:

* ,ALPHA=ALPHA/LIST: (ASSEMBLY, NOBINARY)

The form of the output listing is described in Section 3.2.

2.4.6.1 Syntax - Listing-switch syntax is:

/PAGSIZ: number-of-lines

/JHEADER | /NOHEADER
listing-switch /UNAMES | /NOUNAMES
/LIST : format-option-list
number-of-lines { 20 | 21 | 22 1| ... 1 52 1}
{(option, ...)}
format-option-1list option
ASSEMBLY | NOASSEMBLY
BINARY | NOBINARY
COMMENTARY | NOCOMMENTARY
EXPAND | NOEXPAND
option LIBRARY | NOLIBRARY
OBJECT | NOOBJECT
REQUIRE | NOREQUIRE
SOURCE | NOSOURCE
SYMBOLIC | NOSYMBOLIC
TRACE | NOTRACE
2.4.6.2 Defaults - If no 1listing switches are specified, the

following are assumed:

/PAGSIZ:52 /NOUNAMES /NOHEADER
/LIST: (NOASSEMBLY,BINARY, COMMENTARY, NOEXPAND, NOLIBRARY,
OBJECT, NOREQUIRE, SOURCE, SYMBOLIC, NOTRACE)

The compiler produces a listing, with 52 lines on each page, in which

no expansion or tracing is included. The listing resembles a typical
macro source file.

2.4.6.3 Semantics - Listing switches indicate that one or more

listing options are given for the compilation. The source-values have

the following meanings:

Source-Value Meaning

/HEADER Page the listing produced on the 1list file and
include a heading on each page.

2-13

Source-Value

/NOHEADER

/PAGSIZ:lines

/UNAMES

/NOUNAMES

JLIST:

LIBRARY

TOPS-~10 OPERATING PROCEDURES
L]

Meaning

Do not page the listing, do not include headings,
and do not produce statistics in the compilation
summary .

Use the number of lines specified for each page of
the 1list file. The number of lines must lie in
the range: 20 < lines < 52.

Replace names by machine-generated names so that
all names are” unique and independent of scope; the
resulting listing can thus be correctly assembled.

Do not replace names by unigue names.

One (or more in parentheses) of the following
options:

Produce a trace in the listing file identifying the library after
a LIBRARY declaration and the first use of each name whose
definition is obtained from a library file. For an example of a

library trace,

NOLIBRARY

Do not produce

contributions.

REQUIRE

see Section 3.2.4.2.

a trace identifying any libraries and their

Include the contents of the specified file in the listing file.

For an example,

NOREQUIRE

see Section 3.2.4.2.

Exclude the REQUIRE file contents from the listing.

EXPAND

Include the expansion of each macro call in the 1listing file.
For an example of a macro expansion, see Section 3.2.4.3.

NOEXPAND

Do not include the expansion of macros.

TRACE

Include a trace of each macro expansion. That is, include the
parameter binding and any intermediate forms of expansion, as
well as the result of the expansion. For an example of a macro
trace, see Section 3.2.4.4.

NOTRACE

Do not include a trace of macro expansions.

SOURCE

Increment the listing control counter. Output is listed when the
listing control counter 1is positive and not listed when the
counter is zero or negative.

TOPS-10 OPERATING PROCEDURES

NOSOURCE
Decrement the listing control counter.
OBJECT
Produce the object part of the output listing.
NOOBJECT
Suppress the object part of the output listing.
ASSEMBLY
Produce a listing that can be assembled, by listing the assembler
instructions produced as a result of compiling the BLISS program
and including all other information within comments.
NOASSEMBLY
Do not 1list the assembler instructions.

SYMBOLIC

Include a machine code listing that uses names from the BLISS
source program.

NOSYMBOLIC

Do not include a machine code listing that uses source program

names .

COMMENTARY
Include a machine-generated commentary in the object code
listing. At this time, the machine-generated commentary is

limited to a cross-reference.
NOCOMMENTARY

Do not include a commentary field in the object code listing.
BINARY

Include a listing of the binary for each instruction in the
object code listing.

NOBINARY
Do not include a listing of the binary.

Each listing switch is described and illustrated in Section 3.2.2 in
connection with the discussion of the output listing produced by a
BLISS compilation. Understanding the purpose of these listing
switches requires knowledge of the format and purpose of the output
listing, as discussed in that section.

2.4.7 Reference Switches

The reference switches allow a cross-reference listing to be included
with the compiler 1listing. Further, a master cross-reference data
file can be created (refer to Section 2.3) to produce a master

TOPS-10 OPERATING PROCEDURES

cross-reference 1listing (refer to master cross-reference utility
program BCREF in Section 9.3). Some examples of using the reference
switches are as follows:

® To have a cross-reference listing included with the normal
source compiler 1listing, use the /CREF switch in the command
line as follows:

* ALPHA=ALPHA/LIST/CREF
The compiler produces 1list file ALPHA.LST to which a
cross-reference listing is appended.

@ To have only a cross-reference listing produced (without the
normal source compiler listing), use the following:

* ALPHA=ALPHA/LIST: (NOSOURCE, NOOBJECT)/CREF
The compiler produces list file ALPHA.LST, which contains only
the cross-reference listing.

e To create only a master cross-reference data file, use the
master cross-reference file specification:

* , ,ALPHA=ALPHA -
The compiler produces master cross-reference data file
ALPHA .CRF.

® To produce a compiler listing that includes a cross-reference
listing and a master cross-reference data file, use the
following:

* ALPHA,ALPHA=ALPHA/CREF
The compiler produces 1list file ALPHA.LST, to which a
cross-reference listing is appended, and master
cross-reference data file ALPHA.CRF.

e To produce a listing with cross-references that include
multiple references to the same type symbol occurring on the
same source line, use the following:

* ,ALPHA=ALPHA/CREF : MULTIPLE
The compiler produces 1list file ALPHA.LST, to which a
cross-reference listing 1is appended that includes multiple
references to the same symbol.
2.4.7.1 Syntax - Reference qualifier syntax is defined as follows:
{ { (reference-value ,...) }}
reference-switch /CREF : { reference-value }
reference-value { MULTIPLE | NOMULTIPLE }
2.4.7.2 Defaults - In the absence of an explicit choice of reference
value, the following value is assumed by default:

NOMULTIPLE

TOPS-10 OPERATING PROCEDURES

2.4.7.3 Semantics - The /CREF switch indicates that cross-references
are to be included in the listing and that zero or one reference-value

will be given for +the compilation. The reference-value have the
following meanings:

Reference-value Meaning

MULTIPLE Allow all multiple references (of the same
reference-type) to a symbol occurring on the
same source 1line, to be included in the

cross-reference listing.

NOMULTIPLE Exclude from the cross-reference 1listing all

multiple references to a symbol occurring on the
same source line.

2.4.8 Environment Switches

Environment switches are used to specify the processor model and the
operating system of the target system for which code 1is to be
generated. Some examples of using environment switches are as
follows:

® To generate code that uses instructions available only on a
KL10 processor, use the following command line:

*ALPHA=ALPHA/KL10

The compiler reads the source from ALPHA.BLI and creates
object file ALPHA.REL; this file makes use of KL10
instructions, such as ADJSP (which makes stack adjustments)

and EXTEND (which implements various character-handling
functions).

® To generate code that makes calls on the TOPS-20 monitor using
JSYS instructions, use the following command line:

*ALPHA=ALPHA/TOPS20

If ALPHA contains the main routine of the program, the
compiler generates a RESET% JSYS before the call to the main
routine and a HALTF% JSYS immediately after the call to the
main routine.

2.4.8.1 Syntax - Environment switch syntax is:

/KAl10 | /Krio | /KL10 | /KS1l0
environment-switch

/TOPS10 | /TOPS20

2.4.8.2 Defaults - If no environment switches are specified, the
following are assumed:

/KAL10 /TOPS10

TOPS-10 OPERATING PROCEDURES

2.4.8.3 Semantics - Environment switches identify the target system
for which code 1is Dbeing generated. Environment switches have the
following meanings:

/KA10 Generate code that uses only the KAlO instruction
set; this code executes on all processing models.

/KI10 Generate code that uses only the KI10 instruction
set; this code executes on KI10 and KL10 processor
models.

/KL10 Generate code that uses the KL10 instruction set;
this code executes on KL10 and KS10 processor
models.

