Arhieegre

ARCHITECTURE HANDBOOK

., VAxn/75f-’

AX 1 / 50

4 lfl

Arch:tecture
_For The 805

ARCHITECTURE HANDBOOK

My

DIGITAL Facility, Boylston, Massachusetts

CORPORATE PROFILE

Digital Equipment Corporation designs, manufactures, sells and ser-
vices computers and associated peripheral equipment, and related
software and supplies. The Company’s products are used world-wide
in a wide variety of applications and programs, including scientific
research, computation, communications, education, data analysis, in-
dustrial control, timesharing, commercial data processing, word proc-
essing, health care, instrumentation, engineering and simulation.

VAX

ARCHITECTURE HANDBOOK

Copyright¢ 1981 Digital Equipment Corporation.
All Rights Reserved.

Digital Equipment Corporation makes no representation that the in-
terconnection of its products in the manner described herein will
not infringe on existing or future patent rights, nor do the descrip-
tions contained herein imply the granting of license to make, use,
or sell equipment constructed in accordance with this description.

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsi-
bility for any errors that may appear in this manual.

DEC, DECnet, DECsystem-10, DECSYSTEM-20, DECtape
DECUS, DECwriter, DIBOL, Digital logo, IAS, MASSBUS, OMNIBUS
PDP, PDT, RSTS, RSX, SBI, UNIBUS, VAX, VMS, VT
are trademarks of
Digital Equipment Corporation

This handbook was designed, produced, and typeset
by DIGITAL's New Products Marketing
using an in-house text-processing system.

Table of Contem‘s

CONTENTS

Preface page vii

CHAPTER 1 VAX: COMPUTERS FORTHE'80S 1
VIRTUAL ADDRESS SPACEc.oviiiii e, 1
THE ARCHITECTUREHANDBOOK ...ttt 4
CHAPTER 2 VAX FAMILY ARCHITECTURE OVERVIEW 6
INTRODUCGTION ... e e 7
PROCESS VIRTUALADDRESSSPACEcoovviviien.n 7
DAT A TYPES . . 8
GENERAL REGISTERS AND ADDRESSING MODES 11
PROCESSING CONCEPTS FOR SYSTEM PROGRAMMING 12
SYSTEM PROGRAMMING ENVIRONMENTouv.. .. 14
MEMORY MANAGEMENT i, 16
EXCEPTION AND INTERRUPTVECTORS ccouune.... 18
STACKS, SUBROUTINES, ANDPROCEDURES 19
INSTRUCTION FORMAT i 20
COMPATIBILITY MODE ... e 21
CHAPTER 3 SYSTEM ARCHITECTURAL

CHARACTERISTICS e 24
INTRODUCTION e 25
DATA SHARING AND SYNCHRONIZATIONcoovnn. 25
CAGCHE ... 26
RESTARTABILITY ... e 26
INTERRUPTSANDERRORS ...t 27
I/OSTRUCTURE. . .. it 28
CHAPTER 4 DATA REPRESENTATION 30
INTRODUCTION ... e 31
INTEGER AND FLOATING POINTDATATYPESc.o..... 31
CHARACTERSTRING DATATYPE.t 36
NUMERIC STRING DATATYPE 37
PACKED DECIMALSTRING . ..ottt 42
VARIABLE LENGTHBITFILEDDATATYPEoovvvvnn.. .. 43
QUEUE DATA TYPE ... e 46
DATAINREGISTERS. ... e 49

Table of Contents

CHAPTER 5 INSTRUCTION FORMATS AND ADDRESSING

MODES 50
INTRODUCTION ... e 51
GENERALREGISTERS 51
INSTRUCTION FORMAT e 52
ADDRESSINGMODES ... e 55
PROGRAM COUNTERADDRESSINGcooiinn.. 81
CHAPTER 6 MEMORY, REGISTERS, AND PROCESSOR

STATUS—ANOVERVIEW i 92
INTRODUCTION P 93
MEMORY ... e e 93
PROCESSORSTATUSLONGWORD ..ot 97
GENERAL REGISTERS ... e 100
STACKS L. e 102
CHAPTER 7 MEMORY MANAGEMENT.................... 106
INTRODUCTION ... e 107
VIRTUALADDRESSSPACEo 108
ACCESS CONTROLo e 110
ADDRESS TRANSLATION e 113
SYSTEM SPACE ADDRESS TRANSLATION 114
PROCESS SPACE ADDRESS TRANSLATION 116
MEMORY MANAGEMENT CONTROLot 118
FAULTS AND PARAMETERS. 119
PRIVILEGED SERVICES AND ARGUMENT VALIDATION 120
SHARING ... 121
CHAPTER 8 PROCESS STRUCTURE e 124
DEFINITIONOFAPROCESS ... 125
PROCESS CONTEXTot e 125
ASYNCHRONOUS SYSTEM TRAPS (ASTS)ccvvvnnennn. 129
PROCESS STRUCTUREINSTRUCTION 131
CHAPTER 9 EXCEPTIONS AND INTERRUPTS 132
INTRODUCTION e 133
EVENTHANDLINGttt 133
INTERRUPTS . .. e s 135
SYSTEM CONTROLBLOCK PRI e e 143
STACKS 150

CHAPTER 10 PRIVILEGED AND MISCELLANEOUS
INSTRUCTIONS i 154

Table of Contents

CHAPTER 11 INTEGER AND FLOATING POINT

INSTRUCTIONS 172
INSTRUCTIONSET OVERVIEWoian. 173
FLOATING POINT INSTRUCTIONSoo..L. D 176
CHAPTER 12 SPECIALINSTRUCTIONS.................... 218
INTRODUCTION e 219
MULTIPLEREGISTERINSTRUCTIONScoiiniut, 219
PROCESSOR STATUS LONGWORD MANIPULATION 222
ADDRESSINSTRUCTIONS i 224
INDEXINSTRUCTION ... 226
QUEUEINSTRUCTIONS e 228
VARIABLE LENGTH BIT FIELD INSTRUCTIONS 250
CHAPTER 13 CONTROL INSTRUCTIONS 258
BRANCH AND JUMP INSTRUCTIONS 259
LOOP CONTROLINSTRUCTIONS, 268
SUBROUTINEINSTRUCTIONSo 275
PROCEDURE CALLINSTRUCTIONS, 277
CHAPTER 14 CHARACTER STRING INSTRUCTIONS AND

THE CYCLIC REDUNDANCYCHECK 286
CHARACTER STRING INSTRUCTIONS 287
CALCULATE CYCLIC REDUNDANCY CHECK INSTRUCTION303
CHAPTER 15 DECIMAL STRING INSTRUCTIONS 308
CHAPTER 16 EDITINSTRUCTION (EDITPC)................ 332
EDITPATTERNOPERATORS i 338
CHAPTER 17 PDP-11 COMPATIBILITY MODE 3562
INTRODUCTION ... e 353
COMPATIBILITYMODE 353
COMPATIBILITY MODE USER ENVIRONMENT 354
ENTERING AND LEAVING COMPATIBILITYMODE 358
COMPATIBILITY MODE EXCEPTIONS AND INTERRUPTS 360
T BIT OPERATION IN COMPATIBILITY MODE 361
UNIMPLEMENTED PDP-11TRAPS e 362
CONCLUSION ... 363

Table of Contents

APPENDIXES ..ot s 365
APPENDIX A NOTATIONAL CONVENTIONS USED IN THIS

HANDBOOKo i 367
APPENDIX A1 DATATABLESt 374

APPENDIX B INSTRUCTION INDEX— MNEMONIC/PAGE

LISTINGo e e 375
APPENDIX B1 INSTRUCTION INDEX—OPCODE 385
APPENDIX C PROCEDURE CALLING AND CONDITION

HANDLING STANDARD. e 397
APPENDIX D PROGRAMMING EXAMPLES 447
APPENDIX E OPERAND SPECIFIERNOTATION............ 457
APPENDIX F ASSEMBLERNOTATION 461
APPENDIX G OPERANDPROCESSING 467
APPENDIX H ACCURACYcooonn. 469
GLOSSARY 471
INDEX ..t 493

Vi

Preface

Designing the VAX Architecture

Several years ago, foreseeing the explosive growth of minicomputer
uses, DIGITAL committed numerous corporate resources and person-
nel to the goal of creating a computer family for the 1980s and beyond.
Extending and, at the same time, protecting our customers’ enormous
investment in PDP-11 computers and software lay at the heart of our
efforts. But simultaneously we wanted to extend virtual address space
to a degree that would eliminate the need for overlays and segmenta-
tion of programs. We also wanted to increase the capability and ease
of use of our new computers, so that more and more applications
could be handled by people with less and less specialized training.
Along with this, we aimed for a computer that would serve a wider
range of applications (OEM, laboratory realtime, distributed data
) processing, interactive, and so on) than any minicomputer from any
other vendor. ‘

What resulted from these efforts was the VAX family of 32-bit virtual
memory minicomputers: high-speed, easy-to-use, highly dependable
machines destined to satisfy our customers’ needs for a decade and
more. Central to these computers is the VAX architecture, an architec-
ture that meets four critical design goals beyond that of maximal com-
patibility with the PDP-11s. We wanted high bit efficiency, and
achieved it through an extensive collection of data types and address-
ing modes; we wanted a systematic, elegant instruction set, and
achieved one with independence of operators, data types, and ad-
dressing modes, one that is easily exploited, particularly by high-level
languages.

We wanted extensibility: new operators and data types may be added
consistently with existing ones. And finally, we wanted a single archi-
tecture that would span and be suitable for all members of the VAX
family, present and future.

In fulfilling these goals, DIGITAL engineers designed an architecture

that provides you with numerous benefits above and beyond the high

interactivity and friendliness our computers have always stood for:

@ Programming time is minimized, so that programmer productivity is
increased.

@ Hardware peripherals are compatible with existing PDP-11 comput-
ers.

vii

Designing the VAX Architecture

e Realtime response is significantly improved.

e The computer family and the program applications that run on it
have a long life expectancy.

e Programs are completely transportable across VAX family mem-
bers — providing adequate options and file spaces.

e |t is easy to write programs that transport from VAXes to PDP-11s,
and vice versa.

e There is much more code sharing on VAX machines than on any
other computers in existence.

® System reliability is improved through architectural features.

® A\‘single operating system, VAX/VMS, handles the full spectrum of
application needs.

e And finally, the architecture creates an efficient, standard
environment for all languages and the system to interface with each
other (“anything can call anything”).

We hope that the remainder of this Handbook will help you discover
the power and elegance of the VAX architecture, and that you will see
in it how we have satisfied our design goals.

viii

CHAPTER 1
VAX: COMPUTERS FOR THE ’80s

The next decade will witness ever-widening, perhaps unpredictable,
demands upon computers and the computer industry. In finance, gov-
ernment, industry, and possibly even in the home, computers will
serve expanding roles, solving problems, managing processes, or fa-
cilitating communication. DIGITAL has developed an innovative com-
puter technology to confront the challenges of the 1980s, a technology
that offers vast power and enormous flexibility for every kind of appli-
cation. At the same time, we have held fast to the philosophy of affor-
dability and easy use that made DIGITAL the minicomputer industry
leader.

VAX is the name of our innovative computer family. In the short time
since the introduction of the first family member, VAX has proven itself
as one of the friendliest, and at the same time, most powerful,
computer designs available. lts continual enhancement with new proc-
essors, peripherals, high-level languages, and other sophisticated
software, positions VAX as the computer family able to meet the needs
of the future.

Virtual Address Space

The letters VAX suggest the premier feature of VAX comput-
ers—Virtual Address eXtension. In a VAX computer, bytes of informa-
tion are located with a 32-bit address. This means effectively that the
computer can recognize more than four billion addresses, a vast a-
mount in minicomputer and programmer’s terms. The remarkable
thing about this giant “address space” is the it is virtual: the (physical)
main memory of the computer need not be anywhere near as large as
four billion bytes for the machine actually to process data whose ad-
dresses are scattered through the address space. In fact, what hap-
pens is that a sophisticated scheme called “memory management”
allows programmers to operate as if a big part of the virtual address
space were really available to them, and then it handles all the details
of storing programs and subsequently bringing them into main memo-
ry where they are processed.

From the programmer’s point of view, the bottom two billion bytes of
virtual address space can be used for programs, and he or she need
never worry about complicated techniques of overlaying or
segmenting to squeeze the program into a smaller address range.
Logic built right into the VAX computers quickly translates all the
programmer’s virtual addresses into physical addresses, stores the

1

VAX: Computers for the 80’s

programs and data in convenient locations (disks or main memory)
and brings into main memory whatever parts of the program or data
are needed at any instant.

Another aspect of memory management is the rapid switching of
“contexts.” VAX is a high-powered multiprocessor: many programs
and many programmers can use it simultaneously, each appearing to
own unique control of the processor. Actually, the computer is proc-
essing the programs—or pieces of them—one at a time, and switching
into and out of main memory the “context” (loosely speaking, the
environment) of many programs. A switched-in context allows a pro-
gram to run; a switched-out context makes the program wait for the
central processor. Consequently, numerous different activities could
be occurring on a VAX computer at any one time: a data acquisition
procedure, a long computation project, an editing session, an inter-
process communication; and the context switching takes place so
swiftly that each user would feel like the only user.

Scientific, industrial, commercial, and educational market users have
already put the original VAX model through its paces in numerous
situations: realtime, computational, program development. In the up-
coming decade we will see a wide range of new usages handled by
VAX computers.

At the heart of the VAX computer family is its architecture. For our
purposes, architecture is the collection of attributes common to all
family members, attributes that guarantee that all software runs with-
out change on all family members. Particularly pertinent are the in-
struction set, the memory management algorithms, and certain other
aspects of the design that help define contexts and processes.

A distinction should be made between the architecture and the im-
plementation of that architecture. For example, the architecture of the
typewriter is essentially fixed: it is the keyboard layout; knowing the
alphabet and punctuation systems, any typist can make it work, can
“process” jobs. Each manufacturer may, however, implement that
architecture in individual ways. Some may have striking print keys,
some may have typing head balls; some may have a blue keyboard,
some black. In addition, the builder could trade off one feature against
another: a lighter touch vs. the capability to make numerous carbons.
Nevertheless, all machines still serve the essential function, typing.

Similarly with computer architecture. Each processor in the family
may bear slightly differing implementations and tradeoffs; yet all will
fulfill the core of requirements put on the machine by the designers,
and all will deliver the same service to the users. Once having learned
the instruction set, for example, a programmer is ensured that exactly

2

VAX: Computers for the 80’s

the same instruction will perform precisely the same operation on
each processor in the VAX family.

VAX architecture is appropriate over a variety of system costs, per-
formance and application needs. Therefore, a huge range of user
requirements can be met, at a lower cost, since the price of supporting
many different architectures is eliminated.

Two very important aspects of the VAX architecture are its power and
its connection to another major DIGITAL computer family, the PDP-11.

The most obvious manifestation of the VAX architecture is the instruc-
tion set. Over three hundred instructions give the assembly level pro-
grammer extensive control of computer operation. Each instruction
has a mnemonic, a shorthand name that suggests its job. (Obvious
ones are ADD, DIV, MOV, and PUSH). Orthogonality (i.e. indepen-
dence) is incorporated into the instruction set. That is, the operation
being performed (e.g., ADD), the type of data used (e.g., longword),
and the method of -addressing (e.g., autodecrement) can all be
considered independently by the compiler. This makes for faster,
more efficient, and easier to implement compilers.

In addition, each instruction operates on its “natural” number of oper-
ands, from zero up to as many as is appropriate. Also, some recurrent
operations from high-level languages are engineered into the hard-
ware, so that a single instruction can handle them. The FORTRAN DO
loop and three-operand addition (A = B + C) are examples of opera-
tions that can be handled by a single VAX instruction. Finally, there is
no forced alignment on longword boundaries: as required by many
languages, data items bigger than a byte can still reside on any byte
boundary.

The architecture also includes instructions to make various applica-
tions and operating system codes more efficient. There are, in this
group, hardware support of queues, easy access to variable length bit
fields, and simple instructions to save or restore a program context.

Because DIGITAL foresaw the possibility of more and more
applications, the architecture is extendible. The instruction set can be
expanded efficiently to include new data types and operators in a way
that consistently matches all the ones that already exist. Enormous
flexibility is assured this way, since what exists now does not signifi-
cantly constrain what may be added in the future.

We use the word compatibility to designate VAX’s connection to the
PDP-11 family of minicomputers from DIGITAL. Customers have a
large investment in the PDP-11 computers and software. To protect
that investment, and to simplify the procedures by which program-

3

VAX: Computers for the 80’s

mers and programs can move back and forth between VAXs and PDP-
11s, DIGITAL made sure that VAX would accept, with minimal conver-
sion, most types of PDP-11 programs. Conversely, the VAX offers an
excellent host development environment for applications that will
eventually run on PDP-11 computers. Naturally, there are some re-
strictions, but in many cases, simple recompilation of programs is all
that is required to carry a PDP-11 program to the VAX. VAX even has a
compatibility mode at the hardware level, so that many PDP-11 pro-
grams can run unchanged on it. Compatibility mode may run along
with “native” mode programs in a VAX multiprocessing environment.

The Architecture Handbook

This Handbook is part of the VAX Handbook Set. It is the most deeply
technical of the three Handbooks in the set, and should probably be
read by people with some computer familiarity. In it you will get a
thorough view of the instruction set, of memory management, of proc-
ess structure, and of PDP-11 compatibility mode. A companion vol-
ume, the VAX Software Handbook, describes in more generic terms
the VAX/VMS operating system, optional languages, software
routines, and system services. And the VAX Hardware Handbook
gives a complete view of the processors in the VAX family.

Note that this Handbook uses a consistent set of notational conven-
tions. You will find their descriptions conveniently grouped together in
Apgendix A1.

We hope that the Handbooks answer most of your questions about the
VAX family, the computer architecture of the 1980s, and the huge
selection of software available. If you have more questions, your
DIGITAL Sales Representative will be happy to help you.

CHAPTER 2
VAX FAMILY ARCHITECTURE OVERVIEW

INTRODUCTION

The term “VAX Family Architecture” is most often abbreviated to “VAX
Architecture.” What is meant are the attributes of the system as seen
by an assembly language programmer; that is, the conceptual struc-
ture and functional behavior (as distinct from the organization of the
data flow and controls, the logical design, and the physical implemen-
tation). The primary advantage of a common family architecture is the
ability to execute your software on any VAX family member.

For convenience, we may think of the architecture as divided into two
major areas: application programmer (or user) aspects and system
programmer aspects. Those attributes of the VAX family are part of
the user architecture are:

e Four Gbyte virtual address space

e Data types

@ Instruction formats

® Addressing modes

® Processor Status Word (low word of Processor Status Longword)
@ User mode instructions in the native mode instruction set

@ Compatibility mode instruction set

@ User-visible aspects of exception handling

Those attributes which are part of the system programmer architec-
ture are:

e Privileged instructions

© High word of the Processor Status Longword

® Process structure

® Memory management

@ Interrupt structure and exception handling

PROCESS VIRTUAL ADDRESS SPACE
Note: If terms unfamiliar to you appear in subsequent sections, please
refer to the Glossary and the Index at the end of the Handbook.

7

Overview of the VAX Architecture

Most data are located in memory using the address of an 8-bit byte.
Thirty-two-bit virtual addresses identify the byte locations. Such ad-
dresses are called virtual because they are not the real addresses for
physical memory locations. Rather, they are transiated into real
addresses by the processor under operating system control.

A virtual address, unlike a physical memory address, is not a unique
address of a location in memory. For example, two programs using the
same virtual address might refer to two different physical memory
locations; conversely, two programs could refer to the same physical
memory location using different virtual addresses.

The set of all possible 32-bit virtual addresses is called virtual ad-
dress space. It can'be viewed as an array of byte “locations” labelled
from 0 to 232 — 1. This space is divided into sets of virtual addresses
designated for certain uses: those used by processes constitute half of
the total virtual address space, and are collectively designated as
process space. Addresses in the remaining half of virtual address
space refer to locations maintained and protected by the operating
system, and are collectively designated as system space.

DATA TYPES _
The data type of an instruction operand identifies how many bits of
storage should be considered as a unit and what is to be the interpre-
tation of that unit. This is important because, as you will see in later
sections, identical bit patterns can be interpreted as very different data
items; and, likewise, different bit patterns may be used to represent
the same datum.

The processor’s native instruction set recognizes six primary data
types: integer and floating, character string, packed decimal, numeric
string, and variable length bit field. For each of these data types, the
selection of operation immediately informs the processor of the size
and interpretation of the data, so that the processor can then manipu-
late the bit field as a function of user-defined field size and relative
position from a given byte address.

There are several variations on the six primary data types. Table 2-1
provides a summary of all the data types available, and Figure 2-1
illustrates some of them graphically.

Integer data are stored as binary values. An integer can be stored in a
byte, word, longword, quadword, or, in some cases, in an octaword. A
byte is eight bits, a word is two bytes, a longword is four bytes, a
quadword is eight bytes, and an octaword is sixteen bytes. The proc-
essor can interpret an integer as either a signed value (sign is deter-
mined by the high-order bit) or an unsigned value.

8

Overview of the VAX Architecture

Table 2-1 Data Types

DATATYPE SIZE | RANGE (decimal)

Integer Signed Unsigned
Byte 8 bits —128to+ 127 Oto 255
Word 16 bits —32768 to + 32767 0to 65535
Longword 32 bits —231t0 + 231 —1 0to 232 —1
Quadword 64 bits —263 to + 263 —1 Oto 264 —1
Octaword 128 bits —2127 o + 2127 —1 0to + 228 —1

Floating Point :

F floating 32 bits approximately seven decimal

. digits precision

D floating 64 bits approximately sixteen decimal
digits precision

G floating 64 bits approximately fifteen
decimal digits precision

H.floating 128 bits approximately thirty-three
decimal digits precision

Packed Decimal 0 to 16 bytes numeric, two digits per byte
String (31 digits) sign in low half of last byte

Character String 0 to 65535 bytes one character per byte

Variable-length 0 to 32 bits dependent on interpretation
Bit Field

Numeric String 0 to 31 bytes (DIGITS) | —10%—1 to + 103'—1

Queue > 2 longwords/queue 0 through 2 billion entries

entry

Floating point values are stored using a signed exponent and a binary
fraction. Four types of floating point data formats are provided. The
two PDP-11 compatible formats (F_floating and D_floating) are stan-
dard on all VAX family processors. Two extended range formats
(G_floating and H_floating) are available as options on VAX family
processors. F_floating and D_floating are four and eight bytes long,
respectively. F_floating data yield approximately 7 decimal digits of
precision, while D_floating yields approximately 16 decimal digits of
precision. G_floating is also eight bytes in length, but because of the
different arrangement of the fraction and exponent parts, its precision
is approximately 15 decimal digits. H_floating is 16 bytes in length with
a 15-bit exponent and 113-bit fraction. As a result, its precision is
approximately 33 decimal digits.

Character data are simply a string of bytes containing any binary data,
for example, ASCII codes. The first character in the string is stored in
the first byte, the second character is stored in the second byte, and so
on. In particular, a character string that contains ASCII codes for deci-
mal digits is called a numeric string.

9

Overview of the VAX Architecture

10

WORD BYTE
15 T o]
|] s
1
LONGWORD
31 0
|
QUADWORD
0
T A
A+d4
53 32
OCTAWORD
31 o
TA
A+4
LA+
A+12
127 96
F_FLOATING D_FLOATING
15 7 6 [15 7 6 0
s—[EXPONENT FRACTION s EXPONENT] FRACTION
FRACTION FRACTION
» 1o FRACTION
FRACTION
3 48
G_FLOATING H_ FLOATING
15 14 4 3 0 15 14 0
s EXPONENT FRACTION |[: A s EXPONENT ‘A
FRACTION A+2 FRACTION A2
FRACTION A+4 FRACTION ‘A+d
FRACTION 1A+6 FRACTION At
63
48 FRACTION A8
FRACTION :A+10
FRACTION A+12
FRACTION ‘AvIL
27 n3
PACKED DECIMAL STRING (+123 CHARACTER STRING (XYZ)
7 43 0 7
1 2 A wyn ia
3 Sy DA+ wyr A+
wgn : a2
VARIABLE-LENGTH BIT FIELD
P+S P+S-1 PPl 0
I J: A
A=ADDRESS s-1 0
Figure 2-1 Data Type Representations

Overview of the VAX Architecture

Numeric String Data are representations of fixed quantities, using one
byte of the string for each decimal digit. As detailed in Chapter 4, the
variety of external data arrangements demands a variety of matching
numeric string forms; particularly, it is necessary to know whether the
sign of the number appears in the first byte or as part of the last byte.

Packed decimal data are stored in a string of bytes. Each byte is
divided into two 4-bit nibbles with one decimal digit stored in each
nibble. The first, or most significant digit is stored in the high-order
nibble of the first byte, the second digit is stored in the low-order
nibble of the first byte, the third digit is stored in the high-order nibble
of the second byte, and so on. The sign of the number is stored in the
low-order nibble of the last byte of the string.

Queue data are held in circular, doubly-linked lists (that is, each entry
is accompanied by two longwords, one of which tells the location of
the succeeding entry, one of which specifies the location of the
preceeding eniry). Two kinds of queue data exist: absolute queues use
absolute addresses; relative queues use relative addresses. Chapter
12 includes the Queue instructions, and more detail.

Variable length bit field data are small integers packed together in a
larger data structure. Basically, they are used to increase memory
efficiency.

The address of any data item is the address of the first byte in which
the item resides. All integer, floating point, packed decimal, and char-
acter data can be stored starting on an arbitrary byte boundary. A bit
field, however, does not necessarily start on a byte boundary. It is
simply a set of contiguous bits (0-32) whose starting bit location is
identified relative to a given byte address. The native instruction set
can interpret a bit field as a signed or unsigned integer.

GENERAL REGISTERS AND ADDRESSING MODES

Within the processor there are locations called general registers that
can be used for temporary data storage and addressing. Sixteen 32-
bit general registers are available for use with the native instruction
set, though some have special significance. For example, one register
is designated as the Program Counter, and it contains the address of
the next instruction to be executed. Three general registers are desig-
nated for use with routine linkages: the Stack Pointer, the Argument
Pointer, and the Frame Pointer.

An instruction operand can be located in main memory, in a general
register, or in the instruction stream itself. The method by which an
operand location is specified is cailed the operand addressing mode.
VAX processors offer a variety of addressing modes and addressing

11

Overview of the VAX Architecture

mode optimizations: one addressing mode locates an operand in a
register; several other addressing modes locate an operand in memo-
ry by using a register to: 1) point to the operand, 2) point to a table of
operands, or 3) point to a table of operand addresses.

There are also addressing modes that are indexed modifications of
the addressing modes which locate an operand in memory. Finally,
there are addressing modes that identify the location of the operand in
the instruction stream, including one for constant data and one for
branch instruction addresses. The VAX addressing modes are briefly
summarized here in Table 2-2, but they are explained in greater de-
tails and with examples in Chapter 5. ‘

Table 2-2 Addressing Modes

Mode Symbol
Literal st
(Immediate) { IT} #constant
Register Rn)
Register Deferred (Rn)
Autodecrement -(Rn)
Autoincrement (Rn) +
Autoincrement Deferred @ (Rn) + Indexed
(Absolute) @ #address [Rx]
Bt .
Displacement wh displacement (Rn)
address
Lt
Displacement Def d V?IT displacement (Rn)
P me elerre @ u? address

n = 0through 15
x = 0 through 14

PROCESSING CONCEPTS FOR SYSTEM PROGRAMMING

The VAX processor is specifically designed to support a high-
performance multiprogramming environment. The major advantage
of a multiprogramming system is its ability to utilize most efficiently
those resources of the computer that are being shared by several
executing environments. For example, multiprogramming enables the
execution of many applications and the interactive development of
applications programs simultaneously. Hardware characteristics that
support multiprogramming are:

12

Overview of the VAX Architecture

e Rapid context switching
@ Priority dispatching
e Virtual addressing and memory management

As a multiprogramming system, VAX not only gives the power to share
the processor among processes, but also protects processes from
one another while enabling them to communicate with each other and
share code and data.

Context Switching

In a multiprogramming environment, several individual streams of
code can be ready to execute at any one time. Instead of allowing each
" stream to execute to completion serially (as in a batch-only stream),
the operating system can intervene and switch among them. in VAX
family computers, the hardware establishes an environment for rapid
switching. Switching occurs to increase the efficiency of the computer
by exploiting its resources in a balanced fashion, and to allow the
intervention of processes or events that require priority treatment.

The stream of code executing at any one time is determined by its
hardware context, information loaded in the processor’s registers
that identifies:

e Location of the stream’s instructions and data
@ Which instruction to execute next
® Processor status during execution

A process is a stream of instructions and data defined by a hardware
context. Each process has a unique identification in the stream. The
operating system switches between processes by requesting the proc-
essor to save one process hardware context and load another. Con-
text switching occurs rapidly because the processor instruction set
includes Save hardware Context and Load hardware Context instruc-
tions.

Priority Dispatching

While running in the context of one process, the processor executes
instructions and controls data flow to and from peripherals and main
memory. To share processor, memory, and peripheral resources
among many processes, the processor has two arbitration mecha-
nisms that support high-performance multiprogramming: exceptions
and interrupts. Exceptions are events that occur synchronously (pred-
ictably) with respect to the execution of a particular stream of instruc-
tions, while interrupts are external events that occur asynchronously.

The flow of execution can change at any time, and the processor
distinguishes between changes in flow that are local to a process and

13

Overview of the VAX Architecture

those that are systemwide. Process-local changes occur as the result
of a user software error or when user software calls operating system
services. They are handled through the processor’s exception detec-
tion mechanism and the operating system’s exception dispatcher.

Systemwide changes in flow generally occur as the result of interrupts
from devices or interrupts generated by the operating system
software. Interrupts are handled by the processor’s interrupt detection
mechanism and the operating system’s interrupt service routines.
(Systemwide changes in flow may also occur as the result of severe
hardware errors, in which case they are handled either as special
exceptions or high-priority interrupts.)

Systemwide changes in flow take priority over process-local ones.
Furthermore, the processor uses a priority system for servicing inter-
rupts. Each kind of interrupt is assigned a priority, and the processor
responds to the highest priority interrupt pending. For example, inter-
rupts from the high-speed disk devices take precedence over inter-
rupts from low-speed devices.

The processor sevices interrupts between instructions, or at well-de-
fined points during the execution of long, iterative instructions. When it
acknowledges an interrupt, it switches rapidly to a special systemwide
context to enable the operating system to service the interrupt.
Systemwide changes in the flow of execution are handled in such a
way as to be totally transparent to individual processes.

SYSTEM PROGRAMMING ENVIRONMENT

Within the context of any one process, user-level software controls its
execution. using the instruction sets, the general registers and the
Processor Status Word. Within the multiprogramming environment,
the operating system controls the system’s execution using a set of
special instructions, the Processor Status Longword, and the internal
processor registers.

Processor Status Longword

A processor register called the Processor Status Longword (PSL) de-
termines the execution state of the processor at any time. The low-
order 16 bits of the Processor Status Longword are the Processor
Status Word available to the user process (see below). The high-order
16 bits provide privileged control of the system.

PSL fields can be grouped together by functions that control:

@ The access mode of the current instruction

@ The instruction set the processor is executing

® Interrupt processing

14

Overview of the VAX Architecture

Processor Access Modes

In a high-performance multiprogramming system, the processor must
provide the basis for protection and sharing among all the processes
competing for the system'’s resources. The basis for protection in this
system is the processor’s access mode. The access mode is responsi-
ble for determining both the:

@ Instruction execution privileges: what instructions the processor will
execute, and the

e Memory access privileges: which locations in memory the current
instruction can access.

At any one time, the processor is executing code either in a particular
process, or in the systemwide interrupt service context. In the context
of a process, the processor recognizes four access modes: kernel,
executive, supervisor, and user. Kernel is the most privileged mode
and user the least privileged.

The processor spends most of its execution time in user mode in the
context of one process or another. When user software needs the
more privileged services of the operating system, whether for acquisi-
tion of a resource, for 1/0 processing, or for information, it calls those
services, and the processor executes them, either in the process’s
access mode or a more privileged one.

-Only in kernel mode will the processor execute an instruction that

halts the processor, loads and saves process context, or accesses the
internal processor registers controlling memory management, inter-
rupt processing, the console, or the processor clock.

The ability to execute code in one of the more privileged modes is
granted by the system manager and controlled by the operating
system. In general, code executing in one mode can protect itself and
any portion of its data structures from read and/or write access by
code executing in any less privileged mode.

Protected and Privileged Instructions

The processor provides three types of instructions that enable user-
mode software to obtain privileged services without jeopardizing the
integrity of the operating system. They are:

e Change Mode instructions,

e PROBE instructions

© Return from Exception or Interrupt instruction

User-mode software can obtain privileged services by calling operat-
ing system service procedures with a standard CALL instruction. The
operating system’s service dispatcher issues an appropriate Change

15

Overview of the VAX Architecture

Mode instruction before actually entering the procedure. A Change
Mode instruction is simply a special trap instruction that can be
thought of as an operating system service call instruction. Ultimately
the system manager grants the privilege to write any code that handles
Change Mode traps to more privileged access modes.

The PROBE instructions enable a procedure to check the read (PRO-
BER) and write (PROBEW) access protection of pages in memory
against the privileges of the caller who requested access to a particu-
lar location. This makes the operating system provide services that
execute in privileged modes to less privileged callers while still pre-
venting the caller from accessing protected areas of memory.

The operating system’s privileged service procedures and interrupt
and exception service routines exit using the Return from Exception or
Interrupt (REI) instruction. REI is the only way in which the privilege of
the processor’s access mode can be decreased. REI restores the Pro-
gram Counter and the processor state to resume the process at the
point where it was interrupted.

When the operating system schedules a context switching operation,
the context switching procedure uses the Save Process Context
(SVPCTX) and Load Process Context (LDPCTX) instructions. The op-
erating system’s context switching procedure identifies the location of
the hardware context to be loaded by updating an internal processor
register.

MEMORY MANAGEMENT-

The processor is responsible for enforcing memory protection
between access modes, but that is only a part of the processor’'s mem-
ory management function. In particular, the memory management
hardware enables the operating system to provide an extremely flexi-
ble and efficient virtual memory programming environment. Virtual
address space consists of all possible 32-bit addresses that can be
exchanged between a program and the processor to identify a byte
location in physical memory. The memory management hardware
translates a virtual address into a physical address. (A physical ad-
dress on the other hand, is the address exchanged between the proc-
essor, memory, and the peripheral adapters. Typically, the physical
address is transparent to the programmer, who deals with virtual ad-
dresses.)

Virtual to Physical Page Mapping

Virtual address space is divided into pages, where a page represents
512 bytes of contiguously addressed memory. The first page begins at
byte 0 and continues to byte 511. The next page begins at byte 512

16

Overview of the VAX Architecture

and continues to byte 1023, and so forth. If we listed the first three
pages of virtual address space, their addresses in both decimal and
hexadecimal notation are:

PAGE ADDRESS,, ADDRESS,,
0 0000-0511 0000-01FF
1 0512-1023 0200-03FF
2 1024-1535 0400-05FF

To make memory mapping efficient, the processor must be able to
translate virtual addresses to physical addresses rapidly. Two features
providing rapid address translation are the processor’s internal ad-
dress translation buffer, which is described later, and the translation
algorithm itself.

The processor has three pairs of page mapping registers, one pair for
each of the three major regions of virtual address space that are
actively used. The operating system’s memory management software
loads the pairs of registers with base addresses and lengths of data
structures called page tables, which provide the mapping information
for each virtual page in the system. Thus, there is one page table for
each of the three regions.

A page table is a virtually contiguous array of page table entries, each
of which is a longword representing the physical mapping for one
virtual page. To translate a virtual address to a physical address,
therefore, the processor simply uses the virtual page number as an
index into the page table from the given page table base address.
Each translation is good for 512 virtual addresses since the byte within
the virtual page corresponds to the byte within the physical page.

All process page tables have virtual addresses in the system region of
virtual address space, but the system region page table itself is locat-
ed by its address in physical memory. That is, the system region page
table base register contains the physical address of the page table
base, while the process page table base registers contain the virtual
addresses of their page table bases.

There are two advantages to using a virtual address as the base ad-
dress of a per-process page table. The first is that all page tables do
not have to reside in physical memory. The system region page table
is the only page table that needs to be resident in physical memory.
The process page tables can reside on disk; that is, they can them-
selves be paged and swapped as necessary.

The second advantage is that the operating system’s memory man-
agement software can allocate process page tables dynamically,

17

Overview of the VAX Architecture

because they do not need to be mapped into contiguous physical
pages. And although the system region page table must be mapped
into contiguous physical pages, this requirement does not restrict
physical memory allocation. The region is shared among processes,
and therefore does not require redefinition from context to context.

Because of the complexity of memory management, specialists may
want to study it in greater detail, particularly as those details are pre-
sented in Chapters 6 and 7.

EXCEPTION AND INTERRUPT VECTORS

The processor can automatically initiate changes in the normal flow of
program execution. The processor recognizes two kinds of events that
cause it to invoke conditional software: exceptions and interrupts.
Some exceptions affect an individual process only, such as arithmetic
traps, while others affect the system as a whole, for example, machine
check. Interrupts include both device interrupts, such as those signali-
ing 1/0 completion, and software-requested interrupts, such as those
signaling the need for a context switch operation.

The processor knows which software to invoke when an exception or
interrupt occurs because it references specific locations called vec-
tors to.obtain the starting address of the exception or interrupt dis-
patcher. The processor has one internal register, the system control
block base register, which the operating system loads with the physi-
cal address of the base of the system control block, where the
exception and interrupt vectors are contained. The processor locates
each vector by using a specific offset into the System Control Block.
Each vector tells the processor how to service the event, and contains
the system region virtual address of the routine to execute.

To handle interrupt requests, the processor enters a special system-
wide context. In the systemwide context, the processor executes in
kernel mode using a special data structure called the interrupt stack.
The interrupt stack cannot be referenced by any user-mode software
because the processor only selects the interrupt stack after an inter-
rupt, and all interrupts are trapped through system vectors.

The interrupt service routine executes at the interrupt priority level of
the interrupt request. When the processor receives an interrupt re-
quest at a level higher than that of the currently executing software, the
processor honors the request and services the new interrupt at its
priority level. When the interrupt service routine issues the Return
from Exception or Interrupt instruction, the processor returns control
to the previous level.

18

Overview of the VAX Architecture

1/0 Space and I/O Processing

An 1/0 device controller has a set of control/status and data registers.
The registers are assigned addresses in physical address space, and
their physical addresses are mapped, and thus protected, by the oper-
ating system’s memory management software. That portion of
physical address space in which device controller registers are locat-
ed is called'1/0 space.

No special processor instructions are needed to reference 1/0 space.
The registers are simply treated as locations containing integer data.
An 1/0 device driver issues commands to the peripheral controller by
writing to the controller’s registers as if they were physical memory
locations. Software reads the registers to obtain the controller status.
The driver controls interrupt enabling and disabling on the set of con-
trollers for which it is responsible. If interrupts are enabled, an inter-
rupt occurs when the controller requests it. The processor accepts the
interrupt request and executes the driver's interrupt service routine if
it is not currently executing on a higher-priority interrupt level.

Process Context ‘

For each process eligible to execute, the operating system creates a
data structure called the software process control block. Withinitis a
pointer to. another data structure, the hardware process control
block, which contains the hardware process context, that is, all the
data needed to load the processor’s programmable registers when a
context switch occurs. To give control of the processor to a process,
the operating system loads the processor's process control block
base register with the physical address of a hardware process control
block and issues the Load Process Context instruction. The processor
loads the process context in one operation and is ready to execute
code within that context.

A process control block not only contains the state of the program-
mable registers, it also contains the definition of the process virtual
address space. Thus, the mapping of the process is automatically
context-switched.

Furthermore, the process control block provides the mechanism for
triggering asynchronous system traps to user processes. The Asyn-
chronous System Trap field enables the processor to schedule a soft-
ware interrupt to initiate an AST routine and ensure that they are
delivered to the proper access mode for the process.

STACKS, SUBROUTINES, AND PROCEDURES
A stack is an array of consecutively addressed data items referenced
on a last-in, first-out (LIFO) basis using a general register. Data items

19

Overview of the VAX Architecture

are added to and removed from the low address end of the stack. A
stack grows toward lower addresses as items are added, and shrinks
toward higher addresses as items are removed.

A stack can be created anywhere in the program’s address space and
can use any register to point to the current item on the stack. The
operating system, however, automatically reserves portions of each
process address space for stack data structures. User software refers
to its stack data structure, called the user stack, through a general
register designated as the Stack Pointer (SP). When you run a pro-
gram image, the operating system automatically provides the address
of the area designated for the user stack.

A stack is an extremely powerful data structure because it can be used
to pass arguments to routines efficiently. In particular, the stack
structure enables the coding of reentrant routines because the proc-
essor can handle routine linkages automatically using the Stack Point-
er. Routines can also be recursive: arguments can be saved on the
stack for each successive call of the same routine.

The processor provides two kinds of routine call instructions, those for
subroutines, and those for procedures. In general, a subroutine is a
routine entered using a Jump to Subroutine or Branch to Subroutine
instruction, while a procedure is a routine entered using a Call instruc-
tion.

The processor automatically saves and restores the contents of regis-
ters to be preserved across procedure calls, and it provides two
methods for passing argument lists to called procedures: by passing
the arguments on the stack, or by passing addresses of arguments
elsewhere in memory. The processor also constructs a “journal” of
procedure call nesting by using a general register as a pointer to the
place on the stack where a procedure has its linkage data. This record
of each procedure’s stack data, known as its stack frame, enables
proper returns from procedures even when the procedures leave data
on the stack. In addition, user and operating system software can
“unwind” the stack frame to trace back through nested calis to handle
errors or debug programs.

INSTRUCTION FORMAT

A native-mode instruction may start on any byte boundary. VAX's
variable-length instruction format not only makes code more compact,
but it also guarantees that the instruction set can be easily extended.
Opcodes for the operations are single or double bytes followed by
zero to six operand specifiers, depending on the instruction. An oper-
and specifier can be one to ten bytes long, depending on the address-

20

Overview of the VAX Architecture

ing mode (see Chapter 5). Figure 2-2 illustrates the autodecrement
mode Move Long instruction as a string of bytes starting with the
opcode followed by two operand specifiers. In this example, the as-
sumed starting location is 00003000. When the processor completes
the execution of an instruction, the Program Counter contains the
address of the first byte of the next instruction. The Program Counter
operation is totally transparent to the programmer.

MACHINE CODE: (ASSUMED STARTING LOCATION 00003000)

00003000 DO OPCODE FOR MOVE LONG INSTRUCTION

00003001 73 AUTODECREMENT MODE, REGISTER R3

00003002 __\S_L_\I REGISTER MODE, REGISTER R4

Figure 2-2 Autodecrement Move Long Instruction

The Program Counter itself can be used to identify operands. The
assembler translates many types of operand references into address-
ing modes using the Program Counter. Autoincrement mode using the
Program Counter, which is also called immediate mode, is used to
specify in-line constants other than those available with literal mode
addressing. Autoincrement deferred mode using the Program
Counter, or absolute mode, is used to reference an absolute address.
Displacement and displacement deferred modes using the Program
Counter are used to specify an operand using an offset from the cur-
rent location.

Addressing using the Program Counter enables the coding of posi-
tion-independent code. Position-independent code can be executed
anywhere in virtual address space after it has been linked, since pro-
gram linkages can be identified as absolute locations in virtual ad-
dress space and all other addresses can be identified relative to the
current instruction.

COMPATIBILITY MODE

Under control of the operating system, the processor can execute
PDP-11 instruction streams within the context of any process. When
executing in compatibility mode, the processor interprets the
instruction stream of the current process as a subset of PDP-11 code.
The subset does not include floating point hardware or privileged
instructions.

21

Overview of the VAX Architecture

In general, compatibility mode enables the operating system to pro-
vide an environment for executing most user-mode programs written
for a PDP-11. The processor expects all compatibility mode software
to rely on the services of the native operating system for I/0 process-
ing, interrupt and exception handling, and memory management.
There are some restrictions, however, on the environment that the
native operating system can provide a PDP-11 program (see Chapter
13 for more detail).

FOR MORE INFORMATION ON VAX ARCHITECTURE

Expanded information on the VAX Architecture is available in the sub-
sequent chapters of this handbook, and the VAX-11 Hardware Hand-
book. Your DIGITAL software support specialist and sales representa-
tive are also good sources of further information.

22

23

CHAPTER 3
SYSTEM ARCHITECTURAL CHARACTERISTICS

INTRODUCTION

The common VAX architecture defines a consistent functional behav-
ior seen by programmers regardless of which VAX family processor
they use. Areas of interaction that, from the programmer’s viewpoint,
display this processor independence include: data sharing and syn-
chronization, restartability, interrupts and errors, and |/O structure. Of
these, data sharing is most visible to the programmer.

DATA SHARING AND SYNCHRONIZATION

Data (or instructions) may be shared among various entities including
programs, processors, and 1/0 devices. Entities sharing data may do
so explicitly by referencing the same datum or implicitly by referenc-
ing different items within the same physical memory location.

In the VAX family architecture, implicit sharing is transparent to the
programmer. The memory system is implemented such that the basis
of access for independent modification is the byte. Notice that this
does not imply a maximum reference size of one byte, but only that
independent modifying accesses to adjacent bytes produce the same
results regardless of the order of execution. For example, locations 0
and 1 contain the values 5 and 6 respectively. One process executes
INCB 0 (increment by 1 the byte at location 0) and another executes
INCB 1. Then, regardless of the order of execution (including effective-
ly simultaneous execution) the final contents must be 6 and 7.

Access to explicitly shared data that may be written must be
synchronized. Before accessing shared writable data, the program-
mer must acquire control of the data structure. Seven instructions are
provided to permit interlocked access to a control variable. The
Branch on Bit Set and Set, Interlocked (BBSSI) and Branch on Bit
Clear and Clear, Interlocked (BBCCI) instructions use hardware-pro-
vided primitive operations to make a read and a subsequent write
reference to a single bit within a single byte in an interlocked se-
quence. The Add Aligned Word, Interlocked (ADAWI) instruction uses
a hardware-provided primitive operation to make a read and a subse-
quent write operation to a single aligned word in an interlocked se-
guence to allow counters to be maintained without other interlocks.
The Insert into Queue Head, Interlocked (INSQHI), Insert into Queue
Tail, Interlocked (INSQTI), and the analogous Remove instructions,
REMQHI and REMQTI, use a primitive operation provided by
hardware to make a series of aligned longword reads and writes in an

25

Architectural Characteristics

interlocked method to allow queues to be maintained without other
interlocks. Use of the hardware primitives guarantees that no read
operation within the synchronizing part of these instructions can occur
between the synchronized reads and the writes of the instructions.
Such instructions are implemented so that no faults will cause the data
structure to be locked for an extended period. On the processor, only
interlocking instructions are locked out by the interlock.

In a customer-designed, shared memory, multiprocessor configura-
tion, changing any of the address mapping information for system
space requires that all processors execute a MTPR xxx,#TBIS.

CACHE

Some hardware implementations—including VAX processors—have a
mechanism to reduce access time by making local copies of recently
used memory contents. This mechanism is termed a cache. In VAX
family processors, the cache is implemented in such a way that its
existence is transparent to software (except for timing and error re-
porting/control). In particular, the following are true:

1. Program writes to memory, followed by a peripheral output trans-
fer, output the updated value.

2. A peripheral input transfer followed by a program reading of
memory reads the input value.

3. A write or modify followed by a HALT on one processor, followed
by a read or modify on another processor, reads the updated
value. (Note that this only applies to customer-designed multipro-
cessor systems.)

4. A write or modify followed by a power failure, followed by restora-
tion of power, followed by a read or modify, reads the updated
value. This only occurs if the duration of the power failure does
not exceed the maximum nonvolatile period of the main memory
or if the contents of memory were protected by optional battery
backup.)

5. In customer-designed multiprocessor systems, access to vari-
ables shared between processors is interlocked by software exe-
cuting BBSSI, BBCCI, ADAWI, INSQHI, INSQTI, REMQHI, or
REMQTI instructions. In particular, the writer must execute an
interlocking instruction after the write to release the interlock and
the reader must execute a successful matching interlock instruc-
tion before the read.

6. Accesses to I/0 registers are not cached.

RESTARTABILITY
The VAX architecture requires that all instructions be restartable after

26

Architectural Characteristics

a fault or interrupt that terminated execution before the instruction
was completed. Generally, this means that modified registers are re-
stored to the value they had at the start of execution. For some com-
plex or iterative instructions, intermediate results are stored in the
general registers. In this case, memory contents may have been al-
tered, but the former case requires that no operand be written unless
the instruction can be completed. For most instructions with only a
single modified or written operand, this implies special processing
only when a multibyte operand spans a protection boundary, making it
necessary to test accessibility of both parts of the operand.

Instructions which store intermediate results in the general registers
do not compromise system integrity. They ensure that any addresses
stored or used are virtual addresses, subject to protection checking.
Furthermore, they ensure that any state information stored or used
does not result in a noninterruptable or nonterminating sequence.

Instruction operands that are peripheral device registers having
access side effects may produce unpredictable results due to instruc-
tion restarting after faults (including page faults) or interrupts. To en-
sure no interrupts, the programmer avoids operand specifier address-
ing modes 9, 11, 13, and 15, and the indexed forms of these modes.
(Symbolically, @(Rn)+, @B{D(Rn), @W{D(Rn), and @L1D(Rn), and
these indexed.) The hardware, however, may allow interrupts for these
modes in order to minimize interrupt latency.

Memory modificatons produced as a byproduct of instruction execu-
tion (e.g., memory access statistics) are specifically excluded from the
constraint that memory may not be altered until the instruction can be
completed.

Instructions that abort are constrained only to insure memory
protection (e.g., registers can be changed).

INTERRUPTS AND ERRORS

Underlying the VAX architectural concept of an interrupt is the notion
that an interrupt request is a static condition, not a transient event, and
can be sampled by a processor at appropriate times. Further, if the
need for an interrupt disappears before a processor has honored an
interrupt request, the interrupt request can be removed without
consequence.

So that software can operate deterministically, any instruction chang-
ing the processor priority (IPL) to enable a pending interrupt, allows
the interrupt to occur before the next instruction that would normally
have been executed.

Similarly, instructions that generate requests at the software interrupt

27

Architectural Characteristics

levels allow the interrupt to occur, if processor priority permits, before
executing the apparently subsequent instruction.

Processor errors, if not inconsistent with instruction completion, cre-
ate high-priority interrupt requests. Otherwise, they terminate instruc-
tion execution with a fault, trap, or abort.

Error notification interrupts may be delayed from the apparent com-
pletion of the instruction in execution at the time of the error; but if
enabled, the interrupt is requested before processor context is
switched.

1/0 STRUCTURE

Peripheral device control/status and data registers appear at loca-
tions in the physical address space, and can, therefore, be manipulat-
ed by normal memory reference instructions. Use of general instruc-
tions permits all the virtual address mapping and protection mecha-
nisms described in the Memory Management chapter to be used when
referencing 1/0 registers.

Because VAX systems have an integral UNIBUS, an area of the I/0
physical address space, 2'® bytes in length, maps through to the
UNIBUS addresses. This area is referred to as the UNIBUS space.

Constraints on I/O Registers

I/0 registers satisfy the following simple rules and constraints:

1. All registers are aligned on natural boundaries, and the physical
address of an 1/0 register will always be an integral muitiple of the
register size in bytes (which must be a power of 2).

2. References using a length attribute other than the length of the
register and/or an unaligned reference may produce unpredicta-
ble results. For example, a byte reference to a word-length regis-
ter will not necessarily respond by supplying or modifying the byte
addressed.

3. In peripheral devices, error and status bits that may be asynchro-
nously set by the device are usually cleared by software writing a
one to these bits, and are not affected by writing a zero. This is to
prevent clearing bits that may be asynchronously set between
reading and writing a register.

4. Only byte and word references of a read-modify-write type in
UNIBUS 1/0 spaces are guaranteed to interlock correctly. Refer-
ences in the 1I/O space other than -in UNIBUS spaces are
undefined with respect to interlocking, and this includes the
BBSSI and BBCCl instructions.

28

Architectural Characteristics

5. String, quadword, octaword, F_floating, D_floating, G_floating,
H_floating, and field references in the I/0 space result in unde-
fined behavior.

The information on VAX architectural characteristics will assist sophis-
ticated users to modify or enhance the capabilities of VAX systems. It
should also be of help to designers who are configuring their own
multiprocessor systems. For additional details, please consult your
DIGITAL Sales Representative or Software Specialist.

29

30

CHAPTER 4
DATA REPRESENTATION

INTRODUCTION

The VAX instruction set can use a wide range of data types, all of
which can be separated into categories according to the groups of
instructions that operate on them. They are:

e Integer and Floating Data Types

e Character String Data Types

e Numeric String Data Types

e Packed Decimal Data Types

® Queue Data Types

e Variable Length Bit Field Data Types
e Special Table Data Types

Figure 4-1 summarizes the VAX data types. Many of these data types
can be further characterized by both size and format flexibility.

INTEGER AND FLOATING DATA TYPES

In the following discussion of integer and floating data types, the ad-
dress of the datum in memory is the address of the byte of the datum
with the lowest address. When depicted, this lowest byte is shown on
the right and in discussions this is what is meant when the word “right”
is used.

Integer Data

VAX supports integer data types of 8-, 16-, 32-, 64-, and 128-bit sizes.
These are termed byte, word, longword, quadword, and octaword
integers, respectively. The integer data types are stored in memory in
a binary format which can be treated as either signed or unsigned
quantities. As unsigned quantities, integers extend upward from 0. As
signed quantities, the integers are represented in 2's complement
form. This means that positive numbers have a zero most significant
bit (MSB) and the representation of a negative number is one greater
than the bit-by-bit complement of its positive counterpart. Thus, the
MSB is always zero for positive values and one for negative values.

® Byte
A byte is eight contiguous bits starting on an addressable byte bound-

ary or located in a register, Rn<7:0>. The bits are numbered from the
right O through 7.

31

—m

Data Representation

31vy¥3d3s
ONIQV31

3AILY 13y
REREN 31MOsav

i

[QEIENIL:] an3and
HION3T 318VIdVA

|

sedA] eyeq X¥A |-y @inbig

JI¥3WNN JIR3WNN

Q3HONNY3IAO daNoz

Bunooy~o Buooyy 4

ONITNVYL _ QIO QIOM qyom
Buyoo)y -y Buyooy - g -ViD0 -QvNO -ONOT Q¥OM 3148
L 1 L | | | |
ONIYLS —
JNI3WNN INIOd - ONILVO14 ¥3IOILINI
IvYwWID3AQ
a3INDvd ONIYLS
YILOVEVHD

|

S3dAL Vivad XvA

32

Data Representation

The byte is specified by its address A. When interpreted as a signed
quantity, a byte is a 2’'s complement integer with bits increasing in
significance from 0 through 6, and with bit 7 designating the sign.

e Word

A word, two contiguous bytes, starts on an arbitrary byte boundary or
is located in a register Rn<15:0>. The bits are numbered from the
right 0 through 15.

Words, longwords, quadwords, and octawords are specified by their
address A, the address of the byte containing bit 0. When interpreted
as a signed quantity, a word is a 2's complement integer with bits
increasing in significance from 0 through 14, and with bit 15 designat-
ing the sign.
e Longword

A longword is four contiguous bytes starting on an arbitrary byte
boundary or located in a register Rn<31:0>. The bits are numbered
from the right 0 through 31.

When interpreted as a signed quantity, a longword is a 2's comple-
ment integer with bits increasing in significance from 0 through 30,
and with bit 31 designating the sign.

e Quadword

A quadword is eight contiguous bytes starting on an arbitrary byte
boundary or in two consecutive registers, R[n+1]'R[n]. The bits are
numbered from the right 0 through 63.

A quadword is specified by its address A, the address of the byte
containing bit 0. When interpreted as a signed quantity, a quadword is
a 2's complement integer with bits increasing in significance from 0
through 62.

e QOctaword

An octaword is sixteen contiguous bytes starting on an arbitrary byte
boundary. The bits are numbered from the right 0 through 127.

When interpreted arithmetically, an octaword is a 2's complement in-
teger with bits of increasing significance going 0 through 126, and bit
127 the sign bit. The octaword data type is not yet fully supported by-
VAX instructions.

Floating Point Data

The floating point data types represent approximations to quantities
using a scientific notation consisting of a sign, the exponent of a power
of two, and a fraction between .5 (inclusive) and 1.0 (exclusive). VAX
supports, in the instruction set, floating point data types of 32-, 64-,

33

Data Representation

and 128-bit sizes. Essentially four floating point data types are avail-
able, two of 8 bytes in length (D_floating and G_floating) and one each
of lengths 4 bytes and 16 bytes (F_floating and H_floating, respective-
ly).

e F_floating (single-precision floating)

An F_floating datum, sometimes called just “floating” or “single-
precision floating,” is four contiguous bytes starting on an arbitrary
byte boundary or in register n. The bits are labelled from the right 0
through 31.

The form of an F_floating datum is sign magnitude with bit 15 the sign
bit, bits 14:7 an excess 128 binary exponent, and bits 6:0 and 31:16 a
normalized 24-bit fraction with the redundant most significant fraction
bit not represented. Within the fraction, bits increase in significance
from 16 through 31 and 0 through 6. The 8-bit exponent field encodes
the values 0 through 255. An exponent value of 0 together with a sign
bit of 0, indicates that the F_floating datum has a value of 0. Exponent
values of 1 through 255 indicates true binary exponents of —127
through +127. An exponent value of 0, together with a sign bit of 1, is
taken as reserved. (Floating point instructions processing a reserved
operand take a reserved operand fault.) The magnitude of an
F_floating datum is in the approximate range .29*107® through 1.7*
1038, The precision of an F_floating datum is approximately one partin
223 (approximately 7 decimal digits.)

e D_floating (double-precision floating)

The D_floating datum sometimes referred to as “double floating” or
“double-precision floating,” is eight contiguous bytes starting on an
arbitrary byte boundary or in two consecutive registers, R[n+1]'R[n].
The bits are labelled from the right 0 through 63.

The form of a D_floating datum is identical to the F_floating datum
except for an additional 32 low significance fraction bits. Within the
fraction, bits increase in significance from 48 through 63, 32 through
47, 16 through 31, and 0 through 6, as suggested by the widening
arrow in Figure 4-2. The exponent conventions, and approximate
range of values is the same for both D_floating and F_floating. The
precision of a D_floating datum is approximately one part in 25 (ap-
proximately 16 decimal digits).

e G_floating

A G_floating datum is eight contiguous bytes starting on an arbitrary
byte boundary. The bits are labelled from the right 0 through 63.

The form of a G_floating datum is sign magnitude with bit 15 the sign

34

Data Representation

_ FRACTION

S EXPONENT

- : . FRACTION

...

el LR R ——

T FRACTION

63 48
Figure 4-2 D_floating Format

bit, bits 14:4 an excess-1024 binary exponent, and bits 3:0 and 63:16 a
normalized 53-bit fraction with the redundant most significant fraction
bit not represented. Within the fraction, bits of increasing significance
go 48 through 63, 32 through 47, 16 through 31, and 0 through 3. The
11-bit exponent field encodes the values 0 through 2047. An exponent
value of 0 together with a sign bit of 0, is taken to indicate that the
G_floating datum has a value of 0. Exponent values of 1 through 2047
indicate true binary exponents of —1023 through +1023. An exponent
value of 0, together with a sign bit of 1, is taken as reserved. Floating
point instructions processing a reserved operand take a reserved op-
erand fault. The value of a G_floating datum is in the appropriate
range .56*1073% through .9*103°; the precision is approximately one
part in 22 (typically 15 decimal digits).

e H_floating

An H_floating datum is 16 contiguous bytes starting on an arbitrary
byte boundary. The bits are labelled from the right 0 through 127.

The form of a H_floating datum is sign magnitude with bit 15 the sign
bit, bits 14:0 an excess-16384 binary exponent, and bits 127:16 a
normalized 113-bit fraction with the redundant most significant frac-
tion bit not represented. Within the fraction, bits of increasing signifi-
cance go 112 through 127, 96 through 111, 80 through 95, 64 through
79, 48 through 63, 32 through 47, and 16 through 31. The 15-bit
exponent field encodes the values 0 through 32767. An exponent val-
ue of 0 together with a sign bit of 0 is taken to indicate that the
H_floating datum has a value of 0. Exponent values of 1 through 32767
indicate true binary exponents of —16383 through +16383. An expo-
nent value of 0, together with a sign bit of 1, is taken as reserved.
Floating point instructions processing a reserved operand take a re-
served operand fault. The value of an H_floating datum is in the ap-
proximate range .84*1074%%2 through .59*10%%%2, The precision of a
H_floating datum is approximately one part in 2''2 (typically 33 deci-
mal digits).

35

Data Representation

CHARACTER STRING DATA TYPE

To represent strings such as names, data records, or text, you can use
the character string data type. Rather than performing arithmetic or
logical operations on character strings, the important instructions do
copying, searching, concatenating, and translating of strings.

A character string is a contiguous sequence of bytes in memory, and is
specified by two attributes: the address A of the first byte of the string,
and the length L of the string in bytes. The length L of a string is in the
range 0 through 65,535. A string with-length 0 is termed a null string; it
contains no bytes and no memory is referenced; hence, the address
need not be valid.

The format of a character string is illustrated in Figure 4-3.

PA+L-1

Figure 4-3 Character String Format

The address of a string specifies the first character of a string. In the
following example, XYZ is represented as:

7 0
\\xu M A
wy A+
B wazn ;A..2

Figure 4-4 String XYZ
36

Data Representation

NUMERIC STRING DATA TYPES

Numeric string data types are used to represent fixed scaled quanti-
ties in forms close to their external representations. For programs that
are input/output intensive rather than computation intensive, this pre-
sentation can be efficient. The decimal string form also provides
greater precision than floating point and greater range than integer
data types.

There are two forms of decimal data on VAX; the decimal string data
types in which each decimal digit occupies one byte, and a more
compact form (discussed later) in which two decimal digits are packed
into one byte. These are termed numeric and packed decimal
strings, respectively. Because the numeric string form must represent
many external data arrangements exactly, it appears in several forms.
The most significant distinguishing characteristic i is whether the sign, if
any, appears before the first digit or is supenmposed on the final digit.
The first is called the “leading separate numeric string,” while the
second is the “trailing numeric string.”

Leading Separate Numeric String

A leading separate numeric string is a contiguous sequence of bytes in
memory. It is specified by two attributes: the address A of the first byte
(containing the sign character), and a length L that is the length of the
string in digits and NOT the length of the string in bytes: the number of
bytes in a leading separate numeric string is L+1. The address A of
the string specifies the byte of the string containing the sign. Digits of
decreasing significance are assigned to bytes of increasing ad-
dresses.

The sign of a separate leading numeric string is stored in a separate
byte. Valid sign bytes are:

sign decimal hex ASCIl character
+ 43 2B +
+ 32 20 <blank>
- 45 2D -

The preferred representation for + is 2B, the ASCII +. All subsequent
bytes contain an ASCII digit character:

digit decimal hex ASCIl character
0 48 30 0
1 49 31 1
2 50 32 2

37

Data Representation

digit decimal hex ASCIl character
3 51 33 3
4 52 34 4
5 53 35 5
6 54 36 6
7 55 37 7
8 56 38 8
9 57 39 9

The length L of a leading separate numeric string must be in the range
0 to 31 (0 to 31 digits). The value of a 0 length string is identically 0; it
contains only the sign byte.

The following examples illustrate the representations of +123 and
—123 in leading separate numeric string format.

+123 is represented as:

ZONED FORMAT OR UNSIGNED

7 4 3 0
3 1 A
3 2 T A+]
3 3 T A+2

OVERPUNCH FORMAT

7 4 3 0
3 1 A
3 2 T A+]
4 3 P A+2

38

Data Representation

and —123 is represented as:

ZONED FORMAT

7 4 3 9]
3 1 A
3 2 DA+
7 3 T A+2

OVERPUNCH FORMAT

7 4 3 0
3 1 A
3 2 CA+]
4 C T A2

Trailing Numeric String

A trailing numeric string is a contiguous sequence of bytes in memory.
The string is specified by two attributes: the address A of the first byte
(most significant digit) of the string, and the length L of the string in
bytes.

Note that the address A of the string specifies the byte of the string
containing the most significant digit. Digits of decreasing significance
are assigned to increasing addresses.

All bytes of a trailing numeric string, except the least significant digit
byte, must contain ASCII decimal digit characters (0-9). The represen-
tation for these “non-least significant” digits is:

digit decimal hex ASCII character
0 48 30 0
1 49 31 1
2 50 32 2
3 51 33 3
4 52 34 4
5 53 35 5

39

Data Representation

digit decimal hex ASCII character
6 54 36 6
7 55 37 7
8 56 38 8
9 57 39 9

The highest addressed byte of a trailing numeric string represents an
encoding of both the least signficant digit and the sign of the numeric
string. The VAX-11 numeric string instructions support any encoding;
however there are three preferred encodings used by DIGITAL soft-
ware. These are (1) unsigned numeric in which there is no sign and the
least significant digit contains an ASCII decimal digit character, (2)
zoned numeric, and (3) overpunched numeric. Because the over-
punch format has been used by the compilers from numerous
manufacturers over many years, and because various card encodings
are used, several variations in overpunch format have evolved. Typi-
cally, these alternate forms are accepted on input. The normal form is
generated on output of all operations. The valid representations of the
digit and sign in each of the latter two formats is shown in Table 4-1.

Table 4-1 Representation of Least Significant Digit and Sign

Zoned Numeric Format Overpunch Format
deci- ASCIll deci- ASCII char.
digit mal hex char. mal hex norm alt.
0 48 30 0 123 7B { o[?
1 49 31 1 65 41 A 1
2 50 32 2 66 42 B 2
3 51 33 3 67 43 C 3
4 52 34 4 68 44 D 4
5 53 35 5 69 45 E 5
6 54 36 6 70 46 F 6
7 55 37 -7 71 47 G 7
8 56 38 8 72 48 H 8
9 57 39 9 73 49 | 9
-0 112 70 p 125 7D }]1:1
-1 113 71 q 74 4A J
-2 114 72 r 75 4B K
-3 115 73 s 76 4C L
—4 116 74 t 77 4D M

40

Data Representation

Zoned Numeric Format Overpunch Format

.. deci- ASCIl deci- ASClIl char.

digit mal hex. char. mal hex norm alt.
-5 117 75 u 78 4E N
. —6 118 76 v 79 4F (0}
-7 119 77 w 80 50 P
-8 120 78 X 81 . 51 Q
-9 121 79 y 82 52 R

The length L of a trailing numeric string must be in the range 0 to 31 0
to 31 digits). The value of a 0 length string is identically 0; it contains no
bytes and no memory is referenced; hence, the address need not be
valid.

The following examples illustrate the representations of 123 and -123
in trailing numeric string format. ‘

Thus 123 is represented as:

7 4 3 0
2 B A
3 1 At
3 2 P A+2
3 3 T A+3

and —123 is represented as:

7 4 3 0
2 D A
3 ! TA+]
3 2 A+ 2
3 3 tA+3

41

Data Representation

PACKED DECIMAL STRING

A packed decimal string is a contiguous sequence of bytes in memory.
The address A and length L are sufficient to specify a packed decimal
string, but note that L is the number of digits, not bytes, in the string.
Every byte of a packed decimal string is divided into two 4-bit fields
(nibbles), each of which must contain decimal digits, except the low
nibble of the last byte, which must contain a sign. The representation
for the digits and sign is:

digit or sign decimal

=2
®
®

|l + oo ~NOORON = O
O© ONOOOGODWN=O
OCO~NODTHLWN = O

10,12,14 or 15 A,C,E,orF
11or13 B,orD

Despite the options, the preferred sign representation is 12 for + and
13 for —. The length L is the number of digits in the packed decimal
string (not counting the sign) and must be in the range 0 through 31. If
the number of digits is odd, the digits and the sign fit into ([L/2]+1)
bytes; when the number of digits is even, an extra “0” digit must
appear in the high nibble (bits 7:4) of the first byte. Again, the length in
bytes of the string is L/2 + 1. The value of a 0-length packed decimal
string is identically 0; it contains only the sign byte which also includes
the extra “0” digit.

The address A of the string specifies the byte of the string containing
the most significant digit in its high nibble. Digits of decreasing signifi-
cance are assigned to increasing byte addresses and from high nibble
to low nibble within a byte. In the following example, +123 (length 3) is
represented in packed decimal format as:

3 12 A+

42

Data Representation

and —12 (length 2) is represented as:

2 13 DA+

VARIABLE LENGTH BIT FIELD DATA TYPE

The variable length bit field is a data type used to store small integers
packed together in a larger data structure. This saves memory when
many small integers are part of a larger structure. A specific case of
the variable bit field is that of one bit. This form is used to store and
access individual flags efficiently.

Variable Length Bit Field

A variable bit field is 0 to 32 contiguous bits located arbitrarily with

respect to byte boundaries, and specified by three attribuies:

e Base address A—the address of a particular byte in memory chosen
as a reference point for locating the bit field F.

® Bit position P—the signed longword specifying the bit displacement
of the least significant bit of the field with respect to bit zero of the
byte at address A. ‘

e Size S—the byte integer length of field F expressed as a number of
bits. 8 must be between 0 and 32 bits inclusive.

Figure 4-5a illustrates the variable length bit field where the field is the
shaded area.

P+S-1 P 8 7 0

« J . _J

S= SIZE OF FIELD IN BITS‘——T 1

P= BIT DISPLACEMENT OF FIELD FROM
BIT ZERO OF ADDRESS A

Figure 4-5a Variable Length Bit Field
43

Data Representation

The position P (in bits) can be either a positive or negative displacment
within the range —23' through 23'—1. It can be viewed as a signed 29-
bit byte offset and a 3-bit bit-within-byte field.

31 3 2
L :
. L N N B R B T A
N\ N/
BYTE OFFSET * T
BIT WITHIN BYTE

Figure 4-5b Bit Position P

The sign-extended 29-bit byte offset is added to the address A and the
resulting address specifies the byte in which the field begins. The 3-bit
bit-within-byte field encodes the starting position (0 through 7) of the
field within that byte. VAX instructions provide direct support for the
interpretation of a field as a signed or unsigned integer. When in-
terpreted as a signed integer, it is the 2's complement, with bits in-
creasing in significance from 0 through S—2, where bit S—1 is
designated the sign bit. When interpreted as an unsigned integer, bits
increase in significance from 0 through S—1.

If the field is contained in a register, and the size is not zero, the
position operand must have a value in the range 0 through 31 or a
reserved operand fault occurs.

If size plus position are greater than 32, then the operand is located in
the concatenation of register [n+1] and by register [n] (i.e.,
R[n+1]'R[n]). Therefore, the most significant bit of the specified field
lies in R[n+1] and the least significant bit of the specified field is
located in R[n].

A variable bit field may be contained in zero to five bytes. From a
memory management point of view only the minimum number of bytes
necessary to contain the field is actually referenced.

The following example illustrates the variable length bit field F with a
positive displacement from the byte address A.

The variable length bit field attributes are specified as follows:

Base Address A = B2204C01
Position P = 29
SizeS =2

Therefore, the starting position of the field is bit 29 (i.e., the first bit of F
is the 29th bit after bit 0 of A).

44

Data Representation

71651413 |2]1 A B2204CO1
151141131211 110]19]38

1817116
FIRST
BIT OF F 26125124

The starting bit position of field F has been located. To determine its
length, apply the size attribute.

B2204C04

The next example illustrates the variable length bit field F with a nega-
tive displacement from the byte address A.

Example:
The variable length bit field attributes are specified as follows:

Base Address A = 801134E3
Position P_= -7
SizeS =6

Therefore, the starting position of field F is the 7th bit preceding the
zero bit of address 801134E3.

45

Data Representation

STARTING BIT POSITION
e r/r— OF FIELD F
V(-2 |-3|-4]|-5]-6]-7 801134E2
:A 801134E3
801134E4

The starting bit position of field F has been located. To determine its
length, apply the size attribute as in the previous example (counting
from lower to higher addresses).

801134E2

FIELD F

QUEUE DATA TYPES

A queue is a circular, doubly linked list whose entries are specified by
their addresses. Each queue entry is linked to the next via a pair of
longwords. The first is the forward link--it specifies the location of the
succeeding entry; the second is the backward link--it specifies the
location of the preceding entry. VAX supports two distinct types of
links: 1) absolute and 2) self-relative. An absolute link contains the
absolute address of the entry that it points to, while a self-relative link
contains a displacement from the present queue entry. A queue re-
quires a queue header which is identical to a pair of queue linkage
longwords. The forward link of the header is the address of the entry
termed the head of the queue. The backward link of the header is the
address of the entry termed the tail of the queue. Logically, the for-
ward link of the tail points to the header.

Self-relative queues are intended for use in situations where they are
addressed by two separate processes, each of which may view the
queues as residing in two separate locations in their respective virtual
address spaces. The instructions which operate on self-relative
queues are interlocked: as long as only interlocked instructions are
used on the queue, the processes may be in separate processors,
each directly addressing the queue.

46

~

Data Representation

Absolute queues are somewhat simpler in structure than self-relative
queues in that their pointers are virtual addresses. Also, the instruc-
tions which operate on these queues are not interlocked. Hence, oper-
ations on absolute queues are, in general, somewhat faster. However,
absolute queues cannot be used when more than one processor can
access them. Also, they can be shared by two processes in the same
processor only when both processes address the queue in the same
section of their virtual address space. Figure 4-6a illustrates the format
of the self-relative queue and Figure 4-6b illustrates the format of the
absolute queue.

EMPTY SELF-RELATIVE QUEUE (HEADER ONLY) SELF-RELATIVE QUEUE WITH TWO ENTRIES
N 10 N 10
0 *H A-H tH
0 B-H
1 1
' :
. .
SELF-RELATIVE QUEUE WITH ONE ENTRY B-A
3 10 H-A
A-H *H
\
A-H '
.
.
H-8B
A-B
H-A
.
H-A .
:

Figure 4-6a Self-Relative Queues

47

Data Representation

EMPTY ABSOLUTE QUEUE (HEADER ONLY ie SIMPLE ENTRY ONLY)

A

A
A

ABSOLUTE QUEUE WITH HEADER AND OTHER ENTRY

A

> | >

ABSOLUTE QUEUE WITH HEADER AND TWO OTHER ENTRIES

‘A

@ | >

B
C

>0

Figure 4-6b Absolute Queues

48

Data Representation

DATA IN REGISTERS

When a datum of the byte, word, longword, or floating type is stored in
a register, the bit numbering in the register corresponds to the num-
bering in memory. Hence, a byte is stored in register bits 7:0, a word in
register bits 15:0, and longword or F_floating, in register bits 31:0. A
byte or word written to a register writes only bits 7:0 and 15:0 respec-
tively; the higher bits are unaffected. A byte or word read from a
register reads only bits 7:0 and 15:0 respectively; the other bits are
ignored.

When a quadword or D_floating datum is stored in a register such as
R[n], it is actually stored in two adjacent registers, R[n] and R[n+1].
Due to PC specification restrictions, wraparound from PC to RO is
unpredictable. Bits 31:0 of the quadword or D_floating datum are
stored in bits 31:0 of R[n] and bits 63:32 of the quadword or D_floating
datum are stored in bits 31:0 of R[n+1].

An octaword or an H_floating datum stored in register R[n], is actually
stored in four adjacent registers, R[n], R[n+1], R[n+2], and R[n+3].
Bits 31:0 of the datum are stored in bits 31:0 of R[n], bits 63:32 in bits
31:0 of R[n+1], bits 95:64 in bits 31:0 of R[n+2], and bits 127:96 in bits
31:0 of R[n+3.

With one restriction, a variable length bit field may be specified in the
registers: the starting bit position P must be in the range 0 through 31.
As for quadword and D_floating, a pair of registers, R[n] and R[n+1],
is treated as a 64-bit with bits 31:0 in register R[n] and bits 63:32 in
R[n+1].

The VAX string instructions are unable to process string data types
stored in registers. Thus, there is no architectural specification of the
representation of strings in registers.

49

A

I

LTS
-

50

CHAPTER 5

INSTRUCTION FORMATS AND ADDRESSING
MODES

INTRODUCTION

The addressing modes together with 16 general-purpose registers
provide a convenient method of manipulating data by specifying how
the selected registers are used to access, manipulate, and store data
and instructions in memory.

GENERAL REGISTERS :
VAX general-purpose registers can be used with an instruction in any
of the following ways:

e As accumulators. The data to be processed are contained in the
register.

e As pointers. The address of the operand, rather than the operand
itself, is the content of the register. This form is often referred to as a
base register because it frequently contains the base address of a
data structure.

e As pointers which automatically step through memory locations.
Stepping forward automatically through consecutive locations is
known as autoincrement addressing; automatically stepping back-
wards is known as autodecrement addressing. These modes are
particularly useful for processing tabular data and manipulating
stacks.

e As index registers. In index mode, an offset is generated and then
added to the base operand address to yield the indexed location.

One of the general-purpose registers is designated a stack pointer
and provides temporary storage for data which are frequently ac-
cessed. In the VAX, any register can be used as a stack pointer under
program control; however, certain instructions associated with sub-
routine linkage and interrupt service automatically use R14 as a “hard-
ware stack pointer.” For this season, R14 is called the SP.

Stack pointer addresses decrease as items are added to the stack.
This is conveniently done by decrementing the address and “pushing”
data on the stack. On the other hand, stack pointer addresses in-
crease as items are removed from the stack. This is conveniently done
by incrementing the address and “popping” data from the stack.
Consequently, the stack pointer always points to the lowest addressed
end of the stack. The hardware stack is used during exception or
interrupt handling to store breakpoint information, allowing the proc-
essor to return to the main program.

51

Instruction Formats and Addressing Modes

R15 is used by the processor as a program counter (PC) which points
to the next instruction in the program to be executed. Whenever an
instruction is fetched from memory, the program counter is automati-
cally incremented by the number of bytes in the instruction.

INSTRUCTION FORMAT

The VAX instruction set has a variable length instruction format which
may be as short as one byte and as long as needed depending on the
type of instruction. Shown in Figure 5-1 is a schematic of the general
format. Each instruction consists of an opcode followed by zero to six
operand specifiers whose number and type depend on the opcode. All
operand specifiers are, themselves, of the same format—i.e., an ad-
dress mode plus additional information. This additional information
contains up to two register designators and addresses, data, or dis-
placements. The operand usage is determined implicitly from the
opcode, and is termed the operand type. It includes both the access
type and the data type. Figure 5-2 shows several examples of VAX
instruction formats.

OPCODE (1 OR 2 BYTES)
OPERATION CODE

OPERAND SPECIFIER 1

! OPERAND SPECIFIER 2

OPERAND SPECIFIER 3

1
e © o o o

OPERAND SPECIFIER N

Figure 5-1 General VAX Instruction Format

52

Instruction Formats and Addressing Modes

A. MOVE LONG INSTRUCTION

MOVL 6(R1),R5 ;SIX IS ADDED TO R1, THE RESULT USED AS AN
. ADDRESS AND THE CONTENTS OF THAT ADDRESS
;1S MOVED TO RS

BYTE
1 MOVL OPCODE
2 (RY)
3 r3 OPERAND SPECIFIER 1
4 RS OPERAND SPECIFIER 2

B. MOVE WORD INSTRUCTION
MOVW # #x3456,-(SP) ; THE NUMBER 3456 IS PUSHED ON THE
; STACK

'

BYTE
1 MOVW OPCODE
2 PC) + OPERAND SPECIFIER 1
3 56 IMMEDIATE DATA (56 STORED IN BYTE 3)
4 34 (34 STORED IN BYTE 4) '
5 —(SP) OPERAND SPECIFIER 2

C. ADD LONG INSTRUCTION (3 OPERAND)
ADDL3 (SP)+, R4, RS ; NUMBER ON THE STACK IS
; ADDED TO THE CONTENTS OF
; R4 AND RESULT (S STORED

i IN RS
BYTE
1 ADDL 3 OPCODE
2 (sp) + OPERAND SPECIFIER 1
3 R4 OPERAND SPECIFIER 2
4 R5 OPERAND SPECIFIER 3

Figure 5-2 Examples of Instruction Format

Assembler Radix Notation
The radix of the assembler is decimal. To express a hexadecimal
number in assembler notation, it is required to precede the number by
. For example, the assembler interprets the 3456 in “MOVW #3456,
—(SP)” as a decimal number. If it is to be interpreted as a hexadecimal
number, it would be written

MOVW #1X 3456, —(SP)

Conversion algorithms, hexadecimal arithmetic tables, and a deci-
mal/hexadecimal conversion chart are provided in Appendix A.

53

Instruction Formats and Addressing Modes

Operating Code (Opcode)

Each VAX instruction contains an opcode which specifies the desired
operation to be performed. The opcode may be one or two bytes long,
depending on the contents of the byte at address A. Two bytes will be
used under the condition that the value of that byte is FC(hex) through
FF(hex).

