
~ Order No. AA-5075A-TC

August 1977

To order additional copies of this document, contact the Software Distribution

Center, Digital Equipment Corporation, Maynard, Massachusetts 01754.

digital equipment corporation - maynard. mossachuwtts

First Printing, August 1977

The information in this document is subject to change without notice

and should not be construed as a commitment by Digital Equipment

Corporation. Digital Equipment Corporation assumes no responsibility

for any errors that may appear in this document.

The software described in this document is furnished under a license

and may be used or copied only in accordance with the terms of such

license.

Digital Equipment Corporation assumes no responsibility for the use

or reliability of its software on equipment that is not supplied by

DIGITAL.

Copyright (:) 1977 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requeststhe user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS

DEC DECtape OMNIBUS

PDP DIBOL 0S/8
DECUS EDUSYSTEM PHA

UNIBUS FLIP CHIP RSTS

COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET-8

DDT LAB-8 TYPESET-10
DECCOMM DECSYSTEM-20 TYPESET-11

11/78-15

PREFACE

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CONTENTS

1 MANUAL OBJECTIVES AND READER ASSUMPTIONS

2 STRUCTURE OF THE DOCUMENT A
3 ASSOCIATED DOCUMENTS =

4 DOCUMENT CONVENTIONS

PART I INTRODUCTION TO MACRO-1l1l

MACRO-11 FEATURES

OVERVIEW OF MACRO-11l

1 Assembly Pass 1

2 Assembly Pass 2

SOURCE PROGRAM FORMAT

PROGRAMMING STANDARDSAND CONVENTIONS

STATEMENT FORMAT

1 Label Field

2 Operator Field

3 Operand Field

4 Comment Field

FORMAT CONTROL

PART II PROGRAMMING IN MACRO-11 ASSEMBLY LANGUAGE

SYMBOLS AND EXPRESSIONS

CHARACTER SET |

1 Separating and Delimiting Characters

2 Illegal Characters

3 Unary and Binary Operators

MACRO~11 SYMBOLS

1 Permanent Symbols

2 User-Defined and Macro Symbols

DIRECT ASSIGNMENT STATEMENTS

REGISTER SYMBOLS

LOCAL SYMBOLS

CURRENT LOCATION COUNTER

NUMBERS

TERMS

EXPRESSIONSL

L]

L4

L

]
&

L 2

.
&

.
L

L

-

*

RELOCATION AND LINKING

ADDRESSING MODES

REGISTER MODE

REGISTER DEFERRED MODE
AUTOINCREMENT MODEs

e

e

W
N

iii

Page

ix

ix

ix

- I a

e P N

N i s
t

1
M
N
M
?
&
&
M

L
) i -

L
 I

P
l

|
H
H
H
E
O
I
T
O
U
T
O
E
A
,

W
D

-

O

|
|

M

U

D

W
H
W
W
W
W
W
W
W
W
W
w
W
w
W
w
W
w

o
o

I
I

N

N
e
U

W

(
S
0

P N
N

G
t
t
t
U
t

e

&

s

&

s

&

*

=

W
O

o
o
N
O
Y
U

o
)

[]

L
L

-

&

L]

A
U

a
W
N

&

s

&

&

&

S

&

=

&

3

5

s

S

&
8

E

5

s

€

=

s

&

&

&

®

&

=

3

H
O
O
O
O
O
W
O
O
O
O
~
I
J
O
o
n

L
T
I

UL
 b

B>

b

B
B

B
B

 W
W
W
W
W
W
W
W
N

P

R

e
o

o

o

.«

o
s

&
&

.

.

b

b

e

+

. .

.

N

-

(S
R
W

N

N
N

o
l

S
T
yW
 N

-

L
]

N
N

N
A
N

O
O

A
N

G
G

G
O

O
G
O

O

O

O

O

O

L
]

-

.

»

]

N
-

-

L]

W

L]

L

*

|]

*

-

L

&

L
-

L4

&

L4

L]

]

&

-

CONTENTS (Cont.)

AUTOINCREMENT DEFERRED MODE

AUTODECREMENT MODE

AUTODECREMENT DEFERRED MODE

INDEX MODE

INDEX DEFERRED MODE

IMMEDIATE MODE

ABSOLUTE MODE

RELATIVE MODE

RELATIVE DEFERRED MODE

SUMMARY OF ADDRESSING FORMS

BRANCH INSTRUCTION ADDRESSING

USING TRAP INSTRUCTIONS

PART III MACRO-11 DIRECTIVES

GENERAL ASSEMBLER DIRECTIVES

LISTING CONTROL DIRECTIVES

.LIST and .NLIST Directives

Page Headings

.TITLE Directive

.SBTTL Directive

.IDENT Directive

.PAGE Directive/Page Ejection

FUNCTION DIRECTIVES: .ENABL AND ,DSABL

DATA STORAGE DIRECTIVES

.BYTE Directive

.WORD Directive

ASCII Conversion Characters

.ASCII Directive

.ASCIZ Directive

.RAD50 Directive

Temporary Radix-50 Control Operator: “R

RADIX AND NUMERIC CONTROL FACILITIES

Radix Control and Unary Control Operators

.RADIX Directive

Temporary Radix Control Operators:

and "B

Numeric Directives and Unary Control Operators

.FLT2 and .FLT4 - Floating=-Point Storage

Directives

Temporary Numeric Control Operators:

LOCATION COUNTER CONTROL DIRECTIVES

.EVEN Directive

.ODD Directive

.BLKB and .BLKW Directives

TERMINATING DIRECTIVES

.END Directive

.EOT Directive

PROGRAM BOUNDARIES DIRECTIVE:

PROGRAM SECTIONING DIRECTIVES

.PSECT Directive

Creating Program Sections

Code or Data Sharing

Memory Allocation Considerations

.ASECT and .CSECT Directives

SYMBOL CONTROL DIRECTIVE: .GLOBL

CONDITIONAL ASSEMBLY DIRECTIVES

"D, "0,

“C and F

+LIMIT

iv

J o Q o

R
S
O
S
S
N

O

b
b
d
w
W
w
w
w

CHAPTER

APPENDIX

APPENDIX

APPENDIX

APPENDIX

6.10.1

6.10.2

6.10.3

6.10.4

~
J

.

>

W

L

.

&
e

8

&

o

&

e

=

~
J
]
O
Y

U
T

o

W

N

=

L4

L4

»
L

|]

*

L
&

[
L]

L
[]

s
L

L]
V
I

B
R
E

B
P
W
W
W
W
W
W
W
W
N
R

R

N
N

d
a

N
N

N
N

N
S
N
S
N
S
N
S
N
N
N
N
N
AS

¢«

o

s

W

-

.

.

.

*
&

&

L

Y
.

N

W

N

-

O

U

Q
0
0

Q
O

o
D
w
w

- -

CONTENTS (Cont.)

Conditional Assembly Block Directives:

+ENDC

Subconditional AssemblyBlock Directives:

.IFF, .IFT, .IFTF

Immediate Conditional Awsambly Directive:

.IIF

PAL-11R Cmndxtimnal Asm&mbly mmr@etlves

MACRO DIRECTIVES ,

DEFINING MACROS

~ .MACRO Directive

.ENDM Directive

+MEXIT Directive

MACRO Definition Foxmattlmg

CALLING MACROS

ARGUMENTS IN MACRO DEFINITIGMS AND ‘MACRO CALLS

Macro Nesting

Special Characters in Mamxm Arguments

Passing Numeric Arguments as Symbols

Number of Arguments in Macro Calls

Creating Local Symbols Amtmmmtmcmlly

Keyword Arguments

Concatenation of Macro Argumentw

MACRO ATTRIBUTE BIRECTIVES* - «NARG,

NTYPE i

.NARG Directive

.NCHR Directive

.NTYPE Directive

.ERROR AND .PRINT DIRECTIVES _

INDEFINITE REPEAT BLOCK DIw@CTIqu~

«IRPC

.IRP Directive

.IRPC Directive

REPEAT BLOCK DIRECTIVE:

MACRO LIBRARY DIRECTIVE:

-NCHR, AND

.IRP AND

.REPT, .ENDR
+MCALL

MACRO=-11 CHARACTER SETS

ASCII CHARACTER SET

RADIX-50 CHARACTER SET

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER

DIRECTIVES

SPECIAL CHARACTERS

SUMMARY OF ADDRESS MODE SYNTAX

ASSEMBLER DIRECTIVES

PERMANENT SYMBOL TABLE (PST)

OP CODES

MACRO-11 DIRECTIVES

DIAGNOSTIC ERROR MESSAGE SUMMARY

MACRO-11 ERROR CODES

vIF"

Page

6-41

6-43

6-46

6-46

~
J i |

i
I

Q
Q
Q
Q
Q
\
Q
\
Q
&
N
Q
M
M
H
H

~
J I - -

7-11

~
J i - N

7-13

7-14

7-15

7-15

7-16

7-17

7-18

A-1

A-1

A-4

B-1

B-1

B-1

B-2

c-1

Cc-1

c-4

D-1

D-1

APPENDIX

APPENDIX

APPENDIX

APPENDIX

&

#

=a

s
®

&
&

®

&
a8

&

»

$

B

&
&

=
®

&
®

*

a2

B
»

W
N
H
E

&
b

b
h
W
N
K
H
E

U
VW
N

H
H
M
O
O
O
J
O
A
O
O
A
U
V
I
U
T
U
T
U
I
U
I
U
I
U
T
U
T

U
L

O
B

8B

D

D
0

B

D

D
D

D
D

W
A

-

O
O

O

Ss

&

*

.

[
]

W
N

CONTENTS (Cont.)

SAMPLE CODING STANDARD

"INTRODUCTION

LINE FORMAT

COMMENTS

NAMING STANDARDS

Register Standards

General Purpose Registers

Hardware Registers

Device Registers

Processor Priority

Other Symbols

Using the Standard Symbmllca

Symbols

Global Symbols

Symbol Examples

Program-Local Symbols

Macro Names

PROGRAM MODULES

General Comments on Prmgrams

The Module Preface

Formatting the Module Preface

Modularity

Calling Conventions (IntarmMmdule)

Exiting

Intra-Module Calling Conventions

Success/Failure Indication

Module Checking Routines

FORMATTING STANDARDS :

Program Flow

Common Exits

Code with Interrupts Inhlblted

PROGRAM SOURCE FILES

FORBIDDEN INSTRUCTION USAGE

RECOMMENDED CODING PRACTICE

Conditional Branches

PDP-11 VERSION NUMBER STANDARD

Displaying the Version Identifier

Use of the Version Number in the Program

ALLOCATING VIRTUAL MEMORY

GENERAL HINTS AND SPACE-SAVING GUIDELINES

MACRO DEFINITIONS AND EXPANSIONS

OPERATIONAL TECHNIQUES

WRITING POSITION INDEPENDENT CODE

INTRODUCTION TO POSITION INDEPENDENT CODE

EXAMPLES

SAMPLE ASSEMBLY AND CROSS REFERENCE LISTING

vi

4

O
i

o
=

O o

B
N

m
m
m
m
m
m
m
m
m
m
m
m
m
m
?
m
w
m
m
m
m
m
m
m
m
m
m
m
m

H
F
O
W
V
L
W
V
W
V
W
Y
W
W
V
W
R
O
N
V
U
T
U
I
N
E
R
W
W
W
W
W
N
N
N
D
N
D
N
D
N

M

G-1

G-1

G=~2

H-1

CONTENTS (Cont.)

Page

. FIGURES

FIGURE 3-1 Assembly Listing Showing Local Symbol Block 3-11

3=-2 Sample Assembly Results 3=-12

- 6-1 Example of Line Printer Assembly Listing 6-6

6-2 Example of Terminal Assembly Listing 6-7

6-3 Listing Produced With Listing Control

Directives | 6-9

6-4 Assembly Listing Table of Contents 6-12

6-5 Example of .ENABL and .DSABL Directives 6-16

6-6 Example of .BLKB and .BLKW Directives 6-30

7-1 Example of .IRP and .IRPC Directives 7-17

TABLES

TABLE 3-1 Special Characters Used in MACRO-11l 3-1

3-2 Legal Separating Characters 3-3

3-3 Legal Argument Delimiters 3-3

3-4 Legal Unary Operators 3-4

3=-5 Legal Binary Operators 3-5

6-1 Symbolic Arguments of Listing Control
Directives | 6-3

6=-2 Symbolic Arguments of Function Control

Directives 6-14

6-3 Symbolic Arguments of .PSECT Directive 6-33

6-4 Non-IAS/RSX-11 Program Section Default Values 6-39

6-5 Legal Condition Tests for Conditional Assembly

Directives 6-41

6-6 Subconditional Assembly Block Directives 6-44

vii

PREFACE |

0.1 MANUAL OBJECTIVES AND READER ASSUMPTIONS

The intent of this manual is to enable users ta davelmp pragrams coded

in the MACRO-11aaaembly language. No prior knawlaflge of the MACRO-11

Relocatable Assembler is assumed.

Although the descxiptimn, of the asgembly l&nguage is wholly

self-contained within this manual, the reader is assumed to be

familiar with the PDP-11 processors and related t@f%lflfllQQYr as

presented in the PDP-ll Processor Handbooks. No attempt is made in

this document to describe the PDP-11 hardware or the functions of the

various PDP-1l1l instructions.

Since the development of programs necessarily involves 1linking to

create an executable image, the reader 1is encouraged to become

familiar with this process, as present@d ;in the applmgable system

manual (see Sectlon 0. 3) | ik gia |

In presenting MACRO-11l, a tutorial bias has been adopted to enlarge

upon the reference material. This posture is reflected in the

examples and the accompanying commentary describing 'MACRO-11 language
elements 1in typical applications. Portions of text that are shaded

indicate that a particular MACRO-11 feature is not avmxlabl@ in the 8K

version of MACRO-11l. | ‘ ,

0.2 STRUCTURE OF THE DOCUMENT

This manual contains three parts. Part I, consisting of two chapters,

briefly introduces MACRO-1ll. Chapter 1 1lists the key features of

MACRO-11l, and Chapter 2 identifies the advantages of following

programming standards and conventions. Also described is the format

used in coding MACRO-1ll source programs.

Part II, consisting of three chapters, presents general information

essentialto programming with the MACRO-1ll assembly language. Chapter

3 describes the symbols, terms, and expressions that form the elements

of MACRO-1l instructions. The characterset is listed, and the types

of programming symbols that may be definedby the user are discussed.

Chapter 4 describes the output of MACRO-1ll and presents concepts

essential to the proper relocation and 1linking of object modules.

Chapter 5 briefly describes how data storedin memory can be accessed

and manipulated using the addressing modes recognized by the PDP-11

hardware. |

ix

Part III, <consisting of two chapters, describes the MACRO-11

directives that control the processing of source statements during

assembly. Chapter 6 discusses directives which accomplish generalized

MACRO-11 functions, while Chapter 7 deals with directives used in the

definition and expansion of macros.

Finally, several appendixes are provided, supplying additional

information of interest to the MACRO-1l1l programmer.

Appendix A lists the ASCII and Radix-50 character sets that may be

used in MACRO-1ll programs. Appendix B lists the special characters

recognized by MACRO-1l1l, summarizes the syntax of the various

addressing modes used in PDP-11 processors, and briefly describes the

MACRO-11l directives in alphabetical order. The permanent symbols that

have been defined for use with MACRO-1ll are listed alphabetically in

Appendix C.

The diagnostic error codes produced by MACRO-1ll to identify various

types of errors detected during the assembly process are listed

alphabetically in Appendix D. Appendix E contains a sample coding

standard that is recommended practice in preparing MACRO-11l programs.

Appendix F discusses several methods of conserving dynamic memory

space for wusers of small systems who may experience difficulty in

assembling MACRO-11l programs. o - |

Appendix G is a discussion of position independent code (PIC).

0.3 ASSOCIATED DOCUMENTS

The reader should refer to the applicable documentation directory
listed below for descriptions of documents associated with this

manual.

IAS Documentation Directory

'RSX-11D Documentation Directory

‘RSX-11M/RSX-11S Documentation Directory

RT-11 Documentation Directory

0.4 DOCUMENT CONVENTIONS

‘The symbols defined b&lmw‘are used throughout this manual.

Symbol Definition |

[] | Brackets indicate that the enclosed argument is
“ optional. | |)

n | Vertical bars indicate that a single choice must be
| | - made from a list of arguments. | -

Ceee | Elllpgls indicates optional continuation of an argument

o list in the form of the last spaaifmed argument.

F Y

TM

UPPER-CASE

CHARACTERS

lower—case

characters

(n)

Upper-case characters indicate elements of the language
that must be used exactly as shown.

Lower-case characters indicate elements of the language
that are supplied by the programmer.

In some instances the symbol (n) is used following a
number to indicate the radix. For example, 100(8)

indicates that 100 is an octal value, while 100(10)

indicates a decimal value.

x1i

o4

PART 1

INTRODUCTION TO MACRO-11

~ CHAPTER1

;nacammll,mfikru?%Sf;w

The MACRO-11 Assembler provides the fallowimg f®mgug@az

1. swurme'and command'mtring contrai mf“amaambly'fiunctians .

2 O

'¢3;<;Err0r llfitmng on camm&nd mmtput fi@vama

4 . Alphabetlzed, formatted symbml tabl@ lm&tlmg,, fiptional
cross-reference listing of &ymbwla | ‘ e e

5. Relocatable object modules

6. Global symbols for linking object modules

7. Cdnditional assembly directives i

8. angram aaafiiqming,diréative$'

9. User-defined maprofi and?mamro libfiafiigé .

10. Comprehensive system macro library

11. Extensive source and command string control of listing
functions. | , S e i |

1.1 OVERVIEW OF MACRO-1l

MACRO-11 is a 2-pass assembler. The fiunctioma anw,mperatlmns m&lavant

to each assembly pass are described in the following sections.

1.1.1 Assembly Pass 1

The main purpose of assembly pass 1 is to locate and read all required
macros from libraries; to build symbol tables and program section
tables for the program; while also performing a rudimentary assembly

of each source statement.

The first stage of asaambly pass 1 is the initialization of all impure
data areas that MACRO-1l1l uses internally for the assembly process.

These areas include all dynamic storage areas and buffer areas used as
file storage regions.

After initializing memory areas, MACRO-1ll issues a call to a system

subroutine which transfers a command line into memory. This command

1-1

MACRO-11 FEATURES

line contains the specifications of the files to be used during
assembly. After scanning the command line for proper syntax, MACRO-11
initializes the specified output files. These files are opened to
determine if valid output file specifications have been passed in the
command line. They are then closed to minimize requirements for
active file space.

As the assembly process begins, MACRO-11 initiates a routine which
retrieves source 1lines from the input file. If no such file is
currently open, as is the case at the beginning of assembly, MACRO-11
opens the next input file specified in the command line previously
read and begins to assemble the source statements. MACRO-11
determines the length of each instruction and assembles it accordingly
as one word, two words, or three words.

At the end of assembly pass 1, MACRO-11 reopens the output files
described above and writes out information that is to be used later in
linking the object modules. Such information as the object module
name, the program version number, and the global symbol directory
(GSD) entries for each program section are output to the object file.
After writing out the GSD entries for a given program section,
MACRO-11l scans through the symbol tables to find all the global
symbols that are bound to that particular program section. MACRO-11
then writes out GSD records to the object file for these symbols.
This process continues for each program section, bringingto a close
assembly pass 1.

1.1.2 Assembly Pass 2

As an integral part of pass 2, MACRO-11 simultaneously writes the
object records to the output file and generates the assembly listing,
followed by the symbol table listing for the program. A
cross-reference listing may also be generated. |

Basically, assembly pass 2 consists of the same steps performed 1in
assembly pass 1, except that all source statements containing
"MACRO-ll-detected errors are flagged with an error code as the
assembly 1listing file is created. The object file that is created as
the final consequence of pass 2 contains all the object records,
together with relocation records containing information necessary for
subsequent linking of the object file.

The information thus passed enables the global symbols in the object
modules to be associated with absolute or virtual memory addresses,
thereby forming an executable body of code. | |

The user may wish to become familiar with the macro object file format
and description. This information is presented in the applicable
system manual (see Section 0.3 in the Preface). - | '

;;;;;

St Wy

CH&PTER 2

SOURCE PRQGR&M FOR%AT

2.1 PROGRAMMING STANDARDS AND CONVENTIONS

Assembly level programming deals directly with the host hardware.

Hence, great care must be exercised 1in establishing programming

standards and conventions to enable code written by one group to be

interchanged easily with another group. ‘Standards provide a number of
advantages. When applied to the pr»gram "“w@valmpment process,

standards make the programming effort easier to:

Plan

Comprehend

Test

Modify

Convert

Even though standards must accommodate local Vrmqumr@memtw, many

aspects of the program develapm&nt pr&wfiww “have uniwwraal

applicability. The standarda common to all of l%GITAL’ PDP-11
software products are preaanted in %wpemw%~fi~f~**~ model forusers.

Observance of these standards is beneficial to DIGITAL and its users,

by simplifying both communications and the continuing task of software

maintenance and enhancement.

2.2 STATEMENT FORMAT

A source programis composed of a sequence of source coding lines.

Each 1line contains a single assembly-language statement. MACRO-1l

will accept a source line of 132 characters,but 80 characters is the

recommended langth, because of congtralnts imposed by Iistlng format

and terminal line size.

A MACRO-1l1l statement may consist of as many as four fields. These

fields are identified by their order of appearance within the

statement and/or by specified separating characters between fields.

The general format of a MACRO-1ll statement is:

Label: Operator Operand ;Comment(s)

The label and comment fields are optional. The operator and mperand

fields are interdependent, i.e., when both fields are present in a

source statement, each field is evaluated by thntwll in the context

of the other. “

A statement may contain an operator field and no operand field, but

the reverse 1is not true. A statement containing an operand with no

operator does not conform to established MACRO-1ll coding conventions;

such a statement is currently interpreted by MACRO-1l1l during assembly

as an implicit .WORD directive (see Section 6.3.2).

2-1

SOURCE PROGRAM FORMAT

MACRO=-1l1l interprets and processes source program statements one by

one, generating one or more binary instructions or data words, or

performing a specified assembly process. Blank lines, although legal,

have no significance in the source program.

An assembly~language statement must be completed on one source 1line;

no continuation lines are allowed in MACRO-1l1l.

The tab character can be used in the source statement to format the

fields into aligned columns in accordance with DIGITAL's standard

source program format, as shown below:

Label = begins in column 1

Operator = begins in column 9

Operand(s) = begin(s) in column 17 o

1Cmmment(s) - begin(s) in column 33

For @mampla, the follmwing statement should be farmatted in. thm source
program into specific columns, increasing its readability in the

assembly listing: | P

REGTST:BIT#MASK,VALUE; COMPARES BITS IN OPERANDS.

1 9 17 33 (columns)

REGTST: BIT #MASK ,VALUE ; COMPARES BITS IN OPERANDSaif;~

The above formatting conventions are not mandatory in coding MACRlel

programs (free-field coding is permxasmble).. ‘However, it
~recommended that source programs be prepared in accmrdance wmth the&e

conventions for confimstancy and clarity. ; ~ |

2.2.1 Label Field

A label is a means of symbolically referring to a 1location in a

program. o

A label isa user-defined symbol which is assigned the value of the

current location counter and entered into the user-defined symbol

table. The current location counter is the means by which MACRO-11

~assigns memory addresses to the source program statementsas they are

encountered during the assembly process. The address value of the

label 1is absolute or relmcatable. depending on whether the current

‘program section being assembled is absolute or relocatable. (The

concept of program sections and the attributes that may be . fip&filfl@d

for them are discussed in detail in Section 6.8.)

In the case of an absolute program section, the value of the current

location counter is likewise absolute, i.e., itsvalue references an

absolute virtual memory address (such as location 100). Similarly,

;th&._value_ of the current location counter in a relocatable program
~section isalso relocatable; however, a relocation bias calculated at

‘link time will be added to the apparent value of the current location

counter to establish its effective absolute virtual address at

execution time.

.

=,

I1f present, a label always appears as the first field in a source
%tatemgwt and mumt be tarminated by a amlmnfif Emw;emw 1@, if the

00 e&

ABCD: Iuav' ~ A,B

assigns the value 100(8) to the label ABCD. Subsequent references to
this label would then yield a value mfi absolute 100(8). 1In this
wmampl@,,mf the lmcatzan cmunt@r value w&rw sr««*~~ ble, thw final
value of ABC . represents the r location

,biamof the mmwgmww 'bg thw ;mmk%uilfiwm at link
time. , | , | fi

,fieatiwm, as a&lcul&te«

&0re than one labwl may agpwar thhmn a ;minqlwIab@l fxalfl* Each
label so specified is assigned the same address value. For example,
if the current location counter value is 100(8), the multiple 1labels

in the following statement:

ABC: $DD: A7.7: MOV A,B

are each assignetuhe value 10&(3);

Multiple labels may also appear on successive lines. For‘&x&mpler the
statements | , ,

ABC:

$DD: ,

A7.7: MOV A,B

likewise cause the same current lwcmtxon amumt&x walue to be afiflmqm@d
to all three labels. By - ROy

Of the two methods of assigning multiple 1labels mhwwm abmvm#, the
second is preferred, because consistency of field ww&mtmanmnq within
the source program improves readability.

A double colon (::) defines the label as a glmbal m;wywlw Such a
label can be rmfietencwa by imdwpandwnhly“awwwwwle%,flbjeat wwwulawfi
References to this label in other modules will be resolved when the
nodules are linked as a composite executable iwwqu For wxawwla, the
SEateront , St ot ol

ABCD:: MOV A,B

establishes the label ABCD as a global symbol. The distinguishing
attribute of a global symbol is that it can be referenced from within
an object module other than the module in which the symbol is defined
(see Section 6.9).

The 1@@&1 charaat&r@ for defifiingglabalfi are:

A through 2

0 through 9

. (Period)

$ (Dollar Sign)

NOTE

By convention, the dollar sign ($) and period (.)

are reserved for use in defining DIGITAL system
software symbols. Therefore these characters

should not be used in defining labels in MACRO-11
fimumaa;praqmaM$, |

2=3

SOURCE PROGRAM FORMAT

source pmgramw all 1abels are termxnatdby a colmn (2 }, whlch is not
considered part of the label. It is a mandatory delimiter. An error

code (M) is generated in the assembly 1listing if the first six

characters in two or more labels are the same (see,Appendifo)

A symbol used as a label must not be redefined within the source

program. If the symbol is redefined, a 1label with a: multiple

definition results, causing MACRO-1l to generate an error code (M)

the assembly listing (see Appendix D). Furthermore, any fitat@ment,xn
the source program which references a multi-defined label resultsin

an additional diagnostic message; in this case, an error code (D) is

'qenerated in the assembly listing (see Appendxx D) Lok

2.2.2 Operator Field

The operator field specifies the action to be performed. It may

consist of an instruction mnemonic (op code), an assembler directive,

or a macro call.

The operator field follows the label field in a source statement.
Chapters 6 and 7 describe these three types of operator field entries.

When the operator is an instruction mnemonic, the mnemonic op code

specifies the machine instruction to be generated. MACRO-1l1l then

continues with the evaluation of the address(es) of the operand(s)

which follow(s). When the operator is a directive,the directive

causes MACRO-11l to perform certain control actions or processing

aperatlona during the assembly of the source program. When the

operator is a macro call, MACRO-1ll inserts th@ code generat@d by the

macro expansion.

The operator field need not be preceded by a label; but it may be

preceded by one or more labels and followedby one or more operands
and/or a comment. Furthermore, leading and trailing spaces or tabs in

the operator field have no significance; such characters serve only

to separate the operator field from the preceding and following

fields. ”‘ ~ 7

An operator is terminated by a space, tab, or any non-RAD50 character,

as in the following examples:

MOV A,B | ;THE SPACE TERMINATES THE opERhToR

v dony o s MOV.

MOV A,B N ;THE TAB TERMINATES THE OPERATOR MOV.

MOV@A,B JTHE @ CHARACTER TERMINATES THE

;OPERATOR MOV.

Although the statements above are all equivalentin function, the
second statement is the recommended form because it conforms to

MACRO-11l coding conventions. o

2.2.3 Operand Field

When the operator field contains an instruction mnemonic¢ (op code),

the operand field specifies those program variables that are to be

2-4

L Wi,

SOURCE PROGRAM FORMAT

evaluated/manipulated by the operator. The operand field may also be
used to supply ~arguments to MACRO-1ll directives and macro calls, as
desarlbad in Chapterfi 6 and 7, respectively. |

Operands may be expressxong or $ymb011c argum&ntm (within the context
of the specxfx&fl operation). Multipl@ expressions u%flfl in the operand
field of a MACRO-11 statement must be &epar&ted by a aaqu; multmple
symbolic arguments sxmxlarly used may be delmmit,d” by any legal
separator, i.e., a comma, tab, and/or apaaafi An 0p&rand should be
preceded by an operator field; if it is not, the statement is treated
by MACRO-11 as an implicit .WORD directive (see Section 6.3.2).

‘When the aperatmr field ammtaxna an op g@fi@, afiamfilat@d mp&zands are
always expressions, as shown in the following stat&;@mt,

MOV RO,A+2(RL)

On the other hand, when the operator field contains a MACRO-1l1

directive or a macro call, associated operanfi% arenmrmally &ymballc
‘arguments, as shawn in the fallmw1ng statem&mt. . Ve e

~ .MACRO ALPHA ARG1,ARG2

Refer to the descrlptlmn of each MkCRO*lldmramtmvw tm determine ‘the
type and number of operands required in 1$$umng the fiixamtlve~ fl

The operand field is terminated by a semicolon when the field 'is
followed by a comment. For example, in the following statement:

LABEL: MOV A,B ; COMMENT FIELD

the tab between MOV and A terminates the operator field and defines
the beginning of the operand field; a comma separates the operands A
and B; and a semicolon terminates the operand field and defines the
beginning of the comment field. When no comment field follows, the
operand field is terminated by the end of the source line.

2.2.4 Comment Field

The comment field normally begins in column 33 and extends through the

end of the line. This field is optional and may contain any ASCII

characters except null, RUBOUT, carriage-return, line-feed,

vertical-tab or form-feed. All other characters appearing in the

comment field, even special characters reserved for use in MACRO-1ll1,
are checked only for ASCII legality and then included in the assembly
listing as they appear in the source text.

All comment fields must begin with the semicolon character(;). When

lengthy comments extend beyond the end of the source line (column 80),
the comment may be resumed in a following 1line. Such a 1line must
contain a leading semicolon, and it is suggested that the body of the
comment be continued in the same columnar position in which the
comment began. A comment line can also be included as an entirely
separate line within the code body.

Comments do not affect assembly processing or program execution.
However, comments are useful in source listings for later analysis,

debugging, or documentation purposes.

Horizontal fmrm@ttlng of the source program is controlled by ‘the spaue
and tab characters. These characters have no effect on the assembly

process unless they are embedded within a symbol, number, or ASCII
text string, or unless they are used as the operator field terminator.

Thus, the space and tab characters can be used to prmvad@ ‘an orderly

mmd readable fimwxww program, as rafl&ctafi by tha fmllmwmng statem@nts‘

LABELammv(S@}%WT&G,PQP VALUE OFF STACK.

No spaces or tabs have been used to separate the fields in this

‘statement. Note the dafflaulty in recmgnizing wh&re ane fleld ends

and the next begins.

LABEL: MOV (SP)+,TAG ; POP VALUE OFF STACK.

Phis @tat&%fmt conforms to the standard horizontal formatting
conventions, i.e., the statement elements are aeparated intm four

distinct fields and are therefore easily discernible.

Page fntmattlng and assembly listing considerations are discussed 1in

,Chapter 6 in the context of MACRO-1l1l directives that may be specified

accomplish desired formatting operations. Appamflxx E describes the
coding conventions used in all DIGITAL PDP-11 0perat1ng system

software.

2-6

F W,

PART 11

PROGRAMMING

IN MACRO-11 ASSEMBLY

LANGUAGE

CHAPTER 3

SYMBOLS AND EXPRESSIONS

This chapter describes the components of MACRO-1ll instructions. The

character set, the conventions observed in cmmatructmng symbols, and

the use of numbers, operators, terms and expresaxmns are discussed as

they relate to MACRO-1ll programming. |

3.1 CHARACTER SET

The following characters are legal in MACRO-1l1 source programs:

1. The letters A through Z. Both upperm and lower—-case letters

are acceptable, although, upon input, lmwarficmsa letters are

converted to upper-case (see Section 6.2, .ENABL LC).

2. The digits 0 thraugh 9.

3. The,@h@ractara . (period) afidi $ (&ollar sign). These
characters are reserved for use as Digital Equipment

Corporation system program symbols.

4. The special charactars listed in Table 3-1.

Table 3-1

~ Special Characters Usedin MACRO-11

Character Designation | Function

: Colon Label terminator.

:: | . Double colon Label terminator; defines the
- label as a global label.

= Equal sign Direct assignment operator;

and macro keyword indicator.

= == e Double equal Direct assignment operator;
sign defines the fiymbml as a global

symbol.

% Percent sign Register term indicator.

Tab Item or field terminator.

Space Item or field terminator.

(Continued on next page)

SYMBOLS AND EXPRESSIONS

Legal separatlng characters and legal argument delimiters are defined

below in Tables 3- 2 and 3-3 respectively.

Table 3-1 (Cont.) | .

Special Characters Used in MACRO~11 /

Character Designation Function

Number sign Immediate expression p

indicator. h

@ At sign \Defe;red addressing indicator.

(Left parenthesis Initial register indicator. #

) Right parenthesis | Terminal register indicator.

. ‘Period Current location counter

, Comma Operand field separator. .

? Semicolon Comment field indicator. | |

< Left angle Initial argfifient’ar'expression
bracket 1ndlaatmr*

> Right angle Terminal argum&nt or expres-

| bracket sion 1nd1cator. N

+ Plus sign Arithmetic addltxan operator
or autoincrement indicator.

- Minus sign ~Arithmetic subtraction opera- {0)
i - ' B tmr or autodecrement indica-

* Asterisk Arlthmetlc multlpllcatlon op-

| | erator. |

/ Slash Arithmetic division operator.

& Ampersand Logical AND operator.

! Exclamation point | Logical inclusive OR operator. U

" Double quote Double ASCII character indica-

tor.

' - Single quote Single ASCII character indica-

SR tor; or concatenation

indicator. *

- ‘Up arrow or Universal unary operator or

circumflex argument indicator.

A\ ' Backslash Macro call numeric argument w

| B indicator.

3.1.1 Sepa:ating,and Delimiting Characters

Table 3-2

SYMBOLSAND EXPRESSIONS

Legal Separating Characters

Character Definition Usage

Space One or more spaces

~and/or tabs

Comma

fi. Sp aaaceae o

~within the

Spaces within expreammmms mx@

kiqnmr@d (a&@Sactlmn 3.9).

B A~mammarifl“a

- the operand field must

~ separated bya comma.

is a legal separator

between 1n%trumt10n fleldm and
between symbolic mrgum&ntg

mperand field.

symbolic

the operand

expressions

separatmr

arguments

field.

used in

be

between

within

Multiple

Table 3-3
Legal Argument Delimiters

Character Definition ‘Usage

"XeooX

Paired angle brackets

Up=arrow (unary oper-

ator) construction,

where the up-arrow is

followed by an argu-

ment that is bracketed

by any paired printing

characters (x).

Paired angle brackets

usedanyw

may be

h@r@ in a program to

enclose ' an @H@K@&filmn for

treatfi.n&~?aw ‘single term.

Pair@& mngf@~braaketa are also

used to enclose a macro

argument, particularly when

that argument contains separ-

ating characters (see Section

7.3).

This construction 1is equiva-

lent in function to the paired

angle brackets described above

and 1is generally used only

where the argument itself con-

tains angle brackets.

3.1.2 1I1legal Characters

A character is determined to be 111egal far an& mf two r@asmns~

1. A character is not an element

charaater set.

scan of the current line.

3-3

A character of this kind

'Wlmsting by a question mark, and an error code (I) is

in the assembly listing (see &ppandix D).

"this is an embedded null whlch, wh@n G@tected,

mf th@ racognmzed MACRO-11

is r&placed in the

pxmnt@d

‘The exception to

terminates the

2. A legal MACRO-1l1l character is illegal in the context of its

usage within the source statement, 1i.e., its syntax is

illegal or questionable. Such a character causes an error

code (Q) to be printed in the assembly listing.

