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PREFACE

This instruction manual is published in two volumes to aid personnel in the operation and
maintenance of the Arithmetic Processor Type 166 and four of the more common PDP-6 input-
output devices: Paper Tape Reader Type 760, Paper Tape Punch Type 761, Teletype Keyboard-
Printer Type 626, and Card Reader Type 461. Maintenance information for the in-out devices
is confined primarily to those portions of DEC manufacture; separate manuals for the devices

themselves are furnished with the system.

The first three chapters present a general description of the system and its operation. Chapter 1
lists the operating specifications and describes the physical and electrical characteristics of the
system. Chapter 2 provides a general description of system organization at the block diagram
level, explaining what the system does rather than describing the circuit hardware involved in
the various functions. This chapter also describes the number system and instruction formats used
in the Type 166 Processor. Chapter 3 explains the use of all controls and indicators on the oper-

ator control panels and in-out devices, and outlines basic operating procedures.

The next five chapters present a complete, detailed description of the system logic. Chapter 4,
Drawing Conventions and Flow Charts, discusses PDP-6 documentation and describes the symbols
and terminology used in the logic drawings and flow charts. This chapter also escorts the reader
through the flow charts in sequence, so that he may better understand the flow of operations in
the processor, and discusses in detail some sequences that neither appear as coherent hardware
units inthe logic drawings nor are obvious from the flow charts. The next two chapters in this
group describe the hardware for the main control sequence and logical and arithmetic processing;
the final two describe the processor interfaces with the memory bus and the in-out bus. Also
included in the last chapter are the control units for four common in-out devices. The recder

is strongly advised not to embark upon any logic chapter in this or any other PDP-6 system

manual without first gaining a thorough understanding of the material presented in Chapter 4.

Chapter 9 contains information useful in maintaining the system, including a discussion of main-

tenance operation, maintenance programs, and preventive and corrective maintenance.
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-
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Following Chapter 9 are appendixes on engineering drawings and spares, a glossary, and several
convenient tables. All logic drawings and flow charts referred to in the text are in Volume 2;

all other figures are interleaved with the text.




FOREWORD

PDP-6 is a general-purpose, digital computing system consisting of processors, memories, and
input-output devices, each of which has independent internal timing. Processors in a system
may share memories and input-output equipment; the memories themselves may have different

speeds.

A central processor, usually the Type 166 Arithmetic Processor, performs arithmetic and logic
operations and governs the movement of information between memory and peripheral devices.
The Type 166 includes an executive system that allows a number of programs, each restricted
to adefinite area in core, to share processor time. The central processor uses two busses for
system intercommunication, one to the memory system, the other to its input-output devices.
A system may contain any number of central processors, each with a memory bus and an in-
out bus. The memory buses permit the memory complex to accommodate several processors—
as many as four may address a single memory module. In order to deposit or retrieve informa-
tion, the processor supplies an address and requests a memory cycle. Upon accepting the
request, the addressed memory times its own cycle and furnishes the appropriate response to

the processor.

Through the in-out bus the processor controls all information transfers to and from the periphernl
equipment. A priority interrupt system in the processor allows a device to signal when it needs
service so that the processor is free during the actual input-output time. One of the units that
may be connected to the bus is the Type 167, an autonomous drum processor which supplies
direct memory access for high-speed devices such as drums, discs, magnetic tape, and displays.
In addition to its in-out bus connection to the central processor, the drum processor is itself
connected to the memory system via its own memory bus, and has its own smaller scale in-out
bus through which it may govern up to three input-output control units. Although the central
processor must provide initial conditions and commands, the drum processor then operates inde-
pendently, so large blocks of information may be transferred between an in-out device and a

memory without reducing central processor efficiency.



All PDP-6 memories store words of 36 bits but may be of different sizes and speeds. Core mem-
ories usually have core banks of 8192 or 16,384 words. Cycle times for reading from and

writing back into memory are typically 2 and 5 psec, although in each case access time is much
shorter: when reading, the processor need wait only until data is available; when writing, only
until data is accepted. A fast flip-flop memory, with access time less than 1/2 psec, is normally

used instead of the bottom 16 locations in core.

The instruction format allows the basic instructions to address one of 262, 144 locations in mem-
ory for an operand, one of 15 index registers for modifying the memory address, and one of

16 accumulators for a second operand. Instruction results may be stored in an accumulator, in
memory, or in both. In-out instructions govern the transfer of data in both directions over the
in-out bus, the transfer of control information, including priority interrupt channel osﬁignments,
to the peripheral equipment, and the gathering of status information from that equipment. In
addition to addressing a memory location and an index register, an in-out instruction may ad-

dress one of 128 devices, two of which are the priority interrupt system and the processor itself.

For further information on the overall system, refer to PDP-6 Programming (DEC publication K-06),

which also describes system software and discusses programming for the processor and most in-out
devices. Maintenance documentation for the system is provided by a series of manuals. This
one discusses system maintenance for the Type 166 Arithmetic Processor and several common in-
out devices, others cover the several types of memories that may be used in a PDP-6 memory
system, and still others treat the drum equipment, magnetic tape equipment, DECtape, and other
in-out devices. A separate circuit manual discusses circuit maintenance and describes most
standard circuits including all those used in the equipment described in the present manual and
all logic circuits used in the memories. Descriptions of specialized circuits, such as those asso-
ciated with the core stack, reading and writing on magnetic tape, and the like, are included in

the appropriate system manuals.
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CHAPTER 1

INTRODUCTION

The Type 166 is a general-purpose central processor that performs all of the arithmetic, logical,
executive, and internal data transmission operations in a PDP-6 system. It also controls all
transfers of data between memory and peripheral equipment, although in many cases it may
provide control merely by supplying system commands and initial conditions to an in-out pro-
cessor. It contains two bus interfaces, one for connection to memory, the other to the input-

output system.

Except for certain control information held permanently in the processor, the state of the pro-
cessor resides entirely in memory. The only information carried over by the processor from one
instruction to the next is the program count, flags, and information for a user mode which allows
a number of programs, each restricted to a definite area in core, to share computer time. Be-
sides operating on a stored program, the processor must retrieve all operands for every instruction,
and all data and results of computations are stored at the completion of an instruction. Thus

the arithmetic registers in the processor contain information only during actual processing and
the registers used for address modification are the same as those used for computations within a
single instruction. The accumulators, 15 of which double as index registers, actually occupy
the bottom 16 memory locations and are usually contained in a fast memory. Most basic in-
structions have three addresses which select an accumulator, a memory location (which may be
another accumulator), and an index register for memory address modification. All instructions
may use multiple-level indirect addressing and some may use a single address to call two adja-
cent accumulators for processing double-length operands. With a single instruction, the pro-
cessor is capable of performing a full-word or half-word transfer, a block transfer, or the
manipulation of a character (byte) of variable size. The processor includes hardware for per-
forming Boolean functions, shift operations, both fixed- and floating-point arithmetic, jumps,

logical and arithmetic comparisons, and a variety of modification and testing instructions.

In addition to standard instruction operations, the hardware also includes a program-assignable

priority interrupt system through which an external device or an internal condition can interrupt
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the normal program sequence; a number of flags that allow checking of various conditions and
facilitate double-precision arithmetic; and memory protection and relocation registers that allow

an executive routine to assign a specific area in core to each user program.

1.1 OPERATING SPECIFICATIONS

All timing in the Type 166 is completely asynchronous, and all processing is done in parallel
except for a few extremely fast serial functions, such as carry propagation in the main arith-
metic register and in dc adders that relocate memory addresses. Information handled by the

processor has the following characteristics:
Word Length 36 bits

Instruction Format

Basic Instruction code, 9 bits
Accumulator address, 4 bits
Indirect, 1 bit
Index register address, 4 bits
Memory address, 18 bits

Input-Output Instruction code, 6 bits
Device code, 7 bits
Indirect, 1 bit
Index register address, 4 bits
Memory address, 18 bits

Internal Number System | Binary

Negative Representation 2's complement

Number Format

Fixed Point Sign, 1 bit; magnitude, 35 bits

Floating Point Sign, 1 bit; exponent, 8 bits;
fraction, 27 bits

The time required for execution of any particular instruction varies tremendously because of
the completely asynchronous operation. The basic operations, such as addition in the arith-

metic register or a sequence of shifts controlled by the shift counter, are performed by built-in
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hardware subroutines. These are called whenever necessary either from the main instruction
sequence or by special sequences such as byte manipulation, block transfer, floating add-
subtract, divide, etc., which are in turn entered from the main instruction sequence. Even

at the level of individual events, the execution time may vary; for example in the basic
addition or subtraction subroutine, the complement function and the parital addition each require
100 nanoseconds but carry propagation, which is serial, depends upon the number of carries
needed. Similarly on a larger scale, multiplication and division are performed by a series of
additions and subtractions and the time required for such a major sequence depends upon the
number of times it must call various subsequences. Most processor control functions involved

in the retrieval and setup of instructions, and retrieval and storage of operands take a negligible
amount of time when compared to memory access time. Exact instruction execution times may
be determined from the flow charts included in Chapter 4. For each memory access, the pro-
cessor must first check for memory protection and relocation and then wait until the addressed
memory is free; the time required for access once the memory is free depends upon the type of

memory .

The processor must set up all transfers of control information and data to and from the peripheral
equipment; but since a device can signal the processor by means of the priority interrupt system
when it requires service, no processor time need be lost in waiting, and processor and peripheral
equipment can operate in parallel. Every transfer over the |/O bus does, however, require

2.5 microseconds. The four |/O devices included in this manual have the following operating

specifications.
Paper Tape Reader 400 8-bit characters per second
Paper Tape Punch 63.3 8-bit characters per second
Keyboard-Printer 10 8-bit characters per second
Card Reader 200 80-column cards per minute

1.2 PHYSICAL CHARACTERISTICS

Most DEC equipment is housed in steel bays with aluminum control panels. The arithmetic
processor with its console uses four such bays bolted together. The front of each bay can

accommodate up to twelve 19 inch By 5-1/4 inch_panels lettered A to N from top to bottom
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(skipping G and I). Bays 1 and 2, which house the bulk of the processor logic, each have an
indicator panel at the top with the remainder of the bay occupied by eleven standard logic
panels mounted behind double doors. Each mounting panel can hold up to 25 DEC system plug-
in modules numbered from left to right when viewed from the front. At the center of bays 3
and 4, which hold the console, is the main operator control panel. Usually, a tape reader

is mounted in the left console bay just above the control panel and a paper tape punch at the
top (the front panel of the drawer containing the punch has an opening for removing fan-folded
tape). At the top of bay 4 behind a metal cover are the marginal check controls and an indi-
cator panel for the standard in-out equipment. The remaining space above the control panel
may be used for DECtapes, displays, or other equipment. The space below the console table
can hold up to eight logic mounting panels, two of which are used for the arithmetic processor;
the remainder may be used to hold the control logic for some of the in-out equipment. Inside
the double doors at the back of each bay is an inner plenum door, on which are mounted the

required power supplies and power control panels.
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Physical dimensions are as follows:

Arithmetic Processor

Height 69-1/2 inches

Width 100 inches

Depth 60 inches (75 inches with rear plenum doors
open)

Weight 1300 pounds including tape reader and punch

Keyboard-Printer, Teletype Model 35 KSR

Height 38-1/2 inches
Width 20 inches
Depth 24 inches
Weight 151 pounds

Card Reader, Burroughs B122

Height 50 inches
Width 48 inches
Depth 29 inches
Weight 200 pounds

Intake fans at the bottom of every bay cool the logic modules by blowing air out between them.
All equipment described in this manual can operate in an ambient temperature range from 50°
to 100°F. However, if the installation includes temperature sensitive equipment such as
magnetic tape, air conditioning is required. The floor should be capable of supporting approx-

imately 150 pounds per square foot.

1.3 ELECTRICAL CHARACTERISTICS

All PDP-6 equipment uses standard line power at 105 to 125 vac, 60 cycles, single phase.
All power cables use Hubbell Twist-Lok connectors; both cable and connector are rated at
30 amperes. The arithmetic processor, console and console-mounted standard in-out equipment

together use two lines and two power controls. The main power control is usually a Type 829
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or Type 835; it provides ac to all of the power supplies for the processor logic and any in-out
control logic mounted below the console operator panel. The dc voltages required by the logic
are +10 and -15 volts. Some power supplies provide both, others provide only the negative
voltage. In some cases, two =15 volt supplies may be connected in series to provide - 30 volts
to solenoid drivers for in-out equipment. One -15 volt line turns on a secondary power con-
trol (Type 811 or 834) that provides ac to the motors for the reader, punch, and keyboard-
printer. For the punch, ac is fed through a Type 823 Power Control (mounted directly on the
punch) that allows the processor logic to control application of punch motor power. Another
-15 volt signal is applied to external power controls (usually Type 811 or 834) via the in-out

bus to turn on the peripheral equipment. Still another =15 volt signal turns on the power con-

trols (usually Type 836) in the memories. This last dc turnon signal is not sent via the memory
bus; instead it is included in a small bus that also carries marginal check voltages from a var-

iable power supply located in the console.

Current consumption of the equipment described in this manual is as follows:

Arithmetic Processor, including console and 25 amperes, 1900 watts
console-mounted in-out logic Turnon surge, 40 amperes

Tape Reader 1.8 amperes, 150 watts
Turnon surge, 2.8 amperes

Tape Punch 1.85 amperes, 65 watts
Turnon surge, 9 amperes

Keyboard=-Printer 2.6 amperes, 140 watts
Turnon surge, 7 amperes

Card Reader 1.5 amperes, 145 watts
Turnon surge, 7 amperes

All PDP-6 logic is solid state; transistors and diodes operate on static logic levels of 0 and - 3 vdc
(tolerances are 0 to -.3 volts and - 2.5 to - 3.5 volts). Most logic modules include an internal
supply to derive the negative logic level from the =15 volt input. PDP-6 logic uses pulse timing
almost exclusively. Pulses are of either polarity depending upon gate input requirements.

Pulse amplitude is 2.5 volts from ground with tolerances of +2.3 to +3.0 volts and - 2.3 to

- 3.5 volts. Pulses at inverter outputs may be from ground to - 3 volts or vice versa. Pulse

widths may be 1 microsecond or 400, 70, 40, or 25 nanoseconds depending upon module type

and application. Occasionally, an input may be triggered by a level transition instead of a

pulse.
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CHAPTER 2

SYSTEM FUNCTION

The logical configuration of the Arithmetic Processor Type 166 is shown in Figure 2-1. Large
blocks at the top and bottom represent the buses that connect the processor to the input-output
equipment and t'he memory; the figure shows all connections to these buses, both data and

control (each connection is labeled with the number of physical lines required). Between the
buses is a block diagram of the processor showing all registers, with transfers among them
represented by lines connecting the register blocks. Each block is labeled with both the name

of the register and the number of bits. . The registers vary considerably in size. Data registers
have 36 bits, those that handle only addresses have 18. Registers that handle floating-point
exponents have 9 bits; those that control memory protection and relocation have 8; 7-bit registers
govern the requesting and granting of program sequence breaks through the priority interrupt
system. The figure does not show the control lines within the processor, but all control pulses
for each register are written beside the corresponding block. For an explanation of signal names,

refer to the discussion of signal notation in Chapter 4.

The heart of the arithmetic processor is a set of three full-size registers which handle all data
transfers and in which are performed all logical and arithmetic operations. These are arith-
metic register AR, multiplier-quotient register MQ, and memory buffer MB. All transfers
between processor and memory are made through MB, transfers between processor and peripheral
equipment are made via AR. At the console, the operator may communicate with the system
through a register of data switches for sending information in via AR and a register of memory
indicators for displaying memory words via MB. MB takes part in all data transfers, but in
logical and arithmetic operations it usually plays a passive role by holding an operand which
is combined with the operand in AR, the result appearing in AR. MQ serves primarily as an

extension of AR for handling double-length operands.

The processor performs a program by executing instructions retrieved from consecutive memory
locations as counted by the program counter PC, although the program may change its own

sequence by changing the address in PC. To gain access to memory for retrieval or storage,
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the processor requests a memory cycle and supplies an address over the bus from memory

address register MA. This register also serves as a control link to the operator in that the
system receives addresses via MA from the address switch register on the console. When a
word is retrieved at MB as an instruction, its left half passes to the instruction register IR which
controls further retrieval of index registers and accumulators, and which is decoded to govern
the actual execution of the instruction. The right half in MB is the memory operand address,

which may be modified in AR by the contents of an index register.

The operands are brought from memory to AR, MB, and sometimes MQ, for whatever operations
are necessary for the execution of the instruction. In some of the more complicated operations,
these full-size registers are aided by the shift counter SC and the floating-exponent register FE.
SC is used for subsidiary computations such as the calculation of the exponent in floating-
point arithmetic, and it also controls the count of any operation performed by the repetition

of basic steps in the three main registers. FE is used only for temporary storage of preliminary

results while SC is controlling the remainder of the operation.

Besides the registers that enter into the regular execution of the program and its instructions,
the processor contains an executive system and a priority interrupt system. The first contains
two registers for memory protection and relocation. When the processor is in executive mode,
all instructions and al| memory are available to the program. In user mode, a number of pro-
grams share processor time with each program restricted to a specific area in core, and certain
instructions are illegal. All programs are written using the lower addresses but these are not
supplied directly to memory from MA. In requests for memory access, the address in MA is
compared with the contents of the memory protection register PR. The number in this register
defines the size of the block available to the program and prevents it from addressing any
location outside its assigned area. The address is then changed to one within the assigned

area by adding a constant contained in the relocation register RLR to the address in MA.

The priority interrupt system allows peripheral devices and certain conditions internal to the
processor to interrupt the normal program sequence. There are seven interrupt channels through
which sequence breaks are allowed on a priority basis as governed by three control registers.
The first register allows the program to turn individual channels on and off; the second syn-

chronizes break requests to internal processor timing and assigns the break to the highest
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priority channel that has been recognized; the third holds the break and prevents further inter-
_ ruption by lower priority channels. A break is executed by performing the instruction in a
particular memory location associated with each channel. The assignment of channels to de-
vices is entirely under program control; the program may assign several devices to a single
channel or give a device no assignment. One of the devices to which the program may assign
a channel is the processor itself. For this purpose the processor has an 1/O interface con-
taining a number of flags that allow internal conditions to interrupt the sequence; the flags
may be sensed and controlled by the program. Through this interface, the processor may also
bring information in from the console DATA switches orsupply memory protection and relocation

information to the executive system.

Timing for all operations in the processor is supplied by asynchronous pulse chains. Processor
operation is initiated by means of a special key cycle that supplies timing for events associated
with operator intervention at the console and provides entry into the main sequence. When the
processor is running, timing is supplied by the main sequence which is repeated for each in-
struction. The main sequence uses a hierarchy of other sequences—built-in hardware subroutines—
which can be called directly by the main sequence or by any sequence of higher rank. Thus

the processor operates using many levels of nested sequences; each sequence stops upon calling

a lower ranked sequence and restarts upon return from it (although the restart need not be at

the point of departure). For example, in a block transfer, the main sequence calls the block
transfer subroutine which in turn calls others to perform the necessary arithmetic and obtain

memory access.

2.1 PROGRAMMING

The first 16 locations in memory function as accumulators, index registers, or ordinary memory
locations. Their particular functions are determined entirely by the processor under program
control, but they differ from the remainder of the memory system only in that they are usually
contained in a fast memory. All 16 locations may be used as accumulators or ordinary memory,
but only locations 1 to 17 may be addressed as index registers because a zero index register
address specifies no indexing. Since ordinary memory addresses are 18 bits, only the informa-

tion contained in the right half of an index register is actually used for address modification.

2-3



In systems that include a fast memory, it replaces the first 16 core locations (which normally
hold a readin loader) for normal processor operations—operations in the reading area can be
initiated only from the console; and once an instruction has been taken from outside this area,
it again becomes inaccessible to the program. In all systems locations 40 and 41 are used for
programmed operators, 42 to 57 are used by the priority interrupt system—a programmer should

be wary of using these locations for other purposes.

The logic describtions contained in this manual assume that the reader is completely familiar
with the processor instructions, all of which are described in detail in PDP-6 Programming
(K-06). That manual describes the instructions in terms of elements available to the program,
i.e., by their effect on accumulators, memory locations, flags, and control registers. For
convenience Table 4-1 lists the mnemonic and octal codes for all instructions. The remainder

of this section describes the Type 166 number system, instruction format, and flags.

a Number System

For arithmetic computations the hardware is capable of handling numbers in two formats, fixed
point and floating point. Both formats use the full 36-bit word; bits are numbered 0 to 35 from
left to right. In all numbers, bit O represents the sign, O for positive, 1 for riegcfive. In
floating point, bits 1-8 represent an exponent, bits 9-35 represent a fraction. In fixed point,
bits 1-35 represent magnitude, which is usually interpreted as a full fraction with the binary
point between sign and magnitude or as an integer with the binary point to the right of bit 35.
Of course, the assumed position of the point has no effect on the processor and a program may
adopt any consistent point convention. However, the fixed-point hardware does include special
provisions to facilitate handling of integers in multiplication and division because these opera-

tions make use of double-length numbers.

In ordinary arithmetic, the negative of a number is usually formed merely by changing the
sign. This notation is inconvenient for a machine so hardware arithmetic represents negatives
by 1's and 2's complements. If x is an n-digit binary number, its 2's complement is 2" - x
and its 1's complement is 2" - 1) - x or equivalently (2" - x) - 1. Subtracting a number

from 2" - 1 (i.e., from all ones) is precisely equivalent to performing the logical complement,

i.e., changing all zeros to ones and all ones to zeros. Therefore, to form the 1's complement,
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the processor uses the logical complement—usually referred to merely as the complement—and

to form the 2's complement it complements and adds one to the result.

In 1's complement notation, one can read a negative number by attaching significance to the
zeros instead of the ones. For 2's complement notation, this simple interpretation is not
possible because adding one to the logical complement changes at least the final bit and in
fact changes bits as far as the carry propagates. Thus in 2's complement notation, one can
read a negative 'number by attaching significance to the rightmost 1 and attaching significance
to the zeros to the left of it. A 2's complement system has the following characteristics. A
number all ones represents -1. All even numbers both positive and negative end in 0. Ina
negative integer, ones may be discarded at the left. In a negative fraction, zeros may be
discarded at the right; as long as only zeros are discarded, the number remains in 2's comple-
ment form because it still has a 1 which possesses significance. However if a portion including

the rightmost 1 is discarded, the remaining part of the fraction is now a 1's complement.

in the Type 166, the 2's complement is used to represent negatives for both fixed and floating
numbers. In a positive fixed-point number, the sign bit is 0 and bits 1-35 represent magnitude
in normal binary fashion. In a negative, the sign is 1 and the remainder of the word contains
the 2's complement of the magnitude of the corresponding positive number. Since 0 is con-
sidered one of the positive numbers, the magnitude of the largest positive number is one less
than fhe'magnifude of the largest negative number. Fixed-point integers thus have a range
from --235 to 235 - 1; for fractions, the range is -1 to 1 - 2~ 35.

