
BLISS-36
User's Guide

Order No. AA-H712D-TK

February 1984

This document describes the BLlSS-36 compiler and its use, gives basic
information about linking, executing, and debugging BLlSS-36 programs,
and describes BLlSS-36 machine-specific functions, BLISS tools, and other
topics relevant to BLlSS-36 programming.

SUPERSESSION/UPDATE INFORMATION: BLlSS-36 V4(216)

OPERATING SYSTEMS AND VERSIONS: TOPS-10 V7.01A
TOPS-20 V5.1 (KL)
TOPS-20 V4.1 (KS)

SOFTWARE VERSION: BLlSS-36 V4(216) implementing
BLISS language V4.0

digital equipment corporation · maynard, massachusetts

First Printing, June 1979
Revised, September 1980

Revised, February 1982
Revised, February 1984

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Cor~oration assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright 1979,1980, 1982, 1984 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC OIBOL
EduSystern
lAS

DEC/CMS
DEC/MMS
DECnet
DECsystem-lO
OECSYSTEM-20
OECUS
DECwriter

MASSBUS
MICRO/PDP-II
Micro/RSX
PDP

RSTS
RSX
UNIBUS
VAX
VMS
VT

PDT

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710

In New Hampshire, Alaska, and Hawaii call 603-884-6660

In Canada call 613-234-7726 (Ottawa-Hull)
800-267-6146 (all other Canadian)

DIRECT MAIL ORDERS (USA & PUERTO RICO)*

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

* Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

DIRECT MAIL ORDERS (CANADA)

Digital Equipment of Canada Ltd.
940 Belfast Road
Ottawa, Ontario K1G 4C2
Attn: A&SG Business Manager

DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation
A&SG Business Manager
c/o Digital's local subsidiary or
approved distributor

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Northboro, Massachusetts 01532

ZK2260

CONTENTS

Page

PREFACE v

SUMMARY OF TECHNICAL CHANGES xv

CHAPTER 1

1.1
1.1.1
1.1.2
1.2
1.3
1.3.1
1.3.1.1
1.3.1.2
1.3.1.3
1.3.2
1.3.2.1
1.3.2.2
1.3.2.3
1.3.3
1.3.3.1
1.3.3.2
1.3.3.3
1.3.4
1.3.4.1
1.3.4.2
1.3.4.3
1.3.5
1.3.5.1
1.3.5.2
1.3.5.3
1.3.6
1.3.6.1
1.3.6.2
1.3.6.3
1.3.7
1.3.7.1
1.3.7.2
1.3.7.3
1.3.8
1.3.8.1
1.3.8.2
1.3.8.3
1.3.9
1.3.10
1.3.11
1.3.12
1.4
1.4.1
1.4.2

CHAPTER 2

2.1
2.1.1
2.1.2
2.2
2.2.1
2.2.2

TOPS-20 OPERATING PROCEDURES

COMPILING A BLISS PROGRAM ... 1-1
· 1-3 Command-Line Syntax

Command-Line Semantics . · 1-3
FILE SPECIFICATIONS
COMMAND-LINE SWITCHES

Output Switches
Syntax
Defaults
Semantics

General Switches .

1-4
· 1-5

1-6
· 1-7

· 1-7
.. 1-7

· 1-8
Syntax 1-9
Defaults
Semantics

Check Switch .
Syntax ..
Defaul ts . . .
Semantics

Terminal Switches
Syntax
Defaults .
Semantics

Optimization Switches
Syntax
Defaults
Semantics

Listing Switches .
Syntax
Defaults
Semantics

Reference Switches .
Syntax
Defaults
Semantics

Environment Switches .
Syntax

1-9
. 1-9

· . . . 1-10
· . . . 1-10

1-10
1-10

· 1-11
1-11
1-11
1-11
1-12

· 1-12
1-12
1-13
1-14
1-14

. 1-15
1-15

· . . . 1-17
1-18
1-18
1-18
1-18

· 1-19
Defaults · 1-19
Semantics

Placement of Switches
Switches and Default Module Switch Settings
positive and Negative Forms of Switches
Abbreviations of Switch and Value Names

SPECIAL FEATURES

1-19
1-20
1-20
1-22
1-22
1-22

Indirect Files
EXEC Command . . .

· 1-22

TOPS-I0 OPERATING PROCEDURES

COMPILING A BLISS PROGRAM
Command-Line Syntax
Command-Line Semantics .

FILE SPECIFICATIONS
Syntax
Semantics . w • •

iii

1-23

· 2-1
· 2-3

· 2-3
· 2-3

· 2-4
· 2-4

2.2.3
2.3
2.4
2.4.1
2.4.1.1
2.4.1.2
2.4.2
2.4.2.1
2.4.2.2
2.4.2.3
2.4.3
2.4.3.1
2.4.3.2
2.4.3.3
2.4.4
2.4.4.1
2.4.4.2
2.4.4.3
2.4.5
2.4.5.1
2.4.5.2
2.4.5.3
2.4.6
2.4.6.1
2.4.6.2
2.4.6.3
2.4.7
2.4.7.1
2.4.7.2
2.4.7.3
2.4.8
2.4.8.1
2.4.8.2
2.4.8.3
2.4.9
2.4.10
2.4.11
2.4.12
2.5
2.5.1
2.5.2

CHAPTER 3

3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.4.1
3.2.4.2
3.2.4.3
3.2.4.4
3.3
3.3.1
3.3.2
3.3.3
3.4
3.5

CHAPTER 4

4.1

CONTENTS

· 2-4
2-5

Default Extension
OUTPUT SPECIFICATIONS
COMMAND-LINE SWITCHES

Library Switches .
. . . • • . . 2-6

Syntax
Defaults . • . .

General SWitches .

· 2-6
· 2-7

· 2-7
. . . 2-7

· 2-8 Syntax ..
Defau1 ts . .
Semantics

.............. 2-8

Check SWi tch .
Syntax ...
Defaults . .

· 2-8
· 2-8

.. 2-9

.• 2-9
· 2-9
· 2-9

· . . . 2-10

Semantics
Terminal SWitches

Syntax ...
Defaults 2-10
Semantics

Optimization SWitches
Syntax
Defaults
Semantics

Listing SWitches
Syntax
Defaults
Semantics

Reference SWitches .
Syntax ...
Defaults
Semantics

Environment Switches
Syntax

· . . . 2-10
· 2-10
· . . . • 2-11

2-11
· . . . 2-12
· . . . 2-12

2-13
2-13

· 2-13
. . . • . . . 2-15

2-16
· 2-16
· 2-17

2-17
· . . . 2-17

Defaults 2-17
Semantics · 2-18

Placement of Switches 2-18
Switches and Default Settings 2-18
positive and Negative Forms of Switches
Abbreviations

2-20
2-20

SPECIAL FEATURES . 2-20
Indirect Files .
Option File

. 2-20
. 2-20

COMPILER OUTPUT

TERMINAL OUTPUT
OUTPUT LISTING .

· 3-2
· 3-3

Listing Header .
Source Listing .
Object Listing
Source Part Options

· 3-4
... 3-5

· 3-7
· . . . 3-10

Default Source Listing
Listing with LIBRARY/REQUIRE Information ..
Listing with Macro Expansions
Listing with Macro Tracing

CROSS-REFERENCE LISTING

3-11
3-11
3-11
3-11
3-16

Cross-Reference Header . . . · 3-16
Cross-Reference Entries
Output Listing with Cross-Reference Listing

COMPILATION SUMMARY
ERROR MESSAGES

LINKING, EXECUTING, AND DEBUGGING

3-16
3-20
3-22
3-22

LINKING 4-1

iv

4.1.1
4.1.2
4.1.3
4.2
4.3
4.3.1
4.3.2

CHAPTER 5

5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34
5.35
5.36
5.37
5.38

CHAPTER 6

6.1
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7

CONTENTS

Syntax . • .
Defaults . . •
Semantics

EXECUTING
DEBUGGING

Debug Example
Other SIX12 Commands . .

MACHINE-SPECIFIC FUNCTIONS

GENERAL CONVENTIONS
Machine Code Insertion Functions
Logical Functions
Arithmetic Functions
System Interface Functions

ADDD (ADD DOUBLE OPERANDS)
ADDF (ADD FLOATING OPERANDS)
ADDG (ADD FLOAT-G OPERANDS)
ASH (ARITHMETIC SHIFT)
CMPD (COMPARE DOUBLE OPERANDS)
CMPF (COMPARE FLOATING OPERANDS)
CMPG (COMPARE FLOAT-G OPERANDS)

4-2
4-2

.. 4-3

.• 4-3
· 4-3
· 4-3
· 4-4

5-1

COPYII, COPYIN, COPYNI, AND COPYNN (COpy A BYTE)
CVTDF (CONVERT DOUBLE TO FLOATING)

• 5-1
5-3
5-3
5-3
5-3
5-4
5-4
5-5
5-5
5-5
5-6
5-6
5-6
5-7
5-7
5-7
5-8
5-8
5-8
5-9
5-9
5-9

CVTDI (CONVERT DOUBLE TO INTEGER)
CVTFD (CONVERT FLOATING TO DOUBLE)
CVTFG (CONVERT FLOATING TO FLOAT-G)
CVTFI (CONVERT FLOATING TO INTEGER)
CVTGF (CONVERT FLOAT-G TO FLOATING)
CVTGI (CONVERT FLOAT-G TO INTEGER)
CVTID (CONVERT INTEGER TO DOUBLE)
CVTIF (CONVERT INTEGER TO FLOATING)
CVTIG (CONVERT INTEGER TO FLOAT-G)
DIVD (DIVIDE DOUBLE OPERANDS)
DIVF (DIVIDE FLOATING OPERANDS)
DIVG (DIVIDE FLOAT-G OPERANDS)
FIRSTONE (FIND FIRST BIT) • '.
INCP (INCREMENT A BYTE POINTER)
JSYS (INVOKE A TOPS-20 SYSTEM SERVICE)
LSH (LOGICAL SHIFT)
MACHOP AND MACHSKIP (EMIT AN INSTRUCTION)
MULD (MULTIPLY DOUBLE OPERANDS)
MULF (MULTIPLY FLOATING OPERANDS)
MULG (MULTIPLY FLOAT-G OPERANDS)
POINT (BUILD A BYTE POINTER)
REPLACEI AND REPLACEN (STORE A BYTE)
ROT (ROTATE A VALUE)
SCANN AND SCANI (FETCH A BYTE)
SUBD (SUBTRACT DOUBLE OPERANDS)
SUBF (SUBTRACT FLOATING OPERANDS)
SUBG (SUBTRACT FLOAT-G OPERANDS)
UUO (INVOKE A TOPS-I0 SYSTEM SERVICE)

PROGRAMMING CONSIDERATIONS

LIBRARY AND REQUIRE USAGE DIFFERENCES
FREQUENT BLISS CODING ERRORS

Missing Dots
Valued and Nonvalued Routines
Semicolons and Values of Blocks
Complex Expressions Using AND, OR, and NOT
Computed Routine Calls
Signed and Unsigned Fields
Complex Macros

v

5-10
5-10
5-10
5-11
5-11
5-11
5-13
5-13
5-14
5-14
5-14
5-15
5-15
5-15
5-16
5-16
5-16
5-17
5-17

6-1
6-2
6-3
6-3
6-3
6-4
6-4
6-4
6-5

6.2.8
6.2.9
6.2.10
6.2.11
6.3
6.3.1
6.3.2
6.3.2.1
6.3.2.2
6.3.2.3
6.3.2.4
6.4

CHAPTER 7

7.1
7.2
7.2.1
7.2.2
7.3
7.3.1
7.3.1.1
7.3.1.2
7.3.2
7.3.3
7.3.4
7.3. S
7.3.6
7.4
7.4.1
7.4.1.1
7.4.1.2
7.4.1.3
7.4.2
7.4.2.1
7.4.2.2
7.4.2.3
7.4.3
7.4.3.1
7.4.3.2
7.4.4
7.4.4.1
7.4.4.2
7.4.4.3
7.4.4.4
7.4.4.S
7.4.S
7.4.S.1
7.4.S.2
7.4.S.3
7.4.S.4
7.4.S.S

CHAPTER 8

8.1
8.1.1
8.1.2
8.1.2.1
8.1.2.2
8.1.3
8.1.4
8.1.S
8.1.6

CONTENTS

Missing Code 6-S
Conflicting Names 6-6
Routines Within Routines . . . 6-6
Indexed Loop Coding Error 6-7

ADVANCED USE OF BLISS MACROS 6-7
Advantageous Use of Machine Dependencies 6-8
Dealing with Enumeration Types . 6-9

The SET Data-Type • 6-9
Creating a Set 6-10
Placing Elements in Sets 6-11
Membership in a Set 6-12

EXTENDED ADDRESSING DIFFERENCES 6-13

TRANSPORTABILITY GUIDELINES

INTRODUCTION . . .
GENERAL STRATEGIES . .

Isolation
Simplicity

TOOLS

· .. 7-1
· . . 7-2

7-2
· 7-3
· 7-3

Li terals · 7-3
Predeclared Literals · 7-4
User-Defined Literals

Macros and Conditional Compilation .
Module SWitches
Reserved Names
Require and Library Files
Routines

TECHNIQUES
Data

Problem Origin . .
Transportable Declarations .
Length of Externally Used Names

· . 7-4
7-S

· 7-6
· . 7-8
· . 7-8

· .. 7-9
7-10
7-10

. 7-11
7-11

Data: Addresses and Address Calculations .
7-13
7-13
7-13
7-1S
7-1S

Addresses and Address Calculations . .
Relational Operators and Control Expressions
BLISS-10 Addresses Versus BLISS-36 Addresses

Data: Character Sequences
Usage as Numeric Values
Usage as Character Strings

PLITs and Initialization
PLITs in General
Scalar PLIT Items
String Literal PLIT Items
An Example of Initialization .
Initializing Packed Data ...

Structures and Field Selectors .
Structures .
FLEX VECTOR
Field Selectors
GEN VECTOR
Summary

. 7-16
7-16
7-17
7-17
7-18

. . . . 7-18
7-18
7-20
7-23
7-27
7-27
7-28
7-30
7-31
7-33

COMPILER OVERVIEW AND OPTIMIZATION SWITCHES

COMPILER PHASES
Lexical and Syntactic Analysis .
Flow Analysis

Knowing When a Value Changes .
Accounting for Changes .

Heuristics
Temporary Name Binding
Code Generation
Code Stream Optimization .

vi

8-1
· . 8-1

· .. 8-2
8-3

· .. 8-4
8-6

· . . 8-6
· .. 8-7

8-7

8.1.7
8.2

CHAPTER 9

9.1
9.1.1
9.1.2
9.1.3
9.1.4
9.1.5
9.2
9.2.1
9.2.2
9.2.3
9.2.4
9.3
9.3.1
9.3.2
9.3.2.1
9.3.2.2
9.3.2.3
9.3.2.4
9.3.2.5
9.3.2.6
9.3.2.7
9.3.2.8
9.4
9.5
9.5.1
9.5.2
9.5.2.1
9.5.2.2
9.5.2.3
9.5.2.4
9.5.3
9.5.4
9.5.5
9.5.6
9.5.7

CHAPTER 10

10.1
10.1.1
10.1.2
10.1.3
10.1.4
10.1.5
10.1.6
10.1.7
10.1.8
10.1.9
10.1.10
10.1.11
10.1.12
10.2
10.2.1
10.2.2
10.2.3
10.2.4
10.2.5
10.2.6
10.2.7

CONTENTS

Output File Production . .
SUMMARY OF SWITCH EFFECTS

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

. 8-8

. 8-8

TRANSPORTABLE PROGRAMMING TOOLS (XPORT) 9-1
XPORT Data Structures 9-2
XPORT Input/Output 9-2
XPORT Dynamic Memory Management 9-3
XPORT Host System Services 9-3
XPORT String Handling Facilities 9-3

BCREF - BLISS MASTER CROSS REFERENCE PROGRAM . 9-4
Command-Line Format 9-4
Command Semantics 9-5
Building a Master Cross Reference . 9-5
Command Switches 9-5

CVTI0 - BLISS-I0 TO BLISS-36 CONVERSION PROGRAM . 9-6
CVTI0 Command-Line Syntax 9-6
BLISS-I0 Translations 9-7

Normal Declarations 9-8
REQUIRE Declarations 9-8
SWITCHES Declarations 9-8
BIND Declarations . . 9-8
ROUTINE Declarations 9-9
SELECT Expressions 9-9
CASE Expressions 9-9
MACROs 9-9

TUTIO - TUTORIAL TERMINAL INPUT/OUTPUT PACKAGE. 9-10
SYSTEM INTERFACES 9-10

Precompiled Declaration Libraries 9-10
TENDEF.L36 Library 9-11

POINTR Macro 9-11
FLD Macro 9-12
MONWORD and MONBLOCK Structures 9-12
Other Symbols 9-12

UUOSYM.L36 Library 9-13
MONSYM.L36 Library 9-13
Generation Procedure 9-14
TOPS-I0 System Interface Example 9-14
TOPS-20 System Interface Example 9-17

BLISS-36 CODING EXAMPLES

EXAMPLE 1: THE PSINT PROGRAM 10-1
Module PSINT 10-2
Routine REPLAY 10-4
Routine DISPLAY 10-4
Routine ENAPSI 10-4
Routine TTYSET 10-5
Routine FILIO 10-6
Routine TTYRES 10-7
Routine DISPSI 10-8
Routine CTRLC 10-8
Rout i ne CTRLY 10-9
Routine DSPHDL 10-9
Routine PSIHDL 10-9

EXAMPLE 2: THE TRANS PROGRAM 10-10
Module TRANS 10-11
Routine TRANSMAIN 10-16
Routine CMDINIT 10-17
Routine LEXGET 10-18
Routine OPENFILES 10-21
Routine BUILDTBL 10-22
Routine EXTBL 10-23

vii

10.2.8
10.2.9

APPENDIX A

A.l
A.2
A.3
A.4

APPENDIX B

APPENDIX C

C.l
C.2
C.3
C.4

APPENDIX D

D.l
D.2

APPENDIX E

E.l

APPENDIX F

APPENDIX G

APPENDIX H

FIGURES

3-1
3-2
3-3
3-4
3-5
3-6
3-7

3-8

3-9
F-l

TABLES

1-1

2-1

3-1

CONTENTS

Routine CHRVAL .
Routine FILIO

SUMMARY OF COMMAND SYNTAX

· 10-25
· 10-26

TOPS-20 COMMAND SUMMARY
TOPS-20 SWITCH DEFAULTS
TOPS-IO COMMAND SUMMARY
TOPS-IO SWITCH DEFAULTS

........... A-I
......... A-2

· . A-3
· A-5

SUMMARY OF FORMATTING RULES

MODULE TEMPLATE

MODULE PREFACE
DECLARATIVE PART OF MODULE .
EXECUTABLE PART OF MODULE
CLOSING FORMAT

· . C-l
· C-2

IMPLEMENTATION LIMITS

BLISS-36 LANGUAGE
SYSTEM INTERFACES

ERROR MESSAGES

BLISS COMPILER FATAL ERRORS

SAMPLE OUTPUT LISTING

MIXING BLISS-36 MODULES AND BLISS-IO MODULES

USER-GENERATED OTS FILES

· C-3
· C-3

· D-l
· D-l

E-36

Compiler Output Listing Sequence . .
Listing Header Format
Default Object Listing Example .

....... 3-3
· 3-4

Default Source Listing Example
Output Listing with Library and Require File Data
Output Listing with Macro Expansion Data . .
Output Listing with Macro Expansion and Tracing
Data
Output Listing with Cross-Reference Listing
Included . . II> • • • • • • • • • • • • • •

· 3-9
3-12
3-13
3-14

3-15

3-21
3-25 Error Messages in Source Listing Example .

Sample Output Listing F-2

Command Line, Module Switch, and SWITCH Names on
TOPS-20 1-21
Command Line, Module Switch, and SWITCH names on
TOPS-10 2-19
Format of Preface String in Source Listing 3-6

viii

3-2
5-1
9-1
10-1

CONTENTS

3-17 Symbol Type Abbreviations
Machine-Specific Functions 5-2
BLISS-1 a Language Features
Depiction of the Command State Table .

ix

.. 9-7
. 10-13

PREFACE

MANUAL OBJECTIVES

This manual is a user's guide for the BLISS-36 compiler, which runs on
TOPS-IO and TOPS-20 operating systems. It provides three kinds of
information: basic operating instructions, advanced material, and
reference information. This manual is' intended as a companion manual
to the BLISS Language Guide. As such, they have certain structural
similarities, and the discussions of organization and syntax notation
given in the language guide apply to this manual.

INTENDED AUDIENCE

This guide is intended for users of the BLISS-36 programming language.
It presupposes some familiarity with the TOPS-IO or TOPS-20 operating
system, its command language, and file-system conventions.

STRUCTURE OF THIS DOCUMENT

Chapters 1 through 4 describe basic operating instructions:

• Chapters 1 and 2 present procedures for compiling a BLISS
program, define file specifications, and describe command
switches that can be used in the TOPS-20 and TOPS-IO operating
system environments.

• Chapter 3 considers output produced by the compilation. The
format and meaning of each crf the possible compiler outputs
are described and illustrated.

• Chapter 4 is concerned with linking, executing, and debugging.

Chapters 5 through 10 supply advanced material:

• Chapter 5 describes machine-specific functions.

• Chapter 6 describes programming considerations,
use of LIBRARY and REQUIRE facilities.

such as the

• Chapter 7 gives guidelines for writing transportable BLISS
programs.

• Chapter 8 presents a discussion of the compiler architecture
and provides insight into the effects that result from command
switches related to optimization.

xi

• Chapter 9 describes some tools related to BLISS programming.

• Chapter 10 provides coding examples in the form of complete
and annotated programs.

The appendices contain reference information:

• Appendix A summarizes command line syntax,
switches and their default settings.

including command

• Appendix B summarizes formatting rules suggested for your use.

• Appendix C provides a model template.
current implementation limits.

Appendix D lists

• Appendix E contains error messages generated by the compiler.

• Appendix F illustrates a sample output listing.

• Appendix G describes methods for interfacing with BLISS-IO.

• Appendix H describes the use of user-generated OTS files.

RELATED MANUALS

BLISS Language Guide (AA-H275C-TK)

This manual completely describes the BLISS-16, BLISS-32, and
BLISS-36 languages. It can be used both as a learning tool for
the languages and as a reference guide.

BLISS Language Guide Update Package (AD-H275C-Tl)

The update package provides Version 4.0 of the BLISS Language
Guide.

BLISS Primer (order from Educational Services)

The BLISS Primer is a guide to a self-paced BLISS learning
course. The language features are described and exemplified.
Each section is followed by a quiz and suggested solutions. This
document is strongly recommended for the BLISS novice.

BLISS Pocket Guide (AV-AT45A-TK)

This guide presents a concise syntax summary for the family of
BLISS languages. A summary of the command line syntax for the
respective compilers is also provided.

XPORT Programmer's Guide (AA-J20lA-TK)

The guide is a tutorial and reference manual for the XPORT
transportable-programming tools package. XPORT is a collection
of source-level tools that provide input/output and
operating-system services for BLISS-32 and BLISS-36.

xii

PREFACE

SYNTAX NOTATION

Syntax notation used for defining BLISS-36 is explained thoroughly in
Chapter 2 of the BLISS Language Guide. The following is a summary of
the syntax notation used in this manual:

item-l

l
~ item-l

item-2
item-3

item ...

item , ...

item+ ...

item-2 I item-3 } Select exactly one of the items separated
by vertical bars within the braces.

Select exactly one of the
braces on separate but
lines.

items in
contiguous

The item directly preceding the " ... " can
be replicated zero or more times.

The item directly preceding the , ...
can be replicated zero or more times,
with the items separated by commas.

The item directly preceding the "+ ... "
can be replicated zero or more times,
with the items separated by plus signs.

In addition, the red portions of a syntax line or system-user dialog
identify information keyed in by the user.

xiii

SUMMARY OF TECHNICAL CHANGES

This manual provides BLISS-36 user information for Version 4.0 of the
BLISS-36 compiler. This section summarizes technical changes,
additions, and deletions to the guide since Version 3.0.

• /CHECK, /CROSS-REFERENCE (DECsystem-20), and /CREF
(DECsystem-lO) switches have been added as general-qualifiers
to the BLISS-36 command lines.

• /MASTER-CROSS-REFERENCE has been added as an output-qualifier
to the BLISS-36 compiler for both TOPS-IO and TOPS-20.

• An extended addressing capability has been added to the
BLISS-36 compiler for TOPS-20 along with an extended
addressing SECTION-INDEPENDENT option.

• A new cross-reference capability (BCREF) has been added to
replace BLSCRF.

• Additions have been made to the Programming Considerations
chapter (6), which include the use of BUILTIN PC, indexed loop
coding errors, the advanced use of BLISS macros, and extended
addressing coding differences.

• Changes and additions have been made to the compiler listing
formats to update the examples and provide an example of
cross-reference listings.

• An Examples chapter (10) has been included to
additional coding examples.

xv

provide

CHAPTER 1

TOPS-20 OPERATING PROCEDURES

This chapter discusses the TOPS-20 operating procedures used to
compile a BLISS program. Compilation, including command-line syntax
and semantics, is considered first. Next, file specifications for
input to a BLISS-36 compilation are described and illustrated.
Finally, the command-line switches relevant to a BLISS-36 compilation
are given.

Compiling, linking, and executing a BLISS-36 program is a
straightforward procedure. In the simplest case, to compile and
execute a program that consists of a single module, you enter the
module in a file (for example, ALPHA.B36), compile it with the
BLISS-·36 compiler, link it using LINK, and then execute the linked
image. The EXECUTE command automatically invokes LINK as follows:

@BLISS
BLISS>ALPHA
BLISS>/EXIT
@EXECUTE ALPHA

The first command invokes the BLISS compiler to compile the module in
the file ALPHA.B36 and to produce an object file ALPHA.REL. The
second command uses the object module in the file ALPHA.REL to produce
an executable image in memory and to execute the image.

To save the linked image, invoke LINK explicitly and save the
resulting image as follows:

@BLISS
BLISS>ALPHA/EXIT
@LOAD ALPHA
@SAVE ALPHA

You can control the compiler by using command-line switches. These
switches add a level of complexity to the compilation process, but
they also provide a significant number of options by which you can
vary the performance of the compiler in the production of output, the
formatting of listings, and the degree of optimization to be
performed.

1.1 COMPILING A BLISS PROGRAM

The BLISS compiler uses the standard TOPS-20 command interpreter, the
COMND% JSYS, to parse the command line. As such, various features of
command line processing that are common to many programs and EXEC
commands on TOPS-20 are also common to the BLISS compiler. Some of
these include command recognition, file specification completion,
editing characters, and the question mark character (?). Refer to the
TOPS-20 Userls Guide for a description of these facilities.

1-1

TOPS-20 OPERATING PROCEDURES

To compile a BLISS program, you run the BLISS compiler from the
command level and wait for the 'BLISS>' prompt. (The simplest way to
run the BLISS compiler is to have the compiler, BLISS.EXE, reside on
logical device SYS:i for the rest of this chapter, the compiler is
assumed to be invoked by typing 'BLISS ' at the command level.) Input
specs and global switches, if supplied, are then supplied.

Global switches apply to all input specs and precede them in the
command line. They override default switch settings. Input-specs
consist of one or more file names followed by switch settings that
apply to an individual file or concatenated file. Switch settings in
an input-spec override global switch settings.

• To compile a program, use the following command:

BLISS>MYPROG

The BLISS compiler uses the file MYPROG.B36 or MYPROG.BLI as
its input, compiles the source in that file, and produces
object file MYPROG.REL.

• To produce a listing file, use the output switch /LISTING:

BLISS>MYPROG/LISTING

In addition to the object file, the BLISS compiler produces
the listing file MYPROG.LST.

• To compile more than one module, include a list of input files
separated by commas, as follows:

BLISS>ALPHA,BETA,GAMMA

The compiler compiles ALPHA.B36, producing the object file
ALPHA.RELi then BETA.B36, producing BETA.RELi and then
GAMMA.B36, producing GAMMA.REL.

• To compile a program that consists of several pieces, each in
a separate file, use the concatenation indicator (+):

BLISS>ALPHA+BETA+GAMMA

The BLISS compiler compiles the program
concatenation of ALPHA.B36, BETA.B36, and
produces the single object file ALPHA.REL.

formed by
GAMMA.B36,

the
and

• To perform a multifile compilation in which one command-line
switch is common to all source files in an input-spec, include
the appropriate switch before the input-spec:

BLISS>/LIBRARY ALPHA,BETA,GAMMA/NOLIBRARY,DELTA

The command line consists of four input-specs, which must be
separated by commas. Placing the /LIBRARY switch before the
first input-spec has the effect of overriding the default
switch settings of /NOLIBRARY and /OBJECT for all input-specs,
unless it, in turn, is superseded by a switch setting that
applies to an individual input-spec. A switch setting that
follows an input-spec applies only to that input-spec. Thus,
the command line above causes the compiler to produce three
library files and one object file: ALPHA.L36, BETA.L36,
DELTA.L36, and GAMMA.REL.

1-2

TOPS-20 OPERATING PROCEDURES

• To produce an object file with a name different from that of
the source file, specify the new object file name in the
command

BLISS>ALPHA/OBJECT:GAMMA

The BLISS compiler produces the object file GAMMA.REL.

• To produce a library file instead of an object file, use the
/LIBRARY command switch:

BLISS>ALPHA/LIBRARY

The BLISS compiler compiles the input file ALPHA.R36 and
produces the library file ALPHA.L36.

NOTE

The TOPS-20 EXEC does not support BLISS-36 in
LOAD-class commands. Therefore, the following
commands will not compile ALPHA as a BLISS-36
module. However, they will attempt to use
BLISS-IO to compile ALPHA.BLI.

@EXECUTE ALPHA.BLI
@LOAD ALPHA.BLI

1.1.1 Command-Line Syntax

bliss-compilation BLISS>bliss-command-line

bliss-command­
line

input-spec

space

switch

switch space input-spec

file-spec+ ... switch ... }

blank

output-switch
general-switch
check-switch
terminal-switch
optimization-switch
listing-switch
reference-switch
environment-switch

1.1.2 Command-Line Semantics

I •••

The BLISS-36 compiler uses switches given in the bliss-command-line to
modify the initial defaults for each compilation. Then, the
concatenated input is compiled in the context of the initial defaults.
The switches and the initial default for each switch are described in
Section 1.3.

Unless a switch to change the compiler's behavior is given, the output
from a compilation initiated from your terminal or batch file is the
object file; no listing is generated.

1-3

TOPS-20 OPERATING PROCEDURES

The compiler begins processing with the first file given and continues
until an end-of-file is reached. It continues to read input until all
files specified in the input-spec have been read.

Command-line switches can appear in two places in a command line:
before the first input-spec, and after individual input-specs. Those
appearing before the first input-spec have a global application to all
input-specs in the command line. For example:

BLISS>/LIBRARY ALPHA,BETA+ETA+THETA,OMEGA

Those appearing at the
input-spec they follow.

end of an input-spec
For example:

BLISS>/LIBRARY ALPHA,BETA/LIST,IOTA

apply only to the

If no command-line switches exist in a command line, default switch
settings are assumed for all input-specs in the command line. All
switches have an assigned default setting or value.

The only required space in the command line separates the first
input-spec from preceding global command-line switches.

1.2 FILE SPECIFICATIONS

File specifications are used to name the source of program text to be
compiled and the destination of output from the compilation. More
precisely, file specifications can occur in four contexts:

• In the input-specs of a bliss-command-line

• As the values of the switches /OBJECT, /LIBRARY, /LISTING, or
/MASTER-CROSS-REFERENCE

• In REQUIRE or LIBRARY declarations in the module being
compiled

• In the object-time system (OTS) module switch (for TOPS-IO
style file specs only)

The file-spec is a standard TOPS-20 file specification, as described
in the DECSYSTEM-20 User's Guide, and is interpreted as follows:

1. Logical name translation occurs.

2. If a file type is not given, a default file type is used (see
below) .

3. If the file-spec applies to an output file and a file name is
not given, the name of the first input file in the input-spec
is used.

This same interpretation is also
processes the file specification
declaration.

used by the compiler when it
given in a REQUIRE or LIBRARY

The file-spec must be fully specified in the OTS module switch.
is, no defaults are applied by the compiler.

That

1-4

TOPS-20 OPERATING PROCEDURES

The compiler has two ordered lists of default file types to be tried
for an input-spec that does not include a file type. The list the
compiler applies depends on the output specified for the compilation,
as indicated in the following list:

Input-Spec Used to Produce Default Type List

An object module .B36, .BLI

A library file . R3 6 , . REQ , . B 36 I • BL I

If the program being compiled contains a REQUIRE or LIBRARY
declaration, the compiler uses the following list to search for the
appropriate file type according to the type of declaration:

File Use

File given in a
REQUIRE declaration

File given in a
LIBRARY declaration

Default Type List

.R36, .REQ, .B36, .BLI

.L36

For example, suppose you have entered the following program in the
file ALPHA.BLI:

MODULE MYTEST
BEGIN
REQUIRE 'CBLISS ' :
LIBRARY 'TBLISS':

END
ELUDOM

and you use the following command line to compile it:

BLISS>ALPHA

Since the bliss-command-line contains no switch requesting that a
library file be produced, the output of the compilation is an object
module. Therefore, the compiler chooses the list of default types
associated with object module output and searches first for ALPHA.B36,
then, not finding that file, for ALPHA.BLI, which it finds and
compiles. In processing the module MYTEST in that file, the compiler
encounters the REQUIRE declaration for the file CBLISS. Since no file
type for CBLISS is given, the compiler uses the list of default types
for files in a REQUIRE declaration and searches for CBLISS.R36, then
CBLISS.REQ, then CBLISS.B36, and finally CBLISS.BLI. When the
compiler processes the LIBRARY declaration, it uses the default type
list associated with library declarations and searches for TBLISS.L36.

1.3 COMMAND-LINE SWITCHES

Command-line
compilation.

switches provide control over many aspects of the
Valid command-line switches and their functions are:

• Output switch -- defines the types of output to be produced

• General switch -- sets a %VARIANT value and specifies code and
debug information

1-5

TOPS-20 OPERATING PROCEDURES

• Check switch -- controls the level of semantic checking done
during compilation.

• Terminal switch -- controls output produced on a terminal

• Optimization switch -- supplies code optimization strategies
and directions

• Listing switch provides output listing information
concerning the source and machine code

• Reference switch -- includes cross-reference information in
output listing and/or a master cross-reference data file

• Environment switch identifies the processor model and
target operating system of the generated code

1.3.1 Output Switches

Output switches are used to indicate the type of output to be produced
from a BLISS-36 compilation and to give names for the files to be
produced when you do not want to use the default names. Some examples
of output switches are given in the following list:

• To suppress the production of an object
/NOOBJECT switch in the bliss-compilation, as

BLISS>ALPHA/NOOBJECT

file, use
follows:

the

The BLISS-36 compiler reads the source in the file ALPHA.B36
and produces no output files. The only outputs are the error
messages and summary information produced at the terminal.

• To obtain a list file for a single source file, use the
/LISTING switch, as follows:

BLISS>ALPHA/LISTING

The BLISS-36 compiler produces an object file ALPHA.REL and a
list file ALPHA.LST.

However, to obtain list files in a multifile compilation, use
the /LISTING switch before the input-specs, as follows:

BLISS>/LISTING ZETA,ETA,THETA

The BLISS-36 compiler generates both object and list files for
each input file.

• To use a different name for the object or list files, use the
following switches:

BLISS>ALPHA/OBJECT:BETA/LISTING:GAMMA

The compiler reads the input file ALPHA.B36, and produces the
object file BETA.REL and the list file GAMMA. LST.

• To produce a master cross-reference data file, use the
following:

BLISS>ALPHA/MASTER-CROSS-REFERENCE:MASTER

1-6

TOPS-20 OPERATING PROCEDURES

The compiler reads the input file ALPHA.B36, and produces
object file ALPHA.REL and master cross-reference
MASTER.CRF.

the
file

• To produce a library file rather than an object file, use the
/LIBRARY switch, as follows:

BLISS>ALPHA/LIBRARY

The compiler reads the input file ALPHA.B36 and produces the
library file ALPHA.L36.

1.3.1.1 Syntax - Output-switch syntax is:

output­
switch {

/OBJECT {: file-spec} I /NOOBJECT }
/LISTING {:file-spec} I /NOLISTING
/LIBRARY {:file-spec} I /NOLIBRARY
/MASTER-CROSS-REFERENCE {:file-spec} I /NOMASTER-CROSS-REFERENCE

The compiler can produce either a library or an object file, but not
both. Therefore, the switches /OBJECT and /LIBRARY must not be
applied to the same input-spec.

1.3.1.2 Defaults - In the absence of an explicit choice of output
switch, the following are assumed:

/OBJECT /NOLISTING /NOLIBRARY /NOMASTER-CROSS-REFERENCE

If a file-spec is not given, the file name of the first file-spec in
the input-spec is combined with the default file type to form the
file-spec. If a file-spec is given but the file-spec does not include
a file type, the following defaults are supplied, according to the
file-designator:

File-Designator

/OBJECT

/LISTING

/LIBRARY

/MASTER-CROSS-REFERENCE

1.3.1.3 Semantics - Output
interpretation:

/OBJECT:file-spec

/OBJECT

/NOOBJECT

/LISTING:file-spec

Default Type

.REL

.LST

.L36

.CRF

switches have the following

1-7

Produce an object file in the file
specified by file-spec.

Produce an object file in
specified
'input-file-name.REL' .

the file
by

Do not produce an object file.

Produce a list file in the file
specified by file-spec.

TOPS-20 OPERATI~G PROCEDURES

/LISTING

/NOLISTING

/LIBRARY:file-spec

/LIBRARY

/NOLIBRARY

/MASTER-CROSS-REFERENCE:file-spec

/MASTER-CROSS-REFERENCE

/NOMASTER-CROSS-REFERENCE

1.3.2 General Switches

Produce a list file in the
specified
'input-file~name.LST' .

Do not produce a list file.

file
by

Produce a library file in the file
specified by file-spec.

Produce a library file in the file
specified by
'input-file-name.L36, .

Do not produce a library file.

Produce a master cross-reference
file in the file specified by
file-spec.

Produce a master cross-reference
file in the file specified by
'input-file-name.CRF' .

Do not produce a master
cross-reference file.

General switches are used to specify code and debug information and to
set the value for the lexical function %VARIANT. Some examples of
using general switches follow:

• To include the necessary debug linkage in the compiled
program, use the /DEBUG switch in the bliss-compilation:

BLISS>ALPHA/DEBUG

The compiler reads the source from ALPHA.BLI and creates an
object file ALPHA.REL, which includes additional code for
interface with SIX12.

• To syntax-check a program that you do not intend to execute,
use the /NOCODE switch to save compilation time, as follows:

BLISS>ALPHA/NOCODE

• To set the value of the lexical function %VARIANT to 17, use
the /VARIANT switch as follows:

BLISS>ALPHA/VARIANT:17

• To limit the number of errors diagnosed to la, use the
/ERROR-LIMIT switch as follows:

BLISS>ALPHA/ERROR-LIMIT:IO

1-8

TOPS-20 OPERATING PROCEDURES

1.3.2.1 Syntax - General-switch syntax is:

general-switch !
/DEBUG I
/CODE I
/VARIANT { :
/ERROR-LIMIT
/EXIT

/NODEBUG
/NOCODE
value }
{ : value

1.3.2.2 Defaults - In the absence of explicit choices of general
switches, the following are assumed:

/NODEBUG /CODE /VARIANT:O /ERROR-LIMIT:30

The compiler produces code, does not include the additional debugging
information in the object file, and sets the value of %VARIANT to O.

If the general switch /VARIANT is given without a specified value, a
value of 1 is assumed.

If the /ERROR-LIMIT is given without a specified value, a value of 1
is assumed.

1.3.2.3 Semantics - The interpretation of the command switches is
given in the following list:

/DEBUG

/NODEBUG

/CODE

/NOCODE

/VARIANT

/VARIANT:n

/EXIT

/ERROR-LIMIT

/ERROR-LIMIT: n

Generate debugging linkage and do not do certain
optimization so that a user may effectively use
SIX12. Also, include symbolic information in the
object file produced, and maintain the frame
pointer (FP) in routine prologs and epilogs.

Produce symbolic information but no debug linkage,
and do not limit optimizations for effective use
of SIX12.

Generate object code for the BLISS source module.

Perform only a syntax check of the program.

Set %VARIANT to 1.

Set %VARIANT to n, where n is a decimal integer in
the range:

-(2**35) < n < (2**35)-1

Terminate the compiler operation and returns
control to the system. /EXIT can appear in a
command line or on a separate line.

Set error limit to 1.

Limit to n the number of errors diagnosed before
terminating compilation.

1-9

TOPS-20 OPERATING PROCEDURES

1.3.3 Check Switch

The check switch controls the level of semantic checking done during
compilation. The switch allows all legal BLISS syntax to be examined
for semantic irregularities. Some examples of the use of the check
switch are as follows:

• To suppress field-name checking on structure accesses if the
data-segment declaration has no field-attribute, use the check
switch as follows:

BLISS>ALPHA/CHECK:NOFIELD

• To check for the use of uninitialized storage, use the check
switch as follows:

BLISS>ALPHA/CHECK:INITIAL

1.3.3.1 Syntax - Check switch syntax is defined as follows:

check switch

check-value

/CHECK:

(FIELD
, INITIAL

{
{check-value
check-value

, ...

) OPTIMIZE
(REDECLARE

NOFIELD !
NOINITIAL
NOOPTIMIZE
NOREDECLARE

1.3.3.2 Defaults - In the absence
check-values, the following values are

of specific choices
assumed by default:

of

FIELD INITIAL OPTIMIZE NOREDECLARE

1.3.3.3 Semantics - The /CHECK switch indicates that one or more
check-values follow. The check-values have the following meanings:

Check-Value

FIELD

NOFIELD

INITIAL

NOINITIAL

OPTIMIZE

Meaning

Do not suppress field-name checking.

If the data-segment declaration has no
field-attribute, suppress field-name checking on
the structure accesses.

Check for the use of uninitialized storage.

Do not check for uninitialized storage.

Check for suspicious optimizations. For example,
constant folding expressions of a form that is
always false, such as:

.X<0,8,1> EQL %X'FF'

1-10

TOPS-20 OPERATING PROCEDURES

NOOPTIMIZE Do not check for suspicious optimizations.

REDECLARE Check for the redeclaration of a name within a
nested scope.

NOREDECLARE Do not check for the redeclaration of a name.

1.3.4 Terminal Switches

Terminal switches are used to control the output that is sent to the
terminal. You can have errors or statistics printed or suppressed on
the terminal during the compilation of a BLISS program. Some examples
of using the terminal switches are as follows:

• To see the statistics for each routine as they are produced
during the compilation, use the /STATISTICS switch, as
follows:

BLISS>ALPHA/STATISTICS

• To suppress error messages and to get statistics, use the
following:

BLISS>ALPHA/STATISTICS/NOERRS

/NOERRS is useful when there are too many errors to be listed
on the terminal and the user is requesting a listing.

1.3.4.1 Syntax - Terminal-switch syntax is:

terminal-switch {
/ERRS
/STATISTICS

/NOERRS }
/NOSTATISTICS

1.3.4.2 Defaults - In the absence of explicit choices of terminal
switches, the following are assumed:

/ERRS /NOSTATISTICS

Errors are reported on the terminal during the compilation, but
statistics are suppressed.

1.3.4.3 Semantics - The terminal
meanings:

switches have the

Switch

/ERRS

Meaning

List each error on the terminal as
encountered in the compilation.

Do not list errors on the terminal.

following

it is

/NOERRS

/STATISTICS List the name and size (in words) of each routine
on the terminal after each routine is compiled.

/NOSTATISTICS Do not list routine names and sizes.

1-11

TOPS-20 OPERATING PROCEDURES

1.3.5 Optimization Switches

Optimization switches are used to supply directions to the compiler
about the degree and type of optimization wanted, and to make
assertions about the program so that the compiler can select the
appropriate optimization strategies. Some examples of using the
optimization switches are as follows:

"
• To increase the compilation speed by omitting some standard

optimizations, use the /QUICK switch, as follows:

BLISS> ALPHA/QUICK

• To get minimum optimization, use the /OPTLEVEL switch with the
value 0, as follows:

BLISS>ALPHA/OPTLEVEL:O

• To obtain maximum optimization, use the /OPTLEVEL switch with
the value 3, as follows:

BLISS>ALPHA/OPTLEVEL:3

• To direct the compiler to use techniques that may use more
storage for the program to increase its operating speed, use
the /ZIP switch, as follows:

•
BLISS>ALPHA/ZIP

To inform the compiler
manipulate named data,

BLISS>ALPHA/NOSAFE

that the program uses pointers
use the /NOSAFE switch, as follows:

to

A detailed discussion of the optimizations resulting from using the
optimization switches is given in Chapter 8.

1.3.5.1 Syntax - Optimization-switch syntax is:

optimization-switch

optimize-switch

optlevel-switch

safe-switch

zip-switch

quick-switch

(optimize-switch)
) optlevel-switch (
·1 safe-switch J

zip-switch
quick-switch

{ /OPTIMIZE /NOOPTIMIZE

/OPTLEVEL 0 I 1 I 2 I 3
J'*

/SAFE I /NOSAFE

/ZIP I /NOZIP }

/QUICK I /NOQUICK

1.3.5.2 Defaults - In the absence of an explicit optimization switch,
the following are assumed:

/NOQUICK /NOZIP /OPTLEVEL:2 /SAFE /OPTIMIZE

1-12

TOPS-20 OPERATING PROCEDURES

The compiler is directed:

• To perform normal optimization, balancing the time/space
trade-off in favor of space

• To assume that all variables are addressed by name

• To perform optimization across mark points

• To perform flow analysis. (Re,fer to Section 8.1.2.2.)

1.3.5.3 Semantics - Optimization switches indicate that one or more
optimize options are specified. The optimize switches have the
following meanings. .

Optimize-Value

/QUICK

/NOQUICK

/ZIP

/NOZIP

/OPTLEVEL:n

/SAFE

/NOSAFE

/OPTIMIZE

/NOOPTIMIZE

Meaning

Omit some standard optimizations to increase the
compilation speed.

Include standard optimizations.

Increase the execution efficiency of
being compiled by using more
appropriate. For more information on
of this value, see Section 8.1.4.

the program
space where
the effect

Do not increase the space occupied by the program
to improve its operating speed. For more
information on the effect of this value, see
Section 8.1.2.2.

Optimize the program being compiled according to
the optimize-level n, as follows:

Optimize-Level

o
1
2
3

Meaning

Minimum optimization
Subnormal optimization
Normal optimization
Maximum optimization

n=3 optimizes speed at the expense of space in the
same way as /ZIP. /OPTLEVEL:3 is equivalent to
/OPTLEVEL:2/ZIP. For more information on the
effect of this value, see Section 8.1.2.

Assume that all named data-segments are referenced
by name and not manipulated in any way indirectly,
and use optimization techniques that exploit this
fact. For more information on the effect of this
value, see Section 8.1.2.1.

Assume that sometimes a named data-segment is
referenced by means of a computed expression and,
therefore, some optimization techniques cannot be
used.

Perform full flow analysis over an entire routine.

Restrict flow analysis so that all data is assumed
to be changed across mark points. (See Chapter 8
for a more complete discussion.)

1-13

TOPS-20 OPERATING PROCEDURES

1.3.6 Listing Switches

Listing switches are used to supply information about the form of the
output listing and are used in conjunction with the /LISTING output
switch. Some examples of using the~listing switches follow:

• To obtain a paged listing with 44 lines on each page, give the
following command line:

BLISS>ALPHA/LISTING/PAGSIZ:44

• To obtain an unpaged listing, in which the macro expansions
are given, use the following switches:

BLISS>ALPHA/LISTING/NOHEADER/FORMAT:EXPAND

• To obtain a listing that contains the contents of the REQUIRE
files given in REQUIRE declarations, use the following
switches:

•
BLISS>ALPHA/LISTING/FORMAT:REQUIRE

To obtain an output listing that is intended to be
by the MACRO assembler, use the ASSEMBLY option, as

BLISS>ALPHA/LISTING/FORMAT:ASSEMBLY

assembled
follows:

• To obtain a listing that is intended to be assembled and that
does not contain binary, include the NOBINARY option:

BLISS>ALPHA/LISTING/FORMAT:(ASSEMBLY,NOBINARY)

The form of the output listing is described in Section 3.2.

1.3.6.1 Syntax - Listing-switch syntax is:

listing-switch

number-of-lines

format-option-list

option

----------- ---

(/PAGSIZ: number-of-lines)
) /HEADER I /NOHEADER (
) /UNAMES I /NOUNAMES (
(/FORMAT : format-option-list)

20 21

{

(option,

option

ASSEMBLY
BINARY
COMMENTARY
EXPAND
LIBRARY
OBJECT
REQUIRE
SOURCE
SYMBOLIC
TRACE

1-14

22

. ..) }

NOASSEMBLY
NOBINARY
NOCOMMENTARY
NOEXPAND
NOLIBRARY
NOOBJECT
NOREQUIRE
NOSOURCE
NOSYMBOLIC
NOTRACE

52

TOPS-20 OPERATING PROCEDURES

1.3.6.2 Defaults - In the absence of an explicit choice of listing
switches, the following are assumed:

/PAGSIZ:52 /NOUNAMES /NOHEADER
/FORMAT:(NOASSEMBLY,BINARY,COMMENTARY,NOEXPAND,NOLIBRARY,

OBJECT, NOREQUIRE, SOURCE, SYMBOLIC, NOTRACE)

The compiler produces a listing with 52 lines on each page; the
listing includes no expansion or tracing. The listing resembles a
typical macro source file but cannot be assembled.

1.3.6.3 Semantics - The listing switches indicate that one or more
listing options are given for the compilation. Command-line switches
are preceded by a slash, while switches that can appear as a part of
the /FORMAT switch are not. The source-values have the following
meanings:

Source-Value

/HEADER

/NOHEADER

/PAGSIZ:lines

/UNAMES

/NOUNAMES

/FORMAT:

LIBRARY

Meaning

Page the listing produced on the list file and
include a heading on each page.

Do not page the listing, do not include headings,
and do not produce statistics in the compilation
summary.

Use the number of lines specified for each page of
the list file. The number of lines must lie in
the range: 20 < lines < 52.

Replace names by machine-generated names so that
all names are unique and independent of scope,
resulting in a listing that can be correctly
assembled.

Do not replace names by unique names.

One (or more in parentheses) of the following
options:

Produce a trace in the listing file identifying the library after
a LIBRARY declaration and the first use of each name whose
definition is obtained from a library file. For an example of a
library trace, see Section 3.2.4.2.

NOLIBRARY

Do not produce a trace identifying any libraries and their
contributions.

REQUIRE

Include the contents of the specified file in the listing file.
For an example, see Section 3.2.4.2.

NOREQUIRE

Do not include the contents of the specified REQUIRE file in the
listing.

1-15

TOPS-20 OPERATING PROCEDURES

EXPAND

Include the expansion of each macro call in the listing file.
For an example of a macro expansion, see Section 3.2.4.3.

NOEXPAND

TRACE

Do not include the expansion of macros.

Include a trace of each macro expansion; that is, include the
parameter binding and any intermediate forms of expansion, as
well as the result of the expansion. For an example of a macro
trace, see Section 3.2.4.4.

NOTRACE

Do not include a trace of macro expansions.

SOURCE

Increment the listing control counter.
listing control counter is positive
counter is zero or negative.

output is listed when the
and not listed when the

NOROURCE

Decrement the listing control counter.

OBJECT

Produce the object part of the output listing.

NOOBJECT

Suppress the object part of the output listing.

ASSEMBLY

Produce a listing that can be assembled, by listing the assembler
instructions produced as a result of compiling the BLISS program
and including all other information within comments.

NOASSEMBLY

Do not list the assembler instructions.

SYMBOLIC

Include a machine code listing that uses names from the BLISS
source program.

NOSYMBOLIC

Do not include a machine code listing that uses source program
names.

COMMENTARY

Include a machine-generated commentary in the
listing. At this time, the machine-generated
limited to a cross-reference.

1-16

object code
commentary is

TOPS-20 OPERATING PROCEDURES

NOCOMMENTARY

Do not include a commentary field in the object code listing.

BINARY

Include a listing of the binary for each instruction in the
object code listing.

NOB I NARY

Do not include a listing of the binary.

Each of the code-values is described and illustrated in Section 3.2.2
in connection with the discussion of the output listing produced by a
BLISS compilation. Understanding the purpose of these code-values
requires knowledge of the format and purpose of the output listing, as
discussed in that section.

1.3.7 Reference Switches

The reference switches allow a cross-reference listing to be included
with the compiler listing, and/or a cross-reference data file to be
created (refer to Section 1.3.1) to produce a master cross-reference
listinq (refer to master cross-reference utility program BCREF in
Section 9.3). Some examples of using the reference switches are as
follows:

• To have a cross-reference listing included with the normal
source compiler listing, use the /CROSS-REFERENCE switch in
the command line as follows:

BLISS>ALPHA/LISTING/CROSS-REFERENCE

The compiler produces an object file and list file ALPHA. LST,
to which a cross-reference listing is appended.

• To have only a cross-reference listing produced (without the
normal source compiler listing), use the following:

BLISS>ALPHA/LIST/FORMAT:(NOSOURCE,NOOBJECT)/CROSS-REF

The compiler produces an object file and list file ALPHA.LST,
which contains only the cross-reference listing.

• To create only a master cross-reference data file, use the
/MASTER-CROSS-REFERENCE switch as follows:

BLISS>ALPHA/MASTER-CROSS-REFERENCE

The compiler produces an object file and, as suitable input
for BCREF, master cross-reference file ALPHA.CRF.

• To produce a compiler listing which includes a cross-reference
listing, and a master cross-reference data file, use the
following:

BLISS>ALPHA/LIST/CROSS-REFERENCE/MASTER-CROSS-REFERENCE

The compiler produces an object file and list file ALPHA.LST,
to which a cross-reference listing is appended, and master
cross-reference file ALPHA.CRF.

1-17

TOPS-20 OPERATING PROCEDURES ..
• To produce a listing with cross-references that include

multiple references to the same type symbol, occurring on the
same source line, use the following:

BLISS>ALPHA/LIST/CROSS-REFERENCE:(MULTIPLE)

The compiler produces an object file and list file ALPHA. LST,
to which a cross-reference listing is appended that includes
multiple references to the same symbol.

1.3.7.1 Syntax - Reference switch syntax is defined as follows:

reference­
switch

reference­
value

{
{

{(reference-value , ...)
/CROSS-REFERENCE : { reference-value
/MASTER-CROSS-REFERENCE {:file-spec

{ MULTIPLE I NOMULTIPLE }

1.3.7.2 Defaults - In the absence of an explicit choice of reference
value, the following value is assumed by default:

NOMULTIPLE

1.3.7.3 Semantics - The /CROSS-REFERENCE switch
reference-value may be given for the compilation.
has the fOllowing meaning:

indicates that a
The reference-value

Reference-Value

MULTIPLE

NOMULTIPLE

Meaning

Allow all multiple references (of the same
reference-type) to a symbol that occurs on the
same source line to be included in the
cross-reference listing.

Exclude from the cross-reference listing
multiple references to symbols that occur on the
same source line.

1.3.8 Environment Switches

Environment switches are used to specify the processor model and the
operating system of the target system for which code is to be
generated. Some examples of using the environment switches are as
follows:

• To generate code that uses instructions available only on a
KLIO processor, use the following command line:

BLISS>ALPHA/KLIO

1-18

TOPS-20 OPERATING PROCEDURES

The compiler reads the source from ALPHA.B36 or ALPHA.BLI and
creates an object file ALPHA.REL, which makes use of KLIO
instructions, such as ADJSP, to make stack adjustments and the
EXTEND instruction to· implement various character-handling
functions.

