|I!IIlII|IIIIlI||I|IIIII|I|II||I|ll!- : % | | Sy . 1

HARDWARE HANDBOOK

dlilgliltlall {

A A 9 o Q
- £ : & =5 8t . v o
DIGITAL Facility, Colorado Springs, Colorado

CORPORATE PROFILE

Digital Equipment Corporation designs, manufactures, sells and ser-
vices computers and associated peripheral equipment, and related
software and supplies. The Company’s products are used world-
wide in a wide variety of applications and programs, including
scientific research, computation, communications, education, data
analysis, industrial control, timesharing, commercial data process-
ing, word processing, health care, instrumentation, engineering and
simulation.

G Jaes
e —

WAX

HARDWARE HANDBOOK

Copyright© 1982 Digital Equipment Corporation.
All Rights Reserved.

Digital Equipment Corporation makes no representation that the in-
terconnection of its products in the manner described herein will
not infringe on existing or future patent rights, nor do the descrip-
tions contained herein imply the granting of license to make, use,
or sell equipment constructed in accordance with this description.

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsi-
bility for any errors that may appear in this manual.

DEC, DECnet, DECsystem-10, DECSYSTEM-20, DECtape
DECUS, DECwriter, DIBOL, Digital logo, IAS, MASSBUS, OMNIBUS
PDP, PDT, RSTS, RSX, SBI, UNIBUS, VAX, VMS, VT
are trademarks of
Digital Equipment Corporation

This handbook was designed, produced, and typeset
by DIGITAL's New Products Marketing Group
using an in-house text-processing system.

TABLE OF CONTENTS

PREFACE i IX
PART I INTRODUCTION

CHAPTER 1 AN INTRODUCTIONTOVAX
THEVAX FAMILY & oot 1
ARCHITECTURE OVERVIEW . . .o\t 4
SOFTWARE OVERVIEW . .\ oottt e e e e 7
HARDWARE OVERVIEW . . .o oottt e e 9
READING THIS HANDBOOK ..ottt e 15
PART Il THE VAX-11/730
CHAPTER 2 VAX-11/730 CONSOLE SUBSYSTEM
INTRODUCTION ..ot U 19
CONSOLEMODES . . . ottt ettt 20
CONSOLE TERMINAL .ottt e 23
CONSOLE COMMAND LANGUAGE, 24
INTEGRAL TUS8 TAPE DRIVES ...ttt 35
BOOTING THE VAX-11/730 SYSTEM .o 35
CHAPTER 3 VAX-11/730 CENTRAL PROCESSOR
INTRODUCTION . . .o ottt e e e 39
PROGRAMMED ARRAY LOGIC TECHNOLOGY 41
HARDWARE ELEMENTS ..ottt e e 41
CHAPTER 4 VAX-11/730 MAIN MEMORY SUBSYSTEM
INTRODUCTION . . o\t e e e e 47
BASIC MEMORY OPERATIONS ...\ttt 49
CONTROL AND STATUS REGISTERS ...t oreeeiee e 50
ERROR CHECKING AND CORRECTIONoiiiiiinnn .. 54
CHAPTER 5 VAX-11/730 UNIBUS SUBSYSTEM
INTRODUCTION . . oot e 57
VAX-11/730 UNIBUS SUMMARY ..\ttt 58
VAX-11/730 UNIBUS ADAPTER ..ottt 62
PROCESSOR ACCESS TO UNIBUS P 62
UNIBUS INITIATED DATATRANSFERSot 63

CHAPTER 6 VAX-11/730 PRIVILEGED REGISTERS
INTRODUCTION ...t e s 69
CONSOLE TERMINALREGISTERSot 70
TUSBREGISTERS 73
TIME-OF-YEAR CLOCK AND INTERVAL TIMER REGISTERS 75
FLOATING POINT ACCELERATORREGISTER 77
PART Il THE VAX-11/750
CHAPTER 7 VAX-11/750 CONSOLE SUBSYSTEM
INTRODUCTION ... i 81
CONSOLEMODES i 82
VAX-11/750 FRONTPANEL 84
CONSOLETERMINAL s 86
CONSOLE COMMAND LANGUAGE 86
INTEGRAL TU58 CARTRIDGETAPEDRIVE 96
BOOTING THE VAX-11/750 SYSTEM e 96
CHAPTER 8 VAX-11/750 CENTRAL PROCESSOR
INTRODUCTION e 105
GATE ARRAY TECHNOLOGY ... 107
HARDWARE ELEMENTS 107
CHAPTER 9 VAX-11/750 MAIN MEMORY SUBSYSTEM
INTRODUCTION e 113
BOOTROMS ... e 114
BASIC MEMORY OPERATIONSot 115
CONTROL AND STATUSREGISTERS...................o it 116
BATTERYBACKUP i 120
ERROR CHECKING AND CORRECTION, 120
CHAPTER 10 VAX-11/750 UNIBUS SUBSYSTEM
INTRODUCTION e 123
VAX-11/750 UNIBUS SUMMARY, 124
VAX-11/750 UNIBUS ADAPTER ...t 128
PROCESSORACCESSTOUNIBUS.............. ...t 129
UNIBUS INITIATED DATATRANSFERS, 130
CHAPTER 11 VAX-11/750 MASSBUS SUBSYSTEM
INTRODUCTION e 139

MASSBUS ADAPTEROPERATION 141

MBAREGISTERS e 142
DATA PATH 142
MBA ACCESS ... 143
DATA TRANSFERPROGRAMFLOWo, 153
CHAPTER 12 VAX-11/750 PRIVILEGED REGISTERS
INTRODUCTION ... e 157
CONSOLE TERMINALREGISTERS 158
TUS8 REGISTERS.ot 160
CLOCKREGISTERS i 162
MACHINE CHECK ERROR SUMMARY REGISTER (MCESR)...... 165
MACHINE CHECK STATUS REGISTER(MCSR) 166
TRANSLATION BUFFER GROUP DISABLE REGISTER (TBDR) ..167
CACHE DISABLEREGISTER(CADR) ... 168
CACHE ERRORREGISTER(CAER)oll s 168
TRANSLATION BUFFERREGISTER 169
FLOATING POINT ACCELERATORREGISTER.................. 169
PART IV THE VAX-11/780
CHAPTER 13 VAX-11/780 CONSOLE SUBSYSTEM
INTRODUCTION .. i 173
CONSOLEINTERFACEBOARD, 174
CONSOLEBUSSTRUCTURE ..., 177
INTERNALDATABUS e 177
QBUS . 178
VBUS 178
CONSOLE/VAX-11INTERACTION 179
READ-ONLY MEMORY (ROM) ... 179
VAX-11/780 PROCESSOR CONTROL PANEL 179
CONSOLE COMMAND LANGUAGE 182
CONSOLEERRORMESSAGES 189
BOOTING THEVAX-11/780 192
DEFAULT BOOTSTRAP COMMAND PROCEDURE 195
CHAPTER 14 VAX-11/780 CENTRAL PROCESSOR
INTRODUCTION ... e 197
HARDWARE ELEMENTS 198
PROCESSOROPERATION it 201

CHAPTER 15 SYNCHRONOUS BACKPLANE INTERCONNECT ..

INTRODUCTION ... e 207
SBISTRUCTURE e 209
PARITY FIELD ... o e e 211
SBITHROUGHPUT 228
CHAPTER 16 VAX-11/780 MAIN MEMORY SUBSYSTEM
INTRODUCTION e 231
MEMORY CONTROLLER i 232
BASIC MEMORY OPERATIONS 233
INTERLOCKCYCLES s 236
ERROR CHECKING AND CORRECTION(ECC) 237
MEMORY CONFIGURATIONREGISTERS 238
MEMORY INTERLEAVING it 243
ROMBOOTSTRAP .. e 244
BATTERYBACKUP 244
CHAPTER 17 VAX-11/780 UNIBUS SUBSYSTEM
INTRODUCTION ... e 247
UNIBUS SUMMARY e 248
THEUNIBUS ADAPTER 253
SBIACCESS TO THESBIADDRESSSPACE 253
UNIBUS ACCESS TO THE SBIADDRESS SPACE 258
UNIBUS ADAPTER DATA TRANSFER PATHS e 262
INTERRUPTS . .. e e 274
UNIBUS ADAPTER (NEXUS) REGISTERSPACE 278
SBI ADDRESSABLE UNIBUS ADAPTERREGISTERS 280
POWER FAIL AND INITIALIZATION 300
SBIUNJAM 302
EXAMPLE .. 303
CHAPTER 18 VAX-11/780 MASSBUS SUBSYSTEM
INTRODUCTION ... 309
MASSBUS ADAPTEROPERATIONt 312
CONTROL PATH .. e 315
MBA ACCESS 315
INTERNALREGISTERS s 317
EXAMPLE ... 328
CHAPTER 19 INTERCONNECTS AND THE VAX-11/782
OVERVIEW . .. e e e 331
DR780 HIGH PERFORMANCE 32-BIT PARALLEL INTERFACE332
DR32 DEVICEINTERCONNECT(DDI) ... 333

Vi

PROGRAMMING INTERFACE ... TR 337

PROGRAMMING HINTS e 339
PHYSICAL CHARACTERISTICS o it 347
CONFIGURING THE DR780 IN VAX-11/780 SYSTEMS 347
MA780 MULTIPORT MEMORY 349
CAPACITY AND EXPANDABILITY 350
THROUGHPUT e 351
DATAINTEGRITY .. o e 352
FAILSOFT CAPABILITY ... e 353
USING SHARED MEMORY 354
VAX-11/782 ATTACHED PROCESSORSYSTEM 359
SOFTWARE .. e 362
CHAPTER 20 VAX-11/780 PRIVILEGED REGISTERS
INTRODUCTION ... 367
CONSOLE TERMINALREGISTERSt 368
CLOCKREGISTERS e 369
FLOATING POINT ACCELERATORREGISTERS 372
VAX-11/780 MICRO CONTROLSTORE 374

PART VVAX DEPENDABILITY

CHAPTER 21 VAXSYSTEMDEPENDABILITY..................
INTRODUCTION .. e 379
FEATURES COMMON TO VAXSYSTEMS 379
VAX-11/730 SPECIFICFEATURES ioiinan. 388
VAX-11/750 SPECIFIC FEATURES 390
VAX-11/780 SPECIFICFEATURES 391

PART VI APPENDICES, GLOSSARY, AND INDEX

APPENDIX A COMMONLY USED MNEMONICS 397
APPENDIX B INSTRUCTIONINDEX 401
APPENDIX C ADDRESS VALIDATIONRULES 411

APPENDIX D VIRTUAL TO PHYSICAL ADDRESS
TRANSLATION. ... 415

APPENDIX E VAX-11/730 INTERNAL PROCESSOR
REGISTERS

APPENDIX F VAX-11/750 INTERNAL PROCESSOR
REGISTERS

APPENDIX G VAX-11/780 INTERNAL DATA (ID) BUS
REGISTERS

APPENDIX H OPERAND SPECIFIER NOTATION............
APPENDIX 1| I/0 SPACERESTRICTIONS

APPENDIX J TECHNICAL SPECIFICATIONS FOR
VAX-11/730 PROCESSOR i,

APPENDIX K TECHNICAL SPECIFICATIONS FOR
VAX-11/750 PROCESSOR e

APPENDIX L TECHNICAL SPECIFICATIONS FOR
VAX-11/780PROCESSOR

APPENDIX M SYSTEM THROUGHPUT CONSIDERATIONS ..
GLOSSARY

viii

435

449

453

455

461

PREFACE

VAX is DIGITAL’s family of 32-bit minicomputers. This handbook pro-
vides a brief introduction to VAX and detailed descriptions of the VAX
family members: the new VAX-11/730, the VAX-11/750, the VAX-
11/780, and the new VAX-11/782.

PART | introduces the reader to VAX with an overview of the VAX
architecture and the capabilities of the newly enhanced VAX/VMS
operating system. To complete the VAX family picture, a hardware
overview of the VAX processors is provided.

For detailed information on the new entry-level VAX, PART Il of this
book describes the VAX-11/730 console subsystem, the central proc-
essing unit, the main memory subsystem, the UNIBUS subsystem, and
the privileged registers.

PART Ill covers the VAX-11/750, including the topics listed above and
a chapter on the MASSBUS subsystem.

Both the VAX-11/780 and the VAX-11/782 are discussed in PART IV.
Additional chapters for the VAX-11/780 include Chapter 15 on the
Synchronous Backplane Interconnect and Chapter 19 on Intercon-
nects and the VAX-11/782.

PART V details the wide range of dependability features built into VAX
computer systems. These features were designed to ensure VAX relia-
bility, availability, and maintainability.

PART VI of this book contains 13 appendices, a glossary, and an index
for your convenience.

In addition to this handbook, two other VAX handbooks are available:

e The VAX Architecture Handbook, describing the VAX system archi-
tecture, addressing modes, and the native mode instruction set

e The VAX Software Handbook, describing the VAX/VMS operating

system, its operation, hardware interaction, data structures,
features, and capabilities

As with all VAX handbooks, a comment card has been placed in the
back of the book. All comments are greatly appreciated, as they help
us make the VAX handbook set meet your needs.

PART |
INTRODUCTION

CHAPTER 1
AN INTRODUCTION TO VAX

THE VAX FAMILY

VAX is DIGITAL's family of 32-bit minicomputer systems. The new
family members—the VAX-11/730and the VAX-11/782 attached
processor system—together with the VAX-11/750 and VAX-11/780,
make the power of VAX systems available to a wide range of users,
applications and budgets.

All VAX processors implement a 32-bit architecture, an extensive in-
struction set with humerous data types, and a 32-bit bus structure for
high throughput. All VAX system hardware is complemented by the
newly enhanced VAX/VMS operating system, a powerful multipro-
gramming operating system that handles multiuser, realtime and mul-
tistream batch applications, plus online program development.

The newest member of the VAX family, the VAX-11/730, incorporates
bit-slice and Programmed Array Logic (PAL) technology. Like the oth-
er family members, the VAX-11/730 implements the VAX architecture
and runs the VAX/VMS operating system and layered software. With
the VAX-11/730, however, VAX functionality is available at a much
lower price, providing the ability to move VAX power down to the
project or section level. The VAX-11/730 can also be used as a
powerful, remote DECnet node, allowing its users access to higher
performance members of the VAX family when necessary. Connection
to mass storage devices and other peripherals is provided through a
UNIBUS adapter.

The VAX-11/750, the mid-range member of the VAX family, incorpo-
rates many innovations designed to increase performance and to re-
duce the overall cost of ownership. The VAX-11/750 is the first 32-bit
minicomputer to be implemented primarily in custom bipolar LSI
Schottky logic (designed entirely by DIGITAL engineers). One UNIBUS
adapter (integral to the processor) and up to three MASSBUS adap-
ters or one additional UNIBUS and two MASSBUS adapters may be
used for connection to mass storage devices and other peripherals.

The VAX-11/780 was designed to meet the needs of many users with
large databases and extensive processing needs. Central to its I/0
system is a 32-bit wide data and control path that can move up to 13.3
MB of data per second among the system’s major hardware compo-
nents. Up to four UNIBUS and four MASSBUS adapters may be used
for connection to mass storage devices and other peripherals. The
support of high-performance disks and tapes by the VAX-11/750,

1

Introduction to VAX

VAX-11/780 and VAX-11/782, combined with their ability to network
with the other VAX family members provides significant and varied
configuration possibilities.

The VAX-11/782 attached processor computer system is a tightly-
coupled asymmetrical multiprocessor system that can provide up to
1.8 times the performance of a single VAX-11/780 system for com-
pute-intensive applications. Consisting of two VAX-11/780 CPUs, the
VAX-11/782 attached processor computer system can support up to 8
MB of MA780 shared memory.

NOTE
Specific information on the VAX-11/782 attached
processor system is contained in Chapter 19, Inter-
connects and the VAX-11/782. Unless otherwise
specified, most of the VAX-11/780 features in this
chapter apply to the VAX-11/782.

Application Performance

VAX hardware and software were designed to complement each oth-
er. Hardware implementation combined with the VAX/VMS operating
system, 32-bit addressing, a 4 billion byte virtual memory, an address
translation buffer, a prefetch instruction buffer, an optional floating
point accelerator, and the powerful VAX instruction set, give VAX sys-
tems their impressive performance.

The impressive CPU power and throughput, plus the high perform-
ance-to-cost ratio, make VAX systems ideal for interactive applica-
tions. The high computational ability and large program size mean
VAX systems can handle tough realtime applications as well.
Furthermore, the VAX/VMS operating system provides extensive fa-
cilities for good batch performance—including job control, multi-
stream, spooled input and output, operator control, conditional com-
mand branching, and accounting functions. A choice of options such
as additional physical memory, user control store, and additional peri-
pheral equipment interfaces, allow even greater flexibility in
configuring systems to optimize performance for specific applications.

Ease of Use

VAX systems are user-oriented systems designed for easy operation.
The DIGITAL Command Language (DCL) interface used by VAX/VMS
is easy to learn and is suitable for both interactive and batch environ-
ments. The software compatibility of VAX systems allows software
developed for one VAX system to run on another VAX system without
modification. Because VAX systems use the same instruction set, it

2

Introduction to VAX

also means that users need not learn a new series of instructions to
take full advantage of another VAX system’s capabilities.

VAX/VMS provides extensive system management facilities, giving
system managers and operators the tools necessary to control the
system configuration and the operations of system users for maximum
efficiency. Users will appreciate the extensive HELP commands and
complete multiuser security. The VAX family processors also imple-
ment a PDP-11 Compatibility Mode which recognizes almost all PDP-
11 instructions. This allows users to execute code written for the PDP-
11 with few modifications.

The VAX console subsystem also contributes to ease of use. A sepa-
rate console terminal replaces the traditional toggle switches and
lights, and a carefully designed console command language lets the
user perform operations such as EXAMINEs and DEPOSITs, or boot
the system, using simple commands. This console terminal also pro-
vides a hardcopy record for complete documentation of console
transactions. Furthermore, switches on the front panel of the CPU can
be set up to reboot the system automatically, with no operator inter-
vention, in the event of a power failure or system crash.

Additionally, VAX systems are designed to facilitate rapid, low-cost
applications development. With the complete set of VAX/VMS devel-
opment tools, file system features, optional information management
products, and other software packages, applications are easier to de-
velop and require far less debugging time. DIGITAL’s extensive edu-
cational services are also available to train and assist users in
exploiting the wide and varied capabilities of VAX systems.

Easy Installation and Maintenance

A variety of system configurations is available so customers can pur-
chase exactly what is required. VAX systems are easily tuned and
adapted allowing additional peripherals and options to be interfaced
at any time. Customers may choose from a wide variety of peripherals
and packaging options to configure a VAX system to suit their require-
ments—whether the site is an office, a laboratory, or an industrial
setting.

Once the system is installed, extensive reliability, availability, and
maintainability features (discussed in Part V of this book) in both the
hardware and the software ensure data integrity and increase system
uptime. Features such as ECC (Error Correcting Code) memory, on-
line error logging, and a complete range of online and stand-alone
diagnostics verify system integrity and help ensure proper system

3

Introduction to VAX

operation. The Remote Diagnosis option for the VAX-11/750 and VAX-
11/780 allows a customer to be directly linked to a DIGITAL Diagnostic
Center for diagnosis of hardware and software failures. For VAX-
11/730 users, customer runnable diagnostics allow a system user the
capability of verifying proper hardware operation and the quick isola-
tion of system failures to the subsystem or device level. The Remote
Support option, utilizing Remote Diagnosis technology, provides the
DIGITAL service engineer with a further level of technical resources.

Sound Long-Term Investment

The features of the VAX series described above, together with the
many other features described in the chapters that follow, make VAX
systems a sound long-term investment. The new VAX-11/730 and
VAX-11/782 systems are a reflection of DIGITAL’s ongoing commit-
ment to the VAX family of 32-bit minicomputers and further proof that
the VAX family exemplifies the architecture of the 1980s. The wide
range of systems possible with the VAX-11/730, VAX-11/750, VAX-
11/780,and VAX-11/782 ensures that these systems can be tailored to
individual application requirements and can be easily reconfigured if
those needs should change in the future—an important consideration
for customers involved in long-term projects and implementations.

The following sections in this chapter will introduce the reader to a
variety of VAX family architectural and software features, as well as to
many of the important hardware features of the various VAX im-
plementations. Appendix A in the back of this book contains a table of
commonly used VAX family mnemonics.

ARCHITECTURE OVERVIEW

The VAX family architecture is characterized by a powerful and com-
plete instruction set of 304 instructions (see Appendix B), a wide range
of data types, an efficient set of addressing modes, full demand pag-
ing memory management, and a very large virtual address space of
over 4 billion bytes.

The VAX Native Instruction Set is an extension of the PDP-11
instruction set. Instructions can be grouped into classes based on
their functions and uses:

1. Instructionsto manipulate arithmetic and logical datatypes.
These include integer, floating point, packed decimal, character
string, and bit field instructions.

The data type identifies how many stored bits are to be treated as
a unit and how the unit is to be interpreted. Data types that may be
used are:

Introduction to VAX

Data Type Represented As

Integer Byte (8 bits), word (16 bits), longword
(32 bits), quadword (64 bits)

Floating point 4-byte F_floating, 8-byte D_floating, 8-

byte G_floating, 16-byte H_floating

Packed decimal String of bytes (up to 31 decimal digits,
2 digits per byte)

Character string String of bytes interpreted as character
codes (up to 64 KB); a numeric string is
a character string of codes for decimal
numbers (up to 31 digits)

Bits and bit-fields Field length is arbitrary and is defined
by the programmer (0 to 32 bits in
length)

Integer, floating point, packed decimal, and character data are
stored starting on an arbitrary byte boundary. Bit and bit field data
start on an arbitrary bit boundary. A collection of data structures
can be packed together to use less storage space.

Instructions to manipulate special kinds of data. These include
queue manipulation instructions (i.e., those that insert and re-
move queue entries), address manipulation instructions, and
user-programmed general register load and save instructions.
These instructions are used extensively by the VAX/VMS operat-
ing system.

Instructions to control basic program flow. These include
BRANCH, JUMP, and CASE instructions, subroutine CALL in-
structions, and procedure CALL instructions.

Instructions to perform special operating system functions quick-
ly. These include process control instructions (such as two special
context switching instructions which allow process context vari-
ables to be loaded and saved using only one instruction for each
operation), and the FIND FIRST instruction which (among other
uses) allows the operating system to locate the highest priority
executable process. These instructions contribute to rapid and
efficient rescheduling.

Instructions provided specifically for high-level language con-
structs. During the design of the VAX family architecture, special
attention was given to implementing frequently-used, high-level
language constructs as single VAX instructions. These
instructions contribute to decreased program size and increased

5

Introduction to VAX

execution speed. Some of the constructs which have become sin-

gle VAX instructions include:

— The FORTRAN-computed GOTO statement (translates into
the CASE instruction).

— The loop construct (e.g., add, compare, and branch trans-
lates into the ACB instruction).

— An extensive CALL facility (which aligns the stack on a long-
word boundary, saves user-specified registers, and cleans up
the stack on return); the CALL facility is used compatibly
among all native mode languages and operating system ser-
vices.

VAX instructions and data are variable in length. They need not be
aligned on longword boundaries in physical memory, but may begin at
any odd or even byte address. Therefore, instructions not requiring
arguments use only one byte, while other instructions may take two,
three, or up to 54 bytes depending on the number of arguments and
their addressing modes. The advantage of byte alignment is that
instruction streams and data structures can be stored in much less
physical memory.

The VAX processors offer several addressing modes. Eleven of these
use the general registers to identify the operand location and operate
similarly to the PDP-11 addressing modes. The names of the modes
are:

e Register

e Register deferred

e Autoincrement

e Autoincrement deferred

® Autodecrement

e Byte, word and longword displacement (similar to the PDP-11 index
mode)

¢ Byte, word, and longword displacement deferred (similar to the
PDP-11 index deferred mode)

The two additional addressing modes implemented by VAX family

processors are:

® |[ndexed

e Literal

Because the VAX instruction set is so flexible, most functions require

fewer instructions and less storage than on non-VAX processors. The

result is more compact and efficient programs, faster program execu-
tion, faster context switching, more precise and faster math functions,

6

Introduction to VAX

and improved compiler-generated code.

General Registers and Stacks — The VAX family CPUs provide six-
teen 32-bit general registers which can be used for temporary storage,
or as accumulators, index registers, and base registers. Registers R0
through R11 can be used as general purpose registers and the re-
maining four have special significance depending on the instruction
being executed: Register 12 (the Argument Pointer); Register 13 (the
Frame Pointer); Register 14 (the Stack Pointer); and Register 15 {the
Program Counter).

Stacks are associated with the processor’s execution state. The proc-
essor may be in a process context (in one of four modes: kernel,
executive, supervisor, or user) or in the systemwide interrupt service
context. A stack pointer is associated with each of these states.
Whenever the processor changes from one state to another, Register
14 (the Stack Pointer) is updated accordingly.

For further information concerning the VAX architecture, refer to the
VAX Architecture Handbook.

SOFTWARE OVERVIEW

VAX/VMS is the multiuser, multifunction operating system for the VAX
family processors. The software compatibility between VAX family
members means that users with any VAX system can run existing
software on any other VAX system without having to make modifica-
tions. Furthermore, VAX/VMS provides a reliable, high performance
environment for the concurrent execution of multiuser timesharing,
batch, and time-critical applications. VAX/VMS also provides:

e Virtual memory management for executing large programs

e Event-driven priority scheduling

e Shared memory, file, and interprocess communication data protec-
tion based on ownership and application groups

e Programmed system services for process and subprocess control
and interprocess communication

VAX/VMS uses the VAX memory management features to provide
swapping, paging, protection, and sharing of both code and data.
Memory is allocated dynamically. Applications can control the amount
of physical memory allocated to executing processes, to the protec-
tion of pages, and to swapping; furthermore, these controls can be
added after the application is implemented.

CPU time and memory residency are scheduled on a pre-emptive
priority basis. Thus, time-critical processes do not have to compete
with lower priority processes for scheduling services. Scheduling ro-
tates among processes of the same priority.

7

Introduction to VAX

VAX/VMS includes system services to control processes and process
execution, control time-critical response, control scheduling, and
obtain information. Process control services allow the creation of sub-
processes as well as independent detached processes. Processes can
communicate and synchronize using mailboxes, shared areas of
memory, or shared files. A group of processes can also communicate
and synchronize, using multiple common-event flag clusters.

Memory access protection is provided both between and within
processes. Each process has its own independent virtual address
space which can be mapped to private pages or shared pages.
VAX/VMS uses the four processor access modes to read- and/or
write-protect individual pages within a process. Protection of files,
shared pages of memory, and interprocess communication facilities
such as mailboxes and event flags, is based on user identification
codes individually assigned to accessors and data.

A complete program development environment is offered and sup-

ported by VAX/VMS. It includes the native assembly language, VAX-

11 MACRO, and the following high-level programming languages:

VAX-11 FORTRAN, VAX-11 COBOL, VAX-11 BASIC, VAX-11 BLISS,

VAX-11 PASCAL, VAX-11 PL/l, VAX-11 CORAL 66, VAX-11 C, VAX-11

DSM, and VAX-11 DIBOL. It provides the tools necessary to write,

assemble or compile, and link programs, as well as to build libraries of

source, object, and image modules. g

VAX Information Management Facilities — VAX/VMS supports a set

of software tools that provide a full range of information management

capabilities. These information management products can be used to

organize, maintain, retrieve and manipulate data quickly and easily.

They include:

e VAX-11 FMS, a forms management system with interactive and lan-
guage-callable video forms

e VAX-11 DATATRIEVE, a multifaceted data management facility that
can store, update, and retrieve information and generate reports

e VAX-11 Common Data Dictionary, a central repository for data
about data, allowing the information management tools to use a
single set of data descriptions as a common resource

e VAX-11 RMS, a record management facility for sequential, relative,
and multikey ISAM (Indexed Sequential Access Method) file or-
ganizations

e VAX-11 DBMS, a CODASYL-compliant database management sys-
tem for creating, maintaining, and updating databases

The VAX/VMS on-disk structure provides a multiple-level hierarchy of
named directories and subdirectories. Files can extend across multi-

8

Introduction to VAX

ple volumes and can be as large as the volume set on which they
reside. Volumes are mounted to identify them to the system.
VAX/VMS also supports multivolume ANSI format magnetic tape files
with transparent volume switching.

Communications — The variety of communications interfaces sup-
ported by the VAX/VMS operating system allows VAX systems to be
connected to other VAX systems, other DIGITAL systems, and to other
manufacturers’ computer systems.

Synchronous, point-to-point, and multipoint connections are support-
ed for interprocessor communication. For terminal to host communi-
cations, asynchronous connections are supported. (For further infor-
mation, see the Terminals and Communications Handbook.)

Using DECnet communications software, various types of computer
system networks can be constructed to facilitate remote
communications, resource sharing, and distributed computation.

DECnet-VAX Phase lll software offers adaptive routing, task-to-task

communications, network file transfer, network command terminals,

and network resource sharing and network management capabilities.

Other communications software supported by VAX/VMS includes:

e VAX-11 2780/3780 protocol emulator for transferring data between
a VAX system and an IBM or other manufacturer’s system by means
of remote job entry protocols

e VAX-11 3271 protocol emulator for an interactive program-to-pro-
gram link to an IBM host running CICS or IMS

e MUX200/VAX emulator for communication with a CDC6000, CYBER
series or other host computer system capable of using 200UT mode
4A communications protocol

e VAX-11 PSI (Packetnet System Interface) for connection to a public
data network using the X.25 communications protocol

For further information concerning VAX software and the VAX/VMS
operating system, refer to the VAX Software Handbook or the VAX
Technical Summary.

HARDWARE OVERVIEW

VAX computer systems consist of the central processing unit, the con-
sole subsystem, the main memory subsystem, and the input/output
(1/0) subsystems—the UNIBUS, the MASSBUS (VAX-11/750, VAX-
11/780, and VAX-11/782 only), and the DR780 (VAX-11/780 only) sub-
systems. The VAX hardware configurations are illustrated in Figures 1-
1 through 1-4.

Introduction to VAX

FP730 | I1DC
CONSOLE VAR u730
SUBSYSTEM MEMORY
1 MB MIN
5MB MAX

170 ADAPTER

UNIBUS

Figure 1-1 VAX-11/730 Hardware Configuration

FP750 | uCs
-11/7.
CONSOLE VAR TS0
SUBSYSTEM MEMORY
TMB MIN
8 MB MAX
CACHE
1/0 ADAPTER

w v
2 p=l
E @
z a
p=] <
=
1 STANDARD 3 OPTIONAL
1 OPTIONAL (OR 2 OPTIONAL

WITH SECOND UNIBUS)

Figure 1-2 VAX-11/750 Hardware Configuration

10

Introduction to VAX

FP780 | UCS
VAX-11/780
CONSOLE cpu MEMORY MEMORY MULTIPORT | MULTIPORT
SUBSYSTEM 512KB MIN | 256 KB MIN MEMORY MEMORY
AMBMAX | 4MB Mmax | 256KB MIN | 256 KB MIN
CACHE 2 MB MAX 2MB MAX
1/0 ADAPTERS
” "
o
z 3 8
=
1 STANDARD 4 OPTIONAL 1 OPTIONAL
3 OPTIONAL
Figure 1-3 VAX-11/780 Hardware Configuration
CONSOLE CONSOLE
SUBSYSTEM SUBSYSTEM
FP780 FP780
CPU CPU
MEMORY MEMORY
256KB ues SHARED MEMORY ves 2568
1/0 ADAPTERS
E 3
2
3 g
=
1 STANDARD 4 OPTIONAL
3 OPTIONAL

Figure 1-4 VAX-11/782 Hardware Configuration

11

Introduction to VAX

VAX Central Processing Units (CPUs)

VAX processors are 32-bit high-speed microprogrammed computers
that execute instructions in native mode, and nonprivileged PDP-11
instructions in compatibility mode.

The processors can directly address four billion bytes of virtual ad-
dress space, and provide a complete and powerful instruction set that
includes integral decimal, character string, and floating point instruc-
tions. Each VAX processor includes memory management hardware,
sixteen 32-bit general registers, 32 interrupt priority levels, and a
console subsystem which is linked directly to the processor. In addi-
tion, the VAX-11/750 and VAX-11/780 each have a memory cache, 4
KB and 8 KB respectively.

An optional high-performance Floating Point Accelerator (FPA) is
available for each of the VAX processors. The FPA works in parallel
with the basic CPU to execute the standard floating point instruction
set. The FPA decreases instruction execution time of floating point
arithmetic and some integer arithmetic operations.

Caches — The VAX-11/750 and the VAX-11/780 provide three cache
systems: the memory cache, an address translation buffer, and an
instruction buffer. The VAX-11/730 does not have a memory cache,
but has the two buffers.

The memory cache (typically 90% hit rate on the VAX-11/750 and 95%
on the VAX-11/780) provides the central processor with high-speed
data access by storing frequently referenced addresses, data and in-
struction items. The memory cache significantly reduces the effective
memory access time for the CPU.

The instruction buffer is an 8-byte buffer that enables the CPU to fetch
and decode the next instruction while the current instruction com-
pletes execution. The instruction buffer in combination with the paral-
lel data paths (which can perform integer arithmetic, shifting, and
memory access at the same time) significantly enhances VAX per-
formance because the CPU seldom has to wait for the next instruction
to be fetched.

VAX systems provide an address translation buffer that eliminates
extra memory accesses during virtual-to-physical address
translations. The address translation buffer contains frequently used
virtual-to-physical address translations: 128 page table entry transla-
tions in the VAX-11/730 and VAX-11/780, and 512 in the VAX-11/750.

Clocks — The VAX CPUs each have two clocks. The VAX-11/750 and
VAX-11/780 have a programmable realtime clock used by system
diagnostics and by the VAX/VMS operating system for accounting and

12

Introduction to VAX

scheduling, and a time-of-year clock, which insures the correct time of
day and date. The VAX-11/730 has an interval timer and a time-of-
year clock.

Memory Management — The VAX memory management hardware
enables the VAX/VMS operating system to provide a flexible and effi-
cient virtual memory programming environment. Hardware memory
management, with the operating system, provides both paging (with
user control) and swapping.

In addition, memory management provides four hierarchical modes:
kernel, executive, supervisor, and user, with read/write access control
for each mode.

The memory management hardware facilitates program and data
sharing, and allows larger program size and increased performance.

The Console Subsystem

The console subsystem configuration makes the VAX series extremely
approachable systems. Four elements combine to give the user ac-
cess to the system’s capabilities: a set of machine status switches and
lights on the CPU front panel, a console terminal, a console command
language, and an integral mass storage device. Simple console com-
mands, entered through the console terminal, replace the traditional
toggle switches and provide operational control (i.e., bootstrapping,
initialization, self-testing, examining/depositing data in memory, etc.).
When it is not being used to communicate console command lan-
guage instructions to the CPU, the same terminal functions as a VAX
system terminal and is available to authorized users for normal system
operations. This dual-purpose console terminal results in significant
hardware savings.

The VAX console subsystem and the console command language also
facilitate the loading of diagnostics and software updates from the
mass storage device: a TU58 tape cartridge on the VAX-11/730 and
VAX-11/750, and an RX01 floppy disk system on the VAX-11/780.

With the customer’s cooperation, the VAX-11/750 and VAX-11/780
console subsystems may also be equipped with a Remote Diagnosis
option which allows connection to a host computer at the DIGITAL
Diagnostic Center for fault detection or preventive maintenance pro-
cedures. This option can significantly lower maintenance costs as well
as contribute to system availability and maintainability. The diagnostic
strategy for the VAX-11/730 makes use of a new feature called Cus-
tomer Runnable Diagnostics (CRD). For more_ information on CRDs,
see Chapter 21 of this handbook. The VAX-11/730 Remote Support
option, utilizing Remote Diagnosis technology, provides the DIGITAL

13

Introduction to VAX

service engineer with a further level of technical resources.

The Main Memory Subsystem

VAX-11/730 Systems — The main memory subsystem consists of a
controller and from one to five memory array modules that use 64 Kbit
MOS (metal oxide semiconductor) RAM chips for data storage. The
array modules are 1 MB each, to give a maximum memory capacity of
5 MB. ECC (Error Correcting Code) allows the correction of all single-
bit errors, and the detection of all double-bit errors, to insure data
integrity.

VAX-11/750 Systems — The main memory subsystem consists of a
controller and from one to eight memory array modules that use 64 K
MOS (metal oxide semiconductor) RAM chips for data storage. The
array modules are 1 MB each, to give a maximum memory capacity of
8 MB. ECC (Error Correcting Code) allows the correction of all single-
bit errors, and the detection of all double-bit errors, to insure data
integrity.

VAX-11/780 Systems — The main memory subsystem consists of a
controller and from one to sixteen array boards utilizing 16 Kbit MOS
RAM chips. Each array board contains 256 KB of physical memory,
which can be increased to a maximum array size of 8 MB by means of
a second controller. Two memory controllers with equal amounts of
memory can be interleaved to improve 1/0 throughput.

For the VAX-11/782, the local memory is used only for stand-alone
diagnostics.

A multiport memory option, the MA780, is also available on VAX-
11/780 systems. It can be applied either as a processor interconnect
or it can be used to upgrade to a VAX-11/782.

If the MA780 is used as an interconnect, up to two multiport options
can be added to a system, each supporting up to 2 MB of shared
memory. This increases the VAX-11/780's maximum physical memory
from the 8 MB limit for local main memory to 12 MB. Up to four VAX-
11/780 systems may share an MA780 memory.

When the MA780 is part of a VAX-11/782 configuration, it is used
differently. All main memory resides in the MA780 and is shared by
two VAX-11/780 processors. In this instance, up to two MA780s can be
used, providing a total of 8 MB of shared main memory.

The Input/Output Subsystems

VAX-11/730 Systems — The UNIBUS subsystem connects most
medium and low speed peripheral devices to the VAX-11/730 system.
An asynchronous, bidirectional bus, the UNIBUS lets the user select

14

Introduction to VAX

from a range of existing peripherals (those supported by VAX/VMS
and diagnostics) and also provides easy connection for customer-
designed special devices.

VAX-11/750 Systems — The VAX-11/750 system configuration in-
cludes one UNIBUS adapter as standard equipment. Up to three
MASSBUS adapters or one additional UNIBUS and two MASSBUS
adapters can be added for connection to mass storage devices and
other peripherals.

VAX-11/780 Systems — The VAX-11/780’s 1/0 subsystems also in-
clude UNIBUS and MASSBUS adapters. Each system’s configuration
includes one UNIBUS adapter as standard equipment with the capa-
bility to add up to three more as options. Up to four MASSBUS adap-
ters can also be included.

The VAX-11/780 offers as an option a very high performance, 32-bit,
general purpose parallel interface which allows user devices to be
connected directly to the system’s Synchronous Backplane Intercon-
nect. Called the DR780, it is capable of transferring data to and from
memory at speeds of up to 6.67 MB per second. (The VAX-11/782
does not support this option.)

READING THIS HANDBOOK

For more information on the specific VAX processors, refer to the
following parts of the book:

® Partll—The VAX-11/730

e Partlll—The VAX-11/750

® Part|lV—The VAX-11/780

The VAX-11/782 is covered in Chapter 19. Part V of the book dis-
cusses the reliability, availability, and maintainability features of VAX
systems. Part VIl includes the Appendices and the Glossary.

15

16

PART Il
THE VAX-11/730

17

CHAPTER 2

VAX-11/730 CONSOLE SUBSYSTEM

FEATURES

Console terminal

Console command language

Standard ASCII terminal

EIA communications interfacing

Front panel switches and indi-
cator lights

Remote access port

Dual TU58 cartridge tape drives

Unattended reboot

INTRODUCTION

BENEFITS

Dual function as console and
user terminal results in hard-
ware savings

Gives the user a powerful, yet
easy-to-use, debugging tool

Provides a high degree of flex-
ibility

Allows standard industry-com-
patible communications

Offer control and status of
certain aspects of the machine
operation

Allows use of a second or re-
mote console terminal for
automated product test and the
Remote Support option

Provide inexpensive, reliable
devices and mediums for: load-
ing CPU microcode; booting; di-
agnostics; field updates to mi-
crocode, diagnostics, and soft-
ware; and convenient personal
data storage on cartridge

The system reboots itself upon
recovery of electricity after a
power failure or other system
crash if the Auto Restart switch
isin the ON position

The VAX-11/730 console subsystem is designed to allow the user to
interactively communicate instructions to the central processing unit
using the console terminal and the console command language. Five
major elements make up the VAX-11/730 console subsystem:

19

VAX-11/730 Console Subsystem

1. A front panel on the CPU cabinet with switches and indicator
lights

A separate ASCII terminal, called the console terminal

A remote access port

A dual TU58 tape cartridge drive in the CPU box

A special console command language with simple commands the
user types from the console terminal

oD

The integral TU58 tape cartridge drives are used to load the CPU
microcode, boot the system, load diagnostics, and update the operat-
ing system software. DIGITAL also supports the TU58 under
VAX/VMS for data storage and retrieval.

Figure 2-1 illustrates the hardware elements of the VAX-11/730 con-
sole subsystem.

4 OR 6K 16K CONTROL
ROM ROM PANEL

CONSOLE . >
MCRRSOLE kK MICROPROCESSOR _BUS >

LOCAL TUs8 REMOTE CONSOLE /CPU

PORT PORT PORT INTERFACE

I | I

LOCAL
TERMINAL

TUS8

Figure 2-1 VAX-11/730 Console Subsystem

CONSOLE MODES

The VAX-11/730 console runs in two modes: program mode and con-
sole mode. These modes are mutually exclusive. One of the modes will
always be enabled while there is power to the machine. In program
mode (also known as the system terminal mode), the console
functions like the other terminals on the VAX-11/730 system. In this
mode the console passes characters between the terminal and the
program.

When the CPU is not executing instructions, it is halted, and the con-
sole terminal is in console mode. In this mode, the CPU is receptive to
console commands.

Direct Memory Access (DMA) activity to memory can also occur with
the terminal in console mode, and all DMA transactions in progress
will continue even when the CPU is halted. This allows the machine to

20

VAX-11/730 Console Subsystem

be halted without destroying these transactions; however, interrupts
will not be serviced while the machine is halted. They will be serviced
following a CONTINUE from the console.

Table 2-1 lists the actions that cause the CPU to halt and enter console
mode. When the keylock switch is in either Disable position (discussed
in the Six-Position Keylock Switch section) and a CTRL P is typed, the
machine will not halt.

Table 2-1 Console Halt Codes

Code Meaning

02 CTRL P typed on the console
04 Interrupt stack not valid

05 CPU double error

06 Halt instruction executed

07 Invalid SCB vector

0A CHMX from the interrupt stack
0B CHMX to the interrupt stack
(1]} SCB physical read error

When the processor enters the console mode it types on the console
terminal the address contained in the program counter (PC), a two-
digit code which identifies the reason for the halt, and the console
prompt symbol, >>>. The prompt symbol shows that the console
program is looping, waiting for a command.

VAX-11/730 FRONT PANEL
The front panel of the VAX-11/730 has 2 switches and 4 red indicator
lights. Figure 2-2 illustrates the front panel controls and indicators.

RUN DCON BATT R/D dlilalilt]all] \/AX]]/730

O O O O LocAL \ F LOC DsBL
AUTO_RESTART BOOT sTo By N /"REM DSBL
OFF ON

_ OFF REMOTE
L]

Figure 2-2 VAX-11/730 Front Panel Controls and Indicators

21

Six-Position Keylock Switch

When the keylock switch is in the Off position, no power is applied to

the CPU.

Power is applied to the WCS module and Main Memory if the switch is

in the Standby position.

VAX-11/730 Console Subsystem

Table 2-2 describes the remaining four keylock positions.

NOTE

In Table 2-2, “characters” refer to console command
language commands and control characters.

Position

Local

Remote

Local/Disable

Remote/Disable

Table 2-2

Console Mode

The console ac-
cepts and interprets
all characters. The
Remote Support
(RS) lineis
disabled.

The local terminal
will be disabled
upon establishing
the RS connection
and may be re-en-
abled by commands
from the RS host.
The console ac-
cepts and interprets
all characters from
the remote terminal.

All characters are
ignored. The remote
line is disabled.

All characters are
ignored. The local
terminal is disabled
and the remote line
is enabled.

22

Program Mode

All characters ex-
cept for CTRL P are
passed to the
program. The RS
line is disabled.

All characters ex-
cept CTRL P passed
by the remote termi-
nal (or the local ter-
minal if it has been
re-enabled by the
remote host) to the
program

All characters are
passed to the
program.

The remote line may
be used as a normal
terminal, passing all
characters to the
program.

VAX-11/730 Console Subsystem

Auto Restart Switch

The Auto Restart switch is a three position toggle switch that controls

the machine on a power-up sequence. It has the following three posi-

tions:

e OFF—The console will halt after loading the microcode. The proces-
sor remains halted after a HALT instruction is executed or power is
restored.

e ON—The console will load microcode and execute a command file
called DEFBOO.CMD. If any halt except a CTRL P halt is executed,
or if power is restored following a powerfail, the console will attempt
to restart the operating system.

e Boot (momentary)—The console will execute DEFBOO.CMD if the
console is in the console mode idle loop (>>>).

State Indicator Lights

The lights on the front panel indicate the following:

e Run—Indicates that the processor is executing instructions

e DC On—Indicates the +5 V is between 4.75 and 5.25 volts, and £15
Vis at least +13.5 volts

e Remote—Indicates that a remote connection has been made. The
light blinks during modem transitions. This light only works if the
Remote Support option is used

Diagnostic and Maintenance Aids

The independent console processor of the VAX-11/730 allows testing

of other system components by console-based microdiagnostics. Oth-

er diagnostic aids related to the console subsystem include:

e Remote Support (RS) option that provides automated checkout ca-
pability and an RS or ASCII port

e ROM-resident self-test that can be optionally invoked at power-up
and on command

e Voltage monitoring circuits that are incorporated to check +5 V and
+15V

e Monitoring of UNIBUS AC LO

e Customer Runnable Diagnostics

CONSOLE TERMINAL

The console terminal is a powerful tool within the VAX-11/730 console
subsystem. By using the console command language, the user can
instruct the CPU to perform a wide variety of functions. When the
console terminal is in console mode, it is dedicated exclusively to
controlling CPU functions such as examining and depositing data in

23

VAX-11/730 Console Subsystem

memory. Console mode also allows the processor to be started, self-
tested, initialized to a known state, and single-stepped through in-
structions. In contrast, program mode dedicates the console terminal
to user application processes and the VAX/VMS operating system. In
program mode, the CPU will not recognize console commands.

Console Terminal Communications

The electrical interface for the console terminal is an industry-
standard full-duplex EIA RS232-C line. The speed of the line is switch-
selectable to 300, 1200, 2400, and 9600 baud.

CONSOLE COMMAND LANGUAGE

The VAX-11/730 console command language gives the user an effi-
cient way of communicating with the console subsystem. Instead of
using the traditional toggle switches and lights, a user can communi-
cate with the console subsystem by typing simple commands on the
console terminal. These instructions to the CPU can only be communi-
cated when the console terminal is in console mode.

Console commands, with the exception of the Directory command, are
specified by a single letter with optional modifiers. (The Directory
command is specified by DIR.)

Console Command Syntax and Semantics
The syntax and semantics for the console command language are as
follows:

Symbol Function

<> Angle brackets are used to denote category
. names. For example, the category name
<ADDRESS> may be used to represent
any valid address, instead of actually listing
all the strings of characters that can repre-
sent an address.

[] Brackets surrounding part of an expression
indicate that part of the expression is op-
tional.

<SPACE> Represents one typed space.

<COUNT> Represents a numeric count in hexadeci-

mal, 32 bits. Leading zeros may be omitted.

<ADDRESS> Represents an address argument. Valid
<ADDRESS> types are explained later in
relation to specific commands. Virtual ad-

24

VAX-11/730 Console Subsystem

dresses that reference nonexistent or non-
resident pages will cause the console to
abort execution of the console command
which referenced that address. An appro-
priate error message will be displayed.
Leading zeros may be omitted.

<DATA> Represents a numeric argument. Leading
zeros may be omitted.

<QUALIFIER> Represents a command modifier (also
called a switch). Valid <QUALIFIER> types
are explained later in relation to specific

commands.

<INPUT-PROMPT> Represents the console’s input prompt
string >>>.

<CR> Carriage return.

<LF> Line feed.

Prompts
There are three different prompts given by the system:

ROM> The console subsystem is not able to boot
itself and is running in a limited mode. A
CTRL-C can be typed to try to reboot the

system.
>>> The console terminal is in console mode
MIC> The micromonitor is controlling the console
subsystem.

Typing Errors and lllegal Characters

Typing errors may be corrected using the DELETE key as long as a
<CR> for the line has not been typed. When the DELETE key is typed,
the console prints a backslash (\) and the character being deleted.
The console also adds a backslash between the last deletion and the
next input character.

Example:

Operator types: 127834
Console prints: 1278\87\34

Console sees: 1234

25

VAX-11/730 Console Subsystem

Control and Special Characters

Control characters are typed by holding down the CTRL key and typ-
ing the named letter, Unless otherwise specified, the control charac-
ters listed are for use when in console mode.

CTRL-C Aborts current operation. This command
instructs the console program to return to
its idle loop and reissue the prompt.

CTRL-P (console Same as CTRL C.

mode)

CTRL-P (program Halts the machine if key switch is in any of

mode) the Enable positions.

CTRL-O Throws away output until pressed again.

CTRL-R Retypes current contents of input buffer.

CTRL-S Stops printing. Only control characters are
recognized while in this state.

CTRL-Q Resumes printing.

CTRL-U Aborts accepting currentinput line. Returns
to idle loop and reissues prompt.

Break Same action as CTRL-C and CTRL-P in
console mode.

ESC In console mode, causes console to re-exe-
cute the last command typed at the console
terminal.

Special Notes
1. Qualifier switches (/B, /P, /N:, etc.) may be used anywhere in the

command string, except at the beginning. They act as field termi-
nators, just as spaces and carriage returns do.

2. Until the POWER.CMD and CODEON.CMD files have finished exe-
cution, the CPU will not respond properly to user commands that
access the CPU. These command files should not be aborted.

26

VAX-11/730 Console Subsystem

User commands that require the CPU microcode are:

B
C
DandE /M
/P
A%
/G
/1
PSIL], PC, Rn, SP
|
L/P
M
N
S/P
w (Used to detect completion of POWER.CPU)
X/P

Console Command Language Instructions

BOOT Command

SYNTAX:
B[<SPACE><TU58-SELECT>][<SPACE><DEVICE-
NAME>]<CR>

This command causes the Stack Pointer (SP) to be loaded with <the
address of the start of a 64 KB block of good memory> +4X200. (The
block of good memory was found by POWER.CPU at power-up time.)
It then causes a boot command file to be read from one of the console
TU58 drives and executed. Which boot command file is read in and
executed is determined by the remaining parameters.

If <TU58-SELECT> is not specified, the console searches for the boot

command file on the default TU58. The default TU58 is the TU58 which
was used to load microcode when the CPU was powered up.

If <TU58-SELECT> is specified as DDO:, then the console searches
on the external TUS58.

If <TU58-SELECT> is specified as DD1:, then the console searches
on the internal TU58.

If <DEVICE-NAME> is not specified, the file DEFBOO.CMD is read
from the indicated TU58 drive and executed.

If <DEVICE-NAME>> is specified, it is of the format DQn where n is the
unit number of the R80 or RLO2 drive which holds the system disk. The
file DQnNBOO.CMD is read in from the indicated TU58 drive and exe-
cuted.

27

VAX-11/730 Console Subsystem

CONTINUE Command 1
SYNTAX: C<CR> -

If the CPU clock is running, the CONTINUE command restarts execu-
tion of a halted program at the address currently contained in the
Program Counter.

If the CPU clock is not running due to a microcode break point while in
program mode, the clock is restarted and the console enters program
mode. If the clock is off not as the result of a microcode break point,
the console turns the clock on and remains in console mode.

RESPONSE (Clock on): <CR><LF>(Console enters Program 1/0
mode.)

RESPONSE (Clock off): ~ >>>

DEPOSIT and EXAMINE Commands

SYNTAX:

D[<QUALIFIER-
LIST><SPACE><ADDRESS><SPACE> <DATA><CR>

E[<QUALIFIER-LIST>][<SPACE><ADDRESS>]<CR>

DEPOSIT and EXAMINE commands will be treated together because
their formats are quite similar. Both commands require definition of
the address space and the size of the operand in addition to the
address.

Table 2-3 DEPOSIT and EXAMINE QUALIFIERS

Data Length Qualifiers

/B Byte
/W Word
/L Longword

Repetition Qualifiers

/N:<COUNT> Executes the EXAMINE or
DEPOSIT <COUNT>+1 times.
For example, this allows five
locations to be examined
by specifying /N:4.

Address Space Qualifiers

A" Virtual Address

/P Physical Address

28

VAX-11/730 Console Subsystem

/1
/G
/M

/U
/C

Address Specification
nnnnnnnn

PSL or PS, PC,SP

Rn

*

Internal Register
General Register

Machine Dependent Internal
Register

Console microcomputer
Writable Control Store (WCS)

Hex Number

n=0 to 1XF (Hex)

Last Location

+ Next Location

- Previous Location

@ Last data used as address
(DEPOSIT only) '

Data

nnnnnnnn Hex Number

DEPOSITs (writes) or EXAMINEs (reads) <DATA> at the <AD-
DRESS> specified. The address space and size used will depend
upon the qualifier or qualifiers specified with the command. If no ad-
dress space qualifier is used, the default is the last used address
space and data length; following another DEPOSIT or EXAMINE, the
same space as that of the previous command will be used as the
default.

If no size qualifier is typed, the default for a physical or virtual DEPO-
SIT or EXAMINE is whatever the size was in the previous EXAMINE or
DEPOSIT.

<ADDRESS> must be one to eight hexadecimal digits. The initial
default is zero; however, the default is unpredictable when the address
space is changed. Following another virtual or physical DEPOSIT or
EXAMINE, the defauit is the sum of the address from the last EXAM-
INE/DEPOSIT plus the size from the last EXAMINE/DEPOSIT. Typing
a + or - for <ADDRESS> (for DEPOSIT only) will also get this default.
Following another IPR or GPR EXAMINE/DEPOSIT, the default is the
sum of the address from the last EXAMINE/DEPOSIT plus one. Using

29

VAX-11/730 Console Subsystem

a PSL for <ADDRESS> performs a longword reference of the
Processor Status Longword, independent of the address space and

size.

<DATA> must be represented by one to eight hex digits. If more
digits than specified by the size are supplied, the extra digits on the left

are ignored; if fewer digits are supplied, zeros are appended to the

left.

Sample DEPOSIT response: A successful DEPOSIT always receives

<INPUT-PROMPT>.

Sample EXAMINE responses (in bold print):

>>> E/P 1234

P 00001234 ABCDEF89

>>> E/V 1234

P 00005634 01234567

>>> E/GO

G 00000000 98765432

Index of EXAMINEs and DEPOSITs
E*<CR>

E<CR>

E<SPACE><ADDRESS><CR>

E/G<SPACE><ADDRESS><CR>

E/I<SPACE><ADDRESS><CR>

E/P<SPACE><ADDRESS><CR>
E/V<SPACE><ADDRESS><CR>
E<SPACE>PSL<CR>
E/W/P<SPACE><ADDRESS><CR>

E/P/W<SPACE><ADDRESS><CR>
E/L/V<SPACE><ADDRESS><CR>

D*<DATA><CR>

30

Examine physical
address 1234

Examine virtual
address 1234

Note that virtual
EXAMINESs display the
translated physical
address

Examine general
register RO

Examine the last location
examined or deposited into
Examine the next location
Examine <ADDRESS>; all
switches are defaulted to

last EXAMINE or DEPOSIT
Examine GPR; register
number is ADDRESS>;
<ADDRESS> must be

avalue from O to

AXF

Examine IPR; register

number is SADDRESS >
Examine physical <ADDRESS>
Examine virtual <ADDRESS>-
Examine PSL

Examine a word at physical
<ADDRESS>

Examine a word at physical
<ADDRESS>

Examine a longword at
virtual <ADDRESS>

Deposit <DATA> in the last
location that was deposited
into or examined

VAX-11/730 Console Subsystem

D+<DATA><CR> Deposit <DATA> in the next
sequential address
D/G<SPACE><ADDRESS><SPACE><DATA><CR> Deposit <DATA> in GPR
<ADDRESS>
D/I<SPACE><ADDRESS><SPACE><DATA><CR> Deposit <DATA> in IPR
<ADDRESS>
D/P<SPACE><ADDRESS><SPACE><DATA><CR> Deposit <DATA> in physical
<ADDRESS>
D/V<SPACE><ADDRESS><SPACE><DATA><CR> Deposit <DATA> in virtual
<ADDRESS>
D<SPACE>PSL<SPACE><DATA><CR> Deposit <DATA> in PSL
D<SPACE><ADDRESS><SPACE><DATA><CR> Deposit <DATA> in
<ADDRESS>

Switches are defaulted to
previous switches

D/V/W<SPACE><ADDRESS><SPACE><DATA><CR> Deposit a word of <DATA> in
virtual <ADDRESS>
D/L/P<SPACE><ADDRESS><SPACE><DATA><CR> Deposit a longword of
<DATA> in physical
<ADDRESS>
DIRECTORY Command

SYNTAX: DIR<CR>

Takes a directory of the specified TU58 drive or the default if none is
specified.

DIR Takes default

DIR<SPACE>DDn: wheren =0or 1
0 is the external TU58 and 1 in the internal TU58.

HALT Command
SYNTAX: HKCR>

Causes Halt PC to be printed, but the machine must already be halted
to execute this command.

RESPONSE: 2NN<SPACE>PC =xxxxxxxx<CR>
<LF><INPUT-PROMPT>

INITIALIZE Command

SYNTAX: I<CR>

This command performs the following functions:

e Starts the microcode at microaddress 0

e |nitializes the TU58 controller

e |nitializes the internal machine constants

e |nitializes the processor

e Causes a deposit to SP with the address of (the start of 64 Kbytes of
good memory) + $X200

RESPONSE: <CR><LF><INPUT-PROMPT>
31

VAX-11/730 Console Subsystem

LOAD Command

SYNTAX:
L[<QUALIFIER-LIST>]<SP><FILE-SPECIFICATION><CR>

The Load command is used to read file data from the console’s load
device to main memory, or to the WCS. If no qualifier is given with the
Load Command, physical main memory is loaded.

Table 2-4 LOAD QUALIFIERS

/S:<ADDRESS>
The START qualifier is used to specify a starting address for the load.

If no START qualifier is given, the console will start loading at Address
0.

/C
The C qualifier is used to specify that the WCS is to be loaded.
/P

The Physical qualifier is used to force Physical main memory as the
destination of the load.

MICROSTEP Command
SYNTAX: M[<SPACE><COUNT>]<CR>

The CPU is allowed to execute the number of microinstructions indi-
cated by <COUNT>. If no <COUNT> is specified, one instruction is
performed, and the console enters SPACE-BAR-STEP mode.

The program may be restarted by typing C<CR>, and will continue
executing from the current instruction. Typing an N<CR> will cause
the program to finish the current instruction and then hait.

NOTE
Stepping through instructions that access the con-
sole will not work.

RESPONSE: <CR><LF><TAB> UPC= <CONTENTS OF MI-
CRO PC>

NEXT Command
SYNTAX: N[<SP><COUNT>]<CR>

The CPU is allowed to execute the number of MACRO-instructions
indicated by <COUNT>. If no <COUNT> is specified, one instruction
is performed, and the console enters SPACE-BAR-STEP mode.

32

VAX-11/730 Console Subsystem

The console enters program mode immediately after issuing the Step,
and reenters console mode as soon as the Step completes.

NOTE
Interrupts are blocked while executing the NEXT
command from the console.

RESPONSE: <CR><If>
202<SPACE><SPACE>PC=<CONTENTS OF PC>

REPEAT Command
SYNTAX: R<SP><CONSOLE COMMAND><CR>

R <CONSOLE COMMAND> causes the console to repeatedly exe-
cute the <CONSOLE COMMAND> specified until execution is termi-
nated by a CTRL-C, CTRL-P, or a BREAK. The console commands
that may be specified are DEPOSIT, EXAMINE, and INIT.

RESPONSE: <dependent on command specified>

START Command

SYNTAX: S[<SP><ADDRESS>]<CR>
or

S/C<SP><ADDRESS><CR>

The START command is normally used to start execution of programs

that run without the operating system and without the diagnostic su-

pervisor. START performs the equivalent of the following console

commands:

1. Initialize the CPU.

2. Deposit <address> into the Program Counter (PC). If no address
is specified, the current value of the PC is used.

3. Perform the Continue function to begin program CPU execution.
Programs which may be started this way must be loaded into main

memory before the START command is given. (See LOAD command.)
For example:

>>>S 1000 Start the program that
begins at
address 1000.

TEST Command

SYNTAX: T<CR>

This command attempts to find the program ENKAA.EXE on Drive 0 or
1. If found, it is loaded and control is transferred to it. If it is not found,

33

VAX-11/730 Console Subsystem

the system reloads itself and returns to console mode. The T com-
mand, whether it finds ENKAA.EXE or not, destroys the state of the
machine.

Once the MIC> prompt is reached, microdiagnostics can be per-
formed.

BINARY LOAD/UNLOAD Command

SYNTAX:
X<SP><ADDRESS><SP><COUNT><CR><CHECKSUM>
<ADDRESS> Starting address of load
<COUNT> Number of bytes to be trans-
ferred
<CHECKSUM> 2's complement checksum of

command string or binary data

The BINARY LOAD/UNLOAD command instructs the console to load
binary data into or unload binary data from physical memory, starting
from the location specified by <ADDRESS>. A <COUNT> with bit
<31> set indicates BINARY UNLOAD. If bit <31> is clear, it is a
BINARY LOAD. The remaining bits in <COUNT> indicate the number
of bytes to Load or Unload. After a correct 2's complement checksum
calculation, the console issues an <INPUT-PROMPT>, but remains in
binary mode and either sends data to the user or prepares to receive
data. If the checksum shows an error, a message and an <INPUT-
PROMPT> are issued.

In UNLOAD, a binary string of data, of length <COUNT> + 1, will be
sent once the <INPUT-PROMPT> indicates that the console has ac-
cepted the command. When <COUNT> is exhausted, the final byte is
a console-calculated block checksum of all the data.

For LOAD, the console processes the command and <CHECKSUM>.
Then, if the checksum is correct, the console responds with <INPUT-
PROMPT>, followed by a string of bytes which is the binary data
requested. A second checksum is calculated and processed as for the
LOAD sequence.

Console Command Errors

When a command is given that the console cannot properly process, it
responds by typing ?nn. nn is an error code that describes the nature
of the problem.

34

VAX-11/730 Console Subsystem

INTEGRAL TU58 CARTRIDGE TAPE DRIVES

The dual TU58 tape cartridge drives are an important part of the con-
sole subsystem. The fundamental function of the TU58 is to load the
CPU microcode. If one of the TU58s fails, the second TU58 may be
used as backup. Additionally, because the TU58 is connected directly
to the console subsystem, it retains the ability to run micro and macro
level diagnostics even with some system components inoperative.
This feature significantly increases system maintainability. The TU58
can be used to boot the system, to load files into physical memory, and
to store files which describe and execute site-specific bootstrap pro-
cedures (see BOOTING THE VAX-11/730 SYSTEM later in this chap-
ter).

The tape cartridge is preformatted and contains 256 KB, normally
formatted in 512-byte records. The controller provides random access
to any record. The TU58 searches at 60 inches per second (i/s) to find
the file requested, then reads at 30 i/s. Data read from the tape are
verified through checksums at the end of each record or header.

From the system operator’s standpoint, the booting process is quite

simple. For a typical system boot:

1. Turnon power to the console terminal.

2. Setthe Auto Restart switch to the On position.

3. Set the Six-Position Keylock Switch to the Local or Local Disable
position. The terminal will then print:

CONSOLE
VERSION XX.XX

At power-up, the console subsystem bootstraps itself from the TUS58,
finds 64 KB of good memory, determines what CPU options are in-
stalled, and loads the appropriate CPU microcode. It then samples the
Auto Restart switch. If it is in the OFF position, the console awaits
further commands. If it is in the ON position, a bootstrap program is
loaded and begins to execute.

35

VAX-11/730 Console Subsystem

Console Subsystem Action on Boot
There are five distinct ways a boot sequence may be initiated on the
VAX-11/730:

1.

A power-up sequence (Boot Switch or initial power application)
with switch set to ON.

By typing the B command while in console mode.

Execution of a HALT instruction when the processor is in kernel
mode and the Auto Restart switch is in the ON position.

Execution of an MTPR to the console register that invokes a boot.

Failure of a restart while the Auto Restart switch is in the ON
position.

All five of the above mechanisms will initiate the following sequence of
actions. Numbers 1 and 2 clear the bootstrap flag. Numbers 3,4, and 5
will not.

Clearing of the bootstrap flag.

Checking of the bootstrap flag. If it is set, in most instances the
machine halts. However, there are certain cases where it will attempt
to reload all the control stores by starting the console program at its
power-on startup point. If it is clear, then it sets the flag. This pre-
vents bootstrap looping.

Initialization of the CPU (This places the first address +200 of a 64
KB good block of memory into the SP.)

Execution of the command file DEFBOO.CMD which loads the oper-
ating system from the specified mass storage device.

36

VAX-11/730 Console Subsystem

Console Subsystem Action on a Restart

When the console subsystem gains control of the VAX-11/730
following a power restoration or CPU Halt, it examines the Auto Re-
start switch. If the switch is in the OFF position, the console will remain
in console mode with the processor halted. If the Auto Restart switch is
set to ON, the console subsystem searches through physical memory
for a valid restart parameter block (RPB).

A valid RPB is defined as a block of 4 longwords, starting on a page
boundary. The first longword points to itself. The second is a pointer to
the address of the restart routine and must not point to the beginning
of the RPB. The third longword contains the checksum (sum, throwing
away carries) of the first 31 longwords of the restart code. The console
subsystem starts at physical address 0 and searches all available
memory for a valid RPB. If it doesn’t find one, restart fails and the
console attempts a system boot.

If it does find an RPB, it examines bit 0 of the fourth longword of the

RPB. If this bit is 1, a restart has already been attempted and must

have failed. The console will then execute DEFBOO.CMD. If this bit is

0, the console sets it and then:

e Loads the SP with the address of the RPB plus $X200.

e | oads the AP with a value that indicates the cause of the restart. If
the restart is occuring because of power restoration or reset switch
activation, the AP gets a 3. If it is because of a CPU halt, it gets the
value specified in Table 2-1.

e Starts execution of the restart routine, whose address is located at
the second longword of the RPB.

37

CHAPTER 3

VAX-11/730 CENTRAL PROCESSOR

FEATURES

32-bit microprogrammed
processor

Soft control store

Programmed Array Logic (PAL)
technology -

PDP-11 compatibility mode

Translation buffer

1-Longword Prefetch Instruc-
tion Buffer

Integrated Disk Controller

Single-system, 40-inch cabinet
packaging

19inch wide CPU box

Optional Floating Point Acceler-
ator

INTRODUCTION

BENEFITS

Provides the full VAX/VMS ar-
chitectural implementation

Allows loading of microcode
updates and microdiagnostics
from TUS8

Increases logic density and re-
duces cost

Gives the PDP-11 user an easy
migration path to the VAX/VMS
architecture

Minimizes memory accesses for
virtual to physical address con-
version

Allows the next instruction to be
fetched while the currentin-
struction is executing

Allows up to one R80 and three
RLO2 disk drives to interface a
VAX-11/730 system

Reduces space and cabling re-
quirements

Allows for packaging in industry
standard cabinets

Decreases instruction execution
time of floating point arithmetic
and some integer arithmetic op-
erations

The VAX-11/730 central processing unit (CPU) is a 32-bit micropro-
grammed computer that executes the VAX instruction set in native
mode and supports the VAX/VMS operating system. Non-privileged
PDP-11 instructions can be executed in compatibility mode, allowing
existing user mode PDP-11 programs to run without modification.

39

VAX-11/730 Central Processor

Three standard HEX modules make up the CPU: the DAP (data path)
module, the WCS (writable control store) module, and the MCT (mem-
ory controller) module. Additionally, the integrated disk controller and
the optional floating point accelerator each consist of a standard HEX
module.

The CPU performs the logic and arithmetic operations requested by
the computer system users. It uses 32-bit virtual addresses, allowing
access to 4.3 gigabytes of virtual address space. These addresses are
called virtual because each address is not necessarily the actual ad-
dress in physical memory. The processor's memory management
hardware translates virtual addresses to physical addresses.

The processor provides sixteen 32-bit registers that can be used for
temporary storage, as accumulators, index registers, and base regis-
ters. Four of these registers have special significance: the Program
Counter (PC), the Stack Pointer (SP), and two registers used in the
extensive CALL facility.

The native instruction set is highly versatile and bit-efficient. It includes
integer, packed decimal, character string, bit field, and floating point
instructions, as well as program control and special instructions. In-
structions and data are variable in length and can start on any byte
boundary or, in the case of bit field data, at any arbitrary bit in memo-

ry.

The VAX-11/730 CPU can process the following kinds of data:
e Bits (up to 32)

® Bytes (8 bits)

e Words (16 bits)

e | ongwords (32 bits)

e Quadwords (64 bits)

e 32-bit floating point (single precision)

e 64-bit floating point (double precision)

e 64-bit floating point (double precision extended range)

e 128-bit floating point (quadruple precision extended range)
e Packed decimal (up to 31 digits)

e Character strings (up to 64 KB)

® Queues

The remainder of this chapter is divided into two sections. The first
section discusses the Programmed Array Logic (PAL) technology
used in the VAX-11/730, and the second section describes the hard-
ware elements listed on the next page.

40

VAX-11/730 Central Processor

e CPU control store

e |nternal data paths

e Address translation buffer/UNIBUS Map

e Prefetch instruction buffer

e Interval timer and time-of-year-clock

e Integrated disk controller (RB730)

e Optional floating point accelerator (FP730)

Figure 3-1 illustrates the central processing unit.

CONSOLE | IDC
SUBSYSTEM CPU
MAIN MEMORY/ o 4 £P730

UNIBUS SUBSYSTEM

TRUCT
INSTRUCTION | INTERVAL TIMER
16 GENERAL | TIME-OF-YEAR
REGISTERS cLocK
ADDRESS
MEMORY TRANSLATION
MANAGEMENT BUFFER

Figure 3-1 The Central Processing Unit

PROGRAMMED ARRAY LOGIC TECHNOLOGY

Programmed array logic (PAL) devices are logic arrays manufactured
on a chip using the TTL Schottky bipolar process and fusable-link
technology. The high logic density of PALs decreases the required
amount of space and reduces cost.

The basic circuitry used in PALs consists of programmable AND ar-
rays connected to fixed OR arrays. In the PAL circuits used in the VAX-
11/730, up to 32 programmable AND inputs and up to 8 fixed OR
inputs are used per output.

An unprogrammed PAL—one with all fuses intact—is programmed by
first determining the AND inputs to be used and then “blowing” the
links for the unused AND inputs. This produces the desired AND be-
fore OR logic configuration.

HARDWARE ELEMENTS

CPU Control Store

The CPU microcontroller consists of a microsequencer and a control
store. The control store is a programmable Read/Write memory with a
basic storage capacity of 16 K 24-bit microwords. An additional 1 K
microwords of control store is available to support the integrated disk
controller.

41

VAX-11/730 Central Processor

The control store sequences the CPU to implement the native and
PDP-11 compatibility mode instruction sets. The CPU microcode is
loaded into the control store from the TU58 tape drive during system
bootstrap.

Each microinstruction is 24 bits and contains several control fields for
specific CPU functions. The sequence of microinstructions read from
the control store and loaded into the control store register (CSR) is
determined by the microsequencer.

Internal Data Paths

The CPU data path performs the arithmetic and logical operations
necessary to execute the instruction set. The principal data path com-
ponents are 4-bit processor slices. Eight of these slices are connected
in parallel to give an arithmetic and logical processing element 32-bits
wide. The data path also contains a 256 location X 32-bit local store
RAM that includes, among other things, the general registers and
several of the architecturally-defined privileged processor registers.
The data path is controlled by microcode executing in the CPU’s
mirocontroller.

Address Translation Buffer

The address translation buffer contains frequently used virtual ad-
dress translations. It significantly reduces the amount of time spent by
the CPU on the repetitive task of dynamic address translation. The
buffer contains 128 virtual-to-physical page address translations: 64
system space translations and 64 process space translations. Each of
these sections has parity on each entry for increased integrity.

1-Longword Prefetch Instruction Buffer

The 1-longword prefetch instruction buffer allows the next instruction
to be fetched while the current instruction is executing. The control
logic continuously fetches data from memory to keep the longword
buffer full. In native mode, the variable length instructions are stored in
contiguous byte positions in memory and are aligned on byte bounda-
ries. In compatibility mode, the PDP-11 instructions are 16 bits, occu-
py two contiguous bytes, and are aligned on word boundaries.

Interval Timer and Time-of-Year Clock

The VAX-11/730 processor contains an interval timer and a time-of-
year clock. The interval timer permits the measurement of finely re-
solved intervals. The time-of-year clock is used by software to perform
various timekeeping functions.

42

VAX-11/730 Central Processor

Integrated Disk Controller (RB730)

The RB730, an integrated disk controller (IDC), interfaces an R80 disk
drive and from one to three RL02 disk drives to the system. (Up to four
RLO2 drives, with no R80 drive, may also be interfaced.) Data transfer
between the IDC and the CPU is over the accelerator bus and is
controlled in part by dedicated microcode in the CPU. One 32-bit
longword of disk Read/Write data is transferred at a time, following
the generation of a microlevel (fast) processor interrupt request by the
IDC. Data silos (FIFOs) in the IDC provide up to 1 KB of data buffering
for both read and write data.

In addition to connecting to the accelerator bus, the IDC connects to
the UNIBUS for generating interrupts other than the fast interrupts
generated for disk data transfers. The IDC’s UNIBUS connection also
monitors the system’s powerfail state.

Optional Floating Point Accelerator (FP730)

The FP730 floating point accelerator is a hardware option that oper-
ates in conjunction with the VAX-11/730 to execute the standard float-
ing point instruction set. Floating point representation permits a great-
er range of number values than is possible with a 32-bit integer.

Consisting of a single module, the FP730 is easily installed and is
functionally transparent to the user. Hardware and software modifica-
tions are not required, however, the CPU microcode must be reloaded
from the TUS58.

The FP730 receives an opcode from the CPU and decodes the
information into a starting microaddress. The outputs of the control
store ROM control the arithmetic operations and data path logic.

The FP730 executes addition, subtraction, multiplication, and division
instructions which operate on single precision (32-bit), double preci-
sion (64-bit), extended range double precision (64-bits), and extended
range quadrupled precision (128-bits) operands. It executes Extended
Multiply (EMOD) and Polynomial Evaluation (POLY) instructions, and
converts data between integer and floating point formats and between
single and double precision floating point formats. The FP730 also
executes 32-bit integer multiplication and division instructions.

The floating point instructions performed by the FP730 are listed in
Table 3-1.

43

VAX-11/730 Central Processor

Table 3-1 FPA Floating, Double, and Integer Instructions

OPCODE INSTRUC- OPCODE INSTRUC-
(HEX) TION (HEX) TION
MNEMONIC MNEMONIC
40 ADDF2 4BFD CVTRGL
41 ADDF3 6AFD CVTHL
60 ADDD2 6BFD CVTRHL
61 ADDD3 56 CVTFD
40FD ADDG2 99FD CVTFG
41FD ADDG3 98FD CVTFH
60FD ADDH2 76 CVTDF
61FD ADDHS3 32FD CVTDH
42 SUBF2 33FD CVTGF
43 SUBF3 56FD CVTGH
62 SuBD2 F6FD CVTHF
63 SuBD3 F7FD CVTHD
42FD SUBG2 76FD CVTHG
43FD SUBG3 4C CVTBF
62FD SUBH2 6C CVTBD
63FD SUBH3 4CFD CVTBG
44 MULF2 6CFD CVTBH
45 MULF3 4D CVTWF
64 MULD2 6D CVTWD
65 MULD3 4DFD CVTWG
44FD MULG2 6DFD CVTWH
45FD MULG3 4E CVTLF
64FD MULH2 6E CVTLD
65FD MULH3 4EFD CVTLG
46 DIVF2 6EFD CVTLH
47 DIVF3 51 CMPF

44

VAX-11/730 Central Processor

66 DIVD2 51FD CMPG
67 DIVD3 71FD CMPH
46FD DIVG2 54 EMODF
47FD DIVG3 54FD EMODG
66FD DIVH2 74FD EMODH
67FD DIVH3 55 POLYF
48 CVTFB 55FD POLYG
68 CVTDB 75FD POLYH
48FD CVTGB 71 CMPD
68FD CVTHB 74 EMODD
49 CVTFW 75 POLYD
69 CVTDW C4 MULL2
49FD CVTGW C5 MULL3
69FD CVTHW Cé DIVL2
4A CVTFL Cc7 DIVL3
4B CVTRFL 4F ACBF
6A CvTDL 6F ACBD
6B CVTRDL 4FFD ACBG
4AFD CVTGL 6FFD ACBH

45

e ————————

AR S

|l

46

CHAPTER 4
VAX-11/730 MAIN MEMORY SUBSYSTEM

FEATURES BENEFITS

Expandable memory configura- Allows the addition of 1 MB ar-

tion ray modules up to a maximum
of 5 MB.

Error correcting memory Enhances data availability and

controller reliability by correcting all single

bit errors and detecting all dou-
ble bit errors within the memory
system.

64 Kbit memory chips 1 Mbyte per array module for
high density,

INTRODUCTION

The main memory in the VAX-11/730 consists of from one to five
memory array modules that use 64 K MOS (metal oxide semiconduc-
tor) RAM chips for data storage. The modules are connected to the
CPU by the array bus. Up to five 1 MB array modules may be installed
to give a maximum memory capacity of 5 MB. The minimum memory
configuration is 1 MB.

Memory data transfers over the array bus are 39 bits: one 32-bit long-
word (four bytes) of data and seven associated ECC (Error Correction
Code) bits. The ECC bits provide for the detection and correction of all
single-bit errors when a longword is read from the memory array.
Double-bit errors are detected but not corrected. All errors are report-
ed_back to the CPU where they may be recorded for use in preventive
and corrective maintenance operations. Figure 4-1 illustrates the
basic memory subsystem.

47

VAX-11/730 Main Memory Subsystem

[« 4V]

MEMORY
CONTROLLER

/

ARRAY ARRAY | ___ _ - — — ARRAY
BOARD 1 BOARD 2 BOARD 5

OPTIONAL

Figure 4-1 Main Memory Configuration

The MCT (memory controller) module contains the memory and
UNIBUS control logic. The memory control logic controls data trans-
fers to and from the main memory array modules over the array bus.
The UNIBUS control logic controls transfers to and from the peripheral
devices over the UNIBUS. Transfers are initiated by the CPU data path
under the control of the CPU microcode, or by the UNIBUS devices
when direct data transfers are made between the UNIBUS devices and
main memory.

The memory and UNIBUS control logic contain the following:

e A translation buffer that converts virtual addresses from the CPU to
physical addresses. The physical addresses are then applied to the
memory array modules.

e A UNIBUS map which converts 18-bit addresses to physical memo-
ry addresses.

e A UNIBUS arbitrator that regulates activity on the UNIBUS and as-
signs the memory controller to the CPU if the controller is not being
used by a UNIBUS device.

e A data rotating and substituting network for aligning memory data.
Data retrieved from the arrays is always a 32-bit longword, but the
requested byte is not necessarily in the desired position. The data
rotator rearranges the data before it is sent to the CPU or the UNI-
BUS device.

e A control store that outputs 72-bit microwords that control
operations within the memory controller.

48

VAX-11/730 Main Memory Subsystem

® A microsequencer that selects the next 72-bit microword.
® ECC gate arrays.

64 K RAM Chips

The memory array modules of the VAX-11/730 use 64 K MOS (metal
oxide semiconductor) RAM chips for data storage. 156 RAM chips are
arranged in four banks of 39 chips. Each chip has a 256 X 256 matrix,
providing 64 K one-bit locations and thus, 64 K 39-bit data locations
per bank. The four banks yield 1 Mbyte with associated check bits.

BASIC MEMORY OPERATIONS

The physical address space contained in the memory controller is
divided into two areas: physical memory addresses and I/0 ad-
dresses. A physical address is 24 bits, allowing a total address space
of 16 MB. Figure 4-2 illustrates the combined areas.

ADDRESS HEX

T T FF FFFF
__F0 0000_ 1/0 SPACE 1 MB
EF FFFF
MEMORY
SPACE 15 MB
_ .. 00 0000_

Figure 4-2 Physical Address Space

To access this address space, the system has two types of operations.

Read Operation

In a Read operation, the physical address on the array bus selects the
desired module and addresses the desired location on the module.
The addressed longword and its seven associated check bits are re-
trieved and placed onto the array bus.

The ECC logic takes the longword and check bits from the array bus
and checks the longword for data errors. If a data error is found,
ERROR is asserted to the error logic which then asserts ERR SUM (for
a CPU operation) or UB ERR SUM (for a UNIBUS operation). The error
is corrected in place and the CRD (correctable read data) bit is assert-
ed in the CSR. If the error is uncorrectable, the cycle is aborted and
the RDS (read data substitute) bit is asserted in CSR1. The ECC logic

49

VAX-11/730 Main Memory Subsystem

returns the longword to the array bus for the data rotator. The data is
aligned, if necessary, and output onto the MC (memory control) bus.

If the operation is a CPU READ, the longword is sent to the CPU. If the
operation is a UNIBUS device Read, the byte or word is transferred to
the data lines of the UNIBUS. If the operation is a CPU Read of a
UNIBUS device, the Read data is taken off the UNIBUS data lines,
transferred to the MC bus via the WCS (Writable Control Store) trans-
ceivers, then to the data rotator, and then to the CPU.

Write Operation

In a CPU Write operation, Write data is placed on the MC bus from the
CPU and then applied to the data rotator. If the CPU Write is to a
UNIBUS device, the rotator outputs the data back to the MC bus. From
the MC bus, the data is placed on the data lines of the UNIBUS. If the
CPU Write is to the memory arrays, the rotator outputs the data onto
the data lines of the array bus. For a UNIBUS to memory Write
operation, Write data is placed on the MC bus, applied to the data
rotator, and then placed onto the data lines of the array bus.

The ECC logic takes the Write data off the array bus and uses it to
generate seven ECC check bits. The data is returned to the array bus
along with the check bits. The Write data and the associated check bits
are taken from the array bus and written into the selected array mod-
ule.

CONTROL AND STATUS REGISTERS

Three CSRs (control/status registers) are used in the main memory
subsystem to input control signals into the memory controller and to
report status to the CPU: CSR0, CSR1, and CSR2.

CSRO0 is a Read Only register containing ECC check bits. The CPU
reads the check bits to analyze data errors.

CSR1 is a Read/Write register. The CPU writes control bits into CSR1
for maintenance purposes and to regulate operation of the memory
controller. Errors relating to a CPU/memory transfer are sensed by
the error logic and set error bits in CSR1. When the logic asserts ERR
SUM, the CPU reads the CSR1 error bits.

CSR2 is a Read Only register. Errors relating to a UNIBUS/memory
transfer are sensed by the error logic and set error bits in CSR2. When
the logic asserts UB ERR SUM, the microsequencer causes a timeout
on the UNIBUS resulting in the CPU reading the CSR2 error bits.

CSRO Bit Allocations
Figure 4-3 shows the organization of CSR0. The default values shown
are those following a power-up sequence.

50

VAX-11/730 Main Memory Subsystem

313029282726252423222120191817161514131211108 8 76 564 32 1 0

EENEEEEEENEERNEEEEEEEEEREERENEEE
CCCT T T T T T T T T I T T T T T T

TLRITTT
L)

NOT USED CHECK BITS OR SYNDROMES

Figure 4-3 CSRO

Bit: 31:7 Name: Notused.

Bit: 6:0 Name: Error Syndrome

Function: These bits are syndromes if a correctable error occurred
during a CPU to memory transaction, or check bits if a noncorrectable
error occurred. These bits are read-only.

CSR1 Bit Allocations
Figure 4-4 shows the organization of CSR1. The default values shown

are those following a power-up sequence.

CONTROL TRANSACTIONAL
TS ERROR BITS

[

313020282726252423222120191817161514 131211109 8 765 4 3 2 1 0

INRERERERERRRRNARRNRRRRENANRRNN

CRD NOT USED DIAGNOSTIC

TB PAR DIAG: CHECK BITS

INH REP CRD:

MME

DIAG CHK

ECC DIS —mm8
NOT USED
MODIFY REF
ACCESS REF
TB MISS

OP ERR

WR ACROSS PG ERR

ADAPT REG SEL:

uBBsYy

NXM

TB PAR ERR

VALID

Figure 4-4 CSR1

Bit: 31 Name: RDS bit

Function: The RDS (read data substitute) bitis set if on any CPU read
to memory an uncorrectable data error is encountered.

Bit: 30 Name: CRD bit

Function: This bit is set if on any CPU read to memory a single bit
data error is detected and corrected.

51

VAX-11/730 Main Memory Subsystem

Bit: 29 Name: TB PARDIAG

Function: This bit is the translation buffer parity diagnostic bit. When
this bit is set it will cause TB PAR ERR on any access to a TB entry in
the translation buffer.

Bit: 28 Name: INH REP CRD

Function: This bit inhibits the reporting of the occurrence of CRD
errors. When this bit is set, all CRDs will still be corrected by the ECC
logic and syndromes will be logged in bits <6:0> of CSRO, however
the CRD bit will not be set.

Bit: 27 Name: MME bit

Function: The Memory Management Enable bit enables translations
via the translation buffer. If this bit is not set, the CPU address will map
directly into physical memory. The UNIBUS map is always enabled.

Bit: 26 Name: DIAG CHK
Function: When this bit is set, the memory controller is in the diag-
nostic mode.

Bit: 25 Name: ECC DIS
Function: This bitdisables the ECC correction logic.

Bit: 24 Name: Not used

Bit: 23 Name: MODIFY REF
Function: This bit means that the modify bit was not setin a TB entry
referenced with a WCHK protection request.

Bit: 22 Name: ACCESS REF

Function: This bit signifies that the protection PROM has decided
that the access requested by the CPU is not allowed. If the PAR ERR
bit is set, this bit is meaningless. This bit will assert only if memory
management is enabled.

Bit: 21 Name: TB MISS

Function: This bit indicates that the translation buffer tag didn’t
match bits <30:15> of the virtual address in the VAR, or the BYTE
OFFSET bit was not set.

Bit: 20 Name: ILL UB OPER :

Function: This bit is set by an operation error (OP ERR). OP ERR
indicates that the CPU tried to perform a memory operation that was
illegal in compatibility mode, or tried to perform an illegal UNIBUS
reference.

Bit: 19 Name: WR ACROSS PG ERR
Function: This bit is set if a CPU write (with a WCHK) attempts to
write across a page boundary.

52

VAX-11/730 Main Memory Subsystem

Bit: 18 Name: ADAPT REG SEL
Function: This bit indicates that the physical address of a memory
reference lies in the 768 Kbyte UNIBUS adapter space.

Bit: 17 Name: UBBSY
Function: This bit indicates that a CPU transaction has the UNIBUS
as a target but the UNIBUS is busy.

Bit: 16 Name: NXM

Function: This bit indicates that the memory select decoder refer-
enced a memory address where there is no memory array board.

Bit: 15 Name: TB PARERR

Function: This bit is set if a CPU access to the translation buffer
results in a parity error.

Bit: 14 Name: VALID

Function: This bit is set if a CPU access to the translation buffer finds
the TB entry VALID bit not set.

Bit: 13:7 Name: Not used.

Bit: 6:0 Name: Diagnostic Check bits
Function: These seven bits are used to check the ECC logic.

CSR2 Bit Allocations
Figure 4-5 shows the power-up state of CSR2. This register is read-
only.

31302928272625242322212019181716151413121110 9 8 76 54 32 1 0

EERNRIRRRRRARERINRNENRREREND

NOT USED NOT USED

uB RDSJ

UB NXM
UB TB PAR ERR
WR NOT VALID

Figure 4-5 CSR2

Bit: 31 Name: UBRDS
Function: This bit is set if on any UNIBUS read to memory an uncor-
rectable data error is encountered.

Bit: 30:17 Name: Not used.
53

VAX-11/730 Main Memory Subsystem

Bit: 16 Name: UB NXM
Function: This bit is set if a UNIBUS request referenced a nonexis-
tent array card.

Bit: 15 Name: UB TB PAR ERR
Function: This bit is set if a UNIBUS/memory transaction results in a
TB parity error.

Bit: 14 Name: WR NOT VALID

Function: This bit is set if, during a two-cycle operation, an attempt is
made to write into a page that does not have a valid entry in the
translation buffer.

Bit: 13:0 Name: Notused.

ERROR CHECKING AND CORRECTION

The ECC scheme used in the memory subsystem is capable of detect-
ing single and double bit errors. If a single bit error is detected, the
ECC logic can be used to correct the error. The logic can detect, but
not correct, multibit errors.

Each time a longword (32 bits) is written into memory, 7 check bits are
generated from the longword data and are stored with the longword.
When the data is retrieved from the arrays, seven syndrome bits are
generated from the 39 retrieved bits. These seven syndrome bits
indicate no error, a single error, or muitiple errors. The single bit error
is corrected using the seven syndrome bits and is reported as a CRD
(correctable read data) error.

54

56

CHAPTER 5
VAX-11/730 UNIBUS SUBSYSTEM

FEATURES BENEFITS
Direct memory access (DMA) Eliminates processor interven-
data transfers tion for high data throughput
Communication among UNI- Allows direct data transfer
BUS devices between UNIBUS devices with-
out CPU involvement
Compatible with the PDP-11 Supports a wide range of stan-
UNIBUS dard DIGITAL peripherals

Direct vectored hardware inter- The CPU avoids time-consum-
rupts ing polling tasks when servicing
interrupt requests

UNIBUS device registers are Simplifies I/0 programming
addressed as memory locations

INTRODUCTION

The UNIBUS subsystem connects most medium and low speed peri-
pheral devices to the VAX-11/730 system. An asynchronous, bidirec-
tional bus, the UNIBUS lets the user select from a range of existing
peripherals (those supported by VAX/VMS and diagnostics) and also
provides easy connection for customer-designed special devices. Al-
though the UNIBUS was originally designed for implementations of the
PDP-11 architecture, its capabilities have been expanded by the VAX
architecture. Thus, existing UNIBUS peripheral devices can be used
with the new VAX family architecture without hardware modification.
(UNIBUS addresses in this chapter are listed in both octal and hexade-
cimal. The PDP-11 uses octal while the VAX family uses hexadecimal.)

The integral UNIBUS adapter (part of the CPU) connects the UNIBUS
to the system and performs priority arbitration among UNIBUS
devices. Furthermore, the UNIBUS adapter lets the processor access
UNIBUS peripheral device registers. Figure 5-1 illustrates the UNIBUS
subsystem configuration.

57

VAX-11/730 UNIBUS Subsystem

FPA ipc

CONSOLE

SUBSYSTEM MEMORY

VAX-11/730
CPU TMB MAX

SMB MAX

UNIBUS ADAPTER

UNIBUS DEVICE 1
UNIBUS DEVICE 2

UNIBUS DEVICE n

UNIBUS TERMINATOR

Figure 5-1 VAX-11/730 UNIBUS Configuration

il

VAX-11/730 UNIBUS SUMMARY

The UNIBUS is a communication path that links 1/0 devices to the
UNIBUS adapter. Device addresses, data, and control information are
passed along the 56 signal lines of the UNIBUS. The UNIBUS adapter
handles all communication between the UNIBUS and the system, and
fields device-generated interrupts.

Conceptually, the UNIBUS is designed around memory elements with
ascending addresses starting at UNIBUS address zero, while registers
storing 1/0 data or individual peripheral device status information
have addresses in the highest 8 KB the 256 KB UNIBUS address space
(3E000,, to 3FFFE,, or 760000, to 777776).

Figure 5-2 illustrates the signal line configuration. 51 of these lines are
parallel and 5 are serial; 42 lines are bidirectional and 14 are unidirec-
tional.

58

VAX-11/730 UNIBUS Subsystem

< AO0-Al7 (ADDRESS)
< D00 -DI5 [DATA) N

C00-CO1 (CONTROL)
MSYN (MASTER SYNC)
SSYN (SLAVE SYNC)

PA-PB (PARITY)
UNIBUS BR4-BR7 (BUS REQUEST) UBA
DEVICE BG4-BG7 (BUS GRANT)

NPR (NONPROCESSOR REQUEST)
NPG (NONPROCESSOR GRANT)
SACK (SLAVE ACKNOWLEDGE)
INTR_(INTERRUPT]

BBSY (BUS BUSY)

INIT (INITIALIZE)

AC LO (AC LINE LOW)

DC LO (DC LINE LOW)

Figure 5-2 UNIBUS

Communication between any two devices on the bus is in a mas-
ter/slave relationship. During any bus operation, one device, the bus
master, controls the bus when communicating with another device on
the bus, called the slave. For example, the processor, as master, can
fetch from a peripheral device; or the disk, as master, can transfer
data to memory. Master/slave relationships are dynamic; the proces-
sor, for example, may pass bus control to a disk, then the disk may
become master and communicate with slave memory. On the VAX-
11/730, the main memory that the processor deals with for instruc-
tions and data is not on the UNIBUS, but is attached to the processor.
The UNIBUS adapter is the section of the processor that causes the
VAX-11/730 memory to look like a slave to UNIBUS devices.

When two or more devices try to obtain control of the bus at once,
priority circuits decide among them. Device priority levels are fixed at
system installation. There are four priority levels among UNIBUS
devices. A unit with a high priority level always takes precedence over
one with a lower priority level. In the case of units with equal priority
levels, the one closest electrically to the processor on the bus takes
precedence over those further away.

For example, if the processor has control of the bus when three de-
vices, all of higher priority than the processor, request bus control,
and the requesting devices are of different priorities, the processor will
grant use of the bus to the one with the highest priority. If they are all of

59

VAX-11/730 UNIBUS Subsystem

the same priority, all three signals come to the processor along the
same bus line, so that it sees only one request signal. Its reply, grant-
ing control of the bus, travels down the bus to the nearest requesting
device, passing through any intervening non-requesting devices. The
requesting device takes control of the bus, executes one or more bus
cycles and relinquishes the bus. The request grant sequence occurs
again, this time going to the second device down the line, which has
been waiting its turn. When all higher-priority requests have been
granted, control of the bus returns to the processor.

The processor usually has the lowest priority because, in general, it
can stop whatever it is doing without serious consequences. Peripher-
al devices may be involved with some kind of mechanical motion, or
they may be connected to a realtime process, either of which requires
immediate attention to a request to avoid data loss.

Priority arbitration takes place asynchronously in parallel with the data
transfer.

Bus Communication
Communication is interlocked, so that each control signal issued by
the master must be acknowledged by a response from the slave to
complete the transfer.

Bus Control
There are two ways of requesting bus control: non-processor requests
(NPRs) or bus requests (BRs).

An NPR is issued when a device wishes to perform a data transaction.
An NPR does not use the CPU; therefore, DMA activity can occur while
the CPU continues to execute instructions.

A BR is issued when a device needs to interrupt the CPU for service. A
device can interrupt the CPU only if it has gained control via a BR.

Interrupts

Interrupt handling is automatic in the VAX-11/730. No device polling is
required to determine which service routine to execute. When inter-
rupting, the device supplies a vector which directs the CPU to a
memory location which contains the starting address of an interrupt
service routine. When servicing the interrupt, the processor automati-
cally raises its priority to the level of the interrupting device. For a
complete discussion of how the CPU responds to interrupts, see the
VAX Architecture Handbook.

60

VAX-11/730 UNIBUS Subsystem

Priority Control
The UNIBUS priority system determines which device obtains the bus.
Figure 5-3 illustrates UNIBUS priority control.

DEVICE

o REQUEST
PRIORITY LINE
NPR T

7 D) -DMA

N
e-—<
z

>

l
[0

~——BR7 e —

o

Exfliagt
s A
ﬂ_

B8R &

INCREASING PRIORITY

~——BRS5

Exflailis

~——BR4

HSR HSP

INCREASING PRIORITY

© se s w

Figure 5-3 Priority Control

There are five UNIBUS vertical priority levels—NPR, and BR7, BRG6,
BR5, and BR4. To accommodate several peripheral devices, it may be
necessary to connect more than one device to a single level.

Priority Assignments

When assigning priorities to a device, three factors must be consid-
ered: operating speed, ease of data recovery, and service require-
ments.

Data from some devices is available for only a short time period.
Therefore, highest priorities are usually assigned to these devices for
efficient data transfers. Lower priorities are assigned to devices with
data available for longer periods of time, and to devices with automatic
data recovery features. For example, a disk or magnetic tape device
would be assigned a higher priority than a line printer or paper tape
device. These priorities are assigned at installation time.

CPU Priority Level
In addition to device priority levels, the CPU has a programmable

61

VAX-11/730 UNIBUS Subsystem

priority. The CPU can be set to any one of 32 priority levels. Levels 14,
through 17, correspond to UNIBUS levels BR4 through BR7.

Data Transactions
There are four types of UNIBUS data transactions:

e DATO—a data word is transferred from the master to the slave.
e DATOB—a data byte is transferred from the master to the slave.

e DATI—a data word or byte is transferred from the slave to the mas-
ter.

e DATIP—is used to allow a read from slave or write from slave
sequence to occur as a single bus cycle without any other UNIBUS
activity intervening. This feature allows devices to synchronize their
activities with the processor. DATIP must be followed by DATO or
DATOB to the same location.

VAX-11/730 UNIBUS ADAPTER

There are several characteristics of the VAX architecture that require
more than a “straight-through” connection from the UNIBUS to the
memory.

Addresses that are contiguous in the virtual address space may be
noncontiguous in the physical address space on 512-byte boundaries.
Because UNIBUS devices often use sequential addresses, a means is
provided to break up these sequential addresses into disjoint 512-byte
blocks.

The VAX architecture imposes no restrictions on the alignment of data
in memory. UNIBUS word transfer NPR devices, however, only trans-
fer data on even addresses. The memory controller provides a mecha-
nism that allows the transfer to be effectively shifted by one byte to
accommodate requests for I/0 buffers on odd byte addresses.

A method is also provided that allows a UNIBUS device access to all of
the physical address space. This is necessary because the memory
has 24-bit addresses, whereas the UNIBUS has 18-bit addresses.

PROCESSOR ACCESS TO UNIBUS

Any processor access with a physical address in the range of
FCO0000,, through FFFFFF,, will map directly to the UNIBUS in the
range 0 through 777777,. Any VAX-11/730 internal device (other than
the processor) that references that address range will be ignored by
the UNIBUS Interface. The device will receive a time-out error.

Processor Operations
The memory controller is designed to respond only to byte or aligned
word transactions. Any other type of access will yield UNPREDICTA-

62

VAX-11/730 UNIBUS Subsystem

BLE results. The different types of operations are mapped into UNI-
BUS operations as follows:

Transaction UNIBUS

Read DATI (Data In)

Read with modify intent DATIP (Data In Pause)
Read lock DATIP

Write DATO or DATOB (Data Out)
Write unlock DATO(B)

When an operation that causes a DATIP occurs, BBSY is asserted and
held until the end of the next operation that does not cause a DATIP to

occur.

The choice of DATO or DATOB is made based on the number of bytes
written.

UNIBUS Responses

A processor read to the UNIBUS that causes a no-response timeout
will result in a machine check abort with a non-existent memory (NXM)
bus error indicated. A processor write that causes such a timeout to
occur will generate a write bus error interrupt request. If a UNIBUS
device asserts PB in response to a processor access to it, it will cause
a machine check abort, indicating an uncorrectable bus error.

UNIBUS INITIATED DATA TRANSFERS

As mentioned earlier in this chapter, the UNIBUS adapter performs a
number of functions to make the UNIBUS architecture compatible with
the VAX architecture. A key element in this matching operation is the
UNIBUS Map. This map translates UNIBUS device-generated ad-
dresses into physical memory addresses. It also identifies UNIBUS
transfers so that other features, such as odd byte addressing, can be
used appropriately.

The UNIBUS has 18 address lines, creating an address space of 256
Kbytes. This is conceptually divided into two regions: the bottom 248
KB used to address UNIBUS memory, and the top 8 KB used to ad-
dress UNIBUS peripheral device control and status registers (CSRs).
A UNIBUS NPR device typically does a transfer to memory by doing a
series of transactions placing addresses in the lower range on the bus.
In the VAX-11/730, these are not the actual memory addresses, but
serve as pointers to the UNIBUS Map, which in turn provides the
actual physical memory address. If more than one device is doing

63

VAX-11/730 UNIBUS Subsystem

transfers at the same time, each one usually is set up to transfer into a
different range within the 248 KB address space.

The UNIBUS address space is divided into 512 pages of 512 bytes
each. When an address arrives at the UNIBUS adapter, the page
number (the upper 9 bits of the 18-bit UNIBUS address) is taken as an
index into the map, with the map then providing the actual Page Frame
Number (PFN) of the physical memory address. This is concatenated
with the address of the word or byte within the page from the UNIBUS
address (the lower 9 bits of the 18-bit UNIBUS address) to create the
final memory address.

A UNIBUS device initiates a request for memory by asserting UNIBUS
NPR (Non-Processor Request). If memory (LOCK) is not busy, the
arbitrator asserts NPG (Non-Processor Grant) to the requesting de-
vice. If the CPU is accessing memory, the UNIBUS is locked out. In this
case, the UNIBUS device must wait until the lock is released to
proceed with the memory access.

When NPG is asserted on the UNIBUS, the requesting device normally
responds by asserting SACK to the controller. If SACK is not received
from the device within a specified timeout period (12.8 to 25.6 us), the
arbitrator negates NPG thereby terminating the device’s attempt to
access memory.

If SACK is received within the timeout period, the arbitrator negates
NPG causing the device to assert BBSY and to negate SACK. The
assertion of BBSY signifies that the UNIBUS is busy and that the de-
vice is now bus master.

The device presents the two control bits (C1, C0) specifying the type of
operation and the target address to the memory controller. If the de-
vice is to write to memory (a DATO(B)), it places the write data onto the
data lines of the UNIBUS and raises MSYN to the controller. When the
controller receives MSYN, it checks for the presence of CPU GRANT.
The true state of CPU GRANT indicates a CPU/memory transaction is
in progress, in which case the transaction must complete and CPU
GRANT must be negated before the UNIBUS access to memory can
continue. With CPU GRANT false, the memory controller replies to the
device with SSYN whereupon the device negates MSYN. This is fol-
lowed by the negation of SSYN by the controller and the negation of
BBSY by the device to complete the UNIBUS/memory transaction.

