
~643-

DEC-10-ULKMA=-A-D

DECsystem=-10

LINK=10

PROGRAMMER'S REFERENCE MANUAL

This document reflects the software as of Version 1.

LINK~10 -644-

1st Printing May 1973

COPYRIGHT (E) 1973 by Digital Equipment Corporation

The material in this document is for

informational purposes and is subject to

change without notice.

Actual distribution of the software

described in tliis specification will be

subject to terms and conditions to be

announced at some future date by Digital

Equipment Corporation.

DEC assumes no responsibility for the
use or reliability of its software on

equipment which is not supplied by DEC.

The software described in this manual is

furnished to purchaser under a license

for use on a single computer system and

can be copied (with inclusion of DEC's
copyright notice) only for use in such

system, except as may otherwise be

provided in writing by DEC.

LINK=10

Chapter 1

H
E

e

®
[]

[J

[]

[]

[
[]

[]

*
V
U

R
W
N

R

.

e

N
N

=

Chapter 2

Chapter 3

W
L
O
W
W
W
W
w
w
w
w
w
w

e

o

o

o

o

o

A
W

e

O

&

¢

&

@

s

0

&

o

B
W
W
W
w
W
w
W
w
w
w
N
n

Chapter 4

~b645-

TABLE OF CONTENTS

INTRODUCTION TO LINK-10

Input to LINK-1l0

Relocatable Code

Symbols and Libraries

Output From LINK=10

Overlay Facility

Miscellaneous Features
Initialization of LINK=10
Using LINK-=10 Automatically
Using LINK-10 Directly

AUTOMATIC USE OF LINK-10

General Command Format

COMPIL Switches

Specifying Disk Areas Other Than SYS
SAVE and SSAVE System Commands

COMPIL Examples

Summary

USING LINK-10

LINK-10 Command Strings

Changing Defaults
LINK-10 Switch Algorithms

Device Switches
File Dependent Switches
Output Switches

Immediate Action Switces
Delayed Action Switches

Switches that Create Implicit File Specifications
LINK-~10 Switches _

LINK-194 SWITCHES

/BACKSPACE

/COMMON

/CONTENTS

/CORE

/COUNTER

/CPU

/DEBUG

/DEFAULT
/DEFINE

/ENTRY

iii

LINK-10

651

651

652

653

654

655

656

656

657

661

662

667

668

669

673

676

678

679

680

681

682

683

684

684

685

691

692

697

698

700

701

703

705

707

LINK-10

LINK-10

-646-

/ERRORLEVEL

/ESTIMATE

/EXCLUDE

/EXECUTE
/FOROTS

/FORSE

/FRECOR

/GO

/HASHSIZE

/INCLUDE

/LOCALS

/1LOG
/LOGLEVEL

/MAP
/MAXCOR

/MPSORT
/MTAPE -

/NOINITIAL

/NOLOCAL

/NOSEARCH

/NOSTART
/NOSYMBOL

/NOSYSLIB

/0TS

/PATCHSIZE

/REQUIRE

/REWIND

/RUNCOR

/RUNAME

/SAVE

/SEARCH

/SEGMENT

/SET

/SEVERITY
/SKIP

/SSAVE

/START

/SYMBOL

/SYMSEG

/SYSLIB"

/SYSORT

/TEST

/UNDEFINED

/UNLOAD
/VALUE

/VERBOSITY

/XPN

/ZERO

iv

774

LINK=10

Chapter 5

Chapter 6

Appendix A

Link

Link

Link

LinkS
d
d
e

L
W

N

Appendix B

GLOSSARY

-647-

LINK-10 MESSAGES

LINK-10 EXAMPLES

LINK ITEM TYPES

Item Types 0-37 . |

Item Type 400 FORTRAN

Item Type 401 FORTRAN

Item Types 1000~1777

LOADER AND LINK-10 DIFFERENCES

LINK-10

775

803

816

828

829

829

843

849

-649- LINK-10

LINK-10

FOREWORD

Thié manual is the reference document on the DECsystem-10

Linking‘ Loadef, LINK-10. It is aimed at the

intermediaté-ievel applications programmer and contains

cémplete aocumentation on LINK-10, including descriptions of

the LINK Item Types generated by the DECsystem-10

Translators.

Chapter 1 is an introduction to LINK-10 and describes the

two methodé of initializing the Linking—Lbader. Chaptet 2

discusses fhe automatic use .of LINK~=10 through the

COMPIL-class - commands, and Chapter 3 diScuéses the direct

use of LINK-10 through the R LINK system comniand. LINK=-10

sWitcfies are described in alphabetical order in Chapter 4.

LINK~-10 messages and examples appear in Chapters 5 and _6,

respectively. The Appendices and Giossary contain

supplementary information.

A beginning user of LINK-10 can benefit from this manual by

reading Chapters 1 and 2, whereas an advanced user would be

more intérested in Chapters 3 and 4. A user who has been

eniploying the LOADER program will find Appendix B a valuable

aid in the transition to the LINK—lO program.

vii

-651-
LINK-10

LINK~10

Input to LINK-1g

CHAPTER 1

INTRODUCTION TO LINK=-10

LINK-lO, the DECsystem-10 Linking Loader, is the system utility

pfogram that merges independently—translated modules of a user's
program into a sindle'module, Its main function is to prepare and

iink this input with other modules reéuired by the user into a form

that can be executed by the operatind system.,

l.1 INPUT TO LINK-10

LINK-lO accepts’as its primary input the output from the DECsystem~10

translators in order to produce an executable version of the user's

program. This output, known as object modules, is in the form of

binary files which cohtain the user's programs and additional

information generated by the transiators. This additional information

is necessary for linking separately-translated modules, for debugging,

and for generating auxilary output such as map, log, and save files.

l.1.1 Relocatable Code

Most object modules contain relecatable code so that the module's

position in core can be determined by LINK-10. Relocatable code is a

benefit to both the user and the system. ‘The user benefits because he
is able to code al; of his modules without regard to where they will

be located in core. He need not be concerned with the iocation where

one module ends and another one begins., The system benefits because a

module wriffien in relocatable code can be placed anywhere in core
memory. When moving the relocatable object modules into the areas of

1-1

LINK-10 -652-

LINK-10

Input to LINK-1¢

core mernory at which they will be executed, LINK-10 adjusts all

relocatable addresses in the modules into actual machine locations.

In reality, LINK-10 places the modules in a user virtual address space

(refer to the Glossary) and the operating system, as it schedules the

usage of the system, transfers thé modules to and from core memorye.

However, for simplicity, the user virtual address space is referred to

as core memory in the remainder of the manual.

1.1.2 Symbols and Libraries

In addition to relocating and loading the wuser's object modules,

LINK-10 is also responsible for linking these modules with other

modules required for execution. Linkages among modules are provided

through the use of symbols. By including symbols in his programs, the

user is delaying the assignment of actual values until load time.

This.method of assigning values is advantageous because:

. It allows the user to change only the definition of the
symbol instead of changing every occurrence of the value,

and

. Only the module containing the definition of the symbdl
must be retranslated when a change occurs. Since other

modules using the symbolare bound to it at load time,

they do not have to be retranslated.

Although a user can define and use a symbol entirely within a single

module, he usually refers to additional symbols that are defined in

other modules. It is these modules that must be linked to the wuser's

program for execution. In most cases, these required modules are

contained in a library of relocatable binary programs. Modules within

a library can either be created and translated previously by the user

-653- LINK-10

LINK-10

Output from LINK-1¢

or be part of the system's repertoire of programs. For instance, most

higher-level languages have associated with them a library containing

commonly-used mathematical, input/output, and data conversion

routines. The user refers to modules in the library via symbols in

his program and these symbols are then linked to the proper 1location

in the 1library modules themselves. By 1linking these symbols and

loading the required modules, LINK-10 provides communication between

independently-translated modules and library routines.

Ih order to satisfy any undefined symbols, the required system
libraries are usually searched after'all loading specified by the user

has-been performed. However, the uSer can indicate that libraries be

searched at a particular point in the loading procedure by specifying

the appropriate switch to LINK-10 (refer to /SEARCH and /SYSLIB in

Chapter 4). When LINK-10 processes the switch, the indicated

libraries are séarched and the required modules are loaded. The user
also has the option of specifying by name which modules he wants (or

does not want) loaded from a library or of inhibifiing the search of

the library altogether.

1.2 OUTPUT FROM LINK-10

When LINK-10 has performed the tasks of loading the wuser's object

modules in core, bringing in and linking any other modules required

for execution, and adjusting all the addresses, there is in core an

executable version of the user's program. This executable version is

the primary output of LINK-10. Since the loaded program at this point

reflects the state of the user's core memory, it is usually referred

LINK-10 ~654-

LINK-10

Overlay Facility

to as his core image. Having arrived at this state, the user can

request LINK-10 to either:

. Transfer control to the core image for immediate

execution (using the EXECUTE or START system commands, or

the /DEBUG, /EXECUTE, or /TEST switches in LINK-10), or

. Output the core image to a device for storage (using the

SAVE or SSAVE system commands, or the /SAVE or /SSAVE

switches in LINK-10) in order to avoid the loading

procedure in the future.

If the complete, loaded program is saved on a device in core image

form, it can be brought into core and executed at a later time (using

the GET and RUN system commands). The loading process does not have

to be repeated since the results of all of LINK-10's actions are

contained in the core image. However, if the user wishes to revise

the modules that made wup his core image, he must once again use

LINK-10.

While the primary output of LINK-10 is the executable version of the

user's program, the user can request auxilary output from LINK-10 in

the form of map, log, save, symbol, and expanded core image files (XPN

files). This additional output is not automatically generated by

LINK-10 and the user must include the appropriate switches to obtain

this output (refer to Chapter 4 for a description of the switches).

This output is for the user's convenience when debugging his program.

1.3 OVERLAY FACILITY

LINK-10 will have an overlay facility to be used when the total core

required by a program is more than the core available to the user.

The user then organizes his program so that only some parts of the

_655- LINK-10

LINK-10

Miscellaneous Features

program are required ih core at any one time and the remaining parts

are transferred in and out of core. During execution, these

t;ansferred parts are brought into core as required. The part brought

into core overlays the part currently in that area. Because these

pérts of the program reside in the same area of core at different

times, the amount of core required for the entire program is reduced.

1.4 MISCELLANEOUS FEATURES

LINK~10 has a large number of options in order that the user can gain

precise control over the loading process. The user can set various

lpadihg parameters and can control the loading of symbols and modules.

By -éetting sWitches jin his input command strings to LINK-10, he can

speéify the core size of LINK-10 modules, the start address of

modfileé, the siée of the symbol table, the messages that he will see

on his terminal or in his log file, and the severity level and

verbosity of the messages. He can control the loading of modules by

épecifying the modules that should be loaded and the files that should

be searchedfor symbol definitions. He has control over the number of

Segments to be allowed and tfie éegment into which the symbol table

will be placed.

The user has control over file specifications that LINK-10 examines to

determine device names and filenames. He can accept the LINK-10

defaults for components in a file specification or he can set his own

defaults WHich will be uséd automatically when he omits a component

ffdm his command string; He can also position devices, allocate space

and assign protections to output files, and clear directories of

DECtapes.

LINK-10 _656-

LINK-10

Initialization of LINK-1g /

Some options available to the user are interactive. In the process of

producing a core image, LINK-10 attempts to satisfy all requests for

symbols defined in other modules and allows the user to interactively

ask for a list of undefined symbols during the loading procedure. The

user then has the opportunity to define them without reloading.

1.5 INITIALIZATION OF LINK-10

LINK=10 is initialized by the user in one of two ways:

- Automatically through the use of the LOAD, EXECUTE, or
DEBUG system commands. This is the most common usage of
LINK-10.

- Directly through the use of the R LINK system command.
This is recommended for very large and relatively complex
loading procedures.

1.5.1 Using LINK-10 Automatically

LINK-10 is automatically initiated when the user issues one of the

system commands LOAD, EXECUTE, or DEBUG. These commands are known as

COMPIL~-class commands because they use the COMPIL program to control

the actions of DECsystem-10 translators and LINK-10. COMPIL's job is

to accept the command string typed by the user, interpret it, and

construct and pass new command strings to various system programs,

including the translators and LINK-10. This action taken by COMPIL is

a convenience to the user since it saves him from typing the command

strings to LINK-10. Once the command string to COMPIL is processed,

the wuser does not interactively communicate with the translators or

LINK-10. LINK~10 processes the appropriate command strings passed to

-657- . LINK-10

LINK-10

Initialization of LINK-10

it by COMPIL and supplies intelligent defaults for ahy parameters not

specified by the user. if_LINK—lO obtéihs an error condition, it

terminates the loedz and returns control to the oberating system for
further instructions. OtherWise, it ieads the program and, depending

on the COMPIL~-class cbmmand,useé; either exits or sterts the loaded

program. Refer to Chapter 2 for the descriptiOns and use of the

COMPIL-class commands .,

In general, the extremely fine control of the loading process that is

provided by manually running LINK-10 is not required for the average

user because the COMPIL program supplies reasonable defaults to

1.5.2 Using LINK-10 Directiy

Direct use of LINK-10 is useful for those who are developing large and

complex programs, loadiné from devices other than disk, manipulating

symbol tables for cdmplex debugging situations, and performing segment

manipulations.

The user runs LINK=-10 directly by using the system command R LINK.

LINK-10 responds with an asterisk which indicates that the user can

type his input as a seriee of specifications which are to be wused in

the 1loading process. LINK=-10 accepts input until the user specifies

the exit condition; at which point it finishes all of its tasks and

eXits or begins the program, as specified by the user.

This method of running LINK-10 gives the user access to its full

capability. The user does not have to accept LINK-10's default

LINK-10 - -658-

LINK-10

Initialization of LINK-1§

conditions, but can supply his own set of defaults. He can

interactively monitor the loading process by setting internal

parameters, requesting values of particular items, specifying modules

and files to be 1loaded, and controlling the format and contents of

output files. Refer to Chapter 3 for the description of the LINK=-10

command string, and Chapter 4 for the switches used when directly

running LINK-10.

~659- LINK-10

LINK=-10

Automatic Use of LINK-1¢

CHAPTER 2

AUTOMATIC USE OF LINK-10

The user causes tINK-lO to be rufi automaticaily whenever he types the

LOAD, EXECUTE, and DEBUG system commands. These commands accept a

simple command string format and are converted internally to a series

of more complex command strings that are directly processed by various

systen programs,‘including language translators and LINK-10. . The

aforementioned commands are used +to compile, load, and execute

prograns, to obtain output in the form of maps, to search files in

library search mode, and to invoke the various debugging aids. The

following paragraphs describe each of these system commands.

‘NOTE

The information in this chapter is a subset of the

‘material available on the LOAD, EXECUTE, and DEBUG

commands. The subset presented here assumes that the

source files have previously been translated, and thus

only the switches directly applicable to loading the

binary ‘£iles are listed. . Complete reference

documentation on the COMPIL-class commands, their valid

command formats, and all available switches can be

obtained from the appropriate command descriptions in

DECsystem=10 OPERATING SYSTEM COMMANDS, DEC-10-MRDC-D,

located in the DECsystem-10 SOFTWARE NOTEBOOKS and in
the DECsystem-10 USERS HANDBOOK, DEC-10-NGZB~D.

The LOAD command translates the user-specified source files into

relocatable object modules (if necessary) and loads these object

modules to form a‘coré image. This command does not cause execution

of .the rgsulting core'image. After completion of this command, the

user can either execute his program (START system command) or save the

core image (SAVE or SSAVE system command) for future execution.

LINK-10 -660-

LINK~-10

Automatic Use of LINK-1f

The: EXECUTE commmand translates the user-specified source files (if

necessary), loads the object modules into a core image, and, in

addition, begins execution of the program. The action of this command

is the same as that of the LOAD command followed by the START system

command.

The DEBUG command translates the user-specified source files (if

necessary), loads the object modules into a core image, and prepares

for debugging by additionally 1loading a system debugging program.

Usually this debugging program is loaded first, followed by the user's

program and other information required by the debugging program (e.g.,

the symbol table). However, when COBOL programs are being loaded,

COBDDT (the COBOL debugging program) is loaded after the user's

program, Upon completion of loading, control is transferred to the

debugging program, rather than the user's program, so that the wuser

can -check out his program by examining and modifying the contents of

locations. This examination and modification can occur both before

program execution begins and during execution if the user specifies

breakpoints in the programat which execution is to be'suspended.

The debugging program can be COBDDT, MANTIS, or DDT, depending on the

first source file in the command string. If the first file is a COBOL

file, COBDDT (the COBOL debugging program) is loaded. If the first

file is a FORTRAN source file, MANTIS (the FORTRAN debugging program)

is loaded. (Note that MANTIS is under the control of an assembly

copditional switch which is normally off. Therefore, the installation

must turn this assembly switch on for the loading of MANTIS.) If the

2-2

-661~ LINK-10

LINK-10

General Command Format

first file is any other file, DDT (the Dynamic Debugging Technique) is

loaded. When the first file has previously been compiled (i.e., the

file has 'afi extension of .REL, meaning relocatable binary object

module), COMPIL does not determine the type of source file from which

it came so DDT is loaded with the binary files. In this case, if the

user desires COBDDT or MANTIS, he must explicitly specify this

debugging program via the appropriate switch (refer to the /COBOL and

/MANTIS switches in DECSystém-lO OPERATING SYSTEM COMMANDS).

2.1 GENERAL COMMAND FORMAT

The LOAD, EXECUTE, and DEBUG system commands have the same general

command format. They all accept a list of file specifications.

LOAD output file spec = concatenated input file specs

EXECUTE output file spec = concatenated input file specs

DEBUG output file spec = concatenated input file specs

An input or output file specification consists of a device name, a

filename with or without a filename extension, and a directory

enclosed in square brackets. Only one output file specification can

be given on the left of each equaiS'sign, but any number of input file

specifications can occur on the right. Input file épecifications are

separated from each other by commas or plus signs. If commas are

used, ,the translator produces separate felocatable object modules for

each output file. If plus signs are used, the input files separated

by plus signs will be translated into a single relocatable object

module. Plus signs must be used when a collection of files must be

LINK-10 -662-

LINK=-10

COMPIL Switches

concatenated to produce an acceptable module as input to a translator.

The sequence of "output file spec = concatenated input file specs" can

be given repeatedly in a command string by separating each sequence

with a comma.

The output file specification and the equals sign can be omitted, in

which case the object module is Placed in the user's default directory

on the disk with a name derived from the source file and the extension

-.REL. The filename given to the output file dépends upon the form of

the user's input file specifications. If the user has only one. input

file, the output file is given the name of the input file. If the

user has more than one input file and the files are separated by

commas, the name of each output file is the name of the corrésponding

input file. If the user has plus signs separating the file

specifications, the name given to the output file is the name of the

last input file in the series of files separated by plus signs.,

2.2 COMPIL SWITCHES

Switches can be included on the LOAD, EXECUTE, and DEBUG command

strings to direct LINK-10 in its processing. These switches are used

to generate listings, to create libraries, to search user libraries,

and to obtain loader maps. Each switch is preceded by a slash and can

be either temporary or permanent. A temporary switch applies only to

the file immediately preceding it. Characters (including spaces or

commas) cannot separate the filename and the switch. A‘ permanent

switch applies to all files following it wuntil modified by a

subsequent switch. It is separated from the file it precedes by a

5pace Or a comma.

-663- LINK-10

LINK-10

COMPIL Switches

LINK-10 switches described in Chapter 3 can be passed on the

COMPIL-class command strings by preceding the switch épecification

with a 8 character instead of a / character. Following the %

character is the LINK-10 switch specification preceded and followed by

a delimiter. The delimiter can be any character; however, the user

must _be careful that the character he uses does not have a specific

meaning to the COMPIL program, For example, the @ character indicates

an indirect command file, and the semicolon causes the remainder of

the line to be treated as a comment and thus ignored. The recommended

delimiter is a single or double quote character. The beginning and

ending delimiter must be the same character. A LINK~-10 switch

specification consists of the switch name and optionally a keyword and

a value. The items in the spécifidation vare separated by colons.

(Réfer to Chapter 4 for the formats of the individual LINK-10

switches.) Note that LOADER switches (those beginning with a % but

without enclosing delimiters) are'il;egal when passed to LINK-10. As

an aid to users, a warning message is printedif the LINK-10 switch

delimiter is one that could be interpreted as a LOADER switch

Since the first function of each of these three commands is to

determine if +the source files need translating'(i.e., compiling or

assembling), there are many switches that pertain to the translating

process. The purpose of this manual is to describe the use of LINK-10

and switches pertaining to the translation of the source file are not

LINK-10

- LINK=10

-664-

COMPIL Switches

included. All switches that can be placed on the command string are

described in DECsystem=10 OPERATING SYSTEM COMMANDS.

NOTE

Since currently there are two linking-loaders on the
DECsystem=10, the user must indicate the desired loader

when using the LOAD, EXECUTE, or DEBUG command. At the
present time, the LOADER program is the default case,

and the user must include the /LINK switch to indicate

that he wishes to use the LINK-10 program. (The setting

of the LOADER program as the default is a system

parameter that can be changed by individual

installations.) In the future, LINK=10 will become the
standard default.

Table 2-1

COMPIL Switches Pertaining to Loading

/DDT

/FOROTS

/FORSE

Loads DDT regardless of the extension of the

first file in the command string. This is a

permanent switch in that it applies to all

subsequent files regardless of its position

in the command string.

Loads the file with FOROTS (the new FORTRAN

object time system) instead of FORSE. This

switch affects FORTRAN files only.

Loads the file with FORSE (the o0ld FORTRAN

object time system) instead of FOROTS. This

switch affects FORTRAN files only.

-665- LINK-10

LINK=-10 _
Table 2-1 (Cont)

COMPIL Switches Pertaining to Loading

/LIBRARY The action is identical to that of the

/SEARCH switch. The use of the /SEARCH

switch 1is recommended since it is the

complement of /NOSEARCH.

/LINK . Causes the files to be loaded by the LINK-10

p;ogfam instead of the LOADER program. If

used, this switch must be piaced before any

file specifications .(either implied or

explicit) since the COMPIL program may have

to generate load=-control switches.

/LMAP Produces a 1loader map during the loading

process (same action as /MAP) containing the

local symbols,

/LOADER | Causes the file to be loaded by the LOADER

| program instead of the LINK-10 program.

Since this is- £he current default action,

this switch is needed only if the

installation'has specified LINK-10 as the

default linking-loader. 1In a future release,

LINK~10 will become the standard default.

/MAP Produces a load map during the loading

process. The map does not contain local

symbols. When this switchis encountered, a

. loader map is requested from LINK-10. After

2=7

LINK-10

LINK-10

-666-

Table 2-1 (Cont)

COMPIL Switches Pertaining to Loading

/NOSEARCH

/SEARCH

the iibrary search of the default system

libraries, the map is written in the user's

disk area with the filename specified by the

user (e.g., /MAP:dev:file.ext[directory]) or

the default filename (e.g., the name of the

last program seen with a start address or

nnnLNK.MAP (where nnn is the wuser's Jjob

number) if there is no such program). This

switch is an exception to the permanent

switch rule in that it causes only one map to

be produced even though iF may appear as a

permanent switch.

Loads all routines of the file whether the

routines are referenced or not. Since this

is the default action, this switch is used

only to turn off 1library search mode

(/LIBRARY or /SEARCH). This switch is not

equivalent to the /NOSYSLIB switch of

LINK-10, which does not search any libraries,

including the default system libraries. The

/NOSEARCH default is to search the default

system libraries.

Loads the files in library search mode. This

mode causes a module in a special library

file to be loaded only if one or more of its

_667- LINK-10

LINK=-10

Specifying Disk Areas Other Than SYS

Table 2-1 (Cont)

COMPIL Switches Pertaining to Loading

declared entry symbols satisfies an undefined

global request. The default system libraries

are always searched regardless of the state

of this switch.

2.3 SPECIFYING DISK AREAS OTHER THAN SYS

When translating his source files, the user has the option of

selecting the disk area from which the 1language translator is

obtained. The disk areas are [1,3] for OoLD, [1l,4] for sys, {1,5] for

NEW, and the user's area for DSK and are specified by the switches

/OLD, /SYS, /NEw; and /SELF, respecti#ely. (These fdur switches are

described in DECsystem-10 OPERATING SYSTEM COMMANDS.) For example, if

the user is translating his source files with a FORTRAN compiler that

is on the OLD disk area of [1,3], he gives the following command

string:

COMPILE/OLD FILEA.F4,FILEB.F4,FILEC.F4

The FORTRAN compiler is then obtained from area [1,3].

The first disk area seen in the command string is also the area from

&hich LINK-10 is obtained. Thus, in'the command string:

LOAD /LINK /OLD FILEA.F4,FILEB.F4,FILEC.F4

not only is the FORTRAN cofipiler obtained from OLD, but also the

LINK-10 1linking=-loader, If LINK-10 is not found on the specified

area, then the SYS disk area of [1,4] is searched. However, if the

first disk area seen is the user's area (as indicated by the /SELF

switch), only the areas specified in the user's job search list, which

may include a user library (LIB), are searched. The searching does

2=9

LINK-10 -668-

LINK=10

SAVE and SSAVE System Commands

not continue onto the NEW, OLD, and SYS areas. Thus, a user who is

using a copy of a translator in his disk area but who does not have a

copy of LINK-10 in that area must use two disk area specifications.

For example,

LOAD /LINK /SYS /SELF FILEA.FOR,FILEB.FOR,FILEC.FOR

LINK~10 is obtained from the SYS disk area and the FORTRAN compiler

from the user's disk area. Since SYS will be searched for LINK-10 on

all disk specifications other than SELF, the user needs to specify two

disk areas only when he is using a translator from his area.

2.4 SAVE AND SSAVE SYSTEM COMMANDS

After loading is completed, the loaded program may be written onto an

output device so that it can be executed at some future date without

rerunning LINK-10. The SAVE and SSAVE system commands outpuf: the core

image onto the specified device as one or two files. If the SAVE

command is used, the program will be nonsharable when it is later

loaded into core, When the SSAVE command is used, the high segment

(if any) of the program will be sharable when the program is loaded.

The general command format of the two commands is the same:

SAVE dev:file.ext|[directory]core

SSAVE dev:file.ext[directory]core

where

dev: is the name of the device on which to write the saved file.

If omitted, DSK: is assumed.

file is the name of the saved file. If omitted, the job's

current name is used. This name is set by the last R, RUN, GET,

SAVE, or SSAVE system command, the last command which ran a

2-10

-669- LINK-10

LINK-10

COMPIL Examples

program (e.g., DIRECT), or the last SETNAM UUO.