JKS10 Generate code that uses the KS10 instruction set;
this code executes on a KS10 processor models.

/TOPS10 Generate code that makes calls to the TOPS-10
monitor.

/TOPS20 Generate code that makes calls to the TOPS-20
monitor.

NOTE
A compiler-state-function is a 1lexical-function that
expands to a numeric-literal of 1 or 0 during
compilation to indicate whether a certain condition
exists. The $SWITCHES lexical-function can be tested
during compilation to determine the setting of one or
more environment switches. For example, the following

command line causes the $SWITCHES function to return
the indicated numeric-literal:

*ALPHA=ALPHA/KL10/TOPS10

$SWITCHES (KA10) -0
%SWITCHES (KI10) -0
$SWITCHES (KL10) -1
$SWITCHES (KS19) -0
$SWITCHES (TOPS10) - 1
$SWITCHES (TOPS20) - O

For additional information, refer to "Module-Switches"
in the BLISS Language Guide.

2.4.9 Placement of Switches

Some directions can be given to the compiler either by command line
switches or by switch settings contained in the module being compiled.
The command line switch name is in some cases the same as the switch
name contained in the module (module switches and SWITCHES
declaration) and in other cases similar but not identical. The names
for the common switches are given in Table 2-1.

2.4.10 Switches and Default Settings

Command-line switches alter default settings assumed for module
switches. A switch setting in the module head overrides the
corresponding switch given in the command line. A switch setting for
a switches-declaration overrides the setting given in the module head.

2-18

TOPS-10 OPERATING PROCEDURES

Suppose you are compiling two programs. The first program ALPHA.BLI
has a module switch CODE. The second program BETA has no switches.
The bliss~command-line is as follows:

*=AL,PHA , BETA/NOCODE

The switch /NOCODE changes the initial default from /CODE to /NOCODE.
When the program ALPHA.BLI is compiled, code is produced because
ALPHA.BLI has the module head switch CODE, which overrides the default
setting. When the module BETA.BLI is compiled, no code is produced
because it takes its setting of that switch from the initial default
established in the command line.

Table 2-1: Command Line, Module Switch, and SWITCH Names on TOPS-10

Command Line Module Switch

Name Name SWITCHES Name
/ CHECK n/a n/a
/CODE CODE n/a
/CREF n/a n/a
/DEBUG DEBUG n/a
/ERRS ERRS ERRS

/LIST:ASSEMBLY

/LIST:BINARY LIST(BINARY) LIST(BINARY)
/LIST:COMMENTARY LIST (COMMENTARY) LIST (COMMENTARY)
/LIST:EXPAND LIST (EXPAND) LIST (EXPAND)
/LIST:LIBRARY LIST(LIBRARY) LIST(LIBRARY)
/LIST:0BJECT LIST (OBJECT) LIST (OBJECT)
/LIST:REQUIRE LIST(REQUIRE) LIST(REQUIRE)
/LIST:SOURCE LIST (SOURCE) LIST (SOURCE)
/LIST:SYMBOLIC LIST(SYMBOLIC) LIST(SYMBOLIC)
/LIST:TRACE LIST(TRACE) LIST(TRACE)
/OPTLEVEL:n OPTLEVEL:n n/a

/SAFE SAFE SAFE

/UNAMES UNAMES UNAMES

/ZIp ZIP ZIP

LIST(ASSEMBLY)

LIST(ASSEMBLY)

n/a (not applicable) indicates that no corresponding switch

exists.

TOPS-10 OPERATING PROCEDURES

2.4.11 Positive and Negative Forms of Switches

In general, two forms of a switch are allowed: a positive form and a
negative form. For example, /CODE (the positive form) directs the
compiler to generate code and /NOCODE (the negative form) directs the
compiler to suppress code generation.

The positive and negative forms of a switch are mutually exclusive;
only one form for any switch should be given in a bliss-command-line.

2.4.12 Abbreviations

The command switch names and value names can be abbreviated as long as
SCAN can recognize the command unambiguously. This is true both for
switches that can take values and switches that take no value.

2.5 SPECIAL FEATURES
2.5.1 1Indirect Files

An indirect file is a file referenced within a BLISS command line; it
is used to complete a BLISS command. The indirect file may contain a
complete or partial BLISS command line: for example, filenames and
switch settings. You reference the file by specifying an "at sign"
(@) followed by the file-spec, the contents of which expands and
complete the command line.

For example, assume the file MYPROG.CCL contains the following command
lines:

LIB.L36=LIB1,LIB2,LIB3/LIBRARY
MYPROG=MYPROG

and that you issue the following command, wusing the indirect file
MYPROG.CCL to specify command lines to be read:

* @MYPROG . CCL
The compiler produces library file LIB.L36 from the concatenation of

source files ©LIB1l, LIB2, and LIB3, compiles indirect file MYPROG,
produces object file MYPROG.REL, and prompts again with an asterisk.

2.5.2 Option File

An option file named DSK:SWITCH.INI may reside in your logged in disk

area; in 1it, you can set switches for use with various programs.
These switches allow you to override system defaults for individual
programs. The BLISS compiler is such a program.

The syntax of the lines in the option file for BLISS is as follows:
BLISS switch

or
BLISS:option-name switch

where option-name is a 1- to 6-character name.

TOPS-10 OPERATING PROCEDURES

For example, suppose that option file SWITCH.INI contains the lines:
BLISS /STATISTICS/DEBUG
BLIS16 /STATISTICS/DEBUG
BLISS:TERM /LIST:(NOBINARY, NOCOMMENTARY)/NOHEADER

The following command would cause the first line to be read; this sets
the STATISTICS and DEBUG switches to be on as a default.

*ALPHA=ALPHA

The compiler compiles ALPHA, produces debug code, and prints routine
names and sizes on the terminal.

Note that the BLISS-36 compiler looks for BLISS, while the BLISS-16
compiler looks for BLIS16.

To suppress debug code, type:
*ALPHA=ALPHA/NODEBUG

To suppress both statistics and debug code, type:
*ALPHA=ALPHA/NOSTATISTICS/NODEBUG

or
* ALPHA=ALPHA/NOOPTION

Specifying the /NOOPTION switch prevents the compiler from reading the
SWITCH.INI file.

Given the following command, the compiler ignores the first BLISS line
in the option file and reads only the second:

*, TTY:=ALPHA/OPTIONS:TERM

The compiler compiles ALPHA and sends the 1listing to the terminal.
The listing would contain no binary, commentary, or page headers.

CHAPTER 3

COMPILER OUTPUT

This chapter discusses compiler output, starting with terminal output,
followed by list file considerations, and finally error messages.

The input to a BLISS compilation is a BLISS program. As an example
consider the following module: It contains two OWN declarations and
three ROUTINE declarations. The routine IFACT computes the factorial
of its argument by an iterative method. The routine RFACT computes
the factorial of its argument by a recursive method. The routine
MAINPROG provides some test <calls on IFACT and RFACT. Factorial
routines are discussed in Chapter 12 of the BLISS Language Guide.

MODULE TESTFACT (MAIN = MAINPROG)
BEGIN

OWN
A,
By

ROUTINE IFACT (N) =

BEGIN

LOCAL
RESULT;

RESULT = 1;

INCR I FROM 2 TO .N DO
RESULT = .REULT*.I;

- RESULT

END;

ROUTINE RFACT (N) =
IF .N GTR 1
THEN
.N*RFACT (.N - 1)
ELSE
1;

ROUTINE MAINPROG :NOVALUE =
BEGIN
A = IFACT (5);
B = RFACT (5);
END;

END
ELUDOM

This module is used in the following sections to illustrate various
BLISS compilation output listings. Two coding errors (missing equal
sign after the module-head and misspelled data-name) are included to
illustrate the error-reporting facility of BLISS.

COMPILER OUTPUT

3.1 TERMINAL OUTPUT

The compiler produces three kinds of information on the terminal:
error messages, statistics, and a compilation summary. You can
request or suppress error messages and statistics by using a /ERRS or
/STATISTICS terminal-switch in the command line. (Refer to Section
1.) By default, error messages are reported during compilation, but
statistics are suppressed. A compilation summary is always produced
on the terminal when the compilation ends.

Error messages show the source program line associated with the error
followed by a description of the error. The statistics show the name
of each routine declaration in the module and the number of data words
associated with that declaration. The compilation summary gives the
number of warning and error messages, the number of words of code and
data used Dby the program, the run time and the elapsed time required
for the compilation, the number of lines and lexemes processed per CPU
minute, and the number of pages of memory required for the
compilation.