The floating-point hardware interprets a computer word as containing an 8-bit exponent and

a 27-bit fraction. For a positive number, the sign is 0, as before; but the contents of bits
9-35 are now interpreted only as a binary fraction and the contents of bits 1-8 are interpreted
as an integral exponent in excess 128 (2008) code, i.e., exponents from -128 to +127 are
represented by the binary equivalents of 0 to 255. Floating-point zero and negatives are
represented in exactly the same way as fixed point: zero by a word containing all zeros, a
negative by the 2's complement. The negative thus has 1 for its sign and the 2's complement
of the fraction, but since every fraction must contain a 1 unless the entire number is 0 (see
below), it has the 1's complement of the exponent code in bits 1-8. Since the exponent is

in excess 128 code, an actual exponent x is represented in a positive number by x + 128, in
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a negative number by 127 - x. The program, however, need not concern itself with these
representations because the hardware compensates automatically. For example, for the instruc-
tion that scales the exponent without affecting the fraction, the hardware interprets the scale
factor in standard 2's complement form but produces the correct 1's complement result for the

exponent.

In all floating-point operations, the hardware assumes that all nonzero operands are normalized
and always normalizes a nonzero result. Floating-point numbers are considered to be normalized
if the magnitude of the fraction is greater than or equal to 1/2 and less than 1. The test for
normalization is thus that either the sign bit differs from bit 9 or bits 9-35 contain 400 0000008,
the latter being required for the special case of the fraction -1/2, in which bits 9 and 0 are
equal. Floating-point numbers thus have a fractional range in magnitude from 1/2 to 1-27 27
and an exponent range of -128 to +127. Note that the signed fractional part -1 (i.e., a 1 in
bit 0 and all zeros in bits 9-35) satisfies the test for normalization but the hardware always
changes it to -1/2 and adjusts the exponent appropriately. The hardware may not give the

correct result if the program supplies an operand that is not normalized or that has a zero

fraction with a nonzero exponent.

The characteristics of 2's complement notation require additional precautions in floating-point
operations and fixed-point fractional multiplication because these have double-length results.
The proérammer must remember that discarding the low-order part of a double-length negative
leaves the high-order part in correct 2's complement form only if the low-order part is null.

In floating point, the programmer may request rounding, which automatically restores the

high-order part to 2's complement form if it is negative.

b Instruction Format

All but the input-output instructions and programmed operators use a basic format with bit

assignment as follows:

0-8 Instruction code
9-12 _ Accumulator address
13 | Indirect bit

14-17 X Index register address
18-35 Y Memory address
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Bits 0-8 determine which operations are executed for the instruction. Bits 912 and 14-17

each address the first 16 memory locations which serve as accumulators and index registers.

On some occasions, bits 9-12 are used for control purposes instead of addressing an accumulator,
for example to address flags. The effective address E of an instruction depends on the values

of I, X, and Y. The contents of index register X (zero X specifies no indexing) are added to

Y to produce an address. If | is O, this address is used as the effective address; if | is 1, this
address is indirect and is used to retrieve another word. The new word is processed in exactly
the same manner as above, i.e., X and Y are used to determine the effective address if | is

0; otherwise, they are used to retrieve another word. The process continues until a word is
found in which | is 0. This calculation using |, X, and Y is carried out for all instructions

even when E is to be used as an operand or control information instead of a memory address.

IOT instructions (designated by three ones in bits 0-2) have the following bit assignment:

0-2 111

3-9 Device code

10-12 Instruction code

13 | Indirect bit

14-17 X Index register address
18-35 Y Memory address

Bits 3-9 address an /O device out of a possible 128, bits 10-12 specify one of eight 10T in-
structions; the processor and the priority interrupt system are considered devices. As in the
basic format, 1, X, and Y are used to calculate E, which is used as an address in some cases,

as control information in others.

A programmed operator is designated by three zeros in bits 0-2. Whenever such an operator
appears in the program, the processor calculates an effective address from bits 13-35 of the
instruction word in the usual manner but it does no further decoding; instead it stores the con-
tents of the instruction register in the left half of location 40 and the calculated effective
address in the right half, and then executes the instruction contained in location 41 (which

Is usually a JSR to an appropriate subroutine).
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¢ Program Flags

The processor contains a number of flags that may be sensed by the program. Flags that are

set -automatically, e.g., by error conditions, usually cannot be set by the program; whereas,

flags that allow the program to enable specific operations can always be both set and cleared.

Some flags are governed primarily by jump instructions but most are contained in the processor

I/O interface and are governed by |OT instructions. Any flag listed as being able to cause

a priority interrUpt does so on the channel assigned to the processor provided the priority inter-

rupt system is active.

AR CRYO, AR CRYI

AROV
AROV ENABLE

PC CHG
PC CHG ENABLE

PDL OV

NON EXIST MEM

CLOCK
CLOCK ENABLE

These flags are set by carries from the corresponding bits in AR.
They are useful primarily for double-precision arithmetic and in

correcting a result that has overflowed.

The overflow flag may be set by arithmetic operations in a variety
of instructions. It indicates a loss of information, an incorrect
result of a computation, or failure of the processor to perform a
computation. Setting OV causes a priority interrupt if the enable

flag has been set by the program.

The PC change flag is set when the program sequence is changed
by a skip or jump instruction. Setting PC CHG causes a priority
interrupt if the enable flag has been set by the program.

The flag is set and triggers a priority interrupt when a pushdown
or pullout instruction has gone outside of the core area assigned

to the pushdown list.

This flag is set and triggers a priority interrupt when the memory

system fails to respond to a memory request.

The clock flag is set every sixtieth of a second by a signal from
the main power control. It causes a priority interrupt if the

enable flag has been set by the program.



USER As a flag, the sole function of USER is to indicate to the execu-
tive routine whether a user program was interrupted, either by a
priority interrupt or UUO (the executive routine must service all
priority interrupts) or by the trapping of an illegal instruction
(instructions that are illegal during a user program are a JRST
that attempts to dismiss an interrupt or halt the computer, and any
IOT). The execution of a JSR during a Pl cycle or following a
UUO or the trapping of an illegal instruction clears USER.

As a control flip-flop, USER implements the restrictions on user
programs. Thus in order to restrict the operation of a user pro-
gram, the executive routine must set USER when it transfers
control to the program. If the sole purpose of an interrupt is to
service a block 1OT and there is no overflow, USER stays set and

control automatically reverts to the user program after the 10T.

ILLEG OP An attempt by a user program to address a location outside of its
restricted area in core sets this flag causing a priority interrupt.
At the time of the interrupt, PC may point either to the location
of the instruction which tried to use the address or to the location

following this instruction.

Some subroutine-calling jump instructions store what is referred to in the logic as "miscellaneous
bits" in the left half of the location that receives the program count. In returning from the
subroutine, the program may use a jump that restores the bits to their original states. Included
in the miscellaneous bits are the two carry flags, overflow, PC change, user, and a control
bit that is used in a special case for returning from a priority interrupt. The four byte manip-
ulation instructions that load or deposit a character require two main sequences for their
execution, and a priority interrupt can occur between them. The first part fetches and, if
necessary increments the pointer; the second operates on the byte. If the program jumps to

a subroutine for an interrupt that occurs between the two parts, bit 4 is set in the PC store
iocation. Then in the subroutine, the program may determine whether a character operation
was interrupted; and upon the return, the stored bit ensures that the interrupted instruction,

which must be restarted, will not reincrement the pointer.
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2.2 MAIN SEQUENCE

This section is devoted primarily to the manner in which the processor main sequence executes
an instruction and sequences the program, but it also treats the control elements that allow
entry into the main sequence from the console and the executive system which controls the

sharing of processor time by user programs.

a Console Control

Operator control over the processor is exercised through two types of logical inputs associated
with the keys and switches. Inputs from the switches are control levels that may provide data

or addresses for use by the processor or gates to govern specific processor events. The Keys

are momentary contact switches that trigger specific events or initiate sequences although the
level output of a key may also be used as a gate for events associated with the key action. The
complete effect upon the computer of all keys and switches is described in detail in Chapter 3,
Operation; we are concerned here only with the way in which the keys affect processor operation,

in particular the main sequence.

The logic associated with the console keys consists primarily of a key cycle time chain and a
control flip-flop RUN. Normal processor operation is initiated by triggering the main sequence
and setting RUN—the 1 state of this flip-flop allows the completion of each main sequence to
trigger the next so that the processor executes one instruction after another. Whenever RUN

is cleared either from the console or by the program, operation ceases at the end of the cur-
rent main sequence. The stop keys can, of course, affect the computer while it is running, but
most keys that initiate events cannot; only the initiating keys trigger the key cycle. For those
key functions that make use of the main sequence, the key cycle performs the necessary pre-
liminary operations, such as transferring information in from the console data and address
switches; but for those functions that do not use the main sequence, the key cycle controls

the entire operation.

The operafor may place the processor in normal operation by means of the START, READ IN, and
INSTRUCTION CONTINUE keys. For these functions, the key cycle sets RUN and triggers the main
sequence. The INSTRUCTION STOPkey halts the processor at the end of the current main sequence

by clearing RUN. The processor may also be stopped at the end of any memory access by means
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of the MEMORY STOPkey, which disables the return from the memory subroutine to the waiting
sequence. In this case, the processor is still "running" and normal operation may be resumed
through the MEMORY CONTINUE key which simulate amemory subroutine return. The operator
may also deposit information in the memory location addressed by the ADDRESS switches or
examine the contents of that location while the processor is running. For these two console
functions, a single key cycle is merely inserted between two main sequences. For the remain-
ing functions, the processor cannot be running, i.e., RUN must be 0. The EXECUTE key causes
the processor to execute as an instruction the word contained in the DATA switches. For this
instruction, the key cycle triggers the main sequence but does not set RUN, so the processor
stops when the instruction is complete. There are also two keys that allow the operator to
examine or deposit information into a sequence of consecutive memory locations without ad-
dressing them individually. Each such examine or deposit requires a key cycle and these

functions cannot be performed unless the processor is stopped.

For maintenance purposes, the console has a REPEAT switch. When this switch is on, any key
function can be repeated at a rate determined by a pair of speed controls. The logic enables
this by having the key cycle retrigger itself through a delay whose interval is determined by
the speed setting.

b Instruction Execution

Most instructions are executed by the five cycles that comprise the main sequence: instruction,
address, fetch, execute, and store. Each main sequence begins when the instruction cycle
requests memory access to retrieve an instruction from the location specified by the program
counter. Upon receiving the instruction, the processor enters the address cycle and performs
the effective address calculation as outlined in 2.1b. If an address is indirect, a new address
word is retrieved from memory and the cycle begins again. After repeating the cycle as many
times as is necessary to produce the effective address, the processor goes on to the fetch cycle
to retrieve the necessary operands. If an accumulator is specified, it is retrieved first and sent
to AR. If the instruction uses a double-length operand, a second word is fetched from the next
consecutive accumulator (with location 0 being taken as following location 17) and sent to
MQ. In some instructions, an extra word must be retrieved from the memory location addressed

by either the right or left half of the addressed accumulator. This type of operand is also sent
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to MQ. Finally the processor fetches the memory operand as specified by the effective address
and leaves it in MB. This last fetch is skipped if E is to be used as control information, an

operand, or a jump address.

After fetching the operands, the processor enters the execute cycle in which it performs
whatever logical, arithmetic, or control functions are necessary to carry out the instruction.
This cycle also increments the program counter by one so that it points to the next instruction
in normal sequence. [f a jump or skip is being performed, PC is changed following the count.
Finally the processor enters the store cycle to deposit the result, which is usually contained
in AR. For most instructions, the result may be deposited in an accumulator, in memory or in
both as specified by the instruction; for a double-length result, AR and MQ may be stored in

consecutive accumulators. The processor then returns to a new instruction cycle.

Although most instructions are performed by the sequence outlined above, there are many that
are performed by variations of it. The more complicated instructions are performed by special
sequences that are entered from the execute cycle and usually return to the store cycle. Some-
times a special sequence handles the storage itself and returns directly to the instruction cycle.
Other instructions must first fetch and operate on a pointer that provides information necessary
for the retrieval of the true operand; such instructions require in effect two main sequences.

A block transfer repeats the fetch and execute cycles once for every word in the block. When-
ever the execute cycle occurs more than once for a single instruction, the incrementing of the
program counter is inhibited in all but the final occurrence. In this way, PC points to the next
instruction only when the current one is bound to be completed before any interruption can

occur.

The actual form of the sequence and the operations carried out in it are determined entirely

by the instruction code as decoded from the instruction register. The codes are divided into
eightclasses according to the configuration of bits 0-2. If these bits contain 111, the instruc-
tion is in the special |OT format and 10T control decodes bits 10-12 to determine which of
eight instructions is specified. If bits 0-2 are 000, the instruction is taken to be a programmed
operator—there is no further decoding and the processor enters a special sequence from which
a subroutine must properly interpret the remainder of the code (and of the instruction word for

that matter). In the other six classes the remaining six bits are decoded by the hardware,
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primarily by the logic associated with IR. They may be decoded in a variety of ways depending
upon the instruction class. Occasionally, single bits are used to represent specific operations,
such as specifying the left or right half in a half-word transfer or whether fixed-point multiply
is fb interpret the operand as an integer or a fraction. In other cases, groups of bits are
decoded; for example in the Boolean class four bits determine which of 16 Boolean functions is
specified, the other two determine the mode of execution. In some cases, all six bits are

decoded to a single control level for an individual instruction that has no modes.

There are some instruction codes that are not used and are executed as no-ops; the unused octal
codes are those for which no mnemonic is listed in Table A4-1. Since most instruction codes
are divided into sets of bits that are decoded in different ways, it is possible for some com-
binations of mode and instruction to have no effect on the state of the computer and these may
be considered as no-ops. An obvious example is a full-word transfer that does not change the

operand and is performed in the self mode.

The way in which instructions are executed is also influenced by the requirements of the
priority interrupt system and the executive system. The interrupt channels are strobed at the
beginning of every instruction and address cycle; and if a request is discovered, the processor
honors it by entering a special Pl cycle in which it executes the instruction in the location
corresponding to the channel being serviced. For a Pl cycle, the processor starts a new main
sequence and executes it in the normal fashion except that the address supplied to MA for
instruction retrieval comes from a channel address encoder in the Pl system rather than from

PC, and the strobe is disabled so that the Pl cycle cannot itself be interrupted. The instruction
executed in a Pl cycle must either do an |/O data transfer or transfer control to a subroutine
for further service. If the data transfer requires no further service, the processor automatically
returns to the interrupted instruction; if further action is required, a second Pl cycle is executed
so that control can be transferred to a subroutine before honoring any other interrupt. If con-
trol is transferred to a subroutine, the interrupt is "held" so that the processor may again be
interrupted but only on a channel of priority higher than the one being held; the subroutine

is responsible for releasing the interrupt upon completion.

The executive system restricts processor operation in order to permit time sharing by several

programs. When running restricted (user mode), each program must operate within the area of

2-13



core assigned to it; an attempt to use an address outside of the assigned area causes a flag to
be set and immediately initiates an interrupt on the processor channel (the location to which
PC points depends upon the time within the main sequence that the illegal memory request
was made). The execution of a programmed operator (UUO) is unrestricted, but the locations
used by UUOs (40 and 41) are inaccessible to user programs; UUOs executed by user programs
always transfer control to the (unrestricted) routine responsible for overall system operation.
Besides restricting addresses, the user mode traps (as if they were UUOs) attempt to halt the
processor, dismiss an interrupt channel, or operate an |/O device. Instructions executed in

Pl cycles are unrestricted even if the interrupted program was running in user mode.

c Executive System

The executive system includes the 8-bit memory protection and relocation registers PR and RLR,
nets that monitor user instructions, and the user flag. These logic elements allow the processor
to be run in a restricted mode to permit time sharing of several user programs. A program that
runs unrestricted (the executive routine) must be responsible for overall system operation. The
executive routine is responsible for scheduling user programs (assigning core areas, entering
user mode, and transferring control to the current program, interrupting when its time is up),
for servicing all interrupts and UUO:s, for servicing all /O needs of user programs, and for
taking action when it receives control because a user program attempted to use an illegal

address or instruction or gave up control through a UUO.

Following power turnon, the processor is automatically in executive (unrestricted) mode, and
when it is not running, the operator may place it in executive mode by pressing the |/O RESET
key (this action also clears the /O equipment). During a priority interrupt cycle, the pro-
cessor runs unrestricted; but if a user program is interrupted, the user flag (which normally
implements the user restrictions) remains set. Thus unless one instruction suffices to service an
interrupt, the executive routine must within a Pl cycle clear the user flag to return the processor
to the executive mode and transfer control to one of its subroutines. Similarly, since all UUOs
are under executive routine control, the instruction in location 41 must be a JSR, which stores
and clears the user flag. The executive routine enters a user program by means of a jump which
sets the user flag (JRST with a 1 in bit 12). The return to a user program after an interrupt or

UUO may be made by means of a restoring JRST (a 1 in bit 11). This instruction restores all
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other flags to their original states and can set the flag but can never clear it. This prevents

a user program from leaving user mode as a result of an incorrect restoring JRST.

Each user program is assigned a block in core whose first location is an integral multiple of
2000 octal (since the executive routine must use locations 40 to 57 to service UUOs and
interrupts, 2000 is the lowest first address available for a user block); the block size is also
an integral multiple of 2000. A user program is restricted to addresses from zero to one less
than its block siie; if it attempts to use an address equal to or greater than its block size, the
illegal operation flag is set and an interrupt occurs immediately on the processor channel.

To assign a core area to a program, the executive routine uses a processor DATAO, which
loads PR and RLR, respectively, from bits 0-7 and 18-25 of the data word. Each time the
memory subroutine is called during a user program, the executive system tests for an illegal
address by checking that the address does not exceed C(PR) x 2000 + 1777; the size of the
block is equal to [C(PR) + 1] x 2000. At the same time the user address is relocated by adding
the block starting address to it; i.e., the address sent out on the memory bus is equal to
C(RLR) x 2000 + C(MA). Addresses O to 17 are never relocated, soall programs have access to
fast memory (note that this means that no user program ever uses the first 16 core locations in

its assigned block).

The user flag implements the restrictions on a user program by enabling the relocation and
protection circuits and enabling the nets that monitor user instructions. A user program may
not use a JRST with a 1 in bit- 9 or 10 (an attempt to dismiss an interrupt channel or halt the
processor) nor any IOT. These instructions are trapped by having their IR decoder outputs
drive the UUO command line when the processor is in user mode. As mentioned above, UUOs
are unrestricted, i.e., unrelocated location 41 is executed. Thus in user mode, an illegal

instruction is executed as if it were a UUO and thereby returns control to the executive routine.

2.3 ARITHMETIC LOGIC

The arithmetic part of the processor includes the three full-size registers AR, MB, and MQ,
the two 9-bit registers SC and FE, the time chains that execute the special sequence instruc-
tions and subroutines, and a subroutine interface through which connections are made from

the special time chains to the gating for the three main registers. Included in the AR part of
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the logic are four flags, AROV, AR CRYO, AR CRY1, and PC CHG. The states of these flags
are stored as miscellaneous bits and may be restored by a JRST; they may also be sensed for a

jump and cleared by a JFCL.

Transfers of full words or half words may be made between MB and AR, transfers of full words
between MB and MQ. MB may also receive PC, IR, or the miscellaneous bits for storage in

a UUO and in certain jumps. The two halves of a word can also be interchanged (swapped)

in MB. Althoug‘h the AND function of MB and AR can be formed in MB, it usually plays a
passive roll in logical and arithmetic operations by holding an operand which is combined with
an operand in AR. Associated with AR is a myriad of gates that implement the clearing or setting
of individual bits in a word according to a mask, the formation of the complement, OR, AND,
and exclusive OR logic functions, and the shifting of bits left or right. There is also a carry
function which can be triggered at any point in the register and produces an arithmetic carry

to the left; i.e., it complements the first bit, complements the second if the first changes from
1 to 0, and ripples to the left in this manner until it complements a 0 bit. If this carry chain

is triggered only at the register LSB, it adds 1 to the number represented by the contents of
the register. Some instructions use the left and right halves of a word to hold a word count

and an address; in order to allow indexing of both half words simultaneously, the carry chain
can be triggered at AR17 and AR35. Although this is used as two simultaneous index functions,
there is no break in the carry chain and an overflow from the right half can carry into the left:
hence the pair of index functions effectively adds 1000001 to AR. The above listed functions
are the only ones that can be performed directly—all others are executed by combinations of
them. |If following an exclusive OR, the carry function is triggered at a number of places in
the register (the particular places being determined according to the addition algorithm by the
previous configuration of the words in MB and AR), it generates the algebraic sum in AR of

the numbers originally in MB and AR. Negation (which always means arithmetic negation) is
performed by complementing and adding 1. In subtraction, the number in MB must be subtracted
from that in AR: for fixed point, the processor performs subtraction by complementing AR, then
adding and complementing the result; for floating point, MB and AR are switched and the sub-
trahend in AR is then negated so the result can be produced merely by adding. Multiplication

or division is a sequence of shifts with additions or subtractions interspersed.
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The third register, MQ, is used occasionally for temporary storage and there is a special case
in character operations where AR and MQ are shifted in parallel for control purposes, but
MQ serves primarily as a right extension of AR for handling double-length operands. For
actions on a pair of accumulators, the two registers are joined end to end and the double-
length operand may be shifted in either direction. Moreover, the opposite ends of both
registers may be joined to form a ring and the contents rotated in either direction. In multi-
plication, the multiplicand comes from AC and the multiplier is either C(E) or E, but when
performing the actual arithmetic operation, MB holds the multiplicand and the multiplier in
MQ controls the formation of partial products in AR. As bits of the multiplier are used and
shifted out of MQ, the low-order bits of the double-length product are shifted in. In division,
MQ holds the low-order half of the double-length dividend and as bits are shifted out to AR
for use by the division steps, bits of the quotient are shifted in at the least significant end.
At the completion of the computation, MQ contains the quotient and AR the remainder, but

the divide subroutine then switches their positions so the quotient can be stored in AC.

In floating-point operations, the exponent is first calculated in SC, whose gating provides
addition and indexing. In floating scale, the only operations performed are on the exponents.
For other floating-point instructions, the exponent is calculated in SC and then stored in FE
while SC is used to count the steps in the fixed-point part. Following computations, the
exponent is transferred back to SC in case it must be changed while normalizing the result,
and finally from SC it is inserted in the exponent part of AR. SC is also used to calculate the
position portion of a pointer for a character operation that increments, and from SC the new

position is inserted in the pointer in AR.

in addition to the registers, the arithmetic logic also includes the time chains and many con-
trol nets for executing the special sequences and subroutines. The basic subroutines, which
can be called from any higher level, are the AR subroutine group (which includes fixed-point
addition, subtraction, negation, and indexing in either direction), the SC addition subroutine,
and the SC shift-count subroutine which simultaneously counts SC and shifts AR and/or MQ
(for shift instructions both registers are shifted even though for a single operand only AR con-
tains information). For fixed add and subtract, the execute cycle calls the AR subroutines
directly. For other instructions, the processor switches from the execute cycle to a special

sequence which calls the lower rank subroutines and which usually returns to the store cycle.
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The sequences for character operations, block transfer, shift operations, and floating scale
call only the basic subroutines (including the memory subroutine). Floating multiply and
divide begin by calling the exponent calculate subroutine, then the multiply or divide sub-
routine whichever is appropriate, and both terminate by entering the normalize return sub-
routine which also follows the floating add-subtract sequence. The fixed multiply sequence
calls only the multiply subroutine; fixed divide does not make use of an intermediate special

sequence but instead enters directly into the divide subroutine.

