
MICRO2 USER'S GUIDE

REFERENCE MANUAL

AA-H531A-TE

June 1979

digital equipment corporation - maynard, massachusetts

First Printing, June 1979

The information in this document is subject to change without notice

and should not be construed as a commitment by Digital Equipment

Corporation. Digital Equipment Corporation assumes no responsibility

for any errors that may appear in this document.

The software described in this document is furnished under a license

and may be used or copied only in accordance with the terms of such

license.

No responsibility is assumed for the use or reliability of software or

equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright (C) 1979 by Digital Equipment Corporation

The postage prepaid READER'S CIOMMENTS form on the last page of this

document requests the wuser's <critical evaluation to assist us in

preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS

DEC DECtape OMNI BUS

PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA

UNIBUS FLIP CHIP RSTS

COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET-8

DDT LAB-8 TYPESET-10

DECCOMM DECsystem-20 TYPESET-11

ASSIST-11 RTS-8 ITPS-10

TMS-11

CONTENTS

CHAPTER 1 INTRODUCTION TO MICRO2

TRANSLATION . . . ¢ ¢ ¢ ¢ ¢ ¢« ¢ o o o & @

ADDRESS SELECTION ¢« « ¢« ¢« « + .

PROGRAM STRUCTURE « e e e e e e

SPECIFYING THE BIT NUHBERING o e e e e e

IDENTIFYING THE RADIX « . « « .+ « .

MEMORIES e s s o o o » o e s

Single Memory Program e e s e e e e e e

Multiple-Memories « « « ¢« « + &

Mixing Memorieso
o
\

E
W
N

—
~

—
t

o
t

o
t

e
t

o
t

o
o
t

r
o
a
d

o
t

—
d

N
N
—

L] —
—

CHAPTER 2 PROVIDINC IDENTIFICATION

PROVIDING A TITLE FOR YOUR PROGRAM

ADDING A VERSION NUMBER

ADDINGA TABLE OF CONTENTS

PAGING YOUR PROGRAM s e o s e o

SPECIFYING THE MICROWORD NIDTH e o o o e o

COMMENTS ¢ ¢ ¢ o o« v ¢ o o o o @N
N

D
N
D
N
D
D
N
O
N

[]

*»

&
.

O
\
N

W

—

CHAPTER DEFINING FIELDS AND VALUES

DEFINING NAMES FOR FIELDS « . .

NAMES . . . & ¢ i i e e e e e e e e e e e e

Spaces in Names ¢ ¢ e ¢ ¢ o o o

Upper and Lower Case « .« .

Length Limitation « . .

Uniqueness of Names « . .

QUALIFIERS e e s s e s e e e .

The .DEFAULT Qualnfuer e e e s e e e e e s

Ar cxample e o o o s e o o

.2 Case 1: Simple Default . o e

.3 Case 2: Defaults and 0verlapp|ng Fnelds

The .ADDRESS and .NEXTADDRESS Qualifiers .

The .FLOATOPARITY & .FLOATEPARITY qualifiers

The .VALIDITY Qualifier « . .

VALUE NAMES ¢« ¢ ¢ ¢ v o o v o .

Counter Values ¢ ¢ . o« o « o« &

.

N
N

—

L]

L
U
V

N

o

e
t

o
t

s

o
l

W
W
W
w
U
W
U
L
W
w
W
w
i
w
w
w
w
w
i
l
w
w
w
i
w
w
w

w

.

.

.

s

o

o

o

o

e

o

o

o

.

.
L —
t

|
I

T
R

R
R

I
|

U
V
V
O
I
n
e
s
s
s
E
W
w
W
w
N
h
D-
~

—

e
t

e
\
D

O
N
N
N
N
O
R
N
N
V
E
E
S
T
W
N

W
W
W
W
w
W
w
w
w
w
w
i
w
w
w
w
u
w
w
w
w

N

s
t

s

CHAPTER

CHAPTER

CHAPTER

CHAPTER

L

&
V
o

S

o

i

i
i

i

N
N

o

o
t

o
o
t

e
t

c
o
d

o
l

o
l

d

.
¢«

o
o

&
e

.
—

~
N

O

 E
W
w
W
N
—
~

N . N

W

W
A

W
W

N
N

-
.

¢

o

0

*

o

N

-

&

W

N

—

e
o

o
=

¢«

v
e

]
.

W

I
N
N
N
M
M
O
M
M
O
M
N
O
M
M
O
M
D
N
O
N
N-
~

.
L]

N
N

-
Ld

EXPRESSIONS AND VALIDITY CHECKING

EXPRESSIONS « . « . ..

Numbers« e e

Expression- Names . .

Function Calls . . .

Value-names

Field Contents Indicators

Predefined Symbol Names

Examples . . . e e e e e e e e

VALIDITY EXPRESSIONS c e v e e e e e e .

Associating A Validity Expression

With A Field

Associating a Validity expressaon

W th a Value-Name

DEFINING MACROS

THE MACRO-NAME

THit MACRO-BODY

Continuing a Macro Defunlt on .

Nested Macro Definitions . . .

THE MACRO-CALL

Parameters e o o . .

Multiple Use Of Parameter Desugnator .

Parameter Designators as Field-Values

or Macro-Calls . . .

Too Many or Too few Parameters

MICROINSTRUCTIONS

THE MICROINSTRUCTION e 4 e e

Continuing a Hucronnstructaon .

Allocating a Microinstruction

THE MICROWORD ¢« ¢« ¢ ¢« v .« .

ALLOCATION

DEFINING THE ADDRESS SPACE

SPECIFYING THE METHOD OF ALLOCATION .

Sequential Allocation . . e

Random Allocation

Constraints« o

Indicating a bit that can be 0 or l

The size of the address set .

Constraints Within Constraints

Terminating a Constraint .

Address Space Boundaries

MIXING ALLOCATION MODES .

*
*

L]

L]

[]

*
L]

.
L]

¥
l

i

-

i

o
l

o
l

i

|
U

 \
un

\n
\n

\{
\\

n\
n\

n\
n

o
n
U
n

V
M

E
s
w
w
w
i
N
h
n
N
n

L

A
o

 W
O

—

£

|
|

~

£

!

~
J

s
O
S
I
S
I

S
I
S

S
I
S

N
I

N

I
I

W
W

O
O
~

O
O
V

o
W

—

BHAPTER

CHAPTER

CHAPTER

CHAPTER

8

10.

10.

10

10.

10.

n

11.

11.

11.

11.

ll

ll

1

11

O
O

W
N

S

W
W
N
N

—

1

2

-3
A

5

1

1.

1.

1.

1.

.2

.2.

.2.

.2.

.2.

.2.

.2.

.2.

2.

-3
.3.1

1

2

2.

2.

1

2

3
L

5
6

7

8

11.3.2

11.3.3

1 b

11.4.1

1

2

COMMUN ICATION

MEMORY COMMUNICATION

PROGRAM COMMUNICATION

A SAMPLE MICROPROGRAM

THE DATA PATH « ¢ « « « .

IDENTIFICATION

Program Excerpt

FIELD DEFINITIONS

Program Excerpt

MACRO DEFINITIONS

Program Excerpt

A SUBROUTINE

Program Diagram

Program Excerpt e e e e e e e e e

ANOTHER SUBROUTINE c e e e e e e

Program Diagram

Program Excerpt

CONDITIONAL ASSEMBLY

THE CONDITIONAL ASSEMBLY KEYWORDS . .

CONDITIONAL ASSEMBLY BLOCKS

AN EXAMPLE « o . .

ANOTHER EXAMPLE

SETTING AND CHANGING EXPRESSION-NAMES .

MICRO2 LISTING AND LIST CONTROLS

ASSEMBLER INPUT

Preparing The Input

Formatting The Microprogram

The General Format

Microinstruction Format

THE OUTPUT LISTING

The Table Of Contents

Line Numbers

Page Headings

The Microword informaticn

Error Messages . . . e e e .

The Cross Reference Llstnng e e e

The Map Listing

The Summary ¢« + ¢« « o o« @

THE ULD FILE « ¢ « « . .

The Header ¢ ¢ « o « &

The Code Section« . .

Field and Address Defunutnons . o .

LIST CONTROLS e e e . .

The List Control Counters e e e e .

\D
\D

\D
\D

\D
\D

\'
D\

D\
D\

D\
D\

D\
D

W
A
W

0
0
O
~
~
~

O
O

&

W

w

—

10-1

10-2

10-2

10-3

10-4

11-1

1-1

11-2

11-2

11-2

11-2

11-3

11-3

11-4

11-4

11-5

11-5

11-6

11-7

11-7

1-7

11-7

11-8

11-8

11-9

CHAPTER 12

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

INDEX

12.1

12.2

12.2.1

12.3

p
2

B
I

B
B

 _
B
b

b
3
5

2
B
 _
J
b
 _
J
b
 _
J
b

B
B
 _
J
b

B
_
J
b

2
b

g
e

@

e

&

e

e

e

&

o

s

&

s

o

o

o
[]

.

N
N

N
N

o
t
 o

cn
d
o
t

v
t

o
t

o
t

o
l

o

o
t

o
d

w
n
d

d

d

d

[
]

B.1

B.2

(
=

I

=
B

-

W
N

-

V
W
M

E
E
W
W
N
N
N

—

—

-

—

W
N

—

o

W
N

.

.

—
—
t

po
—)

N

=

. -
l

USING MICRO2

VAX/VMS INTERFACE .

DEC 10 COMMAND LINE INTERFACE . .

File Specifications .

DEC 20 INTERFACE

MICRO2 LANGUAGE SYNTACTIC

MICRO2 SYNTACTIC SUMMARY

The Program .

Defaults -

Restrictions -

Examples -

The Definition Part .

Restrictions -

Examples -

Expressions . . .

Examples -

Macro Definitions

Examples - . . .

Microinstructions .

Examples -

MICRO2 ELEMENTS .

Keywords

Qualifiers .

Separators

SUMMARY

SAMPLE INPUT AND OUTPUT LISTINGS

THE INPUT LISTING .

THE OUTPUT LISTING

SAMPLE ULD FILE

ERROR MESSAGES

ERROR MESSAGES . .

WARNING MESSAGES

FATAL ERROR MESSAGES

12-1

12-2

12-4

12-4

. A-3

. A-3

. A-3

. A-k

. A=k

. A-5

. A-5

. A-6

. A-8

. A-9

. A-9

. A-10

. A-10

. A-10

. A-11

. A-12

. A-12
(
o

Bl

 o
 B

o

|

D
N

PREFACE

Manual Objectives

This manual provides a tutorial for the MICR02 assembler. It

introduces the MICR0O2 language and gives examples of its use. The

appendixes contain a reference section for the MICRO2 language,

examples of the input and output files, and a listing of the error

messages produced by MICRO2.

intended Audience

This manual is intended for assembly language programmers and hardware

engineers. The reader is assumed to be familiar with microprogramming

and the characteristics of the architecture for which the

microprograms are to be written.

Structure of this Document

This manual introduces the language constructs of MICRO2. The

identification constructs are presented first. Then the process of

efining fields and macros is discussed. Then microinstructions and

he process of allocation is considered. rinally, conditional

assembly, output listings, and the use of MICRO2 is described.

CHAPTER 1

INTRODUCTION TO MICRO2

The MICRO2 assembler converts microprograms written in its source

language to absolute object code. The source language of MICRO2

allows you to define names for fields and macros and then use these

names in specifying the actions to be performed by the microprogram.

The MICR02 assembler performs two logical functions: translation and

address selection. In translating names within a microinstruction to

the appropriate set of bits, the assembler performs valuable syntax

and validity checking. In assigning addresses, the assembler helps

you lay out branches and allocate storage in an effective manner.

1.1 TRANSLATION

To construct an objec: microprogram, the assembler interprets a source

microprogram written in a language that defines and uses names to set

the appropriate bits in the microwords of the program. Names, called

field-names, are defined to identify a sequence of bits within the

microword. For example, bits 22 through 19 are associated with the

field-name ALU by the following field-definition:

ALU/=<22:19>

Names, called value-names, are then defined to represent some or all

of the possible values for the field. Value-names are specified

foilowing a field definition by a series of name and value pairs,

connected by the character '"s='", For example, the value-names ADD,

SUB, AND, OR, and A are associated with the specified values for the

field ALU, as foilows:

ALU/=<22:19>

ADD=0

SuB=1

AND=2

OR=3

A=l

INTRODUCTION TO MICRO2 Page 1-2

’hen the following field-setting sets bits 22 through 19 to the wvalue
L

ALU/A

in addition to this basic ability to refer to fields and their values

symbolically, macros can be defined to produce a notation in which the

functions of the microword, not thaz specific field-settings, are

given. For example:

POP STACK "MEMFNC/STKRD, ALU/A, CLKT1/YES"

The above macro-call within a microinstruction is equivalent to

setting the three fields shown in the macro definition, but is more

convenient and readable.

1.2 ADDRESS SELECTION

MICRO2 performs two types of allocation, either SEQUENTIAL or RANDOM.

Further, it lets you select an address for a microinstruction or leave

he address selection to the assembler. |If you are wusing a RANDOM

llocation algorithm, you can make assertions about the relationships

among a set of addresses and M!CR0O2 will select an appropriate set of

addresses.

1.3 PROGRAM STRUCTURE

The MICRO2 assembler is a line-oriented processor, which accepts a

sequence of input lines written in MICR02 source language and produces

a listing file and an object module.

MICRO2 accepts continuation lines in three cases:

o Expressions

(o) Macro-bodies

(o) Microinstructions

In each case the line to be continued must have a '"," as its last

nonblank character.

The input to MICRO2 is a source program. A MICR02 source program can

ontain one or more memories. The bit-numbering direction and the

ogram radix apply to the entire program. The following sections

describe the way in which the direction and radix are extablished.

Then the fundamental program unit, the memory, it considered.

INTRODUCTION TO MIiCRO2 Page 1-3

1.4 SPECIFYING THE BIT NUMBERING

The .LTOR and .RTOL keywords define the way in which the bits of your

microword are numbered, so that when you define a field MICR0O2 knows

whether to count from the left end or the right end of the word. The

form of the bit-numbering keyword line is the keyword itself, namely:

.LTOR

.RTOL

The .LTOR keyword directs MICRO2 to consider the bits of the microword

numbered from left to right. The .RTOL keyword directs M!CR02 to

consider the bits numbered from right to left.

For example, suppose you have a 16 bit word and you refer to the bits

12 through 15 of that word. |If you specify the .LTOR keyword, then

the bits are numbered from left to right as follows:

And MICRO2 considers bits 12 through 15 as the rightmost four bits of

the word. However, if you specify the .RTOL keyword, then the bits

are numbered from right to left as follows:

And MICRO2 considers bits 12 through 15 as leftmost four bits of the

word.

