

EX OEBOX-UD-006

EBOX
INSTRUCTION EXECUTION UNIT

'UNIT DESCRIPTION

digital equipment corporation « marlborough, massachusetts

1st Editon, May 1976

2nd Edition. January 1876
31d Edinon. December 1976
4th Edison. December 1877
5th Edihon. May 1980

Copyisgh € 1976, 1977_ 1980 by Digitat Equipment Cotoporation

Ak Rughts Reserved

The matena! in thus manual s {or informauonal purposes and
15 subject to change without notice

Digital Equipment Corporanion assumes no responsibility for
any errors which may appear i this manual

Punted in US A

This document was set on DIGITAL's DECset-8000 computerized
typesetting system.

The following are trademarks of Digitsl Equspment
Corporation, Maynard. Massachuseits

DIGITAL DECsystem-10 MASSBUS
DEC DECSYSTEM-20 OMNIBUS
PDP DiBOL 0s/8
DECUS EduSystem RSTS
UNIBUS VAX RSX
DECLAB VMS 1AS

MINC-11

Iy

CONTENTS

Page
PREFACE
SECTION t OVERVIEW
1.1 INTRODUCTION.................EBOX/1-1
1.2 BASIC FUNCTIONAL BLOCKS EBOX/1-6
121 Instruction Register-Dispatch-Main Control Store..............o........ EBOX/1-13
122 Fast Memory EBOX/1-14
123 Address Path EBOX/)-21
1.24 Request and MBox Control EBOX/1-24
124 K1 Style Paging EBOX/1-25
1.24.2 KL Paging " EBOX/1-28
1243 MBox Error Conditions EBOX/1-43 1
1244 VMA Control . EBOX/1-43 1
1.2.5 EBus Control and PI Control EBOX/147 |
126 Data Path EBOX/1-50 |
1.2.6.1 Information Flow To and From Memory EBOX /1-50 i
1.26.2 information Flow 1/0 and Priority Interrupt.......................... EBOX/1-55 |

l

SECTION 2 FUNCTIONAL DESCRIPTION
21 INTRODUCTION EBOX/2-1
22 MICROPROGRAM STATES AND PROCESSOR CYCLES................ EBOY 12-1
221 EBox Reset EBu . 2-1
222 Microprogram Halt Loop EBOX/2-6
223 Microprogram Running EBOX/2-9
224 Microprogram Wait State EBOX/2-10
2258 Microprogram and EBox Frozen EBOX/2-10
226 Microprogram Deferred EBOX/2-14
227 Microprogram Orgauization EBOX/2-17
23 BASIC MACHINECYCLE EBOX/2-23
23.1 Instruction Cycie - NICOND Dispatch to XCTGO.............c....... .. EBOX/2-31
232 Indirect Word Request EBOX/2-31
233 MBox Response to Indirect Word Request EBOX /2-38
234 Address Calculation Continues EBOX/2-38
235 A READ Dispatch - Set Up Data Fetch and Prefetch................... EBOX/2-38
236 MBox Response to Data Read - Prefetch Begins ..., EBOX /245
237 ‘ Executor - Set Up for Store Cycle EBOX /245

238 Finish Store Cycle - Perform NICOND Dispatch................cccn..e... EBOX /249

24
24.1
242
28
25.1
252
253
26
2.6.1
262
263
264
27
271
2172
213
27.3.1

2132

274
2.74.1
2742
2.743
2744
2745
28

29
29.1
292
293
294
295
295.1
2952
2953
2954
2955
2956
29517
2958
2959
295.10
295.11
295.12
295.13
295.14

CONTENTS (CONT)

Page

PAGEFAIL CYCLEINTRODUCTION ..o EBOX ., 2-49
Page Fail Handling - Functionat Flow............................. ..EBOX /2-55
Process Table References EBOX/2-59
TRAPCYCLE - INTRODUCTION.coooreirrerenneicieencns s EBOX/2-59
Trap Handling...........oevemenenmencecemrrecerannesenrrnmesese s svrss e teeeee s EBOX/2-59
Address Generation...........coveeceveerereeeceeeveseesseseesessssssesses EBOX/2-63

PT Reference for Trap Instruction EBOX/2-63
INTERRUPT CYCLE-INTRODUCTION ... EBOX /2-63
Duration of Uninterruptable Intervals EBOX/2-66
Interruptable Instructi o EBOX /2-66
General Interrupt Sequencing..........cooeveueveneeennnene.. EBOX /2-66
Interrupt Dialogue EBOX/2-67
BASIC MACHINE MODES INTRODUCTION EBOX/2-70
Mode Initialization ~ Private Instruction EBOX/2-76
Loading Flags and Changing Mode EBOX/2-76
User Public Mode. . EBOX/2-76
Entry from User Public Mode 1o User Concealed EBOX/2-81
Concezled Violation Data Reference EBOX/2-81
Restoration of Programs by the Supervisor EBOX/2-8]
Restoring a Concealed Program EBOX/2-81
Restoring a Kernel Program EBOX/2-85

Restoring a User Public Program EBOX/2-85

Saving Flags and Leaving User EBOX /2-86

UserC led EBOX/2-86
ADDRESS PATHS EBOX/2-88
DATA PATHS ... eectereeretesearns s eeseasms e sssssens sssseseas EBOX/2-92
Virtual Memory Address Register EBOX/2-93
Program Counting EBOX/2-93
Loading PC EBOX/2-97
General Data Path Organization EBOX/2-99
General Data Path Mixer Selection EBOX/2-100

AD Field EBOX /2-100

ADA Field EBOX/2-107

ADB Field EBOX/2-107

AR Field EBOX/2-108

ARX Ficld EBOX/2-111
BRI .o eeeee EBOX/2-112

BRX Field EBOX/2-112
FMADR Ficld EBOX/2-112

SCAD Field EBOX/2-112

SCADA Field EBOX/2-113

SCADB Field EBOX/2-113

SCField ... cereceerereere st sne e EBOX/2-113

SH Field EBOX/2-114

The AR Mixer Mixer (ARMM) EBOX/2-114

29515
29516
2.10
2.10.1
2.10.1.1
210.1.2
2.10.1.3
2102
21021
21022
2.10.3
2.104
2.104.)
21042
2.104.3

2,118
2112
1121
4122

N

21123
211.24
21125
2.12
2121
2122
2123
21231
21232
21233
2.1234
2.124
21241
21242
21243
2,125
21251
21252
21253
21254
21255

CONTENTS (CONT)

Page
VMA Field ...t e b raan EBOX/2-114
MQField ..o, EBOX/2-114
EBOX INSTRUCTION SET FUNCTIONAL OVERVIEW EBOX/2-114
Effective Address Calcuiation EBOX/2-119
INAEXINg ...t EBOX/2-120
Indirection EBOX/2-120
No Indirection or Indexing EBOX/2-128
Fetch Cycle EBOX/2-125
Instructions That Do Not Reguire (E) EBOX/2-128
Instructions That Require (E) EBOX/2-131
Execution Cycle EBOX/2-137
EBox Data Store Cycle EBOX/2-141
Basic Four Mode Type Instructions................ccoccecereeeeenenan. EBOX/2-141
SKIP, JUMP Compare Instructions EBOX/2-157
Store Cycle for Other Instructions EBOX/2-158
INTERFACE CONTROL EBOX/2-158
Introduction EBOX/2-158
MBox Control csseennens EBOX /2-160
DATA FETCH REQUEST EN - Begin EBox Cycie EBOX/2-163
Begin MBox Cycle - End Current EBox
Cycle and Start Next EBOX/2-163
SETUP PREFETCH - Wait for MBox Response EBOX/2-167
MBOX RESPONSE RECEIVED EBOX/2-167
General Memory Cycle Control EBOX/2-167
EBUS INTERFACE CONTROL EBOX/2-167
EBus Signal Lines EBOX/2-173
EBus Interface Organization EBOX /2177
Interrupt Handling - Loading the Req EBOX/2-177
Testing the Request EBOX/2-177
Requesting the EBus £BOX/2-177
Beginning the Dialogue EBOX/2-178
Interlocks and Dislogue Completion EBOX/2-178
Basic Input Output Control EBOX/2-178
Requesting the EBus EBOX/2-178
Dialogue Overview EBOX/2-178
Functional Breakdown EBOX/2-182
Pl and EBus to Microcode Interface EBOX/2-183
Sensing the Interrupt EBOX/2-183
Requesting the EBus EBOX/2-191
Beginning the Dialogue EBOX/2-191
Terminating the Dialogue EBOX/2-195
Entry to the PI Handler EBOX/2-195

CONTENTS (CONT)

Page

LOGIC DESCRIPTIONS
INSTRUCTION REGISTER LOADING ANDCONTROL EBOX:3-2
DRAM and IRAC Control . EBOX/3-10
DRAM Addressing and Selection EBOC/3-11
IR TEST SATISFIED.............. . EBOX /3-13
INtroduction..........cooeeeceeceeereeeeeee e EBOX /3-13
Implementation EBOX/3-13
PROCESSOR TIMING EBOX/3-20
Clock Overview.............uvceeervevreeerenersrcinisnanencn. EBOX/3-20
Crobar and Clock Initializationcccoeeemennn... ...EBOX/3-22
EBUS RESCL.... .o ceea e neessnenesass e eree EBOX/3-24
Initialization Clock Pulse Generation EBOX/3-24
EBox Clock Control EBOX/3-24
Error Detection EBOX/3-27
Clock Control Logical and Skew Delays EBOX/3-30
ARITHMETIC PROCESSOR FACILITY EBOX/3-32
Introduction EBOX/3-32
Address Break EBOX/3-32
Address Break INH and Saving Flags.........c..oooevoevinieennnncl EBOX/3-38
Address Break INH and Loading Flags EBOX/3-38
Arithmetic Processor Status Register...... EBOX/3-38
SBus Errors EBOX/3-39
Nonexistent Memory EBOX /343
Other External Errors EBOX 343
Input/Output Page Failure Error EBOX/3-44
Power Fail EBOX /344
SWEEP and SWEEP DONE EBOX/3-47
Processor Identification EBOX/3-53
Cache Refill RAM Facility EBOX/3-54
MBox Error Address Register EBOX/3-56
CONTROL RAM ADDRESSING EBOX/3-57
Pushdown Stack EBOX /3-57
Current Location Register (CRA LOC)..... EBOX/3-62
Control RAM Dispatch Field EBOX /3-62
Miscellancous CR Address Gates EBOX 7/3-62
Special CR Address Modification Considerations. EBOX /3-65
CLK FORCE 1777 EBOX/3-65
CONCONDADR 10.......ooicerrenerccenrerec e EBOX/3-65
MUL DONE EBOX/3-65
AREAD Logic EBOX /3-65
CRA Dispatch Parity EBOX/3-69

vi

CONTENTS (CONT)

Page
APPENDIX A UNDERSTANDING THE MICROCODE
APPENDIX B ABBREVIATIONS AND MNEMONICS
APPENDIX C KL10-PV EBOX DIFFFRENCES
C.li INTRODUCGTION . ..o er st me s st eve e ste e e EBOX/C-1
C2 KL!10-PY EBOX MODULE UTILIZATION EBOX/C-1
Ci3 FUNCTIONAL DIFFERENCES............ EBOX/C-3
Cili Higher Clock Rate EBOX/C-3
C32 Extended Addressing EBOX/C-3
Ci3 . New Instructions and Considerations EBOX/C-3
C4 EXTENDED ADDRESSING ~ EFFECTIVE ADDRESS
CALCULATION EBOX/C-5
C4.1 Instruction Format EBOX/C-$
C42 Indexing EBOX/C-5
C43 INAITECLION ..coviriiiecceeeneereeerecrnenieene EBOX/C-7
C43.1 Local Format Indirect Word EBOX/C-7
C432 Global Format Indirect Word EBOX/C-7
Ca4 Examples EBOX/C-8
C4S immediate Instructions EBOX/C-10
C46 AC References EBOX/C-10
CS NEW INSTRUCTIONS. INSTRUCTION MODIFICATIONS,
AND CONSIDERATIONS EBOX/C-11
C5.1 Speciai-Case Instructions in Nonzero Sections...........coeveveverevvuvens EBOX/C-11
CS5.1.1 PC-Storing Instructions
(PUSHJ, ISP, ISR, POP}) EBOX/C-11
C5.1.2 Byte Instructions EBOX/C-H
€513 Stack Instructions
(PUSH, PUSHI, POP. POPJ, ADISP) EBOX/C-12
C5.14 LUUO (Op Codes 1-37) EBOX/C-12
C5.1.8 MUUO (Op Codes 0, 40-77,
Al Undefined Op Codes) EBOX/C-13
CS5.16 BLT. EBOX/C-14
Cs5.1.7 EXTEND-STRING Operations EBOX/C-14
Cs.1.8 AOBIN EBOX/C-15
Cs5.19 JSA JRA EBOX/C-15
C5.1.100 BLKI.BLKO EBOX/C-15
C5.1.11 XCT EBOX/C-15
C52 PI Handling EBOX/C-15
Cs3 New Instructions.......... EBOX/C-16
€531 XMOVEI - Move Extended Address
{Op Code = SETMI) EBOX/C-16

vii

C5.3.2

C.533
C534

C535

C536
Cs54
C5.S
Cs6
C.5.6.1
562
Cs5.7
C6
Cs6.1
C6.2
C6.2.1
Cé6.22
€623
C6.24
C?
C8
Cc9
C.i0
C.11
C.12
C.13

CONTENTS (CONT)
Page
XBLT - Extended Block Transfer
(EXTEND Op Code 020} ...EBOXC-16

XJRSTF - Restore Flags and Program Counter (J RSTS)I:BOX C-16
XJEN - Restore Flags and Program Counter

" and Dismiss (JRSTE.)ooeeeeerereerereeerenreeienrmeereeeeaeanaas EBOX/C-17

XPCW - Save then Restore Flags and
Program Counter (JRST 7.) reevvenenneaneenrenn EBOX/C-17
XSFM - Save Flags in Memory (JRST 14.)....ccnecicneennenns EBOX/C-18
Compatibility Summary EBOX/C-18
Testing for Section 0 {EBOX/C-20
Old Instructions EBOX/C-20
JRSTF - Jump and Restore Flags EBOX/C-20
JRSTX.E EBOX/C-20
Special Considerations for ACs. EBOX/C-20
M8526-YA CLOCK MODULE EBOX/C-23
Overview EBOX/C-23
Detailed Circuit Description EBOX/C-23
CROBAR and Ciock Initialization EBOX/C-23
EBox Clock Control EBOX/C-23
Error Detection EBOX /C-27
Clock Control Logical and Skew Delaysc.ccccveiccvevennens EBOX/C-27
MODULE M8540, SHIFT MATRIX EBOX/C-28
MODULE M8541, CONTROL RAM ADDRESS ... EBOX/C-28
MODULE M8542, VIRTUAL MEMORY ADDRESS...EBOX /C-28
MODULE M8543, EBOX CONTROL NO. I.....oovrrerecerecmrnnccaernee EBOX/C-28
MODULE M8544, MEMORY CONTROL EBOX /C-33
MODULE M8545, APR EBOX /C-33
MODULE M8548, 2K CONTROL RAM .EBOX /C-33

FIGURES

Tite Page
EBox Simplified Block Diagram EBOX/1-3
Control Pyramid EBOX/1-5
DRAM 1/0, JRST. EBOX/1-5
DRAM Organizstion EBOX/1-7
EBox RAM Structures, Interfaces, and Controls Block Diagram.............. EBOX/1-9
EBox Overail Block Diagram EBOX/1-11
Instruction, Dispatch, and Control Formats EBOX/1-15
Microprogram Main Loop EBOX/1-17
Basic Fast Memory Structure ... ieecriecenrcnennaesie e caneansenans EBOX/1-18
VMA Structure Simplified EBOX/1-22

Figure No.

RO IR

g b 10 1D 0 0 P P B i o o e e o L
BAC AR ON LS OBAR A bty =

shpbabey

O
N - e
20~

1D B B Iy o sme e e e e o e bt g e s e Sew e P b e e W v s

b

FIGURES (CONT)

Title Page

PC 4 TFUNCHON ..ot e sansse s sesnnen
MBox-VMA-EBUS Control Simplified
Page Table Access

K1 Style Paging EBOX/1-26
Physical Memory Address Format EBOX/1-27
Page FRUIt OVEIVIEW ..ottt em s s srenes EBOX/1-27
KL Paging Layoul.........ocoveceemeeninenerenicrnnens EBOX/1-29
Page Mapping (Virtual to Physical) EBOX/1-30
Typical Paging Path EBOX/1-30
Immediate Section Pointer EBOX/1-31
Shared Section Pointer EBOX/1-32
Indirect Section Pointer EBOX/1-32
Pointer Interpretation {(Normal Section Pointer; Shared).........cccocvervaenen EBOX/1-33
Pointer Interpretation (Indirect Section Pointer). EBOX/1-34
Pointer Interpretation (Indirect Page Pointer) EBOX/1-3§
Pointer Interpretation Flow Disgram EBOX/1-36
KL Core Status Tables Updating Flow Diagram EBOX/1-42
Basic Address Transiation EBOX/1-44
Virtual Address Mapping, K110 Paging Mode EBOX /145
Simulianeous interrupts EBOX/1-47
Pl Dialogue Overview EBOX/1-48
APl Word Format EBOX /149
1/0 Instruction Dislogue Overview EBOX/149
KL10 Register Interconnection Diagram EBOX/1-51
Core and Fast Memory Information Flow. EBOX/1-53
Loading ARX EBOX/1-57
EBox Data Paths Simplified Paths Diagram EBOX/1-59
input/Output Priority Interrupt Information Flow EBOX/1-63
EBox Functional Block Diagram EBOX/2-3
Primary Hardware Cycles EBOX/2-5
Microprogram Static States EBOX/2-6
* Microprogram Halt Loop EBOX/2-7
Run-Hali-Continue Logic EBOX/2-8
Dispatch Path State Diagram EBOX/2-9
Basic Microprogram Address Control EBOX/2-11
CRAM Address Inputs Simplified EBOX/2-12
Wait State EBOX/2-12
MBox Wait and EBox Clock EBOX/2-13
MBox Wait on Prefetch from Fast Memory. EBOX/2-13
P1 40 + 2n Skip EBOX/2-17
M Program Modules EBOX/2-18
Startup and Stop Interface EBOX/2-19
Effective Address Manager EBOX/2-19
Data Fetch Manag EBOX /2-20
Dispatch Table Ficlds. EBOX/2-20
Executor EBOX/2-21
Data Store Manager EBOX /2-22
Page Fault Handler EBOX/2-22

Figure No.

2-21
2-22
2-23
2-24
2-25
2-26
2-27
2-28
229
2-30
2-31
2-32
2-33
2-34
2-35

2-37
2-38
2-39
2-40
241
242
243
244
245
246
247
2-48
249
2-50
2-51
2-52
2-53
2-54
2-5§
2-56
2-57
2-58
2-59

2-61
2-62
2-63
2-64
2-65

2-67
2-68
269

FIGURES (CONT)
Title Page
Input/Output Handler...........ooviiei e, EBOX2.23
Basic Machine Cycle Overview EBOX2-24
KL 10 Processor Sequence of Operation EBOX/2-27
Instruction Cycle: NICOND Dispatch - XCTGO EBOX/2-33
Set Up and Make Indirect Work Request ... EBOX/2-35
MBOX CYCI ...cnneoienerrrvrarccsnasensssanestesenseseasseraeanenes EBOX/2-38
MBox Response to Indirect Request EBOX/2-39
Address Calculation Continues EBOX /241
AREAD Dispatch Setup Data Feich EBOX/2-43
MBox Response with Dats Word Requested EBOX/2-47
Hardware Sciection of ARM Data EBOX/2-49
Executor Setup for Store Cycle EBOX/2-51
Finish Store Cycle, Perform NICOND Dispaich EBOX /2-53
Page Fail Handling EBOX/2-56
EBox Priorities EBOX/2-58
Process Table PF Location EBOX/2-59
Trap Cycle EBOX /2-61
Central-Server Model (Round Robin Priorities) EBOX/2-63
Interrupt Level Operations EBOX/2-64
Typical Interrupt Priority Chain EBOX/2-65
Basic Interrupt Sequencing EBOX/2-67
Interrupt Dialogue Overview .EBOX/2-68
Mode Structure and Hicrarchy....... EBOX/2-71
Mode Transfer EBOX/2-73
Typical Virtual Address Space Configuration EBOX/2-78
Mode Initialization EBOX/2-77
Private Instruction Recirculation Path Simplified EBOX/2-78
Setting Private Instruction EBOX/2-78
User Mode Functional Flow EBOX/2-79
User Mode Public Initial Reference EBOX/2-80
User Mode Public Second Reference EBOX /2-80
Typical Concealed Page Table Format (Half Tabie Entry)......ccceocvcnneand EBOX/2-81
Supervisor Mode Functional Flow EBOX/2-83
Leaving User EBOX/2-85
Restoring K ernal Program EBOX/2-85
Mode Hierarchy EBOX /2-87
Concealed Mode Functional Flow EBOX/2-88
EBox Address Paths Simplified Path Diagram EBOX/2-89
Typical VMA 13-17 Manipulations EBOX/2-91
EBox Data and Address Paths EBOX/2-95
VMA Inputs EBOX/2-97
Program Count Loop EBCX/2-97
PC Loading or Inhibit EBOX /2-98
ALU Overview EBOX/2-102
ADA Example EBOX/2-104
ADB ExampleEBOX/2-104
Function A EBOX/2-105
Function AB EBOX/2-106
Function AB EBOX/2-106

37

3-10

FIGURES (CONT)

Tide Page
Function A ..o e et s sen e enen EBOX /2. 107
AR Sclection EBOX /2-109
ARX Selection ettt et e eEBOX/2-111
MQ Selection EBOX/2-115
Instruction Set DivIsionscccoocorieenreevrncnricverinnenns EBOX/2-117
Major Machine Cyche ..ot car e EBOX,2-119
Basic Instruction FOIMt ..ot reveae oan EBOX/2-119
In-Out Instruction Format EBOX/2-119
Effective Address Cslculati EBOX/2-121
Page Fault During Diverted Indirect Reference EBOX/2-123
EBox Data Fetch EBOX/2-124
Fetch Minor Cycle EBOX/2-125
Address-Fetch-Execute-Stiore General Memory References.................. EBOX/2-127
Execute-Register-MBox Control and Miscellaneous General
Memory References . EBOX/2-133
EBox Execution Cycle Overview EBOX/2-139
Microstack Operation EBOX/2-141
£Box Dats Store EBOX/2-142
MBox-EBox-EBus Control EBOX/2-143
Basic Machine Cycle Summary EBOX/2-159
Subcycie Summary EBOX/2-159
Hardware Cycie Summary EBOX/2-160
Gencral Memory Request Control Simplified EBOX/2-161
Begin EBox Cycle Data Fetch Regq EBOX/2-164
EBox Request Fast or Slow EBOX/2-165
Basic EBox Clock Period EBOX/2-165
Begin MBox Cycle, End Current EBox Cycle,
Begin Next EBox Cycle. EBOX /2-166
Setup Prefetch Waiting for M Box Response EBOX/2-168
Receive MBox Response, End Current MBox Cycle,
End Current EBox Cycle, Begin Next EBox Cycle,
Begin MBox Cycle EBOX/2-169
General Memory Cycle Control Flow EBOX/2-171
EBus Interface Fuactional Block Diagram EBOX/2-175
EBus Control Functions EBOX/2-179
EBox Pl Board to Microcode Interface EBOX/2-18S
EBus Control Hybrid Flow EBOX/2-187
Time State Generator Control EBOX/2-191
Pl Timing EBOX/2-193
EBox Module Utilization EBOX/3-3
IR DRAM Control (Part 1) EBOX/3-§
IR DRAM Control (Pan 2) EBOX /3-7
IR Loading Vis AR (COND/LOAD IR) EBOX/3-9
Loading IR Via FM (COND/LOAD IR) EBOX/3-10
DRAM Loading Following COND/LOAD IR EBOX/3-11
NICOND Dispatch and Waiting EBOX/3-12
1R Test Satisfied EBOX/3-15
IR Test Equal EBOX/3-17
IR Test Satisfied Logic EBOX/3-17

xi

Figure No.

311
312
3-13
3-14
315
3-16
3-17
3-18
39

3.2
322
3-23
3-24
325
3-26

FIGURES (CONT)

Title Page
Basic Clock Module Layout and Distribution..........cccoonieeiene EBOX/3-21
Clock So SIMPAEd ..o e EBOX/3.22
Basic Clock Block | Dugram ..EBOX/3-22
Basic SOUNCE SEIECtiONc..vceeeceemrennerreereer et es e ceeeeeesseseeeenee e EBOX/3.23
Free-RUNmng CIOCKS «......ccovcouemrierecneremnieseeene e eeeee e eee e eeaees e FEBOX/3-23
Basic Rate Selectionccoveveomevevenenennen. EBOX 73-23
Clock Initialization EBOX/2.34
EBus Reset and Clock Initialization EBOX/3-25
Power Up Timing EBOX/3-26
Simplified Diagram, MBox Clock. Sync. EBox C P EBOX /3-26
EBox Cycle EBOX/3-26
EBox Clock Control Block Diagram EBOX/3-28
Basic MBox Cycle Timing EBOX/3-28
Clock Error Stop EBOX/3-29
Logical Delays and Skew EBOX/3-30
EBox Ciock Fanout EBOX /3-31
MBox Clock Fanout EBOX/3-31
Clock Control, EBox Clock Control Timing EBOX/3-33
Address Break Facility EBOX/3-35
APR Register and Interrupt Enables -..EBOX /341
APR Register Breakdown EBOX /343
NXM Timing Overview EBOX/3-44
NXM Error Overview EBOX/34$
External Error Conditions (M Box, SBus) EBOX/3-46
ERA Word EBOX /346
SWEED LOBIC .ottt res st sessessase oo sre e ceene EBOX/3-49
APRID Format. EBOX/3-53
Alignment Step | EBOX/3-54
Alignment Step 2 EBOX/3-54
Refill RAM OverviewEBOX/3-55
CR Addressing Overview. EBOC/3-59
Stack Operation EXample............ooueureeeereeceeieneceeeereneeceeeseeeve e erens EBOX/3-61
CRADR Gaies EBOX/3-63
Example CRADR 08-10 EBOX/3-64
COND and Dispatch Layout and Control...........oo.eoevvinicerncecneeeenan EBOX/3-67
MUL Done EBOX/3-69
Contro! RAM Addressing EBOX /3.7
Sample Microcode Listing EBOX/A-1
CRAM Board Logic Pbys:ul Bit Position Derivation............................. EBOX/A-S
Actual CRAM Physical Bit Position to
Microword Bit Position Correlation EBOX /A-7
MOVE Instruction Flow Diagram...........c..ccocevivrommemvereeennnn. .EBOX/A-12

L V]

Figure No.

A-S
A-6
A-7
A-8
A9

FIGURES (CONT)

Title Page
Microcode Address 52o EBOX/A-13
Microcode Address 160ooeeoiiiiiicein e EBOX/A-13
DRAM Word 200..... .. EBOX/A-13
Microcode Address45...............ocoeeinriiieniccnnns EBOX/A-13
Microcode Address 100. EBOX/A-13
Microcode Address 175 ... e EBOX/A-14
ADD Instruction Flow Diagram ... EBOX/A-18
Microcode Address 160, 161......... EBOX/A-16
DRAM Word 270 ... e, EBOX/A-16
Microcode Address 45 EBOX/A-16
Microcode Address 504 EBOX/A-16
Microcode Address 175...........oooieiii, EBOX/A-16
Microword “s” Ficld EBOX/A-16
Microword *b"™ Field EBOX/A-17
Microword **¢” Field.......cooeoereruencirannc EBOX/A-17
Microword **d™* Field EBOX/A-18
Microword **e* Field. EBOX/A-18
Microword *'I* Fieid EBOX/A-19
Microword “'g" Field (Magic Numbers) EBOX/A-20
DRAM Word Format EBOX/A-23
KL10-PV Module Utilization EBOX/C-2
Extended Addressing, Effective Address Calculation FlowchartEBOX/C-6
Instruction Format EBOX/C-7
Local Format Indirect Word EBOX/C-.7
Global Format Indirect Word EBOX/C-7
Byte Pointer Format EBOX/C-11
LUUO Information Format EBOX/C-13
UUO Information Format EBOX/C-13
EXTEND-STRING Instruction Format EBOX/C-14
Flags and PC Double-Word Format EBOX/C-16
XPCW Information Format EBOX/C-17
Basic Source Selection EBOX/C-24
EBus Reset and Clock Initialization EBOX/C-28
EBox Clock Control Block Diagram EBOX /C-26
EBox Cycles EBOX/C-26
Clock Control, EBox Clock Contro! Timing EBOX/C-29
Module M8542 EBOX /C-31
CRAM Physical Bit Position Layout EBOX/C-34
CRAM Microword Bit Position Layout EBOX/C-3%
KL10-PV EBox CRAM Module Physical Bit
Position Derivation EBOX/C-37
KL10-PV EBox CRAM Bit Moduie Layout Chart EBOX/C-39

xiii

Table No.

-2
-3
2.1
22
2-3
24
25
2-6
27

2.9
210
211
212
213
2-14
215
216
217
2-18
219
220
2.21
2.22
3.1
32
33t
34
35,

37
38
C-1
C-2

TABLES

Title Page
AREAD veeer... EBOX ¢ 1-14
FM Selection.EBOX '1-19

Memory Informati-n Flow EBOX/1-54

EBox Main Loop/1raditional Machine Cycle Comparison .EBOX /2.9
Error Stop Enables evrierrrrestaerntesernseneneenn FBOX 72-14
NICOND Priorities. ettt e EBOX/2-15
Address Caleulation cocoreicnmiinviiiiiecriecccee e EBOX/2-31
MBox Cycle REQUESES ... e ccetenceeam e e EBOX /72-37
Flags Effecting MOGEcnoveecereecrnrnecarnrennscnesensencensascriossoncescasssassnsassses EBOX/2-78
Virtuai Address Classification . EBOX /2-92
Data and Addres: Path Breakdown EBCX/2-99
ALU Functions . EBOX/2-10t
ALU Functions With Carry EBOX/2-102
ADA, ADXA Sclection EBOX/2-107
ADB, ADXB Selection . EBOX /2-108
SCAD Field EBOX/2-112
SCADA Mixer SelectionEBOX 72-113
SCADB Mixer Selection EBOX/2-113
AREAD DiSpatch ...ttt ccene e EBOX/2-126
Skip, Jump, Compare Instructions EBOX/2-157
Request Summary cieeeeeee EBOX 72-160
Data Transfer Signals EBOX 2-173
Table Data Transfer Commands.............cccooiiviociaoinieeeee e EBOX/2-173
Priority Transfer Signals...........ooiiiiie e EBOX/2-174
Priority Transfer Commands EBOX/2-174
Skip, Jump, Compare Controls ..o eecceeercnas EBOX/3-17
Test Controls EBOX /3-18
CONSX and BLKX Controls EBOX/3-18
Fetch Control Modifiers..........ooveemceieieec e EBOX/3-19
CRYO Generation (MACRO) EBOX/3-19
Marker Generator FUNCUOR.........covveeenc it ccer e semsersesnccnacan EBOX/3-27
CCA Summary ...EBOX /347
Sample Algorithm EBOX /3.56
EBox Module Utilization Changes ..., EBOX /C-2
Compatibility Summary EBOX /C-18

xiv

PREFACE

This manual contains three leveis of EBox theory descriptions. The three levels are:

Overview ~ The overview identifies and introduces, in a simplificd fashion, the basic hard-
ware and firmware organization of the EBox. The major clements are presented without
many details to provide a capsule view of the EBox structure.

Functional Description - This section describes the primary EBox function, which is to exe-
cute the KL10 instruction set and thus provide the specified functions, which generally ~
include the following:

Memory Reads and Writes
Internal Operations
EBus Operations

The functional description is the most comprehensive part of the EBox Theory. Here the
basic elements of the EBox are described in the context of how they implement the primary
EBox function.

Logic Description - This section provides & detailed logic description of each of the board
types that comprise the EBox. These descriptions are written to support the functional
description. The logic description section is the most detsiled part of the EBox. This mate-
nal is presented to expand the functional description so that the information provided in the
functional description can be directly related to the engincering logic diagrams.

Appendix C has been added. which detsils the differences and changes that have been incorporated
into the Model B CPU EBox (called KL 10-PV EBox). Appendix C should be used in conjunction with
this document tc understand the KL10-PV EBox.

" SECTION 1
OVERVIEW

L1 INTRODUCTION

The EBox is the instruction execution unit in the KL10 system. A central processor is formed when a
memory interface unit (MBox), 10-11 interface unit (DTE), and PDP-11/40 processor are interfaced
with the EBox. The MBox is the memory interface unit in the KL 10 system to which the EBox directs
its core memory requests. The PDP-11/40 is the front end processor that provides console functions
and bootsirapping facilities and drives the standard PDP-11 peripherais. The DTE is the interface
between the EBox and the PDP-11/40 console processor. The EBox communicates with the DTE, and
hence the console processor, over a 36-bit dats bus called the EBus, and uscs three function lines
(FOO-F02). seven controller select lines (CS00-06), and two additional signal lines (Demand and
Transfer) for arbitration and control of data transfers between the EBox snd its internal and external
devices. A pseudo-interface, which consists of a 23-bit address, 36-bit data, a number of request type
qualifiers, and additional signals (including request and response), provides for arbitration and control
of data transfers between the EBox and MBox.

The EBox contains the following (Figure 1-1):

1. A data path that consists of an Arithmetic Register (AR), Arithmetic Register Extension
(ARX), Adder (AD), Adder Extension (ADX), various other registers, and s shift matrix.

2. An address path that consists of a 23-bit Program Counter (PC) and 23-bit Virtual Memory
Address register (VMA).

3. Eight fast register blocks, each containing 16 X 36-bit words: each block of 16 registers is
program-assignable.

4. A 13-bit Instruction Register (IR), which accepts the 9-bit operation code and 4-bit accu-
mulator address.

5. Two somewhat autonomous control clements to provide control between the MBox and
EBox. as well as the EBus and EBox. These are the MBox control and EBus control, respec-
tively (Figure 1-1),

6. A control section storing and aiding the implementation of KL 10 instructions.

EBOX/1-}

.

The control portion of the EBox comprises two Random Access Memories (RAMzs). The first is calied
the Dispatch RAM (DRAM); it consists of storage for 512 decimal words, one word for each KL 10
instruction. During instruction execution, the content of the DRAM word provides information about
the type of memory references required by the executing instruction. It also provides an index into the
main control programs contained in & second control memory called the Control RAM (CRAM). The
CRAM consists of storage for 1280 microinstruction words that are structured into a sophisticated
control program. The main program consists of 8 main loop and a number of subroutines or handlers.

The structure provides for the implementation of s wide variety of internal register transfers, arithmet-
ic and logical control, memory interface, and EBus control functions. The control program is generally
referred to as the “microcode.” Amocisted with the microcode and CRAM is & hardware pushdown
stack, which enables the control program to make subroutine calis up to four levels doep. while per-
forming various KLIO instructions. The basic machine control flow may be viewed as & pyramid, as
shown in Figure [-2. The instruction initially enters the IR consisting of two sections. One section, bits
0-8, holds the op code of the instruction, and the other, bits $-12, holds the Accumulator (AC)
address. During the instsuction fetch cycle, the IR is unlatched via Load IR. During this time, it sets up
with the op code. When the fetch cycle terminates, Load IR is removed and the IR latches.

Because of the provision for prefetching, instructions may enter IR during the execution of the current
instruction. This implies that, for these cases, the information provided by IR for the currently execu-
ting instruction must be somchow saved, while aliowing IR to set up with the op code of the next
instruction. This is accomplished by selecting an appropriate word from the DRAM,

The op code contained in the IR is used to address & corresponding DRAM word, and a Next Instruc.
tion Condition (NICOND) unlziches the DRAM register during this time. Encoded in the DRAM
register ficlds (A, B, and J) is all information necessary for operand fetching, storing, and the micro-
program executor jump address. Therefore, those instructions that prefetch an instruction do not
require the IR to be reliable beyond the point of loading the DRAM register.

Input/output (1/0) instructions never prefetch. The device select code and operation for these instruc-
tions are specified directly in the [R. This must be made available to the microcode 1/0 handler during
the instruction’s execution cycle.

A special case in DRAM addressing is concerned with the JRST instruction. Because the JRST
instruction encodes its JRST type in IR 9-12, these bits can be used directly as part of the DRAM
word for this instruction. Normally, the DRAM address is as shown in Figure 1-3.

Included in the EBox is the master clock, which provides a time base for system operztion. It dis-
tributes clock and sync pulses to the MBox, DTE, internal devices, system buses, and to the EBox
itsclf. All operations in the KL-based system are synchronized to the master clock, which runs a1 50
MHz. The master clock can be started, stopped, single stepped, and otherwise controlled by the con-
sole processor via the diagnostic control logic. This logic is distributed between the EBox and the
DTE. Besides controlling the master dock, the diagnostic control logic provides a means for mon-
itoring processor status and diagnostic registers in both the EBox and the MBox. The master clock is
divided to supply a8 25 MHz clock to the MBox and a 6.25 MHz clock to the EBus and SBus.

EBOX/i-2

o

/\s
DATA DISABLE 1
DiAG CONTROL
FUNCTIONS TA
0IAG DIAGNOSTIC
/\ SELECT LINES | CONTROL CONTROL
I———- | .1
SYNC
MASTER EBUS CLOCK |
cLoCK am cLocx o
T0 CONTAOL
LOGIC
CORE CYCLES.MBOX CYCLES NTERNAL
DEV”™ CONTROL
RS gl
INSTR 00-12 : - [DISPATCH TIMIMTR
AC 10-12 {SWEEP) IR| stome -
o IR .
TO 8US (ERROR STATUS PAGE F4 L STATUS) - §
e
-
I z
-
esus | p1 =
s S AND =
NT Pl v
- CONTROL | CONTROL | MEM = CoYoRoL | EBus et | contnoy | DATA Lo 2
S 2 fr2eTt| conrao,
- CON CRM S =]
S CLK cRa #55. P1
3 CONTROL JUMP_ ADR 2
["INTERNAL DEV"™
MBOX
ARITHMETIC
ERROR CONDS PROCESSOR |oom mot fe—]
. STATUS AND
CONTROL
DATA ADDRESS T
bo——— — - 4 R — AND
DATA PATHS DaTA 1
P
vMa
oe
VMA INTERNAL
S STATUS OR
ERROR CONDS
CINTERNAL £ AC INDEX
DEV " PAG
con FAST MEMORY
& BLocks loama
-
v I oP N
CONTROL
NOTE
CACHE cleore’ device CCR
inn the MBOX

Figure 1-1 EBox Simplified Block Diagram

EBOX/1-3

Figure 1-2 Control Pyramid

ree s
EATERNA, X5 DEVICE
rre RAND LB 12 LI
T€T 1 INTERWAL IT DEVICE | f evRt T e
HARD ER ;

O IRl S B

OinE® » CRO
INSTRUCTIONS
B e na— N R
egrge oo
asal TSI ANRER dieome v
CInEP MiCRG

INSTRUC TGS

Fapevey

Figure I-3 DRAM 1/0, JRST

Figure 1-4 illustrates the organization of the DRAM. By sharing portions of the DRAM between
cven ‘odd instruction. the shared pieces become half the nonshared. Therefore, the A, B, and J7-10
portions consist of 10 X 512 words and the P, J4, J1-3 portions consist of § X 256 words. This saves
essentially S X 256 words of DRAM storage. In addition, for JRST DRAM COMMON, bit 4 is made
zero and DRAM J7-10 is replaced by IR 9-12, again yielding a savings. Here the savings is $ X 16
words of DRAM storage. The areas allocated by the DRAM are indicated in Figure 1-3.

The EBox clock is variable and controlied by the microcode. The EBox and MBox are composed of
emitter-coupled logic (ECL), while the DTE and external devices are composed of transistor-transistor
logic (TTL). These two forms of logic are not directly compatible so the EBus is interfaced to the DTE,
as well as external devices, via s special controllable logic-level shifter called the Transiaior. This is
siecred by the EBox and provides for both ECL to TTL transfer and TTL to ECL transfer.

EBOX/1.$

The normal program flow may be interrupted through the use of one of eight interrupt control lines
(PI0-7). This allows the servicing of peripheral devices and controllers, as well as internal devices,
while executing the main program. The central processor contains six internal devices that are program
selectable via KL10 1/0 instructions. These devices are:

Priority Interrupt (PI)

Arithmetic Processor Status (APR)
Paging (PAG)

Cache Clearer (CCA)

Meter (MTR)

Timer (TIM)

Instructions, comprising a program, are maintained in core and/or fast memory. These instructions
are fetched and executed by the EBox. The control program within the EBox evaluates ficlds of infor-
mation that are part of the instruction curn:ndy being performed. Using various registers, fast memo-
ry. and adders, together with the VMA register and associated logic, the control program calculstes an
cffective address; fetches any required operands; performs the instruction-dependent functions {(e.g..
those functions specified in the op code); stores the generated results; snd fetches the next instruction.
The logical data path between the instruction itself and the MBox is formed by the AR and ARX,
together with various suxiliary registers, and the several adders contained on the Data Path Board
{EDP). The IR receives the op code and accumulator address (IRAC) effectively for each instruction,
while the ARX receives the entire instruction word consisting of the op code, accumulator address,
Indirect bit, and Index register address, as well as the initial address supplied with the instruction
referred 10 as the Y address. The control program contained within the DRAM passes through a well-
defined “loop™ consisting of microcode handlers, each of which performs a portion of the overall
instruction execution. These correspond closely with the traditional processor cycles of Instruction,
Address Calculation, Data Fetch, Execution, and Data Store with auxiliary cycles being Interrupt,
Page Fault, and Trap.

1.2 BASIC FUNCTIONAL BLOCKS
The seven basic EBox functional blocks (Figures 1-5 and 1-6) are:

Instruction Register-Dispatch-Main Control Store
Fast Memory

Address Path

Data Path

Request and MBox Control

EBus and PI Control

EBox Control Logic

NOVNEWN -

EBOX/1-6

0C 08 09 12

IR OP CODE IR AC FIELD

L

e ———l] R IRTT

-10 —= DRAM ADR = OPCODE 00-0B
r'\ 10 —=DRAM ADR + SEE NOTE 1
o 777 = — —
- N RN N SR
2l s [Roooo ~ 00D 00 - 000
N 10 “HALF-~ HALF. HALF- HALF
-4 N . 1 NN
o 199 . RN P 1 COMMON |1 COMMON [—1 COMMON
8| co-o7 '
2 EVEN EVEN EVEN EVEN
S HALF HALF HALF HALF
S -
o8
U~ o]
0 0
-
0 2 o] 2 1 3 4 a8 10 IR
DRAM REG A s . q) A g .0

NOTE: 1 For 10 instructions the
DRAM ADDRESS is formed os foliows:

DRAM ADR 03-05 =— 4
DRAM ADR 06-08 =— R 10-12

x*For internol devices IR 03-06=0, this makes x =7
For externe! device,IR 03-06 #O0, this mokes x * 1R 07-09

10-1884
Figure 1-4 DRAM Organization

EBOX/1-7

e e e o e e e e b e e e e B e e e e e e e e R B R e i R S S

A ERUS CLOCHS L : |
SBUs L OCe s .- A
| ey b g
| : -
I a - L
~ s . H +
= .ﬁ.-.. .‘.l'.. - 1 \"I'(
— H . A -
" — & 1 ¥1 .
1
| DSEATL M BEGIATLR |
+
= = - . T = 3 - =
x L BL L ATA ATG n_l--_p-_uu_a,_'nu.-‘},&.‘ys_ai-\.n.v_\-lt,h :.Ul' L. L LIELE SRS 2 i -
1 4 " . . 4 3 A - . . S T - :
r—* . - - - . . . PR . - . - . . +
o . . e Dt SCONTHDY + —+—t . . " . . -
'[3 - . - - 4+ . . . mam . et a - +
— . . N N ¥ S U T ¢ . + :: —i—t s - . . - -
I wa = LOW T RO
= -
| '
I WTET, BELATLE i
ke CONTROL l dil
]
TR0 e A Jessssssssssssssss L . - Srsssssnns 3 2
| A rT [1 | L
L B " ¥ T r g r Cl
DATA DaTa . . ADw . Cata DaTA
- : Ll 1 L] = : i
REQULST ' v T G 1>
AND | T . SRS BN .- S— {
v
COM T e, g Yo H
TS fwiaan
CON TR pata
—— ‘ NTa
- (LI -
. e NTRD,
RESLEW L i w1 hiC ast
: '. l
}.-‘ .
I L
! NTEOL
- ATy Tatus
LGS AnD B - - A e -
| reecrve avosess adla
InTERMECATE B0 S8
‘ LSS OF CusBLRT TNSTEOC T
— . — ———————— ——] »

Figure 1-5 EBox RAM Structures, Interfaces,
and Controls Block Diagram

EBOX/1-9

¢ — CTe £ 707 N _.1'—
- - -— t Bus D89 3
- . — . Ao #7 ATOEEAL Amt Wi : ETL Y IO L N j | FAN
“?‘Hu“‘! !.'..” DATE PRTw 1 ot ., €76 AD 10 € B3 l—-—
MBOY CLOCHS - [R - _— |] li;’
CON CLOCH =y = 500 Lot e —_— - - o | "
v CLOCK wf SENTRAL B :..c:(- 4 e 1
cha cLoce = gfg::” — WTR CLOCK | z
WMA CLDCE = = APE CLO0lw X
EBO08 SyhE - ciw [~ ETt Cioes - ! I winin
Clm T, S v £ Bus AT |
arn - L Bl SLg
=y cr aes HABADMEANG] g aus
. Cas [ssaRiE G conteo
£ . - - .m.: comermin | (‘_F__.‘._;..'".
. jucmi o8 partal}
i oo IONG Fe2]
- - H 3
- - -
tmus
e 2 e o
S i (o0 wgn _"F-
- - . - - !
e el Y
| MBCR CATE oWA 2734 — MiCRO
o e = ! - bl TACe
N e = LCACe TATA B9 38 - i |
e T
4 3% 30 ufta § i L .:" o1 oaTE YT, L]
25 . c — s 1 u LT
2 il b . 4ot 2L SATE VT, TO (L)
| o o i »
N ! L oS ADE 0o -0 i | 8t oo 3, - P t
T 1. tm| TomDY - L]
i | v
Hs . RS : s
: l D OAEATCN MAM WEGYTER .;I] U |
€ 2 ComTmO,
H l | == TR I_._- L™
ADURESY
s ._m L R ——— SonTex e — |
Timi
SLE { {1 1 1
. T3 | e conTaoc L traw ace AT
" oo 1 oot §.°;.'° cmaw LY _PT mouD | PI CYCLE |
ustn | comtme 1 | = — 11 === conThoL
g | s cea (L LLE e
- CONTHOL fatoBirC) ¥ | -
sep| | | - | r1 eveit 111
FOAG CTL | I CONTROL RAM WGISTES —I & M b J | |
save ¥ } - P eita0 - ~ i
e e | — oo cumes | *7 05, ,_ =1
8 - unon C1L T e - — Ii SAVE FLAGS [BUS CTL @ i |
S5 MEw CYC e e — . : =
ke | | | JEET = e T I s uTe 8E0 o—y ||
| ——d] DAL SET MUM DIAG CL8 MuN DiAD COM? o e——
L - TES
| i ooy — DiaG LOMD FUNC'S = pacnosTic Trap e
 USER] conTRow DIAG CONTBOL FumC $ e CONTROL CONTHOL -
= DA CONTROL FUNC O'x 7
i wyH®" 10T
oL o (318 8¢9
arp 1 P ? AR TNETC
O o384~
c P1 CYELE | ™ *aws losess
L t — | arn
—..}
N L — . — nge 00
" -y o - i] G EREC = o3OS STAGRE |
MBON C DR PaE CRE o] = >y
ANT EBON ERROR eus ogg-pa L v
‘vb woTE e B —_ - S
Lines wi™hou' errow heots maicets CONTROL MAM CONTROL SiGNE
& Corramt Bioth Praveous boch VME Bloch P Biocs FM biock & 2 ¢ .
. FW ADR Sel ¥ 4,70

Figure 1-6 EBox Overall Block Diagram

EBOX/1-11

1.2.1 Iastruction Register-Dispatch-Maia Control Store

The Instruction register is the center of all processor control. Instructions are fetched from Main
Memory or Fast Memory. The instruction enters ARX while the op code and AC address enter the
Instruction register. The op code (bits 00-08) is used to address & word in the DRAM that is unique for
cach instruction in the KL10 instruction set. This word contains three fields of information and a
parity bit. The Instruction, Dispatch, and Control formats are illustrated in Figure 1-7.

Because all instructions do not require the same types of data fetches, execution states, or data storage,
they are handled uniquely for each instruction or, in some cases, for each class of instruction.

The A field (0-2) of the DRAM generally specifies the data fetch requirements, if any, as well as
whether the next instruction in the sequence may be fetched early (prefetched). The B field (3-5)
generally specifies where (o store the results produced during execution; but in the case of Test, Skip,
Jump. and Compare instructions, it is used to determine whether to skip the next sequential instruction
or jump. The J field (14-23) is used to enter at the appropriate point in the Executor Microprogram
and is generzlly instruction-dependent.

Specific microroutines are used for each class of instruction. Amsociated with the DRAM is a register
that buffers the word selected for the instruction currently being performed. This register is loaded
soon after the instruction is placed in the Instruction register.

The microprogram is contained in a 1280 X 75-bit RAM called the CRAM. Both the DRAM and
CRAM are loaded when the KLIO system is powered up. This is accomplished by the PDP-11/40
processor vis the DTE and makes use of disgnostic control logic within the EBox. Associated with the
CRAM is a register that buffers cach word or microinstruction read from the CRAM. This register is
called the Control register and its contents are decoded to pmwdemlleonuol of the seven major
functional blocks described in Subsection 1.2. in addition, the Microprogram is structured into what
might be called a main loop. This loop, which is passed through regularly, is illustrated in Figure 1-8.

When an instruction is fetched, the op code and sccumulator address are placed in the IR and the
entire instruction word is placed in one of the Data Path registers called the ARX. Movement from
one routine (or Aandler) in the microprogram 1o another is made via 8 microcode Dispatch function.
The Control register contains many fields that are used for different types of control. Two such fields
that are used to control this movement are Jump Address and Dispatch Field. The Dispardi fupction
enabics various hardware conditions to be coasidered whea an instruction has been fetchea and
cnables the most important condition to prevail. Two such conditions that are illustrated in Figure 1-8
are Priority Interrupt Request Pending and Trap Request Pending. The hardware is arranged insuch a
fashion that priority interrupts have highest priority, followed by traps; the current instruction has
fowest priority. The dispatch that takes the microprogram to the Process Instruction Block is catled the
NICOND and is given after a Fetch request for the next instruction. If no priority interrupts or traps
are pending. the microprogram enters the next block to calculste the effective address. Here the dis-
patch is called Effective Address Modification (EAM OD) and enabies the hardware to sampie indirect
ficld bit 13 of ARX together with indexing field bits 14-17. The KL 10 instruction specification allows
multilevel indirect addressing with indexing st each level where indexing, if specified, is performed
first. The microprogram evaluates bits 14-17; if nonzero, the contents of bits 14-17 are used to accees
the specified 36-bit Index register. The right-most half of the Index rogister (bits 18-35) is added to the
Y ficid of the instruction word (bits 18-35); the right-most 18 bits of this result are used in the next step
of the cffective address calculation. Simultancously, the state of ARX bit 13 is tested and, if equal to s
1. s memory request is generated to the MBox control portion of the EBox. Each time a word is
fetched in this fashion and has bit 13 equal 10 1, the same sequence occurs until finzlly a word is
ferched with bit 13 equal to 0. Then, one more level of indexing may be specified and the result is the
effective address. At this time, the A READ dispatch is given and the A ficid of the DRAM is eval-
uated 10 enable a required operand to be fetched; if specified, a prefetch is also set up st this time.
Table 1-1 lists the A field codes and the specific function required.

EBOX/1-13

Table 1-1 AREAD

DRAMA 3-Bit Code MEM/AREAD DISP/AREAD
4] Immedute class instiuction. prefeich disabled. DRAM J DISP
1 Immediate class instruction: preteich enahled. DRAM § DISP
2 Not used E
3 Writecheck the paging. prefeich disabled 43
4 Data read requised.: prefetch disabled.* 44
s Data rcad required: prefeich enabled.* 45
[Data read required as separate ¢vcle. also wnte~hedk the 0
paging: prefeich disabled.
7 Data read modify wnte required. prefetch disabled 37
*Thexe two cases are ished onls by digeiching to atff de lomatwns The mutinode entered 2t locatme

4% prefetct o, that at 44 Soes not.

The next block is entered to perform the specific execution function or functions for the particular
instruction by the microprogram giving 8 DRAM J dispatch. Remember that each instruction has its
own DRAM word with a unique Jump field specifying where to go for that instruction’s execution.
The execution is very complex and is described in detail elsewhere in this manual. Basically, it performs
all required arithmetic, logical, or other types of functions required, and may also, in some cases, fetch
additional operands as required. Upon completion of this portion of the microprogram, the next
instruction may be started, provided that no data storage is required. If storage is required, two basic
cases must be considered. Those instructions that do not know where to store their data utilize the B
ficld of the DRAM as an index into the final block to store results. After storing results, the next
instruction is fetched and 2 NICOND dispaich is issued. Instructions that know where 10 go specifical-
ly in order 1o store their data do so by jumping to a specific Jocation in the microprogram, but may use
the B field of the DRAM to decode additional types of memory requests as required. This completes
the basic loop.

122 Fast Memory
An instruction word has only one 18-bit address field for addressing any location throughout afl of -
memory. Most instructions, however, have two 4-bit fields for addressing the first 16 locations of
memory. These 16 locations consist of a set of 16 general-purpose, high-speed integrated circuit regis-
ters grouped locally into eight physical blocks, which are softwarc-assignable by block. Non-1/0
instructions have an accumulator address field that can address one of these 16 locations as an accu-
mulator. Every instruction has 2 4-bit Index register address field that can address 15 of these locations
for use as Index registers in modifying the 18-bit memory address. (A zero Index register address
specifies no indexing.) The factor thst determines whether one of the first 16 locrtions in memory isan
accumulstor or an Index register is not the information it contains, nor how its contents are used, but
rather how the Jocation is addressed. The eight blocks of fast memory are contained physically on the
data path board within the EBox. This allows much quicker access to these locations whether they are
addressed as accumulators, Index registers, or ordinary memory locations. They can even be addressed
from the program counter, gaining faster exccution for a short but ofien repeated subroutine. Of the
cight blocks contained within the EBox, block 7 is permanently assigned to the microcode. Referring
to Figure 1-9, the monitor uses an assigned AC block in the same way that a user program described in
the following paragraphs would. The microcode uses the assigned AC block when executing compiex
instruction algorithms. From the remaining blocks (0-6), two can be assigned under program control
(DATAO PAG) as the current and previous context AC blocks. The current context AC biock is used
by the user program for indexing in effective address calculation and for general storage as specified by
the AC field of the instruction and/or by the effective virtual sddress (location 0-17).

EBOX/1-14

INSTRUCTION

9 4 s £ 1) s 17 19 2
O COOE (I8 Ails (-3 e (EFETT il ADORESY v J
0
o-1r P.
¢ DISPATCH RaM
oc 02 03 o8 % W 13 .oy
- " ¢ L]
VETEmiA) | STORE 81 | im: 4 DSPATER AL 14
' ' :
- -
TN .
S N
[- 70 STORE OPLRANDS 108 "
CLETAMN INSTRUCTIONS AL 80 6 oarrn,
¢ PROVIDLS $RiP Juw TEST
v AND COWMPARE CONTADLY
(D\‘I S OF DATA FETCe, L el] B T
[FAGL TESTING ANT TO N Teg ERLCUTOR
"“ LTI ENABLL
CONTROL RAm
mt{) 1w 2021 22 3 26 21 I9 30 B W o s
r r YT T T T -
l 4 DISPATCH AW 14) Az ata ¥ s ace an anx IR
4 ¥ i | i
i S
Q-3 DATA PATH
BT REGATER
MO CONT
P .
"'" oty s SneRaLr conTROLS
W L
\‘t"u ¥ oF AY “
v -il b s 1 0 sonr f‘h? Aok SYNC POINT "
CONTROL RAM (Contd) A - ’ Ny
\ \ / e () \
“ 38 % ar 4z a3 as n}s ol an a3 50 3t i wyse s s sy g0 S es 66 6T rere 13/t .
7, 7 T ; A W
|- Sran E StabA E A 7 s | Tmg | vin | 1P L COND DisPSPLC F}”z/.’o','/'; : ” _|
7 . A -
‘h‘h,‘- '_-“. ,’ "-“.“- "
S — e L4 M N S i
10-BIT SHIFT COUNTER M- BT AR TER PROVIDES SPLCIAL MICRD COOL WSED (W CONMUNC TN
ADDLE AND iNPUT FuUNC TiONS wite Tell SPECIAL
WiELR CONTROL -l CONTRO, BRANCHING Wi Te Te FulTiONS OF THE
RO PROGAAN DISPATER FilLD
e poee

Figure 1-7 Instruction, Dispatch,
and Control Formats

EDOX,(I-H'

e S B S

LOAD WWSIRUCTION WORD

—— - sy ‘
ARITHML T u(s'qru i o |
PSR a0 |
[cPog facfa]=] ~]
e
CORS ees— L
y
oRAm
Al - GATEY
r—————————ﬁ h—-—-—-——-—-——-—-\
MICHO ~ =
| PROGRAM et N ey
N CoaCution
N

| g

RO
TR T O
~—

-, EAWOD —
RN [X
by | | ==
: | ==
B | L o 2
NTEEET BIGULYT ADDRLAS | ek

< P FLTim

)
|
I
I
|
|
I
I
i
I
I
I
I
|
I
|
|
|
|
|
|

I
|
I
I
|
i
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
I
I
I
I
|
I
—

< FETEm WiRY ASTR = :
l L l:c-ﬁ?- T 1 |
T ERLPT BEQUEST
| e

FETCH MERT (NS TRUCTION o iy f

o N e s S = (P BTN [i
T T
e e

Figure 1-8 Microprogram Main Loop
EBOX /117

Figure 1-9 Basic Fast Memory Structure

The previous context AC block is used by the monitor to aliow the monitor to reference the previous
user's address space to pass arguments, data, or status information between the user program and the
monitor. This is normally done when the user program executes a monitor call for some type of
SCTVICE.

The microprogram running within the CRAM may select eight possible sources to be the word address
for fast memory; these sources are indicated on the figure as follows:

AC

AC+I

AC+2

AC+3

AC+4

ARX 14 - 17
VMA 32-35
CRAM 05 - 08

The sclection of the sppropriate source is a function of the 3-bit microinstruction FM ADR FIELD.

The block 10 be used is selected by the same FM ADR FIELD 2nd corresponds to three block sources
as indicated in Table 1-2.

- EBOX/1-18

Table 1-2 KM Selection

FM ADR BLK 4. 2.1 Source

FM ADR Field -[FM ADR 10.4.2.1 Source
I
1
!

0 AL Cutrent Bhwk
t Al ¢} i Curtemt Blck
N ARV 14 17 H XR Block®

3 VMA 3 as | VMA Bicck®
3 Ate? i Current Block

i

! Afe1
[A48

i CRAM =05 0%

Current Blinh
Current Blwk
CRAM 202 04

>

“DNaw may wiect esther the current of prevmsus AC bl b addiw

The selection of AC, AC+§, AC+2, and AC+3 is & function of the class of KL10 instruction being
performed. All non 10 instructions specify an accumuistor address in the instruction word, bits 9-12.

The iogical mstructions - Logical Shift Combined (LSHC) and Rotate Combined (ROTC) - specify
the use of both AC and AC+1. Similarly, the fixed-point arithmetic instructions Multiply (MUL),
Divide (D1V), and Arithmetic Shift Combined (ASHC) specify use of AC and AC+1. The double
integer arithmetic instructions Double Add (DADD), Double Subtract {DSUB), Double Multiply
(DMULY), and Double Divide (DDIV) specify use of AC, AC+1, AC+2, and AC+3. As pointed out
previously. the microprogram is permanently assigned AC block 7 for its own use. During extended
instruction processing, the microprogram addresses words in AC block 7 by using magic number field
bits 05-08, while selecting AC block ? with magic number ficld bits 02-04. These ACs provide tempo-
rary working storage for the microprogram. Similarly, the microprogram addresses AC+4 by com-
bining the AC address taken from IR AC9-2 with bits of the magic number field in an adder network
to produce AC+4

For selection of AC, AC+1, AC+2, AC+3, or AC+4, the current block is always used. Whenever a
main memory reference is made, the microcode references the fast memory locstion given by VMA
32-35, enabling the hardware 10 switch the reference to fast memory, if necessary. When the instruc-
tion’s effective address is calculated, the microprogram aliows the specified Index register w0 be
addressed in fast memory by ensbling ARX 14-17 to address the word. For both cases, i.c., VMA
32-35 or ARX 14-17 sddressing fast memory, the AC block may be either the current block or the
previous block, but is a function of the context of the instruction.

If an executive XCT is performed in response to s user's call (MUUO), then the previous physical
block and current physicsi block will be made to be different unless the operating system saves the
user’s current AC block and then wishes to use the same block once again, which is unlikely. As an
example, assume the user is assigned AC block 1; his previous AC block would initially be | aiso. If the
user then performs an MUUO, the executive subroutine entered may safely load the curreat AC block
with some other block number and the previous user block wiil remain unchanged. The operating
system may perform an executive XCT utilizing the user's previous block and an AC within that block.
The hardware cnables the sclection at the time of the previous block for indexing. In addition, the
operating system may also reference the user’'s AC block (previous context block | in the example)
from the VMA_ In this case (referring to Figure 1-9), mixer selection 3 is enabled and the microword
FM ADR ficid specifies VMA.

During normal instruction processing, if VMA bits 13-31 are equal to 0, the address in bits 32-3Sisan
FM address.

EBOX/1-19

Some examples using the current AC block in various selections are given below. Assume the following
is performed by the operating system:

This will detanlt 10 | xey block
0. AC=]

Joad bt cunrent Bl =2
Previnuy Bih =2

FXAC =1

HRLEL EXAC, 102200

Jaad the curtent BIL= = 2 and the
Previcus Bh== 2

DATAO PAG_FXAC

JRST 2.¢« USRPOWD Pick up user monde. flags. and

larmn on asxet

The following codes are for the user;

Tlus will be 1n BIA=2

.Thus will be 1n Bik=2

The word 0.777777 to AC'L

The word 777777777777 10 AL

The one’s comp of the word m ACT to AC2
which 1 equal 10 777777.0

This mstruction attempts o

push the contents ot ACZ inte

Jocaton ACL. 1t will cause PDOVE

and thus generates TRAP=2

ACT =]

AC2 =2

MOVEL ACY1. 777777
HRLEM ACT, AC2
SETCMM. AC1

PUSH ACT, 3{AC2)

in the example, the symbol EXAC is defined as the number 1. Assume, for this example. that EXAC is
referenced as an AC accumulator in executive block 0. The first use of EXAC is in the instruction
HRLEI EXAC, 102200. This instruction takes the number in the Y field of the instruction, which, in
this example, is the eflective address, and places it in the ieft half of EXAC (which is executive AC1),
with the sign of the right haif of the word 0,102200 extended in the right half of EXAC. In this
instruction, the current AC is referenced in bits 9-12 of the instruction, and the mixer selection is 0. To
load the user AC blocks, both current and previous, it is necessary now for the executive to perform
the indicated DATAQ PAG instruction.

The left half-word in EXAC contains the necessary bits to enable the loading of the current and
previous blocks (EBus bits 6, 7, and 8 for the current block and bits 9, 10, and 11 for the previous
block). Next, we assume location USRPCWD contains the appropriate bit configuration to start the
user for whom we loaded the AC biock numbers. The instruction JRST 2, @ USRPCWD makes an
indirect reference 10 location USRPCWD. The resulting word will then contain the user mode bit (bit
5). possibly the public mode bit (bit 7), any other relevant flags in the remaining left half-word, and the
user virtual address in the right half-word. The user has defined the symbols ACI and AC2 as having
the values | and 2, respectively. As indicated in this example, these correspond to ACl and AC2 in
block number 2. The first instruction performed by the user is MOVE] AC1, 777777, which places the
number 0777777 in accumuiator 1. On the next instruction, the word in AC] as addressed by instruc-
tion field bits 9-12 is read out. Remember that during the effective address calculation, the AC number
is loaded from ARX 9-12 into register AC in the EBox.

EBOX/1-20

The FM ADR ficld of the microword that is performing the fast memory reference will specify a field
function of 0, which will select the current block as weli as register AC which, as pointed out, contains
the value of AC 1 (1). The operation, specified by the instruction, is to take the right half of AC! and
store it into the left half of AC2 with its sign extended into the other half-word. Because the sign of the
right half-word in AC1 is negative, the result is the word 777777,777777. Notice that we must now
reflerence AC block 2, location 2, by using VMA bits 32-35. This operation is specified with a different
microcontrol word and at a different time than the fetch of the word from AC1. Actually, the content
of AC1 is obtained by performing a READ: the word T77777,777777 is stored into AC2 on B WRITE.
The next instruction, SETCMM, reads the word from AC1 as addressed by VMA, takes the I's com-
plement of it, and stores the result (777777,0) back into AC) sgain as addressed using VMA. Thus, the
same sddress is used for read as well as write. Finally, the PUSH instruction performs an indexing
function using the current AC block. The number 3, which is the Y field in the instruction, is added to
the number contained in AC2, as addressed in the example. using the mixer selection of 2 (XR).

Thus, the address is taken from ARX 14-17 during the effective address calculation. The number 3 is
added to the number 777777,777777 and the right half of the result (2) is used as the effective address.
Then the instruction attempts to push the aumber 777777,777777 onto the stack as addressed by the
updated right half of the word in ACI. The updating takes place first. The word is fetched from AC}
using the curreni block and the address in the EBox register AC. Then, this word has +1 added to both
haives and, if the left word is such that the sddition causes a carry from bit 0, & pushdown list overflow
trap occurs.

1.2.3 Address Path

The EBox performs a program by executing instructions retrieved from jocations addressed by the PC,
8 23-bit register contained in the EBox dats path. At the beginning of each instruction, PC is
incremented by one so that it normally contains an address one greater than the current instruction.
Sequential program flow is altered by changing the contents of PC, either by incrementing it an extra
time as in a Skip instruction, or by replacing its contents with the value specified by a Jump instruc-
tion. Instructions may be fetched either from core memory, which is external to the EBox, or from fast
memory, which is internal to the EBox.

Generally, instructions provide at least two operand addresses to the EBox. One address is that of an
internal sccumulator, and is addressed by bits 9-12 of the instruction. The other address, also supplied
by the instruction, may be used to address either core or fast memory and is contained in bits 13-35 of
the instruction word. This is a composite address, such that bit 13 specifies the type of addressing, i.e.,
direct or indirect; bits 14-17 specify an index register for use in address modification; and bits 18-35
address a virtual memory location.

Because the PC is used to keep track of where in the program the EBox is executing instructions, an
additional register is provided to handle addresses that can be generated during effective address
calculations, during operand reads and/or writes, and at other times. This 23-bit register, also contain-
ed in the EBox data path, is calied the VMA register.

Figure 1-10 illusirates the basic path connections from the PC and AD. A control field consisting of
two bits in the microinstruction is provided to select the source of input to VMA. This ficld is called
the “VMA field.” In addition, two other fields are used to provide alternate input to the VMA as well
as provide the ability to increment or decrement the VMA directly. These ficlds, also a part of the
microinstruction word, are called the “condition field” and “magic number ficld.”

Referring to Figure 1-10, to load the VMA from AD, the microinstruction VMA field is coded sym-
bolicaily as “*VMA/AD.” The field format is indicated at the lower right of the figure. The AD is
enabled into the input of the VMA register by the function VMA «~ AD, and the input to VMA is
enabled for any of the followine junctions: VMA «~ PC, VMA «~ PC+1, or VMA ~ AD.

EBOX/1-21

>

¥ML 13 3%
PO e ST

WBOX GATE 2735

LLY LR LT I 2)

!

AN

'
v

VNAR e @ Tu(S
ENABLE GIvES PCot |

OR & COVE:NATION OF
@ AND MISCELLANEQUS |
SPECIAL CONDITIONS |

VMA 2738 G‘ -
po— -

>

COND/ v MA DETREMEN?
CONLC w8 NIVEMENY

H
{

=

A A

Lo ek

COND

lo————— wicno msTRUCTION

ami e . VN e P e
/ et N 7™ swae al
P tANT OF "mfSE
* * l LOAT oMb,
- YMA— 40 ;7 f Lovea == 452
’ i '
t
a0 vMA AD T, T rrm—
* i i
¥ } ; !
! Twise - i :
. conps”
. R VU |
i :
[}
T T R
Awack = | < v conct
FiELD {1 FiELD L_“VIA ELD FUNCTION
; boe O Jmacvaa
’ Lle S L LA S
M 4 -] VMA /PC w1
v T bvmasAD

Figure 1-10 VMA Structure Simplified

EBOX/1-22

Similarly, to update the PC (Figure 1-11), the microinstruction VMA field is coded to specify the
function "VMA /PC+1." This disables VMA — AD, and 30 the VMA defauits to VMA « VMA AD a3
input. At this time, the COND ficld must not be VMA « # if it is desired 10 enable the VMA AD to
impiement the function A+B. The A input to VMA AD is from PC bits 13-35. The B input is forced to
+1if - PC+1 INH is true, and if the VMA field specifies the function “VMA/PC+1." The input to
VMA is cnabled for PC+1 as well. Certain instructions such as JUMPXX, AOJXX, or SOJIXX condi-
tionally load VMA with either E or PC+1. Instructions such ss SKIPXX, TEST, CAIXX, and
CAMXX conditionally skip an instruction, so VMA may be loaded with cither PC+1 or PC+2. In
general. the VMA is loaded with PC+1 for most instructions by the microinstruction following the
cffective address calculation (sssuming no special instructions and not loading VM A from AD). Those
instructions that perform an instruction prefetch will enable the VMA from PC+1 on the A READ
dispatch function. This function is used to trigger the Fetch cycle and, conditionally, the micro-
program enters the wait state until the operand srrives when the data is fetched from the M Box. If this
is the case. and the prefetch condition is truc. the VMA input will be PC+ 1; when the M Box responds,
restarting the EBox clock, the VMA loads with PC+1.

Instructions such as MOVEI, ADDI, SUBL, and HXXXI fetch no operands during A READ: instead,
they use the effective address as data. These instructions prefetch the next instruction and the micro-
program does not enter the wait state at all. Thus, the VMA is loaded with PC+1 as the microprogram
passcs through A READ dispatch.

The function VMA +1 is used by such instructions as double MOVE, JSA. and JSR. Here, the micro-
instruction VMA field is not used, but the function VMA +1 is enabled by the condition field coded as
COND/VMA INC. The VMA register itself contsins logic for the incrementation. Similarly, the
function VMA - | is used by byte and ADJBP instructions in cases where & word must be fetched from
E - 1. Once again, the VMA field is not used; instead, the condition field is coded COND/VMA DEC.
This is also a VMA built-in function.

=
0

CAMA AD oA INPLT

J

YA AD o B (NPT

BLet The (Ses nores .
RT3%e s
IBEW VMR FiEIU PCet-

L §
£ er

I
~

Nk roemay Fo 30 S3CERY fm e Yioceing

T AIIOND caponn

3 Bgeer

T Ay 3pp 2! mtruct.ons 0 g MUUD, eerapt shruchion

Figure 1-11 PC + I Function

EBOX/1-23

The special number, magic number, and miscellancous conditions shown on VMA AD in Figure 1-10
are used during LUUQ, MUUO, and Pl handling to gencrate a range of special addresses 1o reference
the user or executive process tables in memory. During these types of functions, the VMA AD is
controlled by VMA §, which enables the Boolean function “B.” MVA AD B input bits 27-35 are
manipulated, while bits 18-26 are cleared; this aliows for the generation of process table word address-
es in the range of 000-777. Note, however, that addresses in the range of 40-510 only are currently
generated by hardware, ©

1.2.4 Request and MBox Coatrol

In general, most of the EBox memory request type operations are controlled by the 4-bit MEM field in
the microinstruction (Figure 1-12). This may be used alone or with the DRAM A or B field values for
most reads and writes. In addition. the 5-bit special microinstruction field (SPEC) can spexify a func-
tion SP MEM CYCLE, which is sometimes used with the magic number field (a 9-bit microinstruction
ficld) to modify MBox read and write operations, ¢.g., for MUUO or LUUO. Note that the basic
MBox activity involves a request, 8 virtual address, and MBox qualifiers consisting of a multitude of
control signals that qualify the type of request being made. This is foliowed by:

1. A response from the MBox with the data when the request is successful,
2. PF HOLD foliowed by MBox response IN and no data on a page fault, or
3. MBox response IN with data followed by MB PAR ERR, for an MB parity error condition.

Additional conditions are covered eisewhere in this manual.

VIRTUAL ADDAESS vua NORMALLY FROM
T contes &€ P BC
wMA s VMA
B¢
€00 mEg A3 .
———m—t e 22 -— SIMANL -
WBOx RESP .
e po. e e TRANSS (X
< MBOX QUALIFIERS | NROX 1 [RO UL T
coNTADL 1 v B R |_16.S Qua. rigus
' i otcowe N
wO Pk gam e 1 ifmws | 105 san B
i €T h)
PF nOLD 1B wRTg
_PENOLD e - irgrem
] 1REG § uNC H X
i PA ND ; fsprr
2 ievrenp i || E1a3d
LCAD ARR NI MEM CYC
. P I SRR dor SN
I RPN
. N U8
s 8 P . i i
oo s2[{83 6 isvecies &2/ rn e | oa
T T T
I 31 WEN | COMC L d
2 oiseatce 2 4 g i to | } {sn‘ i
RaM
)
o S MERO WETRUCTION -

Figure 1-12 MBox-VMA-EBUS Control Simplified

EBOX/1-24

1.2.4.1 Kl Style Paging - For cach MBox request iavolving a virtual address translation, the MBox
must verify that the virtual address is legal. In general, the physical page must be in core for a read and
be writable for a write. In addition, the address space to which it belongs must correspond to that
being referenced. i.c., a public program cannot read or write into a private address space.