3.1.3 Unary and Binary Operators

Legal MACRO-ll unary operators are described in Table 3-4. Unary

operators are wused 1in connection with single terms (arguments or

operands) to indicate an action to be performed on that term during

assembly. A term preceded by a unary operator is considered to

contain that operator. The term so specified thus becomes a value

which can be used aloneor as an element of an expression.

Table 3-4

Legal Unary Operators

Unary | |

Operator Explanation Example Effect

+ Plus sign +A Produces the positive

value of A.

- Minus sign -A | - Produces the negative

(2's complement) value of

~ ,"Upwarrawr;uniVQr” ~c24 | Produces the l's comple-
~sal unary operator. ment value of 24(8).

{ (This usage. is

| described in detail “D127 Interprets 127 as a
‘in S@ctlon 6.4.) im

~034 Interprets 34 as an octal

number.,

binary number.

“"RABC | Evaluatéfi ABC in Radix-50

"B11000111 | Interprets 11000111 as a

Unary operators can be used adjacent to each other or in constructions

involving multiple terms, as shown below: | | o

e g950 - (Equivalent to =-<"D50>)
“c 012 (Equivalent to "C<"012>)

Legal MACR@wll binary operators are described in Tabla‘ 3-5. In
~contrast to unary operators, binary operators sp&clfy actions to be

performed on multiple items or terms within an expression. Table 3-5

~shows the relationships that can be establmfihed betwe@n-expression

terms through the use of binary operatmrs.~n n ey

SYMBOLS AND EXPRESSIONS

Table 3-=5

Legal Binary Operators

Binary

Operator Explanation Example

+ Addition - A+B

- Subtraction | A-B

* Multiplication A*B (l6-bit product returned)

/ Division A/B (l6-bit gquotient returned)

& Logical AND A&B

! Logical inclusive OR A!B

All binary operators have equal priority. Items or terms can be

grouped for evaluation within an expression by enclosing them within
angle brackets. Terms so enclosed are evaluated first, and remaining
operations are performed from left to right, as shown in the examples

below:

. WORD 1+2%*3 ;EQUALS 11(8).

- WORD 14+<2%*3> ; EQUALS 7(8).

3.2 MACRO-11l SYMBOLS

Three types of symbols may be defined for use within MACRO-1ll source

programs: permanent symbols, user-defined symbols, and macro symbols.
MACRO-11 maintains three types of symbol tables: the Permanent Symbol

Table (PST), the User Symbol Table (UST), and the Macro Symbol Table
(MST). The PST contains all the permanent symbols defined within (and
thus automatically recognized by) MACRO-11 and is part of the MACRO-11l
image. The UST and MST are constructed as the source program is
assembled.

3.2.1 Permanent Symbols

Permanent symbols consist of the instruction mnemonics (see Appendix

C) and MACRO-11] directives (see Chapters 6 and 7 and Appendix B).
These symbols are a permanent part of the MACRO-1ll image and need not

be defined before being used in the operator field of a MACRO-1ll
source statement (see Section 2.2.2).

3.2.2 User-Defined and Macro Symbols

User—-defined symbols are those symbols treated by the programmer as

labels (see Section 2.2.1) or that are equated to a specific value
through a direct assignment statement (see Section 3.3) or appear as
macro names or dummy arguments. These symbols are added to the User

Symbol Table as they are encountered during assembly. Macro symbols

are those symbols used as macro names (see Section 7.1). Similarly,
these symbols are added to the Macro Symbol Table as they are

encountered during assembly.

3-5

SYMBOLS AND EXPRESSIONS

User-defined and macro symbols can be composed of alphanumeric

characters, dollar signs ($), and periods (.) only; any other

character is illegal.

NOTE

The dollar sign ($) and period (.) characters are

reserved for wuse 1in defining Digital Equipment

Corporation system software symbols. For example,

READS is a file-processing system macro. The user

is cautioned not to employ these characters in

constructing user-defined symbols or macro symbols

in order to avoid possible conflicts with existing

or future Digital Equipment Corporation system

software symbols.

The following rules govern the «creation of user-defined and macro

symbols:

l. The first character of a symbol must not be a number (except

in the case of local symbols; see Section 3.5).

2. The first six characters of a symbol must be unique.

3. A symbol can be written with more than six legal characters,

but the seventh and subsequent characters are checked only

for ASCII legality and are not otherwise evaluated or

recognized by MACRO-11l.

4. Spaces, tabs, and illegal characters must not be embedded

within a symbol. The legal MACRO-11l character set is defined

in Section 3.1.

The value of a symbol depends upon its use in the program. When a

symbol appears in the operator field, it may be any one of the three

symbol types described above i.e., permanent, user-defined, macro. To

determine the value of an operator-field symbol, MACRO-1l1l searches the

symbol tables in the following order:

1. Macro Symbol Table

2. Permanent Symbol Table

3. User-Defined Symbol Table

This search order allows redefinition of Permanent Symbol Table

entries as macro symbols. That is, permanent symbols may be used as

macro symbols. But the user must keep in mind the sequence in which

the search for symbols 1is performed in order to avoid incorrect

interpretation of the symbol's use.

When a symbol appears in the operand field, the User-Defined Symbol

Table is searched first, then the Permanent Symbol Table is searched.

Depending on their use in the source 'program, user~defined symbols
have either a local (internal) attribute or a global (external)

attribute. ;

Normally, MACRO-11l treats all user-defined symbols as local, that is,

their definition is 1limited to the module in which they appear.

However, symbols can be explicitly declared to be global symbols

through one of three methods:

3-6

SYMBOLS AND EXPRESSIONS

l. Use of the .GLOBL directive (see Section 6.9).

2. Use of the double colon (::) in defining a label (see Section

2.2.1).

3. Use of the double equal (== sign in a direct assignment

statement (see Section 3.3). ~

All symbols within a module that remain undefined at the end of

assembly are treated as default global references.

NOTE

Undefined symbols at the end of assembly are

assigned a value of 0 and placed into the

user—-defined symbol table as wundefined default

global references. If the .DSABL GBL directive is
~in effect, however, (see Section 6.2), the

automatic global reference default function of
MACRO-11] is inhibited, causing the statement

containing the undefined symbol to be flagged with
an error code (U) in the assembly 1listing (see

Appendix D). |

Global symbols provide linkages between independently-assembled object

modules within the task image. A global symbol defined as a label,

for example, may serve as an entry-point address to another section of
code within the image. Such symbols are referenced from other source
modules in order to transfer control throughout execution. These

global symbols are resolved at link time, ensuring that the resulting

image is a logically coherent and complete body of code.

3.3 DIRECT ASSIGNMENT STATEMENTS

A direct assignment statement allows you to equate a symbol to a

specific value. When a direct assignment statement is first used to
define a symbol, that symbol is entered into the User-Defined Symbol
Table. A symbol defined in this manner may be redefined in a

subsequent direct assignment statement by assigning a new value to the

previously-defined symbol.

The general format for a direct assignment statement is:

symbol=expression

or

symbol==expression

where: expression = can have only one level of forward reference
, .(see 5. below).

- cannot contain an undefined global reference.

A direct assignment statement embodying the double equal (==) sign, as

shown above, defines the symbol as global (see Section 6.9).

SYMBOLS AND EXPRESSIONS

The following examples illustrate the coding of direct assignment

statements:

A=]1 ;THE SYMBOL A IS EQUATED TO THE

: VALUE 1.

B=A-1&MASKLOW ;THE SYMBOL B IS EQUATED TO THE

sVALUE OF THE ENTIRE EXPRESSION

sWHICH FOLLOWS.

C:

D=. ;THE SYMBOL D IS EQUATED TO ., AND

E: MOV #1 ,ABLE ;THE LABELS C AND E ARE ASSIGNED A

; VALUE THAT IS EQUAL TO THE LOCATION

;OF THE MOV INSTRUCTION.

The last of the three examples above is provided only to illustrate

the performance of MACRO-1l in such situations. See Section 3.6 for a

description of the period (.) as the current location counter symbol.

The following conventions apply to the coding of direct assignment

statements:

l. An equal sign (=) or double equal sign (==) must separate the

symbol from the expression defining the symbol's value.

Spaces preceding and/or following the direct assignment

operators, although permissible, have no significance in the

resulting value. ~

2. The symbol being assigned in a direct assignment statement is

placed in the label field.

3. Only one symbol can be defined in a single direct assignment

statement.

4. A direct assignment statement may be followed only by a

comment field.

5. Only one level of forward referencing is allowed, as shown in

the following example:

X=Y (Illegal forward reference)

Y=2 (Legal forward reference)

z=1

The above example would result in the generation of an error code (U)

in the assembly 1listing on the line containing the illegal forward

reference.

Although one 1level of forward referencing 1is allowed for 1local

symbols, a global symbol defined in a direct assignment statement must

not contain a forward reference, i.e., the global assignment

expression must not itself contain an undefined reference to another

symbol. Such a forward reference is illegal, causing an error code

(A) to be generated in the assembly listing.

SYMBOLS AND EXPRESSIONS

3.4 REGISTER SYMBOLS

The eight general registers of the PDP-1ll1 processor are numbered 0

through 7 and can be expressed in the source program in the following

manner:

30

3l

®

37

where % indicates a reference to a register rather than a location.

The digit specifying the register can be replaced by any legal,

absolute term that can be evaluated during the first assembly pass.

Use standard symbolic names for all register references.

The register definitions listed below are automatically assigned by

MACRO-11, i.e., these definitions are the normal default values and

remain valid for all register references within the source program.

RO=%0 sREGISTER0 DEFINITION.

R1=%1 ;REGISTER 1 DEFINITION.

R2=%2 ;REGISTER 2 DEFINITION.

R3=%3 ;REGISTER 3 DEFINITION.

R4=%4 ;REGISTER 4 DEFINITION.

R5=%5 sREGISTER 5 DEFINITION.

SP=%6 ~ ;STACK POINTER DEFINITION.

PC=%7 ; PROGRAM COUNTER DEFINITION.

Note that registers 6 and 7 are given special names because of their

unique system functions. |

A register symbol may be defined in a direct assignment statement

appearing 1in the program. The defining expression of a register

symbol must be a legal, absolute value. Although you can reassign the

standard register symbols through the use of the .DSABL REG directive

(see Section 6.2), this practice is not recommended. An attempt to

redefine a default register symbol without first specifying the .DSABL

REG directive to override the normal register definitions causes that

assignment statement to be flagged with an error code (R) in the

assembly 1listing. The symbolic default names assigned to the

registers, as listed above, are the conventional names used in all

DIGITAL-supplied PDP-1l system programs. For this reason, vyou are

well advised to follow these conventions.

All non-standard register symbols must be defined before they are

referenced in the source program. A register expression less than 0

or greater than 7 is flagged with an error code (R) in the assembly

listing.

The % character may be used with any legal term or expression to

specify a register. For example, the statement

CLR %$3+1

is equivalent in function to the statement

CLR %4

and clears the contents of register 4.

3-9

SYMBOLS AND EXPRESSIONS

In contrast, the statement

CLR 4

clears the contents of virtual memory location 4.

3.5 LOCAL SYMBOLS

Local symbols are specially formatted symbols used as labels within a

block o0f coding that has been delimited as a local symbol block.

Local symbols are of the form n$, where n is a decimal integer from 1

to 65535, inclusive. Examples of local symbols are:

1$

279

59§

1045%

A local symbol blockis delimited in one of three ways:

1. The range of a local symbol block usually consists of those

statements between two normally-constructed symbolic labels

(see Figure 3-1). Note that a statement of the form:

ALPHA=expression

is a direct assignment statement (see Section 3.3), but does

not <create a label and thus does not delimit the range of a

local symbol block.

2. The range of a local symbol block is normally terminated upon

encountering a .PSECT, .CSECT, or .ASECT directive in the

source program (see Figure 3-1).

3. The range of a 1local symbol block 1is delimited through

MACRO=-11 directives, as follows:

Starting delimiter: .(ENABL LSB (see Section 6.2)

Ending delimiter: .ENABL LSB

or

.DSABL LSB (see Section 6.2)

followed by one of: Symbolic label

.PSECT (see Section 6.8.1)

.CSECT (see Section 6.8.2)

.ASECT (see Section 6.8.2)

Local symbols provide a convenient means of generating 1labels for

branch instructions and other such references within a local symbol

block. Using local symbols reduces the possibility of symbols with

multiple definitions appearing within a user program. In addition,

the use of local symbols differentiates entry-point labels from local

labels, since 1local symbols cannot be referenced from outside their

respective local symbol block. Thus, local symbols of the same name

can appear. in other 1local symbol blocks without conflict. Local

symbols do not appear in cross-reference listings.

10W

I

SYMBOLS AND EXPRESSIONS

Local symbols require less symbol table space than other types of

symbols. Their use is recommended. When defining local symbols, use
the range from 1$ to 63% first, then the range from 1285 to 655358.

Local symbols within the range 64$ through 127%, inclusive, can be

generated automatically as a featureof MACRO-1ll. Such local symbols

are useful in the expansion of macros during assembly and are

described in detail in this context in Section 7.3.5.

Be sure to avoid multiple definitions of local symbols within the same

local symbol block. For example, if the local symbol 10§ is defined

two or more times within the same 1local symbol block, each symbol

represents a different address value. Such a multi-defined symbol

causes an error code (P) to be generated in the assembly listing.

For examples of local symbols and local symbol blocks as

in a source program, see Figure 3-1.

they appear

121)
122

) PROGRAM INITIALIZATION CODE

123)

124

125 ooveen LPSECTY XCTPRG,GBL

126 240200 21270¢ oQe2000! XCTPRGreMOV #IMPURE ,RD JIMPURE DATA INITIALIZATION
127 0ARPR4 005720 | 181 CLR (RBY)s |

128 Q200NR6 @22709 QReoeer! - CMP HIMPURT,RQ

129 Qo012 121374 Bml 1%

130 ‘

131 o0o00pe +PSECT XxCTPAS,GBL '
132 ooveed 012700 opo0oR! XCTPASt MOV HIMPRPAS,RD JPASS INITIALIZATION
133 200024 Q05020 181 CLR (RP) : :

134 PPORRE P227¢0 PAPARO! CMp BIMPPAT,RD
135 9neas2 121374 Bml 1%

136

137 ee0ape PSECT XCTLIN,GBL fl

138 2000232 212700 eeopo@! XCTLINIIMQV BRIMPLIN,RD JLINE INITIALIZATION
139 200004 Q05020 18 CLR (RRYe V
140 20206 P22702 eRRRAR! cMp BIMPLIT,RD
141 200012 141374 Bml 1%
142

Figure 3-1 Assembly Listing Showing Local Symbol Block

3.6 CURRENT LOCATION COUNTER

The period (.) is the symbol for the current location counter. When

used in the operand field of an instruction, it represents the address

of the first word of the instruction, as shown in the first example

below. When wused in the operand field of a MACRO-1ll directive, it

represents the address of the current byte or word, as shown in the

second example below.

A: - MOV #.,R0 ;THE PERIOD(.) REFERS TO THE ADDRESS

;OF THE MOV INSTRUCTION.

(The function of the # symbol is explained in Section 5.9.)

SAL=0

.WORD 177535,.+4,SAL ;THE OPERAND .+4 IN THE .WORD

;DIRECTIVE REPRESENTS A VALUE

;THAT IS STORED AS THE SECOND

;OF THREE WORDS DURING

;ASSEMBLY.

Assume that the current value of the location counter is 500. During

assembly, MACRO-11l reserves storage in response to the .WORD directive

(see Section 6.3.2), beginning with 1location 500. The operands

accompanying the .WORD directive determine the values so stored. The

3-11

SYMBOLS AND EXPRESSIONS

value 177535 is thus stored in location 500. The value represented by

.+4 is stored in location 502; this value is derived as the current

value of the location counter (which is now 502), plus the absolute

value 4, thereby depositing the value 506 in location 502. Finally,

the value of SAL, previously equated to 0, is deposited in 1location

504.

Figure 3-2 illustrates the result of the example.

LOCATION CONTENTS

500 177535

502 506

504 0

Figure 3-2 Sample Assembly Results

At the beginning of each assembly pass, MACRO-1ll resets the 1location

counter. Normally, consecutive memory locations are assigned to each

byte of object data generated. However, the wvalue of the 1location

counter can be changed through a direct assignment statementof the

following form:

.=expression

Similar to other MACRO-1ll symbols, the current location counter symbol

(.) has an attribute of relocatability associated with it: it is

either absolute or relocatable, depending on the specific such

attribute of the current program section. (A program section and its
attributes are defined through the wuse of the .PSECT directive

described in Section 6.8.1.) The existing attribute (or mode) of the

current location counter cannot be changedby specifying a defining
expression having a different attribute.

Furthermore, such a defining expression must not force the 1location

counter 1into another program section (.PSECT area), even though the

program sections so involved may both be absolute or relocatable. The
expression defining the 1location counter value must not contain a

forward reference, i.e., the expression must not contain a reference

to a symbol that 1is not previously defined. Such violations
constitute a general assembly error, resulting in an error code (A) in

the assembly listing.

Thus, the attribute (or mode) of the current location counter takes on

the attribute of the current program section. Therefore, 1its
attribute from program section to program section can be changed only

through the program sectioning directives (.PSECT, .ASECT, and

.CSECT), as described in Section 6.8.

The following coding illustrates the wuse of the current 1location

counter: |

3-12

SYMBOLS AND EXPRESSIONS

.ASECT

.=500 ; SET LOCATION COUNTER TO

; ABSOLUTE 500 (OCTAL).

FIRST: MOV .+10,COUNT ; THE LABEL "FIRST" HAS THE VALUE
;500 (OCTAL) .

3.+10 EQUALS 510 (OCTAL). THE

; CONTENTS OF THE LOCATION

;510 (OCTAL) WILL BE DEPOSITED

;IN THE LOCATION "COUNT."

.=520 ; THE ASSEMBLY LOCATION COUNTER
;NOW HAS A VALUE OF |

| ; ABSOLUTE 520 (OCTAL).

SECOND: MOV . , INDEX ; THE LABEL SECOND HAS THE
; VALUE 520 (OCTAL).

; THE CONTENTS OF LOCATION

3520 (OCTAL), THAT IS, THE BINARY

;CODE FOR THE INSTRUCTION

; ITSELF, WILL BE DEPOSITED IN THE

; LOCATION "INDEX."

.PSECT

.=.+20 ;SET LOCATION COUNTER TO
; RELOCATABLE 20 OF THE

; UNNAMED PROGRAM SECTION.

THIRD: .WORD 0 ; THE LABEL THIRD HAS THE
;VALUE OF RELOCATABLE 20.

Storage areas may be reserved in the program by advancing the location
counter. For example, if the current value of the location counter is
1000, each of the following statements: — | |

=.+40

or

.BLKB 40

or

.BLKW 20

reserves 40(8) bytes of storage space 1in the source program. The
.BLKB and .BLKW directives, however, are recommended as the preferred
ways to reserve storage space (see Section 6.5.3).

3.7 NUMBERS

MACRO-11 assumes that all numbers in the source program are to be
1nterpreted in octal radix, unless otherwise specified. An exception
to this is that operands associated with Floating Point Processor
instructions and Floating Point Data directives are treated as decimal
(see Section 6.4.2). This default radix can be altered with the
.RADIX directive (see Section 6.4.1.1). Also, individual numbers can
be designated as decimal, binary, or octal numbers through temporary
radix control operators (see Section 6.4.1.2).

For every statement in the source program that contains a digit that
is not in the <current radix, an error code (N) is generated in the
assembly listing. However, MACRO-1ll continues with the scan of the
statement and evaluates each such number encountered as a decimal
value.

3-13

SYMBOLS AND EXPRESSIONS

Negative numbers must be preceded by a minus sign; MACRO-11

translates such numbers into two's complement form. Positive numbers

may (but need not) be preceded by a plus sign.

A number contalnlnq more than 16 significant bits, i.e., greater than

177777(8), is truncated from the left and flagged with an error code
(T) in the assembly listing.

Numbers are always considered to be absolute values, i.e., they are

not relocatable.

Single-word floating-point numbers may be generated with the °F

operator (see Section 6.4.2.2) and are stored in the following format:

15 14 7 6 0

Sign 8-bit 7-bit

Bit Exponent Mantissa

Refer to the appropriate PDP-11 Processor Handbook for details of the

floating=point number format.

3.8 TERMS

A term is a component of an expression and may be one of the

following:

1. A number, as defined in Section 3.7, whose 1l6-bit value is

used.

2. A symbol, as defined in Section 3.2. Symbols are evaluated

as follows:

a. A period (.) specified in an expression causes the value

of the current location counter to be used.

b. A defined symbol is located in the User-Defined Symbol

Table (UST) and its value is used.

c. A permanent symbol's basic value 1is wused, with zero

substituted for the addressing modes. (Appendix C lists

all op codes and their values.)

d. An undefined symbol is assigned a value of =zero and

inserted in the User-Defined Symbol Table as an undefined

default global reference. If the .DSABL GBL directive

(see Section 6.2) 1is in effect, the automatic global

reference default function of MACRO-1l1l is inhibited, in

- which case, the statement containing the undefined symbol

is flagged with an error code (U) in the assembly

listing.

3. A single quote followed by a single ASCII character, or a

double quote followed by two ASCII characters. This type of

expression construction is explained in detail in Section

6.3.3.

3-14

SYMBOLS AND EXPRESSIONS

4., A term may also be an expression enclosed in angle brackets

(<>). Any expression so enclosed is evaluated and reduced to

a single term before the remainder of the expression in which
it appears is evaluated. Angle brackets, for example, may be
used to alter the left-to-right evaluation of expressions (as
in A*B+C versus A*<B+C>), or to applya unary operator to an
entire expression (as in =<A+B>).

5. A unary operator followed by a symbol or number.

3.9 EXPRESSIONS

Expressions are combinations of terms J@lned together by binary
operators (see Table 3-5) and which reduce to a 1l6-bit expression
value. The evaluation of an @Xpt&fifil@fi includes the determination of
its attributes. A resultant expression value may be any one of four
types (as described later in this section): absolute, relocatable,
external, or complex relocatable. bt : | | -

Expressions are evaluated from left to right with no operator

hierarchy rules, except that unary operators take precedence over
binary operators. A term preceded by a unary operator 1is considered
to contain that operator. (Terms are evaluated, where necessary,
before their use in expressions.) Multiple unary operators are valid
and are treated as follows:

o -\

is equivalent to:

=<L+L=A>>

A missing term, expression, or external symbol 1is interpreted as a

Zero. A m1351ng or illegal operator terminates the expression
analyala, causing an error code (A) or (Q), or both, to be generated
in the assembly 1listing, dep@milng on the cant@xt of the expression
itself. For example, the expression:

TAG ! LA 177777

is evaluated as

TAG ! LA

because the first non-blank character following the symbol LA is not a
legal binary operator,an expression separator (i.e., a comma), or an
operand field terminator (i.e., a semicolon or the end of the source

line). It should be noted that spaces within expressions are ignored.

The value of an external expression is equal to the wvalue of the

absolute part of that expression. For example, the expression
EXTERN+A, where "EXTERN" is an external symbol, has a value at

assembly-time that is equal to the value of the internal symbol A.
This expression, however, when evaluated at link time takes on the

resolved value of the symbol EXTERN, plus the value of symbol A.

Expressions, when evaluated by MACRO-11l, are determined to be one of

four types: absolute, relocatable, external (or global), or complex
relocatable. The following distinctions are important:

l. An expression 1is absolute if its wvalue 1is fixed. An

expression whose terms are numbers and ASCII conversion

3-15

SYMBOLS AND EXPRESSIONS

characters will reduce to an absolute value. A relocatable
expression or term minus a relocatable term, where both
elements being evaluated belong to the same program section,
are also absolute, since such an expression is reduced to a
single term by MACRO-1l upon completion of the expression
scan. For example, the expression TAG2-TAGl, where both TAGl

and TAG2Z are defined in the same program section, is an
absolute expression. Terms that contain labels defined in an
absolute section will have an absolute value.

2. An expression is relocatable if its value is fixed relative
to the base address of the program section in which it
appears, but it will have an offset value added at link time.
Terms that contain labels defined 1in relocatable program
sections will have a relocatable value; similarly, a period
(.) in a relocatable program section, representing the value
of the current location counter, will also have a relocatable
value.

-3. An expression is external (or global) if it contains a single
global reference (plus or minus an absolute expression value)
that is not defined within the current progranm. Thus, an
external expression is only partially defined following
assembly and must be resolved at link time.

4. An expression is complex relocatable if any of the following
conditions applies:

= It contains a global reference and a relocatable symbol.

= It contains more than one global reference.

- It contains relocatable terms belonging to different
program sections.

= The value resulting from the expression has more than one
level of relocation. For example, 1if the relocatable
symbols TAGl and TAG2 associated with the same program
section are specified in an expression construction in the
form TAGl+TAG2, two levels of relocation would be
introduced, since each symbol is evaluated in terms of the
relocation bias in effect for the program section.

= An operation other than addition is specified on an
undefined global symbol.

= An operation other than addition, subtraction, negation, or
complementation is specified for a relocatab}e value.

The evaluation of relocatable, external, and complex relocatable
expressions is completed at link time.

CHAPTER 4

RELOCATION AND LINKING

The output of MACRO-1l1l is an object module that must be processed or

linked before it can be loaded and executed. Essentially, linking

fixes (i.e., makes absolute) the values of external or relocatable

symbols in the object module, thus transforming the object module, or

several such object modules, into an executable image.

To allow the value of an expression to be fixed at link time, MACRO-1l
outputs certain directives 1in the object file, together with other

required parameters. In the case of relocatable expressions in the

object module, the base of the associated relocatable program section
is added to the value of the relocatable expression provided by

MACRO-11l. 1In the case of external expression values, the value of the

external term in the expression (since the external symbol must be
defined in one of the other object modules being linked together) is

determined and then added to the absolute portion of the external

expression, as provided by MACRO-1l. |

All instructions that require modification at link time are flagged in

the assembly 1listing, as 1illustrated in the example below. The

apostrophe (') following the octal expansion of the instruction

indicates that simple relocation is required; the letter G indicates

that the value of an external symbol must be added to the absolute

portion of an expression; and the letter C indicates that complex

relocation analysis at link time is required in order to fix the value

of the expression.

EXAMPLE:

005065 CLR EXTERN (R5) ;THE VALUE OF THE SYMBOL "EXTERN" IS

000000G ;ASSEMBLED AS ZERO AND IS

;RESOLVED AT LINK TIME.

005065 CLR . EXTERN+6 (R5) ;THE VALUE OF THE SYMBOL "EXTERN"

G | ; IS RESOLVED AT LINK TIME

;AND ADDED TO THE ABSOLUTE

; PORTION (+6) OF THE EXPRESSION.

005065 CLR RELOC (R5) ;ASSUMING THAT THE VALUE OF THE

000040" ; SYMBOL "RELOC" IS RELOCATABLE

;40, THE RELOCATION BIAS

;WILL BE ADDED TO THIS VALUE.

005065 CLR -<EXTERN+RELOC>(R5) ;THIS EXPRESSION IS COMPLEX

000000C s RELOCATABLE BECAUSE IT REQUIRES

;THE NEGATION OF AN EXPRESSION

; THAT CONTAINS A GLOBAL "EXTERN"

; REFERENCE AND A RELOCATABLE TERM.

For a complete description of object records output by MACRO-11l, refer

to the applicable system manual (see Section 0.3 in the Preface).

4-1

i

CHAPTER 5

ADDRESSING MODES

The program counter (PC) always contains the address of the next word

to be fetched, i.e., the address of the next instruction to be
executed, or the second or third word of the current instruction.

In order to understand how the address modes operate and how they
assemble, the action of the program counter must be understood. The
key rule to remember is:

"whenever the processor implicitly uses the program counter

(PC) to fetch a word from memory, the program counter is

automatically 1ncrem@ntad by 2 after th@ fetch operation is
completed."

In the case of 2- or 3-word instructions, the processor uses the PC to

fetch the following words as well.

The following symbols are used in describing addressing modes

throughout this chapter:

l. E is any expression, as defined in Chapter 3.

2. R is a register expression, i.e., any expression containing a

term preceded by a percent sign (%) or a symbol previously
equated to such a term, as shown in the examples below:

RO=%0 ;GENERAL REGISTER 0.

R1=R0+1 ;GENERAL REGISTER 1.

R2=1+%1 ;GENERAL REGISTER 2.

The symbol R may also represent any of the normal default

register definitions (see Section 3.4).

3. ER is a register expression or an absolute expression in the

range 0 to 7, inclusive. |

4. A is a general addressing specification which produces a

6-bit mode address field, as described in the PDP-l1l
Processor Handbooks. The addressing specification, A, is

described in terms of E, R, and ER, as defined above. Each
addreflsxng specification within this section is illustrated
using either the single operand instruction CLR or the double
operand instruction MOV.

5.1 REGISTER MODE

The register itself (R) contains the operand to be manipulated by the

instruction.

5-1

ADDRESSING MODES

- Format for A: R

Example:

CLR R3 ;CLEARS REGISTER 3.

5.2 REGISTER DEFERRED MODE

The register (R) contains the address of the operand to be manipulated

by the instruction.

Format for A: @R or (ER)

Examples:

| CLR @R1 sALL THESE INSTRUCTIONS CLEAR
CLR (R1) s THE WORD AT THE ADDRESS

CLR (1) s CONTAINED IN REGISTER 1.

5.3 AUTOINCREMENT MODE

The contents of the register (ER) are incremented immediately
being used as the address of the operand (see Note below).

Format for A: (ER)+

Examples:

CLR (RO) + | s EACH INSTRUCTION CLEARS
CLR (R4) + : THE WORD AT THE ADDRESS

CLR (R2)+ s CONTAINED IN THE SPECIFIED

+REGISTER AND INCREMENTS

; THAT REGISTER'S CONTENTS

+BY TWO.

NOTE

Certain special ifistruction/address mode
combinations, which are rarely or never used, do

not operate exactly the same on all PDP-11

processors, as described below.

In the autoincrement mode, both the JMP and JSR

instructions autoincrement the register before its

use on the PDP-11/40, but not on the PDP-11/45 or

11/10.

In double operand instructions having the

addressing form Rn, (Rn)+ or Rn,-(Rn), where the

source and destination registers are the same, the

source operand is evaluated as the autoincremented

or autodecremented value, but the destination

register, at the time it is used, still contains

the originally-intended effective address. 1In the

following example, as executed on the PDP-11/40,

Register 0 originally contains 100(8):

after

ADDRESSING MODES

MOV RO, (RO) + ; THE QUANTITY 102 IS MOVED
; TO LOCATION 100.

MOV RO,-(RO) ; THE QUANTITY 76 IS MOVED
; TO LOCATION 100.

The use of these forms should be avoxded, - since

they are not compatible with the entire family of

PDP-11 processors.

An error code (2) 1is printed 1in the aasembly
listing with each instruction which 1is not

compatible among all members of the PDP-11 family.

5.4 AUTOINCREMENT DEFERRED MODE

The register (ER) contains a pointer to the address of the operand.

The contents of the register are incremented after being used as a
pointer.

Format for A: @ (ER)+

Example:

| CLR @ (R3)+ ; THE CONTENTS OF REGISTER 3 POINT
:TO THE ADDRESS OF A WORD TO BE

; CLEARED BEFORE THE CONTENTS OF THE

; REGISTER ARE INCREMENTEDBY TWO.

5.5 AUTODECREMENT MODE

The contents of the register (ER) are decremented before being used as
the address of the operand (see Note above in Section 5.3).

Format for A: - (ER)

Examples:

CLR - (RO) : DECREMENT THE CONTENTS OF THE SPECI-
sFIED REGISTER (0, 3, OR 2) BY TWO

CLR - (R3) :BEFORE USING ITS CONTENTS
CLR - (R2) :AS THE ADDRESSOF THE WORD TO BE

: CLEARED.

5.6 AUTODECREMENT DEFERRED MODE

The contents of the register (ER) are decremented before being used as
a pointer to the address of the operand.

Format for A: @- (ER)

Example:

CLR @- (R2) s DECREMENT THE CONTENTS OF
sREGISTER 2 BY TWO BEFORE

sUSING ITS CONTENTS AS A POINTER

;TO THE ADDRESS OF THE WORD TO BE

; CLEARED.

5-3

ADDRESSING MODES

5.7 INDEX MODE

The value of an expression (E) is stored as the second or third word
of the instruction. The effective address of the operand is
calculated as the value of E, plus the contents of register ER. The
value E is the offset of the instruction, and the contents of register
ER form the base.

Format for A: E (ER)

Examples:

CLR X+2 (R1) ;THE EFFECTIVE ADDRESS OF THE WORD
;TO BE CLEARED IS X+2, PLUS THE

; CONTENTS OF REGISTER 1.
MOV RU, -2 (R3) ; THE EFFECTIVE ADDRESS OF THE

;DESTINATION LOCATION IS -2, PLUS

;THE CONTENTS OF REGISTER 3.

5.8 INDEX DEFERRED MODE

An expression (E), plus the contents of a register (ER), vyields a
pointer to the address of the operand. As in index mode above, the
value E is the offset of the instruction, and the contents of register
ER form the base.

Format for A: @E (ER)

Example:

CLR @114 (R4) ; IF REGISTER 4 CONTAINS 100, THIS

;VALUE, PLUS THE OFFSET 114, YIELDS

;THE POINTER 214. IF LOCATION 214

; CONTAINS THE ADDRESS 2000, LOCATION

;2000 WOULD BE CLEARED.

5.9 IMMEDIATE MODE

Immediate mode allows the operand itself (E) to be stored as the
second or third word of the instruction. This mode is assembled as an
autoincrement of the PC.

Format for A: #E

Examples:

MOV #100, R0 :MOVE THE VALUE 100 INTO REGISTER O.
MOV #X,R0 ;MOVE THE VALUE OF SYMBOL X INTO

;REGISTER 0.

The number sign (#) in the MACRO-11 character set has special
significance as an addressing mode indicator. When this character
appears in the operand field, as shown above, it specifies the
immediate addressing mode, indicating to MACRO-1l1l that the operand
itself immediately follows the instruction word.

ADDRESSING MODES

The operation of this mode can be shown through the first example,
MOV #100,R0, which assembles as two words:

Location 20: 01 2 7 0 0

Location 22: 0 0 01 0 O

Location 24: Next instruction

Note that the source operand (the value 100) is assembled immediately
following the instruction word, i.e., as the second word in the
instruction. Upon execution of the instruction, the processor fetches
the first word (MOV) and increments the PC by 2 so that it points to
location 22 (which contains the source operand).

After the next fetch and increment cycle, the source operand (100) is
moved into register 0, leaving the PC pointing to location24 (the
next instruction).

5.10 ABSOLUTE MODE

Absolute mode is the equivalent of immediate mode deferred. The
address expression @#E specifies an absolute address which is stored
as the second or third word of the instruction. In other words, the
value immediately following the instruction word is taken as the
absolute address of the operand. Absolute mode 1is assembled as an
autoincrement deferred of the PC.

Format for A: Q#E

Examples:

MOV @#100,R0 ;MOVE THE CONTENTS OF ABSOLUTE
; LOCATION100 INTO REGISTER RO.

CLR Q#X ;CLEARTHE CONTENTS OF THE LOCATION
;WHOSE ADDRESS IS SPECIFIED BY

;THE SYMBOL X.

The operation of this mode can be shown through the first example,
MOV@#100,R0, which assembles as two words:

Location 20: 01 3 7 0 0

Location 22: 0 0 0 1 0 O

Location 24: Next instruction

Note that the absolute address 100 is assembled immediately following

the instruction word, i.e., as the second word in the instruction.
Upon execution of the instruction, the processor fetches the first
word (MOV) and increments the PC by 2 so that it points to location 22
(which contains the absolute address of the source operand). After
the next fetch and increment cycle, the contents of absolute address
100 (the source operand) are moved into register 0, leaving the PC

pointing to location 24 (the next instruction).

5.11 RELATIVE MODE

Relative mode is the normal mode for memory references within your
program. It is assembled as index mode, using the PC as the index
register.

5-5

ADDRESSING MODES

Format for A: E

Examples:

CLR 100 ;CLEAR ABSOLUTE LOCATION 100

MOV RO, Y sMOVE THE CONTENTS OF REGISTER O

; TO LOCATION Y

In relative mode, the offset for the address calculation is assembled
as the second or third word of the instruction. This value is added

to the contents of the PC (the base register) to yield the address of
the source operand.

