
Introduction

to RT-11

AA-5281C-TC

March 1983

This document is an introductory manual for the RT—-11 operating sys-

tem. Its purpose is to acquaint new users with the RT—11 commands

that perform common system operations. This manual presents the

background material necessary to understand the system operations. It

also contains a series of command examples and demonstration exer-

cises that complement the text.

This manual supersedes the Introduction to RT-11, Order No.

AA-5281B-TC.

Operating System: RT-11 Version 5.0

To order additional documents from within DIGITAL, contact the Software Distribution

Center, Northboro, Massachusetts 01532.

To order additional documents from outside DIGITAL, refer to the instructions at the back

of this document.

digital equipment corporation - maynard, massachusetts

First Printing, March 1980

Revised, March 1983

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this docu-
ment.

The software described in this document is furnished under a license and may be used
or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by DIGITAL or its affiliated companies.

© Digital Equipment Corporation 1980, 1983.

All Rights Reserved.

Printed in U.S.A.

A postage-paid READER’S COMMENTS form is included on the last page of this
document. Your comments will assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

clifgliltlallg
DEC MASSBUS UNIBUS
DECmate PDP VAX
DECsystem-10 P/OS VMS
DECSYSTEM-20 Professional VT
DECUS Rainbow Work Processor
DECwriter RSTS
DIBOL RSX

M12700

CONTENTS

Page

PREFACE ix

CHAPTER 1 INTRODUCING THE RT-11

COMPUTER SYSTEM 1-1

SYSTEM HARDWARE 1-1

The Computer.« o o oo 1-1

The Terminal 1-3

The Storage Medium 14

Optional Devices 1-6

SYSTEM SOFTWARE 1-7

The RT-11 Operating System 1-8

Language Processors 1-10

Application Packages 1-10

SYSTEM DOCUMENTATION. 1-10

Hardware Manuals 1-10

Software Manuals. 1-11

Source Listingso 1-11

CHAPTER 2 STARTING THE RT-11 COMPUTER
SYSTEM. i i it it e 2-1

COMPUTERMEMORY oo v v 2-1

HARDWARE CONFIGURATION 2-1

Terminal« . o 2-3

Computer o . e e 2-3

System Volume 2-3
Storage Volume 24

Optional Devices and Supported Languages 24

BOOTSTRAPPROCEDURE 2-4

CHAPTER 3 INTERACTING WITH THE RT-11

COMPUTER SYSTEM 3-1

USING THE CONSOLE TERMINAL TO

EXCHANGE INFORMATION 3-1

USING MASS STORAGE VOLUMES 34

FileStorage. « o o ¢ o v v oo oo 3-7

File Protection « .« .« o oo 3-7

CHAPTER 4 USING THE MONITOR COMMAND
LANGUAGE. v 4-1

ENTERING COMMAND INFORMATION 4-1

General Command Format 4-2

Control Commands 4-3

Re-Creating the Examples. 43

iii

CORRECTING TYPING MISTAKES. 44
INITIAL MONITOR COMMAND OPERATIONS. 4-5

Using VT11 Display Hardware 4-5

Entering the Date and Time-of-Day 4-8
Assigning Logical Names to Devices. 4-9
Listing Volume Directories 4-12
Initializing the Storage Volume 4-15

CHAPTER 5 CREATING AND EDITING TEXT FILES 5-1

THE RT-11 EDITOR 5-1
CREATINGATEXTFILE. 5-2
EDITINGATEXTFILE. 54

USING UPPERCASE AND LOWERCASE CHARACTERS. . . 5-12
USING A GRAPHICS DISPLAY TERMINAL

DURING EDITING 5-15
Normal Use of the Graphics Display. 5-16
Immediate Mode 5-16

CREATING THE DEMONSTRATION PROGRAMS 5-19

CHAPTER 6 COMPARING TEXTFILES 6-1

PERFORMING A COMPARISON 6-1

CHAPTER 7 PERFORMING FILE MAINTENANCE

OPERATIONS 7-1

FILE DIRECTORY OPERATIONS. 7-1
MULTIPLE FILE OPERATIONS 7-2
FILE COPYING OPERATIONS 7-3
FILE RENAMING OPERATIONS 7-4
FILE DELETION OPERATIONS 7-5
FILE PROTECTION OPERATIONS 77
FILE LISTING OPERATIONS 7-8

CHAPTER 8 CHOOSING A PROGRAMMING

LANGUAGE. 8-1

HIGH-LEVEL VS MACHINE-LEVEL LANGUAGES 8-1
RT-11 PROGRAMMING LANGUAGES 8-3
CHOOSING A LANGUAGE FOR THE

DEMONSTRATION 84

CHAPTER 9 RUNNING A FORTRAN IV PROGRAM. 9-1

DEVELOPING AN EXECUTABLE FORTRAN IV

PROGRAM 9-1

iv

USING LIBRARYMODULES 9-2

COMPILING THE FORTRAN IV PROGRAM 9-3

LINKING OBJECT MODULES TOGETHER. 9-8

RUNNING THE FORTRAN IV PROGRAM 9-11

COMBINING OPERATIONS. 9-12

ALTERNATE FUNCTIONS 9-13

FILE MAINTENANCE 9-14

CHAPTER 10 RUNNING A BASIC-11 PROGRAM 10-1

DEVELOPING A BASIC-11 PROGRAM. 10-1

USING THE BASIC-11 LANGUAGE PROCESSOR 10-1

USING THE BASIC INTERPRETER. 10-2

Immediate Mode 10-3

Creating and Editing a BASIC-11 Program 104

RUNNING A BASIC-11 PROGRAM. 10-8

FILE MAINTENANCE 10-12

CHAPTER 11 RUNNING A MACRO-11 ASSEMBLY

LANGUAGE PROGRAM 11-1

DEVELOPING A MACRO-11 ASSEMBLY LANGUAGE

PROGRAM e s i d e e e e 11-1

USING THE MACRO-11 LANGUAGE PROCESSOR 11-2

The Program Counter 11-3

The Symbol Table. 114

Machine Language Code 11-4

ASSEMBLING THE MACRO-11 PROGRAM 11-6

LINKING OBJECT MODULES TOGETHER. 11-13

RUNNING THE MACRO-11 PROGRAM 11-15

COMBINING OPERATIONS. 11-16

FILE MAINTENANCE 11-18

CHAPTER 12 LINKING OBJECT PROGRAMS 12-1

RESOLVING SYMBOLIC AND LIBRARY

REFERENCES. i 12-2

PROGRAM RELOCATION AND ADDRESS

ALIGNMENT o o e 12-3

Absolute and Relocatable Program Sections 124

The Overlay Feature 12-6

PRODUCING A LOAD MODULE AND

ALOADMAP e 127

CHAPTER 13 CONSTRUCTING LIBRARY FILES 13-1

KINDS OF LIBRARY FILES. 13-1

Macro Libraries oo 13-1

Object Libraries. 13-1

CREATING AND MAINTAINING A LIBRARY FILE 13-2

Creating Object Library Input Files 13-2

Building the Object Library 13-5

Updating the Object Library. 13-6

FILE MAINTENANCE 13-7

CHAPTER 14 DEBUGGING A USER PROGRAM 14-1

AVOIDING PROGRAMMING ERRORS 14-1

WHEN PROGRAMMING ERRORSOCCUR 14-2

USING THE ON-LINE DEBUGGING TECHNIQUE 14-3

FILE MAINTENANCE 14-13

CHAPTER 15 USING THE FOREGROUND/BACKGROUND

MONITOR 15-1

THE FOREGROUND/BACKGROUND

ENVIRONMENT 15-1

Running the Foreground/Background

Programs L 15-1

Creating the BackgrounddJdob 15-2

Editing the Background Job. 15-2

Running the BackgrounddJob 15-2

USING THE FBMONITOR 15-3

Communication in a Two-Job Environment 15-3

Creating the Foregrounddob 154

Executing the Foreground and Background Jobs. 15-5

FILE MAINTENANCE 15-8

CHAPTER 16 USING INDIRECTFILES. 16-1

CREATING AN INDIRECTFILE 16-1

Entering Monitor Commands 16-1

Using the Editor to Create an Indirect File 16-2

EXECUTING AN INDIRECTFILE 164

FILE MAINTENANCE 16-8

CHAPTER 17 ADVICE TONEWUSERS. 17-1

USINGTHEHELPFILE 17-2

APPENDIX A MANUAL BOOTSTRAPPING

OPERATIONS. A-1

BOOTSTRAPPING THE SYSTEM.. A-1

TYPING THE BOOTSTRAP ON THE

TERMINALKEYBOARD A-3

USING A PUSHBUTTON CONSOLE

TO BOOTSTRAP A4

vi

USING A SWITCH REGISTER

CONSOLE TO BOOTSTRAP. A-5

APPENDIX B SELECTED SYSTEMTOPICS B-1

STOPPING AND STARTING

THE SYSTEM o i e e e et et e e e e e e e e s B-1

Stopping the System.o B-1

Starting the System. B-1

THE SYSTEM STOPS UNEXPECTEDLY B-2

SUGGESTIONS FOR BOOTSTRAPPING

THE SYSTEM o o o o e et e i e e e e e e e e B-2

BACKING UP THE SYSTEM VOLUME. B-3

DIRECTORY- VS NONDIRECTORY-

STRUCTURED VOLUMES B4

ALTERNATE RENAME OPERATION

FORMAGTAPE USERS.« oo v oo B4

USING THE FORTRAN/BASIC

LANGUAGE VOLUME v B-5

SUBSTITUTING VOLUMES DURING

OPERATIONS. . . . o o et e e e e e e e e e e e B-6

USING THELINK VOLUME B-8

FORTRAN/LINK FILE MAINTENANCE B-9

GLOSSARY & o o e e e e e e Glossary-1

INDEX. . . . o o e e e e e e e e e e e e e e e e e e Index-1

FIGURES

FIGURE 1 Flowchart for Selective Reading. xii

1-1 RT-11 Computer System 1-2

1-2 PDP-11Computers « 1-3

1-3 TerminalDevices 14

1-4 Randon-Access Storage Media and Their Devices . .1-5

1-5 Peripheral Devices 1-6

1-6 RT-11 System Software. 1-8

1-7 RT-11 Operating System 1-9

2-1 Bootstrap/Computer Relationship 2-2

3-1 LA120/VT100 Terminals 3-2

3-2 LA120/VT100 Keyboard Layouts 3-3

3-3 Mass Storage Volumes 3-6

4-1 VT11 Display Hardware. 46

5-1 EditingwithRT-11. 5-2

5-2 Text WindowFormat 5-16

9-1 Evolution of a FORTRAN IV Program. 9-1

9-2 Function of a FORTRAN IV Compiler. 9-2

vii

TABLES

TABLE

9-3

9-5

10-1

11-1

11-2

11-3

114

11-5

11-6

12-1

12-2

A-1

A-2

2-1

22

4-1

4-2

4-3

5-1

5-2

8-1

11-1

A-1

Dimensions of FUN(X,Y) 9-7
The Link Operation. 9-9
The Result of GRAPH.SAV 9-12
Functions of the BASIC-11 Language Processor. . 10—2
PDP-11 Programming Card. 11-1
Evolution of a MACRO-11 Program. 11-2
Function of a MACRO-11 Assembler 11-2
PDP-11 Computer Memory 11-3
PDP-11Word. 11-5
The Link Operation. 11-14
Link Functions 12-1
Object Module Relocation 124
Pushbutton Console. A4
Switch Register Consoles A-5

Representative System Volumes. 24
Bootstrap Prompts and Responses 2-6
Keyboard Characters 3-5
Keyboard Symbols 44
Physical Device Names 4-9
Special Logical Device Nmaes. 4-10
FileTypes., . . 4-13
Command Arguments. 5-5
Immediate Mode Commands. 5-17
Language Comparisons 8-2
Decimal/Octal/Binary Conversion 11-6
Binary Conversion A-6

viii

The RT-11 (Real Time-11) computer system is a single-user

computer/operating system that serves the programming needs

of both the beginning and the advanced programmer. RT-11

supports a number of programming languages, including in-

dustry-standard FORTRAN and BASIC: and — for more ad-

vanced users — the PDP-11 assembly language, MACRO-11.

RT-11 also provides a comprehensive set of operating com-

mands for controlling system operations.

The purpose of this introductory manual is to acquaint you with

a number of RT-11 operating commands that are used to per-

form common system operations. The manual first presents in-

formation that you need to understand a particular system op-

eration; then it shows you how to apply the system operation in

a series of operating commands and exercises that you re-

create; finally, it provides a list of reference materials that con-

tain more information about the operation. This approach

makes it possible for you to learn quickly the major features of

the system; at the same time, it eliminates many of the

learning problems encountered by new users.

This manual describes system usage fundamentals. It is not the

intent of this manual to teach you to program the PDP-11 com-

puter. You may already be proficient in one or more of the

available programming languages. Likewise, no attempt has

been made in this manual to cover all the possible applications

for which the RT-11 computer system is suited. You will dis-

cover many applications yourself as you continue to use the

system.

This manual is designed for three categories of RT-11 users:

e Inexperienced users: Those having little or no previous

“hands-on” computer experience (including those whose expe-

rience has been limited to batch environments)

e Experienced users: Those who are experienced users of a

computer system other than the RT-11 computer system

e Experienced RT-11 users: Those who have used previous

versions of the RT-11 computer system but wish a quick in-

troduction to the newest features of the current system (Ver-

sion 5)

The manual contains 17 chapters and 2 appendixes. The de-

scriptions that follow and the chart at the end of this section

will help you determine your own reading path.

ix

PREFACE

MANUAL INTENT

MANUAL DESIGN

Preface

Chapter 1, Introducing the RT-11 Computer System, discusses

general system concepts. It introduces the roles of hardware

and software in a computer system and describes the specific

hardware and software components of the RT—11 computer

system. Chapter 1 is intended for users in the first two catego-

ries.

Chapter 2, Starting the RT-11 Computer System, shows all

users how to start the system.

Chapter 3, Interacting with the RT-11 Computer System, dem-

onstrates how you use the console terminal to control system

operations. Again, this chapter is most helpful to users in the

first two categories.

Chapters 4 through 7 describe system operations that are

useful to all categories of users. Each chapter begins with a

textual explanation of a particular system operation and ex-

pands into computer demonstrations showing the operation in

use. Topics covered are: Using the Monitor Command Lan-

guage; Creating and Editing Text Files; Comparing Text Files;

and Performing File Maintenance Operations. Experienced

RT-11 users may prefer to skip the textual explanations and

review only the computer exercises.

Chapter 8, Choosing a Programming Language, helps you

determine which language to use. Choose BASIC-11,

FORTRAN 1V, MACRO-11, or a combination of these three

languages to continue the exercises in this manual (BASIC-11

and FORTRAN IV are optional products).

Chapters 9, 10, and 11 describe the process of running pro-

grams written in the FORTRAN IV, BASIC-11, and

MACRO-11 languages, respectively. You should read any

chapters that apply to your choice of language.

MACRO-11 and FORTRAN IV users should continue to

Chapter 12, Linking Object Programs, and Chapter 13, Con-

structing Library Files.

Chapter 14, Debugging a User Program, provides some sugges-

tions for finding and fixing errors in user programs; all users

should read this chapter.

Chapter 15, Using the Foreground/Background Monitor, is in-

tended for users who plan to exercise the foreground/back-

ground capability of the RT-11 system.

All users should continue to Chapter 16, Using Indirect Files.

Indirect files allow the system to perform operations unat-

tended.

Chapter 17 gives some advice to new users and includes a de-

scription of the RT-11 HELP file.

Two appendixes are provided for reference. Appendix A

discusses manual bootstrapping procedures and Appendix B

provides some additional information on selected system usage.

A glossary of technical terms appears at the end of the manual

for reference purposes.

The following flowchart will help you plan your reading path

through the manual. Read the chart from top to bottom; answer

the questions and follow the direction of the arrows to see

which chapters you should read.

NOTE

The demonstration portions of this manual are for use

with Version 5 and later releases of RT-11. The exer-

cises are quite lengthy, and you may prefer not to com-

plete them in one sitting. You may pause at the end of

any individual chapter. It is recommended that you stop

only at the end of a chapter since you will otherwise not

complete an exercise and thus may introduce errors that

will affect later exercises. Instructions for pausing and

beginning again are given in Appendix B.

xi

Preface

Preface

WHAT IS

YOUR COMPUTER
Past Versions of RT-11

EXPERIENCE

No Experience, or

other systems

READ

CHAPTER 2

READ CHAPTERS

1,2AND 3

READ

CHAPTERS 4

THROUGH 8

BASIC

LANGUAGE WiLL

YOU USE

FORTRAN

MACRO

READ READ READ
CHAPTER 10 CHAPTER 9 CHAPTER 11

READ READ
CHAPTERS 12 CHAPTERS 12

AND 13 AND 13

READ READ READ
CHAPTER 14 CHAPTER 14 CHAPTER 14

DO

YOU WANT

TO USE ANOTHER

PROGRAMMING

LANGUAGE

?

CHAPTER 15

READ

READ CHAPTERS

16 and 17

DONE

Figure 1 Flowchart for Selective Reading

CHAPTER 1

INTRODUCING THE RT-11 COMPUTER SYSTEM

A computer system is a collection of components that work to-

gether to process data. The purpose of a computer system is to

make it as easy as possible for you to use a computer to solve

problems. A functioning computer system combines hardware

elements with software elements. The hardware elements are

the mechanical devices in the system, the machinery and the

electronics that perform physical functions. The software ele-

ments are the programs written for the system; these programs

perform logical and mathematical operations and provide a

means for you to control the system. Documentation includes

the manuals and listings that tell you how to use the hardware

and software. Collectively, these components provide a com-

plete computer system that allows both layman and expert

alike to use a computer.’

SYSTEM HARDWARE

SYSTEM SOFTWARE

+SYSTEM DOCUMENTATION

COMPUTER SYSTEM

The RT-11 computer system requires three basic hardware

items: the computer, which performs all data processing; a ter-

minal device, used like a typewriter for two-way communica-

tion between the user and the system; and a storage medium,

for storing programs and data. Figure 1-1 illustrates the hard-

ware components of a typical RT-11 computer system.

The computer performs all instruction decoding and data pro-

cessing. The RT—-11 computer system is constructed around a

DIGITAL PDP-11 computer, several of which are shown in

Figure 1-2. Any model of PDP-11 can be used in an RT-11

system.

Notice in Figure 1-2 that the front panel, or operator’s console,

of each PDP-11 computer is slightly different. The switches,

buttons, and lights that are on the operator’s console are used

for various kinds of computer operations and applications. In

the RT-11 computer system they are used only to start the

system. Once the system has been started, your interaction

with the computer system occurs through the terminal.

UThis chapter attempts to build a working vocabulary that is both meaningful
to the new user and consistent with standard DIGITAL terminology. Some
definitions may appear inconsistent with those you have previously learned
or used.

1-1

SYSTEM

HARDWARE

The Computer

Introducing the RT-11 Computer System

Figure 1-1 RT-11 Computer System

1-2

Introducing the RT-11 Computer System

PDP11/23 PLUS

PDP 11/44

Figure 1-2 PDP-11 Computers

The terminal allows two-way communication between you (the

user) and the computer system. You enter information — opera-

ting commands, for example — from the terminal keyboard,

which is operated much like a typewriter keyboard. The com-

puter, in turn, prints information and messages on the ter-

minal’s printer or screen. Figure 1-3 shows two terminal

devices — the VT100 video terminal and the LLA120 hardcopy

terminal — that can be used in an RT-11 computer system.

1-3

PDP11/23

The Terminal

Introducing the RT—-11 Computer System

The Storage

Medium

Figure 1-3 Terminal Devices

Generally, an RT-11 computer system has only one terminal

through which all system/user interaction takes place. This is

called the console terminal. If the system has more than one

terminal, one of them is still designated the console terminal;

others simply provide auxiliary message-printing capabilities.

The third important hardware device in an RT-11 computer

system is the storage medium (usually a disk). It stores pro-

grams — those that make up the computer system software and

those that you create. It serves as a distribution medium;

system software is often packaged and distributed on a disk by

the system supplier. Finally, it stores other data, information

that is eventually needed for a computer operation (called

input), the results of a computer operation (called output), or

14

Introducing the RT-11 Computer System

textual information such as a report. Figure 1-4 shows the

. random-access storage media (and their specific drive units)

: that can be used in an RT-11 computer system. (Random access

means that access time for data is independent of the location of

data. Contrast this concept with sequential access.)

&

Figure 1-4 Random-Access Storage Media

and Their Devices

Introducing the RT-11 Computer System

Optional Devices

These three devices — the computer, the terminal, and the

storage medium — are the required hardware components of an

RT-11 computer system. With the exception of the computer,

all hardware devices are called peripheral devices. Peripheral

devices supplement the computer by providing external re-

sources for operations that the computer cannot handle alone.

In addition to the terminal and storage medium (which are re-

quired peripheral devices), other peripheral devices can be used

in an RT-11 computer system.

Optional peripheral devices are added to a computer system

according to the specific needs of the system users. For ex-

ample, computer systems that are used primarily for program

development may have extra storage devices and a high-speed

printing device. Computer systems used in a laboratory envi-

ronment may have graphics display hardware, an oscilloscope

device, and an analog-to-digital converter. Computer systems

that provide (or use) information in conjunction with another

kind of computer system usually have a magtape device, be-

cause magtape is an industry-standard storage device.

Peripheral devices are categorized as input/output (I/0) devices

since the functions they perform provide information (input) to

the computer, accept information (output) from the computer,

or do both. Line printers are output devices because they per-

form only output operations. Terminals and storage devices are

input/output devices because they perform both input and

output operations. Figure 1-5 shows several of the optional pe-

ripheral devices that are often added to an RT-11 computer

system.

VT11 Display

Figure 1-5 Peripheral Devices

1-6

Introducing the RT-11 Computer System

Magtape

Line Printer

Figure 1-5 Peripheral Devices (Cont.)

The hardware configuration of your own RT-11 computer

system includes the computer, the terminal, the storage me-

dium, and any other peripheral devices you choose to add.

System software is an organized set of supplied programs that

effectively transform the system hardware components into us-

able tools. These programs include operations, functions, and

routines that make it easier for vou to use the hardware to

solve problems and produce results. For example, some system

programs store and retrieve data among the various peripheral

devices. Others perform difficult or lengthy mathematical cal-

culations. Some programs allow you to create, edit, and process

application programs of your own. Still others handle entire

applications for you.

As illustrated in Figure 1-6, system software always includes

an operating system, which is the “intelligence” of the com-

puter system. Usually the system software includes one or sev-

eral language processors; it sometimes also includes specific ap-

plications.

SYSTEM

SOFTWARE

Introducing the RT-11 Computer System

The RT-11

Operating System

OPERATING

SYSTEM

LANGUAGE

PROCESSORS

APPLICATION

PROGRAMS

Figure 1-6 System Software

An operating system is a collection of programs that provides
an environment in which you can create and run programs of
your own. The operating system organizes all the hardware and
software resources of the computer system into a working unit
and gives you control.

The RT-11 operating system comprises four types of programs:
a monitor/executive program for system control and supervi-
sion; several device handlers (programs), one for each of the
supported hardware devices; a variety of utility programs for
program/data creation and manipulation; and finally, the inter-
faces that are necessary to support several programming lan-
guage processors. The operating system is illustrated in Figure
1-7.

The monitor (executive) program is the link between the
system hardware, the system software, and you. Part of the
monitor function is to accept, process, and execute your instruc-
tions for controlling the system. A comprehensive set of monitor
operating commands allows you to direct, from the console ter-
minal keyboard, those system operations that you want to
occur.

Device handlers are routines that provide the interface to the
various hardware devices that are part of the computer system.
A handler exists for every peripheral device that the system
supports.

Utility programs cover a wide range of resources; such pro-
grams allow you to create and edit text, maintain other pro-

Introducing the RT-11 Computer System

DEVICE

HANDLERS

UTILITIES

¢ EDITOR

® FILE

MAINTENANCE

o DEBUGGING

& FILE

COMPARE

® LIBRARIAN

SUPPORT FOR

LANGUAGE

PROCESSORS

Figure 1-7 The RT-11 Operating System

grams, and locate user-programming errors. Some utility pro-

grams in the RT-11 operating system are the following:

e An editor, which allows you to create and modify textual ma-

terial; this material could be the statements that make up a

computer program, a memo, or any text you wish to create

¢ File maintenance utility programs, which allow you to manip-

ulate and maintain your programs and data — to transfer

them between devices, to update them, and to delete them

when you are done with them

e A debugging program, which helps you uncover and correct

errors in your programs

e A librarian, which makes it easy for you to store and retrieve

often-used programming routines

e A linking program, which converts object modules into a

format suitable for loading and execution

e A source comparison program, which is used to compare two

ASCII files and to output any differences to a specified output

device

® A dump program, which outputs to the console or line printer

all or any part of a file in octal words, octal bytes, ASCII

characters, or Radix—50 characters

The RT-11 operating system also provides support for several

programming languages and their respective language proces-

sOrs.

Introducing the RT-11 Computer System

Language

Processors

Applications

Packages

SYSTEM

DOCUMENTATION

Hardware Manuals

A language processor is a translating program that you use to

process a source program you have created. A language pro-

cessor exists for every programming language supported by the

system, whether it is a high-level language or a machine-level

language.'

High-level languages, such as BASIC-11 and FORTRAN 1V,

are relatively easy languages to learn and use. Since a single

language statement often performs a series of intricate com-

puter operations, high-level languages let you direct your at-

tention to solving the problem at hand. They do not require

that you understand how the computer interprets the problem.

In addition to FORTRAN IV and BASIC-11, the RT-11 opera-

ting system supports the high-level language DIBOL, DIG-

ITAL’s interactive commercial language.

Machine-level or assembly languages are available for users

who prefer to work at the instruction level of the computer. At

this level, you have control over such factors as program size

and speed of execution. Machine-level languages do require

that you be familiar with the computer and the hardware de-

vices of the system. RT-11 provides the MACRO-11 assembly

language processor for those who would rather work at this

more intricate level.

The RT-11 operating system supports several applications

packages. These include a laboratory applications package for

the standard functions found in most laboratory environments.

A scientific subroutine package (for FORTRAN 1V users) pro-

vides a large selection of mathematical and statistical routines

commonly required in scientific programming. And a graphics

support package for BASIC-11 and FORTRAN IV users pro-

vides display features such as multiple intensity and blinking

vectors (lines), alphanumerics, and points. Because of the spe-

cialized nature of these applications packages, they are not de-

scribed further in this manual.

The third component of a computer system is documentation,

which includes manuals that tell you how to use the software

and hardware of the computer system. Documentation also in-

cludes any source listings of programs that make up the opera-

ting system.

Hardware manuals describe the devices in the computer

system. RT-11 hardware documentation includes a Processor

!Language selection is discussed in Chapter 8 of this manual.

1-10

Introducing the RT—11 Computer System

Handbook that describes the PDP-11 computer you are using,

and a User’s Guide or Maintenance Manual for each peripheral

device in your computer system. These manuals tell you how to

operate the devices and give you special programming informa-

tion that you may need if you intend to write device drivers or

special system software involving the devices.

Software manuals' describe the operating system and the lan-

guage processors. RT-11 software documentation falls into

three major categories: introductory or once-only manuals (in-

tended to be used once and then stored away); console manuals

(intended to be used at the computer); and desk/console man-

uals (intended to be used at your desk for reference purposes).

Once-only manuals include this manual and others that are

needed only when your system is initially installed. You may

have little or no occasion to use these manuals once your com-

puter system is in operation and you are familiar with its use.

Console manuals are those manuals that tell you how to use the

computer system. They describe in detail command usage and

syntax, list summaries of system operations, and give the

meanings of system messages. The RT—11 System User’s Guide

is an example of a console manual.

Desk/console manuals are those manuals that you continually

use for reference as you write your own application programs.

These manuals include the general language reference man-

uals and the advanced programming manuals that contain pro-

gramming information specific to the RT-11 computer system.

The RT-11 Software Support Manual is an example of a

desk/console manual.

Source listings are actual listings of the assembly language

code that makes up the RT-11 operating system. These listings

are very detailed and are generally needed only if you intend to

modify the system software. They can be ordered on microfiche

from the DIGITAL Software Distribution Center.

This completes a general introduction to the RT-11 computer

system. Subsequent chapters of this manual describe how you

use the various system components mentioned here to perform

a series of related computer operations. You begin in Chapter 2

by learning how to start the RT-11 computer system.

1a1l RT-11-related software manuals are listed and described in the Guide to

RT-11 Documentation. Many of these manuals are provided with your sys-

tem; others can be ordered from the DIGITAL Software Distribution Center.

1-11

Software Manuals

Source Listings

Introducing the RT-11 Computer System

REFERENCES Digital Equipment Corporation Reference Service, Volume 2: Products and
Services. Maynard, Mass.: Digital Equipment Corporation, 1982.

An overview of the PDP-11 family products and services; includes cap-
sule descriptions of the various PDP-11 computers, peripherals, and
operating systems, and describes the supportive services provided by
DIGITAL.

Eckhouse, Richard H. and Morris, L. Robert, M inicomputer Systems: Organi-
zation, Programming, and Applications (PDP-11). Englewood Cliffs, N.J.:
Prentice-Hall, 1979.

A guide to programming fundamentals, PDP~11 organization and struc-
ture, and programming techniques. See Chapters 1, 2, and 3.

Guide to RT-11 Documentation (AA-5285G-TC). Maynard, Mass.: Digital
Equipment Corporation, 1983.

A listing and brief summary of current RT-11-related software docu-
mentation.

Katzan, Harry Jr., Information Technology, The Human Use of Computers.
New York: Mason & Lipscomb, Petrocelli Books, 1974.

An introductory textbook covering basic computing concepts, program-
ming languages, and topics in computers and society. See Chapters 1, 2,
4, 5, and 10.

PDP-11 Peripherals Handbook. Maynard, Mass.: Digital Equipment Corpora-
tion, 1981-82.

A technical summary of the PDP-11 peripheral devices; includes de-
scriptions, specifications, programming, and interfacing information for
PDP-11 peripheral devices.

PDP-11 Processor Handbook. Maynard, Mass.: Digital Equipment Corpora-
tion, 1981.

A hardware manual for the owners and users of the PDP-11 family of
computers and for those who will be using the PDP-11 assembly lan-
guage instruction set.

PDP-11 Software Handbook (EB-21759-20). Maynard, Mass.: Digital Equip-
ment Corporation, 1982-83.

A general overview and introduction to available PDP-11 software, op-
erating systems, and language processors.

Spencer, Donald D., Fundamentals of Digital Computers. Indianapolis,
Kansas City, New York: Howard W. Sams, Bobbs-Merrill, 1969.

A discussion of the history and evolution of computers, computer appli-
cations, and fundamentals of computer use. See Chapters 1 through 12
and Chapter 20.

1-12

CHAPTER 2

STARTING THE RT-11 COMPUTER SYSTEM

Before you can use the RT-11 computer system to perform any

operations, you must start it. Starting the system involves

turning on the computer and the various hardware devices and

loading the appropriate software components into computer

memory.

Within every PDP-11 computer is a physical, designated

storage area called memory. Computer memory is where

system information and data are temporarily loaded and stored

for use during the various system operations.

Each time you use the computer system, there may already be

information in computer memory, left by the person who used

the system last. For example, there may be the results or data

of another user’s program; there may be the results of a partic-

ular system operation; there may even be an entirely different

operating system in memory. For your purposes, computer

memory must contain the RT-11 operating system, and specifi-

cally the RT-11 monitor program. Thus, your first operation as

a system user is to transfer the monitor program from the disk

device, where it was stored during system installation, to com-

puter memory, where you can use it. The process of transferring

the RT-11 monitor to memory is called bootstrapping the

system,; it is the only system operation that requires you to use

the operator’s console on the front panel of the computer (see

Figure 2-1).

Starting the RT-11 computer system requires that you know

how to operate your system’s hardware devices. Since you may

not have had the opportunity to use any of the devices yet, ask

an experienced user to help you the first time. Follow the in-

structions in the section in this chapter entitled “Bootstrap Pro-

cedure.” If necessary, refer to the RT—11 Automatic Installation

Booklet, the RT—11 Installation Guide, or the various hardware

manuals provided with your system.

First read through the following material and fill in the appro-

priate information where requested. You should be able to

determine all responses by checking the RT-11 Automatic In-

stallation Booklet or the RT-11 Installation Guide.

2-1

COMPUTER

MEMORY

HARDWARE

CONFIGURATION

Starting the RT-11 Computer System

RT-11

RESIDENT

; 3
8 o

[

o E[b BOOTSTRAP

Figure 2-1 Bootstrap/Computer Relationship

NOTE

If your system device is a diskette, you need to build four

volumes and, when running some of the demonstration

programs, limit the volumes to the components needed

to execute the programs. Also, you need to preserve the

distribution volume you received from DIGITAL by

making backup copies. The RT-11 automatic installation

procedure performs these functions for you. If you did

not use the automatic installation procedure to install

your RT-11 system, the RT-11 Installation Guide will

provide you with the commands you need to copy and

preserve the distribution volume and create the volumes

for use with this manual.

You must have the following materials to start the system and

to perform the exercises in this manual:

¢ The volume containing the RT-11 operating system (called

the system volume); refer to Section 2.3.6 of the RT—11 Instal-

lation Guide for the list of components you will need on your

system volume to perform the exercises

¢ The volume containing the FORTRAN IV and/or BASIC-11

language processors if these languages are not stored on the

system volume (available only to FORTRAN IV and

BASIC-11 users)

Starting the RT-11 Computer System

e A volume for program storage (for example, magtape or an-

other disk or diskette); this volume should contain no im-

portant information since all information on it will be erased

during a later computer exercise

e A copy of the RT—11 Automatic Installation Booklet or the

RT-11 Installation Guide

NOTE

You can find hardware configuration information in the

various hardware manuals provided with your system.

Instructions for starting (bootstrapping) your RT-11

system appear in the RT-11 Automatic Installation

Booklet and the RT—11 Installation Guide. This informa-

tion should be adequate for you to answer all the ques-

tions asked here. If you have trouble, see Appendix B,

Suggestions for Bootstrapping the System. Do not con-

tinue to any other chapter in this manual until you under-

stand the following configuration information and can

bootstrap the system yourself.

1. What kind of terminal device are you using (for example, Terminal

LA120 DECwriter III, VT100 video terminal)?

2. Is your computer a PDP-11/23-PLUS, PDP-11/24, or Computer
PDP-11/447

3. Does your computer operator’s console have pushbuttons or

switches?

4. How much memory does your computer have?

5. What kind of system volume are you using (for example, System Volume

RLO02 disk, RX02 diskette)?

6. What is the two-letter mnemonic for this volume (typical

mnemonics are given in Table 2-1; respond with the mne-

monic for your own volume)?

Starting the RT-11 Computer System

Storage Volume

Optional Devices

and Supported

Languages

BOOTSTRAP

PROCEDURE

Table 2-1 Representative System Volumes

Volume Mnemonic

RX01 Diskette DX

RXO02 Diskette DY

RKO05 Disk RK*

RKO06/07 Disk DM

RC25/RD51 Disk, RX50 Diskette DU

RL01/02 Disk DL

* Use DK to bootstrap from an RK05 disk.

7. What volume are you using for program storage (for ex-
ample, TS11 magtape, RLO2 disk)?

8. In which device unit will you use this volume (choose any
available device unit — for example, 0, 1)?

9. What peripheral devices are part of your system (for ex-
ample, line printer, magtape, VT11 display hardware; list
all devices other than the terminal and the computer)?

10. What programming languages does your system support
(MACRO-11 or BASIC-11, for example)?

Once you have determined your hardware configuration, you
are ready to bootstrap the system. The purpose of the bootstrap
procedure is to load and start the RT-11 monitor in computer
memory, thus activating the RT-11 computer system for your
use.

NOTE

If your answer to question 2 in the Hardware Configura-
tion section is YES, continue to the next paragraph. Oth-
erwise, read the section entitted Bootstrapping the

System, in Appendix A, for bootstrap instructions.

The bootstrapping procedure for the RT-11 computer system on
a PDP-11/23-PLUS, PDP-11/24, or PDP-11/44 processor con-
sists of the following steps. For more detailed instructions on

24

Starting the RT-11 Computer System

the bootstrap operation, refer to the RT—11 Automatic Installa-

tion Booklet.

1. Turn the terminal to an on-line condition.

2. Make sure that the computer power is on and that the com-

puter is not already in use.

e If your computer is a PDP-11/23-PLUS, power up the

system by lifting the AUX toggle switch to the ON posi-

tion. The red PWR OK indicator on the front panel will

light up if the system was successfully turned on.

e If your computer is a PDP-11/24 or a PDP-11/44, power

up the system by turning the status selector key to the

LOCAL position. The red DC ON indicator on the front

panel will light up if the system was successfully turned

on.

3. Stop the computer.

e If your computer is a PDP-11/23-PLUS, lift the HALT

toggle switch to the up position. The AUX toggle switch

that you lifted in the previous step and the HALT toggle

switch can be lifted simultaneously.

e If your computer is a PDP-11/24 or a PDP-11/44, push

the HALT/CONT/BOOT horizontal toggle switch to the

HALT position.

4. Load the system volume in its corresponding device unit 0.

Make sure that the system volume is write-protected (for all

except RX01 or RX02 diskettes, which are always write-

enabled).

5. Load the storage volume in the device unit noted in ques-

tion 8 in the Hardware Configuration section. Make sure

that this volume is write-enabled.

6. Boot the system.

e If your computer is a PDP-11/23-PLUS, lift the RE-

START toggle switch on the front control panel. This

switch will not remain in the up position; it will spring

back to the center position.

e If your computer is a PDP-11/24 or a PDP-11/44, push

the HALT/CONT/BOOT horizontal toggle switch to the

BOOT position. This switch will not remain in the right-

most position; it will spring back to the center position.

The red RUN indicator on the front control panel should

now be illuminated.

2-5

Starting the RT-11 Computer System

REFERENCES

A series of self-diagnostic routines to check out the system are

then executed. The execution of these routines may take up to a

minute, depending upon how much memory is installed in your

system. A prompt appears on your console terminal when exe-

cution of the routines is completed. The prompt that appears is

dependent upon the type of processor you are using. Table 22

provides the prompts that appear and the corresponding re-

sponses which must be supplied if you are using the

PDP-11/23-PLUS, PDP-11/24, or PDP-11/44 processor.

Table 2-2 Bootstrap Prompts and Responses

Processor Prompt Response

PDP-11/23-PLUS TESTING MEMORY dd[n]GED

wwww. KW

START?

PDP-11/24 bbbbbbbb <none>

PDP-11/44 >>> B dd[n]GED

WWWW, = amount of memory in K-words (decimal)

bbbbbbbb. = amount of memory in K-bytes (octal)

dd[n] = device mnemonic (dd) and unit number (n)

7. Respond to the prompt that appears on your console ter-

minal by typing the appropriate response (refer to Table

2-2) followed by a carriage return.

NOTE

Refer to question 6 in the Hardware Configuration sec-

tion for the two-letter device mnemonic (dd) and refer to

question 8 for the device unit number (n).

You should now direct your attention to the console terminal,

since system interaction continues on this device,

PDP-11 Processor Handbook, Maynard, Mass.: Digital Equipment Corpora-

tion, 1981.

A hardware manual for the owners and users of the PDP-11 family of

computers and for those who will be using the PDP-11 assembly lan-

guage instruction set.

2-6

Starting the RT-11 Computer System

RT-11 Automatic Installation Booklet: RX02 Diskettes (AA~-M235A-TC),

RT-11 Automatic Installation Booklet: RLO2 Disk (AA-M236A-TC),

RT-11 Automatic Installation Booklet: RC25 Disk (AA-M237A-TC), and

RT-11 Automatic Installation Booklet: MICRO/PDP-11 (AA-M238A-TC).

Maynard, Mass.: Digital Equipment Corporation, 1983.

RT-11-specific software booklets which provide basic instructions for

using the automatic installation process to install and test the RT-11

monitors, system programs, and certain languages.

RT-11 Installation Guide (AA-H376B-TC) and RT-11 System Release Notes

(AA-5286E-TC). Maynard, Mass.: Digital Equipment Corporation, 1983.

Two RT-11-specific software manuals that contain instructions for in-

stalling, customizing, and starting the RT~11 computer system.

RX8/RX11 Floppy Disk System Maintenance Manual

(EK—ORX01-MM-PRE2). Maynard, Mass.: Digital Equipment Corporation,

1975.

A hardware manual for the owners and operators of RX01 diskettes and

for those who will be programming computers to interact with these

devices.

VT100 User Guide (EK-VT100-UG-002). Maynard, Mass.: Digital Equip-

ment Corporation, 1978.

A manual for the owners and operators of the VT'100 video terminal and

for those who will be programming computers to interact with these

devices.

2-7

CHAPTER 3

INTERACTING WITH THE RT-11 COMPUTER SYSTEM

Interaction with the RT-11 computer system involves an ex-

change of information between you (the user) and the software

operating system. The exchange may be active, with you dic-

tating command information from the terminal keyboard and

the system responding immediately; or it may involve the

storing of information on mass storage volumes for later use.

During the bootstrap procedure you activated the RT-11 com-

puter system by loading and starting the monitor program in

computer memory. One of the functions of the monitor program

is to provide you with the capability to use the console ter-

minal. Since the console terminal can perform both input and

output operations, it is used to interface between the system

and the user. With it, you can:

¢ Type the commands that control system operation

¢ Receive messages and responses from the system

All console terminals have a keyboard — used to enter informa-

tion — and a paper output device or video screen — used to echo

characters typed at the keyboard and to print system messages

and responses. Figure 3—1 shows two commonly used terminals,

the LA120 and the VT100.

These two terminals differ in their output mechanism. While

the LA120 terminal has a paper printer, the VI'100 has a video

screen. The paper printer and the screen serve the same pur-

pose — they show user input and system responses; however,

paper output can be saved for later use.while screen output is

temporary. The keyboards of both terminals are shown in Fig-

ure 3-2.

3-1

USING THE

CONSOLE

TERMINAL TO

EXCHANGE

INFORMATION

Interacting with the RT-11 Computer System

LA120

VTi00

Figure 3-1 LA120/VT100 Terminals

3-2

Interacting with the RT-11 Computer System

@-llflllll@m
w

LA120

%e@@lllflt

w
VT100

Figure 3-2 LA120/VT100 Keyboard Layouts

Using Figure 3-2 as a guide, study your own terminal key-

board. First, notice that the keys for the alphabetic characters

are positioned in the same way as on most standard typewrit-

ers. The SHIFT key allows you to select between numeric and

special characters and between uppercase and lowercase

characters.! The position of the numeric and special characters

varies somewhat among the different terminals, so you may

need to hunt for a particular key until you become familiar

with your own terminal.

Locate the DELETE key. This key is used to correct a typing

mistake. Pressing the key once cancels the last character typed.

Pressing it twice cancels the last two characters, and so on,

back to the beginning of the line.

1With the exception of system messages and one other exception explainedin

Chapter 5, the RT-11 computer system uses uppercase characters exclusively.

3-3

Interacting with the RT—11 Computer System

USING

MASS STORAGE

VOLUMES

Locate the TAB key. Tab stops on a computer terminal are

positioned every eight spaces across the line, beginning at

column 1. Pressing the TAB key moves the character pointer

(that is, the position on the line where the next character will

be typed) to the beginning of the next tab stop.

The key marked RETURN performs a carriage return; it both
returns the character pointer to the beginning of the line and

advances it to the next line. This key is used to terminate the
line currently being typed and to terminate certain RT-11

system commands.

Locate the ESC key and the LINE FEED key. These are special
command terminators that are described in Chapters 5 and 14.

An important key is the CTRL key. It is always used with an-

other character key to perform one of several system opera-
tions. CTRL commands are explained in detail when you begin

to use them later in the manual.

Table 3-1 reviews the console terminal keyboard characters.
Keys not mentioned are not used by the RT-11 computer
system and can be ignored.

You will have an opportunity to become familiar with your ter-
minal keyboard as you perform the demonstrations in this

manual.

The console terminal also displays messages and responses
from the system. These messages and responses provide or re-
quest information. Error messages are an example of informa-
tional output; they help you detect typing errors, programming

errors, and system malfunctions. If an error message appears

on your console terminal while you are performing the demon-

strations in this manual, refer to the RT-11 System Message

Manual for an explanation of the cause of the message and a
description of the corrective action that should be taken.

Mass storage volumes provide an area (apart from computer
memory) to keep information for later use. The information

may be user application programs, data needed by a program,
the results of a program run, textual information, batch-type
programs, and so on. As an example, the RT-11 operating
system is stored on a mass storage volume called the system
volume. When information is needed, as it was during
bootstrapping, information from the storage volume is trans-
ferred into computer memory.

Interacting with the RT—11 Computer System

Before you can access the information stored on a storage

volume, however, you must first insert the volume (the me-

dium) into its corresponding device unit (drive), the hardware

device connected to the computer. Once a volume has been in-

serted into a device unit, the device unit’s symbol identifies the
volume. There may be more than one device unit for a volume,

each individual device unit is numbered 0, 1, 2, and so on. As

you learned in the bootstrap procedure, the system volume is

inserted in device unit 0 and remains in it as long as you are

using the system. Other storage volumes can be inserted in any

available device units. Figure 3-3 illustrates several mass

storage volumes.

Table 3-1 Keyboard Characters

Key Function

BACK SPACE Ignored during normal system use

BREAK Ignored during normal system use

CTRL Control; part of several two-key command

combinations that perform specific system

functions

DELETE Erase; cancels the last character typed

ESC Command terminator; terminates an editing

command string; transmits the command to

the computer and performs a carriage return

LINE FEED Command terminator; terminates certain

system commands; transmits the command to

the computer and performs a carriage return

REPEAT Ignored during normal system use

RETURN Line terminator, command terminator; termi-

nates the current line; terminates certain

system commands; transmits the command to

the computer and performs a carriage return

SHIFT Selects the uppermost of two characters ap-

pearing on a key

TAB Moves the character pointer ahead to the be-
ginning of the next tab stop

any other Transmits the alphanumeric or special char-

key acter to the computer

Interacting with the RT-11 Computer System

Diskette

Figure 3-3 Mass Storage Volumes

3-6

Interacting with the RT-11 Computer System

Mass storage volumes hold large amounts of information. Most

volumes, however, are physically small enough so that you can

transport them from the system, to your desk perhaps, or to

another computer system. In addition to disks (shown earlier in

Figure 1-4), magtapes are also mass storage volumes.

You store information on a mass storage volume in the form of

files. Each file is a logical collection of data. Files may be parts

of programs or entire programs, program input data, or text,

such as a letter or report. Whatever its content, each file is

treated as a unit and occupies a fixed area of the volume.

Every file on a mass storage volume has a unique name that is

composed of a file name and a file type. The file name and file

type identify the file and distinguish it from other files on the

volume. You can instruct the system to print on your terminal

the names of all files on a volume. The resulting list is called

the volume directory listing. By referring to the volume direc-

tory, you can find the name, size, and creation date of each file

on that volume and delete old files that you no longer need.

Whenever you perform an operation that affects the contents of

the volume, a new volume directory reflects the change.

Occasionally, after many files are added to a storage volume,

the volume has no room for new information. A storage volume

may also become damaged, lost, stolen, or worn through use.

For these reasons it is a good idea to have several extra storage

volumes on hand and to protect your more important files

against accidental erasure or loss.

One way to protect a file is to make a copy of it on a second

storage volume. The copy, called a backup file, insures you

against the loss or damage of your original file (or its respective

storage volume).

Some storage volumes provide a mechanism that protects files

against accidental erasure. This mechanism is generally a

switch on the volume itself, or on the device unit, that you can

set to a write-protect or write-enable condition (as you did

during bootstrapping). When the volume is write-protected, in-

formation can be copied only from the volume to computer

memory or to another volume that is write-enabled. A volume

that is write-enabled, on the other hand, also allows informa-

tion to be copied from memory back to the volume.

3-7

File Storage

File Protection

Interacting with the RT-11 Computer System

REFERENCES

The RT-11 operating system itself provides a protection fea-
ture. This optional feature requires that you confirm certain

system commands that might otherwise erase important infor-

mation. The system also issues prompting messages so that you

provide the proper file information when it is needed by a com-

mand.

Chapter 4 and succeeding chapters require you to use the ter-

minal to enter command information and perform file copy and
other system operations. Before you continue, make sure that
there is a backup copy of your system volume. If you cannot

locate one, read Appendix B, Backing Up the System Volume,
before going on.

RT-11 System Message Manual (AA-5284D-TC). Maynard, Mass.: Digital
Equipment Corporation, 1983.

An explanation of system messages that may occur during normal
system use; includes required user actions.

VT100 User Guide (EK-VT100-UG-002). Maynard, Mass.: Digital Equip-
ment Corporation, 1978,

A manual for the owners and operators of the VT100 video terminal and
for these who will be programming computers to interact with these
devices.

CHAPTER 4

USING THE MONITOR COMMAND LANGUAGE

During the bootstrap operation, the RT-11 monitor was copied

into computer memory and started. The RT-11 monitor is actu-

ally many different components working together to supply

basic system functions. For example, the part of the monitor

called the resident monitor (RMON) provides the console ter-

minal service and central program code necessary for a working

environment for both system and user programs. The resident

monitor is so named because it always remains in computer

memory, regardless of other system operations that may be oc-

curring. Other parts of the monitor are brought into memory

from the system volume as needed. These include the user ser-

vice routine (USR), which provides support for the RT-11 file

system, and the keyboard monitor (KMON), which controls ter-

minal keyboard interaction. From your standpoint, the key-

board monitor is the most visible part of the system software.

Among other services, it supplies the monitor command lan-

guage that you use to control system operations.

The monitor command language is a set of English-like com-

mand words that you type on the terminal keyboard to initiate

and control system operations. You can type a command in one

of two general formats: a long format or a short format. The

long format causes the system to print prompting messages.

These messages ask you to supply specific information, such as

file names and device names. The long format is helpful until

you become familiar with the commands. You will then prob-

ably prefer to use the short format, which allows you to enter

all required information on a single command line and provides

prompts only if you do not supply necessary information. Both

formats are demonstrated throughout this manual.

You terminate all monitor commands with a carriage return.

That is, after you type the required command information, you

press the carriage return key (represented in this manual by

®D). This instructs the monitor to initiate the command and to

perform the operation.

A prompt character — a period at the left margin of the ter-

minal printer or screen — appears whenever the RT-11 mon-

itor is waiting for you to type a command. The period is your

cue that the system is in the monitor command mode and ready

to accept a monitor command. Check the output on your ter-

minal printer or screen. You should see the following at the left

margin:

RT-11FB VOS5. xx

4-1

ENTERING

COMMAND

INFORMATION

Using the Monitor Command Language

General Command

Format

RT-11FB identifies the RT-11 monitor called the
foreground/background (FB) monitor. Following this is the ver-
sion (and update) number of the system in use, in this case,

Version 5. The period on the next line indicates that the system
is in the monitor command mode and is waiting for you to type
a monitor command.

Whenever you issue a monitor command, you must supply cer-
tain information to guide command processing. This informa-
tion includes the following (square brackets indicate optional

qualifiers and characters):

COMMAND//option] First you indicate, by command,
which system operation you want ini-

tiated. Command options are avail-

able to allow you to alter the normal

(default) operation.

INPUT[/option] You next indicate, by device and file
name, input information that is to be

used during the operation. The system

volume serves as the default input de-

vice. You must explicitly indicate

other volumes that you want used for

input, and you must usually indicate

the file names and file types of the

input files. Input file options are avail-

able to allow you to alter assumed (de-

fault) input operations.

OUTPUT{/option]* Finally you indicate, by device and file
name, output information that is to be

created as a result of the operation.

The system volume serves as the de-

fault output device. You must expli-

citly indicate other volumes that you

want used for output, and you must

usually indicate the file names and

file types of the output files to be cre-

ated. Output file options are available

to allow you to alter assumed (default)

output operations.

As mentioned earlier, you can type this command information

on the terminal keyboard in one of two formats; illustrations of

both follow:

'OUTPUT(/option] is not always used; sometimes output must be specified as
COMMAND/[/option] INPUT/QUTPUT:filespec.

4-2

Using the Monitor Command Language

Long Command Format (system prompts for specific informa-

tion)

+COMMANDL/0P tionl@ED
INPUT PROMPT? INPUTL/oPtionl@D

DUTPUT PROMPT? OUTPUTL/optionl@D

Short Command Format (no prompts)

+COMMANDL/optiond INPUTI/orptionl DUTPUTL/crtion]G

Notice that a slash character (/) separates an option from the

portion of the command that it qualifies, and a carriage return

@ED terminates each individual command line. When you have

supplied all the necessary information, the carriage return sig-

nals the monitor to execute the command. You can use either

format; both are demonstrated throughout this manual.

In addition to monitor commands, RT-11 has several special

function commands, called control commands, that you type by

first pressing and holding down the CTRL key on the terminal

keyboard and then typing the letter key of the command. To

execute the CTRL/C command, for example, type the letter C

while holding down the CTRL key. These control commands

require no terminator; the system performs the function as soon

as you type the command.

Control commands are used to interrupt program execution, to

inhibit terminal output, and to perform other similar special

system operations. They are described in the manual as you

need to use them.

During the course of this chapter, and throughout the re-

mainder of the manual, you will use a number of monitor com-

mands to perform some common system operations. For ex-

ample, you will list the directories of device volumes, copy files

between devices, create files, and execute system and user pro-

grams. You perform these operations by re-creating on the ter-

minal keyboard the examples already provided for you.

You should first read the entire explanation of a command to be

aware of its format, the operation it performs, and the options

that are available. Then type the command on the terminal

keyboard exactly as you see it used. Characters that you type

appear in the demonstrations in red print. Characters that are

system responses are shown in black print.

Table 4—1 lists symbols that you will see used throughout the

demonstrations. These symbols represent various keys on the

4-3

Control Commands

Re-Creating the

Examples

Using the Monitor Command Language

CORRECTING

TYPING

MISTAKES

CTRL/U

terminal keyboard. When you see one of these symbols in a

command line, type the appropriate key on the keyboard.