• To generate code that makes calls on the TOPS-20 monitor using
JSYS instructions, use the following command-line:

BLISS>ALPHA/TOPS20

If ALPHA contains the main routine of the program, the
compiler generates a RESET% JSYS before the call to the main
routines and a HALTF% JSYS immediately after the call to the
main routine.

1.3.8.1 Syntax - Environment-switch syntax is:

I
/KAlO I /KIIO I /KLIO I /KSIO).
/TOPSIO I /TOPS20 {
/EXTENDED I /NOEXTENDED (
/EXTENDED : SECTION-INDEPENDENT J

environment-switch

1.3.8.2 Defaults - If no environment switches are specified, the
following are assumed:

/KLIO /TOPS20 /NOEXTENDED

1.3.8.3 Semantics - Environment switches identify the target system
for which code is being generated. Environment switches have the
following meanings:

/KAlO

/KIIO

/KLIO

/KSIO

/TOPSIO

/TOPS20

/EXTENDED

Generate code that uses only the KAlO
instruction set; this code executes on
all processor models.

Generate code that uses only the KIlO
instruction set; this code executes on
KIlO, KLlO, and KSIO processor models.

Generate code that uses the KLIO
instruction set; this code executes on
KLIO and KSIO processor models.

Generate code that uses the KSIO
instruction set; this code executes on
the KIlO and KSIO processor models.

Generate code that makes calls to the
TOPS-IO monitor.

Generate code that makes calls to the
TOPS-20 monitor.

Give partial support for the extended
addressing option for the KLIO Model
B. This switch is valid only when the
/KLIO and /TOPS20 switches are
specified or implied.

1-19

TOPS-20 OPERATING PROCEDURES

/EXTENDED:SECTION-INDEPENDENT The same as /EXTENDED, except code is
generated that can be executed from
any section.

NOTE

A compiler-state-function is a lexical-function that
expands to a numeric-literal of 1 or 0 during
compilation to indicate whether a certain condition
exists. The %SWITCHES lexical-function can be tested
during compilation to determine the setting of one or
more environment switches. For example, the following
command line causes the %SWITCHES function to return
the indicated numeric-literal:

BLISS>ALPHA/KLlO/TOPSlO

%SWITCHES(KAlO) - 0
%SWITCHES(KIlO) - 0
%SWITCHES(KLlO) - 1
%SWITCHES(KSlO) - 1
%SWITCHES(TOPSlO) - 1
%SWITCHES(TOPS20) - 0

For additional information, refer to "Module-Switches"
in the BLISS Language Guide.

The preceding discussion also relates to the options of the same name
to the module-head switch ENVIRONMENT.

1.3.9 Placement of Switches

Some directions can be given to the compiler either by command-line
switches or by switch settings contained in the module being compiled.
In some cases, the command-line switch name is the same as the switch
name contained in the module (module switches and SWITCHES
declaration), and in other cases, it is similar but not identical.
Names of common switches are given in Table 1-1.

1.3.10 Switches and Default Module Switch Settings

The switches given in the command line alter the default settings
assumed for module switches. A switch setting given in the module
head overrides the corresponding switch given in the command-line; any
switch setting given for a switches-declaration overrides the setting
given in the module head.

Suppose you are compiling two programs. The first program ALPHA.BLI
has a module switch CODE. The second program BETA has no switches.
The bliss-command-line is as follows:

BLISS>/NOCODE ALPHA, BETA

The switch /NOCODE changes the initial default from /CODE to /NOCODE.
When the program ALPHA.BLI is compiled, code is produced because
ALPHA.BLI has the module head switch CODE, which overrides the default
setting. When the program BETA.BLI is compiled, no code is produced
because it takes its setting of that switch from the initial default
established in the command line.

1-20

TOPS-20 OPERATING PROCEDURES

Table 1-1: Command Line, Modul'e Switch, and SWITCH Names on TOPS-20

Command Line Name

/CHECK

/CODE

/CROSS-REFERENCE

/DEBUG

/EXTENDED{:ext-option}l

/ERRS

/FORMAT:ASSEMBLY

/FORMAT:BINARY

/FORMAT:COMMENTARY

/FORMAT:EXPAND

/FORMAT:LIBRARY

/FORMAT:OBJECT

/FORMAT:REQUIRE

/FORMAT:SOURCE

/FORMAT:SYMBOLIC

/FORMAT:TRACE

/KAIO

/KIIO

/KLIO

/KSIO

/MASTER-CROSS-REFERENCE

/OPTLEVEL:n

/SAFE

/TOPSIO

/TOPS20

/UNAMES

/ZIP

Module Switch Name

n/a

CODE

n/a

DEBUG

ENVIRONMENT(EXTENDED{:ext-option}l)

ERRS

LIST(ASSEMBLY)

LIST(BINARY)

LIST (COMMENTARY)

LIST(EXPAND)

LIST(LIBRARY)

LIST(OBJECT)

LIST(REQUIRE)

LIST(SOURCE)

LIST(SYMBOLIC)

LIST(TRACE)

ENVIRONMENT(KAIO)

ENVIRONMENT (KIlO)

ENVIRONMENT(KLIO)

ENVIRONMENT(KSIO)

n/a

OPTLEVEL=n

SAFE

ENVIRONMENT(TOPSIO)

ENVIRONMENT(TOPS20)

UNAMES

ZIP

SWITCHES Name

n/a

n/a

n/a

n/a

n/a

ERRS

LIST(ASSEMBLY)

LIST(BINARY)

LIST (COMMENTARY)

LIST(EXPAND)

LIST(LIBRARY)

LIST(OBJECT)

LIST(REQUIRE)

LIST(SOURCE)

LIST(SYMBOLIC)

LIST(TRACE)

n/a

n/a

n/a

n/a

n/a

n/a

SAFE

n/a

n/a

UNAMES

ZIP

1. The EXTENDED{:ext-option} implies EXTENDED:SECTION-INDEPENDENT for the
command-line and EXTENDED:SECTION INDEPENDENT for the module switch.

n/a (not applicable) indicates that no corresponding switch exists.

1-21

TOPS-20 OPEftATING PROCEDURES

1.3.11 Positive and Negative Forms of Switches

In general, two forms of a switch are allowed: a positive form and a
negative form. For example, /CODE (the positive form) directs the
compiler to generate code, and /NOCODE (the negative form) directs the
compiler to suppress code generation. positive and negative forms of
a switch are mutually exclusive: only one form for any switch should
be given in a b1iss-command-line.

1.3.12 Abbreviations of Switch and Value Names

The command switch names and value names can be abbreviated as long as
the COMND% JSYS can complete the command unambiguously. This is true
both for switches that can take values and switches that take no
value. (Refer to Appendix A for a summary of positive and negative
forms of switches and values.)

1.4 SPECIAL FEATURES

1.4.1 Indirect Files

An indirect file is a file referenced within a BLISS command line: it
is used to complete a BLISS command. The indirect file may contain a
complete or partial BLISS command line: for example, file names and
switch settings. You reference the file by specifying an "at sign"
(@) followed by the file-spec, the contents of which expand and
complete the command line. For example, if the file TTY.CMD contains
one line with the following switch settings:

/LISTING:TTY:/FORMAT:(NOBINARY,NOCOMMENTARY)/NOHEADER

and the following command, using the indirect file TTY.CMD to specify
the remainder of a command line, is issued:

BLISS>ALPHA@TTY.CMD

The compiler compiles ALPHA and sends the listing to
without the binary, commentary, and page headers.
convenient shorthand method of specifying a commonly
switches.

the terminal
This is a

used set of

For another example, assume that the file LIB.CMD contains the
following command line:

LIB1+LIB2+LIB3/LIBRARY:LIB.L36

and that a reference to the indirect file is specified in a BLISS
command line:

BLISS>@LIB.CMD

The compiler uses the concatenation of files LIB1, LIB2, and LIB3 as
input and produces a library file, LIB.L36.

1-22

TOPS-20 OPERATING PROCEDURES

1.4.2 EXEC Command

A b1iss-command-1ine may be specified on the same line as that of a
command invoking the compiler as follows:

@BLISS bliss-command-line

The compiler will be invoked, compile the specified file or files, and
then exit back to the EXEC. Command recognition, file specification
completion, and the question mark character features are not available
in this mode of operation.

1-23

CHAPTER 2

TOPS-IO OPERATING PROCEDURES

This chapter discusses the TOPS-IO operating procedures used to
compile a BLISS program. The form of the command line is considered
first. Then, the input to a BLISS-36 compilation is described and
illustrated. Finally, the command-line switches relevant to a
BLISS-36 compilation are given.

Compiling, linking, and executing a BLISS-36 program is a
straightforward procedure. In the simplest case, to compile and
execute a program that consists of a single module, you enter the
module in a file (for example ALPHA.B36) and then compile it with the
BLISS-36 compiler, link it using LINK, and then run the linked image.
The EXECUTE command automatically invokes LINK as follows:

.R BLISS
*ALPHA=ALPHA
*"C
.EXECUTE ALPHA

The first command invokes the BLISS compiler to compile the module in
the file ALPHA.B36 and to produce an object file ALPHA.REL. The
second command uses the object module in the file ALPHA.REL to produce
an executable image in memory and to execute the image.

To save the linked image, use the LOAD command and save the resulting
image as follows:

.R BLISS
*ALPHA=ALPHA
*"C
.LOAD ALPHA
.SAVE ALPHA

You can control the compiler by using command-line switches. These
switches add a level of complexity to the compilation process, but
they also provide a significant number of options by which you can
vary the performance of the compiler in the production of output, the
formatting of listings, and the degree of optimization performed.

2.1 COMPILING A BLISS PROGRAM

The BLISS compiler uses the standard TOPS-IO command interpreter,
SCAN, to parse the command line. As such, various features of command
line processing that are common to many programs and the TOPS-IO
monitor are also common to the BLISS compiler. Some of these include
formats for file specifications and common switches.

2-1

TOPS-IO OPERATING PROCEDURES

To compile a BLISS program, you run the BLISS compiler from the
command level and wait for the '*' prompt. (The simplest way to run
the BLISS compiler is to have the compiler, BLISS.EXE, reside on
logical device SYS~. For the remainder of this chapter, it is assumed
that you have invoked the compiler by typing 'R BLISS' in monitor
mode.) You then provide a source-file list, an optional
output-file-list, and the number of switches desired; some examples
are given in the following list:

• To compile a program, give the following command:

*MYPROG=MYPROG

The BLISS compiler uses the file MYPROG.B36 or MYPROG.BLI as
its input, compiles the source in that file, and produces
object file MYPROG.REL.

• To produce a listing file, specify the listing file as
follows:

*MYPROG,MYPROG=MYPROG

The BLISS compiler produces, in addition to the object file,
listing file MYPROG.LST.

• To produce an object file with a name different from that of
the source file, give the name in the command as follows:

*GAMMA=ALPHA

The BLISS compiler produces the object file GAMMA.REL.

• To produce a library file instead of an object file,
command switch /LIBRARY as shown in the following:

use the

*ALPHA=ALPHA/LIBRARY

The BLISS compiler compiles input file ALPHA.R36 and produces
library file ALPHA.L36.

• To compile a program that consists of several pieces, each in
a separate file, include all file names on the command line

*ALPHA=ALPHA,BETA,GAMMA

The BLISS compiler compiles the program
concatenation of ALPHA.B36, BETA.B36, and
produces the single object file ALPHA.REL.

NOTE

formed by
GAMMA.B36,

The TOPS-lO EXEC does not support BLISS-36 in
COMPIL-class commands. Therefore, the command

.EXECUTE ALPHA.BLI

will not compile and execute ALPHA as a
BLISS-36 module. However, it will attempt to
use BLISS-lO to compile ALPHA.BLI.

2-2

the
and

TOPS-I0 OPERATING PROCEDURES

2.1.1 Command-Line Syntax

bliss-command-line (output-file-list} =
source-file-list (switch ... }

source-file-list source-file-spec, ...

output-file-list

source-file-spec }
object-file-spec
listing-file-spec
master-cref-spec

file-spec

switch

2.1.2 Command-Line Semantics

{

Object-file-spec , ... }
,listing-file-spec , .. .
,master-cref-spec

file-spec

See Section 2.2

See Section 2.4

The BLISS-36 compiler uses any switches given in the
bliss-command-line to modify the initial defaults for each
compilation. Then, the concatenated input is compiled in the context
of the initial defaults. The switches and the initial default for
each switch are described in Section 2.4.

Unless a switch is used to change the compiler's behavior, the output
compilation initiated from your terminal (or batch file) will consist
of an object file (if specified), a listing file (if specified), and a
terminal listing.

The compiler begins with the first file given and continues until an
end-of-file is reached. The compiler continues reading input from the
next file specified, and so on, until all the files in the source file
list are used.

2.2 FILE SPECIFICATIONS

File specifications are used to name the source of program text to be
compiled and the destination of output from the compilation. More
precisely, file specifications can occur in three contexts:

• The source-file-list of a bliss-command-line

• REQUIRE and LIBRARY declarations in the module being compiled

• The OTS module switch

2-3

TOPS-10 OPERATING PROCEDURES

2.2.1 Syntax

The standard TOPS-IO file specification is:

file-spec { device:} file-name { .extension } { [ppn] }

device

file-name

extension

ppn

2.2.2 Semantics

any logical or physical device name
of 1 to 6 alphanumeric characters

1 to 6 alphanumeric characters

o to 3 alphanumeric characters

project-number,programmer-number

A file specification is interpreted as follows:

1. If an extension is not given a default extension is used, as
described in the next section~

2. If the file-spec applies to an output file and a file name is
not given, the name of the first input file in the
source-file-list is used.

This same interpretation is also used by the compiler when processing
the file specification given in a REQUIRE or LIBRARY declaration.

The file-spec must be fully specified in the OTS module switch.
is, no defaults are supplied by the compiler.

2.2.3 Default Extension

That

The compiler has two ordered lists of default extensions to
for a source-file-spec that does not include an extension.
that the compiler applies depends on the output specified
compilation, as indicated in the following list:

be tried
The list
for the

File Use

Input-spec used to
produce an object module

Input-spec used to
produce a library file

Default Extension List

.B36, .BLI

.R36, .REQ, .B36, .BLI

If the program being compiled contains a REQUIRE or LIBRARY
declaration, the compiler uses the following list to search for the
appropriate extension according to the type of declaration:

File Use

File given in a
REQUIRE declaration

File given in a
Library declaration

2-4

Default Extension List

.R36, .REQ, .B36, .BLI

.L36

TOPS-IO OPERATING PROCEDURES

For example, suppose you have entered the following program in the
file ALPHA.BLI:

MODULE MYTEST
BEGIN
REQUIRE 'CBLISS':
IJIBRARY 'TBLISS':

END
ELUDOM

And, suppose further that you compile it as follows:

*ALPHA=ALPHA

Since the bliss-command-line shown does not contain a switch
requesting the production of a library file, the output of the
compilation is an object module. The compiler, therefore, chooses the
list of default extensions associated with object module output and
searches first for ALPHA.B36, then, not finding that file, for
ALPHA.BLI, which it finds and compiles. In processing the module
MYTEST in that file, the compiler encounters the REQUIRE declaration
for the file CBLISS. Since an extension for CBLISS is not given, the
compiler uses the list of default extensions for files in a REQUIRE
declaration and searches for CBLISS.R36, then CBLISS.REQ, then
CBLISS.B36, and finally CBLISS.BLI. When the compiler processes the
LIBRARY declaration, it uses the default extensions list associated
with library declarations and searches for TBLISS.L36.

2.3 OUTPUT SPECIFICATIONS

An output specification is used to indicate the type of output to be
produced from a BLISS-36 compilation and to give names for the files
to be produced when you do not want to use the default names. There
are two ways of specifying output specifications to the compiler. The
first is to specify an object or list file specification in the
bliss-command-line. The second is to specify both an object file
specification and the /LIBRARY switch, in which case the compiler
creates a library file, rather than an object file. Thus, the syntax
for the output-specification could appear as follows:

output-spec

file-spec-list

{
library-spec }
file-;-spec-list
nothlng

{

object-spec ,... }
,list-spec , ...
,master-cref-spec

{library-switch

Some examples of ways to give output specifications to the compiler
are given in the following list:

• To suppress the production of an object file, omit the object
file specification as follows:

*=ALPHA

The BLISS-36 compiler reads the source file ALPHA.B36 but
produces no output files. However, error messages and summary
information are produced at the terminal.

2-5

TOPS-I0 OPERATING PROCEDURES

• To obtain a list file, give a listing file specification:

*ALPHA,ALPHA=ALPHA

The BLISS-36 compiler produces an object file ALPHA.REL and a
list file ALPHA. LST.

• To use a different name for the object or list files, use the
following command line:

*BETA,GAMMA=ALPHA

The compiler reads the source file ALPHA.B36 and produces the
object file BETA.REL and the list file GAMMA. LST.

• To produce a master cross-reference data file, use the master
cross-reference file specification:

*"MASTER=ALPHA

The compiler reads the source file ALPHA.B36 and produces the
master cross-reference data file MASTER.CRF.

• To produce a library file rather than an object file use the
/LIBRARY switch, as follows:

* ALPHA=ALPHA/LI BRARY

The compiler reads the source file ALPHA.B36 and produces the
library file ALPHA.L36.

2.4 COMMAND-LINE SWITCHES

The switches in the command line allow you to give the compiler
information about the status of the compilation. A library switch,
for example, tells the compiler something about the kind of output you
want from the compilation. An optimization switch describes the
amount and type of optimization to be performed. A source-list switch
indicates the switch of the source part of the output, and so on. The
kinds of switches are indicated in the following syntax:

switch

2.4.1 Library Switches

library-switch
general-switch
check-switch
terminal-switch
optimization-switch
listing-switch
reference-switch
environment-switch

Library switches are used to indicate whether an object spec refers to
an object file or to a library file. The object-spec can specify
either a program's object file or a library file, but not both. The
/LIBRARY switch is used to specify that the object-spec refers to a
library file.

2-6

TOPS-10 OPERATING PROCEDURES

2.4.1.1 Syntax - Library-switch syntax is:

library-switch {/LIBRARY /NOLIBRARY

2.4.1.2 Defaults - If no output-specification is specified, the
follo\\ring is assumed:

'Ie', , =source-file-spec/NOLIBRARY

Both t~he commas and equals sign are unnecessary if the object-spec,
list-spec, and master-cref-spec are omitted. The equals sign is
required but the commas are not, if only the object-spec is specified.
However, both are required if the list-spec and/or the
master-cref-spec is specified.

No object file is produced if the object-spec is omitted. No listing
file is produced if the list-spec is omitted. And no master
cross-reference data file is produced if the master-cref-spec is
omitted. /NOLIBRARY is assumed if the library switch is omitted.

If the file type is omitted from a file-spec, the following file-type
defaults are supplied, according to the file-designator:

File-Designator

object-spec/NOLIBRARY

object-spec/LIBRARY

list-spec

master-cref-spec

2.4.2 General Switches

Default Extension

.REL

.L36

.LST

.CRF

General switches are used to specify code and debug information and to
set t.he value for the lexical function %VARIANT. Some examples of
using general switches follow:

• To include the necessary debug linkage in the compiled
program, use the /DEBUG switch in the bliss-compilation:

*ALPHA=ALPHA/DEBUG

The compiler reads the source from ALPHA.BLI and creates an
object file ALPHA.REL, which includes additional code for
interface with SIXl2.

• To check the syntax of a program you do not intend to execute,
use the /NOCODE switch to save compilation time, as follows:

*=ALPHA/NOCODE

• To set the value of the lexical function %VARIANT to 17, use
the /VARIANT switch as follows:

*ALPHA=ALPHA/VARIANT:l7

• To limit the number of errors diagnosed to 10, use the /ERRLIM
switch as follows:

*ALPHA=ALPHA/ERRLIM:IO

2-7

TOPS-lO OPERATING PROCEDURES

2.4.2.1 Syntax - General-switch syntax is:

general-switch l/DEBUG I /NODEBUG}
/CODE I /NOCODE
/VARIANT {:value}
/ERRLIM {:value}

2.4.2.2 Defaults - If no general switches
following are assumed:

are

/NODEBUG /CODE /VARIANT:O /ERRLIM:30

specified, the

The compiler produces code, does not include the additional debugging
information in the object file, and sets the value of %VARIANT to O.

If the general switch /VARIANT is given without a specified value, a
value of 1 is assumed.

If the general switch /ERRLIM is given without a specified value, a
value of 1 is assumed.

2.4.2.3 Semantics - General switches perform the following functions:

/DEBUG Generate debugging linkage and limit optimization so
that SIX12 optimizations may be effectively used.
Also, include symbolic information in the object file
produced.

/NODEBUG Produce symbolic information but no debug linkage, and
do not limit optimizations (required for the effective
use of SIX12).

/CODE Generate object code for the BLISS source module.

/NOCODE Perform only a syntax check of the program.

/VARIANT Set %VARIANT to 1.

/VARIANT:n

/ERRLIM

/ERRLIM:n

Set %VARIANT to n, where n is a decimal integer in the
range:

-(2**35) ~ n ~ (2**35)-1

Set limit to 1.

Limit to n the number of errors diagnosed before
terminating the compilation.

2.4.3 Check Switch

The check switch controls the level of semantic checking done during
compilation. The switch allows all legal BLISS syntax to be examined
for semantic irregularites. Some examples of the use of the check
switch are as follows:

• To suppress field-name checking on structure accesses if the
data-segment declaration has no field-attribute, use the check
qualifier as follows:

*ALPHA=ALPHA/CHECK:NOFIELD

2-8

TOPS-10 OPERATING PROCEDURES

• To check for the use of un~nitialized storage, use the check
qualifier as follows:

*ALPHA=ALPHA/CHECK:INITIAL

2.4.3.1 Syntax - Check switch syntax is defined as follows:

check switch

check-value

/CHECK: {
(check-value ,...)}
check-value

FIELD
INITIAL
OPTIMIZE
REDECLARE

NOFIELD !
NOINITIAL
NOOPTIMIZE
NOREDECLARE

2.4.3.2 Defaults - In the absence of a specific choice of
check-value, the following values are assumed by default:

FIELD INITIAL OPTIMIZE NOREDECLARE

2.4.3.3 Semantics - The /CHECK switch indicates that one or more
check-values follow. The check-values have the following meanings:

Check-Value

FIELD

NOFIELD

INITIAL

NOINITIAL

OPTIMIZE

NOOPTIMIZE

REDECLARE

NOREDECLARE

Meaning

Do not suppress field-name checking.

If the data-segment declaration has no
field-attribute, suppress field-name checking on
the structure accesses.

Check for the use of uninitialized storage.

Do not check for uninitialized storage.

Check for suspicious optimizations. For example,
constant folding expressions of a form that is
always false, such as:

.X<O,8,l> EQL %X'FF '

Do not check for suspicious optimizations.

Check for the redeclaration of a name within a
nested scope.

Do not check for the redeclaration of a name.

2.4.4 Terminal Switches

Terminal switches are used to control the output that is sent to the
terminal. You can have errors or statistics printed or not printed on

2-9

TOPS-10 OPERATING PROCEDURES

the terminal during the compilation of a BLISS program. Some examples
of using terminal switches follow:

• To see the statistics for each routine as they are produced
during the compilation, use the /STATISTICS switch, as
follows:

*ALPHA=ALPHA/STATISTICS

• To suppress error messages, use the /NOERRS switch.
example, consider the following:

*ALPHA=ALPHA/ST/NOERRS

As an

Note that the /STATISTICS switch is abbreviated to /ST in the
above example.

/NOERRS is useful in preventing a profusion of error messages
from being listed on the terminal when a listing is requested.

2.4.4.1 Syntax - Terminal-switch syntax is:

terminal-switch

2.4.4.2 Defaults - If no
following are assumed:

/ERRS /NOSTATISTICS

Errors are reported on the
statistics are suppressed.

{
/ERRS
/STATISTICS

terminal switches

terminal during

/NOERRS }
/NOSTATISTICS

are specified, the

the compilation, but

2.4.4.3 Semantics - Terminal
functions:

switches perform the following

Switch

/ERRS

/NOERRS

/STATISTICS

/NOSTATISTICS

Meaning

List each error on the terminal as
encountered in the compilation.

Do not list errors on the terminal.

it is

List the name and size of each routine on the
terminal after each routine is compiled.

Do not list routine names and sizes.

2.4.5 Optimization Switches

Optimization switches are used to supply directions to
about the degree and type of optimization wanted,
assertions about the program so that the compiler can

2-10

the compiler
and to make
select the

TOPS-IO OPERATING PROCEDURES

appropriate optimization strategies.
optimization switches are as follows:

Some examples of using

• To increase the compilation speed by omitting some standard
optimizations, use the /QUICK switch in the command line, as
follows:

*ALPHA=ALPHA/QUICK

• To get minimum optimization, use the /OPTLEVEL switch with the
value 0, as follows:

*ALPHA=ALPHA/OPTLEVEL:O

• To obtain maximum optimization, use the /OPTLEVEL switch with
the value 3, as follows:

*ALPHA=ALPHA/OPTLEVEL:3

• To direct the compiler to use techniques that may use more
storage for the program to increase its operating speed, give
the /ZIP switch, as follows:

*ALPHA=ALPHA/ZIP

• To inform the compiler that the program uses pointers to
manipulate named data, use the /NOSAFE switch, as follows:

*ALPHA=ALPHA/NOSAFE

A detailed discussion of the optimizations resulting from the use of
the optimization switches is given in Chapter 8.

2.4.5.1 Syntax - Optimization-switch syntax is:

optimization-switch

optlevel-switch

optimization-level

safe-switch

zip-switch

quick-switch

{

Optlevel-switch}
safe-switch
zip-switch
quick-switch

/OPTLEVEL : optimization-level

o 1 2 3

/SAFE /NOSAFE

/ZIP /NOZIP }

/QUICK /NOQUICK

2.4.5.2 Defaults - If no optimization switches are specified, the
following are assumed:

/NOQUICK /NOZIP /OPTLEVEL:2 /SAFE

The compiler is directed to perform normal optimization, balancing the
time/space trade-off in favor of space, to assume that all variables
are addressed by name, to perform optimization across mark points, and
to perform flow analysis. (See Section 8.1.2.)

2-11

TOPS-IO OPERATING PROCEDURES

2.4.5.3 Semantics - The optimization switches indicate that one or
more optimize options are specified. The optimize switches have the
following meanings:

Optimize-Value Meaning

/QUICK

/NOQUICK

/ZIP

/NOZIP

/OPTLEVEL:n

Omit some standard optimizations to increase the
compilation speed.

Include standard optimizations.

Increase the execution efficiency of
being compiled by using more
appropriate. For more information on
of this value, see Section 8.1.4.

the program
space where
the effect

Do not increase the space occupied by the program
to improve its operating speed. For more
information on the effect of this value, see
Section 8.1.2.2.

Optimize the program being compiled according to
the optimize-level n, as follows:

Optimize-Level

o
1
2
3

Meaning

Minimum optimization
Subnormal optimization
Normal optimization
Maximum optimization

n=3 optimizes speed at the expense of space in the
same way as /ZIP. For more information on the
effect of this value, see Section 8.1.2.

/SAFE Assume that all named data-segments are referenced
by name and not manipulated in any way indirectly,
and use optimization techniques that exploit this
fact. For more information on the effect of this
value, see Section 8.1.2.1.

/NOSAFE Assume that sometimes a named data-segment is
referenced by means of a computed expression and,
therefore, some optimization techniques cannot be
used.

2.4.6 Listing Switches

Listing switches are used to supply information about the form of the
source code on the output listing. Some examples of using the listing
switches are as follows:

• To obtain a paged listing with 44 lines on each page, give the
following listing switch:

*,ALPHA=ALPHA/PAGSIZ:44

• To obtain an unpaged listing in which the macro expansions are
given but header information is not, use the following
switches:

*,ALPHA=ALPHA/LIST:EXPAND/NOHEADER

2-12

TOPS-10 OPERATING PROCEDURES

• To obtain a listing that contains the contents of the REQUIRE
files given in REQUIRE declarations, use the following
switches:

* ,ALPHA=ALPHA/LIST: REQUIRE

• To obtain an output listing that is intended to
by the MACRO assembler, use the ASSEMBLY option,

be assembled
as follows:

*,ALPHA=ALPHA/LIST:ASSEMBLY

• To obtain a listing that is intended to be assembled and that
does not contain binary, include the NOBINARY option:

*,ALPHA=ALPHA/LIST:{ASSEMBLY,NOBINARY)

The form of the output listing is described in Section 3.2.

2.4.6.1 Syntax - Listing-switch syntax is:

I/PAGSIZ: number-of-lines }
/HEADER I /NOHEADER
/UNAMES I /NOUNAMES
/LIST : format-aptian-list

listing-switch

number-of-lines 20 21 22 ... I 52

format-aptian-list
{(option,

option
)}

ASSEMBLY NOASSEMBLY
BINARY NOBINARY
COMMENTARY NOCOMMENTARY
EXPAND NOEXPAND

option LIBRARY NOLIBRARY
OBJECT NOOBJECT
REQUIRE NOREQUIRE
SOURCE NOSOURCE
SYMBOLIC NOSYMBOLIC
TRACE NOT RACE

2.4.6.2 Defaults - If no listing switches
following are assumed:

are specified,

/PAGSIZ:52 /NOUNAMES /NOHEADER
/LIST:(NOASSEMBLY,BINARY,COMMENTARY,NOEXPAND,NOLIBRARY,

OBJECT,NOREQUIRE,SOURCE,SYMBOLIC,NOTRACE)

the

The compiler produces a listing, with 52 lines on each page, in which
no expansion or tracing is included. The listing resembles a typical
macro source file.

2.4.6.3 Semantics - Listing switches indicate that one or more
listing options are given for the compilation. The source-values have
the following meanings:

Source-Value

/HEADER

Meaning

Page the listing produced on the list file and
include a heading on each page.

2-13

TOPS-IO OPERATING PROCEDURES

Source-Value Meaning

/NOHEADER Do not page the listing, do not include headings,
and do not produce statistics in the compilation
summary.

/PAGSIZ:lines Use the number of lines specified for each page of
the list file. The number of lines must lie in
the range: 20 < lines < 52.

/UNAMES Replace names by machine-generated names so that
all names are-unique and independent of scope; the
resulting listing can thus be correctly assembled.

/NOUNAMES

/LIST:

Do not replace names by unique names.

One (or more in parentheses) of the following
options:

LIBRARY

Produce a trace in the listing file identifying the library after
a LIBRARY declaration and the first use of each name whose
definition is obtained from a library file. For an example of a
library trace, see Section 3.2.4.2.

NOLIBRARY

Do not produce a trace identifying any libraries and their
contributions.

REQUIRE

Include the contents of the specified file in the listing file.
For an example, see Section 3.2.4.2.

NOREQUIRE

Exclude the REQUIRE file contents from the listing.

EXPAND

Include the expansion of each macro call in the listing file.
For an example of a macro expansion, see Section 3.2.4.3.

NOEXPAND

TRACE

Do not include the expansion of macros.

Include a trace of each macro expansion. That is, include the
parameter binding and any intermediate forms of expansion, as
well as the result of the expansion. For an example of a macro
trace, see Section 3.2.4.4.

NOTRACE

Do not include a trace of macro expansions.

SOURCE

Increment the listing control counter.
listing control counter is positive
counter is zero or negative.

2-14

Output is listed when the
and not listed when the

TOPS-IO OPERATING PROCEDURES

NOSOURCE

Decrement the listing control counter.

OBJECT

Produce the object part of the output listing.

NOOBJECT

Suppress the object part of the output listing.

ASSEMBLY

Produce a listing that can be assembled, by listing the assembler
instructions produced as a result of compiling the BLISS program
and including all other information within comments.

NOASSEMBLY

Do not list the assembler instructions.

SYMBOLIC

Include a machine code listing that uses names from the BLISS
source program.

NOSYMBOLIC

Do not include a machine code listing that uses source program
names.

COMMENTARY

Include a machine-generated commentary in the
listing. At this time, the machine-generated
limited to a cross-reference.

NOCOMMENTARY

object code
commentary is

Do not include a commentary field in the object code listing.

BINARY

Include a listing of the binary for each instruction in the
object code listing.

NOB I NARY

Do not include a listing of the binary.

Each listing switch is described and illustrated in Section 3.2.2 in
connection with the discussion of the output listing produced by a
BLISS compilation. Understanding the purpose of these listing
switches requires knowledge of the format and purpose of the output
listing, as discussed in that section.

2.4.7 Reference Switches

The reference switches allow a cross-reference listing to be included
with t~he compiler listing. Further, a master cross-reference data
file can be created (refer to Section 2.3) to produce a master

2-15

TOPS-10 OPERATING PROCEDURES

cross-reference listing (refer
program BCREF in Section 9.3).
switches are as follows:

to master cross-reference utility
Some examples of using the reference

• To have a cross-reference listing included with the normal
source compiler listing, use the /CREF switch in the command
line as follows:

*,ALPHA=ALPHA/LIST/CREF

The compiler produces list file ALPHA.LST to
cross-reference listing is appended.

which a

• To have only a cross-reference listing produced (without the
normal source compiler listing), use the following:

*,ALPHA=ALPHA/LIST:(NOSOURCE,NOOBJECT}/CREF

The compiler produces list file ALPHA.LST, which contains only
the cross-reference listing.

• To create only a master cross-reference data file,
master cross-reference file specification:

use the

•

* , , ALPHA=ALPHA

The compiler produces master cross-reference
ALPHA.CRF.

data file

To produce a compiler listing that includes a
listing and a master cross-reference data
fOllowing:

*,ALPHA,ALPHA=ALPHA/CREF

The compiler produces list file ALPHA.LST,
cross-reference listing is appended,
cross-reference data file ALPHA.CRF.

cross-reference
file, use the

to which a
and master

• To produce a listing with cross-references that include
multiple references to the same type symbol occurring on the
same source line, use the following:

*,ALPHA=ALPHA/CREF:MULTIPLE

The compiler produces list file ALPHA.LST, to which a
cross-reference listing is appended that includes multiple
references to the same symbol.

2.4.7.1 Syntax - Reference qualifier syntax is defined as follows:

reference-switch

reference-value

{
{ (reference-value , ...) J.}

/CREF :{ reference-value}

MULTIPLE I NOMULTIPLE }

2.4.7.2 Defaults - In the absence of an explicit choice of reference
value, the following value is assumed by default:

NOMULTIPLE

2-16

TOPS-IO OPERATING PROCEDURES

2.4.7.3 Semantics - The /CREF switch indicates that cross-references
are to be included in the listing and that zero or one reference-value
will be given for the compilation. The reference-value have the
following meanings:

Reference-Value Meaning

MULTIPLE Allow all multiple references (of the same
reference-type) to a symbol occurring on the
same source line, to be included in the
cross-reference listing.

NOMULTIPLE Exclude from the cross-reference listing all
multiple references to a symbol occurring on the
same source line.

2.4.8 Environment Switches

Environment switches are used to specify the processor model
operating system of the target system for which code
generated. Some examples of using environment switches
follows:

and the
is to be
are as

• To generate code that uses instructions available only on a
KL10 processor, use the following command line:

*ALPHA=ALPHA/KLlO

from ALPHA.BLI and creates
file makes use of KL10
makes stack adjustments)

various character-handling

The compiler reads the source
object file ALPHA.RELj this
instructions, such as ADJSP (which
and EXTEND (which implements
functions) .

• To generate code that makes calls on the TOPS-20 monitor using
JSYS instructions, use the following command line:

*ALPHA=ALPHA/TOPS20

If ALPHA contains the main routine of the program,
compiler generates a RESET% JSYS before the call to the
routine and a HALTF% JSYS immediately after the call to
main routine.

2.4.8.1 Syntax - Environment switch syntax is:

environment-switch {
/KAlO I /KI10 I /KL10 I /KS10}

/TOPS10 I /TOPS20

the
main
the

2.4.8.2 Defaults - If no environment switches are specified, the
following are assumed:

/KA10 /TOPS10

2-17

TOPS-IO OPERATING PROCEDURES

2.4.8.3 Semantics - Environment switches identify the target system
for which code is being generated. Environment switches have the
following meanings:

/KAIO

/KIlO

/KLlO

/KSlO

/TOPSlO

/TOPS20

Generate code that uses only the KAIO ins"truction
set; this code executes on all processing models.

Generate code that uses only the KIlO instruction
set; this code executes on KIlO and KLlO processor
models.

Generate code that uses the KLlO instruction set;
this code executes on KLlO and KSlO processor
models.

Generate code that uses the KSlO instruction set;
this code executes on a KSlO processor models.

Generate code that makes calls to the TOPS-lO
monitor.

Generate code that makes calls to the TOPS-20
monitor.

NOTE

A compiler-state-function is a lexical-function that
expands to a numeric-literal of 1 or 0 during
compilation to indicate" whether a certain condition
exists. The %SWITCHES lexical-function can be tested
during compilation to determine the setting of one or
more environment switches. For example, the following
command line causes the %SWITCHES function to return
the indicated numeric-literal:

*ALPHA=ALPHA/KLlO/TOPSlO

%SWITCHES(KAlO) - 0
%SWITCHES(KIlO) - 0
%SWITCHES(KLlO) - 1
%SWITCHES(KS19) - 0
%SWITCHES(TOPSlO) - 1
%SWITCHES(TOPS20) - 0

For additional information, refer to "Module-Switches"
in the BLISS Language Guide.

2.4.9 Placement of Switches

Some directions can be given to the compiler either by command line
switches or by switch settings contained in the module being compiled.
The command line switch name is in some cases the same as the switch
name contained in the module (module switches and SWITCHES
declaration) and in other cases similar but not identical. The names
for the common switches are given in Table 2-1.

2.4.10 Switches and Default Settings

Command-line switches alter default" settings assumed for module
switches. A switch setting in the module head overrides the
corresponding switch given in the command line. A switch setting for
a switches-declaration overrides the setting given in the module head.

2-18

TOPS-lO OPERATING PROCEDURES

Suppose you are compiling two programs. The first program ALPHA.BLI
has a module switch CODE. The second program BETA has no switches.
The bliss-command-line is as follows:

*=:ALPHA,BETA/NOCODE

The switch /NOCODE changes the initial default from /CODE to /NOCODE.
When t.he program ALPHA. BLI is compiled, code is produced because
ALPHA.BLI has the module head switch CODE, which overrides the default
setting. When the module BETA.BLI is compiled, no code is produced
because it takes its setting of that switch from the initial default
established in the command line.

Table 2-1: Command Line, Module Switch, and SWITCH Names on TOPS-10

Command Line Module Switch
Name Name SWITCHES Name

/CHECK n/a n/a

/CODE CODE n/a

/CREF n/a n/a

/DEBUG DEBUG n/a

/ERRS ERRS ERRS

/LIST:ASSEMBLY LIST (ASSEMBLY) LIST (ASSEMBLY)

/LIST:BINARY LIST(BINARY) LIST(BINARY)

/L,IST: COMMENTARY LIST (COMMENTARY) LIST (COMMENTARY)

/LIST:EXPAND LIST (EXPAND) LIST (EXPAND)

/LIST:LIBRARY LIST(LIBRARY) LIST{LIBRARY)

/LIST:OBJECT LIST{OBJECT) LIST(OBJECT)

/LIST:REQUIRE LIST(REQUIRE) LIST{REQUIRE)

/LIST:SOURCE LIST(SOURCE) LIST(SOURCE)

/LIST:SYMBOLIC LIST{SYMBOLIC) LIST{SYMBOLIC)

/LIST:TRACE LIST{TRACE) LIST(TRACE)

/OPTLEVEL:n OPTLEVEL:n n/a

/SAFE SAFE SAFE

/UNAMES UNAMES UNAMES

/ZIP ZIP ZIP

n/a (not applicable) indicates that no corresponding switch
exists.

2-19

TOPS-10 OPERATING PROCEDURES

2.4.11 positive and Negative Forms of Switches

In general, two forms of a switch are allowed: a positive form and a
negative form. For example, /CODE (the positive form) directs the
compiler to generate code and /NOCODE (the negative form) directs the
compiler to suppress code generation.

The positive and negative forms of a switch are mutually exclusive;
only one form for any switch should be given in a bliss-command-line.

2.4.12 Abbreviations

The command switch names and value names can be abbreviated as long as
SCAN can recognize the command unambiguously. This is true both for
switches that can take values and switches that take no value.

2.5 SPECIAL FEATURES

2.5.1 Indirect Files

An indirect file is a file referenced within a BLISS command line; it
is used to complete a BLISS command. The indirect file may contain a
complete or partial BLISS command line: for example, filenames and
switch settings. You reference the file by specifying an "at sign"
(@) followed by the file-spec, the contents of which expands and
complete the command line.

For example, assume the file MYPROG.CCL contains the following command
lines:

LIB.L36=LIBl,LIB2,LIB3/LIBRARY
MYPROG=MYPROG

and that you issue the following command, using the indirect file
MYPROG.CCL to specify command lines to be read:

*@MYPROG.CCL

The compiler produces library file LIB.L36 from the concatenation of
source files LIBl, LIB2, and LIB3, compiles indirect file MYPROG,
produces object file MYPROG.REL, ~nd prompts again with an asterisk.

2.5.2 Option File

An option file named DSK:SWITCH.INI may reside in your logged in disk
area; in it, you can set switches for use with various programs.
These switches allow you to override system defaults for individual
programs. The BLISS compiler is such a program.

The syntax of the lines in the option file for BLISS is as follows:

BLISS switch

or

BLISS:option-name switch

where option-name is a 1- to 6-character name.

2-20

TOPS-IO OPERATING PROCEDURES

For example, suppose that option file SWITCH.INI contains the lines:

BLISS /STATISTICS/DEBUG
BLIS16 /STATISTICS/DEBUG
BLISS:TERM /LIST:(NOBINARY,NOCOMMENTARY)/NOHEADER

The following command would cause the first line to be read; this sets
the STATISTICS and DEBUG switches to be on as a default.

*ALPHA=ALPHA

The compiler compiles ALPHA, produces debug code, and prints routine
names and sizes on the terminal.

Note that the BLISS-36 compiler looks for BLISS, while the BLISS-16
compiler looks for BLIS16.

To suppress debug code, type:

* J\LPHA=ALPHA/NODEBUG

To suppress both statistics and debug code, type:

*ALPHA=ALPHA/NOSTATISTICS/NODEBUG

or

*ALPHA=ALPHA/NOOPTION

Specifying the /NOOPTION switch prevents the compiler from reading the
SWITCH.INI file.

Given the following command, the compiler ignores the first BLISS line
in the option file and reads only the second:

*,TTY:=ALPHA/OPTIONS:TERM

The compiler compiles ALPHA and sends the listing to the terminal.
The listing would contain no binary, commentary, or page headers.

2-21

CHAPTER 3

COMPILER OUTPUT

This chapter discusses compiler output, starting with terminal output,
followed by list file considerations, and finally error messages.

The input to a BLISS compilation is a BLISS program. As an example
consider the following module: It contains two OWN declarations and
three ROUTINE declarations. The routine IFACT computes the factorial
of its argument by an iterative method. The routine RFACT computes
the factorial of its argument by a recursive method. The routine
MAINPROG provides some test calls on IFACT and RFACT. Factorial
routines are discussed in Chapter 12 of the BLISS Language Guide.

MODULE TESTFACT (MAIN = MAINPROG)
BEGIN

OWN
A,
B~

ROUTINE IFACT (N)
BEGIN
LOCAL

RESULT~

RESULT = l~
INCR I FROM 2 TO .N DO

RESULT = .REULT*.I~
. RESULT
END~

ROUTINE RFACT (N)
IF .N GTR 1
THEN

.N*RFACT (.N - 1)
ELSE

1· I

ROUTINE MAINPROG :NOVALUE
BEGIN
A = IFACT (5)~
B = RFACT (5)~
ENDi

END
ELUDOM

This module is used in the following sections to illustrate various
BLISS compilation output listings. Two coding errors (missing equal
sign after the module-head and misspelled data-name) are included to
illustrate the error-reporting facility of BLISS.

3-1

COMPILER OUTPUT

3.1 TERMINAL OUTPUT

The compiler produces three kinds of information on the terminal:
error messages, statistics, and a compilation summary. You can
request or suppress error messages and statistics by using a /ERRS or
/STATISTICS terminal-switch in the command line. (Refer to Section
1.) By default, error messages are reported during compilation, but
statistics are suppressed. A compilation summary is always produced
on the terminal when the compilation ends.

Error messages show the source program line associated with the error
followed by a description of the error. The statistics show the name
of each routine declaration in the module and the number of data words
associated with that declaration. The compilation summary gives the
number of warning and error messages, the number of words of code and
data used by the program, the run time and the elapsed time required
for the compilation, the number of lines and lexemes processed per CPU
minute, and the number of pages of memory required for the
compilation.

The last line of the terminal output indicates whether the compilation
produced an object file or a library file. If an object file is
produced, the last line is:

; Compilation Complete

If a library file is produced, the last line is:

; Library Precompilation Complete

Consider the terminal output for the sample module TESTFACT contained
in the file MYPROG.BLI. To obtain all three kinds of information, the
module is compiled by one of the following bliss-command-lines:

=>20
BLISS>MYPROG/STATISTICS

=>10
*MYPROG=MYPROG/STATISTICS

The /STATISTICS switch is used so that all three types of output are
sent to the terminal. The terminal output is as follows:

0002 0
% WARN#048

BEGIN
1 Ll:0002

Syntax error in module head
0014 2 RESULT = .REULT*.I;

% WARN#OOO 1 Ll: 0014
Undeclared name: REULT

IFACT 9
RFACT 14
MAINPROG 9
.MAIN. 16

Information: 0
Warnings: 2
Errors: 0
Size: 48 code + 2050 data words
Run time: 00:00.6
Elapsed time: 00:01.0
Lines/CPU Min: 3356
Lexemes/CPU-Min: 13426
Memory used: 3 pages
Compilation Complete

3-2

COMPILER OUTPUT

This ·terminal output for compiling MYPROG includes two warnings, which
are described in the following sections. statistics follow the
warnings and show the number of data words required for each routine.
The example module TESTFACT contains three routine declarations:
IFACT, RFACT, and MAINPROG. IFACT uses 9 words; RFACT uses 14 words;
MAINPROG uses 9 words. Each main program is called by a small
predefined routine (.MAIN.), which is called by the operating system;
it requires 16 words.

The compilation summary shows that the compilation of TESTFACT
required 0.6 second of processor time and 1.0 second of elapsed time
to compile; moreover, 3356 source lines comprising 13426 lexemes were
processed per CPU minute. The compilation required three pages of
memory, exclusive of the memory required for the compiler itself.

3.2 OUTPUT LISTING

The output listing produced as a result of a BLISS compilation can be
output on any suitable display device. It consists of source listings
(including any error messages), optional object listings (as specified
through command-line switches), and a compilation summary.

When the compiler completes the processing of a routine declaration,
it produces the source and object listing for that declaration and any
nonroutine declarations that preceded it. In this way, the output
listing is divided into a sequence of segments (see Figure 3-1).

SOURCE

OBJECT

SOURCE

OBJECT

SOURCE

OBJECT

SOURCE

OBJECT

CROSS-REFERENCE

OBJECT SUMMARY

COMPILATION STATISTICS

} SEGMENT 1

} SEGMENT 2

} SEGMENT n

ZK-1368-83

Figure 3-1: Compiler Output Listing Sequence

You can suppress both the source and the object parts of a routine
segment, and change the format of the object part, by the inclusion of
switches in the module or in the command line. In the absence of any
explicit instruction, both source and object parts are produced. If
the object part of the program is produced, an object summary is
given. The object surrunary contains a high and low segment length
summary and, if the compilation included any LIBRARY declarations, a
summary of library usage. The compilation summary contains the same
information as given in the compilation summary at the terminal.

3-3

COMPILER OUTPUT

The complete output listing for the module TESTFACT occupies several
pages (refer to Appendix F). Only the first routine segment of that
module is used here. The routine segment for the routine IFACT
contains the module heading, the OWN declaration, and the routine
declarations for IFACT. The following sections discuss each part of
the output listing for that routine segment in detail.

3.2.1 Listing Header

Listing headers consist of two lines; each line consists of three
fields separated by at least one column. The first field contains
information in columns 1 through 15; the second extends from columns
17 through 63; the last extends from columns 65 through 132. The
contents of each field are left-justified within the field. The
listing header format appears in Figure 3-2.

The listing header format appears as follows:

PRINT
POSITION 15 17 63 65 132

NAME TITLE PROCESSOR IDENTIFICATION

IDENT SUBTITLE SOURCE IDENTIFICATION

ZK-1369-83

Figure 3-2: Listing Header Format

The name and ident fields contain the same information as that
contained in the object file module headers. Some processors must
generate the first page header before this information is available.
Thus, the first page of a module may be blank; subsequent pages must
include the information if it appears in the object module. If the
module name exceeds 15 characters, the title field begins 8 columns
further to the right.

The title and subtitle fields contain user-supplied information; they
identify the purpose of the module and routine. User title and
subtitle entries that are too long are right-truncated at column 63.
If the language processor makes no provision for you to supply this
information, the fields are ignored and the processor and source
identifications start in column 17. If the language processor allows
only one set of title information, the subtitle field is used for
standard identification of the portion of the listing represented.
When you update the title or subtitle information in the first line of
the source page, the listing for that page includes the updated
information.

The processor identification field contains the date and time of
compilation (in the form dy-mon-year hh:mm:ss) and the full product
name of the language processor. This field includes the release
version number, with the edit number appended to it. The page listing
number appears as the last entry in this field. This number
increments by 1 for each listing page produced from a concatenated
source file, that is, in the listing file.

The source identification field contains the date and time of creation
or last modification of the source file being read at the start of
this page. It also contains the resultant file name of this source
file. It is a fully qualified name, including the actual version

3-4

COMPILER OUTPUT

number. If the name is too long, the leftmost field is
right-truncated. The source file page number appears last, in
parentheses, and is one greater than the number of page marks (form
feeds) read from the source.

3.2.2 Source Listing

The source part of the output listing reproduces the input to the
BLISS compilation with annotation supplied by the compiler. The
compiler annotation includes a 16- or 24-character preface string that
precedes each line of input, and error' message lines that follow each
line on which one or more errors are detected.

The basic difference in preface string length is due to the fact that
the 24-character preface contains the editor's line sequence numbers
while the l6-character string does not. The l6-character preface
string has the general form:

;byznnnnbnnbbbbb

The 24-character preface string has the general form:

;xxxxxbbyznnnnbnnbbbbbbb

Table 3-1 describes the components of each string. (An asterisk
denotes the components and columns of the 24-character string.)

For example, consider the following line from the BLISS input:

RESULT = 1;

If the above declaration is the fourteenth line in the compilation,
the output listing for that line appears as follows:

0014 2 RESULT = 1;

The line number 0014 is the line assigned by the BLISS compiler, and
the begin-end block depth number 2 indicates that the line of code
occurs in the second block-level. If the input line had an editor
line sequence number of 02300, the output listing for the line would
be:

;02300 0014 2 RESULT = 1;

If the input line comes from a REQUIRE file,
includes an R, as follows:

the output listing

R0014 2 RESULT = 1;

If the input line is contained within a macro declaration,
output listing includes an M, as follows:

M 0014 2 RESULT = 1;

then the

The y item in preface string column 3 (9 for a 24-character preface)
is useful for detecting lexical errors. For example, if you forget to
terminate a macro declaration, all the following lines in the program
are then assumed to be part of that macro declaration, and the error
is not detected until the end of the program. However, you can find
the beginning of the unterminated macro by locating the point at which
the M code first appeared in the y field before the runaway.

3-5

COMPILER OUTPUT

Table 3-1: Format of Preface String in Source Listing

Item

xxxxx*
or
b

bb*

Y

z

nnnn

b

nn

bbbbbbb*

bbbbb

Column

1

2-6*
or
2

7-8*

9*
or
3

10*
or
4

11-14*
or
5-8

15*
or
9

16-17*
or
10-11

18-24*

12-16

Meaning

The comment character; used to comment out the
source line 50 that the output listing can be
assembled by the PDP-lO MACRO assembler.

The line number, if the file contains line
sequence numbers; otherwise, one blank column.

Blanks

A code that indicates the lexical processing
level of the compiler. The codes that can
appear in this column are described below:

Code Meaning

C Embedded comment, that is, text within
% (•••) %.

D Default lexeme stream for a keyword
macro formal.

L Parameter list of a lexical function.
M Body of a macro definition.
P Parameter list of a macro call.
U Source text which is discarded by an

unsatisfied lexical condition.

If more than one such code applies (for
example, an embedded comment nested within a
macro body), the lIinnermost ll code is printed.

If the line comes from a file
REQUIRE declaration, the code
a blank.

specified in a
IIRII; otherwise,

The BLISS line sequence number, beginning with
0001, is increased by 1 each time a source
line is read. This line number is referenced
by error messages and by the commentary field
of the object code listing. It is always
incremented for source lines read from REQUIRE
files, even though those lines may not be
listed.

Blank

The begin-end block level number reflects the
depth of the code within each block structure.

Blanks

Blanks

3-6

COMPILER OUTPUT

An example of the source listing for the first segment of the module
TESTFACT, which uses the 16-character preface string, appears below.

0001 0
0002 0

WARN#048
Syntax error

0003 1
0004 1
0005 1
0006 1
0007 1
0008 1
0009 2
0010 2
0011 2
0012 2
0013 2
0014 2

WARN#OOO

MODULE TESTFACT (MAIN
BEGIN
1 Ll:0002

in module head

OWN
A,
B;

ROUTINE IFACT (N)
BEGIN
LOCAL

RESULT;
RESULT = 1;

MAINPROG)

INCR I FROM 2 TO .N DO
RESULT = .REULT*.I;

.................. 1 Ll:0014
Undeclared name:

0015 2
REULT
. RESULT
END; 0016 1

Following the three heading lines, which have been omitted in this
example, the source of the module TESTFACT is reproduced. The
16-character preface string begins with a semicolon (;). Since the
input file that contains the module TESTFACT does not have sequence
numbers, column 2 of the source listing is blank. Columns 3 and 4 are
blank, because the lexical processing level is normal and the material
is not from a REQUIRE file. Line numbers generated by the compiler
begin in column 5. (See Figure 3-9 for a complete listing.)

Both error messages are reported as part of the source listing.
Section 3.4 contains a discussion of error messages in general and of
the meaning of these errors in particular.

3.2.3 Object Listing

The object part of the output listing has four possible parts:
assembler input, assembler output, binary, and commentary field. The
parts of the object listing that are produced depend on the choice of
listing switches specified in the command line. Each part of the
object listing has associated with it a code-value that allows it to
be either printed or suppressed.

However, although 16 different forms of listings are theoretically
possible, in practice only a few combinations of format-options are
meaningful.

The following combinations of the format options are reasonable:

ASSEMBLER {
SYMBOLIC }

NOSYMBOLIC
COMMENTARY

3-7

{
BINARY }

NOBINARY {

UNAMES (

NOUNAMES f

COMPILER OUTPUT

The commentary field requires little space and provides useful
information about source line numbers, so that, currently, you have no
need for the NOCOMMENTARY switch. Also, there is little reason to
specify the NOASSEMBLER switch, since its only effect is to suppress
the macro END statement.

The question of whether to have the binary appear on the listing is
one of personal preference. However, it may be useful for debugging
purposes.

The compiler produces the following information for each field.

ASSEMBLER field

SYMBOLIC field

BINARY field

COMMENTARY field

Instructions in assembler form. For example:

MOVEI AC16, 1

Operands using symbolic
example:

I , 1

source names. For

Octal equivalent of instructions and data to
facilitate debugging. The octal instructions
appear as much as possible in the same format as
that produced by the MACRO assembler.

