
-197-

DEC-10~AMZC-D

MACRO-10 ASSEMBLER B
PROGRAMMER’S REFERENCE MANUAL

DIGITAL EQUIPMENT CORPORATION ¢ MAYNARD, MASSACHUSETTS

MACRO -198-
l1st Edition April 1967

2nd Printing October 1967

3rd Edition (Rev) August 1968

4th Edition (Rev) June 1969

5th Edition (Rev) October 1969

6th Edition (Rev) August 1970

7th Edition (Rev) April 1972

Copyright (:) 1967, 1968, 1969, 1970, 1971, 1972 by
Digital Equipment Corporation

The material in this manual is for information

purposes and is subjectto change without notice.

The following are trademarks of Digital Equipment

Corporation, Maynard, Massachusetts:

DEC PDP

FLIP CHIP FOCAL

DIGITAL COMPUTER LAB

CHAPTER 1

1.1

1.2

1.2.1

1.2.2

1.3

1.4

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.5.5

1.5.6

1.5.7

1.5.8

1.6

1.6.1

1.6.2

1.7

1.7.1

1.7.2

1.7.3

1.8

1.8.1

1.8.2

1.8:3

1.8.4

1.8.5

1.8.6

1.8.7

1.9

1.9.1

1.9.2

1.9.3

1.10

Version 47

-199-

CONTENTS

INTRODUCTION

MACRO-10 LANGUAGE - STATEMENTS

INSTRUCTION WORD FORMATS

Primary Instruction Format

Input/Output Instruction Format

COMMUNICATION WITH MONITORS

OPERATING PROCEDURES

MACRO STATEMENTS

Symbols

Labels

Symbolic Addresses

Operators

Symbolic Operators

Operands

Symbolic Operands-

Comments

STATEMENT PROCESSING

Order of Statement Evaluation

Order of Expression Evaluation

USER-DEFINED SYMBOLS

Direct Assignment Statements

chél and Global Symbols

Deleted Symbols

NUMBERS

Arithmetic and Logical Operations

Evaiuating Expressions

Numeric Terms

Binary Shifting

Left Arrow Shifting

Floating Point Decimal Numbers

Fixed Point Decifial Numbers

ADDRESS ASSIGNMENTS

Setting and Referencing the Location
Counter

Indirect Addressing

Indexing

LITERALS

June

iii

MACRO

205

206

206

207

208

209

209

209

209

210

210

211

211

212

212

213

213

214

214

215

215

216

217

218

219

219

220

221

222

222

222

223

224

224

224

225

1972

MACRO -200-

CHAPTER 2 MACRO-10 ASSEMBLER

STATEMENTS - PSEUDO-OPS 227

2.1 ADDRESS MODE: RELOCATABLE OR ABSOLUTE 227

2.1.1 Relocation Before Execution - PHASE 229

and DEPHASE Statements

2.2 NAMING PROGRAMS 230

2.2.1 Program Subtitles 231

2.3 PROGRAM ORIGIN 231

2.3.1 HISEG Statements - The HISEG Pseudo-Op 232

Statement

2.3.2 TWOSEG Statements 232

2.4 ENTERING DATA 233

2.4.1 RADIX Statements 233

2.4.2 Entering Data Under the Prevailing Radix 234

2.4.3 DEC and OCT Statements 234

2.4.4 Changing the Local Radix for a Single 235

Numeric Term

2.4.5 RADIX50 Statement 236

2.4.6 EXP Statement 236

2.4.7 Z Statement 236

2.5 INPUT DATA WORD FORMATTING 236

2.5.1 BYTE Statement 236

2.5.2 POINT Statement - Handling Bytes 237

2.5.3 IOWD Statement: Formatting I/0 239

Transfer Words :

2.5.4 XWD Statement: Entering Two Half-Words 239

of Data

2.5.5 Text Input 240

2.5.5.1 ASCII, ASCIZ, and SIXBIT Statement 240

2.5.6 Reserving Storage 241

2.5.6.1 Reserving a Single Location 242

2.5.7 VAR Statements 243

2.5.8 BLOCK Statements 243

2.5.9 END Statements 243

2.5.10 LIT Statements 244

2.5.11 Multi-Program Assembly 244

2.5.12 PASS2 Statements 245

2.5.13 PURGE Statements 245

2.5.14 XPUNGE Statements 245

2.5.15 Linking Subroutines 246

2.5.15.1 EXTERN Statements 246

2.5.15.2 INTERN Statements 247

2.5.15.3 ENTRY Statements 247

Version 47 June 1972

iv

2.6

2.6.1

2.6.2

2.6.3

2.7

2.8

2.8.1

2.8.2

2.8.3

2.8.4

2.9

2.9.1

2.9.2

CHAPTER w

CHAPTER 4

4.1

4.2

4.2.1

4.2.2

CHAPTER 5

CHAPTER 6

6.1

6.2

6.2.1

Version 47

-201-

SUPPRESSION OF SYMBOLS

SUPPRESS SYMBOL Statement

ASUPPRESS Statement

Listing Control Statements

CONDITIONAL ASSEMBLY

ASSEMBLER CONTROL STATEMENTS

REPEAT Statements '

OPDEF Statements

SYN Statements

Extended Instruction Statements

MULTI-FILE ASSEMBLY

UNIVERSAL Name

" SEARCH Name

MACROS

DEFINITION OF MACROS

MACRO CALLS

MACRO FORMAT

CREATED SYMBOLS

CONCATENATION

DEFAULT ARGUMENTS

INDEFINITE REPEAT .

NESTING AND REDEFINITION

ASCII Interpretation

ERROR DETECTION

SINGLE-LETTER ERROR CODES

ERROR MESSAGES

LOOKUP- Errors

MACRO I/O Error Messages

RELOCATION

ASSEMBLY OUTPUT

ASSEMBLY LISTING

BINARY PROGRAM OUTPUT

Relocatable Binary Programs - LINK

Format

June

MACRO

248

248

248

249

252

253

253

254

255

256

257

257

258

259

259

260

261

262

263

264

265

266

268

269

269

275

277

278

279

283

283

284

284

1972

MACRO

6

6

6

6

6

6

CHAPTER 7

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

Version 4

-202-

.2:1.1 LINK Formats for the Block Types

.2.2 Absolute Binary Programs

.2.2.1 RIMIOB Format

.2.2.2 RIM10 Format

.2.2.3 RIM Format

.2.2.4 END Statements

PROGRAMMING EXAMPLES

A OP CODES, PSEUDO-OPS,

AND MONITOR I/0 COMMANDS

A.l ASSEMBLER PSEUDO-OPS AND MONITOR CO

COMMANDS

A.2 MACHINE MNEMONICS AND OCTAL CODES

B SUMMARY OF PSEUDO-OPS

B.1l PSEUDO-OPS

B.1l.1 Conditional Assembly Statements

C SUMMARY OF CHARACTER INTERPRETATIONS

D STORAGE ALLOCATION

E TEXT CODES

F RADIX 50 REPRESENTATION

G SUMMARY OF RULES FOR

DEFINING AND CALLING MACROS

G.1 ASSEMBLER INTERPRETATION

G.2 CHARACTER HANDLING

G.2.1 Blanks

G.2.2 Brackets

G.2.3 Parentheses

G.2.4 Commas

G.2.5 Semicolons

G.2.6 Carriage Return

G.2.7 Back-Slash

G.3 CONCATENATION

7 June

vi

285

288

288

289

290

290

293

307

307

309

311

311

313

315

319

323

325

327

327

327

327

327

328

328

328

328

328

328

1972

APPENDIX H

H.1

H.2

H.3

H.3.1

H.3.2

H.4

Version 47

-203-

OPERATING INSTRUCTIONS

REQUIREMENTS

INITIALIZATION

COMMANDS

General Command Format

Disk File Command Format

SWITCHES

vii

June

MACRO

331

331

331

332

332

332

334

1972

-205- | MACRO

Chapter 1

Introduction

MACRO-10 is the symbolic assembly program for the PDP-10, and oper-

ates in a minimum of 7K pure plus 1K impure core memory in all ‘

PDP-10 systems. MACRO-10 is é two-pass assembler. It is completely
device independent, allowing the user to select standard peripheral

devices for input and output files. ’For_example, a terminal can be used

for input of the symbolic source program, DECtape for output of the

assembled binary. object program, and a line printer can be used to

output the program listing.

This assembler performs many useful functiqns, making machine

language programming easier, faster, and more efficient. Basically,

the assembler processes the PDP-10 programmer's source program

statements by translating mnemonic operation codes to the binary

codes needed in machine ihstructions, relating symbols to numeric

values, assigning relocatable or absolute core addresses for pro-

gram instructions and data, and preparing an output listing of the

program which includes notification of any errors detected during

the assembly process.

"MACRO-10 also contains powerful macro capabilities which allow the

programmer to create new language elements, thus expanding and

VERSION 47 JUNE 1972

1-1

MACRO -206-

adapting the assembler to perform specialized functions for each

programming job.

1.1 MACRO-10 LANGUAGE - STATEMENTS

MACRO-10 programs are usually prepared on a terminal, with the aid

of a text editing program, as a sequence of statements. Each state-

ment 1s normally written on a single line and terminated by a car-

riage return-line feed sequence. MACRO-1l0 statements are virtually

format free; that is, elements of a statement are not placed in

numbered columns with rigidly controlled spacing between elements,

as in punched-card oriented assemblers.

There are four types of elements in a MACRO-10 statement which are

separated by specific characters. These elements are identified

by the order of appearance in the statement, and by the separating,

or delimiting, character which follows or precedes the elements.

Statements are written in the general form:

label: operator operand,operand;comments (carriage return-line feed)

The assembler converts statements written in the foregoing form

and translates them into machine instruction words. The formats

used by the machine instructions are described in the following

paragraphs.

1.2 INSTRUCTION WORD FORMATS

There are two types of machine instruction word formats: primary

and input/output.

The PDP-10 machine instructions are fully described in the PDP-10

System Reference Manual and listed alphabetically in Appendix A of

this manual. Monitor I/O commands, or programmed operators have

the same formats. (See monitor manuals.)

The primary instruction statements may have two operands: (1) an

accumulator address and (2) a memory address. A memory address

may be modified by indexing and indirect addressing.

VERSION U7 JUNE 1972

-207- | MACRO

l.fi.l»_Primaty Instruction Format

Aftef brdceséing primary instruction statements, the assembler

produces machine instructions in the geheral 36-bit word format

shown below:

0 : 8 o ©42'13 14 1718 : 35

[b 1t 0o+ 1t 1 0 0 O |1 to l1 IO‘ o 1t]o 6 00 00O OC OO0 OO 1 00 00 O oJ

. _/

INSTRUCTION INDIRECT ADDRESS

PART BT PART

ACCUMULATOR INDEX
. REGISTER - 10-0062

Inh general, the mnemofiic,bperation code, or operator, in the sym-

polic statement is translated'£0 its binary equivalent and placed

in‘bits‘o—é of the chhineiinStfuctiénu The addréss operand is

evaluated and,placed‘in the address pért (bits 18-35 of the machine
instruction. The assemBlex-asSigns séqugntial binary addresses to

each statement as it,is prbcesSed by meéns of the loCation counter.

Labels are given the currénfi-value of the location counter and are

stored in the d ssembler's stbol tabi¢7 where the corresponding

binary addresses can be found if another instruction uses the same

symbol as an address reference.

Any one of 16 pOSsible acCfimdlators may be specified in an instruc-

tion by identifyifig them 9ymbolically dr numerically as operands

in the statement folloWéd by a-comma. The indirect address bit is

set to l.when the character @.bfefixés~a @embry reference. Index-

ing is-specified by wrifiing thefiindéx reqister used in parentheses

immediately following the memoty reference. (All PDP-10 accumula-

tors, except accumulator O, may be used as index registers.) Actu-

ally, expression§ encloéed in parentheses.(in the index register

position) are eva1uated as 36-bit quantities; their halves are ex-

changed, and then each half is added inté'the COrrespondihg half

of the binaty,Word being assembled. For example, the statements

MOVSI AC,(1.9) ;MOVE 1.4 TO AC)
MOVSI AC, (SIXBIT /DSK/)

are equivalent to

MOVSI AC,2¢01L4g@ ;MOVE 1.4 TO AC)
MOVSI AC,4U46353 ‘

VERSION 47 June 1972

MACRO -208-

To illustrate this general view of assembler processing, here is a

typical symbolic instruction. Assume that ACl1l7, TEMP and XR are

defined symbols, with values of 17, 100, and 3, respectively.

LABEL: ADD AC17,@TEMP(XR) ; STATEMENT EXAMPLE)

This is processed by the assembler and stored as a binary machine

instruction like this:

) 8 9 12 13 14 17 18 35

[I *
N _

v A — e
INSTRUCTION INDIRECT ADDRESS

PART BIT PART

ACCUMULATOR INDE X 10-0061
REGISTER

O

The mnemonic instruction code, ADD, has been translated to its octal

“equivalent, 270, and stored in bits 0-8. The first operand specifies

accumulator 178. The effective memory address will be found at exe-

cution time by adding the contents of index register 3 to the value

of TEMP, then taking this value as the address of the word whose

address points to the word to be added to ACl7.

A comment following a semicolon does not affect the program in any

way, but it is printed in the ocutput listing.

1.2.2 Input/Output Instruction Format

There are eight PDP-10 I/O statements; in each statement the first

operand is either a peripheral device number or a device mnemonic

(see PDP-10 System Reference Manual for complete list). The second

operand is a memory address. For example,

READ: DATAI PTR,@NUM(4))

requests that data be read in from a paper-tape reader, to be stored

at the indirect, indexed, address given.

The format for I/0 instruction words is shown below:

o) 2 3 9 10 12 13 14 17 18 a5

1R |1 |
-/

e Y hd
DEVICE INDIRECT ADDRESS)

SELECTION 8T PART

INSTRUCTION INDEX

PART REGISTER 10-0063

S
R

170

INSTRUCTION

VErs1onN 47 JuNe 1972

-209- MACRO
1.3 COMMUNICATION WITH MONITORS

Programs assembled with MACRO-10 which operate under executive con-

trol of a monitor must use monitor facilities for device independent
I/0 services. This is done by meansof programmed operators (opera-~
tion codes 040 through 077) such as CALL. INIT, LOOKUP, IN, OUT,

and CLOSE.

Additional monitor commands are available to allow the user program
to exercise control over central processor trapping, to modify its

memory allocatlon, and other services, which are described in the

monitor programmer's manuals.

Monitor commands are listed'in Appendix A.

1.4 OPERATING PROCEDURES

Commands fbr'lbading and executing MACRO-10 are contained in Appen-
dix H.

1.5 MACRO STATEMENTS

As previously stated (paragraph 1.1) macro statements consist of

a label, an operator,an operand and‘optional comments,

The assembler interprets and processes these statements, generating

one or more binary instructions or data woxrds, or performaing an
assembly process. A statement must contain at least one of these

elements and may contain all four types. Some statements are writ-
ten with only one operand; but others may have many To continue a
statement on the follow1ng line, the control (CTRL) left arrow («),

echoed as ++ is used before the carriage return-line feed sequence

(« ¥ or)). Examples of program statements are given in Chapter 7,
Figures 7-1 and 7-3.

Statement labels, operators and operands may be represented elther
numerlcally or symbolically. The assembler interprets all symbols

and replaces them with a numeric (binary) wvalue.

1.5.1 Symbols

The programmer may create symbols to use as statement labels,
as operators and as operands. A symbol may consist of any

VERsI1ON 47 -5 June 1972

!

MACRO -210-
combination of from one to six characters of the following

set:

The 26 letters, A-Z

Ten digits, 0-9

Three special characters: §$ (Dollar Sign)
% (Percent)

. (Period)

The foregoing character set is the Radix-50 character set.

Any statement character which is not in the Radix-50 set is treated

as a symbol delimiter when encountered by the assembler.

If the first characters of a symbol are numeric, the symbol is

treated as through the numeric characters were not present. If the

first character is a period, it must not be followed by a digit.

Spaces must not be embedded in symbols. A symbol may actually have

more than six characters, but only the first six are meaningful to

MACRO-10.

MACRO-10 accepts programs written using both upper and lower case

letters and symbols (e.g., programs written using thé Teletype

Model 37). Lower case letters are treated as upper case in symbols;

additional special characters, and lower case letters elsewhere,

are taken without change.

1.5.2 Labels

A label is the symbolic name created by the source programmer to

identify a statement. If present, the label is written as the first

item in a statement and is terminated by a colon (:). (Refer to

paragraph 1.5.1 for a description of how symbolic names are formed.)

1.5.3 Symbolic Addresses

A symbol used as a label to specify a symbolic address must appear

first in the statement and must be immediately followed by a colon

(:). When used in this way, a symbol is said to be defined. A

defined-symbol can reference an instruction or data word at any

point in the program.

A label can be defined with only one value; if a programmer attempts

to redefine a label with a different value, the second value is

VERsION 4/ June 1972
1-6

_211- | MACRO

ignored and an error is indicated (see Chapter 4 for error mes-

Isages). The following are legal labels:

$SUM:

ABC: DEF: (Both labels are legal)
FOO '

The following are illegal:

TABC: (Flrst character must not be a digit.)
LAB : (Colon must immediately follow label.)

If too many characters are used in a label, only the first six

characters given are used. For example the label ABCDEFGH: is

recognized by the assembler& being ABCDEF:.

Labels are used for programmer reference as addresses for jump

instructions, for loops and for debugging.

1.5.4 Operators

An operator may be one of the mnemonic machine instruction codes

(see DECsystem-10 System Reference Manual), a command to Monitor,

or a pseudo- operation code which dlrects assembly processing.. These

assembly pseudo-op codes are descrlbed in this manual, and llsted

| with all other assembler defined operators in Appendix A.

Programmers may extend the power of the assembler by creating their

own pseudo-operators (see OPDEF pseudo-op).

An operator may be a macro name, which callsa user-defined macro

instruction. Like pseudo-ops, macros direct assembly processing;

but, because of their unique power to handle repetitions and to

extend and adapt the assembly language, macros are considered

separately (see Chapter 3). Operators are terminated with a space

or tab.

1.5.5 sSymbolic Operators

Symbols used as operators must be predefined by the assembler or

by the'programmer. If a statement has no label, the operator may
appear first in the statement, and must be terminated by a space,

tab, or carriage return. The following are examples of legal operators:

"VERSI1ON 47 June 1972

* 1-7

MACRO -212-

MOV (A mnemonic machine instruction operator.)

LOC (An assembler pseudo-op.)

ZIP (Legal only if defined by the user.)

1.5.6 Operands

Operands are usually the symbolic addresses of the data to be ac-

cessed when an instruction is executed, or the input data or argu-

ments or a pseudo-oOp Or mMacro instruction. In each case, the in-

terpretation of operands in a statement depends on the statement

operator. Operands are separated by commas, and terminated by a

semicolon (;) or by a carriage return-line feed.

In the mnemonic machine instruction and UUO call set, if an oper-

and is followed by a comma (spaces in the line are ignored) then

the operand is identified as an accumulator (see instruction format

description in paragraph 1.2.1). If an operand is not followed by

a comma, then it is viewed as an address (either indexed or indirect

if negative).

1.5.7 Symbolic Operands

symbols used as operands must have a value defined by the user.

These may be symbolic references to previously defined labels where

the argument to be used by this instruction are to be found, or

+he values of symbolic operands may be constants or character

strings. If the first operand references an accumulator, it must

be followed by a comma.

TOTAL: ADD AC1,TAG)

The first operand, ACl, specifies an accumulator register, determined

by the value given to the symbol ACl by the user. The second oper-

and references a memory location, whose name or symbolic address is

TAG. If the user has equated ACl to 17, and the assembler has as-

signed TAG to the binary address, 000537, then the assembler inserts

17 in the accumulator field (bits 9-12) and 000537 in the address

field (bits 18-35) of this instruction.l If an accumulator is not

specified, but the operator requires one, accumulator 0 is assumed

by default. If an accumulator is specifies by the value >l78, the

four least significant bits are used.

VERsION H7 June 1972

-913-
MACRO

1.5.8 Comments

The programmer may add notes to a statement following a semicolon.

Such comments do not affect assembly processing or program execu-

tion, but are useful in the program listing for later analysis

or debugging. The use of angle'brackets (<>) should be avoided in

comments because they may affect the,assembly.

Each line of a program may contain a comment which explains the

purpose of the line and any special action it causes. A line may
also consist of only .a comment;‘this is usually done at the begin-

ning of each routine or major program section to explain.the major
flow of control, entry and exit points and any other pertinent

information.

1.6 STATEMENT PROCESSING

The assembler has several symbol tables and corresponding search

routines. The symbol tables arranged in the order in which they

are searched are:

1. Macro Table - This symbol table contains macros,
user—-defined operator definitions (op-defs) 'and
synonyms (refer to the description of the SYN
pseudo-op, paragraph 2.8.3). The macro table is
initially empty; it grows as the user defines
items. ' :

2. Op-Code Table - This symbol table contains all of
the operator-codes (op-codes), the UUO calls and
the assembler pseudo-operators (pseudo-ops). Lists
of the foregoing items are given in Appendices A and
B. The op-code table is generated by the assembler
and is of fixed length; it cannot be changed except
by reassembling MACRO.

3. User Symbol Table - This symbol table contains all
user~defined symbols other than those which are
Placed in the Macro Table. This table is initially
empty;it growsas the user defines items. -

4. Mnemonic Table - This table contains the mnemonics
for the CALLI, MTAPE and TTCALL UUO's. The mnemonic
table is searched only if all other measures fail.
Any symbol found in this table is put into the macro
table as an op-def as though the user had defined it.
Examples-of the mnemonics contains by this table are

a) RESET as defined by the CALLI #,g
b) EXITas defined in CALLI #,12
c) OUTSRT_as‘defined in TTCALL 3,8

~ Verston 47 D June 1972

MACRO -214-

Internally, the macro table and the user symbol table occupy the same

space; however, the entries of each table are easily distinguishable

so no confusion takes place.

