
extended arithmet
ic

DIGITAL EQUIPMENT CORPORATION « MAYNARD, MASSACHUSETTS

Copyright © 1971, 1972, 1973 by Digital Equipment Corporation

The material in this manual is for information-

al purposes and is subject to change without

notice.

The following are trademarks of Digital Equipment

Corporation, Maynard, Massachusetts:

DEC PDP

FLIP CHIP FOCAL

DIGITAL COMPUTER LAB

UNIBUS

Ist Edition, May 1971

2nd Printing, February 1972

3rd Printing, May 1972

4th Printing, November 1972

5th Printing, April 1973

CONTENTS

Page Page

CHAPTER 1 GENERAL DESCRIPTION AND INSTALLATION 3.4.3.5 Division Algorithm | 3.5

11 General Description 1-1 3.4.3.6 Division Example 3.5

12 Specifications 11 344 Shift Operations | | 3-5

1.3 Documentation 1-1
14 Installation 11 CHAPTER 4 GENERAL HARDWARE DESCRIPTION

| fi 4.1 Block Diagram Discussion 4-1

CHAPTER 2 PROGRAMMING THE KE11-A 4.2 Operation Cycles | | 4-1

21 KE11-A Registers 21 42.1 Multiplication 4-1

2.1.1 Multiplier Quotient Register | 2-1 4.2.1.1 Multiply Implementation 4-2
2.1.2 Accumulator Register -1 4.2.1.2 Multiplication Example 4-3

2.13 The Step Counter ' 21 422 Division 4-3
71.4 The Status Register (SR) 2.2 4.2.2.1 Divide Implementation 4-4

22 KE11-A Operations 23 4.2.3 - Shifts 45

2.2.1 Multiplication 2-3 | e

9919 Division | | 2.3 CHAPTER 5 DETAILED HARDWARE DESCRIPTION

223 Normalization 3 CHAPTER 6 MAINTENANCE
2.2.4 Logical Shifts | 2-4 o

2.2.5 Arithmetic Shift 2-4 | o

23 PDP-11 Instructions and the KE11-A 24 APPENDIX A COMFLEX IC DESCRIFTIONS
2.3.1 Multiplication and Division 24 A.l 7482 Adders A-1

2.4 KE11-A Timing 2-5 A2 74H87 4-Bit Sign Extender A-2

A.3 74153 4-Way Multiplexer A-2

CHAPTER 3 THEORY OF OPERATION A4 8271 4-Bit Shift Register | A-3

3.1 Binary 2’s Complement Notation 3-1
39 Multiplication 3.1 APPENDIX B KE11-A INSTRUCTION SUMMARY

33 Division 3-2 | | | |

3.4 Algorithms for KE11-A Operations | 3.3 APPENDIX C NAMES OF MATHEMATICAL TERMS

3.4.1 Basic Shift Operation 3-3

3.4.2 Multiplication 3-3 |

3.4.2.1 Multiply Algorithm 3-4 'LLUSTRATlONs
3.4.2.2 Multiplication Example 3-4 .]

343 Division 34 Figure No. Title Art No. Page
3.4.3.1 Division Cycle 4 34 3-1 Multiply Algorithm Flowchart 11-0356 3-4
3.4.3.2 Overflow Detection 3-4 3-2 Divide Algorithm Flow Chart 11-0357 3-6

3.4.3.3 Remainder Correction 3-5 3-3 Normalize Algorithm Flow Chart 11-0358 3-7

3.4.3.4 Division Register Structure 3-5 34 Arithmetic Shift Algorithm Flow Chart 11-0359 3-7
3-5 Logical Shift Algorithm Flow Chart 11-0360 3-8

ILLUSTRATIONS (cont)

TABLES

Table No.

iv

Figure No.

4-1

- 4-2

4-3

5-1

A-1

A-2

A-3

A-4

1-1

1-2

2-1

2-2

2-3

2-4

2-5

5-1

6-1

A-1

A-2

A-3

A-4

C-1

Title

KE11-A Bit-Slice Diagram

Multiply Implementation Flow Chart

Divide Implementation Flow Chart

Clock Rate Adjustment

7482 2-Bit Binary Full Adders |

74H87 4-Bit True/Complement, Zero/One Element

74153 Dual 4-Line-To-1-Line Data Selector/Multiplexer

8271 4-Bit Shift Register

Title

Related Documents

List of Diagnostic Programs

KE11-A Device Registers

KE11-A Status Register

KE11-A Reloadable Condition Codes

KE11-A Address Assignments

KE11-A Operation Timing

Sign Extension Logic

Timing Signal Functions

Adder Truth Table

Truth Table

Truth Table

Control State Truth Table

Operand Names

Art No.

110365

11-0366

11-0363

11-0362

11-0361

11-0364

Page

A-2

A-2

A-3

Page

1-1

1-2

2-1

2-2

2-4

2-5

5-16

6-1

A-1

A-2

A-3

C-1

CHAPTER 1 7

GENERAL DESCRIPTION AND INSTALLATION

1.1 GENERAL DESCRIPTION

The KE11-A Extended Arithmetic Element is a device that performs arithmetic operations on numerical data.

The KE11-A can be included in a PDP-11 System configuration as a device attached to the Unibus @) to ex-

pedite numerical calculations.

The KE11-A performs five arithmetic operations.

a. Multiplication

b. Division

c¢. Three different shift operations on data operands of up to 32 bits.

The KE11-A is not a processor option; it communicates with the processor entirely through Unibus data transfers

and can operate simultaneously with processor operations.

1.2 SPECIFICATIONS

The physical and environmental requirements of the KE11-A Extended Arithmetic Element are the same as the

corresponding requirements of the processor in the PDP-11 System. All power requirements of the KE11-A are

supplied by the system power supply; the KE11-A requires 4A at +5V.

1.3 DOCUMENTATION

This manual is divided into six chapters, as follows:

a. General Description and Installation

b. Programming the KE11-A

¢. Theory of Operation

d. General Hardware Description

e. Detailed Hardware Description — including circuit schematics and logic equations

f. Maintenance

The KE11-A communicates with other devices in a PDP-11 System via the Unibus; however, the structure and

operation of the Unibus is beyond the scope of this manual. A discussion of the Unibus is included in the Unibus

Interface Manual, DEC-11-HIAB-D.

Other documents that are related to the KE11-A and the PDP-11 System are listed in Table 1-1.

@ Unibus is a trademark of Digital Equipment Corporation.

Table 1-1

Related Documents

112.01071.1854

112.01071.1855

DEC-11-HR6A-D

PDP-11 Peripherals and Interfacing Handbook

PDP-11/20/15/R20 Processor Handbook

PDP-11 Conventions Manual

KEI11-A User’s Guide

PDP-11 Paper Tape Software Programming Handbook DEC-11-GGPA-D

1.4 INSTALLATION

The KE11-A Extended Arithmetic Element consists of five modules mounted in a wired PDP-11 System Unit.

This system unit connects to the Unibus and to the PDP-11 power supply through standard connectors that oc-

cupy standard module slots in the system unit.

The five modules used in the KE11-A are as follows:

Quantity Module

1 M827 Clock and Status

1 M7211 Register Control

2 | M234 Register

1 M7210 Data Control

The KE11-A is installed by putting the system unit in a PDP-11 mounting box, inserting the KE11 module set,

the Unibus connectors, and the power connector in the module slots, and verifying correct installation by execu-

ting the diagnostic and normal operating programs (refer to Table 1-2).

NOTE

The procedure for installing the system unit is described in the

PDP-11 Conventions Manual, DEC-11-HR6A-D. The KE11-A

modules are inserted in the slots as shown on Drawing

D-MU-KE11-A-MU.

1-1

Table 1-2

List of Diagnostic Programs

MainDEC No. Title

MainDEC-11-DOTA KE11-A Random Exerciser

MainDEC-11-DOSA KE11-A Basic Logic Test

MainDEC-11-DOQC PDP-11 System Test 17 (version C or later)

The KE11-A Unibus addresses are hardwired to one of two sets of addresses: 777300 through 777316 or 777320

through 777336. The KE11-A is normally supplied with the lower set of addresses; if a second KE11-A is added

to the system, the higher set of addresses is used. The KE11-A does not use the interrupt system and has no in-

terrupt vector address or priorities. |

The KE11-A User’s Guide provides detailed pmmmmmg information for the KE11-A. This t:hapter provides a

summary presentation and describes KE11-A operations. (Appendix B is a reference chart of this information.)

The KE11-A communicates with the Unibus through a set of device registers (refer to Table 2-1). These registers

can be read or 1aadeé from the bus. The regsiérs sccfifam both ths data usedin calculations and information con-

cerning the operation to be performe la peration that has performed on the data. The

PDP-11 processor cantrals the KEI 1-A thraugh the mfemafisn that it putsin these registers.

The operating speedof the KE11-Ais equivalent to one instruction cycle of the processor. Both the data and the

operation to be performed on that data must be specified in one data transfer. Therefore, the KE11-A does not

require explicit, separate instructions to specify an operation; instead, the operation is determined implicitly from

the address to which data is supplied.

An example of this implicit specification is the addressing of the second operand register for multiplication and

division. For multiplication, this register contains the multiplicand; for division, it contains the divisor. |

register cannot be explicitly addressed and returns all Os when read. If the registeris loaded thraugh address

777306, the KE11-A executes a mulflply operation; if the registeris k}aéeé through aédress 77 7398 the KEl1-A

executes a divide Qperafiefi

Several of the registers in the KE11-A are accessed through more than one bus address. | In each case, the different

addresses pmfide different implicit fzmctzaas thatimprove the sgegé and efficzency of communication between

the KE11-A and the PDP-11 processor. These functions are discussed for each mdmduai regsterin the following

sections.

2.1 KEI11-A REGISTERS

The KE11-A contains four explicitly addressable registers and one implicitly addressable register. One of the ex-

plicitly addressable registers, the Step Counter (SC), can also be implicitly addressed for several types of opera-

tions. All of the registers interact in various ways both during loading and ézssizzg*ratiéfi, Table 2-1 lists the

registers and their addresses. The individual registers and details of their operation are discussed in the following

paragraphs.

Table 2-1

|
MQ Multiplier-Quotient l 777304 (777324)
AC _Accumulator 777302 (777322)

* Addresses are shasvn far the normal assignments; the higher addressesin parentheses
are used for a second KE11-A.

Mnemonic

Table 2-1 (Cont)

KE11-A Device Registers

Mnemonic ' Regsster ;\Iamg | Add resses*
s SC : Step Counter 777310 (777330)

SR** | Status Register 777311 (777331)
X X none

*Addresses are shown for the normal assignments; the higher addressesin parentheses

are used for a second KE11-A.

**The SRis the high byte of the word located at the SC address.

2.1.1 Multiplier Quotient Register

The Multiplier Quotient (MQ) register contains the multiplier at the beginning of a multiplication and the quo-

tient at the end of a division. The MQ holds the less significant half of the two-word dividend before a division.

Two-word numbers contained in the MQ and the accumulator (AC) can be shifted or normalized.

The MQ is explicitly addressed at location 777304 and can be read or loaded. When the MQ is loaded, the value

of the most significant bit is reproduced in the AC, thereby extending the sign of one-word operands for division

and shift operations. If only the low byte of the MQ is loaded, the sign is extended into both the more significant

byte of the MQ and the AC.. Leaémg the high byte extends the m into the AC but does not disturb the low

byte.

2.1.2 Accmnfiatfir Register

The AC is used as a storage register for the results of additions and subtractions during multiplication and division.

It contains the more significant half of a two-word result following a multiplication and the remainder following a

division. Also, the AC contains the more significant half of the dividend before a division. The AC participates

in shifts and normalize functions with the MQ.

The AC is addressed explicitly at location 777302 and can be read or loaded. Sign extension from the MQ affects

the AC; thus, the AC should be loaded after the MQ and read before the MQ, if the instructions that read the

data also load the registers (e.g., adding a number to the contents of the AC and MQ for further processing).

2.1.3 The Step Counter

The step counter (SC) register participates in all KE11-A operations. The SC is directly addressable at location

777310. In addition, the SC can be loaded at locations 777314 and 777316 and read at location 777312 to

implicitly specify an operation that the KE11-A does whenever the particular address is loaded. The locations

and their associated operations are as follows:

a. 777312 — The KE11-A performs a normalize (NOR) operation. (The value loaded into 777312

is ignored, because the SC is set to 0 before the NOR begins.)

b. 777314 — The KE11-A performs a logical shift (LSH) operation.

¢. 777316 — The KE11-A performs an arithmetic shift (ASH) operation.

The SC is addressed as the low byte of a word. At the explicit SC location (777310), the high byte of the word

is the status register. At location 777312 (NOR), the SC can be read as a word quantity, because the SC is al-

ways positive after a normalize operation and all more significant bits of the word are 0s. Attempting to read

the SC at location 777314 (LSH) or 777316 (ASH) returns all Os.