1 BYTE OPCODE
7 0

OPCODE

FC-FF
{1111 1100 -1111 1Y)

2 BYTE OPCODE

Figure 5-3 Opcode Format

Operand Types

The operand types specify how the operand associated with an in-
struction is used. Information derived from the opcode includes the
data type of each operand and how the operand is accessed. The data
types include:

e Byte—8 bits

e Word—16 bits

e Longword and F_floating—32 bits (equivalent for addressing mode
considerations)

e Quadword, D_floating, and G_floating—64 bits (similarly equivalent)
e Octaword and H_floating—128 bits (similarly equivalent)

An operand may be accessed in one of six ways. They are:

1. Read—The specified operand is read-only.

2. Write—The specified operand is write-only.

3. Modify—The specified operand is read, may or may not be modi- -
fied, and is written.

4. Address—Address calculation occurs until the actual address of
the operand is obtained. In this mode, the data type indicates the
operand size to be used in the address calculation. The specified
operand is not accessed directly although the instruction may
subsequently use the address to access that operand.

54

Instruction Formats and Addressing Modes

5. Variable bit field base address—If just R[n] is specified, the field is
in general register n or:in-R[n + 1]'R[n] (i.e., R[n + 1] concatenat-
ed with R[n]). Otherwise, address calculation occurs until the
actual address of the operand is obtained. This address specifies
the base to which the field position (offset) is applied.

6. Branch—No operand is accessed. The operand specifier itself is a
branch displacement. In this specifier, the data type indicates the
size of the branch displacement.

Operand Specifier

An operand specifier gives the information needed to locate the oper-
and. Each general mode addressing description includes the defi-
nition of the operand address and the specified operand. For operand
specifiers of address access type, the operand address is the actual
instruction operand; for other access types, the specified operand is
the instruction operand. The branch mode addressing description in-
cludes the definition of the branch address.

ADDRESSING MODE

Broadly speaking, VAX addressing can be divided into two categories,
general mode addressing and branch addressing. The sections that
follow describe the various modes under both general types.

Table 5-1, below, is a quick summary of the general register and
program counter addressing modes. It shows: the mode specifier for
each addressing mode in hexadecimal and decimal notation; the as-
sembler notation; the access types which may be used with the various
modes; the effect on the program and stack pointer; and which modes
may be indexed. For example, in literal mode, only a read access may
occur. Any other type of access results in a fault. (The program
counter and stack pointer are not referenced in this mode and are
logically impossible. If indexing is attempted in this mode, a reserved
addressing mode fault will occur.)

Following the chart is a more detailed explanation of each of these
modes, and following those, détailed explanations of branch address-

ing.

55

Instruction Formats and Addressing Modes

Table 5-1 Summary of Addressing Modes

GENERAL REGISTER ADDRESSING

Hex Dec Name Assembler rmwav PC SP Indexable?
0-3 0-3 literal S~ #literal y ffff — — f
4 4 indexed i [Rx] yyyyy f y f
5 5 register Rn yyyfy u uq f
6 6 register deferred (Rn) yyyyy u y y
7 7 autodecrement —(Rn) yyyyy u y ux
8 8 autoincrement (Rn)+4 yyyyy p y ux
9 9 autoincrement

deferred @ (R)+ YYyyyy p y ux
A 10 byte displacement BD (Rn) yyyyy p y y
B 11 byte displacement

deferred @BD(R) yyyyy p y v
(o} 12 word displacement W’D (Rn) YyyYyyyy p y y
D 13 word displacement

deferred @WD®n) yyyyy p y y
E 14 longword displacement LD (Rn) YyYyyyy p y y
F ~ 15 longword displacement

deferred @L"D (Rn) YYYYy p y y
PROGRAM COUNTER ADDRESSING i

Hex Dec Name Assembler rmwav PC SP indexable?

8 8 immediate I"#constant y uuyy — — y

9 9 absolute @#ftaddress yyyyy — — y

A 10 byte relative B-address yyyyy — — y

B 11 byte relative @Baddress y y y yy — — y
deferred

Cc 12 word relative W~address yyyyy — — y

D 13 word relative @W address y yyyy —+— — y
deferred

E 14 longword relative L address yyyyy — — y

F 15 longword relative - @L'address y y yyy — — y
deferred

D — displacement
i — any indexable addressing mode

- — logically impossible

f — reserved addressing mode fault

p — Program Counter addressing

u— unpredictable

ug — unpredictable for quadword, octaword, D_floating, G-floating, and H_floating (and field, if position
+ size greater than 32)

uo — unpredictable for octaword, and H_floating format.

ux — unpredictable for index register same as base register

y — yes, always valid addressing mode

r — read access

m — modify access

w — write access

a — address access

v — field access

56

Instruction Formats and Addressing Modes

GENERAL MODE ADDRESSING

Register Mode

Assembler
Syntax:

Mode Specifier:

Operand
Specifier
Format:

Description:

Special
Comments:

Rn
5

The operand is the content of register n (or
R[n+1] concatenated with Rn for quadword,
D_floating, and certain field operations):

Operand = Rn if one register, or
R[n+1}'R[n] if two registers, or
R[n+3)'R[n+2]'R[n+1]'R[n] if four registers

With register mode, any of the general registers
may be used as simple accumulators and the op-
erand is contained in the selected register. Since
they are hardware registers within the processor,
they provide speed advantages when used for
operating on frequently-accessed variables.

This mode can be used with operand specifiers
using read, write or modify access but cannot be
used with the address access type; otherwise, an
illegal addressing mode faulit resuits. The pro-
gram counter (PC) cannot be used in this mode. If
the PC is read, the value is unpredictable; if the
PC is written, the next instruction executed or the
next operand specified is unpredictable. Similar-
ly, if PC is used in register mode for a write-ac-
cess operand which takes two adjacent registers,
the contents of RO are unpredictable.

The stack pointer, (SP), cannot be used in this
mode for an operand which takes two adjacent

57

Instruction Formats and Addressing Modes

registers since that would imply a direct reference
to the PC and the results are unpredictable.

EXAMPLE: REGISTER MODE, MOVE WORD INSTRUCTION
Instruction MOVW R1, R2 Instruction moves a
Format: 16-bit word of data

from R1 to R2.

BEFORE INSTRUCTION EXECUTION
Rl R2

[[el-Telolel =] [efefefefefe]o]]
AFTER INSTRUCTION EXECUTION

[lelalelo[el o) [efefefefele[2]x]

MACHINE CODE: ASSUME STARTING LOCATION 00003000

00003000 [-1¢] OPCODE FOR MOVE WORD INSTRUCTION
00003001 51 OPERAND SPECIFIER, SOURCE; REGISTER MODE 1
00003002 52 OPERAND SPECIFIER, DESTINATION; REGISTER MODE 2

This example shows a Move Word instruction us-
ing register mode. The content of R1 is the
operand and the Move Word instruction causes
the least significant half of R1 to be transferred to
the least significant half of register R2. The upper
half of R2 is unaffected.

Register Deferred Mode

Assembler

Syntax: (Rn)
Mode Specifier: 6
Operand

Specifier

Format:

58

Description:

Special
Comments:

EXAMPLE:

Instruction
Format:

MACHINE CODE

00003000
00003001

Instruction Formats and Addressing Modes

The register deferred mode provides one level of
indirect addressing over register mode; that is,
the general register contains the address of the
operand rather than the operand itself. The de-
ferred modes are useful when dealing with an op-
erand whose address is calculated.

The PC cannot be used in register deferred mode
addressing as the results will be unpredictable.

REGISTER DEFERRED MODE, CLEAR QUAD IN-
STRUCTION

CLRQ (R4)

BEFORE INSTRUCTION EXECUTION

ADDRESS
SPACE

00001010 AB
000010M1 cD
00001012 EF
00001013 12
00001014 34

00001015 56
00001016 76
00001017 65

AFTER INSTRUCTION EXECUTION

ADDRESS
SPACE

R4

00001010

00001010 00
00001011 00
00001012 00
00001013 00
00001014 00
00001015 00
00001016 00
00001017 00

: ASSUME STARTING LOCATION 00003000

7C OPCODE FOR CLEAR QUAD INSTRUCTION
64 OPERAND SPECIFIER FOR REGISTER DEFERRED MODE,R4

This example shows a Clear Quad instruction us-
ing Register Deferred Mode. R4 contains the
address of the operand and the instruction speci-

59

Instruction Formats and Addressing Modes

fies that the byte at this address plus the following
seven bytes are to be cleared.

Autoincrement Mode

Assembler
Syntax: (Rn)+

Mode Specifier: 8

Operand
Specifier
Format:

Description: In autoincrement mode addressing, Rn contains
the address of the operand. After the operand
address is determined, the size of the operand
(which is determined by the instruction) in bytes
(1 for byte, 2 for word, 4 for longword or
F_floating, 8 for quadword, D_floating, or
G_floating, and 16 for octaword or H_floating) is
added to the contents of Rn and the contents of
Rn are replaced by the result. This mode provides
for automatic stepping of a pointer through se-
quential elements of a table of operands. Con-
tents of registers are incremented to address the
next sequential location. The autoincrement
mode is especially useful for array processing
and stacks. It will access an element of a table
and then step the pointer to address the next op-
erand in the table. Although most useful for table
handling, this mode is general and may be used
for variety of purposes.

Special If the PC is used as the general register, this ad-

Comments: dressing mode is designated immediate mode
and has special syntax (refer to immediate
mode).

EXAMPLE: AUTOINCREMENT MODE, MOVE LONG IN-
STRUCTION

60

Instruction Formats and Addressing Modes

instruction
Format:

BEFORE INSTRUCTION EXECUTION

00001010
00001011
00001012
00001013
00001014
1 00001015

MOVL (R1)+, R2 This instruction will
move a longword of
data (32 bits) to R2.

R} R2
oooowloJ [oooooooo]

OPERAND

SOURCE OPERAND ADDRESS : 000010 10

AFTER INSTRUCTION EXECUTION'

00001010
0000101
00001012
00001013
00001014
00001015

MACHINE CODE:

00003000
00003001
00003002

ADDRESS
SPACE

00.
11
22
33
44
55

A

Do
81

52

R) R2
.[000010]4 l [3322”00J_

SSUME STARTING LOCATION 3000

OPCODE FOR MOVE LONG WORD INSTRUCTION
AUTOINCREMENT MODE, REGISTER R1
REGISTER MODE , REGISTER R2

This example shows a Move Long instruction us-
ing autoincrement mode. The content of R1 is the
effective address of the source operand. Since
the operand is a 32-bit longword, four bytes are
transferred to R2. R1 is then incremented by four
since the instruction specifies a longword data

type.

Autoincrement Deferred Mode

Assembiler
Syntax:

Mode Specifier:

@(Rn)+

9

61

Instruction Formats and Addressing Modes

Operand

Specifier

Format:

7 4 3 0
9 Rn

Description: In autoincrement deferred addressing, Rn con-
tains a longword address which is apointer to the
operand address. After the operand address has
been determined, four is added to contents of Rn
and the contents of Rn are replaced with the re-
sult. The quantity four is used since there are four
bytes in an address.

Special If the PC is used as the general register, this ad-

Comments: dressing mode is designated absolute mode (re-
fer to absolute mode).

EXAMPLE: AUTOINCREMENT DEFERRED MODE, MOVE
WORD INSTRUCTION

Instruction MOVW @(R1)+, R2

Format:

62

Instruction Formats and Addressing Modes

Operand
Specifier
Format:

BEFORE INSTRUCTION EXECUTION

ADDRESS
SPACE R1 R2
00001010 | 00 [oooom 10 | fooooooooJ

00001011 | 11 :
00001012 | 22 | (S5ERAND, HODRESS
00001013 | 33
00001014 | 44

00001015 55

33221100 34
33221101 S5F
33221102 00

33221103 00

AFTER INSTRUCTION EXECUTION

RI R2
looomou] loooosFaa

MACHINE CODE: ASSUME STARTING LOCATION 00003000

00003000 BO OPQODE FOR MOVE WORD INSTRUCTION
00003001 9 AUTOINCREMENT DEFERRED MODE, REGISTER Rl
00003002 52 REGISTER MODE, REGISTER R2

This example shows a Move Word instruction us-
ing autoincrement deferred mode. The content of
R1is a pointer to the operand address. Since a
word length instruction is specified, the byte at
the effective address and the byte at the effective
address plus one are loaded into the low-order
half of register R2; the upper half of R2 is unal-
tered. R1 is then incremented by four since it
points to a 32-bit address.

Autodecrement Mode

Assembler
Syntax: —(Rn)

Mode Specifier: 7
63

Instruction Formats and Addressing Modes

The contents of Rn are decremented and then
used as the address of the operand.

Description: With autodecrement mode, the size of the oper-
and in bytes (1 for byte, 2 for word, 4 for longword
or F_floating, 8 for quadword, G_floating, or
D_floating, and 16 for octaword or H_floating) is
subtracted from the content of Rn and the content
of Rn is replaced by the resuit. The updated con-
tent of Rn is the address of the operand.

Special The PC may not be used in autodecrement mode.

Comments: If itis, the address of the operand is unpredicta-
ble and the next instruction executed or the next
operand specifier is upredictable.

EXAMPLE: AUTODECREMENT MODE, MOVE LONG IN-
STRUCTION MOVL —(R3), R4

BEFORE INSTRUCTION EXECUTION

ADDRESS
SPACE R3 R4
00001014 10 oooovolsJ |'oooooooo
00001015 32
4321
00001016 | 54 CES43210
00001017 CE
AFTER INSTRUCTION EXECU,T!ON R3 R4
00001014 l |c554321cd

MACHINE CODE: ASSUME STARTING LOCATION 00003000

00003000 DO OPCODE FOR MOVE LONG INSTRUCTION

00003001 73 AUTODECREMENT MODE, REGISTER R3
00003002 54 REGISTER MODE, REGISTER R4

64

Literal Mode
Assembler
. Syntax:

Mode Specifier:

Operand
Specifier
Format:

Description:

Instruction Formats and Addressing Modes

This example shows a Move Long instruction us-
ing autodecrement mode. The contents of R3 are
decremented according to the data type specified
in the opcode (four in this example because a
longword is used). The updated contents of R3
are then used as the address of the operand. The
instruction causes the operand to be fetched and
loaded into R4.

St literal

0,1,20r3 .
(depending on literal value specified)

0 0 LITERAL

Literal mode addressing provides an efficient
means of specifying integer constants in the
range from 0 to 63 (decimal). This is called short
literal. Literal values above 63 can be obtained by
immediate mode (autoincrement mode using the
PC) although immediate mode is longer. For pre-
defined values, the assembler will choose
between short literal and immediate modes. For
short literal operands, the format is:

MODE SPECIFIER
e
7 6 5 4 0

Bits 7 and 6, however, are always set to zero. The
foillowing examples show some short literals; the
literals are 14, 30, 46, and 62.

65

1410

3010

4610

620

Instruction Formats and Addressing Modes

MODE

SPECIFIER=0

ojlo o 1 1 1 o

, . A
- J

MODE 4y =0

SPECIFIER=1 10=0F16

olo 1 1 10
N D

MODE
SPECIFIER=2

30)0 = 1E

o1 o 1)
, L P
N J
MODE 46y = 2E
SPECIFIER: 3 10
o1 1 10
1 1 1 1 1
AN J

RANGE OF MODE SPECIFIER =0
15 0-15)9

'RANGE OF MODE SPECIFIER= 1

15 16-3179

RANGE OF MODE SPECIFIER =2
IS 32-47

RANGE OF MODE SPECIFIER=3
1S 48-63)

Floating point literals as well as short literals can
be expressed. The floating point literals are listed
in Table 5-2. For operands of the short floating
type, the 6-bit literal field in the operand specifier
is composed of two 3-bit fields where EXP desig-
nates exponent and FRAC designates the frac-

tion.

EXP

FRAC

The 3-bit EXP field and 3-bit FRAC field are used
to form an F_floating or D_floating operand as
follows, where bits 63:32 are not presentin an
F_floating operand:

66

Instruction-Formats and Addressing Modes

EXP FRAC
r f_—A
15 14 13 12 11 10 9 8 7 6 5 4 3

0
ol1|ofofo]o e 0
0
0 -
0 >
63 48
NOTE

G_floating and H_floating oper-
ands can be formed in analo-
gous ways using the EXP and
FRAC fields.

Bits 3 through 5 of the EXP field are stored in bits
7 through 9, respectively, of the floating operand.
Bits 0 through 2 of the FRAC field are stored in
bits 4 through 6, respectively, in the floating oper-
and. The actual decimal values which can be
stored are given in Table 5-2.

The EXP field is expressed in “excess 128” nota-
tion. In this notation, an offset of 128 is actually
added to the exponent. For example, an exponent
of zero is represented as 128 or 10000000 (bina-
ry), while an exponent of three is represented as
131 or 10000011 (binary).

Assume you want to express the floating point
literal of 12. Table 5-2 shows the decimal literal of
12 to be represented by a fraction of 4 and an
exponent of 4.

67

Instruction Formats and Addressing Modes

LITERAL MODE
76543210

ojojrjojojrjojo

\
151431210109 8 765 4.3 0

ojrjojojojojr1fofoj1|0f0|=—=0

31 16
0

FLOATING OPERAND

Table 5-2 Floating Literals

Exponent FRACTION
0 1 2 3 4 5 6 7

0 Yo 9/16 5/8 11/16 374 13/16 7/8 15/16
1 1 11/8 1Y 13/8 1% 15/8 1% 17/8
2 2 2% 2% 2% 3 3% 3% 3%
3 4 42 5 5% 6 6 7 7%
4 8 9 10 " 12 13 14 15
5 16 18 20 22 24 26 28 30
6 26 40 44 48 52 56 60
7 64 72 80 88 96 104 112 120

EXAMPLE: LITERAL MODE, MOVE LONG INSTRUCTION

MOVL St#9, R4

BEFORE INSTRUCTION EXECUTION

R4
00000000

AFTER INSTRUCTION EXECUTION

R4
00000009
68

Instruction Formats and Addressing Modes

MACHINE CODE: ASSUME STARTING LOCATION 00003000

OPCODE FOR MOVE LONG INSTRUCTION
LITERAL @
REGISTER MODE, REGISTER R4

00003000 Do
00003001 09
00003002 54

This example shows a Move Long instruction us-
ing literal mode. The literal 9 is transferred to
register R4 as a result of the instruction.

Displacement Mode
Assembler
Syntax: D(Rn)—general displacement syntax

BfD(Rn)—forces byte displacement
WA4D(Rn)—forces word displacement
LAD(Rn)—forces longword displacement

Mode Specifier: = A—(byte displacement)
C—(word displacement)
E—(longword displacement)
Operand
Specifier
Format:
15 8 7 4 3 0
l DisP. l A | Rn J BYTE DISPLACEMENT MODE
23 8 7 4 3 0
l DISP. \l C l Rn ‘ WORD DISPLACEMENT MODE
39 8 7 4 3 0
l DISP. l E l Rn] LONG WORD DISPLACEMENT MODE
Description: In displacement mode addressing, the displace-

ment (after being sign-extended to 32 bits ifitis a
byte or word) is added to the content of register
Rn and the result is the operand address. This
mode is the equivalent of index mode in the PDP-
11 series.

The VAX architecture provides for an 8-bit, 16-bit,
or 32-bit offset. Since' most program references
occur within small discrete portions of the ad-

69

Instruction Formats and Addressing Modes

dress space, a 32-bit offset is not always necessa-
ry and the 8- and 16-bit offsets will result in sub-
stantial economies of space (that is, fewer bits are
required).

If the PC is used as the general register, this
mode is called relative mode (refer to relative
mode).

EXAMPLE: DISPLACEMENT MODE, MOVE BYTE INSTRUC-
TION
MOVB B15(R4), B{3(R3)

BEFORE INSTRUCTION EXECUTION
ADDRESS
SPACE

R4 R3
00001015 | 00 Lpoooro1§4] Lgooozozoj
00001016 | 00
00001017 | 06 | <— OPERAND
00001018 | 00 | 00001012 00002020
00001019 d,_,_J +5 +3
00001017 00002023
~————
00002021 | 00
00002022 | o0
00002023 | 00
%
AFTER INSTRUCTION EXECUTION
R4
00001015 | 00 [00001012] Lgooozozol

00001016 | 00
00001017 | 06
00001018 | 00_|
00002021 | o0
00002022 | 00

00002023 _/gf’/J <— OPERAND

MACHINE CODE: ASSUME STARTING LOCATION 00003000

00003000 90 OPCODE FOR MOVE BYTE INSTRUCTION

00003001 Ad SIGNED BYTE DISPLACEMENT, REGISTER R4

00003002 0s SPECIFIER EXTENSION (DISPLACEMENT OF 5)

00003003 A3 SIGNED BYTE DISPLACEMENT, REGISTER R3

00003004 03 SPECIFIER EXTENSION (DISPLACEMENT OF 3)
L—

70

Instruction Formats and Addressing Modes

This example shows a Move Byte instruction us-
ing displacement mode. A displacement of 5 is
added to the content of R4 to form the address of
the byte operand. The operand is moved to the
address formed by adding the displacement of 3
to the contents of R3.

Displacement Deferred Mode

Assembler
Syntax:

Mode Specifier:

Operand
Specifier
Format:

@D(Rn)

@B{D(Rn) byte displacement deferred
@W{D(Rn) word displacement deferred
@L1D(Rn) longword displacement deferred

B—(byte displacement)
D—(word displacement)
F—(longword displacement)

l DISP.

B F SPECIFIER EXTENSION 1S
BYTE DISPLACEMENT DEFERRED

D F SPECIFIER EXTENSION 1S
WORD DISPLACEMENT DEFERRED

DISP.
39

DISP.

F £ SPECIFIER EXTENSION IS
LONG WORD DISPLACEMENT DEFERRED

Description:

EXAMPLE:

In displacement deferred mode addressing, the
displacement (after being sign-extended to 32
bits if it is a byte or word) is added to the content
of the selected general Rn and the result is a long-
word address of the operand address.

If the PC is used as the general register, this
mode is called relative deferred mode (refer to
relative deferred mode).

DISPLACEMENT DEFERRED MODE, INCRE-
MENT WORD INSTRUCTION
INCW @B15(R4)

71

Instruction Formats and Addressing Modes

This example shows an increment Word instruc-
tion using displacement deferred mode. The
quantity 5 is added to the contents of R4 to pro-
duce the longword address of the address of the
operand. The operand of 5713 is incremented to
5714.

BEEORE INSTRUMENT EXECUTION

00001017
00001018
00001019

00001020 68

68244288
68244289

AFTER INSTRUCTION EXECUTION

68244288
68244289

MACHINE CODE: ASSUME STARTING LOCATION 00003000

00003000
00003001
00003002

Index Mode

Assembler
Syntax:

Mode Specifier:

Operand
Specifier
Format:

B6
B4
05

i[Rx]
4

R4

00001012

OPERAND
ADDRESS

} OPERAND

R4
00001012

OPCODE FOR INCREMENT WORD INSTRUCTION
SIGNED BYTE DISPLACEMENT, REGISTER R4
SPECIFIER EXTENSION REGISTER R4 PLUS SIGN

00001012
+5

00001017

5713 OPERAND
+ 1 INCREMENT

5714 NEW OPERAND

PRIMARY OPERAND

4

3

BASE OPERAND SPECIFIER

72

Description:

Special
Comments:

Instruction Formats and Addressing Modes

The operand specifier consists of at least two
bytes—a primary operand specifier and a base
operand specifier. The primary operand specifier
contained in bits 0 through 7 includes the index
register (Rx) and a mode specifier of 4. The ad-
dress of the primary operand is determined by
first multiplying the contents of index register Rx
by the size of the primary operand in bytes (1 for
byte, 2 for word, 4 for longword or F_floating, 8 for
quadword, D_floating, or G_floating, and 16 for
octaword or H_floating). This value is then added
to the address specified by the base operand
specifier (bits 15:8), and the result is taken as the
operand address.

The chief advantage of index mode addressing is
to provide very general and efficient accessing of
arrays. VAX architecture provides for context in-
dexing where the number in the index register is
shifted left by the context of the data type speci-
fied (none for byte, once for word, twice for long-
word, three times for quadword and four times for
octaword). This allows loop control variables to
be used in the address calculation without first
shifting them the appropriate number of times,
thus minimizing the number of instructions re-
quired. This feature is used to advantage in the
FORTRAN IV-PLUS compiler.

Specifying register, literal, or index mode for the
base operand specifier will result in an illegal
addressing mode fault. If the use of some particu-
lar specifier is illegal (causes a fault or unpredic-
table behavior), then that specifier is also illegal
as a base operand specifier in index mode under
the same eonditions.

The following restrictions are placed on index

register Bx:

1. The PC cannot be used as an index register.
If it is, a reserved addressing mode fault oc-
curs.

2. Ifthe base operand specifier is for an ad-
dressing mode which results in register mod-
ification (autoincrement, autoincrement de-

73

Instruction Formats and Addressing Modes

ferred, or autodecrement), the same register
cannot be the index register. If it is, the
primary operand address is unpredictable.

Table 5-3 lists the various forms of index mode addressing available.
The names of the addressing modes resulting from index mode ad-
dressing are formed by adding indexed to the addressing mode of the
base operand specifier. The general register is designated Rn and the
indexed register is Rx.

Table 5-3 Index Mode Addressing

MODE N ASSEMBLER NOTATION
Register deferred index (Rn) [Rx]

Autoincrement indexed (Rn) + [Rx]

Immediate indexed I# constant‘[Rx] which is recog-

nized by assembler but is not
generally useful. Operand ad-
dress is independent of value of

constant.
Autoincrement deferred in- @(Rn) + [Rx]
dexed
Absolute indexed @#address [Rx]
Autodecrement indexed —(Rn) [Rx}]
Byte, word or longword dis- B{D(Rn) [HX]
placement indexed W4D(Rn) [Rx]

L{D(Rn) [Rx]
Byte, word or longword dis- @B1D(Rn) [Rx]
placement deferred indexed @W/{D(Rn) [Rx]

‘ ~ @L1D(Rn) [Rx]

74

Instruction Formats and Addressing Modes

EXAMPLE:

It is important to note that the operand address
(the address containing the operand) is first
evaluated and then the index specified by the in-
dex register is added to the operand address to
find the indexed address. To illustrate this, an ex-
ample of each type of indexed addressing is
shown on the following pages.

REGISTER DEFERRED INDEXED MODE, INCRE-
MENT WORD INSTRUCTION
INCW (R2) [R5]

BEFORE INSTRUCTION EXECUTION

00001012
00001013
00001014
00001015

00001018
00001019

ADDRESS
SPACE

R2 RS
04 |7>ooowo 12J r00000003J

56
78 3,6 %2 BYTES PER WORD = 6

87

00001012
+6

45 00001018
67 OPERAND

AFTER INSTRUCTION EXECUTION

00001018
00001019

ASSEMBLY CODE:

00003000
00003001
00003002

R2 RS
46 [E)OO)O]? | r00000003J
67
L~

ASSUME STARTING LOCATION 00003000

B6 OPCODE FOR INCREMENT WORD INSTRUCTION
45 INDEX MODE, REGISTER RS
62 REGISTER DEFERRED MODE, REGISTER R2

This example shows an Increment Word instruc-
tion using register deferred index addressing.
The base operand address is evaluated. This lo-
cation is indexed by six since the value (3) in the
index register is multiplied by the word data size
of two.

75

Instruction Formats and Addressing Modes

EXAMPLE: AUTOINCREMENT INDEXED MODE, CLEAR
LONGWORD INSTRUCTION
CLRL (R4) + [R5]

BEFORE INSTRUCTION EXECUTION

ADDRESS

SPACE R4 RS
00001046 1 [000010 12 I Loooooozs]
000010a7 | 22 | { Soeeano
000010A8 | 33 INDEX :2554 4 8YTES PER
000010A9 | 44 NGWORD
94,6
00001012
00000094

ADDRESS OF OPERAND 000010A6

AFTER INSTRUCTION EXECUTION

R4 RS
000010A6 00 LOOOO)Olé I I£0000025]
000010A7 00
000010A8 00
000010A9 00

MACHINE CODE: ASSUME STARTING LOCATION 00003000

00003000 D4 OPCODE FOR CLEAR LONGWORD INSTRUCTION
00003001 45 INDEX MODE, REGISTER RS
00003002 84 AUTOINCREMENT MODE, REGISTER R4

This example shows a Clear Long instruction us-
ing the autoincrement indexed addressing mode.
The base operand address is in R4. This value is
indexed by the quantity in R5 muliplied by the
data size. This location, plus the next three, are
cleared since a clear longword instruction is
specified.

EXAMPLE: AUTOINCREMENT DEFERRED INDEX MODE,
CLEAR WORD INSTRUCTION
CLRW @(R4) + [R5]

76

Instruction Formats and Addressing Modes

BEFORE INSTRUCTION EXECUTION

! ADDRESS
‘ SPACE R4 RS
00001012 43 [oooonovﬂ Iooooooos]
00001013 21 :
00001014 | 08 | (NoperanD 516 *2 BYTES PER WORD = 0000000A
00001015 06 ADDRESS ,
06082143
, 00000004
, 0608214D
~ ADDRESS
SPACE
0608214D 22 }
0608214E 33 “OPERAND
0608214F 56
AFTER INSTRUCTION EXECUTION
) - R4 RS
0608214D | 00 Iooooro 1ﬂ Iooooooos
0608214E 00
060821 4F 56
L—

MACHINE CODE: ASSUME STARTING LOCATION 00003000

00003000 B4 OPCODE FOR CLEAR WORD INSTRUCTION

00003001 45 INDEX MODE, REGISTER RS »
00003002 94 AUTOINCREMENT DEFERRED MODE, REGISTER R4
L

This example shows a Clear Word instruction us-
ing the autoincrement deferred indexing mode.
R4 contains the address of the operand address.
The index value A is obtained by multiplying the
contents (5) of the index register by the context of
the data type, which is 2. The calculated word
address is cleared.

| EXAMPLE: AUTODECREMENT INDEXED MODE, CLEAR
WORD INSTRUCTION
CLRW#—(R2) [R4]

77

Instruction Formats and Addressing Modes

"BEFORE INSTRUCTION EXECUTION

0000101A
00001018
0000101C
0000101D

ADDRESS
SPACE R2 R4
33 00001016] | 00000003
33
33 3)6 * 2 BYTES PER WORD = 6 (INDEX)
33

00001016

00000002 DECREMENT BY 2
00001014 OPERAND ADDRESS
00000006 INDEX VALUE

0000101A INDEXED OPERAND ADDRESS

AFTER INSTRUCTION EXECUTION

0000101A
00001018
0000101C
0000101D

MACHINE CODE:

00003000
00003001
00003002

EXAMPLE:

A

ADDRESS
"space R2 R4
00 LooomowT]] 00000003
00
33
33
L~
SSUME STARTING LOCATION 00003000
B4 | OPCODE FOR CLEAR WORD INSTRUCTION
44 | INDEX MODE, REGISTER R4
72 | AUTOINCREMENT MODE, REGISTER R2

This example shows a Clear Word instruction us-
ing autodecrement indexed mode. The content of
R2 is predecremented and the indexed value is
calculated as six. Since a clear word instruction is
specified, two bytes are cleared.

ABSOLUTE INDEXED MODE, CLEAR LONG-
WORD INSTRUCTION
CLRL @ #X1012 [R2]

78

Instruction Formats and Addressing Modes

BEFORE INSTRUCTION EXECUTION

R2

1026 a5 00000005

1027 36 _

1028 81 S16x 4= 144

1029

02 43 00001012

00000014

AFTER INSTRUCTION EXECUTION 00001026

1026 00

1027 00 | R2

1028 00 00000005

1029 00

This example shows a Clear Longword instruction
using absolute indexed mode. The base of
00001012 is indexed by R2 which contains five.
Since a longword data type is specified, 5 X 4 =
14, which becomes the index value. This value is
added to 00001012 yielding 0001026. This is the
operand address, and four bytes are cleared
since a longword data type has been specified.

EXAMPLE: DISPLACEMENT INDEXED MODE, CLEAR
QUADWORD INSTRUCTION
CLRQ 2(R1) [R3]

79

Instruction Formats and Addressing Modes

BEFORE INSTRUCTION EXECUTION

00004024
00004028
0000402C
0000402D
0000402E
0000402F
00004030
00004031

ADDRESS
SPACE Q1 w3
24 ooooaooﬂ Looooooos |
68
13 516 8 BYTES PER QUAD WORD
57 =284 (INDEX)
62
e 00004000 CONTENTS OF RI
20 00000002 BYTE DISPLACEMENT
[a7 00004002

00004002 OPERAND ADDRESS
00000028 INDEX
0000402A INDEXED OPERAND ADDRESS

AFTER INSTRUCTION EXECUTION

0000402A
00004028
0000402C
0000402D
0000402€
0000402F

00004030
00004031

ADDRESS
SPACE . Rl R3

00 00004000] ! 00000005

00
00
00
00
00
00

00
L

MACHINE CODEiASSUME STARTING. LOCATION 00003000

00003000
00003001
00003002

EXAMPLE:

7C |OPCODE FOR CLEAR QUAD WORD
43 [INDEX MODE, REGISTER R3
61 |REGISTER DEFERRED MODE,REGISTER R1

This example shows a Clear Quadword instruc-
tion using displacement index mode. The byte
displacement of two is added to the content of R1.
The index which is calculated as 28 is added to
this address. This location and the next seven lo-
cations (since a quadword instruction is speci-
fied) are cleared.

DISPLACEMENT DEFERRED INDEX MODE,
MOVE LONG INSTRUCTION
MOVL @ 1X14 (R1) [R3], R5

80

0

Instruction Formats and Addressing Modes

This example shows a Move Long instruction us-
ing displacement deferred indexed addressing.
The displacement of 14 is added to the contents
of R1yielding 00001026. The contents of this lo-
cation yield the operand address (44332211).
This quantity is added to the index yielding the
indexed operand address of 44332221. The con-
tents of this address are then moved into R5 as
shown.

BEFORE INSTRUCTION EXECUTION

ADDRESS

SPACE @

00001012 | 12 4)% 4 BYTES PER LONGWORD
00001013 34 R3 = 104 (INDEX)
00001014 56

00001015 78 RS

00001026 N 00001012 CONTENTS OF RI

00001027 22 00000014 DISPLACEMENT

00001028 33 00001026 ADDRESS OF OPERAND ADDRESS
00001029 44

44332221 01 Q 44332211 OPERAND ADDRESS
44332222 23 E 00000010 INDEX

44332223 45 | (A 44332221 INDEXED OPERAND ADDRESS
44332224 67 5

44332225 89

AFTER INSTRUCTION EXECUTION

00001012

00000004

67452301

el = E]
IU‘ IhJ I-

PROGRAM COUNTER ADDRESSING

Register 15 is used as the program counter. It can also be used as a
register in addressing modes. The processor increments the program
counter as the opcode, operand specifier and immediate data or ad-
dresses (of the instruction) are evaluated. The amount that the PC is

incremented is determined by the opcode, number of operand specifi-
ers, and so on.

81

Instruction Formats and Addressing Modes

The PC can be used with all of the VAX addressing modes, except
register or index mode, since in those two modes the results will be
unpredictable. The following modes utilize the PC as the general
register. -

Mode Name Assembler Function

8 Immediate H#Operand Constant op-
erand follows
address mode

9 Absolute @#tLocation Absolute ad-
dress follows
address mode

A Byte relative B4G (R) Displacement
is added to
current value
of PC to ob-
tain operand
address

o] Word relative ~ WAG (R)

E Longword L1G (R)

relative
B Byte relative @B1*G (R) Displacement
deferred is added to
current value
of PC toyield
address of op-
erand address
D Word relative @W1G (R)
deferred

F Longword re-
lative @LfG (R)
deferred

Immediate Mode — same as autoincrement mode, with PC used as
general register.

Absolute Mode — same as autoincrement deferred mode, with PC
used as general register.

Relative Mode — same as displacement mode, with PC used as gen-
eral register.

82

Instruction Formats and Addressing Modes

Relative Deferred Mode — same as displacement deferred mode
with PC used as general register.

When a standard program is available for different users, it is often
helpful to be able to run it at different areas of virtual memory. VAX
computers can accomplish the relocation of a program very efficiently
through the use of position-independent code (PIC). If an instruction
and its objects are moved in such a way that the relative distance
between them is not altered, the same offset relative to the PC can be
used in all positions in memory. '

Immediate Mode

Assembler
Syntax: I## operand
Mode Specifier: 8
Operand
Specifier
Format:
7 4 3 0
CONSTANT 8 E
SIZE DEPENDS
ON CONTEXT
Description: The immediate addressing mode is autoincre-
ment mode when the PC is used as the general
- register. The contents of the location following the
addressing mode are immediate data.
EXAMPLE: IMMEDIATE MODE, MOVE LONG INSTRUCTION

MOVL #6, R4

83

Instruction Formats and Addressing Modes

BEFORE INSTRUCTION EXECUTION

PC

00001012 OPCODE FOR MOVE LONG INSTRUCTION

00001013 OPERAND SPECIFIER, AUTOINCREMENT PC (IMMEDIATE
00001014

00001015 —>IMMEDIATE DATA R4
00001016 00000000
00001016 [00000000]

00001018 REGISTER MODE, REGISTER R4

AFTER INSTRUCTION EXECUTION

00001014 06 IMMEDIATE
00001015 00 DATA
00001016 00

00001017 | o0 \

R4

00000006

This example shows a Move Long instruction
using immediate mode. The immediate data
(00000006) following the opcode and operand
specifier are moved to the contents of R4.

Absolute Mode

Assembler
Syntax: @#location

Mode Specifier: 9

Operand
Specifier
Format:

39 8 7 4 3 0]
ADDRESS 9 F

Description: This mode is autoincrement deferred using the
PC as the general register. The contents of the
location following the addressing mode are taken

84

EXAMPLE:

Instruction Formats and Addressing Modes

as the operand address. This is interpreted as an
absolute address (an address that remains con-
stant no matter where in memory the assembled
instruction is executed).

ABSOLUTE MODE, CLEAR LONG INSTRUCTION
CLRL @#X674533

BEFORE INSTRUCTION EXECUTION
ADDRESS

PC

00001012
00001013
00001014
00001015

00001016 .

00001017
00001018

00674533
00674534
00674535
00674536

SPACE

D4
9F
33
45
67
00
55

L~

OPCODE FOR CLEAR LONG INSTRUCTION
OPERAND SPECIFIER, AUTOINCREMENT DEFERRED PC (ABSOLUTE)

} OPERAND ADDRESS

23
45
72
83

L—

AFTER INSTRUCTION EXECUTION

00674533
00674534
00674535
00674536

00
00
00
00

Relative Mode

Assembler
Syntanx:

Mode Specifier:

L~

This example shows a Clear Longword instruction
using the absolute addressing mode. This in-
struction causes the location(s) following the ad-
dressing mode to be taken as the address of the
operand, and is 00674533, in this case. The long-
word operand associated with this address is
cleared. :

B{D—Byte displacement
W{D—Word displacement
L}D—Longword displacement

A (Byte), C (Word), E (Longword)

85

Instruction Formats and Addressing Modes

Operand
Specifier
Format:
1s 8 7 4 3 0
SPECIFIER EXTENSION IS
L DISP. l A l F BYTE DISPLACEMENT
23 8 7 4 3 0
SPECIFIER EXTENSION IS
L OISk I ¢ | F , WORD DISPLACEMENT
39 87 4 3 0
ISP . . SPECIFIER EXTENSION IS
: LONG WORD DISPLACEMENT

Description:

EXAMPLE:

This mode is the displacement mode with the PC
used as the general register. The displacement,
which follows the operand specifier, is added to
the PC and the sum becomes the address of the
operand. This mode is useful for writing position-
independent code, since the location referenced
is always fixed relative to the PC.

RELATIVE MODE, MOVE LONGWORD IN-
STRUCTION
MOVL $X2016, R4

BEFORE INSTRUCTION EXECUTION

R4
ADDRESS
PC\ SPACE 00000000
00001012 DO OPCODE FOR MOVE LONG
00001013 CF DISPLACEMENT MODE WITH PC
00001014 00 _»DISPLACEMENT = 1000
00001015 10
00001016 54 REGISTER MODE, REGISTER R4
00001016
1000
00002016
00002016 77 —
00002017 00 LONG WORD
00002018 86 OPERAND
00002019 00
W

AFTER INSTRUCTION EXECUTION

R4

00860077

86

Instruction Formats and Addressing Modes

This example shows a Move Long instruction us-
ing relative mode. The word following the address
mode is added to the PC to obtain the address of
the operand.

In this example, the PC is pointing to location
00001016 after the first operand specifier is eva-
luated. The word following the opcode and first
operand specifier is 00001000, and is added to
the PC yielding 00002016. This value represents
the address of the longword operand (00860077).
This operand is then moved to register R4. The
PC contains 00001017 after instruction execution.

Relative Deferred Mode

B (byte deferred), D (word deferred), F (longword

B F SPECIFIER EXTENSION IS
BYTE DISPLACEMENT DEFERRED

D F SPECIFIER EXTENSION IS
WORD DISPLACEMENT DEFERRED

LONG WORD DISPLACEMENT DEFERRED

This mode is similar to relative mode, except that

mode, is added to the PC and the sum is a long-
word address of the address of the operand. This

RELATIVE DEFERRED MODE, MOVE LONG IN-
STRUCTION
MOVL @1X2050, R2

87

Assembier @B?D—Byte displacement deferred
Syntax: @W4{D—Word displcement deferred
@L1D—Longword displacement deferred
Mode Specifier:
deferred)
Operand
Specifier:
15 8 7 4 3 0
DISP.
23 8 7 4 3 0
{ DISP.
39 8 7 4 3 0
| oish. [. [. | SPECIFIER EXTENSION IS
Description:
the displacement, which follows the addressing
addressing mode is useful when processing ta-
bles of addresses.
EXAMPLE:

Instruction Formats and Addressing Modes

BEFORE INSTRUCTION EXECUTION

PC

00002000
00002001
00002002
00002003

00002050
00002051
00002052
00002053

00006000
00006001
00006002
00006003

AFTER INSTRUCTION EXECUTION

R2
DO MOVE LONG OPCODE 00000000
BF BYTE DISPLACEMENT FROM PC
4D AMOUNT OF DISPLACEMENT
52 REGISTER MODE, REGISTER 2
DISPLACEMENT
P CALCULATION
00 OPERAND 00002003
60 ADDRESS ____ 4D
00 00002050
00
e—-
67
45 OPERAND
23
01
L
R2

01234567

This example shows a Move Long instruction
where 00002050 represents the address of the
operand. A byte displacement would be selected
by the assembler since the displacement is within
128 (decimal) addressable bytes. When the dis-
placement is evaluated, the program counter is
pointing to 00002003. The displacement of 4D is
added to the current value of the PC yielding the
address of 00002050. The contents of this ad-
dress are then used as the effective operand ad-
dress of 00006000, and the operand of 1234567 is
moved to R2.

Branch Addressing

Assembler
Syntax:

Mode Specifier:

A

None

88

Instruction Formats and Addressing Modes

Operand
Specifier
Format:

DISPLACEMENT

OR

DISPLACEMENT

Description:

EXAMPLE:

CMPB C, #tA/0/
BLSSU NOT

CMPB C, #1A/9/
BGTRUNOT

In branch displacement addressing, the byte or
word displacement is sign-extended to 32 bits
and added to the updated content of the PC. The
updated content of the PC is the address of the
first byte beyond the operand specifier.

The assembler notation for byte and word branch
displacement addressing is A where A is the
branch address. Note that the branch address
and not the displacement is used.

Branch instructions are most frequently used af-
ter instructions like compare (CMP) and are used
to cause different actions depending on the re-

‘sults of that compare.

UNSIGNED BRANCH

This example causes a branch to location NOT if
Cis nota digit (i.e., C is treated as an unsigned
number outside the range 0 through 9).

:Compare C and ASCII representation of digit 0.

:Branch to locaton NOT if less
than an unsigned 0.

;Compare C and ASCII representation of digit 9.
:Branch to locaton NOT if greater
than an unsigned 9.

89

Instruction Formats and Addressing Modes

EXAMPLE: BRANCH ON BIT

BBS #2,B,X ;branches to X if bit#2in B
Jisset(=1)

BBSC #2,B,X ;branches to X if

;bit#2in Bisset(= 1) and
;bitis then cleared

BLBS B,X :branches to X if bit
;00f Bisset(= 1)

90

91

92

CHAPTER 6

MEMORY, REGISTERS, AND
PROCESSOR STATUS—AN OVERVIEW

INTRODUCTION

VAX architecture is intended to support multiprogramming, the con-
current execution of a number of processes in a single computer
system. (A process can be defined for now as a single stream of
machine instructions executed in sequence.)

Virtual address space is mapped into the physical address space by
the processor’s memory management logic. In addition, the memory
management hardware supports paging, a technique by which the
system keeps in physical memory only those parts of a process’s
virtual memory actively in use.

A VAX process exists in and operates on a memory space of 232 bytes;
certain addresses and data are kept in the sixteen 32-bit general
registers; and a small number of processor state variables are kept in
a special register called the Processor Status Longword, or PSL. The
combined set of information in memory, general registers, and PSL
actually defines a process. The rest of this chapter will detail these
components of the process.

A reminder: if a term unfamiliar to you appears below, please check
the Glossary and the Index for details.

MEMORY

One half of the virtual address space (that with the most significant bit
set) is referred to as system space, because it is the same for all
processes in the system. System space contains the operating system
software and systemwide data, and to facilitate interrupt handling and
system service routines it is shared by all processes.

The other half of the virtual address space (that with the most signifi-
cant address bit cleared) is separately defined for each process; it is
therefore referred to as process space (or sometimes, per-process
space). Process space is further subdivided (on the next most signifi-
.cant address bit) into PO space, in which program images and most of
their data reside; and P1 space, in which the system allocates space
for stacks and process-specific data. Because P1 space is used for
stacks, which grow toward lower addresses, it is unique in that it is
allocated from high addresses downward. PO and P1 space together
constitute a process’s working memory. Except for special cases of
sharing, each process has its own PO and P1 spaces, independent of

93

Memory, Registers, and Processor Status (Introductory)

others in the system. Figure 6-1 illustrates the address spaces of sev-
eral processes in a multiprogramming system. Each process space is
independent of the others, while the system space is shared by all.

PROCESS ! PROCESS 2 PROCESS 3

0 ——— -

PO SPACE
(GROWS TOWARD
HIGHER ADDRESSES)

ADDRESS | —
SPACE

P SPACE
(GROWS TOWARD
LOWER ADDRESSES)

7FFFFFFF] —————————

ol
80000000
SYSTEM SPACE

(GROWS UPWARD, BUT
GENERALLY STATIC)

———————e

J

Figure 6-1 Address Spaces in Process Context

Though the basic addressable unit in VAX is the 8-bit byte, larger units
can be constructed by doubling byte sizes: a word. is two bytes; a
longword is four bytes; a quadword is eight bytes; and an octaword is
sixteen bytes. These five are the units in which VAX memory stores
data, but the processor sometimes interprets operands in other units,
such as half bytes (nibbles) for decimal digits, or variable-sized bit
fields.

In general, the memory system processes requests only for naturally
aligned data. In other words, a byte can be obtained from any address,
but a word can only come from an even address, a longword can only
come from an address which is a multiple of four, and so on. VAX
processors have a provision for converting an unaligned request into a
sequence of requests that can be accepted by the memory; however,
this conversion can have a serious impact on performance, and data
structures should be designed in such a way that the natural alignment
of operands is preserved wherever possible.

94

Memory, Registers, and Processor Status (Introductory)

The VAX memory management logic serves six principle purposes.

A number of processes may occupy main memory simultaneous-
ly, all freely using process space addresses, while referring
independently to their own programs and data.

The operating system keeps selected parts of a process and its
data in memory, bringing in other parts as needed, without expli-
cit intervention by the program. Large programs can be run in
reduced memory space without recoding or overlays visible to the
programmer.

The operating system may scatter pieces of programs and data
wherever space is available in memory, without regard to the ap-
parent contiguity of the program. It is never necessary for the
system to shuffle memory in order to collect contiguous space for
another process to be brought into memory.

Cooperating processes share memory in a controlled way. Two or
more processes may communicate through shared memory in
which both have read/write access. One process may be granted
read access to memory being modified by others; or a number of
processes may share a single copy of a read-only area.

The operating system limits access to memory according to a
privilege hierarchy. Thus, within any address space, privileged
software can maintain data bases which it can access, but which
code running in less privileged modes cannot.

The operating system may grant or inhibit access to control, stat-
us, and data registers in peripheral devices and their controllers.
Since those registers are part of the physical address space, ac-
cess to them is achieved by creation of a page table entry
(described below) whose page frame number field selects the
desired device or controller address in the 1/0 portion of the
physical address space. References to the registers are then un-
der control of the access control field of the page table entry. Thus
the same privilege mechanisms which control access to sensitive
data in memory are used to control access to I/0 devices.

For the purposes of memory management (specifically protection and
translation of virtual to physical addresses) the unit of memory is the
512-byte page. Pages are always naturally aligned (i.e., the address of
the first byte of a page is a multiple of 512). Virtual addresses are 32
bits long, and are partitioned by the memory management logic as
shown in Figure 6-2.

95

Memory, Registers, and Processor Status (Introductory)

VIRTUAL ADDRESS
330 29 9 8 0

S————————————— VIRTUAL PAGE NUMBER BYTE WITHIN PAGE ——————=&
PROGRAM REGION
CONTROL REGION

SYSTEM REGION
NOT USED

-~ 0 0w
- O ~ Ow—

Figure 6-2 Virtual Address Format

The nine low-order bits select a byte within a page, and are unchanged
by the address translation process. The two high-order bits select the
PO, P1, or system portion of the address space. The remaining 21 bits
are used to obtain a longword called the Page Table Entry (PTE) from
the PO, P1, or system page table as appropriate.

The PTE contains four pieces of information:

e Protection code, specifying which, if any, access modes are to be
permitted read or write access to the page

® Page frame number, identifying the 512-byte page of physical memi-
ory to be used on references to the virtual address

e Valid bit, indicating that the page frame number is valid (i.e., it
identifies a page in memory, rather than one in the swapping space
on a disk)

® Modification flag, set by the processor whenever a write to the page
occurs

Figure 6-3 illustrates the Page table entry format.

31 30 27225 2120 0
j — b] _ P)
VALID(V) BIT !
PROTECTION CODE
MODIFY (M) 1T —
UNUSED

PAGE FRAME NUMBER(PFN)

Figure 6-3 Page Table Entry Format

In concept, the process of obtaining a page table entry occurs on
every memory reference. In practice, however, the processor main-
tains a translation buffer, a special-purpose cache of recently used

96

Memory, Registers, and Processor Status (Introductory)

PTEs. Most of the time, the translation buffer already contains the
PTEs for the virtual addresses used by the program, and the proces-
sor does not need to go to memory to obtain them.

There is one page table entry for each existing page of the virtual
address space. A length register associated with each region specifies
how many pages exist in that region of the address space. The System
Page Table (SPT), which contains PTEs for addresses greater than
80000000,,, is allocated to contiguous pages in physical memory.
Since the size of system space is relatively constant and can be deter-
mined at system startup time, allocating a fixed amount of physical
memory to the SPT poses no problems.

Process space page tables, on the other hand, change quite dynami-
cally and can become very large. Because it would be awkward for the
operating system to have to keep the process page tables in contigu-
ous areas of physical memory, VAX defines structures called the proc-
ess space page tables, POPT and P1PT. POPT and P1PT are to be
allocated in contiguous areas of system space (i.e., virtual memory).
Thus, the mapping for process space addresses involves two memory
references—one to translate the process space address into a

physical memory address, and the second to translate the system
virtual address of the table containing the first translation. It is impor-
tant to notice that even if the translation buffer does not have the
mapping for the process space address, it is likely to have that for the
page table, and thus can save one of the references.

PROCESSOR STATUS LONGWORD

There are several processor state variables associated with each
process, and VAX groups them together into the 32-bit Processor
Status Longword (or PSL). Bits 15:0 of the PSL are referred to sepa-
rately as the Processor Status Word (PSW). The PSW contains unpri-
vileged information, and those bits of the PSW which have defined
meaning are freely controllable by any program. Bits 31:16 of the PSL
have privileged status, and while any program can perform the REI
instruction (which loads PSL), RE! will refuse to load any PSL which
would increase the privilege of a process, or create an undefined state
in the processor. Figure 6-4 illustrates the Processor Status Long-
word, and the following paragraphs explain the various fields.

31 3029 28 27 26 25 24 23 22 21 20 16 15 8 7 6 5 4 3 2 1 0
) RRENT| PREVIOUS
|€M|TP|MBZ |FPD|!SICL'M°°EI MODEIMB IPL | MBZ [DV]FU[IVlYINlZ]VlCI
\ PSW _/

Figure 6-4 Processor Status Longword

97

Memory, Registers, and Processor Status (Introductory)

Bits 3:0 of the PSL are termed the condition codes; in general they
reflect the result status of the most recent instruction which affects
them. The condition codes are tested by the conditional branch in-
structions.

N Bit—Bit 3 is the Negative condition code; in general it is set by
instructions in which the result stored is negative, and cleared by
instructions in which the result stored is positive or zero. For those
instructions which affect N according to a stored result, N reflects the
actual result, even if the sign of the result is algebraically incorrect as a
result of overflow.

Z Bit—Bit 2 is the Zero condition code; typically it is set by instructions
which store a result that is exactly zero, and cleared if the result is not
zero. Again, this reflects the actual result, even if overflow occurs.

V Bit—Bit 1 is the oVerflow condition code; in general it is set after
arithmetic operations in which the magnitude of the algebraically
correct result is too large to be represented in the available space, and
cleared after operations whose result fits. Instructions in which over-
flow is impossible or Fneaningless either clear V or leave it unaffected.
Note that all overflow conditions which set V can also cause traps if the
appropriate trap enable bits are set.

C Bit—Bit 0 is the Carry condition code; usually it is set after arithmetic
operations in which a carry out of, or borrow into, the most significant
bit occurred. C is cleared after arithmetic operations which had no
carry or borrow, and either cleared or unaffected by other instructions.
The C bit is unique in that it not only determines the operation of
conditional branch instructions, it also serves as an input variable to
the ADWC (Add with Carry) and SBWC (Subtract with Carry) instruc-
tions used to implement multiple-precision arithmetic.

Bits 7:4 of the PSL are trap-enable flags, which cause traps to occur
under special circumstances.

DV Bit—Bit 7 is the Decimal oVerflow trap enable. When set, it causes
a decimal overflow trap after the execution of any instruction which
produces a decimal result whose absolute value is too large to be
represented in the destination space provided. When DV is clear, no
decimal overflow trap occurs. The result stored consists of the low-
order digits and sign of the algebraically correct result. Note that there
are other trap conditions for which there are no enable flags—division
by zero and floating overflow.

FU Bit—Bit 6 is the Floating Underflow trap enable. When set, it
causes a floating underflow trap after the execution of any instruction
which produced a floating result too small in magnitude to be repre-

98

Memory, Registers, and Processor Status (Introductory)

sented. When FU is clear, no floating underflow trap occurs. The result
stored is zero when floating underflow occurs, regardiess of the state
of FU.

IV Bit—Bit 5 is the Integer oVerflow trap enable; when set, it causes an
integer overflow trap after an instruction which produced an integer
result that could not be correctly represented in the space provided.
When bit 5 is clear, no integer overflow trap occurs. The V condition
code is set independently of the state of IV (bit 5).

T Bit—Bit 4 is the Trace bit; when set, it causes a trace trap to occur
after execution of the next instruction. This facility is used by debug-
ging and performance analysis software to step through a program
one instruction at a time. If any instruction is traced and causes an
arithmetic trap, the trace trap occurs after the arithmetic trap.

Bits 15:8 of the PSL are unused, and reserved.

IPL Bits—Bits 20:16 represent the processor’s Interrupt Priority Level.
An interrupt, in order to be acknowledged by the processor, must be
at a priority higher than the current IPL. Virtually all software runs at
IPL 0, so the processor acknowledges and services interrupt requests
of any priority. The interrupt service routine for any request, however,
runs at the IPL of the request, thereby temporarily blocking interrupt
requests of lower or equal priority. Briefly, there are 31 priority levels
above zero, numbered in hexadecimal 01 through 1F. Interrupt levels
01,, through OF ¢ exist entirely for use by software. Levels 10,4 through
17, are for use by peripheral devices and their controllers, though
present systems support only 14, through 17,,. Levels 18,5 to 1F; are
for use for urgent conditions, including the interval clock, serious er-
rors, and power fail.

Bit 21—Must be zero.

Previous Mode Bits—Bits 23:22 are the previous mode field, which
contains the value from the current mode field at the most recent
exception which transferred from a less privileged mode to this one.
Previous mode is of interest, for example, in the PROBE instructions,
which enable privileged routines to determine whether a caller at the
previous mode is sufficiently privileged to reference a given area of
memory.

Current Mode Bits—Bits 25:24 are the current mode field, which de-
termines the privilege level of the currently executing program.

Privilege is granted in two ways by the mode field—certain instructions
(HALT, Move To Processor Register, and Move From Processor
Register) are not performed unless the current mode is kernel. The
memory management logic controls access to virtual addresses on

99

Memory, Registers, and Processor Status (Introductory)

the basis of the program’s current mode, the type of reference (read or
write), and a protection code assigned to each page of the address
space.

IS Bit—Bit 26 is the Interrupt Stack flag, which indicates that the
processor is using the special “interrupt stack” rather than one of the
four stacks associated with the current process. When IS is set, the
current mode is always kernel; thus, software operating “on the inter-
rupt stack” has full kernel mode privileges.

FPD Bit—Bit 27 is the First Part Done flag, which the processor uses in
certain instructions which may be interrupted or page faulted in the
middle of their execution.

If FPD is set when the processor returns from an exception or inter-
rupt, it resumes the interrupted operation where it left off, rather than
restarting the instruction.

TP Bit—Bit 30 is the Trace Pending bit, which is used by the processor
to ensure that one, and only one, trace trap occurs for each instruction
performed with the Trace bit (bit 4) set.

CM Bit—Bit 31 is the Compatibility Mode bit. When CM is set, the
processor is in PDP-11 compatibility mode, and executes PDP-11 in-
structions. When CM is clear, the processor is in native mode, and
executes VAX instructions.

GENERAL REGISTERS

VAX provides sixteen general registers for temporary address and
data storage. Registers are denoted either Rn or R[n], where n is an
integer in the range 0 through 15. Registers do not have memory
addresses, but are accessed either explicitly by inclusion of the regis-
ter number in an operand specifier, or implicitly by machine
operations which make reference to specific registers. Certain regis-
ters have specific uses and special names:

PC R15 is the Program Counter (PC). The processor
updates it to address the next byte of the pro-
gram; therefore, PC is not used as a temporary,
accumulator, or index register.

SP R14 is the Stack Pointer (SP). Several instructions
make implicit references to SP, and most soft-
ware assumes that SP points to memory set aside
for use as a stack. There is no restriction on the
explicit use of other registers (except PC) as stack
pointers, though those instructions which make
implicit references to the stack always use SP.

100

Memory, Registers, and Processor Status (Introductory)

FP R13 is the Frame Pointer (FP). The VAX pro-
cedure call convention builds a data structure on
the stack called a stack frame. The CALL
instructions load FP with the base address of the
stack frame, and the RETurn instruction depends
on FP’s containing the address of a stack frame.
Further, VAX software depends on maintenance
of FP for correct reporting of certain exceptional
conditions.

AP R12 is the Argument Pointer (AP). The VAX pro-
cedure call convention uses a data structure
called an argument list, and needs AP as the base
address of the argument list. The CALL instruc-
tions load AP in accordance with that convention,
but there is no hardware or software restriction on
the use of AP for other purposes.

R6:R11 Registers 6 through 11 have no special signifi-
cance either to hardware or the operating system.
Specific software will assign specific uses for
each register.

RO:R5 Registers 0 through 5 are generally available for
any use by software, but are also loaded with spe-
cific values by those instructions whose execution
must be interruptable—the character string, deci-
mal arithmetic, Cyclic Redundancy Check, and
Polynomial instructions. The specific instruction
descriptions identify which registers are used,
and what values are loaded into them.

As you can see, the general philosopy of DIGITAL software governing
the allocation of registers is that high-numbered registers should have
the most global significance, and low-numbered registers are used for
the most temporary, local purposes. While there is no technical basis
for this rule, it is a matter of convention followed by both hardware and
system software. Thus, high-numbered registers are used for pointers
needed by all software and hardware, and low-numbered registers are
used for the working storage of string-type instructions. Similarly, the
VAX procedure call convention regards RO and R1 as so temporary
that they are not even saved on calls. This is because RO and R1 are
used to return function values. Table 6-1 summarizes the hardware
and conventional software use of the general registers.

101

Memory, Registers, and Processor Status (Introductory)

Table 6-1 Special Register Usage

Registers Hardware Use Conventional Software Use
PC (R15) Program counter Program counter

SP (R14) Stack pointer Stack pointer

FP (R13) Frame pointer Frame pointer; condition sig-

saved & loaded by nalling
CALL, used & re-
stored by RET

AP (R12) Argument pointer Argument pointer (base ad-
saved & loaded by dress of argument list)
CALL, restored by

RET
R6:R11 None Any
R3, R5 Address counter in Any

character & decimal
instructions

R2, R4 Length counter in Any
character & decimal
instructions

R1 Result of POLYD; Result of functions (not saved or
address counter in restored on procedure call)
character & decimal
instructions

RO Results of POLY, Results of functions, status of
CRC; length counter services (not saved or restored
in character & deci- on procedure call)

mal instructions

STACKS

Stacks, also called pushdown lists or last-in/first-out queues, are an

important feature of the architecture. They are used for:

® Saving the general registers, including PC, at entry to a subroutine,
for restoration at exit

e Saving PC, PSL, and general registers at the time of interrupts and
exceptions, and during context switches

® Creating storage space for temporary use or for nesting of recursive
routines

102

Memory, Registers, and Processor Status (Introductory)

A stack is implemented in VAX by a block of memory and a general
register which addresses the “top” of the stack. The “top” of the stack
is that location in the block which contains the next candidate for
removal. An item is added to the stack (“pushed on”) by decrementing
the register which serves as the stack pointer, and storing the item at
the address in the updated register. The pointer is decremented by the
length of the item added to the stack, to allow enough room for it.
Conversely, the top item is removed (“popped off’) by adding the
length of the item to the stack pointer after the last use of the item.
These operations are built into the basic addressing mechanisms of
VAX instructions; thus, any instruction can operate on the stack, and it
is seldom necessary to devote separate instructions to maintenance of
the stack pointer.

A stack is usually bounded by inaccessible pages, in order to catch the
common programming errors associated with stacks: pushing on
more data than there is space to store and popping off more than was
pushed. By placing the stack in a block of memory between inaccessi-
ble pages, the programmer can be confident of finding such errors.
The operating system initializes the stacks this way.

Many VAX processor operations make use of the stack implicitly (i.e.,
without explicit specification of SP in an operand specifier). This oc-
curs in instructions used in calling and returning from subroutines,
and in the processor sequences which initiate and terminate interrupt
or exception service routines. In all such cases, the processor uses the
stack addressed by R14.

This does not mean that exceptions, interrupts, and system services
are performed on the same stacks employed by user-mode programs.
The processor maintains five internal registers as pointers to separate
blocks of memory to be used as stacks, and uses one or another as SP
depending on the current access mode and interrupt stack bit in the
processor status longword. Whenever the current access mode
and/or interrupt stack bits change, the processor saves the contents
of SP into the internal register selected by the old value of those bits,
and loads SP from the register selected by the new value. There is one
interrupt stack for the entire system, but the kernel, executive, super-
visor, and user mode stacks are different for each process in the
system. Figure 6-5 illustrates the relationships of the five stacks and
multiple processes.

103

Memory, Registers, and Processor Status (Introductory)

PROCESS 1 PROCESS 2 PROCESS 3
USER 1 USER 2
STACK STACK

SUPERVISOR 1 SUPERVISOR 2

GREATER STACK STACK
MODE
(LESSER
PRIVILEGE)
. EXEC) EXEC 2
STACK STACK
KERNEL 1 KERNEL 2
STACK STACK

INTERRUPT STACK
(ALL PROCESSES)

Figure 6-5 Stacks by Mode vs. Processes

This multiple-stack mechanism offers a number of advantages over a

single stack.

® User-mode programs are not subject to sudden and nonreproduci-
ble changes in the data beyond the end of their stack. While it is bad
practice to depend on such data, it would also be poor design to
make it difficult to debug programs which did depend on such data,
either intentionally or through programming error.

@ The integrity of a privileged mode program cannot be compromised
by a less privileged caller. Even if the caller has completely filled its
own stack, the privileged code is in no danger of running out of
space, because separate blocks of memory are allocated to the
stack associated with each mode.

@ Privileged mode programs are not vulnerable to accidental (or mali-
cious) destruction of the stack pointer by less privileged programs.
Even if the user program uses SP as a floating point accumulator,
privileged code can still depend on it as a stack pointer, because the
processor saves the floating point value and loads the pointer value
when a mode change occurs.

104

Memory, Registers, and Processor Status (Introductory)

e By allocating separate stacks for each mode, VAX-11 can dynami-
cally page most stack space, while ensuring the availability of space
for interrupt and page fault service. Interrupt service routines and
the page fault handler may be invoked at any time, and must have a
small amount of stack available immediately, without waiting for it to
be paged in. User programs, on the other hand, may need very large
stack spaces, making it desirable to page out those regions which
are not in active use. Only the kernel and interrupt stacks need to be
resident.

105

106

CHAPTER 7
MEMORY MANAGEMENT

INTRODUCTION

Memory management describes the hardware and software that con-
trol the allocation and use of physical memory for the VAX family of
processors. In a typical multiprogramming syétem, several processes
may reside in physical memory at the same time. Therefore, to ensure
that one process will not affect other processes or the operating sys-
tem, memory protection is provided. To further improve software reli-
ability, four hierarchical (privilege) modes are provided to control
memory access. They are, from most to least privileged, kernel, exe-
cutive, supervisor, and user. Protection is specified at the individual
page level, where a page may be inaccessible, read-only, or
read/write for each of the four access modes. Any location accessible
to a less privileged mode is also accessible to all more privileged
modes. Furthermore, for each access mode, any location that is write-
able is also readable.

While an image is being executed by the CPU, virtual addresses are
generated. However, before these addresses can be used to access
instructions and data, they must be translated into physical addresses.
Memory management software maintains tables of mapping informa-
tion (page tables) that keep track of where each 512-byte virtual page
is located in physical memory. Memory management uses this map-
ping information in translating virtual addresses to physical ad-

dresses.

In other words, memory management is the scheme that provides
both memory protection and memory mapping mechanisms for VAX
systems. The scheme has been designed to achieve the following
goals:

e Provide a large address space for instructions and data

e Allow data structures up to one billion bytes

@ Provide convenient and efficient sharing of instructions and data

@ Contribute to software reliability

A virtual memory system is used to provide a large address space,
while allowing programs to run on hardware configurations that
actually have smaller memory sizes. Programs are executed in an
environment termed a process. The software operating system uses
the mechanisms described in this chapter to provide each process
with a potential 4-billion-byte virtual address space.

107

Memory Management

The virtual address space is divided into two address spaces of equal
size; the process address space and the system address space, the
second of which is the same for all processes. The operating system
itself resides in the lower half of the system address space and is
implemented as a series of callable procedures, so that all of the
system code is available to all other system and user codes using a
simple CALL. The upper half of the system space is reserved for future
use. Process address space is separate for each process. However,
several processes may have access to the same page, thus providing
controlled sharing.

VIRTUAL ADDRESS SPACE

The address space seen by the programmer is a linear array of over 4
gigabytes. It is divided into a collection of 512-byte units called pages.
The page is the basic unit of both relocation and protection.

Since this virtual address space is too large to be contained in any
currently manufactured main memory, memory management pro-
vides the mechanism to map the active part of the virtual address
space to the available physical address space. It also provides page
protection between processes. The operating system controls the
memory management tables that map virtual addresses into physical
memory addresses. Inactive, but used, parts of the virtual address
space are mapped onto external storage media via the operating sys-
tem. Figure 7-1 is a schematic of virtual address space.

As you can see, the lower half of virtual address space is termed
process space. Each process has a separate address translation map
for process space, so the process spaces of all processes are com-
pletely noncontiguous. The address map for process space is context-
switched when the process running on the system is changed.

This process space is further divided by bit <30> into two regions
termed the PO and P1 regions of the process virtual address space.
These regions will be described in greater detail later in this chapter.

The upper half of virtual address space is termed system space. All
processes use the same address translation map for system space, so
system space is shared among all processes. The address map for
system space is not context-switched.

Page Protection

Independent of its location in the virtual address space, a page may be
protected according to its use. Even though all of the system space is
shared, in that your program may generate any address, the program
may be prevented from modifying, or even accessing portions of the

108

Memory Management

VIRTUAL ADDRESS VIRTUAL ADDRESS
(32 BITS) SPACE
~ 0000 0000 h
PO REGION
(PROGRAM)
GROWTH DIRECTION
3FFF_FFFF l PER
- 3RLL_EEPE P
40600 000 1 SPact

GROWTH DIRECTION

P1 REGION
(CONTROL)
_ZFFF_EFFE %
8000 0000 W
SYSTEM REGION
GROWTH DIRECTION
_BFFF_FFFF ¥ SYSTEM
C000 0000 SPACE
RESERVED
FFFF_ FFFF J

Figure 7-1 Virtual Address Space

system space. A program may also be prevented from accessing or
modifying portions of process space.

For example, in system space, scheduling queues are highly protect- -
ed, whereas library routines may be executable by code of any privi-
lege. Similarly, process accounting information may be in process
space, but highly protected, while normal user code in process space
is executable at low privilege.

Virtual Address

In order to reference each instruction and operand in memory, the
processor generates a 32-bit virtual address as illustrated in Figure 7-
2.

Bit: 31:9 Name: Virtual Page Number

Function: The virtual page number field specifies the virtual page to
be referenced. There are 8,388,608 pages of 512 bytes each in the
virtual address space.

When bit 31 is one, the address is in the system space. When bit 31 is
zero, the address is in the per-process space.

109

Memory Management

VIRTUAL ADDRESS VIRTUAL ADDRESS
SPACE

N 29 98 0
[. IVIRTUAL PAGE NO.]O}?}STET

]
:S&& 1 VPN
VIRTUAL PAGE

N

]

Figure 7-2 Virtual Address

Within the process space, bit 30 distinguishes between the program
and control regions. When bit 30 is one, the control region is
referenced, and when it is zero, the program region is referenced.

Bit: 8:0 Name: Byte
Function: The byte number field specifies the byte address within the
page. A page contains 512 bytes.

Virtual Address Space Layout

Access to each of the three regions (PO, P1, system) is controlled bya
length register (POLR, P1LR, SLR). Within the limits set by the length
registers, the access is controlled by a page table that specifies the
validity, access requirements, and location of each page in the region.

ACCESS CONTROL

Access control is the function of validating whether a particular type of
memory access is to be allowed to a particular page. Every page has
associated with it a protection code that specifies for each mode
whether or not read or write references are allowed. Additionally, each
address is checked to make certain that it lies within the PO, P1, or
system region.

Mode
There are four hierarchically ordered modes in the processor. The
modes in the order of most to least privileged are:

0 Kernel. Used by the kernel of the operating system for page man-
agement, scheduling, and 1/0 drivers.

1 Executive. Used for many of the operating system service calls
including the record management system.

110

Memory Management

2 Supervisor. Used for such services as com mand interpretation.
3 User. Used for user level code, utilities, compilers, debuggers,
etc.

The mode at which the processor is currently running is stored in the
current mode field of the Processor Status Longword (PSL).

Protection Code

Associated with each page is a protection code (located within the
page table entry for that page) that describes the accessibility of the
page for each mode. The protection codes available allow choice of
protection for each access level within the following limits:

1. Each level's access can be read/write, read only, or no access.

2. If any level has read access then all more privileged levels also
have read access.

3. If any level has write access then all more privileged levels also
have write access.

This results in 15 possibilities. The protection code is encoded in a 4-
bit field in the Page Table Entry described in Table 7-1.

Table 7-1 Protection Codes

CODE MNEMONIC
DECIMAL BINARY K E S U COMMENT

0 0000 NA - - - - NOACCESS
1 0001 UNPREDICTABLE RESERVED
2 0010 KW RW- - -

3 0011 KR R - - -

4 0100 uw RW RW RW RW ALL ACCESS
5 0101 EW RW RW - -

6 0110 ERKW RWR - -

7 0111 ER R R - -

8 1000 SW RW RW RW -

9 1001 SREW RWRWR -

10 1010 SRKW RWR R -

11 1011 SR R R R -

12 1100 URSW RW RW RW R

13 1101 UREW RWRWR R

14 1110 URKW RWR R R

15 1111 UR R R R R

-
-t
—

Memory Management

CODE MNEMONIC
DECIMAL BINARY K E S U COMMENT
- = No access K = Kernel
R = read only E = Executive
RW = read/write S = Supervisor

U = User

Software symbols are defined using PTE$K as a prefix to the mne-
monics listed in Table 7-1.

Length Violation

Every virtual address is constrained to lie within one of the valid ad-
dressing regions (PO, P1, or system). The algorithm for making these
checks is a simple limit check. The formal notation for this check is:

case VAddr <31:30>

set
(0): PO region
if ZEXT (VAddr<29:9>) GEQU POLR
then (length violation);
(1): IP1 region
if ZEXT (VAddr<29:9>) LSSU P1LR
then (length violation);
(2): IS region
if ZEXT (VAddr<29:9>) GEQU SLR
then (length violation);
(3): Ireserved region

(length violation);

An access control fault occurs if the current mode of the PSL and the
protection field(s) for the page(s) about to be accessed indicate that
the access would be illegal. A fault of this type will occur if the address
causes a length violation to occur.

112

Memory Management

ADDRESS TRANSLATION

The action of translating a virtual address to a physical address is
governed by the setting of the Memory Mapping Enable (MME) bit.
When MME is 0, the low order bits of the virtual address are the
physical address and there is no page protection. (The disabling of
memory management is often useful to Field Service engineers in
diagnosing hardware faults; however, this is not a normal user mode.)
This section describes the address translation process when MME is
1.

The address translation mechanism is presented with a virtual ad-
dress, an intended access (read or write) and a mode against which to
check that access. If the access is allowed and the address maps
without faulting, the output of this routine is a physical address
corresponding to the specified virtual address. The mode that is used
is normally the current mode field of the PSL, but per-process page
table entry references use kernel mode.

The intended access is read if the operation to be performed is a read.
The intended access is write if the operation to be performed is a write.
If, however, the operation to be performed is a modify (i.e. read fol-
lowed by write) the intended access for the read portion is specified as
awrite.

Page Table Entry (PTE)

All virtual addresses are translated to physical addresses by means of
a page table entry (PTE). The page table entry is described in Figure 7-
3.

31 30 272625 24 23 2221 20 0
\ PROT |[M|[O|OWN| O PFN

Figure 7-3 Page Table Entry

Bit: 31 Name: Valid bit (V)

Function: Governs the validity of the M modify (M) bit and the page
frame number (PFN) field. V = 1 for valid; V = 0 for not valid.

Bit: 30:27 Name: Protection field

Function: This field is always valid and is used by the hardware even
whenV = 0.

Bit: 26 Name: Modify bit (M)

Function: Set (i.e., = 1) if page has already been recorded as modi-
fied. M = 0 if page has not been recorded as modified. Used by

113

Memory Management

hardware only if V = 1. Hardware sets this bit on a valid, access-
allowed memory access associated with a modify or write access, and
optionally on a PROBEW or implied probe-write. If a write or modify
reference crosses a page boundary and one page faults, it is unpred-
ictable whether the page table entry M bit for the other page is set
before the fault. It is unpredictable whether the modification of a proc-
ess PTE M bit causes modification of the system PTE that maps that
process page table. (Note that the update of the M bit is not
interlocked in customer-designed multiprocessor systems.)

Bit: 25 Name: Zero bit, reserved to DIGITAL

Function: This bit is reserved to DIGITAL and must be zero. The
hardware does not necessarily test that this bit is zero because the
PTE is established only by privileged software.

Bit: 24:23 Name: Owner bits, reserved

Function: Reserved for software use. The VAX/VMS operating sys-
tem uses these system bits as the access mode of the owner of the
page (i.e., the mode allowed to alter the page); not examined or al-
tered by hardware.

Bit: 22:21 Name: Software bits, reserved to DIGITAL

Function: These bits are reserved for DIGITAL software. The operat-
ing system software uses some combinations of the software bits to
implement its page management data structures and functions.
Among the functions implemented this way are initialize-pages-with-
zeros, copy-on-reference, page sharing, and transitions between ac-
tive and swapped-out states. VAX/VMS encodes these functions in
PTEs whose Valid bit, PTE<31>, is a 0 and processes them whenever
a page fault occurs.

Bit: 20:0 Name: Page Frame Number (PFN)
Function: The upper 21 bits of the physical address of the base of the
page. Used by hardware only if V = 1.

Protection Check Before Valid Check

The page table entry has been defined as having a valid bit that only
controls the validity of the modify bit and page frame number field.
The protection field is defined as always being valid and checked first.
This is so that programs running in user mode do not PROBE all
around in the sysem region faulting all the swappable pages.

SYSTEM SPACE ADDRESS TRANSLATION
A virtual address with <31:30> = 2 resides in the system virtual ad-
dress space as illustrated in Figure 7-4.

114

Memory Management

31 30 29 9 8 0
2 VIRTUAL PAGE NO. (VPN) BYTE #

Figure 7-4 System Space Address

The system virtual address space is defined by the system page table
(SPT), which is a vector of page table entries (PTEs). The physical
base address of the SPT is contained in the System Base Register
(SBR). The size of the SPT in longwords, i.e:, the number of PTEs, is
contained in the System Length Register (SLR). The PTE addressed
by the SBR maps the first page of system space, i.e., virtual byte
address 80000000,.

The virtual page number is bits <29:9> of the virtual address. Thus,
there could be as many as 22' physical pages in the system region.
(Typically the value is in the range of a few hundred to a few thousand
system pages.) A 22-bit length field is required to express the values 0
through 22" inclusive. At bootstrap time, the content of both registers
are unpredictable. The translation from system virtual address to
physical address is illustrated in Figure 7-5.

33 2
10 9 98 0
SVA: E BYTE J
(SYSTEM VIRTUAL
'ADDRESS)
3 212 EXTRACT
] 312 2110
5] g
CHECK LENGTH
ADD
SBR: [PHYS BASE ADR OF SPT |0J
YIELDS
| PHYS ADR OF PTE ioJ
FETCH
33 22
10 10 0
PTE: [1| l PEN
CHECK ACCESS :
33)2
10{9 olg 4o
PHYS ADR OF DATA: F)J

Figure 7-5 System Virtual To Physical Translation

115

Memory Management

PROCESS SPACE ADDRESS TRANSLATION

The process virtual address space is split into two separately mapped
regions according to the setting of bit 30 in the process virtual ad-
dress. If bit 30 is 0, the PO region of the address space is selected and
if bit 30 is one, the P1 region is selected.

The PO region of the address space defines a contiguous area that
begins at the smallest address (0) in the process virtual space and
grows in the direction of larger addresses. In contrast, the P1 region of
the address space defines a contiguous area that begins at the largest
address (2%'—1) in the process virtual space and grows in the direction
of smaller addresses.

Each region (PO and P1) of the process virtual space is described by
page tables. In contrast with the system page table, which is ad-
dressed with a physical address, these two page tables are addressed
with virtual addresses in the system region of the virtual address
space. Therefore, for process space, the address of the PTE is a
virtual address in system space, and the fetch of the PTE is simply a
fetch of a longword using a system virtual address.

Process page tables are addressed in virtual rather than physical
space because a physically addressed process page table that re-
quired more than a page of PTEs (i.e., that mapped more than 64
Kbytes of process virtual space) also would require physically contigu-
ous pages. Such a requirement would make dynamic allocation of
process page table space more complex.

A process space translation that causes a translation buffer miss will
usually cause one memory reference for a PTE. If the virtual address
of the page containing the process PTE is also missing from the trans-
lation buffer, a second memory reference is required.

When a process page table entry is fetched, a reference is made to
system space. This reference is made as a kernel read. Thus the
system page containing a process page table is either no access (pro-
tection code zero) or will be accessible (protection code nonzero).
Similarly, a check is made against the System Page Table Length
Register (SLR). Thus, the fetch of an entry from a process page table
can result in access or length violation fauits.

PO Space

The PO region of the address space is mapped by the PO page table
(POPT) that is defined by the PO Base Register (POBR) and the PO
Length Register (POLR). POBR contains a virtual address in the system
half of virtual address space which is the base address of the PO page
table. POLR contains the size of the PO page table in longwords, i.e.,

116

Memory Management

the number of page table entries. The page table entry addressed by
the PO Base Register maps the first page of the PO region of the virtual
address space, i.e., virtual byte address zero.