Table 4-1 Keyboard Symbols

Symbol Type

®ED carriage return key

line feed key

space bar (once for each time the symbol is shown).

Assume that you should type a single space unless

you are otherwise instructed; the space symbol is

used only if there is doubt about the number of

spaces to type.

TAB key (once for each time the symbol is shown)

DELETE key (once for each time the symbol is

shown)

ESCAPE key (once for each time the symbol is

shown)

CTRL CTRL key (hold down CTRL key while typing the

letter character [x])

All commands that you give the system are typed on the ter-

minal keyboard. If you make a mistake while typing a com-

mand, you can correct it in one of two ways.

One way to correct a typing error is to use the DELETE key on

the keyboard. Pressing the DELETE key once cancels the char-

acter just typed; pressing it a second time cancels the next to

last character typed, and so on, from right to left, until the

beginning of the line is reached. Then additional DELETEs are

ignored.

The second way to correct a typing error is to use CTRL/U, a

special control command. Typing this command once is equiva-

lent to typing as many DELETESs as are needed to cancel every

character in the current line.

Type on the keyboard the letters DABE, followed by two DE-

LETEs, followed by the letters TE, and notice the system’s re-

sponse:

+DABE @B TE

The monitor echoes each deleted character and encloses them

within backslashes. As far as the monitor is concerned, the only

characters you have typed are DATE.

Using the Monitor Command Language

+DABENEBA\TE

Thus, your current line is DATE. Continue by typing a

CTRL/U. Remember to first press and hold down the CTRL key

and then type the U key; no carriage return is necessary.

€D

Notice that CTRL/U echoes on the terminal printer or screen as

“U.

+DABENEBA\TE"U

All characters on the line are canceled, and the character

pointer is moved to the beginning of a new line so that you can

enter another command. You are still in the monitor command

mode even though no prompting period appears at the left

margin.

Once the carriage return or line feed key is pressed, the pre-

vious line cannot be corrected with DELETE or CTRL/U.

These two methods are commonly used to correct typing errors

made at the keyboard. You can choose whichever method seems

most convenient.

The kinds of command operations that you usually perform im-

mediately after the monitor is bootstrapped are those that set

up initial conditions, such as the current date and time of day,

and those that initialize and prepare the system for future oper-

ations such as file transfers. If your system has VT11 display

hardware that you want to use, you should also enable (turn on)

the graphics display screen.

Display hardware on an RT-11 computer system consists of a

cathode ray tube that allows programs to use graphics displays.

If your system has display hardware' (Figure 4-1), you can use

the graphics screen in place of the terminal printer or screen.

NOTE

Check question 9 in the Hardware Configuration section

of Chapter 2 to determine if your system has display

hardware. If you do not have display hardware, go on to

the next section, Entering the Date and Time-of-Day.

1yideo terminal screens are not considered graphics display hardware.

4-5

INITIAL MONITOR

COMMAND

OPERATIONS

Using VT11 Display

Hardware

Using the Monitor Command Language

GT
The monitor command that enables the graphics screen is the
GT command. The GT command is used to change the condition
of the graphics display. In this case, you will use it to activate
the graphics display hardware so that the VT11 display screen
replaces the console terminal printer or screen as the terminal
output device.

Figure 4-1 VT11 Display Hardware

Type the following on your terminal keyboard (if necessary,
refer to Table 4-1 to review the special symbols):

Long and Short Command Format

JGT OMGEED

If your system does not have display hardware, the monitor
prints a message' on the terminal printer or screen informing
you that the command is invalid for your system configuration:

PRKMON-F-Invalid command

Otherwise, the command is accepted. You should notice that all
character-echoing and system responses are now directed to the
graphics screen instead of to the terminal printer or screen.
After the command has been accepted, a period appears on the
graphics screen, indicating that the system is waiting for an-
other command. The character pointer is visible as a blinking
rectangular cursor situated after the period. (In the edit mode,
the cursor is L-shaped.)

'The meanings of all system messages are listed in the RT-11 System Mes-
sage Manual.

46

Using the Monitor Command Language

Like output on the terminal screen, output that appears on the

graphics screen is temporary. Once the screen is filled, lines are

rolled off the top and are lost to view. However, if your terminal

has a printer, a special control command allows you to control

console terminal output so that it appears on both the graphics

screen and the terminal printer simultaneously. In this

manner, you can direct selected portions of terminal output —

directory listings, for example — to be both displayed and

printed at the same time. The advantage of this is that al-

though the display copy is eventually lost, you have a printed

copy for later use.

The control command that provides this function is CTRL/E,

which is initiated by holding the CTRL key down while typing CTRL/E

the E key. No carriage return is necessary. When you type this

command, no characters echo on the graphics screen, but you

should notice that all subsequent characters (both input and

output) appear on both the graphics screen and the terminal

printer.

Thus, if your terminal has a printer and you wish to use the

printer in addition to your VT11 graphics screen, type once:

(Remember, this command does not echo.)

Now type the following and notice where the characters echo:

,WRONG COMMAND

To disable the printer at any time so that character echoing

occurs only on the graphics screen, type another CTRL/E com-

mand:

Finally, to return terminal output control to the terminal, disa-

bling the graphics screen, use the GT OFF command; this

changes the terminal device handler back to its original output

setting:

Long and Short Command Format

JGT OFFG@D

Decide now whether to use the graphics screen for the re-

maining demonstrations. If so, use the GT ON command to en-

able the graphics screen, and remember that the CTRL/E com-

mand is available when you wish to produce simultaneous

output.

4-7

Using the Monitor Command Language

Entering the Date

and Time-of-Day

DATE

TIME

Entering the current date and time-of-day helps in record-

keeping for system operations. Later, you can identify when

system operations were performed.

For example, by entering the current date you instruct the

system to assign this date to all files you create. The date will

also appear in volume directories and listings produced by the

various language processors and utility programs. If your

system has a clock, by specifying the current time-of-day you
instruct the system to keep track of time based on the time you

set. The current time is printed on listings when they are pro-

duced, and may also be used to control certain program opera-

tions.

Enter the date by typing the monitor DATE command with the

day, month, and year as follows (there is only one format):

Long and Short Command Format

.DATE 8-JAN-B3ED

This sets the date to January 8, 1983. Since this date is not

current, reenter the correct date using the same command

format:

JDATE dd-mmm-vyy@D

Typing the new date overrides the previous date.

The date that is set is temporary. You must reenter it whenever

you bootstrap the system.

The monitor TIME command is used to set the time-of-day,

specified in 24-hour notation. The system keeps track of time in

hours, minutes, and seconds, based on the initial time that you

enter in the command. Enter the time as follows (there is only

one format):

Long and Short Command Format

TIME 15:01: 0060

If your system does not have a clock, the monitor prints a mes-

sage on the terminal; this message informs you that the com-

mand is not valid for your system configuration:

PKMON-W-~-No clocK

Otherwise, the time is set to 3:01 p.m. If your system has a

clock, reenter the correct time, using the same command

format:

+TIME hhimm:ss@D

4-8

Using the Monitor Command Language

Typing the new time overrides the previous time.

The system’s clock stops when the system stops running. If you

want the time to be kept current, you must reenter it whenever

you bootstrap the system. If your system has a clock and you do

not set the time, the TIME command will return the time

elapsed since the last hardware boot.

To check the time or date at any time while you are using the

system, simply type either the DATE command or the TIME

command, followed by a carriage return only:

Long and Short Command Format

DATEGD

8-.JAN-83

, TIMEGED

15:06:18

The system responds by printing the date or the time, based on

the information you previously entered. If the system responds

to the DATE command with the message 2KMON-W-No date,

the date has not been set since the system was last

bootstrapped.

Each hardware device in the RT-11 system is identified by a

two-letter mnemonic. The mnemonics, listed in Table 4-2, are

defined in the system software and are recognized and used by

the operating system. These are the device names that you gen-

erally use in command input and output lines. However, you

may want to change any of these device names temporarily, for

a variety of reasons. The following paragraphs describe both

using the physical device names shown in Table 4-2 and as-

signing logical (temporary) device names to devices.

Table 4-2 Physical Device Names

Mnemonic Device

DUn: RC25/RD51 Disk, RX50 Diskette

DLn: RL01/02 Disk

DMn: RKO06/07 Disk

DXn: RXO01 Diskette

DYn: RX02 Diskette

LP: Line Printer

LS: Serial Line Printer

MMn: TJU16 Magtape

MSn: TS11 Magtape

MTn: TM11 Magtape

RKn: RKO05/RK11 Disk

TT: Console Terminal

4-9

Assigning Logical

Names to Devices

Using the Monitor Command Language

Two additional logical device names are used. These special

names are described in Table 4-3.

Table 4-3 Special Logical Device Names

Mnemonic Device

SY: The volume from which the monitor was

bootstrapped; that is, the system volume.

DK: The default storage volume (initially the same

as SY:; that is, the system volume).

You use device names in the input and output portions of a

command line to identify where input information can be found

and where output information will be sent. If a file is involved,

you also include its file name and file type, in the following

format:

devicename:filename.filetvre

The device name is followed by a colon and is always separated

from any file name and file type by a colon. The device name is

generally one of the mnemonics listed in Tables 4-2 and 4-3.

When you use a device name in any command, you must also

include the device unit number (represented by the letter n in

Table 4-2) unless the number is 0. The system assumes unit 0

of the device if no unit number is given. Thus, diskette unit 0 is

DY: or DYO:; diskette unit 1 is DY1:; RK: disk unit 2 is RK2;;

and so on. Note that, according to Table 4-3, you can use the

device mnemonic SY: or DK: for your system volume in addi-

tion to its standard device name. However, since the system

volume is initially the default storage volume for all operations,

you do not need to use a device name for your system volume.

The names listed in Tables 4-2 and 4-3 are the device names

defined within the system software. However, you can change

any of these name assignments temporarily, either by reas-

signing existing names to different devices or by assigning new

logical names of your own choosing to devices.

You might want, for many reasons, to change a device name

temporarily and assign it a logical name. You may, for ex-

ample, have a program written for a device that is not available

on your system. If you assign the program name to a device that

is available, the program then uses that device instead.!

Since not all RT-11 users have access to the same kind of

storage volume, you are instructed to assign the logical name

VOL: to whatever volume you are using for storage. After you

IThis is called device independence.

4-10

Using the Monitor Command Language

make this assignment, subsequent command lines can be the

same for everyone using this manual.

Similarly, the special logical device name DK:, presently as-

signed to your system volume, could be assigned to any kind of

storage volume. Not only would DK: signify your storage

volume, regardless of its physical device name, but you could

also avoid typing DK: since it is the default storage volume for

most commands. (Only the R command requires that the file

specified be on the system volume SY:)

To assign a logical name to your storage volume, first deter-

mine its physical device name. Check questions 7 and 8 in the

Hardware Configuration section of Chapter 2 to see which de-

vice and which device unit you are using for your storage

volume. Translate this into the appropriate name and number

using Table 4-2 as a guide.

Use the monitor ASSIGN command to change this physical

name to a logical name. Substitute for physical-device-name in ASSIGN

the following command lines the physical name and device unit

number for your storage volume (for example, for RKO05 disk

unit 1, substitute RK1:).

Long Command Format

+ASSIGNED

Physical device name? physical-device-name@D

Logical device name? WOL:@®ED

Short Command Format

,ASSION physical-device-name YOL @D

Once the assignment is made, the system recognizes the logical

name VOL: as the device name for your storage volume. This is

the only logical assignment you need to make. Since you are

not changing the DK: assignment, the system volume remains

the default device for all I/O operations.

As you continue to use the system, you may well make many

device assignments and deassignments. To check the status of SHOW

all assignments made during a computer session, you can use

the monitor SHOW command to print on your terminal a list of

all the logical assignments currently in effect. Use the SHOW

command now to check the status of the assignment just made:

Long and Short Command Format

+ SHOWEED

4-11

Using the Monitor Command Language

Listing Volume

Directories

DIRECTORY

CTRL/O

Check the list printed on your terminal to make sure that the

code VOL: has been assigned to your storage volume. The let-

ters VOL: should follow the appropriate device name in the list,

as in the following response, in which VOL: represents disk

unit 1:

TT

RK (Resident)

RKO = GY + DK

RK1 = VOL

NL

13 free slots

Logical device assignments are temporary. Thus, if you want a

logical device assignment to remain in effect, you must reassign

it each time the system is bootstrapped.

Both your system volume and your storage volume have direc-

tories, which are compiled lists of all the files stored on the

volume. You can print a volume directory on your terminal,

using the monitor DIRECTORY command.' To list the direc-

tory of your system volume, type:

Long and Short Command Format

\DIRECTORY® (The system volume is the default device.)

Since the directory of the system volume may be quite long,

after approximately 10 lines have printed on the terminal, type:

This special control command, echoed as "O, inhibits the re-

mainder of the listing output from printing on the terminal,

although the information on the total number of files and

blocks is still given. When control returns to monitor command

mode, look at the directory listing. At the top of the listing is

today’s date, as you entered it earlier in the DATE command.

Following the date is a list of the files on the volume. Notice the

two-column format of each line in the directory.

'Users of VT11 display hardware may wish to use the CTRL/E command to
enable both the graphics screen and the terminal printer for the following

exercises.

4-12

Using the Monitor Command Language

08-Jan-83

SWAP .SYS 26 2B6-Auyg-B2 RT1154.8Y8 73 26-Aud-B2

RT11FB.SYS 86 26-Aug-82 RT11BL.SYS 73 26-Ausg-B2

RT11XM.SYS 94 26-Aug-82 T7 «8YS 2 26-Aug-B2

DT +5YS 3 26-Aug-8B2 Dp +SY8 3 26-Aug-82

DX . 8Y5 3 26-Aug-B2 Dy +8YS 4 26-Aug-B2

RF «8YS 3 26-Aug-BZ RK +SYS 3 26-Aud-82

DL «8YS 4 268-Aug-B82 bu +SYS 4 2B-Aus-82

DM +8YS 5 2B-Aud-82 DS +5YS 3 2B6-Aug-82

DD +8YS 5 ZB-Aug-82 0

170 Files s 4264 Blocks

498 Free blocks

First the file name appears, followed by a dot and a file type

that is frequently used to identify the file’s format. For exam-

ple, .SYS represents a system file; other RT-11 file types used

to represent different kinds of files are listed in Table 44. Af-

ter the file type is a number that indicates the size of the file.

The size is given in blocks, a term used to designate a standard

amount of information. A file that is 1 to 10 blocks long is fairly

small, while a file over 100 blocks in length is quite large. The

date on which the file was created is shown at the right. This

space is empty if a date was not specified (with the DATE com-

Table 44 File Types

File Type Meaning

.BAC BASIC compiled file

.BAK Editor backup file

.BAS BASIC source file

BAT BATCH source file

BUP Backup/restore file

.COM Indirect command file or IND indirect control file

.CTL BATCH control file

.DAT BASIC-11 or FORTRAN 1V data file

.DBL DIBOL source file

.DIF SRCCOM output file

.DIR Directory listing file

.DSK Logical disk file

JFOR FORTRAN IV source file

.LOG Batch log file

.LST Listing file

.MAC MACRO-11 source file

.MAP Linker map file

MLB MACRO library file

.OBJ MACRO-11, FORTRAN 1V, or DIBOL object out-

put file or library file

.REL Executable foreground program file or system job

.SAV Executable background program file

SML System MACRO library

SYS System files and handlers

4-13

Using the Monitor Command Language

DIRECTORY

/BRIEF

CTRL/C CTRL/C

DIRECTORY

/PRINTER

mand) on the day the file was created. At the end, you are told

how many files are on the volume, their total length, and the

number of free blocks available for your use.

NOTE

Files furnished on the distribution medium have a pro-

tected status, which means they cannot be deleted. This

is indicated by the letter P after the file size shown when

you print a directory listing. You cannot perform any op-

eration on a protected file if the result is to delete it. You

can change the protected status of a file by using the

RENAME keyboard monitor command with the /PRO-

TECTION or /NOPROTECTION option; you can give a

protected status to a file by using the PROTECT key-

board monitor command; and you can remove a pro-

tected status from a file by using the UNPROTECT key-

board monitor command (see the RT-11 System User’s

Guide).

You can also obtain an abbreviated directory, which omits file

lengths and dates and lists only file names and file types in

five-column format. To do this, you use the DIRECTORY com-

mand with its /BRIEF option. Type the following, and after

several lines have listed, interrupt the directory by typing two

CTRL/C command characters. This double control command

echoes two "Cs and requests the running program to abort im-

mediately, regardless of what the program is doing (one

CTRL/C aborts an executing program waiting for input from

the console terminal). Control returns to monitor command

mode.

Long and Short Command Formats

WDIRECTORY/BRIEF®RED

08-Jan-83

SWAP ,5YS RT11S8J.5YS5 RTILIFB.SYS RT11BL,SBYS RTIL1XM.8YS

T +8¥85 DT +S¥Y8 DP «SYE DX +8Y8 DY +8Y8

RF +8Y8 RK «8¥S DL +8YS DU «8¥S5 DM +SYS8

DS «8YS DD +5¥8 LP +SY¥S8 LS «5¥YS CR +8Y¥8

L CIETLC)

Volume directories can be printed on a line printer if one is

available on your system. Check the answer to question 9 in the

Hardware Configuration section of Chapter 2 to determine if

your system has a line printer. Since listings print faster on a

line printer than on the console terminal, it is to your advan-

tage to use the line printer for large amounts of output. The

/PRINTER option is used with the DIRECTORY command to

cause a directory to be printed on the line printer instead of on

the terminal. Make sure your line printer is turned on, and

then type the DIRECTORY command as shown:

4-14

Using the Monitor Command Language

Long and Short Command Format

JDIRECTORY/PRINTERGED

The listing may be quite long. When the line printer has fin-

ished printing, retrieve the listing.

Initializing a storage volume clears its directory. A new

(unused) volume should always be initialized before it is first

used. In addition, any storage volume that contains files that

are no longer needed can be initialized to recover the storage

space. Note, however, that an initialize operation is used to

remove all file names from the directory. So before you ini-

tialize a volume, make sure that it contains no files that you

might want later.

Since you will use your storage volume to store several new

files (created as a result of the various exercises in this

manual), clear its directory using the monitor INITIALIZE

command. This operation ensures that the volume has room for

new files.

Long Command Format

VINITIALIZE®D

Device? UOL: @D (VOL: is the assigned logi-

cal device name for your

storage volume.)

Short Command Format

VINITIALIZE VoL 6D

RKi:/Initialize$ Are vou sure?YEJ)

The system prompt physical-device-name/Initialize; Are you

sure? gives you an opportunity to verify the command. Typing a

Y initiates the operation, while N stops the operation and re-

turns control to the monitor command mode. Check your com-

mand line, make sure you are initializing your storage volume,

and then type a Y. Again, list the directory of the storage

volume. It should be empty.

Long and Short Command Formats

JDIRECTORY VOL : GED

B-Jan-83

0 Filessy O Blocks

4762 Free blocks

The number of blocks available for use on the volume is printed

at the end of the directory and varies depending on the type of

device you use as your storage volume.

4-15

Initializing the

Storage Volume

INITIALIZE

Using the Monitor Command Language

SUMMARY:

INITIAL

MONITOR

COMMANDS

The commands you have performed in this chapter have pre-
pared the system for major operations that will follow. In
Chapter 5 you begin by using the RT-11 editor to create text
files that you will store on your initialized storage volume.

ASSIGN physical-device-name logical-device-name

Assign a logical device name to a physical device name.

DATE

Print the current date, if previously set.

DATE dd-mmm-yy

Set the current date (day-month-year).

DIRECTORY ddn:

List the volume directory on the terminal (ddn: is the mne-
monic for the device name; the default storage volume, DK:,
is assumed if ddn: is not specified).

DIRECTORY/BRIEF ddn:

List a brief volume directory on the terminal, showing only
file names.

DIRECTORY/PRINTER ddn:

List the volume directory on the line printer.

DIRECTORY/PRINTER/BRIEF ddn:

List a brief volume directory on the line printer.

GT OFF

Disable the VT11 display hardware.

GT ON

Enable the VT11 display hardware so that the graphics
screen replaces the terminal printer/screen as the terminal
output device.

INITIALIZE ddn:

Clear the directory of the indicated volume (ddn: is the mne-
monic for the device name and must be specified).

SHOW

Print the status of all current logical device name assign-
ments.

TIME

Print the current time, if previously set.

TIME hh:mm:ss

Set the current time-of-day (hour:minute:second).

4-16

Using the Monitor Command Language

CTRL/C CTRL/C

Interrupt the current operation or program and return con-

trol to monitor command mode.

CTRL/E

Direct terminal output to both the graphics screen and the

terminal printer simultaneously. Type a second CTRL/E to

return output control to the graphics screen only. (Valid only

when VT11 display hardware is enabled.)

CTRL/O

Inhibit the remainder of output from printing on the termi-

nal.

CTRL/U

Cancel every character in the current line.

DELETE

Cancel the last character typed on the current line.

LP11/LS11 Line Printer Manual (EK-LP11-TM-005). Maynard, Mass.:
Digital Equipment Corporation, 1975.

A hardware manual for the owners and operators of LP11/LS11 line
printers and for those who will be programming computers to interact

with these devices.

RT-11 Mini-Reference Manual (AA-M241A-TC). Maynard, Mass.: Digital
Equipment Corporation, 1983.

A summary of all RT-11 monitor commands, command options, system
utility program operating commands, and programmed requests.

RT-11 System User’s Guide (AA-5279C-TC). Maynard, Mass.: Digital Equip-
ment Corporation, 1983.

A guide to the use of the RT-11 operating system.

4-17

SUMMARY:

SPECIAL

CONTROL

COMMANDS

REFERENCES

CHAPTER 5

CREATING AND EDITING TEXT FILES

The ability to create and edit text files is one of the most useful

features of the RT-11 operating system. Not only can you

create computer programs, data files, memos, and reports on

line (that is, under the control of the system), but you can alter

what you create without retyping the entire file.

You create and edit text files more often than you perform any

other system operation. Therefore it is essential that you be-

come familiar with the editing process as quickly as possible.

Editing should become second nature to you as you learn to use

the RT-11 computer system.

Two RT-11 editor system utility programs, EDIT.SAV and

KED.SAV, are stored as part of the RT-11 operating system on

your system volume. The demonstrations in this manual illus-

trate EDIT, which can be used on a video terminal or a hard-

copy terminal. The use of KED is restricted to video terminals.

For more information about KED, refer to the PDP-11 Keypad

Editor User’s Guide.

Text files that you create with the editor are stored in the com-

puter in ASCII format. ASCII, which stands for the American

Standard Code for Information Interchange, is an industry-

standard code that consists of a numeric representation for each

of the alphabetic characters (A to Z), the numeric characters (0

to 9), the punctuation characters, and some special communica-

tion control characters. When you type text on the terminal

keyboard, the system automatically converts the text to ASCII

codes; when you request listings on the terminal or line printer,

the system converts the ASCII code back to the text characters.

The RT-11 editor uses a specially reserved area of computer

memory to hold the text you are creating or editing. This area

of memory is called the text buffer. When you create text, the

characters that you type on the terminal keyboard are

transmitted directly into the text buffer. When you edit text,

the characters are copied from the input file into the text

buffer, where you can modify them. When you have edited the

text in the buffer to your satisfaction, the characters are moved

out of the text buffer to the output file (Figure 5-1).

5-1

THE RT-11 EDITOR

Creating and Editing Text Files

CREATING A

TEXT FILE

EDIT/CREATE

COMPUTER

OUTPUT

.

Figure 5-1 Editing with RT-11

Since the text buffer is a limited area of computer memory, you

may at times try to input more text than the buffer can accom-

modate. If this condition becomes apparent to the editor, it

prints a warning message on the terminal telling you that, be-

fore you can input any more text, you must make room in the

buffer, either by transferring text to the output file or by

erasing text already in the buffer.

You can avoid this inconvenience during editing if you make

use of a concept called paging. When you create a large text file,

instead of typing the file as one long stream of text, divide it

into individual pages of approximately 50-60 lines in length;

this corresponds roughly to the size of a line printer or terminal

listing page. You can copy the text into and out of the buffer

one page at a time. A single page of text is never too large for

the text buffer and also fits on the line printer or terminal

perforated paper when you obtain a listing.

You activate the editing capability by using the monitor EDIT

command. When creating a file, you must use the /CREATE

option followed by the file name and file type you want as-

signed to the new file. The default storage volume (DK:) serves

as the default device, so unless you specify a device using one of

the mnemonics in Table 4-2, the editor creates the new file on

the device DK: (which is the system volume, unless changed via

ASSIGN).

First, if you are using display hardware, disable it with the

monitor GT OFF command; the editor has a special display

capability that is not described until later in this chapter.

Long and Short Command Format

+GT OFFGED

Creating and Editing Text Files

Next, use the editor to create a text file of five lines. Call the

file DECIND.USA, and use the default storage volume — cur-

rently the same as the system volume — for the file.

Long Command Format

JEDIT/CREATERD
File? DECIND.USAER
*

Short Command Format

JEDIT/CREATE DECIND.USAGD
#*

Once the output file is open (that is, when the appropriate file

has been established for output operations), the editor prints a

prompting asterisk at the left margin. The asterisk indicates

that the editing command mode is in control. This prompt is

your cue to enter an editing command.

The editing command used to create text is the I (Insert) com-

mand. Type: INSERT

#]

All subsequent characters that you type on the terminal key-

board will now be entered into the text buffer just as you type ESCAPE ESCAPE

them. Enter the following text exactly as shown, including all

spaces and errors. Before you type the RETURN key, check the

line to make sure that it matches what is shown here. Re-

member, if you make a typing mistake that is not intentional,

you can use the DELETE key on the terminal keyboard to erase

individual characters and the CTRL/U command to erase all

characters on the current line. When you have finished typing

the five lines, type the ESCAPE key twice. The ESCAPE key

echoes on the terminal as a $; it is used to execute an editing

command and to return control to editing command mode.

#IWE HOLD THESE TRUTS TO BEE SELF-EVIDENT.G

THAT ALL MEN ARE CREATED EQUAL, THAT THEYGED

HAVE UNRELIABLE TENDENCIES OF WHICH THEYGED
AR ENDOMWED BY THEIR CREATOR: THAT AMONGED

THESE ARE LIFEs LIBERTY AND HAPLENESS.EED

E0E0
*

Forget for the moment that this text contains several misspell-

ings and other errors, and assume instead that you are satisfied EXIT

with it and ready to transfer it from the text buffer to the

output file. The EX (Exit) editing command performs this func-

tion. This command terminates editing, transfers all text in the

text buffer to the output file, closes the currently open output

5-3

Creating and Editing Text Files

EDITING A

TEXT FILE

EDIT

READ

BEGINNING

file (making it unavailable for further output operations), and
returns control to monitor command mode, indicated by a dot at
the left margin. Use the EX command to close the file
DECIND.USA:

*EX EDED

You now have a file on your system volume -called
DECIND.USA, consisting of the five lines of text you just cre-
ated.

The file DECIND.USA needs editing. To edit a file, you again
use the EDIT command to activate the editor. Next indicate in
the command line the two-letter device mnemonic for the
volume on which the file resides (the default storage volume,
DK:, is assumed). Following this, you indicate the file name
and file type of the file. The editor then opens the file, making
it available for input operations.

Thus, to open the file DECIND.USA for editing, type:

Long Command Format

+EDITED

File? DECIND.USAGD

*

Short Command Format

+EDIT DECIND,USAGEED

*

The EDIT command opens the input (and output) files. Use the
R (Read) editing command to read the first page of text from the
input file into the text buffer. No output occurs to the output
file, but the file is available for output at a later time. The
input file itself is not altered in any way.

R EOED
*

Whenever text is read into the text buffer, a pointer is automat-
ically positioned at the beginning of the text. This pointer is an
invisible indicator that serves as a target for editing commands.
The pointer pinpoints the exact location in the file where the
next character will be inserted. For example, when you finished
inserting text earlier (just before using the EX command), the
pointer was positioned at the end of the file. Now that the EDIT

command has been used to read text into the text buffer, the
pointer is positioned at the beginning of the text in the text
buffer. If the pointer is not at the beginning and you want to

M

wwwwww

J

Creating and Editing Text Files

move it there, you can use the B (Beginning) command; this

command moves the pointer to the beginning of the text in the

text buffer, no matter where the pointer is currently positioned:

#*

With the pointer positioned at the beginning of the text buffer,

you can use the L (List) editing command to list the text cur- LIST
rently in the text buffer on your terminal printer. The List

command lists text, starting at the pointer and continuing to

whatever place you indicate by the command argument.

A command argument is simply a prefix to an editing command

that sets limits on the command’s actions. Command argu-

ments are used frequently and are summarized in Table 5-1.

Study this table for a moment before continuing.

Table 5-1 Command Arguments

Argument Meaning

n Represents any integer in the range -16383 to

+16383; it may be preceded by a + or —. If no

sign precedes n, it is assumed to be positive.

Whenever an argument is acceptable in a com-

mand, its absence implies an argument of 1 (or

—1 if only the — is present).

0 Refers to the beginning of the current line.

/ Refers to the end of text currently in the text

buffer.

Thus, with the pointer positioned at the beginning of the text,

use the / argument and the L command to list on the terminal

all text in the buffer. The position of the pointer does not

change. List the text and compare your output with the five

lines shown in the following example — they should match ex-

actly.

/1. E0E0

WE HOLD THESE TRUTS TO BEE SELF-EVIDENT,

THAT ALL MEN ARE CREATED EQUAL., THAT THEY

HAVE UNRELIABLE TENDENCIES OF WHICH THEY

AR ENNDOMWED BY THEIR CREATOR, THAT AMONG

THESE ARE LIFE. LIBERTY AND HAPLENESS.

#*

If your output and the five lines above do not match exactly,

then you probably typed some unintentional errors into

DECIND.USA.

5-5

Creating and Editing Text Files

The remaining EDIT commands in this exercise depend upon

an exact reproduction of DECIND.USA to function properly.

Therefore, since you are not yet familiar with the EDIT com-

mands necessary to correct your file, an existing copy of

DECIND.USA with intentional errors must be substituted.

Prepare the text buffer by erasing it with CTRL/CESOESD. This

unusual command combination is required by the EDIT pro-

gram when you want to exit without creating an output file.

The structure of the command prevents you from accidentally

eliminating a file with a single CTRL/C.

The monitor command mode period appears, signaling your de-

parture from the editing command mode. Your system volume

still contains the file DECIND.USA that you created earlier.

However, it also contains the copy provided with the system,

DEMOED.TXT, which you will use for the remainder of the

exercise.

Before going any further, you must rename DEMOED.TXT to

DECIND.USA to avoid confusion. A RENAME operation, ex-

plained fully in the File Copying Operations section of Chapter

7, is the method of choice. Type the following command:

+RENAME DEMOED.TXT DECIND.USAGED

The contents of DEMOED.TXT are now labeled DECIND.USA.

Note, however, that if a file labeled DECIND.USA already ex-

ists and you rename another file to DECIND.USA, the system

deletes the first file named DECIND.USA and renames the cur-

rent one. Type EDIT DECIND.USA to open the file for

input, and type the R command to read it into the text buffer.

JEDIT DECIND.USAGD

*REDED

Since the pointer automatically returns to the beginning of the

text with an R command, you can type /L to list the entire file.

*/|. BOED

WE HOLD THESE TRUTS TO BEE SELF-EVIDENT.

THAT ALL MEN ARE CREATED EQUALs+ THAT THEY

HAVE UNRELIABLE TENDENCIES OF WHICH THEY

AR ENDOWED BY THEIR CREATOR» THAT AMONG

THESE ARE LIFE: LIBERTY AND HAPLENESS.,

*

5-6

Creating and Editing Text Files

The text contains errors and misspellings deliberately intro-

duced for the purposes of the exercises in this chapter. To cor- JUMP

rect the errors, reposition the pointer so that it is near the text

you want to change. The J (Jump) command, for instance, in

conjunction with a command argument, moves the pointer ei-

ther backward or forward by the specified number of charac-
ters, including spaces. Type the J command now, using an argu-

ment of 18, to reposition the pointer 18 places ahead":

* 18 JE0ED

#

Although you cannot see it, the pointer has moved from the

beginning of the text buffer to the right of the 18th character.

You can verify this by using the List command again. The List

command with no argument prints from the pointer to the end

of the current line and thus exposes the location of the pointer:

*#L GO0

8 TO BEE SELF-EVIDENT.

#

The characters in the example should match the current line on

your terminal, showing the pointer positioned at the first error

in the text where an H is missing in the word TRUTS. Since the

pointer is positioned between the second T and the S, use the

Insert command to insert an H in the proper place:

* T HEDED

*

Now use the V (Verify) command to verify the line. The V com-

mand, which does not require arguments, prints the entire line VERIFY

containing the pointer (the current line) on the terminal. It «

allows you to verify that a correction was properly made. The

pointer is not moved as a result of the V command,; its position

remains just to the right of the last inserted character (shown

here by the arrow):

#1) ESDESD

WE HOLD THESE TRUTHS TO BEE SELF-EVIDENT,

* T

! Anytime you use the Jump command to move the pointer forward (or back-
ward) by enough characters so that it moves to a new line, you must account

for two extra characters in the command argument. This is because the editor

treats the carriage return at the end of each line as two characters — a

return and a line feed.

Creating and Editing Text Files

CTRU/X

DELETE

So far you have entered and executed editing commands one at

a time. You can enter multiple commands by separating each

individual command with a single ESCAPE. Typing two ES-

CAPEs then executes all the commands in the entire command

string in consecutive order. For example, combine the J and L

commands as shown in the following command string:

* 7 JEDL ESDED

£ SELF-EVIDENT,

*

The 7J moves the pointer seven positions to the right, and L

then lists the text from the pointer to the end of the line so that

you can see the pointer’s new position.

A special CTRL command is available to erase multiple editing

commands. The CTRL/X command (hold the CTRL key down

and type the X key) causes the editor to ignore an entire com-

mand string that might extend over several lines if the I com-

mand is involved. The editor echoes with "X, issues a carriage

return, and prints an asterisk indicating that you are still in

editing command mode and can enter a new command. For ex-

ample, type:

*70JE0ISTART AGED

NEW LINE
*

In addition to the CTRL/X command, you may still use the

DELETE key to erase individual characters in the command

line one at a time, and the CTRL/U command to erase all char-

acters entered on the current command line.

Since you used the CTRL/X to ignore this last command string,

the pointer is still positioned at the next error in the

file — just before the extra E in the word BEE. You can erase

this extra character by using the D (Delete) command.! The D

command removes one character (or space) to the right of the

pointer for every +1 in its argument and one character to the

left for every —1. Use the D command to erase the extra E and

then verify the line (+1 is assumed if no argument is used):

* DESDVESDED
WE HOLD THESE TRUTHS TO BE SELF-EVIDENT,

* 1

'The Delete command should not be confused with the DELETE key on the
terminal keyboard. While both perform the delete function, the D command is

used to erase characters already within a text file; the DELETE key is used to

erase typed characters in a command string or during text creation.

5-8

Creating and Editing Text Files

As you can see from the position of the pointer in the example

(shown by the arrow), the D command does not actually move

the pointer, but simply erases characters around the pointer.

Since the extra E was erased, the pointer is now positioned

between the E and the space.

Just as you can use the Jump command to move the pointer by

characters, you can use the A (Advance) command to move the ADVANCE
pointer by entire lines. Again you give the command an argu-

ment that indicates the number of lines, either forward or back-

ward. The pointer is positioned at the beginning of the new

line. Use the A command to move the pointer forward two lines,

and then list the current line:

* 2 A0 BOED
HAVE UNRELIABLE TENDENCIES OF WHICH THEY

*

This entire line does not belong in the text. To erase it, you

could count the number of characters in the line and use this KILL

number as an argument to the D command; however, there is

an easier way. The K (Kill) command erases the entire line

following the pointer and positions the pointer at the beginning

of the next line in the text. Type:

* K E501L ES0ED
AR ENDOWED BY THEIR CREATOR: THAT AMONG

*

The pointer is now at the beginning of the next line in the text.

As you can see, this line also contains an error, the word ARE is

incorrectly spelled as AR. Use the J command to jump over two

characters, and insert the E. Then verify the line:

* 2 JEE0 1 EEOVEDED

ARE ENDOKWED BY THEIR CREATOR» THAT AMONG

* 1

The arrow shows where the pointer is now positioned. This line

still contains an error — it is missing the words WITH CER- GET

TAIN INALIENABLE RIGHTS, which should follow the word

CREATOR. You can count the number of characters from the

pointer to the second R in CREATOR and then jump the pointer

by this number, or you can use the G (Get) command. The G

command searches, from the pointer, for the first occurrence of

a specified character string and leaves the pointer at the end of

that string. Use the G command to search for the string OR (in

CREATOR); then insert the missing words and list the lines

that have changed. Notice how you use the carriage return to

5-9

Creating and Editing Text Files

} CTRLL

break the line into two parts (the @ symbol is used to show
where you should insert spaces):

*CORESOIGPWI THERCERTA T NEED

INALIENABLEGRIGHTSED- A0 2L EDED
ARE ENDOMWED BY THEIR CREATOR WITH CERTAIN
INALTENABLE RICHTS, THAT AMONG
*

To list both lines, it was necessary to move the pointer back to
the beginning of the first line you changed; this was done by the
—A command. The 2L command then listed both lines. Notice
where the pointer is; it was moved by the ~A command and was
not repositioned by the L. command.

You must be careful when you use the Get command, because
the character string you specify must be unique if you want the
pointer to move to the correct spot. For example, if the charac-
ters OR had occurred anywhere after the pointer and before the
word CREATOR, the pointer would have stopped there instead,
and you would have inserted text in the wrong place.

The final errors in this text occur in the last line. The words
THE PURSUIT OF are missing, and the word HAPLENESS is
a misspelling. Use the Get command to move the pointer to the
word AND and insert the missing text. Move the pointer again
with the Get command to the PLE of HAPLENESS; erase the
LE, and insert PI. Then verify the line:

*GANDED IGPTHEBPPURSUITEPOF ESOED
*GPLEED-2DED1P] EOVEDED

THESE ARE LIFE,» LIBERTY AND THE PURSUIT OF HAPPINESS,
*

Large text files — 50 lines or more — should be delimited
into pages. To do this, insert a form feed into the text at the
place where you want the page to end. A form feed is typed as a
CTRL/L (hold the CTRL key down and type the L key), which
the editor recognizes as a page break.

Since this text file is only five lines long, there is really no need
to delimit it as a page. However, for the sake of practice, insert
a form feed at the end of this file. Then move the pointer to the
beginning of the text buffer and list the entire text. Compare
your text with the following example. If errors remain in your
file, fix them by using the commands described so far.

%G, 016D

(CTRL/L echoes as eight line feeds.)

5-10

Creating and Editing Text Files

E0BED/L EDED
WE HOLD THESE TRUTHS TO BE SELF-EVIDENT .,
THAT ALL MEN ARE CREATED EQUAL» THAT TH

EY

ARE ENDOWED BY THEIR CREATOR WITH CERTAIN

INALIENABLE RIGHTS, THAT AMONG

THESE ARE LIFEs LIBERTY AND THE PURSUIT OF HAPP
INESS.

*

This text is correct in spelling and content, but the last two

lines should be justified to make them easier to read. The

pointer is currently at the beginning of the text. Use the G

command to search for the character string AMONG,; then in-

sert and delete text to justify the lines. Finally, list the text

again:

*GAMONGED IEPTHESESD AREEDAED!L ODEDBED /L EOED
WE HOLD THESE TRUTHS TO BE SELF-EVIDENT +

THAT ALL MEN ARE CREATED EQUAL» THAT THEY

ARE ENDOWED BY THEIR CREATOR WITH CERTAIN

INALIENABLE RIGHTS, THAT AMONG THESE ARE

LIFEs LIBERTY AND THE PURSUIT OF HAPPINESS.

*

Once you are satisfied with your text, you are ready to transfer

it to the output file. You could use the EX command to transfer NEXT
the text, as you did earlier in the section Creating a Text File.

However, suppose your input file has additional pages of text

that require editing. If you use the EX command, all remaining

text in the input file will be read through the text buffer into

the output file, and the files will be closed although you may

want to do more editing. To avoid this, you can use the N (Next)

command. This command transfers the text currently in the

text buffer to the output file, clears the text buffer, and reads in

the next page from the input file. The pointer is positioned at

the beginning of the text buffer.

* NEOED
2EDIT-F-End of input file

* (No text remains in the input file.)

If you use the N command when no text remains in the input

file (as just happened), the editor prints a message on the ter-

minal telling you so. At this point, you can type the EX com-

mand to close the file.

*E X ES0ED

5-11

Creating and Editing Text Files

USING UPPERCASE

AND LOWERCASE

CHARACTERS

Edit Lower

When you close a file after editing, the editor creates a file on

the default storage volume (or system volume). It gives this

new file the file name and file type that you indicated for input.

It then renames the input file so that the file retains its file

name but is assigned a file type of .BAK. This file type identi-

fies a backup file, here an original input file retained in case of

editing mistakes or accidental deletion of the new file. Thus you

now have two versions of the DECIND file on your system

volume: DECIND.USA, which is the edited version, and

DECIND.BAK, which is the unedited (original) input file.

Verify this by using the monitor DIRECTORY command:

Long and Short Command Format

+DIRECTORY DECIND.*@EED

08-Jan-83

DECIND.BAK i 08-Jan-83 DECIND.USA 1 08-Jan-83

2 Filesy 2 BlocKs

496 Free blocKs

The asterisk (*) following DECIND. is a type of shorthand nota-

tion called wildcard construction. Here it means to list all files

named DECIND, regardless of their file type. Wildcard con-

struction is explained in detail in the Multiple File Operations

section of Chapter 7.

Whenever you edit the same file a number of times, new ver-

sions overwrite old versions. Thus only two versions of the

edited file (filnam.BAK and filnam.typ) ever reside on a volume

at one time.

Later model terminals (for example, LA120 DECwriters and

VT100 video terminals) have the capability to print in upper-

case and lowercase. Certain line printers also have this capa-

bility. You can use the uppercase/lowercase capability of these

devices if you type the EL (Edit Lower) editing command before

entering the text you want to insert in lowercase. The EL com-

mand instructs the system to accept all characters typed as

they appear on the keyboard. The monitor facility, which con-

verts all alphabetic characters to uppercase, is disabled. In ad-

dition, the characters are echoed on the terminal printer or

screen as uppercase and lowercase characters.

Open the file DECIND.USA again, and type the EL command:

Long and Short Command Format

+EDIT DECIND.USAGD

*EL E0E0

*

5-12

Once you have typed the EL command, you can use the SHIFT

key on the terminal to designate uppercase, just as you do on a
typewriter. Editing commands may be entered as either upper-

case or lowercase characters. For example, type the following

commands, which change the characters in the first line of the

file DECIND.USA to uppercase and lowercase:

rE50 b €0 1 ES0E0

WE HOLD THESE TRUTHS T0O BE SELF-EVIDENT,

*KEDiWe hold these truths to be self-evident @0

€0 - 2 €50 v EOED

We hold these truths to be self-evident

*

The uppercase and lowercase capability is useful for reports,

memos, and other textual material that you list on

uppercase/lowercase devices. However, all characters are

printed as uppercase if you list the file on a line printer or

terminal that does not have the uppercase/lowercase capability.

If at any time you want to revert to strictly uppercase editing,

type the EU (Edit Upper) command:

#¢ uEBDED
*

Uppercase editing is a default mode. Whenever you open a file

for editing or create a new file, you must enter the EL command

if you want to use the uppercase/lowercase capability.

Close the file DECIND.USA by typing:

*EXEOE0

+

EDIT filespec

Activate the editor and open the file for editing.

EDIT/CREATE filespec

Activate the editor and create a new file.

Control Commands

CTRL/L

Insert a form feed. The form feed character is used to delimit

pages of text in a file (introduced as part of text by the Insert

command).

CTRL/X

Ignore all commands in the current editing command string.

5-13

Creating and Editing Text Files

Edit Upper

SUMMARY:

EDITING

COMMANDS

Creating and Editing Text Files

Command Arguments

n(+ or —)

An integer value between —16383 and + 16383 that sets the

range of a command’s actions based on the pointer’s current

position.

0

Beginning of the current line (the line containing the

pointer).

/

End of the text in the text buffer.

Input/Outpuf Commands (pointer is not repositioned)
(x indicates that an argument can be used)

EX

Exit; terminate editing, transfer the contents of the text

buffer and the remainder of input file to the output file; close

input and output files; return to monitor command mode.

xL,

List; list, from the pointer, x lines of text.

xN

Next; write the contents of the text buffer to the output file,

clear the text buffer, and read into it the next page from the

input file; perform this write/read sequence x times.

\Y%

Verify; list the current line (the line containing the pointer)

on the terminal.

Pointer Location Commands (pointer is repositioned)

(x indicates that an argument can be used)

xA

Advance; move the pointer to the beginning of the xth line

from the current pointer position.

B

Beginning; move the pointer to the beginning of the text

buffer.

xJ

Jump; move the pointer forward or backward by x characters.

5-14

Creating and Editing Text Files

Text Modification Commands (pointer is repositioned)

(x indicates that an argument can be used)

xD

Delete; erase x characters to the right (or left) of the pointer.

I text

Insert; insert text into the text buffer at the present pointer

position.

xK

Kill; erase x lines of text, beginning at the pointer.

Search Command (pointer is repositioned)

(x indicates that an argument can be used)

xG text

Get; search the text buffer, beginning at the pointer, for the

xth occurrence of the indicated text string and leave the

pointer at the end of the text string.

Uppercase/Lowercase Commands (pointer is not affected)

EL

Edit Lower; accept characters typed at the keyboard as

uppercase/lowercase.

EU

Edit Upper; revert to uppercase editing (after EL).

If your system configuration includes VT11 display hardware, USING A

there are several advantages to your using it during editing.’ GRAPHICS DISPLAY

First, the graphics screen becomes a window into the text TERMINAL

buffer, exposing twenty lines of text at a time: the current line,

the ten lines preceding it, and the nine lines following it. DURING EDITING
Figure 5-2 illustrates this format. As you edit, the lines in view

shift to conform to the current line. In addition, the pointer is

visible and appears as a blinking, L-shaped cursor. Its position

is automatically adjusted as you execute editing commands. Fi-

nally, the four lines at the bottom of the screen display the last

three command lines plus the current command line. Hori-

zontal dashes separate the text of the file from your commands.

1If your system does not have VT11 display hardware, skip to the next sec-

tion, entitled Creating the Demonstration Programs.

5-15

Creating and Editing Text Files

Normal Use of the

Graphics Display

Immediate Mode

10 PRECEDING

LINES OF TEXT

WINDOW

INTO THE

TEXT BUFFER

CURSOR

(CURRENT LINE)

AND 9

FOLLOWING

LINES OF TEXT

SEPARATION

LINE

3 PRECEDING

COMMAND LINES

CURRENT

COMMAND LINE

Figure 52 Text Window Format

All editing commands and functions described so far can be
used when the graphics screen is enabled. The only difference is
that terminal I/O is rearranged on the screen as shown in
Figure 5-2. Note that the L and V editing commands become
superfluous since the pointer is always displayed on the screen.
Also, since twenty lines of text are always displayed, any List
command within that range is unnecessary.

Currently, your graphics screen is not enabled. To enable it, use
the monitor GT ON command as you did in Chapter 4:

Long and Short Command Format

JGT ONGED

Now when you use the EDIT command to activate the editor,
the graphics screen will be rearranged as shown in Figure 5-2.
You can use the CTRL/E command, described in Chapter 4, to
request simultaneous I/O on the terminal printer and graphics
screen.

In addition to the regular editing capability, a quick and easy
method of graphics editing, called immediate mode, is avail-
able. Immediate mode uses a simplified set of editing com-
mands that are limited to pointer relocation and character dele-
tion and insertion. Most of these commands are similar to the
special CTRL commands because to type them you use the
CTRL key in combination with another character key. How-

5-16

ever, the use of these particular control commands is mean-
ingful only in the editor immediate mode. Table 5-2 lists the
commands.

Table 5-2 Immediate Mode Commands

Command Meaning

CTRL/N Advance the cursor to beginning of next line
(equivalent to A).

CTRL/G Move the cursor to the beginning of the previous
line (equivalent to —A).

CTRL/D Move the cursor forward by one character (equiv-
alent to J).

CTRL/V Move the cursor back by one character (equiva-
lent to —J).

DELETE Delete the character immediately preceding the
cursor (equivalent to -D).

ESCAPE Return control to the editing command mode.

double Summon immediate mode.

ESCAPE

Use the editor to open a new file called IMMODE.TXT:

Long and Short Command Format

+EDIT/CREATE IMMODE, TXTEE
*

Now activate immediate mode. You do this by typing the ES-
CAPE key twice in response to the editing command mode as-
terisk. Since there are no other commands in the command line,
the editor recognizes the double ESCAPE as an immediate
mode command.

*EDED
i

The editor responds by printing an exclamation point in the
command portion of the screen; the exclamation point signifies
that you are using immediate mode.

Character insertion is the default operation and occurs when-
ever you type a character other than one of the immediate mode

commands listed in Table 5-2.

5-17

Creating and Editing Text Files

ESCAPE ESCAPE

Character Insertion

Creating and Editing Text Files

CTRL/G

CTRLV

DELETE

CTRUN

The next several paragraphs demonstrate the use of the imme-

diate mode commands on a selected portion of text. Remember
that all characters you type that are not immediate mode com-

mands are treated as input. Commands do not echo on the

graphics screen, so all you ever see is the current text file. Type

the following:

TO BEs+ OR NOT TO BE - THAT IS5 THE QUESTION:GD

WHETHER ‘TIS5 NOBLER IN THE MIND AND HEART TO SUFFERED

THE SLINGS OF OUTRAGEOUS FORTUNEGED

OR TO TAKE ARMS AGAINST A SEA OF TROUBLESBB

AND BY OPPOSING END THEM?PED

As you can see on the graphics screen, the cursor (pointer) is

positioned at the beginning of a new line. CTRL/G, equivalent

to —A in standard editing, moves the cursor to the beginning of

the previous line; the cursor is repositioned immediately. Type:

The cursor has moved backward three lines, one line for each

CTRL/G command, and is positioned before the line:

THE SLINGS OF DUTRAGECUS FORTUNEs

CTRL/V, equivalent to —J, moves the cursor back one character.

Move the cursor back over the carriage return and line feed at

the end of the previous line by typing the CTRL/V command

eleven times (remember, the carriage return and line feed

count as two characters):

(eleven [11] times)

WHETHER ‘TIS5 NOBLER IN THE MIND AND HEART TO SUFFER

This positions the cursor before the word TO. The command

DELETE, equivalent to —D, deletes the character immediately

preceding the cursor. Type the DELETE key ten times:

(ten [10] times)

WHETHER ‘TIS NOBLER IN THE MIND TO SUFFER

CTRI/N, equivalent to A, advances the cursor to the beginning

of the next line:

CRND

THE SLINGS OF DUTRAGEOUS FORTUNEs

5-18

Creating and Editing Text Files

CTRL/D, equivalent to J, moves the cursor forward one charac-

ter; type CTRL/D ten times: CTRL/D

(ten [10] times)

THE SLINGS OF OUTRAGEOUS FORTUNE

Next type this text (it will be inserted immediately to the left of

the cursor):

EPANDEPARROWSE

The text on the screen should now look as follows:

TO BE OR NOT TO BE - THAT IS5 THE QUESTION]

WHETHER ‘TIS NOBLER IN THE MIND TO SUFFER

THE SLINGS AND ARROWS OF OUTRAGEQUS FORTUNE,

OR TAKE ARMS AGAINST A SEA OF TROUBLES,

AND BY OPPOSING END THEM?

Check your results and correct any other mistakes you may

notice.

To return to the standard editing command mode, type a single

ESCAPE. ESCAPE

*

This ESCAPE command does not echo on the screen. Notice

that the exclamation point immediately disappears and the text

window format returns; an asterisk appears immediately below

the exclamation point on the screen.

You use immediate mode only to create and edit text. Opera-

tions that move text in and out of the text buffer must be done

with standard editing commands.

You do not need to save the text you have just created, so use

the CTRL/C command and two ESCAPESs to return control di- CTRL/C ESCAPE
rectly to monitor command mode. As mentioned before, EDIT ESCAPE

requires this unusual command combination to prevent an acci-

dental CTRL/C from killing your text.

Following are two demonstration programs. One is written in CREATING THE

the FORTRAN IV programming language and one is written in DEMONSTRATION

the MACRO-11 assembly language. Both programs are used in PROGRAMS

later chapters of this manual, and both contain intentional mis-

spellings and errors.

5-19

Creating and Editing Text Files

Use the editor to create these programs. Type them exactly as

they are shown, including errors. Use tabs and spaces to format

each line as shown (remember that tab stops are positioned

every eight spaces across the terminal page). Make sure that

the FORTRAN IV program is formatted properly so that a

source comparison described in the next chapter will operate

properly. Except for the comment lines (those beginning with a

C) and the lines that begin with a number, begin all lines with

a tab. Use any of the editing commands described in this
chapter. Activate the display editor and immediate mode if you

wish.

When you have finished, check each file carefully. The two files

should match those shown here exactly, including tabs and

spaces. Correct any errors that you find that are not inten-

tional. Obtain a listing of each file by using B €O/L

before closing the file.

Create the FORTRAN 1V file first. Call it GRAPH.FOR and use

the system volume for storage. Then create the MACRO-11

program. Call it SUM.MAC and again use the system volume

for storage.

NOTE

Knowledge of the FORTRAN IV and MACRO-11 lan-

guages is not necessary to create these demonstration

programs.

The following program, GRAPH.FOR, is the FORTRAN 1V

demonstration program.