The SC can be loaded at one of three locations. Two of these locations, 777314 (LSH) and 777316 (ASH),

implicitly specify shift operations. The third location is the explicit address of the SC. The SC cannot be loaded

at the explicit address by a byte transfer; it must be loaded as a word in conjunction with the status register.

Data loaded into address 777312 (NOR) is lost and does not affect the SC directly.

2.1.4 The Status Register (SR)

Location 777311 provides explicit access to eight bits (indicators) that display various conditions within the

KE11-A. These condition codes are different from the condition codes in the PDP-11 processor and indicate

only conditions within the KE11-A registers. Table 2-2 lists the eight indicators and describes the meaning of

the conditions represented by each indicator. These indicators are especially helpful in determining if the num-

bers that result from KE11-A operations are within the expected range.

Five of the eight bits in the SR are read-only; they cannot be loaded from the bus, and they always indicate con-

ditions of the AC and MQ registers. The remaining three bits can be read from the bus and loaded, but the data

transfer into the SR must be a full word transfer that also loads the SC.

Table 2-2

KE11-A Status Register

Bit Indicates SR Meaning

<0 Carry Last bit shifted out of combined AC-MQ during

ASH or LSH; cleared by multiply, divide, or

normalize. |

.1 AC=MQ15 Single Precision — All bits in the AC are the same

as MQ bit 15; thus, the number is contained en-

tirely in the MQ, and the AC is the extended sign.

2 AC=MQ=0 The contents of the AC and the MQ are entirely 0.

3 MQ=0 The contents of the MQ register are 0.

4 AC=0 The contents of the AC register are 0.

5 AC= 177777 The contents of the AC register are entirely 1s.

6 Negative The results of the last Gperatiafl were negative.

For a multiply or a shift, AC15 is a 1; for a suc-

cessful divide, MQ15 is a 1; for an unsuccessful

(Continued on next page)

Table 2-2 (Cont)

KE11-A Status Register

Bit Indicates Meaning

6 | -divide (C’W&I’flGW Gccured) 'SR6 contains the sign éf
(Cont) the original dividend (cafitents ef combined AC-

MQ).

7 | Overflow Exclusive This bit indicates that the result of a division is too

| OR Negative large for a 16-bit word, or a significant bit has been

lost in a left shift. Note that the overflow indication

is affected by SR6; see the discussion below.

The overflow indication provided by the KE11-A is not a simple flag or condition code. The KE11-A overflow

indication (bit 7) is combined with the KE11-A sign indication (bit 6) in a manner that permits setting of the

PDP-11 overflow (V) and negative (N) condition codes from the KE11-A condition codes. The PDP-11 codes

can then be usedin branch instructions that refer only to the V and N codes.

The PDP-11 V bit is set during shifting f)peraticms in the same manner as the KE11-A recognizes overflow. When

the last bit shifted out and the sign bit of the word shifted differ, the V bit is set. If the KE11-A SR is shifted

left, the PDP-11 compares bits 6 and7 of the SR and sets the PDP-11 V bit if they are different. Bit 7 of the

KE11-A SRis the exclusive OR of the overflow condition and bit 6; thus, bit 7 has the same value as bit 6 if there

is no overflow and the opposite value if thereis an overflow.

The PDP-11 negative condition code is set from the contents of SR bit 6, but the PDP-11 carry is set from SR

bit 7, not from the KE11-A carry, which is KE11-A SR bit 0.

The KE11-A SR cannot be loaded by a byte transfer. As a result, if a Retate Left, Byte (ROLB SR) instruction
is used to perform the left shift, the PDP-11 V and N condition codes are set from the KE11-A overflow and |

negative condition codes, respectively, without changing the contents of the KE11-A SR.

Five of the KE11-A condition codes are direct indications of the state of the AC and MQ registers. These codes

(SR bits 1 through 5) always indicate the current state of the registers and cannot be loaded from the Unibus.

The remaining three condition codes (bits 0, 6, and 7) are supplied from flip-flops that can be read or loaded.

These three codes represent conditions that result from preceding KE11-A operations; the reloading capability

is provided to permit reentrant KE11-A programming.

NOTE

The SR can only be loaded by a word transfer that also loads

the Step Counter. This requirementis a result of blocking

byte transfers to allow the ROLB SR instruction to test the

SR condition codes without modifying the SR.

Table 2-3 illustrates the possible effects on the three modifiable condition codes as the result of each KE11-A

operation. Because SRO7 is the exclusive OR of an overflow condition and SR06, the overflow condition is also

shown. The following notation is used in Table 2-3:

Symbol Meaning

0 The condition is cleared.

C The indicator is set conditionally.

SRO7 has the same value as SR06.

X SRO7is the exclusive OR of SR06 and the

| overflow condition (OVFL).

* If overflow occurs (unsuccessful divide), SRfié

is set to the original sign of the dividend. Other-

wise, SRO6is set conditionally.

Table 2-3

KE11-A Reloadable Condition Codes

Multiply 0 C 0 -
Divide 0 * C X

Normalize 0 C 0 =

Logical Shift C C C X

The X register in the KE11-A cannot be addressed explicitly. Data loaded into the multiply or divide address is

transferred to an internal register, designated the X register, for use in operations on the contents of the AC and

MQ registers. The X register cannot be read from the bus; reading location 777300 (dmde} or 777306 (multiply)

returns all 0s.

2.2 KE11-A OPERATIONS

The KE11-A can perform five operations that are implicitly specxfied by k}admg data into one of five bus loca-

tions (z‘efer to Table 2-4). These operations are:

a. Muit:;;heafif}n

b. Division

¢. Normalization

d. Logical (0 input) shifting

e. Arithmetic (sign extended) shifting

These operations are explained in the following sections. The explanation specifies the techniques required to

initiate the operation, the results of the operation, and the way to recover the results.

2.2.1 Multiplication

The KE11-A can multiply two 16-bit numbers in 2’s complement binary representation to form a 32-bit (two

word), 2’s complement product. The 2’s complement representation can express numbers in the range +2!5 -1

to-215 using 16 bzts, the most significant bitis the sign of the number. The razzge of 32-bit numbersis +23! - |

to -231,

The multiply operation computes the product of a number in the MQ and a number in the X register. The

product remains in the.AC and the MQ; the moresignificant 16 bits are in the AC and the less sxgmfiaant bits

are in the MQ. The multipher (originallyin the MQ) is lost.

The multiply operation begins when the multiplicand is loaded into the X register by transferring the number

to bus location 777306. The multiplier must be in the MQ at that time. The result can be retrieved from the

AC and the MQ. See Section 2.3 far PDP-11 instructions to execute ‘multiplication and Section 2.4 for KE11-A

timing information.

The KE11-A can divide a 32-bit binary number (in 2’s complement representation) by a 16-bit, bmary number

(in 2’s complement representation). If the quotient can be expressed correctly as a 16-bit 2’s complement num-

ber, a quotient and a remainder are returned; if the quotient requires more significant bits, an overflow indicator

is set, and no meaningful results are available. The quotient is adjusted to a value that corresponds to a remainder

with the same sign as the original dividend; thatis, the division does not terminate until the remainder has the

proper sign, at which time the quotient has the correct value. |

A division operation begins when a divisor is loaded into location 777300. A dividend must already be in the AC

and MQ registers. The more significant half of the dividend is in the AC, the less significant half in the MQ); the

sign bit of the dividend is AC15. If the quotient does not overflow, the KE11-A assembles the quotient in the

MQ and the remainder in the AC. If overflow occurs, it is shown by the values of Status Register bits 6 and 7.

See Section 2.3 for information on testing these bits and on the use of PDP-11 instructions to generate a division

operation. Section 2.4 contains timing information.

2.2.3 Narmahzatmn

a paszfive fimber, hgwever the next 7 bits are also 0. Thus the number c}f szgmfieaat b;tsin the ma@finde of

the numberis reduced to 8. Smmarly, for the number 1 111 101 001 101 101, there are 4 nen-s@zficant bits

g the sign bit, and the magnitudeis reducedto 11 significant bits.

When numbers are represented in a floating point format that uses an exponent and a fraction, it is important to

preserve as many mmficam bits as possiblein the fraction. Thisis done by shifting the fraction bits to the left

until the most Mcagt bit of thg fractionis different fmm the sign b}t and then mfidzfymg the exponent ¥alue

to reflect the changein the fraction.

As the fraction is shifted to the left, it takes on successively

greater values. The exponent must be reduced by an equiva-

h:;t amsant to restore the pi‘fipfi value to the number thatis

The normalization operation performed by the KE11-A shifts a 32-bit number left until one of the following

conditions is true:
:

a. The two most significant bits are different.

b. The two most significant bits are 1s, and all other bits are Os.

¢. The shift count reaches a maximum of 31 (occurs if the starting number is all Os).

The number of shifts performed is counted and returned in the Step Counter (SC). Reading this number at the

normalize address returns a 16-bit, positive number that can be subtracted from an exponent to correct the value

of the number.

2-3

~ NOTE

Ail 32%11 numbers are shown as two 16-bit numbers to flius«-

trate the contents of the individual registers. Each 16-bit

number is represented by 6 octal digits.

The normalization operation begins when a data transfer is made to location 777312. The data transmitted is

ignored, the 32-bit number in the AC and MQ registers is normalized, and the resulting shift count is available in

the SC or through the same location (777312). The following special termination conditions are available:

If the original number was all 1s, the result is 140 000-000 0003 with a value of 30 in the SC.

b. If the original number was 111.. 1100 . . 000,, the result is 14 000-000 000, and the step counter

displays one less than the number of 1 bits in the magnitude (not counting the sign bit). These

special terminations prevent the result from being 100 000-000 000, which cannot be negated (the

negation produces the same number).

¢. If the original number was 0, the result is 0 with 31 in the SC.

2.2.4 Logical Shifts

The KE11-A can shifta 32-bit number left up to 31 positions orright up to 32 positions. As the number is shifted

bits that are vacated are filled with Os, and the bit that is shifted out of the number is saved in bit 0 of the status

register. During a left shift, the status register reflects overflow if the values in bit 0 of the SR (the C bit) and

ACI1S5 differ; this indicates that the shift has caused a number to change sign. Bit 6 of the SR shows the sign of

~ the number; it has the same value as AC15 after the shift. (For a right shift, AC15 is loaded with Os, thus, the re-

sult cannot be negative.) Status register bits also display the contents of the AC and MQ after a shift of 0 places.

The direction of shiftingis specified implicitly by the sign of the number loaded into the SC. The sign of the SC

is bit 05; all more significant bits (bits 06-15) are ignored. If the SC is positive, the number is shifted left, and

the SC is decremented once for each shift until it reaches 0. If the SC is negative, the number is shifted right, and

the SC is incremented (which decrements the 2’s cemplemeat negative representation) until the SC reaches O by

overflowing.

Logical shifting begins when the SC is loaded at location 777314. The 32-bit number must be in the AC and MQ

registers before the shift begns Bit 0 of the AC shifts into bit 15 of the MQ on nght shifts, MQI 5 shifts into

ACO for left shifts.

The KE11-A can be used to shift shorter numbers (e.g., single words), but the operational properties must be pre-

served by loading the AC and MQ appropriately. For a left shift, the MQ is cleared (which clears the AC by sign

extension), and the ACis loaded with the single word to be shifted. The result of shifting up to 16 placesis a

wordin the AC, and bits 0, 6, and 7 of the SR are properly set. For a right shift, the wordis loaded into the MQ,

the AC is cleared, and the shift is initiated. The result is a word in the MQ, the C bit (bit 0 of the SR) is set prop-

erly, and bits 6 and 7 of the SR (used to indicate negative and overflow conditions) are c}eared as for any k;gxcai

right shift.

2.2.5 Arithmetic Shift

Logical shifts replace the bit that is vacated with a 0; the sign bit is not preserved. The KE11-A also provides a

shift operation that preserves the sign bit, extending it during right shifts and signalling if any significant bits are

lost during left shifts.

2-4

When location 777316 is loaded with the shift count, a 32-bit number in the AC and MQ registers is shifted as

follows:

a. If the SC is negative (SCO5 is a 1), the number is shifted right, AC14 is set equal to the sign bit

(AC15), and SROO is set to the previous contents of MQOO. The previous contents of SR00 are

lost. The SC is decremented and the operation is repeated if the SC is not 0. SR06 (the N bit)

displays the contents of AC15, and SRO7 is cleared. To summarize: the sign is extended, the last

bit shifted out is in the C bit (SR00), and the number is shifted as many places to the right as

~ designated in the shift count.

b. If the SC is positive, the number in AC (14:00) and MQ (15:00) is shifted left, MQOO is cleared,

ACI1S5 is not changed, and theC bit takes on the previous value of AC14. The N bit reflects AC135,

and the overflow condition is indicated if AC14 and AC15 differ. To summarize: the number is

shifted left, the sign is preserved, Os enter the low bits of the number, and the overflow indication

is set if any significant bits are shifted out of the register.