The virtual page number is bits <29:9> of the virtual address. Thus,
there could be as many as 22' pages in the PO region. A 22-bit length
field is required to express the values 0 through 22! inclusive.
POLR<26:24> are ignored on the Move to Processor Register (MTPR)
instruction and read back zero on the Move From Processor Register
(MFPR) instruction. At bootstrap time, the contents of both registers
are unpredictable. An attempt to load POBR with a value less than 2%
results in a reserved operand fault. The. translation from PO virtual
address to physical address is illustrated in Figure 7-6.

332
109 98 0
PVA: [o| BYTE]
(PROCESS VIRTUAL
ADDRESS) '

3 212 EXTRACT i

3 312 210

Lo | lo]

CHECK LENGTH
ADD

POBR: | s¥S VIRT BASE ADR OF POPT o]

YIELDS

r SYS VIRT ADR OF PTE]o]

FETCH-REFERS TO SYSTEM SPACE
ADDRESS TRANSLATION SECTION
OF THIS CHAPTER

33 22
10 10 0
PTE: ['] PFN |
CHECK ACCESS |
' |
332 !
10|% 9lg 0
PHYS ADR OF DATA: F) I J

Figure 7-6 PO Virtual to Physical Translation

P1 Space

The P1 region of the address space is mapped by the P1 page table
(P1PT) that is defined by the P1 Base Register (P1BR) and the P1
Length Register (P1LR). Because P1 space grows from higher to lower

117

Memory Management

addresses and because a consistent hardware interpretation of the
base and length registers is important, PIBR and P1LR describe that
portion of P1 space that is not accessible. P1BR contains a virtual
address of what would be the PTE for the first page P1—virtual byte
address 40000000,,. P1LR contains the number of nonexistent PTEs.

It should be remembered that the address in P1BR is not necessarily
an address in system space, but all addresses of PTEs must be in
system space.

P1LR <31> is ignored on MTPR and reads back zero on MFPR. At
bootstrap time, the contents of both registers are unpredictable. An
attempt to load P1BR with a value less than 23!'—22% (7F800000,,) re-
sults in a reserved operand fault. The translation from P1 virtual ad-
dress to physical address is illustrated in Figure 7-7.

33 2
10 9 98 0
PVA:) BYTE
(PROCESS VIRTUAL [IL l
ADDRESS) ! |
212 EXTRACT !
1 312 2010
Lo] 1]
CHECK LENGTH
ADD
P1BR: [SYS VIRT BASE ADR OF P1PT o]
YIELDS
L SYS VIRT ADR OF PTE o]
FETCH-REFER TO SYSTEM SPACE
ADDRESS TRANSLATION SECTION
OF THIS CHAPTER
33 22
10 10 0
PTE: [II | PFN
CHECK ACCESS :
3312 |
10l9 9's 0
PHYS ADR OF DATA: ’0]

Figure 7-7 P1 Virtual To Physical Translation

MEMORY MANAGEMENT CONTROL
There are three additional privileged registers used to control the
memory management hardware. One register is used to enable and

118

Memory Management

disable memory management, the other two are used to clear the
hardware’s address translation buffer when a page table entry is
changed.

Memory Management Enable

The Map Enable Register, MAPEN, contains a value of 0 or 1 accord-
_ ing to whether memory management is disabled or enabled, respec-
tively. At bootstrap time, this register is initialized to zero.

When memory management is disabled, virtual addresses are
mapped to physical addresses by ignoring their high order bits. All
accesses are allowed in all modes and no modify bit is maintained.

Translation Buffer

In order to save actual memory references when repeatedly referenc-
ing pages, the hardware includes a mechanism, called a transiation
buffer, to remember successful virtual address translations and page
status.

Whenever the process context is loaded by the LDPCTX instruction,
the translation buffer is automatically updated (i.e., the process virtual
address translations are invalidated). However, whenever a page table
entry for the system or current process region is changed other than to
set the page table entry V bit, the software must notify the translation
buffer of this by moving an address within the corresponding page into
the Translation Buffer Invalidate Single Register (TBIS).

Whenever the location or size of the system map is changed (SBR,
SLR) the entire translation buffer must be cleared by moving 0 into the
Translation Buffer Invalidate All Register (TBIA). Therefore, before en-
abling memory management at processor initialization time, or any
other time, the entire translation buffer must be cleared by moving 0
into TBIA with the MTPR instruction.

FAULTS AND PARAMETERS

There are two types of faults associated with memory mapping and
protection. A translation not valid fauit is taken when a read or write
reference is attempted through an invalid PTE (PTE<31> = 0). An
access control violation fault is taken when the protection field of the
PTE indicates that the intended access to the page for the specified
mode would be illegal. Note that these two faults have distinct vectors
in the system control block. If both access control violation and trans-
lation not valid faults could occur, then the former takes precedence.
An access control violation fault is also taken if the virtual address
referenced is beyond the end of the associated page table. Such a
length violation is essentially the same as referencing a PTE that spec-

119

Memory Management

ifies no access in its protection field. To avoid having the fault software
redo the length check, a length violation indication is stored in the
Fault Parameter Word described in Figure 7-8.

? Tale] tsm

SOME VIRTUAL ADDRESS IN THE FAULTING PAGE

PC OF FAULTING INSTRUCTION

PSL AT TIME OF FAULT

Figure 7-8 Fault Parameter Word

The same parameters are stored for both types of faults. The first
parameter pushed on the kernel stack after the PSL and PC is the
initial virtual address that caused the fault. A process space reference
can result in a system space virtual reference for the PTE. If the PTE
reference faults, the virtual address that is saved is the process virtual
address. In addition, a bit is stored in the fault parameter word
indicating that the fault occurred in the PTE reference.

The second parameter pushed on the kernel stack contains the follow-
ing information:

Bit: 2 Name: Write or Modify Intent

Function: Setto 1 toindicate that the program’s intended access was
a write or modify. This bit is 0 if the program’s intended access was a
read.

Bit: 1 Name: PTE Reference

Function: Set to 1 to indicate that the fault occurred during the refer-
ence to the process page table associated with the virtual address.
This can be set on either length or protection faults.

Bit: 0 Name: Length Violation

Function: Setto 1 to indicate that an access control violation was the
result of a length violation rather than a protection violation. This bit is
always 0 for a translation not valid fault.

PRIVILEGED SERVICES AND ARGUMENT VALIDATION

Change Modes

There are four instructions available to allow a program to change the
mode at which it is running to a more privileged mode and transfer
control to a service dispatcher for the new mode. (Refer to Chapter 10
greater detail.)

120

TR

Memory Management

The four instructions provide the only mechanism for less privileged
code to call more privileged code. When the mode transition takes
place the previous mode is saved in the previous mode field of the
PSL, thus allowing the more privileged code to determine the privilege
of its caller.

Validating Address Arguments

Two instructions are provided to allow privileged services to check
addresses passed as parameters. To avoid protection holes in the
system, a service routine must always validate that its less privileged
caller could have directly referenced the addresses passed as param-
eters. For detail on PROBE instructions, which supply this validation,
see Chapter 10.

SHARING

To discuss sharing, it is useful to assume the concept of a section in
the operating system. A section is a collection of pages that have some
relationship to each other. Though units as small as pages may indeed
be shared, sections are the usual unit of sharing.

Shared Sections in Process Space

Sharing in the process half of the virtual address space requires that
the page table fragments for the sections being shared be replicated
in the process page table(s). Clearly this introduces multiple PTEs for
the same physical page. This is a problem traditionally avoided by one
or more levels of indirection, i.e., the PTE points to the shared PTE that
points to the page. We avoid introducing this level of indirection in the
hardware by observing the following software rules:

1. A share count is maintained for each shared page in memory and
in effect counts the number of direct pointers to that page.

2. When a process releases a page from its working set and itis a
shared page as indicated in the working set data base, the private
PTE must be changed to point to the shared PTE for the page, and
the private copy of the modify bit must be OR’ed into the shared
PTE. Then the share count is decremented and if the count is now
0, the page is released and the shared PTE is updated to reflect
that. Note that the process’s working set data base allows it to find
its private PTE and the physical page data base points to the
shared PTE.

3. When a process gets an invalid page fault, one of the possible
states of the invalid PTE is that it points to a shared PTE. Of
course that PTE might say that the page was not resident and
required a page read. Whether or not the read was necessary, the

121

Memory Management

shared PTE is eventually copied to the private PTE and the share
count of the page is incremented.

4. Note that throwing a process out of the balance set—the set of all
process working sets currently resident in physical memory—is
equivalent to releasing all its pages.

5. The use of the indirect page pointer as a software-only mecha-
nism is adequate for this form of sharing. It should be noted that it
is very difficult to change the PFN of a page in memory when it is
actively being shared. That would require a scan of the page
tables for all the processes in the balance set.

Shared Sections in System Space
When a process is using a shared section in the system region of the
address space, it is referencing a single shared page table. Since it is
possible for a process simply to reference such a shared section with-
out ever having declared its intention to do that, the operating system
must be prepared to handle reference faults. A straightforward design
for this kind of sharing is:

1. Have programs explicitly declare their intention to use each
shared system section. This can be done statically at compile or
link time or dynamically at run time.

2. Have the balance set manager swap in and lock down the entire
section when the process intending to use it is swapped in.

3. The balance set manager maintains share counts on the section
and only discards its pages when no process in the balance set
wants it.

4. If a process faults such a page because it failed to declare its
intention to use the section, then that is a programming error.

Another approach for shared system sections allows a process to
reference pages of the section with no prior declaration of its intent to
use them. Such pages would be demand paged within a pool of pages
reserved for that purpose. That pool would keep a list of the pages in
use and a fault for a new one would cause one in the pool to be
replaced. This would use the same sort of working set management
that is used for the process address space but it would be global
across processes.

122

123

124

CHAPTER 8
PROCESS STRUCTURE

DEFINITION OF A PROCESS

To recap part of Chapter 2, a process is the basic entity that may be
scheduled for execution by VAX family processors. It consists of an
address space, a hardware context, and a software context. The hard-
ware context is defined by a data structure called the process control
block (PCB), which contains images of the 14 general purpose regis-
ters, the Processor Status Longword (PSL), the Program Counter
(PC), the four per-process stack pointers, the process virtual memory
defined by the base and length registers (POBR, POLR, P1BR, and
P1LR), and several minor control fields. When a process is not execut-
ing, its hardware context is stored in the process control block. In
order for a process to execute, the majority of the PCB must be moved
into internal registers: while a process is being executed, some of its
hardware context is being updated in the internal registers.

Saving the contents of the privileged registers in the PCB of the cur-
rently executing process and then loading a new set of context in the
privileged registers from another PCB is termed context switching.
Context switching occurs as one process after another is scheduled
for execution.

PROCESS CONTEXT

The process control block for the currently executing process is point-
ed to by the contents of the process control block base (PCBB) regis-
ter, an internal privileged register, which contains the physical
longword address of the PCB.

The PCB itself contains all of the switchable process context collected
into a compact form for ease of movement to and from the privileged
internal registers. Although in any normal operating system there is
additional software context for each process, the following description
is limited to that portion of the PCB known to the hardware. The proc-
ess control block is illustrated in Figure 8-1.

125

Process Structure-

Kernel mode stack pointer

Executive mode stack pointer

Supervisor mode stack pointer

User mode stack pointer

Register 0

Register 1

Register 2

Register 3

Register 4

Register 5

Register 6

Register 7

Register 8

Register 9

Register 10

Register 11

Registe'r 12

Register 13

Register 14

Register 15

Processor Status Longword

Program Region Base Register

///////A b V////j Program Region Length Register

Control Region Base Register

///////////// Control Region Length Register

31 276 24R3 2|21 0

*Enable performance monitor
**Asynchronous System Trap pending

Figure 8-1 Hardware Process Control Block

126

Process Structure

A description of the process control block follows.

Long-

word Bits Mnemonic Description

0 <31:0> KSP Kernel Stack Pointer. Contains the
stack pointer to be used when the
current access mode field in the
Processor Status Longword (PSL) is
0 and Interrupt Stack (IS) is 0.

1 <31:0> ESP Executive Stack Pointer. Contains
.the stack pointer to be used when
the current access mode field in the
PSLis 1.

2 <31:0> SSP Supervisor Stack Pointer. Contains
the stack pointer to be used when
the current access mode field in the
PSLis 2.

3 <31:0> USP User Stack Pointer. Contains the
stack pointer to be used when the
current access mode field in the PSL
is 3.

4-17 <31:0> RO-R11, Generalregisters 0 through 11,

AP,FP Argument Pointer, and Frame Pointer.
18 <31:0> PC Program Counter.
19 <31:0> PSL Processor Status Longword.

20 <31:0> POBR Base register for page table de-
scribing process virtual addresses
from O to 23°—1.

21 <21:0> POLR Length register for page table
located by POBR. Describes effective
length of page table.

<23:22>MBZ Must be 0.

127

Process Structure

Long-
word Bits Mnemonic Description

<26:24>ASTLVL Contains access mode number estab-
lished by software of the most
privileged access mode for which an
asynchronous system trap is pending.
(ASTs are discussed below.)
Controls the triggering
of the AST delivery interrupt dur-
ing REI (Return from Interrupt or
Exception) instructions.

ASTLVL Meaning

0 AST pending for access mode 0 (kernel)
1 AST pending for access mode 1 (executive)
2 AST pending for access mode 2 (supervisor)
3 AST pending for access mode 3 (user)
4 No pending AST

5-7 Reserved to DIGITAL

<31:27>MBZ Must be zero.

22 <31:0> P1BR Base register for page table de-
scribing process virtual addresses
from 230to 231—1,

23 <21:0> P1iLR Length register for page table lo-
cated by P1BR. Describes effective
length of page table.

<30:22>MBZ Must be zero.
<31> PME Performance Monitor Enable. Controls

a signal visible to an external
hardware performance monitor. This
bit is set to identify those proc-

esses for which monitoring is de-
sired, and to permit their behavior

to be observed without interference
from other system activity.

Software symbols are defined for these locations by using the prefix
PTX$L_ and the mnemonics shown above.

128

Process Structure

A process must be executing in kernel mode to alter its POBR, P1BR,
POLR, P1LR, ASTLVL or PME. It must first store the desired new value
in the memory image of the PCB, then move the value to the appropri-
ate privileged register. This protocol results from the fact that these
are read-only fields (for the context switch instructions) in the process
control block. .

(The ASTLVL and PME fields of the PCB are contained in registers
when the process is executing. In order to access them, two privileged
registers are provided. These are the AST Level Register and the
Performance Monitor Enable Register (PME)).

ASYNCHRONOUS SYSTEM TRAPS (AST)

Asynchronous system traps are used to notify a process of events that
are not synchronized with its execution and to initiate processing for
such events with the least possible delay. The delay in delivery may be
due to either process nonresidence or an access mode mismatch. The
efficient handling of ASTs in the VAX family processors requires some
hardware assistance to detect changes in access mode (current ac-
cess mode in PSL). Each of the four execution access modes (kernel,
executive, supervisor, and user) may receive ASTs; however, an AST
for a less privileged access mode must not be permitted to interrupt
execution in a more privileged access mode. Since transitions to a less
privileged access mode occur only in the Return from Exception or
Interrupt instruction (described in Chapter 10), comparison of the cur-
rent access mode field is made with a privileged register (ASTLVL)
containing the most privileged access mode number for which an AST
is pending. If the new access mode is greater than or equal to the
pending ASTLVL, an IPL 2 interrupt is triggered to cause delivery of
the pending AST.

General software flow for AST processing:

1. An event associated with an AST causes software to put an AST
control block in the queue to the software PCB; software then sets
the ASTLVL field in the hardware PCB to the most privileged
access mode for which an AST is pending. If the target process is
currently executing, the ASTLVL privileged register also has to be
set.

2. When an REI instruction detects a transition to an access mode
that can be interrupted by a pending AST, an IPL 2 interrupt is
requested to cause delivery of the AST. Note that the REI
instruction does not make pending AST checks while returning to
a routine executing on the interrupt stack.

3. The IPL 2 interrupt service routine computes the correct new vai-

129

Process Structure

ue for ASTLVL to prevent additional AST delivery interrupts while
in kernel mode, and moves that value to the PCB and the ASTLVL
register before lowering IPL and actually dispatching the AST.
This interrupt service routine normally executes on the kernel
stack in the context of the process receiving the AST.

4. At the conclusion of processing for an AST, the ASTLVL is recom-
puted and moved to the PCB and ASTLVL register by software.

Note that two of the software interrupt priority levels are reserved for
process structure software: IPL 2 is for AST delivery interrupts and IPL
3 is for process scheduling interrupts.

PROCESS STRUCTURE INSTRUCTIONS

Process scheduling software executes on the interrupt stack
(PSL<IS> set) in order to have a non-context-switched stack avail-
able for use. If the scheduler were running on a process’s kernel stack,
then any state information it had there would disappear when a new
process is selected. Running on the interrupt stack can occur as the
result of the interrupt origin of scheduling events; however, some syn-
chronous scheduling requests such as a WAIT service may cause
rescheduling without any interrupt occurrence. For this reason, the
Save Process Context (SVPCTX) instruction can be executed while on
either the kernel or interrupt stack; it forces a transition to execution
on the interrupt stack.

All of the process structure instructions are privileged and may only be
executed in kernel mode. Descriptions of them may be found in Chap-
ter 10, Privileged and Miscellaneous Instructions.

130

131

T
MR s

132

CHAPTER 9
EXCEPTIONS AND INTERRUPTS

INTRODUCTION

At certain times during system operation, events within the system
may require the execution of particular “pieces” of software outside
the explicit flow of control. The processor forces a change in the flow
of control from that which would be explicitly indicated in the currently
executing process.

Some such events are relevant to the current process and normally
invoke softward in the context of the current process. The notification
of these events is termed an exception.

Other events are relevant to other processes, or to the system as a
whole, and are serviced in a systemwide context. The notification
process for these events is termed an interrupt, and the systemwide
context is described as “executing on the interrupt stack” (IS). Further,
some interrupts are of such urgency that they require high priority
service, while others must be synchronized with independent events.
To meet these needs, the processor has priority logic that grants inter-
rupt service to the highest priority event at any moment. The priority
associated with an interrupt is termed its interrupt priority level (IPL).

EVENT HANDLING

Exceptions are handled by the operating system. Usually, they are
“reflected” to the originating mode as a signal. In general, the excep-
tion is described by a vector that is a list of longwords, the first of
which contains a count of other longwords in the vector. The second
longword identifies which exception occurred, and the remaining
longwords are the stack parameters, the PC, and the PSL, as de-
scribed in this chapter. Three kinds of exceptions are explained im-
mediately below.

A trap is an exception condition that occurs at the end of the instruc-
tion that caused the exception. Therefore, the PC saved on the stack is
the address of the next instruction that would normally have been
executed. Any software can enable and disable some of the trap con-
ditions with a single instruction; see, for example, the descriptions of
the BISPSW and BICPSW instructions.

A fault is an exception condition that occurs during an instruction, and
that leaves the registers and memory in a consistent state, such that
elimination of the fault condition and restarting the instruction will give
correct results. Note that faults do not always leave everything as it

133

Exceptions and Interrupts

was prior to the fault instruction, they only restore enough to aliow
restarting. Thus, the state of a process that faults may not be the same
as that of a process that was interrupted at the same point.

An abort is an exception condition that occurs during an instruction,
and potentially leaves the registers and memory indeterminate, such
that the instruction cannot necessarily be correctly restarted,
completed, simulated, or undone.

The processor arbitrates interrupt requests according to priority. Only
when the priority of an interrupt request is higher than the current IPL
(bits<20:16> of the Processor Status Longword) does the processor
raise the IPL and service the interrupt request. The interrupt service
routine is entered at the IPL of the interrupt request and does not
usually change the IPL set by the processor.

Interrupt requests come from devices, controllers, other processors
(in customer-designed systems), or the processor itself. Software that
is executing in kernel mode can also raise and lower the priority of the
processor. But note that the priority level of one processor does not
affect the priority level of the other processors, so that interrupt priori-
ty levels cannot be used to synchronize access to shared resources in
multiprocessor systems. Special software action is required to stop
other processors in your multiprocessor system.

Most service routines for software-generated exceptions execute at
IPL 0. However, if a serious system failure occurs, the processor raises
the IPL to the highest level (1F,) to prevent interruption until the prob-
lem is corrected. Exception service routines are usually coded to avoid
exceptions; however, nested exceptions may occur (but rarely) in the
case of an access control violation, reserved operand, or reserved
addressing mode fault.

Processor Interrupt Priority Levels (IPLs)

The processor has 31 interrupt priority levels (IPLs), divided into 15
software levels (numbered 1, to F,s) and 16 hardware levels (10,, to
1F). User applications, system calls, and system services all run at
IPL 0, which we call process level. Higher numbered IPLs have higher
priority; that is to say, any requests at an interrupt level higher than the
processor’s current IPL interrupt immediately, but requests at a lower
or equal level are deferred.

Interrupt levels 1 through F,q exist entirely for use by software. No
hardware device can request interrupts on those levels, but software
can force an interrupt by executing MTPR src,#SIRR (Software Inter-
rupt Request Register). Once a software interrupt request is made, it is
cleared by hardware when the interrupt is taken.

134

Exceptions and Interrupts

Interrupt levels 10, to 17,4 are for use by devices and controllers,
including UNIBUS devices.

Interrupt levels 18,, to 1F,, are used by urgent conditions, including
the interval clock, serious errors, and power fail.

Contrast Between Exceptions and Interrupts

Exceptions and interrupts are very similar. When either is initiated,
both the Processor Status Longword (PSL) and the Program Counter
(PC) are pushed onto a stack. However, there are seven important
differences:

1.

An exception condition is caused by the execution of the current
instruction, while an interrupt is caused by some activity in the
computing system that usually is independent of the current in-

~ struction.

An exception condition usually is serviced in the context of the
process that produced the exception condition, while an interrupt
is serviced independently of the current process.

The IPL of the processor usually is not changed when the
processor initiates an exception, while the IPL always is raised
when an interrupt is serviced.

Exception service routines usually execute on a per-process
stack, while interrupt service routines normally execute on a per-
processor stack. Machine check always executes on the ISP,
however.

Enabled exceptions are initiated immediately, independent of the
processor IPL. Interrupts, however, are delayed until the proces-
sor IPL drops below the IPL of the requesting interrupt.

Most exceptions cannot be disabled. But, if an exception-causing
event occurs while that exception is disabled, no exception is
initiated for that event, even when enabled subseguently. This
includes overflow, which is the only exception whose occurrence
is indicated by a condition code (V). If an interrupt condition oc-
curs while that interrupt is disabled, or the processor is at the
same or higher IPL, the condition eventually initiates an interrupt
when the proper enabling conditions are met (if the condition is
still present).

The previous mode field in the PSL is always set to kernel on an
interrupt, but on an exception it indicates the mode in which the
exception occurred.

INTERRUPTS
The processor services an interrupt request when the currently exe-
cuting instruction is completed. The processor also services interrupt

135

Exceptions and Interrupts

requesis at well-defined points during the execution of long, iterative
instructions such as the string instructions. For such, to avoid saving
additional instruction state in memory, interrupts are initiated when
the instruction state can be completely contained in the registers, PSL,
and PC. *

The following events cause interrupts:

@ Device completion (IPL 10-17,5)

@ Device error (IPL 10-17,¢)

@ Device alert (IPL 10-17)

e Device memory error (IPL 10-17,;)

@ Console terminal transmit and receive (IPL 14,;)

e Console storage device (IPL 17, for VAX-11/750 and IPL 14, for
VAX-11/780)

e Interval timer (IPL 18,)

e Recovered memory, bus or processor errors (the VAX-11/750 inter-
rupts at IPL 1A, for corrected memory reads; the VAX-11/780 at
IPL 1B,,, implementation specific)

e Unrecovered memory, bus or processor errors (the VAX-11/750
and VAX-11/780 interrupt at IPL 1D, for write memory errors,
implementation specific)

e Power fail (IPL 1E,¢)

e Software interruptinvoked by MTPR #SIRR (IPL 1 to F,4)

® AST delivery when REI restores a PSL with IS clear and mode great-
er than or equal to ASTLVL (IPL 2,;)

Each device controller has a separate set of interrupt vector locations
in the system control block (SCB), thereby eliminating the need for
polling to determine which controller originated the interrupt. The vec-
tor address for each controller is fixed by hardware.

In order to reduce interrupt overhead, no memory mapping informa-
tion is changed when an interrupt occurs. The instructions, data, and
contents of the interrupt vector for an interrupt service routine must be
in the system address space or present in every process at the same
address.

Urgent Interrupts—Levels 18,,-1F,;

The processor has eight priority levels for use by urgent conditions,
including serious errors (e.g., machine check) and power fail. Some of
these conditions are not interrupts; for example, machine check is
usually an exception, but it runs at a high priority level on the interrupt
stack.

136

Exceptions and Interrupts

Device Interrupts—Levels 10,,-17,,

The processor provides eight priority levels for use by peripheral de-
vices. Any given implementation may or may not have all levels of
interrupts. On the VAX-11/750, for example, only levels 14 through 17
are available for device interrupts.

Software-Generated Interrupts—Levels 1,,-F,;
The processor provides 15 priority interrupt levels for use by software.
For details, see the VAX Software Handbook in this Handbook set.

Software Interrupt Summary Register

The Software Interrupt Summary Register (SISR) is a privileged
register which records pending software interrupts. It contains 1s in
the bit positions correponding to levels on which software interrupts
are pending. All such levels, of course, must be lower than the current
processor IPL, or the processor would have taken the requested inter-
rupt.

Software Interrupt Request Register
The Software Interrupt Request Register (SIRR) is a write-only 4-bit
privileged register used for making software interrupt requests.

Executing MTPR src,#SIRR requests an interrupt at the level specified
by src<3:0>. Once a software interrupt request is made, the corres-
ponding bit in the SISR is set. The hardware then clears the bit in the
SISR when the interrupt is taken. If src<3:0> is greater than the cur-
rent IPL, the interrupt occurs before execution of the following instruc-
tion. If src<3:0> is less than or equal to the current IPL, the interrupt is
deferred until the IPL is lowered to less than src<3:0>, with no higher
interrupt level pending.

Interrupt Priority Level Register

Writing to the IPLR with the MTPR instruction will load the processor
priority field in the Processor Status Longword (PSL). That is, bits<20:
16> of the PSL are loaded from IPLR<4:0>. Reading from IPLR with
the MFPR instruction will read the processor priority field from the
PSL.

Interrupt service routines must follow the discipline of not lowering the
IPL below their initial level. If they do, an interrupt at an intermediate
level could cause the stack nesting to be improper. This would result
in REI faulting. Actually, a service routine could lower the IPL if it
ensured that no intermediate levels could interrupt. However, this
would result in unreliable code.

137

Exceptions and Interrupts

Interrupt Example

As an example, assume the processor is running in response to an
interrupt at IPL 5 (all numbers in this example are in hexadecimal); it
then sets the IPL to 8, and posts software requests at IPL 3, IPL 7, and
IPL 9. Subsequently, a device interrupt arrives at IPL 11. Finally the IPL
is set back to IPL 5. The sequence of execution is shown in Table 9-1.

Table 9-1 Interrupt Sequence Example

State After EventiPL In
Contents of SISR PSL

On
Event iPL(hex) (hex) stack
(initial) 5 0 0
MTPR #8,#1PL 8 0 0
MTPR #3,#SIRR 8 8 0
MTPR #7 #SIRR 8 88 0
MTPR #9, #SIRR interrupts to 9 88 8,0
device interrupts to 11 88 9,8,0
device service routine REI 9 88 8,0
IPL 9 service routine REI 8 88 0
MTPR #5,#IPL changes IPLto 5

and the request for 7 is

granted immediately 7 8 5,0
IPL 7 service routine REI 5 8 0
initial IPL 5 service routine

REI back to IPL 0 and the

request for 3 is granted

immediately 3 0 0

IPL 3 service routine REI 0 0 —

Serious System Failures
Serious system failures are exceptions which are processed by privi-
leged software.

Kernel stack not valid abort is an exception that indicates that the
kernel stack was not valid while the processor was pushing informa-
tion onto the stack during the initiation of an exception or interrupt.
Usually this is an indication of stack overflow or another executive

138

Exceptions and Interrupts

software error. The attempted exception is transformed into an abort
that uses the interrupt stack. No information other than the PSL and
PC is pushed onto the interrupt stack. The IPL is raised to 1F,,. Soft-
ware may abort the process without aborting the system; however,
because of the lost information, the process cannot be continued. If
the kernel stack is not valid during the normal execution of an instruc-
tion (including CHMK or REIl), the processor initiates the normal
memory management fault, and if the exception vector <1:0> for
kernel stack not valid is 0 or 3, the behavior of the processor is unde-
fined.

An interrupt stack not valid halt is an exception indicating that the
interrupt stack was not valid or that a memory error occurred while the
processor was pushing information onto the stack during the initiation
of an exception or interrupt. No further interrupt requests are ac-
knowledged on this processor. The processor leaves the PC, the PSL,
and the reason for the halt in registers so that they are available to a
debugger, the normal bootstrap routine, or an optional watchdog
bootstrap routine. A watchdog bootstrap can cause the processor to
leave the halted state.

A machine check exception indicates that the processor detected an
internal error in itself. Machine check exceptions can be caused by
such bus errors as non-existent memory, cache parity, translation
buffer parity, or by a control store parity error. Like other exceptions,
this exception is taken independently of IPL. IPL is raised to 1F,,. A
length parameter, an error code, and the contents of several registers
are pushed onto the stack as longwords. The processor specifies the
length parameter by placing the number of bytes pushed as the last
longword pushed. This count excludes the PC, PSL, and the length
parameter itself. Software decides, on the basis of the information
presented, whether to abort the current process if the machine check
came from the process. Machine check includes uncorrected bus and
memory errors, and any other processor-detected errors. Some proc-
essor errors cannot ensure the state of the machine at all. For such
errors, the state will be preserved on a “best effort” basis. If the excep-
tion vector <1:0> for machine check is 0 or 3, the behavior of the
processor is undefined. Under these conditions, the VAX processor
will halt. Figure 9-1 shows the format of the stack after machine check
exceptions, on a VAX-11/750.

Arithmetic Exceptions

The various exceptions that arise as a result of arithmetic or conver-
sion operations are mutually exclusive and therefore can all be as-
signed the same vector in the System Control Block. Each indicates

139

Exceptions and Interrupts

LENGTH PARAMETER (28y4)

ERROR CODE

VA REGISTER

PC AT TIME OF ERROR

MDR

SAVED MODE REGISTER

READ LOCK TIMEOUT

TB GROUP PARITY ERROR REGISTER

CACHE ERROR REGISTER

BUS ERROR REGISTER

MACHINE CLOCK ERROR SUMMARY
REGISTER

PC

PSL

Figure 9-1 Machine Check Exception Stack

that an exception occurred during the last instruction and that the
instruction has been either completed (in the case of a trap) or backed
up (fault). A code unique to each exception type is then pushed on the
stack as a longword. Figure 9-2 illustrates the stack after the
occurrence of an arithmetic exception. Note that in the case of a fault,
the PC of the next instruction will be the same as the instruction which
caused the exception.

TYPE CODE

PC_ OF NEXT INSTRUCTION TO
EXECUTE

PSL

Figure 9-2 Stack After Arithmetic Exception

The specific type codes saved are described in Table 9-2.

140

Exceptions and Interrupts

Table 9-2 Arithmetic Exception Type Codes -

Type Code
(hex)

Exception Type Software Mnemonic

TRAPS '

1 Integer overflow SRM$K_INT_OVF_T

2 Integer divide by SRM$K_INT_DIV_T
zero

3 Floating overflow SRM$K_FLT_OVF_ T
(not used on VAX-
11/750)

4 Floating/decimal SRM$K_FLT_DIV_T
divide by 0

5 Floating underflow SRM$K_FLT UND_ T
(not used on VAX- -7
11/750)

6 Decimal overflow SRM$K_DEC_OVF_T

7 Subscript range SRM$K_SUB_RNG_T

FAULTS

8 Floating overflow SRM$K_FLT_OVF_F

9 Floating divide by SRM$K_FLT_DIV_F
zero

A Floating underflow SRM$K_FLT_UND_F

Description of Traps and Faults

An integer overflow trap is an exception indicating that the last instruc-
tion executed had an integer overflow which set the V condition code.
This trap only occurs if the integer overflow enable bit (IV) in the PSW
is set. The result stored is the low order part of the correct result. The
type code pushed on the stack isa 1.

An integer divide by zero trap is an exception indicating that the last
instruction executed had an integer zero divisor. The result stored is
equal to the dividend, and condition code V is set. The type code
pushed on the stack is 2.

A floating overflow trap is an exception that indicates that the last
instruction executed resulted in an exponent greater than 127 (unbi-
ased) after normalization and rounding. The result is stored asa 1 in

141

Exceptions and Interrupts

the sign and Os in the exponent and fraction fields. This is a reserved
operand, and will cause a reserved operand fault if used in a subse-
quent floating point instruction. The type code pushed on the stack is
3. The floating overflow trap is not implemented on VAX-11/750 sys-
tems.

A decimal string divide by zero trap is an exception indicating that the
last instruction executed had a decimal string zero divisor. The
destination and condition codes are unpredictable. The zero divisor
can be either +0 or —0. The type code pushed on the stack is 4.

A floating underflow trap is an exception that indicates that the last
instruction executed resulted in an exponent less than —127 (unbi-
ased) after normalization and rounding and that floating underflow
was enabled (FU set). The result stored is 0. The type code pushed on
the stack is 5. This trap is not implemented on VAX-11/750 systems.

A decimal string overflow trap is an exception indicating that the last
instruction executed had a decimal string result too large for the desti-
nation string provided, and that decimal was enabled (DV set). The V
condition code is always set. The type code pushed on the stack is 6.

A subscript range trap is an exception indicating that the last instruc-
tion was an INDEX instruction with a subscript operand that failed the
range check. The value of the subscript operand is lower than the low
operand or greater than the high operand. The result is stored in
indexout, and the condition codes are set as if the subscript were
within range. The type code pushed on the stack is 7.

A floating overflow fault is an exception indicating that the last instruc-
tion executed resulted (after rounding and normalization) in an
exponent greater that the largest representable exponent for the data
type. The destination is unaffected and the saved condition codes are
unpredictable. The saved PC points to the instruction causing the
fault. The type code pushed on the stack is 8.

A floating divide by zero fault is an exception indicating that the last
instruction executed had a floating zero divisor. The quotient operand
is unaffected and the saved condition codes are unpredictable. The
saved PC points to the instruction causing the fault. The type code
pushed on the stack is 9.

A floating underflow fault is an exception indicating that the last in-
struction executed resulted (after normalization and rounding) in an
exponent less than the smallest representable exponent for the data
type. The destination operand is unaffected and the saved condition
codes are unpredictable. The saved PC points to the instruction caus-
ing the fault. The type code pushed on the stack is A.

142

Exceptions and Interrupts

This fault does not appear on VAX-11/780 systems unless the optional
G_floating and H_floating data types are implemented.

SYSTEM CONTROL BLOCK (SCB)

The System Control Block is a page containing the vectors by which
exceptions and interrupts are dispatched to the appropriate service
routines. (On the VAX-11/750, the SCB has a second page that con-
tains the addresses of interrupt service routines for UNIBUS devices.)

The system control block base is a privileged register containing the
physical address of the System Control Block, which must be page--
aligned.

Vectors

A vector is a longword in the SCB that is examined by the processor
when an exception or interrupt occurs, to determine how to service the
event.

Separate vectors are defined for each interrupting device controller
and each class of exception.

The contents of bits <1:0> can be interpreted as:

0 Service this event on the kernel stack unless already running on
the interrupt stack, in which case service on the interrupt stack.
Behavior of the processor is undefined for a kernel stack not valid
exception with this code.

1 Service this event on the interrupt stack. If this event is an excep-
tion, the IPL is raised to 1F .

2 Service this event in user control store, passing bits <15:2> to the
microcode there. If user control store does not exist or is not
loaded, the operation is undefined, and the VAX processor halts.

3 Operation undefined. Reserved to DIGITAL.
For codes 0 and 1, bits <31:2> contain the virtual address of the
service routine, which must begin on a longword boundary and will

ordinarily be in the system space. CHMx is serviced on the stack
selected by the new mode.

System Control Block (Exception and Interrupt Vectors)

Vector Name Type Notes
(hexadecimal)
00 Unused Reserved to
DIGITAL.
04 Machine abort/ Length par-
Check trap ameter and

143

Vector
(hexadecimal)

08

oc

Exceptions and Interrupts

Name Type

Kernel Stack abort
Not Valid

Power Fail interrupt

144

Notes

error specific
data are
pushed onto
the stack, if
possible. The
VAX proces-
sor is some-
times restarta-
ble, if the
cause of the
machine
check was a
cache parity,
translation
buffer parity,
or uncorrect-
ed data error.
Vector <1:0>
must be 1 for
meaningful
operation. IPL
is raised to
1F,. The
number of
bytes of par-
ameters is
pushed onto
the stack.

Vector <1:0>
must be 1 for
meaningful
operation. IPL
is raised to
1F,¢. There
are zero par-
ameters.

IPL is raised
to 1E,¢. There
are zero par-
ameters.

Vector
(hexadecimal)

10

14

18

iC

20

24

Exceptions and Interrupts

Name

Reserved/
Privileged
Instruction

Customer
Reserved
Instruction

Reserved
Operand

Reserved
Addressing
Mode

Access
Controi
Violation

Translation
Not Valid

145

Type

fault

fault

fault/
abort

fault

fault

fault

Notes

Opcodesre-
served to
DIGITAL and
privileged in-
struc-

tions. There
are zero par-
ameters. On
the VAX-
11/750, at-
tempting an
REI with
PSL<FPD> =
1toanin-
struction that
does not set
FPD will also
be reported
here.

XFC instruc-
tion. There are
zero parame-
ters.

There are zero
parameters.

There are zero
parameters.

The virtual ad-
dress causing
the faultis
pushed onto
the kernel
stack. There
are two par-
ameters.

The virtual ad-
dress causing
the fault is

Vector
(hexadecimal)

28

2C

30

34

38-3C

40

Exceptions and Interrupts

Name

Trace Pend-
ing (TP)

Breakpoint

Instruction

Compatibility

Arithmetic

Unused

CHMK

146

Type

fault

fault

fault/
abort

trap/fault

trap

Notes

pushed onto
stack. The two
parameters
are identical
to those for
access control
violations.

This vector is
used for a
trace fault.
There are zero
parameters.

This vector is
used for a
breakpoint
fault. There
are zero par-
ameters.

A type code is
pushed onto
the stack.
There is one
parameter.

A type code is
pushed onto
the stack.
There is one
parameter.

Reserved to
DIGITAL.

The operand
word is sign-
extended and
pushed onto
the kernel
stack. Vector
<1:0> MBZ.
There is one
parameter.

Exceptions and Interrupts

Vector Name

(hexadecimal)

44 CHME

48 CHMS

4C CHMU

50 SBISILO
Compare

54 Corrected
Memory
Read Data

58 SBI Alert

Type

trap

trap

trap

interrupt

interrupt

interrupt

147

Notes

The operand
word is sign-
extended and
pushed onto
the executive
stack. Vector
<1:0> MBZ.
There is one
parameter.

The operand
word is sign-
extended and
pushed onto
the supervisor
stack. Vector
<1:0> MBZ.
There is one
parameter.

The operand
word is sign-
extended and
pushed onto
the user stack.
Vector <1:0>
MBZ. There is
one parame-
ter.

IPLis 194.
VAX-11/780
only.

IPLis 1A . Al-
so used for
Read Data
Substitute on
VAX-11/780.

IPLis 1Bys.
VAX-11/780
only.

Vector
(hexadecimal)

5C

60

64-80

84

88

8C-BC

90-BC

Co

C4-DC

EO-EC

FO

F4

Exceptions and Interrupts

Name Type

SBI Fault interrupt

Memory
Write
Timeout

interrupt

Unused

Software
Level 1

interrupt

Software
Level 2

interrupt

Software
Level 3

interrupt

Software
Levels 4-F

interrupt

Interval
Timer

interrupt

Unused

Unused

Console
Storage
Device (TU58)
Transmit

interrupt

Console
Storage
Device (TU58)
Transmit

interrupt

148

Notes

IPLis 1C,.
VAX-11/780
only.

IPLis 1D,

Reserved to
DIGITAL.

There are zero
parameters.

Ordinarily
used for AST
delivery.
There are zero
parameters.

There are zero
parameters.

There are zero
parameters.

IPLis 18,6.
There are zero
parameters.

Reserved to
DIGITAL.

Reserved to
CSSs/
customers.

IPLis 17,.
VAX-11/750
only. There
are zero par-
ameters.

IPLis 17,.
VAX-11/750
only. There
are zero par-
ameters.

Vector
(hexadecimal)

F8

FC

100-3FC

Exceptions and Interrupts

Name

Console
Terminal
Receive

Console
Terminal
Receive

Device Vec-
tors

149

Type

interrupt

interrupt

Notes

IPLis 14 .
There are zero
parameters.

IPLis 14,.
There are zero
parameters.

In the VAX-
11/780 proc-
essor, only in-
terrupt priority
levels 14 to 17
are available
to aNEXUS
external to the
CPU, and
thereis a limit
of 16 such
NEXUSes. A
NEXUS isa
connection on
the SBI, which
is the internal
inter-
connection
structure. The
NEXUS vec-
tors are as-
signed as fol-
lows:

100-13C IPL
14,, NEXUS 0-
15

140-17C IPL
15,, NEXUS 0-
15

180-1BC IPL
16,5 NEXUS 0-
15

1C0-1FC IPL
17,s NEXUS 0-
15

Exceptions and Interrupts

Vector Name Type Notes
(hexadecimal)

In the VAX-
11/750 proc-
essor, UNI-
BUS devices
interrupt the
processor
directly. The
vector is de-
termined by
adding 200,
to the vector
supplied by
the device.
Only SCB vec-
torsin the
range 200 to
3FC are al-
lowed. Inter-
rupt priority
levels 14to 17
correspond to
UNIBUS BR4
to BRY7.

STACKS
At any time, the processor is either in a process context with the

Interrupt Stack (IS) = 0, in one of four modes (kernel, executive, su-
pervisor, user), or in the systemwide interrupt service context (IS = 1)
that operates with kernel privileges. There is a stack pointer (SP) asso-
ciated with each of these five states, and any time the processor
changes states, the SP (R14) is stored in the process context stack
pointer for the old state and loaded from that for the new state. The
process context stack pointers (KSP = kernel, ESP = executive, SSP
= supervisor, USP = user) are allocated in the hardware PCB. In -
addition, VAX systems keep copies of the four per-process stack
pointers in privileged registers. These registers are accessed during
stack switch operations. The stack pointers in the hardware PCB are
only referenced at context switch time by the SVPCTX and LDPCTX

instructions.

150

Exceptions and Interrupts

Stack Residency

The USER, SUPER, and EXEC stacks need not be resident in main
memory. The kernel can bring in or allocate process stack pages as
address translation not valid faults occur. However, the kernel stack
for the current process and the interrupt stack (which is process-
independent) must be resident and accessible. Translation not valid
and access control violation faults occurring on references to either of
these stacks constitute serious system failures, from which recovery is
impossible.

If either of these faults occurs on a reference to the kernel stack, the
processor aborts the current sequence and initiates a kernel stack not
valid abort on hardware level 1F ;. If either fault occurs on a reference
to the interrupt stack, the processor haits. The kernel stack for
processes other than the current one need not be resident, but it must
be resident before the software’s process dispatcher selects a process
to run.

Stack Alignment

Except on CALLXx instructions, the hardware makes no attempt to align
the stacks, but for best performance, the software should align the
stack on a longword boundary and allocate the stack in longword
increments. The following instructions are recommended for pushing
bytes and words onto the stack and popping them off in order to keep
it longword-aligned:

e Convert byte to long (CVTBL)

e Convert long to byte (CVTLB)

e Convertlong to word (CVTLW)

e Convert word to long (CVTWL)

e Move zero-extended byte to long (MOVZBL)

e Move zero-extended word to long (MOVZWL)

Stack Status Bits

The interrupt stack bit (IS) and current mode bits in the privileged
Processor Status Longword (PSL) specify which of the five stack
pointers is currently in use as follows:.

1S Mode Register
1 0 ISP

0 0 KSP

0 1 ESP

0 2 SSP

0] 3 UsSP

151

Exceptions and Interrupts

The processor does not allow the current mode to be nonzero when IS
= 1. This is achieved by clearing the mode bits when taking an inter-
rupt or exception, and by causing a reserved operand fault if REI
attempts to load a PSL in which both IS and mode are nonzero.

The stack to be used for an interrupt or exception is selected by the
current PSL<IS> and bits <1:0> of the vector for the event as de-
monstrated in this little diagram:

VECTOR<1:0>
00 01
O | KSP | 1SP
PSILIS>
1| ISP | ISP

Figure 9-3 Stack Selection

Values 10 and 11 of the vector <1:0> are for user control store and
HALT, respectively.

Accessing Stack Registers

The processor implements five privileged registers to allow access to
each stack pointer. These registers always access the specified point-
er, even for the current mode. Because the per-process stack pointers
are implemented as internal registers, the MTPR and MFPR of these
registers do not access the hardware PCB. The register numbers were
chosen to be the same as PSL<26:24>. The previous stack pointer is
the same as PSL<23:22> unless PSL<IS> is set. Figure 9-4 illu-
strates the process stack pointer.

31 0
VIRTUAL ADDRESS OF TOP OF STACK

Figure 9-4 Process Stack Pointer Implemented As

Read/Write Register
Kernel Stack Pointer KSP =0
Executive Stack Pointer ESP =1

152

Exceptions and Interrupts

Supervisor Stack Pointer SSP =2
User Stack Pointer USP =3
Interrupt Stack Pointer ISP =4

SERIALIZATION OF EXCEPTIONS AND INTERRUPTS

The sequence in which recognition of simultaneously occurring

interrupts and exceptions takes place is:

1. Machine check exception.

2. Arithmetic exceptions.

3. Console halt or higher priority interrupt. (The order in which con-
sole halt and interrupt recognition occur is not dictated by the
VAX architecture. Some future VAX machines may not take these
in the same order as the VAX-11/750 or VAX-11/780, which take
console halts before interrupts.)

4. Trace fault (only one per instruction).

5. Startinstruction execution or restart suspended instruction.

Suspended Instructions

The VAX architecture allows certain instructions to be suspended at
well-defined intermediate points in their execution in order to take
memory management faults, console halts, or interrupts. In this case,
the hardware uses PSL<TP> and PSL<T> to ensure that no addi-
tional trace faults occur when the suspended instruction is resumed.

153

154

CHAPTER 10

PRIVILEGED AND MISCELLANEOUS
INSTRUCTIONS

VAX processors provide several categories of instructions that author-
ize greater privilege, under strictly controlled conditions, than the exe-
cuting software would normally have. These are called the privileged
instructions. Another category, the miscellaneous instructions, in-
cludes a variety of actions that don’t fall into other classifications.

I. Change Mode, PROBE, Return from Exception or Interrupt

Since the typical user’s programs run in the low-privileged user mode,
itis important to allow them a way to exploit system services that run at
a higher level of privilege, but not to allow them access to other modes
(kernel, executive, supervisor) except for these necessary services.
The privileged instructions satisfy this need. They give upward and
downward mobility through the processor modes, and provide a way
to compare memory protection levels against the privilege of callers.
They are:

® The Change Mode instructions

e The PROBE instructions

e The Return from Exception or Interrupt instruction

User mode software can obtain privileged services by calling operat-
ing system service procedures with a standard CALL instruction. The
operating system’s service dispatcher issues an appropriate Change
Mode instruction before actually entering the procedure. Change
Mode allows access mode transitions to take place from one mode to
the same or more privileged mode (upward) only. When such a mode
transition takes place, the previous mode is saved in the Previous
Mode field of the Processor Status Longword, allowing the more privi-
leged code to determine the privilege of its caller.

A Change Mode instruction is simply a special trap instruction that can
be thought of as an operating system service call instruction. User
mode software can explicitly issue Change Mode instructions, but
since the operating system receives the trap, nonprivileged users can-
not write any code to execute in any of the privileged access modes.
User mode software can include a condition handler for Change Mode
to User traps, however, and this instruction is useful for providing
general-purpose services for user mode software. Ultimately, though,
it is the system manager who grants the privilege to write any code that
handles Change Mode traps to more privileged access modes.

155

Privileged and Miscellaneous Instructions

For service procedures written to execute in privileged access modes
(kernel, executive, and supervisor), the processor provides address
access privilege validation instructions. The PROBE instructions en-
able a procedure to check the read (PROBER) and write (PROBEW)
access protection of pages in memory against the privileges of the
caller who requested access to a particular location. This enables the
operating system to provide services that execute in privileged modes
to less privileged callers and still prevent the caller from accessing
protected areas of memory.

The operating system’s privileged service procedures and interrupt
and exception service routines exit using the Return from Exception or
Interrupt (REI) instruction. REI is the only way in which the privilege of
the processor’'s access mode can be decreased. Like the procedure
and subroutine return instructions, REI restores the Program Counter
and the processor state so that the process resumes at the point
where it was interrupted.

REI performs special services, however, that normal return instruc-
tions do not. For example, RE! checks to see if any asynchronous
system traps have been queued for the currently executing process
while the interrupt or exception service routine was executing, and
ensures that the process will receive them. Furthermore, REI checks to
ensure that the mode to which it is returning control is the same as or
less privileged than the mode in which the processor was executing
when the exception or interrupt occurred. Thus, REl is available to all
software including user-written trap handling routines, but a program
cannot increase its privilege by altering the processor state to be re-
stored.

Il. Save and Load Process Context

When the operating system schedules a context switching operation,
the context switching procedure uses the Save Process Context
(S8VPCTX) and Load Process Context (LDPCTX) instructions to save
the current process context and load another. The operating system'’s
context switching procedure identifies the location of the hardware
context to be loaded by updating an internal processor register.

Ill. Move to and Move from Processor Register

Internal processor registers not only include those that identify the
process currently executing, but also the memory management and '
other registers, such as the console and clock control registers. The
Move to Processor Register (MTPR) and Move from Processor Regis-
ter (MFPR) instructions are the only instructions that can explicitly
access the internal processor registers. MTPR and MFPR are privi-
leged instructions that can be issued only in kernel mode.

156

Privileged and Miscellaneous Instructions

IV. Miscellaneous Instructions

The Extended FunCtion (XFC) provides a controlled mechanism for
software to request services of nonstandard microcode in the write-
able control store or simulator software running in kernel mode. The
request is controlled by the contents of the System Control Block.
Other miscellaneous instructions include the Breakpoint Fault instruc-
tion, used to stop a process for debugging purposes, and HALT, which
stops the processor.

167

Privileged and Miscellaneous Instructions

CHM

CHANGE MODE

Purpose:
Format:

Operation:

Condition
Codes:

Exceptions:
Opcodes:

Description:

request services of more privileged software
opcode code.rw

tmp1 < {mode selected by opcode (K=0, E=1, S=2, U=
3k

tmp2 < MINU(tmp1, PSL<CUR_MOD>);

Imaximize privilege

tmp3 < SEXT(code);

if {PSL<IS> EQLU 1} then HALT; lillegal from | stack

PSL<CUR_MOD>_SP < SP; Isave old stack pointer

tmp4 < tmp2_SP; !get new stack pointer

PROBEW (from tmp4—1 through tmp4—12 with mode=tmp2);
Icheck Inew stack access

if {access control violation} then
{initiate access violation fault};

if {translation not valid} then
{initiate translation not vaid fault};

{initiate CHMx exception with new_mode=tmp2
and parameter=tmp3
using 40+tmp1*4 (hex) as SCB offset
using tmp4 as the new SP
and not storing SP again};

N <« 0;
Z<0;
V<0;
C<0

Halt

BC CHMK Change Mode to Kernel

BD CHME Change Mode to Executive
BE CHMS Change Mode to Supervisor
BF CHMU Change Mode to User

Change Mode Instructions allow processors to change their
access mode in a controlled manner. The instruction only
increases privilege (i.e., decreases the number of the access
mode). .

A change in mode also results in a change of stack pointers;
the old pointer is saved, the new pointer is loaded. The PSL,
PC, and any code passed by the instruction are pushed onto
the stack of the new mode. The saved PC addresses the in-
struction following the CHMx instruction. The code is sign ex-
tended. After execution, the new stack’s appearance is:

158

Notes:

Example:

Privileged and Miscellaneous Instructions

sign extended code ((SP)
PC of next instruction
old PSL

The destination mode selected by the opcode is used to select
a location from the System Control Block. This location ad-
dresses the CHMx dispatcher for the specified mode.

1. As usual for faults, any access violation or translation not
valid fault saves PC, PSL, and leaves SP as it was at the
beginning of the instruction except for any pushes onto
the kernel stack.

2. The noninterrupt stack pointers may be fetched and
stored either in privileged registers or in their allocated
slots in the PCB. Only LDPCTX and SVPCTX always fetch
and store in the PCB. MFPR and MTPR always fetch and
store the pointers whether in registers or the PCB.

3. By Software convention, negative codes are reserved to
DIGITAL CSS and customers.

CHMK #7 ;request the kernel mode service
;specified by code 7

CHME #4 ;request the executive mode service
;specified by code 4

CHMS #-2 ;request the supervisor mode service

;specified by customer code —2

159

Privileged and Miscellaneous Instructions

PROBE

PROBE ACCESSIBILITY

Purpose:
Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Example:

verify that arugments can be accessed
opcode mode.rb, len.rw, base.ab

probe_mode < MAXU(mode<1:0>, PSL<PRV_MOD>)
condition codes < {accessibility of base) and {accessiblity of
(base + ZEXT(len)—1) } using probe_mode

N «0;
Z < if {both accessible} then 0; else 1;
V<0
C<«0

Translation not valid

OC PROBER Probe Read Accessibility
OD PROBEW Probe Write Accessibility

The PROBE instruction checks the read or write accessibility
of the first and last byte specified by the base address and the
zero-extended length; the bytes in between are not checked.
System software must check all pages between the two end
bytes if they are to be accessed.

The protection is checked against the larger of the modes
specified in bits <1:0> of the mode operand and the previous
mode field of the PSL. Note that probing with a mode operand
of 0 is equivalent to probing the mode specified in
PSL<previous-mode>.

MOVL 4(AP),R0 ;copy address of first argument so
;that it can’t be changed

PROBER #0,#4,(RO0)

;verify that the longword pointed
;to by the first argument could be
;read by the previous access mode
;Note that the argument list itself
;must already have been probed

MOVQ 8(AP),R0 ;copy length and address
;of buffer arguments so that

) ;they can’t change

PROBEW $0,R0,(R1)

;verify that the buffer described
;by the second and third arguments
;could be written by the previous
;access mode
;Note that the argument list must
;already have been probed and that
;the second argument must be known
;to be less than 512

160

Privileged and Miscellaneous Instructions

REI

RETURN FROM EXCEPTION OR INTERRUPT

Purpose:

Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

exit from an exception or interrupt service routine and con-
trolled return

Opcode

tmp1 < (SP) +; !Pick up saved PC
tmp2 < (SP) +; land PSL

if {tmp2<current_mode> LSSU PSL<current_mode>} OR
{tmp2<I1S> EQLU 1 and PSL<IS>EQLU 0} OR
{tmp2<1S> EQLU 1 and
tmp2<current_mode> NEQU 0} OR
{tmp2<1S> EQLU 1 and tmp2<IPL> EQLU 0} OR
{tmp2<IPL> GRTU 0 and
tmp2<current_mode> NEQU 0} OR
{tmp2<previous_mode> LSSU
tmp2<current_mode>} OR
{tmp2<IPL> GTRU PSL<IPL>}OR
{tmp2<PSL_MBZ> NEQU 0} then
{reserved operand fault};
if {tmp2<CM> EQLU 1} and
{tmp2<FPD,IS,DV,FU,IV> NEQU 0} OR
{tmp2<current_mode> NEQU 3}} then {reserved
operand fault};
if PSL<IS> EQLU 1 then ISP <SP .
Isave old stack pointer
else PSL<current_mode>_SP < SP;
if PSL<TP> EQLU 1 then tmp2<TP> <« 1;
ITP<TP or stack TP
PC «<tmpf;
PSL «<tmp2;
if PSL<IS> EQLU 0 then
begin
SP <« PSL <current_mode>_SP; !switch stack
if PSL<current_mode> GEQU ASTLVL
Icheck for AST
delivery
then {request interrupt at IPL 2};
end;
{check for software interrupts}:

N < saved PSL<3>;
Z <—saved PSL<2>;
V < saved PSL<1>;
C <« saved PSL<0>

Reserved operand

02 REl Return from Exception or Interrupt

161

Description:

Notes:

Privileged and Miscellaneous Instructions

A longword is popped from the current stack and held in a
temporary PC. A second longword is popped from the current
stack and held in a temporary PSL. Validity of the popped PSL
is checked. The current stack pointer is saved and a new stack
pointer is selected according to the new PSL current_mode
and IS fields. The level of the highest privilege AST is checked
against the current access mode to see whether a pending
AST can be delivered. Execution resumes with the instruction
being executed at the time of the exception or interrupt. Any
instruction lookahead in the processor is reinitialized.

1.

The exception or interrupt service routine is responsible
for restoring any registers saved and removing any par-
ameters from the stack.

As usual for faults, any access violation or translation not
valid conditions on the stack pops restore the stack point-
er and fault.

The noninterrupt stack pointers may be fetched and
stored by hardware either in internal registers or in their
allocated slots in the Process Control Block. Only
LDPCTX and SVPCTX always fetch and store in the Proc-
ess Control Block. MFPR and MTPR always fetch and
store the pointers whether in registers or the Process
Control Block.

162

Privileged and Miscellaneous Instructions

LDPCTX
SVPCTX

LOAD PROCESS CONTEXT
SAVE PROCESS CONTEXT

Purpose:
Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Example:

save and restore register and memory management context
opcode

if PSL<current-mode>NEQU 0
then {opcode reserved to DIGITAL fault};
{invalidate per-process translation buffer entries};
ILDPCTX}
{load process general registers from Process Control Block];
{load process map, ASTLVL, and PME from PCB};
{save PSL and PC on stack for subsequent REI};
{save process general registers into Process Control Block];
{remove PSL and PC from stack and save in PSB};
{switch to Interrupt Stack]};

N <« N;
Z<27
V <«V;
C<«C

Reserved operand
Privileged instruction

06 LDPCTX Load Process Context
07 SVPCTX Save Process Context

The Process Control Block is specified by the internal proces-
sor register Process Control Block Base. The general registers
are loaded from or saved to the PCB. In the case of LDPCTX,
the memory management registers describing the process ad-
dress space are also loaded and the process entries in the
translation buffer are cleared. If SVPCTX is executed while
running on the kernel stack, execution is switched to the inter-
rupt stack. When LDPCTX is executed, execution is switched
to the kernel stack. The PC and PSL are moved between the
PCB and the stack, suitable for use by a subsequent REIl in-
struction.

It is assumed that this simple dispatch routine is always
entered via an interrupt.

; ENTERED VIA INTERRUPT
; IPL=3

RESCHED: SVPCTX ;Save context
;in PCB

163

Privileged and Miscellaneous Instructions

<set state to runnable>
<and place current PCB>
<on proper RUN queue>

<Remove head of highest>

<priority, nonempty, >

<RUN queue.>

MTPR @#PHYSPCB, PCBB ;Set physical
;PCB address
;in PCBB

LDPCTX ;Load context
from PCB
;For new
;process

REI ;Place process
;in execution

164

I

Privileged and Miscellaneous Instructions

MFPR
MTPR

MOVE FROM PROCESSOR REGISTER
MOVE TO PROCESSOR REGISTER

Purpose:

Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

Example:

provide access to the internal privileged registers

opcode src.rl, procreg.rl IMTPR
opcode procreg.ri, dst.wl IMFPR

if PSL<current-mode> NEQ 0 then’

{reserved instruction fault};

PRS [procreg] <« src; IMTPR
dst <«PRS[procreg]; IMFPR

N <« dst LSS 0; !if register/destination is replaced
Z «—dst EQL O;

V<«0;

C<«C

N <« N; lif register/definition is not replaced
Z<12Z
V<V,
C<«C

Reserved operand
Privileged instruction

DA MTPR Move to Processor Register
DB MFPR Move from Processor Register

The specified register is loaded or stored. The procreg oper-

and is a longword that contains the privileged register number.

Execution may have register-specific side effects.

1. A reserved operand fault may occur if the processor in-
ternal register does not exist.

2. Avreserved instruction fault occurs if instruction execution
is attempted in other than kernel mode.

The following table is a summary of the registers accessible in
the privileged register space.

The “type” column indicates read-only (R), read/write (R/W),
or write-only (W) characteristics.

“Scope” indicates whether a register is per-CPU or per-proc-
ess. The implication is that, in general, registers labeled “CPU”
are manipulated only through software via the MTPR and

165

Privileged and Miscellaneous Instructions

MFPR instructions. Per-process registers, on the other hand,
are manipulated implicitly by context switch instructions. The
“Init” column indicates that the register is (“yes”) or is not
(“no”) set to some predefined value (note: not necessarily
cleared) by a processor initialization command. A “—"” indi-
cates initialization is optional.

The number of a register, once assigned, will not change
across implementations or within an implementation. Im-
plementation-dependent registers are assigned distinct ad-
dresses for each implementation. Thus, any privileged register
present on more than one implementation will perform the
same function whenever implemented. All unsigned positive
numbers are reserved to DIGITAL; all negative numbers (i.e.,
with bit 31 set) are reserved to DIGITAL’s CSS and customers.

Each register number has a symbol formed as PR$_ followed
by the register’'s mnemonic.

VAX Series Registers

Mne- Num-
Register Name monic ber,; Type Scope Init
Kernel Stack Pointer KSP 0 R/W PROC —
Executive Stack Pointer ESP 1 R/W PROC —
Supervisor Stack Pointer SSP 2 R/W PROC —
User Stack Pointer USP 3 R/W PROC —
Interrupt Stack Pointer ISP 4 R/W CPU —
PO Base Register POBR 8 R/W PROC —
PO Length Register POLR 9 R/W PROC —
P1 Base Register P1BR 10 R/W PROC —
P1 Length Register P1LR 11 R/W PROC —
System Base Register SBR 12 R/W CPU —
System Length Register SLR 13 R/W CPU —

Process Control Block

Base

PCBB 16 R/W PROC —

System Control Block

Base SCBB 17 R/W CPU —
Interrupt Priority Level IPL 18 R/W CPU yes
AST Level ASTLVL 19 R/W PROC yes
Software Interrupt

Request SIRR 20 W CPU —
Software Interrupt

Summary SISR 21 R/W CPU yes
Interval Clock Control ICCS 24 R/W CPU yes
Next Interval Count NICR 25 W CPU —
Interval Count ICR 26 R CPU —

166

Privileged and Miscellaneous Instructions

Mne- Num-
Register Name monic ber,, Type Scope Init
Time of Year (optional) TODR 27 R/W CPU no
Console Receiver C/S RXCS 32 R/W CPU yes

Console Receiver D/B RXDB 33 R CPU —
Console Transmit C/S TXCS 34 R/W CPU yes
Console Transmit D/B TXDB 35 W CPU —
Memory Management

Enable MAPEN 56 R/W CPU yes
Trans. Buf. Invalidate All TBIA 57 W CPU —
Trans. Buf. Invalidate

Single TBIS 58 W CPU —
Performance Monitor

Enable PMR 61 R/W PROC vyes
System Identification SID 62 R CPU no

167

Privileged and Miscellaneous Instructions

XFC

EXTENDED FUNCTION CALL
Purpose: provides customer-defined extensions to the instruction set
Format: opcode
Operation: {XFC fault};
Condition N «0;
Codes: Z<0;

V<0,

C<0;
Exceptions: Opcode reserved to customer

Customer reserved exception
Opcodes: FC XFC Extended Function Call
Description: This instruction requests services of nonstandard microcode

or software. If no special microcode is loaded, then an excep-
tion is generated to a kernel mode software simulator (see
Chapter 3). Typically, the next byte would specify which of
several extended functions are requested. Parameters would
be passed either as normal operands, or, more likely, in fixed
registers.

168

Privileged and Miscellaneous Instructions

BPT

BPT BREAKPOINT FAULT

Purpose:
Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

helps implement debugging
opcode

PSL<TP> «0;
{breakpoint fault}; !Push current PSL on stack

N <« 0; Icondition codes cleared after BPT fault
Z<0;
V <«0;
C<0

None
03 BPT Breakpoint Fault

This instruction is used, together with the T-bit, to implement
debugging facilities.

169

Privileged and Miscellaneous Instructions

BUG

BUGCHECK
Purpose:
Format: opcode message.ix
Operation: {fault to report error}
Condition N <N;
Codes: Z<2Z

V<V,

C<C
Exceptions: Reserved instruction
Opcodes: FEFF BUGW Bugcheck with word message identifier

FDFF BUGL Bugcheck with longword message identifier

Description: The hardware treats these opcodes as RESERVED to DIGITAL
and faults. The VAX/VMS operating system treats these as
requests to report software-detected errors. The in-line mes-
sage identifier is zero-extended to a longword (BUGW) and
interpreted as a condition value. If the process is privileged to
report bugs, a log entry is made. If the process is not
privileged, a reserved instruction is signalled.

170

HALT
Purpose:
Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

Privileged and Miscellaneous Instructions

stop processor operation
opcode

If PSL<current_mode> NEQU kernel then
{privileged instruction fault}
else
{halt the processor};

N <« 0; !if privileged instruction fault
Z < 0; lcondition codes are

V <« 0; Icleared after the fault.
C<«0

N < N; !If processor halt
Z<Z

V<V,

C<«C

privileged instructions

00 HALT Halt

HALT

If the process is running in kernel mode, the processor is halt-

ed. Otherwise, a privileged instruction fault occurs.

This opcode is 0 to trap many branches to data.

171

172

CHAPTER 11

INTEGER AND FLOATING
POINT INSTRUCTIONS

INSTRUCTION SET OVERVIEW

A major goal of the VAX architecture is to provide an instruction set
that is symmetric with respect to data types. For example, there are
separate ADD instructions for seven integer and floating point data
types (byte, word, longword, F_, D_, G_, and H_floating), each avail-
able in both two-operand and three-operand format (e.g., ADDB2 and
ADDH2). Other symmetric operations include data movement, data
conversion, data testing, and computation. Thus, both assembly lan-
guage programmers and compilers can choose the best instruction to
use independent of the data type.

To simplify understanding of the instruction set, the instruction mne-
monics are formed by combining an operation prefix with a data type
suffix. Convert instructions, for example, are formed by adding suffix-
es for both the source and destination data types, as in CVTGH,
convert G_floating to H_floating. The computation instructions include
a further suffix to indicate the choice between two-operand and three-
operand instructions. And special instruction mnemonics have been
chosen for similarity. Table 11-1 shows you some instruction mne-
monics. For example, a Move Word instruction has the mnemonic
MOVW, while a Move F_floating instruction has the mnemonic MOVF.

. Table 11-1 Integer, Floating Point, and Optimization Instructions

Number

of
Instruction Data Type Operands
MOVe f' Byte
CLearR Word
Longword
Quadword {1 operand
< Octaword
F_floating
D_floating
G_floating
\- H_floating

173

Integer and Floating Point Instructions

Instruction

Move NEGated
CoMPare
TeST

Move COMplemented
Blt Test

ConVerT

Data Type

Byte
Word
Longword
F_floating
D_floating
G_floating
H_floating

Byte
Word
Longword
Byte
Word
Longword
F_floating
D_floating
G_floating
H_floating

f%

Number
of
Operands

{1 operand

Byte
Word
Longword
F_floating
D_floating
G_floating
H_floating

except BB, WW, LL, FF, DD, GG, HH, DG, and GD

ADD
SUBtract
‘MULtiply
DIVide

Blt Set
Blt Clear
eXclusive OR

Extended MODulus

POLYnominal
evaluation

PUSH Longword

F_floating)

Byte
Word
Longword
D_floating
G_floating
H_floating
Byte
Word
Longword

F_floating
D_floating
G_floating
H_floating

{ Longword

174

}

2 operand
3 operand

2 operand
3 operand

Integer and Floating Point Instructions

Number
. of

Instruction Data Type Operands
INCrement Byte
DECrement Word

Longword
MOVe Zero-extended Byte to Word

Byte to Longword

Word to Longword
ConVerT Rounded F_Floating) to Longword

D_floating { to Longword
G_floating | to Longword
H_floating / to Longword

ADD Aligned Word
under memory Interlock

ADd With Carry

SuBtract With Carry

Extend MULtiply

Extend DIVide

Arithmetic Shift { Longword
Quadword

ROTate Longword { Longword }

The move operations are simple move, clear, arithmetic negate, and
logical complement. The logical complement operations are available
only for the three integer data types because these are the logical
types. Both negate and complement include a move, rather than being
restricted to altering an operand in place. VAX has a large set of
converts, covering almost all data type pairs. In addition, special con-
verts exist to round floating data to integer, and to extend unsigned
integers to larger integers. The data comparison and testing instruc-
tions are comparison, test against zero, and multiple bit testing.

Computation instructions are add, subtract, multiply, and divide. The
logic computation instructions are for the three integer data types and
are bit set (inclusive OR), bit clear (complement AND), and exclusive
OR. Arithmetic and logical computation instructions are available in
both two- and three-operand forms for each applicable data type. The
three-operand form takes as input the values of the first two operands
and stores the result in the third operand.

175

Integer and Floating Point Instructions

The integer optimizations include an instruction to push a longword
onto the stack. Each integer data type includes operations for incre-
ment and decrement. VAX includes special instructions to implement
multiple precision integer arithmetic add, subtract, multiply, and
divide. A special variant of integer add is an operation that adds a
word under a memory interlock (for operating system counters in a
multiprocessor system). VAX includes special floating point instruc-
tions for modulus (range reduction) and, polynomial calculation to aid
in the implementation of mathematical functions, along with shift and
rotate instructions.

FLOATING POINT INSTRUCTIONS

Mathematically, a floating point number may be defined as having the
form

2
where K is an integer and f is a nonnegative fraction. For a nonvanish-
ing number, K and f are uniquely determined by imposing the condi-
tion

e <f<1

The fraction factor, f, of the number is then said to be binary normal-
ized. For the number 0, f must be assigned the value 0, and the value
of Kis indeterminate.

The VAX floating point data formats are derived from this
mathematical representation for floating point numbers. Four types of
floating point data are provided; F_floating numbers are 32 bits long,
D_ and G_floating are 64 bits long, and H_floating numbers are 128
bits long. Chapters 2 and 4 describe the floating point formats. in
detail. For a refresher, you can check there, or see the appropriate
data type in the Glossary.

Floating Point Zero

Because of the hidden bit, the fractional factor is not available to
distinguish between zero and nonzero numbers whose fractional fac-
tor is exactly 2. Therefore VAX reserves a sign-exponent field of 0 for
this purpose. Any positive floating point number with biased exponent
of 0 is treated as if it were an exact 0 by the floating point instruction
set. In particular, a floating point operand, whose bits are all Os, is
treated as 0, and this is the format generated by all floating point
instructions for which the resultis 0.

Reserved Operands
A reserved operand is defined to be any bit pattern with a sign bit of 1

176

Integer and Floating Point Instructions

and a biased exponent of 0. On VAX, all floating point instructions
generate a fault if a reserved operand is encountered. Since a re-
served operand has a biased exponent of 0, it can be (internally)
generated only if overflow occurs.

Accuracy

An instruction is defined to be exact if its result, extended on the right
by an infinite sequence of 0s, is identical to that of an infinite-precision
calculation involving the same operands. The prior accuracy of the
operands is thus ignored. For all arithmetic operations, except DIV, a 0
operand implies that the instruction is exact. The same statement
holds for DIV if the 0 operand is the dividend. But if it is the divisor,
division is undefined and the instruction traps.

We show in Appendix H that the ADD, SUB, MUL and DIV, an overflow

bit on the left, and two guard bits on the right are necessary and

sufficient to guarantee return of a rounded result identical to the cor-

responding infinite-precision operation rounded to the specified word

length. Thus, with two guard bits, a rounded result has an error bound

of (12) LSB (least significant bit).

Note that an arithmetic result is exact if only 0 bits are lost in chopping

the infinite-precision result to the data length to be stored. The first bit

lost in chopping-is referred to as the “rounding” bit. The value of a

rounded result is related to the chopped result as follows:

1. If the rounding bit is 1, the rounded result is the chopped result
incremented by an LSB (least significant bit).

2. If the rounding bit is 0, the rounded and chopped results are
identical.

Rounding may be implemented by adding a 1 to the rounding bit, and
propagating the carry, if it occurs. Note that a renormalization may be
required after rounding takes place; if this happens, the new rounding
bit will be zero, so it can happen only once. To summarize the relations
among chopped, rounded, and true (infinite-precision) results:

1. If astoredresultis exact
rounded value = chopped value = true value.

2. |If astored result is not exact, its magnitude is
a) always less than that of the true result for chopping; and,
b) always less than that of the true result for rounding if the
rounding bitis 0; or,
c) greater than that of the true result for rounding if the rounding
bitis 1.
To be consistent with the floating point instruction set which faults on

177

Integer and Floating Point Instructions

reserved operands, software-implemented floating point functions
should verify that the input operands are not reserved. An easy way to
do this is a move or test of the input operands.

In order to facilitate high-speed implementations of the floating point
instruction set, certain restrictions are placed on the addressing mode
combinations usable within a single floating point instruction. These
combinations involve the logically inconsistent use of a value as both a
floating point operand and an address.

Specifically: if within the same instruction the contents of Rn are used
as an F_floating point operand or part of a larger floating input oper-
and and as an address in an addressing mode which modifies Rn (i.e.,
autoincrement, autodecrement, or autoincrement deferred), the value
of the floating point operand is unpredictable.

Appendix E gives a detailed roster of the symbols used in describing
these instructions. Please refer to it for assistance.

178

MOVE
Purpose:
Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

Integer and Floating Point Instructions

move a scalar quantity

opcode src.rx, dst.wx

None (integer); Reserved operand (floating point)

dst < src;

N <« dstLSS 0;

Z < dst EQL 0;
V<0;

C<C

90 MOVB
BO MOVW
DO MOVL
7D MovaQ
7DFD MOVO
50 MOVF
70 MOVD

50FD MOVG
70FD MOVH

Move Byte
Move Word
Move Longword
Move Quadword
Move Octaword
Move F_floating
Move D_floating
Move G_floating
Move H_floating

MOV

The destination operand is replaced by the source operand.
The source operand is unaffected.

1. On a floating reserved operand fault, the destination op-
erand is unaffected and the condition codes are unpred-

ictable.

2. Unlike the PDP-11, but like the other VAX-11 instructions,
MOVB and MOVW do not modify the high order bytes of a
register destination. Refer to the MOVZxL and CVTxL in-

structions to update the full register contents.

179

Integer and Floating Point Instructions

PUSHL

PUSH LONGWORD
Purpose: push source operand onto stack
Format: opcode src.rl
Operation: —(SP) <« src;
Condition N < src LSS 0;
Codes: Z <src EQL0;
V <0;
C<C
Exceptions: None
Opcodes: DD PUSHL Push Longword
Description: The longword source operand is pushed onto the stack.
Notes:

PUSHL is equivalent to MOVL src, —(SP), but it is one byte

shorter.

180

Integer and Floating Point Instructions

CLR
CLEAR
Purpose: clear a scalar quantity
Format: opcode dst.wx

Operation: dst <« 0;

Condition N<0:
Codes: Z<1;
V <«0;
C<«C
Exceptions: None
Opcodes: 94 CLRB Clear Byte
B4 CLRW Clear Word
D4 CLRL Clear Longword
CLRF Clear F_floating
7C CLRQ Clear Quadword

CLRD Clear D_floating
CLRG Clear G_floating
7CFD CLRO Clear Octaword
CLRH Clear H_floating

Description: The destination operand is replaced by 0.

Notes: CLRx dst is equivalent to MOVx #0,dst, but is shorter by from 1
to 17 bytes, depending on data type.

181

Integer and Floating Point Instructions

MNEG
MOVE NEGATED
Purpose: move the arithmetic negation of a scalar quantity
Format: opcode src.rx, dst.wx
Operation: dst < —src;
Condition N < dst LSS 0;
Codes: Z < dstEQLO;

V < {overflow] (integer);
V <0 (floating);
C <« dst NEQ 0 (integer);

C <0 (floating)
Exceptions: Integer overflow; reserved operand (floating)
Opcodes: 8E MNEGB Move Negated Byte
AE MNEGW Move Negated Word
CE MNEGL Move Negated Longword
52 MNEGF Move Negated F_floating
72 MNEGD Move Negated D_floating

52FD MNEGG Move Negated G_floating
72FD MNEGH Move Negated H_floating

Description: The destination operand is replaced by the negative of the
source operand.

Notes: 1. Integer overflow occurs if the source operand is the larg-
est negative integer (which has no positive counterpart).
On overflow, the destination operand is replaced by the
source operand.

2. On floating reserved operand fault, the destination oper-
and is unaffected and the condition codes are unpredic-

table.
Example: MOVE NEGATED FLOATING
MNEGF RO, R7 ;Replace R7 with negative

;of contents of RO

Initial Conditions:
RO = 00004410
R7 = 00000000

After Instruction Execution:
RO = 00004410
R7 = 0000C410 (Change Sign Bit)

NOTE
If source is positive zero, result is positive zero. If source is
reserved operand (minus zero), a reserved operand fault
occurs. For all other floating point source values, bit 15
(sign bit) is complemented.

182

Integer and Floating Point Instructions

MCOM

MOVE COMPLEMENTED
Purpose: move the logical complement of an integer
Format: opcode src.rx, dst.wx
Operation: dst «<- NOT src;
Condition N «dstLSS0;
Codes: Z «—dst EQL O;

V «0;

C<«C
Exceptions: None
Opcodes: 92 MCOMB Move Complemented Byte

B2 MCOMW Move Complemented Word

D2 MCOML Move Complemented Longword

Description:

The destination operand is replaced by the one’s complement
of the source operand.

183

CONVERT
Purpose:
Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Integer and Floating Point instructions

CVvT

convert a signed quantity to a different signed data type
opcode src.rx, dst.wy
dst < conversion of src;

N < dst LSS 0;

Z<dstEQLO;

V <« {src cannot be represented in dst} (floating);
V < {integer overflow};

C<0

Integer overflow
Floating overflow
Floating underflow
Reserved operand

99 CVTBW Convert Byte to Word

98 CVTBL Convert Byte to Longword
33 CVTWB Convert Word to Byte

32 CVTWL Convert Word to Longword
F6 CVTLB Convert Longword to Byte
F7 CVTLW Convert Longword to Word
4C CVTBF Convert Byte to F_floating
6C CVTBD Convert Byte to D_floating

4CFD CVTBG Convert Byte to G_floating
6CFD CVTBH Convert Byte to H_floating

4D CVTWF Convert Word to F_floating
6D CVTWD Convert Word to D_floating
4DFD CVTWG Convert Word to G_floating
6DFD CVTWH Convert Word to H_floating

4E CVTLF Convert Longword to F_floating
6E CVTLD Convert Longword to D_floating
4EFD CVTLG Convert Longword to G_floating
6EFD CVTLH Convert Longword to H_floating

48 CVTFB Convert F_floating to Byte
68 CVTDB Convert D_floating to Byte
48FD CVTGB Convert G_floating to Byte
68FD CVTHB Convert H_floating to Byte

49 CVTFW Convert F_floating to Word
69 CVTDW Convert D_floating to Word
49FD CVTGW Convert G_floating to Word
69FD CVTHW Convert H_floating to Word

4A CVTFL Convert F_floating to Longword
4B CVTRFL Convert Rounded F-_floating to
Longword

184

Description:

Integer and Floating Point Instructions

6A CVTDL Convert D_floating to Longword
6B CVTRDL Convert Rounded D_floating to
Longword

4AFD CVTGL Convert G_floating to Longword

48FD CVTRGL Convert Rounded G_floating to
Longword

6AFD CVTHL Convert H_floating to Longword

6BFD CVTRHL Convert Rounded H_floating to
Longword

56 CVTFD Convert F_floating to D_floating
99FD CVTFG Convert F_floating to G_floating
98FD CVTFH Convert F_floating to H_floating

76 CVTDF Convert D_floating to F_floating
32FD CVTDH Convert D_floating to H_floating

33FD CVTGF Convert G_floating to F_floating
56FD CVTGH Convert G_floating to H_floating

F6FD CVTHF Convert H_floating to F_floating
F7FD CVTHD Convert H_floating to D_floating
76FD CVTHG Convert H_floating to G_floating

The source operand is converted to the data type of the desti-
nation operand and the destination operand is replaced by the
result. For integer format, conversion of a shorter data type to
a longer is done by sign extension; conversion of longer to a
shorter is done by truncation of the higher numbered (most
significant) bits. For floating format, the form of the conversion
is as follows:

CVTBF exact CVTHW truncated
CvTBD exact CVTFL truncated
CVTBG exact CVTRFL rounded
CVTBH exact CVTDL truncated
CVTWF exact CVTRDL rounded
CVTWD exact CVTGL truncated
CVTWG exact CVTRGL rounded
CVTWH exact CVTHL truncated
CVTLF rounded CVTHRL rounded
CVTLD exact CVTFD exact
CVTLG exact CVTFG exact
CVTLH exact CVTFH exact
CVTFB truncated CVTDF rounded
CVTDB truncated CVTDH exact
CVTGB truncated CVTGF rounded
CVTHB truncated CVTGH exact
CVTFW truncated CVTHF rounded
CVTDW truncated CVTHD rounded
CVTGW truncated CVTHG rounded

185

Notes:

Example:

Example:

Integer and Floating Point Instructions

1. Integer overflow occurs if any truncated bits of the source
operand are not equal to the sign bit of the destination
operand.