C GRAPH,FOR VERSION 1

C THIS PROGRAM PRODUCES A PLOT ON THE TERMINAL

C OF AN EXTERNAL FUNCTION., FUN(X.Y)

C THE LIMITS OF THE PLOT ARE DETERMINED BY THE DATA STATEMENTS

¢ "STAB" IS FILLED WITH A TABLE OF WEIGHT FLAGS

C "STRING" 18 USED TO BUILD A LINE OF GRAPH FDR PRINTING

SCAL (ZMIN s ZMAX sMAXZ 1K) =ZMIN+FLOAT(K-1)#(ZMAX-ZMIN)/FLOAT (MAXZ-1)

LOGICAL*#: STRING(13:3),8TAB(100)

DATA XMIN XMAX 1MAXX/-5:5:45/

DATA YMIN YMAX I MAXY/-5:5472/

DATA FMIN,FMAX/0.0+1.,0/

CALL SCOPY(‘~- 1 2 3 456 7 8 9 +',5TAB)

MAXFLEN(STAB)

DO 20 IX=1.MAXX

X=BCAL (XMIN s XMAX sMAXX + IX)

CALL REPEAT(’#’,STRINGMAXY)

IF(IX.EQ.1 .OR, IX.EQ.MAXX) GOTO 20

DO 10 IY=Z,MAXY-1

Y=SCAL (YMIN YMAX /MAXY , 1Y)

IFUN=2+INT (FLOAT (MAXF-3) # (FUN(X Y)-FMIN) / (FMAX-FMIN))

10 STRING(IY)=STAB(MINO(MAXFMAXO (1, IFUNI 1)

30 CALL PUTSTRING(7,STRING,' ")

CALL EXIT

END

FUNCTION FUN(X,Y)

R=GORT(X##2+Y#%2)

FUNsX#Y#R#EXP(-R))##2

RETURN

END

5-20

The following program, SUM.MAC, is the MACRO-11 demon-

stration program.

+TITLE SUM.MAC VERSION 1

+MCALL

N = 70,

EXP: «PRINT

MQV

FIRST: MOV

MOovV

SECOND: ASL

MOV

ASL

ASL

ADD

DEC

BNE

MOV

THIRD: MOV

MOV

FOURTH: INC

suB

BCC

ADD

MOV

ADD

DEC

BNE

Moy

FIFTH: SUB

scc

ADD

+TTYON

CLR

DEC

BNE

JEXIT

EXP: +REPT

+WORD

+ENDR

MESSAG: .ASCII

+EVEN

+ENDEXP

When you have created and checked these two programs, ob-

tained listings, and stored them as files on your system volume,

go on to Chapter 6, Comparing Text Files. Chapter 6 demon-

strates a proofreading aid that helps you evaluate your editing

ability.

RT-11 System User’s Guide (AA-5279C-TC). Maynard, Mass.: Digital thip-

LTTYOUT

iND.

‘E‘ = THE SUM OF THE

1700 + 1/18 + 1721

#MEGSAG

#NR3

*#N+1 4RO

*#A,R1

BR1

BRI- (SP)

eRrt

8rt

(SPI++(R1)+

RO

2ZND

%N RO

-(R1)R3

«-1,R2

R2

RO R3

FOURTH

ROR3

R3:8R1

R2-2(R1)

RO

THIRD

-{R1) sRO

#10.,RO

FIFTH

®10+'0,R0O

B8Rt

RS

FIRST

N+1

JEXIT, JPRINT

OF DIGITS OF ‘E’ TO CALCULATE

RECIPROCALS OF THE FACTORIALS

1730 + 1740 + 1/50 + .,

SPRINT INTRODUCTORY TYEXT

iNO. OF CHARS OF 'E’ TO PRINT

iNO. OF DIGITS OF ACCURACY

$ADDRESS OF DIGIT VECTOR

500 MULTIPLY BY 10 (DECIMAL)

iSAVE #2

i*d

%8

INOW #10, POINT TO NEXY DIGIT

SAT END OF DIGITS?

SBRANCH IF NOT

GO THRU ALL PLACES: DIVIDING

iBY THE PLACES INDEX

SINIT QUOTIENT REGISTER

iBUMP QUOTIENT

SSUBTRACT LOOP ISN'T BAD

INUMERATOR IS ALWAYS < 10#N

FFIX REMAINDER

ISAVE REMAINDER AS BASIS

$FOR NEXT DIGIT

FGREATER INTEGER CARRIES

iTO GIVE DIGIT

$AT END OF DIGIT VECTOR?

$BRANCH IF NOT

FCET DIGIT TO OUTPUT

IFIX THE 2.7 TO .7 50

STHAT IT IS ONLY 1 DIGIT

S(REALLY DIVIDE BY 10)

iMAKE DIGIY ASC Il

;OUTPUT THE DIGITY

SCLEAR NEXT DIGIYT LOCATION

iMORE DIGITS 7O PRINT?

iBRANCH IF YES

$WE ARE DONE

FINIT VECTOR TO ALL ONES

/THE VALUE OF € IS:/ <183x<12> /2.7 <2002

ment Corporation, 1983.

A guide to the use of the RT-11 operating system.

5-21

Creating and Editing Text Files

REFERENCE

CHAPTER 6

COMPARING TEXT FILES

The RT-11 operating system provides a proofreading aid, called

a source comparison, to help you quickly establish the differ-

ences between two ASCII text files. During a source compar-

ison, the system compares the two files, character for character,

and prints on the terminal (or line printer) any lines that con-

tain differences.

Usually, you perform a source comparison against two files that

you expect to be the same, or at least similar. For example, if an

individual has copied one of your files to make changes to it,

you can quickly scan the changes by performing a source com-

parison between the new version and your original. Another

use of a source comparison is to check edits you have made to a

file yourself. By comparing the backup file against the edited

version, you can proofread the changes since only the portions

of text that are different are printed.

In this chapter, you will use source comparisons to find editing

errors that may exist in the demonstration programs

(GRAPH.FOR and SUM.MAC) that you created in Chapter 5.

These demonstration programs contain intentional misspell-

ings and misplaced text that you must correct before the pro-

grams can be used in later demonstrations. On your system

volume is a counterpart of each file. These counterparts are

provided as part of the RT-11 operating system so that you can

use them to perform a source comparison against your own ver-

sions. Essentially, the counterpart programs have been carried

one step further in the editing process than your own; they

contain no editing errors. Therefore, when you compare them

against your versions, the printed list of differences will reflect

the typing errors that still exist in your versions— some of

these errors are intentional; others you may have inadvertently

introduced during editing. All must be corrected before you can

use the programs.

The monitor command used to compare two text files is the

DIFFERENCES command. When you type this command on

the terminal, it activates the RT-11 utility program called

SRCCOM.SAV, which is part of the RT-11 operating system

stored on the system volume. The system prompts you for the

input file names. Respond to the input prompts with the names

of the files you want to compare; the default storage volume is

the system volume. The output will be sent to the terminal,

which is the default device for output.

6-1

PERFORMING A

COMPARISON

Comparing Text Files

DIFFERENCES

The programs that you created in Chapter 5, SUM.MAC and

GRAPH.FOR, have their respective counterparts,

DEMOX1.MAC and DEMOF1.FOR, on the system volume. Use

the DIFFERENCES command to compare the MACRO-11

(.MAQ) files first. The /MATCH option indicates the number of

lines that determine a “match”, explained in a moment.’

Long Command Format

[DIFFERENCES/MATCH:1 @D

File 17 DEMOX1.MACEED

File 27 SUM,MACED

Short Command Format

DIFFERENCES/MATCH:1 DEMOX1.MAC SUM,MACGED

The list of differences printed on your console terminal should

be similar to the following example. It will show all the differ-

ences listed here, plus any others that you may have introduced

yourself during editing.

Notice the format of the list. Individual sections are marked

with the letters A, B, C, and D to help you become acquainted

with the format. A description follows the list, and you should

refer to it as you study the list.

A 1) DK:DEMOX1.MAC

A 2) DK:BUM.MAC

EERXERRRER

C N1 +TITLE EXAMP.MAC (VERSION PROVIDED)

1)

D +MCALL JTTYOUT,» JEXITs PRINT

B #%xx

C 2)1 +TITLE SUM.,MAC VERSION 1

2)

D 2» JMCALL TTYOUT, (EXIT, PRINT

ERREEEKERS

C 11t BNE SECOND iBRANCH IF NOT

D MOy #N RO iGO THRU ALL PLACES.

iDIVIDING

B x#xx

C 2z BNE 2ND $BRANCH IF NOT

D 2 MOV #N RO iGO THRU ALL PLACES,

iDIVIDING

R

C 1)1 ADD %10+ 04RO iMAKE DIGIT ASCII

D1 +TTYON F0UTPUT THE DIGIT

B #%%%

C 21 ADD #10+'0,R0O IMAKE DIGIT ASC 11

D 2) +TTYON iOUTPUT THE DIGIT

ERERERRERS

C 1 +END EXP

B #xxx

C 21 +ENDEXP

EEERERRRNER

?SRCCOM-W-Files are different

1Users of display hardware may wish to enable both the graphics screen and
the terminal printer by first typing the CTRL/E command.

6-2

The first two lines identify the two files that are being com-

pared. The file name and the device on which the file resides

are printed. Also, the numbers 1) and 2) are assigned to the

files (see lines labeled A in the example list above).

The first difference that is listed occurs in the title line of the

program. Usually differences that occur in these two lines are

intentional and reflect information that is unique to each file,

such as name and file type, version or edit number, and perhaps

date of creation.

The numbers that appear at the left margin of the list further

identify the files. For example, 1)1 indicates the first page of

the first file and 2)1 indicates the first page of the second file.

The lines of both files are compared character for character.

Blank lines are ignored, but all other characters, including tabs

and spaces, are compared. When two lines are found to be dif-

ferent, the system prepares a difference section, which it subse-

quently prints (see lines labeled B).

The system prepares the difference section as follows. When it

finds two lines that are different, it notes the page number and

records the lines (see lines labeled C). Next it searches for a

match. A match is a certain number of lines in each file that

are exactly the same. Since you specified a match of 1 in the

/MATCH:n option (MATCH:1), the system in this case searches

for a single line in each file that is exactly the same. When the

system finds a match, it records the last line of the match for

identification purposes (see lines labeled D). Then it prints the

difference section and repeats the process, preparing a subse-

quent difference section if more differences exist. Individual dif-

ference sections are separated from each other by a long row of

asterisks, while the short rows of asterisks separate the lines of

the first file from those of the second.

A message is printed following the comparison. Files are dif-

ferent is printed if differences exist; No differences found is

printed if the files are the same.

Check the list printed on your terminal to find the errors the

system detected. Mark each error on the listing of SUM.MAC

that you obtained in Chapter 5.

Now perform a source comparison between the FORTRAN IV

files, DEMOF1.FOR and GRAPH.FOR.

Long Command Format

WDIFFERENCES/MATCH: 1EED

File 1? DEMOF!.FORGD

File 27 GRAPH,FORGE

6-3

Comparing Text Files

DIFFERENCES/

MATCH:n

Comparing Text Files

Short Command Format

'DIFFERENCES/MATCH:1 DEMOF1.FOR GRAPH,FORGED

1) DK:DEMOF1.FOR

2) DK:GRAPH.FOR

HRERARRRHA

1)1 C EXAMP,FOR (VERGION PROVIDED)

1) L THIS PROGRAM PRODUCES A PLOT ON THE TERMINAL
EREH

2)1 C GRAPH.FOR VERSION ¢

2} € THIS PROGRAM PRODUCES A PLOT ON THE TERMINAL
HREREEERRH

11 € "STAB" IS FILLED WITH A TABLE OF HEIGHT FLAGS

n C "STRING" IS USED TO BUILD A LINE OF GRAPH FOR PRINTING
(222

2)1 C "STAB" IS5 FILLED WITH A TABLE OF WEIGHT FLAGS

2) C "STRING" IS USED TD BUILD A LINE OF GRAPH FOR PRINTING
HEREREERES

11 MAXF=LEN(STAB)

|) DO 20 IX=1:MAXX

*EEE

21 MAXFLEN(STAB)

2) DO 20 IX=1,MAXX

HREH KRN KN

11 30 CALL PUTSTR(7,STRING,’ /)

| CALL EXIT

XK

231 30 CALL PUTSTRING(7.:STRING,’)

2) CALL EXIT

HEERREEARN

?BRCCOM-W-Files are different

Similarly, mark the errors on the listing of GRAPH.FOR that
you obtained in Chapter 5.

Now return to the section entitled Editing a Text File in
Chapter 5. Review the editing commands described there and
the summary at the end of the section. Use the appropriate
commands to correct the files SUM.MAC and GRAPH.FOR.
When you have finished editing, perform the source compari-
sons again against DEMOX1.MAC and DEMOF1.FOR. If you
have edited the files correctly, the comparison finds differences
only between the first lines of each program. The following
messages should print on your console:

+DIFFERENCES/MATCH:1B

File 17?7 DEMOF1.FORED

File 27 GRAPH.FORGD

1) DK:DEMOF1.FOR

2) DK:GRAPH,FOR

LRI TR ¥

1 C EXAMP.FOR (VERSION PROVIDED)
| C THIS PROGRAM PRODUCES A PLOT ON THE TERMINAL
* KR

21 C GRAPH.FOR VERSION 1
2) C THIS PROGRAM PRODUCES A PLOT ON THE TERMINAL
HEEEEEEERSE

PBRCCOM-W-Files are different

and

.DIFFERENCES/MATCH:l@@

File 17 DEMOX1.MACED
File 27 SUM,MACED
1) DK:DEMOX1.MAC

2} DK:5UM,MAC

FEEEHHEKKK

1)1 LTITLE EXAMP.MAC (VERSION PROVIDED)

1

] JMCALL TTYOUT,» (EXIT, .PRINT

* % %%

231 ,TITLE SUM.MAC VERSION 1

2)

2) JMCALL JTTYOUT» JEXIT. LPRINT

EEERREERER

PGRECOM-W-Files are different

These messages indicate that a difference exists in the first line

of each program. However, no other differences were found in

the programs during the comparison. Thus, your programs are

ready for use in later demonstrations, and you know how to

create and edit programs.

If differences still exist in your files and you cannot resolve

them by editing, you may continue to the next chapter if you

wish. However, you need practice editing, and it is to your ad-

vantage to rework the examples in both Chapter 5 and this

chapter.

DIFFERENCES

List the differences between two ASCII text files.

DIFFERENCES/MATCH:n

Indicate the number of lines (n) to determine a match; the

default number is 3.

RT-11 System User’s Guide (AA-5279C-TC). Maynard, Mass.: Digital Equip-

ment Corporation, 1983.

A guide to the use of the RT-11 operating system.

RT-11 System Utilities Manual (AA-M239A-TC). Maynard, Mass.: Digital

Equipment Corporation, 1983.

A guide to the use of the RT-11 system utilities.

6-5

Comparing Text Files

SUMMARY:

COMPARISON

COMMAND

REFERENCES

CHAPTER 7

PERFORMING FILE MAINTENANCE OPERATIONS

The system volume, as it is initially supplied, contains only the

files of the RT-11 operating system-— the monitor files, the

system device handlers, the system utility programs, and per-

haps the language processors. Since the system volume serves

as the default storage volume for all system operations (unless

DK: was assigned to another volume), you will discover that it

acquires many additional files during normal use. For example,

files that you create with the editor are written on the system

volume; edited files automatically create backup versions on

the system volume; many utility programs create output and

listing files on the system volume as part of their normal pro-

cessing operations. By the time you finish an average session of

computer operations, several new file names have been added

to the directory of your system volume. Eventually your system

volume may become full and its directory cluttered with the

names of files for which you have no use. To avoid this you

should perform regular housekeeping, or file maintenance, op-

erations as you use the system. You should update and transfer

copies of your important files to other storage volumes for safe-

keeping and later use, and you should delete from your system

and storage volume directories the names of files you no longer

need.

The RT-11 operating system provides a number of monitor

commands for this purpose. These commands activate the

RT-11 utility programs called PIP.SAV, DUP.SAV, and

DIR.SAV, which are part of the RT-11 operating system stored

on your system volume. These utility programs allow you to

transfer and erase files. The commands used in this chapter

show one way to maintain your system and storage volume.

When you become more familiar with system operations and

learn some of the commands not described here, you may prefer

other methods.

Before you perform operations that might move or erase files on

a volume, list a directory of the volume involved. The directory

tells you the full names of files, their sizes, and whether backup

copies exist. A directory of your system volume shows the files

that have been added to it through normal use.

First obtain a directory of your system volume (as you learned

in Chapter 4), using the appropriate command to list it on ei-

ther the terminal or the line printer. The directory is relatively

long; let it list to completion.

FILE DIRECTORY

OPERATIONS

Performing File Maintenance Operations

MULTIPLE FILE

OPERATIONS

Long and Short Command Format

(Line printer)

,DIRECTORY/PRINTERGED

(Terminal)

,DIRECTORYGE

At the end of the system volume directory you should see sev-

eral additional entries. These files are the result of the system

operations you have performed so far:

DECIND.USA 1 8-JAN-B3

DECIND.BAK 1 B8-JAN-B3

GRAPH .FOR 2 B8-JAN-83

GRAPH .BAK 2 B-JAN-83

SUM +MAC 3 B-JAN-B83

SUM +BAK 3 B8-JAN-83

Next list a brief directory of your storage volume. This direc-

tory should be empty (void of any file names or file types) be-

cause you initialized it in Chapter 4.

Long and Short Command Format

(Line printer)

L,DIRECTORY/BRIEF/PRINTER VOL:@D

(Terminal)

,DIRECTORY/BRIEF VOL: G

These directories give you the information you need for erasing

and copying files. For example, you know the additional files

that are now on your system volume, and you know that since

the directory of the storage volume is empty, there is ample

room on it for new files.

You often have occasion to perform the same utility operation

on several files. For example, you may copy from one volume to

another all files with the file type .MAC, or you may erase from

a volume all files with the name TEST. Rather than perform

the required operation on the files one at a time, it is easier to

use the wildcard construction, a shorthand method provided by

the RT-11 operating system. Wildcard construction allows you

to substitute an asterisk (*) or percent sign (%) for a portion of

the file name that is variable among all the files you want used

Performing File Maintenance Operations

in the operation. For example, specifying DECIND.* in a com-

mand causes the operation to act on all files with the file name

DECIND, regardless of their file type; * BAK causes the system

to act on files with the file type BAK, regardless of their file

name. Specifying TEST%.FOR causes the operation to act on all

files having a type of FOR, starting with the four characters
TEST, and having any fifth character (for example,

TESTA.FOR, TEST1.FOR, etc.).

A special use of the wildcard construction involves substitution

of an asterisk for both file name and file type. *.* implies that

all files, regardless of the file name or file type, are to be used

in the operation.

Exercises in this chapter and throughout the remainder of the

manual demonstrate various uses of the wildcard construction.

Storage volumes provide an area where you can store important

files. Since most files are originally created on the default sys-

tem volume, you must copy them from the system volume to the

storage volume. The following exercises show you how to make

backup copies on your storage volume of the two provided dem-

onstration programs (DEMOF1.FOR and DEMOX1.MAC), and

how to copy to the storage volume the two programs you cre-

ated (GRAPH.FOR and SUM.MAC).

The monitor command that copies files between volumes is the

COPY command. This command instructs the system to dupli-

cate the file that you indicate as input, and then gives the new

file the name and file type that you specify as output. The origi-

nal version of the file is unaffected; that is, a copy of the origi-

nal version is made and moved to the new volume.

To copy GRAPH.FOR to your storage volume under the new

name GRAPH.TWO, type:

Long Command Format

,COPYED

From? GRAPH.FORGD (System volume is
To 7 WOL:GRAPH,TWOGED assumedfor input.)

Short Command Format

,COPY GRAPH.FOR VOL:GRAPH.,TWOEED

The system makes a copy of the file GRAPH.FOR on the stor-

age volume and gives the copy the name GRAPH.TWO. When

the operation is complete, the monitor prints a period at the left

margin and waits for you to enter the next command. This

time, copy SUM.MAC to the storage volume.

7-3

FILE COPYING

OPERATIONS

COPY

Performing File Maintenance Operations

FILE RENAMING

OPERATIONS

Long Command Format

, COPY@ED

From? SUM.MADEET

To 7 WOL:SUM.MACER

Short Command Format

¢ COPY SUM.MAC vOL:SUM. MACED

The system copies the file SUM.MAC to your storage volume
and gives the copy the name SUM.MAC.

Now, copy the two provided demonstration programs,
DEMOF1.FOR and DEMOX1.MAC, to the storage volume.

Long Command Format

+ COPYEED

From? DEMOFL.FORGD

To 7 UOL:DEMOF1.,FOREED

, COPY @D

From? DEMOX1.MACED

To 7 VOL:DEMOXI,MACED

Short Command Format

COPY DEMOFL.FOR VOL:DEMOF. .FORGD

»COPY DEMOXI. MAL VOL:DEMOXD. MACED

A directory of your storage volume should verify that it now
contains these four files.'

Long and Short Command Format

«DIRECTORY YOL @D

0B-Jan-83

GRAPH THD <2 08-Jan-83 5UM +MAC 3 0B-Jan-83
DEMOFL.FOR 2 Z26-Aug-8BZ DEMOXI MAC 3 2B-Aug-87
4 Filess 10 Blocks

4732 Free blocks

The directory you just listed shows that you copied the GRAPH
demonstration file to your storage volume under a new file
type, TWO. Assume you did not intend to copy it using a new
file type and now wish that it were assigned its original file

'If you are using magtape as your storage volume, read the section entitled
Directory vs Nondirectory-Structured Volumes in Appendix B.

T4

Performing File Maintenance Operations

type, .FOR. Use the monitor RENAME command to rename the

file already on the storage volume.’

Long Command Format

. RENAMERED

From? YOL:GRAPH.TWOGD
To 7 VOL:GRAPH.FORGD

Short Command Format

, RENAME UOL:GRAPH,TWO VOL:GRAPH.FORGD

The RENAME command simply changes the file name or file

type of a file in the volume directory without altering or mov-

ing the file itself. When you perform a rename operation, the

volume indicated in the input and output portions of the com-

mand must be the same; otherwise a system message is printed.

Rename the file copies DEMOX1.MAC and DEMOF1.FOR

presently on your storage volume to EXAMP.MAC and EX-

AMP.FOR respectively.

, RENAME UOL:DEMOX1.,MAC VOL:EXAMP,MACEED

, RENAME UOL:DEMOF1.,FOR VOL:EXAMP,FORGED

Again list a directory of your storage volume to verify that the

renaming operation occurred.

Long and Short Command Format

., DIRECTORY VOL:@D

08-Jan-83

GRAPH.FOR 2 08-Jan-B3 SUM JMAC 3 08-Jan-83

EXAMP.FOR 2 26-Aug-BZ EXAMP . MAC 3 26-Aug-B2

4 Filess» 10 Blocks

4752 Free blocks

Once copies of your important files are stored on a storage vol-

ume, you can delete from the system volume — or any other

volume — those files that you no longer need. The file deletion

operation removes information about the file from the volume’s

directory; the space that the file occupies on the volume be-

comes available for reuse. Files that you want to delete gener-

ally include .BAK files created during editing, temporary files

created by utility programs, or any other unnecessary files.

1Magtape users cannot use the RENAME command and should read the sec-

tion entitled Alternate Rename Operation for Magtape Users in Appendix B.

7-5

RENAME

FILE DELETION

OPERATIONS

Performing File Maintenance Operations

DELETE

Now that you have copies of your important files, you can de-
lete several files from your system volume. For example, you
can delete all files with a .BAK file type created as a result of
editing. You can delete the file DECIND.USA, since this was
created only for editing practice. Finally, you can delete the
files GRAPH.FOR and SUUM.MAC, since copies of these arc now
on VOL..

Do not delete DEMOF1.FOR and DEMOX1.MAC from your
system volume, even though copies of these are also on VOL:.
You should consider these two files as part of the RT-11 opera-
ting system, and therefore should not erase them from the Sys-
tem volume. These copies can serve as additional backups for
the files on the storage volume.

The monitor DELETE command is used to delete file names
from a volume. You can specify as many as six input files for
deletion.

Long Command Format

Files? DECIND . UBAGRAPH,FOR,SUM,MOCED

Short Command Format

JDELETE DECIND,USAGRAPH,FORSUM.MACED

If wildcard construction is used or if the /QUERY option is spec-
ified, the DELETE command requests confirmation from you by
printing each file name on the terminal before it deletes it. If
you type a Y response, the system deletes the file, while an N
response instructs the system to ignore that file and go on to
the next. Notice how you use the wildcard construction in the
input file to delete all files with a .BAK file type.

Long Command Format

Files? #.,BAnRD Files? GRAPH. BAK SUM, BAK DECING , BAKHET

Files deleted: Files deletved:

DEK:DECIND.BAK 7 v DK:DECIND,BAK 7 vin

DK:8UM,BAK v b DK :SUM (BOK R

DK:GRAPH. BAK 7 Y& DK:GRAPH.BAK 7 YED

Short Command Format

VOELETE #.BoKGED JOELETE/GUERY GRAPH, BAK BUM, BAK ,DECIND. BAK 6T
Files deleted: Files deleted:

DK:DECIND,.BAK 7 YD DK:DECIND.BAK 7 YD

DK :SUM, BAK v OVED DK :8UM. BAK 2

DE:GRAPH.BAK 7 Y& DEK:GRAPH,.BAK 7 V&

7—6

Performing File Maintenance Operations

You can give a file a protected status to prevent it from being

deleted from the volume it resides on. A file that has a pro-

tected status cannot be deleted until that status is removed.

The files DEMOF1.FOR and DEMOX1.MAC should still be on

your system volume. These files must not be deleted because

they are part of your RT-11 operating system. You can give

these two files a protected status to ensure that they are not

accidentally deleted.

The monitor PROTECT command is used to give files a pro-

tected status. You can specify up to six input files (separated

with commas) with this command. As with the DELETE com-

mand, if you use the wildcard construction or specify the

/QUERY option, the RT-11 system requests confirmation be-

fore protecting each file.

Use the PROTECT command to give the files DEMOF1.FOR

and DEMOX1.MAC a protected status.

Long Command Format

+ PROTECTGEED

Files? DEMOF1.FOR,DEMOX1.MACGD

Short Command Format

.PROTECT DEMOF1.FORDEMOX1.MACGRED

List a directory of these two files and notice the “P” next to the

number of blocks in the second column.

Long and Short Command Format

+DIRECTORY DEMOF1.FOR,DEMOX1.MACGE
08-Jan-83

DEMOX1 .MAC 3P 2B-Aug-82 DEMOF1.FOR 2P 26-Aug-82

2 Filesy D BlocKks

921 Free blocks

The UNPROTECT command removes a file’s protected status

so that the file can be deleted. You can determine whether a file

is protected or not by listing the directory. If a file is protected,

a “P” will appear next to the block size number of the file’s

directory entry. You can specify up to six input files (separated

with commas) with this command. As with the DELETE com-

mand, if wildcard construction is used or if the /QUERY option

is specified the UNPROTECT command requests confirmation
for each file.

Remove the protected status from the files DEMOF1.FOR and

DEMOX1.MAC.

7-7

FILE PROTECTION

OPERATIONS

PROTECT

UNPROTECT

Performing File Maintenance Operations

FILE LISTING

OPERATIONS

PRINT

TYPE

Long Command Format

JINPROTECTED

Files? DEMOF1.FORVDEMONL MACHED

Short Command Format

JINPROTEDT DEMOFILLFORDEMONT. MACHED

Again list a directory of the two files DEMOF1.FOR and DEM-

OX1.MAC. The “P”’s are removed from the listing, signifying

that the files are no longer protected.

Long and Short Command Formats

OIRECTORY DEMOFLL.FORDEMOXL,MACHED

0g-Jan-83

DEMOX1 .MAC 3 Z2B-Aug-82 DEMOF1,FOR 2 26-Aug-B82

Z Filess 5 Blocks

821 Free blockKs

You sometimes need a listing of a file before you can decide

whether or not to delete it. In Chapter 5, you used the RT-11

editor to get listings of the files you created. You can also use

monitor commands to obtain listings of files. One command

lists a file on the conseole terminal; another lists a file on the

line printer.' The system volume is the assumed storage volume

for the input file.

Type one of the following sets of commands to obtain listings of

EXAMP.MAC and EXAMP.FOR.

Long Command Format

{Line Printer) (Terminal)

PRINTED T PE

Files? UOL:EXAMP. MACKD Files? wOL:ExAMP, MADET

Files? VOL:EXAMP.FORGED Files? UDLsEXaMP, FOREE

Short Command Format

{Line Printer) {Terminal)

PRINT UOL tEXAMP . MACEDD fTYFE UOL s EXAMP, MADET

sPRINT UOLsEXAMP., FORGED STYPE VDL rEXA

1f a line printer is available on your system, you should always use it for
listings because of its high speed of printing.

Performing File Maintenance Operations

You should perform file maintenance operations periodically as

you use the system. File maintenance keeps your system and

storage volumes up-to-date and provides maximum free space

on volumes for new files.

COPY

Copy the specified file from one volume to another.

DELETE

Delete the specified file(s) from the volume’s directory. Con-

firmation is required before deleting the file if wildcard con-

struction or the /QUERY option is used.

DIRECTORY

List the volume directory on the terminal.

DIRECTORY/PRINTER

List the volume directory on the line printer.

PRINT

List the contents of the specified file on the line printer.

PROTECT

Give the specified file protected status so it cannot be deleted

until that status is removed. Confirmation is required before

protecting the file if wildcard construction or the /QUERY

option is used.

RENAME

Give a new name to the specified file.

TYPE

List the contents of the specified file on the terminal.

UNPROTECT

Remove the protected status of the specified file so that the

file can be deleted. Confirmation is required before removing

each file’s protection if wildcard construction or the / QUERY

option is used.

RT-11 System User’s Guide (AA-5279C-TC). Maynard, Mass.: Digital Equip-

ment Corporation, 1983.

A guide to the use of the RT-11 operating system.

7-9

SUMMARY:

FILE MAINTENANCE

COMMANDS

REFERENCE

CHAPTER 8

CHOOSING A PROGRAMMING LANGUAGE

Programming languages and language processors are aids pro-

vided by the operating system to help you develop programs of

your own. Whenever you plan to write a program, you must

first decide on the programming language that you will use,

since most computer systems support several. After you have

chosen the language, you must design and code your program

using appropriate language statements and being careful to

follow formatting rules and restrictions. Finally, you must use

the corresponding language processor, which is stored on the

system volume or on a volume of its own, to convert your pro-

gram statements into a format suitable for execution.

Hundreds of programming languages have been developed for

computer systems. Some languages can be used only for specific

applications or with a particular computer system. Other lan-

guages are general purpose; they are suitable for a variety of

problem-solving situations and, in addition, are easy to learn

and use. The languages demonstrated in this manual include

two well-known and widely used high-level programming lan-

guages (BASIC-11 and FORTRAN IV) and one RT-11 system-

specific machine-level programming language (MACRO-11).

High-level languages, like BASIC-11 and FORTRAN 1V, are

usually easy to learn and use. You write programs using lan-

guage statements that need not deal with the specifics of the

computer system. The language processor — and perhaps

other utility programs as well — handles all conversions that

are necessary for program execution. Since a single high-level

language statement may perform several computer operations,

and since you need not be concerned or familiar with the struc-

ture of the computer and peripheral devices, you can concen-

trate solely on solving the problem at hand. The language proc-

essor takes care of translating the statements into computer

information.

Thus, high-level languages are considered machine-inde-

pendent languages because language statements are such that

any program written in the language can usually be executed

on an entirely different computer system (that supports the lan-

guage) with few, if any, modifications.

Machine-level languages, on the other hand, such as the as-

sembly language MACRO-11, require that you know about the

computer and the peripheral devices and how they work to-

gether. You write programs in formats that are closer to those

8-1

HIGH-LEVEL VS

MACHINE-LEVEL

LANGUAGES

Choosing a Programming Language

required for execution. Since a single machine-level language

statement usually performs only one computer operation, you

must account in your program for each computer operation that

will be required.

For this reason, machine-level languages are machine-

dependent languages. The program is coded in a format that is

not usually interchangeable among systems. Machine-level lan-

guage programs can be efficient because the knowledgeable

programmer will choose the fastest and most precise instruc-

tions for getting a job done.

Table 8-1 lists a comparison of high-level vs machine-level lan-

guages.

Table 8-1 Language Comparisons

High-Level Machine-Level

Easy to learn and use; no

experience required

Machine-independent

Many hidden conversions

necessary for program exe-

cution; more computer

memory is used

Slower execution time

Less efficient; the system

makes decisions concerning

computer operations

Easier to debug (find and fix

errors)

Easier to understand pro-

grams; functions added with

less difficulty

More difficult to learn and

use; familiarity with the com-

puter system required

Machine-dependent

Only direct translation is nec-

essary for program execution;

less computer memory is used

Faster execution time

More efficient; the program-

mer makes decisions concern-

ing computer operations

Harder to debug (find and fix

errors)

Harder to wunderstand pro-

grams; functions added with

greater difficulty

Beginning programmers, students, commercial applications

programmers, and the casual computer user prefer high-level

languages because they are less difficult to learn and to use,

and they produce fast results. System programmers, on the

other hand, may prefer machine-level languages for writing

programs (those that make up an operating system, for exam-

ple) that must often be as fast, efficient, and concise as possible.

8-2

Choosing a Programming Language

The designers of a computer system generally select program-

ming languages that will satisfy and suit the current (or per-

haps potential) system user environment. The RT-11 computer

system is designed for use in many environments: education,

business, laboratory, etc. Some of its applications include data

acquisition and analysis, record keeping, control systems, and

learning through computer simulation. RT-11 programmers

and users include both the very knowledgeable and the

student/beginner.

To satisfy the varied requirements of these environments,

RT-11 supports several programming languages:

High-Level Machine-Level

BASIC-11 MACRO-11

FORTRAN IV

DIBOL

Whenever you choose one or more of these programming lan-

guages for your own use, consider the following criteria:

e What is your programming experience? What languages do

you already know?

¢ How much time do you have to learn a new language?

¢ For what applications will you use the language? How im-

portant are program speed and efficiency?

¢ Will you use your program on any other computer systems?

If you are already familiar with a language supported by the

system, you may prefer to continue using that language rather

than spend time learning a new one. However, if you want to

learn a language, consider your application. High-level lan-

guages handle most programming jobs. Unless you plan to

write extremely detailed or time-critical programs, you should

select a high-level language.

If you are a beginning programmer, you may prefer to start

with a language like BASIC-11, which is a conversational, in-

teractive language. Language statements use simple, English-

like words and common mathematical expressions. You can re-

quest immediate answers to problems by using the immediate

modes of the language, or you can create detailed programs by

combining single language statements into larger segments.

BASIC-11 is a superset of the industry-standard BASIC devel-

oped at Dartmouth College. Chapter 10 of this manual de-

scribes BASIC—-11 in more detail.

8-3

RT-11

PROGRAMMING

LANGUAGES

Choosing a Programming Language

CHOOSING

A LANGUAGE

FOR THE

DEMONSTRATION

REFERENCES

RT-11 FORTRAN 1V is a superset of the industry-standard

FORTRAN 1V. This language has long been recognized for its

use in the scientific field; in addition, it is one of the most com-

monly supported languages across systems. You may decide to

choose FORTRAN IV because it is a more powerful language

than BASIC-11 or because you plan to use your programs on

more than one system. Chapter 9 of this manual describes FOR-

TRAN IV in more detail.

Finally, if you are an experienced user, you may select the ma-

chine-level programming language MACRO-11. This is a pow-

erful language that allows user programs to access and utilize

every possible feature available on the RT—-11 computer system.

The language requires a considerable amount of computer ex-

perience and knowledge to be used effectively, however. The

MACRO-11 language is best for you if you are a system pro-

grammer or an experienced high-level language programmer.

It is described in more detail in Chapter 11 of this manual.

Three RT-11 programming languages are demonstrated in the

next several chapters of this manual;, FORTRAN 1V,

BASIC-11, and MACRO-11. Consider your ability as a pro-

grammer. If you are a beginner, BASIC-11 is probably the best

language for you to start with; FORTRAN 1V is also a good

choice. However, you need not be proficient in any of these

programming languages to perform the exercises provided in

this manual.

Your particular RT-11 computer system may not provide all

three languages. First check question 10 in the Hardware Con-

figuration section of Chapter 2 to find out which languages are

available on your system.

Then select a language to continue the demonstration. If you

choose FORTRAN 1V, continue to Chapter 9. If you choose

BASIC-11, go on to Chapter 10. If you choose MACRO-11, go

to Chapter 11.

Digital Equipment Corporation Reference Service, Volume 2: Software and

Services. Maynard, Mass.: Digital Equipment Corporation, 1982.

An overview of the available PDP-11 family products and services.

Katzan, Harry Jr., Information Technology, The Human Use of Computers.

New York: Mason & Lipscomb Publishers Petrocelli Books, 1974.

A textbook covering basic computing concepts, programming languages,

and topics in computers and society. See Part II, Chapters, 7, 8, and 9.

PDP-11 Software Handbook (EB—-21759-20). Maynard, Mass.: Digital Equip-

ment Corporation, 1982-83.

A general overview and introduction to available PDP-11 software, op-

erating systems, and language processors.

84

CHAPTER 9

RUNNING A FORTRAN IV PROGRAM

The FORTRAN IV programming language' is a machine-inde-

pendent programming language that was originally designed

as a quick and easy aid for solving mathematical equations and

formulas. However, FORTRAN 1V is a powerful language and

not difficult to learn or use, and is also well suited to many

other kinds of applications.

FORTRAN (FORmula TRANSslation) IV is an algebraically ori-

ented language. You write a FORTRAN IV program as a se-

quence of language statements that combine common English

words with quasi-algebraic formulas. You then arrange groups

of the language statements into logical units called program

units. One or more program units make up an entire executable

FORTRAN 1V source program.

When you are satisfied with the logic of your FORTRAN IV

source program, you use the RT-11 editor to create it as a file

(see Chapter 5). You use tabs and spaces to format each line

properly, and you may choose to insert comment statements

throughout the source code to explain what various parts of the

program are doing. When you have finished creating the pro-

gram as a complete, edited file, you next enter it as input to the

FORTRAN IV language processor, which is stored on your sys-

tem volume or on a separate volume of its own. The FORTRAN

IV language processor processes (compiles) the language state-

ments, converting them into internal machine-language code

called object code. This code is next processed by the system

linker, which combines your program units and necessary sys-

tem-supplied routines to make your program suitable for execu-

tion. The development of an executable FORTRAN IV program

is represented in Figure 9-1.

CREATE EDIT COMPILE LINK RUN

Figure 9-1 Evolution of a FORTRAN IV Program

The FORTRAN IV language processor is a compiler that trans-

lates your source program into a machine language program.

IThe PDP-11 FORTRAN IV programming language conforms to the specifi-

cations for American National Standard FORTRAN X3.9-1966.

9-1

DEVELOPING AN

EXECUTABLE

FORTRAN IV

PROGRAM

USING THE

FORTRAN IV

LANGUAGE

PROCESSOR

Running a FORTRAN IV Program

USING LIBRARY

MODULES

Since you create a FORTRAN IV source program in ASCII for-

mat, you must next translate the program into a machine for-

mat that the computer can use. The FORTRAN IV compiler

performs the translation, producing as output a new version of

the program, called an object module. You may instruct the
FORTRAN IV compiler to produce a listing of the source pro-

gram at the same time. Figure 9-2 is a diagram of the com-

piler’s function.

SOURCE OBJECT
COMPILE >

PROGRAM MODULE

LISTING

{OPTIONAL)

Figure 9-2 Function of a FORTRAN IV Compiler

Typical FORTRAN IV programs often require similar opera-

tions. Most programs, for example, use routines and instruc-

tions that calculate square roots, exponentials, and other arith-

metic functions; handle input and output operations; detect cer-

tain kinds of error conditions; test values; calculate subscripts;
and perform conversions. These commonly used operations
have been gathered into a special file called SYSLIB.OBJ (de-
fault System Library), which is provided with the RT-11 opera-
ting system and is stored on your system volume.

During the processing of your source program, the FORTRAN

IV compiler examines each language statement in the program.
If you use operations that are provided in SYSLIB, the compiler

notes them and makes references to SYSLIB. The compiler

translates all the information gathered during processing (your
converted language statements and the references to SYSLIB)

into numerical data called object code that the system linker

can use. The result of the compilation, therefore, is an object

format file, called an object module, which is automatically

joined with SYSLIB (containing many object modules) and with

any other required object modules at link time. Linking all the
necessary object modules together produces a complete, work-
able FORTRAN IV program.

The FORTRAN IV object time system (OTS) is also needed to
successfully compile a FORTRAN IV program,; this system is in

9-2

Running a FORTRAN IV Program

the file FORLIB.OBJ. Whether this file is included in SYSLIB
or not depends on how your system was built.

To link the example FORTRAN IV program, you must either
include FORLIB.OBJ in SYSLIB, or specify SYSLIB before

FORLIB in the link command. For instructions on how to in-

clude FORLIB in SYSLIB, refer to Section 3.4 in the RT-11

FORTRAN IV Installation Guide.

In Chapter 5 you used the RT-11 editor to create a FORTRAN

IV source program, which you then stored on your storage vol-

ume. Since a source program is in ASCII format, the next step

is to use the FORTRAN IV compiler to convert it to object code.

Some RT-11 systems store the FORTRAN IV compiler on a

volume apart from the system volume.! You can quickly deter-

mine whether the FORTRAN IV compiler is on your system

volume by using the DIRECTORY command.

,DIRECTORY SY:FORTRA.SAVED

In the directory listing that results, if the directory entry for

FORTRA.SAV is included, then the required FORTRAN 1V

files are on your system volume. If, however, FORTRA.SAV did

not appear in the directory listing, then the required files are

not part of your system volume. Before you can use the com-

piler, you must make a volume substitution. Read the section in

Appendix B entitled Using the FORTRAN/BASIC Language

Volume.

The next step involves using the monitor COPY command to

copy the FORTRAN IV source program from the storage vol-

ume (where you stored it in Chapter 7) back to the system

volume, which serves as the default volume for input/output

operations.

Remember that on your storage volume are two FORTRAN v

source programs, the one you created (GRAPH.FOR) and the

one provided as part of the system (EXAMP.FOR). Which of

these you should use depends on the results of the source com-

parison you performed in Chapter 6. If the comparison resulted

in no differences except for the title lines, copy your own pro-

gram (GRAPH.FOR) as follows:

Long Command Format

JLCOPYED

From? VOL:GRAPH,FORGED

To 7 GRAPH.FORED

1This is true for any RT-11 system volume that does not have enough free
blocks to accommodate the FORTRAN IV system files. RX01 diskette is an

example.

COMPILING THE

FORTRAN IV

PROGRAM

Running a FORTRAN IV Program

FORTRAN

Short Command Format

LOPY UOL:GRAPH.FOR GRAPH.FORGD

However, if differences were printed in addition to the title

lines, use the provided program (EXAMP.FOR) instead, copy-

ing it under the new name GRAPH.FOR:

Long Command Format

LOPY R

From? UOL::EXAMP. FORED

To 7 GRAPH,FORED

Short Command Format

LCOPY VOL:EXAMPL.FOR GRAPH.FORGD

The FORTRAN IV source file now resides on your system vol-

ume under the name GRAPH.FOR and is the file that you will

process with the FORTRAN IV compiler. The command used to

compile a FORTRAN IV source program is the monitor FOR-

TRAN command.

Use the FORTRAN command with its /LIST option to compile

your program and produce a listing. The system prompt asks

you to supply the input file name. You can omit typing the

FOR file type since the FORTRAN command assumes this file

type unless you indicate otherwise. The system will assign the

name GRAPH.OBJ to the object module and GRAPH.LST to

the listing file and store both newly created files on your sys-

tem volume, which is the default storage volume for input/out-

put operations.

Long Command Format

JFORTRANEED

Files? GRAPH/LIGTHLD

Short Command Format

JFORTRAN GRAPH/LISTHY

Compilation begins. If the compiler discovers an error during

processing, it prints a message. In this particular case, you

should see the following on your terminal printer or screen:

CHMATN,

PFORTRAN-I-L MAIN,] Errors: 5, Warningds: O

FUN

PFORTRAN-T-[FUN I Errors: 1y Warninds: O

This indicates that, during processing, the FORTRAN IV com-

piler found six errors in the source program. It helps at this

94

Running a FORTRAN IV Program

point to look at the listing produced by the compiler, because

more information is shown there. Print the listing on either the

line printer or terminal, using one of the following commands:

Long Command Format

(Line printer) (Terminal)

TYPE

Files? GRAPH . LSTHD

Short Command Format

(Line printer) (Terminal)

JPRINT GRAPH.LET +JTYPE GRAPH.LET

Your listing should look like the following example.

NOTE

You do not need to understand the FORTRAN [V lan-

guage or the way this program works to successfully

complete the exercises in this chapter.

FORTRAN IV YOILE S8at UB-Jan-83 10:52:04 PAGE 001

T GRAPH.FOR VERSION 1

£ THIS PROGRAM PRODUCES A PLOT ON THE TERMINAL

£ OF AN EXTERNAL FUNCTION. FUN(XLY)

£ THE LIMITS OF THE PLOT ARE DETERMINED BY THE DATA STATEMENTS

C "GTABY 1S FILLED WITH A TABLE OF HEIGHT FLAGS

C U"STRINGTM IS USED TO BUILD A LINE OF GRAPH FOR FRINTING

o001 SEAL (ZMINZMAX MBXZ +K) =ZMINGFLOAT (K- 1)1 # (ZMAN-ZMIN) /FLOAT (MAXZ-1)

000z LOGICAL®1 STRING(LI3:3):8TAB(L10O)

jeledine] DATA AMINAMAX MAKX/-5,3.:45/

[elers DATA YMIN YMAX (MAXY/-5,5.72/

0005 DATA FRINFMAX/O. 010/

000E CALL SCOPY(’'~ 1 2 3 4 35 6 7 8 8 +/,8T4AB)

Qo077 MAXF=LEN(GTAR)

aoog 00 20 IX=1MAXX

0008 H=GUAL (XMIN XMAX S MAXN 1)

0010 CALL REPEAT({"+ STRING MAXY)

o011 IF(INGEQ.1 OR. IXLEQ.MAXX) GOTO 20

0013 DO 10 IY=2:MAXY-1

o014 Y=S0RLIYPINYMANMAXY (1Y)

Q013 IFUN=Z+INT(FLOAT(MAKF-3)®(FUNIXHY) -FMIN)Y Z (FMAX-FMIN)

0016 10 STRINGOIY)=5TAB(MING(MAXF (MAXO(L IFUNI)

0017 30 CaLL PUTSTRO7,8TRING. 7

ool cabl EXIT

0018 END

FORTRAN 1V Diasnostics for Program Unit JMAIN,

In line 0003, Error: Modes of variable “MMIN" and data item differ

In line 0004, Errors Modes of variable “YMIN® and data item differ

In tine 0008, Error: Reference to undefinegd statement label

In line 0012, Errors Reference to undefined statement label

In line Q016, Error: Wrond number of subscriets for array "BTRING"

FORTRAN 1V Storade Mar for Prosram Unit LHMAIN.

Local Mariabless PSECT %DATA. Size = 000334 (110, words)

Name Trvee Gffset Name Trre Offset MName Trvee Offser

FHAX Red 0o0230 FMIN R#d 000224 IFUN %2 000312

X 1#2 000274 1Y T#2 Cou300 K T2 Qoaese

MAXF T#2 Q0260 MAXX I#2 Quoz272 Maxy 1#2 GO0Z76

MAaXe 1#2 000254 MAKD T2 GO0316 MING 12 GO0314

Running a FORTRAN IV Program

X Red 0002682 XMAX R*g 000266 XMIN R#4 000214
Y R*4 000302 YMAX R#q 000308 YMIN R*q 000220

ZMAX Req 00025¢ ZMIN R#4 000244

Local and COMMON Arravs:

Name Trre Section Offset ----Size---- Dimensions

8748 L*1 $DATA 000047 000144 (30.) (100)

STRING L#) Vec $DATA 000000 000047 (20.) (13,3)

Subroutines: Functions, Statement and Processor-Defined Functians:

Name Trre Name Tyre Name Trre Name Trre Name Tree

EXIT R*4 FLOAT R*4 FUN R*4 INT I#2 LEN I»x2

PUTSTR R*4 REPEAT Re4 SCAL R4 Scory Red

FORTRAN IV v02.95 Sat 08-Jan-83 15:52:07 PAGE 001

0001 FUNCTION FUN(X.Y)

0002 R=GQRT(X%%2+Y482)

0003 FUN=X®YHR®EXP(-R)) %22

#xees P

0004 RETURN

0005 END

FORTRAN 1V Diagnostics for Prosram Unit FUN

In line 0003, Error: (See scurce listinsg)

FORTRAN IV Storage Map for Prosram Unit FUN

Local Variables, .PSECT $DATA, Size = 000020 (8. words)

Name Trre Offset Name Trree Offset Name Tyre Oftset

FUN R#*4 000004 Eav R R*4 ¢G00010 X R#g @ 000000
Y R#4 B 000002

Subroutiness Functions, Statement and Processor-Defined Functions:

Name Trre Name Trre Name Tree Name Trre Name Tyre

SQRT Rad

The first part of the listing shows the main program unit and

consists of the language statements up to, but not including,

the function. This is followed by a diagnostics list, then by a

storage map. Next the language statements composing the

function program unit are listed, again followed by a diagnos-
tics list and a storage map.

Before considering the individual sections of the program list-
ing, first examine the program logic to determine what this

program should do. The first few lines of this program are user

comment lines that briefly describe the program. Essentially,

this program produces on the terminal a graph of a “three-
dimensional” function, FUN(X, Y). The graph is plotted using
45 lines down and 72 characters across the terminal page. The

limits of the X and Y axes are +5 and —5. The third dimension,
height, is a real number within the range 0 to 1 and is repre-
sented in the listing as a number within a scale of 1 to 9. These

dimensions are illustrated in Figure 9-3.

The SCAL function determines the value of the next coordinate
on the graph. The statements within the DO loops calculate the

coordinates using the SCAL function and determine the height

value. This is done for an entire line of coordinates across the

terminal page. The entire line is then printed on the terminal,

using the CALL PUTSTR statement; the number 7 in this
statement is the FORTRAN IV method of naming the terminal

Running a FORTRAN IV Program

s 72 ChBracters —————————et

N ~

-5 4 - +5 45 Lines

Figure 9-3 Dimensions of FUN(X,Y)

as the output device. This procedure is repeated until all 45

lines of the graph have been printed.

The function to be plotted is shown in the last few lines of the

program. It is compiled as a separate program unit and you can

edit these lines to plot any function of your choice (several al-

ternate functions are suggested later in the chapter).

This program as it stands contains errors. The compiler de-

tected certain error conditions during processing that prevent

the program from working properly. The compiler printed ap-

propriate messages in the diagnostics sections of the program

listing.! Look first at the messages following the main program

unit. Errors were discovered in lines 3, 4, 8, 12, and 16.

The messages for lines 3 and 4 indicate that the floating-point

variables “XMIN” and “YMIN” are assigned integer values.

The DATA statements must be changed. (The same error exists

for “XMAX” and “YMAX”; the compiler, however, lists only the

first error that it discovers in a line. Both "MAXX” and

“MAXY” are integer variable names, so no error exists for

them.) You must correct the DATA statements (lines 3 and 4),

then, as follows:

DATA XMIN XMAX sMAXX/-5.0:5.0,45/

DATA YMIN,YMAX MAXY/-5.0,:5.0.,72/

The next two messages in the diagnostics section show that

reference has been made from both lines 8 and 12 to an unde-

fined label. (Line 12 is actually the second portion of line 11,

the GO TO statement.) Statement label 20 is referenced in each

case, but only labels 10 and 30 are shown in the program. This

indicates either that a statement is missing or that a typing

1Refer to the RT-11 System Message Manual for greater detail about any

system messages printed.

9-7

Running a FORTRAN IV Program

LINKING OBJECT

MODULES TOGETHER

error exists. Examination of the program logic shows a typing

error in line 17. Label 30 should actually be 20. Correct line 17

as follows:

20 CALL PUTSTR(7,:STRING," ")

The last message in this diagnostics section states that an in-

correct number of subscripts was given for the array “STRING”.

Again, examination of program logic shows that the error is

actually in line 1. “STRING” is really a vector (a one-dimension
array), not a matrix (a two-dimension array). Thus the comma

is a typing error and line 2 should be changed as follows:

LOGICAL*1 STRING(133),5TAB(100)

Skip next to the diagnostics section for the FUN program unit.

The message printed there refers you to the source listing, to

line 3. A letter “P” appears next to this line. The RT-11 System

Message Manual describes a P error as an indication of unbal-

anced parentheses. Notice that the parentheses are not prop-

erly matched in this line. Thus, line 3 should be corrected as

follows:

FUN=(X*Y*R*#EXP(-R)) #%2

This explains the errors flagged by the compiler in the diagnos-

tics sections. Other sections of the program listing (storage
map, for example) simply provide additional information that is

helpful to programmers who wish to check the data types of

various symbols and later make sure that object modules have

been appropriately linked.

Before you can continue the exercises in this chapter, you must

edit, in the source program, those statements that contain er-
-rors. If necessary, review the editing commands in Chapter 5.

Then use the RT-11 editor to edit the file GRAPH.FOR on your

system volume so that the five lines are error-free. Do not re-
name the file. When you are ready, recompile the program,
using the FORTRAN command, and obtain a new object module

and a new listing. This time the program should compile with-
out error (that is, no diagnostics should list). The compiler will

indicate two warnings, but you can ignore them. If diagnostics
occur, you have not edited the program correctly. Compare list-

ings and try to correct your errors, or go back to the beginning

of this chapter and repeat the demonstration.

The object module produced by the FORTRAN command is in

itself incomplete. As mentioned earlier, it needs parts of the

9-8

Running a FORTRAN IV Program

system library, SYSLIB, and perhaps other object modules and

libraries as well, to form a complete functioning program.' All
required object modules must be joined, or linked together, be-

fore the program can work.