2.3 PDP-11 INSTRUCTIONS AND THE KE11-A

The KE11-A is operated in PDP-11 Systems by loading and reading KE11-A registers. Transfers are conducted

by addressing the KE11-A using any of the instructions that access bus locations. The most common instruction

used for this purpose is the move (MOV) instruction.

Data transfers involving the KE11-A occur whenever the processor addresses certain bus Ieeafitiéné Mafiy of these

locations also provide implicit operationsin the KE11-A. The order of the KE11-A addresses, is designed to make

use of the PDP-11 addressing modes to operate the KE11-A at maximum speed and efficxency ~

The multiplication and division operations, which use> the most operands, are the most frequently used operations
and the most critical. The address assignments shown in Table 2-4 enable very fast operation. |

Table 2-4

KE11-A Address Assignments

Address Operation Register

777300 Divide X*

777302 None AC

777304 None MQ

777306 Multiply X*

777310 None SC

777311 None SR**

777312 Normalize SC

777314 Logical Shift SC

777315 Arithmetic Shift SC

* The SC is forced to a specific value for these operations.

**The SR is the high byte of the word at address 777310;
the SC is the low byte.

2.3.1 Multiplication and Division

The following example contains a sequence of instructions to perform a multiplication and a sequence of instruc-

tions to pérfe«m a division. In the multiplication example, 4 is multiplied by B to produce a two-word result that

is stored in C and D, two arbitrary bus locations. Register O is used as an address pointer; the contents of register

0 after the multiplication are the same as the contents before the operation.

The division forms the quotient and remainder resulting from dividing the two-word value of ¥ and W (where V

is the less significant half and W is the more significant half) by X. The result is placed in two arbitrary bus loca-

tions at Y andZ, register O is left with its original value (pointing to the MQ register), and the contents of the SR

are available for checking. See Section 2.1.4 for an explanation of operations using the KE11-A condition codes.

MOV

MULT: MOV

MOV

MOV

TST

DIVD: MOV

MOV

MOV

MOV

MOV

Note that for multiplication, if the product is known to be a single word, the last two instructions are not needed.

#MQ,

(0)+,

(0)+,

0)

RO

0)+

(0)

0)
-(0)

-(0)

Y

Z

;PUT FIRST NUMBER IN MQ

MULTIPLY BY SECOND NUMBER

;TRANSFER LOW ORDER PRODUCT

;RESET REGISTER 0

;LOAD LOW ORDER DIVIDEND

;LOAD HIGH ORDER DIVIDEND

;:DIVIDE

;TRANSFER QUOTIENT

2.4 KE11-A TIMING

KE11-A operations are initiated by a data transfer from the PDP-11 Unibus. The operations continue concurrent

with subsequent PDP-11 operations.. The maximum time required for a KE11-A operation is approximately

4.5 us. Table 2-5 provides specific timing information for the five KE11-A operations.

Table 2-5

KE11-A Operation Timing

Operation Time Remarks

Multiply 4 us None

Divide 4.25 us No time if immediate overflow

Normalize 04 us Exact time depends on number of shifts required.

Logical Shift 0-4 ps Exact time depends on number of shifts required.

Arithmetic Shift 0-4 us Exact time depends on number of shifts required.

After the KE11-A begins an operation, it does not respond to Unibus transfers until the operation is complete. If

the KE11-A is addressed while it is operating, it delays all response until the end of the operating cycle; this stops

all Unibus operation. However, the maximum delay is approximately 2 us, because the PDP-11 processor must

first fetch the next instruction before re-addressing the KE11-A. Therefore, préams that operate the KE11-A

do not have to provide any explicit delays to allow for completion of the operation; the KE11-A can be re-

addressed immediately. This 2 us overlap is the only time contribution that the KE11-A makes in addition to

the time implicitly required by PDP-11 instructions.

2-5

THEORY OF OPERATION

This chapter describes KE11-A theory of operation. A review of the requirements for multiplication a;zf division

is presented, as well as the algorithms for the five KE11-A operations (multiplication, division, normalization, and

arithmetic and logical shifting). See Appendix C for a review of the namesof terms in mathematical operations.

This chapter is provided forreaders who want to fully under-

stand the KE11-A mlfl@h@mfin and division algorithms.

Readers who are only interestedin the operation of the KE11-A

are referred to Chapters 4 and §.

3.1 BINARY 2’s COMPLEMENT NGTA.’HGN

The KE11-A requires a numerical notation that expresses both the sign and the magmtuée of each numberin

binary digits. The simplest class of notation that meets this reqmment is based on the faflawmg property:

a number added to its own negative equals zero. Thus, adding the negative of a number to another numberis the

same as subtracting the number. The 2’s complement of a number is created by complementing and incrementing

the number. Adding a number and its negative in 2’s complement notation always produces all Os (the only repre-

sentation of the quantity 0 in 2’s complement).

It is important to remember that the representation of a num-

ber differs greatly from quantity represented. For example:

The quantity -1 is represented in 2’s complement notation by

n eight bits). The quantity +1 has a 2’s comple-

ment representation of 00 000 001.

Example 1 Adding +1 and - 1 yields the following:

00 000 001 =+1

+11 111 111=-1

100 000 000= 0 (The left most (carry) bit is nota significant

bit and is ignored.)

Example 2 Adding +5 and -3 yields the following:

00 000 101 =+5

+11111101=-3

100 000 010= +2 (Carry bit is not significant.)

A disadvantage of 2’s complement notation is that the representation of numbers is not symmetrical. That is,

one more negative number than positive number can be expressed. In n bits, the maximum positive number that

can be expressed is 2%1- 1, but the maximum negative number is - 2*! (because there is no negative zero).

3.2 MULTIPLICATION

Multiplication is repeated addition. Multiplying 3 times 7 is simply adding 7 three times. However, 2!° times a
number requires 2% additions; the KE11-A uses a shortcut method that requires only 16 e;aeratisns

II‘! practzee the KEI 1-A adds multiples of the muit:;ahczafid The multiples are formed by shlftmg Each time a

inary numberis shifted one bit to the left, it is multiplied by two; thus, if it iis shifted 5 places to the left, it is

mzfiiigii | by 25 (3.’2) The zmfltzpi;eris bwkea éi?‘?fn into méfi*zdual Efits that éetsrmme svhseh multiples of the

multiphf;aaé are adéeé to form the preézzct |

The multiplication precess is ésmyiicatgd by the : representation of negative numbers useé in PDP-11 Systems.
Negative 2’s complement numbers cannot be multiplied by the addition of multiples unless a correction step is

added at the end. To avoid this step, the KE11-A uses a method that provides for negative numbers and pro-

duces the same results as the addition of parts method for positive numbers. This method is based on a different

breakdown of a binary number into positive and negative parts.

In binary numbers, 10- 1 = 1. Representing each 1-bit of a binary number as 'the difference between that bit
and the next most significant bit produces a string of alternating positive and negative powers of two.

For example:

il 00 - 10000000 + 10000000 - 1000000

)0000 - 10000 + 1000 - 1@{3 + 100 - 10 + 10 - 1

00000000 - 1000000 + 100000 - 10000 + 1000 - 1

11010111

]

Multiplying a multiplicand by each of the numbersin the last string (preserving thesigns) and then adding the

products of the muitiplicati:}ns is equivalent to multiplying the chosen multiplicand by the original number

(11010111). This can be done by shifting the multiplicand left and adding or subtracting at each position that

corresponds to one of the numbers in the series.

The series of alternating positive and negative powers of two is easily generated because:

a. Each pair of powersof 2, one positive and a smaller negative, represents a string of 1s. The positive

number is one digit higher than the most significant 1 in the string, and the negative number is in the

same position as the least significant 1 in the string.

3-1

For example, in the number 11010111:

100000000 - 1000000 = 11000000

100000 - 10000 = 00010000

10000 - 1 = 00000111

11010111

Strings of 1s are separated by strings of 0s. Each string is one or more digits long.

For example, in the number 11010111:

-1000000 + 100000 = 0 X 2°

-10000 + 1000 = 0 X 23

11010111

Thus, each string of 1s can be replaced by a string of Os with a - 1 in the least significant place,

and each string of Os can be replaced by Os with a +1 in the least significant place.

For example, the digits in the number 11010111 can be replaced as follows:

Originaldigit: 1 1 0 1 0 1 1 1

Replacement: 0 -1 +1 -1 +#1 0 O -1

Therefore if, for any bit of the multiplier, the previous (less significant) bit is the same, the mul-

tiplicand is not added to the partial product (orit is multiplied by 0 and 0 is added to the product).
If the previous bit isa 1 and the current bit is a 0, the multiplicand is added; if the previous bit is 0
and the current bit is 1, the multiplicand is subtracted (negated and added). In each case the mul-

tiplicand is shifted (with respect to the product) before the addition, because the number added to the

product is actually a power of two times the multiplicand. |

For example, to multiply N by 11010111, the sum of the products of N times each replacement

digit, times the appropriate power of 2, is the product as follows:

NX11010111=NX(0X27-1X26+1 X2%5-1X2%

+1X23+0X22 +0 X 2! -1 X 29)

3.3 DIVISION

Division is repeated subtraction. Division is more complicated than multiplication for two reasons:

a. The product of two integers is always an integer; the quotientof two integers is rarely an integer.

Division produces two results, a quotient and a remaider, that interact. The correct quotient is

dependent on a correct remainder.

The maximum value that results from the multiplication of two numbers can be no larger than

the square of the maximum number. However, the maximum value that can result from a division

is infinite, because the divisor can be much smaller than the dividend. Some quotients cannot be

expressed in the number of bits available in the physical representation and are considered to have

overflowed.

The quotient in a division is the number of times that the divisor can be subtracted from the dividend without

going beyond 0 (changing sign). The result can be determined by counting subtractions until the remainder does

20 beyond 0 (which produces a condition called underflow), then reducing the count by one. The remainder

must also be corrected by restoring the value of one subtraction.

3-2

Rather than do as many as 2% subtractions, the KE11-A uses a short-cut method similar to that used in f

multiplication. The results of dividing by multiples of the divisor, where each multiple is a power of two times

the divisor, can be combined to form the quotient.

This division procedure operates by subtracting a large multiple (21) of the divisor from the dividend. If the

remainder does not go beyond 0O (there is no underflow), the next smaller power-of-two ffiufiiple of the divisor

is subtracted. For each successful subtraction, the quotient is increased by the same multiple (the same power

of two) as the multiple of the divisor used in the subtraction. | |

If a subtraction causes underflow, however, the corresponding quotient bit is cleared (the corresponding power

of two is not added to the quotient). However, rather than restoring the previous value of the dividend, the

KE11-A now approaches the correct remainder from the opposite direction. Successively smaller multiples of the

divisor are added to the remainder (instead of subtracting) until the remainder again underflows, thus restoring

the original sign. When the KE11-A is adding, instead of subtracting, the corresponding quotient bits are set only

if the sign of the remainder returns to its original value; if the remainder does not change sign, the quotient bit is

set to 0.

For example, dividing 17 (213) by 5 yields a quotient of 3 and a remainder of 2 as follows:

1. Subtract Divisor X 23 from the Dividend.

00 010 001 =214

11011 000=-5 X 23 =-504

11 101 001

The partial remainder has the wrong sign (underflow occurred).

2. Add 0 X 23 to the quotient = 0.

3. Add Divisor X 22 to the partial remainder.

11 101 001

00010 100=5 X 22 =24,

11111101

The partial remainder has the wrong sign (no underflow).

4. Add 0 X 2? to the quotient = 0.

5. Add Divisor X 2! to the partial remainder.

11111 101

00 001 010=5 X 2! =12,

00000111

The partial remainder has the right sign (underflow occurred).

6. Add 1 X 2! to the quotient = 2.

7. Subtract Divisor X2° from the partial remainder.

00000111

11111011=-5X2°=-5

00 000 010

The remainder has the right sign and is 2 (no underflow).

8. Add 1 X 2° to the quotient = 3.

‘This procedure works for positive or negative numbers, provided that the dividend and divisor have the same sign.

Hfiweafef if the signs are originally different, subtracting multiples of the divisor drives the remamde; away from

0. Therefore, the KE11-A adds multiples of the divisor until the remainder underflows (at which point, a quo-

tient bitis set) and then subtracts until the remainder regains itsoriginal sign.