If no bit-numbering keyword is given, then .LTOR is assumed.

MICRO2 uses the first .LTOR or .RTOL keyword it finds to establish the

direction in which the bits are numbered and ignores any subsequent

bit-numbering keywords in the program.

INTRODLLTION TO MICRO2 Page 1-4

}.5 IDENTIFYING THE RADIX

In a source program, MICRO2 interprets some numbers according tc the

program radix and considers other numbers to always be decimal.

MICRO2 considers a number with a decimal point to be a decimal number

and a number without a decimal point to be an integer. The way in

which an integer is interpreted depends on the context in which it

appears. The values that are interpreted according to the program

radix are identified in the following chapters.

The program radix is set by either the .0CTAL or .HEXADECIMAL

keywords. The form of the .0OCTAL and .HEXADECIMAL keyword-line is

simply the keyword itself, as follows:

.OCTAL

.HEXADECIMAL

If you include the .0OCTAL keyword, any value in the program that s

interpreted according to the program radix is interpreted as octal.

I'f you include the .HEXADECIMAL keyword, such values are interpreted

as hexadecimal.

The program radix can be set only once in a program. MICRO2 uses the

first program radix line it finds to establish the program radix and

.gnores any subsequent program radix lines in the program.

1.6 MEMORIES

A program can be divided into as many as seven sub-programs, or

memories. Except for the bit-numbering and program radix, which can

be specified only once in a program, all other constructs are

considered to belong to a memory. Each memory has its own

address-space, word-width, field- and macro-definitions and

microinstructions.

1.6.1 Single Memory Program

If a program contains only one sub-program (memory) then the notion of

program and memory can be indistinguishable.

INTRODUCTION TO MICRO2 Page 1-5

1.6.2 Multiple-Memories

If a program contains more than one sub-program, then each sub-program

is associated with a particuliar memory. You can have as many as seven

separate sub-programs.

The beginning of a section of the memory is specified by a

memory-indicator keyword. The memory-indicator keywords are as

follows:

.UCoDt

.DCODE

.ECODE

. 1CODE

.0CODE

.CCODE

.MCODE

The identification, definitions, and instructions following that

memory-indicator and up to the end of the program or another

memory-indicator are associated with the specified memory.

1.6.2.1 Mixing Memories - You can switch back and forth amor.g

memories in Yyour program. For example, suppose you have a special

instruction decode memory (D) and an instruction interpretation memory

(1) . You can either write the program in two pieces as shown

symbolically in the following diagram:

+

I

I

|

1

+

.DCODE :

(identification) !

(definitions) |

!
|

|

+

!

!

|

i

|

1

|

1

i

1

. 1CODE

(identification)

(definitions)

INTRODUCTION TO MICRO2 Page 1-6

'r you can group the decode and interpretation parts for each
instruction as represented in the following diagram:

.DLODE

(identification)

(definitions)

.1CODE

(identification)

(definitions)

.DCODE

.DCODE

. 1CODE

CHAPTER 2

PROVIDING IDENTIFICATION

MICRO2 includes directives that make the resulting program easy to

access and understand. Using these directives, you can provide a

title and subtitle for your microprogram, inciude a version number,

create a table of contents, specify the paging of the program, define

the number of bits in the microword, and add comments to the program.

2.1 PROVIDING A TITLE FOR YOUR PROGRAM

The .TITLE keyword-line supplies a title for MICR0O2 to use as part of

the heading of the output 1listing. MICRO2 reproduces the quoted

string following the .TITLE keyword at the top of each page of your

listing as part of the first line of the heading. The .TITLE

keyword-line has the following form:

.TITLE "title-string"

For example, supppose you give the following .TITLE line:

.TITLE "XYZ Machine'

The title that appears as part of the heading on each page of your

listing is:

XYZ Machine

A title can be specified only once in a memory. MICRO2 uses the text

given in the first .TITLE keyword-line it finds and discards any

subsequent .TITLE keyword-lines in the memory.

PROVIDING IDENTIFICATION Page 2-2

’.2 ADDING A VERSION NUMBER

The .VERSION keyword-line supplies a version number for MICRO2 to use

as part of the heading of the output listing. The .VERSION

keyword-line has the following form:

.VERSION/'""version-no"

MICRO2 prints the version-no as part of the subtitle. The version-no

can be any MICRO2 name or number. |f version-no is a number, MICRO2

interprets it according to the program radix and prints it on the

output listing subtitie line as a decimal numbar.

For example, suppose you give the following .VERSION line:

.VERSION/"10"

If the program radix is octal, MICR0O2 includes the version number '8"

in the subtitle.

2.3 ADDING A TABLE OF CONTENTS

The .TOC keyword-line supplies a subtitle and adds an entry to the

Eable of contents. MICRO2 reproduces the text given in quotes

ollowing the .TOC keyword as part of the second line of the page

heading of the output listing.

Suppose you add the following .TOC keyword-line to your program:

.TITLE "XYZ Machine - Version 1B"

.TOC"Introductory Remarks'

Then the subtitl~ that appears on the next page of your listing is:

Introductory Remarks

MICRO2 reproduces the text from the .TOC keyword-lines at the front of

your listing to provide a table of contents for the listing. You can

create an attractive table of contents by indenting the text on the

.TOC lines to indicate subordinate topics as shown in the output

listing of the sample program given in Appendix B.

You can add blank lines to format your table of contents by including

.TOC keywords that have a null string as text. For example, suppose

you add the following .TOC keywords to your program:

.TOC "introductory Remarks"

oc e
.TOC "Field Dafinitions"

.ToC "'

.TOC '*Macro Definitions"

PROVIDING IDENTIFICATION Page 2-3

The table of contents in your output listing is double spaced by the

null strings as follows:

; TABLE OF CONTENTS

| Iintroductory Remarks

;6

37 Field Definitions

;24

12b Macro Definitions

The number that appears in each table of contents line is the line

number assigned by MICR0O2 to that line in the output listing. Using

this line number, you can quickly locate the place in the listing

where the referenced information appears.

2.4 PAGING YOUR PROGRAM

The .PAGE keyword-line indicates a new listing page and, optionally,

provides a table of contents entry and a subtitle.

To simply indicate a new page, you include the .PAGE keyword without

any text string, as follows:

.PAGE

MICRO2 starts a new page in the output listing and places the .PAGE

keyword on the first line of that page following the heading.

To start a new page, add a subtitle, and make an entry in the table of

contents, you add a text string to the .PAGE keyword-line, as follows:

.PAGE '"text-string"

MICRO2 starts a new page, using the text string given as the subtitle

and includes the text string in the table of contents.

A .PAGE keyword with a text-string is operationally equivalent to a

.TOC keyword with that text string followed by a .PAGE keyword without

a text string.

You can use as many .PAGE keywords in the program as you wish. A

microprogram that is paged so that each topic appears on a new page is

easy to read initially and convenient to reference at a later time.

PROVIDING IDENTIFICATION Page 2-U4

'.5 SPECIFYING THE MICROWORD WIDTH

The .WIDTH keyword-line specifies the number of bits in the microword.

A .WIDTH keyword-line consists of the keyword .WIDTH, followed by a

slash and the number of bits in the word, as follows:

WIDTH/number-of-bits

The number given for number-of-bits is always interpreted by MICR02 as

a decimal number. Thus to define a microword that consists of 64

bits, you include the following line in your microprogram:

.WIDTH/6L

The maximum value that can be given for number-of-bits is 128.

MICR02 uses the first .WIDTH keyword-line it finds to establish the

width of the microword for the memory and it rejects any subsequent

WIDTH keyword-lines in the memory.

If you don't specify the width, MICR0O2 deduces the word width from the

field definitions. It assumes the width of the word to be the value

crmed by adding one to the largest bit position specified in the set

f field-definitions.

2.6 COMMENTS

Comments can be included anywhere in the program. A comment begins

with a ":" character and ends at the end of the line.

You can enter full line comments by starting the line with a ";"

character. You can add comments to lines by following the last

character on the line by some spaces and the ";'" character.

For examples of comments, see the sample program in Chapter 9.

CHAPTER 3

DEFINING FIELDS AND VALUES

The set of bits within the microword that make up a particular field

can be associated with that field name. Further, a set of qualifiers

can be defined that add semantic meaning to the field and a set of

value-names can be defined to set the field.

The simplest form of a field-definition defines a name for a field as

follows:

ALPHA/=<6:0>

The above definition associates the field name ALPHA with bits 6

though 0 of the microword.

The addition of value-definitions permits the field to be set as well

as referenced symbolically. For example:

ALPHA/=<6:0>

Al=]

A2=2

A3=3

The above dafinitions associate the value-name Al with the value 1, A2

with 2, and A3 with 3 and make the following field-setting possible:

ALPHA/A2

The above field-setting sets the field A (bits 6 through O0) of the

microword to the value A2 (2).

The addition of qualifiers permit default settings, parity adjustment,

and the like. The following sections describe the process of defining

field-names and value-names.

DEFINING FIELDS AND VALUES Page 3-2

..1 DEFINING NAMES FOR FIELDS

A field-definition consists of the name followed by the separator '/='

followed by the position of the biits within the word to be associated

with the field name foliowed by a list of one or more qualifiers. The

form is: ’

field-name /= < left-bit:right-bit > { , qualifier ... }

The field-name can be any valid MICRO2 name. The rules for forming

MICRO2 names are given in Section 3.2.

The left-bit and right-bit are decimal numbers that identify the

beginning and end bits of the field in the microword. |f you

specitfied right-to-left bit numbering, then the left-bit must be

greater than or equal to the right-bit. If you specified

left-to-right bit numbering, then the left-bit must be less than or

equal to the right-bit.

Qualifiers are described in Section 3.3.

'onsider the following field-definitions:

.RTOL

.0CTAL

A/=<]: 4>

3/-(3:0)

C/=<T:3>

D/=<2>

E/=<1:0>

These definitions identify the fields of the microword as shown in the

following diagram:

e -+

| A 2 B !
B itTETE PP R +

l c v D B
dommmmcm e e -+

As you see, you can define cverlapning fields, like A and C. MICRO2

knows, for <ach bit of the microworc. both its value (0 or 1) and its

status (unset or set). MICRO2 warns you if you try to define the

gtate of a bit more than once.

DEFINING FIELDS AND VALUES Page 3-3

3.2 NAMES

MICRO2 allows a name to be made up of characters from the following

set:

C ...Z Upper case letters

C ... 2 Lower case letters

2 ... 9 Numbers

Exclamation mark

Hash mark

Ampersand

Left parenthesis

Right parenthesis

Left angle bracket

Right angle bracket

Asterisk

plus sign

minus sign

period

questior mark

Underscore

Space and tab

B

b

1

I
+

%

V
A
~

A
R

=
0
0

>
»

)

MICRO2 considers all the following to be valid names:

A12

1t

2+3%6

BxC?

A name can begin with the period character, but such names make the

program confusing for another programmer to read. Further, a future

vertion of MICRO2 might use the name you chose as a keyword. Keyword

names are reserved. You cannot use a keyword as a name and,

therefore, your program would not function correctly under the new

version of MICRO2.

A name can begin with a number if it contains characters within it to

distinguish it from a number.

For example, the following are all valid names if the program radix is

octal:

12Q3
b2

51F

However, if the program radix is hexadecimal, the first two are valid

names but the third is a hexadecimal number.

DEF'NING FIELDS AND VALUES Page 3-4

'.2.1 Spaces in Names

In addition to the above characters, MICRO2 permits the use of snaces

or tabs within a name. MICR02 considers a space within a microword as

a concept rather than as a particular sequence of characters. Thus,

MICRO2 considers the following names to be the same although the space

in each case is made up of a different character sequence.

However, the symbol shown above is not the same as the symbol AB,

which does not have a space within it.

As an example of the effective use of spaces in names, consider the

following macro from the sample program giv-n in chapter 9.

T1 <=- PC + |

If this name is entered, by mistake, with two spaces between the |1 and

'he <, MICRO2 still recognizes it as the same macro. That is, the

ollowing are the same:

Tl < -- PC + 1

Tl < == PC +]

3.2.2 \Upper and Lower (Case

MICRO2 interprets upper and lower case letters as the same. Thus, the

following symbols are all treated as the same symbol.

ABC

ABc

abc

3.2.3 Length Limitation

RICRO2 imposes a limit of 128 characters on the length of a name.

Further, because MICRO2 is a line-oriented processor, a name must fit,

with the other necessary information, on a line.

DEFINING FIELDS AND VALUES Page 3-5

3.2.4 Uniqueness of Names

MICR02 names are classified as follows:

field-names

value-names

macro-names

expression-names

Field-names, macro-names, and exp: ession-names must be unique with

respect to all other names in the same class for a given memory.

Value-names, however, need be unique only with respect to other value

names for the same field definition. Ffor example, the following set

of value names is valid:

A/=<]:4>

A=0

B=1]

C=2

B/=<3:0>

A=2

B=l

C=6

Since you must always qualify a value name by its associated

field-name, MICRO2 can easily distinguish the value-names. That is,

MICRO2 interprets A/B as | and B/B as k.

A label is a value-name for the field designated as the address field.

Only one field in a memory can be designated as an address field and

thus all labels in a given memory must be unique.

Communication between memories can be accomplished by value names. A

discussion of field and value names in different memories is given in

Section 8.1. The rule is that if the same field name is defined in

more than one memory, then the value-names defined for that field in

any memory are known in all memories. Thus, if you define the address

field to have the same name in several separate memories, then all the

labels in those memories must be unique with respect to all other

labels in the separate memories.

DEFINING FIELDS AND VALUES Page 3-6

’.3 QUAL I F 1ERS

Qualifiers are used to establish a default for a field, to identify

the field as one that can contain a label, to designate a field to be

used for a parity bit, and to associate the setting of a field with

the condition of other fields within the microword. The qualifiers

are given in the following list:

.DEFAULT = default-expression

.ADDRESS

-NEXTADDRESS

.FLOATEPARITY

+FLOATOPARITY

.VALIDITY = validity-expression

The following sections consider each of these qualifiers.

3.3.1 The .DEFAULT Qualifier

The .DEFAULT qualifier specifies a value that MICRO2 can use for a

field when you do not explicity set the field.

.s you will see in Chapter 6, '"Microinstructions,"” MICRC2 forms a
microword by starting with a word of bits each of which has a value of

zero and a status of unset. Then, it transliates field-settings given

in the microinstruction to set the bits of the fields. When MICR0O2

processes a field-setting, it changes ail the bits of the field. It

changes the value of each bit to a 2ero or one and the status of each

bit from unset to set. MICR02 uses the default for a field if, and

only if, no bit of the field is explicitly set.

<
a bit of a field is set as a result of an overlapping field being

set, then the default for that field is not applied.

if you do not s=t a field and do not indicate a default, then MICRO2

does not set that field and the bits continue to have the value zero

and the status unset.