Even if your program does not require any other object mod-

ules, you must still link it. In addition to joining object modules

together, the link operation adjusts the object code to account

for many program units being placed one after the other. The

result of the link operation is a memory image load module,

which is actually a picture of what computer memory looks like

just before program execution. Figure 9—4 is a diagram of the

link operation.

sYSLIB

Other OBJ's

Y

OBJECT LOAD
LINK >

MODULE MODULE

Figure 94 The Link Operation

To link the object modules, use the monitor LINK command.

The system prompts you to enter the names of the input mod- LINK

ules and any libraries other than the system library to be joined

together. You can omit typing the .OBJ file types in the com-

mand line, since the LINK command assumes this file type for

input. The system automatically assigns the file name of the

first input file and a file type of .SAV to the output file. The

linker will scan the SYSLIB library if it is present on the sys-

tem volume.

Some RT-11 systems store the linker (LINK.SAV) and the de-

fault system library (SYSLIB.OBJ) on a volume apart from the

!For more information on linking files and using library files, see Chapters 12
and 13, respectively.

9-9

Running a FORTRAN IV Program

system volume or the FORTRAN/BASIC language volume.'
You can quickly determine whether the system library is on
your system volume by using the DIRECTORY command.

VDIRECTORY SY:8YSLIB,OBJED

If SYSLIB.OBJ did not appear in the directory listing on your

terminal, the required files are not part of your system volume.

Before you can link GRAPH.OBJ, you must make a volume
substitution. Read the section entitled Using the LINK Volume

in Appendix B.

If you have not included the FORTRAN IV library FOR-

LIB.OBJ in SYSLIB, use the DIRECTORY command to see if

the library is on your system volume. Type:

JDIRECTORY SY:FORLIB.OBJEED

If FORLIB.OBJ did not appear in the directory, the required

files are not part of your system volume. Before you can link

GRAPH.OBJ, you must make a volume substitution. Read the

section entitled Using the LINK Volume in Appendix B.

Long Command Format

FORLIB not included in SYSLIB:

o LINK @

Files? GRAPH,SYSLIB,FORLIBG&D

FORLIB included in SYSLIB:

Files? LRAPHED

Short Command Format

FORLIB not included in SYSLIB:

JLINK GRAPH ,SYSLIB. FORLIBED

FORLIB included in SYSLIB:

Any messages printed on the terminal identify error conditions

discovered by the system during the link operation (for exam-

'This is true for any RT-11 system volume that does not have enough free
blocks to accommodate the files required for linking. The RX01 diskette is an

example.

9-10

Running a FORTRAN IV Program

ple, you may not have specified all the object modules that are

needed as input). However, assuming that you edited your

source program correctly and that it compiled without error, it

should also now link without error.

A load module is one that you can run on the system. Unless

your program contains logic errors that prevent it from running

properly (errors that the system cannot always detect), running

the .SAV version of your file should produce the results you

intended. However, if logic errors exist within your program,

running the program will produce either erroneous results or

none at all. If this is the case, you must study the source pro-

gram, rework it, reedit it, and perform the compile and link

operations again.

If your FORTRAN IV program is error-free, running the .SAV

version should produce the expected results. In this demonstra-

tion, running the GRAPH.SAYV file should produce a graph on

the terminal printer or screen.

Before you run GRAPH.SAV, you have the option of changing

the output device from the terminal printer or screen to the line

printer by using the monitor ASSIGN command to assign de-

vice names (see Chapter 4, Assigning Logical Names to De-

vices). If you prefer to print the graph on the line printer, sim-

ply assign the logical device name 7 (which is the FORTRAN

IV code for the terminal) to the line printer code (LP:). You

have designated a new output device without altering the

source program. To change the device assignment to the line

printer, type:

Long Command Format

+ ASSIGNED

Physical device name? LP:@ED

Logical device name? 7@D

Short Command Format

+ASSIGN LP: 7@

This assignment remains in effect until you deassign the names

or reboot the monitor.

Now, to execute the FORTRAN IV demonstration program, use

the monitor RUN command. You can omit typing the .SAV file

type since it is assumed within the RUN command.

Long and Short Command Format

+RUN GRAPHED

9-11

RUNNING THE

FORTRAN IV

PROGRAM

RUN

Running a FORTRAN 1V Program

After a brief pause, the graph begins to print on the terminal
(or line printer) and should look like the graph shown in Figure

9-5.

KKK IOKKSAIOIOK KK AKARAOK N IKRK FHAAR I IORK AR KKK F ORI AR KK KK KKK KKK KKK KK
* 1111111113111111111 111111111113111311 %
x 11111131131123111211111131 11111444211121311211112 *
X 11111111 11111 11111 11111111 X
*x 1111111 1111 1111 1111111 %
X 111111 22222222222 111 111 22222222222 111111 %
*x11111 22222 2222 111 113 2222 22222 11111x%
*x1111 2222 3 22 11 i1 22 3 2222 1111%
x1111 222 333333333 22 11 11 22 333333333 222 1111%
*111 22 333 333 22 1t 11 22 333 333 22 1itx
*111 222 333 4444 332 1 1 2 33 4444 333 222 111x
%111 222 33 4444444 3 2 11 11 2 3 4444444 33 111x%
*¥111 222 33 4444 444 33 2 1t 11 2 33 444 4444 33 111x
*111 222 33 4444 444 3 2 11 11 2 3 444 4444 33 222 111x%
x1111 222 33 44444444 33 2 11 11 2 33 44444444 33 222 1111%
11111 222 33 444 3 211 i1 2 3 444 33 222 11i11x
¥ 1111 22 3333 333 2 1 1 2 333 3333 22 1111 %
*x 11111 222 22 11 11 22 222 11111 X
* 11111 Q22222222 111 111 222222222 11111 X
* 11111141 1111 1111 11113111 X
* 1111 1111 3
*

X
L3 X
x

x
x 1111 1111 *
X 11111111 1111 111t 11111111 *
* 11111 222222222 111 111 2222223222 11111 X
* 11111 222 22 1t i1 22 222 11111 x
* 1111 22 3333 333 2 1 1 2 333 3333 2 1111 %
*11111% 222 33 444 3 211 i1 2 3 444 33 11111%
*ii11 222 33 44444444 33 2 11 11 2 33 44444444 33 1111%
X111 222 33 4444 444 3 2 11 11 2 3 444 4444 33 1i1x
*111 222 33 4444 444 33 2 11 11 2 33 444 4444 33 111x
*111 222 33 4444444 3 2 11 11 2 3 4444444 33 111%
*1i11 222 333 4444 33 2 1 1 233 4444 333 111x%
*111 22 333 333 22 11 11 22 333 333 111x%
*1111 222 333333333 22 11 11 22 3333333332 1111%
*1111 2222 3 22 11 11 22 3 22 1111%
11111 22222 2222 111 111 2222 22222 11111x%
¥ 111111 22222222222 111 111 23222222222 111111 %
* 1111111 1111 1111 1111111 %
* 11111111 11111 11111 11111111 %
¥ 11111111131 3133111411 1111111111131 11111111 *
X 1111111111213141111 111311211111111112 *
FRAK KA KA HRAOKHK KR IOKH A KK A IO KK KKK KIK K IR IR F KK KA IR AR NOK K KKK K KK KK KKK

Figure 9-5 The Result of GRAPH.SAV

COMBINING To produce these results, you first compiled the FORTRAN IV
OPERATIONS source program (GRAPH.FOR), then linked it with the default

library (SYSLIB.OBJ), and finally ran the resulting .SAV file
(GRAPH.SAV). You can combine these three operations using

one monitor command, the EXECUTE command.

NOTE

The use of the EXECUTE command requires the follow-

ing files on your system volume:

FORTRA.SAV LINK.SAV GRAPH.FOR

SYSLIB.OBJ FORLIB.OBJ (if not included in SYS-

LIB)

If you have substituted the special LINK volume for your

system volume, you do not have the necessary files to

use the EXECUTE command. Proceed to the next sec-

tion, entitled Alternate Functions.

EXECUTE

9-12

Running a FORTRAN 1V Program

The EXECUTE command instructs the system to select the lan-

guage processor, then process, link, and run the program. There

are several ways to establish which language processor the EX-

ECUTE command invokes. One way is to specify a language-

name option, such as /MACROQO, which invokes the MACRO as-

sembler. Another way is to omit the language-name option and

specify the file type for the source files. The EXECUTE com-

mand then invokes the language processor that corresponds to
that file type. Specifying the file GRAPH.FOR, for example,
invokes the FORTRAN IV compiler. A third way to establish

the language processor is to let the system choose a file type of

.MAC, .DBL, or .FOR for the source file you name. If, for exam-

ple, you specify the file GRAPH, the monitor searches device
SY: (your system device) for the files GRAPH.MAC,

GRAPH.DBL, and GRAPH.FOR, in that order. If the monitor

finds neither GRAPH.MAC nor GRAPH.DBL, it invokes the

FORTRAN IV language processor to compile GRAPH.FOR. For

example, to combine the compile-link-run operations that you

performed in this chapter, you would use the following com-

mand (do not actually type this command until you have read

the next section, Alternate Functions):

Long and Short Command Format

FORLIB not included in SYSLIB:

+EXECUTE GRAPH/FORTRAN/LIST/LINKLIB:SYSLIB/LINKLIB:FORLIBED

FORLIB included in SYSLIB:

JEXECUTE GRAPH/FORTRAN/LISTED

The following are some alternate functions that you can substi-

tute in your FORTRAN IV source program to produce different

graphs. Simply reedit the program (GRAPH.FOR) so that lines

1-5 in the function portion at the end contain one of the follow-

ing alternate functions. Then compile, link, and run the pro-

grams as described in the previous sections. If the necessary

files are available on your system volume (see the previous sec-

tion, Combining Operations), use the EXECUTE command to

run the program. The source program compiles, links, and runs,

and the new graph prints on the terminal (or line printer).

Function 1

FUNCTION FUN(X.Y)

FUN=EXP{-SQRT(X##2+Y%%2)}

RETURN

END

Function 2

FUNCTION FUN(X.Y)

R=CRORT(X#*2+Y*%2)

FUN=X#Y*#(R-3.)/(1. +EXP(3.,#(R-3.5)))

RETURN

END

9-13

ALTERNATE

FUNCTIONS

Running a FORTRAN IV Program

SUMMARY:

COMMANDS TO

RUN FORTRAN

PROGRAMS

FILE MAINTENANCE

Function 3

FUNCTION FUN(X.:Y)

FUN=EXP(+SQRT(X*%2+Y*%2))/1177.4

RETURN

END

EXECUTE

Combine the compile-link-run operations into one command.

EXECUTE file

Combine the compile-link-run operations into one command.

Specify the libraries to be used during linking.

EXECUTE file/FORTRAN

Combine the compile-link-run operations into one command,

and specify the input file to be a FORTRAN file.

EXECUTE/LIST

Combine the compile-link-run operations into one command.

Obtain a listing file of the source program and print on line

printer.

FORTRAN

Compile the FORTRAN 1V source program and produce an

object module.

FORTRAN/LIST

Compile the FORTRAN IV source program and produce both

an object module and a listing file.

LINK

Link individual object modules together to form a complete

program and produce a load module.

RUN

Run the indicated load module.

Before continuing further you should perform the necessary file

maintenance operations.

NOTE

If you used a special LINK volume to perform this dem-

onstration, turn now to the section entited FOR-

TRAN/LINK File Maintenance in Appendix B.

Obtain a directory of all files on your system volume that have

the name GRAPH regardless of file type; these files were cre-

ated as a result of the exercises in this chapter.

9-14

Running a FORTRAN IV Program

Long and Short Command Format

+DIRECTORY GRAPH,@D

08-Jan-83

GRAPH .5AV 21 08-Jan-83 GRAPH ,LST 8 08-Jan-83

GRAPH BAK 2 0B-Jan-83 GRAPH FOR 2 0B-Jan-83

GRAPH ,0BJ 168 08-Jan-83

5 Filess 49 Blocks

447 Free blocKs

The fact that you have corrected errors in the source file

GRAPH.FOR makes the version of that file on your storage

volume obsolete. Therefore, transfer the updated copy from

your system volume to VOL: replacing the copy of

GRAPH.FOR on the storage volume with the new version.

Long Command Format

+COPYEED

From? GRAPH.FOREED

To 7 YOL:GRAPH,FORGED

Short Command Format

+COPY GRAPH,FOR VOL:GRAPH,FORGED

Similarly, transfer GRAPH.LST, GRAPH.OBJ, and

GRAPH.SAYV to your storage volume. This allows you to exam-

ine a listing or rerun the FORTRAN IV program without re-

compiling and relinking the source.

Long Command Format

YCOPY®ED

From? GRAPH.LST GRAPH.OB.JGRAPH, SAVED

To ? ugL:@D

Files coried:

DK:GRAPH.LST to VYOL:GRAPH.LST

DK:GRAPH.0BJ to VOL:GRAPH.0BJ

DK:GRAPH,.SAY to VYOL:GRAPH,SAV

Short Cofilmand Format

+COPY GRAPHLLSTGRAPH.OBJ GRAPH.5AY VOL:ED

Files coried:

DK:GRAPH.LST to VOL:GRAPH.LST

DK:GRAPH.DBJ to VYOL:GRAPH.OBJ

DK:GRAPH,.BAY to VOL:GRAPH,SAV

Once you have transferred all files of value to your storage

volume, delete the useless files — that is, all the GRAPH

files — from the system volume.

9-15

Running a FORTRAN IV Program

REFERENCES

Long Command Format

+DELETEGRED

Files? GRAPH.*@ED

Files deleted:

DK:GRAPH.BAK ? YGED

DK:GRAPH.S5AYV 7 Y@ED

DK:GRAPH,FOR 7 Y@

DK:GRAPH.LST 7 YGD

DK:GRAPH,0BJ 7 YG@ED

Short Command Format

+DELETE GRAPH.*GD

Files deleted:

DK:GRAPH.BAK 7 YGD

DK:GRAPH.S5AV 7 YG@D

DK:GRAPH.FOR 7 Y&

DK:GRAPH.LST 7 YG&D

DK:GRAPH.O0BJ 7 YGD

Finally, obtain an up-to-date directory listing of your storage
volume so that you can see its current status.

Long and Short Command Format

+DIRECTORY VOL: @D

08-Jan-83

SUM +MAC 3 08-Jan-83 EXAMP ,FOR 2 26-Aug-82
EXAMP .MAC 3 ZB6-Aug-82 GRAPH ,FOR 2 0B-Jan-83
GRAPH ,LST 8 08-Jan-83 GRAPH .0BJ 16 08-Jan-83
GRAPH .S5AY 21 08-Jan-83

7 Filess 55 blocks

4707 Free blocks

This completes the FORTRAN IV demonstration. Continue to
Chapter 12 to read about the linking process. If you followed
the special instructions in Appendix B to load the language
volume, leave this volume in device unit 0 until you have fin-
ished Chapter 12.

McCracken, Daniel D., A Simplified Guide to FORTRAN Programming. New
York: Wiley, 1974.

An introduction to programming in the FORTRAN language.

PDP-11 FORTRAN Language Reference Manual (AA-1855D-TC). Maynard,
Mass.: Digital Equipment Corporation, 1980.

A reference manual and guide to programming in the PDP-11 FOR-
TRAN IV language.

RT-11 FORTRAN 1V Installation Guide (AA-5240E~TC). Maynard, Mass.:
Digital Equipment Corporation, 1980.

An RT-11-specific manual that contains instructions for installing the
RT-11 FORTRAN IV language processor, and describes known prob-
lems and differences between versions.

RT-11 RSTS-E FORTRAN IV User's Guide (AA-5749B-TC). Maynard,
Mass.: Digital Equipment Corporation, 1980.

An RT-11-specific manual that contains information necessary to com-
pile, link, run, and debug a FORTRAN IV program.

9-16

CHAPTER 10

RUNNING A BASIC-11 PROGRAM

The BASIC-11 program language' is a machine-independent
programming language that is one of the easiest languages for

the beginning programmer to learn. It has both elementary lan-

guage features that you use to write simple programs, and more

advanced operations that allow you to produce complex and effi-

cient programs. In addition, a special “immediate mode” lets

you use BASIC-11 like a calculator to obtain instant answers

to mathematical problems.

BASIC (Beginner’s All-purpose Symbolic Instruction Code) —11

is conversational in nature. It uses simple English keywords

and common mathematical expressions to form easily under-

stood language statements.

You write a BASIC-11 program as a series of one or more pro-

gram lines. You begin each program line with a number that

both identifies the line and indicates the order in which the line

will be processed. Individual program lines contain one or more

BASIC-11 language statements that define the operations to be

performed.

When you are satisfied with the logic of your BASIC-11 source

program, you create it as a file. However, unlike your methods

under other programming languages, you create the file under

the control of the BASIC~11 language processor, which is part

of the RT-11 operating system and is stored on your system

volume or on a separate volume of its own. Thus, you use com-

mands that are part of the BASIC-11 language processor to

create and edit the program, list it, run it, and save it for later

use.

The BASIC-11 language processor is an interactive interpreter.

It allows you to create and execute a program in its entirety or

a few lines at a time. The interpreter examines each program

language statement, interprets it, and executes it before going

on to the next. If it discovers an error that prevents further

processing, it prints on the terminal a message informing you of

the error condition and stops. You correct the error so that exe-

cution can continue past that point, and then rerun the pro-

gram.

IBASIC-11 is a superset of the standard BASIC language developed at Dart-
mouth College.

10-1

DEVELOPING

A BASIC-11

PROGRAM

USING THE
BASIC-11

LANGUAGE

PROCESSOR

Running a BASIC-11 Program

USING THE

BASIC-11

INTERPRETER

BASIC

|
l
|
|
l

CREATE | EDIT S RUN |

l
|
.

Figure 10-1 Functions of the BASIC-11

Language Processor

The functions of program creation, editing, processing, and exe-

cution are all handled by the BASIC-11 language processor.

Some RT-11 systems store the BASIC-11 interpreter (language

processor) on a volume apart from the system volume.' You can

quickly determine whether the BASIC-11 interpreter is on

your system volume by typing the monitor DIRECTORY com-

mand and specifying the BASIC.SAV program.

J,DIRECTORY BASIC,SAVEED

In the directory listing that results, if the directory entry for

BASIC.SAV is listed on your terminal, then the required

BASIC-11 files are on your system volume and you are ready to

use the interpreter. However, if BASIC.SAV did not appear in

your listing, then the required files are not part of your system

volume. Before you can use the interpreter, you must make a

volume substitution. Read the section in Appendix B entitled

Using the FORTRAN/BASIC Language Volume.

Now use the monitor BASIC command to activate the

BASIC-11 interpreter:

Long and Short Command Format

L BASICED

BAGIC-11/RT-11 V2.1

OPTIONAL FUNCTIONS (ALLs NONE: OR INDIVIDUALS?

A prompting message is printed by BASIC-11. You must re-

spond with an A, N, or I and a carriage return to indicate

whether you want to preserve all, none, or some of the arithme-

tic functions initially provided by BASIC-11. BASIC-11’s func-

tions include operations that calculate random numbers, deter-

YThis is true for any RT-11 system volume that does not have enough free
blocks to accommodate the BASIC-11 system files. RX01 diskette is an

example.

mine absolute values, convert octal and binary numbers to deci-

mal, and so on. You can conserve memory space by saving only

those functions that your program needs. For now, however,

instruct BASIC-11 to save all the functions.

ARED

READY

BASIC-11 prints the READY message to indicate that it is

ready to accept a BASIC-11 command. Any text that you type

that is not preceded by a BASIC-11 command is accepted as

program (or immediate mode) input. If at any time you wish to

return to the monitor command mode, simply type the BYE

command following the READY message. READY appears

after any BASIC-11 execution that is completed or interrupted

by a double CTRL/C, or after any BASIC-11 wait condition that

is terminated by a single CTRL/C.

NOTE

You do not need to understand the BASIC—-11 language

or the way the examples work to perform successfully

the exercises in this chapter.

Immediate mode allows you to use the BASIC-11 interpreter

like a calculator to obtain immediate answers to arithmetic

problems. You enter the appropriate BASIC-11 statement key-

word and any necessary mathematical formula. When you

press the carriage return key, BASIC-11 immediately calcu-

lates and prints the results. (Use the terminal DELETE key

and the CTRL/U command to correct any typing errors.)

PRINT (128+75)%3ED

608

BASIC-11 adds the two numbers in parentheses, multiplies

them by 3, and prints the answer. The PRINT statement causes

the answer to be printed on the terminal. The following com-

mand provides another example:

PRINT INT(34.67)ED

34

READY

The greatest integer less than or equal to 34.67 is printed.

You can combine several statements on a single line, or on

several lines, including variable names, arithmetic equations,

and data. Individual statements are separated from one an-

other by a backslash (\) character. BASIC-11 considers all the

10-3

Running a BASIC-11 Program

BYE

immediate Mode

PRINT

Running a BASIC-11 Program

Creating and Editing

a BASIC-11 Program

SuB

information, calculates the answer and prints it on the ter-

minal, as illustrated in the following example:

A=5\B=14\C=,37296D

READY

PRINT "THE HEIGHT IS"3A¥SIN{(C)+B3"METERS"@D

THE HEIGHT IS 15.8216 METERS

READY

The first statement equates variable names with values; the

second statement introduces a formula for calculating a result

and prints it.

You can use immediate mode to solve fairly lengthy and com-
plicated mathematical problems by combining statements and

printing identifying messages. However, immediate mode infor-

mation is temporary. You cannot save it, and you can change it

only by retyping every statement line. If your needs are more

complex, or if you want to save your statements, you should

create a BASIC-11 program.

To create a BASIC~11 program, assign line numbers to lan-

guage statements and then type the numbered statements on

the terminal keyboard.

Now your program lines are saved in memory and you can

transfer program control to specific lines within the program,

repeat parts of the program any number of times, store the

entire program for later use, and perform other similar opera-

tions that are not possible in immediate mode.

Once you have created the program, you use BASIC-11 editing

commands to list lines, change lines, add and erase lines, and
correct typing errors. In addition to the DELETE key and the

CTRL/U command, BASIC-11 provides a SUB command (SUB-

STITUTE) for correcting typing errors. This command allows
you to substitute new characters for existing ones in a line. For
example, type:

10 PRINT "THIS IS A BADIC PROGRAM"GE

SUB 10 BBADBBASRRD

10 PRINT "THIS IS A BASIC PROGRAM"

READY

The SUB command substitutes the letters BAS for BAD in line

10. Use a delimiting character (shown here as @) to separate

the old text from the new. The delimiter can be any character

as long as it is unique in the line. The corrected line is automat-

ically printed by BASIC-11 after you use the command. As

another example, type:

104

Running a BASIC-11 Program

15 B=10\C=5GD

20 LET A-B+CA\PRINT CED

There are two typing errors in line 20; the — should be an =

and the C at the end of the line should be A. These errors can be

corrected with the SUB command, as follows:

SUB 20 B-B=RED

20 LET A=B+C \ PRINT C

READY

SUB 20 BCEARZEED

20 LET A=B+C \ PRINT A

READY

The second SUB command changes the second occurrence (spec-

ified by the 2 after the last @) of C to A.

You can erase an entire line by typing the line number followed

by a carriage return:

1 0@ED

You can also use BASIC-11’s DEL command'. Use the DEL

command (DELETE) to erase a single line or several: DEL

DEL 15-2060

This erases all statements with line numbers between and in-

cluding 15 and 20.

To list lines of a program, BASIC-11 provides the LIST com-

mand. First, create a few program lines: LIST

5 FOR I=1 TO 10GE

20 INPUT JED

2% LET T=T+JED
50 NEXT G
55 PRINT “THE TOTAL 18" iT@ED

88 ENDED

List individual lines by specifying the line number. For ex-

ample, type:

LIST 5@

NONAME 0B-JAN-83 00:18:49

S FOR I=1 70O 10

READY

Do not confuse the BASIC~11 DEL command with the DELETE key on the

terminal keyboard.

10-5

Running a BASIC-11 Program

LISTNH

SCR

SUMMARY:

BASIC-11 EDITING

COMMANDS

Notice that BASIC-11 prints a header line. Since you have not
as yet assigned a name to your program, BASIC-11 assigns it

the name NONAME and prints this name, along with the date

(which is only correct if previously entered via the DATE mon-

itor command) and the time when you use the LIST command.

You can omit the header line by using the LISTNH command

instead of the LIST command.

LISTNH 50-8BED

50 NEXT I

S5 PRINT "THE TOTAL IS"ST

88 END

READY

By typing the LIST or LISTNH commands without indicating

any line numbers, you can print on the terminal a listing of

your entire program. Terminate the command with a carriage

return.

LISTNHED

S FOR I=1 TO 10

20 INPUT J

25 LET T=T+J

S0 NEXT I

93 PRINT "THE TOTAL IS"ST

88 END

READY

Finally, to erase the entire program, which you must do before

typing a new program, use the SCR (SCRATCH) command.

SCRED

READY

All program lines are erased from memory.

line #

Erase the indicated program lines.

DEL line #

Erase the indicated program lines.

LIST

List the entire program and print a header that includes the

program name, date, and time.

LIST line #

List the indicated lines and print a header that includes the

program name, date, and time.

10-6

LISTNH

List the entire program but do not print a header.

LISTNH line #

List the indicated lines but do not print a header.

SCR

Erase all program lines from memory and change the name

to NONAME.

SUB line #@FIRST@SECOND@n

Replace the nth occurrence of the FIRST character(s) with

the SECOND character(s) in the indicated line (default is

n=1).

Create the following demonstration program’, using the appro-

priate BASIC—11 editing commands, exactly as it appears here.

If you forget to insert a line, type it at the end or when you

notice the omission; BASIC-11 sorts and arranges lines by

number before execution, regardless of the order in which they

are typed. When you have finished, list the entire program and

make a final check for typing errors.

100 REM THE PROGRAM Z3 MATCHES

101 REM

110 PRINT “WE BEGIN WITH 23 MATCHES., YOU MOVE FIRST., YOU"

115 PRINT “MAY TAKE 1, 2, OR 3 MATCHES., TYPE YOUR CHOICE"

120 PRINT "FOLLOWED BY A CARRIAGE RETURN. THEN THE COM-"

125 PRINT "PUTER CHOOSES 1+ 2+ OR 3 MATCHES. YOU CHOOSE"

130 PRINT "AGAIN, AND S0 ON, WHOEVER MUST TAKE THE LAST®

135 PRINT "MATCH: LOSES.”

140 PRINT \ LET M=23

200 REM THE HUMAN MOVES

201 REM

210 PRINT \ PRINT “THERE ARE NOW"iM3i"MATCHES."

215 PRINT \ PRINT "HOW MANY DO YOU TAKE"j

230 INPUT H

240 1F H>M THEN 510

250 IF H<SINT(H THEN 510

260 IF H<{=0 THEN 510

270 IF H»=4 THEN 510

280 LET M=M-H

290 IF M=0 THEN 410

300 REM THE COMPUTER MOVES

301 REM

305 IF M=1 THEN 440

310 LET R=M-4%INT{(M/4)

320 IF R<>»1 THEN 350

330 LET C=INT(3#RND)+1 \ GO TO 380

350 LET C=(R+3)-4*INT((R+3)/4)

360 LET M=M-C

370 IF M=0 THEN 440

380 PRINT \ PRINT "THE COMPUTER TOOK"3C3i"..s."3

380 GO 70 310

400 REM SOMEBODY WON

401 REM

410 PRINT \ PRINT "THE COMPUTER WON."” \ GO TO 988

440 PRINT \ PRINT "YOU WON," \ GO TO 998

500 REM BAD INPUT

501 REM

510 PRINT "ENTER ONLY 1, 2+ OR 3." \ GO TO 215

988 END

193 Matches, 101 BASIC Computer Games, Maynard, Mass.: Digital Equip-

ment Corporation, 1975.

10-7

Running a BASIC-11 Program

Running a BASIC-11 Program

RUNNING A

BASIC-11 PROGRAM

RUN

As you can see from the first few lines of the listing, this pro-

gram is a mathematical game where you match your logic

against the program logic. The PRINT statements in the pro-

gram print messages, game instructions, results, and so forth,

on the terminal. The REM statements identify comment

lines — remarks that provide general information about the

program, but that are ignored by BASIC-11 during processing.

The INPUT statement in line 230 allows you to supply data

from the terminal. Depending on the value you enter, program

control transfers to various other parts of the program. For ex-

ample, if you type an invalid value, program control skips

ahead to a PRINT statement in line 510 informing you of your

mistake and then returns to line 215 to ask for a value again.

The mathematical algorithms of this program are in lines 310

through 350, which determine the number of matches the com-

puter will select based on your choice.

Once you have typed the program and checked the listing to be

sure that it corresponds to the example, you are ready to run it.

The BASIC-11 RUN command initiates program execution.

This command prints a header that includes the program name,

date, and time. If you want to omit the header line, type the

RUNNH command instead.

RUNNHG®ED

If you typed the program correctly, you will see this text print

on your terminal:

WE BEGIN WITH 23 MATCHES. YOU MOVE FIRST., YOU

MAY TAKE 1: 2, OR 3 MATCHES. TYPE YOUR CHOICE

FOLLOWED BY A CARRIAGE RETURN., THEN THE COM-

PUTER CHOOSES 1, 2, OR 3 MATCHES. YOU CHOOSE

AGAIN,s AND SD ON., WHOEVER MUST TAKE THE LAST

MATCH, LOSES.

THERE ARE NOW 23 MATCHES.

HOW MANY DO YOU TAKE?

NOTE

If this response does not appear, you have not entered

the program correctly. Compare your listing very care-

fully against the one provided earlier. Spacing does not

matter, but all other characters must match. To correct

your errors type CTRL/C, which, under control of

BASIC-11 only, returns you to BASIC-11 command

mode, indicated by the READY message. Correct the

program and then rerun it.

10-8

When the program pauses and asks you a question, you must

supply data, in this case a 1, 2, or 3. Type your choice (repre-

sented here by n), followed by a carriage return:

n&ED

?SYNTAX ERROR AT LINE 250

READY

BASIC-11 discovered an error' in line 250 that prevents fur-

ther processing. Check line 250 in your listing or list it on the

terminal:

LISTNH 25060

250 IF H<>INT(H THEN 510

READY

Note that a right parenthesis is missing after the second H in

this line. Correct the line using the SUBSTITUTE command:

SUB 250 B(HE(H)RED

250 IF H<>INT(H) THEN 510

READY

You are ready to run the program again.

RUNNHGEED

BASIC-11 begins processing at the start of the program.

WE BEGIN WITH 23 MATCHES. YOU MOVE FIRST. YOU

MAY TAKE 1, 2, OR 3 MATCHES. TYPE YOUR CHOICE

FOLLOWED BY A CARRIAGE RETURN., THEN THE COM-

PUTER CHOOSES 1+ 2, OR 3 MATCHES. YOU CHOOSE

AGAIN,» AND S0 ON., WHOEVER MUST TAKE THE LAST

MATCH. LOSES.

THERE ARE NOW 23 MATCHES.

HOW MANY DO YOU TAKE®?

Type your choice again. But notice this time that a different

kind of error is detected. The BASIC-11 interpreter has entered

an infinite loop, a series of commands that it repeats endlessly.

After several lines have printed, type a double CTRL/C; this

interrupts execution and returns control to BASIC-11 com-

mand mode.

Refer to the RT-11 System Message Manual for greater detail about any
messages printed during normal system use.

10-9

Running a BASIC-11 Program

CTRL/C CTRL/C

Running a BASIC-11 Program

n @

THE COMPUTER TOOK

THE COMPUTER TOOK

THE COMPUTER TOOK

THE COMPUTER TOOK

THE COMPUTER TOOK

THE COMPUTER TOOK

THE COMPUTER TOOK

THE COMPUTER TOOK

THE COMPUTER TOOK

THE COMPUTER TOOK

THE COMPUTER TOOK

ETRLC)

STOP AT LINE 380

LRIA

e

LI

[N

LI R

+ e

L

L2

L B N

LR2N

W
r

L
)
o
o

W
M

W

CR N

READY

An infinite loop is a programming logic error. However, since

the error does not prevent processing, BASIC-11 does not print

an error message. Instead BASIC-11 is caught in a loop of in-

structions and executes them endlessly. This particular loop is

obvious because it prints a line of text; other kinds of loops may

not be so evident. At this point you must examine the program

logic to determine why these instructions are being repeated.

Look at your listing of this program. The problem in this case is

in line 390. This line instructs program control to return to line

310; therefore lines 310 through 390 are repeated endlessly

without ever obtaining your next value choice. Program control

should really return to line 210. Correct line 390 as follows:

SUB 390 E310B210RED
390 GO 7O 210

READY

Now you are ready to run the program again. This time the

entire program should execute without error. Enter your value

choices when requested. (A hint to playing the game: your first

value choice determines whether you can win; if your first

choice is wrong, the program has the advantage throughout.) A

sample run follows.

RUNNHGEED

WE BEGIN WITH 23 MATCHES. YOU MOVE FIRST. YOU

MAY TAKE 1, 2, OR 3 MATCHES., TYPE YOUR CHOICE

FOLLOWED BY A CARRIAGE RETURN. THEN THE COM-

PUTER CHOOSES 1, 2, OR 3 MATCHES. YOU CHDOSE

AGAIN, AND SO ON., WHOEVER MUST TAKE THE LAST

MATCH, LOSES.

THERE ARE NOW 23 MATCHES.

10-10

S

HOW MANY DO YOU TAKE? 1@&D

THE COMPUTER TOOK 1 444

THERE ARE NOW 21 MATCHES.,

HOW MANY DO YOU TAKE? 1@ED

THE COMPUTER TOOK 3 444

THERE ARE NOW 17 MATCHES.

HOW MANY DO YOU TAKE? Z2ED

THE COMPUTER TOOK 2 4+

THERE ARE NOW 13 MATCHES.

HOW MANY DO YOU TAKE? 160

THE COMPUTER TOODK 3 444

THERE ARE NOW 9 MATCHES.,

HOW MANY DO YOU TAKE? 1GED

THE COMPUTER TOOK 3 ++4.

THERE ARE NOW 5 MATCHES.

HOW MANY DO YOU TAKE? 36D

THE COMPUTER TOOK 1 4440

THERE ARE NOW 1 MATCHES.

HOW MANY DO YOU TAKE? 0@

ENTER ONLY 1,y 2,y DR 3.

HOW MANY DO YOU TAKE? 1@

THE COMPUTER WON.

READY

RUN

Execute the BASIC-11 program currently in memory; print a

header line including the program name, date, and version

number.

RUNNH

Execute the BASIC-11 program currently in memory; omit

the header line.

CTRL/C

Under control of BASIC-11 only, interrupt execution of the
BASIC-11 program and return control to BASIC-11 com-

mand mode.

BYE

Return control to monitor command mode (only when using

BASIC-11).

10-11

Running a BASIC-11 Program

SUMMARY:

BASIC-11

EXECUTION

COMMANDS

Running a BASIC-11 Program

FILE MAINTENANCE

SAVE

NEW

OoLD

You can transfer the BASIC-11 program currently in memory

to a storage volume by using the SAVE command of BASIC.

The SAVE command copies the program to the storage volume

and gives the program the file name and file type that you

indicate in the command line. A file type of .BAS is assigned

automatically unless you indicate otherwise.

Use the SAVE command to store this BASIC-11 program as

MATCH.BAS on the storage volume (VOL:) as follows:

SAVE VOL:MATCHED

READY

After you save a BASIC-11 program on a storage volume, you

can create a new program in memory by typing the BASIC-11

NEW command. This command erases the current memory con-

tents and asks you for a new program name:

NE WEED

NEW FILE NAME--

You can type any file name you wish and BASIC-11 assigns it

to the file you create. Or you can respond by typing only a

carriage return; BASIC-11 then assigns the file name NO-

NAME.

Another way to create a new program in memory is to type the

BASIC-11 SCR command. This command simply erases the

current memory contents. It assigns the name NONAME:

SCRED

READY

To use an existing BASIC-11 program, one that you have pre-

viously stored on a storage volume, type the BASIC-11 OLD

command:

OLDED

OLD FILE NAME--

Reply by typing the device name, file name, and file type of the

file that you want to use. If you omit an explicit device name,

BASIC-11 assumes DK: (the default volume); if you omit an

explicit file type, BASIC-11 assumes .BAS. BASIC-11 erases

memory and then copies the program from the volume into

memory. For example, type:

YOL t MATCHED

READY

This copies VOL:MATCH.BAS back into memory.

Assume that you have edited or changed the MATCH.BAS file

and now want to transfer it back to VOL:. Since the file already

10-12

exists as MATCH.BAS on that volume, you must use the

BASIC-11 REPLACE command:

REPLACE VOL:MATCHED

READY

The REPLACE command replaces an existing file with a new

version.

The SAVE and REPLACE commands copy a BASIC-11 pro-

gram from computer memory to a storage volume. As these

commands copy the program, they convert it from the internal

Running a BASIC-11 Program

REPLACE

format used by BASIC-11 to ASCII format. Thus, you can, if

you prefer, use the RT-11 editor to create and edit BASIC-11

programs, since the editor also uses ASCII format. However,

many users would rather use BASIC-11 to create and edit a

BASIC-11 program, since they can then run the program,

reedit it, rerun it, and save the new version — all in BA-

SIC-11 command mode — rather than perform the several cor-

responding monitor commands.

The last file maintenance operation that you should perform is

to obtain an up-to-date directory of your storage volume so that

you can see its current status; however, you must return to

monitor command mode to do this. Type the BYE command,;

this BASIC-11 command (rather than CTRL/C) returns control

to monitor command mode. Next use the DIRECTORY monitor

command to check the status of your storage volume.

BYE®ED

+DIRECTORY/BRIEF VOL:

08-Jan-83

SUM +MAC EXAMP FOR EXAMP .MAC GRAPH ,FOR GRAPH ,LGT

GRAPH .0BJ GRAPH 5AV MATCH .BAS

8 Filess 58 Blocks

4704 Free blocKs

NEW

Create a new BASIC-11 program, assigning the file name

indicated.

OLD

Copy into memory an existing BASIC-11 program (for use

under BASIC-11).

REPLACE

Copy the BASIC-11 program currently in memory to the in-

dicated storage volume, replacing the version that already

exists on that volume.

SAVE

Copy the BASIC-11 program currently in memory to the in-

dicated storage volume.

10-13

SUMMARY:

BASIC-11 FILE

MAINTENANCE

COMMANDS

Running a BASIC-11 Program

REFERENCES

This completes the BASIC-11 demonstration. Before you con-
tinue to Chapter 14 to learn about program debugging, make
sure that the main system volume is loaded in device unit 0. If
you followed the special instructions in Appendix B to load the
language volume, you should now stop the system, unload that
volume, load the main system volume, and rebootstrap the
system.

BASIC-11 Language Reference Manual (AA—1908A-TC). Maynard, Mass.:
Digital Equipment Corporation, 1976.

A reference manual and guide to programming in the BASIC-11 lan-
guage.

BASIC-11/RT-11 Installation Guide and Release Notes (AA-K724B-TC).
Maynard, Mass.: Digital Equipment Corporation, 1983.

An RT-11-specific manual that contains instructions for installing the
RT-11 BASIC-11 language processor and lists known problems and
differences between versions.

BASIC-11/RT-11 User's Guide (AA-5071B-TC). Maynard, Mass.: Digital
Equipment Corporation, 1983.

An RT-11-specific manual that contains information necessary to
create, edit, run, and debug a BASIC-11 program.

10-14

CHAPTER 11

RUNNING A MACRO-11 ASSEMBLY LANGUAGE PROGRAM

The MACRO-11 programming language is a machine-depend-

ent programming language developed for the PDP-11 program-

mer, or for the FORTRAN IV programmer who intends to com-

bine assembly language routines and FORTRAN IV routines.

The MACRO-11 language enables the knowledgeable program-

mer to access all the features of the RT-11 computer system

using a precise and efficient programming code.

The MACRO-11 assembly language uses the PDP-11 instruc-

tion set, a list of mnemonic instructions that correspond to vari-

ous PDP-11 computer operations. These instructions allow you

to add, compare, increment, complement, and perform many

other manipulations on numerical data. The instructions are

summarized in a pocket-sized folding card, called the PDP-11

Programming Card (Figure 11-1), and are described in detail

in the PDP—11 Processor Handbook. By choosing the appropri-

ate instructions and by providing any additional data needed,

you can create a complete program.

Figure 11-1 PDP-11 Programming Card

You write the MACRO-11 program as a sequence of lines, each

a single assembly language statement in the following format:

LABEL: OPERATOR OPERAND(S) COMMENTS

The operator and/or operand are instructions selected from the

PDP-11 instruction set, data needed by the instructions, or as-

sembler directives (instructions to the assembler to guide the

assembly process). The optional statement label identifies the

statement line so that you can refer to the instructions or data

on that line from other parts of the program. Optional com-

ments describe generally what operations are being done.

Sequences of language statements constitute a routine (to per-

form a specific function); groups of routines and data compose

the entire executable program.

11-1

DEVELOPING

A MACRO-11

ASSEMBLY

LANGUAGE

PROGRAM

Running a MACRO-11 Assembly Language Program

USING THE

MACRO-11

LANGUAGE

PROCESSOR

When you are satisfied with the logic of your MACRO-11

source program, you use the RT-11 editor to create it as a file

(see Chapter 5). You use tabs and spaces to make the program
more readable. When you have finished creating the program

as a complete, edited file, you next enter it as input to the

MACRO-11 language processor, which is part of the RT-11

operating system and is stored on your system volume. The

MACRO-11 language processor processes (assembles) the lan-

guage statements, converting them into an internal machine

language code called object code. This code is next processed by
the system linker, which combines your program units and

makes the program suitable for execution. Figure 11-2 repre-

sents the development of an executable MACRO-11 program.

CREATE EDIT ASSEMBLE LINK RUN

Figure 11-2 Evolution of a MACRO-11 Program

The MACRO-11 language processor is an assembler that ac-

cepts information in one format (that is, your source program)
and translates it into another format (that is, a machine lan-
guage program). The assembler interprets and processes the

assembly language statements, one at a time, and generates

one or more computer instructions or data items. Since you

originally use the editor to create a MACRO-11 program in

ASCII format, you must next translate it into a machine format

that the computer can use. The MACRO-11 assembler per-
forms this conversion, producing as output a new version of the
program, in object format, called an object module. You may

request the MACRO assembler to produce a listing of the

source program at the same time. The role of the assembler is

represented below in Figure 11-3.

SOURCE _ ASSEMBLE OBJECT

PROGRAM MODULE

LISTING

(OPTIONAL)

Figure 11-3 Function of a MACRO-11 Assembler

11-2

Running a MACRO-11 Assembly Language Program

During assembly processing, the MACRO-11 assembler:

e Accounts for all instructions used within the source program

and determines their relative positions in computer memory;

it does this by means of a storage location (program) counter.

o Keeps track of all user-defined symbols and their respective

values in a symbol table.

¢ Converts assembly language mnemonics, user-defined sym-

bols, and data values into their respective machine language

(object code) equivalents.

The program counter keeps track of addresses in computer

memory where instructions and data will be stored.

PDP-11 computer memories are composed of physical storage

locations that can hold numerical data. These locations are

numbered consecutively from 0 up to the highest memory loca-

tion, which varies according to the amount of memory acquired

with the computer system (Figure 11—4). PDP-11 computers

used in an RT-11 system have at least 32,768 bytes (16,384

words).

CONVERTED INSTRUCTION

CONVERTED INSTRUCTION

CONVERTED INSTRUCTION

Figure 11-4 PDP-11 Computer Memory

11-3

The Program

Counter

Running a MACRO-11 Assembly Language Program

The Symbol Table

Machine Language

Code

During processing, the assembler converts each program lan-

guage statement into numerical data (the object code) and as-

signs the data a relative storage location. The system linker

will convert the relative storage locations assigned by the as-

sembler to absolute storage locations in the computer memory.!

The location’s associated number is called its address. As the
assembler translates and assigns each statement, it updates the

value of the program counter accordingly.

Since you may not know which locations, or how many loca-

tions, the program needs, you use symbolic names (variables,

constants, and labels) to represent individual locations and

their contents. As the assembler processes the source program,

it constructs a symbol table, which is a compiled list of all the

symbolic names and labels that you have used within the pro-

gram. The MACRO-11 assembler defines each symbolic name

by assigning an address or data value, as appropriate, and adds

the symbol definition to the symbol table. After assembly, you

can refer to the symbol table, which is printed at the end of the

assembly listing, to find all symbol definitions.

The third function of the assembler is to convert your

MACRO-11 source language statements into machine lan-

guage code (the object module).

NOTE

The following information will help you understand the

assembly listing used later in this chapter.

Machine language code is numerical data in the form of binary

numbers (numbers composed of only the digits 0 and 1). Binary
numbers are appropriate because the digits 0 and 1 can be eas-

ily manipulated by the two-state electronic logic of the com-

puter.

For example, a typical assembled instruction in PDP-11 com-

puter memory looks like this:

location location

address contents

01000 11000000
01001 11100101

"The system linker is discussed in Chapter 12.

114

Running a MACRO-11 Assembly Language Program

Since a single instruction requires two (or more) consecutive

memory locations, the instruction is actually put together in

memory in the following manner:

high-order byte low-order byte

01001 11100101 11000000 01000

Each individual digit of the instruction is called a bit (binary

digit). A single memory location, called a byte, contains 8 bits;

two memory locations, called a PDP-11 word, contain 16 bits.

The byte in the even-numbered memory address is called the

low-order byte and is stored first; the byte in the odd-numbered

memory address is called the high-order byte and is stored next.

Both bytes together form one PDP-11 16-bit word (Figure

11-5).

PDP-11 Word

gioorf 11+ 10 0 1t 0 t}1 v+ 0O O O O O 0] 01000

\\T etc.

bit

- -~ —" - ~ -

High-order byte Low-order byte

Figure 11-5 PDP-11 Word

The computer works in terms of 8-bit bytes and 16-bit words of

binary data. However, binary numbers are generally too long

and cumbersome to be used effectively by a programmer. But

binary numbers can be easily represented as octal numbers

(numbers composed of digits within the range 0 to 7). Since

octal numbers are closer to the familiar decimal number system

and are much more readable than binary numbers, the pro-

grammer more often uses octal numbers than binary numbers.

Table 11-1 shows the decimal numbers 0 through 10 and their

respective octal and binary equivalents. Tables and formulas

are available to calculate higher conversions.

Thus, you can think of the binary instruction shown earlier in

terms of its octal equivalent as follows (conversion is done from

low-order to high-order byte in groups of three bits):

high-order byte low-order byte

01001 11100101 11000000 01000

1 6 2 7 0 0 = 162700(8)

11-5

Running a MACRO-11 Assembly Language Program

ASSEMBLING

THE MACRO-11

PROGRAM

A MACRO-11 assembly listing shows the addresses of memory

locations and their contents as octal numbers. The octal num-

bers represent the respective binary machine language code

that makes up the object module.

Table 11-1 Decimal/Octal/Binary Conversion

Decimal Octal Binary

0 000

1 001

2 010

3 011

4 100

5

6

7

101

110

111

10 1 000

11 1 001

12 1 010Q
W
X

T
I
T
D
H
O
p

W
N

O

—

In Chapter 5 you used the RT-11 editor to create a MACRO-11

source program; you then stored it on your storage volume.

Since a source program is in ASCII format, the next step is to

use the MACRO-11 assembler to convert the source program to

object code.

Copy the MACRO-11 source program from the storage volume

back to the system volume (which is the default volume for

input/output operations).

On your storage volume are two MACRO-11 source programs,

the one you created, SUM.MAC, and the one provided for you,

DEMOX1.MAC, which was renamed to EXAMP.MAC in Chap-

ter 7. Which of these you should copy depends on the results of

the source comparison you performed in Chapter 6. If the com-

parison resulted in no differences except for the title lines, copy

your own program (SUM.MAC) as follows:

Long Command Format

.COPYGED

From? VOL:SUM.MACGEED

To 7 SUM,MACGED

Short Command Format

,COPY VOL:SUM.MAC SUM.MACED

However, if differences were listed in addition to the title lines,

substitute the program EXAMP.MAC:

11-6

Running a MACRO-11 Assembly Language Program

Long Command Format

+COPYGED

From? VOL:EXAMP.MACED

To ? SUM,MACGEED

Short Command Format

,COPY VOL:EXAMP,.MAC SUM.MACED

Whichever source file you copied now resides on your system

volume under the name SUM.MAC and is the file that you will

process with the MACRO-11 assembler. The command used to

assemble a MACRO-11 source program is the monitor MACRO

command.

Use the MACRO command with its /LIST and /CROSSREFER-

ENCE options to assemble your source program and produce a MACRO

cross-referenced assembly listing. The system prompt asks you

to supply the input file name. You can omit typing the .MAC

file type, since the MACRO command assumes this file type

unless you indicate otherwise. The system will automatically

assign the name SUM.OBJ to the object module and SUM.LST

to the listing file, and store both newly created files on the

system volume. (The system volume is the default storage vol-

ume for input/output operations.)

Long Command Format

+ MACROGED

Files? SUM/LIST/CROSSREFERENCEGE

Short Command Format

+MACRD SUM/LIST/CROSSREFERENCEGED

Assembly begins. When it is finished, a message similar to the

following prints on the terminal printer or screen:

?MACRO-W-Errors detected:- B

DK:SUMDK:SUM/C=DK:5UM

This message indicates that the assembler detected errors in six

lines of the source program during processing. It helps at this

point to look at the listing produced by the assembler for infor-

mation.

Long Command Format

(Line Printer) (Terminal)

L PRINTED , TYPEGD
Files? SUM.LSTGD Files? SUM,LSTED

11-7

Running a MACRO-11 Assembly Language Program

Short Command Format

(Line Printer) (Terminal)

+PRINT SUM.LSTEED +TYPE SUM,LETRD

Your listing should look like the following example. An expla-

nation of this listing follows. You should refer to the listing as

you read the accompanying explanation.

NOTE

You do not need to understand the MACRO-11 lan-

guage or the way this program works to successfully

complete the exercises in this chapter.

BUM.MAC VERSION 1 MACRD V05,00 Ssturdaw 08-Jan-83 093121 Fage 1

1 ~TITLE SUM.MAC VERSION 1

2

3 JHMCALL JTTYOUT, JEXIT, PRINT

4

5

6 S

7 000106 N = 70, #NO. OF DIGITS OF 'E‘ TO CALCULATE

8 ¥ ‘E’ = THE SUM OF THE RECIFROCALS OF THE FACTORIALS

9 i 1701 4+ 1710 4+ 1720 4+ 1738 + 1/40 + 1/50 4 ...

10

M 11 000000 EXF! SFRINT SMESSAG $PRINT INTROBUCTORY TEXT

12 000006 012705 000104 MOV #NsRS $NG. OF CHARS OF ‘E’ TO PRINT

13 000012 012700 000107 FIRST: MOV #NHLPRO #NO. OF DIGITS OF ACCURACY

u 14 000014 012701 000000 MOV #A,R1 3$ADDRESS OF DIGIT VECTOR

15 000022 006311 SECOND? ASL @rR1 00 MULTIPLY BY 10 (DECIMAL)

16 000024 011146 MoV BR1y—(SF) 18AVE X2

17 000026 006311 ASL ar1 ka4

18 000030 004311 ASL eRt %8

19 000032 082621 ADL (SF) 4y (R1D+ FNOW %10, POINT TO NEXT DIGIT

20 000034 005300 DEC RO AT END OF BIGITS?

21 000038 001371 BNE SECOND PBRANCH IF NOT

22 000040 012700 0001046 MOV #NsRO 60 THRU ALL PLACES, LDIVIDING

23 000044 014103 THIRD: MOV =(R1)+R3 $BY THE FLACES INDEX

24 Q00046 012702 177777 MOV #-1,R2 FINIT QUOTIENT REGISTER

25 000052 005202 FOURTH?: INC R2 i BUMF QUOTIENT

26

27 000054 160003 SUB ROsR3 $SUBTRALT LOOP ISN'T BAD

28 0000546 103375 BCC FOURTH FNUMERATOR IS ALWAYS < 10%N S

29 000060 080003 ADT ROYR3 $FIX REMAINDER ~—
30 000062 010311 MOV R3IsBR1 FSAVE REMAINDER AS BASIS
31 $FOR NEXT DIGIT

AR 32 000064 046167 000000 000000 ADD R2-2(R1) $BREATEST INTEGER CARRIES

33 #70 GIVE DIGIT

34 000072 005300 DEC RO #AT END OF DIGIT VECTOR?

35 000074 001363 BNE THIRD PBRANCH IF NOT

346 000076 014100 MOV ~(R1)sRO ¥GET BIGIT TO OQUTPUT

37 000100 1482700 000012 FIFTH! 8SUB #10.,R0 JFIX THE 2.7 1O .7 80

38 FTHAT IT IS ONLY 1 DIGIT

37 000104 103375 BEC FIFTH # (REALLY DIVIDE BY 10)

40 000106 062700 000072 ADD #10,1/0sRO #MAKE DIGIT ASCII

u 41 000112 000000 STTYON JOUTPUT THE DIGIT

42 000114 003011 CLR 2Rt FCLEAR NEXT DIGIT LOCATION

43 000116 003305 DEC RS #MORE DIGITS TO PRINT?