Two styles of paging are implemented: the first is patterned after the K110 processor's memory man-
agement scheme: the second after the KL10 style.

The MBox contains two base registers that can be loaded via the EBox. These registers are used as the
base address of core page tables during virtual memory address transiation. The base registers are 13
bits wide. The User Base Register (UBR) is loaded by performing s privileged 170 instruction
(DATAO PAG). similarly. the Executive Base Register (EBR) is loaded by performing another privi-
leged 1/0 Instruction (CONG PAG). These registers are normaily loaded by the operating system st
predetermined times. For example, the EBR is normally loaded once when the operating system is
bootstrapped. Also, each time a user is started in a normal multiprogramming environment, i.c., more
than one user program resident in core memory, the UBR is reloaded to point at the User Page Table.

14 26 27 had

x —
[nase [AR

] PurS (AL ADDRESS

w8k USER BASE
B0 -EFEC BASE

Ser o ¢

- wALE WORD - e

sRREE 1 N Sy
i.‘-z-HJ, s |aemiec] GXE
S i Aol A L

EvEn PAGE 200 PALL

JPROCESS TAR.E
PAGE TABIE ENTH

NG
U T e ®a~-2%

6011300 W10 0N O
w the puge vevie. I E .

Figure 1-13 Page Table Access

Each time the EBox makes 3 memory reference 10 the MBox (Figure 1-13), the MBox evaluates the
virtual address. The details of this operation can be found in the M Box chapter of the KL/0 Theory of
Operation Manual. Basically, the page number supplied in VMA 18-26 is used as an index into a
hardware page table within the MBox. The MBox looks for the referenced page in this table. If it is not
found, the MBox uses the appropriate base register (UBR or EBR) with the virtual page number
supplied in VMA to form a 22-bit physical memory address, as indicated.

The appropriate entry is obtained and then written by the MBox into & hardware page table within the

MBox. (Actually. cight half-word entries are fetched at a time, but for this level of explanation, only
one is considered.)

EBOX/1-28

i
i

The five bits A, P, W, S, C (generally called use bits or page descriptor bits) are tested against the
qualificrs sent by the EBox during the reference. Then the M Box, using the physical address. looks in
the cache for the word requested. If it does not find the word., it concatenates the physical page address
-(Figure 1-14) with the virtual word address provided in VM A bits 27-35 and makes a second physical
memory reference. This address is indicated in Figure 1-15.

o USER Bast
r afgetim
w |
H T
i N

LSER PROCESS |

B The 34
ExECUT.vF BASE
RESSVER

A ETe

TABLE
BDURESS
T ATION
il easto s

uSER PAGES
< ,,’\I

-
DL

] rase vu-':! PAGET?T

1] pagee BRat

I
.
i - i .
: " .
i - L § . nrers
£AEZ PAGES) .
[T E

PAGE 33€ | PAGESST | T

v ... mALE WORD - P

R Prrs AL

P] Prrs A, I .
Lt. ¥ .._'s c! ";.,; -
b i hd L

LLTRLLEN

- 8 #its -

A& - ACCESSAR.F A (“HRE
PSR e - oonic e
{a- woiteance
$ ~ FOR SOFTWwARE uSE
L - USE TrE CACwE ’l

PLSE BTS

Figure 1-14 K1 Style Paging

EBOX/1-26

o PR EL Be
Phot TR a5t 1
4 ¢ o t A

BP9 1o

Figure 1-15 Physical Memory Address Format

NOTE
A quadword is a block of fowr comtiguous words
whose sddrem differs only ia the two least significant
bits.

In practice. address bits 14-33 specify a 4-word block called a guadword: bits 34 and 3§ specify which
word within that quadword is required by the EBox, or is being written by the EBox. Once the address
translation process has been succeasfully completed for & virtual page, subsequent references to that
same page causc the M Box to fill in the corresponding words in the cache within the M Box. Each time
a reference finds a valid word in the cache during a read, it is placed on the EBox cache data lines and
MBox response is issued. Page faults occur as follows: For the initial reference, the MBox looks in the
hardware page table in the MBox, does not find the physical page sddress, and performs the sub-
sequent process table reference (refill cycie) for the haif-word containing the use bits and physical page
address. Then, upon receiving the eight half-word entries from core memory, the MBox finds the
access bit tumned off, i.c., 0: then a page fault is generated. The eight half-words are always written in
*‘re MBox hardware page table (directory) whether or not the access bit in the associated word is on.
However, when the access bit for the associated word is off, the MBox asserts PAGE FAIL HOLD.
The MBox loads an internal register (EBus register) with & page fail status word that describes the type
of fault and also contains information about the user's virtual address. Referring to Figure 1-16, the
EBox detects the PAGE FAIL HOLD level from the MBox, and forces the CRAM address logic to
CRAM location 1777. Here the page fault handler is entered. It performs the indicated functions
(Figure 1-16), and enters an Executive routine to handie the fault.

s L EAN uP
r. C.ARENT
i INSTRUCTION

A) beo atap o
| 1AL wbir Y wot i CInGS FROM
£ . N : [%
o 2ETE LT 0g 3)
}—ee whiTE COWROSITE
: | READ Mtw # wORD . OC 30 H 5 wond 1w Pt
N ; } 1 LOCATION 300
. soncE taAP :
M ——o WA TE 00D PC
* | °¥ worn] P8 S5 AN | i wOAC 1he uPT
2l waoe o oce i \ SECATION 800
T RESPONS K o M {
i | commmn 1 e ntap s C woRD
PP H S PY
LOLKT On 902
,J

. N e
Q.
® 3t BTS2 g " et

P WONL s O . ane
Figure 1-16 Page Fault Overview

EBOX/1-27

In addition, the MBox asserts MB PARITY ERR five MBox ticks after issuing MBOX RESPONSE
IN, This sets APR MB PAR ERR, which causes an interrupt. The remaining errors set appropriate
APR error flags and likewise cause interrupts on the assigned APR interrupt channel.

1.2.4.2 KL Paging - The KL paging facilities suppornt sophisticated operating system features such as
efficient program working set management and demand paging, and extensive shanng of data and
programs on s page-by-page basis. Much of the paging mechanism is implemented by the KL micro-
code, rather than just specific hardware. This combination of microcode and hardware is referred 1o as
the KL 10 pager of TOPS-20 paging.

Refer to Figure 1-17. Each user’s virtual address space comprises 32 equal sections of 256K words per
section (512 pages of 512 words per page). A section is represented by one of 32 section pomters
located in the User Process Table (UPT). For EXEC sections, the 32 section pointers are in the EXEC
Process Table (EPT). The monitor can divide the EXEC address space into “per-process™ and *per-
job™ arcas through the use of indirect pointers; no such division is built into the Pager.

A section pointer eventually addresses s page table that represents all pages in a 256K virtual address
space. The section pointer may be Immediate, Shared, or Indirect, but must yield a physical address of
a page table that represents all pages of the section.

The page pointer is divided into three sections: Type Code, Access Bits, and Storage. Figure 1-18
illustrates the basic page pointer format and Figure 1-19 shows the sequence of steps in its
interpretation:

1. A virtual memory reference addresses 3 section pointer in the UPT or EPT for EXEC
operation.

2. The section pointer is used to fetch an entry from the SPT (this is a pointer 10 a page table).

3. The SPT entry points to a location within a page table representing 512 pages by one page
pointer for cach page.

4. The page table holds the physical page number required to complete the virtual to physical
address mapping.

These steps describe the most elementary and immediate reference type. The complexity of other
reference types requires a discussion of pointer types.

Page Pointers - The pointer type is encoded in bits 0-2 of the page pointer word (Figure 1-18). Again
the pointer types are:

Code Fuaction

0 No Access

I Immediate or Private
2 Shared

2 Indirect

4-7 Not Used (reserved)

EBOX/1-28

USE R BASTE REGISTER

PRIVATL PAGE

PAGE TASLE

UBIA PROCESS TABLE

P:;::A'l
— ==y}
| %
T BASE RECHETIR }3 : o
((& »

=3

HARED PAOE

PRIVATE PAGE
1+ MOIRECTY

Tt

w20

Figure 1-17 KL Paging Layout

EBOX/1-29

STORAGE ADDAIES®
A

(MMMEDIATE POMTER ONL Y ’ ~N
[} 2 3 4 L] . ? 1 2 1”1 7» n »
l I " J -] ! i] fesemvio I } !]
210 PAGE 1N Mt MORY
cooe
0 MO ACCESS 233 PHYSICAL PAGE NO
18.22 - MUST BL 2¢%0
1 IMEOIATE
7 smanLo 2120 PAGE NOT 1% CORE

47 RESERVED INOY USED)

| 021

stes wah 4

oy © o the e possten’
rosLc
Noloronas pniy troom the
ouncmind @0 Lernet mods

wRITE
Te rslersacin net sliowed

CACHE

Oste trom page muy 3o
shocad = e cactm
B4 + 3. CACNME
M - 0. NOCAOH

WMTEIIWMAY 8Ff URD YO
HOLD OIBK OR OTHER BACKUP
STORAGE ADDRESS

*STOAAGE ADORESS
The aaomple shows on
omevdary typs of poge
wmppng the Saction Puwnes
POAts twrough e SPT to 8
Poge Yotle
TOPS 20 wom shovas o
Rt SUCTIA poraee s

o amrs

Figure 1-18 Page Mapping (Virtual to Physical)

hotd -1

PAGE TABLE

USEM PROCESS TARLE) EnTAY 1312 wORDS!
” (
secrion (PECIALTSHARES |
POINTER PAGES TABLE)
USECT —
‘I

)2
A

DATA PAGE
%12 wORDS:!

PAGE
POINTER

PrvSICAL
po- ADOWLSS
ALQUESTID

10m

Figure 1-19 Typical Paging Path

EBOX/1-30

The Immediate Pointer (Figure 1-20) holds a storage address in bits 12-35. The pointer is called &
private pointer because it is “'private™ to the particuiar page tabic containing the pointer. This should
not be confused with the Public bit, which describes the type of access aliowed.

The Shared Pointer (Figure 1-21) contains an index that addresses into the Special/Shared Pages Table
(SPT). The SPT Base Register (SBR: reserved AC block) points to the beginning of the SPT. Thesum
of the SPT index and the SBR points to a word containing the storage address of the desired page. The
word number from the virtual address is used to complete the reference. Regardless of the number of
page tables holding a particular shared pointer, the physical address is recorded only once in the SPT.
Therefore. the monitor can move the page with only one address 1o update.

The Indirect Pointer (Figure 1-22) identifies both another page table and a new pointer within the page
table. This allows onc page to be exactly equivalent to another page in a separate address space. The
object page is locatsd by using the SPT index.

Like a Shared Pointer, the SPT index in the Indirect Pointer allows the physical address of the page
table to be stored in just one place. if the associated page is in memory, the page number ficld of the
indirect Pointer is used to select a new pointer word from the page table. This pointer can be any one
of three types previously described. or no access and the access bits are ANDed with the access bits of
the Indirect Pointer.

The Indirect chaining may be arbitrary in depth, but the Pl will break out of indirect chain and restart
afier the Pl to service & priority interrupt in the case of long direct chains or indirect loops.

Some examples (Figures 1-23 through 1-25) of pointer interpretation follow: a flow chart (Figure 1-26)
s provided to aid in working through the examples.

MAEOIATE SECTION POINTER 11, ¢

TTTITE

DEFMITION

°

Ll

PAGE TABLE ADORESS l

Wer Pows Trps A1, o the tuts Sotem B iomedon
Sevtwme P

03 P B9 e it 1w o (31 The RIS Swy Sty Bu

»

- Kons Megs

o Wrne 8n Wase wt_ slues wrem rebaresam 19 9
Susoved w v page

o oot Ueast

o Covtes B Whon omt SRpwt Sgs 45N W0 be Sheeri
wwe the Contn

orn oot Uenst

e 2 2 Andran Ra Outum e Page Tabte Addran

NOTIL SIT3 12 M CONTAN A “STORAGE ADDRESE” 3 1227 » 0. A TRAP IS CAUSID 102811

Figure 1-20 Immediate Section Pointer

EBOX/1-31

SHARLD SECTION POINTER 2,)

L

o 1 2 3 - L] ?
rACE
e = I wer TABLE
L] 1 ° " Ll c = T ANDER (SPTR }_l
il - - |
i —3 T
(1 DEFINTTION DUSCHIPTION 1 = / pASE
UsIET - i Pl
o0o7 Pocrte Ty & D, wn v Vet el e i S et Ma . S |
T e P L] H
e | O
L] Putsla Bt vk B o D), Ve e ey ey b J| L]
e e by B e ey /
e B e —t I . -
[Woete B Wi a8 e '
LIt AR L)
- St v !
-
o Cacra o P et e e e 10 B et e] g
e the Cashe o @ PAGE WO - WORD e
oray Pt Ut el [J e l“ e] J
.
"wn LAl The SFT smtey @ fownt 07 The physas! cors o i e 2 M -
e et by Tha g of Ve W T s vikTuaL PR AL
gt gt 10 BFT lemas MCTiONN0 - @ MCTION N0 =« 00
rowo | wm Oracewo L | aAeanrrvams
wORD w0 = an wosDNo - E3 |
AR D S W e
Figure 1-21 Shared Section Pointer et 1 e l -
o E) n =
INDIRLCT SICTION POINTER 13,) W20
o 1 2 b] - L . r L] L] 17 u »
I L] l ' I v [v I " [;'] c [E } PAGE WunEL R PAGH TABLE IDENTIFIER (89T X0 PHYLICAL ADORIES OF PAGH TABLL
- T INTEY
oa Ix | 00 lc:-a - WPTH)
- DL INITION CUSCRIFTION Prap—) < Y
o007 Pute Typw B3 s Vel et s Tt b o ..
St Porae
ar Fubsin B W phm w w ID Ve gy ey e
B e] STOAAGE ADOALES OF PAGE
W e PAGH TABLL []
" o0 - O
o e B Wihar et alhomy e e b arme o b i 3
Sams e 10 T g -~ U B 2 " »
o Wout Unes AT DA TE PO ICOOK « 1!
L Cactm B Fihee e plhe e B2 1o b e
o S i € IR UBECT + SECTION MO | CONTAINS SPTR
©VBER - SPTH CONTAINE PACE TABLE FAGE WO &
orom [e—pT— I DO T AN oF act
onr Sactuon Tutve bdas It P ot AR the Fage Tabie NOTES AN -~ ACONCATINATIO wiTw @
P e i et | et st e e Amam gy = - =y
LT L)
AL T Les The P ertry o fownd o1 the phyma! wes
e greee by the b of the U1 baw
A SN A N Figure 1-23 Pointer Interpretation (Normal Section Pointer; Shared)
10T
Figure 1-22 Indirect Section Pointer

EBOX/1-32

EBOX/1-33

TaBLE
e
SCTION
uer TaBLE p@
san Jo iy
— 0 I
usgeT - Ll Tam
SECTION WO — | A
e wrn L
hatd
\ | .
1

\\ CTION
wadA \ ™o PAGH WO]
|
C = [=71 =]
] LE] " ow non »
SCTION TABLE
< INDIRECT O SCTION TARLE SDINTIFI® AP TR
u;.l“;';n L AR] l @ ez LN J
LI | " "o =
BCTION Taml
ADDS 53
T INTRY
om " l@ 227 |{w-'--
A
L L 1 ® n »
PHYLICAL ADDALSS OF NI W PAGE TABLE
BACTION TaBul
m _I.Dl[] @ ln]rou
~ ~
® ® ¢ 2 “” »
BTOMAGE ADDALES OF FALT
FAGH TARLL
wm b =1 [.l![e]c-.\n
— ~
(O] - ° i “” »

Figure 1-24 Pointer Interpretation (Indirect Section Pointer)

EBOX/1-34

AL TABLE Y !

““Grier = “_l

FACH
i Lint
1 w0
= 5
FACHE TamH 7
w
= i IS
PRIVATE
FALE YA Y
WOHRLC T rAGH WO PAGH VAR WDANTIFILN WP TE)
e s Iail I L'\u ne I ur]
o 2 . "o »
SO PALE TARLE PAGE Wkl R
- INTEy
T [1 ® m J
‘ i
e W © (] »
-y AT
PAGE TABE J
an e [' - l ™ |
et
- L 7 " »
. I
TP et et e et et
o Lomdeatn ¥ e Fgars 171 10w UPT A s
et Foge Totme | Som S 00 SO0 32T 00 VET XIT whrh v S
e gt § et g - VL
Tt BT g Th om0 L L E 2]
—— P Tt (71 -
-
[|| Qi Y —— oot Rl
16 mn

Figure 1-25 Pointer Interpretation (Indirect Page Pointer)

EBOX/1-35

VMA 1317 [2o ivation oo v 00
HCTONND | e e
VMA 1831 - | LSLCT 4o LSECT +37 o
PAGL WO kuun-uucl-n
r prs—
TYPg =1 4 — - -l“,l‘;
M DA TE e Al
~
1 - P et]
1oomternaniel | T et Page Versbin
1 = C bonohel l“mh‘
= cosmm -
TYel -3 AR WR
AR D0 AR
~
CHEBR EBICT «
SICTION NO |
- AR [@7 fem Ragure (GRH e
== WY ioiae TN et b Page
IR L T eeee— Y
v
CUBR UsiCT « " L _“_:u---—- o
SECTION NO | . Ly AND | —— - g——
- an b Loy 08
B an iy
e R e - SAC IO WO
CIRBR «
LLERLE
EL]
CIT urDart
b Clam 133
S CTION w0
| —— an
e el et I~
b e
e T
0 evea O e em
Figure 1-26 Pointer Interpretation Flow Diagram (Sheet 1 of 5) Figure 1-26 Pointer Interpretation Flow Diagram (Sheet 2 of §)

EBOX/1-36 EBOX/1-37

<>

oo Page Pomte trom
PIPAGE Y4 e Curvert
Vortusl Page arom trum sthe

TVMA W -
AR - 238 1 AR BT ot et inteet Pt
- PT PAGE Fage Tatie = cows wne
cican spTractl [~ = 1 1 PAGE s vaton
- AR lﬂt—l-ﬂl-—
[Gon 31 Lowy v 5P 1 Bane
= =i Fagmte (LEH s b 18 B
L ¥ Share Powmie
o ¥
. AR T2
FALT WO
~
AR CSTMIE) r
v | B BT e e P S
CLTDATA -AR e s VBT arw et
STORE. C T PAGL ", | TPV inden (SPTXI te wtemtty 0
|_raciwoi -am | I Moty CET Lawy tor (i
' | pynecnt Page Tatite
Y= = = A B B imeddad bt] & ot
1 | et s Page s mot
PAR.3 & : | e changen
AR 4w
can-s- < | 7 ;
':':" bt Mo chach g g etae Voot
L -~ lh-n--um-—-

AR 2138
FAGE WO
CICBR » PAGL WO |

.

10 e 10 S 90

Figure 1-26 Pointer Interpretation Flow Diagram (Sheet 3 of 5) Figure 1-26 Pointer Interpretation Flow Diagram (Sheet 4 of §)

EBOX/1-38 EBOX/1-39

] T wens by softwere to wnscate
o teveaty wretie
"W submten t0 hardwers of specast
| sction @ requecd on 8 aeme rotmonce

AR V CSTDATA

AR

STORE
PWSEC FAGE NO r Load pagng memory {aagung chchwe;
- b= — — = wnin the rmoives VMA 10
PAGING CACHE Lm,,,,....,.

@———- Revtart fawied referonce

Figure 1-26 Pointer Interpretation Flow Diagram (Sheet § of §)

10 261wl

EBOX /140

Specisl/Shared Pages Table (SPT) - The Special/Shared Pages Table (SPT) contains the physical
addresses of pages that are shared by many page tables. or of pages used in a special way, i.c., as page
tables. They are stored in onc common location to aliow modification to the pages by changing a single
entry. The SPT Index is added to the STP base address to form a physical address of the associated
entry.

Core States Table (CST) - Virtual memory management requires information about memory refer-
ences generated by each user's processes. Adding the Core Status Table (CST) base register to the
physical page number from a storage address permits the monitor to address and update information
regarding the page reference. Figure 1-27 shows the flow of updating using a CST entry. This enables
pages to be ordered by “age” (time of last reference) and classified by the type of process referencing
the page.

The reference indication is carried by assigning one bit to each sctive process. By placing a 1 in that bit
positon in the pager data word, then, when a reference is made, the 1 is placed in the CST word in the
bit position assigned to the process making reference. The modified bit (35) is set if the page is modi-
fied. permitting the monitor to avoid swapping out of pages to which only read references are made.

Paging Hardware Support — The paging hardware is transparent to the user. All memory, both virtual
and physical in user and monitor space, is divided into pages.

The virtual address comprises 23 bits, five (5) bits for section numbers, nine (9) bits for virtual page
numbers, and nine (9) low-order bits (line number), which address the location within the page. The
virtual page number is first usd as an index into s hardware page table that contains up to 512 direct
virtuai-to-physical address transiations. If the 13-bit physical address is found in the hardware page
table, a 22-bit physical sddress is formed by concatenating the 13-bit physical address with the 3-bit
line nuinber. If the entry does not exist in the hardware page table, & sequence of transiations is
initiated (o locate a page table in memory that contains a physical address (if one exists) for the virtual
page.

Cached Paging Data - The hardware page table referred 10 st the beginning of this section is effectively
a cache of paging dats (not to be confused with the memory data cache) that has been sccumulated by
previously feiching the data from memory, or by previous poinier interpretation. A virtual address is
first checked against the current contents of this hardware pager and, if found, immediately returns &
physical address. If the physical address is not found, the pointer interpretation (Figure 1-26) fetches
informsation from memory to resolve the virtual address. Upon completion, this transiation may be
placed in the hardware page table forming the cache of recently used page sddresses.

The hardware page table is loaded by the microcode. The paging cache is implemented as 512 entries,
one for each page of a user’s virtual address space. The EXEC and USER are offset from each other,
but they share the same 512 entries. Therefore, at any given time, the paging cache holds translation
information about most of the sctive pages. A guarantee that the 512 most recently used pages will be
addressed by the paging cache cannot be made. However, the last page used will aiways be in the
paging cache.

EBOX/1-4)

Cars Stonun Tatdes
K ath sddromed by page taonbr}

[=3X] ST 1 c3Y 2 51 2 €374 [= 208)
PAGE
»0
MICRO CODE SYORACE SMARED - 108K MHYSI0 TEMPORANY
STATUS ADDREES t 424 Owil R$MIF STATUS
wOTE
eCH CET ! THROUGM CST &
st ONLY RELEVANT TO
ENTAY MONITOR SOF TWARE
- = Page & wacoabls
AC BLOCK §
Word O
r
yomeo Tot o marge wntor metion
¢ Hotds about Qurrent releronce
i
'S t
ACBLOCK & ” o
Wod 3 v
CSTDATA
WRITE v "
RIS ERLNCE aveirm | T T T Semestueds:
:—I
5TORE
(=34
ENTRY
A\LES

Figure 1-27 KL Core Status Tables Updating Flow Diagram

EBOX/1-42

When the monitor takes any action that would invalidate information about existing virtual-to-phys-
ical address translation, the paging cache must be either partially or completely cleared. Examples of
such instances are:

1. Change of user process - clear entire paging memory (entire user address space has
changed).

2. One page removed from core - clear the entire paging memory (several Shared and Indirect
Pointers may have used the page).

3. Pointer is removed from UPT - clear the entire paging memory (association for many pages
through UPT is changed).

4. Monitor mapped page to EXEC space for iocal use - only one entry cleared (When page is
unmapped. only that one pointer must be cleared. Because this facility is provided by the
pager, it may be used to reduce reload overhead.)

If the paging data is not found, the flow in Figure 1-26 is followed. A special trap is initiated and the
microcode saves vuinerable EBox data before starting on the pointer tracing algorithm. If the
algorithm is successful, the resolved pointer and associated information are loaded into the paging
memory, the EBox registers are restored, and the memory request is again issued.

The microcode must also handie the first Write Request trap, inhibiting the write until the modified bit
can be set. The pager maintains this modified bit. The microcode implements this as follows.

During a paging memory reioad, the write access bit (W) is set in the paging memory only if the current
memory reference is & write (and a write is legal for the page). Thus, if the first reference toa pageisa
read, the W bit in the corresponding paging memory entry sets to 0. A subsequent write reference
causes another trap to the microcode. On this second trap, the pointer interpretation is repeated and
the paging memory is reloaded, this time with the W bit set.

1.2.4.3 MBox Error Conditions - In addition to the page fault mechanism, the following five types of
errors can be generated by the MBox 10 the EBox:

}. Cache Address Perity Entor
2. MBox Address Parity Error
3. SBus Ervor

4. Nonexistent Memory

S. MB Parity Error

The MB Parity Error is handled similar to a page fault. The AR Parity Network, upon detecting s
parity error in a data fetch or an instruction fetched from the MBox, causes the page fault handier to
be cailed.

1244 VMA Comtrol - Two basic types of virtual addresses can be passed to the MBox for core
memory references. The first type is consistent with Ki-style paging: the second is consistent with KL-
style paging. In both forms of addressing, note that the VMA jines actually consist of 23 bits. For K1-
style paging. bits 13-17 are unused and forced to 0. In the logical sense, the virtual address may be
viewed for Kl-style paging as consisting of |8 bits of addressing information. The basic address trans-
fation mechanism is indicated in Figure 1-28.

EBOX /143

.

!

Actually, the virtual address in K110 paging mode is derived from the instruction Y field. which may
be modificd during the effective address calculation. This consists of 18 bits. The additional five bits
(VMA 13-17) are present 10 facilitate KL paging mode, which can generate a 23-bit virtual address.
However, the MBox docs utilize the high-order part of the VMA as indicated in Figure 1-29 to gener-
ate a Hashed Page Table address for internal use. The hashing technique is basically an associative
process, but precludes the necessity for hardware associative memory.

The VMA can be loaded from the ADDER or VMA ADDER. Generally, during caiculations for the
effective address, it is loaded with the contents of ARX via the ADDER. At this time, ARX contains

an intermediate address {Y + C(XR)) or E.

"

6 2%

¥ 2 17 18 26 27 3
2 PBA S THE PHYSICAL MEWORY = T -
ADDRESS REG:STER i T WEOR pase l PaSt & N i Pace Z Suks
[4 4 Py i wces
' L r3
~ LT ..
LTS TN a PrvsiCAC .
ADDRESS < - ACDRL S s e
« USE BT FERe e
. .
pursicar fo—mn 0732 @ L. LI A L0
ADDRESS ™
SPACE O] ' 10
_Ireap Pursicar !
o 1PAGL once] AND USE B(TST |
o I” -
- b
.
»
. bo— pacr ~amit
.
- N 14 16 27 $&
L_ =7 L owrseal] e
Sea Past e | wobs
i -
o N ——
ouap worp ¢ [3 —_— CSn PagTY
trouR 36 #:7 woRDs:\ [
CATRE CATA
RE L ® oz -3
e TRl FIRST WORD YT BE
. RECEWED BY Tof
WBOR WARDWARE B0 15 TnE WORD
RESYRICTION REQUESIED @ Twi EBOX
r4ca
Figure 1-28 Basic Address Translation

EBOX/1-44

¥ |
236 | 73ee | 2% | 23
! I
250 | 2ee | raes | 2eas
- |:’. |
. + i
POl
v a%6s | 7% | TAs | Io4s
+ + 4
nam | s j e 1T
1 i =
-
L}
i -
Y SR
wseonn | =] JuAL wOR GaowE
-
r—L
oo
. mAgH
LR Y

e M -

PEer S ALY BITS 77 34 SELECT DML OF FOUR 28447
SELECTS & SINGLE wORD THOM Teis LOCAT(ON PAIN

CACWES W7 3

Figure 1-29 Virtual Address Mapping,
K110 Paging Mode

EBOX /1-45

1.2.8 EBus Costrol and Pl Coatrol

The EBus control consists primarily of two major sections. One section is used exclusively for priority
interrupt handling (PI CONTROL) and the second is used for 1/0 instruction handling (EBUS CON-
TROL). Each KL10 controller (except the DIA20 1/O Bus Adapter) is assigned a device code. This
code is seven bits wide (IR 3-9). In addition, each device controller is wired to contain a physical
device number that relates 10 a preassigned scheme, and is slot dependent. Thus, Massbus controliers
hoid physical numbers in the range of 0-7; DTE20 numbers 10-13; and DIA20 number 17,. This
provides a physical priority scheme that supplements the programmabie priority interrupt system.

In the situation illustrated in Figure 1-30, both DSKs are amsigned to the same P{ level (level 5). This is
accomplished by the operating system with a CONO Pl to the Pl system enabling the processor to
accept interrupts on level 5. In addition, the operating system performs 8 CONO DSK, assigning the
DSK to level S. For the situation where both DSKs interrupt simultaneously, the EBox arbitrates the
priority interrupt levels and then physical device numbers are requested from both DSKs. These are
arbitrated according to the fixed scheme discussed previously. The DSK with physical No. 0 has
highest priority in this situation.

O e

32N
bo - P

-,

(300 wasSH. S
e

A PR

©tea

Figure 1-30 Simultancous Interrupis

The basic dialogue is shown in Figure 1-31. Once the priority interrupt system has been turned on and
set up by the operating system 10 handle interrupts, the EBox control automatically carries out all
dialogues necessary to obtain the API funciion word. When the AP function is on the EBus and
transfer is received from the device, the FBus control asserts PI READY, signaling the microprocessor
to take over. The microprocessor looks at this line, however, only at specific times during normal
instructions. One such instance is at NICOND Dispatch, which aiways occurs at the beginning of each
instruction. If at NICOND time, the Pl RDY condition is true (INT REQUEST sets), the PI HAN-
DLER is calied. To prevent further interruptions until the function can begin, the microprocessor sets

the Pl CYCLE flag. This causes the EBus Control to defer any further PI READYs. The Pl HAN-
DLER evaluates the API function word (Figure 1-32) and performs the indicsted service. As long as P1
CYCLE is on, other interrupts are not honored by the microprocessor. The time that PI CYCLE is
cleared is dependent upon the service performed. If the interrupt is a standard interrupt to 40 + 20, the
instruction in 40 + 2n should save the hardware state of the EBox, i.c., the flags, PC word. Appropri-
ate instructions are JSR and MUUOQ. Bad choices are JSP and PUSHJ which use ACs. The choice is
particularly bad because at the time of the interrupt nothing is known sbout their contents.

EBOX/1-47

SET INTERLDEX

PICYCLE

(4]
HANDLER

IMICRG PROCRAM
KOOKS

—D—

Pl ROY » 10T VLG

APl FUNCTION WORD 1S NCW
ON EBUS MEE FIGuRE - 2%

Figure 1-31

e -
7 INCOMNG PI REQ'S
.
.
.
H INCOMING P REQ'S
|
CSELECT mIGHEST PRIDMITY (EvEL™
FUNCT PP SERVED
CONTRGLLER SELECTY
$-6°P1 REQUEST TO BE #ONDRED |
oLy
i DEMAND t
- 3
N s
RECEIVE PuYS @S
.
.
.
SELECY miGrEsT
PIORITY PrYS &
FuNG Pf ADR %
e A N e
CONTROL.EN SELECT
G 3+ Puy PurS @ SEL
N 8-60 P O TU BE ONORED -
H
——
Doy
——
i CEMAND
[— ETNAN -y
S IMENSSER o
N
wer

P1 Dialogue Overview

EBOX/1-48

LTINS

R PEAVRRTY

A ALDRESS
anasy
weit s e
Lot can g ® LN Y P L
& st st.et e LR P IR A e
aTh (<% o on Tiom it At
Wit (S RAL Sl Toot LMS gt o it T RERE YAt
K 191 « LTARCARD Tl AN o “wonty
« 30 - hTl “ LTARUARD M emurT . o atr- s
. AT . hTOR AT SRS N rmart 1
sy foantr e 0 R I
+ Gatas L EAMN .- T ALY ARUTHC i
S Oata DUACAE ANO T 1R ATt
* BYTE TEANMER . T ONUIOMYTE tRANSIER
. mENEAVIO SR DA PRRIIESIIRT LTS
Stmak[RO AN MBI LT JFERTIRT Imfle e .
R R R A LR R R R AT NS FLT 4%

Figure 1-32 APl Word Format

Generally, a JSR instruction is placed in 40 + 2n for calls to the operating system Pl HANDLER. This
instruction causes PI CYCLE to clear. At this time, a pending interrupt may request microprocessor
attention and can raise Pl READY. In genersl, for the other cases, the equivalent of onc instruction is
provided before Pl CYCLE is cleared.

1/0 Instruction Dislogwe Overview - For 1/0 instruction transfers, the basic concept is illustrated in
Figure 1-33. The EBus Driver is called from the I/O HANDLER to generate the appropriate EBus
dialogue. First, the EBus is requested. This is necessary because the EBus is aiso used by the Pl system.
1f the EBus is free. the EBus driver sets 8 CP GRANT flag to hold control of the EBus; if the EBus is in
use, the EBox waits.

“E8CT MOW CONTAOLS

CEN DALIGUE vid Ch GRANT®
- r —

——— ‘_‘! " ;
i :
GET EBUS

—— us -
SIRIS O — €S9 - 06, 5CN [FuUNCT:OM DATAQ,
T it B o DATAL CONC, CONE
NG THY — wAY B mOL0F feus] B.LxO, Bux1
PREICVMED ASSERT CEWAND COKTBGL CONTROLLER
"o Camhe “- ASBERT CEVAND o

M SELECT
sut WAT AND mOe0] % 03-09
AL LGyl -
DEMAND

TRANSFER

AN « -

EBus DRVER)
A CATA/STATUS OR CONTRDL
LY TCFROM DEVICE EBOX
NOYTE
TRe BLATIE prorees (een: shTreng
tereeer e £, s 00 of EBUS 068 the TYL vele

CWOING, WL NEST

Figure 1-33 170 Instruction Dialogue Overview

EBOX /149

Basically. a sequence of microinstructions is performed having the condition field coded as
COND/EBUS CTL and the appropriate bits coded in the magic number field (a 9-bit microinstruction
field). Specific patterns in the number field with EBUS CTL true cause appropriate action in terms of
the dialogue. IR bits 3-9 are used to develop device controller select bits CS 00-07. IR 10-12 specify
the function to be performed by the EBus control logic, i.c., DATAO, CONO, etc. Upon completing
the transfer, the device generates 8 transfer. The EBus is released and this completes the dislogue.

1.2.6 Data Path
Referring to Figure 1-34, the logical data path consists of the following registers and adders:

Arithmetic Register
Arithmetic Register Extension
Buffer Register

Buffer Register Extension
Multiplier Quotient Register
Fast Memory

Adder

Adder Extension

Also included is fast memory and a 36-bit shift matrix that can implement various shifting operations
on data in AR, ARX, or the combined AR and ARX. The above registers and adders constitute the
arithmetic logic in the EBox. This logic is used to handle words in logical operations, data traasfers,
and fixed-point arithmetic (including effective address calculation). In these operations, fast memory is
used as a passive register; its output is the contents of the addressed Index register or Arithmetic
register. In association with the full word registers listed above, the shift counter (SC) and shift matrix
(SH) provide shifting in shift instructions, byte manipulation and. where required, in various instruc-
tions. The SC, with its adder (SCAD), and the floating exponent register (FE) are used for handling
floating-point exponents and various other special functions.

Double-precision floating-point and double precision integer operations require use of ARX. ADX,
and MQ, where ADX is a 36-bit extension of the main AD and ARX is 2 36-bit extension of AR. Thus,
the registers AR, ARX, BR, BRX, together with AD and ADX, can constitute a 36-bit, & 72-bit, and
with MQ, a 108-bit paith where necessary. In addition, ARX is used as a buffer for instructions ferched
from memory. The main data buffer, for words coming from or going to core or fast memory, is the
AR.

1.2.6.1 Isformstion Flow To and From Memory - Referring to Figure 1-35, this simplified block
diagram illustrates those paths that sre used in transferring information into and out of fast memory,
as well as to and from core memory via the MBox. Because of the structure of the EBox and design of
the microcode, a specific type of information will always enter or leave a given register. Table I-3 lists
the type of request, type of information, source or destination, and comments.

All memory operations that load either AR or ARX require an M Box request cycie. The generation of
thit request cycle, together with the necessary request qualifiers (¢.g.. Read, Read PSE Write, Write, or
Read-Write), is based upon the code specified in one of the ficlds of the microinstruction word. This
field is called the MEM field and is 4 bits wide. Some of the types of requests that can be initiated by
this ficld are: instruction fetches, indirect word fetches, dats fetches, and data writes.

EBOX/1-50

IDAGNOST I
Fusnt TiomN)

CACwL DATA 380

Cr

$

{

L LY i

“aw :
B0 Py

{ &)

L3

.
-
"
.
(53

12 e smar
| voam

1oy

LLLL N

Qo

.

=

-
W A LN

aw

—m—

o)

L .
-
b1 ;

Armd

aw

-

L]
(LI
R o e e P
" e AL e T Ak
T - T, L Ciw
TR TR
”
L
- ; ;
A -
i; ; aw s
A A& fab e
a
LR LR R LR R B
. L]
(FAST MLMORY ADORESS) Ihar
¥ . '_‘ 4
ﬂ': 'E AL
ML Ay A My
Asn k) ooy
syt -y 2
- M A =
L] L]
-

ure 1-34 KL 10 Register Interconnection
Diagram

EBOX/1-51

‘..’..’-’-....O......-..
® 1
s
4
L]
P 00 35 [
secosle -o0os e o H
[4 —--- - >
ams b & [St AL 20 AE SR T SN
@ D ‘
CACHE DATA LINES v Tn : ‘
M . ¢
b s
- -~ -9 -9 -0-a 3 P .
vaa 9 (3 hd
¢
N T .
‘%.......<...J ;l"”'“ .
Y e e——— : : : M :
Tl ‘. ; ¢
-24 & 38 v
LA M ‘.
v
ﬁ': . ¢
e — =~ il -l e el AD s
e e v
T s [o—o-—o—-o-—o—o—o—-o - .--o--oi- --e-t
s Iy Y :
3 b 4 +
S s :
_1}-»0‘9’» TR T S . 15 EXECUT NG ¢
— - ax Insta M
=] LCAD 11 fhoM ¢
— fu =3 AR 1m0 am: o
s —] v AND IR V1A AD '
- == aaseaesac e o DAL S S i v
=7 o : +
: s Y
4 . !
00 4 L3} ‘
DU
<: :> AR :
CACHE DATA LINES

LEGEND

serereec INTA FROM COREY
coseseee INSIRFROMFRY
— —b —0 —6 (INDEX REGISTLR:
—o—o —> —o (3 WORD FROM FN
=~ -0 INDEXED ADDRESS

o~ YFIELD OF CURRENT INSTRUCTON

>—>——>——0—9—> DATA READ OR €
40000000 DATA WRITE

NOTES
t S Excaptom e ICT
2 Poerty g 2 not acivied o 15 $raw-ng

Figure 1-35 Core and Fast Memory Information Flow

EBOX/1-53

Table 1-3 Memory Information Flow

Type of Trpe of Source Destination Comments
Reyuest Information
Read Instruction | Core Memon ARX ‘ Laaded via cache data hines i ftom core mem-
: o .oy of via the AD o trom st memory.
i Fast Memany ;
Read 125173 i Core Memory AR.ARX. 3 toaded vaa cache data lines 1) 5o core mem-
i o ot hoth ' ary or via AD trom fast memery.
i Fast Memory :
{ .
Write Data : AR Core Memary AR goes to the FM and to the cache.
or | tegardiess of which reads 1.
. }ast Memory
i ; ‘
i H
Read Indutect | Core Memany é ARX Lisded via cache data hines of from core mem-
Word ! or H ory o via AD if from fast memory.
! Fat Memony !
1
Read Imies P Vast Memory AR VMA The of the add d Index registet &5
Regster ! 1ead anto the ADDER “B”™ input where it is
; added to the current value of Y. The sum i3
; loaded mnto both AR and VMA under micro-
i code control.

The microinstruction contains a number of separate fields for register selection including a 3-bit AR
ficld and a 3-bit ARX ficid. In addition, three fields are provided for controlling the adder; two of
these, the ADA (3-bit field) and ADB (2-bit field), select various inputs to the adder. The third field,
AD (a 6-bit field). controls the adder directly. The actual selection of the source ot destination registers
depends on the following:

1. The microinstruction register select field function
2. The source or destination memory (e.g., fast memory or core memory).

As an example, consider an instruction fetch (not a prefetch) from fast memory. Refer to Figure 1-36.
The MEM ficld function of the microinstruction desiring the word is coded as FETCH. From this, the
term MCL LOAD ARX is produced and routed to EBox Control No. i, where it partially enables the
ARX SELect 1 and ARX SELect 2 Mixer Selection logic. The final sclection i a function of the
address contained in VMA. If this address is & fast memory address {¢.g., VMA 13-31 = 0), then the
ARX SELect 2 tline is fully enabled and the ARX SELect 1 line is inhibited by VMA AC REF.
Similarly, if the address in VM A is a core memory address, VMA AC REF will be false, inhibiting the
ARX SELect 2 line and enabling the ARX SELect 1 line.

EBOX/1-54

Asindicated in Figure 1-36, there are cight inputs to the ARX. The microinstruction may select any of
these eight inputs, if required, simply by coding the ARX ficld appropriately. The AR and its associ-
ated mixer are very similar to the ARX. In the case of reading a word of dats into AR from core
memory, the MEM field function, LOAD AR, is laiched into the request qualifier register in the
memory control, partially enabling the AR mixer select 11 and select 2 lines to the AR mixer. Once
again, the selection is a function of the address in VMA. If bits 13-31 of the virtual address are equal to
zero, the adder is enabled into the AR number 2 input, but if the address in bits 13-31 of VMA is
nonzero, the cache data lines are enabled into the AR number 2 input. As with ARX, the micro-
instruction may select any of the cight inputs oa the AR mixer, if required. Figure 1-37 is a simplified
version of the EBox data paths. The basic path connections and the direction of transfers are indicated.
Along the bottom of the figure is the portion of the microinstruction word format that controls the
data path. The simplified path does not show shift left or shift right connections.

1.2.6.2 iaformation Flow [/O aad Priority Interrupt - Figure 1-38 is a simplified path diagram used by
1/0 and priority interrupt operations. The major path is the shaded area, including the AR, adder,
EBus, translator external or internal devices, and MQ. The portion that is cross-hatched may be
generically called the “inspection and control path™ and includes the SH, SC, SCAD. FE, and CRAM
address logic. The remaining paths and registers are used as working registers; the usage depends on
the specific operation.

Note that internal device intormation flow (control data) is not transiated, but rather utilizes the
internal ECL EBus. External device information, however, entering or leaving the EBox, must be
translated in the direction TTL to ECL or ECL to TTL. If the operation being performed is 8 CONI or
DATALI the destination register is AR. If the operation is CONO or DATAO, the source is AD. The
processing of interrupts is more complex. The destination for the API function word is initially AR,
but the function performed in response to the decoding of this word may involve an instruction fetch, a
data read and writc, & date out, or a dats in operation. The microprogram begins to process the
interrupt when the AR contains the API function word transmitted from device and the EBus hand-
shake has been completed.

The microprogram places a copy of this word into MQ for use later and performs s SHIFT Dispatch
on the AP function code to the appropriate routine in the microprogram. To implement this dispatch,
the AR is enabled into the shift matrix; then the output bits (SH 00-03) are sampled in the CRAM
Address Control logic. In addition, another type of dispatch can be performed; this is called AR 00-03
Dispatch.

When the API function specifies a standard interrupt (API FCN 0 or 1) an instruction is fetched from
40 + 2n, where n is equal to the interrupting channel 1-7. These interrupt locations generally contain &
JSR instruction that must be performed in order to preserve the flags and PC of the interrupted
program. In addition, the current ACs must not be disturbed and the interrupt handler (monitor
routine) must be entered for polling of devices. In these situations, the microcode forms the correct
address in VMA (40 + 2n) and begins an instruction fetch by issuing a microinstruction with MEM
equal to FETCH. This fetch is from the Executive Process Table (EPT) and requires that the request
qualifier, EBox EPT, be asserted in order that the MBox access the EPT for the instruction.

EBOX/1-5§

P

£/M INTERFACE

MICRO | MEM rTlE—HDF.l‘?C.C-I:TR_OL_ ——
INSTR | l FIELD
; === FETCH QR LOAD ARX

REQUEST l
=1 - - OUALIFiER '
L1

< REQUEST QUALIFIERS

CRAM AHx SEL4 I. L

Ll T 3
I CRAM ARXM SEL2 l

j—Gﬂ__Cl:‘ | | :I:- L

__ARX SEL! ‘
LT_G; CRAM ARNXM SELY

b Yy

CEBOX CONTROL w 1 1

: : L ol
|

EBOx REQUEST ‘

I |
| iI
| 0
| /- 1|
r/ z '
| S
CACHE DATA
e e i - ﬂ___
S S
MBOX RESP : T

L e

SETTING CLK RESP

VIRTUAL ADDRESS

PROCESSOR
STATUS

I [
VMA AC REF | [Test I
13- 31w l
VIRTUAL
IutﬂOR‘r I
VMA

Figure 1-36 Loading ARX

EBOX/1-57

PROC SERIAL #

10 BIT LOGIC

MAIN DATA TRANSFER REGISTER
PATHS SHOWN IN FIG 1-4

3 10 36
NI BIT BIT
vl T St LOGIC ~~ LOGIC LOGIC
CARRY IN=1 ~ N "
™ E- ™ ‘A
——BOOLEAN =1, ARITH =0 S > ~ A
THESE s 7 S /
ARE FUNCTION =Y - s / \\
”~
ruuusso [_r"“’“ 5 Al . _;‘f
f// 2 opee aon [A %08 [ar [arx | en [enx [wo [FM fscao| squopiscao PF sc | re P _sm__
1-1 | 12-17 | 18-20 [7]22-23]|24-26 |27-29| 30 | } 32 [33-35 [36-38| 39-a1}Jas-as[] 46 | o7 [] anum
/] BASE lcontROLS|SELECTS [/AsELECTS seuects|secects| sec | sec | seu |secect| cowr [SEL LECT SEL | SEL SHe J
fpm ADDER | AD"A" |/{a08"| AR | arx | B8R | erx | ma | Fw | sc | 380 1 SCAD sc | e fiml}
!w.pmmrms‘ INPUT [/]INPUT | INPUT | INPUT | INPUT | INPUT |iNPUT | ADR | ADDER| inpuT [INPUT [/]INPUT |INPUT 4“.,“‘,7,0
MICRO INSTRUCTION DATA PATH CONTROL -
-840

Figure 1-37 EBox Data Paths
Simplificd Paths Diagram

EBOX/1-59

When the API function specifies a dispatch (APl FCN 2), the virtual address of an interrupt instruc-
tion (JSR) is provided by the device In this situation, the request does not assert the qualifier EBox
EPT because the address is not an EPT address, but rather somewhere in the virtual address space. For
the situations described up to this time, the instruction will enter AR X. Control is passed to the main
microcode loop for processing. The API function (Pl increment or PI decrement) is slightly different,
in that a word must be fetched from the virtusl address provided by the device. This word is then
incremented or decremented as specified in the AFI word and the result is written back into memory.
Here the AR is used both for the read and write operations.

API functions 4 and S require 8 DATAO and a DATAL, respectively, to be performed to the device.
Prior to performing the specified DATAO, s word is fetched from the virtual address provided in the
APl word and this word is loaded into AR. The path is now from AR 10 AD and then to the EBus,
which is controlied for the DATAO by the microcode. For the specificd DATAL, the operation is the
reverse. The required word is obtained from the device via the EBus under microcode control (EBus
dialoguc) and the word is loaded intoc AR. Next, the contents of AR must be written into the virtual
address supplied by the APl word. Of the remaining functions, only APl FCNG is used and this is
reserved for the DTE20 (10-11 interface). Examines and deposits, as well as byte transfers, may be
requested by the DTE. This subject is covered in Section 2.

EBOX/1-61

PR ————— e |

INSPECTION AND CONTROL

NTEO wAW
- 5%

e

b e g
| -!
I i
1]
| i
4= I J.
: H
| <+ HRERSSS
r
CtremaL
DELwLs
b 1 ¢ e == lipmgmici
1]
an ‘
1 =
2 Nk
!]
- I
L ¢
bl - = =g - - - - - - L3 - - - - - -
ADOL® (37 i
4 |
" 4
- - . . H
Ll I. ,
i
1 o i *
-~
i L L] | ': .
—
H i
P b '
' L]
- = . S '
ARE '.
A i T S———
INTERNAL T e
-~ DEWICES
’ £ ¥
alml ATA N— %
i
L]
s
LoLs

——
D NSPLCT 0% AN N et

- - SOOMNG DATA T o Ow

- DUTGO NG DATA §# LOw

Figure 1-38 Input/Output Priority Interrupt
Information Flow

EBOX/1-63

SECTION 2
FUNCTIONAL DESCRIPTION

2.1 INTRODUCTION

Figure 2-1 illustrates the major functional elements of the EBox. The purpose of this drawing is to
suppeort the functional descriptions contained in this section. The major data and address paths and
the individual controls introduced in the previous section are shown on this diagram with some addi-
tional detail. Major interfaces are also shown in some detail.

The interface between the EBox and the M Box is not a bus, but is functionally shown and described as
if it were, because its operation is similar to that of a bus.

As described in Section 1, the EBox serves as the Instruction Execution Unit for the KL10 system.
Access to main memory is logically controlled by the MBox; therefore, as the EBox requires memory
operands or instructions, it performs MBox cycles 10 obtain these words. These cycles take place over
the E/M interface. In a similar fashion, access to 1/O devices is via the EBus. Devices may commu-
nicate with the EBox over the EBus by utilizing the priority interrupt system. In addition, as the EBox
requires status or data from devices connected to the EBus or wishes to tranamit data or control
information to devices on the EBus, it does 30 by performing EBus cycles. These cycles take place over
the EBus. Figure 2-2 illustrates these primary hardware cycles. The implementation of MBox or EBus
cycles is via the microprograms stored in the CRAM.

2.2 MICROPROGRAM STATES AND PROCESSOR CYCLES
Referring to Figure 2-3, the EBox microprogram can be in one of the following states at any time:

Microprogram Running Microprogram and EBox Frozen
Microprogram Wait State Microprogram Deferred
Microprogram Halt Loop EBox Resct (Power Up Sequence)

A discussion describing how to read and understand the microcode is provided in Appendix A.

2.2.1 EBox Reset

During the power up sequence, the EBox, MBox, and all controllers are reset to known states. The
EBox, MBox, EBus, and SBus clocks are initialized and the CRAM register is cleared. This clearing
action places the EBox in the diagnostic state, because the dispatch field is equal to zero
(DISP/DIAG). A program running in PDP-11 memory then initializes the EBox, loads the Dispatch
RAM and verifies it, loads the CRAM and verifies it, and starts the microprogram into the Halt Joop.
In general, at this time, the system must be bootsirapped; to accomplish this, a number of diagnostic
functions are necessary. This is discussed in Section 3 and in the system and interface descriptions.

EBOX/2-1

WEOY DTN -y
i CL00E »-

= <i0CH »-

CRA CLOCH =
YMA CLOCe =
IB0E SYNC =

I =
MBCH GATE wwA 47 %
| cacet cata B0 32

"'ﬂl"'!-ar-‘\—

2o b

1t

-.I il
oD
b e

—-
foncy

L
el]

Ll
ara
O

macote CONTROL RAM CONTROL SIGhALS
Praveoes bloch vMA Bioch, KF Liach FM Biecr 470

CTL L 1T En I
- — _ "‘ ol R N
ADORTAS AND 1 4 R 3] 2
it FW T AD TE T B
™t 1
& e — !
1
ave 7 i - - -
LU L) LT PRI OATRY
a4 4 B Puuatnd WP + -
- -
AP -
- T - - -
INACPY 2 : i - L -
. avee 3 - -
: = % ' . . 4
[5]
Py AV Pory &
a3 : -
[R A '," WTE bt -
* T T
i & tws P2
+ - - - e -
]
| i
Alwl DA™R PPN L]
I] -| 1. ,.]— -l e i
I® 30 LA = o
4 g 1 s
"
Y DR ' [
| - a]
4 s
I po Cym FORCE 70T
LI ™
ADORLYS
—q CONTHD, R R
-'P = 1
- — NLONT ’
COMTIG, RAM ADE] L -::,u Pl oVt
fecec "~ 71 NG seY 1 =it | P3ocvoLe
CwAw ‘el oy r{@T ™ »1 DiSwAs COnTE
! S) 1 con
AL (@ 1] |
1 l e
r CONTRDL RAM REGSTER .“] = ..}.
- il b - 4
== EON0 Enabits | ..-T. el
L
o —— T 43 =
— - I |
13
Reat] DUAG SET BUN_ DIAG CLW Mun DG CONT
e B e
| l | ixtmty woog] o, DIAG L CAD FUNC'S ®= 40 a0n08TiC TRAP 11
__usee | SR DUAG CONTROL FUMC 5 = COMTROL CONTRIx
| use 301 LDIaG COMTROL FUNE T]
| el com T O A T enef 110
L] Lol
Tm....‘ t "] sans
|»1 cveee | | | arn
™ i = = . . 1 i T '3
et = — 114 3 — ¥)
= T — + — v K et J
s

Figure 2-1

EBox Functional Block Diagram

EBOX/2-3

TR AR TN
PO R AL M MR INETR

P e

i WIS A SUMKI N e CONMSTS O USUALLY
RO CYELES U Tl EBRON CYCLES
TONCOMDMN T Tel ¥ BUS Tel FIRST IS B0 8N
AL O bk Py Thl RLCOEST AND ToE
HANDLING (W 10 SLCOND 15 USED T0 L OAD
T MC THON I REEUTHS Thl WMA INFRACTICH

Til B AMF FAST AND
SLOW MBOX CYELES

1C-1580

Figure 2-2 Primary Hardware Cycles

EBOX 2-5

fewruana, acmion
EICuRED wia
VO =10 INTERFACE | Bink o sbce ar

LY AR & ~
e
i
waE
i
SYAYE
RO ¥y
war Sen
NERIACY BAM PAE § AN
. AW FaR R
(L Fasan ran WaY BI SawWL STA'E
WAET CTATE MR AR T
TiaTEena R WAt MEM
o ACTION WEG L W AN W
i et
LAl AL o

Foels 3
LR Bk

L
Tha st unid by 4 i Vo P
- PTG N TIOREL The oy o =
et MIGMAL =" i Sty The g
B e by of e 0 e] et o
e b it b B gt o e B G T e) e
Fo e Voo e Bastdue 1 e P

Figure 2-3 Microprogram Static Stales

2.2.2 Microprogram Halt Loop

The Halt loop is entered following a NICOND Dispatch, when RUN and PI CYCGLE are found clear.
Figure 24 is the flow diagram. Referring to Figure 2.5, the EBox contains a synchronizer (CON
START). which is set for three clock periods when CONTINUE is pressed. In addition, it also con-
tains a flag (CON INSTR GO), which is set by CONTINUE and remains set until a HALT instruction
is performed. The RUN flag in the EBox consists of a RUN source enabled by DIAG SET RUN and
CON INSTR GO true. Referring to Figure 2-4, assuming a HALT instruction has just been performed
(JRST 4) and the RUN flag has been found clear at NICOND Dispatch time, the Halt loop is entered.
The following occur immediately:

The AR is cleared.

The HALT Nag is set.

The current value of PC is loaded into VMA.
The current value of VMA is placed in PC.

EBOX /2-6

ALY
LDoe

CLEAR AR

ST HALT FLAG
TORPOE 1Y TD
i vma X
T PRIVIOUS

£

T

- —

s
TGy
]
ERECUTH EMARLE START
COMNTENTS TLAG VA M
oF AR SPEC INSTRICONT
T IS MO
LPDATED
MAN| VBOR
cvCil 7O
| FETOM INSTR THE ONLY P
| T PN TIONS
| | AL ST ALLOowID
1 ARE: AR Wi mE ARE
L LTS L] Pk 34
Teal INSTH ou s
Ttk s A
e - HARDWARL
C WESTRICTION
CLEARSTATE
MECISTE M AND
mILLASE
DO NICOND s

NO
INGLL
INSTH
MO0
ENTHY VIA
\oamsT e
~CONINT REQ PROCEED 2 WICOND WITH BN
NI TED FROWm
FOR INSTRUCTION NICOND
DIEFATC

=TI AR MAY ALSO WE
LOADED WiTH Thi
DIAGNOSTIC FUNCTION

LLREH

Figure 2-4 Microprogram Hait Loop

EBOX 2-7

Thus. if the HALT instruction was fetched from location 600, and the effective address supplied in the
HALT instruction was 100, PC would become 100 and YMA would become 601 (the updated PC
value). The START flag is tested to determine if CONTINUE was pressed. In this case, START will
be clear. If an interrupt is pending, the PI Handler is entered to service this interrupt.

When this is donc the next instruction is requested. This is followed by a NOOP microinstruction.
Finally. the State register {a hardware register in the EBox) is initialized clear. Then VICOND Dis-
patch is issued and the Halt loop is entered again.

If no interrupts are pending, the “Tight loop™ is entered, continually checking the ST~V T flag and
interrupt requests. Note that HALT INSTR does not clear the RUN source, but merely < ars INSTR
GO. which removes the CON RUN signal (Figure 2-5).

BTN PEETRET
p d .
LA IMT e - . D
- e
D46 B set {set Lo s
[
STORCE
o4z mew 1B Aue e timsers r et
T Crniek #y Jf i
COM Tow T - s ¢
a3
LESEL T MLt ergeer o teem 143 trep oy oe
A BT BT S PENL. WIIE e Latm DT Wt R

Figure 2-5 Run-Halt-Continue Logic

The HALT instruction is a *‘privileged instruction™; therefore, the EBox must be in cither diagnostic,
USER 10T. or KERNEL mode to clear CON INSTR GO. The PDP-1] may clear the RUN source at
any time by issuing {via the 10-11 Interface} DIAG RUN CLR. This causes the Tight loop to be
entered at the next NICOND Dispaich (assuming no interrupts are pending).

If it is desired 10 execute a single instruction, the AR may be loaded with the desired instruction by use
of the prescribed DIAG function, issued via the 10-11 Interface. Afier the AR has been loaded. the
START flag is enabled by issuing DIAG CONTINUE. The AR is tested for 2 nonzero value. If it is
nonzero, the contents of AR are executed; upon its completion, the Halt loop is once again entered.

It should be noted that PC+1 INHIBIT is true during the Execute function, to prevent the PC from
being updated. Similarly, by ciearing AR and pressing CONTINUE while CON RUN is disabled. one
instruction may be fetched at a time and executed, or the program may be resumed if CON RUN is
true after performing the instruction in AR. For this function, the microcode. at XCTW, is used to
fetch the instruction and wait for it. This instruction is performed, and the PC is allowed to be updated
by +1. At the end of the instruction, NICOND Dispatch is issued and the state of CON RUN is tested
together with other hardware conditions, to determine what to do next.

EBOX/2-8

2.2.3 Microprogram Running

Once the microprogram is running. it may enter any of the other states (Subsection 2.2). Normally, the
microprogram passes through a regularly defined sequence consisting of at least the five main dis-
patches (Main loop) shown in Figure 2-6. Between each dispatch, some number of microinstructions is
performed. A rough equivalence exists between the traditional computer machine cycles and those of
the FBox In general, the relationship is as shown in Table 2-1.

Table 2-1 EBox Main Loop/Traditional Machine Cycle Comparison
F ¢ o e oo

§ Bax Dispatch Main Loop : Traditionsl Machine (voles
NECOND Dispatch : Instruction
t AMOD Divpatch Address
A RI AD Dnpatels et
DRAM J tSee \ote) bt
B WRITE Dispanch ‘ Stome

e I VR e e

NOTE

This dispatch is referred to 1n the Micrucode as IR Dispatch

folototote

Figure 2-6 Dispatch Path Siate Diagram

EBOX /29

Altogether, there are 16 dispatches. The five basic dispatches constitute the main loop: an additional
cleven are. in general, instruction dependent and usually. if issued, follow an IR Dispatch (DRAM J
DISP). Each time an EBox clock tick occurs, the CRAM register is loaded with a8 microinstruction.
This microinstruction then contols formation of the next microins:ruction address. This is accom-
plished by the particular coding of the appropriate microinstruction fields. In general. there are four
types of CRAM address modifications (Figure 2-7):

Branch On Condition

Branch On Condition With Skip
Skip

Jump

The CRAM address logic samples conditions { Figure 2-8) supplied by various portions of EBox logic.
together with the current microinstruction 1, COND, and Dispatch ficlds, and then generates the next
CRAM address (CR ADR 00-10).

2.2.4 Microprogram Wiit State

As indicated in Figure 2-3. the Wait state (MBOX WAIT) occurs during memory requests involving
the M Box. In general (Figure 2-9), three main uses of the Wait state exist. The first is to assure that the
microprogram waits for an MBox responsc after having started an MBox cycle. The second use is to
hold off a second MBox cycle when the MBox has not yet responded to the first MBox cycle.

As shown in Figure 2-10, the EBox clock control samples the following signals:

MBOX WAIT
VMA AC REF
RESP MBOX

If an MBox cycle is started, MEM CYCLE sets, as enabled by the request. It remains set until XFER is
gencrated. When the request is to the MBox, and VMA 13-33 is nonzero, the XFER is generated as a
direct result of MBOX RESPONSE IN. If. however, VMA 13-33 is zero, VMA 32-35 is 2 fast memory
address and the EBox aborts the cycle. The XFER is a result of FM XFER. a signal generated from
within the EBox itself. If VMA AC REF is true, the EBox clock ignores MBOX WAIT. However,
when VMA AC REF is faise and MBOX WAIT is true, the EBox clock may be inhibited.

The third case involves instruction prefetches from fa<t memory (Figure 2-11). For this situation, the
microinstruction generating NICOND Dispatch also asscrts MB WAIT. This is necessary because the
EBox hardware requested the next instruction from the MBox rather than from fast memory. The
M Box detects that the VM A address contzined a fast memory address and aborts the cycle. The EBox
hardware switches the ARX input to the AD output, thus reading from fast memory.

NOTE
XFER = MB XFER v FM XFER

2.2.5 Microprogram and EBox Frozen
The microprogram and EBox frozen state occur in practice when any of the following events occur:

I. DRAM Parity Error while the EBox clock is running.
2. CRAM Parity Error while the EBox clock is running.

3. Fast Memory Parity Error while the EBox clock is running.

EBOX:2-10

3

LAAM ADR
tRAM 00 10
Vv (RA 0010

1 Luot
@ ! ‘As 7
;

MICRO

CRAM Ri GISTER-

INSTROC THON

In WAY FRANCH

POMSIBLE

11

"BWAY BRANCH"
POSSIBLE

f
i

T

Novien, mivd i

DISPATICH

coos | oisratcn

© wo]
T o T
™% r
) DHAN B
[viE
[> NORM
% | faucd

n A TVRE

>4 4
OnD i i
ADR MISC HARDW ; :
10 conps ; :
R | iseis
CONTROLLED
BY ek SKiP
" P @ P " CONDITION
¥
COND { DIsP :
1

EBOX/2-11

Figure 2-7 Basic Microprogram Address Control

TEAL 3% 8" P
- Leta ~
o Fate i

.-
FaRCT ¥rER

1 i
-
T AN & ate
abTRLnE -
MEw
" o
L
L] L]
[[+ L x
T T] T »
-aw
! COWD Dise J.‘
.
i ot i ! A

Figure 2-8 CRAM Address Inputs Simplified

pMaw A& T ST

 DRAM Ae Y, wE 7T
TPALE Cwe
CIQ/LATIR BES

N ek MLRD ST
TION AL MEM WD
LT

WROr BESEY
» %
. T,
HESEONGE 8
RECLWED FRm
et

NOTE
WEWWE WA T ompian YRET The = g
=Atsultign mpw Viprd [Eeigoee @ Lo ot
o

TR E

Figure 2-9 Wait State

EBOX/2-12

MEOE BEOE N

(3 raasno ey oot mic

CSANLES MY afs

_—— -r
S = S
IuH TONTROL _—1 gl - R NTRLL T ON -
] ‘
i .
|
| : [
i |
|
| - |
L] -
o e | .oy
Latvs T e
=
=== |
_—-’, | T :
L r wa Fh——
~ I | : N o . CE% e BN
| ' wLAs mhe] > - S aol AoLnik
» l VWA AT WEY OhTEL, . i
¥
A |
| | |
| |

LEL! CONTROL

RifEad gl ™ b
MR IR

3% 8y 4=

(]

Figure 2-10

Lo |

MBox Wait and EBox Clock

[/ __tmamasn
SEAD PRE FETOe

ASSUME PREFETCS

LI T
BlE TATA
AL

Mg o

WEGUY ampepn hat TRy fegedi) 00TE B Bt
WA rpmp ey g eal frgm The peme et LD

wots MBOE reaporag A1 gt fomg REAPLATTH
G empres byt e vMA cor (ATOM P

see Jes WEQ

*ame EBORC
O WICHD pragram

At certgie e AL TOm ater N ZOMDH

]

Figure 2-11 MBox Wait on Prefetch from Fast Memory

EBOX/2-13

Associated with each of these error conditions is an enable that must be activated prior to the occur-
rence of the error 1o be detected. The three enables are listed in Table 2-2.

Table 2-2 Error Stop Enables

Enable FBws Bit Function
CLK FM PAR CHICK ; x DIAG TUNC 36
CLK CRAMPAR CHECK 53 DIAG FUNC 46
CLK DRAM PAR CHIFCK | 34 DIAG FUNC 036
i —_

The DRAM words are coded in a specific fashion for each instruction. If a DRAM parity error occurs
undetected, it implies that the DRAM word has picked up or dropped an even number of bits. Sup-
pose, for example, that the DRAM J field picked up & bit, which changed the Jump address from 200
to 500. The microprogram would perform properly up to the point where it dispatched to the executor.
Here. instead of jumping 10 the MOVE microprogram, it jumps to the half-word microprogram with
erroncous results stored in the specified AC. In a similar fashion, & bit could be picked up <t dropped
in the DRAM A or B ficlds with equally disastrous results. The microprogram is a structured entity; an
erroneous variation of any of its bits in the CRAM r=gister causes errors in the execution of instruc-
tions and could cause the microprogram to lose control of the EBox. As an example, assume a micro-
instruction is loaded into the CRAM register. The Dispatch ficld, originally coded as DISP/DRAM B,
because of a dropped bit, becomes instead DISP/SIGNS. Thus, the next CRAM address will be
computed based on the signs of AR, BR, and AD instead of using the B ficld of the DRAM word: and
this would create the wrong CRAM addresses.

In general, all instructions in the KL10 Instruction Set utilize fast memory in some way. In addition,
the microprogram always uscs fast memory to set up the indexing function. If fast memory parity
errors were not detected, bad data could be generated and possibly erroncous instructions fetched
from fast memory.

2.2.6 Microprogram Deferred

The microprogram samples the EBox hardware only at specific times for pending priority interrupts or
pending traps. One such time is at NICOND Dispatch. Currently, eight possible conditions can occur
(Table 2-3). Three of these are related 1o interrupts, two are related to traps, one is for a halted
condition, and t%e remaining two are the more general cases. Here, the deferred condition is taken to
mean that upon finding an interrupt or a trap pending, the microprogram defers the pending instruc-
tion and instead handlcs the interrupt or trap first. In terms of iriterrupts, the highest priority condition
is with PI CYCLE (1). This implies that on the previous NICOND Dispatch INT REQ was true and
the microprogram diverted to the PI Handler to perform the first part of a standard (40 + 2n) inter-
rupt. For example, assuming device (n) interrupts, the Pl system carries out the necessary dialogue and
asserts Pl READY. This results in the assertion of INT REQ, which is sampled at NICOND Dispatch
time. Now assuming PI CYCLE (0) and RUN (1), the PI Handier is entered. The handler reads the
API function word on the EBus into AR and processes it. Here we will assume it specifies a standard
interrupt (40 + 2n). Assume the conditions shown in Figure 2-12.

EBOX/2-14

Table 2-3 NICOND Priorities

Conditim o 4 onsader Low Order CRAM ADR Bats 2 Follows
W Wheee 1o (o L RUN | MIR | INT AL TRAF | ANY | NHCOND | NICOND | NICOND | NICOND | NICOND
oL I~ REQ | REF I~ | TRAP TRAP o o o io
REQ N
Sy il Jart HANE Al 0" i i n 0] 1] o
Pl sk i 1
[T TESTISE o B HASL ADM e i u u 1] 1]] 0
1 cauwed | 1
MIK NI HASE AlWK+3] 0 U o 1 0 0
Hewguest i 1
" Regums: St HASE ALMR -+t u i i u] 1 0
et MR i 1
frstrac ion Setted BASE AlVR=1C ‘. 1 W i W " I 1 0 I o

Bramy mennny and

e TTapn Priviing |

Tistru st fetihied HAS
THoien Moy ahd
atrap o pending

e e B

N S T e
NN

It e thom mruny HASE ALK e] i i] '/r/ u 1 | ' 1 0
he tetubed Lron Y,
M amd e toapn /
hbing /
= 7/
{ [P TIPS RS BASY AL 0 1 0]] V%

be tety bl 2rom
M oand ot
W pendime

N

’//’// Urrating bt

EBOX/2-15

Figure 2-12 PI 40 + 2n Skip

The P! Handler sets P1 CYCLE, interlocking the microprogram and PI Poard, and temporarily, at
least. preventing any further INT REQs from being sampled by the microprogram. The Pl Handler
forces an instruction fetch from 40 + 2n: note that NICOND is not now generated. The SKIP instruc-
tion in 40 + 2n is performed and one of two possible actions results (in this case) from the state of the
DONE flag:

DONE (1) - Perform the instruction in 41 + 2n; this instruction must be of such a nature that Pl
CYCLE is cleared (JSR is such an instruction.)

DONE (0) -~ Dismiss the interrupt and clear PI CYCLE.

For this example, assume the instruction should be fetched from 41 + 2n [DONE (1)]. The dispatch,
therefore, is back 1o the PI Handler for the second part of the interrupt.

When the P! Handler releases the Pl system, NICOND Dispatch finds PI CYCLE still set. Because
this is the highest priority condition at NICOND time, the dispatch is back to the PI Handler for the
second part of the interrupt. The PI Handler generates the appropriate 41 + 2n address and causes the
instruction to be performed, once again omitting 8 NICOND Dispatch. The instruction fetched must
be one of the following:

JSR

Jsp Changes the ACs; use
PUSHJ} not recommended
MUUQ

SK [P (will be satisfied)
All of these instructions cause PI CYCLE to be cleared.

2.2.7 Microprogram Organization

The basic control program modules are illustrated in Figure 2-13. The symbol containing the Data
Storage Manager illustrated in Figure 2-13 represents a predefined process. Examples of such pre-
defined processes include software and hardware subroutines, the Unibus dialogue, and even functions
of an alarm clock.

In the microprogram context, the predefined processes represent functional arcas of the microcode.

Figures 2-14 through 2-21 represent the hardware that controls branching to each of the handicrs
illustrated on Figure 2-13.

EBOX/2-17

These may be grouped as follows:

The Startup and Stop Interface (F gure 2-14) evaluates initial hardware conditions and dispatches io
the appropriate handler. The nature of the condition could be a pending priority interrupt. hait condi-
tion, etc. Upon completion, all instructions must pass through this process. The mnemonic for the
dispatch to this process is DISP/NICOND (Next Instruction Condition).

The Effective Address Manager (Figure 2-15) evaluates indirect address flag bit 13, index field bits
14-17 in the ARX (which contains the current instruction), and certain hardware conditions such as
Pls or page failures. It either dispatches to the appropriate handler or calculates the effective address
by requesting the necessary fast memory (Index) cycles or M Box Indirect (I) cycles. The mnemonic for
the dispatch to this process is DISP/EAMOD (Effective Address Mode).

i DATA
-~ STomace
MANLGER

. .__..r..‘ —
o
@
v

N RIS

.
NICONS ™ 5iSP
i T
H i pata
{ COFEICm
i ! MANAGER
i -
T IR DisPT
‘ORAM 4} H 3
; "3
e - Jeorr .
s 1. psrarcn g ind maw
: - TABLE L.] r TN maniits e
5 3 H
. T3 B
is 3 . - -
i 4 oy ; CAREAD
SR - ~on L ose
i P D EFFELT e
‘ : : . : AUGRESS
29 — 2 : o | wanacen fg
: INSTRUS TR | H EANGD 4
j che VG
1 H i 1
H : &9 228 78 3% TLawDD"
H T T osP
B Aﬁl[oP ! &C 1 =R AL v .
i ¥) StARY b F- -
l Enp STOR .
i NTERFACE o
i ¥
. proe o e — e A e e :
‘ "18, ARX 4 CcowpsT:

i LGADING” ; .
(sccin) wicom Ao nS
H s Lk WARE
L : ZOND TEONS

e oo e JEEEEEIRUPPPPIRERTE SIS
Woj0r CipaIches - S0k gt 2 -6 ot

Figure 2-13 M Program Modules

EBOX/2-18

Z zZ
’ ans
EL e 3
b
1 L IRTE Y
& BaAw
*

-

e e e

. 1=
[

D I R

[u—

*

P 5t SIS 1

, . 4
. ‘ 24 -wTR INT BE,
' (2] eup Y InToeQ
! g
- + - - L R @}
4 S} AL BEF
TRAR [S o
CORTR b gulld BRAT 9% §

b XL R
i[es
i H
il i
I or { ac f:i llT v jacoe
S T IR Y7 W s

o v

Figure 2-15 Effective Address Manager

The Daita Fetch Manager (Figure 2-16) evalustes the 3-bit A (FETCH) ficld (for the current instruc-
tion). which is in the Dispatch Table. The code in the 3-bit ficld defines the type of data fetch or write
or combination operation (if any) required. The Data Feich Manager takes the proper action, i.e.,
enabling the EBox clock 10 stop as appropriate, dispatching directly to the executor, or initiating an
instruction prefetch. Note the Instruction register is used to address the proper location in the Dis.
patch Table (DRAM) based upon the op code for the instruction.