The last line of the terminal output indicates whether the compilation
produced an object file or a library file. 1If an object file is
produced, the last line is:

; Compilation Complete
If a library file is produced, the last line 1is:

; Library Precompilation Complete
Consider the terminal output for the sample module TESTFACT contained
in the file MYPROG.BLI. To obtain all three kinds of information, the

module is compiled by one of the following bliss-command-lines:

=>20
BLISS>MYPROG/STATISTICS

=>10
*MYPROG=MYPROG/STATISTICS

The /STATISTICS switch is used so that all three types of output are

sent to the terminal. The terminal output is as follows:
H 0002 O BEGIN
% WARN#048 1 L1:0002
Syntax error in module head
H 0014 2 RESULT = .REULT*.I;
% WARN#000 Ceecsenseseesaessssl L1:0014
Undeclared name: REULT
IFACT 9
RFACT 14
MAINPROG 9
.MAIN. 16
; Information: O
; Warnings: 2
; Errors: 0
; Size: 48 code + 2050 data words
; Run time: 00:00.6
; Elapsed time: 00:01.0
; Lines/CPU Min: 3356
; Lexemes/CPU~Min: 13426
; Memory used: 3 pages

Compilation Complete

COMPILER OUTPUT

This terminal output for compiling MYPROG includes two warnings, which
are described in the following sections. Statistics follow the
warnings and show the number of data words required for each routine.
The example module TESTFACT contains three routine declarations:
IFACT, RFACT, and MAINPROG. IFACT uses 9 words; RFACT uses 14 words;
MAINPROG uses 9 words. Each main program 1is called by a small
predefined routine (.MAIN.), which is called by the operating system;
it requires 16 words.

The compilation summary shows that the compilation of TESTFACT
required 0.6 second of processor time and 1.0 second of elapsed time
to compile; moreover, 3356 source lines comprising 13426 lexemes were
processed per CPU minute. The compilation required three pages of
memory, exclusive of the memory required for the compiler itself.

3.2 OUTPUT LISTING

The output listing produced as a result of a BLISS compilation can be
output on any suitable display device. It consists of source listings
(including any error messages), optional object listings (as specified
through command-line switches), and a compilation summary.

When the compiler completes the processing of a routine declaration,
it produces the source and object listing for that declaration and any
nonroutine declarations that preceded it. In this way, the output
listing is divided into a sequence of segments (see Figure 3-1).

SOURCE

SEGMENT 1
OBJECT

SOURCE

SEGMENT 2
OBJECT

SOURCE

OBJECT

SOURCE

SEGMENT n
OBJECT

CROSS-REFERENCE

OBJECT SUMMARY

COMPILATION STATISTICS

ZK-1368-83

Figure 3-1: Compiler Output Listing Sequence

You can suppress both the source and the object parts of a routine
segment, and change the format of the object part, by the inclusion of
switches in the module or in the command line. In the absence of any
explicit instruction, both source and object parts are produced. If
the object part of the program is produced, an object summary is
given. The object summary contains a high and low segment length
summary and, if the compilation included any LIBRARY declarations, a
summary of library usage. The compilation summary contains the same
information as given in the compilation summary at the terminal.

COMPILER OUTPUT

The complete output listing for the module TESTFACT occupies several
pages (refer to Appendix F). Only the first routine segment of that
module is used here. The routine segment for the routine IFACT
contains the module heading, the OWN declaration, and the routine
declarations for IFACT. The following sections discuss each part of
the output listing for that routine segment in detail.

3.2.1 Listing Header

Listing headers consist of two lines; each line consists of three
fields separated by at least one column. The first field contains
information in columns 1 through 15; the second extends from columns
17 through 63; the last extends from columns 65 through 132. The
contents of each field are left-justified within the field. The
listing header format appears in Figure 3-2.

The listing header format appears as follows:

PRINT
POSITION 1 15 17 63 65 132

NAME TITLE PROCESSOR IDENTIFICATION

IDENT SUBTITLE SOURCE IDENTIFICATION

ZK-1369-83

Figure 3-2: Listing Header Format

The name and ident fields contain the same information as that
contained in the object file module headers. Some processors must
generate the first page header before this information is available.
Thus, the first page of a module may be blank; subsequent pages must
include the information if it appears in the object module. If the
module name exceeds 15 characters, the title field begins 8 columns
further to the right.

The title and subtitle fields contain user-supplied information; they
identify the purpose of the module and routine. User title and
subtitle entries that are too long are right-truncated at column 63.
If the 1language processor makes no provision for you to supply this
information, the fields are ignored and the processor and source
identifications start in column 17. If the language processor allows
only one set of title information, the subtitle field is wused for
standard identification of the portion of the listing represented.
When you update the title or subtitle information in the first line of
the source page, the 1listing for that page includes the updated
information.

The processor identification field contains the date and time of
compilation (in the form dy-mon-year hh:mm:ss) and the full product

name of the language processor. This field includes the release
version number, with the edit number appended to it. The page listing
number appears as the last entry in this field. This number

increments by 1 for each listing page produced from a concatenated
source file, that is, in the listing file.

The source identification field contains the date and time of creation
or last modification of the source file being read at the start of
this page. It also contains the resultant file name of this source
file. It 1is a fully qualified name, including the actual version

COMPILER OUTPUT

number. If the name 1is too long, the leftmost field is
right-truncated. The source file page number appears last, in
parentheses, and 1s one greater than the number of page marks (form
feeds) read from the source.

3.2.2 Source Listing

The source part of the output listing reproduces the input to the
BLISS compilation with annotation supplied by the compiler. The
compiler annotation includes a 16~ or 24-character preface string that
precedes each line of input, and error message lines that follow each
line on which one or more errors are detected.

The basic difference in preface string length is due to the fact that
the 24-character preface contains the editor's line sequence numbers
while the l6-character string does not. The 16-character preface
string has the general form:

;byznnnnbnnbbbbb
The 24-character preface string has the general form:
; XXXxxbbyznnnnbnnbbbbbbb

Table 3-1 describes the components of each string. (An asterisk
denotes the components and columns of the 24-character string.)

For example, consider the following line from the BLISS input:
RESULT = 1;

If the above declaration is the fourteenth line in the compilation,
the output listing for that line appears as follows:

; 0014 2 RESULT = 1;

The line number 0014 is the line assigned by the BLISS compiler, and
the begin-end block depth number 2 indicates that the line of code
occurs in the second block-level. If the input 1line had an editor
line sequence number of 02300, the output listing for the line would
be:

;02300 0014 2 RESULT = 1;

If the input line comes from a REQUIRE file, the output listing
includes an R, as follows:

; ROO14 2 RESULT = 1;

If the input line is contained within a macro declaration, then the
output listing includes an M, as follows:

; M 0014 2 RESULT = 1;

The y item in preface string column 3 (9 for a 24-character preface)
is useful for detecting lexical errors. For example, if you forget to
terminate a macro declaration, all the following lines in the program
are then assumed to be part of that macro declaration, and the error
is not detected until the end of the program. However, you can find
the beginning of the unterminated macro by locating the point at which
the M code first appeared in the y field before the runaway.

COMPILER OUTPUT

Table 3-1: Format of Preface String in Source Listing

Item Column Meaning
; 1 The comment character; used to comment out the
source line so that the output listing can be
assembled by the PDP-10 MACRO assembler.
XXXXX¥ 2-6%* The line numbexr, 1if the file contains line
or or sequence numbers; otherwise, one blank column.
b 2
bb* 7-8% Blanks
Yy 9* A code that indicates the lexical processing
or level of the compiler. The codes that can
3 appear in this column are described below:
Code Meaning
C Embedded comment, that is, text within
2(...)%.
D Default lexeme stream for a keyword
macro formal.
L Parameter list of a lexical function.
M Body of a macro definition.
P Parameter list of a macro call.
U Source text which is discarded by an
unsatisfied lexical condition.
If more than one such code applies (for
example, an embedded comment nested within a
macro body), the "innermost" code is printed.
z 10* If the line comes from a file specified in a
or REQUIRE declaration, the code "R"; otherwise,
4 a blank.
nnnn 11-14* The BLISS line sequence number, beginning with
or 0001, is increased by 1 each time a source
5-8 line is read. This line number is referenced
by error messages and by the commentary field
of the object code 1listing. It is always
incremented for source lines read from REQUIRE
files, even though those 1lines may not be
listed.
b 15* Blank
or
9
nn l6-17% The begin-end block level number reflects the
or depth of the code within each block structure.
10-11
bbbbbbb* 18-24* Blanks
bbbbb 12-16 Blanks

COMPILER OUTPUT

An example of the source listing for the first segment of the module
TESTFACT, which uses the l6-character preface string, appears below.