44 000120 001334 BNE FIRST FBRANCH IF YES

43 000122 CEXIT $WE ARE DONE

as

" 47 000124 000107 EXP? +REFT N+1

48 +WORD 1 FINIT VECTOR TO ALL ONES

49 +JENDR

50

51 000342 124 110 105 MESSAG: (ASCIT /THE VALUE OF £ IS3/ <1%5>412: /2./ <200> . -

000345 040 126 101 T

0006350 114 128 105
000353 040 117 104

000354 040 105 040

000361 111 123 072

000344 0135 012 062

SUM.HAC VERSION 1 MACRO V05,00 Saturdaw 08-Jan-83 Q%9i21 Fade 1~1

0003467 056 200
52 JEVEN

53

) B4 000000 SJEND EXF

BUMMAC VERSION 1 MACRO V05.00 Saturdaw 08-Jan-83 09121 Fagde 1-2

Swmbol table

A = KXKRKK FIFTH 0001 00R FOURTH Q00052R N = 000106 THIRD Q00044R

EXP 000000R FIRST 000012R MESSAG 000342R SECOND 000022R STTYON= RRXARK

+ ABS, 000000 000 (RWrI,GBLyARS,OVR)

000372 001 (RW>TsLCL+RELs CONY

Errors detected! &

*k¥ Assembler statistics

Kork file vreads! O

Work file writes! Q

Size of work file! 8222 Words (33 Fasmes)

Size of core rooll 15872 UWords (62 Pasges)

Operating swystem! RT-11

—”

11-8

Running a MACRO-11 Assembly Language Program

Elarsed time! 00:0C104.34

DK SUMy DK I SUM/C=DK! 5UN

SUM.MAC VERSION 1 HACRO V05.00 Saturdaw 08-Jan~-83 0%:21 Page 5-1

Cross reference table (CREF V05.00)

«TTYON 1-41

A 1-14

EXP 1-11% 1-47% 1-54

FIFTH 1-37% 1-29

FIRST 1-13¢ 1-44

FOURTH 1-25¢ 1-28

MESSAG 1-11 1-51%

N 1-7% 1-12 1-13 1-22 1-47

SECOND 1-15¢ 1-21

THIRED 1-23% 1-35

SUM.MAC VERSION 1 MACRO V05,00 Saturdaw 08-Jan-83 09i21 Fase M-1

Cross reference table (CREF VQ5.00)

JEXIT 1-3¢ 1-45

+PRINT 1-38 i-11

LTTYDU 1-38

SUM.HAC VERSION 1 HACROQ V05,00 Saturdaw 08~Jan-83 09121 Fase E-i

Cross reference table (CREF V05,00)

1-32

1-54

31-~311 1~47
1-32

1-14 t~41S
T
I
P
D
>

The first part of the listing has four logical sections, as follows:

line octal octal statement line

number memory instruction

address value(s)

The assembler assigns consecutive decimal line numbers to

each line of the source program, including blank lines and com-

ment lines. These numbers are used for reference purposes. The

next column to the right shows the relative' even-numbered

octal memory (byte) addresses of storage locations assigned by

the program counter to each instruction in the program. This

program has been assigned relative memory addresses 0

through 370. The third column (and possibly fourth and fifth)

shows the octal equivalent of the assembled instruction or data

value. An apostrophe following an octal value indicates a rela-

tive value that must be modified before it can be used (the

actual value is determined during linking). Finally, the source

program as you created it appears in the right-hand portion of

the listing.

For example, look at line 18 of the listing:

18 000030 0086311 ASL @r1 %8

The instruction ASL @R1 is stored in relative memory loca-

tions 30 and 31 as binary data (the comment, ;*8, is ignored):

31 00001100 11001001 30

0 0 6 3 1 1

!The assembler assigns relative memory addresses to instructions. Actual
addresses are not determined until the link operation is performed. Linking

and address relocation are discussed in Chapter 12.

11-9

Running a MACRO-11 Assembly Language Program

Some instructions require more than two memory locations; for

example, those at lines 13 and 14. The number of memory loca-

tions required depends upon the operation.

Following the assembled code in the listing is the symbol table,

an alphabetical listing of user-defined symbols and labels in the

program and their respective definitions. Symbols are defined

as values. For example, the symbolic variable name N is de-

fined (in line 7) as 000106(octal) or 70(decimal), an absolute

value. Labels are defined as addresses. The symbolic label

FIRST is defined (in line 14) as 000012, a relocatable address

(the R following 000012 in the symbol table indicates that the

address will be relocated or modified during linking). A row of

asterisks next to any symbolic name in the table indicates that

for some reason — possibly a programming error — the as-

sembler could not define the symbol.

At the very end of the symbol table (where the . ABS. occurs) is

the program’s size information (or synopsis) in terms of the to-

tal number of octal storage locations it requires (in this case,

372). Following is the number of errors detected, and the

amount of free and used memory pages (statistics provided by

the assembler).

Following the symbol table is the cross reference (CREF) list-

ing. The CREF listing is optional — as is the assembly

listing — but provides you with useful reference and debug-

ging information, especially if the program is large. The CREF

listing can contain several kinds of tables of reference informa-

tion, each beginning on a new page. The default tables are the

three shown here.

Every reference in a CREF table shows the page number of the

listing (in the preceding example, all references are on page 1),

followed by the appropriate line number. A number sign follow-

ing a line number indicates that this line is where a label or

symbol definition occurs.

The first CREF table shown here lists alphabetically all user-

defined symbol and label references.

The second CREF table lists alphabetically all macro symbol

references. (Macro symbols are a special feature of the

MACRO-11 assembly language; they are described shortly.)

The third CREF table lists alphabetically the codes of the er-

rors detected during assembly. These errors must be corrected

before you can run the program.

Now that you are familiar with the format of an assembly list-

ing, go back to the beginning of the example listing to deter-

mine what this program should do.

11-10

Running a MACRO-11 Assembly Language Program

The first two comment lines (preceded by semicolons) indicate

that the program calculates the value of ‘E’, which is the sum of
the inverse of the factorials between 1 and infinity. The algo-

rithm used in this program is somewhat complicated (this was

necessary to keep the program reasonably short). ‘E’ is calcu-

lated one digit at a time by using a difference function between

its actual value and the current approximation for each new

digit. The program forms:

1+ +0+.. .+ 1+ 1+ 1/N)/N-1)/(N-2))/.../2)/1)

and is 2.11111... in the inverse factorial base system, which is

the first sum shown in the program listing.

The statements between lines 1 through 7 define initial states

to the assemblers, such as the value of N, and designate the

macros that will be used throughout the program.

Macros, from which the MACRO-11 language processor derives

its name, are a useful feature of the MACRO-11 assembly lan-

guage. You can define as a macro any recurring sequence of

coding instructions. By giving the macro a name, you can there-

after call it from any other part of the program by using a

single language statement.

In addition to the macros you define yourself, the RT-11 system

provides system macros that your programs can access. System

macros are defined in a special system library file called SYS-

MAC.SML (SML stands for System Macro Library). SYS-

MAC.SML is part of the RT-11 operating system and is stored

on the system volume. If you request a system macro from your

source program, the MACRO-11 assembler automatically

searches SYSMAC.SML for the required information.

The system macros defined in SYSMAC.SML are calls to cer-

tain services performed by the RT—11 monitor, such as terminal

handling, input and output operations, program termination,

file capabilities, and so on. The portion of the monitor that per-

forms these services, or that is capable of getting the necessary

program code to perform these services, is always in memory

and is therefore called the resident monitor. Thus, whenever

your source program is in memory and is to be executed, the

resident monitor is also there with its services.

You communicate the need for a monitor service by issuing a

programmed request in your source program. A programmed

request consists simply of a macro call to a specific macro de-

fined in SYSMAC.SML. The macro expands into the appropri-

ate machine language code, which, during program execution,

makes a request to the resident monitor to supply the desired

service.

11-11

Running a MACRO-11 Assembly Language Program

You specify all programmed requests that you intend to use in

your source program in an .MCALL statement, like the one

shown at line 3 in the listing. For example, the programmed

request .TTYOUT requests the monitor to print an ASCII char-

acter on the console terminal. During assembly, the .TTYOUT

macro in SYSMAC.SML is expanded into machine language

code. During program execution this code requests the resident

monitor to take the indicated ASCII character and send it to

the console terminal.

Line 12 in the program uses another programmed request,

PRINT, to print a message on the terminal.

Lines 13 through 15 are initialization instructions: they set ini-

tial values in three of the special registers. Lines 16 through 22

represent a routine that does a multiplication by 10. Lines 23

and 24 are setup instructions for the division routine of lines 25

through 28. Lines 29 through 35 save the quotient and remain-

der. Lines 36 through 40 print the digits of E. Lines 43 and 44

count the number of digits.

The statements at lines 47 through 49 reserve a buffer area (a

series of locations in memory) to be used by the program and

therefore not to be assigned to other instructions. The state-

ment at line 51 provides the data for printing the ASCII text

message THE VALUE OF E IS: 2.

This program, however, contains errors. The assembler discov-

ered six lines with errors that prevent the program from assem-

bling properly. The assembler flags (points out) errors by print-

ing a code letter in the assembly listing or on the terminal if no

listing is requested.’

The first error occurs at line 12 and is an M error. This means a

label was defined more than once. You can refer to a label any

number of times, but you may define it only once. By looking at

the CREF user symbol table, you can see that the label is de-

fined at line 12 and again at line 47; one of these definitions is

wrong. Examination of the program logic reveals that the defi-

nition at line 12 is correct. Before deciding how to change line

47, though, check the other errors to see if one of them indicates

what should be done. In fact, the next error encountered (line

15) shows what is wrong. A U error identifies an undefined

symbol. The label A is referenced in line 15, but is never de-

fined within the program. It should be defined logically at line

47. Therefore, line 47 should be changed to read:

A: +REPT N+1

1Refer to the RT—11 System Message Manual for greater detail about any
system messages printed during normal system use.

11-12

Running a MACRO-11 Assembly Language Program

Thus, this one change eliminates three errors flagged by the

assembler; those at lines 12, 15, and 47.

The next error occurs at line 32. Actually, the assembler

flagged two errors here. An A error indicates an addressing

problem and an R error indicates a register error (invalid use of

a register, a special PDP-11 storage feature). If you look at the

language statement in line 32, you can see that the ADD opera-

tor is followed by one operand. However, ADD is an instruction

that requires two operands (two values to be added together)

separated by a comma. This statement simply contains a typing

error, which can be corrected by inserting a comma between the

R2 and the —2(R1). Thus, changing the line as follows both

corrects the addressing problem and eliminates the invalid reg-

ister expression:

ADD R24+-2(R1)

At line 41 is another undefined symbol, the macro symbol

.TTYON. Since the program designated the macro symbol

TTYOUT in line 3, this error indicates a misspelling. Correct

line 41 to read:

JTTYOUT

Finally, a D error occurs in line 54. This indicates that refer-

ence was made to a symbol that is defined more than once. This

error has already been eliminated as a result of the correction

made to line 47.

Thus, by changing the three lines indicated, you can correct all

the errors flagged during assembly. So the next step is to edit

the appropriate lines in the source program. If necessary, re-

view the editing commands in Chapter 5, and then edit the file

SUM.MAC on your system volume so that the three lines indi-

cated are error-free. Do not rename the file. When you are

ready, reassemble the program, using the MACRO command,

and obtain a new object module and a new listing. This time the

program should assemble without error. If errors occur, you

have not edited the program correctly. Compare listings and try

to correct your errors, or go back to the beginning of this chap-

ter and repeat the demonstration.

The object module produced by the MACRO command may in

itself be incomplete. It may need to be joined with other object

modules or library files to form a complete functioning

program,’ since all required object modules must be joined be-

fore the program can work.

!Chapters 12 and 13 give more information on linking files and using library
files, respectively.

11-13

LINKING OBJECT

MODULES

TOGETHER

Running a MACRO-11 Assembly Language Program

LINK

Thus, you must next link the SUM object module with any

other object modules it requires. However, the only file used by

this program was the macro library file SYSMAC.SML, and it

was used during assembly. So in this case, you do not need to

join the SUM object module with any other modules.

NOTE

Some other MACRO-11 programs that you write later

may reference system subroutines supplied in the sys-

tem subroutine library, SYSLIB.OBJ. Programs that ref-

erence these routines must be linked with the system

subroutine library to satisfy external references. If SYS-

LIB.OBJ is not present on your system volume, follow

the guidelines in the section of Appendix B entitled Using

the LINK Volume.

Even though SYSLIB is not required for SUM.OBJ, you must

still link the file. The link operation, in addition to joining ob-

ject modules together, also assigns absolute memory addresses

to the relative addresses calculated by the MACRO-11 assem-

bler. Since the memory addresses of one object module must be

relocated to accommodate addresses used in another object

module, the link operation serves to resolve all address

changes. The result of the link is a memory image load module,

with all module links resolved and all absolute memory ad-

dresses and storage information assigned (Figure 11-6). The

memory image module, then, is actually a picture of what com-

puter memory looks like just before program execution.

OTHER

OBJECTS

OBJECT LINK o LOAD

MODULE | MODULE

Figure 11-6 The Link Operation

To link the object modules, use the LINK command. The system

prompts you to enter the names of the input object modules to

be linked together. You can omit typing the .OBJ file type in

the command line since the LINK command assumes this file

type for input. After you have entered the input information,

the system begins linking the object module. You do not have to

11-14

Running a MACRO-11 Assembly Language Program

specify an output file, since the system automatically assigns

the file name of the first input file and a file type of .SAV to the

output file.

Long Command Format

+LINKGED

Files? SUMED

Short Command Format

+LINK SUMED

Any messages printed inform you of error conditions discovered

during the link operation (for example, if you fail to specify all

the necessary input object modules). However, assuming you

edited your source program correctly and that it assembled

without error, it should also now link without error.

A load module is one that you can run on the system. Unless

your program contains logic errors that prevent it from running

properly (errors that the system cannot always detect), running

the .SAV version of your program should produce the results

you intended. However, if logic errors exist within your pro-

gram, running the program will produce either erroneous re-

sults or none at all. If this is the case, you must study the

source program, rework it, reedit it, then perform the assembly

and link operations again.

If your MACRO-11 program is error-free, running the .SAV

version should produce the expected results. In this demonstra-

tion, running the SUM.SAV file should produce a value on the

terminal that is the constant E (2 followed by 70 digits).

To execute the MACRO-11 demonstration program, use the

monitor RUN command. You can omit typing the .SAV file

type, since the RUN command assumes this file type. Type the

following, and note the results printed on the terminal:

Long and Short Command Format

+RUN SUMGED

THE VALUE OF E IS:

2.3/606/806237.2301314,065253/130440275535025,71477737352744745405502.,544

+

You can see that something is wrong. Slashes and periods ap-

pear in the result, indicating that an error still exists some-

where in the program.

Programming errors, called “bugs,” can be difficult to find and

fix. A debugging aid called ODT (On-line Debugging Tech-

nique) is described in Chapter 14. You will use it to correct the

program’s final error and to rerun the program. For now, how-

ever, the error will be pointed out and explained.

11-15

RUNNING THE

MACRO-11

PROGRAM

Running a MACRO-11 Assembly Language Program

COMBINING

OPERATIONS

EXECUTE

Look at line 40 in the assembly listing. Notice that the instruc-

tion in this line converts a digit into the appropriate ASCII code

before printing it on the terminal. To do this, the constant 10 is

added into the value of the digit already stored in memory, and

then the value is converted — via ’0, the ASCII code for

0 — to an ASCII code that can be printed. Unless you ex-

plicitly designate a value as decimal, however, the assembler

assumes all values used in the program are octal. Therefore, it

interprets the constant as 10(octal) or 8(decimal), and adds the

wrong value every time. The conversion consequently causes

the codes of the ASCII characters / and . to be used as results in

some cases. The codes of other digits, while representing nu-

meric values, are also off by two. To correct this error, you must

insert a period after the 10 in line 40. The period instructs the

assembler to accept the constant value 10 as a decimal value.

To produce program results, you first assembled the

MACRO-11 source program, SUM.MAC, then linked it, and

finally ran the resulting .SAV file, SUM.SAV. You can combine

these three operations using one monitor command, the EXE-

CUTE command.

NOTE

In order to use the EXECUTE command, the following

files must be present on your system volume:

SUM.MAC

MACRO.SAV

LINK.SAV

SYSLIB.OBJ

The last file, SYSLIB.OBJ, is required only if the

MACRO-11 program you need to link refers to routines

that are contained in the system library. The program

used in this demonstration, SUM.MAC, does not require

SYSLIB.OBJ.

The EXECUTE command instructs the system to select the ap-

propriate language processor, then process, link, and run the

program. There are several ways to establish which language

processor the EXECUTE command invokes. One way is to spec-

ify a language-name option, such as /MACRO, which invokes

the MACRO-11 assembler. Another way is to omit the lan-

guage-name option and explicitly specify the file type for the

source file’ The EXECUTE command then invokes the lan-

guage processor that corresponds to that file type. Specifying

the file SUM.MAC, for example, invokes the MACRO-11 as-

sembler. A third way to establish the language processor is to

let the system choose a file type of MAC, .DBL, or .FOR for the

source file you name. If, for example, you specify the file SUM,

11-16

Running a MACRO-11 Assembly Language Program

the monitor searches device SY: (your system device) for the

files SUM.MAC, SUM.DBL, and SUM.FOR, in that order. If it

finds a file named SUM.MAC, it invokes the MACRO-11 as-

sembler to process the file. For example, to combine the assem-

ble-link-run operations you performedin this chapter, you use

the following command:

Long Command Format

+» EXECUTE®ED

Files? SUM/LIST/CROSSREFERENCEGE

Short Command Format

+EXECUTE SUM/LIST/CROSSREFERENCEGD

THE VALUE OF E IS:

2.5/608/606237,2301314.,06525/130440275535025,71477737352744745405502,544

Notice how you use the /LIST and /CROSSREFERENCE op-

tions following the file name to request both an assembly and a

cross-referenced listing.

EXECUTE

Combine the assemble-link-run operations into one com-

mand.

EXECUTE file/eMACRO

Combine the process-link-run operations into one command,

and specify the input file to be a MACRO-11 file.

EXECUTE/CROSSREFERENCE

Produce a cross-referenced listing file.

EXECUTE/LIST

Produce a listing file of the source program.

LINK

Link individual object modules together to form a complete

program and produce a load module.

MACRO

Assemble the MACRO-11 source program, and produce an

object module.

MACRO/CROSSREFERENCE

Assemble the MACRO-11 source program, and produce both

an object module and a cross-referenced listing file.

MACRO/LIST

Assemble the MACRO-11 source program, and produce both

a listing on the line printer and an object module.

RUN

Run the indicated load module.

11-17

SUMMARY:

COMMANDS TO

RUN MACRO-11

PROGRAMS

Running a MACRO-11 Assembly Language Program

FILE MAINTENANCE Before continuing, you should perform the necessary file main-

tenance operations. Obtain a directory of all files on your sys-

tem volume that have the name SUM, regardless of file type;

these files were created as a result of the exercises in this chap-

ter.

Long and Short Command Format

,DIRECTORY SUM,*ED

08-Jan-83

SUM .BAK 3 0B-Jan-83 SUM +SAV 2 08-Jan-B3

SUM .L8T 9 08-Jan-83 SUM +MAC 3 08-Jan-B83

SUM .0BJ t 0B-Jan-83

S Filess 18 Blocks

480 Free blockKs

The fact that you have corrected errors in the source file of

SUM.MAC makes the version of that file on your storage vol-

ume obsolete. Therefore, transfer the updated copy from your

system volume back to VOL:, replacing the copy of SUM.MAC

on the storage volume with the new version.

Long Command Format

+COPYGED

From? SUM.MACGED

To ? VOL:5UM.MACGD

Short Command Format

\COPY SUM.MAC VOL:SUM.MACEED

Similarly, transfer SUM.SAV and SUM.OBJ to your storage

volume. This allows you to rerun the MACRO-11 program

without reassembling and relinking the source.

Long Command Format

+COPYERED

From? SUM.SAV,SUM.0BJGD

To 7 VOL:ED

Files coried:

DK:SUM,.5AV to YOL:SUM,.8AV

DK:SUM,0BJ to YOL:SUM.0BJ

Short Command Format

+COPY SUM.SAV,S5UM.DBJ VOL:ED

Files copied:

DK:5UM,5AV to VOL:8UM.SAV

DK:SUM.0BJ to VOL:SUM.0BJ

Once you have transferred to your storage volume the files you

want saved, delete from the system volume those you no longer

need (that is, all the SUM files).

11-18

o

Running a MACRO-11 Assembly Language Program

Long Command Format

+DELETE/NDQUERYGED
Files? SUM,»ED

Short Command Format

+DELETE/NOQUERY SUM, @D

Notice that the /NOQUERY option suppresses confirmation

when wildcard construction is used.

Finally, obtain an up-to-date directory listing of your storage

volume so that you can see its current status.

Long and Short Command Formats

,DIRECTORY VOL:@D

08-Jan-83

SUM +5AV 2 08-Jan-B3 SUM +0BJ 1 08-Jan-B83

EXAMP FOR 2 26-Aud-82 EXAMP .MAC 3 26-Aug-82

GRAPH .FOR 2 08B-Jan-83 GRAPH .LST 8 08-Jan-83

GRAPH ,0BJ 18 08-Jan-83 GRAPH ,8AV 21 08-Jan-83

SUM +MAC 3 08-Jan-83 MATCH .BAS 3 08-Jan-83

10 Filess B1 BlocKs

4701 Free blockKs

This completes the MACRO-11 demonstration. Continue now

to Chapter 12 to learn more about the link operation.

PDP-11 MACRO-11 Language Reference Manual (AA-5075C-TC). Maynard,

Mass.: Digital Equipment Corporation, 1983.

A reference manual for the PDP-11 programmer using the MACRO-11
assembly language.

PDP-11 Peripherals Handbook. Maynard, Mass.: Digital Equipment Corpora-
tion, 1981-82.

A technical description of the PDP-11 peripheral devices, including nec-
essary programming information.

PDP-11 Processor Handbook. Maynard, Mass.: Digital Equipment Corpora-
tion, 1981.

A technical description of the various PDP-11 processors, including
complete information concerning the PDP-11 instruction set.

PDP-11 Programming Card. Maynard, Mass.: Digital Equipment Corpora-
tion, 1975.

A pocket-sized folding card summary of PDP-11 machine instructions

used by the various PDP-11 assembly language processors.

PDP-11 Software Handbook (EB~21759-20). Maynard, Mass.: Digital Equip-

ment Corporation, 1982-83.

A general overview and introduction to available PDP-11 software, op-

eration systems, and language processors.

11-19

REFERENCES

Running a MACRO-11 Assembly Language Program

RT-11 Programmer’s Reference Manual (AA-H378B-TC). Maynard, Mass.:
Digital Equipment Corporation, 1983.

An RT-11 system-specific programming manual for the MACRO-11
programmer.

RT-11 System User’s Guide (AA-5279C-TC). Maynard, Mass.: Digital Equip-
ment Corporation, 1983.

A guide to the use of the RT-11 operating system.

RT-11 System Utilities Manual (AA-M239A-TC). Maynard, Mass.: Digital
Equipment Corporation, 1983.

A guide to the use of the RT-11 System Utilities.

11-20

CHAPTER 12

LINKING OBJECT PROGRAMS

Programs that you write in the MACRO-11 and FORTRAN IV

programming languages require additional processing after

their conversion to object format. Before you can run these pro-

grams on the system, you must link them. The link operation:

¢ Joins together the object modules that use a symbol with the

object module that defines it.

¢ Relocates individual object modules as necessary and assigns

absolute (permanent) memory addresses; it can also define an

overlay structure.

® Produces a load module and an optional load map (Figure

12-1).

OBJECT N LOAD

MODULE(S) - LINK —"1 MODULE

LOAD MAP

(OPTIONAL)

Figure 12-1 Link Functions

Program linking gives you the advantage of a modular ap-

proach to programming. You can create an entire program as a

series of smaller, independent subprograms. One of these is

written as the main, or controlling, program, and the rest as

subordinate subprograms and subroutines. You use a language

processor to translate each part of the program into an object

module. Then you use the linker to join all the object modules

together into a complete, functioning unit.

Modular programming makes program creation and debugging

easier. For example, several programmers can simultaneously

work on a single program, each creating a portion of it. The

individual portions, or subprograms, can be processed and

linked with test programs and debugged for logic errors sepa-

rately. Then all the object modules can be joined together to

form a complete program that can be tested as a whole. If errors

occur at this stage, only those object modules with errors need

be debugged and changed.

12-1

Linking Object Programs

RESOLVING

SYMBOLIC AND

LIBRARY

REFERENCES

In addition, modular programming allows you to make use of

library files. These are files containing subprograms and sub-

routines that have been debugged. After you join library files

with your program at link-time, their routines can be used by

your program as needed.

The linker reads through all the object modules that you indi-

cate as input to the LINK command. It gathers and evaluates

information (provided to the modules by the language proc-

essor) that is necessary for program linking. For each input

module, this information includes the object code, information

needed for relocation, the relative address of the first instruc-

tion, the global symbols used, and the absolute length of each

program and program section.

One of the linker’s first functions is to resolve all user-defined

symbolic references and library references in the joined

routines. There are two types of user-defined symbols — in-

ternal symbols and global symbols.

Internal symbols are limited to the object module in which they

appear; thus, they cannot be referenced from or defined in any

other module. A program containing only internal symbolic

references — like those in the demonstration program in

Chapter 11 — is complete in itself and does not need to be

joined with any other object programs at link-time. Thus, in-

ternal symbols are not resolved at link-time because they have

already been resolved by the language processor.

Global symbols, on the other hand, are the key to modular pro-

gramming. Global symbols provide the communication between

object modules. Such symbols may be symbolic labels to instruc-

tions, symbolic labels to data, or symbols that are equated to a

value or constant. Global symbols are defined in one object

module and referenced from other object modules that have

been separately assembled or compiled. Such symbols must be

designated as global in the source code. The following segment

of MACRO-11 assembly language code illustrates the use of

global symbols:

+MAIN. MACRO VO5.00 SATURDAY CB-JAN-83 0B8:42 PAGE 1

SGLOBL AC/VALUE SDECLARE A, Cr AND VALUE

iAS GLOBAL SYMBOLS

060000 013500 A MOU B(RS}I+.RO 3CLOBAL SYMBOL A IS DEFINED

iHERE AND CAN BE REFERENCED

IFROM OTHER MODULES. PROBABLY

iBY A SUBROUTINE CALL

000002 016701 Q00016 Mav LOCAL 4RI FLDCAL 1S AN INTERNAL SYMBOL

IDEFINED ANGC REFERENCED ONLY

a8 IHITHIN THIS ®ODULE

Al 10 000006 Q00000 000007 ©Q0000G usR PC.C $CALL TO GLOBAL ROUTINE C»

11 iDEFINEQ IN ANOTHER MODULE

12 00014 013501 L1019 (RS} +,R1

13 000016 005003 CLR R3

1a 000020 000207 RYS PC

15 000022 000011 VALUE «WORD 11 FGLOBAL SYMBOL VRLUE IS USED YO

18 FREFERENCE THIS DATA LOCATION

17 oodoza 177777 LOCAL: WORD 177777 FINTERNAL SYMBOL USED FOR DATA

1B 000001 +END

©

N

D
A
D

W

N

-

12-2

While internal symbolic references, such as LOCAL in the ex-

ample, can be resolved by the assembler or compiler within the

single program unit, global references, such as C, cannot. They

require other object modules. During translation, the language

processor notes in the object module those symbols that are

global. During linking, the linker keeps track of the global ref-

erences and definitions found in all the object modules. As

linking proceeds, it makes the appropriate correlations and

modifies instructions or data as necessary. After linking, the

linker prints on the terminal a list of all symbolic references

that were not resolved (undefined globals), either because of a

programming error or because all necessary object modules

were not included in the linking process.

References to library files also involve the use of global sym-

bols. You access the routines in a library by naming a routine

as a global symbol in the source code of your program. You then

link your program with the appropriate library file, and the

linker resolves the library references just as it does any global

symbol. Library usage is discussed in greater detail in Chapter

13.

A second important function of the linker is to “fix” the relative

memory addresses so that they are absolute.' The object module

represents translated source instructions that have been as-

signed memory addresses relative to a base address of 0.

Look back at the assembly listing in Chapter 11. Note the

second column; these addresses are relative to a base address of

0. Thus the first instruction is assembled at relative address 0,

the second at relative address 6, and so on. A program cannot

actually be stored and run in memory using locations relative

to address 0, however, because system information is already

stored in some of these locations. For example, the RT-11 oper-

ating system uses byte addresses 40 through 57 to store infor-

mation about the program currently executing. In addition, the

RT-11 operating system uses locations in the upper range of

memory for storing the resident monitor. Thus, the linker must

assign memory addresses to your program that are not already

in use or that will not be used during program execution. It

must, therefore, assign absolute memory addresses to the rela-

tive addresses assigned by the language processor.

The linker normally starts assigning memory addresses at ad-

dress 1000, since this begins a large section of free memory

IFORTRAN IV and BASIC-11 users who have not performed the demonstra-
tion in Chapter 11 may wish to read the section in that chapter entitled The

MACRO-11 Language Processor. That section explains the concept of con-

verting and storing instructions in computer memory.

12-3

Linking Object Programs

PROGRAM

RELOCATION

AND ADDRESS

ASSIGNMENT

Linking Object Programs

ABSOLUTE AND

RELOCATABLE

PROGRAM SECTIONS

space. So, to obtain the actual addresses used for program

loading, you must add the relocation constant 1000 to each rela-

tive address shown in the assembly listing.

A conflict arises when several individually processed object

modules are linked together. The linker cannot assign memory

addresses starting at 1000 to every module, since address as-

signments of one would then override those of another. How-

ever, part of the information that the language processor calcu-

lates and passes to the linker is the size of each program section

in each module. So the linker simply adds this size into the

relocation constant for each module and assigns higher ad-

dresses, appropriately modifying the relative location of all in-

structions and data as necessary to account for the relocation of

each individual module. Figure 12-2 illustrates the relocation

that must occur to accommodate object modules linked

together.!

o 0

372 {octal)
PROG bytes RESERVED

370
1000

0 I PROG
42 (octal)

SUBONE bytes 1370

40
1372

SUBONE

1432

Y 1434

170 {octal)
SUBTWO bytes SUBTWO

1624

Relative addresses of three

assembied/compiled programs |

Absolute addresses of three

linked programs

k
e

v

s

s

Figure 12-2 Object Module Relocation

Just as global symbols allow you to create an entire program,

using several individual object modules, program sections allow

you to create an object module as a series of individual sections.

The advantages gained through the sectioning of programs re-

late primarily to control of memory allocation, program modu-

1A load map for this relocation example is shown later in the chapter.

124

larity, and more effective partitioning of memory. The linker

processes the program section information in the object mod-

ules as directions on how to create the executable program

image.

The FORTRAN IV and MACRO-11 language processors insert

program sectioning information into the object module. The

FORTRAN IV language processor does this automatically when

program sectioning is implied by the source language state-

ments in a user program. For example, FUNCTION, SUBROU-

TINE, and COMMON statements result in the production of

program section directives. In MACRO-11 assembly language,

you are responsible for explicitly directing the assembler to

output program section information for the linker. You do this

through the .PSECT (or .CSECT and .ASECT) MACRO-11 as-

sembly language statement.

Some of the basic functions associated with program sections

are:

1. Instructions or data can be placed in absolute locations in

memory. The named absolute program section (. ABS.) al-

lows you to instruct the linker as to exactly where to place

program code or data. Declaring a section as part of the

absolute program section instructs the assembler or com-

piler to use the internal value of the program counter as the

physical memory address to be assigned after linking. This

section is processed relative to absolute memory address 0

and is not relocated at link time.

2. Named relocatable program sections are used to group data

or instructions into logical portions of memory. The FOR-

TRAN IV COMMON statement invokes this construct to

allow access to named data areas from many separate

routines. Declaring a section as part of a named relocatable

program section causes the section to be processed at relo-

catable address 0. Such sections are relocated by the linker.

3. If you do not care about having exact control over where a

portion (section) of a program will be placed in memory, use

the blank program section — a special program section that

the linker treats as relocatable. The linker decides where to

place this program section in the loadable memory image.

The blank program section is the default for a MACRO-11

source program and remains in effect until an explicit pro-

gram section is identified (the program example in Chapter

11 used the blank program section).

4. A program section can be identified as an instruction sec-

tion. The linker, using this information, can provide auto-

matic loading of declared overlay code when needed by the

executing program (this will be discussed in more detail).

12-5

Linking Object Programs

Linking Object Programs

The Overlay Feature

The language processor, then, actually maintains several pro-

gram counters — one for the absolute program section, one for

the unnamed relocatable program section, and as many as

needed (maximum is 254) for named relocatable program sec-

tions. The assembled example that follows helps explain this

concept.

+MAIN, NMACRO V05.00 SATURDAY OB-JAN-B3 08:04 PAGE 1

iUNNAMED RELDCATABLE PROGRAM1

2 iSECYION IS DECLARED {BY DEFALLT)

3 F(".PSECT" 15 ASSUMED}

a 000000 005000 BTARY: CLR RO

5 000002 012701 000034 naov #BEG /R1

& 000006 0B2100 LOOP: ADD (R1)}+ RO

7 000010 022701 000044 cne SBEG+10,RI

8 000014 100374 BPL Loop

89 000018 012767 002000 000020 nov *2000.A00R

10 000024 605003 CLR R3

1 000000 «FSECT CLEAR INAMED RELOCATABLE PROUGRAM

12 000000 012703 000100 nov #100+R3 FSECTION IS DECLARED (VIA “.PSECT NAME")

13 000004 012701 ©o000aa noy #RADDR R}

14 000010 005021 AGAIN: CLR {(RL)+

15 000012 005303 DEC R3

16 000014 001278 BNE AGRIN

17 000000 +ASECTY FABSOLUTE PROGRAM SECTION

18 000042 82 IDECLARED (VIA “.ABECT")

18 60004z 001000 +®ORD 1000 3THE VALUE 1000 MILL BE

zc ISTORED IN ABSOLUTE MEMORY LOCATIN 42

21 iWHEN THE PROCRANM 1S EXECHTED

22 000026 +PBECT 3IBACK TO UNNAMED RELOCATABLE

23 000026 008267 000012 INC ADDR iPROGRAM SECTION

24 000032 000000 HALT

25 000034 000001 000002 000002 BEG: <WORD 1:243.4

000042 000004

26 000044 000000 ADDR: +HORD O

27 SNOTE THAT YOU CAN WRITE LANGUAGE STATEMENTS THAT WILL BE LOADED

28 SCONTIGUOUSLY IN MEMDRY., BUT DO MOY NEEESSARILY DCCUR CONTIGUOUSLY

29 FIN THE SOURCE PROGRAM (1.E,,» THE CODE AT LINES 1-10 AND 22-29)

3e 0006001 +END

Since the system does not know at assembly (or compile) time

into which actual memory locations each relocatable section

goes, all references among sections (see line 18) are relative to

the base of the section. This information is then passed to the

linker so that it can make the appropriate adjustments at link-

time.

The RT-11 linker is also capable of handling the special reloca-

tion and address assignments that are required whenever you

indicate that an overlay structure is needed. An overlay struc-

ture is necessary when you write a program that is too large to

fit in the available memory of your system. You write the pro-

gram in discrete parts (some programming restrictions must be

observed) so that your program can subsequently be executed in

parts. Some of these parts, or segments, are allowed to share

memory with other segments, thus reducing the overall

memory requirements of the program. One segment of the pro-

gram is called the root segment and must remain in memory at

all times. The root segment contains the necessary information

for use by the other segments of the program, called overlay

segments. Overlay segments are stored on storage volumes and

brought into memory as needed. The purpose of the overlay

structure is for parts of the program to share the available

memory in such a way that when one part is complete, it is

overlaid (and therefore erased) by another.

You indicate how to plan to overlay your program by using the

/PROMPT option in the LINK command line. The linker then

12-6

creates a load module that contains the necessary information

for loading the appropriate segments as needed during execu-

tion. The RT-11 System Ultilities Manual explains the overlay

feature in more detail. You need not specify an overlay struc-

ture for the examples demonstrated in this chapter.

The load module is the result of the linking processes described

so far: joining object modules, resolving symbolic and library

references, relocating object modules, assigning absolute ad-

dresses, and creating an overlay structure if required. The load

map is essentially a synopsis of the load module — that is, what

memory looks like when the program is loaded and ready to be

executed.

In Chapters 9 and 11, you produced load modules, but you did

not request load maps. You obtain a load map by using the

/MAP option with the LINK (or EXECUTE) command. At this

time, relink the FORTRAN IV or MACRO-11 object module

that you stored on VOL: and use the /MAP option to produce a

load map.! The load map is created as a file on the system

volume, which is the default storage volume for input/output

operations. The load map has the name of the first input

module and a file type of MAP.

Long Command Format

MACRO-11 object module:

+ L INKGED

Files? VOL:SUM/MAPGRD

FORTRAN IV object module, if FORLIB is not included in

SYSLIB:

+LINKG@ED

Files? SYSLIB.FORLIB VOL:GRAPH/MAPGEED

‘FORTRAN IV object module, if FORLIB is included in SYSLIB:

+LINKGEED

Files? VOL:GRAPH/MAPEED

Short Command Format

MACRO-11 object module:

+LINK VOL:SUM/MAPED

1FORTRAN IV users who followed the special instructions in Appendix B for
loading the LINK volume should check that this volume is loaded in device
unit 0. FORTRAN IV users who have a special FORTRAN IV language vol-
ume, but not a LINK volume, should make sure that the FORTRAN IV vol-

ume is now loaded in device unit 0.

12-7

Linking Object Programs

PRODUCING

A LOAD MODULE

AND A LOAD MAP

/MAP

Linking Object Programs

FORTRAN IV object module, if FORLIB is not included in

SYSLIB:

+LINK SYSLIB,FORLIB,VOL:GRAPH/MAPEED

FORTRAN IV object module, if FORLIB is included in SYSLIB:

+LINK VOL:GRAPH/MAPGRED

Now list the .MAP file on either the line printer or terminal,

choosing the appropriate command:

Long Command Format

(Line printer) (Terminal)

MACRO-11 object module:

+PRINTED » TYPEGED —
Files? SUM.MAPED Files? SUM.MAPED

FORTRAN IV object module:

+PRINTGEED + TYPEGRED
Files? GRAPH.MAPED Files? GRAPH.MAPED

Short Command Format
e’

(Line printer) (Terminal)

MACRO-11 object module:

+PRINT SUM.MAPGD +TYPE SUM.MAPGE)

FORTRAN IV object module:

+PRINT GRAPH.MAPGD +TYPE GRAPH.MAPGEE _

For your convenience, both maps are provided here. In addition,

a load map of the relocation example used in Figure 12-2 is also

provided.

RT-11 LINK 408,00 toad Mar Saturdaw 08-Jan-83 10100 Pade 1

SUM + 8AV Title! SUM.MA Ident!

Section Addr Size Global Value Global Value Global Value

« ARS, 000000 001000 = 204, words (RW»IsGBL,ARS,OVUR)

) 001000 000372 = 125, words (RWrsI/LCLsRELCON)

Transfer address = 001000, High limit = 001370 = 380, words

RT~11 LINK V08.00 Load Mar Saturdaw 08-Jan-83 10111 Pade 1

SYSLIR,SAV Titlet MAIN., Ident! FORVO2

Section Addr Size Global Value Global Value Global Value

+« ABS., 000000 001000 = 236, words (RWsIsGBLARSyQUR)

$USRSW 000000 $RF2A1 000000 $HRIWR 000000

VIR 000000 $NLCHN 000004 $8YSV$s 000012

$WASIZ 000152 $LRECL 000210 $TRACE 004737 e

12-8

Linking Object Programs

[228-1 39 001000 017722 = 4073, words (RWsIs{.CLYRELsCON)

$$0TSI 001000 S$CUTIF 001000 $CVUTIC 001014

$CVUTID 001014 (CCIS 001026 CDI$ 001026

$IC 001024 $ID 001026 CFI¢ 001042

$IR 001042 EXF 0011246 ADFSIS 001466

ADF$PS 001474 SUF$FS 001500 SUF$MS 001504

ADF$MS 0015186 SUF$IS 001526 $ADDF 001534

$SUBF 001550 SUF$SS 001542 $SER 001562

ARF$58 00135446 $ADR 001566 ALE 001602

DIFSFS 002226 DIFSMS 002232 DIF$IS 002242

$DIVF 002250 DIF$SS 002262 $DOVR 002262

MUF$FS 002550 MUF$SMS 002554 MUF$IS 002564

SMULF 002572 MUF$SS 002604 $MLR 0024604

$0TI 003142 $3%0TI 003144 $SETOF 003354

$$SET 005026 SQRT 005322 STR$L Q05516

STK¢1 005522 STK$F 0055246 IOR$ Q05536

ANDS 005542 EQVS 005550 XOR$ 005552

NMI$iM 000546 NMIS1II 005600 ELES$ 005610

BEQS 005612 BGTS 005620 ERGE$ Q05622

BRAS 005424 BNES 0054630 BLTS Q05632

CAls 005642 CALS 005650 END$ 005700

ERR$ 005712 $END 005724 $ERR Q05742

SOPNER 005764 $CHKER 004022 $I0EXI 006046

$EOL 006114 EOLS 006116 EXIT 006232

MOF$SS 0062346 MOFSMS 006250 MOF$FS 0046262

MOF$SM 004266 MOF$SF 006276 MOF$MM 006302

MOF$MA 006314 MOF$SMF 006322 MOFSFM 006330

MOF$FPA 006334 MOF$FF 006340 HMOF$SRS 006344

MOF$RM 006352 MOF$RA 006342 MOFSRF 006386

NGD$S 006372 NGF$S 006372 NGDSM 0046404

NGF $M 006404 NGDOSF 006420 NGFS$F 006420

NGD$A 006424 NGF$A 006424 ALI$SS 006430

ADI$SA 006434 ADISSM 006440 ADRISIS 0046444

ADISIA 006450 ADISIM 006454 ADISMS 006440

ADI$MA 008464 ADISMM 008470 CMI$SS 006474

CMI$SI 006500 CMI$SM 008504 CMI$IS 006510

CHMI$II 006514 CMI$IM 004520 CMISMS 006524

CMISMI 006530 CMISMM 006534 IFW$ 006540

$IFW 006544 $$IFW 006550 IFWSS Q06606

MOI$SRS 006656 MOLSRS 006656 HMOISRM 006662

MOISRF 006866 HMHOISRA 006670 MOISSS 0084674

MOL$SS 006674 MOISSM 004700 MOISSA 006704

MOIS$IS 0046710 MOL$IS 006710 RELS 006710

HOISIM 006714 MOISIA 004720 MOISMS 008724

MOISMM 006730 MOISMA 0046734 MOIS0S 006740

MOISOM 004744 MOISOA 006750 MOI$1S 006754

MOI$1M 006762 HOIS1A 006770 ICISS 006776

ICIsH 007002 ICISP 007006 ICISA 007010

DCIsS 007014 DCISM 007020 DCISF 007024

DCISA 007026 IDINT 007032 INT 007032

MOISIF 007060 MOISSP 007042 MOISFF 007070

RT-11 LINK V08.00 Load Mar Saturdaw 08-Jan-83 10:11 Fade 2

SYSLIB.SAV Title! JHMAIN. Ident! FORVO2

MOISMP 007074 MOISFS 007104 MOISPFM 007112

MOISPA 007120 MOISOP 007126 MOI$iP 007134

ISNS 007144 SISNTR 007150 LSNS$ 007164

SLSNTR 007170 SUI$SS 007324 SUIs$SA 007330

SUISSM 007334 SUISIS 007340 SUISIA 007344

SUIS$IM 007350 SUISMS 007354 SUISMA 007360

SUIsMM 007364 MOLSSM 007370 MOL$SA 007374

MOLS$MS 007400 MOLSMM 007410 MOLSMA 007414

MOL$SF 007420 MOLSFF 007424 MOLSMF 007432

HMOLSFM 007442 HMOLS$FS 007450 MOLSPA 007454

MOLSIM 007462 MOLSIA 007470 MOL$IF 007476

LLES 007506 LEQS 007510 LGTS 007516

LGES 007520 LNES 007530 LLTS 007532

TSL$S 0075386 TSLM 007542 TSL$I1 007546

TSLSP 007554 MAXO 007562 MINO 007606

RETSL 007632 RETSF 007636 RET$I 007644

RETS 0076446 $OTIS 007702 $$0TIS 007704

TVLS 010024 $TUL 010024 TUF$ 010032

$TVUF 010032 TVD$ 010040 $TVD 010040
TGRS 010046 $TVUR 0100446 TUFPS$ 010054

$TUP 010054 TVI$ 010042 $TVI Q10062

SALSIM 010216 SAL$SSM 010220 SVLSIM 0103224

SUL$SM 010226 SALs$MM 010234 SULSMM 010240

SALS$IF 010244 SALSSF 010244 SULSIF 010252

SVULS$SF 010254 SALSHP 0102462 SUVLSMF 0102646

$CUTFB 010272 $CVUTFI 010272 $CYTCB 010306

$CVUTCI 010306 $CVUTDE 010306 $CVYTDI 010306

cIics 010320 CIDs 010320 CLCs 010320

CLD$ 010320 DI 010320 CIFs 010330

CLFs 010330 $RI 010330 CILs 010442

CLIs 0104446 SINITI 010450 SCLOSE 010566

$ERRTE 011344 $ERRS 011451 S$FCHNL 015212

12-9

Linking Object Programs

$FI0 016054 $$FI0 0160460 $FUTRE 017224

$FUTBL. 0178532 $GETBL 017742 $EOFIL 020124

$EOF2 020142 SAVRGS 0201462 THRID$ 020340

$8TES 020342 STF$ 020350 4STF 020350

FOOs 020354 $EXIT 020374 $UWAIT 020520

SURINT 020562 SDUMFL 020574

0TS ¢F 020722 Q00054 = 22, words (RWsDyGELYREL yQUR)

SYS$I 020776 000244 = 82, words (RWsI.LCL RELCON)

LEN 020776 REFEAT 021014 SCOFY 021146

USER$I 021242 000000 = 0, words (RWsILCL RELyCON)

$CODE 021242 0013146 = 359. words (RWsT«LCL,REL,CONY

$$0TSC 021242 FUN 022120 FPUTSTR 022264

0TS$0 022560 001036 it 271, words (RWsIyLCLYyRELyCON)

$30TSO 022560 $OFEN 022560

SYS$0 023616 000000 = 0, words (RWsI+LCL REL,CON)

sDATAF 0234616 0001046 = 35, words (RUsDeLCLREL CON)

0TSsn 023724 000006 = 3. words (RW-DyLCL,RELyCON)

NHCLN$ 023730

aT15%S 023732 000002 = 1, words (RWsDyLCL,RELyCON)

$A0TS Q23732

SYS$S 023734 000004 = 2. words (RUsDLCLRELsCON)

$SYSLE 023734 $LOCK 023734 $CRASH 023737

$DATA 023740 000536 = 175, words (RWsIyLCLyREL yCON)

USERSD 024476 000000 = 0. words (RWsDeLCLREL,CTOND

«$4%%, 0244746 000000 = O, words (RWsDyGRLyREL yOVR)

RT-11 LINK v08,00 Load Mas Saturdaw 08-Jarn-83 10111 Fadge 3

SYSLIB.S5AV Title: MAIN., Ident! FORVO2

Transfer address = 021242y Hiagh limit = 024474 = %5278, words

RT-11 LINK VO08.00 Load Mar Saturday 08-Jan-83 1016 Fade 1

TEST .54V Title: MAIN. Ident:

Section Addr Sire Global Value Global Vaslue Glohal Value

+ ABS., 000000 001000 = 2564. words (RWy I»GELARS»OVUR)

001000 000626 = 203, words (RWsIsLCLsRELYCON)

FROG 001000 SUBONE 001372 SUBTWO 001434

Transfer address = 001000, High limit = 001624 = 458, worids

The second line has the name and file type of the load module

created. Next, the absolute section and each named and un-

named section are listed under the SECTION column. To the

right are abbreviated codes designating whether the section

contains Instructions or Data, is Read/Write or Read Only, is a

Local or Global section, is Relocatable or Absolute, is Concat-

enated or Overlaid. Below this falls a listing of all the global

symbols (GLOBAL) and their values (VALUE). Finally, at the

end of the map is the transfer address where the program actu-

ally starts when executed, followed by the high limit — the

total number of bytes used by all the individual program sec-

tions.

Look first at the MACRO-11 load map. The default absolute

section starts at absolute location 0; its size is 1000 bytes. Thus,

it extends from absolute memory location 0 through absolute

memory location 777. The unnamed program section (there

were no named program sections in this program) starts at ab-

solute 1000; its size is 372 bytes. Thus it extends from absolute

location 1000 to absolute location 1370. The high limit of this

program (total bytes) is therefore 1370. Since this program is

not linked to any other object modules, there are no global sym-

bols and the rest of the map is blank.

Look now at the FORTRAN IV load map, remembering that it

reflects the appropriate expansions into machine language code

provided by the FORTRAN IV compiler. Again, the absolute

12-10

section extends from absolute 0 through absolute 777. Globals

listed in the absolute section show the global variable names

that the program uses as constants throughout the program.

The unnamed relocatable program section begins at absolute

location 1000. Some of the named relocatable sections that are

declared are OTSP, SYSI, and $CODE. Global symbols and

their respective addresses appear to the right of all sections.

The total number of bytes used is 24474, or 5278(decimal)

words.

The third load map is for the program illustrated in Figure

12-2. First, the map shows the absolute program section, la-

beled .ABS. It extends from location 0 through location 777.

Next, the map shows the unnamed program section, which be-

gins at location 1000 and is 1624 bytes long. This program sec-

tion consists of a main program, called PROG, and the sub-

routines SUBONE and SUBTWO that were linked with PROG.

Look again at Figure 12-2 to see how these routines fit into

memory. The transfer, or starting, address is 1000, and the

total number of bytes the program occupies is 1624, or 458(dec-

imal) words.

Load maps are most helpful when used in debugging to locate

and correct assembly language programming errors. Load maps

are not generally obtained or used for FORTRAN IV programs,

except to determine program size. In Chapter 14 you will see

how a load map is used to debug the one remaining error in the

MACRO-11 demonstration program.

LINK

Link individual object modules together to form a complete

program and to produce a load module.

LINK/MAP

Link individual object modules, and produce a load map

showing all address assignments made during linking.

NOTE

FORTRAN |V users who followed the special instruc-

tions in Appendix B to load the language or LINK volume

should now stop the system, unioad that volume, load

the main system volume, and rebootstrap the system

before going on to Chapter 13.

RT-11 System Utilities Manual (AA-M239A~TC). Maynard, Mass.: Digital

Equipment Corporation, 1983.

A guide to the use of the RT-11 system utilities.

12-11

Linking Object Programs

SUMMARY:

COMMANDS

FOR LINKING

PROGRAMS

REFERENCE

CHAPTER 13

CONSTRUCTING LIBRARY FILES

A library is a specially constructed file consisting of one or

more programming routines. Generally, these routines provide

services that you are apt to need repeatedly, or services that are

related and so have been gathered together for ease in use and

storage. You use the routines in a library by joining the library

file with your source program. Usually this occurs at link-time:

but in the case of assembly language programs, it may also

occur at assembly-time.

The RT-11 operating system provides several library files;

SYSLIB and VTLIB for example. These libraries supply the

monitor services, input and output routines, conversion

routines, and other programming services that user programs

may need. You can create other library files yourself. Thus you

can construct libraries that contain routines specific to your

programming needs or to the combined needs of those using

your RT-11 system.

There are two kinds of library files — macro libraries and ob-

ject libraries.

Macro libraries, such as SYSMAC.SML, are used by

MACRO-11 source programs at assembly-time and consist en-

tirely of macros. A macro is described in Chapter 11 as a recur-

ring sequence of coding instructions, which, when defined in a

.MACRO statement, can then be called and used anywhere in

your program. A macro library is merely several macro defini-

tions gathered together into a single file. To use the macros in a

macro library, you simply name those macros you plan to use in

a .MCALL statement. When the assembler encounters the

.MCALL statement during processing, it searches the appropri-

ate macro library (SYSMAC.SML is default) for the definitions.

It takes the definitions from the library and inserts them in a

special table called the macro symbol table where they become

available for use during assembly.

Object libraries, such as SYSLIB, are used by assembled

MACRO-11 source programs and/or by compiled FORTRAN IV

source programs at link-time. These libraries consist of object

modules that contain global routines; such routines have been

defined with global entry points and then named as global sym-

bols in the source program. During the link operation, the

linker searches the object libraries to determine if they provide

13-1

KINDS OF

LIBRARY FILES

Macro Libraries

Object Libraries

Constructing Library Files

CREATING AND

MAINTAINING

A LIBRARY FILE

Creating Object

Library Input Files

definitions for any undefined globals. If the linker finds defini-
tions, it takes those object modules containing the definition

from the library and includes them in the link.

A special table, called the global symbol table, lists each global

in a given object library. You can print this list on the terminal

or the line printer and thus keep track of an object library’s

current contents.

You create a library file by combining several macro routines,

or several object modules, into a single larger file using the

monitor LIBRARY command.

To build a macro library, first use the editor to create an ASCII

text file that contains all the macro definitions. Then process

this file using the LIBRARY command in combination with its
/MACRO option. To update a macro library (that is, to add or

delete macro definitions), simply edit the ASCII text file and
then reprocess the file with the LIBRARY command.

To build an object library, use the editor to create an ASCII text
file. The file contains the routines and functions written as

complete program segments in either the MACRO-11 assembly

language or the FORTRAN IV programming language. Then
process the file, producing an object module. Next, use the LI-

BRARY command in combination with its /CREATE option.
Once the library file is created, update it (add and delete

routines) by means of various other options to the LIBRARY

command.

In the following exercises, you create an object library that con-

tains three input object modules. The routines in two of these
modules can be used by both MACRO-11 and FORTRAN IV

programs; the routine in the third module can be used only by

FORTRAN 1V programs.

To build the library file, first use the editor to create the three

ASCII text files. Then convert the ASCII text files to object
format. Finally, process the object files with the LIBRARY com-

mand. Once you create the library files, use LIBRARY com-
mand operations and options to add and delete modules and

globals and to obtain a listing of the library file contents.

The first step in building an object library is to prepare the
source code of the routines and functions that you choose to

include in the library. Use the editor to create the following

three text files, calling them FIRST.MAC, SECOND.MAC, and
THIRD.FOR, respectively. FORTRAN IV users should create
all three files; MACRO-11 users (who do not use FORTRAN

IV) should create only the first two files.