2. Only converts with an integer destination operand can

" result in integer overflow. On integer overflow, the
destination operand is replaced by the low-order bits of
the true results.

3. Only CVTDF, CVTGF, CVTHF, CVTHD, and CVTHG can
result in floating overflow. The sequence of events follow-
ing floating overflow varies among the processors in the
VAX family.

4. Only converts with a floating point source operand can
result in a reserved operand fault. On a reserved operand
fault, the destination operand in unaffected and the con-
dition codes are unpredictable.

5. Only CVTGF, CVTHF, CVTHD, and CVTHG can result in

floating underflow. As in Note 3, above, the subsequent
sequence of events is processor-dependent.

CONVERT FLOATING TO WORD

CVTFW WORK, RO :Convert contents of WORK
;floating to word
;store in RO

Initial Conditions:
WORK = 00004410 (floating point 144.)
RO = 00000000

After Instruction Execution:
WORK = 00004410
RO = 00000090 (integer 144)

CONVERT ROUNDED FLOATING TO LONG

CVTRFL R2,R3 ;Converts contents of R2
;floating to long, rounding
;storein R3

Initial Conditions:
R2 = 00004332 (floating point 44.5)
R3 = 00000000

After Instructon Execution:
R2 = 00004332
R3 = 0000002D (integer 45; note the rounding)

186

Integer and Floating Point Instructions

Movz

MOVE ZERO-EXTENDED

Purpose:
Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

convert an unsigned integer to a wider unsigned integer
opcode src.rx, dst.wy
dst < ZEXT (src);

N <« 0;
Z < dst EQL O;
V<«0;
C<C

None

9B MOVZBW Move Zero-Extended Byte to Word

9A MOVZBL Move Zero-Extended Byte to
Longword

3C MOVZWL Move Zero-Extended Word to
Longword

For MOVZBW, bits 7:0 of the destination operand are replaced
by the source operand; bits 15:8 are replaced by zero. For
MOVZBL, bits 7:0 of the destinaton operand are replaced by
the source operand; bits 31:8 are replaced by 0. For MOVZWL,
bits 15:0 of the destination operand are replaced by the source
operand; bits 31:16 are replaced by 0.

187

COMPARE
Purpose:
Format:
Operation:

Condition
Codes:

Exceptions:
Opcodes:

Description:

Notes:

Example:

Integer and Floating Point Instructions

CMP

arithmetic comparison between two scalar quantities
opcode srci.rx, src2.rx
src1 — sre2;

N <« src1LSS src2;
Z <src1 EQL src2;

V<«0;

C < src1 LSSU src2 (integer);

C <0 (floating)

None (integer); reserved operand (floating point)
91 CMPB Compare Byte

B1 CMPW Compare Word

D1 CMPL Compare Longword
51 CMPF Compare F_floating
71 CMPD Compare D_floating
51FD CMPG Compare G_floating
71FD CMPH Compare H_floating

The source 1 operand is compared with the source 2 operand.
The only action is to affect the condition codes.

On a floating reserved operand fault, the condition codes are
unpredictable.

CLRL RO
FOO:

INCL RO

CMPL RO, 5

BLSS FOO

The example clears the longword at RO and proceeds through
the routine at FOO. It increments the longword at RO, com-
putes it to the number 5, and branches back to FOO on RO less
than 5.

188

INCREMENT
Purpose:
Format:
Operation:

Condition
Codes:

Exceptions:
Opcodes:

Description:

Notes:

Integer and Floating Point Instructions

add 1to an integer
opcode sum.mx
sumesum + 1;

N <=sum LSS 0;

Z <sum EQL 0;

V < linteger overflow};

C < {carry from most significant bit}

Integer overflow

96 INCB Increment Byte
B6 INCW Increment Word
D6 INCL Increment Longword

INC

One is added to the sum operand and the sum operand is

replaced by the result.

1. Arithmetic overflow occurs if the largest positive integer is
incremented. On overflow, the sum operand is replaced

by the largest negative integer.

2. INCx sum is equivalent to ADDx st#1, sum, but is shorter.

189

TEST
Purpose:
Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

Integer and Floating Point Instructions

TST

arithmetic compare of a scalar to 0.
opcode src.rx

src — 0;

N <src LSS 0;

Z <—scr EQL 0;

V «0;

C<«0

None (integer); reserved operand (floating point)
95 TSTB Test Byte

B5 TSTW Test Word

D5 TSTL Test Longword
53 TSTF Test F_floating
73 TSTD Test D_floating
53FD TSTG Test G_floating
73FD TSTH Test H_floating

The condition codes are affected according to the value of the
source operand.

1. TSTx src is equivalent for floating point instructions to
CMPx src, #0, but is shorter. Similarly, with CMPXx src, st#
0, for integer instructions.

2. On a floating reserved operand, the condition codes are
unpredictable.

190

ADD
Purpose:
Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

Integer and Floating Point Instructions

perform arithmetic addition

opcode add.rx, sum.mx
opcode add1.rx, add2.rx, sum.wx

sum < sum + add;

sum < add1 + add2;

N < sum LSS 0;
Z<sumEQLO;
V <« overflow;

C < carry from most significant bit
(integer);

C < 0 (floating);

Integer overflow
Floating overflow

Floating underflow
Reserved operand

80
81
A0
Al
co
ci
40
41
60
61
40FD
41FD
60FD
61FD

ADDB2
ADDB3
ADDW2
ADDW3
ADDL2
ADDL3
ADDF2
ADDF3
ADDD2
ADDD3
ADDG2
ADDG3
ADDH2
ADDH3

Add Byte 2 Operand

Add Byte 3 Operand

Add Word 2 Operand
Add Word 3 Operand
Add Longword 2 Operand

Add Longword 3 Operand
Add F_floating 2 Operand
Add F_floating 3 Operand
Add D_floating 2 Operand
Add D_floating 3 Operand
Add G_floating 2 Operand
Add G_floating 3 Operand
Add H_floating 2 Operand
Add H_floating 3 Operand

ADD

2 operand
3 operand

12 operand
13 operand

In 2-operand format, the addend operand is added to the sum
operand and the sum operand is replaced by the result. In 3-
operand format, the addend 1 operand is added to the addend
2 operand and the sum operand is replaced by the result. In
floating point format, the result is rounded.

1. Integer overflow occurs if the input operands to the add
have the same sign and the result has the opposite sign.
On overflow, the sum operand is replaced by the low or-
der bits of the true result.

2. On a floating reserved operand fault, the sum operand is
unaffected and the condition codes are unpredictable.

3. On floating underflow and floating overflow. The action is
dependent upon the particular VAX family processor be-
ing used.

191

Example:

Example:

Integer and Floating Point Instructions

ADD FLOATING 2 OPERAND
ADDF2 #144., WORK ;ADD 144 floating point
;format to WORK

Initial Conditions:
WORK = 00000000

After Instruction Execution:
WORK = 00004410

ADB FLOATING 3 OPERAND

ADDF3 #144., WORK, WORK1
;Add 144 Flgating

;point format to contents

;of WORK; store result

;in WORK1

Initial Conditions:
WORK = 00004410 (hex); (144 fioating)
WORK1 = 00000000

After Instruction Execution:
WORK = 00004410

WORK1 = 00004490 (hex); (288 floating)

192

Integer and Floating Point Instructions

ADWC
ADD WITH CARRY
Purpose: perform extended-precision addition
Format: opcode add.rl, sum.ml
Operation: sum<sum + add + C
Condition N «<sum LSS 0;
Codes: Z<sum EQL 0;

V <« {integer overlow};
C <« {carry from most significant bit}

Exceptions: Integer overflow
Opcodes: D8 ADWC Add with Carry

Description: The contents of the condition code C bit and the addend oper-
and are added to the sum operand and the sum operand is
replaced by the resulit.

Notes: 1. On overflow, the sum operand is replaced by the low
order bits of the results.

2. The two additions in the operation are performed simuita-

neously.
Example: ADD WITH CARRY
To add two quadword integers:
ADDLA,B ;add low haif
ADWC A+4, B+4 ;add high half

;including carry
Additional ADWC can be appended for greater precision.

193

Integer and Floating Point Instructions

ADAWI

ADD ALIGNED WORD INTERLOCKED

Purpose:
Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

maintain operating system resource usage counts
opcode add.rw, sum.mw

tmp < add;

{set interlock};

sum <-sum + tmp;
{released interlock]}

N <« sum LSS 0;

Z <-sum EQL-0;

V < {integer overflow};

C < {carry from most significant bit}

Reserved operand fault
Integer overflow

58 ADAWI Add Aligned Word Interlocked

The addend operand is added to the sum operand and the
sum operand is replaced by the result. The operation is inter-
locked against similar operations by other processors or in a
multiprocecessor system. The destination must be aligned on
aword boundary, otherwise a reserved operand fault is taken.

1. Integer overflow occurs if the input operands to the add
have the same sign and the result has the opposite sign.
On overflow, the sum operand is replaced by the low or-
der bits of the true result.

2. If the addend and the sum operand overlap, the result
and the condition codes are unpredictable.

194

SUBTRACT
Purpose:

Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

Integer and Floating Point Instructions

perform arithmetic subtraction

opcode sub.rx, dif.mx 2 operand
opcode sub.rx, min.rx, dif.wx 3 operand
dif «<—dif — sub; 12 operand
dif «-min — sub; 13 operand
N <« dif LSS 0;
Z <« dif EQL 0;

V <« overflow;
C <« borrow from most significant
bit (integer);

C <« 0 (floating)

Integer overflow
Floating overflow

Floating underflow
Reserved operand

82
83
A2
A3
c2
C3
42
43
62
63
42FD
43FD
62FD
63FD

sSuBB2
SuBB3
suBw2
SUBW3
suBL2
SUBL3
SUBF2
SUBF3
suBD2
SUBD3
SuUBG2
SUBG3
SUBH2
SUBH3

Subtract Byte 2 Operand
Subtract Byte 3 Operand
Subtract Word 2 Operand
Subtract Word 3 Operand
Subtract Longword 2 Operand
Subtract Longword 3 Operand
Subtract F_floating 2 Operand
Subtract F_floating 3 Operand
Subtract D_floating 2 Operand
Subtract D_floating 3 Operand
Subtract G_floating 2 Operand
Subtract G_floating 3 Operand
Subtract H_floating 2 Operand
Subtract H_floating 3 Operand

SUB

In 2-operand format, the subtrahend operand is subtracted
from the difference operand and the difference operand is
replaced by the result. In 3-operand format, the subtrahend
operand is subtracted from the minuend operand and the
difference operand is replaced by the result. In floating format,
the result is rounded.

1. Integer overflow occurs if the input operands to the sub-
tract are of different signs and the sign of the result is the
sign of the subtrahend. On overflow, the difference oper-
and is replaced by the low order bits of the true result.

2. On afloating reserved operand fault, the difference oper-
and is unaffected and the condition codes are unpredic-
table.

195

Exaniple:

R—

Integer and Floating Point Instructions

3. On floating underflow and floating overflow, the
subsequent action depends on the VAX family processor
being used.

SUBTRACT FLOATING 2 OPERAND

SUBF2 #100, WORK ;Subtract 100 floating point
;format from contents of
;location WORK

Initial Conditions:
WORK = 00004410

After Instruction Execution:
WORK = 00004330

196

DECREMENT
Purpose:
Format:
Operation:

Condition
Codes:

Exceptions:
Opcodes:

Description:

Notes:

Integer and Floating Point Instructions

DEC

subtract 1 from an integer
opcode dif.mx
dif « dif — 1;

N <« dif LSS 0;

Z < dif EQL 0;

V < {integer overflow};

C <« {borrow from most significant bit}

Integer overflow

97 DECB Decrement Byte
B7 DECW Decrement Word
D7 DECL : Decrement Longword

One is subtracted from the difference operand and the differ-
ence operand is replaced by the result.

1. Integer overflow occurs if the largest negative integer is
decremented. On overflow, the difference operand is re-
placed by the largest positive integer.

2. DECx dif is equivalent to SUBx S#1, dif, but is shorter.

197

Integer and Floating Point Instructions

SBWC
SUBTRACT WITH CARRY
Purpose: perform extended-precision subtraction
Format: opcode sub.rl, dif.ml
Operation: dif < dif —sub — C
Condition N <« dif LSS 0;
Codes: Z < dif EQL 0;
V <« {integer overflow};
C <« {borrow from most significant bit}
Exceptions: Integer overflow
Opcodes: D9 SBWC Subtract with Carry
Description: The subtrahend operand and the contents of the condition
code C bit are subtracted from the difference operand and the
difference operand is replaced by the result.
Notes: 1. On overflow, the difference operand is replaced by the
low order bits of the true resuit.
2. The two subtractions in the operation are performed si-
multaneously.
Example: SUBTRACT WITH CARRY
To subtract two quadword integers:
SUBLA, B ;subtract low half
SBWC A+4,B+4 ;subtract high half

;including borrow
Additional SBWC can be appended for greater precision.

198

MULTIPLY
Purpose:
Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

Integer and Floating Point Instructions

MUL
perform arithmetic multiplication
opcode mulr.rx, prod.mx 2 operand
opcode mulr.rx, muld.rx, prod.wx 3 operand
prod <prod * mulr; 12 operand
prod <-muld * mulr; 13 operand
N < prod LSS 0;
Z <prod EQL 0;
V < overflow;
C<0;
Integer overflow

Floating overflow
Floating underflow
Reserved operand

84 MULB2 Multiply Byte 2 Operand

85 MULB3 Multiply Byte 3 Operand

A4 MULW2 Muitiply Word 2 Operand

A5 MULW3 Muiltiply Word 3 Operand

C4 MULL2 Multiply Longword 2 Operand
C5 MULL3 Multiply Longword 3 Operand
44 MULF2 Multiply F_floating 2 Operand
45 MULF3 Multiply F_floating 3 Operand
64 MULD2 Multiply D_floating 2 Operand
65 MULD3 Multiply D_floating 3 Operand

44FD MULG2 Multiply G_floating 2 Operand
45FD MULG3 Multiply G_floating 3 Operand
64FD MULH2 Multiply H_floating 2 Operand
65FD MULH3 Multiply H_floating 3 Operand

In 2-operand format, the product operand is multiplied by the
muitiplier operand and the product operand is replaced by the
result. in 3-operand format, the multiplicand operand is multi-
plied by the multiplier operand and the product operand is
replaced by the result. In floating format, the product operand
result is rounded for both 2- and 3-operand format.

1. Integer overflow occurs if the high half of the double-
length result is not equal to the sign extension of the low
half.

2.. On a floating reserved operand fault, the product
operand is unaffected and the condition codes are un-
predictable.

199

Example:

Example:

Integer and Floating Point Instructions

3. On floating underflow and floating overflow, the subse-
quent action varies dependent upon which VAX family
processor is being used.

MULTIPLY FLOATING 2 OPERAND

MULF2 R8, R7 ;Multiply floating contents
;of R8 by contents
;of R7; store
;resultin R7

initial Conditions:
R8 = 00004220
R7 = 00004410

After Instruction Execution:
R8 = 00004220
R7 = 000045B4

MULTIPLY FLOATING 3 OPERAND

MULF3 R8, R7, RO ;Multiply floating contents
;of R8by contents
;of R7; store result
;in RO

Initial Conditions:

R8 = 00004220

R7 = 000045B4

RO = 00004410

After Instruction Execution:
R8 = 00004220
R7 = 000045B4
RO = 00004761

200

Integer and Floating Point Instructions

EMUL

EXTENDED MULTIPLY
Purpose: perform extended-precision multiplication
Format: opcode mulr.rl, muld.rl, add.rl, prod.wq
Operation: prod <« {muld * mulr} + SEXT(add)
Condition N <« prod LSS 0;
Codes: Z < prod EQL 0;

V «0;

C<«0
Exceptions: None
Opcodes: 7A EMUL Extended Multiply

Description: The multiplicand operand is multiplied by the multiplier oper-
and giving a double length result. The addend operand is sign-
extended to double length and added to the result, and then
the product operand is replaced by the final result.

Notes:
Example: EXTENDED MULTIPLY

To multiply two quadwords, producing a quadword;
EMULA, B, #0,C ;multiply low half
MULL3 A+4, B, R0 ;high half = A [high] *

;B [low]
MULL3 A,B+4,R1 ;+ A[low]*B
;[high]
ADDL R1, RO ;(combine)
TSTLA ;if Aflow] <0, need to
BGEQ 10$;compensate for
;unsigned
ADDL B, RO ;bias of 2**32
10$:TSTLB ;if B [low] <0, need to
BGEQ 20$;compensate for
;unsigned
;bias of 2**32
ADDL A, RO
20$:ADDL RO, C+4 ;combine with high half
;of A [low] * B [low]

201

Integer and Floating Point Instructions

EMOD

EXTENDED MULTIPLY AND INTEGERIZE
Purpose: perform accurate range reduction of math function arguments
Format: EMODF and EMODD

opcode mulr.rx, mulrx.rb, muld.rx, int.wl, fract.wx

EMODG and EMODH

opcode mulr.rx, mulrx.rw, muld.rx, int.wl, fract.wx.
Operation: i int < integer part of muld * {mulr'mulrx};

fract < fractional part of muld *

{mulr’mulrx};
Condition N < fract LSS 0;
Codes: Z < fract EQL 0;

V < {integer overflow};

C<0
Exceptions: Integer overflow

Floating underflow
Reserved operand

Opcodes: 54 EMODF Extended Multiply and
N Integerize F_floating

74 EMODD Extended Multiply and
Integerize D_floating

54FD EMODG Extended Multiply and
. Integerize G_floating

74FD EMODH Extended Multiply and

Intergerize H_floating

Description: The multiplier extension operand is concatenated with the
multiplier operand to gain 8 (EMODD and EMODF), 11 (EM-
ODG), or 15 (EMODH) additional low-order fraction bits. The
low-order 5 or 1 bits of the 16-bit multiplier extension operand
are ignored by the EMODG and EMODH instructions, respec-
tively. The multiplicand operand is multiplied by the extended
multiplier operand. This multiplication is such that the resultis
equivalent to the exact product truncated (before normaliza-
tion) to a fraction field of 32 bits in F_floating, 64 bits in
D_floating and G_floating, and 128 in H_floating. Regarding
the result as the sum of an integer and fraction of the same
sign, the integer operand is replaced by the integer part of the
result and the fraction operand is replaced by the rounded
fractional part of the result.

Notes: 1. On areserved operand fault, the integer operand and the
fraction operand are unaffected. The condition codes are
unpredictable.

2. On floating underflow, the sequence of events depends
upon the VAX processor being used.

202

Integer and Floating Point Instructions

On integer overflow, the integer operand is replaced by
the low order bits of the true result.

Floating overflow is indicated by integer overflow; how-
ever, integer overflow is possible in the absence of float-
ing overflow.

The signs of the integer and fraction are the same unless
integer overflow results.

Because the fraction part is rounded after separation of
the integer part, it is possible that the value of the fraction
operand is 1.

203

DIVIDE
Purpose:

Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

Integer and Floating Point Instructions

perform arithmetic division

opcode divr.rx, quo.mx
opcode divr.rx, divd.rx, quo.wx

quo < quo / divr;
quo < divd / divr;

N < quo LSS 0;
Z<quoEQLO;

V < {overflow} OR {divr EQL 0};
C<0

Integer overflow
Divide by zero
Floating overflow
Floating underflow
Reserved operand

DIV

2 operand
3 operand

12 operand
13 operand

86 DivB2 Divide Byte 2 Operand

87 DIVB3 Divide Byte 3 Operand

A6 DIVW2 Divide Word 2 Operand

A7 DIVW3 Divide Word 3 Operand

C6 DIVL2 Divide Longword 2 Operand
Cc7 DIVL3 Divide Longword 3 Operand
46 DIVF2 Divide F_floating 2 Operand
47 DIVF3 Divide F_floating 3 Operand
66 DIVD2 Divide D_floating 2 Operand
67 DIVD3 Divide D_floating 3 Operand

46FD DIVG2 Divide G_floating 2 Operand
47FD DIVG3 Divide G_floating 3 Operand
66FD DIVH2 Divide H_floating 2 Operand
67FD DIVH3 Divide H_floating 3 Operand

In 2-operand format, the quotient operand is divided by the
divisor operand and the quotient operand is replaced by the
result. In 3-operand format, the dividend operand is divided by
the divisor operand and the quotient operand is replaced by
the result. In floating format, the quotient operand result is

rounded for both 2- and 3-operand format.

1. Integer division is performed so that the remainder (un-
less it is zero) has the same sign as the dividend; i.e., the

result is truncated towards 0.

2. Integer overflow occurs if and only if the largest negative
integer is divided by —1. On overflow, operands are af-

fected as in 3 below.

204

Example:

Integer and Floating Point Instructions-

3. If the integer divisor operand is 0, then in 2-operand
integer format, the quotient operand is not affected; in 3-
operand format the quotient operand is replaced by the
dividend operand.

4. On a floating reserved operand fault, the quotient oper-
and is unaffected and the condition codes are unpredic-
table.

5. On floating underflow and floating overflow, the subse-
quent actions depend upon the VAX family processor be-
ing used.

6. Floating divide by zero, similarly, produces various
actions according to the processor being used.

DIVIDE FLOATING 2 OPERAND
DIVF2 R4, R2 ;Divide

Initial Conditions:
R4 = 00004100
R2 = 00004330

After Instruction Execution:
R4 = 00004100
R2 = 000042B0

205

Integer and Floating Point Instructions

EDIV
EXTENDED DIVIDE
Purpose: perform extended-precision division
Format: opcode divr.rl, divd.rq, quo.wl, rem.wl
Operation: quo < divd/divr;
rem < REM(divd, divr)
Condition N < quo LSS 0;
Codes: Z < quo EQL 0;
V < {integer overflow} OR {divr EQL 0};
C<0;
Exceptions: Integer overflow
Divide by zero
Opcodes: 7B EDIV Extended Divide
Description: The dividend operand is divided by the divisor operand; the
quotient operand is replaced by the quotient and the remain-
der operand is replaced by the remainder.
Notes: 1. The division is performed so that the remainder operand
(unless it is 0) has the same sign as the dividend operand.
2. On overflow, the operands are affected as in Note 3, be-
low.
3. If the divisor operand is 0, then the quotient operand is
replaced by bits 31:0 of the dividend operand, and the
remainder is replaced by 0.
Example: Mova #53,B
MOV L #10, A
CLRL C
CLRL D
EDIV A,B,C,D

The result of the extended division is that A = 10 (unchanged),
B = 53 (unchanged), C = 5 (quotient of division), and D = 3
(remainder).

206

BIT TEST
Purpose:
Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Integer and Floating Point Instructions

test a set of bits for all zero

opcode mask.rx, src.rx

tmp < src AND mask;

N <« tmp LSS 0;
Z «<—tmp EQLO;
V<0;

C<«C

None

93 BITB

B3 BITW
D3 BITL

Bit Test Byte
Bit Test Word
Bit Test Long

BIT

The mask operand is ANDed with the source operand. Both
operands are unaffected. The only action is to affect condition

codes.

207

Integer and Floating Point Instructions

BIS
BIT SET
Purpose: perform logical inclusive OR of two integers
Format: opcode mask.rx, dst.mx 2 operand
opcode mask.rx, src.rx, dst.wx 3 operand
Operation: dst < dst OR mask; 12 operand
dst <« src OR mask; 13 operand
Condition N <« dstLSS d;
Codes: Z < dst EQL 0;
V<«0;
C<C;
Exceptions: None
Opcodes: 88 BISB2 Bit Set Byte 2 Operand
89 BISB3 Bit Set Byte 3 Operand
A8 BISW2 Bit Set Word 2 Operand
A9 BISW3 Bit Set Word 3 Operand
Cc8 BISL2 Bit Set Longword 2 Operand
co BISL3 Bit Set Longword 3 Operand

Description: In 2-operand format, the mask operand is ORed with the desti-
nation operand and the destination operand is replaced by the
result. In 3-operand format, the mask operand is ORed with
the source operand and the destination operand is replaced
by the result.

208

BIT CLEAR
Purpose:
Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Integer and Floating Point Instructions

BIC
perform complemented AND of two integers
opcode mask.rx, dst.mx 2 operand
opcode mask.rx, src.rx, dst.wx 3 operand
dst < dst AND {NOT maskj}; 12 operand
dst < src AND {NOT mask}; 13 operand
N <« dst LSS 0;
Z < dstEQLO;
V «0;
C<GC;
None
8A BICB2 Bit Clear Byte 2 operand
8B BICB3 Bit Clear Byte 3 operand
AA BICW2 Bit Clear Word 2 operand
AB BICW3 Bit Clear Word 3 operand
CA BICL2 Bit Clear Longword 2 operand
CB - BICL3 BitClear Longword 3 operand

In 2-operand format, the destination operand is ANDed with
the one’s. complement of the mask operand and the destina-
tion operand is replaced by the result. In 3-operand format, the
source operand is ANDed with the one’s complement of the
mask operand and the destination operand is replaced by the
result.

209

EXCLUSIVE OR
_ Purpose:

Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Integer and Floating Point Instructions

XOR
perform logical exclusive OR of two integers
opcode mask.rx, dst.mx 2 operand
opcode mask.rx, src.rx, dst.wx 3 operand
dst < dst XOR mask; 12 operand
dst < src XOR mask; 13 operand
N < dst LSS 0;
Z <dstEQLO;
V<0
C<C;
None
8C XORB2 Exclusive OR Byte 2 Operand
8D XORB3 Exclusive OR Byte 3 Operand
AC XORW2 Exclusive OR Word 2 Operand
AD XORWS3 Exclusive OR Word 3 Operand
CC XORL2 Exclusive OR Longword 2 Operand
CD XORL3 Exclusive Or Longword 3 Operand

In 2-operand format, the mask operand is XORed with the
destination operand and the destination operand is replaced
by the result. In 3-operand format, the mask operand is XORed
with the source operand and the destination operand is
replaced by the result.

210

Integer and Floating Point Instructions

ASH

ARITHMETIC SHIFT

Purpose:
Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

shift of integer
opcode cnt.rb, src.rx, dst.wx
dst < src shifted cnt bits;

N < dst LSS 0;

Z < dst EQL 0;

V < {integer overflow};
C<+0

Integer overflow

78 ASHL Arithmetic Shift Longword
79 ASHQ Arithmetic Shift Quadword

The source operand is arithmetically shifted by the number of
bits specified by the count operand, and the destination oper-
and is replaced by the result. The source operand is unaffect-
ed. A positive count operand shifts to the left bringing 0Os into
the least significant bit; a negative count operand shifts to the
right bringing in copies of the most significant (sign) bit into the
most significant bit position. A zero count operand replaces
the destination operand with the unshifted source operand.

1. Integer overflow occurs on a left shift if any bit shifted into
the sign bit position differs from the sign bit of the source
operand.

2. If cnt GTR 32 (ASHL) or cnt GTR 64 (ASHQ), the destina-
tion operand is replaced by 0.

3. IfcntLEQ —32 (ASHL) or cnt LEQ —63 (ASHAQ), all the bits
of the destination operand are copies of the sign.bit of the
source operand.

211

ROTATE LONG

Purpose:
Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Integer and Floating Point Instructions

ROTL

rotate integer
opcode cnt.rb, src.rl,dst.wi
dst < src rotated cnt bits;

N <«dstLSS 0;

Z <« dst EQL 0;

V<0

C<C

None

9C ROTL Rotate Longword

The source operand is rotated logically by the number of bits
specified by the court operand and the destination operand is
replaced by the result. The source operand is unaffected. A
positive count operand rotates to the left. A negative count
operand rotates to the right. A 0 count operand replaces the
destination operand with the source operand.

212

Integer and Floating Point Instructions

POLY
POLYNOMINAL EVALUATION
Purpose: allows fast calculation of math functions
Format: opcode arg.rx, degree.rw, tbladdr.ab
Operation: tmp1 <« degree;
if tmp1 GRTU 31 then RESERVED OPERAND EXCEPTION;
tmp2 <« tbladdr;
tmp3 <« [(tmp2); Itmp3 accumulates the
partial result
ltmp3is of type X
if POLYH then —(SP) <« arg;
tmp4 < 0; lunderflow flag for
original 11/780
while tmp1 GRTU 0 do
begin lcomputation loop
tmp5 < {arg *tmp3}; mp5 accumulates new partial
result.

itmp3 has old partial result.
IPerform multiply, and

retain the 31 (POLYF),

163 (POLYD, POLYG), or 127
(POLYH) most significant

Ibits of the fraction by
truncating the unnormalized
Iproduct. (The most significant
bit of the 31, 63,

lor 127 bits in the

product magnitude will be zero
lif the product magnitude is
LSS 2 and GEQ 1/4.)

!Use the result in the

following add operation.

tmp5 «tmp5 + (tmp2);
Inormalize, and round to
type X.
ICheck for over/underflow
only after the combined
Imultiply/add/normalize/
round sequence.
if OVERFLOW then FLOATING OVERFLOW EXCEPTION
if UNDERFLOW then
begin
if FU EQL 1 then FLOATING UNDERFLOW FAULT;
1 lexcept for original
VAX-11/780
tmp5 «0; iforce result to 0;

213

Condition
Codes:

Exceptions:

Opcodes:

Integer and Floating Point Instructions

if FU EQL 1 then tmp4 < 1;
Iset underfiow flag
(original 11/780)
end;
tmp1 «<tmp1-1;
tmp2 <« tmp2 + {size of data type};
tmp3 <« tmpb5;
lupdate partial result in tmp3
end;
if POLYF then
begin
RO «tmp3;
R1<«0;
R2 «0;
R3 «tmp2;
end;
if POLYD or POLYG then
mbegin
R1’RO < tmp3;
R2 «0;
R3 «tmp2;
R4 «0;
R5 «0;
end;
if POLYH then
begin
SP <SP + 16;
R3’R2’R1'RO < tmp3;
R4 <« 0;
R5 «tmp2;
end;
if tmp4 EQL 1 then FLOATING UNDERFLOW TRAP loriginal
11/780
only

N < ROLSSO0;
Z<ROEQLO;

V < {floating overflow};
C<0;

Floating overflow
Floating underflow
Reserved operand

55 POLYF Polynomial Evaluation F_floating
75 POLYD Polynomial Evaluation D_floating
55FD POLYG Polynomial Evaluation G_floating
75FD POLYH Polynomial Evaluation H_floating

214

Description:

Notes:

Integer and Floating Point Instructions

The table address operand points to a table of polynomial
coefficients; the coefficient of the highest order term of the
polynomial is pointed to by the table address operand. The
table is specified with lower order coefficients stored at in-
creasing addresses. The data type of the coefficients is the
same as the data type of the argument operand.

Evaluation is carried out by Horner's method, and the contents
of RO (R1'RO for POLYD and POLYG, R3'R2'R1’R0 for POLYH)
are replaced by the result. The result computed is:

result = C[0] + x*(C[1] + x*(C[2] +...x*C [d])), where d =
degree and x = arg.
The unsigned word degree operand specifies the highest
numbered coefficient to participate in the evaluation. POLYH
requires four longwords on the stack to store arg in case the
instruction is interrupted.

1. After execution:

POLYF

RO = result

R1=0

R2=0

R3 = table address + degree*4 + 4
POLYD

RO = high order part of result
R1 = low order part of result

R2=0
R3 = table address + degree*8 + 8
R4 =0
R5=0
POLYH

RO = highest order part of the result
R1 = second highest order part of the result
R2 = second lowest order part of the result
R3 = lowest order part of the result
R4 =0
R5 = table address + degree*16 + 16

2. Onafloating fault

e |f PSL<FPD> = 0, the instruction faults and all rele-
vant side effects are restored to their original state.

® |If PSL<FPD> = 1, the instruction is suspended and
state is saved in the general registers as follows:
POLYF

RO =tmp3 lIpartial result after iteration prior to
lthe one causing the overflow/underflow

215

Integer and Floating Point Instructions

R1 = arg
R2<7:0> = tmp1 Inumber of iterations
remaining
R2<31:8> = implementation specific
R3 = tmp2 Ipoints to table entry causing excep-
tion .
POLYD and POLYG
R1'RO = tmp3
Ipartial result after iteration prior to the
lone causing the overflow/underflow
R2<7:0> = tmp1 Inumber of iterations remaining
R2<31:8> = implementation specific
R3 = tmp2 Ipoints to table entry causing excep-
tion
R5'R4 = arg
POLYH
R3'R2’R1'RO = tmp3 Ipartial result after iteration
prior to
Ithe one causing the overflow/underflow

R4<7:0> = tmp1 Inumber of iterations remain-
ing

R4<31:8> = implementation specific

R5 = tmp2 Ipoints to table entry causing
exception

arg is on previous mode stack.

Implementation specific information is saved to
allow the instruction to continue after possible scal-
ing of the coefficients and partial result by a fault
handler.

If the unsigned word degree operand is 0, the re-
sultis c[0].

If the unsigned word degree operand is greater
than 31, a reserved operand exception occurs.

On areserved operand exception:

If PSL<FPD> = 0, the reserved operand is
either the degree operand (greater than 31),
or the argument operand, or some coefficient.
If PSL<FPD> = 1, the reserved operand is a
coefficient, and R3 (except for POLYH) or R5
(for POLYH) is pointing at the value which
caused the exception.

216

Example

10.

Integer and Floating Point Instructions

® The state of the saved condition codes and
the other registers is unpredictable. If the re-
served operand is changed and the contents
of the condition codes and all registers are
preserved, the fault is continuable.

On floating underflow after the rounding operation,
the subsequent action is dependent upon the VAX
family processor being used.

On floating overflow after the rounding operation at
any iteration of the computation loop, the instruc-
tion terminates and causes a trap or fault (proces-
sor dependent). On overflow traps, the contents of
R2 and R3 are unpredictable for POLYF, POLYD,
POLYG, and 0 for POLYH; the contents of R4 and
RS are unpredictable for POLYD, POLYG, and PO-
LYH; RO contains the reserved operand (minus 0)
and R1 = 0.

POLY can have both overflow and underfiow in the
same instruction. If both occur, overfiow trap is
taken; underflow is lost.

If the argument is zero and one of the coefficients
in the table is the reserved operand, whether a re-
served operand fault occurs is unpredictable.

For POLYH, some implementation may not push-
arg on the stack until after an interrupt or fault oc-
curs. However, arg will always be on the stack if an
interrupt of floating fault occurs after FPD is set.

To compute P(x) = CO + C1*x+C2*x**2
where CO = 1.0, C1 = .5,and C2 = .25

PTABLE:

POLYF X,#2,PTABLE

.FLOAT 025 ;C2
.FLOAT 05 :Ct
.FLOAT 1.0 ;CO

217

218

CHAPTER 12
SPECIAL INSTRUCTIONS

INTRODUCTION

Most of the instructions in this chapter are optimizations of frequently
occurring sequences of code. Your programmers can increase their
accuracy, efficiency, and productivity by exploiting these prebuilt aids
that DIGITAL supplies. Included among them are instructions that
manipulate the multiple registers, the Processor Status Longword,
addresses, indices, queues, and variable length bit fields.

MULTIPLE REGISTER INSTRUCTIONS

Multiple register instructions allow the saving and restoring of multiple
registers in one operation. In either case, the save area is on the stack;
the PUSHR instruction saves multiple registers by pushing them onto
the stack; the POPR instruction restores multiple registers by popping
them from the stack. A 16-bit mask operand, with bit n representing
Rn, specifies the list of registers. This mask is a normal read operand,
so it can be calculated or it can be an in-line literal. When only regis-
ters in the range RO through R5 are being saved or restored, the mask
can be expressed as a short literal.

The software standard for calling and signaling requires that registers
be saved in the call frame. Thus, any registers manipulated by PUSHR
or POPR, except RO and R1, must appear in the procedure entry
mask. The standard also requires any registers between R2 and R11
which are modified by the procedure to be saved in the call frame by
setting up the appropriate entry mask. RO and R1 are used to return
procedure status. PUSHR/POPR should be used to save and restore
only those registers specified in the procedure entry mask, for if a
procedure saves registers not noted in the entry mask and it gets an
exception, its caller's registers cannot be restored properly by the
unwinding mechanism.

219

Special Instructions

PUSHR

PUSH REGISTERS

Purpose:
Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

Example:

Example:

save multiple registers on stack
opcode mask.rw

for tmp < 14 step —1 until 0 do
if mask <tmp> EQL 1 then —(sp) < R[tmp];

N<N;
Z<2Z
V<V,
C<«C

None
BB PUSHR Push Registers

The contents of registers whose number corresponds to set
bits in the mask operand are pushed on the stack as long-
words. R[n] is pushed if mask <n> is set. The mask is scanned
from bit 14 to bit 0, and bit 15 is ignored.

The order of pushing is specified so that the contents of higher
numbered registers are stored at higher memory addresses.
This results in, say, a D_floating datum stored in adjacent
registers being stored by PUSHR in memory in the correct
order.

This instruction is similar to the sequence

PUSHL R14
PUSHL R13
PUSHL RO
where only the masked registers are pushed.
PUSHR #tM <R0,R1,R2,R3> ;saves RO
;through R3
PUSHR #{M<R1,R6,R7> ;saves R1, R6, and R7

220

Special Instructions

POPR

POP REGISTERS

Purpose:
Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

restore multiple registers from stack
opcode mask.rw

for tmp < 0 step 1 until 14 do

if mask <tmp> EQL 1 then R[tmp] < (SP)+;

N<N;

Z<1Z;

V<V,

C<«C

None

BA POPR Pop Registers

)

The contents of registers whose number corresponds to set
bits in the mask operand are replaced by longwords popped
from the stack. R[n] is replaced if mask <n> is set. The mask
is scanned from bit 0 to bit 14, with bit 15 ignored.

This instruction is similar to the sequence

MOVL (SP)+,R0
MOVL (SP)+,R1

MOVL (SP)+,R14
where only the masked registers are popped.

221

Special Instructions

PROCESSOR STATUS LONGWORD MANIPULATION

MOVPSL

MOVE FROM PSL
Purpose: obtain processor status
Format: opcode dst.wl
Operation: dst < PSL;
Condition N<N;
Codes: Z<27,

V<V,

C<C
Exceptions: None
Opcodes: DC MOVPSL Move from PSL

Description: The destination operand is replaced by the Processor Status
Longword.

222

Special Instructions

BISPSW
BICPSW

BIT SET PSW

BIT CLEAR PSW

Purpose: set or clear trap enables

Format: opcode mask.rw

Operation: PSW <« PSW OR mask; IBISPSW
PSW < PSW AND {NOT mask}; IBICPSW

Condition N < N OR mask <3>; IBISPSW

Codes: Z < Z OR mask <2>;

V <V OR mask <1>;
C < C OR mask <0>

N < N AND {NOT mask} <3>; IBICPSW
Z < Z AND {NOT mask} <2>;
V <V AND {NOT mask} <1>;
C < C AND {NOT mask} <0>

Exceptions: Reserved Operand

Opcodes: B8 BISPSW Bit set PSW
B9 BICPSW Bit clear PSW

Description: On BISPSW, the Processor Status Longword is ORed with the
' 16-bit mask operand and the PSW is replaced by the result.
On BICPSW, the Processor Status Longword is ANDed with
the 1's complement of the 16-bit mask operand and the PSW
is replaced by the result.

Notes: A reserved operand fault occurs if mask <15:8> is not zero.
On areserved operand fault, the PSW is not affected.
Example: BISPSW #MM<FU> ;enables floating

;underflow traps

223

Special Instructions

ADDRESS INSTRUCTIONS
MOVA
PUSHA
MOVE ADDRESS
PUSH ADDRESS
Purpose: calculate address of quantity
Format: opcode src.ax, dst.wl IMOVA
opcode src.ax IPUSHA
Operation: dst < src; IMOVA
_(SP) < SIC; IPUSHA
Condition N <« dstLSS0; IMOVA
Codes: Z < dstEQLO;
V<«0;
C<«C
N <« src LSS 0; IPUSHA
Z <src EQL 0;
V<0;
C<«C
Exceptions: None
Opcodes: "9E MOVAB Move Address Byte
3E MOVAW Move Address Word
DE MOVAL Move Address Longword
MOVAF Move Address F_Floating
7E MOVAQ Move Address Quadword
MOVAD Move Address D_Floating
MOVAG Move Address G_Floating
7EFD MOVAH Move Address H_Floating
MOVAO Move Address Octaword
9F PUSHAB Push Address Byte
3F PUSHAW Push Address Word
DF PUSHAL Push Address Longword
PUSHAF Push Address F_Floating
7F PUSHAQ Push Address Quadword
PUSHAD Push Address D_Floating
PUSHAG Push Address G_Floating
7FFD PUSHAH Push Address H_Floating
PUSHAO Push Address Octaword
Description: For MOVA, the destination operand is replaced by the source

operand, which is an address. For PUSHA, the source operand

224

Notes:

Example:

Special Instructions

is pushed on the stack. The context in which the source oper-

and is evaluated is given by the data type of the instruction.

The operand whose address replaces the destination operand

is not referenced.

1. The source operand is of address access type which
causes the address of the specified operand to be moved.

2. PUSHAXx is equivalent to MOVAXx src, —(SP), but is short-
er.

3. The only difference between the MOVAxs (PUSHXxs) is the
context of the src. This only affects autoincrement, au-
todecrement, and indexing.

PUSHAL XYZ ;pushes the address of
;longword XYZ

225

Special Instructions

INDEX INSTRUCTION

The index instruction (INDEX) calculates an index for an array of fixed
length data types (integer and floating) and for arrays of bit fields,
character strings, and decimal strings. It accepts as arguments: a
subscript, lower and upper subscript bounds, an array element size, a
given index, and a destination for the calculated index. It incorporates
range checking within the calculation for high-level languages using
subscript bounds, and it aids index calculation optimization by remov-
ing invariant expressions.

INDEX

COMPUTE INDEX

Purpose:

Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

index calculation of arrays of fixed length data, bit fields, and
strings
opcode subscript.rl, low.rl, high.rl,

size.rl, indexin.rl, indexout.wl

indexout < {indexin + subscript}*size;
if {subscript LSS low} or {subscript GTR high}
then {subscript range trap};

N < indexout LSS 0;
Z < indexout EQL 0;

V <«0;

C<0

Subscript range

0A INDEX Index

The indexin operand is added to the subscript operand and
the sum is multiplied by the size operand. The indexout oper-
and is replaced by the result. If the subscript operand is less
than the low operand or greater than the high operand, a
subscript range trap is taken.

1. No arithmetic exception other than subscript range can
result from this instruction. Thus, no indication is given if
overflow occurs in either the add or multiply steps. If
overflow occurs on the add step the sum is the low order
32 bits of the true result. If overflow occurs on the multiply
step the indexout operand is replaced by the low order 32
bits of the true product of the sum and the subscript oper-
and. In the normal use of this instruction, overflow cannot
occur without a subscript range trap occurring.

226

T

Special Instructions

2. The Index instruction is useful in index calculations for
arrays of the fixed length data types (integer and floating)
and for index calculations for arrays of bit fields, charac-
ter strings, and decimal strings. The indexin operand per-
mits cascading Index instructions for multidimensional
arrays. For one-dimensional bit field arrays it also permits
introduction of the constant portion of an index calcula-
tion which is not readily absorbed by address arithmetic.

Example: The COBOL statements:
01 A-ARRAY.
02 APICx(10) occurs 15 times
01 B PIC x(10).
MOVE A(l) to B.

are equivalent to:
INDEX |, #1, #15, #10, #0, RO
MOVCS3 #10, A-10[R0], B.

The PL/I statements:

DCL A(—3:10) Bit (5);

All) =1;

are equivalent to:
INDEX |, #-3, #10, #5, #3, RO
INSV #1, RO, #5, A; assumes A
byte-aligned

The FORTRAN statements:
INTEGER*4 A(L1:U1,L2:U2),1,J
A(l,J) =1
are equivalent to:
INDEX J, #L2, #U2, #M1, #0, RO;
M1=U1-L1+1
INDEX |, #L1, #U1, #1, RO, RO;
MOVL #1, A-a[RO]; a={{L2*M1}+L1}*4

227

Special Instructions

QUEUE INSTRUCTIONS

A queue is a circular, doubly linked list whose entries are specified by
their addresses. Each queue entry links to two others via a pair of
longwords. The first (lower addressed) is the forward link (FLINK); it
specifies the location of the succeeding entry; the second, the back-
ward link (BLINK), specifies the location of the preceding entry. Two
distinct types of queues are possible in VAXes—absolute and self-
relative—classified according to the type of links they use. An abso-
lute link contains the absolute address of the entry that it points to,
while a self-relative link contains a displacement from the present
queue entry.

Absolute Queues

An absolute queue is specified by a queue header which is identical to
a pair of queue linkage longwords. The forward link of the header is
the address of the entry termed the head of the queue. The backward
link of the header is the address of the entry termed the tail of the
queue. The forward link of the tail points to the header.

Two general operations can be performed on queues: insertion of
entries and removal of entries. Generally, entries can be inserted or
removed only at the head or tail of a queue.

The following examples illustrate some queue operations. An empty
queue is specified by its header at address H:

31 0

31 0

If an entry at address B is inserted into an empty queue (at either the
head or tail) the queue is as shown below:

3 0

B D H+4

31 (0]

228

Special Instructions

31 0

H :B+4

31 0

If an entry at address A is inserted at the head of the queue, the queue
is as shown below:

31 0

A H

B tH+4
31 0
31 0

B A

H T A+
31 0
31 0

H B

A B +4
31 0

229

Special Instructions

Finally, if an entry at address C is inserted at the tail, the queue
appears as follows:

31 0

A H

C P H+4
31 0
31 0

B HN

H CA+4
31 0
31 0

C B

A ‘B +4
31 0
31 0

H :C

B :C+4
31 0

Following the above steps in reverse order gives the effect of removal
at the tail and removal at the head.

If more than one process can perform operations on a queue simuita-
neously, insertions and removals should only be done at the head or
tail of the queue, but when just one process (or one process at a time)
can perform operations on a queue, insertions and removals can be
made at other locations. In the above example with the queue contain-
ing entries A, B, and C, the entry at address B can be removed, giving:

230

Special Instructions

31 0
A H
C T H+4
31 0
31 0
C T A
H TA+4
31 0
31 0
H :C
A :C+4
31 0

The reason for the above restriction is that operations at the head or
tail are always valid because the queue header is always present;
operations elsewhere in the queue depend on specific entries being
present and may become invalid if another process is concurrently
performing operations on the queue.

Two instructions are provided for manipulating absolute queues:
INSQUE, and REMQUE. INSQUE inserts an entry specified by an entry
operand into the queue, following the entry specified by the predeces-
sor operand. REMQUE removes the entry specified by the entry oper-
and. Queue entries can be on arbitrary byte boundaries. Both INSQUE
and REMQUE are implemented as noninterruptible instructions.

231

Special Instructions

INSQUE
INSERT ENTRY IN QUEUE
Purpose: add entry to head or tail of queue
Format: opcode entry.ab, pred.ab
Operation: If {all memory accesses can be completed) then
begin
(entry) < (pred); forward link of entry
(entry + 4) < pred; Ibackward link of entry
((pred) + 4) < entry; ibackward link of
Isuccessor
(pred) < entry; Iforward link of
Ipredecessor
end;
else
begin
{backup instruction};
{initiate fault};
end;
Condition N <« (entry) LSS (entry + 4);
Codes: Z < (entry) EQL (entry + 4); Ifirst entry
lin queue
V<«0;
C < (entry) LSSU (entry + 4)
Exceptions: None
Opcodes: OE INSQUE Insert Entry in Queue
Description: The entry specified by the entry operand is inserted into the
queue following the entry specified by the predecessor oper-
and. If the entry inserted was the first one in the queue, the
condition code Z-bit is set; otherwise it is cleared. The inser-
tion is a noninterruptible operation. Before performing any
part of the operation, the processor validates that the entire
operation can be completed. This ensures that if a memory
management exception occurs, the queue is left in a consis-
tent state.)
Notes: 1. Because the insertion is noninterruptible, processes run-

ning in kernel mode can share queues with interrupt ser-
vice routines.

2. The INSQUE instruction is implemented such that coo-
perating software processes in a single processor may
access a shared list without additional synchronization if
the insertions and removals are only at the head or trail of
the queue.

232

S—

Example:

Special Instructions

3. During access validation, any access which cannot be
completed results in a memory management exception,
even though the queue insertion is not started. .

Three types of insertion can be performed by appropriate
choice of predecessor operand:

Insert at head

INSQUE entry,h ;his queue head
Insert at tail
INSQUE entry,@h+4 ;his queue head

(Note “@" in this case only)

Insert after arbitrary predecessor
INSQUE entry,p ;p is predecessor

To set a software interlock realized with a queue, the following
can be used:

INSQUE ... ;was queue empty?
BEQL 1$;yes
CALL WAIT(...) ;no, wait

1$:

233

Special Instructions

REMQUE
REMOVE ENTRY FROM QUEUE
Purpose: remove entry from head or tail of queue
Format: opcode entry.ab, addr.wl
Operation: if {all memory accesses can be completed} then
begin
((entry+4)) < (entry); forward link of predecessor
((entry)+4) < (entry+4); Ibackward link of successor
addr < entry;
end;
else
begin
{backup instruction};
{initiate fault};
end;
Condition N < (entry) LSS (entry+4);
Codes: Z < (entry) EQL (entry+4); Iqueue empty
V <« entry EQL (entry+4); Ino entry to remove
C <« (entry) LSSU (entry+4)
Exceptions: None
Opcodes: OoF REMQUE Remove Entry from Queue
bescription: The queue entry specified by the entry operand is removed
from the queue. The address operand is replaced by the ad-
dress of the entry removed. If there was no entry in the queue
to be removed, the condition code V bit is set; otherwise it is
cleared. If the queue is empty at the end of this instruction, the
condition code Z-bit is set; otherwise it is cleared. The removal
is a noninterruptible operation. Before performing any part of
the operation, the processor validates that the entire operation
can be completed. This ensures that if a memory management
exception occurs, the queue is left in a consistent state.
Notes: 1. Because the removal is noninterruptible, processes run-

ning in kernel mode can share queues with interrupt ser-
vice routines.

2. The REMQUE instruction is implemented such that coo-
perating software processes in a single processor may
access a shared list without additional synchronization if
insertions and removals are only at the head or tail of the
queue.

3. During access validation, any access which cannot be
completed results in a memory management exception,
even though the queue removal is not started.

234

Example:

Special Instructions

Three types of removal can be performed by suitable choice of
entry operand:

Remove at head

REMQUE @h,addr ;his queue header
Remove at tail

REMQUE @h+4, addr ;h is queue header
Remove arbitrary entry

REMQUE entry,addr ;

To release a software interlock realized with a queue, the
following can be used:

REMQUE ... ;queue empty?

BEQL 1% ;yes

CALL ACTIVATE(...) ;activate other
waiters

1$:

To remove entries until the queue is empty, the following can
be used:

1$: REMQUE... ;anything removed?
BVS EMPTY ;no
BR 1% ;

235

Special Instructions

Self-Relative Queues

Self-relative queues use displacements from queue entries as links.
As with absolute queues, queue entries are linked by a pair of long-
words. The first (lower addressed) is the forward link—displacement
of the succeeding queue entry from the present entry. The second
longword (higher addressed) is the backward link—the displacement
of the preceding queue from the present entry. A queue is specified by
a queue header, which also consists of two longword links.

The following shows some examples of queue operations. An empty
queue is specified by its header at address H. Since the queue is
empty, the self-relative links must be 0, as shown below:

0 tH+4

31 0

If an entry at address B is-inserted into an empty queue (at either the
head or tail), the queue is as shown below:

31 0
B-H ' H
B-H H+4
31 0
31 0
H-B B
H-B :B+4
31 0

236

Special Instructions

If an entry at address A is inserted at the head of the queue, the queue
is as shown below:

31 0
A-H H
B-H tH+4
31 0
31 0
B-A A
H-A PA 4
31 ' 0
31 0
H-B B
A-B :B+4
31 0

237

Special Instructions

Finally, if an entry at address C is inserted at the tail, the queue
appears as follows: '

31 0
A-H H
C-H :H+4
31 0
31 0
B-A A
H-A CA+4
31 0
31 0
Cc-8 B
A-B tB+4
31 0
31 0
H-C C
B-C :C+4
31 0

Following the above steps in reverse order yields the effect of removal
at the tail and removal at the head.

Four operations can be performed on self-relative queues; insert at
and remove from head, insert at and remove from tail. Furthermore,
these operations are interlocked to allow cooperating processes in a
multiprocessor system to access a shared list without additional syn-
chronization. Queue entries- must be quadword aligned. A hardware
supported interlocked memory access mechanism is used to read the

238

Special Instructions

queue header. Bit 0 of the queue header is used as a secondary
interlock and is set when the queue is being accessed. If an inter-
locked queue instruction encounters the secondary interlock set, it
terminates after setting the condition codes to indicate failure to gain
access to the queue. If the secondary interlock bit is not set, then the
interlocked queue instruction sets it during its operation and clears it
at instruction completion. This prevents other interlocked queue in-
structions from operating on the same queue.

239

Special Instructions

INSQHI
INSERT ENTRY INTO QUEUE AT HEAD, INTERLOCKED
Purpose: interlocked entry insert at head of queue
Format: opcode entry.ab, header.aq
Operation: tmp1 < (header){interlocked}; lacquire hardware
linterlock

Imust have write
laccess to header
lheader must be
Iquadword aligned
lheader cannot be
lequal to entry
Itmp1<2:1> must

Ibe zero

if tmp1<0> EQLU 1 then

(header){interlocked}<«tmp1; Irelease hardware
linterlock

{set condition codes and terminate instruction};

end;

else

begin

(header)|interlocked}<tmp1 v 1 Iset secondary
linterlock
Irelease hardware
linterlock

If fall memory accesses can be completed) then
Icheck if following
laddresses can be written
Iwithout causing a memory
Imanagement exception:
! entry
! header + tmp1
lAlso, check for quadword alignment

begin
{insert entry into queue};
{release secondary interlock};
end;
else
begin
{release secondary interlock};
{backup instruction};
{initiate fault};
end;
end;

240

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

Special Instructions

if {insertion succeeded} then
begin
N «0;
Z < (entry) EQL (entry+4); Ifirst entry in
lqueue;
V «0;
C<«0;
end;
else
begin
N <0;
Z<0;
V<0
C<«1 Isecondary interlock
Ifailed;
end

Reserved operand

5C INSQHI Insert Entry into Queue at
Head, Interlocked

The entry specified by the entry operand is inserted into the
queue follewing the header. If the entry inserted was the first
one in the queue, the conditon code Z-bit is set; otherwise itis
cleared. The insertion is a noninterruptible operation. The in-
sertion is interlocked to prevent concurrent interlocked
insertions or removals at the head or tail of the same queue by
another process even in a multiprocessor environment. Before
performing any part of the operation, the processor validates
that the entire operation can be completed. This ensures that if
a memory management exception occurs, the queue is leftin a
consistent state. If the instruction fails to acquire the seconary
interlock, the instruction sets condition codes and terminates.
1. Because the insertion is noninterruptible, processes run-
ning in kernel mode can share queues with interrupt ser-
vice routines.
2. The INSQHI instruction is implemented such that cooper-
ating software processes in a multiprocessor may access
a shared list without additional synchronization.
3. To set a software interlock realized with a queue, the fol-
lowing can be used:

INSERT: INSQHI ... ;was queue empty?
BEQL 1$;yes
BCS INSERT ;try inserting again

CALL WAIT(...) ;no,wait
1$:

241

Special Instructions

During access validation, any access which cannot be
completed results in a memory management exception
even though the queue insertion is not started.

A reserved operand fault occurs if entry or header is an
address that is not quadword aligned (i.e., <2:0>NEQU
0) or if (header)<2:1> is not zero. A reserved operand
fault also occurs if header equals entry. In this case the
queue is not altered

242

Special Instructions

INSQTI
INSERT ENTRY INTO QUEUE AT TAIL, INTERLOCKED
Purpose: interlocked entry insert at tail of queue
Format: opcode entry.ab, header.aq
Operation: Same as INSQHI, except that the line which reads:
! header + tmp1
is replaced by
! header + (header + 4)
Condition if {insertion succeeded] then
Codes: begin
N <« 0;
Z < (entry) EQL (entry+4) Ifirst entry
lin queue;
V <«0;
C<0;
end;
else
begin
N «0;
Z<0;
V <«0;
C<«1; Isecondary interlock
failed
end
Exceptions: Reserved operand
Opcodes: 5D INSQTI Insert Entry into Queue at
Tail, Interlocked
Description: The entry specified by the entry operand is inserted into the
queue preceding the header. The rest of the description is
identical to that of INSQHI, immediately above.
Notes: 1. Because the insertion is noninterruptible, processes run-

ning in kernel mode can share queues with interrupt ser-
vice routines.

2. The INSQTI instruction is implemented such that cooper-
ating software processes in a multiprocessor may access
a shared list without addtional synchronization.

3. To set a software interlock realized with a queue, see Note
3 at INSQH]I, above.

4. During access validation, any access which cannot be
completed results in a memory management exception
even though the queue insertion was not started.

243

Special Instructions

5. A reserved operand fault occurs if entry, header, or
(header+4) is an address that is not quadword aligned
(i.e., <2:0> NEQU 0) or if (header)<2:1> is not zero. A
reserved operand fault also occurs if header equals entry.
In this case the queue is not altered.

244

Special Instructions

REMQHI
REMOVE ENTRY FROM QUEUE AT HEAD, INTERLOCKED
Purpose: interlocked remove of entry from head of queue.
Format: opcode header.aq, addr.wi
Operation: tmp1 < (header)f{interlocked}; lacquire hardware
linterlock

Imust have write
laccess to header
lheader must be
Iquadword aligned

theader cannot equal
laddress of addr.
Itmp1<2:1> must
Ibe zero

iftmp1<0> EQLU 1 then

begin

(header){interiocked} < tmp1; Irelease hardware
linterlock

{set condition codes and terminate instruction};

end;

else

begin

(header){interlocked}<«tmp1v1 Iset secondary

linterlock

Irelease hardware in-

terlock

If {all memory accesses can be completed] then
Icheck if following can be done
lwithout causing a memory
Imanagement exception:
lwrite addr operand
Iread content of header + tmp1{if tmp1
INEQUO}
lwrite into header + tmp1 + (header + tmp1)

{if
Itmp1 NEQUO}
1Also, check for quadword alignment

begin
{remove entry from queue};
{release secondary interlock};

end;

else

begin
{release secondary interlock};

245

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

Special Instructions

{backup instruction};
{initiate fault};
end;

end:

if fremoval succeeded] then
begin
N < 0;
Z < (header) EQL 0; lqueue empty
V <«tmp1 EQLO; Ino entry to remove
C<0;
end;
else
begin
N <0;
Z<0;
Vei; !did not remove anything
C<1; Isecondary interlock failed
end

Reserved operand

5E REMQHI
Remove Entry from Queue at

Tail, Interlocked

The queue entry following the header is removed from the
queue. The address operand is replaced by the address of the
entry removed. If no entry was removed from the queue (be-
cause either there is nothing to remove or secondary interlock
failed), the condition code V bit is set; otherwise it is cleared. If
the interlock succeeded and the queue is empty at the end of
this instruction, the conditon code Z-bit is set; otherwise it is
cleared. The removal is interlocked to prevent concurrent in-
terlocked insertions or removals at the head or tail of the same
queue by another process even in a multiprocessor environ-
ment. The removal is a noninterruptible operation. Before
performing any part of the operation, the processor validates
that the entire operation can be completed. This ensures that if
a memory management exception occurs, the queue is leftin a
consistent state. If the instruction fails to acquire the secon-
dary interlock, the instruction sets condition codes and termi-
nates without altering the queue.

1. Because the removal is noninterruptible, processes run-
ning in kernel mode can share queues with interrupt ser-
vice routines.

246

Special Instructions

The REMQHI instruction is implemented such that
cooperating software processes in a multiprocessor may
access a shared list without additional synchronization.

To release a software interlock realized with a queue, the
following can be used:

1$: REMQHI ... ;removed last?
BEQL 2% ;yes
BCS 1$;try removing again

CALL ACTIVATE(...)
;Activate other waiters
2%:
To remove entries until the queue is empty, the following
can be used:

1$: REMQHI ... ;anything removed?
BVS2$;no

process removed entry

BR1$;

2$:BCS 1% ;try removing again
queue empty

During access validation, any access which cannot be
completed results in a memory management exception
even through the queue removal is not started.

A reserved operand fault occurs if header or (header +
(header)) is an address that is not quadword aligned (i.e.
<2:0> NEQU 0) or if (header)<2:1> is not zero. A re-
served operand fault also occurs if header equals addr. In
this case the queue is not altered.

247

Special Instructions

REMQTI
REMOVE ENTRY FROM QUEUE AT TAIL, INTERLOCKED
Purpose: interlocked entry remove from tail of queue
Format: opcode header.aq, addr.wi
' Operation: tmp1 < (header)
{interlocked}; lacquire hardware
linterlock

Imust have write access to header
theader must be quadword aligned
lheader cannot equal address

lof addr

Itmp1<2:1> must be zero

if tmp1<0> EQLU 1 then

begin

(header){interlocked} < tmp1;
Irelease hardware

linterlock
{set condition codes and terminate instruction}:
end;
else
begin
(header) {interlocked} <-tmp1v 1;
Iset secondary
linterlock

Irelease hardware interlock
If {all memory accesses can be completed] then
Icheck if the following can be
Idone without
Ilcausing a memory management
lexception:
Iwrite addr operand
Iread contents of header + (header
1+ 4) {if tmp1 NEQU 0}
1

lwrite into header + (header +4)
! + (header + 4 + (header
1+ 4)) {if tmp1 NEQU 0}
1Also, check for quadword
lalignment

begin

{remove entry from queue};

{release secondary interlock};
end;

else

248

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

end;

Special Instructions

begin

{release secondary interlock};
{backup instruction};

{initiate fault};

end;

if fremoval succeeded} then
begin
N <0;
Z < (header + 4) EQL 0!queue empty;
V < tmp3 EQL 0 Ino entry to remove;
C <0
end;

else

begin

N<0;

Z<0;

V<1 Idid not remove anything;

C<1 Isecondary interlock failed;
end

Reserved operand

5F

REMQTI

Remove Entry from Queue at

Tail,
The

Interlocked

queue entry preceding the header is removed from the

queue. The rest of the description matches that of REMQHI,
immediately above.

1.

Because the removal is noninterruptible, processes run-
ning in kernel mode can share queues with interrupt ser-
vice routines.

The REMQT! instruction is implemented such that coo-
perating software processes in a multiprocessor may
access a shared list without additional synchronization.
To release a software interlock realized with a queue, see
note 3, for REMQHI, immediately above.

To remove entries until the queue is empty, see note 4, for
REMQH]I, immediately above.

During access validation, any access which cannot be
completed results in a memory management exception
even though the queue removal is not started.

A reserved operand fault occurs if header, (header + 4),
or (header + (header + 4)+4) is an address that is not
quadword aligned (i.e., <2:0> NEQU 0) or if (header)<2:
1> is not zero. A reserved operand fault occurs if header
equals addr. In this case the queue is not altered.

249

Special Instructions

VARIABLE LENGTH BIT FIELD INSTRUCTIONS

Variable length bit field instructions are useful when you are dealing
with data not in 8-bit increments (for example, 13 bits of data that do
not start on a byte boundary). Such data could also be handled without
these instructions, but less efficiently, since it would require additional
shift and mask operations to get the bits into the proper form and to
eliminate the nonrequired bits.

A variable bit field is 0 to 32 contiguous bits (contained in 1 to 5 bytes)
that is arbitrarily located with respect to byte boundaries.

The variable length bit field instructions have four operand specifiers;
three of these specifiers determine how to find the variable length field
and the fourth designates where it is to be stored. The first three
specifiers are:

Position Operand—a signed longword operand that designates the
number of bits away from the base address operand.

If the variable length field is contained in a register, the position oper-
and must have a value in the range 0 through 31 (if the size is nonzero)
or areserved operand fault occurs.

Size Operand—a byte operand which specifies the length of the field.
This operand must be in the range 0 through 32 or a reserved operand
fault occurs. The size operand will normally be a short literal if the field
is fixed.

Base Address—an address relative to which the position is used to
locate the bit field. The base address is obtained from an “address
access” type operand. Unlike other “address access” type operands,
register mode may be designated in the specifier. In this case, the field
is contained in register n designated by the operand specifier (or
R(n+1) concatenated with R(n)).

250

FIND FIRST
Purpose:
Format:

Operation:

Special Instructions

FF

locate first bit in bit field

opcode startpos.rl, size.rb, base.vb, findpos.wl

T

SIZE # START POS —=

%

7

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

Example:

-—
SEARCH FOR O OR 1

RESULT IS FIND POSITIVE

N < 0;
Z < {bit not found};
V<0
C<0

Reserved operand

EB FFC "Find First Clear
EA FFS Find First Set

A field specified by the start position, size, and base operands
is extracted. The field is tested for a bit in the state indicated by
the instruction starting at bit 0 and extending to the highest bit
in the field. If a bit in the indicated state is found, the find
position operand is replaced by the position of the bit and the
Z condition code bit is cleared. If no bitin the indicated state is
found, the find position operand is replaced by the position
(relative to the base) of a bit one position to the left of the
specified field and the Z condition code bit is set. If the size
operand is 0, the find position operand is replaced by the start
position operand and the Z condition code bit is set.

1. Areserved operand fault occurs if:
a. size GTRU 32

b. startpos GTRU 31, size NEQ 0, and the field is con-
tained in the registers

2. On areserved operand fault, the find position operand is
unaffected and the condition codes are unpredictable.

FIND FIRST SET
FFS #5, #20, Work, R3 ;Find first bit
;setin Work

251

Example:

Example:

Special Instructions |

Initial Conditions: i
Work = $X 00040000 (Bit 18 set) ‘
R3 = 00000000

After Instruction Execution:
Work $X 00040000
R3 = 00000012hex (18 decimal)

FIND FIRST CLEAR
FFC #5, #10, Work1, R2 ;Find first clear bit
;in Work 1

Initial Conditions:
Work1 = $XF00
R2 = 00000000

After Instruction Execution:

Work1 = $XF00

R2 = 00000008

When referencing memory, the startpos field may be greater
than 31. This provides an effective technique to search an
entire array for the first bit set (or clear)

CLRL RO ;start at bit 0
10$:FFS R0,#32,ARRAY,R0 ;RO is incremented
;by 32 for each
longword searched
BEQL10# ;search next
;longword

{RO is match bit index|}

The Find First instruction is thus useful when it is desired to
search for the first 1 or the first 0 in a string of bits. For exam-
ple, the operating system might contain a table where each bit
represents a block of data on a disk. If the bit is a 1, itindicates
that block of data is in use; if the bit is a 0, it indicates the block
is free. Consequently, if it is desired to find the first free block,
the user would issue a Find First Clear instruction which
searches for the first 0 bit in the table.

252

Special Instructions

EXT

EXTRACT FIELD

Purpose:
Format:

Operation:

EXTV

EXTZV

Condition
Codes:

Exceptions:

Opcodes:

Description:

moves bit field to integer
opcode pos.rl, size.rb, base.vb, dst.wl

EXTV:
dst < if size NEQU 0 then SEXT(FIELD(pos, size, base))

else 0

EXTZV:
dst « if size NEQU 0 the ZEXT(FIELD(pos, size, base))

else 0

L SIZE —} POSITION ——=

T
g O sien G %
it RIS

=)
1 1
SIGN| !
1 1
31 0
L SIZE J‘ POSITION —=
7/ / /
,‘/'/ 9
N _/

N <« dst LSS 0;
Z «—dstEQL O;
V «0;
C<0

Reserved operand

EE EXTV Extract Field
EF EXTZV Extract Zero-Extended Field

For EXTV, the destination operand is replaced by the sign-
extended field specified by the position, size, and base oper-

253

Notes:

Example:

Example:

S _

Special Instructions

ands. For EXTZV, the destination operand is replaced by the
zero-extended field specified by the position, size, and base
operands. If the size operand is 0, the only action is to replace
the destination operand with 0 and affect the condition codes.

An example of this instruction is to extract the four protection
bits (bits 27 through 30) from the memory management unit
Page Table Entry. The base address is the address of a long-
word operand containing these bits; the position operand
could be the number of bits from the base address to the
protection code; and the size operand would be 4 since the
protection code is 4 bits long. The destination operand would
specify where the protection bits are to be stored.

Since the protection code is not an arithmetic operand and
does not need to be sign-extended, the Extract Zero-Extended
Field instruction should be specified.

1. Areserved operand fault occurs if:
a. size GTRU 32

b. pos GTRU 31, size NEQ 0, and the field is contained
in the registers.

2. On a reserved operand fault, the destination operand is
unaffected and the condition codes are unpredictable.

EXTRACT FIELD
EXTV #5, #10, Work1, RO ;put bits 5 thru 14
;from Work1 into RO

Initial Conditions:
Work1 = 00004F04
RO = 00000000

After Instruction Execution:
Work1 = 00004F04
RO = FFFFFC78

EXTRACT FIELD, ZERO EXTENDED

EXTZV #5, #10, Work1, R1 ;put bits 5 thru 15
;from Work1 into R1
;and clear bits 11
thru 31

Initial Conditions:
Work1 = 00004F04
R1 =00000000

After Instruction Execution:
Work1 = 00004F04
R1 = 00000478

254

Special Instructions

COMPARE FIELD

CMP

Purpose: compare bit field to integer
Format: opcode pos.rl, size.rb, base.vb, src.rl
Operation: CMPV:
tmp <« if size NEQU 0 then SEXT(FIELD (pos, size, base)) else
0;
CMPZV:
tmp <« if size NEQU 0 then ZEXT(FIELD (pos, size, base)) else
0:
tmp — src;
CMPV l|= SIZE =||4 POSITION—=
COMPARE t\com PARE
31 0
CMPZV SIZE ~J,A POSITION—=
0 J
COMPARE COMPARE
SRC
31 0
Condition N < tmp LSS src;
Codes: Z < tmp EQL src;
V «0;
C <tmp LSSU src
Exceptions: Reserved operand
Opcodes: EC CMPV Compare Field
ED CMPZV Compare Zero-Extended Field

255

Description:

Notes:

Special Instructions

The field specified by the position, size, and base operands is
compared with the source operand. For CMPV, the source
operand is compared with the sign-extended field. For
CMP2ZV, the source operand is compared with the zero-ex-
tended field. The only action is to affect the condition codes.
1. Areserved operand fault occurs if:
a. size GTRU 32
b. pos GTRU 31, size NEQ 0 and the field is contained
in the registers.
2. On areserved operand fault, the condition codes are un-
predictable.

256

Special Instructions

INSV
INSERT FIELD
Purpose: move integer to bit field
Format: opcode src.rl, pos.rl, size.rb, base.vb
Operation: if size NEQU then FIELD(pos, size, base) < src <{size —1}>;
IGNORED
31 N 0,
Xﬁ;, o 2 sion A
!— SIZE —|,= POSITION——=
Condition N <« N;
Codes: <2
V<V,
C<«C
Exceptions: Reserved operand
Opcodes: FO INSV Insert Field

Description: The field specified by the position, size, and base operands is
replaced by bits size 1:0 of the source operand. If the size
operand is 0, the only action is to affect the condition codes.

Notes: 1. Areserved operand fault occurs if:
a. size GTRU 32
b. pos GTRU 31, size NEQ 0, and the field, is contained
in the registers.

2. On areserved operand fault, the field is unaffected and
the condition codes are unpredictable.

Example: INSERT FIELD
INSV RO, #16, #10, Work ;put bits 0 thru 9
;of RO into bits 16 thru
;25 of Work

Initial Conditions:
Work = FFFFFFFF
RO = 00000078

After Instruction Execution:
Work = FC78FFFF
RO = 00000078

257

258

CHAPTER 13
CONTROL INSTRUCTIONS

This chapter describes the branch, loop, control, subroutine, case,
and call classes of instructions. In most implementations of the, VAX
architecture, improved execution speed will result if the target of a
control instruction is on an aligned longword boundary, but this is not
arequirement.

BRANCH AND JUMP INSTRUCTIONS

The two basic types of control transfer instructions are Branch and
Jump instructions. Both Branch and Jump load new addresses in the
Program Counter. With Branch instructions, you supply a displace-
ment (offset) which is added to the current contents of the Program
Counter to obtain the new address, while with Jump instructions, you
supply the address you want loaded, using one of the normal address-
ing modes. B

Because most transfers are to locations relatively close to the current
instructions, and because Branch instructions take less space than
Jump instructions, the processor offers a variety of Branch instruc-
tions to choose from. There are two unconditional Branch instructions
and many Conditional Branch instructions, such as Branch on Less
Than and Branch on Less Than Unsigned.

The Unconditional Branch instructions allow you to specify a byte-size
(BRB) or word-size displacement (BRW), which means you can branch
to locations as far from the current location as 32,767 (i.e., 12 (2'¢ —1))
bytes in either direction. For control transfers to locations farther
away, use the Jump instruction (JMP).

Two special types of Branch and Jump instruction are provided for
calling subroutines: Branch to Subroutine (BSB) and Jump to
Subroutine (JSB). Both BSB and JSB instructions save the contents of
the Program Counter on the stack before loading the Program Coun-
ter with the new address. With Branch to Subroutine, you can supply
either a byte (BSBB) or word (BSBW) displacement.

259

Control Instructions

This shortcut to subroutine calling is complemented by the Return
from Subroutine (RSB) instruction. RSB pops the first longword off the
stack and loads it into the Program Counter. Since the Branch to
Subroutine instruction is either two or three bytes long, and the Return
from Subroutine instruction is one byte long, it is possible to write
extremely efficient programs using subroutines.

Dispatching to a routine based on the value of a variable occurs fre-
quently enough that some high-level languages include special con-
structs to handle it, such as the computed GO TO in FORTRAN and the
Case statement in PASCAL. Because of this, the VAX instruction set
includes a Case instruction so that such control structures can be
represented efficiently. Not only does Case handle the transfer of con-
trol, but it also handles the initialization and bounds checking for the
INDEX variable.

The objective of the Case statement is to transfer control to one of n
locations based on the value of the integer selector operand. The base
operand specifies the lower bound for selector. Following the Case
instruction is a table of word displacements for the n branch locations.
Just as the displacements in branch instructions are added to the PC
to give the branch destination, these word displacements are added to
the address of the first displacement to form the Case branch
destinations.

260

Control Instructions

BRANCH ON (CONDITION)

Purpose:
Format:
Operation:

Condition
Codes:

Exceptions:
Opcodes:

Description:

test condition code
opcode displ.bb
if condition then PC <- PC + SEXT (displ);

N < N;
Z<2Z
V<V,
C<C
None
CONDITION
12 ZEQLO BNEQ Branch on Not Equal
(signed)
BNEQU Branch on Not Equal
Unsigned
13 ZEQL1 BEQL Branch on Equal
(signed)
BEQLU Branch on Equal
: Unsigned
14 {NORZJEQLO BGTR Branch on Greater
Than (signed)
15 {NORZJEQL 1 BLEQ Branch on Less Than
or Equal (signed)
18 NEQLO BGEQ Branch on Greater
Than or Equal (signed)
19 NEQL1 BLSS Branch on Less
Than (signed)
1A {CORZJEQLO BGTRU Branch on Greater Than
Unsigned

1B {CorZJEQL1 BLEQU Branch Less Than or
Equal Unsigned

1C VEQLO BVC Branch on Overflow
Clear
1D VEQL1 BVS Branch on Overflow Set
1E CEQLO BGEQU Branch on Greater
Than or Equal Unsigned
BCC Branch on Carry Clear
1F CEQL1 BLSSU Branch on Less Than
Unsigned
BCS Branch on Carry Set

The condition codes are tested, and if the condition indicated
by the instruction is met, the sign-extended branch displace-
ment is added to the PC and PC is replaced by the result.

261

Notes:

Control Instructions

The VAX conditional branch instructions permit considerable
flexibility in branching but you need to exercise some care to
choose the correct one. The conditional branch instructions
are divided into 3 overlapping groups:

1. The Overflow and Carry Group

BVS VEQL1
BVC VEQLO
BCS CEQL1
BCC CEQLO

These instructions are typically used to check for overflow
(when overflow traps are not enabled), for multiprecision
arithmetic, and for other special purposes.

2. The Unsigned Group

BLSSU ° CEQL 1
BLEQU {CorZ} EQL 1
BEQLU ZEQL1
BNEQU ZEQLO
BGEQU CEQLO
BGTRU {CORZ}EQLO

These instructions typically foliow integer and field in-
structions where the operands are treated as unsigned
integers, addressed instructions, and character string in-

structions.
3. The Signed Group

BLSS NEQL 1

BLEQ {NORZJEQL 1
BEQL ZEQL1

BNEQ ZEQLO

BGEQ NEQLO

BGTR {NORZJEQLO

These-instructions typically follow integer and field in-
structions where the operands are .being treated as
signed integers, floating point instructions, and decimal
string instructions.

262

Control Instructions

BR
JMP

BRANCH, JUMP

Purpose:
Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

transfer control

opcode displ.bx !Branch
opcode dst.ab Jump

PC <« PC +SEXT (displ); IBranch

PC <« dst; IJump
N<N;

Z<Z,

V<V,

C<«C

None

11 BRB Branch With Byte Displacement
31 BRW Branch With Word Displacement
17 JMP Jump :

For Branch, the sign-extended branch displacement is added
to PC and PC is replaced by the result. For Jump, the PC is
replaced by the destination operand.

263

Control Instructions

BRANCH ON BIT

Purpose:
Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

test selected bit
opcode pos.rl, base.vb, displ.bb

teststate = if {(BBS} then 1 else 0;
if FIELD (pos, 1, base) EQL teststate then
PC < PC + SEXT (displ);

N < N;
Z<7;
V<V,
C<«C

Reserved operand

EO BBS Branch on.Bit Set
E1 BBC Branch on Bit Clear

The single bit field specified by the position and base oper-

ands is tested. If it is in the test state indicated by the instruc-

tion, the sign-extended branch displacement is added to PC

and PC is replaced by the result.

1. Areserved operand fault occurs if pos GTRU 31 and the
bitis contained in a register.

2. On areserved operand fault, the condition codes are un-
predictable.

264

Control Instructions

BRANCH ON BIT (AND MODIFY WITHOUT INTERLOCKED)

Purpose:
Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

test and modify selected bit
opcode pos.rl, base.vb, displ.bb

teststate = if {(BBSS or BBSC]} then 1 else 0;
newstate = if {BBSS or BBCS} then 1 else 0;
temp < FIELD (pos, 1, base);

FIELD (pos, 1, base) <— newstate;

if tmp EQL teststate then

PC < PC + SEXT (displ);

N<N:
Z<2
V<V;
C<C

Reserved operand

E2 BBSS Branch on Bit Set and Set

E3 BBCS Branch on Bit Clear and Set
E4 BBSC Branch on Bit Set and Clear
E5 BBCC Branch on Bit Clear and Clear

The single bit field specified by the position and base oper-
ands is tested. If it is in the test state indicated by the
instruction, the sign-extended branch displacement is added
to PC and PC is replaced by the result. Regardless of whether
the branch is taken or not, the tested bit is put in the new state
as indicated by the instruction.

1. A reserved operand fault occurs if pos GTRU 31 and the
bitis contained in a register.

2. On a reserved operand fault, the field is unaffected and
the condition codes are unpredictable.

3. The modification of the bit is not an interlocked operation.
See BBSSI and BBCCI for interlocking instructions.

265

BRANCH ON BIT INTERLOCKED

Purpose:
Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

Example:

test and modify selected bit under memory interlock
opcode pos.rl, base.vb, displ.bb

teststate = if {BBSSI} then 1 else 0;
newstate = teststate;

{set interlock};

temp <« FIELD (pos, 1, base);
FIELD (pos, 1, base) < newstate;
{release interlock};

if tmp EQL teststate then

PC < PC + SEXT (displ);

N<N;
Z<2Z
V<V,
C<C

Reserved operand

E6 BBSSI Branch on Bit Set and Set Interlocked
E7 BBCCI Branch on Bit Clear and Clear Interlocked

The single bit field specified by the position and base oper-
ands is tested. If it is in the test state indicated by the instruc-
tion, the sign-extended branch displacement is added to the
PC and PC is replaced by the result. Regardless of whether the
branch is effected or not, the tested bit is put in the new state
as indicated by the instruction. If the bit is contained in memo-
ry, the reading of the state of the bit and the setting of it to the

-new state constitute an interlocked operation, interiocked

against similar operations by other processors or devices in
the system.