The default-value is an expression. The rules for forming a MICRO2

expression are given in 33ection k.1, The simplest form of an

expression is a number. The following examples use only numbers for

defaul t-values. The us2 of expressions in defaults is illustrated in

the sample program in Chapter 9.

DEFINING FIELDS AND VALUES Page 3-7

3.3.1.1 An Example - To illustrate the use of the .DEFAULT qualifier,

suppose we add some defaults to the fields defined in Section 3.1 as

follows:

.RTOL

.0CTAL

A/=<]:4>, .DEFAULT=1

B/=<2:0>, .DEFAULT=2

C/=<7:3>, .DEFAULT=3

D/=<2>

E/=<1:0>

Now consider the cases given in the following sections.

3.3.1.2 Case 1: Simple Default - Suppose we set only the A field in

the microinstruction, as foliows:

A/2

MICRO2 first sets the bits in field A to the value 2. Then it

considers the defaults in the order specified. It ignores the default

for field A, since that field is explicitly set. It uses the default

for field B since the status of every bit in that field is unset.

76543210

10010001 0}

R -+

After MICR0O2 uses the default to set the bits in field B, all bits are

set and MICRO2 does not consider any ‘“urther defaults.

3.3.1.3 Case 2: Defaults and Overlapping Fields - |f more than one

default can be ied to a sequence of bits, MICRO2 chooses the

default specified first in the microprogram.

in the example given above, the fields A and C overlap and both fields

have defaults. Suppose we set only the D field, as follows:

e/1

RICRO2 sets the bit in field D to 1. MICRO2 then applies the first

default in the microprogram, the default value for A, to set bits 7

through 4. MICR02 does not use the default for B because a bit in

that field is set (bit 2) or the default for C because bits 7 through

k are set by the default value for A.

DEFINING FIELDS AND VALUES Page 3-8

‘.3.2 The .ADDRESS and .NEXTADDRESS Qualifiers

MICRO2 requires that the jump field be identified by either an

.ADDRESS or .NEXTADDRESS qualifier. A field defined with the .ADDRESS

or .NEXTADDRESS qualifier can be set to the value of any label in the

program.

In addition to designating the associated field as a jump field, the

.NEXTADDRESS qualifier specifies that the default for the field is the

value of the address associated with the next microinstruction given

in the program.

Since the .NEXTADDRESS qualifier serves the dual purpose of

identifying a field as an address field and supplying the default for

that field, you must not use a .DEFAULT qualifier in combination with

a .NEXTADDRESS field.

One field and only one field in a memory can be designated as the jump

field by the use of either the .ADDRESS or the .NEXTADDRESS qualifier.

To illustrate the .NEXTADDRESS qualifier, suppose we add definitions

for fields X and J to the field definitions given for the discussion

,f the .DEFAULT qualifier, as follows:

.RTOL

.OCTAL

A/=<]:4>, DEFAULT=]

B/=<3:0>, .DEFAULT=2

C/=<7:3>, .DEFAULT=3

D/=<2>

E/=<1:0>

X/=<15:8>

J/=<23:16>, .NEXTADDRESS

The definitions describe the following microword:

2 2 1

3210987654L32109876543210

DEFINING FIELDS AND VALUES Page 3-9

Suppose the following sequence of microinstructions are given for the

above definitions:

0201:

L1: A/1,B/1,J/L2

0203:

L2: A/2,B/1

020i:

L3: A/3,B/3
0206:

Lh: A/4,B/L

The field J, which has the .NEXTADDRESS qualifier, is set explicitly

in the first microinstruction (L1) to the label L2, which is the octal

value 0203. In the other microinstructions, J is not set and thus

MICRO2 provides the default setting of the address of the next

microinstruction. In the microinstruction labelled L2, J is set to

the octal value 0204. Similarly, in the microinstruction labelled L3,

J is set to 0206 (octal).

The fields X and J each contain eight bits. The field J, having the

.NEXTADDRESS qualifier, can be set to the value of a label; the X

field, however, can only be set to a value. For example, suppose the

label L1 is allocated to the value 0212. We can set both X and J to

the value 0212, as follows:

X/212,J4/L1

Or we can write:

X/212,4/212

But we cannot set the field X to the label L1.

3.3.3 The .FLOATOPARITY and .FLOATEPARITY qualifiers

The parity qualifiers, .FLOATEPARITY and .FLOATOPARITY, designate a

field for MICRO2 to search to find an unset bit to use as a parity

bit. When you add this qualifier to a field definition, MICR02

examines the field after all the values are set and the cefaults are

applied and uses the first unset bit it finds in that field, searching

from left to right, to adjust the parity to even or odd. I|f you

specify the .FLOATEPARITY, MICRO2 adjusts the parity to even parity if

it is not already even; if you specify .FLOATOPARITY, MICRO2 adjusts

to odd parity. Even parity means that the number of 1's in the word

is an even number. Odd parity means that the number of 1's is an odd

number.

DEFINING FIELDS AND VALUES Page 3-10

luppose we add the following field definition to the set we have been
developing:

P/=<23:0>, .FLOATOPARITY

The microword now looks as follows:

2 2 1

3210987654 32109876543210

etT D TSP i +

| <==e-e- P -——rmmmmrrrrcrrrrre e > |

D et e TP AP R, +

| : A B
| <==== J ====> | <--om X mooo> e :

: | : C DyE |
D et it +

Suppose we set field E to 1, X to the octal value 202, and J to the

value of LAB3 in a microinstruction as follows:

LAB2: E/1,X/202,J/LAB3

Assuming LAB3 is the octal value 213, the microword contains the bits

shown in the following diagram before the parity is adjusted:

2 2 1

321098765432109876543210

RtT RS +

' | | Lo
'170001011'110000010!0001! '01!

| I i b
e T S S PR +

in the above microword, fields J, X, and E are set explicitly and

field A is set by default. That is, all bits except bits 3 and 2 zare

set either explicitly or by default. The .FLOATOPARITY qualifier

associated with the field P causes MICRO2 to search from left to right

within that field (that is starting from bit 23) to find the first

unset bit if the parity of the word is not odd. The first unset bit

is bit 3 and MICRO2 sets that bit to ! to turn the parity of the word

to odd parity.

DEFINING FIELDS AND VALUES Page 3-11

Suppose we do not set X. That is, we write:

LAB2: E/1,J/LAB3

The microword before parity is:

2 2 1

321098765432109876543210

e T T T P . +

! I ! S
11000101 1! 0001! 01!

: | | A
bbbtttT +

When MICR0O2 searches the field P from left to right, the first unset

bit it finds is bit 15. Therefore, MICR02 sets tit 15 to 1 to adjust

the parity to odd parity.

3.3.4 The .VALIDITY Qualifier

The .VALIDITY qualifier lets you make assertions about the conditions

under which a field can be legally set. The .VALIDITY qualifier

associates a validity expression with a field. If the wvalidity

expression is not satisfied when the field is set in a microword,

MICRO2 produces a warning message.

The .VALIDITY qualifier and use of the validity expressions is a deep

subject, which is described in detail in Chapter 4.

3.4 VALUE NAMES

A value-name is a name asscciated with a particular value of a

particular field.

A value-name is defined by a value-definition following the field

definition. A value-definition consists of the value-name followed by

the separator 's' followed by the value to be equated with that name

when the name is used to set the field. In addition, a

value-definition can specify ore or two values, which are added into

two separate counters, .TIME]l and .TIME2, when the field value name is

used to set the field. The value-definition can also have its own

.VALIDITY expression. Thus, the form is:

value-name=value,tl-value,t2-value, .VALIDITY=exp

DEFINING FIELDS AND VALUES Page 3-12

'he ti-value, t2-value, and .VALIDITY expression are all optional. In
the simplest case, a value name is associated with a value for a field

as follows:

A/=<7:4>, .DEFAULT=]

AO=0

Al=1

AL=4

In the above example, three value-names are defined for field A,

namely AO, Al, and Ak. These names can be used in a microinstruction

to set A as follows:

LAB: A/A1

Normally field-names and field-value names have more mnemonic content

than the ones given above. For example, consider the following

excerpt from the sample program given in chapter 9:

SETCC/=<15>, .defaul t=0

NOP = 0 ;Do nothing with condition codes

SET =1 ;Set condition codes according

;to IR value and status of ALU.

3.4.1 Counter Values

If the value-definition includes a tl-value, then that value is added

into the counter .TIME]l. If the field-value-definition includes a

t2-value, then that value is added into .TIME2. The resulting values

of .TIMEl and .TIME2 can then be used in validity expressions.

Chapter 4 describes the use of these counters in validity expressions.

Fcr example, suppose we associate a ti-value with the value-name Al, a

t2-value with the value-name B1, and both a t]1 and t2-value with the

value-name AL, as follows:

Al = <7:L4>, .DEFAULT=1

AO = O

Al = 1,3

Ab = 4,2,6

B = <3.:0>, .DEFAULT=2

BO = O

Bl = 1,,8

If we use the value-name Al in a microinstruction, the counter .TIME]

is increased by the associated tl-value, 3. If we use both AL and B1,

hen .TIME]l is increased by 2 (for AL) and .TIME2 is increased by 6

for AL4) and 8 (for BI1). Chapter L4 describes the use of these

counters in validity expressions.

CHAPTER &

EXPRESSIONS AND VALIDITY CHECKING

Validity expressions allow the addition of semantic meaning to a

definition language by indicating the conditions under which it is

invalid to use a particular field or value name.

When a field or value name that has an associated validity is used in

a microinstruction, MICRO2 evaluates the expression. |f the value of

the expression is 1 (true), then MICRO2 takes no action. However, if

the value of the expression is O (false), MICR0O2 issues a warning

message. |n practice, any vaiue that is not 1 is considered to be a

false value.

The following sections consider expressions in general and then the

ways in which a validity expression can be associated with a field or

value nara.

L.1 EXPRESSIONS

An expression in MICRO2 is enclosed in angle brackets. An expression

can be any of the following:

A number

An expression name

A function call

A field value name

A field contents indicator

A predefined symbol

An expression can occupy more than one line zs 1long as the last

character of each line to be continued is a cooma character. For an

example of a continued expression, see Section L4L.1.7.

The following sections consider each of these cases in detail.

EXPRESSIONS AND VALIDITY CHECKING Page 4-2

'.l.l Numbers

MICR02 recognizes integers or decimal numbers. An integer is

interpreted according to the program radix. A number with a2 decimal

point is always interpreted as a decimal number. You set the program

radix by adding either the .0CTAL or the .HEXADECIMAL keyword to your

program. |If you do not give a program radix, then an octal radix is

assumed.

Some special cases occur in the interpretation of integers, as

fol lows:

o) If the program radix is octal and an integer contains an 8 or

a 9 digit, then the number is intergreted as a decimal

number.

o MICRO2 interprets a character sequence beginning with a

letter as a name. Thus, if the program radix is hexadecimal

and the first digit in a number is a letter, then you must

write the integer with an initial zero to prevent its being

interpreted as 2 name. For example:

F12 interpreted as a name

OF12 interpreted as an integer

L.1.2 Expression-Names

! . expression-name is defined by the .SET keyword as follows:

.SET/expression-name = <expression>

For example:

LSET/SWITCH1 = <1>

MICR02 associates the value 1 with the expression-name SWITCHI. You

can use the expression-name in subsequent expressions. For example:

.SET/SWITCH2 = <SWITCH1>

The .SET keyword-line is described in detail in connection with

conditional assembly capability in Section 10.2.

EXPRESSIONS AND VALIDITY CHECKING Page 4-3

L.1.3 Function Calls

MICRO2 provides functions for comparison, arithmetic, and Boolean

operations. Also, MICR0O2 provides functions to detect parity, shift,

and select a case from a set of choices.

The functions are given in the folliowing table:

Function Value

Comparison

.EQL[opl,0p2,...]

.NEQ[op1l,0p2,...]

.GTR[op1,0p2,...]

.GEQ[Lopl,0p2,...]

.]
-]

if opl=op2=...

if opl<>op2 and op2<>o0p3 and ...

if opl>op2>...

if opl>=op2>=...

if opl<op2<...

if opl<=op2<=...

.LSS[op1,0p2,..

.LEQ[op1l,0p2,..

Arithmetic

.MAX[opl,0p2,...] Value of largest operand

.MIN[opl,0p2,...] Value of smallest operand

.SUM[op1,0p2,...] opl+op2+...

.PROD[op1,0p2,...] opl*op2*...

.DIFF[opl,0p2] cpl-op2

.QUOT [op1, 0p2] opl/op2 (truncated)

.M0D[op1,0p2] remainder of opl/op2

Boolean

.NOT [op] Boolean complement of op

.AND[op1,...] Boolean 'and' of operands

.OR[op1,...] Bc :an 'or' of operands

.XOR[op1,...] Boolean 'xor' or operands

.NAND[op1,...] Boolean complement of the 'and'

.NOR[op1,...] Boolean complement of the ‘or'

.EQV[op,...] Boolean complement of the 'xor'

Miscellaneous

.PARITY[opl,0p2,...] | f operands contain an even

number of 1's, then 1 else 0

.SHIFT[opl,o0p2] If op2 is positive, then shift opl

left op2 places else shift

opl right op2 places

.CASE [op1]OF [op2, ...] The (opl-th + 1) operand of the list.

That is, if opl is O, the first op2 is

used. Up to 32 choices can be given.

.SELECT[{op1,0p2,}...] The first op2 for which

opl is true

The operands of a function can be expressions. Thus, you can

construct very complex expressions. Some examples of expressions are

given in Section 4.'.7.

EXPRESSIONS AND VALIDITY CHECKING Page L-L

’.l.h Value-names

Value-names are the names that you associate with a value for a given

field, as described in Section 3.k.

Since a value-name is only derined for a specific field, it must be

qualified by the field-name when you use it in an expression as

follows:

field-name/value-name

For example, suppose we define the following field- and value-names:

A/=<]:4>

AO=0

Al=]

Aly=L

Then, the value-names can be used in an expression as fol lows:

<.EQL[<A/A1>,<Xx>]>

The above expression is equivalent to:

<.EQL[1,<Xx>]>

In the above expressions, X is an expression name.

4.1.5 Field Contents Indicators

The contents of a fiela can be designated in an expression by giving

the field-name followed by a slash. For example, to find out if the

current contents of field B contains the -ralue &, you write the

foliowing expression:

.EQL[,<k>]

For some uses of field contents indicators, see Section 4.2 on '"The

.VALIDITY qualifier."

EXPRESSIONS AND VALIDITY CHECKING Page L-5

L.1.6 Predefined Symbol Names

Three symbols are predefined in MICRO2, as follows:

Symbol Meaning

. The address of the current

microinstruction

.TIMED The value of the counter associated

with tl-values.