The following codes may be appended to octal
values in the binary field to provide information
about relocation of quantities:

Code Meaning

Blank Absolute quantity (no linker action)

V Forward relocatable

Relocated by POLISH expression

Relocated relative to PSECT

* Relocated relative to external symbol

A cross-reference to the source program line
generating the code. If a program line generates
more than one instruction line, commentary fields
in the lines following the instruction generated
first are left blank.

The partial printout of a default object listing appearing
3-3 illustrates the object part of the routine segment.
line

in Figure
The command

=>20
BLISS>TESTFACT/LIST

=>10
*TESTFA,TESTFA=TESTFA

generated the listing, in which the assembler field appears first,
followed by the symbolic field, the binary field, and the commentary
field. Note that the default switch settings in effect are ASSEMBLER,
SYMBOLIC, COMMENTARY, BINARY, and NOUNAMES.

3-8

TITLE TESTFACT
TWOSEG
. REQUEST SYS:B360TZ.REL
RELOC 0 000000'

A: BLOCK 1 000000'
B: BLOCK 1 000001'

EXTERN REULT
ACO= 0
ACl= 1
AC2= 2
AC3= 3
AC4= 4
AC5= 5
AC6= 6
AC7= 7
ACI0= 10
ACll= II
AC12= 12
AC13= 13 n AC14= 14 0
FP= 15 3:
AC16= 16 ."
SP= 17 H

t'I w RELOC 400000 400000' til I IFACT: MOVEI ACl,l RESULT, 1 400000' 201 01 0 00 000001 ~ \.0
0012 0 MOVEI AC2,l 1,1 400001' 201 02 0 00 000001 C
0013 1-3

JRST L.2 L.2 400002' 254 00 0 00 400005' ."
C

L.l : MOVE ACl, REULT RESULT,REULT 400003' 200 01 0 00 000000* 1-3
0014

IMUL ACl,AC2 RESULT, I 400004' 220 01 0 00 000002
L.2: ADDI AC2,l 1,1 400005' 271 02 0 00 000001

0013
CAMG AC2,-l(SP) l,N 400006' 317 02 0 17 777777
JRST L.l L.l 400007' 254 00 0 00 400003'
POPJ SP, SP, 400010' 263 17 0 00 000000

0008
Routine Size: 9 words

Figure 3-3: Default Object Listing Example

COMPILER OUTPUT

3.2.4 Source Part Options

The following sections contain more output listings to illustrate
different options for the source part of the list file. To illustrate
different forms, the sample program TESTFACT has to be made more
interesting, along the lines given in the following paragraphs.

Suppose the testing of the same program TESTFACT is complete, source
code errors contained in the preceding examples have been corrected,
and the data on the relative performance of the two factorial routines
obtained. The next step is to produce a new module TEST, which uses
the factorial routine to take combinations according to the following
formula for obtaining the number of combinations of m items taken n at
a time:

m!

(m-n)! n!

where m! is the notation for the factorial of m.

First, enter the routine declarations for IFACT and RFACT into
separate REQUIRE files, named IFACT and RFACT, respectively. The
module TEST can then use either routine by including the appropriate
REQUIRE declaration.

Next, write a macro for obtaining the combinations, namely:

MACRO
COMBINATIONS(M,N)

(IF (M) LSS (N)
THEN ERROR()
ELSE COMB(M,N)) %,

COMB(M,N)
FACT(M)/(FACT«M)-(N))*FACT(N)) %i

Then, precompile the macro declaration into a LIBRARY file as follows
(include a LIBRARY declaration in the module TEST):

=>20
BLISS>COMBN!LIBRARY

=>10
*COMBN=COMBN/LIBRARY

Finally, include some test combinations.

The following sections illustrate the different output listings
obtained for that module by varying the command switches.

3-10

COMPILER OUTPUT

3.2.4.1 Default Source Listing - The command line

=>20
BLISS>TEST/LIST/NOCODE

=>10
*TEST,TEST=TEST/NOCODE

generated the output listing in Figure 3-4 for the module TEST. Note
that although the contents of the REQUIRE file are not printed, the
lines within the file are numbered by the compiler. The output
listing shows that lines 0011 through 0014 are used for this purpose.

3.2.4.2 Listing with LIBRARY/REQUIRE Information - The command line

=>20
BLISS>TEST/NOCODE/LIST/FORMAT:(LIBRARY,REQUIRE)

=>10
*TEST,TEST=TEST/NOCODE/LIST:(LIBRARY,REQUIRE)

generated the output listing in Figure 3-5, which contains information
from the LIBRARY and REQUIRE files. The LIBRARY file is identified
following line 0009 and the first use of a name from that library is
noted following line 0018. The contents of the REQUIRE file are given
in lines 0011 through 0014.

3.2.4.3 Listing with Macro Expansions - The command line

=>20
BLISS>TEST/NOCODE/LIST/FORMAT:EXPAND

=>10
*TEST,TEST=TEST/NOCODE/LIST:EXPAND

generated the output listing in Figure 3-6 to illustrate macro
expanslons, which follow lines 0018 and 0019. Note that expansions
are listed in the order in which they occur. The innermost expansion
is printed first, followed by the outer expansion, which includes the
expanded form of the inner macro. The last line of the macro
expansion, therefore, is the fully expanded form.

3.2.4.4 Listing with Macro Tracing - The command line

=>20
BLISS>TEST/NOCODE/LIST/FORMAT:TRACE

=>10
*TEST,TEST=TEST/NOCODE/LIST:TRACE

produced the output listing in Figure 3-7, which contains macro
tracing and macro expansions. The macro trace gives information about
parameter binding in addition to the expansion information.

3-11

w
I

I-'
I\)

0001 0
0002 1
0003 1
0004 1
0005 1
0006 1
0007 1
0008 1
0009 1
0010 1
0017 1
0018 1
0019 2
0020 3
0021 2
0022 1
0023 1
0024 1
0025 0

MODULE TEST (MAIN
BEGIN

OWN
A,
B;

EXTERNAL ROUTINE
ERROR;

LIBRARY 'COMBN'
REQUIRE 'RFACT'

ROUTINE MAINPROG =
BEGIN

MAINPROG)

A = COMBINATIONS (3, 2);
B = COMBINATIONS (6, 4);
END;

END
ELUDOM

LIBRARY STATISTICS

File

Run Time: 00:00.3
Elapsed Time: 00:00.8
Lines/CPU Min: 5952
Lexemes/CPU-Min: 49523
Memory Used: 3 pages
Compilation Complete

-------- Symbols -------­
Total Loaded Percent

2 2 100

Figure 3-4: Default Source Listing Example

Blocks
Read

4

Processing
Time

00:00.0

w
I

f-'
W

0001 0
0002 1
0003 1
0004 1
0005 1
0006 1
0007 1
0008 1
0009 1

MODULE TEST (~~IN
BEGIN

OWN
A,
B;

EXTERNAL ROUTINE
ERROR;

LIBRARY 'COMBN' ;

MAINPROG)

I I Library file produced by TOPS-20 Bliss-36 3A(177) on
REQUIRE 'RFACT' ;

3-May-1983 16:10:24
0010 1

ROOll 1
R0012 1
R0013 1
R0014 1
R0015 1
R0016 1

0017 1
0018 1
0019 2
0020 2

I I Loaded
I I Loaded

0021
0022
0023
0024
0025

symbol
symbol
2
1
1
1
o

ROUTINE FACT (N) =
IF .N GTR 1
THEN

.N*FACT (.N - 1)
ELSE

1;

ROUTINE MAINPROG
BEGIN
A = COMBINATIONS (3, 2);

COMBINATIONS from library
COMB from library

B = COMBINATIONS (6, 4);
END;

END
ELUDOM

LIBRARY STATISTICS

File

Run Time: 00:00.3
Elapsed Time: 00:01.3
Lines/CPU Min: 4823
Lexemes/CPU-Min: 40128
Memory Used: 3 pages
Compilation Complete

-------- Symbols -------­
Total Loaded Percent

2 2 100

Blocks
Read

4

Figure 3-5: Output Listing with Library and Require File Data

processing
Time

00:00.0

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0017
0018
0019
0020

o
1
1
1
1
1
1
1
1
1
1

MODULE TEST (MAIN
BEGIN

OWN
A,
B;

EXTERNAL ROUTINE
ERROR;

LIBRARY 'COMBN'
REQUIRE 'RFACT'

1 ROUTINE MAINPROG =
2 BEGIN

MAINPROG)

2 A = COMBINATIONS (3, 2);
[COMB]= FACT () / (FACT (-) * FACT ())

[COMBINATIONS]= IF LSS THEN ERROR () ELSE FACT
0021 2 B = COMBINATIONS (6, 4);

[COMB]= FACT () / (FACT (-) * FACT ())

/ FACT * FACT

[COMBINATIONS]= IF LSS THEN ERROR () ELSE FACT () / (FACT (-) * FACT ()))
0022 1 END;
0023 1
0024 1
0025 0

File

END
ELUDOM

Run Time: 00:00.3
Elapsed Time: 00:01.2
Lines/CPU Min: 4983
Lexemes/CPU-Min: 41461
Memory Used: 3 pages
Compilation Complete

LIBRARY STATISTICS

-------- Symbols -------­
Total Loaded Percent

2 2 100

Blocks
Read

4

Figure 3-6: Output Listing with Macro Expansion Data

processing
Time

00:00.0

; ;
; ;

; ;
; ;

; ;

; ;
; ;
; ;
; ;

W ; ;

I
~

U1

0001 0
0002 1
0003 1
0004 1
0005 1
0006 1
0007 1
0008 1
0009 1
0010 1
0017 1

MODULE TEST (MAIN
BEGIN

OWN
A,
B;

EXTERNAL ROUTINE
ERROR;

LIBRARY 'COMBN' ;
REQUIRE 'RFACT' ;

0018 1 ROUTINE MAINPROG =
0019 2 BEGIN

MAINPROG)

0020 2 A = COMBINATIONS (3, 2);
[COMBINATIONS]: Parameter binding
[COMBINATIONS](l)= 3
[COMBINATIONS](2)= 2
[COMBINATIONS]: Expansion

[COMB]: Parameter binding
[COMB](l)= 3
[COMB](2)= 2
[COMB]: Expansion
[COMB]= FACT () / (FACT (-) * FACT ())

[COMBINATIONS]= (IF LSS THEN ERROR () ELSE FACT () / (FACT (-) * FACT ()))
0021 2 B = COMBINATIONS (6, 4);

[COMBINATIONS]: Parameter binding
[COMBINATIONS](l)= 6
[COMBINATIONS](2)= 4
[COMBINATIONS]: Expansion

[COMB]: Parameter binding
[COMB](l)= 6
[COMB] (2)= 4
[COMB]: Expansion
[COMB]= FACT () / (FACT (-) * FACT ())

[COMBINATIONS]= (IF LSS THEN ERROR () ELSE FACT () / (FACT (-) * FACT ()))
0022 1 END;
0023 1
0024 1
0025 0

File

END
ELUDOM

Run Time: 00:00.3
Elapsed Time: 00:01.2
Lines/CPU Min: 4687
Lexemes/CPU-Min: 39000
Memory Used: 3 pages
Compilation Complete

LIBRARY STATISTICS

-------- Symbols -------­
Total Loaded Percent

2 2 100

Blocks
Read

4

Processing
Time

00:00.0

Figure 3-7: Output Listing with Macro Expansion and Tracing Data

COMPILER OUTPUT

3.3 CROSS-REFERENCE LISTING

The cross-reference listing is an optional part of the output listing
that is produced by the compiler on request. Cross-reference data are
generated on a module basis; therefore, the reference information
associated with a given module appears as the last module-specific
item in the listing file, before the compilation summary and before
any subsequent module data.

3.3.1 Cross-Reference Header

The cross-reference header is separated from the output listing header
by a blank line and subsequently appears on the first two lines of
each page of the reference listing. The cross-reference header is as
follows:

Symbol Type Defined Referenced ...

3.3.2 Cross-Reference Entries

The reference entries listed under each header name are fixed-length
fields that are separated by a single space.

Symbol Field

The Symbol field is used to list the names of the different symbols.
The length of the field is fixed at the length of the longest name in
the module. A name appears just once in the symbol field, defining
its initial recognition by the compiler as a declared symbol. If
multiple symbols are declared with the same name, lines directly
following the first appearance of the name are used; however, for each
subsequent recognition the symbol field is left blank. For example:

ALPHA

GAMMA

Type Field

The Type field describes the condition (such as LOCAL, BIND, or
BUILTIN) under which the symbol-name was used when it was declared.
The field is eight characters long; therefore, symbol-type
abbreviations are used. The symbol-type abbreviations are listed in
Table 3-2.

The NotDecl abbreviation indicates the use of a symbol that has not
been declared. Thus, the appearance of NotDecl in the type field
indicates an error.

The Enable, Forward, ForwRout, or Map abbreviation refers to symbols
that are declared elsewhere as routine or data-segment names. Thus,
the appearance of any of these abbreviations in the type field usually
indicates an error.

The Unbound abbreviation indicates that the compiler made no attempt
to find a declaration for the symbol name because the name is not
bound to a symbol. For example, a symbol in a macro actual-list, or
in the false branch of a %IF compile-time conditional-function, is
declared as Unbound.

3-16

COMPILER OUTPUT

Table 3-2: Symbol Type Abbreviations

Meaning

Bind
Bind Routine
Builtin
Compiletime
Enable
External
External Literal
External Register
External Routine
Field
Fieldset
Forward
Forward Routine
Global
Global Bind
Global Bind Routine
Global Literal
Global Register
Global Routine
Keyword Macro
Keyword Macro Formal
Label
Linkage
Literal
Local
Macro
Map
Macro Formal
Symbol without a declaration
Own
Psect
Register
Routine
Routine Formal
Structure
Stack local
Structure Formal
Name which is not bound
Undeclare

Abbreviation

Bind
BindRout
Builtin
Comptime
Enable
External
ExtLit
ExtReg
ExtRout
Field
Fieldset
Forward
ForwRout
Global
GlobBind
G1BiRout
GlobLit
GlobReg
GlobRout
KeyWMacr
KeyWForm
Label
Linkage
Literal
Local
Macro
Map
MacrForm
NotDecl
Own
Psect
Register
Routine
RoutForm
Structur
Stackloc
StruForm
Unbound
Undeclar

As an example of the use of the symbol name and type fields consider
the following code segment:

00050
00051
00052
00053

00080
00081
00082
00083
00084

00095

BEGIN
LOCAL

END;

ALPHA,
GAMMA;

BEGIN
LOCAL

ALPHA;

END;

3-17

COMPILER OUTPUT

The appearance of the symbols in the cross-referencing listing would
be as follows:

ALPHA

GAMMA

Defined Field

Local
Local
Local

52
84
53

The Defined field identifies the compiler listing line number of the
declaration, or the library (Lib) file number, and has a fixed length
of five characters. Exceptions occur with the NotDecl and Unbound
symbol types. Since the symbol name in these cases cannot be
associated with a declaration, no line number can appear and the field
is blank. The following example depicts the appearance of line
numbers, and a library file number, in the defined field.

A
B
COMB

Own
Own
Macro

5
6

LibOl

20=
20=
20

Note that a cross-reference map appears at the bottom of the listing
which locates and identifies each compiled file (source, require, or
library) by its intial line number and its file-specification.

Referenced Field

The Referenced field lists additional references and uses of the
symbol. Each entry consists of a 5-character line number (or a
library file number) and a 2-character usage field. If the references
require more than one line, the additional entries appear on
subsequent lines.

The 2-character usage-fields describe the way in which the symbols are
used. A usage-field may consist of none, one, or two of the following
characters.

Flag

Declaration-Usage

e

f

m

h

u

Data-Usage

c

a

@

Meaning

EXTERNAL, EXTERNAL ROUTINE, or EXTERNAL LITERAL
declaration

FORWARD declaration

MAP declaration

Condition handler enabling

UNDECLARE declaration

Fetch

Store

Routine call

Address use

Indirect use

3-18

COMPILER OUTPUT

A blank usage field indicates that usage is implied by the type of
symbol -- for example, a macro name used within a macro expansion, or
a structure name used as a structure-attribute in a declaration.

An (e), (f), (m), (h), or (u) flag appearing in the usage field
indicates a reference to the symbol name within an EXTERNAL, FORWARD,
MAP, ENABLE, or UNDECLARE type declaration.

The fetch flag (.) indicates that a data segment has been "fetched
from" a location defined by the symbol name, while the store flag (=)
indicates that a value has been "stored into" a location defined by
the symbol name.

The address-use flag (a) indicates that the address of a data
defined by the symbol name, has been stored into another data
For example, A = B indicates that the address of the data
defined by B is stored in data segment A. Thus, symbol B
flagged (a) for its use as an address, and symbol A would be
(=) for its use as storage.

segment,
segment.

segment
would be

flagged

The indirect-use flag (@) never appears alone. This flag is always
combined with the remaining data-usage flags to indicate that a data
segment has been used indirectly, such as fetched from (@.) or stored
into (@=)i however, note that all multiple levels of indirection are
flagged the same as a single level of indirection.

The following list provides samples of the two-character data-usage
codes. The examples reflect direct and indirect data uses of symbol B
as a BLOCK structure and then as a REF BLOCK structure.

Code

A .B

A .. B

A ... B

A B[eJ

A .B[eJ

B .A

(. B) .A

B[eJ =.A

B() = A

(.B)() = A

B:BLOCK[n]

@.

@.

a

@=

c

@c

B:REF BLOCK[n]

@.

@ •

@a

@.

@=

@=

c

@c

Thus, in relation to direct and indirect addressing, the utility
recognizes ordinary structures and FIELD references. For example,
consider the following code segment where explicit FIELD references
are made to data segments:

00030
00031
00032
00033
00034
00035

FIELD
My_fields =

SET
This field
That-field
TESi

[O,O,8,oJ,
[O,l,8,OJ

3-19

00036
00037
00038
00039

COMPILER OUTPUT

OWN
B : REF BLOCK[J FIELD (My_fields);

B[This fieldJ = .B[That fieldJ + Ii

The cross-reference listings for Bare:

B

THAT FIELD
THIS FIELD

Own

Field
Field

37

34
33

39@=

39.
39=

39@.

Note that since B is declared as a REF structure, the structure
references to B are indirect references.

The next code example reflects an indirect address usage of B:

00030 FIELD
00031 My fields = -00032 SET
00033 This field [O,O,8,OJ -00034 That field [O,l,8,OJ
00035 TESi
00036 OWN
00037 B : REF BLOCK[J FIELD (My fields) ;

-00038

00108 C = B[That fieldJ

The listing for B is now:

B Own 37 108@a

THAT FIELD Field 33 108a

In this example, B points to a BLOCK in memory. Through B, an address
within the BLOCK is indirectly stored in Ci thus, an indirect address
is flagged for B.

3.3.3 Output Listing with Cross-Reference Listing

The listing in Figure 3-8 includes a cross-reference listing that was
produced by compiling module TEST with the following options:

=>20
BLISS>TEST/FORMAT:REQUIRE/LIST/CROSS-REFERENCE

=>10
*TEST,TEST=TEST/LIST:(REQUIRE)/CREF

Note that the listing includes cross-referenced information for the
LIBRARY and REQUIRE files. The reference list is followed by a
cross-reference map, which specifies the first and last lines of the
files, and a flags legend, which describes the codes used in the
Referenced field.

3-20

(header)

0001 0
0002 1
0003 1
0004 1
0005 1
0006 1
0007 1
0008 1
0009 1
0010 1

R0011 1
R0012 1
R0013 1
R0014 1
R0015 1
R0016 1

0017 1
0018 1
0019 2
0020 2
0021 2
0022 1
0023 1
0024 1
0025 0

COMPILER OUTPUT

MODULE TEST (MAIN
BEGIN

OWN
A,
B;

EXTERNAL ROUTINE
ERROR;

LIBRARY 'COMBN ' ;
REQUIRE 'RFACT ' ;
ROUTINE FACT (N) =

IF .N GTR 1
THEN

MAINPROG)

.N*FACT (.N - 1)
ELSE

1 ;

ROUTINE MAINPROG : NOVALUE =
BEGIN
A = COMBINATIONS (3, 2);
B = COMBINATIONS (6, 4);
END;

END
ELUDOM

Symbol Type Defined Referenced ...

A Own 5 20
B Own 6 21
COMB
COMBINATIONS
ERROR

Macro
Macro
ExtRout

Lib01 20 21
Lib01 20 21

8 20 21
FACT
MAINPROG

Routine
Routine

11
18

14 20 21

N RoutForm 11 12 14
CROSS REFERENCE MAP

Line #: Event File ...
1 Source (start) PS:<DIRECTORY>TEST.B36.3
1 Module TEST
9 Library #1

11 Require (start) PS:<DIRECTORY>RFACT.R36.3
16 Require (end)
25 E1udom TEST

KEY TO REFERENCE TYPE FLAGS
Fetch
Store

c Routine call
a Address use

Indirect use
f Forward or forward routine declaration
m Map declaration
h Condition handler enabling

Figure 3-8: Output Listing with Cross-Reference Listing Included

3-21

COMPI~R OUTPUT

3.4 COMPILATION SUMMARY

The compilation summary appears at ·the end of every compilation
listing and consists of the following information:

• The routine size and
(following each routine)

psect-relative starting

• A program section summary (at the end of the module)

address

• If a cross-reference listing is added, a cross-reference map
of the files used and the line number where each file is first
referenced

• If a cross-reference listing is added, a key to the meaning of
the usage-field characters

• Library usage statistics indicating the libraries used and the
number of names loaded from each library (omitted if no
libraries are used)

• The number of memory pages mapped and the processing time

• The command line used to compile the module

• Number of warnings and errors
errors exist)

{omitted if no warnings or

• Summary of statistics for the module, consisting of: size of
code and data (in bytes), run time, elapsed time, number of
lines and lexemes processed per CPU minute, memory used, and a
statement that the compilation is complete

3.5 ERROR MESSAGES

The BLISS compiler detects two types of errors: fatal and warning. A
fatal error is one that the compiler cannot handle without potentially
skipping some source. A warning error is one for which the compiler
has an effective recovery technique that permits it to generate an
executable object module. Both the warning and the fatal errors
messages are listed separately in Appendix E. The warnings are listed
by number, and each warning includes an explanation of the error and a
recommended user action.

If a fatal error is detected, the compiler continues to check syntax
of the remainder of the program; any subsequent errors can be
detected, but neither an object module nor the object part of the
output listing is produced following the detection of the fatal error.

A warning error message begins with the identification WARN. For
example, the routine declaration for IFACT includes a coding mistake,
as follows:

RESULT = .REULT*.I;

The BLISS compiler detects this error and reports the warning message
shown in the following segment from the output listing:

RESULT = .REULT*.I; 0014 2
WARN#OOO 1 Ll:0014
Undeclared name: REULT

3-22

COMPILER OUTPUT

The message is not fatal because the compiler can declare the
undeclared name REULT as EXTERNAL and continue processing without
omitting the compilation of any source.

Consider a different kind of coding error, as follows:

ROUTINE RFACT (N =

The BLISS compiler detects this error and reports the messages given
in the following segment from the output listing:

0013 2
WARN#OOO

INCR I FROM 2 TO .NDO
....•.......•........ 1 Ll:0013

NDO Undeclared name:
0014 2 RESULT = .REULT*.Ii

........ 1 Ll:0014 WARN#066
Two consecutive operands with no intervening operator.
A DO has been inserted
WARN#OOO 1 Ll: 0014
Undeclared

0015 2
0016 1
0017 1
0018 1

ERR #071

name: REULT
. RESULT
end;

ROUTINE RFACT (N =
2 •..••• 3 .•.•••••. 1 Ll:0018 L2:0018 L3:0016

Missing comma or closing bracket in formal parameter list for RFACT
The incorrect delimiter was "="

Omitting the blank between the name N and the keyword DO caused
another warning error, while omitting the close parenthesis (that is,
(N =) caused one fatal error. With the absence of a blank separator,
the compiler sees NDO and RESULT as two consecutive operands with no
intervening operator and inserts a DO. However, when the compiler
fails to find the close parenthesis, it cannot make syntactic sense of
the linesj therefore, it reports a fatal error message and suppresses
the production of an object file.

Note that although the compiler continues to check the syntax of the
remainder of the module, some text may remain unscanned. Also, the
scan sometimes causes genuine errors to be missed or spurious errors
to be reported. A module cannot be assumed to be fully checked by the
compiler until all error messages are eliminated.

The BLISS compiler supplies a great deal of information in its error
messages. Each error message occupies two lines. The first line
classifies and pinpoints the error, and the second line gives a short
description of the error. For example, consider the following error
message from the above example:

0013 2
WARN#OOO

INCR I FROM 2 TO .NDO
..................... 1 Ll:0013

Undeclared name: NDO

The first line classifies the error as a nonfatal by the string WARN
and gives the error number 000, followed by a pointer to the place in
the input line at which the error was detected, and a line indicator.
The second line describes the error.

The first line of an error message lines up with the input column at
which the compiler detected the error. Under the preface for the
input line, the error message has a preface part that gives the type
of error (warning or fatal) and the error number (refer to Appendix
E). Under the text part of the input line, the error message can have

3-23

COMPILER OUTPUT

up to three pointers and three line indicators. The pointers are
numbered from 1 to 3 and the meaning associated with each of the
pointers is given in the following list:

Pointer

1

2

3

Meaning

Indicates the point in the input text at which the
error was detected

Indicates the beginning of the current control scope

Indicates the end of the last control scope that was
successfully closed prior to the detection of the
error

The line indicators are closely related to the pointers in meaning,
but whereas the pointers indicate a position within a line, the line
indicators indicate a line within the program, as follows:

Line Indicator

Ll:nnnn

L2:nnnn

L3:nnnn

Meaning

Indicates the line nnnn in the input at which the
error was detected

Indicates the line nnnn at which the current control
scope begins

Indicates the line nnnn at which the last control
scope was successfully closed

Line indicators are usually not too informative when the error is
confined within a program line, as in the examples given above, but
they are very useful for errors that span several lines. For example,
consider the full source listing for the module TESTFACT given in
Figure 3-9. This version of TESTFACT includes the coding error
illustrated in the above examples. The error message at the end of
the program identifies with line indicators the point at which the
error was detected (line 0032), the line at which the control scope
began (line 0013), and the line at which the control scope was closed
(line 0032).

With the information provided by the line indicators for error message
#012, the source of the error is identified as the typing error in
line 0013.

3-24

COMPILER OUTPUT

(header)

0001 0
0002 0

WARN#048
Syntax error

0003 1

MODULE TESTFACT (MAIN
BEGIN
1 Ll:0002

in module head

OWN
A,
B;

ROUTINE IFACT (N)
BEGIN
LOCAL

RESULT;
RESULT = 1;

MAINPROG)

0004 1
0005 1
0006 1
0007 1
0008 1
0009 2
0010 2
0011 2
0012 2
0013 2 INCR I FROM 2 TO .NDO

WARN#OOO 1 Ll:0013
Undeclared name: NDO

0014 2 RESULT = .REULT*.I;
WARN#066 1 Ll:0014
Two consecutive ,operands with no intervening operator. A "DO" has been inserted
WARN#OOO .! 1 Ll:0014
Undeclared name: REULT

0015 2 . RESULT
0016 1 END;
0017 1
0018 1 ROUTINE RFACT (N =

ERR #071 2 3 1 Ll:0018 L2:0018 L3:0016
Missing comma or closing bracket in formal parameter list for RFACT
The incorrect delimiter was "="

0019 1 IF .N GTR 1
0020 1 THEN
0021 1 . N * RFACT (. N - 1)
0022 1 ELSE
0023 1
0024 1
0025 1
0026 2
0027 2
0028 2
0029 1
0030 1
0031 1
0032 0

Information:
Warnings:
Errors:

1 ;

ROUTINE MAINPROG
BEGIN

END

A = IFACT(5);
B = RFACT(5);
END;

ELUDOM
o
4
1

: NOVALUE

Figure 3-9: Error Messages in Source Listing Example

3-25

CHAPTER 4

LINKING, EXECUTING, AND DEBUGGING

This chapter describes the process of linking, executing, and
debugging a BLISS program.

4.1 LINKING

Before you can execute your program, you must link the various pieces
of it together to form an executable image. The linking process makes
the connection between external variables and names referenced in one
module and global variables defined in another module.

To invoke LINK, use the following command:

=>20
=>10

@LINK
.R LINK

LINK builds an executable image of your program. The /GO switch
causes LINK to terminate. To create a file from the image, issue the
SAVE or NSAVE command as follows:

=>20
=>10

@SAVE ALPHA
.NSAVE ALPHA

In both cases a single image file (ALPHA.EXE) is saved. (Other
versions of SAVE are available on TOPS-IO. Consult the DECsystem-lO
Operating System Commands Manual for details.)

The following command causes ALPHA to be executed:

=>20
=>10

@RUN ALPHA
.RUN ALPHA

Some examples of linking are:

• To link a single module, use the following commands:

*ALPHA
*/GO

In response to this command, the linker reads the object
module in ALPHA.REL and creates the executable image.

• To link the modules ALPHA, BETA, and GAMMA, use the following
commands:

*ALPHA
*BETA
*GAMMA
*/GO

4-1

LINKING, EXECUTING~ AND DEBUGGING

In response to this command, the linker combines the object
module in the file ALPHA.REL with the object module in the
file BETA.REL and the object module in the file GAMMA.REL to
produce a single executable image.

Linking a program compiled for extended addressing requires special
coding considerations and link commands. Due to linker restrictions,
the compiler generates PSECTED code for all programs using the
extended addressing option (/EXTENDED). Such programs are then linked
into a specified nonzero section; however, if the compiled program
uses /EXTENDED:SECTION-INDEPENDENT code, which allows loading into any
section, section zero must be specified at link time (refer to Section
6.4 for examples).

The default PSECTS generated are: OWN, $GLOBAL$, $PLIT$, and
$CODE$, the origins of which are set at link time.

The following example shows how a program using the
addressing option is linked and loaded into section one.

@LINK
*ALPHA/SAV
*/SET:OWN:1200000
*/SET:$GLOBAL$:1300000
*/SET:$PLIT$:1400000
*/SET:$CODE$:1500000
*/SYMSEG:PSECT:OWN/PVBLOCK:PSECT:$CODE$
* ALPHA
*/GO

extended

Note that when an extended addressing program is loaded, the placement
of the program's data vector (PVBLOCK) and symbol table (SYMSEG) must
be specified.

The link operation is described "in detail in the LINK-IO Programmer IS

Reference Manual and the DECSYSTEM-20 LINK Reference Manual.

4.1.1 Syntax

The following syntax for linking a BLISS program works under both
TOPS-IO and TOPS-20, and is sufficient for a simple BLISS program.
The full description of LINK commands can be found in the appropriate
link manual.

link-command
{

test-:-line }
nothlng

object-line ... exit-line

-------------------- ----------------------------------.---------
test-line /TEST

object-line object-spec

exit-line /GO

A carriage return is used to terminate each test-line, object-line,
and exit-line.

4.1.2 Defaults

If a file type is not included in the object-spec, the file type .REL
is assumed.

4-2

LINKING, EXECUTING, AND DEBUGGING

4.1.3 Semantics

LINK reads the object modules contained in each object file named in
the link command to create a linked, executable image. The name of
the executable image is specified in the SAVE command (see Section
4.1) .

There are a number of minor differences between LINK under TOPS-IO and
TOPS-20. Under TOPS-lO, /TEST causes DDT to be loaded at the end of
the program's low segment, while under TOPS-20, DDT gets "mapped" at
page 770. Under TOPS-IO, a run-time symbol table is omitted by
default:, unless /TEST is specified, while under TOPS-20, symbols are
included for all nonoverlayed images, unless /NOLOCAL is specified.

The /MAXCOR and /SAVE switches are TOPS-IO specific.

Under TOPS-20, when accessing files from a directory other than that
currently connected to, either use a programmer-project number or
define a logical name for the new directory. The TRANSLATE and DEFINE
commands can be used for this purpose.

NOTE

For additional information related to linking BLISS-36
modules with modules written in assembly language or
BLISS-IO, refer to Appendices G and H.

4.2 EXECUTING

To run your program, use the executable image produced as a result of
the link operation, in a RUN command, as shown above.

Your program, ALPHA, then executes. Any
program takes place. If your program
completion and returns to the command
processor then prompts for another command.

4.3 DEBUGGING

input or output
is correct, it
processor. The

in your
runs to

command

If your program has problems or if you want to examine some data
within your program, you can use the SIX12 debugger. Using the switch
/DEBUG in the compilation operation tells LINK to load SIX12 and to
pass the symbol tables from the REL files to the image file. The
executable image formed as a result contains SIX12, and when the image
is executed, control first goes to SIX12 instead of your program. You
can then examine and deposit values in storage, set breakpoints, call
routines, or do any of a number of other debug or test operations.
The SIX12 debugger is described basically in SIX12.HLP (a help file
distributed with the compiler), while a more comprehensive description
can be found in the SIX12.DOC file, distributed with the compiler.

4.3.1 Debug Example

As an example of using the debug facility, consider the testing of the
program MYPROG. Errors detected in MYPROG in Section 3 are corrected,
and then MYPROG is compiled, linked with SIX12, and run.

4-3

LINKING, EXECUTING, AND DEBUGGING

Assume that MYPROG has been successfully compiled with the /DEBUG
switch.

@LINK
*/TEST
*MYFROG
*/GO
EXIT
@SAVE MYPROG
MYPROG SAVED
@RUN MYPROG
SIX12 V8-4 (TOPS-20 I/O) FOR BLISS-36
&IFACT(S)

170 .STACK + 26

&RFACT(S)

&GO
@

170 .STACK + 26

In the above example, the first step is to invoke LINK, which prompts
with the asterisk (*). Next, the /TEST switch is specified to
indicate that a debugging version of a program is to be built. Then
follows a sequence of object files that are to be included in the
build. In this case there is only one: MYPROG. The final command
given to LINK is /GO, which causes LINK to terminate and leave the
image file in memory. The user saves MYPROG with the SAVE command and
executes it with the RUN command.

In this case, SIX12 gets control when MYPROG is run, and informs you
as to which version of SIX12 this is, and whether TOPS-IO or TOPS'-20
I/O is being used. SIX12 prompts with an ampersand (&). The user has
requested that SIX12 call routine IFACT and routine RFACT with actual
parameter 5 in each case. In each case, the resultant value is 120
(170 octal).

The default radix that SIX12 uses is octal. To specify a decimal
integer to SIX12, precede it by a hash mark (#).

4.3.2 Other SIX12 Commands

Some commonly used SIX12 commands are now described. The basic syntax
of SIX12 is similar to BLISS. Therefore, to examine GLOBAL or OWN
data (for example, A) type:

To examine the current stack of routine invocations, type:

&CALLS

To change the value of an OWN or GLOBAL variable A, type:

&A=new-va1ue

To set a breakpoint on entry to a routine, type:

&BREAK routine-name

4-4

LINKING, EXECUTING, AND DEBUGGING

To set a breakpoint on routine exit, type:

&ABREAK routine-name

The commands DBREAK and DABREAK clear the above two breakpoints,
respectively.

To begin execution, type:

&00

As the above example indicates, to call a routine, type:

&routine-name(actual-parameter-list)

To invoke DDT, type:

&DDT

To return from DDT to SIXI2, type the following to DDT:

&SIXRET$X (where $ is altmode or escape)

To examine the n'th actual parameter of the current routine when
stopped at its entry or exit, type:

&n%A

SIXl2 prints out the values of the actual parameters when the CALLS
command is given or when a breakpoint has been reached.

4-5

CHAPTER 5

MACHINE-SPECIFIC FUNCTIONS

Machine-specific functions allow you to perform specialized operations
within the BLISS language. A machine-specific function call is
similar to a BLISS routine call. It requires parameters and returns a
value.

The compilation of a machine-specific function results in the
generation of some inline code, often a single instruction, rather
than a call to an external routine. The one exception to this is the
Convert Double to Floating (CVTDF) function.

The compiler attempts to optimize the code it produces for a
machine-specific function call by choosing the most efficient
instruction sequence. In some cases, optimization procedures generate
a different machine instruction from the one specified in the call.

Machine-specific functions in BLISS-36 are divided into four
categories, as illustrated in Table 5-1. A separate description of
each function appears below. For a more detailed discussion, consult
the DECsystem-10/DECSYSTEM-20 Hardware Reference Manual.

5.1 GENERAL CONVENTIONS

The definitions of these functions require addresses, values, or
register names as parameters, even though register names do not have
values in BLISS-36.

All expressions can be run-time computable expressions,
specified otherwise in the descriptions that follow.

unless

In each description, the calling sequence is given first, followed by
a description of the parameters. The actual semantics of the function
are specified under "Return Value."

5.1.1 Machine Code Insertion Functions

Machine code insertion functions provide a means to specify a
particular -10/-20 instruction to be executed. These functions are
intended for highly specialized applications which cannot be otherwise
directly specified in the language. The user of these functions is
cautioned that no extensive analysis of the instruction is performed
by the compiler; it is possible for the user to specify an instruction
that interferes with compiler-generated instructions and results in an
incorrect program. Therefore, avoid the use of these functions to
perform an operation that can be expressed more directly in the
language. In particular, user manipulation of the stack pointer is
very risky and requires extreme care.

5-1

MACHINE-SPECIFIC FUNCTIONS

Table 5-1: Machine-Specific Functions

Logical Functions

ASH
FIRSTONE
LSH
ROT

Arithmetically shift a value
Find the leftmost non-zero list in a value
Logically shift a value
Rotate a given value

Byte Manipulation Functions

COPYII

COPYIN
COPYNI
COPYNN
DPB
INCP
LDB
POINT
REPLACEI
REPLACEN
SCANI
SCANN

Increment both source and destination byte pointers
and copy a byte
Increment a source byte pointer and copy a byte
Increment a destination byte pointer and copy a byte
Copy a byte
Deposit a byte
Increment a byte pointer
Load a byte
Build a -10/-20 byte pointer
Increment a byte pointer and store a byte
Store a byte given a byte pointer
Increment a byte pointer and fetch a byte
Fetch a byte given a byte pointer

Arithmetic Functions

ADDD
ADDF
ADDG
DIVD
DIVF
DIVG
MULD
MULF
MULG
SUBD
SUBF
SUBG

Add double operands
Add floating operands
Add float-G operands
Divide double ogerands
Divide floating operands
Divide float-G operands
Multiply double operands
Multiply floating operands
Multiply float-G operands
Subtract double operands
Subtract floating operands
Subtract float-G operands

Arithmetic Comparison Functions

CMPD
CMPF
CMPG

Compare double operands
Compare floating operands
Compare float-G operands

Arithmetic Conversion Functions

CVTDF Convert double to floating
CVTDI Convert double to integer
CVTFD Convert floating to double
CVTFG Convert floating to float-G
CVTFI Convert floating to integer
CVTGF Convert float-G to floating
CVTGI Convert float-G to integer
CVTID Convert integer to double
CVTIG Convert integer to float-G
CVTIF Convert integer to floating

5-2

(continued on next page)

MACHINE-SPECIFIC FUNCTIONS

Table 5-1 (Cont.): Machine-Specific Functions

Machine Code Insertion Functions

MACHOP
MACHSKIP

Execute a -10/-20 instruction
Execute a -10/-20 instruction and record whether a
skip occurred

System Interface Functions

JSYS
UUO

Perform a TOPS-20 Monitor call
Perform a TOPS-lO Monitor call

5.1.2 Logical Functions

If the arguments to
compile-time constant
constant expression.

the functions defined in this section are
expressions, the result is also a compile-time

5.1.3 Arithmetic Functions

The arithmetic functions provide single-, double-, and extended
double-precision floating-point operations. Note that where the
parameters for these functions require the addresses of operands,
regist,ers may only be used for single-precision float operands (ADDF,
SUBF, MULF, CMPF, CVTFx, and CVTxF) and integer operands (CVTIx and
CVTxI) .

5.1.4 System Interface Functions

BLISS provides a way to request that TOPS-lO and TOPS-20 system
services be performed. For TOPS-lO, the machine-specific function
used t,o communicate this request for service is UUO. For native mode
TOPS-20 programs, the JSYS linkage-type should be used. For
compatibility mode programs on TOPS-20, that is, TOPS-lO programs
running with the PAl050 Emulator, UUO is used.

Using both JSYS and UUO together is not recommended; the TOPS-IO
Emulator PAI050 is not guaranteed to handle UUOs correctly while the
program contains JSYS requests.

An example of using JSYS and UUO can be found in section 9.6.

Information on specific system services can be found in the TOPS-20
Monitor Calls Reference Manual and the DECsystem-lO Monitor Calls
Manual.

5 .2 A,DDD (ADD DOUBLE OPERANDS)

Calling Sequence:

ADDD (SRCIA, SRC2A, DSTA)

5-3

Parameters:

SRClA

SRC2A

DSTA

Return Value:

NOVALUE

MACHINE-SPECIFIC FUNCTIONS

Address of a double-precision floating-point value
used as the addend

Address of a double-precision floating-point value
used as the augend

Address where the sum of operand 1 and operand 2
is stored

5.3 ADDF (ADD FLOATING OPERANDS)

Calling Sequence:

ADDF (SRClA, SRC2A, DSTA)

Parameters:

SRClA

SRC2A

DSTA

Return Value:

NOVALUE

Address of a single-precision floating-point value
used as the addend

Address of a single-precision floating-point value
used as the augend

Address where the sum of operand 1 and operand 2
is stored

5.4 ADDG (ADD FLOAT-G OPERANDS)

Calling Sequence:

ADDG (SRClA, SRC2A, DSTA)

Parameters:

SRClA

SRC2A

DSTA

Return Value:

NOVALUE

Address of an extended double-precision floating
point value used as the addend

Address of an extended double-precision floating
point value used as the augend

Address where the sum of operand 1 and operand 2
is stored

5-4

MACHINE-SPECIFIC FUNCTIONS

5.5 ASH (ARITHMETIC SHIFT)

Calling Sequence:

ASH(EXP,CEXP)

Parameters:

EXP Value to be arithmetically shifted

CEXP Number of bit positions to be shifted

Return Value:

If EXP is greater than zero, EXP is shifted left by
positions; otherwise, EXP is shifted right CEXP bits.
right shift, bits shifted out of bit 1 are replaced with
of the sign bit.

5.6 CMPD (COMPARE DOUBLE OPERANDS)

Calling Sequence:

CMPD (SRC1A, SRC2A)

Parameters:

CEXP bit
During a

a copy

SRC1A Address of a double-precision floating-point value
for comparison

SRC2A

Return Value:

-1

o

1

Address of a double-precision floating-point value
for comparision

SRC1A less than SRC2A

SRC1A equal to SRC2A

SRC1A greater than SRC2A

5.7 CMPF (COMPARE FLOATING OPERANDS)

Calling Sequence:

CMPF (SRC1A, SRC2A)

Parameters:

SRC1A

SRC2A

Return Value:

-1

o

1

Address of a single-precision floating-point value
for comparison

Address of a single-precision floating-point value
for comparison

SRClA less than SRC2A

SRClA equal to SRC2A

SRClA greater than SRC2A

5-5

MACHINE-SPECIFIC FUNCTIONS

5.8 CMPG (COMPARE FLOAT-G OPERANDS)

Calling Sequence:

CMPG (SRCIA, SRC2A)

Parameters:

SRCIA Address of an extended double-precision
floating-point value for comparison

SRC2A Address of an extended double-precision
floating-point value for comparison

Return Value:

-1 SRCIA less than SRC2A

o SRCIA equal to SRC2A

1 SRCIA greater than SRC2A

5.9 COPYII, COPYIN, COPYNI, AND COPYNN (COPY A BYTE)

Calling Sequence:

COPYII(SAPI, DAPI)
COPYIN(SAPI, DAP)
COPYNI(SAP, DAPI)
COPYNN(SAP, DAP)

Parameters:

SAP

SAPI

DAP

DAPI

Return Value:

Address of a source byte pointer

Address of a source byte-pointer to be incremented

Address of a destination byte pointer

Address of a destination byte pointer to be
incremented

COPYNN copies the field defined by the first parameter int.o the
field defined by the second parameter. COPYNI increments the
second byte pointer and proceeds as for COPYNN. COPYIN
increments the first byte pointer and proceeds as for COPYNN.
COPYII increments both byte pointers and proceeds as for COPYNN.

In all cases the value returned is the value fetched.

5.10 CVTDF (CONVERT DOUBLE TO FLOATING)

Calling Sequence:

CVTDF(SRCA, DSTA)

5-6

Parameters:

SRCA

DSTA

Return Value:

NOVALUE

MACHINE-SPECIFIC FUNCTIONS

Address of a double-precision floating-point value
for conversion

Address where the single-precision floating-point
conversion is stored

5.11 CVTDI (CONVERT DOUBLE TO INTEGER)

Calling Sequence:

CVTDI (SRCA, DSTA)

Parameters:

SRCA

DSTA

Return Value:

Address of a double-precision floating-point value
for conversion

Address where the integer conversion is stored

1 No integer overflow

o Integer overflow

5.12 CVTFD (CONVERT FLOATING TO DOUBLE)

Calling Sequence:

CVTFD (SRCA, DSTA)

Parameters:

SRCA

DSTA

Return Value:

NOVALUE

Address of a single-precision floating-point value
for conversion

Address where the double-precision floating-point
conversion is stored

5.13 CVTFG (CONVERT FLOATING TO FLOAT-G)

Calling Sequence:

CVTFG (SRCA, DSTA)

5-7

Parameters:

SRCA

DSTA

Return Value:

NOVALUE

MACHINE-SPECIFIC FUNCTIONS

Address of a single-precision floating-point value
for conversion

Address where the extended double-precision
floating-point conversion is stored

5.14 CVTFI (CONVERT FLOATING TO INTEGER)

Calling Sequence:

CVTFI (SRCA, DSTA)

Parameters:

SRCA

DSTA

Return Value:

Address of a single-precision floating-point value
for conversion

Address where the integer conversion is stored

1 No integer overflow

o Integer overflow

5.15 CVTGF (CONVERT FLOAT-G TO FLOATING)

Calling Sequence:

CVTGF (SRCA, DSTA)

Parameters:

SRCA

DSTA

Return Value:

Address of an extended double-precision
floating-point value for conversion

Address where the single-precision floating-point
conversion is stored

1 No integer overflow

o Integer overflow

5.16 CVTGI (CONVERT FLOAT-G TO INTEGER)

Calling Sequence:

CVTGI (SRCA, DSTA)

5-8

MACHINE-SPECIFIC FUNCTIONS

Parameters:

SRCA Address of an extended double-precision
floating-point value for conversion

DSTA Address where the integer conversion is stored

Return Value:

1 No integer overflow

o Integer overflow

5.17 CVTID (CONVERT INTEGER TO DOUBLE)

Calling Sequence:

CVTID (SRCA, DSTA)

Parameters:

SRCA

DSTA

Return Value:

NOVALUE

Address of an integer value for conversion

Address where the double-precision floating-point
conversion is stored

5.18 CVTIF (CONVERT INTEGER TO FLOATING)

Calling Sequence:

CVTIF (SRCA, DSTA)

Parameters:

SRCA

DSTA

Return Value:

NOVALUE

Address of an integer value for conversion

Address where the single-precision floating-point
conversion is stored

5.19 CVTIG (CONVERT INTEGER TO FLOAT-G)

Calling Sequence:

CVTIG (SRCA, DSTA)

Parameters:

SRCA

DSTA

Address of an integer value for conversion

Address where the extended double-precision
floating-point conversion is stored

5-9

MACHINE-SPECIFIC FUNCTIONS

Return Value:

NOVALUE

5.20 DIVD (DIVIDE DOUBLE OPERANDS)

Calling Sequence:

DIVD (DIVSR, DIVID, QUOT)

Parameters:

DIVSR

DIVID

QUOT

Return Value:

NOVALUE

Address of a double-precision floating-point value
used as the divisor

Address of a double-precision floating-point value
used as the dividend

Address where the quotient is stored

5.21 DIVF (DIVIDE FLOATING OPERANDS)

Calling Sequence:

DIVF (DIVSR, DIVID, QUOT)

Parameters:

DIVSR

DIVID

QUOT

Return Value:

NOVALUE

Address of a single-precision floating-point value
used as the divisor

Address of a single-precision floating-point value
used as the dividend

Address where the quotient is stored

5.22 DIVG (DIVIDE FLOAT-G OPERANDS)

Calling Sequence:

DIVG (DIVSR, DIVID, QUOT)

Parameters:

DIVSR Address of an extended double-precision
floating-point value used as the divisor

DIVID Address of - an extended double-precision
floating-point value used as the dividend

QUOT Address where the quotient is stored

5-10

MACHINE-SPECIFIC FUNCTIONS

Return Value:

NOVALUE

5.23 FIRSTONE (FIND FIRST BIT)

Calling Sequence:

FIRSTONE(EXP)

Parameters:

EXP The value to be examined

Return Value:

-1 if EXP is equal to zero; otherwise, the number of high-order
zero bits to the left of the first one bit in EXP.

5.24 INCP (INCREMENT A BYTE POINTER)

Calling Sequence:

INCP(AP)

Parameters:

AP Address of a byte pointer

Return Value:

Increment the byte pointer at location AP. Return O.

5.25 JSYS (INVOKE A TOPS-20 SYSTEM SERVICE)

Calling Sequence:

J'SYS (skips, number { , regname , ... })

Parameters:

skips

number

regname

A compile-time constant expression whose value is
in the range -1 to 2. The value of this
expression indicates the manner in which control
may return following the JSYS instruction.

The low-order 18 bits of this value become the
effective address of the JSYS instruction (must
not be a register name nor a %REF function).

The name of a register. Any number of register
names (or none) may be given as the third through
last parameters.

A JSYS instruction (opcode 104) with the specified effective address
(and a zero accumulator field) is executed.

The value of the "skips" parameter must agree with the characteristics
of the JSYS which is executed. It defines the manner in which control
may return following the JSYS, and the value of the JSYS function.

5-11

MACHINE-SPECIFIC FUNCTIONS

If the JSYS is one which has skip returns, the skips parameter must be
specified as 1 or 2, depending upon the number of alternate returns.
If the JSYS is one which has a single return, the skips parameter must
be specified as -lor O. If you desire a software interrupt on the
occurrence of a JSYS error, the value 0 is selected. If you desire to
handle the occurrence of a JSYS error at the call site by using the
ERJMP facility, the value -1 is selected.

Note that the GOTO return possible by specifying a nonzero reparse
dispatch address to the COMND JSYS is not supported by the JSYS
machine- specific function.

Detailed specifications of the value of the IIskipsll parameter follow:

SKIPS Value

-1

o

1

2

Interpretation

Control always returns to the calling location plus
1. This location contains an ERJMP instruction.
The value of the function is zero if an error
occurred during execution of the JSYS, and 1 if no
error occurred.

Control always returns to the calling location plus
1. (This location will not contain an ERJMP
instruction.) The value of the function is zero.

Control returns either to the calling location plus
1 or to the calling location plus 2. The value of
the function is zero if control returns to the
calling location plus 1, and 1 if control returns to
the calling location plus 2.

As for 1, except that control may also return to the
calling location plus 3, in which case the value of
the function is 2.

The usage of accumulators by the JSYS to receive parameters and to
return values is specified by the list of IIregnamell parameters. Each
parameter is the name of a register data segment which has been
allocated by the programmer to a specific machine register by means of
a declaration similar to the following:

REGISTER
AC1=1;

Each accumulator which may be referenced by the JSYS, either as an
input or as an output, must be identified by this means. The compiler
assumes that accumulators which are not mentioned in this list are not
used or changed by the JSYS.

The programmer must initialize the input parameter accumulators and
access the values returned by including appropriate assignments to and
from the register data segments identified in the register name list
before and after the JSYS call.

Note that it is important to minimize the scope of a specific register
declaration to ensure that allocation of registers is possible.

5-12

MACHINE-SPECIFIC FUNCTIONS

5.26 LSH (LOGICAL SHIFT)

Calling Sequence:

LSH(EXP, CEXP}

Parameters:

EXP Value to be logically shifted

CEXP Number of bit positions to be shifted

Return Value:

EXP is logically shifted by CEXP bit positions. If CEXP is
nonnegative, shift is to the left; otherwise, shift is to the
right. Bits shifted out of EXP are replaced with zero bits.

5.27 MACHOP AND MACHSKIP (EMIT AN INSTRUCTION)

Calling Sequence:

MACHOP(OP, AC, Y, X, I}
MACHSKIP(OP, AC, Y, X, I}

Parameters:

OP

AC

Y

x

I

Low nine bits become the
instruction;
expression.

must be
operation code

a compile-time
of the

constant

Register name or an expression. If an expression,
the low-order four bits becomes the accumulator
(A) field of the instruction; otherwise, the
register number corresponding to the register name
must be a compile-time constant expression.

The low-order 18 bits become the address (y) field
of the instruction

The low-order four bits becomes the index (X)
field of the instruction

The low-order bit becomes the indirect (I) field
of the instruction; must be a compile-time
constant expression.

By default, any omitted parameter defaults to zero.

Return Value:

For MACHOP, the value returned is the contents of the
specified by AC after the execution of the instruction.
not specify an instruction that can skip.

register
OP must

For MACHSKIP, the value returned is 1 if the instruction skips,
and 0 otherwise.

5-13

MACHINE-SPECIFIC FUNCTIONS

5.28 MULD (MULTIPLY DOUBLE OPERANDS)

Calling Sequence:

MULD (SRCIA, SRC2A, DSTA)

Parameters:

SRCIA

SRC2A

DSTA

Return Value:

NOVALUE

Address of a double-precision floating-point value
used as the multiplier

Address of a double-precision floating-point value
used as the multiplicand

Address where the product of operand 1 and operand
2 is stored

5.29 MULF (MULTIPLY FLOATING OPERANDS)

Calling Sequence:

MULF (SRCIA, SRC2A, DSTA)

Parameters:

SRCIA

SRC2A

DSTA

Return Value:

NOVALUE

Address of a single-precision floating-point value
used as the multiplier

Address of a single-precision floating-point value
used as the multiplicand

Address where the product of operand 1 and operand
2 is stored

5.30 MULG (MULTIPLY FLOAT-G OPERANDS)

Calling Sequence:

MULG (SRCIA, SRC2A, DSTA)

Parameters:

SRCIA

SRC2A

DSTA

Return Value:

NOVALUE

Address of an extended double-precision
floating-point value used as the multiplier

Address of an extended double-precision
floating-point value used as the multiplicand

Address where the product of operand 1 and operand
2 is stored

5-14

MACHINE-SPECIFIC FUNCTIONS

5.31 POINT (BUILD A BYTE POINTER)

Calling Sequence:

POINT(Y, P, S, X, I)

Parameters:

y

P

S

X

I

Return Value:

The low-order 18 bits of Y become the address (Y)
field of the byte pointer. There is no default.

The low-order six bits of P become the position
(p) field of the byte pointer. The default is o.

The low-order six bits become the size field (S)
of the byte pointer. The default is 36.

The low-order four bits become the index (X) field
of the byte pointer. The default is o.

The low-order bit becomes the indirect (I) field
of the byte pointer. The default is o.

If Y is a link-time constant expression, and P, S, X, and I are
compile-time constant expressions, the return value is a
link-time constant expression.

5.32 REPLACEI AND REPLACEN (STORE A BYTE)

Calling Sequence:

REPLACEI(AP, EXP)
REPLACEN(AP, EXP)

Parameters:

AP Address of a byte pointer

EXP Value to be stored

Return Value:

REPLACEI increments the byte pointer at address AP. Both
REPLACEN and REPLACEI then store the value EXP in the field
defined by the byte pointer. The value returned is EXP.

5.33 ROT (ROTATE A VALUE)

Calling Sequence:

ROT(EXP, CEXP)

Parameters:

EXP Value to be rotated

CEXP Number of bits positions to be rotated

5-15

MACHINE-SPECIFIC FUNCTIONS

Return Value:

EXP rotated by CEXP bit positions.
rotate left; otherwise, rotate right.