; 0001 O MODULE TESTFACT (MAIN = MAINPROG)
H 0002 O BEGIN

; WARN#048 1 L1:0002

; Syntax error in module head

: 0003 1

H 0004 1 OWN

; 0005 1 A,

; 0006 1 B;

i 0007 1

; 0008 1 ROUTINE IFACT (N) =

; 0009 2 BEGIN

: 0010 2 LOCAL

H 0011 2 RESULT;

; 0012 2 RESULT = 1;

H 0013 2 INCR I FROM 2 TO .N DO

H 0014 2 RESULT = .REULT*.I;
; WARN#000 ceesessessseseesesl L1:0014
; Undeclared name: REULT

H 0015 2 .RESULT

00le 1 END;

.

Following the three heading lines, which have been omitted in this
example, the source of the module TESTFACT is reproduced. The
l6~-character preface string begins with a semicolon (:). Since the
input file that contains the module TESTFACT does not have sequence
numbers, column 2 of the source listing is blank. Columns 3 and 4 are
blank, because the lexical processing level is normal and the material
is not from a REQUIRE file. Line numbers generated by the compiler
begin in column 5. (See Figure 3-9 for a complete listing.)

Both error messages are reported as part of the source listing.
Section 3.4 contains a discussion of error messages in general and of
the meaning of these errors in particular.

3.2.3 Object Listing

The object part of the output 1listing has four possible parts:
assembler input, assembler output, binary, and commentary field. The
parts of the object listing that are produced depend on the choice of
listing switches specified in the command line. Each part of the
object listing has associated with it a code-value that allows it to
be either printed or suppressed.

However, although 16 different forms of 1listings are theoretically
possible, in practice only a few combinations of format-options are
meaningful.
The following combinations of the format options are reasonable:
SYMBOLIC BINARY UNAMES
ASSEMBLER COMMENTARY

NOSYMBOLIC NOBINARY NOUNAMES

COMPILER OUTPUT

The commentary field requires 1little space and provides useful
information about source line numbers, so that, currently, you have no
need for the NOCOMMENTARY switch. Also, there 1is 1little reason to
specify the NOASSEMBLER switch, since its only effect is to suppress

the macro END statement.

The question of whether to have the binary appear on the 1listing 1is
one of personal preference. However, it may be useful for debugging
purposes.

The compiler produces the following information for each field.

ASSEMBLER field Instructions in assembler form. For example:

MOVEI ACl6, 1

SYMBOLIC field Operands using symbolic source names. For
example:
I, 1
BINARY field Octal equivalent of instructions and data to
facilitate debugging. The octal instructions

appear as much as possible in the same format as
that produced by the MACRO assembler.

The following codes may be appended to octal
values 1in the binary field to provide information
about relocation of quantities:

Code Meaning

Blank Absolute quantity (no linker action)

\Y Forward relocatable

Relocated by POLISH expression

Relocated relative to PSECT

* Relocated relative to external symbol
COMMENTARY field A cross-reference to the source program line
generating the code. If a program line generates

more than one instruction line, commentary fields
in the 1lines following the instruction generated
first are left blank.

The partial printout of a default object listing appearing in Figure

3-3 illustrates the object part of the routine segment. The command
line

=>20

BLISS>TESTFACT/LIST

=>10

*TESTFA, TESTFA=TESTFA

generated the listing, in which the assembler field appears first,
followed by the symbolic field, the binary field, and the commentary
field. ©Note that the default switch settings in effect are ASSEMBLER,
SYMBOLIC, COMMENTARY, BINARY, and NOUNAMES.

0012

0013

0014

0013

0008

w >

ACO=
ACl=
AC2=
AC3=
AC4=
AC5=
AC6=
AC7=
AC10=
ACll=
ACl2=
AC13=
ACl4=
Fp=
ACle=
SP=

IFACT:

TITLE
TWOSEG

TESTFACT

-REQUEST SYS:B360TZ.REL

RELOC
BLOCK
BLOCK
EXTERN

17
RELOC
MOVEI

MOVEI

JRST
MOVE

IMUL
ADDI

CAMG
JRST
POPJ

; Routine Size:

< 7

1 ;

1 7

REULT

400000 ;

AC1,1 ; RESULT, 1
AC2,1 ; I,1

L.2 ;s L.2
AC1,REULT ; RESULT, REULT
AC1,AC2 ; RESULT, I
AC2,1 ; I,1
AC2,~-1(SP) ; I,N

L.1 ; L.l

sp, ; SP,

9 words

Figure 3-3: Default Object Listing Example

000000
000000"
000001

400000"
400000' 201

400001"' 201

400002"' 254
400003' 200

400004' 220
400005"' 271
400006' 317
400007' 254

400010' 263

0l

02

00
0l

o328
02

02

17

[eNoNe] [eNe]

00

00

00
00

00
00

17

00

000001
000001

400005"
000000*

000002
000001

7777717
400003"
000000

LNdLN0 JYITIAWOD

COMPILER OUTPUT

3.2.4 Source Part Options

The following sections contain more output 1listings to illustrate
different options for the source part of the list file. To illustrate
different forms, the sample program TESTFACT has to be made more
interesting, along the lines given in the following paragraphs.

Suppose the testing of the same program TESTFACT is complete, source
code errors contained in the preceding examples have been corrected,
and the data on the relative performance of the two factorial routines
obtained. The next step is to produce a new module TEST, which uses
the factorial routine to take combinations according to the following
formula for obtaining the number of combinations of m items taken n at
a time:

m m!
(Il) (m-n)! n!

where m! is the notation for the factorial of m.

I

First, enter the routine declarations for IFACT and RFACT into
separate REQUIRE files, named IFACT and RFACT, respectively. The
module TEST can then use either routine by including the appropriate
REQUIRE declaration.

Next, write a macro for obtaining the combinations, namely:

MACRO
COMBINATIONS (M,N) =
(IF (M) LSs (N)
THEN ERROR()
ELSE COMB(M,N)) %,

COMB(M,N) =
FACT (M) /(FACT((M)-(N))*FACT(N)) %;

Then, precompile the macro declaration into a LIBRARY file as follows
(include a LIBRARY declaration in the module TEST):

=>20
BLISS>COMBN/LIBRARY
=>10
*COMBN=COMBN/LIBRARY
Finally, include some test combinations.

The following sections illustrate the different output listings
obtained for that module by varying the command switches.

COMPILER OUTPUT

3.2.4.1 Default Source Listing - The command line

=>20
BLISS>TEST/LIST/NOCODE

=>10
*TEST, TEST=TEST/NOCODE

generated the output listing in Figure 3-4 for the module TEST. Note
that although the contents of the REQUIRE file are not printed, the
lines within the file are numbered by the compiler. The output
listing shows that lines 0011 through 0014 are used for this purpose.

3.2.4.2 Listing with LIBRARY/REQUIRE Information - The command line

=>20
BLISS>TEST/NOCODE/LIST/FORMAT : (LIBRARY, REQUIRE)

=>10
*TEST, TEST=TEST/NOCODE/LIST: (LIBRARY, REQUIRE)

generated the output listing in Figure 3-5, which contains information
from the LIBRARY and REQUIRE files. The LIBRARY file is identified
following line 0009 and the first use of a name from that library is
noted following line 0018. The contents of the REQUIRE file are given
in lines 0011 through 0014.

3.2.4.3 Listing with Macro Expansions -~ The command line

=>20
BLISS>TEST/NOCODE/LIST/FORMAT : EXPAND

=510
*TEST, TEST=TEST/NOCODE/LIST : EXPAND

generated the output 1listing in Figure 3-6 to illustrate macro
expansions, which follow lines 0018 and 0019. Note that expansions
are listed in the order in which they occur. The innermost expansion
is printed first, followed by the outer expansion, which includes the
expanded form of the inner macro. The last 1line of the macro
expansion, therefore, is the fully expanded form.