EBOX/2-19

5

e
LT

[P USIP P S

TIGPET e HAMN

Figure 2-16 Data Fetch Manager

The Dispaich Table (Figure 2-17} consists of four ficlds:
1. DPAM A - Bits 0-2; defines the type of operand fetch cycle.

2. DRAM B - Bits 3-5; defines Jump, Skip. and Compare conditions for certain instructions,
or result store mode, etc.

3. DRAM P - Bit 11: parity bit (parity is normally odd).
4. DRAM J - Bits 14-13; jump address. This is the entry address of the executor routine. The

mnemonic for the dispatch to the executor is IR DISP (DRAM J) (Instruction Register
Dispatch).

c1234) " " ZS»

rrrfalalnjole; T :
Mol ladid Ld LS HRRINAS SUFNY UL,

“ eas

Figure 2-17 Dispatch Table Ficlds

EBOX,2-20

The Executor routine (Figure 2-18} is the bulk of the microprogram. 1t contains a number of somewhat
autonomous routines used to execute the instruction specific functions, ¢.g.. move & half-word from
one register 10 another or push a word onto 2 subroutine stack.

The Data Store Manager (Figure 2-19) dispatches on the DRAM B field. In addition, when called from
the executor as a subroutine only, ¢.g., MEM/WRITE, it defines the appropriate MBox control sig-
nals and dialogue and initiates the write operation. When the Data Store Manager is entered in the
context of a store cycle, co..rol generally passes to that process from the Executor. Finally, a
NICOND Dispatch is generated and control passes to the Startup and Stop Interface.

The Priority Interrupt Handler is dispaiched 10 or from discrete points in the microprogram. Interrupts
are scanned during NICOND Dispatch, while computing the effective address, and during certain
longer instructions, such as BLT.

Contro! is passed to the Page Fault Handler (Figure 2-20) routine from the Effective Address Manager
or Data Store Manager when the MBox asserts PF HOLD prior to an MBox response during &
memory request. The implication is that a memory address violation occurred, i.¢., an access failure,
write protection violation, or similar violation. In addition, when implementing KL10-style paging. PF
HOLD with EBOX HANDLE may be asseried to the EBox from the MBox. The implication here is
that the paging address translation shouid be sccomplished via mictoprogram rather than in the MBox
itscif. The Page Fault Handler is also used for certain error conditions.

£ £
AQR
20 10 CONTROL
RAY

I o [pETeCt
BT w42 1”10,
L dmstor[]
NCEMAL H
T Y !
BERCEE
IROC-08 . ¢ !
.) o, E
(=] :
o0 12 *
* 1
h—/ x
i :
} woc r2 |

Figure 2-18 Executor

FBOX 2-2i

\

[
i i
[S

b

Slde e

' b

. Figure 2-19 Data Storc Manager

> z
CONTROL
RAM
ADR
£ 40 B o v e ne
LOCATON 1717
: I WiCRE INSTR FORCED]
FaRCE AOR 87 MARDWARE
g svrr
H
¥B0x
CONTROL

Figure 2-20 Page Fault Handler

EBOX/2-22

The Halt Handler routine is entered from the Startup and Stop Interface when the RUN flip-fion is
clear at NICOND Dispatch time. The RUN flip-Nlop can be cleared by various mechanisms. For
example, when a HALT instruction is executed, RUN is disabled. On power up, RUN must beset by a
diagnostic function initiated from the DTE20.

The 1°0 Handler (Figure 2-21) is dispatched vis IR Dispatch from the Dispatch Table on DATAO,
CONO after the data or status has already been fetched, or directly on DATAI, CONI, CONSO, or
CONSZ. The handler calls the EBus driver, which generates the necessary EBus dialogue with the
device. On BLKI or BLKO, the pointer has been fetched but must be updated, stored back at E, and
the first word fetched. This is performed in the 1/0 Handler first. When the data has been fetched, the
EBus driver is called. On DATAI or CONI, the EBus driver is called 10 negotiate the transier from the
selected device over the EBus to the EBox. The 1/0 Handier then passes control to the Data Store
Manager where the data is stored.

2.3 BASIC MACHINE CYCLE

The basic machine cycle for & typical instruction is illustrated in Figures 2-22 and 2-23. The cycle
begins at the EBox clock following NICOND Dispatch snd terminates at the trailing edge of the next
NICOND Dispatch. In this example, assume that the instruction MOVE 3 @ 200 (1) has been fetched
from core memory symbolic location PC. The following information relstes to the example:

PC; MOVE 3@ 200(1) Current Instruction
PC+1: NEXT INSTRUCTION
300 000000, 000 100 Indirect Address = 300
100 174717, 11111 Effective Address = 100
1! 000000, 000100 Index Register = |
P4 P
H aur Com e

IR0 G0 U ki

DiSPAT(m
Raw

Figure 2-21 Input/Output Handler

EBOX/2-23

LOCATION INSTRUCTION
INSTRUCTION LOADS =— PC wovE lO:mm 300 000000.000100 100 TP MM 1+ 00000, DGO

INTO ARX, IR RESULT « Yo 1PINIT_Hii11Y
- - = — FULL MACHINE CYCIE —
i = 1 1
wicoso | £a mop I A MOD f AREAD | OmAw o | DRAM B | WICOWI
DISPATCH | OISPATCH DISPATCH | DISPATCH | DISPATCH | DISPATCH | DISPATCH |
A A
TADW SECTION 'S A
MONOR MATsNE YR
T
& INDRCT [AKe- MEW l & WEAD FETCe | waETE i "*""-":::“'
M HON
-aT
o y Ptk apa 4
taox L e 5 W WAL ENT 10 Ok
RED ngo | EOX MO P
- - -+ - it
tRos HCs] Ehon teos | rmox | €mox oy Pwos L]
CYELE corit cveELl cveLt b €velL CYCLE |
e e et :
% CYCLE RGN CYOLT MBOR CYOLE 1 —
SEE WOTE 3
S TR S
— [B Tl
ST NOTE nOT usED | oooIoL i
- SLE NOTH &
=
Vb= —an l:gl“ MA = AT WMA LATImIL
- . - .
i o000 PLat
000300 | pbo3D0 |
1
cor
FUTREL

: Figure 2-22 Basic Machine Cycle Overview (Sheet 2 of 2)

Lo
o 000000, 000100

Wa
NOTES AL e PLaT
 During MEDE woity EBOL STMD e ey
frue wnt MBOR renp

3 MBON cpcivs are funchiong’ cperatom
whith ore waed to GERCHbE mamory fegu T WRTE N
&t ihe £/ INTERFACE]

4 ingan o perTormed ever Though @ TR BIO=De
ARE 18T +0 ond wii Aot be sved Tre CAMDD
BApetth will couss The pant MICRD matracine %o - EBOR CoCLE -
9c e correcTatep o g ARN=—AD K

% ARe— DOC200+ 000100+ 000300

ane— 4 4 i
kv i the INDIRECT WORD ADDRESS TIME BASE FOR m;:j
EBOK CYTLES 1a

y -

- x -

- VAR ABLE B
Ge i

T AINE 4 VARABLE Div
P wARABLE DUY » 32NS®

Figure 2-22 Basic Machine Cycle Overview (Sheet 1 of 2)

T

EBOX/2-24 EBOX /2-25

T

T | ——

= v -
-

(LB 1 2 L]

Figure 2-23 KLI0 Processor Sequence
of Operation (Sheet 1 of 2)

EBOX/2-27 "'

]|

W RRS

Figure 2-23 KLI10 Processor Sequence
of Operation (Sheet 2 of 2)

EBOX/2-29

I1gures 2-24 through 2-33 illustrate the microprogram steps and basic EBox hardware used to perform
the example instruction. Figure 2-22 can be used 1o follow the various operations at each micro-
instruction step.

2.3.1 Instruction Cycle - NICOND Dispatch to XCTGO

The instruction enters the ARX through the ARX mixer (ARXM) via the cache data lines. Although
not shown, the MBox response enables the mixer sclection and the EBox clock (CLK DP) loads the
ARX on the Data Path Board with the instruction. The NICOND Dispatch for this example is to
symbolic location XCTGO: Figure 2-24 indicates the major microinstruction fields. The Jump address
contains the base address of 8 4-word block used to calculate the effective address. Each micro-
instruction in this block is used for 8 different form of address calculation, and is selected based upon
the state of ARX14-17 and ARX13 when EA MOD DISPATCH is given. The EBox hardware utilizes
ARX14-17 and ARX13 to modify bits 09-10 of the CRAM address. This yields the possibilities listed
i Table 2-4.

Table 24 Address Calculation

—_— . - o . N . B S
CRAM Address ¥ ARNIS 17 i ARXI} 1 Funcoon
[i} A S .- U e e
COMPEA :] 0 OARN =}
COMPE A« Nonzets] ‘ Perrorm indewng as specitied by ARXIS 17
COMPLACY u 1 © Pertorm mdnecson VMA - ARXIA 38

COMPE A3 Nonsers I ; Peetatm it desmg 4s specified by ARX14 17 then
; : pertorm ndirechion VMA » ARXIX 38 + (XK}

While at XCTGO., 1o speed things up. the indexing operation is started. The fast memory address field
in the microinstruction causes the FM control to address fast memory utilizing ARX14 -17, which in
the example is I. The ADA input is enabled 10 select the ARX as input to the ADDER A input. This is
controlled by the micrainstruction ADA field. Similarly, the ADB field enables the ADB input to
sclect addressed FM location 1. The microinstruction AD field specifies the ADDER function as
A +B. Thus, the ADDER begins to add the contents of location 1 in fast memory to the instruction in
ARX. At this time, the Buffer register extension is enabled from ARX by the microinstruction BRX
ficld.
NOTE
The IR comtains the op code of the imstruction
MOVE, which is 200, and the AC field, which is 3.

The op code value (200) is used to address the DRAM to obtain the appropriate word for this instruc-
tion. This word is indicated on the input to the DRAM register (5.5, MOVE).

2.3.2 Indirect Word Request

For an Indirect Word request, the CRAM register contains the microinstruction fetched from COM-
PEA + 3 as indicated in Figure 2-25. The Jump address now specifies a direct jump to symbolic location
INDRCT. The AD. ADA, ADB, and FMADR fields are maintaining the indexing calculation and the
calculated address 000300 is forming at the input to the YMA. The MEM microinstruction field is
coded as A IND. This enables the memory cycle control to set up and generate an MBox cycle (Figure
2.26). This begins with the assertion of EBOX REQUEST IN, together with the qualifier EBOX
READ. Table 2-5 lists the MEM field function that generates requests. An IND is a function that may
be followed by a microinstruction having the MEM field coded as MB WAIT.

EBOX/2-31

Dispatch - XCTGO

EBOX/2-33

- 200161, 000300 — 2
e N / AD \
i : —IN
OO
—_—
— 7 ADB \ / ADS -\
L
¢ L) ¥
DRAM
/ vMA AD \ ‘ |
N\
H 5.5 WOVE
¢ “MA ALDE / YNA ADA \ ’ E / L \
'
o
l:- DISPATCH
T l ADR 09-10 RAM REGISTER
£ 2 e VNPT [u— LRAM
L] [x& apm-+ ADR
¢ T ARX1& 1T
£ |
| :‘ —
| S— e “0’"6‘ 000?00 ARE CRAM
A 2
D comeeal [ea moo| | xcteo
" 000000, 0000 |
° / \ el COMPEA
CACHE DATA OO —— - s
-2
| d +3
Fu Fd whiTE |
CONTROL CONTROL _]_
T J AD ADA ADB BAX FM ADR ::sr! I CONTROL RAM
REGISTER
[MEMORY xCTG0 fcoMPEs | aed | anx Fu ARX xR EANU
| CYCLE | DISP
CONTROL
|~ {_ - ——— =
CLOCK CRAM
EB0X
PL 2 (&1
LS 400 MG oo 8% [ccocnor
WOAMTITIT, 11111
/0, 100
NOTE
This cperotion refiecis 1he micro code weryon 71
io-"9)
Figure 2-24 Instruction Cycle: NICOND

~r-

el Bk Lo B F £

200161 000300

~ o B89 12 :] 12
1
e 200| s i 3
/ A N
PLC Ty
' DAY
000300 | |
1 ADB / ADA \ \
= ‘
loooso i !
= 0.?,_ _0 J | DO0000, 000100 .‘-40'61.0052320
1
|
| pas DRAM
/ WMALAD \ uur I ! ?oom-.ocomﬂ
A i
] L]
/' vwma aps '\ / wwa apa '\ / \ / gRXM \ A B
CLK DRAM s 5 MOVE
DISPATCH
RaM REGISTER
T —— o m oy == j_“—‘. I
v ARxi4aT| |
| s et |].- r J
2 , CRaw
nn—oooc_co:!—go \
1 o / ARM X / AR E :'::'
TATHE DATA -
NDLP T
| o038 BT el - st 1 20 I e
("] J' M owETE
CONTROL CONTROL
EBOX 1 [—
REG | l_T AD . LD A F ADB FMADAR OISP MEM CONTROL RAM
o | REGISTER
[uttum:r CV:“:“I...ppr_rll A+E 1 aRx | iy R inmo LoisT
YCi
EBOx | ONTRI L
REaD | || SONTRRR b {__ e g e)
I SETUP FM CONTHOL TO LOOK AT ARX 14-1T
£80x CLOCK CAM
CLOCx
CONTROL CLOCK DP
10 - 1804

Figure 2-25 Set Up and Make Indirect
Work Recquest

EBOX/2-35

Table 2-§ MBox Cycle Requests

MEM 02 T MEM Fcld MEM 00 i Function } Canses ![MBox Wait
——tee . . T T
) : It] Y OARIAD I rewhtade C N
i i H
! ! §
¢ s i 4 BWR{lE t Store Calle ; N
i ! ;
. | i
) : o u BB TR11 ' Imtruction Ferch D
f i ;
i i ar i n OREG RN i MBox repnter reterenoe Yes
: i = ‘
o ; 14 1 i AIND Indirect reterence dunng Ne
! ‘ cifecinve address calculstion
H ‘ 1
Q : i1 1 i BYTLIND Indirect relcrende tor hyvie b
; E mstruction special
H t H
1 12 I i 1UAD AR Data read dunnyg Yes
: excvution, loads mto AR
1 13 . I LOAD ARX Dats 1ead dunng excaution, Yes
) i laads into ARX
1
o i1 1 AD FUNC Not used No
] ¢ 1 1 BYTI RD Data read duning hyie No
} : execution hads intu AR 1
; : and ARX |
! ' |
1 ; 1o : 1 WRITE Stoze data dunng execution, Yes)
i i waites from AR ;
1] 1~ 1 RPW Initiates a read PSE wine Yes !
H oycle. data loads into AR
.|

The time field for the microinstruction at location COMPEA +3 specifies a period between the EBox
clock that loaded the microinstruction from COMPEA +3 and the next EBox ciock. It allows sufficient
time for the access of fast memory to be completed. Note that EBox request and EBox sync are
concurrent (Figure 2-26). The earliest time that the MBox can clear the request is on the MBox clock
following EBox sync. In Figure 2-26, EBox sync occurs one MBox clock prior to where the time fieid
indicates EBonx clock can occur, but hzezuse M Box wait is true and the MBox has not yet responded,
the EBox clock is postponed as indicated.

EBOX/2-37

[M |
[wewaac MEw o ME wa*]
Lai, £5° " ME M& 2 AN

TLERR B HEL - ISm bR 2 T

MBI REAPINGE N Ej

Figure 2-26 MBox Cycle

2.3.3 MBox Response 1o Indirect Word Request

Figure 2-27 illustrates the microinstruction fetched from symbolic location INDRCT. Again, 2 direct
Jump is sﬁeciﬁed (in this instance, to INDLP). A response from the MBox is anticipated. ARX ~
MEM is a MACRO statement. It specifies MEM tc be MB WAIT and also selects FM as addressed by
VMA 32-35. The ARXM is actually input from both AD on the 2 input and the cache data on the |
input. The MBox response causes the EBox hardware to generate MB XFER, which selects the correct
input. In this example, the cache data lines containing the indirect word 000000,000100 are loaded into
ARX.

2.3.4 Address Calculation Continues

Referring 1o Figure 2-28, the CRAM register contains the microinstruction fetched from symbolic
location INDLP. This sctup is once again to perform indexing as though it were really specified. At
this time. ARX contains indirect word 000000,000100; ARX14-17 and ARX13 are zero. Thus, even
though the microinstruction specifies the calculation of indexing, the hardware calculates the proper
CRAM address based upon ARX14-17 = 0 and ARX13 = 0.

The basic jump address is COMPEA and this is the next CRAM address. The dispaich is EAMOD
and. on the next EBox clock. the microinstruction from COMPEA is fetched. Note, too, that the
DRAM register is latched and contains the A, B, and Executor Jump address.

2.3.5 A READ Dispatch - Set Up Data Fetch and Prefetch

Refer to Figure 2-29. Once the effective address has been calculated, what has been traditionally called
the Fetch cycle follows. The CRAM register contains the microinstructios fetched from COMPEA.
The } field is zero in this case. The EBox hardware, upon detecting a Read Dispatch, inspects the
dispatch A ficid and forces the CRAM address 1o 40 + A. Thus, in this example, the address becomes
45. Address 40 + A is defined by hardware. The cffective address in ARX18-35 is enabled into the
ADDER A input by the AD ficld coded as A, with ADA selecting ARY. To begin the data fetch, the
MEM ficld is coded as A READ and this, with the A field, generates EBOX REQUEST and EBOX
READ. On the next EBox clock, the effective address is loaded into AR.

EBOX/2-38

-/ _ g = o 8% 12 9 12
o
00030¢] ‘ mlzoo| 3 | 18 3
b E AD
00030 vwa | / 8 A
' i T L] —
1 o et |
7 ans \ ___/ ADa \
|
i DRAM
/ WMA AD \ s“[_ l
/\
1] L
¢ / WA ADH \ YMA ADA p‘ \ A
¢ L) s MOVE
~
- IN CASE THE "LATCHED®
£ INDIRECT REFERENCE
" 1S FROM FW
v 1 ISP
&
C]
E ¥ PSS S,
o 3 I Jm I ARX
i A
DR D : 000000, 000100 CRAM
] 000000,000100 |
GARBAGE o— R et i znn1
, slfhp(uc'![;n JCOMPE A [p|’p INDLP
1S
By WB XFER
2] M OWRITE
CONTROL |SETUP FM CONTROL
CONTROL TO LOCK I
Egg! AT VMA 32-3%
%_o_-‘: = 4 ' AD ADA ADR FMADR MEM ‘ DISP 22“:3"!“.
HS € ' MEW ARX - GISTE
T0 v CE\‘CT:Z‘ INDRCT | INDLP B ARR Fu VMA MEM
CONTROL
MEBOX - !
" REsP
N
CLOCK CAM
veox war | clook (|
[nmcLoce] | contmol! | NOT YET GENERATED
s m—— g {| ®ur asour roee
[RESTART ! v
CLOCK] CLOCK DP
-1

Figure 2-27 MBox Response to Indirect Request

EBOX/2-39

L GARBAGE o B89 12 5 2
IR
i 1= wof 3 3
. = AD [: =
c VM = +B A L)
* cooo00, 000100
_, TO\'}DPGG LACO)Y | b J:
7/ aoe E ¥ ADA
7 T
L o I (ACO) | 000000, 000100
DRAM
WMA AD \ unl |
A |
1 1 |
! A L) J
vMs ADB \ vMA ADA
; | s s | move
" ; L=y
. | l 09-10+0
E = 4 1 CHAW
" J=—ra——} ADR
. ([——4-———J _o conTROL
A
c | " ARX 4-17+0 ,r”“,,,o
E | A |
s
4DR0 i 3 I]ﬂ Ioooooo. ooovool
o < CRAM
1
R)
o / ARM \ / ARXM \
J o AREAD COMPEA
Fu _J FMOWRITE
CONTROL CONTROL T
AD __ ADA ___ ADB FM AR mse| ¢ o
REGISTER
MEMORY iwoLe |comrea! a+m | amx | Fw xR EA MOD
CYCLE NP DisP
CONTROL I
|
== CLOCK CAM
CLOCK
CONTROL |— cLOCK OP
W0-1eT

Figure 2-28 Address Calculation Continues

EBOX /2-41

(N £ N S S L CECE o e 3 @9 12 9 12

E~m

MOPADMAE -

vMAa / ab
I\ +4
'OUOIOO
/ ADB \ / ADA \
000 ooo00 RN
000, 000 |

=
ORAM
/ vMA AD \ Bﬁl 1
A\
VMA ADB / wvma apa \ / 5 1a_ 8 =
5 5 MOVE
III CHAM ADR 08-10,08 =1
CRaAM
= *0R
CONTROL
Fu

F

¥ 3

3 I]aa Ioaoooo.ooomol
- 2

2 A § ocoo00, 000100 1

o / ARM 5 / ARXM 5
i o {ruan" as
©00000, 000100
Fu FM WRITE
CONTROL CONTROL
J AD ADA ADB AR Dise
EBOX REQ - : e ' CONTROL RAM
MEMORY ARX REGISTE
IEMOR, o A arx | AR 0 aReap |4 RERD
EBOX READ | CONTROL
DRAM &5 MO, Joock Cau
CLOCK
CONTROL |}— cLOCK DP
1G-18e

Figure 2-29 AREAD Duspatch Setup Data Fetch

EBOX/2-43

2.3.6 MBox Response to Data Read - Prefetch Begins

¥Figure 2-30 illustrates the CRAM register containing the microinstruction from location 45. The jump
address once again is zero, because the actual jump address is provided by the DRAM register jump
field. In the case of MOVE, the symbolic address is “MOVE." This location contains the firsi micro-
instruction in the executor for the MOVE instruction. Only one microinstruction is required for the
execution of the basic MOVE. This dispatch field contains DRAM 1, enabling the CRAM address
control to utilize the jump address in the dispatch register. Thus, for the basic MOVE, symbolic
location “MOVE™ contains the desired microinstruction. The MEM field is coded as fetch to enable
the memory cycle control to begin the prefetch by asserting EBox request with EBOX READ.

Until the MBox response o the data read is received, the VMA is latched and only the VMA input
contains the updated PC value. When the MBox response is received, the VMA is lnaded with the
updated PC value (PC+1). At the same EBox clock, the data on the cache data lines is clocked into AR
(000100). Referring 1o Figures 2-30 and 2-31, the FMADR field enables FM to be addressed via VMA
12-35, even though in this example VMA address 000100 is not an FM address. I'M location 0 is
actually accessed and enabied via ADDER B into the AR mixer.

The Memory Cycie Control asserts LOAD AR. The address in VMA is checked ir. the VMA Control
and. because it is not a fast memory address, -VMA AC REF is asserted. Thir is passed to EBox
Control No. | logic and inhibits the generation of FM XFER.

MBox RESPONSE IM is passed to the EBox clock control where it becomes {on the next M Box clock)
RESPONSE MBox. This, with LOAD AR, enables the selection of ARM SEL 1, which enables the
cache data into AR. The EBox clock then strobes the AR register. This clock also clocks the next
microinstruction from symbolic location MOVE into the CRAM register.

12.3.7 Executor - Set Up for Store Cycle

For the basic MOVE instruction, the data word in AR must be stored in th: FM location specified in
the AC field of the currently executing instruction. The microinstructiop J field contains the base
address for the data storage microprogram. This is symbolic location STO. The Dispatch field is coded
as DISP B, which enables the B ficld of the DRAM register to modify the low-order three CRAM
address bits (CRAM 08~10). The B field is § for MOVE and this yields symbotic location STAC. If, for
example, STO was physically 60, the resulting address would be generated by logically ORing 60 with §
for a result of 65, symbolically STAC.

Referring to Figure 2-32, IRAC contains AC address 3, and is enabled to address FM because the
microinstruction FM ADR ficld is coded as ACO. This is the AC specified by AC 09-12. The MEM
field specifies B WRITE, but no request is issued. This is because the memory cycle control samples the
DRAM B field and inhibits an EBox request when DRAM BO! is a zero.

EBOX /243

A VMA Wil BE LOADED WiTh

. . 6 89 12 9 12
] 500100 1 PC+! ON THE NEXT EBOX CLODOK | “ 12| 200l s ® 3
000100 v / Al -
[J Q WME
/\
-)
/ ADS \ / aADa \ ;
| PC+! T |
|
DRAM
/ VMA AD \ H,,I I |
/A : |
|+ 1nc 000000, DO0ID0
. / Ty wa\ [VMA ADA \ -7 \ | d
, T | MOVE
L] 1 |
' s _]
T 00-10
£ | cRaM
R I ADR
F B ' CONTROL
'y
E ("] |
IN CASE REF :' - .
5 Tofm e looooco.oomoolﬂﬂ [|
ADR: O ; 2
4 i ATATAT, i
GARBAGE) / AR XM \ :
CACHE DATA™ | | B [DRAM
o0-3% __T '_____ . 5701].RIYEF -] MOVE
|
Fu FM WRITE
CONTROL CONTROL
EBCX REQ 2 1 J
S B Jd : AD ADA ADE BR MEM oS FM ADR CONTROL RAM
CSH EBOX I MEMORY as o ™ v AR FETOH | DRAM J vMA PREQISTER
T0 j CYCLE |
CONTHOL T
Ui - 1 =
| '
MEOX WAIT
[iN CLOCK] o CLOCK CRM
CLOCK
CONTROL
{cLocx 1018
RESTARTS]

Figure 2-30 MBox Response with
Data Word Requested

EBOX/2-47

Figure 2-31 Hardware Selection of ARM Data

2.3.8 Finish Store Cycle - Perform NICOND Dispatch

The CRAM register now contains the microinstruction from symbolic location STACK (Figure 2-33).
The J ficld specifies the base address NEXT and the Dispatch field contains NICOND Dispatch. This
completes the basic machine cycle by reentering the instruction cycle once again.

The FM ADR ficld maintains the FM address via IRAC and the COND ficld is coded as FM WRITE
1o write the contents of AR into FM location 3. The MEM field is coded as MB WAIT for the cases
where the next instruction has been prefetched from memory. This forces the EBox to wait until the
instruction enters the ARXM and MBOX RESPONSE is received. If the instruction is being fetched
from fast memory, MB WAIT has no effect and the microprogram selects the appropriate micro-
instruction to load ARX from fast memory as addressed by VMA 32-35.

2.4 PAGE FAIL CYCLE INTRODUCTION

Normally. primary memory is the MBox cache memory, secondary memory is core memory, and the
auxiliary memory is a disk or drum. Information is moved into the core only on demand (Demand
Paging), i.c., no attempt is made to move a page into core memory, and consequently words into the
cache, until some program references it. Information is returned to core memory in accordance with a
hardware algorithm in the MBox hardware. Information is returned from core memory to auxiliary
storage at the discretion of the operating system's paging algorithm. Information movement across the
gap bridging the level between auxiliary storage and core memory-cache memory is called page traffic.

The MBox, in a sense, is an interface between the EBox (processor) and the SBus, It provides individ-

ual mapping (relocation) of each page (512 words) of both user end monitor address spaces, using
separate maps for each. The MBox uses hardware siorage to access and load the mapping information.

EBOX, 2-49

MEABRREMAZ - E~™

PC &1 WM

L
Z
""I_—I i LATCHED

{_—J DS

CRAM CHAM ADR 1
ADR 08 -10
— CONTROL
(R R AT
ADR+ 3 '_.'___;_____ -l e I THRT, M l‘n (]
2

o

e ' | | ru DISP
FeEmuee— = / anw \ / AREM X va ’"I STAC
iR |

__4!_____7 = = o lul? COND
== i

u | M OWRITE 1
CONTROL CONTROL |
Si6iEs \ | AD ADA : ALB = v ..L-p] Wi LSE I :ONY;T%' Rl
1 | EGI
MEMORY = e, 2 re | i
e 1] Move | STC 1:. XCRY| &R BHe 2 | ALD { B weitE | peaw B

ST |

FOR FM -
DATA WK CONTROL .;%___ e TR

—TREM B2 FRGX
CLoCK
CONTROL

CLOCK CRM

VO - o

Figure 2-32 Executor Sctup for Store Cycle

EBOX/2-51

-hEal

NETH COMMING IN

=i s ¢ ulo-z 5 12
e e !
1= .l iR 5
aC
[l resn _ v i A A\ ’
1 T — . | ___J
. =
VA AT T B
1
vNa
s AL BLF '
| = oRaw
| / WMA &L \ H.‘ J
: A r
. |/ wea ats \ { WA ADA \ / \
f
o
. i
~ [CRAM ADR
- o710
- - HAM
cC NG — c
: | N * - ol
4 ‘ CONTHOL
; Fu
1M mmn
ARy | Miag AETSLT = l]ll? I J
A 2]
2 . | CNEXT INSTR™ {
T AEN ARXM ‘
PR, e q* e itra e
v
LWHITE
Fu) M OWRITE
CONTROL contRoL L S N, | I
T AD ADA ADB MEM COND FMADK [ISP
P e o gt 3+ s g
¥ Tar | 1 I ™ L
| CYCLE e eiadl sl | p | ¥ | aco |wmicows
GONTROL Y . ‘
- S .
T CLOCH CRAM
CLOCk
CONTROL
o-eor

Figure 2-33 Finish Store Cycle,
Perform NICOND Dispatch

EBOX/2-53

h also contains a 2048 word cache for holding the data for the mapped references. On each memory
request from the FBox, the nine high-order bits of the virtual address and the type of request (read,
write} are compared with the contents of the hardware tables in the MBox. If 8 match is found, the
location containing the match also contains 13 high-order address bits to reference the physical page in
the cache. If no match is found. a $12-word “Page Table™ in physical core memory is referenced. The
word selected in this page table is determined by a d:spatch based on the original nine high-order
address bits. The 13 high-order address bits and use bits found in this word are written into the MBox
hardware table: the use bits are checked against the type of EBox reference. Four possible cases exist
concerning the disposition of the use bits:

The page is not in core.

The page is protected from the type of request.

The page is nonexistent.

The page is in core and is compatible with the type of request.

bty —

For the first three cases. 3 page fault (trap) occurs; for the fourth case, the requested word is fetched
from core memory {actually words are fetched four at a time, differing only in the two least significant
address bits) and written into the cache. Concern here is with the page fault situations. The MBox
constructs a page fault word in one of its internal hardware registers, the EBus register. The word
contains information relating to the type of fault that occurred. The EBox is waiting for an MBox
response 1o its request; the MBox, therefore, asserts PF HOLD. and some time later asserts MBOX
RESPC NSE IN. When the EBox recognizes the PF HOLD signal, it forces the CRAM address to
1777. ~ his is the first microinstruction in the micropage fault handler. The EBox does not issue an
EBox Jock until the CRAM address has had time to set up. Once the address is stable, a single EBox
clock is issued to the CRAM board to access the microinstruction.

2.4.1 Page Fail Handling - Functional Flow

Figure 2-34 is a functional flow of the microprogram page fault handler. The EBox contains a 4-bit
state register. This register, during certain instructions, hoids a number that may be used to modify the
state of the CRAM address. For instructions that do not use the State register, it contains zero.
Generally, the STRING, EDIT, and BLT instructions require cleanup following a page fault so that
they may be properly terminated. For these cases, the State register contains & value in the range of
1-7. The more genersl case is discussed here; this is where the State register contains zero. For both
cases, INSTR ABORT (coded in the condition field of the microinstruction fetched from CRAM
address 1777) performs the following functions:

TRAPREQ 1~ TRAPCYCLE]
TRAP REQ 2 ; TRAPCYCLE 2
ADR BRK INH ~ ADR BRK CYCLE

These actions are necessary to assure that the PC flags reflect the state of the EBox when a page fault
occurs during the fetch of the trap instruction, during its execution, or during an sddress break page
fault. A State register dispatch is given, but because the State register is clear, the base address is used
10 obtain the next microinstruction. A priority interrupt has & higher priority than s page fault (Figure
2-35); therefore. a pending interrupt is checked for first. If INT REQUEST is true, the Pl Handler is
entered to service the interrupt. If no interrupts are pending. the page fault is handied. The third level
of priority is given to traps and finally to all other events being processed by the microprogram.

A page fault occuring in response to an APl interrupt function is a fatal error. Thus, when the page
fault handler finds PI CYCLE set, it sets the 1/O Page Failure flag, dismisses the failing interrupt. and
then. if possible. restores the EBox to tie state it was in prior 10 the interrupt. The seiting of IOPF
eventually causes an interrupt on the APPR error channel. The PF Handler now attempts an instruction
fetch.

FBOX . 2.-58

ANy FALL
PRIR T ENTEY

i
FAILU INTRY

P e Y
DArATC™ TA
Hawii 0 Em
INLTE ABDAT DOy ATATIN
O <IVE TRAP, THRAF
SR]

TR PO TRAY B
FOALE TN AR TR
CViRl) AND

e ADE BRI AR

i

L
WL RR T AND
THRY AN WATE
BETCH Wl
AT s 8O
Teal AP NT

RORCED EE R

WAITIOR B

i

&5

Ll
TR T e
LI A LIER B

L |

Figure 2-34 Page Fail Handhing (Sheet | of 2)

EBOX /2-56

LA P wORD
L LR L
O T
w4 wDAD ART
i ACIDEY
TR A

Py B AL ADODSE W

n I n - »

|
|

2 | oo

|

FaLID AL =

TR AT
. WORD N
PR TARLY
LOC A TR0
L

———

|
i =

-

L LI T UL
AR OLD PO WORD
IRARLE VA
e B

1m0 B R
LEl
-

AmOS RyOuART
Ll

O

E
]
|

|

AT

e WP AL TR
Thdm T wWA TN
L RL 1 LRSS
R
Tei IRTLAL PR
W T b A TR
aul

U mLE e AD
W ORD
e PR IR
TABLE LOUATIDN

LR

e

- A
AN miu

v RO BITRAATY
ap

™ Ll
s

FROE w004 1T
ALCORDE G 10
O

POV
W

s
wOTE 3

NOTE T

BTART b5 Thd SmiTIAL ENTRY
FOUNT FOR Tl MO PROURAM
Toit AN - FLACSE N

Tl veAA AN

Figure 2-34 Page Fail Handling (Sheet 2 of 2)

EBOX /2-57

‘ ENTRY ,

MA
REQULST 1

NO TOPAGE FAaLTY

P HANDIER

| E—

TRAP INSTH PAGE) AL Ty

¥{s CAGE
fawnt

(8

PF HANDLER

TRAP L2323

REQ

NO

TRAFP HANDLTR

OTHER ACTIVITY

=

Figure 2-35 EBox Priorities

Obtaining snd Adjusting the PF Word - Assuming P1 CYCLE is clear, the AR is cleared and the ECL
EBus is requested. This is to transfer the PF word from the MBox EBus register (o the AR register in
the EBox via the EBus. Because the Pl system and external or internal devices can also use the EBus,
the microprogram must force its relcase. When the ECL side is obtained, the EBox reads the PF word
into AR. The PF word, as it is constructed by the MBox, contains the physical page number in bits
14-26. The EBox must replace this with the virtual address and siso clear bit 13. The current virtual PC
is temporarily placed into ARX; the failing VMA is placed into AR while the old PC is saved in BRX.
The ECL EBus is then released. The ARX and AR are shifted to adjust bits 13-26 to be the VMA
13-26.

Figure 2-36 shows the three locations in the user process table dedicated to page fault handling.

EBOX/2-58

D L
S e R
rw Eon
cEe iy
Tae ot
e ow -

Figure 2-36 Process Table PF Location

2.4.2 Process Table References

The VMA is loaded with low-order process table location 500 and an EBox request is issued to write
the PF word (concurrently in AR) into process tabie location UBR +500. The next microinstruction is
loaded and EBox clock sets MEM CYCLE, causing MBOX WAIT. The AR is enabled from the old
PC word; the input to VMA is now 501. As soon as the MBox responds, MBOX WAIT is removed
and the cycle is repeated. This time the EBox request is to write the old PC word (now in AR) into
process table location UBR +501. Once again, the next microinstruction is ioaded and EBox clock sets
MEM CYCLE. causing MBOX WAIT. The VMA input is now 502. As soon as the MBox responds,
MBOX WAIT is removed and the cycle repeats, in this instance for reading a8 new PC word from
process table location UBR +502. The new PC word places the EBox in a specified mode and the first
instruction is fetched from the sppropriate handler. This completes the page fault cycle.

2.5 TRAP CYCLE - INTRODUCTION

A Trap is produced by setting either of two trap request flags in the EBox (TRAP REQ! or TRAP
REQ2). The programmer knows these flags as TRAP2 and TRAPI. The cenditions that set TRAP
REQI are equivalent to the arithmetic overflow conditions that set SCD OV. TRAP REQ2 is set by
the various pushdown overflow conditions: the left half of the pointer is counted down to -1 (no carry
out of bit 0) in a POPX, or is counted up to zero in a PUSHX. (The condition for this is the presence of
a carry out of bit 0, but the condition is detected by the microprogram and the trap request flag is set.)

2.5.1 Trap Handling

The Trap Handler (Figure 2-37) is entered at NICOND Dispatch time providing its priority is highest
of the major priority events. The microprocessor NICOND Dispatch, together with four queues
arranged in a round robin priority structure, is shown in Figure 2-38. The TRAP request is served only
when no priorily interrupt requests are pending and no pag- fault is pending. It does, however, pre-
empt the normal instruction cycle. Both the user and exec process tables contain dedicated locations
for processing traps. These locations are XXX 421 for arithmetic overflow (TRAPI), XXX 422 for
pushdown overflow (TRAP2), and XXX 423 for the programmed trap (TRAPJ). XXX is replaced by
the appropriate base register (UBR or EBR), which resides in the MBox. The base register used by the
MBox is determined by the state of the qualifiers sent during the EBox request. The MBox fetches the
appropriate trap instruclion and places it on the cache data lines while issuing MBOX RESPONSE
IN. The EBox then executes the trap instruction. It is possible for the EBox request for the trap
instruction to cause a page fault. If this occurs, the page fault handler is entered at CRAM address
1777 and the trap cyclc flags are pushed into the trap request flags so that the trap flags may be saved;
the 1rap cycle properly reenters at a later time.

EBOX/2-59

A 184P 1RAP
CYCLE 2 CYCLE)
421-BR0Y lls" 347 it 3y
VMAL 422 PDOVL Jo 21420
42%-PROGRAMMED TRAP vMA [CCONDAVEA ==
CONTROL L VMA AD
| EBCXx CL:M'.u
EBOX REQUEST DAD ARX |
g e
REQUEST =
jCSnEBOx YO | convRoL |CYC REG
MBOX CLOCK !
MCL VMA UPT - L
MCL VMA EPT PAGE TABLE [1
. REFERENCE | 4ou o |
| MCL PAGE UEBR REF CONTROL ———

SF MEM CYCLE

MODE
CONTROL

MOPADM-AZH E-m

|
| USER | T[FGI

MBOx RESPONSE IN EBDx
e T o CLOCH
CONTROL

LINES (TRAR INSTR) —

NICOND DISP
= | i
—— T
- MICRO | vMA~— 420+ TRAP
. F I i'”[lcmi 1l :r'asrn 50,
i See Motr 1
"'---'1 PTREFREAD |
wieno | TRAP InsTR
e l me 1SPEC| - Yihh | FrOm usem om
e EXEC PROCESS
' | “=.__| TABLE INTO aRX
————— |
O
|
et
'\ wAIT FOR unot:
RESP ENADL
l] ap !wlln[u L.cml]-—':;cs",?, ARX INTO AD
NABL
INTO 1R | TRAP
LOAD IR “ MANDLER
) —
nb
“EBOX CLOCK” |
ARXM \ GO AND EXECUTE
; THE TRAP INSTR
el e
NOTE 1
vMA VMA | vMA
[27=33] 35"} 36 | PYPE Y TRV
420, | 0 | AROU
420, | 1 o POOVL
420, L] 1 no?:.’m
”0oor

Figure 2-37 Trap Cycle

EBOX/2-61

Figure 2-38 Central-Server Model (Round Robin Prioritics)

2.52 Address Generation

Referring to Figure 2-37, the VMA is enabled to be input from the VMA ADDER. The condition ficld
of the current microinstruction enables the number ficld 1o generate the process table low-order
address 420; the low-order two bits of VMA AD 34 and 35 assume the state of the trap flags.

153 PT Reference for Trap Instruction

The next microinstruction must generate the EBox request and enable the appropriate qualifiers to
appear on the E/M Interface lines. The page table reference control samples the state of the USER,
together with the special function and number bits and then asserts either MCL VMA UPT and MCL
PAGE UEBR REF for a USER trap situation or asserts MCL EPT and MCL PAGE UEBR REF for
an EXEC trap situation. The MEM ficld is coded to load ARX and enable the EBox request.

Assuming no page fault occurs, the MBox fetches the instruction, places it on the cache data lines, and
asserts MBOX RESPONSE IN. The MEM cycle control samples the MEM field function LOAD
ARX to enable one leg of the ARXM and CLK RESP MBOX enables the other leg. Thus, the instruc-
tion enters ARX on the next EBox clock. Next, op code and AC field of the instruction in ARX must
be enabled into the ADDER and then latched into IR. The condition field of the current micro-
instruction COND/LOAD IR unlatches the IR for one EBox cycle, allowing the AD to load into IR.
On the next EBox clock, it latches again. The final step is to perform the trap instruction. This com-
pletes the trap cycle.

2.6 INTERRUPT CYCLE - INTRODUCTION

The system must possess a true priority interrupt system that is flexibly structured and controlled. Its
operation in establishing priorities and recording and sequencing interrupt requests is essentially
instantaneous and independent of EBox action. Interrupts of high priority must be permitted to inter-
rupt partially completed responses 1o those of lower priority. To maintain fast response, interrupt
requests should require no decoding action on the part of the EBox to determine their source or
nature. Capability for dynamically varying the priority structure to meet the demands of a changing
environment must be available. In addition, no other system clement may be designed such that its
proper operation requires inhibition of the priority interrupt system for any period of time.

EBOX/2-63

The basic priority interrupt level has four mutually exclusive states that can be described as Disarmed
(-P1 ON), Armed (Pl ON), Waiting (P1 REQ), and Active (PI HOLD). Figure 2-39 shows the basic
concept of the interrupt system for two channels. It is arranged in four groups, the interrupt state, the
FF configuration for two of the seven possible channels, the level enable. and the source of change
signal, In the Disarmed state, the interrupt level rejects all incoming interrupt trigger signals. By
performing a CONO Pl and specifying the appropriate bits, the priority interrupt system can be armed
or disarmed for any or all channels.

In Figure 2-39, the processor (CPU) peri ,rms a CONO P1 and arms both channels. In the armed state,
the interrupt level accepts a trigger signal from an outside source or from an internal source, c.g., the
APR, and moves to the waiting state (REQUEST STATE). where it remains until it is acknowledged
by the EBox. All waiting and enabled requests are input to & priority network where they are compared
with the current state of the priority interrupt system. In this example, both channel | and channel 2
are requesting service, and both channels have previously been armed by a CONO PI instruction. In
addition, an interrupt is shown holding on channel 2. Thus, until it is dismissed by the processor, the
channel 2 request pending is held in abeyance. Furthermore, the channel | request causes the device
subroutine for channel 2 to be interrupted, diverting the processor to the device subroutine for channel
1. The first instruction that will be executed as a result of an interrupt (subroutine type service) is a JSR
instruction. This instruction saves the processor flags, program counter value, and also holds the
interrupt

NIRRT L[INE G UR AT DN Wil sSOumCE v
STAY ANy s LAY
s i (w2 cH e (LT TN | L1
CosanMiL
¥ ~
“ConD ®
- v by
e SLY
aAswi D
wioN
- Dy &) wrgena, D8
- Dlw m| EnTiena ~a
WA TN
3
10 MiLE i
ARMTHATION * Pl manD I
I i
L 8- B0 VPLTCHES
eailiml r LI
INABLLD SLT Plenyn FROM A0 egw

L TR IO T T
fTely ACTiwl
WA TG AND INABR LD

TriS wiiL BLT O DoNG THL
INTEEELET 0N CuANNEL @1

O DISMISS Thl WTLERUPT A JEN
NETRUCTION S EXECUTED in ThiE
O&L MEMORY INTERRUPT HANDLER

DEVICL SUBROUTINE
in FROCRLSS IS
DEFERRLLD FOR
ICHEE PRIORTY

Lt CmANNEL @1

Figure 2-39 Interrupt Level Operations

EBOX/2-64

When service has heen completed, the service routine dismisses the interrupt, restores the flags and
program counter, and the channel 2 subroutine continues. Interrupt channels are organized into seven
basic levels, which are software assignable (armed): the lowest number has the highest priority within
the numbered sequence (Figure 2-40). Each channel is subdivided into finer levels or priority by hard-
wired physical device numbers. As indicated, the first eight physical numbers (0-7) are assigned to 1-8
Masshus controllers in the system. The next four physical numbers (8-11) are assigned to 1-4 DTE20s
(1011 Interfaces); and numbers 12-14 are reserved for expansion. Finally, physical number 15,0 is
assigned to the 1/0 bus adapter (one exists per system, il needed).

Each interrupt channel has a dedicated pair of unique locations within the EPT. These locations may
be indicated as 40 + 2n, and 41 + 2n, where n represents the channel number. When a device initiates
an interrupt in the KL 10 system and is selected for service, the device places onto the EBus a special
function word hereafter labeled API function. This function contains information that specifies the
type of service required. Figure 1-32 in “ates the format of this word. Note that the format varies
from device to device, but the functions that can be specified in bits 3-5 are common to all system
devices. Function codes of 0, 1, and 7 cause instruction fetches from 40 + 2n initially and, depending
upon the type of instruction in 40 + 2n, may at some point perform an instruction fetch from 41 + 2n.
In general, 40 + 2n contains one of the following types of instructions:

JSR
sp*
PUSHJ*
MULIO

far Ty

LR - -
Prg b Ty
===
Sl B TR
b T
en ORI Ty il Y FuvSLAL @ WISLD mpsr

R TARTTY

3 4 5 & T B BC M 12 s _»
Y PEIOE Ty WM N NN NN N U YUY i
B B E BB BN B BB BB .
- — -
—— - —
- Tie PRION Ty - - JEGING
ST - WBC - MASS BUS CONTROLLEA -Ri-20

WBC- uNIBUS CONTROLLENDTE - 20
= 140 BUS CONTROLLEMDIA-20
APR - ARITHMETIC PROCESSOR STATUS BLC
MR - OCviCE Du-20

SR L

Figure 2-40 Typical Interrupt Priority Chain

* These instructions should not be used because nothing is known about the ACs when the interrupt occurs. JSR
or MUUO are better choices

EBOX 2-65

All of these instructions save the flags and PC, a requirement when entering the device service routine.
If the instruction at 40 + 2n is 8 BLK X instruction, a specified number of iransfers are performed, one
transfer at a time, each time returning to the interrupted program or to # higher level subroutine. On
the last transfer, the return to the interrupted program is “NOT SKIPPED™ and an instruction is
fetched from 41 + 2n. In a similar fashion, if 40 + 2n contains a SK1P class instruction: when the skip
condition is satisfied, a return 1o the interrupted program takes place. If the skip is not satisfied. the
instruction in 41 + 2n is executed instead of the return. The API function generated by the Massbus
controller is always a function code of 2 in bits 3-5; this implics a dispatch to the physical address
provided in the API function word. The dispatch is into the device handler for the Massbus devices.
The type of API function requested varies with the device or controller responding.

It is possible for the processor 10 gencrate 8 program request for an interrupt on any of the seven
channels. This permits the processor to carry out the highly time-sensitive portion of the interrupt
response. and to then create for itself 8 low priority interrupt to call for the deferred servicing of the
less time-sensitive portion at a less pressing time.

2.6.1 Duration of Unisterruptable Intervals

Such an interrupt system is of little value if the CPU can remain in an uninterruptable state for any
significant period of time. Under normal operating conditions, the longest uninterruptable interval
must be kept short. In addition, no malfunctioning peripheral hardware or software can be sliowed to
*hang up” the CPU in a noninterruptable state.

2.6.2 Interruptable Instructions

To ensure that the longest uninterruptable interval that the EBox may experience in normal operation
is short, some long instructions have been designed so that they may be interrupted during execution.
First, all instructions are interruptable at indirect references during the effective address caiculation.
Second, instructions that consist of two parts may be interrupted between the two parts, a PC flag
being set to record this for later, when only the second part will be done. Third, iterative instructions,
such as BLT, may be interrupted at any point, as an AC pointer defining work still to be done is beng
updated continually.

2.6.3 Geseral Interrupt Sequencing

The mechanism for handling the various levels of interrupt priority in the hardware, and the relation
between this mechanism and the device subroutine call and return sequence as it might occur in prac-
tice arc shown in Figure 2-41. Three channels are armed by setting their PION flags. Channel 2 has
highest priority, followed by channel 3, and finally by channel 4. Note that the execution of a CONO
Pl instruction caused the PION flags to set. Three separate interrupts occur simultaneously on chan-
nels 2. 3, and 4. The priority network is shown arbitrating the three priorities. The lowest channel
(highest priority) is serviced, provided it is of higher priority than the current level.

In this example, all three channels are requesting and no channels are currently holding interrupts;
thus, the channe! with the lowest number is selected. As a result of the arbitration, the sclected channel
number is combined with the appropriate constant to form the address 44{40+2X (2)]. In Figure 241,
the device subroutine is entered by fetching and executing the instruction in EPT location 44, which in
this instance is a JSR. The request is not cieared until the program issues CONO, DEV. Notice during
the entire service routine (in this example), the requests on channels 3 and 4 are waiting for the process-
or. The last instruction 10 be executed in the device subroutine is @ JEN (JRST 12); this restores the
flags saved by the JSR instruction executed in 40 + 2n and dismisses the interrupt on channel 2, which
is holding off channels 3 and 4.

EBOX,2-66

N BT

Il ARWED

SN Y ANNYT

o

BI% 4 AEWE]

PIRtL D wA T N

FIREL Y wmA T N [J

PIktL 4 kT N, []

L2 L3
. W L4
P mT I D AT e z] I
o 1 ! ::l
SN AN ‘
P
~ e T.h
B % T4 AITLF . M-S
[T RS :
PRI NET (ARG TRAT O% L2 -y a
B oan
B e LMISSES
b e————,
3
Ghe SLBR (w2 e
PSS

The SU@F (T

Io_-z\; D v SER RTINS |

[

Dt .8k fn 4

NA N PEHAM ‘
T

ASSUME 4T e2N &°ell TePE INTERHUPTS
Ire2 —44 4%
Twary 45 47
Crewa - %05 S

azeln .]‘. ,‘:;“7;

SR

Figure 2-41 Basic Interrupt Sequencing

2.6.4 Interrupt Dialogue

The handling of the EBus dislogue and processor bus requests during 1/0 instruction execution and
priority interrupts is provided by the Priority Interrupt Board, which compriscs the necessary inter-
facing logic, control logic, and registers. Initially (Figure 2-42), assume that the appropriste PION
flags have been set on the PI Board and it is now capabie of accepting interrupts. For this example, the
DTE20 will generate an interrupt for a byte of data. The drawing is divided into three sections: EBox,
control sctivity, and DTE20. The control activity consists of control action taken by either the EBox
or the DTE20, as appropriate.

EBOX 2-67

conTROL
£ 80x% A TWITY
PRIORITY
INTERRUPT
Lo6i¢
e
| OTER DIV X ¢
ek ¢ a0xX jo—0 INTERRUPY Cn «

ARBITRATES

O = WITH ANY
OTHER I'WCOMING
"y

DTE 2¢

AERY

*le—nus >e

ho— Demano—

oV
OTE 01

—y

xRy
==
T
OTHER
oEvs

DTE ICDETICTS
PISERVID AND
TRANSMITS (15

-o—-ee OTIRDIV Y
fo-——)t

ASIMIIOBY
Tt 20

h———— GI NERATE P}

oM X

—

NTERNAL
: DYt 28
INTERNAL
PROCESSING

—J

S TO XN IR
awvie’

ASSENT

2 TU et PRYSCAL

SENTS ——trf

£ 80X
ARBITRATES
PUYBCAL
CONTROLLER &
TATH ANY OTHER

PHYSICAL (X 5.3 CONTROLLEN » YD . R NG. 7§
COMTROLLER « ONL Y Ont OF
™ESY WiLL B
SELECTED
ar
reNTO onant
oy OYEJODITECTS g titt —f B —
THAT 1T HAS ot 2 aSSIRT SELECTIO »
BIENSELECTED CHO0-0I AS {OTE 20 oM ¥!
[ACR ———1 AND GENERATES SELECTED «
A1 FUNCTION DEMAND ——e ———
REEN ——f
ACK THLLS O
WIS ADAPTER
NOT 1O REPPOMT
BT AR * i 1 SOX EVALUATES Je SUNCT DATAI ——0% o) gpomst 13° $— "TUNCT DATAI
[X 1% s
FUNCTION TELLS AP1FUNCTION AND Anvigor
ESOX WHAT 10— ACK g TAXES THI AWRO OATA
oy SRIATE ACTION DEMAND "l
[BFIA =0 (This ExAMPLE
TARES & BVTE lo———— v 1 £ [4]
DI B PLACES
FROM (SUS
taus st mussmowo
-; T ous THIN
ore 30 RELLASES € SOX
ot ACCEPTESY TR
o DATA
aCK
PRONITY 1
mrenmey Lo xFER
oG WTERNAL
e ACK
ontm
MMTERRAL
roOC

Figure 242 Interrupt Dialogue Overview

EBOX/2-68

101812

The DTE20 asserts one of its interrupt lines P1 1-7; this level enters the PI Board where, as indicaied, it
is arbitrated with any other incoming requests and any holding interrupts. The PI Board now com-
mences a dialogue between all candidates on the selected interrupt channel. The selected channel
number is encoded in controller select (CS) lines 04-06. The function “P1 STRVED™ is encoded in
function (F) lines 00-02. These signals are placed on the EBus and 200 ns later the Pl Board asserts the
signal DEMAND. This signal instructs the device (DTE20) to place its physical controlier number on
a prespecified bit position of the EBus (bit positions 8-11). Each controlier, therefore {including the
1°O bus adapter. bit position 15, disks or drums, bit positions 0-7) on the selected channel does the
same. Approximately 400 ns later, the EBox drops DEMAND; however, the controller select and
function lines do not change for an additional 150 ns after DEMAND is removed. The physical
controller numbers received by the EBox over the EBus are arbitrated in much the same way as the
channel priorities. An exception is the ARP, which is an internal KL10 device, and does not fall into
quite the same type of scheme, i.e., it does not place & physical number on the EBus; obviously this is
not necessary because it is already within the EBox. Rather, it provides a physical number directory on
the board. This device vies with the device that is selected on the basis of physical number highest
priority (Figure 2-40). Basically, the lower the numeric value of the EBus bit position onto which the
device is hardwired to place its physical number, the higher the priority of that bit. The highest phys-
ical number priority, therefore, is given to bit position 0, and the next to bit 1, and so on. The highest
priority physical number (in this example only) is assumed to be that of the DTE20 (one of four such
possible Unibus controllers on the EBus).

The P1 Board now asserts the encoded physical number of the selected controlier (DTE20) in con-
trolier select (CS) lines 00-03, the interrupting channel number encoded in CS lines 04-06, and the
function Pl ADDRESS IN" is encoded in function lines (F) 00-02. Again, the EBox waits & period of
200 ns and then asserts DEMAND. At this point only, one controller has been selected; it compares its
physical number (hardwired on its backplane) to the number received on EBus bits 00-03. Upon
determining that it is the sclected controller, the DTE20 places the required API interrupt function
onto the EBus data lines and asserts ACKNOWLEDGE and TRANSFER to the EBox. The
ACKNOWLEDGE signal causes the 1/0 bus adapter to ignore the function code “Pl ADDRESS
IN.” In the absence of ACKNOWLEDGE, Pl ADDRESS IN would enable the 1/0 bus adapter to
send its API function te the EBox, because no decoding and comparison logic exists in the adapter.
This logic does exist in the DTE20 and other devices. The TRANSFER signal specifies to the EBox
that the appropriate device has responded, and alerts the EBox that an interrupt is set up and pending.
If the API function is sent during &8 DTE20 to 10 byte transfer, this could specify that the EBox
perform a DATALI function to the DTE20; in this way, a byie of dats is picked up as indicated in
Figure 2-40.

The casc of DTE20 byte transfer is somewhat unique in that the DTE20 holds onto the EBus until the
EBox transmits the appropriate function, in this case DATAI encoded in function sciect lines 00-02 (at
this time CS00-06 = 0). The byte is picked up by the EBox, and the DTE20 generates ACKNOWL-
EDGE and TRANSFER once again. This completes the operation. Note that ACKNOWLEDGE
informs the 170 bus adapter not to respond to the functions being carried out. Because the requests on
channels 3 and 4 have been pending during the service routine, when the interrupt that has been
holding on channel 2 is dismissed, the priority net arbitrates between channels 3 and 4 and selects 3 for
service. This generates the address 46 (40 + 2n), and this time the instruction is an MUUO. As with the
ISR during the execution of the MUUO, the request is transferred to the channel 3 bold flag. Note that
in the example, the request on channel 4 is still waiting for service. Finally, the JEN instruction at the
end of the channel 3 service routine restores the flags and priority interrupt system, dismissing the
interrupt on channel 3. In the same fashion as with the other interrupts, the priority net generates the
address 50 (40 + 2n). In this case, however, location 5O contains a BLKO instruction, which cannot
save the flags or PC of the interrupted process. This type of instruction behaves in 8 special manner
when used in an interrupt location; the BLKO instruction performs a series of transfers to a specific
device; however, after each transfer, return is passed to the current PC value, whatever it is. This
continues until the last transfer is completed, when the instruction in EPT location 51 (41 + 2n) is

EBOX/2-69

executed. This instruction should be of the type that saves the flags and PC. and will generally enter a
subroutine probably 10 set up a new block pointer, because the current one has been expended. Note
that in the beginning some main program, perhaps the monitor, was interrupted, and now control is
passed back to it.

2.7 BASIC MACHINE MODES INTRODUCTION

In general, the KL10 permits the operation of a number of different programs, all resident in the
machine simultaneously, without interference or undesired interaction among them whether duc to an
inadvertent program bug or maliciousness. The operation of the machine is divided into two modes.
User mode and Exec mode, cach with two submodes. User mode consists of Public mode and Con-
cealed mode. Exec mode consists of Supervisor mode and Kernel mode. The machine mode structure
and hierarchy are illustrated in Figure 2-43.

Basically, the programs of individual users operate in Public User mode, where the program can have
access 1o one of two possible virtual address spaces. If KL10 paging is in effect, the user hasaccesstoa
virtual address space of 256K words via an 18-bit virtual address, which may not be referred to by any
other user (without the cooperation of the monitor). If K110 paging i turned on, the program has
access to a virtual address space of 256K addressed via a 18-bit virtual address, which as previously
pointed out cannot be referenced by any other user without the monitor’s cooperation. All instructions
that do not compromise the integrity of the system are legal: this includes the following:

The halt instruction (JRST 4)

Any instruction attempting to affect the Pl system (JEN)

Any 1/0 instruction directed at devices with device select codes below 740

Any reference to the concealed address space except for feiching of a portal instruction
All illegal instructions or op codes.

bk ol o

The user's address space (when KL10 paging is in effect) is divided into 32 (decimal) sections; each
section contains 512 {decimal) pages and each page consists of 512 (decimal) words. The existence of
these pages is nominally invisible to the user program. However, the smount of physical address space
available is actually & number of these pages (at least one page), none of which need be contiguous
cither in physical core or in the user’s virtual address space, although it is desirabic from a machine
standpoint 1o do so. Each of these pages can be designated public or writable by a 1 in bit 1 or 2,
respectively, in the page table word for the page. Pages that are not designated writable cause an
instruction, which attempts to write them, to trap to the monitor as & write protection violation page
failure. A program running in pages designated public is in Public mode. A program running in pages
not designated public is running in Concealed mode. Whether an instruction is performed from Public
or Concealed mode is determined by the Last Instruction Public bit of the PC word (bit 7). The Last
Instruction Public bit is copied from the Public bit of the page map word for the page from which the
instruction was fetched. An instruction in Public mode (that is, one performed with the Last Instruc-
tion Public bit a | in the PC word), which atiempis to transfer to a location in & nonpublic area not
containing any Portal instruction, or an instruction in Public mode which attempts to read, write, or
execute a location in a nonpublic area, traps to the monitor as a concealed violation page failure. A
Public mode program can only transfer to a Concealed mode program by transferring to locations that
contain Portal instructions. A Concealed mode program can read, write (if writing is allowed), execute,
or transfer 1o any user location designated public. Concealed mode is provided to allow the loading of
a proprictary software package together with a user’s program and data while preventing the user’s
program from copying information discerning the structure of the proprictary software. This provides
protection of proprictary software without complicated protective overlay or transfer schemes
involving the monitor and allows direct interaction between user and software package with virtually
no overhead.

EBOX/2-70

je————puBLIC ole
CALL {MUUO!} S
READ WRITE

I (MUU0}

CALL PASS THRU
PORTAL EXEC
PORTAL

CALL
LSELF READ

READ WRITE

XFER XFER
CONTROL CONTROL

2. XFER CONTROL

READ XFER CONTROLES

>, PN CALL (MUUO)

W

LEGEND
K] KERKEL
S | SUPERVISOR
C | CONCEALED
~C | NON CONCEALED

Figure 2-43 Mode Structure and Hierarchy

EBOX/2-71

USER

10-~1613

The monitor operates in Exec mode. It is responsible for scheduling users, allocating memory and
other facilities, servicing interrupts, and performing actual 1/0. At any instant, the monitor has access
10 an effective address space of up to 8192K (for KL 10 paging mode) or 256K (for K110 paging mode)
words and by overt action may address any portion of physical memory. The monitor can be divided
into two parts: a normally small part, which operates in Kernel mode and is resident. and a larger part.
which operates in User or Supervisor mode and may be swapped as necessary.

The Kernel mode part of the monitor handles the PI system, performs the direct 1/0 for the system,
performs page management, and performs all other functions that affect ali users of the system. The
Supervisor mode part of the monitor performs the general management of the system (such as MUUO
handling and dispatch) functions which affect only one user at & time. The Supervisor mode and
Kernel mode of the monitor are analogous to the Public mode and Concealed mode of the user’s
programs in that the Supervisor runs in that part of the Exec address space designated public and the
Kernel runs in that part of the Exec address space which is designated nonpublic; this simplifies iliegal
reference detection logic. Each address from 20 through 337,777 is broken up into pages. but these
addrasses can be made to refer 10 the same addresses in the physical memory space by making the
virtual page address equal to the physical address portion in the corresponding page table entry. The
entire Exec address space is broken into pages of 512 words which may be designated either accessable
or not access:ble, public or nonpublic, and writable or nonwritable and can be swapped out. An
instruction in Supervisor mode that attempts to write into a page which is not writable will trap as a
page failure. An instruction in Kernel mode may write (5. any Jocation whether or not it is designated
public. An instruction in Supervisor mode (that is, one performed with the Last Instruction Public bit
a | in the PC word) that attempts to transfer to & location in an Exec nonpublic area not containing &
Portal instruction traps to the monitor as a page failure. An instruction in Supervisor mode that
attempts to read, write, or execute a location in an Exec nonpublic area traps to the monitor. In each
instance, the trap is a K ernel violation page failure. A Supervisor mode program can only transfer.i.c..
jump to a Kernel mode program, by transferring to locations that contain Portal instructions (JRST

i).

A Supervisor mode program can also reach Kernel mode (or any other mode) by performing an
MU UO or other instruction that causes a trap, if the appropriate trap new PC word indicates that the
next instruction is in Kernel mode. A Kernel mode program can read, write, execute, or transfer to any
location designated public, i.c., in Supervisor mode; all instructions illegal in User mode are also iliegal
in Supervisor mode.

The mode control logic consists of the following:

User Mode

Public Mode

User 10T

Private INSTR

Miscellancous Combinaticnal Logic

The mode control exerts a powerful influence over the disposition of the processor. It monitors
instruction fetches from Public mode to prevent illega’ entry to cither Concealed mode from User
Public mode or Kernel mode from Supervisor. In addition, it detects the fetch of a Portal instruction
and adjusts the state of the mode logic accordingly. The relationships between the various modes and
their transfer instructions are shown in Figure 2-44. In general, two instructions allow flags that affect
processor modes to be manipulated. These instructions are:

MUUO
JRST 2

EBOX/2-72

PuBLiCe— 0 -
PRIVATE INST9e—1 -~ - JRST 2

\.OR MUUO

e stz N
e) 1 —~USER 10T
wuvo OR .~ " Mou0 Y\ mouo 1 = USER
JRST 4 (PORTALY .- vy —
\pRsT 2 ! -PuBLIC
PUBLIC»—1 A
PRIVATE INSTRe—D
SUPERVISOR

MODE
USER e 1
PUBLIC=—1
PRIVATE INSTR=Q/

PRIVATE INSTRe— 1\\
USERe@ "
Puauco-ﬂ"\

USER CAN CLEAR BY
JRST 2 817 6 {0}, 8UT
CAN NOT SETV T BY
PLACING B!T 6 (O} AND
(SSUING A JRST 2

PUBLIC T}

PUBLIC (1)
PRIVATE INSTRe—1

USER (¢}
PUBLICe—1

JRST2 _ PRIvATE INsTR—g /" |
CONCEALED
MODE j_ JRST 1 wonmjco:coc&uo

PRIVATE INSTRe—1?

PUBLIC=—D
USER (1)
BIT ASSIGNMENTS
CONTROL OF | B1TOS | BiT06 | 81707 NOTES
USER MODE X pe
USER TOT x IN USER MODE
PUBLIC MULOE x GRS
PREVIOUS CONTEXT x IN EXEC MODE

B 11

Figure 2-44 Mode Transfer

Of the two, only the MUUO can cause transfers to any mode from any other mode. The JRST 1
(Portal 1) simply allows entry to a Private mode from 2 Public mode. Each time an instruction fetch is
specified and the reference is to a nonpublic page, a test for illegal entry must take place 10 maintain
integrity in the system.

Refetring 1o Figure 2-44, assume a User Public program has been started by & monitor routine that
performed a JRST 2 (a jump and restore flags). To place the processor in User Public mode, bits 7 and
5 of the flag’s PC word must be set; this results in the setting of Public mode and user mode, respective-
ly. The processor is now in User Public mode. Assume that the User execules some miscellaneous
instructions and then performs an instruciua feich from s nonpublic area. The following test takes
place: instruction fetch is decoded from the microinstruction MEM field or specified as a prefetch in
the DRAM A field. The E/M Interface asserts EBOX READ and loads the address into VMA. Note

EBOX/2-73

that if a reference to a private address for a read or write of data is attempted, it page fails on the
attempted reference because PAGE TEST PRIVATE is asserted. However, in this case, the fetch must
be allowed from the private address space. Its identity is checked in the EBox and. if it is nota JRST |
(portal), a page failure occurs on the very next memory reference. This is implemented by delaying
generation of the signal that would cause a page failure to be generated by the MBox (PAGE ILLE-
GAL ENTRY), until the instruction fetch is completed. When the MBox responds with the level -
PAGE TABLE PUBLIC (PT PUBLIC), this signal with the MB response sets PRIVATE INSTRUC-
TION. This causes the generation of PAGE ILLEGAL ENTRY . If the instruction which is decoded
by the hardware is not a Portal, Public mode remains set maintaining PAGE ILLEGAL ENTRY
which enables a page fault on the next MBox reference for whatever reason. I the instruction fetched
is a portal (JRST 1), then Public is cleared and the processor enters Concealed mode.

All user references and concealed references are paged. The difference between the types of paged
references is that user paged references are public while concealed refesences are nonpublic when
referencing the concealed address space and may be public when referencing the users address space.
Executive references are paged, this includes both Kernel and Supervisor references. Supervisor mode
programs must be capable of reading both User Public and User Concealed address spaces. To bypass
the portal mechanism normally necessary for any public program to reference a nonpublic program
area, a bypass exists, which is under control of the Kernel; when operational, the Supervisor is allowed
10 read and possibly write the concealed area as necessary, remembering, of course, that the supervisor
is part of the operating system and it is performing job-related tasks within that context.

Normally a public program is only allowed to fetch an instruction from a nonpublic area and this
instruction must be a portal (JRST 1) instruction; however, this is necessary for the supervisor to
perform its system tasks. Basically, the process for checking a User Public program’s reference 1o a
concealed address is as follows, The mode is User Public and an instruction fetch begins. EBOX
REQUEST is issued to the MBox, together vith the appropriste paging qualifiers and any other
appropriate signals. The MBox performs the necessary check of the page descriptor bits; then the state
of the Public bit in the page table is asserted over the E/M Interface where, together with signal MB
XFER and a signal indicating an instruction fetch is being performed, it is used to enable the setting of
Private instruction. If the Page Table Public bit is off, Private instruction is set on the clock occurring
concurrently with MBox response. PAGE ILLEGAL ENTRY is not asseried. The response given by
the MBox was given at the same time it placed the desired instruction onto the cache data lines; this
insireetion is now in ARX. If the instruction is indeed a portal instruction (JRST 1), the Public mode
will be ¢!~ared, removing the PAGE ILLEGAL ENTRY signal. This procedure then has effected the
proper eu ry 1o Concealed mode. If the instruction was not a Portal, then the PAGE ILLEGAL
ENTRY signal will not be removed nor will Public be cleared, which constitutes an illegal state in the
EBox. On the very next MBox request by the EBox (providing VMA AC REF is false), a page fault
occurs and an appropriate code is placed in the EBus register in the MBox identifying the disposition
of this fault. This will shortly be followed by & trap to the operating system as a concealed violation
page failure. This same procedure is applied to a Supervisor reference to the Kernel address space, and
in this way the integrity of the system is protected from any unwarranted references. Figure 2-45 shows
a typical layout of the virtual address space for the various modes. The space shown is for K110 paging
mode (256K, made up of 512 pages numbered 0-777 octal). Any program can address locations 0-17
as these are in a fast memory block and are completely unrestricted (although the same addresses may
be in different blocks for different programs). The Public mode user program operates in the public
area, part of which may be write protected. The Public program cannot access any locations in the
concealed area, except to fetch instructions from prescribed entry points. The Concealed mode user
program has access to both the public and concealed areas, but it cannot alter any write protected
location whether public or concealed; fetching an instruction from the public arca autor atically
returns the processor to Public mode. The Supervisor mode program is confined within the paged arca
of the address space. Part of the public arca in this space may be write protected, but the program can
read information in the concealed area. It cannot, however, alter any location in a concealed area,
whether that area is write protected or not. Pages 340-377 constitute the per process area, which

EBOX/2-74

contains information specific to individual users and whose mapping accompanies the user page map.
In other words, the physical memory corresponding to these virtual pages can be changed simply by
switching from one user to another, rather than the operating system changing its own page map. The
Kernel mode program can access all of the unpaged area without restriction and can reference all of
the accessible paged area both public and concealed, with the usual restriction that it cannot alter a
write protected area. As in the case of Concealed mode, fetching an instruction from a public area
returns control to Supervisor mode

wim w0l LefCutinl WODE

e SR Bl Lok wE

ST WO PATT WMo VALY Oy FELT MO

LT -t Al

PALLD aND
Ak ARLE 10
Tl ALSDINT
| N TOR

N SLERLTL

LR | CLIM

NCLALRE
ERTRY POINTY Wl AL L L = (3]

e -TE
FeCTECTLD

DNCF AL D

ALETD
i wE T AR

MOEARE

*ROTLEYID

Figure 2-45 Typical Virtual Address Space Configuration

EBOX/2-75

2.7.1 Mode Initialization - Private Instruction prreTe
When the KL10 system is powered up, the power control issues the signal CROBAR for approx- RERON o
imately 5 scconds. This results in the generation of RESET, which causes LEAVE USER 1o be M oY Mo

asserted. LEAVE USER enables the clearing of USER, USER 10T, and PUBLIC and sets PRIVATE " -
INSTRUCTION. This action places the KL10 in Kernel mode. Referring to Figure 2-46, each time an

instruction is fetched from either Fast Memory or Core Memory (via MBox), the private instruction

recirculation path is broken (Figure 2-47).

If the instruction is fetched from a nonpublic address space (-PUBLIC PAGE), or the mode of the Frpiioderiig
machine is not public (-PUBLIC), then the private instruction is enabled to be set once again (Figure 2-

48),

Note that if data is read or written, the upper recirculation leg (Figurz 2-48) is not disabled. The
Private Instruction flip-flop is used with additional logic that (with the exception of previous context
references) detects references to Public mode; together, these elements detect entry to a privileged
address space. The Kernel may access any part of the address space regardiess of its type. Because the
Kernel does not operate in Public mode, illegal entry has no significance.

2.7.2 Loading Flags and Changing Mode = - prser om
Tsvo instructions can change the mode of the machine. These instructions are MUUO and JRST with [b e
AC bit 11 set, i.e, JRSTF. o [

As indicated in Tabie 2-6, AR hits 05 and 07 are used in various comb:nations to enter appropriate
submodes.

In addition, for Direct User 1/0, bit 06 (USER 10T) is available to allow the running of privileged
user programs with paging in effect. This mode provides some protection against partially debugged
monitor routines, and permits running infrequently used device service routines as a user job. Direct
control by the user program of special devices is particularly ‘mportant in real-time applications. A
special MUUO is available to enter USER 10T mode, but i is privilsged because time-shanng is
effectively stopped while in this mode.

2.7.3 User Public Mode

Once the processor is in User Public Mode (Figure 2-49), the user program can frecly read and write
data in the user public address space with the cooperation of the system. When demand paging is in
effect, cach reference to a previously unreferenced page causes an access page fault. The operating
system page manager must assess the fault, obtain the page from mass storage, and build an entry in
the user’s process table.