IF CEXP is nonnegative,

5.34 SCANN AND SCANI (FETCH A BYTE)

Calling Sequence:

SCANN(AP)
SCANI(AP)

Parameters:

AP

Return Value:

Address of a byte pointer

SCANI increments the byte pointer at address AP. Both SCANN and
SCANI then fetch the field defined by the byte pointer and use
that as the returned value.

5.35 SUBD (SUBTRACT DOUBLE OPERANDS)

Calling Sequence:

SUBD (SRClA, SRC2A, DSTA)

Parameters:

SRClA

SRC2A

DSTA

Return Value:

NOVALUE

Address of a double-precision floating-point value
used as the subtrahend

Address of a double-precision floating-point value
used as the minuend

Address where the difference between operand land
operand 2 is stored

5.36 SUBF (SUBTRACT FLOATING OPERANDS)

Calling Sequence:

SUBF (SRClA, SRC2A, DSTA)

Parameters:

SRClA Address of a single-precision floating-point value
used as the subtrahend

SRC2A Address of a single-precision floating-point value
used as the minuend

DSTA Address where the difference between operand 1 and
operand 2 is stored

5-16

MACHINE-SPECIFIC FUNCTIONS

Return Value:

NOVALUE

5.37 SUBG (SUBTRACT FLOAT-GOPE~DS)

Calling Sequence:

SUBG (SRClA, SRC2A, DSTA)

Parameters:

SRCIA

SRC2A

DSTA

Return Value:

NOVALUE

Address of an extended double-precision
floating-point value used as the subtrahend

Address of an extended double-precision
floating-point value used as the minuend

Address where the difference between operand 1 and
operand 2 is stored

5.38 UUO (INVOKE A TOPS-IO SYSTEM SERVICE)

Calling Sequence:

UUO (skips, opcode, acexp, effexp)

Parameters:

skips

opcode

acexp

effexp

A compile-time constant expression whose value is
in the range 0 to 1. The value of this expression
indicates the manner in which control may return
following the UUO instruction.

The low-order nine bits of this value become the
operation code of the generated instruction.
(Must not be a register name nor a %REF function.)

If this parameter is a register name, the number
of the register becomes the accumulator field of
the generated instruction. Otherwise, the
low-order four bits of this value become the
accumulator field of the generated instruction
(must not be a %REF function).

If this parameter is a register name, the number
of the register becomes the effective address of
the generated instruction. Otherwise, the
low-order 18 bits of this value become the
effective address of the generated instruction
(must not be a %REF function).

An instruction with the indicated operation code,
and effective address is executed.

accumulator field,

5-17

MACHINE-SPECIFIC FUNCTIONS

Note that the INIT UUO, which has inline parameters, is not supported
by the UUO machine-specific function. The OPEN UUO may be used
instead.

The value of the skips parameter must agree with the characteristics
of the instruction or UUO which is executed. It defines the manner in
which control may return following the instruction, and the value of
the UUO function, according to the following table:

SKIPS Value

o

1

Interpretation

Control always returns to the instruction plus 1.
The value of the function is zero.

Control returns either to the instruction plus 1 or
to the instruction plus 2. The value of the
function is zero if control returns to the
instruction plus 1, and 1 if control returns to the
instruction plus 2.

5-18

CHAPTER 6

PROGRAMMING CONSIDERATIONS

This chapter gives some practical help in writing BLISS programs.
First, the usage differences between LIBRARY and REQUIRE files are
considered. Then, some common BLISS programming errors are discussed.

6.1 LIBRARY AND REQUIRE USAGE DIFFERENCES

BLISS library files are used in a manner similar to that of required
files; declarations that are common to more than one module are
centralized in a single file automatically incorporated into other
modules during compilation by means of REQUIRE or LIBRARY
declarations.

Library files are more efficient for doing this than required files
for two reasons.

First, with files invoked by REQUIRE declarations, the compilation
cost of processing the source occurs every time the file is used in a
compilation. With library files, the major compilation cost occurs
once when the library is compiled, and a much smaller cost occurs each
time the library file is used in a compilation. A library file
closely approximates the internal symbol table representation used by
the compiler; hence, costs of lexical processing (including scanning,
lexical-conditionals, lexical-functions, and macro expansions) and
declaration parsing and checking occur only during the library
precompilation.

Second, with files invoked by REQUIRE declarations, all declarations
contained in the file are incorporated into the compiler symbol table.
With library files, the compiler does not incorporate the declarations
into the normal symbol table unless and until the declaration is
actually needed. Declarations of names that are not used do not fill
up the symbol table.

The difference in cost depends on many factors, including the size of
the library, the size of the module being compiled, and the percentage
and kind of declarations used from a library. Experimental results
indicate that compiler time and space requirements may typically be
improved by a factor of 4 by using library files instead of source
files.

Library files and the same declarations used from source files using
the REQUIRE declarations are similar. However, the differences are:

• Files invoked by REQUIRE declarations are source (text) files;
files invoked by LIBRARY declarations must be special files
created by the compiler in a previous library precompilation.

• Files invoked by REQUIRE declarations may contain any source
text that is valid when that source text is substituted for

6-1

PROGRAMMING CONSIDERATIONS

the REQUIRE declaration. Files invoked by LIBRARY
declarations must be compiled from sources that consist of a
sequence of (only) the following declarations:

BINDI
BUILTINI
COMPILETIME
EXTERNAL
EXTERNAL LITERAL
EXTERNAL ROUTINE
FIELD
KEYWORDMACRO
LIBRARY
LINKAGE
LITERAL
MACRO
REQUIRE
STRUCTURE
SWITCHES
UNDECLARE

• SWITCHES declarations contained in files invoked by the
REQUIRE declaration may affect the module being compiled;
those contained in files used to produce library files affect
only the library compilation. Switch settings are not
incorporated into the compilation that uses the library file.

• Files invoked by REQUIRE declarations may have effects that
are dependent on previous declarations and/or switch settings
in the module being compiled. This can occur in a
lexical-conditional (%IF-%THEN-%ELSE-%FI) or macro expansion
that depends on the lexical functions %SWITCHES, %DECLARED, or
%VARIANT, or on values of predeclared literals, such as
%BPVAL. Files invoked by LIBRARY declarations do not have
effects that are dependent on previous declarations or switch
settings, because SWITCHES declarations, REQUIRE declarations,
lexical conditionals or macro calls contained in sources used
to produce a library file are processed during the library
precompilation.

• Appropriately written source files can be invoked by REQUIRE
declarations that exist in a module which may be compiled by
any BLISS compiler; however, Library files must only be
invoked by the same compiler that created the library file.

In compiling a module, identical effects are normally achieved by
using either a REQUIRE declaration to invoke the source files used to
create a library or by using a LIBRARY declaration to invoke the
library itself. However, the differences presented above may lead to
problems that are difficult to identify. Therefore, for each set of
declarations, one form or the other should be used consistently.

6.2 FREQUENT BLISS CODING ERRORS

Certain user coding errors occur frequently, especially for new BLISS
users, when compiling and debugging a new module. The following list
may be useful as a check list when you cannot seem to find the source
of a problem.

1. Some restrictions apply to these declarations.

6-2

PROGRAMMING CONSIDERATIONS

6.2.1 Missing Dots

The most frequent error is to forget a dot. Except for the left side
of an assignment, the appearance of a data segment name without a
preceding fetch operator is the exception and usually a mistake. For
example:

IF A THEN ...

should almost certainly be:

IF .A THEN ...

6.2.2 Valued and Nonvalued Routines

The BLISS compiler does not
contexts that do not use
routine:

ROUTINE R(A): NOVALUE
BEGIN

RETURN 5;

END;

diagnose useless value expressions in
a value. For example, in the following

the apparent return value 5 is discarded since the routine has the
NOVALUE attribute.

However, in the following case:

ROUTINE S(B)
BEGIN

RETURN;

END;

a required RETURN value is missing; therefore, an informational
message is issued indicating that a value expression is missing in a
context that implies a value. (The compiler assumes a value of zero
for missing expressions.)

6.2.3 Semicolons and Values of Blocks

It is common to think of a semicolon as a terminator of an expression;
this is, however, untrue and can lead to errors. In the following
example:

IF .A
'rHEN

X=.Y;
ELSE

X=-5;

the first semicolon terminates the initial IF-THEN and the subsequent
ELSE is in error.

A more subtle error is to place a semicolon after the last expression
of a block when that expression is supposed to be the value of the
block. (This is very similar to Section 6.2.2 above concerning valued
and nonvalued routines.)

6-3

PROGRAMMING CONSIDERATIONS

6.2.4 Complex Expressions Using AND, OR, and NOT

When you are writing complex tests involving the AND, OR, and NOT
operators, it is easy to confuse the relative precedence of the
operators. Explicit parentheses can, however, make your intent clear
to the compiler (as well as to yourself and to other readers). For
example, instead of the following:

IF .X {EQL 0 AND .Y {OR NOT .J THEN ...

use:

IF {(.X (EQL 0) AND .Y) OR (NOT .J) THEN ...

6.2.5 Computed Routine Calls

When computing the address of a routine to be called, enclose the
expression that computes the address in parentheses followed by the
parameters. For example:

BEGIN
EXTERNAL ROUTINE

Ri
LOCAL

Li
L = Ri
(.L)(O)
END

calls the routine at address R with a parameter of zero. However:

.L(O)

calls the routine at address L (most likely an address on the stack)
and uses the returned value as the operand of the fetch. Since there
is no code at address L, an illegal instruction exception is likely at
execution.

An alternative is to use a general routine call.
linkage is the default calling convention,
computed call as:

BLISS36C(.L,0)

6.2.6 Signed and Unsigned Fields

Assuming the desired
you could write the

Be careful when using signed and unsigned fields that are smaller than
a fullword. Consistent use of the sign extension rules and of signed
versus unsigned operations is important. For example, in the
following:

BEGIN
FIELD LOW9 = [O,O,9,OJi
OWN

X : BLOCK[IJ FIELD(LOW9)i
IF .X[LOW9J EQL -5
THEN

END

the expression .X[LOW9J EQL -5 is always false because the (unsigned)
value fetched from X is necessarily in the range 0 to 511.

6-4

PROGRAMMING CONSIDERATIONS

6.2.7 Complex Macros

The BljISS macro facility has many capabilities but also has some very
subtle properties. Most problems arise when features that have
side-effects on the compilation are used, such as:

• Macro expansions that produce declarations of any kind,
particularly other macro declarations

• Use of compile-time names to control macro expansions using
%ASSIGN

• Use of %QUOTE, %UNQUOTE, and %EXPAND

Be particularly careful when trying to use these featuresi indeed, you
may not really need them in the first place. (Refer to Section 6.3
for examples of advanced macro usage.)

6.2.8 Missing Code

You may discover that some of your program seems to be missing from
the compiled code. Check the compiled code carefully to make sure
that it really is missing rather than cleverly optimized. If code is
missing, most likely you have made a coding error. Many coding errors
tend t.o result in code that can be optimized.

For example, consider the following:

BEGIN
FIELD LOW9 = [0,9Ji
OWN

X : BLOCK[lJ FIELD(LOW9)i
IF .X[LOW9J EQL -5
THEN

X= 100

END

In the above example, the value of the test expression .X[LOW9J EQL -5
is always false. (See Section 6.2.6 above concerning signed and
unsigned fields.) As a result, the compiler produces no code for the
following:

• The test expression, and

• The alternative, X = 100 (it can never be executed).

Consequently, the entire IF expression disappears from the compiled
code. The problem is not erroneous compiler optimization, but a
missing extension expression in the field declaration of LOW9.

A similar error occurs if the fact is overlooked that TRUE/FALSE is
based on the value of the low bit of an expression. Thus the
following fragment:

IF .X AND 2
THEN

y=O
ELSE

Y=l

always assigns the value "1" to Y because the low bit of ".X AND 2"
must always be zero (false).

6-5

PROGRAMMING CONSIDERATIONS

6.2.9 Conflicting Names

Be aware of both the length and content of user-defined symbolic
names. BLISS can distinguish among ,symbols that differ in any of the
first 31 characters. However, linkers currently on the
DECsystem-10/20 cannot distinguish beyond the sixth character. For
this reason, any GLOBAL or EXTERNAL symbol should be unique within six
characters. If a file is created for assembly outside of BLISS, all
symbols appearing within the file should be unique within six
characters or the /UNAMES switch should be specified. This includes
symbols defined by OWN, GLOBAL, LABEL, EXTERNAL, GLOBAL ROUTINE, and
EXTERNAL ROUTINE.

BLISS issues a diagnostic message when a name exceeds 31 characters
and ignores any characters beyond that. Thus, to avoid confusion
among names, distinguish a name within a name as soon as possible; for
example, use IN A VALUE and IN B VALUE instead of IN VALUE A and
IN VALUE B. BLISS also issues a dIagnostic message when two unique
GLOBAL names match in the first six characters; the linker also
diagnoses this problem.

BLISS allows the declaration of the same symbolic name in different
contexts, provided the declarations appear in distinct blocks.
However, the MACRO assembler neither r(~cognizes blocks nor permits any
redefinition of symbols. If a file is created for assembly outside of
BLISS, all symbols declared by ROUTINE, OWN, and GLOBAL must be unique
within the entire module. If this is not true, the /UNAMES switch
must be used to avoid an assembly error.

Good programming practice dictates that duplicate symbolic names
should be avoided wherever possible, since they cause confusion and
add to debugging and program maintenance time. If any duplication
occurs, use the names for the same purpose in parallel construction.

This code is acceptable:

MACRO
ADD (A, B)
SUB(A, B)

A + B%
A B%

but the following code is not recommended:

BEGIN
OWN

END

A;
BEGIN
LITERAL

A=5;

END;

6.2.10 Routines Within Routines

Declaring a routine within the declaration of another routine must be
avoided for the following reasons:

• Although an embedded routine can take a name identical to that
of an unembedded routine, without error, you may inadvertently
cause confusion and subsequent errors by using this name to
refer to the outer routine.

6-6

PROGRAMMING CONSIDERATIONS

• A degree of complexity is added to the compilation process,
causing the compiler to take longer to compile your program.

• It is more difficult to follow the code when each routine does
not "stand by itself."

6.2.11 Indexed Loop Coding Error

A common coding error occurs in
indexed-loop-expressions of the form:

DECRU I FROM HIGH TO 0 DO

the use of unsigned

This code results in an infinite loop because you are attempting to
decrement through zero. Since the rules of unsigned arithmetic state
that zero is the smallest integer, the .1 will never be less than zero
and the loop cannot terminate.

The proper interpretation of these expressions is as follows:

BEGIN

END;

LOCAL I;
I = HIGH;
IF .1 GTRU 0 DO (I .1 - 1) UNTIL .1 LSSU 0;

Thus, when .1 is zero and is decremented to -1, it becomes the largest
unsigned number. The expression .1 LSSU 0 is always FALSE because -1
LSSU 0 is always FALSE. Therefore, the unsigned indexed-loop
expression must be coded as either:

or

DECRU I FROM HIGH + 1 TO 1 DO

DECRU I FROM HIGH TO 0 DO

BEGIN

IF .1 EQL 0 THEN EXITLOOP
END;

The semantics of the DECRA expression are the same, except GTRU and
LSSU are GTRA and LSSA.

6.3 ADVANCED USE OF BLISS MACROS

This section provides some examples of the advanced use of BLISS
macros. In particular, the examples demonstrate the use of the
following:

• Conditional compilations

• Iterative macros

• Lexical functions (such as %QUOTE and %EXPAND)

6-7

PROGRAMMING CONSIDERATIONS

6.3.1 Advantageous Use of Machine Dependencies

The following examples show how machine-independent constructs may be
modified to take advantage of machine dependencies.

Assume a high-level construct is needed to move a fullword sequence
from a source to a destination; the simplest transportable
implementation of this might be as follows:

MACRO
MOVE CORE (SRC, DST, LENTH)

BEGIN
BIND

$S=(SRC)
$D=(DST)

VECTOR,
VECTOR;

INCR I FROM 0 TO (LENTH)-l DO $D[.IJ
END %;

.$S[.IJ

Notice that the BIND of SRC and DST guards against their producing any
extraneous side-effects. For example, if the assignment-expression in
the INCR loop used a general structure reference of the form:

VECTOR[DST, .1 J = .VECTOR[SRC, .1 J;

and the DST or SRC expressions were routine-calls, a call would be
executed every time a pass was made through the loop. Thus, the BIND
to $D and $S ensures that this side-effect occurs only once.

Using String Instructions

The macro shown in the previous example is, however, inefficient for
use in moving large blocks of memory due to excessive execution time
and instruction size; more efficient coding would take advantage of
string instructions supported by the VAX-II and DECsystem 10/20
hardware.

As an example, the transportable CH$MOVE function can be used, with
appropriate adjustments, to deal with 8-bit bytes on the VAX and
36-bit bytes on the 10/20 as follows:

MACRO
WORD_PTR(A) = CH$PTR(A %BLISS36(, 0, 36)) %,

MOVECORE(SRC,DST,LENTH) = CH$MOVE(
(LENTH)*%UPVAL,
WORD PTR(SRC),
WORD=PTR(DST)) %;

This method produces fairly efficient code; but for DECsystem 10/20 an
even more efficient implementation is possible with the use of the BLT
(Block Transfer) instruction as follows:

MACRO
MOVECORE(SRC,DST,LENTH)=

%IF %BLISS(BLISS36)
%THEN

BEGIN
BIND

$D = (DST);
BUILTIN MACHOP;
LITERAL BLT=%0'251';
REGISTER

RQQQ,
SQQQ=l;

6-8

BLT opcode

Must not be ACO

PROGRAMMING CONSIDERATIONS

RQQQ<18,18> = (SRC);
RQQQ<O,18> = ($0);

%IF %LTCE(LENTH)
%THEN

SQQQ = .RQQQ<O,18>;

Source-ptr in LH
Destination in RH

Effective address
tells where to stop

MACHOP(BLT, RQQQ, (LENTH)-l, SQQQ)
%ELSE

SQQQ = ($0) + (LENTH);
MACHOP(BLT, RQQQ, -1, SQQQ)

%FI
END

%ELSE
CH$MOVE((LENTH)*%UPVAL, SRC, DST)

%FI %,

The BLISS-36 version of MOVE CORE is now heavily conditionalized to
generate the best possible code when the length of the memory block is
known at compile or link time.

For example, the %LTCE lexical
effective-address calculation
expression:

function determines if the PDP-10
can be used to completely evaluate the

.SQQQ + (LENTH) - 1

Otherwise, if the expression is not a link-time constant, it is
necessary to compute the ending address by a combination of run-time
addition and effective-address computation.

It should be noted, however, that there is some risk involved with
this implementation, in that the BLT always moves at least one word.
Thus, if the LENTH parameter is zero, the BLT method incorrectly moves
one word to the destination.

6.3.2 Dealing with Enumeration Types

One of the more powerful features of languages such as PASCAL and ADA
is the ability to define a finite set of elements. This capability is
known as an II enumerated type II , because the set is defined by
exhaustively naming each possible element in the set.

While BLISS is unaware of such types, it is possible to provide an
adequate simulation.

6.3.2.1 The SET Data-Type - Sets
system of MACROs. An element
value between zero and %BPVAL-l.
implementation) to contain no
domains.

are implemented in BLISS through a
of the set is given a small integer

Thus, sets are limited (in this
more than %BPVAL elements in their

A subset is stored by turning on bits in a fullword. For reasons to
be discussed later, the bits in the fullword are numbered in reverse
order from the normal BLISS conventions. Thus for the BLISS-36 a set
looks as follows:

o 35

0111213141516171 331341351

6-9

PROGRAMMING CON.SIDERATIONS

The digits inside the box refer to element-numbers, while
outside the box refer to the most-significant
least-significant bits (35) of a word.

the digits
(0) and

The following table shows some simple sets and the elements they
contain:

Set (in octal) Contents

o
0,35

400000000000
400000000001
000000000002
776000000000

34
0,1,2,3,4,5,6,7

6.3.2.2 Creating a Set - The following macro is used to define an
enumeration type.

MACRO
ENUMERATION(NAME)=

1+
1 Creates a PASCAL-like ENUMERATION type. The parameter
1 NAME will be defined as a macro expanding to the
! comma-list of the %REMAINING parameters.
1-
COMPILTIME

NAME O~

LITERAL
ENUM (NAME,%REMAINING)~

UNDECLARE NAME;
MACRO NAME = %QUOTE %EXPAND %REMAINING %QUOTE %
%,

ENUM (V)[N] = N = V %ASSIGN(V,V+l) %~

Note that the ENUMERATION macro is particularly interesting due to the
use of the %QUOTE lexical function. As an example, consider the use
of the ENUMERATION macro to define the type TREES:

ENUMERATION (TREES, OAK, MAPLE, PINE, ELM)~

The intended result is that the names OAK, MAPLE, PINE, and ELM should
be defined as:

LITERAL
OAK = 0,
MAPLE = I,
PINE = 2,
ELM = 3;

And the name TREES should be defined by the macro

MACRO TREES = OAK, MAPLE, PINE, ELM %i

The %QUOTE is necessary to prevent the %EXPAND from occurring until
the ENUMERATION macro is expandingi at that time, the %REMAINING will
be bound to the list of names: OAK, MAPLE, PINE, ELM.

6-10

PROGRAMMING CONSIDERATIONS

Because the macro NAME is inside another macro, its body is being
scanned at macro-quote level when the ENUMERATION macro expands.
Thus, if the body of the ENUMERATION macro was defined as:

MACRO NAME %REMAINING %QUOTE %~

The result of expanding ENUMERATION would be:

MACRO TREES = %REMAINING %~

Since TREES is defined as not having a macro-parameter list, the value
of the %REMAINING would always be empty. Therefore, you need to force
the expansion of the %REMAINING when the ENUMERATION macro is
expanded, not when the TREES macro is expanded.

Also, if you define the ENUMERATION macro as:

MACRO NAME %EXPAND %REMAINING %QUOTE %~

This would cause the %REMAINING to be expanded too soon (namely, when
the ENUMERATION macro is declared), and again, %REMAINING would be an
empty lexeme sequence.

The MACRO, which expands to the entire domain of the enumeration type,
can be used as follows:

1. To iterate over a set, write:

INCR SPECIES FROM MIN(TREES) TO MAX(TREES) do ...

2. Using the CASE control-expression, write:

CASE .WOOD FROM MIN(TREES) TO MAX(TREES) OF
SET
[OAK] :
[MAPLE]: ...
[PINE, ELM]:
[OUTRANGE] :
TES~

3. A successor function can be defined as:

MACRO SUCCESSOR(T) = ((T)+l) MOD MAX(TREES) %~

The MOD is used to cause SUCCESSOR(MAX(TREES)) to be the same as
MIN (TREES) .

Of course, a more general implementation would pass the SET as a
parameter, as in:

MACRO SUCCESSOR(T) = «T)+l) MOD MAX(%REMAINING) %;

This would be invoked as SUCCESSOR(MAPLE, TREES) to return the value
2 (the literal associated with PINE).

6.3.2.3 Placing Elements in Sets - Given elements of an enumeration
type, you want to produce a subset containing those elements. The
SUBSET macro shows another useful example of an iterative macro. Its

6-11

PROGRAMMING CONSIDERATIONS

purpose is to OR together the single sets produced by BITS. Notice
how the sequence "0 OR BITS(...)" is used to force the default
separator to be OR. BITS is notable for including defensive code to
detect attempts to produce sets that exceed the implementation limits.

MACRO
BITS[AJ=

%IF %CTCE(A)
%THEN

%IF A GTRU %BPVAL-l
%THEN

%WARN(IValue (I, %NUMBER(A),
I) in BITS Mask exceeds %BPVAL-11)

%FI
%FI
(1 "((% B PVAL -1) - (A)) %,

SUBSET[] = (0 OR BITS(%REMAINING)) %:

Typical use of the SUBSET macro would be to initialize a set or to
test for intersections, as in:

OWN FOREST: INITIAL(SUBSET<OAK, MAPLE>);

IF (.FOREST AND SUBSET<PINE,ELM» EQL 0
THEN

1 No trees in common between two sets

6.3.2.4 Membership in a Set - The ONEOF macro efficiently determines
if an element is a member of a given subset. This depends on doing a
left-shift and examining the sign-bit of the result value. This is
why sets are stored in reverse-numbered bit fields.

This example also deals with machine dependencies, as the BLISS-36
arithmetic shift operator (") must choose either an ASH or a LSH
instruction. An ASH leaves the sign-bit unchanged, the desired
behavior when right-shifting any value; but when left-shifting, the
BLISS semantics demand that a LSH be generated. If the shift-count is
unknown at compiletime, BLISS-36 must generate a run-time test and
conditionally execute either the ASH or LSH. Because you know that
the shifts are always left, the generated code is optimized by forcing
a LSH to be emitted as shown below.

MACRO
ONEOF(ELEMENT,SUBSET)=

%IF %BLISS(BLISS36)
%THEN

BEGIN
BUILTIN LSH;
LSH(SUBSET, ELEMENT) LSS 0
END

%ELSE
«(SUBSET) " (ELEMENT)) LSS 0)

%FI %;

For example consider the following:

LOCAL TREE: INITIAL(ELM); ! An element

IF ONEOF(.TREE, SUBSET<ELM, PINE>)
THEN

6-12

PROGRAMMING CONSIDERATIONS

This code fragment would expand to the following:

IF
BEGIN BUILTIN LSH;
LSH ((1 "(35-3» OR (1 "(35-2»), .TREE) LSS 0
END

THEN -This is equivalent to the following:

IF LSH (%1140000000000 1 , .TREE) LSS 0
THEN

And assuming that TREE still contains its initial value of 3 (for
ELM) , you have:

IF (%0 1400000000000 1) LSS 0
THEN

This evaluates to TRUE and indicates that ELM is a member of the
subset {ELM, PINE}.

6.4 EXTENDED ADDRESSING DIFFERENCES

Compiling a BLISS-36 program with extended addressing differs from the
compilation of programs without this feature in the following ways:

• The value of %BPADDR is 30.

• If a legal character size (6, 7, 8, 9, 18) is used, the CH$PTR
function returns a l-word global byte pointer; otherwise, a
local byte pointer is returned.

• The compiler assumes that all relocatable symbols and
externals are in the same sectioni this includes the following
data- and routine-declarations: .

FORWARD, OWN, GLOBAL, EXTERNAL,
FORWARD ROUTINE, ROUTINE,
GLOBAL ROUTINE, EXTERNAL ROUTINE

• The compiler performs all address arithmetic to 30 bits of
precision. To accomplish this, an XMOVEI (30-bit access)
instruction is generated in place of a MOVEI (18-bit access)
instruction. For example:

EXTERNAL
ai

LOCAL
bi

b ai

The extended addressing code generates:

XMOVEI AC,A iB,A

6-13

PROGRAMMING CONSIDERATIONS

Without extended addressing the code would be:

MOVEI AC,A iB,A

• Since the LINKER restricts the use of nonzero sections to
PSECTED programs, PSECTED code is generated by default.

If, in addition, you use the SECTION-INDEPENDENT option to extended
addressing, the following difference occurs:

• The compiler generates code that, at run time, determines the
section number. For example:

OWN
A,
Bi

B CH$PTR(A} i

The code in the example generates the following sequence of
assembly instructions:

SECTION INDEPENDENT CODE:

1 The address of A-I is determined at run-time.
1
XMOVEI AC, A-I
TLO AC, -120000
MOVEM AC, B

NOSECTION INDEPENDENT CODE:
!
1 The address of A-I is determined at link-time.

MOVE
MOVEM

AC, C.l
AC, B

C.l: XPOINT 7, A-I, 34

6-14

CHAPTER 7

TRANSPORTABILITY GUIDELINES

This chapter addresses the task of writing transportable programs. It
shows why writing such transportable code is much easier if considered
from t~he beginning of the project, explores properties that cause a
program to lose its transportability, and discusses techniques by
which a programmer can avoid these pitfalls.

After an introduction to the concept of transportability, the
transportability guidelines presented in this chapter are organized
into t~hree sections. The section on general strategies discusses some
high-level approaches to writing transportable software in BLISS. The
section on tools describes various features of the BLISS language that
can be used in solving transportability problems. The section on
Techniques analyzes various transportability problems and suggests
solutions to them.

The dialects discussed in this chapter are the languages defined by
the following BLISS compilers:

BLISS-16 V4
BLISS-32 V4
BLISS-36 V4

7.1 INTRODUCTION

A transportable BLISS program is one that can be compiled to execute
on at least two, and preferably all, of the three major architectures:
PDP-IO, PDP-II, and VAX-II. Various solutions to the problem of
transportability exist, each requiring different levels of effort.
Various kinds of solutions are recommended. In some cases, for
example, program text should be rewritten. In other cases, large
portions of programs may be written in such a way that no modification
is required and equivalent functionality is preserved in differing
archit.ectures. The levels' of solutions in order of decreasing
desirability are:

• No change is needed to program text.
completely transportable.

The program is

• Parameterization solves the transportability problem. The
program makes use of some features that have an analog on all
the other architectures.

• Parallel definitions are required. Either the program makes
use of features of an architecture that do not have analogs
across all other architectures, or different, separately
transportable aspects of the program interact in
nontransportable ways.

7-1

TRANSPORTABILITY GUIDELINES

The goal is to make transportability as simple as possible, which
means that the effort needed in transporting programs should be
minimized. Central to the ideas presented here is the notion that
transportability is more easily accomplished if considered from the
beginning. Transporting programs after they are
much more complex task.

running becomes a

It is advantageous to run parallel compilations frequently. It is
fortunate, therefore, that with the right tools and techniques,
transportability is not difficult to achieve. The first transportable
program is the hardest. Before undertaking a large programming
project, you may find it useful to write and transport a less
ambitious program.

These guidelines are the result of a concentrated study of the
problems associated with transportability. No claim is made that
these guidelines are complete. Some of what is contained here will
not be obvious to programmers. An attempt is made to identify those
areas that can cause problems, if the programmer is not forewarned.
Solutions to all identified problems are suggested.

7.2 GENERAL STRATEGIES

This section presents certain global considerations that are important
to the writing of transportable BLISS programs, namely:

• Isolation

• Simplicity

7.2.1 Isolation

You should keep in mind the following maxim when designing and/or
coding a program that is to be transported:

• If it is nontransportable, isolate it.

You will probably encounter situations for which it is desirable to
use machine-specific constructs in your BLISS program. In these
cases, simply isolating the constructs will facilitate any future
movement of the program to a different machine. In most cases, only a
small percentage of the program or system will be sensitive to the
machine on which it is running. By isolating those sections of a
program or a system, you can mainly confine the effort involved in
transporting the program to these easily identifiable,
machine-specific sections. Specifically, follow these rules:

• If machine-specific data is to be allocated, place the
allocation in a separate MODULE or in a REQUIRE file.

• If machine-specific data is to be accessed, place the
accessing code in a ROUTINE or in a MACRO, and then place the
ROUTINE or MACRO in a separate MODULE or in a REQUIRE file.

• If a machine-specific function or instruction is to be used,
isolate it by placing it too in a REQUIRE file.

• If it is impossible or impractical to isolate this part of
your program from its module, comment it heavily. Make it
obvious to the reader that this code is nontransportable.

7-2

TRANSPORTABILITY GUIDELINES

The above rules are applicable in the local context of a routine or
module. In a larger or more global context (for instance, in the
design of an entire system) isolation is implemented by the technique
of modularization. By separating those parts of the system which are
machine or operating system dependent from the rest of the system, you
can simplify the task of transporting the entire system. It becomes a
matter of recoding a small section of the total system. The major
portion of the code (if written in a transportable manner) should be
easy to move to a new machine with a minimum of recoding effort.
BLISS is a language which facilitates both the design and programming
of programs and systems in a modular fashion. This feature should be
used to advantage when writing a transportable system.

7.2.2 Simplicity

A basic concept in writing transportable BLISS software is simplicity
in the use of the language. BLISS was originally developed for
implementing systems software. As a result of this, BLISS is nearly
unique among high-level programming languages in that it allows ready
access to the machine on which the program will be running. The
programmer is allowed to have complete control over the allocation of
data, for example. Unfortunately, the same language features that
allow access to underlying features of the hardware are the very
features that lead to nontransportable code. In a system intended to
be transportable, these features should be used only where necessary
to meet a specific functional, performance, or economy objective.

It is often the case that BLISS language features that make a program
nontransportable also make the program inherently more complex.
Reducing the complexity of data allocation, for example, results in a
transportable subset of the BLISS language. This reduction of
complexity is one of the basic themes that runs through these
guidelines. In effect, coding transportable programs is a simpler
task because the number of options available has been reduced.
Simplicity in the coding effort is one of the reasons for the
development of higher-level languages like BLISS. Using the defaults
in BLISS will result in programs which are much more easily
transported.

7.3 TOOLS

This section on tools presents various language features that provide
a means for writing transportable programs. These features are either
intrinsic to BLISS or have been specifically designed for
transportability and/or software engineering uses. The tools
described here will be used throughout the companion section on
techniques.

7.3.1 Literals

Literals provide a means for associating a name with a compile-time
constant expression. This section considers some built-in literals
which will aid in writing transportable programs. In addition, it
discusses restrictions on user-defined literals.

7-3

TRANSPORTABILITY GUIDELINES

7.3.1.1 Predeclared Literals - One of the key techniques in writing
transportable programs is parameterization. Literals are a primary
parameterization tool. The BLISS language has a set of predeclared,
machine specific literals that can be most useful. These literals
parameterize certain architectural values of the three machines. The
values of the literals are dependent on the machine for which the
program is currently being compiled. Here are their names and values:

Description

Bits per addressable unit
Bits per address value
Bits per BLISS value

Units per BLISS value

The names beginning with '%'
without declaration. These
guidelines.

Literal
Name 10/20 VAX-II 11

%BPUNIT 36 8 8
%BPADDR 18 32 16

%BPVAL 36 32 16

%UPVAL 1 4 2

are literal names that can be used
literal names are used throughout these

Bits per value is the maximum number of bits in a BLISS value. Bits
per unit is the number of bits in the smallest unit of storage that
can have an address. Bits per address refers to the maximum number of
bits an address value can have. Units per value is the quotient
%BPVAL/%BPUNIT. It is the maximum number of addressable units
associated with a value.

We can derive other useful values from these built-in literals. For
example:

LITERAL
HALF VALUE = %BPVAL / 2;

defines the number of bits in half a word (half a longword on VAX-II).

7.3.1.2 User-Defined Literals - A literal is not strictly speaking a
self-defining term. The value and restrictions associated with a
literal are arrived at by assigning certain semantics to its source
program representation. It is convenient to define the value of a
literal as a function of the characteristics of a particular
architecture, which means that there are certain architectural
dependencies inherent in the use of literals. Because the size of a
BLISS value determines the value and/or the representation of a
literal, there are some transportability considerations. BLISS value
(machine word) sizes are different on each of the three machines. On
VAX-II, the size is 32 bits; on the 10/20 systems, it is 36; and the
11 value is 16.

There are two types
string-literals. The
the machine word size.
are:

VAX-II: -(2**31)

10/20: -(2**35)

11: -(2**15)

of BLISS literals: numeric-literals and
values of numeric-literals are constrained by
The ranges of values for a signed number, i,

~ i ~ (2**31) - 1

~ i ~ (2**35) - 1

~ i ~ (2**15) - 1

ALL: -(2**(%BPVAL-l» ~ i ~ (2**(%BPVAL-l»-1

7-4

TRANSPORTABILITY GUIDELINES

A numeric literal, %C'single-character', has been implemented. Its
value is the ASCII code corresponding to the character in quotes and
when stored, it is right-justified in a BLISS value (word or
longword). A more thorough discussion of its usage can be found in
the section on character sequences.

as integer-values and as
used as values, they are

the representational
The following table
%ASCII type string

There are two ways of using string-literals:
charact.er strings. When string-literals are
not transportable. This arises out of
differences and from differing word sizes.
illustrates these potential differences for a
literal:

VAX-II 10/20 11

Maximum number of 4 5 2
characters

Character placement right to left to right to
left right left

This type of string literal usage and also its use as a character
string are discussed in the section Character Sequences.

7.3.2 Macros and Conditional Compilation

BLISS macros can be an essential tool in the
transportable programs. Because they evaluate
compilation, it is possible to use macros to tailor
specific machine.

development of
(expand) during

a program to a

A good example can be found in the section on structures. There, two
macros are developed whose functions are completely transportable.
The macros can determine the number of addressable units needed for a
vector of elements, where the element size is specified in terms of
bits. There are also predefined machine conditionalization macros
available. These macros can be used to selectively compile certain
declarations and/or expressions depending on which compiler is being
run. There are three sets of definitions, each containing three macro
definitions.

The definitions for the BLISS-32 set are:

MACRO
%BLISS16[]
%BLISS36[]
%BLISS32[]

% ,
% ,
%REMAINING % ;

There are analogous definitions for the other machines. The net
effect is that in the BLISS-32 compiler, the arguments to %BLISSl6 and
%BLISS36 will disappear, while arguments to %BLISS32 will be replaced
by the text given in the parameter list.

A very explicit way of tailoring a program to a specific architecture
uses the %BLISS lexical function in conjunction with the conditional
compilation facility in BLISS. The %BLISS lexical function takes
either BLISS36, BLISS32, or BLISSl6 as a parameter, and returns 1 if
the parameter corresponds to the compiler currently executing, and 0
otherwise.

7-5

TRANSPORTABILITY GUIDELINES

In the following example, INSQUE is an executable function in
BLISS-32, but is a routine for BLISS-36:

%IF %BLISS(BLISS32)
%THEN

BUILTIN
INSQUE;

%ELSE

%FI

~IF %BLISS(BLISS36)
%THEN

%FI

FORWARD ROUTINE
INSQUE;

7.3.3 Module Switches

A module switch and a corresponding special switch are provided to aid
in the writing of transportable programs. This switch, LANGUAGE, is
provided for two reasons:

• To indicate the intended transportability goals of a module
and

• To provide diagnostic checking of the use of certain language
features.

Using this switch, you can therefore indicate the target architectures
(environments) for which a program is intended.

Transportability checking consists of the compiler determining
whether, in the module being compiled, certain language features
appear that fall into either of two categories:

• Features that are not commonly supported across the intended
target environments.

• Features that most often prove to be troublesome in
transporting a program from anyone environment to another.

The syntax is:

LANGUAGE (language-name , ...)

where language-name is any combination of BLISS36, BLISS16 or BLISS32.

Two other forms are possible:

LANGUAGE (COMMON
LANGUAGE ()

If no LANGUAGE switch is specified, the default is the single language
name corresponding to the compiler used for the compilation, and no
transportability checking is performed. If more than one
language-name is specified, the compiler will assume that the program
is intended to run under each corresponding architecture.

If no language name is specified, no transportability checking will be
performed. A specification of COMMON is the equivalent of the
specification of all three.

7-6

TRANSPORTABILITY GUIDELINES

Each compiler will give a warning diagnostic if its own language-name
is not included in the list of language-names.

Within the scope of a language switch, each compiler will give a
warning diagnostic for any non transportable or problematic language
construct relative to the specified set of languages. This chapter
discusses most of the constructs that will be checked for.

NOTE

The precise set of language constructs that are
subject to transportability checking is specified in
Appendix C of the Bliss Language Guide.

Here is an example of how the LANGUAGE switch can be used:

MODULE FOO(... ,LANGUAGE(COMMON), .. ;) =
BEGIN

1+
1 Full Transportability Checking is in effect.
1-

BEGIN

1+
1 BLISS36 no longer in effect: BLISS-l6/32 Subset checking
1 to be performed in this block.
1-

SWITCHES

gNDj

1+

LANGUAGE(BLISSl6, BLISS32)j

Within this block (that is, within the scope
of the SWITCHES declaration), a relaxed
form of full transportability checking
is performed. (This takes advantage of
the greater degree of commonality that
exists between the BLISS-l6 and BLISS-32
target architectures.)

The compilation of this section
of code by a BLISS-36 compiler will
result in a diagnostic warning.

Full transportability checking is restored.
1-

7-7

TRANSPORTABILITY GUIDELINES

7.3.4 Reserved Names

The following is a list of the BLISS reserved names. These names
cannot be user declared. Note that, while the same names are reserved
in all three BLISS dialects, some of them do not have a predefined
meaning in each dialect. For example, LONG is an allocation-unit
keyword in BLISS-32 and is a reserved but otherwise unsupported name
in BLISS-16 and BLISS-36 (due to basic architectural differences in
the target systems). Any attempted use of this name in the latter two
dialects will result in a compiler diagnostic. As another example,
the name IOPAGE has no defined meaning in any BLISS dialect but is
reserved for possible future use in all dialects. The reserved names
that are not supported in some or all dialects are marked with an
asterisk. See Appendix A of the Bliss Language Guide for a more
complete description.

*ADDRESSING MODE GTRU PLIT
*ALIGN IF PRESET

ALWAYS INCR PSECT
AND INCRA *RECORD
BEGIN INCRU REF
BIND INITIAL REGISTER

*BIT INRANGE REP
BUILTIN *IOPAGE REQUIRE
BY KEYWORDMACRO RETURN

*BYTE LABEL ROUTINE
CASE LEAVE SELECT
CODECOMMENT LEQ SELECTA
COMPILETIME LEQA SELECTONE
DECR LEQU SELECTONEA
DECRA LIBRARY SELECTONEU
DECRU LINKAGE SELECTU
DO LITERAL SET
ELSE LOCAL *SHOW
ELUDOM *LONG *SIGNED
ENABLE LSS STACKLOCAL
END LSSA STRUCTURE
EQL LSSU SWITCHES
EQLA MACRO TES
EQLU MAP THEN
EQV MOD TO
EXITLOOP MODULE UNDECLARE
EXTERNAL NEQ *UNSIGNED
FIELD NEQA UNTIL
FORWARD NEQU UPLIT
FROM NOT VOLATILE
GEQ NOVALUE *WEAK
GEQA OF WHILE
GEQU OR WITH
GLOBAL OTHERWISE *WORD
GTR OUT RANGE XOR
GTRA OWN

7.3.5 Require and Library Files

REQUIRE files are a way of gathering machine-specific declarations
and/or expressions together in one place. LIBRARY files are a form of
precompiled REQUIRE files.

In many cases, it will be either impossible or unnecessary to code a
particular BLISS construct (for example, routines, data declarations,
etc.) in a transportable manner. Developing parallel REQUIRE files,
one for each machine, can often provide a solution to transporting
these constructs.

7-8

TRANSPORTABILITY GUIDELINES

For example, if a certain set of routines are very machine specific,
then the solution may be to ~ode two or three functionally equivalent
routines, one for each machine type, and segregate them each in their
own REQUIRE file.

Each BLISS compiler has a predefined search rule for REQUIRE file
names based on their file types. Each compiler will search first for
a file with a specific file tjpe, then it will search for a file with
the file type I .BLI'.

The search rules for each compiler are:

Compiler 1ST 2ND 3RD

BLISS-36 .R36 .REQ .B36

BLISS-16 .R16 .REQ .B16

BLISS-32 .R32 .REQ .B32

Hence, the following REQUIRE declaration:

REQUIRE
I IOPACK' j ! I/O Package

will search for IOPACK.R36, IOPACK.R16 or
which compiler is being run. Failing
IOPACK.REQ, and so on.

4TH

.BLI

.BLI

.BLI

IOPACK.R32, depending on
that, it will look for

Inherent in these search rules is a naming convention for REQUIRE
files. If the file is transportable, give it the file type '.REQ' or
I .BLI'. If it is specific to a particular dialect, give it the
corresponding file type (for example, '.R36 1 or '.B36 1

).

Each BLISS compiler, by using the /LIBRARY switch, is capable of
precompiling files containing declarations. Not all the declarations
can be processed in a library run howeverj those that are allowed are
described elsewhere. The output of a library run is called a library
filej library files are processed by a compiler when it encounters a
library-declaration, for example:

LIBRARY
I IOPACK' ;

Each compiler checks to see that the library file it is using was
produced by itself in a previous run. Thus, to build a transportable
library from a single transportable source, you must build unique
LIBRARY files for each architecture of interest, using the appropriate
compilers of interest.

For example, let us assume that the file SYSDCL.BLI contains a set of
transportable declarations common to an application which is to run on
a DECSYSTEM-20 and a VAX. To precompile it requires that we run the
BLISS-32 compiler on it using the /LIBRARY switch, and the BLISS-36
compiler using the /LIBRARY switch. The object file produced by the
compiler is the library file, and if no extension is given for it in
the command line, a default extension is used (for example, .L32 and
.L36, respectively).

7.3.6 Routines

The key to transportability is the ability to identify an abstraction
that can exist in several environments. This is done by naming the
abstraction and describing its external characteristics in a way that

7-9

TRANSPORTABILITY GUIDELINES

permits implementation in any of the environments. The abstraction
may then be implemented separately in each environment. The closed
subroutine has long been regarded as the principal abstraction
mechanism in programming languages. With BLISS, other abstraction
mechanisms are also available, like structures, macros, literals,
require files, etc., but the routine can still be easily used as a
transportability abstraction mechanism.

For instance, when designing a system of transportable modules which
uses the concept of floating point numbers and associated operations,
there will be a need to perform floating point arithmetic. The
question naturally arises as to the environment in which the
arithmetic should be done. If the floating point arithmetic resides
entirely in a well-defined set of routines, and no knowledge of the
various representations of floating point numbers is used except
through these well defined interface routines, then it becomes
possible to perform "cross-arithmetic", which is important when
writing cross-compilers, for instance. Even if the ability to perform
cross-arithmetic is not desired, isolating floating point operations
in routines may be a good idea since these routines can then be reused
more easily in another project. A little thought will indicate that
the floating point routines themselves have to be transportable if
they are going to perform cross-arithmetic (since the system under
construction is transportable), but need not be transportable if
cross-arithmetic is not a goal.

The principal objection to using routines as an abstraction mechanism
is that the cost of calling a procedure is nontrivial, and that cost
is strictly program overhead. Composing this sort of abstraction in
the limit will produce serious performance degradation. For this
reason, a programmer should probably try not to use the routine as a
transportability mechanism if a small amount of forethought will be
sufficient to enable the writing of a single transportable module.

7.4 TECHNIQUES

This section on techniques shows you how to write
programs. The section is organized in dictionary
construct or concept. Each subsection contains:

• A discussion of the construct or concept.

transportable
form by BLISS

• Transportability problems that its use may engender.

• Specific guidelines and restrictions on the use of the
construct or concept.

• Examples (both transportable and nontransportable).

In all cases, the examples attempt to use the tools described in the
previous section.

7.4.1 Data

This section deals with the allocation of data in a BLISS program. In
this section we do not deal with character sequence (string) data or
the formation of address data. These types of data are discussed in
their own sections (see "Data: Addresses and Address Calculation" and
"Data: Character Sequences"). Primarily, we discuss the allocation
of scalar data (for example, counters, integers, pointers, addresses,
etc.) A presentation of more complex forms of data can be found in the

7-10

TRANSPORTABILITY GUIDELINES

sections entitled "Structures and Field-Selectors" and "PLITs and
Initialization." First there is a discussion of transportability
problems encountered due to differing machine architectures. Next a
discussion of the BLISS allocation-unit attribute is presented.
Finally, a discussion of other BLISS data attributes that must be
considered when writing transportable programs is discussed.

7.4.1.1 Problem Origin - The allocation of data (via the OWN, LOCAL,
GLOBAL, etc. declarations) tends to be one of the most sensitive
areas of a BLISS program in terms of transportability. This problem
of transporting data arises chiefly from two sources:

• A machine's architecture

• The flexibility of the BLISS language

When we are considering writing a BLISS program that will be
transported to another machine, we are confronted with the problem of
allocating data on (at least two) architecturally different machines.

Although we have already discussed differing word sizes, there are
further differences. On the VAX-ll architecture, data may be
typically fetched in longwords (32 bits), in words (16 bits) and in
bytes (8 bits); on the 11, both words and bytes may be fetched. Only
18-bit halfwords and 36-bit words on the 10/20 systems may be fetched
without a byte pointer.

If we were writing our program in an assembly language we would not
consider these differences to be important; clearly, our assembly
language program was not intended to be transportable.

What decisions, however, must the BLISS programmer make in the
transportable allocation of data? Need he or she be concerned with
how many bits are going to be allocated?

These questions (and their answers) can be complicated by the other
chief source of data transportability problems, namely the BLISS
language itself.

BLISS is unlike many other higher-level languages in that it allows
ready access to machine-specific control, particularly in storage
allocation. This is fortunate for the programmer who is writing
highly machine-specific software for efficiency purposes. This
programmer needs much more control over exactly how many bits of data
will be used. This feature of BLISS, however, can complicate the
decisions that need to be made by the BLISS programmer who is writing
a transportable program. Does he or she allocate scalars by bytes, or
by words, or by longwords?

7.4.1.2 Transportable Declarations - Consider the following simple
example of a data declaration in BLISS-32:

LOCAL
PAGE COUNTER: BYTE; 1 Page counter

The programmer has allocated one byte (8 bits) for a variable named
PAGE COUNTER. No matter what the intentions were in requesting only
one byte of storage, this ,declaration is nontransportable. The
concept of BYTE (in this context) does not exist on the 10/20 systems.

7-11

TRANSPORTABILITY GUIDELINES

In fact, in BLISS-36 the use of the word BYTE results in an error
message. Since this storage is allocated on the stack or in a
register, there is even less motivation to make it a byte due to the
high reusability of these locations.

If this declaration had been originally coded as:

LOCAL
PAGE_COUNTER; ! Page counter

then this could have been transported to any of the three machines.
The functionality (in this case, storing the number of pages) has not
been lost. We allowed the BLISS compiler to allocate storage by
default by not specifying any allocation-unit in the LOCAL
declaration. In all the BLISS dialects the default size for
allocation-unit consists of %BPVAL bits. Thus our first transportable
guideline is:

• Do not use the allocation-unit attribute in a scalar data
declaration.

The use of the default allocation~unit will sometimes result in the
allocation of more storage than is strictly necessary. This gain in
program data size (which, in most instances, is small) should be
weighed against a decrease in fetching time for a particular scalar
value, and the knowledge that because of the default alignment rules,
no storage savings may, in fact, be realized.

In the BLISS language, the default size of %BPVAL bits was chosen
(among other reasons) because this is the largest, most efficiently
accessed unit of data for a particular machine. In other words, the
saving of bits does not necessarily mean a more efficient program.

Besides the allocation-unit there
present transportability problems
allocating data:

are other
if used.

attributes that may
In particular, when

• Do not use the following attributes:

Extension (SIGNED and UNSIGNED),
Alignment,
Weak

which is to say: think twice before you write a declaration.
Do you really need to specify any data attributes other than
structure attributes?

The extension-attribute specifies whether the sign bit is to be
extended in a fetch of a scalar (or equivalently, whether or not the
left most bit is to be interpreted as a sign bit). In any case, no
sign extension can be performed if the allocation unit is not
specified.

The alignment-attribute tells the compiler at what kind of
boundary a data segment is to start. It is not supported in
or BLISS-16; hence, it is nontransportable. Suitable
alignments are available dependent on the size of the scalar.

address
BLISS-36
default

The weak-attribute is a VAX/VMS-specific attribute and is not
supported by BLISS-36 or BLISS-16. It therefore cannot be used in a
transportable program.

7-12

TRANSPORTABILITY GUIDELINES

These guidelines are relatively simple, yet they should relieve the
BLISS programmer of needing to worry about how the program data will
actually be allocated by the compiler. There is often very little
reason to specify an allocation-unit or any attributes. The default
values are almost always sufficient.

There will undoubtedly be cases where it is impossible to avoid the
use of one or more of the above, attributes. In fact, it may be
desirable to take advantage of a specific machine feature. In these

I
cases follow this guideline:

• Conditionalize and/or heavily comment the use of declarations
which may be nontransportable.

This 9uideline is the "escape-hatch ll in this set of guidelines. It
should only be used sparingly and where justified. To use it often
will only result in more code that will need to be rewritten when the
program has to be transported to another machine - and rewriting code
is not a goal.

7.4.1.3 Length of Externally Used Names - The length of names
declared in EXTERNAL and GLOBAL declarations should be no longer than
six characters. Linkers and task builders on PDP-II, DECsystem-IO,
and DECSYSTEM-20 systems can not distinguish between symbols in which
th8 first six characters are identical.

7.4.2 Data: Addresses and Address Calculations

This section discusses address values and calculations using address
values. First, there is a presentation of problems that might occur
when an address or the result of an address calculation is used as a
value. A transportable solution to some of these problems is then
presented. Next, a discussion is presented on the need for address
forms of the BLISS relational operators aQd control expressions and
how and when to use them. Finally, some important differences in the
interpretation of address values between BLISS-IO and BLISS-36 are
discussed.

7.4.2.1 Addresses and Address Calculations - The value of an undotted
variable name in BLISS is an address. In most cases, this address
value is used only for the simple fetching and storing of data. When
address values are used for other purposes, we must be concerned with
the portability of an address or an address calculation. The term
lIaddress calculation ll means any arithmetic operations performed on
address values. The primary reason for this concern is the different
sizes (in bits) of addressable units, addresses, and BLISS values
(machine words) on the three machines. For convenience in writing
transportable programs, these size values have been parameterized and
are now predeclared literals. A table of their values can be found in
the section on "Literals. 1I

To see how these size differences can have an effect on writing
transportable programs, consider a common type of address expression;
namely an expression that computes an address value from a base (a
pointer or an address) and an offset. That is, some expression of the
form:

base + index ...

7-13

TRANSPORTABILITY GUIDELINES

Now consider the following BLISS assignment expression using this form
of address calculation:

OWN
ELEMENT 2;

ELEMENT 2 = . (INPUT RECORD + 1);

The intent (most likely) was to access the contents of the second
value in the data segment named INPUT RECORD and to place that value
in an area pointed to by ELEMENT 2. The effect, however, is different
on each machine as will be shown~

By adding 1 to an address (in this case, INPUT RECORD) the address of
the next addressable unit on the machine- is being computed. In
BLISS-32 and BLISS-16 this would be the address of the next byte (8
bits), but in BLISS-36 this would be the address of the next word (36
bits). This is probably not a transportable expression because of the
different sizes of the addressable units and the resultant values.

Based on the above example, follow this guideline:

• When a complex address calculation is not an intrinsic part of
the algorithm being coded, do not write it outside of a
structure declaration.

There is a way, however, of making such an address calculation
transportable. It involves the use of the values of the predeclared
literals. In the last example, if the index had been 4 in BLISS-32 or
2 in BLISS-16 then in each case the next word would have been
accessed.

A multiplier that will have a value of 4 in BLISS-32, 2 in BLISS-16
and 1 in BLISS-36 is needed. Such a mUltiplier already exists as
another predeclared literal. Its definition is %BPVAL/%BPUNIT, and it
is called %UPVAL.

Using this literal in our example yLelds:

ELEMENT 2 =
. (INPUT_RECORD + 1 * %UPVAL);

The address expression is now tranportable.

This last example raises an interesting point. If an address
calculation of this form is used then it is very likely that the data
segment should have had a structure such as a VECTOR, BLOCK or
BLOCKVECTOR associated with it. The last example could have then been
coded as:

OWN
INPUT RECORD:

FLEX VECTOR[RECORD SIZE,%BPVAL],
ELEMENT 2; -

ELEMENT_2 = .INPUT RECORD[l];

The transportable structure FLEX VECTOR and a more thorough discussion
of structures can be found Tn the section on structures and field
selectors.

7-14

TRANSPORTABILITY GUIDELINES

7.4.2.2 Relational Operators and Control Expressions - The previous
example illustrated the use of address values in the context of
computations. other common uses of addresses are in comparisons
(testing for equality, etc.) and as indices in loop and select
expressions. The use of address values in these contexts points to
another set of differences found among the three machines.

