
PALcode for Alpha Microprocessors
System Design Guide

May 1996

This guide explains how to use the Privileged Architecture Library code
(PALcode) to customize Alpha 21064, 21064A, 21066, 21066A, 21068,
and 21164 microprocessor components to meet a variety of hardware and
software application needs.

Order Number: EC–QFGLC–TE

Revision/Update Information: This document supersedes the PALcode
for Alpha Microprocessors System Design
Guide (EC–QFGLB–TE).

Software Version: EBSDK V2.1

Digital Equipment Corporation
Maynard, Massachusetts

May 1996

While Digital believes the information included in this publication is correct as of the date of
publication, it is subject to change without notice.

© Digital Equipment Corporation 1994, 1995, 1996. All rights reserved.
Printed in U.S.A. AlphaGeneration, AlphaPC, Digital, Digital Semiconductor, OpenVMS, the
AlphaGeneration design mark, and the DIGITAL logo are trademarks of Digital Equipment
Corporation.

Digital UNIX Version 3.2B for Alpha is a UNIX 93 branded product.

Digital Semiconductor is a Digital Equipment Corporation business.

OSF is a registered trademark of the Open Software Foundation, Inc.
PostScript is a registered trademark of Adobe Systems Incorporated.
UNIX is a registered trademark in the United States and other countries licensed exclusively
through X/Open Company Limited.

All other trademarks and registered trademarks are the property of their respective holders.

This document was prepared using VAX DOCUMENT Version 2.1.

Contents

Preface . vii

1 PALcode Fundamentals

1.1 PALcode Description . 1–2
1.1.1 The Role of PALcode in the Alpha Architecture 1–3
1.1.2 PALcode Functions . 1–4
1.2 The PALcode Environment: PALmode . 1–6
1.3 Opcodes Reserved for PALcode . 1–6

2 PALcode Concepts

2.1 Invoking PALcode . 2–2
2.2 PALcode Entry Mechanisms . 2–4
2.2.1 21064, 21064A, 21066, 21066A, and 21068 PALcode Entry

Points . 2–4
2.2.2 21164 PALcode Entry Points . 2–6
2.3 CALL_PAL Format . 2–7
2.3.1 Privileged and Unprivileged CALL_PAL Functions 2–8
2.4 CALL_PAL Entry Points . 2–8
2.5 Instruction-Issue Rules . 2–10
2.6 PALmode Restrictions . 2–10
2.7 Alpha Microprocessor Control and Status Registers 2–11

3 PALcode Product Design and Development Concepts

3.1 What is the PALcode Product? . 3–2
3.1.1 The EBSDK PALcode Structure . 3–2
3.2 EBSDK PALcode Files . 3–4
3.3 PALcode Development Concepts . 3–6
3.4 PALcode Build Process . 3–8
3.4.1 PALcode Assembly Rules . 3–9
3.5 Using the PALcode Violation Checker . 3–9

iii

3.5.1 Label Format for pvc . 3–9
3.5.2 Suppressing pvc Error Messages . 3–10
3.6 Customization Decisions . 3–10
3.6.1 How Much PALcode Should be Modified? 3–11
3.7 Design Decision Examples for Alpha Microprocessors 3–12
3.8 Modifying PALcode . 3–12

4 PALcode and the Evaluation Board

4.1 Evaluation Board . 4–2
4.1.1 SROM Power-Up Code . 4–2
4.1.2 SROM Mini-Debugger . 4–3
4.1.3 Debug Monitor . 4–3
4.2 PALcode and the Evaluation Board . 4–3
4.2.1 Constants Changed in the EBSDK PALcode 4–4
4.2.2 Code Changes in the EBSDK PALcode 4–4
4.3 Bootstrap Process . 4–5
4.4 Structure and Contents of the Bootstrap Image 4–6
4.4.1 Creating a Bootable Image with Sysgen 4–6
4.4.2 Memory Layout of Bootstrap Image 4–8
4.5 Relationship Between the Evaluation Board, PALcode, and Your

Application . 4–8
4.6 Features of the EBSDK PALcode . 4–10
4.7 How PALcode Controls and Analyzes Interrupts 4–11
4.7.1 Adapting PALcode to Service Interrupts 4–11
4.7.2 Processing Interrupts . 4–12
4.7.3 How the EBSDK PALcode Processes Interrupts 4–12
4.8 Memory Management Modes . 4–13
4.8.1 Virtual Memory Mapping . 4–13
4.8.2 Physical Memory Mapping . 4–13
4.9 Console Service Function Overview . 4–15
4.9.1 Console Service Functions for All Alpha Microprocessors . . . 4–15
4.9.2 Console Service Functions for Alpha 21064 and 21064A

Microprocessors . 4–16
4.9.3 Console Service Functions for Alpha 21066, 21066A and

21068 Microprocessors . 4–16
4.9.4 Console Service Functions for the Alpha 21164

Microprocessor . 4–17
4.10 Console Service Function Descriptions . 4–18
4.10.1 Jump to PALcode . 4–18
4.10.2 Load Quadword Physical . 4–19
4.10.3 Output a Character to the Serial Port 4–20
4.10.4 Read ABOX_CTL Internal Processor Register 4–21

iv

4.10.5 Read BC_CONFIG Internal Processor Register 4–22
4.10.6 Read BC_CONTROL Internal Processor Register 4–23
4.10.7 Read BIU_CTL Internal Processor Register 4–24
4.10.8 Read ESR Internal Processor Register 4–25
4.10.9 Read ICCSR Internal Processor Register 4–26
4.10.10 Read ICSR Internal Processor Register 4–27
4.10.11 Read Impure Pointer . 4–28
4.10.12 Store Quadword Physical . 4–29
4.10.13 Write ABOX_CTL Internal Processor Register 4–30
4.10.14 Write BC_CONFIG Internal Processor Register 4–31
4.10.15 Write BC_CONTROL Internal Processor Register 4–32
4.10.16 Write BIU_CTL Internal Processor Register 4–33
4.10.17 Write ESR Internal Processor Register 4–34
4.10.18 Write ICCSR Internal Processor Register 4–35
4.10.19 Write ICSR Internal Processor Register 4–36
4.10.20 Write Interrupt Mask Register . 4–37

A Technical Support and Ordering Information

Glossary

Index

Figures

1–1 PALcode Role in Alpha Architecture 1–3
1–2 PALcode Functions . 1–5
2–1 21064, 21064A, 21066, 21066A, and 21068 PALcode Memory

Structure . 2–5
2–2 21164 PALcode Memory Structure . 2–6
2–3 Standard CALL_PAL Format . 2–7
2–4 PALcode Entry Points into Memory . 2–9
3–1 The Structure of the PALcode Image 3–3
3–2 Tools and Applications to Build PALcode 3–6
3–3 PALcode Build Process . 3–8
3–4 Customization Issues . 3–11
3–5 Modify PALcode Flow . 3–14
4–1 Bootstrap Process . 4–5
4–2 Building a Bootable Image Process . 4–7

v

4–3 Memory Contents of Bootstrap Image 4–8
4–4 Image Compliant with EBSDK PALcode 4–9
4–5 Image Requiring New PALcode . 4–10

Tables

1–1 PALmode Environment . 1–6
2–1 Conditions for Invoking PALcode . 2–3
2–2 Standard CALL_PAL Requirements . 2–7
3–1 PALcode Header Files . 3–4
3–2 PALcode Source Files . 3–5
3–3 PALcode Intermediate and Executable Files 3–5
3–4 Other PALcode Files . 3–5
3–5 File Names and Descriptions . 3–7
3–6 Modify PALcode Procedure . 3–13
4–1 Code Changes in the platform.s File 4–4
4–2 Events in the Bootstrap Process . 4–5
4–3 Creating a Bootstrap Image with the Sysgen Utility 4–8

vi

Preface

This preface provides information about the purpose, audience, and structure of
the PALcode for Alpha Microprocessors System Design Guide. It also describes
the conventions used in this document.

PALcode Product Definition
Privileged Architecture Library code (PALcode) is software that enables
system designers and implementors to support their Alpha microprocessor-
based system designs. The Alpha 21064, 21064A, 21066, 21066A, 21068, and
21164 microprocessor PALcode products are a design and implementation of
the Privileged Architecture Library functions which support their respective
microprocessors. The Evaluation Board Software Developer’s Kit
(EBSDK) provides system designers with a PALcode product that they can use
as a sample. System designers can also customize PALcode to create their own
code to support their Alpha microprocessor system designs. All of the EBSDK
PALcode products provide a standard programming interface which:

• Is tailored to the Digital UNIX operating system

• Can be adapted for embedded system designs

• Can be adapted for similar operating systems

Product Purpose
PALcode provides a common programming interface for the operating system
across all Alpha architecture implementations. PALcode implements low-
level hardware support functions such as power-up initialization, memory
management control, interrupt and exception dispatching, and other functions
that are impractical to implement in hardware and cannot be handled by
operating system software. PALcode also supports several software functions
such as privileged or atomic operation instructions, context swapping,
or instruction emulation that does not require hardware support. PALcode
software is modular; it has many user-defined parameters for easy modification
of the code.

vii

Document Purpose
This document explains the basic concepts and structure of PALcode. It
explains the basic PALcode product concepts that are necessary to customize
PALcode for an Alpha microprocessor-based system design in a Digital UNIX
operating system or similar environment. It also provides PALcode installation
procedures and detailed reference information.

Intended Audience and Prerequisites
This document provides information for system designers and system imple-
mentors who need to modify PALcode for their Alpha microprocessor-based
design.

Before using this document, system designers or implementors should:

• Be familiar with the interface between the hardware and the Digital UNIX
operating system.

• Be familiar with their system’s hardware configuration and component
characteristics (such as registers, backup caches, and I/O controller).

• Read the Alpha Architecture Reference Manual and the microprocessor-
specific hardware reference manual.

• Be familiar with the other Alpha software design tools and their
documentation. (See Appendix A for technical support and ordering
information.)

viii

Document Organization
This document is organized as follows:

• Chapter 1 describes the basic PALcode fundamentals that apply to all
hardware implementations.

• Chapter 2 describes PALcode concepts that relate to PALcode for Alpha
microprocessors.

• Chapter 3 describes the PALcode product, file structure, and development
process.

• Chapter 4 describes how PALcode fits into the Evaluation Board and how
to build the bootstrap image.

• Appendix A lists technical support services and related documentation.

• The Glossary defines terms that may be new and are used in this
document.

ix

Document Conventions
In this document, the term Alpha microprocessor refers to the Alpha
21064, 21064A, 21066, 21066A, 21068, and 21164 microprocessors; and the
term Evaluation Board refers to the 21064 Evaluation Board, the 21064
PCI Evaluation Board, the 21066 and 21068 Evaluation Board, the 21066A
Evaluation Board, the 21164 Evaluation Board, the AlphaPC 64 Evaluation
Board, and the AlphaPC 164 Motherboard, unless noted otherwise.