Assuming that the current user's process table (PAGE TABLE PART) is initially clear, the first refer-
cnce causes 8 NOT IN CORE page fault (Figure 2-50). The EBox, upon detecting the PAGE FAIL
HOLD signal from the MBox, enters a microcode page fault handling routine that communicates the
failure 1o the operating system. Next, the page manager or a related routine requests the page from
mass storage. When the page is in core, the appropriate process table is constructed and the reference
by the user program may be tried once again (Figure 2-51). s S

1

The MBox performs the reference to the process table; the use pits now reflect the following:
PAGE IS IN COREA = | —
PAGE IS WRITABLE W = | prpe————
PAGE ISPUBLICP = | e
PAGE SHOULD BE CACHED C = |

Figure 2-46 Mode Initialization

EBOX/2-76 EBOX 2-77

o

]

J\.

LB 3
M TR TN

(SRR TR

CT LA

Figure 2-47 Private Instruction Recirculation Path Simplified
i
WLTE AL TOM
e o y _
LRI To—
MTRUL =
uBL L FalL
Figure 2-48 Setting Private Instruction
Table 2-6 Flags Effecting Mode
Instruction bemg prdnrl_uﬂ!_n MUDO JRSTF (Sec Nn!cl ! PR h!l_;n}t Mde K
Enable User 10T | FlagBits | EffectingModes | ExecSubmodes | User Submodes
PREVUONTXT ARDS AROS AROY Kemel Super Concealed Pubhic
0 0 0 0 0 } | 0 | o | o
1 0 1 0 0 I oo o | 0
N A : i} ! u I i | 0
0 0 0 | I | 0 1] o I
] 1 1 | | | | 0 1] |] ! I
0 0] | 1 0 |] 1] I U
(1] 1 1 i 1 L] (1] 0 1 u
Sl PR (SRS (DR R | SR, SRR | e
NOTE

A JRSTF may not clear user by placing bit 05 (0) but an MUUD may

EBOX/2-78

Ry NG
1
- O PRIVATE
(L ALl

. L ANTRY
L1
s
vi
' 1
FAGE VALY CLLAR P
L DOCUR Wi ENTRY B
O Tk Wi FRIVATE
INSTR Y
¥ — = BT
—_—
LLALR
G AL D
. _

Figure 2-49 User Mode Functiona! Flow

EBOX 2.79

=
(L LA

i1

L Iy
NN MBOX
WiF WALL PAGEH
FauT

O

OTH

Ve URER FETCHIL A
MUK MO0 CHANGEE

ACCORMDING TO 7L AGE

0 owmie

s s
'R

Figure 2-50 User Mode Public Inital Reference

[- .I ¢ . :::}
.

AL .
NTh

i% esaeaae

ety T D PRCE R uwy \ iy)
s P .
BiwE BT \-._//

Figure 2-51 User Mode Public Second Reference

EBOX /2-80

The entry (one of eight half-word entries fetched) is written into the page table in the M Box, the MBox
then performs the data reference part of the request. This can involve reading or writing and depends
upon the type of EBox request. During the reference, PAGE ILLEGAL ENTRY was not asserted
hecause the reference made by the user program was to a public page and it was for an instruction.

2.7.3.1 Entry from User Public Mode to User Concealed - To correctly enter User Concealed mode,
the User Public program must execute a Portal instruction (Figure 2-49) from the concealed address
space. The FBox gencrates the EBox request and provides the MBox via VMA with the concealed
address. The MBox either finds the page entry and use bits in the MBox Page Table (hardware) or
performs a refill cvcle 1o obtain it from core memory. Figure 2-52 shows the typical Concealed Page
Table format Presumably, the entry is nonpublic and write protected, and may or may not be cached.

Figure 2-52 Typical Concealed Page Table Format (Hall Table Entry)

The MBox asserts PT PUBLIC (0) and MBOX RESPONSE IN to the EBox. Referring to Figure 2-48,
MB XFER resulting from MBox response and -PUBLIC PAGE resulting from PT PUBLIC (0)
enables the setting of Private instruction. The instruction fetched by the MBox is in ARX at this time.
If 1t is a JRST 1 (Portal). its execution clears Public and the processor enters User Concealed mode. If
the instruction is anything else, Public remains set and the next MBox reference occurs with PAGE
ILLEGAL ENTRY true, PUBLIC PRIVATE INSTR (1); this causes a page failure.

2.7.3.1 Concesled Violation Data Reference - If a User Public program references the concealed
address space for read or write, PAGE TEST PRIVATE is asserted during the EBox request and
results in an immediate page fault. Page Test Private is a signal composing Public and -INSTR
FETCH

2.7.4 Restoration of Programs by the Supervisor

The Supervisor portion of the operating system deals with those tasks which affect one job at a time. It
must. therefore, have the ability to restore various programs 1o an operational status, ¢.8., by executing
+ JRST 2 instruction that picks up a PC word consisting of the appropriate flags in the left half and a
virtual PC in the right half of the word.

2.7.4.1 Restoring a Concealed Program — The Supervisor may restore a concealed program providing
it also sets User. Referring 1o Figure 2-53, while executing a JRST 2 instruction, LOAD FLAGS is
derived from the presence in the magic number field of bit 04, and this together with -User (User is off
in Supervisor mode), and AD bit 05 (which will set User) generated CLR PUBLIC. Thus, on the next
clock pulse, Public clears and User sets, restoring Concealed mode. Figure 2-54 shows the necessary
conditions. Note that performing & JRST 2 cannot generate Leave User, unless the processor is in
Kernel mode.

EBOX '2-81

SEE NOTE

PAGE TEST
PRIVATE - 1

AL REFERENCES
NOT EFFECTED

PRIVATE
INSTR - 1
ILL ENTRY - 1

PAGE FAULT
WiLL OCCUR ON
THIS REF

NOTE 1

IF THE SUPERVISOR FETCHES
AN MUUO, MODE CHANGES
ACCORDING TO FLAGS

X

CLEAR PUBLIC
ILL ENTRY - 0
PRIVATE
INETR- 1

ILL ENTRYIV
NEXT MBOX REF
WILL PAGE FAIL

iy (——

KERNEL MODE

PUBLIC: 1
SEE NOTE 1
LOAD NO
FLAGS
YES
“IRSTF"
ARSI
SUPERVISOR
RESTORES
USER MODE

AROTIV ARDTIV & ARDSIY) ARDBI)
USER MODE USER MODE " USER MODE USER 14ODE
PUBLIC CONCEALED PUGLIC 11OT) CONCEALED (10T}
1018622
Figure 2-53 Supervisor Mode Functional Flow

EBOX/2-83

L1

Figure 2-54 Leaving User

2.7.42 Restoring 2 Kernel Program - The restoration of a Kernel mode program from Supervisor
mode is somewhat different in its mechanics than the restoration of the Concealed program. Basically,
the Supervisor must first perform a JRST 2 instruction; this instruction restores all flags except for
Public. The JRST must enable the fetching of a Portal instruction that clears Public, placing the
machine in Kernel mode. This is a safeguard in the event that the Supervisor may, in error, try to
restore some random set of bits and cause the Kernel to be disturbed. In addition, it forces entry to
Kernel mode at a known and unique entry point. Figure 2-55 shows that it is not possible for a JRST 2
instruction to clear Public while not setting User as well. Note that a JRST 2 instruction does .ot
generate Leave User unless it is given in Kernel mode, The conditions which enable Leave User are
indicated on Figure 2-54.

Ll L
ADDWESS
AT

JEMET 4 ADDNESS -
e —

Figure 2-55 Restoning Kernal Program

2.7.4.3 Restoring a User Public Program - To restore a User Public program, the Supervisor gives a
JRST 2, which sets User. This is the only requirement because botk Supervisor and the User Public
program run with Public set. The special field function SPEC FLAG CTL, together with magic num-
ber 04(1) enables SPEC /LOAD flags which, with AD bit 05, enables User to set on the next clock.

EBOX 2-85

2.7.44 Saving Flags and Leaving User - It is not generally known at just what moment an interrupt
will occur with respect to execution of a given instruction. The microprogram governs the handhing of
interrupts by looking for interrupts only at certain times. In general, an interrupt is sampled for
between each instruction and during certain classes of instructions. The following classes of instruc-
tions can be interrupted:

Byte Instructions
Block Transfer Instruction
Input/Output Instructions

In addition, for any instruction. an interrupt is sampled during the portion of the microprogram that
performs indirect addressing (INDRCT). An interrupt has higher priority than a Page Fault and thus,
upon entry to the Page Failure microroutine, an interrupt condition is tested for: if found. a dispatch
to the microroutine for interrupt handling is given.

When an interrupt occurs and the Pl logic has completed the handshake, it informs the EBox by
asserting a signal PI READY. This results in the microprogram generating a skip 10 a microinstruction
that asserts SPEC/SET Pl CYCLE. As a result, Kernel cycle (normally false as long as PICYCLE is
clear) sets. and MCL VMA PUBLIC is disabled. This is necessary to disable the MCL PAGE ILLE-
GAIL. ENTRY signal when Pl CYCLE sets because the interrupt instruction, which will be fetched
from a Kernel address, must not genersate a page fault.

When the interrupt instruction is being fetched, User and Public may be set, or Public alone may be
set. In the last instance, a page fault would result if some action were not taken 1o prevent it. This is
why MCL PAGE ILLEGAL ENTRY is disabled (by setting PI CYCLE). At the time of the interrupt,
the state of the current user ACs is unknown. The instruction in 40 + 2n, therefore, must not disturb
the ACs in any way while transferring the flags and PC to the Kernel mode subroutine. Therefore, JSR
is a likely instruction for use in 40 + 2n. The JSR instruction causes the flags and current PC 10 be
stored in the effective address of the JSR instruction and then enters the subroutine by performing an
instruction feich from E + 1. After calculating the effective sddress for the JSR instruction, the micro-
program performs a write test which, if successful, is followed by a branch via the DRAM J field to the
executor. Now the flags and PC are loaded 10 be copied into the AR for storage and are then disabled.
The microinstruction asserts SPEC FLAG CTL; this with PI CYCLE generates LEAVE USER, which
detaches the feedback path for User, User 10T, and Public. In addition, if User were set, User IOT
would be set at this time and represent **Previous Context User.” This is an indicator to the hardware
that previous context references must be in User mode. In any event, the processor enters Kernel mode
and begins to handle the interrupt.

2.7.4.5 User Concealed - This mode is useful for running certain proprictary programs in User mode
without allowing the user to discern the composition of the concealed program. For example, assume a
user has developed a program that performs circuit analysis. The user is a time-sharing house and
desires that this program be available to users for execution only, that is, the user must not be able to
read or write into this program.

In some computer systems, complex overlays in core memory are necessary to assure conceslment of
the program from its users. In the K110, this program has been solved by creating two submodes from
User mode. each with separate powers and cach separate from the other. Both modes, however, run
with User on. Figure 2-56 indicates the hierarchial structure present in the KL10 processor. The User
Public program can only transfer to a concealed program at a selected entry called a Portal. The
instruction fetched must be a Portal instruction (JRST 1). The concealed program can read or write
data to the Public area. Figure 2-57 is the Concealed mode functional flow diagram.

EBOX2-86

- T .
{ erect o | }
! USEm PUBLIC, | i
E AND PRIVATE ; PREVIOUS NEW
LINSTRLCTION INSTR FLAGS - MODE wNODE
v TPUBLIC AND USER |
{ WUUO | CLERR PRIVATE | USER KERWEL
i ¢ INSTR SETS
I T e
t | PUBLC CLEARS,
— ENTRY 10 MERNEL BUyo I::?‘:.ST(!\’S SUPERVISOR XERNEL
RESTORE & i - L
T RERNEL PROGRAM ¥Uuo USE® CLEARS CONCEALED |, REANEL
i L NO FFECY R H KE R
- PORTAL P ugo] EFFEC RERNEL EANEL
®ERNE. - B PRIVATE .
Eei—— ;o anta InSTR SETS, USER { COMCEALED
! PotdRST O PUBLIC CLEARS | s
: b 4 + +
INSTR i PRIVATE ; i
FETCH o SonTAL ! iwstmsris. {supEAvisom | KERWEL
i Y PUBLIC CLEARS .
[
S0 lagap or weTE DaTa
xfgr T T SUPERVISOR RESTORE A& USER PUBLIC PROGRAM
;._____] weuBLi
! T RESTORE A
: : CONCEALED PROGRAM
MUU0 H
LEVEL N RESTORE A USER
AFER JREAD DATA o PUBLIC PROGRAM
{ READ OR YR:TE DATA : USER PORTAL
i """ ’ CONCEALED
} +
: ! INSTR
t . FETCH
»uud i
LEVEL i
XFER i READ OR WRITE DATA
I L
i READ OR WR:TE DATA USER (PUBLIC)

Figure 2-56 Mode Hierarchy

EBOX.2-87

10-1826

USER MODE

CONCEALED
e e———
- -————
ne ‘
ves '
l ‘
~no ;
,"' Mg
i
i i ovis vis
! ¢ 2 NOTE
[; SEY NOTE 1 suBLIC Y THE CONCEALED PROGRAM MAY
PRIVATE INSTR - O FRAELLY ALAD DATA FROM Trf
PUBLIC ADDRE S SPACH AND
T MAY WRITE (NTO 1T PROVIDING
* THE ADDRESS SFACE 1S wRITE
_ ENABLED
USER MODK
ruBLIC

Figure 2-57 Concealed Mode Functional Flow

2.8 ADDRESS PATHS

The address paths contained within the EBox are illustrated in Figure 2-58. Thesc paths are imple-
mented to facilitate the formation of the appropriate MBox virtual address. This address is transiated
by the MBox for KI paging mode and by the microprogram snd the MBox for KL paging mode. The
MBox can generate the following two basic forms of physical addresses:

I. Refill Address (Relocated)
2. Physical Page Address (Paged)

The VMA serves as a source of data when loading the following MBox registers:
1. User Base Register (UBR)
2. Executive Base Register (EBR)
3. Cache Clearer (CCA)

In addition, it serves as an address and data source w hen loading the cache refill RAM. As indicated in
Figure 2-59, the VMA has the three jollowing basic sources of input:

1. Previous Context Section register (PCS)
2. Vintual Memory Address Adder (YMA AD)
3. Adder (AD)
The following two major addressable areas are addressed by the VMA:

1. MBox
2. Fast Mcaory (FM)

EBOX/2-88

TO vMa1s-17)/

—BOII1T

THESE REGISTERS MAY ACTIVELY KL INVIX VED
IN SOME FORM OF ADDRESS CALCULATION WHICH
WILL ULTIMATELY BE PLACED INTD VMA

USED DURING #1190 STYLE PAGING ONLY

USED TO FORCE PC=1 08 PC+7

VA l

ADCOME S SOWRCE OF
L VMA 1) W VMA TR 1 ADOWESS Y WAY OF
. . - .
1t | _wxan L. VMAAD W 35 O - o WMAAD 1%
I RCmCULATID | AD M % L 3-8 18
Welr L CLUAR L VMAADE 02! 3 TRAP + YMAAD 3
. CLEAR .4 VMAADE 2027 ¥ | PORSPICIAL 3+ VMAAD 4L
RECIRCULATID | e = —
RECIRCULATED | d T _Ab_ Tl
VMAPRIY SICT P TTORE BUS VMAPRIV SICT AD |
1”17 == g
nm 7 anm oz T i axTNoro: oA e 1
Awn | CLEAR L T vmaan | 8
21 Y CLLaR L MORSMCIAL I__VEAAD 3
w0 KB 0 L VMAAD “
(LR USER
i PALING HL PAGING Wi PAGING
MOOE MODE wont
VA VMA 1) 10 VMA 1} 100 i VMA 1) 10
AL VMA LD 0% VMA I} W | vMA R
W M ADDRESS M ADDRESS j "™ AvoAEss
USER PUBLIC USER PURL ISUPERVISOR !
L b A Sl g - N e
WMA 1Y 120 WMA 1Y YT SICY : VMA 1)} 110
VMA IR M VMA TR 26 VMA I %
vma VIRTUAL PAGH VIRTUAL PAGE VIRTUAL PAGE
ar VMAZT M VMA 2T TS VMA T S
My (UIAD WORD OQUAD WORD OUAD WORD
USER PURLIC LISH R PUBLC SUPE RV IS0
- 4 A ——— . fp— -— i ————
VMA vMATI DO | wman e vMA 1} 130 VMA T 330
w VA3 | wwan VMALZ 2% VMA DD S
" M ADDRESS M ADORESS | M ADDRESS M ADDRISS
USERCONCEALTD. | (USEMCONCEALED | (KEANIL IKERNEL
PURLIC + -———]
VMA 13 170 | wmA 1Y A7sECY I vman o | VMA 13 17-SECT
VMA T % | vea e 2% VMA IE M vMA 1 %
A VIRTUAL PAGE [VIRTUAL PAGH | VIRTUAL PAGE VIRTUAL PAGE
aC VMA T 3% VMA 2T 3% VMA 7T | VA B
Wi QUAD WORD OUIAD WORD | DUAD WORD OUAD WORD
USER COWCEALED USER CONCEALLD KERNLL KERNEL |

NOTE TS s THE GENERAL FORMAY ONLY

Loale

Figure 2-58 EBox Address Paths

EBOX/2-89

e kAW
LR L

‘.
SRR LRSS 71 L

TRANLIES *

- wa

TR

lewss=—@

! A
AssumE INTTALLY (YRS PRLVELCT=—8

| —

Bl ORAL NG MDD . ol BAL s MODE

e Y . ._«._u...-n.um-.-
.m'””"" ,

AN AT AERN AP

wuul I

Coeg .”b-l
oo Lol bt 2 .'atn "5‘.‘\-9 -

won T spans ws I

LS @

AHMM 1N OF A KDREALLY-PLIA T BT
"

GEWM 7D e

v COMTEAT Dy
"tOANT

Figure 2-59 Typical VMA 1317 Manipulations

EBOX/2-91

FROGRAN
BUNNING

wMA TA T L ogany

THANVIER O
L1 i3]m

WMA PEES SECY —evmd 1y 10 19

The MBox may be addressed logically by two types of addresses. Within each type (18-bit and 23-bit
addressing) is a class of process table addresses. These addresses arc identified to the MBox by the
qualifiers asserted during the EBox request (Table 2-7).

Table 2-7 Virtual Address Classification

Type of Address Class Addressing Information Suppled

K1 Paged VMA 12
VMA I8
VMA 2T

15-Bit 17=0

26 = Vintual Pace
3% 7 Quad Wand
1.8t K1 Provess Lable Peterence VM4 13
VMA s

VM 2T

17 = MBo Jgnoges
26 = MBon fgnores
35 = Provess Tabke Wond

YMA 2
VMA N
VML 2T

17 = Virtual Sectien
26 = Virntual Page
3% =2 Quad Wl

23 ‘ Kl Paged |

K1 Provess Tahke Retetence VMA B3 17 = MBox Ignores
VMA I8 26 = MBox lenores
VMA 27 38 = Prowess lable Reteretne

NOTE
There are several other special YMA combinstions. These will
be covered elsewhere.

For lh;se process table references the EBox supplies valid addressing information only on VMA bits
27-35. The MBox replaces VMA 13-26 with the PMA mixer 14-26 to generate a proper physical
address.

29 DATA PATHS
The specific address and data paths in the EBox are iliustrated in Figure 2-60.

The functional ciements in the address path between the VMA at the MBox/EBox Interface and the
primitive address source involved in forming the virtual addresses are:

Virtual Memory Address Register (VMA)
VMA Held or PC Mixer

VMA Held Register

VMA Previous Section

VMA Mixer

VMA Adder (VMA AD)

SCD TRAP Mixer

ADDER (AD)

Arithmetic Register Extension (ARXM!)
Arithmetic Register (AR)

Program Counter (PC)

Microinstruction Number Field

Other Miscellaneous EBox Registers

The appropriate virtual address is formed by the VMA under explicit control of the VM A control and
the microprogram.

EBOX/2-92

2.9.1 Virtual Memory Address Register

The VMA is loaded during an EBox request and remains latched until the M Box responds (Figure 2-
61). The VMA is a 23-bit register that accepts input from a double mixer arrangement. Thus, the
incrementing or decrementing is performed in the register itself. When both VMA SEL 2 and | are
clear. the lower mixer is enabled into VMA. The level VM A « AD selects AD asinput. The default is
VYMA AD as input.

In general. the VMA AD) contains one of the following:

PC (18-3%)

PC+1 (18-38) + (1}

PC+2 (18-15) + (2)

Process Table Address (27-35)
Fast Memory Address (32-35)

The AD contains one of the following:

Effective Address
@ Word Address
Some Special Address

The VMA Held register is loaded during each M Box memory request [MEM 02 (1)]. The left-most 12
bits of VMA Held are loaded with the request qualifiers, type of paging, context of the reference, and
various other signals asserted during the request. The right-most 23 bits of VMA are preserved in
VMA Held right. The contents of VMA Held are used during KL Paging mode to buffer the request
state while the page fault handler sets up an MBox Page Refill cycle. This operation is generally
described in Subsection 1.2.4.2, KL Style Paging and is described lster in greater detail.

The first three selections (Subsection 3.2.1) enable the output of VMA into the VMA register for any
of the following seiect codes:

VMA SEL 2 (0) and VMA SEL | (1) - Increment
VMA SEL 2 (1) and VMA SEL 1 (0) - Decrement
VMA SEL 2 (1) and VMA SEL | (1) - Hold

2.9.2 Program Couenting

The PC is normally loaded from VMA at NICOND Dispaich, except when PI Cycle is true; this
prevents alteration of PC during priority interrupt handling. When the processor is ready to fetch an
instruction in sequence, the incremented PC address is supplied to VMA via the VMA AD. The VMA

then supplies the address 1o PC. Thus, program counting is effected by the loop of VMA AD
VMA. and back to the PC (Figure 2-62). s Y p of PC.)

When a skip condition is satisfied, this loop is used to advance the PC during the instruction execution
cycle. The PC, therefore, is automatically updated at NICOND time and if the skip is satisfied, it is
updated a second time, pointing PC to the location two beyond the current locstion.

The PC output is available to the AD for saving a return address in a subroutine call JRST, MUUO,
or similar instruction. Generally, the address saved should be for s return to the next instruction, i.e.,
the instruction that would have been performed had the call or jump not occurred. However, if an
instruction is terminated because of a page fault or interrupt, the current address must be saved for a
later return to the beginning of the interrupted instruction.

EBOX/2-93

7 \
vy iy

et A= .

]

I

]

]

] -

— -

e | :

T H

4 I -

_,__ t

[[k =1

_ /j_

s

] i _ |

1 L]

]

]

]

i

I

I

I

i .

" -
i

WIIH.IIII||L| —

aciw

THIS PAGE
CONTINUED AND/OR

ﬂ
I
I
|
. |
- 2 :
. I
. Ak
o
i M OF ;
o | (| o - _o“ - _u .
| u L T] 3
(1r Wt e
TS
[o T
A ™ ol :
b+l :
- | .
: 3 L _
LI | i L
e et
- I
i |
, - |
by 3 “
i 1 '
o e, dotte ottt S

ENLARGED TO

THE RIGHT

It
.l
"\
|
|
| |
|
|
ii
|
|
|
|
1 1
|
EBox Data and Address Paths

o
o
-4
>
=
-
w

6l

i
L)
1-

Figure

THIS FIGURE
CONTINUED FROM

{

FRAME AT LEFT

i swar

"""'T"_'"23%@5{""""'"""""
{1

s
-

-
1
1
1
1
1
I
I
|
I
I
I
I
|
I
|
I
|
]
L

Lyt T e e S

=a
|
I

M= AL vl L

Figure 2-61 VMA Inputs

[
.

g N
o I

Figure 2-62 Program Count Loop

L
L
|
s
. |

2.93 Loading PC
New addresses are always supplied to PC via the VMA regardless of the point of origin. The update of

the PC or its inhibition is controlled by the microprogram. The following conditions cause PC+1 INH
to set, inhibiting the update of PC via VMA AD:

Priority Interrupts - Setting PI Cycle

Console Instruction Execution

Halting the Processor -~ Halted

Performing the Trap instruction in process table location 421, 422, 423

EBOX 2-97

1 1e PC is loaded at NICOND Dispatch ume (Figure 2-63), providing PI CYCLE is clear. In addition,
the special field function LOAD PC may also be used to load PC from VMA. During page fault
handling, the SPEC/LOAD PC function is used to save the failing virtual address (VMA) in PC while
saving the current PC value in ARX. Basically, the MBox builds a page fault status word in its EBus
register. The physical page number is stored in bits 14-26 of this word. The EBox page fault handler
riust replace this address with the virtual page number in VM A 14-26 and then store the updated page
tault word in user process table location 500, The operation is a: follows

Simplified Microprogram Steps Re’ PF Handler

1. ARX ~ old PC, PC - failing VMA
AR --EBus Register: PF word

2. BRX~ARX; old P_-- ARX AR: PF WORD
AR+ PC; failing * MA

3. At this time, the + R and ARX are Ref PF Handler shifted in such a way as to discard the
physical page numcer and align the proper virtual page number in AR 14-26.

A second case is where SPEC/LOAD PC is used while halting the EBox. In this case, either a Console
Halt was issued via the 10-11 inter ace, or a Halt instruction was performed in either user 0T mode or
Kernel mode. The VMA is loaded vith the current PC and the PC is loaded with the effective address
currently held in VMA. At the time of the halt, the PC value in VMA points to an address one greater
than the location containing the Hal' and the PC contains E. PC+1 INHIBIT is set to prevent pre-
mature incrementation of the jump : ddress now in PC.

¥

I

Figure 2-63 PC Loading or Inhibit

EBOX/2-9%

294 General Data Path Organization
The data path (Figure 2-60) is divided into four major areas, as histed in Table 2-8,

Fast Memory and Fast Memory Address Logic

Virtual Memory Address, Program Counter and related logic, 23- and 18-bit logic
Arnthmetic logic - 36-bit logic

Instruction register - 12-bit logic

A

All of these areas denve control functions from specific fields in the microinstruction

Table 2-8 Data and Address Path Breakdown
T —
Major Area ! Microfickd
FMADR Tachd
COND FM Wore

VMA Fecldt
CONDVMA - =
* 3 Isee Nate)
COND VA DRI
CONT G MA IM

VMA BLLD COSNDILDAMA HILLD

MOELAGSHY LEET COND AD Flagy
COND'CE - =
SPHCLOAD X
TSP NICOND woth PELOs (e 1)

I IRIGHT

COND LOAD IR
Nhigtt e SUAD baeld
SUADA Field
SUADB Field
SC Field

HE Facld

1K l
it and Ausilians Anthmetn T80 Logic |

|

|

Anthimei AD Facld
ADA Fueld
ADB Feld
AR Ficld
ARX Fueld

| BR Facld

| BRN Fueld
MO Facld

| SH Faeld

| ARMM Field

BBt Lo anid 7 2Bt Logic

2Bt Operations Reguire SPEC AD Long

- I

NOTE
1 i a constant selected by the low order three bits of the
COND code

EBOX, 2-99

2.9.5 General Data Path Mixer Selection

The microinstruction or microword consists of 75 bits including parity. It is organized into vanable
length fields that are used to control the data path and control sections of the EBox. In the following
pages each field is described functionally in terms of the particular logic with which it is associated

2.95.1 AD Field - This ficld consists of six bits and is used to control the main adder (AD and
ADX), that is constructed of type 10181 Arithmetic Logic Units. Table 2-9 lists the ALU functions
The low-order four bits specify one of 16, functions. These functions are Boolean or Arithmetic as a
function of bit 1 (the mode bit). IT bit | is a one, the functions are Boolean; if zero, the functions are
Arithmetic. Bit 0 is the carry in, when true it adds +1 10 any Arithmetic function.

For Boolean functions, the carry in can cause a carry out if the corresponding Arithmetic function for
the same S-bits would have produced a carry given the appropriate inputs. For example, assume the
AD function to be performed is A and the A input equals 777777,777777. The Boolean function A
performs the Is complement of the A input, which yields a result of 000000,000000. The corresponding
Arithmetic function is A and thus, if carry is true, this vields A + 1. Using the existing A input
777777.777777 41 gives a sum of 000000,000000 and a carry. If the Boolean function A is given and
carry in is true, assuming the same A input as above, the function out is 000000,000000 and a carry 15
generated.

The 10181 may be thought of as concurrently performing the Arithmetic operation specified and the
Boolean operation specified; the sum, however, is not affected when the Boolean functions are imple-
mented, yet the state of Carry Generate and Carry Propagate will reflect the Arithmetic result that
would have formed the sum.

MC 10181 Arithmetic Logic Unit Description
Figure 2-64 is an overview diagram of the ALU logic. Tabic . 10 lists the ALU functions, with carry

GEN = A (S. B + 5:B)
PROP = A + 5B + §;B

Signals GEN and PROP are used in each digit to generate the output signal Fn. In the logic mode,
carries are inhibited on the output stage, and the logic function F is given by

F GEN v PROP (XOR)
(The output function is the Exclusive-Or of the two internal signals GEN and PROP).
When adding two numbers, in the absence of a CARRY IN, the Exclusive-Or function 1s the function

required. A CARRY IN signal always complements this in this circuitry by controlling the final Exclu-
sive-Or on the output stage.

EBOX /2-100

BOOLEAN

CIN M Sa
u 1] i
0 0 1]
u] u
u L4 (1]
] 1] 0
1] U]
0 u L]
LY 0 0
0 0 I
0 0 I
0 0]
1] 1] 1
0] I
(1] 0 I
1]] 1
0 0 |

S,

I
1
1
I

Table 2-9 ALL Functions

FUNCTION

A
WH
Wi

\H
H
(Ah)S
AVE
AB
\OR

AVE

Al
AR

FUNCTION

f‘

A+ (AB)

A +{AB)
A

AVE

(AB) * IAVE)
A+H

A+ AVB)
AVR

A-B

(AVE) + (AB)
A+ {AVE)

-l

AB

AB -1

Al

BOOLEAN
CARRIES

A

A ABI

A+ AH)

A

AVH

(AB)+ (AVE)
A+H
A+{ANE)
AVE

AR

(AVE) + (Al
A+ IAVE)
-1

AB-)
AR
Al

ARITHMETIC

LARRIES

A

A+ iAB)

A+ LAB)
I*A

AVE
(AB) + (AVB)
A+B

A+ (AVE)
AVE

A1
(AVE) + (AB)
A+ (AVE)
=

AB -1

AB -1

Al

NOTE: MCIN s tree, 5dd +) 1o the ghven arithmetic funcbon. Carmy out i tree i the adder
eviended lell, would nesd carry 1a to generate the correct function.
Carry Out is mot afTected by the mode (e, BOOTEAN FUNCTIONS give the mme
carry as the ARITHMETIC FUNCTIONS).

EBOX 2-101

a

AL YGMALS LOW-T

UUEF SR R

PROP-ae G Be S8

Figure 2.64 ALU Overview

Table 210 ALU l'llcﬂﬂl“ill(lrn

Code

—e

GEN |

S

"
(1]
(]
0
0
L
]
0

1|

L;

|
T
|

n
O] ! -

-
<
=

S=g ==
-
<
=

_l____

The MC 10181 carries out an addiion by converting the two numbers at A and B 1o two alternative
signals GEN and PROP, given by

GEN = AB (Se=1,S.=0)
PROP = A+B (S, =1,5;=0)
313)’ ' Feoi exemple:
A = 0011 i
B = 0101 £
then AB = 0001 T {GEN)
A+B = 01I1 7 (PROP)
SUM = 1000 8

Adding any two numbers A and B is equivalent to adding the two functions AB and A +B. However,
the advantages of the second part are that one (AB) shows when carries should be generated, while the
other (A + B) shows when carries should be propagated. The final sum 1s the XOR of the two numbers
(AB and A+B), complemented by the CARRY IN signal.

GEN = A(S,B + S.B)
PROP = A + §, +5.B

These two equations show that PROP is generated whenever A is true, which is a requirement for
GEN to be true, i.e.. GEN implies PROP, and thus whenever GEN is a one, PROP is also a one, and
thus GEN plus PROP must generate a carry.

T — GEN s sufficient indication of carry generation. Similarly, PROP is sufficient indication of carry

PROP Log kn | Arithmetic . propagate
| CARRY LOW 1 CARRY HIGH

= i = High Logic
L A A | Asl Actually, the circuit was designed 1o promote understanding for low logic, and the descriptions and
AR Vi | ArAB | ATAl+ tables given in the literature are far clearer for this case.
AB AV AtAB A+ ABe
A S 2*A StA] Although the circuit does give the correct answers for high logic, the circuit does operate on the low
v AR AVE AVE+ signals. Thus, an addition can be considered as an addition of the zeros, with carry generated from the
AT B ABHAVH) AR AVHE L addition of two zeros, and propagated, as before, by the XOR of the two numbers.
AB HOV ArH AtHe
A AVE A AVE) AHAVER |
0 AB AVE AVE+ | A anrin
AR AVE ABI AR X RS
AB B AB+AVH) ABriAVE:] LA 5
A AVH AsiAVE) AR AVER ool \OR
N 0 I‘t “'ﬁ TO00] GEN
AB AB AR | A LI,
AB Al AB | Al 1irod PROf

A Al A o - LoDvo - Cintlow)

R o L - coud - 1oouy) - Cares hugh)

NOTE

Al sgnal high rue except GEN and FROP.

EBOX '2-102

EBOX /2-103

The correct answer. therefore, occurs when Cin is asserted to the least significant bit. This can be
viewed in two ways:

1. Carry is asseried high. In this case, the function considered above is Fn = A plus B and carry
input adds a one. This is simple, but GEN and PROP meanings become obscure {especially
when passed through the LOOK-AHEAD CARRY biock).

Generate = > (G = High and P = High)
Propagate = > (G = High)

o

Carry is asserted low. In this case. the above function is Fn - A plus B plus 1. and the carry
input subtracts a one, but hardware is simple to follow:

Generate = > (G = Low)
Propagate = > (P = Low)

To functionally describe the use of the various Boolean and Arithmetic functions, it is first necessary 1o
define two other microinstruction ficlds which are used to enable various data to the AD A and B
inputs. The first field is ADA, a 3-bit ficld. ADA can select the inputs shown in Figure 2-65.

M6 LY My VS
=

Figure 2-45 ADA Example

The sccond field is ADB, a 2-bit field. ADB can select the inputs shown in Figure 2-66.

LI 8- Bhaced P PN P
< ALY WEWORS * B
fe s 0
aw
1 FORR)

swoBES B ante

S48 2 ety Alvk
ey LB Fee

Figure 2-66 ADB Example

EBOX/2-104

The following examples illustrate various operations that might be performed using EBox registers and
the ADDA or and ADB input mixers. No guarantee is made that the operations illustrated are used in
the microcode.

Example: A - Function 20
Intial Conditions: AR = 010]10l, 101010
ADA Field Function = 0

The function A performs the Is complement of the data in AR (Figure 2-67). The AD function output
1s 767676.676767. Note that ai this time the Carry In is false. No carries are generated in this example
because the corresponding carries function is A (Table 2-9).

Fxample: AB - Function 24

Inuial Conditions: ARX = 777772,777777
KM = 777777777776

ADA Field = 2

ADB Fieid = 0

Figure 2-67 Function A

The Beulean function A B performs the logical AND f the complement of A with the complement of
B (Figure 2-68). The value in ARX is selected on the ADA input mixer (777777.777777) and the value
in some addressed fast memory location is selected on the ADB input mixer (777777.777776). The
result presented to the function output is 000000,000000. Referring to Table 2-9, the corresponding
Boolean carries function is A v B; carries are generated for the given values of A and B. For any values
of A and B, no carries are generated.

Example: AB - Function 36

Initial Conditions: AR 000000, 100001
BR 000765.100070

ADA Ficld 0

ADB Field 2

EBOX/2-108

N, aEmT - 4
N
n
8 -
A\
N . -
“ f ae E / s ‘ e l
crrersotetes serrre rrreee I“
-IAS‘. -L":l‘V

Figure 2-68 Function AB

ey

v

\-

e

The Boolean function AB performs the logical AND of A and B (Figure 2-69). The value in AR
(000000,100001) is ANDed with the value in BR (000765,100070) and the result presented to the
function output is 000000,100000. Referring to Table 2-9, the corresponding carries function is AB - 1
and. given the existing inputs, it can be demonstrated that a carry from the most significant bit results
if the AND of any two values results in a nonzero sum. The following demonstrates this:

000000 10000
000765, 100UT0
ODOONC TN

+ TITITIIITRIT

-

boe 0000 N3iTIT?

AB Example: A - Function 37
tnitial Conditions: ARX = 000000,000100
ADA Field = 2

A CARRY S _
GENERATED FUNCTIOR | mrns o el
i TP : T
l (4 I g 3 \
3% A
T T
i I
B - Y
[} - f &08 \ AUS ' I
T Y
anlc:o’sb.mem: I | &R

Figure 2-69 Function AB

EBOX,2-106

The Boolean function A produces (at the function output) the value 8t the ADA input (Figure 2-70). In
this example. the result is 000000,000100, but notice that the corresponding carries function is A - 1.
Subtracting 1 from 000000000100 is equivalent 10 adding -1, which is 777777.777777 in 2's com-
plement notation. The result gives a carry out of the most significant bit of the AD (CRY 0). Thus,
although the sum represents the ADA input 000000,000100, a carry is generated.

FARFY™ THEY ‘
B SRS 38 341 FNIT N e -
LR TR S R G

Cde/ = N\

Figure 2-70 Function A

2.9.52 ADA Field - This ficld consists of three bits and is used with the main ADDER. Referring to
Table 2-11. the low-order two bits select AR(0), ARX(1), MQ(2), and VMA HELD or PC(3). The
high-order bit is used as a disable. This bit also controls ADXA. When the high-order bit of the ADA
field is zero. ADXA selects ARX and when it is one, it selects zeros.

2.9.83 ADB Field - This field consists of two bits and is used in a similar fashion to that of ADA in
conjunction with the main ADDER. Referring to Table 2-12, the selection is as follows: FM(0),
BR*2(1). BR(2), and AR*4(3).

Table 2-11 ADA. ADXA Selection

CRAM ADASource ! APXA Source

+
|

i ?_ - — _ —_—— -

¢ i AR T ARN

i
5
i
i

ARN i ARX
MO f ARN
P ! AR\
i | (1Y

.

- we by -

EBOX/2-107

Table 2-12 ADB. ADXB Selection

e e e o g e
CRAMADE | ADBSource ADXB Source
IO UIDY SRS S

] ‘ M tutiawedt

i : BRe: ; HRAS?

: ;o BR N AN

: P ARNSS i AR
[E S S SRR

In addition, ADB directly controls ADXB utilizing the same 2-bit ficld. Here the selection is unused
(0). BRX*2(1), BRX /2(2) and ARX®*4{3). Although AD and ADX together with ADA,ADXA, ADB,
and A DXB normally function concurrently, information in ADX does not affect AD unless so speci-
fied. Carries from ADX must be specificaily enabled to AD in order 1o affect its sum.

2.9.54 AR Field - This field consists of three bits. Figure 2-71 details the breakdown of various
combinations of CRAM AR Seclection and hardware controlied selection. Generally, the CRAM AR
field specifies selection as follows: ARMM(0). CACHE(1), AD(2), EBUS(3), SH(4), ADX*2(5),
ADX(6) and ADX/4(7).

AR register loading is controlled by cither the hardware or microcode. Normally, the AR register
recirculates its contents. Sclecting any of the AR select lines CRAM ARM SEL 4, 2, or | enables
loading AR. The selection of none of the CRAM ARM SEL lines enables the AR mixer to sclect
ARMM. The loading of AR is then a microcode function.

During reads from core, the signal CLK RESPONSE MBOX, sclects ARM SEL | to enable the cache
data lines into AR. Similarly, on reads from fast memory via AD. FM XFER selects ARM SEL 210
enable the AD into AR. Various combinations of clearing of AR are possible depending on the condi-
tions. This information is given in table form on Figure 2-71.

EBOX/2-108

SN

FLINC TN

CTLARLSILA2

CTLARDOD MCLRA

CTLRiG =D

ENABLES LOADING 05 INTD
AR 1T

ENABLES MICRO CODE TO
LOAD PCSECT 13 1T INTD
AR |[CONDREGCTLY

CTL COND ARLE
LOAD

ENABLES MICRO CODE 10
LOAD PCSECT INTO AR

SIGNAL

FUNCTION

CTLARDD MICLW

CTL REG = DO

CTL COMD ARLL
LOAD

INABLES LOADING 05 INTD
AR DO DR

INABLES MICRD COOE LOAD
ARMM INTO AR (COND REG
cnl

ENABLES MICRO CODE 10
LOAD ARMM INTO AR

CTL ARL SEL A2

TO ENABLE LOADING AR
00 OB WHEN ANY ARL
SEL12a

L

N S

WGNAL FUNC THON
rTLARACLA ‘ ENABLES LOADING 05 INTO
| AR
- = Bcuidsis =i
CTL REG » & CURRENTLY USED TO ENABLE

SEW ¢ 10 BE LOADED INTD
AR

CTL COND/ARR LOAD CURRENTLY USED TO

ENABLE SER « INTD ARR

CLE RESP SV ‘

TO ENARLE L DADING CTL ARL IND * 1O ENABLE AR 00 08 TO —_—— —
ARDE 1T WHEN ANY CHAM = 01 R LOADED VIA ARRM CTLARMSELAZY ENABLE LOADING AR 18 15
StL124 INDEPENDENT OF AR 09 35 | ONANY ARMSELA2Y
——
CTL AR DS 17 LOAD CTL AW OO 08 LOAD CTL ARK LOAD
50 o8 os AT i) o]
e ——— . —
ARLL AHLR ARK
Cin DP —f S
T T
i J |
CTL ARDO- 11CLR = ~
S e e T E e L= Ak a] a ARw
SIONAL FUNC TION 2]
B SR ——— 3 3 &4 5 & 2 : » 0 1 2 4 A 5 & T 1 8 1 2 3 & 4 & 7
MCLZIMIT A FXTENDED EA CALCULATIONS 1 | =t 1 I \ T T G |] | 1 1 ==
- - - | aRmM | AD o &% | | cacnt | £Bus | aomz | apxie | Sene | A su | ADx
CTLAR 2 17CLR S0 TABLE AR 1T VICLR | CACwE £aus 4ol) ahn4 1 | | oL ab G ADN CACWE EBuUs aAD®z ADu1a
; | 1 | SLCTION |
- _} ! |
—— T — i 1 | CTLARREILZ
1 1
: f— SIGNAL FUNCTION
' DIAL LOAD AR VARIOUS USES FOR EXAMPLE
LOADING INSTR INTO AR VIA
OTE 20 FOR EXECUTION OR
r BOOTSTRAP S£Q
| cRame anmsEL 2 SELECTING ONE OF THISE
! AD I BUS ADX ADM
CTL ARL SEL 7 _.J CTL ARR SEL 1 | CON FM XFER A AEAD INSTR ON OCCASIDN
&R 1R TTCAN | | mctioan AR OR DATA VIA FAST MEMORY
SIGNAL | FUNCTION SIGNAL FUNC THO0M =
P - —% SGNAL | FUNC TION CTL DISP/A HEAD ENABLE £ VIA AD INTO ARR
MAG AR LOAD VARIOUS USES FOR EXAMPLE DIAG LOAD AR | VARIOUS USES FOR EXAMPLE — == | =
LOADING AN INSTH INTO AR | LOADING AN INSTR INTO AR MCL BT A | NON EXTENDED €A CALCU -
V1A DTE 20 FOR EXECUTION | wapIEXFOR EXECUTION | LATION
— . |— + — - — CTL ARRCLA
CTLARL INDSEL 2 = MICRO CODE MUST CONTROL CHAM ARM SEL 1 | SELECTING ONE OF THE T { POWER CLEAR DIAGNOSTIC
| SELECTING ONE OF THESE | FOLLOWING CACHE | BUS. | FuNC SIGMAL J FUNCTION
AD | BUS ADX_ AD AD*7, ADA p— t— -
+ COND/AR CLA I ALLOWS MICRO COOE TO CTLmESET PFOWLR CLEAR OR DIAGNOSTIC
CON FM XFER * READ INSTR ON OCCASION MCL LOAD AR A READ INSTR DN DCCASION 1 CLEAR AR DO 17 Fumc
MCL LOAD AR OF DATA VIA FAST MEMORY CLK RESP MBOX | OF DATA VIA MBOX - - =
. + ARL IND * ALLOWS MICRO CODE TD CTL ARL IND A ALLOWS MICRO CODE TO
CTLMBITEA DURING A READ WITH CTL MCL LDAD AR A DHAGNOSTIC FUNC CRAM = D4 ! CLEAR AR OO 17 WNDE CRAM = 06 CLEAR AR 1B 3% INDE -
AR DO 11 CLEAR FALSE PENDENTLY PENDENTLY

THIS PAGE
CONTINUED AND/OR
ENLARGED TO
THE RIGHT

i ‘CTL ARL SEL 1

SIGNAL

DIAG LOAD AR

FUNCTION i
VARIOUS USES FOR EXAMPLE
LOADING AN INSTR INTO AR
VIA DTE 20 FOR EXECUTION

d
CTL ARL IND SEL 1 MICRO CODE MUST CONTROL |
SELECTS ONE OF THESE

CACHE [BUS AD*2 AD4

I T e

MCL LOAD &R A ALAD INSTR ON OCCASION
CLK RESP MBOX | OR DATA VIA MBOX
MCL LOAD AR | DIAGNOSTIC FUNC

CLX RESP SiW |

THIS FIGURE
CONTINUED FROM
FRAME AT LEFT

Figure 2-71 AR Selection

EBOX/2-109

29.55 ARX Field - This ficld consists of three bits. Figure 2-72 details the breakdown of various
combinations of CRAM ARX selection and hardware controlled selection. Generally, the CRAM
ARX ficld specifies selection as follows: UNUSED(0), CACHE(1), AD(2), MQ(3), SH(Q). AD*2(5),
ADX(6), and ADX /4(7). ARX register loading is controlled by either the hardware or microcode.
Normally. the ARX register recirculates its contents. Selecting any of the ARX select lines CRAM
ARXM SEL 4. 2, or | enables loading ARX. The selection of none of these lines currently defaults to
an unused input (0). As with AR, during reads from core, CLK RESPONSE MBOX, sclects ARXM
SEL 1. to enable the cache data lines into ARX. Similarly, on reads from fast memory via AD. FM
XFER selects ARXM SEL 2 to enable the AD into ARX. Generally, the ARX is cleared via ARL
IND and number 03. The various combinations are shown on Figure 2-72 in table form.

BIGNAL FUNL 1 ION CTL ARNCLR
CHAM ARXM S1L 4 SELECTING ONE OF THESE SIGNAL FUNCTION
B4 ADY ADX ADE
CTL ARL IND TOCLEAR ARX WHILE OPERA
CTLARX SIL T SEE TABLE BELOWCTL ARXR CRAM = 01 TING ON AR
SEL2
CTLARNSIL Y SEE TABLE BELOWCTL ARXR
s
CTL MESET FOWER CLEAR OF DIAG FUNC
CTL ARX CLR SEETARLECTL ARRCLR
CTL AMK LOAD
|
o0 38
5 anx
CLC DP—
T
|
CRAM A8x (L]
™ OSEL 4 o
2
O 1 & 3 4] & T
T T T ' T
| * | | E | |
| | AD 5w | Aox
| CALML L] Alx ez ADn /4
|
e
|
I CTLARRSEL 2 .° CTL ARKSEL 1
SIGMAL FUNCTION
SIGNAL FUNC TION
MCL LOAD ARK READ OF INSTH INDIRECT

CRAM ARX MSEL 2

SELECTING ONE OF THESE
AD, MO, ADX ADKE

CLE ALY MBOX

WORD OR DATA VIA MBOX

CONFM XFER
MCL LOAD ARX

READ OF INSTR INDIRECT
WORD OR DATA Via FAST
MEMORY

WCL LOAD ARX

D AGNOSTIC FLUNC

CRAM ARKM SEL 1

SELECTING ONE OF THESE
CACHME WO ADX*? ADX 4

Figure 2-72 ARX Selection

EBOX/2-111

SR

2.9.5.6 BR Field - The BR ficld consists of one bit and is used to select one of two possible sources as
input to the Buffer Register (BR). The following sources may be selected: BR(0), AR(1).

2.9.57 BRX Field - The BRX ficld consists of one bit and is used to select one of two possible sources
as input to the Buffer Register Extension (BRX). The following sources may be selected: BRX(0).
ARX().

2958 FMADR Field - The FMADR field consists of three bits and is used in the selection of source
addresses for fast memory. Basic selection is as follows:

1. ACO(0) (IRAC 7-12),
2. ACI{(1). (IRAC 9-12)+1 Modulo 16,
3. XR(2.(ARX 14-17),
4. VMA(3), VMA 32-35,

»

AC2(4), (IRAC 9-12)+2 Modulo 16,

6. AC3(5), (IRAC 9+2)+3 Modulo 186,

7. CB##6) current ac block and selection within it is via § field,

8. #BK7). this is some block selected by # field.
2.959 SCAD Field - The SCAD field consists of three bits and is used to control the Shift Counter
Adder (SCAD) during various microinstruction operations. It is wired to implement eight functions as
iltustrated in Table 2-13. The input mixer structure is similar to that for the AD or ADX in (hat there

are two input mixers labeled SCADA and SCADB. These mixers are selected via two control RAM
fields labeled SCADA and SCADB.

Table 2-13 SCAD Field

CRAM SCAD] SCAD Function Function Breakdown

4 12|17] sx [s2 sxj N
O 0 4] A 1) 4]] 0 u ; 0

o {01 AR u il 0 6 i 0

o1]o A+B i 0o 1 1 te 1o

o {11 At 01 1 1 1 0

1 jofo A+l 0 v ¢ ¢ o l 1

1 {0]1 A-B u |t v 0 1 1

1 {110 AxB 6lo 1 0 0 0

I O I I Aand B 011 1 1 e "]

EBOX/2-112

2.9.5.10 SCADA Field - The SCADA field consists of three bits and is used to select various sources
as input to the SCADA Input. The following sources may be selected: FE(0), AR POS{1), AR EXP(2),
#3). SCADA sclections of 4-7 disable SCADA producing zeros as output.

The floating-point exponent register (FE) is & 10-bit register. The AR position field is used in byte
instructions and consists of AR 00-05. The AR exponent field consists of AR bits 00-08 and the magic
number field is a 9-bit control RAM field used to implement various cperations. The SCADA mixer
selection is shown in Table 2-14.

Table 2-14 SCADA Mixer Selection

o
CRAM SCADA Source

0 Ft

1 ARO ¢

2 ARIXP

3 =

47 O

2.9.5.11 SCADB Field - The SCADB field is a 2-bit field used 1o select various sources as input to the
SCAD B input. The following sources may be selected in the SCADB mixer: SC(0), AR SIZE(D),
ARO0-08(2), and A3). Selection of 4-7 disables SCADB, producing zeros as output. The SCADB
mixer selection is shown in Table 2-15.

Table 2-15 SCADB Mixer Selection

CRAM SCADB Source
0 SC
1 AR® 11
2 AR OCG 0%
3 -2
47 Os

The shift counter (SC) is a general-purpose 10-bit register used in shift counting operations such as
performed in floating-point instruction and shift instruction execution. It aiso contrcls the shifter
when the SH-ARMM field is zero (SH AR and ARX). The AR SIZE field is used in byte instructions
and consists of AR bits 06-11. The AR00-08 is used in string and edit functions. The magic number
field is a 9-bit general-purpose CRAM ficld used for various functions.

2.9.5.12 SC Field - The SC ficld consists of one bit and is used with the special field function SCM
alternate. With SC and SCM alternate, four possibie sources may be selected as follows:

With the special field function SCM ALT and SC field equai 1o zero, FE is selected. Similarly, with
SCM ALT and SC field equal to one, AR SHIFT is selected. AR SHIFT consists of bits 18 and 28-35
of AR, which are derived from the effective address for shift instructions. If bit 18 is set, the shift
specified is a right shift; otherwise, it is a left shift.

EBOX/2-113

2.9.5.13 SH Field - The SHIFTER ficld consists of 1w bits and 1s used to select four possible inputs
1o the shifter. Thz selection is as follows: the combined AR, ARX(0). AR(1), ARX(2), and AR
SWAPPED(3). When shifting AR, ARX left (which is the only way SH shifts physically), SC can
specify up to 35, shifts. Any number less than 0 or greater than 35, selects ARX as output.

2.9.5.14 The AR Mixer Mixer (ARMM) - The AR Mixer Mixer (ARMM) field consists of two bits
and is used with other control signals and the absence of ARM SEL 4, 2, and 1 to select various
sources as input to AR mixer.

The ARMM comprises three parts: bits 00-08, bit 12, and bits 13-17. The same field that controls SH
controls ARMMO0-08, The following may be selected as input to ARMMOO0-08: #0), AR SIGN
SMEAR(1), SCAD EXP(2), and SCAD POS(3). AR SIGN SMEAR 1s ARO-8 from ARO. SCAD
EXP is AR0O-8 via SCAD, and SCAD POS is ARO-5 via SCAD.

ARMM bit 12 is controlled by CRAM SH-ARMM SEL | when transferring the previous section to
AR for certain operations. ARMM bits 13-17 are also under control of CRAM SH-ARMM SEL |
but the signal is actually MCL PREV SECT to ARMM. The default value for ARMM 13-17 1s PC
13-17 and the selected value is VMA previous section 13-17.

2.9.5.15 VMA Field - The VMA field consists of two bits and is used to select various sources as
input 1o VMA. The following are specified by the CRAM field VMA(0), PC(1), PC+1(2), and AD(3).
Address control is presented in Subsection 2.4 and a path diagram is provided to show various com-
binations in Figure 2-58,

2.9.5.16 MOQ Field - The MQ ficld consists of one bit and is used in combination with the following:

DISP/MUL

DISP/DIV

SPEC/MQ SHIFT
SPEC/REG CONTROL
MAGIC NUMBER FIELD

Refer to Figure 2-73 for various combinations.

2.10 EBOX INSTRUCTION SET FUNCTIONAL OVERVIEW

Figure 2-74 breaks down the KL10 instruction set into several functional area. Thesc areas are related
to the minor machine cycles and to the microcode dispatch RAM decoding. The figure shows sev:
basic areas as follows:

1. Group Class of instruction

2. Address Calculation xr. @, B Y

3. Data Feich IMM, Read, Read-Wnte, Wnite, Read, Pse Write

4. Execution 36-Bit Data Path (DP), 18-Bit Address Path
(AP), 23-Bit AP, 10-Bit AP

5. Special Conditions Can cause Pl, Trap

6. Store Data Write

7. Interruptable

EBOX/2-114

op Al |

c-roa0 | o seL 2
14 SHRT
"o 2esmT
3+ HOLD MO SEL 1
]
1
S MOM EN
— WOM SEL 2
o ' 2 L] - MOM SEL
L] L] L]
wara S AD 8
MOM MO N MOM S 7 MOM S 1 MO O S 7 MO S 1
[S T] o | mom o o
T e X &l wOm 7 0 1
[ap 1 1 []] i o
Ta 1 [3 - 1 Vit]]
COND REG
ChHaM CTL
MO ¥ i SELECTED CONTROL SIGNALS CONTROLLING “1ELDS
ChaM IO WO nse [“07 08
~vo MOM §N MOM Se 2 | MOM S T | MO Se 2 MO Sl 1 SMET piv | mut
0 [[1* 1") [] [
0 0 o 3 ” 0 1 ox*
o 0 0 g . 1 0 [LH
1 1 * * T
1 1 o v [H v | o | o |
1 1 [] o [] 12 0
[] 0 3] [] o1
1 1 1 1* [] [] [] W
[1 1 o* 0 0 0 0 e
e T [J] [}] 0 []
e

Figure 2-73 MQ Selection

EBOX/2-115

TARI "WIOAL
o ADORE S CALCUL AT R DATA #ETEN taaruTon WRCLAL OO TR BATA
o co08s Clam e . . . o man LA T -:‘ '.'" '::" '::' “"‘:“‘. e - T A
T e et A S — =1, = m————t i -
200117 w1 Gl AL L - L1 B A ’.-". A - Ll ay - - o erytoivicand
L ISR | S S £ L o . | g W]
w0 T HALY woRD s s - e —-— s - - i s | ! - - e L F L O R
"“" -t —_ ——e - - - e e . t . + t—— -
R § wOAD 1 WAL YO P
e s ULy woan v i - e e ’ g - s | | - | - MWWAOE: ()
in | |
- 4 Jesssaaay R . + 2 * . - - - —
o an T s s - " - pree " e I som s | ~ ~ A AR O G
——— —_— S e e R b & . - . e -
me M ETACE GRS g s o s - AT ws an | - -5 ey
= —————e e + 1 + -
" s s s o - s P -~
A | Iy S N : +
+ T + + +
- e THNY G s | LU B | - | maa P Ll
— —y -—— e] - . -l _ = + —
ot | w - " e [{ et i
e | J
+ — - % LA - e et . M + - . . —
L1 | cowamy iy 1 iy - o Cainn | Camas i e dll | - ~ }
. — . -+ - - tl-- L 4 . . - D— -4 e
Cavin sy | " | . ComtntimAL | . e
e "t | vis - " -~ ! - | o -~ I el
e - - . . - tore- povcaoand —
PR | " s - " - i - o Y b -
+ —t + + - $ + + . . - - —
| 1 ! \
P | vepminiia it L - ! Ty | - i . SO TN - - |
| cada | A
| | |
T - — . - 4 crrrrrdrrrrrrrdrrrr i rprr i . 1 -] * _
M | o t | F LAl
Lo ARy ! m s] - | s had L) Pyl ~l -
—— 4 i T < 4 4 = : . . . oo M E—
- e e - i | - H i LR - - 2:‘.:... P
| — : ‘ e 4 + 3 4 . —
»y LI i - " - ' & Y - L LT
— - +— . . - R L. (S + . + e —r—t MR [—
alwn
e s o - e 1 e ‘-":‘ :'_“' A ay | " - i ARy AL UL O
[i { ‘ | ! . B/ A7 R o . = - + 4 { 4 B —
|) | heied)
|
" | | ¥
™ ViRED . = - } e -)
ik ld o . e i - " o ! e ety J - - A aay
i ! 1
{ {) »
— - _—— 4 1 . ..--.-_f-.----- e + 1 + . - - —
|] 0 ADE T e -
v - L
Lol A Ve s ' - | el] s s s - ALL Sl EVMUL ST A ACeY o3 o
| Dy P8 gt
- + - S I —————— t + + . — — e
e - o - A en o ! || - -~ ano
- + I . -
- + - ~ e e - + + . e
iy | - s . | | " LU A |
+ . ‘. - 4+ — - - + - - - ‘I —
e ! - s - . | “i - ~ l G L T
BT T wae o) | I H 1 | I ety
\ nim] [
™o L W e " | o -~ " i e ALy 1 Ay - ~ - bbb fen
| el Y 1
-
b— + - o . +
|
6 dat WL A |
s ghpS setiie— | T Wiy ~ s - w -
| wOIC ALY bt
_ - ! - -+ _ - - - = 4
y 2 | N v < . T O M B
» | ot vy -t | - . " " - L R e
5 t 1. - e R t - 4 SO
- rre T s i LY 1 - e s wiw i L) - - - BOF R TE R ALY (W ST O
— — - __.r.-..- e . - p— — —
e Anen s P o P i - - - " v
- — - - - + . rewrre - - —
e Wi PLDATING o il i {d = i | - | . OEAR OIS SN Y IR AL ACAY
> . -
o i | P i ! | t DIMP (WD RS T TD AL BLsY

Figure 2.74 Instruction Set Divisions

EBOX 2-117

Once the instruction has been loaded into IR and ARX, the major machine cycle begins; this is shown
in Figure 2-75

Three functional flows and two tables are included to supplement the functional descriptions of the
address, fetch, and store cyvcles that follow

L 8 L
= g INDIBEC TN
ENTERUPY

Figure 2-75 Major Machine Cycle

2.10.1 Effective Address Calculation

Figures 2-76 and 2-77 illustrate the instruction word formats. Bits 13-35 have the same format in every
instruction whether the instruction addresses a memory location or not. Bit 13 is the indirect bit, bits
14-17 are the Index register address and, if the instruction must reference memory, bits 18-35 are the
memory address Y. The effective address E of the instruction depends of the values of 1, X, and Y.

™ L e] g 13 w LA | »
- Y C
MATRUETION CODE | ACUMULATOM ADONESS] s L S CRTLAL WEMONT ADDRESS]
v = T - 4T
J
NDREC T v
s
Figure 2-76 Basic Instruction Format
7 oy ¥ M0 iz 4 Y LA] 1]
<1 - ’ .-
o . N | |
WEERESN ewicy cont] ™anpe | l INDUR SIGSTUR ADOMLSS | WIRTUAL MEMOWY ADORESS
|

i 4¥

. NDMECT 0N

Figure 2-77 In-Out Instruction Format

EBOX/ 2-119

2.10.1.1 Indexing - If the Index register address is nonzero, the contents of the specified Index regis-
ter are added to the Y address to produce a modified virtual address.

Referring to Figure 2-78, the EBox tests ARX 14-17; if it is nonzero, the contents of the specified
Index register are added to ARX 00-35. The result in AD 18- 35 is loaded into AR 18-35 with AR
00-17 clcared. and also loaded intc VMA 18-35 while VMA 13-17 is recirculated.

2.10.1.2 Indirection - Whether indexing is performed or not, if ARX 13 is equal 10 1, indirection will
be performed. Two cases are 1o be considered. The first is where no indexing was performed. Here
(indicated on Figure 2-78 as (A)) YMA 18-35 is loaded via AD with ARX 18-35. In the second
case. indexing is performed and the VMA is loaded via AD with AR. Here AR holds the sum of ARX
18-35 and FM 18-35 effectively, with AD bits 00-17 clear.

In either case, VMA 13-17 is recirculared while VMA 18-35 will be loaded via AD. The micro-
instruction MEM field function for the indirect request is MEM /AIND. This function has MEM 02 =
0. so MBOX WAIT is conditionally a function of the next microinstruction.

Testing for Interrupts
The microinstruction causing the EBox request also tests for a pending priority interrupt. If an inter-
rupt is pending, the CRAM address is modified to allow entry to the Pl Handler (Figure 2-79).

The request, which is made both to fast memory and core memory via the MBox, is ignored as long as
it does not page fault. MBOX WAIT is false, 30 the EBox clock does not stop at this time. The EBox
ignores an indirect reference when an interrupt is pending, but the EBox hardware remembers s page
fault (if one occurs) undil the page fault handler has been calied. After the PF Handler is called, Force
1777 will be cleared.

Referring to Figure 2-80, assume the indirect request has been started. Because the indirect reference is
always a “READ," the only types of page faults that can occur in K1 paging mode are no access {page
nol in core) of proprictary violation,

The requesting microinstruction detects the interrupt and the microprogram branches (via CRAM
Address) to the Pl Handier.

If the page fault occurs (for example) because of no access, the MBox must first read from the in core
process table to obtain the paging information (use bits A, P, W, 5. C and physical page). Reading this
can take between 600 and 1000 ns. During this period, the PI Handler is -etting up the requested Pl
service.

Eventually. a read, write or instruction fetch occurs, caused by the handler. When MBOX WAIT
becomes true, the clock board {which remembered the Page Fail Hold level) forces the microprogram
1o the page fault handler.

Now the page fault handler detects the pending interrupt and the microprogram branches back to the
PI Handlzr or to the instruction cycle. Thus, the entry to the page fault handler satisfied the clock
board “'page fail hold condition™ and this condition now clears. Should the EBox make second
MBox reference before the page fault occurs, the EBox waits.

EBOX;2-120

IBO® DAL WUT
A T F ALY
WO Y WORD

NADN L A
EL R
ALCEAL P ALY
L L Ll
AR DY TR TS

Tt AN AROE 'Y
THE AR T

(LR R

RO Tl LT T
LCR TR TR

YMALLTE

| WMAE AL P

W

) AT i
T
AU AR bW

LT

T
.[-UIH\- L AL AL
VAL W ADW R |
e O W

A YLLEN SRR . l [WA WO 2
T O ML | VMARL | ey AT S T WINPT R RTNG | NG
tvae e e . O TR TR
. = H - e 1
) W N CRC TR 1
e AT i WUT EBON NGRS Rt AR " - sl AT
. . Rt S Ay
s i T e o vis Divina T
O O LT % T RO R AT R e L e AT TR
AN -
. . -+
v T " ~ IR WA "ws b p—— -0
A WD 10 A WU A s
< + i i s a
YIS W) T |
MOV Wi o i e T T
1ol b ut BT RO A ANTLEN i
"
At
. - .
L e e A w2

Tod T MRS T N
CAUAN & WY Ty 10 e P s
C R L L T

CRRAREE WA Y TR
Ay TRACEY 0 Teed B 0

Lo RN TR R L
O RO A R AL ML
L L T

" we ws

VA AL BIT RO CLOCR STORY
O T LR Tl RO AL
WURE o Tl AW AND
TMErILDm JO8

SRR R NG Tl KR0S RID
WURD TR WO N T CACRE DR

WROE LRl vl Tl T RO BLL

& PALY P AU, Y DECURE R

ALDNTAOL RAM FPARITY ERAON I
YN TD .

&y

Figure 2-78 Effective Address Calculation

EBOX /2:121

Figure 2-79 Page Fault During Diverted Indirect Reference

Normal Case - No Interrupts, MBox

When the EBox request is made specifically to the MBox, no interrupts are pending. the micro-
instruction following that which made the request (MEM /AIND) has its MEM ficld coded as ARX
MEM. This function, together with MEM Cycle (1), will generate MBOX WAIT.

Assuming a page fault does not occur, the word loads into ARX. Now as indicated on Figure 2-79, the
loop is reentered once again.

Normal Case - No Interrupts, Fast Memory Request

When the hardware determines that the VMA contains a fast memory address, it asserts VMA AC
REF. This signal is used 1o inform the M Box that the EBox request is not to be handled by the M Box.
Note that the fast memory address control uses VMA 32-35 to access fast memory even though the
virtual address may be a core memory address. The hardware directs the use of the information
accessed in this manner.

The effective address manager (Figure 2-15) branches within itself using the information provided
from ARX 13 and 14-17. In addition, each time it samples this information it should branch to a
microinstruction that enables the correct registers to be loaded; it may, however, invoke certain “don’t
care” operations, providing the next microinstruction executed performs the proper action. For
example, assume a microinstruction is to always perform the indexing function in AD, but dispatch to
a microinstruction that uses this information only if ARX 14-17 » 0. This approach simplifies the
design of the logic.

The table at the bottom of Figure 2-78 lists the four possible conditions resulting from indirect refer-
ences to either MBox or fast memory.

EBOX/2-123 !

ALY Ty

A

CLCTTR I
ApDeE L

WY od
"

T (a8 AD
AN T PR
LR

AL B

meane |
-

—
oRAma s |

FAmb e AL A
AL THAY 04 !

LB R
LR
AnDEIRL

RO 8L AD
R TR]

.

FATCH AL PaAT

Lo bkl

AL Dy

s -
An a

AR DAYA sOED

TALE bhun Y
HANDLL®

et AL
LR T !

T L TETRTE |
O A T
T

&

PALE FAn T
gy

Figure 2-80 EBox Data Feich

EBOX, 2-124

2.10.1.3 “o Indirection or Indexing - For this case, ARX 18-35 contains the effective address. Here, it
remains only to load AR 18-35 via AD with E and clear AR 00-17. The Fetch cycle is now entered.

2.10.2 Ferch Cycle
Once the effective address has been calculated. the second minor machine cvcle 1s entered. This is the
Fetch evcle and s illustrated in Figure 2-81

llll’. L o wmey

Figure 2-81 Fetch Minor Cycle

After the effective address has been calculated, the microprogram effective address manager gives A
READ DISPATCH" and control 1s passed to the Data Fetch Manager.

In general, two major classes of instructions exist in terms of the Data Fetch cycle. These two classes
are those instructions that require the contents of the effective address and those that do not. Within
cach of these two categories are a number of divisions. The flow of the Fetch cycle is illustrated in
Figure 2-80.

2.10.2.1 Instructions That Do Not Require (E) - Three general groups form this category.

1. Complex or PC change instructions
2 Immediate non-PC change instructions
3. Instructions that write in E

For these three groups, the DRAM A field is coded 0. 1. and 2. respectively. The AREAD Dispatch
functions are lisied in Table 2-16.

Complex or PC Change Iastructions

The DRAM A field is coded as 0, and no data is requested. In addition, the next instruction is not
prefetched. The AREAD/Dispatch dispatches directly to the execute code. This consists of & table
lookup, where one discrete entry exists for each instruction. Thus, for example, the move instruction
indexes into location 200" in the DRAM. The organization of the DRAM is illustrated in Figure 1-4.

Immediate and Non-PC Change Instructions

The DRAM A field is coded as 1, and no data is requested. The next instruction is prefetched and
loads into ARX when the instruction becomes available. The AREA D/ Dispatch dispatches directly to
the execute code,

EBOX 2-125

Table 2-16 AREAD Dispatch

e e el s 1 —
DRAM A DISF/AREAD —I MEM/AREAD Reguire (1)
—_— e e
0 Executin S Pretend i N
1 Ixecutor Start Prcterct N
2 Not used NA
|
Symbolic Address 43* Perdorm wete test N
4 Symbohc Address 44* “LOAD AR b
|
-1 | Svinbolic Adidress 45% A vead opcration s in progre b
i “LOAD AR PREFYTCH |
|
[| Svmbobc Addresy 36* LOAD AR READPALSEWRITE Yo
! Symbolic Addiess 47° I LOAD AR WRIGE TEST Y
. e P | (SR —a s

*Thw Data 1 ctih ma 1 & combmation of hatdwar mosth on MUT and the msgopropram omiastug o 47 4
-

Instructions That Write in E
The DRAM A field is coded as 3 and a write page test is initiated. If the address is not writable, a page
failure occurs. This action causes a transfer to the page fault handler as indicated in Figure 2-80.

The appropriate Fetch EBox Qualifiers may be determined by referring to Figure 2-82. For DRAMA
= 1 the following qualifiers are specifically asserted:

EBOX REQUEST
EBOX PSE
EBOX WRITE

In addition, the state of the qualifiers is more complex and may depend on the previous history of the
EBox. The state is indicated by an asterisk (*). Once again referring to Figure 2-80, if the write page
test is successful, the EBox fetches the contents of the addressed fast memory location (via IRAC
09-12) and then dispatches via the DRAM J ficld to the executor.

EBOX, 2-126

EBOX REQUcST QUALIFIERS

CYCLE

MEM
FUNC

DRAM

DRAM

EBOX REQ

EBOX READ

EBOX PSE

EBOX WRITE

EBOX USER

MAY BE PAGED

KI PAGING MDDE
VMA AC REF

PAGE ILLEGAL ENTRY
PAGE TEST PRIVATE
PAGE ADR COND
CACHE LOAD

CACHE LOOK

REMARKS

ADDRESS

A IND FOLLOWED
BY LOAD ARX

INDIRECT WORD READ, MAY BE TO MBOX OR
TO FAST MEMORY. VMA AC REF INDICATES
WHICH VMA HOLDS ADR

FETCH

FETCH

INSTR FETCH MAY OCCUR FOLLOWING A
READ WITH DRAM A=10R S TOGETHER WITH
MEM/FETCH

FETCH

A READ

INSTR FETCH FOR JRST 0 (IR=JRSTO)

EXECUTE
STORE

FETCH

PICYCLE ISCLEAR. USED WHERE NO PREFETCH
WAS ISSUED TO CAUSE AN INSTR FETCH,

FETCH

AREAD

DATA READ ISSUED BY INSTRUCTIONS REQUIRING
THE (E) AS FOLLOWS: COMPLEX OR PC CHANGE
INSTRUCTIONS OR SIMPLE NON PC CHANGE INSTRUC-
TIONS. (T) ASSERTED IF ATTEMPTING TO READ DATA
FROM A PRIVATE ADDRESS SPACE WITHOUT PROPER
PROTOCOL MBOX READ PAGE TESTS.

FETCH

A READ

DATA READ-WRITE ISSUED BY INSTRUCTIONS
REQUIRING THE (E) WHICH CONDITIONALLY WRITE
INTO E. THESE INSTRUCTIONS ARE AS FOLLOWS:
NON READ PSE WRITE TYPE) ASSERTED IF
ATTEMPTING TO READ DATA FROM A PRIVATE
ADDRESS SPACE WITHOUT PROPER PROTOCOL.
MBOX READ AND WRITE PAGE TESTS. AR LOADS.

FETCH

A READ

DATA READ PSE WRITE ISSUED BY INSTRUCTIONS
REQUIRING THE (E) WHICH WILL UNCONDITIONALLY
WRITE INTO £ (3) ASSERTED IF ATTEMPTING TO READ
DATA FROM A PRIVATE ADDRESS SPACE WITHOUT
THE PROPER PROTOCCL. MBOX READ AND WRITE
PAGE TESTS. IF CACHE IS DISABLED FOR THE CYCLE
MBOX WAITS FOR WRITE PORTION OF CYCLE. LE_PT
CACHE (0) OR CACHE LOAD (0} A NOT FOUND. AR
LOADS

« IF AN INSTRUCTION IS FETCHED BY A PUBLIC PROGRAM FROM A PRIVATE ADDRESS SPACE, AND THE INSTRUCTION 1S NOT APORTAL. ILL ENTRY WILL CAUSE THE
MBOX TO PAGE FAIL ON THE NEXT MBOX REF

* THESE QU/ LIFIERS ARE TRUE OR FALSE DEPENDING ON THE SPECIFIC TYPE OF REQUEST BEING MADE

AL L

Figure 2-82 Address-Fetch-Execute-Store
General Memory References (Sheet 1 of 2)

EBOX/2-127

EBOX REQUEST QUALIFIERS

MEM

CYCLE FUNC A s

EBOX REQ

FROX READ

EBOX PSE

EBOX WRITE

EBOX USER

MAY BE PAGED

Ki PAGING MODE

VMA AC REF

PAGE ILLEGAL ENTRY
PAGE TEST PRIVATE
PAGE ADR COND

CACHE LOAD

CACHE LOOX

REMARNKS

FETCH A READ 3

DATA WRITE PAGE TEST ONLY. ISSUED BY
INSTRUCTIONS NOT REOUIRING (..} BUT WHICH
WILL WRITE INTO € (@) ASSERTED IF ATTEMPTING
TO WRITE DATA INTO A PRIVATE ADDRESS SPACE
WITHOUT THE PROPER PROTOCOL . MBOX WRITE
PAGE TESTS

STORE BWRITE 23

DATA WRITE (WRITE PAGE TEST AND WRITE DATA)
USED BY THE GENERAL 4 MODE TYPE INSTRUC.
TIONS 1E MM, BASIC. MEM, SEL FOR BOTH, SELF
MODE STORES CONDITIONALLY IN E WHILE BOTH
MODES ALWAYS STORE IN E. IN ADDITION BOTH
MODES STORE UNCONDITIONALLY IN AC WHILE
SELF E MODE STORES CONDITIONALLY IN AC.
STORE VIA AR (B) SAME AS @

EXECUTE BYTE IND

BYTE POINTER INDIRECT WORD READ, USED AFTER
BYTE POINTER HAS BEEN FETCHED WHEN BIT 13
OF THE POINTER IS 1. USED ONLY BY BYTE TYPE
INSTRUCTIONS. ACTS LIKE EBOX READ TO MBOX.
MBOX READ PAGE TESTS BOTH AR AND ARX ARE
LOADED () SAME AS (P .