The operation of relative mode can be shown with the statement
MOV 100,R3, which assembles as two words:

Location 20: O 1 6 7 0 3

Location 22: 0 0 0 0 5 4

Location 24: Next instruction

Note that the constant 54 is assembled immediately following the
instruction word, 1i.e., as the second word in the instruction. Upon

execution of the instruction, the processor fetches the first word

(MOV) and increments the PC by 2 so that it points to location 22

(containing the value 54). After the next fetch and increment cycle,

the processor calculates the effective address of the source operand
by taking the contents of location 22 (the offset) and adding it to
the current value of the PC, which now points to location 24 (the next

instruction). Thus, the source operand address is the result of the

calculation OFFSET+PC = 54+24 = 100(8), causing the contents of

location 100 to be moved into register 3.

Since MACRO-11l considers the contents of the current location counter
(.) as the address of the first word of the instruction, an equivalent

index mode statement is shown below:

MOV 100-.-4(PC) ,R3

This instruction has a relative addressing mode because the operand

address 1is calculated relative to the current value of the location

counter. The offset is the distance (in bytes) between the operand

and the current value of the location counter.

5.12 RELATIVE DEFERRED MODE

The relative deferred mode is similar in operation to the relative

mode above, except that the expression E is used as a pointer to the

address of the operand. 1In other words, the operand following the

instruction word is added to the contents of the PC to yield a pointer

to the address of the operand.

Format for A: QE

Example:

MOV @X,R0 ;sRELATIVE TO THE CURRENT VALUE OF

sTHE PC, MOVE THE CONTENTS OF THE

s LOCATION WHOSE ADDRESS IS POINTED

;TO BY LOCATION X INTO REGISTER 0.

ADDRESSING MODES

5.13 SUMMARY OF ADDRESSING FORMS

Each PDP-11 instruction takes at least one word. Operands of the form

listed below do not increase the length of an instruction.

Form Meaning

R Register mode

" @R or (ER) Register deferred mode (see Note below)

(ER) + Autoincrement mode

) @(ER) + Autoincrement deferred mode

- (ER) Autodecrement mode

@- (ER) Autodecrement deferred mode

Operands of the following forms add one word to the instruction length-

for each occurrence of an operand of that form:

Form | Meaning

E (ER) Index mode

QE (ER) Index deferred mode

#E Immediate mode

Q#E Absolute mode (see Note below)

E Relat{;e mode

QE Relative deferred mode

The syntax of the addressing modes 1is summarized in Appendix B.

Additional discussion of addressing modes 1is provided in the

applicable PDP-11 Processor Handbook.

NOTE

An alternate form for @R is (ER). However, the

form @(ER) 1is only logically, but not physically

equivalent to the expression @0 (ER) . The

addressing form Q#E differs from form E in that

the second or third word of the instruction

contains the absolute address of the operand,

rather than the relative distance between the

operand and the PC. Thus, the instruction CLR

@#100 clears absolute location 100, even if the

> instruction 1is moved from the point at which it

was assembled. See the description of the .ENABL

AMA function 1in Section 6.2, which causes all

relative mode addresses to be assembled as

absolute mode addresses.

ADDRESSING MODES

5.14 BRANCH INSTRUCTION ADDRESSING

The branch instructions are l-word instructions. The high-order byte

contains the operator, and the low—-order byte contains an 8-bit signed

offset (seven bits, plus sign), which specifies the branch address

relative to the current value of the PC. The hardware calculates the

branch address as follows:

1. Extends the sign of the offset through bits 8-15.

2. Multiplies the result by 2, creating a byte offset rather

than a word offset.

3. Adds the result to the current value of the PC to form the

effective branch address.

MACRO-11 performs the reverse operation to form the word offset from

the specified address. Remember that when the offset is added to the

current value of the PC, the PC is pointingto the word following the

branch instruction; hence, the factor -2 in the following

calculation:

Word offset = (E-PC)/2 truncated to eight bits.

Since the value of the PC = .+2, we have:

Word offset = (E-.-2)/2 truncated to eight bits.

In using branch instructions, you must exercise care to avoid the

following error conditions:

l. Branching from one program section to another;

2. Branching to a 1location that 1is defined as an external

(global) symbol; or

3. Specifying a branch address that is out of range, i.e., the

branch offset 1is a value that does not lie within the range

-128(10) to +127(10).

The above conditions cause an error code (A) to be generated in the

assembly listing for the statement in error.

5.15 TUWSING TRAP INSTRUCTIONS

The EMT and TRAP instructions do not use the low-order byte of the

instruction word, allowing information to be transferred to the trap

handlers in the low-order byte. If the EMT or TRAP instruction is

followed by an expression, the value of the expression is stored in

the low-order byte of the word. However, if the expression is greater

than 377(8), it 1is truncated to eight bits and an error code (T) is

generated in the assembly listing.

5-8

PART III

MACRO-11 DIRECTIVES

Chapters 6 and 7 describe all the directives used with MACRO-11.

Directives are statements that cause MACRO-1l1l to perform certain

operations during assembly. Chapter 6 describes several types of

directives, including those which control symbol interpretation,
listing header material, program sections, data storage formats, and
assembly listings. Chapter 7 describes those directives concerning

macros, macro arguments, and repetitive coding sequences.

MACRO-11 directives can be preceded by a label (subject to any
restrictions associated with specific directives) and followed by a
comment. A MACRO-1ll directive occupies the operator field of a source
statement. Only one directive can be included in any given source
line. The operand field may be occupied by one or more operands or
left blank; 1legal operands differ with each directive specified.

CHAPTER 6

GENERAL ASSEMBLER DIRECTIVES

This category of directives includes:

1. Listing control

2. Function control

3. Data storage

4, Radix and numeric control

5. Location counter control

6. Terminators

7. Program boundaries

8. Program sectioning

9. Symbol control

10. Conditional assembly

11. PAL-11R conditional assembly.

Each is described in its own section of this chapter.

6.1 LISTING CONTROL DIRECTIVES

Listing control directives control the content, format, and pagination

of all 1line printer and teleprinter listing output generated during

assembly. Facilities also exist for creating object module names and

other identification information in the listing output.

6.1.1 .LIST and .NLIST Directives

Listing control options can be specified in the text of a MACRO-11

program through the .LIST and .NLIST directives. These directives are

of the form:

.LIST

.LIST arg

.NLIST

.NLIST arg

GENERAL ASSEMBLER DIRECTIVES

where: arg represents one or more of the optional symbolic

arguments defined in Table 6-1.

As indicated above, the listing control directives may be used without

arguments, 1in which case the 1listing directives alter the listing

level count. The listing level count is initialized to zero. At each

occurrence of a .LIST directive, the 1listing level count 1is

incremented; at each occurrence of an .NLIST directive, the 1listing

level count is decremented. When the listing level count is negative,

the listing 1is suppressed (unless the 1line <contains an error).

Conversely, when the 1listing 1level count is greater than zero, the

listing is always generated. Finally, when the count 1is zero, the

line is either listed or suppressed, contingent upon the other listing

controls currently in effect for the program. For example, the

following macro definition employs the .LIST and .NLIST directives to

selectively list portions of the macro body when the macro is

expanded:

.MACRO LTEST ;LIST TEST

7 A-THIS LINE SHOULD LIST ; LISTING LEVEL COUNT IS O.

NLIST ; LISTING LEVEL COUNT IS -1.

7 B-THIS LINE SHOULD NOT LIST

NLIST ; LISTING LEVEL COUNT IS -2.

; C-THIS LINE SHOULD NOT LIST

+LIST ; LISTING LEVEL COUNT IS -1.

; D-THIS LINE SHOULD NOT LIST

.LIST ; LISTING LEVEL COUNT IS O.

; E-THIS LINE SHOULD LIST ; LISTING LEVEL COUNT IS BACK TO 0.

. ENDM

.LIST ME s LIST MACRO EXPANSION.

LTEST ; CALL. THE MACRO

; A-THIS LINE SHOULD LIST ; LISTING LEVEL COUNT IS 0.

; E-THIS LINE SHOULD LIST ; LISTING LEVEL COUNT IS BACK TO 0.

An important purpose of the level count is to allow macro expansions

to be listed selectively and yet exit with the listing level count

restored to the value existing prior to the macro call. |

When used with arguments, the listing directives do not alter the

listing 1level count; however, the .LIST and .NLIST directives can be

‘used to override current listing control, as shown 1in the example

below:

.MACRO XX

.LIST :LIST NEXT LINE.

X=.

.NLIST :DO NOT LIST REMAINDER OF MACRO

. s EXPANSION.

. ENDM

.NLIST ME :DO NOT LIST MACRO EXPANSIONS.
XX

xm'

The symbolic arguments allowed for use with the listing directives are

described 1in Table 6-1. These arguments can be used singly or in

combination with each other. If multiple arguments are specified in a

listing directive, each argument must be separated by a comma, tab, or

6-2

GENERAL ASSEMBLER DIRECTIVES

space. For any argument not specifically 1included in a 1listing

control statement, the associated default assumption (List or No list)

is applicable throughout the source program. The default assumptions

for the listing control directives also appear in Table 6-1.

Table 6-1

Symbolic Arguments of Listing Control Directives

Argument Default Function

SEQ* List Controls the 1listing of source 1line

» sequence numbers. MACRO-11 assigns

sequence number 1 to the first source

line in a file, and increments the

sequence number for each additional line

in the file. If this field 1is

suppressed through an .NLIST SEQ

directive, MACRO-1l1] generates a tab,

effectively allocating space for the

field, but fills the field with blanks.

Thus, the inter-positional relationships

of subsequent fields in the 1listing

remain undisturbed. During the assembly

process, MACRO-1ll examines each source

line for possible error conditions. For

any line in error, an appropriate error

flag is printed preceding the line

sequence number field (see Appendix D).

MACRO-11 does not assign sequence

numbers for files that have had sequence

numbers assigned by other programs, such

as an editor.

LOC* List Controls the 1listing of the current

location counter field. Normally, this

field is not suppressed. However, if it

is suppressed through the .NLIST LOC

directive, MACRO-1l1l does not generate a

tab, nor does it allocate space for the

field, as is the case with the source

line sequence number field (SEQ)

described above. Thus, the suppression

of the current 1location counter (LOC)

field effectively left-justifies all

subsequent fields (while preserving

inter-positional relationships) to that

position otherwise normally occupied by

this field.

BIN* List Controls the listing of generated binary

code. If this field 1is suppressed

through an .NLIST BIN directive,

left-justification of the source code

- field occurs in the same = manner

described above for the current location

counter (LOC) field.

BEX List Controls the listing of binary

extensions, i.e., the locations and

binary contents beyond those that will

fit on the source statement line. This

is a subset of the BIN argument. |

SRC* List Controls the listing of source lines.

(Continued on next page)

6-3

GENERAL ASSEMBLER DIRECTIVES

Table 6-1 (Cont.)

Symbolic Arguments of Listing Control Directives

Argument Default Function

COM

MD

MC

ME

MEB

CND

LD

TOC

SYM

TTM

List

List

List

No list

No list

List

No list

List

List

List

Controls the listing of comments. This

is a subset of the SRC argument. The

.NLIST COM directive reduces 1listing

time and space when comments are not

desired.

Controls the listing of macro

definitions and repeat range expansions.

Controls the listing of macro calls and

repeat range expansions.

Controls the listing of macro

expansions.

Controls the listing of macro expansion

binary code. A .LIST MEB directive

causes only those macro expansion

statements that generate binary code to

be listed. This is a subset of the ME

argument.

Controls the 1listing of unsatisfied

conditional c¢oding and associated .IF

and .ENDC directives 1in the source

program. This argument permits

conditional assemblies to be listed

without including unsatisfied

conditional coding.

Controls the 1listing of all 1listing

directives having no arguments, i.e.,

those listing directives that alter the

listing level count.

Controls the listing of the table of

contents during assembly pass 1 (see

Section 6.1.4 describing the - SBTTL

directive). This argument does not

affect the printing of the full assembly

listing during assembly pass 2.

Controls the listing of the symbol table

resulting from the assembly of the

source program.

Controls the listing output format. The

default can be set by the system

manager. If the system manager does not

set a default, it is set to line printer

format. Figure 6-1 illustrates the 1line

printer output format. Figure 6-2

illustrates the teleprinter output

format.

* If the .NLIST arguments SEQ, LOC, BIN, and SRC are in effect at the

same time, i.e.,

be suppressed,

if all four significant fields in the listing are to

the printing of the resulting blank line is inhibited.

6-4

GENERAL ASSEMBLER DIRECTIVES

An example of an assembly 1listing, as sent to a 132-column line
printer, is shown in Figure 6-1. Note that binary extensions for
statements generating more than one word are formatted horizontally on
the source line.

An example of an assembly listing, as sent to a teleprinter (in the

same format as for an 80U-column line printer), is shown in Figure 6-2.
Notice that binary extensions for statements generating more than one
word are printed on subsequent lines. There is no explicit truncation
of output to 80 characters by the assembler.

Any argument specified in a .LIST/.NLIST directive other than those

listed in Table 6-1 causes the directive to be flagged with an error
code (A) in the assembly listing.

The listing control options can also be specified at assembly time
through switches included in the command string to MACRO-11 (see the
appropriate system manual). The use of these switches overrides all
corresponding 1listing control (.LIST or .NLIST) directives specified
in the source program.

e

puTtaysTTATqWessSyI93UTiagaurdJjooydurexdT-92anbtgANITONVWWOD¥3IHLONVYL39¢1394wl48cipo0e22(1¢06v2
NVISLINANIWLIMINNILNOD‘S3IASI6HVd]3Ng9cted@2.L1¢0gp2

£8J3d8[NANITYNOILIQAVI(@H)LVIS*I'HOW"SOwgl1e1200022@couvRe09L2€tZ2iLtee(ve
3S¥VdJILINVWIS40SLINS3IH3FLVNIVAIL8NIVA311v)90/1009ve

40883NOoINSRET)§38LBpERTvO/tloecve
0J33dSLNdNI38¥VdSTALMERLNdN]I*28152999100vve
fxA834/777v)2183w04SNJIOTLINIS2LINI1IvIt3gHvdl299100t£v2
>39vE83mNVISLNdNION3ISHQvidIW3dAL9€91002v2
MHNYISLNdAN0wWlIM3INNILNDOT‘S3At3SHvVd0aNg29CT22pEole®1p2
3$833dSLNdLiN0TYNDILIQAV!(@H)LVLIS*I'HOW°SINgilg1000200202090©@9L2FfT929120@ve
M38¥VdJILNVWIS40SLINS3INIFLvNIvaIt8NIvA311v)22910d6¢€2HOH¥3NOdINSH¥y32837§28Ippgot9291008ge
M73dSLINdLN03ISHV4!TELIMSE®’LINdIN0*281S)2a91ed(£2

183L/717v3218DHO4SNIOTLINIC2LINI1Iv]1358Vd09(GtP89c2
o39VSSIWNVIELNdLNOON3SHer‘Ld0WidAl2561808¢cfe
wJI9VESIWSNLVLISN9ISIvNO3IONISHBP'NO3wWidAl1501926100vc2
maNNO4NOISTvNB3I3ILVIIANI“3S873¢l14N038INI9lvoLlL925@122S1e@¢c2
=N338LONN9ISIvND3I41d4INSt$01VELZorlee@2sloe2¢2
mSNIVLS¥JI3IMIE(@H)LVLS®I‘NOD3*Son91181000000Qv0oRAYQ9/2¢12icleeg2
MmONNO4LONNOIS“IvNO33IWNESYIL1anbi‘o.wgAOW2EP9LT090000(9L211pOGIRQ@f2
<INITIX3INHO4NIVA4INS‘1NN41NTL39VL]2G91p0z2ecioe622
BINIT40WLAONIT¥I3INII(24)0TW2"%2iSi1§2200080©9/LG009/v10QB2ZL2

2
mmIH0W504AMLIN1139T669020Ppipiod922
=)3I9VSSIWHOHHIXVINASONISHOr'XxLSWidAleGriveg22
2zlyvdLSvTLNOgnN3st@r#(PH)QW22(P¥)2+Q714")JdAlp2rioep22
olu¥dLSV40ML9N3T2vOt(08)0TwI*27(aN)AT14°2gngceoQ0e910@¢Y0999919lvigec22
OLuvdL6MId440W19N3TLONnA3qt(PH)QW2De(4d8)gns20002082992912iptee222

ININLS40LluvdLSV40¥QQvIvI((@N)2+Q714°27(@H)0I4°%DaQvY2epoe9108800V9@99Qvpeplue122
1¥VdONOJ3SLNOON3SHS8/(08)0114°2°(0y)2*Q114D3dAlL09cte®022

INI¥LS40Ll¥vdLS¥I4LNOON3SHS$i1#°(dS)'(OH)2+0WD)3dAl9ccte]s12
LuvdLSHI440WLAON3ITFLvINITvOL(dS)(BM)2+0TWI*2gNgPOBRYe9Tp9912€€t1e@812

¥1SNI¥QQv#0883ININLSLNd!(dS)=?(@8)2+QI14°)AOW0200Vd9PV9TR92ctee/12
Q3133130HOM¥3ON41HIONVHS!$2308PORAERTv2El0@912

GIWI29+%7872092+0W29%187109%18181§182gociew<12
NILNgNI3IWiLNOON3SHBim’(28)0W29(ON)2+0IW2"93dAli1g1ps2ieevi2

LIx3*3813¢S$LIX3
9retledg£12

H0¥Y¥3ON41dIxst$1728gedcetpv2lee212
W29YIAINITL39¢YRERPEL.$IWI9INTLI9IALY““mo0

12
SINITONVWWOD368YdONVQv3INTLLAS*

602SINITANVWWOD3SWVeQNYQviIy
S30Vd(PIGTPL=N[=68(B/OWOMIVW2IS3ONY116240LS3L==L5ilS2

GENERAL ASSEMBLER DIRECTIVES

CSITST»= TESY

READ AND PARSE

OF CSI1 AND CS12 MACRO MB707

COMMAND LINES

B9=JUL=74 15159 PAGE 5

209 JSBYTL READ AND PARSE COMMAND LINES

2102

211 201230 GETLNS GCMLS #GCLBLK JGET LINE VIA GCML
212 201244 1023003 BCC 13 JSKIP IF NO ERROR

213 201246 EXITSS JELSE, EXIT
214 po1254 181 TYPE G,CMLD+2(R2),G,CMLD(R®),»'0 JSEND OUT THE INPUT LINE
215 201300 CS1sy #CSIBLK,GCLBLK+G,CMLD*2,GCLBLK*G,CMLD
216 2m1324 123064 BCC 23 JBRANCH IF NO ERROR DETECTED
217 201326 ©16046 MOV C.,FILDe2(RR),~(SP) JIPUT STRING ERROR ADDR IN STK

e00R20

218 291332 166016 suB C.CMLD*2(RB), (SP) JCALCULATE LENGTH OF FIRST PARTY

- Q2004 V | | , |

219 291336 TYPE C,CMLDe2(RB),(SP),#'S JSEND OUT FIRST PART OF STRING
220 221360 TYPE C.FILD#2(RQ),C,FILD(RB),n'S JSEND QUT SECOND PART
221 2014P4 Q66060 ADD C,FILD(RO),C,FILDe2(RB) JCALC ADDR OF (AST PART OF STRING

‘200@16 ~ ;

200020

222 201412 162660 suB (SPY+,C,CMLD(RA) JDEDUCT LENGTH OF FIRST PART
220002

223 201416 166060 sus C,FILD(RO),C .CMLD(RD) JCALC LENGTH OF LAST PARTY
eaQeR16

eoee0?2

224 701424 TYPE C.,FILD#2(RD)Y,C,CMLD(RB), %40 JSEND OUY LAST PART
225 001450 TYPEM STX,42 JSEND SYNTAX ERROR MESSAGE
226 PR1474 ©AR6ESS BR GETLN JTRY FOR MORE
227

228 AM1476 @AS5768 281 18T C.CMLD(RD) JCHECK LENGTH OF LINE
200002 | -

229 201502 Q81652 BEG GETLN JIF NULL, SKIP BACK FOR NEXT LINE

238 201504 112767 MOVB #'@,EQUBIT JASSUME EQUAL SIGN NOT FOUND

e2R0N60 | ,
176432

231 Q01512 132760 BITR #CS,EQU,C,STAT(RA)Y JCHECK STATUS

200n4R

220001

232 201520 @142 BEQ 108 JSKIP IF EQUAL SIGN NOT SEEN
233 v21%22 185267 INCB EQUBIT JELSE, INDICATE EQUAL SIGN FOUND

176416

234 271526 1081 TYPEM EOQU, 40 JSEND EGUAL SIGN STATUS MESSAGE
235 231852 TYPEM OPT,42 JSEND OQUTPUT SCAN MESSAGE
236 2A1576 OPARSE: Call INIT2 JINIT LOCNS FOR CSI2 CALL/TEST
237 22a16@2 CsIs2 +OUTPUT,#SWTBL JPARSE OUTPUT SPEC
238 201620 1P344y BCS CS2ERR ISKIP ON ERROR

239 02021622 CaLL EvaLUB JEVALUATE RESULTS OF SEMANTIC PARSE

240 201626 1327680 BITB BCS,MOR,C,STAT(R@) jADDITIONAL OUTPUT SPECS?
eReV20

PoRRB!

241 221634 Q201360 BNE OPARSE JYES, CONTINUE WITH QUTPUT SCAN

242 221636 TYPEM 1IPT,d¢ JSEND INPUT SCAN MESSAGE
243 001662 IPARSE: CALL INITZ JINIT LOCNS FOR CSI2 CALL/TEST

244 201666 CsIs2 » INPUT, #SWTBL IPARSE INPUT SPEC

245 Q21704 103407 BCS CS2ERR)ISKIP ON ERROR
246 201706 CALL EVALUB JEVALUATE RESULTS OF SEMANTIC PARSE
247 BA1712 1327680 8178 #CS,MOR,C,8TAT(R®) JADDITIONAL INPUT SPECS?

2ee20

200001

248 001720 201360 BNE IPARSE PYES, CONTINUE wWITH INPUT SCAN

Figure 6-2 Example of Terminal Assembly Listing

GENERAL ASSEMBLER DIRECTIVES

Figure ©6-3 shows a 1listing, produced in 1line printer format,

reflecting the use of the .LIST and .NLIST directivesin the source

program and the effects such directives have on the assembly 1listing

output.

6.1.2 Page Headings

MACRO-11l prints each assembly page in the format shown in either

Figure ©6-1 or Figure 6-2, depending on the listing mode (see TTM,

Table 6-1). On the first line of each page, MACRO-1ll prints the

following (from left to right):

l. Title of the object module, as established through the .TITLE

directive (see next section).

Assembler version identification.

Date.

. Time-of-day.

U
l

>

W

N

.

. Page number.

The second line of each assembly listing page contains the subtitle

text specified in the last-encountered .SBTTL directive (see Section

6.1.4).

GENERAL ASSEMBLER DIRECTIVES

X38'wW02x38°'W02w0
2

w0
3

X3
g

X3
98

X3
8

03
¢

quom’®JVWiET

03
s

01
3s

Wi
l

Qyo
m*

JYWiST

l1evoeevénoeetogaeecon
oee

100
0001eee
aeo

roeeee1e
ee
e0

ecieeepiioee2110009ate0egaiee0vio
eee

vid000v¢(oouo
1y6

8g
t

LKL1Y14
Y

£€‘NIvVW®4%i
to
t

8e(2

6-9

GENERAL ASSEMBLER DIRECTIVES

&

o,

S®AT309ITdTOIIUODBUTISTTUYITMINIWWO]vSTSImMLtINIWWODVvSTSIWLEANIWWODvSISIWLH
opeonpoxdbUT3lsSIIX3¢is1®¢'pig2’layom*X38L1SIIN®X38

JvywiST207JvwiE"wan
3*MYis19*c'pigie’layom*

94yJVYWLIETQHIVW’

"
t£ode

ee

fov
eee

{

wi
l

{

I
39vd

NIg62161vL=N[=60 2anbTJg20vevY

vo0
oee

100
000

legeee500
200

§co000aceavevs0
000

9ceeor9cQ
000vcoeaee&4

14"vee
eee1e29
e9

Zlooee
8lve1

2e
z61

e O Y @ WD O N 0D O*NIVW®

6-10

GENERAL ASSEMBLER DIRECTIVES

6.1.3 .TITLE Dixective

The .TITLE directive is used to assign a name to the object module as

the first entry in the header of each page in the assembly listing.

The name so assigned is the first six non-blank characters following

the .TITLE directive. This name should be six Radix-50 characters or

less in length; any characters beyond the first six are checked for

ASCII 1legality, but they are not used as part of the object module

name. For example, the directive:

.TITLE PROGRAM TO PERFORM DAILY ACCOUNTING

causes the assembled object module to be named PROGRA. Note that this

6-character name bears no relationship to the filename of the object

module, as specified in the command string to MACRO-11l. The name of

an object module (specified in the .TITLE directive) appears in the

load map produced at link time. This is also the module name which

the Librarian will recognize. |

If the .TITLE directive is not specified, MACRO-1l1l assigns the default

name .MAIN. to the object module. If more than one .TITLE directive

is specified in the source program, the last .TITLE directive

encountered establishes the name for the entire object module.

All spaces and/or tabs up to the first non-space/non-tab character

following the .TITLE directive are 1gn0r&d by MACRO-11 when evaluating

the text string.

If the .TITLE directive is specified without an object module name, or

if the first non-space/non-tab character in the object module name is

not a Radix-50 character, the directive 15 flagged with an error code

(A) in the assembly listing.

Section A.2 of Appendix A containsa tableof Radix-50 characters.

6.1.4 .SBTTL Directive

The .SBTTL directive 1is wused to producea table of contents

immediately preceding the assembly 1listing and to further identify

each page in the 1istingm In the latter case, the text following the

.SBTTL directive 1is printed as the second line of the header of each

page in the listing, continuing until altered by a subsequent .SBTTL

directive in the program. For example, the directive:

.SBTTL CONDITIONAL ASSEMBLIES

causes the text

CONDITIONAL ASSEMBLIES

to be printed as the second 1line in the header of the assambly
listing.

During assembly pass 1, a table of contents is printed for the

assembly 1listing, containing the 1line sequence number, the page

number, and the text accompanying each .SBTTL directive. The 1listing

of the table of contents 1is suppressed whenever an .NLIST TOC

directive is encountered in the source program (see Table 6-1). An

example of a table of contents listing is shown in Figure 6-4.

6-11

GENERAL ASSEMBLER DIRECTIVES

CSITST == TEST OF CSI1 AND CS12 MACRO M@787 0@9=JUL=74 15147
TABLE OF CONTENTS

2= 55 MACRO DEFINITIONS

Je 74 MESSAGE STRINGS

4=153 MISCELLANEOUS ODATA

5-209 READ AND PARSE COMMAND LINES

6-255 EVALUATE THE SEMANTIC ANALYSIS

7=345%5 SUBROUTINES

Figure 6-4 Assembly Listing Table of Contents

6.1.5 LJIDENT Directive

The .IDENT directive provides an additional means of labeling the

object module produced by MACRO-11l. 1In addition to the name assigned

to the object module with the .TITLE directive (see Section 6.1.3), a

character string up to six Radix-50 characters can be specified

between paired printing delimiters to label the object module with the

program version number. This directive takes the following form:

.IDENT /string/

where: string represents six or fewer legal Radix-50 characters

” which establish the program identification or

version number. This number is included 1in the

global symbol directory of the object module; the

first four characters are printed in the load map

and librarian listing.

/ / represent delimiting characters. These delimiters

may be any paired printing characters, other than

the equal sign (=), the left angle bracket (<), or

the semicolon (;), as 1long as the delimiting

character is not contained within the text string

itself. If the delimiting characters do not

match, or if an illegal delimiting character 1is

used, the .IDENT directive 1is flagged with an

error code (A) in the assembly listing.

An example of the .IDENT directive is shown below:

.IDENT /VO05A/

The character string VO5A is converted to Radix-50 representation and

included in the global symbol directory of the object module. This

character string also appears in the load map produced at 1link time

and the Librarian directory listings.

When more than one .IDENT directive is encountered in a given program,

the 1last such directive encountered establishes the character string

which forms part of the object module identification.

6-12

GENERAL ASSEMBLER DIRECTIVES

6.1.6 .PAGE Directive/Page Ejection

Page ejection is accomplished in one of four ways:

1. After reaching a count of 58 lines in the 1listing, MACRO-11

automatically performs a page eject to skip over page

perforations on 1line printer paper and to formulate

teleprinter output into pages. The page number is not

changed.

2. In addition, the .PAGE directive is used within the source

program to perform a page eject at desired points in the

listing. The format of this directive is:

. PAGE

This directive takes no arguments and causes a skip to the

top of the next page when encountered. It also causes the

page number to be incremented and the line sequence counter

to be <cleared. The .PAGE directive does not appear in the

listing.

When used within a macro definition, the .PAGE directive is

ignored during the assembly of the macro definition. Rather,

the page eject operation is performed as the macro itself is

expanded. In this case, the page number is also incremented.

3. A page eject is performed when a form-feed character is

encountered. If the form-feed character appears within a

macro definition, a page eject occurs during the assembly of

the macro definition, but not during the expansion of the

macro itself. A page eject resulting from the wuse of the

form-feed character likewise causes the -page number to be

incremented and the line sequence counter to be cleared.

4. Encountering a new source file causes the page number to be

incremented and the line sequence count to be reset.

6.2 FUNCTION DIRECTIVES: .ENABL AND .DSABL

Several function control options are provided by MACRO-1l through the

.ENABL and .DSABL directives. These directives are included in a

source program to invoke or inhibit certain MACRO-11 functions and

operations incidental to the assembly process itself. These

directives take the following form:

.ENABL arg

.DSABL arg

where: arg represents one or more of the optional symbolic
arguments defined in Table 6-2.

Specifying any argument in an .ENABL/.DSABL directive other than those

listed 1in Table 6-2 causes that directiveto be flagged with an error

code (A) in the assambly listing.

6-13

GENERAL ASSEMBLER DIRECTIVES

Table 6-2

Symbolic Arguments of Function Control Directives

Argument Default Function

ABS Disable Enabling this function produces absolute

binary output in FILES-11 format. To

convert this output to Formatted Binary

format (as required by the Absolute

Loader), use the FLX utility.

AMA Disable Enabling this function causes all

relative addresses (address mode 67) to

be assembled as absolute addresses

(address mode 37). This function is

useful during the debugging phase of

program development.

CDR Disable | Enabling this function causes source

columns 73 and greater, i.e., to the end

of the line, to be treated as a comment.

The most common use of this feature is

to permit sequence numbers 1in card

columns 73-80.

CRF Enable Disabling this function inhibits the

generation of <cross-reference output.

This function only has meaning if

cross-reference output generation is

specified in the command string.

FPT Disable Enabling this function causes floating-

point truncation; disabling this

function causes floating-point rounding.

LC Disable Enabling this function causes MACRO-11

to accept lower-case ASCII input instead

of converting it to upper-case. If this

function 1is not enabled, all text is

converted to upper-case.

LSB Disable This argument permits the enabling or

disabling of a local symbol block.

Although a 1local symbol block is

normally established by encountering a

new symbolic label or a .PSECT directive

in the source program, an .ENABL LSB

directive establishes a new local symbol

block which is not terminated until (1)

another .ENABL LSB 1s encountered, or

(2) another symbolic 1label or .PSECT

directive 1is encountered following a

paired .DSABL LSB directive.

Although the . ENABL LSB directive

permits a local symbol block to cross

.PSECT boundaries, local symbols cannot

be defined in a program section other

than the one that was in effect when the

block was entered. The basic function

of this directive with regard to

.PSECT's 1is 1limited to those instances

(Continued on next page)

GENERAL ASSEMBLER DIRECTIVES

Table 6-2 (Cont.)

- Arguments of Function Control Directives

Function

Symbolic

Argument Default

LSB Disable

(Cont.)

PNC Enable

REG Enable

GBL Enable*

where it is desirable to leave a program

section temporarily to store data,

followed by a return to the original

program section. Attempts to define

local symbols in an alternate program

section are flagged with an error code

(P) in the assembly listing.

An example of the .ENABL LSB and .DSABL

LSB directives, as typically used in a

source program, is shown in Figure 6-5.

Disabling this function inhibits binary

output until an .ENABL PNC statement is

encountered within the same module.

When specified, the .DSABL REG directive

inhibits the normal MACRO-11 default

register definitions; if not disabled,

the default definitions 1listed below

remain in effect.

RO=%0

R1=%1

R2=%2

R3=%3

R4=%4

R5=%5

SP=%6

PC=%7

The .ENABL REG statement may be used as

the logical complement of the .DSABL REG

directive. The use of these directives,

however, is not recommended. For

logical consistency, use the normal

default register definitions 1listed

above. T

When the .ENABL w GBL directive is
specified, MACRO-1ll treats all symbol

references that are undefined at the end

of assembly pass 1 as default global

references; when the .DSABL GBL

directive1is specified, MACRO-1ll treats

all such references as undefined

- symbols. In assembly pass 2, if the

.DSABL GBL function is still in effect,

these undefined symbols are flagged with

an error code (U) in the assembly

listing; otherwise, they continue to be

regarded by MACRO-11 as global

references.

* The default is Disable for RT-11 MACRO programs.

GENERAL ASSEMBLER DIRECTIVES

TM

¢

e

11244
.£17191¥'

2H
2u’

ly2d’ty

)
§1TH'ENY-AT

18vsg’N¥NL3N338L]INT03
8

BdWdCELE03ddW3
l

eAO
W

p3edn
WT8YN3*

180v1§
0¢

15
02I8d
S

PIWSON4

v

3
9
v
d

19ceaeeiév
oee

iv2oeecacgeeZivioelececeZotesecivoeeZoc
elo1egocotecage

viZ
cee

rei
gee

cvitcee
cette

c

get962£6226216
2

062g218
2

842L2vi22(2

6-16

GENERAL ASSEMBLER DIRECTIVES

6.3 DATA STORAGE DIRECTIVES

A wide range of data and data types can be generated with the
following directives, ASCII conversion characters, and radix-control
operators:

.BYTE

.WORD

L]

.ASCII

These MACRO-11l facilities are described in the following sections.

6.3.1 .BYTE Directive

The .BYTE directive is used to generate successive bytes of binary

data in the object module. The directive is of the form:

.BYTE exp ; STORES THE BINARY VALUE OF THE

3;EXPRESSION "EXP" IN THE NEXT BYTE.

.BYTE expl,exp2,expn ;STORES THE BINARY VALUES OF THE LIST
;OF EXPRESSIONS IN SUCCESSIVE BYTES.

A legal expression must reduce to eight bits of data or less. The

operands of a .BYTE directive are evaluated as word expressions before
being truncated to the low-order eight bits. The l6-bit value of the
specified expression must have a high-order byte (which is truncated)
that is either all zeros (0) or all ones (l). Each expression value
is stored in the next byte of the object module. Multiple
expressions, which must be separated by commas, are stored 1in
successive bytes, as described below:

SAM=5

.=410 -

.BYTE "D48,SAM | ;sTHE VALUE 060 (OCTAL EQUIVALENT OF 48
;DECIMAL) IS STORED IN LOCATION 410.

s THE VALUE 005 IS STORED IN LOCATION

+411.,

If the highmorder byte of the expression reduces to a value other than
0 or =1, the value 1is truncated to the low-order eight bits and

flagged with an error code (T) in the assembly listing.

The construction "D in the first operand of the .BYTE directive above
illustrates the use of a temporary radix-control operator. The

function of such special wunary operators is described 1in Section
6.4.1.2.

At link time, it is likely that a relocatable expression will result
in a wvalue having more than eight bits, in which case the linker

6-17

GENERAL ASSEMBLER DIRECTIVES

issues a truncation diagnostic for the object module in question. For

example, the following statements create such a possibility:

.BYTE 23 :STORES OCTAL 23 IN NEXT BYTE.

A: ~

.BYTE A : RELOCATABLE VALUE A WILL PROBABRLY

: CAUSE TRUNCATION
:DIAGNOSTIC.

If an expression following the .BYTE directive 1is null, it 1is

interpreted as a zero, as described below:

.=420

.BYTE vy ; ZEROS ARE STORED IN BYTES 420, 421,

7422, AND 423,

Note that in the above example, four bytes of storage result from the

.BYTE directive. The three commas in the operand field represent an

implicit declaration of four null values, each separated from the

other by a comma. Hence, four bytes, each containing a value of zero

(0), are reserved in the object module.