1. Avreserved operand fault occurs if pos GTRU 31 and the
bitis contained in registers.

2. On a reserved operand fault, the field is unaffected and
the condition codes are unpredictable.

3. Except for memory interlocking, BBSSI is equivalent to
BBSS and BBCCl is equivalent to BBCC.

This instruction is designed to implement interlock with other
processors or devices. For example, to implement “busy wait-
ing”:

1$: BBSSI bit,base,1$

266

BLB

BRANCH ON LOW BIT

Purpose: test bit

Format: opcode src.rl, displ.bb

Operation: teststate = if (BLBS} then 1 else 0;
if src<0> EQL. teststate then
PC < PC + SEXT (displ);

Condition N < N;

Codes: Z<2Z;
V<V;
C<«C

Exceptions: None

Opcodes: E8 BLBS Branch on Low Bit Set
E9 BLBC Branch on Low Bit Clear

Description: The low bit (bit 0) of the source operand is tested and if it is
equal to the test state indicated by the instruction, the sign-
extended branch displacement is added to PC and PC is re-
placed by the result.

Notes: The source operand is taken with longword context although
only one bit is tested.

Example: BLBC RO, ERROR

ERROR:

IF the low bit of the contents of RO is 0, then the program
branches to ERROR. This could be used as a parity check.

267

LOOP CONTROL INSTRUCTIONS

ACB
ADD COMPARE AND BRANCH
Purpose: maintain loop count and loop
Format: opcode limit.rx, add.rx, index.mx, displ.bw
Operation: index < index + add;
if { {add GEQ 0} AND {index LEQ limit} } OR
{ {add LSS 0} AND {index GEQ limit} } then
PC < PC + SEXT (displ);
Condition N <« index LSS 0;
Codes: Z < index EQL 0;
V < {integer or floating overflow};
C<C
Exceptions: Integer overflow
Floating overflow
Floating underflow
Reserved operand
Opcodes: 9D ACBB Add Compare and Branch Byte
3D ACBW Add Compare and Branch Word
F1 ACBL Add Compare and Branch
Longword
4F ACBF Add Compare and Branch
F_floating
6F ACBD Add Compare and Branch
D_floating
4FFD ACBG Add Compare and Branch
G_floating
6FFD ACBH Add Compare and Branch
H_floating

Description: The addend operand is added to the index operand and the
index operand is replaced by the result. The index operand is
compared with the limit operand. If the addend operand is
positive (or 0) and the comparison is less than or equal, or if
the addend is negative and the comparison is greater than or
equal, then the sign-extended branch displacement is added
to PC and PC is replaced by the result.

Notes: 1. ACB efficiently implements the general FOR or DO loops
in high-level languages, since the sense of the compari-
son between index and limit is dependent on the sign of
the addend.

268

On integer overflow, the index operand is replaced by the
low order bits of the true result. Comparison and branch
determination proceed normally on the updated index
operand.

On floating underflow and floating overlow, the actions
taken depend upon the VAX processor being used.

On a reserved operand fault, the index operand is unaf-
fected and the condition codes are unpredictable.

Except for 4 above, the C-bit is unaffected.

269

AOB

ADD ONE AND BRANCH

Purpose: increment integer loop count and loop

Format: opcode limit.rl, index.mi, displ.bb

Operation: index <—index +1;
if index LSS limit IAOBLSS
then PC < PC + SEXT (displ);
if index LEQ limit IAOBLEQ
then PC < PC + SEXT (displ);

Condition N «index LSS 0;

Codes: Z < index EQL O;
V < {integer overflow};
C<«C

Exceptions: Integer overflow

Opcodes: F2 AOBLSS Add One and Branch Less Than
F3 AOBLEQ Add Oneand Branch Less Than

or Equal

Description: One is added to the index operand and the index operand is
replaced by the result. The index operand is compared with
the limit operand. On AOBLSS, if it is less than, the branch is
taken. On AOBLEQ, if it is less than or equal, the branch is
taken. If the branch is taken, the sign-extended branch dis-
placement is added to the PC and the PC is replaced by the
result.

Notes: 1. Integer overflow occurs if the index operand before addi-

tion is the largest positive integer. On overflow, the index
operand is replaced by the largest negative integer, and
thus (unless the limit operand is the largest negative in-
teger on AOBLSS) the branch is taken.

2. The C-bitis unaffected.

270

SOB

SUBTRACT ONE AND BRANCH
Purpose: decrement integer loop count and loop
Format: opcode index.ml, displ.bb
Operation: index <index —1;
Ifindex GEQ 0 then ISOBGEQ
PC <« PC + SEXT (displ);
index < index -1;
Ifindex GTR 0 then ISOBGTR
PC <« PC + SEXT (displ);
Condition N <« index LSS 0;
Codes: Z < index EQL 0;
V < {integer overflow};
C<C
Exceptions: Integer overflow
Opcodes: F4 SOBGEQ Subtract One and Branch Greater
Than or Equal
F5 SOBGTR Subtract One and Branch Greater
Than
Description: One is subtracted from the index operand and the index
operand is replaced by the result. On SOBGEQ, if the index
operand is greater than or equal to 0, the branch is taken. On
SOBGTR, if the index operand is greater than 0, the branch is
taken. If the branch is taken, the sign-extended branch dis-
placement is added to the PC and the PC is replaced by the
result.
Notes: 1. Integer overflow occurs if the index operand before sub-

traction is the largest negative integer. On overflow, the
index operand is replaced by the largest positive integer,
and thus the branch is taken.

2. The C-bitis unaffected.

271

Example:

MOVL #1,R1

MOVL #5, RO
LOOP:

MULL2 RO, R1

SOBGTR RO,
LOOP

The procedure implements 5! calculation. The result of the first
multiplication (5) is placed in R1; RO is reduced to 4; the next
multiplication yields places 20 in R1; and so on. Procedure
continues as long as the value in RO is greater than or equal to
0.

272

CASE INSTRUCTIONS

CASE
Purpose:

Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

CASE

perform multiway branching depending on arithmetic input
opcode selector.rx, base.rx, limit.rx,
displ[0].bw,...,displ[limit].bw

tmp <« selector — base;
PC < PC + if tmp LEQU limit then
SEXT (displ [tmp]) else {2 + 2*SEXT (limit)};

N <tmp LSS limit;
Z < tmp EQL limit;

V <0;

C < tmp LSSU limit

None

8F CASEB Case Byte

AF CASEW Case Word

CF CASEL Case Longword

The base operand is subtracted from the selector operand and
a temporary is replaced by the result. The temporary is com-
pared with the limit operand and if it is less than or equal
unsigned, a branch displacement selected by the temporary
value is added to PC and PC is replaced by the result. Other-
wise, 2 times the sum of the limit operand plus 1 is added to
PC and PC is replaced by the result. This causes PC to be
moved past the array of branch displacements. Regardless of
the branch taken, the condition codes are affected by the com-
parison of the temporary operand with the limit operand.

1. After operand evaluation, PC is pointing ét displ[0], not
the next instruction. The branch displacements are rela-
tive to the address of displ[0].

2. The selector and base operands can both be considered
either as signed or unsigned integers.

273

Example:

This instruction implements high-level language computed GO
TO statements. You supply a list of displacements that
generate different branch addresses depending on the value
you obtain as a selector. The branch falls through if the selec-
tor does not generate any of the displacements on the list.

The FORTRAN STATEMENT
GO TO (10, 20, 30), I
is equivalent to

CASEL |, #1, #3 ;only values 1,2,3 are valid
1$.WORD 10$—1$,#3 ;if1

.WORD 20-1% jif2

.WORD 20-1 ;if3

;fall through if out of range

10$:

20$:

30%:

274

SUBROUTINE INSTRUCTIONS

BSB
JSB
BRANCH TO SUBROUTINE
JUMP TO SUBROUTINE
Purpose: transfer control to subroutine
Format: opcode displ.bx Ibranch to subroutine
opcode dst.ab ljump to subroutine
Operation: —(SP) < PC;
PC < PC + SEXT (displ);!branch to subroutine
PC «dst ljump to subroutine
Condition N<N;
Codes: Z<12;
V<V,
C<C
Exceptions: None
Opcodes: 10 BSBB Branch to Subroutine with Byte
Displacement
30 BSBW Branch to Subroutine with Word
Displacement
16 JSB Jump to Subroutine
Description: PC is pushed on the stack as a longword. For Branch, the sign-
extended branch displacement is added to PC and PC is re-
placed by the result. For Jump, PC is replaced by the destina-
tion operand.
Notes: Since the operand specifier conventions cause the evaluation

of the destination operand before saving PC, JSB can be used
for coroutine calls, with the stack used for linkage. The form of
such acall is JSB @(SP)+.

275

RSB

RETURN FROM SUBROUTINE

Purpose:
Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

return control from subroutine
opcode
PC < (SP)+;

N <N;
<2
V<V,
C<C

None
05 RSB Return from Subroutine
PC is replaced by a longword popped from the stack.

1. RSB is used to return from subroutines called by the
BSBB, BSBW, and JSB instructions.

2. RSBisequivalentto JMP @(SP)+, but is shorter.

276

PROCEDURE CALL INSTRUCTIONS

Procedures are general purpose routines that use argument lists
passed automatically by the processor and use only local variables for
data storage. A procedure call instruction provides several services. It:

e Saves all the registers that the procedure uses, and only those
registers, before entering the procedure

e Passes an argument list to a procedure

e Maintains the Stack, Frame, and Argument Pointers
® Sets the arithmetic trap enables to a specific state

Three instructions are used to implement a standard procedure call-
ing interface. Two instructions implement the Call to the procedure;
the third implements the matching Return. CALLG calls a procedure
with the argument list actuals (i.e., actual arguments rather than for-
mal arguments) in an arbitrary location. The CALLS instruction calls a
procedure with the argument list actuals on the stack. Upon return
after a CALLS this list is automatically removed from the stack. Both
call instructions specify the address of the entry point of the procedure
being called. It is assumed to consist of a word termed the entry mask
followed by the procedure’s instructions. The procedure terminates by
executing a RET instruction.

The entry mask specifies the subprocedure’s register use and over-
flow enables:

|70V I v ‘ MBZ } REGISTERS
s ' I L L s

1 1 L L L 1

On Call the stack is aligned to a longword boundary and the trap
enables in the PSW are set to a known state to ensure consistent
behavior of the called procedure. Integer overflow enable and numeric
overflow enable are affected according to bits 14 and 15 of the entry
mask respectively; floating underflow enable is cleared.

R11 through RO, specified by bits 11 through 0, respectively, are saved
on the stack and are restored by the RET instruction. The procedure
calling standard requires that all registers in the range R2 through R11
used in the procedure must appear in the mask. In addition, the Call
instructions always preserve PC, SP, FP, and AP. Thus, a procedure
can be considered equivalent to a complex instruction which stores a
value into RO and R1, affects memory, and clears the condition codes.
If the procedure has no function value, the contents of RO and R1 are
unpredictable.

277

In order to preserve the state, the Call instructions form a structure on
the stack termed a Call Frame or Stack Frame. This contains the saved
registers, the saved PSW, the register save mask, and several control
bits. The frame also includes a longword which the Call instructions
clear; this is used to implement the condition handling facility. (Refer
to Appendix C.) At the end of execution of the Call instruction, FP
contains the address of the Stack Frame. The RET instruction uses the
contents of FP to find the Stack Frame and restore state. The condition
handling facility assumes that FP always points to the Stack Frame,
which has the following format:

CONDITION HANDLER (INITIALLY 0) :(FP)

SPA [SIOI MASK <11:0> PSW <15:5> 0

SAVED AP

SAVED FP

SAVED PC

SAVED RO (- - - -)

.
.
L SAVED RI1(- - -)

(0 TO 3 BYTES SPECIFIED BY SPA, STACK POINTER ALIGNMENT)
S BIT=SET IF CALLS; CLEAR IF CALLG.

Note that the saved condition codes and the saved trace enable are
cleared. The contents of the frame PSW <3:0> at the time RET is
executed will become the condition codes resulting from the execution
of the procedure.

The software defines symbolic names for the fixed fields in the call
frame as follows:

Mnemonic Value Meaning

SF$A HANDLER 0 condition handler
SF$W_SAVE PSW 4 . saved PSW
SF$W_SAVE: MASK 6 offset, CALLS, and mask
SF$L_SAVE-AP 8 saved AP
SF$L_SAVE_FP 12 saved FP (backward link)
SF$L_SAVE_PC 16 saved PC

SF$L_SAVE REGS 20 start of saved R0..R11

278 {

The savepsw fields have symbolic names as follows:

SF$a_C <0> saved C condition code

SF$a_V <1> saved V condition code

SF$a_Z <2> saved Z condition code

SF$a_N <3> saved N condition code

SF$a_TBIT <4> saved trace enable

SF$a_IV <5> saved integer overflow enable

SF$a_FU <6> saved floating underflow
enable

SF$a_DV <7> saved divide overflow enable

The save_mask fields have these symbolic names:

SF$b_SAVE_MASK <11:0> register mask
SF$b_CALLS <13> CALLS flag
SF$b STACKOFFS <15:14> stack alignment

a = M,S, or V for mask, size, or position
b = S or V for size or position

These names are defined by the $SFDEF macro in the system library.

279

CALLG

CALL PROCEDURE WITH GENERAL ARGUMENT LIST

Purpose:

Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

invoke a procedure with actual arguments from anywhere in
memory

opcode arglist.ab, dst.ab

{align stack};

{create stack frame};

{set arithmetic trap enables};
{set new values of AP, FP, PC}

N «0;
Z<0;
V <«0;
C<0

Reserved operand

FA CALLG Call Procedure with General
Argument List

SP is saved in a temporary and then bits 1:0 are replaced by 0
so that the stack is longword aligned. The procedure entry
mask is scanned from bit 11 to bit 0 and the contents of regis-
ters whose number corresponds to set bits in the mask are
pushed on the stack as longwords, along with PC, FP, and AP.
The condition codes are cleared. A longword containing the
saved two low bits of SP in bits 31:30, a 0 in bit 29 and bit 28,
the low 12 bits of the procedure entry mask in bits 27:16, and
the PSW in bits 15:0, with T cleared, is pushed on the stack. A
longword 0 is pushed on the stack. FP is replaced by SP. AP is
replaced by the arglist operand which specifies the address of
the actual argument list. The trap enables in the PSW are set to
a known state. Integer overflow and decimal overflow are
affected according to bits 14 and 15 of the entry mask respec-
tively; floating underflow is cleared. T-bit is unaffected. PC is
replaced by the sum of destination operand and 2, which
transfers control to the called procedure at the byte beyond
the entry mask.

:(SP)
STACK :(FP)

FRAME

(0 TO 3 BYTES SPECIFIED BY SPA)

280

Notes:

If bits 13:12 of the entry mask are not 0, a reserved oper-
and fault occurs.

On a reserved operand fault, conditon codes are unpred-
ictable.

The procedure calling standard and the condition han-
dling facility require the following register saving conven-
tions. RO and R1 are always available for function return
values and are never saved in the entry mask. All
registers 2 through 11 which are modified in the called
procedure must be preserved in the mask. (Refer to Ap-
pendix C.)

281

CALLS

CALL PROCEDURE WITH STACK ARGUMENT LIST

Purpose: invoke a procedure with actual arguments or addresses on the
stack

Format: opcode numarg.rl,dst.ab

Operation: {push arg count};
{align stack]};

{create stack frame};
{set arithmetic trap enables};
{set new values of AP, FP, PC}

Condition N<0;
Codes: Z<0;
V <0;
C<0
Exceptions: Reserved operand
Opcodes: FB CALLS Call Procedure With Stack Argument List

Description: The numarg operand is pushed on the stack as a longword
(byte 0 contains the number of arguments; the high-order 24
bits are used by DIGITAL software). SP is saved in a temporary
and then bits 1:0 of SP are replaced by 0 so that the stack is
longword aligned. The procedure entry mask is scanned from
bit 11 to bit 0 and the contents of register whose number cor-
responds to set bits in the mask are pushed on the stack. PC,
FP, and AP are pushed on the stack as longwords. The condi-
tion codes are cleared. A longword containing the saved two
low bits of SP in bits 31:30, a 1 in bit 29, a 0 in bit 28, the low 12
bits of the procedure entry mask in bits 27:16, and the PSW in
bits 15:0 with T cleared is pushed on the stack. A longword 0 is
pushed on the stack. FP is replaced by SP. AP is set to the
saved SP (the value of the Stack Pointer after the number of
arguments operand was pushed on the stack). The trap en-
ables in the PSW are set to a known state. Integer overflow and
decimal overflow are affected according to bits 14 and 15 of
the entry mask, respectively; floating underflow is cleared; the
T-bit is unaffected. AP is replaced by the saved SP. PC is
replaced by the sum of destination operand and 2, which
transfers control to the called procedure at the byte beyond
the entry mask. The appearance of the stack after CALLS is
executed is:

282

:(sP)
STACK :(FP)

FRAME

(0 TO 3 BYTES SPECIFIED BY, SPA)

NUMARG | (AP)

l
'

NUMARG LONGWORDS OF ARGUMENT LIST ! %

Notes:

If bits 13:12 of the entry mask are not 0, a reserved oper-
and fault occurs.

On a reserved operand fault, the condition codes are un-
predictable.

Normal use is to push the arglist onto the stack in reverse
order prior to the CALLS. On return, the arglist is re-
moved from the stack automatically.

The procedure calling standard and the condition han-
dling facility require the following register saving
conventions. RO and R1 are always available for function
return values and are never saved in the entry mask. All
registers 2 through 11 which are modified in the called
procedure must be preserved in the entry mask.

283

RET

RETURN FROM PROCEDURE

Purpose: transfer control from a procedure back to calling program
Format: opcode
Operation: {restore SP from FP};

{restore registers};
{drop stack alignment};
{If CALLS, remove arglist};

{restore PSW};
Condition N <—tmp1<3>;
Codes: Z < tmp1<2>;
V<—tmpi<1>;
C < tmp1<0>

Exceptions: Reserved operand
Opcodes: 04 RET Return From Procedure

Description: SP is replaced by FP plus 4. A longword containing stack
alignment bits in bits 31:30, a CALLS/CALLG flag'in bit 29, the
low 12 bits of the procedure entry mask in bits 27:16, and a
saved PSW in bits 15:0 is popped from the stack and saved in
a temporary. PC, FP, and AP are replaced by longwords
popped from the stack. A register restore mask is formed from
bits 27:16 of the temporary. Scanning from bit 0 to bit 11 of the
restore mask, the contents of registers whose number is indi-
cated by set bits in the mask are replaced by longwords
popped from the stack. SP is incremented by bits 31:30 of the
temporary. PSW is replaced by bits 15:0 of the temporary. If bit
29 in the temporary is 1 (indicating that the procedure was
called by CALLS), a longword containing the number of argu-
ments is popped from the stack. Four times the unsigned value
of the low byte of this longword is added to SP and SP is
replaced by the result.

Notes: 1. Avreserved operand fault occurs if tmp1<15:8> NEQ 0.
2. On areserved operand fault, the condition codes are un-
predictable. The value of tmp1<28> is ignored.
3. The procedure calling standard and condition handling
facility assume that procedures which return a function
value or a status code do so in RO or RO and R1.

284

e —

286

CHAPTER 14

CHARACTER STRING INSTRUCTIONS AND THE
CYCLIC REDUNDANCY CHECK

CHARACTER STRING INSTRUCTIONS
A character string is specified by two operands:

1. An unsigned word operand which gives the length of the charac-
ter string in bytes.

2. The address of the lowest addressed byte of the character string.
This is specified by a byte operand of address access type.

Each of the character string instructions uses general registers (R0
and R1, RO through R3, or RO through R5) to contain a control block
which maintains updated addresses and state information during the
execution of the instruction. At completion, these registers are avail-
able to software to use as string specification operands for a subse-
quent instruction. During the execution of the instructions, pending
interrupt conditions are tested and if any are found, the control block
is updated, a first part done (FPD) bit is set in the PSL, and the instruc-
tion is interrupted. After the interruption, the instruction resumes
transparently. The format of the control block is:

I LENGTH 1 1RO
ADDRESS 1 :R1
] LENGTH 2 :R2
ADDRESS 2 *R3
I LENGTH 3 :R4
ADDRESS 3 :RS

The fields LENGTH 1, LENGTH 2, and LENGTH 3 (if required) contain
the number of bytes remaining to be processed in the first, second,
and third string operands respectively. The fields ADDRESS 1, AD-
DRESS 2, and ADDRESS 3 (if required) contain the address of the
next byte to be processed in the first, second, and third string oper-
ands respectively.

287

Character String Instructions

MOVC
MOVE CHARACTER
Purpose: to move character string or block of memory
Format: opcode len.rw, srcaddr.ab, dstaddr.ab 13 operand
opcode srclen.rw, srcaddr.ab, fill.rb 15 operand
dstlen.rw, dstaddr.ab
Operation:
MOVC3,
MOVCS5 If src len =dst len dst adr
len

src_adr

len

L C=0,2=1

MOVCS5 If sre len >dst len

S
- } / 1

dst adr

src len
l C=0,2=0
MQVCS5 If src len < dst len dst adr
{ dst len
src_adr _l_
fill
src len
€=1,2:0
Condition N <« 0; IMOVC3
Codes: Z<1;
V<0
C<0

288

Exceptions:
Opcodes:

Description:

Notes:

Character String Instructions

N < srclen LSS dstlen; IMOVC5
Z < srclen EQL dstlen;

V<«0;

C <« srclen LSSU dstlen

None

28 MOVC3 Move Character 3 Operand
2C MOVC5 Move Character 5 Operand

The destination string is replaced by the source string. If the
destination string is longer than the source string, the highest
address bytes of the destination are replaced by the fill oper-
and; whereas, if the destination string is shorter that the source
string, the highest addressed bytes of the source string are not
moved. The operation of the instruction is such that overlap of
the source and destination strings does not affect the resuit.

1.

After execution of MOVC3:

RO = 0

R1 = address of one byte beyond the
source string

R2 = 0

R3 = address of one byte beyond the
destination string

R4 = 0

R5 = 0

After execution of MOVCS:

RO = number of unmoved bytes

remaining in source string;
RO is nonzero only

if source string is longer than
destination string

R1= address of one byte beyond
the last byte in source
string that was moved

R2= 0

R3 = address of one byte beyond
the destination string

R4 = 0

‘R5 = 0

MOVCS3 is the preferred way to copy one block of memory
to another.

MOVC5 with a 0 source length operand is the preferred
way to fill a block of memory with the fill character.

289

Character String Instructions

MOVTC

MOVE TRANSLATED CHARACTERS

Purpose:
Format:

Operation:

to move and translate character string

opcode srclen.rw, srcaddr.ab, fill.rb, tbladdr.ab, dstlen.rw,
dstaddr.ab

MOVTC src len<dst len

tbl adr

fill

256

each
stc

character

NOTE: THE CASE OF src len = dst len AND src len>dst len
SIMILAR TO THAT SHOWN INTHE MOVC5 INSTRUCTION

Condition
Codes:

Exceptions:

Opcodes:

Description:

N <srclen LSS dstlen;
Z <srclen EQL dstlen;
V<0;

C <« srclen LSSU dstlen

None
2E MOVTC Move Translated Characters

The source string is translated and replaces the destination
string. Translation is accomplished by using each byte of the
source string as an index into a 256-byte table whose zeroth
entry address is specified by the table address operand. The
byte selected replaces the byte of the destination string. If the
destination string is longer than the source string, the highest
addressed bytes of the destination string are replaced by the
fill operand. If the destination string is shorter than the source
string, the highest addressed bytes of the source string are not
translated and moved. The operation of the instruction is such
that overlap of the source and destination strings does not
affect the result. If the destination string overlaps the transla-
tion table, the destination string is unpredictable.

290

Notes:

Character String Instructions

After execution:

RO = number of translated bytes
remaining in source string;
RO is nonzero
only if source string is longer
than destination string

R1 = address of one byte beyond
the last byte in source string
that was translated

R2 = 0

R3 = address of the translation
table

R4 = 0

R5 = addreés of one byte beyond

the destination string

291

Character String Instructions

MOVTUC

MOVE TRANSLATED UNTIL CHARACTER

Purpose:

Format:

Operation:

MOVTUC

STOP IF OUTPUT = esc

To move and translate character string, handling escape
codes

opcode srclen.rw, srcaddr.ab, esc.rb, tbladdr.ab, dstien.rw,
dstaddr.ab

tbl adr

NO FILL CHARACTERS
V SET IF esc
Z SET IF SAME SIZE
C SET IF src len<dst

Condition
Codes:

Exceptions:
Opcodes:
Description:

N <—srclen LSS dstlen;

Z < srclen EQL dstlen;

V < {terminated by escape};
C < srclen LSSU dstlen

None
2F MOVTUC Move Translated Until Character

The source string specified is translated and replaces the des-
tination string. Translation is accomplished by using each byte
of the source string as an index into a 256-byte table whose
zeroth entry address is specified by the table address oper-
and. The byte selected replaces the byte of the destination
string. Translation continues until a translated byte is equal to
the escape byte or until the source string or destination string
is exhausted. If translation is terminated because of escape,
the condition code V bit is set; otherwise, it is cleared. If the
destination string overlaps the table, the destination string and
RO through R5 are unpredictable. If the source and destination
strings overlap and their addresses are not identical, then,

292

Notes:

Character String Instructions

again, the destination string and RO through R5 are unpredic-
table. If the source and destination string addresses are identi-
cal, the translation is performed correctly.

After execution:

RO = number of bytes remaining in
source string (including the
byte which caused the escape);
RO is zero only if the
entire source string was
translated and moved
without escape

R1 = address of the byte which
resulted in destination
string exhaustion or escape;
or if no exhaustion or
escape, R1 = address of one
byte beyond the source string

R2 = 0

R3 = address of the table

R4 = number of bytes remaining in the
destination string

R5 = address of the byte in the des-

tination string which would
have received the translated
byte that caused

the escape or would have
received a translated byte if

the source string were not
exhausted; or if no exhaustion
or escape, R1 = address of one
byte beyond the destination
string

293

Character String Instructions

CMPC
COMPARE CHARACTERS
Purpose: to compare two character strings
Format: opcode len.rw, src1addr.ab, src2addr.ab 13 operand
opcode srcilen.rw, srciaddr.ab, fill.rb 15 operand
src2len.rw, src2addr.ab
Operation:
src?
CMPC3
CMPC5
srcl COMPARE BYTES %7
IN ORDER FROM
%START OF STRING PORLLIE !
1 srclen !
| >
| sre 2len :
[S ——— pu}
| FILLIF |
lsrc 1len |
oS
| src 2 len |
NOTE: CONDITION CODES SET ON LAST COMPARE DONE
Condition IFinal condition codes reflect last affecting
Codes: lof condition codes in the operation.
N < {first byte} LSS {second byte};
Z < {first byte} EQL {second byte};
V<0
C < {first byte} LSSU {second byte}
Exceptions: None
Opcodes: 29 CMPC3 Compare Characters 3 Operand
2D CMPC5 Compare Characters 5 Operand
Description: In 3-operand format, the bytes of string 1 specified by the

length and address 1 operands are compared with the bytes of
string 2 specified by the length and address 2 operands.
Comparison proceeds until inequality is detected or until all
the bytes of the strings have been examined. Condition codes
are affected by the result of the last byte comparison. In 5-
operand format, the bytes of the string 1 specified by the
length 1 and address 1 operands are compared with the bytes
of string 2 specified by the length 2 and address 2 operands. If
one string is longer than the other, the shorter string is con-
ceptually extended to the length of the longer by appending (at
higher addresses) bytes equal to the fill operand. Comparison
proceeds until inequality is detected or all the bytes of the
strings have been examined. Condition codes are affected by
the result of the last byte comparison.

294

Notes:

Character String Instructions

After execution of CMPC3:

RO =

R1 =

number of bytes remaining in
string 1 (including byte

which terminated comparison);
RO is zero only if strings

are equal

address of the byte in string

1 which terminated comparison;
if strings are equal,

R1 = address of

one byte beyond string 1

RO

address of the byte in string 2
which terminated comparison:
if strings are equal,

R3 = address of one byte
beyond string 2

After execution of CMPC5:

RO =

R2 =

number of bytes remaining

in string 1 (including byte
which terminated comparison);
RO is zero only if string 1

and string 2 are of equal length
and equal or string 1 was
exhausted before comparison
terminated

address of the byte

in string 1 which

terminated comparison; if
comparison did not terminate
before string 1 exhausted,

R1 = address of one byte
beyond string 1

number of bytes remaining

in string 2 (including byte

which terminated comparison);

RO is zero only if string

2 and string 1 are of

equal length or string 2

was exhausted before comparison
terminated

295

Character String Instructions

R3 = address of the byte in string
2 which terminated comparison;
if comparison did not terminate
before string 2 was exhausted,
R3 = address of one byte
beyond string
3. If both strings have zero length, Z is set and N, V and C
are cleared just as in the case of two equal strings.

296

Character String Instructions

SCANC
SPANC
SCAN CHARACTERS, SPAN CHARACTERS
Purpose: to find or skip a set of characters in character string
Format: opcode len.rw, addr.ab, tbladdr.ab, mask.rb
Operation:
SCANC
SPANC
adr
on = ChaRAGTE L —

ZERO (SPANC) OR

l NOTZERO (SCANC)
EACH 256
CHARACTER l

Z SET |F CONDITION NOT SATISIFIED

Condition N <0;

Codes: Z < ROEQLO;
V <« 0;
C<0

Exceptions: None

Opcodes: 2A SCANC Scan Characters
2B SPANC Span Characters

Description: The bytes of the string specified by the length and address
operands are successively used to index into a 256-byte table
whose zeroth entry address is specified by the table address
operand. The byte selected from the table is ANDed with the
mask operand. The operation continues until the result of the
AND is nonzero for the SCANC instruction or zero for the
SPANC instruction, or until all the bytes of the string have been
exhausted. If a nonzero AND result for the SCANC or a zero
result for the SPANC is detected, the condition code Z bit is
cleared; otherwise, the Z bit is set.

297

Notes:

Character String Instructions

After execution:

RO =

R2 =
R3 =

number of bytes remaining in

the string (including the byte
which produced the nonzero AND
result for SCANC or zero

result for SPANC);

RO is zero only if there was a

zero AND result for SCANC or a
nonzero result for SPANC

address of the byte which
produced nonzero AND result for
SCANC or-a zero AND result for
SPANC; otherwise R1 = address
of one byte beyond the string

0
address of the table

If the string has zero length, condition code Z is set just as
though the entire string were scanned (spanned).

298

Character String Instructions

LOCC
SKPC
LOCATE CHARACTER, SKIP CHARACTER
Purpose: to find or skip character in character string
Format: opcode char.rb, len.rw, addr.ab
Operation:
Locc,
SKPC
—_—

COMPARE EACH CHARACTER
UNTIL EQUAL (LOCC) OR
NOT EQUAL (SKPC)

Z SET IF CONDITION NOT SATISIFIED

Condition N «0;

Codes: Z < ROEQLO;
V «0;
C<0

Exceptions: None

Opcodes: 3A LOCC Locate Character
3B SKPC Skip Character

Description: The character operand is compared with the bytes of the string
specified by the length and address operands. Comparison
continues until equality is detected for the Locate Character
instruction or inequality for the Skip Character instruction, or
until all bytes of the string have been compared. If equality is
detected for the Locate Character instruction, the condition
code Z bit is cleared; otherwise the Z bit is set. If inequality is
detected for the Skip Character instruction, the condition code
Z bitis cleared; otherwise the Z bit is set.

Notes: 1. After execution:

RO = number of bytes remaining in the
string (including located or
unequal one) if (unequal) byte
is located; otherwise RO = 0

R1 = address of the byte located if
byte is located;
otherwise R1 = address of one
byte beyond the string

299

Character String Instructions

2. If the string has zero length, condition code Z is set just as
though each byte of the entire string were equal (unequal)
to the character.

300

Character String Instructions

MATCHC
MATCH CHARACTERS
Purpose: to find substring (object) in character string
Format: opcode objlen.rw, objaddr.ab, srclen.rw, srcaddr.ab-
Operation:
srcaddr
SEARCH
MATCHC srclen
objaddr
FULL
T e
object |obj Ien,/'/

Condition N «0;
Codes: Z<ROEQLO; Imatch found

V<0;

C<«0
Exceptions: None
Opcodes: 39 MATCHC Match Characters

Description: The source string specified by the source length and source
address operands is searched for a substring which matches
the object string specified by the object length and object ad-
dress operands. If the substring is found, the condition code Z
bitis set; otherwise, it is cleared.

Notes: 1. After execution:

RO = (if a match occurred) 0;
otherwise RO = the number of
bytes in the object string

R1 = (if a match occurred) the
address of one byte beyond the
object string; otherwise R1 =
the address of the object string

R2 = (if a match occurred) the number
of bytes remaining in the source
string after the match;
otherwise R2 = 0.

301

Character String Instructions

R3 = (if a match occurred) the

address of one byte beyond the

last byte matched; otherwise

R3 = the address of one byte

beyond the source string.
If both strings have zero length or if the object string has
-zero length, condition code Z is set and RO through R3 are
left just as though the substring were found.
If the source string has zero length and the object string
has nonzero length, condition code Z is cleared and RO
through R3 are left just as though the substring were not
found.

302

Character String Instructions

CYCLIC REDUNDANCY CHECK INSTRUCTION

Cyclic Redundancy Checking (CRC) is an error detection method in-
volving a division of the data stream by a CRC polynomial. The data
stream is represented as a standard VAX string in memory. Error
detection is accomplished by computing the CRC polynomial at the
source and again at the destination, comparing the CRC computed at
each end. The selected CRC polynomial should be such as to minim-
ize the number of undetected block errors of specific lengths. Its
choice is not given here, but can be found in references devoted to the
topic.

The operands of the CRC instruction are a string descriptor, a 16-
longword table, and an initial CRC. The string descriptor is a standard
VAX operand pair of the length of the string in bytes (up to 65,535) and
the starting address of the string. The contents of the table are a
function of the CRC polynomial to be used. It can be calculated from
the polynomial by a variety of algorithms. Several common CRC poly-
nomials are also included below in Note 3. The initial CRC is used to
start the polynomial correctly; typically, it has the value 0 or —1, but
would be different if the data stream were represented by a sequence
of noncontiguous strings.

The CRC instruction operates by scanning the string, and for each
byte of the data stream, including it in the CRC being calculated. The
byte is included by XORing it to the right eight bits of the CRC. Then
the CRC is shifted right one bit, inserting zero on the left. The right-
most bit of the CRC (lost by the shift) is used to control the XORing of
the CRC polynomial with the resultant CRC. If the bit is set, the polyno-
mial is XORed with the CRC. Then the CRC is again shifted right and
the polynomial is conditionally XORed with the result a total of eight
times. Actual algorithms used can shift by one, two, or four bits at a
time using the appropriate entries in a specially constructed table. The
instruction produces a 32-bit CRC. For shorter polynomials, the result
must be extracted from the 32-bit field. Data streams must be multi-
ples of eight bits in length. If they are not, they must be right-adjusted
in the string with leading 0 bits.

303

Character String Instructions

CRC
CALCULATE CYCLIC REDUNDANCY CHECK
Purpose: communications or software redundancy checks
Format: opcode tbl.ab, inicre.rl, strlen.rw, stream.ab,
Operation:
INICRC
STREAM

[CRC ACCUMULATION J:>RO

strlen /STREAM + BY tbl T

CRC POLYNOMIAL |, 8 swonrDs

Condition N < ROLSS;

Codes: Z < ROEQLO;
V <«0;
C<«C
Exceptions: None
Opcodes: 0B CRC Calculate Cyclic Redundancy Check

Description: The CRC of the data stream described by the string descriptor
is calculated. The initial CRC is given by inicrc and is normally
0 or —1 unless the CRC is calculated in several steps. RO is
replaced by the result. If the polynomial is less than order-32,
the result must be extracted from R0. The CRC polynomial is
expressed by the contents of the 16-longword table. See the
notes for calculation of the table.

Notes: 1. If the data stream is not a multiple of eight bits long, it
must be right-adjusted with leading zero fill.

2. If the CRC polynomial is less than order-32, the result
must be extracted from the low-order bits of RO.

3. The following algorithm can be used to calculate the CRC
table given a polynomial expressed as follows:
poly<n> <{coefficient of x**{order—1—n}}

This routine is available as system library routine
LIB§CRC_TABLE (poly.rl, table.ab). The table is the loca-
tion of a 64-byte (16-longword) table into which the result
will be written.

304

Character String Instructions

SUBROUTINE LIBSCRC_TABLE (POLY,
TABLE)

INTEGER*4 POLY, TABLE(0:15), TMP, X
DO 190 INDEX = 0, 15

TMP = INDEX

DO 1501 =1,4

X =TMP .AND. 1

TMP = 1SHFT (TMP, —1) llogical shift
right one bit

IF (X.EQ.1) TMP = TMP .XOR. POLY

150 CONTINUE
TABLE(INDEX) = TMP
190 CONTINUE
RETURN
END

The following are descriptions of some commonly used
CRC polynomials.

CRC-16 (used in DDCMP and Bisync)

polynomial: x4+ X1+ x4+ 1
poly: 120001 (octal)
initialize: 0
result: RO <15:0>
CCITT (used in ADCCP, HDLC, SDLC)
polynomial: x4+ x"2+ x>+ 1
poly: 102010 (octal)
initialize: -1<15:0>
result: complement of RO<15:0>
AUTODIN-II
polynomial X3 4+ x% + x® +
x?2 + x'® +
X2 +x"+ x"° +
B4+ X7+ x°+
x*+ %+ x +1
poly: EDB88320 (hex)
initialize: —-1<31:0>
result: complement of R0O<31:0>

This instruction produces an unpredictable result unless
the table is well formed, such as produced in Note 3. Note
that for any well-formed table, entry [0] is always 0 and
entry [8] is always the polynomial expressed as in Note 3.
The operation can be implemented using shifts of one,
two, or four bits at a time as follows:

305

Character String Instructions

steps index table
per table multi- use table
shift byte index plier entries
1 8 tmp3<0> 8 [0] =0, <8>
2 4 tmp3<1:0> 4 [0] =0, [4],
[8],[12]
4 2 tmp3<3:0> 1 all

If the stream has zero length, the destination receives the
initial CRC.

306

307

308

CHAPTER 15
DECIMAL STRING INSTRUCTIONS

Decimal string instructions operate on packed decimal strings. They
treat decimal strings as integers, with the decimal point assumed im-
mediately beyond the least significant digit of the string. If a string in
which a result is to be stored is longer than the result, its most signifi-
cant digits are filled with zeros.

Instructions are provided to convert between Packed Decimal and
Trailing Numeric string (Overpunched or Zoned) and Leading Sepa-
rate Numeric string formats. Where necessary, a specific data type is
identified. Where the phase “decimal string” is used, it means any of
these three data types.

A decimal string is specified by two operands:

1. For decimal strings, the length is the number of digits in the string.
The number of bytes in the string is a function of the length and
the type of decimal string referenced.

2. The address of the lowest addressed byte of the string. This byte
contains the most significant digit for Trailing Numeric and
Packed Decimal strings. This byte contains a sign for Leading
Separate Numeric strings. The address is specified by a byte
operand of address access type.

For more details on the Decimal String data type, see Chapter 4 of this
Handbook.

Each of the decimal string instructions uses general registers 0
through 3 or 0 through 5 to contain a control block which maintains
updated addresses and state during the execution of the instruction.
At completion, the registers containing addresses are available to the
software to use as string specification operands for a subsequent
instruction on the same decimal strings.

During the execution of the instructions, pending interrupt conditions
are tested, and if any are found the control block is updated. First Part
Done (FPD) is set in the PSL, and the instruction is interrupted. After
the interruption, the instruction resumes transparently. The format of
the control block at completion is:

309

Decimal String Instructions

31 0
0 ‘RO
ADDRESS 1 R
0 :R2
ADDRESS 2 :R3
0 ‘R4
ADDRESS 3 ‘RS

The fields ADDRESS 1, ADDRESS 2 and ADDRESS 3 (if required)
contain the address of the byte containing the lowest addressed byte
in the first, second, and third (if required) string operands, respective-
ly.

Decimal Overflow

Decimal overflow, on the other hand, occurs if the destination string is
too short to contain all the nonzero digits of the result. On overflow, the
destination string is replaced by the correctly signed least significant
digits of the result (even if the result is —=0). Note that neither the high
nibble of an even length Packed Decimal string, nor the sign byte of a
Leading Separate Numeric string is used to store result digits.

Zero Numbers

A zero result has a positive sign for all operations that complete with-
out decimal overflow. However, when digits are lost because of over-
flow, a zero result receives the sign (positive or negative) of the correct
result.

A decimal string with value —0 is treated as identical to a decimal
string with value +0. Thus, for example, +0 is equal to —0in a Com-
pare instruction. Similarly, when condition codes are affected ona —0
result they are affected as if the result were +0:i.e., N is cleared and Z
is set.

Reserved Operand Exception

A reserved operand fault occurs if the length of a decimal string
operand is outside the range 0 through 31, or if an invalid sign or digit
is encountered in CVTSP and CVTTP.

Unpredictable Results

The result of any operation is unpredictable if any source decimal
string operand contains invalid data. Except for CVTSP and CVTTP,
the decimal string instructions do not verify the validity of source oper-
and data.

310

Decimal String Instructions

If the destination operands overlap any source operands, the result of
an operation will, in general, be unpredictable. Destination strings,
registers used by the instruction, and condition codes will, in general,
be unpredictable when a reserved operand fault occurs.

Packed Decimal Operations

Packed Decimal strings generated by the decimal string instructions
always have the preferred sign representation: 12 for + and 13 for —,
even though there are other options. An even length Packed Decimal
string is always generated with a 0 digit in the high nibble of the first
byte of the string.

A packed decimal string contains an invalid nibble if:

a) Adigit occurs in the sign position;

b) A sign occurs in a digit position;

c) For an even length string, a nonzero nibble occurs in the. high
order nibble of the lowest addressed byte.

Zero Length Decimal Strings

The length of a Packed Decimal string can be zero. In this case, the
value is zero (plus or minus) and one byte of storage is occupied. This
byte must contain a 0 digit in the high riibble and the sign in the low
nibble.

The length of a Trailing Numeric string can be zero. In this case, no
storage is occupied by the string. If a destination operand is a zero
length Trailing Numeric string, the sign of the operation is lost. Memo-
ry access faults will not occur when a zero length Trailing Numeric
operand is specified, because no memory reference occurs.

The length of a Leading Separate Numeric string can be zero. In this
case, one byte of storage is occupied by the sign. Memory is accessed
when a zero length operand is specified, and a reserved operand fault
will occur if an invalid sign is detected. The value .of a zero length
decimal string is identically zero.

311

Decimal String Instructions

MOVP
MOVE PACKED
Purpose: move a packed decimal string from one memory location to
another
Format: opcode len.rw, srcaddr.ab, dstaddr.ab

Operation: ({dstaddr + ZEXT(len/2)}: dstaddr) < ({srcaddr +
ZEXT(len/2)}:srcaddr);

Condition N < {dst string} LSS 0;
Codes: Z < {dst string} EQL 0;
V «0;
C<C
Exceptions: Reserved operand
Opcodes: 34 MOVP Move Packed

Description: The destination string specified by the length and destination
address operands is replaced by the source string specified by
the length and source address operands.

Notes: 1. After execution:
RO = 0
R1 = address of the byte containing

the most significant digit of the
source string :
R2 = 0
R3 = address of the byte containing
the most significant digit of the
destination string
2. The destinaton string, RO through R3, and the condition
codes are unpredictable if the destination string overlaps
the source string, the source string contains an invalid
nibble, or a reserved operand fault occurs.
3. If the source is —0, the result is +0, N is cleared and Z is
set.

312

Decimal String Instructions

CMPP

COMPARE PACKED

Purpose:

Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

compare two packed decimal strings and set condition codes

opcode len.rw, scriaddr.ab, src2addr.ab 13 operand
opcode srcilen.rw, src1addr.ab,
src2len.rw, src2addr.ab 14 operand

({srcladdr + ZEXT(len/2)}:src1addr)=({src2addr +
ZEXT(len/2)}:src2addr); !3 operand
({src1addr+ZEXT(src1len/2)}:src1addr)=({src2addr +
ZEXT(src2len/2)}:src2addr): !4 operand

N < {src1 string} LSS {src2 string};
Z < {src1 string} EQL {src2 string};
V <«0;
C<0

Reserved operand

35 CMPP3 Compare Packed 3 Operand
37 CMPP4 Compare Packed 4 Operand

In 3-operand format, the source 1 string specified by the
length and source 1 address operands is compared to the
source 2 string specified by the length and source 2 address
operands. The only action is to affect the condition codes.

In 4-operand format, the source 1 string specified by the
source 1 length and source 1 address operands is compared
to the source 2 string specified by the source 2 length and
source 2 address operands. The only action is to affect the
condition codes.

1. After execution of CMPP3 or CMPP4:

RO = 0

R1 = address of the byte containing the
most significant digit of string 1

R2 = 0

R3 = address of the byte containing the

most significant digit of string 2

2. RO through R3 and the condition codes are unpredictable
if the source strings overlap, if either string contains an
invalid nibble, or if a reserved operand fault occurs.

313

ADD PACKED
Purpose:

Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

Decimal String Instructions

ADDP
add one packed decimal string to another
opcode addlen.rw, addaddr.ab, sumlen.rw,
sumaddr.ab 14 operand
opcode add1len.rw, add1addr.ab, add2len.rw. 16 operand
add2addr.ab, sumlen.rw, sumaddr.ab
{sum string} < {sum string} 14 operand
+ {add string};
{sum string} < {add1 string} 16 operand

+ {add2 string};

N < {sum string} LESS 0;
Z < {sum string} EQL 0;
V < {decimal overflow};
C<0

Reserved operand
Decimal overflow

20 ADDP4 Add Packed 4 Operand
21 ADDP6 Add Packed 6 Operand

In 4-operand format, the addend string specified by the ad-
dend length and addend address operands is added to the
sum string specified by the sum length and sum address oper-
ands and the sum string is replaced by the result.

In 6-operand format, the addend 1 string specified by the ad-
dend 1 length and addend 1 address operands is added to the
addend 2 string specified by the addend 2 length and addend
2 address operands. The sum string specified by the sum
length and sum address operands is replaced by the result.

1. After execution of ADDP4:

RO = 0

R1= address of the byte containing the
most significant digit of the
addend string

R2 = 0

R3 = address of the byte containing the
most significant digit of the sum
string

2. After execution of ADDP6:
RO = 0

314

Decimal String Instructions

R1= address of the byte containing the
most significant digit of the
addend1 string

R2 = 0

R3 = address of the byte containing the
most significant digit of the
addend? string

R4 = 0

R5 = address of the byte containing the
most significant digit of the sum
string

The sum string, RO through R3 (or RO through R5 for
ADDS), and the condition codes are unpredictable if the
sum string overlaps the addend, addend1, or addend2
strings; the addend, addend1, addend2 or sum (4-oper-
and only) strings contain an invalid nibble; or a reserved
operand abort occurs.

315

Decimal String Instructions

SUBP
SUBTRACT PACKED
Purpose: subtract one packed decimal string from another
Format: opcode sublen.rw, subaddr.ab, 14 operand
diflen.rw, difaddr.ab
opcode sublen.rw, subaddr.ab, 16 operand
minlen.rw, minaddr.ab, diflen.rw, difaddr.ab
Operation: {dif string} < {dif string} — {sub string}; 14 operand
{dif string} < {min string} — {sub string}; 16 operand
Condition N < {dif string} LSS 0;
Codes: Z <« {dif string} EQL O;
V < {decimal overflow};
C<0
Exceptions: Reserved operand
Decimal overflow
Opcodes: 22 SUBP4 Subtract Packed 4 Operand
23 SuUBP6 Subtract Packed 6 Operand

Description:

Notes:

In 4-operand format, the subtrahend string, specified by sub-
trahend length and subtrahend address operands, is subtract-
ed from the difference string, specified by the difference
length and difference address operands, and the difference
string is replaced by the result.

In 6-operand format, the subtrahend string, specified by the
subtrahend length and subtrahend address operands, is sub-
tracted from the minuend string, specified by the minuend
length and minuend address operands. The difference string,
specified by the difference length and difference address op-
erands, is replaced by the result.

1. After execution of SUBP4:
RO = 0
R1 = address of the byte containing the
most significant digit of the
subtrahend string
R2 = 0

R3 = address of the byte containing the
most significant digit of the
difference string

316

Decimal String Instructions

After execution of SUBP6:
RO = 0
R1 = address of the byte containing the

The difference string, RO through R3 (RO through R5 for
SUBPS6), and the condition codes are unpredictable if the
difference string overlaps the subtrahend or minuend
strings; the subtrahend, minuend, or difference (4-oper-
and only) strings contain an invalid nibble; or a reserved

most significant digit of the sub-
trahend string

0
address of the byte containing the

most significant digit of the
minuend string

0

address of the byte containing the
most significant digit of the
difference string

operand abort occurs.

317

Decimal String Instructions

MULP

MULTIPLY PACKED

Purpose:
Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

multiply one packed decimal string by a second, result placed
in a third

opcode mulrlen.rw, muiraddr.ab, muldlen.rw,
muldaddr.ab, prodien.rw, prodaddr.ab

{prod string} < {muld string} * {mulr string};

N« {prod string} LSS 0;
Z < {prod string} EQL 0;
V < {decimal overflow};
C<0

Reserved operand
Decimal overflow

25 MULP Multiply Packed

The multiplicand string specified by the multiplicand length
and multiplicand address operands is multiplied by the multi-
plier string specified by the multiplier length and multiplier
address operands. The product string specified by the product
length and product address operands is replaced by the re-
sult.

1. After execution:
RO = 0
R1= address of the byte containing the

most significant digit of the
multiplier string

R2 = 0

R3 = address of the byte containing the
most significant digit of the’
multiplicand string

R4 = 0

R5 = address of the byte containing the

most significant digit of the

product string

2. The product string, RO through R5, and the condition

codes are unpredictable if the product string overlaps the
multiplier or multiplicand strings, the multiplier or muiti-
plicand strings contain an invalid nibble, or a reserved
operand abort occurs.

318

Decimal String Instructions

DIVP
DIVIDE PACKED
Purpose: divide one packed decimal string by a second, result placed in
a third
Format: opcode divrien.rw, divraddr.ab, divdlen.rw,
divdaddr.ab, quolen.rw, quoaddr.ab
Operation: {quo string} < {divd string} / {divr string};
Condition N < {quo string} LSS 0;
Codes: Z < {quo string} EQL 0;
V <« {decimal overflow};
C<0
Exceptions: Reserved operand
Decimal overflow
Divide by zero
Opcodes: 27 DIVP Divide Packed
Description: The dividend string specified by the dividend length and div-
idend address operands is divided by the divisor string speci-
fied by the divisor length and divisor address operands. The
quotient string specified by the quotient length and quotient
address operands is replaced by the result.
Notes: 1. This instruction may allocate a 16-byte workspace on the

stack. After execution, SP is restored to its original con-

tents and the contents of {(SP) — 16} * {(SP) — 1} are

unpredictable.
2. Thedivision is performed such that:

- The absolute value of the remainder (which is lost) is
less than the absolute value of the divisor.

- The product of the absolute value of the quotient and
the absolute value of the divisor is less than or equal
to the absolute value of the dividend.

- The sign of the quotient is determined by the rules of
algebra from the signs of the dividend and the
divisor. If the value of the quotient is zero, the sign is
always positive.

3. After execution:

RO = 0

R1 = address of the byte containing the

most significant digit of the
divisor string

R2 = 0

319

Decimal String Instructions

R3 = address of the byte containing the
most significant digit of the
dividend string

R4 = 0

R5 = address of the byte containing the

most significant digit of the

quotient string
The quotient string, RO through R5, and the condition
codes are unpredictable if the quotient string overlaps the
divisor or dividend strings, the divisor or dividend string
contains an invalid nibble, the divisor is 0, or a reserved
operand abort occurs.

320

Decimal String Instructions

CVTLP
CONVERT LONG TO PACKED
Purpose: convert longword integer to packed decimal string
Format: opcode src.rl, dstlen.rw, dstaddr.ab
Operation: {dst string} <- conversion of src;
Condition N < {dst string} LSS 0;
Codes: Z < [dst string} EQL 0;
'V <« {decimal overflow};
C<0
Exceptions: Reserved operand
Decimal overflow
Opcodes: F9 CVTLP Convert Long to Packed
Description: The source operand is converted to a packed decimal string
and the destination string operand specified by the destination
length and destination address operands is replaced by the
result.
Notes: 1. After execution:
RO = 0
R1 = 0
R2 = 0
R3 = address of the byte containing the
most significant digit of the
destination string
2. The destination string, RO through R3, and the condition
codes are unpredictable on a reserved operand abort.
3. Overlapping operands produce correct results.
Example: MOVL #1234, R6

CVTLP R6, #3, DATA

The longword number 1234 is moved to register 6. Then 1234
is converted to a packed decimal string and replaces the 3-
byte string whose most significant byte is represented by DA-
TA.

321

Purpose:
Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

Decimal String Instructions

CVTPL

CONVERT PACKED TO LONG

opcode srclen.rw, srcaddr.ab, dst.wl

dst <« conversion of {src string}

N <« dstLSS 0;

Z < dst EQLO;

V <« {integer overflow};
C<«0

Reserved operand
Integer overflow

36

CVTPL Convert Packed to Long

The source string specified by the source length and source
address operands is converted to a longword and the destina-
tion operand is replaced by the result.

1.

After execution:
RO = 0
R1 = address of the byte containing the

most significant digit of the

source string
R2 = 0
R3 = 0
The destination operand, RO through R3, and the condi-
tion codes are unpredictable on a reserved operand fault
or if the string contains an invalid nibble.
The destination operand is stored after the registers are
updated as specified in 1 above. Thus RO through R3 may
be used as the destination operand.
Integer overflow occurs if the source string has a value
outside the range —2,147,483,648 through 2,147,483,647,
and the destination operand is replaced by the low-order
32 bits of the correctly signed infinite-precision conver-
sion. Thus, on overflow, the sign of the destination may be
different from the sign of the source.
Overlapping operands produce correct results.

322

Decimal String Instructions

CVTPT

CONVERT PACKED TO TRAILING NUMERIC

Purpose:

Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

convert packed decimal string to trailing numeric string

opcode srclen.rw, srcaddr.ab, tbladdr.ab,
dstlen.rw, dstaddr.ab

{dst string} < conversion of {src string};

N <« {src string} LSS 0;
Z < {src string} EQL 0;
V < {decimal overflow};
C<0

Reserved operand
Decimal overflow

24 CVTPT Convert Packed to
Trailing Numeric

The source packed decimal string specified by the source
length and source address operands is converted to a trailing
numeric string. The destination string specified by the destina-
tion length and destination address operands is replaced by
the result. The condition code N and Z bits are affected by the
value of the source packed decimal string.

Conversion is effected by using the highest addressed byte of
the source string (i.e., the byte containing the sign and the
least significant digit) as an unsigned index into a 256-byte
table whose zeroth entry address is specified by the table ad-
dress operand. The byte read out of the table replaces the
least significant byte of the destination string. The remaining
bytes of the destination string are replaced by the ASClI repre-
sentations of the values of the corresponding packed decimal
digits of the source string.

1. After execution:
RO = 0
R1 = address of the byte containing the

most significant digit of the
source string
R2 = 0
R3 = address of the most significant
digit of the destination string
2. The destination string, RO through R3, and the condition
codes are unpredictable if the destination string overlaps
the source string or the table, the source string or the

table contains an invalid nibble, or a reserved operand
abort occurs.

323

Decimal String Instructions

The condition codes are computed on the value of the
source string even if overflow results. In particular, condi-
tion code N is set if and only if the source is nonzero and
contains a minus sign.

By appropriate specification of the table, conversion to
any form of trailing numeric string may be realized. See
Chapter 4 for the preferred form of trailing overpunch,
zoned, and unsigned data. In addition, the table may be
set up for absolute value, negative absolute value, or
negative conversions.

Decimal overflow occurs if the destination string. is too
short to contain the converted result of a nonzero packed
decimal source string (not including leading zeroes).
Conversion of a source string with zero value never re-
sults in overflow. Conversion of a nonzero source string to
a zero length destination string results in overflow.

If decimal overflow occurs, the value stored in the desti-
nation may be different from the value indicated by the
condition codes (Z and N bits).

324

Decimal String Instructions

CVTTP

CONVERT TRAILING NUMERIC TO PACKED

Purpose:

Format:

Operation:

Condition
Codes:

Excehtions:

Opcodes:

Description:

Notes:

convert trailing numeric siring to packed decimal string

opcode srclen.rw, srcaddr.ab, tbladdr.ab,
dstlen.rw, dstaddr.ab

{dst string} < conversion of {src string};

N <« {dst string} LSS 0;
Z < {dst string} EQL 0;
V <« {decimal overflow};
C<«0

Reserved operand
Decimal overflow

26 CVTTP Convert Trailing Numeric
to Packed

The source Trailing Numeric string specified by the source
length and source address operands is converted to a packed
decimal string and the destination packed decimal string
specified by the destination address and destination length
operands is replaced by the resuit.

Conversion is effected by using the highest addressed (trail-
ing) byte of the source string as an unsigned index into a 256-
byte table whose zeroth entry is specified by the table address
operand. The byte read out of the table replaces the highest
addressed byte of the destination string (i.e., the byte contain-
ing the sign and the least significant digit). The remaining
packed digits of the destination string are replaced by the low
order four bits of the corresponding bytes in the source string.

1. Areserved operand abort occurs if:

- The length of the source Trailing Numeric string is
outside the range 0 through 31.

- The length of the destination packed decimal string
is outside the range 0 through 31.

- The source string contains an invalid byte. An invalid
byte is any value other than ASCII “0” through “9” in
any high-order byte (i.e., any byte except the least
significant byte).

- The translation of the least significant digit produces
an invalid packed decimal digit or sign nibble.

2. After execution:
RO = 0

R1 = address of the most significant
digit of the source string

325

Decimal String Instructions

R3 = address of the byte containing the

most significant digit of the

destination string
The destination string, RO through R3, and the condition
codes are unpredictable if the destination string overlaps
the source string or the table, or a reserved operand fault
occurs.

If the Convert instruction produces a —0 without overflow,
the destination packed decimal string is changed to a +0
representation, condition code N is cleared, and Z is set.
If the length of the source string is 0, the destination
packed decimal string is set identically equal to 0, and the
translation table is not referenced.

By appropriate specification of the table, conversion from
any form of Trailing Numeric string may be realized. See
Chapter 4 for the preferred form of trailing overpunch,
zoned, and unsigned data. In addition, the table may be
set up for absolute value, negative absolute value or ne-
gated conversions.

If the table translation produces a sign nibble containing
any valid sign, the preferred sign representation is stored
in the destination packed decimal string.

326

Decimal String Instructions

CVTPS

CONVERT PACKED TO LEADING SEPARATE NUMERIC
Purpose: convert packed decimal string to leading separate numeric

string
Format: opcode srclen.rw, srcaddr.ab, dstlen.rw, dstaddr.ab
Operation: {dst string} < conversion of {src string};
Condition N < {src string} LSS 0;
Codes: Z < {src string} EQL 0;

V <« {decimal overflow};

C<0

Exceptions: Reserved operand
Decimal overflow

Opcodes: 08 CVTPS Convert Packed to Leading
Separate Numeric

Description: The source packed decimal string specified by the source
length and source address operands is converted to a Leading
Separate Numeric string. The destination string specified by
the destination length and destination address operands is
replaced by the result.

Conversion is effected by replacing the lowest addressed byte
of the destination string by the ASCII character + or —, deter-
mined by the sign of the source string. The remaining bytes of
the destination string are replaced by the ASCII representa-
tions of the values of the corresponding packed decimal digits
of the source string.

Notes: 1. After execution:
RO = 0
R1= address of the byte containing the

most significant digit of the
source string

R2 = 0
R3 = address of the sign byte of the
destination string

2. The destination string, RO through R3, and the condition
codes are unpredictable if the destination string overlaps
the source string, the source string contains an invalid
nibble, or a reserved operand abort occurs.

3. This instruction produces an ASCIl “+” or “—" in the sign
byte of the destination string.

4. If decimal overflow occurs, the value stored in the desti-
nation may be different from the value indicated by the
condition codes (Z and N bits).

327

Decimal String Instructions

If the conversion produces a —0 without overflow, the
destination Leading Separate Numeric string is changed

to a +0 representation.

5.

328

Decimal String Instructions

CVTSP

CONVERT LEADING SEPARATE NUMERIC TO PACKED

Purpose:

Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

convert leading separate numeric string to packed decimal
string

opcode srclen.rw, srcaddr.ab, dstlen.rw, dstaddr.ab
{dst string} < conversion of {src string};

N < {dst string} LSS 0;
Z < {dst string} EQL 0;
V < {decimal overflow};
C<0

Reserved operand
Decimal overflow

09 CVTSP Convert Leading Separate Numeric to
Packed

The source numeric string specified by the source length and
source address operands is converted to a packed decimal
string, and the destination string specified by the destination
address and destination length operands is replaced by the
result.

1. Avreserved operand fault occurs if;
- The length of the source Leading Separate Numeric
string is outside the range 0 through 31.
- The length of the destination packed decimal string
is outside the range 0 through 31.

- The source string contains an invalid byte. An invalid
byte is any character other than an ASCIl “0”
through “9” in a digit byte or an ASCIl “4,”
“<space>,” or “—"in the sign byte.

2. After execution:

RO = 0

R1 = address of the sign byte of the
source string

R2 = 0

R3 = address of the byte containing the

most significant digit of the
destination string
3. The destination string, RO through R3, and the condition
codes are unpredictable if the destination string overlaps
the source string, or a reserved operand abort occurs.

329

Decimal String Instructions

ASHP

ARITHMETIC SHIFT AND ROUND PACKED

Purpose:

Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

scale numeric content of a packed decimal string by a power
of 10

opcode cnt.rb, srclen.rw, srcaddr.ab, round.rb,
dstlen.rw, dstaddr.ab

{dst string} < {{src string} + {round <3:0> * (10 ** (—cnt—1))}}
*(10 ** cnt);

N < {dst string} LSS 0;
Z < {dst string} EQL O:
V < {decimal overflow};
C<0

Reserved operand
Decimal overflow

F8 ASHP Arithmetic Shift and Round Packed

The source string specified by the source length and source
address operands is scaled by a power of 10 specified by the
count operand. The destination string specified by the destina-
tion length and destination address operands is replaced by
the result.

A positive count operand effectively multiplies; a negative
count effectively divides; and a zero count just moves and
affects condition codes. When a negative count is specified,
the result is rounded using the round operand.

1. After execution:
RO = 0

R1 = address of the byte containing the
most significant digit of the
source string

R2 = 0

R3 = address of the byte containing the
most significant digit of the
destination string
2. The destination string, RO through R3, and the condition
codes are unpredictable if the destination string overlaps
the source string, the source string contains an invalid
nibble, or a reserved operand abort occurs.

3. When the count operand is negative, the result is rounded
by decimally adding bits 3:0 of the round operand to the
most significant low order digit discarded and propagat-
ing the carry, if any, to higher order digits. Both the
source operand and the round operand are considered to

330

Decimal String Instructions

be quantities of the same sign for the purpose of this
addition.

If bits 7:4 of the round operand are nonzero, or if bits 3:0
of the round operand contain an invalid packed decimal
digit, the result is unpredictable.

When the count operand is zero or positive, the round
operand has no effect on the result except as specified in
note 4.

The round operand is normally 5. Truncation may be ac-
complished by using a zero round operand.

331

CHAPTER 16
EDIT INSTRUCTION (EDITPC)

The edit instruction, naturally enough, implements the common edit-
ing functions which occur in handling fixed format output. It operates
by converting a packed decimal string (input) to a character string
(output), generating characters for the output. It is exemplified by a
MOVE to a numeric edited (PICTURE) item in COBOL or PL/I, but the
instruction can also be used for other applications. When converting
digits, options include leading zero fill, leading zero protection, inser-
tion of floating sign, of floating currency symbol, or of special sign
representations, and blanking an entire field when itis zero.

The operands to the EDITPC instruction are an input packed decimal
string descriptor, a pattern specification, and the starting address of
the output string. The packed decimal descriptor comprises a stan-
dard VAX operand pair of the length of the decimal string in digits (up
to 31) and the starting address of the string. The pattern specification
is the starting address of a “pattern operation editing sequence” which
is interpreted in much the same way as the normal instructions are.
Only the starting address of the output string is required, because the
pattern defines the length unambiguously.

While the EDITPC instruction is operating, it manipulates two charac-
ter registers and the four condition codes. One character register
contains the fill character. This is normally an ASCII blank, but would
be changed to * for check protection. The other character register
contains the sign character, initially either an ASCII blank or a — sign,
depending upon the sign of the input. It can be changed to allow other
sign representations, such as + or plus/blank and can be manipulated
in order to output special notations such as CR or DB. The sign regis-
ter can also be changed to the currency sign in order to implement a
floating currency sign. After execution, the condition codes note the
sign of the input (N), the presence of a ndnzero source (Z), an overflow
condition (V), and the presence of significant digits (C). Condition
code N is determined at the start of the instruction and is not changed
thereafter (except for correcting a —0 input). The other condition
codes are computed and updated as the instruction proceeds. When
the EDITPC instruction terminates, registers 0 through 5 contain the
conventional values after a decimal instruction. -

333

Edit Instruction

Following the description of EDITPC, the edit instruction, we define the
twelve edit pattern operators in a fashion similar to that used earlier in
describing the members of the instruction set. For these purposes, the
operand is either a repeat count (r) from 1 through 15, an unsigned
byte length (len), or a character byte (ch).

334

Edit Instruction

EDITPC
EDIT PACKED TO CHARACTER STRING
Purpose: edit source string
Format: opcode srclen.rw, srcaddr.ab, pattern.ab, dstaddr.ab
pperation:
dst adr
determined
by pattern
s N\
EDITPC [epir)
\ /
src adr / N~
src len PATTERN
digits
EO$END
Condition N < {src string} LSS 0; IN<OQifsrcis —0
Codes: Z <« {src string} EQL 0;
V <« {decimal overflow}; I nonzero digits lost
C <« {significance}
Exceptions: Reserved Operand
Decimal overflow
Opcodes: 38 EDITPC EditPacked to Character String

The destination string specified by the pattern and destination
address operand is replaced by the edited version of the
source string specified by the source length and source ad-
dress operands. Editing is performed according to the pattern
string, starting at the address pattern and extending until a
pattern end (EO$END) pattern operator is encountered. The
pattern string consists of one-byte pattern operators. Some
pattern operators take no operands; some take a repeat count
which is contained in the rightniost nibble of the pattern opera-
tor itself; the rest take a one-byte operand which follows the
pattern operator immediately. This operand is either an un-
signed integer length or a byte character. The individual pat-
tern operators are described on subsequent pages.

Description:

335

Notes:

1.

Edit Instruction

A reserved operand fault occurs with FPD cleared if
srclen GTRU 31.

The destination string is unpredictable if the source string
contains an invalid nibble, if the EOSADJUST_INPUT op-
erand is outside the range 1 through 31, if the source and
destination strings overlap, or if the pattern and destina-
tion strings overlap.

After execution:
RO = length of source string

R1= address of the byte containing the
most significant digit of the
source string

R2 = 0

R3 = address of the byte containing the
EOS$END pattern operator

R4 = 0

R5 = address of one byte beyond the
last byte of the destination
string

If the destination string is unpredictable, RO through R5
and the condition codes are unpredictable.

If V is set at the end and DV is enabled, numeric overflow
trap occurs unless the conditions in Note 9 are satisfied.
The destination length is specified exactly by the pattern
operators in the pattern string. If the pattern is incorrectly
formed or if it is modified during the execution of the
instruction, the length of the destination string is unpred-
ictable.

If the source is-—0, the result may be —0 unless a fixup
pattern operator is included (EO$BLANK_ZERO or
EO$REPLACE_SIGN).

The contents of the destination string and the memory
preceding it are unpredictable if the length covered by
EO$BLANK_ZERO or EO$REPLACE_SIGN is 0 or is out-
side the destination string.

If more input digits are requested by the pattern than are
specified, then a reserved operand abort is taken with RO
= —1 and R3 = location of pattern operator which
requested the extra digit. The condition codes and other
registers are as specified in Note 11. This abort is not
continuable.

336

9.

10.

11.

Edit Instruction

If fewer input digits are requested by the pattern
than are specified, then a reserved operand abort
is taken with R3 = location of EO$END pattern op-
erator. The condition codes and other registers are
as specified in Note 11. This abort is not continu-
able.

On an unimplemented or reserved pattern opera-
tor, a reserved operand fault is taken with R3 =
location of the faulting pattern operator. The condi-
tion codes and other registers are as specified in
Note 11. This fault is continuable as long as the
defined register state is manipulated according to
the pattern operator description and the other
state specified is preserved.

On a reserved operand exception as specified in
Notes 8 through 10, FPD is set and the condition
codes and registers are as follows:

N = {src has minus sign}

Z = all source digits 0 so far

V = nonzero digits lost

C = significance

RO = —zeros <15:0>’srclen<15:0>
R1 = current source location

R2 = ??7?'sign’ fill

" R3 = edit pattern operator causing exception

R4 = 7?7
R5 = location of next destination byte

where:
zeros = count of source zeros to supply
sign = current contents of sign character
register
fill = current contents of fill
character register

337

Insert:

Move:

Fixup:

Load:

Control:

where:

00
01
02
03
04

40
41

(hex)

Edit Instruction

SUMMARY OF EDIT PATTERN OPERATORS

Name Operand Summary
EOS$INSERT ch insert character, fill if
insignificant
EO$STORE_SIGN — insert sign
EOS$FILL r insert fill
EO$MOVE r move digits, filling
insignificant
EOS$FLOAT r move digits, floating sign
EOS$END_FLOAT — end floating sign
EO$BLANK-ZERO len fill backward when zero
EO$REPLACE_SIGN len replace with fill if —0
EO$LOAD_FILL ch load fill character
EO$LOAD_SIGN ch load sign character
EO$LOAD_PLUS ch load sign character if
positive
EO$LOAD_MINUS ch load sign character if

EO$SET_SIGNIF
EO$CLEAR_SIGNIF
EO$ADJUST_INPUT
EO$END

ch = one character

len

negative

set significance flag
clear significance flag
adjust source length
end edit

r = repeat counter in the range 1 through 15
len = length in the range 1 through 255

EDIT PATTERN OPERATOR ENCODING

EO$END

EO$END_FLOAT
EO$CLEAR_SIGNIF
EO$SET_SIGNIF
EO$STORE_SIGN

EO$LOAD_FILL
EO$LOAD_SIGN

338

Edit Instruction

42 EO$LOAD_PLUS character is in next byte

43 EO$LOAD_MINUS

44 EO$INSERT

45 EO$BLANK_ZERO

46 EO$REPLACE_SIGN unsigned length is in next byte
47 EO$ADJUST_INPUT

60...7F Reserved to DIGITAL’s CSS, customers

81...8F EOS$FILL

91...9F EO$MOVE repeat countis <3:0>

A1..AF EO$FLOAT

In the formal descriptions, the following two routines are invoked.
READ: Ifunction value 0 through 9

if ROEQLO then {reserved operand}
if RO LSS 0 then
begin
READ < 0;
RO <31:16> «<-R0<31:16> + 1;
Isee EOSADJUST_INPUT
end;
else
begin
READ <« (R1)<3+4*R0<0>:4*R0<0>>;
Iget next nibble
lalternating high then low
RO < RO - 1;
if RO<0> EQL 1 then R1 <~ R1 + 1;
end;
return;

STORE (char): (R5) <char;
R5<«R5 + 1;
return;

Also the following definitions are used:

fill = R2<7:0>
sign = R2<15:8>

339

Edit Instruction

EOSINSERT

INSERT CHARACTER

Purpose: insert a fixed character, substituting the fill character if not
significant

Format: pattern ch

Operations: if PSW<C>EQL 1 then STORE (ch) else STORE (fill);

Pattern

Operators: 44 EOS$INSERT Insert Character

Description: The pattern operator is followed by a character. If sigificance is
set, then the character is placed into the destination. If signifi-
cance is not set, then the contents of the fill register are placed
into the destination.

Notes: This pattern operator is used for blankable inserts (e.g., com-

ma) and fixed inserts (e.g., slash). Fixed inserts require that
significance be set (by EO$SET_SIGNIF or EO$END_FLOAT).

340

Edit Instruction

EO$STORE_SIGN

STORE SIGN

Purpose: insert the sign character
Format: pattern

Operations: STORE (sign);

Pattern

Operators: 04 EO$STORE_SIGN Store Sign

Description: ~ The contents of the sign register are placed into the destina-
tion.

Notes: This pattern operator is used for any nonfloating arithmetic
sign. It should be preceded by a EO$LOAD_PLUS and/or
EO$LOAD_MINUS if the default sign convention is not desired.

341

STORE FILL
Purpose:
Format:
Operations:

Pattern
Operators:

Description:

Notes:

Edit Instruction
EOSFILL

insert the fill character
pattern r
repeat r do STORE (fill);

8x EOS$FILL StoreFill

The right nibble of the pattern operator is the repeat count.
The contents of the fill register are placed into the destination
repeat times.

This pattern operator is used for fill (blank) insertion.

342

Edit Instruction

EO$SMOVE
MOVE DIGITS
Purpose: move digits, filling for insignificant digits (leading zeros)
Format: pattern r
Operations: repeatr do
begin
tmp < READ;
if tmp NEQU 0 then
begin
PSW<Z> «0;
PSW<C> «1; Isetsignificance
end;

if PSW<C> EQL 0 then STORE (fill)
else STORE (“0” + tmp);
end;

Pattern
Operators: 9x EO$MOVE Move Digits

Description: The right nibble of the pattern operator is the repeat count. For
repeat times, the following algorithm is executed: the next digit
is moved from the source to the destination; a) if the digit is
nonzero, significance is set and zero is cleared; b) if the digit is
not significant (i.e., is a leading zero), it is replaced by the
contents of the fill register in the destination.

Notes: 1. If r is greater than the number of digits remaining in the
source string, a reserved operand abort is taken.

2. This pattern operator is used to move digits without a
floating sign. If leading zero suppression is desired, sig-
nificance must be clear. If leading zero should be explicit,
signifance must be set. A string of EOJMOVESs intermixed
with EO$INSERTs and EOS$FILLs will handle suppression
correctly.

3. If check protection (*) is desired, EO$LOAD_FILL must
precede the EOSMOVE.

343

FLOAT SIGN
Purpose:
Format:

Operations:

Pattern
Operators:

Description:

Notes:

Edit Instruction

EOSFLOAT

move digits, floating the sign across insignificant digits

pattern r

repeatr do

Ax

begin
tmp < READ;
if tmp NEQU 0 then
begin
if PSW<C> EQL 0 then STORE (sign);
begin
STORE (sign);
PSW<Z> «0;
PSW<C> «1; Isetsignificance
end;
end; if PSW<C> EQL 0 then STORE (fill)
else STORE (“0” + tmp);
end;

EOS$FLOAT Float Sign

The right nibble of the pattern operator is the repeat count. For
repeat times, the following algorithm is executed: the next digit
from the source is examined; a) if it is nonzero and significance
is not yet set, then the contents of the sign register are stored
in the destination, significance is set, and zero is cleared; b) if
the digit is significant, it is stored in the destination, otherwise
the content of the fill register is stored in the destination.

1.

If r is greater than the number of digits remaining in the
source string, a reserved operand abort is taken.

This pattern operator is used to move digits with a floating
arithmetic sign. The sign must already be set up as for
EO$STORE_SIGN. A sequence of one or more
EO$FLOATs can include intermixed EO$INSERTs and
EO$FILLs. Significance must be clear before the first pat-
tern operator of the sequence. The sequence must be
terminated by one EOSEND_FLOAT.

This pattern operator is used to move digits with a floating
currency sign. The sign must already be set up with an
EO$LOAD_SIGN. A sequence of one or more
EO$FLOATs can include intermixed EO$INSERTs and
EO$FILLs. Significance must be clear before the first pat-
tern operator of the sequence. The sequence must be
terminated by one EO$END_FLOAT.

344

Edit Instruction

EOSEND_FLOAT

END FLOATING SIGN

Purpose: end a floating sign operation
Format: pattern
Operations: if PSW<C> EQL 0 then
begin
STORE (sign);
PSW<C> «1; Isetsignificance
end;
Pattern

Operators: 01 EO$END_FLOAT End Floating Sign

Description: If the floating sign has not yet been placed in the destination
(i.e., if significance is not set), the contents of the sign register
are stored in the destination and significance is set.

Notes: This pattern operator is used after a sequence of one or more
EOS$FLOAT pattern operators which start with significance
clear. The EO$FLOAT sequence can include intermixed
EO$INSERTs and EO$FILLs.

345

Edit Instruction

EO$BLANK_ZERO

BLANK BACKWARDS WHEN ZERO

Purpose:

Format:

Operations:

Pattern
Operators:

Description:

Notes:

fix up the destination to be blank when the value is zero

pattern len

if len EQLU 0 then {UNPREDICTABLE};
if PSW<Z> EQL 1 then

45

begin

R5 <~ R5 —len;

repeat len do STORE (fill);
end;

EO$BLANK_ZERO Blank Backwards When Zero

The pattern operator is followed by an unsigned byte integer
length. If the value of the source string is zero, then the con-
tents of the fill register are stored into the last length bytes of
the destination string.

1.

The length must be nonzero and within the destination
string already produced. If it is not, the contents of the
destination string and the memory preceding it are un-
predictable.

This pattern operator is used to blank out any characters
stored in the destination under a forced significance,
such as a sign or the digits following the radix point.

346

Edit Instruction

EOSREPLACE_SIGN

REPLACE SIGN WHEN MINUS ZERO

Purpose:

Format:

Operations:

Pattern
Operators:

Description:

Notes:

fix up the destination sign when the value is minus zero
pattern len

if len EQLU 0 then {UNPREDICTABLE};
if PSW<Z> EQL 1 and PSW<N> EQL 1 then
(R5 — len) < fill

46 EO$REPLACE_SIGN Replace Sign When Minus Zero

The pattern operator is followed by an unsigned byte integer
length. If the value of the source string is zero (i.e., if Z is set),
then the contents of the fill register are stored into the byte of
the destination string which is “length” bytes before the cur-
rent position.

1. The length must be nonzero and within the destination
string already produced. If it is not, the contents of the
destination string and the memory preceding it are un-
predictable.

2. This pattern operator is used to correct a stored sign
(EOSEND_FLOAT or EO$STORE_SIGN) if a minus was
stored and the source value turned out to be zero.

347

Edit Instruction |

EOSLOAD

LOAD REGISTER

Purpose:

Format:

Operations:

Pattern
Operators:

Description:

Notes:

change the contents of the fill or sign register

pattern ch

Iselect one depending on pattern operator
fill «<ch; IEO$LOAD_FILL
sign <—ch; IEOSLOAD_SIGN

if PSW<N> EQL 0 then sign < ch; EO$LOAD_PLUS
if PSW<N> EQL 1 then sign <-ch; !'EO$LOAD_MINUS

40 EOS$LOAD_FILL Load Fill Register

41 EO$LOAD_SIGN Load Sign Register

42 EO$LOAD_PLUS Load Sign Register If Plus
43 EO$LOAD_MINUS Load Sign Register If Minus

The pattern operator is followed by a character. For
EO$LOAD_FILL, this character is placed into the fill register.
For EO$LOAD_SIGN, this character is placed into the sign
register if the source string has a positive sign. For
EO$LOAD_MINUS, this character is placed into the sign regis-
ter if the source string has a negative sign.

1. EO$LOAD_FILL is used to set up check protection (* in-
stead of space).

2. EO$LOAD_SIGN is used to set up a floating currency
sign.

3. EO$LOAD_PLUS is used to set up a nonblank plus sign.

4. EO$LOAD_MINUS is used to set up a nonminus minus
sign (such as CR, DB, or the PL/I+).

348

Edit Instruction

EOS$_SIGNIF
SIGNIFICANCE
Purpose: control the significance (leading zero) indicator
Format: pattern

Operations: PSW<C> «0; IEO$CLEAR_SIGNIF
PSW<C> «1; IEO$SET_SIGNIF

Pattern
Operators: 02 EO$CLEAR_SIGNF Clear Significance
03 EOS$SET_SIGNIF Set Significance

Description: The significance indicator is set or cleared. This controls the
treatment of leading zeros (leading zeros are zero digits for
which the significance indicator is clear).

Notes: 1. EO$CLEAR_SIGNIF is used to initialize leading zero
suppression (EO$MOVE) or floating sign (EO$FLOAT)
following a fixed insert (EO$INSERT with significance
set).

2. EO$SET_SIGNIF is used to avoid leading suppression
(before EO$MOVE) or to force a fixed insert (before
EOS$INSERT).

349

Edit Instruction

EO$ADJUST_INPUT

ADJUST INPUT LENGTH

Purpose:

Format:

Operations:

Pattern
Operators:

Description:

Notes:

handle source strings with lengths different from the output
pattern len

if len EQLU 0 or len GTRU 31 then {UNPREDICTABLE};
if RO <15:0> GTRU len
then
begin
R0<31:16> <0
repeat R0<15:0> — len do
if READ NEQU 0 then
begin
PSW<Z> «0;
PSW<C><1; Iset significance
PSW<V> «1;
end;
end;
else R0<31:16> <« R0<15:0> — len;
Inegative of number to fill

47 EO$ADJUST_INPUT Adjust Input Length

The pattern operator is followed by an unsigned byte integer
length in the range 1 through 31. If the source string has more
digits than this length, the excess digits are read and discard-
ed. If any discarded digits are nonzero, then overflow is set,
significance is set, and zero is cleared. If the source string has
fewer digits than this length, a counter is set to the number of
leading zeros to supply. This counter is stored as a negative
numer in R0<31:16>.