This greeeduze can handle any combination of binary nmbers, regardless of sign. Implemeatat&n of the pro-

cedureis simplified by the following eefiszéeratzefis

a. If the signs of the divisor and the dividend are originally the same, the KE11-A subtracts until they
differ (because the sign of the remainder changes), then adds until they are the same. If the signs

are originally different, the KE11-A adds until they are the same, then subtracts until they differ.

b. Therefore, for each operation, the KEI 1-A compares the signs of the remainder and divisor. If they

észgr the KEI iuA aéés the divisor, shi ted to fafin fl:fi ;:mper xnuitzgie (power of two times the

aftér an adéltzan, the quatient bztis cigmé if the sign cha:zges afte:r a subtractzan or remams the

same after an addition. ,

_; signs of the remainder and divisor are the same, and an aédxtit}fiis éafie

if the signs are hanged sign after an addition means that the signs are now the same,

while no cham after a subtraction also means the signs are the same. ~

e. Therefore, after each operation, the corresponding bit of the qaatie!ixt is set if the signs are the same

or cleared if the signs differ.

34 ALGORITHMS FOR KE11-A OPERATIONS

Figures 3-1 through 3-5 illustrate the sequence of ¢operations for multiplication, dmfian and shifting. These flow

charts emphasize the conceptual organization of the device that does each calculation; Chapter 4 relates the

KE11-A logic to these algorithms afid explains how the 1@@{: structurereduces the hardware and timing require-

ments.

Beside each flow chartis a map of the logical storage faczhtzes necessary far the aperatzaa lezstrated Far each

register thatis s};serated on as data (aédeé s&bmcteé or shifted), a sfibscfi;;t notationis g@d to describe indi-

vidual bits or bit strings (e.g., MR, is the 0 bit of the multiplier). Reggisters that are used as ‘controls or indicators

are denoted by a suffix (e.g., SR6is bit 06 of the Status Register). Comments and explanatory information are

provided in parentheses.

Two basic operations are shawn in each algorithm: feglaeament (symbolized by a left arrow «) and comparison

(symbolized by the equals sign =). The replacement operation substitutes the value of the expression to the right

of the left arrow for the variable to the left of the arrow. Comparison does not modify the value of either operand,

but returns a value of true if the operands are equal or false if they are not equal. The arithmetic operators (+, -,

*,and /) are interpreted normally. The exact interpretation is often described in a comment. A circled plus sign

symbolizes the exclusive OR logical operation. Each flow chart begins with a set of initialization operations; a

LOAD operation is a replacement operation where the new value of a variable is an input to the algorithm and is

not necessarily specified explicitly.

3.4.1 Basic Shift Operation

A basic shift operation is used as a primary operation in the sequences for all other &geratiafis The register that

is being shiftedis treated as a sequence of bits, each shifted separately. The following description illustrates the

features of a basic shift:

a. Ingeneral, the bit at a partzculss locationis replaced by another bit thatis shifted into that Iec:atzea

No bit of informationis moved more than one location. |

b. One bit is shifted Qut af the régister and is lost.

c. One bitis vacated. The original cantefits of that bit are slnfted to the next bzt and a 0 replaces the

previous bit.

d. The bit lostis at the end toward which the bits are shifted, and the bit vacatedis at the end away from

which the hfisare shifted (bit positions are numbe: ed in ascending order from right to left).

3.4.2 Multiplication

The multiplication algorithm élfiefiifi Section 3.2 is illustrated in Figure 3-1. The two operands, a step coun-

ter (SC), and an adder/subtractor are &z to produce a sum that is the desired product.

The multiplication consists of N cycles through a loop, where N is the number of bits in the multiplier. During

each cycle, a different bit of the multiplier is compared with the previous (next less significant) bit, and one of

three operations is done. This comparison is done by saving the previous bit in a status bit, C, and shifting the

multiplier right after each cycle to make bit 0 the new current bit and to make the old current bit the new con-

tents of C.

After an operation, which is either an addition, a subtraction or no change, the multiplicand is shifted left

(multiplying it by two), and the cycle is repeated. The adder/subtractor that is used is only N bits wide, because |

the maximum number of significant bits in the multiplicand isN. (The remaining N bits are either extended sign

or low order Os, and do not require addition to affect the sum.) The N bits of the sum that are combined with N

bits of the multiplicand differ for each cycle; in effect, the adder is shifted left along the two registers.

The algorithm also illustrates the following points:

a. On the first cycle, C is 0 and only a subtraction or no change operation is possible.

b. The number of significant bits in the sum increases by one (maximum) for each cycle.

c. The number of bits in the multiplier that have not been examined decreases by one for each cycle.

The flow chart in Figure 3-1 is accompanied by an algorithm that describes the sequence of operations and by an

example that illustrates the contents of the registers at the completion of certain steps. The number in the Step

column of the example corresponds to a number in the Step column of the algorithm.

3-3

3.4.2.2 Multiplication Example — The following lists the contents of the indicated registers for the example:

o | 5 times3 equals 15 (175)

L SUM__] (MULTIPLY) |
N\ N o MR C MD Sum SC Step

{ADDER/SUBTRACTER] ‘ |
, . T 0011 0 00000101 00000000 4 1

® ST T - Soen 0011 0 00000101 11111011 4 5
; Ce0 ,

2N N | 0001 1 00001010 1111‘1011 3 6

| wmuLmipLier c ! : 0001 1 00001010 11111011 3 2

N 0 | \YES 0000 1 00010100 11111011 2 6
|STEP__COUNTER| 0000 1 00010100 00001111 2 4
LEGEND: 0000 0 00101000 00001111 1 6

MR-MUTIPLIER 0000 0 00101000 00001111 1 2
MRG-BIT0 OF MR 0000 0 01010000 00001111 0 6

SUM < SUMMD SO~ SUN-ND 0000 0 01010000 00001111 0 7

(ADD) (SUBTRACT) |

1 1 3.4.3 Division

l The division algorithm discussed in Section 3.3 is illustrated by Figure 3-2. The algorithm can be divided into
SHIFT MD LEFT

SHIFT MR-C | four parts:
RIGHT |

SCe-SC-1 S
a. The division cycles

b. The first overflow check
NO

c. The remainder correction

d. The second overflow check.

(DONE)
3.4.3.1 Division Cycle — Division proceeds through N cycles, dividing a 2N-bit number by an N-bit number. In

each cycle, the signs of the two operands are compared, and a bit in the quotient is set if the signs are equal. This

bit represents the result of the previous cycle of operation and determines whether an addition or subtraction is

done in the present cycle. Before the addition or subtraction, the divisor is divided by 2 by shifting right and ex-

tending the sign, and the quotient is shifted right to incorporate the result of the last operation.

11-0358

Figure 3-1 Multiply Algorithm Flowchart

The divisor is shifted right before the first addition or subtraction. This action corrects for the fact that the divi-

dend can be a number in the range from 23'-1 to 2731, but the divisor can only be in the range from 2'%-1 to 27%%;

each cycle of the division addscr subtracts a multiple of the divisor; for the first cycle, the multiple used is one

half the maximum number, or 2'5. This fact requires the divisor to be one place to the right compared to the

dividend, because if the divisor is in the left half of the register it is followed by 16 zeros, effectively multiplying

1 Clear the sum and the previous bit indicator (C). Load the multiplier and the mul- it by 2'6. |
tiplicand, and load N into the SC. |

3.4.2.1 Multiply Algorithm — The sequence of operations is as follows:

Step Action

The division algorithm requires only a 16-bit adder, because only 16 bits of the divisor are significant. The re-

2 If the current bit 0 of the multiplier is equal to €, go to Step 6. maining bits are extended sign or low order Os, which do not need to be added or subtracted to combine them
3 If bit 0 of the multiplier is 1, go to Step 5. with the dividend. In each cycle, the adder/subtracter is used on a different set of bits, one place to the right
4 Add the multiplicand to the sum. Go to Step 6. from the previous operation; in effect, the adder is shifted one place to the right each cycle.

. Subtract the multiplicand from the sum. 3.4.3.2 Overflow Detection — If the dividend is greater than the divisor multiplied by the maximum expressible
6 Shift the multiplicand left. Shift the multiplier right; the old bit 0 shifts to C. number, the result of the division is also greater than the maximum expressible number. This condition is called

Decrement the SC. - » overflow. The KE11-A makes two checks for overflow during a division; one check during the first cycle and one
7 If the SC is not 0, go to Step 2. after the remainder correction. |

3-4

Overflow can take one of two forms. If the correct result is between 2® and 21 (2’s complement numbers can

only express numbers up to 2°71), the overflow creates a number with the incorrect sign, but expressible in 22+1

bits. This is readily detectable after the division. If the correct result is greater than 2", however, the N least sig-

nificant bits may have any values and the number may appear to have the correct sign when the division is com-

pleted. |

To detect such results, the KE11-A uses a test after the first cycle of the division. If the dividend is larger than

2" times the divisor, the sign of the remainder after the first cycle is incorrect. Therefore, if the sign of the divi-

dend does not change after the first cycle, an overflow condition is present.

The first overflow check compares the dividend to the divisor times 2%, but the maximum expressible number

is 21_1. The second overflow check is provided for the remaining possible cases of overflow.

3.4.3.3 Remainder Correction — The KE11-A requires that the remainder have the same sign as the original

dividend. A remainder of 0 is acceptable for either sign. AfterN cycles of operation, the divisor has been shifted

N times, but the quotient has only been shifted N- 1 times (plus one shift before the gefieratien of any quotient

bits). If the final cycle of the division resulted in a remainder of the correct sign, the last quotient bitisa 1, and

a single shift cycle is required to complete the quotient.

If the final division cycle produced a remainder with the wrong sign, or one that can be reduced to 0 by one more
operation, the final quotient bit is a 0, according to the criteria in Section 3.3. However, the rest of the quotient

may be incorrect and must be corrected by adding the bit resulting from a final addition or subtraction operation

to the quotient before the final O is shifted.

3.4.3.4 Division Register Structure — The structure of the registers used in the division algorithm reveals the

following facts:

a. The divisor register never contains more than N significant bits; all others are either extended sign

or low order Os.

b. The number of significant bits in the dividend decreases by at least one each cycle.

c¢. The number of bits in the quotient increases by one each cycle.

The flow chart in Figure 3-2 is accompanied by an algorithm that describes the operations done during a division.

An example is presented that illustrates the contents of the registers after selected steps. The number in the Step

column of the example refers to the number of a step in the accompanying sequence.

3.4.3.5 Division Algorithm — The sequence of operations is as follows:

Step Action

1 Load the dividend, and load the divisor into the upper half of the divisor register.

Set the SC to N, and set SIGN to the value of the sign of the dividend.

2 If the sign of the dividend and the sign of the divisor are equal, go to Step 4.

3 SetC to a 0. Go to Step 5.

4 SetCtoal.

5 Divide the divisor by two by shifting right and extending the sign. Shift the quo-

tient left, shifting C into bit 0.

6 If bit 0 of the quotient is a 1, go to Step 8.
(continued on next page)

Step

10

11

12

13

14

15

16

17

18

19

Action

Add the divisor to the dividend. Go to Step 9.

Subtract the divisor from the dividend.

If this is the first cycle and the dividend is not 0 and the dividend has changed sign,

overflow has occurred and the division stops.

Decrement the SC. If the SC is not 0, go to Step 2.

If the dividend is O, go to Step 14.

If the divisor can be combined with the dividend to result in 0, go to Step 15.

If the sign of the remainder (dividend) is not the same as the sign of the original

dividend, go to Step 15.

Set C to 1, and shift Q left, shifting C into bit 0. Go to Step 19.

If the signs of the dividend and the divisor are the same, go to Step 17.

Add the divisor to the dividend and set C to 1. Go to Step 18.

Subtract the divisor from the dividend and set C to 0.

Add C to Q, then clear C and shift Q to the left.

If the signs of the original dividend and the divisor are the same and the quotient

is positive, or the signs are different and the quotient is negative, the result is correct.

Otherwise overflow has occurred.

3.4.3.6 Division Example — The following lists the contents of the indicated register for the example:

17 (21;) divided by 5 yields a quotient of 3 and a remainder of 2.

DD

00010001

00010001

11101001

11101001

11111101

11111101

00000111

00000111

00000010

00000010

00000010

3.4.4 Shift Operations

DR Q C SC Step

01010000 0000 0 4 1

00101000 0001 1 4 5
00101000 0001 1 3 10
00010100 0010 0 3 5
00010100 0010 0 2 10
00001010 0100 0 2 5
00001010 0100 0 1 10
00000101 1001 1 1 5
00000101 1001 1 0 10
00000101 0011 1 0 14
00000101 0011 1 0 19

Figures 3-3 through 3-5 illustrate the three types of shift operations done by the KE11-A. Each figure is self-

explanatory. Refer to the appropriate sections in Chapter 2 for a description of the properties of each shift.

C aivsbs‘)

:

NO

?