1.6.1 Order of Statement Evaluation

The following table shows the order in which the assembler searches

each statement field:

Label Field Operator Field Operand Field

1. Symbol suffixed by 1. Number 1. Number

colon. If colon is 2. Macro/OPDEF 2. Symbol
not found, no label 3. Machine operator 3. Macro/OPDEF
is present. 4, Assembler operator 4, Machine operator

5. Symbol 5. Assembler operator

6. CALLl mnemonic

A single symbol could be used as a label, an operator, or an operand,

depending on where it is used.

The assembler first checks the operator field for a number, and if found,

assumes that no.operator is present. Likewise, if a symbol is not a

macro, OPDEF, machine operator or assembler operator, the assembler will

search the symbol table. If a defined symbol is found, no operator is.

present.

If a defined operator appears in an operand field, it must generate at

least one word of data. Statements that do not generate data may not

be used as part of operand expressions. If a statemeht'used in an

operand expressions generates more than one word pf'data,-dnly the

first word generated is meaningful. |

1.6.2 Order of Expression Evaluation

Expressions are evaluated in the following order:

~ (Unary operator)

*p, to, *B, *F, *tL

B Shift, <« Shift

Logical operators

Multiply/Divide.

Add/Subtract

At each level, operations are performed left to right.

VERsSION 47 JUNE 1972

-215- MACRO

1.7 USER-DEFINED SYMBOLS

User~defined symbols are of two typesi labels and assignments. Labels
are generated by entering a symbol followed immediately by a colon

(e.g., TAG:). Symbols used as labels cannot be redefined with a dif-
ferent value once they have been defined. The value of a label is the
value of the location cofinter at the time that the label is defined.

Assignments are used to represent, symbolicaliy, numbers or bit patterns.
Assignments ease the doding task in that only one line has to be changed(that éontaining the assignment) in order to change é number or bit pat-
tern which is used throughout the progrgm:' Assignment statements may be
changed at any time, the current value of an assignment is the last value
given to the symbol used.

1.7.1 Direct Assignment Statements

The macro inserts new symbols with their assigned values directly into
the symbol table by using a direct assignment statement of the form,

symbol=value)

where the value may be a number or expression. Note that the equal sign
must immediately follow the symbol. For example,

ALPHA= 5)
BETA= 17)

A direct assignment statement may also be used to give a new symbol the
same value as a previously defined symbol:

BETA= 17)
GAMMA= BETA)

The new symbol, GAMMA, is entered into the symbol table with the value 17.

The value assigned to a symbol may be changed:

ALPHA= 7)

changes the value assigned in the first example from 5 to 7.

VERSION 47
June 1972

MACRO -216-

Direct assignment statements do not generate instructions or data in the

object program. These statements are used to assign values so that symbols

can be conveniently used in other statements.

1.7.2 Local and Global Symbols

User-defined symbols may be used as local and global symbols in addition

to beging used as label and assignment symbols.

Local symbols are symbols which are known only to the program in which

| they are defined. Two separately assembled macro programs may contain

local symbols which have the same mnemonic but different definitions;

these programs, however, may be loaded and executed without conflict

since the symbols are defined as local to each program.

Global symbols are symbols which can be recognized by programs other

than the one in which it is defined. The manner in which a global

symbol is written or defined depends on where it is located: in the pro-

gram in which it is defined or the program in which it is a reference to

a symbol defined elsewhere.

Global symbols located in the program in which they are defined must be

declared as available to other programs by the use of the pseudo-ops

INTERN or ENTRY (see paragraphs 2.5.14.1 and 2.5.14.3) or by the use of

the delimiter =: in their definition statement. For example, the symbol

FLAG may be declared a global symbols by:

a. INTERN FLAG (the symbol FLAG is declared internal),

b. ENTRY FLAG (identifies the entry point of a library subroutine) ,

c. FLAG=: 2¢¢ (FLAG is given the value 200 and is declared internal).

NOTE

The statement in item ¢ of the foregoing examples

(i.e., FLAG=: 2@@) is equivalent to the series

INTERN FLAG

FLAG= 208

Global symbols located in a program in which they are references to symbols

defined in other programs must be declared as external symbols by the use

of the EXTERN pseudo-op (see paragraph 2.5.14.1) or a ## suffix. For

example, the statement

EXTERN FLAG

VERSTON 47 .. June 1972

-217- MACRO

declares the symbol FLAG as an exterfial reference. The statement

MOVE @ ,FLAG##

also declares the symbol FLAG as an external reference; this statement
is the equivalent of the series:

EXTERN FLAG

MOVE @ ,FLAG

1.7.3 Deleted Symbols

Sometimes a programmer may want to define a symbol in MACRO but not have
that symbol typed out by DDT (refer to the DDT Programmer's Reference
Manual). In such a case, the programmer should define that symbol with
a double equal Sign:

FLAG== 2¢p)

FLAG will be assigned.the value 200 and will be

a. Fully available in MACRO.

b. Available for type-in with DDT - (assuming that symbols
were loaded for the program containing FLAG).

C. Unavailable for type-out by DDT.

This is equivalent to defining FLAG by:

FLAG= 204)

and then typing

FLAG$K - (the. symbol $ represents ALT MODE)

to DbT .

A symbol may be defined with == and declared internal in the following
manner ‘

FLAG==:2QE).

VERs1ON 47
June 1972

MACRO -218-

is equivalent to

INTERN FLAG)
FLAG==20¢J

The programmer may also want to define a label in MACRO but have the out-

put of the label suppressed in DDT. The following constructions may be

used:

LABEL:! LABEL is a suppressed local symbol.

LABEL: :! LABEL is a suppressed internal symbol.

1.8 NUMBERS

Numbers used in source program statements may be signed or unsigned, and

are interpreted by the assembler according to the radix specified by the

programmer, where

2<radix<10

The programmer may use an assembler pseudo-op, RADIX, to set the radix

for the numbers which follow. If the programmer does not use a RADIX

statement, the assembler assumes a radix of 8 (octal) except in the case

of the POINT pseudo-op (see paragraph 2.5.2).

The radix may be changed for a single numeric term, by using the guali-

fier followed by a letter, D (for decimal), O (for octal), B (for binary),

or F (for fixed-point decimal fractions). Note that these are not control

characters. Thus,

+D1Q2 is stored as 1219

+01d is stored as 1848
+B1lg is stored as 2314

The qualifier +L is used for bit position determination of a numeric

value. +Ln generates an octal value equal to the number of 0 bits to

the left of the leftmost 1, if the numeric value n were stored in a

computer word.

ExXpression Resultant Value

448 zZzexro bits

+Lg 44 0000000000. . . .0000000000

VErRs1ON U4/ JuNe 1972

-219- ~ MACRO

Expression Resultant Value

418 Zzero bits

+L5 41 0000000000. . . .0000000101

+L-1 0 1111111111, . . .1111111111

The suffixes K, M and G may be added to numbers as a shorthand method of

specifying the number of zeros which are to follow the given number. The

meaning of each suffix is: '

a) K, add three zeros (e.g., 5K = 5000),

b) M, add six zeros (e.g.,5M = 5000000),

¢) G, add nine zeros (e.g., 5G = 5000000000).

1.8.1 Arithmetic and Logical Operations

Numbers and defined symbols may be combined using arithmetic and logical

operators. The following arithmetic and logical operators may be used.

Operator ' Meaning

Add

Subtract

Multiply

Integer Divide

AND

Inclusive OR—
_
e

N
\

¥

|+

The assembler computes the 36-bit value of a series of numbers and

‘defined symbols connected by arithmetic and logical operators, trun-
cating from the left, if nécessary. The following examples show how
these arithmetic and logical operators arelwritten in statements.

B= 65+X11-3)
MULI AC1+7,RHO/31)

MOVE A+3,BETA-5)

Combinations of numbers and defined symbols using arithmetic and logical

operators are called expressions.

1.8.2 Evaluating Expressions

When combining elements of an expression, the assembler first performs

unary operations (leading + or -), then binary shifts. The logical

operations are then done from left to right, followed by multiplications

VERSTON 47 1-15 JUNE 1972

MACRO ~220-

and divisions, from left to right. Division always truncates the frac-

tional part. Finally, additions and subtractions are performed, left

to right. All arithmetic operations are performed modulo 235.

For example, in the statement:

TAG: TRO 3,1+A&C)

the first operand field is evaluated first; the comma terminating this

operand indicates that this is an accumulator. In the second operand

field, the logical AND is performed first, the result is added to one,

and the sum is placed in the memory address field of the machine instruc-

tion.

To change the normal order of operations, angle brackets may be used to

delimit expressions and indicate the order of computation. Angle brackets

must always be used in pairs.

Expressions may be nested to any level, with each expression enclosed in

a pair of angle brackets. The innermost expression is evaluated first,

the outermost is evaluated last. The following are legal expressions:

A+B/5
<<(C=-D+B-29>%<p-U41>>4+]

| A=<B=<C=10>>

1.8.3 Numeric Terms

A numeric term may be a digit, a string of digits, or an expression en-

closed in angle brackets. The assembler reduces numeric terms to a single

36-bit value. This is useful when specifying operations such as local

radix changes and binary shifts, which require single values.

For example, the 4D operator changes the local radix to decimal for the

may be represented bynumeric term that follows it. The number 23lo

+D23

+D<5%¥2+13>

+D<TEN#¥*2+THREE>

but 23 may not be written,
10

+D18B-T7

VERSTON 47 June 1972

-221- ‘ MACRO

because the +D operator affects only the numeric term which follows it,

and in this example the second term (77) is taken under the prevailing

radix, which is normally octal. '

The B shift operator is preceded by a numeric term (the number to be shifted)

andis followed by another term (the bit position of the assumed point).

The following are legal:

+F167B17

+B14g¢11B8

566B5
<MARK + SIGN>B<PT-XXV>

A bracketed numeric term may be preceded by a + or a - sign.

1.8.4 Binary Shifting

A number may be logically shifted left or right by following it with the

letter B, followed by a numeric term, n, representing the bit position in

which the right-hand bit of the number should be placed. The numeric term,

n, may be any (decimal) bit position, starting with zero and numbering from

left to right. If n is not used, B35 is assumed; n is taken as modulo 256

decimal. Thus, the number +D1l0 is stored as 000000 000012; but 4D10B32 is

shifted left three binary positions and stored as 000000 000120; and D10B4

is shifted left 31 positions, so that its rightmost bit is in bit 4 and

stored as 240000 000000. |

Binary shifting is a logical operation, rather than an arithmetic one.

" The following are legal binary shifts:

1BJ 400000 000000
1B17 000001 000000

1B35 000000 000001

-1B35 777777 777777 (see explanation below)

-1B53 000000 777777

-1B792 000000 000001

Note that the following expressions are equivalent:

'10B32 4010B32 = 10B <42-10>= 10B< 4D <U42-10>>= 10B<4 DL2- 4D10>

Version 47 JUuNe 1972

MACRO -222-

The unary operators preceding a value are interpreted first by the as-

sembler before the binary shift. A leading plus sign has no effect,

but a leading minus sign causes the assembler to shift and then to

store the 2's complement.

Binary shifting may operate on numeric terms, as definedin Section 1.3.2.

1.8.5 Left Arrow Shifting

If two expressions are combined with the operator "<«", i.e., <m>+<n>, the 36-

bit value of expression m is shifted V bits (where V is the value of expres-

sion n) in the direction of the arrow (left) if V is positive or against

the arrow if V is negative. The effective magnitude of V is that of the

address of an LSH instruction.

1.8.6 Floating-Point Decimal Numbers

If a string of digits contains a decimal point, it is evaluated as a float-

ing point decimal number, and the digits are taken radix 10. For example,

the statement,

17.4 is stored as 205420 000000.

Floating-point decimal numbers may also be written, as in FORTRAN, with

the number followed by the letter E, followed by a signed exponent repre-

senting a power of 10. The following examples are valid:

NUM1: 17.2E-4)
NUM2: 3.85E2)

NUM3: =567.825E33)

1.8.7 Fixed-Point Decimal Numbers

As shown in Section 1.8, 4D followed by a numeric term, is used to enter

decimal integers.

Fixed-point decimal numbers (mixed numbers) are preceded by *F followed by

a number (not a numeric term, defined below) which normally contains a deci-

mal point. The assembler forms these fixed-point numbers in two 36-bit

registers, the integer part in the first and the fractional part in the

second. The value is then stored in one storage word in the object pro-

gram, the integer part to the left of the assumed binary point, the frac-

tional part to the right.

VERs1ON 47 1-18 JUuNE 1972

-9293- MACRO

The binary shift (B) operator is used to position the assumed point. The

number +F123.45B8 is formed in two registers:

000000 000173 (the integer part)

346314 631462 (the fraction part, left-justified)

The B operator sets the assumed poiht:after bit 8,:so fhe integer part is

placed in bits 0—8,.and'the fraction part in bits 9-35 of the storage word.
In this case, the ihteger part is trun¢ated from the left to fit the 9-bit
integer field. The fraction part is moved into the 27-bit field following

the assumed point and is truncated on the right. The result is,

173346 314631

+

(assumed point)

If a B shift operator does not appear in a fixed-point number, the point is

assumed to follow bit 35, and the fractional part is lost.

Fixed-point numbers are assumed to be positive unless a minus sign precedes

the qualifier:

000000 000173 AF123.45

000173 346314 +F123.45B17-

346314 631462 4F123.45B-1

777777 777604 -4F123.45

777604 431463 -+F123.45B17

431463 146316 -4F123.45B-1

Negative fixed-point numbers, such as the example above, are assembled as

if they were positive numbers, complemehted, and then logically shifted.

1.9 ADDRESS ASSIGNMENTS

As source statements are processed, the assembler assigns consecutive

memory addresses to the instruction and'data words of the object program.

This is done by incrementingthe location counter each time a memory

location is assigned. A statement which generates a single object program

storage word increments the location'cdunter by one. Another statement

may generate six storage WOrds,'incréménting.the location counter by six.

The mnemonic instruction and monitor command! statements generate a single

storage word. However, direct assighment Statements and some assembler

pseudo-ops do not generate storage words, and do not affect the loecation

1The terms monitor command (as used here) and programmed operator are
synonymous. 1-19

VERsION 47 . ~ June 1972

MACRO -224-

counter. Other pseudo-ops and macros may generate many words in the

object program.

1.9.1 Setting and Referencing the Location Counter

The MACRO-10 programmer may set the location counter by using the

pseudo-ops, LOC and RELOC, which are described in Chapter 2. He may _

reference the location counter directly by using the symbol, point (.).

For example, he can transfer to the second previously assigned storage

word by writing:

JRST .-2)

1.9.2 Indirect Addressing

The character @ prefixing an operand causes the assembler to set bit 13

in the instruction word, indicating an indirect address. For an ex-

planation of indirect addressing and effective address calculation,

see the PDP-10 System Reference Manual.

1.9.3 1Indexing

T1f indexing is used to increment the address field, the addressof

the index register used is entered in parentheses, as the last part

of the memory reference operand. This is normally a symbolic name

defined by a direct assignment statement, or an octal number in the

range 1-17, specifying 1 of the 15 index registers. However, the

address of the index register may be any legal expression or an ex-

pression element.

This is a symbolic, indirect, indexed, memory reference:

A: ADD U4,@NUM(17))

NOTE

The parentheses cause the value of the enclosed expres-

sion to be interpreted as a 36-bit word with its two

halves interchanged, e.g., (17) is effectively

000017000000_.. The 36-bit value is added to the in-

struction ang may modify it. This is often used to
generate right half values from left half expressions;

for example, the statement

TLO AC, (1Bd)

which sets the sign bit.

VERs1ON 47 1-20 June 1972

~225- | MACRO
1.10 LITERALS

In a MACRO statement, a symbolic data référence may be replaced by
a direct representation of the data enclosedin sgquare brackets

([1). This direct representation is called a literal. The as-

sembler stores data found within brackets in a Literal table, as-

signs an address to the first word of the data and inserts that

address in the machine instruction..

A literal may consist of more than one statement and may generate

more than one word of data. A literal must, however, generate at

least one word but no more than 18 wofds. Literals which consist
of only pseudo-ops (such as RADIX) which do not generate data or

direct assignments are illegal.

Literals may be nested (i.e., bracketed data within other sets of

bracketed data) up to 18 levels.

The following is a simple example of the user of literals. Byte

instructions must reference by a byte pointer in this manner:

LDB 4,BP,)
BP: POINT 1@,A+3,14)

(POINTis a pseudo-op which sets up a byte pointter word.) A

literal can be used to insert the POINT stafement directly. For

example ' !

LDB 4,[POINT 10,A+3,14])

Literals are often used as constants as, for example:

a) PUSH 17,([#) (note that @ generates 6ne word of zero).

b) MOVE L. [3,14]

The following is an example of a multi-line literal:

GETCHR: SOSG IBUF+2 3ANY CHARS LEFT?
PUSHJ P,[IN N, 3;NO, READ SOME IN

FOPJ P, 3sNO UNUSUAL CONDITIONS
STATZ N,T74gg20 sCHECK FOR ERRORS
JRST [MOVEI E, [SIXBIT /INPUT ERROR/]

JRST ERRPNT] ;PUBLISH ERROR MESSAGE
JRST ENDFIL] 1 ;END OF FILE HANDLER

ILDB AC,IBUF+1 sPICKUP NEXT CHAR
' | POPJ P, '

VERSION 47 ~June 1972

MACRO -226-

NOTE

The closing right square bracket does not terminate the

literal if placed after the semicolon.

The excessive use of literals, especially for small subroutines, is

not recommended since they use up assembler space at the rate of four

locations per data word generated. Literals also make debugging

more difficult and may cause page faults in the KI-1l0 processor

virtual memory allocation.

The PDP-6 version of macro (MACRO-6) only permitted literals to con-

tain one statement but it permitted the right bracket to be dropped.

Dropping the right bracket is not permitted by MACRO-10.

Two pseudo~-ops MLON and MLOFF provide compatibility with old pro-

grams. Use of these pseudo-ops is required since

MOVE AC,[SIXBIT/TEXT/)

is legal in MACRO-6, even though the closing right bracket (]) of

the literal has been omitted. In normal mode, MACRO does not allow

such an unterminated literal. The pseudo=-op

MLON

is set at the start of each assembly to cause the assembler to

consider all code following a left bracket as part of a literal,

until such time as the assembler processes a matching right bracket.

Thus, carriage-return, line-feed does not end a literal, but

rather the programmer must insert a right bracket. The pseudo-op,

MLOFF

set by the switch /0, places MACRO into the compatibility mode in

which literals may occupy only a single line.

The symbol . (current location) is not changed by the use of

literals. It retains the value it had before the literal was

entered.

VERs1ON 47 June 1972

=227~ MACRO

Chapter 2
MACRO-10 Assembler
Statements—Pseudo-Ops

Assembler statements or pseudo-ops direct the assembler to perform

certain assembler processing operations, such as converting data to

binary under a selected radix, or listing selected parts of the assem-~
bled object program. In this chapter, these assembler processing

operations are fully described.

NOTE

The pseudo-op name must follow the rules

for constructing a symbol (refer to Para-

graph 1.5.1) and must be terminated by a

character other than those listedin Para-

graph 1.5.1 as valid symbolic characters.
(Normally, a space or tab is used as a

terminator.)

2.1 ADDRESS MODE: RELOCATABLE OR ABSOLUTE

MACRO-10 normally assembles programs with relocatable binary addresses,

so that the program can be located anywhere in memory for execution as

a function of what has been previously loaded. When desired, the assem-

bler will also assign absolute location addreéses, either for the entire
program or for selected parts. Two pseudo-ops control the address mode:

RELOC and LOC,

VERSION 47 ' June 1972

MACRO ~228-

RELOC N&

This statement sets the location counter to n, which may be a number

or an expression, and causes the assembler to assign relocatable ad-

dresses to the instructions and data which follow. Since most re-

locatable programs start with the location counter set to 0; the

implicit statement,

RELOC @0

begins all programs, and need not be written by the programmer who

wants his program assembled with relocatable addresses,

LOC NJ

This statement sets the location counter to n, a number or an expres-

sion, and causes the assembler to assign absolute addresses, begin ing

with n, to the instructions and data which follow. If the entire pro-

gram is to be assigned absolute locations, a LOC statement must precede

all instructions and data.

If n is not specified

(LOCJ)

zero is assumed initially.

If only a part of the program is to be assembled in absolute locations,

the LOC statement is inserted at the point where the assembler begins

assigning absolute locations. For example, the statement,

LOC 2¢¢.0

causes the assembler to begin assigning absolute addresses, and the

next machine instruction or data word is stored at location 2008.

VErs1on 47 | June 1972

-229- MACRO

To change the address mode back to relocatable, an explicit RELOC

statement is required. If the programmer wants the assembler to con-

tinue assigning relocatable addresses sequentially, he writes,

RELOC J

To switch back to the next sequential absolute assignment, he writes,

LOCJ

Thus, the programmer is not required to insert a location counter

value in either a LOC or RELOC statement, and unless he does, both

the relocatable coding and the absolute coding will be assigned se-

quential addresses. This is shown in the following skeleton coding.

The single quote mark is used here, and in MACRO-10 listings, to

identify relocatable addresses.

Location Counter Pfogram

gegEge: ADD 1,X ;RELOC ¢ IS IMPLICIT.

geeaThH" LOC 190p ;CHANGES TO ABSOLUTE, STARTING
gel1eep | SUB 5,TOT sWITH gg100g. E

ga1@34 RELOC 3 SETS LOCATION COUNTER TO T4.

geagTL! ADD 2,XAT

2eaaT5! LOC 3 SWITCHES LOCATION COUNTER
2F1@34 EXP A-X+7 3BACK TO ABSOLUTE SEQUENCE.

When operating in the relocatable mode, the assembler determines

whether each location in the object program is relocatable or absolute,

using an algorithm described in Chapter5,

2.1l.1 Relocation Before Execution - PHASE and DEPHASE Statements

Part of a program can be‘moved into other locationsfor execution.