If the C1 and CO control bits specified a DATI(P), the device asserts
MSYN to the memory controller which responds by placing the data
onto the UNIBUS and raising SSYN. Otherwise, the read transaction is
identical to a write.

64

VAX-11/730 UNIBUS Subsystem

UNIBUS Adapter Operating Detail

UNIBUS address bits <17:9> are used to enter a 512-byte by 23-bit
wide memory location. The data coming out of that memory location
determine how the transaction will be handled. The map data field is
divided into three sections: Page Frame Number (PFN), Offset Bit, and
Valid Bit. The format of the map data field is shown in Figure 5-4.

31 30 27 26 25 24 15 14 0

NOT USED NOT USED PFN

L PSR R TN SN A S T U NN N TN TR SN SN S SO S N Y TN N S

VALID ——I
NOT USED
BYTE OFFSET

Figure 5-4 Map Data Field

Bit: 31 Name: VALID Bit
Function: This bitindicates map data is a genuine entry.

Bit: 30:26 Name: Not used
Function:

Bit: 25 Name: BYTE OFFSET

Function: This bit indicates UNIBUS reference is to an odd byte loca-
tion (e.g., 1001, 1003). UNIBUS protocol allows UNIBUS address bits
to present only even addresses to the memory controller during a
word transfer.

Bit: 24:15 Name: Not used
Function:

Bit: 14:0 Name: PFN
Function: These bits select physical storage location.

On UNIBUS initiated transactions that cause a memory read or write
cycle to occur, the map PFN is concatenated with UNIBUS address bit
<8:0> to form a 24-bit wide physical address. Figure 5-5 shows this
address translation process.

If the Offset Bit is a one, it causes the transaction to behave as if the
UNIBUS address supplied by the DMA device were incremented by
one. This allows devices that only produce even byte addresses to
access buffers on odd byte boundaries. A transaction that causes a
word to cross page boundaries because the Offset Bit is set must have
the Offset Bit and Valid Bit identical in both map entries. Any
differences will yield UNPREDICTABLE results. If this is a DATI(P) or a
DATO and the two bytes of UNIBUS data fall across a longword
boundary, two memory cycles will occur.

65

VAX-11/730 UNIBUS Subsystem

17 9 8 [o)
UNIBUS ADDRESS
N AN J
u Of
PFN

AN

23 9 0

PHYSICAL ADDRESS PFN LONGWORD

Figure 5-5 UNIBUS to Physical Address Translation

If the Valid Bit is a one, the VAX-11/730 integral UNIBUS adapter
processes the transaction as described above. When it is zero, the
integral UNIBUS adapter ignores UNIBUS requests. The Valid Bit must
be set to zero for map entries that correspond to sections of UNIBUS
address space in which there are slaves expected to respond to trans-
actions originating on the UNIBUS. Transactions from the CPU that
cause a UNIBUS transaction to occur are always ignored by the integ-
ral UNIBUS adapter and can never wrap back through the UNIBUS
adapter to memory.

interrupts

Interrupting devices on the UNIBUS are directly vectored through the
System Control Block (SCB). The address of the vector is found at
System Control Block Base (SCBB) + 200,, + device vector. The
device vectors are the standard PDP-11 UNIBUS vectors. The VAX-
11/730 integral UNIBUS adapter interrupt mechanism will not operate
properly with any UNIBUS device vector at or above 200, (1000;). The
VAX-11/730 UNIBUS adapter itself never generates an interrupt.

UNIBUS Control and Status Register
See Figure 4-5 and the corresponding bit definitions of CSR2 in Chap-
ter 4 of this handbook.

66

VAX-11/730 UNIBUS Subsystem

Optional DMF32 Communication Board

The VAX-11/730 UNIBUS accepts a number of VAX/VMS supported

device and communication controllers, including the DMF32

communication board. The DMF32 consists of 4 UNIBUS controllers

on one hex board:

e An 8-line asynchronous multiplexer featuring programmed DMA
mode transmit lines

e A DMA synchronous line supported by DECnet communications
software

e And either a DMA lineprinter controller

e Or a general purpose 16-bit DR11 parallel interface which also fea-
tures buffer or DMA transfers

The DMF32 is programmed for 3 interfaces to run concurrently; the
asynchronous multiplexer, synchronous multiplexer, and LP or DR
device.

For more details on the DMF32 communication board, see the Termi-
nals and Communications Handbook. For VAX-11/730 UNIBUS con-
figuration guidelines, refer to the VAX Systems and Options Summary.

67

CHAPTER 6
VAX-11/730 PRIVILEGED REGISTERS

INTRODUCTION

The processor register space provides access to many types of CPU
control and status registers such as the memory management base
registers, console registers, clock registers, and the multiple stack
pointers. In a VAX/VMS environment, the operating system conven-
iently manages these registers for the user; therefore, the detailed
privileged register information contained in this chapter will be useful
to system programmers.

A complete list of VAX-11/730 internal processor registers may be
found in the back of this book.

SYSTEM IDENTIFICATION REGISTER (SID)

The system identification register is a read-only constant register that
specifies the processor type. The entire SID register is included in the
error log and the type field may be used by software to distinguish
processor types. Figure 6-1 illustrates the system identification regis-
ter.

31 24 23 16 15 8 7 0

N I\ J
TYPE——J

TYPE SPECIFIC

OOOOLOOlOOOOOIOOOO[

Figure 6-1 System ldentification Register IPR#40,,

Type A unigue number assigned by engineering to
identify a specific processor:

0 Reserved to DIGITAL

1 VAX-11/780

2 VAX-11/750

3 VAX-11/730

4 through 127 Reserved to DIGITAL

128 through 255 Reserved to CSS and customers

For the VAX-11/730, the type-specific format is shown in Figure 6-2.

69

VAX-11/730 Privileged Registers

23 16 15 8 7 0

00000O0O0O ’
1 N 1 . |

MICROCODE REVISION LEVEL g j
HARDWARE REVISION LEVEL

Figure 6-2 Type-Specific Format

CONSOLE TERMINAL REGISTERS

The console terminal is accessed through four internal registers. Two
are associated with receiving from the terminal and two with writing to
the terminal. In each direction there is a control/status register and a
data buffer register. Figure 6-3 illustrates the console receive con-
trol/status register, and the bit assignments are described.

31 2423 16 15 8 7
0000000000000000100000000|[[OOOOOOJ
1 " A 1 1 1 —
-]

INTERRUPT ENABLE

Figure 6-3 Console Receive Control/Status Register (RXCS)
IPR#20,,

Bit: 31:8 Name: MBZ
Function: Must be zero.

Bit: 7 Name: Done

Function: This bit is read-only and is set by the console whenever a
datum is received. Done is initialized to 0 at bootstrap time and is
cleared whenever MFPR #RXDB,dst is executed.

Bit: 6 Name: I[E

Function: Interrupt Enable. If this bit is set by software, an interrupt is
generated at IPL 20 when Done becomes set. Similarly, if Done is
already set and the software sets IE, an interrupt is generated. This bit
is set to 0 by hardware initialization, and can be read or written by
software.

Bit: 5:0 Name: MBZ
Function: Must be zero.

70

VAX-11/730 Privileged Registers

Figure 6-4 illustrates the read-only console receive data buffer regis-
ter. The bit assignments follow.

k)l 24 23 1615 8 7 0
Ooooooooooooooool]oool J
1 1 1
J [N N S

ERROR BIT J J

ID FIELD
DATA

Figure 6-4 Console Receive Data Buffer Register (RXDB) IPR#21,,

Bit: 31:16 Name: MBZ
Function: Must be zero.

Bit: 15: Name: ERR
Function: Error bit. If the received data contained an error such as
overrun or loss of connection, then ERR is set.

Bit: 14:12 Name: MBZ

Function: Must be zero.

Bit: 11:8 Name: ID

Function: If ID is zero, then the data is from the console terminal. If ID
is nonzero, then the entire register is implementation-dependent.

Bit: 7:0 Name: Data
Function: This field contains the actual data received by the console.

Figure 6-5 illustrates the console transmit control/status register; the
bit descriptions are also provided.

HHI\HIIHIHIIHIHHIHIHHJ

EADY
INTERRUPT ENABLE

Figure 6-5 Console Transmit Control/Status Register (TXCS)
IPR#22,,

Bit: 31:8 Name: MBZ

Function: Must be zero.

Bit: 7 Name: RDY

Function: Ready. This bit is read-only and is set at bootstrap time. It
is also set whenever the console transmitter is not busy. This bit is
cleared when MTPR src,#TXDB is executed.

71

VAX-11/730 Privileged Registers

Bit: 6 Name: |E

Function: Interrupt Enable. If this bit is set by software, an interruptis
generated at IPL 20 when RDY becomes set. If RDY is already set and
software sets IE, an interrupt is also generated. This bit is cleared
when MTPR src,#TXDB is executed.

Bit: 5:0 Name: MBZ
Function: Must be zero.

Figure 6-6 illustrates the read-only console transmit data buffer regis-
ter. The bit assignments are described.

31 24 23 16 15 8 7 0

X CEXX B OO

ID FIELD 4 1
DATA

OOOOOOOO’OOOO
L 1

Figure 6-6 Console Transmit Data Buffer Register (TXDB) IPR#23,,

Bit: 31:12 Name: MBZ
Function: Must be zero
Bit: 11:8 Name: ID

Function: These bits act as a secondary decode to specify a number
of different places that the data can be set.

<11:8>=0 Console terminal
<11:8>=1-E Reserved operand abort
<11:.8>=F Boot control functions. The

function is dependent on the
data value written as follows:

0 No operation

1 Software Done

3 Clear Restart in Progress flag

2 Boot CPU

4 Clear Bootstrap in Progress flag
>4 Reserved operand abort

Bit: 7:0 Name: Data

Function: This field contains the actual data transmitted by the con-
sole. If ID is F, then 0, 1 or 3 is a no-operation; a 2 will cause a boot,
and a 4 will clear a cold start flag. With ID = F, any other value will
cause a reserved operand fault.

72

VAX-11/730 Privileged Registers

TU58 REGISTERS

The console TU58 tape cartridge subsystem is accessed through four
internal registers. Two are associated with receiving from the TU58
and two with writing to it. In each direction there is a control/status
register and a data buffer register. Figure 6-7 illustrates the console
storage receive status register.

3 24 23 16 15 8 7 0
[0 00000000 O0O0O0O0O0O 0\0 000 00O 0' l IO 0000 q
1 N 1 L | .
DONE J }
INTERRUPT ENABLE

Figure 6-7 Console Storage Receive Status (CSRS) IPR#1C

Bit: 31:8 Name: MBZ
Function: Must be zero.

Bit: 7 Name: Done

Function: This bit is read-only and is set by the TU58 whenever a
datum is received by the TU58 from the console storage receive data
register. Done is initialized to 0 at bootstrap time and is cleared when-
ever MFPR #CSRD, dst is executed.

Bit: 6 Name: |E

Function: Interrupt Enable. If this bit is set by software, an interrupt is
generated at IPL 23. Similarly, if Done is already set and the software
sets IE, an interrupt is generated. This bit is set to 0 by hardware
initialization, and can be read or written to by software.

Bit: 5:0 Name: MBZ
Function: Must be zero.

Figure 6-8 illustrates the console storage receive data register.

3 24 23 6 15 8 7 0
Fooooooooooooooo!oooooooo[]
1 n 1 n 1 1

[\

!

Figure 6-8 Console Storage Receive Data (CSRD) IPR#
1Dy6

DATA

Bit: 31:8 Name: MBZ
Function: Must be zero.

Bit: 7:0 Name: Data
Function: This field contains the actual data received from the TU58
subsystem.

73

VAX-11/730 Privileged Registers

Figure 6-9 illustrates the console storage transmit status register.

3 24 23 16 15 8 7 0
00000000’00000000[00000000'IIOOOOOIJ
1 P Il Il L P R

T

INTERRUPT ENABLE
LINE BREAK

Figure 6-9 Console Storage Transmit Status (CSTS) IPR#1E,

Bit: 31:8 Name: MBZ
Function: Must be zero.

Bit: 7 Name: RDY

Function: Ready. This bit is read-only and is set at bootstrap time. It
is also set whenever the TU58 transmitter is not busy. This bit is
cleared when MTPR src, #CSTD is executed.

Bit: 6 Name: IE

Function: Interrupt Enable. If this bit is set by software, an interrupt is
generated at IPL 23. If RDY is already set and software sets |IE, an
interrupt is also generated. This bit is cleared when MTPR src, #CSTD
is executed.

Bit: 5:1 Name: MBZ

Function: Must be zero.

Bit: 0 Name: LB

Function: Line Break. When this bit is written to a 1,-a line break is
issued to the TU58. This bit is write-only.

Figure 6-10 illustrates the console storage transmit data register.

3 24 23 16 15 8 7 0
EO 00000 0!0 0000000O00O0O0O0O0O0O0 Ol]
1 1 L 1 1

—

f

Figure 6-10 Console Storage Transmit Data (CSTD) IPR#1F,

DATA

Bit: 31:8 Name: MBz
Function: Must be zero.

Bit: 7:0 Name: Data
Function: This field contains the actual data transmitted by the TU58
subsystem.

74

VAX-11/730 Privileged Registers

TIME-OF-YEAR CLOCK AND INTERVAL TIMER REGISTERS

The interval timer is used for accounting, for time-dependent events,
and to maintain the software date and time. The time-of-year clock is
used by software to perform various timekeeping functions.

Time-of-Year Clock

The time-of-year clock consists of one longword register. The register
forms an unsigned 32-bit binary counter that is driven by a precision
clock source. The least significant bit of the counter represents a reso-
jution of 10 ms. Thus, the counter cycles to zero after approximately
497 days.

If power has been lost so that time is not accurate, the register is
cleared on power-up. It is held at zero until software writes a nonzero
value to it. Thus, if software initializes this clock to a value correspond-
ing to a large unit of time (e.g., a month), it can check for loss of time
after a power restore by checking the clock value. The time-of-year
clock register is illustrated in Figure 6-11.

kil 24 23 615 8 7 0
[7...I....\.l‘. ...I‘.xl.‘l.,.J
[N < g A\

TIME BYTE 3—————f

TIME BYTE 2

TIME BYTE 1

TIME BYTE O

Figure 6-11 Time-of-Year Clock Register (TODR) IPR#1 B

Interval Timer

The interval timer provides an interrupt at IPL 24 at programmed
intervals. The counter is incremented at 1 us intervals, with a typical
accuracy of .01% or 8.64 seconds per day. (Accuracy will vary slightly
with ambient temperature.) The clock interface consists of three regis-
ters in the privileged register space: the read-only Interval Count
Register, the write-only Next Interval Count Register, and the Interval
Count Control/Status Register.

Interval Count Register (ICR)

The Interval Count Register is a read/write register incremented once
every microsecond. It is automatically loaded from NICR (Next Interval
Count Register) upon a carry out from bit 31 (overflow) which also
causes an interrupt request at IPL 24 if the interrupt is enabled. Figure
6-12 illustrates the Interval Count Register.

75

VAX-11/730 Privileged Registers

31 24 23 16 15 8 7 0

[B D D D D P

n T
COUNT IN MICROSECONDS

Figure 6-12 Interval Count Register (ICR) IPR#1A,,

Next Interval Count Register (NICR)

The reload register is a write-only register that holds the value to be
loaded into ICR when it overflows. The value is retained when ICR is
loaded. NICR is capable of being loaded regardless of the current
values of ICR and ICCS (Interval Count Control/Status Register). Fig-
ure 6-13 illustrates the Next Interval Count Register.

31 2423 16 15 8 7 0

U D I D N

Figure 6-13 Next Interval Count Register (NICR) IPR#19,,

Interval Count Control/Status Register (ICCS)

The ICCS register contains control and status information for the inter-
val counter. Figure 6-14 illustrates the Interval Count Control/Status
Register with the bit assignments described below.

3 30 876543 10
E ARRE R
R MBZ N|g|G|E| mBZ [U
R TIEIC]R N

Figure 6-14 Interval Count Control/Status Register (ICCS) IPR#18,

Bit: 31 Name: ERR

Function: Whenever ICR overflows, if INT is already set, then ERR is
set. Thus, ERR indicates one or more missed clock ticks. Attempts to
set this bit via MTPR clears ERR.

76

VAX-11/730 Privileged Registers

Bit: 30:8 Name: MBZ
Function: Must be zero

Bit: 7 Name: INT

Function: This bit is set by hardware every time ICR overflows. If IE is
set then an interrupt is also generated. An attempt to set this bit via
MTPR clears INT, thereby re-enabling the glock tick interrupt (if IE is
set).

Bit: 6 Name: IE

Function: When this bit is set, an interrupt request at IPL 24 is gener-
ated every time ICR overflows (INT is set). When clear, no interrupt is
requested. Similarly, if INT is already set and the software sets IE, an
interrupt is generated (i.e., an interrupt is generated whenever the
function (IE .AND. INT) changes from 0 to 1).

Bit: 5 Name: SGL
Function: This bit is write-only. If Run is clear, each time this bit is
set, ICR is incremented by one.

Bit: 4 Name: XFR
Function: This bit is write-only. Each time this bit is set, NICR is
transferred to ICR.

Bit: 3:1 Name: MBZ
Function: Must be zero

Bit: 0 Name: Run

Function: When this bit is set, ICR increments each microsecond.
When clear, ICR does not increment automatically. At bootstrap time,
Run is cleared.

Thus, to set up the interval timer, load the negative of the desired
interval into NICR. Then an MTPR #!X51,#ICCS will enable interrupts,
reload ICR with the NICR interval and set Run. Every “interval count”
microseconds will cause INT to be set and an interrupt to be request-
ed. The interrupt routing should execute an MTPR #MXC1,#ICCS to
clear the interrupt. If INT has not been cleared (i.e., if the interrupt has
not been handled) by the time of the next ICR overflow, the ERR bit will
be set.

At bootstrap time, bits <6> and <0> of ICCS are cleared. The rest of
ICCS and the contents of NICR and ICR are UNPREDICTABLE.

VAX-11/730 OPTIONAL FLOATING POINT ACCELERATOR

The VAX-11/730 has an optional accelerator for a subset of the
instructions. The ACCS, an internal read/write register, controls the
accelerator.

77

VAX-11/730 Privileged Registers

ACCS is the accelerator control/status register. It indicates whether an
accelerator exists, controls whether it is enabled, identifies its type and
reports errors and status. At bootstrap time, the type and enable are
set; the errors are cleared. Figure 6-15 illustrates the accelerator con-
trol/status register.

2 2423 16 15 14 8 7 0
oooooooo[ooooooo,ﬁlooooooool
U W SR SRS WY VAN NS WU N SR S Sy 8 N T S S S N 1 IR WY TR S S S 1
[
ENABLE ?

TYPE T

Figure 6-15 Accelerator Control/Status Register (ACCS)

Bit: 31:16 Name: MBZ

Function: Must be zero.

Bit: 15 Name: ENB .
Function: Read-only field specifying whether the accelerator is en-
abled. This is set if the accelerator is installed and functioning. An
attempt to set this is ignored.

0 = No accelerator
1 = Floating Point Accelerator

Bit: 14:8 Name: MBZ
Function: Must be zero.

Bit: 7:0 Name: TYPE
Function: Read-only field specifying the accelerator type as follows:

0 = No accelerator
1 = Floating Point Accelerator

Numbers in the range 2 through 127 are reserved to DIGITAL. Num-
bers in the range 128 through 255 are reserved to CSS/customers.

78

PART Ili
THE VAX-11/750

79

80

CHAPTER 7

VAX-11/750 CONSOLE SUBSYSTEM

FEATURES

Console terminal

Console command language
Console terminal is a standard
ASCII device

EIA communications interfacing
Front panel switches and indi-

cator lights

TU58 cartridge tape drive

Unattended restart

INTRODUCTION

BENEFITS -

Dual function as console and
user terminal results in hard-
ware savings

Gives the user a powerful, yet
easy-to-use, debugging tool

Provides a high degree of flex-
ibility

Allows standard industry-com-
patible communications

Offer the user easy system
access and control

Provides an inexpensive, reli-
able device and medium for
booting, diagnostics, field up-
dates to any software, and con-
venient personal data storage
on cartridge

The system restarts or reboots
itself upon recovery of electrici-
ty after a power failure or other
system crash

The VAX-11/750 console subsystem has four major elements:
1. A front panel on the CPU cabinet with switches and indicator

lights.

2. A separate ASCIl terminal with keyboard, called the console ter-

minal.

3. ATUS58 tape cartridge drive in the CPU cabinet.

4. A special console command language with simple commands the
user types from the console terminal.

This approachable console subsystem is designed to allow the user to
interactively communicate instructions to the CPU using the console
terminal and the console command language. The integral TU58 tape
cartridge drive can be used optionally to boot the system, as well as to

81

VAX-11/750 Console Subsystem

load diagnostics, updates to the operating system software and com-
pilers. DIGITAL also supports the TU58 under VAX/VMS for data sto-
rage and retrieval.

Figure 7-1 illustrates the hardware elements of the VAX-11/750
console subsystem.

CONSOLE CONSOLE
TERMINAL TuSe

RDM PASSES DATA
EXCEPT WHEN IN

RDM CONSOLE MODE —
— RDM —I

Iwaus lcn.ocx Tvaus

CONTROL
CONSOLE DEVICE
I/0 CONTROLLERS l—’ WBUS

CONSOLE COMMAND
LANGUAGE MICROCODE

CONTROL BOOT
PANEL ROMS

Figure7-1 VAX-11/750 Console Subsystem

CONSOLE MODES

The VAX-11/750 console runs in three modes: program I/O mode,
console I/0 mode, and RDM console mode. These modes are mutual-
ly exclusive. One of the three will always be enabled while there is
power to the machine. In the program /O mode (also known as the
system terminal mode), the console functions like the other terminals
on the VAX-11/750 system. In this mode the console passes charac-
ters between the terminal and the instruction set processor running in
the CPU.

In the console I/0 mode (also called console mode), the console pro-
gram interprets and acts on commands typed on the console terminal.
The VAX-11/750 will enter the console I/0 mode whenever the in-
struction set processor halts.

Table 7-1 lists the actions that cause the CPU to halt and enter console
I/0 mode. Pressing the reset button simulates the power-

82

VAX-11/750 Console Subsystem

down/power-up sequence. When the keylock switch is in either “se-
cure” position, CTRL-P and the reset button are disabled.

When the processor enters the console I/0 mode it types on the con-
sole terminal the address contained in the program counter (PC), a
two-digit code which identifies the reason for the halt, and the console
prompt symbol, >>>. The prompt symbol shows that the console
program is looping, waiting for a command.

Table 7-1 Console Halt Codes

Code Meaning

Halt or Single Step from console
Successful T command

CTRL-P was typed on the console
Interrupt stack not valid or unable to read SCB
Double bus write error halt

Halt instruction with PSL<CM> =0
SCB vector <1:0> =3

SCB vector <1:0> = 2 and no UCS
CHMX while on the interrupt stack
CHMX SCB vector <1:0> .NE.O

Power up and can’t find RPB, FPS1 at RE-
START/HALT

Power up and warm start flag false FPS1 at RE-
START/HALT

13 Power up and can’t find good 64K of memory

- m > O N o o D =+ O

—

—_
N

14 Power up and booting, but bad Boot ROM or no
ROM

15 Power up and cold start flag set during boot
subroutine

16 Power up halt; Power On Action Switch at HALT
position

FF Micro Verify test failure
The third console mode is the RDM console mode. This mode is func-
tional when the Remote Diagnosis Module (RDM) option is present in

83

VAX-11/750 Console Subsystem

the system configuration. In the RDM console mode the microproces-
sor on the RDM board interprets and acts on the commands typed on
the console terminal.

VAX-11/750 FRONT PANEL

The front panel of the VAX-11/750 has four switches and seven indica-
tor lights which allow the processor to be halted, restarted, booted,
and initialized. If a user wants the CPU to restart in case of a power
failure, the POWER ON ACTION switch located on the front panel can
be set to automatically restart the system. The OFF-LOCAL-REMOTE
switch determines the operating mode of the console terminal: system
terminal mode or console mode. Furthermore, by removing the key
from the OFF-LOCAL-REMOTE switch, the user can fix the operating
state, preventing anyone else from changing that state. The operator
can use the console terminal as a user terminal in a protected environ-
ment once the system is running. Additional user terminals on the
system cannot function as console terminals.

Figure 7-2 illustrates the VAX-11/750 front panel controls and
indicators.

crU sTATE B00Y DEVICE FOWER ON_ACTION
Power N ERROR REseT x BooT Locat

REMOTED RD FAULT P RESTART RE N\ /_\
RD TEST RD CARRIER O O O O _@ (© Themore
N N ol
5

RESTART

Figure 7-2 VAX-11/750 Front Panel Controls and Indicators

Off-Local-Remote

This is a five-position keylock switch.

e OFF—No power to the CPU (except battery backup to the time-of-
year clock) or to memory.

e | OCAL—The CPU responds to console commands and the remote
diagnostic unit is completely disabled.

© SECURE—Console commands are ignored. The remote diagnostic
unit is completely disabled, and the RESET switch is disabled.

e REMOTE—The console functions are enabled and may be activated
from the remote line only. However, the remote line does have the
capability to return control to the local terminal.

¢ REMOTE/SECURE—Console commands are ignored. The remote
line replaces the console terminal, and the RESET switch is dis-
abled. With the switch in this position, the remote diagnosis module
may not be used to identify the source of system failures.

84

VAX-11/750 Console Subsystem

Power On Action

This four-position rotary switch controls the machine on a power-up

sequence.

e HALT—The machine comes up halted, in console mode.

e BOOT—The machine bootstraps from the device selected by the
boot device switch.

e HALT/RESTART—A check is made to see if there is a valid Restart
Parameter Block (RPB). If so, a restart sequence is initiated. Other-
wise, the machine halts.

e BOOT/RESTART—Similar to Halt/Restart except that a bootstrap
sequence occurs if RESTART is not successful.

Boot Device

This four-position rotary switch selects the device from which to boot.
The VAX-11/750 CPU contains four sockets for built-in Read-Only
Memory chips (ROMs) that contain the VAX-11/750 code needed to
bootstrap a device. The switch selects which of the four ROMs is to
provide the bootstrap code when a boot sequence is initiated. Typical-
ly, this switch is left in the position corresponding to the VAX/VMS
system disk. Position A always causes a boot from the TU58 tape
cartridge.

Reset

This pushbutton switch activates a system power-down sequence fol-
lowed by a power-up sequence unless the keylock switch is on
SECURE. The system will come up in the state selected by the POWER
ON ACTION switch. It is usually used only if the machine appears to be
hung and does not respond to console commands.

CPU State Indicator Lights
e POWER—This green light indicates that DC power is present inside

~ the CPU and that the keylock switch is not in the OFF position.

e RUN—When lit, this green light indicates the machine is in the pro-
gram I/0 mode.

e ERROR—When brightly lit, this red light indicates that the machine
is stopped because of an unrecoverable control store parity error.
To reset the machine, the RESET switch must be used because
console commands are not operational.

When glowing softly, the red light means that the CPU is functioning
normally.

Remote Diagnostic Indicators
The following four lights are back-lit words, illuminated during various

85

VAX-11/750 Console Subsystem

stages of remote diagnostic procedures. It should be noted that the

REMOTE D, RD CARRIER, RD TEST, and RD FAULT lights only apply

to systems having the optional remote diagnosis module installed by

Field Service.

e REMOTE D—Remote diagnostics (RD) software illuminates this
green light whenever the OFF-ON-LOCK switch is in one of the two
remote positions.

e RD CARRIER—This green light is lit by the RD software whenever it

detects that the remote port carrier is present. It indicates that the -

Remote Diagnostic Center (RDC) has established connection.

e RD TEST—The RDC software illuminates this amber light while tests
arein progress.

e RD FAULT—This red light is lit by the Remote Diagnosis Module
(RDM) if it detects a fault in its own logic. No tests should be at-
tempted when the fault indicator is lit.

CONSOLE TERMINAL

The console terminal and the console command language are two
powerful tools within the VAX-11/750 console subsystem. By typing in
simple console command language instructions through the console
terminal, the user can instruct the CPU to perform a wide variety of
functions. These instructions to the CPU can only be communicated
when the console terminal is in console mode. In this mode, the con-
sole terminal is dedicated exclusively to controlling CPU functions
such as examining and depositing data in memory. Console mode
also allows the processor to be started, self-tested, initialized to a
known state, single-stepped through instructions, or halted. In con-
trast, system terminal mode dedicates the console terminal to user
application processes and the VAX/VMS operating system. In system
terminal mode, the CPU ignores console commands.

Console Terminal Communications

The electrical interface for the console terminal is an industry-stan-
dard full-duplex EIA RS232-C line. The speed of the line is jumper-
selectable to 300, 400, 600, 1200, 2400, 3600, 4000, 4800, 7200, 9600,
19,200, or 38,400 bits per second. This interface is a special port
connected directly to the central processor.

CONSOLE COMMAND LANGUAGE

The VAX-11/750 console command language gives the user an effi-
cient way of communicating with the console subsystem—using sim-
ple commands entered through the console terminal instead of the
traditional toggle switches and lights. Thus, the VAX-11/750’s console

86

VAX-11/750 Console Subsystem

command language is a powerful tool, allowing the user to EXAMINE,
DEPOSIT, INITIALIZE, CONTINUE, START, HALT, SINGLE STEP,
SELF TEST, and BOOT as briefly described below.

COMMAND DESCRIPTION

Examine Allows the user to look at physical and virtu-
al memory, the processor registers, the
general registers, and the Processor Status
Longword

Deposit Allows the user to make an entry into physi-
cal or virtual memory, the processor regis-
ters, the general registers, and the Proces-
sor Status Longword

Initialize Allows the user to put the processor into a
known state

Continue Allows the user to restart a halted program
without altering the state of the machine

Start Initializes the processor and enables it to
begin

Halt No operation

Single Step Allows the user to execute one instruction at
atime

Boot Allows the user to load the operating sys-
tem and start the CPU

Self Test Runs micro verify routines and initializes the
processor

Binary Load Permits the user to deposit a block of binary

data in physical memory

Binary Unload Allows the user to examine a block of binary
data in physical memory

NOTE
The Binary Load/Unload commands are for special
diagnostic use, and are not normally useful to the
customer.

The console terminal utilizes the console command language to
communicate instructions to the CPU. Commands are specified by a
single letter with optional modifiers. When the CPU is not executing

87

VAX-11/750 Console Subsystem

instructions, it is halted, and the console terminal is in console mode.
In this mode, the CPU is receptive to console commands and can
perform the functions previously listed. Direct Memory Access (DMA)
activity to memory can also occur with the terminal in console mode, |
and all DMA transactions in progress will continue even when the CPU |
is halted. This allows the machine to be halted without destroying
these transactions; however, interrupts will not be serviced while the
machine is halted. They will be serviced following a CONTINUE from
the console.

Console Command Syntax and Semantics
Symbol Function

<> Angle brackets are used to denote category
names. For example, the category name
<ADDRESS> may be used to represent
any valid address, instead of actually listing
all the strings of characters that can repre-
sent an address.

[] Parts of expressions in brackets do not
need to be typed if defaults are used.

<SPACE> Represents one typed space.

<COUNT> Represents a numeric count in hexadeci-

mal, 32 bits. Leading zeros may be omitted.

<ADDRESS> Represents an address argument. Valid
<ADDRESS> types are explained later in
relation to specific commands. However,
virtual addresses that reference nonexistent
or nonresident pages will cause the console
to abort execution of the console command
which referenced that address. An appro-
priate error message will be displayed.
Leading zeros may be omitted.

<DATA> Represents a numeric argument. Leading
zeros may be omitted.

<QUALIFIER> Represents a command modifier (also
called a switch). Valid <QUALIFIER> types
are explained later in relation to specific
commands.

<INPUT-PROMPT > Represents the console’s input prompt
string — >>>.

88

VAX-11/750 Console Subsystem

<CR> Carriage return.
<LF> Line feed.

Typing Errors and lllegal Characters

Typing errors may be corrected (before a <CR> sends the entire
command to the CPU) using the DELETE key. When the key is typed,
the console will echo the character being deleted (after printing a
backslash, \, upon receipt of the first deletion). The console will also
add a backslash between the last deletion and the next input charac-
ter.

Example:
operator types 127834
console prints 1278\87\34
console sees 1234

The console attempts to interpret each character as it is typed. If the
console cannot interpret the next character in the context of the cur-
rent command, it sounds a “beep” (bell) and ignores the character.
This does not abort the entire command; instead, the command may
be completed by typing the correct character(s).

Control Characters

CTRL-P This is typed by holding down the CTRL key
while typing a P. This command puts the
machine in console |/0 mode, halts the
processor (see the HALT command), and
causes the console terminal to type a halt
message (PC<SPACE>02). Typing a
CTRL-P while already in console 170 mode
causes the console defaults to be reinitial-
ized and the halt message to be typed on
the console terminal.

CTRL-U Tells the system to ignore all characters
typed since the last <CR> and types
\<CR><LF><INPUT-PROMPT>.

CTRL-D CTRL-D causes the console to enter the
RDM console mode, if the Remote Diag-
nosis Module is installed.

89

VAX-11/750 Console Subsystem

Console Command Language Instructions

BOOT Command
B[/X] [/n] [<SPACE><ddcu>] <CR>

This command boots the operating system or diagnostic software
from the device specified. The hexadecimal number, <n>, specifies
the boot control flags. The command deposits this number in register
R5 before booting. For example, 200 sets bit 9 in R5, specifying boot
control flag 9. <n> may be from one to four digits in length. If <n> is
omitted, the default value for R5 is 0. The software boot control flags
are actually implemented by VMS, not the VAX-11/750 CPU.

If /X is typed, the BOOT command will inhibit Micro Verify. This means
that the Micro Verify tests are normally run at the beginning of the boot
sequence.

<ddcu> represents the boot device, where dd is a two letter device
mnemonic. Table 7-2 shows the boot device codes. The I/0 channel
adapter is specified by c. A, B, C, and D are possible values. U is a
one-digit number that specifies the device drive number. If this is
omitted, the device will be selected by the boot device switch, the
channel adapter is A, and the drive number is 0. If /n or /X is used,
then <ddcu> must be supplied.

Table 7-2 Boot Device Codes

Device Code (dd) Device

DL RLO2

DM RKO06/7

DB RP04/5/6/7, RM03
DD TUS58

Following a successful boot, the console enters program I/0 mode
(system terminal mode). If Micro Verify has been executed (/X was not
typed), the console also prints a message telling whether the test
revealed any errors (see the Test command).

CONTINUE Command

C<CR>

The CONTINUE command restarts execution of a halted program at
the address currently contained in the Program Counter. The CPU is
not initialized, and the console terminal enters system terminal mode
once the CONTINUE command is issued.

90

VAX-11/750 Console Subsystem

DEPOSIT and EXAMINE Commands
D[<QUALIFIER-
LIST>]<SPACE><ADDRESS><SPACE> <DATA><CR>

E[<QUALIFIER-LIST>][<SPACE><ADDRESS>] <CR>

DEPOSIT and EXAMINE commands will be treated together because
their formats are quite similar. Both commands require definition of
the address space and the size of the operand in addition to the
address. To make multiple EXAMINESs or DEPOSITs easier, there is a
system of defaults for each of the items that must be specified for
these commands. Some of the defaults are automatic (such as long-
word size for general registers), and some are set up by the immedi-
ately preceding EXAMINE or DEPOSIT. All other console commands
(except <CR>) cause the defaults to be set to their ‘initial values.
DEPOSIT and EXAMINE qualifiers are listed in Table 7-3.

Table 7-3 DEPOSIT and EXAMINE QUALIFIERS

Size Qualifiers

/B Byte

/W Word

/L Longword
Space Qualifiers

A" Virtual Address
/P Physical Address
/1 IPR

/G GPR

Address Values

nnnnnnnn Hex Number

* Last Location

P PSL

+ Next Location
(DEPOSIT only)

Data

nnnnnnnn Hex Number

DEPOSITs (writes) or EXAMINEs (reads) <DATA> at the <AD-
DRESS> specified. The address space and size used will depend
upon the qualifier or qualifiers specified with the command. If no ad-
dress space qualifier is used, the default is physical address space;
following another DEPOSIT or EXAMINE, the same space as that of
the previous command will be used as the default.

91

VAX-11/750 Console Subsystem

If no size qualifier is typed, the default for a physical or virtual
DEPOSIT or EXAMINE is longword; however, following another EX-
AMINE or DEPOSIT, the size used in the previous command will be the
default. The size for an IPR or GPR DEPOSIT/EXAMINE is always
longword, and these commands do not change the current size de-
fault.

<ADDRESS> must be one to eight hexadecimal digits. The initial
default is zero; however, the default is unpredictable when the address
space is changed. Following another virtual or physical DEPOSIT or
EXAMINE, the default is the sum of the address from the last EXAM-
INE/DEPOSIT plus size from the last EXAMINE/DEPOSIT. Typing a +
for <ADDRESS> (for DEPOSIT only) will also get this default. Follow-
ing another IPR or GPR EXAMINE/DEPOSIT, the default is the sum of
the address from the last EXAMINE/DEPOSIT plus one. Using a P for
<ADDRESS> does a longword reference of the Processor Status
Longword, independent of address space and size. Using P has no
effect on any of the defaults.

<DATA> must be represented by one to eight hex digits. If more
digits than specified by the size are supplied, the extra digits on the left
are ignored; if fewer digits are supplied, zeros are appended to the

left.
Sample DEPOSIT response: A successful DEPOSIT always receives

<INPUT-PROMPT>.
Sample EXAMINE responses: console output underlined

>>> E/P 1234 | Examine physical
! address 1234

P 00001234
ABCDEF89
>>> E/V 1234 | Examine virtual
I address 1234
P 00005634 | Note that
01234567 I virtual
| EXAMINES display
| the translated
! physical
| address
>>> E/GO | Examine general
! register
1RO
G 00000000
98765432

92

VAX-11/750 Console Subsystem

Index of EXAMINEs and DEPOSITs
E*<CR>

E<CR>

E<SPACE><ADDRESS><CR>

E/G<SPACE><ADDRESS><CR>

E/I<SPACE><ADDRESS><CR>

E/P<SPACE><ADDRESS><CR>
E/V<SPACE><ADDRESS><CR>
E<SPACE>PSL<CR>
E/W/P<SPACE><ADDRESS><CR>

E/P/W<SPACE><ADDRESS><CR>
E/L/V<SPACE><ADDRESS><CR>

D*<DATA><CR>

D+<DATA><CR>
D/G<SPACE><ADDRESS><SPACE><DATA><CR>
D/I<SPACE><ADDRESS><SPACE><DATA><CR>
D/P<SPACE><ADDRESS> <SPACE><DATA><CR>
D/V<SPACE><ADDRESS><SPACE><DATA><CR>

D<SPACE>PSL<SPACE><DATA><CR>
D<SPACE><ADDRESS><SPACE><DATA><CR>

D/V/W<SPACE> <ADDRESS><SPACE><DATA><CR>

D/L/P<SPACE><ADDRESS><SPACE><DATA><CR>

INITIALIZE Command
I<CR>

This command performs the following functions:

Initialize the processor

Clear the translation buffer

Clear the cache; turn on the cache
Set the program counter to 0

Examine the last location
examined or deposited into
Examine the next location
Examine <ADDRESS>; all
switches are defaulted to
last EXAMINE or DEPOSIT
Examine GPR; register
number is XADDRESS>;
<ADDRESS> must be
avalue from 0 to

AXF

Examine IPR; register
number is XADDRESS>

Examine physical <ADDRESS>
Examine virtual <ADDRESS>-
Examine PSL

Examine a word at physical
<ADDRESS>

Examine a word at physical
<ADDRESS>

Examine a longword at
virtual <ADDRESS>
Deposit <DATA> in the last
location that was deposited
into or examined

Deposit <DATA> in the next
sequential address

Deposit <DATA> in GPR
<ADDRESS>

Deposit <DATA> in IPR
<ADDRESS>

Deposit <DATA> in physical
<ADDRESS>

Deposit <DATA> in virtual
<ADDRESS>

Deposit <DATA> in PSL

Deposit <DATA> in
<ADDRESS>

Switches are defaulted to
previous switches

Deposit a word of <DATA> in
virtual <ADDRESS>

Deposit a longword of
<DATA> in physical
<ADDRESS>

Set the processor status longword to 041F0000

93

VAX-11/750 Console Subsystem

HALT Command
H<CR>

The Halt command is implemented in the VAX-11/750 for the sake of
consistency with the VAX-11/780. It does not actually halt the CPU
since the CPU must already be halted to respond to the command.
However, the Halt command does reset the console defaults.

Table 7-1 defines the various console halt codes:

NEXT Command
N<CR>

The NEXT command causes the CPU to execute one ISP level instruc-
tion. The CPU then halts and re-enters the console mode.

START Command
S[<SPACE><ADDRESS>]<CR>

The START command is normally used to start execution of programs

that run without the operating system and without the diagnostic su-

pervisor. START performs the equivalent of the following console

commands:

1. Initialize the CPU.

2. Deposit <address> into the Program Counter (PC). If no address
is specified, the current value of the PC is used.

3. Perform the Continue function to begin ISP level CPU execution.

Programs which may be started this way must be loaded into main
memory before the START command is given. For example:

>>>S 1000 | Start the program that
! begins at
!address 1000.
TEST Command
T<CR>

This command runs the Micro Verify program and initializes the proc-
essor. The Micro Verify program types a percent sign (%) on the termi-
nal when it starts the test.

If all the tests run successfully, Micro Verify types a second %. If Micro
Verify detects a failure, it types a single error character and then halts
the processor in the console I/0 mode. When the processor halts, the
console types an error code in place of the PC and a halt code. The
halt code shows that this halt is due to an error condition in Micro
Verify.

94

VAX-11/750 Console Subsystem

Response if successful:
<CR><LF>%%<CR><LF><INPUT-PROMPT>

Response if unsuccessful:
<CR><LF>%<ERROR INDICATOR><CONSOLE HALT MES-
SAGE>

BINARY LOAD/UNLOAD Command
X<SP><ADDRESS><SPACE><COUNT><CR><CHECKSUM>

<ADDRESS> starting address of load
<COUNT> number of bytes to be transferred
<CHECKSUM> 2’'s complement checksum of command

string or binary data

The BINARY LOAD/UNLOAD command instructs the console to load
binary data into or unload binary data from physical memory, starting
from the location specified by <ADDRESS>. A <COUNT> with bit
<31> set indicates BINARY UNLOAD (data sent to the register). The
remaining bits in <COUNT> indicate the number of bytes to Load or
Unload. After a correct 2's complement checksum calculation, the
console issues an <INPUT-PROMPT>, but remains in binary mode
and either sends data to the user or prepares to receive data. If the
checksum shows an error, a message and an <INPUT-PROMPT> are
issued.

In LOAD, a binary string of data, of length <COUNT> + 1, will be sent
once the <INPUT-PROMPT> indicates that the console has accepted
the command. When <COUNT> is exhausted, the final byte is a con-
sole-calculated block checksum of all the data. A successful transfer
issues an <INPUT-PROMPT>. An error in the checksum will generate
an error message (see Table 7-4 for error codes).

For UNLOAD, the console processes the command and <CHECK-
SUM>. Then, if the checksum is correct, the console responds with
<INPUT-PROMPT>, followed by a string of bytes which is the binary
data requested. A second checksum is calculated and processed as
for the LOAD sequence.

Console Command Errors

When a command is given that the console cannot properly process, it
responds by typing ?nn. nn is an error code that describes the nature
of the problem. Error codes are listed in Table 7-4.

95

VAX-11/750 Console Subsystem

Table 7-4 Console Command Error Codes

10 lllegal GPR register number

11 lllegal access of an IPR

19 Reference to next location was preceded by an
EXAMINE or DEPOSIT to an IPR or PSL

20 ACV, TNV, or Machine Check during aread or
write

30 Binary transfer checksum error

33 Unrecognizable boot device

NOTE

The console ignores illegal characters and echoes
them as bell codes.

INTEGRAL TU58 CARTRIDGE TAPE DRIVE

The TU58 tape cartridge drive is an important part of the console
subsystem. Because the TU58 is connected directly to the CPU, it
retains the ability to run diagnostics even with some system compo-
nents inoperative. This feature significantly increases system main-
tainability. The TU58 may also be used to boot the system, to load files
into physical memory, and to store files which describe and execute
site-specific bootstrap procedures (see BOOTING THE VAX-11/750
SYSTEM later in this chapter).

The tape cartridge is preformatted and contains 256 KB, normally
formatted in 512 B records. The controller provides random access to
any record. The TU58 searches at 60 inches per second (i/s) to find
the file requested, then reads at 30 i/s. Data read from the tape are
verified through checksums at the end of each record or header.

BOOTING THE VAX-11/750 SYSTEM

Initializing or booting the VAX-11/750 system can be viewed from two
different perspectives. First, there are the actual steps that the system
operator must perform in order to boot the system. And second, there
are the actual events that occur within the system during the boot
process.

From the system operator’s standpoint, the booting process is quite
simple. For a typical system boot:
1. Turnon power to the console terminal.

96

VAX-11/750 Console Subsystem

2. Turn the POWER ON ACTION switch on the VAX-11/750 front
panel to the HALT position. The POWER ON light should now be
lit. The console terminal will print:

%%
00000000 16
>>>

3. Check that the VMS operating system disk pack is in drive 0 and
the READY light is on. (The disk READY light can take from 20 to
60 seconds to light from Power On until a Ready condition exists.)
4. Setthe BOOT DEVICE switch to the position corresponding to the
system device. This action matches the correct boot ROM with the
VMS system device. The BOOT DEVICE switch settings are: A
(TU58), B (RK07), C (RLO2), and D (MASSBUS).
5. Setthe POWER ON ACTION switch to the RESTART/BOOT posi-
tion. .
6. Pressthe RESTART button.
7. The console terminal should type:
%%
00000000 16
%%

This is followed by the VAX/VMS boot message.

If this procedure does not work, it is possible that either drive 0 is not
functioning properly or that the VAX system pack is no longer valid.

Console Subsystem Action on Boot

The overall flow of control for booting passes through a number of
stages on the VAX-11/750. An overview of this flow is followed by a
detailed specification for each part that is part of the VAX-11/750
hardware.

The console subsystem initializes the CPU, finds 64 KB of good mem-
ory, and passes the address of that memory to the Device ROM which
brings in block 0 (the bootblock) of the boot device into the first page
of good memory and then transfers control to it.

The bootblock code uses the Device ROM as a callable driver for the
device and then uses it to bring in whatever file it needs to bring the
system up.

There are five distinct ways that a boot sequence may be initiated on
the VAX-11/750. They are:

1. 'Power-up sequence (RESET button or power restoration) with

97

VAX-11/750 Console Subsystem

switch set to BOOT.

Typing the “B” command while in console mode.

Execution of a HALT instruction when the processor is in kernel
mode and the POWER ON ACTION switch is in the BOOT posi-
tion.

Executing the MTPR (Move to Processor Register) to the console
register that invokes a boot.

Failure of a warm start (restart) while the POWER ON ACTION
switch is in the RESTART/BOOT position.

All five of these mechanisms will initiate the following sequence of
actions. The first two will not perform the first step listed. This implies
that the first two will cause a boot independent of the state of the cold
start bit, while the last three will not.

1.

Clear the cold start flag.

2. Micro Verify.

3. Initialize PSL to 041F0000,.

4. Locate 64 KB of page-aligned usable memory to be used during

bootstrapping.

5. Initialize UBIO.

6. Load and validate the first 128 UBIO map registers to address the

first 64 KB of usable memory.

7. Load contents of all four boot ROMS into memory (base +

XFAO00).

8. Check the cold start flag. If set, Halt. If clear, set it. This prevents

cold start looping.

9. Load input arguments to be used by the Device ROM code and by

VMS.

10. Select the boot ROM specified by the BOOT DEVICE switch.

11. Check for non-existent ROM; halt if no ROM.

The general registers receive the input arguments from the console

subsystem.

R1 System bus address of a MASSBUS adapter
(MBAO unless otherwise specified in the BOOT
command)

R2 Physical address of the UNIBUS 1/0 page associ-
ated with the UNIBUS adapter (UBIO unless oth-
erwise specified in the BOOT command)

R3 Device unit number (0 unless otherwise specified

in the BOOT command)

98

VAX-11/750 Console Subsystem

R5 Software boot control flags (0 unless otherwise
specified in the BOOT command)

SP <base address + 1X200> of the 64 KB of good
memory

The console subsystem then transfers control to the second word in
the selected ROM code to begin macro instruction execution of the
ROM code. The table below shows the four starting addresses.

Device ROM Starting Address
A FA02
B FBO2
C FC02
D FDO02

Device ROM Code Function on Boot
The Device ROM code consists of four components:

e An ASCII description of the device type

® A control routine: gains control from microcode
e A driver subroutine

® A checksum

ASCIl device description:
e Located at bytes 0-1 of the ROM

e Consists of two ASCII characters describing device type; characters
are written in reverse order

Examples:
.ASCIl /MD/ ; RK06/7 disk drive
.ASCII /BD/ ; MASSBUS disk drive

Control Routine, Located at bytes 2-n of the ROM

Function: To prepare inputs for and then call the driver sub-
routine to bring in the bootblock from the device;
when the driver subroutine returns, check for er-
rors; if no error, prepare inputs for and call
bootblock code; if error, halt

Inputs: R1: address of a MASSBUS adapter

R2: address of a UNIBUS I/0 page

R3: unit number of a boot device

R5: software boot control flags

SP: base address of usable memory + 1X200
Implicit UBIO map registers are marked as valid and
inputs: mapped to the 64 KB of usable memory

99

VAX-11/750 Console Subsystem

The bootblock is at LBN 0

The bootblock will be brought into the first page
of good memory

The address stored in SP is mapped to the sec-
ond UBI map register

Base of good memory + C: transfer address of
bootblock code

Outputs:
RO: type of boot device
0 MASSBUS Device
1 RK06/7
2 RLO2
3-63 Reserved for the future
64 TU58
R1: (UNIBUS) address of the UNIBUS 1/0 page
(MASSBUS) address of the boot device’s adapter
R2: (UNIBUS) address of the boot device’s CSR
(MASSBUS) controller number of the boot device
R6: address of driver subroutine in ROM
Preserves Regis- R3, R5,R10,R11, AP, SP
ters:

Driver Subroutine:

Located after control subroutine in ROM.

Function is to read 1 block of data from device into memory. Called
with JSB.

Inputs: R1: (UNIBUS) address of a UNIBUS
I/0 page
(MASSBUS) address of the boot
device’s adapter

R2: (UNIBUS) address of the boot

device’'s CSR
(MASSBUS) controller
number of the boot device

R83: Unit number of a boot device

R5: Offset from beginning of 64 KB
block at which data are to
be written

R8: LBN of block to be read on the
boot device

100

VAX-11/750 Console Subsystem

4(SP) addressin memory at which data
are to be written

Outputs: RO: <0>@1 indicates success
0 indicates failure
Preserves: R1-R6, R10, R11,AP,SP

Devices which use the UNIBUS map require the offset from the base of
good memory since the console will set up the UNIBUS map relative to
that base. This is provided in R5. Devices which need the actual physi-
cal address in memory get it at 4(SP).

Checksum

Located at byte 255 (the last byte in the ROM)

Consists of the sum (discarding carries) of the first 255 bytes in the
ROM.

Figure 7-3 represents a memory map of boot process.

BASE OF GOOD
MEMORY

1FF
-<——SP PASSED TO ROM CODE

& BOOTBLOCK

<s—— AVAILABLE FOR FiLE
BROUGHT IN BY
BOOTBLOCK

FAOO COPY OF DEVICE ROM CODE

COPY OF DEVICE ROM CODE

COPY OF DEVICE ROM CODE

COPY OF DEVICE ROM CODE

FEOO
<a—— AVAILABLE FOR FILE

BROUGHT IN BY
BOOTBLOCK

FFFF

UNTESTED MEMORY

Figure 7-3 Memory Map of Boot Process

Console Subsystem Action on a Warm Start

When the console subsystem gains control of the VAX-11/750 follow-
ing a power restoration, activation of the RESET switch, or CPU Halt, it
examines the POWER ON ACTION switch. The console subsystem will

101

VAX-11/750 Console Subsystem

attempt to restart the CPU in either of two cases.

1. When the POWER ON ACTION switch is set to the
RESTART/HALT position.

2. When the POWER ON ACTION switch is set to the RE-
START/BOOT position.

If the POWER ON ACTION switch is set to either RESTART/HALT or
RESTART/BOOT, the console subsystem searches through physical
memory for a valid restart parameter block (RPB), shown as follows.

physical address of the RPB

physical address of the restart routine

checksum of {X1F longwords of restart routine

Bit 0; ! warm start flag
Parameter Block, First Four Longwords

Qoaro

A valid RPB is defined as a block of four longwords, starting on a page

boundary. The first longword points to itself. The second is a pointer to

the address of the restart code and must not be zero. The third long-

word contains the checksum (sum, throwing away carries) of the 31

longwords pointed to by the second longword. The console subsystem

starts at address zero and searches all available memory for a valid

RPB. If it doesn’t find one it performs the second action specified by

the power on switch (HALT or BOOT).

If it does find an RPB, it examines bit 0 of the fourth longword of the

RPB. If this bit is 1, it will halt or boot as specified by the power-on

switch.

If this bit is 0, it sets it and then:

e Loads the stack pointer (SP) with the address of the RPB plus $X200.

e Loads the argument pointer (AP) with a value that indicates the
cause of the restart. If the restart is occuring because of power
restoration or reset switch activation, the AP is loaded with a 3. Ifitis
because of a CPU Halt, it is loaded with one of the codes specified in
Table 7-1. -

e Starts execution of the restart routine, whose address is located at
the second longword of the RPB.

102

103

"’uumnuummmn '
W |

104

CHAPTER 8

VAX-11/750 CENTRAL PROCESSOR

FEATURES

32-bit microprogrammed
processor

Memory management hardware

Gate array technology
4 KB direct mapped memory
cache

PDP-11 compatibility mode

User control store (optional)

Optional Floating Point Acceler-
ator

INTRODUCTION

BENEFITS

Provides the user with high-
performance data throughput

Allows the user to directly ad-
dress up to four billion bytes of
virtual address space using a
smaller physical memory

Reduces the physical size and
power consumption of the CPU
and increases system reliability

Significantly improves memory
access time, increasing overall
performance

Gives the PDP-11 user an easy
migration path to the VAX/VMS
architecture

Increases throughput by allow-
ing the user to create routines in
microcode tailored to specific
applications

Decreases instruction execution
time of floating point arithmetic
and some integer arithmetic op-
erations

The VAX-11/750 central processing unit (CPU) performs the logic and
arithmetic operations requested by the computer system user. The
processor is a high-performance, microprogrammed computer that
executes a large set of variable-length instructions in native mode, and
nonprivileged PDP-11 instructions in compatibility mode.

The CPU uses 32-bit virtual addresses, allowing access to over four
gigabytes (4 GB, 2%?) of virtual address space. These addresses are
called virtual because each address is not necessarily the actual ad-
dress in physical memory. The processor's memory management
hardware translates virtual addresses to physical addresses.

105

VAX-11/750 Central Processor

The processor provides sixteen 32-bit registers that can be used for
temporary storage, as accumulators, index registers, and base regis-
ters. Four of these registers have special significance: the Program
Counter, and three registers that are used to provide an extensive
CALL facility.

The native instruction set is highly versatile and bit-efficient. It includes
integer, packed decimal, character string, bit field, and floating point
instructions, as well as program control and special instructions. In-
structions and data are variable in length and can start on any byte
boundary or, in the case of bit fields, at any arbitrary bit in memory.
The CPU can process the following kinds of data:

@ Bits (up to 32)

® Bytes (8 bits)

e Words (16 bits)

e Longwords (32 bits)

e Quadwords (64 bits)

e 32-bit floating point (single precision)

® 64-bit floating point (double precision)

e Packed decimal (up to 31 digits)

e Character strings (up to 64 KB)

The remainder of this chapter is divided into two sections. The first

section discusses the gate array technology used in the VAX-11/750,
and the second section describes the hardware elements listed below.

e CPU control store

® |nternal data paths

® 4 KB direct mapped memory cache

e 512-entry address translation buffer

e 8-byte prefetch instruction buffer

e Time-of-year clock and programmable realtime clock
e QOptional floating point accelerator (FP750)

e Optional 10 KB (80 bits wide) User Control Store (UCS)

Figure 8-1 illustrates the central processing unit.

106

VAX-11/750 Central Processor

ucs
10 KB

CPU
FP750

MAIN
CONSOLE o INSTRUCTION REAL-TIME CLOCK [@—= QAEN;?RTV
SUBSYSTEM BUFFER TIME OF YEAR CLOCK UBSYSTEM
16 ADDRESS
GENERAL TRANSLATION
REGISTERS BUFFER

MEMORY NEMORY
MANAGEMENT BUFFER

MEMORY CACHE 4KB

|

INPUT 7/ OUTPUT
SUBSYSTEM (S)

Figure 8-1 VAX-11/750 Central Processing Unit

GATE ARRAY TECHNOLOGY

The VAX-11/750 central processor uses state-of-the-art gate array
technology. Three-quarters of the logic circuits in the CPU are custom
LSI (Large Scale Integrated) circuits designed by DIGITAL. In the ba-
sic CPU and memory controller there are 55 LS| devices using 27
different circuit designs, with each LSI device having up to 488 logic
gates. With gate array technology, the physical size of the processor
and its power consumption can be reduced to approximately half of
what they would be using conventional technology. In addition, this
technology requires fewer components, for enhanced system reliabili-

ty.
HARDWARE ELEMENTS

CPU Control Store

The control store is a programmable read-only memory containing 6K
80-bit microwords. The control store contains the program that
describes the operation and sequencing of the central processing
unit. It also contains the native and PDP-11 compatibility mode in-
struction sets. In addition, the control store contains an 80-bit buffer,
enabling it to execute one microword while simultaneously fetching
the next.

Internal Data Paths
The data path subsystem consists of three parallel sections used to

107

VAX-11/750 Central Processor

process addresses and data specified by the instruction set. The
arithmetic section is used to perform both arithmetic and logical oper-
ations on data and addresses, and is used for fast processing of float-
ing point instructions. The data shift and rotate section packs and
unpack floating point and decimal string data. Finally, the address
section calculates virtual addresses for the translation buffer.

4 KB Direct Mapped Memory Cache

Cache memory is a small, high-speed memory that maintains a copy
of frequently selected portions of main memory for faster access to
instructions and data. The cache memory is loaded by memory man-
agement so that there is a high probability the desired data will be in
the cache. Because the processor always looks for data in the cache
first, the cache offers faster system speed for the cost of a small
quantity of fast memory and associated logic.

The VAX-11/750 memory cache is a 4 KB, direct mapped, write-
through cache. It is used for all data coming from memory, including
addresses and instructions. The write-through feature protects the
integrity of memory because memory contents are updated immedi-
ately after the processor performs a write. Instead of tying up the
processor while main memory is updated, VAX-11/750 processors
buffer commands to avoid waiting while main memory is updated from
the cache.

The memory cache (typically 90% hit rate) provides the central proc-
essor with high-speed access to main memory. The memory cache
typically cuts memory access time to half what it would be with no
cache feature. For increased integrity, the cache memory system car-
ries byte parity for both data and addresses. Cache locations are
allocated when data are read from memory or when a longword is
written to memory. This cache also watches I/0 transfers and updates
itself appropriately. Thus, no operating system overhead is needed to
synchronize the cache with 1/0 operations, and applications software
does not need to be concerned with the cache.

Address Translation Buffer

The address translation buffer is a cache of frequently used physical
address translations. It significantly reduces the amount of time the
CPU spends on the repetitive task of dynamic address translation. The
cache contains 512 virtual-to-physical page address translations
which are divided into equal sections: 256 system space page transla-
tions and 256 process space page translations. Each of these sections
is two-way associative and has parity on each entry for increased
integrity.

108

VAX-11/750 Central Processor

8-Byte Prefetch Instruction Buffer

The 8-byte instruction buffer improves CPU performance by prefetch-
ing data in the instruction stream. The control logic fetches longword
data from memory to keep the 8-byte buffer full.

.

Processor Clocks
The VAX-11/750 processor contains a programmable realtime clock,
and a time-of-year and date clock. The interval or realtime clock per-
mits the measurement of finely resolved variable intervals. The real-
time clock is based on a crystal oscillator with accuracy of 0.01%, and
resolution (update rate) of one microsecond. The time-of-year clock is
used by software to perform various timekeeping functions. It
provides the correct time to the system without operator intervention
in the event of a power failure or other system crash. To insure contin-
uous running, the time-of-year clock is equipped with its own battery
backup.

Optional Floating Point Accelerator (FP750)

The FP750 floating point accelerator is a hardware option that oper-
ates in conjunction with the VAX-11/750 to execute the standard float-
ing point instruction set. Floating point representation permits a great-
er range of number values than is possible with a 32-bit integer.

Consisting of a single module, the FP750 is easily installed and is
functionally transparent to the user. Hardware and software modifica-
tions are not required.

The FP750 receives an opcode from the CPU and decodes the
information into a starting microaddress. The outputs of the control
store ROM control the arithmetic operations and data path logic.

The FP750 executes addition, subtraction, multiplication, and division
instructions which operate on single precision (32-bit) and double pre-
cision (64-bit). It executes Extended Multiply (EMOD) and Polynomial
Evaluation (POLY) instructions, and converts data between integer
and floating point formats and between single and double precision
floating point formats. The FP750 also executes the integer multiplica-
tion instruction.

The floating point instructions performed by the FP750 are listed in
Table 8-1.

109

VAX-11/750 Central Processor

Table 8-1 FPA Floating, Double, and Integer Instructions

OPCODE INSTRUC- OPCODE INSTRUC-
(HEX) TION (HEX) TION
MNEMONIC MNEMONIC
40 ADDF2 62 SuBD2
41 ADDF3 63 SuUBD3
42 SUBF2 64 MULD2
43 SUBF3 65 MULD3
44 MULF2 66 DIvVD2
45 MULF3 67 DIVD3
46 DIVF2 68 CVvTDB
47 DIVF3 69 CVTDW
48 CVTFB 6A CVTDL
49 CVTFW 6B CVTRDL
4A CVTFL 6C CvTBD
4B CVTRFL 6D CVTWD
4C CVTBF 6E CVTLD
4D CVTWF 71 CMPD
4E CVTLF 74 EMODD
51 CMPF 75 POLYD
54 . EMODF | 76 CVTDF
55 POLYF T7A EMUL
56 CVTFD A4 MULW2
84 MULB2 A5 MULW3
85 MULB3 C4 MULL2
60 ADDD2 C5 MULL3

61 ADDDS3

110

VAX-11/750 Central Processor

Optional 10 KB User Control Store (UCS)

The optional user control store (UCS) consists of 1024 80-bit control
words for a total of 10 KB. The KU750 UCS option includes microcode
that implements the G-floating and H-floating instructions. Microcode
development tools are not available to support user written
microcode.

111

112

CHAPTER 9
VAX-11/750 MAIN MEMORY SUBSYSTEM

FEATURES BENEFITS

Expandable memory configura- Allows the addition of 1 MB ar-

tion ray cards up to a maximum of 8
MB.

Error correcting memory Enhances data availability and

controller reliability by correcting all single

bit errors and detecting all dou-
ble bit errors within the memory
system.

Permits write operations to any
combination of bytes within an
aligned longword.

Boot ROMs Allow bootstrapping from de-
vices including the integral
TUS58 cartridge tape drive.

Optional battery backup Maintains power to preserve

data for a full 8 MB memory for
at least ten minutes.

INTRODUCTION

Main memory on the VAX-11/750 is implemented with array cards
containing dynamic 64 Kbit array MOS memory-devices interfaced to
the system through an error correcting controller. The memory system
is designed with a minimum capacity of 1 MB and is expandable in
increments of 1 MB to a maximum capacity of 8 MB. The controller
corrects all single bit errors and detects all double-bit errors that may
occur within the memory system. This feature enhances both data
availability and reliability. All errors are reported back to the CPU
where they may be recorded for use in preventive and corrective
maintenance operations. Figure 9-1 illustrates the basic memory sub-
system.

For customers with the previously existing 256 KB array cards, an
upgrade kit is available.

The memory controller module contains all of the logic needed to
interface the array cards to the system. This includes the addressing
logic, the refresh control, and the error correcting logic. The controller
contains three longword registers that are accessible in I/0 space.

113

VAX-11/750 Main Memory Subsystem

CPU
<& o >
MEMORY
CONTROLLER
ARRAY ARRAY | | ARRAY
BOARD 1 BOARD 2 BOARD 8

Figure 9-1 Main Memory Configuration

These registers allow a program to determine the size of the memory
system, record the address of failing memory locations, isolate the
error to an individual memory chip, and verify that the error correcting
logic is working properly.

The memory system performance is optimized around longword read
and write operations. The memory controller is designed to also allow
write operations to any combination of bytes within an aligned long-
word; however, this operation reduces memory throughput.

BOOT ROMS

The memory controller module contains four read-only memories
(ROMs) that are designed to allow bootstrapping from devices. One of
the ROMs is always for the integral TU58 tape cartridge; the others are
associated with various system devices used to boot the system. The
ROMs are installed by Field Service to correspond to the positions of
the BOOT DEVICE switch on the CPU cabinet front panel. Each ROM
contains up to 256 bytes of code that are accessible in I/O space at the
following physical addresses:

ROM Physical Address (hex)
1 F20400 - F204FC
2 F20500 - F205FC
3 F20600 - F206FC
4 F20700 - F207FC

The CPU reads the data from these ROMs into main memory and
executes it at bootstrap time. In addition, each ROM contains a check-
sum of the ROM'’s contents to allow verification of proper operation
and associated logic.

114

VAX-11/750 Main Memory Subsystem

BASIC MEMORY OPERATIONS
The memory controller is an extended length, hex height, multilayer
board with both LSl and gate array devices.

The memory system provides several key features for the VAX-
11/750: timing and control for the three types of memory cycles, logic
for refresh operations required by MOS memory, and memory system
diagnostic features (under software control). In addition, the memory
system performs ECC functions and provides data for error logging,
and contains bootstrap functions and initialization logic.

The VAX-11/750 physical address space contained within the memory
controller is divided into two areas: physical memory addresses and
I/0 addresses. Figure 9-2 illustrates the combined areas.

24-BIT
MI ADDRESS

00 0000 N
CONTROLLED BY
MEMORY
o 1 CONTROLLER
- g -
ADDRESS 14 J.-
TADDRESS 14
1/0
SPACE
ADDRESS 1

————— N
~
~
~
~

Figure 9-2 Physical Address Space

To access this address space, the system has three types of memory
cycles.

Read

A READ cycle with no errors detected by ECC logic consists of four
major steps. First, the device requesting the memory data presents
ADDRESS and CONTROL information to the memory controller. Sec-
ond, the memory controller initiates the memory cycle timing to the
array cards. Third, the array cards present the memory data to the
ECC logic. Finally, the memory controller puts out the data to the
device requesting the READ and notifies the device that the data are
available.

115

VAX-11/750 Main Memory Subsystem

If, however, a correctable error is detected by the ECC logic, the cor-
rected data are presented to the device doing the READ, and an inter-
rupt is generated to notify the system that the error occurred. If an
uncorrectable error is detected by the ECC logic, then the unmodified
data are presented to the device along with an error message. If the
READ reference came from an 1/0 adapter, then the adapter will re-
cord the error message. If the READ came from the CPU then the CPU
will generate a machine check abort. When ECC detects errors during
a READ cycle, the operation will be slightly slower than if no errors
occurred.

Longword Write

For a LONGWORD WRITE, there are three major steps. First, the
device requesting the LONGWORD WRITE presents ADDRESS and
CONTROL information to the memory controller. Second, the memory
controller initiates the memory cycle timing to the array cards. Third,
while the array cards initiate their cycle, the memory controller
generates seven check bits and presents them and the 32-bit long-
word to the array cards to complete the WRITE cycle.

Byte and Word Write

For these types of WRITE cycles, the sequence is the same as the first
two steps of the READ cycle, with the added requirement of forming
the new 32-bit data word and seven check bits into memory.

If a correctable error was detected by the ECC, the data bit will be
corrected. However, if the error is in a byte or word being written, the
error will be ignored. If an uncorrectable error is detected by the ECC
during the READ portion of the cycle, the original longword will be
rewritten into memory without any changes. This will cause reporting
of the error during a subsequent READ to this location.

CONTROL AND STATUS REGISTERS

There are three control and status registers with the following format
in the VAX-11/750 main memory system. CSR 0 (address F20000,)
provides information to allow the recording of both correctable and
uncorrectable errors. CSR 1 (F20004,,) aids in the verification and
diagnosis of the error correcting hardware. CSR 2 (F20008,,) provides
memory size and configuration information.

CSR 0 Bit Allocations ’
The following illustration shows the organization and status of CSR 0
following a power-up sequence:

116

VAX-11/750 Main Memory Subsystem

31 9 0]

=)

N J

UNCORRECTABLE ERROR
INFORMATION LOST

UNCORRECTABLE ERROR FLAG
CORRECTABLE ERROR FLAG

ERROR ADDRESS
ERROR SYNDROME

Figure9-3 CSRO

Bit: 31 Name: Uncorrectable Error Flag

Function: The occurrence of an uncorrectable error will set this bit to
one. An uncorrectable error is a word which contains an even number
of bits in error or an odd number of bits in error which map to an
invalid syndrome. The address and syndrome of an uncorrectable
error will overwrite the address and syndrome of a correctable error.
This bit can only be cleared if the Uncorrectable Error Information Lost
(CSR 0 <30>) is not set or if both bits are being cleared during the
same write operation.

Bit: 30 Name: Uncorrectable Error Information Lost

Function: When this bit equals one, an uncorrectable error has oc-
curred when the Uncorrectable Error Flag (CSR 0 <31>) was already
set. The second uncorrectable error page address will not overwrite
the first uncorrectable error page address. This bit is cleared by writ-
ingaonetoit.

Bit: 29 Name: Correctable Error Flag

Function: This bit is set to one whenever a correctable (single-bit)
error occurs during a READ operation. A single-bit error that occurs
during the read portion of a BYTE WRITE cycle will have no effect on
the flag. This bit is cleared by writing a one to it.

Bit: 28:24 Name: Notused

Bit: 23:9 Name: Page Address

Function: Identifies the page (512 bytes) on which an error occurred
during a memory read cycle. The page address corresponds to the
first error that occurs with the exception that the page address of an
uncorrectable error will overwrite the page address of a correctable
error. The page address of an uncorrectable error does not get
overwritten by a more recent uncorrectable error. These bits are read-
only.

Bit: 8:7 Name: Not used

Bit: 6:0 Name: Error Syndrome

117

VAX-11/750 Main Memory Subsystem

Function: The error syndrome is stored in these bits. These bits are
read-only.

CSR 1 Bit Allocations
The organization and status of CSR 1 following a power-up sequence
is shown in the following illustration. All bits in CSR 1 are read/write.

3 29 28 [o]

=L D)

§ J AN
ENABLE REPORTING
CORRECTABLE ERRORS
PAGE MODE
DIAGNOSTIC CHECK MODE

ECC DISABLE MODE
PAGE MODE ADDRESS
CHECK BITS

Figure 9-4 CSR 1

Bit: 31:29 Name: Notused

Bit: 28 Name: Inhibit Reporting Correctable Errors
Function: When CSR 1 <28> equals zero, correctable (single-bit)
errors will request the appropriate interrupt.

When CSR 1 <28> equals one, correctable (single bit) errors will still
be corrected by the ECC logic, but the status lines will report No Error.
In addition, the page address of the correctable error will not be
logged in CSR 0 <23:9> and the Correctable Error Flag (CSR 0 <29>)
will not get set.

CSR 1 <28> has no effect on logging and reporting uncorrectable
errors. This bit is set to one on power up.

Bit: 27 Name: Page Mode

Function: When CSR 1 <27> equals one, the ECC Disable Mode or
the Diagnostic Check Mode operates on a 512-byte page whose ad-
dress is contained in CSR 1 <23:9>.

The Diagnostic Check Mode must operate in the Page Mode.

The ECC Disable Mode can operate on a page or the entire memory (1
MB to 8 MB) depending on whether Page Mode is selected or not.

Bit: 26 Name: Diagnostic Check Mode

Function: When CSR 1 <26> equals one, the contents of CSR 1 <6:
0> are substituted for the check bits that come from memory during a
read operation.

The Diagnostic Check Mode is constrained to operate on a single
page whose address is stored in CSR 1 <23:9>. Therefore the Page

118

VAX-11/750 Main Memory Subsystem

Mode (CSR 1 <27>) must also be selected.

While operating in the Diagnostic Check Mode, read errors that occur
in other pages of memory will not be logged into CSR 0.

Correct check bits are always put into memory during a write cycle.

The ECC Disable Mode and Diagnostic Check Mode cannot be select-
ed at the same time.

Bit: 25 Name: ECC Disable Mode

Function: When CSR 1 <25> equals one, no detection of uncorrec-
table errors will occur, no correction of single bit errors will take place,
no error logging in CSR 0 will occur and No Error will be reported on
the status lines.

In the ECC Disable Mode (CSR 1 <25> equals one), a read operation
stores the seven check bits read from the array in CSR <6:0> and
during a write operation, the generated check bits that are written into
the array are also stored in CSR 1 <6:0>.

The ECC can be disabled for a 512-byte page or for the entire memory
(1 MB to 8 MB) depending on whether the Page Mode (CSR 1 <27>)
is selected or not.

Correct check bits are always put into memory during a write cycle.

The ECC Disable Mode and Diagnostic Check Mode cannot be select-
ed at the same time.

Bit: 24 Name: Not used

Bit: 23:9 Name: Page Mode Address

Function: If the memory system is in the Page Mode (CSR 1 <27>
equals one), CSR 1 <23:9> will contain the address of the 512-byte
page to which the Diagnostic Check Mode or the ECC Disable Mode
will be applicable.

Bit: 8:7 Name: Not used

Bit: 6:0 Name: Check Bits

Function: In Diagnostic Check Mode, the contents of CSR 1 <6:0>
are substituted for the check bits that come from the memory during a
read operation.

In ECC Disable Mode, a read operation takes the seven check bits
read from the array and stores them in CSR 1 <6:0>.

CSR 2 Bit Allocations
This register is read-only.

119

VAX-11/750 Main Memory Subsystem

3 24 23 171615 1413121110 9 8 7

HH[)MIHHIJHHJ

STARTING ADDRESS 4 T

UNUSED

,__
=}

BATTERY BACK-UP FAILURE
MEMORY PRESENT MAP

Figure9-5 CSR2

Bit: 31:24 Name: Notused

Bit: 23:17 Name: Starting Address

Function: The starting address for the memory systems will be
contained in these bits. The starting address is defined by jumper lines
within the system and normally is set to zero.

Bit: 16 Name: Battery Backup Failure
Function: This bit is set on a power-up sequence if the battery back-
up power has been exhausted.

The bit is cleared on a LONGWORD WRITE to any location in memory.

Bit: 15:0 Name: Memory Present Map

Function: These bits represent the amount of memory presentin the
system and the locations in the memory backplane where the array
boards are inserted. There are eight possible locations for the array
boards and two possible array board configurations. The array boards
can be 1 MB or .25 MB. The map is divided into eight pairs of two bits.

BATTERY BACKUP

The memory system has an optional battery backup unit designed to
maintain the contents of memory during power failures. This system
will hold data for the full 8 MB of memory for at least ten minutes.
When power is restored, the memory controller checks to see if the
contents of. memory have been preserved by the battery unit. If they
have not, the controller will write the contents of the entire memory
system with zeros. On systems without the battery backup option, the
controller always writes the memory system with zeros following a
power-up sequence. The status of memory following a power-up se-
guence is noted in a control register so that the CPU can determine
whether or not the contents of memory have been preserved
throughout a power failure.

ERROR CHECKING AND CORRECTION
The ECC scheme used in the memory subsystem corrects all single-

120

VAX-11/750 Main Memory Subsystem

bit memory errors, detects all double-bit errors, and detects greater-
than double-bit errors if the number of errors is an even number. If a
single bit error is detected, the ECC logic can be used to correct the
error. The logic can detect, but not correct, multibit errors. Both detec-
tions and corrections are noted in the error log as a preventive mainte-
nance aid.

121

122

CHAPTER 10

VAX-11/750 UNIBUS SUBSYSTEM

FEATURES

Direct memory access (DMA)
data transfers

Peer communication between
UNIBUS devices

Total compatibility with the
PDP-11 UNIBUS data path

Direct vectored hardware inter-
rupts to servicing routines

UNIBUS device registers are
addressed like memory loca-
tions

Supports a wide range of stan-
dard DIGITAL peripherals
Three buffered data paths

Optional second UNIBUS

BENEFITS

Eliminates processor interven-
tion for high data throughput

Allows direct data transfer
between UNIBUS devices with-
out CPU involvement

Gives the PDP-11 user an easy
migration path to the VAX-
11/750 processor

The CPU avoids time-consum-
ing polling tasks when servicing
interrupt requests

Simplifies I/0 programming

Offers the user flexibility in peri-
pheral selection to meet
specific requirements

Increases data throughput by
buffering data traffic to memory

Greater bandwidth available for

UNIBUS devices

INTRODUCTION

The UNIBUS subsystem connects most medium and low speed peri-
pheral devices to the VAX-11/750 system. An asynchronous, bidirec-
tional bus, the UNIBUS is used with all devices other than high-speed
disk drives and magnetic tape transports. The UNIBUS lets the user
select from a range of existing peripherals (those supported by
VAX/VMS and diagnostics) and also provides easy connection for
customer-designed special devices. Although the UNIBUS was origin-
ally designed for implementations of the PDP-11 architecture, its fea-
tures and capabilities have been expanded by the VAX architecture.
Thus, existing UNIBUS peripheral devices can be used with the new
VAX family architecture without hardware modification. (UNIBUS ad-
dresses in this chapter are listed in both octal and hexadecimal. The
PDP-11 uses octal while the VAX family uses hexadecimal.)

123

VAX-11/750 UNIBUS Subsystem

The integral UNIBUS adapter (part of the CPU) connects the UNIBUS
to the system and performs priority arbitration among UNIBUS de-
vices. Furthermore, the UNIBUS adapter lets the processor access
UNIBUS peripheral device registers.

In addition to the integral UNIBUS adapter, a second UNIBUS adapter
may be added. One of the three general-purpose 1/0 adapter slots in
the CPU may be used for a second UNIBUS adapter.

Figure 10-1 illustrates the UNIBUS subsystem configuration.

[

VAX-11/750
CpPU

UNIBUS
ADAPTOR

UNIBUS
DEVICE 1

UNIBUS
DEVICE 2

UNIBUS

UNIBUS
DEVICE n

UNIBUS
TERMINATOR

1 UNIBUS STANDARD
1 UNIBUS OPTIONAL

Figure 10-1 VAX-11/750 UNIBUS Configuration

VAX-11/750 UNIBUS SUMMARY

The UNIBUS is a communication path that links 1/0 devices to the
UNIBUS adapter. Device-related addresses, data, and control
information are passed along the 56 signal lines of the UNIBUS. The
UNIBUS adapter handles all communications between the UNIBUS
and the system, and fields device-generated interrupts.

Conceptually, the UNIBUS is designed around memory elements with
ascending addresses starting at UNIBUS address zero, while registers
storing /O data or individual peripheral device status information
have addresses in the highest 8 KB of addressing space (3E000,, to
3FFFE,s, or 7600004 to 7777765).

124

VAX-11/750 UNIBUS Subsystem

The UNIBUS consists of 56 signal lines, to which UNIBUS peripheral
devices are connected. Figure 10-2 illustrates the signal line configu-
ration. 51 of these lines are parallel and 5 are serial; 42 lines are
bidirectional and 14 are unidirectional.

<: AOO-Al7 (ADDRESS)

< DO0-DI5 [DATA) J>

C00-CO1 (CONTROL)
MSYN (MASTER SYNC)
SSYN (SLAVE SYNC)

PA-PB (PARITY)
UNIBUS BR4-BR7 (BUS REQUEST)
UBA
DEVICE BG4-BG7 (BUS GRANT)

NPR (NONPROCESSOR REQUEST)
NPG (NONPROCESSOR GRANT)
SACK { SLAVE ACKNOWLEDGE)
INTR_(INTERRUPT)

BBSY (BUS BUSY)

INIT (INITIALIZE)

AC LO (AC LINE LOW)

DC LO (DC LINE LOW)

Figure 10-2 UNIBUS

Communication between any two devices on the bus is in a mas-
ter/slave relationship. During any bus operation, one device, the bus
master, controls the bus when communicating with another device on
the bus, called the slave. For example, the processor, as master, can
fetch from a peripheral device, as slave; or the disk, as master, can
transfer data to memory, as slave. Master/slave relationships are dy-
namic; the processor, for example, may pass bus control to a disk,
then the disk may become master and communicate with slave memo-
ry. On the VAX-11/750, the main memory that the processor deals with
for instructions and data is not actually on the UNIBUS, but is attached
to the processor. The UNIBUS adapter causes the VAX-11/750
memory to look like a slave to UNIBUS devices.

When two or more devices try to obtain control of the bus at once,
priority circuits decide among them. Device priority levels are fixed at
system installation. There are four priority levels among UNIBUS de-
vices. A unit with a high priority level always takes precedence over
one with a lower priority level. In the case of units with equal priority
levels, the one closest electrically to the processor on the bus takes

125

VAX-11/750 UNIBUS Subsystem

precedence over those further away. The processor priority is raised
and lowered according to the interrupt priority level (IPL).

Suppose the processor has control of the bus when three devices, all
of higher priority than the processor, request bus control. If the re-
questing devices are of different priorities, the processor will grant use
of the bus to the one with the highest priority. If they are all of the same
priority, all three signals come to the processor along the same bus
line, so that it sees only one request signal. Its reply, granting control
of the bus, travels down the bus to the nearest requesting device,
passing through any intervening non-requesting devices. The request-
ing device takes control of the bus, executes a single bus cycle and
relinquishes the bus. Then the request grant sequence occurs again,
this time going to the second device down the line, which has been
waiting its turn. When all higher-priority requests have been granted,
control of the bus returns to the processor.

The processor usually has the lowest priority because in general it can
stop whatever it is doing without serious consequences. Peripheral
devices may be involved with some kind of mechanical motion, or may
be connected to a realtime process, either of which requires immedi-
ate attention to a request to avoid data loss.

Priority arbitration takes place asynchronously in parallel with the data
transfer.

Bus Communication

Communication is interlocked, so that each control signal issued by
the master must be acknowledged by a response from the slave to
complete the transfer. This simplifies the device interface because
timing is no longer critical.

Using the Bus

A device uses the bus if it needs to:

e Interrupt the processor. As a result, the processor stops what it is
doing, enters a device service routine, and services the device.

e Transfer a word or byte of data to or from memory without involving
the processor. Such functions—called NPRs or non-processor
request transfers—are performed by direct memory access devices
such as disks or tape units.

Whenever two devices communicate, it is called a bus cycle. Only one
word or byte can be transferred per bus cycle.

Bus Control
There are two ways of requesting bus control: non-processor requests
(NPRs) or bus requests (BRs).

126 -

VAX-11/750 UNIBUS Subsystem

An NPR is issued when a device wishes to perform a data transaction.
An NPR does not use the CPU; therefore, DMA activity can occur while
the CPU continues to execute instructions.

A BR is issued when a device needs to interrupt the CPU for service. A
device can interrupt the CPU only if it has gained control via a BR.

Interrupts

Interrupt handling is automatic in the VAX-11/750. No device polling is
required to determine which service routine to execute. When inter-
rupting, the device supplies a vector which directs the CPU to a mem-
ory location which contains the starting address of an interrupt service
routine. When servicing the interrupt, the processor automatically
raises its priority to the level of the interrupting device.

Priority Control

The UNIBUS priority system determines which device obtains the bus.
Each UNIBUS device is assigned a specific location in the priority
structure. Priority arbitration logic determines which device obtains
the bus according to its position in the priority structure. The priority
structure is two-dimensional, i.e., there are vertical priority levels and
horizontal priorities at each level. Figure 10-3 illustrates UNIBUS prior-
ity control.

DEVICE
REQUEST
LINE

o | I l

-—BR7
°

.
o I | I

Dy

] 1 1 1
2]]]

INCREASING _ PRIORITY

CcP
PRIORITY

INCREASING PRIORITY

IS
o
~
—
o
Py

HSR

L

© o6 e w

Figure 10-3 Priority Control

127

VAX-11/750 UNIBUS Subsystem

There are five UNIBUS vertical priority levels—NPR, and BR7, BR6,
BR5, and BR4—which correspond to VAX interrupt priority levels
(IPLs) 14, through 17,,. To accommodate several peripheral devices,
it may be necessary to connect more than one device to a single level.
When a number of devices are connected to the same level, the device
electrically closest to the CPU has the highest priority.

Priority Assignments

When assigning priorities to a device, three factors must be consid-
ered: operating speed, ease of data recovery, and service require-
ments.

Data from some devices are available for only a short time period.
Therefore, highest priorities are usually assigned to these devices for
efficient data transfers. Lower priorities are assigned to devices whose
data are available for longer periods of time, and to devices which
have automatic data recovery features. For example, a disk or
magnetic tape device would be assigned a higher priority than a line
printer or paper tape device. These priorities are assigned at installa-
tion time.

CPU Priority Level

In addition to device priority levels, the CPU has a programmable
priority. The CPU can be set to any one of 32 priority levels. Levels 14,
through 17, correspond to UNIBUS levels BR4 through BR7.

Data Transactions

There are four types of UNIBUS data transactions:

e DATO—a data word is transferred from the master to the slave.

e DATOB—a data byte is transferred from the master to the slave.

e DATI—a data word or byte is transferred from the slave to the mas-
ter.

e DATIP—used to allow a read from slave/write from slave sequence
to occur as a single bus cycle without any other UNIBUS activity
intervening. This feature allows devices to synchronize their activi-
ties with the processor. DATIP must be followed by DATO or DATOB
to the same location.

VAX-11/750 UNIBUS ADAPTER

The VAX-11/750 UNIBUS adapter serves three purposes. It allows the
processor to access registers on the UNIBUS; it allows devices on the
UNIBUS to perform DMA transfers to the VAX-11/750 memory; and it
allows UNIBUS devices to interrupt the processor.

128

VAX-11/750 UNIBUS Subsystem

There are three characteristics of the VAX architecture and the VAX-
11/750 memory system that require more than a straight-through con-
nection from the UNIBUS to the system. First, addresses that are
contiguous in the virtual address space may be noncontiguous in the
physical address space on 512-byte boundaries. Since all UNIBUS
non-processor request (NPR) devices broadcast sequential ad-
dresses, these device addresses must be broken up into noncontigu-
ous 512-byte blocks by the UNIBUS adapter.

Second, the VAX architecture imposes no restrictions on the align-
ment of data in memory. There are restrictions placed on UNIBUS
word transfer NPR devices, however, in that data words are only trans-
ferred on even addresses. The VAX-11/750 UNIBUS adapter provides
an offset mechanism that allows the transfer to be effectively shifted by
one byte to accommodate requests for 1/0 buffers on odd byte
addresses. Third, because UNIBUS devices can only address a maxi-
mum of 256 KB, the UNIBUS adapter allows these addresses to be
expanded. This permits the devices to address the VAX-11/750's full
16 MB of physical address space.

The adapter also provides three buffered data paths (similar to small
caches) which allow UNIBUS devices to take advantage of the memo-
ry’s four-byte accesses. This efficiency results in higher UNIBUS
throughput and enhanced overall system operation.

PROCESSOR ACCESS TO UNIBUS

Any processor access with a physical address in the range of
FC0000,, through FFFFFF ;¢ (for the first UNIBUS) or F80000,, through
FBFFFF,, (for the optional second UNIBUS) will map directly to the
UNIBUS in the range 0 through 777777, Any VAX-11/750 internal
device (other than the processor) that references that address range
will be ignored by the UNIBUS adapter. The device will receive a non-
existent memory confirmation.

Processor Operations

The VAX-11/750 UNIBUS adapter responds only to aligned word or
byte transactions. Any other type of access will yield UNPREDICTA-
BLE results. The different types of operations mapped into UNIBUS
operations are: processor reads, processor reads with modify intent,
processor read lock, write, and write unlock. Processor reads become
UNIBUS Data In (UNIBUS read or DATI operations); processor reads
with modify intent and processor read lock become Data In Pause
(DATIP); and write and write unlock become UNIBUS Data Out opera-
tions (UNIBUS write, DATO or DATOB).

UNIBUS Responses
A processor read to the UNIBUS that causes a no-response timeout

129

VAX-11/750 UNIBUS Subsystem

will result in a machine check abort with a non-existent memory (NXM)
bus error indicated. A processor write that causes such a timeout to
occur will generate a write bus error interrupt request. If a UNIBUS
device asserts PB in response to a processor access to it, it will cause
a machine check abort, indicating an uncorrectable bus error.
UNIBUS INITIATED DATA TRANSFERS

Overview

As mentioned earlier in this chapter, the UNIBUS adapter performs a
number of functions to make the UNIBUS architecture compatible with
the VAX architecture. A key element in this matching operation is the
UNIBUS Map. This map translates UNIBUS device-generated ad-
dresses into physical memory addresses. It also identifies UNIBUS
transfers so that other features, such as buffered data paths and odd
byte addressing, can be used appropriately.

The UNIBUS has 18 address lines, creating an address space of 256
KB. This is conceptually divided into two regions: the bottom 248 KB
used to address UNIBUS memory, and the top 8 KB used to address
UNIBUS peripheral device control and status registers (CSRs). A UNI-
BUS NPR device typically does a transfer to memory by doing a series
of transactions placing addresses in the lower range on the bus. In the
VAX-11/750, these are not the actual memory addresses, but serve as
pointers to the UNIBUS Map, which in turn provides the actual
physical memory address. If more than one device is doing transfers
at the same time, each one should be set up to transfer into a different
range within the 248 KB address space.

The UNIBUS address space is divided into 512 pages of 512 bytes
each. When an address arrives at the UNIBUS adapter, the page num-
ber (the upper. 9 bits of the 18-bit UNIBUS address) is taken as an
index into the map, with the map then providing the actual Page Frame
Number (PFN) of the physical memory address. This is concatenated
with the address of the word or byte within the page from the UNIBUS
address (the lower 9 bits of the 18-bit UNIBUS address) to create the
final memory address. The map also provides a bit that specifies
whether this transaction should have its address incremented by one,
allowing a device to address memory at an odd address. In addition,
the map specifies which of the four data paths the transaction is to
use—the direct data path or one of the three buffered data paths.

In using a direct data path, the UNIBUS adapter insures that every
UNIBUS transaction results directly in a memory transaction and that
the UNIBUS is kept busy until the memory transaction is completed.
However, the direct data path is not as efficient as the buffered data
path; this is because memory can do four-byte transfers whereas the
UNIBUS is limited to two-byte transfers.

130

VAX-11/750 UNIBUS Subsystem

Benefits of Buffered Data Paths

The buffered data paths allow UNIBUS devices to optimize use of
memory. Because most NPR devices do sequential address transfers,
every pair of two-byte transactions can be merged into a single long-
word transfer. Therefore, the buffered data paths use only half the
number of main memory transactions that the direct data path uses.
The buffered data paths also increase performance for a large class of
devices which access memory sequentially, but not exclusively so.
Examples of such devices are graphics and intelligent communica-
tions devices. Furthermore, because requests are fulfilled from the
buffer faster than a memory access can occur, the buffered data paths
improve UNIBUS access time.

The buffered data path consists of an address register and a four-byte
data buffer that together act as a cache. Only when a request cannot
be met from this cache is a memory cycle required. If more than one
NPR device is doing sequentially addressed transfers, the address
stream that arrives at the UNIBUS adapter will not be sequential. This
is why three buffered data paths are provided. The UNIBUS Map
directs different transfers to different data paths so that each data path
sees only the activity of a single device and receives a sequential
address stream.

Under VAX/VMS, these features are transparent to 1/O drivers.
VAX/VMS supplies standard system routines to allocate and release
buffered data paths and blocks of map registers. Standard routines
also set up the allocated map registers for a transfer and convert the
buffer address to a UNIBUS space address for loading into the device
buffer address register. For customer-developed operating systems
and 1/0 -drivers, the user would need to program these functions to
manage the buffered data paths and map registers. A set of addresses
is provided in I/0 space for loading the map and controlling the buff-
ered data paths.

UNIBUS Adapter Operating Detail

UNIBUS address bits <17:9> are used to enter a 512-byte by 19-bit
wide memory location. The data coming out of that memory determine
how the transaction will be'handled. The map data field is divided into
four sections: Page Frame Number (PFN), Data Path Number, Offset
Bit, and Valid Bit. The format of the map data fields is shown in Figure
10-4.

On UNIBUS initiated transactions that cause a memory read or write
cycle to occur, the map PFN is concatenated with UNIBUS address
bits <8:0> to form a 24-bit physical address. Figure 10-5 shows this
address translation process.

131

VAX-11/750 UNIBUS Subsystem

31 30 26 25 24 23 22 21 20 15 14 0

\ MBZ MBZ PFN

1 DATA PATH NUMBER
OFFSET BIT

Figure 10-4 Map Data Field

17 9 8 0
UNIBUS ADDRESS
I /
4 0
PEN

AN

23 LAY oD

PHYSICAL ADDRESS PFN LONGWORD

Figure 10-5 UNIBUS to Physical Address Translation

The Data Path Number is a two-bit field used to select among four data
paths. Data paths one, two, and three are the buffered data paths, and
data path zero is the direct data path.

If the Offset Bit is a one, it causes the transaction to behave as if the
UNIBUS address supplied by the DMA device were incremented by
one. This allows devices that only produce even byte addresses to
access buffers on odd byte boundaries. A transaction that causes a
word to cross page boundaries because the Offset Bit is set must have
the Data Path Number, Offset Bit, and Valid Bit identical in both map
entries. Any differences will yield UNPREDICTABLE results. If this is a
DATI(P) or a DATO and the two bytes of UNIBUS data fall across a
longword boundary, two memory cycles will occur.

If the Valid Bit is a one, the VAX-11/750 integral UNIBUS adapter
processes the transaction as described above. When it is zero, the

132

VAX-11/750 UNIBUS Subsystem

integral UNIBUS adapter ignores UNIBUS requests. The Valid Bit must
be set to zero for map entries that correspond to sections of UNIBUS
address space in which there are slaves expected to respond to trans-
actions originating on the UNIBUS. Transactions from the CPU that
cause a UNIBUS transaction to occur are always ignored by the integ-
ral UNIBUS adapter and can never wrap back through the UNIBUS
adapter to memory.

Map Access — The map is accessible for both reading and writing.
Each entry uses a longword address from F30800,, to F30FFC,, (for
the first UNIBUS) or F32800,, to F32FFC (for the optional second UNI-
BUS). The logic that writes the map assumes that any write to the map
addresses is a longword write. Any write other than a longword will
make the contents of the map at the written location UNPREDICTA-
BLE.

Direct Data Path — When the Data Path Number in the map is zero,
the transaction uses the direct data path (DDP). This means that SSYN
is not issued by the UNIBUS adapter until the corresponding memory
transaction is completed. Listed below are the types of memory func-
tions that are initiated as a result of a UNIBUS cycle:

DATI Read
DATIP Read Lock
DATO(B) Write or Write Unlock

If a DATO(B) follows a DATIP, then a write unlock will be issued;
otherwise an ordinary write will occur.

Offset — If the offset in the map is set, then the transaction will be
treated as if the UNIBUS address were incremented by one. If thisisa
DATI or a DATO and if the address crosses a longword boundary, two
cycles will occur. A device must not do a DATIP through the direct data
path with the Offset Bit enabled.

Buffered Data Paths — When the Data Path Number in the map is
one, two, or three, then a buffered data path has been selected. Each
of the three BDPs consists of 4 bytes of data storage, 16 bits of
address storage, 5 flag bits, and logic to make the BDP operate. These
registers and flags are not accessible to software, but descriptions are
included to permit precise definition of the BDP operation. The gener-
al intent of the BDP is that when UNIBUS transactions are occuring
with sequential addresses (either ascending or descending), only one
transfer is needed for every two UNIBUS transfers. When non-sequen-
tial transactions occur, then the correct data are provided, but no
bandwidth saving occurs.

Data Buffer — Each buffered data path consists of a data storage

133

VAX-11/750 UNIBUS Subsystem

buffer of four bytes. This storage buffer can be loaded from the UNI-
BUS or memory, and its contents can be output to either the UNIBUS
or to memory. Data can be loaded into the buffer one or two bytes ata
time from the UNIBUS, but is always loaded four bytes at a time from
memory.

Address Register — Each buffered data path has a 16-bit address
register that can be loaded from UNIBUS addresses <17:2> (or ad-
dresses <17:2>+1 if offset is on). Circuitry compares the stored
address with the address on the UNIBUS to see if there is a match. The
address held in the register is the UNIBUS longword corresponding to
the data in the data buffer.

Flags — There are five flags that keep track of the data in the data
buffer, named CD and BF3 through BFO. If CD = 1, then the buffer has
four bytes of data from memory and BF3 through BFO are always zero.
If CD = 0, then BF3 through BFO indicate which bytes in the data buffer
have valid UNIBUS data. If they are all zero, the buffer is considered
empty.

Buffered Data Path Behavior

e DATI(P). The buffered data paths treat DATI and DATIP identically.
The behavior of the UNIBUS adapter is primarily determined by the
contents of the data and address buffers. If the buffer is empty or
contains memory data but no address match, the UNIBUS adapter
performs five operations in the following sequence: 1) does a mem-
ory read; 2) puts the read data in the buffer and on the UNIBUS; 3)
puts the UNIBUS address in the address register; 4) sets the flags to
indicate memory data in the buffer; and 5) sends the data to the
requesting UNIBUS device.

If there are UNIBUS data in the buffer, the UNIBUS adapter first
performs a memory write, using the stored data as data, the stored
address as an address, and the byte flags as the byte mask. Opera-
tion then continues with the sequence described above, beginning
with step 1.

If there are memory data in the buffer and an address match, the
UNIBUS adapter puts the data on the UNIBUS and issues SSYN.

e DATI(P) with byte offset. If the map specifies byte offset, the beha-
vior depends on whether the transaction crosses a longword bound-
ary. If it does not, then the response is identical to that described
above for DATI(P). If the transaction does cross a longword
boundary, then the UNIBUS adapter acts as if two sequential trans-
fers occurred—the first at the given UNIBUS address, the second at
the address incremented by two. The two memory reads are pieced

134

VAX-11/750 UNIBUS Subsystem

together to form the UNIBUS data word. The data buffer and ad-
dress register hold the information from the second read at the end
of the transaction.

e DATO(B). For a DATO(B) transaction, the contents of the buffer
determine the behavior of the UNIBUS adapter. If the buffer is empty
or has memory data, the UNIBUS adapter performs four functions:
1) puts the UNIBUS data in the data buffer; 2) puts the UNIBUS
address in the address register; 3) sets the flags to indicate UNIBUS
data in the buffer; and 4) indicates to the UNIBUS device that the
transaction is completed.

If the buffer has UNIBUS data with an address match, behavior
depends on whether the UNIBUS data, combined with the data in
the buffer, form a full longword. If the data do not constitute a long-
word, the UNIBUS adapter performs the same four operations as it
does when the buffer is empty or has memory data (steps 1 through
4 above). If the data form a longword, the UNIBUS adapter will do a
memory write and clear the flags to show that the buffer is empty.

If the buffer has UNIBUS data with no address match, the UNIBUS
adapter will do a memory write and set the flags to show that the
buffer is empty. Then the UNIBUS adapter will perform the same
operations described above for DATO(B) with the buffer empty.

e DATO with byte offset. If this transaction crosses a longword bound-
ary, the UNIBUS adapter treats it as two one-byte writes. If it does
not cross a boundary, the UNIBUS adapter handles it as a DATO(B)
as described above.

e DATOB with byte offset. If this transaction does not cross a
longword boundary, the UNIBUS adapter treats it like a DATO(B) as
described above, incrementing the address by one. If a longword
boundary is crossed, the UNIBUS adapter treats it as if it were a
DATOB in the next longword. In the latter case, address match is
forced to no match.

Note: The behavior described for DATI(P) allows a device using a
buffered data path to perform any sequence of transfers in either
direction with any address sequence and still have the data end up in
the desired location. A device that does repeated transfers within the
same longword, however, will not cause any memory cycles. Thus, one
may not use a buffered data path with a device that repeatedly reads
one location in memory as a flag, waiting for the CPU to change it. In
this case, the device would never see the change in memory since its
reads will all be filled from the buffer.

135

VAX-11/750 UNIBUS Subsystem

Control and Status Registers — Proper transfers through BDPs re-
quire some intervention on the part of system software, aided by the
implementation of control and status registers. The use of BDPs is not
totally transparent. When a device has finished a series of DATO(B)
transfers to memory, it is possible that some data will remain in the
buffer if the transfer did not end on an even longword boundary. It is
necessary for the software to initiate action to write this data to memo-
ry. When a device has finished a transaction that involves DATI(P)s,
data are left in the buffer with a corresponding UNIBUS address in the
address register. Should the contents of the map be changed at the
location corresponding to the address in the address register, there
will no longer be the correct association between address and data in
the buffer. It is therefore necessary to clear the buffer following these
transactions. A set of registers enable full control over these BDP
transactions. The UNIBUS adapter is assigned a block of 8 KB of
address space to map control and status registers. The bit assign-
ments for these registers are described below and Figure 10-6 illu-
strates the format of a BDP control and status register.

31 30 29 28 1 0

ez [’

Figure 10-6 Buffered Data Path CSR

Bit: <31> Name: Error
Function: This bit on read is the OR of bits <30> and <29>. Writing
to this bit has no effect.

Bit: <30> Name: NXM, Nonexistent Memory

Function: This bit is set when NXM status is received from memory.
There is no response on the UNIBUS, and all future UNIBUS
transactions through this BDP are ignored until this bit is cleared. This
bitis cleared by writing a one to it.

Bit: <29> Name: UCE, Uncorrectable Error

Function: This bit is set when uncorrectable error status is received
from memory. PB is asserted with the data that are passed back to the
UNIBUS device on the first read from that location. It is not asserted on
subsequent reads from this BDP. The bit is cleared by writing a one.