DR<—DR/2

(SHIFT RIGHT AND
EXTEND SIGN)

SHIFT Q-C LEFT

NO
QQ:?

s NDD<-DD +DR DD<-DD-DR
(ADD) (SUBTRACT)

DD #0 AND

i

| scesc-1 |

_NO _YES

YES

(OVERFLOW)

4

*(REMAINDER HAS CORRECT SIGN)
YES

BDEN' BREN

r

ot DD<—DD-DR DD<—DD+DR

, ; (SUBTRACT) (ADD)SHIFT Q-C LEFT Gt | e

sza

| |
J

L Qe-Q+C ‘

:
[ceo]

l
| SHIFT a-c LEFT |

DDon#Qp #

' Sigfi

(DONE)

Figure 3-2 Divide Algorithm Flow Chart

] DIVIDEND |

2N~ N 70

N e , s

|aooER/susTRACTER]
LN N

/ AN

l DIVISOR]
2N N 0

| auomient |c|

| sTEP COUNTER|

LEGEND:

DD =DIVIDEND

DR =DIVISOR
SC =STEP COUNTER

Q =QUOTIENT
DD,= THE MOST SIGNIFICANT

BIT OF DD

1¢-0357

| SHIFT REGISTER (SH) | ARITHMETIC

N 0(NORMALIZE)

LEGEND:

SR=STATUS REGISTER

SC=STEP COUNTER

SH= SHIFT REGISTER

l SHIFT REGISTER (SH) !

N 0

l STEP COUNTER (SC) l

11- 0358

Figure 3-3 Normalize Algorithm Flow Chart

_”5C5+1

< (NEGATIVE)

TEP COUNTER (SC| sTep co (sc) | Lgfig 23

e
SR6 *+—SHp

SR6 *—SHy

SRO «— 0 .
SR7 «— SR6

.

SHIFT SH
ET S SRO=—SHq

SRO +—SHy RIGHT
‘ DONE) ‘ ‘

SHIFT SH

LEFT SHy *—SR6 ! SHy<+ SRé6

INCREMENT

sC

SET OVERFLOW

INDICATOR (0OV)

|

DECREMENT
sC

3

INCREMENT

SC

SR7+ OV @ SRé

|
(DONE)

LEGEND:

SR=STATUS REGISTER

SC=STEP COUNTER

SH=SHIFT REGISTER

11-0359

Figure 3-4 Arithmetic Shift Algorithm Flow Chart

3-7

I SHIFT REGISTER (SH)‘ (LGGICAL SHSFT) LEGEND:
N 0 SR= STATUS REGISTER

SC= STEP COUNTER

SH= SHIFT REGISTER
| sTEP counTER(sO)| LOAD SH

LOAD SC
SRE6+-SHy

SR7 #— QOV@® SRS!

'
(DONE)

NO SC5=1 YES
NEGATIVE

l SRO=-SHy,] [SRO=SHq l

!SH&FT SH LEFfl lSHfFT SH RiGHT]

|
{ SR6<+0 J

SRg=SHy

SET OVERFLOW

INDICATOR

(ov)

|

l SR6<—SHy !

DECREMENT INCREMENT
SC sSC

l) 1
11-0360

Figure 3-5 Logical Shift Algorithm Flow Chart

CHAPTER 4

GENERAL HARDWARE DESCRIPTION

This chapter explains the implementation of KE11-A operations on a functional level. The algorithms used in

the implementation are presented in Chapter 3, and the detailed logic description is included with the KE11-A

print set in Chapter 5. This chapter describes the KE11-A logic on a block diagram level (see Dwg.

D-BD-KE11-A-BD). The operations that use this logic structure are presented in two forms:

a. Flow charts of the dafa operations are given for the multiply and divide operations.

b. Waveforms of the control signals within the KE11-A are shown for all five KE11-A operations.

See Appendix C for the names of terms in mathematical operations.

4.1 BLOCK DIAGRAM DISCUSSION

The block diagram on Drawing D-BD-KE1 1-A-BD shows the KE11-A to be divided primarily into five registers

(three for data and two for control); the data manipulation and gating associated with the three data registers;

and two major control blocks. The Clock and States Control decodes Unibus addresses to determine the required

operation and selects the necessary internal operations. The Register Control provides control signals to manipu-

late the data.

The KE11-A functionally comprises five modules:

a. Register Control and Clock and States are each a separate module.

b. The registers, data manipulation logic, and data paths are on two identical modules, which each

provide all the logic for 8 bits of each 16-bit register. Communication between the modules is

provided for carries in the adder, shifts in the registers, and common control signals.

c¢. A third control module is used for gating of data between the KE11-A and the Unibus. This

module also contains the Step Counter and Status Registers.

In addition to the AC, MQ, and X registers, the data paths modules include an adder and load and shift gating.

These data paths are shown on Figure 4-1, a bit-slice block diagram that shows all logic and control signals for

one bit of each register and the corresponding data paths. All inputs to the AC register are through the adder;

for loading or shifting, the second adder input is disabled and data passes through the adder unmodified. The

MQ has separate shift and load gates but can be loaded from the adder for the remainder correction step in a

division operation (this step asserts the EXTRA signal). The X register is static; it is loaded directly from the bus

receivers. The contents of the X register can be gated to the adder in either a true or complemented form; the

adder has a carry input to the least significant bit, which can be used with the complemented input to form the

2’s complement negation of the X data.

All connections for carries and shifting are supplied by the input gating to each register. For example, during a

left shift, each AC bit is loaded from the next less significant bit. AC bit 0 is loaded from MQ bit 15. During a

right shift, MQ bit 15 is loaded from AC bit O.

4.2 OPERATION CYCLES

This section details the five operations that the KE11-A performs as a sequence of data transformations. The

coverage is on a register transfer level; data is moved from a register, through the data paths, to another (or the

same register). Data can be modified by addition or shifting during the move. Data transferred from the X regis-

ter can be negated before the addition. Each discussion refers to the KE11-A waveforms on Dwg.

D-TD-KE11-A-WF. In addition, the multiply and divide operations are illustrated by flow charts in Figures 4-2

and 4-3 respectively.

4.2.1 Multiplication

Figure 4-2 is a flow chart of the multiplication procedure used in the KE11-A. Compare this flow chart to Figure

3-1, which illustrates the algorithm that is implemented in the KE11-A.

The implementation is simplified by taking advantage of several features of the algorithm (refer to Section 3.4.2)

to reduce the size of the registers needed. In the KE11-A, each register is 16 bits in length, but the multiplication

produces a 32-bit product. The multiplicand, which never requires more than 16 significant bits, is held in a

static register while the multiplier and product are shifted. This feature permits the use of a static adder/subtracter.

The multiplier and the product trade bits, as the product increases by one significant bit and the multiplier de-

creases by one bit for each cycle of operation.

The sign of the product is extended each time it is shifted right. This sign extension must be modified if the mul-

tiplicand is the maximum negative number (-2'%). When this number is subtracted from a zero partial product,

the wrong result is produced, because the negation of the maximum negative'number does not produce a positive

number (the negative of the maximum negative number is that number itself). That is, the result of subtracting

-215 and then shifting should be 24, not -(215+214), In this instance, the sign is not extended, and a 0 is shifted

into AC15.

Drawing D-TD-KE11-A-WF (Sheet 1) illustrates the waveforms of the KE11-A control signals that effect program-

mable KE11-A operations in terms of the basic data operations (addition, subtraction, and shifting). The basic

timing of the multiply operation is provided by the CLK AC and CLK MQ signals. These signals are driven by a

basic timing signal, REG CLK 1, that provides pulses at a 250 ns period (1/4 the basic clock rate).

AC 04 CARRY ~
ouT

AC 03 HAC 02 ADDER D1 Cc 03

— AC 03 |

* C 0

EXTRA — CARRY
AC SHF LFT—

ADD FM AC LO— CLK ACLO
AC SHF RT—

*SROO FOR BIT 01,GROUND FOR ALL OTHERS TTT T | ~TTT ~~

¢—MQ O3 H

MQ 04

D 03 D 1 ‘MQ 02

— XO3 CLK MQ LO

R — MQ SHF LFT—
c © ——— MQ SHF RT—

V EXTRA—

- GATE-X— MQ FM D LO—
CLK X LO GATE X—

AC FM D LO—

EXTRA— 1-0365

Figure 4-1 KEI11-A Bit-Slice Diagram

The data paths perform shifting of data before addition; therefore, the first cycle performs an addition with the The following conventions are used in the example.

shift gating turned off. The shifting for each cycle is performed during the next cycle, and there is a final cycle
, a. Register contents may remain the same while the inputs are clocked. If the inputs are not clocked, a

-of operation with no addition or subtraction to complete the shifting for the last cycle. &l y | | P P ;
descending vertical arrow is shown.

Either the GATE X or the GATE -X signal can be present during each cycle; a cycle cafi also be performed with b. If the contents of a register are unknown, a question mark (?) is shown; if the contents are known, but
neither signal present, which represents a shift with neither addition nor subtraction (to perform a subtraction, unimportant, a dash () is shown.

the KE11-A asserts a CARRY IN signal along with the GATE -X to generate a 2’s complement number). GATE c. The name of a register followed by a - R or a - L signifies the contents of that register shifted right or

X and GATE -X are mutually exclusive. | left, respectively. Registers are shown before the shifted contents are clocked in to replace the present

contents.

To determine which, if either, of the gating signals should be asserted, the KE11-A compares MQOO and MQO1

before shifting and then adding. In effect, the KE11-A does the same operations as the algorithm shown in Section
4.2.1.1 Multiply Implementation — The multiply implementation is as follows:

3.2, where the multiplier is shifted first and then the least significant bit is compared with the previous bit. The |

KE11-A shifts after the comparison; as a result, MQOO is shifted out and MQO1 becomes the least significant bit. Step Action

Therefore, no additional storage is needed for the previous bit. 1 a) The MQ was loaded by a previous instruction.

The flow chart in Figure 4-2 is accompanied by numbered list of steps that describe the operations that are done - | b) ThebMI;;?rG was cleared by OFF L at the end of the previous operation
during a multiplication. An example of multiplication is given in which the contents of all the registers are listed (or by)
at the end of selected steps. The number in the Step column refers to a step in the sequence accompanying the | ¢) Gate 203 to the SC and Gate the Bus Data lines (multiplicand) to the X register.

flow chart. d) Clock X and SC-SR.

4-2

(START)

KE 2-4 —»|OFF CLRS MFLAG
KE 5-2 —=|GATE 20g — SC

GATE BD — X
P MSYN —={CLK X, SC-SR

. /}\Q{
' e| eaTe 0 waC | \/

KE 2-2 GATE SC-1=SC
E37-8} —+CLK AC-MFLAG,SC-SR
E36-8

GATE-ACMQ RIGHT Je— {£26-6. - —{E26-8
F4a3 —|CATEGC,*-MFLAG TM |26-6

YES

KE 2-2

E27-8
E22-12

0 MQo; 1

[6ATE AC+Xx-wac] | 6ATE Ac-x=ac|

KE 2-4

E 43-12f 7\

YES

| GATE 1—sMFLAG |

3

KE 2-2 | KE 2-4
E37-8 GATE Seiese E 40-6
E36-8)~—e{CLK AC- G, KE 1-4
E31-8 S&fifi | E42-8

_JKE 1-4

Y
(stor)

11-0386.

Figure 4-2 Multiply Implementation Flow Chart

Step | - , Action

2 If MQyo = 1, gate the 2’s complement of X to the AC. Also, gate a I to MFLAG

if X,s and ADDER;s are both a one. If MQ,, = 0, gate zeros to the AC. Gate SC

minus 1 to the SC. Clock the AC-MFLAG and SC - SR.

3 Gate the AC and the MQ right once. Gate AC,; to itself (replication) if MFLAG

is clear, or gate a 0 to AC,s if MFLAG is set.

4 If MQgo = MQq; , go to Step 6. (Note: only clocking, not gating, changes the con-

tents of a register. Therefore, the MQ has not changed since entering Step 3).

5 If MQ,; =1, subtract X from the AC “gated right” and gate the result to the AC.

“ Also, gate a 1 to M FLAG if X5 and ADDER,; are both a one. If MQ,, = 0, add

X to the AC “gated right” and gate the result to the AC.

6 Gate SC minus 1 to the SC. Clock the AC-MFLAG, MQ and SC - SR.

7 If SC+#0, gé to Step 3. Pass n-1 times through Step 7’ for X = n bits.

8 Gate the AC and the MQ right once. Gate AC,; to itself (replication) if MFLAG

is clear, or gate a 0 to AC,s if MFLAG is set.

9 Clock the AC -MFLAG, MQ and SC-SR. The AC -MQ = 2n bit product.

4.2.1.2 Multiplication Example — The following lists the contents of the indicated register for the example:

5 times 3 equals 15,, (17g)

X AC MQ ACR MQ-R MFLAG SC Step

? ? 0101 - - ? ? MQ loaded

0011 ? 0101 - - 0 4 1

1101 0101 1110 1010 0 3 2

0001 1010 0000 1101 0 2 6

1101 1101 1110 1110 0 1 6

0001 1110 0000 1111 0 0 6

Y 0000 1111 - - 0 -1 9

4.2.2 Division

Figure 4-3 is a flow chart of the division implementation in the KE11-A. Compare this figure with Figure 3-2,

which illustrates the corresponding algorithm. The division operation implements most of the steps of the algo-

rithm directly, but the registers are generally single length (16 bits), the adder is static (always operates on the

same 16 bits), and 32-bit operands are accommodated by using two 16-bit registers.