6.3.2 .WORD Directive

The .WORD directive is used to generate successive words of data in

the object module. The directive is of the form:

.WORD exXp ; STORES THE BINARY EQUIVALENT OF THE

; EXPRESSION EXP IN THE NEXT WORD.

.WORD expl,exp2,expn ;STORES THE BINARY EQUIVALENTS OF THE

;LIST OF EXPRESSIONS IN SUCCESSIVE

: WORDS.

A legal expression must result in 16 bits of data or less. Each

expression is stored in the next word of the object program. Multiple

expressions must be separated by commas and stored in successive

words, as shown in the following example:

SAL=0

.=500

.WORD 177535, .+4,SAL ;STORES THE VALUES 177535, 506, AND

;0 IN WORDS 500, 502, AND 504,

s RESPECTIVELY.

If an expression following the .WORD directive contains a null value,

it is interpreted as a zero, as shown in the following example:

.=500

.WORD 'y ; STORES THE VALUES 0, 5, AND 0 IN

; LOCATION 500, 502, AND 504,

s RESPECTIVELY.

A statement containing a blank operator field, i.e., a symbol that is

not recognized by MACRO-1l1l as a macro call, an instruction mnemonic, a

MACRO-11 directive, or a semicolon is interpreted during assembly as

an implicit .WORD directive, as shown in the example below:

.=440

LABEL: 100,LABEL ; STORES THE VALUE 100 IN LOCATION 440

;AND THE VALUE 440 IN LOCATION 442.

GENERAL ASSEMBLER DIRECTIVES

CAUTION

You should not use this technique to

generate .WORD directives because it may

not be included in future PDP~-11

assemblers.

6.3.3 ASCII Conversion Characters

The single quote (') and the double quote (") characters are unary

operators that can appear in any MACRO-1l1l expression. When so used,

these characters cause a 16-bit expression value to be generated.

When the single quote-is used, MACRO-1ll takes the next character in

the expression and converts it from its 7-bit ASCII value to a 1l6-bit

expression value. The l6-bit value is then used as an absolute term

within the expression. For example, the statement:

MOV #'A,RO

results in the fallnwing l6-bit expression value being moved into
register 0O:

00000000/01000001

ImmBinary Value of ASCII A

Thus, in the example above, the expression 'A results in a value of

101(8). Note that the high-order byte 1is always zero (0) in the

resulting expression value when the single quote unary operator is

used.

The ' character must not be fallmwed by a carriage-return, null,
RUBOUT, 1line-feed, or form—-feed character; if it is, an error code

(A) is generatedin the assembly listing.

When the double quote is used, MACRO-1ll takes the next two characters

in the expression and converts them to a 1l6-bit binary expression

value from their 7-bit ASCII values. This 1l6-bit value is then used

as an absolute term within the expression. For example, the

statement:

MOV #"AB,RO

results in the following 16-bit expression value being moved into

register O:

0100001001000001

]

1ww&inary Value of ASCII A
——Binary Value of ASCII B

Thus, in the example above, the expression "AB results in a value of
041101 (8).

6-19

GENERAL ASSEMBLER DIRECTIVES

The " character also must not be followed by a carriage-return, null,

RUBOUT, line-feed, or form—-feed character; 1if it 1is, an error code

(A) is likewise generated in the assembly listing.

The ASCII character set is listed in Section A.l, Appendix A.

6.3.4 .ASCII Directive

The .ASCII directive translates character strings into their 7-bit

ASCII equivalents and stores them in the object module. The format of

the .ASCII directive is as follows:

.ASCII /string 1/.../string n/

where: string is a string of printable ASCII characters. All

printable ASCII characters are legal. The

vertical-tab, null, line-feed, RUBOUT, and all

other non-printable ASCII characters, except

carriage-return and form-feed, are illegal

characters. Such an illegal non-printing

character is flagged with an error code (I) in the

assembly listing. The carriage-return and

form-feed characters terminate the scan of the

source line. This premature termination of the

.ASCII statement results in the generation of an

error code (A) in the assembly 1listing, because

MACRO-11 1is wunable to complete the scan of the

matching delimiter at the end of the character

string.

/ / represent delimiting characters. These delimiters

may be any paired printing characters, other than

the equal sign (=), the left angle bracket (), or

the semicolon (;), as 1long as the delimiting

character is not contained within the text string

itself. If the delimiting characters do not

match, or if an illegal delimiting character is

used, the .ASCII directive 1is flagged with an

error code (A) in the assembly listing.

A non-printing character can be expressed in an .ASCII statement only

by enclosing its equivalent octal value within angle brackets. Each

set of angle brackets so used represents a single character. For

example, in the following statement:

L,ASCII <15>/ABC/<A+2>/DEF/<5><4>

the expressions <15>, <A+2>, <5>, and <4> represent the values of

non-printing characters. Furthermore, the expressions must reduce to

eight bits of absolute data or less, subject to the same rules for

generating data as with the .BYTE directive (see Section 6.3.1).

Angle brackets can be embedded between delimiting characters in the

character string, but angle brackets so used do not take on their

usual significance as delimiters for non-printing characters. For

example, the statement:

.ASCII /ABC<Kexpression>DEF/

contains a single ASCII character string, and performs no evaluation

of the embedded, bracketed expression. This use of the angle brackets

is shown in the third example of the .ASCII directive below:

6-20

GENERAL ASSEMBLER DIRECTIVES

.ASCII /HELLO/ ; STORES THE BINARY REPRESENTATION
;OF THE LETTERS HELLO IN FIVE

; CONSECUTIVE BYTES.

.ASCII /ABC/<15><12>/DEF/ ;STORES THE BINARY REPRESENTATION
;OF THE CHARACTERS A,B,C,CARRIAGE

;RETURN,LINE FEED,D,E,F IN EIGHT

; CONSECUTIVE BYTES.

.ASCII /A<K15>B/ ; STORES THE BINARY REPRESENTATION
;OF THE CHARACTERS A, <, 1, 5, >,

;AND B IN SIX CONSECUTIVE BYTES.

The semicolon (;) and equal sign (=) can be used as delimiting

characters in an ASCII string, but care must be exercised in so doing
because of their significance as a comment indicator and assignment

operator, respectively, as illustrated in the examples below:

.ASCII ;ABC;/DEF/ ;sSTORES THE BINARY REPRESENTATION OF
;THE CHARACTERS A, B, C, D, E, AND F

;IN SIX CONSECUTIVE BYTES; NOT |

; RECOMMENDED PRACTICE.

.ASCII /ABC/;DEF; ; STORES THE BINARY REPRESENTATIONS OF
; THE CHARACTERS A, B, AND C IN THREE

; CONSECUTIVE BYTES; THE CHARACTERS D,

;E, F, AND ; ARE TREATED AS A COMMENT.

.ASCII /ABC/=DEF= ;STORES THE BINARY REPRESENTATION
‘ ;OF THE CHARACTERSA, B, C, D, E, AND

sF IN SIX CONSECUTIVE BYTES; NOT

; RECOMMENDED PRACTICE.

An equal sign is treated as an assignment operator when it appears as

the first character in the ASCII string, as illustrated by the

following example:

.ASCII =DEF= ; THE DIRECT ASSIGNMENT OPERATION
; .ASCII=DEF IS PERFORMED, AND A Q

; (SYNTAX) ERROR IS GENERATED UPON

; ENCOUNTERING THE SECOND = SIGN.

6.3.5 .ASCIZ Directive

The .ASCIZ directive is equivalent to the .ASCII directive described

above, except that a zero byte is automatically inserted as the final

character of the string. Thus, when a list or text string has been

created with an .ASCIZ directive, a search for the null character in

the last byte can effectively determine the end of the string, as

reflected by the coding below:

CR=15

LF=12

HELLO: .ASCIZ <CR><LF>/MACRO-11 VO1lA/<CR><LF> ;INTRODUCTORY MESSAGE

.EVEN

MOV #HELLO,R1 ; GET ADDRESS OF MESSAGE.

MOV # LINBUF ,R2 ; GET ADDRESS OF OUTPUT BUFFER.

10S$: MOVB (R1)+, (R2) + ;MOVE A BYTE TO OUTPUT BUFFER.

BNE 109 ;IF NOT NULL, MOVE ANOTHER BYTE.

L

»

»

6-21

GENERAL ASSEMBLER DIRECTIVES

The .ASCIZ directive is subject to the same checks for character
legality and proper character string construction as described above
for the .ASCII directive.

6.3.6 .RADS50 Directive

The .RAD50 directive allows the user to generate data in Radix-50

packed format. Radix=-50 form allows three characters to be packed

into sixteen bits (one word); therefore, any 6-character symbol can

be stored in two consecutive words. The form of the directive is:

.RAD50 /string 1/.../string n/

where: string represents a series of characters to be packed

(three characters per word). The string must

consist of the characters A through Z, 0 through

9, dollar sign ($), period (.) and space (). An

illegal printing character causes an error flag

(Q) to be printed in the assembly listing.

I1f fewer than three characters are to be packed,

the string 1is packed 1left-justified within the

word, and trailing spaces are assumed.

As with the .ASCII directive described in Section

©6.3.4, the vertical-tab, null, line-feed, RUBOUT,

and all other non-printing characters, except

carriage-return and form-feed, are illegal

characters, resulting in an error code (I) in the

assembly listing. Similarly, the carriage-return

and form-feed characters result in an error code

(A) because these characters end the scan of the

line, preventing MACRO-11] from detecting the

terminating matching delimiter.

/ / represent delimiting characters. These delimiters

may be any paired printing characters, other than

the equal sign (=), the left angle bracket (<), or

the semicolon (;), provided that the delimiting

character is not contained within the text string

itself. If the delimiting characters do not

match, or if an illegal delimiting character is

used, the .RAD50 directive 1is flagged with an

error code (A) in the assembly listing.

Examples of .RADS50 directives are shown below:

.RAD50 /ABC/ s PACKS ABC INTO ONE WORD.,

.RAD50 /AB/ s PACKS AB (SPACE) INTO ONE WORD.

.RAD50 /ABCD/ ; PACKS ABC INTO FIRST WORD AND

;D (SPACE) (SPACE) INTO SECOND WORD.,

.RAD50 /ABCDEF/ ; PACKS ABC INTO FIRST WORD, DEF INTO

i SECOND WORD.

GENERAL ASSEMBLER DIRECTIVES

Each character is translated into its Radix-50 equivalent, as
indicated in the following table:

Character Radix-50 Octal Equivalent

(space) 0

A-Z 1-32

$ 33

. 34

(undefined) 35

0-9 , 36-47

The Radix-50 equivalents for characters 1 through 3 (Cl1,C2,C3) are
combined as follows:

Radix~50 Value = ((C1l*50)+C2)*50+C3-

For example: |

Radix-50 Value of ABC = ((1*50)+2)*50+3 = 3223

Refer to Section A.2 in Appendix A for a table of Radix-50
equivalents. ~ ,

Angle brackets (<>) must be used in the .RAD50 directive whenever
special codes are to be inserted in the text string, as shown in the
example below: | PRy -

.RAD50 /AB/<35> ; STORES 3255 IN ONE WORD.

CHR1=1

CHR2=2

CHR3=3

»

.RAD50 <CHR1><CHR2><CHR3> ;EQUIVALENT TO .RADS0 /ABC/.

6.3.7 Temporary Radix-50 Control Operator: 'R

The "R operator specifies that an argument 1is to be converted to
Radix-50 format. This allows up to three characters to be stored in

one word. The "R operator is coded as follows: |

"Rccce

where ccc represents a maximum of three characters to be converted to

a 16-bit Radix-50 value. If more than three characters are specified,

any following the third character are ignored. If fewer than 3 are
specified, it is assumed that the trailing characters are blanks. The

following example shows how the "R operator might be used to pack a
3-character file type specifier (MAC) into a single 1l6-bit word.

MOV # "RMAC,FILEXT ; STORE RAD50 MAC AS FILE EXTENSION

The number sign (#) is used to indicate immediate data, i.e., data to

be assembled directly into object code. "R specifies that the

charactersMAC are to be converted to Radix-50. This wvalue 1is then
stored in location FILEXT.

6-23

GENERAL ASSEMBLER DIRECTIVES

6.4 RADIX AND NUMERIC CONTROL FACILITIES

6.4.1 Radix Control and Unary Control Operators

The normal default assumption for numeric values or expression values

appearing 1in a MACRO-1ll source program is octal. However, numerous

instances may occur where an alternate radix is useful for portions of

a program or for variables within a given statement. It may be

useful, for example, to declare a given radix for applicability

throughout a program or to specify a numeric value or expression value

in a manner that causes it to be interpreted as a binary, octal, or

decimal value during assembly. In other such instances, it may be

useful to complement numeric values or expression values. These

MACRO-11 facilities are described in the following sections.

NOTE

When two or more unary operators appear together,

modifying the same term, the operators are

applied, from right to left, to the term.

6.4.1.1 .RADIX Directive - Numbers used in a MACRO-11l source program

are initially considered to be octal values; however, you can declare

any one of the following radices for applicability throughout the

source program or within specific portions of the program:

2, 8, 10

This is accomplished via a .RADIX directive of the form:

.RADIX n

where: n represents one of the three acceptable radices

listed above. If the argument n is not specified,

the octal default radix is assumed.

The argument in the .RADIX directive 1is always interpreted as a

decimal value. Any alternate radix declared in the source program

through the .RADIX directive remains in effect until altered by the

occurrence of another such directive, i.e., a given radix declaration

is valid throughout a program until changed. For example, the

statement:

.RADIX 10 ;BEGINS A SECTION OF CODE HAVING A

;DECIMAL RADIX.

.RADIX s REVERTS TO OCTAL RADIX.

Any value other than null, 2, 8, or 10 specified as an argument in the

.RADIX directive <causes an error code (A) to be generated in the

assembly listing.

In general, macro definitions should not contain or rely on radix

settings established with the .RADIX directive. Rather, temporary

radix control operators should be used within a macro definition.

Where a possible radix conflict exists within a macro definition or in

possible future uses of that code, it is recommended that the user

6-24

GENERAL ASSEMBLER DIRECTIVES

specify numeric or expression values using the temporary radix control

operators described below.

6.4.1.2 Temporary Radix Control Operators: "D, "0, and "B - Once the

user has specified a given radix for a section of code or has decided
to use the default octal radix, he may discover a number of cases

where an alternate radix is more convenient or desirable (particularly

within macro definitions). The creation of a mask word, for example,

might best be accomplished through the use of a binary radix.

MACRO-11 has three unary operators that allow the user to establish an
alternate radix, as shown below: |

"D"number" ("number" is evaluated as a decimal number)

O"number" ("number" is evaluated as an octal number)

"B"number" ("number" is evaluated as a binary number)

Thus, an alternate radix can be declared temporarily to meet a

localized requirement in the source program. Such a declaration can
be made at any time, regardlessof the existence of the default octal
radix or another specific radix declaration elsewhere in the program.
In other words, the effect of a temporary radix control operator is
limited to the term or expression immediately following the operator.
Any value specified in connection with a temporary radix control
operator is evaluated during assembly as a l6-bit entity. Temporary
radix control declarations can be included 1in the source program

anywhere a numeric value is legal.

The expressions below are representative of the methods of specifying
temporary radix control operators:

"D123 Decimal radix

"0 47 Octal Radix

"B 00001101 Binary Radix

“0<A+13> Octal Radix

Note that the up-arrow and the radix control operator may not be
separated, but the radix control operator and the following term or
expression can be physically separated by spaces or tabs for
legibility or formatting purposes. A multi-element term or expression
that is to be interpreted in an alternate radix should be enclosed
within angle brackets, as shown in the last of the four temporary

radix control expressions above.

The following example also illustrates the use of angle brackets to

delimit an expression that is to be interpretedin an alternate radix:

.RADIX 10

A=10

.WORD "O<A+10>*10

When the temporary radix expression in the .WORD directive above is
evaluated, it effectively yields the following equivalent statement:

.WORD 180.

MACRO-11 also allows a temporary radix change to decimal by specifying
a number, immediately followed by a decimal point (.), as shown below:

100.. Equivalent to 144(8)

1376. Equivalent to 2540(8)

128. Equivalent to 200(8)

6-25

GENERAL ASSEMBLER DIRECTIVES

The above expression forms are equivalent in function to those listed
below: |

“D100

"D1376

"D128

6.4.2 Numeric Directives and Unary Control Operators

Two storage directives and two numeric control operators are available

to simplify the use of the floating-point hardware on the PDP-11.

These facilities allow floating-point data to be <created in the

program, and numeric values to be complemented or treated as

floating-point numbers.

A floating-point number is represented by a string of decimal digits.

The string (which can be a single digit in length) may optionally

contain a decimal point, and may be followed by an optional exponent

indicator in the form of the letter E and a signed decimal integer

exponent. The number may not contain embedded blanks, tabs or angle

brackets and may not be an expression. Such a string will result in

one or more errors (A or Q) in the assembly listing.

The list of numeric representations below contains seven distinct,

valid representations of the same floating-point number:

3

3.

3.0

3.0E0

3E0

. 3E1

300E-2

As can be inferred, the list could be extended indefinitely (e.g.,

3000E-3, .03E2, etc.). A leading plus sign is optional (e.g., 3.0 is

considered to be +3.0). A leading minus sign complements the sign

bit. No other operators are allowed (e.g., 3.0+N is illegal).

All floating-point numbers are evaluated as 64 bits in the following

format:

64 63 56 55 0

S EEEEEEEE MMM.....MMM

Mantissa (55 bits)

Exponent (8 bits)

Sign (1 bit)

MACRO-11l returns a value of the appropriate size and precision via one

of the floating-point directives. The values returned may be

truncated or rounded (see Section 6.2).

Floating=-point numbers are normally rounded. That 1is, when a

floating=-point number exceeds the limits of the field in which it is

to be stored, the high-order bit of the unretained word 1is added to

the 1low-order bit of the retained word, as shown below. For example,

if the number is to be stored in a 2-word field, but more than 32 bits

are needed to express 1its exact value, the highest bit (32) of the

6-26

2

GENERAL ASSEMBLER DIRECTIVES

unretained field is added to the least significant bit (0) of the

retained field (see illustration below). The .ENABL FPT directive is

used to enable floating-point truncation; .DSABL FPT is wused to

return to floating-point rounding (see Table 6-2).

Bit Bit Bit Bit

32 0 32 31 0

Retained Untetained
field field

Note that all numeric operands associated with Floating Point

Processor instructions are automatically evaluated as single-word,

decimal, floating-point values wunless a temporary radix control

operator 1is specified. For example, to add (floating) the octal

constant 41040 to the contents of floating accumulator =zero, the

following instruction must be used:

ADDF #°041040,F0

where: FU is assumed to represent floating accumulator zero.

Floatingwpoint numbers are daacribéd, in greater detail in the
applicable PDP-11 Processor Handbook.

mporary Numeric Control Operators: "C and "F - The °C
unary operator ;allmwa you to &p@cmfy an argument that is to be

complementedas it is evaluated during assembly. The °F unary

operator allows you to specify an arqument consisting of a l-word

flamtinquomnt number‘ | , |

As with the rad1X' contrml operators d@sarlb@d abmv&, the numeric

control operator (C) can be used anywhere in the source program that

an expression value is legal. Such a construction is evaluated by

MACRO-11 as a 1l6-bit binary value before being complemented. For

example, the following statement:

TAG4: .WORD "C151

causes the 1l's cmmpl@ment of the value 151 (octal) to be stored as a

l16-bit wvalue in the program. The resulting value expressed in octal

form is 177626(80

GENERAL ASSEMBLER DIRECTIVES

Because the "C construction is a unary operator, the operator and its

argument are regarded as a term. Thus, more than one unary operator

may be applied to a single term. For example, the following

construction:

“C°D25

causes the decimal value 25 to be complemented during assembly. The

resulting binary value, when expressed 1in octal form, reduces to

177746 (octal). | '

The term created through the use of the temporary numeric control

operator thus becomes an entity that can be used alone or in

combination with other expression elements. For example, the

following construction:

“C2+6

is equivalent in function to:

<"C2>+6

This expression is evaluated during assembly as the 1l's complement of

2, plus the absolute value of 6. When these terms are combined, the

resulting expression value generates a carry beyond the most

significant bit, leaving 000003(8) as the reduced value.

As shown above, when the temporary numeric control operator and its

argument are coded as a term within an expression, angle brackets
should be used as delimiters to ensure precise evaluation and
readability. |

MACRO-11 also supports a unary operator for numeric control which
allows you to specify an argument consisting of a 1l-word
floating-point number. For example, the following statement:

A: MOV $#"F3.7,R0

creates a l-word floating-point number at location A+2 containing the
value 3.7 formatted as shown below.

BIT 15 | 14 7 6 0

S EEEEEEEE MMMMMMM

Sign (bit 15) Exponent (bits 14-7) Mantissa (bits 6-0)

=

A

GENERAL ASSEMBLER DIRECTIVES

6.5 LOCATION COUNTER CONTROL DIRECTIVES

The directives used in controlling the value of the current location

counter and in reserving storage space in the object program are

described in the following sections. |

In this connection, it should be noted that several MACRO-11

statements may cause an odd number of bytes to be allocated, as listed

below:

l. .BYTE directive

2. .BLKB directive

3. .ASCII or .ASCIZ directive

4, .0ODD directive

5. A direct assignment statement of the form .=.+expression,
which results in the assignment of an odd address value.

In cases that yield an odd address value, the next word-boundaried
instruction automatically forces the 1location counter to an even
value, but that instruction is flagged with an error code (B) in the

assembly listing.

6.5.1 .EVEN Directive

The .EVEN directive ensures that the current location counter contains
an even value by addlng 1 if the current value is odd. If the current

location counter is already even, no action is taken. Any aperands

following an .EVEN directive are flagged with an error code (Q) in the

assembly listing.

The .EVEN directive is used as follows:

.ASCIZ /THIS IS A TEST/ |

.EVEN ;ENSURES THAT THE NEXT STATEMENT WILL

;BEGIN ON A WORD BOUNDARY.

.WORD XYZ

6.5.2 .0ODD Directive

The .0DD directive ensures that the current location counter contains
an odd value by adding 1 if the current value is even. If the current

location counter is already odd, no action 1is taken. Any operands
following an .ODD directive are also flagged with an error code (Q) in

the assembly listing.

GENERAL ASSEMBLER DIRECTIVES

6.5.3 .BLKB and .BLKW Directives

Blocks of storage can be reserved in the object program by means of

the .BLKB and .BLKW directives. The .BLKB directive is used to

reserve byte blocks; similarly, the .BLKW directive reserves word

blocks. The two directives are of the form: |

. BLKB exp

. BLKW exp

where: exp represents the specified number of bytes or words

to be reserved in the object program. If no

argument is present, a default wvalue of 1 is

assumed. These directives should not be used

without arguments. Any expression that is

completely defined at assembly-time and that

reduces to an absolute value 1is legal. If the

expression specified in either of these directives

is not an absolute value, the statement is flagged

with an error code (A) in the assembly listing.

Figure 6-6 illustrates the use of the .BLKB and .BLKW directives.

166

167

168

169

17@

171

{172

173

174

175

176

177

178

179

180

181

182

183

184

188

186

187-

{88

The .BLKB directive in a source program has the

caeooo

geeeno

e2e000

gepoas

popen4d

22eee4

poavees

poeRes

220010

020020

PA0R24

200025

220a26

AGBo3a

@30032

28va34

BBRB36

0200008

evean3

PSECY

PASStI1 ,BLKW

«PSECT

SYMBOL¢ ,BLKW

MODEs 3

FLAGSi1t ,BLKB

SECTORss ,BLKB

VALUEES BLKW

RELLVLSS ,BLKW

JREPT

o BLKW

« ENDR

CLCNAMg: BLKW

CLCFGS11,BLKB
CLCSEC11,BLKB

CLCLOCs1 ,BLKW

CLCMAXg ,BLKW

CHRPNTS8 ,BLKW

SYMBEGI: ,BLKW

ENDFLGES ,BLKW

o PSECT

following statement:

which causes the value of the expression to be added to

location

easier to interpret in the context of the

value

.=.texpression

of the counter.

IMPURE, D

i JPASS FLAG

INEXT GROUP MUST STAY TOGETHER
IMPPAS,D,GBL

2 PSYMBOL ACCUMULATOR

JMODE/FLAGS BYTE

{)

i JSYMBOL/EXPRESSION TYPE

i FJEXPRESSION VALUE

i JRELOCATION LEVEL

HAXXMTW!Q.*SYMBOL)/?)

{

JCURRENT LOCATION COUNTER NAME

H

)

) |
JEND OF GROUPED DATaA
JCHARACTER POINTER
JPOINTER TO STARY OF SYMBOL

).
f
l
p
“
-
"
-
«
“
“
“
&
}

Figure 6-6 Example of .BLKB and .BLKW Directives

same effect as the

the current

.BLKB directive, however, is

source code 1in which it

The

appears and is therefore recommended.

GENERAL ASSEMBLER DIRECTIVES

6.6 TERMINATING DIRECTIVES

6.6.1 .END Directive

The .END directive indicates the logical end of the source input, and
takes the following form:

.END exp

where: exp represents an optional expression value which, if

present, 1indicates the program-entry point, i.e.,

the transfer address at which program execution is

to begin.

When MACRO-11 encounters a valid occurrence of the .END directive, it

terminates the current assembly pass. Any additional text beyond this

point in the current source file, as well as in additional source

files identified in the command line, will be ignored.

When creating an image consisting of several object modules, only one

object module may be terminated with an .END exp statement specifying

the starting address. All other object modules must be terminated

with an .END statement without an address argument; otherwise,a

diagnostic message will be 1issued at 1link time. If no starting

address 1is specified in any of the object modules, image execution

will begin at location 1 of the image and immediately fault because of

an odd addressing error. | | |

The .END statement must not be used within a macro expansion or a

conditional assembly block; if it is so used, it is flagged with an

error code (0) in the assembly listing. The .END statement may be

used, however, in an 1immediate conditional statement (see Section

6.10.2).

If the source program input 1is not terminated with an .END directive,
an error code (E) results in the assembly listing.

6.6.2 LJ.EOT Directive

Under RSX-1ll, RT-11l, and IAS operating systems, the MACRO-11 .EOT

directive 1is ignored and simply treated as a directive without effect,

i.e., as a no-op.

6.7 PROGRAM BOUNDARIES DIRECTIVE: .LIMIT

It is often desirable to know the upper and lower address boundaries

of the image. When the .LIMIT directive is specified in the source

program, MACRO-11 effectively generates the following instruction:

. BLKW 2

causing two storage words to be reserved in the object module. Later,

at 1link time, the lowest address in the load image is inserted into

the first reserved word, and the address of the first free word

following the image is inserted into the second reserved word.

During linking, the size of the image is rounded upward to the nearest
2-word boundary.

GENERAL ASSEMBLER DIRECTIVES

For a discussion of memory allocation and mapping, refer to the
applicable system manual (see Section 0.3 in the Preface).

6.8 PROGRAM SECTIONING DIRECTIVES

The MACRO-11 program sectioning directives are used to declare names

for program sections and to establish certain program section
attributes essential to the linking processing.

6.8.1 .PSECT Directive

The .PSECT directive allows absolute control over the memory
allocation of a program at link time, because any program attributes
established through this directive are passed to the linker.

For example, if you are writing programs for a multi-user environment,

a program section containing pure code (instructions only) or a
program section containing impure code (data and instructions) may be
explicitly declared through the .PSECT directive. Furthermore, these
program sections may be explicitly declared as read-only code,
qualifying them for use as protected, reentrant programs.

The advantages gained through sectioning programs in this manner

therefore relate primarily to control of memory allocation, program
modularity, and more effective partitioning of memory. Refer to the
applicable system manual for a discussion of memory allocation (see
Section 0.3 in the Preface).

The .PSECT directive is formatted as follows:

.PSECT name,argl,arg2,...argn

where: name represents the symbolic name of the program
section, as described in Table 6-3.

’ represents any legal separator (comma, tab and/or
space).

arqgl, represent one or more of the 1legal symbolic

arg2,... arguments defined for use with the . PSECT

argn directive, as described in Table 6-3. The slash
separating each pair of symbolic arguments listed

in the table indicates that these optional

arguments are mutually exclusive, i.e., one or the
other, but not both, may be specified. Multiple
arguments must be separated by a legal separating
character. Any symbolic argument specified in the
.PSECT directive other than those listed in Table

6-3 will cause that statement to be flagged with

an error code (A) in the assembly listing.

GENERAL ASSEMBLER DIRECTIVES

Table 6-3

Symbolic Arguments of .PSECT Directive

Argument Default Meaning

NAME

RO/RW

1/D

GBL/LCL

Blank

RW

LCL

Establishes the program section name,

which is specified as one to six

Radix~-50 characters. If this argument

is omitted, a comma must appear in place

of the name parameter. The Radix-50

character set is listed in Section A.2

of Appendix A.

Defines which type of access is

permitted to the program section:

RO=Read-Only Access

RW=Read/Write Access

NOTE

IAS and RSX-11lD set hardware

protection for RO program

sections. RSX-11lM and RT-11 do

not provide such protection.

Defines the program section as

containing either instructions (I) or

data (D). These attributes allow the

linker to differentiate global symbols

that are program entry-point

instructions (I) from those that are

data values (D).

Defines the scope of the program

section, as subsequently interpreted at

link time.

In building single-segment nonoverlaid

programs, the GBL/LCL arguments have no
meaning, because the total memory

allocation for the program will go into

the root segment of the image. The
GBL/LCL arguments apply only in the case

of overlays.

If an object module contains a local

program section, then the storage

allocation for that module will occur

within the segment in which the module

resides. Many modules can reference

this same program section, and the

memory allocation for each module is

either concatenated or overlaid within

the segment, depending on the argument

of the program section (.PSECT) defining

(continued on next page)

6-33

GENERAL ASSEMBLER DIRECTIVES

Table 6-3 (Cont.)

Symbolic Arguments of .PSECT Directive

Argument Default Meaning

GBL/LCL LCL its allocation requirements (see CON/OVR

(cont'd) below). If an object module contains a

global | program section, the

contributions to

ABS/REL REL Defines the relocatability attribute of
the program section:

time as an

address 0.

The location

100000 is

.=.+100000

boundaries.

REL=Relocatable.

argument is

this program section

are collected across segment boundaries,

and the allocation of memory for that

section will go into the segment nearest

the root in which the first contribution

to this program section appeared. (The

term contribution implies an allocation

of memory to the program section.)

ABS=Absolute (non-relocatable). When

the ABS argument is specified, the

program section is regarded at 1link

absolute module, thus

requiring no

program section 1is assembled and

loaded, starting at absolute virtual

of data in absolute

program sections must fall within

the virtual memory 1limits of the

segment containing the program

section; otherwise, an error

results at link time. For example,

the following code, although wvalid

at during assembly, may generate an

if wvirtual 1location

outside the segment's

virtual address space:

error message

.PSECT ALPHA,ABS

.WORD

The above coding assembles properly,

but the resulting load address may

be outside the respective segment's

In such cases, the

linker recognizes this as an attempt

to load data outside the image and

responds with an error message.

specified, the linker

calculates a relocation bias and

adds it to

locations within the program

all references to the

program section must have a

relocation bias added to them to

make them absolute.

section, i.e.,

relocation. The

X

When the REL

all references to

6-34

(Continued on next page)

GENERAL ASSEMBLER DIRECTIVES

Table 6 3 (Cont.)

Symbollc Arguments of .PSECT Directive

Argument Default Meaning

CON/OVR CON Defines the allocation requirements of
the program section:

CON=Concatenated. All program section

contributions are to be concatenated

with other references to this same

program section in order to

determine the total memory

allocation requirement for this
program section.

OVR=0Overlaid. All program section

contributions are to be overlaid.
Thus, the total allocation

requirement for the program section
is equal to the 1largest allocation

request made by any individual

contribution to this program

section.

The only argument in the .PSECT directive that 1is position-dependent

is NAME. If it is omitted, a comma must be used in its place. For
example, the directive:

.PSECT ,GBL

shows a .PSECT directive with a blank name argument and the GBL

argument. Default values (see Table 6-3) are assumed for all other
unspecified arguments.

Once the attributes of a program section are declared through a .PSECT

directive, MACRO-1l1l assumes that these attributes remain in effect for
all subsequent .PSECT directives of the same name that are encountered
within the module. ,

MACRO-11 provides for 256(10) program sections, as listed below:

l. One default absolute program section (. ABS.)

2. One default unnamed relocatable program section

3. Two-hundred-fifty-four named program sections.

The .PSECT directive enables the user to:

l. Create program sections (see Section 6.8.1.1)

2. Share code and data among program sections (see Section

©6.8.1.2).

6-35

GENERAL ASSEMBLER DIRECTIVES

For each program section specified or implied, MACRO-11l maintains the

following information:

1. Program section name

2. Contents of the current location counter

3. Maximum location counter value encountered

4., Program section attributes, i.e., the .PSECT arguments

described in Table 6-3 above.

6.8.1.1 Creating Program Sections - MACRO-1l1 automatically begins

assembling source statements at relocatable 2zero of the unnamed

program section, i.e., the first statement of a source program is

always an implied .PSECT directive.

The first occurrence of a .PSECT directive with a given name assumes

that the <current location counter is set at relocatable zero. The

scope of this directive then extends until a directive declaring a

different program section 1is specified. Further occurrences of a

program section name in subsequent .PSECT statements cause the

resumption of assembly where that section previously ended. For

example:

.PSECT ; DECLARES UNNAMED RELOCATABLE PROGRAM

A: | «WORD 0 ;SECTION ASSEMBLED AT RELOCATABLE

B: « WORD 0 ;sADDRESSES 0, 2, AND 4.

C: « WORD 0

.PSECT ALPHA +DECLARES RELOCATABLE PROGRAM SECTION

X . WORD 0 : NAMED ALPHA ASSEMBLED AT RELOCATABLE

Y: « WORD 0 s ADDRESSES 0 AND 2.

. PSECT s RETURNS TO UNNAMED RELOCATABLE

D: . WORD 0 : PROGRAM SECTION AND CONTINUES ASSEM-

;BLY AT RELOCATABLE ADDRESS 6.

A given program section may be defined completely wupon encountering

its first .PSECT directive. Thereafter, the section can be referenced

by specifying its name only, or by completely respecifying its

attributes. For example, a program section can be declared through

the directive:

.PSECT ALPHA,ABS,OVR

and later referenced through the equivalent directive:

.PSECT ALPHA

which requires no arguments.

By maintaining separate location counters for each program section,

MACRO-11 allows the user to write statements that are not physically

contiguous within the program, but that c¢an be 1loaded contiguously

following assembly, as shown in the following example.

GENERAL ASSEMBLER DIRECTIVES

.PSECT SEC1,REL,RO s START A RELOCATABLE PROGRAM SECTION

A: .WORD 0 +:NAMED SEC1 ASSEMBLED AT RELOCATABLE

B . WORD 0 +sADDRESSES 0, 2, AND 4.

s .WORD 0

ST: CLR A s ASSEMBLE CODE AT RELOCATABLE

CLR B ;ADDRESSES 6 THROUGH 12.

CLR C

.PSECT SECA,ABS ;START AN ABSOLUTE PROGRAM SECTION

;:NAMED SECA. ASSEMBLE CODE AT

«WORD .+2,A ;ABSOLUTE ADDRESSES 0 AND 2.

.PSECT SECl1 :RESUME RELOCATABLE PROGRAM SECTION

INC A +SECl. ASSEMBLE CODE AT RELOCATABLE

BR ST sADDRESSES 14 AND 16.

All labels in an absolute program section are absolute; 1likewise, all

labels in a relocatable section are relocatable. The current location

counter symbol (.) is also relocatable or absolute when referenced in

a relocatable or absolute program section, respectively.

Any labels appearing on a line containing a .PSECT (or .ASECT or

.CSECT) directive are assigned the value of the current location

counter before the .PSECT (or other) directive takes effect. Thus, if

the first statement of a program is: |

A: .PSECT ALT,REL

the label A is assigned to relocatable address zero of the unnamed (or

blank) program section.