The following conventions are used in this document:

Convention Description

boldface type Boldface type in text indicates the first instance of terms
defined in the text, in the glossary, or in both places. It also
indicates commands.

italic type Italic type emphasizes important information, indicates
variables, and indicates complete titles of manuals.

monospaced type Monospaced type is used in interactive examples to indicate
system output and user input. It is also used in code
examples and other screen displays.

Extents Extents are specified by a pair of numbers in angle brackets
(<>) separated by a colon (:) and are inclusive. For
example, registers <0:3> indicates an extent including
registers 0, 1, 2, and 3.

Note Notes provide general information about a topic.

UNPREDICTABLE UNPREDICTABLE results and occurrences do not disrupt
the basic operation of the processor; the processor continues
to execute instructions.

Caution Cautions provide information to prevent damage to
equipment or software.

x

1
PALcode Fundamentals

This chapter describes the basic PALcode fundamentals that you need to know
before you modify PALcode. The following topics are included in this chapter:

• PALcode Description

• The PALcode Environment: PALmode

• Opcodes Reserved for PALcode

PALcode Fundamentals 1–1

1.1 PALcode Description
PALcode implements some necessary low-level hardware support functions,
which are too complex, too costly, or otherwise impractical to implement
directly in the microprocessor chip’s hardware, and which cannot be handled
by normal operating system software, including:

• Power-up initialization, such as routines to initialize devices to a known
state

• Memory management control, such as routines to fill the translation buffer

• Interrupt handling, such as code to determine which handler is requested
and to collect relevant data

• Exception dispatching, such as an arithmetic exception

In some architectures, microcode handles these hardware functions, but
the Alpha architecture is careful not to mandate the use of microcode for
reasonable chip implementations. Therefore, PALcode offers a more flexible
way to handle these hardware functions in a special environment situated
between the chip and the operating system.

1–2 PALcode Fundamentals

1.1.1 The Role of PALcode in the Alpha Architecture
Layered applications have access to the PALcode and to the system software
(Figure 1–1). This allows the layered applications to have direct access to the
low-level hardware functions through the PALcode or to communicate through
the system software. If the applications communicate through the system
software, the system software can either have direct access to the low-level
hardware functions or can pass control to the PALcode.

Embedded control programs have direct access to some of the low-level
hardware functions or can pass control to the PALcode.

Figure 1–1 shows system software and an embedded control program.

Figure 1–1 PALcode Role in Alpha Architecture

Applications

System Software

PALcode

Hardware

MR−6214−RA

Embedded
Control
Program

Hardware

PALcode

PALcode Fundamentals 1–3

1.1.2 PALcode Functions
PALcode supports various functions, which are too complex, too costly, or
impractical for either the chip hardware or the operating system to handle,
including:

• Privileged instructions

• Atomic operations, such as context swapping, returns from exceptions or
interrupts that require long instruction sequences and complete access to
all the underlying computer hardware

• Complex sequences, such as translation buffer fill routines or functions
that were previously handled by microcode in other architectures

• Instruction emulation without hardware support

Figure 1–2 shows how PALcode provides many functions and can reside in
main memory.

1–4 PALcode Fundamentals

Figure 1–2 PALcode Functions

PALcode Functions:

Main Memory

PALcode

Atomic Operations

LJ-04073.AI

Privileged Instructions

Memory Management Control

Process Context Switching

Interrupt and Exception Dispatching

Power-Up Initialization and Booting

Console Support Functions

Emulation of Instructions Without
Hardware Support

Alpha
Microprocessor

PALcode Fundamentals 1–5

1.2 The PALcode Environment: PALmode
PALcode runs in a special, privileged environment called PALmode, which is
different from the normal operating environment.

Table 1–1 describes the PALmode environment.

Table 1–1 PALmode Environment

PALmode does this . . . So PALcode can do this . . .

Disables Istream memory
mapping

Implement memory management functions such as
translation buffer fill.

Disables interrupts Provide multiple instruction sequences in the form
of atomic operations.

Enables the use of special
reserved opcodes

Provide implementation-specific hardware functions
that allow access to low-level system hardware.

1.3 Opcodes Reserved for PALcode
PALcode is written with the standard Alpha instruction set plus five reserved
opcodes to implement PALcode-specific instructions. These opcodes have
implementation-specific extensions that provide access to low-level chip
functions for changing states, reading, and modifying hardware control
registers and performing hardware assists for various functions.

The following list provides examples of PALcode-specific instructions:

• Perform physical memory load or store operations without invoking
memory management routines.

• Move data to and from internal processor registers.

• Transition the Alpha microprocessor from the PALmode environment to
the native-mode environment. This includes restoring the PC, enabling
interrupts and memory mapping, and disabling PALmode privileges.

These instructions produce an OPCDEC exception if executed while not in the
PALmode environment.

1–6 PALcode Fundamentals

2
PALcode Concepts

This chapter describes PALcode concepts that relate to Alpha microprocessors.
The following topics are included in this chapter:

• Invoking PALcode

• PALcode Entry Mechanisms

• CALL_PAL Format

• CALL_PAL Entry Points

• Instruction-Issue Rules

• PALmode Restrictions

• Alpha Microprocessor Control and Status Registers

PALcode Concepts 2–1

2.1 Invoking PALcode
PALcode can be invoked by the following hardware and software events:

• Reset

• System hardware exceptions (machine check, arithmetic trap)

• Interrupts

• Memory-management exceptions

• CALL_PAL instructions

PALcode is invoked at specific entry points, under certain well-defined
conditions. PALcode can be thought of as a series of callable routines, with
each routine indexed by an offset from a base address. The base address of
the PALcode is programmable, is stored in the PAL_BASE internal processor
register, and is normally set by the system reset code.

When an event occurs that invokes PALcode, the Alpha microprocessor does
the following:

1. Drains the pipeline.

2. Loads the current PC into the EXC_ADDR internal process register.

3. Dispatches to the appropriate PALcode routine.

2–2 PALcode Concepts

Specifically, PALcode is invoked under the conditions listed in Table 2–1.

Table 2–1 Conditions for Invoking PALcode

If the Alpha
microprocessor
detects . . . Then PALcode . . . Comments

Reset Resets the hardware and initializes as
required.

PALcode is entered
upon the successful
completion of hardware
reset.

Exception and
error handling

Performs a certain level of error analysis,
accesses PALmode-visible registers to
save state information as required by the
system software, and then dispatches to
the system software.

Examples include
hardware errors,
OPCDEC errors, and
arithmetic traps.

Interrupt Performs a certain level of analysis,
accesses PALmode-visible registers to
save state information as required by
system software, and then dispatches to
system software.

Examples includes
correctable hardware
errors and device
interrupts.

TB miss or
memory-
management
fault

Calls a PALcode routine to perform a TB
fill or accesses PALmode-visible registers
to save state as required by the system
software and then dispatches to the
system software.

Examples include
translation buffer
misses and memory-
management faults such
as an access violation,
invalid translation, or
an unaligned access.

CALL_PAL
instruction

Executes the specified CALL_PAL
function.

Examples include
privileged user (Kernel)
CALL_PAL requests
and unprivileged user
CALL_PAL requests.

Invoking PALcode

See the microprocessor-specific hardware reference manual for more
information about how an Alpha microprocessor invokes PALcode.

PALcode Concepts 2–3

2.2 PALcode Entry Mechanisms
The Alpha architecture allows two methods of entry into PALcode:

• Hardware-detected—PALcode responds to a hardware event. However,
the PALcode entry points and implementation are specific to the Alpha
microprocessor implementation.

• Software-initiated—PALcode responds to a privileged or unprivileged
CALL_PAL function. However, the PALcode entry point and method
for determining the vector are specific to the Alpha microprocessor
implementation.

2.2.1 21064, 21064A, 21066, 21066A, and 21068 PALcode Entry Points
Figure 2–1 shows the structure of the 21064, 21064A, 21066, 21066A, and
21068 PALcode entry points. For an explanation of the terms, see Table 2–1.

2–4 PALcode Concepts

Figure 2–1 21064, 21064A, 21066, 21066A, and 21068 PALcode Memory
Structure

LJ-04079.AI

0000

Offset from
PAL_BASE Value

Reset

0020 Machine Check

060 Arithmetic Exception

00E0 Interrupts

01E0 Data Stream Errors

03E0 Instruction Translation Buffer Miss

07E0 Istream Access Violation

08E0 DTB miss Native Mode

09E0 DTB miss PALmode

11E0 Unalign Errors

13E0 Reserved/Privileged Opcode

17E0 Floating-Point Errors

2000 Privileged CALL_PAL Routines

3000 Unprivileged CALL_PAL Routines

Hardware-Detected
Entry Points

Software-Initiated
Entry Points

PALcode Concepts 2–5

2.2.2 21164 PALcode Entry Points
Figure 2–2 shows the structure of the 21164 PALcode entry points. For an explanation
of the terms, see Table 2–1.

Figure 2–2 21164 PALcode Memory Structure

LJ-04072.AI

0000

Offset from
PAL_BASE Value

Reset

0080 Istream Access Violation

0100 Interrupts

0180 Instruction Translation Buffer Miss

0200 Single Dstream Translation Buffer Miss

0280 Double Dstream Translation Buffer Miss

0300 Unalign Errors

0380 Data Stream Errors

0400 Machine Check

0480 Reserved/Privileged Opcode

0500 Arithmetic Exception

0580 Floating-Point Errors

2000 Privileged CALL_PAL Routines

3000 Unprivileged CALL_PAL Routines

Hardware-Detected
Entry Points

Software-Initiated
Entry Points

2–6 PALcode Concepts

2.3 CALL_PAL Format
Figure 2–3 shows the format for a standard CALL_PAL function, which is
composed of a 6-bit opcode and a 26-bit function field. The 26-bit function
field specifies the entry point and indicates if the function is privileged or
unprivileged. Table 2–2 describes the terms used in Figure 2–3.

Figure 2–3 Standard CALL_PAL Format

XX XX XX

31 26 25 07 00

LJ-04074.AI

Opcode PALcode Function

Privileged or Unprivileged Bit

Table 2–2 Standard CALL_PAL Requirements

Term Requirements

Opcode A 6-bit opcode of all zeros indicates a CALL_PAL instruction.

PALcode
Function

Bits in the 26-bit function code1 field determine the entry point of
the function. Typically, only the last 7 bits are used.

Privileged or
Unprivileged bit

Bit 7 in the function code field determines whether this function is
privileged or unprivileged. If bit 7 is set to a 1, the PALcode function
is unprivileged.

1For a complete list of the function codes, see the Privileged and Unprivileged OSF/1 PALcode
Function Codes sections in Appendix C of the Alpha Architecture Reference Manual.

PALcode Concepts 2–7

2.3.1 Privileged and Unprivileged CALL_PAL Functions
All CALL_PAL functions are designated as either privileged or unprivileged.
The privileged designation indicates that the function is reserved for use only
in kernel mode. The unprivileged designation indicates that an instruction can
be executed by any user.