The data paths require that shifting occur before addition. This shift is used in the first cycle of the division to

shift the divisor so that it is multiplied by 25, rather than 2!, An extra quotient bit is inserted in the first

cycle before the first addition or subtraction;this bit has no significance, because it is shifted out of the MQ by

the last shift performed. (The last shift cycle does not shift the AC; thus, the bit does not affect the remainder.)

4-3

The KE11-A proceeds through the cycles of the division 16 times, checking for overflow after the first cycle.

The logic then examines the remainder to determine which of two alternative sequences should be done:

a. If no remainder correction is required, only one more cycle is required; thus, the ODD termination C samr)

sequence is executed.

b. If remainder correction is required, the EVEN termination sequence provides the final cycles. The | St 2o se oy e 323 KEL2 ' KEZ2
requirements of an extra cycle for even quotients, and the reason that a remainder correction is not e 2 E 4-2,3 o
required for odd quotients, is discussed in Section 3.3. & &384233 e T

YES BDy5=ACi5 >-NO Ac+x—-—Acl !Ac-—-x-—--»Acl
The waveforms on Drawing D-TD-KE11-A-WF (Sheet 2) illustrate the basic division cycle, the ODD and EVEN

terminations, and the case in which overflow is detected during the first cycle. The CLK AC and CLK MQ signals l‘l-—iASTREoo [oifi‘s;%g 7 E -2
are based on the signal REG CLK1, which operates at a 250 ns period (1/4 the basic clock frequency). l — f ‘es €35-1,2

The flow chart in Figure 4-3 is accompanied by a numbered list of steps that describe operations done during a P msm—-[CLK X, SC-SR]M{fég 2 s

division. Several examples are also presented to clarify the division process. In the examples, one row illustrates

the contents of the registers at the end of a selected step of the division. The numbers in the Step column refer !éfiat 42;3} e T

to the numbered steps in the list accompanying the flow chart. Conventions are described in Section 4.2.1. E24-6] |GATE SRoo+MQoo ""“{ggng § 4.5
KE 2-2 KE 2-2

E27-12 €22-8

4.2.2.1 Divide Implementation — The divide implementation is as follows: Y ’ CvEN
ATE ATE . —

Step Action l AC+X—~>AC] lac-—xwacl - SaTE 8¢ ég*sasg% Y {KE 2-3
— TE M T — - -

1 a) The AC, MQ and sign of the dividend (SDIVD) were loaded by previous fee 22 cKE 2 g}_.lsfiégfi va Leer Ty
instructions. ¢ \E8-10,11 | |

L , ‘ , X15=ADD15 | GATE MQ —=ADD

b) Gate 204 to the SC and gate the Bus Data (divisor) lines to the X register. GATE SRp—+ADD(y
SATE = GATE ADD — MQ

2 Gate 1 to SR, if Bus Data bit 15 is the same as AC,5. Gate 0 to SRy, if Bus '* —*SRoo IG*—'SRool KE 2-3} ¥ |
Data bit 15 is different from AC,5. Clock X and SC - SR. l — | E17-1,2 "{\x o

15° ivD

Gate the AC and the MQ left once, gating SRyo to MQy,. © MQy4

4 If SRy = 1, subtract X from the AC and gate the result to the AC. If SRyo = 0. o

add X to the AC and gate the result to the AC. r
GATE SC-1 —»SC

5 Gate 1 to SR if the sign of X is the same as ADDER,5. Gate 0 to SRy if the 2 CE 2-4 cLy wo, S
sign of X is different from ADDER 5. gcf:g}l {540'5

»|GATE SC-1 wscl [GATE SC-1—+SC KE 1-4

6 If this is not the first time through this step, go to Step 8. KE 22 riciiiac, ¥4 590 CLK AC, MQ,SC-SR ‘“{E42~s |
| ‘ £36-8

7 If the adders are not 0 and the carry out of the adder is different from SDIVD, Ee 5613 | ‘

generate DIVD DONE and enable the SR to indicate OVERFLOW. GATE SC-1 QSSRC]*-{EEQE.Q

8 Gate SC minus 1 to the SC. Clock the AC, MQ, and SC -SR. If overflow occurred

in Step 7, this is the last step of the invalid divide, and the contents of the MQ and 1 F

AC are meaningless. OVERELON C sor)

9 If SC # 0, go to Step 3. Passn times through Step 9 for X = n bits. 11-0363

10 If SRy = 1, subtract X from the AC and gate the result to the AC; if SRy =0,

add X to the AC and gate the rgsult to the AC. Figure 4-3 Divide Implementation Flow Chart
11 If the AC is zero, go to Step 15.

12 If the adder is zero, go to Step 14.

13 If the sign of the AC is the same as SDIVD, go to Step 15.

14 a) Gate SC minus 1 to the SC, gate SRqo to SRyo. Gate the MQ left once,

gating a 0 to MQ,,. Clock the AC, MQ, and SC -SR.

4-4

Step

14

(cont)

15

16

17

b)

Action

Gate the MQ to the ADDER, and also gate SRy, to ADDER,,. Gate the

ADDER to the MQ. Go to Step 16.

Gate the MQ left once, gatinga 1 to MQy,.

Generate DIVD DONE and enable the SR to indicate OVERFLOW if:

a)

b)

the sign of X and SDIVD are the same and the anticipated sign of the final

MQis 1,0OR

the sign of the X and SDIVD are different and the anticipated sign of the

final MQ is 0.

Otherwise, the divide was valid.

Gate SC minus 1 to the SC. Clock the MQ and SC - SR. If the divide was valid,
the MQ = quotient and AC = remainder. Otherwise, the contents of the MQ and

AC are meaningless.

4.2.2.2 Division Examples — The following lists the contents of the indicated register for each example:

17 (21g) divided by 5 yields a quotient of 3 and a remainder of 2.

Example 1

X AC

? 0001

0101 0001

1101

1111

0011

0010

Y 0010

MQ

0001

0001

0011

0110

1100

1001

0011

Q¥ ACL MQL SDIVD SRy SC Step

— — - 0 ? ? AC-MQ loaded

0 0010 0011 1 4 2

~ 1010 0110 o 3 8

— 1110 1100 0o 2 8

~ o1 1001 118

-~ ool 1 o0 8

L -y 0 -1 17

35 (433) divided by 4 yields a quotient of 8 (103) and a remainder of 3. The quotient is too large;

overflow occurs.

63 (773) dividend by 3 yields a quotient of 21 or overflow.

Example 2

X AC

? 0010

0100 0010

0000

1100

1101

1111

0011

Y 0011

Example 3

X AC

? 0011

0011 0011

Y 0100

4.2.3 Shifts

MQ

0011

0011

0111

1111

1110

1100

1000

1000

MQ

1111

1111

1111

Carry
Out

Carry

Out

1

AC-L

0100

0000

1001

1011

AC-L

0111

MQ-L

0111

1111

1110

1100

1000

MQ-L

1111

.

SDIVD

0

SDIVD

|

SRoo

S

O

O

O

O

=

=

SRqo

?

1

0

SC

SC

Step

AC-MQ loaded

2

8

8

8

8

14

17, overflow

Step

AC-MQ loaded

2

8, overflow

Shift operations do not require carry propagation in the adders; shift cycles are run from the signal CLK 2-1,

which operates at a 125 ns period (1/2 basic clock frequency of the KE11-A). The three types of shift operations

are illustrated by one set of waveforms on Dwg. D-TD-KE11-A-WF. The basic shift cycle requires the selection of

a gating signal to determine a right or left shift, control signals to determine what bits are shifted into vacated

positions, and control signals to determine the setting of KE11-A condition codes. Note that for a 0 shift count

(or conditions met in a Normalize operation) at the beginning of a shift, the KE11-A does one cycle of oper-

ations that does not affect the contents of the AC or MQ registers, because no CLK AC or CLK MQ sigrials are

generated. This cycle is done to-set the KE11-A condition codes.

CHAPTER 5

DETAILED HARDWARE DESCRIPTION

This chapter presents a description of KE11-A logic keyed to the circuit schematics contained in a companion

document, KE11-A Extended Arithmetic Element Engineering Drawings. The major circuits on each drawing

are described, and the description is related to the function of each of the major signals that originates on the

drawing. Also, logic equations are included for most of the complex combination logic that generates control

signals in the KE11-A.

Signal names in the KE11-A include an origin designator and a level designator. The origin of a signal is the

engineering drawing on which the signal is generated; each print has been assigned a number of the form of

KEx-y, where x is the number of a module drawing set and y is the number of the drawing within the drawing

set. These numbers are arbitrarily assigned and have no meaning except within the print set. The origin desig-

nator precedes the signal name. For example, KE1-4 STOP H is a signal originating on the fourth sheet of the

circuit schematic for the first KE11-A module.

The level designator indicates the assertion level of a signal is either high or low, represented by an H or an L

following the signal name. Some signals refer to high or low bytes; in such cases, the signal name has a two-or

three-letter word indicating the byte and a single letter indicating the level. (e.g., CLK AC LO H is a signal that

affects the low byte of the AC, but is asserted when high.)

In the logic equations, signal names are reduced to the simplest terms by eliminating the origin designator and

the assertion level. Some signals are used as inhibiting levels; the assertion level disqualifies a gate, rather than

qualifying it. This function is shown in the logic equations by a NOT symbol (a minus sign is used).

General information concerning circuits that use discrete components for timing (pulsers, delays, and clocks) and

complex integrated circuits is included in the PDP-11 Conventions Manual, DEC-11-HR6B-D.

5-1

KE1-1

Clock and States, M827

The M827 Clock and States Module contains the timing circuits for the KE11-A and the address recognition logic

and control signal logic for communication with the Unibus. Address decoding determines when the KE11-A is

addressed and the particular operation (if any) implicitly selected. The state of the KE11-A (the operation in

progress) is determined by flip-flops on this module.

The transistor clock, which provides the basic timing signals for the KE11-A and the circuits that control the

starting and the stopping of the clock are on this module.

This drawing illustrates the address decoder and the operation flip-flops.

KE1-2 EAE ADRS H means that the Bus A lines are set to one of the 16 Unibus addresses (8 word-locations) that

specify KE11-A addresses. The jumper at print location C7 allows the EAE addresses to be either 777300 through

777317 or 777320 through 777337 (normally the former set of address is used).

KE1-2 OP H means that the address implies one of the five EAE operations. Note that it is not gated with EAE

ADRS but is only a function of Bus A(3:1).

The following convention applies to the signal names on this print:

a. Register addresses are two-character designations

b. Addresses that specify operations are three-character designations

c. Outputs from the operation flip-flops are four-character designations.

KE1-2

The two-letter and three-letter signal names are address decoder outputs, which are present only when the EAE is

addressed by the Bus A lines. The four-letter signal names are outputs from the operation flip-flops, which are

present for an entire operation.

The Step Counter (SC) address is not separately decoded because the SC can only be explicitly addressed as the

low byte of a word that includes the Status Register (SR) as the high byte. The SC is accessed by the signal SR.

OP = —A03* —A01* —A02

+A02* —AQ01* —A03

+A01* —A02* —A03

SHIFTS = ASHF + LSHF + NORM

KE1-3

This drawing illustrates the SSYN generator and the clock with the associated turn-on, sync, and frequency divide

circuits,

KE1-3 SELECT H is set when MSYN is asserted and the KE11-A is addressed, provided that the KE11-A is in

maintenance mode or no operation is in process. If a Unibus operation addresses the KE11-A while an operation

is in process, the SELECT flip-flop does not set until the operation is done; the Unibus transfer is delayed until

that time. Bus SSYN is generated 100 ns after SELECT is set to allow time for the data to be gated to the Unibus

if the cycle is a DATIL

KE1-3 CLK GATE blocks the first clock cycle, because the circuit that generates the 62.5 ns square wave pro-

duces one short cycle before stabilizing. (Clock and timing waveforms are illustrated on Drawing

D-TD-KE11-A-WF.)

KE1-3 CLK2-0 and KE1-3 CLK2-1 are two square waves with 125 ns periods; the signals differ in phase. CLK2-1

changes state on the high-to-low transition of the clock (at the output of gate E44 at print location B/CS);

CLK2-1 changes on the low-to-high transition. The clock rate must be adjusted so that the output at pin D4HO02

is a train of pulses of 125 ns period, as shown in Figure 5-1.

5-4

;: 125ns -‘=§

‘ 11-0362

Figure 5-1 Clock Rate Adjustment

KE1-3 CLK1 H is a 250 ns period clock that changes state on every low-to-high transition of CLKZ-O‘H. CLK1

is used for the multiplication and division sequences, which require additional time for carry propagation in the

adders.