In BLISS-32 and BLISS-16, addresses occupy a full word (%BPADDR equals
%BPVAL) and unsigned integer comparisons must be performed. However,
in BLISS-36, addresses are smaller than the machine word (18 versus 36
bits) and signed integer operations are performed for efficiency
reasons.

It can be seen that to perform a simple relational test of address
values:

ADDRESS 1 LSS ADDRESS 2 ...

requires two different interpretations. This expression would
evaluate correctly on the 10/20 systems. But, on VAX-II and 11
machines, the following would have had to have been coded for the
comparison to have been made correctly:

... ADDRESS 1 LSSU ADDRESS 2 ...

Another type of relational operator, designed specifically for address
values, is needed. Such operators exist and are referred to as
address-relational-operators. BLISS-36, BLISS-16 and BLISS-32 have a
full set (for example, LSSA, EQLA, etc.) which support address
comparisons.

In BLISS-16 and BLISS-32, the address-relationals are equivalent to
the unsigned-relationals. In BLISS-36, the address-relationals are
equivalent to the signed-relationals. For all practical cases, a user
need not be concerned with this, since this "equivalencing" permits
address comparisons to be performed correctly across architectures.
In addition, there are address forms of the SELECT (SELECTA),
SELECTONE (SELECTONEA), INCR (INCRA) and DECR (DECRA) control
expressions. The following guidelines establish a usage for these
operators and contol expressions:

• If address values are to be compared, use the address form of
the relational operators.

• If an address is used as an
INCR, or DECR expression,
control expressions.

index in
use the

a SELECT, SELECTONE,
address form of these

A violation of either guideline causes unpredictable results.

7.4.2.3 BLISS-IO Addresses Versus BLISS-36 Addresses - There is a
fundamental conceptual change from BLISS-IO to BLISS-36 in the defined
value of a name. BLISS-IO defines the value of a data segment name to
be a byte pointer consisting of the address value in the low half of a
word, and position and size values of 0 and 36 in the high half of the
word. However, BLISS-36 defines the value simply as the address in
the low half and zeros in the high half. This change was made solely
for reasons of transportability, since it allows BLISS to assign
uniform semantics to an address.

7-15

TRANSPORTABILITY GUIDELINES

The fetch and assignment operators are redefined to use only the
address part of a value. Thus, the expressions:

Y .Xi
Y F(.Y) + 2i

are the same in both BLISS-IO and BLISS-36, but

Y = X;

assigns a different value to Y in BLISS-36 and in BLISS-IO.

Field selectors are still available but must be thought of as extended
operands to the fetch and assignment operators, instead of as value
producing operators applied to a name. Thus the meaning of:

Y<O,18> = .X<3,7>;

is unchanged, but

Y = X<3,7>i

is invalid. Moreover, it is highly recommended that field selectors
never appear outside of a structure declaration, since position and
size are apt to be highly machine dependent. A thorough discussion
can be found in the section on structures and field selectors.

7.4.3 Data: Character Sequences

This section discusses the use of character sequences (strings) in
BLISS programs. Historically, there has been no consistent method for
transportably dealing with strings and the functions operating upon
them. AQ hoc string functions were the rule, having been implemented
by individuals or projects to suit their particular needs. This
section views quoted strings in two contexts: as values (integers)
and as character strings. Transportability problems associated with
quoted strings and guidelines for their use are discussed.

7.4.3.1 Usage as Numeric Values - The use of quoted strings as values
(in assignments and comparisons) illustrates the problem of differing
representations on differing architectures. Describing the natural
translation of a string literal for each architecture will illustrate
the problem. For example, consider the following code sequence:

OWN
CHAR Ii To hold a literal

CHAR 1 = 'ONE';

A natural interpretation for BLISS-32 to use is that one longword
would be allocated and the three characters would be assigned to
increasing byte addresses within the longword. In memory, the value
of CHAR 1 would have the following representation:

CHAR 1: / 00 E N a / (32)

BLISS-16 would not allow this assignment because only two ASCII
characters are allowed per string-literal. This restriction arises
from the fact that BLISS-16 works with a maximum of l6-bit values and
three 8-bit ASCII characters require 24 bits.

7-16

TRANSPORTABILITY GUIDELINES

On the 10/20 systems a word would be allocated and the characters
would be positioned starting at the high-order end of the word. Thus
the string-literal would have the following representation in memory:

CHAR_I: / 0 N E 00 00 0 / (36)

Even if the 10/20 string-literal had been right-justified in the word,
it still would not equal the VAX-II representation, numerically. So,
in fac1:, the following would not be transportable:

WRITE_INTEGER('ABC ');

since 'ABC ' is invalid syntax in BLISS-16, has the value -33543847936
in BLISS-36, and the value 4276803 in BLISS-32.

Based on these problems with representation our first guideline is:

• Do not use string-literals as numeric values.

In those cases where it is necessary to perform a numeric operation
(for example, a comparison) with a character as an argument, you must
use thte %C form of numeric literal. This literal takes one character
as its argument and returns as a value the integer index in the
collating sequence of the ASCII character set, so that:

%C'B' = %X ' 42 1 66

The %C notation was introduced to standardize the interpretation of a
quoted character across all possible ASCII-based environments.
%C'quoted-character ' can be thought of as "right-adjusting" the
character in a bit string containing %BPVAL bits.

7.4.3.2 Usage as Character Strings - The necessity of using more than
one character in a literal leads to the other situation in which
quoted strings are used: as character strings.

To facilitate the allocation, comparison and manipulation of character
sequences, a built-in character handling package has been constructed
as part of the BLISS language. It has been implemented in BLISS-32,
BLISS-36, and BLISS-16.

These built-in functions provide a very complete and powerful set of
operations on characters. The next guideline is:

• Use the built-in character handling package when allocating
and operating upon character sequences. This is the only way
one can guarantee the portability of strings and string
operations.

A more detailed description of these functions can be found in the
Character Handling Functions chapter of the Bliss Language Guide.

7.4.4 PLITs and Initialization

This section is primarily concerned with PLITs and their uses. First,
there is general discussion of PLITs and the contexts in which they
often appear. A presentation of how scalar PLIT items should be used
follows. Next, the problems involved in using string literals in
PLITs and suggested guidelines for their use are presented. Finally,
the use of PLITs to initialize data segments will be illustrated by
the development of a transportable table of values.

7-17

TRANSPORTABILITY GUIDELINES

7.4.4.1 PLITs in General - Because BLISS values are a maximum of a
machine word in length, any literal that requires more than a word for
its value needs a separate mechanism, and that mechanism is the PLIT
(or UPLIT). Hence, PLITs are a means for defining references to
multi-word constants. PLITs are often used to initialize data
segments (for example, tables) and are used to define the arguments
for routine calls.

PLITs themselves are
elements and their
transportable.

transportable; however,
machine representation

their constituent
are not always

A PLIT consists of one or more values (PLIT items). PLIT items may be
strings, numeric constants, address constants, or any combination of
them, provided the value of each is known prior to execution time.

7.4.4.2 Scalar PLIT Items - The first transportability problem that
might be encountered with the use of PLITs is in the specification of
scalar PLIT items. As with any other declaration of scalar items
(pointers, integers, addresses, etc.) it is possible to define them
with an allocation-unit attribute. For example, in BLISS-32, machine
specific sizes as BYTE and LONG can be specified. Thus the following
example is nontransportable and, in fact, will not compile on BLISS-36
or BLISS-16:

BIND
Ql = PLIT BYTE(l, 2, 3, LONG (-4));

This last example provides the first PLIT guideline:

• Do not use allocation-units in the specification of a PLIT or
PLIT item.

Thus, the BIND should have been coded as follows:

BIND
Ql = PLIT(l, 2, 3, -4);

This last guideline is necessary because of the differences in the
sizes of words on the three machines, a feature of the architectures.
A discussion of the role of machine architectures in the
transportability of data can be found in the section on data. Further
guidelines are presented in the section on initializing packed data.

7.4.4.3 String Literal PLIT Items - The next guideline is based on
the representation of PLITs in memory. Specifically the problem is
encountered when scalar and string PLIT items appear in the same PLIT.
The difficulty arises primarily from the representation of characters
on the different machines. A more thorough discussion of character
representation can be found in the section on character sequences.

Care must be exercised when strings are to be used as items in PLITs.
For example, it may be necessary to specify a PLIT that consists of
two elements: a 5-character string and an address of a routine. If
it is specified as:

BIND
CONABC PLIT('ABCDE ' , ABC ROUT);

7-18

TRANSPORTABILITY GUIDELINES

then the VAX-II representation is as follows:

CONABC: / D C B A / (32)

/ E / (32)

/ address / (32)

The representation on the 11 is:

CONABC: / B A / (16)

/ D C / (16)

/ E / (16)

/ address / (16)

~e 10/20 representation is:

CONABC: / ABC D E / (36)

/ address / (36)

The three PLITs are not equivalent. Three longwords are required for
the BLISS-32 representation, four words are needed for BLISS-16, and
two words are needed for the BLISS-36 representation. ~ere is a
problem if the second element of this PLIT is to be accessed by the
use of an address offset. For example, the second element (the
address) is accessed by the expression:

CONABC + 1 ...

in the BLISS-36 version, but not in the BLISS-32 or BLISS-16 versions.
For the BLISS-32 version, the access expression is:

... CONABC + 8 ...

and for BLISS-16, it would have to be:

CONABC + 6 ...

Taking a data segment's base address and adding to it an offset (as in
this case) is particularly sensitive to transportability. A
discussion on the use of addresses can be found in the section on
addresses and address calculations.

This section on addresses suggests the use of the literal, %UPVAL, to
ensure some degree of transportability. Its value is the number of
addressable units per BLISS value or machine word. As already
discussed, in BLISS-32, the literal equals 4; in BLISS-16, it is 2;
and in BLISS-36, its value is 1.

Multiplying an offset by this value can, in some cases, ensure an
address calculation that will be transportable. So to access the
second element in the above PLIT, one would write:

CONABC + l*%UPVAL

But this will not work for the VAX-II representation. An offset value
of 8 is needed because the string occupies two BLISS values. The
situation is similar for the 11 version, where the string occupies 3
words and would need a offset value of 6 not 2.

7-19

TRANSPORTABILITY GUIDELINES

The problem with this particular example (and, in general, with
strings in PLITs) is not in the use of a string literal but in its
position within the PLIT. Because the number of characters that will
fit in a BLISS value differs on all three machines, the placement of a
string in a PLIT will very often result in different displacements for
the remaining PLIT items.

There is a relatively simple solution to this problem:

• In a PLIT there can only be a maximum of one string literal,
and that literal must be the last item in a PLIT.

Following this guideline, the example should have been coded:

BIND
CONABC = PLIT(ABC_ROUT, 'ABCDE')i

and this expression:

CONABC + l*%UPVAL

would have resulted in the address of the second element in the PLIT
(in this case the string).

7.4.4.4 An Example of Initialization - As mentioned in the beginning
of this section, PLITs are often used to initialize data segments such
as tables. A data segment allocated by an OWN or GLOBAL declaration
can be initialized by using the INITIAL attribute. The INITIAL
attribute specifies the initial values and consists of a list of PLIT
items.

A good example which shows how relatively easy it is to initialize
data in a transportable way is to illustrate the process one might use
to build a table of employee data. Information on each employee will
consist of three elements: an employee number, a cost center number
and the employee's name. The employee's name will be a fixed-length,
5-character field.

For example, a line of the table would contain the following
information:

345 201 SMITH

converting this line into a list of PLIT items that conform to this
section's guidelines would result in the following:

(345, 201, 'SMITH')

Notice that no allocation units were specified and that the character
string was specified last. This line will now be used to initialize a
small table of only one line. The table will have the built-in
BLOCKVECTOR structure attribute. The table declaration would look
like:

OWN
TABLE:

BLOCKVECTOR[1,3]
INITIAL(

345,
201,
'SMITH'
) i

7-20

TRANSPORTABILITY GUIDELINES

However, a problem has developed. This definition would work well in
BLISS-36. That is, three words would have been allocated for TABLE.
The first word would have been initialized with the employee number;
the second word with the cost center; and the third with the name.
However, the declaration would be incorrect in BLISS-32 or BLISS-16,
simply because not enough storage would have been allocated for all
the initial values. BLISS-32 would have required four longwords, and
BLISS-16, five words.

The problem arises as a result of the way in which strings are
represented and allocated on the three machines. The solution is
simple. We only need to determine the number of BLISS values that
will be needed for the character string on each machine. There is a
function that will give this value. It is named CH$ALLOCATION and it
is part of the character handling package. It takes as an argument
the number of characters to be allocated and returns the number of
words needed to represent a string of this length.

We can use this value as an allocation actual in the table definition,
as follows:

OWN
TABLE: BLOCKVECTOR[l,2 + CH$ALLOCATION(5)]

INITIAL(
345,
201,
'SMITH '

) ;

The declaration is now transportable. By using the CH$ALLOCATION
function we can be assured that enough words will be allocated on each
machine. No recoding will be necessary.

We are free to add other lines to the table and not be concerned with
the representation or allocation of the data. Here is a larger
example of the same kind of table. We will not develop it step by
step, but point out and explain some of the highlights. The example:

1+
1 Table Parameters
1-

LITERAL

1+

1-

NO EMPLOYEES = 2,
EMP NAME SIZE = 25,
EMP-REC SIZE = 2 +

-CH$ALLOCATION(EMP_NAME SIZE);

Employee Name padding Macro

MACRO
NAME PAD (NAME) =

%EXACTSTRING (EMP_NAME_SIZE, A, NAME)%;

1+
Employee Information Table

Size: NO EMPLOYEES * EMP REC SIZE
1-

7-21

OWN

TRANSPORTABILITY GUIDELINES

EMP TABLE:
-BLOCKVECTOR[NO EMPLOYEES, EMP_REC_SIZE]

INITIAL(-
345,
201,
NAME_PAD('SMITH PETER'),

207,
345,
NAME_PAD('JONES PENNY')

) ;

The literals serve to parameterize certain values that are subject to
change. The literal EMP REC SIZE has as its value the number of words
needed for a table entry. The character sequence function,
CH$ALLOCATION, returns the number of words needed for EMP NAME SIZE
characters.

The macro will, based on the length of the employee name argument
(NAME), generate zero-filled words to pad out the name field. Thus,
we are assured of the same number of words being initialized for each
employee name, no matter what its size might be. This is important
because storage is allocated according to the fixed length of a
character field (employee name). The actual string length may, of
course, be less than that value.

This last example was developed with the specification that the
employee name field was fixed in length (EMP NAME SIZE). What if,
however, we wished to have the table hold variable length names? That
is, for certain reasons, we wished to allocate only enough storage to
hold the table data, not the maximum amount.

The table structure developed above will not work because it is
predicated upon the constant size of the name field. If we were to
use variable length character strings, either too much or not enough
storage would be allocated. And there would be no consistent way of
accessing the employee name (where would the next one start?). We
could, if we knew the length of every employee name, determine in
advance the number of words needed. But this is not a very practical
solution.

One transportable solution is to remove the character string from the
table and replace it with a pointer to the string. The character
package has a function, CH$PTR, which will construct a pointer to a
character sequence. As an added benefit, this pointer can be used as
an argument to the functions in the character package. The cost of
this technique is the addition of an extra word (the character
sequence pointer) for each table entry. The length of the name may
also be stored in the table.

Here is a typical example, again based on the employee table:

!+
Table Parameters

!-

7-22

TRANSPORTABILITY GUIDELINES

LITERAL

1+

NO EMPLOYEES 2,
EMP REC SIZE 4:

1 Macro to construct a CS-pointer to employee name
1--

MACRO
NAME PTR(NAME) =

CH$PTR(UPLIT(NAME)), %CHARCOUNT (NAME) %:

1+
1 Employee Information Table

1 Size: NO EMPLOYEES * EMP REC SIZE
1-

OWN
EMP TABLE:

-BLOCKVECTOR[NO EMPLOYEES, EMP_REC_SIZE]
INITIAL(-

345,
201,
NAME PTR('SMITH PETER'),

207,
345,
NAME_PTR('JONES PENNY')

) i

7.4.4.5 Initializing Packed Data - In this section we will discuss
some transportability considerations involved in the initialization of
packed data. By packed data, we mean that for data values vI, v2,
... , vn with bit-positions pI, p2, ... , pn and bit-sizes of sl, s2,
... , sn, respectively, the value of the PLIT-item would be represented
by the following expression:

where

max(pl, p2, ... , pn) ~ %BPVAL

s1 + s2 + ••• + sn 5. %BPVAL

and for all i

-2**si ~ vi 5 2**(si - 1)

The OR operator could be replaced by the addition operator (+), but
the result would be different if, by accident, there were overlapping
values. Notice that the packing of data in a transportable manner is
dependent on the value of %BPVAL.

7-23

TRANSPORTABILITY GUIDELINES

The following is an illustration of the initialization of packed data
obtained by modifying the employee table example that was developed
above. When we access a field within a block, it is a common practice
to associate each field reference (that is, offset, position, and
size) with a field name. So, for example, the field names for the
original employee table would look like:

FIELD EMP =
SET
EMPID = [O,O,%BPVAL,O],
EMP-COST CEN [l,O,%BPVAL,O],
EMP-NAME-PTR = [2,O,%BPVAL,O];
TES;

These field names can be used in developing an initialization
by using parametric values. This is another example
parameterization can be used as a key technique in
transportable code.

macro,
of how
writing

If the number of bits needed to represent the values of EMP ID and
EMP COST CEN were each known not to exceed 16, we could pack these two
fields into one BLISS value in BLISS-32 and BLISS-36. In BLISS-16 the
definition of the employee table, as it now stands, would allocate
only 16 bits for each field, since %BPVAL equals 16. In BLISS-36, an
18-bit size for these two fields would be chosen, since we know that
both DECsystem-lO and DECSYSTEM-20 hardware have instructions that
operate efficiently on half-words.

If the interest is only in transporting BLISS-36 and BLISS-32, the
field declaration would look like:

FIELD EMP =
SET
EMP ID = [O,O,%BPVAL/2,O],
EMP-COST CEN [O,%BPVAL/2,%BPVAL/2,O],
EMP-NAME PTR = [l,O,%BPVAL,O];
TES;

Based on these declarations, a macro can be designed that will take as
arguments the initial values and then do the proper packing:

MACRO

EMP INITIAL(ID,CC,NAME)[] =
-IDA%FIELDEXPAND(EMP ID,2) OR

CCA%FIELDEXPAND(EMP-COST CEN,2) ,
NAME PTR (NAMEA%FIELDEXPAND(EMP_NAME PTR, 2)) %;

The lexical function %FIELDEXPAND simply extracts the position
parameter of the field name. The initialization macro, EMP INITIAL,
makes use of this shift value in packing the words. The goal--here is
to require the user to specify as arguments only the information
needed to initialize the table, and not to specify information that is
part of its representation.

An example of using these macros to initialize packed data follows:

1+
Employee Field Reference macros

1-

7-24

TRANSPORTABILITY~GUIDELINES

FIELD EMP =
SET
EMP ID = [0,0,%BPVAL/2,0],
EMP-COST CEN [0,%BPVAL/2,%BPVAL/2,0],
EMP-NAME-PTR = [l,O,%BPVAL,O]i
TES;

MACRO

1+
1 Macro to create the shift value from the

position parameter of a field reference macro
1-

SHIFT(X) %FIELDEXPAND(X,2) %,

1+
1 Employee table initializing macro
1 Three values are required
1-

1+

1-

OWN

EMP_INITIAL(ID,CC,NAME)[]

IDASHIFT(EMP ID) OR
CCASHIFT(EMP=COST_CEN), 1 First value

NAMEASHIFT(EMP_NAME_PTR) %; 1 Second value

Employee table definition and initialization

EMP TABLE:
-BLOCKVECTOR[NO EMPLOYEES, EMP_LINE_SIZE]

INITIAL(EMP INITIAL(
345,-
201,
'SMITH PETER',

207,
345,
'JONES PENNY'

)) ;

What has been illustrated in the previous example is the
parameterization of certain values such as field sizes. In
transporting this program, benefits can be derived from the
localization of certain machine values as in the field definitions.
This code is transportable between BLISS-32 and BLISS-36. To compile
this program with the BLISS-16 compiler, a change to the field
definitions is needed. The packing macros would no longer be needed,
though they could be used for consistency purposes. In that case,
they would also need to be changed.

As a final example of initializing packed data, consider the DCB (data
control block) BLOCK structure. (Details as to what DCB is and how it
accesses data are discussed under "FIELD Declarations II and II BLOCK
Structures" in the Bliss Language Guide. Here, we are concerned only
with initializing this type of structure.)

7-25

TRANSPORTABILITY GUIDELINES

The DCB BLOCK consists of five fields. Four of the fields are packed
into one word, their total combined size being 32 bits, and the fifth
field which is 32 bits in length occupies another word.

In this case it is possible to transport the DCB initialization very
easily between BLISS-32 and BLISS-36. The reason is that the total
number of bits required for each word does not exceed the value of
%BPVAL for each machine. Hence, in this case at least, we do not have
to modify the design of the BLOCK in any way. Typically, however, one
would design the structure for each target machine. One method of
doing this is by placing its definition in a REQUIRE file. We prefer,
however, to again use the technique of parameterization. We will
again make use of the field reference macros as we did in the previous
example.

Here is the
initialized.
BLOCKVECTOR.

example describing a
The structure has

The example:

method in which
been extended by

1+
DCB size parameters

1-

LITERAL
DCB NO BLOCKS = total number of blocks,
DCB SIZE = size of a block;

1+
1 DCB Field Reference macros
1-

FIELD DCB
SET
DCB A
DCB B
DCB C
DCB-D
DCB E
TES;

MACRO

1+

[0,0,8,OJ,
[0,8,3,OJ,
[0,11,5,OJ,
[0,%BPVAL/2,%BPVAL/2,OJ,
[l,O,%BPVAL,OJ;

1 Macro to create the shift value from the
1 position parameter of a field reference macro
1-

SHIFT(X) %FIELDEXPAND(X, 2) %,

1+
1 DCB initializing macro.

1-

1+

Five values are required.

DCB INITIALIZE(A,B,C,D,E)[J
- AASHIFT(DCB A) OR

BASHIFT(DCB-B) OR
CASHIFT(DCB-C) OR
DASHIFT(DCB-D) first word

second word

DCB Blockvector definition and initialization
1-

7-26

it could
making it

be
a

TRANSPORTABILITY GUIDELINES

OWN
DCB AREA:

-BLOCKVECTOR[DCB NO BLOCKS, DCB_SIZE]
INITIAL(-

DCB INITIALIZE (
l,2~3,4, first word
5, ! second word

6,7,8,9, 1 first word
10, 1 second word

Note that this structure could be transported to BLISS-16 by making
suitable changes to the field definitions and the packing macro. The
only consideration might be whether the last field, DCB_E, did require
a full 32 bits.

7.4.5 Structures and Field Selectors

Two BLISS constructs will be discussed in this section: structures
and field selectors. While the use of one does not necessarily imply
the use of the other, we will see that for transportability reasons
field selector usage will be confined to structure declarations.
Hence, these two constructs need to be discussed together.

We will begin with a general discussion of structures, in which it
will be shown that a certain machine specific feature of structures
can be used in a transportable manner. The best way to illustrate the
process of writing transportable structures is to take the reader
through the intellectual considerations that contribute to its design,
so the development of a transportable structure - FLEX VECTOR - will
be presented. At this point field selectors will be discussed.
Finally, a more general structure, GEN_VECTOR, will be developed.

7.4.5.1 Structures - Structure declarations are sensitive to
transportability in that one may specify parameters corresponding to
characteristics of particular architectures. Also, in BLISS-32, the
reserved words BYTE, WORD, LONG, SIGNED, and UNSIGNED have values of
1, 2, 4, 1, and 0, respectively, when used as structure-actual
parameters.

The ability to specify architecture-dependent information can be an
advantage in developing transportable structure declarations. Later
in this section, a structure will be developed which will use the UNIT
parameter to gain a degree of transportability. The UNIT parameter
specifies the number of addressable allocation-units in one element of
a homogeneous structure. This number will be used in determining the
amount of storage that is to be allocated for each element of the
structure.

As mentioned repeatedly in these guidelines, the prime
transportability problem is differing machine architectures. The key
to dealing with these differences is the parameterization by the size
of the machine word (%BPVAL) the number of bits needed to hold an
address (%BPADDR) and the number of bits occupied by the smallest
addressable unit (%BPUNIT).

7-27

TRANSPORTABILITY GUIDELINES

7.4.5.2 FLEX VECTOR - An application of this is illustrated by
developing FLEX VECTOR, a structure that will by default, allocate and
access a vector-consisting of only the smallest addressable units. If
the default value given in the structure declaration is not used, we
want to be able to specify the vector element size will be specified
in terms of the number of bits. It should be noted that the existing
VECTOR mechanism will not do this.

An example of its use would be to crea-te a vector of 9-bit elements.
The first decision that has to be made in its design is whether or not
each element is to be exactly 9 bits, or at least 9 bits. For this
example, we choose the smallest na-tural unit whose size is greater
than or equal to 9 bits. Since there are no 9-bit conveniently
addressable units on any of the machines, we have a choice of 8, 16,
32 or 36-bit units.

We can see that 9 bits will fit in the only addres3able unit on the
10/20 systems the word. On the 11 we will need two bytes or a
16-bit word and on the VAX-II we will again need two bytes.

How then can a structure be developed that will do this allocation and
will also be transportable and usable on the three systems? Clearly
the structure will need some knowledge of the machine architecture.
This is where the role of parameterization comes in.

need. In fact The predeclared literals have all the information we
only one set of values is needed: bits per
(%BPUNIT).

addressable-unit

The minimum necessary size of a vector element will be one of the
allocation formals (UNIT). Other formals that will be needed are the
number of elements (N) the index parmeter (I) for accessing the vector
and an indication of whether or not the leftmost bit of an element is
to be interpreted as a sign bit (EXT).

The access and allocation formal list for FLEX VECTOR is:

STRUCTURE
FLEX_VECTOR[I; N, UNIT = %BPUNIT, EXT = 1] =

Notice that by setting UNIT equal to %BPUNIT the default (if UNIT is
not specified) will be %BPUNIT.

The next step is to develop the formula for the structure-size
expression. The expression will make use of the allocation formals
UNIT and N, and in addition, the value of %BPUNIT.

If UNIT were only allowed to assume values of integer multiples of
%BPUNIT (that is, l*%BPUNIT, 2*%BPUNIT, etc.), only a structure-size
expression of the following form would be needed:

[N * (UNIT) / %BPUNIT]

Dividing the element size (UNIT) by %BPUNIT would give the size of
each element in the vector in terms of an integer multiple. This
value would then be multiplied by the number of elements to give the
total size of the data to be allocated.

Suppose the structure needs to be more flexible in that it should be
possible to specify any size element (within certain limits). The
structure-size must be slightly more complex:

[N * ((UNIT + %BPUNIT - 1» / %BPUNIT]

7-28

TRANSPORTABILITY GUIDELINES

The structure-size expression now computes enough %BPUNIT's to hold
the entire vector. The reader should try some values of UNIT for
differing %BPUNIT in order to see how this expression evaluates.

This subexpression:

(UNIT + %BPUNIT - 1) / %BPUNIT

which we will call NO OF UNITS is very important in effecting the
transportability and flexibility of this particular structure. The
key to transporting this structure is the knowledge that it has of the
value of a certain machine architectural parameter: bits per
addressable-unit. This particular expression makes use of this
knowledge, hence, it can adapt to any machine. This subexpression
will be used twice more in the structure-body expression.

The structure-body is an address-expression. This expression will
consist of the name of the structure (the base address) plus an offset
based on the index I. In addition, a field selector will be needed to
access the proper number of bits at the calculated address.

The offset is simply the expression NO OF UNITS multiplied by the
index I. (Remember that indices start at 0). The size parameter of
the field selector is the expression NO OF UNITS multiplied by the
size of an addressable-unit, %BPUNIT. The structure-body will look
like:

(FLEX VECTOR +
1-* ((UNIT + %BPUNIT - 1) / %BPUNIT»

<0, ((UNIT + %BPUNIT - l)/%BPUNIT)*%BPUNIT,EXT>;

The value of the position parameter in the field-selector is a
constant ° since it always starts at an addressable boundary.

The following table shows the structure on the three machines for
different values of UNIT:

VAX-II

UNIT = °
UNIT 1 to 8

UNIT = 9 to 16

2)<0,16,1>

UNIT = 17 to 32

4)<0,32,1>

11

UNIT ° to 16

10/20

UNIT = °
UNIT = 1 to 36

1)<0,36,1>

7-29

no storage
FLEX_VECTOR<O,O,l>

[[N * lJJ Bytes
(FLEX_VECTOR + 1)<0,8,1>

[[N * 2JJ Bytes
(FLEX_VECTOR + I *

[[N * 4JJ Bytes
(FLEX_VECTOR + I *

same as VAX-II

no storage
(FLEX_VECTOR) <0,0, 1>

[[N JJ Words
(FLEX_VECTOR +

TRANSPORTABILITY GUIDELINES

The above table illustrates that if the default value for UNIT were
set to %BPVAL, this structure would be equivalent to a VECTOR of
longwords on VAX-II, and a VECTOR of words on the 10/20 and 11
systems.

Elements in a data segment which have this particular structure
attribute are accessed very efficiently because they are always on
addressable boundaries. Also, they are always some mUltiple of an
addressable unit in length.

If this structure were to access elements of exactly the size
specified, then only change needed would be the size parameter of the
field selector. This expression then becomes:

... FLEX VECTOR<O, UNIT>;

This is a less efficient means of accessing data (when UNIT is not a
multiple of %BPUNIT) because the compiler needs to generate field
selecting instructions in the case of the VAX-II and 10/20 machines
and a series of masks and shifts for the 11.

7.4.5.3 Field Selectors - In the last structure declaration, it was
necessary to make use of a field selector. Now, the use of field
selectors in a more general context will be discussed.

The use of field selectors can be nontransportable because they make
use of the value of the machine word size. The unrestricted usage of
field selectors may cause problems in a program when it is moved to
another machine. These problems are best illustrated by the following
table of restrictions on position (p) and size (s) for the three
machines:

Machine:

10/20

o ~ p
p + s ~ 36
o ~ s ~ 36

From the table we can see that:

11

o ~ p
p + s ~ 16
o ~ s ~ 16

• The most restrictive is the 11.

VAX-l 1

o ~ s ~ 32

• The moderate restrictions are -those of the 10/20.

• The least restrictive is VAX-ll.

In order to ensure the transportable use of field selectors, we would
have to abide by the set of restrictions imposed in BLISS-16. These
are restrictions imposed by the values of p and s. There is also a
contextual restriction on the use of field selectors. The following
guideline should be followed:

• Field selectors may appear only in the
user-defined structures.

7-30

definition of

TRANSPORTABILITY GUIDELINES

Restricting the domain of field selectors to structures isolates their
use. Field selectors should be isolated so that:

• Changes in data structure design are easier.

• Machine dependencies may easily be placed in REQUIRE files.

• Complex coding making heavy use of the predeclared literals is
limited to declarations.

Another transportable structure will be developed which will be
affected by the table of field selector value restrictions.

7.4.5.4 GEN VECTOR - The reader has probably noticed that FLEX VECTOR
does not attempt to pack data. Using the example of 9-bit elements,
it is evident that there will be some wasting of bits - from 7 bits on
the 11 and VAX-II to 27 on the 10/20 systems.

A variation of FLEX VECTOR can be developed which will provide a
certain degree of packing. For example, in the case of 9-bit elements
it would be possible to pack at least four of them into a 10/20 word
and three into a VAX-II longword.

This structure, which will be named GEN VECTOR, will pack as many
elements as possible into a BLISS value and so will make use of the
machine specific literal %BPVAL. But, since allocation is in terms of
%BPUNIT, a literal will be needed that has as a value the number of
allocation units in a BLISS value. This literal has been predeclared
for transportability reasons and has the name %UPVAL, and is defined
as %BPVAL/%BPUNIT.

Elements will not cross word boundaries. This constraint is because
of the restrictions placed on the value of the position parameter of a
10/20 and 11 field selector. For the same reason elements cannot be
longer than %BPVAL, as given in the table of field selector
restrictions above.

As in FLEX VECTOR, the allocation expression of GEN VECTOR will need
to calculate the number of allocation units needed by the entire
vector. This will again be based on the number of elements (N) and
the size of each element (S). But because the elements will be
packed, the expression will be slightly more complicated.

The first value is the number of elements that will fit in a BLISS
value. The expression:

(%BPVAL/S)

will compute this value. Given this, to obtain the number of BLISS
values or words needed for the entire vector, divide this value into
N:

(N/(%BPVAL/S))

This is the total number of values needed. However, data is not
allocated by words on both of the machines. Multiplying this value by
%UPVAL will result in the number of allocation units needed by the
vector:

«N/(%BPVAL/S))*%UPVAL)

7-31

TRANSPORTABILITY GUIDELINES

For clarity's sake and because this expression will be used again, it
will be expressed as a macro with Nand S as parameters:

MACRO
WHOLE_VAL(N,S) =

((N/(%BPVAL/S))*%UPVAL)%~

The name of the macro suggests that it calculates the number of whole
words needed. If, in fact, N were an integral multiple of the number
of elements in a word then this macro would be sufficient for
allocation purposes.

since this is not known in advance, another expression to calculate
the number of allocation units needed for any remaining elements is
needed. The number of elements left over is the remainder of the last
division in this expression:

(N/(%BPVAL/S))

The MOD function will calculate this value, as follows:

(N MOD (%BPVAL/S))

Multiplying this value by the size of each element gives the total
number of bits that remain to be allocated:

(N MOD (%BPVAL/S)) * S

This value will always be strictly less than %BPVAL. For the same
reasons outlined above this expression will be expressed as a macro
with Nand S as parameters:

MACRO
PART_VAL(N,S) =

((N MOD (%BPVAL/S)) * S)%~

PART VAL computes the number of bits allocated in the last (partial)
word-:

Taking this value, adding a II fudge
%BPUNIT gives us the number of
remaining bits:

factor ll and then dividing by
allocation units needed for the

(PART_VAL(N,S) + %BPUNIT -l)/%BPUNIT

The total number of allocation units has been calculated and the
structure allocation expression is:

[WHOLE VAL(N,S) +
(PART_VAL(N,S) + %BPUNIT - l)/%BPUNIT]

As it works out, the structure-body expression for GEN VECTOR will be
simple to write because of the expressions that have already been
written.

The accessing of an element in GEN VECTOR requires that an address
offset be computed which is then added to the name of the structure.
This offset is some number of addressable units and is a function of

7-32

TRANSPORTABILITY GUIDELINES

the value of the index I. The expression which will
number of addressable units is the macro WHOLE VAL.
part cf the accessing expression is:

calculate this
Thus, the first

Note that the macro was called with the index parameter I.

This expression will result in the structure being aligned on some
addressable boundary. But since the element may not begin at this
point (that is, the element may be located somewhere within a unit
%BPVAL bits in length), one more value is needed. That value is the
position parameter of a field selector. The macro PART VAL will
calculate this value based on the index I:

<PART_VAL(I,S),S,EXT>

The size parameter is the value S. The position parameter will be
calculated at run time, based on the value of the index I.

This completes the definition of GEN VECTOR. The entire declaration
is:

STRUCTURE
GEN_VECTOR[I;N,S,EXT=I]

[WHOLE VAL(N,S) +
(PART_VAL(N,S) + %BPUNIT - l)/%BPUNIT]

(GEN_VECTOR + WHOLE_VAL(I,S»

<PART_VAL(I,S),S,EXT>;

The reader should compile this structure and see how it works in
BLISS-16, BLISS-32 and BLISS-36.

7.4.5.5 Summary - No claim is made that either of these two
structures will solve all the problems associated with transporting
vectors. Many such problems will have interesting and unique
solutions. BLOCKS or BLOCKVECTORS have not been discussed, but it is
hoped that the reader will get from the examples a feeling for the
techniques involved in transporting structures.

There is no easy solution to transporting data structures. One should
consider, when developing data structures, the machines that the
program or system is targeted for and make full use of the predeclared
literals such as %BPUNIT.

This exercise in the development of transportable structures has
illustrated two points: .

• Parameterization

• Field selector usage

By parameterizing certain machine-specific values and by taking full
advantage of the powerful STRUCTURE mechanism, two transportable
structures have been developed.

The accessing of odd (not addressable) units of data is accomplished
by the use of field selectors. The field selector should only be used
in structure declarations.

7-33

CHAPTER 8

COMPILER OVERVIEW AND OPTIMIZATION SWITCHES

This chapter provides an overview of the BLISS compiler organization
and processing. The material presented here assumes that the reader
has a general understanding of compiler theory and practice. It need
not be understood for normal use of the BLISS language and compiler.

Some of the switches described in connection with "SWITCHES
declaration" in the Bliss Language Guide provide specialized control
over the processing of the compile~specially in the area of
optimization. This section provides the basis for a more detailed
understanding of these switches. The switches that are described are:

CODE and NOCODE
OPTIMIZE and NOOPTIMIZE
OPTLEVEL
SAFE and NOSAFE
ZIP and NOZIP

Table 1-1 shows command qualifier relationships to these switches.

8.1 COMPILER PHASES

The compiler is organized conceptually into seven major phases:

LEXSYN
FLOW
DELAY
TNBIND
CODE
FINAL
OUTPUT

- Lexical and syntactic analysis
- Flow analysis
- Heuristics
- Temporary name binding (register allocation)
- Code generation
- Code stream optimization
- Object file production

This division of the compiler into conceptual phases corresponds only
approximately to the actual compiler. In some cases, a phase actually
consists of two or more subphases. In other cases, phases are
combined in the implementation. This level of detail is not important
in the following discussion of the phases. Simply note that the term
"phase" should not be taken literally.

8.1.1 Lexical and Syntactic Analysis

The lexical and syntactic analysis phase, LEXSYN, performs the
following functions:

• Reads the input files .

• Divides the source character text into lexemes.

8-1

COMPILER OVERVIEW AND OPTIMIZATION SWITCHES

• Identifies
expansions.

and performs lexical-functions and macro

• Parses the resulting input lexeme sequence and creates
appropriate symbol table entries for declarations and tree
representations for expressions.

The BLISS compiler reads the source text once and uses it to create an
internal representation of the module. In this sense, the BLISS
compiler is a I-pass compiler. On the other hand, at the end of each
(ordinary or global) routine definition, the remaining phases of the
compiler are performed in turn to analyze and completely produce and
output code for that entire routine. In this sense, the BLISS
compiler is a multi-pass compiler.

If the NOCODE switch is specified, the compiler operates in a
"syntax-only" mode, in which the LEXSYN phase does not produce the
tree representations for expressions and the later phases are not
performed: moreover, if an error (as contrasted with a warning) is
detected and reported by the compiler, the compiler automatically
enters syntax-only mode as if NOCODE had been specified.

Syntax-only mode is useful for initial-checking of a newly created
module. There is an important limitation in this mode, however, in
that some errors cannot be detected. This is due to the fact that
some errors are only detected and reported by later phases of the
compiler and these phases are not performed.

The difference between an error and a warning diagnostic is based on
the seriousness of the effect of the error upon the internal
representation of the program used by the compiler. (It is not a
value judgment upon the nature of the programmer's mistake.)

In most cases, the compiler can recover and proceed
compilation. This permits further errors, if any, to be
in some cases, may permit the resulting object module to
execution time debugging before the source module is
recompiled. Errors from which the compiler can continue
reported as warning diagnostics.

with normal
detected and,
be used for
corrected and
normally are

In some cases, the effect of a user error is to make the
internal representation of the module inconsistent or
unreliable for continued use. Such errors are reported
diagnostics.

compiler's
otherwise
as error

Depending on the circumstances, the same apparent user error (same
diagnostic information) may be reported as a warning in one case but
as an error in another.

8.1.2 Flow Analysis

The flow analysis
representation of
functions:

phase, FLOW, examines
a complete routine and

the internal tree
performs the following

• Identifies expressions that appear more than once in the
source, but that will produce the same value {common
subexpressions}. Such expressions need be evaluated only once
during execution and the result used several times, thereby
saving execution time and code space.

8-2

COMPILER OVERVIEW AND OPTIMIZATION SWITCHES

• Identifies expressions contained in loops whose values will be
the same on each iteration of the loop. Such expressions may
be evaluated once before starting the loop and the result used
during each iteration, thereby saving execution time.

• Identifies expressions that occur on all alternatives of the
IF, CASE, and SELECTONE expressions. Such expressions may be
evaluated once before or after the multiple alternatives,
thereby saving code space.

More generally, the FLOW phase identifies possible alternative ways of
evaluating a routine, which might be more efficient in time or space
or bO~l. Note that the next phase determines which alternative is
actually used; the FLOW phase only identifies the possible choices.

If OPTLEVEL is specified with a value of 0 or 1, the flow analysis
phase is totally skipped. A consequence of skipping flow analysis is
that the OPTIMIZE and SAFE switches have no effect, because OPTIMIZE
and SAFE control aspects of how flow analysis is done. However, if
OPTLEVEL is specified with a value of 2 (the default) or 3, the flow
analysis phase is performed and the OPTIMIZE and SAFE switches have
the effects described below.

To understand the effects of the OPTIMIZE and
first necessary to understand more about
performed.

SAFE switches, it
how flow analysis

is
is

8.1.2.1 Knowing When a Value Changes - One operator
assignment operator, can change the contents of
However, routine calls can also change the contents of
because they can contain assignments.

in BLISS, the
a data segment.
data segments

For each assignment, the compiler examines the left operand expression
and attempts to determine the name of the data segment whose contents
will be changed by the assignment. (The case where no name can be
determined is considered below.) The same analysis is performed for
each actual parameter that appears in a routine call. In effect, the
compiler treats each actual parameter as though it did appear as the
left operand of an assignment. In addition to this, for each routine
call the compiler determines the names of all OWN and GLOBAL data
segments that the called routine might change and assumes that all of
them are changed.

Machine specific functions are treated as normal routine calls, except
that the compiler has more detailed information about which parameters
can cause changes and which cannot.

Several aspects of this analysis process are illustrated using
examples. In these examples the following declarations are assumed:

OWN
X: VECTOR[lO],
Y,
Z;

EXTERNAL ROUTINE
F;

First, consider the following sequence of assignments:

I = 3;
Y = .X[.I];
X[7] = .X[.Y];
Z = .X[.I]+l;

8-3

COMPILER OVERVIEW AND OPTIMIZATION SWITCHES

In the third line, the assignment to X[7] is assumed to change all of
the data segment identified by X. As a consequence, the possible
common subexpression .X[.I] is not recognized by the compiler.
(However, note that the common sUbexpression X[.I], which computes the
address of the i'th element of X, is recognized since the assignment
to X cannot affect this value.)

In the above example, it may seem apparent exactly what part of X is
changed, but in most cases it is difficult or impossible for the
compiler to determine what part of a named data segment changes and
what part does not change.

Another aspect is illustrated with this example:

X[ll] = 11:
y = .z:

In the first line, the assignment to X[ll] actually modifies the
contents of Z. (Recall that X was declared as a vector of 10 elements
numbered 0 through 9). The compiler analysis does not determine that
storage other than the storage for X is being changed because the
analysis is based completely on the names that occur in the
expression. As a consequence, the compiler may inappropriately use
the previous contents of Z in the assignment to Y. This would happen,
for example, if the expression.Z were a common sUbexpression used
frequently enough to result in the contents of Z being copied into a
register for more efficient access.

Both of these examples emphasize the importance of the name used to
reference storage in the analysis performed by FLOW.

Now consider the case where a
storage being changed. This is

Z = F () :
.Z = 3:

name cannot be identified for
the case in the following example:

the

In the second line, no name of a data segment can be determined. In
such a case, the compiler assumes (by default) that no named storage
has changed. This assumption is justified because ir- is virtually
always the case that such indirect assignments are used to change the
contents of the following:

• Dynamically created data structures that do not have names

• Data segments passed as parameters of routine calls and that
cannot be referenced in the called routine by the name used to
allocate the storage

The NOSAFE switch may be used to override the default assumption
described above. (SAFE is the default). If NOSAFE is specified, the
compiler assumes that indirect assignments do change some named data
segment. Because it is nearly always impossible to identify the data
segment that is changed, this assumption is guaranteed by making the
even stronger assumption that all named data segments are changed.

8.1.2.2 Accounting for Changes - The BLISS language definition
intentionally leaves unspecified the order of operand evaluation in
operator expressions in order to permit maximum optimization by the
BLISS compiler. For example, the expression

F(X) + .X

8-4

COMPILER OVERVIEW AND OPTIMIZATION SWITCHES

may be evaluated first, by calling F with the address X as a
parameter~ second, by fetching the contents of X~ and finally, by
performing the addition. It might also be evaluated first, by
fetching the contents of X: second, by calling F: and so on. The
compiler uses information about the entire routine in which the
expression is contained to choose alternatives. Since the routine
call F'(X) may change the contents of X, the question becomes: When
does the compiler take the (potential) change into effect? It does
not make sense to take this into account within the expression without
also specifying precisely the order of evaluation. It makes sense to
account for changes only at points in the language where the order of
evaluation is specified. Points at which changes are taken into
account are called mark points. Mark points in BLISS are summarized
in the following diagram, where 11111 is used to point to the mark point
within the language syntax on the subsequent line.

Mark Points

BEGIN exp I·· . END

IF exp THEN exp ELSE exp

WHILE exp DO exp

DO exp WHILE exp

INCR name FROM exp TO exp BY exp DO exp

CASE exp FROM ctce TO ctce OF SET [... J: exp I·· . TES

SELECT exp OF SET [exp TO exp " .. J: exp I·· . TES

The most common mark point in most programs is the semicolon, which
separates expressions in a block or compound expression. For example,
consider the following:

BEGIN
Y .X+2 ~
Z = .X+2+F(X);
W = .X+2
END

In the second line, the content of Y is changed. This change is taken
into account by the compiler when the semicolon is encountered. In
the third line, .X+2 computes the same value as .X+2 in the second
line; thus, .X+2 is a cornmon sUbexpression of the second and third
lines. Also in the third line, the content of Z is changed and the
call F(X) is considered to change the content of X. As discussed
above, these changes are not taken into account until the semicolon is
encountered. In the fourth line, .X+2 must be recomputed because of
the change of the content of X in the third line; it is not a common
sUbexpression with the previous occurrences.

8-5

COMPILER OVERVIEW AND OPTIMIZATION SWITCHES

The effect of the OPTIMIZE switch is now easily stated. If OPTIMIZE
is specified (the default) full flow analysis is performed. If
NOOPTIMIZE is specified, at every mark point all data segments are
assumed to change. As a consequence, common sUbexpression values
computed by one expression are not reused in later expressions the
value is computed again. Expressions that have a constant value
within a loop are not computed once before the loop is started; the
value is recomputed during each iteration of the loop. And similarly,
other kinds of "code motion" optimizations are not performed.

However, specifying NOOPTIMIZE is not equivalent to specifying that no
flow analysis is performed, since common sUbexpressions that occur
between markpoints are still detected. For example, in the expression

Y = (.X*2)+F(.X*2)

the sUbexpression .X*2 is computed once and the resulting value used
twice, even when NOOPTIMIZE is specified.

8.1.3 Heuristics

The heuristic phase,
general information
used by DELAY itself
available for use
functions:

DELAY, further analyzes the routine to obtain
about the routine. Some of this information is

to make optimization decisions, and some is made
by later phases. DELAY performs the following

• Evaluates the effectiveness of the alternatives identified by
FLOW and chooses the best alternative. This analysis
considers, for example, the number of occurrences of a common
sUbexpression and the potential for using specialized
operations available in the address parts of instructions (for
example, indirection and indexing).

• Identifies sets of subexpressions that occur only once (that
is, are not common sUbexpressions) that should be computed in
the same temporary location (whether a register or memory),
thereby maximizing the use of 2-operand (as contrasted with
3-operand) instructions.

None of the switches affect the operation of the DELAY phase.

8.1.4 Temporary Name Binding

The temporary name binding phase, TNBIND, determines where each value
computed during the execution of a routine should be allocated. This
phase corresponds to what is sometimes called register allocation in
other compilers. It is somewhat more general in that it considers and
allocates user declared local variables together with compiler-needed
temporary locations in an integrated way. TNBIND performs the
following:

• Determines the lifetime (that is, the first and last uses) of
each temporary value in the routine.

• Estimates the difference in compiled code cost of allocating
each temporary value in a register versus in memory (on the
stack) .

8-6

COMPILER OVERVIEW AND OPTIMIZATION SWITCHES

• Uses cost information to rank temporary values to determine
the most important ones to be allocated in a register.

• Proceeding from most important to least important, allocates
the temporary values. More than one temporary value may be
allocated in the same location, provided their lifetimes do
not overlap. (Thus, it is possible for a less important
temporary to be allocated in a register even though a more
important one is not: its shorter lifetime could permit it to
II fi t . II)

The measure of importance used (normally) by TNBIND is based
completely on minimizing the overall size of the code generated for
the entire routine.

The ZIP switch modifies the importance measure. If ZIP is specified,
temporary values used within loops are given increased importance.
The greater the degree of loop nesting, the greater the importance.
Thus, temporary values used in loops become more likely to be
allocated in registers. As a consequence, code within loops tends to
execute faster, even though the overall size of the routine may become
larger.

8.1.5 Code Generation

The code generation phase, CODE, processes the tree and generates
instructions. Since the allocation for each operand of a node and the
result location of each node have already been determined by TNBIND,
CODE selects the locally best code sequence consistent with those
requirements.

The /DEBUG qualifier modifies code generation as follows:

• A frame pointer (FP) is materialized and the caller's FP is
saved on the stack.

• Routine parameters are popped from the stack after the routine
call.

• Routine entries and exits are marked with a DEBUG UUO.

8.1.6 Code Stream Optimization

The code stream optimization phase, FINAL, processes the code stream
produced by CODE and makes further optimizations at the machine code
level. The optimizations performed include:

• Peephole optimization: One sequence of instructions is
replaced with an equivalent shorter sequence.

• Cross-jumping: Identical sequences of code that flow into a
common instruction are merged into a single sequence.

The OPTLEVEL switch may be used to eliminate some of these
optimizations. The result is code that more clearly follows the
organization of the source program. This may be helpful during
debugging or when the generated code must be understood in detail.

8-7

COMPILER OVERVIEW AND OPTIMIZATION SWITCHES

8.1.7 Output File Production

The output file production phase, OUTPUT, transforms the code
into object module format and outputs it to the object file.
formats and outputs the listing file information.

stream
It also

If the DEBUG switch is specified, symbol table information for use by
the DEBUG system utility is included in the object module. If NODEBUG
is specified (the default), no symbol table information is produced.

8.2 SUMMARY OF SWITCH EFFECTS

The previous sections have described the phases of the compiler and
the switches that affect each of those phases. This section
summarizes the effects of each switch throughout the compiler.

Switch Name Phase

CODE LEXSYN

OPTIMIZE FLOW

OPTLEVEL FLOW

FINAL

SAFE FLOW

ZIP TNBIND

Effect

NOCODE specifies syntax-only processing~
the other phases are not invoked.

If flow analysis
NOOPTIMIZE specifies
across mark points.

is
do

performed,
not optimize

At levels ° and 1, flow analysis is not
performed.

At levels ° and 1, cross-jumping and
branch chaining are not performed. At
level 0, non-adjacent peephole
substitutions are not performed.

If flow analysis is performed, NOSAFE
specifies that indirect changes are
assumed to change all storage.

ZIP specifies that data segments used in
loops are to be given increased
importance in determining register
allocation.

The OPTLEVEL switch is a composite switch that includes appropriate
settings of the other switches in an ordered way. It can be specified
in either the command line or module head or both. The rule applied
to determine which switch setting has effect is that the most recent
switch setting specified has effect allowing the other switches (SAFE,
OPTIMIZE, etc.) to override OPTLEVEL at any time. In a multi-module
compilation, each module begins with the setting defined in the
command line and OPTLEVEL=2 if OPTLEVEL has not been specified in the
command line.

8-8

COMPILER OVERVIEW AND OPTIMIZATION SWITCHES

Optimizations performed at each setting of the OPTLEVEL switch are:

* 1.
* 2.

3.

4.
5.

6.
* 7.
* 8.
* 9.

Key

Optimization

Common subexpression detection
Code motion out of loops, etc.
Targetting/preferencing to
temporaries
Cross-jumping
Multiple POPJs (instead of only one
return point)
Peepholes
"SAFE" optimizations
"OPTIMIZE" over mark points (for example, ;)
"ZIP" speed/space tradeoff
(faster but possibly larger)

o

X

-

OPTLEVEL

1 2

x
X

X X

X
X X

X X
X
X

* - Another switch can control this optimization separately
X - Allowable optimization
+ - Allowed with increased freedom
- - Allowed -- with certain restrictions

8-9

3

X
X
+

X
X

X
X
X
X

CHAPTER 9

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

A number of programming tools, libraries, and system interfaces are
distributed with the BLISS-36 compiler for use by BLISS programmers.
This chapter briefly describes what is available with BLISS-36 V3.
Note that the BLISS tools (utility programs) and system interfaces
described here are not supported products at the time of writing.

9.1 TRANSPORTABLE PROGRAMMING TOOLS (XPORT)

XPORT is a collection of transportable source-level programming tools
for use with the BLISS language. XPORT tools may be commonly applied
across all BLISS target systems to provide such things as: extensive
input/output facilities; a uniform interface for obtaining operating
system services (such as dynamic memory); and aids to data structuring
and string handling.

The XPORT package consists of five components:

XPORT Data Structures
XPORT Input/Output Facilities
XPORT Dynamic Memory Management
XPORT Host System Services
XPORT String Handling Facilities

Each component provides tools which ease the task of interfacing a
BLISS program with the operating system under which it will run.
Therefore, the primary purpose of the XPORT package is to provide
tools and interfaces which behave exactly alike in all system
environments, and thus provide transportable operating system
interfaces.

Programs written in Common BLISS (which use XPORT services in the
manner prescribed) can be developed and debugged on one system and run
on any other BLISS-supported system without change.

An additional benefit of using the XPORT package for BLISS programs,
even if they do not require transportability, is the advantage in
using the simplified XPORT interface as opposed to more powerful and
complicated host system interfaces.

A description of each XPORT component follows; however, for a more
detailed explanation of XPORT and its services refer to the XPORT
Programmer's Guide.

9-1

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

9.1.1 XPORT Data Structures

The XPORT structure-definition facility is a collection of macros that
allow a programmer to define efficient BLOCK structures in a manner
that is both convenient and primarily system-independent. The
facility primarily consists of a replacement for the standard BLISS
FIELD declaration, using the keyword $FIELD.

The structure-definition facility allows a programmer to name the kind
of field required for each block component, instead of specifying its
position and size. A field-type (such as, SHORT INTEGER, ADDRESS,
BYTE) implies not only the size but also the alignment and required
sign extension mode.

The XPORT data structure facility also provides the following support
features:

FIELD SET SIZE Calculates the size of a block defined by $FIELD.

ALIGN

OVERLAY

CONTINUE

Forces a specified mode of alignment for
subsequent field.

Allows for overlayed field definitions.

Terminates field overlaying.

a

LITERAL/DISTINCT Creates a set of distinct integer literals.

SHOW

SUB FIELD

Controls the display of XPORT generated field
definitions, values, and messages.

Provides a means of referencing a field within a
substructure of a block.

9.1.2 XPORT Input/Output

XPORT input/output is a general-purpose, system-independent service
that supports sequential I/O operations in record, character stream,
and binary mode, and provides basic file functions. This facility
actually consists of several separate I/O packages, each being written
for a specific operating system and file system. However, the program
interface to each package is identical. Thus, a transportable I/O
interface is provided for programs written in common BLISS or any
other transportable language.

The XPORT I/O facility performs the following
manipulation functions:

I/O and file

OPEN

CLOSE

DELETE

RENAME

Prepares a file for reading (input) or writing (output).
An output file may be optionally created.