The Alpha microprocessor can recognize and provide hardware entry points
for 64 privileged and 64 unprivileged CALL_PAL instructions with regions of
64 bytes each. This allows you to create up to 128 functions that are directly
callable by the Alpha microprocessor. When more than 128 functions are
required, CALL_PAL functions can be implemented through the OPCDEC
handler.

2.4 CALL_PAL Entry Points
This section describes how a CALL_PAL entry point is specified.

As described in Section 2.1, all of the PALcode entry points are offsets relative
to the PAL_BASE register value. For CALL_PAL functions, bit 7 in the
function field of the instruction is used to indicate if the function is privileged
or unprivileged. To create the individual CALL_PAL entry point, an additional
offset is created by shifting some of the bits in the CALL_PAL instruction’s
function field. These bits are then combined with the CALL_PAL region’s base
address value (privileged or unprivileged) to create the offset to the actual
function entry point. The value of the function’s entry point offset is then
added to the physical PAL_BASE value, resulting in the physical address of a
unique entry point.

Figure 2–4 shows the PALcode entry points into memory.

2–8 PALcode Concepts

Figure 2–4 PALcode Entry Points into Memory

LJ-04068.AI

Hardware-Detected
Entry Points CALL_PAL Function

Entry Points

Privileged CALL_PAL
Region

Unprivileged CALL_PAL
Region

Memory

..

.
Physical
Address 0

Physical
Base

PAL_BASE
Register

.

.

..

.

..

.

bpt

bugchk

callsys

PALcode Concepts 2–9

2.5 Instruction-Issue Rules
PALcode is subjected to the same scheduling and multi-issue rules as code
that runs in non-PALmode. Carefully review the instruction-issue rules
for performance reasons; violation of these rules will not affect the proper
functioning of the instruction.

The following are examples of some of the scheduling and multi-issue rules
that will affect the performance of the Alpha 21064 microprocessor:

• No LD instructions can be issued in the two cycles that immediately follow
an STC.

• No floating-point operate instruction can be issued exactly five or exactly
six cycles before a floating-point divide completes.

Note

A complete list of these rules is provided in the microprocessor-
specific hardware reference manual. Carefully review the entire list
of scheduling and issuing rules before you customize the PALcode
routines.

2.6 PALmode Restrictions
Alpha microprocessors have certain rules that govern the special PALmode
environment in which PALcode routines operate. To ensure compliancy, a
PALcode Violation Checker application has been provided with the Evaluation
Board System Developer’s Kit to locate rule violations. Refer to Section 3.5 for
more information about the pvc tool.

Caution

Violations of these rules may result in unexpected chip behavior that
may cause the processor to hang.

Many of the PALmode restrictions involve waiting n cycles before using the
results of a PALmode instruction. As a system designer, you can use the wait
cycles efficiently for PALmode routines. Because Alpha microprocessors can
issue multiple instructions per cycle for particular sequences of instructions,
you must carefully calculate the total number of wait cycles that the Alpha
microprocessor actually consumes.

2–10 PALcode Concepts

Inserting n instructions between the two time-sensitive instructions is
the typical method of waiting for n cycles. For example, the Alpha 21064
microprocessor can issue up to two instructions per cycle, which may require
you to write code that requires 2 � n + 1 instructions in order to wait n cycles.
Note that for the Alpha 21064 microprocessor, two copies of the identical
instruction cannot be issued in the same cycle.

The following are examples of some of the rules for the Alpha 21064
microprocessor:

• A hardware move to processor register instruction requires at least four
cycles to update the selected IPR.

• The first cycle (the first one or two instructions) at all PALcode entry points
cannot execute a conditional branch instruction or any other instruction
that uses the JSR stack hardware.

Note

A complete list of rules is provided in the PALmode restrictions section
of the microprocessor-specific hardware reference manual. Carefully
review the complete list of rules before you customize the PALcode
routines.

2.7 Alpha Microprocessor Control and Status Registers
As described in Section 1.3, PALcode is standard machine code with
implementation-specific extensions that allow access to the PAL_TEMP
and the control and status registers of Alpha microprocessors.

The control and status registers include the internal processor registers for all
Alpha microprocessors, plus the control registers that are specific to certain
Alpha microprocessors. These registers are addressed by memory addresses or
internal processor register numbers. Some of the control and status registers
that have memory addresses are accessible to privileged-mode programs. Most
of the internal processor registers are only accessible from PALmode, requiring
special opcodes such as "move from processor register."

Note

For more information about Alpha microprocessor registers, see the
microprocessor-specific hardware reference manual.

PALcode Concepts 2–11

3
PALcode Product Design and

Development Concepts

This chapter describes the organization of the Evaluation Board System
Developer’s Kit (EBSDK) PALcode files and the PALcode development process.
The following topics are included in this chapter:

• What is the PALcode Product?

• EBSDK PALcode Files

• PALcode Development Concepts

• PALcode Build Process

• Using the PALcode Violation Checker

• Customization Decisions

• Design Decision Examples for Alpha Microprocessors

• Modifying PALcode

PALcode Product Design and Development Concepts 3–1

3.1 What is the PALcode Product?
The EBSDK PALcode product consists of the following:

• A library of routines, each of which is grouped into one of two separate
modules or distinct sections of code so that you can easily change,
supplement, or replace parts of the library with your own customized code.

• A model system design, based on the Evaluation Board, that serves as an
example of a system implementation that you could achieve by using the
PALcode routines.

• The PALcode for Alpha Microprocessors System Design Guide (this
document), which explains basic concepts and how to customize PALcode
routines.

3.1.1 The EBSDK PALcode Structure
The EBSDK PALcode provides a common programming interface for Alpha
microprocessor implementations that are tailored to the Digital UNIX
operating system and that can serve as a basis for an interface to other
similar operating systems or control programs.

As shown in Figure 3–1, the EBSDK PALcode has the following characteristics:

• The PALcode image is position-independent and can be located anywhere
in memory. The base address of PALcode is specified in the PAL_BASE
register.

• The library of routines are grouped into one of two separate modules or dis-
tinct sections of code. These two sections are the platform-independent
and platform-dependent modules.

• The platform-independent module is position-independent. The entry
points within this module have a fixed (predetermined) offset relative to
the base address of PALcode that limits the amount of space available
for each routine. Routines that require additional space branch to a
continuation area for completion.

• The platform-dependent module is position-independent.

3–2 PALcode Product Design and Development Concepts

Figure 3–1 The Structure of the PALcode Image

Position-Independent Code

Fixed Offsets from PAL_BASE

LJ-04123.AI

MemoryMemory

Routine

Routine

Routine

Continuation Area for Routines

PALcode

Image

Platform-

Independent

Code

Platform-

Dependent

Code

Platform-

Independent

Code

Platform-

Dependent

Code

Routine

Routine

Routine

PALcode Product Design and Development Concepts 3–3

3.2 EBSDK PALcode Files
The EBSDK provides a complete set of associated PALcode files for each
Evaluation Board. Each set of files has been tailored for a particular
Evaluation Board.

The PALcode routines have been grouped into one of two source files:
the osfpal.s file or the platform.s file. Both of these files are provided in
source and pre-processed intermediate form. Two microprocessor-specific,
platform-independent header files are provided. The dc21064.h is for the Alpha
21064, 21064A, 21066, 21066A, and 21068 Microprocessor Evaluation Boards,
and the dc21164.h is for the Alpha 21164 Microprocessor Evaluation Board.

A Makefile that controls various building and processing tasks similar to a
command file is also provided, along with a PostScript file of this document,
the PALcode for Alpha Microprocessors System Design Guide.

Table 3–1 describes the header files, Table 3–2 describes the source files,
Table 3–3 describes the intermediate and executable files, and Table 3–4
describes other PALcode files.

Table 3–1 PALcode Header Files

File Name
Can it Be
Changed? File Description

cserve.h Yes Contains CALL_PAL cserve sub-function
encodings.

dc21064.h Yes (but not
recommended)

Contains specific definitions for Alpha
21064, 21064A, 21066, 21066A, and 21068
microprocessor implementations.

dc21164.h Yes (but not
recommended)

Contains specific definitions for Alpha 21164
microprocessor implementations.

impure.h Yes Contains the impure scratch area data
structure definitions.

macros.h Yes Contains common macro definitions.

osf.h Yes (but not
recommended)

Contains definitions specific to the Digital UNIX
operating system.

platform.h Yes Contains platform-specific definitions.

3–4 PALcode Product Design and Development Concepts

Table 3–2 PALcode Source Files

File Name
Can it Be
Changed? File Description

osfpal.s Yes (but not
recommended)

Contains common Digital UNIX PALcode for
Alpha microprocessors.

platform.s Yes Contains platform-dependent PALcode.

Table 3–3 PALcode Intermediate and Executable Files

File Name File Type
Can it Be
Changed? File Description

osfpal.i Intermediate Not
applicable

Contains pre-processed osfpal.s and *.h
files.

platform.i Intermediate Not
applicable

Contains pre-processed platform.s and
*.h files, including the platform.h file.

osfpal Executable Not
applicable

Is the resultant Digital UNIX PALcode
image from assembling and linking the
osfpal.i and platform.i files.

Table 3–4 Other PALcode Files

File Name File Type
Can it Be
Changed? File Description

Makefile
Makefile.nt

Command Yes Is used during the Modify PALcode
Procedure to control the building and
the pvc pre-processing of the updated
PALcode image.

osfpal.ent Data Yes (but
not recom-
mended)

Contains a list of PALcode entry points
and their corresponding addresses.
The pvc tool inspects the PALcode
entry points in this file for PALcode
restriction and violations.

PALcode Product Design and Development Concepts 3–5

3.3 PALcode Development Concepts
Figure 3–2 shows the tools and applications used to build PALcode into an
executable image. Table 3–5 describes the elements in the diagram.

Figure 3–2 Tools and Applications to Build PALcode

LJ-04076.AI

osfpal

osfpal.entosfpal.splatform.s

gas
astrip

1

2

Listing
File

osfpal.lis
6

5

3

Violation
Log File

4

7
alist

osfpal.nh

osfpal.map

pvc

3–6 PALcode Product Design and Development Concepts

Table 3–5 File Names and Descriptions

Name Description

! gas GNU-based assembler, which produces the executable file
osfpal

" osfpal.ent Provides PALcode entry points to pvc

osfpal.nh Image file with header removed by astrip

$ pvc PALcode Violation Checker

% osfpal.map Provides branch and jump information to pvc

& osfpal.lis Source listing file created by alist

' osfpal Image file of osfpal

PALcode Product Design and Development Concepts 3–7

3.4 PALcode Build Process
This section describes the process to build osfpal, the PALcode executable
image.

The following list describes the tasks that are performed automatically with
the make utility or that can be performed individually.

1. Pre-process the osfpal.s (source) file and *.h (header) files to create osfpal.i
(intermediate) files.

2. Pre-process the platform.s (source) file and platform.h (header) files to
create osfpal.i and platform.i (intermediate) files.