KE1-3 REG CLK2 H provides a pulse at the end of each CLK2-1 cycle that is used to strobe data into the regis-

ters of the KE11-A during shift operation sequences.

KE1-3 REG CLK1 H provides a pulse at the end of each CLK1 cycle that is used to strobe data into the registers

during multiply and divide operation sequences.

SHIFT ENBL = RUN * SHIFTS * — DONE

See description of waveforms in Chapter 4 for rest of sheet KE1-3.

The circuits shown on this drawing turn off the clock, decode the bus control lines, and detect a zero output KE1-4 OFF1 L and KE1-4 OFF2 L are buffered signals that reset the operation flip-flops on KE1-2.

from the adder. | |

KE1-4 CLK SC H strobes data into the Step Counter (SC) and into three Status Register (SR) bits. This signal
KE1-4 DONE L indicates the end of the current operation.

is used to load the SC both at the beginning of a sequence of operations and during each cycle.

KEI1-4 TP1 is a test point for module checking; this signal is not used by the KE11-A logic.

KE1-4 ADD=0 L provides a signal used to detect remainders of 0 during division. This circuit is placed on this
KE1+4 END H stops further shifting by blocking transmission of the clock signals to the shift control circuit. module because of space limitations, not functional affinity.

KE1-4 STOP H controls the clock turnoff and the operation flip-flops.

KE1-4 OUT H, KE14 IN H, KE1-4 OUT LO H, KE1-4 OUT HI H, and KE1-4 OUT HI L are decoded from the

KE1-4 OFF L turns off the clock at the end of the last phase of the current cycle and resets all clock flip-flops. Bus C and Bus AQO lines to determine the character of a data transfer that addresses the KE11-A.

DONE = NORM* (AC15 *- AC14+ AC14 * - AC15 + (SC=37) + (AC=- .5))

+ (ASHF + LSHF) * (SC = 0)

+ MULT * (SC=0)

+ DIVD * (ODD + DIVD DONE)

CLK SC =P MSYN?t * (SR* OUT LO * OUTHI + OP * OUT LO)

+ CLK1% * (MULT + DIVD)

+ CLK2? * (SHIFTS * - END)

KE2-1

Register Control, M7211

This module comprises the circuits that control the data paths and the registers that hold the operands and results

of operations.

5-6

Thetircuits shown on this drawing generate some of the data path control signals.

KE2-2 MQOO IN H controls the value that is shifted into MQ bit 00.

KE2-2 GATE X H enables the direct transfer of data from the X register to the adder input.

KE2-2 GATE -X H enables the transfer of the complement of the data m the X register to the adder input.

When extending the sign of the MQ into the AC, if the sign bit is a 1, both GATE X and GATE -X are produced |

to generate an AC of all 1s (each bit is ORed with its complement).

KE2-2 CARRY IN H is the carry input to the least significant bit of the adder; this signal is generated in con-

junction with GATE -X to generate the 2’s complement of the number in the X register.

‘KE2-2 MQ SHF RT H enables the data in the MQ register to be shifted one bit to the right.

KE2-2 AC SHF RT H enables the data in the AC register to be shifted one place to the right before entering the

adders.

KE2-2 CLK MQ LO H strobes data into the low byte (8 bits) of the MQ register. This signal, used during loading

of the MQ and during operation sequences, is under clock control. |

KE2-2

KE2-2 EXTRA H and KE2-2 EXTRA2 H are buffered signals generated by EXTRA L to control the data paths

during the last cycle of a divide spe:atisn to increment the contents of the MQ register.‘

KE2-2 CLK MQ HI H clocks the high byte of the MQ (see CLK MQ LO).

KE2-2 CLK AC LO H clocks the low byte of the AC (see CLK MQ LO).

KE2-2 CLK AC HI clocks the high byte of the AC (see CLK MQ LO).

KE2-2 ODD H is generated to represent the last cycle of a division operation that does not require remainder cor-

rection. The ODD signal is used to generate the signals that control the data paths during this cycle.

KE2-2 AC15 SHF LEFT H enables the left shift input (through the adders) to AC15 during a left shift. This

signal is disabled during arithmetic left shifts.

KE2-2 AC SHF LEFT H enables the left shift inputs (through the adders) for AC (14:00)

KE2-2 MQ SHF LFT H enables the left shift inputs to the MQ.

ODD = (SC = 0) * ((AC = 0) +-(ADD = 0) * -AC15 * -SDIVD + AC15 * SDIVD)

MQOO IN = DIVD * (ODD + - (SC=0) * SR00)

MULT STEP = MULT * -SC04 * - (SC=0)

ADD X = MULT STEP * -MQO1 * MQO0

+ DIVD * -EXTRA * -SR00

SUB X = MULT STEP * MQO! * -MQO0

+ MULT * SC04 * MQOO

+ DIVD * -EXTRA * SR00

SIGN EXT = OUT * MQ * D15

CARRY IN = SUB X

GATE X = ADD X + SIGN EXT

GATE X = SUB X + SIGN EXT

MQ SHF RT = MULT + (ASHF + LSHF) * SC05

AC SHF RT = MULT * - SC04 + (ASHF + LSHF) * $C05

CLK MQ LO = REG CLK1{ * (DIVD + MULT * -SC04)

+ REG CLK2{ * SHIFT ENBL

+P MSYN{ * MQ * OUT LO

CLK MQ HI = REG CLK1{ * (DIVD + MULT * -5C04)

+ REG CLK2!{ * SHIFT ENBL

+P MSYN{ * MQ * OUT

CLK AC LO = REG CLK1{ * (MULT + DIVD * RUN *-ODD * -EXTRA)

+ REG CLK2} * SHIFT ENBL |

+P MSYN{ * OUT * (AC + MQ)

CLK AC HI = REG CLK1{ * (MULT + DIVD * RUN * -ODD * -EXTRA)

4+ REG CLK2{ * SHIFT ENBL

+P MSYN{ * OUT * (AC + MQ)

AC SHF LFT = SHIFTS * - SCO5 + DIVD STEP

DIVD STEP = DIVD * -(SC=0) * -EXTRA

AC15 SHF LFT = AC SHF LFT * - ASHF

MQ SHF LFT = SHIFTS * -SC05 + DIVD * -EXTRA

KE2-3

Fo
aa
 .

 .

The circuits shown on this drawing generate some of the status register bits. These flip-flops can be loaded from KE2-3 SR06 H indicates that the results of an operation are negative. SRO06 is loaded with the value of the signal

the Unibus or from the KE11-A logic described in the following paragraphs. The flip-flops are clocked by the output from gate E18 at drawing location CS.

CLK SC signal.

KE2-3 SRO00 indicates the value of the last bit shifted out during a shift operation; the flip-flop is used during

division operations to store a bit that determines whether the next clock cycle is to execute a subtraction or an

addition operation.

KE2-3 SRO7 H is a status register bit that, in conjunction with SR06, indicates an overflow condition. The out-

put of gate E4 at print location D5 is high if an overflow condition has occurred during the current operation;

SRO7 is the exclusive OR of this signal with SR06. The overflow detection logic includes a latch signal that is

tied to pin 10 of gate E4. If an overflow condition occurs during a shift operation, the latch ensures that the sig-

nal is present at the end of the operation. KE2-3 DIVD DONE H is asserted during an EXTRA clock cycle or if overflow occurs during a divide.

OVFL = DIVD * -(ADD=0) * SC04 * -SCO05 * (CARRY OUT # SDIVD) | CARRY = ASHF * AC14 * - $C05

+ (ASHF + LSHF) * RUN * -(SC05) * CLK2-0 * (AC14 # ACI5) + LSHF * AC15 * - SC05

+ DIVD * ODD * (SQOUT # (S DIVD # X 15)) + DIVD * SR00 * (SC=0)

+ EXTRA * - (ADD=0) * (SQUOT # (S DIVD # X15)) : ifgi?:;{i}?;gof (;hx{sQ:iecz 5)
+OVFL* - STOP* -DIVD | + DIVD STEP * (ADD15= X 15)

SQUOT = EXTRA * AC15 + ODD * MQ15 SRO7= RELOAD SR * D15

NEG = DIVD * -OVEL * SQUOT +-RELOAD SR * (OVFL # NEG)

« SRO6 = RELOAD SR * D14
+ DIVD * OVFL * SDIVD

+-RELOAD SR * NEG
+ (ASHF + NORM) * ACI5 ST SR00 = RELOAD SR * DOS |

+MULT * ADD 15 ‘ +-RELOAD SR * CARRY | [

+LSHF *-SCO05 * AC14 | - U - DIVD DONE = EXTRA + DIVD * -OVFL 4

KE24

This drawing illustrates some of the data path control signals. KE2-4 MUL + DIV START L indicates that a multiply or divide operation is required. The signal is present only

| | | | | | | until the operation flip-flop is set. | | «

KE2-4 AC15 IN H provides the input to be shifted into AC bit 15 during multiplication and shifts. The MFLAG Lo _ | L | .

flip-flop provides the correction necessary when the multiplicand is 2715, KE2-4 RELOAD SR L enables the inputs to SR bits 0, 6, and 7 from the KE11-A logic.

The remaining signals gefia:ated on this print are used to gate data into the various regzstexs through various parts
KE2-4 SDIVD H is a flip-flop that stores the original sign of the dividend for comparison with the signs of the of the data paths. The SC can be loaded from the Unibus or with a constant value of 205 (for multiply or divide
results to determine the presence of overflow or the need for remainder correction. operations); during an operation the SC can be incremented or decremented through a separate set of aéers

SET MFLAG = CLK ACHI * ADD15 * X15 * GATE-X

AC15 IN = AC15 * -(ASHF + MULT * -MFLAG)

MQ FM D = MQ * OUT * -OPER

ACFMD = AC * OUT *-OPER

BUS TO SC = RELOAD SR + (ASH + LSH) * OUT LO * - OPER

RELOAD SR = SR * OUT LO * OUT HI * -OPER

NUM TO SC =-BUS TO SC * (-NOR + RUN)

SC-1 TO SC=(ASHF + LSFH) * -SC05 + MULT + DIVD

SC+1 TO SC = (ASHF + LSFH) * SC05 + NORM

MUL + DIV START = (MUL + DIV) * -OPER

OPER = SHIFTS + MULT + DIVD "

CLK X = MUL+ DIV) * QUT LO * P MSYN?

AC15 GATE = AC FM ADD * - ASHF + ASHF * - SC05

AC FM ADD = DIVD * (SC=0)

KE3-1

Register Low Byte, M234

This module and the identical M234 Registers High Byte Module (KE4) make up the three data registers, the

main adder, and the data paths that connect these elements. Each module contains one byte of all elements. A

bit slice diagram of the registers and data paths (see Figure 4-1), which shows all control signals on the register

board, is provided in Chapter 4. o

Because the Registers Low Byte and Registers High Byte modules are identical, the signal paths for several con-

trol signals that are used to provide individual control of the most significant bit in operations on the AC must

be present on both modules. For the low byte, these control inputs are connected to the control inputs for the

remaining seven bits.

5-10

Register High Byte, M234

This module is identical to the Register Low Byte Module, KE3. Refer to the description of that R‘ifidlfl&

KE5-1

Data Control, M7210

This module contains the bus data receivers and drivers for the KE11-A, as well as the step counter, five bits of

the status register, and the associated logic.

5-12

KES-2 -

'This drawing illustrates the circuits that control the loading and modification of the step counter (SC). The SC

is a 6-bit register that can be loaded from the Unibus or from an adder network that can add +1 or-1 to the

contents of the SC or load 20 into the SC. Also, several combinational circuits detect various SC states, such as

SC all Os or SC all 1s with a divide operation in progress (EXTRA L). The data gated into the SC is selected by

combinational circuits on KE2-4.

5-13

KES-3

The combinational logic shown on this drawing detects various states of the contents of the AC and MQ registers.

KES5-3 AC=-.5 H detects a condition that terminates a Normalize operation.

KES-3 AC=177777 H is transmitted as SROS.

KE5-3 AC=0 H is transmitted as SR04.

KES5-3 MQ=0 H is transmitted as SR03.

KES5-3 SR02 indicates that both the AC and the MQ are all Os.

KES-3 SRO1 indicates that the AC is all 1s and MQ15 is a 1 or that the AC is all Os and MQ15 is a 0; in other

- words, the result is single precision.

5-14

This drawing illustrates the interface between the KE11-A and the Unibus for the low data byte (D (07:00)).

Each data line passes through one ungated receiver and can be driven by the output of a multiplexer that selects

one of three inputs. The multiplexer allows reading of the AC, the MQ, or the SC; the fourth input is undriven,

which permits connection of the drivers to the wired OR bus without disturbance during nontransmitting periods.