Terminates the processing of an input or output file,
including the flushing of any I/O buffers.

Deletes an existing file.

Changes the name of an existing file.

9-2

BACKUP

PARSE

GET

PUT

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

Provides a mechanism for preserving a copy of an input
file when a program creates a new version of that file.
This capability is typically used by editor-type
applications.

Parses a host system file specification
component parts.

into its

Returns the length and address of the next sequential
logical record read from an input file. Logical
concatenation of several input files can be automatically
performed when an intermediate end-of-file is reached.

Writes a single logical record into an opened output
file.

9.1.3 XPORT Dynamic Memory Management

The XPORT dynamic memory management facility provides the following
functi.ons:

GET MEM Allocates a specified amount of dynamic memory.

FREE MEM Releases an allocated element of dynamic memory

9.1.4 XPORT Host System Services

The XPORT host system services are a set of routines that perform
commonly needed host system functions in a transportable manner. The
functions provided are as follows:

PUT MSG

TERMINATE

Routes a message sequence to the standard output and/or
error devices, based on a message severity code.

Terminates program execution after sending the user a
termination message.

9.1.5 XPORT String Handling Facilities

The XPORT string handling facility provides a programmer with the
ability to transportably manipulate character strings. Small control
structures (modeled after the VAX/VMS descriptor convention) are used
to facilitate the exchange of character data between procedures.

The following descriptor classes are provided:

FIXED

BOUNDED

DYNAMIC

DYNAMIC BOUNDED

Describes a string with a fixed length
location.

and

Describes a buffer that contains a variable length
string.

Describes a moveable string, the length of which
is subject to variance.

Describes a moveable buffer that contains
variable length string.

9-3

a

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

The following functions are used to manipulate a descriptor and its
associated string:

DESCRIPTOR

DESC INIT

COpy

APPEND

EQL,NEQ,LSS,
LEQ,GEQ,GTR

SCAN

CONCAT

FORMAT

ASCII

BINARY

Creates and initializes a descriptor in OWN
storage, or creates a descriptor in LOCAL storage.

Dynamically initializes a descriptor in OWN or
LOCAL storage.

Copies a source string to a target string with
appropriate truncation and padding.

Appends a source string to a target string.

Compares the values of two strings according
to the ASCII collating sequence.

Locates a specific sequence of characters (FIND
mode), matches a stream of characters (SPAN mode),
or searches for one character of a set (STOP
mode) .

Concatenates two or more strings as a single
logical string.

Centers, left justifies, right justifies,
converts a string to upper case.

or

Produces an ASCII string representation of a
binary field value.

Converts an ASCII string value to a binary value.

The XPORT string handling facility also extends the descriptor concept
to include binary data; whereby, the four descriptor classes (FIXED,
BOUNDED, DYNAMIC, and DYNAMIC BOUNDED) are used to describe a data
item instead of a string,-while two of the descriptor manipulation
functions (DESCRIPTOR, DESC INIT) are used to create and intitialize
the binary data descriptors~

9.2 BCREF - BLISS MASTER CROSS REFERENCE PROGRAM

The BCREF program is a global cross-reference utility that is used to
merge cross-reference files (.CRF), for an entire system of modules,
and create a master cross-reference listing file (.LIS).

9.2.1 Command-Line Format

BCREF command lines use the following syntax:

=>10

.R BCREF
*{output-spec}=input-spec, ... {switch ... }

=>20

@BCREF
BCREF>input-spec, ... {/OUTPUT:output-spec){switch ...)

9-4

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

The default file extensions are:

input-spec:
output-spec:

.CRF

.LIS

Note t~hat the input-list option is a comma list of cross-referenced
input-file-specs (filename.CRF) to be merged.

Note that by default the output-file-name (filename.LIS) will be the
same as that of the first input-file-name (filename.CRF) on the list.

9.2.2 Command Semantics

The master cross-reference output file (.LIS) provides a merge-module
listing that is similar to the module-specific listing produced by the
compiler (see Section 3.2.5). The differences are:

• The compiler listing header does not appear: however, the
module-specific header does.

• The module name in which a symbol is declared appears after
the symbol name.

• The size of the module name field reflects the longest
possible module name in the merged system.

9.2.3 Building a Master Cross Reference

A master cross reference is an alphabetic listing of all user
identifiers contained in a group of modules. For each identifier, the
listing contains the names of modules and the line number within each
module when that identifier occurs. You produce the listing by
creating cross-reference files (.CRF) for each module and merging the
files to produce a single output file (.LIS).

The following command sequences can be used to create
cross-reference file FILES. LIS.

==> 10

==>20

.R BCREF
*FILES=FILEA,FILEB
* C

@BCREF
BCREF>FILEA,FILEB=FILES

9.2.4 Command Switches

master

The bcref-switches indicate what can be included or excluded from the
master cross-reference listing (* = default).

/MULTIPLE
/NOMULTIPLE*

/HEADER*
/NOHEADER

Include all similar-type multiple references to
symbols occurring on the same source line.

Include page header for the master
cross-reference listing.

9-5

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

/LOG*
/NOLOG

Provide informational messages relating to the
BCREF data file merge process.

/OUTPUT:file-spec Specifies output file for TOPS-20.

9.3 CVTI0 - BLISS-I0 TO BLISS-36 CONVERSION PROGRAM

CVTIO is a tool for converting BLISS-IO source text into BLISS-36.
CVTIO is designed to do a large percentage of the syntax conversions
and some smaller set of other conversions. Since CVTIO is not a
compiler, it is limited in -the completeness of translation as well as
in the number of ways certain legal constructs can be written and
still get transformed.

CVTIO assumes that the input compiles correctly with the BLISS-IO
compiler. CVTIO is written in the SITBOL version of SNOBOL. This
section describes the internal design of the CVTIO program to help fix
a bug or add a transformation that will aid a conversion process.

9.3.1 CVTI0 Command-Line Syntax

CVTIO prompts for both input files and outputs.
execution by typing:

INPUT FILE NAMES SEPARATED BY SPACES

At this point the user can enter input-file-specs.
specified, input is taken from the terminal.
file-spec is specified, multiple translations occur.

CVTIO next prompts:

OUTPUT FILE NAMES

CVTIO commences

If no file-spec is
If more than one

The user should now enter exactly as many output-file-specs as there
were input-file-specs. The first input-file is translated and becomes
the first output-file; the second input-file is translated and becomes
the second output-file: and so on. If no file-spec is specified, the
output goes to the terminal, in which case, input can come from either
the terminal or a single input-file.

The file-specs have the following format:

{device:} filename.extension {[project,programmer-number]}

An example of a CVTIO command-line sequence follows.

RUN CVTIO

INPUT FILE NAMES SEPARATED BY SPACES
MAIN.BIO SUBR.BIO
OUTPUT FILE NAMES
MAIN.B36 SUBR.B36

INPUT FILE NAMES SEPARATED BY SPACES
~C

9-6

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

9.3.2 BLISS-IO Translations

CVTIO attempts to translate most constructs found in BLISS-IO
programs. However, no conversion is attempted for some features of
the BLISS-IO language. It is important to realize that CVTIO is
sensitive to both the format and complexity of the source. Table 9-1
lists the language features of BLISS-IO in three categories, according
to what degree CVTIO attempts conversion.

If CVTIO detects syntax that it cannot properly correct, it usually
prints a warning to that effect. However, it is important to check
over the translation for constructs that may cause problems.

Table 9-1: BLISS-IO Language Features

Conversion Attempted

! and % comments
quo1:ed string
BIND
EXTERNAL
FORWARD
GLOBAL
GLOBAL BIND
GLOBAL ROUTINE
ROUTINE
LOCAL
MACRO
MAP
MODULE
OWN
REGISTER
REQUIRE
STACKLOCAL
octal constants

string type keywords
[(JASCII, ASCIZ, RADIX50,
SIXBIT[
quoted strings
[(J'AB?M?J ->
%STRING[(J ' AB ' ,%CHAR(13),)
%CHAR(lO)[
CASE
SELECT

No Conversion Needed

DO WHILE/UNTIL
INCR/DECR
LABEL
LEAVE

No Conversion
Attempted

LINKAGE
SIGNAL/ENABLE
PSECT/CSECT
NOVALUE
SCANx
REPLACEx
COPY
INCP
FIRSTONE
OFFSET
EXIT
GLOBALLY
INDEXES
NAMES

)
J

J[]

When encountered, four special comments cause CVTIO to take special
action:

!CVTCOM

!MOCTVC

Make all input lines that follow into comments. This is
used to save the original BLISS-IO code as a comment when
different code has been added.

Turn off the effect of !CVTCOM. Process source normally.

9-7

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

lCVTEXT Treat all input that follows as if it was BLISS-36 code
that had been conunented out. Remove the conunent character
(1) and output each line without further change.

1 TXETVC Turn off the effect of lCVTEXT. Process source normally.

The following sections describe the restrictions associated with the
various language feature conversions.

9.3.2.1 Normal Declarations - The following declarations are
translated: EXTERNAL, FORWARD, GLOBAL, ROUTINE, GLOBAL ROUTINE,
LOCAL, MAP, OWN, REGISTER, AND STACKLOCAL. Several identifiers may be
declared in the same declaration. A declaration can span multiple
lines. However, each identifier must have i,ts whole declaration on a
single line, or the translation will be done incorrectly.

A heuristic trick used when the end cannot be found is to check to see
if there was an attempt to initialize the symbol. If so, 'INITIAL' is
put out before the next line is processed.

Here is an example of the heuristic:

BLISS-IO Input

OWN X[5],Y,Z[3]= (2,
1,
6) ;

OWN

BLISS-36 Translation

X: VECTOR[5],
Y,
Z: VECTOR[3] INITIAL (2,

1,
6) ;

9.3.2.2 REQUIRE Declarations - The file specifications must be on the
same line as the 'REQUIRE' reserved word.

9.3.2.3 SWITCHES Declarations - The entire line on which any SWITCHES
declaration occurs is removed from the program. Thus, to avoid error,
the SWITCHES declaration must be completely contained on a single
line. No other code can occur on the same line as a SWITCHES
declaration.

9.3.2.4 BIND Declarations - BINDs to other than PLITS or UPLITS must
be completely defined on a single line. Thus:

BIND DVSTRC Z = FRNAM;

translates properly, but the following does not:

BIND DVSTRC Z =
FRNAM;

BINDs to PLITs and UPLITs can span many lines, but they must be the
last definition in the BIND declaration. This means you can have only
one PLIT binding in each BIND declaration.

9-8

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

9.3.2.5 ROUTINE Declarations - If a ROUTINE (or GLOBAL ROUTINE)
declaration contains a linkage attribute, the following must be all on
one line:

• ROUTINE (or GLOBAL ROUTINE) keyword(s)

• Linkage attribute

• Routine parameter list

• Equals sign

As an example, in BLISS-IO

ROUTINE FORTRAN START (A,B,C)=

would be translated into BLISS-36 as:

ROUTINE START (A,B,C) : FORTRAN

but the following is invalid:

ROUTINE FORTRAN START
(A,B,C)

9.3.2.6 SELECT Expressions - CVTIO does not parse the SELECT
expression. It simply makes note of what is going by on a line by
line basis. After the NSET is encountered, each colon signals that
the characters that precede it on that line constitute the SELECT
labels. Nothing can precede _a SELECT label on its line. The SELECT
label must be on the same line as the colon that follows it.

Examples

lBLISS-lO

SELECT .X
NSET
3 :
#26:
• V:
TESN:

OF

Faa (• K+I) :
• K:
• Z*.K

BLISS-36

SELECT .X OF
SET
[3J:
[%0'26'J:
[. vJ:
TES:

Faa (. K+I) :
• K:
• Z*.K

9.3.2.7 CASE Expressions - The CASE expression should be formatted so
that no more than one CASE label is required for each line.

9.3.2.8 MACROs - The closing $ in a macro is converted to %. An
attempt is made to transform all occurrences of $ and % characters in
a BLISS-IO macro. If a language construct is completely contained
within a macro, it is normally transformed properly, as in:

MACRO A = OWN X[2J $:

However, macros that contain only portions of an expression,
declaration, or statement are transformed incorrectly, as in:

MACRO B = OWN [$:

9-9

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

9.4 TUTIO - TUTORIAL TERMINAL INPUT/OUTPUT PACKAGE

TUTIO.R36 is a BLISS REQUIRE file that contains some simple 'terminal
I/O primitives. It is normally used in conjuction with the BLISS self
paced study course as outlined in the BLISS Primer, but can be useful
in writing quick and dirty programs, also. To gain access to the
elements of this package, insert the following line in your BLISS
program:

REQUIRE 'TUTIO'~

A list of these primitives and their functions appears below. The
following conventions are used in the descriptions:

char
len
addr
value
radix

- a character
- a length (in characters)
- a memory address
- an integer
- an integer

• TTY PUT_CHAR(char}~ -- Writes a character to the terminal.

• char=TTY_GET_CHAR(}~ -- Reads a character from the terminal.

• TTY PUT QUO('quoted string'}~ -- Writes a quoted string to
the-terminal.

• TTY_PUT_CRLF(}~ -- Writes a carriage return/line feed
sequence to the terminal.

• TTY PUT ASCIZ(addr}~ -- Writes an ASCIZ string to the
terminal.

• TTY PUT MSG(addr,len}~ -- Writes a string of ASCII characters
to the terminal.

• TTY PUT INTEGER(value,radix,len}~ -- Writes an integer to the
terminal.

• n = TTY GET LINE(addr,len}~ -- Reads a line from the terminal
into a buffer and returns the number of characters read.

9.5 SYSTEM INTERFACES

9.5.1 Precompiled Declaration Libraries

Precompiled BLISS declaration libraries are provided to facili,tate the
use of the TOPS-IO and TOPS-20 monitor calls in BLISS-36 programs.
These libraries are derived from the MACRO-IO UNIVERSAL files:

• MACTEN.UNV

• MACSYM.UNV

• UUOSYM.UNV

• MONSYM.UNV

9-10

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

which are used in writing MACRO programs.
provided are:

The libraries which are

• TENDEF.L36 - Monitor independent symbols from MACTEN and
MACSYM

• UUOSYM.L36 - TOPS-IO monitor calls from UUOSYM

• MONSYM.L36 - TOPS-20 monitor calls from MONSYM

Generally speaking, BLISS declaration libraries contain definitions of
the same symbols which the MACRO universal files contain, and are used
in much the same way as the universal files. More detail about how
the translation occurs is found in later sections.

The symbol names are the same except that the period is translated to
dollar sign, and the percent sign is translated to underline, e.g.,

PC%USR becomes PC USR
.CHLFD becomes $CHLFD

This rule permits the programmer to use the published UUOSYM and
MONSYM files as a guide to the use of the BLISS libraries, while the
special character translation avoids the use of the %NAME
lexical-function.

9.5.2 TENDEF.L36 Library

The TENDEF library contains a number of MACRO and LITERAL declarations
which are not monitor dependent. These provide definitions of PDP-IO
hardware data structures, and definitions needed to utilize the mask
defini~:ions contained in the UUOSYM and the MONSYM libraries.

Ordinarily both TENDEF and either UUOSYM or MONSYM will be needed:

LIBRARY 'TENDEF';
LIBRARY 'MONSYM';

9.5.2.1 POINTR Macro - Subfields of a machine word are defined in the
libraries in terms of bit masks just as they are defined in the
corresponding MACRO universal files. These masks are a contiguous
string of one-bits arbitrarily located in a 36-bit word. The POINTR
macro is used to construct a field-reference from these masks.

Call:

POINTR (address , mask)

Expansion:

address < position , size >

Example:

POINTR(X, %0'60') expands to X<4,2>

9-11

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

9.5.2.2 FLD Macro - The FLD macro is used to position a value in a
subfield specified by a bit mask.

Call:

FLD value, mask)

Expansion:

((value) position)

Example:

FLD(2, %0 160 1) expands to ((2) 4)

9.5.2.3 MONWORD and MONBLOCK Structures - Since subfields of a
machine word are defined in MONSYM and UUOSYM as bit masks, the
MONWORD and MONBLOCK structures are defined to accept a mask value to
determine position and size.

For example:

OWN
X:MONWORD;

X[PC OVFJ= 0; !PC OVF is defined as IA35

is equivalent to:

X<35,1>= 0;

The MONBLOCK structure defines a BLOCK of words, each of which is
accessed as a MONWORD:

LOCAL
V:MONBLOCK[8J;

INCR I FROM 0 TO %ALLOCATION(V)-l DO
V[.I,%01777777 I J= 0;

The latter would deposit zeros into:

(V+.I)<0,18>= 0

9.5.2.4 Other Symbols - The TENDEF library contains several other
groups of symbols extracted from the MACSYM file:

Program counter bits PC xxx
Version number subfields VI xxx
Control character definitions $CHxxx

9-12

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

9.5.3 UUOSYM.L36 Library

The following specifies the translat.ion of each type of symbol defined
by the UUOSYM file into BLISS:

• Symbols defined by equates, which
values, and subfield bit masks,
declarations with the same value.

include offsets, field
are converted to LITERAL

• Symbols defined by OPDEF, which include the UUO instructions,
are converted to MACRO declarations. One of four styles of
macro is chosen depending upon the form of the OPDEF. In each
case, the macro ultimately expands after parameter
substitution to a list of three values separated by commas,
which represent the operation code, the accumulator field, and
the effective address of the instruction. This macro would
ordinarily be called to supply the parameters of a MACHOP or
MACHSKIP function.

MACRO name= %O'xxx', %O'xx', %O'xxxxxx' %;

This form is used when the accumulator field and the effective
address of the OPDEF are both nonzero.

MACRO name{a)= %O'xxx', a, %O'xxxxxx' %;

This form is used when the accumulator field of the OPDEF is
zero and the effective address is nonzero, or when the opcode
is CALLI.

MACRO name{e)= %O'xxx', %O'xx', e %;

This form is used when the accumulator field of the OPDEF is
nonzero and the effective address is zero, or when the opcode
is TTCALL or MTAPE.

MACRO name{a,e)= %O'xxx', a, e %;

This form is used when the accumulator field and the effective
address of the OPDEF are both zero {and the opcode is not one
of the special casesf.

9.5.4 MONSYM.L36 Library

The following specifies the translation of each type of symbol defined
by the MONSYM file into BLISS:

• Symbols defined by equates, which include offsets, field
values, JSYS error codes, and subfield bit masks, are
converted to LITERAL declarations with the same value.

• Symbols defined by OPDEF, which include the JSYS instructions,
are converted to LITERAL declarations with the JSYS number as
value. The symbol "JSYS" itself is omitted.

9-13

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

9.5.5 Generation Procedure

The following is the procedure for library generation. The inputs to
the generation are:

UUOSYM.MAC
MONSYM.MAC
TENDEF.R36
FLDBB.R36

Monitor independent symbols
FLDDB$ macro

.R MACRO MACRO 52 or later
*,UUOSYM=UUOSYM 1 Make UUOSYM.LST
* ,MONSYM=MONSYM 1 Make MONSYM. LST
. RUN MONINT 1 Convert .LST to .R36
*UUOSYM 1 Make UUOSYM.R36
* MONSYM 1 Make MONSYM.R36
.R BLISS 1 Create libraries
*TENDEF=TENDEF/LIBRARY 1 Make TENDEF.L36 from TENDEF.R36
*UUOSYM=UUOSYM/LIBRARY 1 Make UUOSYM.L36 from UUOSYM.R36
*MONSYM=MONSYM,FLDDB/LIBRARY 1 Make MONSYM.L36 from MONSYM.R36

! and FLDDB.R36
.DELETE UUOSYM.LST,MONSYM.LST,UUOSYM.UNV,MONSYM.UNV

The following files should now be installed in a public directory:

TENDEF.R36
UUOSYM.R36
MONSYM.R36
FLDDB.R36

TENDEF.L36
UUOSYM.L36
MONSYM.L36

9.5.6 TOPS-IO System Interface Example

MODULE tuglO(%TITLE'Bliss-36 TOPS-IO Interface Example'VERSION='l(l) , ,
MAIN=show_time, ENVIRONMENT(TOPSIO»=

BEGIN

1++
1

FUNCTION

Simple example showing interfacing techniques for Bliss-36
and TOPS-IO V7.01.

1--

FORWARD ROUTINE
show time
gettTme
outdec

NOVALUE,
NOVALUE,
NOVALUE;

LIBRARY 'BLI:TENDEF';

LIBRARY 'BLI:UUOSYM';

LITERAL
LHALF
RHALF

MACRO

-1"18,
%0'777777';

GETLCH UUO(arglist)
GETTAB-UUO(argadr)
OUTSTR=UUO(stradr)

Loads buffer with ASCIZ time string.
Decimal conversion routine

Masks suitable for use with
MONWORD structure.

UUO(O, GETLCH(arglist» %,
UUO(l, GETTAB(argadr» %,
UUO(O, OUTST~(stradr» %;

9-14

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

BUILTIN
UUO~

MACRO
MSGL[] = MSG(%REMAINING, %CHAR($CHCRT, $CHLFD)) %,
MSG[] = UPLIT(%ASCIZ %STRING(%REMAINING)) %~

ROUTINE show time : NOVALUE=
1+
1 FUNCTION

Simple program which gets current date-time info (via GETTAB)
and displays a text string on the user's TTY:

1-

BEGIN
LOCAL

timebuffer

line status

VECTOR[CH$ALLOCATION(80)],

MONWORD INITIAL(-l)~ Initial value for job's
controlling terminal

Find out what kind of terminal the controlling job has
and print some BELs unless it's a PTY:

GETLCH_UUO(line_status)~

IF .line status[LHALF] EQL 0
THEN -

RETURN OUTSTR_UUO(MSGL('GETLCH failed'))~

IF NOT .line status[GL$ITY] 1 PTYs don't get "BELLS"
THEN -

OUTSTR_UUO(MSG(%CHAR($CHBEL, $CHBEL, $CHBEL)))~

gettime(CH$PTR(timebuffer))~

OUTSTR UUO(MSG('%SHOW TIME:: '))~
OU'rSTR-UUO (CH$PTR(timebuffer)) ~
OUTSTR-UUO(MSG(%CHAR($CHCRT, $CHLFD))
END~ -
ROUTINE gettime(bufptr) :NOVALUE
,+

1-

FUNCTION
Get the current date-time from the monitor, convert to ASCIZ
of the form

dd-mmm-yyyy hh:mm:ss

INPUT
bufptr - CH$PTR to output buffer

OUTPUTS
None

BEGIN
REGISTER

argval

BIND

MONWORD~ Needed for doing GETTABs

tabvals = PLIT(CNDAY, CNMON, _CNYER, CNHOR, _CNMIN, CNSEC
:- VECTOR-;

monstr UPLI'r ('-Jan-', '-Feb-', '-Mar-', '-Apr-',
, -May-', '-Jun-', I -Jul- I, I -Aug- I ,

I -Sep- I, I -Oct- I, I -Nov- I, '-Dec- I): VECTOR~

9-15

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

LOCAL
timvals VECTOR[6]~ 1 Holds results of GETTABs

INCR i FROM 0 TO .tabvals[-l] - 1 DO
BEGIN
argval[LHALF]
argval[RHALF]

.tabvals[.i]~
$GTCNF~

Item from System Config Table

IF NOT GETTAB_UUO(argval
THEN The UUO failedl

RETURN OUTSTR_UUO(MSGL('?GETTAB failed'));

timvals[.i] = .argval
END~

Now write time values as needed.

OUTDEC(.timvals[O], bufptr)~

Copy into safe place

bufptr = CH$MOVE(5, CH$PTR(monstr[.timvals[l]J), .bufptr)~

OUTDEC(.timvals[2], bufptr)~

CH$WCHAR_A(%C' " bufptr)~

OUTDEC(.timvals[3], bufptr)~ 1 HH:
CH$WCHAR_A(%C':', bufptr)~

OUTDEC(.timvals[4], bufptr)~ 1 MM:
CH$WCHAR_A(%C':', bufptr)~

OUTDEC(.timvals[5], bufptr)~ SS
CH$WCHAR_A(0, bufptr)~ The trailing NUL for ASCIZ strings
END~

ROUTINE OUTDEC(value, bufaddr adr): NOVALUE=
!+

FUNCTION
Convert a number from binary to ascii decimal representation

INPUTS
value - numeric value to convert
bufaddr adr - address of CH$PTR to use. (Incremented as we go)

OUTPUTS
none

NOTES
Only positive numbers are handled.

BEGIN
IF .value LEO 9
THEN

CH$WCHAR A(.value+%C'O', .bufaddr adr
ELSE -

END:

BEGIN
OUTDEC(.value/10, .bufaddr adr)~
OUTDEC(.value MOD 10, bufaddr adr
END

END ELUDOM

9-16

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

9.5.7 TOPS-20 System Interface Example

MODULE tug (MAIN=showtime, version='l(l)' %TITLE'BLISS-36 User' 's Guide')=
BEGIN

1++
1 Simple program to demonstrate using JSYS in Bliss-36
1
1-·-

FORWARD ROUTINE
readaline,
show time
cmdmsg

: NOVALUE,
: NOVALUE;

Read one line from the terminal
Print full date and time
Print a message on the terminal

LIBRARY 'SYS:TENDEF';

UNDECLARE
$CHCRT,
$CHLFD;

These are declared in both libraries ...

LIBRARY 'SYS:MONSYM';

MACRO

% (
% (

BIND

! Given JSYS numbers from MONSYM, create linkages and BIND ROUTINE
declarations to define a more esthetic interface to TOPS-20 JSYS.

MJSYS(name,skipcnt,inreg,outreg)=
%ASSIGN(jsysno,name)
UNDECLARE name;

LINKAGE %NAME('l ',name) = JSYS (
%IF NOT %NULL(inreg) %THEN RPLIST(%REMOVE(inreg)) %FI
%IF NOT %NULL(outreg) %THEN ; RPLIST(%REMOVE(outreg)) %FI)

: SKIP(skipcnt);

BIND ROUTINE name = jsysno : %NAME('l_' ,name); %,

RPLIST(a)[] REGISTER=a%IF %LENGTH GTR 1
%THEN , RPLIST(%REMAINING) %FI %;

COMPILETIME
jsysno 0;

Name Skip In-Regs Out-Regs)%
------- --------)%

MJSYS(DVCHR, 0, (1) , (1,2,3)) ;

MJSYS(PSOUT, 0, (1)) ;
MJSYS(ODTIM, 0, (1,2,3)) ;

MJSYS(RDTTY, 1, (1,2,3) , (2)) ;

CRLF = CH$PTR(UPLIT(%ASCIZ %CHAR($CHCRT, $CHLFD))) ;

GLOBAL ROUTINE cmdmsg(amsg) : NOVALUE=

1++
1 FUNCTION

Print out a string on the primary output device.

9-17

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

INPUTS
amsg - CH$PTR to an ASCIZ string

OUTPUTS
None

1--

BEGIN

LOCAL
characteristics : MONWORD;

Get device characteristics to see if we should give a CRLF

DVCHR($PRIOU ; , characteristics);

IF .characteristics[DV TYP] EQL $DVTTY OR
.characteristics[DV-TYP] EQL $DVPTY

THEN -
PSOUT (CRLF);

Real TTY or
PTY: get a CRLF

PSOUT (. amsg);
PSOUT(CRLF)
END;

Write the message text
and a CRLF afterwards

ROUTINE show time
1++

NOVALUE=

1 FUNCTION
Print the current time-of-day in the format

hh::mm: : ssAM-EDT

INPUTS
None

OUTPUTS

1--
None

133;

BEGIN
LITERAL

buflen
LOCAL

buffer VECTOR[CH$ALLOCATION(buflen)];

ODTIM(CH$PTR(buffer), -1, OT NDA+OT 12H+OT SCL);

cmdmsg(CH$PTR(buffer});

IF readaline(CH$PTR(buffer), buflen, CH$PTR(UPLIT(%ASCIZ'GOOD?')))
THEN

1 Successful
!
cmdmsg(CH$PTR(UPLIT(%ASCIZ'BYE')))

ELSE
cmdmsg(CH$PTR(UPLIT(%ASCIZ'FAILED'))

END; ! show time

ROUTINE readaline
1+

bufadr, len, prompt

FUNCTION
Accept a line from the terminal

9-18

TOOLS, LIBRARIES, AND SYSTEM INTERFACES

INPUTS
bufadr
len
prompt

OUTPUTS
1

- CH$PTR to buffer where terminal response should be placed
- length of buffer
- CH$PTR to ASCIZ string to prompt the user with.

1 0
We got a line of input
It flopped.

1 --

BEGIN

PSOUT(.prompt);

1 RDTTY skip-return is converted to TRUE or FALSE

RDTTY(.bufadr, RD TOP+.len, .prompt)
END;

END ELUDOM

9-19

CHAPTER 10

BLISS-36 CODING EXAMPLES

This chapter provides useful examples of BLISS-36 coding techniques.
The coding used to devise these examples demonstrates the use of many
BLISS language features.

10.1 EXAMPLE 1: THE PSINT PROGRAM

The coding of the PSINT program primarily demonstrates the use of the
PSI INTERRUPT linkage. The program allows you to display a specified
file in 132 columns on the terminal. A Control-C is used to both exit
the program and return the terminal width to its original setting.

The PSINT program requires the following system interface files:

• MONSYM - TOPS-20 monitor interface symbols

• TENDEF - Monitor independent MACRO and LITERAL declarations

• MJSYS - Interface to TOPS-20 JSYS calls

The following steps are used to run the PSINT program:

1. Compile the PSINT program:

@BLISS
BLISS>PSINT

File: PS:<JONES>PSINT.B36.1
Size: 328 code + 2123 data words
Run Time: 00:05.2
Elapsed Time: 00:16.7
Lines/CPU Min: 4450
Lexemes/CPU-Min: 74859
Memory Used: 39 pages

i Compilation Complete
BLISS>"C
@

2. Link the PSINT program and use /GO to terminate:

@LINK
* PSINT
* /GO

EXIT

3. Save the executable image:

@SAVE PSINT
PSINT.EXE.l Saved

10-1

BLISS-36 CODING EXAMPLES

4. Run the PSINT program:

@RUN PSINT
(terminal is set to 132 columns)
FILE:ALPHA.TXT
(ALPHA. TXT is displayed in 132 columns)
FILE : C
@(terminal is reset to original width)

The following sections contain the annotated coding of the PSINT
module:

10.1.1 Module PSINT

MODULE PSINT(%TITLE'Bliss-36 PS INTERRUPT Example I

VERSION= I 1 (1) I ,

MAIN=REPLAY)=
BEGIN

!++
!

FUNCTION

Example showing the use of the PS INTERRUPT linkage
declaration in Bliss-36.

This example types a specified file to the TTY
In 132 columns. Control-C must be typed in order
to exit, causing the terminal width to be reset
to its original setting. If a Control-Y is typed
the program will prompt for another file.

!--

LINKAGE PSI = PS_INTERRUPT;

FORWARD ROUTINE

REPLAY
DISPLAY
ENAPSI
CTRCLC

CTRLY

TTYSET
FILIO
TTYRES
DISPSI
DSPHDL,

PSIHDL;

NOVALUE,
NOVALUE,
NOVALUE,
PSI NOVALUE,

PSI NOVALUE,

NOVALUE,
NOVALUE,
NOVALUE,
NOVALUE,

LIBRARY 'BLI:TENDEF';

UNDECLARE

$CHCRT,
$CHLFD;

LIBRARY I BLI : MONSYM I;

REQUIRE I MJSYS I ;

Sets up and enables the PSI
The Control-C software interrupt
handler
The Control-Y software interrupt
handler
Sets up terminal characteristics
Performs file I/O
Resets terminal characteristics
Disables the PSI
Condition Handler for the DISPLAY
routine
Condition Handler for interrupt
routine

Declared in both libraries

Define needed JSYS calls

10-2

BLISS-36 CODING EXAMPLES

LITERAL

true = I,
false = 0,
ss$cntrl y I,
intchl -I,
intch2 2,
bufsiz 132,
typwid 132;

MACRO

Control-Y flag
Interrupt channel 1
Interrupt channel 2
Size of the file I/O buffer
Terminal output width

ERROR ERSTR($PRIOU, ($FHSLF"'lB) OR %0'777777',0); (1)
HALTF ();) % ,

XPDPlO_BITS[BITS] = 1"'(35-BITS)%,

PDPlO_BITS[] = (0 OR XPDPlO_BITS(%REMAINING»%; (2)

OWN
pclevl, (3)
levtab: VECTOR[3] (4)

INITIAL(pclevl, REP 2 OF (0»,

chntab: VECTOR[36] (5)
INITIAL(O,(l"'lB OR CTRLC),

(1 "'lB OR CTRLY),
REP 33 OF (0»,

filbuf : (6)
VECTOR[CH$ALLOCATION(bufsiz)],

filjfn: VOLATILE, (7)
ttyjfn : (B)

VOLATILE INITIAL(-l),
width VOLATILE; (9)

1. The ERROR macro outputs the most recent error message to the
primary output device and halts the process.

2. The PDPlO BITS macro returns a literal with the specified
PDP-10 bits set.

3. PCLEVl is the address used to save the PC during interrupts.

4. LEVTAB is the priority level table used by PSI.

5. CHNTAB is the channel table.

Note that Channell (priority level 1) serves the CTRLC
routine, while Channel 2 (priority level 1) serves the CTRLY
routine; no other channels are assigned.

6. FILBUF is the input file buffer.

7. FILJFN is the JFN for the file.

B. TTYJFN is the JFN for the terminal.

9.. WIDTH is the original setting of the terminal.

10-3

10.1.2 Routine REPLAY

ROUTINE REPLAY
1+
1 FUNCTION
1

BLISS-36 CODING EXAMPLES

NOVALUE

1 This is the main routine which causes the program
to continually loop until a Control-C is typed or
an error occurs.

1-

BEGIN

WHILE true DO DISPLAY():

END;

10.1.3 Routine DISPLAY

ROUTINE DISPLAY
!+
1 FUNCTION

NOVALUE

This routine enables a condition handler
and calls all the routines which perform
the file and terminal I/O.

1-

BEGIN

ENABLE DSPHDLi

ENAPSI();

TTYSET()i

FILIO () ;

TTYRES():

DISPSI();

END;

(1)

(2)

(3)

(4)

(5)

1. Enable the PSI to trap on Control-C and Control-Yo

2. Set the terminal width to 132.

3. Get the file and display it on

4. Set the terminal width back to

5. Disable the PSI.

10.1.4 Routine ENAPSI

ROUTINE ENAPSI
1+

NOVALUE

1 FUNCTION

10-4

the terminal.

the original setting.

BLISS-36 CODING EXAMPLES

1
1 Enables the software interrupt system and sets up
1 the program to trap on Control-C and Control-Yo
1-,

BEGIN

SIR($FHSLF, «levtab A 18) OR chntab»; (1)
EIR($FHSLF); (2)
AIC($FHSLF, PDPIO BITS(intchl,intch2»; (3)
ATI($TICCC A 18 OR Intchl); (4)
ATI($TICCy A 18 OR intch2); (5)
END;

1. Specify the PSI table.

2. Enable the PSI.

3. Activate the interrupt channel.

4. Trap on Control-C.

5. Trap on Control-Yo

10.1.5 Routine TTYSET

ROUTINE TTYSET : NOVALUE

1+
1 FUNCTION
1

1-

Opens the terminal in Image mode and sets
the width to 132, saving the original
setting.

BEGIN

IF NOT GTJFN(GJ SHT, CH$PTR(UPLIT(%ASCIZ'TTY: I»;

THEN
ERROR;

ttyjfn) (1)

IF NOT OPENF(.ttyjfn, FLD(7,OF BSZ) OR FLD(%O'lO',
OF_MOD) OR OF WR »- (2)

THEN
ERROR;

MTOPR(.ttyjfn, $MORLW;"width); (3)

IF .width NEQ typwid
THEN

END;

BEGIN

MTOPR(.ttyjfn, $MOSLW, typwid); (4)

SOUT(.ttyjfn, CH$PTR(UPLIT (5)
(%ASCII %STRING(%CHAR
(%CHESC) , 1 [?31 '))), 5, 0);

END

10-5

BLISS-36 CODING EXAMPLES

1. Associate a Job File Number with the terminal.

2. Open the terminal in image mode with a byte size of seven.

3. Get the terminal page width.

4. Set the software page width to 132.

5. The <ESC>[?3h' string is a special escape sequence that tells
the VT100 to set the page width to 132.

10.1.6 Routine FILIO

ROUTINE FILIO
1+

NOVALUE

1 FUNCTION

1-

This routine prompts the user for a file name, opens
the specified file, and outputs it to the terminal.

BEGIN

LITERAL
max spec 219;

LOCAL
count,
cond :
ttybuf

BEGIN

MONWORD,
VECTOR[CH$ALLOCATION(max_spec)];

PSOUT(CH$PTR(UPLIT(%ASCIZ'FILE:'»);

IF NOT RDTTY(CH$PTR(ttybuf), max_spec, 0)
THEN

ERROR;

(1)

IF NOT GTJFN«GJ OLD OR GJ_SHT),CH$PTR(ttybuf);
filjfn) (2)

THEN
ERROR;

IF NOT OPENF(.filjfn, (FLD(7,OF_BSZ) OR OF_RD» (3)
THEN

ERROR;
END;

WHILE true DO
BEGIN

IF NOT SIN(.filjfn,
CH$PTR(filbuf),-bufsiz,O;"count)

THEN
BEGIN
GETER($FHSLF;cond);
IF .cond[IOX4]
THEN

BEGIN
IF .COUNT NEQ °
THEN

(4)

(5)
(6)

(7)

SOUT (. ttyj fn,
CH$PTR(fi1buf),(bufsiz-.count),0);

EXITLOOP;

10-6

END;

BLISS-36 CODING EXAMPLES

END;
ERROR
END;

SOUT (. ttyj fn,
CH$PTR(filbuf),(bufsiz-.count),O);

END;

1. Read the file name from the terminal.

2. Associate a Job File Number with the file.

3. Open the file in 7-bit mode for reading.

4. Read from the input file.

5. Determine the cause of the error.

6. Stop reading when end-of-file is reached.

7. Clear the buffer.

8. Report any unexpected error condition.

9. Output the string to the terminal.

10.1.7 Routine TTYRES

ROUTINE TTYRES
1+
1 FUNCTION

NOVALUE

(8)

(9)

Resets the terminal width back to the original
setting and closes and releases the JFN.

1-

BEGIN

IF (.width NEQ -1) AND
(.width NEQ typwid)

THEN
BEGIN

(1)

MTOPR(.ttyjfn, (2)
$MOSLW, . width) ;

SOUT(.ttyjfn, CH$PTR(UPLIT (3)
(%ASCII %STRING(%CHAR
(%CHESC),'[?31'»), 5, 0);

width = 0;
END;

IF .ttyjfn GEQ 0
THEN

END;

BEGIN

CLOSF(.ttyjfn);
ttyjfn = 0;
END;

10-7

BLISS-36 CODING EXAMPLES

1. Check for altered terminal width.

2. Reset the terminal page width to its original setting.

3. Set the VT100 to the same width.

10.1.8 Routine DISPSI

ROUTINE DISPSI
1+

NOVALUE

1 FUNCTION
1

Disables the software interrupt system.
1-

BEGIN

DTI($TICCY); (1)
DTI($TICCC); (2)
DIC($FHSLF, PDPIO BITS(intchl,intch2)); (3)
DIR($FHSLF); (4)
END;

1. Disable trapping on Control-Yo

2. Disable trapping on Control-C.

3. Deactivate the interrupt channels.

4. Disable the PSI.

10.1.9 Routine CTRLC

ROUTINE CTRLC
1+

PSI NOVALUE

1-

FUNCTION

This is the Control-C interrupt handler. The handler
calls the routine to reset the width of the terminal
and then exits.

If CONTINUE is typed by the user, the terminal is
reset to 132 columns and the program continues from
the point where the trap occurred.

BEGIN

TTYRES();

HALTF () ;

TTYSET();

END;

10-8

10.1.10 Routine CTRLY

ROUTINE CTRLY
1+
1 FUNCTION

BLISS-36 CODING EXAMPLES

PSI NOVALUE

This is the Control-Y interrupt handler. This
routine signals the PSI condition handler.

1 --

BEGIN

ENABLE PSIHDLi (1)

SIGNAL(ss$cntrl_y)i (2)

END:

I.. Enable the PSI-handler.

2. Generate the Control-Y signal.

Note that for a PSI-handler in which an UNWIND can occur, a
condition handler must be established.

10.1.11 Routine DSPHDL

ROUTINE DSPHDL(sig: REF VECTOR, mech
VECTOR)
1+

FUNCTION

REF VECTOR, enab

Condition handler for the routine Display. This
routine terminates all I/O and does an Unwind for
the Control-Y signal.

1-

BEGIN

IF .sig[l] NEQ ss$cntrl_y
THEN

RETURN falsei Resignal for conditions
other than Control-Yo

TTYRES():

CLOSF(-I)i

DISPSI();

SETUNWIND();
true

END:

10.1.12 Routine PSIHDL

ROUTINE PSIHDL(sig: REF VECTOR, mech
VECTOR)

10-9

REF VECTOR, enab

REF

REF

BLISS-36 CODING EXAMPLES

1+
1 FUNCTION

1-

Condition handler for Control-Yo This routine
simply resignals.

BEGIN

RETURN false

END;

END
ELUDOM

10.2 EXAMPLE 2: THE TRANS PROGRAM

The coding of the TRANS program
COMND JSYS function; however,
character-handling techniques.
or delete selected characters
file containing the changes.

primarily demonstrates the use of the
the program also demonstrates BLISS-36
The program allows you to substitute
in an input file and produce an output

The command line syntax is as follows:

in-spec {/OUTPUT: out-spec J (FROM) "characters" (TO) "characters"

The TRANS program requires the following system interface files:

• MONSYM - TOPS-20 monitor interface symbols

• TENDEF - Monitor independent MACRO and LITERAL declarations

• MJSYS - Interface to TOPS-20 JSYS calls

The following steps are used to run the TRANS program:

1. Compile the TRANS program:

@BLISS
BLISS>TRANS

File: PS:<JONES>TRANS.B36.1
Size: 415 code + 2444 data words
Run Time: 00:11.8
Elapsed Time: 00:28.9
Lines/CPU Min: 4771
Lexemes/CPU-Min: 103118
Memory Used: 54 pages

; Compilation Complete
BLISS> C
@

2. Link the TRANS program and use /GO to terminate:

@LINK
*TRANS
*/GO
EXIT

10-10

BLISS-36 CODING EXAMPLES

3. Save the executable image:

@SAVE TRANS
TRANS.EXE.l Saved

4. Run the TRANS program:

@RUN TRANS
TR> TRIN. TXT !OUTPUT: TOUT. TXT. 1 <ESC> INew fi Ie 1 (FROM) "CD" < ESC> (TO) "34"
@

Using the /OUTPUT: switch option, the program reads input file
TRIN.TXT and creates output file TOUT.TXT in which all uppercase Cs
and Ds are respectively changed to 3s and 4s. Note that if the
/OUTPUT: switch is not used, an output file is created that is the
next generation of the input file spec.

The following sections contain the annotated coding of the TRANS
module.

10.2.1 Module TRANS

MODULE TRANS (MAIN transmain
) =

BEGIN

1++
1 FUNCTION

1--

This program copies an input file to an output file
with substitution or deletion of selected characters.

Each character in the argument (FROM) is translated to
the corresponding character in the argument (TO); all
other characters are copied as is.

Both (FROM) and (TO) may contain substrings of the form
al-a2, as shorthand for all the characters in the range
al .. a2. If the (TO) argument contains no characters,
then all characters in the (FROM) argument are deleted.
If (FROM) is shorter than (TO), all characters in (FROM)
that would map to or beyond the last character in (TO)
are mapped to the last character in (TO).

LIBRARY'BLI:TENDEF';

UNDECLARE

$chcrt,
$chlfd;

LIBRARY'BLI:MONSYM';

REQUIRE 'MJSYS';

MACRO

These are declared in both libraries.

Define needed JSYS calls

(1)
jsys_detected error =

(erstr($priou, ($fhslf A 18) OR %0'777777', 0);
haltf();)%,

10-11

BLISS-36 CODING EXAMPLES

quote error = (2)
T psout(CH$PTR(UPLIT(%ASCIZ1Invalid quoted stringl)));

haltf();)%;

BIND
switch UPLIT (%ASCIZ10UTPUT: I);

LITERAL

OWN

true = 1,
false = 0,
alpha = 1,
alpha lower case = 2,
numerIc = 3-;-
not alpha numeric = 4,
buffer_length = 132:

Input JFN
Output JFN

injfn,
outjfn,
state,
reparse,
eoc seen,

Command state indicator
Flag indicating a reparse
End of command flag

cmdgjb : VECTOR [%0116 I J,
swblk : VECTOR [2J

INITIAL (lA lB OR 1, switchAlB),
command buffer :

VECTOR [CH$ALLOCATION (buffer_length)J,
atom buffer :

VECTOR [CH$ALLOCATION (buffer_length)J,
file spec :

VECTOR [CH$ALLOCATION (buffer_length)J,
from count,
from-buffer:

VECTOR [CH$ALLOCATION (buffer_length)J,
to count,
to-buffer :

VECTOR [CH$ALLOCATION (buffer_length)J;

(3)
(4)

(5)

(6)

(7)

(B)
(9)

(10)
(11)

1. The JSYS DETECTED ERROR outputs the most recent error message
to the primary output device and halts the process.

2. The QUOTE ERROR outputs the IIInvalid quoted string II message
to the prImary output device and halts the process.

3. CMDGJB is the argument block used by the COMND JSYS.

4. SWBLK is used by the COMND JSYS for parsing the /OUTPUT:
switch

5. COMMAND BUFFER is the text buffer used by the COMND JSYS.

6. ATOM BUFFER is the atom buffer used by COMND JSYS.

7. FILE SPEC is the buffer for the default output file.

B. FROM COUNT indicates the number of characters
FROM-BUFFER.

in the

9. FROM BUFFER is the character buffer for the (FROM) reques·t.

10. TO COUNT indicates the number of characters in the TO BUFFER.

11. TO BUFFER is the character buffer for the (TO) request.

10-12

BLISS-36 CODING EXAMPLES

The following chart depicts the command state table used by this
example. Note that you initialize the BLOCKVECTOR state table to
reflect the entries to the table. The NEXT field contains the next
state number, while the ACT field is used in a CASE statement to
indicate what action is performed.

The following abbreviations define the actions performed:

s i i
s=f=p
s 0 j
s i j
s_t_p

save input info
save-from part
save-out Jfn
save-in Jfn
save=to_part

Table 10-1: Depiction of the Command State Table

--- -

.CHINI .CHSWI .CHIFI .CHOFI .CMQST .CHCFM .CMNOI .CMNOI

STATE (INIT) (jOUTP) (INPUT) (OUTPUT) (QUOTES) (EOC) (FROM) (TO)
--- --------

o Next=l x x x x x x x
o Act=nu11 x x x x x x x

1 x Next=3 Next=2 x x x x x
1 x Act=nu11 Act=s_f_p x x x x x

2 x Next=4 x x Next=8 x x x
2 x Act=nu11 x x Act=s_f_p x x x

3 x x x Next=5 x x x x
3 x x x Act=s 0 j x x x x

4 x x x Next=6 x x x x
4 x x x Act=s 0 j x x x x

5 x x Next=6 x x x x x
5 x x Act=s i x x x x x

6 x x x x x x Next=7 x
6 x x x x x x Act=nu11 x

7 x x x x Next=8 x x x
7 x x x x Act=s f _p x x x

8 x x x x x x x Next=9
8 x x x x x x x Act=null

9 x x x x Next=lO x x x
9 x x x x Act=s _ t _p x x x

10 x x x x x Next=O x x
10 x x x x x Act=eoc x x

10-13

BLISS-36 CODING EXAMPLES

LITERAL

sO 0,
sl 1,
s2 2,
s3 3,
s4 4,
s5 5,
s6 6,
s7 7,
s8 8,
s9 9,
slO = 10,

cmini 0,
cmswi 1,
cmifi 2,
cmofi 3,
cmqst 4,
cmcfm 5,
cmnoi from -
cmnoi to =

= 6,
7,

(1)

Init (2)
Switch
Input file-spec
Output file-spec
Quoted string
Confirm (crlf)
Guide word (FROM)
Guide word (TO)

null = 0, (3)
save input info = 1,
save-in jfn = 2,
save-out jfn = 3,
save-from part = 4,
save-to part 5,
eoc ;; 6~

num of functs

num of states
fdb-size 6,

csb size
user = 5;

10,

8,

11,

Number of functions parsed
in this example
Number of command states
Function data block size
plus one
Command state block size
User defined word in fdb

FIELD state fields =
SET

OWN

next = [18,18,OJ,
action = [0,18,OJ
TES;

state table BLOCKVECTOR[num of states, num of functsJ
FIELD(state fIelds) PRESET(-

[sO,cmini,nextJ sl, [sO,cmini,actionJ null,
[sl,cmswi,nextJ s3, [sl,cmswi,actionJ null,
[sl,cmifi,nextJ s2, [sl,cmifi,actionJ save input info,
[s2,cmswi,nextJ s4, [s2,crnswi,actionJ null~ -
[s2,cmqst,nextJ s8, [s2,cmqst,actionJ save from part,
[s3,cmofi,nextJ s5, [s3,cmofi,actionJ save-out]fn,
[s4,cmofi,nextJ s6, [s4,cmofi,actionJ save=out-jfn,
[s5,cmifi,nextJ s6, [s5,cmifi,actionJ save in jfn,
[s6,cmnoi from,nextJ=s7,[s6,crnnoi from,actionJ =-nuIl,
[s7,cmqst~nextJ = s8, [s7,cmqst~actionJ = save from part,
[s8,cmnoi to,nextJ=s9, [s8,crnnoi to,actionJ = null, -
[s9,cmqst~nextJ = slO, [s9,cmqst~actionJ = save to part,
[slO,cmcfm,nextJ = sO, [slO,cmcfm,actionJ = eocT: -

10-14

BLISS-36 CODING EXAMPLES

LITERAL

OWN

BIND

OWN

fw = -1;

fdb ini : monblock[fdb size] PRESET
-[$cmfnp,cm fnc] = $cmini,

[user,fw] ~ cmini
) ,

fdb eol : monblock[fdb size] PRESET
-[$cmfnp,cm fnc] = $cmcfm,

[user,fw] ~ cmcfm
) ,

fdb switch : monblock[fdb size] PRESET (
-[$cmfnp,cm fnc] = $cmswi,

[$cmdat,fwJ = swblk,
[user,fw] = cmswi
) ,

fdb ifi : monblock[fdb size] PRESET
-[$cmfnp,cm fnc] = $cmifi,

[user,fw] ~ cmifi
) ,

fdb ofi : mqnblock[fdb size] PRESET
-[$cmfnp,cm fnc] = $cmofi,

[user,fw] ~ cmofi
) ,

fdb from : monblock[fdb size] PRESET (
-[$cmfnp,cm fnc] = $cmnoi,

(4)

(S)

[$cmdat,fwJ = CH$PTR(UPLIT(%ASCIZ'FROM ' »,
[user,fw] = cmnoi from
) , -

fdb to : monblock[fdb size] PRESET (
-[$cmfnp,cm fnc] =-$cmnoi,

[$cmdat,fwJ = CH$PTR(UPLIT(%ASCIZ'TO ' »,
[user,fw] = cmnoi to
), -

fdb quostr : monblock[fdb size] PRESET (
-[$cmfnp,cm fnc] = $cmqst,

[user,fw] ~ cmqst
) ;

stateO
statel
state2
state3
state4
stateS
state6
state7
state8

PLIT (fdb ini),
PLIT (fdb-ifi, fdb switch),
PLIT (fdb-switch, fdb quostr),
PLIT (fdb=ofi), -
state3,
PLIT (fdb ifi),
PLIT (fdb -from) ,
PLIT (fdb-quostr),
PLIT (fdb =to) ,

state9 state7,
statelO = PLIT (fdb_eol);

state address : VECTOR [nurn of states] INITIAL (stateO,
statel,

state2, state3, state4, stateS, state6,
state7,state8,state9,statelO);

10-lS

OWN

BLISS-36 CODING EXAMPLES

csl : monblock[csb size] PRESET (
[$cmioj,fw] $priin A 18 OR $priou,
[$cmrty,fw] CH$PTR(UPLIT(%ASCIZ'TR>'»,
[$cmbfp,fw] ~ CH$PTR(command buffer),
[$cmptr,fw] CH$PTR(command-buffer),
[$cmcnt,fw] buffer length,-
[$cmabp,fw] CH$PTRTatom buffer),
[$cmabc,fw] buffer length,
[$cmgjb,fw] cmdgjb-
) ;

MACRO chars(num)[] (6)
%COUNT
%IF %COUNT LSS num %THEN , chars(num) %FI %;

BIND
transtbl = UPLIT (%CHAR (chars(127»);

FORWARD ROUTINE

CMDINIT : NOVALUE,
LEXGET,
OPENFILES : NOVALUE,
BUILDTBL : NOVALUE,

EXPTBL,

CHRVAL,

FILIO : NOVALUE;

Initialization routine
Command line parsing
Open input and output files
Generate the character
translation table
Translate dashes into
characters (a-z)
Character check (numeric,
alphabetic ...)
Reads and writes bytes from
and to a file

1. SO to SlO are the symbolic names for the states used by the
command state table.

2. CMINI to CMNOI are the function codes used as indexes to the
command state table.

3. NULL to EOC are symbolic names given to the actions performed
during command parsing.

4. FW contains a fullword mask.

5. FDB INI to FDB QUOSTR are function descriptor blocks used by
the COMND JSYS to parse the command line. The user field was
added to more easily access the state table entries.

6. Generate a table that contains the set of ASCII characters.

10.2.2 Routine TRANSMAIN

ROUTINE TRANSMAIN : NOVALUE
1+

FUNCTIONAL DESCRIPTION:

This is the main routine which controls the
flow of the program.

1-

10-16

BLISS-36 CODING EXAMPLES

BEGIN

DO
BEGIN

CMDINIT ()i

WHILE true DO

IF NOT LEXGET() THEN EXITLOOPi
END

UNTIL .eoc seeni

OPENFILES ()i
BUILDTBL ()i
FILIO ()i
ENDi

1. Read until the end of the command line.

2. Initialize necessary flags.

(1)

(2)

(3)

(4)
(5)
(6)

3. Read lexemes until either an error or the end of the command
occurs.

4. Open the input and output files.

5. Complete the building of the translation table.

6. Perform the file copy and close the files.

10.2.3 Routine CMDINIT

ROUTINE CMDINIT : NOVALUE
1+
1 FUNCTIONAL DESCRIPTION:

Initialize the flags for command parsing
and initialize the current process state.

1-
BEGIN

eoc seen = falsei
out']fn = -1;

IF .reparse
THEN

BEGIN

reparse = false;
state = sl;

END
ELSE

state SOi

reset ()i
ENDi

10-17

10.2.4 Routine LEXGET

ROUTINE LEXGET =
1+

BLISS-36 CODING EXAMPLES

1 FUNCTIONAL DESCRIPTION:
1
1 This routine does the command line parsing

using the state table in Section 10.2.1.

FORMAL PARAMETERS:

None

IMPLICIT INPUTS:

The routine assumes that STATE has been set up
with the appropriate number.