EXECUTE BYTE RD

BY 7L DATA READ. USED AFTER BYTE INDIRECT
HAS COMPLETED. USED BY BYTE TYPE INSTRUC.
TIONS. ACTS LIKE EBOX READ TO MBOX. MBOX
READ PAGE TESTS BOTH AR AND ARX ARE LOADED.
D same as ®

EXECUTE
STORE
MISC

WRITE

GENERAL PURPOSE WRITE. USED MANY PLACES.
SOME EXAMPLES wOULD BE INSTRUCTIONS WHICH
STORE MORE THAN ONE OPERAND. SUCH AS DOUBLE
TYPE INSTRUCTIONS. INSTRUCTIONS WHICH SKIP,
OR MODIFY AND SKIP BUT DID NOT FETCH (E! AND
ARE GOING TO WRITE INTO E. MBOX TREATS AS
WRITE. WRITE PAGE TESTS.

EXECUTE LOAD AR

X

X

L]

® IF AN INSTRUCTION 1S FETCHED BY A PUBLIC PROGHAM FROM A PRIVATE ADDRESS SPACE, AND THE INSTRUCTION 1S NOT A PORTAL. ILL ENTRY WILL CAUSE THE

MBOX TO PAGE FAIL ON THE NEXT MBOX REF

.
* THESE QUALIFIERS ARE TRUE OR FALSE DEPENDING ON THE SPECIFIC TYPE OF REQUEST BEING MADE

ALAL L}

Figure 2-82 Address-Fetch-Execute-Store
General Memory References (Sheet 2 of 2)

EBOX/2-129

2.10.2.2 Instructions That Require (E) - Under this category are four general groups. These groups
are as follows:

t. Complex or PC change instructions
2. Simple non-PC change instructions
3. Non<{read-PSE-write) type instructions
4. Recad PSE write type instructions
For these four groups. the DRAM A field is coded 4, 5. 6, or 7, respectively.

Complex or PC Change Instructions

The DRAM A field is coded as 4. causing a dispatch to location 44. A read page test is performed by
the MBox. If the address is not accessible (not in core), the MBox performs a refill cycle and then
checks the use bits.

If the access bit is clear. a page fault occurs and the EBox t-ansfers to the page fault handler {micro-
code page fault handler). Otherwise, the requested word is loaded into AR. For the appropriate EBox
qualifiers, refer to Figure 2-83. Finally, s DRAM J dispatch is performed to the executor.

Simple Now-PC Change Instructions

The DRAM A field is coded as S, causing a dispatch to location 45. The basic read is the same as for
DRAM A = 4, If no page fault occurs, the MBox issues MBox RESPONSE with the data word. Now
the VMA loads with the prefetch address and this cycle begins. This MBox cycle will run in parallel
with the Execution cycle, which may not use ARX. Finally, s DRAM J dispatch is performed at
location 45; the VMA is loaded with PC + 1 and the prefetch begins.

Noa-Resd PSE Write-Type Instructions
A number of instructions are in this category: & few examples follow.

The first example is SETMB. This instruction (Boolean Group), reads & word from memory and
unconditionally stores it in memory and AC. Because writing the word back into the same address is
r=dundant, only a write page test is required to assure that the word (if in core memory) is writable. If
this page fails. then the operation is aborted anyway. Otherwise, the word read is stored only in fast
memory as addressed by IRAC 09-12. The read-write (separate cycles) may be thought of as consisting
of a read and conditional write. If the write cycle is really desired, the MEM field function
MEM /Write may be used to write (Figure 2-82).

The second example concerns instructions such as IDIVM, IDIVB, DIVM, and DIVB. These instruc-
tions reference memory for both read and can generate no divide. This aborts the division operation. If
the class of instruction is read PSE write and the cache is disabled for the reference, then the MBox
waits for the write portion of the cycle; the EBox performs an unnecessary write operation.

A third cause is for BLKI and BLKO 1/O instructions. Here a pointer word is fetched from the
effective address. This pointer is normally updated and stored back in the effective address.

One problem is that the legality of performing the 1/O instruction is tested afier the pointer has been
fetched. This is necessary because the pointer is fetched during the Fetch cycle, while legality (10
LEGAL) is tested during execution. Should the BLKX instruction be illegal in the current EBox mode,
an unnecessary pointer back off and write would be necessary.

Other cases are concerned with very long instructions, which could hold up the MBox.

EBOX/2-131

B RN T A e ey
_[- 1 " — — —
=]
.] - . € - |
- 2 - * -
| = | H 3 - s - -
z K g = ° : = = - =
ol || 2)s! ¥l 2|leslelslselzlglz]s AR E: hpiaaid
- Y = = 3 = > E - - - " - gl T = = -
= = = i - w | '« M - - T M - " z » -
comn e [, vio | 8 - < z ‘ $ z g i i H r | 2 i ELE v i i
i s Ton s n . - 38 - I - [1 =1 F - =1 | %] K 3 = 1 X
1 1
IxEcuTH | | | !
MULO ! 2 | : | l W T NTE ST R PROCESS TABLE WROX
PART 1T @i it " X X | X | . IS VMA ZT TS OMLY MBON AFPINDS
wMETER CYOL oo B i | LH 2 T FDRM PHYRICAL REFER
REQUEST & | | | INCH OWFATED CANNGT PAGE FAIL
PAGE ¥ &1L | {
PANTIZ j - - . - '+ - - + —4 — 4 — - +- -+
LOAD a8] I | | |
EXECUTE i) | | | ! WEAD Wi PC WORD FROM USER PROCESS
0. Vv ™ | o X | X X | | | TABLE MAGR USES VMA T7 35 ONLY MBOX
PART I eveis ALY | | | ! | APFENDS UBM 18 M T FORM PHYSICAL
:::(' :""‘ e ! | | | WV WINCH UNPAGED CANNOT PAGE FAIL
i) | + 4= - + . - + + . + e - .
b whit | | ! { S0 ST WRITE ACCORINNG 10
EXECUTE ool IR | s X X | x | | RELOCATLO VIRTUAL ADDRESS TMERE
DEPOSIT o8 254 | | l | | RS W0 PROTICTION V0L ATION
LA | | 1
L i . o I AT LRSS A =E=HE=
LoAD AR |] | I | FOR (4ROSIT DR | XAMINE READ PROTEC
EXVEUTE i rotemn ! THON AND BELOCATION INFORMATION
ExAMING S nY M e X X | X FROM ERIC PROCESS TABLE FORMTR
DEROSIT 01 WAL \ | AEOUEST KLAD DOUBL | PRECITION WORD
METER AL SR St NG | | | | pdrivs baidpis
k) | $ L L e e 4 :
XU sy | | | | | INSTH FETEH FROM EPT FOR 51D INTER
10 ovet ! | | AT OR IND PART OF 510 INTERRLFT
e it L0AD &uK we | x| X X | | | V0K USEE VMA 17 38 0M.Y O
i | ! | APPLNOS £BR 14 Ot Py SICAL
et Fretd | | [BEPERENCE UMPAGED CANNOT PAGE
ST0 INT ININ | | g
| SR s BRI A . —t —— 1 —
EXECUTE i | | | ! | F1TCH WORD FROM ADDRESS SPACE
MCOND e LOADRR . . i | SPLCINIED ViA AP WORD BITS O 7 MAY
mvicT exeut oL omD ! REC | | BE IPT EKEC VIRTUAL UPT USER
X AMING o1 ny v wiornnl X | W s | ¥ | VINTUAL PMYSICAL THE STATE OF
SELHIG P s AL WAL} St b ol | | | VMA £PT VMA UPT MAT BE PAGED
2 Ll B i i F | | | | CONTROUS CONTERT OF AEFERENCE
I | I 1 | 1 FETOM INETR FROM USER PROCESS
LOAD ARX | | | TABLE (F THAP OCCURRED IN USER
pacor e souomio | ! | MOOK AND | KEC PROCESS TABLE IF
AANY cveur syioap | X | % | % % | | TRAP OCCURRED IN EXEC MODE
e anx | | | | | TMESTATE DF VMA LPT ANO VMA
1 | | | APT 15 A FUNCTION OF MCL USER FN
+ —t ———— —f —_— % - . - —
1 | | | 2 W15 0F INVOR
| | | | | MATION FETEMED FAOM | 1O THE
FRECUTE o [i H | INTERNAL O [XTERNAL MEMORILS
KO LEGAL worow | ol X | | X | | | TMIS IS PERFORMED VIA THE MBOX
| i | | Tl MEMORY CONTROLLER SELECTID
| ! | RETURNS A WORD WHICH IS STORED
| |]
i | | sy
‘ - T 11 1
I | | | HEADS INFORMATION § AOM EBOX AND
[£17=0 1 o | | | I | MBOX FIRET WEADS AC BLOCKS CWSX
patal LEOAL REG FUNC W2 X X X ! AND VMA PREV SICT THEN REQUESTS
raG | | MBOR TO R UBR T EBUS REG
| J | | | [BOX THEN READS EBUS LG
S P [e | et iit] - i | I

Figure 2-83 Execute-Register-MBox Control
and Miscellaneous General Memory References
(Sheet | of 2)

EBOX/2-133

Faom WO SY aA T N
b- - - - - - - T T T - ——r————
1 1] | a]
| _ | . : 14 | |
- : 3 !
B = | T ' | 7 8
z| . -i%la'f.' slalslstzlelslil R Himas s
AES (B-X 2R E zligt 2l StElltEl BEE] 2] 8 | =
coND wic i LD 2 - 3 = 3 i I | § z i ¥ i 5 2 [b 4 i
ChiLs e e " 0o» I e o - | =] £ S 2 1S | BERESRIE N
| 1 | | | | | MEALS (NEORMATION §HOM | BOX AND
txicunt - | ! | MAOR §1RS1 AEADS LOOK LDAD, $EC
i i G " X [X | THAPEN THEN WEOUESTS MBOX 10 PUT
rAG B | | | { | | URRINTO EBUS HEG EBOX THEN READS
| | | | IBUS HEG AND STORES RESULT N |
= e S i ! — 4 =
T 1 1 = T 1 1 i ADS TI MBOX | RROR ADDRE S5
iy e LRl 1. X X | X | | REGISTER THE WORD IS STORED N
LS AL LiGal I 1 | : | l | THE PECITIHD AT
- - - - - - - - - - —‘? - - -
 [— 1 | | 1 | | | | | INVALIDATE ENTRIES N THE PAGE TABLT
EXECUTE whax e ey | | | | X X WiTHIN THE MBOX EBOX USER REFLECTS
WO FalG (4]} | = USE R OO AND THE PAGE TO INVALIDATE
ST | | l 15N Ve
= T S e e —" ! I I i 1 I T T T 1 Troastomniamir st snv
fen) | | | | | CONTEXT AND UBR (IN MBOX | AND
DATAD ol dubiag) i X X Al | | [CUEARS THE PAGE TABLE 1% THI MBOX
| | |
raG | | WMA TS 5 CONTAIN THE DATA 10 81
| | | ‘L | | LOADED INTO URR
s ot e — —— =
exeouTe o i i A H 1 1 =1 1 i T] T LOADS THE CACHE STRATEGY BITS
L} 1
3 e LOOK LOAD) SLCTION AND TRAP £
v SR AT X | % | x| | | | FLAGS i THE LRON THE LB (14 THE
R ,] 4 4 | X * = e 1 MBOX) 15 LOADLO VIA VMA 24 3
| I | B | 1 ADS PAGE F AILWORD FROM MBOK
ikl "0 ot e = X X X | | | LAUS BEGISTER THI WORD 18 STORID
war LI GAL i 1 | 1 N THE PLOIFIED AC
TN S— — e e v . + . + - . e
| | | WRITE ThE CACHE REFILL ALGORITHM
tnpcun T N s X | X | X | VMA 1B 70 COMTAINE THE AL GOR: THM
weo IGAL | i | BOTH AND VWA 2T XD CONTARY Thi REFS
i i 1 i J i ALGOW!THM ADDRESS
1 i ! i

Figure 2-83 Execute-Register-MBox Control
and Miscellancous General Memory References
(Sheet 2 of 2)

EBOX/2-135

The DRAM A field is coded as 6, causing a dispatch to location 46; the MBox performs both a read
and write page test. The address must be both accessible and writable, even though this portion of the
operation only reads a word. If a page failure occurs, the EBox transfers control 1o the page fault
handler. Otherwise, the word enters AR and then a DRAM J dispatch is issued.

Read PSE Write Type Instruction

The DRAM A field is coded as 7 causing a dispatch to location 47; the request qualifiers are shown on
Figure 2-82. The MBox performs both a read and write test, and if no page fault occurs, reads a word
from the specified (Xlated) address.

If the cache is disabled for the reference and the word requested was not in the cache (a Refill cycle was
necessar first), then the MBox is held waiting until the EBox issues the write portion of the cycie. The
word requested loads into AR and a DRAM J dispatch is issued to enter the Executor.

2.10.3 Execution Cycle

The Executor is entered from the Fetch cycle. While in the Fetch cycle, the (E) or (AC) is fetched in
accordance with the DRAM A field. In addition, read and/or write page testing is performed while in
the Fetch cycle. The EBox Execution cycle overview is in Figure 2-84.

Early in the Instruction cycle, the DRAM is acoessed using one of three basic types of addresses.

Referring to Figure 2-84, if the instruction is JRST 0-17, then the IR address is used to address the
DRAM initially as indicated. Thus, the JRSTs handler is cntered at location 254 for JRST and 255 for
JFCL.

From the initial dispatch into the handler, the IRAC is used to redispatch within the handler for the
proper type of JRST. For JFCL, a JUMP i made 10 a separate handler from the initial dispatch

If the instruction is an 1/O type, then the DRAM address is formed by the hardware such that the
dispatch is in the range of 700-777. Once the 1/O handlei has been entered, a determination must be
made as 1o whether the instruction is legal in the current processor mode. If it is determined that the
instruction is not legal, the MUUO executot is used to store the illegal instruction and PC word in the
user process table. Following this, & new PC word is fetched. This new PC word causes the processor to
cnier an executive routine in core memory. If the 170 instruction is legal, use of the EBus is obtained
and the appropriate EBus dialogue is carried out. The specific actions evoked depend upon the device
and the type of 170 instruction being performed.

The remaining instructions index into the DRAM utilizing the op code in IR bits 00-08. Two general
categories exist as foliows:

1. Simple Type - stores in AC, E, or both

2. Complex Type - may store in AC, AC+1, E via normal store cycle or elsc store via a special
handier, or may do some of each

The complex instructions may nest microcode subroutines up to four levels deep.

Referring 10 Figure 2-85, the mechanism consists of CRA LOC, a register that is loaded with the
*current micrainstruction address.” This register is loaded at the same time that the CRAM register is
loaded with a new microinstruction. In addition, a 4-word stack is provided. The contents of CRA
LOC are pushed onto the top of the stack when the call has been asserted by the microinstruction. To
return from a subroutine, the returning microinstruction asserts DISP/Return. This pops the top entry
off of the stack and onto the CRAM address mixer lines, where it is logically ORed with the J field of
the microinstruction, asserting DISP/Return.

EBOX/2-137

1
-
l | e P
- T
-
. -y
anutim
Py ‘
-
— Y
-
R
- |
-
e e —
I -
=== - o
ESES—E
-~
| ' ~ |- a1
= -t —
=1 _ v s em “w oty
P =
- T
-
2 i ' oy BT
- 1 J
-t e % i oy e
prrerve
" + - DY
Lol ka8 aanTeE ro
T
arome
-
TP

. LT
t . e ats ol | { |
i
=
- TR
e L L] |
i - —d
| |
NS T - g |

S Wk
——

-
-
-
..

Figure 2-84 EBox Execution Cycle Overview

EBOX/2-139

¢ . — — - -
S i :] ! T AL
. waw waw k) I s acom TR LA -
1 ! i 1 3

!
ha

S G T I

1 - 2

Figure 2-85 Microstack Operation

Some of the complex instructions, such as DMUL, which stores in AC, AC+1, AC+2, and AC+3, use
a separate handler for storing multiple operands. This type of instruction does not pass through the
normal store cycle. Other complex instructions, such as MULB, which stores in AC, AC+1 and E,
store multiple operands via the normal store cycle.

2.10.4 EBox Data Store Cycle

The flow for the EBox Store cycle, illustrated in Figure 2-86, is used by most of the instructions
executed by the microprogram Executor. Exceptions to this are certain instructions such as DMUL,
which stores more than two ACs. For these instructions, a special handler exists that is entered from
the executor. This handler stores »1l the operands and then issues an instruction fetch followed by a

NICOND Dispatch. In this more general calegories (which do use the normal store cycle) are
covered.
2.10.4.1 Basic Four Mos waructions - This type of instruction may have one of four basic

modes as follows:
I. Immediate or Basic - store in AC only
2. Memory - store in £
1 Both - store both in AC and E

4. SELF - store in E and conditionally store in AC. Note that if writing back in E is redundant,
the write cycle 1s skipped.

Writing for these four moge instructions is controlled by MEM/DRAM B and the DRAM B field
code. The store cycle is dispatched with DISP/DRAM B. Thus, the dispatch RAM B field (three bits)
1s used 1o form the low-order three bits of the Store cycle address.

Immediate or Basic Mode

Referring to Figure 2-87, the DRAM B field is coded as 5. The contents of AR are written into fast
memory. which is addressed via IRAC 09-12. Because a large number of these instructions prefetch
the next instruction, it is necessary to assert MB WAIT in the event MEM cycle is set waiting for a
response from the MBox. This has no affect if MEM cycle is clear. NICOND Dispatch enables entry
to the instruction cycle if no priority interrupts, page faults, or traps are pending.

EBOX 2-141

i
R L LT
T . § P
o RN gy b
Wom T e e
e e

o
D Db L T
R e]
A S Py P
Toy A RAL ACDEE R e

L A TR

I“ - -] .-

Figure 2-86 EBox Data Store

EBOX /2-142

o—ae e i - o
e e I i i) . — == —
TR
= W &1
i et
[P
& - wers do» ~
n'e
- we > - o Hn
e PEe . -
-, — e e
. S - i i
-l s - oo + .
=
eI M * .o o4
. - ’
| i . 4 k - G
“he
i b [e v
e | - —— v . > - -
" - s - - i am
TR . e -t . ' i -
L By i
T . . . I | 3 v
e o e ——] . - L
. L3 -
- e | =
- - - ETIE i '....‘
Saiop g | o
- - -— e -
| u 1
- o o ot Noawke @
. o+ s e -
i wie
+ ch b T e
Y - -
nNoawa N
- At " 1 N WA R : ~ - ~
- . b b= . |
- ama : |
e TEAREN e 1 1
TR ST b e 1 oy nas 1
N el TR - - - |
T e
TR L -
PO TN SH

uR-OTS4

Figure 2-87 MBox-EBox-EBus Control
(Sheet 1 of 7)

EBOX/2-143

]
awm g
o mpan L |
b . i |
1m0 P34 o os
IS er e PR .
[CEC LB - rarey
* e - CERL Y + &
-
- v > . B
PALE TINT Be LaTE . . Thata
b s b eTp 141 ™ —
o L - i o
.""' LA ded s LATH InATE b 14
PALT RDE ¢ Om ALl am oy - #oN e
L .
1008 une At BT e v w 23
LA L] at ey oL K T R
Lo LR NTER T it Y
= = (hr a0 M
e = -~ 1
-e b= Lo, L
- Iwite
- - . L .
. ATE JNATR ¥ T3 ud
TROn wav B PALIE
ELAd »Tee
- . - .. -
L - .- . e e - . . -—
* e JOAD I Ty -
wow Caim S e
- .CL 1 N T s P | P08
B 00 N i LAl L O0u iN NoaRe 4 e Ces F0N 7% i i
7 P . A e - ewE T
PN MOOL . il FAL ML WODY - M] - OF i
.“' Lt
- 4
Y .ot 80
—t | A L
LD mar 1
be— — p —— | 1
1 ‘ | ‘
] o 1
| ’__J | . \
@ ® OO 6

MR-0T3S

Figure 2-87 MBox-EBox-EBus Control
{Sheet 2 0f 7)

EBOX/2-145

i~
:" E : LT)
o T Conten WM e O
od -4 w, e -
™1 ~JT Cap swa towTeet
[R TR |
- B =
Iws L8
- -
IR0 e
- -
[L
- =l ol LA L]
LR .
- - e
EBCs Ik W . Biw &
- =3 -
. E
TR0 WM DAL b
e o e e i et
RO LOAD ®(G - .
Ll AP
LBCE S AL &L v
ls - — APS Lo WL b wC
’l.:: le - @0+ OF De A
L P g
10 pes - LAY
2] -
i s] remirons
" ome
>~ AR fo- (Al wBUs (V.
e~ @t caOF oW
-4 wRON ™
Tl T O
—1 comTEGy
_— ol e L LT

ADCY CSF

o | 3ty »: ¥
S U ¥ -
Qe LT i

L Io B SR -

fo— paririaG CTL
P ARLL LOAD FLakY
jo— P 54 . 0%

o sMA FETCm

po— P31 CY0iR

&t o

A0 e SHL % L
L] L] .
- ‘-
w wrps
MR-0T38

Figure 2-87

MBox-EBox-EBus Control

(Sheet 3 of 7)

EBOX/2-147

ImCy o |
1 OF.08 b, A 0.3 |
L] | D
3 o8 .
X l

Te TaM © [
D T) m a0m 08 08— ——~®
M —————— - -
."."‘c ,? —— - LY Ny
> o

. + i
¥ o - J |
i® 0N
i y e
(L =-L,L D sAw = nn [—
CCa mG ; - -
: RS

— -
FRUAY N
Chled DATA WIS OC 3% AEE RS CACs TaTA ciMEy 00 W =2

Gl CEL LR
B0 ADA FAS | B8
lella o

whs AR LEE

—®
CETTCTCON ; ; —{l)

AU WR AN | &

10-1 7524

Figure 2-87 MBox-EBox-EBus Control
- (Sheet 4 of 7)

EBOX 2-149

L 00 O8 17id) q
sewane 21 .D'-D' -
LR L A

Ch 00 Chia -.D' :
>

o AR el ! j args

Tl L

Figure 2-87 MBox-EBox-EBus Control
(Sheet 5 of 7)

EBOX/2-151

oo s
ACO Bl il
LRIV]
|
— |1 |
|
| Y
= P
+; = | L UL I
| L ST
| | » - - -T
L |
L]
DEEO DT |
o3 | oc-07 | a0 ¥ - P
T T 'T‘_¢_T'
DLCoDLe] g3 -l;r_‘.__

Com srmnt, WOt |

IS mp ey

B8

O GEANT

TS BT 0N o Q) N - P BLATOR
CONIDLE CONTROL -
ton TNt #1G
e O AN
- Ten
| |
- —— ——— -
| ser o,
| | *in oasmi
ey s Y
| |com micows or —{ian - o
| = T = - S,
| cow wiconD o8] LAt b = Sim l
—1 . i F} - e INTRG AL -y " -
= CON wLONE u—"_. e ra1 he—s 4 com T WG ConTo. ':Wtb
Lom nitond Taae tn —{ arem o |UnCODEN 4 SeNex
Y <AL mgr P—ﬂu L
. i m-"I fLAG CTL
[__con] |

S AL RLAR T

Figure 2-87 MBox-EBox-EBus Control
(Sheet 6 of 7)

EBOX/2-153

> ——— -

=
— 3 L]
L1
‘ “ aOLE
|¢u.°—1»—-- o
-r
v ~ i
E=
: 1

CiSFATI™ BAw

o—— =

-
p-aralLs 1
aeec e
&, TEmLAN TAT N e - N Ag 11 (Aes rew -, e |
.
l\.!i kw W ar T W - '
e [- e Comre e y P
o :
-y . R
Far oty B Vg CM. i
| i I
£
L]
O | $
]
! 1
CONTED, Waw 06, 80] |
wott |
'Inl.!l“ AR T PN NPT g manng I
L] Sitaing 8= vhg (04 Baard hees aa [AF OO0 D4 4
o aet el (RAN Bis Fattin e Sele gt
atad tomit s
|
|
COm ML
- | 1 H - L of !
are lir o it | waw 1o (weean c o iy ape sws |geree |
ten | pem ges | em lnpn-i o | van | oost | e
|] | com w1 |
n man L] Ll |
i \
F -
- OO WL
| y et ur i
anls s | waw Diom |waran! €50 |y aom -
= INT AN N1 EN | 38T [INT UM e e bl tl- ,,,.", . |
= cOm 81,
) |
w00 88 I
. - g
| ar® InY Iw |
\ b
are pon i
1
|

MBox-EBox-EBus Control
(Sheet 7 of 7)

Figure 2-87

EBOX/2-155

Memory or Both Mode

The DRAM B field is coded as 6 for memory mode instructions. If VMA 13-313 is clear, storing is to
fast memory. Otherwise, an MBox request is made to store AR in cache memory. VMA AC REF
notifies the MBox to abort the cycle when it is to fast memory. An unconditional instruction fetch is
cnabled at this time. The VMA input is via VMA AD (PC+1) and. as soon as MBox RESPONSE is
received, this is latched into VMA.

To allow VMA addressing to stabilize in case the instruction is being fetched from fast memory, &
NOP microinstruction is performed. This is followed by MB WAIT, state register clear (in casc the
instruction fetch page fails), and finally NICOND Dispatch is issued.

For Both Mode, DRAM B is coded as 7. Here, the departure is made safler storing the AR in E. The
AR is also stored in fast memory as addressed by IRAC 09-12. Now MB WAIT is asserted while
clearing the state register and NICOND Dispatch is issued.

SELF Mode

Once again referring to Figure 2-87, the DRAM B field is coded as 3. SELF mode instructions are
generally read/ write type; this means that the virtual address was read and write page tested during the
fetch cycie.

Writing is allowed only if not redundant, or as specified by IRAC being nonzero. AR is stored in E, the
instruction feich is started, and the AC ficld of the instruction is tested (in IRAC). If IRAC is nonzero,
the AR is stored in the addressed fast memory location (as addressed vis IRAC). If IRAC is zero, no
storing in fast memory is performed. In either case, a microinstruction NOP is performed. This guar-
antees one EBox clock between the instruction fetch and the NICOND Dispatch to follow, allowing
adequate setup time for the NICOND logic to detect & fast memory reference (VMA AC REF) for
those cases where the instruction fetch is to fast memory.

2.10.4.2 SKIP, JUMP Compare Instructions - The following instructions listed in Table 2-17 fall into
this category.

Table 2-17 Skip, Jump, Compsare Iastructions

Main Group Inste Unconditions! Store Conditional Store Stores Nothing Op Code
- ——t—m e

Anthmene Skaps SKIPXX Nos Yes # IRAC # 0 Na 330137
AOSXYXN Yer Yesat IRAC # 0 hYt 350 357
SOSXX Yor No No 370 3717
Conditnmal Jumps JUMPAX Nat h Y Yes 320 327
AGIXX Yes No N 330 347
SUXNXN Yeu Ner No 3160 367

Anthmet. Testing AORIP Yey Na No 282

AGBIN Yes Nev Nar 253
Compares CANNX N toNe Yes 300 307
CAMAN Na o Ne Yeu 10 317

— L

FBOX/2-157

No Results Stored - CAIXX, JUMXX

Referring to Figure 2-87, because CAIXX and JUMPXX store no results, preparations are made for
entry to the instruction cycle. The state register is cleared, MB WAIT is asserted, and a NICOND
Dispatch is issued. Depending upon the outcome of Test Satisfied, the next instructionfetch is from
PC+1, PC+2, or E.

Conditional Storage in AC - SKIPXX AOSXX, SOSXX

IRAC is sampled and if nonzero, AR is stored in fast memory as addressed via IRAC 09-12. Depend-
ing upon the outcome at Test Satisfied, the next instruction fetch is from PC+1 or PC+2 and thisisin
progress. The state register is cleared, MB WAIT is asserted, and a NICOND Dispatch is issued.

Unconditional Storage - SOJXX, AOJXX, AOBJX

These instructions all store unconditionally, in fast memory from AR, as addressed via IRAC, then
prepare to enter the Instruction cycle. The state register is cleared, MB WAIT is asserted, and
NIC ONDCDispatch is issued. Both SOSXX and AOSXX unconditionally store in E and conditionally
store in AC.

2.10.4.3 Store Cycle for Other Instructions - Generally, the remaining instructions that use the Store
cycle fall into two groups. These are instructions that store results in AC, AC+1 and E. and those
instructions that store results in AC and AC+1 only. All these are complex instructions.

Complex and Store Both

For these instructions, the store flow is entered with a write request already in progress 1o store the
high-order result of some operation and MB WAIT is asseried (MEM/MBWAIT). Also, the shift
counter (SC) contains 35, enabling alignment of the low-order word with the sign of the high-order
word later in this flow. The AR is now stored in fast memory as addressed via IRAC and the sign is
smeared in AR 00-35. At this time, AR contains all sign bits and ARX contains the low-order word
lefi-justified. The instruction fetch begins. The AR and ARX are shifted left 35 places and the result
(correctly signed) is loaded into AR via SH. Now the state register is cleared and the low-order word
(in AR) is stored in IRAC + 1. The EBox hardware facilitates the incrementation of IRAC by +1.
Finally, the appropriate entry to the instruction cycle is made.

Complex and Store in AC, AC+1
The basic difference here is that these instructions bypass the storage into E. Otherwis=, the operation
is identical to that for Complex and Store Both.

2.11 INTERFACE CONTROL

1.11.1 Introduction

Figure 2-88 illustrates the major functional cont: ol elements of the EBox. The purpose of this drawing
15 to support the functional descriptions contained in this section. In addition, it is provided to support
the E/M interface control and E/E interface control functional descriptions to follow.

The EBox is associated with two interfaces, the EBox/MBox Interface and the EBox/EBus Interface.
The E/M interface is treated as a pseudo-bus because in many ways it behaves as a bus. In the first
portion of the functional description, the basic organization and function of the firmware micro-
program was described. In addition, the major machine cycle was defined and described in terms of its
functional elements.

Thus, the individual microprogram modules (Figure 2-13), taken collectively, comprise the main

microprogram. The blending of this program with certain pieces of EBox hardware constitutes the
basic machine cycle (Figure 2-88).

EBOX/2-158

Figure 2-88 Basic Machine Cycle Summary

Figure 2-89 is the subeycle summary and Figure 2-90 is the hardware cycle summary.

Figure 2-89 Subcycle Summary

EBOX/2-159

Figure 2-90 Hardware Cycle Summary

Next, the basic subcycle was presented in terms of a functional flow with additional graphics to sup-
port the description; in the interface section, the relationship of the hardware 1o the internal EBox
cycles was described. These basic cycles were introduced in Subsection 2.1 as EBox, MBox, and EBus
cycles. For example, the fetch cycle can be viewed as composed of a number of EBox and MBox cycles.

2.11.2 MBox Control

Referring to Figure 2-91, a number of functional elements work together to implement the basic MBox

cvele. The grouping of the interface signals shown is as listed in Table 2-18.

To exercise the functional areas illustrated on Figure 2-91,

a basic data fetch is covered in four steps.

These steps are related to EBox timing in terms of occurrence.

Table 2-18 Request Summary

Grouping

T

Basie EBox Reguest Handshake

Address and Addiess Laominiol

Tumng

1 e Klqut\l

Address Violaton Lo

Segnals

LHOX RIOLESIT

CSHEBOX TO

CSH T BOXN RETRY BEQ
PE OLD

MBON RESPONSE IN

VMA 13 35
VMA AL RET

| BOY SY N
MBONCLOCK

EBONUSER
EBOX READ
EBUX PSI

I BOX WRITE

PAGE TEST PRIVATIE
PT PUBLIC

PAGE ILLEGAL ENTRY
PAGE ADDRESS COND

EBOX /2-160

' A 4
— s b ; l- b - =
- 3 .
TR L
& . -] =
[T SR i PARpee
- ¥ =
e . e - -
I " T . . Fr . s wiw i
W - Yo,
AT i = PR
L. —d ey i D wowr am
itk -] g
] . T - anoa v |
| amos e L@ emamn) ot asyin { . ool |
P e ate o famb p g | B it U
oy h "1 P L2 1
- w -
oAb wE d L = —LL !
| s
- | S | v i
1 - -
WA A Y T k ke & n
= 3 - . T
o i i
o - i *
. - . 4 A awa AEs
I 1
TR Y {
= - | i
. ” i H Sk
i i L-.- o.-o--J (L | v I ~ 1
- ¥ <1 | awa
? - .-'(I
i s an | —— | e T R e e
4 TR T
. < wmpy M 22
iw =i ‘] . A G {: Il
16 1 i aras Case
A e TR Pt wETE A
- -] .
TR ! s —
5 e s 4 PO .
T i,,. e
| . . "
P - _J‘I:- i J
i Pumi Be 0e i
' -
r 5 - =
- . ‘
L E NATLn IFL “
e I T pr—
o o+ { s . - . - .
| emen |
et | "
v o 1 . 1 i - .
o S U2 el A 1 " T
— —e 111 i
Ve : - .
caL aie L < i | b
LR & { | CONTRODL
_ o
Wi W Ias e 2 | i
p- i syt "
- - ’
wrowen |
E TR Ll
i - 4 w1 Ay
L]
v : . 4l
. .o . .
. . N .
ey - G e e | ST = N R e T ST ceaw asw s a7
L IR l am ann - s = [~ - . ! ::: :"' '“' A
=R TR W W % s W . wian et T o
: L . 8

Figure 2-91 General Memory Request
Control Simplified

EBOX/2-161

2.11.2.1 DATA FETCH REQUEST EN - Begin EBox Cycle (Figure 2-92) - The flow is entered st an
E-Box clock and the CRAM register loads. The microinstruction begins to be decoded. Note that the
MEM field is the major input 10 the MBox control logic. Assume that the effective address has been
calculated. the MEM field is coded as AREAD, and the dispatch RAM A field is S. In Figure 2-91 at

@ . the MEM field function AREAD is a code of 4. This enables MBOX CYCLE REQ. In addi-
tion, if MEM 01 = |, then REQ EN is asserted to enable the request qualifiers to be latched on the
next EBox clock. MBOX CYCLE REQ enables the EBox request to be asserted on the next MBox
clock. As indicated on the flow, this is a fast cycle. Two basic classes exist: fast and slow. The timing is
illustrated in Figure 2-93.

Signal CLK SYNC EN must wait to occur, so that (for a {ast cycle) EBOX SYNC scts at the same time
as EBox request.

Referring to Figure 2-91, the VMA ficid. with other signals, enables LOAD VMA. In addition, the
effective address must be input 1o VMA via AD so the VMA code (3) generates VMA ~AD.

The basic period between the leading edge of one EBox clock and the ieading edge of the next is
controlled by the T field of each microinstruction, along with certain other hardware signals. The basic
puise width of the positive EBox clock is fixed a1 32 ns but the time between clocks is variable. EBOX
SYNC occurs one MBox clock prior to the MBox clock that causes EBox clock to occur. The basic
relationships are indicated in Figure 2-94.

2.11.2.2 Begin MBox Cycle - Ead Currest EBox Cycle aad Start Next (Figure 2-95) - As soon as
SYNC EN is true, EBOX SYNC scts and MBOX CYCLE REQ (FAST CYCLE) enables EBox
1equest 1o set (referto (@) on Figure 2-91). At this point, MBOX WAIT is tested and found clear.
(This function is described in basic terms is Subsection 2.2.4.)

To summarize, the EBox request is then issued, and the VMA input mixer is set up and enabled to load
with E via AD. The request type logic is enabied to assert the appropriate combination of EBox Read,
PSE. and/or Write (which occur on the EBox clock to come at (3). In addition, the Address
Context Control is enabling the proper combination of its qualifiers also to be asserted at a.

Now another MBox clock occurs () : simultaneously, an EBox clock occurs. The following sctions
resuit:

EBOX CLOCK «~ |
EBOX REQ ~ | (REDUNDANT)
MEM CYCLE « 1; MBOX WAIT « |
VMA LOADS AND LATCHES
CRAM ~ NEXT MICRO INSTR
EBOX QUALIFIERS LATCHED
Thus, we have passed through one EBox cycle and now reenter the flow to begin a second EBox cycle.

EBOX:2-163

LTAD
AT
O
Lt

<><>

-y
AR S
L 0

B e g A s S . g
= .

T

Figure 2-92 Begin EBox Cycle Data Fetch Request

EBOX, 2-164

--T-—
1

L LY

ERO Mg v

whOs CTiL

Leox WG

P omg

LT

Figure 2-93 EBox Reguest Fast or Slow

SR

- LBON CV0L R e

Figure 2-94 Basic EBox Clock Period

EBOX/2-165

TME FROM LEADWG
EDGL 7O LEADING EDGE
AFPROE (MATE !

LI=1Y

-
e
O T R

@D

| 1 -

P -0 v WA
D Sk VA
A s G

.

Awos e 0
- -

Ak O b

CviLl amow
-_o

. ki
CEaa G D

-

-y
AT

-

_

Figure 2-95 Begin MBox Cycle, End Current EBox Cycle, Begin Next EBox Cycle

EBOX /2-166

2.11.2.3 SETUP PREFETCH - Wait for MBox Response - Referring to Figure 2-96, the flow is
recntered at (5) where the EBox clock generated loads the second microinstruction (Figure 2-91

‘1"), Now the MEM field function is FETCH and MEM 02 = 1. If the MBox has not responded
with the word requested (E), MEM cycle is still set. The combination of MEM 02 (1) and MEM Cycle
(1) generates MBOX WAIT. Providing that the request is not to fast memory, the EBox stops until the
MBox response occurs

This s true whether a page fault occurs or not, although PF hold is asserted 5 MBox clocks before
MBOX RESPONSE is asserted when a page fault has occurred. In this example, assume that the
MBox is working on the request, but has not yet responded.

Relerring to the Mlow (Figure 2-96), the current microinstruction MEM field function fetch is a code of
6. Note, however, that because a priority interrupt takes precedence over any other activity, Pl

CYCLE 1s checked before enabling the MCL MBOX CYCLE REQ. Here Pl CYCLE is clear, so

(2) points to a “Fast Request.” Again, 2 wait for SYNC EN, as defined by the T field, takes place.
The state of the SYNC EN during MBOX WAIT is always true; this keeps EBOX SYNC true until the
respunse is received.

The MBox continues to run during the waiting period. Thus, MBOX CLOCK sets EBOX REQUEST
even though the VMA is still latched up with E. During the waiting period, the YMA input receives
PC+1 via VMA AD

The EBox now loops, waiting for MBOX RESPONSE to restart the EBox clock.

2.11.2.4 MBOX RESPONSE RECEIVED - Referring to Figure 2-97, MBOX RESPONSE enables
the EBox clock. Thus, EBOX CLOCK becomes true and, simultancously, EBOX SYNC becomes
false. The third microinstruction is now loaded into the CRAM register (Figure 2-91 3)) and is
decoded. In addition, the VMA is loaded and latched with PC+ 1, the request qualifiers are latched
and now, with the requested data word in AR, a DRAM J dispatch is issued.

2.11.2.5 Geueral Memory Cycle Control - Figure 2-98 contains all combinations of the MEM field
that can generate MCL MBOX CYCLE, and hence EBOX REQ. In general, the following functions
are of the “Slow Cycle” type:

B WRITE

Pl FETCHES

SKIP SATISFIED FETCHES
REG FUNCTIONS

SP MEM CYCLES

A Slow cycle is required during MEM/REG FUNC because the M Box requires additional time to
decode the type of request. In all the “slow" cycle types, the EBOX does not necessarily have time to
determine whether to make the request (or not) before EBOX SYNC. Thus, the decision, and therefore
the request, is delayed purely for hardware timing reasons.

212 EBUS INTERFACE CONTROL

The 10 system for the KL10 processor includes the EBus, the peripheral equipment with its interfaces
10 the EBus, and various control logic. The EBus interface may be controlled either by the EBox
during input or output instruction execution, or by the PI system during priority interrupt handling.
Subsection 2.8.1 gives a basic summary of the EBus signals. This is followed by a functional descrip-
tion of the interface, which is covered at two levels. The first level describes the basic functional
organization and operation of the Pl board and other related logic. The second description deals with
the microprogram to Pl board interfacing. This description attempts to give insight into the manner in
which the hardware and the microprogram interact to carry out various interface related functions.

EBOX/2-167

ey

Figure 2-96 Sctup Prefetch Waiting for MBox Response Figure 2-97 Receive MBox Response, End Current MBox Cycle, End Current EBox Cycle, Begin
Next EBox Cycle, Begin MBox Cycle

EBOX/2-168 EBOX/2-169

Control Flow

Figure 298 General Memory Cycle

EBOX,2-171

2.12.1 EBus Signal Lines

The EBus consists of 60 signals. All devices, including the KL10, are connected to these lines in
paraliel. The hidirectional nature of 36 of the signals permits some information to flow in both direc-
tions. These lines are the data lines. The remaining 24 signals are used for control functions. Table 2-19
lists the data transfer signals.

Table 2-19 Data Transfer Signals

P e g e -
Name Mnemonic Number of Lines
Data Iy 353 H it
Controller Select CSen) 06y 7
Fanctn 100 .02y X
Vemand DIV 1
Acknawicdge ACK 1
Tianster XEIR 1

DATA LINES D(00:38) - The 36-data Enes transfer information between the EBox and its devices.
The most significant bit is bit 00; the least significant bit is bit 35.

CONTROLLER SELECT LINES CS(00:06) - These seven lines select the desired controller for a data
transfer. Each controller has a unique select code hardwired on the backpliane of the device.

FUNCTION LINES F(00:02) - The function lines specify the type of data transfer (or non data -

transfer) to take place. Table 2-20 lists the functions impiemented.

Table 2-20 Table Data Transfer Commands

F0O FOI FO2 Operation
0 0 o (ONO
U 0 1 CON]

[+ N 0 BATAO
v 1 1 DATAI

DEMAND (DEM) - This line causes the addressed controller to inspect the CS and F lines and decode
theit meaning. Upon implementing the specified function, Transfer and Acknowledge are asserted in
response and data is placed onto or taken from the EBus as specified by the decoded function.

ACKNOWLEDGE (ACK) - This signal line notifies the 1/0 bus adapter not to respond to the current
operation. If it does not detect ACKNOWLEDGE within some period foliowing assertion of
DEMAND, it attempts to perform the transfer. it does not decode the CS lines as the standard KL10
devices do.

TRANSFER - This line is asserted by the selected controller when it is ready to exevute the specified
function as decoded in F(00:02).

EBOX. 2-173

PRIORITY TRANSFER LINES - To perform priority interrupts between the KL10 and its devices,
the same basic set of signals is used in a slightly modified form. Table 2-21 lists the nccessary signals as
they are used.

Table 2-21 Priority Transfer Signals

Name Mnemonic Number of Lines
Contralicr Select CSU8 06) 3
Contratler Select CH 0 3
Function HO0:02) K
Demand DIM !
Achnuwledge ACK 1
Transter \H R 1

CONTROLLER SEL CS (04:06) - During interrupt arbitration, these three lines represent the octal
encode of the interrupting channel.

CONTROLLER SEL CS(00:03) - These four lines specify the controller or device that the EBox is to
honor during this interrupt seauence. This is, of course, only a single device or controller, even though
several may be interrupting on the same channel. This code also corresponds to the hardwired physical
device number of the appropriate controller or device. In CONTROLLER SEL CS(00:03), the range is
0 through 17.)

FUNCTION F(00:02) - Two functions are generated during the interrupt dialogue. The first is a code
of 4 in F(00:02) and specifies 10 the interrupting controllers that those controliers being addressed by
Channel number in CS(04:06) shouid send their Physical Controller number by placing them onto the
EBus upon sensng DEMAND. The second function is a code of § in F(00:02) and specifies to the
interrupting controllers or devices that one has been selected. The selected controlier will see CS(00:03)
as the same number as its physical controller number.

ACKNOWLEDGE (ACK) - Same as for data transfers.
TRANSFER (XFER) - In the case of interrupts, the device selected for service by the EBox places a

special function on the EBus data lines D(00:35). Figure 2-99 is the EBus interface functional block
diagram. Table 2-22 lists the priority transfer commands.

Table 2-22 Prority Transfer Commands

FoO FO1 FO2 Operation
1 0 Q Pl SERVED
1 0 1 Pl ADDRESS IN

EBOX/2-174

—— W WY 4AF o
0C- 35
_sgl_ll 5 WO b -
2.1] l.....—_.!___.‘
'_] 1 ‘ 1BUs Mix : |
b 1 Bl Ve an
=l . I I
y 1 [} A -
hM i et gar o1 AT Y Tald Jos 0w |
T i R - l “ '
Gkt N ! | ens |
Ko o e E B r4 e e : l
¢ PIAE r APT wORU FOR
e oavea] MTEYY e | INTERRUFTS TATUS :
£ 4n Frnty [INCD NOR CONI. CONSD
vise Y . + . oTIANL] - 0 . L] laau oM DATAT RO
N R & s ——————
TAb. AR | - e ials . py v
s B e oo 1 A : |
ey mgar = o o =
b= .
" . U: - -l _ h y o .
- - = L - - - - - _—-
- S0l | 1A04: e =1 I =
2%y el — S - ey | - e
ALy Tt bl - v *1 ove 20
LI = -
PRsLAAN gec T 1 o i T m
LooNs g g . - - * . - — -
Nt . 1 ANy EBUS TRangeim _ !
INTLR e 4 =g Fl ,r:”-.\ = ..I‘ Remrnth . .;a s
Yot STATE o 3.8 .- | £8uS 000 %
A AT = -t f—— ——)
VTATE i o gl
%2 Yort sz srany 4
4 MR TE IR ®L T s
~O T
- *iw 1 Proed ng SO PL CYELE o owes PI
BEC ‘egames wm TEST w0 toare "he
4 RNl COUNTLR 19 %aig o the TEST
STATL =00 LBUS PI CAANT sety Onie
* GRANT LTS TEST @ remousd and ‘e
toenter @ egEil preduier @n et
4 | Thy hgad shass CETBAte S Both
- - EBUE FI GRANT cwen eed PT CYCLE
W I et

i -t

Figure 2-99 EBus Interface Functional
Block Diagram

EBOX/2-175

2.12.2 EBus Interface Organization
Referring to Figure 2-99, the interface consists basically of six functional elements. These clements are
as follows:

Pl Request Decoding and Control
P! Request Counter and Control
EBus Request and Control

kBus Dialogue Control

PI Timer and Time State Control
6. Time State Generator

A A e N

The EBus request control and EBus dialogue control are used both by the EBox to carry out 1/O
transfers and by the Pl sysiem in response to an interrupt. During priority interrupt handling, the
FBus dialogue is carried out in asynchronous fashion. This operation is controlled by the PI timer and
time state control, together with the time state generator.

To obtain the use of the EBus dialogue control, the Pl request decod'ng and control logic must com-
pete with the EBox. No priority exists, and control is obtained on & firsi-come. first-served basis. Once
the EBus has been granted to the EBox, the priority interrupt must wait until the EBox releases the
bus.

11 the Pl system obtains the EBus, the EBox may “*demand™ the EBus if a page fault occurs (EBus
Return).

2.12.3 Interrupt Handling - Loading the Request

Referring to Figure 2-99, there are two cases. The first is an intersupt request from some device on Pl
1-7. This may be from any K L10 device, including the APR. The second case is an interrupt from the
DTE20 on channel 0. Only the DTE20 may generate channel 0 interrupt requests.

In cither case, the Pl request enters the Pl request decoding and control logic. Here there is a variation
in priority. The Pl system must be turned on in order for a request on channel 1-7 to be inspected,
while interrupts on channel 0 will always be inspected whether the Pl system is on or off. The ring
counter controls the sampling of PI requests and also determines when a particular request (the high-
est) is ready to be serviced. In general, “Pl LOAD" enables all active requests 0-7 into a request
register, providing corresponding PI ON ensbles are on for channels 1-7.

A programmer may disable interrupts on selecte. hannels by clearing PI ON for each channcl he
desires to inhibit (note PIONO is in ihe DTE20). This is done by performing a CONO P1 instruction.
While the ring counter advances through *WAIT 1™ and “WAIT 2,™ the priority network srbitrates
all incoming priority interrupt levels and seiects the one with the highest priority (numerically lowest
number).

2.123.1 Testing the Request - Next, PI TEST is asserted with Pl REQ to request the EBus. PI TEST
remains true until EBUS PI GRANT scts, giving the EBus to the Pl system. Once PI GRANT sets, the
PI TEST condition is cleared and the ring counter is disabled until the entire EBus dizlogue is carried
out and Pl CYCLE is "'set and cleared™ by the microprogram.

2.12.3.2 Requesting the EBus - Setting EBUS PI GRANT begins the EBus dialogue by enabling the
assertion of CS 04-06 as the selected channel and FOX4) as function P1 SERVED, and aiso causes the
Pi umer to begin its sequence by setting Pl CYC START.

In general, all external devices that connect to the EBus are presumed to be composed of TTL logic.
The P! and EBox logic consist of ECL logic. To temporarily connect these two different types of logic
requires use of a logic level shifter. This device is called a translator. The translator must be notified of
1he conversion direction, TTL 10 ECL or ECL to TTL. Actually, only the data portion of the EBus is
switched from one level 1o the other. The control signals are connected to fixed level shifting logic. For
exampie, EBUS DEMAND is a unidirectional signal and it is connected to a noncontroilable level
shifting gate on the translator module (ECL 10 TTL).

EBOX2-177

2.12.3.3 Beginning the Dialogue - The setting of PI EBUS PI GRANT asserts the level PI GATE
TTL TO ECL. which causes translation of incoming data from TTL logic levels to ECL logic levels.
The PI timer and time state control manipulates the time state generator such that each time state is
held for the appropriate length of time. The following relationships exist between the dialogue signals
and the time state logic:

CSH 04-06: EBUS PI GRANT

F00: EBUS Pl GRANT

DEMAND: sent at T2, TS, and T6

LATCH INCOMING PHYS numbers: T3

CS00-03: T3

F02: T4

EBUS TRANSFER: WAIT AT TS FOR TRANSFER
Pi CYCLE: WAIT AT T6 FOR PI CYCLE TO SET

2.12.3.4 Interdocks and Dislogue Completion - Upon entering TS, the timer is inhibited from
incrementing the count until EBUS TRANSFER is received or forced. While waiting, the timer holds
the loaded count. As soon as TRANSFER is received and recognized by the Pl logic. the timer is once
again allowed to count down TS.

Thus, while TS is counted down, the API word is stabilizing on the input to AR. Next, T6 is entered
and here the absence of Pl cycle causes STATE HOLD to be asserted. This time the timer may count
down and even generate TIMER DONE. If this point is reached and PI CYCLE is still false, the imer
loads the count specified by T6 and continues 10 count while waiting for PI CYCLE 10 set. The Pi
board must not begin to service a second interrupt before the microprogram has a chance to look at
the first one. Hence, the timer is prevented from entering T7 COMP, until the microprogram has set Pl
CYCLE. This also enables the ring counter to perform load.

Assuming Pl CYCLE sets, the time state generator proceeds through T7 and into complete (COMP).
Note that the EBus dialogue control removes DEMAND some time before removing the CS and F
lines. This avoi ‘s the possibility of misselection of a device. The generation of COMP enables Pl
EBUS PI GRANT to clear, removing FOO and CS04-06.

2.12.4 Basic Input Output Control

Referring 1o Figure 2-99, the implementation of 1/0 operations is similar to interrupt processing, if
taken at the point where the EBus is requested. The difference is that instead of a hardware arbitration
process taking place, followed by a single request subsequently asking for the EBus. the microprogram
1,0 handler (part of the executor) requests the EBus. This is accomplished utilizing the condition field
function COND/EBUS CTL, together with a particular pattern in the magic number ficld all in the
same microinstruction. Only the resulting signal is indicated on the figure (APR EBUS REQ) but the
various other signals are simply formed by combinations of COND/EBUS CTL and an appropriate
magic number.

2.12.4.1 Requesting the EBus - The EBus request control treats both an EBox-EBus request (APR
EBUS REQ) and a Pl EBus request cqually. Whichever request is seen by the EBus request control
first receives the EBus.

The microprogram is waiting for an indication that it has been granted the EBus. The indacation of this
condition is EBUS CP GRANT. The microprogram loops, waiting for this signal to become true.
Once this occurs, the next sten in the operation may be performed.

2.12.4.2 Dialogue Overview - Basically, the EBox decodes bits 10-12 of the instruction to determine
which type of 1/0 operation is to be performed. Eight possible combinations exist: these are indicated
in Figure 2-100 at the bottom left. The logical mapping of 1/0 op code into appropriate DRAM
addresses is also illustrated in Figure 2-100.

EBOX/2-178

TR AT
TR ENAL
VA
CONT 0N
FAGH AL
ANDLL B
READ I
L1

EE T ARAL DAVE

-~ = - = ~[¥ T

I e e s
w achE AN
rqu.-.n- 0 ’ l.: ' F]] 1! I ' ML) !
L4 b TR AT e TR e T T e ark b T oarmimos .
PR ATION LRl ry Lo
fanrf iAFSERE BE - Ll D AN 1 Ll LR
- -
mAS S i |e1oo0DERS WAL .
COPIRATIN . + A . -
UMD EY AL ik (X EEBRE R R Bt] i} . . - . - .
0 TR v . - . 4 . . .
s oeRTYTBOD D WTIMA - . ey e | ety
. 4 - - 4 .
i gercieanl . -y by ey
| — . S Ee i . : . . i
i TeeRnED -
T . 4 : + >
waD T Wi TooBpnEED Omam il
oRtAN LY | 1 imn i § 1 : i 3 W A
| Tt ew i s BEEOENARD WILIAM 1 i taL
| O s T 1L A M B~ 7
Givi BALE
LATIR
. . - - . - ot
st mrn " i 1 e —
O
ATAD VM s PEBR YR L AR A . . . o2 A T A ¥
[LD : —-I
L Lt
o T
e - + . . + - T
i] ok oo pltico g
1 nAn v
LU LT :‘;
1 Tee B " -
DATAN bOR s TTLAL oY pATA . == s ——
LoD B = S soohe
wan fmrt | L d 2
A RAT O, i \ . fp— - —
' -
ot e
®©
- .
ity EEE.
Ay T
)
{J mED EwY
B LAY
Eae 4
o
Dk Y
AR

101668

Figure 2-100 EBus Control Functions

(Sheet | of 2)

EBOX/2-179

Y T
bl L AL
i

==}

L
RO T WA
ANTEE
- N AN
% &4 B ADY
L AR

- ,:/:f-l] r {:’IE]
Y/. /A ERe -] -i'/ '/
" | .

arw pmA WG
TSP At
P T e e iy
! 1
| P
! |
!]
I imemern |
I 1
. 1oL S I
L gl

o Ty e

1 80ARD mary a0 A

kT v T
L TR]
oY

vk aD

(LA

A

COm s

Figure 2-100 EBus Control Functions

{Sheet 2 of 2)

|
EBOX 2-181

101668

1 BDARD BAITE
AT TaumTi ™
kD IR TARLE
DA TA AND M TR
sovon

The dispatch to the proper operation is obtained by mapping bits 10-12 into DRAM ADR 06-08,
while the device address 3-6 is mapped into DRAM ADR bits 03-05. Thus, for example, a DATAL
APR with op code 701 is mapped into DRAM address 701. Similarly, BLKO PAG, with op code 722
is mapped into DRAM address 722. This is device 010y; therefore, the type of operation performed is
determined in advance and the DRAM jump address is coded to cause a jump to the appropriaie
group of microinstructions. The device sclect code is in bits 3-9 of IR and must be used to address the
device. This addressing is accomplished by converting 3-9 to CS00-06 in the proper form. The func-
tion is controlled by the combination of two F3ox control signals, APR EBOX SEND F02 and APR
EBUS FOL. With these two signals, all combinations of input and output operations may be performed
as indicated on Figure 2-100. Notice that EBus F0O is not used for any of the operations. This signal is
generated dunng priority interrupt dialogue for the function Pl SERVED (Function 4) and for P1
ADDRESS IN (Function 5).

2.12.43 Functional Breakdown - Figure 2-100 is essentially composed of three sections. The first1s a
breakdown of the EBus microcode operations into four basic suboperations as follows:

Basic EBus operation as uscd by all {/0 instructions.

ECL EBus acquisition and subscauent reiease

Generation of the DATAO function followed by the basic EBUS operation
Generation of the DATAI function followed by the basic EBus operation

bl e

The second section illustrates how the operation specified in IR 10-12 and a portion of the device
select code IR 03-05 are mapped into the DRAM words that periain to 1/0 operations.

Finally, the third section consists of a simplified flow of the basic EBus operation. including the
handshake between the microprogram EBus driver and the PI Board.

Basic EBus Operation

This is illustrated in the flow on the bottom right of Figure 2-100. Five basic COND/EBUS CTL
functions are generated from particular magic number bits. The first is to request the EBus from the Pl
Board. This consists of asserting APR EBUS REQ.

The microprogram now loops, waiting for an indication that it has obtained the EBus. The indication
consists of receiving EBUS CP (Central Processor) GRANT from the PI Board. This moves the micro-
program to the next logical step which is 10 INIT. Here magic number 5 enables the function lines FOI
and F02 10 be driven from -APR AC10 and APR F02 EN, respectively. The table of 1/0 operations
given at the bottom left on Figure 2-100 shows that FOI is true whenever AC10 is false. This is true for
DATAO. DATAL BLKO, and BLKI. Conversely. F02 is true whenever AC10 is true, or both ACI10
and ACI] are false.

Magic number 4 is used 10 latch the particular function (HOLD IT). Note that duning the 10 INIT
period, IR 03-09 is passcd to the Pl Board to become CS00-06. A fixed delay is generated by the
microcode at this time to allow the controller select lines to set up at the device.

Next, SET EBUS DEMAND is issued, while holding the previous function lines FOl and F02 as
previously set up. Once again, the microprogram waits a predetermined period. The waiting is con-
trolled by the lime field and the number of successive microinstructions issued. Thus, two successive
microinstructions with T = 5§ is approximately 300 ns.

Now the microprogram loops, waiting for TRANSFER from the device. This signal indicates that the
device has completed the specified transaction and has cither taken or transmitted status, data, or
control over the EBus. At this time, if the operation was CONSO, CONSZ, CONI, BLK1 or DATAIL
the EBus is loaded into AR. If the operation was CONO, BLKO or DATAO, during 10 INIT the AD
is enabled to the EBus. The AD contains the contents of AR.

EBOX/2-182

Finally, DEMAND is removed by issuing the function CLR EBUS DEMAND. Notice that number 4
holds the function lines up. It is necessary to remove DEMAND first while still maintaining the
function and CS lines in order to prevent a spurious misselection. Now the function and CS lines are
dropped and the EBus is relinquished by issuing RELEASE EBUS. This action causes EBUS CP
GRANT 1o clear.

Pl Handler and FEBus Operation
Once again referring to the flow on Figure 2-10C. note that after issuing EBUS REQUEST and while
testing for CP GRANT, an interrupt is tested for. I an interrupt is pending, the Pl Handier is entered.
This means that EBUS P1 GRANT was set when EBUS REQUEST was issued and EBUS CP
GRANT could not set anyway.

The P1 Board has ncgotiated with the device for the AP function word th:t is now on the input to AR.
The PI Board is holding in T6, waiting for Pl cycle to be set.

Examine. Deposit. or Byte transfers requested by the 10-11 interface require separate control of the
controller select and function lines. For these cases, SET DATAO or SET DATALI is issued independ-
ently. Then the EBus routine is entered at the point where the CS and F lines are setting up. If the
aperation is DATAO of TO1! transfer, the AR is placed onto the EBus vis AD. The remainder of the
EBus operation is identical to that for basic EBus operation.

ECL EBus Acquisition - A1 various times, the ECL portion of the EBus is required for some form of
transfer. Some examples of this requirement would be processing interrupts for internal devices such as
APR, PISYSTEM, or TIM. Also, performing 1/0O instructions involving these devices would require
the use of the ECL EBus. A second example is the case of page fault handling in the microcode. At
some time, the MBox-EBus register must be read over the EBus into AR. Thus, the ECL EBus is
necessary for this operation. The function necessary to acquire the ECL EBus is COND/EBUS CTL
with magic number bit 0 set. This actually takes the EBus away from the Pl system. It does not abort
the Pl operation (if any) but merely causes it to be dealyed. The signal APR EBUS RETURN causes
the P1 umer and time state generator to HOLD and it clears EBUS Pl GRANT. The ECL EBus is
relinquished by issuing RELEASE ECL EBUS, which takes away APR EBUS RETURN. Now the P}
may conzinue from the point at which it was held.

2.12.8 Pl end EBus to Microcode Interface .
Figures 2-101, and 2-102 are concerned with the interaction of the PI Board and certain other EBox :
related hardware with the Pl Handler and EBus Driver. Both of these handlers are microprograms.
Figure 2-101, illustrates the basic signal interfacing between fucntional elements of the PI Board,
Control Number | Board, and various EBox hardware used during EBus transactions with the Micro-
code Pl Handler and EBus Driver. Figure 2-102 generally relates the Pl Handler and EBus Driver
functions to the Pl Board hardware for given operations. Figure 2-103 is supplied to support function-
al descriptions to follow.

2.12.5.1 Sensing the Interrupt - Initially, assume that the P! Board is enabled and idle. Two devices
(DSK) assert interrupts on the same priority interrupt channel; DSKA on channel $ and DSKB on
channel 5. Thus, based on the fixed physical number scheme, the range of physical numbers is 0-7.
Further, assume that DSK A is wired to be physical number | and that DSKB is wired to be physical
number 7, and that DSK A is the device selected.

Referring to Figure 2-101, Pl Level § is received from both devices and is loaded into Pl Request
register 5 for arbitration. Because both DSKs are interrupting on the same channel, the Pl Network
need only check those channels holding interrupts. If none is holding on 5 through 1 (0 is DTE20 and
never holds), then channel § is selected. The next phase begins by asserting REQ to obtain use of the
EBus.

EBOX/2-183

3
™ A —— _J
L - =
. v o o =
L g

1=

- e
v "
- Ao wre
— |
e
. . - i
- - ® - e
... -
b
JiL
”
x
.o 2
TR - =
at
B A —
PRI S
...'.
- - “
1 l.
e - [
- -
| S
.-.l
s
.
|
e wetie 4]
d
e

WA aAe r
- - i l
| | |
|
| }
|
-) -
| |
{ |
- |
- | | '
- | .|
4= | ‘ | Mo
|
] 1
e e i
- .
. o - s
-
.o |
B b b | |
- - |
o | -
LR TR |
iy | !
3 { | |
i !
- -
{ L]
e
.. .
4 Sy eyt
e
i
— AAE met et Tt
. . . - 4
L e ' ' . . -~
- . . [-
» . . . - - ¥
"] (] .
S — . * . [
. . P .
- - i |
- R T A
- - . - * . €
e [" ' . »
. . — o
- " . . i
maen . . + - "
W . N . y
e R . . .
T . ' . .
o - . . 4 :
] A L] AR T SV
w g

rnant [pun e

vt [macmanom
PP

Figure 2-101 EBox Pl Board
1o Microcode Interface

EBOX /2-185

e-1TA

2-102 EBus Control Hybrid Flow

"

(Sheet | of 2)

EBOX 2-187

T oANE EBA LONTROL AOBH - —— — s — e]

LG =R

DL-;

3
_J.
i
B

.

<
D

<
L 'D
m=p
=%
g
s

i $ i
3 sho 4 oeens
3 . »
. . . . - * N
e . & “| 2t
s . - “r s . 4
i i .
. Siow ARy & >
H - b L +7 8 sEEmele e
- 0w ceee @ 0

PR RS AR M I e]

S LR

1
=
=
1
iy
v
}
1
i
o
o]
Some RN

.
Lo L oy 1 :
_ - s s
| { (] ~ “ "m
b wd o (=] . L A
i o i 3y .
. ' \ e
» e ﬂ. ﬁ._. v 1 -

o
Jass
{3‘."»

.
-
skt el
- i.i

z

o

=]
_ L. o g 3 i ; 1 _
ma ' a 6 % ¥} |
.1..L‘ ... t L4

O T

©e @

1. 17818

Figure 2-102 EBus Control Hybrid Flow
(Sheet 2 of 2)
EBOX/2-189

(L B3 O bt anitT WL
B] LMAN® Tae s R

Figure 2-103 Time State Generator Control

2.12.5.2 Requesting the EBus - To obtain use of the EBus, the Pl logic must set EBUS Pl GRANT.
This is illustrated on Figure 2-102. Note that the following requirements must be fulfilled to set EBUS
Pl GRANT:

PI test must come up.

REQ must be true (Pl 4, 2, | = some selection).

The Ebox may not be halted or there are no interrupts selected on 1-7.
EBUS PI GRANT is currently clear.

The Pl Board is not trying to set CP Grant.

'ﬁ‘b:‘!l.!_-—

If all five conditions are satisfied, EBUS PI GRANT sets. If the conditions are not currently satisfied,
the interrupt wails.

2.12.5.3 Beginning the Dialogue - At this time, several events take place. The setting of EBUS PI
GRANT enables setting of cycle state, which begins the dialogue. In addition, the PI Timer (see the
table on Figure 2-104) is loaded with 25,, which defines the duration of the time state entered, in this
case time |. The time states are used to direct the EBus dialogue from beginning to completion. EBUS
PI GRANT forces F00 to a 1. This function (4) is PI served and is issued together with CS 04-06,
which are encoded to be the selected channel (5). The interrupting devices (in this example two DSKs)
decode the function lines F00-02, together with the controller select lines CS 04-06. The Pl timer
counts from 25, to 37, then generates TIMER DONE. The devices have now had sufficient time to
decode the CS and F lines so the next phase of the dialogue begins. The timer is now loaded with 114,
Time T1 is removed and T2 is entered.

EBOX 2-191

I L l 1 "1 BCAND mung A
WA D Dfe EATE

s -_-_[_.--_—_I_ S e ““\ i
e

T T

v _r__'—-L
#i1 roMe
gt U U u U Ly L5 U
varema le T Tonl)) ol U L
witmien ;’_mm.—‘___u_l [Le = L
i . AU UL AU AU AL
it ovin ; SRS,
rin e n_n | N | Y|) nn ! L
\ o PHLmE n_n nn n LA
in i a/\‘ﬁ- ﬂ‘/k'?ﬁ' oﬁn R T R -0 -ﬁi--n Ve

.1 Y L
R \afa R Viale

it J =—: ’
g r 1 O Kot Saie stk i
i %P1 Staay .
£y hoe
v 0n J L_-—_ | __ g T4 ! 172
huy e i ' ™"
e J le— T 4],
” " "
g I ! .
Iy . ™
TRt Blw r e i 1 — - 5 - -~
LA pey P4 gl TR . oy e
0 " "
e arge I - b = e =
D —— Wy " | <ows
F1 THANY w0 J ;
P2 SLADy _-"_""I_
€Ok #1 £¥Tul e e
AT By miLen 3 i
I8 P CTLAR DOOS WOT M T WY el mt-o-
L OF et TiMES COUNTDOWN DU NG TE T

1 BOARD mOLDTY AT TEUNTH PTOVELL l('l

Figure 2-104 Pl Timing

EBOX/2-193

Time 2 enables EBUS DEMAND. Note that the function PI served and controller select lines are
maintained. The DSKs are commanded to place their **hardwired” physical numbers onto the EBus,
bit 1 for physical number 1 and bit 7 for number 7. Referring to Figure 2-103, DEMAND is held up
through Time 2 and then removed while the F and CS lines are maintained. It is good procedure to
remove the DEMAND signal before attemping to change the function lines; this avoids any spurious
misselection. The timer is next loaded with 25, and T3 (a bricf time state) is entered. Here, two fur-~-
tions are performed:

1. The physical numbers, by now on the inputs to a register on the PI Board, are clocked into
that register for arbitration.

2. The Pl Board is timing out a period of time until it is safe to change the function lines.
The next part of the dialogue is begun when Time 4 is entered.

Here, FOO and F02(5) are asserted; "S00-03 reflect the encoded physical number that has highest
priority (#01) and CS04-06 still reflect the Pl channel being served. When Time 4 is removed and TS
sets, DEMAND is asserted once again. This time DSKA is selected as the DSK 10 be serviced.
DEMAND commands DSKA to place its APl word on the EBus and to assert EBUS TRANSFER to
the EBox. The Pl Board waits in Time 5 until TRANSFER is received, or forced. If, for example, the
interrupting device (DSKA) can respond to most of the dialogue but cannot send EBUS TRANSFER,
the PI Board waits. If TRANSFER is not forthcoming, TRANSFER is forced and the EBus (which
contains zeros) is treated as an API function of 0. This ultimately causes a 40 + 2u interrupt on the
interrupting channel. The DSKs service routine must then decide what weat wrong. Assume that the
DSKs succeed in placing the appropriate APl function word on the EBus and generate TRANSFER.
The timer is loaded with 35, and Time 6 is entered where Pl READY is asserted. At this point, the Pl
Board is notifying the EBox microprogram that the APl word is currently on the AR mixer inputs.

2.12.5.4 Terminating the Dislogwe - With the assertion of PI READY, the PI Board waits in Time 6
until the Pl Handler (microcode handier) looks at the interrupt. P READY enables INT REQ to set
in the EBox and when the Pl Handler detects this, it sets Pl CYCLE. Now the timer continues by
entering Time 7, drops DEMAND and finally enters COMP, where the CS and FUNC lines, together
with EBUS Pl GRANT, are removed. This completes the Pl Boards dialogue.

2.12.5.5 Eatry to the Pl Handler - Referring to Figure 2-102, the handler is entered at symbolic
location INTRPT, with the API word loading into AR, and PI CYCLE not! yet set. Thus, the Pl Board
i a1 this time in Time 6, waiting for PI CYCLE to be se1. The shift counter is loaded with 2, in order to
enable the APl word in AR to be shifted left two positions, bringing the function code in bits 03-05
into bits 01-03. PI CYCLE is set and then a shifl dispatch is given; depending upon the function 0-7,
the dispatch is to one of cight routines within the main handler.

Functios 00 - STD INTERRUPT NO TRANSFER

The word is buffered in MQ. The VMA is loaded with the appropriate 40 + 2n address. This address is
implemented via the SCD TR AP mixer (refer to Figure 2-60) and derived from number with PI 4,2, 1.
PI 4, 2, 1 is simply t} * octal equivalent of the channel on which the interrupt was taken. Thus, the
instruction is fetched from 40 + (2 X 5) in the example cited in Subsection 2.8.5.3. This yicids an
address in VM A of 0000050.

The program branches to Execute Wait (XCTW) where the microprogram waits for the instruction
fetched to load into AR. This instruction should be a *JSR,™ which saves the flags and PC and then
enters a subroutine in main memory to deal with the situation. The performing of a JSR causes
SPEC/SAVE flags, which clear Pl cycle and set PI HOLD, 10 hold the interrupt.

EBOX/2-195

Function 01 - STD INTERRUPT K110, KA10 Device via 1/0 Bus Adapter or K1.10 Device via EBus
The implementation of this function is identical to that for Function 00. The difference between the
function codes is that Function 01 is a premeditated request for a *STD INTERRUPT."” where Func-
tion 00 is a bus failure condition.

Function 02 - VECTOR INTERRUPT

The word is buffered in MQ. The APl word contains an address in bits 13-35 and an address space
qualifier in bits 0-2. The address is loaded into VMA. Now a dispaich is given on AR00-03. The API
word format is presented on Figure 2-102. Note that only three address spaces may currently be
specified:

0 - EXEC PROCESS TABLE (EPT)
| - EXEC VIRTUAL ADDRESS SPACE
4 - PHYSICAL ADDRESS

A routine is called for the storage operation PILD (illustrated in Figure 2-102).

Fetching from EPT - T
VMA bits 27-35 receive the AR bits 27-35 via AD. The EBox makes an EPT reference. Referring to
Figu.e 2-83, the qualifiers asserted to the MBox are as follows:

EBOX REQUEST
VMA EPT
PAGE UEBR REF

The hardware normally looks at a combination of SPEC/SP MEM cycle with magic number and user
enable to sclect cither VMA EPT or UPT, depending on the state of user. In this case, however, user
must be disabled to enable a direct reference to EPT. The AR is loaded with the instruction fetched
from CPT. This instruction is either the first of a series of instructions in a service routine or an
instruction directing entry to a service routine. As with 40 + 2n interrupt instructions, the instruction
should be a JSR 1o save the flags and PC. By performing 8 JSR, SPEC/SAVE flags clear PI CYCLE
and set Pl HOLD on the Pl Board. This holds the interrupt.

Fetching from EXEC Virtual Address Space

The APl word is buffered in the MQ. For this case, the address in bits 13-35 of the APl word is a
complete virtual address. In fetching from EPT, only bits 27-35 of the address in bits 13-35 contain
address information. The MBox appended a base address (EBR) to this 9-bit address. Here the request
qualifiers are as follows:

EBOX REQUEST
EBOX READ

The MBox translates the address and supplies the instruction that loads into AR. Once again, transfer
is to XCTW, 1o wait until the instruction actually loads into AR. Then the instruction is performed as
with the previous EPT reference.