It is not known during assembly where relocatable program sections

will be loaded, therefore all references between relocatable sections

in a single assembly are translated by MACRO-1ll to references relative

to the base of the referenced section. Thus, MACRO-11l provides the

linker with the necessary information to resolve the linkages between

various program sections. Such information is not necessary, however,

when referencing an absolute program section, because all instructions

in an absolute program section are associated with an absolute virtual

address. | |

In the following example, references to the symbols X and Y are
translated into references relative to the base of the relocatable

program section named SEN.

.PSECT ENT,ABS

.=.+1000

A: CLR X ;ASSEMBLED AS CLR BASE OF

; RELOCATABLE SECTION + 10.

JMP Y ;ASSEMBLED AS JMP BASE OF

; RELOCATABLE SECTION + 6.

.PSECT SEN,REL

MOV RO,R1

JMP A ;ASSEMBLED AS JMP 1000.

Y: HALT

X: .WORD 0

NOTE

In the preceding example, using a constant in conjunction

with the current location counter symbol (.) in the form

.=1000 would result in an error, because constants are

always absolute and are always associated with the program's

.ASECT (. ABS.). If the form .=1000 were used, a program

section incompatibility would be detected. See Section 3.6

for a discussion of the current location counter.

6-37

GENERAL ASSEMBLER DIRECTIVES

6.8.1.2 Code or Data Sharing - Named relocatable program sections
with the arguments GBL and OVR operate in the same manner as FORTRAN

COMMON, i.e., program sections of the same name with the arguments GBL

and OVR from different assemblies are all loaded at the same location
at link time. All other program sections, i.e., those with the

argument CON, are concatenated.

Note that no conflict exists between internal symbolic names and

program section names, i.e., it is legal to use the same symbolic name

for both purposes. Considering FORTRAN again, using the same symbolic

name 1is necessary to accommodate the following statement:

COMMON /X/ A,B,C,X

where the symbol X represents the base of the program section and also

the fourth element of that section.

6.8.1.3 Memory Allocation Considerations - The assembler does not

generate an error when a module ends at an odd location. This allows

you to place odd length data at the end of a module. However, when

several modules contain object code contributionsto the same program

section having the concatenate attribute (see Table 6-3), odd 1length

modules (except the 1last) may cause succeeding modules to be linked

starting at odd locations, thereby making the linked program

unexecutable. To avoid this problem, code and data should be

separated from each other and be placed in separately named program

sections. This permits the linker to automatically begin each program

section on an even address. Refer to the applicable system manual for

further information on memory allocation of tasks (see Section 0.3 in

the Preface).

6.8.2 J.ASECT and .CSECT Directives

IAS and RSX-1ll assembly-language programs use the .PSECT and .ASECT

directives exclusively, since the .PSECT directive provides all the

capabilities of the .CSECT directive defined for other PDP-11

assemblers. MACRO-11 will accept both .ASECT and .CSECT directives,

but assembles them as though they were .PSECT directives with the

default attributes 1listed in Table 6-4. Also, compatibility exists

between other MACRO-11l programs and the IAS/RSX-11 Task Builders,

since the respective Task Builders recognize the .ASECT and .CSECT

directives that appear in such programs and likewise assign the

default values listed in Table 6-4.

GENERAL ASSEMBLER DIRECTIVES

Table 6-4

Non-IAS/RSX-11 Program Section Default Values

Default Value

Attribute .ASECT .CSECT (named) .CSECT (unnamed)

Name . ABS. name f Blank

Access RW RW RW

Type I | I I

Scope GBL GBL LCL

Relocation ABS REL REL

Allocation OVR OVR CON

The allowable syntactical forms of the .ASECT and .CSECT directives

are:

.ASECT

.CSECT

.CSECT symbol

Note that the statement:

.CSECT JIM

is identical to the statement:

.PSECT JIM,GBL,OVR

because the .CSECT default values GBL and OVR are assumed for the

named program section.

6.9 SYMBOL CONTROL DIRECTIVE: .GLOBL

MACRO-11 produces a relocatable object module and a 1listing file
containing the assembly listing and symbol table. The linker joins
separately-assembled object modules into a single executable image.
During 1linking, object modules are relocated as a program function of

the specified base of the module. The object modules are then 1linked
via global symbols, such that a global symbol in one module, defined
either by a global assignment operator (==), a global label operator
(::), or the .GLOBL directive can be referenced from another module.

Thus, all symbols which will be referenced by other program modules

must be singled out as global symbols in the defining modules.

The .GLOBL directive is provided to define (and thus provide 1linkage
to) symbols not otherwise defined as global symbols within a module.
For example, if the .DSABL GBL directive is in effect (see Section
6.2), .GLOBL directives might be included 1in a source program to

effect linkage to library routines. For a global symbol definition,
the directive .GLOBL A,B,C is equivalent to:

)

)

)

==expression (or A

B==expression (or B

==gxpression (or C e

£
4

%

6-39

GENERAL ASSEMBLER DIRECTIVES

Thus, the general form of the .GLOBL directive is:

.GLOBL syml,sym2,...symn

where: syml, represent legal symbolic names. When multiple

sym2,... symbols are specified, they are separated by any

symn legal separator (comma, space, and/or tab).

A .GLOBL directive may also embody a label field and/or a comment

field.

At the end of assembly pass 1, MACRO-1l1 determines whether a given

global symbol is defined within the current program module or whether

it is to be treated as an external symbol. All internal symbols

appearing within a given program must be defined at the end of

assembly pass 1 or they will be assumed to be default global

references. Refer to Section 6.2 for a description of

enabling/disabling of global references.

In the example below, A and B are entry-point symbols. The symbol A

has been explicitly defined as a global symbol by means of the .GLOBL

directive, and the symbol B has been explicitly defined as a global

label by means of the double colon (::). Since the symbol C is not

defined as a label within the current assembly, it 1is an external

(global) reference if .ENABL GBL is in effect.

;

; DEFINE A SUBROUTINE WITH 2 ENTRY POINTS WHICH CALLS AN

; EXTERNAL SUBROUTINE

b
1

.PSECT ;DECLARE THE UNNAMED PROGRAM SECTION.

.GLOBL A ;DEFINE A AS A GLOBAL SYMBOL.

A: MOV @ (R5) +,R0 ;DEFINE ENTRY POINT A.

MOV #X,R1

X: JSR PC,C ; CALL EXTERNAL SUBROUTINE C.

RTS R5 ;EXIT.

B:: MOV (R5)+,R1 ; DEFINE ENTRY POINT B.

CLR R2

BR X

External symbols can appear in the operand field of an instruction or

MACRO-11 directive as a direct reference, as shown in the examples

below:

CLR EXT

.WORD EXT

CLR @EXT

External symbols may also appear as a term within an expression, as

shown below: ~

CLR EXT+A

.WORD EXT-2

CLR @EXT+A (R1)

It should be noted that an undefined external symbol cannot be used in

the evaluation of a direct assignment statement or as an argument in a

conditional assembly directive (see Sections 6.10.1 and 6.10.3).

GENERAL ASSEMBLER DIRECTIVES

6.10 CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assembly directives allow you to include or exclude blocks

of source code during the assembly process, based on the evaluation of

stated condition tests within the body of the program. This

capability allows several variations of a program to be generated from

the same source code.

6.10.1 Conditional Assembly Block Directives: .IF, .ENDC

The general form of a conditional assembly block is as follows:

where:

argument(s)

.IF

. ENDC

cond

range

. ENDC

cond,argument(s) ;START CONDITIONAL ASSEMBLY BLOCK.

; RANGE OF CONDITIONAL ASSEMBLY BLOCK.

:END OF CONDITIONAL ASSEMBLY BLOCK.

represents a specified condition that must be met

if the block 1is to be included in the assembly.

The conditions that may be tested by the

conditional assembly directives are defined in

Table 6-5.

represents any legal separator (comma, space,

and/or tab).

represent(s) the symbolic argument (s) or

expression(s) of the specified conditional test.

These arguments are thus a function of the

specified condition to be tested (see Table 6-5).

represents the body of code that is either

included in the assembly or excluded, depending

upon whether the specified condition is met.

terminates the conditional assembly block. This

directive must be present to end the conditional

assembly block.

A condition test other than those listed in Table 6-5, an 1illegal

argument, or-a null argument specified in an .IF directive causes that

line to be flagged with an error code (A) in the assembly listing.

Table 6-5

Legal Condition Tests for Conditional Assembly Directives

Conditions

Positive | Complement Arguments Assemble Block If:

EQ NE Expression Expression is equal to 0
(or not equal to 0).

GT LE Expression Expression is greater
than 0 (or less than or

equal to 0).

Table 6-5 (Cont.)

GENERAL ASSEMBLER DIRECTIVES

Legal Condition Tests for Conditional Assembly Directives

Conditions

Positive | Complement Arguments Assemble Block If:

LT GE Expression Expression is less than O

(or greater than or equal

to 0).

DF NDF Symbolic Symbol is defined (or not

argument defined).

B NB Macro-type Argument is blank (or

argument non-blank).

IDN DIF Two macro-type Arguments are identical

arguments (or different).

Z NZ Expression Same as EQ/NE.

G L Expression Same as GT/LT.

NOTE

A macro-type argument (which is a form of symbolic

argument), shown below, enclosed within

angle brackets or denoted with an up—arrow

construction (as described in Section 7.3.1).

<A,B,C>

“/124/

An example of a conditional assembly directive follows:

.IF EQ ALPHA+1 ;ASSEMBLE BLOCK IF ALPHA+1=0.

. ENDC

The two operators & and have special meaning within DF and NDF

conditions, in that they are allowed in grouping symbolic arguments.

&

|
-

Logical AND operator

Logical inclusive OR operator

For example, the conditional assembly statement:

.IF DF SYMl & SYM2

»

« ENDC

results in the assembly of the conditional block if the

and SYM2 are both defined.
symbols SYMI

GENERAL ASSEMBLER DIRECTIVES

Nested conditional directives take the form:

Conditional Assembly Directive

Conditional Assembly Directive

-

. ENDC

.ENDC

For example, the following conditional directives:

.IF DF SYMl

.IF DF SYM2

»

. ENDC

.ENDC

can govern whether assembly 1is to occur. In the example above, if the

outermost condition 1is unsatisfied, no deeper level of evaluation of

nested conditional statements within the program occurs.

Each conditional assembly block must be terminated with an .(ENDC

directive. An .ENDC directive encountered outside a conditional

assembly block is flagged with an error code (0) 1in the assembly

listing.

MACRO-11 permits a neéting depth of 16(10) conditional assembly
levels. Any statement that attempts to exceed this nesting level

depth is flagged with an error code (0) in the assembly listing.

6.10.2 Subconditional Assembly Block Directives: .IFF, .IFT, .IFTF

Subconditional directives may be placed within conditional assembly

blocks to indicate:

1. The assembly of an alternate body of code when the condition

of the block tests false.

2. The assembly of a non-contiguous body of code within the

conditional assembly block, depending upon the result of the

conditional test in entering the block.

3. The unconditional assembly of a body of code within a

conditional assembly block.

The subconditional directives are described in detail 1in Table ©6-6.

If a subconditional directive appears outside a conditional assembly

block, an error code (0) is generated in the assembly listing.

6-43

GENERAL ASSEMBLER DIRECTIVES

Table 6-6

Subconditional Assembly Block Directives

Subconditional

Directive Function

.IFF If the condition tested upon entering the
conditional assembly block 1is £false, the code

following this directive, and continuing up to the

next occurrence of a subconditional directive or

"to the end of the conditional assembly block, is

to be included in the program.

.IFT If the condition tested upon entering the
conditional assembly block 1is true, the code

following this directive, and continuing up to the
next occurrence of a subconditional directive or
to the end of the conditional assembly block, 1is
to be included in the program.

.IFTF The code following this directive, and continuing
up to the next occurrence of a subconditional

directive or to the end of the conditional
assembly block, is to be included in the program,

regardless of the result of the <condition tested

upon entering the conditional assembly block.

The implied argument of a subconditional directive is the condition

test specified upon entering the <conditional assembly block, as

reflected by the initial directive in the conditional coding examples
below. Conditional or subconditional directives in nested conditional
assembly blocks are not evaluated if the previous (or outer) condition

in the block 1is not satisfied. Examples 3 and 4 below illustrate

nested directives that are not evaluated because of previous

unsatisfied conditional coding.

EXAMPLE 1l: Assume that symbol SYM is defined.

.IF DF SYM ; TESTS TRUE, SYM IS DEFINED. ASSEMBLE

. ; THE FOLLOWING CODE.

.IFF ;TESTS FALSE. SYM IS DEFINED. DO NOT

. ;ASSEMBLE THE FOLLOWING CODE.

. IFT ;TESTS TRUE. SYM IS DEFINED. ASSEM-

. ;BLE THE FOLLOWING CODE.

.IFTF ;ASSEMBLE FOLLOWING CODE UNCONDITION-

. ;ALLY.

LIFT ;TESTS TRUE. SYM IS DEFINED. ASSEM-

. ;BLE REMAINDER OF CONDITIONAL ASSEM-

. ;BLY BLOCK.

. ENDC

GENERAL ASSEMBLER DIRECTIVES

EXAMPLE 2: Assume that symbol X is defined and that symbol Y is not

defined.

.IF DF X ; TESTS TRUE, SYMBOL X IS DEFINED.

.IF DF Y s TESTS FALSE, SYMBOL Y IS NOT DEFINED.

.IFF ; TESTS TRUE, SYMBOL Y IS NOT DEFINED,

. sASSEMBLE THE FOLLOWING CODE.

.IFT s TESTS FALSE, SYMBOL Y IS NOT DEFINED.

; ;DO NOT ASSEMBLE THE FOLLOWING CODE.

.ENDC

.ENDC

EXAMPLE 3: Assume that symbol A is defined and that symbol B is not
defined.

.1IF DF A : TESTS TRUE. A IS DEFINED.

;ASSEMBLE THE FOLLOWING CODE.

MOV A,R1 |

.1FF +:TESTS FALSE. A IS DEFINED. DO NOT

s ASSEMBLE THE FOLLOWING CODE.

MOV R1,R0

.1IF NDF B ;sNESTED CONDITIONAL DIRECTIVE IS NOT

. +sEVALUATED.

. ENDC

. ENDC

EXAMPLE 4: Assume that symbol X is not defined and that symbol Y is

defined.

.IF DF X ;sTESTS FALSE. SYMBOL X IS NOT DEFINED.

;DO NOT ASSEMBLE THE FOLLOWING CODE.

.IF DF Y s NESTED CONDITIONAL DIRECTIVE IS NOT

. : EVALUATED.

. IFF :NESTED SUBCONDITIONAL DIRECTIVE 1S

. :NOT EVALUATED.

. IFT + NESTED SUBCONDITIONAL DIRECTIVE IS

. :NOT EVALUATED.

. ENDC

«.ENDC

GENERAL ASSEMBLER DIRECTIVES

©.10.3 Immediate Conditional Assembly Directive: .IIF

An immediate conditional assembly directive provides a means for

writing a l-line conditional assembly block. 1In using this directive,

no terminating .ENDC statement is regquired, and the condition to be

tested is completely expressed within the 1line c¢ontaining the

directive. Immediate conditional assembly directives are of the form:

.IIF cond,arg,statement

where: cond represents one of the 1legal condition tests

defined for <conditional assembly blocks in Table

6-5.

’ | represents any 1legal separator (comma, space,

and/or tab).

arg represents the argument associated with the

immediate conditional directive, i.e., an

expression, symbolic argument, or macro-type

argument, as described in Table 6-5.

’ represents the separator between the conditional

argument and the statement field. If the

preceding argument is an expression, then a comma

must be wused; otherwise, a comma, space, and/or

tab may be used.

statement represents the specified statement to be assembled

if the condition is satisfied.

For example, the immediate conditional statement:

.IIF DF FOO,BEQ ALPHA

generates thé code

BEQ ALPHA

if the symbol FOO is defined within the source program.

As with the .IF directive, a condition test other than those listed in

Table ©6-5, an illegal argument, or a null argument specified in an

.IIF directive results in an error code (A) in the assembly listing.

6.10.4 PAL-11lR Conditional Assembly Directives

In order to maintain compatibility with programs developed under

PAL-11R, the following conditionals remain permissible under MACRO-11,

It is advisable, however, to develop future programs using the format

for MACRO-11l conditional assembly directives.

Directive Arguments Assemble Block 1if

.IFZ or .IFEQ expression expression=0

.IFNZ or .IFNE expression expression not equal 0

.IFL or .IFLT expression expression<0

.IFG or .IFGT expression expression>0

.IFLE expression expressionis < or =0

.IFDF symbolic argument symbol is defined

. IFNDF symbolic argument symbol is undefined

The rules governing these directives are the same as for the MACRO-11

conditional assembly directives previously described.

6-46

CHAPTER 7

MACRO DIRECTIVES

7.1 DEFINING MACROS

In assembly-language programming, it is often convenient and desirable

to generate a recurring coding sequence by invoking a single statement
within the program. In order to do this, the desired coding sequence
is first established with dummy arguments as a macro definition. Once
a macro has been defined, a single statement calling the macro by name
with a 1list of real arguments (replacing the corresponding dummy
arguments in the macro definition) generates the desired coding
sequence. This sequence is called the macro expansion.

7.1.1 .MACRO Directive

The first statement of a macro definition must be a .MACRO directive.
This directive takes the form:

label: .MACRO name, dummy argument list

where: label represents an optional statement label.

name represents the programmer-—-assigned symbolic name

of the macro. This name may be any legal symbol

and may be used as a label elsewhere in the
program.

' represents any legal separator (comma, space,

and/or tab).

dummy represents a number of legal symbols (see 3.2.2)
argument that may appear anywhere in the body of the macro
list definition, even as a label. These dummy symbols

can be used elsewhere 1in the program with no
conflict of definition. Multiple dummy arguments

specified in this directive may be separated by

any legal separator. The detection of a duplicate
or an 1illegal symbol in a dummy argument list

terminates the scan and causes an error code to be

generated.

A comment may follow the dummy argument list in a .MACRO directive, as

shown below:

.MACRO ABS A,B ;DEFINES MACRO ABS WITH TWO ARGUMENTS.

MACRO DIRECTIVES

NOTE

Although it is legal for a label to appear on a

.MACRO directive, this practice is discouraged,

especially in the case of nested macro

definitions, because invalid labels or labels

constructed with the concatenation character will

cause the macro directive to be ignored. This may

result 1in improper termination of the macro

definition. This NOTE also applied to .IRP,

.IRPC, and .REPT.

7.1.2 .ENDM Directive

The final statement of every macro definition must be an .ENDM

directive of the form:

. ENDM name

where: name represents an optional argument specifying the

symbolic name of the macro being terminated by the

directive, as shown in the following example:

. ENDM i TERMINATES THE CURRENT

sMACRO DEFINITION.

. ENDM ABS s TERMINATES THE CURRENT

~ sMACRO DEFINITION NAMED ABS.

If specified, the symbolic name in the .ENDM statement must match the

name specified in the corresponding .MACRO directive. Otherwise, the

statement is flagged with an error code (A) in the assembly 1listing

(see Appendix D). In either case, the current macro definition is

terminated. Specifying the macro name in the .(ENDM statement thus

permits MACRO-11 to detect missing .ENDM statements or

improperly-nested macro definitions.

The .ENDM directive may be followed by a comment field, but must not

contain a label, as shown below:

.MACRO TYPMSG MESSGE s TYPE A MESSAGE.

JSR R5,TYPMSG

.WORD MESSGE

. ENDM ;END OF TYPMSG MACRO.

An .ENDM statement encountered by MACRO-11 outside a macro definition

is flagged with an error code (0) in the assembly listing (see

Appendix D).

NOTES

l. Labels on .ENDM directives are ignored.

2. Illegal labels will cause the directive

to be bypassed.

MACRO DIRECTIVES

7.1.3 .MEXIT Directive

The .MEXIT directive may be used to terminate a macro expansion before

the end of the macro is encountered. This directive is also legal

within repeat blocks (see Sections 7.6 and 7.7). It is most useful in

the context of nested macros. The .MEXIT directive terminates the

current macro as though an .ENDM directive had been encountered.

Using the .MEXIT directive bypasses the complexities of nested

conditional directives and alternate assembly paths, as shown in the

following example:

.MACRO ALTR N,A,B

IF EQ N ; START CONDITIONAL ASSEMBLY BLOCK.

+MEXIT ;sTERMINATE MACRO EXPANSION.

.ENDC ;END CONDITIONAL ASSEMBLY BLOCK.

. ENDM ; NORMAL END OF MACRO.

Considering the above macro, in an assembly where the real argument

for the dummy symbol N is equal to zero (see Table 6-5), the

conditional block would be assembled, and the macro expansion would be

terminated by the .MEXIT directive. When macros are nested, a .MEXIT

directive causes an exit to the next higher level of macro expansion.

A .MEXIT directive encountered outside a macro definition 1is flagged

with an error code (0) in the assembly listing.

7.1.4 MACRO Definition Formatting

A form-feed character used within a macro definition causes a page
eject during the assembly of the macro definition. A page eject,

however, is not performed when the macro is expanded.

Conversely, when the .PAGE directive 1is specified within a macro

definition, it is ignored during the assembly of the macro definition,

but a page eject is performed when that macro is expanded.

7.2 CALLING MACROS

A macro definition must be established by means of the .MACRO

directive (see Section 7.1.1) before the macro can be expanded within

the source program. Macro calls are of the general form:

label: name real arguments

where: label represents an optional statement label.

name represents the name of the macro, as specified in
the .MACRO directive (see Section 7.1.1).

7-3

MACRO DIRECTIVES

real represent symbolic arguments which replace o

arguments the dummy arguments specified in the . MACRO

directive. When multiple arguments are specified,
they are separated by any legal separator.
Arguments to the macro call are treated as
character strings whose usage is determined by the
macro definition. Note that MACRO-1l1l accepts the
ASCII value of 1lower-case alphabetic characters
when .ENABL LC has been specified.

When a macro name is the same as a user label, the appearance of the
symbol in the operator field designates the symbol as a macro call;
the appearance of the symbol in the operand field designates it as a
label, as shown below:

ABS: MOV (RO),R1 sABS IS DEFINED AS A LABEL.

BR ABS sABS IS CONSIDERED TO BE A LABEL. T

ABS #4 ,ENT,LAR ;ABS IS A MACRO CALL.

7.3 ARGUMENTS IN MACRO DEFINITIONS AND MACRO CALLS

Arguments within a macro definition or macro call are separated from
other arguments by any of the legal separating characters described in —
Section 3.1.1.

Macro definition arguments (dummy) and macro call arguments (real)
normally maintain a strict positional relationship. That is, the
first real argument in a macro call corresponds with the first dummy
argument in a macro definition. Only the use of keyword arguments in
a macro call can override this correspondence (see Section 7.3.6).

For example, the following macro definition and its associated macro
expansion contain multiple arguments:

.MACRO REN A,B,C

-

REN ALPHA,BETA,<Cl1l,C2>

Arguments which themselves contain separating characters must be
enclosed 1in paired angle brackets, as shown above. For example, the
macro call:

REN <MOV X,Y>,#44 ,WEV

causes the entire expression

MOV X,Y

to replace all occurrences of the symbol A in the macro definition.
Real arguments within a macro «call are considered to be character
strings and are treated as a single entity during the macro expansion.

7-4

««««««

MACRO DIRECTIVES

The up-arrow (~) construction is provided to allow angle brackets to

be passed as part of the argument. This construction, for example,

could have been used in the above macro call, as follows:

REN ~/<MOV X,Y>/,#44,WEV

causing the entire character string <MOV X,Y¥> to be passed as an

argument.

The following macro call:

REN #44 ,WEV~ /MOV X,Y/

however, contains only two arguments (#44 and WEV"/MOV X,Y/), Dbecause
the wup-arrow is a unary operator (see Section 3.1.3) and it is not

preceded by an argument separator.

As shown in the examples above, spaces can be wused within bracketed

qument constructions to increasethe legibilityof such expressions.

7.3.1 Macro Nesting

The nesting of macros, where the expansion of one macro includes a

call to another, causes one set of angle brackets in the macro

definition to be removed from an argument with each nested call. The

depth of nesting allowed is dependent upon the amount of dynamic

memory used by the source program being assembled.

To pass an argument containing legal argument delimiters to nested

macros, the argument in the macro definition should be enclosed within

one set of angle brackets for each level of nesting, as shown in the

coding sequence below. It should be noted that this extra set of

angle brackets for each level of nesting is required 1in the macro

definition, not in the macro call.

.MACRO LEVEL1 DUM1,DUM2

LEVEL2 <DUMI1>

LEVEL2 <DUM2>

.ENDM

.MACRO LEVEL2 DUM3

DUM3

ADD #10,R0

MOV RO, (R1) +

. ENDM

A call to the LEVEL1 macro, as shown below, for example:

LEVEL1 <MOV X,R0>,<MOV R2,R0>

causes the following macro expansion to occur:

MOV X,RO

ADD #10,R0

MOV RO, (R1)+

MOV R2,R0

MOV RO, (R1)+

MACRO DIRECTIVES

When macro definitions are nested, i.e., when a macro definition is
contained entirely within the definition of another macro, the inner
definition is not a callable macro until the outer macro has been.
called and expanded. For example, in the following coding:

.MACRO LV1 A,B
.

.MACRO LVZ2 C

. ENDM

. ENDM

the LV2 macro cannot be called and expanded until the LV1 macro has
been so0 invoked. Likewise, any macro defined within the LV2 macro
definition cannot be called and expanded until LV2 has also been
invoked.

7.3.2 Special Characters in Macro Arguments

An argument may include special characters without enclosing them in a
bracketed construction if that argument does not contain spaces, tabs,
semicolons, or commas. For example, the macro definition:

.MACRO PUSH ARG

MOV ARG,- (SP)

.ENDM

-

PUSH X+3(%2)

causes the following code to be generated:

MOV X+3(%2),-(SP)

7.3.3 Passing Numeric Arguments as Symbols

When macro arguments are passed, an absolute symbol value can be
passed which is treated by the macro as a numeric string. An argument
preceded by the unary operator backslash (\) is treated as a numeric
value in the current program radix. The ASCII characters representing
this value are inserted in the macro expansion, and their function is
defined in the context of the resulting code, as shown in the
following example:

.MACRO INC A,B

CON A,\B ;B IS TREATED AS A NUMBER IN CURRENT
B=B+1 ; PROGRAM RADIX.

. ENDM

.MACRO CON A,B

A'B: -WORD 4 ;A'B IS DESCRIBED IN SECTION 7.3.6.
. ENDM

C=0 INC X,C

MACRO DIRECTIVES

The above macro call (INC) would thus expand to:

X0: .WORD 4

Note in this expanded code that the label X0: is the result of the

concatenation of two real arguments. The single quote (') character

in the label A'B: causes the real arguments X and 0 to be

concatenated as they are passed during the expansion of the macro.

This type of argument construction is described in further detail in

Section 7.3.6.

A subsequent call to the same macro would generate the following code:

and so on, for later calls. The two macro definitions are necessary

because the symbol associated with dummy argument B (i.e., C) cannot

be updated in the CON macro definition, because its numeric value has

already been substituted for its symbolic name, i.e., the character 0

has replaced C in the argument string. In the CON macro definition,

the number passed is treated as a string argument. (Where the value

of the real argument is 0, only a single 0 character is passed to the

macro expansion.)

Passing numeric values in this manner is useful in identifying source

listings. For example, versions of programs created through

conditional assemblies of a single source program can be identified

through such coding as that shown below. Assume, for example, that

the symbol ID in the macro call (IDT) has been equated elsewhere in

the source program to the value 6.

.MACRO IDT SYM ~ ;ASSUME THAT THE SYMBOL ID TAKES

.IDENT /VO5A'SYM/ ;ON A UNIQUE 2-DIGIT VALUE.

.ENDM ;WHERE VO5A IS THE UPDATE

. ;VERSION OF THE PROGRAM.

IDT \ID

The above macro call would then expand to:

.IDENT /V05a6/

where 6 is the numeric value of the symbol ID.

7.3.4 Number of Arguments in Macro Calls

If more arguments appear in the macro call than in the macro

definition, an error code (Q) is generated in the assembly listing.

If fewer arguments appear 1in the macro call than in the macro

definition, missing arguments are assumed to be null values. The

conditional directives .IF B and .IF NB (see Table 6-5) can be used

within the macro to detect missing arguments. The number of arguments

can also be specified using the .NARG directive (Section 7.4.1). Note

that a macro can be defined with no arguments.

7.3.5 Creating Local Symbols Automatically

A label is often required in an expanded macro. In the conventional

macro facilities thus far described, such a label must be explicitly

7-7

MACRO DIRECTIVES

specified as an argument with each macro call. Be careful in issuing

subsequent calls to the same macro, to avoid specifying a duplicate
label as a real argument. This concern c¢an be eliminated through a

feature of MACRO-11l which <creates a unique symbol where a label is
required in an expanded macro.

As noted in Section 3.5, MACRO-11l <can automatically c¢reate 1local
symbols of the form n$, where n is a decimal integer within the range
64 through 127, inclusive. Such local symbols are created by MACRO-1l1

in numerical order, as shown below: |

64$

65%

-

1265
1278

This automatic facility is invoked on each call of a macro whose

definition contains a dummy argument preceded by the guestion mark (?)
character, as shown in the macro definition below:

.MACRO ALPHA, A,?B ; CONTAINS DUMMY ARGUMENT B PRECEDED BY
s+QUESTION MARK.

TST A

BEQ B

ADD #5,A

B:

. ENDM

A local symbol is generated automatically by MACRO-11l only when a real
argument of the macro <call is either null or missing, as shown in
Example 1 below, which reflects the expansion of the ALPHA nmacro

defined above.

If the real argument is specified in the macro call, however, MACRO-1l1
inhibits the generation of a local symbol and normal argument
replacement occurs, as shown in Example 2 below.

EXAMPLE 1l: Generate a Local Symbol for the Missing Argument:

ALPHA Rl s SECOND ARGUMENT IS MISSING.

TST R1 |

BEQ 643 ; LOCAL SYMBOL IS GENERATED.

ADD $#5,R1

64S:

EXAMPLE 2: Do Not Generate a Local Symbol:

ALPHA R2,XYZ ;SECOND ARGUMENT XYZ IS SPECIFIED.

TST R2

BEQ XYZ ; NORMAL ARGUMENT REPLACEMENT OCCURS.
ADD ~ #5,R2

XYZ:

Automatically-generated local symbols are restricted to the first
16 (10) arguments of a macro definition.

Note that automatically-created 1local symbols resulting from the
expansion of a macro, as described above, do not in any way influence
local symbol block boundaries. In other words, such
“automatically=-created 1local symbols do not establish a local symbol

block in their own right.

MACRO DIRECTIVES

However, when a macro has several arguments earmarked for automatic

local symbol generation, substituting a specific label for one such

argument introduces a risk that assembly errors will result. This is

because MACRO-1l1 constructs its argument substitution list at the

point of macro invocation. Therefore, the appearance of any label,

the .ENABL LSB directive, or the .PSECT directive, in the macro

expansion will create a new local symbol block. This could leave

local symbol references 1in the previous block and the symbol

" definitions in the new one, resulting in error codes in the assembly

listing (see Appendix D). Furthermore, a subsequent macro expansion

that generates local symbols in the new block may duplicate one of the

symbols in question, resulting in an additional error code (P) in the

assembly listing.

7.3.6 Keyword Arguments

Macros may be defined with and/or invoked with keyword arguments. A

keyword argument has the following form:

name=string

where

name represents the dummy argument,

string represents the real symbolic argument.

The keyword argument may not contain embedded argument separators

unless properly delimited as described in section 7.3.

When a keyword argument appears in the dummy argument list of a macro

definition, the specified string becomes the default real argument at

macro call.

When a keyword argument appears in the real argument list of a macro

call, the specified string becomes the real argument for the dummy

argument that exactly matches the specified name, whether or not the

dummy argument was defined with a keyword. If a match fails, the

entire argument specification is treated as the next positional real

argument. A keyword argument may be specified anywhere in the dummy

argument list of a macro definition and is part of the positional

ordering of argument. On the other hand, a keyword argument may be

specified anywhere in the real argument list of a macro call but does

not affect the positional correspondenceof the remaining arguments.

1 LLIST ME

2 ;
¥ 3 : DEFINE A MACRO HAVING KEYWORDS IN DUMMY ARGUMENT LIST

4 ;
5

) .MACRO TEST CONTRL=1l,BLOCK,ADDRES=TEMP

7 .WORD CONTRL

8 . WORD BLOCK

9 . WORD ADDRES

10 . ENDM

11

12

13 H

14 : NOW INVOKE SEVERAL TIMES

15 :

l6

MACRO DIRECTIVES

17 000000 TEST A,B,C

000000 000O0OOG . WORD A

000002 000000G .WORD B

000004 00000O0G . WORD C

18

19 000006 TEST ADDRES=20,BLOCK=30,CONTRL=40

000006 000040 .WORD 40

000010 000030 .WORD 30

000012 000020 .WORD 20

20

21 000014 TEST BLOCK=>5

000014 000001 .WORD 1

000016 000005 . WORD 5

000020 000000G . WORD TEMP

22

23 000022 TEST CONTRL=5,ADDRES=VARIAB

000022 000005 . WORD 5

000024 000000 -.WORD

000026 000000G . WORD VARIAB

24

25 000030 TEST

000030 000001 .WORD 1

000032 000000 .WORD

000034 000000G .WORD TEMP

26

27 000036 TEST ADDRES=JACK!JILL

000036 000001 .WORD 1

000040 000000 .WORD

000042 o00000O0C .WORD JACK!JILL

28

29

30 000001 .END

7.3.7 Concatenation of Macro Arguments

The apostrophe or single quote character (') operates as a legal

delimiting character in macro definitions. A single quote that

precedes and/or follows a dummy argument in a macro definition 1is

removed, and the substitution of the real argument occurs at that

point. For example, in the following statements:

.MACRO DEF A,B,C

A'B: .ASCI1IZ /C/

.BYTE ''"A,''B

when the macro DEF is called through the statement:

DEF X,Y,<MACRO-11>

it is expanded, as follows:

XY: .ASCIZ /MACRO-11/

.BYTE 'X,'Y

In expanding the first 1line, the scan for the first argument

terminates wupon finding the first ' character. Since A is a dummy

argument, the ' is removed. The scan then resumes with B; B is also

noted as another dummy argument. The two real arguments X and Y are

then concatenated to form the label XY:. The third dummy argument 1is

noted 1in the operand field of the .ASCIZ directive, causing the real

argument MACRO-11l to be substituted in this field.

7-10

MACRO DIRECTIVES

When evaluating the arguments to the .BYTE directive during expansion
of the second line, the scan begins with the first ' character. Since
it is neither preceded nor followed by a dummy argument, this '

character remains in the macro expansion. The scan then encounters
the second ' character, which is followed by a dummy argument and 1is

therefore discarded. The scan of argument A 1is terminated upon

encountering the comma (,). The third ' character is neither preceded
nor followed by a dummy argument and again remains in the macro

expansion. The fourth (and last) ' character is followed by another
dummy argument and is likewise discarded. (Note that four ‘'
characters were necessary in the macro definition to generate two '

characters in the macro expansion.) |

7.4 MACRO ATTRIBUTE DIRECTIVES: .NARG, .NCHR, AND .NTYPE

Three directives are available in MACRO-11 which allow the wuser to

determine certain attributes of macro arguments. The use of these

directives permits selective modifications of a macro expansion,

depending on the nature of the arguments being passed. These

directives are described separately below.

7.4.1 .NARG Directive

The .NARG directive is used to determine the number of arguments in

the macro call currently being expanded. Hence, the .NARG directive

can appear only within a macro definition; if it does not, an error

code (0) 1is generated in the assembly listing. This directive takes

the form:

label: .NARG symbol

where: label represents an optional statement label.

symbol represents any legal symbol. This symbol 1is

equated to the number of arguments in the macro

call currently being expanded. If a symbol is not

specified, the .NARG directive is flagged with an

error code (A) in the assembly listing.