13-2

FIRST.MAC

«TITLE comMp

+MCALL +PRINT

H I=LEN(A)}

+GLOBL LEN

LEN: TST (R3)+ iGKIP # OF ARGS

MOV BRS5,RO SGET STRING POINTER

1%: TSTB (RO} + §FIND END OF STRING

BNE 1% iLOOP UNTIL NULL BYTE

DEC RO iBACK UP

suB EBRS RO SCALC # OF CHARS IN STRING

RTS FC

i CALL PRINTC(ISTRNG)

+GLOBL PRINT

PRINT: MOV Z2(R3) sRO $ADDR OF ISTRNG

+«PRINT 3 PRINT

RTS PC $AND RETURN

+END

SECOND.MAC

+TITLE ITTOUR

i I=ITTOUR(CICHAR)

3 I=0 CHARACTER HAS BEEN OUTPUT

H =1 RING BUFFER IS FULL

+MCALL +TTOUTR

+GLOBL ITTOUR

ITTOUR:MOUB BZ(RS5) RO iGET CHARACTER

+TTOUTR i.TTOUTR

BIC RO RO sCLEAR ERROR FLAG

ADC RO

RTS PC iRETURN

+END

THIRD.FOR

C CALL PUTSTR(LUNAREA,CC)

SUBROUTINE PUTSTR(LUNAREA,CC)

LOGICAL#*1 AREA(230).CC

IF(CC) GOTO 1

WRITE (LUN.99)(AREA(I) »I=1,LEN(AREA))

RETURN

i WRITE (LUN,S9)CC,(AREA(I) »I=1+LENC(AREA))

99 FORMAT (250A1)

END

The routines in these files are representative of the kinds of

services generally provided in a library file. They are, in fact,

taken from the RT-11 system subroutine library, SYSLIB.

13-3

Constructing Library Files

Constructing Library Files

FIRST.MAC contains two global routines, LEN and PRINT.
The LEN routine returns the number of characters in a string.
PRINT outputs an ASCII string terminated with a zero byte to
the terminal (it is the FORTRAN IV equivalent of the system
macro .PRINT, used in the demonstration program in Chapter

11). SECOND.MAC contains one global routine, ITTOUR,
which transfers a character to the console terminal.
THIRD.FOR also contains one global routine, PUTSTR. This
routine can be used only by FORTRAN IV programs and writes
a variable-length character string on a specified FORTRAN IV
logical unit (see GRAPH example).

Once you create these text files, the next step is to convert them
from ASCII format to object format. Assemble or compile the
text files as appropriate, first assembling FIRST.MAC and ob-
taining an object module (a listing is not necessary). FORTRAN

IV users who are not familiar with the assembly process simply
type the MACRO commands as shown.

Long Command Format

+ MACROGED

Files? FIRSTEED

Short Command Format

.MACRO FIRST®D

The command creates an object module called FIRST.OBJ on
the system volume. If errors occur, the assembler prints a mes-
sage on the terminal, indicating the number of errors encoun-
tered during assembly. No errors should occur.

In the same way, assemble SECOND.MAC. Again, no errors

should occur.

Long Command Format

+ MACROGED

Files? SECONDGED

Short Command Format

+MACRO SECONDGE

If any errors occur during the assembly operations, you have
typed the source files incorrectly. Find and correct the typing

errors, and reassemble.

If you are a FORTRAN IV user, continue by compiling
THIRD.FOR.

13-4

e

NOTE

If in Chapter 9 you needed to load the special

FORTRAN/BASIC language volume, you must again

load that volume before you can compile THIRD.FOR.

Read Appendix B, Substituting Volumes During Opera-

tions, before continuing.

Long Command Format

+FORTRANGD

Files? THIRDGD

PUTSTR

Short Command Format

+FORTRAN THIRDGD

PUTSTR

Notice that the compiler prints the name of the global

(PUTSTR) generated. If any errors occur during the compile

operation, you have typed the source file incorrectly. Find and

correct the typing errrors, and recompile.

Once you have produced the object modules, you are ready to

build the object library file.

Use the LIBRARY command in combination with its /CREATE

option to construct a library file. You must indicate in the com-

mand the name of the library file and the names of the input

object modules. Call the library file LIBRA and specify as input

the two object modules, FIRST and SECOND. The LIBRARY

command assumes that the input modules have the .OBJ file

type (unless you indicate otherwise) and automatically assigns

.OBJ to the library file.

Long Command Format

+LIBRARY/CREATEGD

Library? LIBRAGD

Files ? FIRST,SECONDGD

Short Command Format

LLIBRARY/CREATE LIBRA FIRST ,SECONDED

Once the CREATE operation is complete, obtain a listing of the

library file’s contents, using the LIBRARY command with its

LIST operation. The line printer is the assumed output device

for the list file, although you may indicate a different output

device by adding the two-letter device mnemonic to the LIST

option that follows.

13-5

Constructing Library Files

Building the

Object Library

LIBRARY/

CREATE

Constructing Library Files

LIBRARY/LIST

Updating the

Object Library

LIBRARY/

INSERT

Long Command Format

(Line printer) (Terminal)

+LIBRARY/LISTED +LIBRARY/LIST:TT:6D

Library? LIBRAGD Library? LIBRAGD

Short Command Format

(Line printer) (Terminal)

+LIBRARY/LIST LIBRAGD +LIBRARY/LIST:TT: LIBRAGD

The listing produced shows the library file’s current contents.

This library has three entry points: LEN and PRINT in the first

module, and ITTOUR in the second module.

RT-11 LIBRARIAN V03,00 SAT B8-JAN-B83 11:03:28

DK:LIBRA.OBJ SAT B8-JAN-B83 10:59:43

MODULE GLOBALS GLOBALS GLOBALS

LEN PRINT

ITTOUR

Once you have created an object library, you use various LI-

BRARY command operations to update and maintain it by

adding and deleting modules and globals.

If you created the THIRD.OBJ object module, you can add it to

the library file using the INSERT option. If you did not create

this module, read through this section anyway; the command
steps apply to any object module you wish to insert.

Long Command Format

+LIBRARY/INSERTGEED

Librarvy? LIBRAGD

Files 7 THIRDGE

Short Command Format

+LIBRARY/INSERT LIBRA THIRDGD

This operation inserts the object module contained in the file
THIRD.OBJ, including all its globals, into the library file

LIBRA. Obtain a listing of the library contents, using the LIST

option, to verify that the new globals have been added. The

listing should look like this:

RT-11 LIBRARIAN V05.00 SAT B8-JAN-B83 11:05:1

DK:LIBRA.OBJ SAT B8-JAN-83 11:04:21

MODULE GLOBALS GLOBALS GLOBALS

LEN PRINT

ITTOUR

PUTSTR

13-6

This listing shows the complete library file containing the glo-

bals from all three modules.

You can remove individual globals by using the REMOVE op-

tion. For example, to remove the global ITTOUR, type:

Long Command Format

. LIBRARY/REMOVEGE

Library? LIBRAGD
Global? ITTOURGH
Global?@D

Short Command Format

+LIBRARY/REMOVE LIBRAGD

Global? ITTOURGED
Global?@D

The library file’s contents now look like this:

RT-11 LIBRARIAN V05,00 SAT B-JAN-B3 11:10:22

DK:LIBRA.0BJ SAT B-JAN-B3 11:10:05

MODULE GLOBALS GLOBALS GLOBALS

LEN PRINT

PUTSTR

These are some of the library maintenance operations that you

can perform by using the LIBRARY command. Other library

operations are available and are explained in the RT-11

System Utilities Manual.

LIBRARY/MACRO

Create a macro library.

LIBRARY/CREATE

Create an object library.

LIBRARY/INSERT

Insert object modules into the object library.

LIBRARY/LISTI:filespec]

List the current contents of an object library on the line

printer; [:filespec] is an optional output file and/or device.

LIBRARY/REMOVE

Remove globals from the object library.

Since all the object modules used in this chapter already exist

as modules within the provided system library SYSLIB, there is

no need to save them or the LIBRA library file. You can delete

these object modules and their source files from your system

13-7

Constructing Library Files

LIBRARY/

REMOVE

SUMMARY:

COMMANDS FOR

MAINTAINING

LIBRARY FILES

FILE MAINTENANCE

Constructing Library Files

REFERENCE

volume by using the DELETE command as follows (exclude

THIRD.* from the command line if you did not create this file):

Long Command Format

+DELETE/NOQUERYED

Files? FIRST.%*,SECOND,*,THIRD.* ,LIBRA.0BJED

Short Command Format

+DELETE/NOQUERY FIRST.*,8ECOND.#,THIRD.*,LIBRA.OBJED

FORTRAN IV users who performed the special instructions

given in Appendix B should also delete the THIRD files from

the storage volume.

Long Command Format

+DELETE/NOQUERYGE

Files? VUDL:THIRD.*RED

Short Command Format

+DELETE/NOOUERY VYOL:THIRD. *@D

RT-11 System Utilities Manual (AA-M239A~TC). Maynard, Mass.: Digital

Equipment Corporation, 1983.

A guide to the use of the RT-11 system utilities.

13-8

—

CHAPTER 14

DEBUGGING A USER PROGRAM

Debugging is the process of finding and fixing the programming

errors that almost every user program initially contains. From

your experience in Chapters 9, 10, and 11, you already know

about some of the kinds of programming errors that can pre-

vent a program from working properly when you run it on the

system.

Frequently, debugging a program requires more time and per-

sistence than writing the program code requires. Therefore, you

should anticipate the debugging process throughout the entire

program development cycle. That is, you should follow some

common programming practices that help you first to make as

few programming errors as possible. When errors become ap-

parent during the various phases of development, correct them

immediately. Test the validity of any algorithms used within

your program. Finally, even though the program appears to be

working properly, check it thoroughly with test data.

You can take several steps to decrease the likelihood of intro-

ducing errors into your program and to make debugging easier.

First, always use a high-level language if one will suit your

programming needs. High-level language programs tend to use

fewer statements. English-like words and phrases in the lan-

guage statements make the program logic easier to follow.

Design the program. The technique of flowcharting the pro-

gram and then correlating it with the program coding simpli-

fies tracking the program logic and module interrelationships.

Use modular programming. Create the program as a series of

smaller, self-contained subprograms. Debug the program in

parts.

For frequently used functions, maximize the use of subroutines,

subprograms, and — in the case of assembly language pro-

grams — macros. These help to structure the program and

make it easier to alter or to add features that may be required

in the future.

Make use of any software provided by the system, such as li-

brary routines and functions. System software has already been

debugged and can save you the trouble of re-creating the ser-

vices.

Make the general flow of a program proceed down the page.

Avoid nonstructured branching and convoluted logic, as these

14-1

AVOIDING

PROGRAMMING

ERRORS

Debugging a User Program

WHEN

PROGRAMMING

ERRORS OCCUR

tend to produce programs that are difficult to debug. Finally,

use comments liberally throughout the program to show what

individual statements or groups of statements do. Use spaces

and tabs in the program code to make it easier to read.

Following these preventative steps eliminates many common

programming errors and helps to create a programming style.

However, even the most careful programmer may overlook a

small detail: a typing error during program creation, an unde-

fined label in the code, or some other programming bug. When

something is overlooked, debugging becomes necessary.

There are three general types of programming errors — syntax,

clerical, and logical.

Syntax errors are errors in the physical coding, such as omit-

ting necessary portions of the statement (delimiters for ex-

ample), reversing the order of information within the state-

ment, or misspelling keywords or instructions.

Clerical errors are non-syntax errors in the physical coding,

such as mistyped letters or digits in data. Clerical errors may

result in valid statements that do not reflect correct program-

ming logic.

Logical errors are errors made in program development.

The translating program (compiler/assembler/interpreter) gen-

erally catches syntax errors and flags them as such in the pro-

gram listing or on the terminal. On the other hand, you must

locate clerical and logical errors by reexamining the program

code and logic, using one or more debugging techniques.

Some debugging techniques involve insertion of special debug-

ging code within the program. For example, one way to locate

logical errors is to write out intermediate results of a program.

You can insert WRITE or PRINT statements at strategic points

in the program logic to show the intermediate state of values

being calculated. When debugging is complete, you can remove

these statements or change them to comments.

You may also find it useful to write a special debugging subrou-

tine that writes out values, particularly if the same variables

must be examined in several places or many times.

Another method for finding logic errors — unit testing — is to

break the program into smaller parts and test each part sepa-

rately with artificial data. After you test all parts individually,

you can test routine and module linkage — system testing — to

see that all related code fits together properly.

Check the program with test data. A standard method for

checking out modules is to write a test program that calls the

14-2

program with possible options. The test should cause the pro-

gram to execute all steps in all algorithms. Check programs

first with representative data, then with improper data (data

that is not in the correct range or size). You should also do

volume testing to see that the program works successfully with

a representative amount of data.

Each programming language has special debugging aids for ex-

amining immediate states. For example, BASIC-11 has a

STOP statement that you can insert at strategic points in the

program. When the program arrives at a STOP statement, it

pauses so that you can use BASIC-11’s immediate mode to ex-

amine variables, values, and so on. Use an immediate mode GO

TO statement pointing to the appropriate line number to con-
tinue execution.

FORTRAN 1V has a special DEBUG statement indicator, a D

in the first column of a statement line. Operations in state-

ments marked with a D can perform useful debugging func-

tions, such as printing intermediate results. You can treat such

statements as source text (and thus execute them) or as com-

ments (and thus ignore them), depending on whether you use a

special compiler command option. In addition, FORTRAN IV

has a traceback feature that locates the actual program unit
and line number of a run-time error. If the program unit is a

subroutine or function subprogram, the error handler traces

back to the calling program unit and displays the name of that
program unit and the line number where the call occurred. This

process continues until the calling sequence has been traced

back to a specific line number in the main program unit. Fi-

nally, FORTRAN IV has an optional interactive debugger

called FDT (FORTRAN DEBUGGING TECHNIQUE) that can

be linked with a user program.

For MACRO-11 users, RT-11 provides a special on-line debug-

ging tool called ODT (On-line Debugging Technique). This is

provided as part of the RT-11 operating system and is an object

program on your system volume. It is used exclusively for de-

bugging assembled MACRO-11 programs.

The use of ODT is described next for MACRO-11 users and for

those FORTRAN IV users who will be combining MACRO-11

and FORTRAN IV program code. Other users can continue to

Chapter 15, or go back and perform one of the other language

demonstrations. Refer to the reading path outlined in the

Preface.

ODT is an interactive debugging tool that allows you to mon-

itor program execution from the console terminal. ODT is pro-

vided as the object module ODT.OBJ on your system volume.

To use it, you link ODT.OBJ with the assembled MACRO-11

14-3

Debugging a User Program

USING THE ON-LINE

DEBUGGING

TECHNIQUE

Debugging a User Program

program that needs debugging. You then start execution of the

resulting load module, not at the transfer address of your pro-

gram, but at the entry point of the ODT module (shown on the

linker load map as the global symbol O.0DT). Once ODT is

started, you can use its special debugging commands to control

the execution of your assembled machine language program

from the console terminal, to examine memory locations, to

change their contents, and to stop and continue program execu-

tion.

The MACRO demonstration program in Chapter 11 still con-

tains one error, which you can locate and correct using ODT.

Several ODT debugging commands are demonstrated in the

process.

Throughout the examples in this chapter you need to refer to

the program assembly listing of SUM.MAC. The listing that

was produced in Chapter 11 was deleted, so you must create a

new program assembly listing. Assemble your source program

and produce a cross-referenced assembly listing as you did in

Chapter 11. (Remember that SUM.MAC is now on your storage

volume.)

Long Command Format

+MACROGED

Files? VOL:SUM/LIST/CROSSREFERENCEGE

Short Command Format

+MACRO VOL:SUM/LIST/CROSSREFERENCEGRED

Print the listing on either the terminal or the line printer:

Long Command Format

(Line printer) (Terminal)

+ PRINTGEED ' +TYPEGED
Files? SUM,LSTED Files? SUM.LSTED

Short Command Format

(Line printer) (Terminal)

+PRINT SUM,LSTGED +TYPE SUM,LSTGEED

SUMMAC VERSION 1 MACRD V05,00 Saturdas 08-Jan-83 09:38 Page 1

«TITLE SUM,MAC VERSION 1%

«MCALL LTTYOUT, .EXITy JPRINT

000106 N = 70, #NO. OF DIBITS OF 'E‘ TO CALECULATE

$ ‘€’ = THE SUM OF THE RECIPROCALS OF THE FACTORIALS
1] 1700 4+ 1780 4 1/20 & 1/30 4+ 1/4) % 1/50 4C

D

O
B

G

10

11 000000 EXP? «FRINT #MESSAB PPRINT INTRODUCTORY TEXT

144

R

Debugging a User Program

12 000004 012705 000104 MOV WNSRG $ND. OF CHARS OF ‘E‘ TD FRINT

13 000012 012700 000107 FIRST! MOV #N+1 RO #NO. OF DIGITS OF ACCURACY

14 000016 012701 000124 Moy $4,R1 JADDRESS OF DIGIT VECTOR

13 000022 004311 SECOND?! ASL @R1 B0 MULTIFLY BY 10 (DECIMAL)

ié 000024 011144 Hov BRLy~(8F) TSAVE A2

17 000026 004311 ASL 2R1 ixa

18 000030 006313 ASL 2Rl 122

19 000032 042421 ADD (SPY44+ (R1) % INOW %10, POINT TO NEXT DIGIT

20 000034 005300 BEC RO #AT END OF DIGITS?
21 0000346 001371 BNE SECOND $BRANCH IF NOT

22 000040 012700 000106 MOV 4NIRO 360 THRU ALL PLACES, UIVIDING

23 000044 014103 THIRL! MOV -(R1},R3 $BY THE PLACES INDEX

24 000046 012702 177777 MOV $-1sR2 FPINIT QUOTIENT REGISTER

2% 000052 005202 FOURTHT INC R2 $BUMP QUOTIENT

26

27 0000%4 140003 |UB ROLRY $QUBTRACT LOOP ISN’T BAD
28 000054 103375 BCC FOURTH INUMERATOR 1S ALWAYS < 10%N

29 000040 040003 apn ROsR3 $FIX REMAINDER

30 000062 010311 MOV R35@R1 JBAVE REMAINDER AS BASIS
31 JFOR NEXT DIGIT

32 000084 060261 177776 AT R2s~2(R1) FOREATEST INTEGER CARRIES

33 3TO GIVE DIGIT

34 000070 005300 DEC RO $AT END OF DIGIT VECTOR?

35 000072 001344 BNE THIRD $BRANCH IF NOT
36 000074 014100 Hov - (R13 rRO SBET DIGIT TO DUTPUT
37 000076 142700 000012 FIFTH: SUB #10. RO SFIX THE 2.7 TO .7 SO

38 JTHAY IT IS ONLY 1 DIGIT

39 000102 103375 BCC FIFTH 3} (REALLY DIVIDE BY 10)

A0 000104 062700 000072 ADD #10.4°0sR0 PMAKE DIGIT ASCI

41 000110 STTYOUT JOUTPUT THE DIGIT

42 000114 005011 CLR @R1 SCLEAR NEXT DIGIT LOCATION

43 000114 00530S bee RS IMORE DIGITS TO PRINT?

44 000120 001334 BNE FIRST #BRANCH IF YES

43 000122 SEXIT SJWE ARE DONE

48

47 000124 Q00107 Al REPT N+1

48 JWORD 1 SINIT VECTOR TO ALL ONES
A9 JENDR

50 .

31 000342 124 110 105 MESSAS! JASCII /THE VALUE OF E I8!/ <13><12> /2./ 200>
000343 040 126 101

000350 114 125 1035

000353 040 117 106

000356 040 105 040

000341 111 123 072

000344 015 012 062

SUM.MAC VERSION 1 MACRO V05,00 Saturdau 08~Jan-83 09:38 Fage 1-1

000347 056 200

52 +EVEN

53

54 000000 +END EXF

BUM.HAC VERSION 1

Swabol table

HACRO VO03.00 Ssturdaw 0B-Jan—-83 09:38 FPage 1-2

A 000124R FIFTH 000076R FOURTH 0Q00%2R N = 000106 THIRD 000044R
EXP 000000R FIRST 000012R MESSAG 0003AZR SECOND QO0022R

+« ABS. 000000 000 {RW:X,GBL7ABSYOVR)

000372 001 {RW» I+LCLsREL,CON)

Errors detected: O

A% Assembler statistics

Work file reads: O

Wark file writes? O

Size of work file! B222 Words (33 Pases)

8ize of core rool! 15872 Words (&2 Fases)

Orerating sustem! RT-11

Elarsed time: 00100:04,31

DBK$8UMDK SUM/C=DR $ SUM

BUM.MAC VERSION i MACRO V05.00 Saturday 08-Jan-B3 093138 fase S-1
Cross refarence table (CREF V05.00)

A 1-14 1-474

EXp 1-11% 1-54

FIFTH 1-37¢ 1-39

FIRST 1-138 1-44

FOURTH 1-2G# 1~28

MESSAG 1~-11 1-51¢
N 1-74 1-12 1-13 1-22 1-47
SECOND 1-158 1-21

THIRD 1-23¢ 1-35

BUM.MAC VERSION I MACRO V05.00 Saturdaw 08-Jan-83 09338 Pase N-1

Cross reference table (CREF V05.00)

SEXIT 1-3¢ 1-45

+PRINT 1-3% 1-11

LTTYOU 1-3% 1-41

Now link the MACRO-11 program object module (SUM.OBJ)

stored on the storage volume (VOL:) with ODT.OBJ by using

the /DEBUG option, and print a load map directly on the ter-
minal or the line printer, choosing one of the following com-

mands:

LINK/DEBUG

Long Command Format

(Line printer) (Terminal)

+LINK/MAP/DEBUGHED

Files? VOL:SUMGED

+LINK/MAP:TT:/DEBUGED

Files? V0L :SUMGEED

14-5

Debugging a User Program

Short Command Format

(Line printer) (Terminal)

JLINK/MAP/DEBUG VOL:SUMED JLINK/MAP:TT:/DEBUG VOL :SUMED

RT-11 LINK V08,00 l.oad Map Saturday 08-Jan-83 10:08 Pagde 1

SUM +BAY Titles ODT Ident: VO05.00

Section Addr Size Global Value Global VYalue Global Value

+ ABS. 000000 001000

001000 000372

$0DTS 001372 006152

256, words (RW,I,GBL,ABS,0UR)

125, words (RW,I,LCL,REL,CON)

1589, words (RW,I.LCL,REL,CON)

0.0DT 001624

Transfer address = 001824, High limit = 007342 = 1969, words

Look at the load map, and note that ODT starts at address

1372. The two modules together, ODT and SUM, reside in

memory up to location 7542, the high limit. Look at the symbol

table listing for the MACRO-11 program. This shows that the

program is 372(octal) bytes long and starts at location 1000.

To load and start execution of the load module, use the monitor

RUN command. The RUN command brings the entire load

module, called SUM.SAYV, into the absolute (physical) memory

locations shown in the load map and begins execution automat-

ically at the starting, or transfer, address of the first module in

memory, which is ODT. Type:

Long and Short Command Format

+RUN SUMGEED

oDT V05,00

*

ODT prints an identifying message on the terminal and an as-

terisk indicating that you are in ODT command mode and can

enter an ODT command. You are now using ODT to control the

execution of your program.' ODT commands let you execute the

entire program or just portions of it, examine individual loca-

tions, examine the contents of the PDP-11 general registers,

and change the contents of any locations in your program you

wish. If you make a mistake while you are typing any com-

mands, type the DELETE key; ODT responds with a question

mark (?) and an asterisk (¥), allowing you to enter another

command.

1Be sure to read the chapter on ODT in the RT—-11 System Ultilities Manual
before you use ODT with any of your own programs. You must observe certain
precautions when you write your program and when you load it with ODT.
For example, you should make sure that ODT is not loaded into memory

locations used by your program. Follow the precautions described in the

RT-11 System Utilities Manual.

14-6

Look at locations 6 through 16 in the assembly listing. With

ODT, you can examine these locations in memory as follows (all

ODT commands use octal numbers, as does the assembly

listing):

*#1006/0127030

001010 /0001060

001012 /0127000

001014 /000107

001016 /01270160

By typing a location address and a slash, you open that location

for examination and possible modification. A line feed closes

that location and opens the next sequential location for exami-

nation. A carriage return simply closes the currently open loca-

tion.

Note that since the MACRO-11 program was linked to begin at

address 1000, you must add the constant 1000 to each address

shown in the assembly listing to obtain the actual address used

during loading. ODT can do this for you by using special in-

ternal locations called relocation registers. Each register can be

set to a relocation constant. Thus, if you have linked several

modules together, you can set various relocation registers to the

corresponding relocation constants of the individual modules.

You then indicate in your command which register to use, and

ODT automatically adds the constant in that register to the

address specified in your command. For example, set relocation

register 0 to 1000:

*100030R

Now, to examine locations 0 through 10 in the assembly listing,

type:

*0,0/01270008

0:+000002 /0013420

0000004 /1043531

0+000006 /012705@

0:000010 /000106GD

In your commands, indicate the number of the relocation reg-

ister (followed by a comma), since generally you will have more

than one register set at a time.

Execute the MACRO-11 program now, using the ODT ;G com-

mand, indicating in the command where you wish execution to

start. In this case, the program’s start (transfer) address is

1000, so type:

*040iG

THE VALUE OF E IS:

2,5/6806/606237,2301314.,06525/130440275535025.,71477737352744745405502,544

14-7

Debugging a User Program

Debugging a User Program

As you discovered in Chapter 11, these program results are

incorrect. Note that a period has printed, indicating that you

are back in monitor command mode. This particular

MACRO-11 program returns to the monitor after execution.

Therefore, to continue using ODT, you must RUN the load

module again:

Long and Short Command Format

+RUN SUMED

goT Y05.00

*

Changes that you make to a program while using ODT, and

ODT register assignments that you make, are temporary. Thus,

when you restart ODT, you must reenter any commands, such

as relocation register commands, that you want to remain in

effect. Reset relocation register 0:

*100030R

To help you find programming errors, ODT provides a break-

point feature. Setting one or more breakpoints in a program

causes program control to pause at those locations during exe-

cution. When control pauses, ODT prints a short message on

the terminal, informing you that a breakpoint has occurred and

showing the location at which execution has stopped. This

pause returns control to ODT and gives you the opportunity to

examine and possibly modify variables or data. Breakpoints are

numbered from 0 to 7, so that you can have a total of eight

breakpoints set at various instructions in the program at one

time.

For example, set breakpoint 0 at location 22 (line 16 in the

assembly listing) and breakpoint 1 at location 40 (line 23):

*0,2250B

*¥0.,404%1B

Now when you run the program, control pauses first at location

22. Since the breakpoint was set at the instruction at location

22, that instruction has not yet been executed, but all preceding

instructions have:

*0,035G

TB0i0,000022

Note the message that ODT prints when execution reaches the

breakpoint. Normally when execution encounters a breakpoint,

only the breakpoint number and location are printed on the

14-8

terminal. In this case, the letter T precedes the breakpoint mes-

sage. This happens because of the way the ODT program uses

the console terminal. The assembly instruction .PRINT at line

12 of the assembly listing requests the monitor to print a pro-

gram message at the same time that ODT needs to print the

breakpoint message. ODT, however, has higher priority. By the

time the .PRINT request starts to print the program message,

execution reaches the breakpoint and gives control to ODT. The

.PRINT request has time to print only one character of its mes-

sage before ODT takes over and prints the breakpoint message.

When the program regains control, its message will continue

printing from the second character.

Program control has paused at location 22 in the MACRO-11

program. Look in the assembly listing at the instructions that

occur there. The instruction at location 16 (line 15) stores the

address of the digit vector (at label A) in register 1 (R1). Exam-

ine the contents of register 1 to discover what this address is;

then open the address and examine its contents and the con-

tents of several addresses following it by using two new ODT

commands, $ and @:

¥$1/001124 @

0,000124 /0000010

0:000126 /0000010

04000130 /000001

0:000132 /000001GD

The $ command opens for examination the contents of one of

the general PDP-11 registers 0 through 7. The @ command

uses the contents of the currently open location as an address

and opens that location for examination. Notice that the digit

vector A, which begins at location 124, has been initialized to

the value 1, the precise value indicated by the comments at line

48 of the program listing.

If you were to continue program execution now, the branch in-

struction at line 22 of the assembly listing would cause pro-

gram control to loop back to the instruction at line 16 where

breakpoint O is set, again causing execution to pause. Since you

wanted to continue to the next breakpoint (set at location 40),

you must first cancel the breakpoint at location 22. To do this,

type:

*308B

This removes the breakpoint at location 22. The number (in

this case 0) indicates which breakpoint is to be removed. Now

continue program execution using the ;P command (proceed

from breakpoint). Execution progresses through the loop and

continues until it reaches the breakpoint set at location 40:

14-9

Debugging a User Program

Debugging a User Program

*iP

HB13i0,000040

(Note that the monitor has time to print the second character,

and perhaps additional characters, of the program message be-

fore ODT gains control.) Now examine the contents of several of

the program vector locations beginning at location 124:

*0:124/0000120
0,000126 /000012010

0,000130 /0000120

0+000132 /00001260

The instructions prior to the breakpoint at location 40 consti-

tute a multiplication routine. This routine multiplies the vector

contents by 10 (12 octal), as you have just verified.

You can see how the breakpoint feature is a very useful debug-

ging aid. It allows you to execute selected portions of a program

and verify that data and variables are being used correctly

during execution. You can use the breakpoint feature to locate

the error that is in this program.

First, clear all previously set breakpoints (in this case, there is

only the one at location 40) by typing the ;B command with no

argument.

*iB

Now set a breakpoint at location 110 (line 41 of the assembly

listing). You want to verify the data that is being passed to the

monitor in register 0 in the ADD instruction in line 40.

*0,110508B

*3P

EB0O30,000110

Now examine the contents of register 0.

*$0/000065 \0BS =5@D

At this point in execution, register 0 contains 000065. The

backslash (\) command prints the low-order byte of the opened
location on the console terminal and also converts this to an
ASCII character (if it is a valid ASCII code) and prints the

character. In this case, the number 5 prints. If you look back at

the program results printed earlier in this chapter, you can see

that 5 is the first digit of the tabulated result (following the

message THE VALUE OF E IS 2). If you are experienced in

mathematics, you know this result is incorrect because the ap-

proximate value of E is 2.718. And you now also know that the

14-10

program error is not in the interface to the monitor service used

to print the result (TTYOUT), but that it occurs somewhere

before location 110. So the next step in debugging this program

is to set a breakpoint at some earlier point in the program logic

and to rerun the program. You must restart ODT to do this.

Return to monitor mode by typing CTRL/C. The remainder of

the program message prints on the terminal; then the monitor

period appears, indicating that you are in monitor mode.

*CTRLC)

VALUE OF E IS:

2,

Restart ODT and reset relocation register 0.

RUN SUMED

oDy vo5.00

*100030R

Set a breakpoint at location 76 (line 37 in the assembly listing),

and start program execution at its beginning.

*04+7684508B

*01035G

TB0O30 000076

Again, examine register 0 to verify its contents.

#$0/0000336D

By following the program logic in the assembly listing, you

know that the value in register 0 should at this point be

33(octal) (2.7, previously multiplied by 10, = 27[decimal] =

33[octal]). So the value in register 0 is correct. From this, you

can deduce that the error must occur somewhere between loca-

tions 76 and 110. The proper step now is to check the assembly

listing, where you find the error at line 40. The decimal point

that should follow the 10, identifying it as a decimal 10, is

missing. Therefore the program treats the 10 as an octal 10, or

8(decimal), making each digit in the result off by an additive

factor of 2. The data in location 106, then, should be 72, not 70.

Since this data has not yet been used, you can change it now

with ODT and continue program execution; if it had been used,

you would need to restart ODT and then change the data. To

change the contents of a location, simply open the location, type

in the new contents, and close the location, using a carriage

return.

*#0,106/000070 726D

14-11

Debugging a User Program

- Debugging a User Program

Now eliminate all breakpoints.

*3B

Continue program execution; the correct results should print.

*iP

THE VALUE OF E I8:

2,71828182845904523536028747135266249775724709389899505749668676277240766

+

SUMMARY: To Start ODT

COMMANDS FOR

DEBUGGING LINK/DEBUG
Link the assembled program (the program to be debugged)

PROGRAMS with the ODT object module.

To Use ODT!

Close the currently open location and open the next sequen-

tial location for examination and possible modification.

EED

Close the currently open location.

addr/

Open the location indicated (addr) for examination and pos-

sible modification.

addr;G :

Begin program execution at the indicated address (addr).

P

Continue program execution from a previous breakpoint.

addr;nB

Set one of the eight available breakpoints (n) at the indicated

address (addr).

;nB

Cancel the indicated breakpoint (n).

;B

Cancel all breakpoints.

addr;nR

Set one of the eight available relocation registers (n) to the

relocation constant value indicated by addr.

!Only a very few of the available debugging commands have been demon-
strated in this chapter. Consult the RT-11 System Utilities Manual for all

ODT commands.

14-12

$n

Open one of the eight general registers (n) for examination

and possible modification.

@
Use the contents of the currently open location as an address;

close the currently open location; go to the new address, and

open it for examination and possible modification.

Print on the console terminal the low-order byte of the cur-

rently open location; if possible, convert the value to an

ASCII code and print the corresponding character on the ter-

minal.

Changes you make with ODT are temporary. Therefore you

should now use the editor to correct the source program

SUM.MAC. You should edit line 40 so that it reads:

ADD #10.,+'0:RO iMAKE DIGIT ASCII

The file SUM.MAC is currently stored on the storage volume

VOL:. Edit this file, then reassemble, relink, and rerun it to

verify that it is correct. When you have done this, store the

updated version of the source file on the storage volume under

the same name (SUM.MAC), including the files SUM.OBJ and

SUM.SAV.

After you have corrected and rerun the program, continue on to

Chapter 15, or go back and perform one of the other language

demonstrations. Refer to the reading path outlined in the

Preface.

RT-11 System Utilities Manual (AA-M239A-TC). Maynard, Mass.: Digital

Equipment Corporation, 1983.

A guide to the use of the RT-11 system utilities.

14-13

Debugging a User Program

FILE MAINTENANCE

REFERENCE

CHAPTER 15

USING THE FOREGROUND/BACKGROUND MONITOR

A special feature of the RT-11 operating system is that it pro-

vides a choice of operating environments. You are using its

foreground/background environment. This environment allows

two independent programs to reside in memory at the same

time and to execute concurrently.

You have used the foreground/background (FB) monitor to con-

trol the system and to perform the various exercises in this

manual.

The foreground/background environment is designed so that

two programs can — but need not — share memory and run

concurrently. One of these programs you designate as the fore-

ground program. The system gives priority to the foreground

program (or job, as it is usually called) and allows it to run until

some condition, perhaps waiting for an I/O completion, causes it

to relinquish control to the other program (the background job).

The system then allows the background job to run until the

foreground job again requires control, and so on. In this way,

the two programs share system resources. Whenever the fore-

ground program is idle, the background program runms. Yet

whenever the foreground program requires service, its requests

are immediately satisfied. To the user at the terminal, the two

programs appear to run simultaneously.

Foreground priority programs are generally time-critical. For

example, you may want to designate as the foreground job a

program that collects and analyzes data. Background programs

are usually non-time-critical. Thus, you can continue to do pro-

gram development as the background job by using monitor com-

mands to run the editor, the FORTRAN IV compiler, the linker,

and so forth.

In order to perform the following exercises your system must

have a clock. Verify whether your system has a clock by en-

tering the TIME command twice. If the time displayed changes,

your system has a clock. If your system does not have a clock

you should skip ahead to Chapter 16.

Two programs are provided for you to run a foreground/back-

ground demonstration. These programs reside on your system

volume. The background job is called DEMOBG, and the fore-

ground job DEMOFG. The function of the foreground job is to

send messages every two seconds to the background job, telling

it to ring the terminal bell. The background job recognizes

15-1

THE

FOREGROUND/

BACKGROUND

ENVIRONMENT

RUNNING THE

FOREGROUND/

BACKGROUND

PROGRAMS

Using the Foreground/Background Monitor

Creating the

Background Job

Editing the

Background Job

Running the

Background Job

these messages and rings the bell once for each message sent by

the foreground job.

Although the foreground job is always active, sending messages

to the background job every two seconds, other programs be-

sides DEMOBG can be executed in the background. Only when

DEMOBG is active, however, is the circuit complete so that

messages can be successfully received and honored. During the

periods when DEMOBG is not running, the foreground pro-

gram enters the messages in the monitor message queue. Once

you restart DEMOBG in the background, the system immedi-

ately dequeues all the messages since the last exit of DEMOBG,

resulting in many successive bell rings. When the queue is

empty, the normal send/receive cycle resumes, and the bell

rings every two seconds as each current message is sent and

honored.

The background program DEMOBG.MAC is an assembly lan-

guage source file and must be assembled and linked before you

can use it. When you execute DEMOBG, it displays a message

on the terminal. It is assumed that you have set the date.

Use the text editor to modify the background job,

DEMOBG.MAC. One of the lines of the message that is output

by the program has a semicolon character preceding it, which

makes the line a comment field. This will prevent the line from

being printed as part of the message. Thus, the semicolon must

be deleted from that line.

Change the line

i WASCII /WELL DONE./

to

+ASCITI /KWELL DONE./

If you performed the demonstration in Chapter 11, you are al-

ready familiar with assembly/link operations, and the following

command explanations can serve as a review. If you did not

read Chapter 11, simply type the command lines as shown.

Assemble the background job.

Long Command Format

+ MACROGE

Files? DEMOBG/LISTED

15-2

e’

Using the Foreground/Background Monitor

Short Command Format

+MACRD DEMOBG/LISTED

Link the .OBJ file produced by the assembler to create a run-
nable job.

Long Command Format

+LINKEED
Files? DEMOBGGEE

Short Command Format

LINK DEMOBGGED

Now run the background job and check the results.

+RUN DEMOBGED

RT-11 DEMONSTRATION PROGRAM

1F INCORRECTLY EDITED, THIS IS THE LAST LINE,

WELL DONE.

If you did not delete the semicolon character, the last line will

not be output. Return to the monitor by typing two successive

CTRL/Cs.

€RI/C)

€mUC)

“C
"C

The FB monitor provides you with commands that allow you to USING THE

control the two-job environment. They let you interact with the FB MONITOR

two jobs and let the two jobs interact with one another.

When two jobs run simultaneously, you must have some means Communication

of indicating the job to which you are directing commands. in a Two-Job

Likewise, the two jobs must have the means to identify them- Environment

selves when they have messages to print. The following are

some conventions that apply to system communication in a two-

job environment.

1. The foreground job has priority. If both the foreground and

the background job are ready to print output at the same

time, the foreground job prints first. The foreground job

prints a complete line, then the background job prints a

complete line, and so on.

15-3

Using the Foreground/Background Monitor

Creating the

Foreground Job

LINK/

FOREGROUND

2. Either job can interrupt your input at the terminal if it has

a message to print.

3. Messages printed by the background job are preceded by the

characters B>.

4. Messages printed by the foreground job are preceded by the

characters F>.

5. Typed commands are initially directed to the background

job. You can redirect control alternately to the foreground

and background jobs by using the CTRL/F and CTRL/B

commands.

To direct typed input to the foreground job, type CTRL/F.

This command instructs the monitor that all subsequent

terminal input — commands and text — is directed to the

foreground job. Typing this command causes the system to

print an F> on the terminal, unless output is already

coming from the foreground job. Command input remains

directed to the foreground job until the foreground job ter-

minates, or until it is redirected to the background job

through CTRL/B.

To direct typed input to the background job, type CTRL/B.

This command instructs the monitor that all subsequent

terminal input — commands and text — is directed to the

background job. Typing this command causes the system to

print a B> on the terminal, unless output is already coming

from the background job. Command input remains directed

to the background job until redirected to the foreground job

through CTRL/F.

The foreground program DEMOFG is an assembly language

source file; it must be assembled and linked before you can use

it.

Long Command Format

+MACROGED

Files? DEMOFG/LISTGED

Short Command Format

MACRO DEMOFG/LISTED

The output resulting from this MACRO command includes an

object file called DEMOFG.OBJ and a listing file called

DEMOFG.LST. The command creates both files on your system

volume. You must link the .OBJ file to produce a runnable

foreground program. You use the LINK command, just as you

have in earlier chapters, but you also use the /FOREGROUND

154

Using the Foreground/Background Monitor

option.' This option produces a load module with a .REL file

type which signifies to the system that the file is a foreground

program and is to be run as the priority job.

Long Command Format

WLINK/FOREGROUNDGRED
Files? DEMOFGGD

Short Command Format

+LINK/FOREGROUND DEMOFGGEED

Now you are ready to operate the two-job environment. Many

times, you have to consider the devices that are used for output

in a foreground/background environment. For example, if your

program assumes that the output device is a line printer, and

you do not have a line printer or you want to output to another

device, use the ASSIGN command. Type this command in the

following way, substituting the two-letter mnemonic from

Table 4-2 for the storage volume in place of dd.

Long Command Format

+ ASSIGNGED

Physical device name? dd:@D

Lodical device name? LP:GD

Short Command Format

+ASSIGN dd: LP:@D

You do not have to consider the above information for the dem-

onstration programs that are provided, since the foreground job

communicates with the background job, and both jobs send

their output to the terminal.

When you use the FB monitor, you must always load into

memory the peripheral device handlers needed by the fore-

ground job. You use the monitor LOAD command to make a

device handler permanently resident in memory. For example,

if your foreground job requires the use of the line printer, you

must load the LP device handler. You must specify the jobtype

with the command. For a foreground job, the jobtype is F; for a

background job, the jobtype is B. If you have assigned the code

LP: to another device, the system automatically loads the as-

signed handler and you need not enter a LOAD command. If

you are using the line printer, type:

1This command option also applies to compiled FORTRAN IV programs that
are to be linked as a foreground job.

15-5

Executing the

Foreground and

Background Jobs

LOAD

Using the Foreground/Background Monitor

FRUN

Long Command Format

LDADED
Device? LP:=F&D

Short Command Format

+LOAD LP:=FGED

The command to load and start execution of the foreground job

is FRUN, which is similar to the RUN command except that

the system automatically loads and starts the execution of the

foreground .REL program. (To execute a FORTRAN IV fore-

ground job, you must use the /BUFFER:n option with the

FRUN command. The argument n represents, in octal, the

number of words of memory to allocate.) Use this command to

start the execution of DEMOFG.REL.

Long and Short Command Format

+FRUN DEMOFGEED

F>

FOREGROUND DEMONSTRATION PROGRAM

SENDS A MESSAGE TO THE BACKGROUND PROGRAM "DEMOBG"

EVERY 2 SECONDSs TELLING IT TO RING THE BELL.

B>

The foreground program DEMOFG is now running and

queuing the message for the background program every two

seconds. You now execute the background program DEMOBG

to allow it to receive the messages that were queued and to ring

the bell.

+RUN DEMOBGGED

RT-11 DEMONSTRATION PROGRAM

IF INCORRECTLY EDITEDs THIS IS THE LAST LINE,

WELL DONE.

The bell rings several times in rapid succession as the monitor

dequeues the messages, and then every two seconds as the fore-

ground job sends its message to the background job.

You can run other jobs in the background. First, terminate the

background job DEMOBG, using the double CTRL/C command.

€RUC)

EmRi/C)

+

Execute a DIRECTORY command in the background to get a

listing of all the .OBJ files on the system volume by typing:

+DIRECTORY *,0BJGEED

15-6

Using the Foreground/Background Monitor

The foreground job is still running and queuing its messages to

the monitor. Rerun the background program to collect all the

foreground messages while the background job was stopped and

the directory was printing.

+RUN DEMOBGRED
RT-11 DEMONSTRATION PROGRAM

IF INCORRECTLY EDITED» THIS IS THE LAST LINE,.

WELL DONE.

The bell again rings several times in succession and then rings

once every two seconds. Stop the background job by using the

double CTRL/C command.

+

Now stop the foreground job and remove it from memory. To do

this, you must first use the CTRL/F command to direct terminal

input to the foreground. Type:

+ CRLE)

F>

The system prints the characters F> to remind you that you

are now directing command input to the foreground job. Use the

double CTRL/C command to interrupt and terminate the execu-

tion of the foreground job, and return control to the background

job.

CIRL/C)

CRL/C)

B>

You should unload the foreground job to reclaim memory space

for background use. Use the monitor UNLOAD command as UNLOAD

follows:

Long and Short Command Format

UNLOAD FEGED

+

F represents the foreground job; you should use this code when-

ever you want to unload the foreground job. To unload any

loaded device handlers, you must use their two-letter device

mnemonics.

Check to see if the' .LST files were produced as a result of this
demonstration.

15-7

Using the Foreground/Background Monitor

SUMMARY:

COMMANDS USED

IN AN FB

ENVIRONMENT

FILE MAINTENANCE

Long and Short Command Format

+DIRECTORY #,L8T

08-Jan-83

DEMOBG.LST 4 0B-Jan-83 DEMOFG,LST 6B 08-dan-83

2 Filesy 10 Blocks

406 Free blocks

The foreground program has access to all the system features

available to a background program — opening and closing

files, reading and writing data, and so on. However, before you

begin to write and use programs in the foreground, read the

RT-11 Software Support Manual for coding restrictions.

CTRL/B

Direct all keyboard input to the background job (until

CTRL/F).

CTRL/F

Direct all keyboard input to the foreground job (until

CTRL/B).

FRUN

Load and start execution of the foreground job.

LOAD dd

Bring the indicated device handler into memory; the handler

becomes resident in memory.

UNLOAD dd

Take the indicated device handler out of memory, reclaiming

its memory space; the handler becomes nonresident in

memory.

UNLOAD FG

Reclaim the memory space used by the foreground job.

£

You assembled the source file DEMOFG.MAC and produced an

.OBJ file, linking it to produce DEMOFG.REL. You also cre-

ated a .LST file named DEMOFG.LST on your system volume.

You should save on your storage volume the files

DEMOFG.REL and DEMOFG.MAC, and delete from your

system volume the files DEMOFG.OBJ and DEMOFG.LST. Do

not delete DEMOFG.MAC, since this file was distributed as

part of the RT-11 operating system. Do the same for the file

DEMOBG, which you created as a .SAV file instead of a .REL

file. ’

15-8

Using the Foreground/Background Monitor

Long Command Format

, COPYGED

From? DEMOFG.MAC,DEMOFG.RELGEED

To % YOL:*,*ED

Files copied:

DK :DEMOFGMAC to YOL:DEMOFG.MAC

DK : DEMOFG.REL to YOL:DEMOFG.REL

DELETEGD

Files? DEMOFG.0BJ:DEMOFG.LSTEE

Short Command Format

,COPY DEMOFG.MAC,DEMOFG.REL VYDL:*,*ED

Files coried:

DK :DEMOFG.MAC to VOL:DEMOFG.MAC

DK :DEMOFG.REL to VOL:DEMOFG.REL

,DELETE DEMOFG.OBJ.DEMOFG.LSTGED

Finally, obtain a brief directory listing of your storage volume

so that you can see its current status:

Long and Short Command Format

,DIRECTORY/BRIEF VOL:GD

RT-11 Software Support Manual (AA-H379B-TC). Maynard, Mass.: Digital
Equipment Corporation, 1983.

A technical manual providing RT-11 programming concepts.

RT-11 System User’s Guide (AA-5279C-TC). Maynard, Mass.: Digital Equip-
ment Corporation, 1983.

A guide to the use of the RT-11 operating system.

15-9

REFERENCES

CHAPTER 16

USING INDIRECT FILES

The RT-11 system provides an operational aid called an indi-

rect file, which allows the system to run unattended. An indi-

rect file is a file composed entirely of monitor operating com-

mands. When you start the execution of the indirect file, the

monitor processes these commands in consecutive order. So

once you have created an indirect file and started its execution,

you can direct your attention to other tasks or even physically

leave the system, since the monitor executes the commands au-

tomatically and consecutively.'

The kinds of operations that RT-11 can best perform in an

indirect file are those that involve much computer processing

but that do not require your supervision or intervention. For

example, multiple assemblies, compilations, and data transfer

operations are ideal operations for indirect file processing. Also,

any series of commands that you are likely to type often can

easily run as an indirect file.

Use the editor to create an indirect file as a text file. You can

call the file by any file name you wish, but you should give it a

file type of .COM, since this file type is the default used by the

monitor to locate the file.

You structure the lines of text that make up an indirect file just

like keyboard input. Thus, if you were to list the indirect file it

would look like terminal keyboard text without any monitor

prompts.

You enter monitor commands into the indirect file as you would

on the terminal. As an example, both of the following accom-

plish the same operation when executed as part of an indirect

file:

COPYRD

INFIL.MACGE

QUTFIL . MACED

COPY INFIL.MAC OUTFIL.MACGE

Since monitor prompts are not included in the indirect file,

using the long command format requires that you anticipate

IThe indirect file concept is similar to BATCH processing. Although indirect
files lack many of the BATCH capabilities, they are easier to use than
BATCH. (The RT-11 computer system also supports a BATCH processor, as
described in the RT—11 System Ultilities Manual.)

16-1

CREATING AN

INDIRECT FILE

Entering Monitor

Commands

Using Indirect Files

Using the Editor

to Create an

Indirect File

each prompt and its proper response. It is suggested that you

use the short command format and enter the command as a

single line of text. Terminate each command line with a car-

riage return.

The indirect file that you will now create incorporates several

of the commands previously demonstrated in this manual. Thus

it serves both as an example of the format of indirect file input

and as a brief review of the monitor commands used to copy,

process, and delete files. In addition, one new command, DEAS-

SIGN, is demonstrated.

List a directory of your storage volume. The only files that

should appear in the listing are GRAPH.FOR, SUM.MAC, and

MATCH.BAS. All three files will be in the directory only if you

performed the exercises for all three languages (FORTRAN IV,

MACRO-11, and BASIC-11).

Long and Short Command Format

,DIRECTORY vOL:G68

08-JAN-83

SUM +MAC 3 08-JAN-B3 MATCH .BAS 3 0B-JAN-83

GRAPH FOR 2 0B-JAN-B3

3 Filess 8 Blocks

4754 Free blocks

If any other files are listed, delete them using the DELETE

command before you create the indirect file.

Use the EDIT/CREATE monitor command to create a file called

INDCT.COM, inserting the commands according to the direc-

tions in the right-hand column. When you have finished cre-

ating the file, list it and check for typing errors. Correct any

errors you find, and then close the file, using the EX editing

command.

Long and Short Command Format

JEDIT/CREATE INDCT.COM@
*IDATE 8-JAN %3@ Enter a hypothetical date

TIME B:00:00 and time (if your system has

a clock).

DATEGD Print the date.

DEASSIGNED Deassign all previous device

assignments and set new

ones as follows:

ASSIGN TT: LP:E Assign the logical name LP:

to the terminal.

ASSIGN ddn VOL:@D Assign the logical name

VOL: to the storage volume

(dd).

16-2

DIRECTORY/BRIEF VOL:@ List an abbreviated direc-
tory of VOL.:.

COPY YOL:GRAPH.FOR GRAPH,FOREE FORTRAN IV users insert

this command to copy the

FORTRAN IV demo pro-

gram to the system volume.

COPY UOL:SUM.MAC SUM.MACED MACRO-11 users insert
this command to copy the

MACRO-11 demo program

to the system volume.

COPY VOL:MATCH.BAS MATCH.BASED BASIC-11 users insert this
command to copy the BA-

SIC-11 demo program to

the system volume.

FORTRAN/LIST GRAPHED FORTRAN 1V users who do
LINK/MAP GRAPH:SYSLIB FORLIBGEED not need to load the lan-

guage volume include these

commands to compile and

link the FORTRAN IV

demo program.

MACRO/LIST/CROSSREFERENCE sum@ All users assemble and link

LINK/MAP SUMED the demo program.

RENAME MATCH.BAS MATCH.MAPED BASIC-11 users simply re-

name the demo program.

MACRO/LIST/CROSSREFERENCE DEMOFGED

LINK/FOREGROUND/MAP All users assemble and link

DEMOFGEED the DEMOFG file.

DIRECTORY *.0BJED List a directory of object
files.

DELETE/NOQUERY GRAPH.*ED FORTRAN IV users delete
the GRAPH files.

DELETE/NDOUERY SUM, »@D MACRO-11 users delete
the SUM files.

DELETE MATCH.MAPE® BASIC-11 users delete the
MATCH file.

DEASSIGNGED Deassign all device assign-
ments.

TIMEE If your system has a clock,
print the time to show how

long total processing took.

EED Terminate the insert com-
*B /L BOED mand and list the indirect
DATE B-JAN-83
TIME 8:00:00 file to check for errors. (Ex-

ample input is shown here.)

16-3

Using Indirect Files

Using Indirect Files

EXECUTING AN

INDIRECT FILE

DATE

DEASSIGN

ASSIGN TT: LP:

ASSIGN RK1i: VOL:

DIRECTORY/BRIEF VOL:

COPY VOL:GRAPH.FOR GRAPH.FOR

COPY VOL:SUM.MAC SUM.MAC

COPY VOL:MATCH.BAS MATCH.BAS

FORTRAN/LIST GRAPH

LINK/MAP GRAPH,SYSLIB,,FORLIB

MACRO/LIST/CROSSREFERENCE SUM

LINK/MAP SUM

RENAME MATCH.BAS MATCH.MAP

MACRO/LIST/CROSSREFERENCE DEMOFG

LINK/FOREGRODUND/MAP DEMOFG

DIRECTORY #.0BJ

DELETE/NOQUERY GRAPH.#*

DELETE/NOQUERY SUM.*

DELETE MATCH.MAP

DEASSIGN

TIME

*EXEDED Close the file INDCT.COM.