3.2.4.4 Listing with Macro Tracing - The command line

=>20

BLISS>TEST/NOCODE/LIST/FORMAT : TRACE

=>10

*TEST,TEST=TEST/NOCODE/LIST:TRACE
produced the output 1listing in Figure 3-7, which contains macro
tracing and macro expansions. The macro trace gives information about

parameter binding in addition to the expansion information.

ZT1-¢

Ne NS NE NE N NE ME NB NE NE MBS NS NE na me Ne Ne e N e e

MODULE TEST (MAIN = MAINPROG) =

0001 O
0002 1 BEGIN
0003 1
0004 1 OWN
0005 1 A,
0006 1 B;
0007 1 EXTERNAL ROUTINE
o008 1 ERROR;
0009 1 LIBRARY 'COMBN' ;
0010 1 REQUIRE 'RFACT' ;
0017 1
0018 1 ROUTINE MAINPROG =
0019 2 BEGIN
0020 3 A = COMBINATIONS (3, 2);:
0021 2 B = COMBINATIONS (6, 4);
0022 1 END;
0023 1
0024 1 END
0025 O ELUDOM
LIBRARY STATISTICS
———————— Symbols ——=———-—--
File Total Loaded Percent
2 2 100
Run Time: 00:00.3
Elapsed Time: 00:00.8
Lines/CPU Min: 5952
Lexemes/CPU-Min: 49523
Memory Used: 3 pages

Compilation Complete

Figure 3-4: Default Source Listing Example

Blocks
Read

4

Processing
Time

00:00.0

LNdLNO JATIdWOO

€1I-¢

Se S8 ~s me Ne sa o~ e S

T T T T T T S

~e

~e ~e

0001
0002
0003
0004
0005
0006
0007
0008
0009
Library file
0010
ROO11
RO0O12
ROO13
R0O0O14
ROO15
ROO16
0017
0018
0019
0020
Loaded symbol
Loaded symbol

e e N e

NN o b e

0021 2

0022 1

0023 1

0024 1

0025 0O
File

Run Time:

Elapsed Time:
Lines/CPU Min:

MODULE TEST (MAIN = MAINPROG) =
BEGIN

OWN
A,
B;
EXTERNAL ROUTINE
ERROR;
LIBRARY 'COMBN'
produced by TOPS-20 Bliss-36 3A(177) on 3-May-1983 16:10:24
REQUIRE 'RFACT' ;
ROUTINE FACT (N) =
IF .N GTR 1
THEN
.N*FACT (.N - 1)
ELSE
1;

ROUTINE MAINPROG =

BEGIN

A = COMBINATIONS (3, 2);
COMBINATIONS from library
COMB from library

B = COMBINATIONS (6, 4):

END;
END
ELUDOM
LIBRARY STATISTICS
———————— Symbols —-=——=—---- Blocks
Total Loaded Percent Read
2 2 100 4
00:00.3
00:01.3
4823

Lexemes/CPU-Min: 40128

Memory Used:

3 pages

Compilation Complete

Figure 3-5: Output Listing with Library and Require File Data

Processing
Time

00:00.0

LNdLNO JFTIdWOO

vi-¢€

L

Se me ne s N we wg we N

~o Mo Ne NE e ma Se e e

0001 0O
0002 1 BEGIN
0003 1
0004 1 OWN
0005 1 A,
0006 1 B;
0007 1 EXTERNAL ROUTINE
0008 1 ERROR;
0009 1 LIBRARY 'COMBN' :
0010 1 REQUIRE 'RFACT' ;
0017 1
0018 1 ROUTINE MAINPROG =
0019 2 BEGIN
0020 2 A = COMBINATIONS (3, 2);
fcoMB]= FACT () / (FACT (-) * FACT ())
[COMBINATIONS]= (IF LSS THEN ERROR () ELSE FACT () / (FACT (-) * FACT ()))
0021 2 B = COMBINATIONS (6, 4);

[COMB]= FACT () / (FACT (-) * FACT ())
[COMBINATIONS]= (IF LSS THEN ERROR () ELSE FACT () / (FACT (-) * FACT ()))
0022 1 END;
0023 1
0024 1 END
0025 O ELUDOM
LIBRARY STATISTICS
———————— Symbols -=—-——--- Blocks
File Total Loaded Percent Read
2 2 100 4
Run Time: 00:00.3
Elapsed Time: 00:01.2
Lines/CPU Min: 4983
Lexemes/CPU-Min: 41461
Memory Used: 3 pages

Compilation Complete

MODULE TEST (MAIN = MAINPROG) =

Figure 3-6: Output Listing with Macro Expansion Data

Processing
Time

00:00.0

LNdLN0 JdATIdWOD

e
Ne Se ome me se s se s S e

ST-¢€

i Mo ~e wE e me Ne we o me e Ne o mE o Ne o ne o Neose S8 oSe Ne N Se o Se me e e se e

0001 0 MODULE TEST (MAIN = MAINPROG) =
0002 1 BEGIN

0003 1

0004 1 OWN

0005 1 A,

0006 1 B:

0007 1 EXTERNAL ROUTINE

0008 1 ERROR;

0009 1 LIBRARY 'COMBN' ;

0010 1 REQUIRE 'RFACT' :

0017 1

0018 1 ROUTINE MAINPROG =

0019 2 BEGIN

0020 2 A = COMBINATIONS (3, 2):

[COMBINATIONS]: Parameter binding
[COMBINATIONS](1l)= 3
[COMBINATIONS](2)= 2
[COMBINATIONS]: Expansion

[COMB]: Parameter binding

fcoMB](1)= 3

[coMB](2)= 2

[COMB]: Expansion

[coMBl= FACT () / (FACT (-) * FACT ())
[COMBINATIONS]= (IF LSS THEN ERROR () ELSE FPACT () / (FACT (-) * FACT ()))

0021 2 B = COMBINATIONS (6, 4);

[COMBINATIONS]: Parameter binding
[COMBINATIONS](1)= 6
[COMBINATIONS](2)= 4
[COMBINATIONS]: Expansion

[COMB]: Parameter binding

[coMBI(1l)= 6

[cCOMB](2)= 4

[COMB]: Expansion

[COMB]= FACT () / (FACT (-) * FACT ())
[COMBINATIONS]= (IF LSS THEN ERROR () ELSE FACT ()} / (FACT (-) * FACT ()))
0022 1 END;
0023 1
0024 1 END
0025 O ELUDOM
LIBRARY STATISTICS
———————— Symbols ==———==—- Blocks Processing
File Total Loaded Percent Read Time
2 2 100 4 00:00.0
Run Time: 00:00.3
Elapsed Time: 00:01.2
Lines/CPU Min: 4687
Lexemes/CPU~Min: 39000
Memory Used: 3 pages

Compilation Complete

Figure 3-7: Output Listing with Macro Expansion and Tracing Data

LNdLNO JYIATIAWOO

COMPILER OUTPUT

3.3 CROSS—-REFERENCE LISTING

The cross-reference listing is an optional part of the output 1listing
that is produced by the compiler on request. Cross-reference data are
generated on a module Dbasis; therefore, the reference information
associated with a given module appears as the last module-specific
item in the listing file, before the compilation summary and before
any subseguent module data.

3.3.1 Cross—-Reference Header

The cross-reference header is separated from the output listing header
by a Dblank 1line and subsequently appears on the first two lines of

each page of the reference listing. The cross-reference header is as
follows:
Symbol Type Defined Referenced ...

3.3.2 Cross-Reference Entries

The reference entries listed under each header name are fixed~length
fields that are separated by a single space.

Symbol Field

The Symbol field is used to list the names of the different symbols.
The length of the field is fixed at the length of the longest name in
the module. A name appears just once in the symbol field, defining
its 1initial recognition by the compiler as a declared symbol. If
multiple symbols are declared with the same name, lines directly
following the first appearance of the name are used; however, for each
subsequent recognition the symbol field is left blank. For example:

ALPHA . .

GAMMA . .

Type Field

The Type field describes the condition (such as LOCAL, BIND, or
BUILTIN) under which the symbol-name was used when it was declared.
The field is eight characters long; therefore, symbol-type
abbreviations are wused. The symbol-type abbreviations are listed in
Table 3-2.

The NotDecl abbreviation indicates the use of a symbol that has not
been declared. Thus, the appearance of NotDecl in the type field
indicates an error.