.ext is the extension of the low segment file. If omitted, the
following extensions are assigned:

If the program has one segment, the extension .SAV is
assigned.,

If the program has two segments, the low segment file has
the extension .LOW, and .the high segment file has the
extension .HGH whena SAVE command is used and the extension
«.SHR when a SSAVE command is used.

{directory] is the area in which to save the file. If omitted,
the user's default directory is used.

core is the amount of core in which to save the program, If
omitted, the minimum required is assigned.

Refer to DECsystem-l0 OPERATING SYSTEM COMMANDS for complete

descriptions on the SAVE and SSAVE commands.

2.5 COMPIL Examples

In the following example, the user is translating, 1loading, and

executing a MACRO program, The /LINK switdh requests that the LINK~10

linking loader be used instead of the LOADER.

EXECUTE /L INK SIMPLE,MAC)
MACRO$ SIMPLE

LINKY LOADING
CEXECUTION] .
THIS IS A VERY SIMPLE TWOeSEGMENY MACRO PROGRAM,

EXIT

LINK-10 | -670-

LINK-10

COMPIL Examples

In the example below, the user is compiling, loading, and executing

three COBOL programs, The /MAP:PROGMP.MAP switch requests the

generation of a map file with the name PROGMP.MAP.

JEXECYTE /L INK /MAPIPRQGMP FILAF[B F.C D
COBOLt CBS@BA EEILA-CEHJ
coBoOL! CBS@AB C([FILB,CBL]
coBOLt CBS@PAC L[FILC,CBLJI

LINK} LOADING
EEXECUT]IONI

RUNNING CBS@8A
RUNNING CBS@8B

RUNNING €BS@8C

EXIT

The map file is now on the user's disk area. He can print the file

with the following command:

APRINT PRQGMP ,MAP)
YOTAL OF 3 BLOCKS IN LPT REQUEST

The following is a listing of the map file generated.

2-12

LINK-10-671-

LINK-10

COMPIL Examples

398YV003IN1Od
#RUOREARIRBLG

AHIN3bob1

8gns8d

(Mywiazn)nuuJvado)9yHiON3YBva2LVSON3s6€%1ySLMYLSIN3W93SHOTBEfySieLY£L%ud¥Y*2NO0800A803Lv3¥)£ee2'42373y67141%s0WOyd88PNT2X112X23TY)

348Y1v00"3yIN1OdAMIN3@ietVgas8
(CIvwlodad)e2t“UTv4d0)g5tMION3TgselLV8ON3pm2}LySidvi§IN3W93S-mo"g0(y2isLy£HdY®2ZNO10800A@03.1v3u2Lev2ti2949yY14tWo¥3velsa)dPPCWWID3AYpegEIERNOWWGDapt'WWGD!
(IYW1030)»o6"(V400)2003MAON3Y@22TLVSON329tivw;m«.mINIKO3SMOY«mm<:unp<kma4

0mu4tttt#tttttt##.3N0OWHLINIT043z§106H
ASSIVL4INT%LyagOn

RRERRBRRDRNG

veesesx«xuommNIU2iv307tpgzt-s1s$3u0avyoNiLNviS
A2®§Tp2HiON3Y9392AV§ON3g4V51u¥LSIN3W93smOM

OTIGZI8LV£4%H4VSZNO(28)NOISH9IA-21s%NETAR039n00Hd
30
ve

dio0y4d40JYW"108WAS@3sINIY

2-13

-672-

LINK-10

COMPIL Examples

LINK-10

ABigeie
Lv £4%wd¥"2

ND 0800 AB Q34V3HD
EGEZ'42393y DT1divs0 Wo¥s

O82843

2-14

-673- . . LINK-10

LINK=-10

Summary

2.6 SUMMARY

The LOAD, EXECUTE, and DEBUG system commands, along with the switches

described in Table 2-1, are sufficient for loading and executing most

programs. The user can 'load separately-compi;ed | programs and

debugging programs, obtain maps, search files in a 1ibrary search

mode, and execute the program. To produce a saved file of his core

image, the user can employ the system commands SAVE and SSAVE. More

complex loading procedures can be performed by directly using LINK-10,

as described in Chapter 3.

_675- LINK-10

LINK-10

Using LINK-1¢

CHAPTER 3

USING LINK-10

The user runs LINK-10 directly by issuing the system command

R LINK

LiNK-lO responds with an asterisk at which point the user types in his

command stringé. The .LINK-10 program interprets all of the input

typed by the user up to the end of the command string. A command

string is defined as a series of characters terminated by a carriage

retfirn—line feed., A carriage return~line feed is generated when the

user depresses the .RETURN key on his termihal. The RETURN key is

represented in this manual by the Symbol J. If the usér needs to

continue a command string on another line, he can place a hfphen as

the last non-blahk, non-comment character .before the carriage

return~line feed. Confiinuation lines afe considered part of the

current command string, and the current string is not considered

terminated until a carriage return-line feed is seen without a

preceding hyphen; Comments may bé édded to any line by preceding the

'commenfi with a semicolon. Trailing spaces and tabs (including those

before comments) are always ignored.

When the command string is terminated, LINK-10 processes the data in

the command string by pefforming the actions specified by the user.

This usually entails setting relevant internal conditions and stqring

information fof later use. Each command string is completely scanned

and processéd before LINK-10 accepts a new one. After scanning and

LINK-10 -676-

LINK-10

Command Strings

processing the current command string, LINK-10 returns with another

asterisk signifying its readiness to accept more input. The program

accepts command string input until the user gives the exit condition

switch (/GO) indicating that LINK-10 is to finish all loading tasks.

At this point control is either returned to the operating system or

given to the 1loaded program for execution, depending upon the

preceding command strings.

3.1 LINK-10 COMMAND STRINGS

Command strings to LINK-10 contain a series of input and/or output

file specifications and non-conflicting'switChes to direct the loading

process. The general command string format is as follows:

*output specifications=input specifications

Any number of specifications can be included in the command string by

separating each specification fiom other specifications with a comma.

Aithough the equals sign is not required, it is recommended thatr the

user include it so that he can distinguish his output specifications

from his input ones. If the user does not include an equals sign, he

must use a comma to separate the specifications. The input and output

specifications are then distinguished by the type of switch associated

with the specification, and the specifications can appear in any order

(e.g., input specifications can precede output specifications).

An input or output specification consists of a file specification and

switches appearing before and/or after the file specification. A file

specification is in the form

-677- a LINK-10

LINK-10

Command Strings

dev:file.ext[directory]

and the individual switches that can be used in the command string are

described in Chapter 4.

When items in a file specification are missing, LINK=10 has a set of

initial values to be used as defaults. On input specifications, the

default values assumed for missing items in a file specification are

as follows:

Device DSK:

Filename A blank filename
Extension «REL
Directory The user's default directory

On output specifications, the default values are as follows:

Device DSK:

Filename Name of the last program containing a start
address. If there is no program with a start
address, the name nnnLNK, where nnn is the
user's job number, is used.

Extension. Dependent on the type of output file
requested via switches. -

Log file « LOG
Map file «MAP

Saved file «SHR, .HGH, . SAV, ., LOW
Symbol file «SYM

Expanded save

file « XPN

Directory The user's default directory.

These defaults are applied just prior to initializing the device and

opening the file, and afie used only‘if the user has not given values

for items in a file Specificafiion. The initial LINK-10 defaults for

items in a file specification are used only when a value for the item

LINK-10 -678-

LINK=-10

Changing Defaults

does not appear in the command string or until the value is seen if it

is after the beginning of the string.

If a component of a file specification is given before the filename,

it remains in effect until changed bya value given subsequentiy by

the user for the same component or until the end of the command

string. For example, a user can specify a device name at the

beginning of the string and not have to repeat the device name for

each specificétion if he is using the same device for all

specifications in the command string. However, once the device name

is changed, the new name is used as the default device for the

reaminder of the command string.

As another example, the user can specify an extension and a directory

to be used by issuing a command string such as

% BIN[10,7] DSKB:FILl,DSKC:FIL2.REL[10,20],DSKA:FIL3 J

The extension .BIN and the directory [10,7] are used for any

specifications that do not include an extension or directory. The

above command string is equivalent to

*DSKB:FILl.BIN[lO,?],DSKC:FILZ.REL[IO,ZO],DSKA:FIL3.REL[10,7] P

3.2 CHANGING DEFAULTS

The /DEFAULT switch is used to change the initial values that are

assumed when the user does not include a component of a file

specification in his command string. The values specified with this

-679- LINK-10

LINK-10

Switch Algorithms

switch remain in effect for the entire load unless changed by another

/DEFAULT switch. The form of the /DEFAULT switch is as follows:

components of file specification /DEFAULT : keyword

where

components of file specification are the components which

the user wants as his default components.

keyword is either INPUT or OUTPUT to change the default

components for the input or output speciflcatlons,

respectively. If this argument is omitted, INPUT is

assumed.

For example, the following specification

DSKB: .BIN[10,20]/DEFAULT

changes the values to be used as defaults for the input specifications

to be DSKB: for the device, .BIN for the extension, and [10,20] for

the directory.

NOTE

Because the extensions for output files depend

upon . the types of file being requested, the user

cannot change the output extenSLOns. Any attempt

to do so is 'ignored.

3.3 LINK-10 SWITCH ALGORITHMS

LINK-lO allows.the user to request various loading parameters via

switches in the command string. Switches afe used to specify output

files, to set defaults, to control the loading of programs, to} set

valués, to format maps and symbol tables, to request values of

syfibdls, and to positibn devices. Some switches merely change the

status of LINK-10 by setting ‘internal values; others request immediate

LINK-10 -680-

LINK=-10

. Switch Algorithms

action to be taken.,

LINK-10 has several categories of switches with a specific algorithm

for the handling of each category. These categories are:

. Device Switches

. File Dependent Switches

. Output Switches

. Immediate Action Switches

. Delayed Action Switches

. Switches that create implicit file specifications

3.3.1 Device Switches

Switches in this category (e.g., /SKIP, /REWIND) affect the device

within an input or output specification. The switch is in effect

after the device is initialized and, depending on its position, either

before or after the file is read or written. If the switch appears

before the filename, the appropriate action is taken before the file

is processed, and if it appears after the filename, action is taken

after the file is processed. Switches in this category apply only to

the current input or output specification and do not carry over to

subsequent devices. In other words, once the requested action is

performed, it is not performed again unless another device switch is

given.

For example, the following specification may be given by the user:

/SKIP:2 MTAl:MYFILE/UNLOAD,

-681 - LINK-10

LINK=-10

Switch Algorithms

After the magnetic tape is initialized, LINK-10 skips forward over two

files (/SKIP:2), reads the file called MYFILE, and after reading the

file, rewinds and unloads the tape (/UNLOAD).

3.3.2 File Dependent Switches

Switches belonging to this cétegory (e.g.,/NOLOCAL, /SEARCH) modify

the loading or the contents of a file. These swifiches are either

temporary or permanent in naturé. A £Emporary switch applies only to

the file specificatidn immediately preceding it. An intervening comma

cannot separate the file spedification and the switch. A permanent

switch appears' before the file spedification and appiies to all file

specifications following it until modified By a subsequent switch or

until 'the end -of the current command string is reached. (Remember

that continuation lines are considered part of the :current command

string). This means that permanent file-dependent switches, unlike

device switches, continue to apply to following specifications (i.e.,

the action requested by the switch is not terminated at the comma

which separates specifications).

For example, the following specifications may be issued by the user:

»/NOLOCAL DTA3:MAIN1,MAIN2,MYLIB/SEARCH,

Two files, MAIN1 and MAIN2, are loaded in their entirety from DTA3

without their local symbols. The file MYLIB is searched and parts of

it are loaded only if required (i.e., they are required to satisfy any

undefined symbol requests); if needed, they are also loaded without

local symbols.

LINK-10 e

LINK=-10

Switch Algorithms

3.3.3 Output Switches

Switches in this category (e.g.,/MAP, /LOG, /SAVE) initialize the

output devices and create the output files. Eaéh output specification

must contain one of these switches because LINK-10 does not create

output files unless explicitly requested to do so. Each switch

represents a specific type of output file and is used with a file

specification to indicate the device and filename of the file. Only

one output switch can be used with each output specification. If the

switch is the only item appearing in the output specification, the

device name and filename are taken from the previous specification or

from the LINK-10 defaults for output.

For example, if the user desires a saved file and a map file on DSKB:

and both with the name OUTPUT, he can issue the following

specifications:

DSKB :OQUTPUT/SAVE, /MAP=

The two files will have the same filename (OUTPUT) but, by default,

the extensjons will be different (refer to Paragraph 3.1). The comma

separating the two switches is required to indicate that two output

files are desired. If the user is satisfied with accepting the

LINK-10 defaults for output specifications, he can give the following

/SAVE, /MAP=

-683- LINK-10

LINK-10

Switch Algorithms

NOTE

Although the /LOG switch is considered an output

switch, it is handled 1in a slightly different

fashion from the remaining output switches. By

assigning a device the logical name LOG before
initializing LINK-10, the user receives the 1log

file on the device assigned as LOG, even if he

does not include the /LOG switch in his command
string. The filename associated with the log file
is nnnLNK.LOG, where nnn is the user's job number.

The /LOG switch can then be used in the LINK-10

command string to change the filename of the 1log
file. For example,

.ASSIGN DSKC:LOG: .
R LINK J
*DSKC: MYLOG/LOG J)

renames the log file on DSKC: from nnnLNK.LOG to

MYLOG.LOG. If the logical device is not assigned,
then the building of the log file begins when the
/LOG switch is seen. This results in the

initialization timings not being included in the
file.

3.3.4 Immediate Action Switches

Switches in this category (e.g.. /UNDEF, /VALUE, /NOINITIAL, /NOSYM)

are processed by LINK-10 as soon as they are seen. These switches are

divided into two types:

. Those that request typeout from LINK-10.

, . Those that change the statusof the loading procedure.

Type¥out switches (e.g., /UNDEF) request information from LINK-10 and

are not dependent upon a particular specification. For this reason,

they can appear anywhere in the commahd string but are usually on a

command line by themselves because the user is interactively

requesting information to determine if he may have forgotten to

specify needed parameters. After processing the switch (i.e., at the

LINK-10 -684-

LINK-10

Switch Algorithms

end of the command string), LINK-10 returns the requested information

immediately. Once the information is returned to the user, the switch

is cleared.

Status changing switches (e.g.,/NOINITIAL, /NOSYM) are related to the

entire loading procedure and not to an individual specification. They

are placed in the command string at the point at which the user wants

the action to be performed. Once the action has been taken, it is in

effect for the entire loading process and cannot be overridden. For

example, once the user gives the /NOSYM switch to notify LINK-10 not

to generate a local symbol table, he cannot, in the same load, give a

switch to LINK=-10 to nullify this action.

3.3.5 Delayed Action Switches

Switches in this category (e.g., /MAXCOR,/HASHSIZE) are used to change

operational parameters of LINK~-10 to the specified values. When the

switch is seen, LINK-10 accepts the value but does not use it until it

is needed. For example, there is a preset value for the maximum core

LINK-10 can occupy during loading. Use of the /MAXCOR switch changes

this value immediately but LINK-10 does not examine the value until it

needs to expand its core size.

3.3.6 S8Switches that Create Implicit File Specifications

Switches in this category (e.g., /DEBUG, /SYSLIB) cause LINK=10 to

create one or more input file specifications for programs that must be

loaded along with the user's program and to set various other switches

related to the implicitly specified file. As an example,‘the /DEBUG

-685- LINK-10

LINK-10

LINK-10 Switches

" switch indicates that a debugging program is to be 1loaded and that

subsequent modules are to be loaded with local symbols, unless

otherwise specified by the user. 1If one of these switches appears

before the file specification; the program implied by the switch is

loaded before the currenfi file. .If the éwitch is after the file

specification, the program is loaded after the current file. Once the

progtam implied by the switch is loaded, the sfiitch is cleared.

374 LINK~-10 SWITCHES

Switches to LINK-10 have one of the following forms:

/switch

/switch:arg

/switch: (arg,...,arq)

/switch:value

/switch:arg:value

/switch:(arg:value,...,arg:value)

where

/switch is the name of thé desired switch. This name can be
truncated to a unique abbreviation. The first six
characters of the name are sufficient to ensure
uniqueness.

arg is a keyword or a symbol name. Keywords can be
truncated to a unique abbreviation.

value is either a decimal or octal number. An octal value
can be used with a switch that accepts decimal values
by preceding the octal value with a number sign (#).

is the separator between components in a switch
specification and must be present if more than one item
is given.

() are used to enclose multiple keywords and/or values to
a switch. They are required if more than one argument
appears with the switch.,

3-11

LINK-10 -686-

LINK=-10

LINK-lfl Switches

NOTE

For the first release of LINK-10, mdltiple
keywords cannot be specified in a single switch

specification. This means that the user must

issue a switch specification for each desired

keyword G- /CONTENTS : LOCAL /CONTENTS :

RELOCATABLE). This restriction will be removed in
a later release of LINK-10.

Each switch specification must be terminated with a space; however,

spaces cannot appear within a switch specification (i.e., between the

slash and the end of the value).

Table 3-1 briefly describes the switches that can be used on ‘the

LINK-10 command string, and Chapter 4 contains the complete

descriptions of the switches in alphabetical order.

3-12

-687- LINK-10

LINK-10

Table 3-1

LINK-10 Switches

Switch Meaning

/BACKSPACE Spaces backwards over the
’ specified number of files.

/COMMON Allocates a COMMON area.

/CONTENTS Specifies the types of symbols
: to be output in a map.

/CORE ‘Specifies LINK=-1l0's initial
low segment size.

/COUNTER Lists the relocation counters
and their wvalues.

/CPU Specifies the processor on
which the program will run.

/DATA Loads defined constant data.

/DEBUG or /D

/DEFAULT

/DEFINE

/ENTRY

/ERRORLEVEL

/ESTIMATE

/EXCLUDE

/EXECUTE or /E

This switch is not implemented

in Version 1.

Loads and specifies execution
of a debugging program.

Changes default values for
missing components in a file

specification.

Assigns values to undefined
global symbols interactively.

Lists library search symbols.

Selectively suppresses

messages to the terminal.

Allocates disk space for an
output file.

Inhibits the loading of

specified modules.

Specifies execution of the

program upon completion of

loading.

/LOCALS or /L

/LOG

/LOGLEVEL

/MAP or /M

/MAXCOR

/MPSORT

/MTAPE

/NOINITIAL

/NOLOCAL or /N

/NOSEARCH

LINK-10 -688-

LINK-10

Table 3-1 (Cont.)

LINK-10 Switches

Switch Meaning

/FOROTS Loads FOROTS, if required,
during default system library

searching. :

/FORSE Loads FORSE, if required,

during default system library

searching.

/FRECOR Specifies the amount of free
core guaranteed after each

expansion.

/GO or /G Terminates the loading
progress.

/HASHSIZE Specifies the size of the
global symbol table.

/INCLUDE Forces the loading of
specified modules from a

library.

Loads with local symbols.

Causes a log file to be

generated.

Suppresses messages to the log

file. |

Causes a map file to be

generated.

Specifies LINK-10's maximum

low segment core size.

Sorts the symbol table for

output to the map file.

Performs

functions.

magnetic tape

Clears the initial global

symbol tables.

Loads without local symbols.

Turns off user library search

mode.

-689- LINK-10

LINK-10 Table 3-1 (Cont.)
LINK~-10 Switches

Switch Meaning

/NOSTART Ignores starting addresses.

/NOSYMBOL Inhibits the generation of a
: symbol table in core.

/NOSYSLIB Prevents a search of the
default system libraries.-

/0TS Indicates the segment for the
object time system.

/PATCHSIZE Allocates patch space.

/REQUIRE Generates global requests for
the specified symbols.

/REWIND Rewinds the DECtape or
magnetic tape.

/RUNCOR Assigns the initial low
segment core size for the

program.

/RUNAME Assigns the program name.

/SAVE Causes a saved file to be

/SEARCH or /S

/SEGMENT

/SET

/SEVERITY

/SKIP

/SSAVE

/START

/SYMBOL

generated.

Turns on user 1library search

mode.

Specifies the segment in which

to load the modules.

Defines the values of a

relocation counter.

Defines the fatality level of
errors.

Spaces forward on a magnetic

tape.

Causes a sharable saved file

to be generated.

Specifies the start address of
a program,

Causes a symbol file to be

generated. '

LINK-10 -690-

LINK-10 Table 3-1 (Cont.)

LINK-10 Switches

Switch Meaning

/SYMSEG Moves the symbol table to the
specified segment.

/SYSLIB Performs a search of the
default system libraries.

/SYSORT Sorts the symbol table for
output to the symbol file.

/TEST Loads a debugging program.

/UNDEFINED or /U

/UNLOAD

/VERBOSITY

/VALUE

/XPN

/ZERO

Types undefined global symbols

on the terminal.

Rewinds and unloads the

DECtape or magnetic tape.

Specifies the amount of text

to be printed for a message.

Lists the current values of

the specified global symbols.

Creates or saves the expanded

core image file.

Clears the specified DECtape

directory.

3-16

-691- LINK-10

LINK-10

Switches

CHAPTER 4

LINK=-10 SWITCHES

/BACKSPACE

Function

The /BACKSPACE switch is used to space backwards over the

. specified number of files. This switch has an effect only on

tape devices and is ignored for non-tape devices.

Switch Format

/BACKSPACE:n

n is a decimal number representing the number of files to

backspace over. If n is omitted, n=1l is assumed.

Category of Switch

Device Switch (refer to Paragraph 3.3.1)

,MTAO:/BACK:3,

Backspace MTAO by three files.

LINK-10 -692-

LINK=-10

Switches

/COMMON

Function

The /COMMON switch is used to allocate an area of storage of the

specified size before loading any more code. An array of storage

(a COMMON area) is reserved into which data can be placéd in

order that it may be shared by several programs and routines.

Because the FORTRAN language contains a statement that reserves

space for a COMMON area, this switch is used to reserve COMMON

arrays when loading non-FORTRAN programs or to allocate a

different size area than given via the COMMON statement in a

FORTRAN program. However, if this switch is used to allocate a

larger size area of the same name as that given in the FORTRAN

program, the switch specification must be given before the

FORTRAN program is loaded.

The name of each labeled area of COMMON storage is defined as an

internal symbol whose value is the address of the first word of

the COMMON area. These symbols may be used by other prcgrams as

external symbols,

Switch Format

/COMMON: name:n

Name is the symbolic name of up to six SIXBIT characters of the

COMMON area. Blank COMMON is designated with the symbolic name

".COMM.".

-693- LINK-10

LINK=-10

Switches

n is a decimal number representing the size of the area in words.

Restrictions

Although various modules may redefine COMMON areas of the same

name, the size of a COMMON area cannot be increased during the

loading process. Therefore, the largest definition of a given -

" COMMON area must be loaded first. Any attempt to increase the

size of a COMMON area by redefinition will result in a fatal

error. This applies to both modules defining COMMON areas and

the /COMMON switch.

Category of Switch

Immediate Action Switch (refer to Paragraph 3.3.4)

Examples

/COMMON:, COMM. 31000

Allocate blank COMMON to be 1000 words.

LINK-10 ~694-

LINK-10

Switches

/CONTENTS

Function

The /CONTENTS switch gives the user control over the contents of

the map file by allowing him to specify the types of symbols to

be included in the file. Each symbol is marked as to its type by

the translator that processed the module containing the symbol.

Some symbols may be of more than one type. For example, a symbol

may be both a global symbol and a relocatable symbol. To insure

the inclusion of such a symbol in the map file, the user must

specify both the GLOBAL and the RELOCA?ABLE keywords in the

/CONTENTS switch.

BEach specification of the /CONTENTS switch is cumulative;

keywords set by the first specification are not automatically

cleared by the second specification. If the wuser desires to

‘clear a keyword set in a previous specification, he must

explicitly specify its complement.

NOTE

This switch does not produce a map file. The user
must specify the /MAP switch on an 'output
specification in order to obtain the file. Unless
the /MAP is given, the /CONTENTS switch has no
meaning and is ignored. ' : 5

Switch Format

/CONTENTS: keyword

/CONTENTS: (keyword,. . ., keyword)

-695-

LINK~10

Switches

LINK-10

Keywords are as follows:

symbolsABSOLUTE include all absolute (usually flags,

accumulators, and masks) . Complement of

NOABSOLUTE. .

ALL include all symbols. Complement of NONE.

COMMON include all COMMON _ symbols. Complement of
' NOCOMMON. :

DEFAULT lnclude the symbols accordlng to LINK-=10's default

setting, that is: COMMON, GLOBAL, ENTRY, ABSOLUTE,

RELOCATABLE, NOLOCAL, and NOZERO. This keyword is

used to reset the /CONTENTS switch to the original

default setting. - :

ENTRY include all entry name symbols. Complement of
NOENTRY. ' , ’ _

GLOBAL - include all global gymbols including COMMON and

ENTRY' symbols unless these symbols are suppressed
with - the NOCOMMON and NOENTRY keywords.
Complement of NOGLOBAL.

LOCALS ‘lnclude all local symbols. Complement of NOLOCAL.

NOABSOLUTE do not include absolute symbols (i.e., turn off
' the condition corresponding to absolute symbols).

Complementof ABSOLUTE.

NOCOMMON do not include COMMON symbols. Complement Of
COMMON. ' .

NOENTRY do not 1nclude entry name symbols. Complement of

ENTRY. . ‘

NOGLOBAL do not include global symbols including COMMON and

’ ENTRY symbols unless these symbols are requested

with the COMMON and ENTRY keywords. Complement of

GLOBAL.

NOLOCAL do not include local symbols., Complement of

LOCALS. - ’ o

NONE do not include any symbols of any kind. However,
' header information is still output in the map.

Complement of ALL. = ° :

NORELOCATABLE do not lnclude relocatable symbols. Complement of

RELOCATABLE.

LINK-10 -696-

LINK=-10

Switches

NOZERO do not include symbols from zero length programs.

Complement of ZERO.

RELOCATABLE include symbols that are relocatable (usually

addresses). Complement of NORELOCATABLE.

ZERO include symbols from zero length modules (usually

parameter files)., A zero length module is one

which defines symbols but generates no code.

Complement of NOZERO.

If the /CONTENTS switch is not specified, the default setting is

COMMON , GLOBAL, ENTRY, RELOCATABLE, ABSOLUTE, NOLOCAL, and

NOZERO. When the user specifies a keyword, the keyword is either

added to the default setting or deleted from the default setting.