3. Assemble and link osfpal.i with platform.i to create an osfpal executable
file.

4. Load and run the osfpal executable image on the target system.

Figure 3–3 shows the osfpal file creation process.

Figure 3–3 PALcode Build Process

 Header and
 System Files

LJ-04077.AI

Pre-Processorcpp

Executable Fileosfpal

osfpal.i

cppPre-Processor

Intermediate
Files

Intermediate
Files

 Code

platform.i

platform.s
*.h

References

gas Assembler

*.h
osfpal.s

After the executable image osfpal has been created, the PALcode must be
checked for timing and other coding violations as described in Section 3.5.

3–8 PALcode Product Design and Development Concepts

3.4.1 PALcode Assembly Rules
Follow these rules when you customize your PALcode routines:

• The PALcode must be assembled in one monolithic assembly from two
source modules.

• Do not rely on the .align directive to align code to a page. It is more
reliable to use zeros to align code within a page. See the Alpha Architecture
Reference Manual for more details about page sizes, and see The GNU
Assembler manual for more information about the .align directive.

3.5 Using the PALcode Violation Checker
The PALcode Violation Checker (pvc) is a tool used to check PALcode
for timing and other coding violations. This tool searches for and identifies
PALmode restrictions and violations as described in the microprocessor-specific
hardware reference manual. It helps find and correct critical PALcode coding
errors before you build the new PALcode image and load it onto your system.
Section 3.5.1 briefly summarizes how to use pvc labels and error codes in your
customized PALcode routines. See the Alpha AXP Software Design Tool User’s
Guide for more information about pvc features and benefits.

3.5.1 Label Format for pvc
The PALcode Violation Checker requires a certain format for the labels it
uses to check for timing violations and other errors. These labels are used
in subroutines to control how pvc follows branch to and from subroutines for
computed goto instructions such as jump tables, or they can be used to ignore
a specific branch entirely. The labels are also used to ignore a specific pvc error
from an instruction in a PALcode routine.

As shown in the following pvc label format, pvc dictates that you start the label
with the phrase pvc$. Then you add a label name between the two dollar signs
($) to make the pvc label unique and to indicate the address of the error you
are attempting to mask. The second dollar sign must be followed by the error
number that resulted in pvc finding the error. The last field is optional and is
used for branches.

pvc$<your_label_name>$<pvc_error_number>[.destination]:

PALcode Product Design and Development Concepts 3–9

3.5.2 Suppressing pvc Error Messages
The following is an example of a pvc error message with an error code of 82, at
address 4940 on an Alpha 21064 microprocessor. This pvc error indicates that
you cannot perform an HW_REI instruction during the two cycles immediately
following an MT ITBZAP, ITBASM, or ITBIS instruction.

Error executing instruction HW_REI at address 4940 on cycle 11!!
(pvc #82) You can’t HW_REI during the 2 cycles following a MT ITBZAP,
ITBASM, or ITBIS.

For the next example, assume that the system designers have determined
that the previous error is harmless for their particular 21064 system
implementation, and they want to suppress the error message. This error
message can be suppressed by placing the following label at the offending
instruction in the PALcode source file. This label instructs pvc to ignore this
instruction, and no error is displayed the next time pvc runs.

pvc$ignore_4940$82:

Note

See the pvc section in the Alpha AXP Software Design Tool User’s
Guide for more details about pvc labels, suppressing error messages,
and pvc error codes.

3.6 Customization Decisions
Consider the following issues before you customize PALcode:

• Initialization settings for specific internal processor registers (IPR) and for
updating PALcode data structures

• Platform-specific customizations, such as special machine-check exceptions
or interrupt handling

• System software integration

3–10 PALcode Product Design and Development Concepts

3.6.1 How Much PALcode Should be Modified?
As system designers, you need to consider many issues before you modify
PALcode. Figure 3–4 shows the benefits and drawbacks of using the existing
framework of the EBSDK PALcode.

Figure 3–4 Customization Issues

Less code to modify and debug.

Can be used as a general-
purpose interface.

Code is organized for ease of
modification.

Benefits to Using

Existing Framework

Drawbacks to Using

Existing Framework

Drawbacks to Creating

All New PALcode

Benefits to Creating

All New PALcode

States, structures, and standards
are predefined.

Can tailor PALcode to system
software needs.

Consumes less memory with
less PALcode.

Need to design PALcode system
software interface.

Requires large amount of code to
be developed and debugged.

D
R
A
W
B
A
C
K
S

B
E
N
E
F
I
T
S

Staying Within the Framework of the EBSDK PALcode

Creating All New PALcode LJ-04075.AI

PALcode Product Design and Development Concepts 3–11

3.7 Design Decision Examples for Alpha Microprocessors
The following list provides examples of some of the modifications that you may
need to make for the Alpha microprocessors.

• Provide an alternative backup cache configuration.

• Provide an alternative interrupt or exception stack frame to enhance the
information passed to the system software.

• Add privileged and unprivileged CALL_PALs to create a new operating
system interface design.

• Provide an alternative memory management policy that has a different
mapping or unique page table structure.

• Add new interrupt devices to the current interrupt design.

• Modify the interrupt pin assignments.

3.8 Modifying PALcode
This section provides a detailed procedure that you can use to customize,
assemble, and link PALcode. Before you modify the PALcode, review
Section 2.5 and Section 2.6 for rules and restrictions that may apply.

If you are creating a CALL_PAL, ensure that the entry-point address has been
calculated correctly and that the osfpal.ent file has been updated with the new
address. Otherwise, the hardware will not dispatch to the correct memory
location to execute the function properly. See Section 2.4 and the PALcode
entry points section in the microprocessor-specific hardware reference manual.

Table 3–6 describes the steps and tasks you need to perform to modify
PALcode, and Figure 3–5 shows the procedure.

3–12 PALcode Product Design and Development Concepts

Table 3–6 Modify PALcode Procedure

Step Task

! Determine the needs of your system, such as needing a larger cache or a
different interrupt strategy.

" Identify the PALcode routines that are impacted by the design decisions.

Edit the PALcode routines that you want to customize by modifying them
in an editor of your choice on your host system.

$ If you are adding or removing files, edit the Makefile provided with your
product kit.

% Run the Make command, which performs the following tasks:

• Pre-processes the routine source files using cpp.

• Assembles and links the pre-processed source files using gas and
creates one executable image called osfpal. This image is in a.out
format.

• Post-processes the updated PALcode image with alist and produces the
following two files:

pvc map file with a .map file extension (such as osfpal.map)

Disassembled listing with a .lis file extension (such as osfpal.lis)

& Run pvc to check the osfpal image for timing violations and other errors.

Remember that the go command checks all entry points in sequence and
will take longer than the do command, which checks a specific entry point.

If you encounter timing violations or other pvc errors, correct the affected
source file and repeat steps 3 through 6 in this procedure.

' Verify that your new PALcode performs as intended. If any modifications
are necessary, return to the editing stage and repeat all steps.

(Create and load the bootstrap image into memory. The operating system
or application runs and operates normally if your PALcode customizations
have processed successfully. If your operating system or application does
not run or if it behaves abnormally, debug your customized PALcode and
repeat the steps necessary for this procedure.

Note

Refer to Chapter 4 for information about the steps for building a
bootstrap image.

PALcode Product Design and Development Concepts 3–13

Figure 3–5 Modify PALcode Flow

LJ-04146 .AI

Edit PALcode Routines
In Editor

Edit Makefile

Run PVC

Use Image in System

Identify PALcode
Routines Impacted by

Design Decisions

Pass?
No

Yes

Pass?
No

Yes

2

3

4

6

Run Make Command5

Test and Debug7

8

System Design Decisions1

3–14 PALcode Product Design and Development Concepts

4
PALcode and the Evaluation Board

This chapter provides information about how PALcode is incorporated into the
Evaluation Board. The following topics are included in this chapter:

• Evaluation Board

• PALcode and the Evaluation Board

• Bootstrap Process

• Structure and Contents of the Bootstrap Image

• Relationship Between the Evaluation Board, PALcode, and Your
Application

• Features of the EBSDK PALcode

• How PALcode Controls and Analyzes Interrupts

• Memory Management Modes

• Console Service Instructions

• Console Service Descriptions

PALcode and the Evaluation Board 4–1

4.1 Evaluation Board
The Evaluation Board allows you to develop code on a host system and then
transfer the software into the Evaluation Board to perform software debugging
functions. Software can easily be transferred to the Evaluation Board using
either the serial line or the Ethernet port. This software includes embedded
control products for communication engines and video products and system
software for workstations and personal computers (PCs).

The following software is included with the Evaluation Board:

• SROM (Serial ROM) power-up code

• SROM Mini-Debugger

• Debug Monitor

• PALcode for the Evaluation Board

See Appendix A for information about technical support and ordering
documentation related to Evaluation Boards.

4.1.1 SROM Power-Up Code
The SROM power-up code has the following functions:

• Provides minimal initialization of memory and I/O subsystems

• Runs from instruction cache of CPU

• Runs in PALmode

• Loads and executes the next level of firmware

4–2 PALcode and the Evaluation Board

4.1.2 SROM Mini-Debugger
The SROM mini-debugger, which provides troubleshooting assistance, is not
part of the boot process or the normal operation of the Evaluation Board’s
Alpha microprocessor. The SROM mini-debugger has the following functions:

• Provides basic hardware debugging

• Runs entirely from the Icache of the Evaluation Board’s CPU

• Does not rely on memory or I/O subsystems to operate

• Communicates through a special SROM RS232 interface with autobaud
detection

4.1.3 Debug Monitor
The Debug Monitor provides the following functions:

• Downloads files through serial ports, Ethernet ports, diskettes, and ROM

• Examines and deposits the internal processor registers and I/O mapped
registers

• Examines and modifies DRAM and I/O mapped memory

• Disassembles CPU instructions in memory

• Transfers control to programs loaded into memory

• Provides native debugging capabilities, including breakpoints and single
stepping

• Provides full source-level debugging capabilities using DECladebug
running on a remote host that communicates through an Ethernet
connection

4.2 PALcode and the Evaluation Board
This section provides information about how PALcode is used with the
Evaluation Board and supports the Debug Monitor.

The Evaluation Board determines the following:

• Contents of the system-dependent routines (platform.s and platform.h files)

• Backup cache size and speed issues

• I/O issues

• Interrupts

PALcode and the Evaluation Board 4–3

The Evaluation Board does not affect the platform-independent PALcode
routines.

4.2.1 Constants Changed in the EBSDK PALcode
The following constants were modified in the platform.h file to customize
PALcode for the Evaluation Board.

• Bcache size was set to accommodate the Alpha microprocessor Evaluation
Board.

• A mask was set to enable and disable certain interrupts at specific
interrupt priority levels.

• Address space partitioning was defined to accommodate the Alpha
microprocessor Evaluation Board.