The Enable, Forward, ForwRout, or Map abbreviation refers to symbols
that are declared elsewhere as routine or data-segment names. Thus,
the appearance of any of these abbreviations in the type field usually
indicates an error.

The Unbound abbreviation indicates that the compiler made no attempt
to find a declaration for the symbol name because the name is not
bound to a symbol. For example, a symbol in a macro actual-list, or
in the false Dbranch of a %IF compile-time conditional-function, is
declared as Unbound.

COMPILER OUTPUT

Table 3-2: Symbol Type Abbreviations

Meaning Abbreviation
Bind Bind
Bind Routine BindRout
Builtin Builtin
Compiletime Comptime
Enable Enable
External External
External Literal ExtLit
External Register ExtReg
External Routine ExtRout
Field Field
Fieldset Fieldset
Forward Forward
Forward Routine ForwRout
Global Global
Global Bind GlobBind
Global Bind Routine GlBiRout
Global Literal GlobLit
Global Register GlobReg
Global Routine GlobRout
Keyword Macro KeyWMacr
Keyword Macro Formal KeyWForm
Label Label
Linkage Linkage
Literal Literal
Local Local
Macro Macro
Map Map
Macro Formal MacrForm
Symbol without a declaration NotDecl
own Own
Psect Psect
Register Register
Routine Routine
Routine Formal RoutForm
Structure Structur
Stacklocal Stackloc
Structure Formal StruForm
Name which is not bound Unbound
Undeclare Undeclar

As an example of the use of the symbol name and type

the following code segment:

00050
00051
00052
00053

00080
00081
00082
00083
00084

00095

BEGIN

LOCAL
ALPHA,
GAMMA ;

END;

BEGIN
LOCAL
ALPHA;

END;

fields

consider

COMPILER OUTPUT

The appearance of the symbols in the cross-~referencing 1listing would
be as follows:

ALPHA Local 52 . . .
Local 84 . . .
GAMMA Local 53 . . .

Defined Field

The Defined field identifies the compiler listing line number of the
declaration, or the library (Lib) file number, and has a fixed length
of five characters. Exceptions occur with the NotDecl and Unbound
symbol types. Since the symbol name in these cases cannot be
associated with a declaration, no line number can appear and the field
is Dblank. The following example depicts the appearance of line
numbers, and a library file number, in the defined field.

A Oown 5 20=
B own 6 20=
COMB Macro Lib01 20

Note that a cross-reference map appears at the bottom of the 1listing
which locates and identifies each compiled file (source, require, or
library) by its intial line number and its file-specification.

Referenced Field

The Referenced field lists additional references and uses of the

symbol. Each entry consists of a 5-character line number (or a
library file number) and a 2-character usage field. If the references
require more than one line, the additional entries appear on

subsequent lines.

The 2-character usage-fields describe the way in which the symbols are
used. A usage-field may consist of none, one, or two of the following
characters.

Flag Meaning

Declaration-Usage

e EXTERNAL, EXTERNAL ROUTINE, or EXTERNAL LITERAL
declaration

£ FORWARD declaration

m MAP declaration

h Condition handler enabling

u UNDECLARE declaration

Data-Usage

Fetch
= Store
c Routine call
a Address use
@ Indirect use

COMPILER OUTPUT

A blank usage field indicates that usage is implied by the type of
symbol -- for example, a macro name used within a macro expansion, or
a structure name used as a structure-attribute in a declaration.

An (e), (£f), (m), (h), or (u) flag appearing in the wusage field
indicates a reference to the symbol name within an EXTERNAL, FORWARD,
MAP, ENABLE, or UNDECLARE type declaration.

The fetch flag (.) indicates that a data segment has been "fetched
from" a location defined by the symbol name, while the store flag (=)
indicates that a value has been "stored into" a location defined by
the symbol name.

The address-use flag (a) indicates that the address of a data segment,
defined by the symbol name, has been stored into another data segment.
For example, A = B indicates that the address of the data segment
defined by B 1is stored in data segment A. Thus, symbol B would be
flagged (a) for its use as an address, and symbol A would be flagged
(=) for its use as storage.

The indirect-use flag (@) never appears alone. This flag 1is always
combined with the remaining data-usage flags to indicate that a data
segment has been used indirectly, such as fetched from (@.) or stored
into (@=); however, note that all multiple levels of indirection are
flagged the same as a single level of indirection.

The following list provides samples of the two-character data-usage
codes. The examples reflect direct and indirect data uses of symbol B
as a BLOCK structure and then as a REF BLOCK structure.

Code B:BLOCK[n] B:REF BLOCK[n]
A = .B . .
A= ..B e. @.
A= ...B @ Q.
A = B[C] a Qa
A = .B[C] . @.
B = .A = =
(.B) = .A @= e=
B[C] =.A = @=
B() = A c c
(.B)() = A @c @c

Thus, in relation to direct and indirect addressing, the utility
recognizes ordinary structures and FIELD references. For example,
consider the following code segment where explicit FIELD references
are made to data segments:

00030 FIELD

00031 My fields =

00032 SET

00033 This fiela = [0,0,8,01],
00034 That_field = [0,1,8,0]
00035 TES:;

COMPILER OUTPUT

00036 OWN

00037 B : REF BLOCK[] FIELD (My fields);
00038

00039 B[This_field] = .B[That_ field] + 1;

The cross-reference listings for B are:

B Oown 37 39@= 39@.
THAT_FIELD Field 34 39.
THIS_FIELD Field 33 39=

Note that since B is declared as a REF structure, the structure
references to B are indirect references.

The next code example reflects an indirect address usage of B:

00030 FIELD
00031 My fields =
00032 SET
00033 This field = [0,0,8,0]
00034 That field = [0,1,8,0]
00035 TES;
00036 OWN
00037 B : REF BLOCK[] FIELD (My_fields);
00038
00108 C = B[That_field]

The listing for B is now:
B own 37 108@a
THAT FIELD Field 33 108a

In this example, B points to a BLOCK in memory. Through B, an address
within the BLOCK is indirectly stored in C; thus, an indirect address
is flagged for B.

3.3.3 Output Listing with Cross-Reference Listing

The listing in Figure 3-8 includes a cross-reference listing that was
produced by compiling module TEST with the following options:

=>20
BLISS>TEST/FORMAT :REQUIRE/LIST/CROSS-REFERENCE

=>10
*TEST, TEST=TEST/LIST: (REQUIRE)/CREF

Note that the listing includes cross-referenced information for the

LIBRARY and REQUIRE files. The reference 1list is followed by a
cross-reference map, which specifies the first and last lines of the
files, and a flags legend, which describes the codes used in the

Referenced field.

COMPILER OUTPUT

. (header)
: 0001 O MODULE TEST (MAIN = MAINPROG) =
H 0002 1 BEGIN
H 0003 1
H 0004 1 OWN
; 0005 1 A,
; 0006 1 B;
H 0007 1 EXTERNAL ROUTINE
: 0008 1 ERROR;
: 0009 1 LIBRARY 'COMBN' ;
; 0010 1 REQUIRE 'RFACT' ;
; ROO11 1 ROUTINE FACT (N) =
; ROO12 1 IF .N GTR 1
; ROO13 1 THEN
H RO014 1 .N*FACT (.N - 1)
; RO015 1 ELSE
; ROOle 1 1;
; 0017 1
; 0018 1 ROUTINE MAINPROG : NOVALUE =
; 0019 2 BEGIN
; 0020 2 A = COMBINATIONS (3, 2):
: 0021 2 B = COMBINATIONS (6, 4);
: 0022 1 END;
H 0023 1
; 0024 1 END
H 0025 O ELUDOM
Symbol Type Defined Referenced ...
A own 5 20
B Oown 6 21
COMB Macro Lib01 20 21
COMBINATIONS Macro Lib0O1l 20 21
ERROR ExtRout 8 20 21
FACT Routine 11 14 20 21
MAINPROG Routine 18
N RoutForm 11 12 14
CROSS REFERENCE MAP
Line # Event File ...