For example, if the user issues the /CONTENTS:ZERO switch, the

condition for symbols in zero length programs is added to the

default setting. However, the keywords ALL, NONE, and DEFAULT

reset the default setting to their respective meanings.

Category of Switch

/CONTENT:ZERO, /CON : LOCAL,

Include in the map 1local symbols and symbols from zero
length modules, in addition to the types of symbols in
LINK-10's default setting.

-697- LINK-10

LINK=-10

Switches

/CORE

Function

The /CORE switch is used to specify the initial size of LINK-10's

low segment, Generally, this size is 1less than or equal to

MAXCOR (the maximum size of LINK-10's low segment). If the size

specified in the /CORE switch is greater than MAXCOR, the core

will be assigned. However, the next time LINK-10 needs to expand

core, the size will be reduced to MAXCOR.

Switch Format

/CORE:n

n is a decimal number that représents the initial 1low segment

'core size for LINK-10. An octal value can be givenby preceding

it with a number sign (#). N is expressed in units of 1024 words

or 512 words (a page) by following the numbex with K or P

respectively. If K or P is omitted, K (1024 words) is assumed.

Category of Switch

Immediate Action Switch (refer to Paragraph 3.3.4)

Examples

/CORE: 17K

Specify 17K words as the initial size of LINK-10's low
segment,

LINK-10 ~698-

LINK~10

Switches

/COUNTER

Function

The /COUNTER switch is used to output to the terminal the

relocation counters, their initial and current values, and for

undefined counters, the length of code depending on them. When a

relocation counter is not known, a count of the amount of core

used by the counter is kept so that 1loading can be resolved.

Code depending on the counter is stored on the disk until the

counter is defined.

Although LINK-10 is designed to handle an indefinite number of

relocation counters to provide efficient program construction,

the first release of LINK-10 only uses two relocation counters,

the low segment counter (.LOW.) and the high segment counter

(.HIGH.). These counters are listed in a map file with their

initial and final values.

Switch Format

/COUNTER

Category of Switch

Immediate Action Typeout Switch (refer to Paragraph 3.3.4)

-699-
| LINK-10

LINK=-10

Switches

Examples

/COUNTER

RELOCATION COUNTER INITIAL VALUE CURRENT VALUE

+HIGH. 400000 400010_

LINK-10
-700-

LINK-10

Switches

/CPU

Function

The /CPU switch is used to indicate the central processor on

which the program will run once it has been loaded.

Switch Format

/CPU: keyword

Keyword is either KAl0 or KI1l0. If the keyword is omitted, KAlO

is assumed. If the /CPU switch is omitted, the machine on which

the program is loaded is assumed.

category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

/CPU:KI10

Run the program on the KI1l0 processor.

4-10

=701~ | LINK-10

LINK=-10

Switches

/DEBUG

Function

The /DEBUG switch is used to load a debugging program and to

specify that execution of the loaa will begin at the normal start

address of the aebugging program instead of the user's program.

The debugging programs available are DDT, MANTIS, and COBDDT.

This switch does notlcause terminagion of the loading procedure,

the /GO switch is needed for termination. The /EXECUTE switch is

not used for execution when the /DEBUG switch is given.

The /DEBUG switch turns on the load with local symbols mode and

causes it to be in effect for the remainder of the load unless

overridden by the /NOLOCALS switch. However, since the /NOLOCALS

switch is file dependent, it is cleared at the end of the command

string in which it appears and local symbols mode is reinstated.

Note that the /LOCALS switch is also file dependent; therefore,

the use of the /LOCALS switch and the implicit use of the /LOCALS

switch in the /DEBUG switch context have different results (i.e.,

the /LOCALS switch is cleared at the end of the command string

and the loadlwith local symbols mode implied by‘the /DEBUG switch

is not).

The /DEBUG switch does not cause the 1local symbols of the

debugging program to be loaded, regardless of the state of the

/LOCALS switch.

LINK-10 -702-

LINK~10

Switches

_Switch Format

/DEBUG: keyword

Keyword is one of the following: COBDDT, COBOL, DDT, FORTRAN,

MACRO, MANTIS. When a compiler or the assembler is specified,

the debugging aid associated with that translator is used. For

example, if MACRO is specified, the loading of DDT is implied.

If the keyword is omitted, DDT is assumed. |

Category of Switch

Createsan implicit file specification (refer to Paragraph 3.3.6)

»/DEBUG:DDT DTA3:FILEA.MAC,

4-12

-703- - LINK-10

LINK-10

Switches

/DEFAULT

Function

The /DEFAULT switch is used to change LINK-10's initially-assumed

values for compoments miss;ng in a file specificatxon. A file

specificatxon is in the form dev:file. ext[directory]. The

1nitia1 defaults for input speclfications are

DSK:.REL {user's default directory)

and for output specifications are

DSK:name of main program.ext dependent on type of

output file [user's default di:edtory].

Thus, the user cannot change the extensions of output files, and

any attempt to do so is ignored.

Values specified via the /DEFAULT switch are in effect for the

entire loading process or until the user issues another /DEFAULT

switch.

Switch Format

/DEFAULT: keyword

Keyword is either INPUT or OUTPUT to specify default conditions

for input and output specificatiops, respectively. If the

keyword argument is omitted; INPUT is assumed.

Category of Switch

Immediate Action Switch (refer to Paragraph 3.3.4)

4-13

LINK-10 -704-

LINK=10

Switches

DSK:MAIN,/DEFAULT .BIN([10,7],

Load the file MAIN,REL from the user's default directory of

the disk and then change the input defaults to load .BIN

files from the [10,7] area of the disk.

-705- LINK-10

LINK=10

Switches

/DEFINE

Function

The /DEFINE switch is used interactively by the user to assign

values to undefined global symbols in order to satisfy global

requests before LINK-10 terminates the 1load with undefined

syhbols. The user can employ the /UNDEF switch to obtain a list

of the undefined symbols and then use the /DEFINE switch to

satisfy the requests for these symbols.

Switch Formats

/DEFINE:symbolsvalue

/DEPINE: (symbol:value, . . . ,Symbol:value)

Symbol is the name of the symbol to be defined. If the name

given 1is one of an alreadyfdefined symbol; the user receives an

error message.

value is the decimal number to be associated with the sym
bol. An

octal value can be given by preceding it with a number sign (#).

LINK-10 -706-

LINK~10

Switches

Category of Switch

Immediate Action Switch (refer to Paragraph 3.3.4)

Examples

*/UNDEF)

1 UNDEFINED SYMBOL

NOW 400123

*/DEFINE:NOW:897)

*/DEFINE:OCT: #1234

_707- | ~ LINK-10

LINK-10

Switches

/ENTRY

Function

The /ENTRY switch is used to type out ail library search symbols

(i.e., entry points) that have been loaded up to the time the

switch is given. These symbols are recognized by a specific

conditioh set in the first word of the symbol by the translator

that processed the module containing the symbol. The user

defines symbols as library search symbols with an ENTRY statement

in a fiACRO-lO or BLISS~10 module, with a SUBROUTINE, FUNCTION, or

ENTRY statement in a FORTRAN module, or with a SUBROUTINE

statement in a COBOL module.

This switch is useful for the future overlay facility of LINK-10.

Switch Format

/ENTRY

Category of Switch
-

Immediate'Action_Typeout Switch (refer to Paragraph 3.3.4)

Examples

* /ENTRYJ)

Library Search Symbols

SQRT. 3456

LINK-10 -708-

LINK-10

Switches

/ERRORLEVEL

Function

The /ERRORLEVEL switch is used to selectively suppress LINK-10

messagesto the user's terminal. Associated with each message is

a decimal number from 0 to 31 called the message level. Via this

switch, the user can decide that messages with a message level

less than or equal to a specific number are not to be output to

his terminal. A user would normally want to suppress informative

messages rather than error messages. The higher the message

level, the more serious the message. Refer to Chapter 5 for the

message level of each LINK-10 message.

Switch Format

/ERRORLEVEL:n

n is a decimal number from 0 to 30. Messages with a message

level less than or equal to n will not be output to the terminal.

Note that a message with a level of 31 cannot be suppressed. If

this switch, or the value of the switch, is omitted, informative

messages are suppressed.

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

/ERRORLEVEL:10

-709- LINK-10

LINK-10

Switches

/ESTIMATE

Function

The /ESTIMATE switch is uséd to reserve disk space for an output

file and must be associated with an output specification.

Because each occurkence of the switch allocates space for only

one file,. the user must issue an /ESTIMATE switch for each file

that needs space reserved.

This switch is not required for space allocation for an output

file, but its use can both help the user stay within his quota

allotment and reduce the number of (RIB) pointers associated with

the file.

Switch Format

/ESTIMATE:n

n is a decimal number representing the estimated number of blocks

of 128 words of the output file. A warning message is given if

LINK=10 fails to éllocate the requested size,

If this switch is omitted, or if an insufficient estimate is

given, space is allocated automatically as needed.

4-19

LINK-10 -710-

LINK-10

Switches

Category of Switch

Output Switch (refer to Paragraph 3.3.3)

DSKC:OUTPUT/MAP/ESTIMATE:50, /SAVE/ESTIMATE: 200,

Allocate 50 blocks for the map file and 200 blocks for the
save file.

4-20

-711- - LINK-10

LINR-10

Switches -

/EXCLUDE

Function

The /EXCLUDE switch is used to inhibit the loading of certain

modules in a file when idading the file in the current mode

(either search or nonsearch mode). This switch is useful when

the user is searching a library file and definitely knows he does

not want certan modules, even thouéh his program may reference

the nafies of these modules. For example, if a library file has

Several modules with the same library search symbols (e.g., as in

dummy routifies) and the user wants to load a module other than

the first ohe, he can use this switch to prevent the loading of

the_ modules not desired. Another use of the /EXCLUDE switch is

to satisfy global symbol definitions during library searching by

excluding the modules that would éause multiply-defined symbols.

Switch Formats

/EXCLUDE: symbol

/EXCLUDE: (symbol, . . ., Symbol)

Symbol is the name of the module.

LINK-10 | _712-

LINK-10

Switches

Category of Switch

»/SEARCH LIBFIL.REL/EXCLUDE: (MOD1,MOD2),

Search the file LIBFIL as a library but do not 1load the

modules MOD1 and MOD2 from +the file, even if they are

referenced.

-713- LINK-10

LINK=10

switches

/EXECUTE

Function

The /EXECUTE switch is used to specify that the loaded program is

.fio be staffiéd at the ndrfiél entry §oint.(1.e.; the start address)

upon completién'bf'lbadifig.f This SWitcfi doés not cause the

términatién of loadifig; the /GO switch is needed to terminate

loading.

The /EXECUTE and /DEBfiG switches cannot be ised together because

one switch spédifies execution of the useér's program (/EXECUTE)

and the other switch épecifies execution of the debugging program

(/DEBUG).

Switch Format

/ExECUTE

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)
: ¢

Examples

/EXE

4-23

LINK-10 -714-

LINK=10

Switches

/FOROTS

Function

The /FOROTS switch is used to specify the = object time system

FOROTS, instead of FORSE, for use with FORTRAN programs. FOROTS

is then loaded, if required, when LINK-10 searches the default

system libraries.

Switch Format

/FOROTS

Category of Switch

Creates an implicit file specification (refer to Paragraph 3.3.6)

»/FOROTS DSK:MAIN,SUB1,

-715- LINK-10

LINK-10

SWitches

/FORSE

Function

The /FORSE switchis used to specify the object time system

FORSE, instead of FOROTS, for use with FORTRAN programs. FORSE

is thep loaded, if required, when LINK-10 searches the default

systém libraries.

Switch Format

/FORSE

Category of Switch

Creates an impiicit file specification (refer to Parégraph 3.3.6)

Examples

+DSK:MAIN.F4/FORSE,

LINK-10 -716-

LINK~10

Switches

/FRECOR

Function

The /FRECOR switch guarantees that the specified amount of free

core will remain after LINK-10 expands specific areas in its low

segment. Since LINK-10's default amount of free core is 2K,

users do not need this switch when loading most modules.

However, when the modules being loaded are quite large (e.g.,

monitor modules), a larger amount of FRECOR will result in a

faster loading process because LINK=-1l0 will not have to move

areas around in core as often.

During the loading procedure, LINK-10 has five areas that can be

expanded beyond their initial sizes. These areas are: the user's

low segment code area (LC), the user's high segment code area

(HC), the local symbol table area (LS), the fixup area (FX), and

the global symbol table area (GS). Each area has a lower

boundary, a maximum upper boundary, and an actual upper boundary.

LINK~10 tries to maintain space between the actual upper boundary

and the maximum upper boundary at all times. However, as the

loading procedure progresses, LINK-10 may have to expand an area

to accomodate the user's input. If the sum of the amount of free

core between the actual upper boundary and the mnaximum upper

boundary for all areas minus the size required for the expansion

is less than FRECOR, core is expanded to an amount 1large enough

to maintain FRECOR. If the required size of the low segment

becomes greater than MAXCOR (the user specified limit) or CORMAX

-717- LINK-10

LINK-10

Switches

(the system limit) allows, no further expansion is attempted and

core is obtained from the free space recovered by Shfiffling

areas. When all of the free space has been obtained, some or all

of the above-mentioned areas must overflow to the disk. Note

that free core is not maintained when areas overflow to the disk.

Switch Format

/FRECOR:n

n is a decimal number representing the number of words of free

core rounded to the next 128-word multiple. If this switch, or

the value of this switch, is omitted, 2K words is assumed.

Delayed Action Switch (refer'to Paragraph 3.3.5)

Examples

/FRECOR:3K

4-27

LINK-10 -718-

LINK-10

Switches

/Go

Function

The /GO switch is used to terminate the loading process and is

the only terminatioh switch available. When LINK-10 executes the

/GO switch, it finishes loading the current specification,

searches default libraries (if this action has not been

suppressed with the /NOSYSLIB switch), produées the requested

output files, and either exits to the monitor or runs the core

image produced depending upon the switches appearing in the input

command strings. If the /DEBUG switch has been specified,

execution begins at the normal start address of the appropriate

debugging program. If the /EXECUTE or /TEST switch has been

specified, execution begins at the normal start addpess of the

user's program. If one of these switches has not been specified,

LINK~10 exits to the monitor.

Switch Format

/GO ’

Category of Switch

Immediate Action Switch (refer to Paragraph 3.3.4)

-719- LINK-10

LINK-10

Switches

/HASHSIZE

Function

The /HASHSIZE switch is used to Specify the initial size of the

giobal symbol table. LINK-10 uses the lowest prime number in its

internal list that is greater than or equal to the given value as

fhe hashsize for the symbol table. This switch can be employed
by a user who knows before loading that thé number of global

symbols used by his program is going to be quite large. By

séttinq the hashsize of the symbol table to a larger number, the

user can save pINK-lO time and space that would be used in

expanding the hash table. When the user receives the message

REHASHING GLOBAL SYMBOL TABLE on a load, it serves as an

indication that he should use the /HASHSIZE switch at the

beginning of subsequent loads of the same programs. Refer to the

LINK-10 Design Specification for the hashing technique used in

symbol tables.

Switch Format

/HASHSIZE:n

n is a decimal number representing the estimated hashsize of the

global symbol table. A recommended hashsize is a number 1/3

larger than the total number of global symbols in the load. The

default size (initially 127) is an assembly parameter.

LINK-10 -720-

LINK=-10

Switches

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

/HAS:1000

LINK-10 uses the prime number 1021.

-721- LINK-10

LINK~-10

Switches

/INCLUDE

Funtction

The /iNCLUDE Switch ié used, when IOading a file in search mode,

to force thé 1oadih§ of spééified modules in that file whetlier or

not the user's pfogrém references fihem. For example, if the user

doeé not have a giobal request for a desired module, he can use

this switch to cause that module to be loaded.

Alfihough the /INCLUDE switch is implemented in Version 1, its

primary use is for the overlay facility in order to call a

module.

Switch Format

/INCLUDE: symbol

/INCLUDE: (symbol, . . ., symbol)

Symbol is the module name of the desiréed module.

Category of Switch

File Dependent Switch (refer to Paragraph 3.3.2)

Examples

»SYS:LIB40/INCLUDE: (SIN,COS,TAN),

Search the library LiBéO, but always load the modules SIN,
C0s, and TAN. , '

LINK-10 -722-

LINK-10

Sswitches

/LOCALS

Function

The /LOCALS switch 1is used to 1load 1local symbols with the

specified programs. Local symbols are not processed by LINK-10,

but are useful to the user when debugging.

This switch does not cause local symbols to be saved as part of

the core image requested by the /SAVE or /SSAVE switch. The

/SYMSEG switch or an entry in the JOBDAT 1location .JBDDT is

required if local symbols are to remain in core.

Switch Format

/LOCALS

Category of Switch

(MYFILE,/LOCAL MYDATA,MYSUB,MYLIB,

Load local symbols with the programs MYDATA, MYSUB, and

MYLIB.

~793% LINK-10

LINK-10

Switches

/LOG

Function

The /LOG switch is used to specify an output log file into which

LINK=-10 plaées information that is useful for the user when he is

debugging his program. This file is a report of LINK-10's
progress in loading the user's program because the actions taken

bymLiNK-lo are shown. The times at which these actions took
place are also indicated.

This switch is not requiredto obtain a log file if the user

assigné a device the logical name LOG before running LINK=-10,

Then all log information will be recofded in a file on this

assigned device. The file is named nnnLNK.LOG where nnn is the

user's‘job number. In this case, the /LOG switch merely causes

the file to be renamed to the user's specifications.

If the user does not assign a device the logical name LOG prior

to running LINK-10, (he must use the /LOG switch in order to

obtain a log filé. 'However, any times ahd messages output before

the /LOG switéh;is seen in the command string will not appear in

the log file.

Switch Format

file specification/LOG

File specification is in the form dev:file.,ext[directory] to

specify the device and name associated with the log file. The

LINK-10 -/24-

LINK-10

Switches

default file specification is DSK:name of main program.LOG

[user's default directory]. The user's terminal may be specified

as the log device.

Category of Switch

Output'Switch (refer to Paragraph 3.3.3)

DSKB :MYLOG/LOG

Create a log file on DSKB: with the name MYLOG.

-725- LINK-10
LINK-10

Switches

/LOGLEVEL

Function

The /LOGLEVEL switch is used to suppress LINK-10 messages to the

user's log file. This switch permits the user to set the level

of messages that are to appear in the log file. Refer to the

/ERRORLEVEL switch and Chapter 5.

If the log file is output to the user's terminal (i.e., the 1log

device is the user's terminal), the messages 'output are

determined by the 1lower of the arguments specified in the

/ERRORLEVEL and /LOGLEVEL switches. The user would rarely set

the log device as the terminal because the /ERRORLEVEL switch

with a low number allows him to obtain all messages on the

terminal.

Switch Format

/LOGLEVEL:fi

n is a decimal number from 0 to 30; Messages with a message

levei less than or equal to n will not be output to the log file.

The user cannot suppress messages with a level of 31l. If this

switch, or the value of the switch is omitted, a message level of

0 is assumed (i.e., all messages are output to the log file).

4-35

LINK-10 -726-

LINK-10

Switches

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

/LOGLEVEL:5

Do not output any message to the log file with a message

level less than or equal to 5.

_797- LINK-10 -

LINK-10

Switches

/MAP

Function

The /MAP switch is used to specify an output map £file which

consists of the types of symbols requested by the user with the

/CONTENTS switch., The map file is useful to the user when he is

debugging his program because it lists the symbols used by his

program along with their values. Header information (e.g.,

relocation counters with their lengths and starting addresses) is

also included in the map.

Switch Format

file specification/MAP:keyword

File specification is in the form dev:file.ext [directory] and

specifies the device and name associated with the map file. The

default specification is DSK:name of main program.MAP [user's

default directory].

Keyword is one of the following:

END to produce a map file at the end of loading.

ERROR to produce a map. file of the code 1loaded if a fatal

error occurs ({i.e.,an error from which LINK-1l0 cannot

recover).

NOW to produce a map file at the time this keyword is seen.

The map contains all of the information up to and including

the last file loaded. Default libraries will not be searched

unless specified. This keyword 1is normally used during

debugging to determine how the load is progressing.

If the /MAP switch is not issued by the user, no map file will be

LINK-10 ~728-

LINK-10

Switches

generated. If the switch is given, but the keyword is omitted,

the keyword END is assumed.

Category of Switch

Output Switch. Also, /MAP:NOW is an immediate action switch.

Examples

DSKB :MYMAP/MAP

Specify a map file on DSKB: with the name MYMAP.

-7/29- LINK-10

LINK-10

Switches

/MAXCOR

Function

The /EAXCOR switch is used to spegify the maximum amount of core

LINK-~1l0 may use as its low segment while loading. LINK=-10 will

expand to this size if required and then will overflow to the

disk, rather than expanding in core, when it reaches the maximum

core size allowed. When LINK-10 must overflow to the disk, it

writes out part or all of the symbol area, the low code area,

and/of the high core area in order that loading can continue. If

the current amount of core used is greafier than the size

specified by the user, the next time LINK-10 requests more core,

the sizé will decrease to the amount specified by the user and

the remaining code will overflow to the disk. If the amount

specified by the user is less than the minimum amount required by

LINK-10, he receives a warning message indicating the amount

required. He should then respecify the switch with a larger

argument.

Switch Format

/MAXCOR:n

n is a decimal number that represents the maximum low segment

core size for LINK-~10. An octal value can be given by preceeding

it with a number sign (#). N is expressed in units of 1024 words

or 512 words (a page) by following the number witb Kor P

;espéctively. If XK or P is omitted, K (1024 words) is assumed.

LINK-10 -730-

LINK~10

Switches

?he default size is all of available user core.

is dependent upon the code already loaded.

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples
i v S G e e

/MAXCOR:30K

Allow LINK-10 to expand its low segment

overflowing to the disk.

to

The minimum size

30K before

-731- LINK-10

LINK-10

Switches

/MPSORT

Function

The /MPSORT switch is used to arrange the symbol table for output

to the map file in the order most convenient to the user,

Switch Format

/MPSORT;keywordv) o

Keyword is oneof the following:

UNSORTED to print the symbols in the order in which they are
placedin the symbol table. This keyword is the default. -

ALPHABETICAL to arrange the symbol table in alphabetical
order for each module or for each block in a

block~structured module.

NUMERICAL to arrange the symbol table in numerical order
according to the values of the symbols for each module.

NOTE -

"For the first —release' of

LINK=10, UNSORTED is the only

keyword — implemented. The

other keywords listed above

are 1ignored and a warning

message is output.

Category of Switch

Delayed A¢tion Switch_(refér to Paragraph 3.3.5)

Examples

MYMAP/MAP/MPSORT : UNSORTED

Specify a map file with the name MYMAP and print the symbols
in the order in which they appear in the symbol table.

LINK-10 -/32-

LINK-10

Switches

/MTAPE

Function

The /MTAPE switch allows the wuser to perform magnetic tape

functions such as rewind, backspace, and skip. If this switch is

given in an input specification, the action is performed

immediately. However, when the switch is part of an output

specification, the action requested is not performed until the

output device has been initialized.

Switch Format

/MTAPE: keyword

Keyword is one of the following:

MTWAT to wait for spacing and I/0 to finish,

MTREW to rewind the tape to load point.

MTEOF to write an EOF,

MTSKR to skip one record.

MTBSR to backspace one record,

MTEOT to space to the logical end-~of-tape.

MTUNL to rewind and unload the tape.

MTBLK to write 3 inches of blank tape.

MTSKF to skip one file.

MTBSF to backspace one file.

MTDEC to initialize for Digital-compatible 9-=channel

ape.

~-733- LINK-10

LINK-~10

Switches

MTIND to initialize for industry-compatible 9-channel
tape.

Category of Switch

Device Switch (refer to Paragraph 3.3.1)

Examples

MTA@: /MTAPE : MTEOT/MAP

Output the map file to MTA@: after spacing to the logical end
of tape (i.e., to the first'frge block) .

LINK-10 | 734~

LINK=10

Switches

/NOINITIAL

Function

The /NOINITIAL switch is used to clear LINK-10's initial global

symbol table. This initial global symbol table consists of the

.JBxxx symbols in JOBDAT. (Refer to DECsystem~10 Monitor Calls

for a description of JOBDAT.) This switch is normally employed

when the user is loading LINK-10 itself (in order to get the

latest copy of JOBDAT), when the user wants to load a private

copy of JOBDAT in order to use new values, or when the user is

loading a program (for the purpose of creating a core image file)

that will eventually run as an exec mode program (e.g., the

monitor, diagnostics, a bootstrap loader) . This switch must

appear before the first file specification in the command string

or else the initial LINK-10 global symbol table (JOBDAT) will be

loaded. If the /NOINITIAL switch is specified, JOBDAT will be

searched when the default system libraries are searched.

Switch Format

/NOINITIAL

If this switch is omitted, LINK-10's internal JOBDAT area symbols

are used as the initial global symbol table.

-735- LINK-10

LINK-10

Switches

Category of Switch

Immediate Action Switch (refer to Paragraph 3.3.4)

Examples:

/NOINITIAL,COMMON,COMDEV,COMMQD,TOPSlO/SEARCH/GO

Load the monitor without LINK-10's initial global symbol
table. .

/NOINITIAL, DTBOOT,EDDT/GO

Load the exec mode program without LINK-10's initial global
symbol table.

LINK-10 -736-

LINK-10

Switches

/NOLOCAL

Function

The /NOLOCAL switch is used to load the programs without their

local symbols. This is the default action.

Switch Format

/NOLOCAL

Category of Switch

File Dependent Switch (refer to Paragraph 3.3.2)

/LOCAL FIRST,SECOND,THIRD,FOURTH/NOLOCAL

Load the programs FIRST, SECOND, and THIRD with their 1local

symbole and load the program FOURTH without its local

symbols. - '

_737-
LINK-10

LINK-10

Switches

/NOSEARCH

Function-

The /NOSEARCH switch is used to turn off library search mode

(i.e., to always load the.entire indicated file or files whether

or not the files are required). The files are not searched to

detérmine if they are needed., This switch is normally used after

a /SEARCH switch has éet' libraxy search mode. This is the

default action.

Switch Format

/NOSEARCH

Category of Switch

File Dependent Switch (refer to Paragraph 3.3.2)

PARTA,/SEARCH LIBMAC,LIBCBL,LIBFOR,/NOSEARCH PARTB,PARTC

The files LIBMAC, LIBCBL, and LIBFOR are searched as
libraries. The files PARTA, PARTB, and PARTC are loaded in
their entirety. ‘

4-47

LINK-10 -738-

LINK-10

Switches

/NOSTART

Function

The /NOSTART switch indicates to LINK-10 to ignore all start

addresses in the binary input programs. The start address for

the current program is not changed.