1-

IMPLICIT OUTPUTS:

The following locations may be modified:
STATE, INJFN, OUTJFN, EOC SEEN, REPARSE,
TO_BUFFER, FROM_BUFFER, FILE SPEC

ROUTINE VALUE:

True - if a valid field is parsed
False - if an error, reparse, or an end of

command is seen

BEGIN

LOCAL
oldstate,

BIND

fdb : REF monblock[fdb sizeJ,
first fdb : REF monblock[fdb sizeJ,
prev fdb : REF monblock[fdb sizeJ,
flgs-: MONWORD, -
fld data,
fdj-

(1)
(2)
(3)

valid token .state address [.stateJ VECTORj

first fdb = OJ

INCR i FROM 0 TO .valid token [-lJ - 1 DO (4)
BEGIN

IF .first fdb EQL 0
THEN

first fdb = .valid token [.iJ
ELSE

prev_fdb [$cmfnp,cm IstJ
.valid_token [.iJj

prev_fdb
ENDj

.valid token [.iJj

prev fdb [$cmfnp,cm IstJ = OJ
comnd (csl, .first fdbj fIgs, fld data, fd)j (5)

10-18

BLISS-36 CODING EXAMPLES

IF .flgs[cm nop] (6)
THEN -

BEGIN
erstr ($priou, ($fhslf A 18) OR .fld_data, 0);
RETURN false
END;

IF .flgs[cm rpt] (7)
THEN -

BEGIN
reparse = true;
RETURN false
END;

1. FDB is the function descriptor block.

2. FIRST_FOB is the first function descriptor block.

3. PREV_FOB is the previous function descriptor block.

4. Set up a linked list of valid function descriptor blocks
according to the state being processed.

5. Parse a field in the command.

6. Return an error if an unexpected field is detected.

7. Check for reparsing.

fdb = .fd<O, 18>;

oldstate = .state;
state = .state_table[.oldstate,.fdb[user,fw],next];

CASE .state table[.oldstate,.fdb[user,fw],action]
FROM 0 TO eoc OF
SET

[null]
BEGIN

RETURN true
END;

[save input info]
BEGIN -

(1)

injfn = .fld_data; (2)

JFNS(CH$PTR(file spec), .injfn, (3)
FLD($JSAOF,JS NAM)+FLD($JSAOF,JS_TYP)

+J S _ PAF , 0 T ;

fdb_ofi[$cmdef,fw] = CH$PTR(file_spec); (4)

fdb ofi[$cmfnp,cm dpp] = true; (5)
RETURN true -
END;

10-19

END:

BLISS-36 CODING EXAMPLES

[save in jfn]
BEGIN

injfn = .fld data:
RETURN trtle
END:

[save out jfn]
BEG IN-

outjfn = .fld_data:
RETURN true
END:

[save from part] :
BEGIN -

CH$MOVE (buffer length, CH$PTR (atom_buffer),
CH$PTR Tfrom_buffer»:

RETURN true
END;

[save_to_part] :
BEGIN

CH$MOVE (buffer length, CH$PTR (atom_buffer),
CH$PTR Tto_buffer»:

RETURN true
END:

eeoc] :
BEGIN

eoc seen = true;
RETURN false
END;

[OUTRANGE]
BEGIN

TES

jsys detected error;
RETURN false -
END:

(6)

(7)

(8)

(9)

(10)

(11)

1. Compute the new state and perform appropriate actions based
on the current state and the input token parsed by the COMND
JSYS.

Note that FBD now equals the function descriptor block that
was used.

2. Save the input JFN.

3. Save the filename and the file type.

4. Default the output file spec to FDB_OFI.

5. Flag the COMND JSYS to indicate that a default has been
found.

10-20

BIIISS-36 CODING EXAMPLES

6. Save the input JFN.

7. Save the output JFN.

8. Save the (FROM) quoted string.

9. Save the (TO) quoted string.

10. Set the end of the command flag.

11. We should never get to an OUTRANGE.

10.2.5 Routine OPENFILES

ROUTINE OPENFILES : NOVALUE
1+

1-

FUNCTIONAL DESCRIPTION:

Opens the input and output files. If an output
file was not specified, we get a JFN for a new
generation of the input file spec.

FORMAL PARAMETERS:

None

IMPLICIT INPUTS:

The INJFN must contain input file JFN.

The OUTJFN contains output file JFN or -1.

IMPLICIT OUTPUTS:

The OUTFJN may be modified

ROUTINE VALUE:

None

BEGIN

IF NOT openf(. injfn, (1)
(fld (7, of bsz) OR of_rd))

THEN
jsys detected_error;

IF .outjfn LSS 0 (2)
THEN

IF NOT gtjfn ((gj sht OR gj fou),
CH$PTR (file-spec); outjfn)

THEN

IF NOT openf (.outjfn, (fld (7, of_bsz) OR of_wr))
THEN

END;

1. Open the input file in 7-bit mode.

2. Check if an output file was specified.

10-21

BLISS-36 CODING .EXAMPLES

10.2.6 Routine BUILDTBL

ROUTINE BUILDTBL : NOVALUE
1+
1 FUNCTIONAL DESCRIPTION:

1-

This routine deals with the (FROM) and (TO) quoted
strings. The routine calls EXPTBL to replace the
abbreviated form of lal-a2" with all the characters
between and checks their validity.

If the routine finds that the (TO) argument is empty
it fills the buffer with zeros to indicate that the
(FROM) characters are to be deleted.

If the number of characters in the (FROM) part exceeds
the number of characters in the (TO) part then the last
character in the (TO) part is replicated until the (TO)
string is as long as the (FROM) string.

Finally, the translation table used for file I/O will be
updated to reflect the specified character translations.

FORMAL PARAMETERS:

None

IMPLICIT INPUTS:

IMPLICIT OUTPUTS:

The following locations are modified:

FROM_COUNT, TO_COUNT, FROM BUFFER,TO BUFFER, TRANSTBL

ROUTINE VALUE:

None

BEGIN

LOCAL
chr_ptr;

from count exptbl (from buffer);
to_count = exptbl (to_buffer);

(I)

IF (.from count LSS .to_count) OR (.from_count EQL 0)
THEN -

quote error;

IF .to_count EQL 0 (2)
THEN

CH$FILL {O, .from count, CH$PTR (to_buffer»
ELSE

IF .to count NEQ .from count
THEN

BEGIN

10-22

BLISS-36 CODING EXAMPLES

CH$FILL (CH$RCHAR A (chr ptr),
.from count - .to count,
.chr_ptr); -

END;

chr_ptr = CH$PTR (from_buffer);

INCR i FROM 0 TO .from count - 1 DO
BEGIN

LOCAL
char;
char = CH$RCHAR A (chr ptr);

(3)

CH$WCHAR (CH$RCHAR (CH$PTR (to buffer, .i»,
CH$PTR (transtbl, .char»;

END

END;

1. Expand the buffers to include all lal-a2" characters, and
save the number of characters.

2. A (TO) count of zero indicates characters are to be deleted.

3. A (TO) count that is less than a (FROM) count indicates that
the last (TO) character will be replicated.

4. The translation table is modified so that each character to
be translated is replaced by the translation.

10.2.7 Routine EXTBL

ROUTINE EXPTBL (buffer)
1+

1-

FUNCTIONAL DESCRIPTION:

Reads the characters from the given buffer
and, if the 'al-a21 form is used, fills in
in appropriate characters.

FORMAL PARAMETERS:

buffer - address of characters to be examined

IMPLICIT INPUTS:

None

IMPLICIT OUTPUTS:

Modifies BUFFER, ATOM_BUFFER

ROUTINE VALUE:

Number of characters in the buffer

10-23

BEGIN

LOCAL
char,

BLISS-36 CODING EXAMPLES

prey char,
dst ptr,
chr-ptr,
chr-cnt,
temp_buffer VECTOR[CH$ALLOCATION(buffer_length)]i

chr cnt prey char = Oi
dst=ptr CH$PTR (temp buffer)i
chr ptr CH$PTR (. buffer) i
char = CH$RCHAR_A (chr_ptr); (l)

(2) WHILE .char NEQ 0 DO
BEGIN

IF .char EQL %C I
_

I

THEN
(3)

ELSE

BEGIN

IF .prev_char EQL 0 THEN quote_error; (4)

char = CH$RCHAR_A (chr_ptr);

IF (.char LEQ .prev char) (5)
OR (chrval (.prev_char) NEQ chrval (.char»

THEN
quote_error;

INCR i FROM .prev_char + 1 TO .char DO (6)

BEGIN
chr cnt

IF .chr_cnt GTR buffer_length
THEN

quote_error;

CH$WCHAR_A (.i, dst_ptr);
END;

prey char 0;
END -

BEGIN

IF chrval (.char) EQL not_alpha_numeric
THEN

quote error:

IF (chr_cnt = .chr_cnt + 1) GTR buffer_length
THEN

quote_error;

CH$WCHAR A (.char, dst_ptr);
prey char = .char;
END;-

char = CH$RCHAR A (chr_ptr);
END; -

CH$MOVE {.chr cnt, CH$PTR (temp_buffer), CH$PTR (.buffer»;
RETURN .chr cnt
END;

10-24

BLISS-36 CODING EXAMPLES

1. Read the first character.

2. Read all characters.

3. Check for the form 'al-a2'.

5. Check the validity of the range.

6. Include in the buffer all characters that are within range.

10.2.8 Routine CHRVAL

ROUTINE CHRVAL (chr)
1+
1 FUNCTIONAL DESCRIPTION:

This routine checks whether a given character is a
number, an upper_case letter, or a lower case letter.

FORMAL PARAMETERS:

chr - Character to check

IMPLICIT INPUTS:

None

IMPLICIT OUTPUTS:

None

ROUTINE VALUE:

numeric - Character is a number
alpha - Character is an upper case letter
alpha lower case - Character 1s a lower case letter

1 not_alpha_numeric - Character is not a letter or a digit
1-

BEGIN

SELECTONE .chr OF
SET

[%C'O' TO %C'9'] :
RETURN numeric;

[%C'A' TO %C'Z'] :
RETURN alpha;

[%C'a' TO %C'z'] :
RETURN alpha_lower_case;

END;

[OTHERWISE] :
RETURN not alpha_numeric;

TES;

10-25

BLISS-36 CODING EXAMPLES

10.2.9 Routine FILIO

ROUTINE FILIO : NOVALUE
1+

FUNCTIONAL DESCRIPTION:

This routine reads each character of the input file to
the output file, along with the corresponding translated
character. A zero in the translation table indicates that
the character is to be omitted from the output file. The
routine then closes both -the input and output file.

FORMAL PARAMETERS:

None

IMPLICIT INPUTS:

OUTJFN, INJFN, TRANSTBL all set up

IMPLICIT OUTPUTS:

None

ROUTINE VALUE:

None

BEGIN

LOCAL
char,
cond monword,
eof;

WHILE NOT .eof DO
BEGIN

IF NOT bin(.injfn; char) (1)
THEN

BEGIN
GTSTS(.injfn;cond); (2)
IF .cond[GS EOF]
THEN

eof=true (3)
ELSE

jsys_detected_error (4)
END;

IF .char NEQ 0 (5)
THEN

ELSE

BEGIN

char = CH$RCHAR (CH$PTR (transtbl,
IF .char NEQ 0 THEN bout (.outjfn,
END

bo u t (. ou t j f n , . c h a r) ;
END;

10-26

.char» ;

.char);

BLISS-36 CODING EXAMPLES

END

closf (.injfn);
closf (.outjfn);
END;

ELUDOM

1. Read a character from the input file.

2. Check the error conditions.

3. End of file is found.

4. Report any other type of error.

5. If the input character is not a null, and will not translate
to a null character, the character is written to the output
file.

10-27

APPENDIX A

SUMMARY OF COMMAND SYNTAX

This appendix summarizes the command syntax and switch defaults for
TOPS-20 and TOPS-10.

A.I TOPS-20 COMMAND SUMMARY

bliss-compilation BLISS>bliss-command-line

bliss-command­
line

input-spec

space

switch

output­
switch

general-switch

check-switch

check-value

{ switch space input-spec

file-spec+ ... switch ... J

blank

output-switch
general-switch
check-switch
terminal-switch
optimization-switch
li sting-swi tch
reference-switch
environment-switch

(/OBJECT {: fi le-spec J
J /LISTING {:file-specJ
} /LIBRARY {: fi le-spec J
(/MASTER-CROSS-REFERENCE {:file-specJ

(/DEBUG I /NODEBUG
J /CODE I /NOCODE
) /VARIANT {: n J
(/ERROR-LIMIT {:nJ

{
cheek-value }

/CHECK: (check-value, •..)

, INITIAL I NOINITIAL
(FIELD I NOFIELD }

} OPTIMIZE I NOOPTIMIZE
(REDECLARE I NOREDECLARE

A-I

/NOOBJECT)
/NOLISTING (
/NOLIBRARY ,
/NOMASTER-CROSS-REFERENCE J

SUMMARY OF COMMAND SYNTAX

terminal-switch {
/ERRS
/STATISTICS

/NOERRS }
/NOSTATISTICS

=-r~~:~i~i~i I { /Nbo~TiMiz~ TJ
optimization-switch. /SAFE I /NOSAFE

/ZIP I /NOZIP
/QUICK I /NOQUICK

----~------------------------~----------------------------

{ /PAGSIZ: 20 I 21 I 22 I ... II /HEADER /NOHEADER
listing-switch /UNAMES I /NOUNAMES

{ option } /FORMAT
: (option, ...)

ASSEMBLY I NOASSEMBLY
BINARY I NOBINARY
COMMENTARY I NOCOMMENTARY
EXPAND I NOEXPAND

option LIBRARY I NOLIBRARY
OBJECT I NOOBJECT
REQUIRE I NOREQUIRE
SOURCE I NOSOURCE
SYMBOLIC I NOSYMBOLIC
TRACE I NOT RACE

reference­
switch {

{
{reference-value

/CROSS-REFERENCE :{ (reference-value, ...)
/MASTER-CROSS-REFERENCE { : fi Le-spec J

reference­
value

environment­
switch

{ MULTIPLE I NOMULTIPLE J

I
/KA10 I /KI10 I /KL10 I /KS10
/TOPS10 I /TOPS20
/EXTENDED I /NOEXTENDED
/EXTENDED : SECTION-INDEPENDENT

A.2 TOPS-20 SWITCH DEFAULTS

.-------

The following are the switch defaults for the TOPS-20:

/OBJECT:input-file-name.REL

/NOLISTING

/NOLIBRARY

/NODEBUG

/CHECK:(FIELD,INITIAL,OPTIMIZE,NOREDECLARE)

/CODE

/NOCROSS-REFERENCE or /CROSS-REFERENCE(NOMULTIPLE)

A-2

SUMMARY OF COMMAND SYNTAX

/VARIANT:O

/ERRS

/ERROR-LIMIT:30

/NOMASTER-CROSS-REFERENCE

/NOSTATISTICS

/OPTLEVEL:2

/OPTIMIZE

/SAFE

/NOZIP

/NOQUICK

/PAGSIZ:52

/HEADER

/NOUNAMES

/FORMAT:(NOASSEMBLY, BINARY, COMMENTARY, NOEXPAND, NOLIBRARY,
OBJECT, NOREQUIRE, SOURCE, SYMBOLIC, NOTRACE)

/KLlO

/TOPS20

/NOEXTENDED

A.3 TOPS-IO COMMAND SUMMARY

bliss-command-line {output-file-list J
source-file-list {switch ... J

source-file-list source-file-spec, ...

{

obj ect- fi le- spec ,... }
output-file-list ,listing-file-spec , ...

,master-cref-spec

object-file-spec)
listing-file-spec (file-spec
source-file-spec (
master-cref-spec ,

file-spec device: file-name { .file-type J { [ppnJ

device any logical or physical device name

file-name I to 6 alphanumeric characters

file-type o to 3 alphanumeric characters

ppn project-number ,programmer-number

A-3

switch

library-switch

general-switch

check-switch

check-value

terminal-switch

SUMMARY OF COMMAND SYNTAX

library-switch
general-switch
check-switch
terminal-switch
optimization-switch
source-list-switch
reference-switch
environment-switch

{ /LIBRARY /NOLIBRARY

{

/DEBUGI /NODEBUG}
/CODEI /NOCODE
/VARIANT {: n J
/ERRLIM {: n J

{
cheek-value }

/CHECK: (check-value "")

{

FIELD I NOFIELD }
INITIAL I NOINITIAL
OPTIMIZE I NOOPTIMIZE
REDECLARE I NOREDECLARE

{
/ERRS
/STATISTICS

/NOERRS }
/NOSTATISTICS

optimization-switch /SAFE I /NOSAFE
{

/OPTLEVEL : { 0 I 1 I 2 I 3 J}
/ZIP I /NOZIP
/QUICK I /NOQUICK

source-list-switch
/HEADER
/UNAMES

{

/PAGSIZ:

/NOUNAMES

20 I 21 I 22 I ... J}
/NOHEADER

option

reference-switch

reference-value

environment­
switch

/LIST

ASSEMBLY
BINARY
COMMENTARY
EXPAND
LIBRARY
OBJECT
REQUIRE
SOURCE
SYMBOLIC
TRACE

{

option }

(option I • ••)

NOASSEMBLY
NOBINARY
NOCOMMENTARY
NOEXPAND
NOLIBRARY
NOOBJECT
NOREQUIRE
NOSOURCE
NOSYMBOLIC
NOT RACE

/CREF {
{reference-value

:{ (reference-value "")

MULTIPLE I NOMULTIPLE J

{
/KA10 I /KI10 I /KL10 I /KS10}
/TOPS10 I /TOPS20

A-4

}

SUMMARY OF COMMAND SYNTAX

A.4 TOPS-IO SWITCH DEFAULTS

The following are the switch defaults for the TOPS-IO:

/NOLIBRARY

/NODEBUG

ICHECK:{FIELD,INITIAL,OPTIMIZE,NOREDECLARE)

ICODE

/NOCREF or ICREF{NOMULTIPLE)

IVARIANT:O

/ERRS

/ERRLIM:30

/NOSTATISTICS

/OPTLEVEL:2

ISAFE

/NOZIP

/NOQUICK

/PAGSIZ:52

/HEADER

/NOUNAMES

/LIST:(NOASSEMBLY, BINARY, COMMENTARY, NOEXPAND, NOLIBRARY,
OBJECT, NOREQUIRE, SOURCE, SYMBOLIC, NOTRACE)

/KAIO

/TOPSIO

A-5

APPENDIX B

SUMMARY OF FORMATTING RULES

The ba.sic rule of indentation is that a block is indented one logical
tab deeper than the current indentation level (one logical tab equals
four spaces; two logical tabs equal one physical tab). The
declarations and expressions of a block are indented to the same level
as the BEGIN-END delimiters.

The format for a declaration is:

declaration-keyword
declaration-item,

declaration-item;

1 comment

1 comment

where the declaration-keyword starts at the current indentation level
and ea.ch declaration-item is further indented one logical tab.

Expressions generally have two formats: one for expressions that fit
on one line and one for expressIons that are longer. If the
expression does not fit on one line, then keywords appear on separate
lines from subparts and subparts are indented one tab. For example,
IF expressions are written in either of two formats:

or

IF test THEN consequence ELSE alternative:

IF test
THEN

consequence
ELSE

alternative;

The examples used in Chapter 3 are indented correctly,
comments have been omitted in order to save space.

B-1

although all

APPENDIX C

MODULE TEMPLATE

This appendix contains a listing of the file MODULE.BLI, which is the
standard template for BLISS modules and routines. A module has four
parts: a preface, a declarative part, an executable part, and a
closing part.

The module's preface (Section C.l) appears first. It provides
documentation explaining the module's function, use, and history.

The module's declarative part appears next (Section C.2). This
section provides a table of contents for the module (FORWARD ROUTINE
declarations) and declarations of macros, equated symbols, OWN
storage, externals, and so on.

The module's executable part (Section C.3), consisting of zero or more
routines, comes next; the template for a routine is in this section.
A routine has three parts: a preface, a declarative part, and code.

Finally, every module has a closing part
completes the syntax of a module.

(Section C.4), which

The module template may be used either as a checklist for module
organization and content or as the starting point in creating a new
module.

The file MODULE.BLI is supplied as' part of the BLISS support package,
on logical device SYS$LIBRARY with VAX/VMS, and on BLI: with TOPS-IO
and TOPS-20.

C.l MODULE PREFACE

MODULE TEMPLATE (

BEGIN

IDENT
) =

COPYRIGHT (C) 1982 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

'rHIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
TRANSFERRED.

C-l

MODULE TEMPLATE

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.

1++
1 FACILITY:
1
1 ABSTRACT:
1
1

ENVIRONMENT:

AUTHOR: , CREATION DATE:

MODIFIED BY:

1 01
1--

VERSION

C.2 DECLARATIVE PART OF MODULE

TABLE OF CONTENTS:

FORWARD ROUTINE

INCLUDE FILES:

MACROS:

EQUATED SYMBOLS:

OWN STORAGE:

EXTERNAL REFERENCES:

EXTERNAL ROUTINE

C-2

MODULE TEMPLATE

C.3 EXECUTABLE PART OF MODULE

ROUTINE TEMP_EXAMPLE () :NOVALUE

1++
1 FUNCTIONAL DESCRIPTION:

FORMAL PARAMETERS:

NONE

IMPLICIT INPUTS:

NONE

IMPLICIT OUTPUTS:

NONE

ROUTINE VALUE:
COMPLETION CODES:

NONE

SIDE EFFECTS:

NONE

!--

BEGIN

LOCAL

END~

C.4 CLOSING FORMAT

END
ELUDOM

C-3

!END OF TEMP EXAMPLE

!END OF MODULE

APPENDIX D

IMPLEMENTATION LIMITS

Each BLISS-36 compiler implementation has limitations on the use of
certain language constructs or system interfaces. These values are
subject to change if experience indicates they are unsuitable.

D.l BLISS-36 LANGUAGE

The maximum number of

• Characters in a quoted-string

• Actual parameters in a routine call

• Structure formal parameters

• Field components

• Parameters of a FIELD attribute

• Words initialized by a single PLIT
(that is, the maximum word count of a single PLIT)

D.2 SYSTEM INTERFACES

The maximum number of

• Characters in an input source line

• Simultaneously active (depth of nested)
REQUIRE files

D-l

is

1000

64

31

32

128

262,143

is

131

9

APPENDIX E

ERROR MESSAGES

Whether an error is fatal to the creation of an object module (ERR) or
a warning (WARN) is context-dependent. Informational messages (INFO)
have no effect on compilation. BLISS-32 creates an object module for
a program that has warnings but no errors. However, such a program
may fail to link or may fail to execute in the intended manner. In
some of these error messages, the compiler provides variable
information that points to the possible source of error. (See the
example in Section 2.1 for an illustration.) In this appendix any
information enclosed in angle brackets « » describes the type of
such variable information given. Fatal error messages appear at the
end of the appendix.

000 Undeclared name: <name>

Explanation: The name shown has not previously been declared.

User Action: Declare the name.

001 Declaration following an expression in a block

Explanation:
block.

Declarations must precede expressions within a

User Action: Reinsert the declaration properly or create a new
block.

002 Superfluous operand preceding "<operator-name>"

Explanation: An excess or unnecessary left-operand precedes the
operator named.

User Action: Remove the extra or unnecessary left-operand.

003 BEGIN paired with right parenthesis

Explanation: A close parenthesis has been encountered when the
compiler expected an END.

User Action: Provide the appropriate pairing or insert a missing
END keyword.

E-l

ERROR MESSAGES

004 Missing operand preceding u<operator-name>u

Explanation: Required
infix-operator named.

left-operand

User Action: Insert missing left-operand.

005 Control expression must be parenthesized

is missing from

Explanation: Parenthesis is required to achieve intended result.

User Action: Insert missing parenthesis.

006 Superfluous operand following u<operator-name>"

Explanation: An extra or unecessary right-operand follows the
operator named.

User Action: Remove the excess or unecessary right-operand.

007 Missing operand following u<operator-name>u

Explanation: Required right-operand is missing from operator
named.

User Action: Insert missing right-operand.

008 Missing THEN following IF

Explanation: Conditional-expression is incomplete.

User Action: Insert required keyword THEN.

009 Missing DO following WHILE or UNTIL

Explanation: Pre-tested-loop-expression is incomplete.

User Action: Insert required keyword DO.

010 Missing WHILE or UNTIL following DO

Explanation: Post-tested-loop-expression is incomplete.

User Action: Insert required keyword WHILE or UNTIL.

011 Name longer than 31 characters

Explanation: Maximum name length has been exceeded.

User Action: Reduce name length to 31 characters or less.

012 Missing DO following INCR or DECR

Explanation: Indexed-loop-expression is incomplete.

User Action: Insert required keyword DO.

E-2

ERROR MESSAGES

013 M.issing comma or right parenthesis in routine actual parameter
list

Explanation: Each actual-parameter in a list must be separated
by a comma and the list must be ended by a close parenthesis.

User Action: Insert comma(s), as
parenthesis.

014 Missing FROM following CASE

necessary,

Explanation: Case-expression is incomplete.

User Action: Insert required keyword FROM.

015 Missing TO following FROM in CASE expression

ExplaJlation: Case-expression is incomplete.

User Action: Insert required keyword TO.

016 Missing OF following TO in CASE expression

Explanation: Case-expression is incomplete.

User Action: Insert required keyword OF.

017 Missing OF following SELECT

Explanation: Select-expression is incomplete.

User Action: Insert required keyword OF.

018 Missing SET following OF in SELECT expression

Explanation: Select-expression is incomplete.

User Action: Insert required keyword SET.

and/or close

019 Missing colon following right bracket in SELECT expression

Explanation: Select-line of select-expression is incomplete.

User Action: Insert colon between select-label
close bracket and select-action expression.

020 Missing semicolon or TES following a SELECT action

expression's

Explanation: Select-line of select-expression is incomplete.

User Action: Insert required semi-colon or keyword TES following
select-action expression.

E-3

ERROR MESSAGES

021 Address arithmetic involving REGISTER variable <variable-name>

Explanation: An attempt has been made to use the value of a
register name in an expression.

User Action: Correct the expression.

022 Field reference used as an expression has no value

Explanation: The reference is invalid as a fetch or assignment
expression and cannot produce a value.

User Action: Evaluate and validate the expression.

023 Missing comma or right angle bracket in a field selector

Explanation: Field selector is incomplete.

User Action: Insert missing comma{s) or close bracket.

024 Value in field selector outside permitted range

Explanation: The value has exceeded
machine-word boundaries of the dialect.

the field

User Action: Correct the address, position, size,
expression value according to dialect restrictions.

025 Value of attribute outside permitted range

size or

or sign

Explanation: The value used is larger than the legal range
permits, such as UNSIGNED(37).

User Action: Correct the attribute value.

026 ALIGN request negative or exceeds that of PSECT (or stack)

Explanation: The alignment-attribute boundary must be a positive
integer that does not exceed the psect-alignment-boundary.

User Action: Correct the boundary value.

027 Illegal character in source text

Explanation: One of the 30 illegal non-printing ASCII characters
has been used (as other than data) in a BLISS module.

User Action: Only four non-printing characters (blank,
vertical-tab, and form-feed) may be used in COding.

tab,

028 Illegal parameter in call to lexical function
<lexical-function-name>

Explanation: A parameter used with the named lexical-function is
invalid.

User Action: Check and correct parameter usage according to the
definition of the function.

E-4

ERROR MESSAGES

029 Attribute illegal in this declaration

Explanation: Attributes are restricted in use
declarations.

to certain

User Action: Remove the illegal attribute from the declaration.

030 Access formals must not appear in structure size-expression

Explanation: An access-formal provides variable access to
elements of a structure and should not be included with the
expression defining structure size.

User Action: Remove the access-formal from the structure-size
expression.

031 Conflicting or multiple specified attributes

Explanation: Contradictory or superfluous attributes have been
used.

User Action: Check attribute usage in regard
definitions.

032 Two consecutive field selectors

Explanation: Irrational use of
field-reference.

field-selector

to specific

portion of

User Action: Remove extra field-selector or insert parenthesis
to create a complete field-reference, such as: .(.x<0,16»<0,8>.

033 Syntax error in attribute

Explanation: n error has occurred in the coding of an attribute.

User Action: Correct the error using the appropriate syntax.

034 INITIAL value <integer> too large for field

Explanation: The integer value shown is too large for the
designated field.

User Action: Decrease the value or increase the allocation-unit.

035 The <attribute-name> attribute contradicts corresponding FORWARD
declaration

Explanation: The attributes of a name in an own- or
routine-declaration must be identical to those
associated forward-declaration.

global- or
used in the

User Action: Correct the syntax of the attribute named.

E-5

ERROR MESSAGES

036 Literal value cannot be represented in the declared number of
bits

Explanation: The literal-value of a literal-declaration is
larger than the field specified by the storage attribute.

User Action: Check sign or bit-count of range-attribute.

037 Lower bound of a range exceeds upper bound

Explanation: The value
case-expression must not
range.

of the low-bound range of a
exceed the value of the high-bound

User Action: Correct the low-bound value.

038 Number of routine actual parameters exceeds implementation limit
of 64

Explanation: The number of input-actual-parameters
routine-declaration must not exceed 64.

User Action: Decrease the number of parameters to 64.

039 Name used in an expression has no value: <name>

for a

Explanation: A name that cannot denote an arithmetic value has
been used in an expression.

User Action: Correct the expression.

040 LEAVE not within the block labelled by <label-name>

Explanation: The leave-expression is not within the block of the
label named.

User Action: Insert the expression in the appropriate block.

041 Missing comma or right parenthesis in parameter list to lexical
function <lexical-function-name>

Explanation:
separated by
parenthesis.

User Action:

Each lexical-actual-parameter in a list must be
a comma and the list must be ended by a close

Insert the missing comma(s) or close parenthesis.

042 Missing label name following LEAVE

Explanation: The leave-expression is incomplete.

User Action: Insert the appropriate label name following the
keyword LEAVE.

E-6

ERROR MESSAGES

043 Label <label-name> already labels another block

E:xplanation: The label name shown has been declared for another
labeled-block.

User Action: Change the name of one block or the other.

044 EXITLOOP not within a loop

Explanation: An exitloop-expression has been incorrectly used.

User Action: Insert the expression within the (innermost)
t.O be exited.

loop

045 Missing structure name following REF

Explanation: The structure-attribute using keyword
i.ncomplete.

REF is

User Action: Insert the missing structure-name following the
keyword.

046 Register <register-number> cannot be reserved

Explanation: The register defined by the number shown is not
locally usable.

User Action: Specify another register.

047 Module prematurely ended by extra close bracket or missing open
bracket

Explanation: The number of close brackets in a module must equal
t.he number of open brackets.

User Action: Remove the extra right bracket(s)
II> II) or add the missing left bracket (s) (BEGIN,

048 Syntax error in module head

(END, II) II , II] II ,

11(11, 11[11, 11<11).

Explanation: The module-head is incorrectly coded.

User Action: Correct the module-name or the syntax of the
module-switch list.

049 Invalid switch specified

Explanation: An invalid switches-declaration has been used with
t~he dialect.

User Action: Correct the use of the switches-declaration.

050 Name already declared in this block: <name>

Explanation: The name shown has been declared more than once in
t~he same block.

User Action: Remove all but one of the declarations within the
block.

E-7

ERROR MESSAGES

051 Syntax error in switch specification

Explanation: An error has occurred in the coding of the
module-switches or switches-declaration.

User Action: Correct the coding of the switches.

052 Expression must be a compile-time constant

Explanation: The 'compiler requires a
compile-time-constant-expression and the expression used does not
meet the criteria.

User Action: Evaluate and correct the expression.

053 Invalid attribute in declaration

Explanation: An illegal attribute has been
declaration.

used in the

User Action: Check the legality of the attribute(s) used with
the declaration.

054 Name in attribute list not declared as a structure or linkage
name: <name>

Explanation: The name shown has not been used as a structure- or
linkage-name in a structure- or linkage-declaration.

User Action: Correct or declare the name appropriately.

055 Missing equal sign in BIND or LITERAL declaration

Explanation: The name and value of a literal-, bind-data-, or
bind-routine-item must be separated by an equal sign.

User Action: Insert the missing equal sign.

056 Missing comma or semicolon following a declaration

Explanation: Each declaration in a list must be separated by a
comma and the last must be followed by a semicolon.

User Action: Insert the missing comma(s) or semicolon.

057 Value of structure size-expression for REGISTER must not exceed 4

Explanation: Structure-size expression exceeds maximum allowed
value.

User Action: Correct the value of the register structure-size
expression.

E-8

ERROR MESSAGES

058 Left parenthesis paired with END

Explanation: A pair of parenthesis must be used to replace a "("
-END pair.

User Action: Provide the appropriate pairing or insert a missing
BEGIN keyword.

059 Register <register-number> cannot be specifically declared

Explanation: Register number shown is beyond the allowable range
of the dialect or is illegally declared, such as REGISTER R = 50.

User Action: Insert a valid register-number.

060 Missing SET following OF in CASE expression

Explanation: Case-expression is incomplete.

User Action: Insert required keyword SET.

061 Missing left bracket preceding a CASE- or SELECT-label

Explanation: Case- or select-expression is incomplete.

User Action: Insert missing open bracket.

062 MODULE declaration inside module body

Explanation: A module-body cannot contain a module-declaration.

User Action: Correct the declaration coding.

063 More than one CASE-label matching the same CASE-index

Explanation: Only one case-label value can match a
case-index value.

User Action: Correct either the label or index value.

064 Value in CASE-label outside the range given by FROM and TO

Explanation: Value of case-label is not within the
specified.

User Action: Correct the case-label or range values.

065 Missing equal sign in ROUTINE declaration

given

range

Explanation: An equal sign must precede the routine-body in a
routine-declaration.

User Action: Insert the missing equal sign.

E-9

ERROR MESSAGES

066 Two consecutive operands with no intervening operator

Explanation: Operator-expression is incomplete or illegal.

User Action: The compiler will usually insert an appropriate
operator and continue.

067 Missing comma or right bracket following a CASE- or SELECT-label

Explanation: Each label in a list,
select-expression, must be separated by
ended with a close bracket.

for a case- or
a comma and the list

User Action: Insert missing comma(s) or close bracket.

068 Name to be declared is a reserved word: <name>

Explanation: Reserved words cannot be declared by the user.

User Action: Select another name for the declaration.

069 Size-expression required in STRUCTURE declaration when storage is
to be allocated

Explanation: When a structure is associated with a name in a
data-declaration an expression must be used to specify the amount
of storage allocated.

User Action: Insert structure-size expression.

070 Number of structure formal parameters exceeds implementation
limit of 31

Explanation: Number of access-formal parameters exceeds maximum
allowed.

User Action: Reduce the number of parameters.

071 Missing comma or closing bracket in formal parameter list for
<routine-or-macro-name>

Explanation: Each formal parameter in a list must be separated
by a comma and the list ended with a right bracket.

User Action: Insert missing comma(s) or right bracket.

072 Missing control variable name in INCR or DECR expression

Explanation: Indexed-loop-expression is incomplete.

User Action: Insert missing loop-index name.

073 Missing equal sign in STRUCTURE or MACRO declaration

Explanation: An equal sign mus1: precede the structure-size
expression or structure-body or the macro-body.

User Action: Insert the missing equal sign.

E-lO

ERROR MESSAGES

074 Missing actual parameter list for macro <macro-name>

Explanation: The actual-parameters are missing
macro-call associated with the macro named.

from the

User Action: Insert actual-parameters to correspond with the
formal-name parameters from the declaration.

075 Missing closing bracket or unbalanced brackets
parameter list for macro <macro-name>

in actual

Explanation: There must be a right bracket for every left
bracket used in the actual-parameter list.

User Action: Correct the pairing of the open and close brackets.

076 Extra actual parameters for structure <name> referencing data
segment <name>

Explanation: Superfluous access-actual parameters in
structure-reference for structure and data-segment named.

User Action: Correct coding of structure-reference.

077 Missing colon following right bracket in CASE expression

Explanation: Case-expression is incomplete.

User Action: Insert colon following close bracket.

078 Name to be mapped is undeclared or not mappable: <name>

Explanation: Name shown is undeclared or does not lie within the
scope of a data- or data-bind-declaration of the same name.

User Action: Declare name or
appropriate manner.

correct declaration in an

079 Missing comma or right bracket in structure actual parameter list

Explanation: A comma must separate each access-actual parameter
in a list and the list must be ended with a close bracket.

User Action: Insert missing comma(s) or close bracket.

080 Illegal characters in quoted string parameter of
<lexical-function-name>

Explanation: The only valid ASCII characters for a quoted string
are: blanks, tabs, paired single quotes, and any printing
character except an apostrophe.

User Action: Remove illegal characters, or use %STRING for all
characters with %CHAR inserted before illegal ones.

E-Il

ERROR MESSAGES

081 Quoted string not terminated before end of line

Explanation: A quoted-string character sequence extends over a
line.

User Action: Using %STRING and open parenthesis, quote first
character sequence and before end-of-line conclude with a comma;
do the same with subsequent sequences and then conclude the last
line with a close parenthesis.

082 Missing comma or right parenthesis following a PLIT,
PRESET item

INITIAL or

Explanation: Each item in the list must be separated by a comma
and the list must be ended with close parenthesis.

User Action: Insert missing comma(s) or close parenthesis.

083 Actual parameter list for macro <macro-name> not terminated
before end of program

Explanation: The actual-parameter list in the call for the macro
named must be ended by a close parenthesis or close bracket
(right square or right angle) even if the list is empty.

User Action: Insert the missing close parenthesis or bracket.

084 Expression must be a link-time constant

Explanation: The compiler requires a
link-time-constant-expression and the
meet the criteria.

expression used does not

User Action: Evaluate and correct the expression.

085 String literal too long for use outside a PLIT

Explanation: The numeric value of a string-literal exceeds the
word length for the dialect.

User Action: Reduce the length of the string
plit-declaration.

086 Name declared FORWARD is not defined: <name>

or use a

Explanation:
be declared
block.

A name declared in a forward-declaration must also
by an own- or global-declaration within the same

User Action: Make the proper declarations.

087 Size of initial value
«integer-value»

«integer-value» exceeds declared size

Explanation: The initial value shown is greater than the memory
space reserved for it.

User Action: Decrease the initial value and/or increase the
declared size value.

E-12

ERROR MESSAGES

088 Missing quoted string following <lexical-function-name>

Explanation: The
quoted-string.

lexical-function shown

User Action: Insert the required quoted-string.

089 Syntax error in PSECT declaration

requires

Explanation: The psect-declaration is improperly coded.

User Action: Check and correct the coding of the declaration.

090 Missing semicolon or TES following a CASE action

a

Explanation: Each case-action expression in a list must be
followed by a semicolon and the list must be concluded by TES.

User Action: Insert the missing semicolon(s) or the keyword TES.

091 No CASE-label matches the CASE-index

Explanation: Based on its evaluations of the low- to high-bound
and case-label values, the compiler has determined that for the
values of the case-index no selector element will be matched.

User Action:
the values
labels.

Evaluate the case-index and its bounds relative to
of the case-labels, or include INRANGE and OUTRANGE

092 Some values in the range given by FROM and TO have no matching
CASE-label

Explanation: The compiler cannot match all of the low- to
high-bound values with the case-label values given.

User Action: Evaluate the case-label values relative to those of
the low- to high-bound values.

093 No structure attribute for variable <name> in structure reference

Explanation: The variable name shown has been declared but the
structure-attribute is missing.

User Action: Insert the appropriate
(structure-name and allocation-actuals)
the data-segment named.

094 Routine specified as MAIN is not defined

structure-attribute
for the declaration of

Explanation: The routine-name specified in the MAIN switch also
must be defined by a routine- or global-routine-declaration in
the same module.

User Action: Define
declaration.

the routine

E-13

with the appropriate

ERROR MESSAGES

095 %REF built-in function must be used only as a routine actual
parameter

Explanation: Builtin function has been used improperly.

User Action: Correct the use of the function.

096 Module body contains executable expression or non-link-time
constant declaration

Explanation:
declaration
module-body.

An executable expression (such as .x) or a non-ltce
should not appear within the outer most level of the

User Action: Correct the use of expressions and declarations
within the outer most level of the module-body.

097 Length of quoted string parameter of <lexical-function> must not
exceed <integer-value>

Explanation: The quoted-string of the function shown must not
contain more characters than the value shown.

User Action: Correct the length of the parameter.

098 Cannot satisfy REGISTER declarations

Explanation: Too many registers (in linkage, globals, built-in
or predeclared functions) simultaneously active.

User Action: Redistribute explicit register usage to prevent
overlaps as regards time.

099 Simultaneously allocated
<integer-value>

two quantities to Register

Explanation: Two conflicting data segments have been allocated
at the same time for the register shown.

User Action: Correct the data segment allocations.

100 Division by zero

Explanation: An illegal arithmetic operation has been performed.

User Action: Correct the operation.

101 Name to be declared is missing

Explanation: A name has not been specified in the declaration.

User Action: Specify a name in the declaration.

102 Null structure actual parameter <name> has no default value

Explanation: A null reference has been made with an
access-actual expression for which no default value exists.

User Action: Specify a value in the access-actual expression.

E-14

ERROR MESSAGES

103 Illegal up-level reference to <name>

Explanation: Reference has been illegally made from a nested
routine-declaration to a name in a higher level block.
References are not permitted to LOCAL, REGISTER, or STACKLOCAL
storage that is declared in a routine-declaration which contains
the routine-declaration currently being compiled.

User Action: Delete and relocate the reference or the name to an
appropriate block.

104 Missing ELUDOM following module

Explanation: The end module keyword is missing.

User Action: Insert the ELUDOM keyword at the end of the module.

105 Language feature not
<feature-keyword-name>

yet implemented in <language>:

Explanation: Language feature shown is not yet supported in this
dialect.

User Action: Remove the language feature named from the program.

106 REQUIRE file nesting depth exceeds implementation limit of 9

Explanation: Require declarations or lexical functions have been
nested beyond allowable limit.

User Action: Reconfigure nesting within allowable limits.

107 Structure and allocation-unit or extension are mutually exclusive

Explanation: An allocation-unit attribute or an
extension-attribute cannot appear with a structure-attribute in
an allocation declaration.

User Action: Remove the contradictory attribute(s).

108 Allocation-unit must not follow INITIAL attribute

Explanation: The allocation-unit attribute must precede the
initial-attribute in a declaration.

User Action: Rearrange the order of the attributes.

109 Missing quoted string following REQUIRE or LIBRARY

Explanation: Quoted file-name not
library-declaration.

found in require-

User Action: Insert and/or quote file name in declaration.

E-15

or

ERROR MESSAGES

110 Open failure for REQUIRE or LIBRARY file

Explanation: The file specified in a require- or
library-declaration cannot be accessed by the compiler.

User Action: Check validity of file name or make file available
to compiler.

III Comment not terminated before end of <source-file-name>

Explanation: An imbedded comment must end with a close
parenthesis and a percent sign; and the comment must end in the
same source file in which it began.

User Action: Correct the insertion of the imbedded comment.

112 Definition of macro <macro-name> not terminated before end of
program

Explanation: A macro-declaration must be terminated by a percent
sign followed by a semicolon.

User Action: Terminate the macro-name shown.

113 Missing semicolon, right parenthesis or
subexpression of a block

END following a

Explanation: Each sUbexpression
semi-colon and the block must
parenthesis or an END.

must
be

be concluded
concluded with

User Action: Insert the appropriate terminator(s).

114 Invalid REQUIRE or LIBRARY file specification

a
by a

close

Explanation: The specified require file must be a valid name to
the compiler and the system, and the library file must be a
binary file produced by the correct compiler dialect.

User Action: Check and correct the validity of the file.

115 Expression identified by a label must be a block

Explanation: A labelled expression must be contained within a
BEGIN-END or parenthesis pair.

User Action: Enclose the expression(s) within a block.

116 Value of structure size-expression must be a
constant

compile-time

Explanation: The size-expression must meet the criteria for a
compile-time-constant expression.

User Action: Evaluate and correct the size-expression.

E-16

ERROR MESSAGES

117 Value of structure size-expression must not be negative

Explanation: A structure size-expression must not indicate a
negative value.

User Action: Evaluate and correct the size-expression value.

118 Missing left parenthesis in PLIT or INITIAL attribute

Explanation: A plit-item or an initial-attribute
enclosed in parenthesis.

User Action: Insert the missing open parenthesis.

119 ALWAYS illegal in a SELECTONE expression

must be

Explanation: The select-label ALWAYS cannot be used with a
SELECTONE, SELECTONU, or SELECTONEA expression.

User Action: Correct the select-expression.

120 Case range spanned by FROM and TO exceeds implementation limit of
512

Explanation: Range of case-expression
high-bound limit of 512.

cannot

User Action: Evaluate and correct the range values.

121 Percent sign outside macro declaration

exceed the

Explanation: An improperly quoted (%QUOTE) percent sign is
contained in a nested macro-declaration, or an extra percent sign
has been found in the source file.

User Action: Evaluate and correct the use of the percent sign
for the macro-declaration.

122 Recursive invocation of non-recursive macro <macro-name>

Explanation: Only a conditional-macro
formal-names can be used recursively.

with one

User Action: Correct the definition of the macro named.

123 Recursive invocation of structure <structure-name>

or more

Explanation: A structure cannot invoke itself directly or
indirectly.

User Action: Correct the declaration of the structure named.

E-17

ERROR MESSAGES

124 Expression nesting or size of a block exceeds implementation
limit of 300

Explanation: More expressions have been nested or a block
contains more lines than are allowed.

User Action: Decrease the number of nested expressions or the
number of lines in the block.

125 Operand preceding left bracket in structure reference is not a
variable name

Explanation: The operand preceding the access-actual-parameter
must be a variable-name.

User Action: Evaluate and correct the operand.

126 Value of PLIT replicator must not be negative

Explanation: The REP replicator
compile-time-constant-expression that
negative value.

must
does not

be a
indicate a

User Action: Evaluate and correct the replicator value.

127 RETURN not within a routine

Explanation: To properly return control to the caller, the
return-expression must be enclosed within the BEGIN-END pair of
the called routine.

User Action: Correct the placement of the return-expression
within the outer most level of the routine, or check for the
exclusion of the END keyword from the routine.

128 BIND or LITERAL name <name> used in its own definition

Explanation: The data-name-value for a bind-declaration or the
literal-value for a literal-declaration must not contain a name
already declared bind or literal.

User Action: Evaluate name shown and correct coding.

129 Missing comma or right parenthesis in actual parameter list for
<routine-or-macro-name>

Explanation:
separated by
parenthesis.

Each actual-parameter in
a comma and the list

a call list must be
must be ended by a close

User Action: Insert the missing comma(s) or close parenthesis in
the call to the routine or macro named.

E-18

ERROR MESSAGES

130 Omitted actual parameter in call to <keyword-macro-name> has no
default value

Explan~tion: In reference call to keyword-macro named, no
default value exists for the omitted actual-parameter.

User Action: Provide an appropriate value for the
actual-parameter.

omitted

131 Extra actual parameters in call to <builtin-function-name>

Explanation: The number of actual-parameters used in call to a
builtin-function must not exceed the number of formal-parameters
used in the builtin-routine.

User Action: Correct actual-parameter
builtin-function named.

usage in call to

132 Translation table entries in call to CH$TRANSTABLE must be
compile-time constants

Explanation: The translation-items do not meet the criteria for
compile-time-constant-expressions.

User Action: Evaluate and correct the translation-items in the
call.

133 Allocation unit (other than BYTE) in call to CH$TRANSTABLE

Explanation: Character-positions in a translation table are
restricted to the length of a byte.

User Action: If an allocation-unit attribute is
insert the keyword BYTE.

necessary,

134 Length of table produced by CH$TRANSTABLE «integer-value» not
an even number between 0 and 256

Explanation: The number of translation-items used in the call
must be even.

User Action: Reduce or increase the length of the table by an
even number that is closest to the number of character positions
desired.

135 Length of destination shorter than sum of source lengths in
CH$COPY

Explanation: The sum of
(snl+sn2+ ...) must not be
destination-parameter (dn).

the source-length parameters
greater than the value of the

User Action: Increase the value of the destination-parameter.

E-19

ERROR MESSAGES

136 Character-size parameter of <character-function-name> must be
equal to 8

Explanation: The character-function named has illegally
specified a character-size other than eight bits in length; only
BLISS-36 supports character sizes other then eight.

User Action: Insert a character-size value of eight.

137 Built-in routine has no value

Explanation: A machine-specific-function that cannot produce a
value has been used in a context where a value is required.

User Action: Evaluate the required use of the builtin-function
and correct the coding.

138 Missing equal sign in GLOBAL REGISTER declaration

Explanation: The global-register-declaration is incomplete.

User Action: Insert the missing equal sign
register-name.

following the

139 Illegal use of %REF built-in function as actual parameter
<integer-value> of call to <routine-name>

Explanation: The value of a %REF function is the address of a
temporary data segment which stores a copy of the value of the
actual-parameter; thus its use is often incompatible with the
storage requirements of a builtin-function.

User Action: Delete %REF and provide a call to the routine named
that will provide permanent storage for the value returned.

140 Illegal use of register name as actual parameter <number> of call
to routine <routine-name>

Explanation: An undotted register name has been used as an
actual-parameter for the routine-call shown

User Action: Provide a legal register-name.

141 Routine <routine-name> has no value

Explanation: The mechanism for returning a value is suppressed.

User Action: Remove the novalue-attribute from the
named.

142 Missing quoted string following CODECOMMENT

routine

Explanation: A quoted string is required for each comrnen't.

User Action: Enclose the affected comment(s) in quotes.

E-20

ERROR MESSAGES

143 Missing comma or colon following CODECOMMENT

Explanation: Each quoted-string in the list must be separated by
a comma and the list must be ended with a colon.

User Action: Insert the missing comma(s) and/or the colon.

144 Expression following CODECOMMENT must be a block

Explanation: The expression following the colon must be enclosed
with a parenthesis or BEGIN-END pair.

User Action: Enclose the expression appropriately.

145 Illegal OPTLEVEL value <value>

Explanation: The only valid optimization-level values are: zero
through three.

User Action:
value.

Replace the switch value shown with an appropriate

146 ENABLE declaration must be in outermost block of a routine

Explanation: The enable-declaration must reside in the outer
most level of the establisher routine.

User Action: Correct the placement of the enable-declaration.

147 More than one ENABLE declaration in a routine

Explanation: An establisher routine must not enable more than
one handler routine.

User Action: Remove all but one of the enable-declarations.

148 Handler specified by ENABLE must be a routine name

Explanation: The name specified by an enable-declaration must be
the name of a routine.

User Action: Provide an appropriate
declaration.

routine-name

149 Illegal actual parameter in ENABLE declaration

fur the

Explanation: Actual-parameters for enable-declarations are
restricted in use to names declared as own-, global-, forward-,
or local-names.

User Action: Provide an appropriately declared name for the
actual-parameter.

E-21

ERROR MESSAGES

150 Name used as ENABLE actual parameter must be VOLATILE: <name>

Explanation: A volatile-attribute must be used to warn
compiler that the declared actual-parameter is subject
unexpected change.

User Action: Provide
actual-parameter named.

a volatile-attribute for

the
to

the

151 Missing comma or right parenthesis in ENABLE actual parameter
list

Explanation: Each actual-parameter in a list must be separated
by a comma and the list must be ended with a close parenthesis.

User Action:
parenthesis.

Insert the missing cornrna{s) and/or

152 LANGUAGE switch specification excludes <language-name>

Explanation: The language-name shown is missing
language-list in a switch-declaration.

User Action: Insert the missing language-name.

153 Missing OF following REP

from

close

the

Explanation: The replicator construct for the expression is
incomplete.

User Action:
replicator.

Insert the missing keyword OF following the

154 Incorrect number of parameters in call to lexical function
<lexical-function-name>

Explanation: A lexical-function must conform to its syntactic
definition.

User Action: Evaluate
lexical-function named.

and correct parameter usage for

155 Number of parameters of ENTRY switch exceeds implementation limit
of 128

Explanation: The module-switch has been illegally coded.

User Action: Reduce the number of parameters used in the ENTRY
switch.

156 Unknown name in BUILTIN declaration: <name>

Explanation:
builtin.

Only a name predefined for BLISS can be declared as

User Action: Correct the name shown or delete it or use another
form of declaration for it.

E-22

ERROR MESSAGES

157 Conditional out of sequence: <name>

Explanation: The keyword named is improperly sequenced in the
lexical-conditional.

User Action: Evaluate and correct the order in which the
keywords are coded in the expression.

158 <%PRINT, %INFORM, %WARN, %ERROR, or %ERRORMACRO>:
<advisory-text>

Explanation: This is the form of the message number and text
that appears when one of the lexical-functions shown is used.

User Action: Example:
function'

INFO l58,%INFORM:'user text specified by

159 Conditional not terminated before end of <macro or
source-file-name>

Explanation: Lexical-conditional is not properly terminated in
the file named.

User Action: Insert the missing termination keyword %FI.

160 Missing formal parameter or equal sign in call to keyword macro
<macro-name>

Explanation: Each macro-actual-parameter in a keyword-macro-call
must be connected by an equal sign to a keyword-formal-name
previously declared in a keyword-macro.

User Action:
sign.

Insert the missing formal-name or the missing equal

161 Formal parameter <parameter-name> multiply specified in call to
keyword macro <macro-name>

Explanation: In a keyword-macro-call to the macro
multiplication of the keyword-formal-name shown
illegally specified.

named the
has been

User Action: Evaluate and correct the coding of the call.

162 Missing %THEN following %IF

Explanation: The coding of a lexical-conditional is incomplete.

User Action: Insert the missing required keyword %THEN.

163 Actual parameter <parameter-name>
<routine-name> is illegal

of call to routine

Explanation: An invalid actual-parameter has been used in a call
to the routine named.

User Action: Evaluate and correct the use of actual-parameter
named in the call.

E-23

ERROR MESSAGES

164 Language feature to be removed: <feature>

Explanation: Compiler reports that the use of feature named is
discontinued.

User Action: Evaluate and correct module.

165 Language feature not present in <language>: <feature>

Explanation: The compiler reports that the feature named is not
available to the dialect named.

User Action: Remove the feature from the module-switch for the
dialect named.

166 Name declared STACK is not properly defined

Explanation: The name used as a stack data-segment has not been
declared.

User Action: Correct or define name with stacklocal-declaration.

167 Name declared ENTRY is not globally defined: <name>

Explanation: In BLISS-36, name shown has been designated for
entry in global-object-module-record and has not been declared as
global.

User Action: Define name shown with global-declaration.

168 Illegal value <value> in LINKAGE declaration

Explanation: A literal value exceeds the permitted range.

User Action: Typically skips (N) value, where N is -1 to 2.

169 Fetch or store applied to field of zero size

Explanation: Attempted fetch- or assignment-expression to an
invalid data-segment.

User Action: Correct
structure-declaration.

range-attribute

170 Missing equal sign in FIELD declaration

for data- or

Explanation: An equal sign must appear between the
field-set-name and the keyword SET and between each field-name
and the left-bracket of the field-component.

User Action: Insert missing equal sign(s).

171 Missing comma on right bracket in FIELD declaration

Explanation: Comma must appear after right-bracket of each
field-definition (except the last) in list.

User Action: Insert missing comma(s}.

E-24

ERROR MESSAGES

172 Missing left bracket in FIELD declaration

Explanation: A left bracket must appear before each list of
field-components in a list of field-definitions.

User Action: Insert missing left bracket(s) .

173 Missing comma or TES in FIELD declaration

Explanation: A comma must appear between each field-component in
a list and the list must be ended with a TES.

User Action: Insert missing comma(s) or keyword TES.

174 Missing left bracket or SET in FIELD declaration

Explanation: The equal sign following the fie1d-set-name must be
followed by a SET and each equal sign following a field-name must
be followed by a left bracket.

User Action: Insert keyword SET or left bracket(s).

175 Number of field components exceeds implementation limit of 32

Explanation: The number of components in a field-definition
exceeds the limits allowed for a structure.

User Action: Decrease the number of components
separate structures.

or create

176 Field name <name> invalid in structure reference to variable
<variable-name>

Explanation: The field-name shown as an access-actua1-parameter
does not agree with the variable-name shown as a
field-declaration.

User Action: Evaluate and correct the uses of name.

177 Parameter of FIELD attribute must be a field or field-set name

Explanation: Invalid parameter has been used for
field-attribute; the name used must be identified by
field-declaration as a fie1d- or fie1d-set-name.