1 Source (start) PS:<DIRECTORY>TEST.B36.3
1 Module TEST
9 Library #1
11 Require (start) PS:<DIRECTORY>RFACT.R36.3
16 Require (end)
25 Eludom TEST
KEY TO REFERENCE TYPE FLAGS
Fetch
Store
Routine call
Address use
Indirect use
Forward or forward routine declaration
Map declaration
Condition handler enabling

o0l -

o8

Figure 3-8: Output Listing with Cross-Reference Listing Included

COMPILER OUTPUT

3.4 COMPILATION SUMMARY

The compilation summary appears at the end of every compilation
listing and consists of the following information:

® The routine size and psect-relative starting address
(following each routine)

® A program section summary (at the end of the module)

@ If a cross-reference listing is added, a cross-reference map
of the files used and the line number where each file is first
referenced

@ If a cross-reference listing is added, a key to the meaning of
the usage-field characters

® Library usage statistics indicating the libraries used and the
number of names loaded from each library (omitted if no
libraries are used)

® The number of memory pages mapped and the processing time
® The command line used to compile the module

® Number of warnings and errors (omitted 1if no warnings or
errors exist)

® Summary of statistics for the module, consisting of: size of
code and data (in bytes), run time, elapsed time, number of
lines and lexemes processed per CPU minute, memory used, and a
statement that the compilation is complete

3.5 ERROR MESSAGES

The BLISS compiler detects two types of errors: fatal and warning. A
fatal error is one that the compiler cannot handle without potentially
skipping some source. A warning error is one for which the compiler
has an effective recovery technique that permits it to generate an
executable object module. Both the warning and the fatal errors
messages are listed separately in Appendix E. The warnings are listed
by number, and each warning includes an explanation of the error and a
recommended user action.

If a fatal error is detected, the compiler continues to check syntax
of the remainder of the program; any subsequent errors can be
detected, but neither an object module nor the object part of the
output listing is produced following the detection of the fatal error.

A warning error message begins with the identification WARN. For
example, the routine declaration for IFACT includes a coding mistake,
as follows:

RESULT = .REULT*.I;

The BLISS compiler detects this error and reports the warning message
shown in the following segment from the output listing:

; 0014 2 RESULT = .REULT*.I;
; WARN#000 C e r e e 1 L1:0014
; Undeclared name: REULT

COMPILER OUTPUT

The message 1is not fatal because the compiler can declare the
undeclared name REULT as EXTERNAL and continue processing without
omitting the compilation of any source.
Consider a different kind of coding error, as follows:

ROUTINE RFACT (N =

The BLISS compiler detects this error and reports the messages given
in the following segment from the output listing:

H 0013 2 INCR I FROM 2 TO .NDO
; WARN#000 D | L1:0013
; Undeclared name: NDO .
0014 2 RESULT = .REULT*.I;
WARN#066 1 L1:0014

Two consecutive operands with no intervening operator.
A DO has been inserted

WARN#000 seeeesesesesesessl L1:0014
Undeclared name: REULT

0015 2 .RESULT

0016 1 end;

0017 1

0018 1 ROUTINE RFACT (N =

ERR #071 20000430000 es0..1 L1:0018 L2:0018 L3:0016
Missing comma or closing bracket in formal parameter list for RFACT
The incorrect delimiter was "="

Ne Ne NE Ne N6 Ne Ne Se S Se Se we e

Omitting the blank between the name N and the keyword DO caused
another warning error, while omitting the close parenthesis (that is,
(N =) caused one fatal error. With the absence of a blank separator,
the compiler sees NDO and RESULT as two consecutive operands with no
intervening operator and inserts a DO. However, when the compiler
fails to find the close parenthesis, it cannot make syntactic sense of
the lines; therefore, it reports a fatal error message and suppresses
the production of an object file.

Note that although the compiler continues to check the syntax of the
remainder of the module, some text may remain unscanned. Also, the
scan sometimes causes genuine errors to be missed or spurious errors
to be reported. A module cannot be assumed to be fully checked by the
compiler until all error messages are eliminated.

The BLISS compiler supplies a great deal of information in its error

messages. Each error message occupies two lines. The first line
classifies and pinpoints the error, and the second line gives a short
description of the error. For example, consider the following error

message from the above example:

: 0013 2 INCR I FROM 2 TO .NDO
; WARN#000 s s ecrasseeserssssessl L1:0013
; Undeclared name: NDO

The first line classifies the error as a nonfatal by the string WARN
and gives the error number 000, followed by a pointer to the place in
the input line at which the error was detected, and a line indicator.
The second line describes the error.

The first line of an error message lines up with the input column at
which the compiler detected the error. Under the preface for the
input line, the error message has a preface part that gives the type
of error (warning or fatal) and the error number (refer to Appendix
E). Under the text part of the input line, the error message can have

COMPILER OUTPUT

up to three pointers and three 1line indicators. The pointers are
numbered from 1 to 3 and the meaning associated with each of the
pointers is given in the following list:

Pointer Meaning

1 Indicates the point in the input text at which the
error was detected

2 Indicates the beginning of the current control scope

3 Indicates the end of the last control scope that was
successfully closed prior to the detection of the
error

The line indicators are closely related to the pointers in meaning,
but whereas the pointers indicate a position within a line, the line
indicators indicate a line within the program, as follows:

Line Indicator Meaning

Ll:nnnn Indicates the line nnnn in the input at which the
error was detected

L2:nnnn Indicates the line nnnn at which the current control
scope begins

L3:nnnn Indicates the line nnnn at which the 1last control
scope was successfully closed

Line indicators are usually not too informative when the error is
confined within a program line, as in the examples given above, but
they are very useful for errors that span several lines. For example,
consider the full source listing for the module TESTFACT given in
Figure 3-9. This version of TESTFACT includes the <coding error
illustrated in the above examples. The error message at the end of
the program identifies with line indicators the point at which the
error was detected (line 0032), the line at which the control scope
began (line 0013), and the line at which the control scope was closed
(line 0032).

With the information provided by the line indicators for error message
#012, the source of the error is identified as the typing error in
line 0013.

(he

0001
0002
WARN#048
Syntax e
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
WARN#000
Undeclar
0014
WARN#066
Two cons
WARN#000
Undeclar
0015
0016
0017
0018
ERR #071
Missing
The inco
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
Informat
Warnings
Errors:

COMPILER OUTPUT

ader)

0 MODULE TESTFACT (MAIN = MAINPROG)

0 BEGIN
1 L1:0002

rror in module head

1

1 OWN

1 A,

1 B;

1

1 ROUTINE IFACT (N) =

2 BEGIN

2 LOCAL

2 RESULT ;

2 RESULT = 1;

2 INCR I FROM 2 TO .NDO
......... tereesesssssl L1:0013

ed name: NDO

2 RESULT = .REULT*.I;
........ 1 L1:0014

ecutive .operands with no intervening operator. A "DO" has been inserted
DO 1 L1:0014

ed name: REULT

2 .RESULT

1 END;

1

1 ROUTINE RFACT (N =

200 300 «e+.1 L1:0018 1L2:0018 L3:0016
comma or closing bracket in formal parameter list for RFACT
rrect delimiter was "="

1 IF .N GTR 1
1 THEN
1 .N * RFACT(.N - 1)
1 ELSE
1 1;
1
1 ROUTINE MAINPROG :NOVALUE =
2 BEGIN
2 A = IFACT(5);
2 B = RFACT(5);
1 END;
1
1 END
0 ELUDOM
ion: O
B 4
1

Figure 3-9: Error Messages in Source Listing Example

CHAPTER 4

LINKING, EXECUTING, AND DEBUGGING

This chapter describes the process of 1linking, executing, and
debugging a BLISS program.

4.1 LINKING

Before you can execute your program, you must link the various pieces
of it together to form an executable image. The linking process makes
the connection between external variables and names referenced in one
module and global variables defined in another module.

To invoke LINK, use the following command:

=>20 @LINK

=>10 .R LINK
LINK builds an executable image of your program. The /GO switch
causes LINK to terminate. To create a file from the image, issue the

SAVE or NSAVE command as follows:

=>20 @SAVE ALPHA
=510 .NSAVE ALPHA
In both cases a single 1image file (ALPHA.EXE) 1is saved. (Other

versions of SAVE are available on TOPS-10. Consult the DECsystem-10
Operating System Commands Manual for details.)

The following command causes ALPHA to be executed:

=>20 @RUN ALPHA
=>10 .RUN ALPHA

Some examples of linking are:

e To link a single module, use the following commands:

*AT,PHA
*/GO

In response to this command, the 1linker reads the object
module in ALPHA.REL and creates the executable image.