Switch Format

/NOSTART

If this switch is omitted and more than one start address is

encountered, the last one seen is used.

Category of Switch

File Dependent Switch (refer to Paragraph 3.3.2)

Examples

MAIN1,/NOSTART MAIN2,MAIN3

Start addresses are ignored in files MAIN2 and MAIN3.

739- ' LINK-10

LINK-10

Switches

/NOSYMBOIL,

Functioh

The /NOSfMBOL switch Signals LINK-10 not to construct a table of

thé symbols used by:the user‘s program. This switch affects the

speed of‘loéding_in that_LINK-lO'is nofi required to spend time in

generating a symbol table for the user. If this switch is givén,

the user is not able té obtain output symbol files or output map

files contaihing symbol 1istings. A map file can be

obtained,fiowever, with header information only.

Switch Format

/NOSYMBOL

Category of Switch ' ' ,

Immediate Action Switch (refer to Paragraph 3.3.4)

Examples

/NOSYM

4-49

LINK-10 ~740-

LINK-10

Switches

/NOSYSLIB

Function

The /NOSYSLIB switch is used to inhibit the searching of one or

more of the system libraries upon completion of the loading

process. The system libraries required by the loaded modules are

usually searched at the end of the load in order to satisfy

undefined global requests. These libraries are LIBOL £for COBOL

modules, FORLIB for FORTRAN-10 modules, LIB40 for F40 modules,

and ALGLIB for ALGOL modules.

Switch Format

/NOSYSLIB:keyword

/NOSYSLIB:(keyQord, « « oskeyword)

Keyword is one or more of the following:

ALGOL to suppress the searching of ALGLIB. ,

BCPL to suppress the searching of BCPLIB (not supported

‘ by DEC). o

COBOL to suppress the searching of LIBOL.

FORTRAN to suppress the searching of FORLIB.

F40 to suppress the searching of LIB40.

NELIAC to suppress the searching of LIBNEL (not supported
by DEC). v

If the keyword is omitted, the searching of all system libraries

is suppressed.

_711- LINK-10

LINK-10

Switches

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Exifples

/NOSYSLIB:ALGOL/NOSYSLIB:COBOL

Do not search ALGLIB and LIBOL.

/NOSYSLIB

Do not search any system libraries.

LINK-10 -742-

LINK-10

Switches

/0TS

Function

The /OTS switch is used to indicate the segment into which the

appropriate object time system is to be loaded.

Switch Format

/0TS :keyword

Keyword is one of the following:

DEFAULT to load the object time system into the segment

specified by its code. FORTRAN, NELIAC, and ALGOL specify

the high segment. This keyword is used to reset +o normal

conditions after specifying a /OTS switch with either the

HIGH or LOW keywords,

LOW to load the object time system into the low segment.

HIGH to load the object time system into the high segment.,

If this switch, or the value of this switch, is omitted, the

default action 1is to load the object time system into the high

segment unless either:

Code already exists in the high segment and /SEGMENT:HIGH is
not set, or .

The user has specified the /SEGMENT:LOW switch.

In these two cases, the object time system is loaded into the low

Segment,

~743- LINK-10

LINK=10

Switches

Category of switch

Delayed Action Switch (fefer to Paragraph 3.3.5)

Examples

FILA,REL/SYSLIB/OTS :HIGH

Load the required object time system into the high segment.

LINK-10 -744-

LINK-10

Switches

/PATCHSIZE

Function

The /PATCHSIZE switch is used to allocate space between the top

of the 1loaded code and the bottom of the symbol table. This

space is then used for new symbols defined by the user with DDT

and/or for patching. Note that when the user defines symbols

with DDT, each symbol will occupy two words. The space is

allocated in either the high or low segment, depending upon the

placement of the symbol table as specified with the /SYMSEG

switch. The default 1s to place the symbol table in the low

segment.

Switch Format

/PATCHSIZE:n

n is a decimal number representing the number of words to be

allocated as patching space. An octal value can be given by

preceding it with a number sign (#). A global symbol, PAT.., is

defined to be equal to the first location in the patching system.

If this switch, or the value of this switch, 1is omitted, the

default allocation is 64 (decimal) or 100 (octal) words.

~7U5- LINK-10

LINK=-10

Switches

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

/SYMSEG : HIGH/PATCHSIZE:200

Load the symbol table ifit0~the high segment and allocate 200

words betwéen the loaded code dnd the symbol table.

LINK-10 -7l6-

LINK-10

Switches

/REQUIRE

Function

The /REQUIRE switch is used to generate global réquests for the

indicated symbols. Thus, this switch can be used to load library

modules out of their normal loading sequence or to force the

loading of modules for overlays.

The /REQUIRE switch is used to load a module by specifyiné one or

more of its library search symbols (entry points), whereas the

/INCLUDE switch is used to load a module by specifying its name.

Thus, the /REQUIRE switch is useful when the user knows the

function he wants loaded (e.g., SQRT), but does not know the name

of the module containing. that function.

Switch Format

/REQUIRE :symbol

/REQUIRE: (symbol, . . .,symbol)

Symbol is the SIXBIT symbol name for which the wuser wants a

global request generated.

Immediate Action Switch (refer to Paragraph 3.3.4)

Examples

/REQUIRE: NAME

Generate a global request for the symbol called NAME,

e LINK-10

LINK-10

Switches

/REWIND

Function

The /REWIND switch is used to rewind the currenf input or output

device. The device associated with this switch must be a DECtape

_or.fiagnetic tape. If tfie device ié ndt a tape device, the switch

is ignored.

Switch Format

/REWIND

Category of Switch

Device Switch (referto Paragraph 3.3.1)

Examples

¢/REWIND MTAO:,

LINK-10 -748-

LINK=-10

Switches

/RUNCOR

Function

The /RUNCOR switch is used to specify the amount of core to be

assigned to the low segment of the program when it is executed.

The effect of this switch is identical to that produced when the

program 1is run by the system run commands (R or.RUN) with the

given core argument.

Switch Format

/RUNCOR:n

n is a decimal number that represents the amount of core to be

used as the initial core size for the program when obtained with

the GET system command. An octal wvalue can be. given by

preceeding it with a number sign (#). N is expressed in units of

1024 words or 512 words (a page) by following the number with K

or P respectively. If K or P is omitted, K (1024 words) is

assumed. If n is omitted or is less than the amount required,

the number of blocks required by the core image area is assumed.

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

/RUNCOR:50P

~749- LINK-10

LINK-10

Switches

/RUNAME

Function

The /RUNAME switch is used to assign the name to the program that

is to be used while the program is running. This name is_stored

in a job-associated table in the Monitor and is used by the

SYSTAT program and the VERSION system command. This switch

affects high segment programs only.

Switch Format

/RUNAME: symbol

Symbol is the name to be assigned to the program. Only the first

six characters specified are used. If this switch is omitted,

the default name is the name of the module with the last start

address. If there is no module containing a start address, the

name used is nnnLNK, where nnn is the user's job number.

Categofy of Switch

/RUNAME: PRIV, MYPROG/SSAVE

Save the file with the name MYPROG (i.e., MYPROG.SHR), but
the program is run with the name PRIV.

LINK-10

LINK-

-750-

10

Switches

/SAVE

Function

The /SAVE switch is used to define an output save file which will

contain the core image generated by LINK-iO; The core image is

saved as one or two files: a low segment £file and/or a high

segment file. After the core image is saved on the specified

output device, it can later be brought into core and executed as

a non-sharable program (by using the RUN or GET system commands)

without rerunning LINK-10.

Before writing low segment files (i.e., files with ' extensions

.SAV or .LOW), LINK-10 compresses the core image by eliminating

all zero blocks. High segment files are not compressed. This

action is known as zero-éompression and is used to save space on

the storage device. The resulting zero-compressed file is, in

essence, identical to the one produced by the SAVE system

command.

Switch Format

file specification/SAVE:n

File specification 1is in the form dev:file[directory] and

specifies the device and name associated with the save file. The

default specification is:

DSK:name of main program. [user's default directory]

_751- | LINK-10

LINK-10

Switches

User-supplied extensions are ignored and the extension given to

the file depends on the number of segments saved. If there is

only one éegfient, the extension .SAV is used. If there are two

segmehts, the exfiensidn «LOW is used for the low segment and .HGH

for the high segment.

N is a decimal number that fepresents the amount of core (sum of
high and low segmehts) in which the éfogram is later to be run.

An octal value can'be given by preceding it with a number sign

(#) . fi is expressed in unité of 1024 words or 512 words (a page)
by following the nfimber with K or P respectively. If Kor P is

omitted, K (1024 words) is assumed.

If the /SAVE is not used, a save file will not be generated. If

the switch is given but the core argument is omitted, the minimum

core required by the core image is used.

Category of Switch

Output Switch (refer to Paragraph 3.3.3)

Examples

DTA3 :MYPROG/SAVE: 4K=

Definea save file on DTA3: with the name MYPROG, The
program will be run in 4K.

LINK-10 -752-

LINK=-10

Switches

/SEARCH

Function

The /SEARCH switch is used to turn on library search mode (i.e.,

to search specified files in order to load only those modules of

the file that are required to satisfy undefined global requests).

The user gives this switch to search either library files that he

may have created or ones that are not part of the required system

libraries. The /NOSEARCH switch is wused to turn off library

search mode. The required system libraries are still searched

unless the user has inhibited the searching with the /NOSYSLIB

switch.

Switch Format

/SEARCH

Category of Switch

File Dependent Switch (refer to Paragraph 3.3.2)

Examples

PARTA,/SEARCH LIBMAC,LIBCBL,LIBFOR,/NOSEARCH PARTB,PARTC

The files LIBMAC, LIBCBL, and LIBFOR are searched as

libraries. The files PARTA, PARTB, and PARTC are loaded in

their entirety.

753 LINK-10

LINK=10

Switches

/SEGMENT

Function

The /SEGMENT switch is used to indicate to LINK-10 the segment

into which to load the input modules.

Switch Format

/SEGMENT: keyword

Keyword is one of the'follOWing:

DEFAULT to follow the specificationsin the program. The
typical case is to load pure code into the high segment and
impure code into the low segment. This keyword is used to
reset to normal conditions after specifying a /SEGMENT
switch with either the HIGH or LOW keywords.

LOW to load code into the low segment.

HIGH to load code into the high segment, even if the code is
impure.

If this switch, or the value of the switch, is omitted, high

segment code is loaded into the high segment and low segment code

into the low segnient.

Category of Switch

File Dependent Switch (refer to Paragraph 3.3.2)

/SEGMENT:LOW TESTPRG ,ANSWER; ROUTIN/SEGMENT :HIGH,

Load the modules TESTPRG and ANSWER into the low segment and
the module ROUTIN into the high segment.

\

LINK-10 -754-

LINK~-10

Switches

/SET

Function

The /SET switch is used to set the value of a relocation counter

to a specified number. Although LINK-10 will handle many

relocation counters, in the first release only two relocation

counters are implemented: the counter for the low segment (.LOW.)

which begins at zero, and the counter for the high segment

(.HIGH.) which begins at location 400000 or the end of the low

segment, whichever is greater. Other counters can be set, but

they are currently not used by LINK-10.

Switch Format

/SET:symbol:n

Symbol is the name of the relocation counter.,

n is an octal number representing the value of the counter. For

the first release of LINK-10, only two relocation counters can

usefully be given, .LOW. and .HIGH.

Category of Switch

Immediate Action Switch (refer to Paragraph 3.3.4)

~755- LINK-10

LINK-10

Switches

/SEVERITY

Function

Thé /SEVERITY switch specifies to LINK-10 the level at which

messages. are to be considered fatal. Associated with each

messaQe“is.é decimal number from 0 to 31 calied the severity

level. With this switch, the user can specify that messages with

a Severity.level less than or equal to a specific number are not

to; cause his job to be terminated. Any message with a severity

level above the specified number will cause his job to abort.

Switch Format

/SEVERITY:n

n_is/a decimal number from 0 to 30. LINK-10 messages with a

severity level above 'n will cause a user's job to be aborted.

Even though the highest severity level is 31, the user cannot

indicate that a Amessage with this severity level. is to be

considered non-fatal. If this switch, or the value of the

switch, is omitted, a fatal error for a timesharing job is one

whose seve;ity level is greater than 24 (decimal), and for a

batch job, one whose level is greater than 16 (decimal).

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

/SEVERITY:30

4-65

LINK-10 -/56-

LINK-10

Switches

/SKIP

Function

The /SKIP switch is used to space forward over the specified

number of input or output files. This switch is implemented for

magnetic tape only and is ignored if it is given for any other

device,

Switch Format

/SKIP:n

n is a decimal number representing the number of files to skip

over,

Category of Switch

Device Switch (refer to Paragraph 3.3.1)

Examples

/SKIP:4 MTA3:

-757- LINK-10

LINK-10

Switches

/SSAVE

Function

The /SSAVE switch is used to define an output save file which

will contain the core image produced by LINK-10., It is similar

to the /SAVE switch except that the high segment will be sharable

when it is brought into core and executed. The saved file

produced by this switch is the same as the one produced by the

SSAVE system command. Refer to the /SAVE switch.

Switch Format

file specification/SSAVE:n

Arguments are the same as for the /SAVE switch except for the

following difference: when there are two segments, the extension

.LOW is assumed for the low segment and .SHR for the high

segment,

Category of Switch

output Switch (refer to Paragraph 3.3.3)

Examples

DTA: SHRPRG/SSAVE,

Define a sharable save file with the name SHRPRG on the

user's DECtape. The minimum core required by the core image

is assigned.

LINK-10 -758-

LINK-10

Switches

/START

Function

The /START switch is used to specify the start address of the

loaded program or to allow a Program to specify its own start

address. When a start address is specified, all subsequent start

addresses are ignored. This is the default action.

Switch Format

/START:n

n is either of the followingz

an octal number preceded by a number sign (#) representing
the starting address of the program, or

a SIXBIT global symbol whose value is the start address.
The global symbol specified must be defined.

If n is omitted, LINK-10 does not change the current start

address but will accept all start addresses from the following

modules (i.e., the action is to turn off a /NOSTART switch

setting),

Category of Swit:ch

File Dependent Switch (refer to Paragraph 3,3.2)

Examples

+MAINPG/START, /NOSTART PROG1,PROG2,

Use the start address in MAINPG and ignore the start
addresses in PROG1 and PROG2.

~759- LINK-10

LINK=-10

Switches

/SYMBOL

Function

The /SYMBOL swifich is used to specify an output syhbol file which

will consist of local symbols (if loaded), information stored in

the local symbol table, such as module names and lengths, and

global symbols sorted for DDT.

Via keywords, the user can specify that the symbol file is to be

either in radix-50 representation or in triplet format. These

two éymboi table formats can be distinguished from each other in

several ways:

1., The first word of the radix-50 symbol table is always

negative. The first word of the triplet symbol table is

always zero.

2. The listingof each radix-50 symbol requires two words;

the first word is the symbol name in radix-50

representation, and the second word is the value.

3. The listing of each triplet symbol requires three words;

the first one contains flags, the second is the symbol

name in SIXBIT, and the third is the value.

This switch is useful wheh DDT is not 1loaded with the wuser's

program because it guatantees that the symbols will be available.

Note that if the user issues the /NOSYMBOL switch in the command

string, he is not able to obtain the output symbol file.

LINK-10 -760-

LINK-10

Switches

Switch Format

file specification/SYMBOL:keyword

File specification is in the form dev:file[directory] and

specifies the device and name associated with the symbol file.

The default specification is

DSK:name of main program .SYM[user's default directory]

If there is no main program, the filename nnnINK, where nnn is

the user's job number, is used.

Keyword is one of the following:

RADIX=-50 to obtain the symbols in radix-50 representation.

TRIPLET to obtain the symbols in triplet format.

If the /SYMBOL switch is not issued by the user, no output symbol

file will be generated. If the keyword is omitted, RADIX-50 is

assumed.

Category of Switch

Output Switch (refer to Paragraph 3.3.3)

DSKB:SYMFIL[20,235)/SYMBOL,

Define a symbol file with the name SYMFIL on the [20,235]
area of DSKB:. The symbols will be outputin the RADIX~50
format.

=761~ LINK-10

LINK-10

Switches

/SYMSEG

Function

The /SYMSEG switch causes symbols to be loaded with the program

énd indicates the segment into which the symbol table is to be

placed, With this switch, the user insufes that his program when

loaded with DDT will run in as much core as is available without

overwriting the symbol table. Loading DDT or setting the JOBDAT

locétion «JBDDT to a non-zero value also causes the symbols to be

loaded.

Switch Format

/SYMSEG: keyword

Keyword is one of the following:

DEFAULT to move the symbol table from its current position

at the top of core to the first free location after the

patching space. The JOBDAT location .JBFF, which points to

the first free location, is adjusted to point to the first

free location after the symbol table. This keyword is used

to reset' to 'the normal action after invoking the /SYMSEG

switch with either the HIGH or LOW keywords.

HIGH to place the symbol table into the high segment.

LOW to place the symbol table into the low segment.

If the switch, or the valfie of the switch, is omitted, the symbol

table is moved' from ifs current position in the segment to the

first free location in that segment. The first free location is

determined after the allocation of space (default allocation is

64 decimal or 100 octal words) for patching of symbols. A global

symbol, PAT.., is defined to be equal to the first location in

4-71

LINK-10 -762-

LINK=-10

Switches

the patching space.

Category of Switch

Delayed Action 8witch (refer to Paragraph 3.3.5)

Examples

/SYMSEG:HIGH

4-72

-763- LINK-10

LINK-10

Switches

/SYSLIB

Function

The /SYSLIB switch forces the system libraries to be searched in

order to satisfy any undefined global requests. LINK-10 examines

the main program first and, depending on the compiler used,

searches the appropriate 1library (e.g., an ALGOL main program

causes ALGLIB to be loaded). Then LINK-10 looks at any remaining

programs and searches the relevant libraries.

A system library is not automatically searched unless its

corresponding compiler-produced code has been loaded. This means

that a user must explicitly request a system library when he is

not loading. the corresponding compiler-produced code for that

library. For example, if the user is loading only MACRO-10

programs and he wants the LIB40 library searched, he must specify

it in the switch format; LIB40 is not automatically searched

unless F40 code has been loaded.

The normal action taken by LINK=-10 is to search all required

libraries at the end of the loading procedure; however, this

switch without any keywords causes the libraries to be searched

at the time the switch is given. If keywords are specified on

the switch, the searcing of the indicated libraries occurs at the

end of the 1loading procedure or on a subsequent /SYSLIB switch

with no arguments, whichever occurs first.

4-~73

LINK-10 ~764-

LINK=-10

Switches

Switch Format

/SYSLIB:keyword

/SYSLIB: (keyword, . . .,keyword)

Keyword is one of the following:

ALGOL to search ALGLIB

BCPL to search BCPLIB (not supported by DEC)

COBOL to search LIBOL

FORTRAN to search FORLIB

F40 to search LIB40 or FORLIB. The library searched

depends upon the /FOROTS or /FORSE sw1tch, if

given, or on .the default FORTRAN llbrary, which is
normally FORLIB, if neither switch is given. ‘

NELIAC to search LIBNEL (not supported by DEC)

If the keyword is omitted, only the 1libraries for which

corresponding compiler-produced code has been loaded will be

searched.

Category of Switch

Createsan;implicit file specifiqation (refer to Paragraph 3.3.6)

Examples

/SYSLIB

4-74

-7€5- LINK-10

LINK~10

Switches

/SYSORT

Function

The /SYSORT switch is used to arrange the symbol table for output

to the symbol file into the order most convenient to the user.

Switch Format

/SYSORT:keyword

Keyword is one of the following:

UNSORTED to leave the symbols in the order in which they are

placed in the symbol table. This is the default.

ALPHABETICAL to arrange the symbol table in alphabetical

order for each module or for each block in a

block=structured module.

NUMERICAL to arrange the symbol table in numerical order for

each module according to the values of the symbols.

NOTE

For the first release of LINK-10,

UNSORTED is the only keyword

implemented. The other keywords

described above are accepted but

LINK-10's action is the same as

that taken with the UNSORTED

keyword.

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

/SYSORT: UNSORTED

LINK-10 -766-

LINK-10

Switches

/TEST

Function

The /TEST switch is used to load a debugging program and to

specify execution of the user's program. Thus, it is similar to

the /DEBUG switch except that it specifies execution of the

user's program instead of the debugging program. This switch

does not cause termination of the loading; the /GO switch is

required to terminate laoding.

Switch Format

/TEST:keyword

Keyword is one of the following: COBDDT, COBOL, DDT, FORTRAN,

MACRO, MANTIS. When a compiler or the assembler is specified,

the debugging aid associated with that translator is used (e.g.,

if MACRO is specified, the debugging program DDT is loaded).,

Category of Switch

Creates an implicit file specification (refer to Paragraph 3.3.6)

+MAIN1,/TEST:COBOL DATPRG,DATA,TEST,

4-76

-767- LINK-10

LINK-10

Switches

/UNDEF INED

Function

The /UNDEfINED switch is wused to type all undefined global‘

~requests on the fisér's termihal. The user can employ this switch

to determine the undefined 'symbols and then use the /DEFINE

switch to satiéfy the requests for these symbols. Thus, the user

éan interactively satisfy reéuegts before LINK-10 terminates the

load with undefined symbols.

Switch Format

/UNDEF INED

Category of Switch

Immediate Action Switch (refer to Paragraph 3.3.4)

Examples

* /UNDEF)

1 UNDEFINED SYMBOL

NAME 400100

400100 is a word in the chain of fixups depending on the

symbol.

4-77

LINK-10 ~/68-

LINK=-10

Switches

/UNLOAD

Function

The /UNLOAD switch is used to rewind and unload the current input

or output device. The device associated with this switch must be

a DECtape or a magnetic tape; the switch is ignored for non-tape

devices.

Switch Format

/UNLOAD

Category of Switch

Device Switch; however, the action of this switch is always
performed after the file is processed regardless of its position
in the specification (refer to Paragraph 3.3.1)

Examples

+/REWIND DTA3:FILNAM/UNLOAD,

-769- LINK-10

LINK=-10

Switches

/VALUE

Function

The /VALUE switch allows the user to interactively type in the

names of global symbols in order to £find out their current

values. The output giveh to the user consigts of' the requested

symbol, its current Qalqe, and its status. The status can be one

of: DEFINED (i.e.,in the symbol table with its final value),

UNKNOWN (i.e., not in the.symbél table), UNDEFINED (i.e., in the

symbol table'as undefinedf, COMMON (i.e., in thé symbol table and

defined as COMMON).

Switch Format

/VALUE: symbol

/VALUE: (symbol, . . « s 8ymbol)

Symbol is the name of the symbol in ASCII.

Category of Switch

Immediate Action Switch (refer to Paragraph 3.3.4)

Examples

*/VALUE: (TAG1,START) J)

TAGl 400010 DEFINED

START 0 UNDEFINED

The symbol TAGl is defined to be the value 400010, and the
symbol START is undefined.

4-79

LINK-10 -770-

LINK=-10

Switches

/VERBOSITY

Function

The /VERBOSITY switch gives the user control over the amount of

text transmitted to both his terminal and his log file whenever

he receives a message from LINK-10. Associated with each message

is a verbosity indicating the amount of text contained in the

message. A verbosity of SHORT indicates that the message

consists only of a 3-letter code (e.g., STC). A message with a

verbosity of MEDIUM consists of the 3-letter code and one line

that explains the code (e.g., STC Symbol Table Completed). A

message with a verbosity of LONG consists of the 3-letter code,

the one line of explanation, plus a more detailed explanation of

the message. Thus, the user can specify via this switch the

amount of explanation output to his terminal and log file,

LINK=-10 has the fblléwing feature to aid users receiving fatal

messages (i.e., ones preceded by ?). If the user receives a

fatal message but has not indicated that he wants to- see the

detailed explanations (i.e., verbosity LONG),'he can give the

CONTINUE system command after he receives the message. LINK=~10

then types out the remainder of the message (if there is more

information available) on the user's terminal. This additional

information is not included in the user's log file nor is the job

continuable after the message is output.

771- LINK-10

LINK=-10

Switches

Switch Format

/VERBOSITY: keyword

Keyword is one of the following:

SHORT - 3=letter code only.

MEDIUM 3-letter code and a one-line explanation.

LONG 3=-letter code, a one-line explanation, and a

detailed explanation.

The default value is MEDIUM if this switch, or the keyword to the

switch,is omitted.

If the user specifies a verbosity greater than the one available

for the message, the specified keyword is ignored for that

message and only the available text is output. For example, if

the wuser specifies MEDIUM as the verbosity but the message only

has a 3-letter code available (i.e., SHORT), only the 3=letter

code “will be output because there is no additional information

available for that message.

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

/VER: SHORT

LINK-10 -772-

LINK=10

Switches

/XPN

Function

The /XPN switch is used to create or save on the disk the

expanded core image file (XPN file) of the low segment. If the

program has not been loaded onto the disk, this switch causes the

file to be Created with the name specified by the user. If the

program has been 1oadéd onto the disk, the file already exists,

but with the name nhnLLC.TMP where nnn is the user's job number.

Since this extension indicates a temporary file, the expanded

file is normally deleted upon the completion of LINK=-10's

processing. Thus, in.this case, the /XPN switch is wused to

rename the file with the .XPN extension, so that it will not be

deleted.

Switch Format

file specification /XPN ‘

File specification is in the form dev:file[directory] and

specifies the device and name to be associated with the expanded

core image file. The default specification is

DSK:name of main program.XPN{user's default directory]

If there is no main program, the filename nnnLNK, where nnn 1is

the user's job number, is used.

~773- LINK-10

LINK-10

Switches

Category of Switch

Output Switch (refer to Paragraph 3.3.3)

Example

DSKC:XPNFIL[20,270]/XPN

Save the expanded core image file on the [20,270] area of

DSKC: and with the name XPNFIL.

4-83

LINK-10

LINK-

-774-

10

Switches

/ZERO

Function

The /ZERO switch is used to clear the directory of the éssociated

DECtape. The directory is always cleared before the file is

writéen, regarcless of the switch's position in the current

specification. This switch is ignored for all non-DECtape

devices.

Switch Format

file specification/ZERO

File specification is an output specification.