This feature is often used to relocate a frequently used subroutine,

or iterative loop, into fast memory (accumulators 0—178) just prior

to execution.
)

VERsION U7 | June 1972

MACRO ~230-

To use this feature, the subroutine is assembled at sequential re-

locatable or absolute addresses along with the resfi of the program,

but the first statement before the subroutine contains the assembler

operator, PHASE, followed by the address of the first location of the

block into which the subroutine is to be moved prior to execution.

All address assignments in the subroutine are in relation to the

argument of the PHASE statement. The subroutine is terminated by a

DEPHASE statement, which requires no operands, and which restores the

location counter.

In the following example, which is the central loop in a matrix inver-

sion, a block transfer instruction moves the subroutine LOOP into

accumulators 11-16,

Relocatable

Address

LOOPX:

L.OOP:

Absolute

Address

MOVE [XWD LOOPX,LOOP]

BLT LOOP+4 |

JRST LOOP

PHASE 11

MOVN A (X)

FMP MPYR

FADM A (Y)

SOJGE X, .-3

JRST MAIN

DEPHASE

The label LOOP represents accumulator 11, and the point in the SOJGE

instruction represents accumulator 14.

Note that the code inside the phase to dephase program segment is

loaded into the address following the previous relocatable. code; all

labels inside the segment, however,.have the address corresponding

to the phase address. Thus the phased code cannot, in general, be

executed until it has been moved to the address for which it was

assembled.

2.2 NAMING PROGRAMS

Normally the first statement in a program gives the name of the pro-

gram using the TITLE pseudo-op. This pseudo-op has the form

TITLE NAMEJ)

in which the single operand (i.e., NAME) may contain up to 60 characters.

VERs10ON 47 JuNe 1972

_93]- | ~ MACRO

'The name given will be printed at the top of each page of the program

listing; The first 6 characters of the given title will appear in the

assembled program as the program name. If no title is given, the

assembler inserts the name .MAIN. The program name given in the TITLE

statement is used when debugging with DDT in order to gain access to

the program's symbol table.

Only one TITLE pseudo-op is~permittéd in a program; it can appear any-

where in the program but is normally the first line on the first page.

Remember that a name may be longer than 6 characters, however, only

the first 6 symbol combinations (within the radix-50 set) will be used

for the program name,

2.2.1 Program Subtitles

After the first page of a program listing, the first data line en-

countered on a pade may be a subtitle, Subtitles are génerated using

the pseudo-op SUBTTL. This pseudo-op has the form

SUBTTL SUBTITLE)

in which the single operand (SUBTITLE)-may-contain up to 40 characters,
A subtitle is printed as the first data line.on a page and all suc-
ceeding pages until the end of the listing or until the subtitle is

changed. If the current subtitle is changed by another SUBTTL state-

ment which is the firsf data line on a page, the new subtitle appears

on the new page and all subsequent pages., If the SUBTTL statement is

not the first statement on a page,the new subtitle appears on the

next page and all subsequent pages.

subtitles can be changed as often as required; they do not generate

data and they do not affect the binary procedure only the listing.

They are used for informational purposes only.

2.3 PROGRAM ORIGIN

Initially all programs start with an implicit RELOC § which sets the

mode to be relocatable and the first address to be @. Unless other-

wise changed, the code generated will be a single-segment program.

VERSION 47 JUNE 1972

MACRO -232-

The programmer can change the relocatable nature of the program by

using a LOC statement to generate absolute code (normally used for

diagnostics) or to generate high-segment code.

High~-segment (or two-segment programs) have two logical address

spaces; one starting at @§ and increasing, the other starting at

400000 (128K) and increasing. Two pseudo-oés, HISEG and TWOSEG con-

trol High or two-segment program operation.

2,3.1 HISEG Statements - The HISEG Pseudo-Op Statement

This pseudo-op does not affect the assembly operations in any way ex-

cept to generate information that directs the Loader to load the

current program into the high segment if the program has reentrant

(two-segment) capability. (Refer to Block Type 3 Load Into The High

Segment, paragraph 6.2.1.,1, for additional information.) This pseudo-

op should appear at the beginning of the source program.

NOTE

Whenever possible the pseudo-op TWOSEG

should be used instead of HISEG. This

pseudo-op provides functions which are

superior to those of HISEG,

HISEG may be followed by an optional argument which represents the

program high-segment origin address. This argument, when used, must

be equal to or greater than 4Q@@@F and must be a K-bound (even multiple

of 2000) value. The code produced by HISEG will execute at either

relocatable @ or relocatable 4p@@@F depending on the loading instruc-

tions given.

HISEG must not be used if the programmer wishes to reference data in

the low segment since locations in the low segment are referenced by

absolute addresses only.

2.3.2 TWOSEG Statements

The TWOSEG pseudo-op generates code that directs MACRO and LOADER to

assemble and load a two-segment program in one file. This pseudo-op

outputs a block type 3 (refer to Paragraph 6.2.1.1) which signals the

LOADER to expect two segments. An optional argument may be present

VERSION U7 JuNe 1972

-933- MACRO

whichis the first address in the high segment. If no argument is

present, 400000 is assumed.

The high segment code must be preceded by

RELOC Mflfiéfifl

or greater; the low segment code by

RELOC@

or an argument‘indicating the low segment., Each RELOC pseudo-op

switches the relocation.

The listing prdducéd by the TWOSEG'pseudo-op shows high segment

addresses as greater than 400000 or the argument of the pseudo-op,

and low segment addresses as less than 400000 or the argument of the

pseudo-cp. All relocatable addresses are flagged with a single quote.

2.4 ENTERING DATA

2.4.1 RADIX Statements

When the assembler encounters a numerical value in a statement, it con-

verts the number to a binary representation reflecting the radix

indicated by the programmer. The statement,

RADIX NJ)

where n is a decimal number, 2 < n < 10, sets the radix to n for all

numerical values that follow, unless another RADIX statement changes

the prevailing radix or a local radix change occurs (see below).

For example; if the programmer wants the assembler to interpret his

numbers as decimal quantities; then the prevailing radix must be set

to decimal before he uses decimal numbers,

RADIX 18J

The statement, RADIX 2, sets the prevailing radix to binary.

VERSION 47 - June 1972

MACRO -234-

The implicit statement, RADIX 8, begins every program; if the pto—

grammer wants to enter octal numbers, this statement is ndt necessary.

2.4.2 Entering Data Under the Prevailing Radix

Data is entered under the prevailing radix by typing the data, followed

by a carriage return:

765432234567)

Data may be labeled and contain expressions:

LAB: U456+A+BA C+D>)

Data may also be entered by first using a direct assignment statement

to place a symbol with an assigned value in the symbol table, and

then using the symbol to insert the assigned value in the object pro-

gram. For example, the direct assignment statements,

A=D 2
B=5J

cause two entries in the symbol table. The following statement enters

the sum of the assigned values in the object program at symbolic

address REX.

REX: A+BJ REX contains 000000 000007

The radix can also be changed locally, that is, for a single statement

or a single value, after which the prevailing radix is automatically

restored, as described in Section 1.3,

2.4.3 DEC and OCT Statements

To change to a local radix for a single statement, the programmer

writes:

DEC N,N,N,...NJ

where all of the numbers and expressions are to be interpreted as

decimal numbers. The numbers or expressions following the operator

VERs1ON 47 June 1972

~235- MACRO

are separated by commas, and each will generate a word of storage.

OCT N,N,N,...N«

changes the local radix to octal for this statement only, and

generates a word of memory for each humber or expression.

The statement,

DEC 1#,4.5,3.1416,6.93E-26,3 J

generates five decimal words of data.

2.4.4 Changing the Local Radix for a Single Numeric Term

To change the radix for a single number or expression, the numeric

term is prefixed with 4D, *0, 4B, or 4F, as explained in Chapter 1.

If an expression is used, it must be enclosed in angle brackets,

+D<A+B-C/222>)

These prefixes may generate a word, or part of an instruction word.

The statement,

TOTAL2:MOVE 4D1@,ABZ J)

causes the contents of ABZ to be moved to accumulator 128.

When the assembler encounters a numeric term, it forms the binary

representation in a 36-bit register under the prevailing or local

radix. If the quantity is a part of an instruction, it is trun-

cated to fit in the required field.

For example, the accumulator field must have a final value in the

range 0-17 Ih the statement,8.

MOVE 4D6g,ABZ

the assembler first interprets the accumulator address in a 36-bit

register, forming the integer 000000000074: but takes only the

rightmost four bits and places them in the accumulator field of

the instruction, which results in the selectionof accumulator 148.

VErRsioN U7 JUNE 1972

2-9

MACRO -236-
2.4.5 RADIX 50 Statement

Another radix changing statement is available, but it is used primarily

in systems programming. This is RADIXS50 n,sym) which is used by the

assembler, PDP-10 Loader, DDT, and other systems programs to pack

symbolic expressions into 32 bits and add a 4-bit code field n in

bits 0-3. This is explained in Appendix F of this manual. (The

mnemonic SQUOZE may be used in place of RADIX50.)

2.4.6 EXP Statement

Several numbers and expressions may be entered by using the EXP state-

ment:

EXP X,4, +D65,HALF,B+362-4)

which generates one word for each expression; five words were

generated for the above example. ‘

2.4.7 7 Statement

A zero word can be entered by using the operator, 2.

LABEL: 2)

generates a full word of all zeros at LABEL. If operands follow the 2,

the assembler forms a primary machine instruction, with the operator

field and other unknown fields zeroed. In the statement,

Z 3,2

the assembler finds an accumulator field, but no address field, and

generates this machine instruction: 000140 000000.

2.5 INPUT DATA WORD FORMATTING

2.5.1 BYTE Statement

To conserve memory, it is useful to store data in less than full 36-bit

words. Bytes of any length, from 1 to 36 bits, may be entered by using

a BYTE statement.

BYTE (N) X,X,X J

The first operand (n) is the byte size in bits. It is a decimal number

in the range 1-36, and must be enclosed in parentheses. The operands

following are separated by commas, and are the data to be stored. If

an operand is an expression, it is evaluated anhd, if necessary, truncated

from the left to the specified byte size. Bytes are packed into words,

VERSION 47 - June 1972

2-10

-257- | MACRO

starting at bit 0, and the words are assigned sequential storage loca-

tions. If, during the packing of a word, a byte is too large to fit

into the remaining bits, the unused bits are zeroed and the byte is

stored left-justified in the next sequential location.

In the following statement, three 12-bit bytes are entered:

LABEL: BYTE (12)5,177,N J

This assembles at LABEL as, 0005 0177 0316, where N=31l6.

The byte size may be altered by inserting a new byte size in parentheses

immediately following any operand. Notice that the parentheses serve

as delimiters, so commas must not be written when a new byte size is

inserted. The following are legal:

BYTE (6)5(14)NT(3)6,2,5)

where 6 is entered in a 6-bit byte, NT in the following l4-bit byte,

6 in the following 3-bit byte, followed by 2 and 6 in 3-bit bytes. A

BYTE statement can be used to reserve null fields of any byte size. If

two consecutive delimiters are found, a null field is generated.

BYTE (18),5J

When the assembler finds two delimiters, it assembles a null byte. In

this caSe, 000000 000005. To enter ASCII characters in a byte, the

characters are enclosed in quotation marks.

BYTE (7)"A")

Text handling pseudo-ops are discussed in paragraph 2.5.5.

2.5.2 POINT Statement —'Handling Bytes

Five machine instructions are available for byte manipulation.

These instructions reference a byte pointer word, which is

generated by the assembler from a POINT statement of the form,

LABEL:POINT s, address, b J (s and b are decimal)

where the first operand s is a decimal number indicating the byte

size, the second operand is the address of the memory location

which contains the byte, and the third operand, b, is the bit

position in the word of the right-hand bit of the byte (if b

is not specified, the bit position is the nonexistent bit to the

VErRs10N 47 2-11 JuNe 1972

MACRO -238-

left of bit 0). The address specified in the second operand may

be indirect and indexed. 1If the byte size is not specified,

MACRO-10 assumes 36 bits.

In the following example, an LDB (load-a byte from a memory loca-

tion into an accumulator) and an ILDB instructions are used, along

with three assembler statements. The ILDB instruction "increments"

AC to look like AB, then does a load byte; the effect of the two

instructions is the same.

DOPVRD B52000 V00000 AA BYTE (615

PABNB1' 3609690 QOQ00D' AB: POINT 6,AA55

NACAB2* 440620 QBOORO' AC: POINT 65AA

NovvV3r' 135140 Q0VPOO1*' START: LDB 35AB

AAQ0D4 134140 @OA0O2" ILDB 35AC

The first statement enters the quantity 5 in a 6-bit byte at

symbolic address AA which is 0. The second statement is for

reference by the load byte instruction. When the LDB is executed,
the machine goes to AB for the byte size, its address, and bit

position. In this case, it finds that the byte size is 6 bits,

the byte is located in the word AA, and the right-hand bit of

the byte is in bit 5. The byte is then loaded into accumulator 3,

where it looks like this: 000000 000005.

The other byte manipulation mnemonic instructions reference the

byte pointer word in similar ways. The deposit byte (DPB) in-

struction takes a byte from an accumulator and deposits it, in

the position specified by the pointer word, in a memory word.

The increment byte pointer (IBP) instruction increments the bit

position indicator (the third operand in the referenced POINT

wbrd) by the byte size. This is useful when loading or deposit-

ing a string of bytes, using the same byte pointer word.

The increment and load byte (ILDB) and increment and deposit byte

(IDPB) instructions increment the byte pointer word by the byte

size before loading or depositing.

VERSION 47 2-12 JUNE 1972

-239- MACRO

2.5.3 IOWD Statement: Formatting I/0 Transfer Words

The assembler generates I/0 transfer words in a special format

for use in BLKI and_BLKO and all four pushdown instructions.

The general statement is,

IOWD N,MJ

where two operands, which may be numbers or expressions, follow

the IOWD operator. This statement generates one data word.

The left half of the assembled word contains the 2's complement

of the first operandn, and the right half-word contains the

value of the sécond operand m, minus one. For example,

IOWD 6,4D256<

assembles as 777772 000377.

2.5.4 XWD Statement: EnteringTwo Half-Words of Data

The XWD statement enters two half-words in a single storage word.

It is written in the form,

WD LHW,RHW <

where the first operand is a symbol or expression specifying the

left half-word, and the second operand specifies the right half-

word. Both are formed in 36-bit registers and the low order 18-

bits are placed in the half-words. The high-order 18 bits of each

operand are ignored. Three examples follow:

XWD A,BJ

XWD SUM+2,DES+5)

XWD START,END)

XWD statements are used to set up pointer words for block transfer

instructions. Block transfer pointer words contain two 18-bit

addresses: the left half is the starting location of the block

to be moved,and the right half is the first location of the

destination. A,,B may also be used to duplicate the results of

XWD A,B.

VErsion 47 | JUNE 1972

MACRO -2h0-

2.5.5 Text Input

The assembler translates text written in full 7-bit ASCII or 6-bit

compressed ASCII. It will also format 7-bit ASCII with a null

character at the end of text, if desired. These codes are listed

in Appendix E.

In all three text modes, the printing symbols in the code se
t are

translated to their binary representation.

To translate and store a single word containing as many as five

7-bit ASCII characters, right-justified, the input charact
ers are

enclosed in guotation marks.

"AXETM) is stored as

0 0000000 0000000 1000001 1011000 1000101

0 null null A X E

Notice that characters are right-justified, and bit 0, which is

not used, is set to zero.

Up to six 6-bit ASCII characters may be translated and stored,

right-justified, in a single word by enclosing the input charac-

ters in single quotation marks.

'7TABLES' is stored as

110100 100001 100010 101100 100101 110011

T A B L E S

NOTE

The quotation marks (single or double) may

only be used to assemble a single word. To

input strings of text characters, the fol-

lowing three pseudo-ops must be used. '

2.5.5.1 ASCII, ASCIZ, and SIXBIT Statement - To enter strings of

text characters, the operators ASCII, SIXBIT, and ASCIZ are used.

The delimiter for the string of text characters is the first no
n-

blank character following the character that terminates the ope
rator

(refer to the note on page 2.1). The binary codes are left-justified.

Unusea character positions are set to zero (null). Text is termi~-

nated by repeating the initial delimiter. If the initial delimiter

is a symbol constituent, the pseudo-op must be followed by
 a space

or a tab.

VErRs1oON 47 914 JunNe 1972

-24]1- MACRO

The statement

ASCII "AXE"

where the quotation marks are the delimiters, assembles as

1000001 1011000 1000101 0000000 0000000 O
A X E null null O

The operator ASCIZ (ASCII Zero) guarantees a null character at

the end of text. If the number of characters is a multiple of

five, another all zero word is added. For example,

ASCIZ/"AXE"/)

assembles as,

0100010 1000001 1011000 1000101 0100010 O
1" A X E n

followed by another word of zeros.

0000000 0000000 0000000 0000000 0000000 O
null

When thefull 7-bit ASCII code set is not required, the 64-character

6-bit subset may be entered, using the SIXBIT operator. Six charac-

ters are left-justified in sequential storage words. Format of

the SIXBIT statement is the same as for ASCII statements. To derive

SIXBIT code:

a. Convert lower case ASCII characters to upper case
characters.

b. Add 408 to the value of the character.

¢. Truncate the result to the rightmost six bits.

2.5.6 Reserving Storage

The programmer can reserve single locations, or blocks of many

locations for use during execution of his program.

VERSION 47 | JUne 1972

MACRO -242-

2.5.6.1 Reserving a Single Location - The number sign (#), suf-

fixing a symbol in an operand field, is used to reserve a single

location. The symbol is defined, entered in the assembler's

symbol table,and can be referenced elsewhere in the program with-

cut the number sign. For example,

i \AB: ADD 3,TEMP#)

reserves a location called TEMP at the end of the program, which

may be used to store a value entered at some other point in the

program. This feature is useful for storing scalars, and other

quantities which may change during execution.

The pseudo-op INTEGER may be used to reserve storage locations

at the end of the program on a one-per-given name basis. For

example the statement

INTEGER TEMP,FOO,BAR)

will reserve 3 locations identified as TEMP, FOO and BAR. The

assignment of the locations to the names given is performed on

an alphabetical basis by the assembler rather than on the order

in which the names are given. For example, the order of the loca-

tions reserved by the foregoing INTEGER statement would be BAR,

FOO then TEMP.

Multiple word locations may be reserved by the ARRAY pseudo-op.

For example, the statement

ARRAY FOO[2*3])

reserves a 2-word by 3-word array in memory which is identified by

the name FOO,

NOTE

If the pseudo-op TWOSEG is used, the variables

reserved by an array statement must be as-

signed to the low segment only; thus, a VAR

pseudo-op is required after a RELOC back to

the low segment.

VErRSION 47 June 1972

-16o

-2043- | MACRO
2.5.7 VAR Statements

VAR)

This statement causes symbols which have been defined by suffixing

with the # sign (array and'integer pseudo-ops) in previous state-
ments to be assembled as block statements. This has no effect on

subsequent symbol definitions of the same type.

If the LIT and VAR statements do not appear in the program, all

literals and variables are stored at the end of the program.

2.5.8 BLOCK Statements

To reserve a block of locations, the BLOCK.operator is used. It

is followed by a single operand, which may be a number or an ex-

pression in the current radix, indicating the number of words to

be reserved. The assembler increments the location counter by

the value of the operand. For example,

MATRIX: BLOCK N¥M)

reserves a block of N*M words starting at MATRIX for an array

whose dimensions are M and N.

BLOCK is used to reserve words in a specific order; remember that

data words should be stored in the low segment in two-segment pro-

grams.

2.5.9 END Statements

The END statement must be the last statement in every program. A

single operand may follow the END operator to specify the address

of the first instruction to be executed. Normally this operand is

given only in the main program; Since‘subprograms are called from

the main program, they need not specify a starting address.

END START) start is the label at the starting address

When the assembler first encounters an END statement, it terminates

pass 1 and begins pass 2. The END also terminates pass 2, after which

-VERSIbN 47 . JUNE 1972

MACRO -244-
the assembler automatically assembles all previously defined vari-

ables and literals starting at the current location.!

The following processing operations can be performed at any point

in the program.

2.5.10 LIT Statements

LITJ

This statement causes literals that have been previously defined to

be assembled, starting at the current location. If n literals have

been defined, the next free storage location will be at location

counter plus n. Literals defined after this statement are not af-

fected. ' |

If a LIT statement does not appear before the END statement, the

literals are XLISTed (refer to paragraph 2.6.3). If the output

of literals is desired, the LIT pseudo-op should appear immediately

before the END statement.

NOTE

In a two-segment program LIT must be given

in the high segment. The END statement must

also be given in the high segment or the

literals will go to the low segment.

2.5.11 Multi-Program Assembly

The pseudo-op PRGEND is used to compress many small files into one

large file to save space and disk lookups. This pseudo-op has the

form PRGEND) . PRGEND allows multiprogram assemblies, and is used

for assembling library files (LIB40) in which all programs are very

short. PRGEND takes the place of all but the last END statement.

The output is a binary file which can be loaded in search mode. The

use of PRGEND costs assembler space since the symbol tables, iiteral

tables and titles of each of the small files (i.e., programs) involved

must be saved at the end of pass 1. Also, since PRGEND is function-

ally an END statement, macros cannot be used over it (i.e., macros

cannot generate PRGEND as part of their expansions).

l7he END statement is also used to specify a transfer word in some

output file formats. (See Section 6.2.2.4.)

VErRsION 47 June 1972
2-18

~245- MACRO
If the LIT and VAR.statements do not appear in the programs, all
literals and variables are stored at the end of the Program.

2.5.12 PASS2 Statements

PASS2)

This statement switches the assembler to pass 2 pProcessing for the
remaining coding; Coding preceding this statement will have been
processed by pass 1 only. This is used primarily for debugging,
such as testing macros defined in the pass 1 portion.

2.5.13 PURGE Statements

The PURGE statement is used to delete defined symbols. Its general
form is:

PURGE symbol, symbol, symbol L)

where each operand is a user-created label, operator, or macro
call which is to be deleted from the assembler's tables. The PURGE
statement is normally used at the end of programs to conserve stor-
age and to delete symbols for DDT. Purged symbol table space is
reused by the assembler.