2.4 MEMORY INTERFACE

The interface that connects the processor to the memory bus includes the memory address register
MA, memory buffer MB, user mode registers PR and RLR, memory indicator register MI, and

the control logic for the memory subroutine. A processor cycle or special sequence gains access
to memory by triggering the memory subroutine, which has entries for read, write, and read-
pause-write which must later be followed by a read-write restart. The calling sequence must
also supply an address to MA, and if information is to be written, a word to MB. If the pro-
cessor is in executive mode, the subroutine places the appropriate request levels on the bus
immediately, but for user mode there is a delay while the address in MA is compared with PR.
An illegal address causes the processor to go to the end of the current main sequence and sets

the illegal operation flag requesting an interrupt on the processor channel.

While the comparison against PR is being made, the outputs of RLR and the more significant
MA bits are applied to a set of dc adders whose outputs represent the sum of the two registers.
If the address in MA is legal, memory control puts the relocated address on the bus (low-order
bits are supplied directly from MA, high-order bits from the relocation adders). In the address
as received by memory, MA34 supplies the least-significant bit of the address within a single
memory and bit 35 is used as the LSB to select the bank. In this way, consecutive addresses
are interleaved—all odd addresses in one bank, all even in another. A switch at the memory
allows the operator to disable this feature when using a 16K bank (with 8K banks, addresses

must be interleaved).

The processor memory subroutine requests a memory cycle by calling memory as a subroutine,

and it must wait until the addressed memory accepts the request, which does not occur until



the memory is free and this processor has priority. The processor restarts upon receipt of an
acknowledgement signal from memory. If the request is for a write cycle, the processor need
wait only until the memory accepts the word in its own buffer; but for a read cycle, it must
wait until it receives the information read from the memory location. If the request is made

to fast memory, the write takes slightly longer than the read because there is no buffer. If

the request is not acknowledged within a considerable time compared to a memory cycle, the
nonexistent memory flag is set, requesting an interrupt on the processor channel. Following
the acknowledgement signal, the memory subroutine sends a restart pulse to the waiting
sequence unless the MEMORY STOPkey ison. Torestart the processor aftera memory stop, the
operator must simulate the return to the waiting sequence by pressing the MEMORY CONTINUE

key.

If the address in MA is the same as that in the console ADDRESS switches or the operator is
examining or depositing information from the console, the contents of the memory buffer are
displayed in the memory indicators. On a read Ml displays the information read, on a write

it displays the information to be written.

2.5 INPUT-OUTPUT SYSTEM

At the processor end of the |/O bus is the in-out transfer control logic that times the transfer
of data, initial conditions, and status over the bus by sending command signals (also over the
bus) to the device control units. Two of the devices on the bus are the priority interrupt
system located in the processor, and the processor itself whose 1/O interface contains a number
of flags through which internal processor conditions can request priority interrupts and which

allow the processor to check its own internal status with |OT instructions.

When the code 111 appears in bits 0-2 of the instruction register, the processor IOT control
decodes bits 10-12 to determine the specific |OT instruction. Upon reaching the execute
cycle, the processor switches to a special 1OT sequence that times the instruction operations
and generates the necessary command signals. Only four types of command signals are sent
out on the bus; these are for DATAI, DATAO, CONO, and STATUS, of which the first three

correspond to individual 1OT instructions. BLKI or BLKO requires signals on the bus only



after conversion to a DATA| or DATAO. CONI, CONSZ, and CONSO bring conditions in
and the latter two then perform tests; all three generate the STATUS command and affect the

peripheral equipment in exactly the same way.

While 10T control is generating the command signals, the device code from IR bits 3-9 is sup-
plied over the bus to enable a gate in the device with that assigned code; signals are sent to
all devices but only the selected device can respond. Data or initial conditions are supplied
from AR over thé bus to the selected device; data or status is supplied from the device over
the bus to AR. Among the initial conditions that CONO may supply to a device is a priority
interrupt assignment; CONO assigns a channel from 1 to 7 (zero is no assignment); and when-
ever the device requires service, it requests an interrupt by sending a request signal to the Pl
system on the bus line corresponding to its assigned channel. Every device except the Pl

system itself can receive at least one Pl assignment.

The Pl lines go to the priority interrupt system which contains three 7-bit registers, PIO, PIR,
and PIH, to control the seven channels. A given channel is governed by one flip-flop from
each register. The PIO flip-flop turns the channel on or off. The PIR flip-flop synchronizes
the request to the processor main sequence and in conjunction with the remaining PIR flip-flops
and a priority chain, generates an internal request signal for the channel that has priority.

The PIH flip~flop holds a break on the selected channel. There are also three control flip-flops
for the interrupt system, one that activates it, another that places the processor in a Pl cycle,
and a third that detects overflow from a block 1OT performed in a Pl cycle. By checking status,
the program can determine whether the system is active and which channels are on. The processor
strobes the Pl lines at the beginning of every instruction and address cycle, and synchronizes

a request signal from any Pl line provided that the corresponding channel is on. If a PIR is on
(@ CONO can set the PIR for a channel even if the channel is off), the processor enters a Pl
cycle and starts a new main sequence which honors the request by performing the instruction

in a particular memory location associated with the channel (if several PIR flip-flops are set,
the lowest numbered channel has priority). To retrieve the instruction, MA receives the address
from an encoder in the Pl system. The encoder outputs are connected to MA in such a way that
the channel number is doubled and added to 40. Thus for channel n, the processor executes

the instruction in location 40 + 2n (the Pl system uses locations 42 to 57, two for each channel).

This instruction should be either a JSR to an appropriate subroutine or a block 1OT to handle
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a data transfer. |f it is a BLKI or BLKO and there is no overflow, the processor returns im-
mediately to the interrupted program (another priority interrupt can occur before any instruc-
tion in the interrupted program is actually executed). [f there is overflow, the processor goes
into a second Pl cycle in which it performs the instruction in location 41 + 2n, which should
be a JSR to an appropriate subroutine. An instruction in a Pl cycle should be either a BLKI,
BLKO, or JSR; other instructions can be executed but they usually would have unfortunate
consequences for the program and could even hang up the processor. If there is a jump to a
subroutine, the break is held by setting the PIH flip-flop for the channel. This disables part
of the priority chain so that the break routine can be interrupted only by a channel of higher
priority. At the completion of the subroutine, the program should dismiss the channel so as

to reenable all lower priority channels as well as the channel on which the break occurred.

" Since a BLT may require considerable execution time, the Pl request lines are also strobed
following each word processed in the block. Whenever a request is discovered, the current
source and destination addresses are stored in the accumulator and the partial block is terminated.
The processor then begins a new main sequence as if to restart the block transfer, but is inter-

rupted instead.

The 1/O interface for the processor contains the flags discussed in 2.1¢c except for the four
flags associated with AR and the user flag in the executive system. However two of the AR
flags, overflow and PC change, can be set by the CONO that controls the interface flags and
supplies it with a Pl assignment, and these AR flags plus the user flag can be sensed as pro-
cessor status (although the user flag is meaningless as status since it is O by definition whenever
an 1OT can be executed). The flag set by an illegal user address, a pushdown list overflow,

or a request made to a nonexistent memory automatically requests an interrupt on the processor
channel. Setting the clock, overflow, or PC change flag can cause an interrupt only if it has
been enabled by a CONO. The program may also use data instructions for the processor:
DATAO loads PR and RLR for a user program; DATAI brings in information from the console data

switches.,

Control units for other devices each contain a data buffer for transfers between the /0O bus and
the device, an interface for control connections to the device, and an interface for control

connections to the bus. The size of the buffer depends upon the device. It is 36 bits if full
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words can be transferred, but smaller if the transfers must be single characters. For an output
device, the buffer can be loaded by DATAO; for an input device, DATAI gates the buffer onto
the bus. The interface between the control unit and the bus includes a control register and a
status register, which usually overlap and may be identical. For initial conditions, CONO
can provide at least one Pl assignment, place the device in operation, clear whatever error
flags there may be, and often provide additional information such as determining the mode of
operation or selecting an individual device from several that are connected to the same control
unit. Usually all control bits can be examined as status and often additional status signals are
supplied by the device. In most cases, the data instructions also perform certain control func-
tions. For input, the loading of the buffer with information from the device usually sets a

flag causing a priority interrupt. The processor responds with a DATAI that not only gates the
buffer onto the bus but also clears the flag and initiates the retrieval of more information. For
output, the transfer of information from the buffer to the device sets a flag causing an interrupt,
and the processor responds with a DATAO that not only supplies new information but clears the

flag and initiates the next transfer from buffer to device.

Included in this manual are the control units for four 1/O devices. The paper tape reader has

a 36-bit buffer but information may be retrieved in two modes. In alphanumeric mode, only
one 8-bit line is read from the tape; in binary mode, the control unit accepts data from holes
1-6 only in lines in which hole 8 is punched, but it assembles six such characters into a 36-bit
word. The punch handles only one character at a time but it still has two modes. In alpha-
numeric, it punches an 8-bit character; in binary, it punches a 6-bit character in holes 1-6,
never punches hole 7, and always punches hole 8. The keyboard-printer is actually two
independent devices with one Pl assignment. For output, the processor prints single characters;
for input, each character typed by the operator is placed separately on the bus. Characters
typed at the keyboard are not printed unless the program sends them back out. With the card
reader, only a CONO can initiate operations but only one CONO is required per card because
once a card is started all 80 columns are read. The program can specify whether an interrupt
shall be requested following each column or only when the buffer is full. In binary mode, all
twelve holes of each column are read and three columns are assembled into a word. In alpha-
numeric mode, the Hollerith character in a column is translated into a 6~bit character and

the control unit assembles six into a word. |If an interrupt is requested but is not serviced before

a new column is read, an error flag is set.
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CHAPTER 3

OPERATION

This chapter discusses the normal operation of the arithmetic processor, reader, punch, Tele-
type, and card reader; some maintenance information is included, but the detailed discussion
of operation for maintenance purposes is in Chapter 9. Although this chapter is relatively self-
contained, it is recommended that the reader first familiarize himself with the functional organ-

ization of the equipment as presented in Chapter 2.

3.1 CONTROL PANELS

This section describes the function of the controls and indicators that are readily accessible to
the operator; those mounted behind the doors of the bays are described in 9.1. All controls
for normal operation of the processor, reader, and punch are on the main operator panel at the
center of the console; this panel also contains most of the processor indicators. The panels at
the top of bays 1 and 2 contain only indicators, most of which are for maintenance purposes.
Indicators for the four in-out devices are on the upper part of the panel located behind the
metal cover at the top of the right console bay (the lower part of this panel contains the mar-

ginal check controls, which are described in 9.1).

The name used in the logic drawings for a register or control level is listed in parentheses
whenever it differs from the name engraved on the panel. When any indicator is lit, the
associated flip=flop is in the 1 state or the associated function is asserted. Indicators for logic
elements that retain their states over a considerable number of main sequences display useful
information while the processor is running, but most indicators change too frequently and are
therefore discussed in terms of the information they display when the processor has stopped.
For maintenance purposes, the processor may be stopped from the console after every memory
subroutine. Switches located inside the bay doors allow stopping after AR subroutines and
single stepping through a shift-count. However, the discussion here is limited to stops at the
end of a main sequence, i.e., at the completion of an instruction. This includes all pro-
grammed halts as well as the situation in which the operator latches down the INSTRUCTION

STOP key to run a program at slow speed stopping after every instruction.
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a Console Operator Panel

This panel contains indicators for most of the registers and control flip=flops that are of concern
to the operator and contains all of the operating keys and switches. The switches supply con-
tinuous levels and all but the rotary speed controls and the console lock are 2-position toggles
for which up is 1 or on. The keys are momentary contact levers that initiate or terminate oper-

ations, or produce an action only while held on.

Indicator RegLﬁers

INSTRUCTION (IR0-8) - Bits 0-8 of the instruction just completed. If the left three lights are

all off, the instruction is @ UUO and the remaining bits are defined by the program; if the left
three are on, the instruction is an IOT and the remaining lights display the first six bits of the
device code. Any other configuration of the first three bits indicates the basic format, for

which the register contains the instruction code.

AC (IR9-12) - For instructions using the basic format, these four bits are usually an accumu-
lator address, but for some instructions they are used for special purposes such as addressing
flags. In an IOT instruction the left bit is the LSB of the device code; the remaining three
bits specify one of the eight 10T instructions.

| (IR13) - This is the indirect bit, and it should always be off when the processor has stopped

at the end of an instruction.

INDEX (IR14-17) - Contains the address of the last index register used in the instruction just

completed. If the four lights are all off, there was no address modification in the final address

cycle.

MEMORY (M) - This 36-bit register displays the contents of the memory location associated

with any console examine or deposit operation. The lights may also be used to display any

desired location while the processor is running.

3-2



PROGRAM COUNTER (PC) - This 18-bit register contains the address of the next instruction

in the program.

MEMORY ADDRESS (MA) - On a programmed halt this 18-bit register indicates an address

one greater than that of the location containing the halt instruction. On an instruction stop
in slow speed operation, the register usually contains the address used for the last memory
access. However, if there was no storage, either in the store cycle or in a subroutine, it

contains the effective address, which may or may not be the address of the last memory access.

In addition to the above there are three processor registers located at the top of the in-out

panel (c below).

Switch Registers

DATA (DS) - This register allows the operator to supply a 36-bit word to the processor. The
operator may either deposit the word in memory or cause the processor to execute it as an in-

struction. The program may also read DATA with a DATAI for the processor.

ADDRESS (MAS) - By means of this 18-bit register the operator may specify address for use

with the operating keys and switches. Whenever the memory subroutine gains access to the
location specified by ADDRESS, the contents of that location are displayed by MEMORY.
For a read request MEMORY displays the word read; for a write request the word written is

displayed.

Control Indicators

RUN - Lit while the processor is running in normal operating mode, with each main sequence

triggering the next. When the light goes off, the processor stops upon completion of the cur-

rent instruction.

MEM STOP (MC STOP) - If this light goes on at the beginning of a memory subroutine, the

processor stops after memory access is completed because the subroutine fails to send a restart



pulse to the calling sequence. If RUN is also on, the processor can be restarted only by lifting

the MEMORY CONTINUE key. If RUN is off, other keys may be used but only MEMORY
CONTINUE restarts the interrupt key function.

Pl ON (PI ACTIVE) - Indicates that interrupt requests can be granted by the priority interrupt

system.

Pl ACTIVE (PIO1-7) - These lights indicate which Pl channels are on. The numerals below

the lights specify the channels for these and the following two sets of indicators.

Pl REQUEST (PIR1-7) - These lights indicate the channels on which requests have been synchro-

nized. The program can force a request even if a channel is not on; for a request from any

other source the REQUEST light can go on only if the corresponding ACTIVE light is on.

Pl IN PROGRESS (PIH1-7) - These lights indicate the channels on which breaks are currently

being held. Several lights may be on simultaneously, but while a given light is on, no higher-
numbered light may go on; a lower-numbered channel can interrupt following the Pl cycle(s),
and the channel that is actually being serviced is the lowest-numbered one whose light is on.
When a PROGRESS light goes on (following a jump to a routine for the break), the corresponding
REQUEST goes off and cannot go on again until PROGRESS goes off.

If a break is serviced by a block 1OT without overflow, the PIH flip-flop is set and cleared
within a single Pl cycle so REQUEST goes off without PROGRESS going on. If there is over-
flow, two Pl cycles are required; at the end of the first, PROGRESS will not yet be on and
REQUEST will still be on even though the break is being serviced. However, in this case the
Pl OV, PI CYC, and Pl REQ lights at the top of bay 1 will all be on. The lights act in this
way because PROGRESS can go on and remain on in a Pl cycle only if the instruction per-
formed is not an IOT. Thus a faulty program can hang up the processor in a Pl cycle, and the
only visual indication that the break is being held is that PI CYC and PI REQ will be on. For
example if the channel location contains a CONO, the processor will repeat the instruction

indefinitely with REQUEST on and PROGRESS off; PC will be static and will point to the next

instruction in the program.
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Operating Keys

In the right half of the operator panel is a row of eight 3-position switch levers, each of which
is two logical keys. The momentary contact, up and down positions of a given lever are the
on positions for the keys whose names are written above and below; the stable center position
is off for both keys. The two levers at the right end of the row control the reader and punch,
and these may be used at any time whether the processor is running or not. The other twelve
keys affect the processor, and of these, two are stop keys, the others are initiating keys (i.e.,
they trigger the key cycle). Although special considerations for individual keys are given below,
it is assumed throughout the discussion that the executive system is not in use, i.e., that both
operator and program have access to all of memory and no operations are illegal. In order to
use the keys properly when the executive system is in use, the operator must be fully aware of
the special conditions imposed (a complete discussion of the relation of the keys to the pro-

grammed operation of the system is presented in 3.3b).

START - This key functions only if RUN is off. It places the processor in normal operation

(lighting RUN) and causes the first instruction cycle to retrieve an instruction from the location

specified by the ADDRESS switches.

READ IN - This key is exactly the same as START except that it also causes the processor to
enter the readin mode, lighting the RIM SBR indicator at the top of bay 1. In this mode the
fast memory is disabled, and any memory call with an address 17 or less is given access to the
readin area, the normally inaccessible bottom 16 core locations. Whenever an instruction is

retrieved from any location above 17, the processor leaves the readin mode.

INSTRUCTION STOP (INST STOP) - Turns off RUN, causing the processor to stop at the com-

pletion of the current instruction. This key has a catch that allows it to be left in the on pos-

ition for single step operation. The turnon of the key triggers events that facilitate emergency

stops (for details see 3.3c).

INSTRUCTION CONTINUE (INST CONT) - This key functions only if RUN is off. It causes

the processor to resume normal operation (lighting RUN) beginning with the instruction in the
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location specified by PROGRAM COUNTER. By leaving INSTRUCTION STOP on, the
operator can single step instructions by pressing INSTRUCTION CONTINUE. The latter key
also has a catch so that by leaving both keys on and using the REPEAT switch, a program can

be run at slow speed.

MEMORY STOP (MEM STOP) - This key has a catch that allows it to be left in the on position

for single step operation. While the key is on, the MEM STOP light goes on at the beginning
of every memory subroutine, causing the processor to stop at the completion of each memory
access. During single step operation a call for read-pause-write in the fetch cycle generates
only a read request so the processor does not hold memory during the stop. The subsequent
restart then triggers a separate write cycle. This key is used only for maintenance purposes
and the meaning of the lights depends upon where the stop occurs within the main sequence.

However, MEMORY ADDRESS always displays the location to which access was made.

MEMORY CONTINUE (MEM CONT) - This key functions only if the MEM STOP light is on,
and it then restarts whatever sequence was interrupted by the MEMORY STOP key (it also
turns off the light). By leaving MEMORY STOP on, the operator can use MEMORY CONTINUE

to single step by memory calls. The latter key also has a catch so that by leaving both keys on
and using the REPEAT switch, a program can be run at slow speed from one memory call to the

next.

EXECUTE (EXEC) - This key functions only if RUN is off. It causes the processor to execute

the instruction contained in the DATA switches and stop immediately upon completing it.
While the key is on, the normal program counting in the execute cycle is inhibited; thus PC
cannot be affected unless a skip or jump is executed. A programmed skip always increments
PC once for the normal program count and may increment it a second time for the skip; from
the console a skip increments PC at most once. A programmed jump always increments PC
before saving it so that it points to the next instruction in the program; when executed from

the console, a jump loads PC normally but saves the count that is already in it.

IO RESET - This key functions only if RUN is off. It clears all flags, control flip-flops and

control registers in the processor (placing it in executive mode) and in most equipment con-

nected to the in-out bus.
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DEPOSIT THIS (DEP) - Deposits the contents of DATA in the location specified by ADDRESS.
The word deposited is displayed by MEMORY. If RUN is off during the deposit, the processor

stops with the MA lights displaying the address of the affected location. This key should be

used while the processor is running only if there is no chance of a program halt occurring (3.3b).

DEPOSIT NEXT (DEP NXT) - This key functions only if RUN is off, It deposits the contents of
DATA in the location whose address is one greater than that specified by MEMORY ADDRESS,
and the word deposited is displayed by MEMORY. At the completion of the operation MA

contains the address of the affected location.

EXAMINE THIS (EX) - Causes MEMORY to display the contents of the location specified by
ADDRESS. If RUN is off during the operation, the processor stops with the MA lights displaying

the address of the examined location. This key should be used while the processor is running

only if there is no chance of a program halt occurring (3.3b).

EXAMINE NEXT (EX NXT) - This key functions only if RUN is off. It causes MEMORY to

display the contents of the location whose address is one greater than that specified by MEM-

ORY ADDRESS. At the completion of the operation MA contains the address of the examined

location.

READER ON - Turns on the reader motor, energizes the brake, and triggers a Pl request on the

reader channel.

READER OFF - Turns off the reader motor, releases the brake, and triggers a Pl request on the

reader channel.
READER FEED - Feeds tape through the reader while held on (provided the reader is on).

PUNCH FEED - While this key is held on, the punch generates blank tape, i.e., tape with
only feedholes punched.
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Operating Switches

The first four switches are toggles located at the right end of the operator panel, and associated

with each is an indicator that lights while the switch is on.

POWER - This switch applies power to the processor and the control units for reader, punch,

and Teletype, and makes power available to all external units (memories, peripheral equip-
ment) whose local power controls are in remote. Almost every unit has its own power switch,
which if left on, allows the unit to come on with system power. Exceptions include the reader,
which must be turned on and off at the processor console, and the punch, which is turned on

by the logic and goes off automatically whenever it is not called for 5 sec. After turning
POWER on, wait a few seconds to allow the power clear to terminate and memory power to

come on.

ADDRESS STOP (ADDR STOP) - While this switch is on, a memory stop occurs whenever access
is made to the location specified by the ADDRESS switches. At the stop the MEM STOP light
is on, and MEMORY displays the word read or written. Throughout the time that the switch

remains on, any fetch cycle call for read-pause-write generates only a read request, so the
processor does not hold memory following the stop. The subsequent restart then triggers a

separate write cycle.

DISABLE MEMORY (MEM DISABLE) - While this switch is off, the failure of a memory to re-
spond within 100 psec to a request for access turns on the NONEX MEM light on the bay 1 in-

dicator panel, causing a Pl request on the processor channel. If the switch is on, such failure

causes the processor to hang up in the memory subroutine. The operator can free the processor
by pressing INSTRUCTION STOP and then |/O RESET.

REPEAT - Causes the sequence initiated by an operating key to be repeated as long as the key

is held on. The sequence is iterated at a rate determined by the SPEED switches.

SPEED - These switches allow the operator to vary the repeat interval from 3.4 psec to 8 sec in

six overlapping ranges. They include a 5-position rotary range switch and a potentiometer knob

for fine control within each range.
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Console Disable - In the lower right corner of the panel is a key-locked switch. Turning the

key clockwise disables all operating keys and switches on the panel (except those for the

reader and punch) so no one can interfere with the operation of the processor.

b Bay Indicator Panels

Figure 3-2 shows the indicator panels at the tops of bays 1 and 2. Bay 2 displays the three
main full-word registers: memory buffer MB, arithmetic register AR, and multiplier—quotient
register MQ. Since the results of an instruction are stored in memory, these registers are use-
ful primarily for single=step maintenance operation, and their contents at an instruction stop
depend entirely upon the instruction just performed. If the instruction requires storage, MB
always contains the last word stored. AR contains the word stored in an accumulator (if any),

and for a double-length result MQ contains the word stored in a second accumulator.