KES-4

5-15

KES5:5

This drawing illustrates the data interface between the KE11-A and the Unibus for the high byte (D (15:08)).

The circuit is similar to drawing KE5-4 with the following changes: the contents of the SR are transmitted by

the same control signals that transmit the SC; and the receivers pass through sign extension logic that allows the

high byte to be replaced by all 1s or all Os, depending on the value of DO7. Table 5-1 illustrates the output selec-

tion for the 74H87 sign extension circuits.

Table 5-1

Sign Extension Logic

Input B = OUT HI L = -OUT HI (inhibit)

Input C =-(D07 H*OUT HI L) = OUT HI +-D07

Inputs
B Pt C Out Remarks

010 -In never used

011 In OUT HI

110 1 -OUT HI * D07

1 1 0 -QUT HI *-D07

5-16

If the KE11-A is not performing in the prescribed manner, run the diagnostic programs listed in Table 1-2 to

isolate the malfunction to the following areas:

a. The KE11-A hardware

b. Other system hardware

¢. The software.

If a KE11-A hardware fault is indicated, the diagnostic progra

of the problem.

s often pinpoint the nature and probable causes

- If the problem cannot be resolved in this manner, or to verify a tentative analysis of a malfunction, several addi-

tional procedures are available. The PDP-11 Conventions Manual DEC-11-HR6A-D lists a set of maintenance

tools and equipments that may be helpful. The list in Appendix A of that manual includes the maintenance mod-

ule set that contains a W130 Module and a W131 Module. An overlay is available for the KE11-A to indicate the

particular signaié that are connected to the maintenance modules when they are inserted in slot BO2 of the KE11-A

system unit.

The maintenance module set slows operation of the KE11-A to operator-discernible speeds. The KE11-A con-

tinues to respond correctly to individual Unibus transfers initiated by the processor but does not produce correct

results if the processor is running at normal speed. The operator can control the minor clock cycles of the KE11-A

which, in turn, control the individual operations of testing, setting, and clearing of flip-flops; addition and subtrac-

tion; and shifting. The maintenance module set also provides indicators that display the states of three sets of sig-

nals: timing signals; operation indicators; and register contents for the SR and SC registers. Table 6-1 lists the

functions of the timing signals that are displayed by the maintenance module set.

Table 6-1

Timing Signal Functions

Name | Function

SELECT - Flip-flop set when KE11-A is explicitly addressed

RUN Flip-flop set when KE1 1-A operations are implicitly

addressed |

(continued on next page)

Table 6-1 (Cont)

Name Function

CLK ON Controls square wave generator (basic clock)

CLK GATE Gates square wave to clock flip-flops, ensures clock

| shutoff in proper state

CLK 20 Basic clock divided by two

CLK 2-1 Similar to CLK 2-0 with phase difference

CLK1 Basic clock frequency divided by 4 (1/2 CLK2-0)

END Controls final step of operations

STOP Resets all timing and operation flip-flops

- The KM11 is a two-module (W130, W131) option to the KE11-A to aid in maintenance. This prewired option

is installed by inserting the W130 Module into location B02 and inserting the W131 Module into the W130. Note

that the switches and indicators face toward and extend below the console. The bottom cover must be removed

with the chassis external to the cabinet.

Labels for the internal machine states lamps are noted on the W131 Overlay. Switches, which provide a manual

clock and alter the response to bus transfers, are active when the toggle is up. Normal machine operation requires

that all switches be in the off position.

MNT ENBL and MNT CLK provide a manual clock for the KE11-A. MNT ENBL is activated while the EAE is

halted. Each toggle of MNT CLK steps the EAE through the smallest EAE clock intervals.

The next highest clock interval, CLK2, is provided by four toggles (2 complete switch cycles) and is indicated by

the CLK2-0 and CLK2-1 indicators. Eight toggles are necessary for each CLK1 interval. Normal operation is

resumed when MNT CLK and then MNT ENBL are returned to off.

This appendix contains logic schematics and truth tables for four types of complex integrated circuits (ICs) used

in the KE11-A. The illustrations are supplemented by notes on significant design features.

A.1 7482 ADDERS

This adder (see Figure A-1) is a two-bit, full-binary adder. Normally the inputs and outputs are high when asserted.

The adder has the same truth table (refer to Table Anl)f and the same resulting signals, if both the inputs and the

outputs are inverted. For example,if Alis1,B1is0,A2is0,B2is1, a_rzd COis O, then Sumlis1,Sum2is 1,

and C2 is 0. Complementing the inputs (A1=0, B1=1, A2=1, B2=0, and C0=1) complements the outputs (Sum1=0,

A-1

~ Adder Truth Table

A, B, 3, GND Cs NC NC

14 13 12 o | 10 o || s

s,

2 m
 .> = >

L
 g *

oP
—
—

i

=

T

=
B

—
S

-
S

-
R

O
S

S

S
S

.

-

=

9
0
O

=

=

0
0

=

=
0
0
~
~
~
0
0

—
_

e

e

-

O

O

O

O

o
o

o
=

O
O
0

O

O

—_

e

=

-

0O

0
0
O

O
O
O
G
O
]
|

O

m

-

O
O

O
O

O
O

=

=

O

—
_

O

O

e

O
O

e

O
O

O
O

-

o
t

e
k

e
k

e
k

e
t

e
k

e
t

O

e

e

e

O

O
O

O

O

positive logic: see truth table

NC - No Internal Connection 11-0361

Figure A-1 7482 2-Bit Binary Full Adders

A.2 74H87 4-BIT SIGN EXTENDER

For an explanation of this element refer to Table 5-1. Figure A-2 is a logic diagram of the sign extender. Table

A-2 is the corresponding truth table.

/A1o—

A20

DATA

INPUTS <

CONTROL INPUT B W>&_

CONTROL INPUT ca—--«->.;

LOGIC DIAGRAM

Figure A-2 74H87 4-Bit True/Complement,

Zero/One Element

Table A-2

>- OUTPUTS

Truth Table

Control .
Inputs Outputs

B C Y1 Y2 Y3 | Y4

0 0 Al A2 A3 A4

0 1 Al A2 A3 A4

1 0 1 1 1 1

1 1 0 0 0 0

A-2

A.3 74153 4WAY MULTIPLEXER

Figure A-3 is a circuit diagram of a Dual 4-Line- To-1-Line Data Selector/Multiplexer.

corresponding truth table.

16STROBE ;{:::; [
T A

iB P —

DATA | =
INPUTS] B

iC [S—

iD -

p

CONTROL 3
INPUTS

E »-—"—0

[2A

2B

DATA

INPUTS 2c

2D

STROBE :{:::: ' |

LOGIC DIAGRAM

1, Figure A-3 74153 Dual 4-Line-To-1-Line Data

Selector/Multiplexer

Table A-3 is the

» OUTPUTS

Table A-3 Cé}c o 353 Do

Truth Table RpO— — — — — — o e — . ! F———T— 1=~ |

Dao ;

Control i

Inputs Data Inputs Strobe | Output SHIFT D l

F E A B C D G Y |

X X X X X X H L ;

L L L X X X L L 4

L L H X X X L H S
L H X L X X L L

L H X H X X L H

H L X X L X L L

H L X X H X L H By Re 1

H H X X X L L L LOAD 0— _c i

H H X X X H L H 1
CL%CKO-'{ >=

$

Address inputs A and B are common to both sections. 0o
H = high level, L = low level, X = irrelevant.

Figure A-4 8271 4-Bit Shift Register 11-0364

Table A4

| Control State Truth Table
A.4 8271 4-BIT SHIFT REGISTER

Control State ~ Load Shift

. Figure A-4 is a circuit diagram for a 8271 4-bit Shift Register. Mode control logic determines three possible con-

trol states. These register states are serial shift right mode, parallel enter mode, and no change (or hold) mode. Hold 0 0
These states accomplish logical decoding for system control. Table A-4 is a truth table for the control modes. Paralle] Entry 1 0
For applications not requiring the hold mode, the load input can be tied high and the shift input used as the Shift Right 0 1

mode control. | ‘. Shift Right 1 1

A-3

APPENDIX B
Status Register

(after DATO)

|

|

_

Low B

716| 5|4]|3]2|1
oKE11-A INSTRUCTION SUMMARY W Byte —

High Byte =] 15 14{1312{1]10/d 8

5 |SI888 IoDATI or | | . ’ » 127 ITIEE 7OP/REG | ADDRESS | b\ DATO DATOB-Low Byte DATOB-High Byte Operation 2| (12l2igd |2

DIV 777300 Read Load X, Start Divide Load X, Sign Extend, Start Do nothing AC-MQ _ MQ rem: AC *Vl*I*IFrI**|0

Divide Zero’s Divide X

AC 777302 Read AC| Load AC Load AC, Sign Extend Load AC — I *1* FI*1* -

MQ 777304 Read Load MQ Sign Extend | Load MQ Sign Extend into Load MQ, Sign Extend — 1 *1* 1=

MQ into AC MQ High Byte and AC into AC

MUL 777306 Read Load X, Start Multiply | Load X, Sign Extend Start Do nothing MQ)X)=AC-MQ OV | *|*|**|*|*|0

Zero’s Multiply

SC 777310 Read SC | Load SC and Load Do Nothing Do Nothing * 1 ¥ -1-FI-1-1*

SR 777311 and SR | SR Bits 0,6,7

NOR 777312 Read SC | Start Normalize Start Normalize Do Nothing Shift Left Until: AC;5# ACj4o0r

Normalize AC-MQ =1100...00 or OV | *] * |* |* *|* 0

SC=31

LSH 777314 | Read |Load SC, Start Load SC, Start Do Nothing LEFT (SC>0): 4.,[] fac MO | <o [#v ||| e[|

Logical Zero’s | Logical Shift Logical Shift SRo 15 0 16 0

Shift
|

RIGHT (SC<0): 0- ! AC MO]""' N

15 0 15 0 SR9

ASH 777326 | Read |Load SC, Start Load SC, Start Do Nothing LEFT (SC>0): D D Ao el e b b el L
Asithmetic Zero’s | Arithmetic Shift Arithmetic Shift “Li« 3:‘36 ng“O v
Shift AC;s SR,

RIGHT (SC<0): A ARG

AC MQ |- D*-*
ACis 14 o015 o SRy

— unchanged

0 cleared

1 set

* set conditionally

OV no overflow possible

*V overflow possible

APPENDIX C

NAMES OF MATHEMATICAL TERMS

The mathematical operations of addition, subtraction, multiplication, and division each produce one result from

two operands. The names used to discuss the operands are given in Table C-1. This appendix also includes rules

for combining signed numbers in each operation.

Table C-1

Operand Names

Operation 1st Operand 2nd Operand Result

Addition Addend Addend | Sum

Subtraction Minuend | Subtrahend Difference

Multiplication Multiplicand Multiplier Product

Division Dividend Divisor | Quotient

The operands can be freely exchanged in addition and multiplication. The order of the operands in the opera-

tions is as shown in Figures C-1 through C-4.

Addend

+Addend or Addend + Addend = Sum

Sum

Figure C-1 Order of Operands in Addition

Minuend

- Subtrahend or Minuend — Subtrahend = Difference

Difference

Figure C-2 Order of Operands in Subtraction

Multiplicand

XMultiplier or Multiplicand X Multiplier = Product

Product

Figure C-3 Order of Operands in Multiplication

Dividend Quotient

= Quotient or Divisor)Dividend

Divisor

or Dividend + Divisor = Quotient

Figure C-4 Order of Operands in Division

When operating on signed numbers, the following rules determine the sign of the result:

a. For addition: with like signs, add the absolute values and prefix the common sign; with unlike

signs, subtract the absolute value of the smaller number, and prefix the sign of the larger.

b. For subtraction: change the sign of the subtrahend, and proceed as in addition.

c¢. For multiplication: with like signs, the result is positive; with unlike signs, the result is negative.

d. For division: divide the absolute values, and prefix a positive sign for like signs or a negative

sign for unlike signs.

READER’S COMMENTS DEC-11-HKEA-D

Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness of

our publications.

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized, well

written, etc.? Is it easy to use?

|

|

|
|

!

i EXTENDED ARITHMETIC ELEMENT

|

l

l

i

|

!

l What features are most useful?

|

What faults do you find with the manual?

Does this manual satisfy the need you think it was intended to satisfy?

Does it satisfy your needs? Why?

Would you please indicate any factual errors you have found.

Please describe your position.

Street Department

City ! State - Zip or Country

l

|

|
|

|
|

|

|

|

l
' Name Organization

|

|
|

|

I

|

l

|

|
|

——— e ——— — FoldHere == — === — — = — — — —— —— __ _ _ _

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

BUSINESS REPLY MAIL SEEEE——

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATFS S

]
Postage will be paid by: ,

T

T

Digital Equipment Corporation S

Technical Documentation Department 7

i]146 Main Street 7
SMaynard, Massachusetts 01754