Fetching from Physical Memory

Here, the address contained in the APl word bits 13-35, contains a physical address in bits 22-35 while
bits 13-17 are clear. To cause a physical reference to occur, the magic number field is coded with
number 08 set and this, together with SPEC/SP MEM cycle, inhibits the qualifier MAY BE PAGED.
If this signal is not present during EBus request, the MBox does not page the address. The instruction
loads into AR as before and then performs. Once again, SPEC/SA VE flags clears PI CYCLE and sets
Pl HOLD.

EBOX/2-196

Function 03 ~ Pl INCREMENT

This function causes a word in the specified address (APl word bdits 13-35) to be incremented or
decremented as a function of the Q BIT in the API word. If Q = 1, the function is decremented;
otherwise, it specifies increment. Referring to Figure 2-102, the APl word is buffered in MQ and Q is
tested. If Q = 0, the contents of the address specified in the APl word 13-35 are fetched and
incremented. The incremented word is then stored back in the same address and an instruction fetch is
performed from PC. This contains the interrupted program. Note that the microcode must set Pl
HOLD in order to hold an interrupt on the Pl Board. This is done when the 40 + 2n or vector function
fetches and performs a JSR or similar instruction. Here, after completion of the storage operation, the
interrupt is dismissed and Pl CYCLE is cleared. Pl CYCLE is cleared with SPEC/FLG CTL and
number 02.

Funaction 04 - Pl DATAO or EXAMINE

The 10-11 interface may perform an Examine function 10 either core memory or fast memory. In
addition, the address supplied in the APl word may be a relocated address or not depending on the Q
BIT in the APl word. Associated with the Examine operation are two words of information for each
10-11 interface in the system. These word pairs are in predefined areas in the EPT. One word of the
pair is a protection constant, which limits the address of the virtual address sent in the APl word. The
number of pages specified in bits 13-26 may be less than or equal to the value of the protection
constant, but not greater than that value. The microprogram utilizes the low-order 2 bits of the phys-
ical number supplied to the APl word (bits 7-10) and forms an address 140 + 8n, where n is the low-
order 2 bits of the physical number for the interrupting 10-11 interface. The physical numbers are
hardwired as 10y~13,. This gives low-order 0, 1, 2, or 3. The EPT location thus obtained is accessed for
the protection constant and the comparison is made. If a violation occurs (protection violation), a
word of zeros is transmitted to the 10-11 interface via the EBus. If no violation occurs, the relocation
word is fetched from EPT and added to the address supplied in 13-26 of the API word. This address is
now treated as a physical reference and it is not paged. The word is obtained and transmitted via
DATAO function to the 10-11 interface. Upon completion of the EBus dislogue, the PI CYCLE is
cleared. Note that for the 10-11 interface Examine function, the interrupt occurs on channel 0.

This channel is implemented solely to enable the 10-11 interface to utilize the PI facility at any time,
whether it is on or off for DMA type transfers. No HOLD flip-flop exists for PIO, so clearing Pl
CYCLE effectively releases the P10 interrupt. Devices other than the 10-11 interface may utilize this
operation under the classification PI DATAO. Two differences in its implementation from that of
Examine exist. First, no protection or relocation is applied and hence no violation can occur. A page
fault, however. can occur. If this occurs, the PF Handier sets IOPF and transfers control to the oper-
ating system. The sccond difference is that other devices interrupt on channels in the range of 1-7.
Once again, holding the interrupt for this one time transfer is unnecessarv and only clearing Pl
CYCLE is necessary to release the Pl Board. Other than these differences, the operation is identical to
Examine.

Functioa 05 - Pl DATAO or DEPOSIT

In terms of the 10-11 interface, this operation is the reverse of Examine, except that after the 10-11
interface sends the API function (which contgins the address), the EBox must perform a DATAL
function to obtain the 36-bit word to deposit in the specified address. A second difference is that if &
violation occurs, after performing the protection check a violation occurs, no word is stored in the
specified address. With these exceptions, the operation is basically the same from the point where the
36-bit word is obtained from the 10-11 interface to the completion of the operation.

EBOX/2-197

Function 06 - P] BYTE TRANSFER

This function can only be carried out between a 10-11 interface and the EBox. This function is initiated
on P{ channel 0 as are Examine and Deposit. The transfer is part of either a TO11 or TO10 byte transfer
occurring in the 10-11 interface. The information being transferred is cither a byte right-justified in
EBus bits 28-35, or a word right-justified in EBus bits 20-35. The APl word specifies whether the
transfer is TO10 or TO11 by the state of the Q BIT. If Q = 1, the transfer is TO10; otherwise, it isa TO11
transfer. In addition, the Pl Board is supplying the physical number in bits 07-10 of the EBus while the
API word is present. The other portions of the word 0-2, 11-35 are ignored.

T010 Byte Pointer Fetch, Byte Read, and XFER

The low-order two bits of the physical controller number O, 1. 2, or 3 are obtained and combined with
EPT base location 14X to form the EPT location of the TO11 byte pointer. Next, the byte pointer is
obtained from the EPT and updated. The pointer is a standard KL 10 byte pointer. The microcode for
load byte instryctions is used for the pointer update. Note that the byte pointer may specify indirection
and/or indexing. Once the effective sddress has been calculated, the updated byte pointer is stored
back in its slot in EPT and the byte is obtained by performing an EBox request. Finally, the byte now
in AR is transferred via the EBus (DATAO) to the 10-11] interface and Pl CYCLE is cleared.

TO10 Byte Pointer Fetch, Byte Transfer and Storage

The byte is initially requested by issuing 8 DATALI to the 10-11 interface. The byte is then picked up via
EBus 28-35 and loaded into ARX and into BRX. Next, the low-order two bdits of the physical con-
troller number 0, 1, 2, or 3 are obtained and combined with EPT base location 14X to form the EPT
location of the TO10 byte pointer. The byte pointer is obtained from the EPT and updated. The pointer
is a standard KL 0 byte pointer. For the T0O11 XFER, the microcode for deposit byte is used for the
pointer update and, as with the byte pointer for TO11 XFER, may specify indirection and /or indexing.
Once the effective address has been calculated, the updated byte pointer is stored back in its siot in the
EPT and the byte is stored in the pointer’s effective address. Finally, PI CYCLE is cleared and this
terminates the operation.

Function 07 - UNASSIGNED
This function is unassigned and currently behaves the same as function 00.

EBOX/2-198

SECTION 3
LOGIC DESCRIPTIONS

In this scction, a selection of the twelve board types comprising the EBcx are described in detail.
Wherever possible. a functional perspective is given to highlight the particular functions a board or
portion of a board implements, and multiple boards are shown interconnected to aid in tracing various
control signals from one functional area to another.

PHYSICAL CONFIGURATION
The EBox consists of a total of 23 modules, configured as indicated in Figure 3-1. A brief description
of each module is contained in the following paragraphs.

Module M8532, Priority Interrupt Control (PIC} - One board, illustrated on customer prints PIC
1-6, contains Pl ON register 1-7, P GEN register 1-7, PI REQUEST Register 0~7, Pl HOLD
register 1-7, and the Pl ACTIVE flip-flop. In addition, it contains the priority interrupt networks
for arbitration of priority interrupt requests, EBus dislogue logic. control and internal timing,
and the assignment registers for the ABR: PIA APR 1,2,4 and Meter PIA 1,24,

Module 8526, Clock {CLK) - One board, illustrated on customer prints CLK 1-6, contains the
crystal-controlled master clock oscillator and crystal-controlled margin clock oscillator, as well as
Source and Rate Selection registers and their associated logic. It contains logic and counters to
produce the EBus clock, SBus clock, MBox clocks, and EBox clocks. In addition, it contsins
single step, burst, normal, and diagnostic mode logic and registers. It also contains MR reset,
EBus reset, crobar logic, error detection logic, page fail, and MBox request logic.

Madule 8539, Arithmetic Processor Status (APR) - One board, illustrated on customer prints
APR-7, contains an 8-bit APR Status register, 8-bit Interrupt Enable register, and associated
interrupt request detection logic. It contains the EBus dialogue control logic used while per-
forming 1/O instructions. In addition, it contains the address break compare enable bits, fetch
comp, read comp, write comp, and user comp. It contains a 5-bit section register, fast memory bit
36. RAM storage, and parity network. it also contains the fast memory block and word address-
ing logic. mixers, adder network and current, previous XR, and VM A Block Selection registers. It
also contains MBox control and MBox register function decoding logic.

Module 8525. EBox Control No. 2 {CON) ~ One board, illustrated on customer prints CON 1-6,
contains CRAM condition field decoding: COND and SKIP enables; and VMA select lines CON
VMA SEL 1 and 2. It contains meter, interrupt request and interrupt reguest detection logic, run
and continue logic, IR strobe, DRAM strobe, start logic, various flip-flops, and associated sych-
ronizer logic. It also contains the NICOND decoding and COND ADR bit 10 logic. It containsa
4-bit State register, diagnostic function decoding logic, Parity Enable register, Cache Strategy
register, paging tnable, trapcnable bits, and /0 costrol signals for CONO APR, CONO PI,
CONO PAG. and DATAO APR. It contains the Load AC blocks and Load Previous Context
signals, 4-bix Microcode State register, AR and ARX bit 36 with associated logic, fast memory,
write Jugic, various Pl control signais, and associated logic.

EBOX/3-1

Maodule 8527. EBox Control No.l (CTL} - One board, illustrated on customer prints CTL 1-4,
contains CRAM dispatch, field decoding, some adder carry control logic, and register mixer
sclection cantrol logic for AR, ARX, MQ. and PC. It also contains the majority of the diagnostic
decoding logic and the translator enables T to E enable and E to T enable.

Madule 8523, Virtual Memory Address (VM A) - One board, illustrated on customer prints VMA
1-6. contains an 18-bit VMA adder, YMA AC reference detection logic. a 23-bit VMA register,
and associated input mixing logic. It also contains s 23-bit Address Break register, associated
match logic, 23-bit Program Counter register, 23-bit VMA Held register, and AR Mixer Mixer
(ARMM) logic bits 13-17.

Madulde 8512, Data Path (DP) - Six boards, illustrated on customer prints DP 1-5, each contain
six bits of a full 36-bit data path. Each board contains the following mixers: AR Mixer (ARM),
ARX Mixer (ARXM), MQ Mixer (MQM), ADA Input Mixer, ADB Input Mixer, ADXA Input
Mixer, and ADXB Input Mixer. In addition, each board contains the following registers: Arnith-
metic Register (AR), Arithmetic Register extension (ARX), Buffer Register (BR), Buffer Register
extension (BRX), and Multiplier Quotient register (MQ). It also contans fast memory, the adder
(AD), and adder extension (ADX). In addition, it contains the fast memory, write pulse gener-
ation logic. and fast memory, write pulse generation logic, and fast memory parity network.

Module 528, Conrrol RAM (CR) - Five boards, illustrated on customer “rints CR 1-7, each
contain 14 bits of the control word (microinstruction) stored in RAMs containing 1280 words. In
addition, each board contains CRAM address ga“ing and 14 bits of the CRAM output register
(CRAM register).

Module 8511, Control Ram Address {CRA} - One board, which is illustrated on customer prints
CRA 1-6. This board contains the circuitry to generate the address of the next CRAM word. This
includes the microcode pur v-down stack, plus the Dispaich and Skip logic.

Module 8510, Shifi Matrix {SH| - One board, illustrated on customer prints SHM 1-5, contains
shift counter decoding logic, shift matrix, and AR and ARX parity networks.

Module 8530, Memory Control (MCL) - One board, illustrated on customer prints MCL 1-7,
contains CRAM MEM field decoding: memory request enable logic: request type decoding, e.g.,
MCL VMA Read, MCL VMA Pause, MCL VMA Write. It also containt User and Public
Enable logic. as well as all the request-type qualifiers. It contains bits 1-12 of the VMA Held or
PC Mixers, together with various VMA Control and Selection logic.

Module 8522, IR. DRAM. and Carry (IRD) - One board, illustrated on customer prints IRD 1-$,
contains the 13-bit Instruction register (IR), 4-bit IRAC register, DRAM address mixers,
DRAM, and 15-bit DRAM Output register. In addition, it contains the IR Test Satisfied logic
and normalization CRAM address bits (IR NORM 08-10). It also contains the AD and ADX
carry anticipation networks (CARRY SKIPPER).

Module 8524, Shift Counter Adder {SCA D) - One board, illustrated on customer prints SCD 1-6,
contains the 10-bit Shift Counter registe: and associated input mixer, 10-bit Floating Exponent
register, and associated input mixer, AR Mixer Mixer (ARMM) bits 0-8, and SCD TRAP Mixer
(32-35). 1t also contains the 10-bit Shift Counter Adder (SCAD) as well as the Program Counter
Flags register and mode control logic.

INSTRUCTION REGISTER LOADING AND CONTROL

Refer to Figures 3-2 and 3-3. The IR is composed of 13 mixer latches as illustrated. The defauit
selection is AD selected by -CLK MB XFER. The alternate selection is the cache data lines selected by
CLK MB XFER. Because the IR consists of latiches (DC devices), the clock is used indirectly to
synchronize unlatching and latching of IR. This is done by ORing the EBox clock with the control
signal on the IR Board. Unlatching the IR may be accomplished in one of three ways.

EBOX/3-2

c
& -
w
- Z
& @
Oa
[QL]
-
SR ————
SR
-
w
22
Q= —]
we
a
[}
>
W
2
@®
g
(%
c
-

EBOX

qavis
»258W
$0-00 S118 Hivd vivQ
218N
29"
mm.mmwlm:m Wy
<98 825N
11-90 S118 Hivd Viva
218N
7
mw. "m S118 WYdD
i2-92 B2G8N
v
2121 S118 Hivd viV0
216N
ANMYD WYHO'HI
22SBN
TOYINDD AHOWIN
OEGaN
X1HLUW LIIHS
041}
$S34ACY WYHD
1IGBW
T
.,u - m S118 WvHd
€-82 8258N
i1-8
€2-8) S118 Hivd V1VQ
2ISON
vl 2L
§6-254 S118 WyND
CE-2¢ 826N
Si-2}
62-92 S118 HiVd VIVQ
2150M
890 o Wy
65-9¢ 82S6N
61-9
$€-0F8 Sii8 Hivd vivd
2isenw
TWA
825N

ONINIOM NiVd NOvE

@ T0HLINOD X083
LSO
2 T0HIN0D X083
S2SON
4d¥
(3311}
SH3ILIN
acsen
%3012
92C8N
T041NOD Id
2eeen
®
l%m&&s
oxl355>
BAABBB
F09wwo
@
x

50 51 52 33

49

46 47

35

@ & 42 43

39

33 -1] 35 36 14

32

1-vveeen---30 34

10-2187

1zation

il

EBox Module Ut

Figure 3-1

EBOX/3-3

vBU

)
-
ME B EED
=
Py b & -
-
Toig
Gul iF RS
B e
Bo&w "

CACWE DATA L NLS
¥

. H;\:. -Z': -L Ak

|
|
| - N | .
e e —— * I “""-D"“?; [
m:-——“—j.wﬂl:
k | e Lyl
l‘]p i I L AW
- Al
i ~{ Faust ! I
1 —1 |} |+
[.; Sl i B
s £ -
B o st it 4 e —— - ——————F
s
| : - |
I i \ N |
I - LTI o- J] -
e o — — — ——

L3
=
oF
-
E 4
=

HESET
Cum PAGE PRI EN

WaE AT BEN —

-_-————-—'-———_-..—..—_l |

>

———————————————————— 4
—————— i — —— — — 1
| I
| I
: |
I v ; o I
| L -
I] ool l LR :
FAS? 'l‘:umﬂl 4
l.u; 2. MICECE N |
I asw SELECTION I
L]
Do s P e s R R .
e

Figure 3-2 IR DRAM Control (Part 1)

EBOX/3-5

I e S s O e S £ e
[| ..!_s. .' -t
, & & { e | :
| ™| —
b i anie =
bt S . N T e

4

7 N7 . e F \"i*_“,? '\t“"

g4
it
S

imw

A W rr = " 3 art
LT - - i . ._.._- B e Fiomg e
at e,y . v
- anr
. g . . wen
. L l I] . e
- ‘ -l
Py . - e & P
= . . “ohom -
e ‘ i - e .
o~ o " e i - Saw A 4 T :;
i - .
o aie | i R
i S— [al FERp p— 4
. - (TSR B
- . r L . 4+
LR L . . -
W o3 - .
B AR N § - »| Fodke ot ?
. . i * = = AbLA ALY =
. — ? :' e B L AEE S B
. E J Py
fh, ek jww - -
ceiw T wed
Lo =

Figure 3-3 IR DRAM Control (Part 2)

EBOX/3-7

i
f

During an instruction fetch, a logic level MCL FETCH is developed together with EBox Read. These
qualifiers are latched at the same time that the VMA is latched during the EBox request. They are
latched until the next EBox request. Each time a memory cycle is begun for any reason, MEM CYCLE
sets. It remains set until one of two events occurs. Either MBXFER occurs in response to an MBox
ovcle, or FM XFER occurs in response to an internal fast memory cycle. Either of these decouples the
feedback path for the MEM CYCLE flip-flop. Note that while MEM CYCLE and MCL VMA
FETCH are true. the IR is unlatched because -CON LOAD IR becomes false removing HOLD IR.

A second method for unlatching the IR is via the microinstruction COND field function
COND LOAD IR. This may be used in cases where an instruction is loaded into AR 10 be executed,
The micronstruction selects the AD function as “*A™ while selecting the AR on the ADA input.
Because the default selection for IR is the AD. the instruction in AR would appear on the IR input
mixer.

The operation of unlatching and loading in this manner takes one microinstruction as indicated in
Figure 3-4 Note that CLK IR is logically ORed with -CON LOAD IR on the IR Board.

» AT Ik _/ \
ws S X
&8 A _/ L
- -—-—-“"‘M.A';«H
iR MRER N / / \

Figure 3-4 IR Loading Via AR (COND/LOAD IR)

By using diagnostic consvle function 014 (STROBE IR), information previously loaded into AR of
ARX may be loaded into IR. This provides a powerful diagnostic tool. In addition, this function is
used to address the DRAM while loading it.

When fetching instructions from fast memory via AD, it is sometimes necessary to use the COND/IR
LOAD function to enable AD to IR. Referring 1o Figures 3-2 and 3-5, VMA bits 32-35 address fast
memory as specified by the microinstruction FM ADR field. At the same time (for example), the ARX
field selects AD while the AD field sclects “*B™. The ADB field function is FM and once again the
COND field is LOAD IR.

Once again. note that the unlatching and latching of IR is in step with the EBox clock (CLK IR).

EBOX/3-9

Al g / L
AW / \ L
w T L T
koAbt > :v 5:L_—L——
e e Sen, ____________J————L”__“__
TWALR) -_._x—.
TW AT

J_-— .

Figure 3-5 Loading IR Via FM (COND/LOAD IR)

3.1.1 DRAM and IRAC Control

The DRAM register is controlled in a manner similar to that of IR. The DRAM register consists of 19
mixer latches. Refer to Figure 3-3; unlatching the DRAM register may be accomplished in one of three
ways. As with IR, note unlatching and latching of the DRAM register is synchronized by ORing *" .
EBox clock with the control signal on the IR Board.

Each time that the COND/LOAD IR function is used to unlatch ihe IR, it also enables the generation
of CON LOAD DRAM on the next EBox clock. Thus, the IR unlatches beginning with the trailing
edge of one EBox clock and latches on the leading edge of the next. Similarly, the DRAM register
unlatches beginning with the trailing edge of the EBox clock that latched IR, and latches once again on
the leading edge of the following EBox clock. The timing is illustrated in Figure 3-6.

A similar operation takes place following NICOND Dispatch. Referring to Figures 3-2 and 3-7,
NICOND is latched into a flip-flop on the control board at the same time that the microinstruction
selected by the NICOND Dispatch loads into the CRAM register.

Here we assume the case where some instruction has completed its swore cycle. An earlier micro-
instruction generated MEM /FETCH which started the EBox Request.

EBOX/3-10

e X X X
e X X X
‘.. - 2% wmf :'~ | N AT e I
e A i |_saremes |
;-n.w::n. X
TS LIkAL 3 e RO g ey 1:[__]

Figure 3.6 DRAM Loading Following COND/LOAD IR

3.1.2 DRAM Addressing and Selection

Assume IR EN 10, JRST, and IR EN AC are set. The DRAM addressing logic maps the incoming
instruction code into the DRAM register as indicated in Figure 3-3. Note that 1/0 instructions address
the DRAM in a slightly different fashion than non-I/O instructions. 1/0 instructions have bits 0-2 of
IR equal to 7; this is detected on the IR Board as IR INSTR 7XX and enables the DRAM ADR 1o be
formed as follows:

DRAM ADR 00-02 ~IR 00-02
DRAM ADR 03-05 [IR 7-9 v111]
DRAM ADR 06-08 IR 10-12

Asndicated on the figure, for /O instructions, IR 3-9 is the device select code. If bits 3-6 are equal to
2ero. the device is local to the processor, i.c., in the EBox. Currently, there are six local devices:

APR: DEV 000

Pl: DEV 004

PAG: DEV 010

CCA: DEV 014

TiM: DEV 020

MTR: DEV 024
(UNUSED: DEV 030)

EBOX/3-11

TRAM RE SLE NTE ”

X

X

L

z
‘
o
L4
—
a—
—

A l l
RESPTNSE WEB DY
WBGr Data : 7

WTES
T Muic et Basert g KITOND
.4 OrG M2it.ng e imstr
2 Mo (st Spirctrd Ao ng
1 NIIOND Dap

Figure 3-7 NICOND Dispatch and Waiting

If IR bits 3-6 are nonzero. the device is external to the processor. This includes device select codes 034
to 774.

All other op codes in the range of 000-677 address locations in the DRAM that correspond to loca-
tions 000-677. This is illustrated in Figure 3-2. DRAM address 00-02 is formed from IR 00-02, while
DRAM address 03-08 is formed from IR 03-08.

AC decoded jumps JRST and JFCL reference locations in the DRAM that correspond to their numer-
ical op codes (254 and 255, respectively). The DRAM register is loaded specially for JRST. Note that
IR JRST (Figure 3-3) forces DRAM register J4 to zero while enabling DRAM J07-10 1o be input frem
IR 09-12. This enables the microcode for JRST to be entered at the appropriate location relative to the
type of code in IR 09-12.

DRAM register bits 00, 05, and 06 are missing in the hardware (Figure 3-3). This prevents DRAM J
Dispatch from accessing certain CRAM locations.

EBOX/3-12

3.1.3 IR TEST SATISFIED
3.1.3.1 Introduction - The IR TEST SATISFIED logic is illustrated in Figure 3-8. It is used with the
following types of instruclions:

CAMXX
CAIXX
SKIPXX
JUMPXX
TXXXX
BLKX
AOSXX
SOSXX
AOQJXX
SOJIXX
AOBIX
JECL

In general. these instructions test some condition or conditions and, depending upon the result of the
test. fetch an instruction. The fetch can be from PC+1 or PC+2, (in the case of CAIXX, CAMXX,
SKIPXX. AOS. TXXXX, and BLKX), or from E or PC+1 (in the case of JUMPXX, AOJXX,
SOJIXX. AOBIX).

3132 Implementation - To suppiement this section, five tables are presented (Tables 3-1 through 3-
5). which aid in understanding the table presented in Figure 3-8. Table 3-1 is Skig, Jump, Compare
controls. This table is divided into four areas. Eight Skip, Jump, Compare controls arc indicated.
These are microcode mnemonics for the indicated coding of the DRAM B ficld and imply the type of
Skip, Jump. or Compare condition being tested. For example, the instruction CAIE compares the
effective address with the contents of AC and skips the next instruction in the program sequence if the
condition is satisfied. The DRAM B field mnemonic is **SICE.” which is & value of 1 in DRAM B. The
coding of DRAM BO controls the sense of the skip. Thus, referring to Figures 3-9 and 3-10, IR TEST
SATISIFIED is the Exclusive OR of DRAM B0 with the signal indicated on the figure as “resultant.”
In the current example, because DRAM BOO0 is equal to zero, the IR TEST SATISFIED signal is true
only if the “resultant™ hine is true.

As indicated in Figure 3-9, the combination of AD = 0 with DRAM B 01 (0) and CRAM #07(1)
enables “‘resultant™ to be true. This yields IR TEST SATISFIED. Referring to Figure 3-8, the VMA
contains E, which it received at AREAD time. The VMA field function is PC+1 [CRAM VMA SEL 1
(0) ACRAM VMA SEL 2(1)]. Because PC+1 INHIBIT is false at this time, the “B" input to VMA
AD is equivalent to +1, while the VMA AD function is “A+B." The MEM field function is
“FETCH,” and the magic number ficld function is “COMP FETCH," which is coded as #201. Thus,
#01 (3) with “"FETCH™ and IR TEST SATISFIED gives MCL SKIP SATISFIED. Providing Pl
CYCLE is clear, MCL VMA INC increments the VMA AD SUM, which is now PC+1, 10 a value of
PC+2.

Note that either bit of the CRAM VMA field enables one side of the MCL VMA 1,6 gate and that IR
TEST SATISFIED or -MEM/COND JUMP enables the other side. This is necessary to allow IR
TEST SATISFIED to inhibit loading the VMA during Jump-type instructions. VM A contained the
jump address prior to the test. Note that the magic number field function and MEM field function for
Jump-type instructions is different than that for Skips and Compares. It is necessary to prevent PC+2
from occurring and this is accomplished by blocking the term MCL SKIP SATISFIED. Because the
magic rumber field function for jumps, which is “JUMP FETCH,” has #01 (0), the gate is inhibited. If
the test .* not satisfied, VMA loads with PC+1 and program operation continues.

EBOX/3-13

CON w2 BOARD CL BOARD vMa BO&RD l
VMA CONTAINS

I E INITIALLY
13
\‘
DEFAULTY
SELECTION— SEL
'@ INPUT o A \
+

='n
£
-

-
= ¢
Res
g
L -]
in S
o
i il am
£
I<
L3
»
v
z
. . Jp——
.
|

o)
-9
Tl

F—
S S

LTy Se——
L@ 111 See Teme

— e e c— — — —
b
b+
S S ——

l__
I
|
|
I
|
|
|
I
I
[—

MEMOCOND JUMP MEMCCOND JUMP MEM 5670w » e
('!!_!’.l SEL? CWAW wMA S vMA PTen
MO SELE CAAS YNA S 2.4 e !
l:i BOARD l |
- DRAM BEL - ' | ! I
|
] wwse 1
| T __ CONTMLS SeNsE D8 TESY: l | j l
I '?tsu-_un—- L 1 I
| I I i | o
T T T - - ~ s ~
I CMAM | CRAM CWAM|CRAM | INSTR |SECECTION This SIGNAL NOTES I I [ml iumi 1 - |
o | #02 o0 | @08 |USED FOR fom | 1S [ouAL TO 5 e
e = - - 1 ‘. - - e eAD T '
- - . o ! owusSED | Ll NOT USED CURRENTLY 1 s I I
- o - - i . L o -~ CRAM
| i . cawns N IE-IID.! % ADCHY -D2IA-#06 1IF ADDR ¥ ADCRY 02 cun
CAIs | Om W'”I(';w-')ﬁ" - 7718 TRuE DA A0
Rt 4 .- L] <5 . 3
I SuiBat | SmiPeO iy SIPE L B L ADBO A - @07 3¢ aD@@ 1 TwE AD | | I
JUMPY iuMPs OR BOTH [GeiAD«GOI A @Ot :.ts NEG
y 1 Tann 1 | l
] <] 1 '] ADCRY-02 AD CHYQ
| Biwx | _J CRAM BOARD
e e e e e e e e) e e s

o oaTr

Figure 3-8 IR Test Satisfied

EBOX/3-15

- : T
ity éD[) [i D 18 TEST SATSEAD
TEh L TARTT

.-nfc .' r_} -
Figure 3.9 IR Test Equal

kAW 2 DA R—

&L
IE "y
DG sartsh D
-
Figure 3-10 IR Test Sausfied Logic
Table 3-1 Skip, Jump, Compare Controls
S—— — e e
DRAMB Field | Skip. Jump. Compare b] C Is Sense of Skips, Jumps, and Compares

| DRAM BOO
J SH 0
. Sl 0
I SICH 1]
0 SICL | 0
? SHoA !
n | SIGE i
> | SN I
4 ! SHG | 1

=== = | o= . A NSt
NOTE
Sev Table 34 uses Sap or Jump fetch with vanous AD

EBOX/3-17

Table 3-2 Test Cnntrols Table 34 Fetch Control Modifiers

DRAM B Field Test Controls [Controks Sense of Test Actual Instruction T Microi tion Functi MEM Field Magic No. Field 01]02 0708
; DRAM BOO Using
_ 4 et s R —— e
4 ™ E 1 CAMXX. CAINX COMP FLTCH FETCH 201 1 o jo |1
0 INE i o
0 ™A] 0 SKIPX\ SKIPFETCH 11TCH 202 it jo j1foe
3 ™N 1 : i
H 12- 1 BLKO.BIKJ. TEST FHICH RISl 203 t1 jo i1 {1
1 121 i v CONSO.CONS/. !
1 124 ; 0 2 TXXNA ! i
5 17N | 1 l
6 1C- | [JUMPXX JUMPFLTICH FETCH] 10 o1 |1 jo
2 1CH { o e e e v 1
2 TCA i 0
6 N ! i
Z ;‘:l ! :, Table 3-5 CRY® Generation (MACRO)
3 T0A I 0 Instruction That Uses CRYO Generators Used AD Field Functi Additional Signal
? TON 1 -
BLK!. BLKO TEST BRL ORCB+! GEN CRY 18
NOTE . CONSO. CONSZ TIST AR'BR CRY A*B=0
Sce Table 3-4; uses TEST fetch with various AD functions. TEST TEST AR-ACO CRY A-B=0
TEST NOCRY SETCA
[
s X ols Figure 3-10 illustrates the actual logic that develops IR TEST SATISFIED. The use of the E, G, L and
Table3-3 CONSX and BLKX Coatr X portions is indicated. The result of the test in the AD determines one of the conditions on each gate.
. . \ . : : . For Equal (E). the term is straightforward AD = 0. In the case of Greater (G), the Exclusive OR of the
C Sense N N N
DRAM B Ficld CONSX, BLKX cfmsx BLKX g‘ip COND Causing Skip sign of AD (ADO0) with a carry out of the AD sign (AD CRY -02) produces the A >B output when
DRAM BOO AD is performing the Exciusive OR function. For example, assume CAIG AC, 010101,
” P AR = 000000, 010101 :O.E
: BLKI 0 Herma AC = 000000, 007777 :(AC)
o BLKO o TEST FETCH The function performed in AD is:
TEST BRL ADB—FM: (AC)
e T ADA~AR: O E
s CONSO | TEST FETCH o e
TEST AR BR AD = XOR
i CONSZ 0 TEST FETCH Note that while the AD performs the logical function XOR, the carry function is A-B-1 (Table 2-8,
TEST AR BR ALU Functions). Therefore, the ADB input is 000000,007777 and the ADA input is 000000,010101.
The operation is as follows:
15 complement of ADB input 000000.010101 ADA Input
: T 777777 770000
ADCRY-02 000000 000101 = Adding the 15 complement

of BloA=A-B-1

EBOX/318 EBOX/3-19

Note that the following relation is true:

-B = B+l
-B-1 = B+1 -1
-B-1 = B, which is the Is complement of B.

XORing AD CRY -02 with ADOO, which is 0, should indicate A >B.

For less than (L), the term is ADO0, and this indicates the AD result as a negative value. Skips utilize
the Boolean AD function A. Here, the carries function is really A-1. Thus, if the instruction is SKIP L
0. E. the contents of E are compared with zero and a SKIP occurs if (E) is any negative value. The
implementation follows:

X:SKIPLO. E
(E) = 777777.777774 . 4
AR = (E)

The function performed in AD is ADA «AR, AD = A and effectively the (AR) is compared 10 zero
because any negative value in AR satisfies the SKIP until a value of zero is placed in AR. This turns off
ADOO.

The remaining term (X) is used during TEST, BLKI, BLKO, CONSO, and CONSZ instructions. The
AD carries function is AB-1. For example, assume the instruction is CONSO DEV, 1. At the time of
the test, BR contains 000000,000001, the effective address, and AR contains the biis (if any) from the
device. The implementation follows:

BR = 000000,000001 O.E
AR = 000000, 000001 ;assume the bit was set in the device

000000000001

“AND QOO0 00000 1

000000000001

For the carnes tunction add - | 1117711377777

ADCRY -02+ 000000 00000

Here ADCRY-02 inhibits the (X) function but DRAM BO is coded to enable the IR TEST SATIS-
FIED condition. The PC is updated by +2 and loaded into VMA (Figure 3-9). If the instruction were
CONSZ DEYV, | and the device flag was not set, the AD function [000000,000000-1] vields -1 and -AD
CRY-02. This satisfies the (X) function and DRAM BO is clear. Once again, the IR TEST SATIS-
FIED condition is satisfied and the SKIP occurs.

3.2 PROCESSOR TIMING
The KL10 is a synchronous machine. Figure 3-10 illustrates the basic clock layout and distnibution.

3.2.1 Clock Overview

The clock resides in the EBox and contains a selectable source (Figure 3-12). This source can be a
crystal controlled 50 MHz oscillator, for norinal processor operations, but may be an external source
for special applications or a 56 MHz crystal-controlled oscillator for speed margining.

Basically, the clock consists of three other rather distinct lolu the clock control. the EBox clock
control, and the clock diagnostic control labeled . respectively, in Figure 3-13

EBOX .20

wal

LR

1:1

.1
|

I

I

I

I -l
I

l

I

I
a

1

| . e |
BT - | - ACNI4T
| SR CONTHOR o T I
A N L]
I SoumCl I
ola
] 1
. ¥
RN I PRI I
[cor e g [Cin sunct O I
| oon we e ‘ | l
ot e i ‘ L 1
ezl Com CRM
L ' (RO - -
" —1 ciocs cuocs | cun .mtl
o Cus Coan ‘, L0 TR0 EIN pawr
L Com wAC]] Lum ODO] _‘.' ooy 1,
| Com w2 Coe MBCH 3 I
A l - L Com £B0 SOUmRCE oo wee

Cs - Cum Lin i
B = i = Lah‘z; " - cn| cun are
faCan u.o- 'l . T o]

CLs MBON 14 l AL o
K . wEs . SC0 i |
- '
L or oua ' " D20 I

FAGE YAy ur_(,l o

=y £ U!BZBI

Ko 20 oTE-20 BIA-20

Figure 3-11 Basic Clock Module Lavout and Distribution

EBOX 321

Ll
AT
BoAN

=AW LD&
BOARD

LHaAM
BOARD
(4]

WA
BOARD

DATAE PATE
BLARD

(414

Py
SOy » A Mg PR
g — Y
SUURCE =R
e s 6 Mg REE
Figure 3-12 Clock Source Simplified

.
A 1>
SBUS CLOCe
- 8
‘ D e
CONTE0, NTERD, “w
¥ wED G F
8 on Z
e ' |
H
TT T 1T 7 —
L .
. rune
(1 1% GATL
CeOCh Cin
I TS
| soumce sEL CLOCn
il ~| oacwosTe
RATE SEL CONTROL
_Cuw GO 3@
L) . L] .
i D504 - 08 o
CONTROL
sowEh CROwWBAR J
ConTR.
o oL STROBL
i 0S00-07
Figure 3-13 Basic Clock Block Diagram

322 Crobar and Clock Initialization

When the KL10 system is powered up, the EBox clock board must be initialized to a known state. In
addition, the device controllers on the EBus must be initialized and a series of MBox, EBox, SBus, and
EBus clocks must be generated for varjous initializtion . First, the power controller asserts
CROBAR for approximately 5 seconds. This signal is passed to the clock diagnostic control logic,
where it enables the initialization process. The clock diagnostic logic contains a 2-bit source selection
register, a 2-bit rate selection register, and various other registers and logic. During power up, the state
of these registers is undefined. To avoid an improper source selection, the clock CROBAR signal is
used directly to select the S0-MHz oscillator as the clock source to be used during the power up
initialization phase (Figure 3-14). .

The selected 50-M Hz source is now divided down as indicated in Figure 3-15 to provide 25-MHz, 12.5-
MHz, and 6.25-MHz free-running clocks.

EBOX/3-22

a0 Wy Tmpremg.
Ta -
CONTRONLED . .
P | +
D LEY Ci0Ce I . fe % Memr FREL
-
oE -
SPLLD .
e] AL N
wTa,
ConTenLED
CROBAR
Lm CROBAR G G
SOuRCL SLe
SELECTION | g
BLLSTES
NTIAL STATE .
uNDEFinED |

Figure 3-14 Basic Sourcve Selection

- e -

N B gy W
w7 e PR m

-] -_ -

Le R e PR I]

B Jtwey TRLE l

Figure 3-15 Free-Running Clocks

The 50 MHz FREE clock source is next passed 10 a rate-selectable mixer. However, because the Rate
register may initially be in an undefined state, the selected rate is apt not to be the 50 M Hz source. This
presents no problem because the inputs to the mixer (50 MHz FREE, 25 MHz FREE, 12.5 MHz
FREE, or 6.25 MHz FREE) are all even multiples: the rate is not critical during the power up phase of
operation. The mirzr is shown in Figure 3-1€ Its output is labeled 2*Rate Selected: however, it is not
twice the input frequency. but twice the clock select frequency output.

L0 MMz FRER -
2% g PELE AT v i
2% Mg FEEE =3 o l-S(_L.”_-la o Cim &
& 2w TREL " |——StLECTED
~ —t
HATL v
SELECT | | seur |
REGISTER |
et i 4 — e —————
STATL sEL2 1llll._s_lu"-'l. uu_‘_-n!'!._uultlw
UNDEFINED | o o SOMME FREE
| o ' FMmi FREE
' o 2 eMwr FRLE
1 L] & 25Mmr FREE
R T

Figure 3-16 Basic Rate Selection

EBOX/3-23

3.2.3 EBus Reset

Referring to Figure 3-18, the CLK CROBAR signal enables the counter to subtract one on each 12.5
MHz clock pulse. Once again, the initial state of the counter is undefined. During the crobar period
(approximately 5 seconds), the counter is decremented toward zero. When zero is reached, a carry is
generated and if CROBAR is false at this time, the -1 function is disabled and the counter is loaded
with zeros. This removes EBUS RESET. In pracuce, the counter through zero many times until
finally CROBAR is removed by the Power Controller logic. Signal EBUS RESET is a 1280 ns square
wave.

3.2.3.1 [Initialization Clock Pulse Generation - As shown in Figure 3-18, CROBAR is shifted four
places into the shift register, activating the CLK SS stage. This, with the Clock Selected MNip-flop,
enables the gated clock. It is this signal (GATED CLK) that becomes the source of the clocks gener-
ated via the clock control and EBox Clock Control. When CROBAR is removed, 4 CLK selected
pulses later. CLK SS is also removed. The approximate sequence is indicated in Figure 3-17. Figure 3-
19 shows the power up timing. Note that this shift register also serves to synchronize CROBAR.

3.2.4 EBox Clock Control

The EBox Clock Control provides a source of clocks for the EBox boards together with an MBOX
Sync Point (EBOX SYNC), which is always asserted one MBOX Clock prior to the generation of the
EBox clock (Figure 3-20).

Depending upon the nature of the EBox cycle (a period extending from the rising edge of one EBox
clock to the rising edge of the next), the period between EBOX CLOCK pulses may be extended by
some multiple of 40 ns, i.e., 80, 120, 160, 200, etc.

Refer to Figure 3-22, this drawing illustrates the functional structure of the EBOX CLOCK Control. It
consists of an MBOX CLOCK counter/marker generator, a clock phase sync detector, an EBox sync
source, and an EBox clock source. The CRAM time field (T00, TO1) specifies the duration of the EBox
cycle (Figure 3-21).

The marker generator consists of a shift register that may be loaded with zeros when EBOX CLK EN
is true or have ones shifted in (beginning with the 40-ns stage) for each MBOX CLK generated, as long
as EBOX CLK is false. Table 3-6 describes the marker generator.

(@) 12 smms roeg @
e —@"("' BELISIED CLoCe | . WBON
0 ¢ 4 I CONTROL CLbCes
C,)";"“:"‘" a e 18) con caowsan
eowes | [w9 SECONDS] C.0Ce > . L picca
conth o DlAGNDSTIC ‘I
O 0% T ROL wanl = ;
- [Caw DD
Cim |]
Sa EBus ¢
) eeser oty = taox
CONTROL — CLGCr%
|:3_‘.

Figure 3-17 Clock Initialization

EBOX/3-24

UNTER iNFUTS
ARE &, waYS
o

4 e eces s CAREY
| SEE NOTE gt
l t + & % &

L ‘D 'b'm?
T & 97 CanTee O8
PeMMETREE e,
1
Le - - L .
L 8 MirT I
W - i
TH Sy
T SR, 7 e 117 cL
SfCTiD — T L - o "
-
" S0t 1]
.
~oTe

11 CROBAK 4 fae
s CARAY OuT aanbin
g 8 Tyl aad
cats D rig thg [aumigr
JeBATE .
sfEcTEn — >t

CiDCn
DrACNCSTC
CONTRDL

Cim LBUS SCSET

o iy [T

ATLD

Figure 3-18 EBus Reset and Clock Initialization

EBOX/3.25

wCm=™

[
C.C0Ca [BUS Cuw
LONTROL -
L~
x Cin
Le =1: 1]
] 1
f
St G
-
S
]
v
T s
nESCY

cRowpas N\

L CROWHAR / \
sow et __IMANUAIULIUULLIUN

12 % M FREE v " 1.
Cim EBUS RESLT l L
Cuim SELECVLT Ll 2 1 a ‘I I?l I!i F
w55 j L

Cum BESLT _[

wE RESET _[

Figure 3-19 Power Up Timing

Cue MBOR Co» I i | "I -
Cow EBON STNT :l \] I
CLe EBOE Cua 1;

Figure 3-20 Simplified Diagram, MBox Clock, Sync, EBox Clock

-4 =

E8ON CLOCe _I_"'t_::-lau 1

LEmen
ey

Figure 3-21 EBox Cycle

EBOX/3-26

Table 3-6 Marker Generator Function

—————— e B -
TDO r To1 | Duration MBOX Marker Generator] EBOX EBOX EBOX
[K "s0m | s0m "' 120m | (LK (LK | SYNC
| ' ! ' |
+ -— e | 4
0 1] i 1 1] 0 | 1] 0 1 0
0 ! 0 s | - i]] 1 u I
0 ! | | | 0 | 0 0 0 I 0
1] | | 2 1 | o | o 0 0 o
0 i ! 120 3 i | | I 0 1 0 :
| 0 1 0 0 0 | 0 1 0
| i 0 s | i} 0o | 0 0 0
1 | 1] 3 1 0 u (1]]
I | 0 1o} 4 i | 1 I 1] I
] 1 1 i 0 | 0 | 0 I]
| 1 - 1]] (] u 0 0
I I | i I | I] L] 0 '] 0
i 3 1 H 1 1| 1 . 0 0 0
I 1 2in | b] 1 | 1] I | 1 0 1
" \ ! I [i 1] I o | 0 1 0 |]
ey’ SRS PUCp— | i

The clock phase sync detector compares the marker generator content with the CRAM time field
(loaded at EBOX CLOCK TIME) whenever EBOX CLOCK EN is false. If the marker count com-
pares with the bit combination in the time field, SYNC EN is asserted and the next MBox clock sets
EBOX SYNC. EBOX SYNC then enables EBOX CLOCK EN and similarly disables the detector.
This completes one cycle.

Note that with MBOX WAIT true, -EBOX CLK EN is also true and EBOX CLK EN is false (Figure
3.22). Thus enables the M Box clock counter/marker generator to keep shifting |s from the 40-ns stage
toward the 120-ns stage. Similarly, the detector 1s enabled and when the marker compares with the bit
combination in the time field of the CRAM word, SYNC EN will be asserted and remain so until the
M Box responds or aborts the cycle. Thus, one MBOX CLK after SYNC EN is asserted, EBOX SYNC
will set. In other words, EBOX SYNC is asserted one MBOX CLOCK prior to where EBOX CLOCK
would have been asserted.

With SYNC EN true when M Box response is received (Figure 3-22) EBOX CLOCK EN becomes true
allowing the marker to reset to 000, and SYNC EN is removed allowing EBOX SYNC to clear on the
next MBOX CLOCK. At the same time, EBOX CLK EN becomes true and EBOX SOURCE EN is
also true; thus, when EBOX SYNC is cleared, EBOX CLOCK sets (Figure 3-23).

3.2.5 Error Detection
Figure 3-24 illustrates the logic that stops all clocks in the event of any of the following:

A DRAM parity error occurs.

I
2. A CRAM parity error occurs.
3. A fast memory parity error occurs.

EBOX/3-27

CEAM 2T T FRELT
- TIME - N CONTROL AW
FIELD RLLSTER
- -&
loc! 1o !
Lis CAM -J S|
- - SvhL EN
= %
L) 8o Com §ROE SNC
40 cuote rin AN DN]
e PHASE Cim__] GEWE
e w0 “;;f‘,:“ MBOX Cin
cLOCe i o o e 5
coeweor | obNEL, | teom “LBOX CLk EN
sLk L)
LN EAT NOT
EBO CLv EN WL £ .
3 i G
Cie EBOX
SOUBRCE EN -5
) Cus CBON
ht:;; ate £ux 0DD —o CINERRTOR tibCe
% CLw BN

WMELILS SYNC kb =—0O

Figure 3-22 EBox Clock Control Block Diagram

Figure 3-23 Basic MBox Cycle Timing

EBOX/3-28

MEDE wa T

TLm BESP WBOR

LLe EWROR B B L L

| . J-Dc.- 000
| | _D AT T, CCe%

|Cum £BOR

CLOcm
1 C 0N TR0

|S0uRCE 8
E.. = :.' to0n (b OREM PARITY ERROR
s pleton "0 1 cuoce ol CRAM PARTY {HRON
LamTeoL

ot PR Ty (REOR

E sy es

(oo cum

1 i
g 1 "

e Y
_/—H "
TinsiBITS ALL CLOCHS

e L |]

LEaw PAR 18
Cim [EMmOR wOLE

Cum CREON

CLe QEMOm STOP (8

Figure 3-24 Clock Error Stop

The timing shown 1s for a CRAM parity error. The CRAM register is clocked by CLK CRM; some-
time later, the parity network settles and asserts -CRAM PAR 16. This indicates that the CRAM word
has dropped or picked up bits and is not correct. The signal -CRAM PAR 16, together with an enable
previously set by a diagnostic cycle (CLK CRAM PAR CHECK), enables the generation of CLK
ERROR HOLD.

If it is desired to stop on parity errors, CLK ERROR STOP EN must have been set by the console. In
this case, on the next occurrence of CLK EBOX SOURCE EN, the CLK ODD gate will be latched
false, inhibiting ali ciocks and freezing the svstem.

EBOX/3-29

3.2.6 Clock Controi Logical and Skew Delays

Figure 3-25, illustrates the delays necessary to assure that the proper timing relationship exists between
the actual MBOX CLOCKS, EBOX CLOCKS, and the sampling of the CRAM time field. The lum-
ped delay of =128 ns consists of fixed logic delays, gate and wire delays. The output is CLOCK ODD
and is used to clock a 10141 Shift register, which has a propagation delay of =2.65 ns.

NOTE
The times given here are approximate times only.

LUMPED DLY CIRCUNT Doy

C O+ G > e
| 2 €L
— Cum OO0
T 0 Lin U
GATE TRt DLy
i FINED DLY ouTPUTS 7 84

CANCELS
CAY Iov

o g TRLE £RON
3 -\.oru.._] q:“ 1

e DLy & £00L an
- NBE WOWTD T5 N P
TRED Duv Prcemfeawcas & Gatf
-DfF Cin 7 83m CoAMAL TR ST TS
BCARD

|
{: TR_L MBON -
_ELR Gx . £LOCAS I q: LT ‘
BACR ONTO —-

Cis BOABD | Ciw @BOX Ciw [1 |
D—CED-wmecs ommme T

EBOx Svmi I I |

Figure 3-25 Logical Delays and Skew

The output of the Shift register feeds various gates and the various EBox boards receive their clocks
from these gates. Delay X allows for lining up the outputs of the gates, *'deskewing™ the EBox clocks.

The delays are actually etch paths near the fingers on the board and once the delay has been ascer-
tained, a permanent connection is made at the proper point. Figure 3-26 shows the EBox clock fanout:
Figure 3-27 shows the MBox clock fanout.

To cancel the effect of the 10141 circuit propagation delay, a fixed 2.65 ns have been inserted in the

path between the lumped DLY and the MBOX CLOCKS. Connected in this path also is DLY Y.
which performs the same function as DLY X does for the EBOX CLOCKS.

EBOX/3-30

L. WROE -

] o—are
] o=
L oo
a——

LR

Com Ml 12

LE MBC

Cim
I Cin
— Cim

Figure 3-27 MBox Clock Fanout

Cin

=
L=

Cim

EBOX/3-31

L
LN

w0 13
WBOa a4
e 00

T
Cuim OuY
L2

s
CHx
(4 1]

e

All the EBOX CLOCKS and the MBOX CLOCKS are lined up leaving the clock board. In order to
synchronize the CLK BOARD with the other boards, CLK CLK is passed out through the eich
connection on the board. It then reenters the board at DLY 2 where it is deskewed via a coaxial cable,
as are all the other CLK signals.

Figure 3-28 illustrates the basic timing for the clock board. Six basic cycles are presented: clock star-
tup, EBox cycle T = 01;, EBox cycle T = 10, EBox cycle including a memory cycle T = 00;, EBox
cycle T = 00, and finally EBox cycle including a memory cycle and a page fault.

3.3 ARITHMETIC PROCESSOR FACILITY

3.3.1 introduction
This facility controls and contains logic relating to the following hardware in the EBox.

Address Break Facility

Arithmetic Processor Status

Processor Identification

Cache Refill RAM Facility

MBox Error Address Register

Fast Memory Addressing and Control

These arcas arc set up via four KL10 instructions as follows:
DATAO APR - Sets up address break facility.

CONO APR - Sets selected flags in the APR STATUS REG. and/or enables interrupts to occur
on selected APR priority interrupt channel.

APRID - Reads the following information from the EBox:

Microcode options
Microcode version number
Hardware options
Processor serial number

RDERA - Reads the ERA register located in the MBox
33.2 Address Break
One possible use of this hardware in the EBox is associated with the SET BREAK command. which

may be issued to the monitor by a user (e.g., during the debugging process). This is primarily uscful
when the pirogram that is being debugged:

1. Wil not fail when DDT has been loaded
2. Destroys DDT when DDT is loaded

3. Destroys the contents of a memory location at an unpredictable point during program
execution.

1t is possible to break when the specified location is read from, written into, and/or fetched. It is also
possible to break on monitor references to items in the user's address space.

Figure 3-29 contains the address break logic. A break may occur at three places in an instruction:
On Instruction FETCH

On DATA FETCH
On DATA WRITE

EBOX/3-32

=
cuw2® mare sEcECTED » _ReMULMUULUAUNUNLUNUUUUUUnUnUrUrUUUnUnUnunuUnUUnuUrUnruiuruUnunUrununUrunununununununununununununiunununuUnune

Clh L e - -

SRR A ey o Y e b e B g S s B8 oy Sy e B v 1y E e Sy Iy S e 5 gy B g VT g S oy R gy B8 g B0 g R v Ky Oy O e (L g O g 6 1 S
S T e L o VT B o S i B g B i S e B o B B B S5 B o B o B g TS o B i S B o VS S 5 i T g S i W g S) X 1S e S
LU) O e <3] e] o] e e [7 e) e) e] e Y e] e [e R o R e) o e [oo (B e Y e [e [s [e e e i v R e (e w2
Ry sinene T T 00 T— B3 =3 |) C -]] [s [] L]] O
Cuv (14 INTERNAL - 1 1 I] I 1 €] [1 XY 1 [- N : 1 B 1 } [) B
Sor-GaTED 20w 00D L L LT L L LT A L T L A L T T L LT L T L)
tew s ™ L L L L L L L L L L L L L L L

carewEsyss _ &0 oo e o I I L I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I
O SRR e - R e PR ey TR e, AR e, D) TR . T (R
Cix EBUS CLls T =i | — ! : .] et B e] e N

DLy L1 INTIENG L —:] 0] [G]) ey € 3 []]] € 3 K 3 BT
DLY LS INTERNEL ==) K] L s N s B 3 T 1 T €] C g e e e T3

Cuw WBON & B

Cum Cy»
Cim MBOX CLn 8.8.C.0.E ¢ 0 g AE g TS gy B gy T g TR gy O vy (N, (o 0 oy R oy By Uy W oy R iy S5, oy Sy Sy (O gy (TS g Yy OO gy S e) gy 1R gy O
Cuw EBOs SOURCE T " [| £ 1 =1 1 T
L DEOR Ay o I | I 1 I 1 I 1 I 1
cum TROY SOURCE €% [1 I 1 | s | 5 1 I i
O | e e T ey (| I I—
Le &2ne = = e —_.§ 1 I 1
e Bies = 1 e I 1
Ciw ERON Ciw N I_:l{]ls“.. ""'“I_ AL jins T Shi? "“"'f_-_;?'l""" SHET Sty Swefd M-'my‘"msﬁ"' m
£8OY Cin e | =i e T o B
Cim Cow T | . P % . e I i | s |
cuaw TOC - £ = 1 ' e o
gEaN TOr ¢ = | < 2 g
CLm S*hE EN | i | - | J 1 J | T e —
WMCL MBOr wET k- S P T § i
Liw BESE WEOR — e
wBos BESE 3 —
PAGL TR, wOLD I
Cie PAGE F&.q N J !
e EFRGE AL @ i N
L TN e
Cix BF LD @ ST e e
CLe FOECE TP Jvomce P e
Cuk SBR CAaLL Y e [
Cim V77T EN |
CLm INSTH A77T7
EBOn CYCLES -—T:01p e T4 A0y e s 1200y W MOMY CYCLE T+002 T+00 MEMORY CYCLE PAGE FAULT ———esa- 1TT7 LVCLE =
e oo

Figure 3-28 Clock Control,
EBox Clock Control Timing

EBOX/3-33

LOADED ViA AD LOADED AS
DURING DATAD PAG APPROPEIATE sl
1 Fimel ¥
13 35 13 35 - 5
— . v PAET OF [NTHY 'O STasDARD
ADORESS BREAR ik 0 ISR N B T T 1’"- ikt
ADDRESS REGISTER e L WO (eact AT [wTEY
i e I i ML L% LM B e i e s ewo
| vms 1soas . - wy | wo [WCONG PRORITEL TNTRUCTION
15 - — e — 4 | | S FELLM._.__..-.._—._.._
1 1 Owl O Tl FOLLOWING CONADLL
18.88 . ~ e S (STeET RST 4 MY 1D, N, MUUO
e Sty e p—— ‘ 1 | 1 1i4%
ADDRESS | |
BHEAR P—— ——— - ‘A,",md
CONTROL feTa— —_—— ——— — - | SEE PACE FAIL DESCRIPTION IN SECTION 2 —
REGISTER = & |] 11
FETCH SCO PRIVATE INSTR
come
ML vMA PUBLIC
LOADED via
£ BuS 09 READ
DURING DATAD aPR CoMP
INSTRUCTION
whITE 5
compP Ll
| SCO ADR BREAR PREVENT =
USER T
CON DATAO APR —g =OM° scap e H
¥
ADR A
APR CLux — aan MBOX
cve E
: 6
MCL USER
s wEMORY | CON COND INSTR 4BORT
L Owtpu! compores ! atner of TRAP
" fotiowng 18 Vot LI SCD PI 8 SAVE FLAGS CLR
o) MCL USER A USER LOGIC CTL DISP/MCOND
Cows Ll L
16) ~MCL USER A - USER | scp
coMP SCD LOAD FLAGS ADA
Thus (0] con be wsed = wser r'
Pubit Of cONCEOied mode ond CON IRSTR ABOAT
18] con ba wbed o Buper raor
o KERNEL WODE
2 A puthic progrom hon fatched “wARIOUS REQUEST QUALIFIERS™ INCLUDING EBOX REQUEST
on watruction from o non MOL —
publc ooorevs Z 2 E——
w0 v

Figure 3-29 Address Break Facility

EBOX/3-35

In addition, the reference may be further qualified to a user or executive reference. The address break
conditions are loaded into the EBox hardware by performing a DATAO APR instruction. The left haif
of (E) specifies the following:

Bit 09: Address Break on FETCH

Bit 10: Address Break on DATA READ
Bit 11: Address Break on DATA WRITE
Bit 12: Address Break on USER REF

The right half of (E) specifies the break address in bits 13-35, where 13-17 represents the virtusi
section number and 18-35 the virtual page number, line number.

The Address Break Inhibit logic, illustrated in Figure 3-29, may be set up to inhibit an address break
by performing any of the following instructions:

JRSTF - JRST2
JEN - JRST 12
JRST 10
MUUO

he PC word provided by these instructions must have bit 8 = I to set SCO ADR BRK INH. Ifa
STF is given setting SCD ADR BRK INH, the NICOND Dispatch occurring during the JRSTF
transfers the set state of SCD ADR BRK INH into SCD ADR BRK CYC, while clearing ACD ADR
BRK INH. Thercfore, for the duration of the next instruction, address breaks cannot occur. This is
useful, for example, when continuing from an address which subsequently caused an address break.
Consider the following example:

677; SETO 3, sPUT-1INAC3

700/ ADDM 3,300 {ADD TO TABLE

701/ AOS 700 ;ADD 1 TOTABLE ADR

702/ HRRZ 4,700 ;PUT CURRENT TABLE

703/ CAIE 4,1000 {ADRINAC4

704/ JRST 700 WHENITIS 1000 ALL DONE
NOTE

This sample program illestrates the wse of ADR
BRK INH sad is not meast to be a well-structured

program.

The sample program adds -1 to a table beginning at location 300y and ending st location 1000,. A bug
exists, however, in this program. Note that the AOS instruction in location 701 is incrementing the
table address in the right half of location 700. The problem occurs when the right half of the instruc-
tion in 700 becomes 700. At this time, the instruction becomes ADDM 3,700 and this wipes out the
instruction in location 700. Several references to location 700 are in the program. First the monitor is
requested from a terminal to set ADR break on data write for address 700 to assure that the AOS
instruction is working correctly, i.c.. attempting & write into 700. The monitor performs a DATAO
APR, which scts USER COMP, WRITE COMP, and loads the address break register with 700. At this
time, ADR BRK INH is cicar and when the EBox performs the write request, the comparator will
satisfy the OR gatc labeled (1) because the following conditions are true:

I. VMA 13-35 = ADR BRK register 13-35

2. MCL VMA WRITE = WRITE COMP
3. MCL VMA USER = USER COMP

EBOX/3-37

At this time, both SCD ADR BRK INH and SCD ADR BRK CYC are clear; therefore, the signals
MCL PAGE ADR COND and MCL PAGE ILL ENTRY are asserted together with all other neces-
sary request qualifiers. The MBox detects this condition and places a page fail word in its EBus register
(indicating an address break page failure) and asserts PF HOLD to the EBox. The EBox senses this,
and enters the microcode page fault handler. Now the EBox flags must be gathered for storage in user
process table location 501. Because SCD ADR BRK INH is one of the processor flags, it must be
made available; however, at this time it is clear. Regardless of this, the process of obtaining this flag
will be discussed. Upon entry to the microcode, CON INSTR ABORT is genzrated to cause proper
termination of the faulting instruction. Referring to Figure 3-29, CON INSTR ABORT enables SCD
TRAP CIR, which breaks the recirculation paths for both SCD ADR BRK INH and SCD ADR BRK
CYCLE: it also transfers the state of SCD ADR BRK CYC into SCD) ADR BRK INH. This makes
the flag available for storage in S01. The page fault handler reads the MBox EBus register and stores a
page fail word in user process table location 500, stores the flags PC word (PC is now 701) in 501 and
then fetches a new PC word from user process table location 502. The processor now enters Execute
mode and handles the page failure appropriately.

Eventually, after evaluating the page fault word in 500 and other data, the monitor informs the user at
his terminal that a write was attempted to location 700. If after giving the problem some thought, the
user requests a break on the same address for write but now suspects that somehow the instruction in
700 is being overwritten by itself, the break can be inhibited. Now the monitor wishes to continue the
program by performing the entire AOS instruction to ascertain that it works but also must avoid
thewrite page fault associated with this instruction.

The monitor can perform a JRSTF instruction that sets ADR BRK INH and restores the old PC of
701 for the AOS instruction via user process table Jocation 501. Referring to Figure 3-29, during the
execution portion of JRSTF, SCD LOAD flag sets SCD ADR BRK INH. During the JRSTF instruc-
tion NICOND Dispatch occurs and translers the set state of SCD ADR BRK INH into the BRK
CYCLE flip-flop while clearing SCD ADR BRK INH. The AOS instruction is successfully fetched
from 701 and the “*AOS write reference” 10 700 is prevented from causing MCL PAGE ADR COND
because this is blocked by SCD ADR BREAK COND (L). The next NICOND Dispatch clears SCD
ADR BRK CYCLE, enabling the ADR BREAK to occur if a write is performed to 700. Eventually,
through many tries, the overwrite of the instruction in 700 wil! be detected by this method. Note this is
only a simple example and is not necessarily a practical one.

33.2.0 Address Break INH and Saving Flags - The signal CON COND INSTR ABORT is generated
by the microcode whenever external conditions require the microcode to abort a partially completed
instruction. If this occurs during an address break cycle, this signal copies the state of SCD ADR BRK
CYC back into SCD ADR BRK INH, thus making it available to save as a bit in the flag’s PC word.

3.3.2.2 Address Break INH and Loading Flags - SCD LOAD FLAGS can be genersated in a number
of ways: JRSTF, JRSTI10, JEN, JRST, and MUUO can set SCD ADR BRK INH. The 10-11 interface
can place the flags PC word in AR and perform a console start. This causes the microcode to generate
SCD LOAD FLAGS. During a JFCL instruction, the flags are read and the specified flags cleared.
Then the microcode reloads the flags using the signal SCD LOAD FLAGS.

33.3 Arithmetic Processor Status Register

This facility enables special internal conditions to signal the monitor on a priority interrupt channel
assigned to the processor. Condition 1/0 instructions are used to control the appropriate flags and to
inspect the conditions of interest.

EBOX/3-38

The arithmetic processor status register consists of two 8-bit registers and associated control logic. One
register receives the error or status signals and the other register enables or inhibits the generation of
an interrupt when one or more of these error or status flags scts.

Figure 3-30 provides the basic format for the CONO APR word, the basic organization of the error or
status flag and the interrupt enable or inhibit for the two registers. In addition, the bit assignments are
provided in two tables, as well as the source of the error or status signals available to set the appropri-
ate flags in the APR register.

The basic organization of the APR is illustrated in Figure 3-31. The register is broken down into four
sections based on the origin of the error. The first five flags set as a result of an error condition
involving some memory activity. Three of the flags: {SBus Error, Nonexistent Memory (NXM) Error,
and S ADR Parity Error] originate in the memory adapter (DM A). The remaining two originate in the
MBox. The flag IN-OUT PAGE FAIL (IOPF) sets because of an external stimulus, but the actual
seiting takes place by the microprogram, in response to & page failure that occurred during a priority
interrupt. The power failure flag sets when the power controlier detects a low voltage condition. The
sweep done flag signais the completion of & cache sweep operation. This operation is the resuit of
performing a sweep instruction.

Once again referring to Figure 3-30, to enable interrupts for any or all of the cight oonditions, a CONO
APR is performed with bit 20 equal to | and ones in bits 24 through 31 for the desired flags. Similarly,
to disable interrupts for any of the cight flags, which have previously been enabled, place bit 21 equal
to | and ones in bits 24 through 31 for the flags to be disabled. This means that once the processor has
been powered up, and providing a power failure condition has not occurred, that once an interrupt
enable has been set, it must be specifically cleared as indicated above.

Any of the cight flags can be sclectively set or cleared by placing bit 23 or 22 on, respectively, together
with those bits in 24-31 to be changed.

3.3.3.1 SBus Errors - Two error lines are available from the DMA to the MBox. These are SBUS
ADR PAR ERR and SBUS ERR. If the DMA starts a memory cycle and also detects bad address
parity, it sends SBus Acknowledge (SBUS ACKN) to the MBox, acknowledging receipt of the address
and within 125 ns transmits SBUS ADDRESS PAR ERR. The MBox now latches the error address
register (ERA), which contains the address in question and sdditional bits which specify information
associated with “data parity error conditions.” These two bits specify which of the four memory
buffers (M Bs) the parity error is associated with. The address used to address memory specifies which
word is to be transmitted (for a write) or received (for a read) first. This information is contained in
bits 34 and 35 of the address. If, for example, the address in the ERA is 101 [bit 34(0) and bit 35(1)) and
the address in the PMA used to address memory is 100, the indication is that the word requested by the
EBox, for example. was not the word actually causing the data parity error. Thus, in this example, the
EBox requested the contents of location 100, received it, and how, while fetching a word from 101 (of 3
quadword group), an error occurred associated with that word.

EBOX/3-39

-APR RESET

1
9 INTERRUPT

- c ENABLE n
CON SEL DIS ! apR cLx— \
APR EBUS Ww
BAS'C CONFIGURATION
CON SEL EN — B FLIP FLOPS.
FOR LOADING INFORMATION
APR EBUS xx SEE TABLE &
-CON SEL SET
APR E BUS Y ERROR
FLaG o
-CON SGL CLR L \us:c CONFIGURATION
APR CLK 8 FLIP FLOPS,
~APR T
fiesx J FOR LOADING INFORMATION
€ T
-aPR E BUS 27 PER- L
ERROR SIGNAL FOR SPECIFIC SIGNALS
SEE TABLE C
TABLE & TABLE 8
E BUS| CON | CON |E BUS| INTERRUPT | INTERRUPT £8us’ coN | CON [E BUS| ERMOR | ERRC
|BiT ww/SEL DISISEL ENIBIT xX| EN SETS | EN SETS [B1T YY|SEL SETISEL CLRIBIT 22) FLAG CLRS | FLAG SETS
02 hooy YES N 04 17TTT] vEs | 06 SBUSERR ool
03 | YES = 03+ YES OO 06 .l BUS EAR
07 S YES e N YES o7 ™ E NN
| 03 | YES : 03 | YES Do 07 Lo NNEM ERR
[0z YES oa [T T NES | 08 [1/0PF ERR
[03 | YES DN . 03 | vES L 3 08 PO SSSNITO PR ERR
02_ |~ YES _0s_* o9 PAR AR
[os | ves 55 JEe [N TLMB PAR ERR
02 poood YES | 04 € DIR P ERR
[03] ves 1SN % L L C DIR P
R g 5
03 1 vés FST | 05 . ..N]S ADR P ERR
02 o YES | 12 N [0e PWR FAIL
0 YES oy 12 B N FAIL [0% AN AL
02 L. YES | 13 [SWEEP DN [04 P DONE
0 YES o 18 s DONE | 03 OO SWEEP
TABLE C
[ERROR FLAG _ |ERROR SIGNAL]
S BUS ERR MBOX S EAR —
MBOX NXM EIR_______ g5 R
(3702 Shem
MB PAR EAR |MBOX MB PARERR]
C DIR P ERR
8 19 20 21 22 23 24 25 2 27 28 2 30 3 32 3 34 3
T T L l l
10 SELECTED FLAGS 10 | ma | c | DR |powerlsweee
® lreser]| N Dis cuLr ser [S BUS| WM Gp | pap | piR gan | Faic | oowe » PI LEVEL
1 1 1
= CONO APR WORD FORMAT -
W2

Figure 3-30 APR Register and Interrupt Enables

EBOX/3-41

- - -
L cCoim 5 D&
S Bus L) '8 Fowie Swiir
Pak AR ITY Ty 1004 " .
CREOR £ RROR ERnen o Ao FaiL DoNE
(.r(mu. T LBos SET (NTERSALLY PO ExTiENa
EREOE CONDITIONS #ut Dul O AN O CONDITION
(R LTS CONTEC IR NON [REOR
ToMD TN

& TRawe aoenen o opeae
» ke DMA 878 o
povsed fo the WBDR
shch ther pavEny
ihge to the B0

Figure 3-31 APR Register Breakdown

In addition, a 3-bit code identifies the origin of the data in the memory buffer register and indicates the
type of reference, i.c., read, write. etc. As the MBox latches the ERA, it transmits MBOX RESPONSE
IN and MBOX S ADR PARITY ERROR to the EBox. MBOX S ADR PARITY ERROR occurs
concurrently, with an MBox clock and, therefore, on the next MBox clock (that will be also an EBox
clock) APR S ADR PARITY ERROR sets. Providing the SBUS ADR PARITY ERROR INTER-
RUPT enable is set, an interrunt will be requested on the APR channel. In addition, to prevent the
MBox error condition from being changed, the APR error flag which sets is sent over the E/M inter-
face to recirculate the MBOX SBUS ADR PARITY ERR COND; also, APR ANY EBOX ERR scts
and is passed to the MBox to hold the ERA. As a result of the interrupt, the monitor determines that
the APR was the source of the interrupt via a condition 1/0 instruction (CONSO, CONSZ, CONI,
APR), make a determination, and finally clear the error flag, releasing the MBox ERA and associated
error logic.

3332 Nonaexistent Memory - Each time the EBox makes a memory reference, the MBox interprets
the request qualifiers and performs all the steps necessary 1o satisfy the request. A core memory
reference must be issued by the MBox in order for NXM to occur. When the MBox issues 8 memory
request to read or write a word to core memory via the memory adapter (DMA), it starts a timeout (32
us) and waits for SBUS ACKN from the DMA indicating acceptance of the request and address. If 32
us elapse and SBUS ACKN is not forthcoming, the MBox sets MEM ERR (Figure 3-32).. An addition-
al 32 us elapses and if SBUS ACKN has not been received by the MBox, MBox NXM error is asserted
together with MBOX RESP IN.

Referring to Figure 3-33, MBOX NXM ERROR is loaded into the APR register with APR CLK. If
the NXM ERR interrupt enable is set, APR INTERRUPT is asserted to the Pl Board. To preserve the
ERA and NXM ERROR in the MBox, the APR NXM flag is recirculated back to the MBox. In
addition, PAR ANY EBOX ERR sets, holding the ERA information in the ERA register.

3.3.33 Other External Errors - Referring to Figure 3-34, all five external error conditions set the
appropriate APR ERROR flag and request interrupts (if enabled) on the error channel assigned. Also,
all the indicated error flags recirculate to the MBox and all cause APR ANY EBOX ERROR 1o set,
preserving the contents of ERA. Of the five errors, one, MB PAR ERROR, is handled as if it were a
page fault. That is, it causes control to be passed 1o the microcode page fault handler, where it is
evaluated. The status word is obtained from the ERA in the MBox. The format for this word is
initially as indicated in Figure 3-35.

The page fault microcode places a code in bits 0-5 of 26, and places the virtual address for the refer-

ence in bits 13-35 where bits 13-17 are 0 for K1 paging mode; this word is stored in user process table

m_lioﬂzﬂn The remainder of the operation is identical with that for a page failure and is covered in
ion 2.

EBOX /343

3.3.3.4 Input/Output Page Failure Error - During a priority interrupt [P1 CYCLE (1)]. page failures
are not expected to occur for interrupt instruction fetches or PI dispatches. This is regarded as a fatal
error, and it causes an interrupt on the assigned APR error channel. The page fault handler sets IOPF
in the APR register and then dismisses the interrupt. The PC is placed in VMA and an instruction fetch
begins while waiting for the Pl system to honor the interrupt for the APR.

3335 Power Fail - The power controller asserts the signal POWER WARN whenever the power Cusox Juear | |
supplies reach a marginal value. This results in the setting of the APR POWER FAIL flag and requests | Laaet | |
an interrupt on the APR error channel. | oA l Sew |
: | PR IR
| B o B
LR s
el g M- 9 1 L> |
(B0 Svee | | I 3 I iy I
L1 AP =i
- i .- ‘::.: i [1 i] I
(BOE Cuw ‘ = il o = I

|
|
| |
% |
| |
| I
| I
|
I
|

FBOR REG T |
1

Csh EB0R 10

WHOY GENLEATLS
v T8 O cat '
WAOE Ty {,.1” TYET L CORE RO WG }. L Own DATA wALD

(e | &
o

|LoaD

—1——————

[(————————————

ke e —— e — — ——

STATLS SEG CLIARNG OUT L S
MRON ®[C L D0IC 1 I
1
MEWSTART [1 t — = |
ANy
A wel s Lo I
S T (L]
NI TIMEOuT | G a | - ;E‘_?z‘l I —arm con ‘
I g T, TN | N —— | I —
wiw e
EBCH CETECTS AND
O SETS APE NaM (AN
L u? 3 WLOLL T ING AN .
i DM 32as INTERRBY Figure 3-33 NXM Error Overview

MBOE Naw [RE

[.!_—

woon cse _=y_
—

1.