4.2.2 Code Changes in the EBSDK PALcode
The following code was modified in the platform.s file to customize PALcode for
the Evaluation Board.

Table 4–1 Code Changes in the platform.s File

What Changed?
Location of Code in
platform.s File

An initialization procedure was created for the real-time
clock and the interrupt controller on the Evaluation
Board

system reset

The causes of interrupts needed to be determined (such as
clock or a device), which may be required by the Digital
UNIX operating system.

system interrupt

The current state of the Alpha microprocessor is saved in
memory for diagnostic purposes. This state is accessible
to the debug monitor1.

system enter console

Many functions were implemented that were required by
the debug monitor.

system cserve

1The console uses a physical memory mode, which is described in Section 4.8.2.

4–4 PALcode and the Evaluation Board

4.3 Bootstrap Process
The following table and figure provide an overview of the events in the
bootstrap process. Note that a single PALcode can support both an operating
system or control program that is similar to the Digital UNIX operating system
and the Debug Monitor.

Table 4–2 Events in the Bootstrap Process

Step Events

! SROM code loads PALcode and the debug monitor with its associated data
structures. Control is then transferred to the PALcode.

" PALcode performs system initialization functions. Control is then transferred
to the Debug Monitor.

Debug Monitor commands load and transfer control to an application or
bootstrap image.

Figure 4–1 Bootstrap Process

LJ-04071.AI

Evaluation
Board

Initializes

SROM

Application or
Bootstrap Image

On System ROM

On Network or
Disk Drive

Alpha
Microprocessor

Initializes

PALcode

Debug Monitor

1

2

3 Debug Monitor
Load and
Transfer

Commands

PALcode and the Evaluation Board 4–5

4.4 Structure and Contents of the Bootstrap Image
This section describes how a bootable image was created with the Sysgen
utility, and it describes the structure and contents of memory during a system
boot.

4.4.1 Creating a Bootable Image with Sysgen
Sysgen is an image-building utility that concatenates up to ten images into one
bootable image. While arranging these images into one contiguous image, the
Sysgen utility provides padding in memory (by filling locations with zeros) so
that each image is aligned at a page boundary.

The following example shows how to use the Sysgen utility to combine PALcode
and an executable image into one bootable image.

sysgen -e0 palcode -e300000 your_application > your_image

The following list describes how the Sysgen utility combines PALcode and the
system software into one bootable image, as shown in Figure 4–2.

! Image file of osfpal.

" Image file of system software.

Build utility, which combines PALcode and system software into a bootable
image.

$ Resultant bootable image that is loaded on your system.

4–6 PALcode and the Evaluation Board

Figure 4–2 Building a Bootable Image Process

LJ-04080.AI

osfpal

Image Build
Utility

Loadable
Image

Application
Image

1

3

4

2

PALcode and the Evaluation Board 4–7

4.4.2 Memory Layout of Bootstrap Image
Table 4–3 defines the creation steps, and Figure 4–3 shows the memory layout
of a bootstrap image created with the Sysgen utility.

Table 4–3 Creating a Bootstrap Image with the Sysgen Utility

Step Sysgen . . .

! Places the PALcode image at offset address 0000 and appends padding
to it.

" Appends your application image at base address 300000.

Combines the three images to produce a single bootable image.

Figure 4–3 Memory Contents of Bootstrap Image

LJ-04078.AI

Your ApplicationYour Application

Bootable
Image

000000

Offset
Address

PALcode

Padding *

1

3

2 300000

* Added Automatically by the Sysgen Utility

4.5 Relationship Between the Evaluation Board, PALcode,
and Your Application

This section describes two methods of incorporating your application onto an
Evaluation Board. The first method applies when your image is compatible
with the EBSDK PALcode. In this situation, a single PALcode supports the
debug monitor and a compatible image. Figure 4–4 shows the relationship
between the Evaluation Board software and a compatible application image.

4–8 PALcode and the Evaluation Board

The second method applies when your image is not compatible with the
EBSDK PALcode. In this situation, the EBSDK PALcode still supports the
Debug Monitor application, but new PALcode that is compatible with your
image is also required. Figure 4–5 shows the relationship between the
Evaluation Board software and an image that is compatible with the new
PALcode.

Figure 4–4 Image Compliant with EBSDK PALcode

00000

300000

Absolute
Address

(Not Offset)

Evaluation Board Software Memory Map Format
LJ-04070.AI

Debug Monitor40000

Image Compatible
with PALcode

EBSDK PALcode
Non-CALL_PAL Entry Points

Privileged CALL_PAL
Entry Points

Unprivileged CALL_PAL
Entry Points

Continuation Area
Platform-Independent
Routines
Platform-Dependent
Routines

.

.

Memory

PALcode Memory Map Format

PALcode and the Evaluation Board 4–9

Figure 4–5 Image Requiring New PALcode

00000

300000

Absolute
Address

(Not Offset)

Evaluation Board Software Memory Map Format

Debug Monitor40000

Image Compatible
with New PALcode

EBSDK PALcode Non-CALL_PAL Entry Points

Privileged CALL_PAL
Entry Points

Unprivileged CALL_PAL
Entry Points

Continuation Area
Platform-Independent
Routines
Platform-Dependent
Routines

.

.

Memory

PALcode Memory Map Format

New PALcode220000

LJ-04069.AI

See Section 2.4 for information about the PALcode Memory Map format.

4.6 Features of the EBSDK PALcode
The PALcode provided in the EBSDK is an example of the PALcode that you
can create using the tools and processes described in this document. This
PALcode is fully functional with your Evaluation Board. PALcode provides
minimal support for interrupts; it dispatches to the system software to finish
processing the interrupt.

This PALcode provides the following features:

• Supports an I/O strategy that is appropriate for the Evaluation Board.

• Provides basic support of interrupts from the timer, system errors, and
devices.

• Supports virtual-to-physical address translations if page tables are
provided.

4–10 PALcode and the Evaluation Board

• Provides a simple one-to-one, virtual-to-physical address translation
without the use of page tables.

4.7 How PALcode Controls and Analyzes Interrupts
All interrupt requests are received as signals on a limited number of pins on
the Alpha microprocessor. These interrupt requests can be enabled or masked
by the onchip registers of the Alpha microprocessor.

Interrupt requests may originate from I/O devices, memory controllers,
and other Alpha microprocessors. Generally, there is a pin for the timer
interrupt, one or more pins for system errors, and one or more pins for
device interrupts—the exact number of pins varies with the particular Alpha
microprocessor device. However, even though there is a limited number of pins
for interrupt devices, the total number of interrupt devices can be increased by
using interrupt controllers and bridges.

When an interrupt is detected, PALcode is invoked to start processing the
interrupt. This PALcode can be adapted to a variety of design strategies for
servicing the interrupt.

Note

For more information about interrupts, see the microprocessor-specific
Evaluation Board User’s Guide.

4.7.1 Adapting PALcode to Service Interrupts
When modifying PALcode for interrupts, you need to consider the I/O strategy
and how PALcode should respond when servicing the interrupts. The following
list summarizes some of the design considerations for determining how
PALcode should respond when servicing interrupts:

• What is the interrupt structure for the platform?

• How much control and analysis of the interrupt is required by PALcode
before transferring control to the system software?

PALcode and the Evaluation Board 4–11

4.7.2 Processing Interrupts
When an interrupt is detected, the Alpha microprocessor enters PALmode
to service the device. Depending on the interrupt strategy, PALcode may
perform some analysis of the interrupt and access PALmode-visible registers
to save state information. PALcode then dispatches to the system software,
which then processes the interrupt. When the system software has completed
processing the interrupt, the system software executes a return-from-interrupt
CALL_PAL. PALcode processes the return-from-interrupt CALL_PAL and
restores the program counter to the code that was executing at the time of the
interrupt.

4.7.3 How the EBSDK PALcode Processes Interrupts
The EBSDK PALcode distinguishes between three types of external interrupts:
timer, system error, and device. After the type of interrupt is identified,
the EBSDK PALcode performs some minimal processing of the interrupt; it
dispatches to the system software to analyze and control the servicing of the
request.

How PALcode Services a Timer Interrupt
Upon detecting a timer interrupt, the EBSDK PALcode:

1. Saves state on the stack.

2. Indicates the type of interrupt entry with values in a0 . . . a2, and sets the
interrupt priority level (IPL). Setting the IPL to the level of the interrupt
provides onchip masking for lower priority sources.

3. Clears the interrupt in the device’s control register.

4. Dispatches to the system software and indicates a timer interrupt in a0.

How PALcode Services a System Error Interrupt
Upon detecting a system error interrupt, the EBSDK PALcode:

1. Saves state on the stack.

2. Indicates the type of interrupt entry with values in a0 . . . a2, and sets the
interrupt priority level (IPL). Setting the IPL to the level of the interrupt
provides onchip masking for lower priority sources.

3. Saves error logging information in logout frame.

4. Performs some minimal clearing of the condition.

5. Dispatches to the system software to complete the servicing of the machine
check routine.

4–12 PALcode and the Evaluation Board

How PALcode Services a Device Interrupt
Upon detecting a device interrupt, the EBSDK PALcode:

1. Saves state on the stack.

2. Indicates the type of interrupt entry or machine check with values in
a0 . . . a2, and sets the interrupt priority level (IPL). Setting the IPL to the
level of the interrupt provides onchip masking for lower priority sources.

3. Dispatches to the system software to complete the servicing of the
interrupt.

4.8 Memory Management Modes
Memory management provides a mechanism to map the active part of the
virtual address space to the available physical address space. The system
software controls the virtual-to-physical mapping tables (also called page
tables) and saves the inactive parts of the virtual address space on external
storage media. PALcode uses these page tables to perform the virtual-to-
physical address translations and to manage the translation buffers. In a true
virtual memory environment, the Page Table Base Register (PTBR) would
contain the physical page frame number (PFN) of the highest level page table.

4.8.1 Virtual Memory Mapping
The EBSDK PALcode supports virtual-to-physical address translation as
described in the OSF/1 memory management section of the Alpha Architecture
Reference Manual.

4.8.2 Physical Memory Mapping
In the absence of a virtual-memory environment, the EBSDK PALcode provides
an additional feature to allow a simple one-to-one, virtual-to-physical address
translation without the use of page tables. This mode, which is referred to as
physical mode in the EBSDK PALcode, can be enabled by three methods:

• In the enter console routine prior to entering the next level of software, by
setting the least significant bits in the PAL_TEMP registers that contain
the PTBR and Virtual Page Table Base Registers (VPTBR) values. The
system remains in physical mode until a CALL_PAL explicitly changes it
to virtual memory mapping.

• In a swap PALcode (swppal) CALL_PAL function setting bit<63> to a 1
of the PTBR field in the new Process Control Block (PCB). The system
remains in physical mode until another CALL_PAL explicitly changes it to
virtual memory mapping.