Bit: <28:1>
Name: Unused

136

VAX-11/750 UNIBUS Subsystem

Function: These bits yield UNPREDICTABLE values when read and
are ignored when written.

Bit: <0> Name: Purge

Function: Writing a zero to this bit has no effect. Writing a one to it
produces a result based on the contents of the buffer:

UNIBUS data The data are written to memory and the
flags are set to mark the empty buffer
empty

Memory data The flags are set to mark the buffer empty

Empty No action occurs

This bit will read as one following a write of one until the operation
described above is completed. This allows software to determine if the
write to memory is completed.

Interrupts — Interrupting devices on the UNIBUS are directly vec-
tored through the System Control Block (SCB). The address of the
vector is found at System Control Block Base (SCBB) + 200, + de-
vice vector (for the first UNIBUS) or at System Control Block Base
(SCBB) + 400,, + device vector (for the second optional UNIBUS. The
device vectors are the standard PDP-11 UNIBUS vectors. The VAX-
11/750 integral UNIBUS adapter interrupt mechanism will not operate
properly with any UNIBUS device vector at or above 200, (1000;). The
VAX-11/750 UNIBUS adapter itself never generates an interrupt.

137

138

CHAPTER 11
VAX-11/750 MASSBUS SUBSYSTEM

FEATURES BENEFITS
Direct memory access (DMA) Eliminate processor interven-
data transfers tion for high data throughput
32-byte silo data buffer for each ~ Permits transfers at rates up to
MASSBUS 2 MB/second (5 MB/
second with three MASS-
BUSes).
Built-in diagnostic features Allow on-line diagnosis of the
MASSBUS and MASSBUS
drives

MASSBUS device registers are Simplifies 1/0 programming
addressed like memory loca-
tions

INTRODUCTION

This chapter describes the hardware features of the MASSBUS sub-
system. It outlines the kinds of CPU commands accepted by the
MASSBUS adapter and describes in detail the MASSBUS adapter
operation and the configuration of the various registers which control
MASSBUS 1/0 operations. This INTRODUCTION and the section on
MASSBUS ADAPTER OPERATION contain little technical detail and
will be of interest to most readers. However, the section beginning with
MBA REGISTERS will be of interest primarily to system designers not
using VAX/VMS, who are writing their own operating systems or I/O
device drivers. People writing their own device drivers under
VAX/VMS should refer to the manual “How to Write a VMS Device
Driver.”

The MASSBUS adapter (MBA) is the hardware interface between the
system and the high-speed MASSBUS storage devices on the VAX
processors. The MASSBUS consists of two 16-bit wide communica-
tion paths linking the MASSBUS adapter to the mass storage device
drives. One path, the data bus, is used for data during data transfer
operations. The other bus, the control bus, is used for accessing drive
registers. The MBA will handle a MASSBUS drive with a maximum
burst data transfer speed of 900 ns per 16 bits and a bandwidth of 2
MB per second. Figure 11-1 illustrates the MASSBUS subsystem.

139

VAX-11/750 MASSBUS Subsystem

VAX-11/750
CPU

MASSBUS ADAPTER
(UP TO 3 OPTIONAL)

DEVICE
0 DISK
JCONTROL LER

UNIBUS

DEVICE
1| MAGTAPE MAGTAPE
ONTROLLER[™ 1 1
! T
| H
MASSBUS
(DATA AND L_| maGTAPE
CONTROL PATHS) 7
PRIl bevice STORAGE
ICONTROLLER ““MEDIUM

~

Figure 11-1 MASSBUS Subsystem

The MBA accepts and executes commands from the CPU, and reports
the necessary status changes and fault conditions to the CPU. The
MBA will accept the following commands from the CPU (see Appendix
E of the VAX Architecture Handbook for command details).

® Read

® Read Lock (treated as Read)

e Read with Modify Intent (treated as Read)

e Write Unlock (treated as Write)

The MBA will send the following commands out to memory:

e Read

e Write

e Write Vector

The MBA will start a MASSBUS operation to transfer register data or a

block of data to or from a MASSBUS device. 256 32-bit mapping
registers store the page frame numbers of a block data transfer. A 32-

140

VAX-11/750 MASSBUS Subsystem

byte deep data buffer is used to smooth the data transfer between
memory and MASSBUS devices. The 32-bit memory data will be sent
in two 16-bit words to the MASSBUS device.

Special diagnostic features are built into the hardware to allow online
diagnosis of MBA and MASSBUS devices, and can be exercised
through diagnostic features with no device on the MASSBUS.

The VAX-11/750 MBA handies these functions:

e Mapping addresses from virtual (program) to physical memory

e Data buffering for transfers between main memory and the MASS-
BUS

e Transferring interrupts from MASSBUS devices to the system

The VAX-11/750 can support up to three MASSBUS adapters, (two if
the optional UNIBUS is used) with each adapter supporting up to eight
device controllers. A MASSBUS adapter supports any combination of
mass storage devices, and is linked to devices by device controllers.
There are controllers for different types of peripheral devices, with
some controllers servicing several devices, while others support one
device. For instance, each magnetic tape controller can support up to
eight tape drives, but each disk controller supports a single disk drive.
Regardless of the type of controller, only one controller can transfer
data at any one given time. The data transfer rate depends on the
particular mass storage device being accessed.

MASSBUS ADAPTER OPERATION

The MASSBUS adapter includes an interface, internal registers, con-
trol paths and data paths. The MBA accepts and executes commands
from the CPU and reports the necessary status changes and fault
conditions to the CPU.

The MBA handles a MASSBUS drive with a maximum burst data
transfer speed of 900 ns per 16 bits via the 16-bit wide MASSBUS data
path. The MASSBUS adapter controls data transfers between MASS-
BUS devices and physical memory. A MASSBUS adapter transfers 16
bits at a time to a mass storage device or it receives 16 bits at a time
from a MASSBUS drive. The MBA contains a 32-byte buffer used to
store data enroute to either main memory or mass storage. Transfers
(data only) to or from main memory, occur in 32-bit (4-byte) incre-
ments. Therefore, each memory transaction requires two MASSBUS
transfers (16 bits each). The MASSBUS adapter will accept only
aligned longword reads and writes to its external or internal registers.
An attempt to address a nonexistent register in the MASSBUS adapter
will prompt a no-response confirmation.

141

VAX-11/750 MASSBUS Subsystem

MBA REGISTERS

The MBA address space contains two sets of registers: internal and
external. The MBA internal registers are the registers which are physi-
cally located in the MBA. The external registers are located in the
MASSBUS drives and are drive-dependent.

There are six internal registers and a 256 X 32-bit RAM. The primary
function of the internal registers is to monitor MBA and operating
status conditions. The internal registers also control phases of the
data transfers between the CMI and the MASSBUS device, such as:

e Maintaining a byte count to ensure that all of the data to be trans-
ferred have been accounted for

e Converting virtual addresses to physical addresses for referencing
datain memory

The six internal registers are:
MBA Control Register (CR)
MBA Status Register (SR)
MBA Virtual Address Register (VAR)
MBA Byte Count Register (BCR)
MBA Diagnostic Register (DR)
MBA Command Address Register (CAR)

NOTE
The command address register is read-only and is
valid only during data transfers.

The MBA contains 256 32-bit map registers which are used to map
program virtual addresses into physical addresses. The mapping
registers allow transfers to or from contiguous or non-contiguous
physical memory. Bits <30:15> of the map register are reserved and
are not writable. Figure 11-2 illustrates mapping a virtual address to a
physical address.

DATA PATH

The data path controls the data transferred to and from the MASSBUS
device and memory. The 32-bit data word is divided into 16-bit (2-
byte) segments required for data on the MASSBUS. When performing
" aread from a MASSBUS device, the data path assembles the two 16-
bit segments from the MASSBUS into the 32-bit format. A silo and
input/output data buffer provide the means for smoothing the data
transfer rate. The data path also contains a write check circuit which
can be used under program control to verify the accuracy of the data
transfer function.

142

VAX-11/750 MASSBUS Subsystem

) 1615)
v RESERVED PEN
31 17 16 9 8
|R$AU3\/T.
v MAP POINTER LONG WORD
ADDRESS mez I
REGISTER
C DN
INDEX INTO MAP_REGISTERS J
MAP REGISTERS
31 .30 15 14
e V RESERVED | PHYSICAL PAGE ADDRESS
AN /
DIRECT
TRANSFER
el
PHYSICAL LONG WOR
'ADDRESS PHYSICAL PAGE ADDRESS ONG WORD

Figure 11-2 Virtual to Physical Address Translation

MBA ACCESS

Each device that interfaces to the VAX-11/750 has a block of ad-
dresses associated with it. Certain commonly addressed devices have
preassigned address spaces, and other less frequently addressed de-
vices use adapter codes. While the VAX-11/750 system handles up to
three MASSBUS adapters, it has address space reserved for four.
Each of the four blocks of addresses contains 8 KB, with the blocks
beginning at addresses F28000,,, F2A000,,, F2C000,,, and F2E000,.
This space is accessible as part of the I/0 address space. The com-
mand/address format used to access the MBA registers is illustrated
in Figure 11-3.

143

VAX-11/750 MASSBUS Subsystem

23 15 14 13 12 11 10 9 0
M
0 ’l’\ VARIABLE
T—INTERNAL OR EXTERNAL
‘"———————————————— MBA NUMBER
MBA ADDRESS SPACE

Figure 11-3 MASSBUS Adapter Addressing Format
(Physical Byte Address)

Bit: <31:28>
Name: Bytes Mask
Function:

Bit: <27:25>
Name: Bus Function
Function:

Bit: <24> Name:
Function: Reserved for future use, zero.

Bit: <23:15>
Name: MBA Address
Function: To select MBA Address Space, this field must be 1E5,

Bit: <14:13>
Name: MBA Select
Function: Number of the MBA addressed.

Bit: <11:10>
Name: Register Select
Function:
00 MBA internal register
Bit <9:5> must be zero
Bit <4:2> = register select offset
01 MBA external register
Bit <9:7> = device select
Bit <6:2> = register select .
10 MBA MAP
Bit <9:2> = MAP address
11 Invalid (No response to an address with these bits
on)

Bit: <9:0> Name:
Function: Reserved for future use.

MBA Control Register (Byte Offset = 4)
144

VAX-11/7560 MASSBUS Subsystemn

31 4 3 2 10

MBZ

Figure 11-4 MBA Control Register (Byte Offset =4)

Bit: <31:5>
Name: MBZ
Function: Reserved for future use, all zeros.

Bit: <4> Name: IBC Mode

Function: Ignore Byte Count Mode. When this bit is set, a data trans-
fer will not be terminated by byte counter overflow. Instead, the data
transfer terminates when a signal is received telling the MASSBUS
Adapter that the last byte has been transferred. This feature allows the
system to read from magtapes with very long records (this requires a
special device driver). In this mode, interrupts will be generated each
time the byte counter overflows; the map registers are also writable.
This bit is also cleared by writing a zero or by INIT.

Bit: <3> Name: MB Maintenance Mode (MMM)

Function: Setting this bit will put the MBA in the maintenance mode,
which will allow the diagnostic programmer to exercise and examine
the MASSBUS operations without using MASSBUS devices. When
this bit is set, the MBA will send a signal to the MASSBUS so that all
the devices on the MASSBUS will be detached from the MASSBUS.
The MBA cannot be put in maintenance mode while a data transfer is
in progress.

Bit: <2> Name: Interrupt Enable

Function: This bit is set by writing a one. This allows the MBA to
interrupt the CPU when certain conditions occur. Cleared by writing a
zero or by INIT.

Bit: <1> Name: Abort

Function: Abort data transfer. Write a one to set. Setting this bit will
initiate the data transfer abort sequences which will stop sending
commands, stop address and byte counter.

Setting this bit will also cause an interrupt to the CPU if the IE bit is
one.

This bit will be cleared by writing a zero, or by INIT.

Bit: <0> Name: INIT

Function: Initialization. The bit is self-clearing. It will always read as
zero. Setting this bit will:

1. Clear MBA Control register

2. Clear MBA Status register

145

VAX-11/750 MASSBUS Subsystem

Clear control and status bits of diagnostic registers
Cancel all pending commands

Abort data transfer

Assert MASSBUS INIT

A

MBA Status Register (Byte Offset = 8)

31 30 29 28 24 23 22 20 19 18 1716 15 1413121110 9 8 7 6 5 4 3 2 1 0

MBZ MBZ

Figure 11-5 MBA Status Register (Byte Offset = 8)

Bit: <31> Name: DTBUSY

Function: Data Transfer Busy. Bit is set when a data transfer com-
mand is received. It is cleared when data transfer is terminated nor-
mally or when a data transfer is aborted.

Bit: <30> Name:
Function: Reserved for future use, zero.

Bit: <29> Name: CRD

Function: Corrected Read Data. This bit is set when the data re-
ceived from memory were corrected. It is cleared by writing a one or
by INIT. This bit is also cleared by subsequent receipt of a valid data
transfer command.

Bit: <28:24>
Name:
Function: Reserved for future use, all zeros.

Bit: <23> Name: CBHUNG

Function: Control Bus Hung. This bit is set if the TRANSFER (TRA)
signal has been stuck in the asserted state for 1.5 us after the MBA
receives a read or write command to an external register and any
previous external register operation is complete. When this bit is set,
no data transfer operations are initiated because the user cannot ad-
dress the device drives or registers. This bit is cleared by writing a one
or by INIT.

Bit: <22:20 >
Name:
Function: Reserved for future use, all zeros.

Bit: <19> Name: PGE

Function: Programming Error. The PGE bit is set when one or more
of the following conditions exists:

146

VAX-11/750 MASSBUS Subsystem

1. Program tries to initiate a data transfer when MBA is currently
performing one.

2. Program tries to load MAP, VAR, or Byte Counter when MBA is
currently performing a data transfer operation.

3. Program tries to set MB Maintenance Mode during a data transfer
operation.

The bit is cleared by writing a one to it, or by INIT. This bit is also
cleared by subsequent receipt of a valid data transfer command.
Setting this bit will cause an interrupt to the CPU if Interrupt Enable is
set.

Bit: <18> Name: NED

Function: Nonexistent Drive. This bit is set when a drive fails to as-
sert the TRANSFER signal within 1.5 us after asserting a DEMAND
signal. The bit is cleared by writing a one or by INIT. Setting this bit will
send zero read data back to memory and interrupt the CPU if Interrupt
Enable is set.

Bit: <17> Name: MCPE

Function: MASSBUS Control Parity Error. This bit is set when a
MASSBUS control parity error occurs. It is cleared by writing a one or
by INIT. Setting this bit will cause an interrupt to the CPU if Interrupt
Enable is set.

Bit: <16> Name: ATTN

Function: Attention from MASSBUS. Asserted when the attention
line on the MASSBUS is asserted. Asserting this bit will cause an
interrupt to the CPU if Interrupt Enable is set.

Bit: <15> Name:
Function: Reserved for future use, zero.

Bit: <14> Name: Silo Parity Error

Function: This bit is set when a silo parity error occurs during a data
transfer operation. Cleared by writing a one to this bit or by INIT.
Setting this bit will abort the data transfer operation. Subsequent re-
ceipt of a valid data transfer command will also clear this bit.

Bit: <13> Name: DTCMP

Function: Data Transfer Completed. This bit is set when the data
transfer is terminated either due to an error or normal completion. Itis
cleared by writing a one or by INIT. This bit is also cleared by subse-
quent receipt of a valid data transfer command. Setting this bit will
cause an interrupt to the CPU if Interrupt Enable is set.

Bit: <12> Name: DTABT
Function: Data Transfer Aborted. This bit is set with the trailing edge

147

VAX-11/750 MASSBUS Subsystem

of the END OF BLOCK signal when the data transfer has been aborted.
It is cleared by writing a one or by INIT. This bit is also cleared by
subsequent receipt of a valid data transfer command. Setting this bit
will cause an interrupt to the CPU if Interrupt Enable is set.

Bit: <11> Name: DLT

Function: Data Late. This bit is set when:

1. The data buffer is empty and WCLK (the WRITE CLOCK signal
indicates when data written to a drive are to be strobed) is sent to
the MASSBUS during a Write Data Transfer or Write Check Data
Transfer.

2. The data buffer is full when SCLK (SYNCHRONIZE CLOCK is
asserted during a read operation to indicate when data read from
the drive are to be strobed) is received from the MASSBUS during
aread data transfer.

This bit is cleared by writing a one or by INIT. It is also cleared by
subsequent receipt of a valid data transfer command. Setting this bit
will abort the data transfer operation.

Bit: <10> Name: WCK UP ERR

Function: Write Check Upper Error. This bit is set when a compare
error is detected in the upper byte while the MBA is performing a write
check operation. It is cleared by writing a one or by INIT. This bit is
also cleared by subsequent receipt of a valid data transfer command.
Setting this bit will abort the data transfer operation.

Bit: <9> Name: WCKLWR ERR

Function: Write Check Lower Error. This bit is set when a compare
error is detected in the lower byte while the MBA is performing a write
check operation. It is cleared by writing a one or by INIT. This bit is
also cleared by subsequent receipt of a valid data transfer command.
Setting this bit will abort the data transfer operation.

Bit: <8> Name: MXE

Function: Miss Transfer Error. This bit is set when an OCC (an OC-
CUPIED signal) is not received within 500 us after data transfer busy is
set. It is cleared by writing a one or by INIT. This bit is also cleared by
subsequent receipt of a valid data transfer command. Setting this bit
will cause an interrupt to the CPU if Interrupt Enable is set.

Bit: <7> Name: MBEXC

Function: MASSBUS Exception. This bit is set when EXC (the EX-
CEPTION signal indicates an error condition during a data transfer) is
received from MASSBUS. It is cleared by writing a one or by INIT. This
bit is also cleared by subsequent receipt of a valid data transfer
command. Setting this bit will abort the data transfer operation.

148

VAX-11/750 MASSBUS Subsystem

Bit: <6> Name: MDPE

Function: MASSBUS Data Parity Error. This bit is set when a MASS-
BUS data parity error is detected during a read data transfer opera-
tion. It is cleared by writing a one or by INIT. This bit is also cleared by
subsequent receipt of a valid data transfer command. Setting this bit
will abort the data transfer operation.

Bit: <5> Name: MAPPE

Function: Page Frame Map Parity Error. This bit is set when a parity
error is detected on the page frame number read from the PF map. It
is cleared by writing a one or by INIT. This bit is also cleared by
subsequent receipt of a valid data transfer command. Setting this bit
will abort the data transfer operation.

Bit: <4> Name: INVMAP

Function: Invalid Map. This bit is set when the valid bit of the next
page frame number is zero when the byte count is not zero. It is
cleared by writing a one or by INIT. This bit is also cleared by subse-
quent receipt of a valid data transfer command. Setting this bit will
abort the data transfer operation.

Bit: <3> Name: ERRSTAT

Function: Error Status. This bit is set when the MBA receives error
status for the read command or write command. lt is cleared by writing
a one or by INIT. This bit'is also cleared by subsequent receipt of a
valid data transfer command. Setting this bit will cause the data trans-
fer operation to be aborted.

Bit: <2> Name:

Function: Reserved for future use, zero.

Bit: <1> Name: NRSTAT

Function: No Response Status. This bit is set when the MBA receives
no response status for a read or write command to memory. This bit is
cleared by writing a one or by INIT. This bit is also cleared by
subsequent receipt of a valid data transfer command. Setting this bit
will abort the data transfer operation.

Bit: <0> Name:
Function: Reserved for future use, zero.

MBA Virtual Address Register (Byte Offset = 12)

3 17 16 9 8 0

MBZ MAP SELECT BYTE OFFSET

Figure 11-6 MBA Virtual Address Register (Byte Offset = 12)

149

VAX-11/750 MASSBUS Subsystem

The program must load an initial virtual address (pointing to the first
byte to be transferred) into this register before a data transfer is initiat-
ed. Bits <16:9> select one of the 256 map registers. The contents of
the selected map and the values in bits <8:0> are used to assemble a
physical address to be sent to memory. Bits <8:0> indicate the byte
offset of the current data byte into the page. Note that the MBA virtual
address register is incremented by four after every memory read or
write and will not point to the next byte to be transferred if the transfer
does not end on a longword boundary. (It will point four bytes ahead.)
Also, upon a write check error, the virtual address register will not
point to the failing data in memory due to the preloading of the silo
data buffer. The virtual address of the bad data may be found by
determining the number of bytes actually transfered compared to the
MASSBUS (the difference between bits <31:16> of the MBA Byte
Counter and their initial value) and adding that difference to the initial
virtual address.

MBA Byte Counter (Byte Offset = 16)
3 16 15 0

MASSBUS BYTE COUNTER MI BYTE COUNTER
(READ ONLY) (READ/WRITE)

Figure 11-7 MBA Byte Counter (Byte Offset = 16)

The program writes the 2's complement of the number of bytes for the
data transfer to bits <15:0> of this register. MBA hardware will load
these 16 bits into bits <31:16> and bits <15:0>. Bits <31:16> serve
as the byte counter for the number of bytes transferred to or from the
drive. Bits <15:0> serve as the byte counter for the number of bytes
transferred to or from memory. The starting byte count with 16 bits of
zero is the maximum number of bytes of a data transfer.

MBA Diagnostic Register (Byte Offset = 20)

31 3029 28 27 26 25 24 23 22 21 2019 18 17 16 15 13 12 8 7 0

MDS
OR MRS OR MDIB
MDIB MDIB

Figure 11-8 Diagnostic Register (Byte Offset = 20)
The diagnostic register may be written only while in maintenance
mode.

Bit: <31> Name: IMDPG
Function: Invert MASSBUS Data Parity Generator.

Bit: <30> Name: IMCPG
150

VAX-11/750 MASSBUS Subsystem

Function: Invert MASSBUS Control Parity Generator.

Bit: <29> Name: IMAPP
Function: Invert Map Parity Checking.

Bit: <28> Name: BLKSCOM

Function: Block Sending Command. During a data transfer, setting
this bit will eventually cause the DLT (Data Late—bit <11> of the MBA
Status Register) bit to be set and interrupt the CPU.

Bit: <27> Name: SIMSCLK

Function: Simulate SCLK. When the MB Maintenance Mode bit is
set, writing a one to this bit will simulate the assertion of SCLK (SYN-
CHRONIZE CLOCK); and writing a zero to this bit will simulate the
deassertion of SCLK.

Bit: <26> Name: SIMEBL

Function: Simulate EBL. When the MB Maintenance Mode bit is set,
writing a one and writing a zero to this bit will simulate the assertion
and deassertion of EBL (END OF BLOCK).

Bit: <25> Blame: SIMOCC

Function: Simulate OCC. When the MB Maintenance Mode bit is set,
writing a one and writing a zero to this bit will simulate the assertion
and deassertion of OCC (OCCUPIED).

Bit: <24> Name: SIMATTN

Function: Simulate ATTN. When the MB Maintenance Mode bit is
set, writing a one or a zero to this bit will simulate the assertion and
deassertion of ATTN. (ATTENTION is asserted by drives to signal the
MBA of changes in a drive’s status or abnormal conditions.)

Bit: <23> Name: MDIB SEL

Function: Maintenance MASSBUS Data Buffer Select. This bit se-
lects what is to be sent out from bits <15:8> when the diagnostic
register is read. When this bit is set to one, the upper byte of the MDIB
(read-only) is selected. When this bit is set to zero, Maintenance Drive
and Register Select (read-only) are selected.

Bit: <22> Name: ISPG
Function: Invert Silo Parity Generator.

Bit: <21> Name: SIMEXC

Function: Simulate EXC. When the MB Maintenance Mode bit is set,
writing a one or a zero to this bit will simulate the assertion and deas-
sertion of the EXCEPTION signal.

Bit: <20> Name: MFAIL
Function: MASSBUS Fail (read-only). Fail is asserted when MMM is
set.

151

VAX-11/750 MASSBUS Subsystem

Bit: <19> Name: MRUN
Function: Maintenance MASSBUS Run (read-only).

Bit: <18> Name: MWCLK
Function: Maintenance MASSBUS WCLK (read-only).

Bit: <17> Name: MEXC
Function: Maintenance MASSBUS EXC (read-only).

Bit: <16> Name: MCTOD
Function: Maintenance MASSBUS CTOD (read-only).

Bit: <15:13>

Name: MDS or MDIB <15:13>

Function: Maintenance MASSBUS Device Select (read-only) or
MDIB <15:13> (read-only) as controlled by bit <23>.

Bit: <12:8>

Name: MRS or MDIB

Function: Maintenance MASSBUS Register Select (read-only) or
MDIB <12:8> (read-only) as controlled by bit <23>.

Bit: <7:0> Name: MDIB
Function: Maintenance MDIB.

MBA Command Address Register (Byte Offset = 28)
This register is read-only and valid only when DT Busy (bit <31> of
the MBA Status Register) is set. The bit assignments are as follows:

31 28 27 25 24 23 0

PHYSICAL ADDRESS

T [L UNDEFINED

OPERATION
L BYTE MASK

Figure 11-9 Command Address Register (Byte Offset = 28)

Bit: <31:28>

Name: Byte Mask

Function: On a write or write unlock, these bits correspond to bytes
zero through three and tell memory which bytes to write.

Bit: <27:25>

Name: Operation

Function: These bits define the operation to be performed. Possible
operations are:

000 Readto Memory
100 Write
110 Interrupt

152

VAX-11/750 MASSBUS Subsystem

Bit: <24> Name:

Function: Undefined

Bit: <23:0>

Name: Address

Function: These bits specify the physical address of the activity to
memory.

MBA External Registers (Byte Offset = 400 to 7FC)
External registers are MASSBUS device-dependent. Each device has
a maximum of 32 registers.

MBA Map Registers (Byte Offset = 800 to BFC)
31 30 15 14 0

\% RESERVED PFN

Figure 11-10 MBA Map Registers (Byte Offset = 800 to BFC)

Bit: <31> Name: Valid Bit
Function:

Bit: <30:15>
Name:
Function: Reserved for future use, all zeros.

Bit: <14:0>

Name: PFN

Function: Physical Page Frame Number. The MBA contains 256 map
registers, each of which may be selected by address bits <9:2> when
bits <11:10> are one and zero, respectively. Map registers can only
be written when there is no data transfer operation in progress or the
IBC bit (Ignore Byte Count—bit <4> of the MBA Control Register) is
set. A write to a map register during a data transfer with IBC clear will
be ignored and cause PGE to set.

DATA TRANSFER PROGRAM FLOW

Initialize MASSBUS Adapter

Mount pack into drive

Start drive spinning

Wait for ready light

Issue Pack ACK to drive

Load desired cylinder, sector, track, and registers in drive

Load starting virtual address into MBA’s virtual address register

Load 2's complement of number of bytes to be transferred into
byte count register in MBA

©NDOA DDA

153

10.
11.

VAX-11/750 MASSBUS Subsystem

Load starting map (pointed to by bits <16:9> of VAR) with physi-
cal page address

Load successive maps with physical addresses to rest of pages
Issue read/write command to drive

154

155

'&“&“ﬂgﬁ VAX11/750

AU
LT

156

CHAPTER 12
VAX-11/750 PRIVILEGED REGISTERS

INTRODUCTION

The processor register space provides access to many types of CPU
control and status registers such as the memory management base
registers, the Processor Status Longword, and the multiple stack
pointers. The benefit of privileged registers is that these key registers
are explicitly accessible only by the Move to Processor Register
(MTPR) and Move from Processor Register (MFPR) instructions which
are controlled by the kernel executive. In a VAX/VMS environment,
the operating system conveniently manages these registers for the
user; therefore, the detailed privileged register information contained
in this chapter will be useful only to system designers who will not be
using VAX/VMS.

A complete list of VAX-11/750 internal processor registers may be
found in Appendix F.

SYSTEM IDENTIFICATION REGISTER (SID)

The system identification register is a read-only constant register that
specifies the processor type. The entire SID register is included in the
error log and the type field may be used by software to distinguish
processor types. Figure 12-1 illustrates the system identification regis-
ter.

31 24 23 16 15 8 7 0
[OOOOIOO 1 OIOOOO]OOOO . I J
N N — -
TYPE———’ J
TYPE SPECIFIC

Figure 12-1 System Identification Register IPR #3E;;

Type A unique number assigned by engineering to
identify a specific processor:

0 Reserved to DIGITAL

1 VAX-11/780

2 VAX-11/750

3 VAX-11/730

4 through 127 Reserved to DIGITAL

128 through 255 Reserved to CSS and customers

For the VAX-11/750, the type-specific format is shown in Figure 12-2.

157

VAX-11/750 Privileged Registers

23 16 15 8 7

0
OOOOOOOOI l J
1 . 1 N |

__]r__—/__\/.__J
MICROCODE REVISION LEVEL 1

HARDWARE REVISION LEVEL

'Figure 12-2 Type-Specific Format

CONSOLE TERMINAL REGISTERS

The console terminal is accessed through four internal registers. Two
are associated with receiving from the terminal and two with writing to
the terminal. In each direction there is a control/status register and a
data buffer register. Figure 12-3 illustrates the console receive con-
trol/status register, and the bit assignments are described.

31 24 23 16 15 8 7 0
[0000000000000000]00000000]"000000|
1 N 1 L 1
DONE J [
INTERRUPT ENABLE

Figure 12-3 Console Receive Control/Status Register (RXCS)
IPR #20,,

Bit: 31:8 Name: MBZ
Function: Must be zero

Bit: 7 Name: Done

Function: This bit is read-only and is set by the console whenever a
datum is received. Done is initialized to 0 at bootstrap time and is
cleared whenever MFPR #RXDB,dst is executed.

Bit: 6 Name: IE

Function: Interrupt Enable. If this bit is set by software, an interrupt is
generated at IPL 20 when Done becomes set. Similarly, if Done is
already set and the software sets IE, an interrupt is generated. This bit
is initialized to 0 at bootstrap time, and can be read or written by
software.

Bit: 5:0 Name: MBZ
Function: Must be zero

Figure 12-4 illustrates the read-only console receive data buffer regis-
ter. The bit assignments follow.

158

VAX-11/750 Privileged Registers

Ell 24 23 16 15 8 7 0
PO 0000O0O0/0O0O0OOCODO Ol |000’ I
L N R L.

‘ q‘fﬁf—’

ERROR BIT
ID FIELD
DATA

Figure 12-4 Console Receive Data Buffer Register (RXDB) IPR #11,,

Bit: 31:16 Name: MBZ
Function: Must be zero

Bit: 15: Name: ERR
Function: Error bit. If the received data contained an error such as
overrun or loss of connection, then ERR is set.

Bit: 14:12 Name: MBZ

Function: Must be zero

Bit: 11:8 Name: ID

Function: If ID are zero, then the data is from the console terminal. If
ID is nonzero, then the entire register is implementation-dependent.
Bit: 7:0 Name: Data

Function: This field contains the actual data received by the console.
Figure 12-5 illustrates the console transmit control/status register; the
bit descriptions are also provided.

BoEaaBEAaaRARAeaaRRACE

Figure 12-5 Console Transmit Control/Status Register (TXCS)
IPR #22,;

BREAED

TIT
J |

Bit: 31:8 Name: MBZ
Function: Must be zero

Bit: 7 Name: RDY

Function: Ready. This bit is read-only and is set at bootstrap time. It
is also set whenever the console transmitter is not busy. This bit is
cleared when MTPR src,#TXDB is executed.

Bit: 6 Name: |E

Function: Interrupt Enable. If this bit is set by software, an interrupt is
generated at IPL 20 when RDY becomes set. If RDY is already set and
software sets IE, an interrupt is also generated. This bit is cleared
when MTPR src,#TXDB is executed.

159

VAX-11/750 Privileged Registers

Bit: 5:0 Name: MBZ
Function: Must be zero

Figure 12-6 illustrates the read-only console transmit data buffer
register. The bit assignments are described.

3 24 23 16 15 8 7

0
000000O0O(0OO0CO0O0OO0DO0 0]0 00 O{ ‘ J
1 " 1w " I

ID FIELD 1
DATA

Figure 12-6 Console Transmit Data Buffer Register (TXDB) IPR #23,,

Bit: 31:12 Name: MBZ
Function: Must be zero

Bit: 11:8 Name: ID

Function: When an MTPR src,#TXDB is executed and these bits are
written as 0, data will be sent to the console terminal. If ID is F,¢, then
the Data field can have five values. If ID is other than 0 or F, it
indicates a reserved operand.

Bit: 7:0 Name: Data

Function: This field contains the actual data transmitted by the con-
sole. If ID is F, 0, 1 or 3 is a no-op; a 2 will cause a boot, and a 4 will
clear a cold start flag. With ID = F, any other value will cause a re-
served operand fault.

TU58 REGISTERS

The console TU58 tape cartridge subsystem is accessed through four
internal registers. Two are associated with receiving from the TU58
and two with writing to it. In each direction there is a control/status
register and a data buffer register. Figure 12-7 illustrates the console
storage receive status register. Description of the bit assignments fol-
low the figure.

31 24 23 16 15 8 7 0
[00000000|00000000|0000 0000’ [IOOOOOOI
1 " P 1 1 "
DONE ? I
INTERRUPT ENABLE

Figure 12-7 Console Storage Receive Status (CSRS) IPR#1C,,

Bit: 31:8 Name: MBZ
Function: Must be zero

160

VAX-11/750 Privileged Registers

Bit: 7 Name: Done

Function: This bit is read-only and is set by the TU58 whenever a
datum is received by the TU58 from the console storage receive data
register. Done is initialized to 0 at bootstrap time and is cleared when-
ever MFPR #CSRD, dst is executed.

Bit: 6 Name: |E

Function: Interrupt Enable. If this bit is set by software, an interrupt is
generated at IPL 23. Similarly, if Done is already set and the software
sets |E, an interrupt is generated. This bit is initialized to 0 at bootstrap
time, and can be read or written to by software.

Bit: 5:0 Name: MBZ

Function: Must be zero

Figure 12-8 illustrates the console storage receive data register. Bit
assignments follow the illustration.

3 24 23 % 15 8 7 0
oooooooo'oooooooooooooooo’ J

1 A " 1 " 1 Il
-

DATA t

Figure 12-8 Console Storage Receive Data (CSRD) IPR #1D,

Bit: 31:8 Name: MBZ

Function: Must be zero

Bit: 7:0 Name: Data

Function: This field contains the actual data received from the TU58
subsystem.

Figure 12-9 illustrates the console storage transmit status register. Bit
descriptions follow the figure.

3 24 23 16 15
00000000|0000000000000000[[100000
1 N 1 N | n P PR

NI

INTERRUPT ENABLE
LINE BREAK

Figure 12-9 Console Storage Transmit Status (CSTS) IPR #1E,,

Bit: 31:8 Name: MBZ
Function: Must be zero

Bit: 7 Name: RDY
Function: Ready. This bit is read-only and is set at bootstrap time. It

161

VAX-11/750 Privileged Registers

is also set whenever the TU58 transmitter is not busy. This bit is
cleared when MTPR src, #CSTD is executed.

Bit: 6 Name: |E

Function: Interrupt Enable. If this bit is set by software, an interrupt is
generated at IPL 23. If RDY is already set and software sets IE, an
interrupt is also generated. This bit is cleared when MTPR src, #CSTD
is executed.

Bit: 5:1 Name: MBZ
Function: Must be zero

Bit: 0 Name: LB
Function: Line Break. When this bit is written to a 1, a line break is
issued to the TU58. This bit is write-only.

Figure 12-10 illustrates the console storage transmit data register. Bit
descriptions follow the illustration.

31 2423 16 15 8 7 0

OOOOIOOOOOOOO J
M 1

| —
]

00000000’0000
1 " 1

DATA

Figure 12-10 Console Storage Transmit Data (CSTD) IPR#1F

Bit: 31:8 Name: MBZ
Function: Must be zero

Bit: 7:0 Name: Data
Function: This field contains the actual data transmitted by the TU58
subsystem.

CLOCK REGISTERS

The clocks consist of a time-of-year clock and an interval clock. The
time-of-year clock is used by the operating system to reinitialize the
time and date after power has been off, without requiring an operator
to type in the information. The time-of-year clock is also used for time
stamping of user and operating system programs. The interval clock is
used for accounting, for time-dependent events, and to maintain the
software date and time.

Time-of-Year Clock

The time-of-year clock consists of one longword register. The register
forms an unsigned 32-bit binary counter that is driven by a precision
clock source. (Clock accuracy is typically .0025% but will vary slightly
with ambient temperature and remaining life of the battery backup

162

VAX-11/750 Privileged Registers

system.) The counter has a battery backup power supply sufficient for
at least 100 hours of operation, and the clock does not gain or lose any
ticks during transition to or from stand-by power. The battery is re-
charged automatically. The least significant bit of the counter repre-
sents a resolution of 10 ms. Thus, the counter cycles to zero after
approximately 497 days.

If the battery has failed, so that time is not accurate, the register is
cleared on power-up. It is held at zero until software writes a nonzero
value to it. Thus, if software initializes this clock to a value correspond-
ing to a large unit of time (e.g., a month), it can check for loss of time
after a power restore by checking the clock value. The time-of-year
clock register is illustrated in Figure 12-11.

3 24 23 1615 8 7 0
]
"
TIMEBYTE]————f I
TIME BYTE 2
TIME BYTE |

TIME BYTE O

Figure 12-11 Time-of-Year Clock Register (TODR) IPR #1B,

Interval Clock

The interval clock provides an interrupt at IPL 24 at programmed
intervals. The counter is incremented at 1 us intervals, with a typical
accuracy of .01% or 8.64 seconds per day. (Accuracy will vary slightly
with ambient temperature.) The clock interface consists of three regis-
ters in the privileged register space: the read-only Interval Count
Register, the write-only Next Interval Count Register, and the Interval
Clock Control/Status Register.

Interval Count Register

The Interval Count Register is a read-only register incremented once
every microsecond. It is automatically loaded from NICR (Next Interval
Count Register) upon a carry out from bit 31 (overflow) which also
causes an interrupt request at IPL 24 if the interrupt is enabled. Figure
12-12illustrates the Interval Count Register.

31 24 23 16 15 8 7 0

[I I O Y B O N

COUNT IN MICROSECONDS
Figure 12-12 Interval Count Register (ICR) IPR#1A 4

163

VAX-11/750 Privileged Registers

Next Interval Count Register

The reload register is a write-only register that holds the value to be
loaded into ICR when it overflows. The value is retained when ICR is
loaded. NICR is capable of being loaded regardiess of the current
values of ICR and ICCS (Interval Clock Control/Status Register). Fig-
ure 12-13 illustrates the Next Interval Count Register.

3 24 23 16 15 8 7 0

I I D D DU O P

Figure 12-13 Next Interval Count Register (NICR) IPR #19,,

Interval Clock Control/Status Register (ICCS)

The ICCS register contains control and status information for the inter-
val clock. Figure 12-14 illustrates the Interval Clock Control/Status
Register, and the bit assignments are described in detail.

31 30 8

E
R MBZ
R

M|

M |O~
ZC»™lo

MBZ

—Z=N
—Qw|n

Figure 12-14 Interval Clock Control/Status Register (ICCS) IPR #18,,

Bit: 31 Name: ERR

Function: Whenever ICR overflows, if INT is already set, then ERR is
set. Thus, ERR indicates one or more missed clock ticks. Attempts to
set this bit via MTPR clears ERR.

Bit: 30:8 Name: MBZ
Function: Must be zero

Bit: 7 Name: INT

Function: This bit is set by hardware every time ICR overflows. If IE is
set then an interrupt is also generated. An attempt to set this bit via
MTPR clears INT, thereby re-enabling the clock tick-interrupt (if IE is
set).

Bit: 6 Name: |E

Function: When this bit is set, an interrupt request at IPL 24 is gener-
ated every time ICR overflows (INT is set). When clear, no interrupt is
requested. Similarly, if INT is already set and the software sets IE, an
interrupt is generated (i.e., an interrupt is generated whenever the
function (IE .AND. INT) changes from 0 to 1).

164

VAX-11/750 Privileged Registers

Bit: 5 Name: SGL
Function: This bit is write-only. If Run is clear, each time this bit is
set, ICR is incremented by one.

Bit: 4 Name: XFR
Function: This bit is write-only. Each time this bit is set, NICR is
transferred to ICR.

Bit: 3:1 Name: MBZ
Function: Must be zero

Bit: 0 Name: Run

Function: When this bit is set, ICR increments each microsecond.
When clear, ICR does not increment automatically. At bootstrap time,
Run is cleared.)

Thus, to set up the interval clock, load the negative of the desired
interval into NICR. Then an MTPR #}X51,#ICCS will enable interrupts,
reload ICR with the NICR interval and set Run. Every “interval count”
microseconds will cause INT to be set and an interrupt to be request-
ed. The interrupt routing should execute an MTPR #{XC1,#ICCS to
clear the interrupt. If INT has not been cleared (i.e., if the interrupt has
not been handled) by the time of the next ICR overflow, the ERR bit will
be set.

At bootstrap time, bits <6> and <0> of ICCS are cleared. The rest of
ICCS and the contents of NICR and ICR are UNPREDICTABLE.

MACHINE CHECK ERROR SUMMARY REGISTER (MCESR)

The Machine Check Error Summary Register (MCESR) logs
information about causes of a machine check—for instance, a bus
error. The entire register is read/write and all bits are set to 0 at
bootstrap time. As shown in Figure 12-15, only bits <3:0> are imple-
mented; descriptions are provided.

31 243 16 15 8 7 0
FOOO00000000OOOOOOOOOOOOjOOOOI[IO"
L | P ol .

I]

TB ERROR
PREFETCH REFERENCE
Figure 12-15 Machine Check Error Summary Register (MCESR)
IPR #26,,

Bit: 3 Name: Bus Error

Function: This bit is set when a machine check results from either a
read to nonexistent memory or a read of uncorrectable data.

Bit: 2 Name: TB Error

Function: This bit is set when a machine check results from a trans-

165

VAX-11/750 Privileged Registers

lation buffer error; it is cleared by writing a 1.
Bit: 0 Name: XB Error

Function: Execution Buffer Error. This bit is set when an error is
detected trying to use data from the execution buffer. This bit is
cleared by writing a 1.

MACHINE CHECK STATUS REGISTER (MCSR)
This register provides additional information about bus errors and
translation buffer errors causing a machine check. The MCSR is illu-
strated in Figure 12-16 and the bit assignments are described.

3

24 23 17 16 15 8 7 0
0000O00O0O|0OO0O0OO0OO OJ [O 0 01 | | l l ’0] Ol l l] LJ
MEMORY DISABLE T J []

READ LOCK TIMEOUT
TB GROUP 1 TAG ERROR
TB GROUP 0 TAG ERROR
TB GROUP 1 DATA ERROR
TB GROUP 0 DATA ERROR
TB HIT/MISS
NON-EXISTENT MEMORY OR READ LOCK TIMEOUT
UNCORRECTABLE DATA
LOST ERROR
CORRECTED DATA

Figure 12-16 Machine Check Error Type Register (MCSR) IPR#17,

Bit: 31:17 Name: MBZ
Function: Must be zero

Bit: 16 Name: Memory Disable

Function: This bitis read-only by software and is initially 0. If set, only
the cache is read and write (i.e., main memory is not referenced or
modified). It is highly unlikely that this bit would ever be set; it would
indicate a serious CPU failure.

Bit: 15:13 Name: MBZ

Function: Must be zero

Bit: 12 Name: Read Lock

Function: This bitis read-only by software and is initially zero. It is set
by a Read Lock Timeout and defines how bits <3:0> are interpreted.

Bit: 11:8 Name: TBGPE

Function: These bits are read-only and are set to 0 at bootstrap time.
They define the type of translation buffer group parity error and are
cleared when bit <2> of the MCESR is reset.

Bit: 7:5 Name: MBZ

Function: Must be zero

Bit: 4 Name: Hit/Miss

Function: This bit is read-only and is set to 0 at bootstrap time. It

166

VAX-11/750 Privileged Registers

indicates whether the last microcoded reference resulted in a hit or a
miss.

Bit: 3:0 Name: Bus Error

Function: These bits are read-only and are set to 0 at bootstrap time.
They define the type of bus error and are cleared when bit <3> of the
MCESR is reset.

If bit <3> is set, a nonexistent memory or read lock timeout error is
indicated. If bit<2> is set, an uncorrectable data error is indicated. If
bit<1> is set, a lost bus error is indicated. If bit<0> is set, the
indication is corrected data.

TRANSLATION BUFFER GROUP DISABLE REGISTER (TBDR)
The Translation Buffer Group Disable Register (TBDR) controls the
enabling and disabling of the translation buffer and controls which half
of the buffer is replaced. This register is illustrated in Figure 12-17 and
the bit assignments are described following.
31 24 23 16 15 8 7
[0000!0000[0000100000000]0000|0000|]] II

REPLACE J T
GROUP REPLACE
DG 1

DG 0

Figure 12-17 Translation Buffer Group Disable Register (TBDR)
IPR #24,

Bit: 31:4 Name: MBZ
Function: Must be zero

Bit: 3 Name: Replace

Function: This bit is read/write and is set to 0 at bootstrap time.
When this bit is set to 1, bit <2> controls which half of the translation
buffer is replaced.

Bit: 2 Name: Group Replace

Function: This bit is read/write and is set to 0 at bootstrap time.
When bit <3> is 1 and this bit is 0, group zero will be replaced. When
bit <3> is 1 and this bitis also 1, group one will be replaced.

Bit: 1 Name: DG1
Function: This bit is read/write and is set to 0 at bootstrap time.
When this bitis a 1, group one of the translation buffer will be disabled.

Bit: 0 Name: DGO

Function: This bit is read/write and is set to 0 at bootstrap time.
When this bit is a one, group zero of the translation buffer will be
disabled.

167

VAX-11/750 Privileged Registers

NOTE
The machine cannot be run with mapping enabled
and DG1 and DGO set.

CACHE DISABLE REGISTER (CADR)
This register is used to turn off the cache. This bit is cleared on power-
up. Figure 12-18 illustrates the cache disable register.

31 2423 16 15 8 7 0
0000000000000000|000000000000000|'
1 | N n s N " N P

T

| 1

CACHE DISABLE BIT

Figure 12-18 Cache Disable Register (CADR) IPR #25,

Bit: 31:1 Name: MBZ
Function: Must be zero

Bit: 0 Name: Cache Disable Bit
Function: If this read/write bit is 0, the cache is enabled to operate
normally. If this bit is a one, the cache is turned off.

CACHE ERROR REGISTER (CAER)

The Cache Error Register (CAER) logs information about the nature of
cache parity errors. This register is read/write, and only bits <3:0>
are implemented. All bits are set to 0 at bootstrap time. This register is
illustrated in Figure 12-19 and the bit assignments are described be-
low.

31 24 23 16 15 8 7 0
‘10000000000000000OOOOOOOlOOOOlIIIJ
. I - L R " 1 A
TAG ERROR 7 J
DATA ERROR
LOST ERROR
HIT/MISS

Figure 12-19 Cache Error Register (CAER) IPR #27 4

Bit: 31:4 Name: MBZ
Function: Must be zero

Bit: 3 Name: Tag Error
Function: If this bit is set, it indicates that the parity error was in the
tag portion of the cache.

Bit: 2 Name: Data Error

168

VAX-11/750 Privileged Registers

Eunction: If this bit is set, it indicates that the parity error was in the
data portion of the cache.

Bit: 1 Name: LostError _
Eunction: If this bit is set, it indicates that there were multiple cache
errors.

Bit: 0 Name: Hit/Miss

Eunction: If this bit is 0, it indicates that the last microcoded refer-
ence resulted in a miss; if the bit is 1, the last microcoded reference
resulted in a hit.

TRANSLATION BUFFER REGISTER

The ability to read and write locations in the VAX-11/750 transiation
buffer is important for diagnostic purposes. The MTPR and MFPR
instructions are two-operand instructions. One operand specifies a
longword source or destination, and the other operand specifies the
IPR number of TB. For accessing the translation buffer, a third oper-
and containing the address of the translation buffer location to be
referenced is needed. The virtual address field of the POBR supplies
this virtual address. For MTPR, the POBR contains the virtual address
whose page table entry (PTE taken from source operand) is to be
written into the translation buffer. For MFPR, the POBR contains the
virtual address whose PTE is to be read from the translation buffer into
the destination.

31 2423 16 15 8 7 0

[DU B

Figure 12-20 Translation Buffer Register (TB) IPR #3B,

NOTE
For this process to work correctly, memory
management must be disabled by clearing the Map
Enable Register. Furthermore, only stand-alone di-
agnostics may use this feature.

VAX-11/750 OPTIONAL FLOATING POINT ACCELERATOR

The VAX-11/750 has an optional accelerator for a subset of the in-
structions. The ACCS, an internal read/write register, controls the ac-
celerator.

ACCS is the accelerator control/status register. It indicates whether an
accelerator exists, controls whether it is enabled, identifies its type and
reports errors and status. At bootstrap time, the type and enable are

169

VAX-11/750 Privileged Registers

set; the errors are cleared. Figure 12-15 illustrates the accelerator
control/status register.

Kil 24 23 16 15 14 8 7 0

]

.............

ENABLE T j

TYPE

Figure 12-21 Accelerator Control/Status Register (ACCS)

Bit: 31:16 Name: MBZ
Function: Must be zero.

Bit: 15 Name: ENB

Function: Write-only field specifying whether the accelerator is en-
abled.

Bit: 14:8 Name: MBZ

Function: Must be zero.

Bit: 7:0 Name: TYPE
Function: Read-only field specifying the accelerator type as follows:

0 = No accelerator
1 = Floating Point Accelerator

Numbers in the range 2 through 127 are reserved to DIGITAL.
Numbers in the range 128 through 255 are reserved to
CSS/customers.

170

PART IV
THE VAX-11/780

171

LA |
U | R

\\\\\\\\“\\“\“\“\!!\\\\\\l‘i“ m % |

RRRRRR

172

(A
T

L

s

CHAPTER 13
VAX-11/780 CONSOLE SUBSYSTEM

FEATURES BENEFITS

LSI-11 console microcomputer Performs diagnostics and sim-
plifies bootstrapping and sys-
tem initialization

Diagnostic console Allows operator diagnostic op-
erations through simple key-
board commands. Can he used
as an operator console and as a
user terminal

Console command language Gives the user a powerful, yet

easy-to-use, debugging tool
Console terminal is a standard Provides a high degree of
ASCII device flexibility

EIA communications interfacing Allows standard industry-com-
patible communications

Front panel switches Offer control over certain as-
pects of the machine operation

RX01 floppy disk drive Provides an inexpensive, reli-
able device and medium for
booting, diagnostics, and field
updates to software

Unattended restart The system restarts or reboots
itself upon recovery of electrici-
ty after a power failure or other
system crash

INTRODUCTION

The console subsystem serves as the interface between the operator
and the VAX-11/780 system. The console subsystem provides the
user with improved system maintenance features and greater operat-
ing system flexibility. The user interface to the subsystem is via the
console command language, which is quite similar to the system com-
mand language. The traditional lights and toggle switch functions have
been replaced by simple English language commands entered into
the system terminal. The system terminal (OPAO) is the logical first
terminal of the system. The floppy disk , an integral part of the subsys-

173

VAX-11/780 Console Subsystem

tem, stores microdiagnostics and system software. This facilitates fast
diagnosis (initiated both locally and remotely), simplified system
bootstrapping and initialization, and improved software update distri-
bution. Figure 13-1 functionally illustrates the console subsystem.

ID BUS +—— ——— 8 CLOCK CONTROL

—————& V BUS

CONSOLE/CPU
CONTROL
INTERFACE ANEL
AT
| ROM
Q-BUS
RXV-11 -
LSI-1 4K MEM FLOPPY DLV ?cli\élr; E
CONTROL
XO01 TER EIA CONNECTION
® ERMINAL FOR REMOTE
TERMINAL

Figure 13-1 Console Subsystem

The console subsystem is comprised of six major components:

e An LSI-11 microprocessor (KD11-F) including a 4 K by 16-bit semi-
conductor random access memory (RAM).

e A floppy disk drive (RX01) and controller (RXV11).

e A system terminal and two serial line interface units, one serial line
unit provided for optional remote diagnosis port.

e Console interface board (CIB) including 4 K by 16-bit read only
memory (ROM) for the LSI-11 microprocessor.

e The control panel on the VAX-11/780 cabinet.

e Bus structure. The internal data (ID) bus is a high speed data path
connecting major functional areas of the VAX-11/780 CPU.

CONSOLE INTERFACE BOARD
The Console Interface Board links the console subsystem to the VAX-
11/780 central processor. The CIB contains interfaces to the console

174

VAX-11/780 Console Subsystem

subsystem bus structures; registers accessible to each bus; and all the
hardware necessary to implement the console functions. In addition,
the CIB contains a 4 K by 16-bit ROM which provides the core of the
console LSI-11 software.

All data transfer operations between the VAX-11/780 processor and
the console LSI-11 are routed via the TO Internal Data and FM Internal
Data privileged registers on the CIB. The interaction of the console
subsystem and the VAX-11/780 processor, however, is directly related
to the states of the two processors. The VAX-11/780 processor may be
either running or halted. When running, the VAX processor is execut-
ing normal VAX code. The processor can then be halted in one of two
ways:

e |nternal system error

e Halt command via console (console must be in console command

mode to activate halt command)

If the processor is halted via an error detection, the console subsystem
automatically enters the console command mode (e.g., CPU double-
error halt).

The LSI-11 may perform in either the program 1/0 mode or the con-
sole command mode. When the LSI-11 is in the program I/0 mode, it
passes console terminal input character by character to the VAX-
11/780 software. Data sent from the VAX-11/780 software to the
console terminal is passed by the LSI-11 software directly to the termi-
nal. When the LSI-11 is in the console command mode, it interprets all
console terminal output in order to perform diagnostic and mainte-
nance functions and to implement the console command language
(CCL). Therefore, four possible system states could exist. They are:

e VAX-11/780 running—LSI-11 program 1/0 mode

e VAX-11/780 running—LSI-11 console command mode
e \VAX-11/780 halted—LSI-11 program I/0 mode

e VAX-11/780 halted—LSI-11 console command mode

Figure 13-2 illustrates the VAX-11/780 and LSI-11 interaction and op-
erating mode combinations.

VAX-11/780 Running — LSI-11 in Program I/O Mode

In this mode of operation, the console terminal acts like any other user
terminal and may be used in conjunction with normal user application
programming. The Console Interface Board (CIB) passes character
data between both processors. In this mode, the LSI-11 console soft-
ware does not interpret commands typed at the console terminal.

175

VAX-11/780 Console Subsystem

VAX11/780 cIs
cPU LSI
VAX-11 PASSING ASCI CHARACTERS fngRAM
SOFTWARE 1o
" I " “SET
CONTINUE TERMINAL
PROGRAM"
“HALT"
“pp
AT
COMMAND MODE ;Z/%NSOLE
CooaTE WA CONSOLE COMMAND LANGUAGE MODE
(e.g. EXAMINE)

Figure 13-2 VAX-11/780 and LSI-11 Interaction and System
Operating States

VAX-11/780 Running — LSI-11 in Console Command Mode

In this mode, the operator is able to halt the VAX-11/780 processor via
the console terminal by typing the HALT command, and resume exe-
cution of the processor by entering the CONTINUE command. How-
ever, by entering the CONTINUE command, the console is automati-
cally updated to program I/0 mode. When the VAX-11/780 is
executing instructions and the LSI-11 is in the program 1/0 mode, to
halt the VAX processor, the operator must change console modes
from program 1/0 mode to console command mode and then input
the HALT command.

The system operator can enter the console command mode from the
program I/0 mode by typing control-P ({P). Similarly, the operator can
change from console command mode to program 1/0 mode by typing
“Set Terminal Program”. While the VAX processor is executing code,
only the following subset of commands are permitted:

e SHOW

e SET

e WAIT DONE

e HELP

e EXAMINE /VBUS
e CLEAR

e HALT

176

VAX-11/780 Console Subsystem

Note that the functions which may be performed by the console are
limited to those requiring no direct response by the VAX-11/780 proc-
essor (except HALT). The console software does not pass commands
to the executing VAX processor software. Conversely, the console will
not accept output from the executing software of the VAX-11/780
processor. Therefore, the VAX-11/780 software cannot communicate
with the console floppy disk or console terminal.

VAX-11/780 Halted — LSI-11 in Program 1/O Mode
This mode of operation contains no system functionality and should
not be utilized.

VAX-11/780 Halted — LSI-11 in Console Command Mode

In this mode, the full functionality of the console command set is avail-

able to the system operator. Through the use of the console command

language, the system operator has the capability to:

e Initiate and terminate software being executed by the VAX-11/780
processor.

e Display and modify memory elements including main memory, 1/0,
general register and process register address space.

e Control the processor clock to provide single step clock modes for
use in basic hardware or program development.

e |nitiate macro and micro diagnostics.

For further information regarding the console language, a complete
listing of the console commands is included in this chapter.

CONSOLE BUS STRUCTURE

Communication between the elements of the console is achieved by
three separate bus configurations. The ID (Internal Data) Bus links
together the major functional areas of the central processor. The V
bus interfaces the LSI-11 microprocessor and its peripheral hardware
to the VAX CPU via the CIB (Console Interface Board). The Q bus is
utilized by the console, while the LSI-11 is in the console I/0 mode, to
access the Central Processor’'s major buses and key control points.

INTERNAL DATA BUS

The Internal Data Bus is a high speed data path between the major
functional areas of the CPU. The ID bus may be controlled from the
console interface logic in a maintenance mode operation. This allows
access to writable control store and internal registers from the con-
sole.

When the Console Interface Board generates the ID MAINT signal, it
initiates a maintenance operation, allowing the console to assert ID

177

VAX-11/780 Console Subsystem

bus address and control signals (and data, if appropriate). The ID Bus
Registers are described in Appendix E.

QBUS

The Q bus (LSI-11 bus) connects the LSI-11 processor (and its ROM
and RAM memories), the console terminal interfaces, and the floppy
disk interface to the Console Interface Board, and thus to the VAX
CPU. The 16 address signals and 16 data signals share the same bus
lines. Fourteen other LSI-11 signal lines are used in the VAX-11/780
configuration for control signals (note that the DMA control lines are
not used).

Note that the serial line interface and the floppy disk interface cannot
communicate directly with the Console Interface Board, nor can the
CIB communicate directly with them. All transfers initiated from the
interfaces begin with interrupts to the LSI-11 processor.

V BUS .

The V bus consists of eight serial data lines, a load signal line, a clock
signal line, and a seif test line. Each of the participating VAX CPU
modules contains a V bus shift register. The data input lines to the shift
register monitor specific test points on the CPU modulé, as shown in
Figure 13-3. The LOAD signal causes the shift register to parallel load
from the test points when the VAX CPU is in a stable condition. The
clock signal can then be used to read the latched data serially from
each of the shift registers into a register on the CIB. The LSI-11 must
read the register before clocking in the next serial bit from each of the
shift registers.

MODULE TEST POINTS

ELF TEST

D D D b D 3] D D
SERIAL
ouT
DATA

SHIFT REGISTER
PARALLEL
LOAD

[ONE OF EIGHT
ISERIAL DATA LINES
CIB MODULE V BUS REGISTER

sD

No
L
>
]

SELF
TEST LOAD ' CLOCK

]

Figure 13-3 V Bus Block Diagram
178

VAX-11/780 Console Subsystem

CONSOLE/VAX-11 INTERACTION

All data transfer operations between the VAX CPU and the console
LSI-11 are routed via the TO and FM ID Registers on the CIB. The LSI-
11 Console may look at various points in the VAX CPU via the V Bus or
it may look at data on the ID Bus. The TO ID Register is a data buffer,
serving two functions. First, it may be loaded by the LSI-11 with data
from the console terminal, one ASCII character to be read by the VAX-
11 microcode. The low order eight bits of the TO ID register contain
the ASCII character (RXDB <7:0>). Bits <11:8> specify the console
unit at which the data originated. Logical unit 00 is reserved for the
operator terminal. Second, the LSI-11 may write to any ID bus address
through the TO ID register by executing an ID maintenance cycle.

The terms TO and FR (FROM) are used with respect to the VAX-11
CPU.

The FM ID Register is also a data buffer, serving a dual function. First,
it may be loaded by the VAX-11 microcode with data to be passed to
the console subsystem. The low order eight bits of the FM ID register
contain the ASCII character to be passed to the LSI-11. Bits <11:8>
specify one of the logic units in the console subsystem. Second, the
LSI-11 may read any ID bus register through the FM ID register by
executing an ID maintenance cycle when the VAX CPU is halted.

The TO and FM internal data registers are illustrated in Figure 13-4.

3 12N 8 7 0

O ID(RXDB)I ‘ RX SEL<3.0> I RX DATA

3 121 8 7 4]
M ID(TXDB) I TX SEL<3.0> | TX DATA J

Figure 13-4 TO and FM ID Registers

READ ONLY MEMORY (ROM)

The Console Interface Board contains 4K words of ROM. This ROM
contains the core of the LSI-11 console operating system, including
the power up routines, the terminal and the floppy drivers. The LSI-11
begins executing instructions in the ROM when power is applied to the
system.

VAX-11/780 PROCESSOR CONTROL PANEL

The VAX-11/780 processor control panel consists of four indicator
lights, an AUTO RESTART switch, a BOOT switch, and a keylock rota-
ry switch.Figure 13-5 illustrates the VAX-11/780 front panel controls
and indicators.

179

VAX-11/780 Console Subsystem

CONSOLE CONTROL PANEL

OFF A_T|E RUN POWER REMOTE .. =~ LOCAL geyore
AUTO DISABLE DISABLE
RESTART 80OT O @ e o OFF REMOTE

ON

Figure 13-5 VAX-11/780 Front Panel Controls and Indicators

Indicator Lights
e ATTN—This light indicates that you have the attention of the console

program.

e RUN—When lit, this light indicates that the processor is running.

e POWER—This light indicates that DC power is present inside the
CPU and that the keylock switch is not in the OFF position.

e REMOTE—When lit, indicates that remote diagnostic procedures
are being performed on the system.

AUTO RESTART Switch
e AUTO RESTART ON—Restarts system automaticalily.

e AUTO RESTART OFF—Halts the system and displays the console
prompt (>>>) at the console terminal.

BOOT Switch
This switch bootstraps the system using the default bootstrap com-
mand procedure (DEFBOO.CMD)

Keylock Rotary Switch
This is a five-position keylock switch.

180

VAX-11/780 Console Subsystem

e OFF—No power to the CPU (except battery back up to the time-of-
year clock) or to memory.

e LOCAL DISABLE—Local console terminal cannot issue console
commands.

e | OCAL—The CPU responds to console commands and the remote
diagnostic line is disabled.

e REMOTE DISABLE—The processor cannot respond to commands
from remote line terminals.

e REMOTE—The processor can respond to commands from a remote
line terminal and console commands are ignored.

Table 13-1 Console Halt Codes
Code Meaning
Halt or Single Step from console
Successful T command
Control-P was typed on the console
Interrupt stack not valid or unable to read SCB
Double bus write error halt
Halt instruction with PSL<KCM> =0
SCB vector <1:0> =3
SCB vector <1:0> = 2and noUCS
CHMX while on the interrupt stack
CHMX SCB vector <1:0> .NE.O

Power up and can’t find RPB, FPS1 at RE-
START/HALT '

12 Power up and warm start flag false FPS1 at RE-
START/HALT

> 0 N O s N 2 O

- o

13 Power up and can’t find good 64K of memory

14 Power up and booting, but bad Boot ROM or no
ROM

15 Power up and cold start flag set during boot sub-
routine

16 Power up halt; Power On Action Switch at HALT
position

FF Micro Verify test failure

181

VAX-11/780 Console Subsystem

CONSOLE COMMAND LANGUAGE

The console commands are English-language entries or their accept-
ed abbreviations entered by the operator at the console terminal.
These commands can only be entered when the console is in the
console I/0 mode of operation. When a valid command is entered, the
indicated sequence of events is initiated. When that set of events is
completed, another console command can be entered.

The console commands are described in the following paragraphs.

BOOT Command
SYNTAX: BOOT[<DEVICE-NAME>] <CR>

Where the optional <device-name> has the format: DDn, where DD is
a two-letter device mnemonic and n is a one-digit unit number.

The BOOT command initiates a VAX-11/780 system bootstrap se-
quence. The command can support bootstrap operations from or for a
set of VAX-11/780 system devices.

When an optional <device name> is not given with the BOOT com-
mand, the console performs the boot sequence for the device preset
under the default listing by executing the boot program (indirect com-
mand file) named DEFBOO.CMD.

When an optional <device name> is given with the command, the
console executes boot program DDNBOO.CMD where DDN is the de-
vice name given in the command.

Bootstraps (from devices other than the system default device) are
performed by indirect command files containing the console
commands necessary to boot from the device named.

CONTINUE Command
SYNTAX: CONTINUE<CR>

The CONTINUE command causes the CPU to begin operating system
execution at the address currently contained in the CPU program
counter (PC). CPU initialization is not performed. The console subsys-
tem enters the program I/0 mode after the CONTINUE command is
executed.

DEPOSIT Command
SYNTAX: DEPOSIT[<qualifier-
list><blank><address> <blank><data><CR>

Where the qualifiers are /BYTE, /WORD, /LONG, /QUAD, /NEXT,
/VIRTUAL, /PHYSICAL, /IDBUS, /VBUS, /INTERNAL, and /GENER-
AL.

182

VAX-11/780 Console Subsystem

The DEPOSIT command writes (deposits) <data> into the specified
<address>. The address space used depends on the qualifiers speci-
fied with the command. If no qualifiers are used, the data and address
defaults (entered via the SET DEFAULT command) are used to deter-
mine the address space.

Table 13-2 Symbolic Addresses—Used with the DEPOSIT and
EXAMINE Commands

SYMBOL DEFINITION

PSL Deposits to or examines the
processor status longword

PC Deposits to or examines the
program counter (PC)

SP Deposits to or examines the
stack pointer (SP)

+ Deposits to or examines the lo-
cation immediately following the
last location referenced. For
physical and virtual references
the location referenced is the
last address plus n where n= (1
for byte, 2 for word, 4 for long-
word, 8 for quadword). For all
other address spaces, nis equal
to 1.

- Deposits to or examines the lo-
cation immediately preceding
the last location referenced

* Deposits to or examines the lo-
cations last referenced

ampersand Deposits to or examines the ad-
dress represented by the last
data examined or deposited

EXAMINE Command
SYNTAX: EXAMINE[< qualifier-
list>][<blank><address>]<CR>

Where the qualifiers are /BYTE, /WORD, /LONG, /QUAD, /NEXT,

183

VAX-11/780 Console Subsystem

/VIRTUAL, /PHYSICAL, /IDBUS, /VBUS, /INTERNAL, and /GENER-
AL.

The EXAMINE command reads and displays the contents of the speci-
fied <address>. If no <address> is specified, the contents of the
address defined by the address default (entered via the SET DEFAULT
command) are displayed.

The <address> argument may be one of the symbolic address in the
preceding Table.

HALT Command
SYNTAX: HALT<CR>

The HALT command stops the CPU after the CPU completes execu-
tion of the instruction that is in process when the HALT command is
entered.

INDIRECT (@) Command

SYNTAX: @ <filename><CR>

This command causes the console to open the file specified by <file-

name> and begin executing console commands from the file.

Execution continues until one of the following events occurs:

e A WAIT DONE command is read from the file

e The end of the indirect file is reached. The console prints @ <EOF>
and an <input prompt>

e The operator enters a CTRL C. Execution of the indirect file is abort-
ed

INITIALIZE Command
SYNTAX: INITIALIZE<CR>

This command causes the CPU system to be initialized—set to a spec-
ified starting condition.

HELP Command
SYNTAX: HELP<CR>

The console opens and prints the contents of an indirect command file
(help file). The help file contains a description of all console com-
mands.

ABBREVIATION HELP Command
SYNTAX: ABBREV.HLP<CR>

The console opens and prints the contents of an indirect command file
(abbreviation help file). The abbreviation help file contains a list of
abbreviations and rules for the console command language.

184

VAX-11/780 Console Subsystem

ERROR HELP Command
SYNTAX: ERROR.HLP<CR>

The console opens and prints the contents of an indirect command file
(error help file). The error help file contains a list of all error messages
for the console command language.

LOAD Command
SYNTAX: LOAD[<qualifier-list>]<blank> <file-specifica-
tion><CR>

Where the <qualifier list> is the storage location for the file being
loaded; and where the <file specification> is the identity of the file to
be loaded.

The LOAD command is used to read or transfer file data from the
console floppy disk to main memory, or the the Writable Control Store
(WCS). If no qualifier is entered, physical main memory, location 0, is
the default location (entered via the SET DEFAULT command) to
begin loading. The load defaults are described in Table 13-3.

Table 13-3 LOAD Qualifiers

/START:<address>

The START qualifier is used to specify a starting address for the load.
If no START qualifier is given, the console will start loading at Address
0.

/WCS
The WCS is loaded with the specified file.

/PHYSICAL
The physical main memory is loaded with the specified file.

NEXT Command
SYNTAX: NEXT[<blank><count>]<CR>

With the NEXT command, the CPU clock is stepped the number of
times indicated by <count>. The type of step performed by the clock
is determined by the previous SET STEP command. If a NEXT com-
mand is issued while the CPU is in normal clock mode, it defaults to
single instruction step mode for the duration <count> of the com-
mand.

The console enters program 1/0 mode immediately prior to perform-
ing the STEP command. The console I/0 mode is re-entered as soon
as the STEP command is complete.

185

VAX-11/780 Console Subsystem

QUAD CLEAR Command
SYNTAX: QCLEAR<blank><physical address><CR>

The QUAD CLEAR command clears the quadword at the specified

<address>. The command is used to clear an uncorrectable ECC
error.

REPEAT Command
SYNTAX: REPEAT <console command><CR>

With a REPEAT command, the specified console command is repeat-
edly executed until terminated by a CTRL C. Any console command,
exceptthe REPEAT command, may be specified.

SET DEFAULT Command
SYNTAX: SET;,blank>DEFAULT[<blank> <default
option>]<CR>

The SET DEFAULT command is used to set the defaults for address,
data length, and radix. The <default options> and their definitions are
contained in Table 13-4. The console applies the defaults from those
set under this command when a console command does not contain a
qualifier.

Table 13-4 SET DEFAULT Command Options

Address defaults (Set the de- Virtual, Physical, General, Inter-
fault to the specified address): nal, ID bus, V bus

Data defaults (Set the defaultto Byte, Word, Long, Quad
the specified data length):

Radix defaults (Set the default Hex, Octal
for the terminal 1/0 to the speci-
fied radix):

SET STEP Command
SYNTAX: SET <blank>STEP[<blank> <step option>]>CR>

The SET STEP command sets the CPU clock mode. The CPU clock
modes (<step options>) are defined is Table 13-5.

Table 13-5 SET STEP Command Options

OPTION GROUP ITEM SPECIFICATION
STEP Instruction Sets the CPU clock

186

VAX-11/780 Console Subsystem

to the single instruc-
tion step mode

Bus Sets the CPU clock
to the single
Synchronous Back-
plane Interconnect
(SBI) cycle step
mode

State Sets the CPU clock
to the single SBI
time state step
mode

SET TERMINAL FILL Command
SYNTAX: SET <blank>TERMINAL FILL<count><CR>

The SET TERMINAL FILL command sets the number (<count>) of
blanks that are transmitted to the console terminal after a <CR> or a
line feed (<LF>).

SET TERMINAL PROGRAM Command
SYNTAX: SET TERMINAL PROGRAM<CR>

The SET TERMINAL PROGRAM command places the console termi-
nal in the console I/0 mode of operation.

SET CLOCK Command
SYNTAX: SET<blank>CLOCK[<blank>(SLOW! FAST! NOR-
MAL!)]<CR>

The SET CLOCK command sets the CPU clock to the frequency speci-
fied by the command argument (SLOW, FAST, NORMAL).

SET SOMM Command
SYNTAX: SET<blank>SOMM<CR>

The SET SOMM command sets the Stop On Microbreak Match
(SOMM) enable (on the console interface board). The CPU clock is
stopped if SOMM is enabled and the contents of the microbreak
match register match the contents of the CPU micro-PC.

SET RELOCATION Command
SYNTAX: SET RELOCATION:<data><CR>

The SET RELOCATION command deposits data into the console’s
relocation register. The value <data> set in the relocation register is
added to the effective address of all virtual and physical memory EX-

187

VAX-11/780 Console Subsystem

AMINEs and DEPOSITs.

SHOW Command

SYNTAX: SHOW<CR>

With the SHOW command, the console terminal displays.the following:

e The default settings for data length, address type and radix, and
data inputs and outputs

e The terminal fill character count

e The CPU status including the run halt state and current clock mode
setting

START Command(s)

There are two formats used with the START command:

SYNTAX: START[<blank><address>]<CR>
or
START/WCS<blank><address><CR>

The START command of the first format performs the equivalent of the
following sequence of console commands:

1. Initialize the CPU

2. Deposit the <address> data in the PC

3. Issue a continue instruction to the CPU

The START command of the second format performs the equivalent of
the following sequence of commands:

1. Depositthe <address> data in the micro-PC

2. Startthe CPU clock in the normal mode of operation

TEST Command

TEST[/com]<CR>

The TEST command enables the microdiagnostic monitor program.
Microdiagnostic execution begins immediately if no /com qualifier is
entered. If microdiagnostic testing is completed successfully (i.e., no
errors detected), the console I/0 mode is re-entered. A microdiagnos-
tic floppy must be loaded in the RX01.

With a [/com] qualifier, the microdiagnostic monitor enters its com-
mand mode (MIC>) and waits for an operator command.

UNJAM Command

SYNTAX: UNJAM<CR>

The UNJAM command initiates a clearing (UNJAM) of the SBI.

WAIT Command
SYNTAX: WAIT <blank>DONE<CR>

The WAIT command is executed from an indirect command file. When

188

VAX-11/780 Console Subsystem

executed, further execution of the command file is suspended until
one of the following occurs:

e A DONE signal is received from a program running in the CPU. On
receipt of DONE, the console resumes execution of the command
file.

e The console prints <@EXIT> and aborts execution of the remain-
der of the console command file if the CPU halts and a DONE signal
is not received.

e The operator enters a CTRL C. The console aborts execution of the
remainder of the command file.

CONSOLE ERROR MESSAGES

This section lists all console error messages and defines their format

and meaning. All console error messages are prefixed by a question

mark, to distinguish them from informational messages. Where user
interaction is required, the necessary steps appear in parentheses
following the respective error description.

Syntactic Errors

?<TEXT-STRING>'IS The <TEXT-STRING> is notacomplete

INCOMPLETE console command.

?<TEXT-STRING>'IS The <TEXT-STRING> is not recognized as
INCORRECT avalid command.

? FILE NAME ERR A <FILENAME> given with a command

cannot be translated to RAD50. (<FILE-
NAME> is invalid)

?IND-COM ERR The console detected an error in the format
of an indirect command file. Possible errors
are:

1) More than 80 characters in an indirect
command line or

2) Anindirect command line did not end
with a CARRIAGE-RETURN and LINE

FEED.
Command Generated Errors
?FILE NOT FOUND A <FILENAME> given with a ‘LOAD’ or ‘@’

command does not match any file on the
currently loaded floppy disk. This error can
also be generated by a ‘HELP’, ‘BOOT or an
attempted WCS load if HELP FILE, BOOT

~ FILE or WCS FILE is missing from Floppy.

?NO CPU RESPONSE The console timed out waiting for are-
sponse from the CPU. (Retry, indicates pos-

189

VAX-11/780 Console Subsystem

sible CPU-related hardware fault)

?2CPUNOTIN A console command requiring assistance
CONSOLE WAIT from the CPU was issued while the CPU was
LOOP,COMMAND not in the console service loop. (HALT CPU,
ABORTED re-issue command)
?CPU CLOCK A console command that requires the CPU
STOPPED,COMMAND clock to be running was issued with the
ABORTED clock stopped. (Clear step mode; re-issue
command)

CANT DISABLEBOTH An attempt was made to disable both the
FLOPPY’s, FUNCTION remote and local floppy.

ABORTED

Micro-Routine Errors

The console uses various micro-code routines in the CPU’s control
store to perform console functions. The following errors are generated
by micro-routine failures:

?MIC-ERR ON A micro-error occurred in the CPU while

FUNCTION servicing a console request. SBl error regis-
ters are dumped after this message is print-
ed. (Action dependent upon error)

?INT-REG ERR A micro-error occurred while attempting to
reference a CPU internal (processor) regis-
ter. Anillegal address will cause this error.

?MICRO-ERROR, An unrecognized micro-error occurred. The

CODE=X code returned by the CPU is not in the
range of recognized error codes. ‘X' is the
code returned by the CPU.

?MEM-MAN FAULT, A virtual examine or deposit caused an er-

CODE=XX ror in the memory management micro-rou-
tine. ‘XX’ is a one byte error code returned
by the routine, with the following bit assign-
ments:

Bit 0 = Length violation (bits numbered
from right)

Bit 1 = Fault was on a PTE reference
Bit 2 = Write or modify intent
Bit 3 = Access violation

Bits 4 through 7 should be ignored

190

VAX-11/780 Console Subsystem

CPU Fault Generated Error Messages

?INT-STACK INVALID

?CPU DOUBLE-ERR
HALT

?ILL I/EVECTOR

?NO USRWCS

?CHM ERR

INT PENDING

?MICRO-MACHINE
TIME OUT

The CPU halted because the interrupt stack
was marked invalid.

A machine check occurred before a previ-
ous machine check had been handled,
causing the CPU to execute a ‘Double Error’
Halt. (Examine ID Registers 30-3F (hex);
contents will aid in locating cause of ma-
chine check).

The CPU detected an illegal Inter-
rupt/Exception vector.

CPU detected an Interrupt/Exception vec-
tor to user WCS and no user WCS exists.

A change mode instruction was attempted
from the interrupt stack.

This is not actually an error, but indicates
that an error was pending at the time that a
console-requested halt was performed.
(Continue CPU to clear interrupt).

Indicates that the VAX-11/780 micro-ma-
chine has failed to strobe interrupts within
the max time period allowed.

Messages Generated by Floppy Errors

?FLOPPY
ERROR,CODE=X

?FLOPPY NOT READY

2NO BOOT ON
FLOPPY

?FLOPPY ERROR ON

The console Floppy driver detected an er-
ror. Codes are as follows: (Codes always
printed in HEX Radix).

CODE 1-Floppy hardware error. (CRC, Pari-
ty, etc.)

CODE 2-File not found.
CODE 3-Floppy driver queue overfull.

CODE 4-Console software requested an
illegal sector number.

The console floppy drive failed to become
ready when booting. (Retry)

Console attempted to boot from a floppy
that does not contain a valid boot block.
(Change floppy disk)

A floppy error was detected while attempt-

191

VAX-11/780 Console Subsystem

BOOT ing a console boot. (Retry)
Messages Related to Version Compatibility
?WARNING-WCS & The microcode in WCS is not compatible

FPLA VER MISMATCH with FPLA. This message is printed on each
ISP START or CONTINUE, but no other ac-
tion taken by console.

?FATAL-WCS & PCS The microcode in PCS is not compatible

VER MISMATCH with that in WCS. ISP START and CONTIN-
UE are disabled by console.

?REMOTE ACCESS Printed when console mode switch enters a

NOT SUPPORTED ‘REMOTE’ position, and the remote support
software routines are not included in the
console.

Console Generated Errors
?TRAP-4, RESTART- The console took a time-out trap. Console

ING CONSOLE will restart.

?2UNEXPECTED TRAP Console trapped to an unused vector. Con-
MOUNT CONSOLE sole reboots when 4C typed.

FLOPPY, THEN TYPE

rC

?Q-BLKD Console’s terminal output queue is blocked.

Console will reboot.
BOOTING THE VAX-11/780 SYSTEM
Initializing or booting the VAX-11/780 system can be viewed from two
different perspectives. First, there are the actual steps that the system
manager must perform in order to boot the system. And second, there
are the actual events that occur within the system during the boot
process.

To bootstrap a VAX-11/780 system, the system manager first invokes
the console program. The remaining steps for a typical system boot
are as follows.

1. Check that the console floppy is loaded into the floppy diskette
drive.

2. Setthe AUTO RESTART to the OFF position.

3. Turn the rotary key to the LOCAL position. When the power is
turned on, the console floppy is booted and causes the system to
prompt (>>>). If the power is already turned on, press CTRL/P to
get the prompt. Type REBOOT to reboot the console.

VAX-11/780 Console Subsystem Action on Boot
When the system manager executes a boot command procedure on

192

VAX-11/780 Console Subsystem

the console floppy, the console subsystem performs the following
steps to boot the system.

1.

AN

RO
R1
R2
R3
RS
FP

Halts the processor.

Unjams the SBI.

Initializes the processor.

Deposits the address of a SCB which is stored in ROM.

Loads general registers with the inputs required by the primary
bootstrap program.

Boot device type code

Boot device adapters TR#

UNIBUS address of boot device’'s CSR
Boot device unit number

Software boot control flags

0 (signals ROM program that no machine check is
expected)

The console subsystem then starts the program stored in ROM. The
program will:

1.

3.
4.

Perform a cursory CPU test and check for a valid memory config-
uration.

Locate a 64 KB block of contiguous memory that contains no
uncorrectable errors.

Load base address + $X200 of 64 KB of good memory into the SP.
Set the cold start flag.

Next, the console subsystem loads the primary bootstrap at the ad-
dress specified in the SP. Finally, control is transferred to the primary
bootstrap (console enters program mode).

VAX-11/782 Boot Procedure

The VAX-11/782 primary processor boot command procedure is very
similar to that of the VAX-11/780. The differences are as follows:

1.

Only the MA780 shared memory is used. MS780 (local) memory is
ignored.

The MA780 memory controller does not contain a boot ROM. The
command procedure assumes that the first 64 KB of good memo-
ry starts at physical address 0, and places a 0 in the SP. The
memory configuration registers are also initialized by the com-
mand procedure. The RPB (reboot parameter block) is located at
physical address 0 and the primary bootstrap code, VMB.EXE, is
loaded starting at physical address 200.

193

VAX-11/780 Console Subsystem

The attached processor is booted differently from a single processor
VAX-11/780. The boot command procedure initializes the memory
registers (same as the primary) and then starts executing a self-
branch instruction in the RPB (located at physical address 0). After the
primary is booted, a DCL command is executed that causes the prima-
ry to load the multiprocessing code. This command also modifies the
self-branch instruction in the RPB to point to the attached processor’s
multiprocessing initialization code.

VAX-11/780 Console Subsystem Action on a Warm Start

The console subsystem will attempt to restart the CPU under the fol-

lowing conditions:

1. A power restoration with valid memory and the AUTO RESTART
switch is in the ON position.

2. A Halt condition (HALT instruction executed or machine error halt
condition) and the AUTO RESTART switch is in the ON position.

The console takes the following actions to restart the processor.
1. Loads the console program from the console floppy.
2. Loads the microcode from the console floppy.

3. Tests the AUTO RESTART switch: if OFF, it issues a console
prompt (>>>); if ON, it continues to the next step-:

The console program leads R12 (AP) with the Halt code which identi-

fies the type of Halt. The PC and PSL are loaded at the time of the Halt

into R10 and R11. The console then invokes the command file RE-

STAR.CMD on the console floppy. This program performs the follow-

ing steps:

1. Ensures that the processor is halted and initialized, then deposits
the ROM address of the SCB in the SCB base processor register.

2. Clears unused general registers and deposits a 3 in R1 (the boot
device adapter’s TR#).

3. Deposits a 0 in the FP (signals to ROM program that no machine
check is expected).

4. Starts ROM program that searches memory for a valid RPB.
When it is found, the restart routine is executed. Its address is
located at the second longword of the RPB.

If the AUTO RESTART switch is set to AUTO RESTART ON, the con-
sole subsystem searches through physical memory for a valid RPB,
shown as follows:

physical address of the RPB 0:
physical address of the restart routine 4:
checksum of $X1F longwords of restart routine 8:

194

VAX-11/780 Console Subsystem

Bit 0; ! warm start flag C:
Parameter Block, First Four Longwords

A valid RPB is defined as a block of four longwords, starting on a page

boundary. The first longword points to itself. The second is a pointer to

the address of the restart code and must not be zero. The third long-

word contains the checksum (sum, throwing away carries) of the 31

longwords pointed to by the second longword. The console subsystem

starts at address zero and searches all available memory for a valid

RPB. If it doesn't find one it attempts to reboot the system. If it does

find an RPB, it examines bit 0 of the fourth longword of the RPB. If this

bitis 1, it will halt. If this bitis 0, it sets it and then:

e Loads the stack pointer (SP) with the address of the RPB plus $X200.

e Loads the argument pointer (AP) with a value that indicates the
cause of the restart. If the restart is occurring because of power
restoration or reset switch activation, the AP is loaded with a 3. If itis
because of a CPU Halt, it is loaded with one of the codes specified in
Table 7-1.

e Starts execution of the restart routine, whose address is located at
the second longword of the RPB.

VAX-11/782 Console Subsystem Action on a Warm Start

The action taken by the VAX-11/782 primary processor is similar to a

single processor VAX-11/780. The key difference being the absence

of an MA780 memory ROM to locate the RPB. Therefore, the com-

mand file RESTAR.CMD loads 200 into the SP (the address of the RPB

plus 1X200).

The attached processor action is identical to that described above for
a boot procedure. The attached processor returns any current proc-
ess it may be executing when power is lost, and as a result, does not
have a current state to restore.

DEFAULT BOOTSTRAP COMMAND PROCEDURE

The VAX-11/780 system is installed with a default bootstrap command

procedure, DEFBOO.CMD, that is used under the following

circumstances during normal system operation:

e When a command procedure is not specified during bootstrapping
(Boot command without a parameter).

e A Power-up sequence (boot switch or power restoration with memo-
ry invalid) with the AUTO RESTART switch ON.

e Execution of an MTPR instruction to the console that invokes a boot.

The VAX-11/782 has a slightly modified DEFBOO.CMD procedure. It
does not start a memory ROM to load the SP, but does contain a
Deposit and the initialization for the memory registers.

195

196

CHAPTER 14
VAX-11/780 CENTRAL PROCESSOR

FEATURES BENEFITS
32-bit microprogrammed Provides the user with high-
processor performance data throughput

Memory management hardware Allows the user to directly ad-
dress up to four billion bytes of
virtual address space using a
smaller physical memory

8 KB direct mapped memory Significantly improves memory

cache access time, increasing overall
performance

PDP-11 compatibility mode Gives the PDP-11 user an easy

migration path to the VAX/VMS
architecture

User control store (optional) Increases throughput by allow-
ing the user to create routines in
microcode tailored to specific

applications

Optional Floating Point Acceler- Decreases instruction execution

ator time of floating point arithmetic
and some integer arithmetic op-
erations

INTRODUCTION

The VAX-11/780 Central Processing Unit (CPU) is the hardware re-
sponsible for performing the logic and arithmetic operations request-
ed of the computer system. The processor is a high-performance,
microprogrammed computer that executes a large set of variable-
length instructions in native mode, and non-privileged PDP-11
instructions in compatibility mode.

The CPU maintains 32-bit addressing and data capability, thereby
allowing it direct access to four billion bytes of virtual address space
(2%2). That is, the CPU references a location in terms of a 32-bit virtual
address. This address is termed virtual because it is not the actual
address in physical memory. The processor's memory management
hardware translates a virtual address to a physical address under
operating system control.

197

VAX-11/780 Central Processor

The processor provides 16 32-bit registers that can be used for tem-
porary storage, as accumulators, index registers, and base registers.
Four of these registers have special significance: the Program Coun-
ter, and three registers that are used to provide an extensive CALL
facility. The processor offers a variety of addressing modes that use
the general registers to identify instruction operand locations, includ-
ing an indexed addressing mode that provides true post-indexing ca-
pability.

The native instruction set is highly bit efficient. It includes integral
decimal, character string, and floating point instructions, as well as
integer, logical, and bit field instructions. Instructions and data are
variable length and can start at any arbitrary byte boundary or, in the
case of bit fields, at any arbitrary bit in memory. Floating point
instruction execution can be enhanced by an optional floating point
accelerator.

The processor’s instruction set is defined by the microcode loaded
into the programmable read-only memory (control store).

The VAX-11/780 processor includes the following functional hardware
components:

e 8 KB two-way set associative memory cache

e 8 byte prefetch instruction buffer

128 entry address translation buffer

24 KB writable diagnostic control store (WDCS)
Time-of-year clock

Programmable realtime clock

e Integral memory management

e Optional floating point accelerator (FPA)

e Optional KE780 Extended Floating Point Data Types
e Optional customer-writable control store (WCS)

This chapter is divided into three sections. The first section discusses
processor hardware, functionality and example processor operation.
The second section discusses the programming characteristics of the
processing system from the user’s point of view. And the last section
looks at the processing system, but from an operating system
viewpoint.

HARDWARE ELEMENTS

The VAX-11/780 CPU is a fast, high-performance, 32-bit micropro-
grammed computer. The CPU derives its speed and performance
from the fact that it can handle several.independent functions simulta-
neously.

198

VAX-11/780 Central Processor

The CPU can process both 32-bit data and addresses while maintain-
ing the ability to manipulate:

e Bits (up to 32)

e Bytes

e Words

e | ongwords

e Quadwords

e 32 bit floating point (single precision)
e 64 bit floating point (double precision)
e Packed decimal (up to 31 digits)

e Character strings (up to 64 KB)

e Queues

Control Store

The control store is a read-only memory containing 4 K 96-bit micro-
words plus 3 parity bits per microword. The control store contains the
program that describes the operation and sequencing of the central
processing unit. It also contains the native, compatibility, and floating
point instruction sets. The control store contains a 96 bit buffer, en-
abling it to execute one microword while simultaneously fetching the
next.

Data Paths

The data path subsystem consists of four independent and parallel
sections used to process addresses and data specified by the
instruction set. The arithmetic section is used to perform both arithme-
tic and logical operations on data and addresses. The exponent and
sign section is used for fast exponent processing of floating point
instructions. The data shift and rotate section packs and unpacks
floating point and decimal string data. And finally, the address section
calculates virtual addresses for the translation buffer.

8 KB Two-Way Set Associative Memory Cache

The memory cache is the primary cache system for all data coming
from memory, including addresses, address translations, and instruc-
tions. The memory cache is an 8 KB, two-way set associative cache.

The memory cache also reduces the average time the processor waits
to receive main. memory data by reading eight bytes at a time from
main memory, and transferring four bytes to the CPU data paths, or
instruction buffer. Since the remaining four bytes are already avail-
able, the memory cache also provides pre-fetching. The cache memo-

199

VAX-11/780 Central Processor

ry system carries byte parity for both data and addresses for
increased integrity. Cache locations are allocated when data is read
from memory. When both of the possible locations for a particular
datum are already filled, one of the previously cached data is random-
ly replaced.

Address Translation Buffer

The address translation buffer is a cache of likely-to-be-used physical
address translations. It significantly reduces the amount of time spent
by the CPU on the repetitive task of dynamic address translation. The
cache contains 128 virtual-to-physical page address translations
which are divided into equal sections: 64 system space page transla-
tions and 64 process space page translations. Each of these sections
is two-way associative. There is byte parity on each entry for increased
integrity.

8 Byte Prefetch Instruction Buffer

The 8 byte instruction buffer improves CPU performance by prefetch-
ing data in the instruction stream. The control logic continuously fetch-
es data frorm memory to keep the 8 byte buffer full. It effectively elimi-
nates the time spent by the CPU waiting for two memory cycles where
bytes of the instruction stream cross 32-bit longword boundaries. In
addition, the instruction buffer processes operand specifiersin
advance of execution and subsequently routes them to the CPU.

24 KB Writable Diagnostic Control Store (WDCS)

The writable diagnostic control store consists of 2048 96-bit (24 KB)
control words plus three parity bits per control word. These locations
are used to contain basic instruction microcode, diagnostic micro-
code, and reserved space to accommodate future additions or im-
provements made by DIGITAL to the instruction set.

Processor Clocks

The VAX-11/780 processor contains a programmable realtime clock
and a time-of-year clock. The interval or realtime clock was designed
to permit the measurement of finely resolved variable intervals which
are identified by interrupts (i.e., scheduling, diagnostics, etc.). The
realtime clock is based upon a crystal oscillator with an accuracy of
0.01%, and a resolution of one usec. The time-of-year clock is used by
software to perform various timekeeping functions. Its major function
is to provide the correct time to the system after power failure or other
system interruptions.

Optional Floating Point Accelerator
The floating point accelerator is an optional high-speed processor

200

VAX-11/780 Central Processor

extension. When included in the processor, the floating point acceler-
ator executes the addition, subtraction, multiplication, and division
instructions that operate on single- and double-precision floating
point operands, including the special EMOD and POLY instructions in
both single- and double-precision formats. Additionally, the floating
point accelerator enhances the performance of 32-bit integer multiply
instructions.

The processor does not have to include the floating point accelerator
to execute floating point operand instructions. The floating point ac-
celerator can be added or removed without changing any existing
software.

When the floating point accelerator is included in the processor, a
floating point operand register-to-register add instruction takes as
little as 800 nanoseconds to execute. A register-to-register multiply
instruction takes as little as one usec. The inner loop of the POLY
instruction takes approximately one usec per degree of polynomial.

Optional KE780 Extended Floating Point Data Types

For applications which require extended decimal digit precision, the
optional G-floating (double precision) and H-floating (quadruple pre-
cision) data points are available to provide up to 33 decimal digit
accuracy.

Optional 24 KB Customer Writable Control Store (WCS)

The user writable control store consists of 2048 96-bit (24 KB) control
words plus three parity bits per control word (if the KE780 option is not
present). These locations are optionally available to the customer for
augmenting the speed and power of the basic machine with custom-
ized functions.

Figure 14-1 illustrates the central processing unit.

PROCESSOR OPERATION

For those interested in the hardware operations and interfaces of the
VAX-11/780 CPU elements, the execution of a sample piece of code is
described below. A FORTRAN IV DO LOOP is first expanded into its
VAX-11 MACRO equivalent, and then into the VAX-11/780 machine
specific implementation. For the purposes of this description, virtual to
physical translation values, although valid, have been assumed.

Example: FORTRAN IV DO LOOP

J=0
Do1001=1,10
100 J=J+ N(l)

201

VAX-11/780 Central Processor

Hun Buissanoud [eiusn ayl

Lt 8inbi4

IDOVAAIINI 185 WO¥S AINO ¥344N8 NOILINUISNI OL NOILYWYOSNI o0
33015 TO¥INOD DILSONOVIA F1BVLIHM ~SOaM ¥OLV¥313DV
SIDINQ 33015 TO¥INOD 318VLEM-SOM oNILRd
snaINn 3YOLS TO¥INGD AYOWIW AINO QVIY J19VWWYIOONd - Sd «
T
I
¥l1dvav SN8 1LISONDVIA !
SNEINN SnEINN I S Lfllllllllpn
| " _
|
| ¥344n8 ERLAE NN asia
$321A30 | NOLLONYLSNI nd> AddOM
SnESSYW |
saLdvay vsoam somsod| | | m
e i 335n3no3sowiw [| , E
SNAsSYW J0uiNOd| | =
| o
t | suausion | £ o
Y DU — [TYNY3LNt ” ® SISONSVIJ
"LINA 1901 g < oWy
R | 7 /DILAWHLIY z
195 | 2
- b3 TI08 INO: (Qw) sne |viva A¥owaw |
SOW AOWIW |
|
b —
¥344n8 TWNIWYIL
JHIVD VIVD NOILVISNVAL 1-181 FI0SNOD
W3LSASSNS O/1 305530084 TV4INID T W3LSASENS 3TOSNOD

202

VAX-11/780 Central Processor

VAX MACRO EXPANSION

1000
1002
1005
1$:
100B
1FFC
N:

CLRL RO
MOVL #1,R1
ADDL2 N<R1>, RO

AOBLEQ #10,R1,1$

.BLKL

11

CENTRAL PROCESSOR IMPLEMENTATION

CPU
Component

ALU,R
B

Cache

SBI

Cache

(1B)

ALU,R
ALU,R
(IB asks
Cache for

more

ALU,R
ALU,R
(1B asks
Cache for
more)
SBI

ALU,R

Operation

1000 — PC
Translate virtual 1000 to physical 1F600

Does Cache presently contain address 1F6007?
(NO) therefore,

Fetch 1F600-1F607 from memory

Store address range 1F600-1F607 and corre-
sponding contents in Data Cache

Obtain instructions from physical addresses
1F600-1F603

Ask IB for instruction -- (CLRL)
Clear RO

IB retrieves physical addresses 1F604-1F607
from Cache

Ask IB for next instruction -- (MOVL)

Ask IB for destination specifier -- (R1)

Cache asks SBI for 1F608

Asks memory for physical addresses 1F608-
1F60F

Store 1in R1

203

ALU,R
ALU,R
ALU,R

B

Cache

SBI

SBI

B

Cache

SBI

Cache
ALU,R
ALU,R

(IB asks
for 1F60C)
ALU,R
ALU,R

(1B asks for
more data)
ALU,R
ALU,R

ALU, R
1B

ALU,R

VAX-11/780 Central Processor

Ask IB for next instruction -- (ADDL2)
Calculate base address of N (virtual 1FFC)

Adds 4*R1 to address of N to yield virtual address
2000

Look up address of N[1] : physical address A0O

Searches for physical address A00O, but finds it
not there, therefore,

The SBI enters a wait mode because it is currently
completing the fetch operation of physical ad-
dresses 1F608-1F60F

Finishes the prefetch operation of physical ad-
dresses 1F608-1F60F

Grabs 1F608-1F60B

Gets 1F608-1F60F

Starts fetch of physical addresses A00-A07
Gets A00-A07

A00-A03

Asks IB for destination specifier (R6)

Cache sends 1F60C-1F60F to IB
Add (A00-A03) (i.e., N[1]) to RO
Ask IB for instruction (AOBLEQ)

Cache asks SBI to get 1F610 from memory
Asks IB for next specifier (R1)

Add 1to R1, compare to 10, if less than or equal
to 10 then branch

Flush (clear) IB, load virtual 1005 into PC

Fetch 1005 from cache (resumption of loop)

Ask IB for next instruction (ADDL2)

204

SBI

Cache

ALU,R

ALU,R

VAX-11/780 Central Processor

Memory data (1F610) arrives
Takes data, but IB doesn’t grab it

on the 11th-increment,

Add 1to R1, compare to 10, now however R1 =
11 and do not branch, but fall through to the next
instruction

Ask IB for next instruction

205

206

CHAPTER 15

SYNCHRONOUS BACKPLANE INTERCONNECT

FEATURES

200 nanosecond cycle time

Distributed arbitration

16-level silo

Maintenance registers

INTRODUCTION

BENEFITS

Allows throughput rate of up to
13.3 million bytes per second

Signals need travel the length of
the SBI only once, providing in-
creased speed

Monitors SBI activity and con-
tains a history of the 16 most re-
cent cycles of bus activity

Help determine the cause of
bus specific errors

The Synchronous Backplane Interconnect (SBI) is the data path that
links the central processor, the memory subsystem, and the hardware
adapters provided for the UNIBUS and MASSBUS. The VAX-11/780
bus structure is illustrated in Figure 15-1.

CPU

§:

MEMORY

()

< SYNCHRONOUS BACKPLANE INTERCONNECT >

UNIBUS
ADAPTER

UNIBUS

UNIBUS
DEVICES

Figure 15-1

()

MASSBUS
ADAPTER

K MASSBUS

MASSBUS
DEVICES

Basic Bus Configuration

207

Synchronous Backplane Interconnect

When interfaced to the SBI, the central processor, memory subsys-
tem, and I/0 controllers are known as NEXUSs.

A NEXUS is a physical connection to the SBI and is capable of acting
as any of the following:

Commander — A NEXUS which transmits command and ad-
dress information.

Responder — A NEXUS which recognizes command and ad-
dress information as directed to it and requiring a response.
Transmitter — A NEXUS which drives the signal lines.

Receiver — A NEXUS which samples and examines the signal
lines.

A NEXUS also performs priority arbitration for its access to the SBI.

A NEXUS may perform more than one function, as illustrated in the
two following examples.

When the CPU issues a read command it is a commander because it
issues command/address information. At the same time it is a trans-
mitter because it is driving the signal lines. When the device
(responder) returns the requested data, the CPU is considered a re-
ceiver because it examines the signal lines.

In the case of a memory read exchange, memory is the responder
because it recognizes and responds to command/address informa-
tion. Also, because it examines the signal lines, it is a receiver. When
memory returns the requested data by driving the signal lines, itis a
transmitter.

All NEXUSs receive every SBI transfer. Logic in each NEXUS deter-
mines whether the NEXUS is the designated receiver for a particular
transfer.

Data may be exchanged between the following system elements:

e The central processor and memory subsystem

@ |/0 controllers and memory subsystem

e Central processor and I/0 controllers

The communication protocol allows the information path to be time-

multiplexed in such a way that up to 32 data exchanges may be in
progress simultaneously.

The SBI provides checked, parallel information transfer synchronous
with a common system clock. In each clock period or cycle (duration
of 200 nsec) interconnect arbitration, information transfer and transfer
confirmation may occur. Utilizing the 200 nsec clock period, the SBI
achieves a maximum information transfer rate of 13.3 million bytes per
second.

208

Synchronous Backplane Interconnect

SBI STRUCTURE

The SBI is comprised of 84 signal lines as illustrated in Figure 15-2. Its
maximum physical length may not exceed 3 meters (9.8 ft). The lines
of the SBI are divided into the following functional groups:

e Arbitration

® |nformation

® Response

e |nterrupt

e Control

ARBITRATION

TR<15:00>

INFORMATION TRANSFER

P<1:0> (PARITY)

TAG<2:0> (TAG)

ID<4:0> (IDENTIFIER)

M<3:0> (MASK)

B<31:00> (INFORMATION)

RESPONSE
FAULT

TRANSMIT/ TRANSMIT/

RECEIVE CNF<1:0> (CONFIRMATION)

ST T 5
N 4\7\/\/\/\} V4

RECEIVE

NEXUS CONTROL NEXUS
UNJAM

FAIL

DEAD

INTLK (INTERLOCK)

< CLOCK (6 LINES)

INTERRUPT REQUEST

K REQ <7:4> (REQUEST)

ALERT

< MP1-2
<r SPARE (2 LINES)

Figure 15-2 SBI Signal Description

\AVE AV

209

Synchronous Backplane Interconnect

Arbitration Lines

There are 16 bus arbitration lines. Each arbitration line, TR (transfer
request) <15:01>, is assigned to one NEXUS, thereby establishing a
fixed priority access to the information path (refer to Figure 15-3).
Access priority increases from TR15 to TR0O, where TROO is reserved
for use as a hold signal for the following reasons:

1. NEXUS requires two or three adjacent cycles for a Write type

exchange.