Cux RESP MBOY

APE NEw

Figure 3-32 NXM Timing Overview

EBOX/3-44 EBOX/3-45

TC wBON

wEo"

Ciw ADR PAR (AR

|=80x ADR ’l. L%

O MBOY -—

APR ANY €803 ERR

3 i —— TWESE FLAGS Caw BE
e ~— SET O CLEAMED
— — BY COND APR
AND RLAD B
| | CONI aPR
1 I T e e tnance SETAE DS P4
S US| Naw | WE .Dl SaDs |
r::i EAR | roan : PAR | PAR | =—(BUS BITS D& 07 OB
SRR ERN LEN - ENABLL CLRE BUS @5
APR CLw — |]| |
— THESE ENABLES CaN B
- e) SET DR i LARED
= — - ~—BY COND aPR
AND WEAD B
NI A
— &PE Cin
o T2 z
sm nu c n's T om [NABLECE BUS B7
Chn ‘2- - BUS BITS 06 CF 0%
“ f"'"" 'v'ji\(' ;r. e l!hﬂ Tl = DISABLESE BUS @3
arw _._J

S BUL LRR -
FaR INT EN
WA EER
Saw FRE INT BN

wE PAR [RE

ME PAR (RE INT [N

S ADE PAR [BE

S ADR PAR LRA% INT EN

AFR LPE IaTEERET

Figure 3-34 External Error Conditions (M Box, SBus)

o ' H 3 . s i 4 L
r .y T v
wnil. CCA | CHan DATA i T 1
| wer | Ll il { PHTSICAL MUMONY ADOSESS
iF - F
" . i
(80" wiINTUAL ADDSRLSS
DATA SOURCE CODE | WRITE REF DATA SCURCE WL REPLALE T
| 00 o MEMORY (READ, HPW | 1
oo " CHANNEL STORE STATUS (WRITE)
o1 | ' CHANNEL DATA (wBITE)
10 1 AR (£BOX wRITE | 1

CACHE PAGE REFILL, CHANNEL READ !
CACHE wRITL

[::_] 80X RELATED EvEmTY

Figure 3-35 ERA Word

EBOX /3-46

3.33.6 SWEEP and SWEEP DONE - The M Box contains a section of logic called the Cache Clearer
(CCA). This 1s addressed as if it were a device (014), using 1/0 instructions. Six operations may be
initiated. These are listed in Table 3-7.

Table 3-7 CCA smm

—_——

New Mnemonic ll Old Mnemonic | Function
SWHIA DATAICCA Inuildalr aII cache data, do not update core
SWIVA BLRKOCCA Sweep cache, validate core, keave cache valid
SWPLA | DATAOCCA Unload all pages updating core, vahidate the cache
SWHIO i CONICCA ‘ Invalidate vne page of the cache . do not validate core
SWPVO J CONSZ CCA | Sweep cache. validate one page of core, keave cache vahd
SWPLO CONSO CCA I U nload one page. update core, invahdate the cache

To request CCA cycles * 'm the MBox as a function of one of the six instructions in Table 3-7, the
EBox places the virtual page number into YMA 27-35, verifies that the performance of the Sweep
instruction (which is privileged) is legal in the current mode of the processor and then either begins the
operation or, il illegal, performs an MUUO.

Figure 3-36 illustrates the various logic associated with the sweep operation. Three basic operations
can be specified in various combinations by the six types of Sweep instructions. These are illustrated in
Figure 3-36 in the table at the upper left.

In the cache, associated with each word of a four word block (quldwrd). are two bits labeled valid
and written. If the valid bit is off for any of the four words, these words are considered to contain
incorrect data and, if referenced (for example by the EBox), the words must be fetched from main
memory. Similarly. if the written bit is on for any of the valid words, these words contain different data
than the copy in main memory and the cache copy is correct. At some point, the written words must be
flushed from the cache into core memory. On power up, the cache must be invalidated, clearing all the
entries. For this case. the DATALI instruction is performed to device CCA. Because AC bit 10is 0, the
MBox. upon receiving the EBox request and appropriate qualifiers (APR EBOX CCA and APR
EBOX LOAD register), will invalidate the entire cache. Similarly, because AC bit 11 is 0, the MBox
disregards the written words and no writebacks are performed to core memory. Finally, AC bit 12is 1,
which specifies invalidation,

Referring to Figure 3-36, IRAC contains the AC field 9-12 of the instruction. The microcode executor
scts up the request utilizing the MEM field function MEM /REG FUNC together with the magic
number field coded as LOAD CCA (6014). To follow the request, it is best to refer to Figure 2-
98 which can be fourd in Subsection 2.7.2.5. Note that on Figure 3-36 MEM /REG FUNC (07) has bit
01 equal to 1 and this generates MCL REQ EN. This signal is used to enable the various registers
involved in the EBox request to load with the appropriate information prior to latching the VMA. The
loilowing conditions set up for the CCA request.

Controlling Signaks) Signal Generated

MEM/REG FUNC MCL REQEN

MCL REQ ENA MEM/REG FUNC A CRAM#00 MCL REG FUNC

MCL REQ ENA MCL REG FUNC ACRAM#I A&R}mx LOAD
R

APR REG FUNC ENA CRAM #0608 = | APR EBOX CCA

MCL REG FUNCACLK EBOX SYNC MCL MBOX CYCLE
REQ

EBOX /347

EBOX OR CHANNEL
CAN STEAL A
CLK MBOX CLx T T T2l ™ T4 ™ DLE cacHE CYCLE WERE

avama LML LI L]
axesocs | [L LI L I 1

- o TR £BOX MAY EXECUTE
con secsren YRR Y Y S s

] WRITES wHiLE TeE

- CACHE CLEARER 15

WORKING ON THE
MEM REG FUNC __/—_\ CURRENT CACHE
SWEEP
MCL REQ EN ” \
MCL MBOX CYCLE REQ [I
MCL REG FUNC —_J_L_—
”S:i\:
cCa / A\Y
AEOUEST APR REG FUNC EN
TIMING
APR EBOX LOAD REG ___r__l_—_
APR EBOX CCa // \\ SWEEP TERMNATION

Cuk EBOX REC I l APH SWELP BUSY [i
MBOX CACHE CLEARER
o PERFORMS SPECIFIED
OPERATIONS
MCL MEM CYCLE I | MBOX CCA REQ | i L e————1erumares
cca
OPERATIONS
MCL MBOX wArT | | MBOX CLm I l I | l | I I ! l
MBOX CCA REQ | i N | [""] [1 =
MBOX RESP IN |] arr sweer susy ex J/ A\Y
INTERUPT
CLK RESP MBOX I | APR SWEEP DONE I -— REQUEST TO
Pl BOARD
APR SWEEP BUSY I APR APR INT //

NOTE
MAGIC @ for LOAD CCA = 601,

Figure 3-36 Sweep Logic (Sheet | of 2)

EBOX/3-49

EBOX /3-51

Fn BOARD = Icmcn BOARD | seLECcTIoN FUNCTION |
== 1 l INSTR AC 10 ac MG JOME- TR waLioae]
| I ' e | DATA § o o s nO w0 vES
I I | e . I Bk O 0 ' o wO YES w0
I IR CL® I I CLN APR — e I
e b | com mCL Pl I Data 0 o ' ' wo YES YES
: 1 i I coN 1 ' o ' vES NO ves
it CLi_EBON_RED i a I COoMS 7 ' ' © vES YeS wo
o e e . e e I
I;{';‘:Ra 13 Y T : s]l | YT —— | | comso v ! ves | ves | ves
I \nfl nr.f - I £Q : £BOx I
| Loy % r— 1 i :
Ay S, | [e
[MBOX RESP IN] -
[csw_£BOx TO e
T I . e
a8 aps_£8Ox cca Ia - — mr(*ﬂl",l = ' IF1 soaro
ke ::tm St ' £PR CLx — e l :
X a
-—‘ : £ca _Reg I "APR REGISTER® I i i }_ l &
N/ | I -1I_
7 PN
4 21 nec fe-GhAu # & I I:&I‘RD _:
I -7 En —APR CLw I I '
I hl MCL REG FUNC l I |
I A ¥ :
— CHAM & 01 I I
| o I I ate CRAM #00 '
] £\ MCL REQ EN l ¥ Ll WM TR
4 B |
I MCL CLm '
I b~ APR CLx I ' MEM 99
F | | MEM 91 |
| swEeP I | |
I APR CLR I l :
| X | !
P
e J

Figure 3-36 Sweep Logic (Sheet 2 of 2)

The basic timing for the CCA request as well as CCA termination is illustrated in Figure 3-36. The
VMA must contain the virtual page number in VMA 27-35 for CONI, CONSZ, or CONSO CCA
operations. In the current example (DATAI CCA), the MBox cache clearer does not use this informa-
tion because the entire cache is to be invalidated. However, the cache clearer has an associated register
that is loaded by the MBox with VMA 27-35. IRAC bits 10-12 are similarly loaded into the MBox
control logic that directs the type of operation carried out. Each time a CCA cycle is completed in the
M Box, an idle period occurs where the channels or EBox can obtain an MBox cycle. The EBox can
continue to execute instructions but must guard against defeating the purpose of the Sweep operation,
i... write new data into already swept words in the cache. Summarizing, three of the six instructions
operate on one page of the cache (512 words). For these three instructions a different set of sweep
functions is available; these are: invalidate, writeback all written words in the specified page, or per-
form both. Similarly, three instructions operate on the entire cache (2048 ,, words) but the operations
are the same as with the other three. In all cases, the EBox performs an EBox Request providing the
appropriate qualifiers and the VMA contains (in bits 27-35) the page number. The MBox loads its
CCA register and then asserts MBox CCA Request together with MBOX RESPONSE IN. Now the
FBox is free to perform operations while waiting for SWEEP DONE to generate an APR interrupt. If
a second sweep instruction is started by the EBox before the first is completed, the MBox begins the
second sweep just as it would another instruction; however, it reloads the CCA register with the new
information supplied by the second sweep instruction and does not complete the first.

334 Processor ldentification
The processor identification consists of four parts:

Microcode options
Microcode version number
Hardware options
Processor serial number

This information is obtained by performing what was traditionally a BLKI APR, now called APRID.
The format s illustrated in Figure 3-37.

o LI LLd

;:':I MiCRO CODE OPTIONS MICRO CODE VENSION NUMBER I

T
[CAMDWART (ETIONY | PROCESSON SEMAL WUMBl &

Figure 3-37 APRID Format

This is not strictly a visible hardware function, but rather a combination of microcode and hardware.
The microcode for a given version is coded in such a fashion that the version number is obtained
utilizing the magic number field and the function AR00-08-— number. The microcode obtains the
processor serial number that is hardwired to the 0 input of the ADXB mixer and places it in AR. Next,
the microcode version number is obtained and adjusted as follows. The serial number in AR is copied
to BR and the version number is loaded into AR00-08; next, the ARX. At this time the BR, AR, and
ARX are as indicated in Figure 3-38.

EBOX/3-53

; cimia, & l.,g.
i
o L e
Vi - ez - Il-
S ¥ -
0 L L]
ViE - l SEHAL ®]Ju-
|

Figure 3-38 Alignment Step |

The shift counter is loaded with 9, and now the combined AR and ARX are shifted left 9 places with
the result placed in AR as indicated in Figure 3-39.

The version number is placed in AR 9-17, the serial number in AR 24-35, and the resulting word i
stored in location E.

0 27 28 B

"
SERIAL & win - J“
LOADD

Figure 3-39 Alignment Step 2

3.3.5 Cache Refill RAM Facility

The cache refill RAM 1n the MBox must be loaded with a set of bit patterns called the refill algorithm.
This RAM is used by the MBox with a use table and other associated logic to manage the cache refill
operation. Generally speaking, when the cache fills up with words, it becomes necessary Lo displace old
words for new ones. It is desirable to displace the words used most infrequently. To do this, an
algorithm was developz=d that specifies which word is to be displaced each time a refill cycle must write
into the cache. Figure 3-40 illustrates the basic structure of the MBox Refill RAM and also indicates
the format of the effective address provided by the BLKO APR instruction (new mnemonic WRFIL).
The microcode executor is entered with the effective address (E) in AR. Because the instruction is
privileged, legality is checked first. If the instruction is legal for the current mode of the processor
(Kernel or User with 10T set), the instruction is performed; otherwise, an MUUO is effectively per-
formed with the illegal instruction stored in the user process table location 424 in the place where the
MUUO is normally stored.

EBOX/3-54

L “
W, MAM
L LA 3

- ' 33 34 33

14
tlhli waw Cats | AppEy

¥
i

- Bo#. AbR mDE(oEwaT -

Figure 3-40 Refill RAM Overview

When the instruction is legal, the microcode performs a MEM/REG FUNC with the magic number
field coded as WR REFILL RAM. The APR logic decodes the REG FUN during the EBox Request:

APR EBOX READ REG
APR EN REFILL RAM WR

The MBox writes the three high-order bits (18-20 of VMA) into the refill RAM at the location’
addressed by bits 27-33 of VMA. Writing the entire algorithm requires a loop using the basic instruc-
tion BLKO APR as a focal point. The following is an example:

SETZBZ.AC {CLEAR REGISTERS

RAM I
MOVE AC, TABLE(Z) ;PICK UPA WORD
BLKO APR.(AC) ;WRITE THE FILL RAM
CAINZ,127 :DONE ALL 12810 WORDS?
JSR DONE \YES
AOSZ ;NO, UPDATE Z FOR NEXT
JRSTRAMI ;PICK UP NEXT WORD FROM
THE TABLE

In the sample program, table through table+127 contain the appropriate entries to be written into the
MBox Refill RAM. These words are in the format indicated on Figure 3-40. The refill algorithm may
be adjusted by changing the sequence of the bit patterns. By doing this, portions of the cache may be
bypassed as appropriate. Normal'y, all four cache quarters would be used equally. Table 3-8 is repro-
duced as extracted from the MBox theory section simply as an example.

EBOX/3-55

Refill RAM Locations

Refill RAM Contents

07 ¥
| . 3
L

B 15
16 23
24 31
3.3 | 0
40 47
48 5%
S6 63
[| 3
72-79 0
50 7 |
B8 95 [
oh 103 | [}
|
|

[

- -

d =) e
o == fd b

g

- e

d =y = e =

d ha Vs

T

] 1]

&=
>

1
"
g
]
I
0
- 6
£
1
<
<
[

(R W IR

I T

104 111
12119
120 127 1 0

- A
b a0k b =k

"

33.6 MBox Error Address Register

The MBox contains a number of registers that can be loaded and read by the EBox. These registers are
address registers for storing the address in the event of an error and for modifying the physical memory
address in response 1o certain request qualifiers. The registers are:

User Base Register - UBR
Executive Base Register - EBR
Cache Clearer Address - CCA
Error Address - ERA

ange

The ERA register can only be read by the EBox. In addition, the EBox can also read the contents of
the page table to transform (map) the virtual address to the physical address and load the cache refill
RAM with the cache refill algorithm.

A status word is formed and stored by the MBox in the event that an error is discovered. The error
address is basically a status word that is formed and stored by the MBox when an error is sensed. In
the case of a parity, time-out, or an NXM error, the corresponding error flags are set and the error
address and associated status bits are loaded into the ERA register. The format of this word was
shown in Figure 3-35. This register is read by the EBox when an RDERA (BLKI, PI) instruction is
executed.

EBOX /3-56

314 CONTROL RAM ADDRESSING
Figure 3-4] contains an overview of the CR addressing logic, while Figure 3-47 contains & more
detailed version. The CR addressing logic consists of the following general parts:

Pushdown Stack, 4 words X 11 bits

Current Location register (CRA LOC)

CRAM dispatich field for holding the dispaich bits
Miscellaneous CR address gates

Diagnostic register

Dispatch decoding register 0-3 EN, 0-7 EN, 30-37 EN
CRAM loading logic

CRAM address oulput gates.

The type of function being performed on the CRA board determines the portions of the above-men-
tioned logic that are used. These functions are broadly classified as:

1. Loading into the CRAM dispatch

Diagnostic register
Control RAM dispatch field
Write logic

2. Decoding the Jump, Dispatch, and Cond (Skip) fields of a microinstruction

Mixers

Optionally the Stack
Optionally the A READ Logic
Dispatch decoding register

3. Forcing a special CR address during a page fault
CR address output gates.

In addition to these three classes, diagnostic logic is present on the CRA board for reading various
registers, mixers, and signals onto the EBus. This logic is described in a separate section on EBox
diagnostic logic.

3.4.1 Pushdown Stack

The pushdown stack, consists of eleven clocked shift registers configured as an 11-bit SILO. Two
control signals, CTL SPEC/CALL and CTL DISP/RET, control the stack. Figure 3-42 illustrates the
basic operation for a sequence of two subroutine calls followed by two subroutine returns. The
example presented on the figure is not a practical example of subroutine calling and return, but an
example of how the stack behaves in response to the call and return control signals. In practice, each
subroutine consists of a number of microinstructions. For convenience, additional instructions
have been omitted. In the example the first microinstruction () = A) asserts the first call. Note that
during the first microinstruction, the CR address is “A", which is the address of the next micro-
instruction. When CRA CLK occurs, three significant events occur.

|. The CR address “A" is clocked into the current address buffer (CRC LOC).

2. The second microinstruction at location A" is clocked into the CRAM register.

3. The decoding of this microinstruction begins and, in particular, enables the stack to push
CRA LOC on the next CRA CLOCK.

EBOX/3-57

h“ .: -m waom o

CON COND ADR 10 3>—— A D AL ¥ |

faTEENAL
=Dl CONDS

wingw —~ |— e

B9 0| CONTROLLED OF ENABLLD BY

Gise O-3 FORCE *?0?
: CHADE 00 DiS® O-F FORCE TTY
o - 3 3 e
i sl AN DISE 8.0 FORCE 1777
I - —
! A l CHATH
LOGIC L = i | P S i - on
' AREAD ‘-4 T W CORCE CPT RSLERTED tin '9‘“—-—
| 1 v aF0 - § O S N ASSCRTEO B Cu v 832
r - 1 3 1 DR aGE FhiLu 7
' ol A -)ih y == " —2ta Y -1 R & My DONE D DURMING MULTIPLY INSTR
| I P CHADE O &
| | T WinER | naegns 8 WS TeaT mav BE WODIF LD
= ot
= - - . -
l--___:_ DIAG FLG DISE EN O CRADR 010 s 1he togrtal"OR" ot
AIMHY JUME O 0wt g the ndated 1O CONTEOL HAM AND TC
T Vi o i i w0, MAM A0OSE 5§ AN
cEw Dia _] 008 00-0% E Lew .
TUNC 032 = F ikt
/ [>
TR
sAw
DISPATLw
“aw
MR BESEY CLEARS ST AR

! CoND | chW Cin o T ‘.;_;,!,,
fo— PORTION OF CAA
NESIEN ONTAN Me WESET C LR ~

WM Db FunG D%

Figure 3-41 CR Addressing Overview

EBOX/3-59

T e ool e

CHAW BLL

T
SRST CaLL | SEoTME CaLL | EiBNT wEc e sEcongeptoen| RESUME
i

- o r L g -
4 Fr

g i

: [(i

T . CTL . L —
P sert ca SPEC CaLL Dise RET Dise WY
-un:-[_ a | " c | et 1 A I
wa L 0C [& L] T i B I asr]
T T
SHR(T o I s . ' " I
G | a !
-
o
e ——
(W ape LYy
O LwAM
1 L]
caa LOC I
1
20] 3w
[o0
CTL SPEC [CTL 0/SF [CONTROL o el
calL Wt fuscrion | 8 1> AP
T woio o2
- % P~ r——
1]
CONTROL
. - o e C¥L SPEC CALL
e (2%]
CTL DisP RET
N

Figure 3-42 Stack Operation Example

EBOX/3-61

Now the CR address becomes “'B™ as specified by the second microinstruction. Normally, this is the
address of the first microinstruction in the subroutine. In the example, it contains a second call (J = B).

The next CRA CLOCK again enables the three events indicated above, with the difference being that Cow TOECE 11T

the CR address is now “B." CRA LOC contains “A." At the next CRA CLOCK, a second push

occurs; CRA LOC “B" is pushed onto the stack (Q0) while the previous contents of Q0, which is A" ki 950 el

are pushed one level deeper into QI as indicated on the figure. Also, on this clock, the address “C™ is ! D CHADS 00
clocked into CRA LOC. This time the microinstruction specifies the return function and the Jump

address is coded s0 as 10 modify the address that will be popped off the stack on the next CRA A 4ot ;D A
CLOCK. For example, if the return is to be to the microinstruction following the one that made the ‘ +

call and the top address on the stack is “B™ then the least significant bit of the “modifier,” which is et |

simply the Jump field of a returning microinstruction, is 1. Thus, the CR address is the logical OR of _ e D
the address popped off the stack, “B,” with the modifier 1, producing the return address B+1. Contin-

uing the example, CRA CLK pops “B" from the stack, clocks the previous CR address (modifier 1) " | ceam a03 —+ _
into CRA LOC, and returns to the microinstruction at B+1, which is a second return. Once again, the - .5 D‘ ENAR:T: 4

return is decoded and will enable the address A" now at the top of the stack to be popped off and ?
logically ORed with the modifier (once again +1) producing a CR address of A+1. This completes the N etuss = CaADE o4

example.
NOTE > . e ED CRADA 03 L': [eaw

In this example, A and B are assumed to be even NPUTS
numbers. o= . “aw S0k ‘!_D""'“' =

wAw DT - o
Lo — CRADS OF

g

: 3

34.2 Current Location Register (CRA LOC)
This register consists of 11 clocked D-type flip-flops. Its two main functions are:

I\

r
"

/

|I. To provide the current address for the pushdown stack
2. To provide the current address for diagnostic purposes.

3.43 Cootrol RAM Dispatch Field

The majority of the control storage for the microprogram is on the CRM board. However, the dis-
patch ficld, 1280 words of 5 bits, is contained on the CRA board. The Diagnostic register on the CRA
board is used to address the entire CRAM, and this includes the portion on the CRAM board as well.
Diagnostic functions are used to enable loading data placed on the EBus into the appropriate portion
of the CRAM. Refer to Figure 3-41. The Diagnostic register is selected as input to the CRADR 0-6
and 7-10 mixers following power-up. This is true because the entire CRAM register is reset to zero
during MR RESET, and this provides a dispatch field of zero. Using diagnostic functions 052 and 051,
the Diagnostic register may be loaded from the EBus. This address now selects a word in the CRAM
for loading or reading.

MADE D&

x - CRADE OF
o ey, DON .-

)

£\

»
»

\e=te /

]
"
~

Ve

3.44 Miscellancous CR Address Gates
Refer to Figure 3-43. Functionally, there are four sections of gating:

[-]
e -€

(I
5

CR Address 00-06
CR Address 07-10
CR Address 08-10
CR Address 10

I\

»
-
v

This grouping corresponds to the way in which portions of the CR address lines may be controlied. Figure 3-43 CRADR Gates
The CRAM, of course, sees only an address 0-10.

EBOX/3-62 EBOX/3-63

The fact that the CR address gates are OR gates should be kept in mind when trying to determine an
CR output address from a particular input condition or set of conditions. To enable a particular CR
address line only requires one of its input lines to be true. For example, consider the example presented
in Figure 3-44, which shows the mixers that are used to select conditions to modify CR address bits
08-10. In the example, the dispatch function is effective address modification (EA MOD), which ..
encoded in the dispatch field as 36;. Note that in the example the J field (CRAM J 08-10) is 4 in bits
08-10. The four possible combinations of ARX 13 and SH indexed allow any of the following:

1. No modification to CR ADR 09 and 10
2. Modification to only CRADR 10

3. Modification to only CRADR 09

4. Modification to both CRADR 09 and 10.

Because CRAM J 08 is a |, the respective output gate, CRADR 08, will be a | even though the open
pin on that mixer (input 6) is effectively a 0.

SADE DR

AEE 1Y e
ieaw
CRaDs 0%

Se (NDERED CRaw ot

J U U

CHADE W

D1SP 02-C4 |
CISPATCH & uNCTION
| | \ 'S €A WOD 1364

DI1SP IN 3037 el -

—r
CHAM 4 | C(maOw
o8- 1 o8-

CONTAOL Jo——————— INPUTS —
. — = - -

DISPEN] DISP | T
30-37 |02-0a | ARE "

= INDERED
i)

YES s] 0 | 9 | 4
vEs | | [=y =)
& o 1 8
st e i ——— 4
YES & ' | o - L
YES L] 1 |] 4 r

Figure 3-44 Example CRADR 08-10

EBOX/3-64

31.4.5 Special CR Address Modification Considerstions
Three special CR address modification considerations are:

1. CLK FORCE 1777
2. CRA MUL DONE
3. CON COND ADR 10.

3.4.5.1 CLK FORCE 1777 - This signal originates on the clock board and is used to force the output
gates CR address 01-10 to the address 1777,. This event occurs during a page fault. The page failure
microcode handler begins at CRAM location 1777. Thus, the EBox, as controlled by the clock, enters
a prearranged page fail sequence. Loading the first microinstruction from the page fault handier, CLK
FORCE 1777 forces the CRAM address lines, as indicated, and then issues a single CRM CLK, which
loads the microinstruction into the CRAM register. At this point, EBox's normal operation continues.
Note that CLK FORCE 1777 does not affect CR ADR 00, and thus may force the microcode to either
1777 or 3777. The first step of the page fault handler is duplicated in these two locations.

Note, also, that at the same time as the CLK board is forcing CLK FORCE 1777, the CTL board is
forcing CTL SPEC CALL in order to place the return address on the pushdown stack.

3.4.52 CON COND ADR 10 - This external signal is formed on the CON board and routed to CRA
2 as CON COND ADR 10. Refer to Figure 3-45, which shows the boards involved in decoding the
Cond and Dispatch fields. Nmthtuchbwdmtﬁumbhhﬁuﬁn;thasfmmum
decoded on that board. The signal CON COND ADR 10 is formed when Skip 60-67 or Skip 70-77 are
decoded. The various hardware conditions involved are indicated on the tables.

3.453 MUL DONE - During the Dispatch function, MUL, the state of the sign of FE, as well as
MQ34 and MQ35, are used to modify the CRAM address in the multiply loop. When the sign of FE
becomes false an exit is made from the multiply loop. This is done via CR ADR 08. Simultaneously,
MUL DONE (Figure 3-46) is generated to force address bits 09 and 10. This is done merely to save
rnicroco.:cd'wordt. Without this logic, MUL DISP would be an 8-way branch; with this logic, itisa 5-
way br: ;

346 AREAD Logic

Refer to Figure 3-47. The AREAD logic is shown on the lower right-hand side. It consists of a mixer
and various gating eclements. Basically, this logic is controlled by bits of the DRAM A field. i

ly, when the DRAM A field bits 00 and 01 are Os; then the AREAD logic AREAD 01-04 and AREAD
07-10 become equivalent (bit for bit) to DRAM JO1-04 and DRAM J07-10. When DRAM A00 or 01
is a 1, then AREAD 01-04 and 07-10 generate 40; +A., dispatching to location 42 through 47 in the
microcode.

The outputs of the AREAD logic (to be able to modify the CR address lines) must be selected in the
appropriate mixers. Once again referring to Figure 3-47, the mixers involved are those controlling
CRADR bits 00-06 and 07-10. These mixers will select the AREAD function when the dispatch field
is coded as “2."

EBOX/3-65

TO OTHER
BOARDS

oo
P BPY 1AL T UG TS
LA ocTaL
e ® Do CRA T W
TO OTHER AR AR x DpaTom S
BOARDS on
T T LAl octal vicnoe |
. Deat °
[oA 0 cur 7 A ']
liafmd T e MO
ancim 0 & no -
amrcim (I [t i : casy] CRADR T-10
B O COND AR 18 B N CONE ADK 30 o . i ran |
R PROGRAN) PR mLcn L - i T]
LamiL octaL tconn e ocTa oot o s i P
"ites - 4 " eclabh 2
- - | "
. - o OO0 rr [5 S T
i © o~ " o
e ot comz & oy
T i]
TO OTHER movoul - "
BOARDS [- "
A 1
Y " | e CRAR 0
s L 3 ! Lo S
- DewATCR L
o ¢ [T — T i S e
’ oYL 2 vy | oot e
——— I’ c“‘] - -
O, e T AL T LTRSS O P AL F e T " 1 L "
LABLL ocTaL o4coMD LA oAl o8 CODt B v /\ wna = mcoo |
¢ o n b CRADR O-6
- " aG » ’ o
i i ’ DisP. Q-7 i -
L] " LTy n 3 (. Ed -
ST = ®5 i o’i‘l"&’.:ams SA MO >
o ") i~ | oieooin ~ . CRa 2 st »
o — en o Gl ® *.
A FLAGE L1 comy - cont] i - COND O-7 O CE W e CRA
= . — -
cn ~ e e) P A R PO AN b
DAD] wam B Ya, T
» CON 2 - CON COND ADR 10 e o Ta D - ocTal oACODID
Wi " wani »n / wani - T L
T s w o [
- " wan ” 4 an
VA " wani ar I | e “ D4 CO08 £ AD + B) CCoTI
T i ann o o wons) o
oo anie - . AD Ry 8 - e
1
o S BCIAL § U TS0 - Sxip A - ame -
LA Ll £ COnCH 1 60-86T r0-17 aLaw - aD#E -
v = . nf b Ll
WA e e »n
- Dis SKIP SKIP
VA E e = DUCDOL D 30-37 40-47 50-57
oot o
S s n comt | | CONDS FROM
A o1 " OTHER BOARDS
- |
WA e - r "
mey ! JUMP :
s » —— wad
WA - |
AD vea »
"o CON 1
COND | COND 1
w0ar | 20-27 | 30-87 |
4 I
&0 63 66 67 ™
————————— ———————————
H
’Ill— OTHER FIELDS —= COND v DISP bo— OTHER FIELDS —.!:
| L P |
- CONTROL RAM REGISTER - 0wy

-

Figure 3-45 COND and Dispatch
Layout and Control

EBOX/3-67

sE wENY T0 C{ - FE SiGN —Q
CRa DSk 02 —Q A MuL DONE
CPa DiSP 03 —Q
DiSP Pk w-lm[.CRA D'sP 0% —(Q
5P EN 30 37 —C

e

Figure 3-46 MUL Done

3.4.7 CRA Dispatch Parity

Control RAM dispatch parity is computed using a 10160 parity circuit. This circuit (except during
periods when MR RESET is truc) sampies CRA DISP bits 00-04 and computes CRA DISP parity.
Normally the combined CRAM parity is 0odd, when correct. The clock board monitors the state of
CRAM parity, which inciudes the parity for the dispatch field. If the CLK CRAM PARITY CHECK
flag is set on the clock board (via diagnostic function 044), then any CRAM parity error stops sli
clocks. This will occur on the EBox clock following the CRAM parity error.

During the power up sequence MR RESET scts and remains set. This generates the signal DISP
RESET PARITY, which forces the state of the dispatch parity network to indicate odd parit
although the parity of the dispatch field (which now contains all zeros) is even. This, together with the
remainder of the control RAM register which is clear, yields odd parity. The effect is to make the
parity of the CRAM register appear to be odd following MR RESET. This logic assures that the
ciocks have no chance of stopping in the event that CLK CRAM PAR check is true when a CONO
instruction is issued after the EBox has been powered up and this instruction causes MR RESET of
similarly if a diagnostic MR RESET is issued.

EBOX/3-69

e
[1
D#_ D wase vy
L Ll e ADCEY OF -)
AT
i AD00 v
! DEAW B0 .o oeaw BOS grace”
e — !
LLTEE STAD S1GN o g %
IR wOE 0w HUCTL T L]
o RS = (WA
1= WL (& "0 09 LIS E AL » r
L
- v
| Tl ¥ e
) 1
sco |
| it DAP BT
T~
= I |
[_]._ 0188 208 OF ¢ e o PR
fhaw r
e DRAw JO% 0 .t
| |
: & MAD OF 30—
rEmaw o8
| 815 9P
ey - . DA A0
Cum -
Seaw
s
(] 1 . DEAw ALY
] = . = | COM WCOND 0709, = i
L i i SCD MICOND V0 0
L = = solandSES 1
- A e Tes neAW AOT
o I P — o
] DeAN &0
o A 2
= _.__T__.,.J._,__ = ..._,___.._‘_“_D_'._.!'... pRAw A0 -
! 5 ~ “ a., “aw SO ;@ RREEREE
€ tamLE WO - 2
LiAGNDST T DIAGNOSTIC p— " |
i ADDRT 85] ADDALss s De
3 I kb . S i aegag a3
L eaw 08 4
Chw DA i CRWDIs eus O AeEAD
Fus ot ot fust |00-08 ot &
o o i r :@— amgan oe
| ARt | | L semtr o0 96 cRaw J0e
D omama
I .- .5—‘1'-
COND 00~ 02 =4 b~ { r - . (-EE
e G e g e e =i 2
oteER cont ose | oise|ose | oise | oise LHEIN SAREN DSEEN —
oS o0 | ot | =2 | c3 | o ©0 QY | COOF | 3037 e
- et e —7 e — S
i i ¥ @ %) Lo [
! a0 } |
| 1 b 1.
| - i | - — 2 : -
! { g]
| . | i !- .—
—2
cuay r—¥
CoNTEO |
am
DISPATC CONTRO, WAW 1IN0 WORDY 80 T8 B.TS
Haw
Ok CHE
BOARD 128082 LEw

Figure 3-47 Control RAM Addressing

EBOX/3-71

APPENDIX A
UNDERSTANDING THE MICROCODE

The control portion of the EBox comprises the DRAM and the CRAM. The DRAM has storage for
512 decimal words, one for each KL instruction. During instruction execution, the DRAM word
provides information about the type of memory references by the executing instruction. It also provid-
es an index into the main control programs contained in the CRAM.

The CRAM provides storage for 1280 microinstruction words that are structured into a complicated
control program called the “microcode.” This section defines and explains the microcode. Although
many figures of sample listings from the microcode listing are used throughout the discussion, an
assumption is made that the reader has an up-to-date copy of the microcode listing (cither hard copy
or microfiche). The examples shown here refer 1o specific sections of the listing; the reader may wish to
follow the examples through the actual listing while reading this section.

The discussion begins by introducing the microcode and describing field, value, label, and micro-
instruction definitions. This leads into defining macros, pseduo-operators, and location control. Then,
two instructions (MOVE and ADD) are illustrated, leading the reader through the microcode listing.
Figures A-17 through A-23 (located at the end of this appendix) complement the discussion and define
all the CRAM and DRAM fields. Refer to these figures whenever necessary.

The microcode is presented in groups, with each group (designated a through g) representing four octal
digits as they appear in the listing. Each group represents one or more fields. For example, the listing
for microcode address 0724 is shown in Figure A-1.

- L] L L] - ' . - GROUP

uorra D004 o 4800 0000 o208 o0 o400
4 AD| A AR FM woat HMEW COMND ¢ - = FIILD
-] LUGHC wic
Al ®

CHAM waatasn oo whech Tha word o oeded

10 2821

Figure A-1 Sample Microcode Listing

EBOX/A-1

Each of the group's coding is defined in the respective figures listed below:

Group

L B X - I

Figure

A-17 <
A-18 !
A-19

A-20

A-21

A-22

A-23-25

The DRAM contains storage for each instruction. During instruction execution, the DRAM word
(Figure A-4) provides information about the type of memory references required by the executing
instruction and also provides an index into the main control program locsted in the CRAM.

Conditional Assembly Variable Definitions
The Conditional Assembly variables observed in the microcode listing are listed and defined below.
(The definitions are presented for the variable set to |. The values shown are the normal settings.)

Variable
TRACKS = 0

OPCNT =0

OPTIME = 0

FPLONG = |

MULTI =0

KLPAGE = 0

MODEL.B =0

XADDR =0

IMULIOPT = 0

*This feature is not supported.

Definition

Enables storing the PC after every instruction and creates
DATAL/O PI, to read/setup the PC Buffer address.®

Enables code to build a histogram in core to count the usage of
each op code in both USER and EXEC mode.®

Enables code to accumulste time spent by each op code.®
Enables KA style double p.ecision floating-point instructions
{c.g.. FADL, FSBL). This feature is not supported in systems
running the TOPS-20 monitor.

If operating a multiprocessor system, this suppresses cache on
unpaged relerences; paged references are left up to EXEC.*

Enables the KL-Paging mode, for systems running the TOPS-20
monitor.

Indicates extended addressing hardware, primarily a 2K
CRAM, rather than a 1280 word CRAM.*

Enables extended addressing microcode. (Cannot do extended
addressing without Model B; Cannot have extended addressing
without KL page).*

Enables optimization of IMULI to take only nine multiply
steps.

EBOX/A-2

Variable Definition

SXCT = | Enables special XCT instruction, which allows disgnostics to
generate large addresses. (Do not need SXCT with extended
addressing. Cannot do it in Model B hardware.)

EXTEND = |} Enables the extended instruction set.

DBL.INT = 1 Enables double integer instructions.

ADIBP = 1} Enables adjust byte pointer.

RPW = | Enables Read-Pause-Write cycles for non-cached references by
some instructions.

WRTST =0 Enables Write-Test cycles at AREAD time for instructions such
as MOVEM and SETZM.*

BACK.BLT = 0 Enables BLT to decrement addresses on each step if E < RH

{AC): breaks many programs.®

SET/INSTR STAT = 0 Enable instruction statistics code.®

Field Definitions

The actual (physical) CRAM bits are derived from the CRAM Board logic. However, no logical
relationship exists between the physical bits and the respective microword bit names. Figures A-2 and
A-3 are located at the end of the introductory discussion, just before the two examples. Figure A-2
shows how the physical CRAM bits are derived. Figure A-3 shows the physical bits and the corre-
sponding microword bit position (and name). The microcode listing is ordered with respect to the
microword bit positions, not the actual CRAM order.

Microcode field definitions have the form SYMBOL/ = J, K, L, M. The J parameter is only mean-
ingful when “D" is specified as the default mechanism. The K parameter defines the field size in the
number of bits (in decimal). The L meter defines the field position (in decimal) as the bit number
of the right-most bit of the field; bits are numbered from 0 on the left. Note that the position of bits in
the microcode word (Figure A-3) bears no relation to the ordering of bits in the hardware microword,
where ficlds are often broken up and scattered. The M parameter is optional; it sclects & defsult
mechanism for the field. The legal values of this parameter are the characters D, T, P, or +, where:

D Indicates that J is the default value of the field if no explicit value is specified.

T Is used on the time ficld to specify that the value of the ficid depends on the time
parameters selected for other fieids. Within the microcode, T1 parameters are used to
specify functions that depend on the sdder setup time; T2 parameters are used for
ﬁ:’ncﬁcm that require additional time for correct selection of the neat microinstruction
address.

P Is used on the parity field to specify that the value of the field should default, such that
parity of the entire word is odd. If this option is sclected on a field where the size (K) is

zero, the microassembler attempts to find a bit somewhere in the word for which no
value is cither specified or defaulted.

*This feature is not supported.

EBOX/A-3

ROW

O

®

O]

©

®

©

®

®

1 + 0= SCADA DIS 20+ ADSEL B 1= SCAD i 71 - AD SEL 141 2=5CAD (1 27~ ADSEL D 3=SCAD 1) 3= ADSEL IV
2 -4=FELOAD 24 = AD BOOLE 6= JHIELD DY % = ADA DiS ©=JFELD 1) 26 - ADA BEL (31 =MD 27 = ADA BEL (V)
3 - 8= JFIELD (B 78 - ADBSEL I 9= JFIELD W) 9 - CRAM «iDi 10 = FHLD 18 30 = CRAM =1 10 = JFIELD 18 I = CRAM =121
4 =12 = JFIELD M - ADB SEL 111 13+ JFIELD 33« CRAM =3 4= FIELD W 34« CRAM «id) 15 = JFIELD 1108 36« CRAM = (81
§ - 16 = M0 SIL 36 - ARNMEEL A 17 = SEKIPICOND 0 37 = CRAM sihi 18 = LEWPCOND (1) M- CRAM =iT) T - SKIPCOND (21 - CRAM = I8
SHIFT AEG SHIFT REG SHIFT REG
10141 w014 10141
en (3] e
—] SHFTOIN @ — TN — BFTON @ —
oo0— 00 | ool—c (ORI e Q2iM
CHM OUT (N+00m — DO CRM OUT iN=0114 —{ D0 CRM OUT N+ —{ D0 ChM OUT (N+02H —
o e 200M | T s (LT YY) e
CRM OUT (N+201 — D1 CRM OUT iNs 21 — D1 CRM OUT =2 W —{ D1 CRM OUT N+ 220 —
arl—c e 401 azb—¢ eeatine o b—¢ ez
CAM OUT (N-401 — D7 @ CRM OUT N a1 [*] CAM OUT IN-a3iH —{ DI @ CRM OUT (Mo dTin
53 }— cRAM in+s0m | CRAM (hed 1M T 00— CRAM (N8 |
CRM OUT N80 — D3 -3} CRAM OUT (N+82m —{ 03
= ssrTaN — SHIT3N —{ SMFTIIN — TN
0= LOAD O+ L0AD 0=L0AD 0= LOAD
CAMSEL 2H —] 1 =0ie0 1 DI 1= 0IND 1= 000
CRMSEL 1 —] 7= 2Me3 233 EEE TS] 2= 3N
3= HOLD 3 =m0 3= HOLD 3=HOLD
CRMCLE AW —JCLE CAMCLERN —CLn CRMCLEC M —JCLE CRMCLE DH-——{CLE
= ® ® ®
1 40« SCADA SIL (7 0= SCADS SLL 1) 41« SCADA SIL (1) 42« SCADS SEL (D 62 - SOM SEL N 43 = MARK
2 eas VMASIL D 4= ARMSIL D - ARM BLL W) a8 - S ARMM (7] 8 - ARMSEL (1) A7 = BAARMS (1)
3 - 48 = MEM 101 o - ARKMSEL (D - 80 - MEM 131 70 - ARXMSEL (1) 61 = Mg (3
4 - 87+ BALDAD 77 = vMASIL I 5 = SEIPCOND 13 54 - BAX LOAD Ta- ADCAY 56 = SKIPTOND (a1
& 56 = FM ADA 4] e 100 7 = PN ADR () 8 - FMOADR (1) LU RS 1] 58 = SKIP/COND (81
NOTE

ROW 1 - got 82 N-0
BOW]« wet 50 N4
ROw 3 = shot 44 =8
FOwW & = ot 47 W=17
ROwW & = siot 40 W=18

Figure A-2 CRAM

Board Logic Physical Bit

Position Derivation

EBOX/A-5

MICHD WORD
POSITIONS 00 1%

CHAM Py Y SILAL
WTS 001

WO WORD
FOSITIONS Ve 20

CHAM PrHYSICAL
MTL NN

WC RO WORD
POGI TIONS 37 47

CRAM Pyy SICAL
BITS 3747

MICRO WORD
ORI TIO NS 48 &3

CHRAM PHYSICAL
WS 486D

MICRO WORD
PO TIONS G4 TR

CRAM PHYSICAL
TS A

ML RO WORD
PO TIDNS 90 B3

CRAMPHYSICAL

BITS 9

Figure A-1

aAD AD

Wu DISPATCH ADR 140 4101 i SEe e
l , A -] BOOLE l sEL4
1]
["6"1” o mlulalm o7 ulu—lmln 12| ulﬂ
T T 'I T
SCADA SCAD wo. -
i :':m ? ?:w LOAD DISPATCH ADR LIO J10:
a0 Apa a0A A08 ARm Anm ARXM B
S1L 2 AD DIS ADA uu ' m.: aon snd Anm u; umuunu nulumo-ul
!_ s6L I sn: n.n uu' uu uu
l
I'-I"I'-l--l GONDE LTT-T-TT)
1
o
L cauu. cmbu”m “” hU mt*"n‘uum uu -ﬂ "
o 7 st ois
o ™ SCAD CAD SCADA SCADS o
‘“ ™M LpratM o SCAD 1 ﬂ:m‘“;ﬁlm WUy WCADBg,, , seLz 't
Anlla anll 3' un l w7 l L1 l LOAD
! l 1
[l l*l'l'l"l'l l'l [Flajaf]ele)]
| an l -
ARXM r !:AM Itlﬂ
n.l 'l - e . -l SIL 7 SCADASEL 7 MARE gy 7 ARM SIL 7 geammms
sl L e
SHARMM Vs s e cono CoND
N SHARMM gy g stz ™ 0 00 WM g MM, CONO , COND
“” 0 un o1 o o 1 3
] L 4§ I] e b o 1 ;
I"-""qlsor'ululululu]ulvln w | w|n|lelo
|] l I Ll T —[1 1
M uuu n nx ™ ™ SCADS o
G0 MM gy MIM up COND 10D CONOagm e "™ aDR 1 COMO gy MU g 3 NU
o el 3 a ADR 2 s
OO (-1t i
a m-u pisr mﬂ“" ﬂ::“" uu mn -| .g
a vu'.: mn

ﬂ J-l&-l l—l M"LuJ"L"J L~l L~»1

L] I ‘!n I l'l“ I ll Ll

stez2 VY s LAY skl 7 LAY st ~U [T NU CRY ‘U “I.! “IJ

- ‘, ~u

BBE o

1 I | I
~ < DI oisr)
NU ISP gegcy DI gepcy
PEco wicy PECa
w0 D

Actual CRAM Physical Bit Position to Microword Bit Position Correlation

EBO0X/A-7

+ Is used on the jump address field to specify that the default jump address is the address
of the next instruction assembled (not, in general, the current location of +1).

In general, a field corresponds to the set of bits that provides select inputs for mixers or
- decoders, or controls for ALUs. For example:

1. AR/ = 0,3, 26, D: the microcode field that controls the AR mixer (and, therefore, the data
to be loaded into AR on each EBox clock) is three bits wide. The right-most bit is shown in
the listing as bit 26 of the microinstruction. If no value is specifically requested for the field.
the microassembler ensures that the field is zero.

2. ADy/ =0, 6, 17; the field that contains the AD is six bits wide, ending on bit 17. The fourth
parameter of the ficld is omitted, so that the ficld is available to the microassembler (if no
value is explicitly called out for the field) for modification to ensure odd parity in the entire
word.

Value Definitions
Following any field definition, symbols may be created in that field to correspond to values of the field.
The form is

SYMBOL = N, T1, T2

where:
N {Octal) is the value of SYMBOL when used in the field:
T1 and Are optional and specify parameters in the time field calcultation for microinstructions

T2 in which this field/SYMBOL is used. The microassembler computes the sums of all the
T1s and T2s specified for field/SYMBOL specifications in a word and uses the max-
imum value of the two sums as the defaulit value for the ficld whose default mechanism
is T. For example:

AD/ =0,6,17
XOR = 31
A+B=¢61

; field definition is which of the following
: symbols exist.

Here, the symbols “XOR"™ and “A + B™ are defined for the AD ficld. To the assem-
bler, therefore, writing “AD/XOR"™ means *place the value 31 into the &-bit ficld
ending on bit 17 of the microword.™ The symbols are chosen for mnemonic signifi-
cance. Therefore, reading the microcode would interpret “AD/XOR" as “the output
of AD shall be the exclusive OR of its A and B inputs.” Similarly, “AD/A + B" is
interpreted as “AD produces the sum of A and B.” The second parameter in the defini-
tion of A + B is a control to the microassembler’s time-ficld caiculation, which telis the
assembler that this operation takes longer than the basic cycle and, therefore, that the

time field should be increased.

AR/ =0,3,26 D :field definition for following symbols
AR =0

AD =2

Here, the symbols “AR" and “AD" are defined for the ficld named “AR.” which
controls the AR mixer. Because only the default case is used, the AR does not change
unless a specific request to do so is made. Therefore, the field definition specifies zero
as the default vslue of the field. If the AR is loaded from the AD output. AR/AD is
written to set the mixer selects 1o pass the AD output into the AR.

EBOX/A-8

Label Definitions

A microinstruction may be labeled by a symbo! followed by a colon preceding the microinstruction
definition. The address of the microinstruction becomes the value of the symbol in the feld titled *J."
For example:

TOP: J/TOP

This is a microinstruction whose J field (Jump Address) contains the value “TOP.™ It also defines the
symbol “TOP" to be the address of itself. Therefore, if executed by the microprocessor, the micro-
instruction would loop on itself.

Comments
A semicolon anywhere on a line causes the remainder of the line to be ignored by the assembler; it is
purely information to the reader. For example:

AD/0.6,17 :field definition in which following symbols
sexist.

Only AD.0, 6. 17 is relevant 10 the assembler; that data following the semicolon is useful information
to the reader.

Microinstruction Definition

A word of microcode is defined by specifying a ficld name, followed by a slash (/), followed by a value.
The value may be a symbol defined for that field, an octal digit string, or a decimal digit string
{distinguished by the fact that it contains 8" and/or 9™ and/or is terminated by a period). Several
ficlds may be specified in one microinstruction, by separating field/value specifications with commas.
For example:

ADB/BR, ADA/AR, AD/A + B, AR/AD

In this example, the field named “ADB" is given the value named “BR™ {(to cause the mixer on the B
side of AD to sclect BR); field “ADA™ has the value “AR;” field has the value “A + B, and field
“AR" has the value “AD."

Coatisustios

The definition of a microinstruction may be continued onto two or more lines by breaking the defini-
tion after any comma. That is, if the last nonblank, noncomment character on a line is a comma, the
instruction specification is continued on the following line. For example:

ADB/BR,ADA/AR,
AD/A + B,AR/AD

iselect AR and BR as AD inputs
:take the sum into AR

By convention, continuation lines are indented on extrs tab.

Macros .

A macro is a symbol, the value of which is one or more field/value specifications and/or macros. A
macro definition is a line containing the macro name followed by a quoted string that is the value of
the macro. For example:

AR AR + BR “ADB/BR, ADA/AR, AD/A + B, AR/AF"

The appearance of a macro in a microinstruction definition is equivalent to the appesrance of its value.

EBOX:A-9

Psewdo-Operators
The microassembler contains ten pscudo-operators:

-2 _DCODE and .UCODE Sciect the RAM into which subsequent microcode is
loaded and, therefore, the field definitions and macros
that are meaningful in subsequent microcode.

3 .TITLE Defines a string of text to appear in the page header.
4 .TOC Defines an entry for the Table of Contents at the
beginning.

5. SET Defines the value of a conditional assembly parameter.

6. .CHANGE Redefines a conditional assembly parameter.

7. .DEFAULT Assigns a value to an undefined value.

8. AF Enables assembly if the value of the parameter is not
zero.

9. IFNOT Enables assembly if the parameter value is zero.

10. .ENDIF Re-enables assembly if suppressed by the parameter
named.

Location Control

A microinstruction labeled with a number is assigned to that address. The character **=" at the begin-
ning of a line, followed by a string of Os, Is, and/or *s, specifies a constraint on the address of the
following microinstructions. The number of characters in the constraint string (excluding the “="') is
the number of low-order bits contained in the address. The microassembler attempts to find an unused
Jocation whose address has zero bits in the positions corresponding to Os in the constraint string and
one bits where the constraint has Is. Asterisks denote “‘don’t care™ bit positions.

If any zeros are in the constraint string, the constraint implies a block of (2 * ® N) microwords, where
N is the number of 0s in the string. Ali locations in the block have 1s in the address bits corresponding
to Is in the string. Bit positions denoted by °s are the same in all block locations.

In such a constraint block, the default address progression is counting in the “0" positions of the
constraint string, but a new constraint string occurring within a block may force skipping over some
locations of the block. Within a block, a new constraint string does not change the pattern of default
address progression, it merely advances the location counter over those locations. The microassembler
fills them in later.

A NULL constraint string (** =" followed by anything except 0, 1, or ®) serves to terminate a constraint
block. For example:

a. =0

This specifies that the low-order address bit must be zero. The microassembler finds an even-
odd pair of locations and places the next two microinstructions into them.

EBOX/A-10

b, =11

This specifies that the two low-order bits of the address must both be ones. Because there are
no zeros in this constraint, the assembier finds only one location meeting this constraint.

<. = (ooeee

This specifies an address in which the 40, bit is zero. Due to the implementation of this
feature in the assembler, the default address progression applies only to the low-order five
bits. Therefore. this constraint finds one word in which the 40, bit is 0 and does not attempt
to find onc where that bitisa |.

Microcode Examples

The following paragraphs lead the reader through the microcode, while defining two instructions:
MOVE and ADD. The requirements that the microcode is loaded and running (i.c., in the HALT
loop) arc assumed. A dispatch (test for an interrupt) occurs during a HALT loop. Once an interrupt is
present, the microcode leaves the HALT loop and goes to the first microinstruction.

MOVE Instrection

Refer to Figure A-4. The initiat dispatch is a NICOND Dispatch. It is a decision starting at microcode
address 140 that is used to decide which condition (e.g., TRAP, NICOND) is satisfied. Looking up
Next Instruction Dispatch in the microcode listing Tabie of Content refers the reader to line 2549 in
the listing. The decision begins at line 2549. Notice that the actual decisions and respective implemen-
tations begin at microcode sddress 140 (NEXT), and assuming 8 NICOND Dispatch is present, the
listing refers the reader to NEXT + 12 (microcode address 152).

The NICOND Dispatch is the normal case; the instruction is in the ARX and begins execution.
Location NEXT + 12 leads (jump to the correct decision) the reader to microcode address 152
{XCTGO), line 2606. Notice in the listing (and Figure A-5): /’

At XCTGO, cn line 2606, the comments state “save the instruction, sign extend Y and calculate the
effective address (EA).” The macros define all the things that happen here. Initially, one should con-
sider where to go next. That information is contained in:

§. The J-field, which typically contains the “suggested™ next address. In this example, it is 160,
Whether that is used or not depends on item 2.

2. The Dispatch {or SPEC) field.

The SPEC field follows the *™* column in the microcode listing (Figure A-22). Specifically, the ficld
observes the last two digits of the " column. In this example, those digits are **36.” Going to Figure
A-22, notice that a decoded 36 in the SPEC ficld is an EA MODE Dispatch.

An EA calculation is called for, which indicates that under certain conditions the J-field (160) may not
be the actual next address. These conditions are Indexing (bits 14-17 of the instruction), Indirection
(bit 13), both conditions, or neither condition. In this case, EA MODE dispatch looks at those bits of
information in the instruction and then ORs them with 160 (the J-field). Because this simple MOVE
instruction uses neither indexing nor indirection, go directly to 160. This appears on line 2647 (if you
cannot easily locate this, go to the index at the rear of the listing, ook up address 160 and find that line
2647 is where microcode address 160 appears). Refer to Figure A-6.

EBOX/A-11

SIART

THALT LOO™

Owcrwan Muts1s

. 193
140 INXTY 42 .4 mw 58
AaC

-y w] M ;
meve | [omon] [] [ome][] |;~:i~:c, L] | Sones

te0 1%t e 3

o] fom] =] (=]

102004

Figure A-4 MOVE Instruction Flow Diagram

EBOX/A-12

Codwe NU TGO BRY ARN AR ARNSE T ACCOUNT BN SAVE INSTR S ENTEND Y,
LTI T TR ERTY SN TR 3 L BRI NRE] TE LN ¥ T NREAMODDISE FCOMPEA COCRICULATE LA

Figure A-5 Microcode Address 152

Foafesiipmar O} CNRNEORIOG SO ranet akke 13T COMPE A GIEN AR A READ 1ox AL

Figure A-6 Microcode Address 160

Again looking at the " column, observe the SPEC field is “*02." Checking Figure A-22, SPEC code
02 indicates doing an A READ Dispatch by stating DRAM A RD. Go to the microcode listing index
for DRAM words (it appears just bxfore the microcode address index). The MOVE instruction is op
code 200. Find 200 and notice it refers you to line 2782. Refer to Figure A-7.

EE Tt TIRANY 2R%14) 3 2w ocime RPEOAMC NN BASI Mg

Figure A-7 DRAM Word 200

This is the DRAM word for the basic MOVE instruction. The A-field is a **$™ (Figure A-26). This 5"
is ORed with 40 (a constant used whenever an A RD DISPATCH is performed) and the J-field (0000)
of microinstruction 160. This results in a *45." Turning again to the index, look up microcode address
45. The index indicates line 2711; see Figure A-8.

SUIBR ARSINNEER TFEICH GEY OPERASND PREFETCH.
[RESTONTTY VIRREIRRE PURRYY | TS RSVING 3 1101 1) S S HIME 31 IR ISP J O ASTARTENRCUTE

Figure A-8 Microcode Address 45

This part of the microcode states: get the operand (from the MBox), begin & prefetch of the next
instruction, and begin instruction execution. Notice also in the macros, that an IR Dispatch is called.
Looking now at the SPEC field, it is “01;” looking this up in Figure A-22 states DRAM J DIS-
PATCH. A DRAM J DISPATCH dictates calculating where to go by taking only the J-ficld of the
DRAM word as the address. In the case of the simple MOVE instruction (look back st Figure A-T),
notice the A-field is **S,” the B-field is “5,” and the J-field is *100.”

Looking up microcode address 100 in the index leads the reader to line 2819 (Figure A-9).

L orae ol "o okl (RNELOUODAKRIS ORI ooy S>x v MOME BT MORE AS IS § ROM AR

Figure A-9 Microcode Address 100

EBOX/A-13

The SPEC field is 33 and, again referring to Figure A-22, now a DRAM Bis called. DRAM Bis the sTant
actual “store the operand.” The MOVE began by fetching the operand and placing it in the AR.
Finally. it is placed in a particular AC. The DRAM B Dispatch takes the B-field of the DRAM word
(5) and ORs it with the J-field (170) of the current microinstruction (address 100). This results in: 170 V
§ = 175. The index takes the reader to line 2749; sce Figure A-10. pud

L0078 (123007 V0000403 K 10060000 2749 STAC ACH_ARSNATINSTR NORMAL ANDIMMEDIAT Mol s

Figure A-10 Microcode Address 175

ALY LOOM =

Observing the SPEC field indicates *06;™ t‘hil is a NICOND Dispatch. Also, the J-field is 140, taking
the reader to the original decision matrix. Again, all the possibilities are considered when the next
instruction arrives and the process continues.

Not all fields were discussed here, only the major ficlds. All ficlds are illustrated and defined in Figures
A-17 through A-26. It is left to the reader to check the unmentioned code ficlds with the respective S
defining figures. Do Mot

ADD Instruction ‘ l 10 "

Many of the assumptions used in the MOVE example are used again here (refer to Figure A-11). fd 142 184 hiad m 2 w i

Assume that the last instruction was 8 NICOND Dispatch; go through the decision matrix to micro- F cve] l mnors l weTen] ["_ﬂ Tnach J r oo } I T~y l i m:mJ
' v '

code address 152, Assume Indexing this time, this leads the reader to sddress 161. Locate address 161 o
on line 2648 of the listing (sce also Figure A-12). P! +

Indexing is handled at this time. The AR is added to the contents of the XR (Index register) to generate comwra
the EA. Also. an A READ Dispatch is called out. The A READ leads to the next microcode instruc- l l l 1
tion, which is where the operand is located. Assume AC3 is being used (for example) and its content is o w w "

*50;" assume the Y-field contains *100.” This results in EA = 150.

Again, because of a COMP EA (EA calculation), a “40" is forced into the J-field by the hardware
during the A READ Dispatch. Figure A-13 shows the DRAM word for the ADD (270) instruction. —c———
Use the DRAM index to locate line 4091.

INELTHERT HNDIRECT) 0TI I

T

A READ
DIBPATCN

The A-field of the DRAM word is **5.” This, ORed with the forced “40,” results in *45.” This is
microcode address 45, just as in the MOVE example. Locate address 45 on line 2712; this is where the
operands are fetched (see Figure A-14).

A “01" is in the *f" column of the SPEC field, s DRAM J Dispatch. Looking back at Figure A-13,
notice that the J-field of the DRAM word is **504."" Go to the microcode address index and locate
address 504 at line 4098 (see Figure A-15).

This is where the ADD takes place. The macros state “°A plus B (the two operands) into the AD.” The
SPEC field (Figure A-13) is a *5.” The J-field of the current microinstruction is 170. These two are vy
ORed, resulting in 175. Using the index again, locate address 175 on line 2749 (see Figure A-16).

The operand is stored in ACO and the J-field leads the reader back to location 140 again, the NICOND
Dispatch. The microcode is now ready for the next instruction.

10 78N

Figure A-11 ADD Instruction Flow Diagram

EBOX/A-14 EBOX/A-15

00D 0 TR D N 0 S O e T ML A N AR AR A 1w AL AD ADA ADNA | ADEB/AD KB
LRVTER R T AT ST AT R T Y Ul L CRETT LTI LY CAN AR « \H OINDENT DY ARE ALY Dos AL ESTESS AR TROLSADF ol MLICTRAD A MLECTIAL-S
“'""":"“] " " " " " " " o n1n n
Figure A-12 Microcode Address 160, 161 e U
on A& NCRY o A« ANDCH LLRLE 0 AN O TN T S Notel
0 aA*2 02 AsAND o N 1 ARX ' R
DUz TS U w0 ORI M AL o AR w4 ORen LI - 1 7 w0 7 B8R
" AB E 1 AR
Ty 0% OR s ANDCH
Figure A- w 0 A o1 AsOR
g A-13 DRAM Word 270 Ay AN d 47 AMD - DACH
“w Aime 3 A-ORCE
S0 ORCE-)
. s AS 1% ANDCE
TTULOBMOAR DINNPER DR TON Gl 1ol RAND PRETE 100 1 acava W AND 1 HOTE
LGOS (00N 3 23400 00 5 00N 02 26 0001 G300 2712 TIME 61 1 R IMSE 14 ASTARTEINICL 1 ? sirca LA phesgrst
n onc
5 4 22 omca
Figure A-14 Microcode Address 45 n "
74 AmoC

s“rce
fov

(RTEE R LT T TARTT EURT VRS N d0rx AIMD AR ARTACL ALY ASEH AR s A

Figure A-15 Microcode Address 504

ANDCA
=OW

o
ANDCH
AND

FHEEEYNYYY
L]

UODTE 0030 0001 O 0 F T A P73 STAC MU AR SN INSTR NORMAL AN IMMEI AT Mol s

Figure A-16 Microcode Address 175) DI
Figure A-18 Microword “b" Field

e
—] ' I ‘
JFIELD an ARx .a sax L] M ADR
MICRO CODE BASE ADDRESS
MICRO WORD
T N . : . . \ » , . , i “ e » » n n »n » = n n n » =
POSITION
0 AR 0 amx ° ° ™ @ ACOUMmS D
0 ARMM I BFLC 32 1 CACME an X s 1 ACY (ACO + 1)
NOTES 7 ap 7 XA ARX 4N
1 CACHI 1 g 3 VRAA (D B
1 The JFIELD delimes the hem sddrem 7 AD a ' 4 ACT (ACO+D
10 ik (e D T) taus % ADX*Z AR AR - & AC3 (ACD+ 3
Dy L & ADx § ACAIACO = &1 AC == *
& AD*Z 7 ADR* T -
Figure A-17 Microword “a" Field ey
re A- Icro ? AD*n
" stChiD " KLOPY
Skt
o w0t
" MOt
» COND REG
e
0 MOSEL
1 MAOM SEL

Figure A-19 Microword *c" Field

EBOX A-16 EBOX /A-17

le 1
| SCAD SCADA * scADS l I sc "
» - » » © “ “] “ - ™ o - = .- i
~NU —]
coND .
e o e o sc :c 'r: CcALL Pic
T L ' AROS(NOTE 1 1 AREN
2 A8 2 2 mepaam] - ® “ “© - - - " - ™ »n n
3 A 3 3]] OSITION "G
A scAD | scap
5 AR NON SKIP FLWC THONS
& on e m Umc el DISPATCHES
7 AND 10 ° TCALL
" o DiAG
e] 1 1 DRAM
. ¥ 1 DRAM A RD
" 3 3 mETuAm
) . & PGrAL
5 . s
P s & wicOND
' ETT
w o W
" n ow
:: 5 s
n .
NOTES
1 Hyte Powie Poston F ek :: : wYss
2 (AR DV OB KOR | ARDD "w » :‘:.:nl
1 Seg e etended wat 00 w ” LATYN
. ali »
n
’ ¥ " L NON DISPA TCWES.
Figure A-20 Microword “'d" Field 3
7 1w wor
: 1 iNsCAY IS
s 17 Moy
- < 13 scMaALT
1. cLmERD
| | | % e
AR VA X VA TiME AL MOR Y n o XCRY ARD
s ‘ » V7 GINCAY 8
MICRO WORD / ’ 4 20 SEC HOLD STACK UPDATE®
ik :u - w :lu - s ™ " “ » . - <! 71 CALL-SPARE*
rosI I = 27 ARL D
”r LR IR T o1 il
- o VMA o 27 LIDPA K10 " RLOPY M FLAGCTL
1R] P nOLONG EN s PCSICO IS SAVE FLAGS
‘: ::naanu 2 ooy S & . i :::]m 87 —LOCAL AC ADDRLES M SPMEMCYCLE
2 aRx e 2 87 7 mEwarT NS WAIT s VMASICO 7 ADLONG
1 AR SWAP 1 wco RESTORE VA NS RSOV
4 ARLAD A RLAD -
ARMM s awRmiTE WAL V0 Jeaz
FEY 1 . "
o e o Figure A-22 Microword "I Field
mTH 1. SIGN 10 AIND AD FuNC
anLwo] 2 scapixe 11 BYTEIND EACALC
3 SCAD PO 17 LOAD AR LOAD AR
13 LOADARX LOAD ARX
14 ADFUNC an
0 vMax 15 EYTEREAD RPW
- Y PeeL W Wit wRITE
KLIDPY | 2 PREVSIC A s L
a ADYZ VT
M KLIDPV YRaea)
Figure A-21 Microword “c" Field

EBOX /A-I%

EBOX/A-19

MICAD WORD
POSITION

ENABLE REQUIRED

-

MAGK NusBER FITLD

RS |

e
ENABLE REQUIRED MAGIC NUMBER FIELD
<1 s gy i) ” » ” " ”» ™~ ' -)
Nu NU
l USED 1O ADDRESS FAST MEMOR Y
e — — — e — —
AC O® I e
1 ELIOPY SAC -
b - I
BOR
1 caL)
ARDR
1" w0
LR ani
=1k NOT
®LIDFY ~o [L L] l ARL l AR
ARL 1ND 1 ARR 11 ARR - MO 0 amL
7 ARL 13 AR MO 0 ARMM s SPC
3 AR W ARN MO 1 CACHE
4 ARK W ARL-ARX-MO| 2 AD
& ARL - ARX 3 euUs
7 AR AR .
W MO 17 AR-aAxsMO | s ap2
- ADX
r AD" %
ARCTL P TET]
LoAD | LoAD | LoaD -
ARDS |ARN 7| ARR AR P
COND/REG CTL 3 F
2 AR 17 LOAD
- AR DB LOAD
& ARL LOAD
MOCTL
CONDREG CTL - —
MaMmo 1 w07
- 7 wos
3 L)
AND L] L
COND/MEG CTL - ”
7 L1
OO SEL : w
PCFLAGE
ARD TRAPY | TAAP? | Exe | NO
'I’“"[0 leoiov mv] us DIvIDL
=r - .
20 TRAPY 424 DIV CHE
40 TRAPZ &0 FLov
W00 FPD 624 FOV CHE
420 ARDV 0 Fxu
10 J4a)

Figure A-23 Microword “g" Ficld
(Magic Numbers)
(Sheet | of 3)

EBOX /A-20

Figure A-23 Microword “g" Field
(Magic Numbers)
(Sheet 2 of 3)

EBOX 'A-2]

” n ” " "™ ” " » ™ " %] ™
wu | wu
FLAG CTL
SECHLGLTL 20 SETFLAGS %07 Drsass
2 PORTAL o e
420 WETA FLAGS 622 #CLeLD
w4z wALT
SPEC INSTH
4 INSTR ABORT 100 M PC)
COND BPEC INET 10 NTRPT N 200 WERNEL CYCLE
W CONT 307 HALTED
o exct 10 CONS KCT
g 0 SxCT 704 SEY P CYOLE
FLTes
R TON o cOwe 400 LMD
01 sk 507 e
23 Tesy %01 scL
facaLc
1 STACK a ruse
2 1A @ W
10 INDIRECT 1 ror AR
0 PREVIEN 220 AWD*
0 waiTt 240 LD AR« WR
100 PAUSE 407 LD AR LAY
700 LOAD ARX an
MEM LA CALL a0
10
&0 BYTE RO
&2 POFARARR
B30 AIND""
18 XADOR
*+ 1§ NOT KADOR
suven| wmen [oxee [weca [0 [l | [0]rae]
1 PAGING INM n e
BPRCAL T CACHE Wwn 101 UNPAGED EXEC
e i "oger
e o veren ey
® seco P et
Wo ExLC 511 EPT FETCM
ocliseiod &1 uer FETeM
A0 FETCH
MREG FUNC
T EBUS DiAG S0% WA REFILL RAM
N MREG FUNC ALY 01 LOAD CCa
S02 READ UBR 07 LOAD URR
S01 ALAD EBR 03 LOAD EBR
S04 AEAD ERA
MBOXCTL
00 NORMAL I CLRPT LinE
COND WBOX CTL
o1 PIDIRCLA W00 BET UL PF ERR
10 FTem 200 SETPAGE FAIL
0 PTOmMWR
10 juaa

ENABLE REQUIRED

MAGIC NUMELR FIELD

ra 1 n ™ ™ L LA L4 [3]
FBLUSCTL
-] AL EBUS 2 Davan
COND/LBUS CTL 1 INPUT 27 DaTAr
2 DATA VO X 10 WY
a DISABLE CS @0 EBUL DEMAND
1w cTL R W00 REL EBUS
» THUS N0 DLMAND 200 RAILO IBUS
400 GRABT EBUS
& 8iC DATAIPAG 1L}
LDPA LEFT RO PERF CNT
LD PA RIGHT CONI APR L)
CONO MTH RD EBOX CNT
COND TiM DATAI APR
COND APR RO CACHE CNT
CONDIIAG & Lter: cowo P RO INTRVL
DATAD APR CONIMTR
LD AC BLKS WD MTR REO
LD PCS « OWSK COMNI P (PAR)
COMNI PR CONI PAG
COMI P ILY MO IBUS RLG
COMNI APR (M) DATAD PAG
RO TiME
o CLR Tim 1 CLRA PLRF
SPECMTACTL 2 CLR £ COUNT :] CLA M COUNT
a LDPA LM L] LOPARM
L] COND MTR 7 COND TiM
10 At
Figure A-23 Microword *g" Field
(Magic Numbers)
(Sheet 3 of 3)

EBOX /A-22

BEE

=

BB - B

[~=]-]

L% v J 1 J I \ —
'y L] '3 A e Depatch Addrew

iy S ard & arw
ateay 00

o LD asTORE D Y 7

T OIMMED/PREFLICH | 1 DBL AC

2 WOT USID 2 DEL BOTH Pasity o cosniaton by s

3 WA st 3 SELF e wa i

4 RLAD & AC

S READPREFETCH | & MIM

& MDA ! BOTH

T RDPAUSE WR

B12FCY STORL
' AC

7 MEM

3 BOTH

WO INVERTS TESTS
o CRYO-©
1 CRYD .1

RN P LR O

RPN =-D
£
o

Figure A-24 DRAM Word Format

EBOX/A-23

AC
ACKN
ACT
AD
ADA
ADB
ADR
ADX
AF
ALT
AlLU
APR

AR
ARL

ARM
ARMM
ARR
ARX
ARXL
ARXM
ARXR

BOOLE

BRK
BRX
BUF

A
Accumulator
Acknowledge
Action
Adder
Adder A
Adder B
Address
Adder Extension
Action Flag
Alternate

Arithmetic Logic Unit

Arithmetic Processor
Register
Arithmetic Register
Arithmetic Register
Left

Arithmetic Register
Mixer

Arithmetic Register
Mixer Mixer
Arithmetic Register
Riglat

Anthmetic Register
Extension
Arithmetic Register
Extension Left
Arithmetic Register
Extension Mixer
Arithmetic Register
Extension Right

B
Boolean
Buffer Register
Break

Buffer Register Extension

Buffer

APPENDIX B

ABBREVIATIONS AND MNEMONICS

CRAM
CRY

CSH
CTOM
CTR

CWSX
cYc

DIAG
DIR
DIS
DISP

DRAM

EBOX/B-1

C
Control RAM
Carry
Controller Select
Cache
Control
Controlier-to-Memory
or Cache-to-Memory
Counter
Called With Special Execute
Cycle

ECLto TTL

Executive Base Register
Execution Bus
Emitter-Coupled

EBox Data Path
Enable

Enable

Error

Error Address
Executive Process Table
Extension

Exponent

External

External

Transfer Receiver

FE

FE
FLG
FM
FOV
FPD
FPD
FUNC
FXU

GE
GEN

INC
INH
INSTR
INT
INTR
INVAL
10T

IR

LRU

MB
MBC
MBX
MBZ
MCL
MEM
MHz
MIX

MQM

F
Function
Floating Exponent
Front End
Flag
Fast Memory
Floating Overflow
First Part Done
Floating Point Divide
Function
Floating Exponent
Underflow

G, H
Gated
Greater or Equal
Generate
High

I
Increment
Inhibit
Instruction
Internal
Interrupt
Invalid
Input/Output Transfer
Instruction Register

J.K, L
Jump
Low
Least Recently Used

M
Memory Buffer
M Box Control
MBox Control
MBox Control
Memory Control
Memory
Mega Hertz
Mixer
Muitiplier Quotient
Multiplier Quotient
Mixer

MR
MTR

NICOND

NXM
NXT
oP
OVN

PA
PAG
PAR
PC
PCF_¢

RAM

RE
REC
REF
REG
REL
REQ
RESP
RET
RIP
RQ

EBOX/B-2

Master
Meter

N, O
Next Instruction
Condition
Non-Existent Memory
Next
Operation (code)
Overrun

P.Q
Physical Address
Pager
Parity
Program Counter
Previous Context Flags
from Number
Previous Context Public
Program Counter
Performance
Page Fault
Page Refill
Priority Interrupt
Priority Interrupt
Assignment
Priority Interrupt
Hold
Physical Memory
Address
Previous
Page Table
Power

Random Access Memory

Read
Receive ECL
Receive
Reference
Register
Release
Request
Response
Return
Request in Progress
Request

SADRP
SBR
SBUS
SC
SCAD
SCADA
SCADB
SCD
SCM
SEL

SH
SHRT
SIM

S
Storage Address Parity
Subroutine
Storage Bus
Shift Count
Shift Count Adder
Shift Count Adder A
Shift Count Adder B
Shift Count Adder
Shift Count Mixer
Select
Shifter
Shift Right
Simulate
Special
Special
State Register
Synchronize

TtoE
TE

TRA
TTL

UBR
UCODE
VAL
VMA
XFER
XR

WARN

WD
WR

EBOX/B-3

T
TTLw ECL
Transmit ECL
Time
Transfer
Transistor-Transistor
Logic

uv
User Base Register
Micro Code
Valid
Virtual Memory Address
Transfer
Index Register

W.X.Y,Z
Warning
Word Count
Word
Write

APPENDIX C
KL10-PY EBOX DIFFERENCES

SECTION 1 OVERVIEW

C.1 INTRODUCTION

This appendix details the differences and changes that have been incorporated into the Model B CPU
EBox (called KL10-PV EBox). It should be used explicitly with the current EBox Instruction Execution
Unit Description (EK-EBOX-UD-004) to completely understand the KL10-PV EBox.