Once you have created an indirect file and checked it for errors,

you are ready to start its execution. The command to start exe-

cution of an indirect file is the at sign (@) followed by the

appropriate file name (the file type .COM is assumed unless

you indicate otherwise). Execution starts immediately, and the

system processes commands in the indirect file in consecutive

order. Each command is echoed on the terminal as it is pro-

cessed. If an error within the indirect file affects the processing

of a command, the system prints a system message on the ter-

minal and stops execution of the entire file. Therefore, it is

particularly important that you check your indirect file for er-

rors before you start it and then leave the area. You can stop

execution of an indirect file at any time by typing two

CTRL/Cs.

Run the indirect file that you have just created by typing:

+BINDCTRED

It takes a minute or two for the commands in this file to be

processed and for the listings to print. If your system has a

clock, the time printed at the end of execution tells you exactly

how long command processing has taken. Following is an ex-

ample run.

+RINDCT

<DATE 8-JAN-83

.TIME 8:00100

+DBATE

#-Jan-83

SDEASSIGN

+ASSIGN YTt LR

«ABSIGN RK1! VOL?Y

SDIRECTORY/BRIEF VOL:

GRAPH .FOR SUM LMAC MATCH . BAS

3 Filesr 8 Rlocks

4754 Free blocks

«COPY V0L :BRAFH.FOR GRAPH.FOR

LCOPY VOL:SUM.MAC SUM,MAT

164

Using Indirect Files

JCOPY VOLIMATCH.BAS MATCH.BAS

SFORTRAN/LIST GRAPH

f””‘ FORTRAN 1y v02.5 Sat 08~Jan-83 08100116 PAGE 001

) GRAPH . FOR VERSION 1c

€ THIS PROGRAM PRODUCES & FLOT ON THE TERNINAL
C OF AN EXTERNAL FUNCYIONs FUN(XsV)

€ THE LIMITS OF THE PLOT ARE DETERWMINED BY THE DATA STATEMENTS

€ *STABR' IS FILLED WITH A YARLE DV NEIENT FLAGS

€ *STRING* 1S USED VO BUILD A LIi GRAPH FOR PRINTIA
0001 SCAL(ZNIN-ZN‘X-MXZvK)IZN!NGFLOAY(K'U'(INM(ZH]N)/FLMT(Nth 13

0002 LOGICALE] BYRINGC133).STABL100)

0003 DATA XMIN» XMAX s HAXX/~5.0¢5.0045/

0004 DATA YHIN: YRAX s HAXY/~5.015,0072/
0005 DATA FAINsFHMAX/0.0s1.0/
G004 CALL SCOFY(’~ § 23 458 7 8 9 +,5TaB)
0007 HAXF=LEN(BTAB)
6008 DO 20 IX=1yMAXX
0009 X=SCAL (XMIN XHAX e HAXX» IX)
0010 CALL REPEAT(“%°. STRING»NAXY)

o011 IFCIX.EQ.1 JOR. IX,E@.MAXX) BOTQ 20

0013 DO 10 IY=2sHAXY-1

0014 Y=GCAL (YMING YMAXs MAXYS 1Y)

0015 IFUNe2+INT CFLOAT CRAXF -3 KEFUN(X 0 Y3 -FNIND / (FMAX-FNINDY
0016 10 STRING(IY)=STAB(NINOUNAXFyMAXO 1y IFUKY))

0017 20 CALL PUTSTR(ZySTRING» *)

0018 CALL EXIT
001% END

JHAIN,

TFORTRAN-1-C.MAIN.] Errors! Qs Warninas! 2

FORTRAN [V Storage Mar for Promram Unit .MAIN.

Local Variabless .PSECT $DATAs Size = 000476 (156, words?

Hame Ture Offset Name Twre Uffset Name Tyre Offset

FNAX REA 000402 FMIN R®4 000376 IFUN I%2 000430

Ix %2 000434 iy 152 000442 X I%2 000430
MAXF 122 000432 HAXX 152 000362 HAXY 1%2 000324
NAXZ %2 000424 X R4 000434 AMAX RE4 000356
XHIN RE4 000352 ¥ RE4 000444 YHAX RE4 000370

YRIN R¥A 000364 Zuax Rae 000422 ZMIN REA 000416

Local and COMMON Arraws:

Neme Twee Section Offset ==~ Size---~- Dimensions
STAB LAt $DATA 000205 000144 ¢ 50.) (100}

SYRING LEL SDATA 000000 000205 ¢ &7.) (13%)

m Subroutiness Functions: Statessnt and Processor-Detined Functionsi

¢ Nemy Ture Nase Tume Nose Ture Hane Twre Name Ture
EXIT Re4 FLOAT R¥4 R4 INT 2 LEN 182

MAXC I$2 RING I¥2 mvsn R$4 REPEAT RE4 SCAL R4

SCOPY Re4

FORTRAN IV voz.5 Bat 0B-Jan~83 08101144 PABE 001

0003 FUNCTION FUN(X)Y)
0002 ReSORT (XN2+Y2E2)
0003 FUl=(XEYSREEXPC-R)) 482
2064 RETURN
0008 €MD
Fum
FORTRAN 1V Starase Mae for Prosrss Unit FUN

Locel Varisbles:s PSECT 8DATA, Size = 000024 ¢ 10, words)

Naaw Ture UOffset Name Twrs Offset Name Tere Offset
Fun RE4 000004 Eav R R&4 000010 X RE4 & 000000
¥ RE4 @ 000002

Subroutinese Functionsr Statement and Processor-Defined Functions!

Naae Ture Nane Ture Name Ture Nowmea Ture Nane Ture
EXP R4 SGRT Rx4

<LINK/MAP BRAPH,SYSLIB»FORLIP

B lY-ll LINK 08,00 Load Mar Saturdaw 08-Jen-83 08102 Pasie 1
Title: JMAIN. Ident! FORVO2

Section Addr Bize Global Value Global Value Globai Value

+ ABS. 000000 001000 = 256, words (RWsI.GBL,ABSsOVR)

SUSRSM 000000 SRF2A1L 000000 SHRDWR 000000
SVIR 000000 SNLLCHN 000008 $SYSUS 000012

SMASIZ 000152 SLRECL 000210 STRACE 004737

arse1 001000 017722 = 4073, wards (RW.isLCLyRELYCON}

$$0TSI 001000 SCVTIF 001000 SCUTIC 001014

SCUTID 001014 CCI 001026 CRIs 001028

e IC 001028 $ID 001024 CFIs 001042
1R 001042 EXP 001124 ADFSIS 001466

ADFSPS 001474 SUFSPS 001300 SUFSMS 001304
ADFSNE 001514 SUFSIS 001528 SADDF 001534
WSUBF 001550 SUFSSS 001362 SSBR 001562
ADF$SS 001564 $ADR 001585 ADDY 001602

DIFSPS 002226 DIFSME 002232 DIFSIS 002242
SDIVF 002250 DIFSES 002262 SDUR 0022462
HUFSPS 002550 MIFSNS 002554 MUFSIS 002344

SHULF 002572 FMUFSSS 002404 SMLR 002604

071 003t42 80T 003144 SSEYOP 003354

$$SET 003024 SORT 005322 STKSL 005516

m STKSL 00%S22 STKSF 005524 IORS VOSB3

- ANDS 003542 £0QUs V05550 XORs 005352

DCIe8 007014 DCISM 007020 DCIWF 007024
DEIsA 007028 IDINT QO7032 INT 007082
NOX.!P 007040 MIISEP 007042 MOISPP 007070

RT-1% LINK V08,00 Load Nae Slturdw 08~Jan-83 CBi02 Pase 2
GRAPN .. Titie! JMAIN. Icent: FORVO2

WOLNP 007074 NOISPE 007104 MOISPR 007112

MOLISPA 007120 MOISOP 007128 MOISIP 007134

18N8 007144 SISNTR 007130 LSNS 007144
SLENTR 007170 BUISEBS 007324 SUISSA 007330

SUISSN 007334 BUISIA 007340 SUTHIA 007344

HOLSHS

MOLSSP 007420 NOLSPP 007426 MOLSMP 007432

MOLOPH 007442 NOLSPE 007430 NOLSPA 007454

MOLSIM 007452 NOLSIA 007470 HMOLSIP 007476

16-5

Using Indirect Files

LiLES 007506 LEGS 007510 LGTS 007516
LBEY 007520 LNE® 007530 LLT 007532
TBL#S 007534 THLsM 007342 TSLST 007546

TSLOP 007534 MAXO 007562 NING 007606
RETSL 007432 RETSF 007636 RETSL 007444

RETS 007444 $OTIS 007702 $80TIS 007704

TULe 010024 #TVL 010024 TUFs 010032
S$TUF 010032 TYVDS 0310040 $TUD 010040
VoS 010048 $TVA 030046 TUFS 010034

STYP 010054 TUls 010062 $TVI 010062
SALSIN 010218 SALSSH 010220 SVLSIN 010224
SULSSM 010224 SALSMM 010234 SULSHM 010240

SALSIP 010244 SALSSP 010245 SULSIP 010252

SULSSP 010254 SALSMP 010242 SULSMF 010246
SCUTFR 010272 SCVUTFT 010272 SCYUTCH 010304

SCUTCE 010304 $CUTDR 010306 SCUTDI 010306

cIcs 010320 CIDS 010320 cLCS 010320

CLD$ 010320 $DI 010320 CIFs 010330
CLF® 010330 #RI 010330 CILt 010442
CLI% 010444 #INITI 010450 SCLOSE 010364

SERRTB 011344 ®ERRS 011451 SFCHNL 015212
SFI0 015054 $$FI0 016080 SFUTRE 017224
SFUTBL 017532 SGETBL 017742 SEOFIL 020124

SEOF2 020142 SAVRGS 020142 THRDS 020340

$STPG 020342 STPY 020350 $5TF 020350
£oas 020334 SEXIT 020374 S$WAIT 020520
SURINT 020542 SDUNPL 020574

OTS#P 020732 000054 = 22, wards (RWsDsGBLyREL»DUR)
SYSSI Q20776 000244 = B2, words (RWsLrLOLeRELe CON)

LER 020776 REPEAT 021014 SCOFY 021144
USERSI 021242 000000 = 0, words (Ris L,LCLrRELICONY
$CDDE 021242 001314 = I59. words (RurIsLCL/REL»CON)

S$80TSC 071242 FI 022120 PUTSTR 022266
0TS0 022360 001036 = 271. words (RW»IrLCLeREL+CONY

$90TSO 02256C $OPEN 022560
SYS$0 023416 000000 = 0. words (RMs I,LCLyREL +CON)Y
S$DATAF 023414 000106 = 35, words {RuyDsLCLyREL+CONY
OTS$D 023724 000004 = 3, words (RieDeLCLyRELrCONDY

NHCLNS 023730

OTS$S 023732 000002 = 1. words (RWrDyLCLREL/CON)

$A0TS 023732

SYS#S 023734 000004 = 2. words (RM»DyiChv KEL »CON)

$SYSLB 023734 SLOCK 023736 SCRASH 023737

SDATA 023740 000536 = 175. words (RWeDeLCLsRELsCONJ
USERSD 024474 000000 = 0, uprds (RWsDsLCLyREL »COND

S#I88. 0R44TE 000000 = O, words (R DyBBL/REL»QUR)Y
RT-11 LINK Y08.00 Load Nap Saturdaw OB-Jan-83 08102 Page 3
GRAFH .SAY Title: .HALN. Ident! FORYOQ

Trarsfer address = O21242) Higb limit s 024474 = 5278, words

+MACRO/L I8T/CROSSREFERENCE SUM

5UK,MAC VERSION 1 HACRO V05,00 Saturdaw 0B-Jan-83 08107 Page 1

STITLE SUM.MAC VERSION §

000108 N = TO. iNG. OF

] ‘E’ = THE SUM OF THE REE

§ 1700 & 1750 + 31721 4 1/3

006000 EXPY PRINT #MESSAG

000004 012705 GOOL0& oV RS
000012 012700 000107 FIRST: MOV N+t RO

000016 012701 000124 MOV *oR1
000022 008311 SECOND: ASL ¥R1
000024 011144 HOV #R1,-(SP)
000024 004311 ASL w1
000030 008311 ASL @1
000032 0462421 ADD (SPI4r(R1}
000034 005300 DEC RO

000038 001371 BNE SECOND
2 000040 012700 000104 MOV /RO

000044 014103 THIRD: MOV ~(RLY,R3

000048 012702 177777 oy #-1/R2

000052 005202 FOURTH! INC R2

000054 160003 SuR ROYRI

000056 103375 BCC FOURTH

0000480 080003 ADD ROsR3
800082 010311 HOV R3v@R1

000084 080261 177776 ADp R2y~2¢R1)

600070 005300 BEC RO

0600072 001384 BNE THIRD
000074 018100 MoV (K1) yRO
000076 142700 000012 FIFTH: SUB #10. 4RO

000102 103375 800 FIFTH

000104 0AZ700 000072 ADD €10.+°0vRO
000110 STTYOUT
000114 005011 CLR @R}

000116 00530% DEC RS

000120 001334 BNE FIRST
000122 EXIY

&

47 000124 000107 At SREPT N4

48 JWORD 1
4y <ENDR

50

51 000342 124 110 105 MESSAG: .ASCII /THE VALUE OF E
000345 040 136 103

000350 114 125 105

000353 0an 117 106

000356 040 105 040

000341 111 123 oz

00384 01% 2012 062

SUM.MAC VERSION 1 MACRO Y035.00 Ssturdaw OH-Jan-B83 08107 Fase 1-1

000347 (&2 200
52 LEVEN

53

54 000000

BUM.BAC VERSION 3

Sumbol table

SENTE EXF
HACKD V05.00 Saturday 0B-Jan-83 08:07 Pase 1-2

A Q001 24K FIFTH 000074R FOURTH Q000SIR

Exr 0000COR #1IRST 00GOIZK MESSAG 00034TR

. ABS. 000000 000 (RMWyT,GBLABSOURY

000372 001 +LEL yREL 5 EON)

Errors detected: o0

TAX Assembier statistics

wark file reads: O

work file urites: O

Gize of work file! 8227 Wurds (33 Fages)

4ize of core rool! 15816 Words (61 Fages)

Orerating swustem! KRT-1t

Elarsed time! 0010

DRISUM)LF SUMSDIC S

5. 03

SUM.HAC VERSION 1 MACRD V05,00 Saturday 0B-Jan-83 081

Cross reference table (CREF V05.00)

7 Page S-1

a 1-14 1-478

EXP 1-114 1-54

FIFTH 1-37% 1-3%

FIRST 1-13¢ 1-44

FOURTH 1-25¢ 1-28

MESSAG 1-11 1-518

N 1-7% 1-12 1-13 1-22 1-a7

SECOND 1-158 1-21

THIRD 23¢ 1-35

166

WMCALL . TIYOUTy .EXITs FRINT

DIGITS OF 'E’ TO CALCULATE

IPROCALS OF THE FACTORIALS

LR S PZTEE 2% V2. TRE 2NN

#PRINT INTRODUCTORY TEXT

ND, OF CHARS OF ‘E‘ TO PRINT

§NO. OF DIGITS OF ACCURACY

JADDRESS OF DIGIT VECTOR

iDO MULTIPLY BY 10 (DECIMAL)
18AVE %2

ik

B

NOW %10, POINT TO NEXT DIOIT

+AT END OF DIGITST

#BRANCH IF NOT

1G0 THRU ALL PLACES: DIVIDING

#BY THE PLACES INDEX

JINIT QUOTIENT REGISTER

$BUMP QUOTIENT

FSUBTRACT LOODP ISN‘T BAD

#NUMERATOR I8 ALWAYS < 10N

$FIX REMAINDER

#SAVE REMAINDER AS BASIS
$FOR NEXT DIGIT

GREATEST INTEGER CARRIES

$TO GIVE BIGIT

#AT END OF DISIT VECTOR?

$BRANCH IF NOT

$BET DIGIT TGO QuTPyY

#FIX THE 2.7 TO .7 SO

FTHAT IT IS ONLY 1 DIGIT

#(REALLY DIVIDE BY 10)

#MAKE DIBIT ASCII

FOUTPUT THE BIGIT

JCLEAR WEXT DIGIT LOCATION

YMORE DIGITS TG PRINT?

#BRANCH IF YES

$WE ARE DONE

FIKIT VECTOR TD ALL ONES

N = 000106 THIRD 000GR4R

SECOND 000022R

SUM.MAC VERSION 1

Cross reference table (CREF v03.00)

<EXET 1-38 143

<PRINT 1-30 1-31
JTTYOU 136 1-41

LINK/MAPSUN

RT-11 LINK U0B.00 Losd Mar

“SAY Title: SUM.MA Ident?

Ssction Addr Size Global Value

« ABS. 000000 001000 = 284, words

001000 000372 = 125, words

HACRO V05.00 Ssturdaw 08-Jan-83 08307 Pase N-1

Bsturdaw 08-Jan-83 08t11 Pase 1

Global Vaslue Global Value

(RW« LyBBi.+ABSOUR)

(RUs IsLCLIREL1 CORY

Transfer addrass = 001000y Hish lisit = 001370 = 380. wards

RENAME MATCH.BAS HATCH.HAP

«MACRO/LIST/CROSSREFERENCE DENOFG

DEMOFS MACRD V0S.00 Saturdes 08-Jan-83 08:11 Fese 1

000000

Q00006

10 000020

11 000054

15 000062 026727 000314 000132

16 000070 003020

18 000126 005267 000250

20 000146 000207

21 .

STITLE DENOFG

<IDENT /V05.00/

+ FOREGROUND DEMONSTRATION PROGRAM TO PRINT MESSAGE YO BACKGROUND: THEN

4 GUEUE A MESSAGE EVERY 2 SECONDS FOR THE BACKGROUND TO RING THE BELL.

MCALL JSDATC, .PRINT:.MRKT» . GSET) .SFND

STARTI! .PRINT @MSG SPRINT INTROBUCTORY MESSAGE
«QSET SOUEUE»$100, 3SET ASIPE 100 0 ELEMENTS fOR MESSAGES
JMRKT #AREAr$TINE) SHKTCy 81 $SET UP HKTIM FOR 2 SECONDS FROM NOW

<SPND $SUSPEND THE FG TILL MKYIN SATISFIED

+ MKTEM COMPLETION ROUTINE

MKTC? CMP MSGCNT» $90. 190 MESSAGES QUEUED YET?
BST MKTCL SYES~ND SENSE OUEUEING ANOTHER

+SDATC $AREA-PBUFFER #1,#SDATC ISEND MESSAGE TO 80

INC MSGONT TBUNP MESSAGE COUNTER
MKTCL1: JHMRKT SAREASBTIMEr 8NKTC, 41 JSET UP aNOTHER MKTIM FOR 2 SECONDS

RETURN 4RETURN FROM COMPLETION ROUTINE

H SDAT CONPLETION ROUTINE

24 000170 005367 000206 SDATCT DEC HSGCNT IONE OF THE MESSAGES HAS BEEN RECIEVED

35 000174 000207 RETURN SRETURN(RTS PC)

24

27 ¥ ASCII MESSAGES

28 (NLIET BEX
29

30 000174 106 117 122 MSG! LASCII /FOREGROUND DEMONSTRATIDN PROGRAN/<I$><12>

31 000240 123 105 116 LASCII /SENDS A MESSABE TO THE BACKGROUND PROGRAM *DEMOBG*/<1S>:12
32 000324 105 126 105 .ASCIZ /EVERY 2 SECONDS, TELLING LT TD RING THE BELL..

33 <EVEN

34

35 000402 000000 MSGCNT: NORD O FHESSAGE COUNTER
36

37 $YIME CONSTANT

38 000404 000000 TINE: JWORD O IHIBH ORDER
39 000406 000170 JMORD 40.%2 160 TICKS A SECONDs2 SECONDS
40

41 000410 AREAT BLKW & FENT ARGUMENT AREA
42

43 000424 BUFFER! .BLKN 400 JBUFFER FOR MESSAGES
44

45 JOUEUE AREA
46 001424 OQUEUE: .BLKM 100.%10. 710, WORDS FER QUEUE ELEMENT FOR THE XM AONITOR
47

48 000000” LEND START

DEROFG MACRO V05.00 Saturdaw 08-Jan-83 08111 Pase 1-1
Swmbol table

AREA 000410R HKTCL 00O132R QUEUE 001424R START 00000ORS +eoV1 = 000003
BUFFER 000424R HSG 000176R SDATC 000170R TIME 000404R 1eaVU2 = 000027
MKTC 000042R MBBCNT 00OA02R

+ ABS. 000000 000 (RWrI,GBL,ABSIOVR)

005344 001 ¢RMsIsLCLARELPCON)

Errars detected: O

253 Assesbler statistics

Work file readst O

dork file writest O

Size of work filet Y384 Norde (¢ 37 Pases)

iz of core rool! 13618 Nords ¢ &1 Pases)

Orerating swstem! RT-11

Elarsed time: 00102127.42

DK DEMOF Qs LP :DEMOFG=DK$ BENDFG/C

DEMOFG MACRD V05,00 Ssturdaw 08-Jan-83 0BI1Y Pase S-1

Cross refarence table (CREF V05.00)

1~9 1-10 1-17 1-19

1-17 1~17 1-17¢ 1-17¢

1-10 1-17 1-19 1-41¢

1-17 1-438

1-10 1-158 119

1-16 1-19¢

MSG 1-8 1-30%

HSGCNT 1-15 1-18% 1-24% 1-35¢

OUELE 1~ 1-448

SDATC 1-17 1-244

START 1-8¢ 1-48

TIME 1-10 1-19 1-38¢

DEMOFG NACRD 05.00 Saturdaw 08-Jan-83 08111 Fase M-t

Cross reference table (CREF V05.00)

1-9

1-17

1-10 1-10 1-10 1-17 1-17 1-17 1-17 1-19 1-19 1-1%
1-17

1-9 1-10 1-17 1-19

1-10 1-19

1-64 1-16 1-19

1-6% 1-8

1-64 1-

1-68 1-17

1-5% 1-11

+LINK/FOREGROUND/MAF DEWOFG

RT~11 LINK ¥08.00 Load Mar

DEMOFG.REL Title: DEMOFG Tdent?

Section Addr Size Slobal Value

. ABS, 000000 001000 = %6, words

001000 005344 = 1394. wards

START 001000

Transfer address = 001000, High limit

+BIRECTORY £.0BJ

Ssturday 0B-Jan-83 08115 Fage 1

V05,00

Global Value Global VYalue

(RU»I)GBL»ABSYOVR)

CRWrY+LELsREL sCONY

= 006342 = 1449. uords

0§-Jan-83

apT .QBJ B 22-Cct-82 VDT .OBJ 8 22-Dct-82

YTHDLR . OBJ 8 22-0ct-82 SYSLIB.OBJ 46 22-Dct-B2

ERROUT .0BJ 15 22-0ct-82 FORLIB.OBJ 141 12-Naw-80

TEST .0BJ 1 08-Jar-@3 SUM LOBJ 1 0B-Jan-83
DEHOFG .OBJ 1 08-Jan-83 GRAFH OB 16 08-Jan-83

10 Filess 245 Blocks

354 Free blocks

<DELETE/NOGUERY GRAPH.X

+DELETE/NOGUERY SUM,%

<DELETE MATCH.MAP

16-7

Using Indirect Files

Using Indirect Files

SUMMARY:

COMMANDS TO

START AN

INDIRECT FILE

FILE MAINTENANCE

REFERENCE

«DEASSIGN

0at1x;as

@filnam.COM

Start the execution of the specified indirect file
(filnam.COM).

CTRL/C CTRL/C

Halt execution of the indirect command file (use with cau-
tion).

DEASSIGN

Remove logical device assignments.

Indirect file INDCT.COM contains commands that perform the
appropriate copy and delete file maintenance operations. If the

commands were not already part of the file, you would need to
perform the appropriate file maintenance commands, in mon-
itor command mode, after execution.

RT-11 System User’s Guide (AA-5279C-TC). Maynard, Mass.: Digital Equip-
ment Corporation, 1983.

A guide to the use of the RT-11 operating system.

16-8

CHAPTER 17

ADVICE TO NEW USERS

This manual introduces several common RT-11 functions but is

neither exhaustive nor comprehensive in its treatment of

system features, commands, or their options. For many users,

this manual’s description of these fundamental system opera-

tions is sufficient; other users, however, may need or want fur-

ther description of a programming language, extended system

features, or the internal workings of the RT-11 system. These

people should consult the references at the end of each chapter,

the Guide to RT-11 Documentation, RT-11 System User’s

Guide, or the RT-11 System Ultilities Manual. The Guide to

RT-11 Documentation lists all RT-11-related material avail-

able from DIGITAL; the RT—11 System User’s Guide explains

in detail monitor commands and command options; the RT-11

System Utilities Manual describes the use of the RT-11 system

utilities to develop programs, execute programs, and maintain

files and storage media.

The Introduction to RT-11 has shown you the right way to use

some important system features and their associated monitor

commands. This information, combined with the following basic

guidelines for using the system, can help you to avoid pitfalls

common to new users:

e Do not become dependent on a single copy of a file. Always

make a backup copy of any useful file.

e When using the editor, close files periodically to preserve

edits. Divide long editing sessions into short ones so that

user — or hardware — errors do not lose the efforts of long

hours of editing. Close the file with the EX command and

begin editing again from where you left off.

e Avoid careless use of wildcard operations that manipulate

multiple files. Use the /QUERY option to verify the operation

to be performed.

e When using indirect files or BATCH streams, avoid opera-

tions that manipulate any of the system (.SYS) files or the

indirect file in use. Check the indirect file carefully for errors

before you use it. Once the command stream is initiated, you

may be unable to detect and prevent possibly serious errors.

e If you run two jobs under the control of the foreground/back-

ground monitor, be sure there is no conflict of nondirectory-

structured devices (LP:, MT:, TT:) used by the two jobs.

17-1

Adpvice to New Users

USING THE A HELP file containing information about the keyboard mon-

HELP FILE itor commands and how to use them is distributed with the

RT-11 system. A list of keyboard monitor commands and a de-

scription of their functions can be displayed at the terminal by

typing:

HELP

+HELP »@D

To get a detailed description of the use of the HELP command

itself, type only HELP.

+HEL PEED

The following information is displayed on your terminal.

HELP Lists helpful information

SYNTAX

HELPL/opPptions]Il torpicl subtopicliitemssseyl S

or HELP % :

SEMANTICS

HELP % lists the items for which help is

available.

HELP lists the HELP text (of which this is a

Part).

HELP toric lists information on the srpecific

toric onlvy.

HELP topic subtorpic lists information on the

specific subtoric only (for example,

HELP HELP SEMANTICS lists the paradgrarh of

which this text is a part), S’

HELP torpic subtopiciitem lists only the text

associated with the specific item.

HELP topic/item lists the text associated with

the specific item under the subtoric QOPTIONS,

Valid torpics are the Kevboard monitor commands.

Subtorics are "SYNTAX", "SEMANTICS", "OPTIONS",

and "EXAMPLES".

Items are specific command orPtions,

OPTIONS

PRINTER

Prints the HELP text on the line Printer

TERMINAL (default) B

Tyrpes the HELP text on the terminal

EXAMPLES

HELP COPY 'Lists information about

'COPY command

HELP/PRINTER EXECUTE 'Prints information

tabout EXECUTE command

HELP PRINT OPTION:COPIES 'Describes the COPIES

tortion for PRINT

HELP COPY/BOOT/DEVICE !Describes the listed

loptions for COPY

In the command syntax shown above, topic represents a specific

keyboard monitor command about which you need information.

The subtopic represents a specific category within a topic; the
subtopics are syntax, semantics, options, and examples. The

17-2

item represents one of the members within the subtopic group.

You can specify more than one item in the command line if you

separate the items with a colon (2).

The only two options you can use with the HELP command are

/PRINTER and /TERMINAL. The option /PRINTER sends the

help information to a printer if one is available. The option

/TERMINAL (the default mode) sends the information to the

terminal.

To get all the information in the help file about the keyboard

monitor command ASSIGN, type the following command:

JHELP ASSIGNGED

You have used this command in examples in the other chapters.

The following information is displayed at your terminal:

ASSIGN Associates a logdical device name with a

physical device

SYNTAX

ASSIGN physical-device-name logical-device-name

SEMANTICS

Phrsical-device-name is the RT-11 standard

rermanent name for the device.

{ogical-device-name is one to three alphanumeric

characters long with no intervenind srpaces or tabs.,

The phrvysical name and logical name must be

separated by a space.

OPTIONS

None

EXAMPLES

ASSIGN RK1: DK:

When you want specific information for a keyboard monitor

command, such as the syntax, semantics, options, or examples,

include that subtopic in the command. For example, the fol-

lowing command lists all the options that are available for use

with the DIRECTORY keyboard monitor command:

+HELP DIRECTORY OPTIONSEED

If you need information only about a specific item in a list of

options, type the item in the command line.

+HELP DIRECTORY OPTIONS:ORDERGE

ORDER[:catesory]

Orders the directory listing according to the category

specifyi same as /SORT, Catedories are:

NAME- orders alphabetically by file name

TYPE- orders alphabetically by file tvpe

SIZE- orders by file size

DATE- orders by creation date

POSITION- orders by file Position on the device

17-3

Advice to New Users

APPENDIX A

MANUAL BOOTSTRAPPING OPERATIONS

PDP-11 computers that do not have the automatic bootstrap-

ping capability described in Chapter 2 require manual

bootstrapping. This appendix’s first section, Bootstrapping the

System, provides information that you will need to bootstrap

the system manually. Follow the procedure described in this

section; you will be referred — if appropriate for your

system — to one of the other sections, which describe using a

pushbutton console to bootstrap, using a switch register console

to bootstrap, and typing the bootstrap.

Once you have identified your hardware configuration, you are

ready to bootstrap the system. The purpose of the bootstrap

procedure is to load and start the RT-11 monitor in computer

memory, activating the RT-11 operating system for your use.

1. Set the terminal to an on-line condition.

2. Make sure that the computer power is on and that the com-

puter is not already in use. Stop the computer, following

one of two procedures:

e If your operator’s console has switches, set the switches to

HALT, then ENABLE.

o If your operator’s console has pushbuttons, locate the

button labeled CNTRL; hold it down and push the button

labeled HLT/SS; then release both.

3. Place the system volume in device unit 0. Make sure that

the system volume is write-protected (for all except RX01 or

RX02 diskettes, which are always write-enabled).

4. Place the storage volume in the device unit you identified

for question 8 in the Hardware Configuration section of

Chapter 2. Make sure that this volume is write-enabled.

5. If your operator’s console has pushbuttons, continue to step

6. Otherwise, go to step 8.

6. Locate the pushbutton labeled CNTRL, hold it down and

push the button labeled BOOT. Check the terminal printer

or screen. If there is no response, read the Using a Push-

button Console to Bootstrap section of this appendix; other-

wise, continue to step 7.

7. Your terminal printer or screen should show several num-

bers and then a dollar sign ($).

BOOTSTRAPPING

THE SYSTEM

Manual Bootstrapping Operations

10.

11.

Type on the terminal keyboard the two-letter mnemonic

that represents your system volume (from question 6 in the

Hardware Configuration section') followed by a carriage re-

turn. Be sure to use the SHIFT key so that you type upper-

case characters. For example, for RX02 diskette, type:

$DYGRD

Continue to step 11.

Check your switch console. If it has a three-way dial labeled

DC OFF, DC ON, and STAND BY, go to step 9. If it has

three individual switches labeled DC ON/OFF, EN-

ABLE/HALT, and LTC ON/OFF, go to step 10. If it has a

row of switches across the entire console, read the Using a

Switch Register Console to Bootstrap section of this appen-

dix.

Set the three-way dial to DC ON. Then locate the BOOT

switch (to the left of the dial) and raise it. Go to step 11.

Put all three switches in the up position; then move the DC

ON/OFF switch down and up and check the terminal re-

sponse.

e If the terminal displays the dollar sign ($), type on the

keyboard the two-letter mnemonic that represents your

system volume (from question 6 in the Hardware Configu-

ration section) followed by a carriage return. Be sure to

use the SHIFT key so that you type uppercase characters.

For example, for RX02 diskette, type:

$DYGD

Continue to step 11.

¢ Any other response indicates that you must type the boot-

strap on the terminal keyboard. Read the Typing the

Bootstrap on the Terminal Keyboard section of this ap-

pendix.

If your system has been successfully bootstrapped, a mes-

sage like the following prints on the console terminal.

RT-11FB V05.xx (the xx’s represent numbers that have

significance only for DIGITAL’s soft-

ware development; you can ignore

these numbers)

The RKO5 disk is an exception. Hardware bootstraps use DK, not RK, for
RKO5.

Manual Bootstrapping Operations

If the message indicating RT-11FB V05 does not appear,

refer to Appendix B and read the section entitled Sugges-

tions for Bootstrapping the System.

The message indicates that the foreground/background

monitor component of the RT-11 Version 5.0 operating

system is active. Set the system volume to a write-enabled

condition (for all except RX01 and RX02 diskettes, which

are always write-enabled).

You should now direct your attention to the console terminal,

since system interaction continues on this device. Continue to

Chapter 3.

The bootstrap for your RT-11 computer system consists of a TYPING THE
series of six-digit numbers that you must type on the terminal BOOTSTRAP

keyboard. First, obtain the bootstrap from the RT-11 Installa- ON THE TERMINAL

tion Guide, and copy the numbers into the space below:
KEYBOARD

Now, follow the instructions below to type, on your terminal

keyboard, the bootstrap (if you make a mistake, type the DE-

LETE key on the terminal keyboard, once for each typing error,

and then type the correct digitls)]):

Type 001000.

Type slash (/).

Type the first number in the bootstrap column.

Type the LINE FEED key.

Type the next number in the bootstrap column.

S
R

Repeat steps 4 and 5 until you have typed all the numbers

in the column.

N Type the RETURN key.

8. Type 1000G.

9. Continue to step 11 in the section entitled Bootstrapping

the System in this appendix.

A-3

Manual Bootstrapping Operations

USING A If your computer has a pushbutton console similar to the one

PUSHBUTTON shown in Figure A-1, you can use the buttons to manually give

CONSOLE TO the computer the information it needs to bootstrap the system.

BOOTSTRAP

oo

sy

Figure A—-1 Pushbutton Console

The bootstrap for your RT-11 computer system consists of a

series of six-digit numbers that you must load into the com-

puter using the pushbutton console. First, obtain the bootstrap

of your system device from the RT-11 Installation Guide, and

copy the numbers into the space provided below. If your system

has a hardware bootstrap,' the bootstrap will consist of only two

numbers, which you should copy into the left-hand space; other-

wise, the bootstrap will consist of two columns of numbers la-

beled Location and Contents, which you should copy into the

right-hand space:

Hardware Bootstrap Other Bootstraps

Load Address =

Start Address =

To activate the hardware bootstrap, use the pushbuttons to set

the numbers as described in the following steps (if you make a

mistake, push the button labeled CLR, then reenter the

number):

1. Push the appropriate buttons for the load address (read the

number from left to right).

2. Push LAD.

3. Push the appropriate buttons for the start address (read the

number from left to right).

4. Push the button labeled CNTRL, and, while holding it

down, push the button labeled START.

5. Continue to step 11 in the Bootstrapping the System section

of this appendix.

'A hardware bootstrap is bootstrapping information that is already in com-
puter memory but that you must activate by entering a load address and a

start address, each a six-digit number.

Ad

Manual Bootstrapping Operations

To activate other bootstraps, use the pushbuttons to set the

numbers as described in the following steps (if you make a mis-

take, push the button labeled CLR, then reenter the number):

1.

2.

3.

10.

Push 1000 (read the number from left to right).

Push LAD.

Push the appropriate buttons for the first number in the

Contents column (read the number from left to right).

Push DEP; push CLR.

Push the appropriate buttons for the next number in the

Contents column (read the number from left to right).

Repeat steps 4 and 5 until all numbers in the column have

been used.

Push 1600.

Push LAD.

Push the button labeled CNTRL, and, while holding it

down, push the button labeled START.

Continue to step 11 in the Bootstrapping the System section

of this appendix.

If your computer has a switch register console similar to the

one shown in Figure A-2, you can use the switches to manually

give the computer the bootstrapping information it needs to

start the system.

Figure A-2 Switch Register Consoles

Several switches on the console are spring-loaded. This means

that the switch moves in only one direction and returns to its

initial position after you use it. You must set the remaining

switches either up or down as instructed.

USING A

SWITCH REGISTER

CONSOLE

TO BOOTSTRAP

Manual Bootstrapping Operations

The bootstrap for your RT-11 computer system consists of a

series of six-digit numbers that you must load into the com-

puter using the switch register console. First, obtain the boot-

strap of your system device from the RT-11 Installation Guide,

and copy the numbers into the space provided below. If your

system has a hardware bootstrap,’ the bootstrap consists of only

two numbers, which you should copy into the left-hand space;

otherwise, the bootstrap consists of two columns of numbers,

labeled Location and Contents, which you should copy into the

right-hand space:

Hardware Bootstrap Other Bootstraps

Load Address =

Start Address =

Next, convert the numbers in the column to binary numbers,

using the conversion process shown in Table A-1.

Table A-1 Binary Conversion

Octal Binary

0 = 000

1 = 001

2 = 010

3 = 011

4 = 100

5 = 101

6 = 110

7 = 111

For example, the number 173100 is converted to 001 111 011

001 000 000. You set this 18-digit binary number into the

switch register by placing each individual switch in an up posi-

tion for a 1 or a down position for a 0. The number 173100 is set

into the switch register as follows:

28 20 N B A R B ARO

The number 012700 is converted to 000 001 010 111 000 000
and is set into the switch register as follows:

OS T T O I A A S A A

'A hardware bootstrap is bootstrapping information that is already in com-
puter memory but that you must activate by entering a load address and a
start address, each a six-digit number.

A-6

Manual Bootstrapping Operations

NOTE

The switch register is the group of switches appearing on

the left of the console. Your switch register may have

only 16 switches rather than 18; in this case you can

ignore the left-hand two digits of the binary number when

you set the switches.

To activate the hardware bootstrap:

1. Set the switch register to the appropriate positions for the

load address.

Press the spring-loaded LOAD ADDR switch.

Set the switch register to the appropriate positions for the

start address.

Press the spring-loaded START switch.

Continue to step 11 in the Bootstrapping the System section

of this appendix.

To activate other bootstraps, set the numbers into the switch

register using the following method:

1.

10.

Set the switch register to the appropriate positions for the

number 001000.

Press the spring-loaded LOAD ADDR switch.

Set the switch register to the appropriate positions for the

first number in the Contents column.

Press the spring-loaded DEP switch.

Set the switch register to the appropriate positions for the

next number in the Contents column.

Repeat steps 4 and 5 until all the numbers in the column

have been used.

Set the switch register to the appropriate positions for the

number 001000.

Press the spring-loaded LOAD ADDR switch.

Press the spring-loaded START switch.

Continue to step 11 in the Bootstrapping the System section

of this appendix.

APPENDIX B

SELECTED SYSTEM TOPICS

The remarks in this appendix cover a variety of topics that

should prove helpful to you as you perform the demonstrations

in the manual. Included, for example, are instructions for

starting and stopping the system, alternate methods for per-

forming some system operations, and directions for using the

language volume. The sections are listed here in the order in

which they are referenced from within the text of the manual.

You can plan to take a break at the end of any individual

chapter in this manual. If you intend to be away from the com-

puter system for any length of time, you should halt the system

and remove your system and storage volumes.

Perform the following steps in order:

1. Stop the computer.

e If your computer is a PDP-11/23-PLUS, lift the HALT

toggle switch to the up position.

e If your computer is a PDP-11/24 or a PDP-11/44, push

the HALT/CONT/BOOT horizontal toggle switch to the

HALT position.

e If your computer operator’s console has switches, press the

HALT switch.

e If your computer operator’s console has pushbuttons, hold

the CNTRL button down and push the HLT/SS button.

2. Unload the system volume. Set the device unit to an off-line

condition, and remove the system volume.

3. Unload the storage volume. Set the device unit to an off-

line condition, and remove the storage volume.

4. Remove and save all terminal and line printer output list-

ings.

Perform the following steps in order:

1. Follow the bootstrap procedure, as described in Chapter 2 or

Appendix A.

STOPPING AND

STARTING THE

SYSTEM

Stopping the

System

Starting the

System

Selected System Topics

THE SYSTEM STOPS

UNEXPECTEDLY

SUGGESTIONS FOR

BOOTSTRAPPING

THE SYSTEM

Enter the current date and time-of-day (Chapter 4).

Make any necessary logical device assignments. For the ex-

amples in this manual, you must assign the logical name

VOL: to your storage volume (Chapter 4).

If for any reason the computer system stops unexpectedly, re-

quest help from an experienced user if possible. The problem

may be accompanied by an error message (see the R7T-11
System Message Manual); the problem may be in the hardware,
in the software, or in your program. Once the problem is diag-

nosed and corrected, try to bootstrap the system again.

You must be able to bootstrap your RT-11 system before you

can perform the demonstrations in this manual. Three common

bootstrapping problems and suggestions for their correction
follow.

1. You cannot remember how to bootstrap your system.

Ask an experienced RT-11 user to help you. If no one is

available, read the bootstrapping instructions in the RT—11

Automatic Installation Booklet or the RT-11 Installation

Guide. If necessary consult the appropriate hardware man-

uals for the devices that are part of your system; these man-

uals provide a description of the device and operating proce-

dures. Then try the bootstrap procedures again.

You have followed the bootstrapping instructions correctly,

but your system printed a message other than what you

expected.

a. The message can be one of the following:

?BO0OT-F~-No boot on volume

?BOOT-U-Conflicting SYSGEN ortions

?BO0OT-U-Handler file not found

?BO0OT-U-Insufficient memory

?BOOT-U-I/Derror

?800T-U-Manitar file not found

?BOOT~-U-No KT11

?BO0OT-U-Swar file too small

?PBOOT-U-SWAP.S5YS not found

?BO0OT-W-Error redding handler

?BOOT-W-Invalid ormissing TT.SYS

These are bootstrap error messages, indicating that a

problem in the system is preventing bootstrapping.

These eleven messages are fully explained in the RT-11

System Message Manual, but you should not try to cor-

rect the problem yourself if an experienced user is avail-

able to help.

b. The message can be one of the following:

RT-118J VOS-xx

RT-11XM VOS-xx

These indicate that a valid RT-11 V5 monitor program

has been bootstrapped, but it is not the one you should

be using. Reboot the correct monitor program by typing

the following commands on the terminal:

. BOOTGEED

Device or file? RT11FB,.SYSED

c. Any other message indicates that an old version of

RT-11 (V1, V2, V2B, V2C, V3, V3B, or V4) has been

bootstrapped. Only Version 5 of RT-11 can be used to

perform the demonstrations in this manual.

3. You followed the bootstrapping instructions correctly, but

nothing happened, that is, there was no terminal response

at all.

Repeat the bootstrap procedure from the beginning. Before

you begin, make sure that the system volume is properly

mounted in device unit 0. The computer should be on but

not running (the light labeled RUN should not be on); if the

computer is running, stop it as described above. Make sure

that the terminal is on line and that its baud rate is set to

300. If you are using a display terminal, make sure that the

screen is bright enough for you to read. If your terminal

uses a paper printer, make sure that the paper is properly

loaded.

A copy of the RT-11 Version 5 system volume, as distributed by

DIGITAL, should be stored away for safekeeping as a backup

copy. If you do not have a backup copy of your system volume,

create one before you continue. Manual backup instructions are

in the RT-11 Installation Guide; an experienced user should

perform the backup operation.

B-3

Selected System Topics

BACKING UP THE

SYSTEM VOLUME

Selected System Topics

DIRECTORY- VS

NONDIRECTORY-

STRUCTURED

VOLUMES

ALTERNATE

RENAME

OPERATION FOR

MAGTAPE USERS

Storage volumes are called file-structured volumes because

they are capable of physically storing files. These volumes can

be further categorized as directory-structured and nondirectory-

structured; the distinction is based on the method of directory

information storage, collection, and printing.

Directory information includes file names and types, dates of

creation, and (in most cases) file lengths. When you type the

DIRECTORY command, this directory information prints on

your terminal. Volumes such as disks and diskettes keep this

information in a single place at the beginning of the volume.

Each time you add or delete a file, the directory information is

updated. These volumes, which maintain a directory separately

from the files described, are said to be directory-structured.

Magtape volumes, on the other hand, do not keep directory in-

formation in any single, separate place on the tape but rather

with each individual file. For these volumes the directory infor-

mation is collected for printing as each file is encountered

during a sequential reading of all files on the tape. Thus, these

volumes are said to be nondirectory-structured.

You can list the directory from either type of volume in com-

plete or abbreviated format. Complete directories include the

file name, file type, file length, and date of creation (if the

DATE command was used before the file’s creation). For most

volumes, the directory format is as follows:

8-Jan-83

FILE LTYP 26 Zi-Feb-80

Abbreviated directories include only the file name and file type,

and are printed in five columns. For more information about

directory-structured and nondirectory-structured volumes, see

the RT-11 System User’s Guide.

You cannot use the RENAME monitor command if your volume

is a magtape because of the magtape’s sequential (nondirectory-

structured) nature. To perform the RENAME operation, you

must first copy the file, using the new file name, and then de-

lete the old file.

For example, to change the name of the GRAPH.TWO file, lo-

cated on your storage volume, to GRAPH.FOR, first make a

copy of GRAPH.TWO, giving the new file the name

GRAPH.FOR.

Long Command Format

. COPYGED

From? VOL:GRAPH.TWOGED

To 7 GRAPH.FORGD

B4

Selected System Topics

Short Command Format

,COPY YOL:GRAPH.TWO GRAPH.FORED

You now have two copies of the GRAPH file. Delete the one not

wanted, using the monitor DELETE command. (This command

is described in Chapter 7 in the section entitled File Delete

Operations.)

Long Command Format

.DELETE@®

Files? VOL:GRAPH.TWOGED

Short Command Format

JDELETE VOL:CRAPH, TWOED

A single copy of GRAPH.FOR now resides on your system

volume. Copy the file onto your storage volume.

Long Command Format

,COPYED

From? GRAPH.FORGED

To ? VOL:GRAPH,FORGD

Short Command Format

,COPY GRAPH,FDOR VOL:GRAPH.FORGEED

Delete the original file.

Long Command Format

,DELETEGE

Files? GRAPH,FORGRD

Short Command Format

(DELETE GRAPH.FORED

The combined effect of these four commands is to “rename”

GRAPH.TWO to GRAPH.FOR.

The FORTRAN/BASIC language volume was created during USING THE

system installation specifically for your use with this manual. FORTRAN/BASIC

This volume contains the FORTRAN IV and/or BASIC-11 lan- LANGUAGE VOLUME

guage processors and the monitor files required to use these

language processors. Before you can perform the FORTRAN IV

or BASIC-11 demonstrations, you must substitute this

B-5

Selected System Topics

SUBSTITUTING

VOLUMES

DURING

OPERATIONS

FORTRAN/BASIC language volume for the system volume cur-

rently mounted in device unit 0. The language volume then

serves as the system volume during the course of the FOR-

TRAN IV and BASIC-11 demonstrations.

Make sure that no system operations are in progress (the mon-

itor prompt, the period, should appear at the left margin of the

terminal printer), and stop the system (see Stopping and

Starting the System, this appendix). Now remove the system

volume currently loaded in device unit 0, and insert and write-

protect the language volume. Bootstrap the system (see Stop-

ping and Starting the System, this appendix). The following

monitor message should appear:

RT-11FB VYOS xx

Write-enable the volume. Then enter the current date and

time-of-day, and assign the logical name VOL: to your storage

volume, just as you did in Chapter 4. When you have done this,

you are ready to run the language demonstration. Return to the

main text of this manual.

Users of FORTRAN IV on diskette who have the FORTRAN IV

language processor on a volume apart from their system

volume must occasionally copy files and substitute volumes.

These operations are necessary when files needed are not stored

on a currently mounted volume. The appropriate volume, con-

taining needed files, must be substituted for a currently

mounted volume. If the volume to be dismounted contains nec-

essary files, these files must be copied to a volume that will

remain mounted.

For example, before you can compile the FORTRAN IV file

THIRD.FOR, you must substitute the language volume con-

taining the FORTRAN IV compiler for the system volume cur-

rently loaded in device unit 0. First, however, you must copy

the file THIRD.FOR to your storage volume so that it will be

available for use.

Long Command Format

,COPY@ED

From? THIRD.FORGED

To 7 VOL:THIRD.FODRED

Short Command Format

+COPY THIRD,FOR VOL:THIRD.FORGED

When the copy operation is finished, stop the system, remove

the system volume currently loaded in unit 0, and insert and

write-protect the language volume. See Stopping and Starting

the System (this appendix) if necessary. The following message

appears when the language volume is bootstrapped.

RT-11FB VOS. XX

Write-enable the volume. Then enter the current date and
time-of-day, and assign logical name VOL: to your storage

volume, as described in Chapter 4.

Next, compile the FORTRAN IV program THIRD.FOR, which

is now on VOL..

Long Command Format

+FORTRANGED

Files? VOL:THIRD.FORGD
PUTSTR

Short Command Format

+FORTRAN VOL:THIRDG®ED

PUTSTR

The FORTRAN command causes the object module to be cre-

ated on the default storage volume, which is presently the

system volume (that is, the language volume). Any errors that

occur during the compile operation indicate that the source file,

THIRD.FOR, contains typographical errors. You must edit the

file to correct any errors, recompile, and then copy the file to

VOL:. Once you have an object module compiled without error

and stored on VOL:, reload the main system volume in unit 0.

Follow the directions in Stopping and Starting the System.

Bootstrap and write-enable the system volume, enter the cur-

rent date and time-of-day, and assign the logical name VOL: to

your storage volume.

Now copy the object module on VOL: back to the system

volume.

Long Command Format

+COPYGED

From? UDOL:THIRD OBJED

To ? THIRD.OBJGD

Short Command Format

+COPY VOL:THIRD.OBJ THIRD.OBJGED

Continue to Chapter 13, to the section entitled Building the

Object Library.

B-7

Selected System Topics

Selected System Topics

USING THE

LINK VOLUME

The LINK volume was created during system installation for

you to use with this manual. This volume contains the linker,

LINK.SAV, and the system subroutine library, SYSLIB.OBJ.

Before you can perform the linking demonstrations in Chapters

9 and 12, you must substitute this LINK volume for your cur-

rent system volume, which is mounted in device unit 0. The

LINK volume then serves as the system volume during the

course of the linking demonstration.

First, transfer the object file you need to link to the storage

volume.

Long Command Format

+COPYRED

From? GRAPH,.OBJGED

To 7 YDL:GRAPH,OBJGED

Short Command Format

+COPY GRAPH.0BJ YOL:GRAPH.OBJGED

Make sure that no system operations are in progress (the mon-

itor prompt, the period, should appear at the left margin of the

terminal printer), and stop the system (see Stopping and

Starting the System, this appendix). Now remove the system

volume currently loaded in device unit 0, and insert and write-

protect the LINK volume. Bootstrap the system. The following

monitor message should appear:

RT-11FB VOS5. xx

Write-enable the volume. Then enter the current date and time,

and assign the logical name VOL: to your storage volume, just

as you did in Chapter 4.

Finally, transfer the object file from the storage volume to the

system volume.

Long Command Format

+COPYGED

From? UOL:GRAPH.OBJED

To ? GRAPH,OBJGED

Short Command Format

+COPY VOL:GRAPH.OBJ GRAPH.OBJRED

When you have done this, you are ready to run the linking

demonstration. Return to the main text of this manual.

Selected System Topics

Follow the file maintenance operations outlined in this section FORTRAN/LINK

if you substituted both a FORTRAN IV language volume and a FILE MAINTENANCE

LINK volume to perform the demonstrations in Chapter 9.

First, mount the FORTRAN IV language volume in device unit

0. If you do not remember how to do this, follow the instructions

in the section of this appendix entitled Using the FORTRAN/

BASIC Language Volume.

Next, obtain a directory listing of all the files on your FOR-

TRAN IV volume that have the name GRAPH, regardless of

file type; these files were generated as a result of the exercises

in Chapter 9.

Long and Short Command Formats

+DIRECTORY GRAPH.*@0D

8-Jan-83

GRAPH .BAK 2 08-Jan-83 GRAPH .FOR 2 08-Jan-83

GRAPH .0BJ 16 0B8-Jan-83 GRAPH ,LST 8 08-Jan-83

4 Filess» 28 BlocKs

48 Free blocKks

Since you have corrected errors in the source file GRAPH.FOR,

the version on your storage volume is obsolete. Transfer the

corrected GRAPH.FOR file from your system volume to VOL:,

thus replacing the obsolete file.

Long Command Format

+COPYGED

From? GRAPH.FORGD

To 7 VOL:GRAPH.FORGEED

Short Command Format

+COPY GRAPH.FOR VOL:GRAPH.FORGED

Next, transfer GRAPH.LST to your storage volume. This en-

ables you to examine the listing without having to recompile

the program.

Long Command Format

+COPYED

From? GRAPH.,LSTGED

To 7 VOL:GRAPH.LSTGEED

Short Command Format

+COPY GRAPH.LST VOL:GRAPH.LSTED

Once you have transferred all valuable files to your storage

volume, delete the unnecessary files from the system volume.

B-9

Selected System Topics

Long Command Format

JDELETERED

Files? GRAPH.*GD

Files deleted:

DK.GRAPH.BAK 7 YGED

DK,.GRAPH.FOR 7 YED

DK.GRAPH.O0BJ 7 Y@

DK.GRAPH.LST 7 YED

Short Command Format

+DELETE GRAPH, #GHD

Files deleted:

DK .GRAPH.BAK 7 YGED
DK.GRAPH.FOR 7 YED

DK.GRAPH.0BJ 7 YED

DK .GRAPH.LST 7 YGD

Make sure that no system operations are in progress (the mon-

itor prompt, the period, should appear at the left margin of the

terminal printer), and stop the system (see Stopping and

Starting the System, this appendix). Now remove the system

volume currently loaded in device unit 0, and insert and write-

protect the LINK volume. Bootstrap the system (see Stopping

and Starting the System, this appendix). The following monitor

message should appear:

RT-11FB VYOS xx

Write-enable the volume. Then enter the current date and time,

and assign the logical name VOL: to your storage volume, just

as you did in Chapter 4.