2. NEXUS requires two adjacent cycles for an Extended Read ex-
change.

3. Central processors for Interrupt Summary Read exchanges.

4. TROOis reserved for an SBI UNJAM operation.

- HOLD LINE

- MEMORY CONTROLLER #1
- MEMORY CONTROLLER #2
- UNIBUS ADAPTER

* \RESERVED FOR
e (FUTURE USE

wn —~0O

-4

- MASSBUS ADAPTER # 1
9 - MASSBUS ADAPTER #2
- MASSBUS ADAPTER #3
11 - MASSBUS ADAPTER #4

- \RESERVED FOR
- (FUTURE USE

INCREASING PRIORITY
=3

CENTRAL PROCESSOR

Figure 15-3 SBI Priority Access

To acquire control of the information path, a NEXUS asserts its
assigned (transfer request) line at the beginning of a cycle.

At the end of a cycle, the NEXUS examines the state of all transfer
request lines of higher priority. If no higher priority NEXUS is arbitrat-
ing for control of the SBI, the NEXUS will remove its transfer request
and assert information path signals. The lowest priority NEXUS arbi-
trating for control of the SBI is the central processing unit. The CPU
does not require a transfer request signal, because by default it will
gain control of the SBI when no higher priority NEXUS is arbitrating.

Information Lines
The information transfer group exchanges command/addresses, da-
ta, and interrupt summary information. Each exchange consists of one

210

Synchronous Backplane Interconnect

to three information transfers.

For write commands, the commander uses two or three successive
SBI cycles. The number of successive cycles required depends on
whether one or two data words are to be written in the exchange. In the
first case, the commander transmits the command/address in the first
cycle, and a data word in the second cycle. In the second case, the
commander transmits the command/address in the first cycle, data
word 1 in the second cycle, and data word 2 in the third cycle.

Read commands are also initiated with a command/address transmit-
ted from the commander. Because data emanates from the
responder, the requested data may be delayed by the characteristic
access time of the responder. As in a write exchange, the read ex-
change will transmit data using one or two successive cycles depend-
ing on whether one or two data words were requested.

An interrupt summary exchange is in response to a device-generated
interrupt to the CPU. The exchange is initiated with an interrupt sum-

“mary read transfer from the CPU. The exchange is completed two
cycles later with an interrupt summary response transfer containing
the interrupt information.

The information Transfer Group is subdivided into the following five
fields:

Field Length in Bits
Parity check 2(P<1:0>)
Information Tag 3(TAG<2:0>)
Source/Destination Identity 5(ID<4:0>)
Mask 4(M<3:0>)
Information 32(B<31:00>)
PARITY FIELD

The parity field (P<1:0>) provides even parity for detecting single bit
errors in the information transfer group. A transmitting NEXUS gener-
ates PO as parity for the tag. indentifier, and mask fields and P1 as
parity for the Information field. The parity field is illustrated in Figure
15-4.

PO and P1 are generated in such a way that the sum of all logical one
bits in the checked field, including the parity bit, is even.

When the SBl is idle, the information transfer path assumes an all-zero
state. Therefore, the parity field should always carry an even parity.

TAG FIELD
The tag field (TAG<2:0>) is asserted by a transmitting NEXUS to

211

Synchronous Backplane Interconnect

| 1

I N\ - Y
P1 | PO
PARITY TAG IDENTIFIER MASK INFORMATION FIELD J
FIELD FIELD FIELD FIELD
N v
— T)
P<1:0> TAG<2:0> 1D<4:07> M<3:0> B<31:00>
—_—
COMMAND FORMAT
FUNCTION ADDRESS
FIELD FIELD
N _X]
F<3:0> A<27:00>

Figure 15-4 Party Field Configuration

indicate the information type being transmitted on the information
lines. The tag field determines the interpretation of the ID and B fields.
In addition, the tag field, in conjunction with the mask field, further
defines special read and write data conditions.

Four tag fields and four reserved fields are defined as:

TAG<2:0> B<31:00> contents

000 READ DATA

011 COMMAND ADDRESS

101 WRITE DATA

110 INTERRUPT SUMMARY READ

The remaining tag fields, 001, 010, 100, and 111, are reserved.
® Read Data Tag

A tag field content of 000 specifies that the information field B<31:00>
contains data requested by a previous read type command. The
retrieved data may be one of three types: read data, corrected read
data, and read data substitute. The retrieved data type is identified by
the mask field M<3:0>. Read data is the normal expected error-free
data type, where M<3:0> = 0000. Corrected read data (CRD) is rep-
resented by M<3:0> = 0001, and read data substitute is represented
by M<3:0> = 0010. The recipient of the read data is designated by
ID<4:0>. The read data tag formats are illustrated in Figure 15-5.

212

Synchronous Backplane Interconnect

I B<31:00>

‘P) ‘ POI 000 ‘REC?{,"TEANT} 0000 I READ DATA FORMAT
_ N —
PARITY <IZO>—J
TAG <2:0>
1D <4:0>
MASK<3:0
READ DATA <31:00>
lr— B<31:00> jl
F»]Pol 00 REC!PIENT‘ 0001 | CORRECTED READ DATA FORMAT J
__ N —
parity <1:0>— 4
TAG <2:0>
D <4:0>
MASK<3:0>
READ DATA <31:00
i= 8<31:00> Ai
Pl PO‘ 000] DATA ‘ 0010 ’ SUBSTITUTE READ DATA FORMAT }
RECIPIENT
[N >
PARITY <1:0> — 4
TAG <2:0>
D <4:0>
MASK <3:0>

READ DATA <31:00>

Figure 15-5 Read Data Tag Formats

e Command/Address Tag

A tag field content of 011 specifies that the data lines contain a com-
mand/address word, and that ID<4:0> is a unique code identifying
the logical source (commander) of that command. As illustrated in
Figure 15-6, B<31:00> is divided into a function field and an address
field to specify the command and its associated address.

The ID field code represents the logical source of the data in a write
command, and the address field specifies the address of where the
data is to be written. For a read command, the ID field represents the
logical destination of the data at the location specified in the address
field.

The 28 bits of the address field define a 268,435,456 longword address
space (1,073,741,824 bytes) which is divided into two sections. Ad-
dresses 0-7FFFFFF (hex) (A27=0) are reserved for primary memory.
Addresses 8000000 (hex) - FFFFFFF (hex) (A27 = 1) are reserved.for

213

Synchronous Backplane Interconnect

B<31:00>
N

— -~
TAG 1D MASK FUNCTION ADDRESS
TAG<2:0> ID<4:0> M<3:0> F<3:0> A<27:00>

TAG<2:0> = 011 = COMMAND/ADDRESS FORMAT
ID<4:0> = LOGICAL COMMAND SOURCE

M<3:0> = COMMAND DEPENDENT

F<3:0> = COMMAND CODE

A<27:00> = READ/WRITE, ADDRESS OF INTENDED NEXUS

Figure 15-6 Command/Address Format

device control registers. Primary memory begins at address 0. The
address space is dense and consists only of storage elements. Figure
15-7 illustrates the VAX-11/780 physical address space. Note that
both physical and SBI addresses are provided.

The user has access to the physical address space via the 30-bit
physical byte address. However, because NEXUS registers are acces-
sible only as longword addresses, system hardware converts the
physical byte address (30 bits) to the SBI longword address (28 bits).
This translation is described in Figure 15-8.

The low order two bits of the physical to SBI translation are not lost,
but are represented by the mask field adjoining the SBI command
address format.

The control address space is sparse with address assignments based
on device type. Each NEXUS is assigned a 2048, 32-bit longword
address space for control and status. The addresses assigned are
determined by the TR number as shown in Figure 15-9.

The command/address tag formats are illustrated in Figure 15-10.
e Write Data Tag

A tag field content of 101 specifies that B<31:00> contains the write
data for the location specified in the address field of the previous write
command. The write data will be asserted on B<31:00> in the SBI
cycle immediately following the command/address cycle. The ID field
transmitted is that of the commander. Figure 15-11 illustrates the write
data tag format.

e Interrupt Summary Tag

A tag field content of 110 defines B<31:00> as the interrupt level
mask for an interrupt summary read command. The level mask
(B<07:04>) is used to indicate the interrupt level being serviced as the
result of an interrupt request. In this case, the ID field identifies the

214

Synchronous Backplane Interconnect

28-BIT SBL

LONGWORD 30-BIT PHYSICAL
ADDRESSES BYTE ADDRESSES

000 0000 0000 0000 1-4M BYTE }MEMORY CONTROLLER 1
1-4M BYTE } MEMORY CONTROLLER 2
MEMORY
ADDRESS
7FF FEFF \FEF _FEFF SPACE
800 0000 2000 0000 | g0 8K BYTES| |
800 0800 2000 2000 | g, 8K BYTES
800 1000 7000 4000 | 1p4 8K BYTES
ADAPTOR OR
800 1800 2000 6000 | 1p3 8K BYTES NEXUS REGISTER
, , ADDRESS SPACE
, ! A TOTAL OF
! ! 128 K BYTES
l |
| |
800 7000 2001 C000 TR 8K BYTES
800 7800 2001 EOOO | 1py5 8K BYTES
S
128K RESERVED
ADDRESS SPACE
804 0000 2010 0000 | yNIBUS O ADDRESS SPACE
805 0000 2014 0000 THE UNIBUS ADAPTOR
UNIBUS 1 ADDRESS SPACE | | THE UNIBUS ADAPTS
806 0000 2018 0000 | yniBUS2 ADDRESS SPACE | [SN QF THESE
807 0000 210C 0000 | yNiBUS 3 ADDRESS SPACE
FFF FFFF 3FFF FFFF

Figure 15-7 = SBI Physical Address Space

215

Synchronous Backplane Interconnect

VIRTUAL ADDRESS FOR OPERAND OR INSTRUCTION REFERENCE

31 3029

98 210

N N N
2eim R N
B N VIRTUAL ADDRESS N
10 =5Ys N BITS B:2 ARE
1 1 = RESERVED \ ALWAYS PHVSICAL \
\ ADDRESS \
\\<B 2> \
N
TRANSLATED FROM N N
TRANSLATION BUFFER N N
N \
31 30 2726 25 21 20 0 \8 210
177
LONGWORD [
Ivl PROT IMI o PAGE FRAME NUMBER [R GAGE .ll |
P e 7 -
7 i -~
4 G e
4 e e
L/ P 7 BITS ONE
, ya 7" AND ZERO
. oA s ARE USED TO
< ALIGN DATA
ADDRESS 177 READ BACK
CPU PHYSICAL | 1 BUT ARE NOT
ADDRESS BUS _J_J RELEVANTAS
\ \ FAR AS MEMORY
\ \ 1S CONCERNED

\
\
\
\

\27

ADDRESS
ON SB%

BIT 29 BECOMES BIT 27 ON SBI BECAUSE MEMORY IS LONGWORD ORIENTED AND

FETCHES ARE QUADWORDS

Figure 15-8 Physical to SBI Address Translation

27 26

SPECIFIES ONE OF THE
SPECIFIES ONE 2048 LOCATIONS
OF 16 NEXUS ASSIGNED TO EACH NEXUS

— A

15 14 11 10 00

MUST
BE ZERO

———

TR# REGISTER |
(ADDRESS ADDRESS |
SPACE

BLOCK)

~N
A<27:00>

Figure 15-9 Control Address Space Assignment

216

Synchronous Backplane Interconnect

1CA| [l
PY|PO| O E%ﬁ'ﬁ'“hojﬁgﬁ% 0001
\I/
— N
pARITY <1:0> ——*

TAG <2:0>
1D <4:0>
MASK <3:0>
FUNCTION<3:0>
PHYSICAL ADDRESS < 27:00>

READ MASKED FORMAT—
READ DATA AT THIS ADDRESS

L

READ INTERLOCKED MASKED FORMAT-
READ DATA AT THIS ADDRESS

N —

PARITY <1:0> ———f

TAG <2:0>
ID<4:0>
MASK<3:0>—

FUNCTION<3:0>
PHYSICAL ADDRESS <27:00 >

READ EXTENDED FORMAT-
READ DATA AT THIS ADDRESS

[N J
PARITY <1:0>
TAG <2:0>
1D <4:0>

MASK <3:0 > —{IGNORED BY MEMORY

FUNCTION <3:0>
PHYSICAL ADDRESS <27:00>

TATION
PI | PO| 011 RRTONGY Jtoco

' B<31:00>
B<31:28 I 8<27:00>
PL{PO| O OF 00010 WRITE MASKED FORMAT-
R T VRITE ADDRESS WHERE DATA IS TO BE WRITTEN

N N)
paRITY <1:0> 4
TAG <2:0>

1D <4:0
MASK <3:0>
FUNCTION <3:0
PHYSICAL ADDRESS <27:00>

| B<31:00>

B<31:28 }_ B<27:00>
[
RV G- 10111
RITE DATA ATA
L
PARITY <1:0>
TAG <2:0>

ID <4:0>
MASK <3:0>
FUNCTION <3:0>
PHYSICAL ADDRESS <27:00>

Figure 15-10 Command/Address Tag Formats

WRITE_ MASKED INTERLOCKED FORMAT-
ADDRESS WHERE DATA 1S TO BE WRITTEN

-

217

Synchronous Backplane Interconnect

| B<31:00>
B<31:285 }- B<27:00>
LOGICAL NDICA
LOGREE" [STAGNG: | 1011 | WRITE EXTENDED FORMAT- N J
ﬂmm ADDRESS WHERE DATA IS TO BE WRITTE
- N /)
PARITY <1:0> ——3
TAG <2:0>
1D<4:0>
MASK <3:0>
FUNCTION<3:0>
PHYSICAL ADDRESS <27:00>
T : T l
FTPOI]OI}:OMMANDER‘:':':’I BYTE 3 ' BYTE 2 ‘ BYTE | | BYTE O
T

1D <4:0>
MASK<3:0>
WRITE DATA <31:00>

[[N —
PARITY <1:0> ———
TAG <2:0>

* MASK=1 IF THAT PARTICULAR BYTE IS TO BE WRITTEN

Figure 15-11 Write Data Tag Format

commander, which is the CPU. Although unused, M<3:0> is to be
transmitted as zero.

The interrupt sequence consists of two exchanges:

The first exchange indicates the interrupt level being serviced. The
interrupt level is determined as follows:

If the I/0 controller asserts interrupt

If CPU strobes the interrupt, and if level 7

is the current level, interrupt code is

called which performs the Interrupt Service
Request.

The second exchange is the response, where the device requesting
the interrupt identifies itself. From the identity of the device and the
interrupt level, the starting address of the service routine can be deter-
mined.

Figure 15-12 illustrates the interrupt summary tag format.

218

Synchronous Backplane Interconnect

EQUEST
P1 |PO| 110 [SOURCE [0000 |0 O[LEVEL 10000
322 1
2722
_
PARITY <1:0> ¢
TAG <2:0>
ID <4:0>
MASK <3:0>
REQUEST LEVEL<3:0>
2]6 20

Pl 0 g

[
PARITY <1:0> ——
TAG <2:0>

ID<4:0>
MASK<3:0>
VECTOR GENERATING PAIR

Figure 15-12 Interrupt Summary Tag Format

e Reserved Tags

Tag (<2:0>=111) is reserved for diagnostic purposes. Tag codes 001,
010, and 100 are unused and reserved for future definition.

SOURCE/DESTINATION IDENTITY FIELD

The ID field (ID<4:0>) contains a code which identifies the logical
source or logical destination of the information contained in B<31:
00>. ID codes are assigned only to commander and responder NEX-
USs (which issue/recognize command/address information). Each
NEXUS is assigned an ID code which corresponds to the TR line which
it operates. For example, a NEXUS assigned TR05 would also be as-
signed ID code=5.

MASK FIELD

The mask field (M<3:0>) has two interpretations. In the primary inter-
pretation, M<3:0> is encoded to specify operations on any or all bytes
appearing on B<31:00>. The mask is used with the read masked,
write masked, interlock read masked, interlock write masked, and
extended write masked commands. As shown in Figure 15-13 each bit
in the mask field corresponds to a particular byte of B<31:00>.

As previously mentioned, the secondary interpretation is used when
Tag<2:0>=000 (read data). Figure 15-14 illustrates the read data
mask field.

219

Synchronous Backplane Interconnect

SELECTS BYTE(S) FOR AN OPERATION

e

|NFORMATION J COMMAND /ADDRESS

OR WRITE DATA

[r [we [=]]]

WiiN

1BYTE 3 'BYTE 2 BYTE 1 BYTE OJ ADDRESS LONGWORD LOCATION

MASK AS BYTE SPECIFIER

Figure 15-13 Mask Field Format

SCRIBES DATA
/DE CRIBES D DATA DESCRIBED

3 210 DATA LONGWORD

[e ToJIIT T T [Jwwosm

READ DATA -DATA IS CORRECT
CORRECTED READ DATA-DATA HAD A ONE-BIT ERROR WHICH HAS BEEN CORRECTED
READ DATA SUBSTITUTE-DATA CONTAINS AN UNCORRECTABLE ERROR

MASK AS DATA INTEGRITY SPECIFIER

Figure 15-14 Read Data Mask Format

Response Lines

There are three response lines, broken down into two fields: confirma-
tion CNF<1:0> and Fault (FAULT). CNF<1:0> informs the transmitter
whether the information was correctly received, or if the receiver can
process the command. FAULT is a cumulative error indication of pro-
tocol or information path malfunction, and is asserted with the same
timing as the confirmation field. The CPU latches the fault signal,
which in turn latches all the fault status registers and the SBI silo. The
silo is a hardware mechanism used to record the last 16 SBI transac-
tions. The silo aids in rapid error detection. The fault is then cleared by
the software. '

Either field is transmitted to the receiver two cycles after the associat-
ed information transfer. Confirmation is delayed to allow the informa-
tion path signals to propagate, be checked, be decoded by all receiv-
ers, and to be generated by the responder. During each cycle, every
NEXUS in the system receives, latches, and makes decisions on the
information transfer signals. Except for multiple bit transmission

220

Synchronous Backplane Interconnect

errors or NEXUS malfunction, one of the NEXUSs receiving the infor-
mation path signals will recognize an address or ID code. This Nexus
then asserts the appropriate response in CNF. The confirmation codes
and their definitions are listed in Table 15-1.

Table 15-1 Confirmation Code Definitions

CNF Code Definitions

00, No Response (N/R) The unasserted state indicates no response
to a commander’s selection.

01, Acknowledge The positive acknowledgement to any
(ACK) transfer.
10, Busy (BSY) The response to a command/address

transfer, and indicates successful selection
of a NEXUS which is presently unable to
execute the command.

11, Error (ERR) The response to a command/address
transfer. Indicates selection of a NEXUS
which cannot execute the command.

A BSY (10) or ERR (11) response to transfers other than com-
mand/address transfers will be considered as no response from the
transmitter.

Interrupt Request Lines

The interrupt request group consists of four request-lines (REQ <7:
4>) and an alert (ALERT) line. A request line is assigned to each
NEXUS that interrupts and represents its assigned CPU interrupt level.-
The lines are used by NEXUS to invoke a CPU to service a condition
requiring processor intervention. The request lines are priority encod-
ed in an ascending order of REQ4-REQ7. A requesting NEXUS asserts
its request lines synchronously with the SBI clock to request an inter-
rupt. Any of the REQ lines may be asserted simultaneously by more
than one NEXUS, and any combination of REQ lines may be asserted
by the collection of requesting NEXUSs.

The alert signal is asserted by NEXUSs which do not implement inter-
rupt request lines. Its purpose it to indicate to the CPU a change in
NEXUS status of power condition or operating environment. NEXUSs
which implement the REQ lines report these changes by requesting an
interrupt.

221

Synchronous Backplane Interconnect

Control Lines

The control group functions synchronize system activities and provide
specialized system communications. The group includes the system
clock which provides the universal timebase for any NEXUS
connected to the SBI. The group also provides initialization, power fail,
and restart functions for the system. In addition, a path is provided for
coordinating memories to assure access to shared structures.

The control lines are comprised of the following subgroups: clock
functions, interlock line, dead signal function, fail function, and the
UNJAM function.

CLOCK FUNCTIONS

Six control group lines are clock signals and are used as a universal
time base for all NEXUSs connected to the SBI. All SBI clock signals
are generated on the CPU clock module and provide a 200 nsec clock
period.

INTERLOCK LINE
The interlock line will be discussed in the command code description
section.

DEAD SIGNAL FUNCTION

The Dead signal indicates an impending power failure to the clock
circuits on bus terminating networks. NEXUSs will not assert any SBI
signal while Dead is asserted. Thus, NEXUSs prevent invalid data from
being received while the bus is in an unstable state.

The assertion of the power supply DS LO to the clock circuits or
terminating networks causes the assertion of Dead. Dead is asserted
asynchronously to the SBI clock and occurs at least two usec before
the clock becomes inoperative. With power restart, the clock will be
operational for at least two usec before DC LO is negated. The nega-
tion of DC LO negates Dead.

FAIL FUNCTION

A NEXUS asserts the Fail (FAIL) function asynchronously to the SBI
clock when the power supply AC LO signal is asserted to that NEXUS.
The assertion of Fail inhibits the CPU from initiating a power up ser-
vice routine. Fail is negated asynchronously to the SBI clock when all
NEXUSs that are required for the power up operation have detected
the negation of AC LO. The CPU samples the Fail line following the
power down routine (assertion of FAIL) to determine if the power down
routine should be initiated.

222

Synchronous Backplane Interconnect

UNJAM FUNCTION

The UNJAM function restores (initializes) the system to a known, well-
defined state. The UNJAM signal is asserted only by the console of the
CPU, and is detected by all NEXUSs. The CPU asserts UNJAM only
when a console key is selected. The duration of the UNJAM pulse is 16
SBl cycles and is negated at TO.

When the CPU intends to assert UNJAM it will assert TROO for 16 SBI
cycles. The CPU will continue to assert TROO for the duration of UN-
JAM and for 16 SBI cycles after the negation of UNJAM. This use of
TROO insures that the SBI is inactive preceding, during, and after the
UNJAM operation.

COMMAND CODE (Function 3:0) DESCRIPTION

Information bits B<31:00> carry most of the information on the SBI.
Information appears on these lines in command/address format, data
format, interrupt summary read format, or interrupt summary re-
sponse format. In command/address format, information is grouped
in three fields: M<3:0>, the byte mask: {<3:0>, the function code; and
A<27:00>, a 28-bit physical address. Function codes are shown in
Figure 15-15. Bit 27 of the SBI address field determines whether the
longword address A <27:00> is located in memory or I/O space (refer
to Chapter 17, Figure 2).

Read Mask Function (F=0001)

Once the commander has arbitrated for and gained control of the SBI,
it asserts the information transfer lines at TO. The receiver latches
open at T2 and closes at T3. Information in these latches is stable from
T3tothenext T2.

The command/address format instructs the NEXUS selected by
A<27:00> to retrieve the addressed data word, and transfer it to the
logical destination specified in the ID field. The addressed NEXUS will
respond to the command/address transfer with ACK (assuming the
NEXUS can perform the command at this time) two SBI cycles after
the assertion of command/address. Figure 15-16 illustrates the SBI
read function.

Write Masked Function (F=0010)

The write masked function instructs the NEXUS selected by A<27:00>
to modify the bytes specified by M<3:0> in the storage element ad-
dressed by A<27:00>, using data transmitted in the next succeeding
cycle. Figure 15-17 illustrates a single SBI write transaction while Fig-
ure 15-18 illustrates two SBI write transactions from devices A and B.

223

Synchronous Backplane Interconnect

MASK FUNCTION | ADDRESS
M<3:0> F<3:0> A<27:00>
MASK FUNCTION FUNCTION
USE CODE DEFINITION
IGNORED 0000 RESERVED
USED 0001 READ MASKED
USED 0010 WRITE MASKED
IGNORED 0011 RESERVED
USED 0100 INTERLOCK READ MASKED
IGNORED 0101 RESERVED
IGNORED 0110 RESERVED
USED 0111 INTERLOCK WRITE MASKED
IGNORED 1000 EXTENDED READ
IGNORED 1001 RESERVED
IGNORED 1010 RESERVED
USED 1011 EXTENDED WRITE MASKED
IGNORED 1100 RESERVED
IGNORED 1101 RESERVED
IGNORED 1110 RESERVED
IGNORED 1111 RESERVED
Figure 15-15 SBI Command Codes
SBI
ACTIVITY I EVENTS P
| -
ARBITRATION CRCaORE NGk
CONTROL CONTROL
COMMAND
INFORMATION DATA
TRANSFER “(‘;Eiﬁ“ (10 A)
MASK)
CONFIRM CONFIRM
CONFIRMATION (BY (BY A)
MEMORY)

200 nsec __.l—_l-fsm CYCLE

Figure 15-16 SBI Read Transaction

224

Synchronous Backplane Interconnect

SBL
ACTIVITY | EVENTS o
! Lol
ACQUIRE
ARBITRATION conTROL HOLD
WRITE
MASK
lT'\pleoy\?sN;A;ION COMMAND DATA
ANSFE ADDRESS
(C/A)

CONFIRM | CONFIRM

CONFIRMATION (C/A) (DATA)
| | | | | | TIME
| T f T T T
- 200nsec
SBI CYCLE
.]
SBI TRANSACTION
Figure 15-17 Single SBI Write Transaction
SBI
ACTIVITY 1 EVENTS
ARBITRATION A HOLDA B HOLDB
WRITE WRITE
INFORMATION coisko] oATA |commann| DATA
TRANSFER ADDRESS A | ADDReSS 8
A B
CONFIRM | CONFIRM | CONFIRM | CONFIRM
CONFIRMATION (C/A-A) |(DATA -A) | (C/A~ B) |(DATA-B)
1 | | | 1 Il | | Tlﬁ

T T
200 nsec
SBI CYCLE

Figure 15-18 Two SBI Write Transactions

225

Synchronous Backplane Interconnect

Interlock Read Masked (F=0100)

This command, used to insure exclusive access to a particular memo-
ry location, causes the NEXUS selected by A<27:00> to retrieve and
transmit the addressed data as for Read Masked. In addition, this
command causes the selected memory controller NEXUS to set an
Interlock flip-flop. Only memory NEXUSs have the ability to assert
Interlock. While this flip-flop is set, the NEXUS will assert the INTLK
signal synchronously at time TO. Interlock is asserted during the same
cycle as the confirmation signal. In the preceding cycle, the comman-
der must assert Interlock. While the INTLK signal is asserted, the
NEXUS will respond with BSY confirmation to Interlock read masked
commands. The Interlock flip-flop is cleared on receipt of an Interlock
write masked function. Interlock read masked and Interlock write
masked are always paired by commanders utilizing them.

Interlock Write Masked (F=0111)

The Interlock write masked function instructs the NEXUS selected by
A<27:00> to modify the bytes specified by M<3:00> in the storage
element addressed, using data transmitted in the succeeding cycle
with TAG=101. Additionally, the Interlock flip-flop is cleared.

Extended Read (F=1000)

The Extended Read function instructs the NEXUS selected by A<27:
00> to retrieve the addressed 64-bit data and transmit it to the ID
accompanying the command as in the read masked function. The
responder transmits the data in two successive cycles with the low 32
bits (A00=0) preceding the high 32 bits (A00=1). Two data words are
always transmitted. M<3:0> must be transmitted as 0000 by the com-
mander. Figure 15-19 illustrates extended read transactions by two
separate devices, A and B, reading memory via a single memory con-
troller.

Figure 15-20 illustrates extended read transactions by two separate
devices, A and B, reading memory via separate memory controllers,
M1 an M2.

Extended Write Masked (F=1011)

The Extended Write Masked function instructs the NEXUS selected by
A<27:00> that 64 bits of data are to be written. The receiver ignores
A00 of the command/address transfer. A<27:00> indicates the low 32
bit word address. The write data is transmitted in two 32 bit words. The
first word corresponds to AO0=0 and the second word corresponds to
A00=1. M<3:0> that accompanies the command address transmis-
-sion indicates bytes to be written in the first write data word. M<3:0>

226

Synchronous Backplane Interconnect

se1
ACTIVITY | EVENTS >
ARBITRATION A B MEMORY| HOLD Memory| HoLD
EXT EXT
INFORMATION READ | READ DATA | DATA DATA | DATA
TRANSFER cm |
A 8 (10 4 | (10 A) (o 81 | (10 8)
|conERM coneiRM IcONFIRMICONERM [cONFIRMCONERM|
CONFIRMATION {10 4) [(10 8) By A)|BY A) (oY 8) | (oY 8)
| | | } | L | I It | } T

_4 . 2000smc
SBI CYCLE

Figure 15-19 Extended Read Transactions Via Single Memory

Controller
ACTIVITY | EVENTS -
, >
ARBITRATION A B My HOLD M2 HOLD
INFORMATION weno | AeAp M| M Mg M
INFORMATION DATA1 | DATA2 | DATA1 | DATA2
TRANSFER C‘(A CéA (to A)|{to A)|{Oo 8)|{TO B8)
JCONFIRMICONFIRM| ICONFIRM JCONFIRMICONFIRMICONFIRM|
CONFIRMATION o all{to 8) (BY A) [(BY A)[(BY B) [(8Y 8)
1 | | | l l Il Il “ﬂi
— T T T T T T b
- - ZOOnso:
SBI CYCLE
Figure 15-20 Extended Read Transactions Via Separate Memory

Controllers

227

Synchronous Backplane Interconnect

that accompanies the first write data word transmission indicates
bytes to be written in the second write data word. The M<3:0> field of
the second data word cycle is ignored by receivers but must be trans-
mitted as zeros. The assertion of a particular mask bit signifies that the
byte corresponding to that mask bit is to be modified. The NEXUS
implmenting the Extended Write Masked function must implement all
combinations of M<3:0>.

SYNCHRONOUS BACKPLANE INTERCONNECT THROUGHPUT
The following is a derivation of the aggregate throughput rate of the
SBI:

200 nanoseconds/cycle = 5 million cycles/second.

Each cycle can carry an address (memory request) or four bytes of
data.

Thus, one cycle is used to request eight bytes of data (to be read or
written), and two cycles are used to carry data (at four bytes/cycle).

5 million cycles/second x 4 bytes/cycle = 20 million bytes/second.

20 x 2/3 (1 of every 3 cycles is an address) = 13.3 million
bytes/second.

228

229

AR
T

AR
T

230

;s\mummmmmuummmnuu
uumummmmmm\m}wmr

CHAPTER 16
VAX-11/780 MAIN MEMORY SUBSYSTEM

FEATURES BENEFITS

Expandable memory configura- Allows the addition of 256 KB

tion ' array cards up to a maximum of
4 MB per controller, or 8 MB (12
MB with two MA780s)

Error correcting memory Enhances data availability and

controller reliability by correcting all single

bit errors and detecting all dou-
ble bit errors within the memory
system. Permits write opera-
tions to any combination of
bytes within an aligned long-

word.
Interleaving (with two controll- Improves memory subsystem
ers) throughput on the bus
Optional battery backup Maintains power to preserve

data for 4 MB of memory for at
least ten minutes.

INTRODUCTION

Main memory is a dynamic MOS (metal oxide semiconductor), ran-
dom access memory designed to interface with the VAX-11/780 syn-
chronous backplane interconnect.

The memory subsystem consists of a controller and one to sixteen
array boards utilizing either 4 K or 16 K N-channel MOS IC storage
elements. Each array board can contain 64 K or 256 KB of memory,
giving the system a capacity of either 1 or 4 MB, depending upon size
of storage chips used.

Memory is capable of random access read and write operations to a
single 32-bit longword or extended 64-bit quadword. Memory is also
capable of random access write to an arbitrary byte, series of contigu-
ous bytes, or a series of noncontiguous bytes. The memory array
board has been organized to optimize eight byte read/write access.

Memory features an error checking and correcting scheme (ECC)
which can detect all double bit errors and detect and correct all single
bit errors. The error detection and correction algorithm requires an
entire quadword of data and thus during any type of read or write

231

VAX-11/780 Main Memory Subsystem

operation an entire quadword of data is fetched from the array.

Eight ECC check bits are stored with each quadword and accessed
with the data to determine its integrity. Therefore, a total of 72 bits are
accessed at once.

The basic memory subsystem is illustrated in Figure 16-1.

cPu
< SBI >
MEMORY
CONTROLLER
ARRAY ARRAY | _ | ARRAY
BOARD 1 BOARD 2 BOARD 16

Figure 16-1 Main Memory Configuration

MEMORY CONTROLLER

The memory controller is the NEXUS interfacing main memory to the
SBI. The controller examines the command and address lines of the
SBI for each SBI cycle. To initiate and complete a memory write
masked, interlock write masked, or extended write masked transac-
tion, the controller must receive a recognizable command or address
and data in two or three SBI cycles. However, to perform a read
masked, extended read, or interlock read masked operation, the con-
troller need only recognize an appropriate command/address. The
controller provides the necessary timing and control to complete all
memory transactions. The controller informs a commander, via a con-
firmation, of a successful write operation and contends and arbitrates
for SBI bus control to transmit information during a read masked,
extended read, or interlock read operation. However, before the con-
troller will initiate a memory cycle operation, it checks for bus
transmission parity errors and other fault conditions and reports these
conditions to the commander, conforming to the SBI protocol. Data
transfers to and from main memory are protected by ECC logic, i.e.,
main memory contains single bit error detection and correction and
double bit error detection logic to improve system reliability.

232

VAX-11/780 Main Memory Subsystem

Error reporting provides an early warning to protect the system from
performance degradation. The system error logging feature requires
tagging single bit errors and uncorrectable errors during memory
read transmission from the memory subsystem. Also saved in the
memory controller are the syndrome bits for the first memory read
error and the error address for error logging and servicing. The mem-
ory controller retains this information until the first error is serviced.
There are ten bits in register B that are used for ECC diagnostics only.

In addition to its error detection capabilities, the controller provides
the logic to buffer commands, addresses, and data, thus improving
memory throughput.

A system may require more than one memory controller. If the system
requires a two-controller interleaved memory configuration, the mem-
ory controllers must have consecutive TR selects. The interleave bit
will be cleared on power up and must be set by writing to configuration
register A in each controller. Each controller must have the same array
size and be issued the same starting address. In the case of multiple
memory controllers, each controller will assume a different starting
address on power up. The proper starting address will be written into
the configuration B register from the SBI bus.

A read-only memory that can be addressed on the SBI bus resides in
the memory subsystem. The address, timing, and control logic to read
the information from the ROM for booting the system is also contained
in the subsystem.

The memory controller provides power up initialization logic and re-
fresh control logic for the dynamic MOS memory devices. The dynam-
ic MOS memory cell is a capacitor in which the stored charge
represents a data bit. As the stored charge tends to diminish over a
period of time, each cell requires a refresh cycle every 2 msec to retain
the charge reliability.

BASIC MEMORY OPERATIONS

The memory subsystem operates synchronously with the SBI clock
cycles, satisfying the system communication protocol. As discussed in
Chapter 17, Synchronous Backplane Interconnect, the physical ad-
dress space is divided into two equal areas, memory address space,
and |I/0 address space. Figure 16-2 illustrates the physical address
space.

The 28-bit (A<27:00>) SBI longword address field (refer to Figure 16-
2) is capable of accessing up to 512 MB of main memory. The hard-
ware, however, will currently support a maximum of 2 MB of main
memory utilizing the 4K chip design and 8 MB utilizing the 16K chip
design. Physical memory operations are performed when bit <27 > of

233

VAX-11/780 Main Memory Subsystem

Figure 16-2 is zero. I/0 operations occur when bit <27> is one. The
operation field identifies one of the following six transactions per-
formed by the memory subsystem:

® Read Masked
e Extended Read
e |nterlock Read Masked

|-———A<27100> —-‘

3 27 0
OPERATION|[I/O| LONGWORD ADDRESS

0
PHYSICAL
MEMORY
ADDRESSES
512 M8
1/0
ADDRESSES
OPERATION =READ MASKED
WRITE MASKED
ETC..
N 1,000 MB

SBI PHYSICAL
ADDRESS SPACE

Figure 16-2 Physical Address Space

e Write Masked
e Extended Write Masked
® |nterlock Write Masked

A write mask operation is executed to transfer one to four bytes of
data to memory. A read mask operation, however, is only capable of
transferring four bytes of data from memory.

An Extended Read is executed to transfer eight bytes of data (two
longwords) from memory to a requesting NEXUS. An Extended Write
Masked, on the other hand, provides a byte-selectable transfer of up
to eight bytes to memory. Interlock Read Masked and Interlock Write
Masked perform the same function as Read Masked and Write
Masked but also provide process synchronization.

234

VAX-11/780 Main Memory Subsystem

Read Cycle

The read cycle will fetch 32 bits of data from the addressed location in
the memory subsystem, will check for a single or double bit error, will
correct a single bit error if it exists, and will transmit the data word
along with the proper tag and ID code of the commander that request-
ed the data. In the event a single bit error occurs during the read
operation, corrected data would be rewritten into the memory in a
subsequent memory cycle. In the case of a double bit error, the exact
data and check code read is rewritten to ensure that the double bit
error recurs on subsequent reads. In either case, an indication of the
error condition would be tagged and transmitted with the corrected
data or uncorrectable bad data during the next available bus cycle to
the requester. The sequence of events that initiates a read cycle in a
memory subsystem is as follows:

Any commander on the SBI (central processor or I/0 controller) that
wants to initiate a read cycle in any one of the memory subsystems on
the bus will arbitrate and gain control of the bus. Having gained con-
trol, the commander then transmits a command or address tag and
identification code information on the bus. All subsystems on the bus
monitor and decode the tag and command or address lines prior to
initiating any action. If the decoded address corresponds to the mem-
ory subsystem and if no faults are detected, it would immediately
(unless already busy) initiate a memory cycle. If the memory is pre-
sently executing a cycle, the command will be stored in the queue, if
there is room in the buffer, until the present cycle is complete. Either
way, the memory will notify the commander that the message has
been received. The address under interrogation would be fetched
from the memory, while the memory controller in the meantime would
request, arbitrate, and gain control of the bus to transmit the data
along with the commander’s identification code. Read cycles with sin-
gle bit errors require an extra bus cycle to correct the error, and
therefore the controller would re-request the bus and transmit data
after gaining control of the bus.

Extended Read

The extended read cycle is the same as the read cycle, except that it
fetches 64 bits of data from the addressed location. Also, the data
would be transmitted on the SBI in two successive bus cycles; the
lower 32 bits are transmitted first and then the upper 32 bits. In the
event a single bit error occurs, the start of data transmission would be
delayed until the memory controller re-requests the bus and gains
control of the bus.

235

VAX-11/780 Main Memory Subsystem

Write Masked

The write masked function instructs the memory controller selected by
the address (A <27:00>) to modify the bytes specified by (M<3:0>) in
the storage element addressed, using data transmitted in the next
succeeding cycle.

This is accomplished in the memory subsystem in two successive
memory cycles, a read followed by a write ¢ycle as the memory is
organized as an 8K x 72, with an ECC over 64-bit width. During the
read portion of the cycle, the 64-bit word is retrieved, the error code
checked, and the appropriate bytes are modified in the upper or lower
half of the word. New check bits are then encoded and the modified
word is written into the memory. If a single bit error occurs during the
read portion of the cycle it would be corrected. In the case of an
uncorrectable error the bad data would be rewritten into the memory
with the bad check code and the new data would not be used.

Up to four bytes in the upper or lower word can be modified in a write
masked cycle.

Extended Write Masked

The extended write masked function instructs the memory controller
selected by the address (A <27:00>) to first modify the bytes specified
by (M<3:0>) in the low 32 bits of storage element addressed, using
data transmitted in the next succeeding cycle. Then the controller is to
modify the bytes of the high 32-bit storage element specified by the
masks (M<3:0>) field found in the first data word cycle, using data
transmitted in the next succeeding cycle. The mask field in the second
data word transmission is ignored.

The implementation of this cycle is similar to write masked except in

the following areas:

e One to eight bytes of an address can be modified during this opera-
tion in the upper and lower word.

e An extended write masked that specified modification to all eight
bytes does not execute a read cycle first but unconditionally writes
the new 64 bits and eight check bits to the designated address. This
is described as a full write cycle.

INTERLOCK CYCLES

The interlock cycles are special memory cycles used for process syn-
chronization. They consist of the interlock read ¢ycle and the interlock
write cycle. The memory controller treats the interlock cycles as a pair
of cycles, with an interlock read masked always followed (an arbitrary
number of cycles after) by an interlock write masked. Interlock read
and write cycles are 32-bit operations. The interlock line on the SBI is

236

VAX-11/780 Main Memory Subsystem

used to coordinate activity between memory controllers. An interlock
timer of 512 bus cycles is started with the acceptance of an interlock
write. If the interlock write is not found, after 512 bus cycles, the inter-
lock line is cleared.

Interlock Read

The interlock read masked cycle is implemented in the same manner
as the read masked cycle, with the following exception. The interlock
read has a special function code which the memory controller
decodes and also monitors the interlock line on the bus to verify any
interlock activity elsewhere in the system. If the interlock line is not
asserted, the memory controller addressed would acknowledge the
cycle and set its interlock line on the SBI until a valid interlock write
has been received.

In the case of a single bit error, the controller corrects the data and
transmits it with the proper tag. If an uncorrectable error occurs, the
read data substitute tag with the bad data would be transmitted and
the memory would rewrite the bad data and bad ECC.

Every commander on the SBI capable of issuing an interlock com-
mand should also assert the interlock line on the bus for one cycle
immediately following the interlock read mask command. This is to
insure cooperation among memory controllers responding to interlock
reads without ambiguity.

Interlock Write

The interlock write masked cycle is similar to the write masked cycle
with the following exceptions:

The set state of the interlock line on the SBI would verify the integrity of
the command prior to acknowledging the cycle and implementing it.
The interlock flip-flop would be cleared and consequently the interlock
line on the bus would be deasserted.

If the interlock line was not asserted, the write interlock command
would not be executed and the interlock sequence fault would be set.

ERROR CHECKING AND CORRECTION (ECC)

The ECC scheme used in the memory subsystem is capable of detect-
ing a single or double bit error. It is also capable of correcting all single
bit errors. This is accomplished by storing eight check bits, along with
the 64 data bits in each memory location. Each check bit is generated
by parity-checking selected groups of data bits in the given data quad-
word. When parity is again checked during a read, an incorrect bit will
be detected by the parity-checking logic and will develop a unique 8-
bit syndrome which will identify the bit in error. Error correction logic

237

VAX-11/780 Main Memory Subsystem

may thus correct the bit in error. There are 72 unique syndromes
pointing to individual bits in the coded quadword. “

MEMORY CONFIGURATION REGISTERS

There are three configuration registers in the memory controller to
provide configuration-dependent information to the operating system
and diagnostic software. These are addressable registers with read
and write access.

Memory Configuration Register A
Figure 16-3 illustrates memory configuration register A.

31 30 29 28 27 26 2524 23 22 2] 6 15 9 8 7 5 4 32 0
MEMORY SIZE 000 |[TYPE| ILV

! 1—-PWR up ILV
PWR DWN EN
XMT FLT
MLT XMT
INTLK SEQ ERR
WR SEQ ERR
PAR ERR

Figure 16-3 Memory Configuration Register A

Register A contains the following information:
Bit: <31:26>

Name: SBI Fault Status

Function:

Bit: <23:22>

Name: Power Up/Power Down Status

Function: These bits work in conjunction with the Alert line. If the
memory is strapped to inhibit ROM decode, the assertion of AC LO will
set the power down status, clear the power up status and activate the
Alert line. The deassertion of the AC LO signal will set power up status,
clear power down status and assert the Alert line. Writing a one to the
active status bit will clear it and deassert Alert.

Bit: <15:9>

Name: Memory Size

Function: These bits contain the binary representation of the memo-
ry size in 64 KB increments, zero inclusive. For the 4K chip, bits <12:
9> are used. For the 16K chip, bits <14:9> are used. These bits are
read-only.

Bit: <4:3> Name: Memory Type
Function: These bits specify the memory type. This refers to the 4K
MOS chip implementation or the 16K MOS chip implementation.

238

VAX-11/780 Main Memory Subsystem

These bits are read-only.
Bit <4> Bit <3> Description

0 0 Error condition, no array cards plugged
in

0 1 4K chip

1 0 16K chip

1 1 Error condition, both 4K and 16K chip

array boards are being used.

Bit: <2:0> Name: Interleave

Function: These bits contain interleave information. If bit <0> is 0,
the memory is not interleaved. If bit <0> is a 1, the system is inter-
leaved. Bits <1> and <2> are not used at this time and should be 0.
Bit <8> is the interleave write enable bit. When bit <8> is written to
with a one, bit <0> will take on whatever state bit <0> in the written
data is. Bit <8> will always read as a 0. If bit <8> is written to with a 0,
interleave bit <0> will be unchanged. The interleave flip-flop receives
its power from the +5V BAT supply so it retains its state during battery
backup. On a cold start, this bit will come up 0.

Memory Configuration Register B
Figure 16-4 illustrates memory configuration register B.

31 302928 27 15M131211 109 8 7 0
MEMORY STARTING ADDRESS SUBSTITUTE ECC

7
REFRESH L——Ecc BYPS
BIT FORCE ERR
MEM INIT STATUS

ENABLE WRITE TO MEMORY
STARTING ADDRESS

FILE INPUT POINTER

FILE OUTPUT POINTER

Figure 16-4 Memory Configuration Register B

Register B contains the following information:

Bit: <31:30>

Name: File Output Pointer (File Read Address Counter)

Function: These two bits point to the address that would be read
from the command and data file and operated on by the timing and
control logic for starting a new memory cycle at the appropriate time,
depending on the state of the memory busy line. This information is
also useful for diagnosing the file control logic problems in the file
read path. Bit <31> is the most significant bit, bit <30> is the least
significant bit.

239

VAX-11/780 Main Memory Subsystem

Bit: <29:28>

Name: File input Pointer (File Write Address Counter)

Function: The memory controller command buffer (File) is four ad-
dresses deep and the Write Address Counter state can be read via
these two bits. These bits point to the next available file address into
which the command address or data information will be written after
accepting the command address and data from the SBI. These bits
assist in diagnosing the file control logic problems in the file write path.
Bit <29> is the most significant bit, bit <28> is the least significant bit.

Bit: <27:15>

Name: Memory Starting Address

Function: These bits indicate the starting address of the memory
controller in 64 KB granularity or increments. These bits are writable
and can be altered by the system after power up. During a cold start
the memory controller would come up with a default starting address
depending on the starting address jumpers in the memory backplane.
A cold start is defined as a CPU power up from inactive battery backup
and memory power supply. There are two starting address jumpers in
the memory controller backplane, and in a four controller system the
default starting address assignments are as follows for cold starts.

Controller No. Starting Address Starting Address
Jumpers
SA01SA00

1 OPEN OPEN zero

2 OPEN GND 4 Megabyte

3 GND OPEN 8 Megabyte

4 GND GND 12 Megabyte

Also during battery backup the contents of the starting address bits
are saved.

Bit: <14> Name: Write Enable to Memory Starting Address
Function: This bit must be at a one state during a write to register B
in order to alter the state of the memory starting address. If bit <14> is
a zero, writes to register B will leave the starting address unchanged.

Bit: <13:12>

Name: Memory Initialization Status

Function: These are read-only bits and contain the recovery mode
information necessary to determine whether or not the memory has
recovered from battery backup and therefore contains valid data.

Bit <12> Bit<13> Description
0 0 Initialization cycle in process. This

240

VAX-11/780 Main Memory Subsystem

means the memory is presently writing a
known data pattern and check code
throughout the storage area. Acommand
issued to the array at this time will
receive a busy response.

0 1 Invalid state

1 0 This state means the memory contains
valid data. This state after a CPU Power
Fail implies that all memory data was
saved.

1 1 This state signifies that initialization
is complete and that the power resto-
ration was from a cold state. No data was
preserved.

Bit: <10> Name: Refresh Indication
Function: This bit is used for diagnostic purposes only, and will verify
the access time delay due to refresh collision.

Bit: <9> Name: Force ERR

Function: This bit is used in conjunction with bits <7:0>. When it is
set, it will enable the ECC substitute bits to replace the actual check
bits for the ECC computation when operating on an address with SBI
bits 3 and 12 active. Writing a one sets this bit and writing a zero clears
it.

Bit: <8> Name: ECCBYPS

Function: This bit is set to totally bypass (BYPS) the ECC check
function. If this bit is set, the data that is read from the memory will be
placed on the SBI exactly as it is found. Also, no CRD or RDS flag will
accompany the data if it is in error but the error log will continue to
operate normally (register C).

Writing a one sets this bit, writing a zero clears it. This bit is used for
diagnostics only.

Bit: <7:0> Name: Substitute ECC Bits

Function: These bits can be substituted for the eight check bits read
from the memory, providing that bit <9> in Register B is set to a one
and the address read contains SBI bits 3 and 12 active. These bits are
for diagnostics only and can be used to simulate any single bit or
multiple bit error, thereby checking the entire ECC path. Writing a one
sets the bits, writing a zero will clear them.

241

VAX-11/780 Main Memory Subsystem

Memory Configuration Register C
Figure 16-5 illustrates memory configuration register C.

31 302928 27 8 7 0

ERROR ADDRESS ERROR SYNDROME
' LERROR LOG REQ
HIGH ERR RATE

INH CRD

Figure Figure 16-5 Memory Configuration Register C

This register gathers all the ECC error information:

Bit: <30> Name: Inhibit CRD

Function: This bit is used to prevent constant CRD flags from being
sent to the commander when working in sequential memory locations
with single cell failures, thus preventing repeated error service invoca-
tion by the operating system. Writing a one to this bit prevents subse-
quent CRD flags from being transmitted to the commander until such
a time as the commander writes a zero to bit <30>. However, in the
event an uncorrectable error occurs in the memory it would be
reported right away regardless of the state of this bit.

Bit: <29> Name: High Error Rate

Function: This bit flags the high error rate in the memory by setting
this bit if an error occurs between the time the first error message was
sent and the time the error service subroutine was invoked by the
operating system. This bit can be cleared by writing a one.

Bit: <28> Name: Error Log Request Flag

Function: This bit is set when the first error occurs during the memo-
ry controller’s response to an SBI read cycle. This would indicate to
the error service subroutine whether the controller has logged an error
during its operation or not. When this bit is set, any subsequent CRD
reports to the bus commander will be inhibited. In a muitiple memory
controller system, this is needed in determining which controller sent
the error message. This can be cleared by writing a one.

Bit: <27:8>

Name: Error Address

Function: The SBI longword address at which the first read error
occurred during memory controller response to an SBI read com-
mand is saved in these bits. Subsequent error addresses, if they oc-
cur, are not saved until the first one is serviced.

The address field is described as follows:
(bit order is least to most)

242

VAX-11/780 Main Memory Subsystem

Bit <8> indicates the word in error.
0 = lower word
1 = upper word
Bits <20:9> indicate the 4K chip address in error.
Bit <21> indicates the 4K chip array bank in error.
0 = lower 4K chip
1 = upper 4K chip
Bits <23:22> are unused for 4K chip.

Used in 16K chip for two necessary extra chip address bits. All chip
address and bank address bits shift left two.
Bits <27:24> indicate the array card in error.

Bit: <7:0> Name: Error Syndrome

Function: These eight bits store the error syndrome of the first error
word that was read from memory in response to an SBI read com-
mand. The syndrome will be saved until the error service routine has
serviced the error. Subsequent error syndromes will not be saved but
will be indicated by bit <29>.

MEMORY INTERLEAVING

The memory subsystem is capable of operating in the non-interleaving
or two-way interleaved mode. Interleaving improves memory
subsystem throughput on the bus.

In a single memory controller system the starting address is assigned
by the ROM bootstrap. The size of the memory subsystem is encoded
from the number of array cards plugged into the backplane. Array
boards must be mounted contiguously in the backplane. If boards are
misplugged, an indicator light indicates configuration error.

Interleaving can be used to increase the overall speed of the memory
subsystem when there are two memory controllers with equal am-
ounts of MOS memory on each. The effectiveness of interleaving is
based on the principle that most memory operations are performed on
consecutive memory locations. While one controller is fetching data,
the other controller is available to decode an address for the next
operation. On the VAX-11/780, the two memory controllers access
alternate quadwords.

With an interleaved memory system, both controllers must have con-
tiguous bus TR select levels (odd and even pairs), the same array size,
the same starting address, and both controllers must have their inter-
leaved bits set.

It is also possible to have two two-way interleaved memory systems,
four controllers, by following the rules just listed and assigning the

243

VAX-11/780 Main Memory Subsystem

second interleaved memory system a starting address that is one lo-
cation above the final address of the first interleaved set.

Four memory controllers on one bus may require reassigning of bus
TR select levels of the other SBI NEXUS.

ROM BOOTSTRAP

A 4 KB programmable read-only memory to boot the system resides
in the memory controller and it uses a 1 K x 4, bipolar, high speed
device. The memory is organized as a 1 K x 32 and is assigned 4 KB
170 address space. The ROM can be addressed via the SBI interface in
the memory controller during system initialization. All the address,
data and control logic for addressing the ROM bootstrap is in the
memory controller. The ROM is packaged in such a way that ECOs can
be easily handled by providing sockets in the PROM locations.

ROM access time = 5 bus cycles (with respect to the commander).
BATTERY BACKUP
A battery backup option is available that will maintain the contents of 4

MB of MOS memory for a minimum of 10 minutes, or less memory for
longer than 10 minutes.

244

245

%
|
|
i
|

M o WA\W&WE@M
0000

246

CHAPTER 17
VAX-11/780 UNIBUS SUBSYSTEM

FEATURES BENEFITS

Direct memory access (DMA) Eliminate processor interven-

data transfers tion for high data throughput

Peer communication between Allows direct data transfer

UNIBUS devices between UNIBUS devices with-
out CPU involvement

Total compatibility with the Gives the PDP-11 user an easy

PDP-11 UNIBUS data path migration path to the VAX-
11/780 processor

UNIBUS device registers are Simplifies 1/0 programming

addressed like memory loca-

tions

Supports a wide range of stan- Offers the user flexibility in peri-

dard DIGITAL peripherals pheral selection to meet specific

requirements

15 buffered data paths Increases data throughput by
buffering data traffic to memory

INTRODUCTION

The UNIBUS subsystem is the hardware developer’s primary interface
to VAX-11/780. All devices other than high-speed disk drives, magnet-
ic tape transports and devices which use the high performance DR780
interconnect are connected to the UNIBUS, an asynchronous bidirec-
tional bus. The UNIBUS is connected to the SBI through the UNIBUS
adapter. The UNIBUS adapter does priority arbitration among devices
on the UNIBUS.

The UNIBUS adapter provides access from the processor to the UNI-
BUS peripheral device registers and to UNIBUS memory by translat-
ing UNIBUS addresses, data, and interrupt requests to their SBI
equivalents, and vice versa. The UNIBUS adapter address translation
map translates an 18-bit UNIBUS address to a 30-bit SBl address. The
map provides direct access to system memory for nonprocessor re-
quest UNIBUS peripheral devices and permits scatter/gather disk
transfers.

The UNIBUS adapter enables the processor to read and write the
peripheral controller status registers. In the case of processor inter-
rupt request devices, this constitutes the transfer.

247

VAX-11/780 UNIBUS Subsystem

This chapter is organized to provide the reader with an understanding
of the UNIBUS and the VAX-11/780 UNIBUS adapter. The UNIBUS
subsystem is comprised of the UNIBUS adapter logic, the UNIBUS,
and associated peripheral devices. Figure 17-1 illustrates the UNIBUS
subsystem configuration.

< A00-A17 (ADDRESS)

< D00 -DI5 (DATA) >

C00-CO1 (CONTROL)
MSYN (MASTER SYNC)
SSYN (SLAVE SYNC)

PA-PB (PARITY)
UNIBUS BRA4-BR7 (BUS REQUEST) UBA
DEVICE BG4-BG7 (BUS GRANT)

NPR (NONPROCESSOR REQUEST)
NPG (NONPROCESSOR GRANT)
SACK { SLAVE ACKNOWLEDGE)
INTR (INTERRUPT)

BBSY (BUS BUSY)

INIT (INITIALIZE)

AC LO (AC LINE LOW)

DC LO (DC LINE LOW)

Figure 17-1 UNIBUS Configuration

UNIBUS SUMMARY

The UNIBUS, a high-speed communication path, links together 1/0
devices to the UNIBUS adapter. Device-related address, data, and
control information are passed along the 56 lines of the UNIBUS. The
UNIBUS adapter handles all communications between the UNIBUS
and the SBI, and fields device-generated interrupts.

The following UNIBUS summary description takes into account the
presence of the UBA, which performs the following UNIBUS functions:
® arbitration

® interrupt fielding

e power fail/restart

e initialization

For example, the UBA enables the system to accept device interrupts
and transfer the requests from the UNIBUS to the SBI. However, UBA

and SBI operations between the VAX-11/780 CPU and UNIBUS are
transparent to the UNIBUS devices.

248

VAX-11/780 UNIBUS Subsystem

Communications and Control

A master/slave relationship defines all communications between de-
vices on the UNIBUS. The device in control of the bus is considered
the master; the device being addressed is the slave. Communication
on the UNIBUS is interlocked, that is, each control signal issued by the
master device must be acknowledged by a corresponding response
from the slave to complete the transfer.

Bus Request Levels

Each device uses one of five priority levels for requesting bus control:
Non-Processor Requests (NPR) and four Bus Requests (BR). The NPR
is used when a device requests a direct access data transfer to memo-
ry or another device (i.e., a transfer not requiring processor interven-
tion). Normally, NPR transfers are made between a mass storage
device (e.g., disk drive) and memory. Two bus lines are associated
with the NPR priority level. The device issues its request on the NPR
line; the UBA responds by issuing a grant on the Non-Processor Grant
(NPG) line.

A BR level is used when a device interrupts the VAX-11/780 CPU in
order to request service. The device may require the CPU to initiate a
transfer. Or it may need to inform the CPU that an error condition
exists. Two lines are associated with each of four BR levels. The bus
request is issued on a BR line (BR7-BR4); the bus grant is issued on
the corresponding Bus Grant line (BG7-BG4).

Priority Structure and Chaining

When a device requests use of the bus, the handling of that request
depends on the location of that device in a two-dimension device-
priority structure. Priority is controlled by the priority arbitration logic
of the CPU and the UBA.

The device-priority structure consists of five priority levels: NPR and
BR7-4. Bus requests from devices can be made on any one of the
request lines. The NPR has highest priority; BR7 is the next highest
priority, and BR4 is the lowest. The priority arbitration logic is struc-
tured so that if two devices on different BR levels issue simultaneous
requests, the priority arbitration logic grants the bus to the device with
the highest priority. However, the lower priority device keeps its re-
quest up and will gain bus control when the higher-priority device
finishes with the bus (providing that no other higher-priority device
issues a BR).

Since there are only five priority levels, more than one device may be
connected to a specific request level. If more than one device makes a
request at the same level, the device closest (electrically) to the UBA

249

VAX-11/780 UNIBUS Subsystem

has highest priority. The grant for each BR level is connected to all
devices on that level in a daisy-chain arrangement (chaining). When a
corresponding BG is issued it goes to the device closest to the UNI-
BUS adapter. If that device did not make the request it permits the BG
to pass to the next closest device. When the BG reaches the device
making the request, that device captures the grant and prevents it
from passing on to any subsequent device in the chain. Functionally,
NPG chaining is similar to BG chaining.

Device Register Organization

The actual transfer of data and status information over the UNIBUS is
accomplished between status, control, and data buffer registers locat-
ed within the peripheral devices and their control units. All device
registers are assigned addresses similar to memory addresses. These
registers can therefore be accessed by word type memory reference
instructions (i.e., MOVW, BITW, etc.).

Control and status functions are assigned to the individual bits within
the corresponding addressable registers. Since the register content
can be controlled, setting and clearing register bits can control service
operations. Internal device status may be loaded into the appropriate
register and retrieved when a program instruction addresses that
register. Depending on the function, register bits may be read/write,
read only, or write only. The number of addressable registers in a
device (and control unit) varies depending on the device’s function.

UNIBUS Line Definitions

The UNIBUS consists of 56 signal lines which may be divided into
three function groups: bus control, data transfer, and miscellaneous
signals. The 13 lines of the bus control group comprise those signals
required to gain bus control through an NPR/BR or for a priority arbi-
tration to select the next bus master while the current bus master is
still in control of the bus. The 40 bidirectional lines of the data transfer
group are those signals required during data transfers to or from a
slave device. The miscellaneous group are the initialization and power
fail signals required on the UNIBUS. Table 17-1 describes the bus
signals within each group.

Table 17-1 UNIBUS Signal Descriptions

SIGNAL LINE DESCRIPTION

Data Transfer Group
Address Lines These lines are used by the master device to se-

250

(A<17:0>)

Data Lines
(D<15:0>)

Control (C1,C0)

VAX-11/780 UNIBUS Subsystem

lect the slave (actually a unique memory or device
register address). A <17:1> specifies a unique
16-bit word; SA00 specifies a byte within the
word.

These lines transfer information between master
and slave.

These signals are coded by the master device to
control the slave in one of the four possible data
transfer operations specified below. Note that the
transfer direction is always designated with re-
spect to the master device.

Data Transfer Designation Description

C1 Cco
0 0
0 1
1 0
1 1
Parity A-B
(PA,PB)
Master Syn-
chronization
(MSYN)
Slave Syn-

chronization

Data in (DATI): a data word or byte transferred
into the master from the slave.

Data in Pause (DATIP): similar to DATI except that
it is always followed by a DATO or DATOB to the
same location. The master keeps control of the
UNIBUS during the entire DATIP-DATO se-
quence.

Data Out (DATO): a data word is transferred out
of the master to the slave.

Data Out Byte (DATOB): identical to DATO except
that a byte is transferred instead of a full word.
Address bits A00 determine which byte will be
written. A00=0, low byte (D07-00) is written.
A00=1, high byte (D15-08) is written.

These signals transfer UNIBUS device parity in-
formation. PA is currently unused and not assert-
ed. PB, when true, indicates a device parity error.

MSYN is asserted by the master to indicate to the
slave that valid address and control information
(and data on a DATO or DATOB) are present on
the UNIBUS.

SSYN is asserted by the slave. On a DATO it indi-
cates that the slave has latched the write data. On

251

VAX-11/780 UNIBUS Subsystem

(SSYN) a DATI or DATIP it indicates that the slave has
asserted read data on the UNIBUS.

Interrupt (INTR) This signal is asserted by an interrupting device,
after it becomes bus master, to inform the UBA
that an interrupt is to be performed, and that the
interrupt vector is present on the data (D) lines.
INTR is negated upon receipt of the assertion of
SSYN by the UBA at the end of the transaction.
INTR may be asserted only by a device which ob-
tained bus mastership under the authority of a BG
signal.

Priority Arbitration Group

Bus Request These signals are used by peripheral devices to
(BR7-BR4) request control of the bus for an interrupt opera-
tion.

Bus Grant (BG7- These signals form the UBA’s response to a bus
BG4) request.

Only one of the four will be asserted at any time.

Nonprocessor This is a bus request from a device for a transfer

Request (NPR) not requiring CPU intervention (i.e., direct memo-
ry access).

Nonprocessor This is the grant in response to an NPR.

Grant (NPG)

Select Acknowl- SACK is asserted by a bus-requesting device af-

edge (SACK) ter having received a grant. Bus control passes to

this device when the current bus master com-
pletes its operation.

Bus Busy (BBSY) BBSY indicates that the data lines of the UNIBUS
are in use and is asserted by the UNIBUS master.

Initialization Group

Initialize (INIT) This signal is asserted by the UBAwhen DC LO is
asserted on the UNIBUS, and it stays asserted for
ten msec following the negation of DC LO. ltis
used to initialize UNIBUS peripherals.

AC LineLow (AC Thisis a signal which indicates that a power fail-

LO) ure is about to occur on the UNIBUS. The
assertion of this signal initiates the UNIBUS
power fail sequence of the UBA and can cause an

252

VAX-11/780 UNIBUS Subsystem

interrupt to the VAX-11/780 CPU. It may also be
used by peripheral devices to terminate opera-
tions in preparation for power loss.

DCLineLow (DC This signal is available from each system power

LO). supply and remains clear as long as all DC volt-
ages are within the specified limits. If an out-of-
voltage condition occurs, DC LO is asserted.

THE UNIBUS ADAPTER

The UNIBUS adapter provides the interface between the asynchro-

nous UNIBUS and the Synchronous Backplane Interconnect in the

VAX-11/780. The UNIBUS adapter provides the following functions:

e Access to UNIBUS address space (i.e., UNIBUS device registers)
from the SBI

e Mapping of UNIBUS addresses to SBI addresses for UNIBUS DMA
transfers to SBI memory

e Data transfer paths for UNIBUS device access to random SBI mem-
ory addresses and high-speed transfers for UNIBUS devices that
transfer to consecutive increasing memory addresses

e UNIBUS interrupt fielding

e UNIBUS priority arbitration

e UNIBUS power fail sequencing

The UNIBUS Subsystem is illustrated in Figure 17-2.

VAX-11/780 hardware will support a UNIBUS adapter in one of four
physical address spaces. The UNIBUS adapter maintains two
independent address spaces within the Synchronous Backplane Inter-
connect 1/0 address space. The first area of addressable space is
within the area reserved for all NEXUSs (i.e., UBA, MBA, memory
controller) internal registers. Each NEXUS (UBA) register address
space occupies 8 KB (16 pages of 512 bytes/page). This address
space contains all control and status registers of the UBA, registers
required for UNIBUS interrupt fielding, and registers required for
mapping UNIBUS device transfers to the SBI address space. The sec-
ond address space is the UNIBUS address space associated with the
UBA. The UNIBUS address space occupies a total of 256 KB (512
pages of 512 bytes/page). Figure 17-3 illustrates the SBI /0 address
space.

SBI ACCESS TO UNIBUS ADDRESS SPACE -
The UNIBUS Address Space (248 KB of memory space and 8 KB of
device register space) is accessible as part of the SBI I/0 Address

253

VAX-11/780 UNIBUS Subsystem

Space. The UBA translates SBI command/addresses to UNIBUS com-
mand/addresses, thereby giving the software the ability to read and
write UNIBUS device registers using word type memory reference
instructions (MOVW, BITW, etc.).

Device Registers are assigned 1/0 addresses within the UNIBUS Ad-
dress Space spanning 760000,—777777,. In VAX-11/780 physical
byte address terms, the device registers occupy address space
201XE000,,—201XFFFF,s. The hexadecimal digit 3,7,B or F,, is substi-
tuted in place of the X value within the physical address, depending
upon which one of four UNIBUS address spaces the UBA is configured
for.Table 17-2 illustrates the UNIBUS device register address structure.

L

VAX-11/780
CcPU
[] UNIBUS ADAPTER
(1STD 3 OPTIONAL)
v
2 3
3 =
g =
4 OPTIONAL 1 OPTIONAL
UNIBUS
DEVICE 1
B UNIBUS
o DEVICE 2
z
2
UNIBUS
DEVICE n

UNIBUS
TERMINATOR

Figure 17-2 UNIBUS Subsystem

254

VAX-11/780 UNIBUS Subsystem

SBlI MEMORY
ADDRESS SPACE

OTHER ADAPTER
REGISTERS

UBA INTERNAL
REGISTERS

1Bl ADDRESS /

OTHER ADAPTER

'PACE CONTROLLED REGISTERS

'Y THE UBA
UNIBUS I/0
ADDRESS SPACE AND

UNIBUS MEMORY ADDRESS
SPACE

OTHER
1/0 ADDRESS
SPACE

UNIBUS I/0
ADDRESS SPACE

UNIBUS 0 Address
Space

UNIBUS 1 Address
Space

UNIBUS 2 Address
Space

UNIBUS 3 Address
Space

UNIBUS ADDRESS
(OCTAL)
760000-777777
760000-777777

760000-777777

760000-777777

255

CONFG REG
STATUS REG
CONTROL REG
DIAG CONT. REG
FMER

FUBAR

BRRVRS

BRSVRS

DATA PATH REG'S
MAP REG'S

000000

UNIBUS MEM
ADDRESS SPACE
757777(8)

760000(8)
UNIBUS I/0
ADDRESS SPACE
777777(8)

Figure 17-3 SBI /O Address Space

Table 17-2 UNIBUS Device Address Space

PHYSICAL BYTE
LOCATIONS (HEX)
2013E000-2013FFFF
2017E000-2017FFFF

201BE000-201BFFFF

201FE000-201FFFFF

VAX-11/780 UNIBUS Subsystem

Table 17-3 illustrates the translation of SBI to UNIBUS transfer opera-
tions involved in accessing the UNIBUS address space.

Table 17-3 CPU-Initiated Transfer

SBI FUNCTION TRANSFER UNIBUS FUNCTION
DIRECTION

Read-masked (word device to UBA DATI

or byte)

Write-masked UBA to device DATO or DATOB

(word or byte)

Interlock Read- device to UBA then DATIP then DATO

masked then Inter- UBA to device or DATOB

locked Write-

masked

During such transfers, the UNIBUS adapter becomes the highest pri-
ority UNIBUS Non-Processor request (NPR) device.

Address and Function Translation

Figure 17-4 shows the SBI command/address format for accessing
the UNIBUS address space for UBAs 0 through 3. Each SBI address
(longword address) covers two 16-bit UNIBUS addresses (word ad-
dresses). In addition to the SBI address being decoded, the SBI func-
tion and byte mask is decoded to determine the word or byte to be
accessed. The SBI to UNIBUS address and command translation is
shown below.

Table 17-4 illustrates the translation from SBI Mask and Function
fields to UNIBUS Control and Address fields.

Only the function byte mask combinations shown will be valid. All
other function byte mask combinations addressed to the UNIBUS ad-
dress space will be given an ERR confirmation. The UNIBUS address
space will respond only to word or byte SBI references. Note that
extended transfers cannot be made to either the UNIBUS address
space or the UNIBUS adapter Registers.

The translation from SBI Mask and Function to UNIBUS control and
byte address is handled by the UNIBUS control and byte address
encoder illustrated in Figure 17-4.

When the VAX-11 software initiates a data transfer, reading from or
writing to a UNIBUS device register, the UBA will recognize the ad-

256

VAX-11/780 UNIBUS Subsystem

dress as being an address within the UNIBUS address space and will
pass the lower 16 SBI address bits through to the UNIBUS as UNIBUS
address bits UA <17:2>. The UNIBUS adapter generates UNIBUS
address bits UA <1:0> and control bits C <1:0> by decoding the SBI
mask and function bits. Table 17-5 shows the relationship of the UNI-
BUS space controlled by UBA #0 to the SBI address space.

03 28 27 262524 232221 2019 B 17 16 15 0
MASK FUNC
[<3:0> | <3:0> |\l010J0|0[0‘0l01011|b a LONG WORD ADDRESS J
AN J
UBA UNIBUS
ADDRESS DECODE b o
UNIBUS ADDRESS SPACE 0 0o 0
UNIBUS ADDRESS SPACE 1 o 1
UNIBUS ADDRESS SPACE 2 1 0
UNIBUS ADDRESS SPACE 3 1 1
UNIBUS
CONTROL
AND
BYTE ADDRESS
ENCODER
UNIBUS
CONTROL ADDRESS
1 0 17 210

| UNIBUS ADDRESS BITS 17:02 l | \

~—

L

g<rop UA <17:00> T

Figure 17-4 SBI to UNIBUS Control Address Translation

SBI to UNIBUS Transfer Failures

If, during a read sequence to the UNIBUS address space, data is

received from the UNIBUS device with UNIBUS PB asserted (UNIBUS

Device Parity Error) then the data will be sent to the SBI as a Read

Data Substitute.

If, for some reason, an access is made to the UNIBUS address space

and the transfer is not completed on the UNIBUS (i.e., nonexistent

device), the following will occur:

1. Anall-zeroes word will be sent as a read data for a read transfer.

2. The UNIBUS address bits <17:2> will be stored in the Failed
UNIBUS Address Register(FUBAR).

3. The bit indicating the cause of failure (UBA Select Time Out or
SSYN Time Out) will be set in the UBA Status Register. Note that
in the case of a Write Transfer to the UNIBUS, the error bit is set at

257

VAX-11/780 UNIBUS Subsystem

least 13 us after the command was issued and acknowledged by
the UBA. It will therefore not be immediately known to the soft-
ware. If the software has set the SUFFIE (SBI to UNIBUS Error
Interrupt Enable), the setting of UB select Time Out or SSYN Time
Out will initiate an adapter interrupt request (13 us for SSYN
timeout, 50 us for select Time Out).
This method gives the VAX software an opportunity to exit gracefully
from a transfer failure rather than being trapped out of a program due
to a Read Data timeout. The method is also consistent for read and
write failures.

SBI Unibus
Function Mask Control Address
<3:0> 3210 C<1:0> UA<1:0>
Read Mask 0001 DATI 00
0011 DATI 00
0010 DATI 00
0100 DATI 10
1100 DATI 10
1 000 DATI 10
Write Mask 0001 DATOB 00
0010 DATOB 01
0100 DATOB 10
1 000 DATOB 11
0011 DATO 00
1100 DATO 10
Interlock Read Mask 0001 DATIP 00
(Sets Interlock 0010 DATIP 00
Flip Flop for 0100 DATIP 10
DATIP-DATO 1 000 DATIP 10
Sequence) 0011 DATIP 00
) 1100 DATIP 10
Interlock Write Mask 0001 DATOB 00
0010 DATOB 01
0100 DATOB 10
1 000 DATOB 11
0011 DATO 00
1100 DATO 10

Table 17-4 SBI Function-Mask Translation To UNIBUS
Control-Address

UNIBUS ACCESS TO THE SBI ADDRESS SPACE

UNIBUS initiated transfers to UNIBUS memory addresses are mapped
by the UBA to SBI addresses on a page-by-page basis, allowing UNI-
BUS data transfers to discontiguous pages of SBI memory. The SBI
uses a 30-bit addressing scheme and a 32-bit wide data path, while
the UNIBUS uses an 18-bit addressing scheme and a 16-bit data path.

258

VAX-11/780 UNIBUS Subsystem

TOVEN 01 13J91 S3SSAIPPE 3S3YL 210N

bLLLLL

asedg ssaippy
o/1
1310

aoedg ssa1ppy

o/1
snquun

s133s13ay
103depy
19430

s1ays18ay
1oydepy

snqun

519315182y
101depy
13330

QLLLLL Odddy Hdddy DAdd 10T TAddY 07
oLLLLL LLLLL RIAI VIAI NAdgY 107 VAT L7
YoLLLL 9GLLLL AT K RERE L LK RS0 R TR S)T
spaom 319 91) ’) ’)
(01) 3 ¥ 22ddp .) : : . :
103 wm_w.,_ﬁmwm 02009L 12009, 22009, £2009L | 010t rasicE] sT0M e | otode To? TLOMY 107 s 10Hdf 10T
25edg
$S31ppY 01009, 2009L SO0 ¢ Voudt SO0y (07 Yoy 10z
o/1 #0009L 900092 +00: G0y FOOMY 107 00t 107
snqrun 00009L 200092 000 200Hy $107 200ty 07
PLLLSL 9LLLSL DAddy MAAAY DIdd 107 LIy [07
s214q z1g - 28ed | oLLLSL eLLLSL RAILAy VAIIAY SA4dr o vVIIAs 0T
(sa8ed 96%) P9LLGL 99LLGL FAAAY AU tAdde 07 9ddde 107
uotsuedxy
Yog
paA1asay N : . ‘ . -
a>edg 020000 220000 0Lon0 71000 utooutuz - ZInontio?
$S31ppV t10000 910000 Dooovn “Toooo Doonuinz Tononiug
Kaolua 010000 210000 ROOOO V000D 0000107 VOOO0 10T
snqiup Y00000 900000 +0000 a00n0 000107 aguontoz
000000 200000 00000 20000 0UONNT0T 20000107
(1e1>0) (xafq) (o)
ssaappy snquup aondg ssaappy snqun ssaappy Ag (154G
Wa el naetL waoe

aoedg

552.1ppY
Azowan

aoedg ssalppy |gS Pue SNAINN

S-Li ®|qe

(31825 03 j0U)
5oedg ssa1ppy
waishg

259

VAX-11/780 UNIBUS Subsystem

The SBI is synchronous, supporting a maximum of 16 NEXUSs while
UNIBUS functions are asynchronous, supporting a large number of
devices.

The UNIBUS adapter accepts one of two forms of input from the UNI-
BUS:

e Hardware-generated interrupts
e Direct memory access transfers

Terminal input, for example, is an interrupt-driven process in which
the DZ-11 (terminal interface) initiates an interrupt sequence. The in-
terrupt service routine for the terminal driver will accept and process
the data resulting from the terminal input. This process is therefore
classified as a non-direct memory transfer.

In contrast, once initiated by the software, an RK06 disk will transfer its
data directly to or from SBI memory via the UBA without processor
intervention. The RK06, therefore, is a direct memory access (DMA)
device. The direct memory access transfer may be further divided into
two groups:

e Random access—access of noncontiguous addresses

® Sequential access—access of sequentially increasing addresses

The UNIBUS adapter can channel data through any one of 16 data
paths for UNIBUS devices performing DMA transfers. The UBA pro-
vides a direct data path to allow UNIBUS transfers to random SBI
addresses. Each UNIBUS transfer through the direct data path is
mapped directly to an SBI transfer, thereby allowing only one word of
information to be transferred during an SBI cycle. The UBA provides
15 buffered data paths (BDP), each of which allows a sequential ac-
cess device on the UNIBUS (a device that transfers to consecutive
increasing addresses) access to the SBI in a more efficient manner
than that offered by the direct data path. Each of the BDPs stores data
for the UNIBUS, so that four UNIBUS transfers are performed for each
SBI transfer, making more efficient use of the SBI and memory. Using
the BDPs, the UBA can support high-speed DMA block transfer de-
vices such as the RK06 disk subsystem and the DMC-11. The Buffered
Data Paths also allow a UNIBUS device to operate on random long-
word aligned 32-bit data.

UNIBUS to SBI Address Translation

The UNIBUS adapter provides for direct memory access transfers to
main memory via the memory controllers connected to the Synchro-
nous Backplane Interconnect. The UNIBUS adapter translates
UNIBUS memory addresses to SBI addresses through a UNIBUS to
SBI address translation map. The UNIBUS adapter physically contains

260

VAX-11/780 UNIBUS Subsystem

496 (decimal) hardware map registers utilized in mapping UNIBUS
memory page addresses to SBI page addresses (longwords). Each
map register is assigned an SBI longword address. The map register
contains the SBI page address and the data path required to transfer
data between the UNIBUS and the SBI.

Each UNIBUS address is mapped to an SBI address in three sections:
1. SBIl page address (one page equals 512 bytes).
2. Longword within an SBI page (one longword equals four bytes).
3. Word or byte within a longword.
NOTE
To avoid confusion between UNIBUS and SBI ad-
dress bits, UNIBUS address bits will be shown as UA

<bit num> and SBI address bits will be shown as SA
<bit num>.

Asillustrated in Figure 17-5, the UNIBUS to SBI page map translates
UNIBUS memory page addresses to any SBI page address. The map
allows the transfer of data to discontiguous pages of SBI memory. The
map translates the nine UNIBUS page address bits (UA<17:9>) to the
21 SBI page address bits (SA<27:7>).

CONTROL ADDRESS

17 98 2 1 [
I 1 0 I MAP REG NUMBER I BYTE WITHIN PAGE]
- N N N\ J
UNIBUSTO SBI
ADDRESS
TRANSLATION
map
— SBIPAGE ADDRESS —
(PAGE FRAME NUMBER)
21 8ITS) °
494
495
FUNC
MASK $8/ COMMAND ADDRESS
ENCODE
3 l o131 1 27 76 0
MASK l FUNC l SBI PAGE ADDRESS (PFN) LONG WORD ADD |

Figure 17-5 UNIBUS to SBI Address Translation
261

VAX-11/780 UNIBUS Subsystem

There are 496 map registers provided to map the entire UNIBUS
memory address space at once, thereby reducing the problem of
register allocation. Each map register corresponds to the UNIBUS
page which is to be mapped. The map registers are available to the
VAX-11 software as part of the SBI I/0 address space. These registers
are discussed in detail in the section titled SBI ADDRESSABLE UNI-
BUS ADAPTER REGISTERS.

UNIBUS address bits UA <08:02> determine the longword within a
page and are seen by the SBI as address bits SA <06:00>. These
seven bits are concatenated with the mapped page address to form
the 28-bit SBI address.

The two low order UNIBUS address bits (UA<01:00>) and the two
control bits (C<1:0>) determine the SBI function and byte mask (F<3:
0>, M<3:0>).

The mask field points to either one or two bytes within the longword
address. The function field selects either read or write and the associ-
ated qualifier. The mask and the function fields are illustrated in the
following table. Table 17-6 illustrates the transiation from the UNIBUS
control and byte address fields to the SBI function and mask fields.

UNIBUS ADAPTER DATA TRANSFER PATHS

Data is transferred between the UNIBUS and the SBI through one of

the 16 data paths of the UNIBUS adapter:

1. The direct data path (DDP) translates each UNIBUS data transac-
tion (DATI, DATIP, DATO, DATOB) directly to an SBI function for
each UNIBUS word (or byte) transfer, thereby transferring data
between SBI memory and a UNIBUS device in 16-bit quantities.

2. The Buffered Data Paths allow fast, sequential access UNIBUS
devices to access the SBI in a more efficient manner than is of-
fered by the Direct Data Path. Each buffered data path (BDP1-15)
accumulates data and transfers the data as words or bytes to or
from the UNIBUS device. The BDPs perform quadword transfers
(64 bits) to SBI memory addresses. The BDPs will respond to
UNIBUS DATI, DATO, and DATOB functions but will not respond
to the DATIP function.

3. The Buffered Data Paths also allow a UNIBUS device to operate
on random 32-bit longword-aligned data.

The data path to be used by a particular device is assigned by the
software when setting up the map registers. The data paths are
numbered from DPO to DP15. DPO is the direct data path (DDP) and
DP1 through DP15 are the buffered data paths, BDP1 through BDP15

262

VAX-11/780 UNIBUS Subsystem

respectively. One or more transferring UNIBUS devices can be as-
signed to DPO. No more than one transferring UNIBUS device, how-
ever, can be assigned to any one of the BDPs at any time. If, during a
DMA transfer, the UNIBUS address points to an invalid map register or
a map register that has a parity error within the high order 16 bits, the
UNIBUS transfer will be aborted (SSYN Timeout in the UNIBUS de-
vice), and the bit indicating the problem will be set in the UBA status
register (IVMR or MRPF). Note that for this implementation, the low
order 16 bits of the map register are accessed only when an SBI
transfer is required, and only at that time is parity checked on the low
16 bits of the map register.

Direct Data Path (DDP)

The Direct Data Path (DPO) translates each UNIBUS data transfer
function (DATI, DATO, DATOB) to a unique SBI function (Read Mask,
Write Mask). The DDP can transfer words or bytes directly between
the UNIBUS and SBI memory. In addition, the DDP allows a UNIBUS
device to interlock its operation with the system by translating a DA-
TIP-DATO/DATOB UNIBUS sequence to an Interlock Read Mask In-
terlock Write Mask SBI sequence, thereby setting and clearing the
memory interlock.

Each UNIBUS word (or byte) transfer is translated by the UNIBUS
adapter to an SBI transfer. The UNIBUS transfer does not complete
until the SBI transfer has been completed. The SBI address, function
and byte mask are mapped directly from the UNIBUS address and
control lines, and the state of an internal interlock flip flop in the case
of a DATIP-DATO sequence.

Use of the Direct Data Path

e The Direct Data Path can be assigned to more than one transferring
UNIBUS device.

e The DDP must be used by any device wanting to execute an inter-
lock sequence (DATIP-DATO/DATOB) to the SBI.

e The Direct Data Path must be used by devices not transferring to
consecutive increasing addresses or devices that mix read and write
functions.

e The maximum throughput via the DDP is approximately 425 K
words per second for write operations and 316 K words per second
for read operations. These rates will decrease as other SBI activity
increases.

e The DDP is the simplest data path, as far as programming goes,
since the map registers are the only UNIBUS adapter registers re-
quired to be accessed when initiating a UNIBUS device transfer.

263

VAX-11/780 UNIBUS Subsystem

Table 17-6 UNIBUS Field To SBI Field Translation

UNIBUS SBI
BYTE MASK
CONTROL ADDRESS FUNCTION M<3:0>
C<1:.0> A<1:.0> FUNC<3:0> 3210
DATI 0 0 READ MASK 0 0 1
10 110
DATO 00 WRITE MASK 0 0 1
10 110
DATOB 0 0 WRITE MASK 0 0O
0 1 0 0 1
10 01 0
11 1 00
DATIP 00 INTERLOCK READ MASK 0 0 1
1 0 110
followed by INTERLOCK WRITE MASK
DATO 0 0 0 0 1
10 110
OR
DATOB 0 0 INTERLOCK WRITE MASK 0 0 O
0o 1 0 0 1
10 01 0
1 1 1 00

O 000~ O—= O=

o =

OO O =

Table 17-7 illustrates the translation of UNIBUS to SBI data transfer

operations.

Table 17-7 UNIBUS-Initiated Transfer Via the Direct Data Path

UNIBUS FUNCTION

DATI

DATO or DATOB
(byte)

DATIP then DATO
or DATOB

TRANSFER
DIRECTION
UBA to device
device to UBA

UBA to device then
device to UBA

264

SBIFUNCTION

Read-masked (16
bits)

Write-masked (8 or
16 bits)

Interlock Read-
masked then Inter-
lock Write-masked

VAX-11/780 UNIBUS Subsystem

Buffered Data Path (BDP)

There are 15 Buffered Data Paths, DP1-DP15. The Buffered Data

Paths are provided for the following reasons:

1. To be used by fast DMA block transfer devices such as the RK07.
The BDPs allow UNIBUS devices to make more efficient use of the
SBI and memory and therefore improve system performance. The
use of BDPs improves the effective UNIBUS bandwidth. The maxi-
mum throughput via the BDP is 695 K words per second for both
read and write operations. This rate will decrease as other SBI
activity increases.

2. To enable word-aligned block transfer devices to begin and end
on an odd byte of SBI memory. (Byte offset operation will be
discussed under Byte Offset Data Transfers).

3. To allow a UNIBUS device to operate on random longword-
aligned 32-bit data from SBI memory so that all 32 bits of the
longword are read or written at the same time.

The software assigns a UNIBUS Transfer to a Buffered Data Path when
it sets up the map registers corresponding to the transfer.

The software must assure that no more than one active transfer is
assigned to a particular BDP at any time.

A UNIBUS device transfer using the Buffered Data Path must have the

following properties:

1. It must be a block transfer. (A block is greater than or equal to one
byte). BDP maintenance (purge) will be initiated by the software
following each block transfer. The purge operation is a software-
initiated function of the UBA that clears the BDPs of any remaining
bytes of data. These bytes will be transferred to SBI Memory for
UNIBUS to Memory Write operations or cleared for UNIBUS to
Memory Read Operations.

2. All transfers within a block must be to consecutive increasing
addresses.

3. All transfers within a block must be of the same function type,
Memory Read (DATI) or Memory Write (DATO or DATOB). The
DATIP UNIBUS function will not be recognized by the BDP. A
SSYN Timeout will result in a device attempting a DATIP to a BDP.

Each BDP contains eight bytes of DATA buffering, forming a quad-
word-aligned memory image. DATA is transferred between the UNI-
BUS and a BDP as words or bytes. Data is transferred between the
BDP and SBI memory as quadwords or between the BDP and an SBI
1/0 register as longwords.

The Buffered Data Paths are transparent to the UNIBUS device. The

265

VAX-11/780 UNIBUS Subsystem

device will perform its transfer as if transferring directly to memory.
The operation of the BDPs is described in the following section.

UNIBUS Data Transfers to Memory

As a UNIBUS device transfers data to memory (DATO,DATOB) via a
BDP, the BDP will store the data and complete the UNIBUS cycle. The
Buffered Data Paths are implemented so that a quadword image is
formed in the BDP before an SBI cycle is initiated. When the UNIBUS
device addresses the last byte or word of a physical quadword, the
UBA will complete the data cycle and the BDP will perform an extend-
ed write operation, thereby transferring the stored bytes of data. The
SBI transfer will be completed before recognizing additional UNIBUS
transfers. The BDP will set its Buffer Not Empty (BNE) bit whenever a
UNIBUS Write to the BDP is performed, and clear the BNE bit each
time the SBI transfer is executed. The BNE bit indicates whether or not
valid data is contained in the BDP. Figure 17-6 illustrates a Buffered
Data Path transfer. In this illustration, a Buffered Data Path transfer of
four 16-bit data words to the Buffered Data Path takes place. The
fourth data transfer initiates the extended write transfer of all 64 bits to
memory.

The BDP stores the UNIBUS address of data contained in the BDP.
The BDP stores the UNIBUS address of the current transfer in order to
transfer the remaining bytes to memory at the end of a block transfer.
This is the purge function that will be discussed in a later section.

The BDP also stores the type of function and the state of each byte of
the data buffer (buffer state). The buffer state is transmitted as the SBI
mask bits during the BDP to SBI write cycle so that only the correct
bytes will be written into memory.

UNIBUS Data Transfers From Memory

As a UNIBUS device performs Memory Read operations (DATI) via a
BDP, the BDP tests the state of its data buffers. If the buffers do not
contain data for the UNIBUS transfer, the BDP will initiate an Extend
Read operation to memory. The BDP will then transfer data for the
current cycle to the UNIBUS, thereby completing the UNIBUS cycle,
store the remaining bytes in its buffers, and set the BNE bit. If the data
for the current UNIBUS cycle is available in the data buffers, then the
BDP will pass the data to the UNIBUS and complete the cycle. The
BDP will prefetch the next quadword of data (Extended Read Transfer)
after each UNIBUS access to the last word of a quadword-aligned
group. The Buffer Not Empty (BNE) bit is cleared by the BDP before
the prefetch and set when the Read Data returns, thereby indicating
the state of the BDP. Figure 17-7 illustrates the Buffered Data Path
transfer from memory to the UNIBUS.

266

VAX-11/780 UNIBUS Subsystem

BDP BYTES
UNIBUS TRANSFERS BNE STATE
DATA TO ADDRESS 7 I3 5 4 0
(HEX)
3 2 1 0
DATO_ XXXXO |
% BITS worb
DATO XXXX2 1
6 BITS worb 1 wob
WORD
DATO _XXXX4 \
16 BITS
WORD 1 WORD
WORD 3 WORD
DATO XXXX6 ,
16 BITS WORD 1 WORD
0
DATO XXXX8)
6 8Ts WORD
DATO_ XXXXA :
16 BITS
WORD 5 WORD
WORD
DATO XXXXC 1
16 8ITS WORD 5 WORD
WORD 7 WORD
DATO XXXXE :
16 BITS WORD 5 WORD
EMPTY 0

Figure 17-6 UNIBUS Transfer to Memory

267

EMPTY

SBI EXTENDED
WRITE TO

MAPPED UNIBUS
ADDRESS(MEMORY)

64 BITS >

EMPTY

SBI EXTENDED
WRITE TO

MAPPED UNIBUS
ADDRESS (MEMORY)

64 BITS)

VAX-11/780 UNIBUS Subsystem

8NE BIT
DATIL 7 6 s 4|, ser
ADDRESS XXXXO ~* READ 0 (EMPTY)
3 2 1 0 \
DATI WO‘JD 3 1 wor{o 2 ‘/EAD .
XXXXO0 wor{o ! wors o DATA
!
WORD ©
DATI WORD 3 wofp 2 |
XXX X2 WoRD 1 woRo 0
f
WORD WORD 2
do 3 4
DATI WORD WORD 2 |
XXXX4
WORD 1 WORD 0
i o |
WORD 3
DATI WO'%D 3 WORD 2 |
XXXX6 WO?D \ WORD 0
LAST DATA WORD .
TRANSFER CAUSES 0
NEW SBI READ READ
; L/
DATI WORD woib ¢ READ ,
KEXXS WORD WORD 4 DATA
!
BNE BIT
7
DATI WORD WORD 6 l
XXXXA WORD 5 WORD 4
7
DATL wogo WORD 6 ‘
Xxxxc WORD 5 WORD 4
DATI WwORD 7 WORD 6 |
XXXXE WORD 5 WORD 4
SBI
—READ o
(PREFETCH)
>~
RD 11
WORD WORD 10 a0 1
, WORD ¢ WORD 8 DATA

Figure 17-7 UNIBUS Transfers From Memory
268

VAX-11/780 UNIBUS Subsystem

Programming Note:

Since the prefetch allows the possibility of the UBA crossing a page
boundary into nonexistent memory, resulting in a 100 usec timeout, it
is recommended that the software allocate an additional map register
following a block. This map register must be invalidated. When the
prefetch crosses this page boundary to the invalid map register, the
prefetch will be aborted immediately, thereby eliminating the 100 usec
timeout. The UBA does not record any UBA or SBI errors that may
occur during the prefetch operations since this is an anticipatory func-
tion based on the next probable address. If an error does occur then
the prefetch will be aborted and the BDP will not be filled with data. If
the UNIBUS device accesses the same BDP again, then the BDP to
SBI read will be initiated and any errors that occur will be logged at
this time.

Byte Offset Data Transfers

The BDPs enable word-aligned UNIBUS devices (devices beginning
transfers on word boundaries and transferring an integral number of
words) to begin and end a block transfer at an ODD byte of SBI
memory. To use this feature, the software will set the Byte Offset bit of
the map registers involved during the devices transfer.

When the Byte Offset bit is set for a transfer using the BDPs, the BDP
will, in effect, increase the SBI memory address by one byte. The data
will apppear on the UNIBUS in the byte or word indicated by the
UNIBUS Address. The data will appear on the SBI shifted to the left
(increased) by one byte. The UNIBUS adapter will distribute the data,
and adjust the SBI address and byte mask so that the data will get to
or come from the correct memory location. This operation is transpar-
ent to the UNIBUS device.)

Figure 17-8 shows the relative position of data being transferred
between a UNIBUS device and SBI memory. Figure 17-8 top shows the
relative positions without Byte Offset and Figure 17-8 bottom shows
the position with Byte Offset.

Purge Operation

The purge operation is a software-initiated function of the UBA in
which the Buffered Data Paths are purged of data and initialized. The
Buffered Data Path used by a UNIBUS device must be purged at the
completion of the device's transfer. The software initiates the purge by
writing a one to the BNE bit of the data path register (DPR) corre-
sponding to the Buffered Data Path to be purged. The UBA will per-
form the following, depending on the transfer function that was being
performed by the BDP:

269

VAX-11/780 UNIBUS Subsystem

RELATIVE POSITION OF DATA BETWEEN UNIBUS AND SBI

UNIBUS SBI MEM
ADDRESS ADDRESS
SPACE SPACE

WITHOUT BYTE OFFSET

n m | C 18

! k| A 4
UBA

i i 8§ *+—f BDP —= 10
BO=0

h 9) n m C

¢ e 4 | k] i 8

d < 2 h 9 f e 4

b o 0 d c b o | O

WITH BYTE OFFSET

n m | C 18

| k A 14
UBA

j i |8 «—— BDP |—= 10
BO=1

h 9 6 n m | C

f e |4 k j i h 8

d c 2 SBI ADD = lihélgus o f R 4 4

+
b a 0 1BYTE c b) 0

EACH LETTERED BOX REPRESENTS 1 BYTE (8 BITS)
Figure 17-8 Relative Position of Data Between UNIBUS and SBI

1. Writes to memory. If there are any remaining bytes of data in the
BDP, this data will be transferred to memory. The UBA will then
clear the BNE bit, function bit and buffer state bits and leave the
BDP in its initialized state. If an error occurs during this transfer,
the Buffer Transfer Error bit of the data path register will be set,
indicating that the data was not successfully transferred to memo-
ry. Software must clear this bit before the BDP can be used again.

If there were no data remaining in the Buffered Data Path, then the
buffer is left in its initialized state.

2. Reads from memory. The UBA will initialize the BDP by clearing
the BNE bit of the DPR.

Longword-Aligned 32-Bit Random Access Mode
The UNIBUS adapter can be used in a mode so that a UNIBUS device

270

VAX-11/780 UNIBUS Subsystem

can operate on random longword-aligned 32-bit quantities without
requiring purge operations. This mode is selected by setting the long-
word access enable (LWAE) bit 26 of the map register corresponding
to the UNIBUS transfer. A Buffered Data Path must be selected for this
operation.

In this mode, a UNIBUS device must first operate on the low order
word of the longword and then the high order word. An operation is
considered to be a read from memory (DATI) or a write to memory
(DATO) or a read/write (DATI/DATO). The UNIBUS DATIP function
code is not valid for transfers using Buffered Data Paths, and any
device performing the DATIP through a Buffered Data Path will receive
an SSYN timeout (NXM).

The Buffered Data Path will not perform the prefetch operation when
this mode is enabled, thereby allowing for random access' of
longword-aligned 32-bit quantities. This mode eliminates the need for
the purge operation at the completion of the transfer, providing the
UNIBUS device operates on both words of the longword and operates
on them in order (i.e., low word, then high word).

Maximum throughput in this mode is approximately 1.7 Mbyte/sec as
illustrated in Figure 17-9.

FIRST WORD TO BDP SECOND WORD TO BDP TO SBI
[¢———800 ns 2.6 US MIN———
REC REC REC
MSYN MSYN MSYN

3.4 US MIN. PER WORD (4 BYTES) = 1.17 MBYTE/SEC. MAX.

Figure 17-9 Random Access Mode Throughput

The operation of the UBA for the longword-aligned 32-bit access
mode is determined by the function (DATI, DATO/DATOB) and ad-
dress (A1, AO) received from the UNIBUS and the state of the buffer
not empty (BNE) bit of the data path register, corresponding to the
Buffered Data Path being used for this operation, within the UBA.
(BNE SET = buffer not empty, BNE CLEAR = buffer empty).

The following statements summarize the operation of the UBA for the
longword-aligned 32-bit random access mode of operation.

DATI Functions

1. SBI reads will occur when a DATI operation is received and the
Buffered Data Path is empty (BNE = 0).

2. The BNE bit will be set in response to a successful SBI read

271

VAX-11/780 UNIBUS Subsystem

generated by a DATI operation to the low order word (A1 = 0).
Longword data from memory is stored in the Buffered Data Path.
The BNE bit will be cleared by a DATI operation to the high order
word (A1 = 1).

If the BNE bit is set, data from the Buffered Data Path will be
returned to the UNIBUS device.

DATO/DATOB Functions

1.

3.

The BNE bit will be set by a DATO or DATOB operation. The data
from the UNIBUS device will be stored in the Buffered Data Path
and the byte mask bit is set within the data path register to indi-
cate the bytes or words that have been written by the UNIBUS
device.

SBI writes will occur when a DATO operation occurs to the high
order word or when a DATOB operation occurs to the high order
byte. The bytes or words that were written (i.e., those for which the
byte mask bits are set) are written into main memory.

The BNE bit will be cleared after a SBI write operation.

The UBA operations per UNIBUS access, as a function of BNE and
received UNIBUS function and address for this mode of operation are:

Present Next
BNE BNE
State Function A1,A0 UBA Operations State
0 DATI 0 X SBI READ,RETURN LOW
WORD, STORE DATA 1
0 DATI 1 X SBI READ, RETURN HIGH
WORD 0
1 DATI 0 X RETURN LOW WORD 1
1 DATI 1 X RETURN HIGH WORD 0
0 DATO 0 X STORE LOW WORD 1
0 DATO 1 X STORE HIGH WORD,SBI
WRITE 0
1 DATO 0 X STORE LOW WORD 1
1 DATO 1 X STORE HIGH WORD,SBI
WRITE 0
0 DATOB 0 0 STOREBYTEO 1
0 DATOB 0 1 STOREBYTE 1 1
0 DATOB 10 STOREBYTE 2 1
0 DATOB 1 1 STORE BYTE 3,SBI
WRITE 0
1 DATOB 00 STOREBYTEO 1
1 DATOB 0o 1 STOREBYTE 1 1
1 DATOB 1 0 STOREBYTE 2 1

272

VAX-11/780 UNIBUS Subsystem

1 DATOB 1 1 STORE BYTE 3,SBI

WRITE 0
0 DATIP X X UBA DOES NOT

RESPOND (NXM TO

UNIBUS DEVICE) NO

CHANGE 0
1 DATIP X X UBA DOES NOT

RESPOND (NXM TO

UNIBUS DEVICE) NO

CHANGE 1

To enable this mode of operation, Bit 26 of the map register has been
changed to the Longword Access Enable (LWAE) bit. This bit when set
and when a buffered data path is selected, will enable the longword-
aligned 32-bit random access mode. It is a read/write bit and is
cleared on initialization.

Programming the UBA for longword-aligned random access mode
requires loading the map registers with the following data:

BIT<31> MRV Map register valid, must be set.

BIT<30:27> Must be zero.

BIT<26> LWAE Longword access enable, must be set.
Ignored during Direct Data Path
transfers.

BIT<25> BO Byte offset, must be zero.

BIT<24:21> DPDB Data path designator bits, must use a
buffered data path, BDP1-BDP15. LWAE bit
is ignored when DPDB = 0 (Direct Data
Path).

BIT<20:0> PFN Page frame number, SBI page address.

The allowed UNIBUS sequences for this mode of operation are:

A1,A0
1. DATI 0 O SBI READ—Low word is returned to UNI
BUS device. Both words are stored in BDP.
BNE bit is set.
DATI 1 O High word from BDP is returned to UNIBUS
device. BNE is cleared.
2. DATO 0 O Low word is written to BDP. BNE bit is set.
DATO 1 0 SBI WRITE—High word is written to BDP—

then low word and high word are trans-
ferred to memory. BNE bit is cleared.

273

VAX-11/780 UNIBUS Subsystem 1

3. DATOB O O Byte 0 is written to BDP, BNE is set.
DATOB 0 1 Byte 1 is written to BDP, BNE is set.
DATOB 1 O Byte 2 is written to BDP, BNE is set.
DATOB 1 1 Byte 3 is written to BDP, SBI WRITE.
4. DATI 0 O SBI READ-Low word is returned to UNIBUS
device. Both words are stored in BDP.
DATO 0 O Low word of BDP is written by UNIBUS de-
vice.
DATI 1 O High word from BDP is returned to UNIBUS
device.
DATO 1 0 SBI WRITE-High word of BDP is written by

UNIBUS device and modified longword is
returned to the memcry.

DATO 1 O SBI WRITE-High word of BDP is written by
UNIBUS device and modified longword is
returned to the memory.

Additional BDP Software Information

1. For purge operations in which data is transferred to memory, the
SBI transfer takes about 2 us. The UBA will not respond to Data
Path Register Read during this period (Busy Confirmation), thus
preventing a race condition when testing for the BNE bit to be
cleared.