.TIME2 The value of the counter associated

with t2-values.

The .TIMEY and .TIME2 predefined symbols are described in section 3.k

in connection with the definition of value-names.

As an example of the use of these symbols, consider the following

example:

A/=<7:4>, DEFAULT =2

AO=0,10,10

Al=1,10

Ab=4 10

B/=<3:0>, .DEFAULT =2

80=0,5,8

Bi=1,2,12

X/=<15:8>_ ADDRESS, .VALIDITY=< LSS[.TIME),1L]>

The definition of AD specifies that its wuse to set field A in a

microinstruction adds 10 to the .TIME1l counter and 10 to the .TIME2

counter; the definition of Al specifies that its use adds 10 to the

.TIME2 counter; and so on.

Now suppose we have the following microinstructions:

LABl1: A/AO0,B/B0,X/L2

LAB2: B/Bi1,X/L3

After all the fields are set in the first microinstruction, labelled

LAB1, the counter .TIME]l contains the value 15 and the counter .TIME2

contains the value 18. When MICR02 evaluates the validity expression

for the field X, it finds that the value of .TINE]l is greater than 1k

and thus the expression is false. MICRO2, therefore, reports an

error.

After all the fields are set in the second microinstruction, .TIME)

contains 2 and .TIME2 contains 12. The validity expression is true

and no error is reported.

EXPRESSIONS AND VALIDITY CHECKING Page L-6

’.1.7 Examplies

Now let's consider some examples of expressions. Suppose we want to

produce a true result if the contents of field A and the contents of

field B both equal 1. That is, if the following is true:

<A/>==])

We use the .EQL function a follows:

EQL[<A/>,,1]

To find out if the contents of field A and field B equal | and the

contents of field C and field D do not equal 1, we use the .EQL, .NEQ,

and .AND functions as fol lows:

-AND[<.EQL[<A/>,,1])>,<.NEQ[<C/1>,1,<D/>]>]

To perform the computation:

<A/>4++2%<C/>

We use the .ADD and .PROD functions as follows:

.ADD[<A/>,,<.PROD[2,<C/>]>]

.o choose a value based on the value of the predefined name .TIME], we
use the .CASE function as follows:

.CASE[<.TIMnEV>]OF[10,2,6,21]

If the value of .TIMREl is O, then the function value is 10. If the

value of _.TIRE]l is 1, then the function value is 2. And so on. |If

the value of .TIME)! is grcater than 3, an error is reported.

If the length of the expression exceeds a line or if formatting the

expression will aid its readability, we can continue the expression on

several lines.

for example, we can write:

OPCODE/=<15:8>, .VALIDITY=<CASE [VAL]OF [ADD,

sus,

DIV])

h.2 VALIDITY EXPRESSIONS

he .VALIDITY qualifier associates an expression with a field- or

lue-name. The form of the .VALIDITY qualifier is:

.VALIDITY = expression

EXPRESSIONS AND VALIDITY CHECKING Page L-7

MICRO2 evaluates validity expressions after all the fields explicitly

given in the microinstruction have been set and after any defaults are

applied. If the value of that expression is true (1), then MICRO2

takes no action. However, if the value of that expression is false

(0), then MICRO2 prints a warning message.

hk.2.1 Associating A Validity Expression With A Field

Suppose we assign a .VALIDITY qualifier to field A, in the following

set of field definitions, as follows:

.RTOL

.OCTAL

A/=<7:k>, DEFAULT=1, .VALIDITY=<_EQL[,3]>

B/=<3:0>, .DEFAULT=2

The validity expression in the above example asserts that setting

field A to a value is legal only if the value of field B is 3. |If

field A is set when field B contains any other vaiue, an error message

is reported. Let's consider some cases:

Microinstruction Microword Comment

A/1,8/3 00010011 B is explicitly set to 3,

thus setting A is valid.

A/ 00010010 B is set to 2 by default

thus setting A is invalid

and a warning message is

reported.

A/1,B/2 00010010 B is explicitly set to 2,

thus setting A is invalid

and a warning message is

reported.

B/1 00010001 A is not explicitly set,

thus the validity expression

is not evaluated.

k.2.2 Associating a Validity expression with a Value-Name

A value-name definition can contain a validity expression. Suppose we

add a validity expression to the set of field definitions giver above.

A/=<];4>, .DEFAULT =2

A0=0,10,10

Al=1,0,10,.VALIDITY=<.EQL[B/,0]>

Ab=h, 12

B/=<3:0>, .DEFAULT =2

80=0,5,8

Bi=1,2,12

X/=<15:8>.ADDRESS,.VALIDITY=< LSS[.TIMEY, 14]>

EXPRESSIONS AND VALIDITY CHECKING Page 4-8

’hen consider the following cases:

Microinstruction Result

A/A1,B/BO Validity expression associated with

value-name Al is true because

field B contains O.

A/A1 Validity expression associated

with Al is faise because field

8 contains the default value 2.

A/AO,X/2 Validity expression associated

with field name X is true

because .TIME! contains 10,

which is less than 14.

A/AL,B/BO Validity expression associated

with X is false because

.TIME! contains 17.

As another example, suppose we add a validity expression to both a

field definition and a value name definition as follows:

A/=<7;4>, .DEFAULT =2, .VALIDITY=<.LSS[.TIMEY,.TIME2]>

AO=0, 10,10

Al=1,0,10,.VALIDITY=<.EQL[B/,0]>

Ab=bk, 10

B/=<3:0>, .DEFAULT =2

80=0,5,8

Bi=1,2,12

B2=2,20

X/=<15:8>.ADDRESS,.VALIDITY=< LSS[.TIMEY, 14]>

Now consider the following cases:

Microinstruction Result

LABS: A/A1,B/BO .TIME) contains 5 and .TIME2 contains 18.

Thus both validity checks are satisfied

LAB6: A/A1,B/BI The validity expression associated with the
field value name Al is false; therefore, an

error is reported

LAB7: A/Al,B/B2 Nei ther validity check is satisfied;

therefore, two errors are reported

CHAPTER 5

DEF INING MACROS

The macro capability of MICRO2 permits the definition of a

representation for a microprogram at a higher level than the basic

field-value pairs. Once the fields of your microword are defined, a

set of macros that set groups of fields appropriately for certain

operations can be specified.

To define a macro, you write the macro-name followed by a quoted

string that contains the macro-body. When you use the macro-name in a

microinstruction, then MICRO2 replaces the name by the macro-body.

The simplest case of a macro definitior is one that does not contain

any parameters. For example:

M1 “A/AO,B/BO"

Writing the name M1 in a microinstruction is equivalent to writing the

pair of field settings. That is, the following are equivaient:

L1: M Ll: A/A0,B/BO

The following sections describe the process of defining and using

macros.

DEFINING MACROS Page 5-2

.. 1 THE MACRO-~NAME

Macro-names are formed using the set of characters given in Section

3.2. In addition to these characters, MICR02 recognizes square

bracket pairs and commas in macro-names as indicators of the iwumber

and position of the macro parameters.

A macro with one parameter contains an empty square bracket pair in a

macro-name. For example, each of the following macro-names requires

one parameter.

ABC[]

A[]sC

[1aBcC

A macro with two parameters contains either two square bracket pairs

or a cooma within a single square bracket pair, as follows:

asc10]

aB[Jc[]
[Jasc[]

aBc[,]

A[,]BC
[,]asC

The only limitation on the number of parameters in a macro-name is the

length of the line. The macro-call with all its arguments must fit on

one line.

The number and position of parameters in a macro-name are an integral

part of the name. Thus the macro-names given above all define

different macros. That is, the macro ABC[J[] is not the same as

ABC[,] and so on.

5.2 THE MACRO-BODY

The macro-body consists of any combination of field-settings and

macro-calls separated by commas. When a macro is used in a

microinstruction, MICRO2 replaces the macro-name by the macro-body

associated with that name. Consider a macro defined in the sample

program in chapter 9:

Pop Stack "MEMFNC/STKRD, ALU/A, CLKT1/YES"

Writing the macro-call Pop Stack in a microword is equivalent to

riting the three field settingcs given in the macro-body. In Chapter

'. we will see how the definition of a macro language facilitates the
process of writing and understanding a microprogram.

DEF INING MACROS Page 5-3

5.2.1 Continuing a Macro Definition

Macro definitions can be continued to the next line. If the last

non-blank character of a line in the macro-body is a "," (comma)

character, MICRO2 assumes that the next line is a continuation line.

For example, the above macro could have been defined using three lines

as follows:

Pop Stack '"MEMFNC/STKRD,

ALU/A,

CLKT1/YES"

5.2.2 Nested Macro Definitions

Since a macro-body can contain a macro-call, any number of macro

languages can be constructed, one upon another. You can, for example,

start with a primitive set of macro definitions. Then using these

primitive definitions, add another, more sophisticated, level of

macros, and so on.

5.3 THE MACRO-CALL

The macro-call is the macro-name with actuals filling the indicated

parameter positions.

The macro-call for a macro without parameters is the macro-name

itself. The macro-call for a macro with parameters includes the

actuals within the square brackets of the macro name.

MICRO2 first replaces a macro-call by the macro-body. If the

macro-body contains macro-calls, MICRO2 replaces those calls. MICRO2

continues in this way until the microinstruction contains only

field-settings.

To illustrate the way in which MICRO2 replaces macro-calls, suppose we

define the following three macros:

M1 "A/AO,M2,B/BO"

M2 '"C/Co,mM3"

Then we use the macro-name Ml in a microinstruction:

L1: X/L2,M)

MICRO2 first replaces the macro-name M1 by its associated macro-body,

as follows:

L1: X/L2,A/A0,M2,8/BO

DEFINING MACROS Page 5-4

'hen MICRO2 replaces M2 by its associated macro-body:

Li: X/L2,A/A0,C/CO,M3,B/BO

Then MICRO2 replaces M3:

L1: X/L2,A/A0,C/CO,D/DO,B/BO

The above microinstruction consists of only field settings and so no

further replacement can occur.

5.3.1 Parameters

Square brackets and commas indicate parameters in the macro-name. The

character '"@" followed by a decimal integer in the macro-body

indicates the position of the parameter in the macro-body. This

character pair is called a parameter-designator.

The decimal integer in the parameter-designator refers to the

position, numbering from left to right, of the parameter in the name.

f you use only one parameter, then you designate it by '@1' in the

acro-body.

Suppose we define the following macro:

M4[] "A/AO,B/@1"

Then we use it in the followihg microinstructions:

L1: C/CO,MLTBO]

L2: mMu(B1]

MICR0O2 expands the macro call as follows:

L1: C/CO,A/AO0,B/BO

L2: A/A0,B/B]

If you use several parameters, then you designate the leftmost

parameter in the macro-name as '@1', the one to the right of that as

'@2', and so on.

Suppose we define a macro with four parameters:

ms(,Jas[]c[] "a/@1,8/@2,C/@3,D/@b

DEFINING MACROS Page 5-5

Then we use it as fol lowr:

L1: M5[A1,B1]JAB[C23CLN3]

MICRO2 replaces the macro by its associated macro-body:

L1: A/A1,B/B),C/C2,D/D3

5.3.2 Mul* _..e Use Of Parameter Designator

You can use a parameter designator more than once in a macro body.

For example, to set the fields A, B, and C to the same value, you can

specify a macro that has that value as a parameter:

SET ABC[] "a/@1,B/@1,C/@1"

Then to set all the fields to zero. you write:

SET ABC[O]

5.3.3 Parameter Uesignators as Field-Values or Macro-Calls

Parameter-designators can be used within the macro-body as either

field-values or macro-calls. |f the parameter-designator is used as a

field value, then the corresponding parameter must be either a value

or a field-value-name. Similariy, a parameter-designator used as a

macro c2ll must be filled by a parameter that is a macro-call.

For example, consider the following macro-definition:

ms5[,] "a/@1,@2"

When the above macro is called, the first parameter must be a value or

field-value-name and the second parameter a macro-call. Suppose we

have the following additional macro-definitions:

M6 "B/B1"

m70J+0] “c/er,p/@2"

The following calls on M5 produce the indicated results:

Call Expansion

M5[1,M6] A/A1,8/B]

ms[1,mM7[c1]+[D2]] A/A1,C/C1,R/D)

DEF INING MACROS Page 5-6

'.3.h Too Many or Too Few Parameters

As described in Section 5.1, MICR0O2 considers the position and the

number of the parameters as part of the name. |If you supply too many

or too few arguments in a macro-call, MICRO2 detects the error, unless

you have defined another macro that, by coincidence, the macro-call

satisfies.

Suppose you define the following macro:

m2{,] "A/@1,B/82,0/1"

Then, if you call it with the proper number of arguments (2), you get

the valid replacement, as follows:

M2[A1,B1] is replaced by A/A1,B/B1,D/1

However, suppose you mistakenly call the macro with three parameters,

as follows:

M2[A1,B1,1]

'ICROZ does not recognize the above as a valid call and produces an
error message.

However, suppose you define another macro with three parameters, so

that you have:

M2[,] '""A/@1,B/@2,D/1"
m2(,,] ''A/@1,D/82,E/@3"

Ther,, the following calls are valid:

Call Expansion

M2[A1,B1] A/t1,B/B1,D/1
M2[A1,1,2] A/ 1,D/1,E/2

When you use names that are the same except for the number of macros,

you lose the error checking performed by MICR0O2. Such naming is,

therefore, not recommended.

CHAPTER 6

MICROINSTRUCTIONS

The microinstructions describe the processi®ig to be performed by the

microprogram. These microinstructions are expressed ir. terms of the

field and macro-names defined.

For each microinstruction, MICRO2 translates names into the

appropriate sequence of bits and creates the associated microword.

The fcllowing sections consider the microirstruction and the formation

of the microword.

6.1 THE MICROINSTRUCTION

The microinstruction contains the information MICR0O2 needs to set the

bits of the microword.

Both the address and label can be omitted.

A microinstruction begins with an absolute address assignment, one or

more labels, or both. Following this optional information, a sequence

of field-settings and/or macro-calls is given separated bhv commas.

That is, the form of the microinstruction is:

address:

{ label: }

{ field-setting } ,...

{ macro-call }

A microinstruction is different from all other MICRO2 language

constructs because it can occupy several lines.

MICROINSTRUCTIONS Page 6-2

'.l.l Continuing a Microinstruction

If a microinstruction occupies more than one line, the separator

character ',' must be as the last non-blank character of all lines

except the last line. For purposes of this discussion, the end of the

line is assumed to be either the ';' character, which begins a

comment, or the actual end of li:.... Thus the last non-blank character

of a line means the last non-blank before the ';' or end of line

When MICRO2 finds a comma as the last non-blank character of a line,

it continues the microinstruction using the information on the next

line. When MICRO2 finds a line that does not end with a comma, it

concludes the microinstruction and produces the microword.