User Action: Replace parameter with a declared
field-set-name.

fie1d-

a
a

or

178 Number of parameters of FIELD attribute exceeds implementation
limit of 128

Explanation: Excessive number of field-names have been specified
in field-attribute.

User Action: Decrease the number of field-names or declare a
field-set for the number in excess.

E-25

ERROR MESSAGES

179 Missing equal sign in LINKAGE declaration

Explanation: An equal sign must appear between a linkage-name
and a linkage-type.

User Action: Insert the missing equal sign.

180 Invalid linkage type specified

Explanation: The linkage-type specified for the dialect is
illegal.

User Action: Evaluate and correct the linkage-type word.

181 Illegal register number <integer> in LINKAGE declaration

Explanation: The register number shown is invalid.

User Action: Evaluate and correct the register number.

182 Multiple specification of register <register-number> in LINKAGE
declaration

Explanation: The register shown has been specified more than
once in the declaration.

User Action: Evaluate and correct register specifications.

183 Invalid parameter location specified

Explanation: The parameter-location specified is illegal.

User Action: Check the legal uses of parameter-locations and
correct the specifications.

184 Missing comma or right parenthesis in LINKAGE declaration

Explanation: Each parameter-location in a list must be separated
by a comma and the list must be ended by a close parenthesis.

User Action: Insert the missing comma(s) and/or the
parenthesis.

185 Invalid linkage attribute in LINKAGE declaration

Explanation: A linkage-option has
linkage-declaration that is invalid.

been used

close

in a

User Action: Use a valid modifier in the linkage-declaration.

185 Invalid linkage modifier in LINKAGE declaration

Explanation: An illegal
linkage-option.

modifier has

User Action: Check and correct the use
modifiers for the dialect.

E-26

been

of

used as a

linkage-option

ERROR MESSAGES

186 Missing left parenthesis in LINKAGE declaration

Explanation: A parameter-location list must be preceded by an
open parenthesis.

User Action: Insert the missing open parenthesis.

187 Missing global register name in LINKAGE declaration

Explanation: A global linkage-option has been used and the
global-register-name has not been specified.

User Action: Insert the missing global-register-name.

188 No match in linkage <name> for EXTERNAL REGISTER variable <name>

Explanation: The register named in the global
must be the same as the register named in
external-register-declaration.

linkage-option
the associated

User Action: Use the same register name in both the routine and
its linkage-declaration.

189 Global register <name> specified by linkage <linkage-name> not
declared at call

Explanation: The register named in the global linkage-option has
not been declared in a call to the routine.

User Action: Declare the register-name within
routine via an external-register-declaration.

the calling

190 WORD or Radix-50 item number <integer> allocated at odd byte
boundary

Explanation: Data structure is improperly allocated.

User Action~ Correct data allocation to place WORD or RAD50 11
value shown at a word boundary.

191 Multiple GLOBAL declaration of name: <name>

Explanation: The global name shown has been declared more than
once in the same module.

User Action: Delete
global-declaration.

all the extra appearances

192 Multiple declaration of name in assembly source: <name>

of the

Explanation: The name shown has been declared more than once in
a module hat was compiled with the assembleable-listing option.

User Action: If the intent is to run the listing through an
assembler, delete all extra appearances of the declared name~ or,
use the switch-item UNAMES in a switches-declaration to obtain
unique names.

E-27

ERROR MESSAGES

193 <declaration-name> declaration not available when
OBJECT(ABSOLUTE) in effect

Explanation: This message is reserved for BLISS-16
expansion.

future

User Action: No action is required.

194 Library source module must contain only declarations

Explanation: Executable expressions must not appear in a library
source file.

User Action: Remove all but declaration coding from the library
source file.

195 LIBRARY file has invalid format

Explanation: The internal formatting of the file is incorrect.

User Action: The specified file is probably not
library file; change the file-spec and recompile.
persists submit an SPR.

a precompiled
If the problem

196 LIBRARY file must be regenerated using current compiler release

Explanation: A library source file must be precompiled again
using the latest version of the compiler.

User Action: Use the latest version of
regenerate the library file.

the

197 LIBRARY file must be generated using <language>

compiler to

Explanation: The library file must be precompiled by the
compiler associated with the dialect named.

User Action: Generate the library file with
associated with the dialect named.

198 LIBRARY file contains internal consistency error

the compiler

Explanation: A library file has been referenced that has been
precompiled with errors.

User Action: Recompile the library source file with a !LIBRARY
qualifier, and if the problem persists submit an SPR.

199 Warnings issued during LIBRARY precompilation: <number>

Explanation: The number shown is the number of warnings issued
during the precompilation of the file.

User Action: Evaluate and correct all warnings and recompile.

E-28

ERROR MESSAGES

200 Illegal declaration type in library source module

Explanation: Only certain types of declarations may be used in a
library source file.

User Action: Remove the invalid declaration(s) from the library
source file and regenerate the file.

201 Illegal occurrence of bound name <name> in library source module

Explanation: Bound names cannot be inserted in library source
file.

User Action: Remove the declaration for the name shown from the
file and regenerate the file.

202 Number of parameters of ARGTYPE linkage attribute modifier
exceeds implementation limit of 128

Explanation: Excessive number of parameters used with builtin
linkage-function ARGTYPE.

User Action: Reduce the parameters to an acceptable number.

203 <name> linkage modifier not available with this linkage type

Explanation: The linkage-option named cannot be used with the
linkage-type specified.

User Action: Evaluate and use an appropriate linkage-option.

204 Length of SYSLOCAL specification not in range 1 to 15

Explanation: This message reflects a future enhancement.

User Action: No action· is required.

205 BUILTIN declaration of <name> invalid in this context

Explanation: Each name used in a builtin-declaration must be
predefined (but not predeclared); however, if a register-name or
linkage-function is used it must also be contained in a
routine-declaration.

User Action: Evaluate and correct the use of the name shown.

206 BUILTIN operation needs a register declared as NOTUSED

Explanation: A register required by a builtin-function is
unavailable for use due to a NOTUSED linkage modifier.

User Action: Delete or change the modifier in the associated
linkage-declaration to allow the register to be used.

E-29

ERROR MESSAGES

207 NOTUSED linkage modifier of caller is not a subset of that of
called routine

Explanation: The linkage-type and linkage-option of the caller
routine is incompatible with that of the called routine.

User Action: Evaluate and correct the linkage-declarations.

208 Called routine does not preserve register declared NOTUSED by
caller

Explanation: To preserve all the necessary registers, all of the
locally usable registers of the called routine must be declared
as locally usable registers in the caller routine.

User Action: Evaluate and correct the linkage-declarations.

209 Illegal character or field too large in VERSION

Explanation: The quoted-string in the VERSION switch must
conform to the TOPS-IO/20 version-number format, which is:
oooa(oooooo)-o; where "0" is an octal digit and "a" is an
alphabetic.

User Action: Correct the string in regard to the version-number
format.

210 Stack pointers in different registers

Explanation: The number of the stack pointer register is
assigned by default and depends on the dialect used; however, the
default number of the register can be altered by a change in the
declared linkage-type (such as FlO) while neglecting to specify
the LINKAGE_REGS option.

User Action: Specify the desired stack pointer register number
by using a LINKAGE REGS modifier for the altered linkage-type.

211 Use of uninitialized data-segment <name>

Explanation: An attempt has been made to use the data-segment
named without first initializing it.

User Action:
declaration,
from it.

Insert an initial-attribute in the data-segment
or assign a value to the segment before fetching

212 Null expression appears in value-required context

Explanation: A null expression has been used where a value is
required.

User Action: Evaluate and provide a value for the expression.

E-30

ERROR MESSAGES

213 Expression(s) eliminated following RETURN, LEAVE or EXITLOOP

Explanation: These expressions end the
routine-body (return), a block (leave),
(exitloop)i therefore, they must be the last
before the affected block is ENDed, if
expressions will not be compiled.

evaluation of a
or an innermost loop
expressions inserted

not all subsequent

User Action: Evaluate and correct the insertion of the return­
or exit-expression.

214 Language feature not transportable

Explanation: The feature specified for the dialect(s) defined by
the language-switch is not transportable.

User Action: Evaluate the feature and take appropriate action.

215 Language feature not transportable: <name>

Explanation: The feature specified by the name shown is not
transportable to the dialect(s) defined by the language switch.

User Action: Evaluate the feature named and take appropriate
action.

216 Language feature not transportable:

Explanation: The feature specified by the keyword shown is not
transportable to the dialect(s) defined by the language switch.

User Action: Evaluate the feature shown and take appropriate
action.

217 GLOBAL or EXTERNAL name not unique in 6 characters: <name>

Explanation: In BLISS-16 and BLISS-36, at least six characters
in a global- or external-name must be unique.

User Action: Evaluate and correct the global- or external-name.

218 Implicit declaration of BUILTIN <linkage-name> to be withdrawn

Explanation: The compiler implicitly declares the function named
as builtin when a FORTRAN linkage-routine is being compiled.

User Action: Add an explicit builtin-declaration within the
proper scope.

219 Empty compound expression is illegal

Explanation:
declarations,
legal.

A compound-expression block does not contain any
but it must contain at least one expression to be

User Action: Insert an expression in the block or delete the
entire block form.

E-31

ERROR MESSAGES

220 PRESET items have overlapping initialization

Explanation: A preset-value must not occupy more storage than is
allocated for the da~a segment, and the field-names described in
the preset-items must not overlap.

User Action: Evaluate
preset-attribute.

and correct the

221 Missing left square-bracket in PRESET attribute

coding of the

Explanation: Each preset-item in a preset-attribute must be
preceded by an open bracket.

User Action:
preset-item.

Insert the missing open bracket

222 Source line too long. Truncated to 132 characters.

Explanation: A line in the source
implementation limit of 132 characters.

file

User Action: Decrease the size of the source line.

223 Name used in
<routine-name>

routine-call not declared

before the

exceeds the

as ROUTINE:

Explanation: The routine-designator used in a routine-call must
yield a value declared as a routine-name in a
routine-declaration.

User Action: Assure that the name used in the routine-call is
declared in a routine-declaration.

224 INTERRUPT general routine call is invalid

Explanation: A linkage-name defined by an INTERRUPT linkage-type
must not be used with this dialect in a general-routine-call.

User Action: With this dialect, use an ordinary-routine-call to
invoke the interrupt routine.

225 Invalid linkage attribute specified <attribute-name> is assumed

Explanation: A linkage-attribute must be either a predeclared
linkage-name or one specified in a linkage-declaration.

User Action: Evaluate and correct the use of the linkage-name in
the linkage-attribute.

226 Value of a linkage name <name> is outside permitted range

Explanation: The value of the linkage-name shown exceeds the
compatible and transportable range of the dialect.

User Action: Provide a linkage-name that is within the
compatible and transportable range of the dialect.

E-32

ERROR MESSAGES

227 Effective position and size outside of permitted range

Explanation: The values of the field-reference parameters have
exceeded the structure-allocation specified for the data-segment.

User Action: Evaluate and correct the value of the offset and
field size parameters.

228 Builtin machop <name> has no value

Explanation: The instruction named did not produce a value when
executed by the machine-specific-function MACHOP.

User Action: Select a machine instruction that will produce a
value when executed.

229 Parameter <parameter-name> of builtin <name> has value outside
the range

Explanation: The parameter named for the builtin-function named
indicates a value that exceeds the specified range.

User Action: Decrease the value of the parameter named to
conform with the specifications of the function named.

230 Parameter <parameter-name> of builtin <name> must be a link-time
constant expression

Explanation: The parameter named for the builtin-function named
is an invalid expression.

User Action: Replace the parameter named with an expression that
meets the criteria for a link-time-constant.

231 Invalid linkage attribute specified CLEARS TACK is added

Explanation: The CLEARSTACK linkage-option is illegal with this
dialect.

User Action: Delete
linkage-declaration.

the

232 OTS linkage specified twice

CLEARS TACK modifier from the

Explanation: The ots-option of the ENVIRONMENT switch specifies
the use of a standard OTS file and linkage; therefore the switch
must not appear in the same module with an OTS switch and an
OTS LINKAGE switch which specifies the use of a nonstandard file
and-linkage.

User Action: Evaluate and correct the coding for OTS.

233 OTS linkage <name> not declared before first routine declaration

Explanation: The linkage-name specified by the OTS LINKAGE
switch must be predeclared or appear in a linkage-declaration
that precedes the first routine-declaration in the module.

User Action: Define
linkage-declaration
in the module.

the
that

linkage-name shown in a
precedes the first routine-declaration

E-33

ERROR MESSAGES

234 OTS linkage <name> may not use global registers or
parameters by register

pass

Explanation: The linkage-name
switch must not specify
parameter-locations.

specified
register

by the OTS LINKAGE
or global-register

User Action: Evaluate and correct the use of the
parameter-locations in the linkage-declaration named.

235 OTS linkage <name> not defined before it's used

Explanation: The linkage-name shown has not been declared prior
to its use in an OTS LINKAGE switch.

User Action: Declare
linkage-declaration.

the linkage-name shown with a

236 First PSECT declaration appears after a
allocates storage

declaration that

Explanation: In BLISS-36, the first psect-declaration in a
module must appear before the first declaration that causes
storage to be allocated or object code to be generated.

User Action: Reinsert the first psect-declaration before the
first data- or routine-declaration (external and forward types
excepted) and/or the first plit-expression in the module.

237 Exponent for floating or double floating literal out of range

Explanation: Exponent value is too large for floating literal.

User Action: Evaluate and correct the value of the exponent.

239 String exceeding implementation limits «number> characters) was
truncated

Explanation: The string-function (such as %EXACTSTRING) exceeds
the implementation limit of 1000 characters for the length of a
sequence.

User Action: Decrease the size of the string.

240 <reserved-word> declaration is illegal in STRUCTURE declaration

Explanation: The declaration defined by the reserved-word shown
(such as OWN) is illegal in a structure-declaration.

User Action: Remove the illegal declaration.

242 Output formal parameter <name> in routine declaration was not
described in linkage

Explanation: An output-parameter-location has not been specified
in the corresponding linkage-declaration for the
output-formal-parameter shown.

User Action: Specify the output-parameter-location for the
output-formal-parameter named in the routine-declaration.

E-34

ERROR MESSAGES

243 output actual parameter was not described in linkage

Explanation: An output-parameter-Iocation has not been specified
in the corresponding linkage-declaration for an
output-actual-parameter specified in the caller routine.

User Action: Specify an output-parameter-Iocation for the
output-actual-parameter specified in the caller routine.

244 Name declared UNDECLARE is not defined:<name>

Explanation: An undeclare-declaration has been used with a name
that has not been declared.

User Action: Declare the name shown.

246 FORWARD declaration of <name> cannot be satisfied by BIND
declaration

Explanation: A name declared as FORWARD must be defined as a
ROUTINE, OWN, or GLOBAL name.

User Action: Evaluate and correct the use of the specified name
on the FORWARD declaration.

247 Character size parameter of <name> must be
compile-time constant in the range I to 36

equal to a

Explanation: The character-size value of the named character
function is either outside of the permissible range or not a
compile-time constant.

User Action: Provide a
permissible range.

compile-time constant within the

248 <number> is an illegal character size for a global byte pointer.
A local byte pointer will be generated

Explanation: A program with extended addressing was compiled
having a CH$PTR function size value that is invalid for creating
a global byte pointer.

User Action:
not, change
pointer.

Determine if a local byte pointer is acceptable; if
the size value to reflect a valid global byte

249 EXTENDED addressing is not supported under TOPS-IO

Explanation: The compiler has reported that it cannot support
extended addressing under TOPS-IO.

User Action: Remove the extended addressing feature from the
program.

E-35

ERROR MESSAGES

250 Reference to uninitialized LOCAL, STACKLOCAL, or REGISTER symbol
<name>

Explanation: The routine contains a reference to the value of
the variable named prior to its first assignment. This message
can also occur if a reference and an assignment to the same
variable occurs in different branches of an IF, CASE, or SELECT
statement contained within a loop.

User Action: Intitialize the symbol prior to its first use.

251 Symbol <name> is declared <class> in an outer block

Explanation: A symbol name declared in an inner block is
inaccessible because it is also declared in an outer block.

User Action: Ensure that all references to the name in the inner
block refer to the symbol declared there and not to the one
declared in the outer block.

252 Test expression is always <true/false>

Explanation: During the optimization of an IF, WHILE, or UNTIL
structure a test expression has been reduced to a constant with
the possible elimination of code.

User Action: Evaluate the test expression for proper operation.

253 Action <number> <never/always> true. <elimination-text>

Explanation: One or more of the actions statements in a SELECT
or SELECTONE construct cannot be compiled and consequently
certain actions have been eliminated.

User Action: Evaluate
operation.

the

E.l BLISS COMPILER FATAL ERRORS

select statements for proper

The following fatal error messages indicate serious problems with the
environment and/or compiler. When such a condition is detected,
compilation terminates immediately.

INTERNAL COMPILER ERROR

The compiler has failed an internal consistency check. This
message may be followed by an error number. BLISS-32 then issues
a traceback printout. BLISS-36 is unable to issue a traceback.
Please submit an SPR and include a copy of the program that
generated this message.

INSUFFICIENT DYNAMIC MEMORY AVAILABLE

On the VAX, this error may indicate a bug in the compiler. On
the DECsystem-lO and -20, the userls program may be too large to
compile.

E-36

ERROR MESSAGES

I/O ERROR ON INPUT FILE

An error occurred while accessing an input file. This may be
preceded by other error messages which provide more specific
information about the error.

I/O ERROR ON OBJECT FILE

An error occurred while accessing the output object file. This
may be preceded by other error messages which provide more
specific information about the error.

I/O ERROR ON LISTING FILE

An error occurred while accessing the output listing file. This
may be preceded by other error messages which provide more
specific information about the error.

I/O ERROR ON LIBRARY FILE

An error occurred while accessing a BLISS precompiled library
file. This may be preceded by other error messages which provide
more specific information about the error.

LIBRARY PRE-COMPILATION EXCEEDS COMPILER LIMIT

A pre-compiled BLISS library cannot be larger than approximately
2048 (10/20) disk blocks; the library file will be deleted. VAX
libraries have no restrictions.

MACRO OR STRUCTURE DECLARATION WITHIN STRUCTURE BODY

This is a permanent implementation restriction in the BLISS
language.

REQUIRE DECLARATION WITHIN MACRO BODY

This is a permanent implementation restriction in the BLISS
language.

FATAL ERROR IN COMMAND LINE

This message appears on VAX-VMS only, for BLISS-32 or BLISS-16.
The user1s command line was improperly formed. A previous error
message provided additional information to describe what was
wrong.

I/O ERROR DURING COMMAND LINE SCANNING

This message appears on TOPS-IO or TOPS-20 when a severe error is
encountered in parsing the command line.

NESTED EXPRESSION TOO DEEP. SIMPLIFY AND RECOMPILE

The source program contains more than 64 levels of nested blocks,
each containing declarations.

UNRECOVERABLE SOURCE ERRORS. CORRECT AND RECOMPILE

This message appears on VAX-VMS only, for BLISS-32 or BLISS-16.
Errors previously encountered by the compiler have confused it to
the point at which it cannot continue the compilation.

E-37

APPENDIX F

SAMPLE OUTPUT LISTING

The following pages contain the complete output listing for the module
TESTFACT. Chapter 3 examples use excerpts from this listing.

F-l

TESTFACT

0001
0002 0

WARN#048
Syntax error

0003 1

MODULE TESTFACT (MAIN
BEGIN
1 Ll:0002

in module head

OWN
A,
B;

ROUTINE IFACT (N)
BEGIN
LOCAL

RESULT;
RESULT = 1;

MAINPROG)

0004 1
0005 1
0006 1
0007 1
0008 1
0009 2
0010 2
0011 2
0012 2
0013 2
0014 2

INCR I FROM 2 TO .N DO
RESULT = .REULT*.I;

WARN#OOO 1 Ll:0014
Undeclared name:

0015 2
REULT
.RESULT
END; 0016 1

A:
B:

ACO=
ACl=
AC2=
AC3=
AC4=
AC5=
AC6=
AC7=
ACI0=
ACll=
AC12=
AC13=
AC14=
FP=
AC16=

TITLE TESTFACT
TWOS EG

.REQUEST SYS:B362LB.REL

RELOC
BLOCK
BLOCK

EXTERN

0
1
2
3
4
5
6
7
10
11
12
13
14
15
16

o
1
1

REULT

3-Jun-1983 18:24:36
2-May-1983 15:27:31

Figure F-l: Sample Output Listing

TOPS-20 Bliss-36 3A(200) Page
PS:(DIRECTORY)MYPROG.B36.6 (1)

000000'
000000'
000001'

TESTFACT 3-Jun-1983 18:24:36 TOPS-20 Bliss-36 3A(200) Page 2
2-May-1983 15:27:31 PS:(DIRECTORY>MYPROG.B36.6 (1)

SP= 17

RELOC 400000 400000'
IFACT: MOVEI ACl,l RESULT,l 400000' 201 01 0 00 000001 0012

MOVEI AC2,1 1,1 400001' 201 02 0 00 000001 0013
JRST L.2 L.2 400002' 254 00 0 00 400005'

L.l: MOVE ACl,REULT RESULT,REULT 400003' 200 01 0 00 000000* 0014
IMUL ACl,AC2 RESULT,I 400004' 220 01 0 00 000002

L.2: ADDI AC2,1 1,1 400005' 271 02 0 00 000001 0013
CAMG AC2,-1(SP) I,N 400006' 317 02 0 17 777777
JRST L.l L.l 400007' 254 00 0 00 400003'
POPJ SP, SP, 400010' 263 17 0 00 000000 0008

Routine Size: 9 words

0017 1 rn
0018 1 ROUTINE RFACT (N) = §:
0019 1 IF .N GTR 1
0020 1 THEN "'a

tot
0021 1 .N * RFACT (.N - 1) tzl
0022 1 ELSE
0023 1 1; 0

c::::
Iij I-i
I "'a

tv RFACT: PUSH SP,AC16 SP,AC16 400011' 261 17 0 00 000016 0018 c::::
MOVE AC16,-2(SP) AC16,N 400012' 200 16 0 17 777776 0019 I-i
CAIG AC16,1 AC16,1 400013' 307 16 0 00 000001 tot JRST L.3 L.3 400014' 254 00 0 00 400024' ~
MOVE ACl,AC16 ACl,AC16 400015' 200 01 0 00 000016 0021 rn
SUBI ACl,l ACl,l 400016' 275 01 0 00 000001 I-i
PUSH SP,ACI SP,ACI 400017' 261 17 0 00 000001 ~

Z PUSHJ SP,RFACT SP,RFACT 400020' 260 17 0 00 400011' G'l IMUL ACl,AC16 ACl,AC16 400021' 220 01 0 00 000016
ADJSP SP,-l SP, -1 400022' 105 17 0 00 777777
JRST L.4 L.4 400023' 254 00 0 00 400025' 0019

L. 3: MOVEI ACl,l ACl,l 400024' 201 01 0 00 000001
L.4: POP SP,AC16 SP,AC16 400025' 262 17 0 00 000016 0018

POPJ SP, SP, 400026' 263 17 0 00 000000

Routine Size: 14 words

0024 1
0025 1 ROUTINE MAINPROG : NOVALUE
0026 2 BEGIN
0027 2 A = IFACT (5) ;
0028 2 B = RFACT (5) ;
0029 1 END;

Figure F-l (Cont.): Sample Output Listing

t-:rj
I
~

TESTFACT

MAINPROG:
PUSH SP,C.l
PUSHJ SP,IFACT
MOVEM ACl,A
PUSH SP, C.l
PUSHJ SP,RFACT
MOVEM ACl,B
ADJSP SP,-2
POPJ SP,

C.l : EXP 5

; Ro ut ine Size: 9 words

0030 1
0031 1 END
0032 0 ELUDOM

RELOC 2
.STACK. :BLOCK 4000

RELOC 400040
.MAIN. : TDZA AC 1 ,ACI

MOVEI ACl,l
JSYS 147
MOVE AC2,C.2
PUSH AC2,SP
PUSH AC2,ACll
PUSH AC2,AC7
PUSH AC2,ACO
PUSH AC 2, AC 1
MOVE SP,AC2
SETZB FP,EFPNT.
PUSHJ SP,MAINPROG
ADJSP SP,-5

L.5: JSYS 170
JRST L.5

C.2: XWD -4000,.STACK.-l

Routine Size: 16 words

END .MAIN.

Low segment length:
High segment length:

Information: 0

2050 words
48 words

3-Jun-1983 18: 24: 36 TOPS-20 B1iss-36 3A(200)
2-May-1983 15:27:31 PS:<DIRECTORY)MYPROG.B36.6

SP, [5] 400027' 261 17 0 00 400037'
SP,IFACT 400030' 260 17 0 00 400000'
AC1,A 400031' 202 01 0 00 000000'
SP, [5] 400032' 261 17 0 00 400037'
SP,RFACT 400033' 260 17 0 00 400011'
AC1,B 400034' 202 01 0 00 000001'
SP,-2 400035' 105 17 0 00 777776
SP, 400036' 263 17 o 00 000000
5 400037' 000000 000005

000002'
000002'

400040'
AC1,ACl 400040' 634 01 0 00 000001
ACl,l 400041' 201 01 0 00 000001
147 400042' 104 00 0 00 000147
AC2, [-4000" .STACK.-l] 400043' 200 02 0 00 400057'
AC2, SP 400044' 261 02 0 00 000017
AC2,ACll 400045' 261 02 0 00 000011
AC2,AC7 400046' 261 02 0 00 000007
AC2,ACO 400047' 261 02 0 00 000000
AC2,AC1 400050' 261 02 0 00 000001
SP,AC2 400051' 200 17 0 00 000002
FP,EFPNT. 400052' 403 15 0 00 000000*
SP,MAINPROG 400053' 26C 17 0 00 400027'
SP,-5 400054' 105 17 0 00 777773
170 400055' 104 00 0 00 000170
L.5 400056' 254 00 o 00 400055'
-4000,.STACK.-l 400057' 774000 000001'

Figure F-l (Cont.): Sample Output Listing

Page 3
(1)

0027

0028

0026
0025

Ul

~
"tI
t'4
t:EJ

0
0

0000 t-3
"tI
c::
t-3

t'4
H
Ul
t-3
H
Z
(j)

TESTFACT

Warnings: 2
Errors: 0

3-Jun-1983 18:24:36
2-May-1983 15:27:31

TOPS-20 Bliss-36 3A(200) Page
PS:(DIRECTORY)MYPROG.B36.6 (1)

Size: 48 code + 2050 data words
Run Time: 00:00.8
Elapsed Time: 00:03.7
Lines/CPU Min: 2382
Lexemes/CPU-Min: 9528
Memory Used: 3 pages
Compilation Complete

Figure F-l (Cont.): Sample Output Listing

4

APPENDIX G

MIXING BLISS-36 MODULES AND BLISS-IO MODULES

The need may arise for a programmer to have both BLISS-36 and BLISS-IO
modules in a single program: for example, for an incremental
conversion of a BLISS-IO program to BLISS-36. (Refer to CVTlO in
Chapter 9.) Another example would be for writing a BLISS-36 program
that uses a package written in BLISS-IO or an assembly language
package that was designed for use by BLISS-IO modules.

Both BLISS-36 and BLISS-IO can conveniently generate code that uses
either the BLISSIO linkage (stack-pointer=O, frame-pointer=2,
value-register=3) or the BLISS36C linkage {stack-pointer=15,
frame-pointer=13, value-register=l}.

To generate code that uses BLISSIO linkage:

• In BLISS-36 modules, use the module switches LINKAGE (BLISSlO)
and ENVIRONMENT (BLISSlO_OTS).

• In BLISS-IO modules, the default is to generate code that uses
BLISSIO linkage conventions.

To generate code that uses BLISS36C linkage:

• In BLISS-36 modules, the default. linkage convention is
BLISS36C.

• In BLISS-IO modules, use the /Z switch in the BLISS-IO command
line, or use the following module switches:

SREG = IS, FREQ = 13, VREG I, DREGS = 7, RESERVE(O,14}

Code generated by BLISS-IO uses utility routines to save and restore
registers. These are generated as part of a BLISS-IO module that
contains the STACK or PROLOG module switch or is compiled with the /p
command-line switch.

G-l

APPENDIX H

USER-GENERATED OTS FILES

The BLISS-36 object-time system (OTS) contains routines that implement
various character handling functions and the condition handling
mechanism. OTS object files use either BLISS-IO or BLISS-36C linkage
conventions. The user determines which convention is to be used by
setting either the BLISSIO OTS or BLISS36C OTS (default) environment
switch.

The BLISS-36 dialect of the BLISS language permits a programmer to
define a linkage convention that is incompatible with either the
BLISS-IO or BLISS-36C linkage. Incompatible means that a routine
using one linkage could not call a routine that uses the other
linkage. This would be the case if calling and called routines used
different registers as stack pointers. A programmer may be forced to
use such a linkage when interfacing to a set of utility routines
written in assembly language or in BLISS-IO with non-default linkage
registers.

The compiler generates in the object file a request to the linker for
a user-generated OTS file and code calls to it using a user specified
linkage when OTS and OTS_LINKAGE switches appear in the module header.

To generate an OTS file, create a file (e.g., LINKAGE.MAC) having the
following format:

DEFINE TYPE, <. • >

where the ellipsis represents one or more of the macros discussed
later. Then, starting at monitor command level, type the following:

TOPS-20

@MACRO
*USROTS=LINKAGE,BLSOTS
*A C

TOPS-IO

.R MACRO
*U8ROTS=LINKAGE,BLSOTS
*AC

The OTS source file (BLSOTS.MAC) is assumed to be somewhere in the
user's search path. If it is not, an appropriate device should be
defined and specified.

If no linkage file is included, the OTS is assembled with the
BLISS-36C linkage.

The first line of TYPE should specify either PUSHJ or FlO, which
correspond to the BLISS-36 linkage types of the same names. These
must be the first item in TYPE. If neither is specified, PUSHJ is
assumed. LINKAGEREGS, PRESERVE, and NOPRESERVE declarations may then
appear in any order. Each should be put on a separate line.

H-l

USER-GENERATED OTS FILES

The LINKAGEREGS declaration may take from zero to four arguments
enclosed in angle brackets « ». The first argument represents the
register number to be used for the stack pointer (default is 0). The
second argument represents the register number for the frame pointer
(default is 2). Using a negative number or the default value
indicates that a preserved register is to be used as a frame pointer
if one is needed and no frame list is to be kept. The third argument
represents the register number for the returned value (default is 3).
The fourth argument represents the register number to be used for the
applied pointer (default is 14). This argument has meaning only if
the linkage type is FlO; it is ignored if the linkage type is PUSHJ.

PRESERVE identifies registers whose contents should be saved by any
routine that uses them. Any register that was previously listed in a
NOPRESERVE declaration or that was or will be specified in a
LINKAGEREGS declaration is ignored. If no PRESERVE declaration is
included, the default is:

PRESERVE <0,11,12,13,14,15> (if linkage type is PUSHJ)

or

PRESERVE <> (if linkage type is FlO)

NOPRESERVE identifies "temporary" registers; that is, they may be used
freely, but may be modified by making a call. Any register previously
listed in a PRESERVE declaration or that was or will be specified in a
LINKAGEREGS declaration is ignored. If no NOPRESERVE declaration is
included, the default is:

NOPRESERVE <1,2,3,4,5,6,7,8,9,10> (if linkage type is PUSHJ)

or

NOPRESERVE <1,2,3,4,5,6,7,8,9,10,11,12,13> (if linkage type is
FlO)

All register numbers are specified in decimal radix.

The user may also include the declaration SET%KL. This specifies that
the OTS is to be run on a KL-10 processor (for example, a
DECSYSTEM-20). If SET%KL is not specified, the generated code is for
a KA-IO processor and may be run on any DECsystem-10 or DECSYSTEM-20.

The TOPS20 macro may be used to indicate that the code is destined for
a DECSYSTEM-20. This will have a side-effect of doing a SET%KL.

Macros are available for three of the four
BLISS-36. They may be used instead of
PRESERVE, and NOPRESERVE. The macros are:

predefined linkages for
PUSHJ, FlO, LINKAGEREGS,

BLS36C
BLSSIO
FRTFUNC

corresponding to BLISS36C
corresponding to BLISSIO
corresponding to FORTRAN FUNC

A linkage corresponding to FORTRAN SUB may not at this time be defined
because of the absence of preserved registers. An OTS with linkage
FRTFUNC is safely callable from a BLISS routine with linkage
FORTRAN SUB.

The declaration SET%PSECT generates a PSECTED OTS as opposed to an OTS
segmented by default. A PSECTED OTS is required for programs running
with extended addressing.

H-2

USER-GENERATED OTS FILES

The default PSECT names are: OWN, $GLOBAL$, $PLIT$, and $CODE$;
however, you can change these names by redefining the following
macros:

PSECTOWN
PSECTGLOBAL
PSECTPLIT
PSECTCODE

(defaults to .PSECT OWN)
(defaults to .PSECT $GLOBAL$)
(defaults to .PSECT $PLIT$)
(defaults to .PSECT $CODE$)

For example, the OWN and $CODE$ PSECT can be personalized to MYOWN
and MYCODE, respectively, as follows:

DEFINE TYPE,
<

PUSHJ
TOPS20
SET%PSECT
LINKAGEREGS<l5,l3,l>
PRESERVE<O,6,7,8,9,lO,ll,l2,14>
NOPRESERVE<2,3,4,5>

>
DEFINE PSECTOWN

<
.PSECT MYOWN

>
DEFINE PSECTCODE

<
.PSECT MYCODE

>

For additional information, refer to "BLISS-36 Linkage Declarations"
in Chapter 13 of the BLISS Language Guide.

H-3

Abstraction mechanisms, 7-9
Add double operands, 5-3
Add float operands, 5-4
Add float-G operands, 5-4
Address calculations, 7-13
Address-relational operators,

7-15
Alignment-attribute, 7-12
Allocation of scalar data, 7-10
Allocation-unit attribute, 7-12,

7-18
Ampersand, 4-4
Arithmetic shift, 5-5
%ASCII, 7-5
ASSEMBLY, 1-16, 2-15
Asterisk, 4-4
At sign (@), 1-22

BCREF, 9-4
command line format, 9-4
command semantics, 9-5
command switches, 9-5

BINARY, 1-16, 2-15
Binding of names, 8-6
BLISS-IO language features, 9-7
BLISS-IO translations, 9-7

of BIND declarations, 9-8
of CASE expressions, 9-9
of macros, 9-9
of normal declarations, 9-8
of REQUIRE declarations, 9-8
of ROUTINE declarations, 9-9
of SELECT expressions, 9-9
of SWITCHES declarations, 9-8

Bliss-command-line, 1-3, 2-3
Bliss-compilation, 1-3
BLISSIO, G-l
BLISSIO OTS, G-l
%BLISS16, 7-5
%BLISS32, 7-5
%BLISS36, 7-5
%BPADDR, 7-4
%BPUNIT, 7-4
%BPVAL, 7-4, 7-12, 7-23
Breakpoint, 4-5
Byte

build a byte pointer, 5-15
copy, 5-6
fetch, 5-16
increment a byte pointer, 5-11
store, 5-15

%C, 7-5
CH$ALLOCATION, 7-21
CH$PTR, 7-22
Character sequence functions,

7-17
Character sequences (strings),

7-16
/CHECK, 1-10, 2-9

INDEX

Check switch, 1-10, 2-8
/CODE, 1-9, 2-8
CODE, 8-7
Code generation, 8-7
Coding errors

computed routine calls, 6-4
conflicting names, 6-6
embedded routines, 6-7
in complex tests, 6-4
missing dots, 6-3
missing expression, 6-3
missing or disappearing code,

6-5
nested routines, 6-6
parentheses, 6-4
semicolon, 6-3
signed/unsigned fields, 6-4
unsigned indexed-loop, 6-7
use of complex macros, 6-5
useless value expressions, 6-3
valued/nonvalued routines, 6-3

Coding examples
PSINT program, 10-1
TRANS program, 10-10

Command
LINK, 4-2
NSAVE, 4-1
SAVE, 4-1
SIX12, 4-4

Command syntax
TOPS-IO summary, A-3
TOPS-20 summary, A-I

Command-line
indirect files in, 1-22
switch, 1-3
TOPS-IO switches, 2-6
TOPS-20 switches, 1-5

Command-line semantics, 1-3, 2-3
Command-line syntax, 1-3
COMMENTARY, 1-16, 2-15
Compare double operands, 5-5
Compare float operands, 5-5
Compare float-G operands, 5-6
Compilation

concatenation of files, 1-2
conditional, 7-5
multifile, 1-2
statistics, 3-2
summary, 3-2 to 3-3, 3-22
TOPS-IO operating procedures,

2-1
TOPS-20 operating procedures,

1-1
Compile-time constant expressions,

7-3
Compiler

organization and processing,
8-1

output, 3-1
overview, 8-1

Index-l

INDEX

Compiler (Cont.)
phases, 8-1

CODE, 8-7
DELAY, 8-6
FINAL, 8-7
FLOW, 8-2
LEXSYN, 8-1
OUTPUT, 8-8
TNBIND, 8-6

Compiling a BLISS program, 2-1
Complexity, language, 7-3
Concatenation of files, 1-2, 1-22
Conditional compilation, 7-5
Control expressions, 7-15
Conversion program (CVTIO), 9-6
Convert double to float, 5-6
Convert double to integer, 5-7
Convert float to double, 5-7
Convert float to float-G, 5-7
Convert float-G to floating, 5-8
Convert float-G to integer, 5-8
Convert floating to integer, 5-8
Convert integer to double, 5-9
Convert integer to float, 5-9
Convert integer to float-G, 5-9
Cross-reference listing

symbol types (Table), 3-16
/CROSS REFERENCE, 1-18
CVTIO,-9-6

Data segments
changing contents of, 8-3

DCB BLOCK structure, 7-25
DDT, 4-3, 4-5
/DEBUG, 1-9, 2-8, 2-21, 4-3
Debugging, 4-3

example, 4-3
SIX12 debugger, 4-3
use of BINARY switch, 3-8

Defaults
extension, 2-4
file type, 1-5
object listing, 3-8
Switches, 1-20
switches, 2-18

DELAY, 8-6
Divide double operands, 5-10
Divide float operands, 5-10
Divide f1oat-G operands, 5-10
Dots, missing, 6-3

Environment switches, 1-18, 2-17
Equivalencing, 7-15
/ERRLIM, 2-8
Error messages, E-1

fa rm 0 f, 3 - 23
in compilation summary, 3-2
on the terminal, 3-3
pointer, 3-24

/ERROR-LIMIT, 1-9
Errors

detection during LEXSYN phase,
8-2

discussion of, 6-2

/ERRS, I-II, 2-10
Examples

debug, 4-3
EXPAND, 3-11
LIBRARY, 3-11
output listing, 3-11

object part, 3-8
source part, 3-5

REQUIRE, 3-11
TRACE, 3-11

EXEC command, 1-22
Executing a program, I-I, 2-1
/EXIT, 1-9
EXPAND, 1-15, 2-13

examples, 3-11
Expressions

tree representations, 8-2
/EXTENDED, 1-19
Extended addressing

differences, 6-13
examples, 6-13

/EXTENDED:SECTION-INDEPENDENT,
1-19

Extension
TOPS-10 defaults, 2-4

Extension attribute, 7-12

Factorial routines, 3-10
FIELD, 1-10
Field selectors, 7-16, 7-30
Figures

Error Messages in Source
Listing, 3-25

Output Listing Example Showing
Library /Require File, 3-11

Output Listing with
Cross-Reference, 3-21

File specifications, 2-3
File type

TOPS-20 defaults, 1-5
File-spec separation, 1-2
FINAL, 8-7
Find first bit, 5-11
FLOW, 8-2
Flow analysis, 8-2
/FORMAT, 1-15
Format

error messages, 3-23
listing header, 3-4
source listing preface string,

3-6
/FORMAT switch options, 1-14
Formatting rules, summary, B-1
Functions

machine-specific, 5-1

General switches, 1-8, 2-7
Global switches, 1-2
/GO, 4-1

Hash mark, 4-4
/HEADER, 1-15, 2-13
Header format, 3-4
Heuristic phase of compiler, 8-6

Index-2

INDEX

Implementation limits, D-l
Indirect files, 1-22
INITIAL, 1-10
Initial-attribute, 7-20
Initialization, 7-20
Input-spec, 1-3, 2-3
Input/output support facility,

9-1
Isolation, 7-2

/KAIO, 1-19, 2-17
/KIIO, 1-19, 2-17
/KLIO, 1-19, 2-17
/KSIO, 1-19, 2-17

Language switch, 7-6
Lexical analysis, 8-1
Lexical error detection, 3-5
Lexical function

%BLISS, 7-5
%SWITCHES, 1-20

lexical function
%SWITCHES, 2-18

LEXSYN, 8-1
Libraries, 9-1

generation of, 9-1
precompiled, 9-10

MONSYM, 9-13
TENDEF, 9-11
UUOSYM, 9-13

usage, 6-1
/LIBRARY, 1-7, 1-15, 2-6
LIBRARY, 2-13

example listing, 3-11
vs. REQUIRE, 6-1

Library
usage differences, 6-1

Library switches, 2-6
LINK command, 4-2
Linkage, G-l
Linking, 4-1

extended addressing, 4-2
mixed modules, G-l
TOPS-10/TOPS-20 differences,

4-3
/LIST, 1-7, 2-13
Listing header, 3-4
Listing switches, 1-14, 2-12
Literal, 7-3

numeric, 7-4
predeclared, 7-4
string, 7-4
user-defined, 7-4
value definition, 7-4

Logical shift, 5-13

Machine specific functions, 7-2
treatment during FLOW analysis,

8-3
Machine-specific functions

ASH, 5-5
byte manipulation, 5-11

increment a byte pointer,
5-11

Machine-specific functions
(Cont.)

compilation, 5-1
conventions, 5-1
INCP, 5-11
logical

arithmetic shift, 5-5
machine code insertion, 5-1
optimization, 5-1

machine-specific functions
ADDD, 5-3
ADDF, 5-4
ADDG, 5-4
arithmetic, 5-3

add double operands, 5-3
add float operands, 5-4
add float-G operands, 5-4
divide double operands, 5-10
divide float operands, 5-10
divide float-G operands, 5-10
mUltiply double operands,

5-14
multiply float operands, 5-14
multiply float-G operands,

5-14
subtract double operands,

5-16
subtract float operands, 5-16
subtract float-G operands,

5-17
arithmetic comparison, 5-3

compare double operands, 5-5
compare float operands, 5-5
compare float-G operands, 5-6

arithmetic conversion, 5-3
convert double to float, 5-6
convert double to integer,

5-7
convert float to double, 5-7
convert float to f1oat-G, 5-7
convert f1oat-G to floating,

5-8
convert floating to integer,

5-8
convert integer to float, 5-9
convert integer to float-G,

5-9
arithmetic functions

convert f1oat-G to integer,
5-8

convert integer to double,
5-9

byte manipulation
build a byte pointer, 5-15
copy a byte, 5-6
fetch a byte, 5-16
store a byte, 5-15

CMPD, 5-5
CMPF, 5-5
CMPG, 5-6
COPY, 5-6
CVTDF, 5-6
CVTDI, 5-7
CVTFD, 5-7

Index-3

INDEX

machine-specific functions
(Cont.)

CVTFG, 5-7
CVTFI, 5-8
CVTGF, 5-8
CVTGI, 5-8
CVTID, 5-9
CVTIF, 5-9
CVTIG, 5-9
DIVD, 5-10
DIVF, 5-10
DIVG, 5-10
FIRSTONE, 5-11
JSYS, 5-11
logical, 5-3

find first bit, 5-11
logical shift, 5-13
rotate a value, 5-15

LSH, 5-13
machine code insertion

emit on instruction, 5-13
MACHOP, 5-13
MACHSKIP, 5-13
MULD, 5-14
MULF, 5-14
MULG, 5-14
POINT, 5-15
REPLACE, 5-15
ROT, 5-15
SCAN, 5-16
SUBD, 5-16
SUBF, 5-16
SUBG, 5-17
system interface, 5-3

invoke TOPS-lO system service,
5-17

invoke TOPS-20 system service,
5-11

table of, 5-2
UUO, 5-17

MACRO expansion, 3-11
MACRO tracing, 3-11
Macros, 7-2, 7-5

advanced use, 6-7
enumeration types, 6-9
using machine dependencies, 6-8

Mark points, 8-5
/MASTER CROSS REFERENCE, 1-18
/MAXCOR-; 4-3 -
Mixed module linkage, G-l
Modularization, 7-3
Module, 7-2

mixed module linkage, G-l
switches, 7-6, G-l

PROLOG, G-1
STACK, G-1

Module template, C-l
MODULE.BLI, C-l
MONSYl-1 library, 9-13
Multifile compilation, 1-2
MULTIPLE, 1-18, 2-17
Multiply double operands, 5-14
Multiply float operands, 5-14
Multiply float-G operands, 5-14

Name binding, 8-6
Name, defined value, 7-15
/NOLOCAL, 4-3
Nontransportable attributes, 7-12
NSAVE command, 4-1
Number-of-lines, 1-14, 2-13
Numeric literals, 7-4

/OBJECT, 1-7
OBJECT, 2-15
Object listing

default, 3-8
default switch settings, 3-8
fields, 3-8

Object part of output, 3-7
Object-file, 4-2
Offset addressing, 7-19
Operating procedures

debugging, 4-3
linking, 4-1
running, 4-3

Optimization
levels, 1-12
missing code, 6-5
of code stream, 8-7
optimize-level, 2-11
swi tch, 1-12
switches, 8-1

Optimization switches, 1-12, 2-10
/OPTIMIZE, 1-13

effect of, 8-6
effect of /OPTLEVEL value, 8-7
effect of /SAFE switch, 8-4

OPTIMIZE, 1-10
Optimize-value, 2-11
Option file, 2-20
Options

/FORMAT switch, 1-14
/LIST switch, 2-13

/OPTLEVEL, 1-13, 2-12
effect of, 8-7

OTS, H-1
OTS LINKAGE, H-1
OUTPUT, 8-8
Output

file production, 8-8
specifications, 2-5
terminal, 3-2

Output listing
complete listing, F-l
default source listing, 3-11
examples, 3-11

object part, 3-8
source part, 3-5

fields, 3-7
listing header format, 3-4
object part, 3-7
preface, 3-5
preface format (Table), 3-6
segments, 3-3
source part, 3-5
source part options, 3-10
with macro expansions, 3-11,

3-14

Index-4

INDEX

Output listing (Cont.)
with macro tracing, 3-11
with REQUIRE and LIBRARY info,

3-11, 3-13
Output switches, 1-6

Packed data initalization, 7-23
/PAGSIZ:lines, 1-15, 2-13
Parameterization, 7-1, 7-24
Parentheses, 6-4
PLIT, 7-17
Pointer in error message, 3-24
Predeclared literals, 7-4
Preface string format, 3-6
Programming considerations, 6-1

centralized common declarations,
6-1

compilation costs, 6-1
~~ficiency of library files,

6-1
symbol tables, 6-1

Programming tools, 9-1
PROLOG module switch, G-l

Question mark in indirect files,
1-22

/QUICK, 1-13, 2-12
Quoted strings

used as character strings, 7-17
used as numeric values, 7-16

REDECLARE, 1-10
Reference switches, 1-17
References switches, 2-15
Relational operators, 7-15
REQUIRE, 1-15, 2-13

example listing, 3-11
vs. LIBRARY, 6-1

Require
usage differences, 6-1

REQUIRE declaration
files invoked by, 6-2

REQUIRE files, 7-2, 7-8
search rules, 7-9

Reserved names, 7-8
Rotate a value, 5-15
Routines, 7-9
Running a program, 4-3

/SAFE, 1-13, 2-12
effect of, 8-4

/SAVE, 4-3
SAVE command, 4-1
Saving a program, 1-1, 2-1
Scalar PLIT items, 7-18
Segments of output listing, 3-3
Semicolon

used as expression terminator,
6-3

used as mark point, 8-5
Sign extension rules

consistent use of, 6-4
/EXTENDED:SECTION-INDEPENDENT,
Simplicity, 7-3

SIX12
commands, 4-4

&ABREAK, 4-5
&BREAK, 4-5
&CALLS, 4-4
&DABREAK, 4-5
&DBREAK, 4-5
&DDT, 4-5
&GO, 4-5
&SIXRET, 4-5

debugger, 4-3
radix, 4-4

SOURCE, 1-16, 2-14
Source

code errors corrected, 3-10
part of output listing, 3-5

Special features
TOPS-10

indirect files, 2-20
option file, 2-20

TOPS-20
EXEC command, 1-22
indirect files, 1-22

STACK module switch, G-l
/STATISTICS, 1-11, 2-10
String literal in PLITs, 7-18
String literals, 7-4
Strings (character sequences),

7-16
Structures, 7-27
Subtract double operands, 5-16
Subtract float operands, 5-16
Subtract float-G operands, 5-17
Summaries

compilation, 3-22
formatting rules, B-1
machine-specific functions, 5-2
switch effects, 8-8
Switch vs. module switch names,

2-19
switch vs. module switch names,

1-21
TOPS-10 command syntax, A-3
TOPS-20 command syntax, A-I

Switch
command-line, 2-6
LANGUAGE, 7-6
module, 7-6
types of, 2-6

Switches
check

/CHECK, 1-10, 2-9
FIELD, 1-10, 2-9
INITIAL, 1-10, 2-9
OPTIMIZE, 1-10, 2-9
REDECLARE, 1-10, 2-9

command-line, 1-3, 1-5
/DEBUG, 4-3
defaults, 1-20, 2-18
environment

/EXTENDED, 1-19

Index-5

Switches
environment (Cont.)

/KAI0, 1-19, 2-18
/KII0, 1-19, 2-18
/KLI0, 1-19, 2-18
/KSI0, 1-19, 2-18
/ TO PS 1 ° , 1-1 9 , 2 -18
/TOPS20, 1-19, 2-18

/ERRS, 3-2
for output listing, 3-7
/FORMAT, 1-22
general

/CODE, 1-9, 2-8
/DEBUG, 1-9, 2-8
/ERRLIM, 2-8
/ERROR-LIMIT, 1-9
/EXIT, 1-9
/VARIANT, 1-9, 2-8

global settings, 1-2
/GO, 4-1
/LIBRARY, 2-6
/LISTING, 1-22
listing

ASSEMBLY, 1-16, 2-15
BINARY, 1-16, 2-15
COMMENTARY, 1-16, 2-15
EXPAND, 1-15, 2-13
/FORMAT, 1-15
/HEADER, 1-15, 2-13
/LIBRARY, 1-15
LIBRARY, 2-13
/LIST, 2-13
OBJECT, 2-15
/PAGSIZ:lines, 1-15, 2-13
REQUIRE, 1-15, 2-13
SOURCE, 1-16, 2-14
SYMBOLIC, 1-16, 2-15
TRACE, 1-15, 2-14
/UNAMES, 1-15, 2-13

/MAXCOR, 4-3
module

ENVIRONMENT, G-l
LINKAGE, G-l
PROLOG, G-l
STACK, G-l

module-head
ENVIRONMENT, 1-20

/NOASSEMBLY, 3-8
/NOCOMMENTARY, 3-8
/NOLOCAL, 4-3
optimize

/OPTIMIZE, 1-13
/OPTLEVEL, 1-13, 2-12
/QUICK, 1-13, 2-12
/SAFE, 1-13, 2-12
/ZIP, 1-13, 2-12

/OPTIMIZE, effect of, 8-6
/OPTLEVEL, effect of, 8-7
OTS, H-l
OTS LINKAGE, H-l
output

/LIBRARY, 1-7
/LIST, 1-7
/MASTER-CROSS-REFERENCE, 1-7

INDEX

Switches
output (Cont.)

/OBJECT, 1-7
/p, G-l
positive and negative, 1-22,

2-20
reference

/CROSS REFERENCE, 1-18
/MASTER CROSS REFERENCE, 1-18
MULTIPLE, 1-18, 2-17

/SAFE, effect of, 8-4
/STATISTICS, 2-20 to 2-21, 3-2
terminal

/ERRS, 1-11, 2-10
/STATISTICS, 1-11, 2-10

/TEST, 4-3
TOPS-10 defaults, A-5
TOPS-20 defaults, A-2
type of, 1-3
/UNAMES, 6-6
vs. module switch names, 1-21,

2-19
/ZIP, effect of, 8-7

SWITCHES declaration, 6-2, 8-1
%SWITCHES lexical function, 2-18

testing during compilation,
1-20

Symbol table
entries for declarations, 8-2

SYMBOLIC, 1-16, 2-15
Symbols

content, 6-6
greater than 15 characters, 6-6
length, 6-6
same name in different contexts,

6-6
uniqueness, 6-6

Syntactic analysis, 8-1
System interfaces, 9-1, 9-10

implementation limits, D-l
TOPS-10 example, 9-14
TOPS-20 example, 9-17

Table
BLISS-10 language features, 9-7
cross-reference listing

symbol types, 3-16
machine-specific functions, 5-2
source listing preface string

format, 3-6
switch vs. module switch names

TOPS-10, 2-19
TOPS-20, 1-21

TENDEF library, 9-11
Terminal output, 3-2
Terminal switches, 1-11, 2-9
Terminating LINK, 4-1
/TEST, 4-3
TNBIND, 8-6
Tools, 9-1

BCREF, 9-4
CVTI0, 9-6
TUTIO, 9-10
XPORT, 9-1

Index-6

TOPS-20 special features, 1-22
/TOPSIO, 1-19, 2-17
/TOPS20, 1-19, 2-17
TRACE, 1-15, 2-14

examples, 3-11
Transportability

key to, 7-9
techniques, 7-10
tools, 7-3

Transportability guidelines, 7-1
address calculation, 7-14
allocation attribute, 7-12
attributes, 7-12
character sequences, 7-17
checking, 7-6
control expressions, 7-15
declarations, 7-13
field selectors, 7-30
isolation, 7-2
literals, 7-3
modularization, 7-3
module switches, 7-6
relational operators, 7-15
REQUIRE and LIBRARY files, 7-8
reserved names, 7-8
simplicity, 7-3
string literals, 7-17
string literals in PLITs, 7-20
strings, 7-17

INDEX

Transportable
control expressions, 7-15
declarations, 7-11
expressions, 7-14
structures, 7-14, 7-27

Transportable tools, 9-1
TUTIO, 9-10
Tutorial terminal I/O package,

9-10

/UNAMES, 1-15, 2-13
UPLIT, 7-18
%UPVAL, 7-4, 7-14, 7-19
utility programs

BCREF, 9-4
CVTIO, 9-6
TUTIO, 9-10

UUOSYM library, 9-13

Values, changing of, 8-3
/VARIANT, 1-9, 2-8

Weak-attribute, 7-12

XPORT, 9-1

/ZIP, 1-13, 2-12
effect of, 8-7

Index-7

READER'S COMMENTS

BLISS-:36
User's Guide

AA-H712D-TK

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company's discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

[] Assembly language programmer
[J Higher-level language programmer
IJ Occasional programmer (experienced)
[] User with little programming experience
IJ Student programmer
rJ Other (please specify)

Name ___ Date ____________________________ ___

Organization

Street

City ___________________________________ _ State ______ Zip Code _____ _

or Country

- - Do Not Tear - Fold Here and Tape

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03061

No Postage
Necessary

if Mai led in the
United States

-I

I

- - - Do Not Tear - Fold Here -

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	E-19
	E-20
	E-21
	E-22
	E-23
	E-24
	E-25
	E-26
	E-27
	E-28
	E-29
	E-30
	E-31
	E-32
	E-33
	E-34
	E-35
	E-36
	E-37
	E-38
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	G-01
	G-02
	H-01
	H-02
	H-03
	H-04
	index-1
	index-2
	index-3
	index-4
	index-5
	index-6
	index-7
	index-8
	replyA
	replyB