Category of Switch

Output Switch (refer to Paragraph 3.3.3)

Examples

DTA3 :MYPROG/SAVE/ZERO

~775- LINK-10

LINK-10

Messages

CHAPTER 5

LINK~10 MESSAGES

The following table of LIfiK-lO messages consists of four columns:

CODE, LVL, SEV, and MESSAGE;. The leffimost column (CODE) contains a

3-letter code, which represents a teise, abbreviated form of the

message. The user can indicate, via the /VERBOSITY:SHORT switch, that

he desires only this code to be output whenever he receives a LINK-10

message. Refer to the /VERBOSITY switch in Chapter 4 for additional

information.,:

The second column of each.message (LVL) indicates the message level

assoc1ated, with that message. The message level is the factor that

defiermines if the message is to be output. Normally, informative

messages are suppressed. to the user's terminal and all messages are

output to the log file;/if the user has designated one. However, the

user can override this action with the /ERRORLEVEL and /LOGLEVEL

switches. These switches accept a decimal number and indicate to

‘LINK-lO that messages with a message level less than or equal to the

specified number are not to be output to the user's terminal

(/ERRORLEVEL; or to his log file (/LOGLEVEL); Messages with a message

level greater than the specified number will be output. The two

switches are independent if the user's log file is not being output to

his terminal. That is, he can h&ve one set of messages printed on his

terminal and another set listed in his log file. When the device for

the log file is the user's fierminal, only one set of messages is

output. This set is the one generated by the lower argument in either

LINK-10 - -776-

LINK-10

Messages

the /ERRORLEVEL or /LOGLEVEL switch.

There are currently representations for three message levels:

$I message level 1 Xinformative)

tW message level 10 (warning)

$F message level 31 (fatal)

Refer to the /ERRORLEVEL and /LOGLEVEL switches in Chapter 4 for

additional information.

The third column (SEV) contains the severity level associated with

each message., The severity 1level 1is the point at which LINK=-10

considers a message to be fatal (i.e., one which will terminate the

load) . The predefined LINK-10 severity levels can be overridden by

the user via the /SEVERITY switch. This switch accepts a decimal

number and indicates to LINK~10 that messages with a severity level

less than or equal to the specified number are not to be considered

fatal., Messages with a severity 1level greater than the specified

number will cause the load to be terminated. (Note that messages with

a severity level of 31 are always fatal and that the user cannot

override the action taken with these messages.) If the user does not

give a /SEVERITY switch, or does not give an argument to the switch, a

severity level of 24 is considered fatal for a timesharing job and a

severity level of 16 is considered fatal for a batch job.

-777- LINK-10

LINK-10

Messages

Currently £he representationsfor the Séverity levels are as follows:

%I séfiérity level 1. The message ié enclosed in square brackets
(informative) . .

W seVefity level 10. The message is precédéd by a percent sign
(wa:ning). ' _ .

$E severity level 30. The meSsagélié preceded by a percent sign
and followed by a line requesting the user to re-edit the

current file specification,if he wishes. This option is
available only to a time-sliaring user (editing).

F éeverity,level 31. The message is préceded by a gquestion
mark (fatal). '

Refer to the /SEVERITY switch in Chapter 4 for additional information.

The rightmost_colfimn (MESSAGE) contains a more detailed explanation of

the méséaqe than the one éppeafing in the CODE column. This message,

élong with the thrée-létfier code; is normally output. However, the

user can .ovérride iiis éction with the /VERBOSITY switch. Refer to

the /VERBOSITY switch in Chapter 4 for further information.

LINK-10

LINK-~10

Messages

CODE

AZW

CEF

CLF

LVL

F

3F

$F

$I

3F

SEV

F

3F

3F

%I

§F

-778-

MESSAGE

ADDRESS NOT IN CORE (1)

LINK-10 expected a particular user address to
be in core, but it is not there. This is a
LINK=-10 internal error.

ALLOCATING ZERO WORDS (1)

LINK-10's space allocator was called with a
request for zero words. This is an internal
error in LINK-10, '

CORE EXPANSION FAILED (1)

All attempts to obtain more core, including
writing files onto disk, have failed.

CLOSING LOG FILE, CONTINUING ON [file
specification]

This message occurs when the user changes the
device on which the 1log file is being
written. The log file is closed on the first
device and the remainder of the file is
written on the second device.

COBOL MODULE MUST BE LOADED FIRST

The COBOL-produced file must be the first
file loaded when 1loading COBOL modules.
COBDDT, the COBOL debugging program, or any
other modules, such as a MACRO routine,
cannot be the first file in the command
string. The user should begin loading again
and place the COBOL main program or routine
as the first file in the command string.

(1) This message is not expected to occur. If it does, please notify
your Software Specialist or send a Software Performance Report (SPR)
to DEC,

LINK-10

Messages

CODE

CNW

CSF

DNS

LVL

F

%1

3I

SEV

F

3I

31

-779- LINK-10

MESSAGE

CODE NOT YET WRITTEN AT ([label] (1)

The user attempted a feature that is not yet

implemented. This 1is an internal error in

LINK=10. ‘

- CREATING SAV FILE

LINK-10 is generating the requested save file

by running the core image through a zero

compressor routine in order to produce a SAV

format file.

DEVICE NOT SPECIFIED FOR /switch

A device switch, such as /REWIND or

/BACKSPACE, has been given, but there is no

device to be associated with it., The switch

is ignored. This occurs when the user does

not give a device name in the specification

containing the switch or has not specified a
device name in the current 1line. (Remember

that devices are cleared at the end of the

line.) LINK-10's default device DSK does not
apply to device switches nor does a device

specifiedin a /DEFAULT switch apply. The

user should respecify the command line and

include the appropriate device name with the

switch, '

(1) This message is not expected to occur. If it does, please notify

your Software Specialist or send a Software Performance Report (SPR)
to DEC.

LINK-10

LINK-10

Messages

CODE LVL

DRC IW

DSO $F

DUZ §F

EID 3F

SEV

W

F

3F

$F

-/80-

MESSAGE

DECREASING RELOCATION COUNTER [symbol] FRCOM
[value] TO [value]

The user is reducing the size of ‘an already

defined relocation counter via the /SET

switch. The new value is accepted. The user

should be extremely careful when he does this

because code previously loaded under the old

relocation counter may be.overwritten. This
practice of reducing counters is dangerous

unless the user knows exactly where modules

are loaded.

DATA STATEMENT OVERFLOW (1)

Incorrect code has been generated by the F40

compiler.

DECREASING UNDEFINED SYMBOL COUNT BELOW ZERO

(1)

On an internal check of the counter for

undefined symbols, LINK-10 determined that

the counter was negative. This is an

internal error.

ERROR ON INPUT DEVICE STATUS (xxxxxx) FOR

[file specification]

A read error has occurred on the input

device. Use of the device is terminated and

the file 1is released. The status is

represented by the right half of the file

status word. Refer to DECsystem-10 Monitor

Calls for the explanation of the file status

bits.

(1) This message is not expected to occur. If it does, please notify

Specialist or send a Software Performance Report (SPR)your Software

to DEC.

LINK=-10

Messages

CODE

ELC

EHC

ELS

EFX

| EGS

EMS

ESN

EXP

LVL

F

3I

3F

31

SEV

F

31

3F

31

-781- LINK-10

MESSAGE

LC

| HC

ERROR CREATING OVERFLOW FILE FOR AREA { LS

FX

G

LINK=10 could not make the named file on the
disk (LC=user's low segment code, HC=user's
high segment. code, LS=local symbol table,
FX=fixup area, and GS=global symbol table).
The user could be over quota, or the disk
could be full or have errors.

END OF MAP SEGMENT

Notification that the LINK-10 module LNKMAP
has completed the writing of the map file.
The map is now closed.

EXTENDED SYMBOL NOT EXPECTED (1)

The code to handle symbols longer than six
characters has not been completed. This code
will be available in a future release.

EXPANDING LOW SEGMENT TO [n] K

LINK=10 needs more core and is expanding to
the specified amount. In future loads of the
same programs, the user can run LINK=10 more

efficiently by requesting this amount of core
at the beginning of the load with the /CORE
switch.

(1) This message is not expected to occur. If it does, please notify
Specialist or send a Software Performance Report (SPR)your Software

to DEC.

5=~7

LINK-10

LINK=-10

Messages

CODE

EXS

FCD

FCF

FIA

LVL

31

sF

31

sF

SEV

31

3F

$I

$F

-/82-

MESSAGE

EXIT SEGMENT

LINK-10 is entering the completion stages of

the 1loading process. These stages include

the creation of save and symbol files and, if

required, the execution of the core image.

FORTRAN CONFUSED ABOUT DATA STATEMENTS (1)

Incorrect code was generated by the F40

compiler for a data statement in the form
DATA A(I),I=1,4/1,2,3,4/

as opposed to a data statement in the form

DATA (A(I),I=1,4)/1,2,3,4/

FINAL CODE FIXUPS

LINK=-10 is now reading the 1low and/or high

segment overflow files backwards in order to

do all remaining code fixups. This process
may cause considerable disk overhead. Note

that the message occurs only if the load was

too large to fit entirely in core.

CANNOT MIX KI10 AND KAl0 FORTRAN-10 COMPILED

CODE .

The FORTRAN-10 compiler generates different
output for the KAl0 and the KI1l(Q processors

(e.g., double precision code) and the user
cannot load this mixture. He should decide
which processor he wants to use and then

recompile the appropriate programs.

(1) This message is not expected to occur. If it does, please notify
"Specialist or send a Software Performance Report (SPR)your Software

to DEC.

-785~- LINK-10

LINK=-10

Messages

CODE LVL, SEV MESSAGE

FIN $I %1 LINK-10 FINISHED

LINK-~10 has completedits task of loading the

user's program and other required programs.

Control is either returned to the monitor or

given to the user's program for execution.

FON 3 3F CANNOT MIX F40 AND FORTRAN-10 COMPILED CODE

Output from the F40 and FORTRAN~-10 compilers

cannot be used together in the same load.
The user should decide which compiler he

wants and then recompile the. appropriate

program with that compiler.

(FEE' 3F sF (ENTER ERROR (0) ILLEGAL FILENAME FOR

FRE RENAME [file specification]

One of the following conditions occurred:

l. The filename given was illegal.

2. When updating a file, the filename

given did not match the file to be

updated.

3. The RENAME UUO following a LOOKUP

Uuo failed.

(FLE) <LOOKUP"
GSE 8F SE GETSEG ERROR (0) FILE WAS NOT FOUND

The file requested by the user was not found.

The user should respecify the correct

filename.

LINK-10

LINK=~10

Messages

CODE

FEE

FRE

GSE

FEE

FLE

.GSE

FRE

FEE

FLE

GSE

FEE \

FLE

FRE

GSE

(1) This message is not expectedto occur.

your

to DEC,

3F

F

$F

SEV

$E

3E

tE

&F

§F

-/84-

MESSAGE

ENTER

LOOKUP ERROR (1) NO DIRECTORY FOR

RENAME PROJECT-PROGRAMMER NUMBER FOR ([file
GETSEG specification]

The UFD does not exist on the named file

structure, or the project-programmer number

given was incorrect.

ENTER

LOOKUP ERROR (2) PROTECTION FAILURE FOR

RENAME [file specification]

GETSEG

The user does not have the correct privileges

to access the named file.

ENTER ERROR (2) DIRECTORY FULL

The directory on the DECtape has no room for

the file.

ENTER

LOOKUP \ ERROR (3) FILE WAS BEING MODIFIED

\\RENAME FOR [file specification]
GETSEG

Another user is currently modifying the named

file. The user should try accessing the file

later.

ENTER

‘ LOOKUP ERROR (4) RENAME FILENAME

RENAME ALREADY EXISTS FOR ([file

GETSEG specification] (1)

The specified filename already exists, or a

different filename was given on the ENTER UUO

following a LOOKUP UUO.

If it does, please notify

Software Specialist or send a Software Performance Report (SPR)

5-10

- -785- LINK-10

LINK-10

Messages

CODE LVL SEV MESSAGE

FEE ‘ CENTER) ; o
FLE SF SF LOQKUP ERROR (5) ILLEGAL SEQUENCE OF

FRE - "RENAME (UUOS FOR [file specification] (1)
GSE GETSEG :

Theifiéer sbedified an illegal sequence of
monitor calls, UUOs, (e.g.,a RENAME without

a preceding LOOKUP or ENTER, or a LOOKUP

after an ENTER).

FEE - ENTER ' - | _ |
FLE sF $F LOOKUP ERROR (6) BAD UFD OR BAD RIB

FRE RENAME (FOR [file specification] (1)

.GSE GETSEG. . '

One of the following conditions occurred:

1. Transmission, device, or data error
occurred while attempting to read

the UFD or RIB.

2. A hardware-detected device or data
error was detected while reading the

UFD RIB or UFD data block.

3. A software-detected - data
- inconsistency error was detected

while reading the UFD RIB or file

| RIB.

(FEE | ENTER | .
FLE \ 3F 3P LOOKUP ERROR (7) NOT A SAV FILE FOR

FRE RENAME [file specification] (1)

GSE.. GETSEG

The named file is not a core image file.

This message can never occur and is included
only for completeness of the LOOKUP, ENTER,

and RENAME error codes.

(1) This message is not expected to occur. 1If it does, please notify
your Software Specialist or send a Software Performance Report (SPR)

to DEC.

LINK-10

LINK-10

Messages

CODE LVL SEV

FEE .

FLE &F $F

GSE

EE

FLE F 3F

FRE

GSE

EE

FRE

GSE

-786-

MESSAGE

ENTER . B

LOOKUP ERROR (10) NOT ENOUGH CORE FOR

RENAME [file specification] (1)

GETSEG

The system cannot supply enough core to use

as buffers or to read in a program. This
message can never occur and is included only

for completeness of the LOOKUP, ENTER, and

RENAME error codes.

ENTER

LOOKUP ERROR (11) DEVICE NOT AVAILABLE FOR

RENAME [file specification] (1)

GETSEG

The device indicated by the user is currently

not available. This message can never occur

and is included only for completeness of the

LOOKUP, ENTER and RENAME error codes.

ENTER

LOOKUP ERROR (12) NO SUCH DEVICE FOR

RENAME [file specification] (1)

GETSEG

The device specified by the user does not

exist. This message can never occur and is
included only for completeness of the LOOKUP,

ENTER, and RENAME error codes.

(1) This message is not expected to occur. If ifi does, please notify
your Software Specialist or send a Software Performance Report (SPR)
to DEC.

5=12

LINK=10

Messages

CODE LVL SEV

FEE

FLE $F

GSE

FEE

FLE F

GSE

FEE

FLE F

GSE

EE

FLE \ F

FRE

GSE

-$F

§F

F

3F

-787- LINK-10

MESSAGE

ENTER

LOOKUP ERROR (13) NOT TWO RELOC REG

RENAME [CAPABILITY FOR [file specification]

GETSEG (1)

The machine does not have a two-register

relocation capability. This message can

pever occur and is included only for

completeness of the LOOKUP, ENTER and RENAME

error. codes.

ENTER

LOOKUP ERROR (14) NO ROOM OR QUOTA

RENAME [EXCEEDED FOR [file specification]

GETSEG

There is no room on the file structure for

the named file, or the user's quota on the

file structure would be exceeded if the file

were placed on the structure.

ENTER

LOOKUP ERROR (15) WRITE LOCK ERROR

RENAME FOR [file specification]

GETSEG

The user cannot write on the specified device

because it is write-locked.

ENTER

LOOKUP ERROR (16) NOT ENOUGH MONITOR

RENAME TABLE SPACE FOR [file specification]

GETSEG :

There is not enough table space in the

monitor's (FILSER) 4=-word blocks for the

specified file. The user should try running

the job at a later time.,

(1) This message is not expected to occur. If it does, please notify

your Software Specialist or send a Software Performance Report (SPR)

to DEC,

5-13

LINK-10 -788-

LINK-10

Messages

CODE LVL SEV MESSAGE

FEE ENTER

FLE W W LOOKUP ERROR (17) PARTIAL ALLOCATION
FRE | RENAME (ONLY FOR [file specification]
GSE GETSEG ./

Because of the user's quota or the available

space on the device, the total number of

blocks requested could not be allocated and a
partial allocation was given.

FEE ENTER

FLE F F LOOKUP ERROR (20) BLOCK NOT FREE ON
FRE RENAME [ALLOCATION FOR [file specification]
GSE GETSEG.) (1)

The block required by LINK-10 is not
available for allocation. This message can
never occur and is included only for
completeness of the LOOKUP, ENTER, and RENAME
error codes. ’

FEE ENTER

FLE ¥F F LOOKUP ERROR (21) CAN'T SUPERSEDE (ENTER)
FRE RENAME AN EXISTING DIRECTORY FOR [file
GSE GETSEG./ specification] (1)

The user attempted to supersede an existing
directory. This message can never occur and
is included only for completeness of the
LOOKUP, ENTER, and RENAME error codes.

(1) This message is not expected to occur. If it does, please notify
your Software Specialist or send a Software Performance Report (SPR)
to DEC. '

5-~14

LINK-10

Messages

CODE LVL SEV

(FEE

FLE 3F &F

FRE '

GSE

EE

FLE\ SF - 8F

GSE

FEE

FLE 3F 3F

GSE

EE

FLE - %F 3F

GSE

(1) This message is not expected to occur.

-789-

MESSAGE

ENTER

LINK-10

LOOKUP ERROR (22) CAN'T DELETE (RENAME)
RENAME A NON-EMPTY DIRECTORY FOR [file

GETSEG specification] (1)

The user attempted to delete a directory that

was not empty. This message can never occur

and is included only for completeness of the

LOOKUP, ENTER,

ENTER

and RENAME error codes.

LOOKUP \ ERROR (23) SFD NOT FOUND FOR

RENAME [file specification]

GETSEG

The required sub=-file directory in the

specified path was not found.

ENTER

LOOKUP ERROR (24) SEARCH LIST EMPTY FOR

RENAME [file specification]

GETSEG

A LOOKUP and ENTER UUO was performed on

generic device

empty.

'ENTER

DSK and the search list is

LOOKUP ERROR (25) SFD NEST LEVEL TOO
RENAME DEEP FOR [file specification] (1)

GETSEG

- An attempt was

directory nested deeper

level allowed.

create a subfile

than the maximum

This message can never occur

and is included only for completeness of the

LOOKUP, ENTER, and RENAME error codes.,

If it does, please notify

your Software Specialist or send a Software Performance Report (SPR)

5-~15

LINK-10 -790-

LINK-10

Messages

CODE LVL SEV MESSAGE

FEE ENTER

FLE SF 3F LOOKUP ERROR (26) NO-CREATE ON FOR ALL

FRE RENAME SEARCH LIST FOR [file specification]
GSE GETSE

No file structure in the job's search 1list

has both the no-create bit and the write=lock

bit equal to zero and has the UFD or SFD

specified by the default or explicit path.,

FEE ENTER :
FLE SF sF LOOKUP ERROR (27) SEGMENT NOT ON SWAP
FRE RENAME SPACE FOR [file specification](1)
GSE GETSEG ’

A GETSEG UUO was issued from a locked 1low

segment to a high segment which is not a

dormant, active, or idle segment. This
message can never occur and is included only

for completeness of the LOOKUP, ENTER, and
RENAME error codes,

FEE ENTER

FLE 3F sF LOOKUP ERROR (nn) UNKNOWN
FRE RENAME CAUSE FOR [file specification] (1)
GSE GETSE :

This message indicates that a LOOKUP, ENTER,
or RENAME error occurred which was largerin

number than the errors LINK=-10 knows about.

(1) This message is not expected to occur. If it does, please notify
your Software Specialist or send a Software Performance Report (SPR)

5~16

LINK-lO

Messages

CODE LVL

HSL 8F

HSO 1)

HTL F

W

&F

-791- LINK-10

MESSAGE

ATTEMPT TO SET HIGH SEGMENT ORIGIN TOO LOW

The user is trying to set the beginning of
the high segment below 400,000 or below the

end of the low segment, whichever is larger.

This can be the result of a /SET:.HIGH.
switch with a value less than 400,000, If

this is the case, the switch is ignored and

the user should again specify the /SET:.HIGH.
switch with a valid argument. This message
can also occur when the 1low segment is

greater than 400,000 and a module being

loaded is requesting the high segment to

startat 400,000, The user can either give a

/SET switch or retranslate the module.

ATTEMPT TO CHANGE HIGH SEGMENT ORIGIN FROM

[value] TO [value]

The user is attempting to change the starting
address of the high segment. The specified
value is ignored. The cause may be that the

user gave a /SET:.HIGH.,: value switch which

does not agree with the LINK item type 3, or
that two LINK item type 3's have different

origins., The user should recompile the
incorrect files. ‘

SYMBOL HASH TABLE TOO LARGE (1)

The user has more global symbols than can fit
in the maximum hash table (about 25K in size)
LINK-10 can generate. Possible action is to
increase . the maximum allowable size of the
hash table.

(1) This message is not expected to occur. 1If it does, please notify
your Software Specialist or send a Software Performance Report (SPR)
to DEC.

5=17

LINK-10

LINK-10

Messages

CODE LVL SEV

(
I4DY

I4s 3F 3F

I4T

IBC $F L1

ICI 3F 3F

IDM $F 3E

IFD $F §F

-792-

MESSAGE

DATA CODE '

ILLEGAL F40 SUB=~BLOCK (xxxxxx) (1)

TABLE ENTRY

Incorrect code was produced by the F40

compiler.

ATTEMPT TO INCREASE SIZE OF BLANK COMMON

An attempt was made to expand the blank

COMMON area. Once a COMMON area is defined,

the size cannot be expanded. The user should

load the module with the largest blank COMMON

area first or specify the 1larger area with

the /COMMON switch before loading either

module.

INSUFFICIENT CORE TO INITIALIZE LINK-10

There is not enough core in the system to

initialize LINK-10.

ILLEGAL DATA MODE FOR DEVICE

The data mode specified for a device is

illegal, such as dump mode for the terminal

(ee.g., TTY:/SAVE). The user should respecify

the correct device.

INIT FAILURE FOR DEVICE [dev]

The OPEN or INIT UUO failed for the specified

device. The device could be in wuse by

another user.

(1) This message is not expected to occur. If it does, please notify
your Software Specialist or send a Software Performance Report (SPR)
to DEC.

5~18

LINK=-10

Messages

CODE LVL

ILC

IHC

- ILS $F

IFX -

IGS

ILI SF-

IMA $I

INS SF

SEV

3F

F

3l

F

~793- LINK-10

MESSAGE

LC

HC

ERROR INPUTTING AREA (LS) = STATUS (XXXXXX)

FX

GS

An error occurred while reading in the named

area (LC=user's low segment code, HC=user's

high segment code, LS=local symbol table,
FX=fixup= area, = and GS=global symbol table).
The status is represented by the right half
of the file status word. Refer to
DECsystem-10 Monitor = Calls for the
explanation of the file status bits.

ILLEGAL LINK ITEM TYPE (xxxxxx) ON
[file specification]

The input file either was generated by a
translator that LINK-10 does not recognize

(e.g., a non=-supported translator) or is not
in proper binary format (e.g., is an ASCII or
SAV file).

INCREMENTALMAPS NOT YET AVAILABLE

The INCREMENTAL keyword for the /MAP switch
is not implemented. The switch is ignored.

I/0 DATA BLOCK NOT SET UP (1)

LINK-10 attempted to do I/O (LOOKUP, ENTER
UUOs) for a channel that has not been set up.
This is an internal LINK-10 error.

(1) This message is not expected to occur. If it does, please notify
your Software Specialist or send a Software Performance Report (SPR)
to DEC.

5-19

LINK-10

LINK-10

Messages

CODE

IPO

ISD

ISO

Isp

IST

IVC

LVL

F

%F

F

F

§F

&F

SEV

F

F

3F

F

F

3F

-794-

MESSAGE

INVALID POLISH OPERATOR (1)

An incorrect link item type 11 was seen.
This is an internal LINK-10 error,

INCONSISTENT SYMBOL DEFINITION FOR [symbol]

An already-defined symbol has been given a
second "partialTM definition. The user should

examine the usage of the named symbol.

INCORRECT STORE OPERATOR (1)

An incorrect link item type 1l was seen.

This is an internal LINK=10 error.

INCORRECT SYMBOL POINTER (1)

The current symbol pointer does not point to

a valid symbol triplet. This can occur if an

extended symbol does not terminate properly.
This is an internal LINK-10 error.

INCONSISTENCY IN SWITCH TABLE (1)

An internal error occurred in the switch

tables built by the SCAN module.

INDEX VALIDATION CHECK FAILED AT [address]

(1)

The range checking of LINK=-10's internal
tables and arrays failed. The address output

is the point in the appropriate LINK-10

segment at which this occurred.

(1) This message is not expected to occur. If it does, please notify

your Software Specialist or send a Software Performance Report (SPR)

to DEC.

5=20

LINK-10

Message

CODE

LDS

LIM

LIT

MDs

LVL

I

3I

F

L

W

31

SEV

31

L

F

I

W

31

-795- LINK-10

MESSAGE

LOAD SEGMENT

Indication that the LINK-10 module LNKLOD has
started its processing.

LINK-10 INITIALIZATION

LINK-10 has begun its processing of the
user's input,

LINK ITEM TYPE (xxxxxx) TOO SHORT FOR [file

specification]

An error occurred in the named 1link item.
This could result from incorrect output
generated by a translator (e.g., no argument:

is seen on an END block when one is
required). The user should retranslate the
module.

LOADING MODULE [name]

LINK-10 is in the process of 1loading the
named module.

MULTIPLY-DEFINED GLOBAL SYMBOL [symbol] IN
MODULE [name] DEFINED VALUE = {[value], THIS

VALUE = ([value]

The user has given an existing global symbol
a value different from its original one. The
second occurrence of the global symbol is in
the named module. The currently defined
value is used. The user should change the
name of the symbol or reassemble one of the
files with the correct parameters.

MAP SORTING NOT YET IMPLEMENTED

Alphabetic and numeric sorting of the map
file is not yet implemented. The symbols
appear in the order in which they were placed
in the symbol table.

5-21

LINK-10

LINK=10

Messages

CODE LVL SEV

MOV $I $I

MPS 3I $1

MSS W W

MTS W W

NCL W W

-796-

MESSAGE

MOVING LOW SEGMENT TO EXPAND AREA[area]

This message indicates that LINK-10 is making

inefficient use of core. In future loads of

the same programs, the user should allocate

more core to LINK-10 at the beglnnlng of the

load. Area 1s one of the followxng.