If the programmer uses the same symbol for both a macro call and/or
OPDEF (refer to Section 2.8.2) and for a label, a PURGE statement
deletes the macro call or OPDEF. A repeat of the symbol in the
PURGE statement also purges the label. For example, the following
statement purges both:

PURGE SOLV,SOLVW

The first SOLV purges the macro call; the second SOLV purges the
label. |

2.5.14 XPUNGE Statements

The XPUNGE pseudo-op deletes all local symbols during pass 2; it
has the form:

XPUNGE)
VERSION 47

June 1972

MACRO 246~
1The use of this pseudo-op reduces the size of the REL file an

speeds up loading (especially of DDT). XPUNGE should be placed

just prior to the END statement.

2.5.15 Linking Subroutines

Programs usually consist of subroutines which contain references

to symbols in external programs. Since these subroutines may be_:

assembled separately, the loader must be able to identify "global"

symbols. For a given subroutine, a global symbol is either a

symbol defined internally and available for referehce by other

subroutines, or a symbol used internally but defined in another

subroutine. Symbols defined within a subroutine, but available to

others, are considered internal. symbols which are externally

defined are considered external.

These linkages between internal and external symbols are set up
 by

declaring global symbols using the operators EXTERN, INTE
RN, or

ENTRY. The double colon (::) may also be used.

2.5.15.1 EXTERN Statements - The EXTERN statement identifies symbols

which are defined elsewhere. The statement,

EXTERN SQRT, CUBE,TYPE)

declares three symbols to be external. vExternal symbolsrmust not

be defined within the current subroutine. These external references

may be used only as an address or in an\éxpression»that is to bé

used‘as an address. For example, the square root routine declared

above might be called by the statement,

PUSHJ P,SQRT J

External symbols may be used in the same manner as any other
 re-

locatable symbol. Examples:

EXTERN A

oUA3NGM NONAN3* MOVE 6sA+3

WAGRE3* NANRYB* XWD A+35A

iA NR ks = A=
GPDEF WwixWD B+3sA=-5)

77 TT4% TT7TTTT3% U

VERSsION 47 JunNe 1972

-247- MACRO

The external symbols are flagged with asterisks. There are three

restrictions for the use of external symbols:

a. Externals may not be used in LOC and RELOC state-
ments. g _

b. The use of more than one external in an expression
is not permitted. Thus, A+B (where A and B are both
external) is illegal.

c. Globals may only be additive; therefore,the follow-
ing are illegal

-A -EXP-A

2¥A 2% A-A

An alternative method for generating external symbols is to use a

double pound sign (##) following the symbol name. This method

eliminates specifying the EXTERN statement. For example,

MOV @,JOBREL##

is equivalent to

EXTERN JOBREL

MOVE #,JOBREL

2.5.15.2 INTERN Statements - To make internal program symbols avail-

able to other programs as external symbols, the operators INTERN

or ENTRY are used. These statements have no effeét on the actual

assembly of the program, but will make a list of symbol equivalences

available to other programs at load time. The statement,

INTERN MATRIX)

makes the subroutine MATRIX available to other programs. An internal

symbol must be defined within the program as a label, variable, or

by direct assignment.

2.5.15.3 ENTRY Statements - Some subroutines have common usage, and

it is convenient to place them in a library. 1In order to be called

by other programs, these library subroutines must contain the state-

ment, o

ENTRY NAME J

VERSION 47 S | JUNE 1972

MACRO -243-

where "name" is the symbolic name of the entry point of the lib-

rary subroutine.

ENTRY is equivalent to INTERN with the following additional feature.

All names in a list following ENTRY are defined as internal symbols

and are placed in a list at the beginning of the library of subrou-

tines. 1If the loader is in library search mode, a subroutine will

be loaded if the program to be executed contains an undefined global

symbol which matches a name on the library ENTRY list.

If the MATRIX subroutine mentioned before is a library subroutine,

it must contain the statement,

ENTRY MATRIX J)

Since library subroutines are external to programs using them, the

calling program must list them in EXTERN statements.

2.6 SUPPRESSION OF SYMBOLS

When a parameter file is used in assemblies, many symbols get

defined but are never used. Unused defined symbols take up space

in the binary file and complicate listings of the file. Unused

and unwanted symbols may be removed from symbol tables by the use

of a pseudo-op, either SUPPRESS or ASUPRESS. These pseudo-ops

control a suppress bit in each location of the symbol table;if

a suppress bit is on, the symbol in that location is not output.

The suppréss bit is used in the file S.MAC so that if a bit is on

and the symbol in that location is not used later, the symbol is

not output in the CREF table.

2.6.1 SUPPRESS SYMBOL Statement

The SUPPRESS statement turns on the suppress bit for the specified

symbols,

2.6.2 ASUPPRESS Statement

The ASUPPRESS statement turns on the suppress bit for all the symbols

in the symbol table.

VERSION 47 June 1972

_oug- MACRO

2.6.3 - Listing Control Statements

Program listings are normally printed on a line printer or a terminal

depending on the listing file device specified. Listings are

printed as the source program statements are processed durlng pass 2.

A sample listing is shown in Chapter 7.

From left to right the standard columns of a-listing contain

a) the location counter,

b) the instruction or data in octal form, and

c) the symbollc 1nstructlon or data followed by
comments,

Relocatable object-code addresses are suffixed by a single quotation

mark (') which may occur in either the left or right half.

Data is displayed in one of several modes depending on the state-

ment format. The possible statement formats are:

1) Halfword - two 18-bit bytes

2) Instruction = a 9-bit op-code, 4-bit
' accumulator code, l-bit

indirect bit, 4-bit index,

and an 18-blt address seg-

ment

3) Input/Output , - 3-bit I/0 indicator, 7-bit
' ‘ I/0 device specification,

3-bit operand, l-bit indirect
address bit, 4-bit index and

an 18-bit address segment

4) Byte pointer : ~ 6-bit byte position, 6-bit

byte size, 1 unused bit,

l-bit indirect address bit,
4-bit index and an 18-bit

address segment

5) ASCII . . - 5 seven-bit bytes
‘6) SIXBIT S - 6 six-bit bytes.

_ NOTE

Refer to the DECsystem-lo System Reference
Manual for a complete description of word

formats.

The Iisting function is suppressed within macro expansion, therefore
only the macro ¢all and any succeeding lines that generate code are

VERSION 47 June 1972

MACRO ~250-

listed. Line printer listings always begin at the top of a page

and up to 55 lines are printed on each page. Consecutive page

numbers are printed in the upper right-hand corner of each page.

Each page also contains a title and a subtitle.

The standard listing operations can be augmented and modified by

using the following listing control statements.

STATEMENT

PAGE

XLIST J

LIST &

LALL J

XALL 2

SALLJ

NOSYM J

VErRSION 47

DESCRIPTION

This statement causes the assembler to skip

to the top of the next page. (A form feed

character in the input text has the same

effect and is preferred.

This statement causes the assembler to stop

listing the assembled program. The listing

printout actually starts at the beginning of

pass 2 operations. Therefore, to suppress

all program listing, XLIST must be the first

statement in the program. If only a part of

the program listing is to be suppressed,

XLIST is inserted at any point to stop list-

ing from that point. Literals are XLISTed

if no LIT statement is seen before the END

statement.

Normally used following an XLIST statement
to resume listing at a particular point in

the program. The LIST function is implicitly

contained in the END statement.

This statement causes the assembler to list

everything that is processed including all

text, macro expansions and list control

codes suppressed in the standard listing.

Normally used following a LALL statement to

resume standard listing.

This causes suppression of all macro and re-

peat expansions and their text; only the in-

put file and the binary generated will be

listed. SALL can be nullified by either XALL

or LALL and the /M switch can be used instead

of SALL.

The assembler normally prints out the symbol

table at the end of the program, but the

NOSYM statement suppresses the symbol table

printout.

June 1972

STATEMENT

TAPE)

-251- MACRO
DESCRIPTION

This pseudo=~op causes the assembler to begin

assemblingthe program contained in the next

gsource file in the MACRO command string. For

example,

«R MACRO

" ¥DSK:BINAME,LPT:«TTY:,DSK:MORE

PARAM=6

TAPE ‘

sTHIS COMMENT WILL BE IGNORED

+Z

would set the symbol PARAM equal to 6 and then

assemble the remainder of the program from the

source file DSK:MORE. Since MACRO is a 2-pass

assembler, the TTY: file would probably be re-

peated for pass 2.

END OF PASS 1

PARAM=6

- TAPE

+Z

Note that all text after the TAPE pseudo-op

is ignored.

PRINTX MESSAGE‘)This statement, when encountered, causes the
single operand following the PRINTX operator

to be typed out on the TTY. This statement

is frequently used to print out conditional

information. PRINTX statements are also used

in very long assemblies to report the progress

of the assembler through pass 1.

REMARK COMMENTS)On pass 1 the message is printed on both the

COMMENTW

VERSION 47

list device and TTY. On pass 2 it is printed

on the TTY, but only if it is not the list

device. :

The REMARK operator is used for statements

which contain only comments. Such statements

may also be started with a semi-colon.

This pseudo-op treats the text between the

first non-blank character (delimiter) and the

next occurrence of the same character as a

comment. If the first occurrence of the

delimiter is a right (left) angle bracket,
the next occurrence of the delimiter must also

be a right (left) angle bracket. The text

may include the carriage return, line feed

sequence. For example,

COMMENT/THIS IS A COMMENT

THAT IS MORE THAN ONE LINE LONG

/

Internally, the pseudo-op functions as ASCII,

but no binary is produced.

June 1972

MACRO -252-

2.7 CONDITIONAL ASSEMBLY

Parts of a program may be assembled, or not assembled, on an optional

basis depending on conditions defined by an assembler IF statement.

The general form is,

IFN, <.cuo...-ot-..>

where the coding within angle brackets is assembled only if the

first operand, N, meets the statement requirement.

The IF statement operators and their conditions are listed below:

Operator Assemble angle-bracketed coding IF:

IFE N, <...> N=0, or blank

IFG N, <...> N>0

IFGE N, <...> N=0, or N>0

IFL N, <...> N<O

IJFLE N, <...> N=0, or N<O

IFN N, <...> N#0

IF1l, <...> encountered during pass 1

IF2, <...> encountered during pass 2

In the following conditional statements, assembly depends on whether

or not a symbol has been defined. The coding enclosed in angle

brackets is assembled if,

IFDEF SYMBOL, <...>» this symbol is defined

IFNDEF SYMBOL, <...> this symbol is not defined

NOTE

SYMBOL can be an op-code or pseudo-op as

well as a user symbol.

The following conditional statements operate on character strings.

Arguments are interpreted as 7-bit ASCII character strings, and

the assembler makes a logical comparison, character-by-character

to determine if the condition is met.

The coding within the third set of angle brackets is assembled if

the character strings enclosed by the first two sets of angle brackets:

IFIDN <A-Z> <A=7>,<...> (1) are identical

IFDIF <A-Z> <A-I>,<...> (2) are different

VERSION 47 June 1972

-253- MACRO

These statements, IFIDN and IFDIF, are usually used in macro expan-

sions (see Chapter 3) where one or both arguments are dummy vari-

ables. '

An alternate form is to use delimiters as in ASCII. For example:

IFDIF/A=Z/"A=Z" y<===>

This allows the use of > inside the character string. If the first

non-blank (space or tab) character is a < character, then the < >

method is used; otherwise, the character is used as a delimiter.
N

" The last pair of conditional statementsis followed by a single

_bracketed character string, which is either blank or not blank,

and which is followed by conditional coding in brackets.

The codihg enclosed in the second set of angle brackets is as-

sembled if, '

IFB <i0e>,<000e> the first operand is blank

IFNB <.v:e23<000s.> the first operand is not blank

A blank field is either an empty field or a field containing only

the ASCII characters space (408) or tab (118).

Again, delimiters can be used as in

IFB / weee / 1 Sevees?

2.8 ASSEMBLER CONTROI. STATEMENTS

2.8.1 REPEAT Statements

The statement

REPEAT N, <...>J)

causes the assembler to repeat the coding enclosed in angle

brackets n times. If more than one instruction or data word is

to be repeated, each is delimitedby a carriage return. For

example, ‘

ADDX: REPEAT 3, <ADD 6,X(4)d
ADDI 4,1>

VERSION 47 | June 1972

2-27 |

MACRO -254-

assembles as,

ADDX: ADD 6,(h)

ADDI 4,1

ADD €,X(L)

ADDT k4,1

ADD 6,X(4)

ADDI 4,1

Notice that the label of a REPEAT statement is placed on the first

line of the assembled coding. REPEAT statements may be nested to

any level. The following simplified example shows how a nested

REPEAT statement is interpreted.

REPEAT 3,<A)

REPEAT 2,<BJ

C>

D>

assembles as,

C NOTE

| D Brackets indicate repetition.

2.8.2 OPDEF Statements

The programmer can define his own operators‘using an OPDEF state-

ment, which is written in the form:

OPDEF SYM {[STATEMENT]

where the first operand is defined as an operator, whose function

is defined by the second operand, which is enclosed in square

brackets. The second operand is evaluated as a statement, and the

VErRsION 47 JuNE 1972

-255- MACRO

result is stored in a 36-bit word. For example,

' OPDEF CAL1 [@39080 280284]

defines CALl as an operator, with the value 030000 000000. CALl

may now be used as a statement operator.

#3014g @g@1234 CAL1 3,1234

which is equivalent to,

@g3g1hg gg1234 7 3,1234(39029)

When MACRO-10 encountersa user-defined operator, it assembles a

single object-program storage word in the format of a primary in-

struction word (see Chapter 1). The defined 36-bit value is modi-

fied by accumulator, indirect, memory address and index fields as

specified by the user-defined operator.

For example,

OPDEF CAL [MOVE 1,@SYM(2)].
CAL 1,BOL(2)))

The CAL statement is equivalent to:

MOVE 2,@SYM+BOL(4)

In this modifiication the accumulator fieids are added, the indirect
bits are logically ORed, the memory address fields are added,

and the index register addresses are added;

>2.8.3 SYN Statements

The statement

SYN symbol, symbol

defines the second ope;and as synonymous with the first operand,

which must have been previously defined. Either operand may be a
symbol or a macro name. If the first operand is a symbol, the

. second is defined as a symbol with the same value. If the first is

VERSION 47 | ~ JuNe 1972

MACRO -256-

a macro name, the second becomes a macro name which operates identi-

cally. 1If the first is a machine, assembler, or user-defined opera-

tor, the second will be interpreted in the same manner. If the

first operand in a SYN statement has been previously defined as

both a label and as an operator, the second operand is synonymous

with the label.

The following are legal SYN statements:

SYN K,X JIF K=5, X=5
SYN FAD,ADD)
SYN END,XEND)

2.8.4 Extended Instruction Statements

For programming convenience, some extended operation codes are pro-

vided in the MACRO-10 Assembler. Primarily, these are used to re-

place those DECsystem-10 instructions where the combination of

instruction mnemonic and accumulator field is used to denote a

single instruction. For example:

JRST 4

is equivalent to a halt instruction. 1In addition, they are used

to replace certain commonly used I/0 instruction-device number

combinations.

The extended instruction statements are exactly like the primary

instruction statements or I/O instruction statements, except that

they may not have an accumulator field or device field.

The operator field must have one of the following extended mnemonics:

Equivalent

Extended Machine

Instructions | Instructions Meaning

JEN JRST 12, Jump and enable the PI (priority interrupt)
system

HALT JRST 4, Halt

JRSTF JRST 2, Jump and restore flags

JOV JFCL 14, Jump on overflow and clear
JCRYZ JFCL 4, Jump on CRY@ and clear

JCRY1 JFCL 2. Jump on CRY1l and clear

JCRY JFCL 5, Jump on CRYZ or CRYl and clear
JEOV JECL 1, Jump on floating overflow

RSW DATAI 2 Read the console switches

JUNE 1972

2-30

-257- | MACRO

2.9 MULTI-FILE ASSEMBLY

2.9.1 UNIVERSAL Name

UNIVERSAL files may be used to generate data, however, they are

normally used to'generate symbols, macros and opdef's (user-

defined operators). The symbolS'géneratéd.by UNIVERSAL files need

not be declared as INTERNAL symbols since all local symbols in

files of this type are made available to all programs permitted

access to the file.

UNIVERSAL files used to generate data can save time by being set

up for a one-pass operation since symbol definition needs to be

assembled on one pass only. This one-pass operation can be ac-

complished in either of two ways:

1) UNIVERSAL NAME

PASS 2

END

2) UNIVERSAL NAME

IF 2, <END>

END

The first generates a listing; the second does not.

1f the UNIVERSAL pseudo-op is seen in a program, the NAME is stored

in a table and a flag is set. When the END statement is seen, the

‘symbol table is moved to just after the pushdown stacks and buffers;

therefore, the pushdown stacks and buffers cannot be increased during

assembly. The first assembly should use the maximum of I/0 devices

to be used later. The free core pointer is moved to after the top of

‘the moved symbol table, and pointers are stored to enable the table
to be scanned.

When assembling is done from indirect files, the universal files must

be recompiled by the /COMPIL switch. Otherwise if a REL file later

than the source exists, the universal file will not be conpiled,

and the symbol table will not be available. In addition, if the

universal routine is modified, all routines which use it must be

recompiled by either using /COMPIL or deleting all REL files.

VERSION 47 JUNE 1972

MACRO -258-

2.9.2 SEARCH Name

The SEARCH statement opens the specified symbol table for MACRO

to scan if the required symbol is not found in the current symbol

table. Multiple symbol tables may be specified by separating them

with commas; they are searched in the order specified. A maximum

of ten symbol tables may be specified since each name requires

four words of core. This maximum may be redefined with the symbol

.UNIV in MACRO.

When the SEARCH pseudo-op is seen, the specified names are com-

pared with the UNIVERSAL table. If the specified names cannot be

found, the message

CANNOT FIND UNIVERSAL name

is output. If the specified names are found, a table of searching

sequence is built. This sequence is to search the universal symbol

tables in the order specified whenever a symbol is not found in

the current symbol table. This search is to continue until the

symbol is found or all the tables have been searched. When a symbol

is found in an auxiliary symbol table, it is moved into the current

symbol table. This procedure saves time on future references at

the expense of core.

Universal files may search other universal files as long as all

names in the search list have been assembled. The table of universal

names is cleared on each RUN or START, but is not cleared when MACRO

responds with an asterisk.

VERSION 47 JUNE 1972

-259- MACRO

Chapter 3

Macros

When writing a program, certain coding sequences are often used

several times with only the arguments changed. If so, it is conveni-

ent if the entire sequence can be generated by a single statement.

To do this, the coding sequence is defined with dummy arguments as

~a macro instruction. A single statement referring to the macro by

name, along with a list of real arguments, generates the correct

sequence. |

3.1 DEFINITION OF MACROS

The first statement of a macro definition must consist of the opera-~

tor DEFINE followed by the symbolic name of the macro. The name must

be constructed by the rules for constructing symbols. The macro

name may be followed by a string of dummy arguments enclosed in par-

entheses. The dummy arguments are separated by commas and may be

any symbols that are convenient--single letters are sufficient. A
comment may follow the dummy argument list.

The character sequence, which constitutes the body of the macro, is

delimited by angle brackets. The body of the macro normally consists

of a group of complete statements.

VERSION 47 JUNE 1972

MACRO -260-

For example, this macro computes the length of a vectors:

DEFINE VMAG (A,B) ;ROUTINE FOR THE LENGTH OF A VECTOR

<MOVE @,A {GET THE FIRST COMPONENT

FMP @ {SQUARE IT

MOVE 1,A+1 :GET THE SECOND COMPONENT

FMP 1,1 1SQUARE IT

FAD 1 .ADD THE SQUARE OF THE SECOND

MOVE 1,A+2 .GET THE THIRD COMPONENT

FMP 1,1 {SQUARE IT

FAD 1 .ADD THE SQUARE OF THE THIRD

JSR FSQRT {USE THE FLOATING SQUARE ROOT ROUTINE

MOVEM B .STORE THE LENGTH>

NOTE

Storing comments in a macro takes up space.

If the comments start with a double semi-

colon (;;) the comment will not be stored;

therefore, it lists in the original defini-

tion but does not list when the macro is

expanded.

3.2 MACRO CALLS

A macro may be called by any statement containing the macro name fol-

lowed by a list of arguments. The arguments are separated by commas

and may be enclosed with parentheses. If parentheses are used (in-

dicated by an open parenthesis following the macro name), the arg
u-

ment string is ended by a closed parenthesis. If there are n dummy

arguments in the macro definition, all arguments beyond the firs
t n,

if any, are ignored. If parentheses are omitted, the argument

string ends when all the dummy arguments of the macro definitions

have been assigned, or when a carriage return or semicolon delimits

an argument.

The arguments must be written in the order in which they are to
be

substituted for dummy arguements. That is, the first argument is

substituted for each appearance of the first dummy argument; t
he

second argument 1is substituted for each appearance of the second

dummy arguemnt, etc. For example the appearance of the statement:

VMAG VEC, LENGTH

in a program generates the instruction sequence defined above for

the macro VMAG. The character string VECT is substituted for each

occurrence in the coding of the dummy argument A, and the charac
ter

string LENGTH is substituted for the single occurrence of B in th
e

coding.

VERSION H7 3-2 JUNE 1972

-261- MACRO

gtatements with a macro call may have label fields. The value of the

1abel is the location of the first instruction g
enerated.

CAUTION

MACRO arguments are terminated only by C
OMMA,

CARRIAGE RETURN, SEMICOLON or CLOSE PARE
N-

THESIS (when the entire argument string
was

started with an open parenthesis) . These

characters may not be included in argume
nts

unless <> are used. Specifically, spaces or

tabs do not terminate arguments; they wil
l

pe treatedas part of the argument itself
.

The symbol does not terminate arguments,
it

just permits commas and: other symbols to
 be

used as part.of an argument.

3.3 MACRO FORMAT

a. Arguments must be separated by commas. However, arguments
may also contain commas. For example:

DEFINE JFQ(A,B,C)
<MOVE [A]

CAMN B

JRST C>

Tf the data in location B is equal to A (a literal), the
program jumps to C. TIf A is to be the instruction ADD 2,X%,
the calling macro instruction would be wr

itten

]JEQ<ADD 2,X>,B,INSTX)

The angle brackets surrounding the argument are removed,
and the proper coding is generated.