PALcode and the Evaluation Board 4–13

• In a swap process context (swpctx) CALL_PAL function by setting bit<63>
to a 1 of the PTBR field in the new Process Control Block (PCB). The
swpctx CALL_PAL function changes to physical mode on a per-process
basis.

Note

See the sections about privileged OSF/1 PALcode instructions and
OSF/1 process structure in the Alpha Architecture Reference Manual.

The EBSDK PALcode uses the following algorithm to generate a page table
entry (PTE) that maps a one-to-one, virtual-to-physical address translation:

PTE <63:32> <- left_shift (VA, {32 - lg(PageSize)}) ! Fabricate PFN
PTE<13> <- 1 ! Enable writes from user mode
PTE<12> <- 1 ! Enable writes from kernel mode
PTE<9> <- 1 ! Enable reads from user mode
PTE<8> <- 1 ! Enable reads from kernel mode
PTE<6:5> <- 3 ! Treat a block of 512 pages as a single larger page
PTE<4> <- 1 ! Make this PTE match all address space numbers
PTE<0> <- 1 ! Set PTE valid

The EBSDK PALcode writes the PTE and tag, corresponding to the translation
of the specified virtual address, into the appropriate translation buffers using
the internal processor registers.

4–14 PALcode and the Evaluation Board

4.9 Console Service Function Overview
This section provides a summary of the console service functions included with
the EBSDK PALcode. Some console service functions (Section 4.9.1) apply to
all Alpha microprocessors. Others apply only to specific Alpha microprocessors
(Sections 4.9.2 through 4.9.4).

4.9.1 Console Service Functions for All Alpha Microprocessors
The following table lists the console service functions that apply to all Alpha
microprocessors.

Description Mnemonic See Section . . .

Jump to PALcode jtopal 4.10.1

Load quadword physical ldqp 4.10.2

Output a character to the serial port putc 4.10.3

Read impure pointer rd_impure 4.10.11

Store quadword physical stqp 4.10.12

Write interrupt mask register wr_int 4.10.20

In addition to these console service functions, there are microprocessor-specific
console service functions. See Sections 4.9.2, 4.9.3, and 4.9.4.

PALcode and the Evaluation Board 4–15

4.9.2 Console Service Functions for Alpha 21064 and 21064A
Microprocessors

The following table lists the console service functions that are specific to the
Alpha 21064 and 21064A microprocessors.

Description Mnemonic See Section . . .

Read ABOX_CTL internal processor
register

rd_abox 4.10.4

Read BIU_CTL internal processor
register

rd_biu 4.10.7

Read ICCSR internal processor register rd_iccsr 4.10.9

Write ABOX_CTL internal processor
register

wr_abox 4.10.13

Write BIU_CTL internal processor
register

wr_biu 4.10.16

Write ICCSR internal processor register wr_iccsr 4.10.18

4.9.3 Console Service Functions for Alpha 21066, 21066A and 21068
Microprocessors

The following table lists the console service functions that are specific to the
Alpha 21066, 21066A, and 21068 microprocessors.

Description Mnemonic See Section . . .

Read ABOX_CTL internal processor
register

rd_abox 4.10.4

Read ESR internal processor register rd_esr 4.10.8

Read ICCSR internal processor register rd_iccsr 4.10.9

Write ABOX_CTL internal processor
register

wr_abox 4.10.13

Write ESR internal processor register wr_esr 4.10.17

Write ICCSR internal processor register wr_iccsr 4.10.18

4–16 PALcode and the Evaluation Board

4.9.4 Console Service Functions for the Alpha 21164 Microprocessor
The following table lists the console service functions that are specific to the
Alpha 21164 microprocessor.

Description Mnemonic See Section . . .

Read BC_CONFIG internal processor
register

rd_bcCfg 4.10.5

Read BC_CONTROL internal processor
register

rd_bcCtl 4.10.6

Read ICSR internal processor register rd_icsr 4.10.10

Write BC_CONFIG internal processor
register

wr_bcCfg 4.10.14

Write BC_CONTROL internal processor
register

wr_bcCtl 4.10.15

Write ICSR internal processor register wr_icsr 4.10.19

PALcode and the Evaluation Board 4–17

4.10 Console Service Function Descriptions
This section provides descriptions of the console service functions for Alpha
microprocessors.

4.10.1 Jump to PALcode

Alpha Microprocessors:

All

Format:

jtopal !PALcode format

Operation:
if (PS<mode> EQ 1) then

{Initiate OPCDEC fault}
endif
tmp <- a0 AND {NOT 3}
PC <- tmp OR 1

Exceptions:

Opcode reserved to Digital

Instruction Mnemonics:

jtopal Transfer control in PALmode

Qualifiers:

None

Description:

The PC is loaded with the target address. The new PC is supplied from
register a0. The least significant bit of a0 is set to indicate transfer of control
in PALmode. Registers t0..t4, t8..t11, s6, and a0..a5 are UNPREDICTABLE.

4–18 PALcode and the Evaluation Board

4.10.2 Load Quadword Physical

Alpha Microprocessors:

All

Format:

ldqp !PALcode format

Operation:
if (PS<mode> EQ 1) then

{Initiate OPCDEC fault}
endif
v0 <- (a0)<63:0>

Exceptions:

Opcode reserved to Digital

Instruction Mnemonics:

ldqp Load Quadword Physical from Memory to Register

Qualifiers:

None

Description:

The physical address is passed in register a0 and the source operand is fetched
from memory and written to register v0.

PALcode and the Evaluation Board 4–19

4.10.3 Output a Character to the Serial Port

Alpha Microprocessors:

All

Format:

putc !PALcode format

Operation:
if (PS<mode> EQ 1) then

{Initiate OPCDEC fault}
endif
if {LSR<THRE> EQ 1} then

THR<7:0> <- a0
v0 <- 1

else
v0 <- 0

Exceptions:

Opcode reserved to Digital

Instruction Mnemonics:

putc Output a Character to the Serial Port

Qualifiers:

None

Description:

Outputs an 8-bit character passed in register a0 to the serial port. Returns 1
in v0 if the character was successfully transmitted; otherwise, returns zero.

4–20 PALcode and the Evaluation Board

4.10.4 Read ABOX_CTL Internal Processor Register

Alpha Microprocessors:

21064, 21064A, 21066, 21066A, 21068

Format:

rd_abox !PALcode format

Operation:
if (PS<mode> EQ 1) then

{Initiate OPCDEC fault}
endif
tmp <- ptImpure
v0 <- (tmp + CNS_Q_BASE + CNS_Q_ABOX_CTL)

Exceptions:

Opcode reserved to Digital

Instruction Mnemonics:

rd_abox Read ABOX Control Register

Qualifiers:

None

Description:

The read ABOX_CTL internal processor register function returns the shadow
copy of the ABOX control register, fetched from the PALcode impure scratch
area, in register v0. Registers t0 and t8..t11 are UNPREDICTABLE.

PALcode and the Evaluation Board 4–21

4.10.5 Read BC_CONFIG Internal Processor Register

Alpha Microprocessors:

21164

Format:

rd_bcCfg !PALcode format

Operation:
if (PS<mode> EQ 1) then

{Initiate OPCDEC fault}
endif
tmp <- ptImpure
v0 <- (tmp + CNS_Q_BC_CFG)

Exceptions:

Opcode reserved to Digital

Instruction Mnemonics:

rd_bccfg Read BC_CONFIG register

Qualifiers:

None

Description:

The read Bcache configuration internal processor register function returns
the shadow copy of the BC_CONFIG control register, fetched from PALcode
impure area, in register v0. Registers t0 and t8..t11 are UNPREDICTABLE.

4–22 PALcode and the Evaluation Board

4.10.6 Read BC_CONTROL Internal Processor Register

Alpha Microprocessors:

21164

Format:

rd_bcCtl !PALcode format

Operation:
if (PS<mode> EQ 1) then

{Initiate OPCDEC fault}
endif
tmp <- ptImpure
v0 <- tmp + CNS_Q_BC_CTL

Exceptions:

Opcode reserved to Digital

Instruction Mnemonics:

rd_bcctl Read BC_CONTROL register

Qualifiers:

None

Description:

The read Bcache control internal processor register function returns the
shadow copy of the BC_CONTROL register, fetched from PALcode impure area,
in register v0. Registers t0 and t8..t11 are UNPREDICTABLE.

PALcode and the Evaluation Board 4–23

4.10.7 Read BIU_CTL Internal Processor Register

Alpha Microprocessors:

21064, 21064A

Format:

rd_biu !PALcode format

Operation:
if (PS<mode> EQ 1) then

{Initiate OPCDEC fault}
endif
tmp <- ptImpure
v0 <- (tmp + CNS_Q_BASE + CNS_Q_BIU_CTL)

Exceptions:

Opcode reserved to Digital

Instruction Mnemonics:

rd_biu Read BIU_CTL register

Qualifiers:

None

Description:

The read bus interface unit control internal processor register function returns
the shadow copy of the BIU_CTL control register, fetched from PALcode impure
area, in register v0. Registers t0 and t8..t11 are UNPREDICTABLE.

4–24 PALcode and the Evaluation Board

4.10.8 Read ESR Internal Processor Register

Alpha Microprocessors:

21066, 21066A, 21068

Format:

rd_esr !PALcode format

Operation:
if (PS<mode> EQ 1) then

{Initiate OPCDEC fault}
endif
v0 <- ESR<63:0>

Exceptions:

Opcode reserved to Digital

Instruction Mnemonics:

rd_esr Read Error Status register

Qualifiers:

None

Description:

The read error status internal processor register function returns the value of
the memory controller error status register, addressed in physical memory, in
register v0. Registers t0 and t8..t11 are UNPREDICTABLE.

PALcode and the Evaluation Board 4–25

4.10.9 Read ICCSR Internal Processor Register

Alpha Microprocessors:

21064, 21064A, 21066, 21066A, 21068

Format:

rd_iccsr !PALcode format

Operation:
if (PS<mode> EQ 1) then

{Initiate OPCDEC fault}
endif
v0 <- ptIccsr

Exceptions:

Opcode reserved to Digital

Instruction Mnemonics:

rd_iccsr Read instruction cache control and status register

Qualifiers:

None

Description:

The read instruction cache control and status register function returns the
shadow copy of the instruction cache control and status register in register v0.
Registers t0 and t8..t11 are UNPREDICTABLE.

4–26 PALcode and the Evaluation Board

4.10.10 Read ICSR Internal Processor Register

Alpha Microprocessors:

21164

Format:

rd_icsr !PALcode format

Operation:
if (PS<mode> EQ 1) then

{Initiate OPCDEC fault}
endif
v0 <- ICSR

Exceptions:

Opcode reserved to Digital

Instruction Mnemonics:

rd_icsr Read ICSR register

Qualifiers:

None

Description:

The read Ibox control and status internal processor register function
returns the value of ICSR in register v0. Registers t0 and t8..t11 are
UNPREDICTABLE.