7-11

MACRO DIRECTIVES

An example of the .NARG directive follows:

LTITLF NARG

JMACRNA NOPP, NUM

MNARG SYM

JIF EQ,SYM

JMEXTIT

TFF
JRERPT NM

NOR

i@ e ENDM

11 o ENDC

12 « ENDM

O

P
~

N
E

L
N

1S Apegen NOPP

prarae « NARG SYM

o IF EQ,SYM

MEXTITY
. IFF

JREPT

NOP

ENDM

s ENDC

{6

17
{R annaee NOPP 6

APAAA Y JNARG SYM

JMEXTT

o TFF

P2QARA REPT ()

NOP

e ENDM

A00QA0Q2 QAag2un NOP

AARAA2 . AAR2UR NOP

ARRAGU 002UR NOP

PARBREe QCOQA24Q NOP

AAAA1I2 QQ@a2uR NOP

araRr12 o0agu~ NP

«ENDC

{19

20

et Q20001 « ENP

7.4.2 J.NCHR Directive

The .NCHR directive, which can appear anywhere in a MACRO-1l1] program,

is used to determine the number of characters in a specified character

string. This directive, which is useful in calculating the length of

macro arguments, takes the following form:

label: .NCHR

where: label

symbol

symbol,<string>

represents an optional statement label.

represents any legal symbol. This symbol 1is

equated to the number of characters in the

specified character string. If a symbol is not

specified, the .NCHR directive is flagged with an

error code (A) 1in the assembly 1listing (see

Appendix D). ~

7-12

MACRO DIRECTIVES

r represents any legal separator (comma, space,
: and/or tab).

{string> represents a string of printable characters. The

character string need be enclosed within angle
brackets (<>) or up-arrows (") only if the

specified character string contains a 1legal
separator (comma, space, and/or tab). If the

. delimiting characters do not match or if the

ending delimiter cannot be detected because of a

syntactical error in the character string (thus

prematurely terminating its evaluation), the .NCHR

. directive is flagged with an error code (A) in the

assembly listing. ,

An example of the .NCHR directive follows:

«TITLF NCHR

«MACRD C(CHAR,MESS

NCHR SYM,MESS
JWORD SYM

«ASCII /MESS/

«EVEN
o ENDM

D

O

P

A
L

N

ARPARD MSG1 ¢t CHAR HELLO>
PENARS e NCHR SYM,HMELLO

pe@roe repARS «WORD SYM

earee? 112 «ASCIT /HELLOY/
PrAQRY tas

earangd t14
aearns 114

aRraRrR6 tt?

«EVEN
1e

13
ta PR JENR

7.4.3 .NTYPE Directive

The .NTYPE directive is used to determine the addressing mode of a

specified macro argument. Hence, the .NTYPE directive can appear only
within a macro definition; if it appears elsewhere, it 1is flagged

& with an error code (0) in the assembly listing. This directive takes
the form:

label: J.NTYPE symbol,aexp

where: label represents an optiqmal statement label.

bol isrepresents any legal symbol. This synm
equated to the 6-bit addressing mode of the

following argument. If a symbol is not specified,

the .NTYPE directive is flagged with an error code

(A) in the assembly listing.

' represents any legal separator (comma, space,
and/or tab).

7-13

MACRO DIRECTIVES

represents any legal address expression, as used

with an opcode. If no argument is specified, the

result will be zero.

aexp

An example of the use of an .NTYPE directive in a macro definition is

shown below:

é .TITLE NTYPE

3 «MACRO SAVE, ARG
4 JNTYPE SYM, ARG

S o I1F FR,SYMRTQ

é MOV ARG,=(SP) $REGISTER MOQODE
7 o JFF

8 MOV #HARG, = (SP) tNONeREGISTFR “MODE
9 sENDC

1@ JENPM

i1

12

13 P207200 0OQAAQAA TFMP JWORD g
{4

15

16 2pPnn2 SAVE R1
ARROA Y +NTYPE SYM,R1

o IF FQR,SYMRT7Q
ArARR2 21P1Ub MAV R{,=(SP) tREGISTER MODE

. IFF

MAV #R1,«(SP) tNONeREGISTER MONDE

« ENNC
17

18 “
19 peac0uy SAVFE TEMP

PPARET «MNTYPE SYM, TEMP

W IF ER,SYMRT

MAY TFMP,=(8P) sREGISTER MNDF
o« IFF

PAAPRY M127U6 MAY #TEMP,=(SP) INON=REGISTFR MDDE
PORARR®

+ ENDC
2e

el

22 feAa2M 1 o FND

For additional information concerning addressing modes, refer to

Chapter 5 and Appendix B, Section B.2.

7.5 .ERROR AND .PRINT DIRECTIVES

The .ERROR directive is used to output messages to

A common use of this directive is to provideduring assembly pass 2.

the 1listing file

a diagnostic announcement of a rejected or erroneous macro call or to

alert the wuser to the existence of an illegal set of conditions

specified in a conditional assembly. If the 1listing file 1is not

specified, the .ERROR messages are output to the command output

device. The

label: .ERROR expr ;text

.ERROR directive takes the form:

MACRO DIRECTIVES

where: label represents an optional statement label.

expr represents an optional expression whose value is
output when the .ERROR directive is encountered

during assembly.

; denotes the beginning of the text string.

text represents the specified message associated with

the .ERROR directive.

Upon encountering an .ERROR directive anywhere in a source program,

MACRO-11 outputs a single line containing:

. An error code (P)

The sequence number of the .ERROR directive statement

The value of the current location countér

. The value of the expression, if one is specified

W

=

W

o

-

L

. The source line containing the .ERROR directive.

For example, the following directive:

.ERROR A : INVALID MACRO ARGUMENT

causes a line in the following form to be output to the listing file:

Seq. Loc. Exp.

No. No. Value Text

P 512 005642 000076 "~ .ERROR A . INVALID MACRO ARGUMENT

The .PRINT directive is identical in function to the .ERROR directive,

except that it is not flagged with the P error code.

7.6 INDEFINITE REPEAT BLOCK DIRECTIVES: .IRP AND .IRPC

An indefinite repeat block is a structure that is similar to a macro

definition; essentially a macro definition that has only one dummy

argument. At each expansion of the indefinite repeat range, this

dummy argument is replaced with successive elements of a specified

real argument list. An indefinite repeat block directive and its

associated repeat range are coded in-line within the source program.

This type of macro definition and expansion does not require calling

the macro by name, as required in the expansion of conventional macros

previously described in this section.

An indefinite repeat block can appear either within or outside another

macro definition, indefinite repeat block, or repeat block (see

Section 7.7). The rules for specifying indefinite repeat block

arguments are the same as for specifying macro arguments (see Section

7.3).

7.6.1 .IRP Directive

The .IRP directive is used to replace a dummy argument with successive

real arguments specified in an argument string. This replacement

process occurs during the expansion of an indefinite repeat block

range. This directive takes the following form:

7-15

MACRO DIRECTIVES

label: L.IRP sym,<argument list>

(range of indefinite repeat block)

L

. ENDM

where: label represents an optional statement label.

sym represents a dummy argument that is successively

replaced with the specified real arguments

enclosed within the angle brackets. If no dummy

argument 1is specified, the .IRP directive is
flagged with an error code (A) in the assembly
listing.

’ represents any legal separator (comma, space,

and/or tab).

<argument list> represents a 1list of real arguments enclosed
within angle brackets that is to be used in the
expansion of the indefinite repeat range. A real
argument may consist of one or more characters;
multiple arguments must be separated by any 1legal
separator (comma, space, and/or tab). If no real

arguments are specified, no action is taken.

range represents the block of code to be repeated once

for each occurrence of a real argument in the

list. The range may contain other macro
definitions and repeat ranges. The .MEXIT

directive (see Section 7.1.3) is legal within the
range of an indefinite repeat block.

. ENDM indicates the end of the indefinite repeat block
range.

An example of the use of the .IRP directive is shown in Figure 7-1.

7.6.2 .J.IRPC Directive

The .IRPC directive 1is available to permit single character
substitution, rather than argument substitution. On each iteration of
the indefinite repeat range, the dummy argument is replaced with each

successive character in the specified string. The .IRPC directive is
specified as follows:

label: L.IRPC sym,<string>

-

(range of indefinite repeat block)

-

. ENDM

where: label represents an optional statement label.

7-16

il

MACRO DIRECTIVES

sym represents a dummy argument that is successively
replaced with the specified real arguments

enclosed within the angle brackets. If no dummy

argument is specified, the .IRPC directive is

flagged with an error code (A) in the assembly

listing.

’ represents any legal separator (comma, space,

" and/or tab).

represents a list of characters enclosed within

angle brackets to be used in the expansion of the

- indefinite repeat range. Although the angle
, brackets are required only when the string

contains separating characters, their use is

recommended for legibility.

<string>

represents the block of code to be repeated once

for each occurrence of a character in the list.

The range may contain macro definitions and repeat

ranges. The .MEXIT directive (see Section 7.1.3)

is legal within the range of an indefinite repeat

block. , |

range

.ENDM indicates the end of the indefinite repeat block

range.

An example of the use of the .IRPC directive is shown in Figure 7-1.

! LTITLE IRPTST
2 «LIST ME

3

4

5
6 ,Iflp x,tlA,BEl,fiCaD&.EE,FFb

7 MOV X,(RO)e

8 L ENDM

200002 Q16720 QAABARAG MOV AA, (RD)e

2080P04 16722 0ROPROG MOV BR, (RA)+

AAPN1ID ©B16720 200200206 MOV CCy (R

A20014 Q16720 nNpRR226 MOV DD, (RA)«

PRA20 016727 QPAAMAG MOV EE, (RDB)+

V20024 016722 ARYO0CAG MOV FF,(RQ)»

e

10 ,

11 . 1RPC X,<ABCDEF>

12 MOVB #ix,=(R1)

13 JENDM

APAN3E 112744y QP0QR06 MOVEB MA,~(R1)

220234 112741 Q000206 MOVB #B,=(RY{)

P2004Q 112741 QQOQQ0G MOvVB #C,=(R1)

200044 112741 0QAROQ006 MOVB #D,=(R1)

POPN50 (12741 QPQGQQG MOVvB BE,~(R1)

Vi P0QAS4 112741 QQPR0POG MOVB #F,»(R1)

15

16 pegeey’ JEND

Figure 7-1 Example of .IRP and .IRPC Directives

7.7 REPEAT BLOCK DIRECTIVE: .REPT, .ENDR

It is sometimes usefulto duplicate a block of code a numberof times
in-line with other source code. This duplication of code |is

accomplished by creating a repeat block, wusing a directive in the

form:

7-17

MACRO DIRECTIVES

label: .REPT exp

-

(range of repeat block)

-

. ENDM

where: label represents an optional statement label.

exp represents any 1legal expression whose value

controls the number of times the block of code is
to be assembled within the program. When the
expression value 1is 1less than or equal to zero
(0), the repeat block is not assembled. If this
expression 1is not an absolute value, the .REPT

statement is flagged with an error code (A) in the
assembly listing.

range represents the block of code to be repeated the

number of times determined by the specified
expression value. The repeat block may contain
macro definitions, indefinite repeat blocks, or
other repeat blocks. The .MEXIT directive 1is
legal within the range of a repeat block.

. ENDM indicates the end of the repeat block range. The
or terminating statement in a repeat block can be

.ENDR either an .ENDM directive or an .ENDR directive.

7.8 MACRO LIBRARY DIRECTIVE: .MCALL

The .MCALL directive allows you to indicate in advance those system
and/or user-defined macro definitions that are required in the
assembly of the source program. The .MCALL directive allows vyou to
specify the names of all system or user macro definitions not defined
within the source program but which are required to assemble the
program. The .MCALL directive must appear before the first occurrence
of a call to any externallywdeflned macro. The .MCALL directive is of
the form:

.MCALL argl,arg2,...argn

where: argl, represent the symbolic names of the macro
arg2,... definitions required in the assembly of the source
argn program. The symbolic macro names may be

separated by any legal separator (comma, space,

and/or tab).

The .MCALL directive thus provides the means to access both
user-defined and system macro libraries during assembly.

The /ML sw;tch under RSX-1ll and the /LIBRARY qualifier under IAS and
RT-11, specified in connection with an input file specification,
1ndlcate to MACRO-11 that the file is a macro llbrary. When a macro
call is encountered in the source program, MACRO-11 first searches the
user macro library for the named macro definitions, and, if necessary,
continues the search with the system macro library.

7-18

MACRO DIRECTIVES

Any number of such user-supplied macro files may be designated. In

cases of multiple 1library files, the search for the named macros

begins with the last such file specified. The search continues 1in

reverse order until the required macro definitions are found,

terminating again, if necessary, with a search of the system macro

library.

If any named macro is not found upon completion of the search, 1i.e.,

if the macro is not defined, the .MCALL statement is flagged with an

error code (U) in the assembly 1listing. Furthermore, a statement

elsewhere in the source program which attempts to expand such an
undefined macro is flagged with an error code (O) 1in the assembly

listing.

The command strings to MACRO-11, through which file specifications are

supplied, are described 1in detail in the appropriate system manual

(see Section 0.3 in the Preface).

7-19

APPENDIX A

MACRO-11 CHARACTER SETS

A.1 ASCII CHARACTER SET

EVEN 7-BIT

PARITY OCTAL

BIT CODE CHARACTER REMARKS

0 000 NUL Null, tape feed, CONTROL/SHIFT/P.
1 001 SOH Start of heading; also SOM, start

of message, CONTROL/A.

1 002 STX Start of text; also EOA, end of
address, CONTROL/B.

0 003 ETX End of text; also EOM, end of
message, CONTROL/C.

1 004 EOT End of transmission (END); shuts
off TWX machines, CONTROL/D.

0 005 ENQ Enquiry (ENQRY) ; also WRU,
CONTROL/E.

0 006 ACK Acknowledge; also RU, CONTROL/F.

1 007 BEL Rings the bell. CONTROL/G.

1 010 BS Backspace; also FEO, format
effector. backspaces some

machines, CONTROL/H.

0 011 HT Horizontal tab. CONTROL/I.

0 012 LF Line feed or Line space (new line);
advances paper to next line,

duplicated by CONTROL/J.

1 013 VT Vertical tab (VTAB). CONTROL/K.
0 014 FF Form Feed to top of next page

(PAGE). CONTROL/L.

1 015 CR Carriage return to beginning of
line; duplicated by CONTROL/M.

1 016 SO shift out; changes ribbon color to
red. CONTROL/N.

0 017 SI shift in; changes ribbon color to
black. CONTROL/O.

1 020 DLE Data link escape. CONTROL/P (DCO).
0 021 DC1l Device control 1; turns

transmitter (READER) on, CONTROL/Q

(X ON). ©0 022 DC2 Device control

2; turns punch or auxiliary on.

CONTROL/R (TAPE, AUX ON).

1 023 DC3 Device control 3; turns
transmitter (READER)

off, CONTROL/S (X OFF).

0 024 DC4 Device control 4; turns punch oOr
auxiliary off. CONTROL/T (AUX

OFF).

EVEN

PARITY

BIT

7-BIT

OCTAL

CODE

MACRO-11 CHARACTER SETS

CHARACTER REMARKS

025

026

NAK Negative acknowledge; also ERR,

ERROR. CONTROL/U.

SYN Synchronous file (SYNC).

CONTROL/V.

ETB End of transmission block; also

LEM, logical end of medium.
CONTROL/W.

CAN Cancel (CANCL). CONTROL/X.

EM End of medium. CONTROL/Y.

SUB Substitute. CONTROL/Z.
ESC Escape. CONTROL/SHIFT/K.

FS File separator. CONTROL/SHIFT/L.
GS Group separator. CONTROL/SHIFT/M.
RS Record separator. CONTROL/SHIFT/N.
Us Unit separator. CONTROL/SHIFT/O.
SP Space.

Accent acute or apostrophe.

+

N
~

=
@

0
0
N

|
=~

H
I
Q
P
M
B
U
O
Q
O
W
I
P
®

V
I
V

I

A

o

O
O
L
N
O
U
I
D

W
N
H
O
N

-

EVEN

PARITY

BIT

7-BIT

OCTAL

CODE

MACRO-11 CHARACTER SETS

CHARACTER REMARKS

112

113

114

115

116

117

120

121

122

123

124

125

126

127

130

131

132

134
135

136

137

140

141

142

143

144

145

146

147

150

151

152

153

154

155

156

157

160

161

162

163

164

165

166

167

170

171

172

173

174

175

170

177

* © Appears as # or

** + Appears as

Y
t

S

N

K
X

 E
<
S
C
H
N
O
D
O
W
O
Z
E
R
H
R
G

-~

4

T
N

X
 E
C
S
C

A
N

R
Q
U
O
I
E
R
A
U
R
I
T
A
Q
M
M
D

Q
W
O

T

DEL

SHIFT/K.

SHIFT/L.

SHIFT/M.
*

* %

Accent grave.

This code generated by ALTMODE.

This code generated by PREFIX key

(if present).

DELETE, RUBOUT.

~ on some machines.

_ on some machines.

A-3

",

MACRO-11 CHARACTER SETS

A.2 RADIX-50 CHARACTER SET

Character ASCII Octal Equivalent Radix-50 Equi?alent

space 40 | 0

A-Z 101-132 1-32

$ 44 33

. 56 34

unused 35

0-9 60-71 36-47

The maximum Radix-50 value 1is, thus,

47*%50% +47*50+47=174777

The following table provides a convenient means of translating between

the ASCII character set and its Radix-50 equivalents. For example,

given the ASCII string X2B, the Radix-50 equivalent is (arithmetic 1is

performed in octal):

X=113000

2=002400

B=000002

X2B=115402

SINGLE CHAR.

OR SECOND THIRD

FIRST CHAR. CHARACTER CHARACTER

Space 000000 Space 000000 Space 000000

A 003100 A 000050 A 000001

B 006200 B 000120 B 000002

C 011300 C 000170 C 000003

D 014400 D 000240 D 000004

E 017500 E 000310 E 000005

F 022600 F 000360 F 000006

G 025700 G 000430 G 000007

H 031000 H 000500 H 000010

I 034100 I 000550 I 000011

J 037200 J 000620 J 000012

K 042300 K 000670 K 000013

L 045400 L 000740 L 000014

M 050500 M 001010 M 000015

N 053600 N 001060 N 000016

O 056700 0 001130 0 000017

P 062000 P 001200 P 000020

Q 065100 Q 001250 Q 000021

R 070200 R 001320 R 000022

S 073300 S 001370 S 000023

T 076400 T 001440 T 000024

U 101500 U 001510 U 000025

\Y 104600 ' - 001560 \' 000026

W 107700 W 001630 W 000027
X 113000 X 001700 X 000030

Y 116100 Y 001750 Y 000031

Z 121200 Z 002020 Z 000032
$ 124300 $ 002070 $ 000033

A-4

SINGLE CHAR.

MACRO-11 CHARACTER SETS

OR SECOND THIRD

FIRST CHAR. CHARACTER CHARACTER

. 127400 . 002140 . 000034

Unused 132500 Unused 002210 Unused 000035

0 135600 0 002260 0 000036
1 140700 1 002330 1 000037

2 144000 2 002400 2 000040

3 147100 3 002450 3 000041
4 152200 4 002520 4 000042

5 155300 5 002570 5 000043
6 160400 6 002640 6 000044

7 163500 7 002710 7 000045

8 166600 8 002760 8 000046

9 171700 9 003030 9 000047

I

APPENDIX B

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

B.1 SPECIAL CHARACTERS

Character Function

@
“

..

space

(comma)

N

=
D

2

e

@

W

i
I
V

A

\
vertical tab

(apostraphe)V

- Item terminator or field terminator

Label terminator

Direct assignment operator

Register term indicator

Item terminator or field terminator

Immediate expression indicator

Deferred addressing indicator

Initial register indicator

Terminal register indicator

Operand field separator

Comment field indicator

Arithmetic addition operator or auto

increment indicator

Arithmetic subtraction operator or auto

decrement indicator

Arithmetic multiplication operator

Arithmetic division operator

Logical AND operator

Logical OR operator

Double ASCII character indicator

Single ASCII character indicator or

concatenation indicator

Assembly location counter

Initial argument indicator

Terminal argument indicator

Universal unary operator or argument

indicator
Macro call numeric argument indicator

Source line terminator

B.2 SUMMARY OF ADDRESS MODE SYNTAX

Address mode syntax is expressed 1in the summary below using the

following

register number;

symbols: n is an integer between 0 and 7 representing a
R is a register expression; E 1is an expression;

and ER is either a register expression or an expression in the range 0

to 7.

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Address - Address

Mode Mode

- Format Name Number Meaning

R Register On Register R contains the

operand. :

@R or Register 1n Register R contains the ad-
(ER) deferred dress of the operand.

(ER) + Autoincrement 2n The contents of the register

o specified as (ER) are

incremented after being used

as the address of the operand.

@(ER)+ Autoincrement 3n The register specified as (ER)

| Deferred contains the pointer to the

address of the operand; the

register (ER) 1is incremented

after use.

- (ER) Autodecrement 4n The contents of the register
specified as (ER) are

decremented before being used

as the address of the operand.

@- (ER) Autodecrement 5n The contents of the register
Deferred specified as (ER) are

decremented before being used

as the pointer to the address

of the operand.

| E (ER) Index én The expression E, plus the
contents of the register

specified as (ER), form the

-~ address of the operand.

@E (ER) Index Deferred 7n The expression E, plus the

contents of the register

specified as (ER), vyield a

pointer to the address of the

operand.

#E Immediate 27 The expression E is the
operand itself.

Q#E ~Absolute 37 The expression E is the
address of the operand.

E Relative 67 The address of the operand E,

relative to the instruction,

follows the instruction.

QE Relative 77 ' The address of the operand is
Deferred pointed to by E whose address,

‘relative to the instruction,

follows the instruction.

B.3 ASSEMBLER DIRECTIVES

The MACRO-11 assembler directives
For a detailed descriptiontable.

B-2

are summarized in the following

of each directive, the table

MACRO-11 ASASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

contains references to the appropriate sections in the body of the
manual. % ~ ~ |

3 Section ' |

Form Reference Operation

3.3 A single quote (apostrophe)

3.6 | followed by one ASCII character

~ generates a word which contains the

7-bit ASCII representation of the

character in the low-order byte and

zero in the high-order byte. This

character is also used as a

concatenation indicator in the

expansion of macro arguments (see

Section 7.3.6).

" 6.3.3 | A double gquote followed by two

| | ASCII characters generates a word

which contains the 7-bit ASCII

representation of the two

~characters. The first character is

stored in the low-order byte; the

- second character is stored in the

high-order byte.

"Bn 6.4.1.2 | Temporary radix control; causes
- 5 the wvalue n to be treated as a

binary number.

- "Cexpr 6.4.2.2 Temporary numeric control; causes

| the expression's value to be ones-

complemented.

“Dn | | 6.4.1.2 | Temporary radix control; causes

| the wvalue n to be treated as a

decimal number.

"Fn . 6.4.2.2 Temporary numeric control; causes

the wvalue n to be treated as a

sixteen-bit floating-point number.

“On 6.4.1.2 Temporary radix control; causes

' the value n to be treated as an

octal number.

“"Reccce - 6.3.7 Convert ccc to Radix-50 form.

.ASCII /string/ 6.3.4 Generates a block of data

| containing the ASCII equivalent of

the character string (enclosed in

' delimiting characters), one

character per byte.

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Form

Section

Reference Operation

.ASCIZ /string/

.ASECT

.BLKB exp

.BLKW exp

.BYTE expl,exp2,..

.CSECT [name]

.DSABL arg

.ENABL arg

.END [exp]

.ENDC

.ENDM [name]

.ENDR

.EOT

6.3.5

6.5.3

Generates a block of data

containing the ASCII equivalent of

the character string (enclosed 1in

delimiting characters), one

character per byte, with a =zero
byte terminating the specified

string.

Begin or resume the absolute
program section.

Reserves a block of storage space

whose length in bytes is determined

by the specified expression.

Reserves a block of storage space

whose length in words is determined

by the specified expression.

Generates successive bytes of data;

each byte contains the value of the

corresponding specified expression.

Begin or resume named or unnamed

relocatable program section. This

directive is provided for

compatibility with other PDP-11

assemblers.

Disables the function specified by

the argument.

Enables (invokes) the function

specified by the argument.

Indicates the logical end of the

source program. The optional

argument specifies the transfer

address where program execution is

to begin.

Indicates the end of a conditional

assembly block.

Indicates the end of the current

repeat block, indefinite repeat

block, or macro definition. The

optional name, 1if used, must be

identical to the name specified 1in

the macro definition.

Indicates the end of the current

repeat block. This directive is

provided for compatibility with

other PDP-11 assemblers.

Ignored; indicates end-of-tape

(which is detected automatically by

the hardware). It is included for

compatibility with earlier

assemblers.

B-4

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Section

Form ~ Reference Operation

.ERROR exp;text 7.5 User-invoked error directive;

causes output to the listing file

or the command output device

containing the optional expression

and the statement containing the

directive.

.EVEN 6.5.1 Ensures that the current location

counter contains an even address by

adding 1 if it is odd.

.GLOBL syml,sym2,... 6.9 Defines the symbol(s) specified as

global symbol (s).

.IDENT /string/ 6.1.5 Provides a means of 1labeling the

object module with the program

version number. The version number

is the Radix-50 string appearing

between the paired delimiting

characters.

.IF cond,argl ©.10.1 Begins a conditional assembly block

of source code which is included in

the assembly only if the stated

condition 1is met with respect to

the argument(s) specified.

IFF 6.10.2 Appears only within a conditional

assembly block, indicating the

beginning of a section of code to

be assembled if the condition upon

entering the block tests false.

LIFT ' 6.10.2 | Appears only within a conditional

' assembly block, indicating the

- beginning of a section of code to

be assembled if the condition upon

entering the block tests true.

“ IFTF 06.10.2 Appears only within a conditional

assembly block, indicating the

beginning of a section of <code to

be assembled unconditionally.

.IIF cond,arg, ' ©6.10.3 Acts as a 1l-line conditional

statement assembly block where the condition

is tested for the argument

specified. The statement is

assembled only 1f the condition

tests true.

B-5

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Form

Section

Reference Operation

.IRP sym,

<argl,arg2,...>

.IRPC sym,<string>

.LIMIT

.LIST [arg]

.MACRO name,argl,

arg2,...

.MEXIT

.NARG symbol

.NCHR symbol,<string>

NLIST [arg]

6.1.1

Indicates the beginning of an

indefinite repeat block in which

the symbol specified 1is replaced

with successive elements of the

real argument list enclosed within

angle brackets.

Indicates the beginning of an

indefinite repeat block in which

the specified symbol takes on the

value of successive characters,

optionally enclosed within angle

brackets. ~

Reserves two words into which the
Task Builder inserts the low and

high addresses of the task image.

Without an argument, the LLIST

directive increments the 1listing

level count by 1. With an

argument, this directive does not

alter the listing level count, but

formats the assembly listing

according to the argument

specified.

Indicates the start of a macro

definition having the specified

name and the following dummy

arguments. ~ |

Specifies the symbolic names of the

user or system macro definitions

required in the assembly of the

current user program, but which are

not defined within the program.

Causes an exit from the current
macro expansion or indefinite

repeat block.

Can appear only within a macro

definition; equates the specified

symbol to the number of arguments

in the macro call currently being

expanded.

Can appear anywhere 1in a source

program; equates the symbol

specified to the number = of

characters in the specified string.

Without an argument, the .NLIST

directive decrements the listing

level count by 1. With an

argument, this directive suppresses

that portion of the listing

specified by the argument.

B-6

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Section

Form Reference Operation

.NTYPE symbol,aexp 7.4.3 Can appear only within a macro

definition; equates the symbol to

the 6-bit addressing mode of the

specified address expression.

.ODD 6.5.2 Ensures that the current 1location

counter contains an odd address by

adding 1 if it is even.

. PAGE 6.1.6 Causes the assembly listing to skip

to the top of the next page, and to

increment the page count.

.PRINT exp;text 7.5 User-invoked message directive;

causes output to the listing file

or the command output device

containing the optional expression

and the statement containing the

directive.

.PSECT name,attl,... 6.8.1 Begin or resume a named or unnamed

attn program section having the

specified attributes.

.RADIX n 6.4.1.1 Alters the current program radix to

n, where n is 2, 8, or 10.

.RAD50 /string/ ' 6.3.6 Generates a block of data

containing the Radix-50 equivalent

of the character string enclosed

within delimiting characters.

.REPT exp | 7.7 Begins a repeat block; causes the

section o0of code up to the next

.ENDM or L.ENDR directive to be

repeated the number of times

specified as exp.

.SBTTL string 6.1.4 Causes the specified string to be

printed as part of the assembly

listing page header. The string

component of each .SBTTL directive

is collected 1into a table of

contents at the beginning of the

assembly listing.

.TITLE string 6.1.3 Assigns the first six Radix-50

characters in the string as an

object module name and causes the

string to appear on each page of

the assembly listing.

.WORD expl,exp2,.. 6.3.2 Generates successive words of data;
i each word contains the value of the

corresponding specified expression.

APPENDIX C

PERMANENT SYMBOL TABLE (PST)

The permanent symbol table (PST) contains those symbols which are

automatically recognized by MACRO-11l. These symbols consist of both

op codes and assembler directives. The op codes (i.e., the

instruction set) are 1listed first, followed by the directives which

cause specific actions during assembly.

For a detailed description of the instruction set, see the appropriate

PDP-11 Processor Handbook.

C.l1 OP CODES

OCTAL

MNEMONIC VALUE FUNCTIONAL NAME

ADC 005500 Add Carry

ADCB 105500 Add Carry (Byte)
ADD 060000 Add Source To Destination

ASH 072000 Shift Arithmetically

ASHC 073000 Arithmetic Shift Combined

ASL 006300 Arithmetic Shift Left

ASLB 106300 Arithmetic Shift Left (Byte)

ASR 006200 Arithmetic Shift Right

ASRB 106200 Arithmetic Shift Right (Byte)

BCC 103000 Branch If Carry Is Clear

BCS 103400 Branch If Carry Is Set

BEQ 001400 Branch If Equal

BGE 002000 Branch If Greater Than Or Equal

BGT 003000 Branch If Greater Than

BHI 101000 Branch If Higher

BHIS 103000 Branch If Higher Or Same

BIC 040000 Bit Clear

BICB 140000 Bit Clear (Byte)

BIS 050000 Bit Set

BISB 150000 Bit Set (Byte)

BIT 030000 Bit Test

BITB 130000 Bit Test (Byte) ~

BLE 003400 Branch If Less Than Or Equal

BLO 103400 Branch If Lower

BLOS 101400 Branch If Lower Or Same

BLT 002400 Branch If Less Than

PERMANENT SYMBOL TABLE (PST)

OCTAL

MNEMONIC VALUE FUNCTIONAL NAME

BMI 100400 Branch If Minus

BNE 001000 Branch If Not Equal

BPL 100000 Branch If Plus

BPT 000003 Breakpoint Trap

BR 000400 Branch Unconditional

BVC 102000 Branch If Overflow Is Clear

BVS 102400 Branch If Overflow Is Set

CALL 004700 Jump To Subroutine (JSR PC,xxXx)

CCC 000257 Clear All Condition Codes

CLC 000241 Clear C Condition Code Bit

CLN 000250 Clear N Condition Code Bit

CLR 005000 Clear Destination

CLRB 105000 Clear Destination (Byte)

CLV 000242 Clear V Condition Code Bit

CL%Z 000244 Clear 7Z Condition Code Bit

CMP 020000 Compare Source To

Destination

CMPB 120000 Compare Source To

Destination (Byte)

COM 005100 Complement Destination

COMB 105100 Complement Destination
(Byte)

DEC 005300 Decrement Destination

DECB 105300 Decrement Destination
(Byte)

DIV 071000 Divide

EMT 104000 Emulator Trap

FADD 075000 Floating Add

FDIV 075030 Floating Divide

FMUL 075020 Floating Multiply

FSUB 075010 - Floating Subtract

HALT 000000 Halt

INC 005200 Increment Destination

INCB 105200 Increment Destination

(Byte)
10T 000004 Input/Output Trap

JMP 000100 Jump »

JSR 004000 Jump To Subroutine

MARK 006400 Mark

MFPI 006500 Move From Previous

Instruction Space

MFPS 106700 Move from PS

~ (LSI-11)

MOV 010000 Move Source To Destination

MOVB 110000 Move Source To Destination

(Byte)
MTPI 006600 Move To Previous

Instruction Space

MTPS 106400 Move to PS '

(LSI-11)

‘MUL 070000 Multiply

NEG 005400 Negate Destination

NEGB 105400 Negate Destination (Byte)

NOP 000240 No Operation

RESET 000005 Reset External Bus

RETURN 000207 Return From Subroutine (RTS PC)
ROL 006100 Rotate Left

ROLB 106100 Rotate Left (Byte)

ROR 006000 Rotate Right

PERMANENT SYMBOL TABLE (PST)

MNEMONIC

OCTAL

VALUE FUNCTIONAL NAME

RORB

RTI

RTS

RTT

SBC

SBCB

SCC

SEC

SEN

SEV

SEZ

SOB

SUB

SWAB

SXT

TRAP

TST

TSTB

WAIT

XOR

106000

000002

000200

000006

005600

105600

000277

000261

000270

000262

000264

077000

160000

000300

006700

104400

005700

105700

000001

074000

Rotate Right (Byte)

Return From Interrupt

(Permits a trace
trap)

Return From Subroutine

Return From Interrupt

(inhibits trace trap)

Subtract Carry

Subtract Carry (Byte)
Set All Condition Code Bits

Set C Condition Code Bit

Set N Condition Code Bit

SetV Condition Code Bit

Set Z Condition Code Bit

Subtract One And Branch

Subtract Source From

Destination

Swap Bytes

Sign Extend

Trap

Test Destination ‘

Test Destination (Byte)
Wait For Interrupt

Exclusive OR

OP CODES FLOATING POINT PROCESSOR ONLY

MNEMONIC

OCTAL

VALUE FUNCTIONAL NAME

ABSD

ABSF

ADDD

ADDF

CFCC

CLRD

CLRF

CMPD

CMPF

DIVD

DIVF

LDCDF

LDCFD

LDCID

LDCIF

LDCLD

LDCLF

LDD

LDEXP

170600

170600

172000

172000

170000

170400

170400

173400

173400

174400

174400

177400

177400

177000

177000

177000

177000

172400

176400

Make Absolute Double

Make Absolute Floating

Add Double

Add Floating

Copy Floating Condition

Codes

Clear Double

Clear Floating

Compare Double

Compare Floating

Divide Double

Divide Floating

Load And Convert From

Double To Floating
Load And Convert From

Floating To Double

Load And Convert Integer To

Double

Load And Convert Integer To

Fleoating

Load And Convert Long

integer To Double

Load And Convert Long

Integer To Floating

Load Double

Load Exponent

Cc-3

PERMANENT SYMBOL TABLE (PST)

OCTAL

MNEMONIC VALUE FUNCTIONAL NAME

LDF 172400 Load Floating

LDFPS 170100 Load FPPs Program Status

MFPD 106500 Move From Previous Data

Space

MODD 171400 Multiply And Integerize

Double

MODF 171400 Multiply And Integerize

Floating

MTPD 106600 Move To Previous Data Space

MULD 171000 Multiply Double

MULF 171000 Multiply Floating

NEGD 170700 Negate Double

NEGF 170700 Negate Floating

SETD 170011 Set Double Mode

SETF 170001 Set Floating Mode

SETI 170002 Set Integer Mode

SETL 170012 Set Long Integer Mode

SPL 000230 Set Priority Level

STCDF 176000 Store And Convert From

Double To Floating

STCDI 175400 Store And Convert From

Double To Integer

STCDL 175400 Store And Convert From

Double To Long Integer

STCFD 176000 Store And Convert From

Floating To Double

STCFI 175400 Store And Convert From

Floating To Integer

STCFL 175400 Store And Convert From

Floating To Long Integer

STD 174000 Store Double

STEXP 175000 Store Exponent

STF 174000 Store Floating

STFPS 170200 Store FPPs Program Status

STST 170300 Store FPPs Status

SUBD 173000 Subtract Double

SUBF 173000 Subtract Floating

TSTD 170500 Test Double

TSTF 170500 Test Floating

C.2 MACRO-11 DIRECTIVES

DIRECTIVE FUNCTIONAL SIGNIFICANCE

.ASCII Translates character string to ASCII equivalents.

.ASCIZ Translates character string to ASCII equivalents;

inserts zero byte as last character.

.ASECT Begins absolute program section (provided for

compatibility with other PDP-11 assembliers).

. BLKB Reserves byte block in accordance with wvalue of

specified argument.

. BLKW Reserves word block in accordance with value of

specified argument. ,

.BYTE Generates successive byte data in accordance with

specified arguments.

.CSECT Begins relocatable program section (provided for

compatibility with other PDP-11 assemblers).