Suppose we write the following portion of a microprogram:

~/AO,B/B1,

c/c2,

J/L1

MiCRO2 interprets the above as a single microinstruction that sets

fields A, B, C, and J.

However, suppose we omit the terminating commas:

A/AO,B/B?

c/C2

J/L1

MICRO2 interprets the above as three microinstructions and produces a

microword for each.

6.1.2 Allocating a Microinstruction

The following microinstruction contains an address (612) and two

labels (R and Q):

12:

Q
0

0
O

ee

o0

O
N

A/A1,B/B1

MICRO2 produces the microword and, allocates it to word 612, and
associates the specified absolute octal value 612 with the labels R

and Q.

MICROINSTRUCTIONS Page 6-3

Both the address and label are optional. Suppose you write:

R:

A/A1,B/B1

For this case, MICR02 produces the same microword but chooses the

allocation for the word and associates that address with the label R.

When MICRO2 processes the microinstruction, it creates a microword and

assigns that microword to an address. The following sections consider

these two activities in detail.

6.2 THE MICROWORD

MICRO2 creates a microword in the following way:

1. MICRO2 clears the counters .TIMEl and .TIME2 and begins with

a word of the specified length in which each bit has a value

of zero and a status of unset.

2. MICRO2 then fills in all the fields that are explicitly set

in the microinstruction.

3. Then, MICR02 sets any fields that have an associated default

and that contain only unset bits.

L. Then, MICRO2 evaluates any VALIDITY expressions.

5. Finally, MICR02 performs any parity adjustment indicated.

Let's look at the creation of a microword. First, consider the source

program:

.TITLE "TEST"

.OCTAL

-RTOL

WICTH/24L

.REGION/0200,0277

A/=<7:4>, .DEFAULT =2

A0=0, 10,10

Al=1,10, .VALIDITY=<.EQL[<.TIME1>,<.TIME2>]>

Ak=4,10

B/=<3:0>, .DEFAULT =2

B0=0,5,8

Bl=1,2,12

X/=<15:8>.ADDRESS,.VALIDITY=<_ LSS[<.TIME>, 14]>

MICROINSTRUCT I ONS Page 6-4

J/=<23:16>, .NEXTADDRESS

P/=<23:0>, .FLOATEPARITY

MI[] "ai/@r

M2(J+[3 "a/e1,8/@2"

.TOC "MICROCODE"

A: m1[A1])

Now, consider the creation of the microword for the microinstruction

labelled A.

1. MICRO2 initializes the counters .TIME]l and .TIME2 and begins

with a3 word consisting of 24 unset (zero) bits.

2. MICRO2 expands all macros until the source consists of a set

of fieid settings and then sets those fields.

Expanding the microinstruction labelled A above produces the

following field setting:

A: A/A1

MICRO2 then sets the field A (bits 7 through 4) to the value

A1(1). The microword now contains the following values:

2222111113V 1 11 v1

3210987653210 9876514 3210
R e I -+

[]] 1 1
] 1] 1

' 10 0 0 1; :
1 §]]
] | 1 [}

i e T . -+

/i\
]

]

A

In setting field A to the value designated by Al, MICR02 adds

the counter value:c associated with Al into the counters

.TIME]l and .TIME2. After setting field Al, the counter

.TIREl contains the value 10 and the counter .TIME2 still

contains O.

M1 CROINSTRUCT I ONS Page 6-5

3. Next MICRO2 applies defaults. Fields A and B have defaults.

Field A is explicitly set, but no bit of field B is set, so

MICRO2 sets field B to its default value (2).

The field, J, designated as the next address is not

explicitly set, so MICRO2 sets it to the value of the next

microinstruction. Suppose the next microinstruction address

is 0212 (octal).

The microword now contains the following bits:

Next, MICRO2 evaluates validity expressions. The definitions

associate validity expressions with value-name Al and field

X. Field X is not set in this microinstruction, so the

validity expression associated with X is not evaluated.

A warning message is produced because the validity

expressions for the value-name Al is not satisfied since the

value of .TIMEl is 10 and the value of .TIME2 is O.

Finally, MICRO2 a'just: the parity in any fields designated

as FLOATOPARITY or FLOATEPARITY. Field P is designated as a

field to be adjusted fo: «=ven parity.

The word at this point n... cdd parity, so MICR02 searches

from left to right in the field P to find the first unset

bit, which is bit 15. HICR02 sets that bit to 1 to adjust to

even parity.

The microword now contains the foilowing bits:

2222111111111

3210987654L321098765L4L3210

i Rt —+

[} |] !]
]] ! i i

1000101 0! '0001!0010!

| : ! : |
e e -+

Bits 14 through 8 contain the value 0 and have the status

unset.

CHAPTER 7

ALLOCATION

The address space for the microprogram is established by the .REGION

keyword and the method of allocation by the .RA' DOM and .SEQUENTIAL

keywords.

7.1 DEFINING THE ADDRESS SPACE

The .REGION keyword determines the address-space. The .REGION keyword

is followed by one or more pairs of address limits, as follows:

-REGION/low-bound, high-bound. ..

Low-bound and high-bound are expressions whose values are interpreted

according to the program radix.

For example, if you want your microprogram to be allocated in the

address space that begins with the address 0200 and ends with the

address 0277, you specify the following region.

.REGION/0200,0277

If you want your microprogram to be allocated in an address space that

consists of a set of disjoint address ranges, you specify the address

limits for each range. For example:

.REGION/0302,0320/0400,0461/0200,0207

You can specify any number of .REGION keywords. MICRO2 allocates the

microinstructions following a .REGION up to the next .REGION keyword

(or the end of memory) in the specified address space.

If you do not give a .REGION at the beginning of your memory, MICRO2

assumes that the address space begins at 0 and ends at MAXPC, the

highest available address for the given architecture.

ALLOCATION Page 7-2

Consider the following program fragment:

e ettt -+

' LTITLE b}

; .. .

! . S S |

| v}
e e L L L L -+

! .REGION/0200,0277 ! 1}

[. b}

E E } 8
1 . bl
eet L DL T -+

! .REGION/O400,0500 ! }
| .] }

i . I T
! y 3
e e L T -+

The microprogram above has three logical parts from the allocation

point-of-view: Part A resides in the address range 0000-MAXPC; part

B resides in the range 0200-0277; part C in the range 0L00-0500.

If MICRO2 uses all the available addresses in OLO0O-0500, it can not in

this case use any addresses left in the range 0200-0277.

Now consider a microprogram that has a3 single REGION keyword:

T -+

LLTITLE .
] .] }
1]

' : } A

i)
T TP R -+

| \REGION/0200,0277/0400,0500 | }
1]

v '} B
o g

LT -+

This microprogram has two logical parts. Part A resides in address

range O0000-MAXPC and Part B resides in address range 0200-0277 and

0LO0-0500. MICRO2 does not begin allocating in the address range

OLO0-0500 wuntil it has used all the available addresses in the range

0200-0277. In the previous example, MICRO2 starts allocating in the

range OLOO-0500 when it finds the REGION keyword that begins logical

part C.

ALLOCATION Page 7-3

’ICR02 considers each range specified individually, even though two
ranges may be adjacent or overlapping. For example, suppose you

define the following address space:

.REGION/0100,0177/0200,0277

MICRO2 treats the above as specifying an address space that consists

of two sepacrate ranges.

7.2 SPECIFYING THE METHOD OF ALLOCATION

Within the specified address space, you can select either sequential

or random allocation.

7.-2.1 Sequential Allccation

In sequential mode, MICRO2 allocates a microinstruction by taking the

address of the previous microinstruction and adding 1.

MICRO2 begins allocating with the first address in the address space

'efined by the .REGION keyword and continues incrementing until it

eaches either an absolute address assignment or the end of the

address range.

When it reaches an absolute address, MICR02 uses that address for the

associated microinstruction and as the new base for incrementation.

When MICRO2 uses the last instruction in an address-range, it chooses

the first address in the next address-range for the next

microinstruction. After MICRO2 uses the last address in the last

range, it uses the address 0000 and issues an error message for each

word allocated following the last legal allocation.

Suppose we use sequential allocation and specify the address space

with a single absolute assignment as follows:

.OCTAL

.REGION/0202,0207/0312,0316

.SEQUENTIAL

Lt1: MiI[A1]

L2: Mi[B2)

0206:

L3: Mi1[3]
Lh: MIT4]

Ls5: Mi1[5]

The addresses are allocated starting at the beginning of the region

(0202) and continuing sequentially until the absolute assignment, as

follows:

0202 L1

0203 L2

0204 (unused)

0205 (unused)

0206 L3

0207 LL

0312 L5

0313 (unused)

0314k (unused)

0315 (unused)

0316 (unused)

Observe that Addresses 0204 and 0205 will not be allocated unless we

force the allocator back with an absolute assignment.

7.2.2 Random Allocation

In random mode, you can specify absolute address assignments and

constraints. A constraint selects a set of addresses based on the low

order bit configuration. Constraints are dcscribed in detail in the

next section.

MICRO2 first allocates all absolute assignments and constraints and

then allocates the remaining microinstructions starting at the first

unallocated address in the first address-range and continuing

sequentially through the unallocated addresses of the address space.

Suppose we use random allocation instead of sequential for the

preceding example as follows:

.OCTAL

.REGION/0202,0207/0312,0316

.RANDOM

Li: Mmi[a1]

L2: Mi1[B2]

0206:

L3: mMmi[3]
Lh: MI[L]

L5: Mi[5]

ALLOCATION Page 7-5

‘ICROZ allocates the absolute address assignment first and then begins
at the first address in the address space and increments through the

space to produce the following allocation:

0202 L1

0203 L2

0204 L

0205 L5

0206 L3

0207 (unused)

0312 (unused)

0313 (unused)

0314 (unused)

0315 (unused)

0316 (unused)

7.-2.2.1 Constraints - Many microprogrammable microprocessors perform

conditional branching by ORing some logic function into the low order

bit position of the next microinstruction address. MICR0O2 provides a

constraint capability for generating a set of addresses for

conditional branching.

. constraint consists of an "=' character followed by a constraint
string composed of a secuence of 0 and 1 characters.

A constraint specifies a set of addresses. In response to a

consiraint string, MICR0O2 chooses a base address that satisfies the

low order bit configuration specified by the constraint. The bits cf

an address are always ordered from right to left. So the low order

bit is the right-most bit.

MICRO2 then assigns the ~ext n microinstructions to the addresses

formed by systematically increasing the base address counting only in

those bits designated as O's in the constraint string.

For example, suppose the constraint string is:

=0101

And suppose MICRO2 chooses the base address 0225 (octal). The binary

representation of this aduress is:

1098726543210

000010010101

The low order bit configuration of the chosen address (0225) satisfies

the constraint (0101).

ALLOCATION Page 7-6

MICRO2 systematically increases the base address by counting in bits |

and 3, to produce a set of addresses endirg in the following bits:

0101 (base address)

0111

1101

1111

Since we are assuming that NICRO2 chose 0225 for the base address,

then the following addresses are assigned:

0225

0227

0235

0237

MICR0O2 can choose any available address in the address space that has

the low order bit specified by the constraint. MICR02 uses the first

available audress that satisfies the constraint completely. That is,

MICRO2 wuses the first address for which the base address and the

addresses formed by oring the constraint possibilities with the base

address are all available.

7.2.2.2 |Indicatinga bit that can be 0 or 1 - In addition to O's and

1's, you can use the character '*' in a constraint string. This

character informs MICRO2 that it can select an address that has either

aOor al in that position for the base address.

For examplie, the constraint 0101 specifies that the 1low order bit

configuration must be O or 1, whereas the constraint string 0%0]

specifies that the low order bit configuration can be either 0101 or

0001.

7.2.2.3 The size of the address set - The number of microinstructions

in the set, n, is determined by the number of zeroes in the constraint

string, as follows:

n=2%%X

Where X is the number of O's in the constraint string.

For example, the constraint 0101 has two 2eroes and thus determines a

set of four microirstructions.

ALLOCATION Page 7-7

.2.2.4 Constraints Within Constraints - If MICRO2 encounters a

constraint string within the set of instructions it is allocating to

the block of addresses associated with an outer constraint string, it

skips to the next address satisfying the inner constraint and then

proceeds according to the algorithm specified by the outer constraint.

The purpose of the nested constraint is to skip over some addresses

that would ctherwise be allocated by the outermost constraint.

For example, suppose we have a constraint and a sequence of eight

microinstructions labelled LO, L1, and so on, as follows:

=000

LO:

L1:

L2:

L3:

Lb:

L5:

L6:

L7:

If MICRO2 chooses the base address 0200, then it allocates the

microinstruction labelled L1 to 0200, L2 to 0201, L3 to 0202 and so

pn, as follows:

Microinstructions Allocation

=000

LO -=-> 0200

L1 -—=> 0201

L2 -———> 0202

L3 -——=> 0203

L4 -——-> 0204

L5 -==> 0205

L6 ———> 0206

L7 -———> 0207

Now suppose we insert an inner constraint as follows:

Microinstructions Allocation

=000

LO: M1[0] -——=> 0200

Ly: MiI[1] -——-> 0201

=011

L2: MI1[2] -———> 0203

L3: MI1[3] -—=> 0204

Lh: MI1[4] -——-> 0205
L5: Mi[5] -———> 0206

L6: Mi1[o] -——-> 0207

L7: M1[7]

ALLOCATION Page 7-8

The inner constraint directs MICRO2 to skip the 0202 assignment. Thus

the total number of addresses within the constraint is seven and the

instruction labelled by L7 is outside the constraint. Since MICRO2

can choose any address for L7, it allocates it after it has satisfied

all the constrained addresses.

Now suppose we insert another inner constraint:

Microinstructions Allocation

=000

Lo: M[0] -——> 0200

Li: M[1] -==> 0201

=011

L2: M[2] -—-> 0203

L3: M[3] -—=> Q204

=110

Li: ML) -—=> 0206

L5: M[5] -—=> 0207

L6: M[6]

L7: M[7]

The microinstructions labelled by L6 and L7 are now outside the

constraint.

7.2.2.5 Terminatinga Constraint - A null constraint within the scope

of the constraint terminates the constraint. A null constraint is the

""=''" character. A constraint can also be terminated by an absolute

address assignment; however, in this case, MICRC2 issues a warning

message.

Suppose we want to - istrain only five addresses.

Microinstructions Allocation

=000

Lo: M[o] -——=> 0200

L1: M) -——=> 0201

L2: M[2] -——-> 0202

L3: M[3] -——-> 0203

Lb: ML) -———> 0204

L5: M[5]
L6: M[6]

L7: M[7]

The null constraint terminates the constraint after the

microinstruction labelled by L&.