If length is not in the range 1 through 31, the destination string,
condition codes, and R0 through R5 are unpredictable.

350

END EDIT
Purpose:

Format:

Operations:

Pattern
Operators:

Description:

Notes:

Edit Instruction

EOSEND
end the edit operation
pattern
exit_flag «true; lterminate edit loop
lend processing is
Idescribe under EDITPC

instruction

00 EOS$END End Edit
The edit operation is terminated.

1. If there are still input digits, a reserved operand abort is
taken.

2. Ifthe source value is —0, the N condition code is cleared.

351

CHAPTER 17
PDP-11 COMPATIBILITY MODE

INTRODUCTION

in designing the VAX computer architecture, DIGITAL engineers were
well aware of the need to establish a high level of compatibility with the
large, well-established PDP-11 computer family. VAX represents the
natural growth direction for many installations using PDP-11 machines
and programs: to ease the growth, to quicken program transition, and
to protect prior customer investment, it was important that VAXes
display good compatibility features. Also, VAX had to provide compa-
tibility to people who wanted to take advantage of its excellent pro-
gram development tools in order to create and test programs that
would later be loaded into PDP-11 computers.

The compatibility mode in the VAX architecture can make the comput-
er “look like” a PDP-11 running the RSX-11M or IAS operating sys-
tems, naturally with some restrictions and requirements. A VAX
computer treats compatibility mode programs like other processes,
and can run them in its multiprogramming environment along with
native mode programs. The computer should not be thought of as
existing in one state or another, but rather as capable of handling both
modes as the need arises.

So, if you are considering VAX for growth and for host program devel-
opment, you will find that it provides useful compatibility with PDP-11s
you already use or others you might be adding. And, of course, all the
processors in the VAX family are 100% compatible with one another.

What follows in this chapter is a fairly detailed review of the powers
and the restrictions of VAX compatibility mode. Naturally, if you need a
greater depth of information, your DIGITAL Sales Representative or
Software Specialist can supply it for you.

COMPATIBILITY MODE

VAX compatibility mode hardware, in conjunction with a compatibility

mode software executive (which runs in native mode), can emulate the

environment provided to user programs on a PDP-11. But this envi-

ronment excludes from a complete PDP-11 the normal operation of

the following features:

1. Privileged instructions such as HALT and RESET.

2. Special instructions such as traps and WAIT.

3. Access to internal processor registers (e.g., PSW and console
switch register).

353

Compatibility Mode

4. Direct access to trap and interrupt vectors.

Direct access to I/0 devices. (Compatibility mode programs can
directly reference 1/0 devices if and only if proper mapping has
been established by native mode software.)

Interrupt servicing.
Stack overflow protection.
Alternate general register sets.

Any PDP-11 processor modes other than user mode, (i.e., kernel
and supervisor) are not supported.

10. Floating pointinstructions.

o

© o~ o

Compatibility mode architecture is split into two parts. The first part is
the PDP-11 environment provided by the VAX hardware. Details of the
operation of PDP-11 compatible operations can be found in the ap-
propriate PDP-11 Handbook. The second part is the hardware mecha-
nisms provided in the VAX architecture that enable the
implementation of various compatibility mode executives; this part is
considered a subset of the VAX System Architecture.

COMPATIBILITY MODE USER ENVIRONMENT

General Registers And Address Modes

All of the PDP-11 general registers and addressing modes are provid-
ed in compatiblity mode. Side effects caused by a destination address
calculation have no effect on source values (except in JSR), and au-
toincrement modes in JMP and JSR do not affect the new Program
Counter. All addresses are 16 bits wide.

The Stack

General register R6 is used as the stack pointer by certain instruc-
tions, as in the PDP-11. It is not, however, used by the hardware for
any exceptions or interrupts, nor is there any stack overflow protection
in compatibility mode.

Processor Status Word
A subset of the full PDP-11 Processor Status Word is available in
compatibility mode. The format of the compatibility mode PSW is:

The PSW can only be affected by the condition code instructions, RTI,
and RTT. When an RTI or RTT instruction is executed, bits 15 through
5 in the saved PSW on the stack are ignored.

15 5 4 3 2 1 0

354

Compatibility Mode

Instructions
The following instructions are provided by the compatibility mode
hardware.

Table 17-1 Compatibility Mode Instructions

Opcode Mnemonic Name

(octal)

000002 RTI Return from Inter-
rupt

000006 RTT Return from Trap

0001DD JMP Jump

00020R RTS Return from Sub-
routine

000240-000277 Condition Codes

0003DD SWAB Swap Bytes

000400-003777 Branches Branch

100000-103777 Branches Branch

004RDD JSR Jump to Subroutine

.050DD CLR(B) Clear

.051DD COM(B) Complement

.052DD INC(B) Increment

.053DD DEC(B) Decrement

.054DD NEG(B) Negate

.055DD ADC(B) Add Carry

.056DD SBC(B) Subtract Carry

.057DD TST(B) Test

.060DD ROR(B) Rotate Right

.061DD ROL(B) Rotate Left

.062DD ASR(B) Arithmetic Shift
Right

.063DD ASL(B) Arithmetic Shift Left

0065SS MFPI* Move from Previous

Instruction Space
355

Compatibility Mode

Opcode Mnemonic Name

(octal)

0066DD MTPI* Move to Previous
Instruction Space

1065SS MFPD* Move from Previous
Data Space

1066DD MTPD* Move to Previous
Data Space

0067DD SXT Sign Extend Word

070RSS MUL Multiply

071RSS DIV Divide

072RSS ASH Arithmetic Shift

073RSS ASHC Arithmetic Shift
Combined

074RSS XOR Exclusive Or

077RNN SOB Subtract One and
Branch

.1SSDD MOV(B) Move

.28SSS CMP(B) Compare

.3SSSS BIT(B) Bit Test

.4SSDD BIC(B) Bit Clear

.5SSDD BIS(B) Bit Set

06SSDD ADD Add

16SSDD sSuB Subtract

Legend:

R = Register specifier

SS = Source operand specifier
DD = Destination operand specifier

- = 0 for word operations; 1 for byte operations

* These instructions execute exactly as they would on a PDP-11 in user mode
with Instruction and Data space overmapped. More specifically, they ignore
the previous access level and act like PUSH and POP instructions referenc-
ing the current stack.

356

Compatibility Mode

The following trap instructions cause the machine to enter native
mode, where either the complete trap may be serviced, or the instruc-
tion may be simulated.

Table 17-2 Compatibility Mode Trap Instructions

Opcode Mnemonic
(octal)

000003 BPT
000004 10T
104000-104377 EMT
104400-104777 TRAP

Some instructions, such as WAIT and RESET, are considered re-
served instructions in compatibility mode. If encountered, they cause
a fault to native mode. Table 17-3, following, lists such instructions. In
addition, all other opcodes not defined above result in a fault to native
mode.

Table 17-3 Compatibility Mode Reserved Instructions

Opcode Mnemonic

(octal)

000000 HALT

000001 WAIT

000005 RESET

000007 MFPT

00023N SPL

0064NN MARK

0070DD CSM

07500R FADD—FIS
07501R FSUB—FIS
07502R FMUL—FIS
07503R FDIV—FIS

076XXX Extended Instructions
1064SS MTPS

1067DD MFPS

T7XXXX FP11 Floating Point

Note that no floating point instructions are included in compatibility
mode.

357

Compatibility Mode

ENTERING AND LEAVING COMPATIBILITY MODE

Compatiblity mode is entered by executing an REI instruction with the
compatibility mode bit set in the image of the PSL on the stack. Other
bits in the PSL have the following effects:

N,Z,V,C Condition Codes

T T Bit

DV Reserved operand fault if not zero
FU Reserved operand fault if not zero
v Reserved operand fault if not zero
IPL Reserved operand fault if not zero

PRV MOD Reserved operand fault if not 3
CURMOD Reserved operand fault if not 3

IS Reserved operand fault if not zero
FPD Reserved operand fault if not zero
TP T pending bit.

Native mode is reentered from compatibility mode by the compatibility
mode program’s causing an exception, or by an interrupt. The PSL
pushed on the kernel or interrupt stack when leaving compatibility
mode has all the bits that cause reserved operand faults in the above
table set to the appropriate state.

Note that when an RTI or RTT instruction is executed in compatibility
mode, the 11 high bits of the PSW are ignored. But when the PSW is
restored as part of the PSL when going from native to compatibility
mode, those bits must be zero or a reserved operand fault occurs.

General Register Usage

Compatibility mode registers 0 through 6 are bits 15 through 0 of VAX
general registers 0 through 6, respectively. Compatibility mode regis-
ter 7 (PC) is bits 15 through 0 of VAX general register 15 (PC). VAX
registers 8 through 14 (SP) are not affected by compatibility mode.
When entering compatibility mode, VAX register 7 and the upper
halves of registers 0 through 6 and 15 are ignored. When an exception
or interrupt occurs from compatibility mode, VAX register 7 is unpred-
ictable and the upper halves of RO through R6 and the stacked R15
(PC) are zero. Since there are no FP11 floating point instructions in
compatibility mode, there are no floating accumulators.

COMPATIBILITY MODE MEMORY MANAGEMENT

The PDP-11 uses 16-bit byte addresses; hence compatibility mode
programs are confined to execute in the first 64 Kbytes of the process
part of virtual address space. There is a one-to-one correspondence
between a compatibility mode virtual address and its VAX counterpart
(e.g., virtual address 0 references the same location in both modes). A
compatibility mode address is interpreted as follows:

358

Compatibility Mode

3 16 15 9 8 0
DISPLACEMENT

0 PAGE

The PDP-11 capability of providing different access protection to dif-
ferent segments is provided in 8-block chunks, since protection is
specified at the page level in the VAX architecture (i.e., one VAX page
equals eight PDP-11 blocks).

The memory management system protects and relocates compatibili-
ty mode addresses in the normal manner. Thus, all of the memory
management mechanisms available in native mode are available to
‘the compatibility mode executive for managing both the virtual and
physical memory of compatibility mode programs. All of the exception
conditions that can be caused by memory management in native
mode can also occur when relocating a compatibility mode address.

Most of the features of the PDP-11 memory management hardware
affecting the user environment can be simulated with the VAX memory
management system. Table 17-4 provides a general description of
how this can be done; you may refer to the VAX Hardware Handbook
and the appropriate PDP-11 Handbooks for details of each system.

Table 17-4
PDP-11 Memory
Management
Feature to be VAX
Simulated Simulation Method

Eight segments per
user.

Segment size from 64
bytes to 8 Kbytes (1 to
128 blocks) in 64-byte
increments, using con-
tiguous memory.

Forward growing seg-
ments
(Expand Direction=0).

Backward growing
segments.
(ED=1).

Eight segments can be simulated by divid-
ing the 128 pages of the compatibility mode
virtual address space into eight logical
groups of 16 pages each, having possibly
different protection.

Segment size from 512 bytes to 8 Kbytes (1
to 16 pages) in 512-byte (1 page) incre-
ments, using discontiguous memory.

Can be simulated using page table entries
specifying no access for those pages that
are not allocated.

Can be simulated using page table entries
specifying no access for those pages that
are not allocated.

359

Compatibility Mode

PDP-11 Memory

Management

Feature to be VAX

Simulated Simulation Method

Segments begin on Segments begin on any 512-byte boundary.

any 64-byte boundary.

Below is an example of how a PDP-11 environment can be created
using the concepts in Table 17-4. Segments 0, 1, and 2 of the PDP-11
environment are program segments; 3 is unused; 4 and 5 are stack;
and 6 and 7 are read/write data.

PDP-11 Environment VAX Page Table

Seg# Size Expand Access Page Access
(bytes)Direction

0 8K Up Read only 0-15 Read only

1 8K Up Read only 16-31 Read only

2 256 Up Read only 32 Read only

3 0 — None 33-77 No Access

4 1K Down Read/Write 78-79 Read/Write

5 8K Down Read/Write 80-95 Read/Write

6 8K Up Read/Write 96-111 Read/Write

7 2K Up Read/Write 112-115 Read/Write

116-127 No Access

COMPATIBILITY MODE EXCEPTIONS AND INTERRUPTS

All interrupts and exception conditions which occur while the machine
is in compatibility mode cause the machine to enter native mode (note
that this includes backing up instruction side effects if necessary). The
following exception conditions are specific to compatibility mode. All
these exceptions create a three-longword frame on the kernel stack
containing PSL, PC, and one longword of trap-specific information.
Bits 15:0 of this longword contain a code indicating the specific type of
trap and bits 31:16 are zero.

1. These are the opcodes that are defined in compatibility mode.
The code for the reserved instruction trap is 0.

The code for the BPT instruction faultis 1.

The code for the IOT instruction fault is 2.

The fault code for the group of EMT instructions is 3.
The fault code for the group of TRAP instructions is 4.

lllegal instructions in compatibility mode are JMP and JSR in-
structions with a register destination. The fault code for illegal
instructions is 5.

2B

360

Compatibility Mode

7. An odd address error abort is caused in compatibility mode
whenever a word reference is attempted on a byte boundary.
References that use the SP or PC are always word references,
even if used in a byte instruction. The code for odd address errors
is 6.

T BIT OPERATION IN COMPATIBILITY MODE

A compatibility mode trace fault occurs at the beginning of an instruc-
tion when the T bit is set in the PSW at the beginning of the prior
instruction. On trace faults, a 2-longword kernel stack frame is creat-
ed, containing the PSL and PC. IPL and IS are zero and CMis onein
the stacked PSL. Compatibility mode trace faults use the same vector
as native mode Trace fault. In fact, the rules for trace fault generation
in compatibility mode are identical to those for native mode.

There are two ways to get the T bit set at the beginning of a compatibil-
ity mode instruction.

1. An RTT/RTl instruction is executed in compatibility mode and the
T bit is set in the PSW image on the stack. In this case, the next
instruction is executed (the one pointed to by the PC on the stack),
and a trace fault is taken after that instruction.

2. An REI instruction is executed in native mode which has both the
T bit and CM bit set (and T pending clear) in the saved PSL image
on the stack. Again, one instruction is executed, and the T bit trap
is taken. (The operations that occur as a function of these condi-
tions are the same whether or not compatibility mode is being
entered from the REI.)

The T bit interacts with other compatibility mode operations as follows:

1. T bit set at the beginning of a compatibility mode instruction which
does not cause a compatibility mode fault.

In this case, the instruction sets TP and executes. A trace fault is
taken before the next instruction. The saved PSL has the T bit set
and TP clear. The compatibility mode executive will do one of the
following things:

- If it services the exception directly, it may clear the T bitin the
saved PSL on the kernel stack if it no longer wants to trace
the program, or it may leave it set if it wants to continue
tracing the program. It exits with an REL.

- Ifit returns the trap to compatibility mode, it pushes a (16-bit)
PC and (16-bit) PSW with the T bit set on the User stack to
simulate the effect of the PDP-11 trace trap. It then clears the
T bit in the saved PSL image on the kernel stack, changes the
saved PC to point to the compatibility mode service routine,

361

Compatibility Mode

and executes an REIl. The compatibility mode service routine
then may clear the T bit in the PSW image on its stack, if it
does not want to continue tracing. The compatibility mode
routine returns with RTT. (If it always clears the T bit in the
saved PSW, it does not matter if it returns with RTI or RTT.)

2. T bit set at the beginning of an RTl or RTT.

The RTT/RTI instruction executes and TP is set. A trace fault
occurs before the next instruction is executed. There are two
different cases, depending on whether or not the T bit was set in
the image of the PSW which was popped from the stack by the
instruction:

- Thbitnotset.

Neither TP nor T will be set in the saved PSL on the kernel
stack.

- T bitset.

TP will not be set, and T will be set. This is the case for other
compatibility mode instructions.
3. T bit set at the beginning of any instruction which causes a com-
patibility mode fault.

The fault condition is serviced first. TP is clear and T is set in the
saved PSL pushed on the kernel stack.

UNIMPLEMENTED PDP-11 TRAPS

Some traps that occur in PDP-11s that are not implemented in compa-

tibility mode:

1. There is no stack overflow trap. Stack overflow can be provided
by the compatibility mode executive using the memory manage-
ment mechanisms.

2. There is no concept of a double error trap in compatibility mode,
since the first error always puts the machine in native mode.

3. All other trap conditions such as power failure, memory parity,
and memory management traps cause the machine to enter na-
tive mode.

COMPATIBILITY MODE I/0 REFERENCES

Since 1/0 devices are accessible with all instructions in native mode
(as in the PDP-11), I/0 devices may be referenced directly from
compatibility mode, if the memory mapping is set up to allow it. This
may be done by mapping pages directly to I/0 devices. Note that, in
general, I/0 devices will not appear in the physical address space on
VAX machines in the same way that they do on PDP-11s, so existing
PDP-11 programs that directly reference 1/0 devices probably will not

362

Compatibility Mode

work. In addition, compatibility mode programs can only do word or
byte references; many VAX I/O devices may require that some refer-
ences be 32 bits wide.

PROCESSOR REGISTERS

The only processor register available in compatibility mode is part of
the PSW, and it may only be referenced with the condition code in-
structions, RTI, and RTT. Access to all other registers must be done in
native mode.

PROGRAM SYNCHRONIZATION

All PDP-11s guarantee that read-modify-write operations to 1/0 device
registers are interlocked; that is, the device can determine at the time
of the read that the same register will be written as the next bus cycle.
This synchronization also works in memory on most PDP-11s. In com-
patibility mode, instructions that have modify destinations will perform
this synchronization for UNIBUS 1/0 device registers and never for
memory.

CONCLUSION

As a powerful link joining the PDP-11 family and the VAX family, com-
patibility mode should help you expand your computing resources
efficiently. And programs which, for one reason or another cannot
take advantage of compatibility mode, usually can be fixed easily and
quickly.

363

e IS e ————————— e

APPENDIXES

365

366

APPENDIX A
NOTATIONAL CONVENTIONS USED IN THIS

HANDBOOK

Operational Notation

Graphical representations of memory, either physical or virtual, begin
with low memory at the top of the diagram and progress downward
toward higher addresses. This technique is illustrated in Figure A1

55555

78786

Figure A1 Memory Addressing Scheme

Unless otherwise noted, all numerical quantities are shown in decimal
representation; decimal is the default radix of the system. Any other
representation is shown using the radix of the number as a subscript:

56A4C,,

Operations notation uses an ALGOL-like format. For example, the
ADWC instruction (Add With Carry) is represented as follows:

sum<sum+add+C

This shows the operation of adding the quantities “sum,” “add,” and
“C” (for carry) and placing the result in “sum.” Fuller details of this
convention are given in Appendix E.

Range and Extent

An integer range is specified in English by the word “through,” or in
notational form by a double period “..”, and is inclusive. For example,
the range 0 through 4, or 0..4, means the integers 0,1,2,3 and 4.

An extent is given by a pair of numbers separated by a colon and is
also inclusive. For example, bits 7:3 specifies an extent of bits includ-
ing bits 7,6,5,4, and 3.

367

Notational Conventions for the Handbook

Unpredictable and Undefined

Results specified as unpredictable may vary from moment to mo-
ment, implementation to implementation, and instruction to instruc-
tion within an implementation; engineering change orders (ECQO’s)
may alter unpredictable results. Software should not depend on re-
sults specified as unpredictable.

Similarly, operations specified as undefined may vary from moment
to moment, implementation to implementation, and instruction to in-
struction within an implementation. The operation can vary in effect
from doing nothing up to stopping system operation. Of course non-
privileged software should avoid invoking undefined operations.

MBZ and Reserved

Fields identified with MBZ (Must Be Zero) should never be filled by
software with a:nonzero value. If the processor encounters a nonzero
value in a field specified as MBZ, generally a reserved operand fault or
abort occurs.

Certain fields and values accessible to privileged software are re-
served to DIGITAL and the privileged software should not set nonzero
or reserved values into these areas. (Fields reserved to DIGITAL and
all MBZ fields may be used in the future to extend the standard
architecture.)

In some cases, certain unassigned values are indicated as “reserved
to CSS and customers.” Only these values should be used for your
nonstandard applications.

368

APPENDIX A1
DATA TABLES

INTRODUCTION
This appendix contains the following information:

e Hexadecimal-to-decimal conversion
e Decimal-to-hexadecimal conversion
e Hexadecimal addition

e Hexadecimal multiplication

e ASCIl character set

e Hexadecimal-ASCIl conversion

e Powers of 2

e Powers of 16

HEXADECIMAL-TO-DECIMAL CONVERSION

For each integer position of the hexadecimal value, locate the corres-
ponding column integer in Table A-1 and record its decimal equivalent
in the conversion table. Add the decimal equivalents to obtain the
decimal value.

Exam ple:
DO0500ADO(16) = ?(10)
D0000000 = : 3,489,660,928
500000 = 5,242,880
A00 = 2,560
DO = 208
D0500ADO0O = 3,494,904,576

DECIMAL-TO-HEXADECIMAL CONVERSION

1.

Locate in the conversion table (Table A-1) the largest decimal
value that does not exceed the decimal number to converted.

Record the hexadecimal equivalent followed by the number of
zeros (0) that corresponds to the integer column minus one.

Subtract the table decimal value from the decimal number to be
converted. .

Repeat steps 1-3 until the subtraction balance equals zero. Add
the hexadecimal equivalents to obtain the hexadecimal value.

369

Data Tables

Example:
22,466 (10) = ?(16)
22,466
—20,480 = 5000
1,986
-1,792 = 700
194
-192 = co
2
-2 = 2
22,466 (10) = 57C2 (16)

. HEXADECIMAL ADDITION
Table A-2 is a hexadecimal addition table for values from 0 through F.
To add two hex numbers, locate one number in the left-hand column
outside the body of the table and the other number in the topmost row
above the body of the table. The intersection of these two numbers is
the sum of the numbers. For example, to add A plus B, find A in the left
column and B along the top row. The intersection of the two is 15.

HEXADECIMAL MULTIPLICATION

Table A-3 shows a hexadecimal multiplication table. To multiply two
numbers, locate one in the left hand column outside the body of the
table and the other in the topmost row outside the body of the table.
The intersection of the two is the product of the two numbers. For
example, to multiply 4 x A, locate 4 in the lefthand column and A in the
topmost row. The intersection of the two is Z8, which is the product of
the two numbers.

370

Data Tables

adom

A
7 Y
31Ad 31Ad
\III\() N
r R
Sk 4 0ve E] ov8'e 4 0ovv'i9 El
vl 3 vae 3 ¥85'€ 3 vveLs 3
el a soe a 82e'e a 8ve'es a
cl O <61 0 2L0'E O 2Gi'6Y o]
L g 9.1 2] 918'C g 950'GY q
ol v 091 v 09S¢ vV 096°0% v
6 6 vyl 6 $0€'2 6 ¥98'9¢ 6
8 8 8¢1 8 8¥0'C 8 89.C¢ 8
L L CLi L 26L'L L 2l9'82 L
9 9 96 9 9€eS’t 9 9.5'%¢ 9
S S 08 S 082’k S 08v'02 S
14 v 9 14 ¥20'L v v8E'9l 14
€ € 8y € 897 € 88c¢cl €
4 ¢ ¢t 4 4% Z c6L's 4
8 L 9t 3 9G6¢ L 960'% 3
0 00 0 0 0 0 0
03a X3H O340 X3H 03a X3H 030 X3H

! 4

€

14

a4om

r - ™~
31A8 31A8
A AL

o A\ ' Y
0v0'c86 4 0v9'82L'SL 4 0v2'859'tSe 4 Ov8'les'9z0'y 4
¥0S'L16 3 $90'089'v+ 3 ¥20'188'vEC 3 $8€'960'8GL'E 3
896'LS8 a 8sy'Leg'el a 808'c0L'8lLe a 826'099'68v'E a
2ev'98L D 216'2852k O z65'92€'10e O elv'szeizz'e O
968'02L g 9ce'ves'tl g 9/£'6¥S V81 g 910'06.'256'C a
09€'G59 Vv 09.'G8¥'0L Vv 091'cLLL9L VvV 09S'vSe'v89'e v
¥28'68G 6 ¥8L'LEV'E 6 y¥6'v66'0G 1 6 POL'6L6'GLY'C 6
882'veS 8 809'88€'8 8 82.'L12'VEL 8 €v9'esv'Lvi'e 8
2G.'8SY L zeo'ove'L VA ZLS'oPY LEL . 261'8v0',68'L L
912'€6E 9 95¥'162'9 9 962'€99'001 9 9€/'C19'019°t 9
089°'22¢€ G 088'¢cve'S S 080'988°¢€8 G 082'LLLevE'L S
vy1'292 ¥ v0E'veL'Y v $98'801°29 ¥ p28LYL'E€L0'L 4
809'961 € 82lL'svl'e € 8v9'LEE0S £ 89€£'90£'G08 €
2L0'LEL 2 251'.60'C 4 2EY'¥SS'EE 2 216'0.8'9€S Z
9€6'G9 L 9/5'8¥0'L 8 9Le'LLL'91 I 9S¥'SEV'89C 8
0 00 0 0 0 0 0

03da X3H 034 X3H 0340 X3H 03da X3H

S 9)A 8

371

MTMOUOW» ©®NDO HWN 2O

TMOOm>» ©0KONOOAWN—2O

0

00
01
02
03
04
05
06
07
08
09
0A
0B
0C
oD
OE
OF

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

1

01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
OF
10

Data Tables

Table A-2 HEXADECIMAL ADDITION

2

02
03
04
05
06
07
08
09
0A
0B
0C
0D
OE
OF
10
11

3

03
04
05
06
07
08
09
0A
0B
ocC
0D
OE
OF
10
11
12

4

04
05
06
07
08
09
0A
0B
0C
oD
0E
OF
10
11
12
13

5 6 7

05
06
07
08
09
0A
0B
0C
oD
OE
OF
10
11
12
13
14

06
07
08
09
0A
oB
0C
0D
OE
OF
10
11
12
13
14
15

07
08
09
0A
0B
0C
0D
OE
OF
10
11
12
13
14
15
16

8 9 A B C D E F

08
09
0A
0B
0C
0D
0E
OF
10
11
12
13
14
15
16
17

09
0A
0B
0C
0D
0E
OF
10
11
12
13
14
15
16
17
18

0A
0B
0C
0D
0E
OF
10
11
12
13
14
15
16
17
18
19

0B
oC
oD
OE
OF
10
11
12
13
14
15
16
17
18
19
1A

0C
0D
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B

oD
0E
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1C

Table A-3 HEXADECIMAL MULTIPLICATION

1

00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
OE
OF

2 3 4 5 6 7 8 9 A B C D

00
02
04
06
08
0A
0C
0E
10
12
14
16
18
1A
1C
1E

00
03
06
09
0C
OF
12
15
18
1B
1E
21

24
27
2A
2D

00
04
08
oC
10
14
18
1C
20
24
28
2C
30
34
38
3C

00
05
0A
OF
14
19
1E
23
28
2D
32
37
3C
41
46
4B

00
06
oC
12
18
1E
24
2A
30
36
3C
42
48
4E
54
5A

00
07
0E
15
1C
23
2A
31
38
3F
46
4D
54
5B
62
69

372

00
08
10
18
20
28
30
38
40
48
50
58
60
68
70
78

00
09
12
1B
24
2D
36
3F
48
51
5A
63
6C
75
7E
87

00
0A
14
1E
28
32
3C
46
50
5A
64
6E
78
82
8C
96

00
0B
16
21
2C
37
42
4D
50
63
6E
79
84
8F
9A

00
0C
18
24
30
3C
48
54
60
6C
78
84
90
9C
A8

00
0D
1A
27
34
41
4E
5B
68
75
82
8F
9C
A9
B6

A5 B4 C3

OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D

00
0E
1iC
2A
38
46
54
62
70
7E
8C
9A
A8
B6
C4
D2

OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E

00
OF
1E
2D
3C
4B
5A
29
78
87
96
AS
B4
C3
D2
E1

Data Tables

ASCII CHARACTER SET AND HEX-ASCII CONVERSION
Table A-4 represents the ASCII character set.

TMUOUOWI>OONOOGDWN—-O

w =z
O C
Tr

STX
ETX
EOT
ENQ
ACK
BEL
Block
BS
HT
LF
VT
FF
CR
SO
Sl
SP

Table A-4 ASCII CHARACTER SET

0 1 2
NUL DLE
SOH DC1 !

STX DC2 "
ETX DC3 #
EOT DC4 $
ENQ NAK
ACK SYN &
BEL ETB
BS CAN (
HT EM)
LF suB *
VT ESC
FF FS ,
CR GS -
SO RS .
Sl us /
Null
Start of Heading
Start of Text
End of Text
End of Transmission
Enquiry
Acknowledge
Bell

Backspace
Horizontal Tabulation
Line Feed

Vertical Tabulation
Form Feed

Carriage Return

Shift Out

Shift In

Space

- O W

© oo N O~ W

DV I A~ -

DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB

CAN
EM
SuB

FS
GS
RS
us
DEL

373

OZ2rX«—IOTMMOUOW>»E »

5 6 7
P ‘ P
Q a q
R b r
S c s
T d t
U e u
\Y f v
w g w
X h X
Y i y
Z j z
[k {
\ | |
] m }
i n ~
— 0 DEL

Data Link Escape

Device Control 1

Device Control 2

Device Control 3

Device Control 4
Negative Acknowledge
Synchronous ldle

End of Transmission

Cancel

End of Medium
Substitute
ESCAPE

File Separator
Group Separator
Record Separator
Unit Separator
Delete

Data Tables

POWERS OF 2 AND OF 16
For quick reference, the most commonly used powers of 2 and of 16
are shown below.

Powers of 2

2**n n
256 8
512 9
1024 10
2048 11
4096 12
8192 13
16384 14
32768 15
65536 16
131072 17
262144 18
524288 19

1048576 20
2097152 21
4194304 22
8388608 23
16777216 24

Powers of 16
16**n

=}

1
16

256

4096

65536

1048576

16777216

268435456
4294967296
68719476736
1099511627776 10
17592186044416 11
281474976710656 12
4503599627370496 13
72057594037927936 14
1152921504606846976 15

O©CoO~NOOOOGA,WN-—=-O

APPENDIX B

INSTRUCTION INDEX
By Mnemonic

MNEMONIC LISTING

MNEMONIC INSTRUCTION OPCODE PAGE
ACBB Add compare and branch byte 9D 268
ACBD Add compare and branch D_floating 6F 268
ACBF Add compare and branch F_floating 4F 268
ACBG Add compare and branch G_floating 4FFD 268
ACBH Add compare and branch H_floating 6FFD 268
ACBL Add compare and branch longword F1 268
ACBW Add compare and branch word 3D 268
ADAWI Add aligned word, interlocked 58 194
ADDB2 Add byte 2 operand 80 191
ADDB3 Add byte 3 operand 81 191
ADDD2 Add D_floating 2 operand 60 191
ADDD3 Add D_floating 3 operand 61 191
ADDF2 Add F_floating 2 operand 40 191
ADDF3 Add F_floating 3 operand 41 191
ADDG2 Add G_floating 2 operand 40FD 191
ADDG3 Add G_floating 3 operand 41FD 191
ADDH2 Add H_floating 2 operand 60FD 191
ADDH3 Add H_floating 3 operand 61FD 191
ADDL2 Add longword 2 operand Co 191
ADDL3 Add longword 3 operand C1 191
ADDP4 Add packed 4 operand 20 314
ADDP6 Add packed 6 operand 21 314
ADDW?2 Add word 2 operand A0 191
ADDWS3 Add word 3 operand A1 191
ADWC Add with carry D8 193
AOBLEQ Add one and branch on less or equal F3 270
AOBLSS Add one and branch on less F2 270
ASHL Arithmetic shift longword 78 211
ASHP Arithmetic shift and round packed F8 330
ASHQ Arithmetic shift quadword 79 211

375

Instruction Index by Mnemonic

MNEMONIC INSTRUCTION OPCODE PAGE
BBC Branch on bit clear E1 264
BBCC Branch on bit clear and clear E5 265
BBCCI Branch on bit clear and clear E7 266
interlocked
BBCS Branch on bit clear and set E3 265
BBS Branch on bit set EO 264
BBSC Branch on bit set and clear E4 265
BBSS Branch on bit set and set E2 265
BBSSI Branch on bit set and set, E6 266
interlocked
BCC Branch on carry clear 1E 261
BCS Branch on carry set 1F 261
BEQL Branch on equal (signed) 13 261
BEQLU Branch on equal unsigned 13 261.
BGEQ Branch on greater or equal 18 261
BGEQU Branch on greater or equal unsigned 1E
BGTR Branch on greater 14 261
BGTRU Branch on greater unsigned 1A 261
BICB2 Bit clear byte 2 operand 8A 209
BICB3 Bit clear byte 3 operand 8B 209
BICL2 Bit clear longword 2 operand CA 209
BICL3 Bit clear longword 3 operand cB 209
BICPSW Bit clear program status word B9 223
BICW2 Bit clear word 2 operand AA 209
BICW3 Bit clear word 3 operand AB 209
BISB2 Bit set byte 2 operand 88 208
BISB3 Bit set byte 3 operand 89 208
BISL2 Bit set long 2 operand C8 208
BISL3 Bit set long 3 operand C9 208
BISPSW Bit set program status word B8 223
BISW2 Bit set word 2 operand A8 208
BISW3 Bit set word 3 operand A9 208
‘BITB Bit test byte 93 207
BITL Bit test longword D3 207
BITW Bit test word B3 207
BLBC Branch on low bit clear E9 267
BLBS ‘Branch on low bit set E8 267

376

Instruction Index by Mnemonic

MNEMONIC INSTRUCTION OPCODE PAGE
BLEQ Branch on less or equal 15 261
BLEQU Branch on less or equal unsigned iB 261
BLSS Branch on less 19 261
BLSSU Branch on less unsigned 1F 261
BNEQ Branch on not equal 12 261
BNEQU Branch on not equal unsigned 12 261
BPT Break point fault 03 169
BRB Branch with byte displacement 1 263
BRW Branch with word displacement 31 263
BSBB Branch to subroutine with byte 10 275

displacement]
BSBW Branch to subroutine with word 30 275
displacement
BUGL Bugcheck longword FDFF 170
BUGW Bugcheck word FEFF 170
BVC Branch on overflow clear 1C 261
BVS Branch on overflow set 1D 261
CALLG Call with general argument list FA 280
CALLS Call with stack FB 282
CASEB Case byte 8F 273
CASEL Case longword CF 273
CASEW Case word AF 273
CHME Change mode to executive BD 158
CHMK Change mode to kernel BC 158
CHMS Change mode to supervisor BE 158
CHMU Change mode to user BF 158
CLRB Clear byte 94 181
CLRD Clear D_floating 7C 181
CLRF Clear F_floating D4 181
CLRG Clear G_floating 7C 181
CLRH Clear H_floating 7CFD 181
CLRL Clear longword D4 181
CLRO Clear octaword 7CFD 181
CLRQ Clear quadword 7C 181
CLRW Clear word B4 181
CMPB Compare byte 91 188
CMPC3 Compare character 3 operand 29 294

377

Instruction Index by Mnemonic

MNEMONIC INSTRUCTION OPCODE PAGE
CMPC5 Compare character 5 operand 2D 294
CMPD Compare D_floating 71 188
CMPF Compare F_floating 51 188
CMPG Compare G_floating 51FD 188
CMPH Compare H_floating 71FD 188
CMPL Compare longword D1 188
CMPP3 Compare packed 3 operand 35 313
CMPP4 Compare packed 4 operand 37 313
CMPV Compare field ' EC 255
CMPW Compare word B1 188
CMPZV Compare zero-extended field ED 255
CRC Calculate cyclic redundancy check 0B 304
CVTBD Convert byte to D_floating 6C 184
CVTBF Convert byte to F_floating 4C 184
CVTBG Convert byte to G_floating 4CFD 184
CVTBH Convert byte to H_floating 6CFD 184
CVTBL Convert byte to longword 98 184
cvTBW Convert byte to word 99 184
CVTDB Convert D_floating to byte 68 184
CVTDF Convert D_floating to F_floating 76 184
CVTDH Convert D_floating to H_floating 32FD 184
CVTDL Convert D_floating to longword 6A 184
CVTDW Convert D_floating to word 69 184
CVTFB Convert F_floating to byte 48 184
CVTFD Convert F_floating to D_floating 56 184
CVTFG Convert F_floating to G_floating 99FD 184
CVTFH Convert F_floating to H_floating 98FD 184
CVTFL Convert F_floating to longword 4A 184
CVTFW Convert F_floating to word 49 184
CVTGB Convert G_floating to byte 48FD 184
CVTGF Convert G_floating to F_floating 33FD 184
CVTGH Convert G_floating to H_floating 56FD 184
CVTGL Convert G_floating to longword 4AFD 184
CVTGW Convert G_floating to word 49FD 184
CVTHB Convert H_floating to byte 68FD 184
CVTHD Convert H_floating to D_floating F7FD 184
CVTHF Convert H_floating to F_floating F6FD 184
CVTHG Convert H_floating to G_floating 76FD 184
CVTHL Convert H_floating to longword 6AFD 184
CVTHW Convert H_floating to word 69FD 184

378

Instruction Index by Mnemonic

MNEMONIC INSTRUCTION OPCODE PAGE
CVTLB Convert longword to byte F6 184
CVTLD Convert longword to D_floating 6E 184
CVTLF Convert longword to F_floating 4E 184
CVTLG Convert longword to G_floating 4EFD 184
CVTLH Convert longword to H_floating 6EFD 184
CVTLP Convert longword to packed F9 321
CVTLW Convert longword to word F7 184
CVTPL Convert packed to longword 36 322
CVTTP Convert trailing numeric to packed 26 325
CVTPT Convert packed to trailing numeric 24 323
CVTPS Convert packed to leading separate 08 327

numeric

CVTRDL Convert rounded D_floating to

longword 6B 184
CVTRFL Convert rounded F_floating to

longword 4B 184
CVTRGL Convert rounded G_floating to

longword 4BFD 184
CVTRHL Convert rounded H_floating to

longword 6BFD 184
CVTSP Convert leading separate numeric to

packed 09 329
CVTWB Convert word to byte 33 184
CVTWD Convert word to D_floating 6D 184
CVTWF Convert word to F_floating 4D 184
CVTWG Convert word to G_floating 4DFD 184
CVTWH Convert word to H_floating 6DFD 184
CVTWL Convert word to longword 32 184
DECB Decrement byte 97 197
DECL Decrement longword D7 197
DECW Decrement word B7 197
DivB2 Divide byte 2 operand 86 204
DIvB3 Divide byte 3 operand 87 204
DIVD2 Divide D_fioating 2 operand 66 204
DIVD3 Divide D_floating 3 operand 67 204
DIVF2 Divide F_floating 2 operand 46 204

379

Instruction Index by Mnemonic

MNEMONIC INSTRUCTION OPCODE PAGE
DIVF3 Divide F_floating 3 operand 47 204
DIVG2 Divide G_floating 2 operand 46FD 204
DIVG3 Divide G_floating 3 operand 47FD 204
DIVH2 Divide H_floating 2 operand 66FD 204
DIVH3 Divide H_fioating 3 operand 67FD 204
DIVL2 Divide longword 2 operand C6 204
DIVL3 Divide longword 3 operand Cc7 204
DIVP Divide packed 27 319
DIVw2 Divide word 2 operand A6 204
DIVW3 Divide word 3 operand A7 204
EDITPC Edit packed to character 38 335
EDIV Extended divide 7B 206
EMODD Extended modulus D_floating 74 202
EMODF Extended modulus F_floating 54 202
EMODG Extended modulus. G_floating 54FD 202
EMODH Extended modulus H_floating 74FD 202
EMUL Extended multiply TA 201
EXTV Extract field EE 253
EXTZV Extract zero-extended field EF 253
FFC Find first clear bit EB 251
FFS Find first set bit EA 251
HALT Halt 00 171
INCB Increment byte 96 189
INCL Increment longword D6 189
INCW Increment word B6 189
INDEX Compute index 0A 226
INSQHI Insert into queue head, interlocked 5C 240
INSQTI Insert into queue tail, interlocked 5D 240
INSQUE Insert into queue OE 232
INSV Insert field FO 257
JMP Jump 17 263
JSB Jump to subroutine 16 275
LDPCTX Load process context 06 163
LOCC Locate character 3A 299

380

Instruction Index by Mnemonic

MNEMONIC INSTRUCTION OPCODE PAGE
MATCHC Match characters 39 301
MCOMB Move complemented byte . 92 183
MCOML Move complemented long D2 183
MCOMW Move complemented word B2 183
MFPR Move from privilege register DB 165
MNEGB Move negated byte 8E 187
MNEGD Move negated D_floating 72 182
MNEGF Move negated F_floating 52 182
MNEGG Move Negated G_floating 52FD 182
MNEGH Move Negated H_floating 72FD 182
MNEGL Move negated longword CE 182
MNEGW Move negated word AE 182
MOVAB Move address of byte 9E 224
MOVAD Move address of D_floating 7E 224
MOVAF Move address of F_floating DE 224
MOVAG Move Address of G_floating 7E 224
MOVAH Move Address of H_floating 7EFD 224
MOVAL Move address of longword DE 224
MOVAO Move Address of octaword 7EFD 224
MOVAQ Move address of quadword 7E 224
MOVAW Move address of word 3E 224
MOVB Move byte 90 179
MOVC3 Move character 3 operand 28 289
MOVC5 Move character 5 operand 2C 289
MOVD Move D_floating 70 179
MOVF Move F_floating 50 179
MOVG Move G_floating 50FD 179
MOVH Move H_floating 70FD 179
MOVL Move longword DO 179
MOVO Move octaword 7DFD 179
MOVP Move packed 34 312
MOVPSL Move processor status longword DC 222
MovQ Move quadword 7D 179
MOVTC Move translated characters 2E 290
MOVTUC Move translated until character 2F 292
MOVW Move word BO 179
MOVZBL Move zero-extended byte to longword 9A 187

381

Instruction Index by Mnemonic

MNEMONIC INSTRUCTION OPCODE PAGE
MOovzZzBw Move zero-extended byte to word 9B 187
MOVZWL Move zero-extended word to longword 3C 187
MTPR Move to privilege register DA 165
MULB2 Multiply byte 2 operand 84 199
MULB3 Multiply byte 3 operand 85 199
MULD2 Multiply D_floating 2 operand 64 199
MULD3 Multiply D_floating 3 operand 65 199
MULF2 Multiply F_floating 2 operand 44 199
MULF3 Multiply F_floating 3 operand 45 199
MULG2 Multiply G_floating 2 operand 44FD 199
MULG3 Multiply G_floating 3 operand 45FD 199
MULH2 Multiply H_floating 2 operand 64FD 199
MULH3 Multiply H_floating 3 operand 65FD 199
MULL2 Muitiply longword 2 operand C4 199
MULL3 Multiply tongword 3 operand C5 199
MULP Multiply packed 25 318
MULW2 Multiply word 2 operand A4 199
MULW3 Multiply word 3 operand A5 199
NOP No operation 01
POLYD Evaluate polynomial D_floating 75 214
POLYF Evaluate polynomial F_floating 55 214
POLYG Evaluate polynomial G_floating 55FD 214
POLYH Evaluate polynomial H_floating 75FD 214
POPR Pop registers BA 221
PROBER Probe read access (1]0] 160
PROBEW Probe write access oD 160
PUSHAB Push address byte 9F 224
PUSHAD Push address of D_floating 7F 224
PUSHAF Push address of F_floating DF 224
PUSHAG Push Address of G_floating 7F 224
PUSHAH Push Address of H_floating 7FFD 224
PUSHAL Push address of longword DF 224
PUSHAO Push address of octaword 7FFD 224
PUSHAQ Push address of quadword 7F 224
PUSHAW Push address of word 3F 224
PUSHL Push longword DD 180
PUSHR Push registers BB 220

382

Instruction Index by Mnemonic

MNEMONIC INSTRUCTION OPCODE PAGE
REI Return from exception or interrupt 02 161
REMQHI Remove from queue head, interlocked 5E 245
REMQTI Remove from queue tail, interlocked 5F 248
REMQUE Remove from queue OF 234
RET Return from called procedure 04 284
ROTL Rotate longword 9C 212
RSB Return from subroutine 05 276
SBWC Subtract with carry D9 198
SCANC Scan for character 2A 297
SKPC Skip character 3B 299
SOBGEQ Subtract one and branch on greater F4 271
or equal
SOBGTR Subtract one and branch on greater F5 271
SPANC Span characters 2B 297
SuBB2 Subtract byte 2 operand 82 195
SUBB3 Subtract byte 3 operand 83 195
SuBD2 Subtract D_floating 2 operand 62 195
SuUBD3 Subtract D_floating 3 operand 63 195
SUBF2 Subtract F_floating 2 operand 42 195
SUBF3 Subtract F_floating 3 operand 43 195
SuUBG2 Subtract G_floating 2 operand 42FD 195
SUBG3 Subtract G_floating 3 operand 43FD 195
SUBH2 Subtract H_floating 2 operand 62FD 195
SUBH3 Subtract H_floating 3 operand 63FD 195
SUBL2 Subtract iongword 2 operand Cc2 195
SUBL3 Subtract longword 3 operand C3 195
SUBP4 Subtract packed 4 operand 22 316
SUBP6 Subtract packed 6 operand 23 316
sSuBw2 Subtract word 2 operand A2 195
SUBWS3 Subtract word 3 operand A3 195
SVPCTX Save process context 07 163
TSTB Test byte 95 190
TSTD Test D_floating 73 190
TSTF Test F_floating 53 190
TSTG Test G_floating 53FD 190
TSTH Test H_floating 73FD 190
TSTL Test long D5 190
TSTW Test word B5 190

383

Instruction Index by Mnemonic

MNEMONIC INSTRUCTION OPCODE PAGE
XFC Extended function call FC 168
XORB2 Exclusive OR byte 2 operand 8C 210
XORB3 Exclusive OR byte 3 operand 8D 210
XORL2 Exclusive OR longword 2 operand CC 210
XORL3 Exclusive OR longword 3 operand CD 210
XORW2 Exclusive OR word 2 operand TC 210
XORWS3 Exclusive OR word 3 operand AD 210
ESCD Reserved to DIGITAL FD
ESCE Reserved to DIGITAL FE
ESCF Reserved to DIGITAL FF
Reserved to DIGITAL 57;59;5A;5B;77;

00FD to 31FD;
34FD to 3FFD;
57FD, 58FD,
...bFFD;
77FD,78FD,
...7FFD;

80FD to 97FD;
9AFD to F5FD;
F8FD to FCFF.

384

APPENDIX B1

INSTRUCTION INDEX BY OPCODE

OPCODE LISTING
OPCODE MNEMONIC

00
01
02
03
04
05
06
07

08

09

OA
OB
oC
oD
OE
OF

10

11
12

13

14
15
16
17

18
19
1A
1B

HALT
NOP

REI

BPT
RET
RSB
LDPCTX
SVPCTX

CVTPS
CVTSP

INDEX
CRC
PROBER
PROBEW
INSQUE
REMQUE

BSBB

BRB
BNEQ, BNEQU

BEQL, BEQLU

BGTR
BLEQ
JSB
JMP

BGEQ
BLSS
BGTRU
BLEQU

INSTRUCTION

Halt

No operation

Return from exception or interrupt
Break point fault

Return from called procedure
Return from subroutine

Load process context

Save process context

Convert packed to leading separate
numeric

Convert leading separate numeric to
packed

Compute index

Calculate cyclic redundancy check
Probe read access

Prove write access

Insert into queue

Remove from queue

Branch to subroutine with byte
displacement

Branch with byte displacement
Branch on not equal,

Branch on not equal unsigned
Branch on equal, Branch on equal
unsigned

Branch on greater

Branch on less or equal

Jump to subroutine

Jump

Branch on greater or equal
Branch on less

Branch on greater unsigned
Branch on less or equal unsigned

385

Instruction Index by Opcode

OPCODE MNEMONIC

1C
1D
1E

1F

20
21
22
23
24
25

26
27

28
29
2A
2B
2C
2D
2E
2F

30

31
32
33
34
35
36
37

38
39
3A
3B
3C

BVC
BVS
BGEQU, BCC

BLSSU, BCS

ADDP4
ADDP6
SUBP4
SUBP6
CVTPT
MULP

CVTTP
DIVP

MOVC3
CMPC3
SCANC
SPANC
MOVC5
CMPC5
MOVTC
MOVTUC

BSBW

BRW
CVTWL
CVTWB
MOVP
CMPP3
CVTPL
CMPP4

EDITPC
MATCHC
LOCC
SKPC
MOVZWL

INSTRUCTION

Branch on overflow clear

Branch on overflow set

Branch on greater or equal unsigned,
Branch on carry clear

Branch on less unsigned, Branch on
carry set

Add packed 4 operand

Add packed 6 operand

Subtract packed 4 operand
Subtract packed 6 operand
Convert packed to trailing numeric
Multiply packed

Convert trailing numeric to packed
Divide packed

Move character 3 operand
Compadre character 3 operand
Scan for character

Span characters

Move character 5 operand
Compare character 5 operand
Move translated characters
Move translated until character

Branch to subroutine with word
displacement

Branch with word displacement
Convert word to longword
Convert word to byte

Move packed

Compare packed 3 operand
Convert packed to longword
Compare packed 4 operand

Edit packed to character
Match characters
Locate character

Skip character

Move zero-extended word to long-
word

386

Instruction Index by Opcode

OPCODE MNEMONIC INSTRUCTION

3D ACBW Add compare and branch word

3E MOVAW Move address of word

3F PUSHAW Push address of word

40 ADDF2 Add F_floating 2 operand

41 ADDF3 Add F_floating 3 operand

42 SUBF2 Subtract F_floating 2 operand

43 SUBF3 Subtract F_floating 3 operand

44 MULF2 Multiply F_floating 2 operand

45 MULF3 Multiply F_floating 3 operand

46 DIVF2 Divide F_floating 2 operand

47 DIVF3 Divide F_floating 3 operand

48 CVTFB Convert F_floating to byte

49 CVTFW Convert F_floating to word

4A CVTFL Convert F_floating to longword

4B CVTRFL Convert rounded F_floating to long-

word

4C CVTBF Convert byte to F_floating

4D CVTWF Convert word to F_floating

4E CVTLF Convert longword to F_floating

4F ACBF Add compare and branch floating

50 MOVF Move F_floating

51 CMPF Compare F_floating

52 MNEGF Move negated F_floating

53 TSTF Test F_floating

54 EMODF Extended modulus F_floating

55 POLYF Evaluate polynomial F_floating

56 CVTFD Convert F_floating to D_floating

57 RESERVED to DIGITAL

58 ADAWI Add aligned word, interlocked

59 RESERVED to DIGITAL

5A RESERVED to DIGITAL

5B RESERVED to DIGITAL

5C INSQHI Insert into queue head, interlocked

5D INSQTI Insert into queue tail, interlocked

5E REMQHI Remove from queue head, inter-
locked

387

Instruction Index by Opcode

OPCODE MNEMONIC

5F

60
61
62
63
64
65
66
67

68
69
6A
6B
word
6C
6D
6E
6F

70
71
72
73
74
75
76
77

78
79
7A
7B
7C

7D
7E

REMQTI

ADDD2
ADDD3
SuBD2
SUBD3
MULD2
MULD3
DIVD2

DIVD3

CvVTDB
CVTDW
CVTDL
CVTRDL

cvTBD
CVTWD
CVTLD
ACBD

MOVD
CMPD
MNEGD
TSTD
EMODD
POLYD
CVTDF

ASHL

ASHQ

EMUL

EDIV

CLRQ, CLRD,
CLRG

MovaQ

MOVAQ, MOVAD,
MOVAG

INSTRUCTION

Remove from queue tail, interlocked

Add D_floating 2 operand
Add D_floating 3 operand
Subtract D_floating 2 operand
Subtract D_floating 3 operand
Multiply D_floating 2 operand
Multiply D_floating 3 operand
Divide D_floating 2 operand
Divide D_floating 3 operand

Convert D_floating to byte

Convert D_floating to word ,
Convert D_floating to longword
Convert rounded D_floating to long-

Convert byte to D_floating

Convert word to D_floating

Convert longword to D_floating

Add compare and branch D_floating

Move D_floating

Compare D_floating

Move negated D_floating

Test D_floating

Extended modulus D_floating
Evaluate polynomial D_floating
Convert D_floating to F_floating
RESERVED to DIGITAL

Arithmetic shift longword
Arithmetic shift quadword
Extended multiply

Extended divide

Clear quadword, Clear D_floating,
Clear G_floating

Move quadword

Move address of quadword,

Move address of D_floating,

Move address of G_floating

388

Instruction Index by Opcode

OPCODE MNEMONIC INSTRUCTION

7F PUSHAQ, PUSHAD, Push address of quadword,
PUSHAG Push address of D_floating,

Push address of G_floating

80 ADDB2 Add byte 2 operand

81 ADDB3 Add byte 3 operand

82 sSuBB2 Subtract byte 2 operand

83 SuBB3 Subtract byte 3 operand

84 MULB2 Multiply byte 2 operand

85 MULB3 Multiply byte 3 operand

86 DivB2 Divide byte 2 operand

87 DIVB3 Divide byte 3 operand

88 BISB2 Bit set byte 2 operand

89 BISB3 Bit set byte 3 operand

8A BICB2 Bit clear byte 2 operand

8B BICB3 Bit clear byte 3 operand

8C XORB2 Exclusive OR byte 2 operand

8D XORB3 Exclusive OR byte 3 operand

8E MNEGB Move negated byte

8F CASEB Case byte

90 MOVB Move byte

91 CMPB Compare byte

92 MCOMB - Move complemented byte

93 BITB Bit test byte

94 CLRB Clear byte

95 TSTB Test byte

96 INCB Increment byte

97 DECB Decrement byte

98 CVTBL Convert byte to longword

99 CVTBW Convert byte to word

9A MOVZBL Move zero-extended byte to longword

9B MOovZBW Move zero-extended byte to word

9C ROTL Rotate longword

9D ACBB Add compare and branch byte

9E MOVAB Move address of byte

oF PUSHAB Push address of byte

389

Instruction Index by Opcode

OPCODE MNEMONIC

A0 ADDW2
A1 ADDWS3
A2 sSuBw2
A3 SUBW3
A4 MuULW2
A5 MULW3
A6 DIvw2
A7 DIVW3
A8 BISW2
A9 BISW3
AA BICw2
AB BICW3
AC XORW2
AD XORW3
AE MNEGW
AF CASEW
BO MOVW
B1 CMPW
B2 MCOMW
B3 BITW
B4 CLRW
B5 TSTW
B6 INCW
B7 DECW
B8 BISPSW
B9 BICPSW
BA POPR
BB PUSHR
BC CHMK
BD CHME
BE CHMS
BF CHMU
Co ADDL2
C1 ADDL3
c2 SuBL2

INSTRUCTION

Add word 2 operand
Add word 3 operand
Subtract word 2 operand
Subtract word 3 operand
Multiply word 2 operand
Multiply word 3 operand
Divide word 2 operand
Divide word 3 operand

Bit set word 2 operand

Bit set word 3 operand

Bit clear word 2 operand

Bit clear word 3 operand
Exclusive OR word 2 operand
Exclusive OR word 3 operand

Move negated word

. Case word

Move word
Compare word

Move complemented word
Bit test word

Clear word

Test word

Increment word
Decrement word

Bit set processor status word
Bit clear processor status word
Pop register

Push register

Change mode to kernel
Change mode to executive
Change mode to supervisor
Change mode to user

Add longword 2 operand

Add longword 3 operand
Subtract longword 2 operand

390

OPCODE MNEMONIC

C3
C4
C5
Cé
Cc7

Cs8
C9
CA
CB
CcC
CD
CE
CF

DO

D1 .

D2
D3
D4
D5
D6
D7

D8
D9
DA
DB

DC
DD
DE

DF

EO
E1
E2
E3
E4

Instruction Index by Opcode

SUBL3
MULL2
MULLS
DIvL2
DIVL3

BISL2
BISL3
BICL2
BICL3
XORL2
XORL3
MNEGL
CASEL

MOVL
CMPL
MCOML
BITL

CLRL, CLRF
TSTL

INCL

DECL

ADWC
SBWC
MTPR
MFPR

MOVPSL
PUSHL

MOVAL, MOVAF

PUSHAL, PUSHAF

BBS
BBC
BBSS
BBCS
BBSC

INSTRUCTION

Subtract longword 3 operand
Multiply longword 2 operand
Multiply longword 3 operand
Divide longword 2 operand
Divide longword 3 operand

Bit set longword 2 operand

Bit set longword 3 operand

Bit clear longword 2 operand

Bit clear longword 3 operand
Exclusive OR longword 2 operand
Exclusive OR longword 3 operand
Move negated longword

Case longword

Move longword

Compare longword

Move complemented longword
Bit test longword

Clear longword, Clear F_floating
Test longword

Increment longword

Decrement longword

Add with carry

Subtract with carry

Move to processor register
Move from processor register

Move processor status longword

Push longword

Move address of longword, Move
address of F_floating

Push address of longword, Push

address of F_floating

Branch on bit set

Branch on bit clear

Branch on bit set and set
Branch on bit clear and set
Branch on bit set and clear

391

Instruction Index by Opcode

OPCODE MNEMONIC

E5
E6
E7

E8
E9
EA
EB
EC
ED
EE
EF

FO
F1
F2
F3
F4

F5
F6
F7

F8
F9
FA
FB
FC
FD
FE
FF

BBCC
BBSSI
BBCCI

BLBS
BLBC
FFS
FFC
CMPV
CMPZV
EXTV
EXTZV

INSV
ACBL
AOBLSS
AOBLEQ"
SOBGEQ

SOBGTR
CVTLB
CVTLW

ASHP

CVTLP

CALLG

CALLS

XFC

ESCD to DIGITAL
ESCE to DIGITAL
ESCF to DIGITAL

INSTRUCTION

Branch on bit clear and clear

Branch on bit set and set, interlocked
Branch on bit clear and clear,
interlocked

Branch on low bit set

Branch on low bit clear

Find first set bit

Find first clear bit

Compare field

Compare zero-extended field
Extract field

Extract zero-extended field

Insert field .

Add compare and branch longword
Add one and branch on less

Add one and branch on less or equal
Subtract one and branch on greater
or equal

Subtract orie and branch on greater
Convert longword to byte

Convert longword to word

Arithmetic shift and round packed
Convert longword to packed

Call with general argument list
Call with stack argument list
Extended function call

392

Instruction Index by Opcode

TWO-BYTE OPCODES

OPCODE MNEMONIC INSTRUCTION

00FD

to

31FD RESERVED TO DEC

32FD CVTDH Convert D_floating to H_floating
33FD CVTGF Convert G_floating to F_floating
34FD

to

3FFD RESERVED to DEC

40FD ADDG2 Add G_floating 2 operand

41FD ADDG3 Add G_floating 3 operand

42FD SuBG2 Subtract G_floating 2 operand
43FD SUBG3 Subtract G_floating 3 operand
44FD MULG2 Multiply G_floating 2 operand
45FD MULG3 Multiply G_floating 3 operand
46FD DIVG2 Divide G_floating 2 operand
47FD DIVG3 Divide G_floating 3 operand
48FD CVTGB Convert G_floating to byte
49FD CVTGW Convert G_floating to word
4AFD CVTGL Convert G_floating to longword
4BFD CVTRGL Convert rounded G_floating to long-
word

4CFD CVTBG Convert byte to G_floating
4DFD CVTWG Convert word to G_floating
4EFD CVTLG Convert longword to G_floating
4FFD ACBG Add, Compare and Branch G_floating
50FD MOVG Move G_floating

51FD CMPG Compare G_floating

52FD MNEGG Move negated G_floating

53FD TSTG Test G_floating

54FD EMODG Extended modulus G_floating
55FD POLYG Polynomial Evaluation G_floating
56FD CVTGH Convert G_floating to H_floating
57FD RESERVED to DEC

58FD RESERVED to DEC

59FD RESERVED to DEC

393

Instruction Index by Opcode

OPCODE MNEMONIC

5AFD
5BFD
5CFD
5DFD
5EFD
5FFD

60FD
61FD
62FD
63FD
64FD
65FD
66FD
67FD

68FD
69FD
6AFD
6BFD
word

6CFD
6DFD
6EFD
6FFD

70FD
71FD
72FD
73FD
74FD
75FD
76FD
77FD

78FD
79FD
7AFD
7BFD
7CFD
7DFD

RESERVED to DEC
RESERVED to DEC
RESERVED to DEC
RESERVED to DEC
RESERVED to DEC
RESERVED to DEC

ADDH2
ADDH3
SUBH2
SUBH3
MULH2
MULH3
DIVH2

DIVH3

CVTHB
CVTHW
CVTHL
CVTRHL

CVTBH
CVTWH
CVTLH

ACBH

MOVH

CMPH

MNEGH

TSTH

EMODH

POLYH

CVTHG
RESERVED to DEC

RESERVED to DEC
RESERVED to DEC
RESERVED to DEC
RESERVED to DEC
CLRH,CLRO
MOVO

INSTRUCTION

Add H_floating 2 operand
Add H_floating 3 operand
Subtract H_floating 2 operand
Subtract H_floating 3 operand
Multiply H_floating 2 operand
Multiply H_floating 3 operand
Divide H_floating 2 operand
Divide H_floating 3 operand

Convert H_floating to byte

Convert H_floating to word

Convert H_floating to longword
Convert rounded H_floating to long-

Convert byte to H_floating

Convert word to H_floating

Convert longword to H_floating

Add, Compare and Branch H_floating

Move H_floating

Compare H_floating

Move negated H_floating

Test H_floating

Extended modulus H_floating
Polynomial evaluation H_floating
Convert H_floating to G_floating

Clear H_floating, Clear octaword
Move octaword

394

Instruction Index by Opcode

OPCODE MNEMONIC INSTRUCTION

7EFD MOVAH,MOVAO Move address of H_floating, Move ad-
dress of octaword

7FFD PUSHAH,PUSHAO Push address of H_floating, Push ad-
dress of octaword

80FD

to

97FD RESERVED to DIGITAL

98FD CVTFH Convert F_floating to H_floating

99FD CVTFG Convert F_floating to G_floating

9AFD

to

F5FD RESERVED to DIGITAL

F6FD CVTHF Convert H_floating to F_floating

F7FD CVTHD Convert H_floating to D_floating

F8FD

to

FCFF RESERVED to DIGITAL

FDFF BUGL BUGCHECK longword

FEFF BUGW BUGCHECK word

FFFF RESERVED for all time

395

396

APPENDIX C

VAX PROCEDURE CALLING AND CONDITION
HANDLING STANDARD

Version 8.0, October, 1980

This appendix is the VAX Procedure Calling Standard used with the
VAX hardware procedure call mechanism. This standard applies to:

1. All externally callable interfaces in DIGITAL-supported, standard
system software

2. Allintermodule CALLs to major VAX components

3. All external procedure CALLs generated by standard DIGITAL
language processors

This standard does not apply to calls to internal (local) routines, or
language support routines. Within a single module, the language proc-
essor or programmer can use a variety of other linkage and argument-
passing techniques.

The standard defines mechanisms for passing arguments by immedi-
ate value, by reference, and by descriptor. However, the immediate
value mechanism is intended for use only by VAX/VMS system ser-
vices and within programs written in BLISS or MACRO.

The procedure CALL mechanism depends on agreement between the

calling and called procedures to interpret the argument list. The argu-

ment list does not fully describe itself. This standard requires

language extensions to permit a calling program to generate some of

the argument passing mechanisms expected by called procedures.

This standard specifies the following attributes ofthe interfaces

between modules:

@ Calling sequence—the instructions at the call site and at the entry
point

e Argument list—the structure of the list describing the arguments to
the called procedure

® Function value return—the form and conventions for the return of
the function value as a value or as a condition value to indicate
success or failure

@ Register usage—which registers are preserved and who is responsi-
ble for preserving them

e Stack usage—rules governing the use of the stack

e Argument data types—the data types of arguments that can be
passed

397

Procedure Calling and Condition Handling

® Argument descriptor formats—how descriptors are passed for the
more complex arguments

e Condition handling—how exception conditions are signaled and
how they can be handled in a modular fashion

e Stack unwinding—how the current thread of execution can be
aborted cleanly

The goals in developing the VAX Procedure Calling Standard were:

® The standard must be applicable to all intermodule callable inter-
faces in the VAX software system. Specifically, the standard must
consider the requirements of MACRO, BLISS, BASIC, CORAL,
FORTRAN, PASCAL, PL/I, COBOL and CALLs to the operating sys-
tem and library procedures. The needs of other languages that
DIGITAL may support in the future must be met by the standard or
by compatible revision to it.

e The standard should not include capabilities for lower level compo-
nents (such as BLISS, MACRO, operating system) that cannot be
invoked from the higher level languages.

e The calling program and procedure can be written in different lan-
guages. The standard attempts to reduce the need for use of lan-
guage extensions for mixed language programs.

e The procedure mechanism must be sufficiently economical in both
-space and time to be used and usable as the only calling mecha-
nism within VAX.

e The standard should contribute to the writing of error-free, modular,
and maintainable software. Effective sharing and reuse of VAX
software modules are significant goals.

e The standard must allow the called procedure a variety of tech-
niques for argument handling. The called procedure can:

1. Reference arguments indirectly through the argument list
2. Copy atomic data types, strings and arrays)
3. Copy addresses of atomic data types, strings and arrays
e The standard should provide the programmer with some. control

over fixing, reporting, and flow of control on hardware and software
exceptions.

e The standard should provide subsystem and application writers with
the ability to override system messages to provide a more suitable
application oriented interface.

e The standard should add no space or time overhead to procedure
calls and returns that do not establish handlers and should minimize
time overhead for establishing handlers at the cost of increased
time overhead when exceptions occur.

398

Procedure Calling and Condition Handling

Some possible attributes of a procedure-calling mechanism were con-
sidered and rejected. Specific nongoals for the VAX procedure CALL
mechanism include:

e |t is not necessary for the procedure mechanism to provide com-
plete checking of argument data types, data structures, and param-
eter access. The VAX protection and memory-management system
is not dependent upon “correct” interactions between user-level
calling and called procedures. Such extended checking may be
desirable in some circumstances, but system integrity is not
dependent upon it.

e The VAX procedure mechanism need not provide complete infor-
mation for an interpretive DEBUG facility. The definition of the DE-
BUG facility includes a DEBUG symbol table which contains the
required descriptive information.

The following definitions apply to this standard:

e A procedure is a closed sequence of instructions that is entered
from and returns control to the calling program.

e A function is a procedure that returns a single value according to
the standard conventions for value returning. If additional values are
returned, they are returned via the argument list.

e A subroutine is a procedure that does not return a known value
according to the standard conventions for value returning. If values
are returned, they are returned via the argument list.

e An address is a 32-bit VAX address positioned in a longword item.

e An argument list is a vector of longwords that represents a pro-
cedure parameter list and possibly a function value.

e Immediate value is a mechanism for passing input parameters in
which the actual value is provided in the longword argument list
entry by the calling program.

e Reference is a mechanism for passing parameters in which the
address of the parameters is provided in the longword argument list
by the calling program.

e Descriptor is a mechanism for passing parameters in which the
address of a descriptor is provided in the longword argument list
entry. The descriptor contains the address of the parameter, the
data type, size and additional information needed to describe fully
the data passed.

e An exception condition is a hardware or software detected event
that alters the normal flow of instruction execution. It usually indi-
cates a failure.

e A condition value is a 32-bit value used to identify an exception

399

Procedure Calling and Condition Handling

condition uniquely. A condition value may be returned to a calling
program as a function value or signaled using the VAX signaling
mechanism.

e Language support procedures are called implicitly to implement
higher level language constructs. They are not intended to be called
explicitly from user programs.

e Library procedures are called explicitly using the equivalent of a
CALL statement or function reference. They are usually language-
independent.

1. CALLING SEQUENCE
At the option of the calling program, the called procedure is invoked
using either the CALLG or CALLS instruction:

CALLG arglst, proc
CALLS argent, proc

CALLS pushes the argument count argent onto the stack, as a
longword and sets the argument pointer, AP, to the top of the stack.
The complete sequence using CALLS is:

push argn

push arg1
CALLS #n, proc

If the called procedure returns control to the calling program, control
must return to the instruction immediately following the CALLG or
CALLS instruction. Skip returns and GOTO returns are only allowed
during stack unwind operations.

The called procedure returns control to the calling program by execut-
ing the return instruction, RET.

400

Procedure Calling and Condition Handling

2. ARGUMENT LIST
The argument list is the primary means of passing information to and
receiving results from a procedure.

2.1 Argument List Format
The argument list is a sequence of longwords:

The first longword is always present and contains the argument count
as an unsigned integer in the low byte. The 24 high-order bits are
reserved to DIGITAL and must be zero. To access the argument count,
the called procedure must ignore the reserved bits and access the
count as an unsigned byte (for example MOVZBL, TSTB, or CMPB).

31 0

ARG 1
ARG 2

ARG n

Figure C-1 Argument List

The remaining longwords can be:

1. An uninterpreted 32-bit value (immediate value mechanism). If
the called procedure expects fewer than 32 bits, it accesses the
low-order bits and ignores the high-order bits.

2. An address (reference mechanism). It is typically a pointer to a
scalar data item, an array, a structure, a record, or a procedure.

3. Anaddress of a descriptor (descriptor mechanism). See Section 8
for descriptor formats.

The standard permits immediate value, reference, descriptor, or com-
binations of these mechanisms. Interpretation of each argument list
entry depends on agreement between the calling and called pro-
cedures. Higher level languages use the reference or decriptor me-
chanisms for passing input parameters. VAX/VMS System Services
and MACRO or BLISS programs use all three mechanisms.

A procedure with no arguments is called with a list consisting of a 0
argument count longword. This is accomplished as follows:

CALLS #0, proc
401

¢ ARGLST

Procedure Calling and Condition Handling

A missing or null argument, for example CALL SUB(A,,B), is
represented by an argument list entry consisting of a longword 0.
Some procedures allow trailing null arguments to be omitted, others
require all arguments. See each procedure’s specification for details.

The argument list must be treated as read-only data by the called
procedure and may be allocated in read-only memory at the option of
the calling program.

2.2 Argument Lists and Higher Level Languages

Higher level language functional notations for procedure calls are

mapped into VAX argument lists according to the folowing rules:

1. Arguments are mapped from left to right to increasing argument
list offsets. The leftmost (first) argument has an address of
arglst+4, the next has an address of arglst+8, etc. (or arglst+8,
arglst+12, etc. when the contents of arglst+4 specify where the
function value is to be returned—see Section 3).

2. Each argument position corresponds to a single VAX argument
list entry.

2.2.1 Order of Argument Evaluation — Since most higher level lan-
guages do not specify the order of evaluation (with respect to side
effects) of arguments, those language processors can evaluate argu-
ments in any convenient order.

In constructing an argument list on the stack, a language processor
can evaluate arguments from right to left and push their values on the
stack. If call-by-reference semantics are used, argument expressions
can be evaluated from left to right, with pointers to the expression
values or descriptors being pushed from right to left.

The choice of argument evaluation order and code generation strate-
gy is constrained only by the definition of the particular language.
Programs should not be written that depend on the order of evaluation
of arguments.

2.2.2 Language Extensions for Argument Transmission — The
VAX procedure standard permits arguments to be passed by immedi-
ate value, by reference, or by descriptor. All language processors,
except MACRO and BLISS, pass arguments by reference or descrip-
tor by default.

Language extensions are needed to reconcile the different argument
passing mechanisms. In addition to the default passing mechanism
used, each language processor is required to give the user explicit
control of the argument passing mechanism in the calling program for
the data types supported by the language as follows:

402

Procedure Calling and Condition Handling

Data Type Section Immediate Reference Descriptor
Value (at leastone)

Atomic < 32 bits 71 Yes Yes Yes

Atomic > 32 bits 7.1 No Yes Yes

String 7.2 No Yes Yes

Miscellaneous 7.3 No* No No

Array 8 No Yes Yes

* For those languages supporting the Bound Procedure Value data type, a
language extension is required to pass it by immediate value in order to be
able to interface with VMS system services and other software. See Section
7.3.

For example, FORTRAN provides the following intrinsic compile-time
functions:

%VAL(arg) Immediate Value Mechanism—Corresponding
argument list entry is the 32-bit value of the argu-
ment, arg, as defined in the language.

%REF(arg) Reference Mechanism—Corresponding argu-
ment list entry contains the address of the value
of the argument, arg, as defined in the language.

%DESCR(arg) Descriptor Mechanism—Corresponding argu-
ment list entry contains the address of a VAX de-
scriptor of the argument, arg, as defined in Sec-
tion 8.

These intrinsic funtions can be used in the syntax of a procedure call
to control generation of the argument list. For example:

CALL SUB1(%VAL(123), %REF(X), %DESCR(A))

In other languages the same effect might be achieved by appropriate
attributes of the declaration of SUB1 made in the calling program.
Thus, the user might write:

CALL SUB1 (123, X, A)
after making the external declaration for SUB1.

3. FUNCTION VALUE RETURN

A function value is returned in register RO if its data type is representa-

ble in 32 bits or registers RO and R1 if representable in 64 bits. Two

separate 32-bit entities cannot be returned in RO and R1 because

higher level languages cannot process them.

1. If the maximum length of the function value is known (for exam-
ple, octaword integer, H_floating, or fixed-length string), the

403

Procedure Calling and Condition Handling

calling program can allocate the required storage and pass the
address of the storage or a decriptor for the storage as the first
argument.

2. If the maximum length of a string function value is not known to
the calling program, the calling program can allocate a dynamic
string descriptor. The called procedure then allocates storage for
the function value and updates the contents of the dynamic string
descriptor using VAX Run Time Library procedures. See Section
8.3.

Some procedures, such as operating system calls and many library
procedures, return a success/fail value as a longword function value
in RO. Bit 0 of the value is set (Boolean true) for a success and clear
(Boolean false) for a failure. The particular success or failure status is
encoded in the remaining 31 bits, as described in Section 4.

4. CONDITION VALUE
VAX uses condition values for the following:

e To indicate the success or failure of a called procedure as a function
value

e To describe an exception condition when an exception is signaled

e To identify system messages

e To report program success or failure to the command language
level

A condition value is a longword that includes fields to describe the
software component generating the value, the reason the value was
generated and the error severity status. The format of the condition
value is:

31 28 27 3 2 0
CNTRL CONDITION IDENTIFICATION SEVERITY
A U S W SO VT ST SO S S VO S S S S S S SH S S S P
. j\VJ
2 1 0
S
27 16 15 3
FACILITY NUMBER MESSAGE NUMBER
P S W S S PR S S S S S

Figure C-2 Condition Value Format

404

Procedure Calling and Condition Handling

condition identification

Identifies the conditions uniquely on a system-wide basis.

facility

Identifies the software component generating the condition val-
ue. Bit 27 is set for customer facilities and clear for DIGITAL
facilities.

message number

A status identification, that is, a description of the hardware ex-
ception that occurred or a software-defined value. Message
numbers with bit 15 set are specific to a single facility. Message
numbers with bit 15 clear are system-wide status codes.

severity

The severity code bit 0 is set for success (logical true) and clear
for failure (logical false), bits 1 and 2 distinguish degrees of
success or failure. The three bits, 0 through 2, taken as an un-
signed integer, are interpreted as follows:

severity

cntrl

The severity code bit 0 is set for success (logical true) and clear
for failure (logical false), bits 1 and 2 distinguish degrees of
success or failure. The three bits, 0 through 2, taken as an
unsigned integer, are interpreted as follows: :

) STS$K_WARNING 0 = warning

STS$K_SUCCESS 1 = success

STS$K_ERROR 2 = error
STS$K_INFO 3 = information
STS$K_SEVERE 4 = severe_error

5, 6, 7 reserved to DEC
Section 4.1 describes the severity code more fully.

Four control bits. Bit 28 inhibits the message associated with the
condition value from being printed by the $EXIT system service.
This bit is set by the system default handler after it has output an
error message using the $PUTMSG system service. It should
also be set in the condition value returned by a procedure as a
function value, if the procedure has also signaled the condition
(so that the condition has been either printed or suppressed).
Bits 29 through 31 must be zero; they are reserved for future use
by DIGITAL.

405

Procedure Calling and Condition Handling

Software symbols are defined for these fields as follows:

Mnemonic Value Meaning Field

STS$V_COND_ID 3 position of 27:3

STS$S_COND_ID 25 size of 27:3. condition identification
STS$SM_COND_ID mask mask for27:3

STS$V_INHIB_MSG 1@28 position for 28

STS$S_INHIB_MSG 1 size for 28 inhibit message on image
STSSM_INHIB_MSG mask mask for 28 exit

STS$V_FAC_NO 16 position of 27:1
STS$S_FAC_NO 12 size of 27:16
STS$M_FAC_NO mask mask for 27:16
STS$V_CUST_DEF 27 position for 27

facility number

_\»&

STS$S_CUST_DEF 1 size for 27 customer facility
STS$M_CUST_DEF 1@27 mask for 27
STS$V_MSG_NO 3 position of 15:3

STS$S_MSG_NO 13 size of 15:3
STS$M_MSG_NO mastk mask for 15:3
STS$V_FAC_SP 15 position of 15

message number

N,

STS$S_FAC_SP 1 size for 15 facility specific
STS$M_FAC_SP 1@15 maskfor 15

STS$V_CODE 3 position of 14:3

STS$S_CODE 12 size of 14:3 message code
STS$M_CODE mask mask for 14:3

STS$V_SEVERITY 0 position of 2:0
STS$S_SEVERITY 3 size of 2:0 severity
STS$M_SEVERITY 7 mask for 2:0

STS$V_SUCCESS 0 position of 0

STS$S_SUCCESS 1 size of 0 ' success
STS$M_SUCCESS 1 mask for 0

4.1 Interpretation of Severity Codes

A severity code of 0 indicates a warning. This code is used whenever a
procedure produces output, but the output might not be what the user
expected, for example, a compiler modification of a source program.

A severity code of 1 indicates that the procedure generating the condi-
tion value completed successfully, that is, as expected.

A severity code of 2 indicates that an error has occurred, but that the
procedure did produce output. Execution can continue but the results
produced by the component generating the condition value are not all
correct.

406

Procedure Calling and Condition Handling

A severity code of 3 indicates that the procedure generating the condi-
tion value successfully completed, but has some parenthetical
information to be included in a message if the condition is signaled.

A severity code of 4 indicates that a severe_error occurred and the
component generating the condition value was unable to produce out-
put.

When designing a procedure the choice of severity code for its condi-
tion values should be based on the following default interpretations.
The calling program typically performs a low bit test, so it treats warn-
ings, errors, and severe_errors as failures, and success and informa-
tion as successes. If the condition value is signaled (see Section 10.3),
the default handler treats severe_errors as reason to terminate and all
the others as the basis for attempting to continue. When the program
image exits, the command interpreter by default treats errors and
severe_errors as the basis for stopping the job, and warnings,
information, and successes as the basis for continuing.

The fdllowing table summarizes the default interpretation of condition’
values:

Default at
Severity Routine Signal Program Exit
success normal continue continue
information normal continue continue
warning failure continue continue
error failure continue stop job
severe_error failure exit stop job

The default for signaled messages is to output a message to file
SYS$OUTPUT. In addition, for severities other than success
(STS$K_SUCCESS) a copy of the message is made on file
SYS$ERROR. At program exit, success and information completion
values do not generate messages, while warning, error, and
severe_error condition values generate messages to both files
SYS$OUTPUT and SYS$SERROR, unless bit 28 (STS$V_INHIB_MSG)
is set.

Unless there is good basis for another choice, a procedure should use
either success or severe_error as its severity for each condition value.

4.2 Use of Condition Values

VAX software components return condition values when they com-
plete execution. When a severity code of warning, error, or
severe_error is generated, the status code describes the nature of the

407

Procedure Calling and Condition Handling

problem. This value can be tested to change the flow of control of a
procedure and/or be used to generate a message. User procedures
can also generate condition values to be examined by other pro-
cedures and by the command interpreter. User-generated values
should set bit 27 and bit 15 so these condition values will not conflict
with values generated by DIGITAL.

5. REGISTER USAGE
The following registers have defined uses:

Register Use

PC Program counter.

SP Stack pointer.

FP Current stack frame pointer. It must always point

at the current frame. No modification is permitted
within a procedure body.

AP Argument pointer. When a call occurs, AP must
point to a valid argument list. A procedure without
parameters points to an argument list consisting
of a single longword containing the value 0.

R1 Environment value. When a procedure that needs
an environment value is called, the calling pro-
gram must set R1 to the environment value. See
bound procedure value in Section 7.3.

RO, R1 Function value return registers. These registers
are not to be preserved by any called procedure.
They are available to any called procedure as
temporary registers.