On bay 1 are the indicators for flip-flops and control levels. Indicators for the flags described
in 2.1c are at the right end of the panel. At the top of the third column from the right is the
EXEC MODE light, which is driven from the 0 output of the user flag and is thus lit when the
executive routine is running (or the executive system is not in use). The remaining flags are
as listed in the text, although the names engraved on the panel are in many cases abbreviated
from those used in the logic drawings. PDL OV is at the bottom of the sixth column from the
right. The second light in the third column, CPA ILL OP, is the illegal operation flag, which
indicates that a user program has attempted to address a location outside of its assigned core
area and should not be confused with EX ILL OP just below. The latter flip-flop inhibits re-
location when a UUO or an illegal user instruction is trapped, and the light is always off at
an instruction stop. In the second column are the AR overflow and carry flags and the PC
change flag. The carry flags should not be confused with the carry flip-flops above them:

the flip-flops detect carries in AR and their states are transferred to the flags only in those
instructions wherein the information is relevant to the program. The remaining flags are in

the right column.

Besides the flags, the indicator panel also includes shift counter SC, floating-exponent reg-
ister FE, several important control levels, and a multitude of flip-flops that govern the se-

quencing of the various processor cycles, special sequences, and subroutines. The following
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indicators are of importance to the operator in normal operation (unless otherwise specified,

the meaning of a light is given for an instruction stop):

KEY EX SYNC, KEY EX ST - If the operator presses EXAMINE THIS while the processor is

running and it stops with both of these lights on, the desired key function has not been per-
formed. If only the sync light is on, the operation may have been performed incorrectly (see
3.3b). If the key is pressed while RUN is off, the start light does not go on at all, but the

sync light goes on and remains on until some other initiating key is pressed.

KEY DEP SYNC, KEY DEP ST - If the operator presses DEPOSIT THIS while the processor is

running and it stops with both of these lights on, the desired key function has not been per-
formed. If only the sync light is on, the operation may have been performed incorrectly (see
3.3b). If the key is pressed while RUN is off, the start light does not go on at all, but the

sync light goes on and remains on until some other initiating key is pressed.

CHF7 - If this light (bottom, fifth column from left) is on following a Pl cycle that executes

a BLKI or BLKQ, an interrupt has occurred between the two parts of a character operation.
Following a JSR in a Pl cycle, the light will be off even if a character operation was interrupted.
If CHF7 is on following a JRST, the instruction is returning from a break and the processor is

about to restart an interrupted character operation.
SPLIT SYNC - Indicates that if there was a read-pause-write call during the preceding fetch
cycle, it triggered only a read request, and the subsequent restart triggered a separate write

cycle.

STOP SYNC - Indicates that the preceding fetch cycle triggered a read-pause-write memory

cycle.

Pl OV - Indicates that a BLKI or BLKO performed in a Pl cycle has overflowed.



Pl CYC - This light goes on when a Pl request is honored, but is still on at the completion of

an instruction only if a second Pl cycle is required for the interrupt (i.e., the instruction was

a BLKI or BLKO that overflowed).

Pl REQ - At the completion of an instruction this light is on whenever PI OV and Pl CYC are

on. If those two lights are not on, PI REQ indicates that the Pl system is active and a request
that has been synchronized has not yet been honored. This can occur if a previous instruction
activated the system and some requests were already waiting. If the system was already active,
either a request was made by the program or synchronized by a BLT, or several requests were
synchronized simultaneously and the processor has just finished servicing one of those with

higher priority.

A LONG - Indicates that the address cycle of the preceding instruction used an index register

for address modification or used an indirect address.

MA = MAS - Indicates that the number displayed by the MEMORY ADDRESS lights is identical
to that contained in the ADDRESS switches. This light is on whenever an address stop occurs

but may be on at other times as well.

EX PI SYNC - Indicates that the main sequence just completed was a Pl cycle. This light

remains on even when Pl CYC goes off before the instruction is completed.
RIM SBR - Goes on when the operator presses the READ IN key and remains on until an in-
struction is retrieved from a location above 17. The light is always on if the system includes

no fast memory, or if it is not in use.

PIA 33, 34, 35 - Indicate the Pl channel assigned to the processor. If all three lights are off,

no channel has been assigned.

At the completion of an instruction, SC and FE may have any configuration. Besides the flags
and the control indicators discussed above, the following lights may be on at an instruction

stop: MC WR, NRF2, NRF3, DSF7, MPF2, SC =777, UUOF1, EX UUO SYNC (always on),
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MQ36, CRYO ¥ CRY1, AR CRYO, AR CRY1. None of the remaining lights should be on at an
instruction stop. At a memory stop MC RD will be on if the memory cycle was used to retrieve
information, and at least one other light will be on to indicate the point at which a time chain
is stopped awaiting the return from the memory subroutine. For example if KEY RD/WR in the
left column is on, the memory stop occurred in an examine or deposit operation initiated at

the console. Refer to 9.1 for further information on the use of these indicators for maintenance

purposes.

MEMORY PROTECTION MEMORY RELOCATION RELOCATED ADDRESS
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Figure 3-3 In-Out and Marginal Check Panel

¢ In-Out Indicator Panel

Figure 3-3 shows the panel that contains the in-out indicators and the marginal check controls
(the latter are described in 9.1). At the top of the panel are three 8-bit indicator registers
that are associated with the executive system rather than the in-out equipment. These are as

follows:
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MEMORY PROTECTION (PR) - Defines the size of the block in core available to a user program.

The number of locations in the block is 2'0 times the number one greater than that contained in
the register. Each program must use addresses from zero to one less than the block size. If a
user attempts access to an address greater than the number in PR followed by ten ones, i.e.,

to an octal address greater than C(PR) x 2000 + 1777, the processor skips the remainder of the
current instruction, and the CPA ILL OP light at the top of bay 1 goes on causing a priority

interrupt on the processor channel.

MEMORY RELOCATION (RLR) - Specifies the position of a user block in core. The address

of the first location in the block is the number contained in RLR followed by ten zeros. Each

user address other than for fast memory is relocated to the assigned block by adding C(RLR) x
2000 to the number displayed by MEMORY ADDRESS.

RELOCATED ADDRESS (RLA) - These lights display the most significant eight bits of a user

address as it is placed on the memory bus (the least significant ten bits come directly from MA).

The bottom row of indicators on the panel displays the contents of the 36 data lines in the 1/O
bus. Since the bus is reset following every data transfer, the lights should always be off when
the processor is stopped. The remaining lights are the buffers and some of the control and sta-
tus bits for the reader, punch, keyboard-printer, and card reader. Each device has a 3-bit
PIA register that contains the number of the Pl channel assigned to it. Whenever the FLAG
light for any device goes on, a Pl request is made on the channel specified by the associated
PIA (if all three PIA lights are off, there is no channel assignment). The lights labeled TELE-
PRINTER are actually for two distinct devices, keyboard and printer. Both share a common P|
assignment but have duplicate control bits. The data buffer shown is actually for the keyboard;
the printer buffer is not shown because it automatically clears as each character is being trans-

mitted.

PAPER TAPE PUNCH -

DATA REGISTER (PTP1-8) - Contains the last character punched. The buf-

fer bits are numbered 1 to 8 from right to left and correspond to a frame of
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tape viewed with the feed hole near the right edge. The buffer receives
information from bus lines 28-35, with line 35 supplying the information

for bit 1.

BIN (B) - While this light is on, any punch operation always punches

hole 8, never punches hole 7, and punches hole 6-1 according to the
information on bus lines 30-35. While the light is off, the information

on lines 28-35 is punched.

BUSY - Indicates that the punch is in operation.

FLAG - Causes a Pl request upon completion of a punch operation. FLAG

goes off when the program supplies another character.

TELEPRINTER -

TTI DATA (TTI1-8) - Contains the last character received from the key-
board. The buffer bits are numbered 1 to 8 from right to left so that
when a character is shifted in at the left, the first bit received ends up

in buffer bit 1. The character is transferred to the processor over bus
lines 28-35 with bit 1 on line 35.

BUSY, TTI (BUSY, FLAG) - This pair of lights (at the left) is for the
keyboard. BUSY goes on when a key is struck. When the entire char-
acter is assembled in TT1 DATA, BUSY goes off and TT| goes on, re-

questing an interrupt. TTI goes off when the program retrieves the char-

acter.

BUSY, TTO (BUSY, FLAG) - In the right pair of lights, BUSY is on

while a character is being transmitted to the printer. When transmission

is complete, BUSY goes off and TTO goes on, requesting an interrupt.

TTO goes off when the program supplies a new character.
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PAPER TAPE READER -

BUFFER (PTR0-35) - Contains data read from tape but no yet retrieved

by the program. The 36 buffer bits are numbered to correspond to the
bus lines. Characters of six or eight holes from tape are brought in at

the right end of the buffer, with bit 35 receiving hole 1.

BIN (B) - When this light is on, each reader operation reads hole 6-1

of only those characters in which hole 8 is punched and assembles six
such characters into a 36-bit word. When each character is brought
into the buffer at the right, the previously read characters are shifted
left. When BIN is off, each read operation retrieves a single character,

sensing all eight holes.

BUSY, FLAG - When BUSY goes on, the reader goes into operation re-
trieving information in the manner specified by BIN. When the required
number of characters is retrieved, BUSY goes off and FLAG goes on, re-
questing an interrupt. FLAG goes off when the program retrieves the in-
formation from the buffer. FLAG is also set when the operator turns the

reader motor on or off.

CARD READER -

BUFFER (CRO-35) - The 36 bits of this buffer are numbered left to right

to correspond to the bus lines. Six-bit characters from cards are brought

in at the right end of the buffer over reader signal lines 1, 2, 4, 8, A, B,
with buffer bit 35 receiving information from line 1. The program spec-
ifies whether information retrieved from a card is to be placed on the bus
in units of one, two, or six characters. If more than one character is to
be read per bus transfer, previously read characters are shifted left in

the buffer as new ones come in.
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BIN (B) - While this light is on, a card is read in binary mode wherein
each column is read as two characters. The first character is from the
lower half of the column (holes 4-9) with hole 9 on reader line 1; the
second character is the upper half (holes 12, 11, 0, 1, 2, 3) with hole
3on line 1. If the light is off, reading is in alphanumeric mode in which

the reader converts the Hollerith character in a column to the Burroughs

6-bit code, and six columns are required to fill the buffer.

BUSY - This light goes on when the program requests that the reader be -

gin a card cycle, and the light remains on until the entire card is read.

FLAG - Each time the buffer contains the amount of information speci-

fied by the program, this light goes on, requesting an interrupt. Re-
trieving the data turns FLAG off and clears the buffer, which is cleared
automatically if the program does not respond to the request before the
next column is read. FLAG may light after each column or only when
the buffer is full; depending on whether BIN is off or on respectively,

a single column is one or two characters, and a full buffer contains six
or only three columns. FLAG also signals that the reader has finished
an entire card regardless of the number of characters in the buffer, or

that a card jam has occurred.

CARD DONE - Lit from the time the reader completes one card cycle
until it starts another. It is possible for CARD DONE and BUSY to be

lit at the same time. The program turns on BUSY to cause the reader

to begin a card cycle, but CARD DONE remains on until the cycle actu-

ally starts.

EOF - When the card hopper is empty, pushing the END OF FILE button

on the reader turns on this light. It also turns on FLAG, requesting an

interrupt.

ERR (CREL) - Indicates a validity check or read check error in the reader.
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3.2 OPERATION OF IN-OUT EQUIPMENT

This section describes the normal operation of the photoelectric perforated tape reader, paper
reader, paper tape punch, keyboard-printer, and card reader. Information for other devices

is included in their maintenance manuals and in the operator manual, PDP-6 Operation.

DEC also supplies manufacturer manuals for all devices included in a PDP-6 system.

a Toee Reader

Figure 3-4 Paper Tape Reader Type 760

Before loading a tape in the reader, turn off the reader motor by pressing the READER OFF key .
This releases the brake so that tape may be inserted, and it also requests an interrupt on the
reader channel to inform the program that the reader is unavailable. Place the fanfold tape
stack vertically in the bin at the right with the tape oriented so that the front end of the tape
is nearest the read head and the feed holes are nearer the reader mounting panel, i.e., away
from the operator. Take three or four folds of tape from the bin and slip the tape into the
reader from the front so it is threaded as shown in Figure 3-4. Make sure that the part of the

tape in the left bin is placed to correspond to the folds, otherwise it will not stack properly.
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Once the tape is properly loaded lift the READER ON key to start the motor and energize the
break. This also requests an interrupt to inform the program that the reader is on. When using
the readin mode loader, always turn on the reader before starting the loader. The program
makes use of the reader by sending signals to the clutch, which moves the tape past the sensing
photocells. After the program has finished reading the tape, run out the remaining leader by

lifting the READER FEED key, or turn the reader off so the tape may be slipped out directly.

E Tape Punch

The punch is located in a drawer at the top of the left console bay. The punch mechanism
faces the right side of the drawer. Fanfold tape is fed from a box as shown in Figure 3-5. Af-
ter punching, the tape moves into a storage bin from which the operator may remove it through

a slot on the front of the drawer.

Figure 3-5 Paper Tape Punch Type 761
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Toload the punch, first empty the chad box below the punch mechanism. Then tear off the

top of a box of fanfold tape (the top has a single flap; the bottom of the box has a small flap

in the center as well as the flap that extends the full length of the box). Set the box in the
frame at the right side of the punch and thread the tape through the mechanism as shown in
Figure 3-5. The arrows on the tape should point in the direction of tape motion. If they point
in the opposite direction, the box was opened at the wrong end; remove the box from the frame,
seal up the bottom, open the top, and thread the tape correctly. After loading the tape, hold
down the console PUNCH FEED key long enough to feed approximately 18 in. of leader.

Make sure the ta#e is feeding and folding properly in the storage bin.

To remove a length of perforated tape from the bin, first hold down PUNCH FEED long enough
to provide an adequate trailer at the end of the tape (and also leader at the beginning of the
next length of tape). Remove the tape from the bin and tear it off at a fold within the area

in which only feed holes are punched. Make sure that the tape left in the bin is stacked to
correspond to the folds; otherwise, it will not stack properly as it is being punched. After re-
moval, turn the tape stack over so the beginning of the tape is on top, and label it with both

name and date.

c Teletype Keyboard-Printer

The teletypewriter (Figure 3-6) provides two-way communication between operator and com~-
puter. It is actually two independent devices, keyboard and printer, which may be operated
simultaneously. The equipment operates at speeds up to ten characters per second, with 8-bit
characters plus start and stop control signals transmitted serially. Located at the right front
of the unit is a 2-position rotary switch, OFF/LINE. When this switch is set to LINE, the

unit is on line and it goes on and off with system power.

The keyboard resembles that of a standard typewriter with four rows of keys and a space bar.
Striking a key transmits a character to the Teletype control unit connected to the bus, but the
character is printed or the function executed only if the processor sends it back to the printer.
The line feed moves the carriage only vertically with a spacing of six lines to the inch. The
return moves the carriage to the left margin but does not feed a line: to start a new line the

operator must strike both return and line feed. Codes for the characters on the lower parts
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of the key tops can be transmitted merely by striking the keys. Codes for printable characters
on the upper parts (punctuation, ampersand, percent sign) are transmitted by holding down the
shift key when striking the character key. Control codes are transmitted by holding down the
control key, CTRL, when striking the appropriate character key. Codes for all characters
listed on the keyboard and some that are not can be transmitted to the computer, but codes
for some of the control functions have no effect on the printer when sent back. Table A4-2
lists all codes, their ASCII assignments, and the key combinations required to transmit them.
Because of recent changes in the code, there may be slight differences in the printing char-
acters associated with certain key positions. In such cases alternate characters are listed in

parentheses.

Figure 3-6 Keyboard-Printer Type 626

In line with the space bar below the keyboard are four red buttons. At the right end is the
repeat button REPT. Pressing this button and striking any character key causes repeated trans-
mission of the corresponding code so long as REPT is held down. Characters that require the

shift key may also be repeated in this manner, but there is no repetition of control characters.
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The red button on the left, BRK RLS, is not connected in the console teletypewriter. The
remaining two buttons, LOC LF and LOC CR, are the local line feed and carriage return.

These buttons affect the printer directly and do not transmit codes over the bus.

Paper installation, ribbon replacement, and the procedure for setting horizontal and vertical
tabs are described below. All references are to figures in typing unit section 574-220-100 in
Vol. 1 of Teletype Bulletin 281B (Technical Manual 35 Keyboard Send-Receive (KSR) and
Receive-Only (RO) Teletypewriter Sets).

PaEer

The unit has a sprocket feed and uses 8-1/2 x 11 fanfold form paper. The supply is held in a
tray at the back of the unit, and printed forms can be torn off against the edge of the glass
window in front of the platen. To replace the paper first remove the upper cover by pressing
the cover release button on the right side. To free the remaining old paper for removal, lift
the paper guides by pushing the handle marked PUSH at the right of the platen. To insert new
paper from the tray, offer it up below the platen at the rear, lining up the holes at the edges
of the paper with the sprockets, and press the local line feed button to draw the paper in under

the platen.

Ribbon

Replace whenever it becomes worn or frayed or when the printing becomes too light. Dis-
engage the old ribbon from the ribbon guides on either side of the type block, and remove the
reels by lifting the spring clips on the reel spindles and pulling the reels off (the ribbon feed
mechanism is called out in Figure 4). Remove the old tape from one of the reels and replace
the empty reel on one side of the machine; install a new reel on the other side. Push down
both reel spindle spring clips to secure the reels. Unwind the fresh ribbon from the inside of
the supply reel, over the guide roller, through the two guides on either side of the type block,
out around the other guide roller, and back onto the inside of the take-up reel. Engage the
hook on the end of the ribbon over the point of the arrow in the hub. Wind a few turns of the
ribbon and make sure that the reversing eyelet has been wound onto the spool. Make sure the

ribbon is seated properly and feeds correctly in operation.
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Tobs

The horizontal and vertical tabulator mechanisms are also called out in Figure 4. Each isa
slotted wheel surrounded by a spring on which are mounted a number of tab stops. The hori-
zontal tab mechanism is shown in detail in Figure 47. The slotted wheel is mounted on the
spacing drum, and a tab can be set by inserting a tab stop in a groove where it catches the
tabulator paw! when the type block carriage is in the desired position. With needle-nose
pliers or equivalent, lift the tab stop out of the slot in the wheel against the spring tension.
Slide the stop along the spring in the desired direction, and reinsert it into the slot at the new
location. A stop may be removed from use by turning it so that it does not catch the pawl.
Figure 49 shows the vertical tabulator mechanism. The slots in this disc allow vertical tabs

at any desired line, but adjacent tabs must be at least 1 in. apart.

d Card Reader

The B122 Card Reader handles 200 cards per minute and has a hopper and stacker capacity of
500 cards. With a trivial change in the control unit logic, the processor can control the

B124 Card Reader. Its operation is similar to that described here, but the maintenance infor-
mation given in Chapter 9 applies only to the B122. The B124 handles 800 cards per minute
and has a hopper and stacker capacity of 2000 cards. In both machines the cards are read
lengthwise and sensed photoelectrically. In Figure 3-7, the hopper is at the right, the stacker
at the left; in the center is a console that contains the operating buttons and indicators. Of

the following four indicators, the first is white, the other three are red error indicators.

NOT READY Indicates one or more of the following:
START button has not been pushed
Hopper empty
Stacker full
Card jam (feed check)
Read check
Validity check (only when VALIDITY ON button is lit)
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Figure 3-7 Card Reader Type 461

The reader cannot respond to the program while NOT READY is lit. The program may check
a not-ready status bit to determine if the reader is available. This status bit is 1 on any of
the above conditions and also when the reader power is off (the console cover is interlocked

to turn power off when not in place).

READ CHECK - Indicates a NOT READY condition due to a malfunction in the read circuits,
e.g., exciter lamps, solar cells, photo amplifiers. There is no read checking during any card
cycle; otherwise, read checking is continuous. When this light is on, the ERR light on the

processor in-out panel is also on and the reader error status bit is 1.

FEED CHECK - Indicates a NOT READY condition due to a jammed card or failure to select
a card. The drive motors stop as soon as the light goes on. A signal to the processor turns on
the FLAG light on the in-out panel, requesting a priority interrupt on the channel assigned to

the reader; the signal also supplies a status bit to the program.
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VALIDITY CHECK - This light functions only if the VALIDITY ON button is lit. It then

indicates that an invalid punch combination has been read in alphanumeric mode. When this
light is on, the ERR light on the processor in-out panel is also on and the reader error status

bit is 1.

Located on the left side of the stacker is the main power switch that controls power to the
reader auxiliary power supply. With this switch on, the reader may be turned on either at the
reader console or by turning on system power at the processor console. The reader console
contains seven buttons, three of which light; the first six below are momentary contact, the

last is alternate action.

POWER ON - Green button which turns on the main power supply, the reader motors and,
after a 3-sec delay, the reader control logic. This action is duplicated by turning on system

power at the processor console. Button is illuminated when power is on.
POWER OFF - Turns off the main supply, but the auxiliary supply remains on.
START - Turns off the NOT READY indicator provided no other not-ready condition exists.

STOP - If the reader is in operation, this button turns on the NOT READY light and the reader

stops when the current card runs out to the stacker.

RESET - Turns off the three red check lights: READ CHECK, FEED CHECK, VALIDITY CHECK.
END OF FILE - Pressing this white button when the hopper is empty, lights the button and turns
on the EOF and FLAG lights on the processor in-out indicator panel, requesting a priority in-
terrupt on the channel assigned to the reader; the button light goes out when cards are placed
in the hopper. The signal generated by the button can be checked as a status bit by the

program.

VALIDITY ON - This is an alternate-action yellow button that is lit when on. An invalid

punch combination read in alphanumeric mode is sent to the reader control unit as an all-zero

character; when the switch is on, and invalid punch also lights VALIDITY CHECK and stops the

reader.
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In addition to the above there are also interlocks in the hopper and stacker and a LOCAL RUN
toggle switch under the cover; the interlocks generate the NOT READY condition when the
hopper is empty or the stacker is full. Raising the toggle switch (local) causes the reader to
feed cards continuously until the hopper is empty, and then stop with the FEED CHECK light
on. With the switch in remote (down), card cycles can be started from the processor whenever

the NOT READY light is off.

For operation off line, turn on the main power switch and press POWER ON; after 3 sec NOT
READY should light. For normal operation on line, the main power switch is turned on at system
power turnon and the reader is left on with NOT READY lit whenever it is not in use. Cards
should be placed in the hopper face down with the 12 edge toward the operator. Place the
plastic weight on top of the deck to prevent jamming as the last few cards are read. If any of
the red check lights are on, push RESET. Push START to turn off NOT READY, and the reader

is then available to the processor. STOP may be pushed at any time to generate a NOT READY

condition, causing the reader to stop at the end of the current card. To continue, push START.