C-4

PERMANENT SYMBOL TABLE (PST)

.IFTF

LIIF

.IRP

. IRPC

.LIMIT

.LIST

- MCALL

.MEXIT

.NARG

.NCHR

.NLIST

.NTYPE

.ODD

. PAGE

« PRINT

. PSECT

.RADIX

.RADS50

+.REPT

DIRECTIVE FUNCTIONAL SIGNIFICANCE

. DSABL Disables specified function.

.ENABL Enables specified function.

.END Defines logical end of source program.

.ENDC Defines end of conditional assembly block.

. ENDM Defines end of macro definition, repeat block, or

indefinite repeat block.

. ENDR Defines end of current repeat block (provided for

| compatibility with other PDP-1l1l assemblers).

.EOT Define End of Tape condition (ignored).

. ERROR Outputs diagnostic message to 1listing file or

command output device.

Word—aligns the current location counter.

Declares global attribute for specified symk .
Labels object module with specified program

version number.

Begins conditional assembly block.

Begins subconditional assembly block (1f

conditional assembly block test is false).

Begins subconditional assembly block (1f

conditional assembly block test is true).

Begins subconditional assembly block (whether
conditional assembly block test is true or false).

Assembles immediate conditional assembly statement

(if specified condition is satisfied).
Begins indefinite repeat block; replaces

specified symbol with specified successive real

arguments.

Begins indefinite repeat block:; replaces

specified symbol with value of successive

characters in specified string.

Reserves two words of storage for high and low

addresses of task image.

Controls 1listing 1level <count and format of

assembly listing. .MACRO Denotes start of macro

definition. |

Identifies required macro definition(s) for

assembly.

Exit from current macro definition or indefinite

repeat block.

Equates specified symbol to the number of

arguments in the macro expansion.

Equates specified symbol to the number of

characters in the specified character string.

Controls 1listing 1level count and suppresses

specified portions of the assembly listing.

Equates specified symbols to the addressing mode

of the specified argument.

Byte—aligns the current location counter.

Advances form to top of next page.

Prints specified message on command output device.

Begins specified program section having specified

attributes.

Changes current program radix to specified radix.

Generates data block having Radix-50 equivalents

of specified character string.

Begins repeat block and replicates it according to

the value of the specified expression.

C-5

PERMANENT SYMBOL TABLE (PST)

DIRECTIVE FUNCTIONAL SIGNIFICANCE

.SBTTL Prints specified subtitle text as the second line

of the assembly listing page header.

.TITLE Prints specified title text as object module name

in the first 1line of the assembly listing page
header.

. WORD Generates successive word data in accordance with

specified arguments.

The MACRO-11l directives listed above are summarized in greater detail
in Appendix B.

APPENDIX D

DIAGNOSTIC ERROR MESSAGE SUMMARY

D.1 MACRO-11] ERROR CODES

A diagnostic error code is printed as the first character in a source

line which contains an error detected by MACRO-11l. This error code

identifies a syntactical problem or some other type of error condition

detected during the processing of a source line. An example of such a

source line is shown below:

Q 26 000236 010102 MOV R1,R2,A

The extraneous argument A in the MOV instruction above causes the line

to be flagged with a Q (syntax) error.

Error Code Meaning

A Assembly error. Because many different types of

error conditions produce this diagnostic message,

all the possible directives which may yield a

general assembly error have been categorized below

to reflect specific classes of error conditions:

" CATEGORY 1l: ILLEGAL ARGUMENT SPECIFIED.

.RADIX -- A value other than 2, 8, or 10 is

specified as a new radix.

.LIST/.NLIST -- Other than a legally defined

argument (see Table 6-1) is specified with the

directive.

.ENABL/.DSABL -- Other than a 1legally defined

argument (see Table 6-2) is specified with the

directive.

.PSECT -- Other than a legally-defined argument

(see Table 6-3) is specified with the

directive.

.IF/.IIF -- Other than a legally defined

conditional test (see Table 6-5) or an illegal

argument expression value is specified with the

directive.

.MACRO -- An illegal or duplicate symbol found

in dummy argument list.

DIAGNOSTIC ERROR MESSAGE SUMMARY

Error Code Meaning

A

(Cont'd)

CATEGORY 2: NULL ARGUMENT OR SYMBOL SPECIFIED.

-TITLE -- Program name is not specified in the
directive, or first non-blank character
following the directive 1is a non-Radix-50
character.

-IRP/.IRPC -- No dummy argument is specified in
the directive.

.NARG/.NCHAR/.NTYPE -- No symbol is specified
in the directive.

IF/.IIF -- No conditional argument is
specified in the directive.

CATEGORY 3: UNMATCHED DELIMITER/ILLEGAL ARGUMENT
CONSTRUCTION.

-ASCII/.ASCIZ/.RAD50/.IDENT -- Character string
or argument string delimiters do not match, or
an illegal character is used as a delimiter, or
an illegal argument construction is used in the
directive.

.NCHAR -- Character string delimiters do not
match, or an 1illegal character is used as a
delimiter in the directive.

CATEGORY 4: GENERAL ADDRESSING ERRORS.

This type of error results from one of several
possible conditions:

1. Permissible range of a branch instruction,
i.e., from -128(10) to +127(10) words, has
been exceeded.

2. A statement makes invalid use of the
current location counter, e.g., a
".=expression" statement attempts to force
the current location counter to cross
program section (.PSECT) boundaries.

3. A statement contains an invalid address
expression. In cases where an absolute
address expression is required, specifying
a global symbol, a relocatable value, or a
complex relocatable value (see Section 3.9)
results in an invalid address expression.
Similarly, in cases where a relocatable
address expression 1is required, either a
relocatable or absolute value is
permissible, but a global symbol or a
complex relocatable value in the statement
likewise results in an invalid address
expression. Specific cases of this type of
error are those which follow:

DIAGNOSTIC ERROR MESSAGE SUMMARY

Error Code | Meaning

.BLKB/.BLKW/.REPT -- Other than an absolute

value or an expression which reduces to an

absolute value has been specified with the

directive.

4. Multiple expressions are not separated by a

comma. This condition causes the next

symbol to be evaluated as part of the

current expression.

» m CATEGORY 5: ILLEGAL FORWARD REFERENCE.

This type of error results from either of two

possible conditions:

l1. A global assignment statement

(symbol==expression) contains a forward

reference to another symbol.

2. An expression defining the value of the

current location counter contains a forward

reference.

B Bounding error. Instructions or word data are

being assembled at an odd address. The location

counter is incremented by 1.

D Doubly-defined symbol referenced. Reference was

made to a symbol which is defined more than once.

E End directive not found. When the end-of-file 1is

reached during source input and the .END directive

has not yet been encountered, MACRO-1l1l generates

this error code, ends assembly pass 1, and

proceeds with assembly pass 2.

I Illegal character detected. Illegal characters

which are also non-printable are replaced by a

question mark (?) on the listing. The character

is then ignored.

L Input line is greater than 132(10) characters 1in

length. Currently, this error condition is caused

only through excessive substitution of real

arguments for dummy arguments during the expansion

of a macro.

> M Multiple definition of a 1label. A label was

encountered which was equivalent (in the first six

characters) to a label previously encountered.

. N A number contains a digit that 1s not in the
current program radix. The number is evaluated as

a decimal value.

0 Opcode error. Directive out of context.

Permissible nesting 1level depth for conditional

assemblies has been exceeded. Attempt to expand a

macro which was unidentified after .MCALL search.

'DIAGNOSTIC ERROR MESSAGE SUMMARY

Error Code Meaning

P Phase error. A label's definition of value varies

from one assembly pass to another or a multiple

definition of a local symbol has occurred within a

local symbol block. Also, when in a local symbol
block defined by the .ENABL LSB directive, an

attempt has occurred to define a local symbol in a

program section other than that which was 1in

effect when the block was entered. A P error code

also appears if an .ERROR directive is assembled.

Q Questionable syntax. Arguments are missing, too

many arguments are specified, or the instruction

scan was not completed.

R Register-type error. An invalid use of or

reference to a register has been made, or an

attempt has been made to redefine a standard

register symbol without first issuing the .DSABL

REG directive.

T Truncation error. A number generated more than 16

bits 1in a word, or an expression generated more

than 8 significant bits during the wuse of the

.BYTE directive or trap (EMT or TRAP) instruction.

U Undefined symbol. An undefined symbol was

encountered dur ing the evaluation of an

expression; such an undefined symbol is assigned

a value of zero. Other possible conditions which

result in this error code include unsatisfied

macro names in the list of .MCALL arguments and a

direct assigment (symbol=expression) statement

which contains a forward reference to a symbol

whose definition also contains a forward

reference; also, a local symbol may have been

referenced that does not exist in the current

local symbol block.

Z Instruction error. The instruction so flagged 1is

not compatible among all members of the PDP-11

family. See Section 5.3 for details.

APPENDIX E

SAMPLE CODING STANDARD

E.1 INTRODUCTION

Standards eliminate wvariability and the requirement to make a
decision. Much of the difficulty in establishing standards stems from
the notion that they should be optimal. However, to be successfully
applied, standards must represent an agreement on certain aspects of
the programming process.

This Appendix contains DIGITAL's PDP-11 Program Coding Standard. It
is suggested that this be used as a model to assist users in preparing
standards for their own installations.

E.2 LINE FORMA’

All source lines shall consist of from one to a maximum of exghty

characters {(not including the audit trail added by SLIPR (SLP in
RSX-11M) editor. This program is described in the applicable RSX-11M

or RSX-11D Utilities Manual or in the IAS Editing Utilities Reference

Manual (see Section 0.3 in the Preface).

Assembly language code lines shall have the following format:

1. Label Field - if present, the label shall start at tab stop 0

2. Operation field - the

1 (column 9).

operation field shall start at tab stop

Operand field - the operand field shall start at tab stop 2

(column 17).

4. Comments field - the comments field shall start at tab stop 4
(column 33) and may continue to column 80.

Comment lines that are included in the code body shall be delimited by
a line <c¢ontaining only a leading semicolon. The comment itself
contains a 1@@&1»@ semac@lnn and starts in column 3. Indents shall be
fi. étf%h - '

If the operand field extends beyond tab stop 4 (column 33) mp

leave a space and start the comment. Comments which apply to an

instruction but reguire continuation should always line up with the

character position which started the comment.

SAMPLE CODING STANDARD

E.3 COMMENTS

Comment all coding to convey the global role of an instruction, rather
than simply a literal translation of the instruction into English. 1In
general this will consist of a comment per 1line of code. If a
particularly difficult, obscure, or elegant instruction sequence is
used, a paragraphof comments must immediately precede that section of
code.

Preface text, which describes formats, algorithms, program-local
variables, etc., will be delimited by the character sequence ;+ at the
start of the text and ;- at the end; these delimiters facilitate
automated extraction of narrative commentary. The comment itself will
start in column 3.

For example:

+

THE INVERT ROUTINE ACCEPTS

A LIST OF RANDOM NUMBERS AND

APPLIES THE KOLMOGOROV ALGORITHM

TO ALPHABETIZE THEM.

h

N
E

W
G

W
E

N

w
g

E.4 NAMING STANDARDS

E.4.1 Register Standards

E.4.1.1 General Purpose Registers - Only the following names are
permitted as register names; and may not be used for any other
purpose:

RU=%0 ;REG 0

R1=%1 ;REG 1

R2=%2 ; REG 2

R3=%3 ;REG 3

R4=%4 ;REG 4

R5=%5 sREG 5

SP=%0 ;STACK POINTER (REG 6)

PC=%7 ; PROGRAM COUNTER (REG 7)

E.4.1.2 Hardware Registers - These registers must be named
identically to the hardware definition. For example, PS and SWR.

E.4.1.3 Device Registers - These are symbolically named identically
to the hardware notation. For example, the control status register
for the RK disk is RKCS. Only this symbolic name may be used to refer
to this register.

SAMPLE CODING STANDARD

E.4.2 Processor Priority

Testing or altering the processor priority is done using the symbols

which are equated to their corresponding priority bit pattern.

E.4.3" Other Symbols

- Frequently-used bit patterns such as CR and LF will be made
conventional symbolics on an as-needed basis.

E.4.4 Using the Standard Symbolics

The register standards will be defined within the assembler. All

other standard symbols will appear in a file and will be linked prior

to program execution.

E.4.5 Symbols*

E.4.5.1 Global Symbols - Global symbols should be easily recognized

by their format. The following standards apply and completely define

symbol standards for PDP-11 Medium/Large software products.

symbol pos-1 pos-2 pos-3 pos-4 pos-5 pos-6 length

non-glbl-sym letter | a-num/| a-num/| a-num/| a-num/| a-num/| >=1

null null null null null

glbl-sym S/. a-num/| a-num/| a-num/| a-num/| a-num/| >=1

null null null null null

glbl-offset letter| $/. a-num | a-num/| a-num/| a-num/| >=3

null null null

glbl-bit-ptrn letter| a-num S/. a-num/| a-num/| a-num/| >=4

null null

. local-sym number | S >=2
-

*

¥ * Symbols that are branch targets are also called labels, but we will

always use the term "symbol".

** Number is in the range 0<number<65535.

*** The use of $ or . for global names is reserved for DEC-supplied

software.

SAMPLE CODING STANDARD

where:

a—-num | is an alphanumeric character.

non-glbl-=sym are non—-global symbols.

local-sym local symbols, as defined by

MACRO-11.

glbl-sym are global symbols (addresses).

glbl-offset are global offsets (absolute

quantities).

glbl=-bit-ptrn are global bit patterns.

A program never contains a .GLOBL statement without showing cause.

E.4.5.2 Symbol Examples

Non-Global Symbols

AlB

ZXCJ1

INSRT

Global Address Symbols

SJIM

. VECTR

S$SEC

Global Absolute Offset Symbols

ASJIM

A$xT

A . ENT

Global Bit Pattern Symbols

A1$20

B3.6

JI.M

Local Symbols

378

2718

6%

E.4.5.3 Program—Local Symbols - Self-relative address arithmetic

(.+n) 1s absolutely forbidden in branch instructions; its use in

other contexts must be avoided if at all possible and practical.

E-4

SAMPLE CODING STANDARD

Target symbols for branches that exist solely for positional reference
will use local symbols of the form

<num>$:

Use of non-local symbols is restricted, within reason, to those cases
where reference to the code occurs external to the code.
Local-symbols are formatted such that the numbers proceed sequentially

down the page and from page to page.

E.4.5.4 Macro Names - The last two characters (with the last

character possibly being null) have special significance. The next to

last character is a $, the last, a character specifying the mode of
the macro.

For example, in the three macro forms in-line, stack, and p-section,
the 1in-line form has no suffix, the stack has an <S>, and the

p-section a <C>. Thus the RSX Queue I/0 macro can be written as any

of

QIOS

QIOSS

QIOSC

depending on the form required. These are not reserved letters. Only

the form of the name is standard. '

E.5 PROGRAM MODULES

E.5.1 General Comments on Programs

In our software, a program provides a single distinct function. No
limits exist on size, but the single function limitation should make

modules larger than 1K a rarity. Since any software may eventually

exploit the wvirtual memory capacity of the 11/40 and 11/45, programs
should make every attempt to maintain a dense reference locus (do not

promiscuously branch over page boundaries or over a large absolute

address distance).

All code is read-only. Code and data areas are distinct and each

contains explanatory text. Read-only data should be segregated from

read-write data.

E.5.2 The Module Preface

Each program module in the system shall exist as a separate file. The

file name will reflect the name of the module and the file type shall

be of the form 'NNN'. The 'NNN' signifies the edit number or the

version number. The version number shall be changed only when a new

base level is created. Furthermore, if no corrections are made to a

file from one base level to the next, the version number will not be

changed. The availability of File Control Services and File Control

Primitives will greatly simplify version number maintenance. Program

modules adhere to a strict format. This format adds to the

readability and understandability of the module. The following

sections are included in each module:

E=>5

SAMPLE CODING STANDARD

For the Code Section:

lfl

10.

- 11.

A .TITLE statement that specifies the name of the module. If

a module contains more than one routine, subtitles may be

used.

An .IDENT statement specifying the version number. The

PDP-11 version number standard appears in section E.10.

A .PSECT statement that defines the program section in which

the module resides.

A copyright statement, and the disclaimer.

COPYRIGHT (C) 1976

DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE

ONLY ON A SINGLE COMPUTER SYSTEM AND MAY BE COPIED

ONLY WITH THE INCLUSION OF THE ABOVE COPYRIGHT

NOTICE. THIS SOFTWARE, OR ANY OTHER COPIES THEREOF,

MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO

ANY OTHER PERSON EXCEPT FOR USE ON SUCH SYSTEM AND TO

ONE WHO AGREES TO THESE LICENSE TERMS. TITLE TO AND

OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES REMAIN

IN DEC.

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE

WITHOUT NOTICE AND SHOULD NOT BE CONSTRUED AS A

COMMITMENT BY DIGITAL EQUIPMENT CORPORATION.

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR

RELIABLILITY OF ITS SOFTWARE ON EQUIPMENT WHICH IS

NOT SUPPLIED BY DEC.

The version number of the file.

The PDP-11 version number standard is described in section

E.10.

The name of the principal author and the date on which the

module was first created.

The name of each modifying author and the date of

modification. Names and modification dates appear one per

line and in chronological order.

A brief statement of the function of the module.

Note: Items 1-8 should appear on the same page.

A list of the definitions of all equated local symbols used

in the module. These definitions appear one per line and in

alphabetical order.

All local macro definitions, preferably in alphabetical order

by name. |

All local data. The data should indicate

a. Description of each element (type, size, etc.)

b. Organization (functional, alpha, adjacent, etc.)

c. Adjacency requirements

SAMPLE CODING STANDARD

12. A more detailed definition of the function of the module.

13. A list of the inputs expected by the module. This includes
the calling sequence if non-standard, condition code

settings, and global data settings.

14, A list of the outputs produced as a result of entering this

module. These 1include delivered results, condition code

M | settings, but not side effects. (A1l these outputs are
visible to the caller.)

15. A list of all effects (including side effects) produced as a

C result of entering this module. Effects include alterations

in the state of the system not explicitly expected 1in the

calling sequence, or those not visible to the caller.

16. The module code.

E.5.3 Formatting the Module Preface

Rules:

l. The first eight items appear on the same page and will not

have explicit headings. Item 3 may be omitted if the blank

p-section is being used.

2. Headings start at the left margin¥; descriptive text 1is

indented 1 tab position.

3. Items 7-14 will have headings which start at the left margin,

preceded and followed by lines containing only a leading <;>.

Items which do not apply may be omitted.

A template for the module preface follows.

FILE-EXAMPL.SO1

.TITLE EXAMPLE

.IDENT /01/

.PSECT KERNEL

COPYRIGHT (C) 1976

DIGITAL EQUIPMENT COPORATION, MAYNARD, MASS.

e

N
E
F

W

W

W

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A

SINGLE COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE

INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR

ANY OTHER COPIES THEREOF, MAY NOT BE PROVIDED OR OTHERWISE

MADE AVAILABLE TO ANY OTHER PERSON EXCEPT FOR USE ON SUCH

SYSTEM AND TO ONE WHO AGREES TO THESE LICENSE TERMS. TITLE

TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES REMAIN

IN DEC. |

<
5

U
l

W
M
E

N

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT

NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL

EQUIPMENT CORPORATION.

s

T
S

W
e

s

%
P

W

W
E

s

g

*The left margin consists of a <;> a <space> then the heading, so the

text of the heading begins in column 3.

E-7

SAMPLE CODING STANDARD

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF

ITS SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.

VERSION 01

JOE PASCUSNIK 1-JAN-72

MODIFIED BY:

RICHARD DOE 21-JAN-73

SPENCER THOMAS 12-JUN-73

Brief statement of the module's function

EQUATED SYMBOLS

W
E

W
O

W
E

W
E

W
S

W
E

W
O

W
S

W
E

%
N
S

W
E

W
E

W
S

W
S

W
E

W
G

W

List equated symbols

LOCAL MACROS

e

W

W

Local Macros

LOCAL DATA

W
y

w
W
E

‘
g

Local data

+

Module function-details

INPUTS:

Description of inputs

OUTPUTS:

Description of outputs

EFFECTS:

Description of effects

W
E

W
M
E

W
E

W

W

W
E

W
F

W
E

W
S

N
S

%
S

W
E

w
g

W
y

W

Begin Module Code

E.5.4 Modularity

No other characteristic has more impact on the wultimate engineering

success of a system than does modularity. Modularity for PDP-11

Software Engineering's products consists of the application of the

single=function philosophy described in section E.5.1, and adherence

to a set of calling and return conventions.

E.5.4.1 Calling Conventions (Inter-Module) - The following calling

conventions must be observed. | |

E-8

SAMPLE CODING STANDARD

Transfer of Control

Macros will exist for call and return. The actual transfer will
be wvia a JSR PC instruction. For register save routines, a
JSR Rn,SAVE will be permitted.

The CALL macro is:

CALL subr-name

The RETURN macro is:

RETURN

Register Conventions

On entry, a subroutine minimally saves all registers it intends

to alter except result registers. On exit it restores these

registers. (State preservation is assumed across calls.)

Argument Passing

Any registers may be used, but their use should follow a coherent

pattern. For example, if passing three arguments, pass them in
RU, Rl and R2 rather than RO, R2, R5. Saving and restoring

occurs 1in one place.

E.5.4.2 Exiting - All subroutine exits occur through a single RETURN

macro.

E.5.4.3 Intra-Module Calling Conventions - Designer optional, but

consistency favors a calling sequence identical to that of the
inter-module sequence.

E.5.4.4 Success/Failure Indication - The C bit will be wused to

return the success/failure indicator, where success equals 0, and
failure equals 1. The argument registers can be used to return values
or additional success/failure data.

E.5.4.5 Module Checking Routines - Modules are responsible for

verifying the wvalidity of arguments passed to them. The design of a
module's calling sequence should aim at minimizing the validity checks

by minimizing invalid combinations. Programmers may add test code to

perform additional checks during checkout. All code should aim at

discovering an error as close (in terms of instruction executions) to

its occurrence as possible.

E.6 FORMATTING STANDARDS

E.6.1 Program Flow

Programs will be organized on the listing such that they flow down the

page, even at the cost of an extra branch or jump.

E-9

For example:

SAMPLE CODING STANDARD

PROCESS

BBB

v
AAA

COMMON

shall appear on the listing as:

AAA:

BBB:

CMN:

TST

BNE

» ® % »

LI N B

. » &

" % B »

BR

Rather than:

AAA:

CMN:

BBB:

TST

BNE

* " & @

. % & »

® & & »

. n " »

. & # »

. % % »

" B & »

. & & »

. % » »

.- 5 & &

L

BR

E.6.2 Common Exits

A common exit appears as the last code sequence on the listing.

the flow chart:

will

PR1l:

PR2 L
2

PR3:

PR4:

EXIT:

And not

PR1:

EXIT:

PR2:

PR3:

PR4:

SAMPLE CODING STANDARD

. B ¥ @

* % & %

LN

BR

* & » @

. ® » »

& » % »

BR

» ® &

LI

* = » »

BR

LN B

. % & »

. % ® &

L

L I

® % » »

> & »

* % » »

. ® » »

* » » B

* % w ®

LI

BR

* % » @

*. " % »

*® ® " »

BR

LR

- % % »

L S

BR

M'

L

LI

L I

EXIT

5 % »

LA L S

LRI I

EXIT

» O & @

* 5 ® 9

L

EXIT

. & & »

S & & %

. * B »

» ® % W

. % @

5 & » W

* & = &

* % & »

-ow »

* 5 & @

L B

L

EXIT

* " " »

., 8 8 B

- " 8 »

EXIT

T

* "»

"- " » »

EXIT

J
EXIT

appear on the listing as:

E-11

w3

Thus

SAMPLE CODING STANDARD

E.6.3 Code with Interrupts Inhibited

Code that is executed with interrupts inhibited, shall be flagged by a
three semicolon (;;;) comment delimiter. For example:

. .ERTZ: ; ENABLE BY RETURNING

;BY SYSTEM SUBROUTINES,

BIS #PR7,PS :3; INHIBIT INTERRUPTS

BIT #PR7,+2 (SP) i3 C

BEQ 10$ HE A ®
RTT 38 M

;i M
10$: cene “ oo HHH E

ceon “ees HHH N

.o e oo HHH T

753 S& % & & ® & 5 @

E.7 PROGRAM SOURCE FILES

Source creation and maintenance shall be done in base levels. A base

level 1is defined as a point at which the program source files have

been frozen. From the freeze point to the next base level,

corrections will not be made directly to the base level itself.

Rather a file of corrections shall be accumulated for each file in the

base level. Whenever an updated source file 1is desired, the

correction file will be applied to the base file.

The accumulation of corrections shall proceed until a logical breaking

point has occurred (i.e. a milestone or significant implementation

point has been reached). At this time all accumulated corrections

shall be applied to the previous base level to create a new base

level. Correction files will then be started for the new base level.

E.8 FORBIDDEN INSTRUCTION USAGE

1. The use of instructions or index words as literals of the
previous instruction. For example:

MOV @PC,Register

BIC Src,Dst

uses the bit clear instruction as a literal. This may seem

to be a very "neat" way to save a word but what about

maintaining a program using this trick? To compound the

problem, it will not execute properly if I/D space is enabled

on the 11/45. 1In this case @PC is a D bank reference.

2. The use of the MOV instruction instead of a JMP instruction
to transfer program control to another location. For

example:

MOV #ALPHA,PC

transfers control to location ALPHA. Besides taking 1longer

to execute (2.3 microseconds for MOV vs. 1.2 for JMP) the

use of MOV instead of JMP makes it nearly impossible to pick

up someone else's program and tell where transfers of control

E-12

SAMPLE CODING STANDARD

take place. What if one would like to get a Jjump trace of

the execution of a program (a move trace is unheard of)? As

a more general issue, perhaps even other operations such as

ADD and SUB from PC should be discouraged. Possibly one or
two words can be saved by using these operations but how many

such occurrences are there?

3. The seemingly "neat" use of all single word instructions

where one double-word instruction could be used and would

execute faster and would not consume additional memory.

Consider the following instruction sequence:

CMP -(R1), (=-R1)

CMP -(R1),-(R1)

The intent of this instruction sequence is to subtract 8 from

register Rl (not to set condition codes). This can be

accomplished in approximately 1/3 the time via a SUB

instruction (9.4 vs. 3.8 microseconds) at no additional cost

in memory space. Another question here is also, what if Rl

is o0dd? SUB always wins since it will always execute

properly and is always faster!

E.9 RECOMMENDED CODING PRACTICE

E.9.1 Conditional Branches

When using the PDP-11 conditional branch instructions, it is

imperative that the correct choice be made between the signed and the

unsigned branches.

SIGNED UNSIGNED

BGE BHIS (BCC)

BLT BLO

BGT BHI

BLE BLOS (BCS)

A common pitfall is to use a signed branch (e.g. BGT) when comparing

two memory addresses. All goes well until the two addresses have

opposite signs; that is, one of them goes across the 16K (100000(8))

bound. This type of coding error usually shows itself as a result of

re-linking at different addresses and/or a change 1in size of the

program.

E.10 PDP-11 VERSION NUMBER STANDARD

The PDP-11 Version Number Standard applies to all modules, parameter

files, complete programs, and libraries which are written or caused to

be written, as part of the PDP-11 Software Development effort. It 1is

used to provide unique identification of all released, pre-released,

and in-house software.

It is limited in that, as currently specified, only six characters of

identification are used. Future implementations of the Macro

Assembler, linker, and librarian should provide for at least nine

E-13

SAMPLE CODING STANDARD

characters, and possibly twelve. It is expected that this standard
will be enhanced as the need arises.

Version Identifier

<form>

{version>

<edit>

<patch>

These fields are

<form> <version> <edit> <patch>

Used to identify a particular form of a module or
program, where applicable, as 1in the case of
LINK-1ll. One alphabetic character, if wused, and

null (i.e., a binary 0) if not used.

Used to identify the release, or generation, of a
program. Two decimal digits, starting at 00, and

incremented at the discretion of the project in
order to reflect what, in their opinion, is a
major change.

Used to identify the level to which a particular
release, or generation, of a program or module has
been edited. An edit 1is defined to be an
alteration to the source form. Two decimal
digits, beginning at 01, and incremented with each
edit; null if no edits.

Used to identify the level to which a particular
release, or generation, of a program or module has
been patched. A patch is defined as an alteration

to a binary form. One alphabetic character,

starting at B, and running sequentially toward 2,
each time a set of patches is released; null if
no patches.

interrelated. When <version> 1is changed, then
{patch> and <edit> must be reset to nulls. It is intended that when
<edit> is incremented, then <patch> w1ll be re-set to null, Dbecause
the various bugs have been fixed.

E.10.1 Displaying the Version Identifier

The visible output of the version identifier should appear as:

<key—-letter> <form> <version> = <edit> <patch>,

where the following Key Letters have been identified:

\Y released or frozen version
X in-house experimental version

Y field test, pre-release, or in-house release version

Note that 'X' corresponds roughly to individual support, 'Y' to group
support, and 'V' to company support.

The dash which separates {version> from <edit> is used only if <edit>

and/or <patch> is not null. When a version identifier is displayed as
part of program identification, then the format is:

Program

Name

<space><key-letter><form><version>-<edit><patch>

ot

SAMPLE CODING STANDARD

Examples:

PIP X03

LINK VB04-C

MACRO Y05-01

E.10.2 Use of the Version Number in the Program

All sources must contain the version number in an L.IDENT directive.

For programs (or libraries) which consist of more than one module,

each individual module will follow this version number standard. The

version number of the program or library is not necessarily related to

the version numbers of the constituent modules; it 1is perfectly

reasonable, for example, that the first version of a new FORTRAN

library, V00, contain an existing SIN routine, say V05-01l.

Parameter files are also required to contain the version number in an

.IDENT directive. Because the assembler records the last .IDENT seen,

parameter files must precede the program.

Entities which consist of a collection of modules or programs, e.g.,

the FORTRAN Library, will have an identification module in the first

position. An identification module exists solely to provide

identification, and normally consists of something like:

;OTS IDENTIFICATION

.TITLE FTNLIB

. IDENT /003010/

. END

ey

APPENDIX F

ALLOCATING VIRTUAL MEMORY

This appendix is intended for the MACRO-1l user who wants to avoid the

problem of thrashing, by optimizing the allocation of virtual memory.

Users of smaller systems, particularly those with the 8K subset

version of MACRO-1ll, should become thoroughly familiar with the

conventions discussed herein. In this regard, Appendix F addresses

the following topics:

l. General hints and space=saving guidelines

2. Macro definitions and expansions

3. Operational techniques.

The user is assumed to have pursued a policy of modular programming,
as advised in Appendix E. In addition to the obvious advantages

accruing from small, distinct, highly-functional bodies of code, one

can wusually avoid the problem of insufficient dynamic memory during

assembly by practicing such a policy. Other suggestions as to how

available memory can be best utilized are discussed in the following

sections.

F.1l GENERAL HINTS AND SPACE-SAVING GUIDELINES

Work-file memory is shared by a number of MACRO-1ll's tables, each of

which 1is allocated space on demand (64K words of dynamically pageable

storage are available to the assembler). The tables and their

corresponding entry sizes are as follows:

l. User-defined symbols - five words.

2. Local symbols - four words.

3. Program sections - six words.

4, Macro names - four words.

5. Macro text - nine words.

6. Source files - six words.

In addition, several scratch pad tables are used durlng the assembly

process, as follows:

l. Expression analysis - five words.

2. Object code generation - five words.

ALLOCATING VIRTUAL MEMORY

3. Macro argument processing - three words.

4, .MCALL argument processing - five words.

The above information can serve as a guide for estimating dynamic

storage requirements and for determining ways to reduce such

requirements.

For example, the use of local symbols whenever possible 1is highly

encouraged, since their internal representation requires 25% less

dynamic storage than that required for regular user-defined symbols.

The wusage of 1local symbols can often be maximized by extending the

scope of 1local symbol blocks through the .ENABL LSB/.DSABL LSB

MACRO-11l directives (see Sections 3.5 and 6.2).

Since MACRO-1l1l does not support a purge function, once a symbol is

defined, it permanently occupies its dynamic memory allocation.

Numerous instances occur during conditional assemblies and repeat

loops when a temporarily assigned symbol is used as a count or offset

indicator. If possible, the symbols so used should be re-used.

In keeping with the same principle, special treatment should be given

to the definition of commonly-used symbols. Instead of simply

appending a prefix file which defines all possibly-used symbols for

each assembly, users are encouraged to group symbols into logical

classes. Each class so grouped can then become a shortened prefix

file or a macro in a library (see Section F.2 below). In either case,

selective definition of symbolic assignments is achieved, resulting in

fewer defined (but unreferenced) symbols.

An appropriate example of this idea 1is seen in the definition of

standard symbols. The system macro library, for example, supplies

several macros used to define distinct classes of symbols. These

groupings and associated macro names are, as follows:

DRERRS - Directive return status codes

IOERRS - I/0 return status codes

FILIOS - File-related I/0 function codes

SPCIO$ - Special I/0 function codes

F.2 MACRO DEFINITIONS AND EXPANSIONS

By far, dynamic storage is used most heavily for the storage of macro

text. Upon macro definition or the issuance of an .MCALL directive,

the entire macro body is stored, including all comments appearing in

the macro definition. For this reason, comments should not be

included as part of the macro text. An RSX-1l1l utility program (called

SQZ for RSX-1lD only) and a Librarian function switch (/SZ) are

available to compress macro source text by removing all trailing

blanks and tabs, blank lines, and comments. The system macro library

(RSXMAC.SML) has already been compressed. User-supplied macro

libraries (.MLB) and macro definition prefix files should also be

compressed. For additional information regarding these two utility

tasks, consult the applicable RSX-11lM or RSX-11lD Utilities Manual (see

Section 0.3 in the Preface).

It often seems expedient to append a macro definition prefix file to

each assembly to provide commonly-used macros. This practice,

however, may produce the undesirable allocation of valuable dynamic

F-2

ALLOCATING VIRTUAL MEMORY

storage for unnecessary macros. This side effect can be avoided by
specifying that the prefix file containing the macros is a
user-supplied macro library file (see Table 8-1). This action imposes
the stipulation that the names of all desired macros must be listed as
arguments in the .MCALL directive (see Section 7.8).

Storage for macro text can be re-used effectively by redefining
certain types of macros to null after they have been invoked. This
practice releases their dynamic memory for the storage of later macro
text and also eliminates the overhead and the need for dynamic memory
which would otherwise be required during the subsequent invocation and
expansion of such non-redefined macros. The practice of redefining
macros to null applies mainly -to those that only define symbolic
assignments, as shown in the example below. The redefinition process
may be accomplished as follows:

.MACRO DEFIN

SYM1 = VALI ;DEFINE SYMBOLIC ASSIGNMENTS.

SYM2 = VALZ2

OFF1 = SYMBOL ;DEFINE SYMBOLIC OFFSETS.

OFF2 = OFF1+SIZl

OFF3 = OFF2+SIZ2

OFFN = OFFM+SIZIM

.MACRO DEFIN ;sMACRO NULL REDEFINITION.

. ENDM

.ENDM DEFIN

Macros exhibiting this redefinition property should be defined (or

read via the .MCALL directive) and invoked before all other macro
definition and/or .MCALL processing. So doing ensures more efficient

use of dynamic memory.

The following system macros have the automatic null redefinition

property after once being invoked:

DRERRS - Directive return status codes

IOERRS - I/0 return status codes

FILIOS - File-related I/0 function codes

SPCIOS$ - Special I/0 function codes

CSIS - Command String Interpreter codes and offsets

GCMLDS - Get Command Line codes and offsets

BDOFF$ - FCS buffer descriptor offsets

FCSBTS - FCS bit value codes

FDOFF$ - FCS file descriptor block offsets

FSROFS$ - FCS file storage region (FSR) offsets

NBOFFS$S - FCS filename block offsets

F-3

ALLOCATING VIRTUAL MEMORY

F.3 OPERATIONAL TECHNIQUES

When, despite adhering to the guidelines discussed above, performance
still falls below expectations, several additional measures may be
taken to improve performance.