LC=user's low segment code, HC=user's high

segment code, LS=local symbol table, FX=fixup

area, and GS=global symbol table.

MAP SEGMENT

Indication that the LINK=10 module LNKMAP has

begun to write a map file.

MAXCOR SET TOO SMALL, INCREASING TO nK

The current value of MAXCOR is too small for

LINK-10 to operate. In future loads of this

program, the user can save LINK-10 tlme by

setting MAXCOR to this new expanded size at

the beginning of the load.

MAXCOR TOO SMALL, AT LEAST nK IS REQUIRED

The user specified the /MAXCOR switch with an

argument that is below the minimum size

LINK=-10 requires as its 1low segment. The
switch 1is ignored. The minimum size is

dependent upén the code already loaded. The

user should respecify the switch.

NOT ENOUGH CORE TO LOAD JOB, SAVED AS [file

specification]

The user's program was too large to load into

core. Thus, LINK-10 created a saved file on

disk and cleared user core. The user can

perform a GET or RUN operation on the program

to load it into core. If the core image is

still too big, the user can either employ a

bigger machine or’ obtain a larger core ‘llmlt

(e.g., increase CORMAX).

5=22

LINK=-10

Messages

CODE LVL

NCX W

NED $F

NYI W

oLC
OHC

OLS SF

OFX

0GS

SEV

I

3E

W

$F

~797- LINK-10

MESSAGE

NOT ENOUGH CORE TO LOAD AND EXECUTE JOB, WILL
RUN FROM [file specification]

The user's program was too large to load into
core and LINK-1l0 created a saved file on
disk. It automatically executes the program
by performing a RUN UUO. However, the saved
file remains on disk and the user must delete
it, if he wishes.

NON=-EXISTENT DEVICE [dev]:

The user has specified a device that does not
exist in the system. The user can re-edit
the input files to correct the device name or
type control-C to abort the load.

NOT YET IMPLEMENTEDN - /switch

The user issued a switch that is not
implemented in this version of LINK-10.

ERROR OUTPUTTING AREA ¢ LS =STATUS (xxxxxx)

An error occurred while writing out the named
area (LC=user's low segment code, HC=user's
high segment code, LS=local symbol table ,
FX=fixup area, and GS=global symbol table).
The status is represented by the right half
of the file status word. Refer to
DECsystem=10 Monitor Calls for the
explanation of the file status bits.

5~23

LINK-10

LINK-10

Messages

CODE LVL

OEL

OEM

OES

OEX W

OFN F

OMN 3F

PLC

PHC

PLS 31

PFX

PGS

SEV

W

$F

$F

L3

-798-

MESSAGE

LOG

MAP

SYMBOL

OUTPUT ERROR ON XPN FILE.

FILE CLOSED. JOB CONTINUING - STATUS

[xxxxxx]

An error has occurred on the output file.

The output file is closed at the end of the

last data that was successfully output. The

status 1is represented by the right half of

the file status word. Refer to DECsystem=10

Monitor Calls for the explanation of the file

status bits.

OLD FORTRAN (F40) MODULE NOT AVAILABLE

The standard released version of LINK-10

includes the LNKF40 module that loads F40

code. However, the installation has removed

it by loading a dummy version of LNKF40 and

thus LINK=-10 is unable to handle F40 compiler

output. - The user should request his

installation to load a version of LINK-10

with the real LNKF40 module.

OBSOLETE MONITOR WILL NOT SUPPORT LINK=10

LINK-10 requires a monitor that contains the

PDEVSIZ UUO. :

AREA(LS OVERFLOWING TO DSK

The job is too large to fit into the allowed

core and the named area is being moved to

disk (LC=user low segment code, HC=user high

segment code, LS=local symbol table, FX=fixup

area, and GS=global symbol table).

5-24

LINK-10

Messages

CODE

PSF

RCF

RGS

SIF

'LVL

F

3F

%1

%I

sF

SEV

F

&F

$I

31

3F

-799- LINK-10

MESSAGE

POLISH SYMBOL FIXUPS NOT YET IMPLEMENTED

The requested feature is not yet available.

'RELOCATION COUNTER TABLE FULL

The relocation counter table is a fixed

length and cannot be expanded in the current

version of LINK-10. This restriction will be

eliminated in a future release.

" REDUCING LOW SEGMENT TO [n] K

LINK=10's internal tables have been deleted

and core has been reclaimed. This message

occurs near the end of loading.

REHASHING GLOBAL SYMBOL TABLE FROM [old size]

TO [new size]

LINK-10 is expanding the global symbol table

either +to the next prime number as requested

by the user (via /HASHSIZE) or to its next

expansion of abpout 50%. In future loads of

this program, the user can save LINK-10 time

by setting the hash table to this new

expanded size at the beginning of the load.

SYMBOL INSERT FAILURE, NON-ZERO HOLE FOUND

(1)

An internal LINK=10 error. LINK-10's hashing

algorithm failed. . A symbol already exists in

the location in which LINK-10 needs to place
the new symbol. The error may disappear if

the user loads the files in a different

order.

(1) This message is not expected to occur. If it does, please notify
your Software Specialist or send a Software Performance Report (SPR)
to DEC.

5-25

LINK-10

LINK=-10

Messages

CODE LVL

SFU $I

SNC 3F

SNL 3I

SOE 'F

SSN $I

SEV

LD

LF

L P!

3F

%I

-800-

MESSAGE

SYMBOL TABLE FOULED UP (1)

An internal LINK-10 inconsistency. LINK=10
cannot locate the TITLE triplets in order to
store the lengths of the control sections.
The 1loading process continues. Any maps
requested by the user will not contain the

lengths of the control sections.

SYMBOL [symbol] ALREADY DEFINED, BUT NOT AS
COMMON

The user has defined a non-COMMON symbol with.
the same name as a COMMON symbol. The user
should decide which symbol definition he
wants. If he uses the COMMON definition, the
COMMON area should be loaded first.

SCANNING NEW COMMAND LINE

LINK~10 has completed the scanning and
processing of the current command line and is
ready to accept the input on the next line.

SAVE FILE OUTPUT ERROR =~ STATUS (XXXXXX)

An error has occurred on the save file. The
file 1is closed at the end of the last data
that was successfully output. The status is
represented by the right half of the file
status word. Refer to DECsystem=10 Monitor
Calls for the explanation of the file status
bits.

SYMBOL TABLE SORTING NOT YET IMPLEMENTED

Alphabetic and numeric sorting of the symbol
table is not yet implemented. The symbols
appear in the order in which they were placed
in the symbol table.

5-26

LINK-10

Messages

‘CODE

SST

STC

T13

DS

TEC

LVL

31

$I

¥F

W

F

SEV

I

%I

LF

W

F

-801- LINK-10

MESSAGE

- SORTING SYMBOL TABLE

LINK=10 is arranging the symbol table in the

order specified by the user via the /SYSORT
switch, and if required, is converting the
symbols * from the new to old format as
indicated on the /SYMSEG, /SYMBOL, or /DEBUG

switch

SYMBOL TABLE COMPLETED

The symbol table has bee“ sorted and moved

‘according to the user's request via the

/SYMSEG, /SYMBOL, or /DEBUG switch.

LVAR (TYPE 13) CODE NOT IMPLEMENTED

LINK item type 13 (LVAR) is not implemented

in LINK-10 hor supported by DEC. The TWOSEG

pseudo-op in the MACRO-10 language should be

used.

TOO LATE TO DELETE INITIAL SYMBOLS

The /NOINITIAL switch was placed in the

command string after the first file

specification.‘ Because this switch was not

first in the command string, LINK=1l0's

initial symbol table was loaded.

TRYING TO EXPAND COMMON

An attempt was made to expand a COMMON area.

The largest occurrence of the COMMON area of

a given name must be 1linked first. Once

defined, the size cannot be expanded although
new COMMON areas of different names can be

defined. The user should load the largest

occurrence first.

5=27

LINK-10

LINK=-10

Messages

CODE LVL

TSO 'F

URC $I

UsSA W

SEV

F

%1

W

-802-

MESSAGE

CANNOT ILOAD TWO SEGMENT MODULE INTO ONE

SEGMENT ’

The user attempted to force two segments into

one segment via the /SEGMENT switch.

However, the binary file does not contain the

necessary information (i.e., the length of

the high segment) in LINK item type 3. This

situation is usually caused by a one-pass

compiler (e.g.,ALGOL).

UNKNOWN RADIX~50 SYMBOL CODE

Bita 0-3 of the first word of the 1link item

contain an unknown symbol code. Either the

translator is generating incorrect code or

the binary file is bad. The user should

recompile the file.

UNDEFINED STARTING ADDRESS

The user has given a global symbol as the

start address and the symbol is currently

undefined. The user should load the module

that defines the symbol.

-803~ | LINK-10

LINK-10

Examples

CHAPTER 6

LINK-10 EXAMPLES

EXAMPLE 1 Loading and Executing COBOL Programs

The following files are on the user's disk areas

' DIRECT)

FILA cel. 1 <P55> 6eFEB®Y3 oSkBy £27,232)
r};a ce, 2 P55 62FEB=73

FILC cBl. 1 P55> 6aFEHnD3
2R 6LNK LOG 1 <@P55> 2BuFEHAY3
SIMPLE MAC 1 <P55> 282FEH=Y3

TOTAL OF & BLOCKS IN 5 FILES ON DSKBY [27,235]

In the command string shown below, the user is automatically

compiling, loading, and executing the programs and generating a map.

The /CONT:ZERO switch is passed to LINK,

VEXECYUTE /ZLINK/MAP FILA,FILE,FILCX!CONTIZERO!)
COBOL} CESABA (F1LA,CBL] -

COBOL} cespsB CFILB,'CBL]
COBOL { C8Sgac [FILC,CBL)
LINK? LOADING
LEXECUTION] ‘ ,
RUNNING CBSQ@BA o

KRUNNING CBSg8B

HUNNING CBS@B8C

EXIT

In the followng command sequences the user is compiling the files and

then directly loading and executing them through LINK=10.

LINK-10 -804-

LINK-10

Examples

1COM FILA,FILB,FILC)

c080L 1 cBSE8A [FiLa,cBLI

CoBOL| cBS@Es [FILB,CBL)
COBQL} CBS@8G CFILC,CBLY

EXIT

1ROLINK)

“FILA FILB,FILC,/MAP/CONT{ZERO/EXECUTEAGO)
LEXECUTIONY

RUNNING CBS28A

KUNNING CBS@8B
RUNNING CBS@8C

EXIT

EXAMPLE 2 Loading and Executing a MACRO Program

The user assembles the following MACRO program:

tCOMPILE SIMPLE,MAC J
MACRD| SIMPLE

EXIT

In the following command sequences, the user loads the MACRO program,
interactively requests a listing of the relocation counters, library
search symbols, and undefined global symbols, and then executes the
program.,

'R LINK)

*SIMPLE J
o/CQUNTER)
RELOCATION COUNTER INIT]AL YALUE GURREgT VALUE (QCTAL)

7] 14
{1 GH’ 420000 400025

»/ENTRY J)
NO LIBRARY SEARCH SYMBOLS (ENTRY POINTS)

#«/UNDEF INE)

NO UNDEFINED GLOBAL SYMBOLS

#«/EXECUTE/GO)

-805- LINK-10

LINK-10

Examples

LEXECUTION] '
THIS IS A VERY SIMPLE TWO=SEGMENT MACRO PROGRAM,

EX17

EXAMPLE 3 Loading COBOL Programs and Creating a Saved File

In the following example, the user is individually loading each file

and requesting a listing of undefined global symbols after each file

is loaded. He also is requesting the searching of the default system

libraries. After searching has been performed, the user creates a

saved file and executes the core image. .

ROLINK D

sFILAZY)

6 UNDEFINED GLOBAL SYMBOLS

BTRAC, 1212

TRACE, 1277
TRPD, " 1214
TRPOP, 1213

CBSPBE 1327

CBODnT, 1260
«F ILB/Y)

6 UNDEFINED GLOBAL SYMBOLS
BTRAC, 1367

TRACE , 1473
TRPD, 1371

CBSVEC 1615
TRROFP, 1370
CBDOT, 1454

#FILC/V)

% UNDEFINED GLOBAL SYMBOLS

BTRAC, 2052
TRAGE), 2147
TRPD, 2054

TRPOP, 2953

CBDDT, 2130

#/SYSL1B/U)

NO UNDEFINED GLOBAL SYMBOLS

LINK-10 -806-

LINK-~10

Examples

*FIL2/SAV/EXECUTE/GO)
LEXECUTIONY

MUNNING CBS@B8A

RUNNING CBSQ8B
HUNNING CBS@8¢

EXIT

FILE SAY 5 <K@55> 23«APR=7S D3KC1 [27,235]

t

Example 4 Loading LINK-10

The Command File

/NOINITIAL /LOGLEVELSY OSK|LINK/MAP /GCONTINOABS s/RUNAMEILINKe

/HASHSLZE | 120Q0/TESTIDDT/SYMSEGIH ,LNKEXO,SCAN,HELPER=
s LNKINI, /NOSTART LNKSCN,LNKWLD,LNKF]O,LNKLOD,LNKOLD, NKNEW, | NKF4On

1 LNKCST, LNKGOR,, LNKLOG , LNKERR , |LNKMAP , _NKX] T, LNKSUB/SEARCH/GO

Running LINK-10 With the Terminal as the Log Device

f1le 23nApprw73LINK=40 LOG
M LINKei@ Injtiallzetion8198111 1 1 L]

8158146 4 1 EXP Expanding |ow Segmgnt ta 14P
8158J46 1 1 MOV Moying low sagment to eypand area QY

3158136 1 1 UMN Loading modyle UDDT
BI5BJ46 1 1 MOV Moving |ow ssgment to expand area GS

B158147 4 4 EXP Expandinmng |ow segment ta 18P
8158147 4 1 MOV Moving |ow segment to eypand area |C
8198117 1 31 MOV Moving low segment to expand area LC

8188147 1 4 LMN Load|ing modyl|e LNKEXQ

8158147 1 1 EXP Expanding |ow segment te 22P

BISBJ47 ¢ 41 MOV Moving low ssgment to expand area LC
8158148 1 31 LMN Loading modyle SCNDCL

8158148 4 41 LMN Loading modyle ,SCAN

8158148 1 1 MOV MoyIng |ow segment to eypand area HC
8158148 4 4 MOV MovYng |ow sagment tQo expand area HC

8158148 1 4 MOY Moving |ow seagment to exband area HWC
8158118 4 31 EXP Expand|mg |ow segment te 24P

BI5B)18 ¢ 1 MOV Moving |ow Segment to eypand area LS
81561348 ¢ 1 MOV Moying low Segment to expang area (3

8158118 4 4 LMN Loading module TOUTS

6-4

LINK-10

Examples

8158118
B158)48

6158118

BiI58)48

8158148

815818

8158119

8158119

o158}149
8158149
8158149

8158119

8158119

8198139
8158120
8158)2p
8158120
815820

8158120
8156121
8158121

81584214
8158121

8158121
8198123
81%8]21

8158122

8158122

81586129

g158)28
8158}28

8158128
8158129

815868429

8158129

8158329
8158|3p

8158|3p
8158132

815832

8158133

8158134

8158}34

8158134
8158)36

e m

B
4
R

A

A

55

F
A
F
S

5
0
 1
0

18

1
0

JA

A

B
A

SR

0

4

5D

1
8

A

b8

3

A
 4
4

4
B

4R

3
6

g
a

L
l
 e

o

e

e

e

o
t

oy

O

S
R

e
o

o
l
 o

l
L
}

7Y

LY

 T

P
R

V
T
N

Z
H
A
E
S

A

S

A

3

b

R

A

5
B

R

A

A

4
R

A

3

MOY

WLMN

EXP

MOV

LMN

LMN

LMN

MOV

EXP

MOY
LMN

MOV
LMN

MOy

EXP

MOV

MOV

EXP

MOV
LMN

MOV

LMN

MOV

EXP

MOV

MOY

LMN

EXP

PLS
MOV

LMN

LMN

LMN

LMN

WMN

LMN
MPS

MOV

EMS
EXS

SST
EXP

MOY
ST¢

FIN

-807-

Moving Tow ssgment %o

Loading modyle ,CNTOT

Expanding ([ow segment

Moving low segment %o
Loading modyle ,SAVE
Loead|ng modyle MELPER

Loading modyie | INK

Moving low segment to
Expanding |ow segment

MoyTng low segment %o
Loading modyle L NKSCN
MevIing |ow Seagment %o
Loading modyle LNKWLD
Moving |ow Segment to
Expancding |ew sagment

Moving Jow Segmant ¢o
Moving |ow Ssegment to
Expanding |ow sSegment

Moving [ow Segment to
Loading modyle |LNKF]O

MoyTng Jow Segment to

Leading modyle NKLOD
Meving |ow Segment to
Expanding jow segment

Moving |ow Segment to
Moving Jow Segment %o
Load|ng modyle LNKQLD
Expand|ng |ow segment

]

.

®

exhand

te 3oP
expand

axpand
te 3J4P

expand

exhang

expand
to 38P

expand

expand

ta 42P

expang

expangd

axpand

ta 46P

expand

expand

ta 5gP

Ares |S overfiowinmg to (iSK
Meving |ow Segmant ¢o eypand area LS

mogyl|e

modyle

mogyle
modyle

l,NKMAP

WNKX]T
b NKPRM

Lead|ng

Leading
Loading
lL.eading

Leading modyle

Leading modyle

MAP segment

, INSUB

JOBDAT

L TSUBS.

area

Area

area

area

ares

area

Area

area

apea

area

area

Area

area

HE

LS

HC

L3

HC

HEC

HC

L1¢

LS

LS

HE

HC
LS

Moving low Segment to expand area LS
End of MAP seamant-

EX]T segment

Sorting symbo| tabje
Expandimg |oOw segment te 67P
MovTng low segment to expand area HC
Symmbo| table completed

LINKe12 finlshed

F LOG FILE]

-808-LINK-10

LINK~-10

The Map File
Examples

#l4eaedojoeyLIVLY
Clew[vep)L3502z"(ie300)cTb¥Wibue|ggge

o
Py

a>

o

[14

o

)TICLET

|0QuAs|0Quids|
oGuAs

|6QUAs|0QWAs|0QuAs|oduAs|oquAs38Spue lwgolg1127_ane_a92vbWNIT wedBodd M|
peluwoc|

‘gbacdd s

4%=/e2gY3Bue| A9gpue202083Vspue7

(22
22

X

-2X2.22YTXYY}

Wgisgesgg¢esgesON3400400

YYXYY680dppe3J83S
e61ieysjJuewBesUB|HW48644J€386JuWouBesSMOYTadnt

6-6

LINK-10-809-

LINK=-10

Examples

s
|
y
e
y
u
d
o
j
e
y

d
{
q
e
q
u
s
d
j
o
y

v

-§[Qusedd|oy9|qesedd|oy N
I
G
N
I
S

-
¥
N
E
Y{0QuAs|6QuAS|

S
Q
w
A
S

|QuAs[OQuAs|6QuAs|6QuwAs|CQuAs
3
9

S
p
u
e

4%Spue g
3

&

£Lsbuy|86|9SCTTIE

F
a
a
s
i
y

S
T

ouey

fl14

2
’»

OX3INNY

Y
O
I
N
N
T%NT

Y

26720y484807208%E0y

A14v0,AR

LINK-10 -810-

LINK-~10

Examples

Example 5 Loading the Monitor

'~ The Command File

/NOINITIAL /LOGLEVELIL /HAGH!I70R0 TO0Pgs10/5AVEe
» TOPS18/MAP 2 /L0OCALS /MAXCOR 200K COMMON, ¢OMDEV, COMMODe+ TOPS12/SEARCH /NOSYSL}BRARY /GO

LINK=12 LOQG] (e

The Log File
A - S Y S S e o

23epppa73
104142 1 1 | IM | INKe1@ injtiallzatlon
JIB4119 1 1 EXP Expanding |ow Segment ta 14PY104149 1 1 MOV Moving |ow segment to expaAng area DYPI04119 1 1 LMN Loading mody|e COMMONIP4119 1 1 MOV Moving |ow Segment to expand area | CP104119 1 1 EXP Expand|mg |ow segment ta 28p104139 1 1 EXP Expanding low segment ta 3Z2P7104119 1 1 MOV Moylng |ow segment to expand area |C104149 4 4 MOV Moying |ow segment to expand area |C
71paje9 1. 4 MOV MovIing |ow Segment to expand area (€104120 1 4 EXP Expanding |ow segment te 3I6P71g4]20 1 1 MOV Meving |ow segment to expeand area |5Yi04J20 1 4 EXP Expand|mg |ow sagment to 4ppJig4l2p 1 4 MOV MayIng |ow sagment to expand area | S1p4l20 4 3 EXP Expandimg |ow segment ta 44pP
104120 1 1 MOV Meving |ow Segment t0 expangd area LSvigaj2a 1 3 EXP Expanding |ew segmenmt ta 48P
P104j2% 1 1 MOV MoyIng |ow segment to expand area S
Y104121 "1 4 EXP Expand|mg |ow segmenmt ts 52P
Yig4j21 1 1 MOV Moving Jow Segment Yo expand area (SYig4aj22 1 1 MOV MoyTng low Segment %o expand area LSYio4122 1 1 LMN LoadIing moegy|e COMDEVFi04122 1 41 EXP Expanding |ew segmemt tp Sep
Yip4j22 4 4 MOV Meving low Segment to expand area LGYip4)22° 1 1 MOV Moving |ow msegment to expand area |C104122 1 1 MOV Moving |ow segment to expang area |C91pa123 3 1 EXP Expand|mg |ow segment ta 4gP
Y1p4123 3 3 MOV Moying |ow segment %o expand area |$YIPA123 1 3 MOV MoyTng |ow Segmeént to expand ares (S7104123 1 1 LMN Loading modyle coMMOD
194123 4 1 EXP Expand|mg |ow segmenmt to 6P2ip4f23 1 1 MOV MeyIng)ow segment to expang area (¢FIp4123 ¢ 4 EXP EXpanding |ow segment ta #2P

LINK-10

Examples

91p4)23

V104123

Yipal2s
Y104}23
Y104]24

910424

9104)24

9104124

9104)24

918424

Pipa124
91pat24
Yiv4a)24
710424
Yipal24
9104125
Yipal27
9ipaj27
91g4j27
Yip4ap27
vyigaya7
Yipa)27

Yiga27
91p4)28
Yip4)28
9104128 F

A
G
A

I

A

F
E

A

5

4
3

5
8

1
A

F
A
 R
S

B

P
R

S

S
R

0

3
D

f
A
4
S

S
R

R

F
A
 L
S

$
a

g

9105135
9195137
105151

Y

b,]

v e
T
M

£ Z
H
A
A

S

F
A

P
R

A

A
4
S

5
0

A

R

G

$
A
 T
R

5
0

A

p
A
 L
S

g

F
a
g
s

0

F
P
R
P
P
P
R
B
P
P
R
B
P
B
R
E
B
H
P
B

B

S
B
R
R

R

R
p

p
s
s

1

1

i

1

1

i

1
1

i

1
1

1

i

1

1

i
i

1

b

i
1
0

MOV

EXP

MOV
MOV

MOV

MOV

MoV
MOV

MOV

MOV

MOV

MOV

MOV

MOV

PLS

MoV

MOV

MOV

MOV

MOV

LMN

MOV

LMN
MOV

MOV

MOV

MOV

MOV

MOY

LMN

MOV

MOY

MOY

MOV

MOY

MOV

MOV

MOY

FCF

MPS
MOV

EMS

EXS

SST

STC

CSF

FIN

-811-

MovyTing |ow Segment %o sxpang

gxpanding |ow segmenrt to 43P
Moving |ow segment to expand
Moving low segment to expand
Moving low segment to expand
Moeving |ow Segment %o expand
MoyTng |ow sSegment to expand

Moving low Segmant %0 expgngd
MovIng |ow segment to eypand
Moving Jow segment Yo expand
MevIing |ow Segment %0 expand
MeyTng |ow segment %o expand
MovTing |ow segment to ekpand
MovTing low segmsant to expand
Area LS overfjlowing to QSK

MovIng jow segment to expand
MovIing low segment to eypand
Moying |ow sagment %0 eypsnd
Meving |ow Seament to expand
Moving |ow Segment to expang

Leading modyle EJBDAT
Moving |ow Segmeant to expand
Loading modyie FILFND -

Moving low Segment %o ekpand
Moving |ow Seqgment to expand
Moving low segmaent %0 expand

@

@

@

Moving [ow Segment to expang
MovIng |ow Segment to expand
Movina |ow Ssegment to expand

Leading modyle QONCE
MovIing |ow segment to expand
Moving low Segment %0 expand

MeyTng loew segment t0 expand
Meving |ow segment to expand
MeyTng |ow Segment to eypand
MeyIng low segmentto expand
Moving lew segment to ekxpand
Moving low segment to expand
Fina| core f|xyps

MAP segment ,
Moving oW segment %o eypand
Eng of MAF sggment

EX]IT segment
Sopting symbol

table completedsymmbo|

tab|e

Creating SAV ¢{]le

‘ LINKe12 finished
F LOG F1LE]

area

area

apen

area

area

area

area

gpea

ares

araa

area

area
area

ares

area

area

area

area

area

araa

grea

area

aresa

area

area

area

area

area

area

arse

area

Rrea

ares

araea

LINK-10

-812-LINK-10

LINK=10

Examples

The Map File

posseJddfspesseddifigpessedddngpassodddnfspesseJddifngpessoJdaispesseddehgpessedUlfgpesgeddifgpessodddfigpessodddngpesseddingpessedddigpesseddlngpessedddhgpessedddpgpessegddUhspesse
dddngpessedddp

specsSedddpgpegsadddfg(jewjoep)s248T{iw3d8)/324 ARLAELTRLT6lgviebdjou®ulNelqeses0|dxSuONelgeivso|oyuWoNel4eqwoo]eyuoneiqezedd|ay*uonN0iQe800|NPUENoldesesd|ousuoNolQqeivdo|en®udyelgeaenoeyuoneldgejedojeu®ubyelquaedojeysuonNo|qejeoo
joy®uon

9]qv3030|0uWONolqeavdojeycuon8/qeaeso|eyuonolgdeando|oy"uoNglauiucdeyuoné/Qqeaes0|eyuonNelgeyeoo|ey®udnslqeqeso|eN2uwoONolqe3ed0|9yuoNelqueiedo|enauonN6|avindojeysuopn9/d83890|6yaudNusbue|[gp4

|oGwAsjOQuAsjoQWAsg|oQuAs|OQuAs|
6QWAs|oQuAs

|OQuUiAs|oQuwASs|0QuAs

|
OQWAS

|oQuAsLT|0QuAs|
oQuAs

|
0QuAs

|0duAs|
0QuAsloquAis|6SwAs legei9By,BLAVAYRITIE¢ctyy¥3snhvieqel9bofvleqe|9pyt,IVAVAYlegqels08022029udSSYleqo|9aoeedyNoassv

RITTE]Py2NSHdY|sa¢io2NsTudyjvae|92v2NsPydvRIIIE!9468AvS@dvfeqe|9629¢ovsB4yvieqel9£66089loy0dyiBqelyv29¢L3484V

lvgel9$H9¢d0dldyIeqo|9£6GETYINNB4vjegqol9o§09¢N3readyeqo|9a%ceINLRdY

|egols&NHO@dYLLLIEbLSSALELELALEIE@zs9%o8ddy

lvas|9tedgNNYANY[egoelo¢28gdsf99yl8qe|9Tv[egol9£20¢WA3AQYfegolo2tygv.isayfeqol9fSecatylugel9becagN3AQBY

IvqelspeBLLdoN'av|®dol9a
v

EISTHTTIN3uNOWWOAINSOwedy
PRiopiRt3w2/s000m2%uU®peledds
d¥s=944291yibue|94,223eolcele.(4604utisdga23sdbl 48spue2

LY

AVg/edaV¥epzWo(o0)woisdeagTsXNITA4pednpoig

NOWWDD

4$4J¥36jupwBesMmMoY

6-10

LINK-10-813-

LINK-10

Examples

¢l8LSlbas69obe
gdpoeseddifsBesssddefispessedddfspessodddfig NODOANWHISASTa3nssX0w3

H
elW

eN

11L9L949L984L)99eb
eyLIELIRolaeivdojeysuonN$/G84830|8N"UON

HIdVdeW
eN

|$QuAs|6QuAsKLY|OQWAS|oluAs

|
6QUWAs[OQWAS16QuAis

6
9eb
ed|%go(919g019RI-L1E!RI-[-IKleqe|9|¥goi9

¥
3
8
d
d
TonnYt401914ol

eN

b
s2

%
.1

91

2
8

859¢&gebey
NOM

XdQ
NYWL

YCQ

13500TY¥I69DintHlsNH4
ZD

NEC20NH1E9oM9lEHWNNiYE

6-11

-815- LINK-10

LINK~10

Item Types

APPENDIX A

LINK Item Types

Input to LINK=10 is in the form of relocatable binary (.REL) files.