Registers R2 through R11 are to be preserved across procedure calls.
The called procedure can use registers R2 through R11 provided it
saves and restores them using the procedure entry mask mechanism.
The entry mask mechanism must be used so that any stack unwinding
done by the condition handling mechanism will correctly restore all
registers. In addition, PC, SP, FP, and AP are always preserved by the
CALL instructions and restored by the RET instruction. However, AP
can be used as a temporary register by a called procedure.

6. STACK USAGE
The stack frame created by the CALLG/CALLS instructions for the
called procedure is:

408

Procedure Calling and Condition Handling

condition handler (0) ((SP):(FP)

mask/PSW

AP

FP

PC

R2 (optional)
R11 (optional)

FP always points at the condition handler longword of the stack frame,
(see Section 9). Other use of FP within a procedure is prohibited.

The contents of the stack located at addresses higher than the
mask/PSW longword belong to the calling program; they should not
be read or written by the called procedure, except as specified in the
argument list. The contents of the stack located at addresses lower
than SP belong to interrupt and execution routines; they are continual-
ly and unpredictably modified.

The called procedure allocates local storage by subtracting the re-
quired number of bytes from the SP provided on entry. This local
storage is automatically freed by the RET instruction.

Bit 28 of the mask/PSW longword is reserved to DIGITAL for future
extensions to the stack frame.

7. ARGUMENT DATA TYPES

Each data type implemented for a higher-level language uses one of
the following VAX data types for procedure parameters and elements
of file records. When existing data types are not sufficient to satisfy the
semantics of a language, new data types will be added to this stan-
dard, including certain language-specific ones.

This section also indicates the spelling and punctuation that is used for
the name of each data type. In running text, the data type names are
not capitalized, except as shown. Also, they are not normally indicated
in bold face, italics, or underlined.

Data types fall into three categories: atomic, string, and miscellane-
ous. These data types can generally be passed by immediate value (if
32 bits or less), by reference or by descriptor. The encoding given in
this section is used whenever it is necessary to identify data types,
such as in a descriptor. Unless explicitly stated otherwise, all data
types represent signed guantities.

409

Procedure Calling and Condition Handling

NOTE
The unsigned quantities throughout this standard do
not allocate space for the sign. All bit or character
positions are used for significant data.

7.1 Atomic Data Types
Atomic data types are defined and are encoded as follows:

DSC$K_DTYPE_Z 0 unspecified
The calling program has
specified no data type. The
called procedure should as-
sume the argument is of the
correct type.

DSC$K_DTYPE_BU 2 byte logical
8-bit unsigned quantity.

DSC$K_DTYPE_WU 3 word logical
16-bit unsigned quantity.

DSC$K_DTYPE_LU 4 longword logical
32-bit unsigned quantity.

DSC$K_DTYPE_QU 5 quadword logical
64-bit unsigned quantity.

DSC$K_DTYPE_OU 25 octaword logical
128-bit unsigned quantity.

DSC$K_DTYPE_B 6 byteinteger
8-bit signed 2's complement in-
teger.

DSC$K_DTYPE_W 7 word integer
16-bit signed 2's complement
integer.

DSC$K_DTYPE_L 8 longword integer
32-bit signed 2’s complement
integer.

DSC$K_DTYPE_Q 9 quadword integer
64-bit signed 2's complement
integer.

DSC$K_DTYPE_O 26 octaword integer
128-bit signed 2's complement
integer.

410

Procedure Calling and Condition Handling

DSC$K_DTYPE_F

DSC$K_DTYPE_D

DSC$K_DTYPE_G

DSC$K_DTYPE_H

DSCS$K_DTYPE_FC

DSC$K_DTYPE_DC

DSC$K_DTYPE_GC

10

11

27

28

12

13

29

F_floating

32-bit F_floating quantity repre-
senting a single-precision num-
ber.

D_floating

64-bit D_floating quantity repre-
senting a double-precision
number.

G_floating
64-bit G_floating quantity repre-

' senting a double-precision

number.

H_floating

128-bit H_floating quantity rep-
resenting a quadruple-preci-
sion number.

F_floating complex

Ordered pair of F_floating
quantities, representing a sin-
gle-precision complex number.
The lower addressed quantity is
the real part, the higher ad-
dressed quantity is the imagina-
ry part.

D_complex

Ordered pair of D_floating
quantities, representing a dou-
ble-precision complex number.
The lower addressed quantity is
the real part, the higher ad-
dressed quantity is the imagina-
ry part.

G_floating complex

Ordered pair of G_floating
quantities, representing a dou-
ble-precision complex number.
The lower addressed quantity is
the real part, the higher ad-
dressed quantity is-the imagina-
ry part.

411

Procedure Calling and Condition Handling

DSC$K_DTYPE_HC

DSC$K_DTYPE_CIT

7.2 String Data Types

30

31

H_floating complex

Ordered pair of H_floating
quantities, representing a qua-
druple-precision complex num-
ber. The lower addressed quan-
tity is the real part, the higher
addressed quantity is the imagi-
nary part.

COBOL Intermediate
Temporary

A floating-point datum with an
18-digit normalized decimal
fraction and a 2-decimal-digit
exponent. The fractionisa
packed decimal string. The ex-
ponentis a 16-bit 2’s comple-
ment integer (see Section 7.4
for more detail).

String data types are ordinarily described by a string descriptor. The
string data types are defined and are encoded as follows:

Symbol
DSC$K_DTYPE_T

DSC$K_DTYPE_NU

DSC$K_DTYPE_NL

DSC$K_DTYPE_NLO

DSC$K_DTYPE_NR

DSC$K_DTYPE_NRO

DSC$K_DTYPE_NZ

DSC$K_DTYPE_P

Code
14

15

16

17

18

19

20

21

Name/Description

character-coded text

A single 8-bit chacter (atomic
data type) or a sequence of 0 to
2'6—1 8-bit characters (string
data type).

numeric string, unsigned

numeric string, left separate
sign

numeric string, left over-
punched sign

numeric string, right separate
sign

numeric string, right over-
punched sign

numeric string, zoned sign

packed decimal string

412

Procedure Calling and Condition Handling

Symbol Code
DSC$K_DTYPE_V 1
DSC$K_DTYPE_VU 34

7.3 Miscellaneous Data Types

Name/Description

bit

An aligned bit string. A string of
0to 2'¢—1 contiguous bits. The
first bit is bit 0 of the first byte
and the last bit is any bit in the
last byte. Remaining bits in the
last byte must be zero on read
and are cleared on write. Unlike
the bit unaligned (VU) data type,
when the bit (V) data type is
used in array descriptors the
ARSIZE field is in units of bytes,
not bits, since allocation is a
multiple of 8 bits.

bit unaligned

The data are 0 to 2'*—1 contigu-
ous bits located arbitrarily with
respect to byte boundaries. See
also bit (V) data type. Because
additional information is re-
quired to specify the bit position
of the first bit, this data type can
only be used with the unaligned
bit string and unaligned bit ar-
ray descriptors (see Section 8.-
14 and 8.15).

Miscellaneous data types are defined and are encoded as follows:

Symbol Code
DSC$K_DTYPE_ZI 22
DSC$K_DTYPE_ZEM 23
DSC$K_DTYPE_DSC 24

Name/Description

sequence of instructions

procedure entry mask

descriptor

This data type allows a
descriptor to be a data type;
thus, levels of descriptors are
allowed.

413

Procedure Calling and Condition Handling

DSC$K_DTYPE_BPV

DSC$K_DTYPE_BLV

32

33

bound procedure value

A two-longword entity in which
the first longword contains the
address of a procedure entry
mask and the second longword
is the environment value. The
environment value is deter-
mined in a language-specific
manner when the original
bound procedure value is gen-
erated. When the bound pro-
cedure is called, the calling pro-
gram loads the second long-
word into R1. When the
environment value is not need-
ed, this data type can be passed
using the immediate value me-
chanism. In this case, the argu-
ment list entry contains the ad-
dress of the procedure entry
mask and the second longword
is omitted.

bound label value

A two-longword entity in which
the first longword contains the
address of an instruction and
the second longword is the lan-
guage-specific environment
value. The environment value is
determined in a language-spe-
cific manner when the original
bound label value is generated.

The type codes 35 through 191 are reserved to DIGITAL. Codes 192
through 255 are reserved for DIGITAL's Computer Special Systems
Group and for customers for their own use.

7.4 COBOL Intermediate Temporary Data Type
A COBOL intermediate temporary datum is 12 contiguous bytes start-
ing on an arbitrary byte boundary. It is specified by its address A.

414

Procedure Calling and Condition Handling

15 121 8 7 4 3 0

EXPONENT A
f<16> F<i15> 0 £<17> TA+2
f<12> f<11> t<14> f<13> D A+4
f<8> . f<7> £<10> fF<9o> T A+S
f<4> f<3> f<6> f<s> T A+8
f<0> ‘ SIGN ¢ f<2> f<1> T A+I0

Figure C-3 COBOL Intermediate Temporary Datum

A COBOL intermediate temporary datum represents a floating point
datum with a normalized 18-digit packed decimal fraction and a 16-bit
2's complement integer exponent. Bytes 0 and 1 are the exponent.
Bytes 2 through 11 contain the normalized packed decimal fraction.
The sign of the datum is the sign of the fraction. If the fraction is zero,
the value of the datum is zero.

If the exponent is from —99 to +99, operations can be performed on
this datum. If the exponent is outside this range, a reserved operand
condition is signaled (see Section 10). If a calculated datum has an
exponent greater than +99, the exact result with the low-order 15 bits
of the true exponent is stored in the result datum and an overflow
condition is signaled.

If a calculated datum has an exponent less than —99, the exact result
with the low-order 15 bits of the true exponent is stored in the result
datum and an underflow condition is signaled. The condition handler
can take the appropriate action. Condition mnemonics have a COB$_
prefix and are documented with the COBOL part of the Run-Time
Library. An exponent value of —32,768 is taken as reserved and
should be used to encode reserved operands such as uninitialized
datum, indeterminate value, etc. By convention, if the fraction of a
result is 0, the exponent is set to 0. Fractions are generated with
preferred sign codes and avoid —0.

8. ARGUMENT DESCRIPTOR FORMATS

A uniform descriptor mechanism is defined for use by all procedures
that conform to the VAX Procedure Calling Standard. Descriptors are
self-describing and the mechanism is extensible. When existing de-
scriptors are not sufficient to satisfy the semantics of a language, new
descriptors will be added to this standard.

415

Procedure Calling and Condition Handling

Unless explicitly stated otherwise in this standard, the calling program
fills in all fields in descriptors. This is true whether the descriptor is
generated by default or by a language extension. Fields are filled in
even if a called procedure written in the same language would ignore
the contents of some of the fields. A descriptor conforms to this stan-
dard if all fields are filled in by the calling program according to the
standard, even if the field is not needed by the called program.

NOTE
Unless explicitly stated otherwise, all fields in de-
scriptors represent unsigned quantities, are read-
only from the point of view of the called procedure,
and may be allocated in read-only memory at the
option of the calling program.

If a language processor implements a language-specific data type that
is not added to this standard (see Section 7), it is not required to use a
standard descriptor to pass an array of this data type. However, if it
does pass an array of such a data type using a standard descriptor, it
will fill in the DSC$B_DTYPE field with 0 indicating that the data type
field is unspecified, rather than using a more general data type code.
For example, an array of PL/I POINTER data types has the DTYPE
field filled in with O rather than 4 (longword logical). The remaining
fields are filled in as specified by this standard, that is,
DSC$W_LENGTH is filled in with the size in bytes, etc. Since it is
conceivable that the language-specific data type might be added to
the standard in the future, generic application procedures that exam-
ine the DTYPE field should be prepared for 0 and for additional data
types to be added in the future.

8.1 Descriptor Prototype
Each class of descriptors consists of at least two longwords in the
following format:

31 0
CLASS DTYPE LENGTH : DESCRIPTOR

POINTER

Figure C-4 Decriptor Prototype

Symbol Description
DSC$W_LENGTH A one-word field specific to the
<0,15:0> descriptor class, typically a 16-

bit (unsigned) length.

416

Procedure Calling and Condition Handling

DSC$B_DTYPE A one-byte data type code (see
<0,23:16> Section 7).

DSC$B_CLASS A one-byte descriptor class
<0,31:24> code (see 8.2 through 8.11).
DSC$A_POINTER A longword containing the ad-
<1,31:0> dress of the first byte of the data

element described.

Note that the descriptor can be placed in a pair of registers with a
MOVQ instruction and then the length and address can be used
directly. This gives a word length, so the class and type are placed as
bytes in the rest of that longword. When the class field is zero, no more

than the above information can be assumed. ’

8.2 Scalar, String Descriptor (DSC$SK_CLASS_S)

A single descriptor form is used for scalar data and fixed-length
strings. Any VAX data type can be used with this descriptor, except
data type 34 (bit unaligned).

31 0
1 I DTYPE LENGTH : DESCRIPTOR

POINTER

Figure C-5 Scalar, String Descriptor

Symbol Description

DSC$W_LENGTH Length of data in bytes, unless
the DSC$B_DTYPE field con-
tains the value 1 (bit) or 21
(packed decimal). Length of da-
ta item is in bits for bit. Length
of data item is the number of 4-
bit digits (not including the sign)
for packed decimal string.

DSC$B_DTYPE A one-byte data type code (see
Section 7).

DSC$B_CLASS 1= DSC$K_CLASS_S.

DSC$A_POINTER Address of first byte of data sto-
rage.

417

Procedure Calling and Condition Handling

If the data type is 14 (character-coded text) and the string must be
extended in a string comparison or is being copied to a fixed length
string containing a greater length, the space character (20, if ASCII) is
used as the fill character.

8.3 Dynamic String Descriptor (DSC$K_CLASS_D)

A single descriptor form is used for dynamically allocated strings.
When a string is written, either or both the length field and the pointer
field can be changed. The VAX Run-Time Library provides procedures
for changing fields. As an input parameter this format is interchange-
able with class 1 (DSC$K_CLASS_S).

2 DTYPE l LENGTH : DESCRIPTORS

POINTER

Figure C-6 Dynamic String Descriptor

DSC$W_LENGTH Length of data item in bytes, un-
less the DSC$B_DTYPE field
contains the value 1 (bit) or 21
(packed decimal). Length of da-
ta item is in bits for bit. Length
of data item is the number of 4-
bit digits (not including the sign)
for packed decimal string.

DSC$B_DTYPE A one-byte data type code (see
Section 7).

DSC$B_CLASS 2 = DSC$K_CLASS_D.

DSC$A_POINTER Address of first byte of data sto-
rage.

8.4 Variable Buffer Descriptor (DSC$K_CLASS_V)
Reserved for use by DIGITAL.

8.5 Array Descriptor (DSC$SK_CLASS_A)

The array descriptor is used to describe contiguous arrays of atomic
data type or contiguous arrays of fixed length strings. An array de-
scriptor consists of three contiguous blocks. The first block contains
the descriptor prototype information and is part of every array de-
scriptor. The second and third blocks are optional. If the third block is
present, so is the second. A complete array descriptor has the form:

418

Procedure Calling and Condition Handling

3

4 [DTYPE l LENGTH * DESCRIPTOR
POINTER
L i BLOCK 1=PROTOTYPE
DIMCT 1 AFLAGS I DIGITS SCALE
ARSIZE
AO
M1
BLOCK 2=MULTIPLIER
M(n-1)
Mn
Lt
ul
BLOCK 3= BOUNDS
Ln
Un
Figure C-7 Array Descriptor
Symbol Description

DSC$W_LENGTH

DSC$B_DTYPE

DSC$B_CLASS
DSC$A_POINTER

Length of an array elementin
bytes, unless the
DSC$B_DTYPE field contains
the value 1 (bit) or 21 (packed
decimal). Length of an array
element is in bits for bit. Length
of an array element is the num-
ber of 4-bit digits (not including
the sign) for packed decimal
string.

A one-byte data type code (see
Section 7).

4 = DSC$K_CLASS_A.

Address of first actual byte of
data storage.

419

Procedure Calling and Condition Handling

Symbol

DSC$B_SCALE
<2,7:0>

DSC$B_DIGITS
<2,15:8>

DSC$B_AFLAGS
<2,23:16>

Reserved
<2,19:16>

DSC$V_FL_REDIM
<2,20>

DSC$V_FL_COLUMN
<2,21>

DSC$V_FL_COEFF
<2,22>

Description

Signed power of ten multiplier
to convert the internal form to
external form. For example, if
internal number is 123 and
scale is +1, then the external
number is 1230.

If non-zero, unsigned number of
decimal digits in the internal re-
presentation. If zero, the num-
ber of digits can be computed
based on DSC$W_LENGTH.

Array flag bits:

Must be zero.

If set, the array can be redimen-
sioned, that is DSC$A_AO,
DSCSL_Mi, DSCL_Li, and
DSC$L_Ui may be changed.
The redimensioned array can-
not exceed the size allocated to
the array (DSC$L_ARSIZE).

If set, the elements of the array
are stored by columns (FOR-
TRAN). That s, the leftmost
subscript (first dimension) is
varied most rapidly, and the
rightmost subscript (nth dimen-
sion) is varied least rapidly. If
not set, the elements are stored
by rows (most other languages).
That is, the rightmost subscript
is varied most rapidly and the
leftmost subscript is varied least
rapidly.

If set, the multiplicative coeffi-
cients in Block 2 are present.
Must be set if
DSC$V_FL_BOUNDS is set.

420

Procedure Calling and Condition Handling

DSC$V_FL_BOUNDS

If set, the bounds information in

<2,23> Block 3 is present and requires

that DSC$V_FL_COEFF be set.

DSC$B_DIMCT Number of dimensions, n.

<2,31:24>

DSCS$L_ARIZE Total size of array (in bytes un-

<3,31:0> less the DSC$B_TYPE field con-
tains the value 21, see descrip-
tion for DSC$W_LENGTH). A
redimensioned array may use
less than the total size allocated.
For data type 1 (bit),
DSC$W_LENGTH is in bits while
DSC$L_ARIZE is in bytes since
the unit of length in bits while
the unit of allocation is aligned
bytes.

DSC$A_AOD Address of element A(0,0,...,0).

<4,31:0> This need not be within the
actual array. ltis the same as
DSC$A_POINTER for zero-ori-
gin arrays.

DSCS$L_Mi Addressing coefficients.

<4+i,31:0> (Mi = Ui—Li+1)

DSCSL_Li Lower bound (signed) of ith di-

<3+n+2%,31:0> mension.

DSCS$L_Ui Upper bound (signed) of ith di-

<4+n+2%,31:0>

mension.

The following formulas specify the effective address, E, of an array
element. WARNING: modification of the following formulas is required
if DSC$B_DTYPE contains a 1 or 21 because DSC$W_LENGTH is
given in bits or 4-bit digits rather than bytes.

The effective address, E, For element A(l):
E = A0+ I*LENGTH
POINTER + [I — L,]*"LENGTH

The effective address, for

DSC$V_FL_COLUMN clear:

E, element A(l,, 1,) with

421

Procedure Calling and Condition Handling

E = A0+ [I,*M, + L]*LENGTH
= POINTER + [[I1—Li]*M2 + 12 — L2]*LENGTH
The effective address, E, for element A(l,, |,) with

DSC$V_FL_COLUMN set:

E = A0+ [I,*M, + I,]’LENGTH
= POINTER + [[l,—L,]*M; + |, — L,]*LENGTH
The effective address E, for element A(l,, . . . ,I,) with

DSC$V_FL_COLUMN clear:
E = A0+ [[[[..[l,*M, + .]"M_p + In_o]"Mp_q + Ih_11*M,
+ 1]*LENGTH
= POINTER + [[[[...[l; = L,J*M, + ..]*"M_p + lp_»
~Lpol*Mpoq +1h—1 —Lo_1]I*M, + 1, — L, J*LENGTH

The effective address, E, for element A(l,, . . . ,I,) with
DSC$V_FL_COLUMN set:
E = A0+ [[I[...[1 h)I*"M g + .. 1M + L]I*M, + LM, + 1]
*LENGTH
= POINTER + [[[[...[ln = Ln]I*Mpq + .]"M3 + 13 — Lg]*M,
+ 1, — L,]*M, + I, — L,]*"LENGTH

8.6 Procedure Descriptor (DSC$K_CLASS_P)
The descriptor for a procedure specifies its entry address and function
value data type, if any. A procedure descriptor has the form:

3]
5 DTYPE LENGTH : DESCRIPTOR

POINTER

Figure C-8 Procedure Descriptor

Symbol Description

DSC$W_LENGTH Length associated with the
function value or 0 if no function
value is returned.

DSC$B_DTYPE Function value data type code
(see Section 7).

DSC$B_CLASS 5 = DSCK$K_CLASS_P.

DSC$A_POINTER Address of entry mask to rou-
tine.

422

Procedure Calling and Condition Handling

Procedures return a function value in RO, R1/R0, or using the first
argument list entry depending on the size of the data type (see Section
3).

8.7 Procedure Incarnation Descriptor (DSC$K_CLASS_PI)
Obsolete.

8.8 Label Descriptor (DSC$L_CLASS_J)
Reserved for use by the VAX Debugger.

8.9 Label Incarnation Descriptor (DSCSK_CLASS_JI)
Obsolete.

8.10 Decimal Scalar String Descriptor (DSC$SK_CLASS_SD)
Decimal size and scaling information for scalar data and simple
strings is given in a single descriptor form as follows:

3 [¢]
Q DTYPE ‘ LENGTH

POINTER

n " L L " " L s PR L
RESERVED I DIGITS SCALE

Figure C-9 Decimal Scalar String Descriptor

Symbol Description

DSC$W_LENGTH Length of data item in bytes, un-
less the DSC$B_DTYPE field
contains the value 1 (bit) or 21
(packed decimal). Length of da-
taitem is in bits for bit. Length
of data item is the number of 4-
bit digits (not including the sign)
for packed decimal string.

DSC$B_DTYPE A one-byte data type code (see
Section 7).

DSC$B_CLASS 9 = DSC$K_CLASS_SD.

DSC$A_POINTER Address of first byte of data sto-
rage.

DSC$B_SCALE Signed power of ten multiplier

to convert the internal form to
external form. For example, if

423

Procedure Calling and Condition Handling

internal number is 123 and
scale is +1, then the external
number is 1230.

DSCC$B_DIGITS If nonzero, unsigned number of
decimal digits in the internal re-
presentation. If zero, the num-
ber of digits can be computed
based on DSC$W_LENGTH.

Reserved Reserved for future use. Must
<2,31:16> be zero.

8.11 Noncontiguous Array Descriptor (DSC$SK_CLASS_NCA)

The noncontiguous array descriptor describes an array where the sto-
rage of the array elements may be allocated with a fixed, nonzero
number of bytes separating logically adjacent elements. Two elements
are said to be logically adjacent if their subscripts differ by one in the
most rapidly varying dimension only. The difference between the ad-
dresses of two adjacent elements is termed the stride. Whether ele-
ments are stored by row or column is the option of the calling program
and is automatically taken care of by a single accessing algorithm
used by the called procedure.

This array descriptor is to be used where the calling program, at its
option, can pass a slice of an array which contains noncontiguous
allocation. At the present time this standard indicates no preference
between the noncontiguous array descriptor (NCA) and the contigu-
ous array descriptor (A) as described in Section 8.5 for language
processors that always allocate arrays that are contiguous.

Symbol Description

DSC$W_LENGTH Length of an array element in
bytes, uniess the
DSC$B_DTYPE field contains
the value 1 (bit) or 21 (packed
decimal). Length of an array
element is in bits for bit. Length
of an array element is the num-
ber of 4-bit digits (not including
the sign) for packed decimal
string.

424

Procedure Calling and Condition Handling

N o

10 [DTYPE | LENGTH : DESCRIPTOR
POINTER
N R " " P S s P BLOCK 1=PROTOTYPE
DImMCT | AFLAGS l DIGITS SCALE
ARSIZE

A0
L

S1

BLOCK 2= STRIDES

S{n-1)

Sn

[N

ul
PR

BLOCK 3= BOUNDS

Ln

Figure C-10 Noncontiguous Array Descriptor

Symbol Description

DSC$B_DTYPE A one-byte data type code (see
Section 7).

DSC$B_CLASS 10 = DSC$K_CLASS_NCA.

DSC$A_POINTER Address of first actual byte of
data storage.

DSC$B_SCALE Signed power of ten multiplier

<2,7:0> to convert the internal form to

the external form. For example,
if the internal number is 123 and
scaleis +1, then the external
number is 1230.

425

Procedure Calling and Condition Handling

Symbol

DSC$B_DIGITS
<2,15:8>

DSC$B_AFLAGS
<2,23:16>

Reserved
<2,19:16>

DSC$_FL_REDIM
<2,20>

Reserved
<2,23:21>

DSC$B_DIMCT
<2,31:24>

DSC$L_ARSIZE
<3,31:.0>

DSC$A_AO
<4,31:0>

Description

If nonzero, unsigned number of
decimal digits in the internal re-
presentation. If zero, the num-
ber of digits can be computed
based on DSC$W_LENGTH.

Array flag bits:

Must be zero. Reserved for fu-
ture standardization by
DIGITAL.

Must be zero.

Must be zero. Reserved for fu-
ture standardization by
DIGITAL.

Number of dimensions, n.

If the elements are actually con-
tiguous then ARSIZE is the total
size of the array (in bytes, un-
less the DSC$B_DTYPE field
contains the value 21, see de-
scription of DSC$W_LENGTH).
If the elements are not allocated
contiguously or the program
unit allocating the descriptor is
uncertain whether the array is
actually contiguous or not, the
value placed in ARSIZE may be
meaningless.

For data type 1 (bit),
DSC$W_LENGTH is in bits while
DSC$L_ARSIZE is in bytes
since the unit of length is in bits

* while the unit of allocation is

aligned bytes.

Address of element A(0,0,...,0).
This need not be within the

426

Procedure Calling and Condition Handling

Symbol Description

actual array. It is the same as
DSCS$A_POINTER for zero-or-
gin arrays.

DSC$A_AO0 = POINTER — (S1*
L1+ S2*L2 + ... +Sn*Ln)

DSC$L_Si Stride of the ith dimension. The

<4+i,31:.0> difference between the ad-
dresses of successive elements
of the ith dimension.

DSCSL_Li Lower bound (signed) of the ith
<3+n+2%,31:.0> dimension.
DSC$L_Ui Upper bound (signed) of the ith
<4+n+2%,31:0> dimension.

The following formulas specify the effective address, E, of an array
element. WARNING: modification of the following formulas is required
if DSC$B_DTYPE equals 1 or 21 because DSC$W_LENGTH is givenin
bits or 4-bit digits rather than bytes.

The effective address, E, of A(l):
E = A0+ S,%I
= POINTER + S;*[l — L,]

The effective address, E, of A(l,,1,):
E = A0+ S*l, + 8,1,
= POINTER + S,*[l;, — L,] + S,*[l, — L,]

The effective address, E, of Ay, ... ,In):
E = A0+ Sl +...+Sp%l,
= P’OINTER +S* [—L]+...+ Sp*lln =Lyl

8.12 Varying String Descriptor (DSC$K_CLASS_VS)

A single descriptor form is used for varying strings consisting of two

fixed-length areas allocated contiguously with no padding between:

1. .CURLEN - An unsigned word specifying the current length in
bytes of the immediately following string (byte aligned).

2. BODY - A fixed length area containing the string which can vary
from 0 to a maximum length defined for each instance of string.

As an input parameter, this format is not interchangeable with class 1
(DSC$K_CLASS_S) and 2 (DSC$K_CLASS_D). When a called pro-

427

Procedure Calling and Condition Handling

cedure modifies a varying string passed by reference or by descriptor,
it writes the new length, n, into CURLEN and may modify all bytes of
BODY.

1 DTYPE MAXSTRLEN

POINTER

Figure C-11 Varying String Descriptor

Symbol Description

DSC$W_MAXSTRLEN Max length of the BODY field of the varying
string in bytes in the range 0 to 2**16-1.

DSC$B_DTYPE A one-byte data type code that must be 14
specifying the data type of the BODY (indi-
cating character-coded text - see section
7.2). The use of other data types is reserved
for future standardization.

DSC$B_CLASS 11 = DSC$K_CLASS_VS.
DSC$A_POINTER Address of first field (CURLEN) of the vary-
ing string.

Example: MAXSTRLEN contains 7, CURLEN contains 3, string is cur-
rently “ABC”, and the remaining 4 bytes are currently undefined:

N 0
n 14 l 7 : DESCRIPTOR

......

....

Figure C-12 Varying String Example

428

Procedure Calling and Condition Handling

8.13 Varying String Array Descriptor (DSC$K_CLASS_VSA)

A variant of the noncontiguous array descriptor is used to specify an

array of varying strings where each varying string has the same maxi-

mum length. Each array element is a varying string, that is two fixed-
length areas allocated contiguously with no padding between:

1. CURLEN - An unsigned word specifying the current length in
bytes of the immediately following string (byte aligned).

2. BODY - A fixed length area containing the string which can vary
from 0 to the maximum length defined for an array element (MAX-
STRLEN).

When a called procedure modifies a varying string in an array of vary-

ing strings passed to it by reference or by descriptor, it writes the new

length, n, into CURLEN and may modify all bytes of BODY. The format
of this descriptor is the same as the noncontiguous array descriptor
except:

31 o

12 DTYPE l MAXSTRLEN
2 n n L A L " L P

.....

POINTER
L N

Figure C-13 Varying String Array Descriptor

Symbol Description

DSC$W_MAXSTRLEN Max. length of the BODY field of an array
elementin bytes in the range 0 to 2**16-1.

DSC$B_DTYPE A one-byte string data type code that must
be 14 specifying the data type of the BODY
fields of the varying array (indicating char-
acter coded-text - see Section 7.2). The use
of other data types is reserved for future
standardization.

DSC$B_CLASS 12 = DSC$K_CLASS_VSA.
DSC$A_POINTER Address of first actual byte of data storage.

The remaining fields are identical to the noncontiguous array descrip-
tor. The effective address computation of an array element produces
the address of CURLEN of the desired element.

429

Procedure Calling and Condition Handling

8.14 Unaligned Bit String Descriptor (DSC$K_CLASS_UBS)

A descriptor is used to pass an unaligned bit string
(DSC$K_DTYPE_VU) that starts on an arbitrary bit boundary and ends
on an arbitrary bit boundary.

The length is 0 to 2**16-1 bits. The bit string may be accessed directly
using the VAX variable bit field instructions. Therefore, the descriptor
provides two components: a base address and a signed relative bit
position.

13 DTYPE LENGTH : DESCRIPTOR
s n s n 1 s 1 L L ' L n n L

BASE

POS
P

Figure C-14 | Unaligned Bit String Descriptor

Symbol Description
DSC$W_LENGTH Length of data item in bits.
DSC$B_DTYPE A one-byte data type code that must be 34

indicating bit unaligned data type (see Sec-
tion 7). The use of other data types is re-
served for future standardization.

DSC$B_CLASS 13 = DSC$K_CLASS=UBS

DSC$A_BASE Base of address relative to which the signed
relative bit position, POS, is used to locate
the bit string. The base address need not be
first actual byte of data storage.

DSC$L_POS Signed longword relative bit position with
respect to BASE of the first bit of unaligned
bit string.

Example: A called procedure can use the following instruction to ac-
cess a bit string of 32 bits or less. If RO contains the address of the
descriptor, the following instruction copies the bit string to R1:

Example: A called procedure can use the following instruction to ac-
cess a bit string of 32 bits or less. If RO contains the address of the
descriptor, the following instruction copies the bit string to R1:

EXTZV DSC$L_POS(RO), DSC$W_LENGTH(RO),
@DSC$A_BASE(RO0), R1

430

Procedure Calling and Condition Handling

8.15 Unaligned Bit Array Descriptor (DSC$SK_CLASS_UBA)

A variant of the noncontiguous array descriptor is used to specify an
array of unaligned bit strings. Each array element is a bit unaligned
data type (DSC$K_TYPE_VU) that starts on an arbitrary bit boundary
and ends on an arbitrary bit boundary. The length of each element is
the same and is 0 to 2'°—1 bits. Elements of the array may be ac-
cessed directly using the VAX variable bit field instructions. Therefore,
the descriptor provides two components: a byte address,
DSC$A_BASE, and a means to compute the signed bit offset, EB, with
respect to BASE of an array element.

The unaligned bit array descriptor consists of 4 contiguous blocks that
are always present. The first block contains the descriptor prototype
information. A complete unaligned bit array descriptor has the form.

31]
14 l DTYPE l LENGTH : DESCRIPTOR
- P I L P L L " L "
BASE
P S S S S S S S S n " BLOCK 1= PROTOTYPE
DIMCT ‘ AFLAGS | DIGITS SCALE
L N A P L N N N N
ARSIZE
P n
N 0
Vo
P .
S1
" i n "
BLOCK 2= STRIDES
o -
S(n-1)
L
Sn
. Y
3N [
L
N
ul
cee BLOCK 3= BOUNDS
. n
Ln
-
Un
P
31 o

POS BLOCK 4=POSITION

Figure C-15 Unaligned Bit Array Descriptor

Symbol Description
DSC$W_LENGTH Length of an array element in bits.

431

Procedure Calling and Condition Handling

Symbol
DSC$B_DTYPE

DSC$B_CLASS
DSC$A_BASE

DSC$B_SCALE
<2,7:0>

DSC$B_DIGITS
<2,15:8>

DSC$B_AFLAGS
<2,23:16>

Reserved
<2,19:16>

DSC$V_FL_REDIM
<2,20>

Reserved
<2,23:21>

DSC$B_DIMCT
<2,31:24>

DSC$L_ARSIZE
<3,31:.0>

DSC$L_VO0
<4,31:0>

DSCS$L_Si
<4+i,31:.0>

Code Name/Description

A one byte data type code that must be 34
indicating bit unaligned data type (see Sec-
tion 7). The use of other data types is re-
served for future standardization.

14 = DSC$K_CLASS_UBA

Base address relative to which the effective
bit offset, EB, is used to locate elements of
the array. The base address need not be the
first actual byte of data storage.

Must be zero. Reserved for future stan-
dardization by DIGITAL.

Must be zero. Reserved for future stan-
dardization by DIGITAL.

Array flag bits.

Must be zero. Reserved for future
standardization by DIGITAL.

Must be zero.

Must be zero. Reserved for future stan-
dardization by DIGITAL.

Number of dimensions, n.

If the elements are actually allocated con-
tiguously, then ARSIZE is the total size of
the array in bits. If the elements are not allo-
cated contiguously or the program unit allo-
cating the descriptor is uncertain whether
the array is actually contiguous or not, the
value placed in ARSIZE may be
meaningless.

Signed bit offset of element A(0,...,0) with
respect to BASE. VO = POS - [S1*L1+ ...+
Sn*Ln}.

Stride of the ith dimension. The difference
between the bit (not byte) addresses of
successive elements of the ith dimension.

432

Procedure Calling and Condition Handling

Symbol Description

DSCS$L_L1 Lower bound (signed) of the ith dimension.
<3+n+2*%,31:0>

DSCS$L_Ui Upper bound (signed) of the ith dimension.
<4+n+2*,31:0>

DSC$L_POS Signed longword relative bit position with
<5+n*3,31:0> respect to BASE of the first actual bit of the

array, thatis element A(L1,...,Ln).

The signed, 32-bit effective bit offset, EB, of A(l,):
EB = V0 + S,*l,

= POS + S;*[l, - L,]
The signed, 32-bit effective bit offset, EB, of A(l,,1,):
EB =V0+ S;*l, + S,*1,

=POS + S, *[l;-L,] + S,*[l,-L,]
The signed, 32-bit effective bit offset, EB, of A(l,, ..., I):
EB=V0+S;*l, +...+S,*I,

=POS + S *[l,-L]+ ... +S,*[Ih-Ln]
Note: EB is computed ignoring integer overflow. EB is then usable as
the position operand and the contents of DSC$A_BASE is usable as
the base address operand in the VAX variable length bit field instruc-

tions. Therefore, BASE must specify a byte that is within 2**28 bytes of
all bytes of storage in the bit array.

Example: Consider a one-origin, one-dimension, 5-element array con-
sisting of 3-bit elements allocated adjacently (therefore S1 = 3). As-
sume BASE is byte 1000 and the first actual element, A(1), starts at bit
4 of byte 1001.

The array would look like:

$1000

2 1 1 1 0 1001

4 4 4 3 3 3 2 2 [:1002

5 5 5 :1003

Figure C-16 Array Example
433

Procedure Calling and Condition Handling

The following dependent field values occur in the descriptor:

POS =12
VO=12-3*1=9

8.16 Reserved Descriptors

Descriptor classes 15 through 191 are reserved for DIGITAL. Classes
192 through 255 are reserved for DIGITAL’'s Computer Special Sys-
tems group and customers.

9. VAX CONDITIONS
A condition is either:

e A hardware-generated synchronous exception

e A software event that is to be processed in a manner analogous to a
hardware exception.

Floating-point overflow exception, memory access violation
exception, and reserved operation exception are examples of hard-
ware-generated conditions. An output conversion error, an end-of-file,
or the filling of an output buffer are examples of software events that
might be treated as conditions.

Depending on the condition and on the program, four types of action

can be taken when a condition occurs.

1. Ignore the condition. For example, if an underflow occurs in a
floating-point operation, continuing from the point of the excep-
tion with a zero result may be satisfactory.

2. Take some special action and then continue from the point at
which the condition occurred. For example, if the end of a buffer
is reached while a series of data items are being written, the
special action is to start a new buffer.

3. End the operation and branch from the sequential flow of con-
trol. For example, if the end of an input file is reached, the branch
exits from a loop that is processing the input data.

4. Treat the condition as an unrecoverable error. For example,
when the floating divide by zero exception condition occurs, the
program exits, after writing (optionally) an appropriate error mes-
sage.

When an unusual event or errors occurs in a called procedure, the
procedure can return a condition value to the caller indicating what
has happened (see Section 4). The caller tests the condition value
takes the appropriate action.

When an exception is generated by the hardware, a branch out of the
program’s flow of control occurs automatically. In this case, and for

434

Procedure Calling and Condition Handling

certain software generated events, it is more convenient to handle the
condition as soon as it is detected rather than to program explicit
tests.

9.1 Condition Handiers
To handle hardware- or software-detected exceptions, the VAX
Condition Handling Facility allows the programmer to specify a condi-
tion handler procedure to be called when an exception condition oc-
curs. This same handler procedure may also be used to handle soft-
ware-detected conditions.

An active procedure can establish a condition handler to be associat-
ed with it. The presence of a condition handler is indicated by a
nonzero address in the first longword of the procedure’s stack frame.
When an event occurs that is to be treated using the condition han-
dling facility, the procedure detecting the event signals the event by
calling the facility and passing a condition value describing the condi-
tion that occurred. This condition value has the format and interpreta-
tion as described in Section 4. All hardware exceptions are signaled.

When a condition is signaled, the condition handling facility looks for a
condition handler in the current procedure’s stack frame. If a handler
is found, it is entered. If no handler is associated with the current
procedure, the immediately preceding stack frame is examined.
Again, if a handler is found it is entered. If a handler is not found, the
search of previous stack frames continues until the default condition
handler established by the system is reached or the stack runs out.

The default condition handler prints messages indicated by the signal
argument list by calling the Put Message (SYS$PUTMSG) system ser-
vice, followed by an optional symbolic stack traceback. Success con-
ditions with STS$K_SUCCESS result in messages to file
SYS$OUTPUT only. All other conditions, including informational mes-
sages (STS$K_INFO), produce messages on files SYS$OUTPUT and
SYS$ERROR.

For example, if a procedure needs to keep track of the occurrence of
the floating-point underflow exception, it can establish a condition
handler to examine the condition value passed when the handler is
invoked. Then when the floating-point underflow exception occurs, the
condition handler will be entered and will log the condition. The
handler will return to the instruction immediately following the instruc-
tion causing the underflow.

If floating-point operations occur in many procedures of a program,
the condition handler can be associated with the program’s main pro-
cedure. When the condition is signaled, successive stack frames are

435

Procedure Calling and Condition Handling

searched until the stack frame for the main procedure is found, at
which time the handler will be entered. If a user program has not
associated a condition handler with any of the procedures that are
active at the time of the signal, successive stack frames will be
searched until the frame for the system program invoking.the user
program is reached. A default condition handler that prints an error
message will then be entered.

9.2 Condition Handler Options

Each procedure activation potentially has a single condition handier

associated with it. This condition handler will be entered whenever any

condition is signaled within that procedure. (It can also be entered as a

result of signals within active procedures called by the procedure.)

Each signal includes a condition value (see Section 4), which de-

scribes the condition causing the signal. When the condition handler is

entered, the condition value should be examined to determine the

cause of the signal. After the handler has processed the condition or

chosen to ignore it, it can:

@ Return to the instruction immediately following the signal. Note that
itis not always possible to make such a return.

e Resignal the same or a modified condition value. A new search for a
condition handler will begin with the immediately preceding stack
frame.

@ Signal a different condition.
e Unwind the stack.

10. OPERATIONS INVOLVING CONDITION HANDLERS
The functions provided by the VAX Condition Handling Facility are to:

1. Establish a condition handler. A condition handler is associated
with the current procedure by placing the handler’s address in the
current procedure’s activation stack frame.

2. Revert to the caller’s handling. If a condition handler has been
established, it can be removed by clearing its address in the cur-
rent procedure activation’s stack frame.

3. Enable or disable certain arithmetic exceptions. The following
hardware exceptions can be enabled or disabled by software:
floating-point underflow, integer overflow, and decimal overflow.
No signal occurs when the exception is disabled.

4. Signal a condition. Signaling a condition initiates the search for
an established condition handler.

5. Unwind the stack. Upon exit from a condition handler it is possi-
ble to remove one or more frames occurring before the signal
from the stack. During the unwinding operation, the stack is

436

Procedure Calling and Condition Handling

scanned and if a condition handler is associated with a frame, that
handler is entered before the frame is removed. Unwinding the
stack allows a procedure to perform application specific cleanup
operations before exiting.

10.1 Establish a Condition Handler

Each procedure activation has a condition handler potentially associ-
ated with it using longword 0 in its stack frame. Initially, longword 0
contains 0, indicating no handler. A handler is established by moving
the address of the handler’s procedure entry point mask to the esta-
blisher’s stack frame.

In addition, VAX/VMS provides three statically allocated exception
vectors for each access mode of a process. These vectors are avail-
able to declare condition handlers that take precedence over any
handlers declared at the procedure level. These are used, for exam-
ple, to allow a debugger to monitor all exceptions and for the system to
establish a last chance handler. Since these handlers do not obey the
procedure nesting rules, they should not be used by modular code.
Instead, the stack based declaration should be used.

The code to establish a condition handler is:
MOVAB handler_entry_point,0(FP)

10.2 Revert to the Caller’s Handling -

Reverting to the caller’s handling deletes the condition handler associ-
ated with the current procedure activation. This is done by clearing the
handler address in the stack frame.

The code to revert to the caller’s handling is:
CLRL O(FP)
10.3 Signal a Condition
The signal operation is the method used for indicating the occurrence
of an exception condition. To issue a message and be able to continue

execution after handling the condition, a program calls the
LIBSSIGNAL procedure as follows:

CALL LIB$SIGNAL (condition_value, arg_list...)

To issue a message, but not continue execution, a program calls
LIB$STOP, as follows:

CALL LIB$STOP (condition_value, arg_list...)

In both cases, condition_value indicates the condition that is signaled.
However, LIB$STOP sets the severity of the condition_value to be a
severe_error. The remaining arguments describe the details of the

437

Procedure Calling and Condition Handling

exception. These are the same arguments used to issue a system
message.

Note that unlike most calls, LIB$SIGNAL and LIB$STOP preserve RO
and R1 as well as the other registers. Therefore, a debugger can insert
a call to LIB$SIGNAL to display the entire state of the process at the
time of the exception. It also allows signals to be coded in MACRO
without changing the register usage. This feature of preserving RO and
R1 is useful for debugging checks and gathering statistics. Hardware
and system service exceptions behave like calls to LIB$SIGNAL.

The signal procedure examines the two exception vectors and then up
to 64K previous stack frames and finally the last-chance exception
vector, if necessary. The current and previous stack frames are found
by using FP and chaining back through the stack frames using the
saved FP in each frame. The exception vectors have three address
locations per access mode.

As a part of image start-up, the system declares a default last-chance
handler. This handler is used as a last resort when the normal
handlers are not performing correctly. The debugger can replace the
default system last-chance handler with its own.

In some frame before the call to the main program, the system esta-
blishes a default catch-all condition handler that issues system mes-
sages. In a subsequent frame before the call to the main program, the
system usually establishes a traceback handler. These system-sup-
plied condition handlers use condition_value to get the message and
then use the remainder of the argument list to format and output the
message through the system service, SYS$PUTMSG.

If the severity field of the condition_value (bits 0 through 2) does not
indicate a severe_error (that is, a value of 4) these default condition
handlers return with SS$_CONTINUE. If the severity is severe_error,
these default handlers exit the program image with the condition value
as the final image status.

The stack search ends when the old FP is 0 or is not accessible, or
when 64K frames have been examined. If no condition handler is
found, or all handlers returned with a SS$_RESIGNAL, then the vec-
tored last-chance handler is called.

If a handler returns SS$_CONTINUE, and LIB$STOP was not called,
control returns to the signaler. Otherwise LIBSTOP issues a message
that an attempt was made to continue from a noncontinuable
exception and exits with the condition value as the final image status.

Table C-1 lists all combinations of interaction between condition
handler actions, the default condition handlers, the type of signals,

438

Procedure Calling and Condition Handling

and the call to signal or stop. In the table, “cannot continue” indicates
an error which results in the message: IMPROPERLY HANDLED CON-
DITION, ATTEMPT TO CONTINUE FROM STOP.

Table C-1 Interaction between Handlers and Default Handlers

SIGNALED DEFAULT

HANDLER | HANDLER NO HANDLER
calL To: | SRNDTION | HANDLER SPECIFIES | SPECIFIES | IS FOUND
<2:0> CONTROL CONTINUE UNWIND (STACK BAD)
TALL
MESSAGE RET UNWIND chaNce
LIB$SIGNAL «“ e SAGE HANDLER
OR EXIT
HARDWARE CALL
EXCEPTION CONDITION CASE
“a MESSAGE RET UNWIND CHANCE
EXIT HANDLER
EXIT
. CALL
CONDITION CANNOT LAST
LIB$STOP FORCE (4] | MESSAGE CONTINUE" | UNWIND CHANCE
EXIT EXIT HANDLER

11. PROPERTIES OF CONDITION HANDLERS

Condition Handler Parameters and Invocation
If a condition handler is found on a software detected exception, the
handler is called with an argument list consisting of:

continue = handler (signal_args, mechanism_args)

Each argument is a reference to a longword vector. The first longword
of each vector is the number of remaining longwords in the vector. The
symbols CHF$L_SIGARGLST (=4) and CHF$L_MCHARGLST (=8)
can be used to access the condition handler arguments relative to AP.

Signal_args is the condition argument list from the call to LIB$SIGNAL
or LIB$STOP expanded to include the PC and PSL of the next instruc-
tion to execute on a continue. In particular, the second longword is the
condition_value being signaled.

Because bits 0 through 2 of the condition_value indicate severity and
do not indicate which condition is being signaled, the handler should
examine only the condition identification, that is, condition value (bits
3 through 27). The setting of bits 0 through 2 varies depending upon
the environment. In fact, some handlers may simply change the
severity of a condition and resignal. The symbols CHF$L_SIG_ARGS
(=0) and CHF$L_SIG_NAME (=4) can be used to refer to the elements
of the signal vectors.

Mechanism_args is a five-longword vector:

439

Procedure Calling and Condition Handling

3

o]

FRAME

]

DEPTH

RO

CHF$L. MCH . ARGS

CHF$L . MCH . FRAME

CHF$L . MCH_. DEPTH

CHF$L .. MCH.. SAVRO

CHF$L__MCH_ SAVR]

R1

Figure C-17 Mechanism_args

The frame is the contents of the FP in the establisher’'s context. This
can be used as a base to access the local storage of the establisher if
the restrictions described in Section 11.2 are met.

The depth is a positive count of the number of procedure activation
stack frames between the frame in which the exception occurred and
the frame depth that established the handler being called. Depth has
the value O for an exception handled by the procedure activation in-
voking the exception (that is, containing the instruction causing the
hardware exception or calling LIB§SIGNAL). Depth has positive values
for procedure activations calling the one having the exception (1 for
the immediate caller, etc.).

If a system service gives an exception, the immediate caller of the
service is notified at depth = 1. Depth has value -2 when the condition
handler is established by the primary exception vector, -1 when it is
established by the secondary vector, and -3 when it is established by
the last-chance vector.

The contents of RO and R1 are the same as at the time of the call to
LIB$SIGNAL or LIB$STOP.

For hardware detected exceptions, the condition-value indicates
which exception vector was taken and the next 0 or several longwords
are additional parameters. The remaining two longwords are the PC
and PSL:

n CHF$L.SIG__ ARGS

CONDITION = VALUE CHF$L . SIG__NAME

NONE OR SOME
ADDITIONAL
ARGUMENTS n

PC

PSL

Figure C-18 Hardware Detected Exceptions

440

Procedure Calling and Condition Handling

If one of the default condition handlers established by the system is
entered, it calls the system service, SYS$PUTMSG, to interpret the
signal argument list and output the indicated information or error mes-
sage. See the description of SYS$PUTMSG in the VAX/VMS Systems
Services Reference Manual for the format of the signal argument list.

11.2 Use of Memory

A condition handler and procedures it calls are restricted to referring
to explicitly passed arguments only. Handlers cannot refer to COM-
MON or other external storage, and they cannot reference local sto-
rage in the procedure that established the handler. The existence of
handlers does not affect.compiler optimization. Compilers that do not
follow this rule must ensure that any variables referred to by the
handler are always in memory.

11.3 Returning from a Condition Handler

Condition handlers are invoked by the VAX Condition Handling Facili-
ty. Therefore, the return from the condition handler is to the condition
handling facility.

To continue from the instruction following the signal, the handler must
return with the function value SS$_CONTINUE (“true,” that is, with bit 0
set). If, however, the condition was signaled with a call to LIB§STOP,
the image will exit. To resignal the condition, the condition handler
returns with the function value SS$_RESIGNAL (“false,” that is, with bit
0 clear). To alter the severity of the signal, the handler modifies the
low-order three bits of the condition-value longword in the signal-args
vector and resignals. If the condition handler wants to alter the defined
control bits of the signal, the handler modifies bits 31:28 of condition-
value and resignals. To unwind, the handler calls SYSSUNWIND and
then returns. In this case, the handier function value is ignored.

11.4 Request to Unwind
To unwind, the handler or any procedure it calls can perform:

success = SYSSUNWIND
([depadr = handler depth + 1],
[new_PC =returnPC])

The argument depadr specifies the address of a longword that con-
tains the number of presignal frames (depth) to be removed. If that
number is less than or equal to 0 then nothing is to be unwound. The
default (address=0) is to return to the caller of the procedure that
established the handler that issued the SUNWIND service. To unwind
to the establisher, the depth from the call to the handler should be
specified. When the handler is at depth 0, it can achieve the equivalent

441

Procedure Calling and Condition Handling

of an unwind operation to an arbitrary place in its establisher by alter-
ing the PC in its signal-args vector and returning with SS$_CONTINUE
instead of performing an unwind.

The argument new_PC specifies the location to receive control when
the unwinding operation is complete. The default is to continue at the
instruction following the call to the last procedure activation removed
from the stack.

The function value SUCCESS is a standard success code
(SS$_NORMAL), or indicates failure with one of the following return
status condition values:

® No signal active (SS$_NOSIGNAL)

e Already unwinding (SS$_UNWINDING)

e Insufficient frames for depth (SS$_INSFRAME)

The unwinding operation occurs when the handler returns to the con-
dition handling facility. Unwinding is done by scanning back through
the stack and calling each handler that has been associated with a
frame. The handler is called with exception SS$_UNWIND to perform
any application specific cleanup. In particular, if the depth specified
includes unwinding the establisher’s frame, the current handler will be
recalled with this unwind exception.

The call to the handler takes the same form as previously described,
with the following values:

signal_args
1
condition_value = SS$_UNWIND

mechanism_args

4
frame establisher’s frame

depth 0 (that is, unwinding self)
RO RO that unwind will restore
R1 R1 that unwind will restore

After each handler is called, the stack is cut back to the previous
frame.

Note that the exception vectors are not checked because they are not
being removed. Any function value from the handler is ignored. To
specify the value of the top level “function” being unwound, the
handler should modify RO and R1 in the mechanism_args vector. They
will be restored from the mechanism_args vector at the end of the
unwind. Depending on the arguments to SYS$UNWIND, the unwinding
operation will be terminated as follows:

442

Procedure Calling and Condition Handling

e SYS$UNWIND(0,0) — unwind to the establisher’s caller with the es-
tablisher function value restored from RO and R1 in the mechanism-
args vector.

® SYSSUNWIND(depth,0) — unwind to the establisher at the point of
the call that resulted in the exception. The contents of RO and R1 are
restored from RO and R1 in the mechanism_args vector.

e SYS$UNWIND(depth,location) — unwind to the specified procedure
activation and transfer to a specified location with the contents of RO
and R1 from R1 in the mechanism_args vector.

SYSSUNWIND can be called whether the condition was a software
exception signaled by calling LIB$SIGNAL or LIB$STOP, or was a
hardware exception. Calling SYS$UNWIND is the only way to continue
execution after a call to LIB$STOP.

11.5 Signaler’s Registers

Because the handler is called, and can in turn call routines, the actual
values of the registers that were in use at the time of the signal or
exception can be scattered on the stack. To find the registers R2
through FP, a scan of stack frames must be performed starting with
the current frame and ending with the call to the handler. During the
scan, the last frame found to save a register contains that register’s
contents at the time of the exception. If no frame saved the register,
the register is still active in the current procedure. The frame of the call
to the handler can be identified by the return address of
SYS$CALL_HANDL+4. Thus, the registers are:

RO, R1 In mechanism_args

R2..R11 Last frame saving it

AP old AP of SYSSCALL_HANDL +4 frame
FP old FP of SYSSCALL_HANDL+4 frame
SP equal to end of signal-args vector+4
PC,PSL at end of signal-args vector

12. MULTIPLE ACTIVE SIGNALS

A signal is said to be active until the signaler gets control again or is
unwound. A signal can occur while a condition handler or a procedure
it has called is executing in response to a previous signal. For exam-
ple, procedure (A, B, C, ...) establish condition handlers (Ah, Bh, Ch,
...) respectively. If A calls B and B calls C which signals S and Ch
resignals, then Bh gets control. If Bh calls procedure X and X calls
procedure Y and Y signals T the stack is:

443

Procedure Calling and Condition Handling

<signal T>
Y
X
Bh
<signal S>
C
B
A

which was programmed:

A
B Bh
[« X
<SIGNAL 5> Y
<SIGNAL T>

Figure C-19

The handlers are searched for in the order: Yh, Xh, Bhh, Ah. Note that
Ch is not called because it is a structural descendant of B. Bh is not
called again because that would require it to be recursive. Recursive
handlers could not be coded in nonrecursive languages such as FOR-
TRAN. Instead, Bh can establish itself or another procedure as its
handler (Bhh).

The foIIoWing algorithm is used on the second and subsequent signals
which occur before the handler for the original signal returns to the
condition handling facility. The primary and secondary exception vec-
tors are checked. Then, however, the search backward in the process
stack is modified. In effect, the stack frames traversed in the first
search are skipped over in the second search. Thus, the stack frame
preceding the first condition handler up to and including the frame of
the procedure that has established the handler is skipped. Despite this
skipping, depth is not incremented. The stack frames traversed in the
first and second search are skipped over in a third search, etc. Note
that if a condition handler signals, it will not automatically be invoked
recursively. However, if a handler itself establishes a handler, this
second handler will be invoked. Thus, a recursive-condition handler
should start by establishing itself. Any procedures invoked by the
handler are treated in the normal way that is, exception signaling
follows the stack up to the condition handler.

If an unwinding operation is requested while multiple signals are ac-
tive, all the intermediate handlers are called for the operation. For
example, in the above diagram, if Ah specifies unwinding to A, the

444

following handlers will be called for the unwind: Yh, Xh, Bhh, Ch, and
Bh.

For proper hierarchical operation, an exception that occurs during
execution of a condition handler established in an exception vector
should be handled by that handler rather than propagating up the
activation stack. To prevent such propagation, the vectored condition
handler should establish a handler in its stack frame to handle all
exceptions.

13. CHANGE HISTORY
For a change history of the Procedure Calling and Condition Handling

Standard please see the VAX/VMS Run Time Library Reference
Manual.

445

446

APPENDIX D
PROGRAMMING EXAMPLES

PURPOSE

The purpose of the programming examples is to illustrate VAX capa-
bilities which are not present in the PDP-11. It is not intended to be
tutorial on programming; a familiarity with PDP-11 assembly language
programming is assumed.

SORT ALGORITHM
The following subroutine written in FORTRAN is an algorithm for sort-
ing an array of values into ascending order.

SUBROUTINE SORT (N, A)
<data type x> A (N), TEMP
INTEGER*4 N, I, J
DO10I=1,N—-1
DO10J=1+1,N
IF (A (I) .LE.A(J)) GOTO 10
TEMP = A (l)
Al)=AJ)
A (J) = TEMP

10 CONTINUE
RETURN
END

The following is VAX code to implement this algorithm. There is no
suggestion that any given FORTRAN compiler would generate this
code; the algorithm was expressed in FORTRAN only for convenience.

The subroutine is assumed to be called by the VAX standard calling
convention; hence, 4 (AP) points to the address of N and 8 (AP) points
to the address of A (0 origin assumed).

SORT::
1. .WORD (up arrow)X400C
;Entry mask to save
;R3, R2
;and enable integer

;overflow

447

2.

:Get A base

3.

;Get N (size)

4.

;Initialize |

5. 1$:
;Initialize J to I+1
6. 2%:

[R2]

;Correct order?
7.

;Yes

8.

;Save A (1)

9.

[R1]

;Replace A (1) with
A)

10.

;Replace A (J) with
;saved A (1)

11. 10$:
;Continue

12.

;Continue

13.

:Return and restore

;registers R2 and R3

Some Programming Examples

MOVAL

MOVL

MOVL

ADDL3

CMPx

BLEQ
MOVx

MOVx

MOVx

AOBLEQ

AOBLSS

RET

@8 (AP), RO
@4 (AP), R12
#1,R1
#1,R1,R2

(RO) [R1], (RO)

10$
(RO) [R1], R3

(RO) [R2], (RO)

R3, (RO) [R2]

R12,R2, 2%

Ri2,R1,1$

Line 1 contains an entry mask so that registers R2 and R3 will be saved
by the CALL instruction which calls the subrountine. By convention, RO

and R1 are not saved. Integer overflow is enabled.

Line 2 gets the base of the A array. The move address instruction is
used in conjunction with argument mode addressing. This instruction
saves memory accesses inside the loop.

Line 3 gets the array size. The move long instruction is used in con-
junction with argument mode addressing. This instruction saves mem-

ory accesses inside the loop.

Line 4 initializes | to 1. Literal mode addressing is used.

448

Some Programming Examples

Line 5 initializes J with | + 1. A three operand add is used.

Line 6 compares A (1) to A (J). Register post-indexed mode addressing
is used. .

Line 7 branches past the exchange if the array elements are in the
right order.

Lines 8 through 10 exchange the array elements if they are in the
wrong order. Register post-indexed mode addressing is used.

Lines 11 and 12 carry out the loop end operations. Argument mode
addressing is used.

Line 13 returns and restores registers R2 and R3.

Note, that because of logical indexing in Lines 5, 7, 8, and 9 and the
orthogonality of operator and data type, the subroutine words for byte,
word, longword, floating or double data types of array A simply by
substituting B, W, L, F, or D respectively for x. Note that if double, then
R4 would have to be saved also in the entry mask.

The size of each instruction is:

1. 2 bytes
2. 4
3. 4
4. 3
5. 4
6. 5
7. 2
8. 4
9. 5

10. 4

11. 4

12. 4

13. 1

Total 46 bytes

SIN FUNCTION

This example shows how the initial argument handling might be done
in the math library to handle argument range reduction followed by
CASEing to the algorithm for each octant.

"X = SIN(Y)

449

Some Programming Examples

PIHI = xxx
double)
PILO = xxx

SIN::
.WORD
:save R2-R3 for POLYF,

—R7 for POLYD

:enable integer overflow
MOVAL

:enable integer overflow
:condition handler to catch
;loss of significance on

:a huge argument
EMODXx
(AP), R2, RO

;get octantin R2

:reduced argument in RO
BGEQ
;if positive, ok
ADDx
;if negative, get
DECL
;positive reduction
1$: BICB2
:mask to 8 octants
CASEB
:branch to each octant
2%: .WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD

:fall out of CASE on octant0

450

‘high 4 bytes (8 if

:low byte of 4/PI

(up arrow)X400C

HANDLER, 0 (FP)

#PIHI, #PILO, @4

1$

#(up arrow)FI. 0, RO
R2

#(up arrow)C7, R2
R2, #1,#6

OCT_1-2%
OCT_2-2%
OCT_3-2%
OCT_4-2%
OCT_5-2%
OCT_6-2%
OCT_7-2%

Some Programming Examples

;octant 0 with fully precise reduced argument in RO

OCT_0: POLYx RO, 2%, 1$
;evaluate polynomial
RET
;return value in RO
1$: .FLOAT
.FLOAT
28 =.—1$-1
HANDLER:
;condition
.WORD

FIXED FORMAT FLOATING OUTPUT
This example shows how to output a floating point number in the
FORTRAN format F9.3.

;string = FOUT (X)

STRING: .BLKB 10 ;room for output

PATTERN: ;EDITPC pattern string
EO$FLOAT 4 ;float sign, move 4 digits
EO$SEND_FLOAT ;end floating sign
EO$MOVE 1 ;move one digit
EOSINSERT (up arrow)A/./ ;insert period
EO$MOVE 3 ;move three fractional digits
EO$END ;end of pattern

FOUT::

.WORD (up arrow)XC03C ;save R2-R5, enable
;overflows

SUBL2 #8, SP ;make room on stack

MULF3 #(up arrow)F1000.0,@4 (AP),

RO

;normalize for the .3

CVTRFL RO, RO ' ;round digits

CVTLP RO, #8, (SP) ;convert to digits on stack

EDITPC #8, (SP), PATTERN, STRING

451

Some Programming Examples

;edit to output
MovQ #<.LONG 9, STRING +1>, RO

;function value is a
;string descriptor

RET ;return restoring R2-R5
;and the stack

COBOL OUTPUT EDITING
In all of these examples, A is a COMP-3 datum of length A_LEN. The
operation is

MOVEATO B.
The generated code is
EDITPC #A_LEN,@,MICRO, @B

In the patterns, the EO$ADJUST_INPUT can be omitted if A is the
same size as B, and the EO$REPLACE_SIGN (and its EOSLOAD_FILL)
can be omitted if A cannot contain a —0.

PICTURE $$,$$9.99CR

MICRO: EO$ADJUST_INPUT
EO$LOAD_SIGN
EO$FLOAT
EO$INSERT
EOS$FLOAT
EO$END_FLOAT
EO$MOVE
EOS$INSERT
EO$MOVE 2
EO$LOAD_PLUS ’,
EO$LOAD_MINUS 'C
EO$STORE_SIGN
EO$LOAD_MINUS 'R
EO$STORE_SIGN
EO$REPLACE_SIGN 2
EO$REPLACE_SIGN 1
EO$END

PICTURE +$99,999.99

N —t*m

-

MICRO: EO$ADJUST_INPUT
EO$LOAD_PLUS
EO$STORE_SIGN

452

PICTURE

MICRO:

PICTURE

MICRO:

PICTURE

MICRO:

Some Programming Examples

EO$SET_SIGNIF
EO$INSERT
EO$MOVE
EO$INSERT
EO$MOVE
EO$INSERT
EO$MOVE
EO$LOAD_FILL
EO$REPLACE_SIGN
EO$END

22,222.27

EO$ADJUST_INPUT
EO$MOVE
EO$INSERT
EO$MOVE
EO$SET_SIGNIF
EO$INSERT
EO$MOVE
EO$BLANK_ZERO
EO$END

99,999.99 BLANK WHEN

ZERO

EO$ADJUST_INPUT
EO$SET_SIGNIF
EO$MOVE
EO$INSERT
EO$MOVE
EOS$INSERT
EO$MOVE
EO$BLANK_ZERO
EO$END

EO$ADJUST_INPUT
EO$FLOAT
EO$END_FLOAT
EO$MOVE
EOS$INSERT
EO$MOVE
EO$REPLACE_SIGN
EO$END

453

T W

[(oJ\V]

-

PICTURE

MICRO:

PICTURE

MICRO:

PICTURE

MICRO:

Some Programming Examples

+ 4+ + +9.99

EOS$ADJUST_INPUT
EO$LOAD_PLUS
EO$FLOAT
EO$END_FLOAT
EO$MOVE
EO$INSERT
EO$MOVE
EO$LOAD_FILL
EO$REPLACE_SIGN
EOS$END

dhk hkk Kk
y .

EO$ADJUST_INPUT
EO$LOAD_FILL
EO$MOVE
EO$INSERT
EO$MOVE
EO$SET_SIGNIF
EO$INSERT
EO$MOVE
EO$BLANK_ZERO
EO$END

BBBZZBZZZ.ZZB

EO$ADJUST_INPUT
EOS$FILL
EO$MOVE
EOS$FILL
EO$MOVE
EO$SET_SIGNIF
EO$INSERT
EO$MOVE
EO$BLANK_ZERO
EOS$FILL

EOS$END

FORTRAN STATEMENT EVALUATION

FORTRAN
Assembly

Code:

MOVL, R1

J = A*K + B(1)
;Move 1to R1

454

W =N W~

- W N -

Some Programming Examples

CVTLFK, RO ;Convert integer K to floating point

MULF2 A, RO ;Multiply A*K and store in RO

ADDF2B ;Add B indexed by R1 to RO

[R1], RO

CVTFLRO, J ;Convert result in RO to integer and
storein J

This program evaluates the FORTRAN
statement listed above. | is a subscript
which moved to register R1. The next step
of the program converts the integer K to a
floating point number. Next A is multiplied
by K'and the result is stored in register RO.
The value |, which is stored in register R1,
indexes B and the calculated result is add-
ed to RO which currently contains A*K. The
last step of the program converts the float-
ing point result back to integer format, and
stores the integer in location J.

VARIABLE LENGTH FIELD
PL1 Assembly

Code: DECLARE A (1:10) BIT ;Vector A, elements 1-10,
(5) ;5 bit field
A(l) = A(l) + 1 ;Increment Ith element of

;A and storein a

Machine Code:

INDEX |, #1, #10, #5 ;Calculate index

#-5, RO

EXTV RO, #5, A, R1 ;Extract 5 bits and store
;in R1

INCL R1 ;Increment R1

INSV R1, RO, #5, A ;Store 5 bits into A
;offset by RO

This example shows the use of the variable length field instructions
using the PL1 Programming Language. Its purpose is to add 1 to a
particular field within a vector of fields. In the assembler code, the

455

Some Programming Examples

DECLARE statement informs the compiler that A is a vector, its ele-
ments are numbered 1 through 10, and each element is a field five bits
wide. The A(l) statement increments the Ith element of A and stores
the result back in A.

In the machine code, the INDEX statement consists of a lower limit of
1, an upper limit of 10, field size of 5, an offset of —5, and a temporary
(RO) to store the result of the index calculation. The offset of =5 is
required since the subscript starts at 1 but all indexing starts at 0.

The INDEX statement in this example checks I in the range from 1
through 10. If | is in this range it is multiplied by the field size of 5, the
offset of —5 is added, and the result is stored in RO. Thus, RO will
contain the position offset of the field A(l) from the start of A. If lis
outside the range 1 through 10, a subscript range trap occurs and
typically results in an error message.

LOOPS

FORTRAN:

INTEGER *2 L ;Use L as aword for a

DO1L=3,10,2 ;loop counter—L is
;an integer of 2 bytes
;:and loop is incremented
;by 2 for each pass
;through loop

1 CONTINUE

Assembly

Code: MOVW #3, L

START: ACBW #10, #2, L, START

FORTRAN:

INTEGER LL ;Use LL as aword for a

DO1LL=1,10 ;loop counter. Loop is
;incremented by one for
;each pass through loop.

1 CONTINUE

Assembly

Code: MOVL #1,LL

START: AOBLEQ #10, LL, START

456

APPENDIX E

OPERAND SPECIFIER
NOTATION

OPERAND SPECIFIERS
Operand specifiers are described in the following way:

<name><accesstype><data type>
where:

Name is a suggestive name for the operand in the context of the
instruction. The name is often abbreviated.

Access type is a letter denoting the operand specifier access type:

a Calculate the effective address of the specified
operand. Address is returned in a longword which
is the actual instruction operand. Context of ad-
dress calculation is given by <data type>.

b No operand reference. Operand specifier is a
branch displacement. Size of branch displace-
ment is given by <data type>.

m Operand is read, potentially modified and written.
Note that this is NOT an indivisible memory oper-
ation. Also note that if the operand is not actually
modified, it may not be written back. However,
modify type operands are always checked for
both read and write accessibility.

r Operand is read only.

v Calculate the effective address of the specified
operand. If the effective address is in memory, the
address is returned in a longword which is the
actual instruction operand. Context of address
calculation is given by <data type>.

If the effective address is Rn, then the operand
actually appears in R[n], or in R[n+1]’'R[n].

w Operand is written only.

457

Operand Specifier Notation

Data type is a letter denoting the data type of the operand:
byte

D_floating

F_floating

G_floating

H_floating

Longword

octaword

quadword

word

first data type specified by instruction
second data type specified by instruction

‘<><2.QO_3'LO"°‘Q.U'

OPERATION DESCRIPTION NOTATION

The operation of each instruction is given as a sequence of control and
assigment statements in an ALGOL-like syntax. No attempt is made to
define the syntax formally; it is assumed to be familiar to the reader.

+ addition

- subtraction, unary minus

* multiplication

/ division (quotient only)

> exponentiation

! concatenation

-« is replaced by

= is defined as

Rn or R[n] contents of register Rn

PC, SP,FP, or the contents of registér R15, R14, R13, or R12,

AP respectively

PSW the contents of the Processor Status Word

-PSL the contents of the Processor Status Longword

(x) contents of memory location whose address is x

(x)+ contents of memory location whose address is X;
x incremented by the size of operand referenced
atx

458

=(x)

<x:iy>

<x1,x2,...,.xn>

X...y

t
AND

OR

XOR
NOT
LSS
LSSU
LEQ
LEQU
EQL
EQLU
NEQ
NEQU
GEQ
GEQU
GTR
GTRU
SEXT (x)
ZEXT (x)
REM (x,y)

MINU (x, y)
MAXU (x, y)

Operand Specifier Notation

x decremented by size of operand to be refer-
enced at x; contents of memory location whose
address is x

a modifier which delimits an extent from bit posi-
tion x to bit position y inclusive

a modifier which enumerates bits x1,x2,...,xn
x through y inclusive

braces used to indicate precedence

logical AND

logical OR

logical XOR

logical (1’s) complement

less than signed

less than unsigned

less than or equal signed

less than or equal unsigned

equal signed

equal unsigned

not equal signed

not equal unsigned

greater than or equal signed

greater than or equal unsigned

greater than signed

greater than unsigned

X is signed-extended to size of operand needed
X is zero-extended to size of operand needed

remainder of x divided by y, such that x/y and
REM (x,y) have the same sign

minimum unsigned of xand y

maximum unsigned of xand y

459

Operand Specifier Notation

The following conventions are used:

e Other than that caused by () +, or —(), and the advancement of
PC, only operands or portions of operands appearing on the left
side of assignment statements are affected.

e No operator precedence is assumed other than that replacement
(«) has the lowest precedence. Precedence is indicated explicitly
by{ }

e All arithmetic, logical, and relational operators are defined in the
context of their operand. For example, + applied to floating oper-
ands means a floating add while + applied to byte operands is an
integer byte add. Similarly, LSS is a floating comparison when ap-
plied to floating operands while LSS is an integer byte comparison
when applied to byte operands.

e Instruction operands are evaluated according to the operand
specifier conventions. The order in which operands appear in the
instruction description has no effect on the order of evaluation.

e Condition codes are, in general, affected on the value of actual
stored results, not on “true” results (which might be generated in-
ternally to greater precision). Thus, for example, two positive integ-
ers can be added together and the sum stored, because of overflow,
as a negative value. The condition codes will indicate a negative
value even though the “true” result is clearly positive.

460

APPENDIX F
ASSEMBLER NOTATION

INTRODUCTION

The VAX assembler provides, as a subset, a notation which is very
similar to the PDP-11 assembler notation. The principal differences
are due to the fact that the VAX architecture has new addressing
modes and has several length variations of modes for which the PDP-
11 has only a single length. For example, the PDP-11 has displace-
ment addressing with a single displacement size of 16 bits. VAX has
displacement addressing in various forms with displacements of 8, 16,
and 32 bits.

In general, the programmer need not be aware of the length variations
in VAX addressing modes. He or she simply writes the addressing
mode in a format identical to the analogous PDP-11-addressing mode,
and the assembler will choose the shortest form of addressing consis-
tent with the state of symbol definition at assembly time. Occasionally,
a programmer may wish to force a given length addressing mode; the
VAX assembler includes a notation for accomplishing this. (Of course,
if the programmer forces a length which cannot be accomodated at
assembly or link time, the assembler or linker will generate an error
indication.)

NOTATION FOR GENERAL MODE ADDRESSING

Register Mode

The general notation is Rn. Since results are unpredictable if R is PC
for operands taking a single register; if Rn is SP or PC for operands
taking a pair ‘of registers; or if Rn is AP, FP, SP, or PC for operands
taking four registers, the assembler generates an error indication.

Register Deferred Mode
The general notation is (Rn). Since results are unpredictable if Rn is
PC, the assembler generates an error indication.

Autoincrement Mode
The general notation is (Rn)+.

Autoincrement Deferred Mode
The general notation is @(Rn)+.

Autodecrement Mode
The general notation is —(Rn). Since results are undefined if R is PC
the assembler generates an error indication.

461

Assembler Notation

Displacement Mode

The general notation is D(Rn). To force a byte, word, or longword
displacement, the notation is B{D(Rn), W{D(Rn), L4D(Rn), respectively.
If a general address G is used, the assembler assembles this as D(PC)
where D = G —{updated value of PC}. This latter form is termed PC-
relative addressing. If a form is forced which is shorter than the actual-
ly needed displacement, the assembler or linker generates an error
indication.

Displacement Deferred Mode

The general notation is @D(Rn). To force a byte, word, or longword
displacement, the notation is @B{D(Rn), @W{D(Rn), @L{D(Rn) re-
spectively. If a general address @G is used, the assembler assembles
this as @D(PC) where D = G — {updated value of PC}. This latter form
is termed PC-relative deferred addressing. If a form is forced which is
shorter than the actually needed displacement, the assembler or
linker generates an error indication.

Literal Mode

The general notation is #cons. Depending on the value of the constant,
this results in either immediate or literal mode. To force literal mode,
the notation is Sf#cons. To force immediate mode, the notation is If#
cons. If either literal or immediate mode is used”on a modify or write
operand, the assembler generates an error indication.

Absolute Addressing Mode
To force a reference to an absolute address the notation is @#loca-
tion. This is assembled as autoincrement deferred using PC.

General Addressing

When a reference to a symbol will be either absolute or PCrelative, but
the choice is to be determined by the linker, the notation is Gflocation.
This is assembled as a five-byte operand. The linker chooses either
@#location or L1D(PC) depending on whether the location is absolute
or PC-relative. This is used both for general external references and
for general references between program sections (PSECTSs).

Index Mode

The general notation is <base operand mode>[Rx] where <base
operand mode> is the notation for any of the addressing modes regis-
ter deferred, autoincrement (immediate), autoincrement deferred (ab-
solute), autodecrement, displacement (PC-relative), displacement de-
ferred (PC-relative deferred), or general addressing. Since the result
is unpredictable if a register in the base operand mode is the same as
the index register (except for PC), the assembler generates an error.

462

Assembler Notation

GENERAL MODE ADDRESSING SUMMARY
Symbolic

1.
2.

o~ o

© © N o

11.
12.
13.

14.
15.
16.
17.
18.
19.
20.
21.
22.

23.
24.

R

BAD(R)
WID(R)
LAD(R)

G

BIG
WAG
L1G
GG

#cons
St¥cons
M#cons
(R)[Rx]
(R)+[Rx]
#cons[Rx]
If#tcons[Rx]
—(R)[Rx]
D(R)[Rx]

B1D(R)[Rx]
WAD(R)[Rx]

Assembled Mode
register

register deferred
autoincrement
autodecrement

byte, word, or longword displacement;
register deferred; default is word if D is not
known

byte displacement
word displacement
longword displacement

byte, word, or longword displacement off
PC default is longword if G is not known

byte displacement off PC
word displacement off PC
longword displacement off PC

general addressing
(absolute or PC-relative)

autoincrement of PC (immediate) or literal
short literal

immediate

register deferred indexed

autoincrement indexed

autoincrement of PC (immediate) indexed
autoincrement of PC (immediate)indexed
autodecrement indexed

byte, word, or longword displacement in-
dexed;
register deferred indexed

byte displacement indexed

word displacement indexed

463

Symbolic

25.
26.

27.
28.
29.
30.
31.

32.
33.

34.

35.
36.
37.
38.

39.
40.
41.

42.

43.
44.
45.

46.
47.
48.

LAD(R)[Rx]
G[Rx]

BAG[Rx]
WAG[Rx]
LAG[RxX]
Gtlocation [Rx]
@(R)[Rx]

@(R)+[Rx]
@#location[Rx]

@D(R)[Rx]

@B1D(R)[Rx]
@W1D(R)[Rx]
@L1D(R)[Rx]

@G[Rx]

@B1G[RX]
@WIG[Rx]
@L1G[Rx]

@(R)

@(R)+
@#tlocation
@D(R)

@BtD(R)
@W1D(R)
@L1D(R)

Assembler Notation

Assembled Mode

longword displacement indexed

byte, word, or longword displacement off
PC indexed

byte displacement off PC indexed

‘word displacement off PC indexed

longword displacement off PC indexed
general (absolute or PC-relative) indexed

byte displacement deferred indexed with 0
displacement

autoincrement deferred indexed

autoincrement of PC (immediate) deferred
indexed

byte, word, or longword displacement de-
ferred indexed

byte displacement deferred indexed
word displacement deferred indexed
longword displacement deferred indexed

byte, word, or longword displacement off
PC deferred indexed

byte displacement off PC deferred indexed
word displacement off PC deferred indexed

longword displacement off PC deferred in-
dexed

byte displacement deferred with 0 displace-
ment

autoincrement deferred
autoincrement of PC (immediate)

byte, word, longword displacement de- :
ferred \

byte displacement deferred
word displacement deferred

longword displacement deferred

464

Assembler Notation

Symbolic Assembled Mode

49. @G byte, word, or longword displacement off
PC deferred

50. @B1G byte displacement off PC deferred

51. @W}G word displacement off PC deferred

52. @LiG longword displacement off PC deferred

BRANCH DISPLACEMENT ADDRESSING

The general notation is locn, where locn is the branch address. The
assembler fills in the displacement displ where displ = locn—{updated
value of PC}.

GENERIC OPCODE SELECTION

As a convenience to the programmer, the assembler automatically
selects from among similar instructions. This allows the programmer
to write code without worrying about these distinctions.

Branch Selection

If the programmer gives BR or BSB as the mnemonic, the assembler
will automatically select either BRB or BRW (BSBB or BSBW) based
on the distance to the label. If the label is not yet defined, the word
branch displacement form will be selected.

Number of Operand Selection

If the programmer omits the final digit from those opcodes which have
two forms (e.g., ADDW instead of ADDW2 or ADDW3), the assembler
will select the correct form based on the number of operands specified
by the user.

465

466

APPENDIX G
OPERAND PROCESSING

The following three steps are performed in order by each instruction:

1.

Each operand specifier is evaluated in order of instruction stream
occurrence as follows:

access type evaluation

read evaluate operand location, read the op-
erand and save the operand

write evaluate operand location and save the
location

modify evaluate operand location, read the op-
erand and save both location and oper-
and

address, branch evaluate the address and save the ad-
dress

field evaluate operand base location and

save the location

Perform the operation indicated by the instruction.
Store the result(s) using the saved address in the order indicated
by the occurrence of operand specifiers in the instruction stream.

NOTE
The string (character and numeric) instructions write any output
strings and store the registers during step 3.

The implications of this processing are:

1.

Autoincrement and autodecrement operations occur as the oper-
and specifiers are processed, and subsequent operand specifiers
use the updated contents of registers modified by those opera-
tions.

NOTE
This implication does not necessarily apply to floating point oper-
ands.

Except for those operations mentioned in step 1, all input oper-
ands are read and all addresses of output operands are
computed before any results of the instruction are stored.

467

Operand Processing

An operand of modify access type is not read, modified, and
written as an indivisible operation. Therefore, modify access type
operands cannot be used for synchronization. For synchroniza-
tion refer to the ADAWI instruction, INSQUE and REMQUE in-
structions, and BBCCI and BBSSI instructions.