2. The Buffer Transfer Error bit (BTE) of the data path registers
indicates that an error occurred during an operation involving a
buffered data path. Once this bit is set, UNIBUS transfers using
the BDP will be aborted until the bit is cleared by the software. The
purge operation does not clear the BTE bit.

3. Any purge operations initiated by the software to BDPs for which
the purge or initialization is not required are treated by the UBA as
a NO-OP.

4. A purge operation to Data Path Register 0 (Direct Data Path) is
treated by the UBA as a NO-OP.

INTERRUPTS
SBI interrupts can be generated from two sources within the UNIBUS
subsystem: either from a UNIBUS device or from the UNIBUS adapter.

Interrupts from the UNIBUS can occur at any one of the four request
levels, as determined by the UNIBUS BR lines. Interrupts from the
UNIBUS adapter will occur at one assigned request level. This level is
assigned by backplane jumper.

274

VAX-11/780 UNIBUS Subsystem

The UNIBUS adapter contains one request sublevel. The UBA will
therefore require four of the 64 possible SBI interrupt vectors (1 for
each of the 4 required levels). The four vectors will each “point” to a
UBA Service Routine corresponding to an interrupt request level.
Each UBA service routine must read and test the BR Receive Vector
Register corresponding to the level of interrupt:

BRRVR 7 for Req Level 7
BRRVR 6 for Req Level 6
BRRVR 5 for Req Level 5
BRRVR 4 for Req Level 4

From the contents of the BRRVRs, the UBA service routine will deter-

mine whether the interrupt was generated from within the UBA Status

Register, from the UNIBUS device,or from both. The UBA service rou-
_ tine can then service the interrupt as determined by testing the con-

tents of the BRRVR.

Bit <31> Bits <15:0>

0 0 No service required.

0 \" UNIBUS service as indicated by vector V
received from the UNIBUS device (UNIBUS
device Interrupt Service Routine).

1 0 UNIBUS adapter service required. Read
configuration register and status register to
determine the service required.

1 \' UNIBUS and UNIBUS adapter service re-
quired.
1. Save the vector V (received from the UNI-
BUS device).
2. Read UBA configuration register and
status register.
3. Perform UBA service as indicated by
configuration and status register.
4. Index into UNIBUS device service routine
with vector V.

V is the vector field of the BRRVR received from the UNIBUS device.
Zero is the null vector indicating that a vector was not received from
the UNIBUS device.

Software Note: The zero vector resulting from an SBI Interrupt Sum-
mary Read must be reserved and interpreted as a Passive Release
Condition.

Interrupts from the UNIBUS

The UBA will translate the UNIBUS BR interrupts to SBI request inter-

275

VAX-11/780 UNIBUS Subsystem

rupts, providing the Interrupt Fielder Switch (IFS) bit and the BR Inter-
rupt Enable (BRIE) bit of the UBA control register are set. The asser-
tion of the SBI request lines will initiate an SBI interrupt transaction
vectoring to the UBA interrupt service routine. This routine will then
read the BR Receive Vector Register (BRRVR) corresponding to the
level of the interrupt. On receiving the read BRRVR command, the

UBA will test that the following conditions are true:
1. The UNIBUS BR line corresponding to the BRRVR number is

asserted.
2. The BRRVR does not contain an already valid vector.
3. UNIBUS AC LO is not asserted.

If all of the three conditions are met, then the UBA will issue the
UNIBUS Bus Grant and complete the UNIBUS interrupt transaction.
The BRRVR is loaded with the interrupt vector by the successful com-
pletion of the interrupt transaction. The device vector received during
the transaction will be sent as the read data to the BRRVR Read Com-
mand. If a UBA interrupt is active then the vector will be sent as a
negative quantity (bit 31 sent as a one).

The BRRVR is cleared by the successful completion of the SBI Read

Data Cycle, otherwise the vector is saved and the BRRVR remains full. -

If conditions 1, 2, 3 are not met then the contents of the BRRVR (either
the stored vector, from a previously failing SBI read data cycle, or
zero) will be sent as read data. If a UBA interrupt is active then bit 31
will be sent as a one.

The following sequence is performed for UNIBUS device interrupts:

1. Abusrequestline is asserted by the UNIBUS device.

2. The UNIBUS adapter asserts the SBI request line, corresponding
to the UNIBUS BR line, to initiate the interrupt transaction in the
CPU.

3. When the interrupt summary read corresponding to the above
request level is seen by the UNIBUS adapter, the UNIBUS adapter
asserts the request sublevel assigned to the UBA.

4. The CPU will then transfer control to the UNIBUS adapter inter-
rupt service routine.

5. The UNIBUS interrupt service routine will execute a read to the BR
receive vector register corresponding to the level of interrupt.

6. The UNIBUS adapter will issue the UNIBUS Bus Grant corre-
sponding to the level of the interrupt being serviced providing the
following conditions are met: adapter interrupt is not pending; BR
line corresponding to the BRRVR is asserted; the BRRVR does not
contain a previous vector.

7. The UNIBUS interrupt transaction is completed, the vector is

276

VAX-11/780 UNIBUS Subsystem

loaded into the corresponding BRRVR, and the vector is given to
the UNIBUS Interrupt Service Routine as a Read DATA.

8. The BRRVR will be cleared when the ACK Confirmation is re-
ceived for the Read DATA.

9. The UNIBUS interrupt service routine will then dispatch to the
UNIBUS device service routine (or service the UBA) as indicated
by the received interrupt vector.

NOTE
The UNIBUS adapter interrupt service routine
(UBASR) is the routine that will interface the CPU
interrupt process to the individual UNIBUS device
service routines. This routine will provide the addi-
tional level of dispatch required for UNIBUS-initiated
interrupts.

Failure to Complete the UNIBUS Interrupt Transaction

If for some reason, the UNIBUS initiated an interrupt transaction and
then fails to complete (i.e., passive release), the interrupt vector will
not be loaded into the interrupt vector register. The following mecha-
nism will allow the UNIBUS interrupt service routine to gracefully exit.
The idle state of the BRRVR is zero. if, when reading the interrupt
vector register, the UNIBUS interrupt service routine receives the zero
vector, it will log an error (if desired) and return from the service
routine.

Once successfully loaded, the BRRVR will maintain the interrupt vec-
tor until an ACK confirmation to the BRRVR Read Data has been
received, or an adapter Init sequence is initiated. If the ACK confirma-
tion is not received for the Read Data then the BRRVR full bit will not
be cleared, and subsequent reads to that BRRVR will result in the
stored vector being returned for the Read Data until ACK is received
for the Read Data.

Interrupts from the UNIBUS adapter to the SBI

When the UNIBUS adapter interrupt enable bit is set, and a condition

warranting an interrupt occurs in the UNIBUS adapter, the following

sequence occurs:

1. The UNIBUS adapter asserts its assigned request line.

2. When the Interrupt Summary Read, corresponding to the above
request level, is seen by the UNIBUS adapter, the request
sublevel assigned to the UNIBUS adapter is sent to the CPU as an
Interrupt Summary Response.

3. With this information, request level and request sublevel, the CPU
can dispatch to the UNIBUS adapter service routine, which will

277

VAX-11/780 UNIBUS Subsystem

then read the BR Receiver Vector Register corresponding to the
level of interrupt. The BRRVR will contain a negative value (bit 31
set).

4. The UBA service routine will detect the negative value and branch
to a routine that will read the Configuration Register and Status
Register to determine the service required.

The request line will remain asserted until all conditions (bits of the
UNIBUS adapter status register) have been cleared by the software.

UNIBUS ADAPTER (NEXUS) REGISTER SPACE

Each NEXUS register address space occupies 16 pages (512
bytes/page) of Synchronous Backplane Interconnect 1/0 address
space. The address location of the UNIBUS adapter is determined by
the transfer request priority number assigned to the adapter. The
transfer request number is determined by electrical jumpers on the
NEXUS backplane and may vary from one system configuration to the
next.

Table 17-8 illustrates the physical base address and SBI base address
for a NEXUS assigned to any one of the SBI transfer request numbers.

Table 17-8 Transfer Number Address Assignments

SBI Transfer Address Base
Request Number Physical (Hex)
1 20002000.

2 20004000
3 20006000
4 20008000
5 2000A000
6 2000C000
7 2000E000
8 20010000
9 20012000
10 20014000
11 20016000
12 20018000
13 2001A000
14 2001C000
15 2001E000

Table 17-9 lists each of the UNIBUS adapter registers and its associat-
ed physical address offset.

278

VAX-11/780 UNIBUS Subsystem

Table 17-9 UNIBUS Adapter Register Address Offset

UNIBUS

Adapter Register

Configuration Register

UNIBUS Adapter Control Register
UNIBUS Adapter Status Register
Diagnostic Control Register

Failed Map Entry Register

Failed UNIBUS Address Register
Failed Map Entry Register

Failed UNIBUS Address Register
Buffer Selection Verification Register 0
Buffer Selection Verification Register 1
Buffer Selection Verification Register 2
Buffer Selection Verification Register 3
Buffer Receive Vector Register 4
Buffer Receive Vector Register 5
Buffer Receive Vector Register 6
Buffer Receive Vector Register 7

Data Path Register 0

Data Path Register 1

Data Path Register 14
Data Path Register 15
Reserved

Reserved
Map Register 0
Map Register 1

Map Register 494
Map Register 495
Reserved

Reserved

279

Byte Offset
(Physical Hex)
000

004

008

0oC

010

014

018

01C

020

024

028

02C

030

034

038

03C

040

044

078
07C
080

7EC
800
804

EB8
EBC
ECO

EFC

VAX-11/780 UNIBUS Subsystem

The offset within the UNIBUS adapter address space is shown for each
of the UNIBUS adapter registers with respect to the physical address.
As described in Table 17-9, the addresses of all other UNIBUS adapter
registers are relative to the configuration register address by an offset.
The base address of the configuration register is the physical base
address described in Table 17-8. Therefore, the byte offset for the
configuration register in Table 17-9 is 000.

SBI ADDRESSABLE UNIBUS ADAPTER REGISTERS

The UNIBUS adapter registers occupy eight pages of the SBI I/0
address space. These registers fall into four categories: map registers,
data path registers, interrupt vector registers and control and status
registers. The UNIBUS adapter registers are all 32-bit registers and
can only be written as longwords. These registers will, however, re-
spond to byte or word read commands. These registers will also re-
spond to the Interlock Read/Interlock Write sequence but will not af-
fect the interlock of the SBI. The following sections discuss the func-
tion and content of each of the UNIBUS adapter registers.

Configuration Register (CNFGR)

The configuration register contains the SBI fault bits, the UNIBUS
adapter and UNIBUS environment status bits, and the UNIBUS
adapter code. This register is required to interface with the SBI. Figure
17-10 illustrates the configuration register.

313029282726 23 22 181716 7 65 43210

UNIBUS ADAPTOR CODE
UNIBUS INIT COMPLETE
UNIBUS POWER DOWN
UNIBUS INIT ASSERTED
ADAPTOR POWER UP
ADAPTOR POWER DOWN
TRANSMIT FAULT
MULTIPLE TRANSMITTER FAULT
INTERLOCK SEQUENCE FAULT
UNEXPECTED READ DATA FAULT
WRITE SEQUENCE FAULT
PARITY FAULT

Figure 17-10 Configuration Register Bit Configuration

280

VAX-11/780 UNIBUS Subsystem

The contents of the Configuration Register are as follows:

Bit: 31:27 Name: SBI faults

Function: These bits are set when the UNIBUS adapter detects spe-
cific fault conditions on the SBI. These bits cannot be set once FAULT
has been asserted. The negation of FAULT and the disappearance of
the fault conditions clear the bits. The setting of any of the bits <31:
26> will cause the UNIBUS adapter to assert the FAULT signal on the
SBI.

Bit: 31 Name: Parity Fault (PARFLT) .
Function: PAR FLT is set when the UNIBUS adapter detects an SBI
parity error.

Bit: 30 Name: Write Sequence Fault (WSQ FLT)

Function: WSQ FLT is set when the UNIBUS adapter receives a Write
Masked, Extended Write Masked, or Interlock Write Masked com-
mand which is not immediately followed by the expected write data.

Bit: 29 Name: Unexpected Read Data Fault (URD FLT)

Function: URD FLT is set when the UNIBUS adapter receives data for
which a Read Masked, Extended Read, or Interlock Read Masked
command has not been issued.

Bit: 28 Name: Interlock Sequence Fault (1ISQ FLT)

Function: 1SQ FLT is set when an Interlock Write Masked command
or a UNIBUS address space is received by the UNIBUS adapter with-
out a previous Interlock Read Masked command.

Bit: 27 Name: Multiple Transmitter Fault (MXT FLT)

Function: MXT FLT is set when the UNIBUS adapter is transmitting
on the SBI and the IB bits transmitted by the UNIBUS adapter do not
match those latched from the SBI. The lack of correspondence indi-
cates a multiple transmitter condition.

Bit: 26 Name: Transmit Fault (XMT FLT)

Function: XMT FLT is set if the UNIBUS adapter was the transmitter
during a detected fault condition. When the software subsequently
reads the configuration and status registers of each of the NEXUSs on
the SBI in order to identify the source of the fault, the UNIBUS adapter
will be identified as that source if bit <26> is set.

Bit: 25:24 Name: Reserved and zero
Function: Bits <23,22,18,17,16> are UNIBUS Subsystem
Environmental Status Bits. If any of these bits are set and the Configu-
ration Interrupt Enable bit (CNFIE) of the control register is also set,
then the UNIBUS adapter will initiate an SBI interrupt request at the
level assigned to the UNIBUS adapter.

281

VAX-11/780 UNIBUS Subsystem

Bit: 23 Name: Adapter Power Down (AD PDN)

Function: This bit is set when the UNIBUS adapter power supply
asserts AC LO. It is cleared by writing a one to the bit location or when
the Adapter Power Up bit is set.

Bit: 22 Name: Adapter Power Up (AD PUP)

Function: This bit is set by the negation of power supply AC LO. Itis
cleared by writing a one to the bit location or by setting the Adapter
Power Down bit.

Bit: 21:19 Name: Reserved and zero
Function:

Bit: 18 Name: UNIBUS INIT Asserted (UB INIT)

Function: The assertion of UNIBUS Init will set this bit. It is cleared by
the setting of the UNIBUS Initialization Complete bit (UBIC) or by the
writing of a one to this bit location.

Bit: 17 Name: UNIBUS Power Down (UB PDN)

Function: This bit is set when UNIBUS AC LO is asserted. Itindicates
that the UNIBUS has initiated a power down sequence. The setting of
the UNIBUS initialization complete bit or writing a one to this location
will clear UB PDN.

Bit: 16 Name: UNIBUS Initialization Complete(UBlC)

Function: This bit is set by a successful completion of a power up
sequence on the UNIBUS. It is the last of the status bits to be set
during a UNIBUS adapter initialization sequence, and it can be in-
terpreted to mean that the UNIBUS adapter and the UNIBUS are
ready. The assertion of UNIBUS AC LO or UNIBUS INIT, or the writing
of a one to this bit location will clear UBIC.

Bit: 15:8 Name: Reserved
Function:

Bit: 7:0 Name: Adapter Code
Function: These bits define the code assigned to the UNIBUS adap-
ter. Table 17-10 shows the bit assignment.

Table 17-10 Adapter Code Bit Assignment

BIT NUMBER 7lels|a]3]2]|1]o
ADbRess | O[O 1o o
SPACE
0 oo
| o |
2 1 | o
3 v

282

VAX-11/780 UNIBUS Subsystem

Adapter code bits 1 and 0 are determined by backplane jumpers and
indicate the starting address of the UNIBUS address space associated
with the UNIBUS adapter, as shown in Table 17-11.

Table 17-11 Selectable UNIBUS Starting Addresses

313029282726 6 5 4 3 2 10

41312110

L_V_J

MAP REGISTER
DISABLE BITS

INTERRUPT FIELD SWITCH
BR INTERRUPT ENABLE
UNIBUS TO SBI ERROR INTERRUPT ENABLE
SBI TO UNIBUS ERROR INTERRUPT ENABLE
CONFIGURATION INTERRUPT ENABLE
UNIBUS POWER FAIL

ADAPTOR INIT

Note that the lowest two bits of the Configuration Register (Vb and Va)
correspond to SBI address bits 16 and 17.

Control Register (UACR)

The UNIBUS Adapter Control Register enables the software to control
operations both on the UNIBUS adapter and on the UNIBUS. All bits
except for the Adapter INIT bit are set by writing a 1 and cleared by
writing a 0 to the bit location. The Adapter INIT bit is set by writing a
one to the bit location and is self clearing. Figure 17-11 shows the
Control Register bit configuration.

313029282726 6 5 4 3210

413(2(1|0

MAP REGISTER

DISABLE BITS INTERRUPT FIELD SWITCH

BR INTERRUPT ENABLE
UNIBUS TO SBI ERROR INTERRUPT ENABLE
SBI TO UNIBUS ERROR INTERRUPT ENABLE
CONFIGURATION INTERRUPT ENABLE
UNIBUS POWER FAIL

ADAPTOR INIT

Figure 17-11 Control Register Bit Configuration

283

VAX-11/780 UNIBUS Subsystem

The contents of the control register are as follows:

Bit: 31 Name: Reserved and zero
Function:

Bit: 30:26 Name: Map Register Disable <4:0> (MRD)

Function: This field of five read/write bits disables map registers in
groups of 16, according to the binary value contained in the field. The
MRD bits prevent double addressing if UNIBUS memory is used. This
field is loaded with a binary value equal to the number of 8 Kbyte units
of memory attached to the UNIBUS, as shown in Table 17-12.

Table 17-12 Map Register Disable Bit Functions

MRD <4:0> | AMOUNT OF UNIBUS MAP REGISTERS
MEMORY (WORDS) DISABLED

00000 0K NONE
00001 4K 0710 15 (10)
00010 8K 0 10 31 (10)
00011 12K 0 70 47 (10)
11110 120K 0 TO 480 (10)
IBRRR 124K 01O 495 (10)

DMA transfers to addresses controlied by disabled map registers are
not recognized by the UNIBUS adapter. No error bits are set and no
transfers are initiated. However, SBI access to disabled map registers
is permitted. The MRD field is initialized as zero, with all map registers
enabled.

Bit: 25:7 Name: Reserved and zero
Function:

Bit: 6 Name: Interrupt Field Switch (IFS)

Function: This bit determines whether interrupts from a UNIBUS de-
vice on the UNIBUS outside of the UNIBUS adapter will be fielded by
the VAX-11 CPU or passed to the UNIBUS inside of the UNIBUS adap-
ter. If the bit is set (1), then the interrupt will be passed to the SBI, if the
BR Interrupt Enable bit of the control register is set. If the bitis cleared
(0), then the interrupt will be passed to the UNIBUS inside of the
UNIBUS adapter, where it is in effect ignored.

The power up state of the IFS bit is 0. The bit is also cleared by the
adapter unit and SBI dead signals. This bit and BRIE must be set by
the software to receive UNIBUS device interrupts.

284

VAX-11/780 UNIBUS Subsystem

Bit: 5 Name: Bus Request Interrupt Enable (BRIE)

Function: When this bit is set it allows the UNIBUS adapter to pass
interrupts from the UNIBUS to the VAX-11 CPU. The power up state of
the BRIE bit is 0. The bit is also cleared by the Adapter INIT, SBI
UNJAM, and SBI Dead signals. This bit and IFS must be set by the
software to receive UNIBUS device interrupts.

Bit: 4 Name: UNIBUS to SBI Error Field Interrupt Enable
(USEFIE)

Function: The USEFIE bit enables an interrupt request to the VAX-11
CPU whenever any of the following Status Register bits is set on a
DMA transfer.

RDTO (Read Data Time Out)

RDS (Read Data Substitute)

CXTER (Command Transmit Error)
CXTO (Command Transmit Time Out)
DPPE (Data Path Parity Error)

IVMR (Invalid Map Register)

MRPF (Map Register Parity Failure)

The power up state of the USEFIE (UNIBUS Error Field Interrupt En-
able) bitis zero. SBI UNJAM and Adapter Init will clear the bit.

Bit: 3 Name: SBI To UNIBUS Error Field Interrupt Enable
(SUEFIE)

Function: If this bit is set, the UNIBUS adapter will generate interrupt
requests to the VAX-11 CPU when one of the two bits in the SBI to
UNIBUS data transfer error field is set.

UBSTO (UNIBUS Select Time Out)
UBSSYNTO (UNIBUS Slave Sync Time Out)

The power up state of this bit is zero. SBI UNJAM, SBI Dead, and
Adapter INIT will clear the bit.

Bit: 2 Name: Configuration Interrupt Enable (CNFIE)
Function: If this bit is set, the UNIBUS adapter will initiate an
interrupt request to the VAX-11 CPU whenever any one of the environ-
mental status bits of the configuration register is set.

AD PDN (Adapter Power Down)

AD PUP (Adapter Power Up)

UB INIT (UNIBUS INIT Asserted)

UB PDN (UNIBUS Power Down)

UBIC (UNIBUS Initialization Complete)

The power up state of this bit is set (1). The bit is cleared by Adapter
INIT, SBI UNJAM, and SBI Dead.

285

VAX-11/780 UNIBUS Subsystem

Bit: 1 Name: UNIBUS Power Fail (UPF)

Function: When this bit is set, it initiates a power fail sequence on the
UNIBUS, asserting AC LO, DC LO, and INIT. The software uses this bit
to initialize the UNIBUS. The UNIBUS will remain powered down as
long as UPF is set. Thus the software can initialize the UNIBUS by
setting and then clearing the UPF bit.

Bit: 0 Name: Adapter INIT (ADINIT)

Function: When this bit is set it will completely initialize the UNIBUS
adapter and the UNIBUS. The map registers, the data path registers,
the status register, and the control register will be cleared. The UNI-
BUS adapter will initialize all of its control logic, and will generate a
power fail sequence on the UNIBUS. The adapter initialization se-
quence takes only 500 us to complete, while the UNIBUS power fail
sequence requires 25 ms.

Only the configuration register and the diagnostic control register can
be read during the adapter initialization sequence. And only the con- -
figuration register, the diagnostic control register, and the control
register can be written during the adapter initialization sequence.

Once the sequence has been completed, all UNIBUS adapter registers
can be accessed. However, the UNIBUS cannot be accessed until the
UNIBUS initialization sequence has been completed as well. The soft-
ware can test for this condition by reading the UBIC bit of the configu-
ration register, or by setting the configuration interrupt enable bit of
the control register and looking for the interrupt generated by the
setting of the UBIC bit. Note that the assertion of UNIBUS INIT (UBIN-
IT) can also initiate an interrupt . The Adapter INIT bit can be set by
writing a one to the bit location, and it is self-clearing.

Status Register (USAR)

The UNIBUS Adapter Status Register contains program status and
error information. Bits <27:24> are read only bits which are set and
cleared by operations within the UNIBUS adapter. Bits <10:0> can be
read and cleared by writing a one to the appropriate bit location.
Specific conditions which occur on the UNIBUS adapter will set these
bits. Writing a zero has no effect on any of the bits. Figure 17-12 shows
the Status Register bit configuration.

The contents of the status register are:

Bit: 31:28 Name: Reserved and zero
Function:

Bit: 27:24 Name: BR Receive Vector Register Full
Function: These bits indicate the state of the SBI addressable BR
receive vector registers. Each bit is set when the interrupt vector is

286

VAX-11/780 UNIBUS Subsystem

31 27 262524 10 9 8 7 6 5 4 3 2 10

BRRVR 7 FULL

BRRVR 6 FULL
BRRVR 5 FULL
BRRVA 4 FULL

READ DATA TIMEOUT
READ DATA SUSTITUTE
CORRECTED READ DATA
COMMAND TRANSMIT ERROR
COMMAND TRANSMIT TIMEOUT
DATA PATH PARITY ERROR
INVALID MAP REGISTER

MAP REGISTER PARITY FAIL
LOST ERROR BIT

UNIBUS SEL TIMEOUT

UNIBUS SSYN TIMEOUT

Figure 17-12 Status Register Bit Configuration

loaded into the corresponding BRRVR during a UNIBUS interrupt
transaction, providing that the SBI processor is fielding UNIBUS de-
vice interrupts.

Each bit is cleared by the successful completion of a read data
transmission following a read BRRVR command. The software will see
these bits set only after a read data failure has occurred during the
execution of the read BRRVR command, and the UNIBUS interrupt
vector has been saved by the UNIBUS adapter.

Bit 27=BRRVR 7 Full
Bit 26=BRRVR 6 Full
Bit 25=BRRVR 5 Full
Bit 24=BRRVR 4 Full

Bit: 23:11 Name: Reserved and zero
Function: The remaining bits identify specific data transfer errors.
They are read and write-one-to clear bits.

Bit: 10 Name: Read Data Time Out (RDTO)

Function: The UNIBUS adapter sets the Read Data Time Out bit
when the following conditions are met: When a UNIBUS device has
initiated a DMA read transfer, when the UNIBUS adapter has success-
fully transmitted a read command on the SBI, and the SBI memory has
not returned the requested data within 100 us, and when the UNIBUS
device has not timed out. Note that the normal UNIBUS timeout is 10-

287

VAX-11/780 UNIBUS Subsystem

20 us, and that after 10-20 us, the UNIBUS device will set its nonexis-
tent memory bit. Thus, the Read Data Time Out bit will be set on the
UNIBUS adapter status register only if the UNIBUS device timeout
function is inoperative, or takes more than 100 us.

Bit: 9 Name: Read Data Substitute (RDS)

Function: This bit is set if a read data substitute is received in re-
sponse to a UNIBUS to SBI read command (DMA read transfer). No
data will be sent to the UNIBUS device, and when the device timeout
occurs, the nonexistent memory bit will be set within the UNIBUS
device.

Bit: 8 Name: Corrected Read Data (CRD)

Function: The UNIBUS adapter sets this bit when it receives correct-
ed read data in response to an SBI read command during a DMA read
transfer. The setting of this bit has no effect on the completion of the
UNIBUS transfer.

Bit: 7 Name: Command Transmit Error (CXTER)

Function: The UNIBUS adapter sets this bit when it receives an error
confirmation in response to an SBI command transmission during a
DMA transfer.

Bit: 6 Name: Command Transmit Timeout (CXTO)

Function: This bit is set when a command transmission times out
during a UNIBUS to SBI data transfer or during a BDP to SBI write or
purge.

Note that the normal UNIBUS timeout is 10 us, which will result in the
UNIBUS device setting its nonexistent memory bit and will also abort
the UBA to SBI transfer. The CXTO bit will therefore only be set for a
UNIBUS to SBI transfer if the device’'s timeout mechanism is
inoperative. The UBA will, however, attempt to perform a BDP to SBI
write or purge operation for the full 100 us timeout period if busy or no
response confirmation is received, thereby setting the CXTO bit. The
bit is not set for a prefetch operation since the prefetch works by
anticipated addresses (i.e., the next address) and any errors resulting
from the prefetch are considered to be invalid.

Bit: 5 Name: Data Path Parity Error (DPPE)

Function: This bit is set when a parity error occurs in the Buffered
Data Path during either a UNIBUS to BDP DATI, a BDP to SBI write, or
apurge.

Note that during a purge operation the address to be mapped is also
obtained from the BDP and it is possible for a parity error to occur
when fetching the address from the BDP. This parity error will also set
the DPPE bit and abort the SBI transfer that would have taken place.

288

VAX-11/780 UNIBUS Subsystem

Also note that any condition that sets the DPPE bit will also set the
buffer transfer error bit in the DPR of the Buffer Data Path in which the
error occurred, thereby aborting any SBI transfers in progress and
any future UNIBUS transfers through that BDP until the buffer transfer
error is cleared.

Bit: 4 Name: Invalid Map Register (IVMR)

Function: The UNIBUS adapter sets this bit during a DMA transfer or
purge operation when the UNIBUS address points to a map register
which has not been validated by the software, or when the DMA trans-
fer crosses an SBI page boundary for which the map register has not
been validated.

Bit: 3 Name: Map Register Parity Failure (MRPF)

Function: This bit is set with the occurrence of a map register parity
failure when a UNIBUS address is being mapped to an SBI address on
a DMA transfer operation or a purge operation.

Seven of the bits just listed (RDTO, RDS, CXTER, CXTO, DPPE, IVMR,
and MRPF) form an error-locking field. If any one of these bits is set,
the field is locked until the bit indicating the error is cleared. The Failed
Map Entry Register (FMER) is also locked and unlocked with this field.
And the setting of any of these bits will cause the UNIBUS adapter to
initiate an interrupt request if the interrupt enable bit for the UNIBUS to
SBI data transfer error field (USEFIE) in the control register is set.

Bit: 2 Name: LostError Bit (LEB)

Function: The UNIBUS adapter sets this bit if the locking error field is
locked and another error within this field occurs. The lost error bit
does notinitiate an interrupt request.

Bit: 1 Name: UNIBUS Select Time Out (UBSTO)

Function: The UNIBUS adapter sets this bit if it cannot gain access to
the UNIBUS within 50 us in the execution of a software initiated trans-
fer (SBI to UNIBUS transfer). When UBSTO is set it indicates that the
UNIBUS adapter has issued NPR on the UNIBUS but has not become
bus master. This condition indicates the presence of a hardware prob-
lem on the UNIBUS. The UNIBUS may be inoperative, or one device
may be holding it for extended periods. Note that if the UNIBUS does
become inoperative, it may be possible to clear the problem with the
assertion of UNJAM on the SBI, by setting and clearing of the UNIBUS
power fail bit (control register bit 1) or by setting Adapter INIT (control
register bit 0).

Bit: 0 Name: UNIBUS Slave Sync Time Out (UBSSYNTO)

Function: This bit is set when an SBI to UNIBUS transfer (software-
initiated transfer) times out during the data transfer cycle on the UNI-
BUS. The timeout occurs after 12.8 us. UBSSYNTO indicates a

289

VAX-11/780 UNIBUS Subsystem

transfer failure resulting when a nonexistent memory or device on the
UNIBUS is addressed.

The two bits just discussed, UBSTO and UBSSYNTO, form an SBI to
UNIBUS transfer error-locking field. They are set by the occurrence of
the conditions mentioned and cleared by writing a (1) to the bit loca-
tion. The setting of either bit will cause the UNIBUS adapter to make
an interrupt request on the SBI if the SBI to UNIBUS error interrupt
enable bit (SUEFIE) in the control register is set. The setting of either
UBSTO or UBSSYNTO will lock the failed UNIBUS address register
(FUBAR), thus storing the high 16 bits of the UNIBUS address identi-
fied with the failure. The FUBAR will remain locked until the UBSTO
and UBSSYNTO bits are cleared.

Diagnostic Control Register (DCR)

The Diagnostic Control Register provides control and status bits which
aid in the testing and diagnosis of the UNIBUS adapter. The bits of this
register, when set, will defeat certain vital functions of the UNIBUS
adapter. The DCR is therefore not intended for use during normal
system operation. Figure 17-13 shows the bit configuration of the
DCR. .

313029282726 242322 214 1918 1615 8 7 0

UNUSED UNUSED UNUSED

« J
VT

SAME AS CONFIGURATION REGISTER BITS <23:00>

SPARE MICROSEQUENCER OK

DISABLE | DEFEAT
INTERRUPT | DATA
PATH
PARITY

DEFEAT
MAP
PARITY

Figure 17-13 Diagnostic Control Register Bit Configuration

Bit: 31 Name: Spare

Function: This read/write bit has no effect on any UNIBUS adapter
operation. It can be set by writing a one and cleared by writing a zero
to the bit location. SBI Dead, Adapter INIT, and a power up sequence
on the UNIBUS adapter will clear this bit.

Bit: 30 Name: Disable Interrupt (DINTR)
Function: When it is set, this bit will prevent the UNIBUS adapter

290

VAX-11/780 UNIBUS Subsystem

from recognizing interrupts on the UNIBUS. It is useful in testing the
response of the UNIBUS adapter to the passive release condition dur-
ing a UNIBUS interrupt transaction. This bit is set by writing a one and
cleared by writing a zero to the bit location. SBI Dead, Adapter INIT,
and the power up sequence on the UNIBUS adapter will also clear
DINTR. .

Bit: 29 Name: Defeat Map Parity (DMP)

Function: When it is set, this read/write bit will inhibit the parity bits
of the map registers from entering the map register parity checkers.
The map register parity generator checkers generate and check parity
on eight bit quantities. Each parity field (eight data bits and one parity
bit) is implemented so that the total number of ones in the field is odd.

For example, if bits <7:0> of a map register equal zero, then the parity
bit equals one. However, if the DMP bit is set, then the parity bit is
disabled and the parity checkers will see all zeros. This results in a
map register parity failure. Then, if the DMP bit is set, the parity check-
ers will see correct parity. Note, however, that if bits <7:0> of the map
register contain an odd number of ones, the generated parity bit will
be zero. The state of the DMP bit will therefore have no effect on the
parity result in this case.

When the integrity of the parity generator checkers is to be tested, the
map register must contain data so that at least one of the bytes con-
tains an even number of ones. The DMP bit, when set, will disable the
parity bit, and the map register parity failure can be detected during a
DMA transfer. SBI Dead, Adapter INIT, and the power up sequence on
the UNIBUS adapter will clear this bit.

Bit: 28 Name: Defeat Data Path Parity (DDPP)

Function: The DDPP bit functions in the same way as the DMP bit.
When it is set, the DDPP bit will inhibit the parity bits of the data path
RAM from entering the parity checkers. The data path parity generator
checkers generate and check parity on eight bit data units. Each parity
field (eight data bits and one parity bit) is implemented so that the total
number of ones in the field is odd. When the integrity of the parity
generator checkers is to be tested through use of the DDPP bit, the
total number of ones in at least one of the bytes of data must be even.
With the parity bit disabled by the DDPP bit, a data path parity failure
will result during a DMA transfer via that buffered data path. SBI Dead,
Adapter INIT, and the power up sequence on the UNIBUS adapter will
clear the DDPP bit.

Bit: 27 Name: Microsequencer OK (MIC OK)

Function: The MIC OK bit is a read-only bit which indicates that the
UNIBUS adapter microsequencer is in the idle state. The mi-

291

VAX-11/780 UNIBUS Subsystem

crosequencer will enter the idle state after it has completed the
initialization sequence or once it has completed a UNIBUS adapter
function.

The MIC OK bit can be used by diagnostics to determine whether or
not the microsequencer has completed a successful power up se-
quence and whether or not it is caught up in any loops. Note that SBI
dead, UNIBUS adapter power supply DC LO, and Adapter INIT force
the microsequencer into the initialization routine. Once the routine has
been completed and the microsequencer has entered the idle state,
MIC OK will be true (1).

Bit: 26:24 Name: Reserved and zero
Function:

Bit: 23:0 Name:
Function: Same as bits <23:0> of the Configuration Register

Failed Map Entry Register (FMER)

The Failed Map Entry Register contains the map register number used
for either a DMA transfer or a purge operation which has resulted in
the setting of one of the following error bits of the status register:
IVMR, MRPF, DPPE, CXTO, CXTER, RDS, RDTO. This register is
locked and unlocked with the UNIBUS to SBI data transfer error field
of the status register. The contents of the FMER are valid only when
the register is loaded. The FMER is a read-only register. Attempts to
write to the FMER will result in an SBI error confirmation. No signals or
events will clear the register.

The software can read the FMER to obtain the map register number
associated with the failure. It can then read the contents of the failing
map register to determine the number of the data path which failed.

Figure 17-14 shows the bit configuration for the Failed Map Entry
Register.

31 9 8 0

UNUSED

;—v_-—J

MAP REGISTER NUMBER

Figure 17-14 Failed Map Entry Register Bit Configuration

Bit: 31:9 Name: Reserved and zero
Function:

Bit: 8:0 Name: Map Register Number (MRN)
Function: These bits contain the number of the map register which

292

VAX-11/780 UNIBUS Subsystem

was in use at the time of a failure. Bits <8:0> correspond to bits <17:
9> of the UNIBUS address.

Failed UNIBUS Address Registers (FUBAR)

The FUBAR contains the upper 16 bits of the UNIBUS address trans-
lated from an SBI address during a previous software-initiated data
transfer. The occurrence of either of two errors indicated in the status
register will lock the FUBAR: UNIBUS Select Time Out (UBSTO) and
UNIBUS Slave Sync Time Out (UBSSYNTO). When the error bit is
cleared, the register will be unlocked.

The FUBAR is a read-only register. Attempting to write to the register
will result in an error confirmation. No signals or conditions will clear
the register. Figure 17-15 shows the bit configuration of the FUBAR.
The contents of the FUBAR are listed below.

31 16 15 0

UNUSED

~
FAILED UNIBUS TO SBI ADDRESS
UNIBUS ADDRES BITS <17:02>

Figure 17-15 Failed UNIBUS Address Register Bit Configuration

Bit: 31:16 Name: Reserved and zero
Function:

Bit: 15:0 Name: Failed UNIBUS to SBI Address
Function: These bits correspond to UNIBUS Address bits <17:2>.

Buffer Selection Verification Registers 0-3 (BRSVR)

These four read/write do-nothing registers are provided in order to
give the diagnostic software a means of accessing and testing the
integrity of the data path RAM. Four spare locations in the data path
RAM have been assigned to these registers. Writing and reading the
BRSVRs has no effect on the behavior of the UNIBUS adapter. The
BRSVR bit configuration is shown in Figure 17-16.

The contents of the BRSVRs are listed below.
Bit: 31:16 Name:
Function: Always zero

Bit: 15:0 Name:
Function: Read/write bits

BR Receive Vector Registers 4-7 (BRRVR)
The UNIBUS adapter contains four BR receive vector registers:

293

VAX-11/780 UNIBUS Subsystem

31 16 15 0

UNUSED

~
TEST DATA

Figure 17-16 Buffer Selection Verification Register Bit Configuration

BRRVR 7, BRRVR 6, BRRVR 5, and BRRVR 4. Each BRRVR corre-
sponds to a UNIBUS interrupt bus request level: 7, 6, 5, 4. Each
BRRVR is a read-only register and will contain the interrupt vector of a
UNIBUS device interrupting at the corresponding BR level. Each
BRRVR is read by the software as a part of the UNIBUS adapter inter-
rupt service routine. Note that the UNIBUS adapter interrupt service
routine is the routine to which the VAX-11 CPU will transfer control
once it has determined that the UNIBUS adapter has transmitted an
interrupt request on the SBI. '

If the IFS and BRIE bits on the control register are set, so that UNIBUS
interrupt requests are passed to the SBI, then the VAX-11 CPU re-
sponds with an Interrupt Summary Read command. The UBA sends
its request sublevel as an Interrupt Summary Response. The software
then invokes the UBA interrupt service routine, initiating a read trans-
fer to the appropriate BRRVR. The UNIBUS adapter will assert the
contents of the BRRVR on the SBI as read data if the corresponding
BRRVR Full bit in the status register is set. If the BRRVR Full bit is not
set, the Read BRRVR command causes the UNIBUS adapter to fetch
the interrupt vector from the interrupting UNIBUS device. The inter-
rupt vector is loaded into the BRRVR only at the successful completion
of a UNIBUS interrupt transaction. The UNIBUS adapter will then send
the contents of the BRRVR to the SBI as read data. The BRRVR used is
cleared only when the UNIBUS adapter receives an ACK confirmation
for the read data. Following this exchange, the UNIBUS adapter
interrupt service routine will use the contents of the BRRVR to branch
to the appropriate UNIBUS device service routine.

Four types of failure conditions can occur when the software is reading

a BRRVR and the VAX-11 CPU is servicing a UNIBUS device interrupt:

1. If the software attempts to read a BRRVR for which a BR interrupt
line is not asserted, and BRRVR is not full, the zero vector (all
zeroes data) will be sent as read data.

2. If the BR line asserted by the interrupting UNIBUS device is re-
leased during the interrupt summary read transfer, and the vector
is not received from the device (passive release), then the zero
vector will be sent as read data.

294

VAX-11/780 UNIBUS Subsystem

3. If the vector has been received from the interrupting device, but
an ACK confirmation is not received following the read data
transmission, then the BRRVR will not be cleared, and the BRRVR
Full bit will remain set. Subsequent read commands to the full
BRRVR will cause the UNIBUS adapter to send the stored vector,
but the BRRVR will remain full until the UNIBUS adapter receives
an ACK confirmation for the read data. Note that the BRRVR Full
bits always reflect the state of the BRRVRs.

4. If the IFS bit in the control register is cleared and the software
reads a BRRVR, then the zero vector will be sent as read data.

The contents of the BRRVR are also used by the software to determine
whether or not the UNIBUS adapter itself has an interrupt pending. Bit
31 of the BRRVR is the Adapter Interrupt Request Indicator. Although
the bit is present in all four BRRVRSs, it will be active only in the BRRVR
corresponding to the interrupt request level that has been assigned to
the UNIBUS adapter. If bit 31 is set when the software reads the
BRRVR, then an adapter interrupt request is pending.

Figure 17-17 shows the BR Receive Vector Register bit configuration.

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

EEEENERERNNENEENRRNRERERERENEEED

N J

UNIBUS DEVICE INTERRUPT VECTOR

Figure 17-17 BR Receive Vector Register Bit Configuration

The contents of the four BRRVRs are as follows:

Bit: 31 Name: Adapter Interrupt Request Indicator
Function: 0=No UBA interrupt pending.

1=UBA interrupt pending.

Bit: 30:16 Name: Reserved and zero

Function:

Bit: 15:0 Name: Device Interrupt Vector Field
Function: These bits contain the device interrupt vector loaded by
the UNIBUS adapter during a UNIBUS interrupt transaction.

Data Path Registers 0-15 (DPR)

The UNIBUS adapter contains 16 data path registers (DPR 0 to DPR
15), each of which corresponds to one of the 16 data paths. DPR 0,
corresponding to the direct data path, is always 0.

Figure 17-18 shows the Data Path Register bit configuration.

295

VAX-11/780 UNIBUS Subsystem

31302928 24 23 16 15 0

UNUSED

“ v A . ~ —
BUFFER STATE BITS BUFFERED UNIBUS ADDRES (2-17)

BUFFER | DATA
NOT PATH
EMPTY FUNCTION

BUFFER’
TRANSFER
ERROR

Figure 17-18 Data Path Register Bit Configuration

The DPR bit functions are as follows:
e Buffer Not Empty and the Purge Operation

Bit: 31 Name: Buffer Not Empty (BNE)
Function: Each DPR contains a data path status bit called Buffer Not
Empty. This bit is read/write one to clear bit.

0 = Buffer empty
1 = Buffer not empty

If this bit is set (1), the BDP contains valid data. If clear, then the BDP
does not contain valid data. The UNIBUS adapter uses the bit to deter-
mine the proper action for DMA transfers via the BDP. If bit <31> is
set as a DATI transfer begins, the data in the BDP will be asserted on
the UNIBUS. If bit <31> is clear on a DATI, the UNIBUS adapter will
initiate a read transfer to SBl memory, load the read data into the BDP,
thereby setting bit <31>, and gate the addressed data to the UNIBUS.

For a DMA write transfer via the associated BDP, the BNE bit is set
each time UNIBUS data is loaded into the BDP. The bit is then cleared
when the contents of the BDP are transferred to SBI memory.

The software will write a one to this bit to initiate the purge operation.
The purge operation is required at the completion of a UNIBUS device
block transfer and is performed in the following way:

1. Write transfers to memory. If any bytes of data remain in the
corresponding BDP (BNE is set), the UNIBUS adapter will transfer
this data to memory. The UNIBUS adapter will then initialize the
BDP and clear the BNE bit. If no data remains to be transferred
(BNE is cleared), the purge operation will be treated as a no-op (it
is a legal do-nothing function).

2. Read transfers to memory. If any bytes of data remain in the BDP,
the UNIBUS adapter will initialize the BDP by clearing the BNE bit.
If no data remains, the purge will be treated as a no-op.

In addition, the following considerations apply to the purge operation:

296

VAX-11/780 UNIBUS Subsystem

e For purge operations in which data are transferred to memory, the
SBI transfer takes about 2 us. The UBA will not respond to Data Path
Register read transfers during this period (busy confirmation),
thereby preventing a race condition when testing for BNE bit.

® A purge operation to Data Path Register Zero (Direct Data Path) is
treated by the UBA as a NO-OP.

Bit: 30 Name: Buffer Transfer Error (BTE)

Function: This is a read-write one to clear bit. The UNIBUS adapter
sets the BTE bit if a failure occurs during a DMA write transfer, or a
purge, or for a data path parity failure during a DMA read transfer via
the associated BDP. If bit <30> is set, any additional DMA transfers
via the BDP will be aborted until the bit is cleared by the software. Note
that if a parity error on the UNIBUS occurs during a DMA read, the
UNIBUS signal PB will be asserted, giving the UNIBUS device the
opportunity to abort its own DMA transfer. The purge operation does
not clear the BTE bit.

Bit: 29:0 Name:
Function: Read-only bits.

Bit: 29 Name: Data Path Function (DPF)
Function: This bit indicates the function of the DMA transfer using
this data path.

0 = DMA Read

-1 = DMA Write

Bit: 28:24 Name:
Function: Unused

Bit: 23:16 Name: Buffer State (BS)

Function: These eight bits indicate the state of each of the eight byte
buffers of the associated BDP during a DMA write transfer. They are
included in the Data Path Register for diagnostic purposes only. The
UNIBUS adapter generates the SBI mask bits from the BS bits during
a DMA write transfer or purge operation. The bits are set as each byte
is written from the UNIBUS. The bits are cleared during the SBI write
operation.

0 = Empty
1= Full

Bit: 15:0 Name: Buffered UNIBUS Address (BUBA)

Function: This portion of each DPR contains the upper 16 bits of the
UNIBUS address, UA <17:2>, asserted during the DMA transfer using
the associated BDP. If the transfer through the associated BDP is in
the byte offset mode, and the last UNIBUS transfer has spilled over
into the next quadword, then these bits contain UA <17:2>. This is the

297

VAX-11/780 UNIBUS Subsystem

UNIBUS address from which the SBI address will be mapped should a
purge operation occur before the next UNIBUS transfer.

Map Registers 0-495(10)
The UNIBUS adapter contains 496 map registers, one for each UNI-
BUS memory page address (a page = 512 bytes).

REG Offset
MRO 800
MR1 804
MR2 808
MR3 80C
MR494 FB8
MR495 FBC

When a DMA transfer begins, the upper nine address bits asserted by
the UNIBUS device select one of the map registers which the software
has set up. The map register in turn tests for the validity of the current
UNIBUS transfer, steers the transfer through one of the 16 data paths,
determines whether or not the transfer will take place in the byte offset
mode if a BDP has been selected, and maps the UNIBUS page ad-
dress to an SBI page address.

The map registers are numbered sequentially from 0 through 495,,.

There is a one to one correspondence between each map register and

UNIBUS memory page address (i.e., MRO corresponds to UNIBUS

memory page 0, MR1 to UNIBUS Memory Page 1..... MR495 to UNI-

BUS memory page 495). Each map register contains the information

required to effect the data transfer of the UNIBUS device addressing

that page:

1. The fact that the software has loaded the map register (map regis-
ter valid).

2. The number of the data path to be used by the transfer and, if a
BDP is used, whether it is in byte offset mode.

3. The SBI page to which the transfer will be mapped.

Since the map register is implemented with a bipolar RAM, the
contents of the map registers will be checked by parity. If, during a

298

VAX-11/780 UNIBUS Subsystem

UNIBUS transfer, the parity test fails, the map register parity fail bit of
the UNIBUS adapter status register will be set and the UNIBUS trans-
fer will be aborted.

Figure 17-19 illustrates the map register bit configuration.

31 30 27 26 25 24 21 20 19 [¢]

UNUSED

M — —/
RESERVED DATA SBI PAGE ADDRESS
AND PATH
ZERO DESIGNATOR
MAP BYTE ADDRESS
REGISTER OFFSET BIT 27
VALID BIT BIT 1/0 DESIGNATOR

LONGWORD
ACCESS
ENABLE

Figure 17-19 Map Register Bit Configuration

NOTE
For brevity, for the map register description, “this
UNIBUS page” refers to “the UNIBUS memory page
corresponding to this map register.”

The contents of a map register are as follows:

Bit: 31 Name: Map Register Valid (MRV)

Function: 0 = not valid—initialized state

1 = valid

The MRYV is set by the software to indicate that the contents of the map
register are valid. The MRV is tested each time that “this UNIBUS
page” is accessed. If the bit is set (1), the transfer continues. If the bit is
not set, the UNIBUS transfer is aborted (nonexistent memory error in
the UNIBUS device) and the invalid map register bit is set in the UNI-
BUS adapter status register.

The MRV can be set and cleared by the software.

Bit: 30:27 Name:
Function: Reserved read/write bits

Bit: 26 Name: Longword Access Enable (LWAE)

Function: This is a read/write bit. If set, and the map register selects
a BDP, then the longword-aligned 32-bit random access mode is en-
abled for the BDP. The longword-aligned 32-bit random access mode
has been discussed above. This bit has no effect if the Direct Data
Path is selected by the map register. This bit is cleared on initialization.

Bit: 25 Name: Byte Offset Bit (BO)
299

VAX-11/780 UNIBUS Subsystem

Function: This is a read/write bit. If set, and “this UNIBUS page” is
using one of the BDPs, and the transfer is to an SBI memory address,
then the UNIBUS adapter will perform a byte offset operation on the
current UNIBUS data transfer. The software can interpret this opera-
tion as increasing the physical SBI memory address, mapped from the
UNIBUS address, by one byte. This allows word-aligned UNIBUS
devices to transfer to odd byte memory addresses.

UNIBUS transfers via the DDP or to SBI I/0 addresses will ignore the
Byte Offset bit.

This bit is cleared on initialization.

Bit: 24:21 Name: Data Path Designator Bits(DPDB)
Function:

0000 = Direct Data Path (DDP)
0001 = Buffered Data Path 1
1111 = Buffered Data Path 15

The DPDBs are read/write bits that are set and cleared by the software
to designate the data path that “this UNIBUS page” will be using.

The software can assign more than one UNIBUS transfer to the DDP.

The software must assure that no more than one active UNIBUS trans-
fer is assigned to any BDP.

The DPDBs are cleared on initialization.

Bit: 20:0 Name: SBI Page Address (SPA <27:7>, also known as
Page Frame Number, PFN)

Function: The SPA bits contain the SBI page address to which “this
UNIBUS page” will be mapped. These bits perform the UNIBUS to SBI
page address translation. When an SBI transfer is initiated the con-
tents. of SPA<27:7> are concatenated with UNIBUS address bits
UA<8:2> to form the 28-bit SBI address.

POWER FAIL AND INITIALIZATION

The UNIBUS adapter controls the UNIBUS power fail, power up, and
initialization sequences of the UNIBUS. This section explains the be-
havior of the UNIBUS subsystem for each of the following:

1. System Power Up
2. System Power Down
3. UNIBUS Power Down

300

VAX-11/780 UNIBUS Subsystem

4. Programmed Power Down
5. SBIUNJAM

System Power Up

The UNIBUS remains in a powered down state as long as the UNIBUS
adapter is in a powered down state. During System Power Up, the
UNIBUS adapter will initiate the UNIBUS power up sequence, provid-
ed the UNIBUS has power. Once the power up sequence has been
completed, the UNIBUS Initialization Complete bit of the UNIBUS
adapter status register is set and an interrupt request is initiated to the
CPU. If the UNIBUS power was not on at the time that the system
powered up, the power up sequence will not continue until the UNI-
BUS power has been turned on. The power up sequence will com-
pletely initialize all registers and functions of the UNIBUS adapter. The
deassertion of power supply AC LO will set the adapter power up bitin
the Configuration Register and initiate an interrupt request.

SBI Power Fail

The UNIBUS adapter will initiate a UNIBUS power fail sequence when-
ever an SBI power failure is detected (SBI Dead asserted). The UNI-
BUS will remain powered down as long as SBI Dead is asserted. The
UBA will initiate the UNIBUS power up sequence when SBI Dead is
released.

UNIBUS Power Fail

A power loss on the UNIBUS will initiate a UNIBUS power falil

sequence. The UNIBUS power down bit of the status register will be
set and the UNIBUS adapter will initiate an interrupt request (providing
the CNFIE bit is set). The UNIBUS will remain in a powered down state
until UNIBUS power has been restored, at which time a UNIBUS power
up sequence is initiated. The UNIBUS initialization complete bit of the
status register will be set on a successful power up sequence and the
UBPDN bit will be cleared. The UNIBUS power fail lines will not affect
the state of the SBI power fail lines.

Programmed UNIBUS Power Fail

The software can induce a power fail sequence on the UNIBUS by first
setting and then clearing the UNIBUS power fail bit of the control
register. The UNIBUS adapter will initiate a power fail sequence when
the UPF is set. Once it has been initiated, the power fail sequence will
continue to completion independent of the state of the UPF. On com-
pletion of the power down sequence, the UNIBUS adapter will initiate a
power up sequence if or when the UPF is cleared, provided power is
normal for both the UNIBUS and UNIBUS adapter.

301

Setting the AD INIT bit will also initiate a power fail and initialization
sequence on the UNIBUS as well as completely initialize all registers
and functions of the UBA.

SBI UNJAM
The assertion of SBI UNJAM will initiate the UNIBUS power fail and
initialization sequence. It will also clear all interrupt enable bits of the

UBA control register. It will initialize the UBA SBI logic so that the UBA
is available for an SBI Command.

EXAMPLE

Presented is a program to read data from the RK06 disk subsystem
into memory. The program is fully documented and is designed to
demonstrate the loading of the UBA map registers, the use of a buff-
ered data path (including the purge), access to UNIBUS device regis-
ters, and initialization of the UNIBUS. In order to run the program, it
must be loaded from the floppy disk by the console into memory.
Initially, the program can be assembled and linked under VAX/VMS
and then transferred to the floppy disk using the RSX-11M utility
program FLX. The file structure of the floppy is RT-11 format.

302

i FROGRAM TO READ FROM THE RKO6 INTO MFH(JF‘Y
i THIS FROGRAM WILL TRANSFER REOE
i LISK TO MEMUF'Y STARTING THE TRANSFER
i L Us ING AT
i W 2 LATA FATH (LFS) .
v IT WILL READ DATA FROM DRIVE 0y TR y CYLINDER 4y SECTOR &.
i [ING THE KELL OF THE CONSOLE IF NO ERRORS ARE
; -
i FROGRAM 18 DESIGNED TO DEMONSTRATE THE LOALIMG OF THE
i USE OF A BUFFERED DATA FATH (INCLUDING
i TO UNIBUS DEVICE REGISTERSs AND
j INT!IALIZATION OF THE UNIRUS NO CLAIM IS MADE FOR
i ELEGANCE OF FROGRAMMING
i SYMEOL LEFINITIONS
i UBA RELATED SYMROLS?
URA..BASE 20008000 i UBA AT TR = 3
URA.C = TXQO i OFFSET TO UEBA CONFIGURATION R
URA.. UBIC i UNIEUS INITIALIZATION COM
$ OFFSET TO UBRA CONTROL REGIST
i ADAFTOR INIT AND UNIEL INITIALIZATION
5 OFFSET TO UBRA STAT TER
URA_DFO i TO UBA DATA FATH F\ELvlc‘TH- 0
URA.DFLENE = "X80000000 § BUFFER NOT EMFTY EIT
i 1 TO FURGE RUFFER DATA
i FATH AT END OF XF
UBA_DF.RTE = "X40000000 i RUFFER TRANSFER ER
UEA._MRO X800 5 OFFSET TOQ UBA MAF RE
MAF_VALID “X80000000 i VALII RIT IN MAF GISTER
BYTE..QFST = "X2000000 i EYTE OFFSET EIT IN MAF REGISTER
i RK&1l R AIEII SYMBOLSS
SE TX20100000 $ EASE -ADDRESS FOR UNIRUS ADNDRESS 0
0777440 5 UNIEUS EBASE ADDRESS OF DK&LL
3 RK&11 CONTROL STATUS REGISTER 1
i RK6LL CONTI\(JI STATUS REGISTER 2
i STATUS REGISTER
i RED' CYLINDER REGISTER
§ F\I\l).ll DIGK ADDRESS REGISTER
§ RK611 WORD COUNT REGISTER
j RKé11 BUS ADDRESS REGISTER
§ SUESYSTEM CLEAR
¥ FACK ACKNOWLEDGE AND GO RIT SET
5 RKé11 DISK READI! ANDY GO BIT SET.
MISC QYMHOLS.
i ASCII EBELL
3 CONSOLE TRAANSMIT DATA BUFFER
5 THIS SECTION LOADS THE URA_EASE ADNDRESS INTO RO AND THEN INITIALIZES
i THE UNIRUS.
BEGIN! MOVL FUEA..RASEy RO i LOADN UBA‘S ADDRESS INTO RO
INITS MOVL. FUBA_ADINIT,URA_CR(RO) 5 INIT UBA AND UNIEUS
5 THE UBA AND UNIEUS ARE BEING INITIALIZED, TH ROGRAM CANNOT MAKE
5 ANY SES TO THE UEBA OR THE UNIRUS DURING THIS FERIOD OF TIME.
3 RUT THAT’S OK RECAUSE WE HAVE LOTS TO DO IN THE MEAN TIME...
i THIS SECTION WILL SET UP THE MAF REGISTERS TO BE USED FOR THE TRANSFER.
§ FIND THE OFFSET OF THE INITIAL MAF REGISTER AND FUT INTQ Ri.
AGHL. #2y MA Gr R1 5 MULTIFLY THE MAF REGISTER RY 4
§ TO FIND LTS OFFSET AND FUT INTO Rl
ADTIL. FUBAMROy FL 5 ADN THE BASE ADDRESS OF THE MAF REGISTERS
5 TO THE OFF JT IN R1.
AL, FURA_K Rl § ADD IN THE UEA BASE ADDRESS ANDN FUT IN Ri.

303

R1 NOW CONTAINS THE ADDRESS OF THE FIRST MAF REGISTER TO BE LOADED,

5 THIS SECTION WILL DETERMINE THE CONTENTS OF THE MAF REG ANI
i STORE IT IN R2.
i § SECTION WILL DETERMINE THE FAGE FRAME NUMBER OF THE F 3T
i GE TO RE AC I, THE FHYSICAL MEMORY AUDRESS 18 SHIFTED
§ BITS TO KECOME THE FAGE FRAME NUMEER.
$ THE DATA FATH NUMEER TO RE USED FOR THE TRANSF WILL THEN IN:
5 INTO THE DATA FATH DESIGNATOR FIELD ANDIN THE VALID BIT IS SET.
ASHL F-9y MEMSALy, R2 5 TURN START ADDRESS INTO THE
5 FAGE FRAME NUMEE
INSY DF_NUMy 21y 4y R2 5 INSERT EITS 0-3 OF DF.NUM INTO
i 24 0F R2
RISL #MAF.VALIDY, R2 i FT MAF vaLIn EIIT.
§ DETERMINE IF THE BYTE ALIGNMENT EIT OF THE RUFFERED DATA I8
5 REQUIRED. THE RK&11 ONLY KNOWS ABOUT WORD ALIGNEL TRAN IF
5 THE START MEM ALDRESS IS ODI THEN THE BYTE OFFSET RIT 0O
5 MAF REGISTERS MUST RE SBET.
RITL “X1y MEMSAD i I8 MEM ADDRESS OLD?
REQL CONT$ 5 IF NOT THEN CONTINUE
BISL FEYTE.OFSTy R2 i YES -- SET RYTE OFF RIT
CONT®! NOF FCONTINUE
i THIS SECTI
i AND THE EXTENDED ADDR

THE RESULT OF THIS SECTION WILL RE THAT WHEN THE RK&1l ASSE
ALDRESS ONTO THE UNIERUSy UNIRUS ADDRES
THE MAF REGISTER THAT CONTAINE THE FAGE FRAM
AN[I UNIEUS AN G BITS =8!0x WILL CONTAIN THE EBYTE OF

FOR THF TEANEFER
WITHINM 7HF

TS OF THE REGIS 8 WILL BE AS FOLLOWS!

701 AND

WILL CONTAIN THE FOINTER

TO THE [STER THAT CONTAINS THE FAGE F
FOR THE TR R

08 (WILL CONTAIN THE RBYTE OFFSET WIT
TO SET UF TO CONTAIN THE INITIAL UNIRUS ALIF

III\ HA Bﬁ '

]

AGHL. 9y MAF.REGy R3 GHIFT MaP TO FORM
M

N
* REGIST

i

$ ¢
i CLEAR ALL BUT BYI[- QF
i THE FAGE
¥
i

BICL3 FOXFFFFFEQQy MEMSAL, R4 " WITHIN

ANDN COMBINE WITH MaF REGIS
IN R3.

EISL R4y, R3 TER FOINTER

THIS SECTION WILL DETERMINE THE WORD COUNT FOR THE N
CONVERT EYTE COUNT TO W COUNT FOR THE RKé&L1. IF BYII
THEN THE WORI' COUNT MUST BE INCREMENTED TO CONTAIN AlL EY

TRANSFER,
INCL RCOUNT 5 INCREMENT BY COUMT TO ACCOUNT
5 FOR ODD RY COUNT,
ASHL d-1y BUOUNTy R4 i CONVERT TO WORD COUNT AND LOAD
5 INTO R4,

THIS &

TION WILL SET UF DISK ADIKESS TRACK AND SECTOR - WILL USE

MOVL. SECTORy R i MUMBEFR .
INGY TRACKy 48y #3» RS i 0-2 OF TRACK INTO
i l() OF R4,

AT THIS EOTRANSFER HAVE

DETERMI

NT ALL OF THE VALUES REQUIF
+ THE VALUES OF THE REGISTI

TRANEF

FIR T MAF REGILS
FOR THE INIT

= L‘)(th
- TOR ANI TRACK FOR DRE.D& R

304

THE REMAINING SECTIONS INVOLVE ACCESSES TO THE UNIRUS AND THE URA.

¥
5 THE INITIALIZATION SEQUENCE MUST BE COMFLETE REFORE MAKING ACCESSES
5 TO THE URA (OTHER THAN THE CONFIGURATION REGISTER) OR THE UNIBUS,
143 BITL #UBA_URICy URALCNFR(RO) § 18 UNIEUS INITIALIZATION COMFLETE?
BEQL 14 i NO - KEEF TESTING
i YES - CONTINUE
§ THIS SECTION WILL LDAD THE UEA MAF REGISTERS THAT WILL RE USED FOR THE
5 TRANSFER. THE MAF REGISTERS USED FOR THE ELOCK TRANSFER MUST BE
$ CONTIUOUS., THIS FROGRAM ASSUMES THAT CONTIGUOUS FHYSICAL MEMORY
3 FAGES ARE USED FOR THE TRANSFER. THE CONTENTS OF THE INITIAL MAF
3 REGISTER WAS FREVIOUSLY DE MINED ANII STORED IN R2, THE FHYSICAL
3 ADDRESS OF THE INITIAL MAF REGISTER WAS DETERMINED AROVE AND STORED
i IN Ri.
MOVL RCOUNTy R& i LOAD BYTE COUNT INTO Ré
243 MOVL R2y (R1)+ i LOAD MAFP REGISTER WITH CONTENTS
i OF R
INCL R2 5 INCREMENT FAGE FRAME NUMEER.
5 (ASSUMES CONTIGUOUS FAGES OF
i FHYJILA[MEMORY)
SUEL. $7X200y Ré i 200 (HEX) BYTES FER FAGE.
3 SET UP?
BGTR 2% i NO 5&1 UF NEXT MAF R
MOVL. R2y (R1)+ i SET UF ONE MORE SINCE T
i TRANSFER MAY NOT BE FAGE ALIGNED.
CLRL (R1) 5 INVALIDATE NEXT MAF REGISTER TO
i STOF THE UEA SHOULL THE TRANSFER
i GO EEYOND ITS EXFECTED LIMIT.
5 THIS SECTION WILL FERFORM THE DISK TRANSFER SEQUENCE.,
i A SUBSYSTEM CLEAR WILL RE ISSUSED TO THE RKé611ly THE FACK AKNOWLEDGE
§ FUNCTION WILL EE ISSUEDs AN THE UISK TRANSFER WILL BE INITIATED.
5 NOTE THAT ALL UNIRUS ACCESSES MUST BE OF WORD OR BYTE FORMAT..
i WE ARE NOW FINISHED WITH Rl ANI R2.
5 FIND RASE ADDRESS OF RK611 AND LOADN INTO R1.
ADDN3 FIK.BASE.. AhDy 1UNIBU5 BASE, R1 JEASE ADDRESS OF RKéLl1l TO R1
MOVW SR § ISSUE A RK611 SURSYSTEM CLEAR
MOVW 5 SELECT DRIVE NUMBER
MOVW i LOAD DISK ADDRESS SECTOR ANII TRACK
i EI IN RS FROM AROVE.
MOVW fPﬁFﬁEhy IK.CSLCRL) i *ACK ACKNOWLEDGE FUNCTION
343 TSTE i WALT FOR READY
BGEQ i NOT READY KEEF WAITING
MOVW $ i LOAD CYLINDER ADDRESS
MNEGW R4y DK.WC(RL) 5 LOAD 278 COMFLIMENT OF WORD COUNT
MOVW R3y DK_BACRL) 3 LOAD LOW ORDER 146 RITS OF UNIRUS
i § INTO LK.BA REG
ASHL. ¥-14y R3y R3 5 SHIFT UNIEUS ADDRESS RIGHT 146 RITS
MOVL. DK.FUNCy R4 i LOAD FUNCTION INTO AN
INSV R3y #8» 42y R4 5 INSERT ADDRESS BITS 17 AND 146 FROM
i R3 RITS 110 INTO RITS 918 OF
i R4, EXTENDED UNIRUS ADD
i RITS.
MOVW R4y DK.CSL(RL) i UE FUNCTION AND GO TO RKé11
L TSTR IK.C81(R1) 12 TO LUHFLEIE
EGEQ 4% i
$# THE RKé11 HAS EBEEN COMPLETEL THE URA DATA FATH MUST NOW RE
§ FURGED, THE F 0 MOU ANY DATA REMAINING IN THE URA
i TO MEMORY ANI [] THE E REIN DATA FATH FOR ANY SURSEQUENT
i TRANGFERS, TH URGE IS ﬁCC MFL.] SETTING THE ENE EIT OF THE
i DATA FATH ISTER USED BY THE 1

[OF DATA FATH R USEL FOR TRANSFER AN FUT

5 COMFUTE OF

ASHL. R2 i MULTIFLY l‘ NUM RBY 4 -
Al i i = TIAT
MOVL. JHA DF FNty URALBAGE (R2) 5
i
EITL #UBADF . BTEy URA.E 2)
§ ¢ ANY RS THAT MAY HAVE
§ WITHIN THE URA BUFFER
i

VAX-11/780 UNIBUS Subsystem

REQL. ¢ b IF THERE W NO ERRORS
HALT i . R DETECTED BY DATA
i FATH REGISTER. URA STATUS REGISTER
i SHOULD CONTAIN ERROR KIT.
g% TSTW IK.CSL(RL) 5 OTEST FOR RK&11
BGEQ &% ¥ CONTINUE IF TH NO ERRORS
HALT i HALT FOR ERROR IN RK&1L
b%1 MTFR FRELLy #TXDR 5 RING EBELL ON CONSU IF NO ERRORS
HAL.T

5 THE TRANSFER FERAMETERS ARE SFE

[FIED BELOWS

MEMSALIS +LONG 45467 i MEMORY START ALDRESS

ECOUNT! +LLONG 3210 i NUMEER OF EYTES OF TRANSFER

MAF_REG? +LONG 25 3 STARTING MAF REGISTER TO BE USEI FOR TRANSFER.
IIF..NUM? +L.ONG 9 i UEA DATA FATH TO RE USED FOR TRANSFER.

DRIVE? +LONG 0 $ DRIVE NUME TO RE USED FOR TRANSFER

TRACK? +LONG 2 i BTARTING CK

CYLINLDER? +LONG 4 5 STARTING CYLINDER

SECTORS +LONG & i STARTING SECTOR

DK.FUNC? LONG REAT! i DISK FUNCTION

+ENDN BEGIN

306

307

308

CHAPTER 18
VAX-11/780 MASSBUS SUBSYSTEM

FEATURES BENEFITS
Direct memory access (DMA) Eliminate processor interven-
data transfers tion for high data throughput

32-byte silo data buffer for each Permits transfers at rates up to
MASSBUS 1.3 MB/s (2.0 MB/s with two
controllers interleaved)

Built-in diagnostic features Allow on-line diagnosis of the
MASSBUS and MASSBUS peri-
pherals

MASSBUS device registers are Simplifies I/0 programming
addressed like memory loca-
tions

INTRODUCTION

The MASSBUS adapter (MBA) is the hardware interface between the
synchronous backplane interconnect and .the high speed MASSBUS
storage devices. The MASSBUS is the communication path linking the
MASSBUS adapter to the mass storage device drives.

The MASSBUS adapter performs the following functions:

® Mapping of addresses from virtual (program) to physical (SBI).

e Data buffering between main memory transfer to the MASSBUS and
vice versa.

e Transfer of interrupts from MASSBUS device to the SBI.

The VAX-11/780 will support a maximum of four MASSBUS adapters,
each adapter supporting up to eight device controllers. A MASSBUS
adapter will support any combination of mass storage devices. Each
magnetic tape controller will support up to eight tape drives. Each disk
controller will support a single disk drive. Only one controller can
transfer data at any one given time. The data transfer rate is depend-
ent upon the particular mass storage device being accessed. Figure
18-1 illustrates a typical MASSBUS subsystem configuration.

The MASSBUS is comprised of 54 signal lines divided into two inde-
pendent groups: the asynchronous control path (bus) and the
synchronous data path (bus). Table 18-1 describes individual MASS-
BUS signal line function.

309

VAX-11/780 MASSBUS Subsystem

VAX-11/780
CPU
l] MASSBUS ADAPTER
{UP TO 4 OPTIONAL)
w
g g
~N
5 X
1 STANDARD
3 OPTIONAL

Figure 18-1

IDEVICE
0 DISK
ICONTROLLER

DEVICE
1| MAGTAPE MAGTAPE
CONTROLLER [T 1
i
=
MASSBUS |
[DATA_ AND || macTare
CONTROL PATHS) 7
DEVICE
7| DEVICE STORAGE
ONTROLLER MEDIUM

MASSBUS Subsystem Configuration

Table18-1 MASSBUS Line Descriptions

SIGNAL LINE

CONTROL BUS

Control and Status
(C00-15)

Control Bus Parity
(CPA)

Drive Select (DS0-2)

DESCRIPTION

Transfers 16 parallel control or status bits to
or from the drive.

Transfers odd control bus parity to or from
the drive. Parity is simultaneously trans-
ferred with control bus data.

Transfers a 3-bit binary code from the MBA
to select a controller. The drive responds
when the (unit) select switch in the control-
ler corresponds to the transmitted binary
code.

310

VAX-11/780 MASSBUS Subsystem

Register Select (RSO-
4)

Controller to Drive
(CTOD)

Demand (DEM)

Transfer (TRA)

Attention (ATTN)

Initialize (INIT)

Fail (FAIL)

DATA BUS
Data (D00-15)

Transfers a 5-bit binary code from the MBA
to select a particular drive register.

Indicates in which direction information is to
be transferred on the control bus. For a
controller-to-drive transfer, the MBA as-
serts CTOD:; for a drive-to-controller trans-
fer, the MBA negates CTOD.

Asserted by the MBA to indicate a transfer
is to take place on the control bus. For a
controller-to-drive transfer, DEM is assert-
ed by the MBA when data is present. For a
drive-to-controller transfer, DEM is assert-
ed by the MBA to request data and is
negated when the data has been strobed
from the control bus. In both cases, the RS,
DS, and CTOD lines are asserted and al-
lowed to settle before assertion of DEM.

Asserted by the drive in response to DEM.
For a controller-to-drive transfer, TRA is as-
serted when the data is strobed and negat-
ed when DEM is removed. For a drive-to-
controller transfer, TRA is asserted when
the data is asserted on the bus and negated
when the negation of DEM is received.

The drive asserts this line to signal the MBA
of any change in drive status or an abnor-
mal condition. ATTN is asserted any time a
drive’s ATA status bitis set. ATTN is com-
mon to all drives and may be asserted by
more than one drive at a time.

Asserted by the MBA to initialize all drives
on the bus. This signal is transmitted when-
ever the MBA receives an initialize com-
mand.

When asserted, this line indicates a power
fail condition has occurred in the MBA or
the MBA is in maintenance mode.

These bidirectional lines transfer 16 parallel
data bits between the MBA and drives.

311

VAX-11/780 MASSBUS Subsystem

Data Bus Parity (DPA)

Sync Clock (SCLK)

Write Clock (WCLK)

Run (RUN)

End-of-Block (EBL)

Exception (EXC)

Occupied (OCC)

Transfers an odd parity bit to or from the
drive. Parity is simultaneously transferred
with bits on the data bus.

Asserted by the drive during a read
operation to indicate when data on the data
bus is to be strobed by the MBA. During a
write operation SCLK is asserted to the
MBA to indicate the rate at which data
would be presented by the MBA on the data
bus.

Asserted by the MBA to indicate when data
written to the drive is to be strobed.

Asserted by the MBA to initiate data trans-
fer command execution. During a data
transfer, the drive samples RUN at the end
of each sector. If RUN is still asserted, the
drive continues the transfer into the next
sector; if RUN is negated, the drive termi-
nates the transfer.

Asserted by the drive at the end of each
sector. For certain error conditions where it
is necessary to terminate operations im-
mediately, EBL is asserted prior to the nor-
mal time. In this case, the transfer is termi-
nated prior to the end of the sector.

Asserted by the drive or MBA to indicate an
error condition during a data transfer
command. EXC remains asserted until the
trailing edge of the last EBL pulse.

Indicates acceptance of a valid data trans-
fer command.

Figure 18-2 illustrates the MASSBUS signal line configuration.

MASSBUS ADAPTER OPERATION

The MASSBUS adapter consists of an SBI/MBA interface, internal
registers, control paths and data paths. Figure 18-3 is a simplified
block diagram of the MBA. A tristate internal bus connects the SBI
module to the internal registers, control paths, and data paths, and
provides for the passage of data to the various functional blocks.

312

VAX-11/780 MASSBUS Subsystem

MASSBUS CONTROL BUS

G

C00-15 (CONTROL /STATUS)

CPA (CONTROL BUS PARITY

DS00-02 (DRIVE SELECT)

RSO0-04 (REGISTER SELECT)

D
S
>

CTOD (TRANSFER DIRECTION)

DEM (DEMAND)

TRA (TRANSFER)

MASSBUS

ATTN (ATTENTION)

ADAPTER

INIT (INITIALIZE)

DATA BUS

AN

D00-15 (DATA)

DPA (DATA BUS PARITY)

SCLK {SYNC CLOCK)

WCLK (WRITE CLOCK)

RUN (START, CONTINUE, STOP)

EBL (END OF BLOCK)

EXC(EXCEPTION)

OCC (OCCUPIED)

MASSBUS
DRIVE

Figure 18-2 MASSBUS Signal Line Configuration

T T T T MASSBUS ADAPTER 1 AN

CONTROL

PATH

e DATA

INTERNAL BUS

INTERFACE [\ PATH
N INTERNAL
————l/REGISTERS

|
|
|
I
|
|
|
|
|
|
|
|
|
|

Figure 18-3 MASSBUS Adapter

313

VAX-11/780 MASSBUS Subsystem

The MBA accepts and executes commands from the CPU and reports
the necessary status changes and fault conditions to the CPU. The
MBA can transfer register data or a block of data to or from a MASS-
BUS device. A 256 X 32-bit (bits <30:21> are not writable) RAM stores
the physical page addresses of the block of data to be transferred. The
memory data (64 bits) will be sent in words (16 bits) to the MASSBUS
drive in the order of the first word (bits 15 to 0), followed by the second
word (bits 31 to 16) of a long word. Special diagnostic features are
built in the hardware to allow on-line diagnosis of the MBA and MASS-
BUS drives.

The MBA is capable of handling a MASSBUS drive with a maximum
data transfer rate of 16 bits per usec via the 16-bit wide MASSBUS
data path. The MASSBUS adapter controls data transfers between
MASSBUS devices and physical memory. A MASSBUS adapter can
transfer 16 bits at a time to a mass storage device or it can receive 16
bits at a time from a MASSBUS drive. The MBA contains a 32-byte
buffer used to store data enroute to either main memory or mass
storage. Transfers (data only) along the SBI, to or from main memory,
occur in 64-bit (8-byte) increments. Therefore, there are four MASS-
BUS transfers (16 bits each) per SBI transaction. The MASSBUS
adapter will accept only aligned longword reads and writes to its exter-
nal or internal registers. An attempt to address a nonexistent register
in the MASSBUS adapter will prompt a no-response confirmation.

MBA Registers

There are two sets of registers in the MBA address space: internal and
external. The MBA internal registers are the registers which are physi-
cally located in the MBA. The external registers are located in the
MASSBUS drives and are drive-dependent.

There are eight internal registers and a 256 X 32-bit RAM. The internal
registers primary function is to monitor MBA and operating status
conditions. The internal registers also control certain phases of the
data transfers between the SBI and the MASSBUS device such as:

e maintaining a byte count to ensure that all of the data to be trans-
ferred has been accounted for

e converting virtual addresses to physical addresses for referencing
data in memory
The eight internal registers are:
MBA Configuration Register (CSR)
MBA Control Register (CR)
MBA Status Register (SR)
MBA Virtual Address Register (VAR)

314

VAX-11/780 MASSBUS Subsystem

MBA Byte Count Register (BCR)

MBA Diagnostic Register (DR)

MBA Selected Map Register (SMR)
MBA Command Address Register (CAR)

NOTE
The selected map register and the command ad-
dress register are read only and are valid only during
data transfers.

The MBA contains 256 32-bit map registers which are used to map
program virtual addresses into SBI physical addresses. Bits <30:21>
of the map register are reserved and are not writable. The mapping
registers allow transfers to or from contiguous or non-contiguous
physical memory. Figure 18-4 illustrates the mapping of a virtual ad-
dress to an SBl address.

CONTROL PATH

The control path handles the transfer of control data to and from the
MASSBUS devices. Certain sections of the MBA address space map
into registers physically located within MASSBUS devices. The MASS-
BUS control path is used to communicate with these data path regis-
ters.

The data path controls the data transferred to and from the MASSBUS
device and the SBI. The 32-bit SBI data word is divided into 16-bit (2-
byte) segments required as data on the MASSBUS. When performing
a read from MASSBUS device the data path assembles the two 8-bit
bytes from the MASSBUS into the 32-bit SBI format. A silo and in-
put/output data buffer provide the means for smoothing the data
transfer rate. The data path also contains a write check circuit which
can be used under program control to verify the accuracy of the data
transfer function.

MBA ACCESS

Each SBI device (NEXUS) is assigned a 2048, 32-bit longword (8 KB)
control address space. This space is accessible as part of the SBI I/0
longword address space. The command/address format used to ac-
cess the MBA registers is illustrated in Figure 18-5.

Bit <29>=1 1/0 Address space
Bits <28:17> All zeros

315

VAX-11/780 MASSBUS Subsystem

31 17 16 9 8 210

VIRTUAL

ADDRESS | MAP POINTER i LONG WORD ‘BYTE ,
REGISTER

~— J
INDEX_INTO MAP REGISTERS J
MAP REGISTERS
31 30 21 20 0
—eV RESERVED I PHYS. PAGE ADDRESS
[
DIRECT
DIRECT TRANSFER
TRANSFER
57 JAI o
SBI F PHYSICAL PAGE ADDRESS
ADDRESS
Figure 18-4 Virtual to SBI Address Translation
29 28 17 16 13 121110 9 0
TRANSFER M
10 - - - - - - - - - - O|REQUEST [O]|A VARIABLE
LEVEL P

L-INI OR EXT.

Figure 18-5 MASSBUS Adapter Addressing Format
(Physical Byte Address)

316

VAX-11/780 MASSBUS Subsystem

Bits <16:13> Transfer request number of this
MBA
Bits <11:10>
00 MBA internal register

Bits<9:5>=must be zero

Bits<4:0> =register select off-
set

01 MBA external register
Bits<9:7>=device select
Bits<6:0> =register select

10 MBA MAP
Bits<9:0>=MAP address
11 Invalid (No response to an ad-

dress with these bits on)

INTERNAL REGISTERS
The MBA internal registers are described as follows:

MBA Configuration/Status Register (Byte Offset=0)

3 2423 16 15 8 7 0

ALERT OR ADAPTER
FAULT STATUS INTERRUPT STATUS | DEPENDENT status | ADAPTER CODE

Figure 18-6 MBA Configuration/Status Register

Bit: 31 Name: SBI parity error

Function: Set when an SBI parity error is detected. Cleared by power
fail or the deassertion of fault signal. Setting of this bit will cause fault
to be asserted on SBI.

Bit: 30 Name: Write data sequence (WS)

Function: Set when no write data is received (neither tag = write data
nor ID) following a write command. Cleared by power fail or the deas-
sertion of fault signal. The setting of this bit will cause the assertion of
fault on SBI.

Bit: 29 Name: Unexpected read data (URD)
Function: Set when read data is received when it is not expected.

317

VAX-11/780 MASSBUS Subsystem

Cleared by power fail or the deassertion of fault signal. The setting of
this bit will cause assertion of fault on SBI.

Bit: 28 Name:
Function: This bit must be zero.

Bit: 27 Name: Multiple transmitter (MT)
Function: Set when the ID on the SBI does not agree with the ID
transmitted by MBA while MBA is transmitting information on the SBI.
Cleared by power fail or the de-assertion of fault signal. The setting of
this bit will cause the assertion of fault on SBI.

(Fault signal will be asserted at the normal confirmation time for one
cycle if MBA detects one of the fault conditions. The negation of the
fault signal on the SBI will clear all the fault status bits).

Bit: 26 Name: XMTFLT

Function: Set when SBI fault is detected at the second cycle after
MBA transmits information to the SBI. Cleared by power fail or the
deassertion of fault signal.

Bit: 25 Name: Zero
Function: Reserved for future use.

Bit: 23 Name: Adapter power down (PD)

Function: Set when the MBA receives assertion of AC LO. Clear
when MBA power goes up. Cleared by assertion of INIT, UNJAM, DC
LO, or writing one to this bit. The setting of this bit will cause interrupt
to CPU.

Bit: 22 Name: Adapter power up (PU)

Function: Set when MBA receives the deassertion of AC LO. Reset
when MBA power goes down. Cleared by assertion of INIT, UNJAM,
DC LO or writing a one to this bit. The setting of this bit will set IE bit
and interrupt CPU.

Bit: 21 Name: Over temperature (OT)
Function: Zero

Bit: 20:8 Name: All zeros
Function: Reserved for future use.

Bit: 7:0 Name: -
Function: Each adapter is assigned a unique code identifying it. MBA
adapter code is: bits <7:0>=00100000.

MBA Control Register (Byte Offset =4)
Bit: 31:4 Name: Allzeros
Function: Reserved for future use.

318

VAX-11/780 MASSBUS Subsystem

3 43210

Figure 18-7 MBA Control Register

Bit: 3 Name: MB Maintenance Mode

Function: The setting of this bit will put MBA in the maintenance
mode which will allow the diagnostic programmer to exercise and
examine the MASSBUS operations without a MASSBUS device. When
this bit is set, MBA will block RUN, DEM, and assert FAIL to MASSBUS
so that all the devices on MASSBUS will detach from the MASSBUS.
The MBA cannot be put in maintenance mode while a data transfer is
in progress.

Bit: 2 Name: Interrupt Enable

Function: Set by writing a one or power up which allows MBA to
interrupt CPU when certain conditions occur. Cleared by writing zero
or INIT.

Bit: 1 Name: ABORT

Function: Abort data transfer. Write one to set. The setting of this bit
will initiate the data transfer abort sequences which will stop sending
commands, stop address and byte counter.

e Negate Run

e Assert EXEC to MASSBUS

e Wait for EBL

@ Set DTABT to one at the trailing edge of EBL
@ Interrupt CPU if IE bitis one

This bit will be cleared by writing a zero, INIT or UNJAM.

Bit: 0 Name: Initialization (INIT)

Function: The bit is self-clearing. It will always read as zero. The
setting of this bit will:

e Clear status bits in MBA Configurator register

e Clear ABORT and IE in MBA Control register

e Clear MBA Status register

e Clear MBA Byte Count register

® Clear control and status bits of diagnostic registers

e Cancel all pending commands except Read Data Pending
® Abort data transfer

e Assert MASSBUS INIT

319

VAX-11/780 MASSBUS Subsystem

MBA Status Register (Byte Offset=8)

31 30 29 28 20 19 18 1716 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 O

MBZ

Figure 18-8 MBA Status Register

Bit: 31 Name: DTBUSY

Function: Data transfer busy. Bit is set when a data transfer com-
mand is received. It is cleared when data transfer is terminated nor-
mally or when a data transfer is aborted.

Bit: 30 Name: NRCONF

Function: No response confirmation. This bit is set when the MBA
receives a no response confirmation for the read command or write
command and write data sent to the SBI. It is cleared by writing a one
to the bit or INIT. The setting of this bit will cause retry of the com-
mand.

Bit: 29 Name: CRD

Function: Corrected read data. This bit is set when TAG of read data
received from memory is CRD. It is cleared by writing a one to this bit
or by INIT.

Bit: 28:20 Name: All zeros.
Function: Reserved for future use.

Bit: 19 Name: PGE
Function: The PGE bit is set when one or more of the following con-
ditions exists:

Program tries to initiate a Data Transfer when MBA is currently
performing one.

Program tries to load MAP, VAR, or Byte counter when MBA is cur-
rently performing a Data Transfer operation.

Program tries to set MB Maintenance Mode during a Data Transfer
operation.

The bit is cleared by writing a one. The setting of this bit will cause an
interrupt to the CPU if IE is set.

Bit: 18 Name: NFD

Function: Nonexisting drive. This bit is set when drive fails to assert
TRA within 1.5 usecs after assertion of DEM. The bit is cleared by
writing a one to the bit. The setting of this bit will send zero read data
back to the SBI, and interrupt CPU if IE is set.

Bit: 17 Name: MCPE
320

VAX-11/780 MASSBUS Subsystem

Function: MASSBUS control parity error. This bit is set when a
MASSBUS control parity error occurs. It is cleared by writing a one to
the bit. The setting of this bit will cause an interruptto CPU if IE is set.

Bit: 16 Name: ATTN

Function: Attention from MASSBUS. Asserted when the attention
line in the MASSBUS is asserted. The assertion of this bit will cause an
interrupt to the CPU if IE is set.

Bit: 15:14 Name: All zeros.
Function: Reserved for future use.

Bit: 13 Name: DT CMP

Function: Data transfer completed. This bit is set when the data
transfer is terminated either due to an error or normal completion. It is
cleared by writing a one to this bit or INIT. The setting of this bit will
cause an interrupt to the CPU if IE bit in control register is set.

Bit: 12 Name: DTABT

Function: Data transfer aborted. This bit is set with the trailing edge
of the EBL when data transfer has been aborted. It is cleared by writing
a one to this bit or INIT. The setting of this bit will cause an interrupt to
the CPU if IE bit is set.

Bit: 11 Name: DLT

Function: Data late. This bit is set when:

1) For awrite data transfer or write check data transfer, data buffer is
empty when WCLK is sent to MASSBUS.

or

2) for a read data transfer, the data buffer is full while SCLK is re-
ceived from MASSBUS. This bit is cleared by writing a one to it or
INIT. The setting of this bit will cause the data transfer operation to
be aborted.

DLT will most likely be set if the system is in single step operation and
if the MBA is not in maintenance mode.

Bit: 10 Name: WCK UP ERR

Function: Write Check Upper Error. This bit is set when a compare
error is detected in the upper byte while MBA is performing a write
check operation. It is cleared by writing a one to this bit or INIT. The
setting of this bit will cause the data transfer operation to be aborted.

Bit: 9 Name: WCK LWR ERR

Function: Write Check Lower Error. This bit is set when a compare
error is detected in the lower byte while MBA is performing a write
check operation. It is cleared by writing a one to this bit or INIT. The
setting of this bit will cause the data transfer operation to be aborted.

321

VAX-11/780 MASSBUS Subsystem

Bit: 8 Name: MXF

Function: Miss transfer error. This bit is set when an SCLK or OCC is
not received within 500 usec after data transfer busy is set. Itis cleared
by writing a one to this bit or INIT. The setting of this bit will cause an
interrupt to the CPU if IE bit in control register is set.

Bit: 7 Name: MBEXC

Function: MASSBUS Exception. This bit is set when EXC is received
from MASSBUS. It is cleared by writing a one to this bit or INIT. The
setting of this bit will cause the data transfer operation to be aborted.

Bit: 6 Name: MDPE

Function: MASSBUS data parity error. This bit is set when the
MASSBUS data parity error is detected during a read data transfer
operation. It is cleared by writing a one to the bit or INIT. The setting of
this bit will cause the data transfer operation to be aborted.

Bit: 5 Name: MAPPE

Function: Page Frame Map Parity Error. This bit is set when a parity
error is detected on the page frame number read from the PF map. It
is cleared by writing a one to this bit or INIT. The setting of this bit will
cause the data transfer operation to be aborted.

Bit: 4 Name: INVMAP

Function: Invalid map. This bit is set when the valid bit of the next
page frame number is zero when byte count is not zero. Itis cleared by
writing a one to this bit or INIT. The setting of this bit will cause the data
transfer operation to be aborted.

Bit: 3 Name: ERR CONF

Function: Error Confirmation. This bit is set when the MBA receives
an error confirmation for the read command or write command. It is
cleared by writing a one to this bit or INIT. The setting of this bit will
cause the data transfer operation to be aborted.

Bit: 2 Name: RDS

Function: Read Data Substitute. This bit is set when the tag-of the
read data received from memory is read data substitute. It is cleared
by writing a one to this bit or INIT. The setting of this bit will cause the
data transfer operation to be aborted.

Bit: 1 Name: IS TIMEOUT

Function: Interface Sequence Timeout. An interface sequence is de-

fined as the time from when arbitration for the SBI is begun until:

1) ACK is received for a command address transfer that specifies
read or,

2) ACK is received for a command address transfer that specifies
write and ACK is also received for each transmission of write data

322

VAX-11/780 MASSBUS Subsystem

or,

3) ERR confirmation is received for any command/address transfer.
The maximum timeout is 102.4 usecs. The setting of this bit will
cause data transfer abort. Cleared by writing a one to this bit or
INIT.

Bit: 0 Name: RD TIMEOUT

Function: Read Data Timeout is defined as the time from when an
interface sequence that specifies a read command is completed to the
time that the specified read data is returned to the commander. The
maximum time outis 102.4 usecs. The setting of this bit will cause data
transfer abort. Cleared by writing a one to this bit or INIT.

MBA Virtual Address Register (Byte Offset=12)

31 17 16 9 8 0

0 0 MAP SELECT BYTE OFFSET

Figure 18-9 MBA Virtual Address Register

The program must load an initial virtual address (pointing to the first
byte to be transferred) into this register before a data transfer is initiat-
ed. Bits 9 through 16 select one of 256 map registers. The contents of
the selected map register and the values in bits 0 through 8 are used to

323

VAX-11/780 MASSBUS Subsystem

assemble a physical SBI address to be sent to memory. Bits 0 through
8 indicate the byte offset into the page of the current data byte. Note
the MBA virtual address register is incremented by 8 after every mem-
ory read or write and will not point to the next byte to be transferred if
the transfer does not end on a quadword boundary. (It will point 8
bytes ahead.) Also upon a write check error, the virtual address regis-
ter will not point to the failing data in memory due to the preloading of
the silo data buffer. The virtual address of the bad data may be found
by determining the number of bytes actually compared to the
MASSBUS (the difference between bits 16 to 31 of RS04 and their
initial value) and adding that difference to the initial virtual address.

MBA Byte Counter (Byte Offset=16)

31 16 15 0

MASSBUS BYTE COUNTER (READ ONLY) SBI BYTE COUNTER (READ/WRITE)

Figure 18-10 MBA Byte Counter

Program loads the 2's complement of the number of bytes for the data
transfer to bits <15:0> of this register. MBA hardware will load these
16 bits into bits <31:16>. Bits <31:16> serve as the byte counter for
the number of bytes transferred through the SBI interface. The starting
byte count with 16 bits of 0's is the maximum number of bytes of a data
transfer.

Diagnostic Register (Byte Offset=20)

31 3029 28 27 26.25 24 23 22 21 2019 18 17 16 15 1312 9 8 0
MDS

OR
MDIB

MRS MDB

Figure 18-11 Diagnostic Register

324

VAX-11/780 MASSBUS Subsystem

The diagnostic register may only be read or written while in mainte-
nance mode. Care must be taken while reading or bit-setting this
register to insure that the data path is not loading the silo. If the data
path is loading the silo while this register is read, the data may be
altered.

Bit: 31 Name: IMDPG
Function: Invert MASSBUS Data Parity Generator.

Bit: 30 Name: IMCPG
Function: Invert MASSBUS Control Parity Generator.

Bit: 29 Name: IMAPP
Function: Invert Map Parity.

Bit: 28 Name: BLKSCOM

Function: Block Sending Command to SBI. During a data transfer,
the setting of this bit will eventually cause a DLT bit set and CPU
interrupt.

Bit: 27 Name: SIMSCLK

Function: Simulate SCLK. When MMM bit is set, writing a one to this
bit will simulate the assertion of SCLK, and writing a zero to this bit will
simulate the deassertion of SCLK.

Bit: 26 Name: SIMEBL

Function: Simulate EBL. When MMM bit is set, writing a one and
writing a zero to this bit will simulate the assertion and deassertion of
EBL.

Bit: 25 Name: SIMOCC

Function: Simulate OCC. When MMM bit is set, writing a one and
writing a zero to this bit will simulate the assertion and deassertion of
OCC.

Bit: 24 Name: SIMATTN

Function: Simulate ATTN. When MMM bit is set, writing a one and
writing a zero to this bit will simulate the assertion and deassertion of
ATTN.

Bit: 23 Name: MDIB SEL

Function: Maintenance MASSBUS Data Input Buffer Select. When
the bit is set to one, the upper eight bits (B<15:8>) of MDIB will be
sent out from B<7:0> of Diagnostic Register if the Diagnostic Register
is read. When this bit is zero, the lower eight bits (B<7:0>) of MDIB will
be sent out from B<7:0> of Diagnostic Register if a bit is read.

Bit: 22:21 Name: MAINT ONLY
Function: Read/write with no effect. (Used to test writability of these
bits).

325

VAX-11/780 MASSBUS Subsystem

Bit: 20 Name: MFAIL

Function: MASSBUS Fail (read-only). Fail is asserted when MMM is
set.

Bit: 19 Name: MRUN

Function: Maintenance MASSBUS Run (read-only).

Bit: 18 Name: MWCLK
Function: Maintenance MASSBUS WCLK (read-only).

Bit: 17 Name: MFXC
Function: Maintenance MASSBUS FXC (read-only).

Bit: 16 Name: MCTOD
Function: Maintenance MASSBUS MCTOD (read-only).

Bit: 15:13 Name: MDS

Function: Maintenance MASSBUS Device Select (read-only).
Bit: 12:.8 Name: MRS

Function: Maintenance MASSBUS Register Select (read-only).

Bit: 7:0 Name: U/L MDIB
Function: Maintenance Upper/Lower MDIB.

Selected Map Register (Byte Offset =24)

This register is read-only and has the same format as a map register
but is valid only when DT Busy is set. This is the contents of the map
register pointed to by bits 16 through 9 of the virtual address register.

Command Address Register (Byte Offset=28)

This register is read-only and valid only when DT Busy is set. It is the
value of bits <31:0> of the SBI during the Command/Address part of
the MBA’s next data transfer cycle.

MBA External Register (Byte Offset=400 to 7FC)
External registers are MASSBUS device-dependent. Each device has
a maximum of 32 registers.

MBA Map (Byte Offset=800 to BFC)
Bit: 31 Name: Valid Bit

Bit: 30:21 Name:
Function: Zeros. Reserved for future use.

Bit: 20:0 Name: Physical Page Frame Number

The MBA contains 256 map registers, each of which may be selected
by address bits 0 to 9 when bits <11:10> are 10. Map registers can

326

VAX-11/780 MASSBUS Subsystem

only be written when there is no data transfer operation in progress. A
write to a map register during a data transfer will be ignored and cause
the setting of PGE.

Data Transfer Program Flow

1) Initialize MASSBUS Adapter.

2) Mount pack into drive.

3) Start drive spinning.

4) Wait for ready light.

5) Issue Pack ACK to drive.

6) Load desired cylinder, sector, track, and registers in drive.

7) Load starting virtual address into MBA’s virtual address register.

8) Load 2's complement of number of bytes to be transferred into
byte count register in MBA.

9) Load starting map (pointed to by bits <9:16> of VAR) with physi-
cal page address.

10) Load successive maps with physical addresses to rest of pages.

11) Issue read/write command to drive.

EXAMPLE

Presented is a program to read data from the RP05/RP06 disk subsys-
tem into memory. The program is written in the VAX-11 MACRO as-
sembly language. It is not meant to run with memory management
enabled, and will not run under VAX/VMS. This program illustrates the
procedures involved in setting up the MASSBUS adapter to transfer
bytes of data to memory. In order to run the program, it must be
loaded from the floppy disk by the console into memory. Initially, the
program can be assembled and linked under VAX/VMS and then
transferred to the floppy disk using the RSX-11M utility program FLX.

327

BEGING

VAX-11/780 MASSBUS Subsystem

FROGRAM TO LFROM THE /& TNTO MEMORY

SYMEOL INLTFONS

[RRSE:

LBRON I
VAL COMMANID

3
¥
v
i
V
12
i
i
¥
i
§
§
i
i
i
i
v
3

ns 0 WITH

AN
MOUN

MOVL. 5 LOADN MBA‘S.
MOVL.
MOVL.
MOVL.

1.0
DATA

MOVL.
MOV

328

VAX-11/780 MASSBUS Subsystem

143 FLVALIIy R4y (R 4§ CovALT ANDE MOVE LHTO MaF
R4 i
IOy R2
EMAF VALTINy R4y (R
(R
r
TRY TC
H 3 THE MRA RYTE COUNT RE ANIL THE
b IN THE DISC

RYTES 10 XF

COMP

FOOUNT y MBALBCR (RO)
F SIRED CYLINDER

SCRG)

CREATE ITMA
LOAL REGISTE

+ THE COM
M WILL

THE TRANSFER WAS SU

TF

RATION

268

FROGR

EL 3 [STER SHOULD

«LONG

- e e e

4
+LONG &

SENI B

$

329

330

CHAPTER 19

INTERCONNECTS AND THE VAX-11/782
ATTACHED PROCESSOR SYSTEM

OVERVIEW

All VAX-11/780 hardware system elements, such as the CPU, main
memory, and MASSBUS and UNIBUS adapters, are connected to the
Synchronous Backplane Interconnect (SBI) by devices called inter-
connects. In the case of the MASSBUS and UNIBUS adapters, the
interconnect also allows the connection of various DIGITAL- and user-
designed peripherals to the system via the appropriate bus structure.

The MASSBUS and UNIBUS adapters interconnects are designed to
process data transfers at rates up to the potentials of the compatible
peripherals. However, the SBI operates at even faster speeds, up to
13.3 MB/second, and in 32-bit versus 16-bit increments. To permit
VAX users with exceptionally fast I/0 requirements to take advantage
of the speed and capabilities of the SBI, a special high performance
32-bit parallel interface, the DR780, is available.

Other VAX users with multiprocessor configurations working on com-
plex and intricate problems can enhance the capabilities of their sys-
tems with the VAX-11/780 multiport memory option, MA780. The user
can utilize shared memory among up to four processors with a
throughput rate of up to 11 MB/second.

For additional computational power, the VAX-11/782 attached proces-
sor upgrade or packaged systems can provide a significant perform-
ance improvement over a single VAX-11/780 processor. The VAX-
11/782 is atightly-coupled asymmetrical multiprocessor system
based on the MA780 shared memory subsystem. It is comprised of
two VAX-11/780 CPUs and supports up to 8 MB of MA780 shared
memory.

This chapter will discuss the features, benefits and operation of these
optional, very high performance VAX-11/780 interconnects and the
VAX-11/782 attached processor computer system.

331

Interconnects and the VAX-11/782

DR780 HIGH PERFORMANCE 32-BIT PARALLEL INTERFACE

Features

6.67 MB/second transfer rate

Command chaining

Dynamic memory mapping per-
formed in hardware

Full VAX/VMS software support

Symmetric point-to-point inter-
connect

Separate control and data inter-
connects

User generated command
packets processed without op-
erating system intervention

Unrestricted maximum transfer
size

INTRODUCTION

Benefits

Exceptionally fast, full 32-bit I/0
operations

Allows multiple I/0 operations
to occur without software inter-
vention

Reduced I/0 overhead; applica-
tions programs and 1/0 driver
completely independent from
memory mapping

Library of high-level language
support routines and complete
1/0 driver reduce software de-
velopment time for customer
applications

Enables two VAX-11/780 sys-
tems to be connected through
two DR780 optionsiin a user
written application

Provides for concurrent 32-bit-
data and 8-bit control transfers

Provides a direct link between
the DR780 and the user process

Transfers can be of indefinite
length, limited only by the size
of physical memory

The DR780 is a very high performance interface that allows user de-'
vices to be connected directly to the VAX-11/780 SBI. It is capable of
transferring data to and from memory at speeds of up to 6.67 MB per
second. The DR780 also permits intelligent 32-bit parallel data trans-
fers to a second DR780-equipped VAX-11/780 system, enabling high
speed interprocessor communication.

The DR780 is fully software supported by the VAX/VMS operating
system with a simple, easy-to-use 1/0O driver and a library of high level
language support routines. This allows the user to avoid much of the
work and time associated with writing device handlers.

332

Interconnects and the VAX-11/782

Data verification is supported on the DR780 by parity checking on both
control and data transfers. Other DR780 features that enhance system
integrity and maintainability include: error detection and logging, ad-
dress range checking on data transfers and on-line diagnosis.

Applications that previously required very complex and time-consum-
ing hardware and software development on the part of the user can be
much more readily implemented with the DR780.

Figure 19-1 shows a typical VAX-11/780 configuration with a DR780
incorporated in block diagram form.

VAX-11/780
cPu
l] DR780
wv
a 2
:
E =
a
1 STANDARD 4 OPTIONAL o
3 OPTIONAL

FAR END
DR DEVICE

Figure 19-1 VAX-11/780 Configured with DR780

DR32 DEVICE INTERCONNECT (DDI)

The DR780 is an interface adapter that connects the internal memory
bus of the VAX-11/780 processor to a user-accessible bus called the
DR32 Device Interconnect (DDI). Two DR780s can be connected to
form a VAX-11/780 processor-to-processor link. Figure 19-2 shows
the relationship of the DR780 to the VAX-11/780 and the DDI.