® To link the modules ALPHA, BETA, and GAMMA, use the following
commands

*ALPHA
*BETA
*GAMMA
*/GO

LINKING, EXECUTING, AND DEBUGGING

In response to this command, the linker combines the object
module 1in the file ALPHA.REL with the object module in the
file BETA.REL and the object module in the file GAMMA.REL to
produce a single executable image.

Linking a program compiled for extended addressing requires special
coding considerations and link commands. Due to linker restrictions,
the compiler generates PSECTED code for all programs using the
extended addressing option (/EXTENDED). Such programs are then linked
into a specified nonzero section; however, if the compiled program
uses /EXTENDED:SECTION-INDEPENDENT code, which allows loading into any
section, section zero must be specified at link time (refer to Section
6.4 for examples).

The default PSECTS generated are: SOWNS, $SGLOBALS$, SPLITS, and
SCODES$, the origins of which are set at link time.

The following example shows how a program using the extended
addressing option is linked and loaded into section one.

@LINK

* ALPHA/SAV =

* /SET: SOWNS$:1200000

* /SET: $GLOBALS$: 1300000

* /SET: SPLITS$:1400000

* /SET: $SCODE$: 1500000

* /SYMSEG: PSECT : SOWNS/PVBLOCK: PSECT : SCODE$
* ALPHA

* /GO

Note that when an extended addressing program is loaded, the placement
of the program's data vector (PVBLOCK) and symbol table (SYMSEG) must
be specified.

The link operation is described 'in detail in the LINK-10 Programmer's
Reference Manual and the DECSYSTEM-20 LINK Reference Manual.

4.1.1 Syntax

The following syntax for linking a BLISS program works under both
TOPS-10 and TOPS-20, and 1is sufficient for a simple BLISS program.
The full description of LINK commands can be found in the appropriate
link manual.

link-command { test—line} object-line ... exit-line
nothing

test-line /TEST

object-line object-spec

exit-line /GO

A carriage return is used to terminate each test-line, object-line,
and exit-line.

4.1.2 Defaults

If a file type is not included in the object-spec, the file type .REL
is assumed.

LINKING, EXECUTING, AND DEBUGGING

4.1.3 Semantics

LINK reads the object modules contained in each object file named 1in
the 1link command to create a linked, executable image. The name of
the executable image is specified in the SAVE command (see Section
4.1).

There are a number of minor differences between LINK under TOPS-10 and

TOPS-20. Under TOPS-10, /TEST causes DDT to be loaded at the end of
the program's low segment, while under TOPS-20, DDT gets ‘"mapped" at
page 770. Under TOPS-10, a run-time symbol table is omitted by

default, unless /TEST is specified, while under TOPS-20, symbols are
included for all nonoverlayed images, unless /NOLOCAL is specified.

The /MAXCOR and /SAVE switches are TOPS-10 specific.

Under TOPS-20, when accessing files from a directory other than that
currently connected to, either use a programmer-project number or
define a logical name for the new directory. The TRANSLATE and DEFINE
commands can be used for this purpose.

NOTE
For additional information related to linking BLISS-36

modules with modules written in assembly language or
BLISS-10, refer to Appendices G and H.

4.2 EXECUTING

To run your program, use the executable image produced as a result of
the link operation, in a RUN command, as shown above.

Your program, ALPHA, then executes. Any input or output in your
program takes place. If your program 1is correct, it runs to
completion and returns to the command processor. The command

processor then prompts for another command.

4.3 DEBUGGING

If your program has problems or if you want to examine some data
within your program, you can use the SIX12 debugger. Using the switch
/DEBUG in the compilation operation tells LINK to load SIX12 and to
pass the symbol +tables from the REL files to the image file. The
executable image formed as a result contains SIX12, and when the image
is executed, control first goes to SIX12 instead of your program. You
can then examine and deposit values in storage, set breakpoints, call
routines, or do any of a number of other debug or test operations.
The SIX12 debugger is described basically in SIX12.HLP (a help file
distributed with the compiler), while a more comprehensive description
can be found in the SIX12.DOC file, distributed with the compiler.

4.3.1 Debug Example

As an example of using the debug facility, consider the testing of the
program MYPROG. Errors detected in MYPROG in Section 3 are corrected,
and then MYPROG is compiled, linked with SIX12, and run.

LINKING, EXECUTING, AND DEBUGGING

Assume that MYPROG has been successfully compiled with the /DEBUG
switch.

@LINK

* /TEST

* MYPROG

* /GO

EXIT

@SAVE MYPROG

MYPROG SAVED

@RUN MYPROG

SIX12 v8-4 (TOPS-20 1/0) FOR BLISS-36

& IFACT(5)
170 = = .STACK + 26
&RFACT(5)
170 = = .STACK + 26
&GO
@
In the above example, the first step is to invoke LINK, which prompts
with the asterisk (*). Next, the /TEST switch is specified to
indicate that a debugging version of a program is to be built. Then
follows a sequence of object files that are to be included in the
build. 1In this case there is only one: MYPROG. The final command

given to LINK is /GO, which causes LINK to terminate and leave the
image file in memory. The user saves MYPROG with the SAVE command and
executes it with the RUN command.

In this case, SIX12 gets control when MYPROG is run, and informs you
as to which version of SIX12 this is, and whether TOPS-10 or TOPS-20
I/0 is being used. SIX12 prompts with an ampersand (&). The user has
requested that SIX12 call routine IFACT and routine RFACT with actual
parameter 5 in each case. In each case, the resultant value is 120
(170 octal).

The default radix that SIX12 uses is octal. To specify a decimal
integer to SIX12, precede it by a hash mark (#).

4.3.2 Other SIX12 Commands
Some commonly used SIX12 commands are now described. The basic syntax
of SIX12 1is similar to BLISS. Therefore, to examine GLOBAL or OWN
data (for example, A) type:

& .A
To examine the current stack of routine invocations, type:

&CALLS
To change the value of an OWN or GLOBAL variable A, type:

&A=new-value

To set a breakpoint on entry to a routine, type:

& BREAK routine-name

LINKING, EXECUTING, AND DEBUGGING

To set a breakpoint on routine exit, type:

&ABREAK routine-name

The commands DBREAK and DABREAK clear the above two breakpoints,

respectively.

To begin execution, type:
&GO

As the above example indicates, to call a routine, type:
&routine-name(actual-parameter-list)

To invoke DDT, type:
&DDT

To return from DDT to SIX12, type the following to DDT:
&SIXRETSX (where $ is altmode or escape)

To examine the n'th actual parameter of the current routine
stopped at its entry or exit, type:

&ngA

SIX12 prints out the values of the actual parameters when the
command is given or when a breakpoint has been reached.

when

CALLS

CHAPTER 5

MACHINE-SPECIFIC FUNCTIONS

Machine-specific functions allow you to perform specialized operations
within the BLISS language. A machine-specific function call is
similar to a BLISS routine call. It requires parameters and returns a
value.

The compilation of a machine-specific function results in the
generation of some inline code, often a single instruction, rather
than a call to an external routine. The one exception to this is the
Convert Double to Floating (CVTDF) function.

The compiler attempts to optimize the code it produces for a
machine-specific function call Dby choosing the most efficient
instruction seguence. In some cases, optimization procedures generate
a different machine instruction from the one specified in the call.

Machine-specific functions in BLISS-36 are divided into four
categories, as 1illustrated in Table 5-1. A separate description of
each function appears below. For a more detailed discussion, consult

the DECsystem-10/DECSYSTEM-20 Hardware Reference Manual.

5.1 GENERAL CONVENTIONS

The definitions of these functions require addresses, values, or
register names as parameters, even though register names do not have
values in BLISS-36.

All expressions can be run-time computable expressions, unless
specified otherwise in the descriptions that follow.

In each description, the calling sequence is given first, followed by

a description of the parameters. The actual semantics of the function
are specified under "Return Value."

5.1.1 Machine Code Insertion Functions

Machine code insertion functions provide a means to specify a

particular -10/-20 instruction to be executed. These functions are
intended for highly specialized applications which cannot be otherwise
directly specified in the language. The user of these functions is

cautioned that no extensive analysis of the instruction 1is performed
by the compiler; it is possible for the user to specify an instruction
that interferes with compiler-~generated instructions and results in an

incorrect program. Therefore, avoid the use of these functions to
perform an operation that can be expressed more directly 1in the
language. In particular, user manipulation of the stack pointer is

very risky and r