The general rule is: If an argument contains commas, semi-
colons, or any other argument delimiters, the a

rgument must

be enclosed in angle brackets. For every level of nesting,
one set of angle brackets igs removed; therefore, to pass

arguments containing commas to nested macros th
e argument

should be enclosedby one set of angle brackets f
or each

jevel of nesting. The > does not terminate the argument,

a comma must be used.

b. A macro need not have argfiments. The instruction:

DATAO PIP,PUNBUF(4)

which causes the contents of PUNBUF, indexed by reg
ister 4,

to be punched on paper tape, may be generated by
the macro:

DEFINE PUNCH ‘

<DATAO PIP,PUNBUF(L4)>

The calling macro instruction could be writte
n:

PUNCH

VERSION 47 | . JUNE 1672

MACRO -262-

PUNCH calls for the DATAO instruction contained in the body
of the macro.

¢. The macro name, followed by a list of arguments, may appearanywhere in a statement. The string within the angle
brackets of the macro definition exactly replaces the macroname and argument string. For example:

DEFINE L(A,B)<3%<B-A+1>>

gives an expression for the number of items in a -table wherethree words are used to store each item. A is the addressof the first item, and B is the address of the last item.To load an index register with the table length, the macrocan be called as follows:

MOVEI X,L(FIRST,LAST)

3.4 CREATED SYMBOLS

When a macro is called, it is often convenient to generate symbols
without explicitly stating them in the call, for example, symbols
for labels within the macro body. If it is not necessary to refer
to these labels from outside the macro, there is no reason to be
concerned as to what the labels are. Nevertheless, different sym-
bols must be used for the labels each time the macro is called.
Created symbols are used for this purpose.

Each time a macro that requires a created symbol is called, a symbol
is generated and inserted into the macro. These generated symbols
are of the form..hijk, that is, two decimal points followed by four
digits. The user is advised not to use symbols starting with two
points. The first created symbol is ..0001, the next is ..0002,
etc.

If a dummy symbol in a definition statement is preceded by a perczant
sign (%), it is considered to be a Created symbol. When a macro is
called, all missing arguments that are of the form %X are replaced
by created symbols. However, if there are sufficient arguments in
the calling list that some of the arguments are in a position to be
assigned to the dummy arguments of the form %X, the percent sign is
overruled and the stated argument is assigned in the normal manner.

Null arguments are not considered to be the same as missing argu-
ments. For example, suppose a macro has been defined with the

dummy string:

(A,%B,%C)

VERSION 47
JUNE 1972

gl |

063- MACRO

If the macro were called with the argument string:

~ (OPD,) or OPD,,

The second argument would be considered to have been declared as

null string. This would override the % prefixed to thé second dummy

argument and would substitute the null string for each appearance of

the second dummy argument in the statement. Héwever, the third ar-

gument is missing. A label would be created for each occurrence of
3C. For example: |

DEFINE TYPE(A,%B)

<JSR TYPEOUT

JRST %B

SIXBIT/A/

#B:>

This macro types the text string substituted for A on the console

Teletype. TYPEOUT is an output routine. Labeling the location fol-

lowihg the text is appropriate since A may'be text of indefinite

length. A created symbol is appropriate for this label since the

programmer would not normally reference this location. This macro

might be called by:

TYPE HELLO

which would result in typing HELLO when the assembled macro is ex-

ecuted. If the call had been:

TYPE HELLO,BX

the effect would be the same. However, BX would be substituted for

8B, overruling the effectof the percent sign.

3.5 CONCATENATION

The apostrophe character or single quote (') is defined as the con-

catenation operator. A macro argument need not be a complete symbol

Rather, it may be a string of characters which form a complete sym-

bol or expression when joined to characters already contained in the

macro definition. This joining, called concatenation, is performed

by the assembler when the programmer writes an apostrophe between

the strings to be so joined. As an example, the macro:

DEFINE J(A,B,C)

<JUMP'A B,C>

When called, the argument A is suffixed to JUMP to form a single sym-

bol. If the call were:

VERsION 47 | June 1972

MACRO -264-

J (LE,3,X+1)

the generated code would be:

JUMPLE 3,X+1

The concatenation (') may be used in nested macros. The assembler

removes one operator when it performs concatenation if it is next

to (before or after) a dummy argument.

3.6 DEFAULT ARGUMENTS

Missing arguments in macros are generally replaced by nulls. For

example, the macro

DEFINE FOO (A,B,C)>

EXP A,B,C>

when called by FOO(l) would generate three words of 1, @, and #.

Default arguments may be supplied to override missing arguments.

When supplied, default arguments are written within angle brackets

(<>) after each argument. For example, the addition of default ar-

guments 222 and 333 to arguments B and C of the foregoing example

macro would be written as

DEFINE FOO (A,B<222>, <<333>)
EXP A,B,C>

If the foregoing macro is called by FOO(1l) it would generate the

number 1,222,333.

The following example program illustrates the use of defined default

arguments.

VErRSsION 47 JUNE 1972

-265- MACRO

.MAIN MACRO 47(113) 1¢:1h4 28-MAR—72 PAGE 1
FOO MAC 28-MAR-72 1¢:13

' o ' DEFINE FOOl (A,B,C)<
EXP A,B,C>

DEFINE FO0O2 (A<111>,B<222>,C<333

>)<

EXP A,B,C>

FOO1L (1)4
PUOgan' E9EPE @APPPl EXP1,,+
pEgaEL" gAdNIE BPIgID
pRamg2' GOURRE BORUET Loon (1),

gEARE3 0AB0RY POPPP1 EXP 1,222,3334
goggel pgages pppE222
pgepags’ 2peaes @9¥333

‘ END

NO ERRORS DETECTED

PROGRAM BREAK IS g@ggge

2K CORE USED

3.7 . INDEFINITE REPEAT

It is often convenient to be able to repeat a macro one or more times

for a single call, each repetition substituting. successive arguments

in the call statement for specifiéd arguments in the macro. This may

be done by use of the indefinite'fepeat operator, IRP. The operator

IRP is followed by a dummy argument, which may be enclosed‘in paren-

theses. This argument must also be contained in the DEFINE.state-

ment's list. This argument is broken into subarguments. When the

macro is called, the rangé of the IRP is assembled once for each

subargument, the successive subarguments being substituted for each

appearance of the dummy argument within the range of the IRP. For

example, the single argument:

<ALPHA,BETA, GAMMA>

consists of the subarguments ALPHA,BETA, and GAMMA. The macro de-

finition:

DEFINE DOEACH(A),

<IRP A

<A>>

and the call:

DOEACH<ALPHA,BETA,GAMMA>

produce the following coding:

ALPHA

BETA

GAMMA

Vers1on 47 37 June 1972

MACRO ~266-

An opening angle bracket must follow the argument of the IRP state-

ment to delimit the range of the IRP since the argument is one ar-

gument to the macro. 2 closing angle bracket must terminate the

range of the IRP. IRPC is like IRP except it takes only one charac-

ter at a time; each character is a complete argument. An example of

a program that uses an IRPC is given in Chapter 7, Figure 7-4.

It is sometimes desirable to stop processing an indefinite repeat

depending on conditions given by the assembler. This is done by the

operator STOPl. When the STOPl is encountered, the macro processor

finishes expanding the range of the IRP for the present argument

and terminates the repeat action. An example:

DEFINE CONVERT (A)

<IRP A<IFE K-A,<STOPI

CONV1 A>>

Assume that the value of K is 3: then the call:

CONVERT @,1,2,3,4,5,6,7

<IRP

IFE K-@,<STOPT

CONV1 @>

IFE K-1,<STOP1

CONV1 1>

IFE K-2,<STOPI

CONV1 2>

IFE K-3,<STOPI

CONV1 3>

The assembly condition is not met for the first three arguments of

the macro. Therefore, the STOPI code is not encountered until the

fourth argument, which is the number 3. When the condition is met,

the STOPI code is processed which prevents further scanning of the

arguments. However, the action continues for the current argument

and generates CONV1 3, i.e., a call for the macro CONV1 (defined

elsewhere) with an argument of 3.

3.8 NESTING AND REDEFINITION

Macros may be nested; that is, macros may be defined within other

macros. For ease of discussion, levels may be assigned to these

nested macros. The outermost macros, i.e., those defined directly

to the macro processor, may be called first level macros. Macros

VERSION 47 June 1972

-267- MACRO

defined within first level macros may be called second level macros;

macros defined within second level macros may be called third level

macros; etc.

At the beginning of processing, first level macros are known to the

macro processor and may be called in the normal manner. However,

second and higher level macros are not yet defined. When a first

level macro containing second and higher level macros is called,

all its second level macros become defined to the processor. There-

after, the level of definition is irrelevant, and macros may be

called in the normal manner. Of coufse, if these second level

macros contain third level macros, the third level macros are hot

defined until the second level macros containing them have been

called.

When a macro of level n contains a macro of level n+l, calling the
macro results in generating the body of the macro into the user's

program in the normal manner until the DEFINE statement is encoun-

tered. The level n+l macro is then defined to the macro processor;

it does not appear in the ueer's program. When the definition is

complete, the macro processor resumes generating the macro body in-

to the user's program until, or unless, the entire macro has been

generated.

If a macro name which has been previously defined appears within

another definition statement, the macro is redefined, and the ori-

ginal definition is eliminated.

The first example of a macro calculation of the length of a vector

may be rewritten to illustrate both nesting and redefinition.

DEFINE VMAG (A,B,%C)

<DEFINE VMAG (D,E)

<JSP SJ,VL

EXP C,E>

VMAG (A,B)

JRST %C

VL: HRRZ 2, (SJ)

MOVE (2)

FMP @

MOVE 1,1(2)

FMP 1,1

FAD 1

MOVE 1,2(2)

FMP 1,1

FAD 1

JSR FSQRT

MOVEM @1 (SJ)

JRST 2(3J)

- 4C:>
VERSION 47 3-9 JUNE 1972

MACRO -268-

The procedure to find the length of a vector has been written as a

closed subroutine. It need only appear once in a user's program.

From then on it can be called as a subroutine by the JSP instruction.

The first time the macro VMAG is called, the subroutine calling se-

quence is generated followed immediétely by the subroutine itself;

Before generating the subroutine, the macro processor encounters a

DEFINE statement containing the name VMAG. This new macro is de-

fined and takes the place of the original macro VMAG. Henceforth,

when VMAG is called, only the calling sequence is generated. However,

the original definition of VMAG is not removed until after the ex-

pansion 1is complete.

Another example of a nested macro is given in Chapter 7, Figuré 7-4.

3.8.1 ASCII Interpretation

If the reverse slash (\) is used as the first character of an argu-

ment in a macro call, the value of the following symbol is converted

to a 7-bit ASCII character in the current radix. If the call is

MAC \A

and if A=500 (in the current radix), this generates the three ASCII

character "500".

VErRs1ON 47 JUNE 1972

-269- MACRO

Chapter 4

Error Detection

MACRO-10 makes many error checks as it processes source language

statements. If an apparent error is detected, the assembler prints

a Singie letter code in the left-hand margin of the program listing
(and on the TTY, unless the listing is on the TTY), on the same line

as the statement in question. s

The programmer should examine each error indication to determine

whether or not correction is required. At the end of the listing,

the assembler prints a total of errors found; this is printed even

if no listing is requested.

Each error code indicates a general class of errors. These errors,

however, are all caused by illegal usage of the MACRO-10 language,

as described in the preceding three chapters of this manual.

4.1 SINGLE-LETTER ERROR CODES

Table 4-1 lists the single-letter error codes output by the assem-

bler.

VERSION 47 | | June 1972

MACRO -270-

TABLE 4-1

Error Codes

Error Code Meaning Explanation

A Argument error in This is a broad class of errors.

pseudo-op which may be caused by an impro-
per argument in a pseudo-op.

The following represent the

majority of the conditions which

would cause an A code error.

a. Symbol used is improperly

formed. For example AB?CD

would result in an A code

since the character ? is

not in the Radix 50 charac-

ter set.

b. IFIDN comparison string is

too large. ~

c. OPDEF of macro is SYN,.

d. OPDEF, no code generated.

e. Invalid SIXBIT character

in SIXBIT/TEST Tab/

f. Byte size too big in byte

(>4D36).

g. Radix 50 code not absolute,

that is Radix 50 FOO,BAR

where FOO is not @-74 ab-

solute. :

h. End of line on IFx SYM

reached before an < char-

acter is seen.

i. Assignment made in an ad-

dress field (e.g., MOVE

A=10).

j. Assignment of a label

(e.g., TAG: TAG=1).

k. Missing symbol in SYN SYM1,.

1. Unknown symbol in SYN,.

m. Missing right parenthesis
()) in index (e.g., MOVE

ll(zooo)p

n. Missing left parenthesis

in BYTE statement (e.g.,

o. No comma after repeat count

p. IRP not in a macro.

VERSION 47 .JUNE 1972

Error Code

_VERSION_47.

Meaning

Multiply-defined
symbolic reference

error : '

External symbol
error

Literal error

Multiply-defined
symbol

-271- MACRO
TABLE 4-1 (Cont)

Explanation

q. Argument for IRP is not a

dummy symbol; for example

DEFINE FOO (A) <

IRP(B), <>>

r. IRP argument is a created

symbol.

S. STOP1l not in IRP.

This statement contains a tag

which refers to a multiply-

defined symbol. It is assem-

bled with the first value de-

fined.

Improper usage of an external

symbol. The following repre-

sent the majority of the condi-

tions which will cause an E

code error.

a. Attempting to use the same

symbol as both an external

and an internal symbol.

For example, the statement

EXT: EXTERN TXT,BRT,EXT

attempts to use EXT as both

an external and an internal

symbol.

b. Using an external symbol

for an AC or index.

c. Using an external symbol

for IFx.

d. Using an external symbol

in a LOC, RELOC, PHASE,

HISEG or TWOSEG pseudo-op.

e. Using an external symbol

in the left half of IOWD.

f. Using an external symbol

in an ARRAY size statement.

g. Using an external symbol in

a REPEAT count.

A literal is improper. A 1lit-

eral must generate 1 to 18 words.

EXP [SIXBIT //]1;NO CODE GENERATED

A symbol is defined more than

cnce. The symbol retains its

first definition, and the error

message M is typed out during

pass 1.

If this type of error occurs

during pass 2, it is a phase

error (see below).

JuNeE 1972

MACRO

Error Code Meaning

N Number error

0 Operation code un-

defined

P Phase error

VERSION 47

-272-
TABLE 4-1 (Cont)

Explanation

If a symbol is first defined as

a #-sign suffixed tag, and later

as a label, it retains the label

definition.

Examples:

A: ADD 3,X;

A: MOVE ,C; M ERROR

A: ADD 3,X#;

X: MOVE-,C; X IS ASSIGNED THE

CURRENT VALUE OF THE LOCATION

COUNTER ’ ’

Multiple appearances of the TITLE

pseudo-op (which generates both

a title line and program name)

are flagged as "M" (Multiple

definition) errors.

A number is improperly entered.

The following represent the ma-

jority of the conditions which

would cause an N-type error.

a. The number exceeds the per-

mitted range (e.g..

+F13.33E38).

b. A number does not follow a

B shift operator (e.g.,

4+D15BZ).

c. The number exceeds the cur-

rent radix (e.g., if radix

is 8 the single character

9 is acceptable but the

number 19 is not acceptable).

d. The binary shift given does

not represent an absolute

numeric. For example,

4B<sym> is illegal if sym

is relocatable.

e. The character given after
an up arrow (t+) is not B, O,

F, L or D.

£. The expression given after

E was not a signed (+) num-

ber.

The operation field of this state-

ment is undefined. It is assem-

bled with a numeric code of #.

A symbol is assigned a value as

a label during pass 2 different

from that which it received dur-

ing pass 1. In general, the as-

sembler should generate the same

number of program locations in

pass 1 and pass 2, and any dis-

crepancy causes a phase error.

JuNe 1972

Error Code Meaning

Q Questionable

VERSION 47

-273~ MACRO
TABLE 4-1. (Cont)

4-5

Explanation

For example, if an assembly con-

ditional, IF1l, generates three

instructions, a phase error re-

sults unless another conditional,

such as IF2, generates three pro-

gram locations during pass 2.

This is a broad class of possible

errors in which the assembler

finds ambiguous language.

Q-errors may or may not generate

correct code; the assembler will

attempt to do what the program-

mer intended. The following re-

present the majority of the con-

ditions which would cause a

Q~type error.

a. More than 5 ASCII characters

are detected by the assem-

bler before a closing "

symbol is detected (e.g.,
"ABCDEFG" or "ABC). When

more than 5 characters are

detected, only the first 5

are stored.

b. More than 6 SIXBIT charac-

ters are detected by the

assembler before a closing

" symbol is detected. As

in item a, only the first

6 characters are stored

when more than 6 are de-

tected.

c. A given number is too big;

in such cases, the high-

order bits of the number

are lost.

d. E in a number is followed

by something other than a

signed (+) numeric (e.qg.,

1.9EX) . —

e. An illegal control character

is detected in a line:

ASCII characters @-40 are

not permitted except for HT,

LF, VT, EF, CR and ESC.

f. A comma is detected in a

statement after all of the

required fields have been

filled (e.g., MOVE 1,2,)

g. Relocatable code is gener-

ated by the assembler be-

fore either the pseudo-op

HISEG or TWOSEG is found by

the assembler.

JUNE 1972

MACRO -274-

TABLE 4-1 (Cont)

Error Code Meaning Explanation

h. An instruction address

pointer is detected by the

assembler which does not

have either all @#'s or all

1's in the left half of

its word location.

R Relocation error A LOC or RELOC pseudo-op is used

improperly. All of the following

conditions will cause an R-type

error.

a. An expression or assignment

is made in which relocation

is not # or 1 (e.g., A+B,

A*7Z, 1/B, or X=3*B where

a and B are relocatable).

b. A BLOCK statement is writ-

ten with a relocatable size

(e.g., BLOCK: A where A is

relocatable).

c. A relocatable variable is

used to specify an accumu-

lator (e.g., MOVE A,l where

A is relocatable).

U Undefined symbol A symbol is undefined.

\ Value previously A symbol used to control the as-

undefined sembler is undefined prior to
‘the point at which it is first

used. Causes error message in

pass 1.

For example, BLOCK:A where A is

undefined.

X Macro definition An error occurred in defining or

error calling a macro.

Error messages printed during pass 1 consist of two parts. The page

and sequence number, if used, plus the most recently used label is

printed on the first line. This material is then followed by +n,

where n is the (decimal) number of lines of coding between the la-

beled statement and the statement containing an error. The second

line of the error message is a copy of the erroneous line of coding,

with a letter code in the 1eft—hénd margin to indicate the type of

error. If more than one type of error occurs on the same line, more

than one letter is printed; but if the same type of error occurs

more than once in the same line, a single letter code is printed.

VErsion 47 JUNE 1972

-275- MACRO

During pass 2, as the listing is printed out, lines containing er-

rors are marked by letter codes, and a total of errors found is

printed at the end of the listing.

4,2 ERROR MESSAGES

The following error messages may be typed out on the user's. terminal.

Any error meSsage preceded by a question mark (?) is treated as a

fatal error when running under the BATCH processor (the run is ter-

minated by BATCH).

END OF PASS 1 This message indicates that manual

loading is required to start pass
2. This message is issued when

the input is paper tape, cards or
keyboard.

LOAD THE NEXT FILE This message indicates that manual

loading is required when the files

to be input are on paper tape,

cards or being input from the

terminal.

?COMMAND ERROR This message indicates that an
‘ error was found in the last com-

mand string input.

?INSUFFICIENT CORE Not enough core is available.

?.PDL OVERFLOW,TRY/P This message indicates that the

pushdown list is too small. The

use of a /P switch increases the

size of the pushdown list by 80
locations. As many /P switches
may be used as desired.

?DEV NOT AVAILABLE The specified device cannot be

initialized because another user
is using it.

?N ERRORS DETECTED These three statements indicate
?1 ERROR DETECTED » the number of errors detected by
NO ERRORS DETECTED MACRO during assembly (errors

marked by letter codes on the
listing. Under BATCH if any error
occurs, the run is terminated.

¢NO END STATEMENT ENCOUNTERED ON INPUT FILE

- This message is followed by one
of the following:

IN LITERAL

IN DEFINE

IN TEXT

IN CONDITIONAL OR REPEAT

IN CONDITIONAL

IN MACRO CALL

VERSION 47
JUNE 1972

MACRO
276-

and

ON PAGE xxx AT yyy

where xxx = a page number and yyy
a sequence number Or TAG+offset.

NOTE

The foregoing type of message

usually indicates some error

other than a missing END state-

ment. For example:

ASCIZ/TEXT

END

where TEXT has not been closed

or

JRST [statements

END

where the literal has not been

closed.

?PRGEND ERROR
This error message indicates that

the macro failed to restore the

symbol table for one of the pro-

grams.

?2T00 MANY UNIVERSALS
This error message indicates that

too many universal programs have

been assembled. The number of

universal programs permitted is a

Macro parameter; to prevent this
error from reoccurring, the user

must reassemble macro with a new

parameter which will permit the

?2CANNOT FIND UNIVERSAL xxX

xxx UNASSIGNED DEFINED AS IF EXTER

PROGRAM BREAK IS XXX

HI-SEG BREAK IS xxX

VErRSION U7

desired assembly.

This message indicates that a

search has been made for UNIVERSAL

program xxx but it was not found
(i.e., it was not assembled). To

clear this error the program XXX

must be assembled.

NAL

This message indicates that an

undefined symbol was found and

that it has been treated as if it

was an external symbol.

Wwhere xxx is the length of the low

segment.

Where xxx is the length of the

relocated high segment.

June 1972

~277- MACRO

ABSOLUTE BREAK IS xxx Where xxx is the highest absolute
:

address seen over 144.

xK CORE USED - Message indicates the size of the
low segment used to assemble the
source program.