PALcode and the Evaluation Board 4–27

4.10.11 Read Impure Pointer

Alpha Microprocessors:

All

Format:

rd_impure !PALcode format

Operation:
if (PS<mode> EQ 1) then

{Initiate OPCDEC fault}
endif
v0 <- ptImpure

Exceptions:

Opcode reserved to Digital

Instruction Mnemonics:

rd_impure Read Impure Pointer

Qualifiers:

None

Description:

The read impure pointer function returns the base address of the PALcode
impure scratch area in v0. On return from the rd_impure function, registers t0
and t8..t11 are UNPREDICTABLE.

4–28 PALcode and the Evaluation Board

4.10.12 Store Quadword Physical

Alpha Microprocessors:

All

Format:

stqp !PALcode format

Operation:
if (PS<mode> EQ 1) then

{Initiate OPCDEC fault}
endif
(a0) <- a1

Exceptions:

Opcode reserved to Digital

Instruction Mnemonics:

stqp Store Quadword Physical from Register to Memory

Qualifiers:

None

Description:

The physical address is passed in register a0 and the a1 operand is written to
memory at this address.

PALcode and the Evaluation Board 4–29

4.10.13 Write ABOX_CTL Internal Processor Register

Alpha Microprocessors:

21064, 21064A, 21066, 21066A, 21068

Format:

wr_abox !PALcode format

Operation:
if (PS<mode> EQ 1) then

{Initiate OPCDEC fault}
endif
tmp <- ptImpure
tmp <- tmp + CNS_Q_BASE + CNS_Q_ABOX_CTL
(tmp) <- a0
aboxCtl <- a0

Exceptions:

Opcode reserved to Digital

Instruction Mnemonics:

wr_abox Write ABOX Control Register

Qualifiers:

None

Description:

The write ABOX_CTL internal processor register function writes both the
ABOX control internal processor register and the shadow copy of the ABOX
control register, stored in the PALcode impure scratch area, with the value
passed in a0. Registers t0 and t8..t11 are UNPREDICTABLE.

4–30 PALcode and the Evaluation Board

4.10.14 Write BC_CONFIG Internal Processor Register

Alpha Microprocessors:

21164

Format:

wr_bcCfg !PALcode format

Operation:
if (PS<mode> EQ 1) then

{Initiate OPCDEC fault}
endif
tmp <- ptImpure
tmp <- tmp + + CNS_Q_BC_CFG
(tmp) <- a0
bcCfg <- a0

Exceptions:

Opcode reserved to Digital

Instruction Mnemonics:

wr_bccfg Write BC_CONFIG Register

Qualifiers:

None

Description:

The write Bcache configuration internal processor register function writes
both the BC_CONFIG internal processor register, addressed in physical
memory, and the shadow copy of the BC_CONFIG register, stored in the
PALcode impure area, with the value passed in a0. Registers t0 and t8..t11 are
UNPREDICTABLE.

PALcode and the Evaluation Board 4–31

4.10.15 Write BC_CONTROL Internal Processor Register

Alpha Microprocessors:

21164

Format:

wr_bcCtl !PALcode format

Operation:
if (PS<mode> EQ 1) then

{Initiate OPCDEC fault}
endif
tmp <- ptImpure
tmp <- tmp + + CNS_Q_BC_CTL
(tmp) <- a0
bcCtl <- a0

Exceptions:

Opcode reserved to Digital

Instruction Mnemonics:

wr_bcctl Write BC_CONTROL Register

Qualifiers:

None

Description:

The write Bcache control internal processor register function writes both the
BC_CONTROL register, addressed in physical memory, and the shadow copy of
the BC_CONTROL register, stored in the PALcode impure area, with the value
passed in a0. Registers t0 and t8..t11 are UNPREDICTABLE.

4–32 PALcode and the Evaluation Board

4.10.16 Write BIU_CTL Internal Processor Register

Alpha Microprocessors:

21064, 21064A

Format:

wr_biu !PALcode format

Operation:
if (PS<mode> EQ 1) then

{Initiate OPCDEC fault}
endif
tmp <- ptImpure
tmp <- tmp + CNS_Q_BASE + CNS_Q_BIU_CTL
(tmp) <- a0
biuCtl <- a0

Exceptions:

Opcode reserved to Digital

Instruction Mnemonics:

wr_biu Write BIU Control Register

Qualifiers:

None

Description:

The write bus interface unit control internal processor register function writes
both the BIU control internal processor register and the shadow copy of the
BIU control register, stored in the PALcode impure area, with the value passed
in a0. Registers t0 and t8..t11 are UNPREDICTABLE.

PALcode and the Evaluation Board 4–33

4.10.17 Write ESR Internal Processor Register

Alpha Microprocessors:

21066, 21066A, 21068

Format:

wr_esr !PALcode format

Operation:
if (PS<mode> EQ 1) then

{Initiate OPCDEC fault}
endif
ESR<63:0> <- a0

Exceptions:

Opcode reserved to Digital

Instruction Mnemonics:

wr_esr Write Error Status Register

Qualifiers:

None

Description:

The write error status internal processor register function writes the value
passed in a0 to the memory controller error status register, addressed in
physical memory. Registers t0 and t8..t11 are UNPREDICTABLE.

4–34 PALcode and the Evaluation Board

4.10.18 Write ICCSR Internal Processor Register

Alpha Microprocessors:

21064, 21064A, 21066, 21066A, 21068

Format:

wr_iccsr !PALcode format

Operation:
if (PS<mode> EQ 1) then

{Initiate OPCDEC fault}
endif
ptIccsr <- a0
iccsr <- a0

Exceptions:

Opcode reserved to Digital

Instruction Mnemonics:

wr_iccsr Write Instruction Cache Control and Status Register

Qualifiers:

None

Description:

The write ICCSR internal processor register function writes both the
instruction cache control and status register and its PALtemp shadow
copy with the value passed in register a0. Registers t0 and t8..t11 are
UNPREDICTABLE.

PALcode and the Evaluation Board 4–35

4.10.19 Write ICSR Internal Processor Register

Alpha Microprocessors:

21164

Format:

wr_icsr !PALcode format

Operation:
if (PS<mode> EQ 1) then

{Initiate OPCDEC fault}
endif
icsr <- a0

Exceptions:

Opcode reserved to Digital

Instruction Mnemonics:

wr_icsr Write ICSR Register

Qualifiers:

None

Description:

The write Ibox control and status internal processor register function
writes the ICSR with the value passed in a0. Registers t0 and t8..t11 are
UNPREDICTABLE.

4–36 PALcode and the Evaluation Board

4.10.20 Write Interrupt Mask Register

Alpha Microprocessors:

All

Format:

wr_int !PALcode format

Operation:
if (PS<mode> EQ 1) then

{Initiate OPCDEC fault}
endif
ptIntMask <- a0

Exceptions:

Opcode reserved to Digital

Instruction Mnemonics:

wr_int Write Interrupt Mask Register

Qualifiers:

None

Description:

The write interrupt mask function writes the value passed in a0 to the
interrupt mask register. Registers t0, and t8..t11 are UNPREDICTABLE.
On the Alpha 21064, 21064A, 21066, 21066A, and 21068 microprocessors,
this mask provides mapping between the Digital UNIX interrupt priority
level and interrupts to be enabled or disabled through the HIER (hardware
interrupt enable register). On the Alpha 21164 microprocessor, this mask
provides a translation between the Digital UNIX interrupt priority level and
the hardware interrupt priority level. The hardware interrupt priority level
determines which interrupts are enabled or disabled.

PALcode and the Evaluation Board 4–37

A
Technical Support and Ordering

Information

Obtaining Technical Support
If you need technical support or help deciding which literature best meets your
needs, call the Digital Semiconductor Information Line:

United States and Canada
Outside North America

1–800–332–2717
+1–508–628–4760

or visit the Digital Semiconductor World-Wide Web Internet site:
http://www.digital.com/info/semiconductor

Technical Support and Ordering Information A–1

Ordering Digital Semiconductor Products
To order Alpha microprocessors, evaluation boards, and motherboards, contact
your local distributor.

To obtain a Digital Semiconductor Product Catalog, contact the Digital
Semiconductor Information Line. The following table lists some of the
semiconductor products available from Digital:

Product Order Number

Alpha 21064A-233 Microprocessor 21064–BB

Alpha 21064A-275 Microprocessor 21064–DB

Alpha 21066-166 Microprocessor 21066–AA

Alpha 21066A-100 Microprocessor 21066–CB

Alpha 21066A-233 Microprocessor 21066–AB

Alpha 21164-266 Microprocessor 21164–AA

Alpha 21164-300 Microprocessor 21164–BA

Evaluation Board Kits
Evaluation board kits include a complete design kit, Windows NT installation
kit, and an accessories kit with an evaluation board.

Product Order Number

Alpha 21066A Evaluation Board Kit –233MHz 21A03–03

AlphaPC 64 Evaluation Board Kit –275MHz 21A02–03

Alpha 21164 Evaluation Board Kit –266MHz 21A04–01

Motherboard Kits
Motherboard kits include the motherboard and the motherboard user’s manual.

Product Order Number

Alpha 21164 Motherboard 21A04–A0

Alpha 21164 Motherboard with 266-MHz CPU and
2-MB Cache

21A04–A1

AlphaPC 164 Motherboard 21A04–B0

AlphaPC 64 P3 Motherboard without CPU, cache,
and memory

21A02–A3

A–2 Technical Support and Ordering Information

Product Order Number

AlphaPC 64 P3 Motherboard with 2-MB cache but
without CPU and memory

21A02–A4

AlphaPC 64 P3 Motherboard with 512-KB cache but
without CPU or memory

21A02–A5

Design Kits
Design kits include full documentation and schematics. They do not include
evaluation boards or related hardware.

Product Order Number

Alpha 21064 Evaluation Board Design Kit QR–21A01–13

AlphaPC 64 Evaluation Board Design Kit QR–21A02–13

Alpha 21066A Evaluation Board Design Kit QR–21A03–13

Alpha 21164 Evaluation Board Design Kit QR–21A04–11

AlphaPC 164 Evaluation Board Design Kit QR–21A04–12

Ordering Digital Semiconductor Literature
The following table lists some of the available Digital Semiconductor literature.
For a complete list, contact the Digital Semiconductor Information Line or visit
Digital Semiconductor’s World-Wide Web Internet site:
http://www.digital.com/info/semiconductor.

Title Order Number

Alpha AXP Architecture Reference Manual1 EY–T132E–DP

Alpha 21064 and Alpha 21064A Microprocessors
Hardware Reference Manual

EC–Q9ZUA–TE

Alpha 21066, 21066A, and 21068 Microprocessors
Hardware Reference Manual

EC–QC4GA–TE

Alpha 21066/21066A Microprocessors Data Sheet EC–QC4HA–TE

Alpha 21066A Microprocessor Evaluation Board (EB66+)
User’s Guide

EC–QDVCB–TE

Alpha 21066A Microprocessor Evaluation Board (EB66+)
Product Brief

EC–QDVEA–TE

Alpha 21164 Microprocessor Hardware Reference Manual EC–QAEQB–TE

1To purchase the Alpha AXP Architecture Reference Manual, call 1–800–DIGITAL from the U.S. or
Canada, contact your local Digital office, or call Digital Press at 1–800–366–2665.