ALLOCATM 0N Page 7-9

..2.2.6 Address Space Boundaries - The set of constrained addresses
allocated by MICRO2 must 1lie within an address-range. Suppose you

define the following address space:

.REGION/0100,0177

And suppose further, that MICR02 uses the addresses 0166, 0167, 0176,

0177 to satisfy a constraint. |If you define your space as:

.REGION/0100,0167/0170,0177

Then that set of addresses can no longer be used as a set because

addresses 0166 and 0167 belong to one range whereas addresses 0i76 and

0177 belong to another.

7-3 MIXING ALLOCATION MODES

You can switch between the two allocation modes in your program, as

shown in the following program fragment:

e bt +

| .TITLE :
| l}
| |

:)3A
: .
R +

! .REGION ;

! .SEQUENTIAL | }

: |
! ceee 1} Bl

: B
e et +

! .RANDOM |3

! e } 1} B2

| R
e L L L +

! .SEQUENTIAL | }

: ceee !} B3

: L)
et +

In the above example, the .RANDOM and .SEQUENTIAL keywords divide the

address space into L4 sub-spaces, according to the method of

allocation.

If you do not give an allocation mode, MICR02 assumes .RANDOM. Thus

in the 2bove example, part A is allocated in the random sequential.

CHAPTER 8

COMMUNI CATION

This chapter considers two forms of communication: communication

among memories in the same program and communication among separate

programs.

8.1 MEMORY COMMUNICATION

Each memory has its own definitions, identification; and

address-space. However, if the same field-name is defined in more

than one memory, then the value-names defined for that field in any

memory are known in all other memories that define the field. This

feature lets you communicate between memories.

For example, suppose you define two memories and designate the same

field-name as the address field. You can then access the labels of

one memory in the other as shown in the following example:

.OCTAL

.RTOL

.UCODE

A/=<12:10>

J/=<9:0:»,. ADDRESS

L1: A/1,J/L2

L2: A/2,J4/L3

L3: A/3,Jd/L4L

.DCODE

B/=<9:0>

J/=<16:10>, .ADDRESS

Lk: B/0,J/L1

The label name L1 is a value name for the field J, which is defined in

memory U. You can jump from the DCODE memory to the UCODE memory by

specifying the label L1.

COMMUNICATION Page 8-2

‘.2 PROGRAM COMMUNICAT|ON

You can assemble separate programs and load them together in a control

store by handling address space assignment and communication. If, for

example, you wish to have n separate programs, you divide the control

store into n+tl logical spaces, namely:

o Communication Space

o Space for Program 1

o Space for Program 2

o Space for program n

Suppose you want to assemble two separate programs for a control store

of 2000 words. You might reserve the first 10 words for communication

and then specify the address space for program ! as:

.REGION/11,1200

After you successfully assemble that program, you will know exactly

what space it needs and you can specify the space for program <.

Suppose the last word program 1 uses is 1053. You can specify the

address space for program 2 as:

.REGION/1054,1777

Or you can reserve a little extra space for later expansion of program

1 and specify the address space for prgram 2 as

.REGION/1100,1777

When both your programs are succeszfully assembled, you assemble the

communication region:

.REGION/O,7

J.=<9:(-, .ADDRESS

0: J/1400 sTransfer to program 2

1: J/762 ;Transfer to program 1 (1)

2: J/21 ;Transfer to program 1 (2)

You can, of course, dispense with the communication space and perform

the transfers directly by fixing certain addresses in each program.

CHAPTER 9

A SAMPLE MICROPROGRAM

tn this chapter we define a sample machine and then give a

microprogram that performs two subroutines, one to add the top two

values of a stack and one to use the stack to determine the program

control.

We begin by defining the data path of the model mach ne and specifying

the microinstruction fields. Then, we discuss the parts of the

microprogram. First, we consider the identification part, then the

field definitions, then the macro language, and finally the two

subroutines.

The input and output listings for the microprogram are given in

Appendix B.

9.1 THE DATA PATH

The data path of the sample machine is shown in Figure 9-1.

This architecture, while very simple, has the essential features of a

machine, namely:

o ALU - An arithmetic logic unit

o PC - A program counter, which points to next instruction to

be execu:d

o IR - An instruction register, which contains the current

instruction

4 MA - A memory address register

o An internal stack for data

o input and Output Buses

A SAMPLE MICROPROGRAM Page 9-2

PC

it +

1 1

1 I

+--1 f<-—+

et
\:/ ! ouUTBUS

' e e et il Db bbb bbb bt +

L /i :
L N\ : :
R : :
i P | ! |]
| it ! i 1 |

R ie ! T1 | !

! ! RL + :

! \!/ STACK ! ! !
! +ommrmrr e + CACHE Rt btk + }

pmme>+ l / i\ I
i | 1 I i I
| | 1 | ! |
1] i | 1 |
| | | 1 i !

| i ; | Foommmmm e + I
! ! : ! ALU / \ :

R e + / /\ \ !
o ; /N 7\ :

| : l Ao B | |
| | \i/ | | |
i e —+ ettt +

'

' |

: IR \!/ INBUS

: +om————— +

! 1 i
i 1 1

: - -+

]

i

' MAIN MEMORY

! R +

1 { 1
\ ' !

i | 1
J]]

#omomne : :
) 1

§

o ———— -

Figure §-1. Model Machine Data Path

The fol'owir, sections specify the identification, define the fields

of the microword for this data path, develop a macro language in terms

of these fields, and uc= this language. Tnhz input and output listings

for this progran aeve given in Appendix B.

A SAMPLE MiLrOPROGRAM Page 9-3

9.2 IDENTIFICATION

The identification part of the program for the sample machine defines

the bit-numbering as right-to-left, the base as octal, the allocation

mode as random, and the word width as 23.

9.2.1 Program Excerpt

Here is the identification part of the program:

e ite +

' .title "machine model" !

i .rtol :

' .octal !

' .random H

| -width/23 '

R e +

9.3 FIELD DEFINITIONS

The sample machine has the following microword:

2221111111110

21056876543210987654L3210

e +

] [N I R ! ! 1
I I I T B |} I |
1 | IR I I B | | 1
| | AR R I R | 1 [!

it it +

A A A A A A A A

1 [SO I B | i] 1
i T 1 1 1 | | |

ALU| SR UBF ' J
CLKIR! | ! 1 IMEMFNC

[N |

II |

CLKT1!! ISELTIFC
]

1

SETCC!

Figure 9-2. Model Machine Microword

A SAMPLE MICROPROGRAM Page 9-4

’.3.1 Program Excerpt

Here are the field definitions that define this word:

; The following expression is used

s to make sure that Tl and PC are

;s not both clocked at the same time.

.SET/T1.PC=<.CASE[<CLKT1/>]0OF[1,0]

.~0oc '""Field Definitions"

.toc " ALU function for this microcycle"

ALU/=<22:19>,.defaul t=<ALU/Zero>

ADD = O sAddition A + B

SuUB = 1 ;Subtraction B - A

AND = 2 ;Logical A \ND B

OR =3 ;Logical A OR B

A = :Pass A through ALU

B = 5 ;Pass B through ALU

A+1 = 6 ;increment A A + 1

Zero= 7 ;Zero value

.toc " IR Control'

CLKIR/=<18>,.defaul t=<CLKIR/NO>

NO = 0 ;Do not clock IR

YES = | ;Load IR with data bus

.toc " T1 Control"

CLKT1/=<17>,.defaul t=<CLKT1/NO>

NO = 0 ;0o not change T

YES = | sLoad T1 with ALU output

.toc " OUTBUS Control"

SELTIPC/=<16>,.defaul t=<SELTIPC/TI>

Tl =0 ;Tri-state T1 onto OUTBUS

PC =) ;Tri-state PC onto OUTBUS

A SAMPLE MICROPROGRAM Page 9-5

.toc " Condition Code Control"

SETCC/=<15>,.defaul t=<SETCC/NOP>

NOP =0 ;00 nothing with condition codes

SET =1 ;Set condition codes according

.toc " Memory Request Control'

MEMFNC/=<14:12>,.defaul t=<MEMFNC/NOP>

;to IR value and status of ALU.

NOP = 0 ;No operation.

STKRD = | ;Read top of stack onto INBUS.

STKWR = 2 ;Write data on OUTBUS to stack.

LOADMA = 3 sLoad Memory Address with OUTBUS.

READ = 4 ;Read onto INBUS using MA.

WRITE = § ;Write OUTBUS value using MA.

= 6 ; INBUS gets PC.

WRITEPC = 7, .VALIDITY=<T1.PC> ;PC gets OUTBUS.

.toc Branch Control®

UBF/=<11:10>,.defaul t=<UBF /JUMP>

JUMP = 0O ;Use next address field unchanged.

ALU =] sFour way branch

7 00 - Less than zero.

; Ol - Largest negative number.

s 10 - Greater than 2zero.

s 11 - Zero

INSTR = 2 sinstruction decode.

THREE = 3 ;Reserved.

.toc " Next Address Field"

'

i

i
i

|
|

I

i

!

I

[

I

]

i

I

|
i

i

I

i

|

|

i

I

|

|

i

1

i

i

|

I

|

|

'

i

i

I

|

I

1

|

! REAGPC
I

i

!

I

|

!

i

|

|

i

|

i

i

!

I

I

!

t

I

!

|

]

i

1

I

!

]

I

I

]

i

]

]

1

I

i

]

|

]

I
J/=<9:0>, .nextaddress

9.4 MACRO DEFINITIONS

The macros that define the language for the machine are

five categories; namely:

Stack interactions

Memory interactions

Arithmetic actions

Branch tests

Miscellaneous functions0
O
 0
O
0
O
0
O
0
O
0

divided intc

e
e
t

i
t
t
t

e

D

b
t

A SAMPLE MICROPROGRAM Page 9-6

’.h.l Program Excerpt

Here are the MICR02 macro definitions for the machine model:

: .toc nn

! '"Macro Definitions"
|
|

I .toc " Stack Interactions'
|

|

! Pop Stack '""MEMFNC/STKRD, ALU/A,CLKT1/YES"

| Push Stack ""MEMFNC/STKWR, SELTI1PC/T1"

! Stack Plus TI '""MEMFNC/STKRD,ALU/ADD, CLKT1/YES"
|

|

| .toc " Memory Interactions"
1

|

! MA <-- PC "SELTIPC/PC,MEMFNC/LOADMA"

! T1 <-- Memory Data '""MEMFNC/READ,ALU/A,CLKT1/YES"

! IR <-- Memor;,; Data '""MEMFNC/READ,CLKIR/YES"
|

|

! .toc " Arithmetic Actions"
|

i

i Tl <== PC + 1 '""MEMFNC/READPC,ALU/A+1,CLKT1/YES"

! PC <-= TI "SELTIPC/T1,MEMFNC/WRITEPC"

:
l
! .toc " Branch Tests"
|

|

| ALUCC? ""UBF/ALU"

! Instruction Decode "UBF/ INST"
:

:
! .tor " Miscellaneous Functions"
:

1

)
Set Condition Codes USETCC/SET" e

e

e
e

 —
—
—
—
—
—
—
_
—
_
—
—
—
—
—
—
—
—
—
—
—
—
—

e

—
—
—
—
—
—
—
—
—
—

e

 e

=

 —
 —
 =

A SAMPLE MICROPROGRAM Page 9-7

9.5 A SUBROUTINE

The subroutine given below adds the top two values on the stack and

replaces these values with the value of their sum, as represented

below:

Fommmm—mmeem + e +

1 ! |]

i 1 I |

i | ! |
I 1 !]

Fommmmmmmma + ; !

1 |]

1 Z l >I |
o mmmm e + dommmmmm e +

I | | i

i X I 1 Z |
Fommmmmm—e+ e +

I Y | X+Y
o mm e + +ommmm e +

9.5.1 Program Diagram

The program to accomplish this function can be diagrammed as follows:

e L LT +

| Read Stack |

| value to T1 |

L +

|
\}/

R e L L L +

Clock TIi

Read Stack (RA)

|

)

! ontc OUTBUS (B)
1

|

! Add A+B

{ Push Sum

| onto Stack

A SAMPLE MICROPROGRAM Page 9-8

b.5.2 Program Excerpt

Here is the microprogram that accomplishes this function:

.toc "

.toc "Functions"

" Add Top Two Values on Stack"

ACD (SP) to (SP-1)

w
e

W
S

V
e

This basic arithmetic instruction adds the top two values

; on the stack and replaces the result onto the stack. The

; condition codes are set according to the result of the

addition.

ADDO1:

Pop Stack,J/ADDO2 ;Read stack value to T1.

ADDO2:

Stack plus T1, ;Load T1 with (sp) + (sp-1) and

Set condition codes,J/ADDO3 ;save conditicn codes.

ADDO3:

, Push stack,J/INSTFETCH ;Store sum on stack

it oL TSPy ey g By g +

9.6 ANOTHER SUBROUTINE

This subroutine uses the sign of the value on the top of the stack to

determine where to send control.

Suppo.e we have the following:

instr. stream stack

et + - +

| } 1]]
|] | :

et LT -+ : !

X1 : | i
D i + e ———— +

PC --> X2 : X25 { : :

e + tm——— == +

X3 | |
ek +

A SAMPLE MICROPROGRAM Page 9-9

When the instruction X1 is being executed, the program counter points

to the next instruction X2, which contains the address of instruction

X25. |f the sign of the top of the stack is negative, control is sent

to instruction X25. |If not, control continues with instruction X3.

9.6.1 Program Diagram

The program tc accomplish this function can be diagranmed as follows:

Test Top of Stack

Move PC to Memory Data

S bt R e e +

| i) 1

] |] 1

<0 <0 >0 0]

| I] |

] | | !

I | |]

] | | 1

$ommm e -+ e +

| |
| |

] |

\! \|
Branch Skip

on address next instruction

T! <-- Mem Data Tl <-=- PC + 1

| |
] !
|]

R e it +

|
\

PC <-- TI

9.6.2 Program Excerpt

eg iy g+

Branch on Sign of Top of Stack"

; TEST (SP) and Branch if Negative

This control instruction examines the top item on the stack

If the value is less than zero then the next word in the

instruction address stream contains the absolute address of

the next instruction to be executed. Any other value

causes the absolute address in the instructior stream to he

skipped and execution continues normally.

®
e

V
¢

W
O

W
O

V
S

V
e

V
e

v

-

.