When reading is in alphanumeric mode, every column is checked for a valid Hollerith char-
acter. [f an invalid punch is encountered and the VALIDITY ON button is lit, a VALIDITY
CHECK error is indicated and the reader stops at the end of the current card. If a second at-
tempt to read the card fails, check it for improper punches. Table A4-3 lists the Hollerith
character codes and all invalid punch combinations (note that the Burroughs code is incom-

patible with that used by the IBM 029 Card Punch).

If the reader stops with READ CHECK lit, the self-checking circuits have detected a malfunc-
tion in the read circuitry. Usually this is either the failure of a lamp or solar cell and may be
temporary . If both READ CHECK and FEED CHECK go on together, the reader is in need of
adjustment. There is one section of the read circuitry in which a failure is not detected as a
read check error. However, a failure in this particular part would cause incorrect timing re-
sulting in a validity check error if reading is alphanumeric. If no invalid punches can be found
on a card, but several attempts to read it result in a validity check error, it is likely to be a

malfunction in this unchecked part of the read circuits. For particulars refer to the manual
for the Burroughs B122 Card Reader.
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When a card cycle begins, the card is first contacted by a knife at the bottom edge of the
hopper and is pushed info the read station where the feed operation is taken over by rollers.
The most probable point for a feed malfunction to occur is at the entry into the read station.
If the card is bent, it may jam in the feedways; if the trailing edge had been damaged by
frequent handling, the pickup knife may fail to move the card through the rollers. When a
card fails to appear at the read station in the prescribed time, the FEED CHECK light goes on
and the drive motors stop. Do not attempt to reread a worn or damaged card that has caused

a feed check error, but put a duplicate in its place.

In the unlikely event that a card should jam inside the read station, no FEED CHECK is indi-
cated, but no cards are processed either (if reading is in alphanumeric, a card stuck in the
read station may produce a validity check error). To check for jammed cards, remove the
head cover by lifting it at its base and pulling it out horizontally (an interlock removes power
if it has not already been turned off). If necessary, the photocell head can be removed by
moving the knurled-head sliding bolts to their vertical positions and squeezing them toward
the center. The head can then be lifted straight up. Be sure when replacing the head that

it is seated properly and the knurled-head bolts are fully engaged.

3.3 PROCESSOR OPERATING PROCEDURES

After turning on system power at the processor console, check the memories and peripheral
equipment connected to the memory and in-out busses. In general all memories should go on
with system power unless a single unit has been taken off line deliberately. Whether a par-
ticular peripheral device is on depends upon its own organization. Most in-out control units
go on and off with system power; however, in some instances power supplies must be turned

on and off independently of the processor.

a Read In

In order to allow initial information to be brought into memory, a readin loader is usually kept
permanently in the part of core that is ordinarily inaccessible because of the fast memory. To
use the readin loader, set the appropriate starting location in the ADDRESS switches and lift the
READ IN key. This turns on the RIM SBR light at the top of bay 1, and while the light is on,
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any memory address from O to 17 provides access to core instead of fast memory. The light
goes out and the processor leaves readin mode whenever an instruction is retrieved from any
location above 17. Read in can be single stepped using the CONTINUE and STOP keys, but

any other key takes the processor out of readin mode.

To deposit a loader in the bottom of core, the operator must make use of a small toggle switch
labeled RIM MAINT, which is mounted behind the double doors on bay 2, on a bracket at the
left end between mounting panels 2L and 2M. Putting this switch up holds the processor in
readin mode regardless of any action taken at the console, so the operator may deposit the
loader. Place the first word in the DATA switches, set the ADDRESS switches to the first
location (0 is most convenient), and lift DEPOSIT THIS. MEMORY displays the word deposited.
If the remaining words are in consecutive locations, they may be deposited in order by setting
them in the DATA switches and pressing DEPOSIT NEXT for each. Although all words are
displayed when deposited, it is a good idea to check the entire loader by going through it
first pressing EXAMINE THIS, then EXAMINE NEXT. After the loader has been deposited,
turn RIM MAINT down.

b Operating Keys

The operator should check material accompanying each program for information on halts, tape
requirements, and so forth. Every program is begun by either START or READ IN. On a halt
the operator should make note of the console lights, particularly PROGRAM COUNTER, and
do whatever is requested in the program operating instructions; the operator may restart by
pressing INSTRUCTION CONTINUE.

To debug programs, INSTRUCTION STOP may be latched on and the program single stepped
using INSTRUCTION CONTINUE. Or with the REPEAT switch on, and both INSTRUCTION
STOP and INSTRUCTION CONTINUE latched down, the program speed can be varied by the
SPEED controls. By similar use of the MEMORY STOP and MEMORY CONTINUE keys, a

program may be single stepped from one memory call to the next; low=-speed operation can be
effected by using REPEAT.

The keys for the reader and punch may be operated at any time whether the processor is running

or not. The stop keys may also be pressed at any time, but ordinarily these are used only for
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single-step or low-speed operation (for special stop considerations see c below). The remaining
ten keys use the key cycle to initiate some operation, if only a clear function as is the case
with IO RESET. For seven keys, entry into the key cycle is gated by the 0 state of RUN so

that inadvertent key manipulation can have no effect while a program is running. Even through
RUN remains on throughout memory single stepping (unless of course a program halt should occur),
the program can be restarted by pressing MEMORY CONTINUE; at a memory stop MEM STOP is
on. Of the initiating keys, only EXAMINE THIS and DEPOSIT THIS have any effect while the
program is actually running, i.e., there is neither an instruction stop nor a memory stop. Either
of these keys inserts a key cycle between two instructions without stopping the processor. How-
ever, do not use these keys if there is any chance of a program halt occurring. The halt in-
struction stops the processor by clearing RUN at the beginning of the execute cycle, and it is
thus possible for a key cycle to be triggered between the time RUN is cleared and the instruc-
tion is completed (of course the same caution holds for any wanton key manipulation while the
processor is running). If a program halt should occur (RUN goes off) at the same time that EX-
AMINE THIS or DEPOSIT THIS is operated, check the corresponding pair of SYNC and START
lights in the left column on the bay 1 indicator panel. If both lights are on, the corresponding
key function was not performed; if neither light is on, the key function was performed prior to
the halt instruction. If only a SYNC light is on, the key function was performed but there is

no way of knowing whether it was executed during the halt or after, and thus the console lights
are meaningless. If EXAMINE THIS or DEPOSIT THIS is pressed with RUN off, the SYNC light

does not go out but the key function is performed.

There are also special precautions that must be observed while user programs are sharing proc-
essor time. While RUN is on, relocation and protection are inhibited during a key cycle so
the operator may use EXAMINE THIS and DEPOSIT THIS with all of memory available to him.
However, when the processor is stopped, as between instructions in single-step operation, the
operator must make sure his actions at the console are compatible with the operating mode. In
user mode any address supplied for a key function, including addresses in an instruction ini-
tiated by the EXECUTE key, must be smaller than the block size as indicated by the MEMORY
PROTECTION lights at the top of the in-out panel, or a priority interrupt for an illegal address
will occur. The operator should also understand that unless the address is for fast memory, it

is relocated to the block specified by MEMORY RELOCATION (the RELOCATED ADDRESS is
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displayed at the right). Furthermore, an illegal instruction executed from the console will
take the processor out of user mode. The operator must observe the lights at the top of bay 1
to determine what he can do. All addresses and instructions are legal if EXEC MODE is on.
If this light is off but PI CYC is on (this can happen only between two Pl cycles required for
the same interrupt), there is also no relocation or protection. However, in this circumstance
not all instructions are legal; an IOT may be executed from the console, but any other illegal
user instruction or a UUO will return the processor to executive mode. If both EXEC MODE
and Pl CYC are off, the operator must observe all user restrictions. The operator can switch
from either mode to the other by executing the appropriate instruction from the console. The
switch may be made from user to executive mode by pressing 1O RESET, but this also clears

most of the in-out equipment including all Pl assignments.

Care should be exercised in the use of the EXECUTE key whenever priority interrupts are al-
lowed while a program is being single stepped. In addition to observing the user-executive
restrictions associated with priority interrupts, the operator must be aware of the following.
An interrupt has priority over any instruction including one executed from the console. If an
interrupt request is waiting when EXECUTE is pressed, the processor performs the Pl instruction
instead of the one in DATA switches. If PI CYC is on (indicating that the preceding instruction
was a block IOT that overflowed), a non=-lOT executed from the console will be taken by the
processor to be the jump to the break routine. This will turn off Pl CYC, and the JSR to the
subroutine will be skipped when the program is continued. Furthermore, the processor will
"hold" the break—i.e., PI REQUEST goes off, Pl IN PROGRESS goes on, and both the chan-
nel on which the interrupt was requested and all lower priority channels will remain disabled

as the program continues.

CAUTION

Never under any circumstances press more than one initiating key
at a time because the processor will try to perform both functions
at once. Note that in low-speed operation one of the continue
keys is always on, so although EXAMINE THIS or DEPOSIT THIS
can be used while the processor is running, they cannot be used
in low-speed operation.
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c Emergency Stop

Ordinarily INSTRUCTION STOP is used for single step operation and maintenance procedures,
but it can also be used for an emergency stop if the processor should get caught in a loop. For
this purpose the turnon of the key triggers a pulse generator whose output triggers a one-shot
that temporarily inhibits certain pulses in the instruction and address cycles; then the processor
can stop at one of these points if a loop prevents its reaching the end of a main sequence. The
pulse generator output also clears RUN in case a hardware malfunction should disable the nor-
* mal clearing in the execute cycle. Both features apply only to the turnon of the key so that
once it has been latched down it will not interfere with single step operation. Once RUN is

clear, 1O RESET can be used to clear the computer.

If the processor should hang up or be running without seeming to accomplish anything, do not
call a DEC Technical Representative until certain routine checks have been made, as it is
possible for an inept programmer to hang up the machine. Although it is recommended that
only BLKI, BLKO, or JSR be used in a Pl cycle, nonetheless the processor will perform a Pl
cycle correctly for any non-1OT instruction. But a condition 10T will cause the processor to
hang up in the Pl cycle. When this happens, the processor repeats the instruction over and
over: PC is static, the Pl REQUEST light for the channel is on but the Pl IN PROGRESS light
never goes on, and PI CYC and Pl REQ at the top of bay 1 remain on indefinitely (the AC
lights display the IOT instruction code).

If the program attempts to retrieve an instruction from a memory that is not connected to the bus
(and the DISABLE MEMORY switch is off), the lack of any instruction retrieved is interpreted by the
processor as a UUO. The attempt to address a nonexistent memory usually results in an interrupt
on the processor channel, but if the JSR for the break should attempt to go to the same memory,

the processor would go into a loop.

Both of the above loops include the complete main sequence, sa pressing INSTRUCTION STOP
will cause a stop at the completion of an instruction. There are other program failures, how-
ever, that never allow the processor to finish an instruction. [f a program should include
an XCT that executes itself or if a programmer puts a UUO in location 41, the processor goes

into a loop that keeps jumping back to the instruction cycle without ever completing a main se-
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quence. The key thus halts these in the address cycle. If DISABLE MEMORY is on and the
program attempts any access to a memory that is not on line, the processor hangs up in the mem-
ory subrovtine. Interrupting the time chain cannot affect this situation, but INSTRUCTION
STOP clears RUN, and the machine can then be freed by 10 RESET.

Hardware malfunctions can cause loops that the time chain inhibit cannot stop. For

example if PI CYC fails to set, an interrupt request will cause a loop in which the processor
keeps trying to honor the request without succeeding. If MQO refuses to clear in a block
transfer, the processor will loop forever, returning on each step to the fetch cycle. For any
loop that includes a memory call, do not free the processor merely by clearing RUN and press-
|O RESET. If the processor is within the memory subroutine when the reset occurs, it will very
likely hang up a memory while freeing the processor. For this situation it is preferable to press
MEMORY STOP and then check the lights to be sure the processor has not stopped following the
read part of a read-write access. If it has, hold on MEMORY STOP and press MEMORY CON-
TINUE, so that it will stop following the subsequent write. Once the processor has stopped with

no chance of hanging up a memory, press INSTRUCTION STOP to clear RUN, and then press
IO RESET.
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CHAPTER 4

DRAWING CONVENTIONS AND FLOW CHARTS

Accompanying each PDP-6 is a complete set of drawings, consisting primarily of D-size flow
charts, logic drawings (block schemdtics), and wiring diagrams. Every drawing is labeled with
both a DEC drawi‘ng number and a type code. The drawing number is in four parts separated by
dashes (e.g., D-166-4-EX): the first part is a letter indicating size; the second is the type
number of the equipment (usually three digits); the third is the drawing serial number (see next
paragraph); and the last is a number or a mnemonic letter code specifying the individual draw-
ing (the code may end with a number, sometimes preceded by another dash, if more than one
drawing is required to treat a section of the logic). If a drawing includes several sheets, both
the sheet number and the number of sheets are written at the lower left of the drawing number.
If a drawing is revised after being signed by the project engineer, a revision letter is written to
the right. To the left of the number is a type code; some typical codes are block schematic BS,
system diagram SD, flow diagram FD, timing diagram TD, interconnection diagram 1D, cable
diagrom CD, wiring diagram WD, power wiring PW, module list ML, utilization module list

UML, master drawing list MDL, cable list CL, wiring list WL (the last three are usually A size).

In general, the only drawings included in the manual for a given piece of equipment are the
associated flow diagrams and logic drawings. The maintenance chapter of each manual does,
however, describe the other fypes of engineering drawings and their use. Drawings in the man-
val are intended for instruction purposes only; personnel working at the machine should use the
prints for the equipment rather than the figures for the manual. Drawings that are reduced to

B size and printed in this and other manuals for the PDP=6 system are serial 0, corresponding to
the standard production machine. Although every unit of a given type is assigned a different
serial number, most of the prints accompanying the equipment have drawing serial 0. But if a
particular unit differs in some way from standard, those drawings that reflect the difference have
the same serial number as the lowest numbered machine that is so modified. Therefore, although
each manual contains the drawings for that portion of the standard system that it describes, main-
tenance personnel should use the prints for work on the equipment because they show any varia-

tions peculiar to the installation.



All drawings included in a manual are assigned figure numbers by chapter. These numbers are
also written on the prints in the lower right, above the drawing legend. To differentiate draw-
ings associated with one manual from those of another, a code designating the manual appears
in front of the figure number (the code may not be included on the figures reproduced in the
manual). The letters "AP" indicate a figure for this manual, which includes not only the Arith-
metic Processor Type 166 but also the control units for four in-out devices Types 461, 626, 760,
and 761. Figures for the memory manual are prefixed "M" and show both the fast and core
memories. Figure numbers on drawings for in-out devices described in separate publications

are usually prefixed by the appropriate type number.

The com'plefe system logic for the arithmetic processor and the common in-out devices is shown
in a series of flow charts for Chapter 4 and a series of logic drawings for Chapters 5, 6, 7, and 8.

This chapter describes the conventions and notation used in these drawings.

4.1 LOGIC DRAWINGS

The logic drawings are block diagrams that show the function of every logic element used in the
computer. They also show the type of signal present at any module connector pin that carries

a logic signal or some special voltage level. The standard power and ground pins (A to D on
every module) are not shown. In addition to showing the function of every logic element, the
drawings indentify every circuit by type and by physical location. Circuit type is always iden-
tified by the type number as given in the DEC module catalog. Below the type number is a lo-
cation code made up of one digit, one letter, and one or two digits. For example, the location
code 2F10 represents plugin unit connector 10 in mounting panel F in bay 2 (in the lettering on
the logic drawings, each numeral "0" has a slash through it to distinguish it from letter "O").
Pin designations may be formed merely by adding the pin letter to the module location code,
e.g., 2F10H.

The frame containing the arithmetic processor and the console includes bays 1 to 4. Each mem-
ory, or peripheral device requiring a major portion of a bay, is designated as bay 1. If an in-
out device control unit requires only a few logic mounting panels, it has no bay number; the
panels are designated A, B, ..., even though they may be mounted in any position. For the
smaller block symbols, such as those representing single inverters and capacitor-diode gates,

the circuit type number and location code are written near the symbol, and the inputs and
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outputs are labeled by connector pins. With all larger blocks, the circuit and location infor-
mation are written inside the block. If several logic elements from the same module appear
together in a drawing, they may be enclosed in a dashed line: the location and type number
are then written only once within the module boundary and the pin letters are written just in-

side the boundary where the signal lines cross it.

Some modules have connectors on both front and back; pins on the rear connector are identified
by the prefix "R. " Some modules are double height, with two front connectors. The location
of such a module is given by two panel letters, e.g., 2DE17, and the front connector pins are
prefixed by the appropriate panel letter (pins on this module would be designated 2DE17-DT,
2DE17-EB). Only the upper connector receives the power lines, so pins A fo D of the lower
connector are available for logic signals. Such modules usually also have two rear connectors,
the upper one identified by the prefix "R," the lower by "S." Thus for a double-height module

mounted in 2DE, the R connector is at the rear of panel D, the S connector at the rear of panelE.

On the logic drawings, the type of signal present at a pin connection is shown by a triangle or
diamond. In DEC convention, timing is provided by pulses whose polarities are shown by open
and closed triangles. These polarities depend only upon input requirements and represent no
logical difference. Similarly, gating levels are represented by open and closed diamonds that
represent the assertion polarity that satisfies the gate; neither voltage level categorically represents
1 or 0, true or false. A given logic function may have different assertion levels in different
places depending upon gate input requirements. For example, if a function has a negative as-
sertion level, the function is considered true when the line corresponding to it is at =3 vdc;
for ground assertion, the function is considered true when the line isatground. Sometimes a
line carrying a logic level is shown connected to the input of a pulse amplifier or capacitor-
diode gate, which produces a pulse output. In these cases, the output is triggered by a level
transition at the input. If the input is shown as a diamond, friggering occurs at the leading
edge, i.e., the diamond shows the assertion polarity of the logic function immediately after the
triggering transition. An event triggered on a trailing edge is indicated by a composite symbol
with a diamond showing the assertion polarity of the level, and a triangle showing the opposite
polarity required for the input pulse (i.e., the triangle indicates the direction of the transition
when the logic level is negated). Sometimes a leading edge is shown by a composite diamond

and triangle of the same polarity, but thisis not necessary. Occasionally in the in-out equipment,
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a wide pulse is used to produce a delay by triggering events on the pulse trailing edge. The
composite signal for this is a pair of triangles, the first showing the pulse polarity, the second
the polarity of the triggering transition. Any nonstandard signal is shown merely by an arrow

pointing in the direction of signal flow.
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The upper part of Figure 4-1 shows the signal designations and the symbols for inverters and
capacitor-diode gates. These are described fully in the introduction to the DEC module
catalog. With the symbols in Figure 4-1 are examples of type numbers, location codes, and
connector pin letters. The remaining lettered sections of Figure 4-1 show other conventions

for the PDP-6 drawings.

The logic drawings show the function of every logic element in the simplest way consistent with
the requirement that every pin connection be shown. Thus if two single inverters are connected
to form an AND or OR gate, the individual inverters are shown in the drawing as indicated at

A in Figure 4-1. However if the gate is produced by connections internal to a module, such as
a pair of inverters with a common collector pin and internally grounded emitters, then it is shown
by a block labeled for the opproprfate logic function as shown at B. Blocks are used to represent
inverter gates with as many as four inputs and diode gates with as many as eight (the in-out
equipment uses capacitor-diode modules in which the gates have common pulse connections, but
the individual gates are always shown). Since all such nets invert (a diode gate includes an in-
verter output) the blocks are always labeled "~ A" or * vV " The tilde (~)in these labels has
no actual connection with logical function and may be ignored when learning the logic. Because
an assertion level may be inverted without affecting its truth value, all gates are AND (A) or
OR (V) gates, and the tilde merely indicates that the output assertion level is of opposite po-
larity to the inputs. Each block also contains a location code and a type number; input and
output pin connections are labeled in the usual way. Since the logical function of a gate de=
pends both upon its logical configuration and the assertion polarities of its inputs, a given net
may be used as either an AND or an OR gate—the equivalence is shown at C. Of course, a
single level input may be replaced by a pulse in an AND gate, and all levels may be replaced
by pulses in an OR gate. Inputs to a gate are generally at the left, outputs at the top, and a
signal shown passing through a gate from left to right implies no logical change: D shows a pair
of AND gates in which the pulse X, though labeled only once, is an input to both gates, where-

as levels Y and Z each enter only one.

All other circuit elements except flip-flops appear as blocks that contain a mnemonic abbrevia-
tion of the circuit function. Some examples are delay DLY, pulse amplifier PA, pulse gener-

ator PG, clock CLK, bus driver BD, solenoid driver SD, majority gate MAJ, dc adder DCA.
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Clocks, pulse amplifiers, pulse generators, and some one-shot delays have a pair of transformer-
coupled pulse outputs (usually shown at the right of the block). When the input to such a cir-
cuit is triggered, a positive-going pulse appears at the positive output if the negative output

is grounded, or a negative~going pulse appears at the negative output if the positive output is
grounded. One-shot delays other than the 4303 have a logic level output that is asserted neg-
ative during the delay period. The symbol that represents a flip~flop is shown at E (the same
type of symbol also represents the 4303 Integrating Delay and the 6131 DC Adder). In this
rectangle, terminals S and T are drawn twice, showing the polarities associated with either state
of the flip-flop. In normal convention the "0" is at the left and the 0-out terminal is repre=-
sented by the left diamond in both pairs. Some flip=flops have a separate output terminal,

represented by a fifth diamond, to drive an indicator.

The principal advantage in showing the two states at both assertion levels is that there is never
any need to invert the name of a signal that appears as an input to a logic net: all logical
conditions appear in the drawings with correct truth values. When a flip-flop output is used

as the input to a logic net, the signal name indicates the enabling state of the flip-flop. To
determine the physical source of the signal (the output terminal to which the signal line is con=-
nected), one must know both the signal name and the assertion level. For example, the signal
FF(1) at negative assertion originates at the 1-out terminal of flip-flop FF; at ground assertion

this signal actually originates at the 0-out terminal.

Two gatable inputs are shown at the bottom of the rectangle at E, with the 0-in terminal at

the left. Direct pulse inputs (i.e., those that are not gated) are at the sides of the flip~flop:

in the example a direct clear input is shown at the left. A flip-flop may also have a complement
input, which is drawn at the bottom center. An unbuffered flip-flop may be set or cleared by
grounding one of the flip-flop collectors; such a function may be represented in either of the

ways shown at F.

Connections between flip-flops are shown in various ways on the logic drawings, always in the
simplest way consistent with showing all pin connections. The clear line for an entire register
is usually shown entering the lower left corner of the leftmost flip~flop, then out of the lower

right corner on to the next flip-flop, and so on through the register. If the flip-flops in a
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counter have count inputs and outputs, the count pulse is usually shown going from right to left,
entering the center of the right side of each flip-flop and leaving at the center of the left (e.g.,
see the program counter, Figure 5-11). If flip-flops from different modules are connected for
shifting, all of the shift gates must be shown; however, if the flip-flops within a module are
connected internally as a shift register, the shift signal is shown in the same way as a count
(e.g., the shift register modules in Figure 8-7). In all processor registers, most transfer input
gates for a given flip-flop are included on the module containing the flip~flop. These gates
are therefore shown as small rectangles with logic symbols and pin connections but without lo-
cation codes or type numbers (refer to AR, Figure 6=5). In many instances no pin numbers are
included because the input connections are internal to the module: e.g., the AR, MB, and
MQ flip-flops are on the same modules and the connections shown between them have no pin
numbers. If these internal logic gates are similar to the regular inverter and diode gates, i.e.,
if all inputs to a given gate are of the same polarity and the output is inverted, the block is

' However, in many cases there are

labeled with the appropriate symbol, either "A A" or "a .
nonstandard gates, e.g., one in which a ground level is gated by a negative pulse to produce

a ground output. Such gates are labeled merely by logic function, "A" or "v," and no attempt
is made to indicate signal polarities other than the diamonds and arrows used for inputs and out-
puts. In some cases pulse inputs to individual bits of a register are made through NPN emitter
followers. Since these perform no logical function and do not even change signal polarity, each

is shown on the logic drawing merely as a small circle at the pin to indicate that the signal at

the flip-flop input terminal through other input gates is not available at that pin.