333

Interconnects and the VAX-11/782

DMA
S8l CONTROL MICROPROCESSOR oA
DR780
ADAPTER

-
v
; Lt
z]
: :
& 0
- O
z &
- -
[e] Z
= <
S <
S a

DDI

Figure 19-2 DR780-DDI Relationship

As a general purpose data port, the DR780 is a capable of moving
continuous streams of data to or from memory at high speed. Data
moved from a user device to disk storage must go through an
intermediate buffer in main memory.

The DR32 Device Interconnect (DDI) is a bidirectional bus for the
transfer of data and control signals. Control signals sent over the DDI
are asynchronous and interlocked; data transfers are synchronized
with clock signals. Any connection to the DDI is called a DR-device.
The DDI provides a point-to-point connection between two DR-de-
vices, one of which must be a VAX processor. The DR-device connect-
ed to the external end of the DDI is called the far end DR-device.

The DDI actually consists of two separate and independent intercon-
nects: one for control signals and one for data. The control intercon-
nect is an asynchronous 8-bit bidirectional path for transferring
control information to and from a user device. A great deal of flexibility
for the design of the user device is available since the width of the
control interconnect (8 bits) enables the DR780 to address up to 256
individual registers. These registers can pass various kinds of infor-
mation, such as buffer descriptors, commands, or status, to the user
process.

334

Interconnects and the VAX-11/782

The data interconnect is a synchronous 32-bit bidirectional path for
data which is synchronized to a single clock. The user can choose to
use the internal clock to the DR780 or provide one in the far end
device. The transfer rate of the DR780 is selectable under program
control in the range of 0.156 to 6.67 MB/sec. Actual throughput ob-
tained, however, is configuration and application dependent.

Command Chaining

Command chaining is the execution of commands without software
intervention for each command. Commands are chained in the sense
that they follow each other on a queue. After a QIO function starts the
DR780, any number of DR780 commands can be executed during that
QIO operation. This process continues until the transfer is halted (a
command packet is fetched that specifies a Halt command) or an error
occurs.

The DR780 can perform dynamic command chaining. This means

that commands can be added and even deleted from the command

queue while the DR780 is operating. Four features of the DR780 allow
command chaining as follows:

e Fetches commands continuously from main memory—The
DR780 is an intelligent controlier whose microprocessor requests
command information and transfers data continuously from the
virtual memory of the user process without program intervention.
This is accomplished through the use of queues.

e Direct communication between the DR780 and the user process
via queues—This feature provides for greater efficiency and flexi-
bility by allowing the user process to control the DR780 directly. It
also means that the 1/0 driver can be the same for a wide range of
applications. Since the user process has the task of building com-
mand packets, the I/O driver just performs privileged tasks for the
user process, such as supplying the DR780 with the address range
of operation, fielding interrupts and aborting the current operation.
Also, the time for the user process to supply the DR780 with a
command packet or a data buffer is minimized.

e Dynamic memory mapping—This is the ability to perform continu-
ous data transfers of arbitrary length without having to reload ad-
dress translation map registers. Data transfers are specified as
virtual addresses which the DR780 dynamically translates to physi-
cal address locations. This eliminates the need for mapping regis-
ters and allows for very large data transfers. The DR780 buffer size
is limited only by the amount of physical memory available (see data
chaining). The DR780 uses the same page table entries as the CPU.

335

Interconnects and the VAX-11/782

e Concurrent data and command transfers on the DDI—The DDI’s
two separate and independent interconnects allow concurrent oper-
ations to occur, such as establishing the next command sequence in
parallel with completing the current data transfer. Thus, the DR780
can be ready for the next data transfer immediately upon the com-
pletion of the current one.

Data Chaining

Command packets can specify data chaining. In data chaining, a
number of main memory buffers appear as one large buffer to the far
end DR-drive. Data chaining is completely transparent to this device;
transfers are seen as a continuous stream of data. Chained buffers
can be of arbitrary byte alignment and length. The length of a transfer
appears to the far end DR-device to be the total of all the byte counts
in the chain, and since chains in the DR780 can be of unlimited length,
the device sees the byte count as potentially infinite.

Far End DR-Device Initiated Transfer

The DR780 provides the capability for the far end DR-device to initiate
data transfer to the VAX memory, that is, random access mode. This
mode is used when two DR780s are connected to form a processor-to-
processor link. Random access consists of data transfers to or from
the VAX memory without notification of the VAX processor. Random
access can be discontinued by either specifying a command packet
with random access disabled or by an abort from either the controlling
process or the far end DR-device.

Power Failure

If power fails on the DR780, but not on the system, the DR780 driver
aborts the active data transfer and returns the status code
SS$ POWERFAIL in the I/0O status block. If a system power failure
occurs, the DR780 driver completes the active data transfer when
power is recovered and returns the status code SS$§_POWERFAIL.

Interrupts

The DR780 can interrupt the DR780 driver for any of the following

reasons:

® An abort has occurred. The QIO is completed.

e A DR780 power down or power up sequence has occurred.

e An unsolicited control message has been sent to the DR780. If the
command packet’s interrupt control field is properly set up, a packet
AST interrupt occurs. The interrupt occurs after the command pack-
et obtained from FREEQ is placed on TERMQ. (Discussion of the
various queues and their functions is found in the PROGRAMMING
INTERFACE section of this chapter.)

336

Interconnects and the VAX-11/782

e The DR780 enters the Halt state. The QIO is completed.

e A command packet that specifies an unconditional interrupt has
been placed onto TERMQ. This results in a packet AST.

e A command packet with the “interrupt when TERMQ empty” bit set
was placed on an empty TERMQ. This results in a packet AST.

PROGRAMMING INTERFACE
The DR780 is supported by a device driver and a high-level language
procedure library of support routines.

After the driver initializes, the DR780 application programs communi-
cate directly by inserting command packets onto queues. (Command
packets contain commands for the DR780, such as the direction of
transfer and/or messages to be sent to the user device.) This direct
link between the application program and the DR780 provides faster
communication by avoiding the necessity of going through the 1/0
driver.

Two interfaces are provided for accessing the DR780: a QIO driver and
a set of support routines. The QIO driver requires that the application
program build command packets and insert them into the DR780
queues. The set of support routines, on the other hand, provide pro-
cedures for building and manipulating command packets and, in addi-
tion, perform housekeeping functions, such as maintaining command
memory.

The DR780 program interface contains three queues: input, termina-
tion, and free. These three queues control the flow of command pack-
ets to and from the DR780. The application program builds a
command packet and inserts it onto the input queue. The DR780 re-
moves the packet, executes the specified command and then inserts
the command packet into the termination queue. Unsolicited input,
such as a control message from the user device, is placed in packets
removed from the free queue and inserted onto the termination queue
for later processing. Figure 19-3 shows the flow of command packets
as they are moved to the three queues.

The support routine interface has been designed to be called from
high-level languages (such as FORTRAN) where the data manipulation
which would be required by the QIO interface might be awkward. Note,
however, that the support routine user must be equally as knowledge-
able as the user of the QIO interface in terms of knowledge of the
DR780 and the meaning of the fields in the command packets.

337

Interconnects and the VAX-11/782

_I—] DR780 INTERFACE }—;

FREE QUEUE INPUT QUEUE BEL'}E"?J?A“ON
FREEQ INPTQ QuEns

—{ USER PROCESS }‘——J

Figure 19-3 Command Packet Flow in the Operation of the DR780

Application Program Interface

The application program interfaces with the DR780 through two mem-
ory areas: the command block and the buffer block. The command
block contains the headers for the three queues that provide the com-
munication path between the DR780 and the application program, as
well as space for the command packets to be built. The buffer block
defines the area of memory that is accessible to the DR780 for the
transfer of data between the user device and the DR780 itself.

initiating Command Sequences

If a command packet is inserted onto an empty INPTQ, the application
program must notify the DR780 of this event. This is accomplished by
setting bit 0, the GO bit, in a DR780 register. The 10$_STARTDATA
QIO returns the GO bit's address to the application program. After
notification by the GO bit that there are command packets on its
INPTQ, the DR780 continues to process the packets until INPTQ is
empty.

The GO bit can be safely set at any time. While processing command
packets, the DR780 ignores the GO bit. If the GO bit is set when the
DR780 is idle, the DR780 will attempt to remove a command packet
from INPTQ. If INPTQ is empty at this time, the DR780 clears the GO
bit and returns to the idle state.

Device-Initiated Command Sequence

If the DR-device that interfaces to the far end of the DDI is capable of
transmitting unsolicited control messages, they can be transmitted to
the local DR780. These messages are not synchronized to the applica-
tion program command flow. Therefore, the DR780 uses a third
queue, FREEQ, to handle unsolicited messages. Normally, the appli-
cation program inserts a number of empty command packets into
FREEQ to allow the external device to transmit control messages.

338

Interconnects and the VAX-11/782

If a control message is received from the far end DR-device, the
DR780 removes an empty command packet from the head of FREEQ,
fills the device message field of this packet with the control message
and, when the transmission is completed, inserts the packet onto the
tail of TERMQ. (The device message field in this command packet
must be large enough for the entire message or a length error will
occur.) The application program then removes the packet from
TERMQ. If the command packet is from FREEQ, the
XF$M_PKT _FREQPK bit in the DR780 Status Longword is set.

Command Packets

To provide for direct communication between the controlling process
and the DR780, the DR780 fetches commands from user-constructed
command packets located in main memory. Command packets con-
tain commands for the DR780, such as the direction of transfer, or
messages to be sent to the far end DR-device. The DR780 is simply the
conveyer of these messages; it does not examine or add to their con-
tent. The controlling process builds command packets, and manipu-
lates the three queues, using the four VAX self-relative queue instruc-
tions. Figure 19-4 shows the contents of a DR780 command packet.

PROGRAMMING HINTS

This section contains information on programming considerations re-
levant to users of the DR780. A complete discussion of the program-
ming aspects of the DR780 can be found in the VAX/VMS 1/0O Users
Guide.

Command Packet Prefetch

The DR780 can prefetch command packets from INPTQ. While exe-
cuting the command specified in one packet, the DR780 can prefetch
the next packet, decode it, and be ready to execute the specified
command at the first opportunity. When the command is executed
depends on which command is specified. For example, if two read
device or write device command packets are on INPTQ, the DR780
fetches the first packet, decodes the command, verifies that the trans-
fer is legal, and starts the data transfer. While the transfer is taking
place, the DR780 prefetches the next read device or write device
command packet, decodes it, and verifies the transfer legality. The
second transfer begins as soon as the first transfer is completed.

On the other hand, if the two command packets on INPTQ are read
device (or write device) and write device control message, in that
order, the DR780 prefetches the second packet and immediately exe-
cutes the command, because control messages can be overlapped
with data transfers. The DR780 then prefetches the next command

339

Interconnects and the VAX-11/782

190Bd pUBWIWOD 08.HA 61 94nbid

3148 TO¥INOD ONVWWOD = < 9L:EZ>SLI8 e
31A8 TOYLNOD 13INDOVd = <¥Z:E>SLIA .

|

¥ vy 901 =
€ J\ 3OVSSIW 3DIA30 -¥a nm
8z QYOMONOT SNLIVLS Z€¥a
1£4 LNNOD 31A8 14Q0 TVNAIS3Y
oz ANNOD 31A8 AYOWIW VNQAIsy
9l ¥344N9 40 SSIYAAV TVNLAIA
(AN INNQD 31A8
12373 [¥0O¥d3 TOYINOD
A;
8 3OVSSIW 3DIA3Q 40 HIONIT| V3IYY OO0140 HIONIT|, 30D TO¥INOD 3DIA30| 0000 | ,000 10UINDD uoNI1| 1dn¥HILNI
v ANIT QYVMIDVE IAILYIFY-413S
] ANIT Q¥vMYO4 3AILYIIY-313S
0 L8 St 9t 6L 0T £ 9T LT 8Z 62 oe e

340

Interconnects and the VAX-11/782

packet. In an extreme case, the DR780 can send several control mes-
sages over the control portion of the DDI while a single data transfer
takes place on the data portion of the DDI.

The prefetch capability and the overlapping of control and data trans-
fers can cause unexpected results when programming the DR780. For
instance, if the application program calls for a data transfer to the far
end DR-device followed by notification of the far end DR-device that
data are present, the program cannot simply insert a write device
command packet and then a write control message command packet
onto INPTQ—the control message may very likely arrive before the
data transfer completes.

A better way to synchronize the data transfer with notification of data
arrival is to request an interrupt in the interrupt control field of the data
transfer command packet. Then, when the data transfer command
packet is removed from TERMQ, the application program can inserta
write control message command packet into INPTQ to notify the far
end DR-device that the data transfer has completed.

Another consequence of command packet prefetching occurs when,
for example, two write device command packets are inserted into
INPTQ while the first data transfer takes place, the second command
packet is prefetched and decoded. If an unusual event occurs and the
application program must send an immediate control message to the
far end DR-device, the application program may insert a write device
control message packet onto INPTQ. However, this packet is not sent
immediately because the second write device command packet has
already been prefetched; the control message is sent after the second
data transfer starts.

If the application program needs to send a control message with mini-

mum delay, use one of the following techniques:

e Insert only one data transfer function onto INPTQ at a time. If this is
done, a second transfer function will not be prefetched and a control
message can be sent at any time.

e Use smaller buffers or a faster data rate to reduce the time
necessary to complete a given command packet.

e |ssue a $CANCEL system service call followed by another
10$_STARTDATA QIO. This technique will have determinant effect
on data throughput.

Action Routines

Action routines provide a useful DR780 programming technique. They
can be used in application programs written in either assembly lan-
guage or a high level language. When a command packet is built, the

341

Interconnects and the VAX-11/782

address of a routine to be executed when the packet is removed from
TERMQ is appended to the end of the packet. Then, rather than having
to determine what action to perform for a particular packet when it is
removed from TERMQ, the specified action routine is called.

Error Checking

Bits <23:0> in the second longword of the I/0 status block corre-
spond to the same bits in the DR780 Status Longword (DSL). Although
the 1/0 status block is written only after the QIO function completes,
the DSL is stored in every command packet. However, because there
is no command packet in which to store a DSL for certain error condi-
tions (for example, FREEQ empty) some errors are reported only in
the I/0 status block. To check for an error under these conditions, the
user should examine the DSL in each packet for success or failure
only. Then, if a failure occurs, the specific error can be determined
from the I/0 status block. The I/0 status block should also be checked
to verify that the QIO has not completed prior to a wait for the insertion
of additional command packets into TERMAQ. In this way, the applica-
tion program can detect asynchronous errors for which there is no
command packet available.

Queue Retry Macro

When an interlocked queue instruction is included in the application
program, the code should perform a retry if the queue is locked.
However, the code should not execute an indefinite number of retries.
A programming error can cause the queue header to become
corrupted. Consequently, all retry loops should contain a maximum
retry count.

Diagnostic Functions

The diagnostic functions listed in Table 19-1 can be used to test the

DR780 without the presence of a far end DR-device. For the DR780,

the user should perform the following test sequence:

1. Insert a set self-test command packet into INPTQ.

2. Insert a diagnostic write internal command packet that specifies a
128-byte buffer into INPTQ. This packet copies 128 bytes from
memory into the DR780 internal data silo.

3. Insert a diagnostic read DDI command packet into INPTQ. This
packet transmits the 128 bytes of data from the silo over the DDI
and returns it to the silo.

4. Insert a diagnostic read internal command packet that specifies
another 128-byte buffer in memory into INPTQ. This packet co-
pies 128 bytes of data from the silo into memory.

342

Interconnects and the VAX-11/782

5. Compare the two memory buffers for equality. Note that on the
DR780, the diagnostic read internal function destroys the first four
bytes in the silo before storing the data in memory. Therefore,
compare only the last 124 bytes of the two buffers.

6. Insert aclear self-test command packet into INPTQ.

Table 19-1

Function

Read Device

Read Device Chained

Write Device and
Write Device Chained

Write Device Control
Message

Device Control Code Descriptions

Meaning

This function specifies a data transfer from
the far end DR-device to the DR780. The
control select field describes the informa-
tion to be transferred prior to the initiation
of the data transfer.

This function specifies a data transfer from
the far end DR-device to the DR780. The
DR780 data chains to the buffer specified in
the next command packet in INPTQ. A com-
mand packet that specifies Read Device
Chained must be followed by a command
packet that specifies either Read Device
Chained or Read Device. All other device
control codes cause an abort. If Read De-
vice Chained is specified, the chain contin-
ues. However, if Read Device is specified,
that command packet is the last packet in
the chain.

These functions specify data transfers from
the DR780 to the far end DR-device. Other-
wise, they are similar to Read Device and
Read Device Chained.

This function specifies the transfer of a con-
trol message to the far end DR-device. This
message is contained in the device mes-
sage field of this command packet. The
Write Device Control Message function
directs the controlling DR780 to ignore the
byte count and virtual address fields in this
command packet.

343

Interconnects and the VAX-11/782

Function Meaning

Set Self-Test This function directs the DR780 to set an
internal self-test flag and to set a disable
signal on the DDI. This signal informs the far
end DR-device that the DR780 is in self-test
mode. In this condition the DR780 can no
longer communicate with the far end DR-
device.

Clear Self-Test This function directs the DR780 to clear the
internal self-test flag set by the Set Self Test
function and return to the normal mode of

operation.
No Operation The NOP function specifically does nothing.
Diagnostic Read This function directs the DR780 to fill the
Internal memory buffer, which is described by the

virtual address and byte count specified in
the current command packet, with the data
that are stored in the DR780 data silo. The
buffer is filled in a cyclic manner. For exam-
ple, on the DR780 every 128-byte section of
the buffer receives the silo data. The a-
mount of data stored in the buffer equals
the DDI byte count minus the SBI byte
count. The DDI byte count is equal to the
original byte count.

No data transmission takes place on the
DDI for this function.

On the DR780, the Diagnostic Read Internal
function destroys the first four bytes in the
silo before storing the data in the buffer.

Diagnostic Write This function, together with the Diagnostic

Internal Read Internal function, is used to test the
DR780 read and write capability. The Diag-
nostic Write Internal function directs the
DR780 to store data, which are contained in
the memory buffer described by the current
command packet, in the DR780 data silo, a
FIFO-type buffer. No data transmission
takes place on the DDI for this function. The
Diagnostic Write Internal function termi-
nates when:

344

Interconnects and the VAX-11/782

Function

Diagnostic Read DDI

Diagnostic Write
Control Message

Set Random Enable
and Clear Random
Enable

Meaning

1. The memory buffer is empty (the SBI
byte count is 0).

2. Anaborthas occurred.

At the time the function terminates, the a-
mount of data in the silo equals the DDI byte
count minus the SBI memory byte count.

This function tests transmissions over the
data portion of the DDI. The DR780 must be
in the self-test mode. If not, an abort will
occur. On the DR780, the Diagnostic Read
DDI function transmits the contents of
DR780 data silo locations 0-127 over the
DDI and returns the data to the same loca-
tions. If data transmission is normal, that is,
without errors, the residual memory count
is equal to the original byte count, the resid-
ual DDI countis 0, and the contents of the
silo remain unchanged.

This function tests transmissions over the
control portion of the DDI. The DR780 must
be in self-test mode. If not, an abort will oc-
cur. The Diagnostic Write Control Message
function directs the DR780 to remove the
command packet on FREEQ and check the
length of message field. Then the first byte
of the message in the command packet on
INPTQ is transmitted and read back on the
control portion of the DDI. This byte is then
written into the message space of the pack-
et from FREEQ. The updated packet from
FREEQ is inserted into TERMQ and is
followed by the packet from INPTQ.

The Set Random Enable function directs
the DR780 to accept read and write com-
mands sent by the far end DR-device.
Range checking is performed to verify that
all addresses specified by the far end DR-
device for access are within the buffer
block. Far end DR-device initiated transfers
to or from VAX memory are conducted

345

Interconnects and the VAX-11/782

Function Meaning

without notification of the VAX processor or
the application program.

The Clear Random Enable function directs
the DR780 to reject far end DR-device initi-
ated transfers.

Random access mode must be enabled
when the DR780 is used in a processor-to-
processor link.

Set HALT This function places the DR780 in a halt

state. The Set HALT function always gener-
ates a packet interrupt regardiess of the
value in the interrupt control field. If an AST
routine was requested on completion of the
QIO function, the routine is called after the
command packet containing the Set HALT
function has been processed by the DR780.

The NOP Command Packet

It is often useful to insert a NOP command packet into INPTQ to test
the state of the DDI disable bit in the DSL. By checking this bit before
initiating a data transfer, an application program can determine if the
far end DR-device is ready to accept data.

interrupt Control Field

The interrupt control field determines the conditions under which an
interrupt is generated: unconditionally, if TERMQ was empty, or never.
There are three general applications of this field:

1.

If a program performs five data transfers, for example, and re-
quires notification of completion only after all five have complet-
ed, the first four command packets should specify no interrupt
and the fifth command packet should specify an unconditional
interrupt.

If a program performs a continuous series of data transfers, each
command packet can specify interrupt only if TERMQ was empty.
Then, every time an event flag or AST notifies the program that a
command packet was inserted into TERMQ, the program re-
moves and processes all packets on TERMQ until it is empty.

Command packets that specify no interrupt should never be
mixed with command packets that specify interrupt if TERMQ was

346

Interconnects and the VAX-11/782

empty. If this were done, a command packet that specifies no
interrupt could be inserted onto TERMQ, followed by a command
packet that specifies interrupt if TERMQ was empty; the latter
packet will not interrupt and the program is never notified that
command packets were inserted onto TERMQ.

PHYSICAL CHARACTERSITICS

The DR780 has the same physical characteristics as both the UNIBUS
Adapter (UBA) and the MASSBUS Adapter (MBA). It requires one
Option Panel Space and can therefore mount in either the central
processor cabinet or the CPU expander cabinet. All necessary cabling
and a power supply are included. The cable used with the DR780 is a
shielded version of the standard round MASSBUS cable for use when
connections from cabinet to cabinet are made. This cable is 25 feet in
length. Note that while the DR780 uses MASSBUS cable, the DDI
electrical characteristics are quite different from those of the MASS-
BUS. All user devices must be mounted in either a free-standing cabi-
net or in an expansion box. When the user device is to be mounted in
an expansion box, a flat MASSBUS cable may be used. This cable is
available in various lengths; a 10 foot flat MASSBUS cable is included
with the DR780 option.

CONFIGURING THE DR780 IN VAX-11/780 SYSTEMS

The DR780 can transfer data at a maximum rate of 6.67 MB/second.
This speed is greater than the maximum rate a single memory con-
troller can handle. It is therefore imperative that the user carefully
analyze the application to be performed and determine the maximum
rate at which the DR780 will be operating. In many instances, a second
memory controller will be required so that the system can take advan-
tage of interleaving memory to achieve the transfer rate desired.

Table 19-2 will enable the wuser to do a first pass

configuration/throughput analysis of a VAX-11/780 system incorpo-

rating a DR780. The assumptions used to develop this analysis are as
follows:

e The user must identify which SBI devices (MBAs and UBAs) are
transferring concurrently with the DR780. Note that this is very dif-
ferent than the number of physical adapters attached to the system.

e The 0 CPU case serves to document the upper limit of DR780 per-
formance. Knowledgeable users can attain the 0 CPU performance
with proper programming. For this case, the transfer rates shown
require a user-supplied, external clock.

e Generally, users are interested only in the performance of the
DR780 with continuous (as opposed to stall) transfers on the DDI.
Therefore, only the continuous performance numbers are given.

347

Interconnects and the VAX-11/782

e Use of small buffers (less than 16 Kb) in command chaining and
data chaining will result in some loss of performance.

e UBAs and MBAs have roughly the same effect on DR780 perform-
ance, with MBAs with RM03s being the worst case. The configura-
tion rules were obtained by using MBA with RMO03 simulations real-
izing that this is a worst case representation of a mixture of UBAs
and MBAs.

e The MA780 multiport memory option is not included in the system
configurations. The interaction of these devices is very application
dependent and general rules cannot be applied.

e While it is architecturally possible to connect more than one DR780
to a system, properly configuring such a system is very complex
since the system’s behavior depends highly upon the user applica-
tion. Consult with your Sales Representative if more than one DR780
is needed.

e The memory read and memory write performance is different
enough to specify them separately.

Table 19-2 DR780 Performance

Number of Devices (transferring DR780 Performance

concurrently with the DR780) (MB/second)
Memory UBAs + MBAs Memory

Memory

CPU's! Controllers + 1(DR780)? Read Write

0 1 0 7.0 6.3

1 1 0 4.0 4.0

1 1 1 3.5 3.5

1 1 2 2.75 2.75

0 2 0 7.5 7.5

1 2 0 5.5 7.5

1 2 1 5.0 7.5

1 2 2 4.5 7.0

1 2 3 3.5 4.5

1 2 4 25 4.0

1 The CPU was simulated as “worst case” CPU, that is, a CPU doing MOVC5
instructions with fill characters.

2 UBAs + MBAs is the number of adapters transferring concurrently with the
DR780. The +1 represents the DR780 in the simulated configuration.

348

Interconnects and the VAX-11/782

Select the appropriate row which corresponds to the desired configu-
ration and read the applicable DR780 maximum transfer rate. For
transfers into memory use the “memory write” column, for transfers
from memory use “memory read.” For example, if the desired system
consists of one CPU, two memory controllers and two I/O adapters
(either MBAs or UBAs or one of each) which are transferring concur-
rently with the DR780, then the maximum rates for the DR780 are:

e from memory to the DR780 = 3.5 MB/sec
e from the DR780 into memory = 4.5 MB/sec

MA780 MULTIPORT MEMORY
Features

11 MB/second maximum total
throughput on memory trans-
fers

Two MA780s (2 MB each) per
VAX processor

Up to four VAX-11/780 proces-
sors can share each MA780

Full VAX/VMS operating system
support

Invalidation logic enables cach-
ing of shared memory data

Memory interlock capability

Individual memory port on/off
line switching

INTRODUCTION

Benefits

Extremely fast interprocessor
communications

Expands physical address
space up to a system total of 12
MB

Allows paraliel or sequential
processing functions for excep-
tionally fast application proc-
essing

Access to shared memory is
transparent to the user

Eliminates problem of “stale
data”"

Prevents shared memory from
being read by one processor
while being updated by another

Enables selective CPU shut-
down permitting high over-all
system uptime

The MA780 multiport memory enables up to four VAX-11/780 proces-
sors to share a bank of from 256 KB to 2 MB of memory. This capabili-
ty allows VAX-11/780 users to develop multicomputer configurations
for very high throughput or enhanced availability applications. The
maximum throughput rate for the MA780 is 11 MB per second.

349

Interconnects and the VAX-11/782

The VAX/VMS operating system fully supports MA780 configured sys-
tems. An application built around multiple cooperating processes can
be reconfigured to run on a multi-CPU system with no program modi-
fication. Processes in shared memory can be moved from one
processor to another with complete transparency to the programs
involved. Specifically, VAX/VMS provides support for MA780 configu-
rations in the areas of interprocessor communications (sharing of data
regions, VMS mailboxes, common event flags) and the sharing of
code among processors.

VAX/VMS itself does not use the shared memory in its dynamic page
pool of available memory and no part of the operating system resides
in the shared memory. Each CPU in the multiport system operates
independently using its own copy of VMS stored in its local memory.

Figure 19-5 illustrates two VAX-11/780 systems incorporating the
MA780.

LOCAL VAX - VAX- LOCAL
MEMORY 11/780 11/780 MEMORY

SBI SBI

MA780 I I l
7
MBA UBA ;4\6‘\"80 MULTIPORT %\ZTGO UBA MBA
MEMORY

Figure 19-5 VAX-11/780—MA780 Configuration

CAPACITY AND EXPANDABILITY

The MA780 comes with 256 KB of ECC MOS memory as the initial
configuration. Additional amounts of memory can be added in 256 KB
increments up to a maximum of 2 MB. A VAX-11/780 system will
support two MA780 subsystems, thus increasing the total addressable
physical memory to 12 MB per system.

Each MA780 option comes equipped with two interface ports to allow
communication from one VAX-11/780 processor to a second. Addi-
tional interface port options can be added permitting access to a third
and fourth CPU. These port options are mounted within the MA780
subsystem.

It is recommended that systems with three or four MA780 I/0O ports
also incorporate a selective cache invalidate option (see DATA IN-
TEGRITY section).

350

Interconnects and the VAX-11/782

Physical Layout

Physically, the MA780 is composed of standard VAX-11/780 power
supplies, cables and memory array boards, all housed in a standard
VAX-11/780 cabinet. Adequate space is allocated within the cabinet to
accommodate a second MA780.

Figure 19-6 illustrates the MA780 cabinet layout.

MA780 CONTROL &| SPACE FOR
256K BYTES OF SECOND CONTROL &
MEMORY 256K BYTES OF
(2 Mb MAX) MEMORY
(2Mb MAX)

FIRST SPACE FOR
POWER SECOND
SUPPLY POWER

SUPPLY

COOLING

10 10
CPU | MA780-C MA780-C CPU
#1 #2

Figure 19-6 MA780 Cabinet Layout

The MA780 is compatible with all VAX-11/780 system and therefore
can be readily installed on existing systems.

THROUGHPUT

The MA780 has a maximum throughput rate of 11 MB per second.
This rate applies to 64-bit quadword (eight-byte) data transfers. Small-
er sized transfers will result in lower throughput. Also, throughput to
shared memory as seen by a CPU is very much a function of other
factors within that processor, including cache hits, 1/0 and SBI traffic.

Port Servicing

The high throughput rate is in part due to the fact that each MA780
port has a buffer for commands and data. Further, each port is ser-
viced on a demand basis, that is, first in-first serviced. No time is
wasted in polling inactive ports. A servicing algorithm guarantees that
no port waits more than three memory cycles to gain access to shared
memory.

351

Interconnects and the VAX-11/782

Parallel and Sequential Processing
The MA780 can enhance overall system throughput by means of one
of two configuration types; parallel or sequential (pipeline) processing.

In parallel processing, two or more CPUs divide a task between them.
This allows the CPUs to pool their power and complete the job
extremely quickly.

Sequential processing can increase total system throughput by allow-
ing instantaneous data exchange between CPUs that are handling
sequential parts of an application. Each processor is dedicated to a
specific portion of the total application and upon completion of that
portion, passes the results on to the next CPU.

Figure 19-7 illustrates parallel and sequential processing configura-
tions.

INPUT ouTePuT
[vax | [vax |

PARALLEL SEQUENTIAL

vAxX I VAX |

Figure 19-7 Parallel and Sequential
Processing Configurations

DATA INTEGRITY

Since the MA780 utilizes the same memory array cards as those of the
VAX-11/780 main memory subsystem, the shared memory also has
the built-in error correcting code (ECC) to correct all single-bit errors
and detect all double-bit errors on memory reads and writes. Parity
error checking is also present on all MA780 internal buses.

Interlock Capability

A problem associated with shared memory is that while one processor
is reading a memory location, a second processor can simultaneously
be trying to update that location. The MA780 eliminates this problem
by locking out the second processor until the first has completed its
transaction.

352

Interconnects and the VAX-11/782

Cache Invalidation Logic

The MA780 has been designed to virtually eliminate the problem of
incorrect or stale data in the CPU caches. After a write to a shared
memory location, the MA780 sends an invalidate signal to all CPUs.
This signal transmits an address to each CPU which then checks to
see if its cache contains that address. If so, it marks the contents as
invalid and on subsequent reads by the CPU, this invalidation forces
the CPU to seek the new information from shared memory. The VAX-
11/780 cache therefore retains its transparency to software.

Selective Cache Invalidation

For multicomputer systems where there is considerable traffic on a
system’s SBI, a selective cache invalidation option is available. It is
called an invalidation map and is useful primarily in systems with three
or four CPUs. It causes the MA780 to send invalidate signals only to
those CPUs that have accessed a given location in shared memory. Its
operation is quite straightforward: the invalidation map has one entry
for each 64-bit quadword in shared memory. This entry contains four
bits, one for each CPU. Whenever a CPU reads a 64-bit quadword
from shared memory, the MA780 controller sets the bit in the correct
invalidation map entry. The next time a CPU writes into that 64-bit
quadword, the MA780 controller notifies only those CPUs whose bits -
have been set in the invalidation map. Once that has been done, all the
bits are cleared except that of the CPU performing the write operation.
In this way, the overall traffic on all SBls and cache activity is keptto a
minimum while data integrity is still maintained.

Battery Backup

Battery backup support is optionally available for the shared memory
in system configurations sensitive to power loss and fluctuation. The
backup unit resides within the MA780 cabinet and is capable of sup-
porting 2 MB of memory for a minimum of ten minutes. Smaller am-
ounts of memory are supported for longer periods of time. This level of
support is sufficient to protect the memory contents from the vast
majority of power interruptions.

FAILSOFT CAPABILITY

Failsoft capability is the capability to maintain a high degree of system
uptime by means of a design which incorporates extensive diagnostics
to detect faults and allows system functioning to continue even though
certain elements of the system may be down for service.

The MA780 supports this failsoft capability through several features.
System diagnostics can access the MA780 through any one of its
memory access ports and any connected VAX-11/780 system is

353

Interconnects and the VAX-11/782

allowed to read the multiport status register. Each port can be sepa-
rately switched off-line and the appropriate processor powered off.
This permits on-line overall system service even though the switched-
off port may be connected to a system element not presently opera-
tional.

The MA780 itself generates interrupts to notify ports of power failures
and error conditions as soon as they are detected. The VMS operating
system logs these detected errors and consequently minimizes the
MA780’s mean time to repair.

Multiprocessor systems maintain their high degree of in-service time
through one other important feature. Although each processor is
working on the same or related tasks, each processor maintains its
own VMS operating system. Thus an operating system failure in one
system does not bring down the entire multi-CPU system. The user
application, however, must have been programmed to deal with this
occurrence.

USING SHARED MEMORY

Before an application using multiport memory can execute under
VAX/VMS, the system manager must activate the VAX/VMS operating
system in processors connected to the multiport memory unit and
initialize that memory. The VAX/VMS System Manager’s Guide ex-
plains the system management responsibilities associated with a
multiport memory unit.

Preparing Multiport Memory for Use
First, the system manager activates the VAX/VMS operating system in
a VAX-11/780 and intializes the multiport memory unit. These actions
cause the following to occur:
e The uninitialized shared memory is connected to the VAX/VMS sys-
tem running in the processor.
e A name is defined that all processes running in all processors can
use to refer to the shared memory.
e Limits are set for the following resources in this multiport memory
unit:
- Common event flag clusters: the total number that can be creat-
ed, by processes running on this processor.
- Mailboxes: the total number that can be created, and the num-
ber that can be created by processes running on this processor.
- Global sections: the total number that can be created, and the
number that can be created by processes running on this proc-
essor.

354

Interconnects and the VAX-11/782

The system manager then activates the VAX/VMS operating system in
other processors connected to the multiport memory unit and
connects the initialized shared memory to the VAX/VMS system run-
ning in each of these processors and sets limits for the number of
common event flag clusters, global sections, and mailboxes that
processes on each processor can create in the multiport memory.

The system manager can also install global sections in shared memo-
ry just as they are installed in local memory. The INSTALL utility can
be used to create shared memory global sections for known files.
Once the global sections are installed, a process running in any proc-
essor connected to the MA780 can map to the section, if the process
has the appropriate privilege. The process can gain access to the
global section either by using a logical name defined by the system
manager or by using the section name specified when the global sec-
tion was created. In the latter case, the section name must be unique
on this processor.

To use facilities in memory shared by multiple processors, all of the
user privileges required to use the equivalent facility in local memory
must be present. For example, to create a permanent global section,
the user must have the PRMGBL privilege, and to create a temporary
or permanent mailbox, the user must have the TMPMBX or PRMMBX
privilege.

Assigning Logical Names and Logical Name Translation

The user can define a logical name for a shared memory facility with
the DEFINE or ASSIGN command or the Create Logical Namme
($CRELOG) system service. Application programs can then refer to
the facility using the logical name; for example, a process can invoke
the Create Mailbox and Assign Channel ($SCREMBX) system service
specifying the logical name for an existing mailbox to which a channel
is to be assigned.

When translating a logical name for a shared memory facility, the
VAX/VMS operating system uses a slightly different approach from
that used for other logical names. The purpose of this approach is to
allow programmers to specify either the complete name (memory
name and facility name) or a logical name that the system will translate
to the complete name. If logical names are defined properly, a pro-
gram that uses a given facility in local memory can be run without
change to use the facility in shared memory.

Whenever VAX/VMS encounters the name of a common event flag
cluster, mailbox, or global section, it performs the following special
logical name translation sequence:

355

Interconnects and the VAX-11/782

1. Inserts one of the following prefixes to the name (or to the part of
the name before the colon if a colon is present):

CEF$ for common event flag clusters
MBXS$ for mailboxes
LIB$ for global sections

2. Subjects the resultant string to logical name translation. If transla-
tion does not succeed (that is, the original name did not use a
logical name), passes the original name string to the system ser-
vice. If translation does succeed, goes to step 3.

3. Appends the part of the original string after the colon (if any) to
the translated name.

4. Repeats steps 1 to 3 (up to nine more times, if necessary) until
logical name translation fails. When translation fails, passes the
string to the system service.

How VAX/VMS Finds Facilities in Shared Memory

After the VAX/VMS system performs the logical name translation, the
final equivalence name must be the name of a facility in either the
processor’s local memory or in shared memory. If the equivalence
name specifies the name of a shared memory (that is, the name isin
the format name:facility-name), VAX/VMS searches for the facility in
the appropriate data base of the specified memory.

If the equivalence name specifies a common event flag cluster or
mailbox and does not specify a memory name, VAX/VMS searches
through the common event flag cluster data base or the mailbox data
base until it locates the specified cluster or mailbox. Absence of a
memory name as part of a common event flag cluster name or mailbox
name indicates that the facility is located in local memory.

If the equivalence name specifies a global section and does not speci-

fy a memory name, VAX/VMS looks for the section as follows:

1. First, it searches the global section tables for sections in the
processor’s local memory.

2. Then, it searches the global section tables for each initialized
shared memory connected to the processor in the order in which
they were connected and recognized by the processor.

The result of searching in this order is that global sections in the
processor’s local memory take precedence over those in shared
memories. Thus, absence of a memory name as part of a global sec-
tion name is not used as an indication of where the global section is
located.

356

Interconnects and the VAX-11/782

Using Common Event Flags in Shared Memory

Under VAX/VMS, any process can associate with up to two common

event flag clusters (event flag numbers 64 through 95 and 96 through

127). These clusters can be located in shared memory or in local

memory. To create and associate with a common event flag cluster in

shared memory and manipulate flags in the cluster, use the same

steps as would be used to associate with a common event flag cluster

in local memory:

1. Issue the Associate Common Event Flag Cluster (JASCEFC) sys-
tem service to create the cluster or to associate with an existing
cluster.

2. Issue any of the services that set, clear, and wait for designated
event flags, as appropriate.

As with local memory clusters, the first process among cooperating
processes to issue the Associate Common Event Flag cluster ($AS-
CEFC) system service causes the cluster to be created. Any other
process calling this service and specifying the same cluster associates
with that cluster. VAX/VMS implicitly qualifies cluster names with the
group number of the creator’s UIC; therefore, other cooperating
processes must belong to the same group.

All of the event flag system services, with the exception of Associate
Common Event Flag Cluster and Disassociate Common Event Flag
Cluster, function identically regardless of whether they are used with
local or shared memory clusters. The only difference with the Associ-
ate and Disassociate system services is that to specify a cluster in
shared memory, the user must provide the memory name as well as
the cluster name. That is, after VAX/VMMS performs logical name
translation of the name argument, the cluster name must have the
following format:

memory-name:cluster-name

Using Mailboxes in Shared Memory

The first process on each processor to refer to a shared memory
mailbox must use the Create Mailbox and Assign Channel ($CREMBX)
system service to create the mailbox and assign a channel to it. Any
$CREMBX system service call referring to a shared memory mailbox
must specify a mailbox name that has or translates to the following
format:

memory-name:mailbox-name

When the mailbox is created, the $CREMBX system service also cre-
ates the mailbox-name portion of the name string as a logical name
with an equivalence name in the format MBn. For example, if the

357

Interconnects and the VAX-11/782

complete name string is SHMEM:MAILBOX, the system service will
create MAILBOX as a logical name with an equivalence name of, for
example, MBB0O05.

The Assign I/0 Channel ($ASSIGN) and Deassign 1/O Channel
($DASSGN) system services require that you specify only the mailbox-
name portion of a shared memory mailbox name string. Likewise, any
high-level language program statements that open, close, read from,
or write to a shared memory mailbox must specify only the mailbox-
name portion.

A mailbox in shared memory cannot be used as a process termination
mailbox.

Using Global Sections in Shared Memory

Under VAX/VMS, processes can map global sections located in local
memory or in shared memory. A global section in shared memory can
be mapped to an image file or a data file, just like a global section in
local memory. To create a global section in shared memory, the same
steps are perfomed as to create a global section in local memory:

1. Using VAX-11 RMS, open the file to be mapped.
2. Issue the Create and Map Section ($CRMPSC) system service.

The file to be mapped must reside on a disk device attached to the
local processor. Once the section is created, however, processes on
all processors attached to the shared memory can map the section.

To map an existing global section in shared memory, the user issues a
Map Global Section ($MGBLSC) system service specifying the name
of the section. Once the section is mapped, processes gain access to
shared memory global sections in the same manner as they do to local
memory sections. VAX/VMS thus makes use of the shared memory
unit transparent to the process.

VAX/VMS treats the pages of a global section in shared memory dif-
ferently from pages in local memory. When a process creates a
shared-memory global section, VAX/VMS brings all of the pages of
the mapped image or data file into memory. Any process mapped to
that global section can gain access to those pages without incurring a
page fault because the pages are already in physical memory. Unlike
process pages in local memory, global section pages in shared mem-
ory are not included in the working sets of the processes that map the
section.

Because no paging occurs, VAX/VMS never writes the contents of
shared memory global section pages back to their disk file. For
read/write global sections in which the user wants to maintain an

358

Interconnects and the VAX-11/782

updated file while the application executes, an Update Section File
Disk (JUPDSEC) system service must be issued. The process issuing
the update request must execute on the same processor as the proc-
ess that created the global section. The disk file can be updated peri-
odically during execution of the application as a checkpoint precau-
tion. The disk file is automatically updated when the section is deleted.

Each process that has mapped a global section in shared memory can

unmap the section in either of the following ways:

e |ssue a Delete Virtual Address Space ($DELTVA) system service to
delete the process’s virtual address space that maps the section.

e Terminate the current image, thereby causing VAX/VMS to unmap
the process from the section automatically.

Deleting a global section in shared memory requires an explicit dele-
tion request, because all global sections in shared memory must be
permanent sections. The deletion request can be either a Delete
Global Section ($DGBLSC) system service issued by the application,
or a deletion request issued by the system manager. In either case,
VAX/VMS does not perform the actual deletion until all processes that
have mapped the section unmap it.

VAX-11/782 ATTACHED PROCESSOR SYSTEM

Features Benefits

Full VAX/VMS operating system Access to shared memory is
support transparent to the user

Improved Dynamic load leveling Optimal use of system re-
sources

Users can transfer applications No need for additional develop-
from a single to an attached ment or debugging efforts
processor configuration

Both processors share the A system manager only needs
same operating system code to maintain one copy of the
and data structures VAX/VMS operating system
INTRODUCTION

The VAX-11/782 Attached Processor System is classified as a tightly
coupled, asymmetric multiprocessor system. It is based on the MA780
multiport memory subsystem discussed in the previous section of this
chapter.

359

Interconnects and the VAX-11/782

In a tightly coupled system, the CPUs execute the same copy of the
operating system code and share the same data structures. Asymme-
tric CPUs cannot execute the entire operating system code at the
same time. In this system, all kernel mode and interrupt code is exe-
cuted by the primary processor. All I/0 operations are also conducted
by the primary processor. The primary processor schedules all work
for the attached processor before scheduling itself. Figure 19-8 illu-
strates system software relationships.

MA780
SHARED
MEMORY
#1

VAX
11/780

VAX
11/780
MA780
SHARED
MEMORY
#2

us

-3 3
o> o>
2| |23 23
o o
i

'
ATTACHED PROCESSOR PRIMARY PROCESSOR

Figure 19-8 System Block Diagram (Software)

Applications

Both commercial and technical users will find the high performance of
the VAX-11/782 advantageous. Experimental data reduction, structur-
al analysis, electronic and mechanical design with interactive
graphics, high-energy physics and quantum mechanics research are
all appropriate technical applications, especially where a multiuser
community needs access to large-scale data. The VAX-11/782 s also
an excellent choice for econometric modeling, forecasts and business
simulation, and statistical processing.

Large compute-intensive programs would typically execute almost en-
tirely in the attached processor, leaving the primary processor free for
I/0. This happens because the VAX/VMS scheduler dynamically allo-
cates compute-intensive functions to the attached processor and
functions that require I/0 transfers to the primary processor.

HARDWARE

The VAX-11/782 attached processor system is available in three com-
plete packaged systems. Each VAX-11/782 system includes two CPUs
each with local memory (for diagnostics), an LA120 console terminal,

360

Interconnects and the VAX-11/782

the VAX/VMS operating system, different amounts of MA780 shared
memory, a choice of mass storage subsystems, and an 8-line com-
munication multiplexer. The attached processor does not support 1/0
peripherals. All I/0 devices and peripherals are connected to the pri-
mary processor. Figure 19-9 illustrates a VAX-11/782 attached proc-
essor system.

512K8
MEM MBA MBA

[a)
bl
<

UBA

UNIBUS
CABINET

LA120 LA120

Figure 19-9 VAX-11/782 Attached Processor System

The VAX-11/782 attached processor is also available as an upgrade
option to a single processor VAX-11/780 system. Components of the
attached processor system upgrade include a CPU, an LA120 console
terminal, 1 MB of MA780 shared memory (maximum of 8 MB) with
battery backup, and the MA780 cache invalidate option. The CPU
cabinet also contains local memory for diagnostics.

Capacity and Expandability

Each CPU has local memory for running diagnostics. The attached
processor upgrade is delivered with 1 MB of MA780 shared memory
expandable up to 8 MB. Packaged systems are available with different
memory sizes and are also expandable to 8 MB.

Cache Invalidation Logic

The MA780 has been designed to virtually eliminate the problem of
incorrect or stale data in the CPU caches. After a write to a multiport
memory location, the MA780 sends an invalidate signal to each CPU.
This signal transmits an address to each CPU, which then checks to
see if its cache contains that address. If so, it marks the contents as
invalid, and on subsequent reads by the CPU this invalidation forces
the CPU to seek the new information from shared memory. The VAX-
11/782 cache therefore retains its transparency to software.

361

Interconnects and the VAX-11/782

Selective Cache Invalidation

For the attached processor systems, the Selective Cache Invalidation
option has been included. This allows multicomputer systems that
have considerable traffic on a system’s SBI to send invalidate signals
only to the CPU that has accessed a given location in MA780 memory.
This option for shared memory is called an invalidation map and its
operation is quite straightforward. It contains one entry for each 64-bit
quadword in shared memory. This entry contains four bits, one for
each CPU. Whenever a CPU reads a 64-bit quadword from shared
memory, the MA780 controller sets the bit in the correct invalidation
map entry. The next time a CPU writes into that 64-bit quadword, the
MA780 controlier notifies only those CPUs whose bits have been setin
the invalidation map. Once that has been done, all the bits are cleared
except for the bit of the CPU performing the write operation. In this
way, the overall traffic on all SBIs and the cache activity are kept to a
minimum while data integrity is still maintained.

Battery Backup

Battery backup support is included for the attached processor system
configurations. Two backup units reside within the MA780 cabinet and
are capable of supporting 4 MB of memory for a minimum of ten
minutes. Smaller amounts of memory are supported for longer peri-
ods of time. This level of support is sufficient to protect the memory
contents from the vast majority of power interruptions.

Throughput

The MA780 has a maximum throughput rate of 11 MB/second. This
rate applies to 64-bit quadword (eight-byte) data transfers. Smaller
sized transfers will result in lower throughput. Also, throughput to
shared memory as seen by a CPU is very much a function of other
factors within that processor, including cache hits, I/0 and SBI traffic.

Configuring Restrictions for VAX-11/780 Attached Processor

Both VAX-11/780s must be at the same revision level and run the
same version of microcode. The Writable Control Store (WCS) option,
the DR780, and the 2.2 MB/sec RP07 drive are not supported. If a CPU
option, such as the floating point accelerator, is installed in the
primary processor then the attached processor must also have the
same option. Figure 19-10 illustrates upgrade system cabinet layout.

SOFTWARE

The VAX/VMS multiprocessing-specific code is minimal. The code
occupies approximately 8 KB of non-paged pool. All kernel mode and
interrupt code is executed by the primary processor. All 1/0 opera-
tions are also conducted by the primary processor.

362

Interconnects and the VAX-11/782

LA120

Figure 19-10 VAX-11/782 Upgrade Attached Processor System

Structure

The VAX/VMS operating system fully supports attached processor
systems. Most applications built around multiple cooperating
processes can be reconfigured to run on a multi-CPU system with no
program modification. Processes running on a VAX-11/782 attached
processor system will execute on one processor and then the other
with complete transparency to the programs involved.

Scheduling

Scheduling is implemented in the same way as on a single VAX proc-
essor, i.e., round-robin, with the highest priority job executed first.
Two differences exist in the VAX-11/782: first the attached processor
will not be pre-empted by a higher priority process, and second it does
not execute in kernel mode. The primary processor does all the sche-
duling for the system. The attached processor is scheduled first and
then the primary processor schedules itself.

When there is no process capable of running on the attached proces-
sor, the primary will execute a process and force an AST delivery
interrupt to occur when the process leaves kernel mode. The AST
interrupt is then treated as a rescheduling interrupt and the primary
reschedules that process to run on the attached processor.

Initialization

A standard boot procedure is done on the primary processor. After
the primary processor is booted, a DCL command is executed to load
the multiprocessing specific code into non-paged pool. This com-
mand will usually be incorporated into the site-specific startup
command file by the system manager. A new system control block
(SCB) is initialized for the attached processor and the primary SCB is
modified to handle the multiprocessing scheduling code and MA780
interrupt communication.

363

Interconnects and the VAX-11/782

Next the attached processor is booted. After a minimal amount of
initialization it interrupts the primary to request a process to execute.
Both processors in the attached system are now running, the primary
responsible for scheduling both processors.

Attached Processor States

A state variable is maintained for access by both processors. The
transition out of each state is “owned” by a particular processor. Only
the owner has the ability to alter the state variable. This prevents
various race conditions throughout the multiprocessing code. The pri-
mary processor uses the state of the attached processor to determine
the availability of the attached processor for work scheduling.

The attached processor is set to the INITIALIZE state by the primary
processor when the multi-processing code is loaded. After the at-
tached processor finishes executing the multiprocessing initialization
code, it will move into the IDLE state. When the next rescheduling
operation is performed by the primary processor, it will initiate sche-
duling for the attached processor. When the work is assigned to the
attached, it is set to the BUSY state. The attached processor checks
the state variable and performs a load-process-context and sets the
state to EXECUTE. The attached processor will continue to execute its
current process until the process either receives its quantum of CPU
time or requests some action in kernel mode. When these conditions
are met, the attached processor will do a save-process-context and
set its state to DROP. The attached processor then naotifies the primary
processor that it is available for rescheduling. The primary processor,
after taking the process back from the attached processor, sets the
state to IDLE. The other state available is STOP, which is used to
request the attached processor to turn itself off. This state is initiated
by the system manager with a DCL command or by the primary proc-
essor during operations such as bugcheck. The attached processor
can be restarted by another DCL command or by rebooting. Figure
19-11 illustrates the state transitions of the attached processor.

PRIMARY INIT PRIMARY DROP

ATTACHED PRIMARY ATTACHED

P Y
sTOP RIMAR IDE-—— EXECUTE

ATTACHED

PRIMARY BUSY

364

Interconnects and the VAX-11/782

Multiprocessing Interrupt Communication
The MA780 inter-processor interrupt is used extensively by the
multiprocessing code.

The primary processor interrupts the attached processor for the fol-
lowing reasons:

-Request for an invalidate of a system space address

-An AST has arrived for the process currently executing in the at-
tached processor

-To request a bugcheck

The attached processor interrupts the primary for the following rea-
sons:

-Torequest a reschedule event

-Tolog an error

-To request a bugcheck

Fault Handling

Many VAX/VMS features have been extended for use on multipro-
cessing systems, including powerfail, bugcheck, machine check,
automatic restart, and error logging.

Powerfail has been implemented such that in the event the attached
processor loses power, it will transfer the process that it is currently
executing to the primary processor and the primary will continue to
run without the loss of any data. If the primary powerfails, the attached
processor will wait for it to restart.

A bugcheck will stop execution on both processors and can be initiat-
ed by either processor. The processors will synchronize during the
bugcheck and both can be set to automatically reboot.

The multiprocessing system conducts machine checks and error log-
ging in a manner similar to a single processor system. The error log
entries, however, now include the system ID, allowing recognition of
the processor that made the entry.

365

366

CHAPTER 20
VAX-11/780 PRIVILEGED REGISTERS

INTRODUCTION

The processor register space provides access to many types of CPU
control and status registers such as the memory management base
registers, the PSL, and the multiple stack pointers. These registers are
explicitly accessible only by the Move to Processor Register (MTPR)
and Move from Processor Register (MFPR) instructions which require
kernel mode privileges. This chapter describes those privileged proc-
essor registers not found elsewhere in this handbook.

Appendix D contains a description of the ID Bus registers of which the
privileged processor registers are a subset. Therefore, those registers
containing a processor address are privileged and can be accessed
via the MTPR and MFPR instructions only. Chapter 15, Console Sub-
system, contains a description of the ID Bus.

SYSTEM IDENTIFICATION REGISTER (SID)

The system identification register is a read-only constant register that
specifies the processor type. The entire SID register is included in the
error log and the type field may be used by software to distinguish
processor types. Figure 20-1 illustrates the system identification regis-
ter.

3 2423 0
TYPE TYPE SPECIFIC

Figure 20-1 System Identification Register

Type A unique number assigned by engineering to
identify a specific processor:

0 Reserved to DIGITAL

1 VAX-11/780

2 VAX-11/750

3 VAX-11/730

4 through 127 Reserved to DIGITAL

128 through 255 Reserved to CSS and customers
Type-specific Format and content are a function of the value in

type. They are intended to include such informa-
tion as serial number and revision level.

367

VAX-11/780 Privileged Registers

For the VAX-11/780, the type-specific format is:
23 15 14 12 1 0
ECO LEVEL PLANT SERIAL NUMBER

CONSOLE TERMINAL REGISTERS

The console terminal is accessed through four internal registers. Two
are associated with receiving from the terminal and two with writing to
the terminal. In each direction there is a control/status register and a
data buffer register. Figure 20-2 illustrates the console receive con-
trol/status register.

3 8
MBZ

MBZ

z 00|~
m— |0

Figure 20-2 Console Receive Control/Status Register (RXCS)

Figure 20-3 illustrates the read-only console receive data buffer regis-
ter.

ki] 161514 12 1 8 7 0
0 E 0 10 DATA

Figure 20-3 Console Receive Data Buffer Register (RXDB)

At bootstrap time, RXCS is initialized to 0. Whenever a datum is re-
ceived, the read-only bit DONE is set by the console. If IE (interrupt
enable) is set by the software, then an interrupt is generated at
interrupt priority level (IPL) 20. Similarly, if DONE is already set and
the software sets IE, an interrupt is generated (i.e., an interrupt is
generated whenever the function (IE AND DONE) changes from 0 to 1).
If the received data contained an error such as overrun or loss of
connection, then ERR is set in RXDB. The received data appear in
DATA. When an MFPR #RXDB,dst is executed, DONE is cleared as is
any interrupt request. If ID is 0, then the data are from the console
terminal. If ID is not 0, then the entire register is implementation-
dependent. In the case of the VAX-11/780, if ID = 1, data are from the
floppy disk.

At bootstrap time, TXCS is initialized with just the RDY bit set (ready).
Whenever the console transmitter is not busy, it sets the read-only bit
RDY. If IE (interrupt enable) is set by the software, then an interrupt is
generated at IPL 20. Similarly, if RDY is already set and the software
sets IE, an interrupt is generated (i.e., an interrupt is generated when-

368

VAX-11/780 Privileged Registers

ever the function (IE AND RDY) changes from 0 to 1). The software can
send a datum by writing it to DATA. When an MTPR src,#TXDB is
executed, RDY is cleared as is any interrupt request. If ID is written 0,
then the datum is sent to the console terminal. If ID is non-zero, then
the entire register is implementation-dependent. In the case of VAX-
11/780, if ID = 1, data are sent to the floppy disk. Figure 20-4 illu-
strates the console transmit control/status register.

3 8

MBZ

MBZ

O=m|<0Om|N
So| me |o

Figure 20-4 Console Transmit Control/Status Register (TXCS)

Figure 20-5 illustrates the read-only console transmit data buffer
register.
31 21 8 7 0

MBZ D DATA

Figure 20-5 Console Transmit Data Buffer Register (TXDB)

CLOCK REGISTERS

The clocks consist of an optional time-of-year clock and a mandatory
interval clock. The time-of-year clock is used to measure the duration
of power failures and is required by the operating system for unattend-
ed restart after a power failure. The interval clock is used for account-
ing, for time-dependent events, and to maintain the software date and
time.

Time-of-Year Clock

The time-of-year clock consists of one longword register. The register
forms an unsigned 32-bit binary counter that is driven by a precision
clock source with at least .0025% accuracy (approximately 65 seconds
per month). The counter has a battery back-up power supply sufficient
for at least 100 hours of operation, and the clock does not gain or lose
any ticks during transition to or from stand-by power. The battery is
recharged automatically. The least significant bit of the counter repre-
sents a resolution of 10 milliseconds. Thus, the counter cycles to 0
after approximately 497 days.

If the battery has failed, so that time is not accurate, then the register is
cleared upon power up. It then starts counting from 0. Thus, if software
initializes this clock to a value corresponding to a large time (e.g., a

369

VAX-11/780 Privileged Registers

month), it can check for loss of time after a power restore by checking
the clock value. The time-of-year clock register is illustrated in Figure
20-6.

31 0

TINS OF YEAR SINCE SETTING

Figure 20-6 Time-of-Year Clock Register (TODR)

If the clock is not installed, then the clock always reads out as 0 and
ignores writes.

Interval Clock

The interval clock provides an interrupt at IPL 24 at programmed
intervals. The counter is incremented at 1 us intervals, with at least
.01% accuracy (8.64 seconds per day). The clock interface consists of
three registers in the privileged register space: the read-only interval
count register, the write-only next interval count register, and the inter-
val clock control/status register.

Figure 20-7 illustrates the interval count register.

3 24 23 16 15 8 7 0

I D N DO D D B

Lo L1
COUNT IN MICROSECONDS

Figure 20-7 Interval Count Register (ICR)

Figure 20-8 illustrates the next interval count register.

31 24 23 16 15 8 7 0

[DU D DU R B

Figure 20-8 Next Interval Count Register (NICR)

Figure 20-9 illustrates the interval clock control/status register.

31,30 8

m— |o~

MBZ

—Z—|~N
—Qwulun
T
ZC™|0

2’ MBZ

Figure 20-9 Interval Clock Control/Status Register (ICCS)
370

VAX-11/780 Privileged Registers

Interval Count Register

The interval register is a read-only register incremented once every
microsecond. It is automatically loaded from NICR upon a carry out
from bit 31 (overflow) which also interrupts at IPL 24 if the interrupt is
enabled.

Next Interval Count Register

The reload register is a write-only register that holds the value to be
loaded into ICR when it overflows. The value is retained when ICR is
loaded. NICR is capable of being loaded regardless of the current
values of ICR and ICCS.

Interval Clock Control/Status Register (ICCS)
The ICCS register contains control and status information for the
interval clock.

Bit: 31 Name: ERR

Function: Whenever ICR overflows, if INT is already set, then ERR is
set. Thus, ERR indicates a missed clock tick. Attempts to set this bit via
MTPR clears ERR.

Bit: 30:8 Name: MBZ
Function: Must be zero.

Bit: 7 Name: INT

Function: Set by hardware every time ICR overflows. If IE is set, then
an interrupt is also generated. An attempt to set this bit via MTPR
clears INT, thereby re-enabling the clock tick interrupt (if IE is set).

Bit: 6 Name: |E

Function: When set, an interrupt request at IPL 24 is generated every
time ICR overflows (INT is set). When clear, no interrupt is requested.
Similarly, if INT is already set and the software sets IE, an interrupt is
generated (i.e., an interrupt is generated whenever the function (IE
AND INT) changes from 0 to 1).

Bit: 5 Name: SGL

Function: A write-only bit. If RUN is clear, each time this bit is set,
ICRis incremented by one.

Bit: 4 Name: XFR

Function: A write-only bit. Each time this bit is set, NICR is trans-
ferred to ICR.

Bit: 3:1 Name: MBZ
Function: Must be zero.

Bit: 0 Name: RUN
Function: When set, ICR increments each microsecond. When clear,

371

VAX-11/780 Privileged Registers

ICR does not increment automatically. At bootstrap time, RUN is
cleared.

Thus, to set up the interval clock, load the negative of the desired
interval into NICR. Then an MTPR #1X51,#ICCS will enable interrupts,
reload ICR with the NICR interval and set run. Every “interval count”
microseconds will cause INT to be set and an interrupt to be request-
ed. The interrupt routing should execute an MTPR #}XC1,#ICCS to
clear the interrupt. If INT has not been cleared (i.e., if the interrupt has
not been handled) by the time of the next ICR overflow, the ERR bit will
be set.

At bootstrap time, bits <6> and <0> of ICCS are cleared. The rest of
ICCS and the contents of NICR and ICR are UNPREDICTABLE.

VAX-11/780 FLOATING POINT ACCELERATOR

The VAX-11/780 processor has an optional accelerator for a subset of
the instructions. Two internal registers control the accelerator: ACCS
and ACCR.

ACCS is the accelerator control/status register. It indicates whether an
accelerator exists, controls whether it is enabled, identifies its type and
reports errors and status. At bootstrap time, the type and enable are
set; the errors are cleared. Figure 20-10 illustrates the accelerator
control/status register.

31 30 29 28 27 26 1615 14 8 7 0
E|MIUIO[R E

RIB|N|VIS MBZ N MBZ TYPE
RIZ|F|F|V B

R R R R R RO

[e] (e} elNe] '

Figure 20-10 Accelerator Control/Status Register (ACCS)

Bit: 31 Name: ERR

Function: Read-only bit specifying that at least one of bits RSV, OVF,
and UNF is set. Note that bits <31:27> are normally cleared by the
main processor microcode before starting the next macro instruction.
Bit: 30 Name: MBZ

Function: Must be zero.

Bit: 29 Name: UNF

Function: Read-only bit specifying that the last operation had an un-
derflow.

Bit: 28 Name: OVF

Function: Read-only bit specifying that the last operation had an
overflow.

372

VAX-11/780 Privileged Registers

Bit: 27 Name: RSV
Function: Read-only bit specifying that the last operation had a re-
served operand.

Bit: 26:16 Name: MBZ
Function: Must be zero.

Bit: 15 Name: ENB

Function: Read/write field specifying whether the accelerator is en-
abled. At bootstrap time, this is set if the accelerator is installed and
functioning. An attempt to set this is ignored if no accelerator is in-
stalled.

Bit: 7.0 Name: TYPE
Function: Read-only field specifying the accelerator type as follows:

0 = No accelerator
1 = Floating point accelerator

Numbers in the range 2 through 127 are reserved to DIGITAL. Num-
bers in the range 128 through 255 are reserved to CSS/customers.

The accelerator maintenance register (ACCR) controls the
accelerator’'s microprogram counter. At bootstrap time its contents
are UNPREDICTABLE. Figure 20-11 illustrates the accelerator mainte-
nance register.

~ 31 30 24 23 16 15 14 13 9 8 0
E(M
E’ MBZ TRAP ADDRESS T 'f« MBZ MICRO PC
W RW W R RW
o} o O

Figure 20-11 Accelerator Maintenance Register (ACCR)

Bit: 31 Name: ETL

Function: Enable Trap Address Load. A write-only bit that when set
causes <23:16> to be loaded into the accelerator’s trap address
register. Subsequently, the main processor’s microcode can force the
accelerator to trap to this location by asserting an internal signal.

Bit: 30:24 Name: MBZ
Function: Must Be zero.

Bit: 23:16 Name: TRAP
Function: Trap Address. A read/write field used by the main proces-
sor to force the accelerator to a specified micro location.

Bit: 15 Name: EML
Function: Enable Micro PC Match Load. A write-only bit that when

373

VAX-11/780 Privileged Registers

set causes <8:0> to be loaded into the accelerator’'s micro PC match
register.

Bit: 14 Name: MPM

Function: Micro PC Match. A read-only bit that is set whenever the
accelerator’s micro PC matches the micro PC match register. This is
useful primarily as a scope sync signal.

Bit: 13:9 Name: MBZ

Function: Must be zero.

Bit: 8:0 Name: PC

Function: Next Micro PC on read. This contains the next micro ad-
dress to be executed.

Match Micro PC on write. If EML is also set, then this updates the
micro PC match register.

VAX-11/780 MICRO CONTROL STORE

The VAX-11/780 processor has three registers for microcode con-
trol/status. Two are used for writing into any writable control store
(WCS) and one is used to control micro breakpoints. Figure 20-12
illustrates the writable control store address register.

3 1615 14 13 12 0

P

MBZ IEI CTR WCS ADDR J
R RW RW
w

Figure 20-12 User Control Store Address Register (WCSA)

Figure 20-13 illustrates the writable control store data register.

31 0

WCS DATA

3 8 7
0 PRESENT

Figure 20-13 Writable Control Store Data Register (WCSD)
Reading WCSD indicates which control store addresses are writable.
If WCSD<n> is set, then addresses n*1024 through zn*1024+1023
are writable (i.e., that WCSA<12:10> EQLU n corresponds to writable

374

VAX-11/780 Privileged Registers

control store). n=4 corresponds to WCS that is reserved to DIGITAL
for diagnostics and engineering change orders. Other fields corre-
spond to blocks of control that can be used to implement customer- or
CSS-specific microcode. Each word of control store contains 96 bits
plus 3 parity bits. To write one or more words, initialize WCS ADDR to
the address and CTR to 0. Then each MTPR to WCSD will write the
next 32 bits and automatically increment CTR. When CTR becomes 3,
it is automatically cleared and WCS ADDR is incremented. If PIN is set,
then any writes to WCSD are done with inverted parity. An attempt to
execute a microword with bad parity results in a machine check. At
bootstrap time, the contents of WCSA are UNPREDICTABLE. Figure
20-14 illustrates the microprogram breakpoint address register.

3 1312 0
MBZ MICRO PC

Figure 20-14 Microprogram Breakpoint Address Register (MBRK)

Whenever the microprogram PC matches the contents of MBRK, an
external signal is asserted. If the console has enabled stop on
microbreak, then the processor clock is stopped when this signal is
asserted. If the console has not enabled microbreak, then this signal is
available as a diagnostic scope point. Many diagnostics use the NOP
instruction to trigger this method of giving a scope point. At bootstrap
time, the contents of MBRK are UNPREDICTABLE.

375

376

PARTV -
VAX DEPENDABILITY =
FEATURES -

377

378

CHAPTER 21

VAX SYSTEM DEPENDABILITY
(RELIABILITY, AVAILABILITY,
MAINTAINABILITY)

INTRODUCTION

This chapter describes the extensive reliability, availability, and main-
tainability features that are an integral part of VAX systems. These
features were designed specifically to help prevent frequent system
failures and, for certain types of failures, to allow continued system
operation. These features were also developed to make VAX systems
easier to repair when there is a failure. With better system reliability,
optimal system availability, and easier component maintainability, up-
time is increased and thg overall cost of ownership is reduced.

The first section of this chapter describes the reliability, availability,
and maintainability features common to the VAX-11/730, VAX-11/750,
and VAX-11/780. The rest of the chapter provides brief descriptions of
the system-specific features.

FEATURES COMMON TO VAX SYSTEMS

Error Detection and Reporting Features — Logic in the VAX hard-
ware and software monitors system operation and distinguishes error
conditions from normal system operation. The VAX/VMS operating
system then records and reports detected error occurrences.

Consistency Checking/Error Checking — Continual consistency and
error checking by VAX hardware and software increase data reliability
by preventing certain error conditions from propagating through a
database or a system. Checks detect abnormal instruction uses, tran-
sient and permanent hardware errors, and illegal arithmetic
conditions. Some specific checks include:

e Arithmetic Traps—Traps occur when overflow, underflow and divide
by zero arithmetic conditions are detected. Hardware detection of
these error conditions allows checking to be used in high perform-
ance software where software checking would be prohibitively slow.
Overflow and underflow traps may be enabled or disabled by setting
flags in the Processor Status Longword, allowing the arithmetic ex-
ception conditions to be ignored if appropriate.

e [imit Checking Traps—Decimal string instructions all have length
limit checks (0-31 decimal digits) performed on output strings to
ensure that instructions do not overwrite adjacent data.

379

VAX Dependability Features

e Reserved Operand Traps—“Reserved-to-customer” and “reserved-
to-DIGITAL” fields and opcodes ensure that customer extensions to
the VAX architecture (e.g., user-defined instructions or data struc-
tures) do not conflict with future DIGITAL expansions.

e Special Instruction Checks—The CALLx and RETURN instructions
have hardware-implemented register save/restore and consistency
checking; these instructions provide a standard, identical interface
for user routine calls and system calls. The CRC instruction provides
block checking error code calculations, important in communica-
tions applications.

Additionally, the VAX/VMS operating system uses internal
consistency checks to determine when data is not valid. In particular,
checks determine the validity of system control information. System
malfunctions cause a trap to an exception handling routine, with ap-
propriate information recorded in the error log file.

Exception Handling — When any of the above consistency checks
detect a failure, VAX/VMS uses a uniform condition handling facility to
manage the hardware or software exception. Because the exception
handling facility is uniformly consistent within the VAX system design,
operation is more predictable and reliable.

Error Correcting Code — Memory error correcting code (ECC) auto-
matically corrects all single-bit memory errors and detects double-bit
memory errors. The code will also detect all greater than double-bit
errors if the number of errors is even.

Disk error correcting code detects most errors and corrects errorsin a
single error burst of up to 11 bits.

ECC provides protection from nonrepeatable errors by automatically
correcting data. Detections and corrections are noted in the error log
as a preventive maintenance aid.

Environmental Conditions — See “Improved System Packaging.”

Mass Storage I/O Verification — I/O verification for mass storage
peripherals is supported by the VAX/VMS device drivers. The hard-
ware compares each block for equivalence immediately after the
block is read or written. Checking may be performed on all reads or
writes to a file or volume, or specified for a single read or write. This
capability increases reliability (at the expense of the time required to
complete the read or write operation).

System Verification (UETP) — The VAX/VMS operating system con-
tains an automated collection of verification software called the User
Environmental Test Package (UETP). The UETP provides a compre-
hensive and systematic exercising of major peripheral devices and

380

VAX Dependability Features

software components by running most of the VAX/VMS utilities and
language translators; calling most of the VAX/VMS System Services
and 1/0 services each with a wide range of parameters; and compar-
ing the results to known answers. The system reports errors to the
error log and to the console terminal as execution proceeds.

The UETP is not designed to replace diagnostics, but serves as a
means of validating the proper installation and functioning of a VAX
system. A user can execute the UETP at any time to check system
functions, to perform preliminary diagnosis, or to demonstrate system
capability. Thus, in addition to verifying reliability, the package con-
tributes to easier maintainability.

System Exerciser — The System Exerciser diagnostic program
performs testing of various subsystems of a VAX system in a user
environment (operating under VAX/VMS). It verifies hardware system
integrity, or indicates those subsystems that may be failing or whose
performance may be deteriorating. This testing is done automatically
utilizing online diagnostic programs to perform the actual testing.

The System Exerciser runs as part of an extensive hardware reliability
verification procedure, and is part of a total diagnostic hierarchy test-
ing strategy. The System Exerciser is intended to be used as a dedi-
cated process and will use all available system resources to do its job.

Automatic Online Error Logging — Error logging, a software tool
used to monitor error occurrences, is an integral part of the VAX/VMS
operating system. The error logging process is continual. The operat-
ing system accepts signals from the hardware and records CPU,
memory, 1/0, and software errors in an online log file. At the same
time, the error logger notes as much information as possible about the
state of the system at the time of an error. If no errors occur over a
period of time, the error logger simply notes the time-of-day in the log
file to record that the error logging process is running. (In the special
case of ECC corrected memory errors, there is a threshold value. If the
error rate exceeds this threshold, no more ECC log entries are made
for a period of time.) A utility program is available to convert the log file
into a meaningful format and summary which can be printed for later
study.

Error logging has proved extremely beneficial for efficient mainte-
nance of the hardware. It provides Field Service engineers with a
report which can help them diagnose impending or persisting hard-
ware problems; it assists them in detecting trends in fault occurrences;
it helps them identify the specific subsystems which should be exam-
ined using diagnostics.

Machine Checks — Machine checks are hardware errors detected by

381

VAX Dependability Features

the central processor and reported to VAX/VMS. VAX/VMS categor-
izes the error and takes appropriate action. In many cases, the
instruction in error is retried and operation continues normally (tran-
sient error). If the instruction retry fails, VAX/VMS attempts to limit the
effects of the error to a single process. If the VAX/VMS executive is
executing when the machine check occurs, the system is automatically
rebootstrapped. Machine checks are caused by such conditions as
cache, translation buffer, or control store parity errors, or by failure of
the 1/0 or memory subsystems to respond to CPU requests.

System ldentification (SID) Hardware Register — This register
maintains information pertinent to the system processor type and revi-
sion number. This information may be examined (during the software
error logging process, for example) to determine the engineering stat-
us of the processor.

Application Error Detection — VAX/VMS (and the optional software
products) provides extensive checking for errors in application soft-
ware. For example, the parameters passed to the System Services are
checked for correctness before the service is attempted, thereby pre-
venting the whole operating system (as well as the application) from
being vulnerable to incorrectly coded programs. Additionally, tools
such as the MACRO assembler and the Linker provide a high level of
error detection so as to minimize the creation of erroneous application
software. This latter class of error detection ranges from program
syntax errors to detection of corrupted files (system libraries and/or
user files) to inconsistency between separately compiled programs.

Deadlock Detection — VAX/VMS provides a general set of services
(known as a Lock Manager) for synchronization of multiple processes
and for queuing upon the availability of (named) resources they
require. One of the more severe problems that can occur in such
environments is known as deadlock, where each process is waiting for
an event that none can declare to have occurred. The Lock Manager
can detect the occurrence of such a situation, preventing it from rend-
ering the application unusable.

Error Analysis and Recovery Features

VAX system hardware and software determines the source of an error
and its extent and impact on the user’s operation. Often the system
can correct the error or mask its effects.

System Dump Analyzer — The System Dump Analyzer (SDA) is a
VAX/VMS utility that helps determine the cause of an operating sys-
tem failure. When an internal error interferes with normal operations,
the operating system writes information concerning its status at the
time of failure to a predefined system dump file. The SDA examines

382

VAX Dependability Features

and formats the content of this file. With the help of the SDA com-
mands, a user can display parts of the formatted system dump file on
avideo display terminal, or can create a hardcopy listing. In addition to
analyzing the system dump file, the System Dump Analyzer can per-
form its operations on a running system without interrupting system
operation.

Error Log Reporting Program — A VAX/VMS utility program, called
the System Error Analyzer, is available to convert the error log file into
a meaningful format and summary which can be printed for study.

Instruction Retry — If a hardware-detected error, such as a machine
check, interrupts the execution of an instruction, the system in some
cases re-executes the instruction. Assuming the error is transient,
normal operation continues. If the instruction cannot be retried or if
the retry fails, VAX/VMS attempts to limit the failure to the user
process currently executing; if the operating system is executing, the
system is automatically rebootstrapped.

Nonfatal Bugchecks — When an error condition is detected by hard-
ware or software and VAX/VMS determines that it affects only a single
process, that process is removed from the system without affecting
continued normal operation of the executive or other processes. The
error is also logged in the system error log.

Automatic Stack Expansion — The VAX/VMS operating system auto-
matically extends user stack space as needed.

Unattended Automatic System Restart — Automatic system restart
facilities provide the ability to bring the system online, without opera-
tor intervention, after a system failure caused by a power interruption
or a fatal software error. If the optional memory battery backup was
able to preserve the contents of memory during the outage, the time-
of-year clock with its own battery backup (up to 100 hours) allows
VAX/VMS to recover the correct date and time upon power recovery.
A special memory configuration register indicates to the recovery soft-
ware whether data in memory was lost.

Following a power failure, whenever possible, all 1/0 in progress
before the failure occurred is restarted, which helps guarantee system
data integrity. Note that the power fail asynchronous trap facility may
be used to initiate image-specific power fail recovery processing. If the
battery backup option is not installed, or if the outage lasts longer than
the battery backup can handle, the contents of memory are not valid
and the system tries to rebootstrap itself.

Following a system failure, any unprocessed error log entries are writ-
ten to the error log file. In addition, following a system failure, a dump

383

VAX Dependability Features

of physical memory is written to disk for later analysis.

The system operator can control whether restart after a system failure
or power failure is automatic or manual by setting a switch on the
processor control panel.

Automatic Reconfiguration — The VAX/VMS operating system al-
lows users to continue working even though some of the hardware
components have failed. Modification of the system configuration,
both manually and automatically at system start-up time, provides a
reliable subset of the system, which can be used until maintenance is
performed on the failed components. For example:

e If the usual system device is unavailable, the system can be boot-
strapped from any disk on which a system disk file can be loaded.

e If memory pages (512 bytes) are defective, memory is configured by
VAX/VMS so that defective pages are not referenced (i.e., bad
pages are placed in a bad page list). This is done both during boot-
strapping and dynamically while the system is running. There is no
dependence on any set of physical addresses to bootstrap the sys-
tem.

e For a VAX-11/750 or VAX-11/780, if the memory cache is down for
some reason, it may be disabled (at a performance reduction) be-
cause the cache is transparent to operation. This is done dynamical-
ly by VAX/VMS if excessive cache errors are detected.

e The VAX/VMS operating system automatically determines the
presence of peripherals on the processor at bootstrap time and
flags nonresponding devices (including memory units) as unavail-
able.

e Software spooling allows output to be generated even if the usual
output device is not available. The system operator can reroute data
to an alternate device using system operating commands.

Diagnostics — See “System Exerciser,” “Online Functional Diagnos-
tics,” and “Fault-Isolation Diagnostics.”

Dynamic Bad Block Handling — Bad blocks may occur when a disk
surface becomes worn, or as a result of a failure in the disk drive that
performed the data transfer. When the hardware detects a bad block
during an 1/0 operation, the VAX/VMS operating system marks the
header of the file in which the error occurred. When the file is eventu-
ally deallocated, the system checks the file header to see if any bad
blocks exist in the file. If so, they are designated “permanently in use”
and are not allocated for use by other files.

Bad Memory Page Replacement — When bad pages are detected,
they are placed on a bad page list, both during bootstrapping and

384

VAX Dependability Features

during normal system operation.

Mass Storage Error Recovery — The operating system always at-
tempts recovery from nonfatal disk and tape errors. If an error occurs
during an 1/0 operation, the error is signalled by the hardware and the
operation retried by VAX/VMS using all the available hardware
recovery mechanisms.

Redundant Recording of Critical Disk Information — Critical infor-
mation, such as the home block and index file header disk informa-
tion, is redundantly recorded to allow its reliable recovery in the event
of accidental destruction.

Selective Hardware Disabling — Several hardware ele-
ments—memory management, cache, translation buffer, and optional
floating point accelerator—can be disabled by diagnostics to aid in
isolating hardware problems. With the exception of memory manage-
ment and the floating point accelerator, these elements are also
dynamically disabled by VAX/VMS to allow continued operation at a
reduced level of performance.

Data Integrity

The VAX/VMS operating system prevents processes from interfering
with one another or with critical system data through hardware access
protection and software enforced privileges.

Memory Management Hardware — The system’s memory manage-
ment hardware defines four hierarchical modes of memory access
privilege termed (from most to least privileged) kernel, executive, su-
pervisor, and user. Read and write access to memory is designated
separately for each mode.

The VAX/VMS operating system is designed so that its critical compo-
nents run in the most privileged access modes (kernel and executive).
Thus, the system is well protected against read/write operations by
any users not having the privilege to execute programs at the same
levels. This “layered” design ensures system protection, as well as
improving overall data reliability and integrity.

Quotas and Privileges — VAX/VMS uses a system of quotas to pro-
tect the use of shared system resources such as system dynamic
memory and page file space. Quotas are assigned on a per-process
basis. Thus, a given process cannot stop normal system operation by
depleting shared resources.

User processes are prevented from affecting each other or the operat-
ing system by hardware access protection and a set of software en-
forced privileges. For a process which violates the protection rules,

385

VAX Dependability Features

intentionally or unintentionally, notification is given of the error so that
appropriate recovery actions can be taken without affecting the rest of
the system.

Access Control to Files and Volumes — The VAX/VMS operating
system provides protection on a per-file basis. Users can be assigned
read/write access to other user’s data and files in an individually con-
trolled manner. These controls may also be applied on a volume-wide
basis.

Disk Volume Protection — The VAX/VMS file system provides the
ability for the system manager to establish how much of a volume may
be used by each user. This disk quota mechanism can be used to
prevent one application from consuming all of the available data sto-
rage.

Each time a volume is mounted, it is automatically checked for consis-
tency of the file structure and (in many cases) is repaired automatical-
ly. Such structure repair is often necessary if a failure of the whole
system occurred while files were in use.

Another feature of the VAX/VMS file system is known as Mount Verifi-
cation. This entails checking (after a transient condition such as a
power failure of the system or the drive) that the volume that was in
use is the one that is to be used afterwards. Thus, if for some reason
the previous volume were removed and another substituted,
VAX/VMS is able to prevent the accidental corruption of the new vol-
ume.

Maintenance Aids
VAX system packaging and diagnostic tools speed system repair op-
erations and increase availability.

Improved System Packaging — The physical packaging of VAX sys-
tems has been designed 5o that all components are highly reliable and
easily accessible for servicing.

Easy Access — VAX systems have been packaged so that all compo-
nents are easily accessible for repair. Cables are fixed in place. CPU
modules, CPU options, and memory arrays have no cables connected
to them. Since the printed circuit card cage and backplane are fixed
mounted into the system cabinet, not on slides, no service loops on
internal cables are required.

Environmental Conditions (Power Loss, Temperature, and Air Flow
Sensors) — VAX systems use sensors to detect emergency
conditions. Indicators signal abnormal operating conditions: short cir-
cuit, over voltage, loss of power, regulator or main power board fail-

386

VAX Dependability Features

ure. This helps a Field Service engineer quickly determine the cause
of failure. :

Online Functional Diagnostics — One of the most impressive fea-
tures of VAX systems is the ability to run functional diagnostics online
under VAX/VMS. This means many problems can be isolated without
taking the system down for stand-alone use.

The following specific functional diagnostics are implemented:
® Line printer

e Card reader

® Synchronous link

® Terminal

® Terminal exerciser

e Bus interaction

® Tape reliability

e Disk reliability

® Disk formatter

See also “System Exerciser.”

Fault-lsolation Diagnostics — Once functional diagnostics have iso-
lated faults to a particular subsystem or device, fault-isolation
diagnostics can be run to pinpoint the problem to the smallest possi-
ble element.

Fault-isolation diagnostics run in a stand-alone environment and iso-
late problems to a field-replaceable unit. This means that Field Service
spends less time diagnosing the fault. It also means that the cost of
replacement parts is kept to a minimum by isolating the fault to the
smallest possible unit. In addition, Field Service can run microdiag-
nostics (the optional remote diagnostic module (RDM) is needed on
the VAX-11/750) even when the processor is completely down. In
addition, VAX systems have a bus which allows microdiagnostics to
exercise the hardware to pinpoint faults. This greatly reduces repair
time, contributing to both maintainability and availability.

Online Software Update and Maintenance — The system operator
can perform software update and maintenance activities without
bringing the system down for stand-alone use. Software updates are
distributed in machine readable form (on floppy diskette or tape car-
tridge). The operator can update software modules on disk with patch-
es and replacement modules, concurrent with normal system activi-
ties. Note: A rebootstrap operation may be necessary to activate the
newly installed modules.

The system operator can also perform software maintenance pro-

387

VAX Dependability Features

cedures online. The operator can perform disk backup concurrent
with normal activities. Because these activities are performed online,
both system availability and maintainability are increased.

Automatic Updates and Patches — VAX/VMS implements a system
of automatic updates and patches.(These software updates are
performed in such a way that, if there is a power failure, the operation
can be continued when the system is restarted.) The executive is un-
der “ECO” control in that each patch automatically checks for required
previous patches and updates the current revision number. The
patches are always distributed and applied in machine readable form,
thus eliminating the possibility of introducing errors during transcrip-
tion.

High Resolution Interval Clock — An interval clock is used by diag-
nostics to test time-dependent functions without requiring machine
specific timing loops in programs. It is also used by VAX/VMS to time-
stamp operations.

Selective Hardware Disabling — See previous description.

Maintenance Registers — Theseregisters contain bus-specific
maintenance information and can be examined at the time of an error
to help determine the cause.

VAX-11/730-SPECIFIC FEATURES

Customer Runnable Diagnostics — Customer Runnable Diagnostics
(CRDs) allow a system user the capability of easily verifying proper
hardware operation. They also allow the quick isolation of system
failures to the subsystem or device level. Any error information provid-
ed from a CRD session can then be provided to the DIGITAL Field
Service office dispatcher. In this way, a specialist with the proper
spare parts and tools for a specific failure is dispatched to the custom-
er site. The advantage of this method is that most failures are correct-
ed within a single service visit.

The CRDs have been designed to operate in three modes. These three

modes provide a test strategy that will provide error information re-

gardless of the severity of the failure. The following modes of opera-
tion are provided:

e Autotest—Autotest provides an efficient means to verify the opera-
tion of the CPU, the VMS system disk, and the diagnostic load disk.
As this mode makes no assumptions about the status of the ma-
chine, it is especially useful in determining the cause of a non-
bootable system. Autotest is invoked by typing “TEST” at the con-

388

VAX Dependability Features

sole prompt. Informational messages are displayed at regular
intervals to indicate test progress. The successful completion of
Autotest initiates the off-line menu mode.

e Off-line Menu—The off-line menu system has been designed to al-
low a user to verify the proper operation of any device on the sys-
tem. The concise menu format is designed to provide a simple inter-
face for users that are unfamiliar with VAX diagnostics. All standard
VAX-11/730 options and devices are supported. When necessary,
the user is prompted to supply necessary device preparation.

e On-line Menu—The on-line menu system allows the user the capa-
bility of verifying the proper operation of a device while operating
under VMS. Thus, device testing is performed without disturbing
other users or processes on the system. Terminals, lineprinters, and
some other peripheral devices that in general never interfere with
the overall operation of VMS can only be tested using the on-line
menu mode. In addition, devices that have both on-line and off-line
support should be checked with both menu modes to effect total
device verification.

Remote Support — Remote Support provides the DIGITAL service

engineer on site with a further level of technical support that can be

used when the need arises. It provides customers with maximum pro-
tection against extended downtime. For DECSERVICE customers, it
has the added benefit of a service feature called Remote Hardware

Monitoring (RHM). Under RHM, DIGITAL Field Service will set up a

schedule with the customer for running periodic remote hardware

checks of the system. This program allows DIGITAL to identify poten-
tial problems and schedule maintenance before a costly downtime
situation occurs.

Option Replacement — The VAX-11/730's memory arrays, CPU
modules, the optional floating point accelerator (FP730), the integra-
ted disk controller, and the optional DMF32 communication board can
all be removed easily for quick replacement.

Modular Power Supply — The power system for the VAX-11/730
consists of three modules: a power controller and two power regula-
tors. Any of the three modules can be replaced in less than 20
minutes, meaning increased maintainability and availability. The
power supply indicators are visible on the top of the power supply. In
addition, a universal power supply is used.

VAX-11/730 Microverify Routines — (Bootstrapping Selfdiagnosis)
The VAX-11/730 executes microverify routines automatically on a
power-up sequence, when the VAX system is bootstrapped, or when
the console front panel RESET switch is pushed. The routines test the

389

VAX Dependability Features

data paths. Successful execution of the microverify routines indicates
that the system should bootstrap predictably.

Dual TU58 Tape Drives — The redundant TU58 means that the VAX-
11/730 can still operate if one of the TU58s is inoperative. This pro-
vides higher system availability.

Parity Checking — The VAX-11/730 performs parity checking on any
words read out of the WCS before execution.

Air Flow Sensors — These sensors detect environmental change and
blockage of airflow through the module card cage.

VAX-11/750-SPECIFIC FEATURES

VAX-11/750 Microverify Routines — (Bootstrapping Selfdiagnosis)
The VAX-11/750 executes microverify routines automatically on a
power-up sequence, when the VAX system is bootstrapped, or when
the console front panel RESET switch is pushed. The routines test the
data paths, the 16 general-purpose registers, most internal CPU regis-
ters, the instruction prefetch buffer, the parity logic of the cache, the
translation buffer, and all of the cache memory. Successful execution
of the microverify routines indicates that the system should bootstrap
predictably.

Option Replacement — The VAX-11/750's MASSBUS adapter, mem-
ory arrays, user control store, and remote diagnosis module are each
single printed circuit board options which can be removed or replaced
in a few minutes.

Modular Power Supply — The power system for the VAX-11/750
consists of three assemblies, any of which can be replaced in less than
20 minutes. Since power supply indicators are on the outside rear of
the cabinet, a user can determine when a power supply has failed and
quickly notify Field Service.

Remote Diagnosis — Remote diagnosis (RD), an option available to
customers in North America and parts of Europe, can lower a custom-
er's maintenance cost, as well as increase overall system availability.
With the RD option, a customer experiencing hardware problems may
take advantage of the resources at a DIGITAL Diagnostic Center
where experienced staff are available seven days a week, 24 hours a
day. Each Center has a host diagnostic computer that aids in pinpoint-
ing system faults.

After receiving a problem call from a user, a technician at the Center
dials up the customer’s computer and logs onto the VAX system.
Unauthorized access by the Center is impossible because a custom-

390

VAX Dependability Features

er's system will not answer the RD line unless the local operator has
performed specific procedures. Once the connection is established,
the response technician can run tests and diagnostic procedures
(some of which can execute without requiring a stand-alone environ-
ment), initiate diagnostics at all levels, and examine memory locations
and the error log file. If servicing is necessary, repair time is often
substantially reduced because problems are known in advance and
the engineer who actually makes the service call will be carrying the
right parts.

Preventive maintenance diagnostic sessions are also offered through
remote diagnosis. These sessions can be scheduled for off-peak peri-
ods so as not to interfere with system availability.

Diagnostic Console — The diagnostic console, part of the Remote
Diagnosis Module option on the VAX-11/750, can access the central
processor's major buses and key control points through a special
internal diagnostic bus. The console allows operator diagnostic opera-
tions through simple keyboard commands. (The diagnostic console
can also serve as an operator console and as a user terminal.) The
diagnostic console includes a cartridge tape drive and hardcopy ter-
minal.

Parity and Protocol Checks — VAX systems perform parity checks on’
MASSBUS data, control and address translation; UNIBUS address
translation; memory cache data and address; address translation
buffer transactions; microcode and user control store.

Improved Air Flow — The VAX-11/750 uses one blower to pull air in at
the top of the cabinet, down through the modules, then through the
power supplies, and exhaust air out at the bottom rear of the cabinet.
By moving air through the cabinet in this fashion, the system receives
air that is not contaminated with dirt particles from the floor.

Blowers operate well below maximum ratings, which extends their
operating life significantly. Additionally, the cooling air flow is ade-
quate to operate even when all cabinet doors are open, allowing online
servicing of modules.

VAX-11/780-SPECIFIC.FEATURES

Remote Diagnosis — Remote Diagnosis features for the VAX-11/780
are the same as for the VAX-11/750. For a detailed description, see
“Remote Diagnosis” under the VAX-11/750-Specific Features section
of this chapter.

Diagnostic Console — The diagnostic console, standard on the VAX-

391

VAX Dependability Features

11/780, can access the central processor’'s major buses and key con-
trol points through a special internal diagnostic bus. The console al-
lows operator diagnostic operations through simple keyboard com-
mands. (The diagnostic console can also serve as an operator console
and as a user terminal.) It includes an LSI-11 microcomputer, floppy
disk, and hardcopy terminal. A watchdog timer in the LSI-11 detects
hung machine conditions (such as a failure to fetch instructions).

VAX-11/780 UNIBUS Adapter Recovery — When the UNIBUS
adaptor detects certain error conditions on the UNIBUS, the condi-
tions are reported in the error log. If the conditions persist, the UNI-
BUS is reinitialized and all I/0 operations currently in progress on that
UNIBUS are restarted.

Option Replacement — VAX-11/780 subassemblies have dedicated
backpanels. Their replacement can be done in less than 20 minutes by
one person using the tools ordinarily carried in the Field Service repair
kit.

Modular Power Supply — The power system for the VAX-11/780 is
modular in 500 watt increments. There are spaces within the cabinet
for six power supplies. Four are part of the base configuration; the
remaining two power supplies are for the optional floating point accel-
erator and MASSBUS adapters. Replacement of these modules can
be done easily by one person.

Powering Down VAX-11/780 UNIBUS Peripherals — The VAX-
11/780 UNIBUS adapter or any VAX-11/780 UNIBUS peripheral cabi-
net can be separately powered on/off during normal system opera-
tion. This allows online replacement of devices which have been diag-
nosed as faulty on the UNIBUS. All operations in progress on other
devices are restarted automatically when the UNIBUS is powered on.

Sixteen-Level Silo — The Synchronous Backplane Interconnect on
the VAX-11/780 has a 16-level silo which monitors the VAX-11/780’s
central bus activity and contains a history of the 16 most recent cycles
of bus activity. The SBI also includes parity. If an error or predeter-
mined special condition occurs, the silo is latched, meaning the error
or condition causes the silo contents to freeze, and can be examined
to help determine the cause of the problem.

Clock Margining — The VAX-11/780 uses clock margining to vary the
central bus clock rate via console commands. This can aid the Field
Service engineer in diagnosing intermittent hardware problems.

Parity and Protocol Checks — VAX systems perform parity checks on
MASSBUS data, control and address translation; UNIBUS address
translation; memory cache data and address; address translation

392

VAX Dependability Features

buffer transactions; microcode and user control store.

Improved Air Flow — The VAX-11/870 uses three blowers to pull air
in at the top of the cabinet, down through the modules, then through
the power supplies, and exhaust air out at the bottom rear of the
cabinet. By moving air through the cabinet in this fashion, the system
receives air that is not contaminated with dirt particles from the floor.

Blowers operate well below maximum ratings, which extends their
operating life significantly. Additionally, the cooling air flow is ade-
quate to operate even when all cabinet doors are open, allowing online
servicing of modules.