Technical Support and Ordering Information A–3

Title Order Number

AlphaPC 64 Evaluation Board Product Brief EC–QEZMC–TE

AlphaPC 64 Evaluation Board User’s Guide EC–QGY2C–TE

AlphaPC 164 Motherboard User’s Manual EC–QPG0A–TE

AlphaPC 164 Microprocessor Evaluation Board Read Me
First

EC–QPFZA–TE

Alpha Evaluation Boards Software Developer’s Kit and
Firmware Update Read Me First

EC–QERSE–TE

Alpha Microprocessors Evaluation Board Debug Monitor
User’s Guide

EC–QHUVD–TE

Alpha Microprocessors Evaluation Board Software Design
Tools User’s Guide

EC–QHUWB–TE

Alpha Microprocessors Evaluation Board Windows NT
3.51 Installation Guide

EC–QLUAE–TE

Alpha Microprocessors SROM Mini-Debugger User’s
Guide

EC–QHUXB–TE

Alpha SRM Console for Alpha Microprocessor Evaluation
Boards User’s Guide

EC–QK8DE–TE

DECchip 21064 and DECchip 21064A Alpha AXP PCI
Evaluation Board User’s Guide

EC–N0640–72

Digital Semiconductor 21164 Alpha Microprocessor
Evaluation Board User’s Guide

EC–QD2UD–TE

Digital Semiconductor 21164 Alpha Microprocessor
Motherboard User’s Manual

EC–QLJLC–TE

A–4 Technical Support and Ordering Information

Glossary

Alpha microprocessor

In this document, the term Alpha microprocessor refers to the Alpha 21064,
21064A, 21066, 21066A, 21068, and 21164 microprocessors, unless noted
otherwise.

atomic

An operation or sequence of events that, once begun, completes without
interruption.

Bcache

An external backup cache, not physically located on the Alpha microprocessor.

CALL_PAL

Call Privileged Architecture Library. An Alpha instruction that can be either
privileged or unprivileged, and functions only in PALmode. CALL_PALs
can emulate instructions without hardware support, can execute complex
sequences such as atomic operations, and can provide support for instructions
that require an interlocked memory access. The hardware of the Alpha
microprocessor directly supports up to 64 privileged and unprivileged
CALL_PALs with dispatches to specific address offsets.

control and status registers

Include the internal processor registers for all Alpha microprocessors, and
the memory controller registers plus the control registers that are specific to
certain Alpha microprocessors.

cpp

C language pre-processor used in the PALcode build process.

Glossary–1

debug monitor

A program that system designers use on the Evaluation Board to enter
commands for debugging and processing their customized PALcode routines
and other applications they have written for Alpha microprocessors.

DECladebug

A Digital software product that provides interactive and remote debugging
capabilities.

EB64+

21064 PCI Evaluation Board. An Evaluation Board that serves as a target to
load, examine, and debug an operating system or embedded application.

EB66

21066 and 21068 Evaluation Board. An Evaluation Board that serves as
a target to load, examine, and debug an operating system or embedded
application.

EB66+

21066A Evaluation Board. An Evaluation Board that serves as a target to
load, examine, and debug an operating system or embedded application.

EBSDK

Evaluation Board Software Developer’s Kit. A kit that contains PALcode for
Evaluation Boards and tools for creating PALcode.

embedded control program

An application that has control of all system resources (similar to an operating
system). Examples include communication engines and video products.

entry point

The starting point within a program that receives control to begin a new
function.

Evaluation Board

A development module that allows a system designer to load, examine,
and debug an operating system or embedded application on an Alpha
microprocessor. In this document, the term Evaluation Board refers to the
21064 Evaluation Board, the 21064 PCI Evaluation Board, the 21066 and
21068 Evaluation Board, the 21066A Evaluation Board, the 21164 Evaluation

Glossary–2

Board, the AlphaPC 64 Evaluation Board, and the AlphaPC 164 Motherboard
unless noted otherwise.

Evaluation Board Software Developer’s Kit.

See EBSDK.

firmware

Software or a set of instructions that is stored in a fixed (wired-in) or firm way,
usually in a read-only memory, designed to help hardware perform its assigned
functions.

gas

The GNU assembler.

image

Any executable file. Examples include operating systems, O/S loaders,
programs, and embedded control programs.

impure area

A common data area maintained by PALcode, which may be accessed by the
operating system and the debug monitor software. The impure area shadows
the write-only internal processor registers, which contain internal state and
MCHK logout information that is saved during a system halt.

internal processor register (IPR)

See IPR.

IPR

Internal processor register. Registers that indicate status and control the
processor state, which are only accessible through PALcode.

Istream

Instruction stream. Instructions that are executing.

machine check

See MCHK.

Makefile

Command file that controls the building of a large program from multiple
source files.

Glossary–3

memory map

Physical layout of code in memory.

module

A small, distinct section of a source program. Each PALcode routine is
implemented as a module. System designers use the make command during
the Modify PALcode Procedure to assemble these modules and link them into
one image.

native-mode

All processes or programs that do not run in PALmode.

PAL

Privileged Architecture Library.

PALcode

Alpha Privileged Architecture Library code. Software that provides an
architecturally defined programming interface that is common across all Alpha
microprocessors.

PALcode Violation Checker

See pvc.

PALmode

The special, privileged operating environment that the Alpha microprocessor
invokes whenever it executes PALcode. PALmode enables the use of reserved
opcodes and disables Istream memory mapping and interrupts.

PAL_TEMP

A set of internal processor registers that are used by PALcode for temporary
storage.

platform-independent (Digital UNIX PALcode)

The portion of the Digital UNIX PALcode that executes on any Alpha
microprocessor-based design without modifications.

platform-dependent (Digital UNIX PALcode)

The portion of the Digital UNIX PALcode that manages the platform-specific
needs of a particular Alpha microprocessor-based design and requires
modifications for different platforms.

Glossary–4

privileged

Functions that can be accessed only from kernel mode.

Privileged Architecture Library code (PALcode)

See PALcode.

PTBR

The page table base register. The PTBR contains the physical page frame
number (PFN) of the highest level (level 1) page table.

pvc

PALcode Violation Checker. A tool, used in the build procedure, that checks
PALcode for timing and other coding violations.

scratch area

See impure area.

SROM

Serial read-only memory. System designers can use the SROM interface
to power up and initialize the Alpha microprocessor and Evaluation Board
system.

sysgen

A sample utility (used on the Evaluation Board system) that concatenates
the HWRPB, PALcode, and the Digital UNIX kernel images into one bootable
image.

TB

Translation buffer. A cache that contains recent virtual address translations
and page protection information.

translation buffer

See TB.

unprivileged

Functions that can be accessed from any mode of execution.

Glossary–5

Index

A
21064, 21064A, 21066, 21066A, and 21068

entry points, 2–4
Alpha

documentation, A–3
Applications

access to PALcode and system software,
1–3

Assembly rules
programming considerations, 3–9

Associated literature, A–3
Atomic, 1–4

B
Bootstrap process, 4–5

C
CALL_PAL Entry points

determining, 2–8
privileged, 2–8
unprivileged, 2–8

CALL_PAL Instructions
customizing considerations, 4–3

Code changes, 4–4
Console service function

descriptions, 4–18
Control and status registers, 2–11
Conventions

of document, x

Customization decisions, 3–10
Customize

procedure, 3–12

D
Debug Monitor

functions, 4–3
Design decisions

examples, 3–12
Developer’s kit

files included, 3–4
Development concepts

PALcode, 3–6
Device interrupt

how EBSDK PALcode services, 4–13
Document

audience, viii
conventions, x
purpose, viii
structure of, ix

Documentation, A–3

E
Embedded Control Programs

access to PALcode and hardware, 1–3
Entry points

CALL_PAL, 2–8
invoking, 2–2

21164 Entry points, 2–6
Evaluation Board

how PALcode is used d, 4–3
purpose, 4–2
relationship to PALcode, 4–8

Index–1

Executable files
description, 3–5

Executable image
creating, 3–8

F
Files

complete listing, 3–4
routines cross-referenced, 3–4

H
Header files

description, 3–4

I
Instruction-issue rules

programming considerations, 2–10
Intended audience, viii
Intermediate files

description, 3–5
Internal processor register access

access to registers, 2–11
Interrupts, 1–4, 2–2

disabled, 1–6
how PALcode processes, 4–12
processing, 4–12
responsibility of PALcode, 4–11
structure, 4–11

Invoking conditions
for PALcode, 2–2

L
Literature, A–3

M
Makefile files

description, 3–5
Memory contents

during system boot, 4–8

Memory format, 4–8
Memory-management

modes, 4–13
Memory mapping

physical, 4–13
virtual, 4–13

Memory structure, 2–4
Modifying

PALcode, 3–12
Modifying PALcode

process, 3–12
tools, 3–12

O
Ordering products, A–2
Organization

of document, ix
osfpal

building, 3–8
osfpal.ent

description, 3–5

P
PALcode

and instruction-issue rules, 2–10
and PALmode, 1–6
and PALmode restrictions, 2–10
and pvc, 3–9
and pvc label format, 3–9
assembly rules, 3–9
complete files listing, 3–4
customizing, 3–10
description of, 1–2
environment of, 1–6
hardware-detected, 2–4
hardware support functions, 1–2
invoking conditions, 2–2
memory structure, 2–4
modify procedure, 3–12
purpose, vii
relationship to Evaluation Board, 4–8
reserved opcodes, 1–6
software-initiated, 2–4

Index–2

PALcode (cont’d)
tools, 3–6

PALcode development concepts
description, 3–6

PALcode example
code changed, 4–4
constants changed, 4–4

PALcode product
structure, 3–2

PALmode
a privileged environment, 1–6
restrictions, 2–10

Parts
ordering, A–2

Physical memory mapping, 4–13
Procedure

to modify PALcode, 3–12
Programming considerations

instruction-issue rules, 2–10
PALcode assembly rules, 3–9
pvc label format, 3–9

pvc
and PALcode, 3–9
error message, 3–10
suppressing error messages, 3–10

pvc label format
programming considerations, 3–9

R
Related documentation, A–3
Reset, 2–2
Restrictions

PALmode, 2–10
Routines

files cross-referenced, 3–4

S
Semiconductor Information Line, A–1
Source files

description, 3–5
SROM

mini-debugger, 4–3
power-up code, 4–2

Structure
of document, ix

Sysgen, 4–6
System boot process, 4–6
System error

how EBSDK PALcode services, 4–12
System Software

access to PALcode and hardware, 1–3

T
Technical support, A–1
Timer interrupt

how EBSDK PALcode services, 4–12

U
Utility

sysgen, 4–6

V
Virtual memory mapping, 4–13

Index–3