Each .REL file is composed of link items of varying lengths. Each

link item contains a specific type of information for LINK-10. The

first word of these items is a header word containifig, in the left

half, an octal code for the item type and, in the right half, usually

the number of words in the item. For item types 0-37, the count of

words does not include overhead words (i.e., relocation words); for

item types 1000-1777, the count does include these words. The format

of the remaining words depends upon the individual 1link item. The

link items are as follows:

Link Item Type Use

0-37 Reserved for DEC

40-77 ‘ Reserved for customers

100-377 Reéerved for DEC

400 : FORTRAN-IV (F40) marker block

401 FORTRAN-IV (F40) with MANTIS information

402-777 Reserved for customers

1000-1777 Reserved for DEC (not used in the first

release of LINK=-10)

2000-3777 Reserved for customers

4000-777777 ies:rved to avoid conflict with ASCII

ex

LINK-10 -816~-

LINK-10

Item Types @-37

A.l Link Item Types 0=37

Link items in this range are the LOADER program block types and all

have an identical format. The first word of the item, the header

word, contains the item type in the left half and the count of data

words in the right half. Following the header word is a relocation

word containing up to 18 2-bit bytes which specify the relocation bits

for the 18 words or 1less that follow. The relocation bits are

left=justified and have the following meanings:

Byte Value Meaning

Do not relocate

Relocate right half of word

Relocate left half of word

w

N

O
+

O

Relocate both halves of word

Following the relocation word are up to 18 words of the item. If

there are more than 18 words in the item, there is another word of

relocation bytes for the next 18 words. The relocation words are not

included in the count of data words appearihg in the left half of the

header word. Thus, an item with a word count of 23 decimal would be

as follows:

-817- LINK-10

LINK=-10

Item Types @-37

— ~word 1 word 18—
link item type code ,, 23 l g——word 2 word 17——+——;1:
18 relocation bytes L 1] [111

18 words

5 relocation bytes

—word 1
I_::ggfflgfg E Fyord 5

5 erds

A.l.1 Link Item Type 0

This item type is ignored by LINK=-10 and

store information not required by it.

this item type.

A.l.2 Link Item Type 1 CODE

therefore carn be used to

Totally null words look like

. This item type contains code and data. The first data word specifies

the beginning address into which the item is to be loaded. The

remaining words of the item are loaded into contiguous locations

starting at that address. All words, includiné the load address, are

relocated as specified by the relocation bytes.

If bit 0 of the first data word is 1, the word is assumed to be a

Radix=50 symbol. The load addiess is then the value of this symbol

plus the next word. Thus, in this case, there is one less actual data

word than is indicated by the count in the header word.

LINK-10

LINK-10

-818-

Item Types @§-37

A.l.3 Link Item Type 2 SYMBOLS

This item type consists of symbols, with each symbol occupying two

words. The first word of each symbol contains 4 bits of code (bits

0-3) and 32 bits of the Radix-50 representation of the symbol (bits

The second word is the value of the symbol.

The code bits are as follows:

00

04

10

14

44

50

60

This symbol is a program name. It 1is entered into the
symbol table by a 1link item type 6, not an item type 2.
(This code should never happen.)

This symbol is a global definition. Its value is available
to other programs. Two global symbols with the same name
but different values cause an error message.

This symbol is a local symbol and is not loaded unless. the
user requests the loading of local symbols. Local symbols

of the same name can occur in different modules without
causng an error, even though the values may be different.

This symbcl is a block name and is used by translators that
are block structured. This symbol is not loaded unless the

user requests loading of local symbols.

Same as code 04, with the addition that the global symbol is

suppressed to DDT typeout.

Same as cocde 10, with the addition that the local symbol is
suppressed to DDT typeout.

This symbol is a global request.

If bit 0 of the second word in the pair is 0, then bits
18=35 contain the address of the first word in a chain of
requests for the global. 1In each request, the right half of

the second word contains the address of the next request.
The chain is terminated when the right half of the second
word contains zero.

If bit 0 of the second word in the pair is 1, the request
involves additive global processing. When bit 2 of this
word is 0, bits 18-~35 contain an address of a word of code.
The right half of the value of the symbol requested is added
to the left or right half of this word of code according to
the following rule:

If bit 1 of the second word in the pair is 1, the add

-819- LINK-10

LINK-10

Item Types @-37

is to the left half.

If bit 1 of the second word is 0, the add is to the

right half.

The result is stored back into the word of code. (Note that
there is no full word add; that result must be accomplished
by a left and a right add.)

When bit 2 of the second word is 1, bits 3-35 contain the

Radix-50 representation of a second symbol, whose value
depends upon the global being requested. The second symbol

nmust be the last symbol defined before the global request or

else it will be treated as a local symbol and no action will
occur, unless local symbols are being loaded. When the
value of the requested global is determined, it is added to
the right half of the value of the second symbol if bit 1 of
the second word is 0, or to the left half if bit "1 is 1.
Since the actual value of the symbol is not determined until
the definition of the global upon which it depends, the code
bits of the symbol indicate that the value of the symbol
will change and cannot be used to satisfy requests until the
symbol is fully defined.

A.l.4 Link Item Type 3 HISEG

This item type indicates to LINK-10 that code is to be loaded into the

high segment. This item type has either one or two data words. The

right.half of the first data word is the initial address in the high

segment (usually 400000). When the left half of the data word is

zero, subsequent CODE items are assuméd to have been produced by the

HISEG pseudo-op in MACRO-10. This means that the addresses are

relative to zero but are to be placed into the high segment. When the

left half of the first data word is negative (i.e., gfeater than the

right half) , subsequent CODE items have been generated by the TWOSEG

pseudo=-op in MACRO-10. This requires that addresses greater than the

right half be placed into the high segment and addresses less than the

right half be . placed into the 1low segment. The left half is

interpreted as the high segment break (i.e., the first free 1location

LINK-10 | -820-

LINK=-10

Item Types #-37

after the high segment) with the maximum length of the high segment

being the difference between the left and right halves of the word.

One-pass translators that cannot determine the high segment break

should set the left half of the data word equal to the right half.

If there is a second data word (e.g., as in FORTRAN-10), the right

half of tfiis word is the low segment origin (usually 0) and the left

half is the low segment program break.

A.l.5 Link Item Type 4 ENTRY

This item type is the entry item and must be the first item in a .REL

file if the «REL file is to be 1loaded in a library search. It

consists of a list of Radix=50 symbols which are separated every 18

words by a relocation word of zeroes. When LINK-10 is in library

search mode, each global symbol in the list is checked against the

undefined global requests for the load. If one or more matches occur,

the following module is loaded. If a match does not occur, the module

is ignoreq. If LINK~10 is not in library search mode, this checking

of undefined global requests is not performed.

The entry items are stored. If the module is not loaded, these items

are ignored. If the module is loaded, the entry items are scanned

again and the entry point bit is turned on for the corresponding

symbol in the symbol table.

A.1.6 LINK Item Type 5 END

This item type is the end item and is the last link item in the .REL

-821- LINK-10

LINK-10

Item Types @-37

file. It contains two wordé whose meanings depend on whether the file

contains two segments or one. If the file has two segments, the first

word is the high segment break and the second word is the low segment

break. If the file has only one segment, the first word is the first

free location above the program‘(this word is relocatable) and the

second word is the highest absolute address seen, if higher than

location 137.

A.l.7 Link Item Type 6 NAME

This item is the name item and must appear before any type 2 link item

(SYMBOL), The item has one or two data words. The first word is the

program name in Radix-50 symboi format. The second word, if it

appears, contains in bits 6-17 a code for the translator that produced

the binary file, and in the right half the length of blank COMMON.

(FORTRAN programs use both named and blank COMMON. COBOL uses blank

COMMON to indicate the length of LIBOL's static area. Thus, the

length has meaning for FORTRAN and COBOL programs.) The octal codes

(bits 6-17) for the various translators are as follows:

Octal

Code Translator

0 UNKNOWN

1l F40

2 COBOL

3 ALGOL-~60

4 NELIAC

5 PL/1

6 BLISS~-10

7 SAIL

10 FORTRAN=10

11 MACRO

12 FAIL

LINK-10 -822-

LINK-10

Item Types @-37

Bits 0-5 of the second word indicate the processor on which the

program will execute. If the value of these bits is (0, the program

will execute on either processor; if the value is 1, the program will

execute onlym the KAl0 processor; and if the value is 2, the program

will execute only on the KI10 processor. Remaining values are

reserved for the future.

A.l.8 Link Item Type 7 START ADDRESS

This item type contains in the right half of the data word the address

at which execution of the program is to begin. The start address for

a relocatable program may be relocafied by means of the relocation

bits. The 1last link item of this type encountered by LINK-10 is the

one used, unless LINK-10 is ignoring start addresses (indicated by the

user via switches). If the program is not to specify a start address,

no item of this type should be included.

A.1.9 Link Item Type 10 INTERNAL REQUEST

This item type is provided for one-pass language translators when

internal symbols are used before they are defined. The item type

consists of a series of data words where each word represents one

request. Each data word has a value in the right half and a pointer

to the last request in the chain of requests for that value in the

left half. Each quantity may be relocatable. The symbols are chained

in a manner similar to the global requests which have bit 0 in the

second word of each pair equal to zero (i.e., the value is substituted

in the right half of each location in the chain). However, if a data

-823- LINK-10

LINK=-10

Item Types @-37

word is -1, then the next data word indicates a chained request to the

left half of the word specified rather than the right half,

A.1.10 Link Item Type 11 POLISH

This item type is provided for Polish fixups involving arithmetic and

logical operations on telocatable or externally-defined quantities,

Each item contains only one Polish string. The data words in each

item are a series 6f half-wordé consisting of operators and operands

followed by store operators and Stqre addresses. The operators and

operands are as follows:

0 The next half word is an operand.
1 The next two half-words form a 36-bit operand.
2 The next two half-words form a Radix-50 symbol which is

a global request, The operand is the value of the
global,

3 Add.

4 Subtract.

5 Multiply.

6 Divide. .

7 Logical AND.
10 Logical OR.

11 Left shift.

12 Logical XOR.
13 One's complement (not).
14 Two's complement (negative).

The store operators are as follows:

18 bit value

-1 Right half chained fixup (777777).
-2 Left half chained fixup (777776).
-3 Full word chained fixup (777775). The entire word

pointed to is replaqed-and‘the old right half points to
the next full word.

The half word following‘the store operator is used as the address of

the first element in the chain.

LINK-10 -824-

LINK~10

Item Types §-37

A.l.11 Link Item Type 12 LINK

Data words in this item type occur in pairs. The first word of the

pair is a link number and the second word is an address. There are 20

(octal) links numbered from 1 to 20. When LINK-10 is initialized, the

value of each link is set to zero. Each time a specific link is seen,

the current value of the link is stored in the address specified by

the second word of the word pair, and the specified address becomes

the new value of the link. If the number of the 1link seen is

negative, the address is saved as the end of the link . At the end of

loading, the current value for each link is stored in the address

indicated by the end of each link. If the end of the link is 0, no

storing is done.

A.l.12 Link Item Type 13 LVAR

This item type is used in LVAR fixups and is not currently handled by

LINK-10. It is not supported by DEC and is not needed because the

TWOSEG pseudo-op is superior. The first data word is the location of

a variable area in the 1low segment. The second data word is the

length of the area needed. The low segment relocation counter is

incremented by the area needed. Data words after the first two data

words occur in pairs. If bit 2 of the first word of the pair is zero,

then the second word contains, in its left half, the address of a

fixup chain, and in the right half, the relative location in the

variable area to use for this fixup. The chaining occurs with the

right half of the words if bit 0 of the first word is 0; otherwise,

chaining occurs with the left half of the words.

A-10

-825- LINK-10

LINK=-10

Item Types g-37

If bit 2 of the first word of the pair is one, then the pair is used

to make a symbol table fixup. The right half of the first word is the

value of the fixup. The second word is the Radix-50 representation

for the symbol.

A.l.13 Link Item Type 14 INDEX

This item type is produced by FUDGE2 to identify an index to LINK-10.

The index is a 1list .of all entry poihts (Link item type 4) in a

library .REL file with pointers to the beginning of the individual

modules. The index is 200 octai words long and if there are more

entries in the library fihan will fit in 200 words, other item types 14

are created to contain the remainder of the entries. Each index is

divided into sub~items of various 1lengths. The sub-items do not

include the relocation word normally found in entry items of a

library. Each sub-item has a header word with the word count in the

right half and thé link item type 4 in the left half. Following this

header is the list of Radix-50 entry symbols. After the 1list of

entries, there is a pointer to the individual module within the

library file. The right half of the pointer is the block number of

the module, and the left half is the word count within the block for

the start of the module. The last word of the index item type

contains a -1 in the left half to signal the end of the index item and

the block number of the next index item in the right half. If LINK-10

is not in library search mode, index items are ignored.

A-11

LINK-10 -826-

LINK=-10

Item Types @-37

A.l.14 Link Item Type 15 ALGOL

This item type is the special ALGOL OWN item. The first data word is

the 1length of the OWN area to be allocated in the low segment. The

remaining words are chained with the right half of the OWN fixups.

A.l.1l5 Link Item Type 16 REQUEST LOAD

This item type is produced by the SAIL compiler and is used to request

the loading of programs. Thus, a .REL file can request libraries and

other files to be 1loaded, thereby keeping the command string to

LINK-10 simple. LINK-10 maintains a table for the names of libraries

to be loaded and another table for the names of standard relocatable

binary files to be loaded. When a new file is requested by link item

type 16 or 17, LINK-10 searches the appropriate table to verify that

the file has not already been specified. If it has not been

specified, an entry is made in the appropriate table. After all files

in the LINK-10 command string have been loaded, the files specified in

the two tables are loaded. The relocatable binary files are loaded

first; the libraries are loaded last.

The data words in this link item type appear in triplets. The first

word contains the filename in SIXBIT (the extension of .REL is

assumed). The second word is the UFD number in binary, and the third

word is the SIXBIT name of the device containing the file.

A.l1.16 Link Item Type 17 REQUEST LIBRARY

This item type is the same as item type 16 except that the specified

A-12

-827- LINK-10

LINK-10

Item Types @-37

files are loaded only if they are needed to satisfy global requests.

That is, the files are loaded in library search mode. The data words

are identical to those in item type 1l6.

A.l.17 Link Item Type 20 COMMON ALLOCATION

This item type is used to allocate named COMMON areas. The relocation

word must be presént, but the bits should be zero. The data words are

grouped in pairs, where the first word contains the Radix-50 symbol

for the name of the COMMON area and the second word contains the

length of the area required by this program.,

This item type causes LINK-10 to éearch for the specified COMMON area

to determine if it has been previously loaded. If it has, the length

given in this item type must be less than or equal to the length

already allocated. Thus, the first program that defines a COMMON area

also defines the maximum size of that COMMON aréa. No subsequent

program can expand thié particular area, although COMMON areas of

different names can be defined.

If the specified COMMON area has not been loaded, the symbol name is

given the current low segment relocation value, and the length of the

area is added to the low segment relocation counter.

A.l.18 Link Item Type 21 SPARSE DATA

This item type is used to load data into arrays when link item type 1

is inefficient for this purpose. The data words are grouped in

sub-items and each sub~item is treated in the same manner as link item

A-13

LINK-10 -828-

LINK~10

Item Type 400

type 1. The first word of each sub-item contains in the left half a

count of the number of data words in the sub-item, and in the right

half the beginning address into which the data words are to be loaded.

The remaining words of each sub-item are the data words.

If bit 0 of the first word of a sub-item is 1, the first word is

assumed to be a Radix-50 symbol. The left half of the second word is

the count of data words and the right half contains an offset. The

load address is then the value of the symbol plus the offset.

A.l.19 Link Item Types 22-36

These item types are not yet defined and return an error message if

used.

A.1.20 Link Item Type 37 DEBUG

This item type is used for the debugging symbol table for COBDDT (the

COBOL debugging program). If debugging is requested in local symbol

mode, the data from this item type is loaded in the same manner as the

data from 1link item type 1. If local symbols are not required, this

item type is ignored.

A.2 Link Item Type 400 FORTRAN (F40)

This item type is output by the o0ld one-pass FORTRAN-IV complier

(F40). It does not contain a word count, relocation words, or data

words. It contains only the one word indicating the item type code.

A-14

-829- LINK-10
-

LINK-10

Item Type 401

A.3 Link Item Type 401 FORTRAN (F40)

This item type is similar to link item type 400 and in addition it

indicates that the file contains MANTIS debugging information.

A.4 Link Item Types 1000-1777

Link items in this range do not have identical formats. There is a

general pattern in tha£ the first word of each item contains an item

type number in the left half and a word count in the right half.

However; unlike 1link item types 0-37, the word count of item types
1000-1777 is a count of all followinyg words including overhead words

(relocation words). The structure of the relocation words depends

upon the link item; there may be any nufiber of relocation bits from 1

to 18 per half or full word.‘ Link items that do not need relocation

do not have relocation words. These item fypes are nbt used in the

first release of LINK-10,

A.4.1 Link Item Type 1000

This item type is ignored by LINK-10 and thus can be used to store

information not required by it.

A.4.2 Link Item Type 1001 ENTRY

This item type is the simple entry item and consists of a 1list of

SIXBIT symbols. Each data word contains one left-adjusted symbol

which éan be almaximum of six characters in length. There are no
relocation words, thus distinguishing this item type from item type 4.

However, the two item types are used in the same manner.

A-15

LINK-10 -830-

LINK-10

Item Types 1000-1777

A.,4.3 Link Item Type 1002 LONG ENTRY

This item type contains one extended symbol (i.e., the symbol contains

more than six characters) in SIXBIT, which is tested to determine if

it is required as an entry point. This link item type is used in the

same manner as link item type 1001.

A.4.4 Link Item Type 1003 NAME

This item type contains information about the file and the translator

that produced it. The information in this item is stored in the

symbol table and can be output on a map listing.

T'he data words occur in triplets. The left half of the first word of

each triplet contains flag bits for that triplet and the right half is

unused. The first triplet of data (the primary triplet) contains the

program name in SIXBIT in the second word. This program name is taken

from the TITLE statement in a MACRO-10 program. If the program name

is longer than six characters, one or more triplets follow containing

the remaining characters of the name. Triplets following the program

name are identified by the flag bits in the first word of each

triplet. The triplet after the name triplets contains the low segment

relocation counter in the second word and the high segment relocation

counter in the third word. The next triplet has, in the second word,

the SIXBIT name of the translator that produced the filé and in the

third word, the version number of the translator. This version number

is taken from location 137. The following triplet contains the

compilation date and time obtained from the LOOKUP UUO block in the

A~-16

-831- LINK-10

LINK-10

Item Types 1000-1777

second word, and in the third word, a default code for the translator

used, in case LINK~10 could not determine the translator from the

information in the previous triplet. The default translator codes are

listed in Paragraph A.1,7. The next triplet contains in the second

word, the name of the device on which the source file is stored, and

in the third word, the SIXBIT filename of the source file. The

information in the next triplet is the source filename extension in

the second word and the name of the UFD containing the sburce file in

the third wqrd. The next triplet .contains sdb-file directory

information. The folldwing triplefi contains the version number of the

source file as obtained by the translator that processed the file.

The information in the last triplet is interpreted as ASCII text and

is stored in the format in which it is given,

More than one NAME link item may be seen per module for programs made

from several source files. The program and compiler name triplets

must be the same in the the NAME link items, but the source filename

and any remaining triplets can be different.

A.4.5 Link Item Type 1004 RELOCATION

This item type consists of groups of words (usuélly pairs) without any

relocation words., The first data word of the item type contains the

total number of relocation groups in the item in order that sfifficient

space can be allocated. The firstvword of each relocation group has a

relocation level in the left half-and the count of the number of words

in the relocation counter name in the right half. The remaining words

in each group are the relocation counters. The relocation 1level is

A=17

LINK-10 -832-

LINK-10

Item Types 1000-1777

the position in the table of relocation counters, such that for any

word needing relocation, the value of the relocation byte will receive

the correct constant for addition.

If a relocation counter is not yet defined (or a complex Polish

expression not yet resolved), it must be placed in the undefined

table, and its slot in the relocation tables is marked as undefined.

All code referring to the undefined counter is stored in the fixup

area or on the disk. In other words, if the location into which code

is to be loaded is not yet defined, all the code under the relocation

counter must be placed in the fixup table or on the disk. Link item

type 1004 can appear anywhere and must be used whenever a new

relocation counter is used. The standard name for the low segment

relocation counter is .LOW. and the standard for the high segment

counter is .HIGH.. These counters normally occupy positions 1 and 2

in the table of relocation counters.

A.4.6 Link Item Type 1005

This item type is undefined and reserved for future definition.

A.4.7 Link Item Type 1006 START

This item type contains the start addresses for the program. It

consists of a relocation word with 4-bit bytes for full word

relocation, followed by the list of relocatable start addresses in

order of their use. These addresses are used or ignored depending on

the switches given by the user. Currently, only one start address per

program is recognized.

A-18

-833- LINK-10

LINK-10

Item Types 1000-1777

A.4.8 Link Item Type 1007 START

This item type is used for additional start addresses or external

symbolic start addresses. The 1link item is divided into groups of

words for each start address. The first word of each éroup contains

flag bits in the left half and the count of the number of words in the

group in the right half. Currently, bit 0 is fihe only flag bit. If

this bit is 1, a Polish. expression follows; if it is 0, a symbol

follows. This item type does not inclfide relocation words.

A.4.9 Link Item Types 1010-1017 CODE

The link items in the range 1010-1017 are similar except for the size

of the relocation byte. The most general case uses 18 bits per half

word, but this method consumes too much spaée for simple programs.

Item type 1010 has a byte size of 2 bits, thereby allowing three

relocation counters and absolute code. Relocation occurs only on the

right half of the word and is positive; the left half is considered

absolute. Since in most programs the code consists of constants in

the 1left half (op-codeé, in&exes, ACs) and relocatable addresses or

constants in the right half, this item type should be sufficient for

most programs.

Item type 1011 also has 2-bit bytes but has relocation for the left

half as well as the right half of the word. This item type allows

three relocation counters plus absolute code. Link item type 1011 is

used mainly for table generatioh.

A-19

LINK-10 -834-

LINK-10

Item Types 1000-1777

Item type 1012 allows relocation only for the right half of the word

(similar to item type 1010) but has a byte size of 4 bits, giving

allowances for 15 relocation counters.

Item type 1013 allows relocation for both the left and right halves of

the word (similar to item type 101l) but uses a 4-bit byte size.

Item types 1014-1016 are reserved for future use.

Item type 1017 has 18 bits of relocation per half word.

A.4.10 Link Item Types 1020~1027 SYMBOL

All symbols are in triplet format. The 1link items in the range

1020-1027 differ only in the size of the relocation b-te. This byte

is the same as the byte size for the corresponding CODE item. For

example, symbol type 1020 and code type 1010 use 2-bit bytes, symbol

type 1022 and code type 1012 use 4-bit bytes, and so forth. The

relocation word applies only to the third word of the triplet (the

symbol value). Thus, for example, in the case of symbol type 1020,

each relocation word is followed by up to 18 triplets rather than 18

words.

A.4.11 Link Item Type 1030 POLISH

This item type is provided for Polish fixups and consists of operators

and operands, including store operators and store operands in

pre-fixup form. Each item contains only one Polish string, but may

contain many different store pointers. Operators aré stored one per

half word, and symbols are stored in contiguous half words. Store

A-20

LINK-10

-835-

Item Types 1000-1777

LINK-10

pointers are in the form of either an address in a halfword or a byte

pointer in a full word. Associated with store pointers are store

operators

operator.

that shift the wvalue to the correct field and store

The store operator may also point to a symbol that is to be

stored in the symbol table,

The operators and operands are as follows:

G

[-
3

w

N

O

7

10-77

100

101

102

103

104

105

106

107

110

111

112

113

The next half word is an operand.

The next two half words form a 36-bit operand.

The next two half words form a 36-bit symbol which is a
global request. The operand is the value of the global.
The next half word is the count of half words in an extended -

symbol. The subsequent half words are the symbol.
The next half word is a numeric relocation counter for the

program.