The KL10-PV EBox differs fundamentally from the Model A CPU (KL10-PA) EBox as follows:

1. The KL10-PV EBox main source clock operates at 30 MHz and provides a “‘speed margin™
clock source which operates at 31 MHz.

2. The KL10-PV EBox implements a virtual address space of 32 sections of 256K words (8
million words). To provide access to this virtual address space. certain instructions have
been modified or deicted and new instructions have been added and implemented.

3. New memory “hooks" are provided by maintaining a fixed delay (factory adjusted) from the
point where the EXTERNAL CLK signal enters the CLK control module to where it exists.
The EXTERNAL CLK signal is now the main clock frequency as opposed to twice this
frequency in the KL10-PA EBox.

4. The control RAM (CRAM) definitions (Figures A-17 through A-23) have been modified for
the KLIO-PV and are noted in Appendix A. However, since the microcode is subject to
change. always refer to the Istest Microcode Listing for complete accuracy.

The CRAM now provides storage for 2048 microinstruction words in the KL10-PV.
The KL10-PA is designated the basic machine; the KL10-PV is designated the extended machine.
C.2 KL10-PV EBOX MODULE UTILIZATION
Figure C-1 shows the new KL 10-PV EBox module utilization. Refer 10 Figure 3-1 for the KL10-PA
EBox module utilization.

Table C-1 and the following paragraphs summarize the new KL10-PV modules, their downward com-
patibility with the KL10-PA EBox modules, and their equivalent modules.

EBOX/C-1

N|IZ|23 |28 35|06 3 s je0|arj el faa et anlar EHIES IR
103 - F1E “la 3 a
MHEHHE RHEHEEEHEHPBEHEEEE
<

AHHEHE R BEAERHHREERHRE

Figure C-1

10 Jen0

KLI0-PV Module Utilization

Teble C-1 EBox Module Utilization Changes

KI10-PA
Min Rev Level Equiv Downward

Module for KL10-PV Qty/CPL Module Compatibility
MBSI12 B 6 MBSI12 ves
M8522 A 1 M8522 ves

MB524 D 1 MEB8524 yes

MB525 H 1 MBS525 yes
MB526-Y A B 1 MB526 no

MB532 D 1 MB532 ves
MBS538* e 1 MBS38 ves
ME540 A 1 MBS510 no

ME541 A 1 MBS11 no

ME542 A 1 MRS23 no

ME543 A 1 MRS27 no

MEBS544 A i M8530 no

ME545 A 1 MB539 no

MES48 A 5 MRS2R no

R it ch Itis & ble 10 use Rev F

EBOX /C-2

There are 8 module types (12 modules) for the KL 10-PV CPU EBox that are completely new:

KL10-PV Quy/CPL KLI10-PA
MES26-Y A | MRS26
MBS40 1 MRS10
MRS41 1 MBS
MBS542 I MB521
MBES43 I MBS527
MES44 I MB530
MBS4S | MRBS539
MRBS48 - MBS2K
Total 12 Total &

There are six module types for the KLI10-PV that are downward compatible
Module Min Rev Level

M8si2
MBS522
ME524
MBS25
MB532
MES3E

NADIo>w

*If Rev C 1 used, clock frequency soldered jumpers must be
changed; it 1s desirable to use Rev E because it uses jumper
plugs

C3 FUNCTIONAL DIFFERENCES

C.3.1 Higher Clock Rate

A new module (MB526-Y A) provides a main source clock rate of 30 MHz and a “speed margin” clock
rate of 31 MHz to the KL10-PV CPU. Section 3 of this appendix describes this new module and the
clock distribution in greater detail.

C.3.2 Extended A
The KL10-PV CPU implements a virtual address space of 32 sections of 256K words (8 million words).
Subsection C.4 details the extended addressing effective address calculations.

A discussion of the KL paging for this virtual address space is provided in Section 1, Subsection 1.4, of
this document. To understand the KL10-PV EBox, read these subsections in conjunction with Section
1 of this appendix, which provides a detailed description of this implementation and the hardware
changes and differences of each module 1o accomplish extended addressing

C.33 New Instructions and Considerations

In addition to differences in effective address calculation, certain instructions are affected in other
ways by extended addressing. These considerations are detailed in Subsection C.5.

EBOX/C-3

SECTION 2 FUNCTIONAL DESCRIPTION

C.4 EXTENDED ADDRESSING - EFFECTIVE ADDRESS CALCULATION

The calculation of the effective address (E) is the first step in the execution of every instruction. At
system startup the pager is off. therefore all references are to physical address space. The effective
address calculation for the basic machine is detailed in Subsection 2.10.1 of this document.

Even in an extended processor. an effective addreses calculation performed in section 0 is done exactly
as outlined in Subsection 2.10.1. All addresses and displacements are taken as 18-bit quantities con-
tained in bits 18-35 of an instruction word, an index register, or an indirect word. When a program is
running in section 0. it can never make a reference to a nonzero section exc+pt by calling the monitor.
1n terms of addressing. section 0 of an extended processor is entirely compati..le with the single section
of a basic processor.

Evervthing in the following discussion refers to execution of instructions with the PC in a nonzero
section. (Refer to Figure C-2, Extended Addressing Effective Address Calculation Flowchart.)

C.4.1 Instruction Formsat

The format of a machine instruction (Figure C-3) is the same as on a basic machine. The effective
address computation is dependent on three quantities from the instruction: the Y (address) field. the
X (index) field, and the I (indirect) field. These are 18 bits, 4 bits, and 1 bit. respectively.

Depending on the format (global or local) of the index and indirect words, the effective address al-
gorithm will perform cither 18-bit or 30-bit address computations. When a 30-bit quantity is indicated
by the index or indirect word format, an explicit section number is being specified and the address is
catled a global address. When an 18-bit quantity is indicated by the index or indirect word format, the
section field is defaulted from some other quantity (e.g.. the PC), and the address is thus local to the
default section and is called a local address. (Default is defined as the assumed value.)

in the simplest case, consider an instruction which specifies no indexing or indirection:
3..400/ MOVE T.1000

Here the cffective address computation yields a local address 1000, and the section used for the refer-
ence is section 3. the section from which the instruction itself was fetched. The address is taken from
the default section. The default section will always be the section from which the last instruction or
indirect word was fetched.

C.4.2 lndexing
The first step in the effective address calculation is to perform indexing. if specified by the instruction.
The calculation peformed dencnds on the contents of the specified index register (X):

1. Ifthe left half of the contents of X is negative or 0. the right half of X is added to the Y field
(from the instruction word) to yicld an 18-bit local address.

2. If the left half of the contents of X is positive and nonzero, bits 6-35 of X are added o Y
(sign extended) to yield a 30-bit global address.

Index registers may be used to hold complete addresses which are referenced via indexed instructions.
A Y field of 0 will commonly be used 10 reference the exact address contained in X. Small positive or
negative offsets (magnitude less than 2°*17) may also be specified by the ¥ ficld. ¢.g.. for referencing
data structure items in other sections.

EBOX ‘C-8

2]

BIGIN WITH
INSTRUCTION
WORD W “'s"". 17
FETCHED FAOM
<

X BITS VA 1T OF W
¥ BITA NS W OF I

L]
LoCAL
¥ 13 SIGNID
DISFLACEMENT
I‘.-' .[‘ Kl. ‘-Y -
T IO W
tucn 1 gromas -0 ADORESS (1)
y vma
KA REPALSENTL THE COMTENTS
OF INDIEx REGISTER X

=1

FETCH INDIRECT

WORD (1w

FROs |

PAGE FaiL
THAF
=00 OR 0 GLOBAL
“BTE 200N
“PITE &2 el i
I.“n'\' - ¥4
=BT 108 i
- 5 If GLORAL)
ADDRESS
- WA
EXTENDED EFFECTIVE ADDRESS CALCULATION
"o e
Figure C-2 Extended Addressing, Effective Address Calculation Flowchart

EBOX C-6

121 W LR

L= b} = | :

‘ oF CO0

L__J¥

1o v

Figure C-3 Instruction Format

C.4.3 Indirection

If indirection 1s specified by the instruction, an indirect word 1s fetched from the address determined by
Y and indexing (if any). The indirect word 1s considered to be ““local format™ if bit 015 a 1, and “global
format™ ifbi0isa 0

C.43.1 Local Format Indirect Word (Figure C-4) - This word contains Y. X, and | fields in bits
13-35 Buit Omust be a 1; bit | must be 0 (1ts use 1s reserved for future hardware); bits 2-12 are reserved.

== -1 -]

Figure C-4 Local Format Indirect Word

C.4.32 Global Format Indirect Word - This word contains Y. X, and 1 fields in a different format,
allowing a full 30-bit address field (Figure C-5)

I indexing 1s specified 1n this indirect word, bits 6-35 of X are added to the 30-bit Y to produce a
global address

o0 o a2 W

i

£ v

Figure C-5 Global Format Indirect Word

EBOX C-7

C.4.4 Examples

Simple instruction referenced within the current PC section:

MOVE
JRST

3..400/ T.1000

2000 Jumps to 3002000

Local tables may be scanned with standard AOBJIN loops:

MOVSI X.-SiZ

LP: CAMN T.TABLE(X) :TABLE in current section
JRST FOUND
AOBIN X.LP

Global tables may be scanned with full address and index:

MOVE! X.0
LP: CAMN T.@ [Global®* TABLE X] :TABLE(X)in global format
JRST FOUND
CAIGE X.S1Z-1
AOJA X.LP

. Subroutine argument pointer may be passed to subroutine in another section:

Word in argument list:

Local* @ VAR(X) .indexing and indirecting if
sspecified will be relative to the
:section in which this pointer
.resides, i.e., the section of the
wcaller
*1 ocal rep ind word as for d in Figure C-4.
*Global rep d word as fi d in Figure C-$
Local indexing
In section 22:
MOVEI 1.100
MOVE T1.100(1)

moves 22,,1100 to T1, i.e.. 100th entry in array starting at 1000 in current section (22).

Negative indexing

In section 22:
MOVNI 1.100

1 O0P: ADD T.1000(1)
AQJL L.LOOP

adds locations 22,.700 through 22..777 in the current section, i.e., section 22.

EBOX/C-8

Global indexing
in any {(nonzero) section:

MOVE
ADD

T.[22..1000]
THIOXT)

adds the 100th location of data block starting at 22,1000 i e . Jocation 22..1100.
Global indexing with negative offset
In any {nonzero) section:

MOVE
ADD

T.[22..1000]
T1,-100(T)

adds the -100th location of data block starting at 22.,1000, i.c.. location 22..700. In global

indexing, the control block can cross a section boundary since carries are not suppressed out

of bit 18.

Global indirection

In any {nonzero) section:
MOVE T.6[30..1000}

loads T with the contents of location 1000 in section 30.

Global indirection with indexing

MOVE]
MOVE

J.100
T.6IGLOBAL 30.1000(J)}

loads T with the contents of location 1100 in section 30.

Array in another section:

MOVE C.[2000000-1} :2 sections worth
LOOP: ADD T.6[GLOBAL 30,100(C}}
SOJGE C.LooP

adds the 512K array from 30..1000 through 32,.777. Even if the array had been less than 27
words long and did not cross any section boundaries, it would still not be possible to use
AOBIN for the loop. because the entire index register is always added in global indirect
word, and the left haif cannot be used for the AOBIN loop count.

Negative indexing a large array

MOVE C.[-2000000+1] .2 sections worth
LOOP: ADD T.6{GLOBAL 32.1000(C)}
AOJLE C.LOOP

adds the $12K array from 30,,1001 through 32.,1000.

Refer 1o Subsection C.5.1.3 for example of instruction format indirect word used with extended push-
down stack.

EBOX 'C-9

C.4.5 Immediate Instructions

All effective address computations yicld a 30-bit address defaulting the section if necessary. as de-
scribed above. However. immediate instructions use only the low-order 18 bits of this as their operand:
hence. instructions such as MOVEL, CAIL, etc., produce identical results, regardiess of the section in
which they are executed.

Two immediate instructions are implemented which do retain the section field of their effective ad-
dress.

1. XMOVEI (op code 415, same as SETMI} Extended Move Immediate - This instruction
loads the entire 30-bit effective address into the designated AC, setting bits 0-5t0 0. If no
indexing or indirection is specified. the current PC section will appear in the section field of
the result. This instruction would replace MOVE] where an address (rather than a smail
constant or in-section address) is being loaded.

Example: calling a subroutine in another section (assuming argument list in same section
as caller):

MOVEI
PUSHJ

AP.ARGLIST
P.G[SUBR]

The subroutine could reference arguments as:

MOVE T.@1{A0)

or could construct argument addresses by:

XMOVEI TG2AAP)

In both cases. the argument list pointer would be found in the caller’s section because of the
global address in AP. The actual section of the effective address is determined by the caller,
and is implicitly the same as the caller if an IFIW is used as the argument list pointer, or is
explicitly given if a global indirect word is used.

2. XHLLI (op code 501) -~ This instruction replaces the left half of the designated accumulator
with the section number of its effective address. It is convenient where global addresses must
be constructed.

C.4.6 AC References

Any reference to a local address in the range 0~17, will be made to the hardware ACs. Also. any global
reference to an address in sections 0 and 1 in the range 0-17; (i.e., 0-17, and 1000000~ 1000017) will be
made to the hardware ACs. Global references to locations 0-17, in any section other than section 0 or
1 will reference memory. Thus:

1. Local addresses referenced in the usual AC range will be reference ACs as expected. e.g..
MOVE 2.3 will fetch from hardware AC3 regardiess of the current section.

2. To pass a global pointer to an AC, a section number of | must be included.

3. Very large arrays can cross section boundaries: they will be referenced with global addresses
which will always go to memory, never to the hardware ACs.

5. PC references are always considered local references: hence. a jump instruction which yields
an effective address of 0-17 in any section will cause a code to be execused from the ACs.

EBOX/C-10

C.5 NEW INSTRUCTIONS, INSTRUCTION MODIFICATIONS, AND CONSIDERATIONS
The existence of extended addressing has no effect on most of the defined instructions, e.g.. MOVE,
ADD. Those instructions for which there are other considerations are described in this subsection.

The following terminology is used in this subsection:

1. Global PC - The one-word program counter containing a global address: bits 0-5 are zero.
No flags are included.

2. Local stack pointer -~ A one-word pointet to the end of the stack in the current PC section.
The L.H has a negative count of the number of words lefi until overflow and is in local
indexing format.

3. Global stack pointer - A one-word pointer to the end of the stack. which may be in any
section. The LH is greater than 0 and is a global address: no stack length is included.

4. Local byte pointer - A one-word byte pointer (as on the KL10-PA) with the addition that bit
12=0. Indexing and indirection follow the rules for snstructions.

S, Global byte pointer - A two-word byte pointer in which bit 12=1. The second word con-
tains a giobal address.

6. E - Effective address

C.5.1 Special-Case Instructions in Nonzero Sections

C.5.1.1 PC-Storing lastructions (PUSHJ, JSP, JSR, POPJ; - When the PC is in a nonzero section,
these instructions will store a 30-bit PC without flags in order to accommodate the 30-bit address. New
instructions (see below) are available to provide access to the processor flags. When the PCisin 8
nonzero section, POPJ will restore the 30-bit PC from the stack word. Thus, machine-independent
subroutines can be written which run in section 0 and in nonzero sections.

C.5.1.2 Byte Instructions -~ Representing the P and S fields and the full memory address requires
more than 36 bits of byte pointer. Therefore, & byte pointer will be taken as a two-word quantity
{shown in Figure C-6) if bit 12 of the first word is one. The address of the word containing the byte is
computed from the second word as an indirect word.

d [1112 13 11y »
» 3 l t [ez AVALL TO SOF TWARE
ol 1 l x SECTION 1N SECTION ADDRESS

0 03 o2 08
10 00t

Figure C-6 Byte Pointer Format

EBOX C-11

If bit 12 of the first word is 1. bits 13-35 of the first word would be 0 and the second word would
specify the entire address. Incrementing a byte pointer of this format when incrementing the word
address will increment the second word only. Carries from the RH of the second word will propagate
into the LH so that strings can cross section boundaries.

For convenience, bit 12 of the first word may be set to zero: then the second word need not he present.
The byte reference will be 1o the section specified by the cffective address, and incrementing a byte
pointer will increment the RH of the first word with no carry out of bit 18.

C.5.13 Stack Instructions (PUSH, PUSHJ, POP, POPJ, ADJSP) - The present format of the stack
pointer (half-word count, half-word address) is insufficient to hold a full address but is convenient
when the stack is local and small. Therefore, in nonzero sections the stack instructions will recognize
either of two forms of the stack pointer:

1. Local stack pointer - If the left half of the stack pointer is negative or 0 before incrementing
or decrementing, the right half will be taken as an address within the section specified by the
PC. Incrementing and decrementing the stack pointer will modify both halves of the pointer.
Any carry out of bit 18 is suppressed so that local stacks will not cross section boundaries.

2. Global stack pointer ~ If the left half of the stack pointer is positive and nonzero before
incrementing or decrementing, the entire pointer will be taken as a 30-bit stack address with
no count field. The pointer will be incremented and decremented as a single quantity. Stack
overflow and underflow detection is expected to be programmed by setting a restricted
access on the pages at either end of the stack. since the absence of a count prevents an
explicit hardware check. Carries out of bit 18 are not suppressed. thus. a stack can cross
section boundaries. This format is expected to be used as the standard in extended sections.

Machine-independent subroutines can be written which run in section 0 and in nonzero sections on the
KLI0-PV. Only the code which initializes the stack pointer needs to know the section. The above two
formats are the same as the index register formats and behave in an analogous manner.

WARNING
PUSHing on a local stack which has previously over-
flowed (i.e., 0.8 before PUSH) will result im storing
in section 1 ti.e., 1,,N+1).

Example of pushdown stack pointer before and after

INSTR. STACK POINTER AC
BEFORE AFTER
PUSH -6.100 -5..101 :stack in PC sect.
PUSH -1..105 0..106 :overflow
PUSH 32,.100 32..10) sstack in sect. 32

C.5.1.4 LUUO (Op Codes 1-37) - It is desirable to be able 10 execute LUUOs in any section and
invoke common code. Therefore, when the PC is in a nonzero section, all LUUOs will trap to the same
tocation. as explained by the following description. Word 420 in the user process table (UPT) will
contain the address of a 4-word block for LUUQ information. The information is formatted as in
Figure C-7.

EBOX/C-12

00 X 1213 17 18 2% 27 0 31 »
UPY +420 FLAGS l °] OoF CODE l ac l o
uPY a2t ° OLD PC (30 8ITT
ueY 427 ° EFFECTIVE ADR OF VUG
UPY +423 v NEWPC IOBIT

10 2002

Figure C-7 LUUO Information Format

Hence. execution of an LUUO will cause the processor PC and flags 1o be stored. the op code. AC. and
effective address of the LUUO to be stored. and the processor to begin operation at the location
specified by the “new PC.” The processor flags will not be changed. In section 0. the LUUO mecha-
nism will work as on the KL10-PA and so will invoke 8 separate LUUO handler. which must be in
section 0.

WARNING
Toe use of LULOs by 8 programmer will probably
prevent him from interfaciag with another program-
mer's code which also wses LUUOs, ualess there is
prior agreement between the two programmers.

In exec mode. an LUUO in a nonzero section will do an MUUO. Monitors do not generally use
LUUOs.

C.5.1.8 MUUO (Op Codes 0, 40-77, All Undefined Op Codes) - Execution of an MUUO will cause
the UUO information 1o be stored in a 4-word block beginning at location 424 of the UPT (Figure C-
8).

0 X] 12 13 17 18 » 27 0 3 »
e FLAGS ° OPFCODE AL]
Lt [oD
a2 o EFFECTIVE ADR OF UUO
L2 PROCESS CONTE XY WORD

Figure C-8 UUO Information Format

EBOX/C-13

The new PC word will be selected from a block of eight words at UPT +430 according to the context in
which the MUUO was executed just as on the KL10-PA. The new PC word wili be taken as a 30-bi
global address with no flags. The hardware ‘microcode will compute the proper settings of PCU and
PCP (previous context user and previous context public), and will ciear the rest of the processor flags.

In order to facilitate the use of AC operands with LUUOs and MUUOs, the following rules govern the
effective address word stored in the UUO block:

1. If bits 18-31 of the effective address of the UUOQ are zero {(a local address). but bits 6-12 are
nonzero, store | in the section field of word 2: store bits 18-35 in the RH of word 1.

2. Otherwise, store the full 30-bit effective address in word 2.
This same set of rules also applies to XMOVEL
C.5.1.6 BLT - The present format of BLT operands is insufficient to specify three full addresses:
therefore. a new instruction, XBLT, will be specified (see below). However, the existing BLT instruc-
tion is useful for intra-section data moves and is specified to work as follows:

1. The source address is taken to be the left half of the contents of AC in the same section as the
effective address (which can specify any section).

2. The destination address is taken to be the right half of the contents of AC in the same section
as the effective address (which can specify any section).

3. Data is moved until the destination address is equal 1o the effective address. Carries out of
bit I8 are suppressed so that the BLT stays in the same section by wrapping around.

The source and destination sections are always the same, as specificd by E, which can be different from
the PC. References by BLT to addresses in which 18-31 are O will always be AC references.

C.5.1.7 EXTEND-STRING Operations - To support extended addressing, a 6-word block will be
used in all sections, consisting of two 3-AC blocks, as formatted in Figure C-9.

Byte pointers are in the one- or two-word format described above. If bit 12 of the pointer in AC+1
(AC+4) is 0. AC+2 (AC+5) is ignored.

o0 »
AC+ 0 COUNT
AC »3 BYTE PYA FIRSY PARY
AC 2 280 WORD (F EXTENDED PTR
AC) COUNTY
AC -4 SYTE PTR FIRSY PARY
AC 8 IND WORD IF EXTENDED

Figure C-9 EXTEND-STRING Instruction Format

EBOX/C-14

C.5.1.8 AOBJN - The two half-word format of the AOBIN - AOBIJP pointer is insufficient 1o specify
a giobal address. However, the format may be used for indexing as described ahove because the left
half is normally negative. it is therefore useful for scanning local 1ables (within the same section) and is
retained without modification. For scanning tables in an arbitrary section. the programmer will typi-
cally use an index containing a global address and will not employ AOBJN in this case,

C.5.1.9 JSA,JRA - These instructions use a format which does not allow the storing or specification
of a global address. Since they are also considered an obsolete and unrecommended method for sub-
routine calling. they will work the same as on the KL10-PA. They will work in nonzero sections. but
will be useful only for intra-section calls, since only an 18-bit PC is stored.

C.5.1.10 BLKI, BLKO - These instructions usc a pointer format which does not allow the specifica-
tion of a global address. For diagnostic compatibility, the KL10 will support these instructions by
defining that the pointer address aiways refers to the PC section. See Subsection C.5.2 for BLK1 in Pl
location.

C.8.1.11 XCT - The defauit section for the object instruction shall be the section of the effective
address of the XCT. However, PC storing instructions will store the PC section rather than the section
specified by the effective address of the XCT. This maintains compatibility with the KL10-PA (which
stores the PC+1). Local stack pointers will also assume the PC section rather than the section specified
by the effective address of the XCT.

Example of XCT of code in another section.

In section 22:

XCT @[30,,1000}
Location 1000 in section 30:

MOVE T.2000

will load T with contents of location 2000 in section 30, not section 22.
Example of stack and PC storing under XCT.

In section 22, location 100:

XCT ©{30.,1000]
Location 1000 in section 30:
PUSH P.SUBR

transfers to subroutine SUBR in section 30, not 22. If C(P) is local, stack is assumed to be in
section 22, not 30. The PC stored on stack is 22,101, not 30,.1001.

C5.2 Pl Handling

Initiation of a Pl cycle will cause the execution of an instruction in the EPT. For extended support, the
recommended instruction is X PCW (save then restore flags and program counter) defined beiow. This
instruction saves the current flags and 30-bit PC and establishes new flags and PC. The interrupt is
dismissed by execution of another new instruction, XJEN, (restore flags and program counier) which
restores the global PC and flags.

When an instruction is being executed as a Pl instruction, the default section for computing the effec-
tive address is taken to the exec section O, cather than the actual PC section. Therefore. if a BLKI.
BLKO, or JSR is executed as a Pl instruction. it will work for programs (e.g.. diagnostics) not using
extended addressing.

EBOX:C-15

C.53 New Instructions
The new instructions which are required io properly handle extended addressing are described 1n the
following subsections.

C.5.3.1 XMOVEI - Move Extended Address (Op Code = SETMI) - This instruction moves its entire
effective address into the designated AC. It is generally used to find the effective address of a pointer
chain and make it available for indexing. It is the immediate mode instruction which has an operand
greater than 18 bits. Bits 0-5 are always zero. If the effective address specifies a hardware AC. the
effective address will be converted to the section-independent form. i.e., 1..AC. Thus, the result of an
XMOVEI can be stored or moved to another section and still have the same address. This is analogous
to the effective address stored by MUUOs and LUUO:s. If this instruction is executed without indexing
or indirection, e.g.. XMOVEI 1,20, it will move the current section into the left half of the designated
AC (E must be 20 or greater). MOVXA is also used to test for section 0 (see Subsection C.5.5).

€532 XBLT - Extesded Block Transfer (EXTEND Op Code 020; - XBLT is a member of the
extended instruction set, used under extended addressing. XBLT traps as an MUUO in section 0. but
otherwise moves data from any virtual address 10 any other. The number of words transferred is
specified by AC, the address of the source block is given by AC+1, and the address of the destination
block is in AC+2. Both addresses are always global.

If AC is positive, the block addresses in AC+1 and AC+2 are the lowest addresses of each block and
identify the words which are transferred first. The transfer proceeds by incrementing addresses in
AC+1 and AC+2 after cach transfer and decrementing AC until it reaches zero.

If AC is negative. the block addresses in AC+1 and AC+2 are greater, by one. than the highest
addresses of each block. The transfer proceeds by decrementing the addresses in AC+1 and AC+2
before cach transfer and incrementing AC until it reaches zero.

Since XBLT is interruptable, results are indeterminate if AC, AC+1, or AC+2 is in either the source
or destination block. Otherwise, the effect of XBLT on ACs is equivalent to:

ADD AC+1,AC
ADD AC+2,AC
SETZM AC

C.53.3 XJRSTF - Restore Flags and Program Counter (JRSTS,) - This instruction restores the flags
and PC double word from E and E+!. The double-word format is shown in Figure C-10.

o0 06 08 7 17 18 »

IGNORED

WM PrC

Figure C-10 Flags and PC Double-Word Format

EBOX/C-16

This format is used by LUUOs, MUUOs, and additional instructions defined below. Unlike JRSTF,
no indirection is needed. Bits 13-17 must be zero because they are reserved for future hardware. Both
words are feiched before the flags take effect. XJRSTF works in all KL modes and sections.

Example of CPU independent flag code.

XMOV} T.20 :get section no.

HLLZM TSECTNO :save for test

MOVSI 17.ACBLK :restore all ACs

BLT 17,17 :including 17

SKIPN SECTNO ;is this KL ext. sect.?
JRSTF 6FLGPC :no, restore flags and PC
XJRSTF FLGPC :yes, restore flags and PC

The above code works on both CPUs, KL10-PA, KL10-PV, KL section 0, and KL extended sections.

C.53.4 XIJEN - Restore Flags and Counter and Dismiss (JRST6,) -~ This privileged instruc-
tion performs all the functions of XJRSTF and in addition dismisses the current Pi level. It is intended
to be used in place of JEN GE under extended addressing.

XJEN works whenever 10 instructions work in exec section 0, traps in user section 0 (except user IOT
mode). and traps in user extended sections (except user IOT mode).

C.53.5 XPCW - Save thea Restore Flags and Program Cowmter (JRST 7,) - This privileged instruc-
tion is intended to be used in interrupt locations. It references a 4-word block at its effective address,
formatted as in Figure C-11.

The current flags and PC are stored in the first double word and new flags and PC are established from
the second double word. Dismissing an interrupt initiated with XPCW would typically be done with
XJRSTF addressing the same block. The 4-word block must be in section 0. since the default section is
0 for instructions executed in an interrupt location. XPCW works in exec section O, traps in user
section 0 (except user IOF mode). works in extended exec sections, and traps in extended user sections
texcept user IOT mode).

00 05 08 17 13 »

OLD FLAGS! l

.|

NEW FLAGS®

OLD PC (I0-BTE!

NEW RC 120 BITSE

Figure C-11 XPCW Information Format

EBOX/C-17

C.53.6 XSFM - Save Flags in Memory (JRST 14,) - This instruction saves the flags in biin 0-12 of E Table -2 Compatibility Summary (Cont}

in the same format as the flags in the flags and PC double word. XSFM works in exec section 0. traps

in user section 0 (except user FOT mode). and works in exec and user extended sections. User & Exec User
Exec
Example of CPU independent flag test code Feature sect=0 sect>0 sect>0
MOVEM T.SAVEAC isave AC . .
XMOVEl T.20 :get section 4, 0r O LH Zwordbyie pownter | ignored yes yes
TLNN Tl :is this K L Extended sect? (use 2nd word if bit 12=17)
TSEM I-+2 no. 'fa‘v'ﬁﬁ;:s'i;‘x%““o EXTEND-STRING no yes yes
“here with flagsin LHof T (reference other sections?)
AOBIN, AOBJP -PA yes yes
C.5.4 Compatibility Summary (1ables in current section?)
Table C-2 shows how each of the new features works in exec and user mode in section 0 and in
extended addressing sections. The criteria for compatibility are as follows in decreasing importance: JSAJIRA -PA yes yes

{18-bit PC only})

1. User code which runs on the KL10-PA must run in the KL compatible section, section 0,
including saved core images. (Trap on bit 12 of byte pointers does not violate this. if monitor BLKILBLKO -PA yes yes
continues program.) {current PC section)

XCT -PA yes yes

2. 1t should be easy and natural to write subroutines following a standard which can run in)
(default section from E of XCT?)

section 0 and in extended sections. The loader can take care of any differences so that a
single REL file works for all three cases. . . .
XMOVEI(LH) 0 section section

3. Code in user section O can use new instructions except those added solely for extended

addressing. However, code cannot reference or transfer 1o other sections. except through XBLT trap yes yes
monitor calls. {reference any section?)
XJRSTF yes yes yes
(transfer to any section?)
Table C-2 Compatibility Summary XJEN : trap yes trap
Coer & Exec Caer (transfer to0 any section?)
Exec XPCW trap yes trap
Feature sect=0 sect>0 sect>0 (transfer 10 any section”)
Indexing -PA® new new XSFM trap yes yes
A (read flags?)
Indirection -PA new new
JRSTF U tra
Hardware ACs use -PA new new (transfer control?) yes rap P
PUSH.PUSHJ. etc. -PA yes yes PC setting 0 only*®
h ; y yes yes
{(Global if LH of AC greater than 0) (transfer 1o any section including 07)
LUUO -PA MUUO yes
(extended PC)
*.PA indicates user code 1 executed as on K1 10-PA CPU
BLT -PA yes yes oo sc mnstruction XJRSTF to get to any section.
(reference section specified by E?)

EBOX/C-18 EBOX/C-19

CS.5 Testing for Section 0
The code to dictinguish section 0 from KL extended sections is:

XMOVEI
TLNN

T.20
T

:get current section number
non-zero section?

shere if section0 or KLK A, or
:PDP-6

:here if KL extended section
C.5.6 Old Instructions

C€.5.6.1 JRSTF - Jump and Restore Flags - In nonzero sections, JRSTF will give an illegal instruction
trap because JRSTF is usually used with an indirect word which contains PC flags in the left half.
These flags might mistakenly appear to be 8 global indirect word if bit 0=0.

C.5.62 JRSTX.E - This is the AC field. or JRST, if being used to encode new op codes which do not
need an AC field. Unused bit combinations will trap. The following AC bit combinations are defined.

The new op codes were selected because they have the halt bit on and so are least likely to be used in
existing exec and user mode.

AC Op Code AC Op Code

0 JRST 10 jump and restore int.
1 PORTAL 11 illegal

2 JRSTF 12 JEN

3 illegal 13 illegal

4 HALT 14 XSFM

S XJRSTF 15 illegal

6 XJEN1 16 ilicgal

7 XPCW 17 illegal

C.5.7 Special Considerations for ACs

The hardware ACs appear as the first 20, locations of any section referenced with a local effective
address. Instruction fetches specified by the PC are always local, even if a transfer instruction to a
global address.

Example of jumping to shadow ACs [14]

JRST @[30..2)

jumps to section 30, location 2. However, the PC fetch will come from AC2 (since PC fetch is always
Jocal). This should not be a problem since the loader will load code starting at 20 in each section, rather
than 0.

Example of JSR to shadow ACs
ISR &[30..2)
stores the PC in memory in 30,2 and changes the PC to 30..3. The next instruction is feiched from

AC3, not memory. This should not be a problem since the loader will load code starting at 20 in cach
section, rather than 0.

EBOX/C-20

Example of XCTing shadow ACs

XCT @[30..2]

will execute the instruction in memory at 30..2, not AC2. This is desirable since 1ables of instructions
are exevuted and this data should be able to be anywhere tn memory. just like any other kind of data.
However, an interpreter running in a separate section must check for the PC getting into the ACs. This
is easily done with XMOVE]L.

Example of subroutine calling from ACs

2 PUSHJ PSUBR
3 EXP arglist
4/ return

would not work correctly if the following straightforward code was performed:

SUBR: MOVE APG(P) :fetch memory 20,3

unless SUBR picked up the word following the PUSH):

XMOVEI APG(P)
MOVE APO(AP)

SUBR: :get address 0,310 AP

:get arglist from AC 3

However, this is a rarely used calling technique and calis to subroutines are not usually made from the
ACs.

EBOX/C-21

SECTION ¥ DEIAHED 1OGIH DESCRIPTION OF MODULE DIFFERENCES

C.6 MRES26NY A CHLOCK MODL 1Y

C.6.1 (herview

The clock module resides i the § Bos 1 Cantans a selectahle source which can either be external or
one of two orvstal controlied s gatirs ne osallator for normal operation, the other for M
margining 1t also consiats of theee sections the Clock Control. the EBox Clock Control, and the
Clock Diagnostic € onirol Labeled one 10 1w 21 and three (1), respectively in Figure 3-13, Figure 3-
11 allustrates the basic closk module Tavour and distnbution for the KL10 processor.

C.6.2 Detailed Circuit Description

C.6.2.1 CROBAR and Clock Initialization | Refer to Figure (-12) - When the KL10 system is powered
up. the EBox clock control module must be imbialized 1o @ known state. In addition, the device con-
trollers on the FBus must be inimalized and a senes of MBox, EBox. SBus, and EBus clocks must be
generated for vanous initialization purposes First, the power controller logic asserts CROBAR for
approximately S seconds [All EBus signals are false (low) at this time.] CROBAR is passed to the
clock diagnostic control logic where it enables the initialization process. The CLK CROBAR signal is
used directly to select the “normal™ oscillator as the clock source 1o be used during the power up
initialization phase because this signal asserts MIX SEL 4.

1. EBus Reset (Figure C-13) - The CLK2 CROBAR signal enables the counter 1o subtract one
cach clock pulse. The initial state of the counter is undefined. During the CROBAR period
(approximately § seconds), the counter is decremented toward zero. When zero is reached, a
carry is generated. If CLK2 CROBAR is false at this time, the -1 function is disabled and
the counter is loaded with zeros. This removes CLK EBUS RESET. In practice, the counter
passes through zero many times until finally CROBAR is removed by the power controller
logic. Therefore, a series of EBus reset pulses are generated during the CROBAR period.

2. Initialization Clock Pulse Generation (Figure C-13) - CLK CROBAR L asserted is shifted
four places into the shift register. The asserted shift register output, ANDed with the signal
CLK RATE SELECTED (which has been asserted by this time), generates the CLKI
GATED H signal that becomes the source of the clocks generated via the clock control and
EBox clock control. (The 5.0 ns delay is inserted to ensure that the CLK GATED signal is
not sliced.) When CLK2 CROBAR is removed, four main source clock pulses later, the 4-bit
shift register output goes false and disables the CLK GATED signal. This shift register also
serves 1o synchronize CROBAR by the CLK1 MAIN SOURCE clock input.

C.6.2.2 EBox Clock Control (Figure C-14) - The EBox clock control provides a source of clocks for
the EBox modules together with an MBox sync point (CLK EBOX SYNC), which is always asserted
one MBox clock (CLK ODD) prior to the generation of the CLK EBOX CLOCK (Figure 3-20).

Depending upon the nature of the EBox cycle (a period extending from the rising edge of one EBox
clock to the rising edge of the next), the EBox clock pulses may be extended by some multiple of the
main source clock period (Figure C-15).

The functional structure of the EBox clock control consists of an MBox clock counter, clock

phase
sync detector, EBox sync generator, and an EBox clock source. The CRAM time field (T00, TOI),
specifies the duration of the EBox cycle (Figure C-15).

EBOX/C-23

“NORMAL N
s
XTAL 1 D 1
CONTROLLED 5
3
= L 8
D EXT CLOCK
—a &
L
e L
1
P FOR SPEED
xTAL 3 [y Nen
CONTROLLED
SOURCE SO
SELECTION
REGISTER
SEL 2

INITIAL STATE

UNDEFINLD

* HLIOPA "NORMAL™ CAYSTAL IS 50 MHI AND

“SPLED MARGIN CRYSTAL IS 56 MMT

EBOX /C-24

CLE T MAIN SOURCE

Figure C-12 Basic Source Selection

COUNTER

INPUT ARE
ALWAYLE D
——
SELE NOTE
CARRY
our
1=
CLE 7 CRORAR 0= LOAD _ | CLE EBUS RESET
amv
e MHT FREL Lo COUNTER
CLmYMATE SELECTID L
l:urcmnﬂl—c"l T . !
am o _< ”
SHIFT MLG
(=8 3] I-ll: _[i
c cxt
GATIO W
Ut
LK .
contaot | o ™
wOTL Cim Lk
IFCLR 7 CROGAR IS FALSE & (=% 3 000
CARRYOUT DIBANLES THE 1 i
FUNCTION AND LOADS O INTD
THE COMPUTER 180X Vi ? Box
ax cLock
N\, ! conTROL v

Figure C-13

EBus Reset and Clock Initialization

EBOX C-25

CHAM

===

]
| SRS
CLK CRM j

i
FIELD __1,/- RECISTER
(=]

SRR, |

28T TIME FIELD
N CONTROL RAM

(<8 ¥ MBOX
MBOX g CLOCK
CLM M COUNTER

cLock
PHASE

counTem | SYNC
ouTRUT DETECTOR

CLEJEBOX CLK

CLEISYNC ENL
[— L e

CLK2 MBOX CLKE H—0

SEE NOTE

NOTE
CLEIEBOX CLK EN L

IMPLIES CLKISYNC EN - O IFALSE)

‘m CLK JEBOX SAC EN M
B

80X

SYNC

Gin (HLE
LBROx S¥NC L
(4%]
S¥YNC L

CON MROE WAIT M
CLEA RSP MBOX M

CLY DDD ——m

EBox
CLOCK
GENERATOR

p———— CL® TBON CLOCK

Figure C-14 EBox Clock Control Block Diagram

£80X CLOCK J_Z—h VARIABLE —-I
FiRED

Figure C-15 EBox Cycles

EBOX /C-26

02w

The clock phase sync detector compares the MBox clock cornter output with the CRAM time field
(loaded at EBox clock time) whenever CLK3 EBOX CLOCK EN L is false. If the counter output
compares with the bit combination in the time field (T00, T0i ;. CLK3 SYNC EN L is asserted and the
next MBox clock sets CLK3 EBOX SYNC L.

With CON MBOX WAIT true, -CLK EBOX CLK EN L is also true and CLK3 EBOX CLK EN Lis
false (Figure C-14). This enables the MBox clock counter to continue to be incremented. Similarly, the
detector is enabled. and when the counter output compares with the bit combination in the time field
of the CRAM word. CLK3 SYNC EN L will be asserted and remain asserted until the M Box responds
(CLK RESP MBOX) or aborts the cycle. Thus, one MBOX CLK after CLK3 SYNC EN L is asserted,
CLK3 EBOX SYNC L will sct. In other words, CLK3 EBOX SYNC L is asserted one MBox clock
prior to where EBOX CLOCK is asserted.

With CLK3 SYNC EN L true when MBox response (CLK | RESP MBOX) is received (Figure C-14),
EBOX CLOCK EN L becomes true and thereby resets MBox clock counter to 000 and disables the
detector. CLK3 SYNC EN L is removed, allowing CLK3 EBOX SYNC L to clear on the next MBox
clock. At the same time when EBOX CLK EN becomes true, CLK3 EBOX SRC EN H also becomes
true; thus, when CLK3 EBOX SYNC L is cleared. CLK EBOX CLOCK (EBOX CLK) sets (Figure 3-
23)

C.6.2.3 Error Detection - Figure 3-24 illustrates the logic that stops all clocks in the event of any of
the following:

I. A DRAM parity error occurs,
2. A CRAM parity error occurs,
1. A fast memory parity error occurs.

The timing shown is for a CRAM parity error. The CRAM register is clocked by CLK CRM; some-
time later, the parity network settles and asserts CRAM PAR 16. This indicates that the CRAM word
has dropped or picked up bits and is not correct. The signal -CRAM PAR 16, together with an enable
previously set by a diagnostic cycle (CLK CRAM PAR CHECK), enables the generation »f CLK
ERROR HOLD.

If it 1s desired 10 stop on parity errors, CLK ERROR STOP EN must have been set by the console. In
this case, on the next occurrence of CLK EBOX SOURCE EN. the CLK ODD gate will be latched
false, inhibiting all clocks and freezing the system.

C.6.24 Clock Control Logical and Skew Delays - Figure 3-25 illustrates the delays necessary to
assure that the proper timing relationship exists between the actual MBox clocks, EBox clocks, and the
sampling of the CRAM time field. The lumped delay consists of fixed logic delays and gate and wire
delays. The output is CLOCK ODD and is used to clock a 10141 shift register, which has a nominal
propagation delay of 2.65 ns.

The output of the shift register feeds various gates and the various EBox boards receive their clocks
from these gates. Delay X allows for lining up the outputs of the gates, “deskewing™ the EBox clocks.

The delays are actually etch paths near the fingers on the board and once the delay has been ascer-
tained. a permanent connection is made at the proper point. Figure 3-26 shows the EBox clock fanout;
Figure 3-27 shows the MBox clock fanout.

in order 1o compensate for the effect of the 10141 circuit propagation delay, a fixed 2.65 ns has been

inserted in the path between the LUMPED DLY and the MBox clocks. Connected in this path also is
DLY Y. which performs the same function as DLY X does for the EBox clocks.

EBOX /'C-27

All EBox clocks and M Box clocks are lined up leaving the clock control module. In order to properly
synchronize the clock control module with the other moduies. these signals are passed out through the
ctch connectors on this module and then routed to all other modules through a set of equal fixed length
{equal time delay) coaxial cables.

Figure C-16 illustrates the basic timing for the clock module. Five basic cycles are presented

EBox cycle T=01,

EBox cycle T=1{0,

EBox cycle including a memory cycle T=00,

EBox cycle T=00, .

EBox cycle including 8 memory cycle and page fault.

C.7 MODULE M83540, SHIFT MATRIX

The MB8540 module. shift matrix, replaces the M8510 module for the KL10-PV processor EBox. It
contains: shift counter decoding logic. shift matrix control, the shift matrix. and the AR and ARX
parity networks, as does the M8510. In addition, it contains logic to shift the index field for the global
indirect word and local indirect word and detection logic to detect an index register > 0 in the left half
or a 30-bit address (bits 6-17).

C.8 MODULE M8841, CONTROL RAM ADDRESS

This module is used in the KL10-PV. Functionally it performs similarly to the M8511 module. except
that it contains a 16-word X 1}-bit pushdown stack, whereas the M8511 module contains a 4-word X
11-bit pushdown stack. The M8541 module includes a 6-bit decode field (a CALL bit is added) using
1K RAMs containing 2048 words, whereas the M8511 module contains a $-bit code dispatch field
using 256 RAMs, containing 1280 words. Also, the M8541 module’s control RAM address lines 7. 8,
and 10 (CRA2 ADR 07, 08, and 10} have additional and slightly different input conditions (refer to
drawing 8541-0-CRA2) which are:

CRO7: ARX00 OR -CON2 LONG EN
CRO8: ARX0! OR -CON2 LONG EN
CR10: MCLPC Section 0 or -VMA Local AC Address

in order to implement the additional microcode and extended addressing.

C.9 MODULE M8542, VIRTUAL MEMORY ADDRESS

(Refer 1o Figure C-17.) This module functionally performs the same as the M8523 module to generate
the virtual memory address to the E/MBox interface. 1t contains an 18-bit VMA adder, VMA AC
reference detection logic, a 24-bit VMA register, in contrast to the M8523 module’s 23-bit VMA
register. a 24-bit program counter register, (which contains an extra PC section 0 identifying bit), a 23-
bit VMA held register. and AR mixer (ARMM) logic bits 13-17. Section detection logic which stores
the previous section (which the M8523 module does not provide) is also added.

C.10 MODULE M8543, EBOX CONTROL NO. 1
This module performs the exact logic functions as the M8527 module, which it replaces. except for the
following logic change in order to implement extended addressing and stack instructions.

The CTL INH CRY ISL output input terms now include CRAM AD CRY L and MCL4 SHORT
STACK H in addition to the previous input conditions.

The M8543 module has also been revised to incorporate all rework and ECOs that were made to the
original M8527 module.

EBOX/C-28

CLKODDABC,
CLKMBOX ABC

CLK CLK

CLX MBOX CLK
BLCDEF
CLK EBOX SOURCE

CLK EBOX SYNC
CLK EBOX SOURCE EN

CLK EBOX CLK EN

EBOX CLK

CLK CRM
CRAM TOO
CRAM TO1t

CLK SYNC EN |

CLK SYNC HOLD
MCL MBOX WAIT

CLK RESP MBOX
MBOX RESP IN

PAGE FAIL HOLD
CLK PAGE FAIL EN
CLK PAGE FAIL
PFOLYD A
CLKPFDLYD B
CLK FORCE 1777

CLK SBR CALL
CLK 1777EN
CLK INSTR 1777

|

IE

jo— T = 01, —®f@——— T = 10, ————03@—— T = 00.. MEMORY CYCLE ——)

jo— T = 0D, 9

Figure C-16 Clock Control,
EBox Clock Control Timing

EBOX/C-29

o I T o e B o fmr—t—v
I ! J J I T i T 11|
1
INCR INCR INCR INCR INCR Py vty
N e e I N e i Z LN p | p p 1 ! =t
{LOAD fLoaD v/ — !
" | asselt-o] : | } 1]
4 | i
R L b Yy P T
ey I L pr——_ 1 I 11 1
o 1 ‘: 0 o |] E ! 1 |
[} i 0 0o ! L 14 [
1 T T i =
.._+.l—"1___.._.l' | R P_lL
‘— | o | 4 1 I T vV ¥
pnnt 1 v bl
! - T B T
: I T 1
1 M r—1 i T |
I Tt
M T Ll s a1
{ 5 d 1 i i 1 J S
| ———
— e
i + g —
T 1 f
R FORCE 1777
p ! J -
! 1 4
L4 T
1 1

fe- T = 00, MEMORY CYCLE. PAGE FAULT 940~1777—e

_}&M Ty /

PC

AL B¢
Illuul'l 3 =7 = _}
1l
T
E.p!.‘...‘._?.‘_ ! TR
Fl .
A : | wMA SEL J —
% | WA | V™A SEL - —f

SPIC weA = &

VMA AD WA TN T
1 A BT VA PREY
13=17

—-----——---—--?---}-L——4-—-———----—---——-'

-

s
v

10- 2978

Figure C-17 Module M8542

EBOX/C-31

C.11 MODULE M8%44. MEMORY CONTROL.

The MES44 memory control {(MCL) module replaces the MX530 module in the KLI10-PV EBox. It
contams CRAM MEM ficld decoding. memory request enable logic. request type decoding.
MCLVMA READ. MCLVMA PULSE. MCLVMO WRITE. It also contains user and public enable
logic. as well as all the request type qualifiers. It contains bits 1-12 of the VMA held or PC mixers,
together with VMA control and selection logic (changed radically from the M&533 module in order to
provide extended addressing). and MBox cycle request logic.

This module no longer implements the SXCT instruction: however. it contains hardware to implement
the PXCT instruction in nonzero sections.

C.12 MODULE M8545, APR

Maodule M8545 replaces the M&539 module and contains the following additional logic to the M8539
module: a 128 X | RAM to store whether the index left halves are greater than 0; and an ALU which
enables the microcode to address AC plus any number for double word byte pointers for the STRING
instructions.

In the MES4S module, CRAM bits 00, 07, 08=1, and 6, are decoded to be APR EBOX SPARE and
APR EBOX CCA. respectively, as contrasted 10 the M8539 module which decodes these bits to be
APR EBOX CCA and APR EBOX SPARE, respectively.

C.13 MODULE M8548, 2K CONTROL RAM
The MBS48 module replaces the M8528 module in the model KL 10-PV processor.

Functionally, the M8548 and M8528 modules are similar. Each M8548 module contains 14 bits of the
control word (microinstruction} stored in the RAMs comtaining 2048 words. Each M 8548 module
contains CRAM address gating and [4 bits of the CRAM output register (CRAM register).

Figure C-18 shows the CRAM physicat bit position layout. Figure C-19 shows the actual CRAM
microcode bit position correlation. Figure C-20 shows the M8548 module physical bit position deriva-
tion for the KLI0-PV EBox. Figure C-21 shows the CRAM bit/module layout for the KLI0-PV
FBox.

Figures A-17 through A-23 show the microword bit position and field definition.

No logical relationship exists between the physical bits and respective microword bit names.

EBOX /C-33

CRAM PHYSICAL
BITS 00 15

CHAM PHYSICAL
BTSN

CRAM PHYSICAL
TS 2 ay

CRAM PHYSICAL
BITS 48 &

CRAM PHYSICAL
mYS AT

CRAM PHYSICAL

BTS04

i] i

ﬂ‘: I calua I “; l aAD I Au 1 ADA I “I’.] 1 l

SiL COWD 4 cuuouuan “”‘D noOLlL ADA su:"“’"‘ siL? 0 2
° 2 s ois st

Lo 33 b » I aw n » & a1 a

| IIIHIIIIIIIIU

e | 4 | oam |5 | s | v |
ADB ' AREW 7 SCADA k.nnl VMA I-n.un-i
siLy =2 A L4 % W ogiy 2 SCADASEL 7 MARR gy 7 ARM SIL T ganmam
Sie Y Sia s

[lHl[lLJ

‘ e Lo loaw | ok 1w | |
Mim M nw X ™~ ™ u:m scu
o0 MEM gy MIM qap COND 0aD CONDapma *™ apn 1 COND gy ¢ MU g g ""'
o ') 1 . ADW 2 .

(FIIIPI el 1 1 [z |"1"["J
L R (| ¥ 1

siL2 NV gy MY sz MU g MY uu '"-' v '“‘ U sy

PETTITIALIL)
TIITL]

! grect DISP/ gpgey DISP/
SPECo SPEC? SPLCA

Figure C-18 CRAM Physical Bit Position Layout

EBOX C-34

MICRO WORD
POSITIONS 00 1%

MICHO WwORD
SOSI TIONS 16 30

MICAD WORD
POSITIONS 1T 47

WL WORD
PO TIONS 48 6]

MICHO WORD
SO% TIONS b 19

MILRO WORD
FORITIONS 30 82

DISPATCH ADR 130 2100 ROOLE

I 1 I | 1 1 I |
AD ADA ~y Ll AN W AR AAx
sEL seiv2 | L SE\ 7 sra | e LOAD
ADA ADA AR AR AWM [L)
e o s sty siie st [11¥] LOAD

AR R EIEIEIE
WO s T OW W W W

- L] L] . -l n m ”»

Illlllllllllillllltj
[oto [ow [om |om | | = | = |

o ol gm g o we S 8
MALIC WU R

NI 70

L'

AF KLVOPY

16 308

Figure C-19 CRAM Microword Bit Position Layout

EBOX 'C-35

a8 ® ® ® Q) Q)
1 -840~ SCADA SEL i B0~ SCADR SEL V' al - SCADA SEL 1) - SCADESIL - SCMSIL a) - MARE
7 44 - VMASEL I e ARMSEL 4% - ARMSEL) o - e ARM T o AR SEL Y A7 = SH ARMM 1)
3 - &8 - MEW 00 - ARXMSEL 12 AW - MEM 1) S0 - MEM (T 10 - AREMSLL Y 1 - MEM (3
4 52+ B8R LOAD 72 - VMA SEL (1 51+ SKIPCOND (1 e - BRN LOAD 14« AD CRY 45 = SIPITOND (41
4 % e FMADR (a1 M- TOOD 57« FMADR (3 L ADR i) -1 W - SEHIFTOND (5
SHIT HEG SHIT HEG T REL SHIT REG
10140 1oran e 10140
50 ray (L] (k]
13 13 13 1
—1 s#ftoiN @ —_— TN — ST N @ —_— ST
" - ' "
22 0 f— CRAM N - 68 u@ 2 m.‘f.cum N ars w(our 2 m;mum-uucn? 12 0o —CRaM N+ a3E M
CROSOUT (N » 0| ——d DO " oo oy CHOLOUT (%A W—q DO Do o
=5 O |— cram (1= a0 w(Fr2 [: OF b= cram W sy n(ixd) . o F= cram N: a2 W any I m-—cmr;-mu @
CROS OUT (N + 40) —] D1 T CROSOUT N 41 M oy @ CROS OUT NedZ M — D1 @ CRGS OUT ‘N o+ 4l m 1]
2 7 2 b 2
-] 07 |— cuam N+ 20w (T87 s 07 |F—cnam N 20 (183 . 07 = cram w- 22im (Ca2) » 67 P-cmam % - 22 | @)
CHOA OUT [N + 20 M =i D2 CHOA OUT N+ 21— D2 CROM QUT (N0 221 M= 1y @ CRO&OUT N+ 33 W ——1 D2 @
3
. O3 |- CRAM N 80w (£07 g 03 p—cnam ¥ 01 m(@vi : a3 |- cnam N 02 u@ . 03 | chaM | -um@
CROLOUT (N + 00 H —=4 DI CROEOUT W+ 01 4 —q 03 CROA OUT N021 M=y CROS OUT (4 + 00 M ——dq D3
§ s
— sHFTON 2] serow 21 surrom — MY N
y 0= LOAD ' 0+ LOAD ’ 0+ LOAD] 0+ LOAD
CROIRESETH —4 7 1=0iN -0 T Ve -gp——-— 7 1-2m -0 7 re0m -0
3803 2s -3 04, 2-am o4, 2-am —21) 2-3m -3
3+ HOLD 3+ HOLD 1+ HOLD 3+ MOLD
L] .
CROICLE AW 2l ax CHOICAN B M CiLE CROICLEE W cim CHOICLE D W= CLE
® ® ® ® @® ® ®
70 - AD SEL (8 1= SCAD - ADSEL A 2= SCAD D 22+ AD SEL 1D 3+ SCAD i) D-ADSLL IV
24 = AD BOOLL &= LD 74 - ADA DI% &= LD % - ADASEL 1 T+ LD D 27 = ADASEL IV}
3-8 LD N 78 - ADBSEL ' W= SHIELD i % - CRAM - D W0 MELD I8 30 - CRAM - 0N 1M LD I8 I = CRAM = i
4 <17 JELD I 32 = ADBSEL IV 13 JIELD I3+ CRAM - 13 T4 LD I 34 CRAM - & o= LD V0 - CRAAM - 18
& - 16 - WO SEL 36 - ARXM SLL A7 = SHIPCOND 1D 37+ CRAM « 181 W SKIPCOND 111 38 CRAM - i1 19+ SKIPCOND (2 - CRAM = (B
NOTL
ROW 1 =soi 82 N=D
ROW 2= whot %0 No 4
ROW J-wordd N=8
HOW 4 = ot &7 N =12
MOW S - ot 40 & - 16

Figure C-20

orete

KLI10-PY EBox CRAM Module

Physical Bit Position Derivation

EBOX

/C-37

/A*%*//*V//A*v/

T &0

SLO

UEow UEow UEeoea UEow

ERROR
DETECTION

TO

HEBEEH00080808a0

,//,A_ %.%/.%%

(T I I I I I I I T I TI LT —I[

m—._._u_n_a_a_m_n_u_a—w_ln_u_._

L R R
u_.ﬂ_;ﬁ_;;__.___ﬂ___“_m ; ﬁ.11||..j.
N
{{LLLILEELTLEEIT]]
/A*%*V//A,/V//A#/m. mmwm

UuEow Uz ow uEown Uz oo

e

KL10-PV EBox CRAM Bit

Module Layout Chart

Figure C-21

EBOX/C-39

A
Abbreviations, B-i
AC, I-14, 1-19, C-10, C-13, C-14. C-16, C-18,
C-20. C-21.C-28
Shadow, C-20, C-21
Special Considerations, C20
ACKNOWLEDGE, 2-69,2-173
AD Field, 2-100
ADA, 2107
ADB. 2-107
ADXA, 2-108
ADXB. 2-l108
ADD Instruction Example,
Address
Break, 3-32,3-35
Break INHIBIT, 3-38
Calculation, 2-31, 2-38
Generation, 2-63
Global, C-5-C-7. C-10. C-11, C-14, C-16,
C-18,
C-20
Local, C-5.C-6.C-14, C-20
Modification, 3-65
Path, 1-21, 2-88, 2.9
Physical Page, 2-88
Refill, 2-88
Translation, 1-44
Virtua! Classification, 2-92

A-14

ALU
Description, 2-100
Functions, 2-101

AOBIN, C-15.C-19
AOBJP. C-15.C9
APL. 1-55, 2-69

Word Format, 1-49
APR, 2-43.C-28
AR Mixer Mixer, 2-114
Arithmetic Processor

Facility, 3-32

Status Register, 3-38

ARMM, 2-114

AR Selection, 2-109

ARX Field, 1-13, 2-111

A READ
Dispatch, 2-38, 2-1285, 2-126
Logic, 3-65

INDEX

— -

B
Basic Machine Modes. 2-70
BLKI. BLKO, C-15.C-19
BLT, C-I8
BR Field, 2-112
BRX Field, 2-112
Byte Instruction, C-11, C-12
Byte Pointer, C-12

C
Cache, 2-55
Clear (CCA), 288
Paging Data. 1-4)
Refill RAM Facility, 3-54

CCA, 2-88
Clock
Basic Rate Selection, 3-23, C-23, C-24
Basic Source Selection, C-23
Diagram, C-24

Control Block Diagram, C-26
Control Diagnostic, C-23
Control Logic, 3-30, C-23-C-28
Control Timing, C-29
EBox, C-23-C-28
Fanout, 3-31
Generator, C-2¢
EBus, C-23,C-25
Initialization, 3-22, C-23, C-25
Main Source, C-1.C-3
MBox, C-23,C-27,C-28
Fanout, 3-31
Module (M8526-YA), C-23,C-28
Overview, 3-20
Codes
A Ficld, 1-14
COMPEA, 2-37.2-38
Control RAM Address Module (M8540), C-28
CRAM, -2, 1-13, i-18, 1-27, 2-1, 2-14, 3-29,
A-1, C-1,C-33
Address Inputs, 2-12
Addressing. 3-57
Dispatch Field, 3-62
Field Definitions, A-3
Parity Error, 2-10, C-27
Physical Bit Assignments, A-$, C-34, C-37,
C-39

EBOX/INDEX-]

Pushdown Stack, 3-57
Time Field, C-23, C-26, C-27
CROBAR. 3-22,C-23
CRYO Generation, 3-19
CS. I-1
CST. 141
Cycles
Basic Machine, 2-23
Begin MBox, 2-163
EBox Clock., C-23, C-26, C-28
EBox Data Store, 2-141
Execution, 2-137
Fetch, 2-125
Finish Store, 2-49
Hardware, 2-§
Interrupt, 2-63
MBox. 2-37
Page Fail. 249
Processor, 2-1
Trap, 2-59

Data Fetch
EBox, 2-124
Manager, 2-88
REQUEST EN, 2-163
Data Path, 1-50, 2-92, 2-99
General Organization, 2-99
Mixer Selection, 2-100
Data Store Manager, 2-21
Data Transfer Signals, 2-173
DEMAND, 2-69
Dispatch
A READ, 2-38, 2-125, 2-126
CRA Parity, 3-69
DRAM J, 1-14
IR, I-13
NICOND, -2, 1-13, 1-14, 2-6, 3-12
Siate Diagram, 2-9
Table, 2-20
DRAM. 1-2, 1-14, 2-14, 2-137, 3-10, A-1
Addressing and Selection, 3-11
Organization, 1-7
Parity Error, 2-10, C-27
Register Fields, 1-2
Word Format, A-23
DTE20, 2-67, 2-69

E
EA Calculation, A-{l
EA MOD, 1-13, 2-18

EBox. 1-3

Clock, 2-13. 3.9, 3.24, C-23, C-26
Control No. 1 Module (M8543), C-28
Cycle, C-23,C-26
Data Fetch, 2-124
Data Paths, 1-59
Data Store Cycle. 2-14]
Execution Cycle Overview, 2-139
Frozen, 2-10
Instruction Set, 2-114
Main Loop. 29
Module Utilization
KLIO-PA, 3-1
KL10-PY, C-1-C-3
Priorities, 2-58
REQUEST IN, 2.31
Reset, 2-1

EBR, I-15, 2-88
EBus

Basic Operation, 2-182
Control, 1-47

ECL Acquisition, 2-183
Interface Control, 2-167
Interface Organization. 2-177
Requesting, 2-178, 2-191
Reset, 3-24, C-23.C-25
Signal Lines, 2-173

Effective Address

Calculation, 2-119, 2-120, C-3, C-5, C-10,
C-16, C-17
Manager. 2-18

EPT, 1-28, C-1§
ERA Word, 3-46, 3-56
Error

CRAM Parity, 2-10. C-27
Detection, 3-27, C-27
DRAM Parity, 2-10, C-27
External, 343

1/O Page Fail, 3-44

MBox, 1-43

MBox Address Register, 3-56
NXM Overview, 345

SBus, 3-39

STOP Enables. 2-14

EXEC Virtual, 2-196

Execution Cycle, 2-137

Executor, 2-21, 2-45

Extended Addressing. C-3, C-5, C-1S, C-17,

C-18

Extend String Operations, C-i4, C-19

EBOX/INDEX-2

F

Fast Memory. 1-14, 1-50

Address Field. 1-19
Addressed by VMA, 2.92
ADR Field, 2-112
Information Flow. 1-53
Parity Error, 2-10
Reciere. 24123

Fetch Cydic, 2-125
Field. 1-13

ARMM, 2-114
I (Indirect). C-§
Microword, A-16
MQ., 2114
SC, 2-113
SCAD., 2-112
SCADA, 2-113
SCADB. 2-113
SH., 2114
SPEC, A-l]
VMA, 2114
X Address, C-5
Y Address, C-5

Flags, 2-76. 2-89. C-12-C-14, C-17-C-19
Function

00, 2-195
01, 2-196
02, 2-19%
03, 2197
04, 2-197
0s. 2197
06, 2-198
07. 2-198

Funv;tional Blocks, 1-6

G
General Interrupt Sequencing, 2-66
Global
Address, C-5-C-7, C-10, C-11, C-14, C-16,

C-18, C-20

Byte Pointer. C-11
Format, C-$-C-7
Indirection, C-9
Indirect Word, C-20

Indexing, C-9
Stack Pointer, C-11,C-12
Table, C-8

H

Halt

Handler, 1-13, 2-23
Loop. 2-¢

Hardware
Cycle Summary, 2-160
Page Table, 141

1

Immediate Instructions, C-10, C-16
Indexing, 2-120, C-5-C-7, C-10, C-16,C-18

Negative, C-8,C-9
Index Register, C-5. C-6, C-9
Indirect Addressing, C-17, C-20
1 (Indirect) Field, C-S
Indirection, 2-120, C-5-C-7, C-10, C-18
Inialization, C-23
I structions, 1-6

AC References, C-10

AOBIN, AOBJP, C-15,C-19

Basic Four Mode Type, 2-141

BLT. C-14.C-18

BYTE. C-11,C-12

Complex, 2-12§

Immediate, 2-128, 2-141, C-10, C-16

JSA, JSR. C-15,C-19

New. C-3,C-1i

XBLT, C-14,C-19
XMOVEL, C-16, C-19

Non-PC Change, 2-125

Non-Read PSE, 2-13}

Not Requiring (E), 2-125

OoLD

JRSTF, C-20
JRSTFE, C-20
PC Change, 2-125
PC Storing, C-1}
PCXT. C-33
Read-PSE-Write, 2-137
Requiring (E), 2-131
Special Case in Non-Zero Sections
Byte, C-11,C-12
PC Storing (PUSHJ, JSP, JSR, POPJ),
C-1i
Stack (PUSH. PUSHJ, POP, POPD),
C-12
STACK, C-12,C-21
STRING, C-28
SXCT, C-33
XBLT., C-14.C-19
XCT. C-19
XMOVEL. C-14,C-19
Instruction Set
Divisions, 2-117
Overview, 2-114
interface Control. 2-158, 2-167

EBOX/INDEX-3

Interlocks, 2-178
Interrupts, 1-6, 1-47, 2-63
Dialogue, 2-67
General Sequencing, 2-66
Handling, 2-177
Instructions, 2-66
Priority Chain, 2-65
Seosing, 2-183
Simultaneous, 1-47
Testing For, 2-120
Introduction, 1-1
/0
Basic Control, 2-178
Handler., 2-23
IR
AC Control, 3-10
DRAM Control, 3-§
Loading and Control, 3-2, 3-9
Test Satisfied, 3-13

3
JRSTF, C-20
JRSTFE. C-21
JSA, JSR, C-18.C-19

K
KL10-PA EBox, C-l. C-14, C-15, C-19
KLI10-PV EBox, C-1,C-3,C-32,C-33
KL Paging, C-3

L
Local
Addrest, C-5.C-6.C-14,C-20
Byte Pcmter, C-11
Format, C-§
indexing, C-8
Stack Pointer, C-11.C-12,C-15
Tables, C-8
Lines
CS, 1-1.2-173
DATA. 2-173
EBus Signal, 2-173
Function, 2-173
Priority Transfer, 2-174
Loading Flags. 2-76
Logic Descriptions, 3-1
LUUO, C-12,C-14,C-16,C-18

M
Memory Cycle Control, 2-167
Memory Control Module (M8544), C-33
Memory Hook, C-1
Memory References. 2-127, 2-133
Memory Request, 1-24
MBox, 2-93

Microcode. 1-41, 2-17, A-1, C-1, C-33
Example. A-11, A-14
Field Definitions, A-2, C-33. C-3§
PI and EBus Interface, 2-18%
Sample Listing. A-l
Variable Definitions, A-2
Microinstruction, 1-54
Microprogram, 1-17. 2-9, A-l
Address Control, 2-11
Deferred. 2-14
Frozen, 2-10
Halt Loop. 2-6
Organization, 2-17
States, 2-1,2-6
Wait, 2-10
Microstack Operation, 2-141
Mnemonics, B-1
Mode
Control Logic, 2-72
Initialization. 2-76
Memory., 2-157
SELF, 2-157
Structure, 2-71
Transfer., 2-73
User Concealed, 2-86

User 10T, C-17
User Public, 2-60, 2-76, 2-79
Module

APR (M8545), C-33
Control RAM Address (M8541) C-28
Memory Control (M8544), C-33
M8540, C-28
M8511, C-28
M8527, C-28
Mgs28, C-33
M8530, C-33
MB8539, C-33
Shift Matrix (M8540), C-28
Vertical Memory Address (M8542), C-28
2K Control RAM (M8548), C-33
Module Utilization
KL10-PA EBox. 3-3
KLIO-PV EBox. C-1.C-3
MOVE Instruction Example. A-11
MQ
Field, 2-114
Selection. 2-11§
MUUO, 2-69, 2-72, 3-54, C-13, C-14, C-16.
C-17

N
New Instructions, C-3, C-11
XBLT, C-14.C-19
XMOVEL, C-16, C-19

FBOX/INDEX-4

NICOND. -3, 1-13. 1-14, 2-6, 2-14, 2-15.
312, A-H
Nonexistent Memory, 3-43

(4]
Overview
Basic Machine Cycle, 2-24
Clock. 3-20

EBox Differences (KL10-PV), C-1
Execution Cycle, 2-139

1/0 Instruction, 1-49

Instruction Set. 2-114

Interrupt Dialogue, 2-68

Page Fault, 1-27

Pt Dialogue, 1-48

Page Fail

Cycle. 249

Handling., 2-5§

Word Adjusting, 2-S8
PAGE FAIL HOLD, 1-27.2-76
Page Fault, 2-5§

Handler, 2-21

Overview, 1-27
Page Mapping. 1-30
Page Pointers, 1-28

Immediate, 1-28, 1-31

Indirect, 1-24, 1-31

Shared. 1-24, 1-31
Page Table, 1-25, 1-2R, 2-63
Paging

Hardware Support, 141

KI. 1-25, 1-26. 143

KL, 1-28.1-29, 143, C-3

Path, 1-30
PC. C-3.C-5, C-6. C-10, C-21

Global, C-11

Loading. 2-97, C-11

Loading or Inhibit, 2-98

Loop, 297

String Instructions (PUSHIJ, JSP,JSR, POPJ

- non Zero sections), C-11
PCXT Instruction, C-33

Pl 1-55
Control, 1-47
Cycle. C-15

Handler, 2-17. 2-21, 2-120, 2-183, C-15
Timing, 2-193

Pointer Interpretation, 1-34

Power Fail, 3-44

Power Up Timing., 3-26

Priority Transfer Lines, 2-174

Process Table References, 2-59

Processor

Cycles, 2-)
identification, 3-53
Timing. .20
Program Counting. 2-93
Pushdown Stack, 3-57

Quadword, 1-27

R
Restoring
Concealed Program, 2-81
Kernel Program, 2-8§
Programs by Supervisor, 2-81
User Public Program, 2-85

S
Saving Flags, 2-86
SBus Error. 3-39
SC Field, 2-113
SCAD Field, 2-112
SCADA Field, 2-113
SCADB Ficld, 2-113
Section Detection Logic. C-28
Section Pointer, 1-28
Sctup Prefetch, 2-167
SH Field, 2-114
Shift Matrix Module (M8540), C-28
Skew Delays, 3-30
SPEC Ficld, A-11
Special Case Instructions
in Non-Zero Sections, C-11 C-12
SPT Index, 1-31, 141
Stack Instructions (PUSH, PUSHJ. POP, POPJ,
AQJSP). C-12,C-28
Stack Pointer, C-12
Startup/Stop Interface, 2-18
String Instruction, C-28
SWEEP. 347
SWEEP DONE, 347
SXCT Instruction, C-33

T
Timing
Clock Control, 3-33, C-23-C-29
Power Up, 3-26, C-23
TCI10 Byte Pointer Fetch, 2-198
Transfer. 2-69, 2-173
Translator, 1-5
Trap
Cycle, 2-59
Handling, 2-59

EBOX'INDEX-S

U
UBR, 1-25, 2-88
UPT. 1-28,C-12,C-13
User 10T Mode, C-17

v
Violation, 2-81
Virtual Address, 1-2§

Adder. 2-88

Classification, 2-92

Effective, 1-14

Space Configuration, 2-75
Virtual Memory Address Module,
VMA, 1-21. 1-26, 293, C-3, C-31

Control, 1-43, C-28

Field, 2-114

Register, 2-93, C-28

W
Wait, 2-12

MBox, 2-13,C-27
Word Request, 2-31

X
X Address Field, C-§
XBLT., C-14,C-16,C-19
XCT. C-15.C-19.C-21
XCTGO., 2-M

XCTW, 2-195

XJEN, C-15,C-17.C-19
XJRSTF, C-17,C-19
XMOVEL C-14, C-19. C-21
XPCW, C-15.C-17,C-19
XSKFM, C-18.C-19

Y
Y Address Field. C-§

0-9
2K Control RAM Module (M8541),

EBOX/INDEX-6

C-33

	KLBinder1Sec1
	1klbinder1
	1-3
	2klbinder1
	1-7
	1-9
	1-11
	3klbinder1
	1-15
	1-17
	4klbinder1
	1-32
	1-34
	1-36
	1-38
	5klbinder1
	1-45
	6klbinder1
	1-51
	7klbinder1
	1-57
	1-59
	8klbinder1
	1-63

	klBinder2
	s2
	KLBinder1Sec2
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	2-58
	2-59
	2-60
	2-61
	2-62
	2-63
	2-64
	2-65
	2-66
	2-67
	2-68
	2-69
	2-70
	2-71
	2-72
	2-73
	2-74
	2-75
	2-76
	2-77
	2-78
	2-79
	2-80
	2-81
	2-82
	2-83
	2-84
	2-85
	2-86
	2-87
	2-88
	2-89
	2-90
	2-91
	2-92
	2-93
	2-94
	2-95
	2-96
	2-97
	2-98
	2-99
	2-100
	2-101
	2-102
	2-103
	2-104
	2-105
	2-106
	2-107
	2-108
	2-109
	2-110
	2-111
	2-112
	2-113

	KLBinder1Sec3
	s3
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	a-1
	a-2
	a-3
	a-4
	a-5
	a-6
	a-7
	a-8
	a-9
	a-10
	a-11
	a-12
	a-13
	a-14
	a-15
	a-16
	a-17
	a-18
	a-19
	a-20
	a-21
	a-22
	a-23
	a-24
	a-25
	a-26
	a-27
	a-28
	a-29
	a-30
	a-31
	a-32
	a-33
	a-34
	a-35
	a-36
	a-37
	a-38
	1
	2
	3
	4
	5