The first measure involves shifting the burden of symbol definition
from MACRO-11 to the linker. 1In most cases, the definition of system

I/0 and FCS symbols (and user-defined symbols of the same nature) is
not necessary during the assembly process, since such symbols are
defaulted to global references (see Section 3.9 and Section D.1,

category 4 of error code A). The linker attempts to resolve all

global references from user-specified default libraries and/or the
system object library (SYSLIB). Furthermore, by applying the
selective search option for object modules consisting only of global

symbol definitions, the actual additional burden to the linker is
minimal.

A second way of making more dynamic memory available is to produce
only one output file (either object or listing), as opposed to two.
The additional file descriptor block (FDB) and file storage region

(FSR) required to support the second output file are allocated from
available dynamic memory at the start of each assembly. Furthermore,
the size of the file storage region allocated is the minimum required

for the second (listing) output file. For disk files, this is 264 (10)

words, and for direct line printer output, it is 74(10) words.

The final way of increasing available dynamic memory is related only
to the operating environment. Under RSX-11M, MACRO-11l allocates all
storage between its highest address and the end of its partition as
dynamic memory. Consequently, the amount of working storage can be
increased by installing and running MACRO-11l in a larger partition.

In IAS and RSX-1lD, the assembler's dynamic memory is fixed at 1link
time. If a larger assembler is not available, you may build one by
increasing the size of the task's stack. This 1is accomplished by

altering the STACK= option in the command file to build MACRO-11.

F-4

APPENDIX G

WRITING POSITION INDEPENDENT CODE

G.l INTRODUCTION TO POSITION INDEPENDENT CODE

The output of a MACRO-11 assembly is a relocatable object module. The
Task Builder binds one or more modules together to create an

executable task image. Once built, a task can generally be loaded and
executed only at the virtual address specified at link time. This is

because the linker has had to modify some instructions to reflect the
memory locations in which the program is to run. Such a body of code
is considered position-dependent (i.e., dependent on the virtual
addresses to which it was bound).

All PDP-11 processors offer addressing modes that make it possible to
write instructions that are not dependent on the virtual addresses to
which they are bound. A body of such code is termed
position-independent and can be loaded and executed at any virtual

address. Position-independent code can improve system efficiency,
both in wuse of virtual address space and in conservation of physical
memory.

In multiprogramming systems like IAS, RSX-1lD and RSX-11M, it Iis
important that many tasks be able to share a single physical copy of

common code; for example a library routine. To make the optimum use
of a task's virtual address space, shared code should be
position-independent. Code that is not position—-independent can also

be shared, but it must appear in the same virtual locations in every
task using it. This restricts the placement of such code by the Task

Builder and can result in the loss of virtual addressing space.

The construction of position-independent code is closely linked to the
proper usage of PDP-1l1 addressing modes. The remainder of this

Appendix assumes you are familiar with the addressing modes described
in Chapter 5. |

All addressing modes involving only register references are
position-independent. These modes are as follows:

R register mode

(R) deferred register mode

(R) + autoincrement mode

@(R)+ deferred autoincrement mode
- (R) autodecrement mode

@-(R) deferred autodecrement mode

When using these addressing modes, you are guaranteed

position-independence, providing the contents of the registers have

been supplied such that they are not dependent upon a particular

virtual memory location.

WRITING POSITION INDEPENDENT CODE

The relative addressing modes are position-independent when a
relocatable address 1is referenced from a relocatable instruction.
These modes are as follows:

A relative mode

@A relative deferred mode

Relative modes are not position—-independent when an absolute address
(that 1s a non-relocatable address) is referenced from a relocatable
instruction. 1In this case, absolute addressing (i.e., @#A) may be
employed to make the reference position-independent.

Index modes can be either position-independent or position-dependent,
according to their use in the program. These modes are as follows:

X (R) index mode

@X (R) index deferred mode

If the base, X, is an absolute value (e.g;, a control block offset),
the reference is position-independent. For example: |

MOV 2(sp),RO s POSITION~-INDEPENDENT
N=4

MOV N (SP) ,RO ; POSITION-INDEPENDENT

If, however, X 1is a relocatable address, the reference is
position-dependent. For example:

CLR ADDR(R1) ; POSITION-DEPENDENT

Immediate mode can be either position-independent or not, according to
its usage. Immediate mode references are formatted as follows:

#N ~ immediate mode

When an absolute expression defines the value of N, the code is

position-independent. When a relocatable expression defines N, the
code is position-dependent. That is, immediate mode references are
position-independent only when N is an absolute value. |

Absolute mode addressing is position-independent only in those cases
where an absolute virtual location is being referenced. Absolute mode
addressing references are formatted as follows:

Q#A absolute mode

An example of a position-independent absolute reference is a reference
to the directive status word ($DSW) from a relocatable instruction.
For example:

MOV @#SDSW,RO s RETRIEVE DIRECTIVE STATUS

G.2 EXAMPLES

The RSX-11l library routine, PWRUP, is a FORTRAN callable subroutine to
establish or remove a user power failure AST entry point address.
Imbedded within the routine is the actual AST entry point which saves
all registers, effects a call to the user-specified entry point,
restores all registers on return, and executes an AST exit directive.
The following examples are excerpts from this routine. The first
example has been modified to illustrate position-dependent references,
(see Figure G-1). The second example, Figure G-2, 1is the
position-independent version.

G-2

WRITING POSITION INDEPENDENT CODE

PWRUP::

CLR - (SP) s ASSUME SUCCESS

CALL .X.PAA :PUSH (SAVE) ARGUMENT ADDRESSES ONTO

| ; STACK

.WORD 1.,SDSwW +CLEAR DSW, AND SET R1=R2=SP

MOV $OTSV,R4 sGET OTS IMPURE AREA POINTER

MOV (SP)+,R2 :sGET AST ENTRY POINT ADDRESS

BNE 108 + IF NONE SPECIFIED, SPECIFYNO POWER

CLR - (SP) ;sRECOVERY AST SERVICE

BR 208 ;

10S$: H

| MOV R2,F.PF (R4) :SET AST ENTRY POINT

MOV #BA,- (SP) s PUSH AST SERVICE ADDRESS

208 : |

| CALL .X.EXT s ISSUE DIRECTIVE, EXIT.

.BYTE 109.,2. 3

BA: -~ MOV RO,-(SP) ;PUSH (SAVE) RO

MOV R1l,-(SP) ;PUSH (SAVE) Rl

MOV R2,-(SP) ;PUSH (SAVE) R2

Figure G-1 Position-Dependent Code

PWRUP: : |

CLR - (SP) + ASSUME SUCCESS

CALL .X.PAA ; PUSH ARGUMENT ADDRESSES ONTO STACK

.WORD 1.,$DSW :CLEAR DSW, AND SET R1=R2=SP.

MOV @#SOTSV,R4 ;GET OTS IMPURE AREA POINTER

MOV (SP)+,R2 ;GET AST ENTRY POINT ADDRESS

BNE 108 :IF NONE SPECIFIED, SPECIFY NO POWER

CLR - (SP) s RECOVERY AST SERVICE

BR 208

10S:
.

MOV R2,F.PF (R4) "+SET AST ENTRY POINT

MOV PC,~-(SP) ; PUSH CURRENT LOCATION

ADD #BA-., (SP) ; COMPUTE ACTUAL LOCATION OF AST

20$: |

CALL .X.EXT + ISSUE DIRECTIVE, EXIT.

.BYTE 109.,2.

ACTUAL AST SERVICE ROUTINE:

1) SAVE REGISTERS

2) EFFECT A CALL TO SPECIFIED SUBROUTINE

. RESTORE REGISTERS

4) ISSUE AST EXIT DIRECTIVE

[
0

w
6

w
e

=
8

w
e

w
8

w
s

s

o

(7
8]
g

A: MOV RO, - (SP) ;PUSH (SAVE) RO

MOV R1,-(SP) ;PUSH (SAVE) Rl

MOV R2,-(SP) ;PUSH (SAVE) R2

Figure G-2 Position-Independent Code

The position-dependent version of the subroutine contains a relative

reference to an absolute symbol ($OTSV) and a literal reference to a

relocatable symbol (BA). Both references are bound by the Task

Builder to fixed memory locations. Therefore, the routine will not

execute properly as part of a resident library if its location in
virtual memory is not the same as the location specified at link time.

WRITING POSITION INDEPENDENT CODE

In the position-independent version, the reference to SOTSV has been
changed to an absolute reference. 1In addition, the necessary code has
been added to compute the virtual location of BA based upon the value
of the program counter. In this case, the value is obtained by adding
the value of the program counter to the fixed displacement between the
current 1location and the specified symbol. Thus, execution of the
modified routine is not affected by its 1location in the image's
virtual address space.

The MACRO-11 Assembler provides a way of checking the
position-independence of code. In an assembly 1listing, MACRO-11
inserts a ' character following the contents of any word which
requires the linker to perform a relocation operation. In some cases
this character indicates a position-dependent instruction; in other
cases, it merely draws the user's attention to the use of a symbol
which may or may not be position-independent. The cases which cause a
' character to be inserted in the assembly listing are as follows:

1. Absolute mode references are flagged with a ' character when
the reference 1is relocatable. References are not flagged
when they are position-independent (i.e., absolute). For
example:

MOV @#ADDR,R1 ;PIC ONLY IF ADDR IS ABSOLUTE.

2. Index and index deferred mode references are flagged with a
character when the offset is relocatable. For example:

MOV ADDR(R1),R5 ;NON-PIC IF ADDR IS RELOCATABLE.
MOV @ADDR(R1l),R5 ;NON-PIC IF ADDR IS RELOCATABLE.

3. Relative and relative deferred mode references are flagged
with a ' character when the address specified is relocatable
with respect to another program section. For example:

MOV ADDR1,R1 +NON-PIC WHEN ADDR1 IS BOUND
MOV @ADDRI1,R1 :TO ANOTHER PROGRAM SECTION

4. Immediate mode references to relocatable addresses are always
flagged with a ' character.

MOV #3,R0 sALWAYS POSITION-INDEPENDENT.
MOV #ADDR,R1 ;sNON-PIC WHEN ADDR IS RELOCATABLE.

There is one case in which the MACRO-11 assembler does not flag a
potential position-dependent reference. This occurs where a relative
reference is made to an absolute virtual location from a relocatable
instruction (i.e., MOV $OTSV,R4 in Figure F-1).

Those references requiring more than simple relocation at 1link time
are also indicated in the assembly listing. Simple global references
are flagged with the letter G. Those which contain multiple global
references or complex relocation, are flagged with the letter C (see
Section 3.9 and Chapter 4). In such cases, it 1is difficult to
positively state which are or are not position-independent. However,
in general, it is safe to apply the guidelines discussed earlier in
this Appendix to the resulting address value produced at link time.

APPENDIX H

5 SAMPLE ASSEMBLY AND CROSS REFERENCE LISTING

i LTITLE P3IPRE
2 + IDENT 705/

3

4 ’

S y COPYRIGHT 1976, OIGITAL EQUIPMENY C(CORP,, MAYNARD, MASS,

é '
7 y TMIS SOFTWARE 18 FURNISHED TO PURCHASER UNDER A LICENSE FOR USE

8 y ON A SINGLE COMPUTER SYSTEM AND CAN BE COPIED (WITH INCLUSION
9 gy OF DEC’S COPYRIGHT NOTICE) ONLY FOR USE IN SUCH SYSTEM, EXCEPT
i@ y AS MAY OTHERWISE BE PROVIDED IN WRITING BY DEC,

11 '

12 y THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
13 y NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT AY DIGITAL

14 9y EQUIPMENY CORPORATION,

18 ?

16 y DEC ASSUMES NO RESPONSIBILITY FOR THME USE OR RELIABILITY
17 y OF 178 SOFTWARE ON EQUIPMENT WHICH IS NOTY SUPPLIED BY DEC,

18 '

19 y VERSION 25

20 '}

gt t C, MONIA AS«FEB=T76
2 ' :

23 ¢ PERFORM PRELIMINARY SyYMBOL TABLE PROCESSING
el]

2% ¢ LOCAL MACROS

26 '

2?7 t DEFINE CANNED SECTION TaBLE ENTRIES

28 '

29 3y SECTN NAME,FLAGS,SEG
30 '

31 } WHERE1
32 '

33 ' NAMESSECTION NAME
34 ! OFFSET=QFFSET IN SEGMENT DESCRIPYOR TO RECEIVE SECTYION ADDRESS,
18 1 BLANK IF NONE,

36 H FLAGSESECTION FLAGS BYTE CONTENTS
37) SEGa*RO0T* IF SECTION IS DEFINED IN ROOT SEGMENT ONLY

38 t

39

ue JMACRO SECTN NAME,FLAGS,OFFSET,SEG
41 B2

42 $$0m,

43 LWORD @

i 4y JWORD @
4s $$8s,

46 oMoy

47 RADSA /NAME/
48 +888S

49 «BYTE FLAGS

L S0 JIF 8 SEG
51 JBYTE)

52 « IFF

sS «IF NB OFFSET
81 JWORD OFFSET
s7 « IFF

H-1

SAMPLE ASSEMBLY AND CROSS REFERENCE LISTING

MX

mamam%%%JLIONw¥»
HO01ldINIS3QALN3IWD3S40S83nAQYVAVNLYIABOSANIS

(H01dI¥IS30¢IN3W313INI¥ENID40$S3uQQvTYNLYIA)2=2713A43840ldI¥2830IN3IWD3IS40SSHAAVTvIys93sHls
H0LdI¥IS3UAINIWINIAwwNQ40SS3uddvanIINIs

03S83J08dINI38INIW93S40IWYNENQOW
(IWNLIS¥03WNLSdA8dNL3S)vivdNOILI3SINFHENI®LI8Y)DH0ldI¥IS30IN3IW93S40SS3INAQVTvINmSY

801dI¥330IN3W3T13AWWNG40$833QQVSNhY
(WABT237)¥0LdI¥I$3Q108WAS1vI0740§S34dQvaly

804idI¥I830IN3W93S40$S35QQV1VInsDy
ISiNaNI

1dNi3S38LSNWONIMDT04
3HL‘SLINIOdABLN33S3HL30ANV04T7VI3INILNOHENS¥ONINSSI

0L¥0ld¥d°S3dALQH0I3YQ69G314133dSSS3IJ0UdLVNLowIIdds
3IN00WNIHLIMSINILNOEBNS40$S3¥0Qv3WLSNIVANOD378VLSINL378VL¥0133AWILV4SIOQQ89

“““”h““““”“““““*““““““““

43
38
4’

$9vI40uwASAINFHHND¢1MYTE®197448
$S348QQ0YAMINI08wAS¢IM¥T18°BLIN3AS

9v14NOILINISZ3QT08wWAS¢¢mX18°$3430A%
INIWO3SHIHVIS40SS38AQYIVNLYIASMX18°'198ANS

;9v14HiVdHONV3S¢1M¥18°$34Ju8
39vy0LS108WASvI0T‘gM¥I8°*IWASTIT

INYN3TNA0W4041YWLSuId¢|Myle*INOOW
ANILNOYAVOTTIVNANVYW403w¥N¢/0v071$S/©SQvY®twNGVOD

IN3IW93SINI¥uND40SS3IN0AVvniyIa¢1MX18°*338AHI
VivVUNOILIJ3SIn3HENDo‘2tM¥I8°*1108¥)YA0Q‘Q%108d423S4°

‘

"¢W1J¥ds3INAOWNI0314103dSSINIINOINOILIISWL!
HILVALSNWMOT3803N143QNOILI3S3WL40SAINIINOI3INL

H

%%%3FL0ON=x»i¢

eW1Jdde3NA0OWHWLIMQ3dVHS39VH0LSNOWWOD”vivgvd01¢‘

WO
N3
®

)
qyom*

®
088="319

712%JON
3’0quom*®

entLe
e

Ls2sel 20pveen9008eov90
0BYntoovae2fP
020920000n2eboe2vveeeL1LoT1)

g1t

SAMPLE ASSEMBLY AND CROSS REFERENCE LISTING

$9v4
ARYN404vyWQONOJ3SINYN404vYHLASHId

]"!I

Ni3J3SNi1J3
S

quo
m*®

NIVW3HLNIQ30N7INI3uYL1008,SYQ3LVNOIS3QSNOILI3S3HLilag’gxi
g’Ch

RN
/YNS/

@BSAVY®

IWNLISW eESHYYN'

INILNOYT0HINOIAVIN3A0¥04ANINIT08WASseeNOILVIISIANIAQI37NA0WY38WNNNOILI3SLSIWIIMLX3N0lM¥NIT sesQ0w$S38Q0v¥3I4SNVYL

M08wASTYNNIINI
W e A A e e e e eW e e W e e e

L B L B L B IR RYA0'Q0
SAQSO

quom*M¥1
E*myu1g*qugm*®AN3IW3T3123
84’

My
e°M8Mu1
8°*mu
e’

M8
’

mu1
8"’Mg’133
84’

‘LAWWNG]

AWnnd”F
3
W
N
L
S
A

13WNLSd

I3INNOONW]*NIFN3IHQ3193743838L8NW3INAOWLVYMLNIFONVYMIANV
2ee

oeegoouvesd0aees0o0
eRY 2L00009ieeenoteese

991191091

9
5
1

§
§
1st

€
5
1estolent

L
5
t95115192

1

oloden900000

s
e
lnail

g
t8

SAMPLE ASSEMBLYAND CROSS REFERENCE LISTING

MWWW@,Q378VLNIT08WASd3iN33014182830vI0T40ss3uddyL39
i|i

By'
SHTa'WAS13

an
3*¥17
v3

AQO
W

TWASN
I

]

dNi3S38LSNWNOILI3ISANIFNANIONY201dIN3830108WASV0T
i*IN3IW93SNIT08AASIVHOI9VL¥3SNIi

$8380QvNOILIJ3S3¥0LS

dNi383804135440ON0341¢138440ON

H0ldI¥IS3QNIL0718¥3dQ¥a04138440
401dI¥I830IN3WH3S40$6380Qv139H01ldI¥J383QvI07140SS3¥QQv139

INIQIS3u=%SvYLSvNOI133S9vigdAYVHEITUIN3QIS3¥9INIQIING

CAINDIN3WO3S1003HAON3T¥v3TI$9v74AdODAWVYN40477vMONOI3SAdDDL817740ON3Lv0341¥0LdI¥I$301vI0704LINIOM
o e eLT IWWL L T T S T

+(ty
)(By)

'I8ANDSy‘dy

By(L)0u’
SHIWNNLSdeu‘s
Sy

(0¥)
‘s3usS

ImMENSL‘HNEMEH(0y)§0¢2(By
)=+(By)'+(T

YH)+(0y)'+(8y)$o
%+(Qy)'+(%

tu)PY’Z*NASTIIR NENL3Y
tse

s

181

1sa¢
é

AOw
W03¢AON
W

MvdAOK
Wi188473NSdiWd03
8

81
81

CeAOWAOW03
8AOW

l1o0e00eesetle720000paseleTalelegiLetlt9IslLLlp1esa1J0eoeeenenioeenisel210500nEnioepatete

259000gn90
ee

969008na9vee94i5008niSO007950020095000nsS0008550009nse0eenseee
eWiy,

£

ffs(13113
3114114192¢%natet12
¢

2%L
%91tri
g

21t13
31eI
t

171190
¢

nosfos1341Qes

L
e
2962

SAMPLE ASSEMBLY AND CROSS REFERENCE LISTING

6éi=2
B1s=2

f6d=269
12

ToA3342

95d=229de=¢252=21fg=2dil=2»elé=2i1g=2d92
=29L2=
2Toc=2nBLi=2§91=2L91=29ig=
2

nie
=2

1222§91le2192
=2

n9l
e2

PL2=2ni2=2n9
le

2n

192=2pLe=298
22$92=2
»

n9eegsBL1
=2

n9l
=2

Log=2691=2n9l
e?

99
12

991
=2

X9X
9

X
9

X
9

X9X
9

X
9

X
9

o ooY-oo oo oxix

Y

TY Y
LEYTYY)

2
9
0
0
2
0
0

n
n
o
d
e
sIRY2TLYn2eodee

ANNDSSLNvossWMEA
S

T3u8AS189848TIGHASHNSMS44
48

vds
$

WNL
JSH91438JdS
i¥

JYdidNQONWWAS1ITWASIN
IWASNI]iy4

4AM8I83WNNTS3ind183AWK
NG

JSANI48
43

]T08HAS

SAMPLE ASSEMBLY AND CROSS REFERENCE LISTING

g

1922Lo2=2s0ig=gsBifelxLoC=2»g82=2292=2nné=¢gGC=2»02i=2C»
13A

gLa=2ésa=299
2=
2962>eni=2»ned

=2

91g=2L08=2YLTECYRLTL)192
=2%6hd=¢02i
=2»AYLTE.

O

0ig
=2

Li2g=2922
=2

ned
=d»682261d=2hig
=2

ndi=2

LIYLTgLd=2»922
=2»

nig
=2

§22=2%glg=2%eli=¢6n2e=2Lne
=2»602=2»182
=2%Bhde
=2»

ARLT29¢2=¢612
=2»Pide2
s625=2»hde

ee»h§c=2s§52=2»Ind
els90
22Bi2=2»$3IN34343Y

S
y

£
y2T
y2
d068

KAS
FINIYIL3YSS0¥II0GWASHILSIONN

H-6

SAMPLE ASSEMBLY AND CROSS REFERENCE LISTING

RiT=2n§91=2»Uei=2nItf
e2sTig=2Ene=e902=2

612=21e2=2one=2

9Si=1in8L2=2 13380808§N123SYAAYSUAVSNuNl3Ys¥oYY3¥17vdFINIYIJ3YSSO¥IOMUIVW

SAMPLE ASSEMBLY AND CROSS REFERENCE LISTING

-

Pl N

On2=222é=2B12=2991=2991=2981«222i
=2

192ned=2d192
-2

922=21ge=2dadid=2nig
ed

998=2
oA

LS2=2an
e=
2

822
+2

B1
e=
2

80
22SB2
=2

891e2S91=2L91=28912§9i
=2

Lei=2121
=2

dg=22ig
=2

29
22

nné=2§2é=28ld=
2

ved
e2

l1o
g=2eBi
=¢

4340

gne=2éed=¢ped
=2

Bi1
2=2S0é=¢L91=2921
i=2g21
=2

1g=22ii=2enée=¢122=22i2=20ee=22og=2

on2
=2d2é=
2

222
=2

21
2=
2

0L1
=2

n9le2ULl
=2991=28Li
=2

L91
=2

n9l
=2

9L1=2Scli=22g=2B12=21g2=2L9¢=2glg=2

gne=2Bnd
=2¢

22d=2Qe2=2pl
2=
2

BL1=2n9leg=269128L1=2n9le

IRLTnel
eg

geg=¢90e=2l1gg=
e

n9d=¢162=2hide
e95d=¢2

enee=eédé
=2

02
e=
2

g02=2991
=2

691=2fif=2691
=2

99122s5
1=2

it1e=21st
=2

66
22

In
d=
2

db2
=2

2ie
=2

pL2=262g=2292
=2

ngd=2Iig
=2

and
e2

502=225d=2nege=2282e22td=205e
=2

LE2=2slg
=2

£02=21L2
=2

in
g=
2$3INIUI43

a1
°JaN
3*

aNg®FIV
Y

Mmy
ie
*

gxl
e’

gislI8l3
¢

si
¥

s
l

dn
l

IN
I

dWld41
3

y
eane078glleilegsle01e$3
6

338aqyvT08
WAS

3IN3HI43YSS08I376YLT08WASININVWYEEd

4,
Absolute addresses, 6-14

Absolute binary output, 6-14

Absolute expression, 3-16

Absolute mode, 5-5, 5-7

Absolute module, 6-34

Absolute program section, 6-37

Address boundaries, 6-31

Address mode syntax, B-1

Address modes, 5-1

Addressing forms, summary, 5-7

Allocating byte data, 6-17

Allocating dynamic memory, F-1

Allocating word data, 6-18

Allocation requirements, 6-35

Alternate radix, 6-25

Ampersand, 3-1

Angle brackets, 3-3, 3-15,

6-4, 6-25, 6-28, 7-4 to

7-5, 7-16 to 7-17

Apostrophe, 7-10

Argument substitution, 7-16

Arithmetic addition operator

or autoincrement indicator

3-1

Arithmetic division operator

3-1

Arithmetic multiplication

operator, 3-1

Arithmetic subtraction

operator or autodecrement

indicator, 3-1

ASCII character set, A-1

ASCII conversion, 3-14

ASCII conversion characters

6-19

.ASCII directive, 6-20

.ASCIZ directive, 6-21

.ASECT directive, 6-38

Assembler directives, 6-1,

B-1, B-2

Assembler version, 6-8

Assembly language, B-1

Assembly listing, 2-6

Assembly pass 1, 1-1

Asterisk, 3-1

At sign, 3-1

Attribute of the current

location counter, 3-12

Autodecrement deferred

mode, 5-3, 5-7

Autodecrement mode, 5-7

Autoincrement deferred

mode, 5-3, 5-7

Autoincrement mode, 5-2, 5-7

INDEX

B operator, 6-25

Backslash, 3-1

Binary operators, 3-15

Blank lines, 2-2

Blocks of storage, reserving,

6-30

.BLKB directive, 6-30

.BLKW directive, 6-30

Branch instruction addressing,

5-8

.BYTE directive, 6-17

"C operator, 6-27

Calling conventions, E-8

Calling macros, 7-3

Changing default radix, 3-13
Changing value of location

counter, 3-12

Character set, 3-1

Character substitution, 7-16

Code and data separation, 6-38

Code or data sharing, 6-38
Coding standard, E-1

Colon, 3-1

Comma, 3-1

Comment, 6-14, E-2

Comment field, 2-5

Comment field indicator, 3-1
Complementing an

argument, 6-27

Complex relocatable

expression, 3-16

Complex relocation, 4-1

Concatenated, 6-35

Concatenation of macro

arguments, 7-10

Conditional assembly block,

6-41

Conditional assembly

directive, 6-41, 6-42

Conditional branches, E-13
Continuation lines, 2-2

Creating local symbols

automatically, 7-7

Creating program sections,

6-36

Cross~reference listing

(CREF)r H-5

.CSECT directive, 6-17

Current location counter, 2-2,

3-11, 3-14, 5-6, 6-29

Index-1

"D operator, 6- 25

INDEX

Data storage directives, 6-17

Date, 6-8

Default object module name,

6-11

Default register

definitions,

Deferred addressing

indicator, 3-1

6 - 15

Defining macros, 7-1

Device registers, E-2

Diagnostic, 7-14

Diagnostic error message

summary, D- 1

Direct assignment operator,

3-1

Direct assignment statements,

3-7

Directives, 2-5

indicator,

Double ASCII character

3-1

Double colon, 3-1,

Double equal sign,

Double quote, 3-1,

.DSABL directive, 3

6-13 to 6-1 5, 6

3-7

3“""1 r 3"""7

3-14, 6

“71 3“9

=27

Duplication of code, 7-17

EMT, 5-8

.ENABL directive,

6-15, 6-27

.END directive,

.ENDC directive

.ENDM directive

6-3

r6“’

17""'

5-7, 6-1

1

41

2

-19

3,

End of the source input, 6-31

Entry-point instructions,

.ENDR directive

.EOT directive,

Equal sign, 3-1

Error codes, D-

6-3

1

.ERROR directive, 7

Evaluation of expressions,

3-15

Exclamation point,

Executable task image, 4-1

Exiting, E-9

1

-14

3-1

Expressions, 3-14, 3-15
External expression, 3-15,

3-16

External symbols, 6

Externally-defined macro,

“F operator, 3- 14,

-40

6-27

6-33

7-18

Finding address mode of macro

arguments, 7-13

(CONT.) =

Finding number of characters

in strings, 7-12

Floating-point

data, 6-26

number, 6-28

number specification, 6-27

rounding, 6-15, 6-27

storage directives, 6-27 g

truncation, 6-14, 6-27 \

.FLT2 directive, 6-27

.FLT4 directive 6-27

Forbidden instruction

usage, E-12

Form-feed, 6-13, 7-3

Format control, 2-6 i

Formatting standards, E-9 k

Forward referencing, 3-8

Function control switches, 8-6

Function directives, 6-13

General purpose registers, E-2

General registers, 3-9

Global

label, 6-40

references, 6-15

symbol, 2-3, 6-40

symbol directory, 1-2

.GLOBL directive, 3-7, 6-39

GSD, 1-2

Hardware registers, E-2

Horizontal formatting, 2-6

.IF directive, 6-41

.IFF directive, 6-43, 6-44

LIFT directive, 6-43

.IFTF directive, 6-43

.IIF directive, 6-46

Illegal characters, 3-3

Immediate conditional i

assembly, 6-46

Immediate expression

indicator, 3-1

Immediate mode, 5-4, 5-7

Immediate mode deferred, 5-5

Implicit .WORD directive, 2-5,

6-18

Indefinite repeat block

directives, 7-15

Index deferred mode, 5-4, 5-7

Index mode, 5-4, 5-7 —

Initial argument or expression !

indicator, 3-1

Initial register indicator, 3-1

Index-2

INDEX (CONT.)

Instruction set, C-1

.IRP directive, 7-15

.IRPC directive, 7-15, 7-16

Item or field terminator, 3-1

Keyword arguments, 7-4, 7-9

Label field, 2-2

Label terminator, 3-1

Left angle bracket, 3-1

Left parenthesis, 3-1

.LIMIT directive, 6-31

Line format, E-1

Linker, 2-2, 4-1

Linking, 4-1, 4-39

.LIST directive, 6-1

Listing conditional

assemblies, 6-4

Listing control

directives, 6-1

Listing level count, 6-2

Listing of binary extensions,

6-3

Listing of comments, 6-4

Listing of generated

binary code, 6-3

Listing of macro class, 6-4

Listing of macro definitions,

6-4

Listing of macro expansion

binary code, 6-4

Listing of repeat range

expansions, 6-4

Listing of source lines, 6-3

Listing of the current

location counter, 6-3

Listing of the symbol table,

6-4

Local symbol block, 6-14

Local symbol block delimiters,

3-10

Local symbols, 3-6, 3-10, 3-11

Location counter, 6-36

Location counter control

directives, 6-29

Logical AND operator, 3-1,

6-42

Logical inclusive OR

operator, 3-1, 6-42

Lower-case ASCII, 6-14

Macro arguments, 7-6

Macro attritube directives,

7-11 |

Macro call, 2-5, 7-3, 7-5

Macro call arguments, 7-4

Macro call numeric argument

indicator, 3-1

Macro definition, 7-1, 7-15

Macro definition arguments,

7-4

Macro definition formatting,

7-3

Macro definition termination,

7-2

Macro definitions and

expansions, F-2

Macro directives, 7-1

Macro expansion termination,

7-3

Macro library directive, 7-18

Macro name, 7-1, 7-4

Macro names, E-5

Macro nesting, 7-5

Macro symbol table, 3-5

MACRO-11 character sets, A-1

MACRO-11 directives, 5-9, C-4

MACRO-11 symbols, 3-5

.MCALL directive, 7-18

Memory allocation, 6-32, 6-33,

6-38

Memory allocation and mapping,

6-32

.MEXIT directive, 7-18

Minus sign, 3-1

Modularity, E-8

Module checking routines, E-9

.Module preface, E-5

Multi-defined label, 2-4

Multiple definitions of local

symbols, 3-11

Multiple labels, 2-4

Naming standards, E-2

.NARG directive, 7-11

.NCHR directive, 7-11, 7-12

Negative numbers, 3-14

Nested conditional directives,

6-43

Nested macros, 7-3, 7-5 .

.NLIST directive, 6-1, 6-11

.NTYPE directive, 7-11, 7-13

Number of arguments in

macro calls, 7-7, 7-11

Number sign, 3-1, 5-4

Numbers, 3-13

Numeric control, 6-24

Numeric control operators,

6-26, 6-27

Numeric directives, 6-26

"0 operator, 6-25

Object module, 4-1

Object module name, 6-11

Index-3

INDEX (CONT.)

Octal radix, 3-13

.ODD directive, 6-29

Op codes, 2-4, C-1

Operand field, 2-4

Operand field separator, 3-1

Operator field, 2-4

Order of symbol table

search, 3-6

Other symbols, E-3

Overlaid, 6-35

Overlays, 6-33

.PAGE directive, 6-13

Page eject, 7-3

Page ejection, 6-13

Page formatting, 2-6

Page headings, 6-8

Page number, 6-8

PAL-11R conditional assembly,

6-46

Passing numeric arguments

as symbols, 6-46

Percent sign, 3-1

Permanent symbol table, 3-5,

C-1

Plus sign, 3-1 w

Position independent code, G-1

.PRINT directive, 7-14

Processor priority, E-3

Program boundaries directive,

6-31

Program counter, 3-9, 5-1

Program modules, E-5

Program section access, 6-33

Program section name, 6-33

Program sections, 3-12, 6-32

Program source files, E-12

Program-local symbols, E-4

Programming standards and

conventions, 2-1

.PSECT directive, 3-12, 6-32,

6—-35

R operator, 6-23

.RAD50 directive, 3-13, 6-24

Radix control, 6-24

Radix control operators, 6-25

Radix-50 character set, A-4

Radix-50 control operator,

6-23

Radix-50 data, 6-22

.RADIX directive, 3-13, 6-24

Read-only access, 6-33

Read/write access, 6-33

Register deferred mode, 5-2

Register expression, 5-1

Register, mode, 5-1, 5-7

Register standards, E-2

Register symbols, 3-9

Register term indicator, 3-1

Relative addresses, 6-14

Relative addressing mode, 5-6

Relative deferred mode, 5-6,

5-7

Relative mode, 5-5, 5-7

Relocatability, 6-34

Relocatable expressions, 3-16,

4-1

Relocatable module, 6-34

Relocatable program sections,

6-37

Relocation, 4-1

Relocation bias, 2-2, 6-34

Repeat block directive, 7-17

.REPT directive, 7-17

Reserving storage, 6-30

Reserving storage space, 3-13,

6-29

Right parenthesis, 3-1

.SBTTL directive, 6-8, 6-11

Scope of the program section,

6-33 |

Semicolon, 3-1

Sending messages to listing

file, 7-14

Separating and delimiting

characters, 3-2

Single ASCII character

indicator, 3-1

Single quote, 3-1, 3-14, 6-19,

7-10

Slash, 3-1 |

Source line sequence numbers,

6-3

Space, 3-1

Special characters, B-1

Special characters in macro

arguments, 7-6 |

Stack pointer, 3-9

Statement format, 2-1

Storing Radix-50 data, 6-23

Subconditional assembly, 6-43

subtitle, 6-8

Success/failure indication,

E-9

Symbol control directive, 6-39

Symbol examples, E-4

Symbol table listing, 1-2

Symbolic arguments of listing

control directives, 6-3, 6-4

Symbols, E-3

Symbols and expressions, 3-1

System macro libraries, 7-18

Index-4

TM

INDEX (CONT.)

Tab, 3-1 Unary operator ordering, 6-28
Tab character, 2-2 Unary operators, 3-15

Table of contents, 6-4, 6-11 Unconditional assembly, 6-43
1 Teleprinter mode, 6-4 Undefined symbols, 3-7, 3-14

| Terminal argument or Universal unary operator
expression indicator, 3-1 or argument indicator, 3-1

Terminal register indicator, Up arrow or circumflex, 3-1
3-1 | Up—-arrow, 3-3

Terminating directives, 6-31 Up-arrow (°) construction, 7-5

Terms, 3-14 User symbol table, 3-5 |

Time-of-day, 6-8 User-defined and macro

.TITLE directive, 6-11 symbols, 3-5
Title of the object module, User-defined macro libraries,

6-8 7-18

Translating to ASCII, Using the standard symbolics,

Translating to Radix-50,

6-22

Trap instructions, 5-8
Version number, 6-12

Version number standard, E-13

Unary and binary operators,

3-4

Unary control, 6-24 .WORD directive, 3-11, 6-18

Index=-5

.

—
—

th
is

li
ne
.

Pl
ea

se
 c
u
t
 a
l
o
n

PDP-11 MACRO-11

Language Reference

Manual

AA-5075A~TC

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. Problems with software should be reported
on a Software Performance Report (SPR) form. If you
require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR

form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

‘Name Date

Organization

(Stre@t‘

| City___ State _ Zip Code

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer

Higher-level language programmer

Occasional programmer (experienced)

Uaer with little programming experience
Student programmer

0
0
0
0
0
0

‘Non-programmer interested in computer concepts and capabilities

or

Country

Fold Here

Do Not Tear - Fold Here and Staple

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Documentation
146 Main Street ML5-5/E39

Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