A

I

G
E
D

@

W
P

D

D

G

W

R

G

G

I

D

W

W

G

L

On entry to this routine, the PC points to the absolute

: address.

b. SAMPLE MICROPROGRAM Page 9-10

): !
! ; On exit, the PC contains the address of the next instruction |

| 3 to be executed. The top item on the stack has been removed. |
) !

| |

| TSTBNO1: |

: Pop Stack,J/TSTBNO2 ;Test SP :
! 1
1 |

! TSTBNO2: :

| MA <-- PC, ;Memory address of absolute :

' ;address. :

! ALUCC?,J/TSTBNO3 ;Branch on conditior SP. |

| l

| |
] |

P
:! 3 Negative Number |

| I |

[t

| TSTBNO3: }

! T1 <-- Memory Data, ;T1 <-- Absolute address. :

! J/TSTBNOS :
| B |
1 |

! ; Largest Negative Number }
| I

P |

! mTSTBNOL: :

I T1 <=- Memory Data, ;T1 <-- Absolute Address. |

’ J/TSTBNOS :

. i
|

:! 3 Greater than zero !
I . !

1 |

| TSTBNO5: !

! T1 <-- PC + 1,J/TSTBNOS8 ;Skip Absolute Address. :

% |
| I i

[|

1 3 Zero |
I . !

1 !

| TSTBNOE: !

! T1 <-- PC + 1,J/TSTBNOS8 ;Skip Absolute Address. !
i 1

| !

| TSTBNOS: |

H PC <=~ T1,J/INSTFETCH ;Load PC with next instruction }

' ;address. !

: :
: :
| INSTFETCH: |
I I

! !
J/INSTFETCH

CHAPTER 10

CONDITIONAL ASSEMBLY

The conditional assembly capability lets you suppress the assembly of

parts of your program. You select the parts of your program to be

suppressed by the appropriate setting of expression-names

Suppose, for example, you have a list processing package that consists

of a common structure and a set of subroutines. Each subroutine is an

entry point for the package. Sometimes you want to assemble this

package with one set of entry points (or functions) and other times

with another set. You can accomplist this by using the conditional

assembly keywords.

10.1 THE CCNDITIONAL ASSEMBLY KEY.JORDS

Three keywords are provided for conditional assembly as follows:

.|F/expression-name

.IFNOT/expression-name

.ENDIF

These keywords divide your program into blocks. TFr f and L.IFNOT

keywords begin a block. They include an exp: _=sion-name that is

associated with either a true (1) or false (0) value. These keywords

have the following meaning.

Keyword Meaning

.|F/expression-name |f expression-name is associated with a

true value (1), assemble the following

block.

.1 FNOT/expression-name |f expression-name is associated with a

false value (0), assemble the following

block.

In practice, a value is any value that is not 1. For example, if the

espression-name has the value 2, MICRO2 considers it to represent a

faise value.

CONDITIONAL ASSEMBLY Page 10-2

’0.2 CONDITIONAL ASSEMBLY BLOCKS

A conditional assembly block begins with either an .IF or .IFNOT and

ends with either an .ENDIF for the same expression or another .I|F or

.IFNOT for the same expression.

For example, suppose you have a portion of your program to be included

only under some special condition. You can enclose that portion of

the program in a conditional assembly block by branching it with .IF

and .ENDIF keywords as follows:

Frrrr e e ———)

l I
| Crmecemcee m e —— e — - -+

i] |
' i |

e el + | Parts of program

| IF/A : Part to be ! to be always

i l<--included only! included

! .ENDIF/A : if Ais true |

e e e e L L Lt + !

| | |

| ! t

! T et L L L L bty +

| |
! |

ets+

10.3 AN _EXAMPLE

Suppose you have a sequence of conditional assembly directives, which

divide your program into the following blocks:

ee T LT+

! IF/A ! }

: .. 1 A1}
lcmccmccrccccccee = I }
| |

! .IF/B : }

! e ! Bl }

! l } A
: .ENDIF /B : }

e l }
: .. ! }

! | A2 }

! .ENDIF /A : }

ee L LT +

e e L L L L +

; . X

S etttE LT+

e e e +

: .IF/B :

: . ! B2

| |
: .ENDIF /B !

CONDiTIONAL ASSEMBLY Page 10-3

The block A is included if the value of A is true (1). However,

within block A, the block Bl is included only if the value of B is

also true.

The portions of the program that are assembled for the different

values of A and B are shown in the following table.

Case A Value B Value Program Portions Assembled

| T T A1,B1,A2,X,B2 (The entire program)

2 T F Al,A2,X

3 F T X,B2

L F F X

Block X is always assembled because it 1is outside all conditional

assembly blocks. In Case 3, block Bl is not assembled because it is

nested within the conditional assembly block controlled by A.

10.4 ANOTHER EXAMPLE

Suppose you have a case in which you want to select some genera! code

and then a set of one out of two pairs of options. You can use one

expression-name to accomplish this binary decision, as follows:

| 1

| I

: :
{ general code X

| ;
| |

! !

RtL L L L C L +

{ -IF/A I K1

| option 1 |

R +

: .TENOT/A K2

: option 2 :

Lt LD P L Er +

; AF/A | K3

} option 1 |

R +

: .1FNOT/A ! Kb

; option . |

Rle e LT P +

: IF/p i K5

: option 1 {

ee L L L e +

! .IFNOT/A {3

| option 2 |

DLL L e L +

.ENDIF/A

CONDITIONAL ASSEMBLY Page 10-4

'e portions of the program assembled are shown in the following
able:

Case A Value Program Portions Assembled

T X,K1,K3,K5

2 F X,K2,KkL,K6

—
—

10.5 SETTING AND CHANGING EXPRESSION-NAMES

You define and set an expression-name with the .SET keywourd as

follows:

.SET/expression-name=expression

For example, to set the expression-name A to a true value for

conditional assembly purposes, you use the following .SET directive:

SET/A=1

Once you have defined and set an expression-name, Yyou must use the

.CHANGE keyword to change its value. Thus to change A to false, after

'efining it as true above, you must write:

.CHANGE/A=0

CHAPTER 11

MICRO2 LISTING AND LIST CONTROLS

This chapter describes the input and output listings of MICR02 and the

listing controls you can use to modify the format and content of the

output listings.

11.1 ASSEMBLER INPUT

The input to the assembler is a microprogram. The microprogram

consists of a sequence of lines, written in MICRO2 source and

conforming to the syntactic rules of that language. The input can be

prepared using any available editor.

This section discusses an example of assembler input.

11.1.1 Preparing The |nput

The first step in preparing the input is writing the microprogram. To

write a microprogram, you must be familiar with the internal details

of the processor on which the program will run.

You enter the microprogram source using any available editor. From

the assembler's point of view, the microprogram consists of a sequence

of lines beginning at the start of the first input file and continuing

until the end of the last input file is encountered. Within those

limits, the microprogram must have the expected structure.

The assembler detects and reports errors, as described in Appendix D.

In response to these errors, you edit the input to obtain a valid

microprogram. This process continues until either no errors are

present or until you are convinced that the messages produced do not

affect the validity of your microprogram.

MICRO2 LISTING AND LIST CONTROLS Page 11-2

.1.1.2 Formatting The Microprogram

Using a standard formatting scheme increases the readability of the

microprogram. A standard format for the microprograms has been

developed at DIGITAL and s given here for your information.

11.1.2.1 The General Format - if a memory has any definitions, it

begins with the identification keywords and continues with field

definitions, followed by macro-definitions.

Tnen the action-part of a microprogram is given. It consists of a

sequence of microinstructions.

11.1.2.2 Microinstruction Format -

The rules for formatting a microinstruction are summarized as follows:

1. Precede the microinstruction by any general comments.

2. |f the microinstruction has an explicit address, give that

address at the left-margin and do not include any other

information on that line.

3. If the microinstruction has a label, give that label at the

left margin and do not include any other information on that

line.

L. Include as many instruction-parts, separated by commas, as

will fit in the columns starting at the second tab (column

17) and continuing to column 38.

5. Place any line-specific comments at the fifth tab (column

Ly).

6. If the allocation mode is random conc lude the

instruction-part with a branch to the next-address.

]. Sepa-atas each microinstruction from the remainder of the

mict oprogram by one or more blank lines.

11.2 THE OUTPUT LISTING

The output listing of a microprogram corresponds to the input listing.

£xcept that the assembler prints some additioral information, namely:

MiCRO2 LISTING AND LIST CONTROLS Page 11-3

o A table of contents, formed by iisting each .TOC 1line and

.PAGE line with its assigned line number at the beginning of

the output listing.

o A line number at the beginning of each line.

o Page headings at the top of each page.

o Microword information, giving the memory, address, and bits

for each microinstruction in the microprogram.

o Error messages, if any errors are detected.

o A cross reference listing

o A map

() An error summary and statistics report.

A brief description of each of the above items is given in ¢the

following sections.

11.2.1 The Table O0f Contents

The table of contents is constructed by collecting the text on the

.TOC and .PAGE 1lines to the beginning of the listing. Judicial

placement of the .TOC and .PAGE lines within the listing results in a

useful table of contents, by which you can quickly reference any

logical section of the microprogram. As the size of a microprogram

increases, the value of the table of contents increases.

.TOC lines and the construction of the table of contents are described

in detail in Chapter 2. A good example of the use of .TOC lines to

produce a comprehensive table of contents can be found in the sample

program in Chapter 9.

11.2.2 Line Numbers

MICRO2 numbers each input line. The line number is a decimal number,

which starts at | and continues, in increments of 1, through 99999.

Since blank lines and comments are assigned line numbers, it is not

unusual for a small microprogram to occupy several thousand lines.

However, the line limit of 99999 is seldom exceeded.

MICRO2 LISTING AND LIST CONTROLS Page 11-4

'1.2.3 Page Headings

The assembler divides the output 1listing into pages. tach page

contains a heading line, a sub-heading line, and 54 lines of the

microprogram. The page heading gives the following i tems of

information:

o The output listing file specification

o The name and version number of the MICR0O2 assembler used Iin

assembling the microprogram.

o The time and date of the assembly.

o The program title, as derived from the .T!TLE line.

o The page number.

The sub-heading contains the following:

o The input file specification

o The subtitle derived from the last .TOC cr keyword line.

!f a .TITLE line is not given in the microprogram, then the title part

f the heading is left blank. Similarly, if no .TOC or lines are

given, the subtitle part is left blank.

Page headings are illustrated in the sample output Llisting given in

Appendix B.

11.2.4 The Microword information

The main-listing portion of the microprogram file is divided on the

page into two fields. The left field contains the object part of the

program, the octal or hexadecimal representation of the

microinstruction. The right field contains the source part of the

microprogrex, as prepared by the user as input to MICRO2.

The width of tne left field is determined by the width of the widest

microword in the program.

You can give the listing corntrol .NOBIN to suppress the object part of

the microprogram. Listing controls are described in Section 11.3. In

such a case, the main-listing reproduces the input listing, except for

'ny error messages placed there by MICRO2.

MICRO2 LISTING AND L!ST CONTROLS Page 11-5

The microword informat on contains the memory, address, and bits of

the microword object, n the following format:

memory address digit ...

For example, consider a microword line from the output 1listing in

Appendix B.

U 13, 1041,001%4

This line indicates that the octal word '10410014' is allocated to

location 13 in memory U.

11.2.5 Error Messages

If an error is detected in a microprogram line, then an error message

is printed by the assembler preceding that line. Error messages are

easy to find within the listing because, instead of a line number,

error messages begin with the string '?7?7?77', followed by the error

message.

Appendix D lists all of the assembler error messages.

11.2.6 The Cross Reference Listing

The cross reference listing lists each name in the program and gives

information about the places in which it appears.

The cross reference listing consists of up to three parts, one for

each of the following classes:

o field and value names

() expression names

O macro names

With the exception of field-names, the cross reference gives the name

followed by an ordered list of line numbers. The |ine number on which

the name is defined is followed by the '#' character. The other line

numbers indicate the lines on which the name is referenced.

The cross-reference listing for a field-name contains only the line

number of its definition and any lines on which a field was referenced

with a numeric rather than symbolic value. The set of value-names

following define all the references to the field.

MICRO2 LISTING AND LIST CONTROLS Page 11-6

‘s an example of a cross reference 1listing, consider the following
excerpt from the cross reference given in Appendix B.

ALU 1L#

A 20# 167 196 207

This cross reference listing shows that the field name ALU is defined

on line 14, The value name A is defined on line 20 and used on lines

167, 196, and 207.

11.2.7 The Map Listing

MICRO2 produces a map listing for each memory used in the

microprogram. The map listing shows the addresses used by the

microprogram and, for each address, the line number of the microword

allocated to it.

A map listing line contains the memory-indicator, starting address,

and a set of line indicators. A line indicator consists of the line

number followed optionally by an '"=" or '":" character. If the line

number is followed by a "=", the 1location was allocated by a

onstraint. |f the line number is followed by a '":'", the location was

llocated by an absolute address assignment. |f neither of these

characters is present, MICRO2 chose the location according to its

allocation algorithm for unconstrained addresses.

The first line indicator identifies the line on which the starting

address is allocated. The next line indicator identifies the line on

which the starting address plus 1 is allocated, and so on.

Consider the following line from the map listing in Appendix B.

U OO 208= 215= 221= 14k 147 150 154

This line shows that location 00 in memory U is allocated according to

a constraint on line 208. Llocation Ol is allo.ated according to a

constraint on line 215, and so on.

If an address with:n a map listing is not allocated, MICR0O2 leaves the

corresponding space blank. If a range of addresses is blank, then

those lines that have no allocated addresses are indicated by a

message, as follows:

lowbound-highbound Unused

MICRO2 LISTING AND LIST CONTROLS Page 11-7

11.2.8 The Summary

The summary contains a list of all the errors MICR02 detected, a

memory usage breakdown, and a count of the warning and total error

messages.

For each error cdetected, MICR02 gives the line number and the text of

the message.

For each memory, MICR02 gives the total number of microwords used and

the highest address allocated.

The error message count indicates how many warnings were issued and

how many error messages were issued. Finally, the warnings and error

messages are broker down into the number related to lexical processing

and the number related to allocation and symbol resolution.

11.3 THE ULD FILE

The ULD file is the object file produced by MICRO2. It consists of an

optional header followed by a code section, followed by the set of

field and address definitions used in the program.

11.3.1 The Header

The header, if present, contains information about the program radix

and the direction in which the bits are numbered.

11.3.2 The Code Section

The code section contains the address and content of each microword to

be loaded into the control store in the following format:

[address] memory-id = contents

For example, consider the following code-section line:

[11Ju = 16070012

This line indicates that word 11 of memory has the contents 16070012.

If the memory-indicator is not given, it is assumed to be U.

MICRO2 LISTING AND LIST CONTROLS Page 11-8

)1.3.3 Field and Address Definitions

In this section of the ULD file, all the field and field-value names

defined in the U memory are given.

A special contro! .ALLMEMFIELDS is provided for those who want to see

the field and address names from other memories as well as the U

memory.