PUNIVERSAL PROGRAM(S) MUST HAVE SAME OUTPUT SPECIFICATIONS AS OTHERFILES

This error message indicates that a
universal program was found which
did not have either a binary or a
listing device specified but all of
the following files had such speci-
fications. For example the sequence

¥ <UNIV
¥pel,List<«file

is illegal. The legal sequence
would be

*¥rel, LIST<«UNIV
¥REL,LIST«FILE

?ERROR WHILE EXPANDING Xxx This error message indicates that
the assembler experienced an inter-
nal error while expanding the macro
identifiedas xxx. Errors of this
type are extremely rare; if it oc-
curs the user should rewrite the
macro involved.

4.2.1 LOOKUP Errors

The following error messages can occur during a monitor LOOKUP,
RENAME or ENTER request on disk. The form of the error messages is:

? filename.ext then one of the following

(9) FILE WAS NOT FOUND or (@) ILLEGAL FILE NAME (used forenter errors only)

(1) NO DIRECTORY FOR PROJECT-PROGRAMMER NUMBER

(2) PROTECTION FAILURE

(3) FILE WAS BEING MODIFIED

(4) RENAME FILE NAME ALREADY EXISTS
(5)‘ ILLEGAL SEQUENCE OF UUOS
(6) BAD UFD OR BAD RIB

(7) NOT A SAV FILE

(1) NOT ENOUGH CORE

(11) DEVICE NOT AVAILABLE

(12) NO SUCH DEVICE

(13) NOT TWO RELOC REG. CAPABILITY

(14) NO ROOM OR QUOTA EXCEEDED

(15) WRITE LOCK ERRCR

VERSION 47
JUNE 1972

MACRO

(16)

(17)

(29).

(21)

(22)

(23)

(24)

(25)

(26)

-278-

NOT ENOUGH MONITOR TABLE SPACE

PARTIAL ALLOCATION ONLY

BLOCK NOT FREE ON ALLOCATION

CAN'T SUPERSEDE (ENTER) AN EXISTING DIRECTORY

CAN'T DELETE (RENAME) A NON-EMPTY DIRECTORY

SFD NOT FOUND

SEARCH LIST EMPTY

SFD NESTED TOO DEEPLY ‘

NO-CREATE ON FOR SPECIFIED SKFD PATH

If the error code (V) is greater than 268’ the error message:

?2(V) LOOKUP,ENTER, OR RENAME ERROR

is printed.

4.2.2 MACRO I/O Error Messages

The following error messages are generated for error conditions

found during input or output operations with peripheral devices. The

messages are self-explanatory.

VERs1ON 47

?20UTPUT WRITE-LOCK ERROR DEVICE xxX

?0UTPUT DATA ERROR DEVICE xxx

20UTPUT CHECKSUM OR PARITY ERROR DEVICE xxX

?0UTPUT QUOTA EXCEEDED ON DEVICE xxx

?0UTPUT BLOCK TOO LARGE DEVICE xxXx

?MONITOR DETECTED SOFTWARE INPUT ERROR DEVICE xxx

?INPUT DATA ERROR DEVICE xxXx

?INPUT CHECKSUM OR PARITY ERROR DEVICE xxx

?INPUT BLOCK TOO LARGE DEVICE xxx

June 1972

- -279- MACRO

Chapter 5

Relocation

The MACRO-10 assembler will create a relocatable object program.

This program may be loaded into any part of memory as a function

of what has been previously loaded. To accomplish this, the

address field of some instructionsvmust have a relocation constant

added to it. This relocation cohstant, added at load time by the

PDP-10 Loader, equals the difference between the memory location

‘an instruction is actually loaded into and the location it is
assembled into. If a program is loaded into cells beginning at

locationAl4008,-the’relocation constant k~would be 14008.

Not all instructions must be modified by the relocation constant.

Con51der the two instructions:

MOVEI 2,.-3

MOVEI 2,1

The first is used in address manipulation and must be modified; the

second probably should not. To accomplish the relocation, the

actual expression formingan address is evaluatedand marked for

modification by the Linking Loader. Integer elements are absolute

and not modified. Point elements (.) are relocatable and are always

VERSION 47 | June 1972

MACRO -280-

modified.! Symbolic elements may be either absolute or relo-

catable. If a symbol is defined by a direct assignment statement,

it may be relocatable or absolute depending on the expression

following the equal sign (=). If a symbol is defined as a macro,

it is replaced by the string and the string itself is evaluated.

If it is defined as a label or a variable (#), it is relocatable.1

Finally, references to literals are relocatable.!

To evaluate the relocatability of an expression, consider what

happens at load time. A constant, k, must be added to each re-

locatable element and the expression evaluated. Consider the

expression:

X - A+2%B-3%C + D

where A,B,C, and D are relocatable. Assume k is the relocation

constant. Adding this to each relocatable term we get:

XR = (A+K)+2%¥(B+K)-3*¥(C+K)+(D+K)

This expression may be rearranged to separate the k's, yielding:

in = A+2%¥B-3%¥C+D+K

This expression is suitable for relocation since it involves the

addition of a single k. 1In general, if the expression can be re-

arranged to result in the addition of

J*K The expression is legal and fixed.
1¥K The expression is legal and relocatable,

N¥K Where n is any positive or negative integer other

than 0 or 1, the expression is illegal.

Finally, if the expression involves k to any power other than 1,

the expression is illegal. This leads to the following conven-

tions:

a. Only two values of relocatability for a complete

expression are allowed (e.g., nK where n = @ or +1).

b. An element may not be divided by a relocatable element.

c. Two relocatable elements may not be multiplied together.

d. Relocatable elements may not be combined by the Boolean

operators.

lExcept under the LOC code or PHASE code which specifies absolute
addressing.

VERSsION U7 5-2 ‘ JUNE 1972

-281- MACRO

If any of these rules is broken, the.expression is illegal and the

assembled code is flagged.

If A, C, and B are relocatable symbols, then:

A+B-C is relocatable

A-C is fixed

A+2 is relodatable

2%A-B is relocatable

2&A-B is illegai

A storage word may be relocatable in the left half as well as in

~the right half,. For example:

XWD A,B

VERSION 47 JUNE 1972

~283- MACRO

Chapter 6

Assembly Output

There are two MACRO-10 outputs, a binary-program and a program

listing. The llstlng is controlled by the listing control pseudo-

ops, which were described in Chapter 2.

6.1 ASSEMBLY LISTING

All MACRO-10 progréms begin with an implicit LIST statement.
:

,

Each page begins with a TITLE line; this line contains the program's

name, the assembler version, the time of assembly, the date of

assembly and a page number. The page number is incremented by a

Form-Feed or PAGE pseudq-op.

If the code.listed requires more than one page, the basic page
number given on the title line does not change but a subpage number

is added and incremented for each additional page (e.g., 6-1, 6-2,

6-3, etc.). ‘ |

The second line printed on each page is the SUBTITLE 11ne. This

line contains the program fllename and extensions, creation time,

creation date and any glven subtitle.

VERSION 47 June 1972

6-1

MACRO 284~

From left to right, the columns on a listing page contains:

a. The 6-digit address of each storage word in the

binary program. These are normally sequential

location counter assignments. In the case of a

block statement, only the address of the first

word allocated is listed. An apostrophe follow-

ing the address indicates that the address is

relocatable.

b. The assembled instructions and data words shown

in one of several forms for easier reading (see

paragraph 2.6.3).

c. The source program statement, as written by the

programmer, followed by comments, if any.

If an error is detected during assembly of a statement, an error

code is printed on that statement's line, near the left edge of

the page. If multiple errors of the same type occur in a parti-

cular statement, the error code is printed only once; but if several

errors, each of a different type, occur in a statement, an error

code is printed for each error. The total number of errors is

printed at the end of the listing.

The program break is also printed at the end of the listing. This

is the highest relocatable location assembled, plus one. This is

the first location available for the next program or for patching.

6.2 BINARY PROGRAM OUTPUT

The assembler produces binary program output in four formats. The

choice depends on whether the program is relocatable or absolute,

and on the loading procedure to be used to load the program for

execution.

6.2.1 Relocatable Binary Programs - LINK Format

Most binary programs are output in LINK format. Like the RELOC

statement, the LINK format output is implicit and is automatically _

produced for all relocatable MACRO-10 programs unless another format

(RIM, RIM10, RIM1OB) is explicitly requested. The LINK format is

the only format that may be used with the Linking Loader.

The Linking Loader loads subprograms into memory, properly relocat-

ing each one and adjusting addresses to compensate for the relocation.

VERSION 47 JUNE 1972

-285- MACRO

It also links external and internal symbols to provide communica-
tion between independently assembled subprograms. Finally, the
Linking Loader loads required subroutines while in Library Search
Mode.

'

Data for the Linking Loader is formatted in blocks. All blocks have
an identical forflat. The first word of a LINK block consists of
two halves. The left half is a code for the block type, and the
right half is a count of the number of data words in the block.
The data'words are grouped in sub-blocks of 18 items. Each 18-
word sub-block is preceded by a relocation word. This relocation
word consists of 18 2-bit‘bYtes. Each byte corresponds to one word
in the sub-bloék, and contains relocation information regarding that
word.

If the byte value is:

no relocation occurs

the right half is relocated

the left half is relocated

both halves are relocated

w

N
N

=

O

These relocation words are not included in the count; they always
appear before each sub-block of 18 words or less to ensure proper
relocation. | |

All relocatable programs may be stored in LINK format, including
programs on paper tape, DECtape, magnetic tape, punched cards,
and disks. This format is totally independent of logical divi-
sions in the input medium. It is also independent of the block
type.

6.2.1.1 LINK Formats for the Block Types - Block Type 1 Relocatable
or Absolute Programs and Data

WORD 1 The location of the first data word in the blockWORD 2 A contiguous block of program or data words (18. or less)

WORD N (N, from 1 to 18, must be less than 2000,000 octal)

VERSION 47
JUNE 1972

MACRO -286-

Block Type 2 Symbols

Consists of word pairs

1ST WORD Bits 0-3 code bits

1ST WORD Bits 4-35 radix 50 representation of symbol
(see below)

OND WORD Data (value or pointer)

CODE @L4: Global (internal) definition

2ND WORD Bits 0-35 value of symbol
CODE 1@: Local definition

SND WORD Bits 0-35 value of symbol

CODE 6g: Chained global requests:

OND WORD Bits 0-17=0

OND WORD Bits 18-35 pointer to first word of chain
requiring defintion (refer to the L.OADER
manual)

CODE 6¢: Global symbol additive request: (refer to
the LOADER manual)

Block Type 3 Load Into High Segment

When block type 3 is present in a relocatable binary program, the

Loader loads the program into the high segment if the
system has

re—entrant (two-segment) capability. When used, block type 3 ap-

pears immediately after the name block (type
6).

The first word is

XWD 3,,2

The second word is the relocation word

209900,.8

The third word is

YWD HISEG BREAK,,TWOSEG ORIGIN

where twoseg origin is 400000 by default.

With the TWOSEG pseudo-op, the left half of the third
 word is nega-

tive. On a two-segment machine,this is ignored except to
set a

LOADER flag. On a one-segment machine, the difference is assumed to

be the maximum length of the high segment. A one-pass assembler

does not know this legth at the start of pass 1, t
herefore

VERSION 47 June 1972
6-4

| -287- MACRO

XWD L@@ped, ,4o089d

is used to signal two segments to a two-segment machine.

On a one-segment machine, this instruction gives the error message

TWO SEGMENTS ILLEGAL

since the LOADER does not know how much space to reserve for the

high segment.

Block Type 4 Entry Block

This block contains a list of Radix 50 symbols, each of which may

contain a 0 or 1 in the high-order code bit. Fach represents a

series of logical AND conditions. If all the globals in any series

are reqdested,'the following program is loaded. Otherwise, all

input is ignored until the néxt end block. This block must be the

first blockin a progranm.

Block Type 5 End Block

This is the last block ina program. It contains two words, the

first of Which'is the program break, that is, the location of the

first free register above the program. (Note: This word is relo-

catable.) It is the relocation constant for the following program

loaded. The second word is the highest absolute location seen (if

greater than 140); In a two-segment program, the two words are:

1) the high segment break followed by

'2) the low segment break.

Block Type 6 Name Block

The first word of this block is the program name RADIX 50). It

must appear before any type 2 blocks. The second word, if it

appears, defines the length of common. The left half of the second

word 1is used to describe the compiler type that produced the binary

file, 0 in the case of MACRO.

N

Version H47 | June 1972

MACRO -288-

Block Type 7 Starting Address

The first word of this block is the starting address of the program.

The starting address for a relocatable program may be relocated by
means of the relocation bits.

Block Type 10 Internal Request

Each data word is one request. The left half if the pointer to the

program. The right half is the value. Either quantity may be re-

locatable.,

6.2.2 Absolute Binary Programs

Three output formats are available for absolute (non-relocatable)

binary programs. These are requested by the RIM, RIM10, and RIM10B
statements.

6.2.2.1 RIM1OB Format - If a program is assembled into absolute

locations (not relocatable), a RIM10B statement following the LOC

statement at the beginning of the source program causes the as-

sembler to write out the object program in RIM10B format. This

format is designed for use with the PDP-10 hardware read-in feature.

The program is punched out during pass 2, starting at the location

specified in the LOC statement. If the first two statements in the

program are:

LOC 148¢)
RIM1gB)’

the assembler assembles the program with absolute addresses start-

ing at 1000, and punches out the program in RIM10B format, also
starting at location 1000. The programmer may reset the location

counter duringassembly of his program, but only one RIM10B state-

ment is needed to punch out the entire program,

In RIM10B format (see Figures 6-1 and 6-2), the assembler punches

out the RIM10B Loader (Figure 6-2), followed by the program in 17-

word (or less) data blocks, each block separated by blank tape.

The assembler inserts an I/0 transfer word (IOWD) preceding each

data block, and also inserts a 36-bit checksum following each data*

VERS1ON 47 JUNE 1972

-289-
MACRO

blogk as shown in Figure 6-1. The word count 'in the IOWD includes
only the data words in the block, and therchecksum is the simple
36~bit added checksum of the‘IOWD and the data words.

Data blocks may contain less than 17 words. If the assembler as-
signs a non-consecufive location, the current data block is termi-
nated, and an IdWD containing the next location is inserted,
starting a new data block.

The transfer block consists of two words. The first word of the
transfer block is an'instruction-obtained from the END statement
(see Section 6.2.2.4) and is executed when the transfer block.is
read. The second is a dummy word to stop the reader.

6.2.2.2 RIM10 Format - Binary programs in RIM10 format are abso-
lute, unblocked, and not checksummed. When the RIM10 statement
follows a LOC statement in a program, the assembler punches out
each storage word in the object program, starting at the absolute
address specified in the LOC statement.

RIM10 writes an arbitrary "paper tape". If it is in the format
below, it can be read in by the PDP-10 Read-In-Mode hardware.

IOWD N,FIRST)

where n is the length of the program including the transfer instruc-
tion at the end, and FIRST is the first memory location to be occu-
Pied. The last location must bea transfer instruction to begin
the program, such as:

JRST 4,00)

For example, if a program with RIM10 output has its first location
at START and its last location at FINISH, the programmer may write

\

IOWD FINISH-START+1,START)

NOTE

In cases where the location counter is increased
but no binary output occurs (such as with BLOCK,
LOCn, and LIT pseudo-ops), MACRO inserts a Zero
word into the binary output file for each loca-
tion skipped by the location counter.

VERSION 47 o - June 1972
6~7

MACRO -290-

6.2.2.3 RIM Format - This format, which is primarily used in PDP-6

systems, consists of a series of paired words. The first word of

each pair is a paper-tape read instruction giving the core
 memory

address of the second word. The second word is the data word.

DATAI PTR,LOC

DATA WORD

The last pair of words is a transfer block. The first word is an

instruction obtained from the END statement (see Section 6.2.2.4)

and .is executed when the transfer block is read. The second word

is a dummy word to stop the reader. '

The loader that reads this format is:

LOC 24

CONO PTR,68
A: CONSO PTR,1#

JRST .-1

DATAI PTR,B

CONSO PTR,1d

JRST .~-1

B: ¢

JRST A

This loader is normally toggled into memory and started at loca-

tion 20.

6.2.2.4 END Statements - When the programmer wants output in either

RIM or RIM10B format, he may insert an instruction or starting ad-

dress as the first word in the two-word transfer block by writing

the instruction or address as an argument to the END statement.

The second word of the transfer block is zero. 1In RIM10 assemblies,

this argument is ignored.

If bits 0 through 8 of the instruction are zero, MACRO will insert

the instruction JRST 4,0, causing a halt when executed. The END

statements

END SA) OR END JRST SA)

will start automatically at address SA.

VERsTON U7 June 1972

-291- | MACRO

Some other examples:

l1st Transfer Block Word

END@XCT 1234 XCTel23k

END ZU,SA JRST 4,SA

END JRST 4,0

RIM 198
LOADER .

. X1<€1710= NUMBER OF WORDS IN
tOWD Xy, ADDRy 15t DATA BLOCK

ADDRy=ADDRESS OF

1st DATA BLOCK

18t BLOCK

OF

PROGRAM DATA

IOWD IS INCLUDED

{N -CHECKSUM

IOWD Xq, ADDRp,

CHECKSUM

nth BLOCK

OF

PROGRAM DATA

CHECKSUM

//////////// BLANK TAPE (6 FRAMES)

JRST START

TRANSFER BLOCK

¢

10-0060

Figure 6-1 General RIM10B Format

VERSTON 47 - | JunE 1972

MACRO -292-

XWD -1650

ST: CONO PTRs60

ST1 HRRI A,RD+1

RD: CONSO PTR»10

JRST

DATAI PTRs @TBL1-RD+1(A)

XCT TBL1-RD+1CA)

XCT TBL2-RD+1(A)D

A S0JA A,

TBL1 : CAME CKSMs»ADR

ADD CKSMs1 (ADR)

SKIPL CKSM,ADR

TBL2: JRST 4,ST

AOBJN ADRsRD

ADR: JRST ST1

CKSM=ADR+1

Figure 6-2 RIM10B Loader

VErRsION 47 June 1972

-293- MACRO

Chapter 7

Programming Examples.

This chapter contains four examples of macro programs. The first
example (Figure 7-1) presents a MACRO-10 routine for calculating
the logarithm of a complex argument. This routine begins with an
ENTRY statement identifying this library routine as CLOG (Complex
Logarithm Function) and uses three external routines, ALOG, ATAN2
and CABS.

The second example (Figure 7-2) is the universal parameter file
DEF40.MAC which is used to produce the KA-10 version of LIB40.
It contains conditional assembly switches to select either a PDP-6,
KAl0 or KI10 mode. It defines the accumulator conventions and
macros which simulate the KI10 hardware operations on the KAl0

processor.

Example 3 (Figure 7-3) uses DEF40 (via the SEARCH pseudo-op) for
its accumulators and the macros for DMOVE, DMOVEM and FLADD. The
macro FLADD is expanded twice to show the effect of LALL on lines
which generate text but no binary. The effect of SALL is also
shown.)

Example 4 (Figure 7-4) shows nested macros which use IRPC. The
desired operation is to take an ASCII text string and store the

VERSION 47 7-1 JuNe 1972

- MACRO ~294-
characters four per word, left-justified, with the character co

unt

stored in the first nine bits of the first word.

The TEXT macro counts the string characters and invokes the C
ODE

macro to store the characters four per word.

The CODE macro invokes a SHIFT macro which left-justifies the
 last

word if it is not already left-justified. The first part of the

example shows the normal listing, then SALL is set to show what

code the macros are generating.