State changes in the 10-mc flip-flops take place more rapidly than the duration of the input
pulses. To compensate for this, many gated inputs to these flip-flops are made through delay
elements, which are not shown on the logic drawings. Since in many instances the outputs of
a register flip-flop condition its inputs, the flip-flop state change is delayed until the termina-

tion of the input pulse to prevent logical race problems.

In addition to the many modules containing flip-flops, pulse amplifiers, etc., there is also a
hybrid module, the subroutine card SBR, which includes three circuits each containing a flip=
flop and a gated pulse amplifier. The flip-flop 1 output is an input to the AND gate at the PA

input; the PA output, besides being available at a connector pin, is connected internally to the
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flip-flop clear input (see the SBR at the left in Figure 5-2). An SBR (or its equivalent) is used
whenever a subroutine is called from any time chain. The same pulse that triggers the subroutine
also sets the flip-flop in an SBR, enabling the input gate to the PA; the other input to the PA
gate is the return pulse from the subroutine. At the completion of the subroutine, the return

pulse triggers the PA, whose output both clears the SBR and restarts the time chain.

All logic drawings are laid out with rectangular map coordinates, numbered 1 to 8 from left to
right and lettered A to D from top to bottom. Because a single drawing may contain a number
of logic elements, coordinates are often included in figure references. For example, a refer-

ence to the circuit in "Figure 5-6B6" would mean the circuit located in block Bé of logic draw=

ing 5-6.

4.2 SIGNAL NOTATION

All signal names in PDP-6 are mnemonics that indicate both the function of the signal and its
source. Each register with associated logic and each control system, whether it occupies sev=
eral drawings, one drawing, or only part of one, has a single mnemonic code of one to three
letters, which appears in the drawing title and at the beginning of the name of any signal ori-
ginating in this part of the logic. This source code may appear naturally as part of the signal
name; if not, it is merely prefixed to the name. For example the arithmetic register AR and its
associated transfer logic, flag Iog’ic, and AR subroutines require a number of drawings all with
prefix code AR, and the pulse that shifts the contents of AR to the left is AR SH LT. On the
other hand, the readin mode subroutine flip-flop, which is associated with read in and is shown
on one of the drawings for the key logic, is designated KEY RIM SBR. All prefix codes and

corresponding figures are listed at the left in Figure 4-2.

The name of a signal that transfers information from one register to another includes the names
of the two registers with an arrow between them. The arrow invariably points to the left be-
cause the transfer logic is always associated with the receiving register and its name must there-
fore appear first in the signal designation. The name of a transfer signal specifies not only the
registers and the direction of transfer, but also the type of transfer and the register bits involved
if the signal acts on less than the entire register. Numerals representing register bits are merely

appended to the register name; bit 8 in AR is AR8 and bits 0-7 in MB are MB0-7. Operations
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polarities so that the source of every signal is uniquely identified by its name and the associated
polarity symbol. Whenever two logically equivalent signals have the same polarity, they are
differentiated by adding an extra letter or number to one of the signal names; for example,

MR CLR and MR CLR A are equivalent pulses. If one logic signal produces an equivalent sig-
nal through a bus driver, the buffered signal is indicated by the letter "B" at the end of the
signal name. If the outputs of a flip-flop are buffered externally to the flip~flop module, the

buffered signals are indicated by a "B" between the flip-flop name and the state numeral.

The pulses in the time chains for the various main cycles and subroutines all have the same three-
part format: first the prefix code naming the chain, then the letter "T," followed by a number
or number and letter combination specifying the pulse. For example, FT3 is pulse number 3 in
the fetch time chain; DST13 is pulse 13 in the divide subroutine time chain. These pulses are
not always in exactly the order that one might expect, and the reader should always consult the
flow charts to determine the proper sequence. For example the first three pulses in normalize
return are NRT0.5, NRTO, NRTO.1. In the execute cycle, ETO and ETOA are logically equi-
valent and together are the first pulse in the execute cycle—the two labels indicate separate
but equivalent pulse lines. The next pulse is ET1 but this is followed by ET3. In character
operations CHT8B follows CHT8 but precedes CHT8A. But in most cases a letter following the
number in a pulse name indicates the next pulse in the chain, usually following return from a
subroutine. Thus the first pulse in the floating multiply chain, FMTO, calls the exponent cal-
culate subroutine, and the next pulse, triggered by the subroutine through an SBR, is FMTOA.
The SBRs and most control flip-flops that govern the time chains also have similar three-part

names in which the "T" is replaced by an "F."

4.3 INSTRUCTION DECODING

Figure 4-2 is a tree which shows the decoding of instructions from the instruction register. The
output signals in the figure appear as the gating levels in the flow charts that are described in
the following sections. The purpose of the tree is to allow the reader to gain familiarity with
these logic gates and to correlate them with the instruction codes. No attempt is made here to
give a detailed explanation of every logical function; for this the reader should use the tree in

conjunction with the discussion of the decoding hardware in 5.3.



Any code placed in IR is converted into gating levels to govern events that must occur in the
fetch, execute, andstore cycles and various special sequences to execute the particular instruc-
tion. The decoding begins at the left in the figure with the three most significant IR bits, which
are Eonverfed into signals representing the eight instruction classes. These primary outputs act
as gates to enable decoding of the remaining bits. In some cases the output enables a second
decoder for several more bits whose outputs in turn act as gates for further decoding. In others
the first output represents a single instruction group and it gates the decoding for all remaining
bits. For the former type, the line extends only part way across the figure and then generates

a number of branches at a single position; for the latter the line extends the length of the tree,
and branches appear at several positions. Most of the groups of two, three, or four bits shown

together are decoded by binary-to-quarternary or binary~to-octal decoders.

Groups of bits are actually decoded into individual outputs only where signal names are shown
for each bit configuration. Where only parenthetical items are listed, the coding as shown pro-
duces the mode or action listed, but the hardware does not decode the bit configuration into in-

dividual outputs.

When IR receives an instruction code in the instruction cycle, the first three bits are decoded

to generate one of eight primary command levels shown at the left in the figure. At the top

is the decoder output for a UUO, which corresponds to three zeros in bits 0-2. The decoder
output is conditioned by a flip-flop to prevent the generation of the actual command level while
IR is clear awaiting an instruction code. Other conditions also generate the command level to
perform a UUO when a user program attempts an illegal instruction. At the bottom of the draw-
ing is the decoder output for an 10T, corresponding to three ones. If it is not a user 10T, the
command level is generated and causes the decoding of bits 10-12 into the eight IOT instruc-
tions. Some of these individual instructions are ORed to generate composite functions. At

the same time IR bits 3-9 are placed on the /O bus to select the device.

Beftween the top and bottom entries in the figure are the decoder outputs for the six instruction
classes that use the basic format (these are not in numerical order, but are instead listed so

that classes with common decoding are adjacent). The configuration 001 indicates the floating-
point instructions and character operations. |f the second octal digit in the code is 0, 1, or 2,

there is no further decoding as these 24 codes are not used. If bits 3-5 contain 111, IR6-8 are
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decoded for two unused codes, the five character operations, and the single instruction float-
ing scale. A1 inbit 3 indicates the floating=point instructions and for these, bits 4 and 5 are
decoded for the specific instruction, bits 7 and 8 for the mode. The logical condition for round-
ing (NR ROUND) is dependent upon bit 6, but is not dependent upon any command level
because the gate is used only by the normalize return subroutine, which is called only by

floating=point instructions.

The second basic instruction class corresponds to the primary command level IR 2XX, which
represents a number of small instruction groups. Either 0 or 1 in the second octal digit specifies
a full-word transfer for which bits 7 and 8 are decoded for the mode, and specific configurations
of bits 5 and 6 generate the levels that control swapping and negating of the word. Second
octal digits of 2 and 3 correspond to fixed multiply and divide, respectively. The 01 configura=-
tion of bits 3 and 4 (shown as 01~-) generates a composite multiply-divide level to enable the
net that determines the necessary fetch and store operations from bits 7 and 8. Further fetch
and store operations are determined separately for multiply and divide from the state of bit 6,
which specifies whether the operands are to be treated as integers or fractions. For division

bit 6 is actually decoded into a further pair of control levels, but for multiplication the outputs
of IR6 act as gates directly on the multiply sequence. The next three configurations of IR3-5
enable the decoding of IR6-8 for the shift operations, a group of miscellaneous instructions, and
the pushdown and jump instructions (the absence of a signal name by any configuration of IR6~8
corresponds to an unused op code). The decoder output for JRST, like 1OT, generates the true
command level only if it is not executed as a UUO. For the JP group there are two additional
control levels corresponding to the six instructions that actually execute a jump, and the three
instructions that store the miscellaneous bits. The last group of instructions in IR 2XX are fixed
addition and subtraction wherein IR6 determines the instruction, and bits 7 and 8 are decoded
for the mode. These modes are equivalent to those for the Boolean instructions, which make up
an entire class with the configuration 100 in IR0-2. IR BOOLE also enables the decoding of

IR3-6 to determine which of the 16 instructions is specified.

Another single instruction group, the half-word transfers, is specified by 101 in the first three
IR bits. For these instructions bit 3 determines which part of the destination register shall re-
ceive the half word. Bits 4 and 5 determine the effect on the nontransfer half: a 1 in either

bit clears AR, and further decoding enabled by bit 3 determines whether that half shall then be
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set to all ones. A1 in bit 6 causes the operand to be swapped before the transfer so that the
destination register receives the half word from the opposite half of the source register. Bits

7 and 8 are decoded for the mode.

The remaining two IR0-2 configurations, 011 and 110, are for the arithmetic compare instruc-
tions and the logical compare instructions (ACBM). The former class includes the ACCP group
in which an accumulator is compared against either C(E) or E, and the MEMAC group in which
either AC or C(E) is compared against zero. For the arithmetic class, 00 in IR3-4 specifies the
ACCP type, and a 1 in bit 5 indicates a direct comparison, i.e., against C(E); the other three
configurations of bits 3 and 4 specify the types of MEMAC instructions, any of which generates
the composite MEMAC command level. The state of IR5 determines whether the comparison tests
AC for a jump or memory for a skip. In the ACBM group, bits 3 and 4 determine the action on
the masked bits. A 1 in bit 5 specifies that the mask is C(E), and a 1 in bit 8 swaps the mask
before the test. The remaining bits in the two classes determine the skip or jump condition as
shown; for the logical comparison the condition is determined by bits 6 and 7, for the arithme-
tic comparison by bits 6-8. The level for ACCP or MEMAC appears in the term for bit 8 because
this part of the condition is not used by the ACBM instructions; otherwise no instruction levels

need appear because the test level generated is used only by these instructions.

4.4 FLOW CHARTS

The remaining figures in this chapter are flow charts of all operations that can be executed by
the arithmetic processor and the four common in-out devices. These figures show every event,
and in so far as possible, show the flow of operations in a manner that is equivalent to the actual
gating and timing in the hardware (the terminology is from the logic drawings unless italicized).
Certain intermediate pulses are shown only implicitly (for example ET1 is shown clearing AR,
when actually it triggers AR —(0), which in turn triggers ARLT <(0) and ARRT +(0), which to-
gether clear both halves of AR). If an event is prefixed by CFAC, the time pulse is routed via

the subroutine interface to the register gating.

Each flow chart is based on a sequence of time pulses shown along a vertical line. Except for
insignificant intervals, such as the delay across a pulse amplifier or inverter, time between

pulses is shown by breaks in the line. Pulses always appear in ellipses and events in rectangles.



A pair of single horizontal lines breaking a vertical line indicates a delay; between the lines

is listed the delay time, or the signal that must be asserted to continue the flow. A break shown
by double lines indicates a subroutine call; the upper term identifies the subroutine, the lower
term names the pulse returned by the subroutine to restart the calling sequence. A flow line that
terminates with an arrow indicates that the flow continues with the pulse listed below the arrow
(numbers in parentheses are figure references); a line that terminates in an ellipse indicates that
the flow along this path ends with the events associated with the pulse. In arectangle, a con-
dition written to the left of a colon must be satisfied in order for the event written to the right
to occur. A condition written on a line must be satisfied for flow to continue along the line.
When several vertical lines branch from a horizontal line, the conditions are written above the

vertical lines.

The key cycle, through which initial entry into processor operations must be made, is shown at
the left in Figure 4-3. Key functions that require a sequence of events are shown in columns
associated with the key time pulses. Some console operations, such as examine and deposit,
require only the key cycle; others, such as start and read in, use the key cycle to provide entry
to the main sequence. Figure 4-4 and 4-5 show the main sequence. The flow charts for the
instruction, address, fetch, and store cycles show all possible events; the execute flow chart
shows the main time chain for the cycle, including all exits to special instruction sequences
and all operations that are not produced by any instruction, e.g., clearing AR CRYO at the
beginning of the cycle. The basic memory and AR subroutines can be called from the main

sequence and are shown, respectively, in Figure 4-3 and at the right in Figure 4-8.

The remaining figures show the execution of instructions following the fetching of the operands.
Those instructions that are timed by the execute cycle are shown in tables in Figure 4-6, 4-7,
and at the left in 4-8; instructions, other than IOTs, that are executed by special sequences

are shown in Figures 4-8 to 4-10. These special sequences may call the basic SC subroutines
(Figure 4-8, right) and the special arithmetic subroutines shown in Figures 4-11 and 4-12,

Figure 4-13 shows the 1OT instructions, some of which require the entire execute cycle as well

as the special 10T sequence. In-out operations that take place outside of the processor are
shown in Figure 4-14; for each of these an 10T isrequired at the beginning or the end, but other-

wise the sequence goes on independently of processor operations.
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For every instruction, Figures 4=6 to 4-10 and 4-13 list the complete decoding, the instruction
action, the initial registers, and the initial and final gates. The decoding is shown as performed
by the hardware; whenever the decoding does not correspond exactly to the meanings of the

bits in the instruction codes, further explanation is given in italics. The action is given in the
programming sense (i.e., in terms of accumulators, memory locations, control registers, flags),
but in the notation of the logic drawings: AC may mean either an accumulator or its contents,

E may mean either an address or the addressed location; the meaning is evident from the context.
The states of the processor registers are shown following the fetch cycle; MA always contains
the effective address and is not shown. The initial gates are those that control the fetch and
execute cycles. It should be understood that PC is incremented at ETO whenever the PC inhibit
is not shown as an initial gate, unless there is some special situation (e.g., the processor is

in a priority interrupt cycle or the instruction is being executed from the console). For all in-"
structions that are executed by the execute cycle, orreturnto it, the final gates (i.e., those
that control the store cycle) are listed at the end of the sequence. In all cases, registers and
gates are listed in terms of the instruction modes even though the modes for fixed multiply and

divide are not decoded individually.

Since the complete timing for the execute cycle is defined in Figure 4=5, those instructions
whose events are timed entirely by the execute pulses are shown in tables. In a table entry
for ET3, double vertical lines indicate the call of an AR subroutine; the subroutine is at the
left, the return pulse at the right. The pulses from ETé to ET9 are omitted when the instruction

does not use the second half of the cycle.

4.5 EXECUTE CYCLE FLOW

Every main cycle, subroutine, and special instruction sequence is explained with the descrip-
tion of the logic that generates the time chain and gating levels for it. However, for instruc-
tions that are performed by the execute time pulses it is impossible to consider the multitude of
possible events in the description of the execute cycle. For most such instructions the reader
can easily determine how the specific sequence of events produces the desired result by inspect-
ing the tables in Figures 4-6, 4-7, and 4-8. A few of the less obvious sequences are, however,
described here (in the following it is assumed that the reader is familiar with the action of each

instruction).
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In a half-word transfer (Figure 4~6, left) the positions of the source and destination words after
the fetch cycle depend upon the mode; i.e., the fetch cycle always places an accumulator in
AR and a word from memory in MB, and the mode specifies which of these is the source and
which the destination. The execution of the instruction requires that the source word be in

MB and the destination in AR, so ETO switches MB and AR for the memory mode and transfers
MB to AR for the self mode. If the transfer is to be from one half of the source to the opposite
half of the destination, then ET1 swaps the two halves of the source in MB. If the instruction

is to perform any operation on the unused half of the destination, ET1 also clears AR. Then
ET4 jams the specified half word into the appropriate half of AR and completes the action on
the other half by setting it, if required. At ETI0 the result is transferred from AR to MB for
either the memory or self mode, i.e., those modes that require the store cycle to deposit the
result in location E. In most instructions the result is in AR at the end of the execute cycle and
thus any mode requiring storage in E usually includes the AR to MB transfer at ET10. Exceptions

include instructions such as EXCH in which the correct words are already in MB and AR at ETO.

In a full-word transfer, ETO performs whatever transfer is necessary so that the word to be moved
is in both MB and AR. Then if the halves are to be swapped, the swap is made by ET1 in MB;

if the word is to be negated —which may happen for either MOVN or MOVM—the AR negate
subroutine is called at ET3. By ET4 the result is in MB only for MOVS, so for this instruction
MB and AR are switched. Of course only a transfer from MB to AR would be necessary, but the
gate for the bidirectional transfer is required for other instructions (no instruction requires a
transfer limited to one direction). The other instructions in Figure 4-6 are quite straightforward
with the possible exception of the logical compare group, ACBM. At the end of the fetch cycle,
the word to be used as the mask is in MB, and the word to be tested in AR. For convenience
let us refer to the latter as the data word, and the AND function of it with the mask as the test
word. ETO completes the construction of the mask by swapping the two halves of MB, if this is
necessary. ET1 then produces the test word by transferring zeros from AR to MB, and at the
same time it adjusts the data word for the complement and set actions by complementing bits of
AR corresponding to ones in MB (the exclusive OR function) or transferring ones from MB to AR.
ET4 then moves the test word to AR and the data word to MB. At this point the clear action has
not been handled and it would seem that the mask has been lost. However, any ones now in AR

must be a subset of the ones in the original mask, and these correspond exactly to all the ones









in the processor proper including all SBR flip=flops. The master clear also occursat the beginning of
every new operating sequence, i.e., at the beginning of every console operation other than
memory continue (see below) and at the initiation of any new instruction (ITO or any equivalent
pulse). The master start is generated only by the power clear and when the operator specifically
wishes to clear the /O system or place the processor in the executive mode. The flags and
several special control flip-flops are cleared only by MR START because they must carry in-

formation over from one main sequence to another.

The left half of Figure 5-1 shows the logic inputs from the keys and switches, and nets that
generate a number of composite functions to control events common to two or more console
operations. Several of the nets AND key functions with a state of the RUN flip-flop. For
example, a net in A3 allows the input from the EXECUTE key fo affect the processor only if

it is not in operation. Since examine and deposit may be performed while the processor is
running, these two operations are governed not by levels from the keys but rather by two pairs
of sync and start flip-flops (upper right). A pulse in the key time chain, KTOA, normally
clears all four flip-flops, but for examine or deposit the appropriate sync flip-flop is set in-
stead. Then, if the processor is running, the corresponding start flip-flop is set at the begin-
ning of the execute cycle. The sync flip-flops provide gates for the events in these operations;
the start flip-flops control the insertion of the operation between two main sequences. For
this purpose, two of the nets at the left generate the AND functions of RUN (1) with functions
of the start flip-flop states. |f at the end of a main sequence, either flip-flop has been set
and the processor is to continue, the signal from the net in C5 causes the processor to enter
the key cycle at the end of the main sequence. However, if neither flip-flop has been set,

the signal from the net in C3 causes the processor to begin a new main sequence.

Pushing any key other than the two STOP keys generates the level KEY MANUAL through the
net in the top center of the figure (the entire net is disabled during the power clear period).
The turnon of this level triggers a pulse generator in the upper left of Figure 5-2 to start the
key time chain. This chain is broken between KTOA and KT1 by the condition RUN (0) so that
KTOA triggers the following triplet of pulses only if the processor is not running. There are,
however, two gates that bypass the RUN condition: if the operator selects EXAMINE or DE-
POSIT while the processor is running, the appropriate start flip-flop allows the final pulse in

a store cycle to trigger KT1; furthermore memory continue goes directly from KTOA to KTI
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because it is assumed that the processor is "running"—i.g., RUN is 1—but that the operator has
previously stopped it at the end of a memory cycle by inhibiting the memory subroutine return.
This is why memory continue is the only operation in which KT1 does not generate the master
clear: somewhere an SBR is legitimately waiting for the subroutine completion. Memory

continve triggers the MC restart at KT1,

For read in, KT1 sets the readin mode subroutine flip-flop shown at the lower left. When

the processor is operating in readin mode, the normally unused core registers at the bottom of
memory replace the 16 flip-flop registers of the fast memory. In all other respects, read in

is exactly equivalent to start; thus the operator may keep a loading program stored permanently
in the readin area of memory, and the processor switches to normal operating mode whenever

an instruction is taken from any location beyond 17 ( ~ MA18-31 = 0). For console operations
other than read in, KT1 clears the flip-flop for normal operation, but the clear is inhibited by

the CONTINUE keys so that READ IN can be single stepped (the clear net is in Figure 51D1).

A few of the functions produced by the key time pulses are shown on drawings associated with
the appropriate function (such as operations involving PC) but most are shown in the center
portion of Figure 5-2. Start, read in, examine, and deposit all clear MA and transfer an
address into it from the console ADDRESS switches. Examine next and deposit next, instead of
loading MA, increment it. The three operations that send data into the computer, deposit,
deposit next, and execute, clear AR and load it from the DATAswitches. Also shown in the key
drawing is the gate through which the DATAI for the processor loads the DATA switches into
AR. CPA indicates that the IOT has selected the processor and the assertion of the DATAI
level triggers the transfer PA (see 8.3).

Following the various setup operations, start, read in, and instruction continue all generate
KEY GO (upper right). This pulse places the processor in operation by setting RUN (Figure 5-2)
and starting the instruction cycle. As long as RUN remains set, the completion of every store
cycle triggers a new instruction cycle so that the processor performs one instruction after
another in the program. Either the operator or the program may stop the computer at the end

of a store cycle by clearing RUN at ETO. The executive program clears it by a 1 in bit 10 of

6 JRST; a user program cannot stop the processor. The operator clears it by pressing the IN-

STRUCTION STOPkey, but the logic gate is bypassed by a pulse generator that is also connected
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to the key. The action through the PG is slow compared to the processor time chains, but
this ensures that RUN will be cleared even if some malfunction should interrupt the normal

procedure.