If an instruction references two operands of write or modify ac-
cess type at the same or overlapping address, the first will be
overwritten by the second. If an instruction modifies a register
implicitly and also has an output operand, the output store is
performed after the register update.

468

APPENDIX H
ACCURACY

It will now be shown that an overflow bit and two guard bits are ade-
quate to guarantee accuracy of rounded ADD, SUB, MUL, or DIV,
provided, of course, that the algorithms are properly chosen. Note,
first, that ADD and SUB may result in propagation of a carry, and
hence the overflow bit is necessary. Second, if in ADD or SUB there is
a one-bit loss of significance in conjunction with an alignment shift of
two or more bits, the first guard bit is needed for the LSB of the
normalized result, and the second is then the rounding bit. So the
three bits are necessary. A number of constraints must be observed in
selection of the algorithms for the basic operations in order for these
three bits to be sufficient to guarantee an error bound of (2) LSB:

1. ADDorSUB:

e |f the alignment shift does not exceed 2 there are no con-
straints, because no bits can be lost.

e If the alignment shift exceeds 2 (or however many guard bits
are used, say g = 2), no negations may be made after the
aligment shift takes place.

e |If the above constraint is observed, the error bound for a
rounded result is (2) LSB. If, however, a negation follows the
alignment shift, the error bound will be

(“2) * (1 + 2**(—g+2)) LSB
because a “borrow” will be lost on an implicit subtraction, if
nonzero bits were lost in the alignment shift. Note that the
error bound is 1 LSB if the constraint is ignored and there are
only two guard bits (g = 2).

@ The constraint on no negations after the alignment shift may
be replaced by keeping track of nonzero bits lost during the
alignment shift, and then negating by one’s complement if
any “ones” were lost, and by two’s complement if none were
lost. If this is done, the error bound will be (2) LSB.

2. MUL:

e The product of two normalized binary fractions can be as
small as ¥4 and must be less than one. The overflow bit is not
needed for MUL, but the first guard bit will be necessary for
normalization if the product if less than 2, and, in this case,
the second guard bit is the rounding bit.

469

Accuracy Considerations

@ The first constraint on MUL is that the product be generated
from the least to the most significant bit. Low order bits, in
positions to the right of the second guard bit, may be discard-
ed, but ONLY AFTER they have made their contribution to
carries which could propagate into the guard bits or beyond.

® For the same reasons as for ADD or SUB, if low order bits of
the product have been discarded, no negations can be made
after generating the product.

3. DIV:

e For standard algorithms it is necessary that the remainder be
generated exactly at each step; the overflow and two guard
bits are adequate for this purpose. The register receiving the
quotient must have a guard bit for the rounding bit, and the
quotient must be developed to include the rounding bit.

e The Newton-Raphson quadratic convergence algorithms re-
quire a number of guard bits equal to twice the number of bits
desired in the result if the correctness of the rounding bit is to
be guaranteed.

VAX observes all constraints and generates floating point results with
an error bound of (%) LSB for all floating instructions except EMOD
and POLY (see EMOD and POLY descriptions.)

470

B

GLOSSARY

abort An exception that occurs in the middle of an instruction and
potentially leaves the registers and memory in an indeterminate state,
such that the instruction can not necessarily be restarted.

absolute indexed mode An indexed addressing mode in which the
base operand specifier is addressed in absolute mode.

absolute mode Autoincrement deferred mode in which the PC is
used as the register. The PC contains the address of the location
containing the actual operand.

access mode 1. Any of the four processor access modes in which
software executes. Processor access modes are, in order from most to
least privileged and protected: kernel (mode 0), executive (mode 1),
supervisor (mode 2), and user (mode 3). When the processor is in
kernel mode, the executing software has complete control of, and
responsibility for, the system. In any other mode, the processor is
inhibited from executing privileged instructions. The Processor Status
Longword contains the current access mode field. The operating sys-
tem uses access modes to define protection levels for software exe-
cuting in the context of a process. For example, the executive runs in
kernel and executive mode and is most protected. The command
interpreter is less protected and runs in supervisor mode. The debug-
ger runs in user mode and is not more protected than normal users
programs.

access type 1. The way in which the processor accesses instruction
operands. Access types are: read, write, modify, address, and branch.
2. The way in which a procedure accesses its arguments.

access violation An attempt to reference an address that is not
mapped into virtual memory or an attempt to reference an address
that is not accessible by the current access mode.

address A number used by the operating system and user software
to identify a storage location. See also virtual address and physical
address.

address access type The specified operand of an instruction is not
directly accessed by the instruction. The address of the specified op-
erand is the actual instruction operand. The context of the address
calculation is given by the data type of the operand.

addressing mode The way in which an operand is specified; for
example, the way in which the effective address of an instruction
operand is calculated using the general registers. The basic general
register addressing modes are called register, register deferred, au-
toincrement, autoincrement deferred, autodecrement, displacement,
and displacement deferred. In addition, there are six indexed ad-

471

Glossary

dressing modes using two general registers, and literal mode ad-
dressing. The Program Counter (PC) addressing modes are called
immediate (for register deferred mode using the PC), absolute (for
autoincrement deferred mode using the PC), and branch.

address space The set of all possible addresses available to a proc-
ess. Virtual address space refers to the set of all possible virtual
addresses. Physical address space refers to the set of all possible
physical addresses.

alphanumeric character An upper or lower case letter (A to Z, a to
z), adollar sign ($), an underscore (_), or a decimal digit (0 to 9).

American Standard Code for Information Interchange (ASCIl) A
set of 8-bit binary numbers representing the alphabet, punctuation,
numerals, control, and other special symbols used in text representa-
tion and communications protocol.

Argument Pointer General register 12 (R12). By convention, AP
contains the address of the base of the argument list for procedures
initiated using the CALL instructions.

autodecrement index mode An indexed addressing mode in which
the base operand specifier users autodecrement mode addressing.

autodecrement mode In autodecrement mode addressing, the con-
tents of the selected register are decremented, and the result is used
as the address of the actual operand of the instruction. The contents of
the register are decremented according to the data type context of the
register: 1 for byte, 2 for word, 4 for longword and F_floating, 8 for
quadword, G_floating and D_floating, and 16 for octaword and
H_floating.

autoincrement deferred indexed mode An indexed addressing
mode in which the base operand specifier uses autoincrement de-
ferred mode addressing.

autoincrement deferred mode In autoincrement deferred mode
addressing, the specified register contains the address of a longword
which contains the address of the actual operand. The contents of the
register are incremented by 4 (the number of bytes in a longword). If
the PC is used as the register, this mode is called absolute mode.

autoincrement indexed mode An indexed addressing mode in
which the base operand specifier uses autoincrement mode address-
ing.

autoincrement mode In autoincrement mode addressing, the con-
tents of the specified register are used as the address of the operand;
then the contents of the register are incremented by the size of the
operand.

472

Glossary

balance set The set of all process working sets currently resident in
physical memory. The processes whose working sets are in the bal-
ance set have memory requirements that balance with available mem-
ory. The balance set is maintained by the system swapper process.

base operand address The address of the base of a table or array
referenced by index mode addressing.

base operand specifier The register used to calculate the base
operand address of a table or array referenced by index mode ad-
dressing.

base register A general register used to contain the address of the
first entry in a list, table, array, or other data structure.

bit complement (also called one’s complement) The result of ex-
changing Os and 1s in the binary representation of a number. Thus, the
bit complement of the binary number 11011001 (217,,) is 00100110.
Bit complements are used in place of their corresponding binary num-
bers in some arithmetic computations in computers.

bit string See variable length bit field

block 1. The smallest addressable unit of data that the specified
device can transfer in an I/0 operation (512 contiguous bytes for most
disk devices) 2. An arbitrary number of contiguous bytes used to store
logically related status, control, or other processing information.

branch access type An instruction attribute which indicates that the
processor does not reference an operand address, but rather that the
operand is a branch displacement. The size of the branch displace-
ment is givep by the data type of the operand.

branch mode In branch address mode, the instruction operand
specifier is a signed byte or word displacement. The displacement is
added to the contents of the updated PC (which is the address of the
first byte beyond the displacement), and the result is the branch ad-
dress.

byte A byte is eight contiguous bits starting on an addressable byte
boundary. Bits are numbered from the right, 0 through 7, with bit 0 the
low-order bit. When interpreted arithmetically, a byte is a two’s com-
plement integer with significance increasing from bits 0 through 6. Bit
7 is the sign bit. The value of the signed integer is in the range -128 to
127 decimal. When interpreted as an unsigned integer, significance
increases from bits 0 through 7 and the value of the unsigned integer
is in the range 0 to 255 decimal. A byte can be used to store one ASCII
character.

cache memory A small, high-speed memory placed between slower

473

Glossary

main memory and the processor. A cache increases effective memory
transfer rates and processor speed. It contains copies of data recently
used by the processor and fetches several bytes of data from memory
in anticipation that the processor will access the next sequential series
of bytes.

call frame See stack frame.

call instructions The processor instructions CALLG (Call Procedure
with General Argument List) and CALLS (Call Procedure with Stack
Argument List).

call stack The stack, and conventional stack structure, used during
a procedure call. Each access mode of each process context has one
call stack, and the interrupt service context has one call stack.

character A symbol represented by an ASCII code. See also alphan-
umeric character.

character string A contiguous set of bytes. A character string is
identified by two attributes: an address and a length. Its address is the
address of the byte containing the first character of the string. Subse-
quent characters are stored in bytes of increasing addresses. The
length is the number of characters in the string.

character string descriptor A quadword data structure used for
passing character data (strings). The first word of the quadword con-
tains the length of the character string. The second word can contain
type information. The remaining longword contains the address of the
string.

command An instruction, generally an English word, typed by the
user at a terminal or included in a command file, which requests the
software monitoring a terminal or reading a command file to perform
some well-defined activity. For example, typing the COPY command
requests the system to copy the contents of one file into another file.

command procedure A file containing commands and data that the
command interpreter can accept in lieu of the user’s typing the com-
mands individually on a terminal.

compatibility mode A mode of execution that enables the central
processor to execute nonprivileged PDP-11 instructions. The operat-
ing system supports compatibility mode execution by providing an
RSX-11M programming environment for an RSX-11M task image. The
operating system compatibility mode procedures reside in the control
region of the process executing a compatibility mode image. The pro-
cedures intercept calls to the RSX-11M executivé and convert them to
the appropriate operating system functions.

474

Glossary

condition An exception condition detected and declared by
software.

condition codes Four bits in the Processor Status Word (PSW) that
indicate the results of previously executed instructions.

condition handler A procedure that a process wants the system to
execute when an exception condition occurs. The operating system
searches for a condition handler and, if it is found, initiates the handler
immediately. The condition handler may perform some act to change
the situation that caused the exception condition and continue execu-
tion for the process that incurred the exception condition. Condition
handlers execute in the context of the process at the access mode of
the code that incurred the exception condition.

condition value A 32-bit quantity that uniquely identifies an excep-
tion condition.

console The manual control unit integrated into the central proces-
sor. The console includes an LSI-11 microprocessor and a serial line
interface connected to a hardcopy terminal. It enables the operator to
start and stop the system, monitor system operation, and run diagnos-
tics.

console terminal The hardcopy terminal connected to the central
processor console.

context Sometimes also called process state. See hardware
context.

context indexing The ability to index through a data structure auto-
matically because the size of the data type is known and is used to
determine the offset factor.

context switching Interrupting the activity in progress and switching
to another activity. Context switching occurs as one process after
another is scheduled for execution. The operating system saves the
interrupted process’s hardware context in its hardware process con-
trol block (PCB) using the Save Process Context instruction, then
loads another process’s hardware PCB into the hardware context us-
ing the Load Process Context instruction, scheduling that process for
execution.

control region The highest-addressed half of process space (the P1
region). Control region virtual addresses refer to the process-related
information used by the system to control the process, such as: the
kernel, executive, and supervisor stacks, the permanent I/O channels,
exception vectors, and dynamically used system procedures (such as
the command interpreter and RSX-11M programming environment

475

Glossary

compatibility mode procedures). The user stack is also normally found
in the control region, although it can be relocated elsewhere.

control region base register (P1BR) The processor register, or its
equivalent in a hardware process control block, that contains the base
virtual address of a process conrol region page table.

control region length register (P1LR) The processor register, or its
equivalent in a hardware process control block, that contains the num-
ber of nonexistent page table entries for virtual pages in a-process
control region.

counted string A data structure consisting of a byte-sized length
followed by the string.

current access mode The processor access mode of the currently
executing software. The Current Mode field of the Processor Status
Longword (PSL) indicates the access mode of the currently executing
software.

D_floating datum Eight contiguous bytes starting on an addressable
byte boundary, which are interpreted as containing a floating point
number. The bits are labeled from right to left, 0 to 63. A four-word
floating point number is identified by the address of the byte contain
bit 0. Bit 15 contains the sign of the number. Bits 14 through 7 contain
the excess —128 binary exponent. Bits 63 through 16 and 6 through 0
contain a normalized 56-bit fraction with the redundant, most signifi-
cant fraction bit not represented. Within the fraction, bits of decreas-
ing significance go from 6 through 0, 31 through 16, 47 through 32,
then 63 through 48. Exponent values of 1 through 255 in the 8-bit
exponent field represent true binary exponents of —128 to 127. An
exponent value of 0 together with a sign bit of 0 represents a floating
value of 0. An exponent value of 0 with a sign bit of 1 is a reserved
representation; floating point instructions processing this value return
a reserved operand fault. The value of a D_floating datum is in the
approximate range (+ or —) 0.29 X 10738 to 1.7 X 10%. The precision
is approximately one part in 2%, or sixteen decimal digits.

data structure Any table, list, array, queue, or tree whose format
and access conventions are well-defined for reference by one or more
images.

data type In general, the way in which bits are grouped and
interpreted. In reference to the processor instructions, the data type of
an operand identifies the size of the operand and the significance of
the bits in the operand. Operand data types include: byte, word, long-
word, quadword, and octaword integer; F_floating, D_floating,
G_floating, and H_floating; character string; packed decimal string;

476

Glossary

and variable length bit field.

descriptor A data structure used in calling sequences for passing
argument types, addresses and other optional information. See char-
acter string descriptor.

device interrupt An interrupt received on interrupt priority levels 16
through 23. Device interrupts can be requested only by devices, con-
trollers, and memories.

device name The field in a file specification that identifies the device
unit on which a file is stored. Device names also include the mnemon-
ics that identify an 1/0 peripheral device in a data transfer request. A
device name consists of a mnemonic followed by a controller identifi-
cation letter (if applicable), followed by a unit number (if applicable). A
colon (:) separates it from following fields.

device register A location in device controller logic used to request
device functions (such as I/0 transfers) and/or to report status.

device unit One drive, and its controlling logic, of a mass storage
device system. A mass storage system can have several drives
connected to it.

diagnostic A program that tests logic and reports any faults it de-
tects.

direct mapping cache A cache organization.in which only one ad-
dress comparison is needed to locate any data in the cache because
any block of main memory data can be placed in only one possible
position in the cache. Contrast with fully associative cache.

displacement deferred indexed mode An indexed addressing
mode in which the base operand specifier uses displacement deferred
mode addressing.

displacement deferred mode In displacement deferred mode ad-
dressing, the specifier extension is a byte, word, or longword displace-
ment. The displacement is sign-extended to 32 bits and added to a
base address obtained from the specified registers. The result is the
address of a longword which contains the address of the actual oper-
and. If the Program Counter is used as the register, the updated con-
tents of the PC are used as the base address. The base address is the
address of the first byte beyond the specifier extension.

displacement indexed mode Anindexed addressing modein
which the base operand specifier uses displacement mode address-
ing.

displacement mode In displacement mode addressing, the specifi-
er extension is a byte, word, or longword displacement. The displace-

477

Glossary

ment is sign extended to 32 bits and added to a base address obtained
from the specified register. The result is the address of the actual
operand. If the PC is used as the register, the updated contents of the
PC are used as the base address. The base address is the address of
the first byte beyond the specifier extension.

double floating datum See D_floating datum.

drive The electromechanical unit of a mass storage device system
on which a recording medium (disk cartridge, disk pack, or magnetic
tape reel) is mounted.

effective address The address obtained after indirect or indexing
modifications are calculated.

entry mask A word whose bits represent the registers to be saved or
restored on a subroutine or procedure call using the Call and Return
instructions.

entry point A location that can be specified as the object of a call. It
contains an entry mask and exception enables known as the entry
point mask.

escape sequence An escape is a transition from the normal mode
of operation to a mode outside the normal mode. The escape charac-
ter is the code that indicates the transition from normal to escape
mode. An escape sequence refers to the set of character
combinations starting with an escape character that the terminal
transmits without interpretation to the software set up to handle se-
quences.

event A change in process status or an indication of the occurrence
of some activity that concerns an individual process or cooperating
processes. An incident reported to the scheduler that affects a proc-
ess’s ability to execute. Events can be synchronous with the process’s
execution (e.g., a wait request), or they can be asynchronous (e.g., 1/0
completion). Some other events include: swapping, wake request or
page fault.

event flag A bitin an event flag cluster that can be set or cleared to
indicate the occurrence of the event associated with that flag. Event
flags are used to synchronize activities in a process or among many
processes.

exception An event detected by the hardware (other than an inter-
rupt or Jump, Branch, Case, or Call instruction) that changes the nor-
mal flow of instruction or set of instructions (whereas an interrupt is
caused by an activity in the system independent of the current
instruction). There are three types of hardware exceptions; traps,

478

Glossary

faults, and aborts. Examples are: attempts to execute a privileged or
reserved instruction, trace traps, compatibility mode faults, break-
point instruction execution, and arithmetic traps such as overflow,
underflow, and divide by zero.

exception condition A hardware- or software-detected event other
than an interrupt or Jump, Branch, Case, or Call instruction that
changes the normal flow of instruction execution.

exception enables See trap enables.
exception vector See vector.

executive mode The second most privileged processor access
mode (mode 1). The Record Management Services (RMS) and many
of the operating system’s programmed service procedures execute in
executive mode.

F_floating datum Four contiguous bytes starting on an addressable
byte boundary. The bits are labeled from right to left 0 to 31. A two-
word floating point number is identified by the address of the byte
containing bit 0. Bit 15 contains the sign of the number. Bits 14 through
7 contain the excess-128 binary exponent. Bits 31 through 16 and 6
through 0 contain a normalized 24-bit fraction with the redundant,
most significant fraction bit not represented. Within the fraction, bits of
decreasing significance go from bit 6 through 0, then 31 through 16.
Exponent values of 1 through 255 in the 8-bit exponent field represent
true binary exponents of —128 to 127. An exponent value of 0 together
with a sign bit of O represents a floating value of 0. An exponent value
of 0 with a sign bit of 1 is a reserved representation; floating point
instructions processing this value return a reserved operand fault. The
valggsof a floating datum is in the approximate range (+ or —) 0.29 X
10 to 1.7 X 10%. The precision is approximately one partin 223, or
seven decimal digits.

fault A hardware exception condition that occurs in the middle of an
instruction and that leaves the registers and memory in a consistent
state, such that elimination of the fault and restarting the instruction
will give correct results.

field 1. See variable length bit field. 2. A set of contiguous bytes in a
logical record.

floating (point) datum See F_floating datum.

frame pointer General register 13(R13). By convention, FP contains
the base address of the most recent call frame on the stack.

fully associative cache A cache organization in which any block of
data from main memory can be placed anywhere in the cache. Ad-

479

Glossary

dress comparision must take place against each block in the cache to
find any particular block. Constrast with direct mapping cache.

G_floating datum A G_floating datum is eight contiguous bytes
starting on an arbitary byte boundary. The bits are labelled from the
right 0 through 63. A G_floating datum is specified by its address A,
the address of the byte containing bit 0. The form of a G_floating
datum is sign magnitude with bit 15 the sign bit, bits 14:4 an excess-
1024 binary exponent, and bit 3:0 and 63:16 a normalized 53-bit frac-
tion with the redundant, most significant fraction bit not represented.
Within the fraction, bits of increasing significance go 48 through 63, 32
through 47, 16 through 31, and 0 through 3. The 11-bit exponent field
encodes the values 0 through 2047. An exponent value of 0, together
with a sign bit of 0, is taken to indicate that the G_floating datum has a
value of 0. Exponent values of 1 through 2047 indicate true binary
exponents of —1023 through +1023. An exponent value of 0, together
with a sign bit of 1, is taken as reserved. Floating point instructions
processing a reserved operand take a reserved operand fault. The
value of a G_floating datum is in the approximate range 0.56x1073®
through 0.9X107%%, The precision of a G_floating datum is approxi-
mately one part in 252, i.e., typically 15 decimal digits.

general register Any of the sixteen 32-bit registers used as the pri-
mary operands of the native mode instructions. The general registers
include 12 general purpose registers which can be used as accumula-
tors, as counters, and as pointers to locations in main memory, and
the Frame Pointer (FP), Argument Pointer (AP), Stack Pointer (SP),
and Program Counter (PC) registers.

giga Metric term used to represent the number 1 followed by nine Os
(10°, though in the computer industry it is often used to mean 2%,
which is about 7.4% larger.)

H_floating datum An H_floating datum is 16 contiguous bytes
starting on an arbitrary byte boundary. The bits are labelled from the
right 0 through 127. An H_floating datum is specified by its address A,
the address of the byte containing bit 0. The form of an H_floating
datum is sign magnitude with bit 15 the sign bit, bits 14:0 an excess-
16,384 binary exponent, and bits 127:16 a normalized 113-bit fraction
with the redundant, most significant fraction bit not represented. With-
in the fraction, bits of increasing significance go 112 through 127, 96
through 111, 80 through 95, 64 through 79, 48 through 63, 32 through
47, and 16 through 31. The 15-bit exponent field encodes the values 0
through 32,767. An exponent value of 0 together with a sign bitof 0, is
taken to indicate that the H_floating datum has a value of 0. Exponent
values of 1 through 32,767 indicates true binary exponents of —16383

480

Glossary

through + 16383. An exponent value of 0, together with a sign bit of 1,
is taken as reserved. Floating point instructions processing a reserved
operand take a reserved operand fault. The value of an H_floating
datum is in the approximate range 0.84X 107432 through 0.59 1074932,
The precision of an H_floating datum is approximately one part in 2112,
i.e., typically 33 decimal digits.

hardware context The values contained in the following registers
while a process is executing: the Program Counter (PC); the Processor
Status Longword (PSL); the 14 general registers (RO through R13); the
four processor registers (POBR, POLR, P1BR and P1LR) that describe
the process virtual address space; the Stack Pointer (SP) for the cur-
rent access mode in which the processor is executing; plus the con-
tents to be loaded in the stack pointer for every access mode other
than the current access mode. While a process is executing, its hard-
ware context is continually being updated by the processor. While a
process is not executing its hardware context is stored in its hardware
PCB.

hardware process conrol block (PCB) A data structure known to
the processor that contains the hardware context when a process is
not executing. A process’s hardware PCB resides in its process
header.

image An image consists of procedures and data that have been
bound together by the linker. There are three types of images: execu-
table, shareable, and system.

immediate mode Autoincrement mode addressing in which the PC
is used as the register.

indexed addressing mode In indexed mode addressing, two regis-
ters are used to determine the actual instruction operand: an index
register and a base operand specifier. The contents of the index regis-
ter are used as an index (offset) into a table or array. The base oper-
and specifier supplies the base address of the array (called the base
operand address or BOA). The address of the actual operand is
calculated by multiplying the contents of the index register by the size
(in bytes) of the actual operand and adding the result to the base
operand address. The addressing modes resulting from index mode
addressing are formed by adding the suffix “indexed” to the address-
ing mode of the base operand specifier; register deferred indexed,
autoincrement indexed, autoincrement deferred indexed (or absolute
indexed), autodecrement indexed, displacement indexed, and dis-
placement deferred indexed.

index register A register used to contain an address offset.

481

Glossary

input stream The source of commands and data. One of either the
user’s terminal, the batch stream, or an indirect command file.

instruction buffer An 8-byte buffer in the processor used to contain
bytes of the instruction currently being decoded and to prefetch in-
structions in the instruction stream. The conrol logic continously fetch-
es data from memory to keep the 8-byte buffer full.

interleaving Assigning consecutive physical memory addresses
alternately between two memory controllers.

interrecord gap A blank space deliberately placed between data
records on the recording surface of a magnetic tape.

interrupt An event other than an exception or Branch, Jump, Case,
or Call instruction that changes the normal flow of instruction execu-
tion. Interrupts are generally external to the process executing when
the interrupt occurs. See also device interrupt, software interrupt, and
urgent interrupt.

interrupt priority level (IPL) The interrupt level at which the proces-
sor executes when an interrupt is generated. There are 31 possible
interrupt priority levels (IPL). IPL 1 is lowest, 31 highest. The levels
arbitrate contention for processor service. For example, a device can-
not interrupt the processor if it is currently executing at an IPL greater
than the one of the device’s interrupt service routine.

interrupt service routine The routine executed when a device inter-
rupt occurs.

interrupt stack The systemwide stack used when executingin
‘interrupt service context. At any time, the processor is either in a
process context executing in user, supervisor, executive, or kernel
'mode, or in systemwide interrupt service context operating with kernel
privileges, as indicated by the interrupt stack and current mode bits in
the PSL. The interrupt stack is not context-switched.

interrupt stack pointer The stack pointer for the interrupt stack.
Unlike the stack pointers for process context stacks, which are stored
in the hardware PCB, the interrupt stack pointer is stored in an internal
register.

interrupt vector See vector.

kernel mode The most privileged processor access mode (mode 0).
The operating system’s most privileged services, such as 1/0 drivers
and the pager, run in kernel mode.

literal mode In literal mode addressing, the instruction operand is a
constant whose value is expressed in a 6-bit field of the instruction. If
the operand data type is byte, word, longword, quadword, or octa-

482

Glossary

word, the operand is zero-extended and can express values in the
range 0 through 63 (decimal). If the operand data type is F_floating,
D_floating, G_floating, or H_floating, the 6-bit field is composed of two
3-Dbit fields, one for the exponent and the other for the fraction.

longword Four contiguous bytes starting on an addressable byte
boundary. Bits are numbered from right to left 0 through 31. The
address of the longword is the address of the byte containing bit 0.
When interpreted arithmetically, a longword is a two’s complement
integer with significance increasing from bit 0 to bit 30. When in-
terpreted as a signed integer, bit 31 is the sign bit. The value of the
signed integer is in the range —2,147,483,648 to 2,147,483,647. When
interpreted as an unsigned integer, the value is in the range 0 through
4,294,967,295.

main memory See physical memory.

mass storage device A device capable of reading and writing data
on mass storage media such as a diskpack or a magnetic tape reel.

memory management The system functions that include the hard-
ware’s page mapping and protection and the operating system’s im-
age activator and pager.

Memory Mapping Enable (MME) A bit in a processor register that
governs address translation.

modify access type The specified operand of an instruction or
procedure is read, and is potentially modified and written, during that
instruction’s or procedure’s execution.

native mode 1) The processor’s primary execution mode. In it, pro-
grammed instructions are interpreted as byte-aligned, variable length
instructions that operate on byte, word, longword, quadword, and oc-
taword integer, F_floating, D_floating, G_floating, and H_floating, char-
acter string, packed decimal, and variable length bit field data. 2) The
instruction execution mode other than compatibility mode.

nibble The low-order or high-order four bits of an 8-bit byte.

normalized fraction A numeric representation patterned on scientif-
ic notation, but in which the fraction part of the representation is
greater than or equal to 0.5 and less than 1. As a binary form, such a
fraction will always begin with a 1 in the leftmost (most significant) bit,
unless the number is zero. Because of this, the lead 1 is not stored,
and a bit-per-number saving is effected in storage.

numeric string A contiguous sequence of bytes representing up to
31 decimal digits (one per byte) and possily a sign. The numeric string
is specified by its lowest addressed location, its length, and its sign

483

Glossary

representation.

octaword An octaword is 16 contiguous bytes starting on an arbitra-
ry byte boundary. The bits are numbered from the right 0 through 127.
An octaword is specified by its address A, the address of the byte
containing bit 0. When interpreted arithmetically, an octaword is a
two’s complement integer with bits of increasing significance going 0
through 126 and bit 127 the sign bit. The value of the integer is in the
range —2'?7 to 2?7 —1, The octaword data type is not yet fully support-
ed by VAX instructions.

offset A fixed displacement from the beginning of a data structure.
System offsets for items within a data structure normally have an asso-
ciated symbolic name used instead of the numeric displacement.
Where symbols are defined, programmers always reference the sym-
bolic names for items in a data structure instead of using the numeric
displacement.

one’s complement See bit complement.

opcode The pattern of bits within an instruction that specifies the
operation to be performed.

operand specifier The pattern of bits in an instruction that indicate
the addressing mode, a register and/or displacement, which, taken
together, identify an instruction operand.

operand specifier type The access type and data type of an instruc-
tion’s operand(s). For example, the Test instructions are of read ac-
cess type, since they only read the value of the operand. The operand
can be of byte, word, or longword data type, depending on whether
the opcode is for the TSTB (test byte), TSTW (test word), or TSTL (test
longword) instruction.

packed decimal A method of representing a decimal number by
storing a pair of decimal digits in one byte, taking advantage of the fact
that only four bits are required to represent the numbers 0 through 9.

packed decimal string A contiguous sequence of up to 16 bytes
interpreted as a string of nibbles. Each nibble represents a digit, ex-
cept the low-order nibble of the highest addressed byte, which
represents the sign. The packed decimal string is specified by its
lowest addressed location and the number of digits.

page 1. A set of 512 contiguous byte locations used as the unit of
memory mapping and protection. 2. The data between the beginning
of file and a page marker, between two markers, or between a marker
and the end of afile.

page fault An exception generated by a reference to a page which is

484

Glossary

not mapped into a working set.
page fault cluster size The number of pages read in on a page fault.

page frame number (PFN) The address of the first byte of a page in
physical memory. The high-order 21 bits of the physical address of the
base of a page.

page table entry (PTE) The data structure that identifies the location
and status of a page of virtual address space. When a virtual page is in
memory, the PTE contains the page. When it is notin memory, the PTE
contains the information needed to locate the page on secondary sto-
rage (disk).

paging The action of bringing pages of an executing process into
physical memory when referenced. When a process executes, all of its
pages are said to reside in virtual memory. Only the actively used
pages, however, need to reside in physical memory. The remaining
pages can reside on disk until they are needed in physical memory. In
this system, a process is paged only when it references more pages
than it is allowed to have in its working set. When the process refers to
a page not in its working set, a page fault occurs. This causes the
operating system’s pager to read in the referenced page if it is on disk
(and, optionally, other related pages depending on a cluster factor),
replacing the least recently faulted pages as needed. A process pages
only against itself, that is, one process cannot exceed the working set
limit assigned to it by bringing in more than its quota of pages. This
protects other processes in the system.

physical address The address used by hardware to identify a loca-
tion in physical memory or on directly-addressable secondary storage
devices such as a disk. A physical memory address consists of a page
frame number and the number of a byte within the page. A physical
disk block address consists of a cylinder or track and sector number.

physical address space The set of all possible 30-bit physical ad-
dresses that can be used to refer to locations in memory (memory
space) or device registers (I/0 space).

physical memory The memory modules connected to the synchro-
nous backplane interconnect that are used to store: 1) instructions
that the processor can directly fetch and execute, and 2) any other
data that a processor is instructed to manipulate. Also called main
memory.

position dependent code Code that can execute properly only in
the locations in virtual address space that are assigned to it by the
linker.

485

Glossary

position independent code Code that can execute properly without
modification wherever it is located in virtual address space, even if its
location is changed after it has been linked. Generally, this code uses
addressing modes that form an effective address relative to the PC.

privileged instructions In general, any instruction intended for use
by the operating system or privileged system programs. In particular,
instructions that the processor will not execute unless the current
access mode is kernel mode (e.g., HALT, SVPCTX, LDPCTX, MTPR,
and MFPR).

procedure 1. A routine entered via a Call instruction. 2. See com-
mand procedure.

process The basic entity scheduled by the system software, that
provides the context in which an image executes. A process consists
of an address space and both hardware and software contexts.

process address space See process space.
process context The hardware and software contexts of a process.

process control block (PCB) A data structure used to contain the
process context. The hardware PCB contains the hardware context.
The software PCB contains the software context, which includes a
pointer to the hardware PCB.

process page tables The page tables used to describe process
virtual memory.

process space The lowest-addressed half of virtual address space,
where process instructions and data reside. Process space is divided
into a program region and a control region.

processor register A part of the processor used by the operating
system software to control the execution states of the computer sys-
tem. They include the system base and length registers, the program
and control region base and length registers, the system control block
base register, the software interrupt request register, and many more.

Processor Status Longword (PSL) A system programmed proces-
sor register consisting of a word of privileged processor status and the
PSW. The privileged processor status information includes: the cur-
rent IPL (interrupt priority level), the previous access mode, the
current access mode, the interrupt stack bit, the trace trap pending
bit, and the compatibility mode bit.

Processor Status Word (PSW) The low-order word of the Processor
Status Longword. Processor status information includes: the condition
codes (carry, overflow, zero, negative), the arithmetic trap enable bits
(integer overflow, decimal overflow, floating underflow), and the trace

486

Glossary

enable bit.

Program Counter (PC) General register 15(R15). At the beginning of
an instruction’s execution, the PC normally contains the address of a
location in memory from which the processor will fetch the next in-
struction it will execute.

program locality A characteristic of a program that indicates how
close or far apart the references to locations in virtual memory are
over time. A program with a high degree of locality does not refer to
many widely scattered virtual addresses in a short period of time.

program region The lowest-addressed half of process address
space (PO space). The program region contains the image currently
being executed by the process and other user code called by the
image.

program region base register (POBR) The processor register, or its
equivalent in a hardware process control block, that contains the base
virtual address of the page table entry for. virtual page number 0 in a
process program region.

program region length register (POLR) The processor register, or
its equivalent in a hardware process control block, that contains the
number of entries in the page table for a process program region.

quadword Eight contiguous bytes (64 bits) starting on an address-
able byte boundary. Bits are numbered from right to left, 0 to 63. A
quadword is identified by the address of the byte containing the low-
order bit (bit 0). When interpreted arithmetically, a quadword isatwo’s
complement integer with significance increasing from bit 0 to bit 62.
Bit 63 is used as the sign bit. The valtie of the integer is in the range —
26310 2631,

queue n. Acircular, doubly-linked list. v. To make an entry in a list or
table, perhaps using the INSQUE instruction.

read access type An instruction or procedure operand attribute in-
dicating that the specified operand is only read during instruction or
procedure execution.

register A storage location in hardware logic other than main mem-
ory. See also general register, processor register, and device register.

register deferred indexed mode An indexed addressing mode in
which the base operand specifier uses register deferred mode ad-
dressing.

register deferred mode In register deferred mode addressing, the
contents of the specified register are used as the address of the actual
instruction operand.

487

Glossary

register mode In register mode addressing, the contents of the
specified register are used as the actual instruction operand.

scatter/gather The ability to transfer in one /0 operation data from
discontiguous pages in memory to contiguous blocks on disk, or data
from contiguous blocks on disk to discontiguous pages in memory.

secondary storage Random access mass storage.

signal 1. An electrical impulse conveying information. 2. The soft-
ware mechanism used to indicate that an exception condition was
detected.

software interrupt An interrupt generated on interrupt priority levels
1 through 15, which can be requested only by software.

stack An area of memory set aside for temporary storage, or for
procedure and interrupt service linkages. A stack uses the last-in,
first-out concept. As items are added to (“pushed on”) the stack, the
stack pointer decrements. As items are retrieved from (“popped off”)
the stack, the stack pointer increments.

stack frame A standard data structure built on the stack during a
procedure call, starting from the location addressed by the FP and
going to lower addresses, and popped off during a return from pro-
cedure. Also called call frame.

Stack Pointer General register 14(R14). SP contains the address of
the top (lowest address) of the processor-defined stack. Reference to
SP will access one of the five possible stack pointers, kernel, execu-
tive, supervisor, user, or interrupt, depending on the value in the cur-
rent mode and interrupt stack bits in the Processor Status Longword
(PSL).

status code A longword value that indicates the success or failure of

a specific function. For example, system services always return a
status code in RO upon completion.

store through See write through.

supervisor mode The third most privileged processor access mode
(mode 2). The operating system’s command interpreter runs in super-
visor mode.

Synchronous Backplane Interconnect (SBI) That part of the hard-
ware that interconnects the processor, memory controllers, MASS-
BUS adaptors, and the UNIBUS adaptor.

system In the context “system, owner, group, world,” system refers
to the group numbers that are used by operating system and its con-
trolling users, the system operators and system manager.

488

Glossary

system address space See system space and system region.

system base register (SBR) A processor register which contains
the physical address of the base of the system page table.

system control block (SCB) The data structure in system space that
contains all the interrupt and exception vectors known to the system.

system control block base register (SCBB) A processor register
containing the base address of the system control block.

system identification register A processor register which contains
the processor type and serial number.

system length register (SLR) A processor register containing the
length of the system page table in longwords, that is, the number of
page table entries in the system region page table.

system page table (SPT) The data structure that maps the system
region virtual addresses, including the addresses used to refer to the
process page tables. The system page table (SPT) contains one page
table entry (PTE) for each page of system region virtual memory. The
physical base address of the SPT is contained in a register called the
system base register (SBR).

system region The third quarter of virtual address space, i.e., the
lower-addressed half of system space. Virtual addresses in the system
region are shareable between processes. Some of the data structures
mapped by system region virtual addresses are system entry vectors,
the system control block (SCB), the system page table (SPT), and
process page tables.

system space The higher-addressed half of virtual address space.
See also system region.

system virtual address A virtual address identifying a lkocation
mapped by an address in system space.

system virtual space See system space.

terminal The general name for those peripheral devices that have
keyboards and video screens or printers. Under program control, a
terminal enables people to type commands and data on the keyboard
and receive messages on the video screen or printer. Examples of
terminals are the LA38 DECwriter hard-copy terminal and VT100
video display terminal.

translation buffer An internal processor cache containing transla-
tions for recently used virtual addresses.

trap An exception condition that occurs at the end of the instruction
that caused the exception. The PC saved on the stack is the address of

489

Glossary

the next instruction that would normally have been executed. All soft-
ware can enable and disable some of the trap conditions with a single
instruction.

trap enables Three bits in the Processor Status Word that control
the processor’s action on certain arithmetic exceptions.

two’s complement A binary representation for integers in which a
negative number is one greater than the bit complement of the posi-
tive number.

two-way associative cache A cache organization which has two
groups of directly mapped blocks. Each group contains several blocks
for each index position in the cache. A block of data from main memo-
ry can go into either group at its proper index position. A two-way
associative cache is a compromise between the extremes of fully
associative and direct mapping cache organizations, and it takes ad-
vantage of the features of both.

unit record device A device such as a card reader or lineprinter.

unwind the call stack To remove call frames from the stack by
tracing back through nested procedures calls using the current con-
tents of the FP register and the FP register contents stored on the
stack for each call frame.

urgent interrupt An interrupt received on interrupt priority levels 24
through 31. These can be generated only by the processor for the
interval clock, serious errors, and power fail.

user mode The least privileged processor access mode (mode 3).
User processes and the Run Time Library procedures run in user
mode.

user privileges The privileges granted a user by the system manag-
er.

value return registers The general registers RO and R1 used by
convention to return function values. These registers are not pre-
served by any called procedures. They are available as temporary
registers to any called procedure. All other registers (R2, R3,..., R11,
AP, FP, SP, PC) are preserved across procedure calls.

variable length bit field A set of 0 to 32 contiguous bits located
arbitrarily with respect to byte boundaries. A variable bit field is
specified by four attributes: 1) the address A of a byte, 2) the bit
position P of the starting location of the bit field with respect to bit 0 of
the byte address A, 3) the size, in bits, of the bit field, and 4) whether
the field is signed or unsigned

490

Glossary

vector 1. An interrupt or exception vector is a storage location,
known to the system, that contains the starting address of a procedure
to be executed when a given interrupt or exception occurs. The sys-
tem defines separate vectors for each interrupting device controller
and for classes of exceptions. Each system vector is a longword. 2. For
the purposes of exception handling, users can declare up to two soft-
ware exception vectors (primary and secondary) for each of the four
access modes. Each vector contains the address of a condition
handler. 3. A one-dimensional array.

virtual address A 32-bit integer identifying a byte “location” in virtu-
al address space. The memory management hardware translates a
virtual address to a physical address. The term virtual address may
also refer to the address used to idenfity a virtual block on a mass
storage device.

virtual address space The set of all possible virtual addresses that
an image executing in the context of a process can use to identify the
location of an instruction of data. The virtual address space seen by
the programmer is a linear array of 4,294,967,296(2%) byte addresses.

virtual memory The set of storage locations in physical memory and
on disk that are referred to by virtual addresses. From the program-
mer’s viewpoint, the secondary storage locations appear to be loca-
tions in physical memory. The size of virtual memory in any system
depends on the amount of physical memory available and the amount
of disk storage used for nonresident virtual memory.

virtual page number The virtual address of a page of virtual memo-
ry.

word Two contiguous bytes (16 bits) starting on an addressable byte
boundary. Bits are numbered from the right, 0 through 15. A word is
identified by the address of the byte containing bit 0. When interpreted
arithmetically, a word is a two’s complement integer with significance
increasing from bit O to bit 14. If interpreted as a signed integer, bit 15
is the sign bit. The value of the integer is in the range -32768 to 32767.
When interpreted as an unsigned integer, significance increases from
bit 0 through bit 15 and the value of the unsigned integer is in the
range 0 through 65535.

working set The set of pages in process address space to which an
executing can refer without incurring a page fault. The working set
must be resident in memory for the process to execute. The remaining
pages of that process, if any, are either in memory and not in the
process working set or they are on secondary storage.

491

Glossary

write access type The specified operand of an instruction or
procedure is only written during that instruction’s execution.

write allocate A cache management technique in which cache is
allocated on a write miss as well as on the usual read miss.

write back A cache management techinque in which data from a
write operation to cache is copied into main memory only when the
data in cache must be overwritten. This results in temporary inconsis-
tencies between cache and main memory. Contrast with write through.

write through A cache management technique in which data from a
write operation is copied in both cache and main memory. Cache and
main memory data are always consistent. Contrast with write back.

492

INDEX

aborts, 134

kernal stack not valid, 138-139

absolute mode (autoincrement
deferred mode), 21,61-63, 82, 84-
85

absolute queues, 46, 47, 228-31
ACB (Add Compare and Branch)

instruction, 268-69
access
for operands, 54-55

to stack registers, 152-53
synchronization for, 25

110-12

access control violation faults, 119-
20

access modes, 15,110-111
asynchronous system traps,
and, 129
changing, 120-21
compatibility mode and, 354
privileges for, 107

access control,

accumulators, 51

accuracy, of floating point, 34, 35,
177

ADAWI (Add Aligned Word
Interlocked) instruction, 25, 194

Add with Carry (ADWC)
instruction, 193

Add Compare and Branch (ACB)
instruction, 268-69

ADD instruction, 191-92

Add One and Branch (AOB)
instruction, 270

ADDP (Add Packed)
instruction, 314-15

addresses
in compatibility mode, 358-59
instructions for manipulation
of, 224-25

for integer and floating data

types, 31

memory management translation
of, 107,113-14

process space translation

of, 116-18

in queue data, 46, 47

system space translation of, 114-
15

virtual, 1,8
addressing modes, 11-12,55-90
address space

mapping of, 16, 18

virtual, 1-2

see also virtual address space

Adjust Input Length
(EO$ADJUST_INPUT)
operator, 350

ADWC (Add with Carry)
instruction, 193

alignment of stacks, 151

AOB (Add One and Branch)
instruction, 270

AP (Argument Pointer),

architecture, 2-3,7-22
compatibility mode in, 353

11,101

Argument Pointer (AP), 11, 101
argument validation, 120-21
arithmetic, 177

arithmetic exceptions, 139-41

Arithmetic Shift (ASH)
instructiors 211

Arithmetic Shift and Round Packed
(ASHP) instruction. 330-31

ASCIl characters, in leading separate
numeric string data, 37-38

ASH (Arithmetic Shift)
instruction, 211

Index

ASHP (Arithmetic Shift and Round
Packed) instruction, 330-31

assembler radix notation, 53
AST level register, 129, 130
ASTLVL field, 129-30

Asynchronous System Trap
field, 19

asynchronous system traps
(ASTs), 129-30

autodecrement addressing, 51
63-69
autoincrement addressing, 51

autodecrement mode,

autoincrement deferred mode
(absolute mode), 21,61-63, 82, 84-
85

autoincrement mode (immediate
mode), 21,60-61, 82-84

~

backward links (BLINKSs),
236

base address specifiers, 250

46, 228,

base registers, 51

BBCCI (Branch on Bit Clear and
Clear, Interlocked) instruction, 25

BB (Branch on Bit) instruction, 264-

67

BBSSI (Branch on Bit Set and Set,
Interlocked) instruction, 25

BIC (Bit Clear) instruction, 209

BICPSW (Bit Clear PSW)
instruction, 223

B (Branch on) instruction, 261-62
BIS (Bit Set) instruction, 208

BISPSW (Bit Set PSW)
instruction, 223

Bit Clear (BIC) instruction, 209

Bit Clear PSW (BICPSW)
instruction, 223

BIT (Bit Test) instruction, 207

bits
in variable length bit field
data, 43-46

variable length bit field instructions
for manipulation of, 250-57
Bit Set (BIS) instruction, 208
Bit Set PSW (BISPSW)
instruction, 223
Bit Test (BIT) instruction, 207
Blank Backwards when Zero
(EO$BLANK_ZERO) operator, 346
BLB (Branch on Low Bit)
instruction, 267
BLINKs (backward links),
236

BPT (BPT Breakpoint Fault)
instruction, 169

46, 228,

Branch on Bit Clear and Clear,
Interlocked (BBCCI) instruction, 25

Branch on Bit (BB) instruction, 264-

67

Branch on Bit Set and Set,
Interlocked (BBSSI) instruction, 25

Branch (BR) instruction, 263
Branch on (B) instruction, 261-62
branch instruction, 259-67

Branch on Low Bit (BLB)
instruction, 267

Branch to Subroutine (BSB)
instruction, 259, 275

BR (Branch) instruction, 263

BSB (Branch to Subroutine)
instruction, 259, 275

BUG (Bugcheck) instruction, 170
bytes, 31-33,94 |
caches, 26 \

Calculate Cyclic Redundancy Check
(CRC) instruction, 303-6

call frames (stack frames), 20, 278

494

Index

CALLG (Call Procedure with General

Argument List) instruction, 277,

280-81

CALL instructions
for privileged services,
for procedures, 277-84
for subroutines, 259, 275

Call Procedure with General

Argument List (CALLG)

instruction, 277, 280-81

CALLS (Call Procedure with Stack

Argument List) instruction, 277,

282-83

carry condition code (C) bit

(PSL), 98

CASE instruction, 260, 273-74

C (carry condition code) bit

(PSL), 98

central processor units, see CPUs

Change Mode (CHM)

instruction, 15-16, 155-56, 158-59

333

character string data, 9, 36
EDITPC instruction for, 333-37
instructions for manipulation
of, 287-306

CHM (Change Mode)
instruction, 15-16, 155-56, 158-59

chopped results, 177
CLR-(Clear) instruction, 181
CM (compatibility mode) bit
(PSL), 100

CMPC (Compare Characters)
instruction, 294-96

CMP (Compare Field)

15, 155

character registers,

instruction, 188, 255-56
CMPP (Compare Packed)
instruction, 313

Compare Characters (CMPC)
instruction, 294-96

Compare Field (CMP
instruction), 188, 255-56

495

Compare Packed (CMPP)
instruction, 313

compatibility mode, 21-22, 353-63

compatibility mode (CM) bit
(PSL), 100

computation instructions,

Compute Index (INDEX)
instruction, 226-27

condition code bits (PSL),
333

175

98
condition codes,

contexts, 2

of processes, 125-29
processor, 19

SVPCTX and LDPCTX instructions
for, 156

switching of, 13

287,309-10
125-30
18, 136,

control blocks,
process control block,
system control block,
139, 143-50

control instructions,
Convert (CVT) instruction,
184-86
Convert Leading Separate Numeric to
Packed (CVTSP) instruction, 329
Convert Longword to Packed
(CVTLP) instruction, 321
Cenvert Packed to Leading Separate
Numeric (CVTPS) instruction, 327-
28
Convert Packed to Long (CVTPL)
instruction, 322
Convert Packed to Trailing Numeric
(CVTPT) instruction, 323-24
Convert Trailing Numeric to Packed
(CVTTP) instruction, 325-26
cooperating processes, 95
CPUs (central processor units)
access modes for, 15
errors, exceptions, and interrupts
in, 18,28, 135-36
interrupt priority levels of,

259-84
173, 175,

134-35

Index

priority dispatching in, 13-14
registers of, in compatibility
mode, 363

CRC (Calculate Cyclic Redundancy
Check) instruction, 303-6

current mode bits (PSL) 99-100,
111,113,151

CVT (Convert) instruction, 173,175,
184-86

CVTLP (Convert Longword to
Packed) instruction, 321

CVTPL (Convert Packed to Long)
instruction, 322

CVTPS (Convert Packed to Leading
Separate Numeric) instruction, 327-
28

CVTPT (Convert Packed to Trailing
Numeric) instruction, 323-24
CVTSP (Convert Leading Separate
Numeric to Packed) instruction, 329
CVTTP (Convert Trailing Numeric to
Packed) instruction, 325-26

Cyclic Redundancy Check (CRC)
instruction, 303-6

Data
integer and floating point
instructions for, 173
representation of, 31-49
sharing and synchronization
of, 25-26
types of, 8-11

data comparison and testing

instructions, 175

decimal overflows, 310

decimal overflow trap enable (DV) bit
(PSL), 98

decimal string divide by zero

trap, 142

decimal string data, see packed
decimal string data

decimal string instructions, 309-31

decimal string overflow trap, 142
DEC (Decrement) instruction, 197
18, 135, 137

D_floating point (double-precision)
data, 9,34,49,176

displacement deferred mode (relative
deferred mode), 71-72, 83, 87-90

displacement mode (relative
mode), 69-71, 82, 85-87

Divide (DIV) instruction,

Divide Packed (DIVP)
instruction, 319-20

DIV (Divide) instruction,
division, 177

DIVP (Divide Packed)
instruction, 319-20
double-precision (D_) floating point
data, 9, 34,49,176

DV (decimal overflow trap enable) bit
(PSL), 98

device interrupt,

177, 204-5

177, 204-5

editing instructions, 333-51

Edit Packed to Character String
(EDITPC) instruction, 333-37

edit pattern operators, 334, 338-51
EDITPC (Edit Packed to Character
String) instruction, 333-37

EDIV (Extended Divide)

instruction, 206

EMOD (Extended Multiply and
Integerize) instruction, 202-3
EMUL (Extended Multiply)
instruction, 201

End Edit (EO$END) operator, 351
End Floating Sign (EO$END_FLOAT)
operator, 345
entry masks, 219,277

environments
for system programming,
user, for compatibility mode,
57

14-16
354-

496

Index

see also multiprogramming
environments

EO$ADJUST_INPUT (Adjust Input
Length) operator, 350
EO$BLANK_ZERO (Blank Backwards
when Zero) operator, 346

EOS$END_FLOAT (End Floating Sign)

operator, 345

EOS$END (End Edit) operator, 351
EOS$FILL (Store Fill) operator, 342
EO$FLOAT (Float Sign)

operator, 344

EOS$INSERT (Insert Character)
operator, 340

EO$LOAD (Load Register)

operator, 348
EO$MOVE (Move Digits)
operator, 343

EO$REPLACE_SIGN (Replace Sign
when Minus Zero) operator, 347
EOS$SIGNIF (Significance)
operator, 349
EO$STORE_SIGN (Store Sign)
operator, 341
errors, 27-28

CRC instruction for detection

of, 303

in stack usage, 103

event handling, 133-35

18-19, 133-53
360-61
13-14

exceptions,
in compatibility mode,
priority dispatching of,
reserved operand, 310

exception service routines, 134

Exclusive Or (XOR) instruction,
in cyclic redundancy check,

EXEC stack, 151

executive mode, 107,110

Extended Divide (EDIV)

210
303

instruction, 206
Extended Function (XFC)
instruction, 157, 168

Extended Multiply (EMUL)
instruction, 201

Extended Multiply and Integerize
(EMOD) instruction, 202-3

EXT (Extract Field) instruction,
54

253-

fault parameter word, 120

119-20, 133-34, 141-43
in compatibility mode, 361

FF (Find First) instruction, 251-52

F_floating point (single-precision)
data, 9,34,49,176

fill characters, 333
Find First (FF) instruction,

first part done flag (FPD) bit
(PSL), 100

flags, in PSL, 98-100
FLINKs (forward links),
floating divide by zero fault,
142
floating overflow trap, 141-42
9,33-35
173-217
176
floating underflow fault,

faults,

251-52

46, 228, 236
142
floating overflow fault,

floating point data,
instruction set for,

floating point zero,
142-43
142

floating underflow trap enable (FU) bit
(PSL), 98-99

Float Sign (EO$FLOAT)
operator, 344

floating underflow trap,

formats
for instructions,
for numeric string data,
of page table entries, 96

20-21, 52-55
38-40

of virtual addresses, 95-96
forward links (FLINKs), 46, 228, 236
FP (Frame Pointer), 11,101

FPD (first part done flag) bit
(PSL), 100

497

Index

Frame Pointer (FP), 11,101

FU (floating underflow trap enable) bit
(PSL), 98-99

general mode addressing, 57-81
general registers, 11-12,51-52,
100-2
for character string
instructions, 287

compatibility mode and, 354, 358
G_floating point data, 9, 34-35, 176
171

13,125
hardware process control block,
51

hardware stack pointer, 51
228-31, 236, 238-

HALT instruction,
hardware context,
| 19
hardware stack,

headers, queue,

39
H_floating point data, 9,35, 176

immediate.mode (autoincrement
mode), 21,60-61,82-84
INC (Increment) instruction,

INDEX (Compute Index)
instruction, 226-27

72-81

index registers, 51

Insert Character (EO$INSERT)
operator, 340

Insert Entry in Queue (INSQUE)
instruction, 232-33

Insert field (INSV) instruction, 257
Insert into Queue Head, Interlocked
(INSQH]) instruction, 25, 240-42
Insert into Queue Tail, Interlocked
(INSQTI) instruction, 25, 243-44
INSQUE (Insert Entry in Queue)
instruction, ~232-33

INSQHI (Insert into Queue Head,
Interlocked) instruction, 25, 240-42
498

189

index mode,

INSQTI (Insert into Queue Tail,
Interlocked) instruction, 25, 243-44

3
120-

instructions and instruction sets,
for changing access modes,
21
character string,
in compatibility mode,
control, 259-84
decimal string, 309-31
for editing, 333-51
formats for, 20-21, 52-55
integer and floating point,
217
privileged and miscellaneous,
16, 155-71
for process structure,
restartability of, 26-27
sharing of, 25
special, 219-57
suspended, 153

INSV (Insert Field) instruction,

8,31-33
173-217

integer divide by zero trap,
176
141

integer overflow trap enable (IV) bit
(PSL), 99

interrupt priority level (IPL) bits
(PSL), 99

interrupt priority level register
(IPLR), 137

interrupt priority levels (IPLs),
28,133

asynchronous system traps
and, 129-30
of processors, 134-35

interrupts, 18-19, 27-28, 133-53
during character string instruction
execution, 287
in compatiblity mode, 360-61
during decimal string instruction
execution, 309
priority dispatching of,

287-306
355-57

173-
15-

130

257

integer data,
instructions for,

141
integer optimizations,
integer overflow trap,

27-

13-14

Index

18, 133, 150

interrupt stack flag (1S) bit
(PSL), 100, 151

interrupt stack not valid halt, 139

interrupt stack (IS),

invalid page faults, 121
170 device controllers, 19
1/0 processing, 19

1/0 references, in compatiblity
mode, 362-63

1/0 registers, 28-29
1/0 space, 19
1/0 structure, 28-29

IPL (interrupt priority level) bits
(PSL), 99

IPLR (interrupt priority level
register), 137

IPLs, see interrupt priority levels
18, 133, 150
IS (interrupt stack flag) bit

(PSL), 100, 151

1V (integer overflow trap.enable) bit
(PSL), 99

IS (interrupt stack),

JMP (Jump) instruction, 259, 263
journals, 20

JSB (Jump to Subroutine)
instruction, 259, 275

Jump (JMP) instruction, 259, 263
jump instructions, 259-60

Jump to Subroutine (JSB)

instruction, 259, 275
kernel mode, 15,107,110
PCBand, 129

kernel stack, 151

kernel stack not valid abort, 138-39

LDPCTX (Load Process Context)
instruction, 16, 119, 156, 163-64

499

leading separate numeric string
data, 37-39, 311

length registers, 110

length violations, 112

links, in queue data, 46, 228-31, 236
Load Process Context (LDPCTX)
instruction, 16, 119, 156, 163-64
Load Register (EO$LOAD)

operator, 348

LOCC (Locate Character)

instruction, 299-300

logical complement operations, 175

logical computation
instructions, 175

longwords, 33,94
in queue data, 46

loop control instruction, 268-74

machine check exception, 139
map enable register (MAPEN), 119
mapping, 16-18

memory management for, 107
masks, 219,277
MATCHC (Match Characters)
instruction, 301-2
MCOM (Move Complemented)
instruction, 183

memories, 93-97
cachesand, 26
mapping of, 16-18

memory management,

95, 107-22
in compatibility mode,

1-2,16-18,

358-60

Memory Mapping Enable (MME)
bit, 113
MFPR (Move From Processor
Register) instruction, 117,118, 156,
165-67

interrupts and, 137

miscellaneous instructions, 155-71

MNEG (Move Negated)
instruction, 182

mnemonics
for call frames, 278-79
for integer and floating point
instructions, 173
modes, see access modes
103, 105
modifying of memory, 113
MOVA (Move Address)
instruction, 224-25
MOVC (Move Character)
instruction, 288-89
Move Address (MOVA)
instruction, 224-25
Move Character (MOVC)
instruction, 288-89
Move Complemented (MCOM)
instruction, 183
Move Digits (EO$MOVE)
operator, 343
Move (MOV) instruction, 179

Move Negated (MNEG)
instruction,” 182

mode stacks,

move operations, 175

Move Paced (MOVP)
instruction, 312
Move From Processor Register
(MFPR) instruction, 117,118, 156,
165-67
interrupts and, 137
Move to Processor Register (MTPR)
instruction, 117-19, 156, 165-67
interrupts and, 137
Move from PSL (MOVPSL)
instruction, 222

Move Translated Characters
(MOVTC) instruction, 290-91
Move Translated Until Character
(MOVTUC) instruction, 292-93

Move Zero-Extended (MOVZ)
instruction, 187

Index

MOV (Move) instruction, 179
MOVP (Move Packed)
instruction, 312

MOVPSL (Move from PSL)
instruction, 222

MOVTC (Move Translated
Characters) instruction, 290-91
MOVTUC (Move Translated Until
Character) instruction, 292-93
MOVZ (Move Zero-Extended)
instruction, 187

MTPR (Move To Processor Register)
instruction, 117-19, 156, 165-67
interrupts and, 137

MUL (Multiply) instruction,

MULP (Multiply Packed)
instruction, 318

199-200

multiple register instructions, 219

Multiply (MUL) instruction, 199-200

Multiply Packed (MULP)

instruction, 318

multiprogramming

environments, 12-13,93
compatibility mode in, 353
memory management for, 107
processor access modes for, 15

N (negative condition code) bit

(PSL), 98

negative condition code (N) bit

(PSL), 98

negative numbers, 31,37,42

nested exceptions, 134

nibbles, 42,94

null strings, 36

numeric string data, 11, 37-41 J

octawords, 33,94
opcode (operating code), 20,52, 54
operand addressing modes, 11-12

500

Index

operands
reserved, 35,176-77
types of, 52, 54-55

variable length bit field instructions
specifiers for, 250

operand specifiers, 20-21, 52, 55,

250

operating code (opcode), 20, 52, 54

operating system
access to privileged services
of, 155,156
compatibility mode and, 353
memory managementand, 95,
107,108

orthogonality, 3

overflow condition code (V) bit
(PSL), 98

overflows, decimal, 310

overpunch format, 38-40

packed decimal string data, 11, 42-
43
EDITPC instruction for, 333-37

instructions for manipulation
of, 309-31

packed decimal string
descriptors, 333

95, 108-9
16-18

page table entries (PTE),
113-14
faultsin, 119-20
for process space, 116
for shared sections, 121-22
in system page table, 115

pages,
mapping of,
96-97,

page tables, 17
memory management of, 107
for process space, 116
paging, 93
119-20
pattern operation editing
sequences, 333
PO base register (POBR), 116

parameters,

501

P1 base register (P1BR),
PC, see Program Counter

117,118

PCB (process control block), 125-
30.

PCBB (process control block base
register), 125

PDP-11 systems, VAX compatibility
mode for, 3-4,21-22, 353-63

performance monitor enable register
(PME), 129

physical addresses, translated from
virtual addresses, 16,107,113

physical address space, 1
mapping of, 16-18

PO length register (POLR), 116-17
P1length register (P1LR), 117,118

PME (performance monitor enable
register), 129

pointers, 51

POLY (Polynominal Evaluation)
instruction, 213-17

popping stacks, 51,103

POPR (Pop Registers)
instructions, 219, 221

position-independent code, 21
position operand specifiers, 250
31,37,42
power failures, caches and, 26
PO page table (POPT), 116

P1 pagetable (P1PT), 117

precision, of floating point data, 34,
35,177

previous mode bit (PSL),

positive numbers,

99, 155
priority levels, of exceptions and
interrupts, 13-14, 18, 133-35
privileged instructions, 15-16, 155-
71

privileged services,
156

120-21, 155,

Index

privileges
access to memory by, 95
changing access mode for, 120-
21
for memory access, 107
in PSL, 97,99-100
stacks and, 104

PROBE (Probe Accessiblity)
instruction, 15, 16, 155-56, 160

PROBER instruction, 16, 156
PROBEW instruction, 16, 156

procedures, 19-20

instructions for calling, 277-84
process address space, 108
125-29

process control block (PCB), 125-
30

process control block base (PCBB)
register, 125

processes, 13,93
memory management of,
structure of, 125-30

processing, system programming

and, 12-14

processor access modes, 15

process context,

95,107

processor context, 19
processors, see CPUs
Processor Status Longword
(PSL), 14,97-100
access mode storedin, 111
in compatibility mode, 358, 361-
62

effects of interrupts and exceptions

on, 135

instructions for manipulation
of, 222-23

previous mode bitson, 155
stack status bitson, 151-52

Processor Status Word (PSW), 14,
97
compatibility mode and, 354, 363

process page tables, 116, 121

502

process space, 8,93,94,108
address translation for, 116-18
shared sectionsin, 121-22

process space page tables, 97
process virtual address space, 7-8

Program Counter (PC), 11,52, 100
addressing modes for, 81-90
branch and jump instructions for
manipulation of, 259-60
effects of interrupts and exceptions
on, 135
for identification of operands, 21
REl instruction and, 16

programming
errors of stack usagein, 103

processing concepts for, 12-14

system environment for, 14-16
programs

compatibility between PDP-11 and

VAX systems for, 4,363

context of, 2

memory management of, 1,95

15-16

protection, memory management
for, 107

protection checks, 114
111-12

PSL, see Processor Status
Longword

protected instructions,

protection code,

93-94, 116-17
93-94, 116-18
PSW, see Processor Status Word

PO space,
P1 space,

PTEs, see page table entries
PUSHA (Push Address)
instruction, 224-25
pushing stacks, 51,103
PUSHL (Push Longword)
instruction, 180

PUSHR (Push Register)
instruction, 219, 220

quadwords, 33,94

=\

Index

queue data, 11, 46-48
instructions for manipulation
of, 25-26,228-49

queue headers, 228-31, 236, 238-39
queue tails, 230, 231, 238

reading from memory, 113
register deferred mode, 58-60
register mode, 57-58

registers
character, 333
for character string
instructions, 287
compatibility mode and, 354, 358,
363
datain, 49
device controller, 19
general, 11-12,51-52, 100-2
forinterrupts, 137
170, 28-29
length, 110
for memory management
control, 118-19
MTPR and MFPR instructions
for, 156
multiple instructions for, 219
for page mapping, 17
procedure call instructions
and, 277-78
Processor Status Longword, 97-
100
for process space, 116-17
during restarts, 27
stack, 152-53
for system space, 115

REI-(Return from Exception or
Interrupt) Instruction, 16, 18, 155-
56, 161-62

asynchronous system traps

and, 129

for compatiblity mode, 358

PSL privileges and, 97

relative deferred mode (displacement
deferred mode), 71-72, 83, 87-90

relative mode (displacement
mode), 69-71, 82, 85-87

503

Remove Entry from Queue
(REMQUE) instruction, 234-35

Remove from Queue Head,
Interlocked (REMQHI)
instruction, 25, 245-47

Remove from Queue Tail, Interlocked
(REMQTI) instruction, 25, 248-49
REMQHI (Remove from Queue Head,
Interlocked) instruction, 25, 245-47
REMQTI (Remove from Queue Tail,
Interlocked) Instruction, 25, 248-49
REMQUE (Remove Entry from
Queue) instruction, 234-35

Replace Sign when Minus Zero
(EO$REPLACE_SIGN)
operator, 347

reserved instructions in compatibility
mode, 357

reserved operand exceptions, 310
reserved operands, 35,176-77
restartability, 26-27

RET (Return from Procedure)
instruction, 277, 278, 284
Return from Exception or Interrupt
(REI) instruction, 16, 18, 155-56,
161-62
asynchronous system traps
and, 129
for compatibility mode, 358
PSL privileges and, 97
Return from Procedure (RET)
instruction, 277,278, 284
Return from Subroutine (RSB)
instruction, 260, 276

ROTL (Rotate Long) instruction, 212
rounded results, 177

RSB (Return from Subroutine)
instruction, 260, 276

Save Process Context (SVPCTX)
instruction, 16, 130, 156, 163-64

SBR (system base register), 115

SBWOC (Subtract with Carry)
instruction, 198

SCANC (Scan Characters)
instruction, 297-98

SCB, see system control block

self-relative queues, 46, 228, 236-
39

serialization of exceptions and
interrupts, 153

sharing, 121-22

of data, 25-26

of memory, memory management
for, 95

signed quantities, 31, 37,42

Significance (EO$_SIGNIF)
operator, 349

sign register, 333
single-precision (F_) floating point
data, 9,34,49,176

SIRR (software interrupt request
register), 137

SISR (software interrupt summary
register), 137

size operand specifiers, - 250

SKPC (Skip Character),
instruction, 229-300

SLR, see system length register

SOB (Subtract One and Branch)
instruction, 271-72

software
for asynchronous system trap
processing, 129-30
Change Mode instruction issued
by, 155
interrupt priority levels for, 134
interrupts generated by, 137
memory management, 107
for shared sections, 121-22

software interrupt requé'st register
(SIRR), 137

software interrupt summary register
(SISR), 137

Index

software process control block, 19
software-requested interrupts, 18
SP, see Stack Pointers

SPANC (Span Characters)

instruction, 297-98
special instructions, 219-57
specifiers

operand, 20-21,52,55

in variable length bit field
instructions, 250

SPT (system page table), 97,115
stack frames (call frames), 20,278

Stack Pointers (SP), 11,20, 51, 100,

103
in compatibility mode, 354
privileged code use of, 104
processor modes and, 150
stack registers and, 152

stack registers, 152-53

stacks, 19-20, 51, 102-5, 150-53
compatibility mode and, 354
kernel stack not valid abort, 138-
39
multiple register instructions for
manipulation of, 219
in P1space, 93
in responses to interrupts and
exceptions, 135

stack status bits, 151-52
stepping, 51

Store Fill (EOS$FILL) operator, 342
Store Sign (EO$STORE_SIGN)
operator, 341

SUB (Subtract) instruction,
SUBP (Subtract Packed)
instruction, 316-17 }

subroutines, 19-20 |
branch and jump instructions for |
calling, - 259, 275
RSB instruction for,

195-96 |

260, 276
subscript range trap, 142

504

Index

. Subtract with Carry (SBWC)
instruction, 198

Subtract (SUB) instruction, 195-96

Subtract One and Branch (SOB)
instruction, 271-72

Subtract Packed (SUBP)
instruction, 316-17
SUPER stack, 151
supervisor mode, 107,111
suspended instructions, 153

SVPCTX (Save Process Context)
instruction, 16, 130, 156, 163-64

synchronization
of data, 25-26
of programs, in compatibility
mode, 363
system address space, 108
system base register (SBR), 115

system control block (SCB), 18,
136, 139, 143-50

system control block base
register, 18

system failures, 138-39

system length register (SLR), 115,
116

system manager, 15
system page table (SPT), 97,115
system programmer architecture, 7

system programming

environment for, 14-16

processing concepts for, 12-14
system space, -8, 93,108
address translation for, 114-15

shared sections in, 122
systemwide context, 18

tails, queue, 230, 231, 238

TBIA (translation buffer invalidate all)
register, 119

TBIS (translation buffer invalidate
single) register, 119

505

T (trace) bit (PSL), 99
in compatibility mode, 361-62

Test (TST) instruction, 190
TP (trace pending) bit (PSL), 100

trace (T) bit (PSL), 99
in compatibility mode, 361-62

trace pending (TP) bit (PSL), 100

trailing numeric string data, 37, 39-
41, 311
translation of addresses, 16, 107,
113-14

for process space, 116-18

for system space, 114-15
translation buffer, 96-97, 119

translation buffer invalidate all
register (TBIA), 119

translation buffer invalidate single
register (TBIS), 119

translation not valid fault, 119

traps, 133, 141-43
asynchronous sytem traps, 129-
30
compatibility mode and, 357, 362
flags in PSL for, 98-99

TST (Test) instruction, 190

unconditional branch

instructions, 259

UNIBUS space, 28

unpredictable results, 310-11

urgent interrupts, 136
user architecture, 7

user environment, compatibility
modein, 354-57

15,107, 111
20, 151

user mode,
USER stack,

variable length bit field data, 11, 43-
46
instructions for manipulation

of, 250-57

Index

VAX systems, 1-4

compatiblity mode on, 353-63

V (overflow condition code) bit
(PSL), 98

vectors
for exceptions and interrupts, 18-
19, 133

in system control block, 143-50

violations
of access control,
length, 112

virtual addresses, 109-10
format for, 95-96
in queue data, 47
translated into physical
addresses, 16,107,113

virtual address space, 1-2
mapping of, 16-18
memory mangement of,
process, 7-8
structure of,

119-20

107-10

93-94

virtual page numbers, 109-10, 115,
117
words, 33,94

writing into memory, 113

XFC (Extended Function)

instruction, 157,168
XOR (Exclusive Or) instruction, 210
in cyclic redundancy check, 303

Z (zero condition code) bit (PSL), 98

zero
in decimal string data,
in floating point, 176

zero condition code (Z) bit (PSL), 98
zero length decimal strings, 311
38-40

310

zoned format,

506

VAX ARCHITECTURE HANDBOOK READER’S COMMENTS
1981-82

Your comments and suggestions will help us in our continuous effort to im-
prove the quality and usefulness of our handbooks.

What is your general reaction to this handbook? (format, accuracy, complete-

ness, organization, etc.)

What features are most useful?

Does the publication satisfy your needs?

What errors have you found?

Additional comments

Name

Title

Company Dept.
Address

City State Zip

(staple here)

(staple here)

———————————— (please fold here) — — — — — —

No Postage
Necessary
if Mailed in the
United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD, MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
NEW PRODUCTS MARKETING
PK3-1/M92

MAYNARD, MASS. 01754

clilgliltlall

HANDBOOK SERIES

Microcomputers and Memories
Microcomputer Interfaces
PDP-11 Processor

PDP-11 Software

Peripherals

Terminals and Communications
VAX Architecture

VAX Software

VAX Hardware

DIGITAL EQUIPMENT CORPORATION, Corporate Headquarters: Maynard, MA

01754, Tel. (617) 897-5111 — SALES AND SERVICE OFFICES; UNITED STATES — .
‘ALABAMA, Birmingham, Huntsville ARIZONA, Phoenix, Tucson ARKANSAS, Little

Rock CALIFORNIA, Costa Mesa, El Segundo, Los Angeles, Oakland, Sacr

San Diego, San Francisco, Monrovia, Santa Barbara, Santa Clara, Sherman Oaks
“OLORADO, Colorado Springs, Denver CONNECTICUT, Fairfield, Meriden DELA-
WARE, Newark FLORIDA, Miami, Orlando, Pensacola, Tampa GEORGIA, Atlanta

" HAWAII, Honolulu IDAHO, Boise ILLINOIS, Chicago, Peoria INDIANA, Indianapolis

IOWA, Bettendorf KENTUCKY, Louisville LOUISIANA, New Orleans MARYLAND,
Baltimore MASSACHUSETTS, Boston, Springfield, Waltham MICHIGAN, Detrolit,
Kalamazoo MINNESOTA, Minneapolis MISSOURI, Kansas Clty, St. Louls NEBRAS-
KA, Omaha NEW HAMPSHIRE, Manchester NEW JERSEY, Cherry Hill, Parsippany,

Princeton, Somerset NEW MEXICO, Albuquerque, Los Al NEW YORK, Albany,
Buffalo, Long Island, New York City, Rochester, Syr W h NORTH
CAROLINA, Chapel Hill, Charlotte OHIO, Cincl i, Cl d, Col Dayton

OKLAHOMA, Tulsa OREGON, Portland PENNSYLVANIA, Harrisburg, Philadelphia,
Pittsburgh RHODE ISLAND, Providence SOUTH CAROLINA, Columbia, Greenville
TENNESSEE, Knoxville, Nashville TEXAS, Austin, Dallas, El Paso, Houston, San
Antonio UTAH, Salt Lake City VERMONT, Burlington VIRGINIA, Fairfax, Richmond
WASHINGTON, Seattle, Spokane WASHINGTON D.C. WEST VIRGINIA, Charleston
WISCONSIN, Milwaukee INTERNATIONAL — EUROPEAN AREA HEADQUARTERS:
Geneva, Tel: [41] (22)-93-33-11 INTERNATIONAL AREA HEADQUARTERS: Acton,
MA 01754, U.S.A., Tel: (617) 263-6000 AUSTRALIA, Adelaide, Brisbane, Canberra,
Hobart, Melbourne, Perth, Sydney, Townsville AUSTRIA, Vienna BELGIUM, Brus-
sels BRAZIL, Rio de Janeiro, Sao Paulo CANADA, Calgary, Edmonton, Halifax,
Kingston, London, Montreal, Ottawa, Quebec City, Regina, Toronto, Vancouver,
Victoria, Winnipeg DENMARK, Copenhagen ENGLAND, Basingstoke, Birmingh
Bristol, Ealing, Ep , Leeds, Leicester, London, Manchester, Reading, Welwyn
FINLAND, Helsinki FRANCE, Bordeaux, Lyon, Paris, Puteaux, Strasbourg HOL-
LAND, Amstelveen, Delft, Utrecht HONG KONG IRELAND, Dublin ISRAEL, Tel Aviv
ITALY, Milan, Rome, Turin JAPAN, Osaka, Tokyo MEXICO, Mexico City, Monterrey
NEW ZEALAND, Auckland, Christchurch, Wellington NORTHERN IRELAND, Belfast
NORWAY, Osio, PUERTO RICO, San Juan SCOTLAND, Edinburgh REPUBLIC OF
SINGAPORE SPAIN, Barcelona, Madrid SWEDEN, Gothenburg, Stockhoim
SWITZERLAND, Geneva, Zurich, WEST GERMANY, Berlin, Cologne, Frankfurt,
Hamburg, Hannover, Munich, Nurnberg, Stuttgart

PRINTED IN U.S.A. EB-19580-20/31 030 04 68 COPYRIGHT® 1981 DIGITAL EQUIPMENT CORPMRATION ALL RIGHTS RESERVED

	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-001.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-002.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-003.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-004.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-005.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-006.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-007.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-008.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-009.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-010.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-011.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-012.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-013.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-014.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-015.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-016.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-017.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-018.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-019.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-020.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-021.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-022.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-023.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-024.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-025.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-026.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-027.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-028.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-029.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-030.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-031.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-032.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-033.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-034.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-035.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-036.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-037.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-038.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-039.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-040.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-041.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-042.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-043.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-044.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-045.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-046.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-047.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-048.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-049.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-050.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-051.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-052.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-053.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-054.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-055.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-056.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-057.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-058.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-059.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-060.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-061.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-062.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-063.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-064.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-065.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-066.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-067.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-068.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-069.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-070.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-071.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-072.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-073.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-074.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-075.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-076.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-077.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-078.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-079.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-080.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-081.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-082.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-083.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-084.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-085.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-086.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-087.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-088.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-089.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-090.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-091.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-092.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-093.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-094.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-095.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-096.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-097.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-098.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-099.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-100.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-101.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-102.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-103.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-104.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-105.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-106.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-107.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-108.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-109.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-110.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-111.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-112.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-113.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-114.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-115.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-116.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-117.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-118.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-119.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-120.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-121.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-122.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-123.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-124.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-125.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-126.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-127.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-128.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-129.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-130.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-131.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-132.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-133.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-134.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-135.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-136.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-137.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-138.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-139.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-140.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-141.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-142.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-143.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-144.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-145.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-146.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-147.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-148.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-149.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-150.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-151.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-152.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-153.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-154.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-155.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-156.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-157.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-158.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-159.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-160.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-161.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-162.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-163.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-164.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-165.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-166.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-167.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-168.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-169.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-170.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-171.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-172.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-173.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-174.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-175.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-176.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-177.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-178.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-179.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-180.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-181.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-182.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-183.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-184.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-185.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-186.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-187.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-188.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-189.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-190.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-191.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-192.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-193.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-194.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-195.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-196.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-197.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-198.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-199.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-200.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-201.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-202.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-203.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-204.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-205.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-206.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-207.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-208.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-209.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-210.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-211.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-212.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-213.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-214.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-215.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-216.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-217.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-218.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-219.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-220.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-221.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-222.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-223.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-224.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-225.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-226.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-227.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-228.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-229.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-230.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-231.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-232.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-233.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-234.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-235.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-236.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-237.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-238.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-239.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-240.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-241.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-242.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-243.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-244.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-245.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-246.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-247.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-248.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-249.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-250.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-251.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-252.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-253.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-254.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-255.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-256.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-257.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-258.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-259.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-260.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-261.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-262.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-263.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-264.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-265.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-266.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-267.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-268.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-269.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-270.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-271.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-272.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-273.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-274.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-275.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-276.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-277.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-278.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-279.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-280.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-281.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-282.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-283.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-284.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-285.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-286.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-287.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-288.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-289.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-290.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-291.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-292.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-293.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-294.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-295.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-296.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-297.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-298.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-299.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-300.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-301.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-302.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-303.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-304.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-305.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-306.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-307.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-308.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-309.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-310.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-311.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-312.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-313.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-314.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-315.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-316.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-317.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-318.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-319.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-320.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-321.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-322.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-323.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-324.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-325.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-326.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-327.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-328.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-329.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-330.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-331.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-332.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-333.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-334.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-335.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-336.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-337.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-338.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-339.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-340.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-341.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-342.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-343.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-344.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-345.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-346.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-347.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-348.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-349.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-350.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-351.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-352.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-353.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-354.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-355.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-356.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-357.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-358.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-359.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-360.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-361.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-362.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-363.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-364.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-365.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-366.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-367.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-368.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-369.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-370.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-371.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-372.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-373.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-374.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-375.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-376.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-377.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-378.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-379.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-380.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-381.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-382.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-383.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-384.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-385.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-386.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-387.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-388.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-389.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-390.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-391.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-392.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-393.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-394.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-395.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-396.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-397.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-398.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-399.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-400.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-401.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-402.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-403.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-404.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-405.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-406.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-407.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-408.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-409.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-410.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-411.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-412.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-413.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-414.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-415.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-416.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-417.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-418.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-419.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-420.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-421.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-422.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-423.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-424.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-425.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-426.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-427.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-428.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-429.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-430.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-431.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-432.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-433.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-434.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-435.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-436.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-437.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-438.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-439.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-440.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-441.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-442.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-443.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-444.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-445.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-446.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-447.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-448.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-449.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-450.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-451.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-452.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-453.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-454.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-455.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-456.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-457.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-458.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-459.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-460.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-461.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-462.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-463.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-464.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-465.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-466.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-467.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-468.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-469.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-470.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-471.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-472.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-473.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-474.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-475.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-476.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-477.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-478.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-479.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-480.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-481.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-482.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-483.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-484.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-485.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-486.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-487.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-488.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-489.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-490.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-491.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-492.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-493.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-494.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-495.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-496.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-497.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-498.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-499.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-500.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-501.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-502.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-503.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-504.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-505.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-506.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-507.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-508.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-509.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-510.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-511.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-512.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-513.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-514.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-515.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-516.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-517.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-518.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-519.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-520.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-521.tif
	EB-19580-20-31 030 04 68 VAX Architecture Handbook (1981)-522.tif