393

394

PART VI

APPENDICES AND
GLOSSARY

395

396

ACP
ANSI
AP
ASCII
AST
ASTLVL
ccB
cM
CRB
CRC
CRD
CSR
DAP
DDB
DDC
DDCMP
DDT
DMA
DV
ECB
ECC
ESP
ESR
F11ACP
FAB
FCA
FCB
FCS
FDT
FP
FPA
FPD
FU
GSD
GST
IDB
IDC
IPL
IRP
ISECT

APPENDIX A
COMMONLY USED MNEMONICS

Ancillary Control Process

American National Standard Institute
Argument Pointer

American Standard Code for Information Interchange
Asynchronous System Trap

Asynchronous System Trap Level

Channel Control Block

Compatibility Mode Bit in the Hardware PSL
Channel Request Block

Cyclic Redundancy Check

Customer Runnable Diagnostics

Control Status Register

Data Access Protocol

Device Data Block

DIGITAL Diagnostic Center

DIGITAL Data Communications Message Protocol
Driver Data Table

Direct Memory Access

Decimal Overflow Trap Enable Bit in the PSW
Exit Control Block

Error Correction Code

Executive Mode Stack Pointer

Exception Service Routine

Files-11 Ancillary Control Process

File Access Block

Fixed Control Area

Fixed Control Block

File Control Services

Function Decision Table

Frame Pointer

Floating Point Accelerator

First Part (of an instruction) Done

Floating Underflow Trap Enable Bit in the PSW
Global Section Descriptor

Global Symbol Table

Interrupt Dispatch Block

Integrated Disk Controller

Interrupt Priority Level

1/0 Request Packet

Image Section

397

ISD
ISP
IS
ISR
\Y
KSP
MBA
MBZ
MCR
MFD
MFPR
MME
MOS
MTPR
MUTEX
NSP
OPCOM
POBR
POLR
POPT
P1BR
P1LR
P1PT
PAL
PC
PCB
PCBB
PFN
PID
PME
PSECT
PSL
PSW
PTE
Qlo
RAB
RAM
RD
RFA
RMS
ROM
RS
RWED
SBR

Appendix A

Image Section Descriptor

Interrupt Stack Pointer

Interupt Stack Bitin PSL

Interrupt Service Routine

Integer Overflow Trap Enable Bit in the PSW
Kernel Mode Stack Pointer

MASSBUS Adaptor

Must Be Zero

Monitor Console Routine

Master File Directory

Move From Process Register Instruction
Memory Mapping Enable

Metal Oxide Semiconductor

Move To Process Register Instruction
Mutual Exclusion Semaphore

Network Services Protocol

Operator Communication Manager
Program Region Base Register
Program Region Length Register

Program Region Page Table

Control Region Base Register
Control Region Limit Register
Control Region Page Table
Programmed Array Logic

Program Counter

Process Control Block

Process Control Block Base Register
Page Frame Number

Process Identification Number
Performance Monitor Enable Bitin PCB
Program Section

Processor Status Longword
Processor Status Word

Page Table Entry

Queue Input/Output Request System Service
Record Access Block

Random Access Memory

Remote Diagnosis

Record’s File Address

Record Management Services

Read Only Memory

Remote Support

Read, Write, Execute, Delete

System Base Register

398

SCB
SCBB
SLR
sP
SPT
SSP
SVA
TP
UBA
ucB
ucs
UETP
UFD
uic
USP
VAX
VCB
VMS
VPN
WCB

Appendix A

System Control Block

System Control Block Base Register
System Length Register

Stack Pointer

System Page Table

Supervisor Mode Stack Pointer
System Virtual Address

Trace Trap Pending Bitin PSL
Unibus Adapter

Unit Control Block

User Control Store

User Environment Test Package
User File Directory

User ldentification Code

User mode Stack Pointer
Virtual Address Extension
Volume Control Block

Virtual Memory System

Virtual Page Number

Window Control Block

399

400

APPENDIX B

INSTRUCTION INDEX
By Mnemonic

MNEMONIC LISTING

MNEMONIC INSTRUCTION OPCODE PAGE
ACBB Add compare and branch byte 9D 268
ACBD Add compare and branch D_floating 6F 268
ACBF Add compare and branch F_floating 4F 268
ACBG Add compare and branch G_floating 4FFD 268
ACBH Add compare and branch H_floating 6FFD 268
ACBL Add compare and branch longword F1 268
ACBW Add compare and branch word 3D 268
ADAWI Add aligned word, interlocked 58 194
ADDB2 Add byte 2 operand 80 191
ADDB3 Add byte 3 operand 81 191
ADDD2 Add D_floating 2 operand 60 191
ADDD3 Add D_floating 3 operand 61 191
ADDF2 Add F_floating 2 operand 40 191
ADDF3 Add F_floating 3 operand 41 191
ADDG2 Add G_floating 2 operand 40FD 191
ADDG3 Add G_floating 3 operand 41FD 191
ADDH2 Add H_floating 2 operand 60FD 191
ADDH3 Add H_floating 3 operand 61FD 191
ADDL2 Add longword 2 operand Co 191
ADDL3 Add longword 3 operand C1 191
ADDP4 Add packed 4 operand 20 314
ADDP6 Add packed 6 operand 21 314
ADDW?2 Add word 2 operand A0 191
ADDW3 Add word 3 operand A1l 191
ADWC Add with carry D8 193
AOBLEQ Add one and branch on less or equal F3 270
AOBLSS Add one and branch on less F2 270
ASHL Arithmetic shift longword 78 211
ASHP Arithmetic shift and round packed F8 330
ASHQ Arithmetic shift quadword 79 211

401

MNEMONIC

BBC
BBCC
BBCCI

BBCS
BBS
BBSC
BBSS
BBSSI

BCC
BCS
BEQL
BEQLU
BGEQ
BGEQU

BGTR
BGTRU

BICB2
BICB3
BICL2
BICL3
BICPSW
BICW2
BICW3
BISB2

BISB3
BISL2
BISL3
BISPSW
BISW2
BISW3
BITB
BITL

BITW
BLBC
BLBS

Appendix B

INSTRUCTION

Branch on bit clear

Branch on bit clear and clear
Branch on bit clear and clear
interlocked

Branch on bit clear and set
Branch on bit set

Branch on bit set and clear
Branch on bit set and set
Branch on bit set and set,
interlocked

Branch on carry clear

Branch on carry set

Branch on equal (signed)

Branch on equal unsigned

Branch on greater or equal

Branch on greater or equal unsigned

Branch on greater
Branch on greater unsigned

Bit clear byte 2 operand

Bit clear byte 3 operand

Bit clear longword 2 operand
Bit clear longword 3 operand
Bit clear program status word
Bit clear word 2 operand

Bit clear word 3 operand

Bit set byte 2 operand

Bit set byte 3 operand

Bit set long 2 operand

Bit set long 3 operand

Bit set program status word
Bit set word 2 operand

Bit set word 3 operand

Bit test byte

Bit test longword

Bit test word
Branch on low bit clear
Branch on low bit set

402

OPCODE PAGE

E1 264
E5 265
E7 266
E3 265
EO 264
E4 265
E2 265
E6 266
1E 261
1F 261
13 261
13 261
18 261
1E

14 261
1A 261
8A 209
8B 209
CA 209
cB 209
B9 223
AA 209
AB 209
88 208
89 208
Cs 208
Cc9 208
B8 223
A8 208
A9 208
93 207
D3 207
B3 207
E9 267
ES8 267

Appendix B

MNEMONIC INSTRUCTION OPCODE PAGE
BLEQ Branch on less or equal 15 261
BLEQU Branch on less or equal unsigned 1B 261
BLSS Branch on less 19 261
BLSSU Branch on less unsigned 1F 261
BNEQ Branch on not equal 12 261
BNEQU Branch on not equal unsigned 12 261
BPT Break point fault 03 169
BRB Branch with byte displacement 11 263
BRW Branch with word displacement 31 263
BSBB Branch to subroutine with byte 10 275

displacement
BSBW Branch to subroutine with word 30 275
displacement
BUGL Bugcheck longword FDFF 170
BUGW Bugcheck word FEFF 170
BVC Branch on overflow clear 1iC 261
BVS Branch on overflow set 1D 261
CALLG Call with general argument list FA 280
CALLS Call with stack FB 282
CASEB Case byte 8F 273
CASEL Case longword CF 273
CASEW Case word AF 273
CHME Change mode to executive BD 158
CHMK Change mode to kernel BC 158
CHMS Change mode to supervisor BE 158
CHMU Change mode to user BF 158
CLRB Clear byte 94 181
CLRD Clear D_floating 7C 181
CLRF Clear F_floating D4 181
CLRG Clear G_floating 7C 181
| CLRH Clear H_floating 7CFD 181
| CLRL Clear longword D4 181
| CLRO Clear octaword 7CFD 181
CLRQ Clear quadword 7C 181
CLRW Clear word B4 181
CMPB Compare byte 91 188
| CMPC3 Compare character 3 operand 29 294

| 403

MNEMONIC

CMPC5
CMPD
CMPF
CMPG
CMPH
CMPL
CMPP3
CMPP4
CMPV

CMPW
CMPZV
CRC
CvTBD
CVTBF
CVTBG
CVTBH
CVTBL
CvTBW
CVTDB

CVTDF
CVTDH
CVTDL
CVTDW
CVTFB
CVTFD
CVTFG
CVTFH
CVTFL
CVTFW
CVTGB
CVTGF
CVTGH
CVTGL
CVTGW
CVTHB
CVTHD
CVTHF
CVTHG
CVTHL
CVTHW

Appendix B

INSTRUCTION

Compare character 5 operand
Compare D_floating

Compare F_floating

Compare G_floating

Compare H_floating

Compare longword

Compare packed 3 operand
Compare packed 4 operand
Compare field

Compare word

Compare zero-extended field
Calculate cyclic redundancy check
Convert byte to D_floating

Convert byte to F_floating

Convert byte to G_floating

Convert byte to H_floating

Convert byte to longword

Convert byte to word

Convert D_floating to byte

Convert D_floating to F_floating
Convert D_floating to H_floating
Convert D_floating to longword
Convert D_floating to word
Convert F_floating to byte
Convert F_floating to D_floating
Convert F_floating to G_floating
Convert F_floating to H_floating
Convert F_floating to longword
Convert F_floating to word
Convert G_floating to byte
Convert G_floating to F_floating
Convert G_floating to H_floating
Convert G_floating to longword
Convert G_floating to word
Convert H_floating to byte
Convert H_floating to D_floating
Convert H_floating to F_floating
Convert H_floating to G_floating
Convert H_floating to longword
Convert H_floating to word

404

OPCODE PAGE

2D 294
71 188
51 188
51FD 188
71FD 188
D1 188
35 313
37 313
EC 255
B1 188
ED 255
0B 304
6C 184
4C 184
4CFD 184
6CFD 184
98 184
99 184
68 184
76 184
32FD 184
6A 184
69 184
48 184
56 184
99FD 184
98FD 184
4A 184
49 184
48FD 184
33FD 184
56FD 184
4AFD 184
49FD 184
68FD 184
F7FD 184
F6FD 184
76FD 184
6AFD 184
69FD 184

Appendix B

MNEMONIC INSTRUCTION OPCODE PAGE
CVTLB Convert longword to byte F6 184
CVTLD Convert longword to D_floating 6E 184
CVTLF Convert longword to F_floating 4E 184
CVTLG Convert longword to G_floating 4EFD 184
CVTLH Convert longword to H_floating 6EFD 184
CVTLP Convert longword to packed F9 321
CVTLW Convert longword to word F7 184
CVTPL Convert packed to longword 36 322
CVTTP Convert trailing numeric to packed 26 325
CVTPT Convert packed to trailing numeric 24 323
CVTPS Convert packed to leading separate 08 327
numeric

CVTRDL Convert rounded D_floating to

longword 6B 184
CVTRFL Convert rounded F_floating to

longword 4B 184
CVTRGL Convert rounded G_floating to

longword 4BFD 184
CVTRHL Convert rounded H_floating to

longword 6BFD 184
CVTSP Convert leading separate numeric to

packed 09 329
CVTWB Convert word to byte 33 184
CVTWD Convert word to D_floating 6D 184
CVTWF Convert word to F_floating 4D 184
CVTWG Convert word to G_floating 4DFD 184
CVTWH Convert word to H_floating 6DFD 184
CVTWL Convert word to longword 32 184
DECB Decrement byte 97 197
DECL Decrement longword D7 197
DECW Decrement word B7 197
DivB2 Divide byte 2 operand 86 204
DIVB3 Divide byte 3 operand 87 204
DIVD2 Divide D_floating 2 operand 66 204
DIVD3 Divide D_floating 3 operand 67 204
DIVF2 Divide F_floating 2 operand 46 204

405

MNEMONIC

DIVF3
DIVG2
DIVG3
DIVH2
DIVH3
DIVL2
DIVL3
DIVP
Divw2
DIVW3

EDITPC
EDIV
EMODD
EMODF
EMODG
EMODH
EMUL
EXTV
EXTZV

FFC
FFS

HALT

INCB
INCL
INCW
INDEX
INSQHI
INSQTI
INSQUE
INSV

JMP
JSB

LDPCTX
LOCC

Appendix B

INSTRUCTION

Divide F_floating 3 operand
Divide G_floating 2 operand
Divide G_floating 3 operand
Divide H_floating 2 operand
Divide H_floating 3 operand
Divide longword 2 operand
Divide longword 3 operand
Divide packed

Divide word 2 operand
Divide word 3 operand

Edit packed to character
Extended divide

Extended modulus D_floating
Extended modulus F_floating
Extended modulus G_floating
Extended modulus H_floating
Extended multiply

Extract field

Extract zero-extended field

Find first clear bit
Find first set bit

Halt

Increment byte

Increment longword

Increment word

Compute index

Insert into queue head, interlocked
Insert into queue tail, interlocked
Insertinto queue

Insert field

Jump
Jump to subroutine

Load process context
Locate character

406

OPCODE PAGE

47 204
46FD 204
47FD 204
66FD 204
67FD 204
Cé6 204
C7 204
27 319
A6 204
A7 204
38 335
7B 206
74 202
54 202
54FD 202
74FD 202
TA 201
EE 253
EF 253
EB 251
EA 251
00 171
96 189
D6 189
B6 189
0A 226
5C 240
5D 240
OE 232
FO 257
17 263
16 275
06 163

3A 299

Appendix B

MNEMONIC INSTRUCTION OPCODE PAGE
MATCHC Match characters 39 301
MCOMB Move complemented byte 92 183
MCOML Move complemented long D2 183
MCOMW Move complemented word B2 183
MFPR Move from privilege register DB 165
MNEGB Move negated byte 8E 187
MNEGD Move negated D_floating 72 182
MNEGF Move negated F_floating 52 182
MNEGG Move Negated G_floating 52FD 182
MNEGH Move Negated H_floating 72FD 182
MNEGL Move negated longword CE 182
MNEGW Move negated word AE 182
MOVAB Move address of byte 9E 224
MOVAD Move address of D_floating 7E 224
MOVAF Move address of F_floating DE 224
MOVAG Move Address of G_floating 7E 224
MOVAH Move Address of H_floating 7EFD 224
MOVAL Move address of longword DE 224
MOVAO Move Address of octaword 7EFD 224
MOVAQ Move address of quadword 7E 224
MOVAW Move address of word 3E 224
MOVB Move byte 90 179
MOVC3 Move character 3 operand 28 289
MOVC5 Move character 5 operand 2C 289
MOVD Move D_floating 70 179
MOVF Move F_floating 50 179
MOVG Move G_floating 50FD 179
MOVH Move H_floating 70FD 179
MOVL Move longword DO 179
MOVO Move octaword 7DFD 179
MOVP Move packed 34 312

‘ MOVPSL Move processor status longword DC 222

| MovaQ Move quadword 7D 179
MOVTC Move translated characters 2E 290

‘ MOVTUC Move translated until character 2F 292

| MOVW Move word BO 179
B MOVZBL Move zero-extended byte to longword 9A 187

| 407

Appendix B

MNEMONIC INSTRUCTION OPCODE PAGE
MOVZBW Move zero-extended byte to word 9B 187
MOVZWL Move zero-extended word to longword 3C 187
MTPR Move to privilege register DA 165
MULB2 Multiply byte 2 operand 84 199
MULB3 Multiply byte 3 operand 85 199
MULD2 Muitiply D_floating 2 operand 64 199
MULD3 Multiply D_floating 3 operand 65 199
MULF2 Multiply F_floating 2 operand 44 199
MULF3 Multiply F_floating 3 operand 45 199
MULG2 Multiply G_floating 2 operand 44FD 199
MULG3 Multiply G_floating 3 operand 45FD 199
MULH2 Multiply H_floating 2 operand 64FD 199
MULHS3 Multiply H_floating 3 operand 65FD 199
MULL2 Multiply longword 2 operand C4 199
MULLS3 Multiply longword 3 operand C5 199
MULP Multiply packed 25 318
MULW?2 Multiply word 2 operand A4 199
MULW3 Multiply word 3 operand A5 199
NOP No operation 01
POLYD Evaluate polynomial D_floating 75 214
POLYF Evaluate polynomial F_floating 55 . 214
POLYG Evaluate polynomial G_floating 55FD 214
POLYH Evaluate polynomial H_floating 75FD 214
POPR Pop registers BA 221
PROBER Probe read access (1] 160
PROBEW Probe write access 0D 160
PUSHAB Push address byte 9F 224
PUSHAD Push address of D_floating 7F 224
PUSHAF Push address of F_floating DF 224
PUSHAG Push Address of G_floating 7F 224
PUSHAH Push Address of H_floating 7FFD 224
PUSHAL Push address of longword DF 224
PUSHAO Push address of octaword 7FFD 224
PUSHAQ Push address of quadword 7F 224
PUSHAW Push address of word 3F 224
PUSHL Push longword DD 180
PUSHR Push registers BB 220

408

Appendix B

MNEMONIC INSTRUCTION OPCODE PAGE
REI Return from exception or interrupt 02 161
REMQHI Remove from queue head, interlocked 5E 245
REMQTI Remove from queue tail, interlocked 5F 248
REMQUE Remove from queue OF 234
RET Return from called procedure 04 284
ROTL Rotate longword 9C 212
RSB Return from subroutine 05 276
SBWC Subtract with carry D9 198
SCANC Scan for character 2A 297
SKPC Skip character 3B 299
SOBGEQ Subtract one and branch on greater F4 271
or equal
SOBGTR Subtract one and branch on greater F5 271
SPANC Span characters 2B 297
SuBB2 Subtract byte 2 operand 82 195
SuUBB3 Subtract byte 3 operand 83 195
SuBD2 Subtract D_floating 2 operand 62 195
SUBD3 Subtract D_floating 3 operand 63 195
SUBF2 Subtract F_floating 2 operand 42 195
SUBF3 Subtract F_floating 3 operand 43 195
SUBG2 Subtract G_floating 2 operand 42FD 195
SUBG3 Subtract G_floating 3 operand 43FD 195
SUBH2 Subtract H_floating 2 operand 62FD 195
SUBH3 Subtract H_floating 3 operand 63FD 195
SuUBL2 Subtract longword 2 operand c2 195
SUBL3 Subtract longword 3 operand C3 195
SUBP4 Subtract packed 4 operand 22 316
SUBP6 Subtract packed 6 operand 23 316
SUBW2 Subtract word 2 operand A2 195
SUBWS3 Subtract word 3 operand A3 195
SVPCTX Save process context 07 163
TSTB Test byte 95 190
TSTD Test D_floating 73 190
TSTF Test F_floating 53 190
TSTG Test G_floating 53FD 190
TSTH Test H_floating 73FD 190
TSTL Testlong D5 190
TSTW Test word B5 190

409

Appendix B

MNEMONIC INSTRUCTION

XFC Extended function call

XORB2 Exclusive OR byte 2 operand
XORB3 Exclusive OR byte 3 operand
XORL2 Exclusive OR longword 2 operand
XORL3 Exclusive OR longword 3 operand
XORW2 Exclusive OR word 2 operand
XORWS3 Exclusive OR word 3 operand
ESCD Reserved to DIGITAL

ESCE Reserved to DIGITAL

ESCF Reserved to DIGITAL

Reserved to DIGITAL

410

OPCODE PAGE

FC 168
8C 210
8D 210
CC 210
CcD 210
TC 210
AD 210
FD

FE

FF
57;59;5A;5B;77;
0O0FD to 31FD;
34FD to 3FFD;
57FD, 58FD,
...5FFD;
77FD,78FD,
..TFFD;

80FD to 97FD;
9AFD to F5FD;
F8FD to FCFF.

APPENDIX C
ADDRESS VALIDATION RULES

The memory management system described in Chapter 4 separates
validation from the access of arguments. It is necessary to adopt cer-
tain coding conventions to prohibit unauthorized user access to sensi-
tive data. Specifically it must not be possible for a user to call an inner
access mode in such a way that will corrupt system integrity (e.g.,
cause supervisory code to write over itself) or incorrectly allow access
to data that would otherwise have been inaccessible (e.g., the reading
of a password table).

The following discussion sets forth operating system requirements
that must be adhered to when accessing arguments from an inner
access mode to avoid a breach of security.

The following requirements are made concerning operating system

software:

1. Operating system software (kernel and executive mode) is trust-
worthy and does not maliciously attempt to break down the pro-
tection mechanisms (e.g., change the mapping or protection of
pages at arbitrary times).

2. The protection of a shared page may not be changed unless the
share count (a software construct) is one and the process at-
tempting the change is that sharer. Share count=a software
maintained record of the number of processes sharing a page.

3. The protection of a page with a nonzero 1/0 pending count (a
software construct) may not be changed until the count goes to
zero.

4. Operating system software will not deliver ASTs to outer access
modes while the process is executing in an inner access mode.

5. Arguments passed to an inner access mode can be maliciously
destroyed asynchronously by another process (e.g., shared data)
or by an 1I/0 transfer, but not by a less privileged mode of the
executing process itself.

6. Kernel and executive stacks are never allocated in shared memo-
ry or accessible to other than their respective access modes.

The following summarizes related aspects of the VAX hardware:

1. Four access modes are provided and there is a stack per-process
per-access mode.

2. Protection is hierarchical with the innermost access mode being
the least restricted and the outermost the most restricted.

411

Appendix C

Four instructions are provided to change the processor mode to
the four access modes (CHMU, CHMS, CHME, and CHMK); furth-
ermore, when a process is executing a change mode instruction
the access mode can only be decreased (changed to a more
privileged mode) or left the same.

Two instructions are provided to validate the accessibility of argu-
ments: Probe Read (PROBER) and Probe Write (PROBEW).
These instructions validate the accessibility of arguments using
the maximization of the Previous Mode field of PSL and a speci-
fied access mode. Thus only current and more restricted access
modes can be probed.

The Return from Interrupt instruction (REIl) insures that the cur-
rent mode field of the restored PSL is greater than or equal to the
current mode field of the current PSL and that the previous mode
field of the restored PSL is greater than or equal to the current
mode field of the restored PSL.

Given the previous operating system requirements, the following rules
guarantee that less privileged modes cannot pass erroneous ad-
dresses to more privileged modes.

1.

All addresses (including indirect addresses) passed as arguments
to an inner access mode must be copied (preferably to a register,
but in any case to an area of memory that is not modifiable by less
privileged modes) before the accessibility of the actual argument
is validated. In some programs such an.address will later be used .
to asynchronously post information back to an outer access -

mode. In such cases, the least privileged access mode that can -

perform the specified read or write operation must be copied
from the corresponding page table entry and stored with the argu-
ment address.

NOTE

Using least privileged does not work properly when
the data structure resides in pages with different
protection and the first page has a lesser protection
value than the others. When checking the accessibil-
ity of such a structure in the context of the serial
execution of the process, the check will succeed, but
later when the accessibility is checked again during
the asynchronous posting of information, the check
will fail. This situation is considered to be an operat-
ing system bug (may cause the generation of a bug
check) and merely causes no information to be post-
ed.

412

Appendix C

2. The synchronous validation of argument addresses (i.e., as the
result of serial program execution) must be explicitly coded using
Probe instructions specifying an access mode of zero (i.e., cause
maximization to previous access mode).

3. The asynchronous validation of argument addresses (i.e., as the
result of software interrupts) must be explicitly coded using Probe
instructions specifying the least privileged access mode stored
when the argument address was saved (see 1) and with a previous
access mode field equal to or greater than that of the current
mode field of PSL (i.e., cause maximization to least privileged
access mode).

4. All arguments to be written must be PROBEWed before they are
written (otherwise there would be a potential protection violation).

5. All arguments to be read must be PROBERed before they are
read to defend against arguments mapped to I/0 space and
thereby causing an 1/0 side effect.

6. All addresses passed from an outer access mode to an inner
access mode must be copied and validated before being passed
as arguments in a call to a more inner access mode. This insures
the integrity of intermediate modes.

This discussion is centered on the validation of argument addresses.
There are other arguments that also deserve similar handling. Such
arguments are typically address modifiers (e.g., a buffer length) and in
most cases must also be copied to insure system integrity.

413

414

APPENDIX D

VIRTUAL TO PHYSICAL ADDRESS TRANSLATION

1ds 40
31dS 40 $53¥AQV TVIISAHA = . _ _ _ ~ J SYAV WDISAHA ILVINDTV
¥3ISIO3Y 3SVA JO SINAINOD + 0:6z 31dsvd | 0 | 0 _ ¢ _ Ljojojojo

INIWIDV14SIa 3UA8 = 0 0 0 (0 0 o0 ollzmﬂ%

v x 00 zZ 0 0 o0

¥38WNN 3OVd TVNLYIA —— Pvds 5

0 8 0 0 0 o0
Nd A
0 v 0 v v v 4
ojofjojojojtjojtjojojojofojojojo|t|ololo|oflo|olololo]ololololo].
Oftjefejrsfojefs]ejojuja|e|vfs|olale|e |oz|z|zz|ez|ve|se|oz]|ez|sz|ez]oe] e
_ 31d1d 404
v _ _ 0 ~ 1 _ _ _ L ¥AY TVNLIA 31VINDWVD)
31dld 40 $53¥AAY TVNLAIA "\/m::n_s,l ° ° °ol° s 18
¥81d 40 SINIINOD + \/e 0 0 0 € 8 4 7 +=———0¥81d]
INIWIDOVTdSIQ 1A = — 0 v 0o 0 3 ¢
(114 O¥3Z/M SNOILISOd Z 1431 LAIHS) ¥ x
(QYOMONOT) ¥38WNN 3OVd TVNLYIA 8z ozm>m L
IOVdS 14
INIWIDV145Ia
31A8 4 4 L o

ojojtjojtfprfrjejjojojotuijojtfofolofojofofololol] il T]l To
Ojtjeefvysfojefssjojufafa|vnfslolals|e|oz|iz|zz|cz]|vz]scz|oz|cz|sz|ez|oe| e

SS3YAAY IVNIYIA ¥3sN v |4 _ L _ S|0 _ 0 _ El _ ml_ SSIIAAY TVNLYIA INIWVX3 B

415

Appendix D

31d1d vd _ o M v N 0 _ s ¢ N 0 _ 0 _ og 31dld 4O $SIYAAY TVDIISAHd 3LVINDIVD
ofjojojojojtLjfoftjojofojojofo|o]t L tLfojofojofojojofojo|O0j0O|O
o|t}]e €l v | S| 9 L] 860U LU {EL|PL|SL|QU| ZL|BL|6L|OZ| (Z|2L|EL VT |SL |9 |LL|BL|6Z|OE| LE

L
o|v]o
/ 6:62 $5390QV TYDISAHd
40 S119 ¥3QYO0 IH 3HL WHOH
% 35IHL'N4d = 31d 4O 0:07 SLI8
3145 3HL ¥04 135440)
31A8 3HL S1 Z dAlS WOu3 e
31d1d ¥04 VA 40 0:8 SLIf j
—
JYYMQUVH A8
N4d PAASYASY w 1084 A
olololojo|o|t|t|t|o]o|lojojolojolo|o|lojolo|o|o]|oflo|o|t|jo|t|lo]ol!
ol tlzlelv|s|o|c]elelofula|e|n|s|o|alafel|oz|z|ze|sz|ve|se|o]|csz|se|er|oe]|le

31dS HD134[¥)

mzm\wﬁ_o_u_ __o o_o_v_o_lh,oomﬁoooo.
NOILVDOT 40 SINIINOD IWNSSY

NOTE
The address translation example shown determines a 30-bit physical address

on a VAX-11/780 system. Address translation on the VAX-11/750 follows an

identical pattern, except that the translation results in a 24-bit physical address.

416

_ v _ q _ 3 _ clo _ -ﬂo _o[_ ANVY34O 40 SSIHAAY TVYDIISAHd IIVINDIVD

Appendix D

/ 6:62 $SIYAQAY TVDISAHI
40 SLI8 ¥3Q¥0 IH IHL W04

~
% 353HL'Ndd = 31d 40 0:0Z SLI8 —
39Vd 3IHL <
NIHLM Vi 40 135340 E_im,qmmwm_%mm%m:%_
3LAS 3HL WHOS [43S
WOY4 VA ¥3SN 0:8 S118 HOHM ux"zo:um:o&
S
J4VMQ¥VH A8
N4d PR w 10¥d A
L [} L i [¢] [1 (|0 L{ojojojo|jlojojojojo|o|Jo|o|0O0]oO (10}]0 L l (
o tjzlelv|s|o|c]|s|eloft]a|e|v|sfo]alsfo|oz|izfzz|ez|vz|sz|oz]|sz|sz|ez]oe| e

31dld HDIL3d H

NEE\N\.VT_N_@? o_o_v_al_l\\N\S«o:ooo_

NOILVDOT 40 SINIINOD 3IWNSSY

418

APPENDIX E

VAX-11/730 INTERNAL
PROCESSOR REGISTERS
Kernel Stack Pointer Register (KSP)
Processor Address 00
31 24 23 1615 8 7 [9)

Executive Stack Pointer Register (ESP)
Processor Address 01

31 24 23 16 15 8 7 90

[lLAL......I..x‘.‘lu.....l.‘

Supervisor Stack Pointer Register (SSP)
Processor Address 02

31 2423 16 15 8 7 Q

r......l::.l..u v b b

User Stack Pointer Register (USP)
Processor Address 03

31 24 23 16 15 8 7 Q0

N DU DU

Interrupt Stack Pointer Register (ISP)
Processor Address 04

31 24 23 16 15 8 7 _Q

419

Appendix E

PO Base Register (POBR)
Processor Address 08

3 ¥ 15 21

(oo

0‘
| - | I R NI ST S S |

A
BASE VIRTUAL ADDRESS FOR PO SPACE PAGE TABLE ENTRIES _ 4

PO Length Register (POLR)
Processor Address 09

3 24 2322 2] 16 15 8 7

0

0 00O0O 00] A_]
1] 1 1 | 1 M|

_J

N
LENGTH OF PO PAGE TABLE (IN l_ONGWORDS)—‘—4

P1 Base Register (P1BR)
Processor Address 0A

31 16 15 210

[oo
| IR VU BN RN S WS i

N _J

BASE VIRTUAL ADDRESS FOR P1 SPACE PAGE TABLE ENTRIES——}

P1 Length Register (P1LR)

Processor Address 0B
31 242322 21 16 15 8 7 0
0 00Q0O0O0 00 [
1 1 1 1 1 1 P | o
N _J
LENGTH OF P1 PAGE TABLE (IN LONGWORDS) 4

420

Appendix E

System Base Register (SBR)

Processor Address 0C
31 16 15 210
[o]°]
N B PR | 1 P 1) N
i\ J

BASE PHYSICAL ADDRESS FOR SYSTEM SPACE f

PAGE TABLE ENTRIES

Process Control Block Base Register (PCBB)
Processor Address 10

31 16 15 0

L | I 1 P | 1 L | - 1 f - L

N J
PHYSICAL ADDRESS OF PROCESS CONTROL BLOCK ————— 4

System Control Block Base Register (SCBB)
Processor Address 11

3 24 23 1615 8 7 0

R 1 1 1 1 1 1 1]
N J
PHYSICAL PAGE ADDRESS OF THE SYSTEM CONTROL ILOCK——‘

Interval Clock Control/Status Register (ICCS)
Processor Address 18

LTl oIl P ool T T T e
—— ||

421

Appendix E

Next Interval Count Register (NICR)
Processor Address 19

3N 2423 6 15

[D N D N N

Interval Counter Register (ICR)
Processor Address 1A

3 24 23 1615

[I D D PO D

s Lo L1
COUNT IN MICROSECONDS

Console Receive Control/Status Register (RXCS)
Processor Address 20

o R P | FFFEE
]

EADY
INTERRUPT ENABLE

Console Receive Data Buffer Register (RXDB)
Processor Address 21

kLl 24 23 16 15

EOOOOOOOIOOOOOOOOI !OOOI
il " .

ERROR BIT

1 4? T

ID FIELD

DATA

Console Transmit Control/Status Register (TXCS)
Processor Address 22

Lo o FEREEE T TEEEL
]

READY
INTERRUPT ENABLE

422

Appendix E
Console Transmit Data Buffer Register (TXDB)
Processor Address 23

31 24 23 16 15 8 7 0
0000‘0000] l

OOOOOOOOJOOOO
P

R S

1
ID FIELD ! 1
DATA
System Identification Register (SID)
Processor Address 3E
31 24 23 16 15 8 7 0
0000 OO0 OIO 00O0O0O00O O’ |
1 L PR . 1 1 2

N _ J

TYPE——J J

TYPE SPECIFIC

423

424

APPENDIX F
VAX-11/750 INTERNAL PROCESSOR REGISTERS

Kernel Stack Pointer Register (KSP)
Processor Address 00

3 24 23 16 15 8 7 0

N PR R A B N R R S ST S R |

Executive Stack Pointer Register (ESP)
Processor Address 01

31 2423 16 15 8 7 Q

Supervisor Stack Pointer Register (SSP)
Processor Address 02

31 24 23 16 15 8 7 (1]

User Stack Pointer Register (USP)
Processor Address 03

3 24 23 16 15 8 7

Interrupt Stack Pointer Register (ISP)
Processor Address 04

31 24 23 16 15 8 7 Q

425

Appendix F

PO Base Register (POBR)
Processor Address 08

31 6 15 21 0
[0|0
PN . PR DR | 1 PRI |
N
BASE VIRTUAL ADDRESS FOR PO SPACE PAGE TABLE ENTRIES———’
PO Length Register (POLR)
Processor Address 09
31 242322 21 16 15 8 7 0
’70 0000 00 J
| I 1 | 1 P | N
—
LENGTH OF PO PAGE TABLE (IN LONGWORDS)—-—4
P1 Base Register (P1BR)
Processor Address 0A
31 16 15 210
L o
| IR P PR | | n | -
C /)

BASE VIRTUAL ADDRESS FOR P1 SPACE PAGE TABLE ENTRIES——’

P1 Length Register (P1LR)
Processor Address 0B

3 242322 2 16 15

00000 OOI
i 1 1 1 1

LENGTH OF P1 PAGE TABLE (IN LONGWORDS)

426

Appendix F

System Base Register (SBR)
Processor Address 0C

31 16 15

P PR | | I T | -

AN

BASE PHYSICAL ADDRESS FOR SYSTEM SPACE f

PAGE TABLE ENTRIES

System Length Register (SLR)
Processor Address 0D

31 2423 2221 16 15 8 7 0
0000OOO0OTO O 0’
s 1 | - 1 P N 1 1 1 N
“ _J
LENGTH OF SYSTEM PAGE TABLE(IN LONGWORDS) 4
Process Control Block Base Register (PCBB)
Processor Address 10
31 16 15 0
L N 1 1 N | IR | P BN 1 | L
N J
PHYSICAL ADDRESS OF PROCESS CONTROL BLOCK———J
System Control Block Base Register (SCBB)
Processor Address 11
3 24 23 1615 8 7 0
L | . 1 | 1 1. 1 1 N
— J

PHYSICAL PAGE ADDRESS OF THE SYSTEM CONTROL BLOCK—J

427

Appendix F

Processor Status Longword Register (PSL)
Interrupt Priority Level (IPL) Bits <16:20>
Processor Address 12

3 30 2928 27 26 2524 23 2221 20

L[l []]l HHIIIIIDV!F“IWII“”J
f o %,_/
COMPATABILITY MODE
TRACE PENDING
FIRST PART DONE

INTERRUPT STACK

CURRENT MODE
PREVIOUS MODE
INTERRUPT PRIORITY LEVEL

DECIMAL OVERFLOW TRAP ENABLE
FLOATING UNDERFLOW FAULT ENABLE
INTEGER OVERFLOW TRAP ENABLE
TRACE
CONDITION CODES

Processor Address 13 (Accesses AST level bits <2:0>) (ASTR)

Processor Address 3D (Accesses Performance Monitor Enable bit
<3>) (PMR)

SUMMARY
14 0

3 24 23 16
[elelele[elelelelele[s[[ole]] l“°l|||| AL
Y
NESTED ERROR J
CONTROL STORE PARITY ERROR

EXPONENT ARITHMETIC LOGIC UNIT N BIT
EXPONENT ARITHMETIC LOGIC UNIT Z BIT
ARITHMETIC LOGIC UNIT N BIT
ARITHMETIC LOGIC UNIT Z BIT
ARITHMETIC LOGIC UNIT CARRY BIT 31
ARITHMETIC TRAP CODE
PERFORMANCE MONITOR ENABLE
AST LEVEL

Software Interrupt Request Register (SIRR)
Processor Address 14

3 24 23 16 15 8 7 0
1 1 P ‘ ’ L J
N —\)
IGNORED 4 1

REQUEST BITS

428

Appendix F

Software Interrupt Register (SISR)
Processor Address 15

15 8 7 0

k]l 24 23 20 16
‘olo!o!olo[olo]olololol IF EDCBA987 6543210
| PR R SR | e Lo
[J

e —
INTERRUPT PRIORITY LEVEL ACTIVE ’
SOFTWARE INTERRUPT REGISTER

Machine Check Status Register (MCSR)
Processor Address 17
31 24 23 17 16 15 8 7

o oo oo oofoaoooee] Joos [[[]]eoe] []]]]

MEMORY DISABLE t T
READ LOCK TIMEOUT

TB GROUP 1 TAG ERROR
TB GROUP 0 TAG ERROR
TB GROUP 1 DATA ERROR
TB GROUP 0 DATA ERROR
TB HIT/MISS
NON-EXISTENT MEMORY OR READ LOCK TIMEOUT
UNCORRECTABLE DATA
LOST ERROR
CORRECTED DATA

Interval Clock Control/Status Register (ICCS)
Processor Address 18

fQIolololoioloﬁlﬁlololololo!o!ﬁlfJotolololoiolzl;}TlAIololoiol

INTERRUPT REQUEST '
INTERRUPT ENABLE

SINGLE CLOCK
TRANSFER
RUN

Next Interval Count Register (NICR)
Processor Address 19

i 3 2423 16 15 8 7 0

Appendix F

Interval Counter Register (ICR)
Processor Address 1A

[31 [24|23 16 15 B|7 ‘ 01
— — = ‘COUN; Il:) A;\ICROéECbIJDS = * ’
Time of Day Register (TODR)
Processor Address 1B
31 2423 16 15 8 7 4]
PR SRV R S R ‘..I...I‘..l...J
——
TIME BYTE 3 ———f I] [
TIME BYTE 2
TIME BYTE 1
TIME BYTE O
Console Storage Receive Status Register (CSRS)
Processor Address 1C
31 2423 16 15 8 7 0
tOOOOOOOOOOOOOOOOOOO 0000|Il000000|
a1 " n 1 i 1 1 "
DONE J r
INTERRUPT ENABLE
Console Storage Receive Data Register (CSRD)
Processor Address 1D
31 24 23 6 15 8 7 0
00000000|0000000000000000{ | J
1 | 1 "
[N’

i

DATA

430

Appendix F
Console Storage Transmit Status Register (CSTS)
Processor Address 1E

31 24 23 16 15 8 7
FOOOOOO 0[00000 000]00000000[l |00000| |
PR 1 " 1 L P

READY 1 I
INTERRUPT ENABLE
LINE BREAK

Console Storage Transit Data Register (CSTD)
Processor Address 1F

3l 2423 1615 8 7 0
ooooooooloooo 0000 J
1 4 " | L
[

DATA]

0000!0000
I N N Ll

Console Receive Control/Status Register (RXCS)
Processor Address 20

C2RREERREaA0aRAaEaRaaRRENNRREERD
0]

INTERRUPT ENABLE

Console Receive Data Buffer Register (RXDB)
Processor Address 21

3 24 23 16 15 8 7 0
FOOOOOOO[OOOOOOOOI IOOOI I |
1 . P N 1
| y O
ERROR BIT J
ID FIELD
DATA

431

Appendix F

Console Transmit Control/Status Register (TXCS)
Processor Address 22

fo'yorololotoJosi‘ﬁ\o|oloiorolo\’5|'5|010|o|o|o|o\51’fxj"lolowomﬂ

INTERRUPT ENABLE

Console Transmit Data Buffer Register (TXDB)
Processor Address 23

31 24 23 16 15 8 7 0

0000
PR |

000000000000’0000] ’ |
M- IR I " . " 1

ID FIELD !
DATA

Translation Buffer Disable Register (TBDR)
Processor Address 24

3 2423 16 15 0
10000|OOOOIOOOOOOOO00000000|0000I‘lIl
P P PRI S R T PR T "
REPLACE JJ
GROUP REPLACE
DG 1
DG 0

Cache Disable Register (CADR)
Processor Address 25

31 2423 16 15 8 7 0
00000000]00000000,000000000 OOOOOOIJ
L | N N . A P

CACHE DISABLE BIT 1

432

Appendix F

Machine Check Error Summary Register (MCESR)
Processor Address 26

31 2423 16 15 8 7 0
000000000OOOOOOOOOOOOOOOIOOOOIlIO’I
L N y - PR | "

L 1 n

i

TB ERROR
PREFETCH REFERENCE

Cache Error Register (CAER)
Processor Address 27

31 24 23 16 15 8 7 0
oooooooooooooooooooooooo‘oooo'IJ[J

1 PR 1 N " L

]

DATA ERROR
LOST ERROR
HIT/MISS

Initialize UNIBUS Register
Processor Address 37

31 24 23 16 15 8 7 0
000000OOlOOOOOOOOIOOOOOOOOOOOOOOOll
L | 1 " 1 1 L
7

eocoreed] [

MBZ
INITIALIZE BIT

Memory Management Enable Register (MME)
" Processor Address 38

31 24 23 16 15 8 7 0
0000000 OIO 0O00O0O0O0 0’00 0000O0O0COO0O0COO0OOO
| " L 1 N 1

T i

L

MBZ
ENABLE BIT

433

Appendix F

Translation Buffer Invalidate All Register (TBIA)
Processor Address 39

31 2423 16 15 8 7 0

Translation Buffer Invalidate Single Register (TBIS)
Processor Address 3A

3N 24 23 1% 15 8 7 0

S UV UNITN N SN SN N UNI S SNV GRS U SN SR T S SR

Translation Buffer Register (TB)
Processor Address 3B

k]l 26 2524 23 21 20 615 8 7 0
’ ‘] IOIOIO‘O’OITDW 1817161514 13121110 9 8 7 6 5 4321 04|
Lo | | P ST RS SR |
J

S
173 —

VALID

PROTECTION CODE

MODIFY

PAGE FRAME NUMBER

System Identification Register (SID)
Processor Address 3E

31 2423 1615 8 7 0

LOOOO 0010‘00000000 ‘ !
P i P L 1 L
N I\ J

TYPE————? T

TYPE SPECIFIC

434

APPENDIX G
VAX-11/780 INTERNAL DATA (ID)

BUS REGISTERS
Instruction Buffer Register
ID Address 00
Processor Address —
31 24 23 16 15 8 7
PETEET BTN T S T ST ..I...‘...I.AJ
“ S N\
DATA BYTE 3 ——J ‘ ‘ ‘
DATA BYTE 2
DATA BYTE 1
DATA BYTE O

Time of Day Register (TODR)

ID Address 01
Processor Address 1B

3 24 23 16 15 8 7
PR B PO IO U SRV BT S U S S
\ .
TIMEBYTE3———j T
TIME BYTE 2
TIME BYTE 1
TIME BYTE O

Reserved Register

1 ID Address 02
| Processor Address —
31 2423 6 15 8 7

Appendix G

System Identification Register (SID)

ID Address 03
Processor Address 3E
31 24 23 15 14 121 0 i
’ PRSI SRR P BT . TR SR | P l
L - \ J J
g —— 1 ! [’
ECO LEVEL
PLANT

SERIAL NUMBER

Console Receive Control/Status Register (RXCS)

ID Address 04
Processor Address 20

I34°{°J°l°!°!°r34|25!010!°l°l°!°lflflo(o!olo!otolzl;(;lololo}oﬁoJSJ

READY
INTERRUPT ENABLE

Console Receive Data Buffer Register (RXDB)

ID Address 05
Processor Address 21

3 24 23 16 15 8 7 0
P SR [L 1 L 1 L I 1]
I\ J
DATA BYTE 3 R | T
DATA BYTE 2
DATA BYTE |
DATA BYTE O

As defined in the software, bits <7:0> define the data field, bits
<11:8> define the ID field and bit <15> is the error bit. However, the

hardware is not restricted to this convention.

436

Appendix G
Console Transmit Control/Status Register (TXCS)

ID Address 06
Processor Address 22

{1‘1owolo(oai‘l?eoxo\olororol‘é’l'iiororolotorolil;{;ioxoioloﬂij

READY
INTERRUPT ENABLE

Console Transmit Data Buffer Register (TXDB)

ID Address 07
Processor Address 23

3 2% 23 16 15 8 7 0
\...I...\...l..,\...l.‘....I.,‘—l
DATA BYTE3 —— 4 4
DATA BYTE 2
DATA BYTE 1
DATA BYTE 0

As defined in the software, bits <7:0> define the data field, and bits
<11:8> define the ID field. However, the hardware is not restricted to

this convention.

DQ Register

ID Address 08
Processor Address —

-3 2423 16 15 8 7 0

Next Interval Count Register (NICR)

ID Address 09
Processor Address 19

31 2423 16 15 8 7 0

| 437

Appendix G

Interval Clock Control/Status Register (ICCS)

ID Address OA
Processor Address 18

Fo'\ololoﬂo{ol?f?to\ofolo!oior?fl':loroiololo\otil;\T!‘Mo\om

INTERRUPT REQUEST ‘ ‘

INTERRUPT ENABLE
SINGLE CLOCK
TRANSFER
RUN

Interval Counter Register (ICR)
ID Address 0B
Processor Address 1A

3 24 23 1615 8 7 0

I N N .

COUNT IN MICROSECONDS

ID Address 0C
Processor Address 13 (Accesses AST level bits <2:0>(ASTR)

Processor Address 3D (Accesses performance monitor Enable bit
<3>) (PMR)

SUMMARY

3 24 23 ‘lé [_M 8 7 0
CLllelelolelefeleelelelele [ozl 1]
_

f

NESTED ERROR
CONTROL STORE PARITY ERROR
EXPONENT ARITHMETIC LOGIC UNIT N BIT
EXPONENT ARITHMETIC LOGIC UNIT Z BIT

ARITHMETIC LOGIC UNIT N BIT
ARITHMETIC LOGIC UNIT Z BIT
ARITHMETIC LOGIC UNIT CARRY BIT 31
ARITHMETIC TRAP CODE
PERFORMANCE MONITOR ENABLE
AST LEVEL

Vector Register

ID Address 0D
Processor Address —
31 2625 24 23 21 20 16 15 9 8 7 0
Plelelelolel [, [, [ole[elele]e]e] N
| I Loy | | "
—_— -
PRIORITY VAUD—~—1 T r J
PRIORITY
NUMBER OF ONES
VECTOR

438

Appendix G

Software Interrupt Summary Register (SISR)

ID Address OE
Processor Address 15

3 24 23 20 16 15 8 7 0
lOlOIO]OIOIO‘OlOlOIOIO\ [F EDCBA987 6543210
| P PR N R S U NPT SR St
[by
INTERRUPT PRIORITY LEVEL ACTIVE—‘—-'-4 1

SOFTWARE INTERRUPT REGISTER:

Processor Status Longword Register (PSL)

ID Address OF
Processor Address 12

31 3029 28 27 26 25 24 23 22 21 20 16

15 8 7 0
[I [O| 0‘0‘OIOIOXO[OIOIDV‘FU!IVITIN AR
L . Ly P

L[]l |
r [N N N N
COMPATABILITY MODE T
TRACE PENDING
FIRST PART DONE
INTERRUPT STACK

CURRENT MODE

PREVIOUS MODE
INTERRUPT PRIORITY LEVEL
DECIMAL OVERFLOW TRAP ENABLE
FLOATING UNDERFLOW FAULT TRAP
INTEGER OVERFLOW TRAP ENABLE
TRACE
CONDITION CODES

Translation Buffer Data Register (TB)

ID Address 10
Processor Address —

26 2524 23 21 20 1615 8 7 0

31
‘ ‘ | 1 ’0’0'0!0‘0‘201918 7161514 13121109 87 6543210
L | TR SR | P Rt

Lo | I

1) —
VALID

PROTECTION CODE

MODIFY

PAGE FRAME NUMBER

Reserved Register

ID Address 11
Processor Address —

Appendix G

Translation Buffer Control Register 0

ID Address 12
Processor Address —

LI

3 24 23
lelelofefelele[elele] |
REPLACE BOTH T

REPLACE GROUP 1
REPLACE GROUP O
FORCE MISS GROUP 1
FORCE MISS GROUP O
FUNCTION SELECT
ADDRESS SELECT
MEMORY CONTROL 3
MEMORY CONTROL 2
MEMORY CONTROL !

]

MEMORY CONTROL O

T]

INSTRUCTION BUFFER WRITE CHECK

AUTO RELOAD

TRANSLATION BUFFER HIT GROUP 1

TRANSLATION BUFFER HIT GROUP O

FORCE TRANSLATION BUFFER PARITY ERROR

MEMORY MANAGEMENT ENABLE

Translation Buffer Control Register 1

ID Address 13
Processor Address —

TRANSLATION BUFFER
PARITY ERROR BITS

4 2

INSTRUCTION
PHYSICAL
ADDRESS

/T

S T T

\87
HiE

[T

GROUP 1 *DM
GROUP 1 DM
GROUP 1 DM
GROUP O DM
GROUP O DM
GROUP O DM
GROUP 1 *AM
GROUP 1 AM
GROUP 1 AM

BYTE 2 PARITY ERROR—f

BYTE 1 PARITY ERROR

BYTE O PARITY ERROR

BYTE 2 PARITY ERROR
BYTE 1 PARITY ERROR
BYTE O PARITY ERROR
BYTE 2 PARITY ERROR
BYTE 1 PARITY ERROR
BYTE O PARITY ERROR
BYTE 2 PARITY ERROR

GROUP 0 AM

GROUP O AM BYTE 1 PARITY ERROR

GROUP O AM BYTE O PARITY ERROR

CPU TRANSLATION BUFFER PARITY ERROR

LAST TRANSLATION BUFFER WRITE PULSE

BAD INSTRUCTION PHYSICAL ADDRESS

INSTRUCTION BUFFER TRANSLATION BUFFER MISS

PARITY ERROR

CHECK

AUTO RELOAD

Accelerator Control Register 0

ID Address 14
Processor Address —

3 24 23

Appendix G

Accelerator Control Register 1

ID Address 15
Processor Address —

3 24 23 16 15 8 7

Accelerator Maintenance Register
ID Address 16

Processor Address —
31 24 23 16 15 8 7 o]
[—[0000000| | ‘000000 | J
M BT S P L L Lo P P
- -
WRITE TRAP ADDRES S
TRAP ADDRESS 41]
LOAD MICROBREAK

MICROMATCH

MICROBREAK MATCH

Accelerator Control/Status Register (ACCS)

ID Address 17
Processor Address 28

[T Tl o] T .]

ERROR ——r
RESERVED OPERAND

ACCELERATOR ENABLE

I

ACCELERATOR TYPE

SBI Silo Register

ID Address 18
Processor Address 31

29 2524 23 Ié 15 8 7

EEISS RN 111 T

R/_Jk\,_/
AFTER FAULT ——T
SBI INTERLOCK
)
TAG
MASK BIT 3 OR DATA BIT 31
MASK BIT 2 OR DATA BIT30

MASK BIT 1 OR DATA BIT 29
MASK BIT O OR DATA BIT 28
CONFIRMATION 1
CONFIRMATION 0
SBI TRANSFER REQUEST NO:-

441

Appendix G

SBI Silo Register

ID Address 19
Processor Address 34

4 23 16 15 8 7 0
0

BEREERAnARnAcEcoRNARARDERRRNANND
READ DATA SUBSTITUE INTERRUPT ENABLE ———————— J T

CORRECTED READ DATA
READ DATA SUBSTITUE
CENTRAL PROCESSOR TIME OUT
CENTRAL PROCESSOR TIME OUT STATUS |
CENTRAL PROCESSORTIME OUT STATUS 0
CENTRAL PROCESSOR ERROR CONFIRM ACTION
INSTRUCTION BUFFER READ DATA SUBSTITUTE
INSTRUCTION BUFFER TIME OUT
INSTRUCTION BUFFER TIME OUT STATUS 1
INSTRUCTION BUFFER TIME OUT STATUS O
INSTRUCTION BUFFER ERROR CONFIRMATION
DOUBLE BUS ERROR
SBI NOT BUSY

SBI Time Out Address Register

ID Address 1A
Processor Address 35

3 28 27 0

—]
MODE 1 1
MODE 0

PROTECTION CHECK
PHYSICAL ADDRESS <29:02>

SBI Fault Signal Register

ID Address 1B
Processor Address 30

LT TFLEEA T LEE
e] JJ

0|0

o]o[o]o]o]oo]o]s]

oo

DATA FAULT
MULTIPLE TRANSMITTER FAULT
TRANSMITTING DURING FAULT
FAULT LATCH
FAULT INTERRUPT ENABLE
FAULT SIGNAL
FAULT LOCK

442

Appendix G

SBI Silo Comparator Register

ID Address 1C
Processor Address 32

31 30 29 24 23 16

L

BeaGaReAE

R,_/R,_Jh—\/—'

SILO LOCK

SILO INTERRUPT ENABLE
LOCK UNCODITIONAL:
LOCK CODE

MASK OR COMMAND
TAG
COUNT

SBI/Cache Maintenance Register

ID Address 1D
Processor Address 33

242 16 15 8 7
1 |
| S —

31

208

REVERSE PARITY BIT OT T
FORCE WRITE SEQUENCE
FAULT

FORCE UNEXPECTED READ
DATA F

FORE MULTIPLE TRANSMITTER FAULT
MAINTENANCE IDENTIFICATIO
FORCE INVALIDATE
ENABLE SBI INVALIDATE
REVERSE CACHE PARITY
FORCE MISS GROUP 0
FORCE MISS GROUP 1
FORCE REPLACE GROUP O
FORCE REPLACE GROUP 1
DISABLE SBI
REVERSE PARITY BIT 1
GROUP | MATCH
GROUP 0 MATCH
FORCE TIME OUT

Cache Parity Register
ID Address 1E

Processor Address —
31 24 23 16 15 8 7 0
‘0‘010|0|0 |0‘0‘0|0j010‘0| ‘ ‘ ’ l ‘ ‘BO B1 B2 B3]BO B1 B2 83‘80 Bl BZ‘BO B1 B2
| I L 1 L
? N R,—/ N AN

ANY ERROR
CPU ERROR:
GROLUIP1 DATA PARITY OK
GROU:) DATA PARITY OK
GROUP O ADDRESS PARITY OK

GROUP 1 ADDRESS PARITY OK

443

Appendix G

Reserved Register

ID Address 1F
Processor Address —

31 24 23 16 15 8 7 [o]

U P BN J

Micro Stack Register

ID Address 20
Processor Address —

FTEFFF R EE]

CONTROL STORE ADDRESS 4

Micro Match Register

ID Address 21
Processor Address 3C

31 24 23 16 15 8 7 0
0 OIO‘OIONO’OlOIOIO’O‘OIO‘OIO‘Olo‘olo‘12 11098 7 6543210
| IR B | Y

AN

CONTROL STORE ADDRESS 'y

Writable Control Store Address Register

ID Address 22
Processor Address 2C

0
HHIHIIHIIHHI IJ
_J
INVERT PARITY J
MODULO THREE COUNTER
CONTROL STORE ADDRESS
Writable Control Store Data Register
ID Address 23
Processor Address 2D
31 16 15 0
" | 1 1 | 1 S ISR N L_A_J
— —
DATA TO WRITEABLE CONTROL STORE 4

444

Appendix G

PO Base Register (POBR)

ID Address 24
Processor Address 08

3 615

\

BASE VIRTUAL ADDRESS FOR PO SPACE PAGE TABLE ENTRIES — 4

P1 Base Register (P1BR)

ID Address 25
Processor Address OA

31 16 15 210
B [ole]
| T B B BT | P | M
C >
BASE VIRTUAL ADDRESS FOR P1 SPACE PAGE TABLE ENTRIES—}
System Base Register (SBR)
ID Address 26
Processor Address 0C
31 16 15 2 10
| [o]°]
TR I A | | . | 1. | I |
_J

AN
BASE PHYSICAL ADDRESS FOR SYSTEM SPACE f

PAGE TABLE ENTRIES

Reserved Register

ID Address 27
Processor Address —

31 2423 16 15 8 7

lLlIlllIllA[llllnll‘llL

Kernal Stack Pointer Register (KSP)

ID Address 28
Processor Address 00

31 24 23 16 15 8 7

445

Appendix G

Executive Stack Pointer Register (ESP)

ID Address 29
Processor Address 01

31 24 23 16 15 8 7 _ 0
P PR TR U US| P P Lo L
Supervisor Stack Pointer Register (SSP)
ID Address 2A
Processor Address 02
31 24 23 16 15 8 7 0
1 L L | L N NS Lo P
User Stack Pointer Register (USP)
ID Address 2B
Processor Address 03
31 24 23 16 15 8 7

N TR R ST S S

Interrupt Stack Pointer Register (ISP)

ID Address 2C
Processor Address 04

k]l 2423 16 15

P SRR E S S S S

First Part Done Address Register

ID Address 2D
Processor Address —

31 24 23 16 15

P IR S T

446

Appendix G

D Save Register

ID Address 2E
Processor Address —

3 24 23 16 15 § 7 9

.ALLl.lln..L.b.Ll..l... PR S TN

Q Save Register

ID Address 2F
Processor Address —

K| 2423 16 15 8 7 (1]

Temp 0to Temp 9 Registers

ID Address (30 to 39)
Processor Address —

31 2423 16 15 8 7 9

Process Control Block Base Register (PCBB)

ID Address 3A
Processor Address 10

31 16 15

WLl

1 | I | I 1. | I

N

PHYSICAL ADDRESS OF PROCESS CONTROL BLOCK—————‘

System Control Block Base Register (SCBB)

ID Address 3B
Processor Address 11

31 24 23 1615 8 7 0

N B | 1 1 | | N

C _J
PHYSICAL PAGE ADDRESS OF THE SYSTEM CONTROL BLOCK—‘

447

Appendix G

PO Length Register (POLR)

ID Address 3C
Processor Address 09

3 24 2322 2] 16 15 . 8 7

0 00O00O 00‘
| - 1 1 i |]
N

(L

I
LENGTH OF PO PAGE TABLE (IN LONGWORDS)

P1 Length Register (P1LR)

|D Address 3D
Processor Address OB

31 242322 21 16 15 8 7

00000 00\

1] | 1 1 | -

(S

N

LENGTH OF P1 PAGE TABLE (IN LONGWORDS)

System Length Register (SLR)

ID Address 3E
Processor Address 0D

31 2423 222 16 15 8 7

OOOOOOOOOOI
L 1 L | P A | 1

=
LENGTH OF SYSTEM PAGE TABLE(IN LONGWORDS) »———J

Reserved Register

ID Address 3F
Processor Address —

31 2423 16 15 8 7

448

APPENDIX H

OPERAND SPECIFIER
NOTATION

OPERAND SPECIFIERS
Operand specifiers are described in the following way:

where:

<name> <access type> <data type>

Name is a suggestive name for the operand in the context of the
instruction. The name is often abbreviated.

Access type is a letter denoting the operand specifier access type:

a

w

Calculate the effective address of the specified oper-
and. Address is returned in a longword which is the
actual instruction operand. Context of address cal-
culation is given by <data type>.

No operand reference. Operand specifier is a
branch displacement. Size of branch displacement
is given by <data type>.

Operand is read, potentially modified and written.
Note that this is NOT an indivisible memory opera-
tion. Also note that if the operand is not actually
modified, it may not be written back. However, modi-
fy type operands are always checked for both read
and write accessibility.

Operand is read-only.

Calculate the effective address of the specified oper-
and. If the effective address is in memory, the ad-
dress is returned in a longword which is the actual
instruction operand. Context of address calculation
is given by <data type>.

If the effective address is Rn, then the operand actu-
ally appears in R[n], or in R[n+1]'R[n].

Operand is written only.

Data type is a letter denoting the data type of the operand:

b
d
f

byte
D_floating
F_floating

449

< xzg0—-5a

Appendix H

G_floating

H_floating

longword

quadword

word

first data type specified by instruction
second data type specified by instruction

OPERATION DESCRIPTION NOTATION

The operation of each instruction is given as a sequence of control and
assigment statements in an ALGOL-like syntax. No attempt is made to
define the syntax formally; it is assumed to be familiar to the reader.

+

Rn or R[n]

PC,SP, FP, or
AP

PSW
PSL

()
)+

—(x)

<xiy>

<x1,x2,...,xn>
X...y

addition

subtraction, unary minus
multiplication

division (quotient only)
exponentiation
concatenation

is replaced by

is defined as

contents of register Rn

the contents of register R15, R14, R13, or R12
respectively

the contents of the processor status word
the contents of the processor status longword
contents of memory location whose address is x

contents of memory location whose address is X; x
incremented by the size of operand referenced at x

x decremented by size of operand to be referenced
at x; contents of memory location whose address is X

a modifier which delimits an extent from bit position
x to bit position y inclusive

a modifier which enumerates bits x1,x2...,xn

x through y inclusive

450

Appendix H

{1 arithmetic parentheses used to indicate precedence

AND logical AND

OR logical OR

XOR logical XOR

NOT logical (1's) complement

LSS less than signed

LSSU less than unsigned

LEQ less than or equal signed

LEQU less than or equal unsigned

EQL equal signed

EQLU equal unsigned

NEQ not equal signed

NEQU not equal unsigned

GEQ greater than or equal signed

GEQU greater than or equal unsigned

GTR greater than signed

GTRU greater than unsigned

SEXT (x) is sign-extended to size of operand needed
ZEXT (x) is zero-extended to size of operand needed
REM (x,y) remainder of x divided by y

MINU (x, y) minimum unsigned of xand y

The following conventions are used:

e Other than that caused by () +, or —(), and the advancement of
PC, only operands or portions of operands appearing on the left
side of assignment statements are affected.

e No operator precedence is assumed, other than that replacement
(=) has the lowest precedence. Precedence is indicated explicitly
by{ }

e All arithmetic, logical, and relational operators are defined in the
context of their operand. For example “+” applied to floating oper-
ands means a floating add while “+” applied to byte operands is an
integer byte add. Similarly, “LSS” is a floating comparison when
applied to floating operands while “LSS” is an integer byte compari-
son when applied to byte operands.

451

Appendix H

e Instruction operands are evaluated according to the operand speci-
fier conventions. The order in which operands appear in the instruc-
tion description has no effect on the order of evaluation.

e Condition codes are in general affected on the value of actual stored
results, not on “true” results (which might be generated internally to
greater precision). Thus, for example, two positive integers can be
added together and the sum stored, because of overflow, as a
negative value. The condition codes will indicate a negative value
even though the “true” result is clearly positive.

452

APPENDIX 1|
I/O SPACE RESTRICTIONS

A subset of native mode instructions is not used to reference |I/0
space. The reasons are:

1. String instructions-are restartabie via PSL<FPD>.
2. ThePC, SP, or PCBB cannot pointto I/0 space.

3. 1/0 space does not support operand types of quad, F_floating,
D floating, G_floating, H_floating, field, or queue; nor can the po-
sition, size, length, or base of them be from |/0O space.

4. The instruction may be interruptable because it is potentially a
slow instruction in some implementations.

5. Only instructions with a maximum of one modify or write destina-
tion can be used. The destination must be the last operand.

For any memory reference to 1/0 space, the programmer must use an
instruction from the following lists and must ensure that no interrupts
or faults will occur, including page faults, after the first I/0 space
reference. To ensure no interrupts, the programmer must avoid oper-
and specifier addressing modes 9, 11, 13, and 15, and these modes
indexed. (Symbolically, these are @(Rn)+, @B1D(Rn), @W4D(Rn),
and @LAD(Rn), and these indexed.) The hardware may allow inter-
rupts for these modes in order to minimize interrupt latency. For the
instructions in the following lists, the hardware ensures that no other
interrupts will occur after the first 1/0 space access.

Since these instructions are not interruptable after I/O space accesses
(except for the addressing modes above), their execution will extend
the interrupt latency. The programmer should make some effort to
keep them short by minimizing the number of memory references.
Use RO through R13 instead, for example.

Instructions for which any explicit operands can be in 1/0 space are:

MOV({B,W,L} PUSHL
CLR{B,W,L} MNEG({B,W,L}
MCOM({B,W,L} MOVZ{BW,BL,WL]
CVT{BW,BL,WB,WL,LB,LW} CMP{B,W,L}
TST{B,W,L} ADD{B,W,L}2
ADD{B,W,L}3 ADAWI
INC{B,W,L} ADWC
SUB{B,W,L}2 SUB{B,W,L}3
DEC{B,W,L} SBWC

BIT{B,W,L} BIS{B,W,L}2

453

Appendix |

BIS{B,W,L}3 BIC{B,W,L}2
BIC{B,W,L}3 XOR{B,W,L}2
XOR{B,W,L}3 MOVA{B,W,L}
MOVAQ PUSHA(B,W,L}
PUSHAQ CASE{B,W,L}
MOVPSL BISPSW
BICPSW CHM{K,E,S,U}
PROBE{R,W| MTPR, MFPR

Instructions for which all operands except the branch displacement
can be in 1/0 space are:

BLB {S,C}
Instructions for which some operands can be in I/0 space are:

XFC (depending on implementation)

REMQUE addr (destination)
In spite of the above rules, it is possible for a specific hardware im-
plementation to execute macro code from the 1/0 space and/or to
allow the stack or PCB to be in 1/0 space. This might be used as part

of the bootstrap process, for example. If this is done, then it is valid for
software to transfer to this code.

454

APPENDIX J
TECHNICAL SPECIFICATIONS FOR VAX-11/730

PROCESSOR
Processor Type Microprogrammed 24-bit control store
word
Micro-control storein- 270 nanoseconds
struction time
Control store size 16 K words (24-bit words), read-only mem-
ory
Internal data path 32 bits

Instruction buffer size 1-longword lookahead

CPU Address Translation Buffer

Size 128 address transiations

CPU Clocks

Programmable Interval Timer
Time-of-Year Clock

VAX Instruction Set

16 32-bitregisters

304 basic operations

56 optional instructions implemented with the FP730

32 priority interrupt levels

PDP-11 compatibility mode instructions

Multiple data types Integer, floating point, packed decimal,

character string, variable bit fields, numeric
strings, queues

Addressing modes 9

455

Other Standard Features

Appendix J

e Power-fail automatic restart

e Hardware bootstrap load

e Three serial line ASCII console interfaces

e DMF32 communications board (except on box product)

Dual TU58 cartridge tape drives
Microverify diagnostic run automatically on power-up

Extensive reliability and maintainability features

e Virtual console commands from console terminal

Main Memory

Virtual address
space

Physical address
space

Address lines
Physical
expansion
Parity

Technology

Cycle times

1/0 UNIBUS Adapter

Max. UNIBUS
1/0 rate

Interrupts

Integrated Disk Controller (IDC)

4 billion bytes
16 megabytes

24 bits

5 MB in 1 MB increments

7-bit error correcting code (ECC) per
32-bit longword

Bit-slice and Programmed Array
Logic (PAL)

810 nanoseconds R/W

1.5MB/s

Directly vectored

456

Mechanical

Weight (max.)

Height

Width

Depth

Box

45.4 kg
(100 Ibs)

26.6cm
(10.5in)

47.0cm
(18.51in)

66 cm
(26.6 in)

Appendix J

Dual RL02

227.0 kg
(500 Ibs)

106.2cm
(41.8in)

54.1cm
(21.3in)

80.0cm
(31.51in)

Electrical Power Requirements

NOTE

R80/RL0O2

249.7 kg
(550 Ibs)

106.2 cm
(41.8in)

54.1cm
(21.3in)

80.0cm
(31.51in)

Specifications for 60 Hz systems are listed first; 50
Hz systems are in parenthesis.

Maximum
AC line voltage
tolerance

Frequency toler-

ance

Phases

Steady state
current, 90
Vrms

Steady state
current, 180
Vrms

Dual RL02
System

90-128V (180-256V)

47-63Hz (47-63Hz)

1(1)

Box

Dual RL02

10

457

RL02/R80
System

90-128V (180-256V)

60 Hz +1 Hz (50 Hz
+ 1Hz)

RL0O2/R80

15

Surge current,
90 Vrms

Surge current,
180 Vrms

Plug Type

AC cable
length

Maximum
heat dissipa-
tion (est.)

Maximum AC
power con-
sumption

Nominal volt-
age:

Environment

Operating:
Temperature

Relative humidity

Appendix J

15

7.5

5-15P (6-15P)

3.05m (10 ft)

403.2 kcal/hr
(1603 Btu/hr)

470W

120 (220-240)

Maximum altitude

Storage:
Temperature

Relative humidity

20

10

5-20P (6-15P)
4.57 m (15ft)

756.0 kcal/hr
(2694 Btu/hr)

790 W

120 (220-240)

32

12

L5-30P (6-
15P)

4.57 m (15 ft)

1260.0 kcal/hr
(4109 Btu/hr)

1205 W

120 (220-240)

10° to 40° C (50° to 104° F)

10 to 90%

2.4 km (8000 ft.)

—40° 10 66° C (—40° to 151° F)

10 to 95%

Specification for TU58 in VAX-11/730 Console

Capacity per cartridge

Capacity per track

256 KB

128 KB

458

(512 records by 512 bytes)

Tape length

Data transfer rate
Average access time
Maximum access time
Read/write tape speed
Search tape speed

Bit density

Number of passes per cartridge

to read/write cartridge

Best case read/write time for

entire cartridge

Appendix J

140 feet
19.2 KB/s
9.3 seconds
28 seconds
30in/s
60in/s

800 bpi

4 (2 tracks interleaved)

10 minutes

459

460

APPENDIX K

TECHNICAL SPECIFICATIONS FOR VAX-11/750
PROCESSOR

NOTE
Specifications with an * are for the VAX-11/750
processor only.

Processor Type Microprogrammed 80-bit control store
word
Micro-control store 320 nanoseconds

instruction time
Control store size 6K words (80-bit words), read-only memory
Internal data path 32 bits

Maximum system I/0O 5MB/s
rate

Instruction buffer size 8-byte lookahead

CPU Cache Memory
Size 4 KB direct mapped
Effective main memory 400 nanoseconds/32 bits
cycle time
Typical hit ratio 90%

Typical cache cycle 320 nanoseconds

| time

|

CPU Address Translation Buffer
|
§ Size 512 address translations
|

Typical hit ratio 98-99%

461

Appendix K

CPU Clocks
Realtime clock Crystal controlled, 01% accuracy
1 microsecond resolution
Time-of-year clock Includes recharging battery backup for over

100 hours

VAX Instruction Set

16 32-bit registers

248 basic operations

56 optional instructions

32 priority interrupt levels

PDP-11 compatibility mode instructions

Multiple data types Integer, floating point, packed decimal,
character string, variable bit fields, numeric
strings, queues

Addressing modes 9

Other Standard Features

e Power-fail automatic restart

e Hardware bootstrap load for up to four different devices
e Single serial line ASCII console interface

® Eight-line communications multiplexer (DZ11-A)

e TU58 cartridge tape unit

@ Microverify diagnostic run automatically on power-up

e Extensive reliability and maintainability features

e Virtual console commands from DECwriter terminal

Main Memory

Virtual address 4 billion bytes

space

Physical address 16 megabytes (24 bits)
lines

462

Appendix K

Physical 8 MB in 1 MB increments

expansion

Parity 7-bit error correcting code (ECC) per
32-bit longword

Technology 64 K-bit MOS RAMs

Cycle times 800 nanoseconds per 32-bit read
640 nanoseconds per 32-bit write

Power failure Optional battery backup

protection

1/0 UNIBUS Adapter

Max. UNIBUS 1.5 MB/s through buffered data paths

1/0 rate

Buffered data 3 total, 4-byte buffer in each

paths

Interrupts Directly vectored

VAX-11/750 OPTIONS

MASSBUS Adapters (up to 3 per VAX-11/750)

Maximum bandwidth 2.0 MB/s per MBA (to a system maximum
of 5.0 MB/s)

Devices Up to eight high speed disks or tapes

Buffer size 32 bytes per MBA

UNIBUS Adapter (1 with 2 or less optional MASSBUS adapters)

See UNIBUS adapter specifications on previous page.

User Control Store

Size 1 K word (80-bit words)

463

Appendix K

Technology Writeable memory (RAM), 70 nanosecond
access time

Memory Battery Backup

Minimum backup 10 minutes with 8 MB of memory

time

Mechanical (VAX-11/750-BA/BB cabinet as installed)*

Weight 182 kg (400 Ibs.) Max.
Height 106.2 cm (41.8in.)
Width 73.7cm (29.0in.)
Depth 76.3 cm (30.01in.)

Electrical Power Requirements*

Maximum VAX-11/750-BA VAX-11/750-BB

AC line voltage tolerance 90-128 V 180-256 V

Frequency tolerance 47-63 Hz 47-63 Hz

Phases 1 1

Steady state current 30@90Vrms 15@ 180 Vrms

Surge current 100A 100A

Surge duration

(exponential decay) 8 cycles 8 cycles

Plug Type L5-30P (Varies by
country)

AC cable length 3 m (9.84t.)

Maximum heat dissipation 1460 kcal/hr (5800 BTU/hr)

Maximum AC power consump- 1700 watts

tion

Nominal voltage: 120 volts at 18 amps

464

Appendix K

Typical AC Utilization by Option

NOTE
UNIBUS peripheral controllers plugged into the re-
maining eight slots in the VAX-11/750 DD11-DK
backplane must also be included for an accurate

total.
Module Descrip- AC Utilization Heat
tion Dissipation

(Waits) (BTU/Hour)
Basic CPU, 1 MB 505 1723
memory, TU58,
DZ11-A
Each additional 1 14 47
MB memory card
Memory battery 40 137
backup
Remote diagnosis 96 328
option
Second UNIBUS 50 170
adapter
Each MASSBUS 125 407
adapter
Environment
NOTE

Environmental and power figures are given for the
VAX-11/750-AA/AB only. Consult DIGITAL Field
Service for the recommended value for an entire
system.

Operating:
Temperature 10° to 40° C (50° to 104° F)

465

Appendix K

Relative humidity 10to 90%

Maximum altitude 2.4 km (8000 ft.)

Storage:

Temperature —40° to 66° C (—40° to 151° F)
Relative humidity 10 to 95%

Expansion Slots

UNIBUS 2 quad slots
6 hex slots (in addition to
DZ11-A)
Second distribution box for
DZ11 lines

CPU Options 7 for memory array cards
1 each for User Control Store,
Remote Diagnosis Option, and
general |/0 adaptor slots for up
to 3 MASSBUS adapters or 1
UNIBUS and 2 MASSBUS

adapters
Max. UNIBUS D.C. Power in +15 Volts 2 amps
VAX-11/750 Cabinet —15 Volts 3.5 amps
+ 5 Volts 25.0 amps

Specification for TU58 in VAX-11/750 Console

Capacity per cartridge 256 KB
(512 records by 512 bytes)
Capacity per track 128 KB
Tape length 140 feet
Data transfer rate 19.2KB/s
Average access time 9.3 seconds
Maximum access time 28 seconds

466

Appendix K

Read/write tape speed 30in/s
Search tape speed 60in/s
Bit density 800 bpi

Number of passes per cartridge 4 (2 tracks interleaved)
to read/write cartridge

Best case read/write time for 10 minutes
entire cartridge

Custom Technology Specifications for the VAX-11/750

Implementation technique Gate arrays

Circuit technology Low power bipolar Schottky

Circuit density Large scale integration (LSI)

Die size .215 inches X .244 inches

Power utilized per die 2 watts maximum

Package size 144 sq. in. (2.4 X 0.6 inches)

Number of pins/package 48

1/0 circuits/die 441/0 transceiver gates

Logic gates 400 identical 4-input NAND
gates

Voltages used +2.5 volts, +5 volts

Speed per gate 5-10 nanoseconds

467

Appendix K

8 SLOTS FOR UP TO

2 MB MEMORY
8 UNIBUS SLOTS 4 SLOTS FOR BASIC CPU
+DZ11-8 & OPTIONS (UCS, UP TO REMOVAB
FRONT PANEL 3 MBAs, RDMIRESERVED) SIDE l\’IAANIEES

COMMUNICATION

DISTRIBUTION

PANEL H317E
(OPTIONAL) 2nd
COMMUNICATION
DISTRIBUTION
PANEL H317E

OPTIONAL BATTERY

BACK-UP BLOWER

CIRCUIT BREAKER
& POWER SUPPLY

POWER
SUPPLY(2)

1/0 DISTRIBUTION PANEL
(FOR UP TO 3 MASSBUSES,
CONSOLE TERMINAL AND
REMOTE DIAGNOSTIC PORT)

Front View of VAX-11/750 System Cabinet
468

APPENDIX L

TECHNICAL SPECIFICATIONS FOR

VAX-11/780 PROCESSOR

NOTE

The VAX-11/782 consists of two VAX-11/780 proc-
essors, and thus specifications are listed only for the

VAX-11/780.

Processor Type

Internal data path

CPU Cache Memory
Size

Effective main memory
cycle time

Typical hit ratio

Typical cache cycle
time

Microprogrammed, 99-bit control store
word

Microcontrol store instruction time—200
nanoseconds

Control store size—6 K words (99-bit
words), 4 Kwords ROM and 2 K words
WDCS

32 bits

8 KB, 2-way set associative

1800 nanoseconds/64 bits

95%

290 nanoseconds

CPU Address Translation Buffer

Size

Typical hit ratio

128 address translations

97%

469

Appendix L

CPU Clocks
Realtime clock Crystal controlled, .01% accuracy
1 us. resolution
Time-of-year clock Includes recharging battery backup for over -

100 hours

VAX Instruction Set

16 32-bit registers
248 basic operations
32 priority interrupt levels

Multiple data types Integer, floating point, packed decimal,
character string, variable bit fields, and nu-
meric strings
PDP-11 compatability mode instructions

Addressing modes 9

Other Standard Features

e Power fail/automatic restart
e Single serial line ASCII console interface

e 8-line communications multiplexer
(DZ11-A)

e RXO01 floppy disk drive
e Writable diagnostic control store (WDCS)

e Extensive reliability and maintainability
features

e Virtual console commands from DECwriter terminal

Main Memory

Virtual address space 4 billion bytes
Physical address lines 1 billion bytes (30 bits)
Physical expansion 8 MB in 256 KB increments

470

Parity

Technology

Cycle times

Power failure
protection

Appendix L

8-bit error correcting code (ECC) per 64-bit
quadword

16 K-bit dynamic RAMs (200 nanosecond
access time)

800 nanoseconds per 64-bit read (1300 na-
noseconds with single-bit errors)
1400 nanoseconds per 64-bit write

Optional battery backup

-i/O UNIBUS Adapter (i standard, up to 4 total)

Maximum UNIBUS 1/0

rate
Buffered data paths

Maximum number of
bus loads

Interrupts

VAX-11/780 Options

MASSBUS Adapters
(up to 4)

Devices

Buffer size

User Control Store
Size

Technology

Memory Battery Backup

Minimum backup time

1.35 MB/s through buffered data paths

15 total, 8-byte buffer in each

18 without a repeater

Directly vectored via UNIBUS adapter

Maximum bandwidth 2.0 MB/s per MBA (to
a system maximum of 5.0 MB/s)

Up to 8 high-speed disks or tapes
32 bytes per MBA

2K word (99-bit words)

Writable memory (RAM), 70 us access time

10 minutes with 2 Mb of MS780-D memory

471

Appendix L

Floating Point Accelerator
Enhances performance of all floating point instructions (single & dou-

ble precision) including polynomial evaluation, integer/floating con-
versions, 8-, 16-, and 32-bit integer multiply.

Mechanical (VAX-11/780 cabinet as installed)

Weight 498 kg (1100 Ibs.)
Height 153.7cm (60.5in.)
Width 118.1cm (46.51in.)
Depth 76.2cm (30in.)

Electrical Power Requirements

AC line voltage 120/208V
Frequency tolerance 59-61 Hz
Phases 3 phase

phase A: 11.2 A max. continous
phase B: 9.9 A max. continous
phase C: 13.1 A max. continous
neutral: 14.4 A max. continous

Also available 220/380V 50 Hz and 240/415V 50 Hz
Plug type L5-30P (varies by country)

AC cable length 3 m (9.84 ft.) from back of cabinet
Maximum heat 5350 kcal/hr (21,230 BTU/hr)
dissipation

Maximum ac power 6225 watts

consumption

472

Appendix L

Typical Power Requirements and Thermal Dissipation

Option

Fully-configured
CPU cabinet

Fully-configured
CPU expansion
cabinet,
H9602-HA(HB)

Fully-configured
UNIBUS options
cabinet
H9602-MF(MH)

MBA

UBA, DW780-
AA(AB)

512 KB memory,
control & power
supply

Fully configured
multiport memory (2
MA780 subsystems,
4 MB Memory, 8
ports)

Multiport memory
with 1 MA780 sub-
system, 2 MB mem-
ory, 4 ports

DR780 (VAX-11/780
only)

FP780

Watts

6,225 Watts

2,000 Watts

2,000 Watts

150 Watts

300 Watts

350 Watts

1800 Watts

1000 Watts

226 Watts

300 Watts

473

kcal/hr
(BTU/hr)

5,350 kcal/hr
(21,230 BTU/hr)

1,720 kecal/hr
(6,820 BTU/hr)

1,720 kcal/hr
(6,820 BTU/hr)

130 kcal/hr
(612 BTU/hr)

260 kcal/hr
(1024 BTU/hr)

302 kcal/hr
(1,195 BTU/hr)

1550 kcal/hr
(6140 BTU/hr)

860 kcal/hr
(3410 BTU/hr)

194 kcal/hr
(771 BTU/hr)

260 kcal/hr
(1,025 BTU/hr)

KU780-A

H7112

Appendix L

100 Watts 86 kcal/hr
(341 BTU/hr)
25 Watts 22 kcal/hr
(85 BTU/hr)
NOTE

UNIBUS peripheral controllers plugged into the re-
maining eight slots in the VAX-11/780 DD11-DK
backplane must also be included for an accurate

total.

Environment
Operating:

Radiated acoustic
noise level (at 1 meter
distant, 1.5 meter
height)

Temperature
Relative humidity

Maximum altitude

Nonoperating:
Temperature

Relative humidity

front: 74 dB
rear: 65 dB

15° to 32°C (59° to 90°F)
20% to 80%
2.4 km (8000 ft.)

—40° to 66°C (—40° to 151°F)
0to 95%

474

Appendix L

1
SPACE FOR DIST.#2 :’///f
(REAR MOUNTED) £
=z
= 3
o @ 1
w2 e : 818 “
A o 2| < PANEL SPACE FOR 2>
5 |z 5 512K BYTE MEMORY g | g BAT1-K 2 Z
w z Q2 3 AND CONTROLLER o o ~
w w
Z @ a cPU ; z z
w2 Y E (EXPANSION SPACE F
ol o |& =] FOR AN ADDITIONAL z | z
2 w 0 z o o
F3 z w 2 3,584K BYTES) = =
ol & |¥ 2 |
°l @ S [} S |br-----—-—-
T Z ~°5 SPACEFOR DIST.#1
3 3 DIST.#3 (REAR
= MOUNTED)
SPACEROR | powen POWER |POWER SPACE FOR
powen | SUPPLY SUPPLY | SUPPLY FOR | POWER
SUPPLY FORCPU FORCPU | MEMORY SUPPLY >
BA11-K -
COOLING COOLING COOLING ~
TIME-OF-YEAR CLOCK BATTERY
MEMORY BATTERY BACKUP (OPTION)
AX01 — —
FLOPPY DISK SUBSYSTEM
11/03 MICROCOMPUTER CONSOLE

VAX-11/780 CPU CABINET UNIBUS EXPANSION CABINET

Figure VAX-11/780 Cabinet Space Allocation

UNIBUS expansion cabinet is included in all standard VAX-11/780 systems.

| 475

476

APPENDIX M

SYSTEM THROUGHPUT CONSIDERATIONS FOR
THE VAX-11/780

For the majority of applications, the standard VAX-11/780 packaged
systems provide more than ample 1/0 bus capacity. System through-
put is determined by the computing requirements and the time waiting
for the disk to seek or spin. This appendix is intended to provide -
guidance in configuring those remaining VAX-11/780 applications that
are characterized by very intensive |/0.

Bus and Memory Bandwidths

The bandwidth or speed capacity of the SBI is 13.3 million bytes per
second. That is not to say that 13.3 MB/s will be achieved in any
specific configuration or application. In practice, the flow of data is
usually much slower because of contention between devices, because
of irregularities in the rate of requests, and because the devices may
not be able to capitalize on available bandwidth. Often all of these
conditions are true. The 13.3 MB/s number could be called the proto-
col limit to the bus bandwidth.

The focal point of traffic on the bus is the memory subsystem, since
most transfers are between a memory and one of the other types of
connections, either the CPU or an I/0 bus adapter. The memory is 72
bits wide (64 bits of data plus 8 ECC bits). This width contributes to the
capacity of a fully configured large system to handle an enormous
amount of I/0 traffic, inasmuch as a single memory can accept a 64-
bit write every 0.8 us. However, it takes 1.4 us to handle writes of less
than 64 bits since the memory must do an internal update rather than
a simple overwrite.

Of the other connections to the SBI, the CPU represents the most
intensive traffic load on the memory subsystem unless the configura-
tion includes a DR780. The CPU can and often will request bursts of
repeated 32-bit writes to memory every 1.2 us and less often request
short bursts of 64-bit reads from memory. Although the processor in
computing will request data much more often than it will generate
data, the effect of the very large, write-through cache is to reverse
these statistics as seen by the memory subsystem. The cache portion
of the processor in typical applications will do 32-bit writes to memory
more than ten times as often as it will do 64-bit reads. Frequently,
these 32-bit writes will occur in bursts, as for example when the oper-
ating system clears a page of memory or when a COBOL application
moves data into a buffer. This would mean that despite its low priority,

477

Appendix M

the processor could easily dominate a single memory controller; if the
request buffer of the memory controller were enabled fully, the
processor could have a write in process, four writes pending, and
another write waiting to be requested. This would result in long delays
as seen by the I/0 bus adapters, and high-speed disk transfers would
be marginal at best. For this reason, the memory request buffer is by
design limited to a depth of one command unless interleaving is en-
abled. Even with the request buffer limited, the processor presents
sufficient contention to limit the effective MASSBUS speed capacity in
single memory configurations to about 1.3 to 1.5 MB/s, afigure below
the MASSBUS protocol bandwidth but sufficient to support disk prod-
ucts.

If there is more than one MASSBUS channel transferring data concur-
rently, then interchannel contention for a single memory controller can
contribute to data-lates and overruns. Except in certain time-critical or
data acquisition applications, an occasional data-late is harmless
(VAX/VMS will simply retry the operation), but an excessive percent-
age of data-lates can interfere with productive work. A system based
on interleaved memory will almost never experience even a harmless
data-late.

MASSBUS Arrangements

The VAX/VMS system offers flexibility in physically configuring the
arrangement of disks and tapes over one or more MASSBUS chan-
nels. Typically tapes are installed on one channel, and all disks are on
another, even if there are several disks. This is not always the best
arrangement; sometimes there should be disks on the tape channel;
sometimes extra channels should be included even if the total number
of disks is below the maximum allowed on one channel. The best
arrangement depends on the objectives of the installation and the
characteristics of the application.

MASSBUS products support overlapped control operations. Once a
control function such as a disk seek or a tape rewind has been initiat-
ed, the MASSBUS is free to start another function, control or transfer.
This is supported in VAX/VMS, so overlapped seeking, for example,
happens whether the disks are distributed over multiple channels or
concentrated on one. However, once a data transfer is physically start-
ed, then it must complete or abort before another data transfer
operation on that same channel can be started or a seek completion
can be recognized. It is for this reason that tape drives are advisable
on a disk channel only if use of the two is essentially mutually exclu-
sive. Except for memory contention, the MASSBUS channels are quite
independent, and VAX/VMS supports concurrent operations on multi-
ple buses.

478

Appendix M

Tape drives connect to a MASSBUS differently than do disks. Disks
interface to a MASSBUS directly through interface electronics associ-
ated with and replicated in each individual disk. Tape drives are ca-
bled to a common interface called a formatter which in turn connects
to the MASSBUS. The formatter is included as one of the components
of a master tape drive. Typically all of the tapes on a system share, and
contend for, the services of the same formatter. They need not, and
this is a consideration for applications with intense tape traffic.

Because VAX/VMS supports concurrent multiple bus traffic, the I/0
capacity of a fully configured VAX can be very large, but only if the
memory subsystem is matched to the 1/0 subsystem with
consideration for the processor as an essential eiement. if the memory
subsystem is the single controller minimum, then the restriction that
transfers on the MASSBUS are mutually exclusive can be a beneficial
restriction in that the software cannot initiate a transfer until the previ-
ous one is complete. Unproductive contention for the single memory
can be partially or completely avoided by putting the application-re-
quired number of disks on the physically minimum possible number of
buses. If contention would still be a problem, there is no sensible
alternative other than a second memory controller. The immediate
need is to predict the threat of unproductive memory contention; the
second need is to estimate the impact of the resulting data-lates and
overruns.

Unproductive memory contention will occur if the aggregate set of
DMA buses cannot all together sustain their individual peak instan-
taneous rates. The emphasis is on the peak rates, not the average
rates; the ratio of peak to average determines the frequency of conten-
tion and the impact but not the eventual certainty. As a guideline, the
maximum allowable peak rates for a single memory controller system
are two channels at 1.3 MB/s or three channels at 0.806 MB/s.

Another general guideline to follow is: if transfers are relatively short
and infrequent, then memory contention is not likely to be a problem
because there will be adequate capacity for a retry. However, if the
transfers are long and occur frequently, then unproductive memory
contention will be much more bothersome because of the high
likelihood that the retrys will also fail.

Two memory controllers interleaved can easily support a full comple-
ment of 1/0 channels at full speed. By including the second memory
and extra MASSBUS channels, the application can benefit by spread-
ing the disk traffic over multiple channels. This benefit can be signifi-
cant if the physical transfers are long and negligible if the transfers are
typically only a few blocks. Swapping traffic and some data processing

479

Appendix M

applications are characterized by transfers of more than half a disk
track. Transfers of only a few blocks tend to be dominated by the
rotational latency.

Impact on the Processor

Whenever there is sufficiently intense 1/0 traffic, the effective speed of
the processor is slowed by the contention for memory. This is rarely
important, but if the success of the application is critically dependent
on a prediction of execution time, then this effect should be consid-
ered. The major I/0O parameter here is the total of the average 1/0
rates. In predicting the average /O rate, remember that the
relationship between peak and average depends upon the transfer
length, the dead time between transfers, and any gaps within the
transfer. With two memory controllers the processor will be slowed
roughly 4% per averaged megabyte per second of I/0 traffic; with only
a single memory the impact is about two to four times greater.

For example, consider a small system with RP06 disk drives. The
average |/0 load consists of 15 transfers per second with each trans-
fer to be 5 KB long. Although the peak transfer rate of an RP06 is 0.806
MB/s, the average rate would be 15 multiplied by 0.005, or 0.075
MB/s. With the previously mentioned 4% per averaged MB/s slow-
down factor, the throughput slowdown in the system being considered
here is 0.3%, or virtually nil. If, instead, the I/0 load were a multibuf-
fered disk-to-disk copy from one channel to another, then ignoring
overhead and allowing 10 ms for an adjacent track seek, 7 ms for
rotational latency after each seek, and 214,016 bytes to be transferred
in the next 19 revolutions, the calculated average rate per disk is 0.64
MB/s. If the seeks and transfers of the other disk were completely
overlapped with the first, then the total average I/O rate during the
copy would be 1.28 MB/s, corresponding to a slowdown of 5% incor-
porating the 4% per MB/s factor. This is still within the speed tolerance
of the basic processor specification, but the example and
methodology shown here should be helpful in applications with really
intense 1/0 traffic.

Even in the absence of I/0 traffic, the computing rate of a system with
a single memory controller will be as much as 15% slower than an
interleaved memory configuration. The slowdown depends on the fre-
qguency of consecutive writes to memory. In most cases it is impercep-
tible.

UNIBUS Configurations

The total throughput of any UNIBUS system is a function of both the
bus master and the bus slave. The characteristic that comes into play
in determining system throughput is the delay from the time MSYN is

480

Appendix M

received on the bus until SSYN is asserted for all of the different types
of functions that the UNIBUS adapter can perform. The actual mea-
sured times on a system can vary as a function of other system activity.
If the memory or the SBl is in use when the UNIBUS adapter makes a
reference, then the UNIBUS adapter will be stalled until that activity is
completed and the MSYN to SSYN time will be lengthened according-

ly.

DMC-11 Configurations

The DMC-11 Network Link is a high performance interconnection of
UNIBUS structured systems for use where the computers are located
within the same facility. The DMC-11 can be configured for operation
at up to 1 megabaud (1 million bits per second). The DMC-11 can also
be used with non-UNIBUS computers, such as the VAX-11/780,
through the UNIBUS adapter. However, certain care must be ex-
ercised in the operation.

In the case of the VAX-11/780, the DMC-11 cannot take advantage of
the buffered data path, but must use the direct data path, which is
slower. The resultant NPR rate for the DMC-11 is not fast enough to
support the one megabit per second rate in both transmit and receive
lines simultaneously. Therefore, simultaneous transmit and receive at
one megabit can occur only as long as the silos in the DMC-11 provide
some slack.

Whenever the transmit silo is empty and the receive silo is full, the
transmit line will suffer underruns and experience CRC errors. The
message rejected by the CRC error would be corrected on an au-
tomatic retry unless the line is so busy that the retry also fails.

The performance on the line is therefore dependent on the amount of
line usage or the message length, and since the amount of usage is not
usually controlled, the message length is the only parameter that can
be used to prevent link problems from occurring. A message length of
100 bytes or fewer will not cause problems on a VAX-11/780 proces-
sor, but larger message lengths could cause problems when link
usage is high. The guideline is therefore to keep message lengths
below 100 bytes at the one megabaud rate.

This throughput issue is a major concern when the DMC-11 is config-
ured in VAX-11/780 systems. The use of DECnet software and its
inherent protocol costs will allow the DMC-11 to operate at one mega-
bit speeds, although the average output will be much lower.

KMC-11 Configurations
The KMC-11 is an auxiliary processor, complete with memory, that
can be used to off-load from the CPU such tasks as data communica-

481

Appendix M

tions, and analog input/output. The KMC-11 operates in parallel with
the main CPU, or in the case of VAX-11/780 systems, in parallel with
the UNIBUS adapter.

The KMC-11 interface to the UNIBUS is directly controlled by the
microcode in the KMC-11. Through this microcode, it is possible to
gain control of the UNIBUS, hold it, and disrupt the normal operation
of other units, including the VAX processor. It is important that VAX-
11/780 systems incorporating KMC-11s under the direction of user-
developed software do not hold the UNIBUS for longer than 20 micro-
seconds.

The KMC-11 can affect UNIBUS throughput in another manner also.
As an auxiliary processor, the KMC-11 is continuously asserting itself
as bus master to determine if there is work for it to do, such as
processing data from a DZ11 multiplexer. If the rate at which the KMC-
11 asserts its bus mastership is great enough, UNIBUS throughput can
be significantly reduced. Careful use of the KMC-11, or the use of
additional UNIBUS adapters, can help avoid this situation.

Three reference sources useful to those interfacing devices to VAX
systems through the UNIBUS adapter are the PDP-11 UNIBUS Design
Description shown in the PDP-11 UNIBUS Handbook, Order No. EB-
17525-20, DW780 UNIBUS Adapter Technical Description, Order No.
EK-DW780-TD, and the I/0 User’s Guide, VMS Documentation Set,
Volume lIl.

Impact of the DR780

VAX-11/780 systems which incorporate a DR780 high performance
interconnect also have configuration and application dependent
throughput considerations. A detailed discussion of these issues and
a chart showing typical throughput rates as a function of system con-
figuration and workload can be found in Chapter 19. The DR780 Gen-
eral Purpose Interface Technical Description, Order No. EK-DR780-
TD and the DR780 User’s Guide, Order No. EK-DR780-UG are also
available reference sources.

Impact of the MA780

VAX-11/780 systems using the MA780 multiport memory option also
have unique throughput considerations depending on the total system
configuration and application. A description of the MA780 can be
found in Chapter 19 of this handbook and a detailed technical descrip-
tion of its operation is available in the MA780 Multiport Memory
Technical Description, Order No. EK-MA780-TD.

482

GLOSSARY

abort An exception that occurs in the middle of an instruction and
potentially leaves the registers and memory in an indeterminate state,
such that the instruction cannot necessarily be restarted.

absolute indexed mode An indexed addressing mode in which the
base operand specifier is addressed in absolute mode.

absolute mode In absolute mode addressing, the PC is used as the
register in autoincrement deferred mode. The PC contains the ad-
dress of the location containing the actual operand.

absolute time Time values expressing a specific date (month, day,
and year) and time of day. Absolute time values are always expressed
in the system as positive numbers.

access mode 1. Any of the four processor access modes in which
software executes. Processor access modes are, in order from most to
least privileged and protected: kernel (mode 0), executive (mode 1),
supervisor (mode 2), and user (mode 3). When the processor is in
kernel mode, the executing software has complete control of, and
responsibility for, the system. When the processor is in any other
mode, the processor is inhibited from executing privileged instruc-
tions. The Processor Status Longword contains the current access
mode field. The operating system uses access modes to define pro-
tection levels for software executing in the context of a process. For
example, the Executive runs in kernel and executive mode and is most
protected. The command interpreter is less protected and runs in
supervisor mode. The debugger runs in user mode and is no more
protected than normal user programs. 2. See record access mode.

access type 1. The way in which the processor accesses instruction
operands. Access types are: read, write, modify, address, and branch.
2. The way in which a procedure accesses its arguments. 3. See also
record access type.

access violation An attempt to reference an address that is not
mapped into virtual memory or an attempt to reference an address
that is not accessible by the current access mode.

account name A string that identifies a particular account used to
accumulate data on a job’s resource use. This name is the user’s
accounting charge number, not the user’s UIC.

address A number used by the operating system and user software
to identify a storage location. See also virtual address and physical
address.

483

Glossary

address access type The specified operand of an instruction is not
directly accessed by the instruction. The address of the specified op-
erand is the actual instruction operand. The context of the address
calculation is given by the data type of the operand.

addressing mode The way in which an operand is specified; for
example, the way in which the effective address of an instruction
operand is calculated using the general registers. The basic general
register addressing modes are called: register, register deferred, au-
toincrement, autoincrement deferred, autodecrement, displacement,
and displacement deferred. In addition, there are six indexed ad-
dressing modes using two general registers, and literal mode ad-
dressing. The PC addressing modes are called: immediate (for regis-
ter deferred mode using the PC), absolute (for autoincrement deferred
mode using the PC), and branch.

address space The set of all possible addresses available to a
process. Virtual address space refers to the set of all possible virtual
addresses. Physical address space refers to the set of all possible
physical addresses sent out on the SBI.

allocate a device To reserve a particular device unit for exclusive
use. A user process can allocate a device only when that device is not
allocated by any other process.

alphanumeric character An upper or lower case letter (A-Z, a-z), a
dollar sign ($), an underscore (_), or a decimal digit (0-9).

alternate key An optional key within the data records in an indexed
file; used by VAX-11 RMS to build an alternate index. See key (in-
dexed files) and primary key.

American Standard Code for Information Interchange (ASCIl) A
set of 8-bit binary numbers representing the alphabet, punctuation,
numerals, and other special symbols used in text representation and
communications protocol.

Ancillary Control Process (ACP) A process that acts as an interface
between user software and an 1/0 driver. An ACP provides functions
supplemental to those performed in the driver, such as file and direc-
tory management. Three examples of ACPs are: the Files-11 ACP
(F11ACP), the magnetic tape ACP (MTACP), and the networks ACP
(NETACP).

area Areas are VAX-11 RMS maintained regions of an indexed file.
They allow a user to specify placement and/or specific bucket sizes for
particular portions of a file. An area consists of any number of buckets,
and there may be from 1 to 255 areas in afile.

484

Glossary

Argument Pointer General register 12 (R12). By convention, AP
contains the address of the base of the argument list for procedures
initiated using the CALL instructions.

assign achannel To establishthe necessarysoftwarelinkage
between a user process and a device unit before a user process can
transfer any data to or from that device. A user process requests the
system to assign a channel and the system returns a channel number.

asynchronous record operation A mode of record processing in
which a user program can continue to execute after issuing a record
retrieval or storage request without having to wait for the request to be
fulfilled.

Asynchronous System Trap A software-simulated interrupt to a
user-defined service routine. ASTs enable a user process to be noti-
fied asynchronously with respect to its execution of the occurrence of
a specific event. If a user process has defined an AST routine for an
event, the system interrupts the process and executes the AST routine
when that event occurs. When the AST routine exits, the system re-
sumes the process at the point where it was interrupted.

Asynchronous System Trap level (ASTLVL) A value keptin an in-
ternal processor register that is the highest access mode for which an
AST is pending. The AST does not occur until the current access
mode drops in priority (raises in numeric value) to a value greater than
or equal to ASTLVL. Thus, an AST for an access mode will not be
serviced while the processor is executing in a higher priority access
mode.

authorization file See user authorization file.

autodecrement indexed mode An indexed addressing mode in
which the base operand specifier uses autodecrement mode address-
ing.

autodecrement mode In autodecrement mode addressing, the con-
tents of the selected register are decremented, and the result is used
as the address of the actual operand for the instruction. The contents
of the register are decremented according to the data type context of
the register: 1 for byte, 2 for word, 4 for longword and floating, 8 for
quadword and double floating.

autoincrement deferred indexed mode An indexed addressing
mode in which the base operand specifier uses autoincrement de-
ferred mode addressing.

autoincrement deferred mode In autoincrement deferred mode
addressing, the specified register contains the address of a longword

485

Glossary

which contains the address of the actual operand. The contents of the
register are incremented by 4 (the number of bytes in a longword). If
the PC is used as the register, this mode is called absolute mode.

autoincrement indexed mode An indexed addressing mode in
which the base operand specifier uses autoincrement mode address-
ing.

autoincrement mode In autoincrement mode addressing, the con-
tents of the specified register are used as the address of the operand,
then the contents of the register are incremented by the size of the
operand.

balance set The set of all process working sets currently resident in
physical memory. The processes whose working sets are in the bal-
ance set have memory requirements that balance with available mem-
ory. The balance set is maintained by the system swapper process.

base operand address The address of the base of a table or array
referenced by index mode addressing.

base operand specifier The register used to calculate the base
operand address of a table or array referenced by index mode ad-
dressing.

base priority The process priority that the system assigns a process
when it is created. The scheduler never schedules a process below its
base priority. The base priority can be modified only by the system
manager or the process itself.

base register A general register used to contain the address of the
first entry in a list, table, array, or other data structure.

binding See linking.

bit string See variable-length bit field.

block 1. The smallest addressable unit of data that the specified
device can transfer in an I/0 operation (512 contiguous bytes for most
disk devices). 2. An arbitrary number of contiguous bytes used to
store logically related status, control, or other processing information.

block I/0 The set of VAX-11 RMS procedures that allow you direct
access to the blocks of a file regardless of file organization.

bootstrap block A block in the index file on a system disk that con-
tains a program that can load the operating system into memory and
start its execution.

branch access type An instruction attribute which indicates that the
processor does not reference an operand address, but that the oper-

486

Glossary

and is a branch displacement. The size of the branch displacement is
given by the data type of the operand.

branch mode In branch addressing mode, the instruction operand
specifier is a signed byte or word displacement. The displacement is
added to the contents of the updated PC (which is the address of the
first byte beyond the displacement), and the result is the branch ad-
dress.

bucket A storage structure, consisting of from 1 to 32 blocks, used
for building and processing relative and indexed files. A bucket
contains one or more records or record cells. Buckets are the unit of
contiguous transfer between VAX-11 RMS buffers and the disk.

buffered I/O See system buffered I/0.

bug check The operating system’s internal diagnostic check. The
system logs the failure and crashes the system.

byte A byte is eight contiguous bits starting on an addressable byte
boundary. Bits are numbered from the right, 0 through 7, with bit 0 the
low-order bit. When interpreted arithmetically, a byte is a 2's comple-
ment integer with significance increasing from bits 0 through 6. Bit 7 is
the sign bit. The value of the signed integer is in the range —128 to 127
decimal. When interpreted as an unsigned integer, significance in-
creases from bits 0 through 7 and the value of the unsigned integer is
in the range 0 to 255 decimal. A byte can be used to store one ASCII
character.

cache memory A small, high-speed memory placed between slower
main memory and the processor. A cache increases effective memory
transfer rates and processor speed. It contains copies of data recently
used by the processor, and fetches several bytes of data from memory
in anticipation that the processor will access the next sequential series
of bytes.

call frame See stack frame.

call instructions The processor instructions CALLG (Call Procedure
with General Argument List) and CALLS (Call Procedure with Stack
Argument List).

call stack The stack, and conventional stack structure, used during
a procedure call. Each access mode of each process context has one
call stack, and interrupt service context has one call stack.

channel A logical path connecting a user process to a physical de-
vice unit. A user process requests the operating system to assign a
channel to a device so the process can transfer data to or from that
device.

487

Glossary

character A symbol represented by an ASCIlI code. See also alphan-
umeric character.

character string A contiguous set of bytes. A character string is
identified by two attributes: an address and alength. Its address is the
address of the byte containing the first character of the string.
Subsequent characters are stored in bytes of increasing addresses.
The length is the number of characters in the string.

character string descriptor A quadword data structure used for
passing character data (strings). The first word of the quadword con-
tains the length of the character string. The second word can contain
type information. The remaining longword contains the address of the
string.

cluster 1. A set of contiguous blocks that is the basic unit of space
allocation on a Files-11 disk volume. 2. A set of pages brought into
memory in one paging operation. 3. An event flag cluster.

command An instruction, generally an English word, typed by the
user at a terminal or included in a command file which requests the
software monitoring a terminal or reading a command file to perform
some well-defined activity. For example, typing the COPY command
requests the system to copy the contents of one file into another file.

command file A file containing command strings. See also com-
mand procedure.

command interpreter Procedure-based system code that executes
in supervisor mode in the context of a process to receive, syntax
check, and parse commands typed by the user at a terminal or sub-
mitted in a command file.

command parameter The positional operand of a command delim-
ited by spaces, such as a file specification, option, or constant.

command procedure A file containing commands and data that the
command interpreter can accept in lieu of the user typing the
commands individually on a terminal.

command string A line (or set of continued lines), normally termi-
nated by typing the carriage return key, containing a command and,
optionally, information modifying the command. A complete com-
mand string consists of a command, its qualifiers, if any, and its par-
ameters (file specifications, for example), if any, and their qualifiers, if
any.

common A FORTRAN term for a program section that contains only
data.

common event flag cluster A set of 32 event flags that enables
488

Glossary

cooperating processes to post event notification to each other. Com-
mon event flag clusters are created as they are needed. A process can
associate with up to two common event flag clusters.

compatibility mode A mode of execution that enables the central
processor to execute non-privileged PDP-11 instructions. The
operating system supports compatibility mode execution by providing
an RSX-11M programming environment for an RSX-11M task image.
The operating system compatibility mode procedures reside in the
control region of the process executing a compatibility mode image.
The procedures intercept calls to the RSX-11M Executive and convert
them to the appropriate operating system functions.

condition An exception condition detected and declared by soft-
ware. For example, see failure exception mode.

condition codes Four bits in the Processor Status Word that indi-
cate the results of previously executed instructions.

condition handler A procedure that a process wants the system to
execute when an exception condition occurs. When an exception con-
dition occurs, the operating system searches for a condition handler
and, if found, initiates the handler immediately. The condition handler
may perform some action to change the situation that caused the
exception condition and continue execution for the process that in-
curred the exception condition. Condition handlers execute in the
context of the process at the access mode of the code that incurred
the exception condition.

condition value A 32-bit quantity that uniquely identifies an excep-
tion condition.

context The environment of an activity. See also process context,
hardware context, and software context.

context indexing The ability to index through a data structure auto-
matically because the size of the data type is known and used to
determine the offset factor.

context switching Interrupting the activity in progress and switching
to another activity. Context switching occurs as one process after
another is scheduled for execution. The operating system saves the
interrupted process’ hardware context in its hardware process control
block (PCB) using the Save Process Context instruction, and loads
another process’ hardware PCB into the hardware context using the
Load Process Context instruction, scheduling that process for execu-
tion.

489

Glossary

continuation character A hyphen at the end of a command line
signifying that the command string continues on to the next command
line.

console The manual control unit integrated into the central proces-
sor. The console includes an LSI-11 microprocessor and a serial line
interface connected to a hard copy terminal. It enables the operator to
start and stop the system, monitor system.operation, and run diagnos-
tics.

console terminal The hard copy terminal connected to the central
processor console.

control region The highest-addressed half of per-process space
(the P1 region). Control region virtual addresses refer to the process-
related information used by the system to control the process, such
as: the kernel, executive, and supervisor stacks, the permanent 1/0
channels, exception vectors, and dynamically used system pro-
cedures (such as the command interpreter and RSX-11M program-
ming environment compatibility mode procedures). The user stack is
also normally found in the controi region, although it can be relocated
elsewhere.