The next two half words are a symbolic relocation counter.

The next half word is a count of the number of half words in
an extended symbolic relocation counter. The following

halfwords are the relocation counter.

The next two half words are a byte pointer to code

loaded.

Reserved for future use.

Add

Subtract

Multiply

Divide

Logical AND

Logical OR

Left Sshift (LSH)

Logical XOR

One's complement (not)

Two's complement (negate)

Get contents (MOVE)

Reserved for future use

The store operators are as follows:

18 Bit Value

-1 Right half chained fixup (777777).

-2 Left half chained fixup (777776).
-3 Full word chained fixup (777775).

-4 The next two half words are a byte

A-21

already

pointer

LINK-10 -836-

LINK~-10

Item Types 1000-1777

(777774).
-5 The next two half words are an instruction plus an

address (ANDM,XORM) (777773).
-6 The next two half words are a symbol and the value

‘ is stored in the half words (777772).
-7 The next half word is the count of the number of

half words in an extended symbol. The half words
following are the extended symbol and the value is
stored in these half words (777771).

=10 The next half word is a numeric relocation counter
(777770).

-11 The next two half words are a symbolic relocation
counter (777767).

-12 The next half word is a count of the number of
half words in an extended symbolic relocation
counter. The following half words are the counter
(777766).

=13 Reserved for future use.

The store operators obtain their arguments from a stack; the first

word is usually the value and the second is the memory address.

Addresses can be built using other Polish operators., For chained

fixups, the half word preceding the store operator is used as the

address of the first element in the chain,

A.4.12 Link Item Type 1031 POLISH

This item type is similar to item type 1030 except that Polish

notation in post-fixup form is used. The operators and operands are

the same,

A.4.13 Link Item Types 1032-1033

These item types are reserved for future use.

A.4.14 Link Item Types 1034-1037 CONDITIONAL

There are three kinds of conditonal loading item types: the Begin

A=-22

-837- LINK-10

LINK-10

Item Types 1000-1777

conditional, the End conditional, and the Else conditional. The Begin

conditiqnal has a unique number assignedby the translator 'which is

matched with the unique number in the End and Else conditionals. It

also contains a conditional operand and operator.. The End conditional

cancels the conditional loading, updates the relocation counters, and

generates the next implicit relocation counter, if it is not

explicitly defined by the user, so that following code can be loaded.

The Else conditional is the inverse of the condition in the Begin

conditional in that code is loaded if the condition is false. The

three kinds_of condition items can be nested.

A.4.14.1 The Begin Conditional - Link Item Type 1034 - This item type

has four relocation bits per half word thereby allowing 15 possible

relocation counters. Thé first data word contains the unique

conditional.number. If a number is not specified, zero islassumed and

LINK-~10 matches the Begin with the first End or Else conditional at

that level., The second data word contains the conditional operator in

the left half and the conditional operand in +the right half. The

remaining words contain the rest of the operand.

The conditional operators are coded as follows:

0 null

1 if zero

2 if greater than zero

3 if greater than or equal to zero

4 if less than zero

5 if less than or equal to zero

6 if not equal to zero

7 if defined

10 if not defined

11 if global

12 if local

A-23

LINK-10 -838-

LINK=-10

Item Types 1000-1777

The operand is either a symbol or a Polish expression. If the operand

cannot be evaluated, the words are stored on the disk. The operands

are:

100 , The next two half words coritain a SIXBIT symbol;
101 The next half word is a count of +the number of

half words in an exterided symbol. The following

words contain the SIXBIT symbol. '

102 A pre-fixup Polish expression follows (refer to

Paragraph A.4.11).

103 A post-fixup Polish expression follows (refer to

Paragraph A.4.12).

If the condition is met, all code up to an End or Else conditional is

loaded. When the condition is not met, the code is not loaded.

A.4.14.2 The Begin Conditional - Link Item Type 1035 - This item

type is similar +to Link Item Type 1034 except that it has half word

relocation per half word.

A.4.14.3 The Else Conditional = Link Item Typé 1036 = This item type

contains no relocation words and has one data word containing a unique

number matching the one in the Begin conditional. If the condition in

the Begin conditional is true, the code in the current Else

conditional to its matching End conditional or to the next matching

Else conditional 1is ignored. If the condition is not true, the code

is loaded.

A.4.14.4 The End Conditional - Link Item Type 1037 -~ This item type

also has no relocation words. The first data word is a unigque number

matching the one in the Begin conditional. If the condition in the

Begin conditional is false and no Else conditional is seen, the End

A-24

-839- LINK-10

LINK=10

Item Types 1000-1777

conditional is ignored. However, if code was loaded, the End

conditional is read. The item type cbntains one data word for each

relocation counter used in the same order as specified ih the last

relocation setting link item. The data words are the highest value of

the relocation counter used in the conditionally-loaded code. These

values are added to the current values, and to the accumulation of

such values, until the final END item type of the REL file.

A.4.15 .Link Item Type 1040 END

This link item marks the end of a link module. It does not contain

relocation words but does contain a list of all relocation counters

used and their final values. Any conditional code that was loaded

plus other overhead items, such as the ALGOL item, are added to the

final values. The resulfiing values are Ehen added to the current

values of the relocation counters to obtain the value for the next

module. The beginning and ending addresses are stored in the symbol

table in order that DDT has the range of the program and tha£ they can

be output in a map listing.

A.4.16 Link Item Type 1041 Special FORTRAN-10 Block

This 1ink item defines a call to a special once-only routine that is

to be executed by LINK-10 after all code has been loaded.

A.4.17 Link Item Type 1042 Program Request

This link item requests the loading of .REL files required for this

program. It is similar to 1ink item type 16; however, there are no

A-25

LINK-10 -840-

LINK=10

Item Types 1000~1777

relocation words. This item replaces the need for library searches

and 1is wuseful when loading real and dummy routines because it

specifies filenames rather than modules names.

The data appears in groups of four or more words. Each group contains

the following words:

Name of the device in SIXBIT containing the file.

Name of the file in SIXBIT.

Extension of the file in SIXBIT in the left half, and the length

of the directory in the right half,

UFD in octal.

Remaining wordsin the group are sub~file directory names in SIXBIT.

The requests are stored until the end of loading and are loaded before

the default 1libraries and requested libraries (link item type 1043),

Any number of files can be requested,

A.4.18 Link Item Type 1043 Library Request

This item type requests the searching of libraries, either in search
mode for all unresolved entries or for particular modules. The data

is identical to that in item type 1042,

A.4.19 Link Item Types 1044-1047

These item types are reserved for future use.

A-26

-841- LINK-10

LINK-10

Item Types 1000-1777

A.4.20 Link Item Type 1050 Global Data

This item type contains data that is common to many programs (i.e.,

constanfis, argumént‘iisté; literals in MARCO-lO 1angdage). _The global

data item_consists of two other link items: the rélocationr setting

item (type 1004) and a code item (types 1010-1017). The initial

glbbal data item has no relocation words. The first data word is the

header of the relocation item and only the relocation actually used

should appear in this word; all other entires should be =zero. The

next data words are fihévdata for the relocation item. Following these

data words is a codé‘item with reiocation bits and data which may be

feldcatablelor absoque. LINK~-10 collects all the global data blocks,

compares them, and keeps.dnly one copy of those with the same data and

relocation. The global data items are lo&deé,at the end of loading or

immediétely after a /DATA switdh is seen. Tfiese items should reduce

the size of loaded programé be¢au$e of pooling of literals.

A.4.21 Link Item Types Greater Than 3777 ASCII

These items are recogniéed by the ' first seven bits being non-zero

(i.e., an ASCII character)., There is no word count in the item.

Termination of the item occurs at a null byte. These items are

generated by translators and contain ASCII commands similar to those

tjped on the user's terminal. Thus they are similar to an indirect

file. ASCII items allow the overlay structure to be embedded in the

file to simplify the maintaining of large overlay programs.

A=27

-8u3- | LINK-10

LINK=-10

LOADER and LINK-10 Differences

APPENDIX B

LOADER AND LINK-10 DIFFERENCES

This appendix is intended as an aid for users wfio have been employing

the LOADER program and who are now converting to the LINK~10 program.

Both programs are linking loaders. Both have the same basic functions

of loading and relocating user's object code modules and résolving

references among the modules. But LINK-10 is not just an updated

version of LOADER. It is a completely new, more sophisticated, and

more flexible piece of software. This appendix itemizes the

differences between the two programs in order to facilitate conversion

to LINK-10,

LOADER LINK=10

The default output device is The default output device is

TTY. : DSK.

The default name of the MAP The default name of the MAP

file is MAP.MAP. file is the name of the last

- program with a start address.

If there is no program with a

start address, the default name

is nnnINK.MAP, where nnn is

the user's job number.

Command f£iles are specified Command files are specified

in the form in the form
* file @ * @ file

The default extension of The default extension of

the command file is .TMP. the command file is .CCL.

Input and output specifications Input and output specifications

are separated by a back-arrow may be separated by an equals

(+). Thus, an output. file sign (=), but this is not

is defined as being on the required. An output file is

LINK-10 =844~

LINK-10

LOADER and LINK-10 Differences

left side of the back=-arrow.

The only output file

produced by LOADER is

a map file.

Exit conditions are /G,

altmode, and 4Z.

Line terminators

(e.g. <carriage return, line feed>)
are treated in the same way

as commas (i.e., they terminate the

specification). File dependent

switches remain in effect until
overridden by a subsequent switch

or until the end of the load.
The most recently specified

source device remains the default

until a new device is specified
or until the end of the load.
Defaults carry across lines.

To load local symbols for

FILEl and FILE2 and

then load DDT, the following

sequence could be used:

*/S
*FILEl1,FILE2

*/W/D$

To search FILEA and FILEB

in library search mode, the

sequence:

*/L

* FILEA,FILEB

they belong.

specified by givinga file

specification followed by an

output switch.

LINK-10 can be instructed
to produce map, save, log,

symbol, and XPN files.

The only exit condition is
/GO.

LINK-10 has a line oriented

scanner. All file-dependent

switches are turned off at the

end of the line to which ,

The most recently

specified source device remains

the default until a new device

is specified or until the end

of a line is reached. Standard

defaults are restored at the

beginning of each line. 1In

general, it is best to place all

the commands for loading a

program on a single 1line. A

hyphen is wused as the line

continuation character.

To load local symbols for

FILEl and FILE2 and then

to load DDT, the following

sequence is used:

*/LOCALS FILEl,FILE2,

* /TEST /GO

Note that if the /LOCALS switch
had appeared on a line by

itself, it would have had no

effect.

To search FILEA and FILEB

in library search mode, the

sequence is:

* /SEARCH FILEA,FILEB

The sequence

LINK-10

LOADER and LINK-10Q0 Differences

could be used.

When performing a search of

the default libraries at the

end of the load, LOADER

makes one pass through all

required libraries. 1In

addition, LIB40 is always

searched.

The /D and /T switches

load with local symbols.

This mode remains in effect

until it is turned off with

the /W switch, and remains

off until another switch

which loads local symbols

is given.

The following table lists each LOADER switch and the LINK-10

which performs the nearest equivalent action.

-8145- LINK-10

* /SEARCH

*FILEA,FILEB

does not cause FILEA and FILEB
to be searched. Instead, they

are loaded in their entirety.

LINK-10 performs multiple passes

through all required libraries

until no undefined symbols

remain or until no additional

routines have been loaded. 1In

addition, LIB40 is not

automatically searched unless it

is required by an F40 program.

Thus, when loading MACRO

programs which utilize routines

in LIB40, the user must

explicitly request that LIB40 be

searched. Also, JOBDAT.REL is

not searched unless the

/NOINITIAL switch is used.

LINK=-10 automatically

initializes its global symbol

table to include JOBDAT symbols.

The /TEST and /DEBUG switches

instruct LINK-10 to load all

subsequent files with their

local symbols. The /NOLOCAL

switch can be used to suppress

the loading of local symbols.

However, since the /NOLOCAL

switch is file dependent, it is

cleared at the end of the line

and load with local symbols mode

is reinstated.

switch

Note that there is not

always a one-to-one correspondence between the action performed by the

LOADER switch and by the LINK-=10 switch. Refer to Chapter 4 of the

LINK-10 Programmer's Reference Manual for the complete descriptions of

the LINK-10 switches.

LINK-10

LINK-10

LOADER and LINK-10 Differences

/A

/B

/1B

/nnnnB

/C

/D

/E

/F

/1F

/2F

/G

/nnnG

/H

/1H

/nnnnH

/-H

/1

/3

/nK

/=K

/L

/M

/1M

-846-

LINK-10

/CONTENT: ZERO

/SYMSEG:LOW

/SYMSEG:HIGH

/PATCHSIZE:nnnn

No equivalent switch. LINK-10 does

not support the old CHAIN facility.

/TEST:DDT or /TEST:MACRO

/EXECUTE |

/SYSLIB

/FORSE

/FOROTS

/GO

/START:nnn

/SEGMENT: LOW

/SEGMENT: HIGH

/SET: .HIGH, :nnnn

/SEGMENT: DEFAULT

/NOSTART

/START

/RUNCOR:n

No equivalent switch. Use /RUNCOR,

/SEARCH

/MAP: END

/MAP : END/CONTENT: LOCALS

-847- LINK-10

LINK=10

LOADER and LINK-10 Differences

/N /NOSEARCH

/nnno /SET:.LOW. :nnn

/P | /NOSYSLIB

/Q /SYSLIB at the end of the command

string.

/R No equivalent switch. LINK=10 does

not support the old CHAIN facility.

/s \ /LOCALS

/T 4 /DEBUG:DDT or /DEBUG:MACRO

/U /UNDEFINED

/v /OTS:HIGH

/=v /OTS: LOW

/W /NOLOCALS

/X /CONTENT: NOZERO

/Y /REWIND

/2 /RUN: LINK

-849- | ~ LINK-10

LINK-10

Glossary

GLOSSARY

Absolute Address

A fixed location in user virtual éddtess épace which cannot be

reiocated. For example, the high-speed accumulators on the

DECsystem-10 occupy locations 0 through 17 (octal) in the user's

virtuai address space. All modules that reference the

accumulators must reference these locations. Thus the addresses

0 through 17 (octal) are absolute addresses.

Absolute Module

A module whose location counters are set to absolute addresses

only.

Address Binding

The assignment of virtual address space to the physical address

space in computer memory. This is automatically performed by the

DECsystem=10 monitor and is completely invisible to user

programs.,

Assemble

To prepare a machine-language module from a symbolic-language

module by substituting the actual numeric operation codes for

symbolic operation codes, énd absolute or relocatable addresses

for symbolic addresses.

Glossary-1

LINK-10 -850-

LINK-10

Glossary

Assembler

A program which accepts symbolic assembly code and translates it

into machine instructions. MACRO-10 is the standard assembler

supplied by DEC.

Base Address

An address used as a basis for computing the value of some other

address. This computation is usually of the form

final address = base address (+ or =) offset.

Clear

To erase the contents of a location by replacing the contents

with blanks or zeroes.

COMMON Area

A section in a program's address space which is set aside for

common use by many modules. COMMON is usually set up by modules

written in the FORTRAN language. It is used by

independently-compiled modules to share the same data locations.

Control Section

A unit of code (instructions and/or data) that is c¢onsidered an

entity and that can be relocated separately at load time without

destroying the logic of the program. Control is passed properly

from one Control Section to another regardless of their relative

positions in user virtual address space. A Control Section is

Glossary-2

-85] -
LINK-10

LINK-~10

Glossary

identified by a relocation counter and thus is the smallest unit

of code that can be relocated separately.

Default Directory

The directory in which the Monitor searches if a directory

specification has not been given by the user. Typically, this is

the UFD corresponding to the user's logged=-in project-programmer

number but it may another UFD or a SFD (sub-file directory).

Directory

A file which contains the names and pointers to other files on

the device. The MFD, UFDs, and SFDs are directory files. The

MFD is the directory containing all the UFDs. The UFD is the

directory containing the files existing in a given

project-programmer number area. The SFD is a directory pointed

to by a UFD or a higher-level SFD. The SFDs exist as files under

the UFD.

External Symbol

A global symbol which is referenced in one module but defined in

another module. The EXTERN statement in MACRO-10 is used to

declare a symbol external. A subroutine name referenced in a

CALL statement in a FORTRAN module is automatically declared

external.

Glossary-3

LINK-10 -852-

LINK-10

Glossary

File

An ordered collection of 36-bit words comprising computer

instructions and/or data. A file is stored on a device, such as

disk or magnetic tape, and can be of any length, limited only by

the available space on the device and.the user's maximum space

allotment on that device.

File Specification

A list of identifiers which uniquely specify a particular file.

A complete file specification consists of: the name of the device

on which the file is stored, the name of the file including its

extension, and the name of the directory in which the file is

contained.

FUDGE2

A system utility program used to update libraries containing one

or more modules and to manipulate modules within these libraries.

GET

To transfer a saved program from a file on a device into core

memory using a bootstrap program or the Monitor. The GET command

places a program into memory. The RUN command performs the same

operation and, in addition, starts the program. The GET

operation differs from the LOAD operation (refer to LOAD).

Glossary-4

_853- | LINK-10

LINK-10

Glossary

GLOB

A system utility program used to read libraries and to generate

an - alphabetical cross-referenced list of all the global symbols

encountered. When a program is composed of many modules which

communicate via 'global symbols, it is wuseful to have an

alphabetical list of all global symbols with the names of the

modules in which they are defined and referenced.

Global Request

A request to LINK-10 to link a global symbol to a module.

Global Symbol

High

A symbol that is accessible to modules other than the one in

which it is defined. The value of a global symbol is placed in

LINK-10's global symbol table when the module containing the

symbol definition is loaded.

Segment

That portion of the user's addressing space, usually beginning at

relative location 400000, which generally is used to contain pure

code that can be shared by other users. This segment is usually

write-protected in order to presérve the data. The user can

élace information into a high segment with the TWOSEG pseudo-op
in MACRO-~10. Higher-level language, such as COBOL and FORTRN,

also have provisions for loading pure code in the high segment.

Glossary-5

|.INK-10 -854-

LINK-10

Glossary

Initialize

To set counters, switches, or addresses to zero oOr other starting

values at prescribed points in the execution of a computer

routine.

Internal Symbol

A global symbol located in the module in which it is defined. In

a MACRO-10 program, a symbol is declared internal with the INTERN

or ENTRY pseudo-op. These pseqdo-ops generate a global

definition which is used to satisfy all global requests for the

symbol. In FORTRAN programs, internal symbols are generated to

match the names of SUBROUTINEs, FUNTIONs, and ENTRYs, An

internal symbol is similar to a library search syfibol; - however,

it will not cause a module to be linked in search mode.

Job Data Area (JOBDAT)

The first 140 octal locations of a user's address space. This

area provides storage for certain data items used by both the

Monitor and the wuser's program. Refer to the DECsystem~10

Monitor Calls Manual.

Label

A symbolic name used to identify a location in a program.

Glossary-6

-855- LINK-10

LINK-10

Glossary

Library

A relocatable binary file containing one or more modules which

may be loaded in Library Search Mode. FUDGE2 is a system utility

program which enables usersto merge and edit a‘ collection of

relocatable binary modules into a library file. PIP can also be

used to merge relocatable binary modules into a library, but it

has no facilities for editing libraries.

Library Search Mode

The mode in which a module (one of many in a library) is loaded

only if one or more of its declared entry points satiéfy an

unreéolved global request..

Library Search Symbol (Entry Symbol)

A list of symbols that are matéhed against unresolved symbols in

order to load the apérop;iate modules. This list is used only in

library»search mode. A library search symbol is defined by an

ENTRY statement in MACRO-10 and BLISS-lO and ‘a.SUBROUTINE,

FUNCTION, or ENTRY statement in FORTRAN.

Linker

A program that combines many input modules into a single module

for loading purposes. Thus, it allows for independent

compilations of modules. Typically, it satisfies global

references and may combine control sections.

Glossary-—-7

LINK-10 -856-

LINK=-10

Glossary

Link

To combine independently-translated modules into one module in

which all relocation of addresses has been performed relative to

that module and all external references to symbols have been

resolved based on the definition of internal symbols.

Linking Loader

Load

A program that provides automatic loading, relocation, and

linking of compiler and assembler generated object modules.

To produce a core image and/or a saved file from one or more

relocatable binary files (REL files) by transforming relocatable

addresses to absolute addresses. This operation 1is not to be

confused with the GET operation, which initializes a core image

from a saved file (refer to GET).

Local Symbol

A symbol known only to the module in which it is defined.

Because it is not accessible to other modules, the same symbol

name with different values can appear in more than one module.

These modules can be 1loaded and executed together without

conflict. Local 8ymbols are primarily used when debugging

modules; symbol conflicts between different modules are resolved

by mechanisms in the debugging program.

Glossary=-8

-857- LINK-10

LINK-10

Glossary

Low Segment

The segment of user virtual address space beginning at zero. The

length of the low segment is stored in location .JBREL of the Job

Data Area. When writing two~-segment programs,it is advisable to

-Place data locations and impure code in the low segment.

Main Program

The module containing the address at which object program

execution normally begins.

Module

The smallest entity that can be loaded by LINK=-10, It is

composed of a collection of control sections. In MACRO-10, the

code between the TITLE and END statements represents a module.

In FORTRAN, the code between the first statement and the END

statement is a module. In COBOL, the code between the

IDENTIFICATION DIVISION statement and the last statement is a

modu;e.

Module Origin

ihe first location in user virtual address space of the module.

Object Module

The primary output of an assembler or compiler, which can be

linked with other object modules and loaded into a runnable

program. This output is composed of the relocatable machine

Glossary-9

LINK-10 -858-

LINK=-10

Glossary

language code for the translated module (i.e., link items),

relocation information, and the corresponding symbol table

listing the definition and use of symbols within the module.

Object Time System

The collection of modules that supports the compiled code for a

particular language. This collection usually includes I/0 and

trap~handling routines.

Offset

The number of locations relative to zero that a Control Section

must be moved before it can be executed.

Operating System

The collection of modules that automatically permits continuous

job processing by scheduling and controlling the operation of

user and system programs, performing 1I/0, and allocating

resources for efficient use of the hardware.

Physical Address Space

A set of memory locations where information can actually be

stored (i.e., core memory) for the purpose of program execution.

Program

A collection of routines which have been 1linked and loaded to

produce a saved file or a core image. These routines typically

Glossary-10

~850- | LINK-10

LINK=-10

Glossary

consist of a main program and a set of subroutine which may have

come from a library.

Pure Code

Code which is never modified in the process of execution.

Therefore, it is possible to let many users share the same copy

of a program.

REL File

One or more relocatable object modules composed of 1link items

(refer to Appendix A).

Relocatable Address

An address within a module which is specifiedas an offset from

the first location in that module.

Relocatable Control Section

A control section whos.addressés have been specified relative to

zero. Thus, the control section can be placed into any area of

core memory for execution.

" Relocation Counter

The number assigned by LINK-10 as the beginning address of a

Control Section. This number is assigned in the process of

Glossary-1l1

LINK-10 -860-

LINK-10

Glossary

loading specific Control Sections into a saved file or a core

image and 41is transformed from a relocatable quantity to an

absolute quantity.

Relocation Factor

The contents of the relocation counter for a control section.

This number is added to every relocatable reference within the

Control Section. The relocation factor is determined from the

relocatable base address for the control section (usually 0 and

400000) and the actual address in user virtual address space at

which the module is being loaded.

Routine

A set of instructions and data for performing one or more

specific functions.

Segment

An absolute Control Section.

Source Language Program

The original, untranslated version of a program written in a

higher~level language (e.g., FORTAN, COBOL, MACRO). Source

programs, when translated, produce object modules as their

primary output. A program may exist as a source program, an

object module, and a runnable core image.

Glossary-12

-861- « LINK-10

LINK-10

Glossary

Symbol

Any identifier (composed of SIXBIT charactérs) used to represent

a value that may or may not be known at the time of its original

use in a source language program. Symbols can appear in source

language statements as labels, addresses, operators, and

operands.

Symbol Binding

To resolve references in one module to symbols which are defined

(i.e., are assigned a value) in another module.

Symbol Table

A table containing entrie for each symbol defined or used within

a module.

Translate

User

To compile or assemble a source program into a machine language

program, usually in the form of a (relocatable) object module.

Virtual Address Space

A set of memory addresses within the range of 0 to 256K words.

These addresses are mapped intd physica; core addresses by the

paging or relocation—protection haidware when a program is

executed. On a KAlO0 processor, the range of addresses is limited

by the amount of physical core available to a given user.

Glossary-13

LINK-10 -862-

LINK-10

Glossary

User's Program

All of the code running uder control of the Monitor in a user

virtual address space of its own.

Zero Length Module

A module containing symbol definitions but no instruction or data

words (e.g., JOBDAT). Note that the word "lengthTM in this

context refers to the program length of the module after loading.

Glossary-14

	643
	644
	645
	646
	647
	648
	649
	650
	651
	652
	653
	654
	655
	656
	657
	658
	659
	660
	661
	662
	663
	664
	665
	666
	667
	668
	669
	670
	671
	672
	673
	674
	675
	676
	677
	678
	679
	680
	681
	682
	683
	684
	685
	686
	687
	688
	689
	690
	691
	692
	693
	694
	695
	696
	697
	698
	699
	700
	701
	702
	703
	704
	705
	706
	707
	708
	709
	710
	711
	712
	713
	714
	715
	716
	717
	718
	719
	720
	721
	722
	723
	724
	725
	726
	727
	728
	729
	730
	731
	732
	733
	734
	735
	736
	737
	738
	739
	740
	741
	742
	743
	744
	745
	746
	747
	748
	749
	750
	751
	752
	753
	754
	755
	756
	757
	758
	759
	760
	761
	762
	763
	764
	765
	766
	767
	768
	769
	770
	771
	772
	773
	774
	775
	776
	777
	778
	779
	780
	781
	782
	783
	784
	785
	786
	787
	788
	789
	790
	791
	792
	793
	794
	795
	796
	797
	798
	799
	800
	801
	802
	803
	804
	805
	806
	807
	808
	809
	810
	811
	812
	813
	814
	815
	816
	817
	818
	819
	820
	821
	822
	823
	824
	825
	826
	827
	828
	829
	830
	831
	832
	833
	834
	835
	836
	837
	838
	839
	840
	841
	842
	843
	844
	845
	846
	847
	848
	849
	850
	851
	852
	853
	854
	855
	856
	857
	858
	859
	860
	861
	862