VERSION 47 JUNE 1972

MACRO-295-

IMYd TYEY HIIM YHMSNY JVMS©
0°Y

HOXH
INILNOY DOT HOd SSIUAAYS

v
axd9T=0g1=9

-
T=4d

11888
9

10080801@9TgZa8T1828¢1880
808

AdLOELHEJ.SHOHHEHEON

9
T

L
9
z

19182084RN}

LSTA00YLOB30d\0880089eTiyy
gip)

NPB888WP23881\COBBPD1228308Nofuyayiygil

Figure 7-1 MACRO Program CLOG

JUNE 1972VERSION 47

-296-MACRO

OTPPPP
y]

T108089aINH.goggag
D010

IXHhA08a0
Sgvo

21388
o)

1092080gIXH,T1898d
ZNYLY

IXHE9000084
DOTY

o883
¥

dT1dYISTOGWASEGIET2l-dav-fOVIDOID
¢ADVd2.-Hav-f4#G:€T(ETT).LHOYHOVHnoIo

June 1972VERSION 47

-297- 'MACRO

UNIVERSAL DEF4@ PARAMETER FILE FOR FORTRAN IV LIBRARY
SUBTTL V32(343) 23=-NOV-T71 /TWE

IFNDEF PDP6.<IFNDEF KAl#,<IFNDEF KI1f,<KAlg==1>>>
IFNDEF PDP6,<PDP6==g> ; CONDITIONAL ASSEMBLY PARAMETERS
IFNDEF KAl#,<KAlg==g>

IFNDEF KI1J,<KIl@==g>

IFN <PDP6!KA1¢!KI1@-PDP6-KA1@-KI1g>,
<PRINTX MACHINE PARAMETERS DEFINED WRONG>

; ACCUMULATOR ASSIGNMENTS
A=g

B=1

c=2
D=3

E=1

F=5

G=6
H=7

Q=16 ;FOR JSA AND ARG ADDRESS FOR PUSHJ
P=17 ;PUSH DOWN POINTER

IFE KAld,<

DEFINE DOUBLE (A,B)<

A

B>

>

IFN KAlf,<

DEFINE DOUBLE (A,B)<

451 ,==A% 777000, ,0>
IFL %%1l.,<33l.==-3%3%1.-<1000,,0>>
#%1 ,==%21.-<@#3300%,,9>

IFE B,<%%1l.,==¢> '

Z22,==B%1, +<<B+20@>«-B>&<@PBTTT,,TTTTTT>
IFL Z%1l.,<%%2.==g>

A

BRE2

SUPPRESS 231, ,%%2.>

DEFINE DMOVE (AC,M)<

, IFL <& M>-<@>,<

MOVE AC,M

MOVE AC+1,1+M>

IFGE <& M><@>,<
MOVEL AC+1,M

MOVE AC, (AC+1)

MOVE AC+1,1(AC+1)>
>

DEFINE DMOVN(AC,M)<

DMOVE AC,M

DFN AC,AC+1>

DEFINE DMOVEM(AC,M)<
MOVEM AC,M

MOVEM AC+1,1+M

Figure 7-2 Universal Parameter File DEF40.MAC

VERSION 47 _ JUNE 1972

MACRO _298-
DEFINE FLMUL (AC,M,%0V)<

MOVEM AC,AC+2

FMPR AC+2,1+M

JFCL (2)

FMPR AC+1,M

JFCL (2)

UFA AC+1,AC+2

JECL

FMPL AC,M

JOV %0V

UFA AC+1,AC+2

FADL AC,AC+2

%OV>

DEFINE FLDIV(AC,M,%0V)<

FDVL AC,M

JOV %0V

MOVN AC+2,AC

FMPR AC+2,1+M

JFCL (2)

UFA AC+1,AC+2

FDVR AC+2,M

JFCL

FADL AC,AC+2

0V>

DEFINE FLADD(AC,M,%0V)<

UFA AC+1,1+M

FADL AC,M

JOV %0V

UFA AC+1,AC+2

FADL AC,AC+2

Z0V:>

> ;END OF KA1lg CONDITIONAL

IFN KI1g,<

OPDEF FLADD [DFAD]

OFDEF FLMUL [DFMP]

OPDEF FLDIV [DFDV]

DEFINE DFN (A,B)< DMOVN A,A

IFN <<A+1>&17->,<PRINTX "DMOVN A,A" CAN'T REPLACE "DFN A,B">
>

> sEND OF KI1@ CONDITIONAL

END

VERSION 47 JunNe 1972

ATINOZMYNIGANVTIVD¢

MACRO

HONTHIAYI
AT

ISITS

-299-

AYOWHWOL
HYOLS

QIXHEANTENOSIHLS
JAOWdTI9N0d

HFTIHWISS¢

IHV
IS

q°YyHAONATI
VS

¥

2+VY
Tavd

2HVT+YvdNcgeg:cnorq°Y
TaAvda

J+T°T+
V

vdn
#°Y

aavidTI
VT
2+YY

1avd2+Y°T+
Y

vdnTg@8°¢AOCrqéy
1avdH+T°T+

V
vdn

gy
aavia

#+T°T+YWIAOWYWIACH
A°Y

WAAON
WC(T+Y)TT+YFAOW(T+Y)vVHIAOHW

()‘T+VIFAOW(®)‘v9AOWA(B)+TT+VHAOH

()°VTACOH(®)°VY“HAONWA

FHd9dHOMVIES
¢L-¥av-9T%1LIENS

SOHOVIWdWOSLSHLHTLIL

aN
d‘cp
es”VL
SZL=¥dv-

S
1%

TdDV¥d¢l-¥dv-S84:€T(£TT).LyOMDVH 1
B020

827hooeee2984ycPo28e
y1

1clp
ap

SPB
eP8

cep
enzcee
aedT1eP88

eygy
a3lSPB

EBY120
028

po2
0eg208
088

-
18880

80
yogd

dig]Br€T2L-¥dV-G 2
928297

a|aunmw®ASESRSR SRS"R

ddsnHY00e
€2@PBPSTVVANYWVYHOEdJALOELEdSHOYY¥EON

gfgdz120008122
880

27Tnl
gegpag

9PET
L18887

g1GG2
9T1@gpg

B8ThT
S1GZED

19BET
4H18P899

28THT
STQ088

18GET
2198080

BTSS2
110989

29T
Q18200

I8PET
L02037

1%2299023y
232@2

.SPBIF
P

18B8z
qP0289

28dgz
tPo3a8

191@c
.,2Pp@33

g8@@z
193898

08ggc
9230898gyDYISHELSOYDVINHKWOSISHL

Figure 7-3 Test Some Macros

JUNE 1972
VERSION 47

-300-MACRO
¢

dDVd

128
20NTPP00PB8
880

goeseeT9YLTOEWAS€T2l-u¥dv¥-§

O
V

cgg
g:”

198
@°

"LHYLSLSHLSOHOVHHMWOSLSHL
JUNE 1972VERSION 47

MACRO-301-

e e e©QUALOVHYHDINNODS:
T+N==T+N==&"“Z

T7v71
<ZZ

dXH
<<

22JXH>0
0dyT<

2L-4dv
-4

1%

oy
384}2pep

se
1008

89
288

889€PT2PTTHIHTH W
PP0

88i\
COP0

80
180

800YyOVIN

Store Text Character by CharacterFigure 7-4

JuNe 1972VERSION 47

-502-MACRO

T+N==NT+N==NT+N
==NT+N
==NT+N==NT+N
==

118
029

Z1oapeLpp
aaeYfuffuf

i]

JuNe 1972VErsION 47

7-10

MACRO~303-

-
2
%

J
X
d

==ZZ

c1gooogy

JuNE 1972VERSION47

7-11

-304-MACRO

2%dXH>‘0dLLL38%%NAI<P==2ZzZ7
dXH>°0dl).3%

%
NAI

SPTHAT

June 1972VERSION 47

7-12

MACRO-305-

<LATHS

| pFRR==2F

<<LJAIHS6+2F
==2%cL-¥dv

-§
T%

gOZ
NTTCTITeTTTITZTIT9970809CITITT

Z1TPeg

LPTOZTGPTHAT.S0PP0d
JuNE 1972VERSION 47

7-13

-306-.ROMA(

cL-4dv
-S

I%
€-T39Vd2l-Hd¥=-GS:hT(ETIT)LtOHDVHR Y]

o

1y

o<
4 € 1] 4

0

=
fx]

ddsndH00¥
gTP28@SIAVIYEWVHHOMJd4L04LIdSHOYHHON

hihT2L-¥dv-6OVLXIL
HALOVHVHOA9HILOVMVHOIXHALFYOLS
BeEPEBBBENTT.LPERew

June 1972
7-14

VERSION 47

-307- MACRO

Appendix A

Op Codes, Pseudo-Ops,
and Monitor 170 Commands

This appendix contains a complete list of assembler defined operators
including machine instruction mnemonic codes, assembler pseudo-ops,
monitor programmed operators, and FORTRAN programmed operators. A
programmed operator, or unimplemented user operation code is called

a uuo.

A.l ASSEMBLER PSEUDO;OPS AND MONITOR COMMANDS

The notes specify which Pseudo-ops generate data, and which do not.
Pseudo-ops that generate data may be used within literals, and in
address operand fields.

The initial values given by MACRO~10 to I/0 instructions and FORTRAN
UUO's for which the octal Op code is not shown, are given in the notes
and are useful in checking listings.

ARRAY, pseudo~op, generates data CALLI, 047, monitor UUO
ARG, 320, no-op (same as JUMP) CLOSE, 070, monitor UUO
ASCII, pseudo-op, generates data COMMENT, no data generated
ASCIZ, pseudo-op, generates data DATA, 020, FORTRAN UUO
ASUPPRESS, pseudo-op, no data generated DEC, pseudo-op, generates data
BLOCK, pseudo-op, no data generated DEC., 033, FORTRAN UUO
BYTE, pseudo-op, generates data DEFINE, pseudo-op, no data generatedCALL, 040, monitor UUO DEPHASE, pseudo-op, no data generated

VERSTION 47 - | June 1972
A-1l

MACRO
ENC., 034, FORTRAN UUO

END, pseudo-op , no data generated

ENTER, 077, monitor UUO

ENTRY, pseudo-op, no data generated

EXP, pseudo-op, generates data

EXTERN, pseudo-op, no data generated

FIN., 021, FORTRAN UUO

GETSTS, 062, monitor UUO

HISEG, pseudo-op, no data generated

IFl, conditional pseudo-op

IF2, conditional pseudo-op

IFB, conditional pseudo-op

IFDEF, conditional pseudo-op

IFDIF, conditional pseudo-cp

IFE, conditional pseudo-op

IFG, conditional pseudo-op

IFGE, conditional pseudo-op

IFIDN, conditional pseudo-op

IFL, conditjonal pseudo-op

IFLE, conditional pseudo-op

IFN, conditional pseudo-op

IFNB, conditional pseudo-op

IFNDEF, conditional pseudo-op

IN, 056, monitor UUO

IN., 016, FORTRAN UUO

INBUF, 064, monitor UUO

IN., 026, FORTRAN UUO

INIT, 041, monitor UUO

INPUT, 066, monitor UUO

INTEGER, pseudo-op, generates data

INTERN, pseudo-op, no data generated

IOWD, pseudo-op, generates data

IRP, pseudo-op, no data generated

IRPC, pseudo-op, no data generated

1ALL, pseudo-op, no data generated

LIST, pseudo-op, no data generated

LIT, pseudo-op, generates data

1..0C, pseudo-op, no data generated

LOOKUP, 076, monitor UUO

MLOFF, pseudo-op, no data generated

MLON, pseudo-op, ho data generated

MTAPE, 072, monitor UUO

MTOP., 024, FORTRAN UUO

NLI., 031, FORTRAN UUO

NLO., 032, FORTRAN UUO

NOSYM, pseudo-op, no data generated

OCT, pseudo-op, generates data

OPDEF, pseudo-op, no data generated

OPEN, 050, monitor UUO

ouT, 057, monitor UUO

ouT., 017, FORTRAN UUO

OUTBUF, 065, monitor UUO

QUTF., 027, FORTRAN UUO

QUTPUT, 067, monitor UUO

PAGE, pseudo-op, no data generated

PASS2, pseudo-op, no data generated

PHASE, pseudo-op, no data generated

POINT, pseudo-op, generates data

PRINTX, pseudo-op, no data generated

PURGE, pseudo-op, no data generated

RADIX, pseudo-op, no data generated

RADIX50, pseudo-op, generates data

RELEAS, 071, monitor UUO

VERSION 47

~-308-
RELOC, pseudo-op, no data generated

REMARK, pseudo-op, no data generated

RENAME, 055, monitor UUO

REPEAT, pseudo-op, no data generated

RERED., 030, FORTRAN UUO

RESET., 015, FORTRAN UUO

RIM, pseudo-op, no data generated

RIM10, pseudo-op, no data generated

RIM10OB, pseudo-op, no data generated

RTB., 022, FORTRAN UUO

SEARCH, pseudorop, no data generated

SETSTS, 060, monitor UUO '

SIXBIT, pseudo-op, generates data

SLIST., 025, FORTRAN UUO

SQUOZE, same as RADIXS50

STATO, 061, monitor UUO

STATUS, 062, monitor UUO

STATZ, 063, monitor UUO

sTOPI, pseudo-op, no data generated

SUBTTL, pseudo-op, no data generated

SUPPRESS, pseudo-op, no data generated

SYN, pseudo-op, no data generated

TAPE, pseudo-op, no data generated

TITLE, pseudo-op, no data generated

TTCALL, 051, monitor UUO

TWOSEG, pseudo-op, no data generated

UGETF, 073, monitor UUO

UJEN, 100, monitor UUO

UNIVERSAL, pseudo-op, no data generated

USETI, 074, monitor UUO

USETO, 075, monitor UUO

VAR, pseudo-op, generates data

WIB., 023, FORTRAN UUO

XALL, pseudo-op, no data generated

XLIST, pseudo-op, no data generated

XWD, pseudo-op, generates data

7, pseudo-op, generates data

.CREF, pseudo-op, no data generated

.XCREF, pseudo-op, no data generated

.HWFRMT, pseudo-op, no data generated

.MFRMT, pseudo-op, no data generated

JUNE 1972

MACHINE MNEMONICS AND OCTAL CODES

following are machine mnemonics and corresponding octal codes:

A. 2

The

ADD 270 CAMGE
ADDB 273 CAML
ADDI| 271 CAMLE
ADDM 272 CAMN
AND 404 CLEAR

ANDB 407 CLEARB
ANDCA 410 CLEARI
ANDCAB 413 CLEARM
ANDCAI 411 CONI |
ANDCAM 412 CONO

ANDCB 440 CONSO
ANDCBB 443 CONSz
ANDCB} 441 DATAI
ANDCBM 442 DATAOQ
ANDCM 420 DFN

ANDCMB 423 Div
ANDCM! 421 Divs
ANDCMM 422 Divi
AND/{ 405 DIVM
ANDM 206 DPB

AOQOBJN 253 EQV
AQBJP 252 EQvVB

AQJ 340 EQvV)
AQJA 344 EQVM
AQJE 342 EXCH

AQJG 347 FAD
AOQOJGE 345 FADB
AOQJL 341 FADL
AQJLE 343 FADM
AOJN 346 FADR

AQS 350 FADRB
AQSA 364 FADRI
AQSE 352 FADRM
AOSG 357 FDV
AOSGE 355 FDVB

AOSL 351 FDVL

AQOSLE 353 FDVM
AOSN 366 FDVR
ASH 240 FDVRB
ASHC 244 FDVRI

BLKI 7-00 FDVRM
BLKO 7-10 FMP
BLT * 251 FMPB

CAl 300 FMPL
CAIA 304 FMPM

CAIE 302 FMPR
CAIG 307 FMPRB
CAIGE 305 FMPRI
CAIL 301 FMPRM

CAILE 303 FSB

CAIN 306 FSBB
CAM 310 FSBL

CAMA 314 FSBM

CAME 312 FSBR

CAMG 317 FSBRB

VERSION 47

315

311

313

316

400

403

401

402

7-24

7-20

7-34

7-30

7-04

7-14

131

234

237

235

236

137

444

447

445

250

140

144

150

163

161

1652

154

157

FSBRI

FSBRM

FSC ..

HALT-

HLL

HLLE

HLLE!

HLLEM

HLLES

HLLI

HLLM

HLLO

HLLOI

HLLOM

HLLOS

HLLS

HLLZ

HLLZ!

HLLZM

HLLZS

HLR

HLRE

HLRE!

HLREM

HLRES

HLRI

HLAM

HLRO

HLRO!

HLROM

HLROS

HLRS

HLRZ

HLR2I

HLRZM

HLRZS

HRL

HRLE

HRLE!

HRLEM

HRLES

HRLI

HRLM

HRLO

HRLOI

HRLOM

HRLOS

HRLS

HRLZ

HRLZI

HRLZM

HRLZS

HRR

HRRE

HRREI

165

156

132

254-4,

500

530

631

532

533

501

502

520

521

522

523

+603

511

b12

513

644

577

~309-

HRREM

HRRES

HRRI

HRRM

HRRO

HRROI

HRROM

HRROS

HRRS

HRRZ

HRRZ!

HRRzZM

HRRZS

18P

IDIV

1DIvB

iDIVI

IDIVM

1DPB

ILDB

IMUL

IMULB

IMULI

IMULM

I0R

IORB

I0RI.

I0ORM

JCRY

JCRYO

JCRY1

JEN

JFCL

JFFO

JFOV

Jov

JRA

JRST

JRSTF

JSA

Jsp

JSR

Jump

JUMPA

JUMPE

JUMPG

JUMPGE

JUMPL

JUMPLE

JUMPN

LDB

LSH

LSHC

MOVE

MOVEI

572

573

541

542

560

561

562

563

543

550

551

562

133

230

233

231

232

136

134

220

223

221

222

434

A37

435

436

.255-6,

256-4,

255-2,

264-12,

243

255-1,

255-10,

254

254-2,

266

265

264

320

324

322

327

325

321

323

326

135

242

246

200

201

MOVEM

MOVES

MOovMm

MOvMI

MOvMM

MOVMS

MOVN

MOVN!I

MOVNM

MOVNS.

MOovs

- MOvsi

MOvsm

MOvVSS

MuUL

MuLs

MuULI

MULM

OR

ORB

ORCA

ORCAB

ORCAI

ORCAM

ORCB

ORCBB

ORCBI

ORCBM

ORCM

ORCMB

ORCMI

ORCMM

ORI

QRM

POP

POPJ

PUSH.

PUSHJ

ROT

ROTC

RSwW

- SETA

SETAB

SETAI

SETAM

SETCA

SETCAB

SETCAI

SETCAM

SETCM

SETCMB

SETCMI

SETCMM

SETM

SETMB

202

214

215

216

217

210

211

212

213

204

205

206

224

227

225

226

434

437

457

455

456

470

473

471

472

467

465

7-04

424

427

425

426

450

453

451

452

460

463

461

462

414

417

SETMI

SETMM

SETO

SETOB

SETOI

SETOM

SETZ

SETZB

SETZI

SETZM

SKIP

SKIPA

SKIPE

SKIPG

SKIPGE

SKIPL

SKIPLE

SKIPN

S0J

SOJA

SOJE

SOJG

SOJGE

SOJL

SOJLE

SOJN

S0s

SOSA

SOSE

SOSG

SOSGE

SOSL

SOSLE

SOSN

suB

SUBB

SUBI

SUBM

‘TDC

TDCA

TDCE

TDCN

TDN

TONA

TDNE

TDNN

TDO

TDOA

TDOE

TDON

TDZ

TDZA

TDZE

TDZN

TLC

MACRO

415

416

474

477

475

476

400

403

401

402

330

334

332

337

335

331

333

336

360

364

367

365

361

363

366

370

374

372

377

376

an

373

376

274

277

275

276

650

654

662

656

610

612

616

670

674

672

676

630

634

632

636

641

JUNE 1972

TLCA

TLCE

TLCN

TLN

TLNA

TLNE

TLNN

TLO

TLOA

TLOE

TLON

TLZA

TLZE

TLZN

TRC

TRCA

TRCE

TRCN

TRN

TRNA

TRNE

TRNN

TROA

TROE

TRON

TRZ-

TRZA

TRZE

TRZN

TSC

TSCA

TSCE

TSCN

TSN

TSNA

TSNE

TSNN

TSO

TSOA

TSOE

TSON

182

TSZA

TSZE

TSZN

UFA

XCT

XOR

XORB

XORI

XORM

645

643

647

601

605

603

607

661

665

663

667

621

625

623

627

640

644

642

646

600

602

606

660

664

662

666

620

624

622

626

651

655

653

657

611

615

613

617

671

675

673

677

631

635

633

637

130

256

433

431

432

Appendix B

-311- MACRO

Summary of Pseudo-Ops

B.l1l PSEUDO-OPS

A list of pseudo-ops and_their'functions follows:

ARRAY

ASCIT

ASCIZ

ASUPPRESS

BLOCK

BYTE

COMMENT

DEC

DEFINE

DEPHASE

END

ENTRY

EXP

EXTERN

VERSION47

Reserve multiple words of storage.

Seven-bit ASCII test

- Seven-bit ASCII test, with null character guaranteed
at end ,

Turns on suppress bit for all symbols

Reserves block of storage cells

Input bytes of length 1-36 bits

No binéry‘produced; éame as seven-bit ASCII

Input decimal numbers

Defines macro

Terminates PHASE relocation mode

Last statement of the program

Entry point for subroutine library

Input expressions

Idenfifies éxtérnal symbols
- June 1972

B'fl

MACRO

HISEG

INTEGER

INTERN

IOWD

IRP

IRPC

LALL

LIST

LIT

LOC

MLOFF

MIL.ON

NOSYM

ocT

OPDEF

PAGE

PASS?2

PHASE

POINT

PRGEND

PRINTX

PURGE

RADIX

RADIX5Y

RELOC

REMARK

REPEAT

RIM

RIM1g

RIM12B

VERSION 47

~312-

Load into high segment

Reserve one word of storage per argument

Define internal symbols

Set up I/0 transfer word

Indefinite repeat of macro arguments

Indefinite repeat of one character

List all; expanded listing of macros

List in normal mode

Assemble literals

Assign absolute addresses

Turn off multiline literal feature

Turn on multiline literal feature

Suppress symbol table listing

Input octal numbers

Defines user-created operator; generates only one

word

Start a new listing page

Terminates pass 1, remaining statement are pro-

cessed pass 2 only

Following coding relocated at execution time

Sets up byte pointer word

Allows multiprogram assemblies, end one such program

Output on terminal or listing device the rest of the

line

Remove symbol from table

Sets prevailing radix to 2-10

Compresses 36-bit words, primarily for system use

Implied first statement; assigns relocatable addresses

Comments only statement

Repeat n times

Prepare output in RIM paper-tape format

Absolute, unblocked, output format; no checksums

Absolute, blocked, checksummed output format

JUNE 1972

SALL

SEARCH

SIXBIT

SQUOZE

STOPI

SUBTTL

SUPPRESS

SYN

TAPE

TITLE

TWOSEG-

UNIVERSAL

VAR

XALL

XLIST

XPURGE

XWD

Z

.CREF

« XCREF

. HWFRMT

. MEFRMT

-313- MACRO
Suppress listing of macros; lists only call and
binary generated "

Opens symbol tables of universal program

Input text in compressed 6-bit ASCII

Same as RADIX 50 above

Stop indefiinite repeat of macro arguments

Subtitle on listing |

Turns on suppress bit fpr épecified symbols

Make synonymous

. Stop processing the current file

Title on listing and to DDT

Assembles and loads two segment programs

Makes symbol table available to other programs

Assemble variables suffixed with # or ARRAY or

INTEGER

Stop expanded listing, resume normal list mode

Stop listing

Purges local symbols on pass 2

Input two 18-bit half words

Input zero word

Resume outout pf CREF information

Stop output of CREF information

List binary in half word format (old)

List binary in multi-format (new)

B.l.1 Conditional Assembly Statements

These conditional assembly statements in the first column are as-

sembled if the conditions in the second column exist.

IF1 Encountered during pass 1

IF2 Encountered during pass 2

IFB Blank

IFDEF Defined.

iFDIF Different

IFE | Zero
VErRsION 47 | June 1972

MACRO -314-

IrG Positive

IFGE Zero, or positive

IFIDN Identical

IFL Negative

IFLE Zero, or negative

IFN Non-zero

TFNB Not blank

IFNDEF Not defined

VERSION 47 June 1972

Appendix C

-315- MACRO

Summary of Character
Interpretations

The characters listed below have special meaning in the contexts

indicated. These interpretations do not apply when these characters

appear in text

Character

&

VERSION 47

strings, or in comments.