The other console functions do not place the processor in normal operation. Execute trans-
fers AR to MB at KT3 and enters the instruction cycle at the point at which an instruction
would normally be in MB after retrieval from memory but it does not set RUN, so the processor
stops at the completion of this single instruction. In the four examine and deposit operations,
KT3 requests a memory read or write as required and sets KEY RE/WR (Figure 5-2 B¢, C1). To
deposit information in memory, KEY WR also transfers AR to MB. Upon completion of the

memory subroutine, the MC restart generates the read/write return clearing the SBR.

The upper right portion of Figure 5-2 shows the gates that generate KT4 for the repeat mode.
If the REPEAT switch is on, KT4 triggers a repeat delay (upper left): the 4303 state change at
the end of the delay period then retriggers the key time chain as long as any initiating key is
held on. To use the memory repeat function, the processor must already be running when the
operator pressesthe STOPkey for memory; then KT4 is generated every time the memory stop
flip-flop is set. To repeat start, instruction continue, or read in, the operator must hold on
both the initiating key and the INSTRUCTION STOP key; then at the completion of each instruction,
ST7 triggers KT4. Since execute does not start the processor, the operator need not use the
STOPkey to repeat it; in thiscase, KT3 triggers KT4. Similarly, for the four examine and
deposit operations, the read/write return triggers KT4. Furthermore, examine or deposit

may be repeated while the processor is running: if one of these operations interrupts the
normal transition from store cycle to instruction cycle, the appropriate start flip-flop causes
KT4 to trigger KEY GO. This pulse does not affect RUN, which is already 1, but it does

retrigger the instruction cycle and clear the start flip-flops.

5.2 PROCESSOR CYCLES

There are five cycles in the main sequence: instruction, address, fetch, execute, and store.
All but the execute cycle perform only operations that are common to all instructions or to
groups of instructions, and these four are described in detail in this section. Instruction,
fetch, and store can call only the memory subroutine; whereas the address cycle can call

both the memory and the add subroutines.
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The execute cycle performs some general control operations but is limited primarily to the

specific operations necessary for the execution of individual instructions, including entry into
special instruction sequences. For this reason, the description of the execute cycle included
here is limited to timing, general control functions, the calling of the simple AR subroutines,

and the entry and return for special sequences.

In the fetch, execute, and store cycles, the gating levels that govern the sequence of time
pulses and the calling of subroutines are OR functions of instruction conditions. An input
condition may be an entire instruction class or a single instruction, or it may be a single mode
either within an instruction or in an instruction class. The reader is assumed familiar with the
standard outputs from the instruction decoders (4.3) and only special conditions are discussed

here.

a Instruction

The lower half of Figure 5-3 shows the time chain that controls the retrieval of instructions
from memory (flow chart, Figure 4-4). When the operator starts the processor or causes examine
or deposit to interrupt normal processor operations, KEY GO begins a new instruction cycle by
triggering IT0. If the processor is in normal operation and no examine or deposit has been
synced by key timing, the final pulse in the store cycle of an instruction starts the instruction
cycle of the next one. 170 generates the master clear, clears the memory address register,
and after a slight delay sets IF1A, the SBR for the memory subroutine that will subsequently
retrieve an instruction. 1TO0 also generates PI SYNC (8.2b) which strobes the priority interrupt
system provided the processor is not already in a Pl cycle. If the PIR strobe produces no re-
quest or if the processor is already in a Pl cycle, the sequence continues to IT1 directly. If
the strobe does produce a request, the sequence continues instead to IATO, which triggers the
master clear, places the processor in a Pl cycle by setting Pl CYC, andthen triggers IT1, which

calls the memory subroutine and supplies a memory address for instruction retrieval .

In a normal sequence, i.e., Pl CYC(0), the address comes from the program counter; if the
processor is in a Pl cycle, however, the appropriate Pl channel address is transferred into MA.
Furthermore, if Pl OV is 1 (this can occur only in the second consecutive Pl cycle when a

block IOT is completed), MA is incremented by 1 at the same time that the channel address is
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transferred in, so the processor performs the instruction in the second location associated with
the channel. When the instruction is available in MB, the memory restart triggers IT1A, which
transfers the instruction code and AC address from MB into IR. If the instruction was retrieved
from a location above 17, IT1A also clears the readin mode flip-flop in case the processor has

been in read in.

The instruction cycle may also be entered late for several situations. |f a UUO appears in the
program, UUO T2 starts a new instruction execution by setting IF1A and making a read request
to retrieve the instruction in location 41; the memory restart then continues the chain auto-
matically by triggering ITIA. After retrieval of the operand in the fetch cycle of the execute
instruction, XCTTO returns to ITIA so that the operand is executed as an instruction. Similarly,
the console operation execute triggers IT1A after the contents of 'the DATA switches have been

transferred to MB via AR.

b Address

The calculation of the effective address for an instruction is governed by the logic shown in
the upper half of Figure 5-3 (flow chart,Figure 4-4). In a normal sequence, IT1A starts the
address cycle by triggering ATO. However, the cycle is also triggered by CHT9 for the second
part in a character operation: in this case, the processor has already handled the pointer and
must now calculate the effective address for the operand as specified by the pointer. ATO
transfers the address portion of the instruction word from MB to AR, transfers the indirect bit
and the index register address to IR, and clears MA in preparation for subsequent memory

access.

ATO also generates Pl SYNC (8.2b) which strobes the priority interrupt system provided the
processor is not already in a Pl cycle. If the strobe discovers any request, Pl SYNC generates
IATO which returns the processor to the instruction cycle. If there is no request or if the pro-
cessor is already in a Pl cycle, the sequence continues the address cycle by triggering AT1
provided the operator has not pressed the INSTRUCTION STOP key within the preceding 100 psec
(IF1A being O guarantees that the return is to the address cycle rather than the instruction
cycle.) If the instruction specifies no index register (IR14-17 = 0), AT1 jumps directly to AT4.
However, if address modification is to be performed, AT triggers AT2, which transfers the

index register address to MA, maokes a memory read request, and sets A LONG. The return from
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memory triggers AT3, which sets AF3A and requests the add subroutine to add the contents of
the index register to the address specified by the instruction. The subroutine return trans-

fers the calculated address from AR back to MB and moves the cycle on to AT4, which clears
the left half of AR. If the instruction specifies an indirect address (IR13 is 1), the cycle
continues to AT5 which transfers the calculated address from MB back to MA and makes another
read request to retrieve the new address. AT5 also sets A LONG, clears the indirect bit and
index register portions of IR, and sets AFO. The last action allows the memory restart to trig-

ger ATO, restarting the address cycle.

If the instruction specifies a direct address, the processor goes on from AT4 to the fetch cycle.
At the completion of address calculation, MA, MQ, and ARLT are all clear; the effective

address calculated for the instruction is contained in the right halves of both MB and AR. The
contents of MBLT are equal to the last word retrieved from memory, provided the final address

cycle did not index.

c Fetch

Figure 5-4 shows the logic that controls the retrieval from memory of the operands necessary
for the execution of an instruction (flow chart, Figure 4-4). The lower part of the figure shows
the generation of the control levels for the cycle. In all instruction groups, individual in-
structions or specific instruction modes which do not require an accumulator, the net in the
lower left generates an inhibit for that function. The bottom two inputs, CHINC OP and

CH ~ INC OP, both apply to the first part of character operations and indicate whether or
not the pointer shall be incremented after it is retrieved. The level IR 254-7 is asserted for
the four included instruction codes: the first two are jumps; the third is XCT; the fourth is
not used. All other inputs that generate FAC INH are standard instruction situations (5.3).
There are a few instructions which, after retrieving the accumulator, require the retrieval
either of a second accumulator or of a word addressed by half of the already retrieved accum-
ulator. The three levels that govern these situations are shown in the center of the figure.
The cycle fetches AC2 for any double word shift operation and for fixed point division, which
uses a double-length dividend. POP and POPJ both pull out the word addressed by ACRT,
which keeps the final address for the pushdown list. Fetching of the word addressed by ACLT
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is required by JRA and BLT: the former to restore AC as the return from a JSA which stored
AC in E and saved E and PC in AC; the latter to retrieve a word for subsequent storage in the

location addressed by ACRT.

Two levels govern the retrieval of a word according to the effective address, FC(E) and FC(E)
PSE. The first reads and releases the memory so it can rewrite automatically. The second
makes a read/w‘rite request: the memory subroutine thus pauses after fetching so that information
can later be written into the same memory location (usually in the store cycle and controlled
by the same level). For the first part of character operations, FC(E) retrieves the pointer if
it is not to be incremented; whereas the pause is required if an incremented pointer is to

be written back in. Similarly, in the second part, a character deposit requires the pause
while a load does not. An |OT BLK also retrieves a pointer which is automatically indexed
and thus requires the pause . The remaining inputs to both nets are all standard instruction situations,
but the reader should take special note of two inputs to FC(E): IRMD FC(E) and IRFP. The
first represents all fixed-point multiplication and division operations that do not use E as an
operand; the second includes all floating instructions except floating scale. All of these in-
structions have modes that store the result in E; however, all require significantly greater

execution time than other instructions and they request read to release the memory.

In the upper half of the figure are the delaysand SBR flip=flops that provide the fetch time chain. The
normal entry is from the address cycle at AT4 when no further deferring isrequired. If the
address calculation requires no indexing or deferring at all, A LONG is 0 and the entry into
FTO is delayed; otherwise the entry is immediate. There is also an entry into FTO for a block
IOT: after the pointer has been indexed and stored, 10T TOA triggers the fetch cycle for the
data instruction that follows (8.1). FTO performs no outside operations but continues the
proper fetch sequence. If the instruction requires no accumulator, the sequence goes directly
to FT5. To fetch AC, the sequence goes to FT1, which transfers the AC address from IR to MA
and requests a memory read. The memory restart triggers FTIA, which is also produced directly
by BLTT6. In a block transfer, each word is retrieved by a fetch cycle; but the store and
index operations are performed by the special BLT subroutine. The subroutine returns to

FT1A bypassing FT1, because the instruction must fetch AC, which contains the initial source

and destination addresses, only for the first transfer.
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The sequence from FT1A and the operation performed by it depend upon whether additional

AC operations are necessary. All sequences include a switch between MB and AR so that AC
is in AR and E in MB. I[f there are no extra AC fetch operations, FTI1A clears MA and switches
MB and AR. To fetch a word addressed by AC, FT1A clears MA; and if the address is in the
left half, swaps the halves in MB. It also triggers FT3, which loads MA with the selected
half of AC, makes the MB-AR switch, and goes on to FT4. If a second accumulator is re-
quired, FT1A adds 1 to MA, switches MB and AR, and skips to FT4 which triggers the memory
read for either type of extra AC fetch. FT4 also sends MB to MQ to save E. The memory sub-
routine returns to FT4A, which clears MA, and switches MB and MQ so that MQ contains the
extra word fetched and MB again contains E. FT4A also triggers FT5, which results directly
from FT1A if no additional AC operations are required. FT5 transfers E from MB to MA and
then triggers FT6 or FT7 depending upon whether the instruction requires a memory read or
read/write. The memory return then completes the cycle by triggering FT6A, which results

directly from FT5 if the effective address is not used for memory access.

At the completion of the cycle, MA contains E; and AR and MB contain AC and C(E) if both
words were fetched, although the AC halves are swapped if the cycle also fetched the word
addressed by the left half. If there was no AC fetch, AC contains E with the left half clear;
and if there was no C(E) fetch, MB contains E with the left either clear or in the same state
as at the end of the address cycle (the latter case occurs only if no fetch operations were
performed at all). MQ is clear unless an additional AC operation was required, in which

case it contains the extra word.

<i Execute

After fetching the operands, the processor performs the operations necessary for the execution
of the instruction. Figure 5-5 shows the logic for the execute time chain, the flow chart is
Figure 4-5. Only the simpler instructions are actually executed by the ET pulses; for the more

complicated ones, the pulses trigger appropriate subroutines.

The lower portion of the figure shows the generation of three levels that control the execute
sequence. Two are inhibit levels that break the chain for subroutines; reentry into the main

sequence is made from the subroutine usually —but not always, at ET10 (XCT and UUO, for
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example, both return directly to the instruction cycle). The subroutines for all 1OTs and for
FSB start at ET4 and thus inhibit ET5. All otherinstructions requiring execution by subroutine
inhibit ET4 although this does not mean that the subroutine entries are made at ET3. In fact,
most of them are at ETO but the execute chain continues to ET3. There is also a group of
instructions (including fixed-point add and subtract and some of the data transmission and
executive instructions) whose transfer and logical operations are triggered by the ET pulses
but which require an AR subroutine. These instructions all generate the level AR SBR which
inhibits ET4 but only for a pause: AR SBR causes ET3 to trigger the SBR at the left at the same
time that it triggers an appropriate subroutine. The subroutine return then triggers ET4 to
continue the chain. AR SBR includes several instructions which generate both inhibits:
floating subtract requires the negate subroutine at ET3 and enters the floating add subroutine
at ET3 and enters the floating add subroutine at ET4; both block 10Ts index the pointer at

ET3 and switch to an 1OT subroutine.

Almost all logical and transfer operations triggered by ET pulses occur in the first half of the
chain; most instructions using ET6 to ET? affect the program counter. These instructions gen-

erate E LONG (right) which causes ET5 to go to ET6 instead of skipping to ET10.

In the execute cycle flow chart, the only events for which complete conditions are listed are
general operations independent of specific instructions and operations involving PC, MA,

and the flags. The many logical and transfer operations on AR and MB that actually execute
the Boolean, data transmission, and other instructions occur almost exclusively at pulses 0,

1, and 4; to determine which events are required for a specific instruction, refer to the appro-
priate instruction flow chart. The following description of the execute cycle discusses only
the sequencing of the cycle, entry to and return from subroutines, and the more general
operations. For events involving individual registers, refer to the appropriate section of the

logic in this and following chapters.

To begin the execute cycle, the final pulse from the fetch cycle FT6A, triggers ETO and ETOA
simultaneously and also triggers a delay for a subsequent ET1; ET3 follows automatically from
ET1. The two O pulses are logically equivalent but two pulse lines are required because of
the many events they trigger. Usually ETO increments the program counter so that the next

instruction will be taken from the next memory location in sequence. The only circumstances
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that inhibit PC+1 are those in which ETO will occur again before the next instruction in normal
sequence is fo be performed. ETO also clears the AR carry flip-flops for use during the cycle,
synchronizes those console operations which may interrupt the normal sequence from store
cycle to instruction cycle (5.1), and clears RUN for the halt instruction (JRST with a 1 in

bit 10). The first three execute pulses also handle hold and dismiss operations for the priority
interrupt system (8.2b), restoration of flags, and entry into user mode. ETO provides subroutine
entry for character operations, both fixed and floating multiplication and division, and
floating addition; ET3 starts the subroutines for BLT, FSC, UUO, and all shift operations.

XCT also stops the chain at ET3 in order to return to the instruction cycle.

ET4 follows immediately from ET3 only if there is no inhibit. For the instructions that generate
AR SBR, ET3 triggers the appropriate AR subroutine and sets ET4 AR PSE. The subroutine return,
ART3, clears this SBR and triggers ET4, which in turn continues to ET5unless there is an entry to

the FSB subroutine. [f ET4 follows from ET3 without pause, ET5 follows immediately except for
the in-out transfer instructions: for these ET4 triggers the IOT subroutine, but at its completion

time pulse 1OT T3 returns to the execute cycle by triggering ET5.

Most computational and data transmission instructions skip the second half of the execute cycle
by having ET5 go directly to ET10. However, if E LONG is asserted, the chain continues
through all the remaining pulses without interruption. ET7-9perform the necessary program
control operations (5.4); the final two pulses in the cycle regulate the flags (6.2e, 8.3).
Since most instruction results that are to be deposited by the store cycle are produced in AR,
most instructions switch AR and MB either at ET9 or ET10. ET10 sets up MB and triggers the
store cycle not only for most instructions executed in the execute cycle but also for many of
those executed by subroutine. The return for fixed-point division is at ET? (provided the
division could be performed); return is made at ET10 for character operations, all floating-
point instructions (all of these except floating scale are made from the normalize return sub-
routine), fixed-point multiplication (which also returns via NRT6), and the block transfer

routine if the block is complete.



e Store

Information resulting from the execution of an instruction is deposited in memory by the store
cycle (logic, Figure 5-6; flow chart, Figure 4-5). The sequencing of the store time chain is
controlled by four levels: FC(E)PSE from the fetch cycle, which gates in the write restart

for any instruction that used a fetch and pause before execution; and three levels that gate in
write requests and are generated by the store logic. SC(E) is generated by three types of in-
structions: those which merely clear location E and deposit information in it without having
required a fetch; those which store C(E) in a location other than E; and those which require
so much execution time that they requested only the read rather than the read and pause in
the fetch cycle to free the memory during execution. SAC INH is generated by instructions
that address no accumulator, by computational and data transmission instructions in the mem-
ory mode (that mode which stores the result only in memory), or by test instructions that have
no result to store. Instructions that compare a memory word against zero store the word (which
may be indexed) in both memory and an accumulator, but AC storage is inhibited if ACO is
addressed (the net in C6 decodes IR9-12 for no AC selection). The input BLT LAST inhibits
AC storage in the cycle following completion of a block transfer. If a priority interrupt stops
the block before completion, the current addresses are stored in AC so that the block may be
continued after the break. Some arithmetic and shift instructions generate SAC2 to store MQ
in a second accumulator. This event occurs for all double-length shifts, floating-point in-
structions that store the low-order halt, and fixed-point operations that have a double-length

result.

To generate a write request for SC(E), ET10 triggers ST1; whereas, it triggers ST2 to provide

a read/write restart for SC(E) PSE. Either time pulse sets SF3, and at the completion of the
memory subroutine the return triggers ST3. If there is no storage according to E (or whatever
address has replaced E during the execute cycle), ET10 triggers ST3 directly. If there is also
to be storage in an accumulator, ST3 clears MA and ST5 loads the AC address into it from
IR9-12, transfers AR to MB, and makes the write request. The memory restart triggers ST5A
which goes on to ST6 if a second AC storage is necessary. In this case, STé increments MA
to address the second AC, transfers MQ to MB, and calls another write. STé is also delayed
slightly to generate ST6A which sets SF7, the SBR for the memory subroutine call. This delay

is necessary to guarantee that the return from the previous subroutine cannot trigger both
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ST5A and ST7. The return from this storage then triggers ST7 which also follows directly

from ST3 if there is no AC storage at all, or from ST5A if there is no second AC storage.

ST7 is the return time for the divide subroutine if the division could not be performed, and

for a character operation that terminates after the first part (i.e., an instruction which operates
not on a character but only on the pointer). Since all FP/CH codes inhibit ET4, those that

are not used for instructions cause ET3 to trigger ST7; thus all unused codes (except the UUOs)
are interpreted as no-ops. Furthermore, if at any time a user program attempts to address a
protected area of memory, a priority interrupt is requested on the CPA channel and the sequence
jumps directly to ST7. If RUN is 0, the processor stops at this point. Otherwise, ST7 returns
to a new instruction cycle unless the operator has requested examine or deposit, in which

case, it returns to the key cycle.

5.3 [INSTRUCTION CONTROL

For each instruction to be performed, the 18-bit instruction register receives the instruction
code, indirect bit, and AC and index register addresses from MB (Figure 5-7). Although in-
formation may be transferred into IR only from MB, the IOT time pulse TOA directly sets IR12,
which changes a block 10T instruction into the corresponding data instruction after the pointer
has been indexed. For effective address calculation, the indirect bit IR13 controls the repetition
of the address cycle, and IR14-17 provides the address of an index register to be used in the
calculation. Although there are 16 accumulators, only 15 of them can be used as index registers.
A 0 address in IR14-17 indicates no index register selection and the address cycle performs

no indexing. The generation of the appropriate address cycle gate, IR14-17=0, is shown in

the lower right of Figure 5-8. For the fetch and store cycles, the AC address is supplied by
IR9-12. For IOT instructions, IRO-2 are all ones, and {OT control decodes the instruction
specified by IR10-12. A device is selected according to the code supplied by IR3-9; the bus

drivers for the in-out selection lines are at the top of Figure 5-7.

The lower portion of the figure shows the pulse signals that control IR. MR CLR clears the
entire register at the beginning of every main sequence. In every instruction cycle, ITIA
transfers the instruction code and AC address (or instruction and device codes for an IOT) into
IRO-12 from MB; at the beginning of every address cycle, ATO transfers an indirect bit and
index register address into IR13-17 from MB. If the calculated address is indirect, ATS clears
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IR14-17 in preparation for reloading at ATO when the cycle repeats. When the first part of o
character operation is completed, the processor returns to the address cycle to calculate the
effective address for the character from the pointer. Thus CHT8A clears IR13-17 in prepar-
ation for loading at ATO, which is triggered by the final pulse in the first part of the char-

acter time chain.

The next three logic drawings, Figures 5-8 to 5-10 show the main decoding of IR0-8 to control
the execution of individual instructions. In this section of the processor, the decoding is
carried down in many cases to individual instructions and instruction modes. There are,
however, a few command lines which represent instruction pairs whose differences are minor;
trivial additional decoding for these is shown with the hardware that actually executes the
instruction. For example, the IR multiply and divide outputs represent both integral and
fractional operations; the floating command outputs represent both the standard instructions
and those that round. Figure 5-8 shows the primary decoding into major classes, decoding
into command levels for fixed-point multiply and divide and for all floating-point instructions,
and final decoding for all single instructions without modes that correspond to unique 9-bit
codes. All of the Figure 5-8 outputs, although representing functions at several different
levels in the decoding hierarchy, have the prefix IR. Outputs from the groups decoded in
Figures 5-9 and 5-10 have the appropriate group prefix. Figure 5-10 also shows the timing for
SCT and UUO.

The binary-to-octal decoder in the upper left of Figure 5-8 performs the first stage in instruc-
tion decoding by determining which of the eight primary instruction classes is specified by
IRO-2. The decoder gating input P is grounded so that the decoder is always on. All codes in
the UUO class produce exactly the same operations and require no further decoding. In the
IOT class, the eight instructions specified by IR10-12 are decoded in IOT control. Outputs 1
and 2, IR FP/CH and IR 2XX, gate other decoders shown in this figure; further control in the
classes represented by outputs 3, 4, 5, and 6 is shown in Figures 5-9 and 5-10. The primary
command level IR FP/CH includes the instructions for floating-point arithmetic and character
operations, and instruction codes 100 to 131 which are not used. IR FP/CH ANDed with the
condition 011 in IR3-5 (i.e., codes of the form 13X) gates the lower left decoder, which

produces the command levels for FSC and the five character operations. At the right, the
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primary level gated by IR3(1) represents all floating-point instructions other than FSC: bits 4
and 5 are further decoded to determine the instruction, bits 7 and 8 to determine the mode.

Bit 6 does not appear here but controls rounding at the normalize return subroutine.

The top center decoder is gated by IR 2XX to convert IR3-5 into eight command levels, each
representing eight instructions or two instructions with four modes. The 0 and 1 outputs each
represent two of the move instructions and are ORed to generate the command level for the
group. At the léft, IR SH is further decoded into the six shift instructions plus two unused
codes (the two types of arithmetic shift are ORed in B4 for use by the overflow logic); at the
upper right IR 25X is decoded into seven miscellaneous instructions plus one unused code.
Just below, a gate generates the signal IR 254-7 to inhibit AC fetch and storage, which is

not required for these codes.