Control Region Base Register (P1BR) The processor register, or its
equivalent in a hardware process control block, that contains the base
virtual address of a process control region page table.

Control Region Length Register (P1LR) The processor register, or
its equivalent in a hardware process control block, that contains the
number of non-existent page table entries for virtual pages in a proc-
ess control region.

copy-on-reference A method used in memory management for
sharing data until a process accesses it, in which case it is copied
before the access. Copy-on-reference allows sharing of the initial val-
ues of a global section whose pages have read/write access but con-
tain pre-initialized data available to many processes.

counted string A data structure consisting of a byte-sized length
followed by the string. Although a counted string is not used as a
procedure argument, it is a convenient representation in memory.

current access mode The processor access mode of the currently
executing software. The Current Mode field of the Processor Status
Longword indicates the access mode of the currently executing soft-
ware.

cylinder The tracks at the same radius on all recording surfaces of a
disk.

490

Glossary

D floating (point) datum A floating point datum consisting of 8 con-
tiguous bytes (64 bits) starting on an arbitrary byte boundary. The
value of the D_floating datum is in the approximate range (+ or —)
0.29 X 1073 to 1.7 X 1038, The precision is approximately one part in
255 or typically sixteen decimal digits.

data base 1. All the occurrences of data described by a data base
management system. 2. A collection of related data structures.

data structure Any table, list, array, queue, or tree whose format
and access conventions are well-defined for reference by one or more
images.

data type In general, the way in which bits are grouped and
interpreted. In reference to the processor instructions, the data type of
an operand identifies the size of the operand and the significance of
the bits in the operand. Operand data types include: byte, word, long-
word and quadword integer, floating and double floating, character
string, packed decimal string, and variable-length bit field.

deferred echo Refers to the fact that terminal echoing does not
occur until a process is ready to accept input entered by type ahead.

delta time A time value expressing an offset from the current date
and time. Delta times are always expressed in the system as negative
numbers whose absolute value is used as an offset from the current
time.

demand zero page A page, typically of an image stack or buffer
area, that is initialized to contain all zeros when dynamically created in
memory as a result of a page fault. This feature eliminates the waste of
disk space that would otherwise be required to store blocks (pages)
that contain only zeros.

descriptor A data structure used in calling sequences for passing
argument types, addresses and other optional information. See char-
acter string descriptor.

detached process A process that has no owner. The parent process
of a tree of subprocesses. Detached processes are created by the job
controller when a user logs on the system or when a batch job is
initiated. The job controller does not own the user processes it cre-
ates; these processes are therefore detached. .

device The general name for any physical terminus or link connect-
ed to the processor that is capable of receiving, storing, or
transmitting data. Card readers, line printers, and terminals are exam-
ples of record-oriented devices. Magnetic tape devices and disk de-
vices are examples of mass storage devices. Terminal line interfaces
and interprocessor links are examples of communications devices.

491

Glossary

device interrupt An interrupt received on interrupt priority level 16
through 23. Device interrupts can be requested only by devices, con-
trollers, and memories.

device name The field in a file specification that identifies the device
unit on which a file is stored. Device names also include the mnemon-
ics that identify an 1/0 peripheral device in a data transfer request. A
device name consists of a mnemonic followed by a controller
identification letter (if applicable), followed by a unit number (if appli-
cable), and ends with a colon (:).

device queue See spool queue.

device register A location in device controller logic used to request
device functions (such as 1/0 transfers) and/or report status.

device unit One drive, and its controlling logic, of a mass storage
device system. A mass storage system can have several drives con-
nected toit.

diagnostic A program that tests logic and reports any faults it de-
tects.

direct /0 An 1/0 operation in which the system locks the pages
containing the associated buffer in memory for the duration of the I/0
operation. The I/0 transfer takes place directly from the process buff-
er. Contrast with system buffered 1/0.

direct mapping cache A cache organization in which only one
address comparison is needed to locate any data in the cache be-
cause any block of main memory data can be placed in only one
possible position in the cache. Contrast with fully associative cache.

directory A file used to locate files on a volume that contains a list of
file names (including type and version number) and their unique inter-
nal identifications.

directory name The field in a file specification that identifies the
directory file in which a file is listed. The directory name begins with a
left bracket ([or <) and ends with a right bracket (] or >).

displacement deferred indexed mode An indexed addressing
mode in which the base operand specifier uses displacement deferred
mode addressing.

displacement deferred mode In displacement deferred mode ad-
dressing, the specifier extension is a byte, word, or longword displace-
ment. The displacement is sign extended to 32 bits and added to a
base address obtained from the specified register. The result is the
address of a longword which contains the address of the actual oper-
and. If the PC is used as the register, the updated contents of the PC

492

Glossary

are used as the base address. The base address is the address of the
first byte beyond the specifier extension.

displacement indexed mode Anindexed addressing modein
which the base operand specifier uses displacement mode address-
ing.

displacement mode In displacement mode addressing, the specifi-
er extension is a byte, word, or longword displacement. The displace-
ment is sign extended to 32 bits and added to a base address obtained
from the specified register. The result is the address of the actual
operand. If the PC is used as the register, the updated contents of the
PC are used as the base address. The base address is the address of
the first byte beyond the specifier extension.

drive The electro-mechanical unit of a mass storage device system
on which a recording medium (disk cartridge, disk pack, or magnetic
tape reel) is mounted.

driver The set of code that handles physical I/0 to a device.

dynamic access A technique in which a program switches from one
record access mode to another while processing a file.

echo A terminal handling characteristic in which the characters -
typed by the terminal user on the keyboard are also displayed onthe
screen or printer.

effective address The address obtained after indirect or indexing
modifications are calculated.

entry mask A word whose bits represent the registers to be saved or
restored on a subroutine or procedure call using the call and return
instructions.

entry point A location that can be specified as the object of a call. It
contains an entry mask and exception enables known as the entry
point mask.

equivalence name The string associated with a logical name in a
logical name table. An equivalence name can be, for example, a de-
vice name, another logical name, or a logical name concatenated with
a portion of a file specification.

error logger A system process that empties the error log buffers
and writes the error messages into the error file. Errors logged by the
system include memory system errors, device errors and timeouts,
and interrupts with invalid vector addresses.

escape sequence An escape is a transition from the normal mode
of operation to a mode outside the normal mode. An escape character

493

Glossary

is the code that indicates the transition from normal to escape mode.
An escape sequence refers to the set of character combinations start-
ing with an escape character that the terminal transmits without inter-
pretation to the software set up to handle escape sequences.

event A change in process status or an indication of the occurrence
of some activity that concerns an individual process or cooperating
processes. An incident reported to the scheduler that affects a proc-
ess’ ability to execute. Events can be synchronous with the process’
execution (a wait request), or they can be asynchronous (1/0
completion). Some other events include: swapping; wake request;
page fault. '

event flag A bitin an event flag cluster that can be set or cleared to
indicate the occurrence of the event associated with that flag. Event
flags are used to synchronize activities in a process or among many
processes.

event flag cluster A set of 32 event flags which are used for event
posting. Four clusters are defined for each process: two process-local
clusters, and two common event flag clusters. Of the process-local
flags, eight are reserved for system use.

exception An event detected by the hardware (other than an inter-
rupt or jJump, branch, case, or call instruction) that changes the normal
flow of instruction execution. An exception is always caused by the
execution of an instruction or set of instructions (whereas an interrupt
is caused by an activity in the system independent of the current
instruction). There are three types of hardware exceptions: traps,
faults, and aborts. Examples are: attempts to execute a privileged or
reserved instruction, trace faults, compatibility mode faults, break-
point instruction execution, and arithmetic faults such as floating point
overflow, underflow, and divide by zero.

exception condition A hardware- or software-detected event other
than an interrupt or jump, branch, case, or call instruction that
changes the normal flow of instruction execution.

exception dispatcher An operating system procedure that search-
es for a condition handler when an exception condition occurs. If no
exception handler is found for the exception or condition, the image
that incurred the exception is terminated.

exception enables Seetrap enables.
exception vector See vector.

executable image An image that is capable of being run in a proc-
ess. When run, an executable image is read from a file for execution in
a process.

494

Glossary

executive The generic name for the collection of procedures includ-
ed in the operating system software that provides the basic control
and monitoring functions of the operating system.

executive mode The second most privileged processor access
mode (mode 1). The record management services (RMS) and many of
the operating system’s programmed service procedures execute in
executive mode.

exit An image exit is a rundown activity that occurs when image
execution terminates either normally or abnormally. Image rundown
activities include deassigning I/0 channels and disassociation of com-
mon event flag clusters. Any user- or system-specified exit handlers
are called.

exit handler A procedure executed when an image exits. An exit
handler enables a procedure that is not on the call stack to gain con-
trol and clean up procedure-own data bases before the actual image
exit occurs.

extended attribute block (XAB) An RMS user data structure that
contains additional file attributes beyond those expressed in the file
access block (FAB), such as boundary types (aligned on cylinder,
logical block number, virtual block number) and file protection infor-
mation.

extension The amount of space to allocate at the end of a file each
time a sequential write exceeds the allocated length of the file.

extent The contiguous area on a disk containing a file or a portion of
afile. Consists of one or more clusters.

F_floating (point) datum A floating point datum consisting of 4 con-
tiguous bytes (32 bits) starting on an arbitrary byte boundary. The
value of the F_floating datum is in the approximate range
(+ or —) 0.29 X 1073810 1.7 X 10%. The precision is approximately one
partin 222 or typically seven decimal digits.

failure exception mode A mode of execution selected by a process
indicating that it wants an exception condition declared if an error
occurs as the result of a system service call. The normal mode is for
the system service to return an error status code for which the process
must test.

fault A hardware exception condition that occurs in the middle of an
instruction and that leaves the registers and memory in a consistent
state, such that elimination of the fault and restarting the instruction
will give correct results.

495

Glossary

field 1. See variable-length bit field. 2. A set of contiguous bytes in a
logical record.

file An organized collection of related items (records) maintained in
an accessible storage area, such as disk or tape.

file access block (FAB) An RMS user data structure that represents
a request for data operations related to the file as a whole, such as
OPEN, CLOSE, or CREATE.

file header A block in the index file describing a file on a Files-11
disk structure. The file header identifies the locations of the file’s ex-
tents. There is a file header for every file on the disk.

file name The field preceding a file type in a file specification that
contains a 1- to 9-character logical name for a file.

filename extension See file type.

file organization The physical arrangement of data in the file. You
select the specific organization from those offered by VAX-11 RMS,
based on your individual needs for efficient data storage and retrieval.
See indexed file organization, relative file organization, and sequential
file organization.

Files-11 The name of the on-disk structure used by the RSX-11, IAS
and VAX/VMS operating systems. Volumes created under this struc-
ture are transportable between these operating systems.

file specification A unique name for a file on a mass storage medi-
um. It identifies the node, the device, the directory name, the file
name, the file type, and the version number under which a file is
stored.

file structure The way in which the blocks forming a file are distrib-
uted on a disk or magnetic tape to provide a physical accessing tech-
nique suitable for the way in which the data in the file is processed.

file system A method of recording, cataloging, and accessing files
on avolume.

file type The field in a file specification that is preceded by a period
or dot (.) and consists of a zero- to three-character type identification.
By convention, the type identifies a generic class of files that have the
same use or characteristics, such as ASCII text files, binary object
files, etc.

fixed control area An area associated with a variable length record
available for controlling or assisting record access operations. Typical
uses include line numbers and printer format control information.

fixed-length record format Property of a file in which all records are

496

Glossary

of the same size. This format provides simplicity in determining the
exact location of a record in the file and eliminates the need to prefix a
record size field to each record.

floating (point) datum A numeric data type in which the number is
represented by a fraction (less than 1 and greater than or equal to %)
multiplied by 2 raised to a power. There are four floating point data
types: F_floating (4 bytes), D_floating (8 bytes), G_floating (8 bytes),
and H_floating (16 bytes)

foreign volume Any volume other than a Files-11 formatted volume
which may or may not be file structured.

fork process A dynamically created system process such as a proc-
ess that executes device driver code or the timer process. Fork
processes have minimal context. Fork processes are scheduled by the
hardware rather than by the software. The timer process is dispatched
directly by software interrupt. 1/0 driver processes are dispatched by
a fork dispatcher. Fork processes execute at software interrupt levels
and are dispatched for execution immediately. Fork processes remain
resident until they terminate.

frame pointer General register 13 (R13). By convention, FP contains
the base address of the most recent call frame on the stack.

fully associative cache A cache organization in which any block of
data from main memory can be placed anywhere in the cache. Ad-
dress comparision must take place against each block in the cache to
find any particular block. Contrast with direct mapping cache.

G_floating (point) datum A floating point datum consisting of 8 con-
tiguous bytes (64 bits) starting on an arbitrary byte boundary. The
value of the G_floating datum is in the approximate range
(+ or —) 0.56 X 10728 to 0.9 X 10%°8. The precision is approximately
one part in 252 or typically fifteen decimal digits.

general register Any of the sixteen 32-bit registers used as the pri-
mary operands of the native mode instructions. The general registers
include 12 general purpose registers which can be used as accumula-
tors, as counters, and as pointers to locations in main memory, and
the Frame Pointer (FP), Argument Pointer (AP), Stack Pointer (SP),
and Program Counter (PC) registers.

generic device name A device name that identifies the type of
device but not a particular unit; a device name in which the specific
controller and/or unit number is omitted.

giga Metric term used to represent the number 1 followed by nine
zeros.

497

Glossary

global page table The page table containing the master page table
entries for global sections.

global section A data structure (e.g., FORTRAN global common) or
shareable image section potentially available to all processes in the
system. Access is protected by privilege and/or group number of the
uIC.

global symbol A symbol defined in a module that is potentially avail-
able for reference by another module. The linker resolves (matches
references with definitions) global symbols. Contrast with local sym-
bol.

global symbol table (GST) In a library, an index of strongly defined
global symbols used to access the modules defining the global sym-
bols. The linker will also put global symbol tables into an image. For
example, the linker appends a global symbol table to executable im-
ages that are intended to run under the symbolic debugger, and it
appends a global symbol table to all shareable images.

group 1. A set of users who have special access privileges to each
other’s directories and files within those directories (unless protected
otherwise), as in the context “system, owner, group, world,” where
group refers to all members of a particular owner’s group. 2. A set of
jobs (processes and their subprocesses) who have access privileges
to a group’s common event flags and logical name tables, and may
have mutual process controlling privileges, such as scheduling,
hibernation, etc.

group number The first number in a User Identification Code (UIC).

H_floating (point) datum A floating point datum consisting of 16
contiguous bytes (128 bits) starting on an arbitrary byte boundary. The
value of the H_floating datum is in the approximate range
(+ or —) 0.84 X 10%%32 t0 0.59 X 10%°%2, The precision isapproximately
one partin 2''2 or typically 33 decimal digits.

hardware context The values contained in the following registers
while a process is executing: the Program Counter (PC); the Processor
Status Longword (PSL); the 14 general registers (RO through R13); the
four processor registers (POBR, POLR, P1BR and P1LR) that describe
the process virtual address space; the Stack Pointer (SP) for the cur-
rent access mode in which the processor is executing; plus the con-
tents to be loaded in the Stack Pointer for every access mode other
than the current access mode. While a process is executing, its hard-
ware context is continually being updated by the processor. While a
process is not executing, its hardware context is stored in its hardware
PCB.

498

Glossary

hardware process control block (PCB) A data structure known to
the processor that contains the hardware context when a process is
not executing. A process’ hardware PCB resides in its process header.

hibernation A state in which a process is inactive, but known to the
system with all of its current status. A hibernating process becomes
active again when a wake request is issued. It can schedule a wake
request before hibernating, or another process can issue its wake
request. A hibernating process also becomes active for the time suffi-
cient to service any AST it may receive while it is hibernating. Contrast
with suspension.

home block A block in the index file that contains the volume
identification, such as volume label and protection.

image An image consists of procedures and data that have been
bound together by the linker. There are three types of images: execu-
table, shareable, and system.

image activator A set of system procedures that prepare an image
for execution. The image activator establishes the memory manage-
ment data structures required both to map the image’s virtual pages to
physical pages and to perform paging.

image exit See exit.

image 1/0 segment That portion of the control region that contains

the RMS internal file access blocks (IFAB) and I/O buffers for the
image currently being executed by a process.

image name The file name of the file in which an image is stored.

image privileges The privileges assigned to an image when it is
linked. See process privileges.

image section (isect) A group of program sections (psects) with the
same attributes (such as read-only access, read/write access, abso-
lute, relocatable, etc.) that is the unit of virtual memory allocation for
an image.

immediate mode In immediate mode addressing, the PC is used as
the register in autoincrement mode addressing.

index The structure which allows retrieval of records in an indexed
file by key value. See key (indexed files).

index file The file on a Files-11 volume that contains the access
information for all files on the volume and enables the operating sys-
tem to identify and access the volume.

index file bit map A table in the index file of a Files-11 volume that
indicates which file headers are in use.

499

Glossary

index register A register used to contain an address offset.

indexed addressing mode Inindexed mode addressing, two
registers are used to determine the actual instruction operand: an
index register and a base operand specifier. The contents of the index
register are used as an index (offset) into a table or array. The base
operand specifier supplies the base address of the array (the base
operand address or BOA). The address of the actual operand is calcu-
lated by multiplying the contents of the index register by the size (in
bytes) of the actual operand and adding the result to the base operand
address. The addressing modes resulting from index mode address-
ing are formed by adding the suffix “indexed” to the addressing mode
of the base operand specifier: register deferred indexed, autoincre-
ment indexed, autoincrement deferred indexed (or absolute indexed),
autodecrement indexed, displacement indexed, and displacement de-
ferred indexed.

indexed file organization A file organization which allows random
retrieval of records by key values and sequential retrieval of records in
sorted order by key value. See key (indexed files).

indirect command file See command procedure.

input stream The source of commands and data. One of: the user’s
terminal, the batch stream, or an indirect command file.

instruction buffer A buffer in the processor used to contain bytes of
the instruction currently being decoded and to pre-fetch instructions
in the instruction stream. The control logic continously fetches data
from memory to keep the buffer full.

interleaving Assigning consecutive physical memory addresses
alternately between two memory controllers.

interlocked The property of a read followed by a write to the same
datum with no possibility of an intervening reference by a second
processor or /0 device. Examples are the Branch on Bit Interlocked
and Add Aligned Word Interlocked instructions.

interprocess communication facility A common event flag, mail-
box, or global section used to pass information between two or more
processes.

interrecord gap A blank space deliberately placed between data
records on the recording surface of a magnetic tape.

interrupt An event other than an exception or branch, jump, case, or
call instruction that changes the normal flow of instruction execution.
Interrupts are generally external to the process executing when the
interrupt occurs. See also device interrupt, software interrupt, and
urgent interrupt.

500

Glossary

interrupt priority level (IPL) The interrupt level at which the proces-
sor executes when an interrupt is generated. There are 31 possible
interrupt priority levels. IPL 1 is lowest, 31 highest. The levels arbitrate
contention for processor service. For example, a device cannot inter-
rupt the processor if the processor is currently executing at an inter-
rupt priority level greater than the interrupt priority level of the device’s
interrupt service routine.

interrupt service routine Theroutine executed whenadevice
interrupt occurs.

interrupt stack The system-wide stack used when executing in in-
terrupt service context. At any time, the processor is either in a proc-
ess context executing in user, supervisor, executive or kernel mode,
or in system-wide interrupt service context operating with kernel privi-
leges, as indicated by the interrupt stack and current mode bits in the
PSL. The interrupt stack is not context switched.

interrupt stack pointer The stack pointer for the interrupt stack.
Unlike the stack pointers for process context stacks, which are stored
in the hardware PCB, the interrupt stack pointer is stored in an internal
register.

interrupt vector See vector.
1/0 driver See driver.

/0 function An 1/O operation that is interpreted by the operating
system and typically results in one or more physical 1/0 operations.

I/O function code A 6-bit value specified in a Queue I/0 Request
system service that describes the particular 1/0 operation to be per-
formed (e.g., read, write, rewind).

I/0 function modifier A 10-bit value specified in a Queue 1/0
Request system service that modifies an 1/0 function code (e.g., read
terminal input no echo).

/0 lockdown The state of a page such that it cannot be paged or
swapped out of memory until any 1/0 in progress to that page is
completed.

I/O rundown An operating system function in which the system
cleans up any I/0 in progress when an image exits.

I/0 space The region of physical address space that contains the
configuration registers, and device control/status and data registers.

I/O status block A data structure associated with the Queue 1/0
Request system service. This service optionally returns a status code,
number of bytes transferred, and device- and function-dependent in-

501

Glossary

formation in an 1/0 status block. It is not returned from the service call,
but filled in when the 1/0 request completes.

job 1. A job is the accounting unit equivalent to a process and the
collection of all the subprocesses, if any, that it and its subprocesses
create. Jobs are classified as batch and interactive. For example, the
job controller creates an interactive job to handle a user’s requests
when the user logs onto the system and it creates a batch job when the
symbiont manager passes a command input file to it. 2. A print job.

job controller The system process that establishes a job’s process
context, starts a process running the LOGIN image for the job, main-
tains the accounting record for the job, manages symbionts, and ter-
minates a process and its subprocesses.

job queue A list of files that a process has supplied for processihg
by a specific device, for example, a line printer.

kernel mode The most privileged processor access mode (mode 0).
The operating system’s most privileged services, such as 1/0 drivers
and the pager, run in kernel mode.

key

indexed files: A character string, a packed decimal number, a 2- or 4-
byte unsigned binary number, or a 2- or 4-byte signed integer within
each data record in an indexed file. You define the length and location
within the records; VAX-11 RMS uses the key to build an index. See
primary key, alternate key, and random access by key value.

relative files: The relative record number of each data record in a data
file; VAX-11 RMS uses the relative record numbers to identify and
access data records in a relative file in random access mode. See
relative record number.

lexical function A command language construct that the command
interpreter evaluates and substitutes before it performs expression
analysis on a command string. Lexical functions return information
about the current process, such as UIC or default directory; and about
character strings, such as length or substring locations.

librarian A program that allows the user to create, update, modify,
list, and maintain object library, image library, and assembler macro
library files.

library file A direct access file containing one or more modules of
the same module type.

limit The size or number of given items requiring system resources
(such as mailboxes, locked pages, /0 requests, open files, etc.) thata
job is allowed to have at any one time during execution, as specified

502

Glossary

by the system manager in the user authorization file. See also quota.

line number A number used to identify a line of text in a file proc-
essed by a text editor.

linker A program that reads one or more-object files created by
language processors and produces an executable image file, a
shareable image file, or a system image file.

linking The resolution of external references between object mod-
ules used to create an image, the acquisition of referenced library
routines, service entry points, and data for the image, and the assign-
ment of virtual addresses to components of an image.

literal mode In literal mode addressing, the instruction operand is a
constant whose value is expressed in a 6-bit field of the instruction. If
the operand data type is byte, word, longword, quadword, or octa-
word, the operand is zero-extended and can express values in the
range 0 through 63 (decimal). If the operand datatypeisF ,D ,G ,or
H_floating, the 6-bit field is composed of two 3-bit fields, one for the
exponent and the other for the fraction. The operand is extended to
F_,D_,G_, orH_floating format.

locality See program locality.

local symbol A symbol meaningful only to the module that defines it.
Symbols not identified to a language processor as global symbols are
considered to be local symbols. Alanguage processor resolves
(matches references with definitions) local symbols. They are not
known to the linker and cannot be made available to another object
module. They can, however, be passed through the linker to the sym-
bolic debugger. Contrast with global symbol.

locate mode Technique used for a record input operation in which
the data records are not copied from the I/0 buffer. See move mode.

locking a page in memory Making a page in an image ineligible for
either paging or swapping. A page stays locked in memory until it is
specifically unlocked.

locking a page in the working set Making a page in an image ineli-
gible for paging out of the working set for the image. The page can be
swapped when the process is swapped. A page stays locked in a
working set until it is specifically unlocked.

logical block number A number used to identify a block on a mass
storage device. The number is a volume-relative address rather than
its physical (device-oriented) address or its virtual (file-relative) ad-
dress. The blocks that constitute the volume are labeled sequentially
starting with logical block 0.

503

Glossary

logical 1/O function A set of I/0 operations (e.g., read and write
logical block) that allow restricted direct access to device level 1/0
operations using logical block addresses.

logical name A user-specified name for any portion or all of a file
specification. For example, the logical name INPUT can be assigned to
a terminal device from which a program reads data entered by a user.
Logical name assignments are maintained in logical name tables for
each process, each group, and the system. A logical name can be
created and assigned a value permanently or dynamically.

logical name table A table that contains a set of logical names and
their equivalence names for a particular process, a particular group,
or the system.

logical 1/0 functions A set of I/0 functions that allow restricted
direct access to device level I/0 operations.

logical record A group of related fields treated as a unit.

longword Four contiguous bytes (32 bits) starting on an addressable
byte boundary. Bits are numbered from right to left, 0 through 31. The
address of the longword is the address of the byte containing bit 0.
When interpreted arithmetically, a longword is a 2's complement in-
teger with significance increasing from bit 0 to bit 30. When interpret-
ed as a signed integer, bit 31 is the sign bit. The value of the signed
integer is in the range —2,147,483,648 to 2,147,483,647. When in-
terpreted as an unsigned integer, significance increases from bit O to
bit 31. The value of the unsigned integer is in the range 0 through
4,294,967,295.

macro A statement that requests a language processor to generate
a predefined set of instructions.

mailbox A software data structure that is treated as a record-orient-
ed device for general interprocess communication. Communication
using a mailbox is similar to other forms of device-independent 1/0.
Senders perform a write to a mailbox, the receiver performs a read
from that mailbox. Some system-wide mailboxes are defined: the er-
ror logger and OPCOM read from system-wide mailboxes.

main memory See physical memory.

mapping window A subset of the retrieval information for a file that
is used to translate virtual block numbers to logical block numbers.

mass storage device A device capable of reading and writing data
on mass storage media such as a disk pack or a magnetic tape reel.

member number The second number in a user identification code
that uniquely identifies that code.

504

Glossary

memory management The system functions that include the hard-
ware's page mapping and protection and the operating system’s im-
age activator and pager.

Memory Mapping Enable (MME) A bit in a processor register that
governs address translation.

modify access type The specified operand of an instruction or
procedure is read, and is potentially modified and written, during that
instruction’s or procedure’s execution.

module 1. A portion of a program or program library, as in a source
module, object module, or image module. 2. A board, usually made of
plastic covered with an electrical conductor, on which logic devices
(such as transistors, resistors, and memory chips) are mounted, and
circuits connecting these devices are etched, as in a logic module.

Monitor Console Routine (MCR) The command interpreter in an
RSX-11 system.

mount a volume 1. To logically associate a volume with the physical
unit on which itis loaded (an activity accomplished by system software
at the request of an operator). 2. To load or place a magnetic tape or
disk pack on a drive and place the drive online (an activity accom-
plished by a system operator).

move mode Technique used for a record transfer in which the data
records are copied between the 1/0 buffer and your program buffer
for calculations or operations on the record. See locate mode.

mutex A semaphore that is used to control exclusive access to a
region of code that can share a data structure or other resource. The
mutex (mutual exclusion) semaphore ensures that only one process at
a time has access to the region of code.

name block (NAM) An RMS user data structure that contains sup-
plementary information used in parsing file specifications.

native image An image whose instructions are executed in native
mode.

native mode The processor’s primary execution mode in which the
programmeéd instructions are interpreted as byte-aligned, variable-
length instructions that operate on byte, word, longword, quadword,
and octaword integer, F_, D_, G_ and H_floating format, character
string, packed decimal, and variable-length bit field data. The instruc-
tion execution mode other than compatibility mode.

network A collection of interconnected individual computer sys-
tems.

505

Glossary

nibble The low-order or high-order four bits of a byte.
node An individual computer system in a network.

null process A small system process that is the lowest priority
process in the system and takes one entire priority class. One function
of the null process is to accumulate idle processor time.

numeric string A contiguous sequence of bytes representing up to
31 decimal digits (one per byte) and possibly a sign. The numeric
string is specified by its lowest addressed location, its length, and its
sign representation.

object module The binary output of a language processor such as
the assembler or a compiler, which is used as input to the linker.

object time system (OTS) See Run Time Procedure Library.

octaword Sixteen contiguous bytes (128 bits) starting on an ad-
dressable byte boundary. Bits are numbered from right to left, 0 to
127. An octaword is identified by the address of the byte containing
the low-order bit (bit 0).

offset A fixed displacement from the beginning of a data structure.
System offsets for items within a data structure normally have an asso-
ciated symbolic name used instead of the numeric displacement.
Where symbols are defined, programmers always reference the sym-
bolic names for items in a data structure instead of using the numeric
displacement.

opcode The pattern of bits within an instruction that specify the op-
eration to be performed.

operand specifier The pattern of bits in an instruction that indicate
the addressing mode, a register and/or displacement, which, taken
together, identify an instruction operand.

operand specifier type The access type and data type of an instruc-
tion’s operand(s). For example, the test instructions are of read access
type, since they only read the value of the operand. The operand can
be of byte, word, or longword data type, depending on whether the
opcode is for the TSTB (test byte), TSTW (test word), or TSTL (test
longword) instruction.

Operator Communication Manager (OPCOM) A system process
that is always active. OPCOM receives input from a process that wants
to inform an operator of a particular status or condition, passes a
message to the operator, and tracks the message.

operator's console Any terminal identified as a terminal attended
by a system operator.

506

Glossary

owner Inthe context “system, owner, group, world,” an owner is the
particular member (of a group) to which a file, global section, mailbox,
or event flag cluster belongs.

owner process The process (with the exception of the job controll-
er) or subprocess that created a subprocess.

packed decimal A method of representing a decimal number by
storing a pair of decimal digits in one byte, taking advantage of the fact
that only four bits are required to represent the numbers 0 through 9.

packed decimal string A contiguous sequence of up to 16 bytes
interpreted as a string of nibbles. Each nibble represents a digit ex-
cept the low-order nibble of the highest addressed byte, which repre-
sents the sign. The packed decimal string is specified by its lowest
addressed location and the number of digits.

page 1. A set of 512 contiguous byte locations used as the unit of
memory mapping and protection. 2. The data between the beginning
of file and a page marker, between two markers, or between a marker
and the end of a file.

page fault An exception generated by a reference to a page which is
not mapped into a working set.

page fault cluster size The number of pages read in on a page fault.

page frame number (PFN) The address of the first byte of a page in
physical memory. The high-order 21 bits of the physical address of the
base of a page.

page marker A character or characters (generally a form feed) that
separates pages in a file that is processed by a text editor.

pager A setof kernel mode procedures that executes as the result of
a page fault. The pager makes the page for which the fault occurred
available in physical memory so that the image can continue execu-
tion. The pager and the image activator provide the operating system’s
memory management functions.

page table entry (PTE) The data structure that identifies the location
and status of a page of virtual address space. When a virtual page is in
memory, the PTE contains the page frame number needed to map the
virtual page to a physical page. When it is not in memory, the page
table entry contains the information needed to locate the page on
secondary storage (disk).

paging The action of bringing pages of an executing process into
physical memory when referenced. When a process executes, all of its
pages are said to reside in virtual memory. Only the actively used
pages, however, need to reside in physical memory. The remaining

507

Glossary

pages can reside on disk until they are needed in physical memory. In
this system, a process is paged only when it references more pages
than it is allowed to have in its working set. When the process refers to
a page not in its working set, a page fault occurs. This causes the
operating system’s pager to read in the referenced page if it is on disk
(and, optionally, other related pages depending on a cluster factor),
replacing the least recently faulted pages as needed. A process pages
only against itself.

parameter Seecommand parameter.
per-process address space See process address space.

physical address The address used by hardware to identify a
location in physical memory or on directly addressable secondary
storage devices such as a disk. A physical memory address consists
of a page frame number and the number of a byte within the page. A
physical disk block address consists of a cylinder or track and sector
number.

physical address space The set of all possible 30-bit physical ad-
dresses that can be used to refer to locations in memory (memory
space) or device registers (I/0 space).

physical block A block on a mass storage device referred to by its
physical (device-oriented) address rather than a logical (volume-rela-
tive) or virtual (file-relative) address.

physical I/O functions A set of I/0 functions that allow access to all
device level I/0 operations except maintenance mode.

physical memory The memory modules connected to the SBI that
are used to store: 1) instructions that the processor can directly fetch
and execute, and 2) any other data that a processor is instructed to
manipulate. Also called main memory.

position-dependent code Code that can execute properly only in
the locations in virtual address space that are assigned to it by the
linker.

position-independent code Code that can execute properly without
modification wherever it is located in virtual address space, even if its
location is changed after it has been linked. Generally, this code uses
addressing modes that form an effective address relative to the PC.

primary key The mandatory key within the data records of an in-
dexed file; used by VAX-11 RMS to determine the placement of re-
cords within the file and to build the primary index. See key (indexed
files) and alternate key.

508

Glossary

primary vector A location that contains the starting address of a
condition handler to be executed when an exception condition occurs.
If a primary vector is declared, that condition handler is the first
handler to be executed.

private section An image section of a process that is not shareable
among processes. See also global section.

privilege See process privilege, user privilege, and image privilege.

privileged instructions In general, any instructions intended for use
by the operating system or privileged system programs. In particular,
instructions that the processor will not execute unless the current ac-
cess mode is kernel mode (e.g., HALT, SVPCTX, LDPCTX, MTPR, and
MFPR).

procedure 1. A routine entered via a Call instruction. 2. See com-
mand procedure.

process The basic entity scheduled by the system software that pro-
vides the context in which an image executes. A process consists of an
address space and both hardware and software context.

process address space See process space.
process context The hardware and software contexts of a process.

process control block (PCB) A data structure used to contain proc-
ess context. The hardware PCB contains the hardware context. The
software PCB contains the software context, which includes a pointer
to the hardware PCB.

process header A data structure that contains the hardware PCB,
accounting and quota information, process section table, working set
list, and the page tables defining the virtual layout of the process.

process header slots That portion of the system address space in
which the system stores the process headers for the processes in the
balance set. The number of process header slots in the system deter-
mines the number of processes that can be in the balance set at any
one time.

process identification (PID) The operating system’s unique 32-bit
binary value assigned to a process.

process 1/0 segment That portion of a process control region that
contains the process permanent RMS internal file access block for
each open file, and the I/O buffers, including the command interpre-
ter’'s command buffer and command descriptors.

process name A 1-to 15-character ASCII string that can be used to
identify processes executing under the same group number.

509

Glossary

processor register A part of the processor used by the operating
system software to control the execution states of the computer
system. They include the system base and length registers, the pro-
gram and control region base and length registers, the system control
block base register, the software interrupt request register, and many
more.

Processor Status Longword (PSL) A system programmed proces-
sor register consisting of a word of privileged processor status and the
PSW. The privileged processor status information includes: the cur-
rent IPL (interrupt priority level), the previous access mode, the cur-
rent access mode, the interrupt stack bit, the trace fault pending bit,
and the compatibility mode bit.

Processor Status Word (PSW) The low-order word of the Processor
Status Longword. Processor status information includes: the condition
codes (carry, overflow, zero, negative), the arithmetic trap enable bits
(integer overflow, decimal overflow, floating underflow), and the trace
enable bit.

process page tables The page tables used to describe process
virtual memory.

process priority The priority assigned to a process for scheduling
purposes. The operating system recognizes 32 levels of process
priority, where 0 is low and 31 high. Levels 16 through 31 are used for
time-critical processes. The system does not modify the priority of a
time-critical process (although the system manager or process itself
may). Levels 0 through 15 are used for normal processes. The system
may temporarily increase the priority of a normal process based on
the activity of the process.

process privileges The privileges granted to a process by the sys-
tem, which are a combination of user privileges and image privileges.
They include, for example, the privilege to: affect other processes
associated with the same group as the user’s group, affect any proc-
ess in the system regardless of UIC, set process swap mode, create
permanent event flag clusters, create another process, create a mail-
box, and perform direct I/0 to a file-structured device.

process section See private section.

process space The lowest-addressed half of virtual address space,
where per-process instructions and data reside. Process space is di-
vided into a program region and a control region.

Program Counter (PC) General register 15 (R15). At the beginning
of an instruction’s execution, the PC normally contains the address of

510

Glossary

a location in memory from which the processor will fetch the next
instruction it will execute.

program locality A characteristic of a program that indicates how
close or far apart the references to locations in virtual memory are
over time. A program with a high degree of locality does not refer to
many widely scattered virtual addresses in a short period of time.

programmer number See member number.

program region The lowest-addressed half of process address
space (PO space). The program region contains the image currently
being executed by the process and other user code called by the
image.

Program region Base Register (POBR) The processor register, or
its equivalent in a hardware process control block, that contains the
base virtual address of the page table entry for virtual page number 0
in a process program region.

Program region Length Register (POLR) The processor register, or
its equivalent in a hardware process control block, that contains the
number of entries in the page table for a process program region.

program section (psect) A portion of a program with a given protec-
tion and set of storage management attributes. Program sections that
have the same attributes are gathered together by the linker to form an
image section.

project number See group number or account number.
pure code Seere-entrantcode.

quadword Eight contiguous bytes (64 bits) starting on an address-
able byte boundary. Bits are numbered from right to left, 0 to 63. A
quadword is identified by the address of the byte containing the low-
order bit (bit 0). When interpreted arithmetically, a quadword is a 2’s
complement integer with significance increasing from bit 0 to bit 62.
Bit 63 is used as the sign bit. The value of the integer is in the range
—263t0 283 — 1,

qualifier A portion of a command string that modifies a command
verb or command parameter by selecting one of several options. A
qualifier, if present, follows the command verb or parameter to which
it applies and is in the format: “/qualifier:option.” For example, in the
command string “PRINT filename/COPIES:3,” the COPIES qualifier
indicates that the user wants three copies of a given file printed.

queue 1. n. A circular, doubly-linked list. See system queues. v. To
make an entry in a list or table, perhaps using the INSQUE instruction.
2. See job queue.

511

Glossary

queue priority The priority assigned to a job placed in a spooler
queue or a batch queue.

quota The total amount of a system resource, such as CPU time, that
a job is allowed to use in an accounting period, as specified by the
system manager in the user authorization file. See also limit.

random access by key Indexed files only: Retrieval of a data record
in an indexed file by either a primary or alternate key within the data
record. See key (indexed files).

random access by record’s file address The retrieval of a record
by its unique address, which is provided to the program by RMS. This
method of access is the only means of randomly accessing a sequen-
tially organized file containing variable length records.

random access by relative record number Retrieval of a record by
its relative record number. See relative record number. For relative
files, random access by relative record number is synonymous with
random access by key. See random access by key (relative files only).

read access type An instruction or procedure operand attribute in-
dicating that the specified operand is only read during instruction or
procedure execution.

record A set of related data that your program treats as a unit.

record access block (RAB) An RMS user data structure that
represents a request for a record access stream. A RAB relates to
operations on the records within a file, such as UPDATE, DELETE, or
GET.

record access mode The method used in RMS for retrieving and
storing records in a file. One of three methods: sequential, random,
and record’s file address.

record blocking The technique of grouping multiple rcords into a
single block. On magnetic tape, an IRG is placed after the block rather
than after each record. This technique reduces the number of 1/0
transfers required to read or write the data; and, in addition (for
magnetic tape), increases the amount of usable storage area. Record
blocking also applies to disk files.

record cell A fixed-length area in a relative file that can contain a
record. The concept of fixed-length record cells lets VAX-11 RMS
directly calculate the record’s actual position in the file.

record format The way a record physically appears on the recording
surface of the storage medium. The record format defines the method
for determining record length.

512

Glossary

record length The size of a record; that is, the number of bytes in a
record.

record locking A facility that prevents access to a record by more
than one record stream or process until the initiating record stream or
process releases the record.

Record Management Services Asetofoperatingsystem pro-
cedures that are called by programs to process files and records
within files. RMS allows programs to issue READ and WRITE requests
at the record level (record 1/0) as well as read and write blocks (block
1/0). RMS is an integral part of the system software. RMS procedures
run in executive mode.

record-oriented device A device such as a terminal, line printer, or
card reader, on which the largest unit of data a program can access in
one I/0 operation is the device's physical record.

record’s file address The unique address of a record in a file, which
is returned by RMS whenever a record is accessed, that allows re-
cords in disk files to be access randomly regardless of file organiza-
tion. This address is valid only for the life of the file. If an indexed file is
reorganized, then the RFA of each record will typically change.

re-entrant code Code that is never modified during execution. It is
possible to let many users share the same copy of a procedure or
program written as re-entrant code.

register A storage location in hardware logic other than main mem-
ory. See also general register, processor register, and device register.

register deferred indexed mode An indexed addressing mode in
which the base operand specifier uses register deferred mode
addressing.

register deferred mode In register deferred mode addressing, the
contents of the specified register are used as the address of the actual
instruction operand.

register mode In register mode addressing, the contents of the
specified register are used as the actual instruction operand.

relative file organization The arrangement of records in a file where
each record occupies a cell of equal length within a bucket. Each cell
is assigned a successive number, called a relative record number,
which represents the cell’s position relative to the beginning of the file.

relative record number An identification number used to specify
the position of arecord cell relative to the beginning of the file; used as
the key during random access by key mode to relative files.

513

Glossary

resource A physical part of the computer system such as a device
or memory, or an interlocked data structure such as a mutex. Quotas
and limits control the use of physical resources.

resource wait mode An execution state in which a process indicates
that it will wait until a system resource becomes available when it
issues a service request requiring a resource. If a process wants notifi-
cation when a resource is not available, it can disable resource wait
mode during program execution.

return status code See status code.

RMS-11 A set of routines which is linked with compatibility mode
programs, and provides similar functional capabilities to VAX-11
RMS. The file organizations and record formats used by RMS-11 are
identical to those of VAX-11 RMS.

Run Time Procedure Library The collection of procedures available
to native mode images at run time. These library procedures (such as
trigonometric functions, etc.) are common to all native mode images,
regardless of the language processor used to compile or assemble the
program.

scatter/gather The ability to transfer in one |I/0O operation data from
discontiguous pages in memory to contiguous blocks on disk, or data
from contiguous blocks on disk to discontiguous pages in memory.

secondary storage Random access mass storage.

secondary vector A location that identifies the starting address of a
condition handler to be executed when a condition occurs and the
primary vector contains zero or the handler to which the primary vec-
tor points chooses not to handle the condition.

section A portion of process virtual memory that has common
memory management attributes (protection, access, cluster factor,
etc.). It is created from an image section, a disk file, or as the result of a
Create Virtual Address Space system service. See global section, pri-
vate section, image section, and program section.

self-relative queue A circularly linked list whose forward and back-
ward links use the address of the entry in which they occur as the base
address for the link displacement to the linked entry. Contrast with
absolute addresses used to link a queue.

sequential file organization A file organization in which records ap-
pear in the order in which they were originally written. The records can
be fixed length or variable length.

sequential record access mode Record storage or retrieval which
starts at a designated point in the file and continues in one-after-the-

514

Glossary

other fashion through the file. That is, records are accessed in the
order in which they physically appear in the file.

shareable image An image that has all of its internal references
resolved, but which must be linked with an object module(s) to pro-
duce an executable image. A sharable image cannot be executed. A
shareable image file can be used to contain a library of routines. A
shareable image can be used to create a global section by the system
manager.

shell process A predefined process that the job initiator copies to
create the minimum context necessary to establish a process.

signal 1. An electrical impulse conveying information. 2. The
software mechanism used to indicate that an exception condition was
detected.

slave terminal A terminal from which it is not possible to issue com-
mands to the command interpreter. A terminal assigned to application
software.

small process A system process that has no control region in its
virtual address space and has an abbreviated context. Examples are
the working set swapper and the null process. A small process is
scheduled in the same manner as user processes, but must remain
resident during its execution.

software context The context maintained by the operating system
that describes a process. See software process control block (PCB).

software interrupt An interrupt generated on interrupt priority level
1 through 15, which can be requested only by software.

software process control block (PCB) The data structure used to
contain a process’ software context. The operating system defines a
software PCB for every process when the process is created. The
software PCB includes the following kinds of information about the
process: current state; storage address if it is swapped out of memory;
unique identification of the process, and address of the process head-
er (which contains the hardware PCB). The software PCB resides in
system region virtual address space. It is not swapped with a process.

software priority See process priority and queue priority.

spooling output spooling: The method by which output to a low-
speed peripheral device (such as a line printer) is placed into queues
maintained on a high-speed device (such as disk) to await transmis-
sion to the low-speed device. Input spooling: the method by which
input from a low-speed peripheral (such as the card reader) is placed
into queues maintained on a high-speed device (such as disk) to await
transmission to a job processing that input.

515

Glossary

spool queue The list of files supplied by processes that are to be
processed by a symbiont. For example, a line printer queue is a list of
files to be printed on the line printer.

stack An area of memory set aside for temporary storage, or for
procedure and interrupt service linkages. A stack uses the last-in,
first-out concept. As items are added to (“pushed on”) the stack, the
stack pointer decrements. As items are retrieved from (“popped off”)
the stack, the stack pointer increments.

stack frame A standard data structure built on the stack during a
procedure call, starting from the location addressed by the FP to lower
addresses, and popped off during a return from procedure. Also
called call frame.

stack pointer General register 14 (R14). SP contains the address of
the top (lowest address) of the processor-defined stack. Reference to
SP will access one of the five possible stack pointers (kernel, execu-
tive, supervisor, user, or interrupt) depending on the value in the cur-
rent mode and interrupt stack bits in the Processor Status Longword
(PSL).

state queue A list of processes in a particular processing state. The
scheduler uses state queues to keep track of processes’ eligibility to
execute. They include: processes waiting for a common event flag,
suspended processes, and executable processes.

status code A longword value that indicates the success or failure of
a specific function. For example, system services always return a stat-
us code in RO upon completion.

store through See write through.

strong definition Definition of a global symbol that is explicitly avail-
able for reference by modules linked with the module in which the
definition occurs. The linker always lists a global symbol with a strong
definition in the symbol portion of the map. The librarian always
includes a global symbol with a strong definition in the global symbol
table of alibrary.

strong reference A reference to a global symbol in an object mod-
ule that requests the linker to report an error if it does not find a
definition for the symbol during linking. If a library contains the defi-
nition, the linker incorporates the library module defining the global
symbol into the image containing the strong reference.

subprocess A subsidiary process created by another process. The
process that creates a subprocess is its owner. A subprocess receives
resource quotas and limits from its owner. When an owner process is

516

Glossary

removed from the system, all its subprocesses (and their sub-
processes) are also removed.

supervisor mode The third most privileged processor access mode
(mode 2). The operating system’s command interpreter runs in super-
visor mode.

suspension A state in which a process is inactive, but known to the
system. A suspended process becomes active again only when
another process requests the operating system to resume it. Contrast
with hibernation.

swap mode A process execution state that determines the eligibility
of a process to be swapped out of the balance set. If process swap
mode is disabled, the process working set is locked in the balance set.

swapping The method for sharing memory resources among sever-
al processes by writing an entire working set to secondary storage
(swap out) and reading another working set into memory (swap in).
For example, a process’ working set can be written to secondary sto-
rage while the process is waiting for I/0 completion on a slow device. It
is brought back into the balance set when I/0 completes. Contrast
with paging.

switch See (command) qualifier.

symbiont A full process that transfers record-oriented data to or
from a mass storage device. For example, an input symbiont transfers
data from card readers to disks. An output symbiont transfers data
from disks to line printers.

symbiont manager The function (in the system process called the
job controller) that maintains spool queues, and dynamically creates
symbiont processes to perform the necessary I/0 operations.

symbol See local symbol, global symbol, and universal global sym-
bol.

Synchronous Backplane Interconnect (SBI) The part of the hard-
ware that interconnects the processor, memory controllers,
MASSBUS adapters, and the UNIBUS adapter.

synchronous record operation A mode of record processing in
which a user program issues a record read or write request and then
waits until that request is fulfilled before continuing to execute.

system In the context “system, owner, group, world,” the system
refers to the group numbers that are used by operating system and its
controlling users, the system operators and system manager.

system address space See system space and system region.

517

Glossary

System Base Register (SBR) A processor register containing the
physical address of the base of the system page table.

system buffered /0 An 1/0 operation, such as terminal or mailbox
1/0, in which an intermediate buffer from the system buffer pool is
used instead of a process-specified buffer. Contrast with direct I/0.

System Control Block (SCB) The data structure in system space
that contains all the interrupt and exception vectors known to the
system.

System Control Block Base register (SCBB) A processor register
containing the base address of the system control block.

system device The random access mass storage device unit on
which the volume containing the operating system software resides.

system dynamic memory Memory reserved for the operating sys-
tem to allocate as needed for temporary storage. For example, when
an image issues an 1/0 request, system dynamic memory is used to
contain the 1/0 request packet. Each process has a limit on the am-
ount of system dynamic memory that can be allocated for its use at
one time.

System Identification Register A processor register which contains
the processor type and serial number.

system image The image that is read into memory from secondary
storage when the system is started up.

System Length Register (SLR) A processor register containing the
length of the system page table in longwords, that is, the number of
page table entries in the system region page table.

System Page Table (SPT) The data structure that maps the system
region virtual addresses, including the addresses used to refer to the
process page tables. The System Page Table (SPT) contains one Page
Table Entry (PTE) for each page of system region virtual memory. The
physical base address of the SPT is contained in a register called the
SBR.

system process A process that provides system-level functions.
Any process that is part of the operating system. See also small proc-
ess, fork process.

system programmer A person who designs and/or writes operating
systems, or who designs and writes procedures or programs that pro-
vide general purpose services for an application system.

system queue A queue used and maintained by operating system
procedures. See also state queues.

518

Glossary

system region The third quarter of virtual address space. The lo-
west-addressed half of system space. Virtual addresses in the system
region are shareable between processes. Some of the data structures
mapped by system region virtual addresses are: system entry vectors,
the System Control Block (SCB), the System Page Table (SPT), and
process page tables.

system services Procedures provided by the operating system that
can be called by user processes.

system space The highest-addressed half of virtual address space.
See also system region.

system virtual address A virtual address identifying a location
mapped by an address in system space.

system virtual space See system space.

task An RSX-11/1AS term for a process and image bound together.

terminal The general name for those peripheral devices that have
keyboards and video screens or printers. Under program control, a
terminal enables people to type commands and data on the keyboard
and receive messages on the video screen or printer. Examples of
terminals are the LA36 DECwriter hard-copy terminal and VT100
video display terminal.

time-critical process A process assigned to a software priority level
between 16 and 31, inclusive. The scheduling priority assigned to a
time-critical process is never modified by the scheduler, although it
can be modified by the system manager or process itself.

timer A system fork process that maintains the time of day and the
date. It also scans for device timeouts and performs time-dependent
scheduling upon request.

track A collection of blocks at a single radius on one recording sur-
face of a disk.

transfer address The address of the location containing a program
entry point (the firstinstruction to execute).

translation buffer An internal processor cache containing transla-
tions for recently used virtual addresses.

trap An exception condition that occurs at the end of the instruction
that caused the exception. The PC saved on the stack is the address of
the next instruction that would normally have been executed. All soft-
ware can enable and disable some of the trap conditions with a single
instruction.

519

Glossary

trap enables Three bits in the Processor Status Word that control
the processor’s action on certain arithmetic exceptions.

two’s complement A binary representation for integers in which a
negative number is one greater than the bit complement of the posi-
tive number.

two-way associative cache A cache organization which has two
groups of directly mapped blocks. Each group contains several blocks
for each index position in the cache. A block of data from main
memory can go into any group at its proper index position. A two-way
associative cache is a compromise between the extremes of fully as-
sociative and direct mapping cache organizations that takes advan-
tage of the features of both.

type ahead A terminal handling technique in which the user can
enter commands and data while the software is processing a previous-
ly entered command. The commands typed ahead are not echoed on
the terminal until the command processor is ready to process them.
They are held in a type ahead buffer.

unit record device A device such as a card reader or line printer.

universal global symbol A global symbol in a shareable image that
can be used by modules linked with that shareable image. Universal
global symbols are typically a subset of all the global symbols in a
shareable image. When creating a shareable image, the linker ensures
that universal global symbols remain available for reference after sym-
bols have been resolved.

unwind the call stack To remove call frames from the stack by
tracing back through nested procedure calls using the current
contents of the FP register and the FP register contents stored on the
stack for each call frame.

urgent interrupt An interrupt received on interrupt priority levels 24
through 31. These can be generated only by the processor for the
interval clock, serious errors, and power fail.

user authorization file A file containing an entry for every user that
the system manager authorizes to gain access to the system. Each
entry identifies the user name, password, default account, User Identi-
fication Code (UIC), quotas, limits, and privileges assigned to individu-
als who use the system.

user environment test package (UETP) A collection of routines that
verify that the hardware and software systems are complete, properly
installed, and ready to be used.

User File Directory (UFD) See directory.
520

Glossary

User ldentification Code (UIC) The pair of numbers assigned to
users and to files, global sections, common event flag clusters, and
mailboxes that specifies the type of access (read and/or write access,
and in the case of files, execute and/or delete access) available to the
owners, group, world, and system. It consists of a group number and a
member number separated by a comma.

user mode The least privileged processor access mode (mode 3).
User processes and the Run Time Library procedures run in user
mode.

user name The name that a person types on a terminal to log on to
the system.

user number See member number.

user privileges The privileges granted a user by the system manag-
er. See process privileges.

utility A program that provides a set of related general purpose
functions, such as a program development utility (an editor, a linker,
etc.), a file management utility (file copy or file format translation pro-
gram), or operations management utility (disk backup/restore,
diagnostic program, etc.).

value return registers The general registers RO and R1 used by
convention to return function values. These registers are not pre-
served by any called procedures. They are available as temporary
registers to any called procedure. All other registers (R2, R3,...,R11,
AP, FP, SP, PC) are preserved across procedure calls.

variable-length bit field A set of 0 to 32 contiguous bits located
arbitrarily with respect to byte boundaries. A variable bit field is speci-
fied by four attributes: 1) the address A of a byte, 2) the bit position P
of the starting location of the bit field with respect to bit 0 of the byte at
address A, 3) the size, in bits, of the bit field, and 4) whether the field is
signed or unsigned.

variable-length record format A file format in which records are not
necessarily the same length.

variable with fixed-length control record format Property of a file
in which records of variable-length contain an additional fixed control
area capable of storing data that may have no bearing on the other
contents of the record. Variable with fixed-length control record for-
matis not applicable to indexed files.

VAX-11 Record Management Services (VAX-11 RMS) The file and
record access subsystem of the VAX/VMS operating system for VAX.
VAX-11 RMS helps your application program process records within

521

Glossary

files, thereby allowing interaction between your application program
and its data.

vector 1. A interrupt or exception vector is a storage location known
to the system that contains the starting address of a procedure to be
executed when a given interrupt or exception occurs. The system
defines separate vectors for each interrupting device controller and
for classes of exceptions. Each system vector is a longword. 2. For
exception handling, users can declare up to two software exception
vectors (primary and secondary) for each of the four access modes.
Each vector contains the address of a condition handler. 3. A one-
dimensional array.

version number 1. The field following the file type in a file specifica-
tion. It begins with a period (.) and is followed by a number which
generally identifies it as the latest file created of all files having the
identical file specification but for version number. 2. The number used
to identify the revision level of program.

virtual address A 32-bit integer identifying a byte “location” in
virtual address space. The memory management hardware translates
a virtual address to a physical address. The term “virtual address”
may also refer to the address used to identify a virtual block on a mass
storage device.

virtual address space The set of all possible virtual addresses that
an image executing in the context of a process can use to identify the
location of an instruction or data. The virtual address space seen by
the programmer is a linear array of 4,294,967,296 (2%?) byte ad-
dresses.

virtual block A block on a mass storage device referred to by its file-
relative address rather than its logical (volume-oriented) or physical
(device-oriented) address. The first block in a file is always virtual
block 1.

virtuai i/O functions A set of I/0 functions that must be interpreted
by an ancillary control process.

virtual memory The set of storage locations in physical memory and
on disk that are referred to by virtual addresses. From the program-
mer’s viewpoint, the secondary storage locations appear to be loca-
tions in physical memory. The size of virtual memory in any system
depends on the amount of physical memory available and the amount
of disk storage used for non-resident virtual memory.

virtual page number The virtual address of a page of virtual memo-
ry.
522

Glossary

volume
Disks: An ordered set of 512-byte blocks. The basic medium that
carries a Files-11 structure.

Magnetic tape: A reel of magnetic tape, which may contain a part of a
file, a complete file, or more than onefile.

volume set A collection of related volumes.

wait To become inactive. A process enters a process wait state when
the process suspends itself, hibernates, or declares that it needs to
wait for an event, resource, mutex, etc.

wake To activate a hibernating process. A hibernating process can
be awakened by another process or by the timer process, if the
hibernating process or another process scheduled a wake-up call.

weak definition Definition of a global symbol that is not explicitly
available for reference by modules linked with the module in which the
definition occurs. The librarian does not include a global symbol with a
weak definition in the global symbol table of a library. Weak definitions
are often used when creating libraries to identify those global symbols
that are needed only if the module containing them is otherwise linked
with a program.

weak reference A reference to a global symbol that requests the
linker not to report an error or to search the default library’s global
symbol table to resolve the reference if the definition is not in the
modules explicitly supplied to the linker. Weak references are often
used when creating object modules to identify those global symbols
that may not be needed at run time.

wild card A symbol, such as an asterisk, that is used in place of a file
name, file type, directory name, or version number in a file specifica-
tion to indicate “all” for the given field.

window See mapping window.

word Two contiguous bytes (16 bits) starting on an addressable byte
boundary. Bits are numbered from the right, 0 through 15. A word is
identified by the address of the byte containing bit 0. When interpreted
arithmetically, a word is a 2's complement integer with significance
increasing from bit 0 to bit 14. If interpreted as a signed integer, bit 15
is the sign bit. The value of the integer is in the range —32,768 to
32,767. When interpreted as an unsigned integer, significance in-
creases from bit 0 through bit 15 and the value of the unsigned integer
isin the range 0 through 65,535.

working set The set of pages in process space to which an execut-
ing process can refer without incurring a page fault. The working set

523

Glossary

must be resident in memory for the process to execute. The remaining
pages of that process, if any, are either in memory and not in the
process working set or they are on secondary storage.

working set swapper A system process that brings process working
sets into the balance set and removes them from the balance set.

world In the context “system, owner, group, world,” world refers to
all users, including the system operators, the system manager, and
users both in an owner’s group and in any other group.

write access type The specified operand of an instruction or pro-
cedure is written only during that instruction’s or procedure’s
execution.

write allocate A cache management technique in which cache is
allocated on a write miss as well as on the usual read miss.

write back A cache management technique in which data from a
write operation to cache are copied into main memory only when the
data in cache must be overwritten. This results in temporary inconsis-
tencies between cache and main memory. Contrast with write through.

write through A cache management technique in which data from a
write operation are copied in both cache and main memory. Cache
and main memory data are always consistent. Contrast with write
back.

524

INDEX

A

ABBREVIATION HELP
command, 184

Accelerator Control/Status Register
(ACCS), 77-78, 169-170,
372-373

Accelerator Maintenance Register
(ACCR), 373-374
access control, 385
access modes, 385
access control, 385
ACCR Accelerator Maintenance
Register, 373-374
ACCS Accelerator Control/Status
Register, 77-78,169-170,
372-373
ACK confirmation, 277
AC LO signal, 222, 301
action routines, 341-342
addresses
device register, 250, 254
in MASSBUS, 143
SBl translation of, 256-257, 260-
262
in UNIBUS, 58, 124
in UNIBUS adapter, 253
addressing modes, 6
address register, 134
address space
for MASSBUS adapter access, 315
for NEXUS registers 278-280
SBI, UNIBUS access to, 258-262
UNIBUS, SBl access to, 253-258
for UNIBUS adapter registers, 280-
300
address translation buffer, 12, 42,
108, 200
address translation maps, 260-261

air flow sensors, 390

ALERT line, 221
application program interface, 338

applications
development of, 3
error detectionin, 382
performance of, 2
on VAX-11/782 systems, 360

arbitration lines, 210

architecture, 4-7
UNIBUS memory connections
in, 62,129

arithmetic traps, 379
array bus, 47

array cards, 113
ASSIGN command, 355

Assign I/0 Channel (JASSIGN)
system service, 358

Associate Common Event Flag
Cluster (JASCRFC)
system service, 357

asynchronous control path
(bus), 309

automatic online error logging, 381
automatic reconfiguration, 384
automatic restarts, 383-384
automatic stack expansion, 383
auto restart switch, 23, 37, 180
Autotest, 388-389

availability features, 379-393

B

bad block handling, 384

bad memory page replacement, 384-
385

battery backup
for MA780 multiport memory, 353

525

Index

for time-of-year clock, 162-163,
369

for VAX-11/750 main memory
subsystem, 120

for VAX-11/780 main memory
subsystem, 244

for VAX-11/782 systems, 362

BBSY signal, 64
BDPs, see buffered data paths

BINARY LOAD/UNLOAD
command, 34, 95

bit fields, 5
bits, 5 -
BOOT command, 27, 90, 182

booting

automatic, CPU switches for, 3

TUS58 tape cartridges for, 20

of VAX-11/730 systems, 35-37

of VAX-11/750 systems, 85, 96-
102,114

of VAX-11/780 systems,
195

of VAX-11/782 systems, 363-364

boot ROMs, 114
BR Interrupt Enable (BRIE) bit, 276

BR Receiver Vector Registers
(BRRVRs), 276-278, 293-295

BRs, see bus requests

BRSVRs (Buffer Selection Verification
Registers), 293

buffer block, 338

buffered data paths (BDPs)
in VAX-11/750, 131-137
in VAX-11/780, 260, 262, 263, 265-
271,274

Buffer Not Empty (BNE) bit, 266

buffers
chained, 366
data, 131, 133-135, 179
in MASSBUS, 142
in VAX-11/730 CPU, 42
in VAX-11/750 CPU, 108, 109
in VAX-11/780 CPU, 200

180, 192-

Buffer Selection Verification
Registers (BRSVRs), 293

bugchecks, 365, 383
bus communications, 60 |
bus control, 60,249

buses
in VAX-11/730, 60
in VAX-11/750, 126-127
in VAX-11/780, 177-178
see also MASSBUS; UNIBUS

bus request level, 249

bus requests (BRs)
in VAX-11/730, 60
in VAX-11/750, 126, 127
in VAX-11/780, 249, 250

byte offset data transfers, 269
byte write operations, 116

(o

Cache Disable Register (CADR), 168

Cache Error Register (CAER), 168-
169

caches, 12
MA780 multiport memory
and, 353, 361, 362
used as data buffers, 131
in VAX-11/750 CPU, 108
in VAX-11/780 CPU, 199-200

CADR (Cache Disable Register), 168

CAER (Cache Error Register), 168-
169

central processing units, see CPUs

chaining, 250
of commands, 335-336

characters
control and special, 26, 89
illegal, 25, 89
character string data, 5
check bits, 237

CIB (Console Interface Board), 174-
179

526

Index

clock functions (in Synchronous
Backplane Interconnect), 222

clock margining, 392

clocks, 12

registers for, 75-77, 162-165, 369-
372

for Synchronous Backplane
Interconnect, 208

in VAX-11/730 CPU, 42

in VAX-11/750 CPU, 109

in VAX-11/780 CPU, 200

CNF codes, 221

CNFGR (Configuration
Register), 280-283

Command Address Register, 326
command/address tag, 213-214
command block, 338

command code, 223-228

command packets, 337-342
NOP, 346

commands
chaining of, 335-336
in console command
languages, 27-34, 87,90-95, 182-
189
error messages for, 189-190

command sequences, 338-339
common event flags, 357

communications, 9

bus, 60, 126

in Synchronous Backplane
Interconnect, 208

UNIBUS for, 58-60

VAX-11/730 console terminal
for, 24

VAX-11/750 console terminal
for, 86

VAX-11/780 bus structure, 177

Configuration Register
(CNFGR), 280-283

confirmation CNF lines, 220-221
consistency checking, 379-380

console command language, 13, 23-
35, 86-96, 182-189

console command mode, 175-177
console error messages, 189-192

Console Interface Board (CIB), 174-
179

console I/0 mode, 82-83

console modes
on VAX-11/730, 20-21
on VAX-11/750, 82-84
on VAX-11/780, 175-177

Console Receive Control/Status
Register (RXCS), 70, 158, 368

Console Receive Data Buffer Register
(RXDB), 71, 158-159, 368

Console Storage Receive Data
Register (CSRD), 73, 161

Console Storage Receive Status
Register (CSRS), 73, 160-161

Console Storage Transmit Data
Register (CSTD), 74, 162

Console Storage Transmit Status
Register (CSTS), 74, 161-162

console subsystems, 3,4, 12-13
for VAX-11/730, 19-37
for VAX-11/750, 81-102
for VAX-11/780, 173-195

console terminal registers, 70-72,
158-160, 368-369

console terminals
VAX-11/730, 23-24
VAX-11/750, 86
Console Transmit Control/Status
Register (TXCS), 71-72, 159-
160, 368, 369
Console Transmit Data Buffer
Register (TXDB), 72, 160, 369
CONTINUE command, 28, 90
in VAX-11/780, 176, 182
control characters, 26, 89

control lines, 222

527

Index

control path (in MASSBUS), 309, 315
Control Register (UACR), 283-286

Control/Status Registers
in VAX-11/730, 50-54
in VAX-11/750, 116-120, 136-137

Control Store Register (CSR), 42, 49

control stores
in VAX-11/730 CPU, 41-42
in VAX-11/730 main memory
subsystem, 48
in VAX-11/750 CPU, 107,110
in VAX-11/780 CPU, 199-201

CPU control stores
in VAX-11/730 CPU, 41-42
in VAX-11/750 CPU, 107,110
in VAX-11/780 CPU, 199-201

CPU fault generated error
messages, 191

CPU GRANT signal, 64

CPUs (central processing units), 11-
12

automatic rebootingon, 3

console modes and, 20-21

Control/Status Registers and, 50

MA780 multiport memory

and, 350, 352-354

MASSBUS adapter and, 140, 141

priority levels in, 7,61-62, 126, 128

UNIBUS access for, 62-63, 129-
130

in VAX-11/730, 39-45

in VAX-11/750, 105-110

in VAX-11/780, 197-205

in VAX-11/780 Console Interface
Board and, 175

in VAX-11/780, console LSI-11
and, 179

VAX-11/782 systems and, 360

crashes, automatic rebooting after, 3

CRDs (Customer Runnable
Diagnostics), 388-389
Create Logical Name ($CRELOG)

system service, 355

Create Mailbox and Assign Channel
($CREMBX) system service, 357

Create and Map Section (SCRMPSC)
system service, 358

CSR (Control Store Register), 42,49
CSRoO, 50-51,116-118
CSR1, 51-53,118-119
CSR2, 53-54,119-120

CSRD (Console Storage Receive Data
Register), 73, 161

CSR, see Control Status Registers

CSTD (Console Storage Transmit
Data Register), 74, 162

CSTS (Console Storage Transmit
Status Register), 74, 161-162

Customer Runnable Diagnostics
(CRDs), 388-389

customer writable control store
(WCS), 201,374-375

D

data
chaining of, 336
integrity of, 385-386
processed by VAX-11/730
CPU, 40
processed by VAX-11/750
CPU, 106
processed by VAX-11/780
CPU, 199
types of, 4-5
data buffers, 131, 133-135
in VAX-11/780, 179
see also buffers

Data Path Number, 132, 133
Data Path Registers (DPRs), 269,
295-298
data paths buffered, 131-137, 260
data paths
in MASSBUS, 142,309, 315
Synchronous Backplane

Interconnect, 207-228
in UNIBUS adapter, 262-274

528

Index

in VAX-11/730 CPU, 42
in VAX-11/750 CPU, 107-108
in VAX-11/780 CPU, 199

data transactions
in VAX-11/730, 62
in VAX-11/750, 128

data transfers

in MASSBUS adapter, 153-154

in UNIBUS adapter, 262-274

using DR780 interface, 335, 336,
347, 339-341

using MA780 multiport
memory, 351

in VAX-11/730, UNIBUS
initiated, 63-66

in VAX-11/750, UNIBUS
initiated, 130-137

in VAX-11/780, SBl and, 256-258

in VAX-11/782 systems, 362

DATI data transactions, 62, 128, 134-
135, 271-272

DATIP data transactions, 62, 128,
134-136

DATOB data transactions, 62, 128,
135, 136, 272-274

DATO data transactions, 62, 128,
135, 272-274

DCL (DIGITAL Command
Language), 2

DCR (Diagnostic Control
Register), 290-292

DDI (DR32 Device Interconnect), 333,
336, 338, 341

DDP (direct data path), 133, 262-263
deadlock detection, 382
Dead signal function, 222

Deassign I/0 Channel ($DASSGN)
system service, 385

DECnet, 9
DECnet-VAX Phaselll, 9

default bootstrap command
procedure, 195

DEFINE command, 355

529

Delete Global Section ($DGBLSC)
system service, 359

DELETE key, 25

Delete Virtual Address Space
($DELTVA) system service, 359

dependability features, 379-393

DEPOSIT command, 28-31, 91-93,
182-183

device controllers, 141
device drivers, 337

device registers, 250, 254
Device ROM code, 99-101
diagnostic console, 391-392

Diagnostic Control Register
(DCR), 290-292

Diagnostic Register, 324-326

diagnostics

for DR780 interface, 342-346

on MA780 multiport memory, 353-

354

for MASSBUS, 141-314

online, 387

remote, 3-4, 13, 85-86

System Exerciser for, 381

in VAX-11/730 console, 23, 35

in VAX-11/730 systems, 388-389

in VAX-11/750 console, 96

in VAX-11/750 systems, 390-391

in VAX-11/780 CPU, 200

in VAX-11/780 systems, 391-392
DIGITAL Command Language

(DCL), 2

direct data path (DDP), 133, 262-263

Direct Memory Access (DMA)
console modes and, 20-21

Direct Memory Access
RKO6 for, 260
in VAX-11/750, 128
DIRECTORY command, 31
disks
protection for, 386
redundant recording of critical
information on, 385

DMA, see Direct Memory Access

DPRs (Data Path Registers), 269,
295-298

DR32 Device Interconnect
(DDI), 333-336, 338, 341

DR780 interface, 331-349

DR780 Status Longword (DSL), 342
DR-devices, 334, 336, 338, 339
DSL (DR780 Status Longword), 342
dynamic bad block handling, 384
dynamic command chaining, 335
dynamic memory mapping, 335

E

ECC, see Error Correcting code
ECC bits, 47
EMOD instruction, 201
error analysis and recovery
features, 382-385
error checking, 379-380
in DR780 interface, 342

Error Correcting Code (ECC), 3, 380
error logging and, 381
in MA780 multiport memory, 352
in VAX-11/730, 49-50, 54
in VAX-11/750, 115-116, 120-121
in VAX-11/780, 231-233, 237-238

ERROR HELP command, 185
error logging, 381, 383
error messages, 189-192

errors
console command, 34-35, 95-96
console messages for, 189-192
logging of, 233, 381,383
non-existent memory, 130
typing, 25, 89

ERROR signal, 49

ERR SUM signal, 49

event flags, common, in shared
memory, 357

Index

EXAMINE command, 28-31,91-93,
183-184

exception handling, 380
extended floating point, 201

extended read function, 226, 234,
235

extended write masked
function, 226-228, 234, 236

Failed Map Entry Register
(FMER), 292-293

Failed UNIBUS Address Register
(FUBAR), 293

FAIL function, 222

failsoft capability, 353-354

fault handling, 365

fault-isolation diagnostics, 387

FAULT lines, 220

flags, 134

common event, in shared
memory, 357

Floating Point Accelerator (FPA), 11
registers for, 77-78,169-170, 372-
374
in VAX-11/730 CPU, 43
in VAX-11/750 CPU, 109-110
in VAX-11/780 CPU, 200-201

floating point data, 5

floppy disks
error messages generated
by, 191-192
RX01, 13
FMER (Failed Map Entry
Register), 292-293

FM ID Register, 179

FP730 (Floating Point
Accelerator), 43

FP750 (Floating Point
Accelerator), 110

530

FPA see Floating Point Accelerator
FREEQ queue, 336, 338, 339

front panels
on VAX-11/730, 21-23
on VAX-11/750, 84-86
VAX-11/780 processor control
panel, 179-181

FUBAR (Failed UNIBUS Address
Register), 293

G

gate array technology, 107
general-purpose registers, 7
global sections, 355, 358-359
gate array technology, 107

H

HALT command, 31, 94
in VAX-11/780, 175-177,184

hardware, 9-15
selective disabling of, 385
of VAX-11/730 CPU, 41-43
of VAX-11/750 CPU, 107-110
of VAX-11/780 CPU, 198-201
in VAX-11/782 systems, 360-362

HELP commands, 3, 184-185

ICCS (Interval Count Control/Status
Register), 76-77, 164-165, 370-
372

ICR (Interval Count Register), 75,
163, 370, 371

ID (Interval Data) Bus, 177-178

IDCs (Integrated Disk
Controllers), 43

ID field, 219
ID MAINT signal, 177
illegal characters, 25, 89

Index

indicator lights
on VAX-11/730 console, 23
on VAX-11/750 console, 85-86
on VAX-11/780 processor control
panel, 180

INDIRECT command, 184
information lines, 210-211

information management
facilities, 8-9

information Transfer Group, 211
initialization

of UNIBUS, 300-302

of VAX-11/782 systems, 363-364

see also booting
INITIALIZE command, 31,93, 184
INPTQ queue, 338, 339, 341, 346
input/output subsystems, 14-15
installation, 3-4

INSTALL utility, 355
instruction buffers, 12, 42, 109
instruction retry, 383

instructions and instruction sets, 2-3
in console command
language, 27-34, 90-95,
182-189
floating point, 43-45
special instruction checks for, 380
VAX Native Instruction Set, 4-6

integer data, 5

integrated disk controller
(RB730), 43

interconnects, 331
DR32, 333-335

interfaces
DR780, 331-349
on MA780 multiport memory, 350

interleaving, 243-244
using DR780 interface, 347

interlock cycles, 236-237
interlocking, 352
interlock line, 222

531

Index

interlock read masked function, 226

interlock write masked function, 226,
234, 236, 237

Internal Data (ID) Bus, 177-178
interrupt control field, 346-347
Interrupt Fielder Switch (IFS) bit, 276
interrupt priority levels (IPLs), 126
interrupt request lines, 221

interrupts
in DR780 interface, 336-337
generated by MA780 multiport
memory, 354
SBI, 274-278
in UNIBUS, 66,127,137
in UNIBUS adapter, 260
in VAX-11/730 systems, 60
in VAX-11/782 systems, 365

interrupt summary tag, 214-218
interval clocks, see interval timers

Interval Count Control/Status
Register (ICCS), 76-77,
164-165, 370-372

Interval Count Register (ICR), 75,
163, 370, 371

interval timers (clocks), 388
registers for, 75, 163-165, 370-372
in VAX-11/730 CPU, 42
in VAX-11/750 CPU, 109
in VAX-11/780 CPU, 200

INTLK signal, 226

invalidation maps, 353

170 status block, 342

1/0 subsystems, 14-15

1/0 verification, 380

IPLs (interrupt priority levels), 126

K

KE780 extended floating point, 201

keylock switches
on VAX-11/730, 22
on VAX-11/750, 84
on VAX-11/780, 180-181

languages, 8
console command language, 24-
35, 86-96, 182-189
DIGITAL Command Language, 2

limit checking traps, 379

LOAD command, 32, 185
BINARY LOAD/UNLOAD, 34,95

LOAD signal, 178
logging, of errors, 233, 381, 383
logical names, 355-356

longword access enable
(LWAE), 271,273

longword write operations, 116
LSI-11 microprocessors, 175-179

MA780 multiport memory
option, 331, 349-359
in VAX-11/782 systems, 361, 362,
365

Machine Check Error Summary
Register (MCESR), 165-166

machine checks, 381-382

Machine Check Status Register
(MCSR), 166-167

mailboxes, 357-358

main memory subsystems, 13-14

for VAX-11/730, 47-54

for VAX-11/750, 113-121
for VAX-11/780, 231-244

maintainability features, 379-393

maintenance, 3-4
system aids for, 386-388
VAX-11/730 console and, 23

532

Index

maintenance registers, 388
map data field, 65

Map Global Section ($MGBLSC)
system service, 358

mapped memory caches, 108

map registers, 261, 262, 265, 269,
271, 298-300
DR780 interface and, 335

mask field, 219-222

MASSBUS
in VAX-11/750 systems, 139-154
in VAX-11/780 systems, 309-329

MASSBUS adapters. (MBA), 1
registers for, 142-154,317-327
in VAX-11/750, 139-141
in VAX-11/780, 309, 312-315

mass storage error recovery, 385

mass storage 1/0 error
verification, 380

master/slave communications, 59,
125, 249

MBA, see MASSBUS adapters
MBA Byte Counter, 150, 324

MBA Command Address
Register, 152-153

MBA Configuration/Status
Register, 317-318

MBA Control Register, 144-146, 318-
319

MBA Diagnostic Register, 150-152
MBA external registers, 153, 326
MBA Map, 326-327

MBA Map Registers, 153

MBA registers, 142-154,317-327

MBA Status Register, 146-149, 319-
323

MBA Virtual Address Register, 149-
150, 323-324

MBRK (Microprogram Breakpoint
Address Register), 375

MCESR (Machine Check Error
Summary Register), 165-166

MCSR (Machine Check Status
Register), 166-167

MCT (memory controller) module, 48

memory

cache, in VAX-11/750 CPU, 108

cache, in VAX-11/780 CPU, 199-
200

MA780 multiport option for, 331,
348-359

main memory subsystems for, 13-
14

MASSBUS and, 139

protection for, 8

UNIBUS data transfers to and
from, 266-269

in VAX-11/730 systems, 47-54

in VAX-11/750 systems, 113-121

in VAX-11/780 systems, 231-244

memory caches, 12
see caches
memory configuration registers, 238-
243

memory controllers
DR780 interface configuration
and, 347
interleaving and, 243-244
in VAX-11/750, 113-114
in VAX-11/780, 232-233

memory interleaving, 243-244
memory management, 7, 12, 385
messages, error, 189-192

MFPR (Move from Processor
Register) instruction, 157, 169,
367

micro control store, 374-375

Microprogram Breakpoint Address
Register (MBRK), 375

micro-routine errors, 190-191
MICROSTEP command, 32
microverify routines, 389-390

533

Mount Verification, 386

Mover from Processor Register
(MFPR) instruction, 157,
169, 367

Move to Processor Register (MTPR)
instruction, 157, 169, 367

MSYN signal, 64

MTPR (Move to Processor Register)
instruction, 157, 169, 367

MUX200/VAX emulator, 9

N

Index

NEXT command, 32-33, 94, 185

Next Interval Count Register
(NICR), 75,76, 164, 370, 371

NEXUSes, 208,210

MASSBUS adapter access by, 315

memory controllers as, 232
register addresses for, 253, 278-
280

NICR (Next Interval Count
Register), 75, 76, 164, 370, 371

non-existent memory (NXM) bus
errors, 130

nonfatal bugchecks, 383

non-processor grants (NPGs), 64
in VAX-11/730, 60, 64
in VAX-11/750, 126, 127, 129
in VAX-11/780, 249, 250, 256

NOP command packet, 346
NPGs (non-processor grants), 64
NPRs, see non-processor requests

NXM (non-existent memory bus)
errors, 130

off-line menu system, 389
Offset Bit, 65, 132-133
on-line menu system, 389
options, installation of, 3

534

P

packed decimal data, 5
page addresses, 261

Page Frame Number (PFN), 64, 65,
130, 131

PAL, see Programmed Array Logic
parallel processing, 352

parity checks, 237, 352, 390-393
parity field, 211

patches, for software, 388

PDP-11 Compatibility Mode, 3
performance, 2

peripherals
device registers in, 250
installation of, 3
UNIBUS for, 57,123

PFN, see Page Frame Number

physical addresses
in VAX-11/730 main memory
subsystem, 49
in VAX-11/750 main memory
subsystem, 115
in VAX-11/780 main memory
subsystem, 233

POLY instruction, 201

power failures
automatic rebooting after, 3
automatic restarts after, 383-384
on DR780 interface, 336
MA780 multiport memory
and, 353, 354
in UNIBUS, 300-302
on VAX-11/782 systems, 365

prefetch instruction buffer, 42, 109,
200

priority levels
in VAX-11/730, 59-62
in VAX-11/750, 125-128
in VAX-11/780, 249-250

privileged registers
in VAX-11/730, 69-78

in VAX-11/750, 157-170
in VAX-11/780, 367-375

privileges, 385-386

processor control panel
(VAX-11/780), 179-181

processors
LSI-11,in VAX-11/780
systems, 175-179
MA780 multiport memory
and, 350-351
shared memory and, 355

VAX-11/782 systems for, 359-365

see also CPUs

program I/0O mode
in VAX-11/750, 82
in VAX-11/780, 175, 177

programmable realtime clock, 12
in VAX-11/750 CPU, 109
in VAX-11/780 CPU, 200

Programmed Array Logic (PAL)
technology, 1
in VAX-11/730 CPU, 41

programming, using DR780
interface, 337-347

program mode, 20

prompts, in console command
language, 25

protection, 8

protocol checks, 391-393
protocol emulators, 9
purge operations, 269-270

Q

Qbus, 177,178

QIO driver, 377

QIO function, 335

QUAD CLEAR command, 186
queue retry macro, 342
queues, 335, 337

quotas, 385

Index

R

RAM chips, 49

random access mode, 260, 270-271
RB730 integrated disk controller, 43
RDM console mode, 82-84, 391
read cycle, 235

read datatag, 212

read mask function, 223, 234
read-only memories, see ROMs

Read operations
in VAX-11/730, 49-50
in VAX-11/750, 115-116
in VAX-11/780, 234, 235, 237

realtime clocks, 12
in VAX-11/750 CPU, 109
in VAX-11/780 CPU, 200

rebooting, CPU switches, 3
reconfiguration, automatic, 384

redundant recording of critical disk
information, 385

registers, 7

control/status, 50-54, 116-120,
136-137

device, 250, 254

maintenance, 388

MASSBUS adapter, 142-154,
314-327

memory configuration, 238-243

NEXUS, address space for, 278-
280

privileged, in VAX-11/730, 69-78

privileged, in VAX-11/750, 157-
170

privileged, in VAX-11/780, 367-
375

UNIBUS adapter, 280-300

in VAX-11/730 CPU, 40

in VAX-11/750 CPU, 106

in VAX-11/750 memory
controller module, 113-114

in VAX-11/780 CPU, 198

reliability features, 379-393

Index

Remote Diagnosis, 3-4, 13, 85-86,
387, 390-391

Remote Support, 389

REPEAT Command, 33, 186
REQ lines, 221

request lines, 221

reserved operand traps, 380
reserved tags, 219

reset, on VAX-11/750 console, 85
response lines, 220-221

restart parameter block (RPB), 37
restarts, automatic, 383-384
RKO6 disk drives, 260

ROMs, (read only memories)
boot, 114, 244
in VAX-11/780, 179

RPB (restart parameter block), 37
RXO01 floppy disk drive, 13

RXCS (Console Receive
Control/Status Register), 70,
158, 368

RXDB (Console Receive Data Buffer
Register), 71,158-159, 368

S

SACK signal, 64

SBI, see Synchronous Backplane
Interconnect

SBI UNJAM command, 302

SCB (System Control Block), 66, 137,
363

SCBB (System Control Block
Base), 66, 137

scheduling, in VAX-11/782
systems, 363

SDA (System Dump Analyzer), 382-
383

Selected Map Register, 326

Selective Cache Invalidation
option, 353,362

semantics, for console command
language, 24-25, 88-89

sequential access, 260
sequential processing, 352
SET CLOCK command, 187
SET DEFAULT command, 186

SET RELOCATION command, 187-
188

SET SOMM command, 187
SET STEP command, 186-187
SET TERMINAL FILL command, 187

SET TERMINAL PROGRAM
command, 187

shared memory, 354-359
shift registers, 178
SHOW command, 188

SID (System Identification
Register), 69-70, 157-158,
367-368, 382

signal lines,

MASSBUS, 309-312
UNIBUS, 250-253

silos, 392
software, 2-3,7-9
software
UNIBUS powerfail induced
by, 301-302
updates and maintenance of, 387-
388

in VAX-11/782 systems, 362-365
source destination identity field, 219
special characters, 26
special instruction checks, 380
SSYN signal, 133, 134
stacks, 7,383
START command, 33,94, 188
storage buffers, 133-134

536

Index

switches
onCPU, 3
on VAX-11/730, 22-23
on VAX-11/750, 84
on VAX-11/780, 180-181

Synchronous Backplane Interconnect
(SBI), 207-228

access to UNIBUS address space
by, 253-258

data transfer paths and, 262-274

DR780 interface for, 332-333

interconnects for, 331

interrupts in, 274-278

MASSBUS adapter connection
with, 312

memory controller and, 232, 233

siloon, 392

UNIBUS access to address space
of, 258-262

UNIBUS adapter connection
with, 247, 248

UNIBUS adapter registers
addressable by, 280-300

synchronous data path (bus), 309
syntax
for console command
language, 24-25
error messages for, 189
System Control Block (SCB), 66, 137,
363

System Control Block Base
(ScBB), 66,137

system crashes, automatic rebooting
after, 3

System Dump Analyzer (SDA), 382-
383

System Error Analyzer, 383 !
System Exerciser, 381

system failures, automatic restarting
after, 383-384

system identification registers
(SIDs), 69-70, 157-158,
367-368, 382

system power up, in UNIBUS, 301

system services, 8

system terminal mode
on VAX-11/730, 20
on VAX-11/750, 82

system verification (UETP), 380-381

T

tag fields, 221-219
TB (Translation Buffer Register), 169

TBDR (Translation Buffer Group
Disable Register), 167-168

terminals
console, 3
VAX-11/730 console, 23-24
VAX-11/750 console, 86

TERMQ queue, 336, 337, 339-342,
346-347
TEST command, 33-34, 94-95, 188

time-of-year clocks, 12
register for, 75, 162-163, 369-370
in VAX-11/730 CPU, 42
in VAX-11/750 CPU, 109
in VAX-11/780 CPU, 200

TODR (Time-of-Year Clock
Register), 75, 163, 370

TOID Register, 179

Translation Buffer Group Disable
Register (TBDR), 167-168

Translation Buffer Register (TB), 169
translation buffers, 48
traps, 379-380
TU58 tape cartridge drives, 13, 390
registers for, 73-74, 160-162
in VAX-11/730 console
subsystem, 20, 35, 36
in VAX-11/750 console
subsystem, 96

two-way set associative memory
caches, 199-200

TXCS (Console Transmit
Control/Status Register), 71-72,
159-160, 368, 369

537

Index

TXDB (Console Transmit Data Buffer
Register), 72, 160, 369

typing errors, 25, 89

U

UACR (UNIBUS Adapter Control
Register), 283-286

UB ERR SUM signal, 49

UETP (User Environmental Test
Package), 380-381

unattended automatic system
restarts, 383-384

UNIBUS
integrated disk controller and, 43
in VAX-11/730 systems, 57-66
in VAX-11/750 systems, 123-137
in VAX-11/780 systems, 247-306

UNIBUS Adapter Control Register
(UACR), 283-286

UNIBUS adapters, 1
data transfer paths in, 262-274
interruptsin, 274-278
NEXUS register space in, 278-280
power fails and, 300-302
recovery in, 392
registers for, 280-300
in VAX-11/730, 57,59, 62-66
in VAX-11/750, 124, 128-134
in VAX-11/780, 247, 248, 253-260

UNIBUS Adapter Status Register
(UASR), 286-290

UNIBUS arbitrator, 48
UNIBUS control logic, 48

UNIBUS map
in VAX-11/730, 48,63, 64
in VAX-11/750, 130, 131, 133

UNIBUS PB signal, 257

UNJAM command, 188
for SBI, 302

UNJAM function, 223

Update Section File Disk ($UPDSEC)
system service, 359

updates of software, 387-388
user control store, 110

User Control Store Address
Register (WCSA), 374, 375

User Environmental Test Package
(UETP), 380-381

V'

Valid Bit, 65, 66, 132-133

VAX-112780/3780 protocol
emulators, 9

VAX-11 3271 protocol emulators, 9
VAX-11 Common Data Dictionary, 8
VAX-11 DATATRIEVE, 8

VAX-11 DBMS, 8

VAX-11 FMS, 8

VAX-11PSI, 9

VAX-11 RMS, 8

VAX Native Instruction Set, 4-6

VAX systems, 1-4
architecture of, 4-7
dependability of, 379-393

VAX-11/730 systems, 1
console subsystem for, 19-37
CPU for, 39-45
dependability features on, 388-390
input/output subsystem of, 14
main memory subsystem of, 13,
47-54
privileged registers in, 69-78
UNIBUS subsystem for, 57-66
VAX-11/750 systems, 1
cachesin, 12
console subsystem for, 81-102
CPU for, 105-110
dependability features on, 390-391
input/output subsystem of, 14
main memory subsystem of, 13-
14, 113-121
MASSBUS subsystem for, 139-154
privileged registers in, 157-170
UNIBUS subsystem for, 123-137

538

Index

VAX-11/780 systems, 1

cachesin, 12

configured in VAX-11/782

systems, 362

console subsystem for, 173-195

CPU for, 197-205

dependability features on, 391-393

DR780 interface for, 323-349

input/output subsystem of, 14-15

interconnects for, 331

MA780 multiport memory option
for, 349-359

main memory subsystem of, 14,
231-244

MASSBUS subsystem for, 309-329

privileged registers in, 367-375

Synchronous Backplane

Interconnect for, 207-228

UNIBUS subsystem for, 247-306

VAX-11/782 attached processor
systems, 2, 331, 359-365
booting procedure for, 193-194

VAX/VMS operating system, 1,3, 7-9
buffered data paths and, 131
data integrity features of, 385-386
error analysis and recovery
features of, 382-385
MA780 multiport memory
supported by, 340
privileged registers managed
by, 157
shared memory and, 354-359
User Environmental Test Package
in, 380-381
VAX-11/782 systems and, 362,
363, 365

w

WAIT command, 189

warm starts
on VAX-11/750 systems, 101-102
on VAX-11/780 systems, 194-195
WCS (customer writable control
store), 201, 374-375
WCSA (User Control Store
Register), 374, 375
WCSD (Writable Control Store Data
Register), 374
WDCS (writable diagnostic control
store), 200
word write operations, 116

writable control store (WCS), 201,
374-375

Writable Control Store Data Register
(WCSD), 374

writable diagnostic control store
(WDCS), 200

write data tag, 214
write masked function, 223, 234, 236

Write operations
in VAX-11/730, 50
in VAX-11/750, 116
in VAX-11/780, 234, 236, 237

Vbus, 177,178

version compatibility, error
messages related to, 192
virtual address space
in VAX-11/730 CPU, 40
in VAX-11/750 CPU, 105
in VAX-11/780 CPU, 197

539

NOTES

540

VAX HARDWARE HANDBOOK READER’S COMMENTS

1982-83
Your comments and suggestions will help us in our continuous effort to im- ‘
prove the quality and usefulness of our handbooks.

What is your general reaction to this handbook? (format, accuracy, complete-

ness, organization, etc.)

What features are most useful?

Does the publication satisfy your needs?

What errors have you found?

Additional comments

Name

Title

Company Dept.
Address

City State Zip

(staple here)

(staple here)

———————————— (please fold here) — — — — — — —

No Postage
Necessary
if Mailed in the
United States

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 33 MAYNARD, MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
NEW PRODUCTS MARKETING
PK3-1/M92

MAYNARD, MASS. 01754

HANDBOOK SERIES

Microcomputers and Memories
Microcomputer Interfaces
PDP-11 Processor

PDP-11 Software

Peripherals

Terminals and Communications
VAX Architecture

VAX Software

VAX Hardware

DIGITAL EQUIPMENT CORPORATION, Corporate Headquarters: Maynard, MA
01754, Tel. (617) 897-5111 — SALES AND SERVICE OFFICES; UNITED STATES —
ALABAMA, Birmingham, Huntsville ARIZONA, Phoenix, Tucson ARKANSAS, Little
Rock CALIFORNIA, Bakersfield, Costa Mesa, El Segundo, Fresno, Los Angeles,
Oakland, Sacramento, San Diego, San Francisco, Monrovia, Pasadena, Santa Bar-
bara, Santa Clara, Santa Monica, Sherman Oaks, Sunnyvale COLORADO, Colorado
Springs, Denver CONNECTICUT, Fairfield, Meriden DELAWARE, Newark, Wilming-
ton FLORIDA, Jacksonville, Melbourne, Miami, Orlando, Pensacola, Tampa GEOR-
GIA, Atlanta HAWAII, Honolulu IDAHO, Boise ILLINOIS, Chicago, Peoria INDIANA,
Indianapolis IOWA, Bettendorf KENTUCKY, Louisville LOUISIANA, Baton Rouge,
New Orleans MAINE, Portland MARYLAND, Baltimore, Odenton MASSACHU-
SETTS, Boston, Burlington, Springfield, Waltham MICHIGAN, Detroit, Kalamazoo
MINNESOTA, Minneapolis MISSOURI, Kansas City, St. Louls NEBRASKA, Omaha
NEVADA, Las Vegas, Reno NEW HAMPSHIRE, Manchester NEW JERSEY, Cherry
Hill, Parsippany, Princeton, Somerset NEW MEXICO, Albuquerque, Los Al
NEW YORK, Albany, Buffalo, Long Island, New York City, Rochester, Syracuse,
Westchester NORTH CAROLINA, Chapel Hiil, Charlotte OHIO, Cincinnati,
Cleveland, Columbus, Dayton OKLAHOMA, Tulsa OREGON, Eugene, Portland
PENNSYLVANIA, Allentown, Harrisburg, Philadelphia, Pittsburgh RHODE ISLAND,
Providence SOUTH CAROLINA, Columbia, Greenville TENNESSEE, Knoxville,
Memphis, Nashville TEXAS, Austin, Dallas, El Paso, Houston, San Antonio UTAH,
Salt Lake City VERMONT, Burlington VIRGINIA, Arlington, Lynchburg, Norfolk,
Richmond WASHINGTON, Seattle, Spokane WASHINGTON D.C. WEST VIRGINIA,
Charleston WISCONSIN, Madison, Milwaukee INTERNATIONAL — EUROPEAN
AREA HEADQUARTERS: Geneva, Tel: [41] (22)-93-33-11 INTERNATIONAL AREA
HEADQUARTERS: Acton, MA 01754, U.S.A., Tel: (617) 263-6000 ARGENTINA, Bue-
nos Aires AUSTRALIA, Adelaide, Brisbane, Canberra, Darwin, Hobart, Melbourne,
Newcastle, Perth, Sydney, Townsville AUSTRIA, Vienna BELGIUM, Brussels BRA-
ZIL, Rio de Janeiro, Sao Paulo CANADA, Calgary, Edmonton, Hamllton, Hallfax,
Kingston, London, Montreal, Ottawa, Quebec City, Regi Toronto, V. :
Victoria, Winnipeg CHILE, Santiago DENMARK, Copenhagen EGYPT, Cairo EN-
GLAND, Basingstoke, Birmingh Bristol, Ealing, Ep Leeds, Leicester, Lon-
don, Manchester, Newmarket, Reading, Welwyn FINLAND, Helsinki FRANCE,
Bordeaux, Lille, Lyon, Marseille, Paris, Puteaux, Strasbourg HONG KONG INDIA,
Bangalore, Bombay, Cal Hyderabad, New Delhi IRELAND, Dublin ISRAEL, Tel
Aviv ITALY, Milan, Rome, Turin JAPAN, Fukuoka, Nagoya, Osaka, Tokyo, Yokoha-
ma KOREA, Seoul KUWAIT, Safat MEXICO, Mexico City, Monterrey NETHER-
LANDS, Amsterdam, The Hague, Utrecht NEW ZEALAND, Auckland, Christchurch,
Wellington NIGERIA, Lagos NORTHERN IRELAND, Belfast NORWAY, Oslo, PERU,
Lima PUERTO RICO, San Juan SAUDI ARABIA, Jeddah SCOTLAND, Edinburgh
REPUBLIC OF SINGAPORE, SPAIN, Barcelona, Madrid SWEDEN, Gothenburg,
Stockholm SWITZERLAND, Geneva, Zurich TAIWAN, Taipei TRINIDAD, Port of
Spain VENEZUELA, Caracas WEST GERMANY, Berlin, Cologne, Frankfurt, Ham-
burg, Hannover, Munich, Nuremberg, Stuttgart YUGOSLAVIA, Belgrade, Ljubljana,
Zagreb

ORDER CODE: EB-21710-20

PRINTED IN U.S.A. EB 21710 20/82 040 04 92 COPYRIGHT®© 1982 DIGITAL EQUIPMENT CORPORATION ALL RIGHTS RESERVED

	EB 21710 20 VAX Hardware Handbook (1982-83)-001.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-002.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-003.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-004.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-005.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-006.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-007.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-008.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-009.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-010.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-011.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-012.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-013.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-014.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-015.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-016.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-017.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-018.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-019.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-020.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-021.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-022.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-023.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-024.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-025.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-026.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-027.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-028.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-029.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-030.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-031.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-032.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-033.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-034.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-035.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-036.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-037.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-038.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-039.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-040.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-041.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-042.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-043.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-044.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-045.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-046.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-047.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-048.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-049.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-050.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-051.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-052.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-053.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-054.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-055.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-056.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-057.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-058.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-059.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-060.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-061.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-062.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-063.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-064.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-065.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-066.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-067.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-068.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-069.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-070.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-071.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-072.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-073.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-074.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-075.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-076.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-077.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-078.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-079.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-080.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-081.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-082.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-083.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-084.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-085.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-086.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-087.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-088.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-089.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-090.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-091.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-092.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-093.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-094.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-095.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-096.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-097.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-098.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-099.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-100.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-101.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-102.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-103.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-104.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-105.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-106.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-107.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-108.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-109.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-110.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-111.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-112.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-113.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-114.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-115.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-116.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-117.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-118.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-119.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-120.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-121.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-122.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-123.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-124.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-125.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-126.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-127.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-128.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-129.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-130.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-131.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-132.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-133.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-134.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-135.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-136.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-137.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-138.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-139.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-140.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-141.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-142.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-143.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-144.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-145.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-146.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-147.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-148.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-149.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-150.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-151.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-152.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-153.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-154.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-155.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-156.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-157.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-158.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-159.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-160.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-161.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-162.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-163.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-164.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-165.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-166.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-167.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-168.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-169.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-170.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-171.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-172.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-173.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-174.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-175.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-176.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-177.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-178.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-179.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-180.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-181.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-182.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-183.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-184.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-185.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-186.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-187.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-188.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-189.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-190.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-191.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-192.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-193.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-194.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-195.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-196.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-197.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-198.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-199.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-200.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-201.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-202.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-203.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-204.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-205.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-206.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-207.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-208.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-209.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-210.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-211.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-212.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-213.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-214.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-215.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-216.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-217.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-218.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-219.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-220.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-221.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-222.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-223.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-224.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-225.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-226.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-227.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-228.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-229.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-230.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-231.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-232.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-233.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-234.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-235.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-236.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-237.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-238.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-239.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-240.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-241.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-242.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-243.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-244.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-245.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-246.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-247.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-248.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-249.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-250.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-251.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-252.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-253.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-254.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-255.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-256.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-257.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-258.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-259.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-260.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-261.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-262.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-263.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-264.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-265.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-266.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-267.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-268.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-269.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-270.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-271.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-272.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-273.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-274.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-275.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-276.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-277.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-278.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-279.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-280.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-281.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-282.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-283.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-284.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-285.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-286.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-287.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-288.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-289.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-290.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-291.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-292.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-293.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-294.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-295.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-296.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-297.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-298.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-299.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-300.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-301.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-302.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-303.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-304.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-305.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-306.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-307.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-308.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-309.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-310.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-311.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-312.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-313.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-314.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-315.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-316.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-317.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-318.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-319.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-320.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-321.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-322.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-323.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-324.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-325.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-326.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-327.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-328.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-329.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-330.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-331.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-332.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-333.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-334.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-335.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-336.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-337.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-338.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-339.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-340.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-341.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-342.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-343.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-344.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-345.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-346.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-347.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-348.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-349.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-350.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-351.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-352.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-353.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-354.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-355.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-356.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-357.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-358.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-359.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-360.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-361.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-362.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-363.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-364.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-365.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-366.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-367.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-368.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-369.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-370.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-371.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-372.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-373.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-374.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-375.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-376.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-377.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-378.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-379.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-380.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-381.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-382.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-383.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-384.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-385.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-386.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-387.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-388.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-389.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-390.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-391.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-392.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-393.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-394.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-395.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-396.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-397.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-398.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-399.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-400.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-401.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-402.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-403.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-404.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-405.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-406.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-407.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-408.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-409.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-410.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-411.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-412.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-413.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-414.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-415.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-416.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-417.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-418.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-419.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-420.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-421.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-422.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-423.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-424.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-425.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-426.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-427.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-428.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-429.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-430.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-431.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-432.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-433.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-434.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-435.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-436.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-437.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-438.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-439.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-440.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-441.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-442.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-443.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-444.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-445.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-446.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-447.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-448.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-449.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-450.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-451.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-452.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-453.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-454.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-455.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-456.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-457.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-458.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-459.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-460.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-461.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-462.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-463.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-464.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-465.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-466.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-467.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-468.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-469.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-470.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-471.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-472.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-473.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-474.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-475.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-476.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-477.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-478.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-479.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-480.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-481.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-482.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-483.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-484.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-485.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-486.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-487.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-488.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-489.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-490.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-491.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-492.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-493.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-494.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-495.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-496.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-497.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-498.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-499.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-500.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-501.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-502.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-503.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-504.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-505.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-506.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-507.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-508.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-509.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-510.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-511.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-512.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-513.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-514.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-515.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-516.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-517.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-518.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-519.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-520.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-521.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-522.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-523.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-524.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-525.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-526.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-527.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-528.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-529.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-530.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-531.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-532.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-533.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-534.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-535.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-536.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-537.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-538.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-539.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-540.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-541.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-542.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-543.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-544.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-545.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-546.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-547.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-548.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-549.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-550.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-551.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-552.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-553.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-554.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-555.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-556.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-557.tif
	EB 21710 20 VAX Hardware Handbook (1982-83)-558.tif