Meaning Example-

Colon. Immediately follows all LABEL: Z
labels.

Semicolon. Precedes all comments. sTHIS IS A COMMENT

Point. Has current value of the JRST .+5 JUMP FORWARD
location counter or indicates float- FIVE LOCATIONS
ing point number. 1.9

Comma. General operand or argument DEC 14,5,6
delimiter. : : EXP A+B,C-D

Accumulator field delimiter. MOVEI 1,TAG

References accumulator 0. The MOVEI ,TAG
comma is optional. :

Delimits macro arguments. MACRO (A,B,C)

Inclusive OR
Logical Operators

AND

June 1972

MACRO

Chatacter

*

/

+

lst charac-

ter of text

string

B

()

L]

it i

VErRs1ON 47

-316-

Meaning Example

Multiplication
Arith-

Division metic
Operators

Add (+A outputs the value of A)

Subtract

In ASCII, ASCIZ and SIXBIT comment ASCII/STRING/;
text strings, the first non-blank

character is the delimiter.

Follows number to be shifted and

precedes binary shift count.

Exponent. Precedes decimal ex-

ponent in floating-point numbers.

Parentheses. Enclose index fields.

Enclose the byte size in

BYTE statements.

Enclose the dummy argument

string in macro DEFINE

statements.

Angle brackets. In an expression,

enclose a numeric gquantity.

In conditional assembly state-

ments, contain a single argu-

ment, and the conditional

coding.

In REPEAT statements, con-

tain coding to be repeated.

In macros, enclose the macro

definitinn.

Square brackets. Delimit literals.

In OPDEF statement, contain

new operator; in ARRAY the size.

Equal sign. Direct assignment.

Equal sign. Direct assignment but

no output to DDT.

Equal sign and colon. Direct as-

signment but automatically made

internal.

Colon and exclamation point. Direct

assignment of label, no output to

DDT, and automatically made internal.

7B2

F22.1E5 EXPONENT

IS 5.

ADD AC1,X (7)

MOVEI A, (SIXBIT/ABC/)

BYTE (6) 8, 8, 7

DEFINE MAC(A,B,C)

<A-B+5¢@/C>

IFl, MOVE AC@, TAX

REPEAT 3, <SUB 17, TAG>

DEFINE PUNCH

DATAQO PTP, PUNBUF (4)

ADD 5,[MOVEI 3,TAX]

OPDEF CAL [MOVE]

ARRAY FOO[212]

SYM=6

SYM-A+B¥D

SYM==6

FLAG=:200

LABEL:!

June 1972

Character

il Il

##

VERSION U7

-317-
Meaning

Equal sign and colon. Direct assign-

ment, no output to DDT, and automat-

ically made internal.

Double colon and exclamation point.

Direct assignment of label, no out-

put to DDT, and automaticallymade

internal.

Quotation marks enclose 7-bit ASCII

text, right justified, from one to

five characters. ‘

Single quotation marks enclose 6-

bit ASCII text, right justified,

from one to six characters.

Number sign, Defines a symbol used

as a tag. Variable.

Alternate method of generating ex-

ternal symbols.

Apostrophe or single quote. Concate-
nation character, used within macro

definitions or SIXBIT data.

Reverse slash. If used as the

first character of an argument in

a macro call, the value of the fol-

lowing symbol is converted to an

ASCII symbol in the current radix.

Control left arrow. Line continu-

ation. :

Left arrow. N M shift N left (or

right) M bit positions,

Indicates indirect addressing.

Causes the indirect bit in an instruc-

tion to be set.

MACRO

Example

LOOP==:32

NAME:: !

"ABCDE"

'"TABLES'

ADD 3,TAG#

MOVE @ ,JOBREL##

DEFINE MAC (A,B,C);
<JUMP'A B, C>

'SIXBIT!

MAC \ A IF A=5g@g, THIS

GENERATES THREE T7-BIT

ASCII CHARACTERS,

ASCII/528/

100+3=1004

1p@«+3=10

MOV AC,@ADDR

JuNE 1972

-319- MACRO

Appendix D

Storage Allocation

MACRO allocates storage in two directions:

1) the symbol table (user symbols and macro names)
grows downward from top of the low segment (.JBREL)

2) Macros, literals, etc., grow upward from free space

All entries in the symbol table are two words 1dng. The first word
is the symbol name in SIXBIT. The second word is flags in left
half and either value or pointer in right half.

Most symbols have a value less than 18 bits and so can be repre-
sented by just the two words in the symbol table. Symbols with

a 36—bit va%ue (e.g., -1) have the valfie stored in a 1 word in
free storage and a pointer to this value stored in the symbol table.

External symbols have two words in free storage, the first is the.
value (i.e., the last referencé_in'a chain of references to the
symbol). The second is the sixbit name of the symbol. This is
so that additive global fixups can be output.

VERSION 47
JUNE 1972

MACRO . -320-

Opdefs tend to have 36-bit values and are stored like other 36-

bit value symbols.

Macro names are stored in the symbol table, the value is a po
inter

to the stored text string.

The text string is stored in four (assembly parameter) word blocks

which have the general form

1) 1link to next block, [¢ if last] ,, 2 characters

2) 5 characters

3) 5 characters

4) 5 characters

However, the first such block is special

1) 1link to next block ., link to last block

2) pointer to default arg; ,. <number or args expected><+9+reference

3) 5 characters count

4) 5 characters

The number of args expected is the number of arguments in the d
efine

statement.

The reference count is incremented when the macro is called a
nd

decremented when exiting from the macro. When this count goes to

zero the macro is removed from free space.

The actual arguments to a macro are stored in the same linked
block,

pbut are not in the symbol table. Repeats (2 or more times) are also

stored the same way. The text blocks are removed when the macro

exits or the repeat exits since the reference count has gone to

zero.

The addresses of the actual argument blocks are stored in a pu
shdown

stack in order of generation.

Default arguments are stored the same way except the list is in
 free -

core. The pointer to this default arg list is stored in the left

half of the second word of the first block of the macro defini
tion.

The text body is stored as is, except that dummy argum
ents are re-

placed by special symbols.

VERsION 47 JuNe 1972

-321- MACRO
The ASCII character RUBOUT (177) is used to signal a special char-

acter text.

These characters are

291 ;end of macro

gg2 ;end of dummy symbol

293 ;end of Repeat

a4 send of IRP or IRPC

If the character is 4<ch<77 it is illegal.

If the character is <100 then it is a dummy symbbl, the value of

the character is ANDed with 37 to get the dummy symbol number and

the corresponding pointer retrieved from the stack of pointers.

If th- symbol was not specified (i.e., no pointer) then if the 40

bit is on this is to be a created symbol and one is created, other-

wise the argument is ignored.

Verbose macros can eat up a lot of storage space.

Literals are stored in four words/block per word generated (three

words if old format used).

Words are

-3 form word

-2: relocation bits

-1:. code

g pointer to next

The pointer points to the g word of the next block. The code is

the generated code. Relocation is either the relocation bits f#

or 1 per half word or external pointers if externs used.

Form word is the word used for listing, this word is not checked

when comparing literals so that different forms that produce the

same code are classed as equal.

Long literals are both slow and take up extra storage, they should

be written as subroutines or inline.

Single quotes can also be used to indicate SIXBIT words, however,

one pair of single quotes is removed by the assembler if the pair

encloses a dummy argument. For example, in the macro

VERSION 47 JuNe 1972
D-3

MACRO ~322-

DEFINE SXBT (A)<

MOVSI 1,"A"

MOVSI 2,"B"

B is not a dummy argument so it can be enclosed in single quotes.

A, however, is a dummy argument and must be enclosed in double

quotes since one pair of quotes (the inner pair) will be removed

by the assembler.

VErRsION 47 June 1972

~323- MACRO

Appendix E

Text Codes

This appefidix contains a summary of MACRO=-10 text codes.

ASCII ASCII ASCII
SIXBIT Character 7Bit* SIXBIT - Character 7 Bit* Character 7Bt

00 Space 040 40 @ 100 b 140

01 l 041 41 A 101 a 141

02 " 042 . 42 B 102 b 142

03 # 043 43 C 103 c 143

04 $ 044 44 D 104 d 144

05 % 045 45 E 105 e 145

06 & 046 46 F 106 f 146

07 ' 047 47 G 107 g 147

10 (050 50 H 110 h 150

11) 051 51 ! 11 i 151

12 * 052 52 J 112 i 152

13 + 053 53 K 113 k 153

14 , 054 54 L 114 | 154

15 - 055 55 M 115 m 155

16 . 056 56 N 116 n 156

17 / 057 57 o) 117) 157

20 0 060 60 P 120 p 160

21] 061 61 Q 121 q 161

22 2 062 62 R 122 r 162

23 3 063 63 S 123 s 163

24 4 064 64 T 124 t 164

25 5 065 65 U 125 u 165

26 6 066 66 \' 126 v 166

27 7 067 67 w 127 w 167

30 8 070 70 X 130 X 170

31 9 071 71 Y 131 y 171

32 : 072 72 z 132 z 172

33 ; 073 73 [133 i 173

34 < 074 74 \ 134 | 174

35 = 075 75] 135 } 175

36 > 076 76 t 136 ~ 176

37 ? 077 77 -— 137 Delete 177

*MACRO=-10 also accepts five of the 32 control codes in 7-bit ASCII:

Horizontal Tab 011 Vertical Tab 013 Carriace Return 015

Line Feed 012 Form Feed 014 arriag v

VERSION 47 JuNe 1972

-325- MACRO

Appendix F

Radix 50 Representation

Radix 508 representation is used to condense 6-character symbols

into 32 bits. Each character of a symbol is subscripted in de-
scending order from left to right; i.e., the symbols are of the

form

LLLLLL

6 45321

If C denotes the octal code for L ’ the radix 50

is generated by the following

((C((Ca*50)+C5)#5040,) 50%C) #5040,) *5p+C

8 representation

where all numbers are octal.

The code numbers corresponding to the characters are:

Code (Octal) Characters

00 Null character
01-12 0-9

13-44 A-Z
45 .
46 S
47 %

The top four bltS are taken from the four leftmost bits of a 6--bit

octal number (i.e., g4-74).

VERSION 47 F-1 | June 1972

~327- MACRO

Appendlx G
Summary of Ruies for | |
Defmlng and Calling Macros

G.1 ASSEMBLER INTERPRETATTION

MACRO-lO/assembles‘macros by direct and immediate character substitu-
tions. When a macro call is encountered, _in any field, the character
substitution is ‘made, the characters are processed, and the assembler

continues its scan w1th the character following the delimiter of the

last argument, except when it is delimited by a semicolon. Macros

can appear any numberof times on a line.

G.2 CHARACTER HANDLING

G.2.1 Blanks

A macro symbol is delimited by one blank or onefitab; the character

following the delimiteris the start of the argument string even if

it is also a blank or tab. Other than the first delimiter, blanks

and tabs are treated as standard characters in the argument string.

G.2.2 Brackets

Angle brackets are only significant in the argument fields if the

first character of any field is a left angle bracket. 1In this case,

VErRs1ON 47 JUNE 1972
G-1

MACRO -328-
no terminator or parenthesis tests are made between the left angle

bracket and its matching right bracket. The matching brackets are

removed from the string but the scan continues until a standard

delimiter is found.

G.2.3 Parentheses

Parentheses serve only to terminate an argument scan. They are

significant only when the first character following the blank or

tab delimiter is a left parenthesis. 1In this case, the left paren-

thesis is removed and, if it matching right parenthesis is encoun-

tered prior to the normal termination of theargument scan, it is

removed and the scan discontinued.

G.2.4 Commas

When a comma is encountered in an argument scan, it acts as the

delimiter of the current argument. If it delimits the last argument,

the character following it will be the first scanned after the sub-

sitution is processed.

G.2.5 Semicolons

When a semicolon is encountered in an argument scan, the scan is

discontinued. If an argument has not been satisfied, the remainder

is considered null. It is saved, however, and will be the first

character scanned after the substitution is made, normally acting

as a comment flag.

G.2.6 Carriage Return

A carriage return, except when pre-empted by angle brackets (see

Section G.2.2), will terminate the scan similar to the semicolon.

This can be circumvented, if desired, by the control left arrow key

described elsewhere.

G.2.7 Back-Slash

If the first character of any argument is a back-slash, it must be

directly followed by a numeric term., The value of the numeric term

is broken down into a string of ASCII digits of the current radix,

just the reverse of a fixed-point number computation. The value is

VERSION 47 June 1972

-329- MACRO

considered to be a 36-bit positive number having a value of 0 to

777777 777777. Leading zeros are suppressed except in the case of 0,

in which case the result is one ASCII 0. The ASCII string is sub-

stituted and the scan continued in the normal manner (no implied

terminator).

The default listing mode ‘is XALL, in which case the initial macro

call and all lines within its range that produce binary code are

listed. The pseudo-op LALL will cause all lines to be listed.

Substituted arguments are bracketed by *'s by the assembler.

G.3 CONCATENATION

The rule for concatenation is as follows:

For each string of apostrophes, one is removed if and only if it is

next to (either before or after) a dummy argument to that macro.

VERSION 47 - June 1972

-331- MACRO

Appendix H

Operating Instructions

H.1 REQUIREMENTS

The following are MACRO-10 operating requirements:

Minimum Core 7K pure plus 1K impure

Additional Core Automatically requests additional core assign-~

ments from the timesharing monitor as needed.

Equipment One input device (source program input); up to

two output devices (machine language program

output and listing output). If the listing

output is to be used as input to the Cross

Reference (CREF) program, it must not be TTY,

DIS or' LPT.

H.2 INITIALIZATION

The following are commands and corresponding indications:

R MACRO) Loads the MACRO-10 Assembler into core..

* The Assembler is ready to receive a command.

VERSION 47 | | June 1972

MACRO -332-

H.3 COMMANDS

H.3.1 General Command Format

MACRO-10 general commands are as follows:

objprog-dev:filename.ext,list~dev:filename.ext source-dev:filename.ext,...... source-n)

objprog-dev: The device on which the object program is to be written.

MTAn: (magnetic tape)

DTAn: (DECtape)

PTP: (paper-tape punch)

DSK: (disk)

list~-dev: The device on which the assembly listing is to

be written.

MTAn: (magnetic tape) Must be one

DTAn: (DECtape) of these if

DSK: (disk) input to CREF!
LPT: (line printer)

TTY: (Teletype)

PTP: (paper-tape punch)

source-dev: The device(s) from which the source-program

input to assembly is to be read.

MTAnN: (magnetic tape)

CDR: (card reader)

DTAn: (DECtape)

DSK: (disk)

PTR: (paper—-tape reader)

TTY: (Teletype)

If more than one file is to be assembled from a

magnetic tape, card reader, or paper tape reader,

dev: is followed by a comma for each file beyond

the first.

Input via the Teletype is terminated by typing

CTRL Z (4%Z) to enter pass 1l; the entries must

be retyped at the beginning of pass 2.

filename.ext The filename and filename extension of the object

(DSK: and DTAn: only)program file, the listing file, and the source

file(s).

The object program and listing devices are

separated from the source device by the left

arrow symbol.

H.3.2 Disk File Command Format

MACRO-10 disk file commands are as follows:

DSK:filename.ext [proj,prog]

11f /C switch is given, but no list-dev: is specified, DSK:CREF.CRF is assumed.

Version 47 He2 June 1972

-333- MACRO

[proj,prog] Project-programmer number assigned to the d@sk
area to be searched for the source file(s) if

other than the user's project-programmer number.

The installation standard protection is assigned

to any disk file specified as output.

NOTE

If object coding output is not desired (e.g., a program is

being scanned for source language errors), objprog-dev: is

omitted. TIf an assembly listing is not desired, list~dev:

is omitted. If device is not specified, DSK is assumed.

Examples:

.R MACRO) Assemble one source program file from the card

¥DTA3:0BJPRG,LPT: CDR) reader; write the object code on DTA3 and call
the file OBJPRG; write the assembly listing on

the line printer. ‘

END OF PASS 1) The source program cards must be manually re-

fed for pass 2.

22 ERRORS DETECTED)
PROGRAM BREAK IS ##2537) Number of source errors; size of object pro-

2K CORE USED) gram; core used by assembler.

¥ C) Return to the monitor.

.R MACRO) Assemble the next three source files located

FMTA3: ,MTA2: MTAl:,) at the present position of MTAl; write the

— object program on MTA3; write the listing on
NO ERRORS DETECTED) MTA2 for later printing.
PROGRAM BREAK IS @#3552)
2K CORE USED)

e il

¥ LPT: DTAl:FILE1l,FILE2,FILE5) Assemble the source files named FILEl, FILEZ2,

— NO ERRORS DETECTED) and FILES5 from DTAl; produce no object coding;

PROGRAM BREAK IS #@1427) write the listing on the line printer.

| 2K CORE USED) .

____f_,*—DSK:FILEl.MAC[lM,lZ]) Scan the source program called FILE1l.MAC,

NO ERRORS DETECTED) located in area 14, 12 on the disk, for source

PROGRAM BREAK IS @@@5hi language errors; produce no object coding or

{ 2K CORE USED) assembly listing; print all error diagnostics
on the terminal.

f_+C> Return to the monitor.

.R MACRO

¥MTAL: ,2ITTY: TTY :) Assemble a source file from the terminal; write
the object code program on MTAl and print the

: JMP R) assembly listing on the terminal.
R: AOS G)
G: JFCL)

END)

‘l‘Z) Terminate input.

END OF PASS Reenter terminal input.

' JMP R Type first statement again.

VErs1oN 47 He3 June 1972

MACRO -334-

.MAIN MACRO 18:14 2@-DEC-67 PAGE1)

0 poA808 BIBOIE BELIBL! JMP R)
E: AOS G :

208881 350008 @epdp2’ R: A0S G)

G: JFCL)

geges2 255200 200099 G: JFCL)

END))

END)

es e

?1 ERROR DETECTED) .
PROGRAM BREAK IS gg#gs3)

.MAIN MACRO 14:14 ° 2@-DEC-67 PAGE2)

SYMBOL TABLE)

¢ gagea2"y)
R 200891')

L_2K CORE USED)

21C)

H.4 SWITCHES

Switches are used to specify such options as:

Magnetic tape control

Macro call expansion

Listing suppression

. Pushdown list expansion

(
N
I

©
PR
EN
 0

 B

N
I

o)

Cross-reference file output.

Page heading.

First assembled.

Reenter second.

Second agssembled,

Reenter third.

Third assembled.

Reenter fourth.

Fourth assembled.

Typeout of symbol

table.

Return to the monitor.

All switches are preceded by a slash (/) or enclosed in parentheses,

and usually occur prior to the left arrow (see Table H-1).

VERSION 47 JUNE 1972

Switch -

VERSION 47

-335- MACRO

Table H-1

MACRO-10 Switch Options

Meaning

Advance magnetic tape reel by one file.

Backspace magnetic tape reel by one file.

Produce listing file in -a format acceptable as input to CREF; unless the file
is named, CREF. CRF is assigned as the filename; if no extension is given,

.CRF 1is assigned; if no list-dev:is specified, DSK: is assumed. /C must

appear between the conmma and the left-arrow.

List macro expafisibns (same function as LALL pseudo—oé).

New format for output binary listing (.MFRMT pseudo-op).

0ld format for output binary listing (.HWFRMT pseudo-op) .

Print Help text (i.e., this list of switches and explanations).

Reinstate listing‘(used after list suppression by either the XLIST
pseudo-op or 5 switch).

List only call, no binary, in macro expansion (same .SALL pseudo-op).

Suppress error printouts on the terminal.

Sets the pseudo-op MLOFF which allows literals tb occupy on a single

line. This means literals may be terminated with a carriage return,
line feed instead of a right bracket.

Increase the size of .the pushdown list. This switch may appear as

many times as desired (pushdown list is initially set to a size of 8010

locations; each /P increases its size by 8010). /P must appear on thé

left of the left arrow.

Suppress Q (queétionable) error indications on the listing; Q messages
indicate assumptions made during pass l. /Q must appear on the left

of the left-arrow.

Suppress listing (same function as XLIST pseudo-op).

Skip to the logiéal end of the magnetic tape.

Rewind the magnetic tape.

Suppress all macro expansions (same function as XALL pseudo-op).

Zero the DECtape directory.

NOTE

Switches A through C and T, W, X, and 2 must im-
mediately follow tle device or file to which the

individual switch refers.

JUuNe 1972

MACRO | -336-

Examples:

.R MA(H%O) . bssemble one source file from the paper tape

¥MTALl:,DTA3: ,/C«PTR:) reader; write the object code on MTAl; write

the assembly listing on DTA3 in cross-

reference format and call the file CREF.CRF.

END OF PASS 1) The paper tape must be re-fed by the operator

for pass 2.

—9?3 ERRORS DETECTED) End-of-assembly messages.

PROGRAM BREAK IS @@g4gl)
__ 2K CORE USED)

¥DTA2:ASSEMB.ONE/Z,LPT: Rewind MTA4 and assemble the first two source

MTAL:/W,) files on it; write the object code on DTAZ2,

after zeroing the directory, and call the file

- ASSEM.ONE; write the assembly listing on the

NO ERRORS DETECTED) line printer.

PROGRAM BREAK IS #@5231)
__3K CORE USED)

Rewind MTAl and MTA3 and assemble files 1, 4,

*MTALl:/W,LPT:«MTA3: and 3 (in that order) from MTA3; print the

/W, (AA),(BB)) assembly listing on the line printer; write

the object code on MTAL.

PROGRAM BREAK IS p@@655)

21 ERROR DETECTED,)

__2K CORE USED)

¥F00,/C FOO) Assemble source file FOO on DSK:; write the

NO ERRORS DETECTED) assembly listing on DSK in cross-reference

PROGRAM BREAK IS @@@765) format calling the file CREF.CRF. Write ob-

2K CORE USED) ject code on DSK calling it FOO.REL.

¥4C) Return to the monitor.

VERSTON 47 June 1972

	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336