Obtain a directory of all files on the system volume that have

the name GRAPH, regardless of file type; these files were cre-

ated as a result of the linking demonstrations in Chapter 9.

Long and Short Command Formats

,DIRECTORY GRAPH.*ED

8-Jan-83

GRAPH .0BJ 14 08-Jan-83

2 Filess 33 BlocKs

80 Free blocks

GRAPH ,S5AV 13 08-Jan-B83

Transfer GRAPH.SAV to your storage volume. Because

GRAPH.SAV is an executable file, you can run the program

without relinking it.

Long Command Format

.COPY@ED

From? GRAPH.SAVEED

To ? VOL:GRAPH.SAVGEED

B-10

e

Short Command Format

+COPY GRAPH.SAY VOL:GRAPH.SAVED

Next, delete the unnecessary files from your system volume.

Long Command Format

+DELETEGD

Files? GRAPH.0BJ GRAPH.SAVGED

Short Command Format

+DELETE GRAPH.OBJ,GRAPH.SAVGRD

Finally, list the up-to-date directory of your storage volume so

that you can see its current status.

+DIRECTORY VOL:G@D

Leave the LINK volume mounted in device unit 0, and proceed

to Chapter 12, Linking Object Programs.

B-11

Selected System Topics

Absolute address

The binary number that is assigned as the address of a

physical memory storage location.

Absolute section

The portion of a program in which the programmer has

specified physical memory locations of data items.

Access time

The interval between the instant at which data is re-

quested from or for a storage device and the instant at

which the data actually begins moving to or from the

device.

ADC (Analog to Digital Converter)

A circuit that converts analog (voltage) signals to binary

data.

Address

A label, name, or number that designates a location in

memory where information is stored.

Algorithm

A prescribed set of well-defined rules or processes for the

solution of a problem in a finite number of steps.

Alphanumeric

The subset of ASCII characters including the 26 alpha-

betic characters and the 10 numeric characters.

ANSI

American National Standards Institute.

Application program (or package)

A program that performs a function specific to the needs

of a particular end-user or class of end-users. An applica-

tion program can be any program that is not part of the

basic operating system.

Argument

A variable or constant value supplied with a command

that controls the command’s action, specifically its loca-

tion, direction, or range.

Array

An ordered arrangement of subscripted variables.

Glossary-1

Glossary

Glossary

ASCII

The American Standard Code for Information Inter-

change; a standard code consisting of eight-bit coded

characters for upper- and lower-case letters, numbers,

punctuation, and special communication control charac-

ters.

Assembiler

A program that translates symbolic source code into ma-

chine instructions. This program replaces symbolic oper-

ation codes with binary operation codes and symbolic

addresses with absolute or relocatable addresses.

Assembly language

A symbolic programming language that can be trans-

lated directly into machine language instructions and is

specific to a given type of control processing unit.

Assembily listing

A listing, produced by an assembler, that shows the

symbolic code written by a programmer next to a repre-

sentation of the actual machine instructions generated.

Asynchronous

The type of operation that is triggered by another event,

as opposed to synchronous, or occurring at set time in-

tervals.

Background program

A program that runs at a low priority, that is, when a

higher priority (foreground) program is not using system

resources.

Backup file

A copy of a file, created as a precaution against loss of

the primary file.

Base address

An address used as the basis for computing the value of

some other relative address; the address of the first loca-

tion of a program or data area.

BASIC-11 (Beginner’s All-purpose Symbolic Instruction Code)

An interactive, algebraic computer language that com-

bines English words and decimal numbers. It is a widely

available, standardized, simple beginner’s language ca-

pable of handling industry and business applications.

Batch processing

A processing method in which programs are run consec-

utively without operator intervention.

Glossary—2

Baud

A unit of measurement of transmission speed; bits per

second.

Binary

The number system with a base of two; used by the in-

ternal logic of all digital computers.

Binary code

A code that uses two distinct characters, usually the

numbers 0 and 1.

Bit

A binary digit. The smallest unit of information in a

binary system of notation. It corresponds to a 1 or 0 and

to one digit position in a physical memory word.

Block

A group of physically adjacent words or bytes of a size

that is specific to a device. For input/output operations,

the smallest addressable unit on a mass storage device.

Bootstrap

A technique or routine whose first instructions are suffi-

cient to start a system of programs that bring an opera-

ting system into memory.

BOT (Beginning Of Tape)

A reflective marker that is applied to the backside of

magtape and identifies the beginning of the magtape’s

recordable surface.

Bottom address

The lowest memory address into which a program is

loaded.

Breakpoint

A location at which program operation is suspended to

allow operator investigation.

Buffer

A storage area used to temporarily hold information

being transferred between two devices or between a de-

vice and memory. A buffer is often a special register or a

designated area of memory.

Bug

A flaw in the design or implementation of a program; a

problem that can cause erroneous results.

Glossary—3

Glossary

Glossary

A flat, flexible cable consisting of many transmission

lines, or wires. It interconnects computer system compo-

nents to provide communication paths for addresses,

data, and control information.

Byte

The smallest memory-addressable unit of information.

In a PDP-11 computer system, a byte is equivalent to

eight bits.

Call

A transfer from one part of a program to another with

the ability to return to the original program at the point

of the call.

Calling sequence

A specified arrangement of the instructions and data

necessary to pass parameters and control to a given sub-

routine.

Central processing unit (CPU)

A hardware unit of a computer that includes main

memory and the registers and circuits that control the

interpretation and execution of instructions.

Character

A single letter, numeral, or symbol used to represent

information.

Character pointer

The place where the next character typed will be en-

tered. During editing, the character pointer indicates

the place in an ASCII text file where the next character

typed will be entered into the file.

Clear

To delete the contents of a storage location by replacing

the contents, usually with Os or spaces.

Clock

A device within a computer system that keeps time,

counts pulses, measures frequency, or generates regular

periodic signals for synchronization.

Code

A system of symbols used to represent data or instruc-

tions that are executed by a computer.

Glossary—4

Coding

The writing of instructions for a computer, using a

system of symbols that is meaningful to a computer, an

assembler, a compiler, or a language processor.

Command

A word, mnemonic, or character that, by virtue of its

syntax in an input line, causes a computer system to

perform a predefined operation.

Command language

The vocabulary used by a program or set of programs

that directs the computer system to perform predefined

operations.

Command language interpreter

The program that translates a predefined set of com-

mands into instructions that a computer system can in-

terpret.

Command string

A line of input entered into a computer system that gen-

erally includes a command, one or more file specifica-

tions, and optional qualifiers.

Compile

To produce binary code from the symbolic instructions of

a high-level source language.

Compiler

A program that translates a high-level source language

into machine instructions.

Computer

A machine that can be programmed to execute a set of

instructions.

Computer program

A plan or routine for solving a problem on a computer.

Computer system

A data processing system that consists of hardware de-

vices, software programs, and documentation that de-

scribes the operation of the system.

Concatenation

The joining of two or more strings of characters to pro-

duce a single string.

Glossary—5

Glossary

Glossary

Conditional assembly

The assembly of certain parts of a symbolic program

that occurs only when certain conditions are met during

the assembly process.

Configuration

A selection of hardware devices, software routines, or

programs that function together.

Console terminal

A keyboard terminal that acts as the primary interface

between the computer operator and the computer

system. The console terminal is used to initiate and di-

rect system operations by running software on the com-

puter.

Constant

A value that remains the same throughout a distinct

operation. (Compare with Variable.)

Context switching

The saving of key registers and other memory areas be-

fore switching between jobs with different modes of exe-

cution. An example of context switching is the use of

foreground/background programming.

Conversational

See Interactive.

CPU

See Central processing unit.

Crash

A hardware crash is the failure of a particular device to

operate; the operation of an entire computer system may

be affected. A software crash is the result of an opera-

ting system malfunctioning; the system’s protection

mechanisms may have failed or the software may not

have executed correctly.

Create

To open, write data to, and close a file for the first time.

Cross-reference listing

A printed listing that identifies all references in a pro-

gram to each specific symbol in a program. It includes a

list of all the symbols used in a source program and the

statements where the symbols are defined or used.

Glossary-6

Current location counter

A counter kept by an assembler to determine the ad-

dress assigned to an instruction or constant being as-

sembled.

Data

A term used to denote facts, numbers, letters, and sym-

bols. Data are the basic elements of information that can

be processed by a computer.

Data base

An organized collection of interrelated data items that

allow one or more applications to process the items,

while disregarding physical storage locations.

Data collection

To bring data from one or more locations to a central

location for eventual processing.

Debug

To detect, locate, and correct coding or logic errors in a

computer program.

Default

The value of an argument, operand, or field assumed by

a program if not specifically supplied by the user.

Define

To assign a value to a variable or constant.

Delimiter

A character that separates, terminates, or organizes ele-

ments of a character string, statement, or program.

Device

A hardware unit such as an I/O peripheral, magnetic

tape drive, or line printer.

Device control unit

A hardware unit that electronically supervises one or

more of the same type of devices. It acts as the link

between the computer and the I/O devices.

Device handier

A routine that services and controls the hardware activi-

ties of an I/O device.

Device independence

The ability to program I/O operations independently of

the device for which the I/O is intended.

Glossary-7

Glossary

Glossary

Device name

A unique name that identifies each device unit on a
system. It consists of a two-letter device mnemonic fol-

lowed by an optional device unit number and a colon.

For example, the common device name for RL02 disk

drive unit 1 is DL1:.

Device unit

One of a set of similar peripheral devices. An example of

a device unit is disk unit 0. It may be used synony-

mously with volume.

Diagnostics

A set of procedures used to detect and isolate malfunc-

tions and mistakes.

Digit

A character used to represent one of the non-negative

integers smaller than the radix (for example, in decimal

notation, one of the characters 0 to 9; in octal notation,

one of the characters 0 to 7; in binary notation, one of

the characters 0 and 1).

Direct access

See Random access.

Directive

Assembler directives are mnemonics in an assembly lan-

guage source program that are recognized by the assem-

bler as commands to control a specific assembly process.

Directory

A file in the form of a table containing the names of and

pointers to files on a mass storage volume.

Directory-structured

A storage volume is directory structured if the directory

at the beginning of the volume contains information (file

name, file type, length, and date-of-creation) about all

the files on the volume. Such volumes include all disks,
diskettes, and DECtapes.

Disk device

An aucxiliary storage device on which information can be

read or written.

Display

A peripheral device used to represent data graphically;

normally refers to some type of cathode-ray tube system.

Glossary—8

Downtime

The time interval during which a device or system is

inoperative.

Echo

The printing of characters typed by the programmer on

an I/0 device such as a terminal.

Edit

To arrange and/or modify the format of data; for ex-

ample, to insert or delete characters.

Editor

A program that allows the user to enter text into the

computer and edit it. Editors are language-independent

and will edit anything in character representation.

Effective address

The address used in the execution of a computer instruc-

tion.

Emulator

A hardware device that permits a program written for a

specific computer system to be run on a different type of

computer system.

Entry point

A location in a subroutine to which program control is

transferred when the subroutine is called.

EOT (End Of Tape)

A reflective marker applied to the backside of magtape,

which precedes the end of the reel.

Error

Any discrepancy between a computed, observed, or

measured quantity and the specified value or condition.

Execute

To perform an instruction or run a program on the com-

puter.

Expression V

A combination of operands and operators that can be

evaluated to a distinct result by a computing system.

Extension

The synonym used for file type.

Glossary-9

Glossary

Glossary

External storage

A storage medium other than main memory, for ex-
ample, a disk or tape.

Field

A specified area of a record used for a particular cate-

gory of data.

FIFO (First In/First Out)

A data manipulation method in which the first item
stored is the first item processed.

File

A logical collection of data that is treated as a unit, occu-
pies one or more blocks on a mass storage volume, and

has an associated file name and type.

File maintenance

The activity of keeping a mass storage volume and its
directory up to date by adding, changing, or deleting

files.

File name

The alphanumeric character string assigned by a user to

identify a file. It can be read by both an operating

system and a user. A file name has a fixed maximum

length that is system-dependent. (The maximum length
in an RT-11 operating system is six characters, the first

of which must be alphabetic. Spaces are not allowed.)

File specification

A name that uniquely identifies a file maintained in any

operating system. A file specification generally consists

of at least three components: a device name, a file name,
and a file type.

File-structured device

A device on which data is organized into files. The de-
vice usually contains a directory of the files stored on

the volume. (For example, a disk is a file-structured de-

vice, but a line printer is not.)

File type

The alphanumeric character string assigned to a file ei-

ther by an operating system or a user. It can be read by

both the operating system and the user. System-recog-
nizable file types are used to identify files having the

same format or type. If present in a file specification, a
file type follows the file name in a file specification, sep-

arated from the file name by a period. A file type has a

Glossary-10

fixed maximum length that is system-dependent. The

maximum in an RT-11 operating system is three char-

acters, not including any spaces and excluding the pre-

ceding period.

Flag

A variable or register used to record the status of a pro-

gram or device; the detection of errors by a translating

program.

Floating point

A number system in which the position of the radix

point is indicated by the exponent part of a number and

another part represents the significant digits or frac-

tional portion of a number (for example, 5.39 X 10° —

Decimal; 137.3 X 8* — Octal; 101.10 X 2° — Binary).

Flowchart

A graphical representation for the definition, analysis,

or solution of a problem, in which symbols are used to

represent operations, data, flow, and equipment.

Foreground

The area in memory designated for use by a high-

priority program. The program that gains the use of ma-

chine facilities immediately upon request.

FORTRAN IV (FORmula TRANslation)

A problem-oriented language designed to permit scien-

tists and engineers to express mathematical operations

in a form with which they are familiar. It is also used in

a variety of applications, including process control, in-

formation retrieval, and commercial data processing.

Full duplex

In communication, pertaining to a simultaneous, two-

way, independent, asynchronous transmission.

Function

An algorithm, accessible by name and contained in the

system software, that performs commonly used opera-

tions. For example, the square root calculation function.

General register

One of eight 16-bit internal registers in the PDP-11

computer. These are used for temporary storage of data.

Global

A value defined in one program module and used in

others. Globals are often referred to as entry points in

Glossary-11

Glossary

Glossary

the module in which they are defined and as externals in

the other modules that use them.

Half duplex

Pertaining to a communication system in which two-

way communication is possible, but only one way at a

time.

Handler

See Device handler.

Hardware

The physical equipment components of a computer

system.

Hardware bootstrap

A bootstrap that is inherent in the hardware and need

only be activated by specifying the appropriate load and

start address.

High-level language

A programming language whose statements are trans-

lated into more than one machine language instruction.

Examples are BASIC-11 and FORTRAN IV.

High-order byte

The most significant byte in a word. The high-order byte

occupies bit positions 8 through 15 of a PDP-11 word

and is always an odd address.

Image mode

A mode of data transfer in which each byte of data is

transferred without any interpretation or data changes.

Indirect address

An address that specifies a storage location containing

either a direct (effective) address or another indirect

(pointer) address.

Indirect file

A file containing commands that are processed sequen-

tially, and that could have been entered interactively at

a terminal.

Initialize

To set counters, switches, or addresses to starting values

at prescribed points in the execution of a program, par-

ticularly in preparation for re-execution of a sequence of

code. To format a volume in a particular file-structured

format in preparation for use by an operating system.

Glossary—12

input

The data to be processed; the process of transferring data

from external storage to internal storage.

input/Output device

A device attached to a computer that makes it possible

to bring information into the computer or get informa-

tion out.

instruction

A coded command that tells the computer what to do and

where to find the values it is to work with. A symbolic

instruction looks like ordinary language. Symbolic in-

structions must be changed into machine instructions

before they can be executed by the computer.

Interactive processing

A technique of user/system communication in which the

operating system immediately acknowledges and acts

upon requests entered by the user at a terminal. Com-

pare with batch processing.

interface

A shared boundary. An interface might be a hardware

component to link two devices, or it might be a portion of

storage or registers accessed by two or more computer

programs.

internal storage

The storage facilities that form an integral physical part

of the computer and that are directly controlled by the

computer; for example, the registers of the machine and

main memory.

Interpreter

A computer program that translates and executes a

source language statement before translating and exe-

cuting the next statement.

interrupt

A signal that, when activated, causes a transfer of con-

trol to a specific location in memory and breaks the nor-

mal flow of control of the routine being executed.

interrupt-driven

Software that uses the interrupt facility of a computer to

handle IO and responds to user requests: RT-11 is such

a system.

Glossary—-13

Glossary

Glossary

Interrupt vector

Two words containing the address of an interrupt ser-

vice routine and the processor state at which that rou-

tine is to execute.

Iteration

Repetition of a group of instructions.

Job

A group of data and control statements that does a unit

of work. A program and all of its related subroutines,

data, and control statements is an example; also, a batch

control file.

Label

One or more characters used to identify a source lan-

guage statement or line.

Latency

The time from the initiation of a transfer operation to

the beginning of actual transfer; that is, verification

plus search time. The delay while waiting for a rotating

memory to reach a given location.

Library

A file containing one or more macro definitions or one or

more relocatable object modules that are routines that

can be incorporated into other programs.

LIFO (Last in/First Out)

A data manipulation method in which the last item

stored is the first item processed; a push-down stack.

Light pen

A device, resembling a pencil or stylus, that can detect a

fluorescent cathode-ray tube (CRT) screen. The pen is

used to input information to a CRT display system.

Linkage

The code that connects two separately coded routines

and passes values and/or control between them.

Linked file

A file whose blocks are joined together by references

rather than by consecutive locations.

Linker

A program that combines many relocatable object mod-

ules into an executable module. It satisfies global refer-

ences and combines program sections.

Glossary—-14

Listing

The printed copy generated by a line printer or terminal.

Load

To store a program or data in memory. To place a vol-

ume on a device unit and put the unit on line.

Load map

A table, produced by a linker, that provides information

about a load module’s characteristics; for example, the

transfer address, the global symbol values, and the low

and high limits of the relocatable code.

Load module

A program in a format that is ready for loading and

executing.

Location

An address in storage or memory where a unit of data or

an instruction can be stored.

Locked

Pertaining to routines in memory that presently cannot

be swapped or transferred.

Logical device name

An alphanumeric name assigned by the user to repre-

sent a physical device. The name can then be used syn-

onymously with the physical device name in all refer-

ences to the device. Logical device names are used in

device-independent systems to enable a program to refer

to a logical device name assigned to a physical device at

run-time.

Loop

A sequence of instructions that is executed repeatedly

until a terminal condition prevails.

Low-order byte

The least significant byte in a word. The low-order byte

occupies bit positions 0 through 7 in a PDP-11 word and

is always an even address.

Machine language

The language used by the computer when performing

operations.

Macro

An instruction in a source language that is equivalent to

a specified sequence of assembler instructions, or a com-

Glossary-15

Glossary

Glossary

mand in a command language that is equivalent to a

specified sequence of commands.

Main program

The module of a program that contains the instructions

at which program execution begins. The main program

usually exercises primary control over the operations

performed; it also calls subroutines or subprograms to

perform specific functions.

Mask

A combination of bits that is used to manipulate selected

portions of any word, character, byte, or register while

retaining other parts for use.

Mass storage

Pertaining to a device that can store large amounts of

data that are readily accessible to the computer.

Matrix

A rectangular array of elements. Any matrix can be con-

sidered an array.

Memory

Any form of data storage, including main memory and

mass storage, in which data can be read and written.

Memory usually refers to main memory.

Memory image

A replication of the contents of a portion of memory,

usually in a file.

Mnemonic

An alphabetic easy-to-remember representation of a

function or machine instruction.

Monitor

The master control program that observes, supervises,

controls or verifies the operation of a computer system.

The collection of routines that controls the operation of

user and system programs, schedules operations, allo-

cates resources, performs I/0, and so forth.

Monitor command

An instruction or command issued directly to a monitor

from a user.

Monitor command mode

The state of the operating system — indicated by a pe-

riod at the left margin — that allows monitor com-

mands to be entered from the terminal.

Glossary--16

Mount a volume

To logically associate a physical mass storage medium

with a physical device unit. To place a volume on a

physical device unit; for example, to place a magtape on

a magtape drive and put the drive on line.

Multiprocessing

Simultaneous execution of two or more computer pro-

grams by a computer which contains more than one cen-

tral processor.

Multiprogramming

A processing method in which more than one task is in

an executable state at any one time, even with one CPU.

Nondirectory-structured

Refers to a storage volume that is sequential in struc-

ture and therefore has no volume directory at its begin-

ning. File information (file name, file type, length, and

date-of-creation) is provided with each file on the vol-

ume. Such volumes include magtape and cassette.

Non-file-structured device

A device, such as a line printer or terminal, in which

data cannot be organized as multiple files.

Object code

Relocatable machine language code.

Object module

The primary output of an assembler or compiler, which

can be linked with other object modules and loaded into

memory as a runnable program. The object module is

composed of the relocatable machine language code, re-

location information, and the corresponding global sym-

bol table defining the use of symbols within the module.

Object Time System (OTS)

The collection of modules that is called by compiled code

in order to perform various utility or supervisory opera-

tions; for example, FORTRAN IV Object Time System.

Octal

Pertaining to the number system with a radix of eight;

for example, octal 100 is decimal 64.

oDT

On-line Debugging Technique: an interactive program

for finding and correcting errors in programs.

Off-line

Pertaining to equipment or devices not currently under

direct control of the computer.

Glossary-17

Glossary

Glossary

Offset

The difference between a base location and the location
of an element related to the base location. The number

of locations relative to the base of an array, string, or
block.

One’s complement

A number formed by interchanging the bit polarities in

a binary number; for example, 1s become 0s; 0s become
1s.

On-line

Pertaining to equipment or devices directly connected to
and under control of the computer.

Op-code (operation code)

The part of a machine language instruction that identi-
fies the operation the CPU is to perform.

Operand

The data that an instruction operates upon. An operand
is usually identified by an address part of an instruction.

Operating system

The collection of programs, including a monitor and sys-

tem programs, that organizes a central processor and

peripheral devices into a working unit for the develop-

ment and execution of application programs.

Operation

The act specified by a single computer instruction. A
program step undertaken or executed by a computer; for

example, addition, multiplication, comparison. The oper-

ation is usually specified by the operator part of an in-

struction.

Operation code

See Op-code.

Operator’s console

The set of switches and display lights used by an oper-

ator or a programmer to determine the status of the

computer system and to start the computer.

Option

An element of a command or command string that en-

ables the user to select alternatives associated with the
command. In the RT-11 operating system, an option

consists of a slash character (/) followed by the option

name and, optionally, a colon, and an option value.

Glossary-18

Output

The result of a process; the transferring of data from

internal storage to external storage.

Overfiow

A condition that occurs when a mathematical operation

yields a result whose magnitude is larger than the hard-

ware is capable of handling.

Overlay segment

A section of code treated as a unit that can overlay code

already in memory and be overlaid by other overlay seg-

ments when called from the root segment or another res-

ident overlay segment.

Overlay structure

A program overlay system consisting of a root segment

and optionally one or more overlay segments.

Page

That portion of a text file delimited by form feed charac-

ters and generally 50 to 60 lines long. Corresponds ap-

proximately to a physical page of a program listing.

Parameter

A variable that is given a constant value for a specific

purpose or process.

Parity

A binary digit appended to an array of binary digits to

make the sum of all bits always odd or always even. It is

used to check the validity of data.

Patch

To modify a routine in a rough or expedient way, usually

by modifying the binary code rather than by assembling

it again.

PC

See Program counter.

PDP

Programmable data processor.

Peripheral device

Any device distinct from the computer that can provide

input and/or accept output from the computer.

Physical device

An I/O or peripheral storage device connected to or asso-

ciated with a computer.

Glossary-19

Glossary

Glossary

Priority

A number, associated with a task, that determines the

order in which the monitor will process the request for

service by that task, relative to other tasks requesting

service.

Process

A set of related procedures and data that are executed

and manipulated by a computer.

Processor

In hardware, a data processor. In software, a computer

program that includes the compiler, assembler, trans-

lator, and related functions for a specific programming

language (for example, FORTRAN IV processor).

Processor status word (PSW)

A register in the PDP-11 that indicates the current pri-

ority of the processor, the condition of the previous oper-

ation, and other basic control items.

Program

A set of machine instructions or symbolic statements

combined to perform some task.

Program counter (PC)

A register used by the central processor unit to record

the addresses of the instructions to be executed. The PC

(register 7 of the eight general registers) always con-

tains the address of the next instruction to be executed,

or the second or third word of the current instruction.

Program development

The process of writing, entering, translating, and debug-

ging source programs.

Programmed request

A set of instructions (available only to programs) that is

used to invoke a monitor service.

Program section

A named, contiguous unit of code (instructions or data)

that is considered as an entity and that can be relocated

separately without destroying the logic of the program.

Protocol

A formal set of conventions governing the format and

relative timing of information exchange between two

communicating processes.

Glossary-20

PSW

See Processor status word.

Queue

Any dynamic list of items; for example, items waiting to

be scheduled or processed according to system- or user-

assigned priorities.

Radix

The base of a number system; the number of digit sym-

bols required by a number system.

RAM (Random-Access Memory)

Memory that is accessed in such a way that the next

location from which data is to be obtained is not de-

pendent on the location of the previously obtained data.

Random access

Access to data in which the next location from which

data is to be obtained is not dependent on the location of

the previously obtained data. Contrast Sequential ac-

cess.

Read-only memory (ROM)

Memory whose contents are not alterable by computer

instructions.

Real-time processing

The computation performed while a related or controlled

physical activity is occurring. The results of the compu-

tation can be used for guiding the process.

Record

A collection of related items of data treated as a unit; for

example, a line of source code or a person’s name, rank,

and serial number.

Recursive

Pertaining to a repetitive process in which the result of

each process is dependent upon the result of the previous

one.

Re-entrant

Pertaining to a program composed of a shareable seg-

ment of pure code and a nonshareable segment that is

the data area.

Register

See General register.

Glossary-21

Glossary

Glossary

Relative address

The number that specifies the difference between the

actual address and a base address.

Relocate

In programming, to move a routine from one portion of

storage to another and to adjust the necessary address

references so that the routine, in its new location, can be

executed.

Resident

Pertaining to data or instructions that are permanently

located in main memory.

Resource

Any means available to users, such as computational

power, programs, data files, storage capacity, or a combi-

nation of these.

Restart

To resume execution of a program.

ROM

See Read-only memory.

Root segment

The segment of an overlay structure that, when loaded,

remains resident in memory during the execution of a

program.

Routine

A set of instructions arranged in proper sequence to

cause a computer to perform a desired operation.

Run

A single, continuous execution of a program.

Sector

A physical portion of a mass storage device.

Segment

See Overlay segment.

Sequential access

A method of data access in which the next location from

which data is to be obtained immediately follows the

location of the previously obtained data. Contrast

Random access.

Glossary—-22

Software

The collection of programs and routines associated with

a computer. Compilers and library routines are exam-

ples.

Software bootstrap

A bootstrap that is activated by loading the instructions

of the bootstrap and specifying the appropriate load and

start address.

Source code

Text, usually in the form of an ASCII format file, that

represents a program. Such a file can be processed by an

appropriate system program.

Source language

The system of symbols and syntax used to describe a

procedure that a computer can execute.

Spooling

The technique by which /O with slow devices is placed

on mass storage devices to await processing.

Storage

Pertaining to a device into which data can be entered, in

which it can be held, and from which it can be retrieved

at a later time.

String

A connected sequence of entities, such as a line of char-

acters.

Subprogram

A program or a sequence of instructions that can be

called to perform the same task (though perhaps on dif-

ferent data) at different points in a program, or in dif-

ferent programs.

Subroutine

See Subprogram.

Subscript

A numeric valued expression or expression element that

is appended to a variable name to uniquely identify spe-

cific elements of an array. Subscripts are enclosed in

parentheses. There is a subscript for each dimension of

an array. Multiple subscripts must be separated by

commas. For example, a two-dimensional subscript

might be (2,5).

Glossary-23

Glossary

Glossary

Supervisory programs

Computer programs that have the primary function of

scheduling, allocating, and controlling system resources.

Swapping

The process of moving data from memory to a mass

storage device, temporarily using the empty memory

area for another purpose, and then restoring the original

data to memory.

Synchronous

Pertaining to related events where all changes occur si-

multaneously or in definite timed intervals.

Syntax

The structure of expressions in a language and the rules

governing the structure of a language.

System program

A program that performs system-level functions. A pro-

gram that is part of the basic operating system (for ex-

ample, a system utility program) is a system program.

System volume

The volume on which the operating system is stored.

Table

A collection of data in a well-defined list.

Terminal

An I/0O device, such as an LA120 terminal, that includes

a keyboard and a display mechanism. In PDP-11 sys-

tems, a terminal is used as the primary communication

device between a computer system and a user.

Time sharing

A method of allocating resources to multiple users so

that the computer processes a number of programs con-

currently.

Toggle

To use switches on the computer operator’s console to

enter data into the computer memory.

Translate

To convert from one language to another.

Trap

A conditional jump to a known memory location per-

formed automatically by hardware as a side effect of exe-

cuting a processor instruction. The address location from

Glossary—24

which the jump occurs is recorded. It is distinguished

from an interrupt, which is caused by an external event.

Truncation

The reduction of precision by ignoring one or more of the

least significant digits; for example, 3.141597 truncated

to four decimal digits is 3.141.

Turnkey

Pertaining to a computer system sold in a ready-to-use

state.

Two’s complement

A number used to represent the negative of a given

value in many computers. This number is formed from

the given binary value by changing all 1s to 0s and all

0s to 1s and then adding 1.

Underflow

A condition that occurs when a mathematical operation

yields a result whose magnitude is smaller than the

smallest amount the hardware can handle.

User program

An application program.

Utility program

Any general-purpose program included in an operating

system to perform common functions.

Variable

The symbolic representation of a logical storage location

that can contain a value that changes during a pro-

cessing operation.

Vector

A consecutive list of associated data.

Volume

A mass storage medium that can be used for file-struc-

tured data storage.

Wildcard

A valid substitute for characters in a file specification.

Used to perform operations on multiple files. Can be as-

terisks to represent entire file names or file types, or

percent signs to represent single characters in file

names or file types.

Wildcard operation

A shorthand method of referring to all files with a spe-

cific characteristic in their name.

Glossary-25

Glossary

Glossary

Word

Sixteen binary digits treated as a unit in PDP-11 com-

puter memory.

Write-enabled

The condition of a volume that allows information to be

written on it.

Write-protected

The condition of a volume that protects the volume

against information being written on it.

Glossary—26

INDEX

Absolute program sections, 124

Addresses

assignment by LINK, 12-3

Advance (A) command (EDIT), 5-9

Application packages, 1-10

Assembler, 11-2

Assembler errors, 11-7

Assembly language

See Machine-level language

Assembly listings, 11-8

ASSIGN keyboard command

assigning logical device names, 4-11

changing the output device, 9-11, 15-5

Background job

creating, 15-2

directing input to, 154

editing, 15-2

executing, 15-5

running, 15-2

terminating, 15-6

Background program

running, 15-1

Backup copy

files, 17-1

system volume, B-3

BASIC-11

commands, 10-3 to 10--13

command summary

edit, 106

execution, 10-11

file maintenance, 10-13

demonstration program, 10-7

errors, 10-9

running, 10-1

exiting, 10-3

immediate mode, 10-3

interpreter, 10-2

language processor, 10-1

programming language, 10-1

BASIC-11 program

creating, 10-4, 10-12

editing, 104

maintaining files, 10-12

replacing, 10-13

running, 10-8

saving, 10-12

using, 10-12

BASIC-11 programming language, 1-10,

8-3

BASIC keyboard command, 10-2

BATCH

stream, 17-1

Beginning (B) command (EDIT), 54

Bit

definition of, 11-5

Bootstrap

manual operations, A-1

procedure, 2—4

prompts and responses (table), 2-6

pushbutton console, A-1, A—4

relationship with computer (figure),

2-2

suggestions for bootstrapping, B-2

Index-1

Bootstrap (cont.)

switch register console, A—1, A~5

terminal keyboard, A-3

typing, A-3

Breakpoints

clearing, 14-9

clearing all, 14-10

setting, 14-8

/BRIEF

DIRECTORY option, 4-14

BYE command

BASIC-11, 10-3

Byte

definition of, 11-5

Character insertion

immediate mode, 5-17

Character search (EDIT), 5-9

Command arguments (EDIT)

table of, 5-5

Commands

BASIC

See BASIC-11

control

format of, 4-3

correcting typing errors, 44

EDIT

See EDIT

keyboard

See Keyboard commands

format of, 4-2

oDT

See ODT

Compiler, 9-2

Computer

hardware configuration, 2-3

memory, 2-1

PDP-11 (figure), 1-3

Console, 14, 3-1

See also Terminals

COPY keyboard command, 7-3

/CREATE

EDIT option, 5-2

LIBRARY option, 13-2, 13-5

CREF table, 11-10

/CROSSREFERENCE

MACRO option, 11-7

Cross-reference (CREF) listing, 11-10

Cross-reference (CREF) table

See CREF table

CTRL/B, 15-4

CTRL/C CTRL/C

aborting program execution, 4-14

returning to BASIC~11 command mode,

10-9

Index-2

terminating background job, 15-6

terminating indirect file execution,

164

CTRL/C ESCAPE ESCAPE (EDIT), 5-6,

5-19

CTRL/D, 5-19

CTRLV/E, 4-7

CTRL/F, 15-4

CTRL/G, 5-18

CTRL/L, 5-10

CTRL/N, 5-18

CTRL/O, 4-12

CTRL/U, 4-4

CTRL/U (EDIT), 5-3, 5-8

CTRIL/V, 5-18

CTRL/X, 5-8

CTRL key, 3-4

Date

See also Time

displaying, 4-9

entering, 4-8

DATE keyboard command, 4-8

/DEBUG

LINK option, 14-5

Debugging a program, 1-9

See also ODT

techniques, 14-2

Decimal/octal/binary conversion, 11-6

Delete (D) command (EDIT), 5-8

DELETE (DEL) command

BASIC-11, 10-5

DELETE key

correcting typing errors, 4—4

editing, 5-3, 5-8

function, 3-3

immediate mode, 518

ODT, 14-6

DELETE keyboard command, 7-6

Demonstration programs

BASIC-11, 10-7

creating, 5-19

FORTRAN, 5-20

library files, 13-3

load maps, 12-8

MACRO, 5-21

Device assignments

changing, 9-11

Device handlers, 1-8

Device names, 4-9

Devices

random-access, 1-5

random-access (figure), 1-5

Device unit, 3-5, 4-10

DIFFERENCES keyboard command, 6-2

DIRECTORY keyboard command, 4-12

Directory listings, 3-7, 4-12

generating, 7-1

Directory-structured volumes, B—4

Documentation, 1-10

hardware manuals, 1-10

software manuals, 1-11

source listings, 1-11

Drive

See Device unit

DUMP, 1-9

EDIT

command arguments (table), 5-5

commands

summary of, 5-13

exiting, 5-19

EDIT commands, 5-3 to 5-13

Editing command mode, 5-3

Editing commands

ESCAPE

returning to editing command mode,

5-19

Editing commands, multiple

entering, 5-8

erasing, 5-8

EDIT keyboard command

creating a file, 5-2

editing a file, 54

Edit lower (EL) command (EDIT), 5-12

Editors

EDIT

See EDIT

Edit upper (EU) command (EDIT), 5-13

Errors

avoiding programming, 14-1

types of

assembler, 11-7

clerical, 14-2

compiler, 94

logical, 14-2

syntax, 14-2

ESC

See ESCAPE key

ESCAPE command

entering multiple commands, 5-8

returning to editing command mode,

5-19

ESCAPE ESCAPE command

activating immediate mode, 5-17

executing editing commands, 5-3

executing multiple editing commands,

5-8

ESCAPE key, 34, 5-3

See also ESCAPE command and

ESCAPE ESCAPE command

Examples

re-creating, 4-3

EXECUTE keyboard command, 9-12,

11-16

Exit (EX) command (EDIT), 5-3

FB monitor, 15-3

File maintenance

BASIC-11, 10-12

programs, 1-9

See also File maintenance commands

File maintenance commands

summary, 7-9

File maintenance operations, 7-1

File names, 3-7

changing, 7-5

Files

backup copy, 5-12, 17-1

closing, 5-3, 5-11

comparing, 6-1, 6-2

copying, 7-3

creating, 5-2

deleting, 7-5

editing, 5-4

editing (figure), 5-2

indirect

See Indirect command files

paging, 5-2

protecting, 3-7, 7-7

removing protection from, 7-7

renaming, 5-6, 7—4

storing, 3-7

transferring, 7-3

File types, 3-7

changing, 7-5

File types (table), 4-13

Foreground/background environment,

15-1

Foreground/background monitor

See FB monitor

Foreground/background program

communication, 15-3

/FOREGROUND/LINK option, 15-4

Foreground job

creating, 154

directing input to, 15-4

executing, 15-5

linking, 154

loading device handlers, 15-5

terminating, 15-7

unloading, 15-7

Index-3

Foreground program

running, 15-1

FORLIB.OBJ, 9-3, 12-7

FORTRAN

compiler, 9-2

demonstration program, 5-20

running, 9-1

library modules, 9--2

object time system (OTS), 9-2

programming language, 1-10, 8-3

FORTRAN/BASIC language volume, B-5

FORTRAN demonstration program

errors, 9-7

FORTRAN keyboard command, 9-4

FORTRAN language processor, 91

FORTRAN program

compiling, 9-3

execution commands

summary, 9-14

linking, 9-8, 9-9, 12-7

producing a load map, 12-7

producing a load module, 12-7

running, 9-11

sectioning, 12-5

FORTRAN programming language, 9-1

FRUN keyboard command, 15-6

Get (G) command (EDIT), 5-9

Global symbols, 12-2

Graphics display terminal

See VT11 display hardware

GT keyboard command, 4-6

GT OFF keyboard command, 4-7, 5-2

GT ON keyboard command, 4-6, 5-16

Hardware, 1-1

computer, 1-1

storage medium, 14

terminal, 1-3

Hardware configuration, 2—1

computer, 2—-3

languages, 2—4

optional devices, 2—-4

storage volume, 2-4

system volume, 2—-3

terminal, 2-3

Hardware manuals, 1-10

HELP file, 17-2

HELP keyboard command, 17-2

High-level languages, 1-10, 8-1

See also BASIC-11 and FORTRAN

Immediate mode

BASIC-11, 10-3

Index—4

Immediate mode (EDIT)

character insertion, 5-17

VT11 display hardware, 5-16

Immediate mode (EDIT) commands,

5-17 to 5-19

VT11 display hardware (table), 5-17

Indirect command files, 16-1, 17-1

creating, 16-1

entering monitor commands, 16-1

executing, 16-4

using, 16-1

using the editor to create, 16-2

INITIALIZE keyboard command, 4-15

Initializing volumes, 4-15

Input/output devices

See Peripheral devices

/TINSERT

LIBRARY option, 13-6

Insert (I) command (EDIT), 5-3

Internal symbols, 12-2

Interpreter

description of, 10-2

Jobs

background, 15-2

foreground, 15-4

Jump (J) command (EDIT), 5-7

Keyboard commands, 41

Keyboard layouts (figure), 3—-3

Keyboard monitor

See KMON

Keyboard symbols (table), 4-4

Kill (K) command (EDIT), 5-9

KMON, 4-1

Language comparisons (table), 8-2

Language processors, 1-10, 8-1

BASIC-11, 10-1

FORTRAN, 9-1

MACRO, 11-2

Languages

See Programming languages

Language volume

FORTRAN/BASIC, B-5

Librarian, 1-9

See also Library files

Library files

creating, 13-2

demonstration programs, 13—-3

macro, 13-1

maintaining, 13-2

maintenance commands for

summary, 13-7

Library files (cont.)

object libraries, 13—1

LIBRARY keyboard command, 13-2,

13-5

Library modules, 9-2

Library references

resolving, 12-2

LINE FEED key, 3—4

ODT, 14-7

Linking a program, 1-9

See also LINK keyboard command and

Link operation

LINK keyboard command, 9-9

linking a foreground program, 15—4

linking a MACRO program, 11-14

linking ODT, 14-5

Link operations, 12-1

address assignment, 12-3

overlay feature, 12-6

producing a load map, 12-7

producing a load module, 12-7

program relocation, 12-3

program sections, 12—4

resolving library references, 12-2

resolving symbolic references, 12-2

summary of commands, 12-11

Link volume, B-8

/LIST

FORTRAN option, 94

LIBRARY option, 13-6

MACRO option, 11-7

List (L) command (EDIT), 5-5

LIST command

BASIC-11, 10-5

LISTNH command

BASIC-11, 10-6

LOAD keyboard command, 15-5

Load maps :

demonstration programs, 12-8

producing, 12-7

Load modules

producing, 12-7

Logical device names

assigning, 4-9

special (table), 4-10

Lowercase characters

EDIT, 5-12

Machine language code, 114

Machine-level language, 1-10, 8-1

See also MACRO

/MACRO

LIBRARY option, 13-2

MACRO

assembly listing, 11-8

demonstration program, 5-21

errors, 11-12

running, 11-1

programming language, 8-3, 11-1

MACRO assembler, 11-2

running, 11-15

MACRO keyboard command, 11-7

MACRO language processor, 11-2

Macro library files, 13-1

MACRO programs

assembling, 11-6

developing, 11-1

linking, 11-13, 11-14, 12-7

producing a load map, 12-7

producing a load module, 127

sectioning, 12-5

summary of execution commands,

11-17

Macros, 1111

/MAP

LINK option, 12-7

/MATCH

DIFFERENCES option, 6-3

Memory, 2-1, 11-3

Memory image load module, 11-14

Monitor

description of, 1-8

Monitor command format, 4-2

Monitor command language

See Keyboard commands

Monitor program, 3—1

NEW command

BASIC-11, 10-12

Next (N) command (EDIT), 5-11

Nondirectory-structured volumes, B4

Object libraries, 13-1

building, 13-2

creating input files, 13-2

listing, 13-6

updating, 13-6

Object module relocation (figure), 12-4

Object modules, 12-1

linking

FORTRAN, 9-8

MACRO, 11-13

linking (figure), 9-9

Object programs

linking, 12-1

Object time system (OTS), 9-2

ODT, 14-3

accessing general registers, 14-9

clearing breakpoints, 14-9

Index-5

ODT (cont.)

closing the currently open location

address, 14-7

commands

summary, 1412

continuing execution, 14-9

executing MACRO programs, 14-7

linking with a program, 14-5

location addresses, 147

opening addressed locations, 14-9

opening bytes, 14-10

opening location addresses, 147

opening sequential location addresses,

14-7

relocation registers, 147

removing a breakpoint, 14-9

removing all breakpoints, 14-10

running, 146

running a program with, 14-8

setting breakpoints, 14-8

setting relocation registers, 14-7

ODT commands, 14-6 to 14-10

OLD command

BASIC-11, 10-12

On-line debugging technique

See ODT

Operating system

applications packages, 1-10

description of, 1-8

device handlers, 1-8

language processors, 1-10

monitor program, 1-8

utility programs, 1-8

Operating system (figure), 1-9

Optional devices, 1-6

hardware configuration, 2-4

Output device

changing, 9-11, 15-5

Overlay feature

See Overlay segments

Overlay segments, 12-6

Peripheral devices, 1-6

Peripheral devices (figure), 1-6

Physical device names (table), 4-9

/PRINTER

DIRECTORY option, 4-14

Printer

enabling, 4-7

PRINT keyboard command, 7-8

Processor

stopping the, B-1

Program counter, 11-3

Programmed requests, 11-11

Programming languages, 8-1

Index-6

BASIC-11, 8-3, 10-1

choosing, 8-1

comparing (table), 8-2

DIBOL, 8-3

FORTRAN, 8-3, 9-1

hardware configuration, 2—4

MACRQO, 8-3, 11-1

Program relocation, 12-3

Programs

See also FORTRAN program,

BASIC-11 program, and MACRO

programs

debugging, 14-1

Program sections

absolute, 124

blank, 12-5

instruction, 12-5

named relocatable, 124

/PROMPT

LINK option, 12—-6

Prompts

bootstrap, 2-6

EDIT, 5-3

monitor, 4-1

PROTECT keyboard command, 7-7

Pushbutton console

using to bootstrap, A—4

Pushbutton console (figure), A—4

/QUERY

DELETE option, 7-6

Radix

conversion table, 11-6

Random-access devices

See Devices

Read (R) command (EDIT), 54

Relocatable program sections, 12-4

Relocation registers

ODT, 14-7

/REMOVE

LIBRARY option, 13-7

RENAME keyboard command, 5-6, 7-5

Renaming files

cassette users, B—4

magtape users, B—4

REPLACE command

BASIC-11, 10-13

Resident monitor

See RMON

RETURN key

executing commands, 4-1, 4-3

function, 3—4

ODT, 14-7

RMON, 4-1

RT-11 computer system

description of, 1-1

RT-11 computer system (figure), 1-2

RT-11 operating system

See Operating system

RUN command

BASIC-11, 10-8

ODT, 14-8

RUN keyboard command

background job, 15-3

RUNNH command

BASIC-11, 10-8

SAVE command

BASIC-11, 10-12

SCRATCH (SCR) command

BASIC-11, 10-6

SHIFT key, 3-3

SHOW keyboard commands, 4-11

Software

defined, 1-7

operating system, 1-8

Software (figure), 1-8

Software manuals, 1-11

Source comparison program, 1-9

See also Source comparison

Source files

comparing, 6-1

Source listings, 1-11

Storage medium

definition of, 1-4

random-access

See Devices

Storage volumes

hardware configuration, 2—4

initializing, 4-15

loading, 2-5

protecting files, 3-7

using, 34, 3-7

Storage volumes (figure), 3-6

SUBSTITUTE (SUB) command

BASIC-11, 104

Switch register console

using to bootstrap, A-5

Switch register console (figure), A-5

Symbolic references

resolving, 12-2

Symbols

global, 12-2

internal, 12-2

Symbol table, 11-4, 11-10

SYSLIB.OBJ, 9-2, 12-7

System macro library, 11-11

System volume, 2-2

backing up, B-3

hardware configuration, 2-3

loading, 2-5

System volume (table), 2—4

TAB key, 3-4

Terminal

hardware configuration, 2-3

Terminal (figure), 3-2

Terminal devices (figure), 1-4

Terminals, 1-3, 3—-1

console, 1-4

Text buffer, 5-1

pointer, 5—4

Time

See also Date

displaying, 4-9

entering, 4-8

TIME keyboard command, 48

TYPE keyboard command, 7-8

UNLOAD keyboard command, 15-7

UNPROTECT keyboard command, 7-7

User service routine

See USR

USR, 4-1

Utility programs, 1-8

Ve. ify (V) command (EDIT), 5-7

Volume directory

file storage, 3—7

listing, 4-12

operations, 7-1

Volume structures

comparing, B—4

‘olume substitution during operations,

B-6

VT11 display hardware

commands, 4-6, 4-7

enabling, 4-6

enabling the printer, 4-7

immediate mode, 5-16

using, 4-5, 5-15

VT11 display hardware (figure), 4-6

Wildcards

using

with DELETE keyboard command,

7-6

with DIRECTORY keyboard

command, 5-12

Word

definition of, 11-5

Write enable

file protection, 3-7

Write protect

file protection, 3—7

Index-7

HOW TO ORDER

ADDITIONAL DOCUMENTATION

From Call Write

Chicago 312-640-5612

8:15 AM. 10 5:00 PM. CT

Digital Equipment Corporation

Accessories & Supplies Center

1050 East Remington Road

Schaumburg, IL 60195

San Francisco

Alaska, Hawaii

or

408-734-4915

8:15 AM. t0 5:00 P M. PT

603-884—6660

8:30 am. t0 6:00 PM. ET

408-734-4915

8:15 am. to 5:00 P M. PT

Digital Equipment Corporation

Accessories & Supplies Center

632 Caribbean Drive

Sunnyvale, CA 94086

New Hampshire

Rest of US.A,,

Puerto Rico*

6038846660

8:30 AM. 10 6:00 PM.ET

1-800-258-1710

8:30 AM. 10 6:00 PM. ET

Digital Equipment Corporation

Accessories & Supplies Center

P.O. Box CS2008

Nashua, NH 03061

*Prepaid orders from Puerto Rico must be placed with the local DIGITAL subsidiary (call 809-754~7575)

Canada

British Columbia 1-800-267-6146 Digital Equipment of Canada Ltd

8:00 aM. t0 5:00 Pm. ET 940 Belfast Road

Ottawa, Ontario K1G 4C2

Ottawa-Hull 613-234-7726 Attn: A&SG Business Manager
8:00 am. 10 5:00 PM. ET

Elsewhere 112-800-267—6146

8:00 Am. to 5:00 PM. ET

Elsewhere Digitai Equipment Corporation

A&SG Business Manager*

*¢/0 DIGITAL's local subsidiary or approved distributor

Introduction

to RT-11

AA-5281C-TC

READER’S COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the

company’s discretion. If you require a written reply and are eligible to receive one under Software

Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement.

Did you find errors in this manual? If se, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

— Assembly language programmer

— Higher-level language programmer

— Occasional programmer (experienced)

— User with little programming experience

— Student programmer

— Other (please specify)

Name Date

Organization Telephone

Street

City . State _____ Zip Code
or Country

=~ — Do Not Tear — Fold Here and Tape

— Do Not Tear — Fold Here

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SSG/ML PUBLICATIONS, MLO5-5/E45

DIGITAL EQUIPMENT CORPORATION

146 MAIN STREET

MAYNARD, MA 01754

No Postage

Necessary

if Mailed in the

United States

Cu
t
Al

on
g
Do
tt

ed
 L
in

e
4 E H

	1 Introducing the RT-11 Computer System
	System Hardware
	The Computer
	The Terminal
	The Storage Medium
	Optional Devices

	System Software
	The RT-11 Operating System
	Language Processors
	Application Packages

	System Documentation
	Hardware Manuals
	Software Manuals
	Source Listings

	2 Starting the RT-11 Computer System
	Computer Memory
	Hardware Configuration
	Terminal
	Computer
	System Volume
	Storage Volume
	Optional Devices and Supported Languages

	Bootstrap Procedure

	3 Interacting with the RT-11 Computer System
	Using the Console Terminal to Exchange Information
	Using Mass Storage Volumes
	File Storage
	File Protection

	4 Using the Monitor Command Language
	Entering Command Information
	General Command Format
	Control Commands
	Re-Creating the Examples

	Correcting Typing Mistakes
	Initial Monitor Command Operations
	Using VT11 Display Hardware
	Entering the Date and Time-of-Day
	Assigning Logical Names to Devices
	Listing Volume Directories
	Initializing the Storage Volume

	5 Creating and Editing Text Files
	The RT-11 Editor
	Creating a Text File
	Editing a Text File
	Using Uppercase and Lowercase Characters
	Using a Graphics Display Terminal During Editing
	Normal Use of the Graphics Display
	Immediate Mode

	Creating the Demonstration Programs

	6 Comparing Text Files
	Performing a Comparison

	7 Performing File Maintenance Operations
	File Directory Operations
	Multiple File Operations
	File Copying Operations
	File Renaming Operations
	File Deletion Operations
	File Protection Operations
	File Listing Operations

	8 Choosing a Programming Language
	High-Level vs Machine-Level Languages
	RT-11 Programming Languages
	Choosing a Language for the Demonstration

	9 Running a FORTRAN IV Program
	Developing an Executable FORTRAN IV Program
	Using the FORTRAN IV Language Processor
	Using Library Modules
	Compiling the FORTRAN IV Program
	Linking Object Modules Together
	Running the FORTRAN IV Program
	Combining Operations
	Alternate Functions
	File Maintenance

	10 Running a BASIC-11 Program
	Developing a BASIC-11 Program
	Using the BASIC-11 Language Processor
	Using the BASIC-11 Interpreter
	Immediate Mode
	Creating and Editing a BASIC-11 Program

	Running a BASIC-11 Program
	File Maintenance

	11 Running a MACRO-11 Assembly Language Program
	Developing a MACRO-11 Assembly Language Program
	Using the MACRO-11 Language Processor
	The Program Counter
	The Symbol Table
	Machine Language Code

	Assembling the MACRO-11 Program
	Linking Object Modules Together
	Running the MACRO-11 Program
	Combining Operations
	File Maintenance

	12 Linking Object Programs
	Resolving Symbolic and Library References
	Program Relocation and Address Alignment
	Absolute and Relocatable Program Sections
	The Overlay Feature

	Producing a Load Module and a Load Map

	13 Constructing Library Files
	Kinds of Library Files
	Macro Libraries
	Object Libraries

	Creating and Maintaining a Library File
	Creating Object Library Input Files
	Building the Object Library
	Updating the Object Library

	File Maintenance

	14 Debugging a User Program
	Avoiding Programming Errors
	When Programming Errors Occur
	Using the On-Line Debugging Technique
	File Maintenance

	15 Using the Foreground/Background Monitor
	The Foreground/Background Environment
	Running the Foreground/Background Programs
	Creating the Background Job
	Editing the Background Job
	Running the Background Job

	Using the FB Monitor
	Communication in a Two-Job Environment
	Creating the Foreground Job
	Executing the Foreground and Background Jobs

	File Maintenance

	16 Using Indirect Files
	Creating an Indirect File
	Entering Monitor Commands
	Using the Editor to Create an Indirect File

	Executing an Indirect File
	File Maintenance

	17 Advice to New Users
	Using the Help File

	A Manual Bootstrapping Operations
	Bootstrapping the System
	Typing the Bootstrap on the Terminal Keyboard
	Using a Pushbutton Console to Bootstrap
	Using a Switch Register Console to Bootstrap

	B Selected System Topics
	Stopping and Starting the System
	Stopping the System
	Starting the System

	The System Stops Unexpectedly
	Suggestions for Bootstrapping the System
	Backing Up the System Volume
	Directory- vs Nondirectory-Structured Volumes
	Alternate Rename Operation for Magtape Users
	Using the FORTRAN/BASIC Language Volume
	Substituting Volumes During Operations
	Using the LINK Volume
	FORTRAN/LINK File Maintenance