For example, consider the following portion of a ULD file produced

under the .ALLMEMFIELDS control:

FIELD D_FLD/=<0:2> s MEMORY/D

DVALI1=]

DVAL2=2

DVAL3=3

FIELD UCODE_DATA_FLD/=<0:5> ; MEMORY/U

UVA'.1=]

UVAL2=2

UVAL3=3

ADDRESS U_JMP/=<6:12> s MEMORY/U

UADDR1=122

UADDR2=222

ADDRESS VING/=<3:19> s MEMORY/D

D_ADDR=11

D_ADDR=12

D_ADDR=13

The above portion contains field-names from both the U and D memory.

if, however, you do not give the .ALLMEMFIELDS control, then only the

field and address names from the U memory are given, as follows:

FIELD UCODE_DATA_FLD/=<0:5>

UVAL 1=

UVAL2=2

UVAL3=3

ADDRESS U_JMP/=<6:12>

UADDRI1=122

UADDR2=222

11.4 LIST CONTROLS

The list controls let you specify which portions of the output listing

you want to see reflected in the output file.

For example, suppose you have a long set of definitions. These

definitions must be present for the successful assembly of our

microprogram. But after the first few assemblies, you don't change

ese definitions and, therefore, want to suppress their listing. You

an accomplish this listing suppression by inserting a .NOLIST before

the definitions and a .LIST after the definitions.

MICRO2 LISTING AND LIST CONTROLS Page 11-9

MICRO2 determine:; whether or not to make a contribution to a fiie by

looking at a counter. If the counter contains a positive number,

MICRO2 contributes to the associated file. If the counter is a

negative number, MICRO2 does not contribute.

The list controls are as follows:

Keyword Meaning

LLIST Iincrement the listing counter

.NOLIST Decrement the listing counter

.CREF Increment the cross reference counter

-NOCREF Decrement the cross reference counter

.BIN Increment the object counter

.NOBIN Decrement the object counter

.EXPAND List the field/value pairs produced by

expanding macros after the last line of

the instruction.

.NOEXPAND Do not expand macros in the listing.

At the beginning of an assembly, each counter has the value O.

11.4.1 The List Control Counters

if a list control counter is positive, then MNICRG2 creates the

specified part of listing. If a iist control is negative, MICR0O2

suppresses the specified part cf the listing.

The counter associated with the .LIST and .NOLIST control determines

whether or not an output listing is produced. The counter associated

with the .BIN and .NOBIN controls determines whether or not the object

part (1eft field) of the listing is produced. The counter associated

with the .CREF and .NOCREF contrdols whethar or not names will be added

to the cross reference map.

MICRO2 LISTING AND LIST CONTROLS Page 11-10

}uppose we 3add some list controls to a microprogram as follows:

Fommm e +

! LTITLE LA

: :
o +

! .NOLIST :

! | B
i I
| |
| |
| 1

L LLIST :

- -+

:) C
D ittt +

' .NOCREF :

: i D
| |
] !

I .CREF :

S e + }

! .NOLIST ! }

| | F1)
el +

! .NOBIN : }

! 'E } F

! .BIN : }
e D -+ }

! | F2}

| bl
em e -+ }

These list controls partition the program for the purpose of output

file creation. The listing file contains segments A, C, and D. The
object file contains segments A, B, C, D, F1, and F2. The cress
reference file contains segments A, B, C, and F.

The fact that the list controls operate with a counter allows you to
combine programs and still retain the same list control structure.

MICRO2 LISTING AND LIST CONTROLS Page 11-11

Consider the following example:

PROGRAM 1 PROGRAM 2

4 + ettt +

: I A I NOLIST :

: | | '
bt + : !

! .NOLIST | B I .LIST '

| Bl: } e bbbt +

! ! : | R
b LLIST : : !

it + T T +

Il I C ! JNLIST !
| |] IS
| |] 1

blbbbl DL+ I .LIST |

! .NLIST { Ltb T+

: i D
I LLIST |

et TR +

: €
I]
1 }

e +

If we assemble these programs separately, we get 1listing files as

follows:

Program Listing file Segments

1 A, C, and E

2 R

We can insert program 2 in program 1 at any place and get the correct

logical result. If we insert program 2 at Bl (that is, within a

nonlisting segment), the listing of program 2 is suppressed. If we

insert program 2 at Cl1 (that is, within a listing segment), then the

listing contrcs within program 2 are interpreted just as if they were

when program 2 was a separate segment.

CHAPTER 12

USING MICRO2

To use MICRO2, you invoke it at command level and then give a MICRO2

command 1line chat specifies the output and input files. This chapter

describes the wuser interface in the VAX, DEC 10, and 0NEC 20

environments.

12.1 VAX/VMS INTERFACE

In the VAX/VMS environment, you call MICR02 at command level as shown

'elow:

Format

e ettte T TS+

! i
! MICRO2 input-file-spac !

| !
! |

E File Qualifiers :
.......... P |

1 |

: /LIST[=file-spec] !

| /NOLIST !

! /ULD [=file-spec] :

H /NOULD }
e e T T S +

Prompts

_file: input-file-spec

File-Parameters

Input-file-spec

Specifies the names nf one or more files to be assembled. |f you

specify more than one input file, you can use the character '+’

to separate fiie-specs.

USING MICRO2 Page 12-2

Description

MICROZ assembles the programs contained in the input-file-spec

and produces a listing file and an object file.

File Qualifiers

/LIST [=file-spec]

Specifies that you want a listing file. If you include a

file-spec, MICRO2 produces the listing in that file. |If you co

not include a file-spec, MICRO2 uses the name of the input-file,

or the name of the first input file in the case of multiple input

files, with the default extension .MCR for the listing file. The

listing file is described in Section 11.2.

/NOLIST

Specifies that you do not want a listing file.

/ULD [=file-spec]

Specifies that you want an object-file. If you include a

file-spec, MICRO2 produces the object file in that file. If you

do not include a file-spec, MICR0O2 uses the name of the input, or

the name of the first input file in the multiple input file cape,

with the default extension .ULD for the object file. The object

file is described in Appendix C.

/NOULD

Specifies that you do not want an object-file.

Examples

1. AMICROZ ALPHA

MICR0O2 assembles the program in the file ALPHA.MIC and

produces a listing file ALPHA.MCR and the object file

ALPHA.ULD.

2. MICRO2/1'ST=BLTA ALPHA

MiCRO2 sssembles the program in the file ALPHA.MIC and

produces the 1listing file BETA.MCR and the obiect file

ALPHA.ULL.

3. MITRO2/NCULD ALPHA+GAMMA

MICRO2 assembles the program formed by the concatenation of

ALPHA . MIC and GAMMA.MIC and produces the iisting file

2.LPHA.MCR.

b. MICRO2/LIST=BETA/NOULD ALPHA

MICR0O2 assembles the program in the file ALPHA.MIC and

producee the listing file BETA.MCR. MICR0O2 does not produce

an object file because the qualifier /NOULD is given.

USING MICRO2 Page 12-3

.i le-Specifications

MICR0O2 accepts and processes any legal VAX filename. For purposes of

error reporting, MICRO2 abbreviates long filenames by truncating the

name to the first six characters and the extension to the first three

characters.

12.2 DEC 10 COMMAND LINE INTERFACE

To invoke MICRO2 at command level on the DEC 10, you type one of the

following :

R MICR02 command-information

R MICRO2

iIf the command information is not given in the invocation, MICR02

prompts for the command information with an asterisk (*) character.

The command information consists of the listing-file followed by a

comna followed by the fiie-specification for the object file followed

by an "='" character fol owed by the input file-specifications. That

's, the form of the command information is:

listing-file, object-file = {input-file},...

If you give more than one input file, the assembler reads the

microprogram from the specified input files in the order given in the

assembly-command-line. The first input file is read, then that file

is closed and the second file is opened. Processing continues with

the second input file, again until an end-of-file, indicating the end

of input on that file, is ready. Processing continues in this way,

moving from file to file, until all files are processed. The input

files must not contain any line numbers. M!CR0O2 rejects such files.

The assembler produces the output listing on the listing-file. If a

listing-file is not specified, then MICR0O2 uses the name of the first

irput file and the extension .MCR for the name of the listing file.

The output listing is described in Section 11.2.

The assembler produces the load module on the object-file and that

file can be subsequentiy given as an input file for the microprogram

locder. If an object-file is not specified, no 1load module is

produced. The format of the load module is described in Appendix C.

USING MICRO2 Page 12-4

You get an object file, if you specify an object file name or if you

include the ",' character preceding it. consider the following MICRO2

calls:

Call Result

R MICRO2 A,B=C MICRO2 assembles the program in the file

C.MIC and produces the listing file A.MCR

and the object file B.ULD

R MICRO2 A,=C MICRO2 assembles C.MIC and produces the

listing file A.MCR and the object file

C.ULD

R MICRO2 ,B=C MiCRO2 assembles C.MIC and produces the

object file B.ULD

12.2.1 File Specifications

A file specification has the following form:

diskname:filename.ext[PPN]

Diskname, ext, and PPN are all optional. If diskname or PPN are

omitted, the user's defauli disk or PPN is assumed.

12.3 DEC 20 INTERFACE

You invoke MICRO2 on the DEC-20 system just as on the 10 system, the

only exception is that instead of typing R followed by MICRO2 .*

command level, you simply type MICR02, as follows:

MICRO2

APPENDIX A

MICRO2 LANGUAGE SYNTACTIC SUMMARY

This appendix provides a quick reference to the MICR0O2 language.

First, the syntax of the language is given. Then a summary is given

of the elements used to build a MICRO2 source program.

A.1 MICR02 SYNTACTIC SUMMARY

The MICRO2 syntactic summary g¢gives the syntax, restrictions, and

defau!ts for the MICRO2 language. Following this information,

'xamples of the syntax are given.

The syntax notation used tc express the MICR02 language is the same as

the syntax notation used in the BL!ISS Language Guide (AA-H275A-RK). A

detailed description of the notation is contained in Chapter 3 of that

manual.

Briefly, a syntactic rule is given in a box. The left part of the box

contains the syntactic name being defined. The right side of the box

contains the definition.

Concatenation is expressed in the definition by writing the terms one

after another. An example of a concatenation is:

field-contents-indicator field-name /

The above rule defines a field-contents-indicator to be a field-name

followed by the character '/'.

isiunction is expressed by enclosing the possible terms in braces and

distinguishing the possibilities either by separating them by the

character '}' or by giving them on separate lines. An example o a

disjunction is:

MICRO2 LANGUAGE SYNTACTIC SUMMARY Page A-2

octal-digit {011121314]516)7}

The atove rule defines an octal digit to be a '0' or a '!' or a '2'

and so on.

Another example of a disjunctin is:

{ octal-number }

number { decimal-number }

{ hexadecimal-number }

Omission is indicated by including the term 'nothing' as a possibility

in a disjunction. An example of omission is:

{ : right-bit }

field-spec < left-bit { nothing } >

The above rule defines a field-spec to be either a '<' followed by

left-bit followed by ':' followed by right-bit follcwed by '>' or a

‘<" followed by left-bit followed by '>'.

Finally, replication is indicated by the character sequence '...'. |If

the replication contains a separator, the separator appears as the

first character. An example of replication is:

arg-part [argument ,...]

The above rule defines 'arg-part' to be a '[' followed by one or more

arguments separated by °',' followed by ']'. That is, the following

are all valid definitions of 'arg-part':

[argument]

[argument, argument]

[argument, argument, argument]

MICRO2 LANGUAGE SYNTACTIC SUMMARY Page A-3

'.l.l The Program

program { .LTOR | .RTOL | nothing }

{ .OCTAL ! .HEXACECIMAL ! nothing }

memory ...

memory identification-part

definition-part

microinstruction-part

identification-part { memory-indicator ! nothing }

{ .WiDTH/word-width | nothing }

{ .TITLE/" " 1 nothing }

{ .VERSION/" " | nothing }

{ .REGION {/low-address, high-address} ... }

{ | nothing }
{ .RANDOM ! .SEQUENTIAL | nothing }

memory-indicator { .UCODE ! .DCODE | .ECODE | .ICODE }

{ .OCODE ! .CCODE ! .MCODE }

word-width decimal-integer

low-address expression-subject-to-program-radix

high-address

A.1.1.1 Defaults -

memory-indicator .UCODE

program-radix .OCTAL

bit-order .LTOR

allocation mode -RANDOM

word-width highest bit specified in a

field-definition

plus 1

A.1.1.2 Restrictions -

1. 0 < word-width <= 128

2. low-address < high-address

MICRO2 LANGUAGE SYNTACTIC SUMMARY Page A-bL

A.1.1.3 Examples -

-RTOL

.OCTAL

.DCODE

-WIDTH/6k

-.REGION/0100,0177

-.RANDOM

A.1.2 The Definition Part

definition-part { field-definition }

{ macro-definition } ...

field-definition

{ , qualifier... }

field-name/=field-spec { nothing }

{ value-name = value-spec }...

{ : right-bit }
field-spec < left-bit { nothing } >

{ .DEFAULT = expression }

{ .ADDRESS }

qualifier { .NEXTADDRESS }

{ .VALIDITY = expression }

{ .FLOATEPARITY }

{ .FLOATOPARIYY }

{ {ti-value} {,t2-value}}

{ , {nothing } {nothing 3} {.VALIDITY}
value-spec value { nothing } {nothing }

field-name }

value-name } name

name name-char { name-char { space } ...}

{ { nothing } }

name-char { letter | number | special-char }

MICRO2 LANGUAGE SYNTACTIC SUMMARY Page A-5

letter {Aa|B}b} ... | 2} 2}

number {ol1r1 21 ... 191}

special-character (v #8) (V) Ve = 2 _}

{<})> }

space { space-character ... }

space-character { blank | tao }

left-bit }

right-bit } decimal-integer

value integer-subjecti-to-program-radix

A.1.2.1 Restrictions -

1. |If .LTOR specified, then in a field-spec left-bit

>= right-bit

If .RTOL specified, then left bit <= right-bit

2. Either .NEXTADDRESS or .ADDRESS must be specified

once and only once per memory.

k.1.2.2 txamples -

field-definition

CLKT1/= <17>, .default = <CLKTI1/NO>

NO = O ;Do not clock TI

YES = | sLoac T1 with ALU output

MICRO2 LANGUAGE SYNTACTIC SUMMARY

A.1.3 Expressions

Page A-6

expression

number

expression-name

field-conten s-indicator

field-value-identifier

function-call N
t

g
t

N
t

g
t

S
t

v

number

octal-number }

decimal -number }

}hexadecimal -number

octal-number octal-digit ...

decimal-number decimal-digit ... decimal-point

hexadecimal-number hex-digit

octal-digit ol 1121314157671

	001
	002
	003
	004
	005
	006
	007
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-01
	02-02
	02-03
	02-04
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	06-01
	06-02
	06-03
	06-04
	06-05
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	08-01
	08-02
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	10-01
	10-02
	10-03
	10-04
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	12-01
	12-02
	12-03
	12-04
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06