Although the decoder gated by IR 2XX generates two outputs for fixed-point multiply and
divide, the condition representing both of these outputs also generates a combined command
level IR MD (Figure 5-8, center). Further decoding produces the appropriate fetch and store
gates. All modes but the immediate (01 in bits 7 and 8) fetch C(E). Only fractional division
uses a double-length dividend and fetches AC2. The two modes with a 1 in bit 7 store the
result in memory; whereas only the memory mode inhibits storage in AC. For all modes that
do store in AC, a second AC storage is required for the remainder in division and for the low-

order half of the double-length product in fractional multiplication.

Note that three of the decoder outputs at the top of the figure have a suffix "A:" these are

IR UUO A and IR IOT A in the upper left, IR JRST A in the upper right. These decoder out-
puts do not drive the command lines for the corresponding instructions. Instead, they are ap-
plied to the executive logic (5.5) to determine in the latter two cases whether the instruction
is allowed or must be executed as a UUO. The command level for UUO is generated by the
executive logic; the command lines for the other two instructions are driven by the gates in C4,
each of which is enabled by the appropriate decoder output when the instruction is not being
executed as a UUO. The gate just below ORs the 1 states of IR9 and IR10 for use by the ex-

ecutive logic in testing a JRST.



ACCP V MEMAC, ACBM (Figure 5-9) .

For the ACBM group (upper right), bits 3 and 4 are decoded for the action on the masked bits:
do nothing clear, complement, set. IR5(1) selects C(E) for the mask direct, as against im-
mediate which uses E. A 1 in bit 8 swaps the AC halves before masking. The net in the

upper left decodes bits 3 and 4 for instructions in the class that includes both ACCP and
MEMAC: one fourth of the instructions do an arithmetic comparison of AC against either E

or C(E); the other three types compare C(E) or AC against 0 and either merely test, or add

or subtract 1 before testing. Any instruction in the latter three types generates the main
control level MEMAC; the state of bit 5 determines whether the test word shall come from
memory or an accumulator. In ACCP, a 1 in bit 5 specifies a comparison with memory (direct);

otherwise the test is made against E (immediate).

The logic nets at top center in the figure test the skip or jump condition for all three groups,
ACCP, MEMAC, and ACBM. The condition is determined by the pair of gates at the left:
bit 7 selects the condition that AR is 0; bit 8 that the test word is less than the standard,

be it 0, C(E), or E. The upper gate functions only for ACCP and MEMAC: the logical com-
parison employs an AND function and the only test is whether or not the masked bits are all
zeros. In an arithmetic comparison, the function AR=0 represents equality of the test word
and the standard. The function representing the inequality is the exclusive OR of the AR sign
bit and the overflow condition. This function is true when the subtrahend is greater than the
minuend; but since the standard is subtracted from the test word, it is true when the test word
is smaller. In MEMAC, the overflow condition is automatically false (for a complete des-
cription, see the flag logic, 6.2¢) so the entire function istrue when ARO is 1, i.e., when

the test word is less than 0.

FWT (Figure 5-9)

For a full-word transfer, the four standard modes are decoded from bits 7 and 8; a left-right
swap is made for MOVS (bits 5, 6 = 01); and the word is negated either when moving the
negative or when moving the magnitude while the word is negative, both situations being

represented by the condition IR6(0) V ARO(1) in MOVN or MOVM.
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HWT (Figure 5-9)

For a half-word transfer, the standard modes are decoded from bits 7 and 8; a O or 1 in bit 3
specifies whether the half word shall be transferred into the left or right half of the destination;
and a 1 in bit 6 specifies that the source word shall be swapped before the transfer is made so
that the left half of the source is transferred into the right half of the destination or the right
into left. The other levels control the operation on the other half of the destination. If bits 4
and 5 are both 0, there is no action. If either bit is 1, AR is cleared; the word is constructed
by loading a half word into one half and complementing the other half if it should be all ones.
If bit 4 is 0, the other half is left clear; however, on IR4(1) the other half is set to all ones
(i.e., complemented) if the instruction requires that it be set or that its bits be made equal

to the sign of the transferred half and that half is negative. The gates to the left generate

the appropriate functions. For a transfer to the right, the upper net generates HWT LT SET

if instruction bit 5 is O or the sign bit MB18 of the right half word is 1. The lower gate per-

forms an equivalent function for the transfer left.

BOOLE, AS (Figure 5-10)

Since BOOLE and AS have the same modes, the OR function of the two instruction levels gates
a decoder for bits 7 and 8. For further decoding of AS, the command level is merely gated

by the states of bit 6 to determine whether addition or subtraction is required. To decode for
the 16 Boolean operations, bits 4, 5, and 6 are applied to binary-to-octal decoders, one
gated by the O state of bit 3, the other by the 1 state. The table at the left lists the 16 opera-~
tions by name, function, and number, shows the result for each of the four possible pairs of
operand bits, and lists the basic functions which, taken together, produce the required result
for a specific instruction. Each operation is performed by three of the execute time pulses and

may require from one to three of the basic functions.

JP (Figure 5-10)

Bits 6-8 of the jump and pushdown group are decoded into eight individual instructions. For
controlling transfers between MB and AR at the end of the execute cycle, there are two sub-
sidiary levels—one that representsall JP instructions except JSP, and another that represents

the pushdown and pullout instructions. For PC control, JP JMP represents the six instructions
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that jump, i.e., all except PUSH and POP. Three of the instructions that save PC (PUSHJ,
JSR, JSP) also generate JP FLAG STOR to save the miscellaneous bits (JSA also saves PC

but it stores E instead of the miscellaneous bits).

XCT, UUO (Figure 5-10)

IR XCT causes ET3 to trigger XCTTO, which returns the processor to the instruction cycle at

a point beyond the memory subroutine so that the processor then executes the operand in MB

as an instruction, just as though it had been retrieved by the instruction cycle. For all codes
in the UUO class, the execute clears MA and MBLT, then transfers address 40 into MA and the
instruction code into MBLT. The last event is equivalent to UUO TO, which triggers a memory
write to deposit the trapped instruction, with its address portion replaced by the calculated
effective address in location 40. The memory return triggers UUO T1 to index MA, and

UUO T2 makes a read request and sets IF1A in the instruction cycle logic. The memory return
automatically triggers the remainder of the instruction cycle so the processor performs the

instruction in location 41,

5.4 PROGRAM CONTROL

Each instruction in the program is retrieved from the memory location addressed by the 18-bit
program counter (Figure 5-11). At the beginning of every execute cycle, the counter is
stepped one position so that instructions are taken from consecutive memory locations. The
program controls its own sequence by means of skip and jump instructions. Skip instructions
cause the processor to skip one instruction in the normal sequence if a specified condition is
satisfied; the skip is implemented by advancing PC one extra position at the end of an execute
cycle. Jump instructions transfer program control to any chosen location, sometimes upon
satisfaction of a condition, by loading a new address into PC. An address can be transferred
in only from MA so any input from the console ADDRESS switchesor a jump address from MB
must be made via MA and the transfer must be preceded by a clear. The flip-flops are con-
nected in a carry configuration so a pulse at the PC+1 input to PC35 adds 1 to the contents

of the counter.

Figure 5-12 shows the control logic for the counter: three control pulses are produced in the

upper half; the lower half shows the generation of the gates that control counting, skipping,
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and jumping. Every program begins with the console operation start or read in, in which

KT1 clears PC and KT3 loadsthe ADDRESS switches into it. For normal counting, PC is incre-
mented at the beginning of every execute cycle. The circumstances which inhibit program
counting at ETO are those in which another execute cycle will occur before the next instruc-
tion in normal sequence is to be performed. Character operations generally require two main
parts, the second beginning with the address cycle, so PC is not incremented during operations
on the pointer except in the single instruction that affects only the pointer and has no second
part (C3). XCT, UUO, andablock IOT BLT all involve execution of instruction pairs and
counting occurs in the second execute cycle. Since a Pl cycle interrupts the normal sequence
between instructions, the count must be inhibited in it because the processor has not yet
executed the currently addressed instruction. Counting is inhibited throughout a block trans-
fer because the BLT subroutine returns to the fetch cycle to process each word. When the
block is complete (MQO = 0), PC is counted directly from the subroutine at BLTT5A. The

inhibit also applies to an instruction executed from the console.

For changes in the program location out of normal sequence, PC SET causes ET7 to clear and
ET8 to load, whereas PC+1 (ET9) causes ET? to count. The net for PC SET has as input all
unconditional jump instructions and an enable level which is asserted for any conditional
jump when the condition is satisfied. Conditions include JFCL when the addressed flag is

1, the add-1 jumps when AR has the appropriate sign, and those arithmeitc compare instruc-
tions that use an accumulator when the test is satisfied. An extra count occurs at ET? on two
unconditional subroutine jumps so that the subroutine begins one place beyond the storage
location of PC or AC. Any other extra count is for skipping and is represented by PC+1 ENABLE.
The skip conditions include the two |OT status test instructions when the appropriate condition
appears in AR, and the satisfaction of the test condition for any logical compare instruction or
those arithmetic instructions that compare memory against 0 or an accumulator against either

E or C(E). There is another conditional skip for a block 10T that does not use the Pl system:
if the indexing of the pointer did not produce a carry into ARO, IOTTOA counts PC (the
computer performs the next instruction in normal sequence only if the block is complete). If
any jump or skip occurs (other than an IOT block skip), the OR gate at the right generates the
level PC SET ~ PC+1 for setting the PC change flag (6.2¢).



5.5 EXECUTIVE LOGIC

The executive logic allows the executive routine to control the sharing of processor and memory
by a number of programs. The executive routine selects a user program and the area in core
assigned to it by loading the protection and relocation registers, placing the processor in the
user mode, and jumping to a location appropriate to the selected program. The user program
may be interrupted temporarily by a block IOT in a Pl cycle (which is under control of the
executive routiné and is hence unrestricted); but if a JSR is performed in a Pl cycle (such as
following the completion of a block 10T or for servicing some other type of interrupt), the pro-
cessor |leaves the user mode with control returning to the executive routine. Other than for
priority interruptions, the user program has control until it attempts to use a protected area of
memory or to perform an illegal instruction. The former action causes the processor to go the
end of the current main sequence and triggers a priority interrupt on the processor channel; the
latter causes the processor to perform the illegal instruction as a UUO (all UUOs are unrestricted

but automatically return control to the executive routine).

Figure 5-13 shows the executive logic except for the memory protection and relocation registers
which are discussed with the memory address logic (7.1¢). The pulse amplifiers at top center
provide the clear and set pulses for PR and RLR when the DATAO clear and set pulses are gated
by CPA, i.e., when a DATAO for the processor appears in the program. The only unprogram-
med clear for these registers is the master start because their states must remain until deliberately
changed by the program. Similarly, the user flag and the illegal operation flip=flop (A3, B5)
are also cleared only by the master start because they must maintain control functions from one
main sequence to another. The remaining three flip-flops in Figure 5-13 provide synchroniza-
tion and are cleared by the master clear. However, since the set function for EX PI SYNC is

a level output from the Pl cycle flip-flop, it remains set as long as PI CYC is 1 even though
there may be a master clear between a pair of Pl instructions. After Pl CYC is cleared, the
sync remains set until the beginning of the next main sequence. EX UUO SYNC is set at the
beginning of every address cycle and then cleared at the end of the main sequence. The pur-
pose of this flip-flop is merely to prevent the generation of the UUO command level during the

time that IR is clear in the instruction cycle.

To set up a specific user program, the executive routine loads PR and RLR with a processor

DATAO. It then jumps to the location for the program with a JRST that also sets the executive
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mode sync flip-flop (B3). The setting may be done either by programming a 1 in bit 12 of the
JRST, or by restoring the flags (@ 1 in bit 11) provided that a user program was running at the
time the flags were stored. Instructions that store the miscellaneous bits with PC store EX USER
in bff 5, but the restoring JRST does not act on the user flip-flop directly. Instead, it sets the
executive mode sync if MB5 is 1. The processor does not leave the executive mode until the

end of the main sequence in which the sync is set: at this time, the transition of the sync back

to 0 sets EX USER.

The addresses in the user program are checked against PR to determine whether they are legal

and relocated to the area assigned to the program. The net in the lower right generates a level
that inhibits both relocation and protection; the inhibit is always asserted if the user flag is 0.
The net also inhibits the relocation of fast memory addresses so that these locations are available
to all programs (the protection inhibit is really unnecessary here because these addresses are

ipso facto less than the minimum block size). There is also no protection or relocation of addres-
ses that occur in a Pl cycle because the instructions executed are under control of the executive
routine and must be unrestricted even if a user program is running. Again only the relocation
inhibit is necessary for the Pl channel addresses, but both inhibits are necessary for the addresses
given by the instructions. If the interrupt should require a jump to the executive routine, the

JSR that calls the routine also stores and clears the user flag (B2).

The nets in the upper right monitor user instructions by receiving the IR decoder outputs for
JRST, 10T, and UUO to generate the UUO command level. The JRST or IOT decoder output
drives the corresponding command line only if the instruction is not executed as a UUO. When
the system is in user mode, EX IR UUO replaces a JRST that attempts to dismiss a priority in-
terrupt or halt the processor and replaces user IOT (a block IOT in a Pl cycle is not part of the
user program). Any UUO regardless of mode enables EX IR UUO (after the UUO sync is set);
this thus provides a means by which a user program can communicate with and return control to
the executive routine. EX IR UUO inhibits relocation since it must use addresses 40 and 41,
and at ET1 it sets EX ILL OP. The 1 state of this flip-flop then continues the inhibit into the
JSR in location 41. At ET7 the JSR clears the user flag and at ET8 the illegal operation
flip-flop. Just in case a block 10T that does not overflow should interrupt the JSR, EX ILL OP
is'cleared by all block 10Ts. |
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The illegal operation flip-flop is also used to inhibit relocation during an examine or deposit
that is inserted between two main sequences while the processor is running. For this purpose
EX ILL OP is set by ST7 at the same time that the key cycle is triggered and cleared by the

read/write return.
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CHAPTER 6

ARITHMETIC LOGIC

The first half of this chapter describes the registers used for arithmetic calculations. Three
full-word registers, AR, MQ, and MB, are used for computations on full-word and half-word
fixed-point numbers and the fractional parts of floating-point numbers. All data transfers and
logical operations on computer words are also performed in these registers. Besides the full-
word registers, there are two 9-bit registers SC and FE that are used for floating-exponent
calculations and for various subsidiary computations such as calculating the size and position
portions of the pointer in character operations and counting the number of steps required for
fixed- and floating-arithmetic operations. Included with each register is a discussion of its
input gating, its control logic, and any other hardware associated specifically with the reg-

ister (e.g., the flag logic and AR subroutines with AR, the SC subroutines with SC).

The second half of this chapter describes the time chains that control the execution of data
and arithmetic instructions outside of the execute cycle. The test discusses the generating
conditions for the pulses in a given chain and also describes the events that occur at each
step. In many instances, a number of pulses from the different time chains all must trigger the
same operation in an arithmetic register. Many subroutine time pulses are therefore connected
to the register control logic through OR gates in a subroutine interface (6.5). Lines from this
interface are labeled by the functions they perform and all have the prefix CFAC (computer
floating-arithmetic connection). When only one or two subroutine time pulses trigger a given
event, they are supplied directly to the register logic from the subroutines. In the following
discussion of the arithmetic registers, the significance of the generating conditions for an
individual register operation is given only for the execution of those instructions performed

in the execute cycle and for other events in the main sequence. To determine the significance
of any event triggered by a subroutine time pulse, either directly or through the subroutine

interface, the reader should refer to.the discussion of the appropriate subroutine.

The three full-word arithmetic registers are contained in the same set of double-height modules,

that is, MBi’ ARi’ and MQi are all on the same module (it also contains the ith bit of the
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memory indicator register Ml, which is described in the memory logic). Each 36-bit register
is controlled as a pair of half registers and is shown in two logic drawings, the first for the
left half in mounting panels D and E of bay 2, the second for the right half in panels H and
J of the same bay (e.g., see MB, Figures 6-1 and 6-2). The flip-flops of all half registers
are in panel locations 5 to 12 and 16 to 24. All control pulses are supplied to them by a
pair of pulse amplifiers in locations 14 and 15. On the register drawings, these are shown
merely as blocks with the pin connections labeled; the actual pulse amplifiers with input
gates are shown in the drawings of the control logic associated with the registers. Each PA
output drives 18 input gates and is connected to 18 register modules for ordinary 0 or 1 trans-
fers, but to only 9 for jam transfers. All inputs to every register bit are labeled by signal
name; but since all the registers are contained in the same set of modules, connections be-
tween corresponding bits are made internally and pin connections are listed only for external

signals.

6.1 MEMORY BUFFER

Figures 6-1 and 6-2 show the left and right halves of the full~word memory buffer. All trans-
fers to and from memory are made via MB, butthe register is discussed here because it holds
one of the operands in most arithmetic and logical instructions. Each MB flip~flop has a
direct clear input (which receives the register clear pulse) and gatable clear and set inputs.
The MB modules include six sets of internal gates, but the gatable inputs are also available
at the connector so that transfers can be made with single-bit pulses from external gates.
Transfers of either zeros or ones may be made into MB from either AR or MQ. The two halves
of MB may also be swapped; i.e., the left may be jam transferred into the right and the right
into the left. For various executive instructions, the program counter may be stored in the
right half of MB; the instruction register in MB LT. Transfers of information into MB from the
memory bus (7.2) are made via single-bit pulse set inputs shown at the bottom of the figures.

Clear inputs are also available, but these are used only for bits 1-8.

The external gates for the single-bit inputs other than those from the memory bus are shown
at the top in Figure 6-4. Besides the clear gates for bits 1-8, there are also set gates for
bits 0-8 that parallel the memory bus inputs. The gates are controlled by three transfer pulses,

two of which set or clear bits 1-8; whereas the third stores the miscellaneous bits in MBO-5.
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The generating logic for these transfer pulses is shown in the upper right of Figure 6-3. The
set and clear functions occur in floating-point operations to nullify the exponent part of the
register and are conditioned by the MB sign bit (refer to the appropriate subroutine). Storage
of the miscellaneous bits occurs at ET6 in several of the subroutine-calling jumps. These bits
include the four AR flags which can be used by a subroutine but return to their original
states following the interruption. The miscellaneous bits also include CHF7 and EX USER.
The latter is saved so that the executive routine can return control to a user program by re-
storing the flags. Saving CHF7, which is set at the end of the first part in a character opera-
tion, allows the computer to return properly to the second part if there is a priority interrupt

between the two.

The remainder of Figure 6-3 shows the logic that governs all of the regular MB transfers. The
top section shows the pulse amplifiers that drive the register gates; these PAs are triggered
through OR nets whose inputs come either from the subroutine interface (6.5) or from the trans-
fer gates in the center section of the figure. Timing inputs to these gates are supplied by the
various main sequence and subroutine chains; the gating levels for the execute time pulses are

supplied by the OR nets shown in the bottom section.

The clear function (upper left) is not required for transfers to MB from AR or MQ since these
are always jam transfers. For transfers in from memory, a signal from memory control clears
MB before the single-bit pulse inputs arrive via the bus. For a UUO, ETI clears only the
left half of MB leaving the effective address in the right half, and the ET3 loads IR into
MBLT (D2, B7). The transfer pulse also triggers the UUO subroutine (5.3). MB must also

be cleared before the transfers from PC that occur in various jumps. These jump instructions
generate the level MBPC STO (C3) which clears MB at ET5 (B1) and transfers PC into it at
ET6 (A6, B6). All but the restoring jump JRST also save the miscellaneous bits along with

PC (A8). There is one jump, JSA, that transfers PC at ET6 but is not included in MB PC STO;
this instruction gates ETé via the diode net in D6. No prior clear is required because the
left and right halves of MB are swapped at ETO (D7) placing E in the left half and leaving the
right half clear.

The two diode nets in D7 provide six conditions for the left-right swap of MB. Three of these

conditions are standard instruction modes and a fourth, JSA, is described above. For the
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other two, CONO makes the swap so that E is available over both halves of the 1/O bus, and
BLT does it to restore the address pair to its original configuration in order to store the data
ward in the location specified by the right half. These two levels gate the appropriate execute
time pulses at B2 to trigger the transfer PAs in A2, 3. The swap is also triggered at FT1A (B2)
whenever the processor must fetch a word addressed by ACLT (5.2c). The fetch cycle swap

includes BLT, which then requires the second swap to restore the original address pair at ET1.

The logic that controls transfers from AR to MB occupies the entire center portion of the draw-
ing from top to bottom. Almost all the transfers are of zeros and ones simultaneously, but
there are several cases in which zeros are transferred alone (B3). In the ACBM group, a 0
transfer is always made at ET1 (the group command level is inverted through the diode net in
D5) to AND the data word with the mask; then at ETé zeros are transferred again if the masked
bits are to be cleared. The 0 transfer is also used in a character deposit to produce an actual
transfer: the character portion of MB contains all ones and all bits outside of the character

in AR are also ones. The other three control pulses trigger the transfer of zeros and ones to-
gether: they jam transfer AR to MB, but two of the signals {one from the subroutine interface)
are also applied to AR control (6.2¢c) to trigger the transfer from MB to AR at the same time.
The double transfer always occurs in the fetch cycle to move AC to AR and E to MB; FT1A
does it (D3) if there is no fetch of an additional word addressed by either half of AC, other-
wise FT3 makes the transfer (B3). The MB-AR switch is required at three points in the block
transfer subroutine (6.6a); the remaining transfers are at execute times gated by levels gen-
erated in Figure 6-3 (ETO, C2; ET4, D8; ET9 and ET10, C6). In a few instances, the transfer
is actually necessary in only one direction but additional hardware would be required to
eliminate the superfluous one. For an explanation of these cases as well as any other events

that are not immediately obvious in the flow charts, refer to 4.5 (also see below).

The single transfer from AR to MB (B5) follows index register modification in the address cycle
at AT3A to move the calculated address back to MB; ST5 triggers the transfer in order to store
the result of an instruction in an accumulator. Any deposit or instruction execution from the
console uses the transfer because the contents of the DATA switches canbe sent to MB only via
AR; AR also goes to MB at the beginning of the multiply and divide subroutines (6.8b, ¢).
In the execute cycle, the transfer may be made at either ETO or ET10: the former involves

only standard instruction situations (D5), but the latter is complex and requires some comment.
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In most instructions, the result appears in AR; and if it is to be stored in an accumulator, the
transfer from AR to MB occurs at ST5 (the MB-AR switch at ET9 in ACBM is made specifically
to move the result from MB to AR because the transfer in the opposite direction occurs auto-
matically for AC storage). However, if the result is to be stored in E, either by requesting

a write or restarting a read/write, the result is transferred from AR to MB at ET10 in prepara-~
tion for the store cycle unless a transfer inhibit is asserted. The net that generates the trans-
fer gating level is in C7; the net for the inhibit is in D4. The conditions generating the
inhibit represent situations in which the result is already in MB or is being moved there by a
2-way transfer. In EXCH, the switch is made at ETO (C2); in a character deposit, the char-
acter is inserted into the data word in MB. The transfer is also inhibited for all instructions
in the jump and pushdown group: instead these instructions use the 2-way transfers at ET9
and ET10 (Cé). At ET9, the switch is made for all instructions except JSR, whose result is
already in MB (flow chart, Figure 4-7 left). In JSP, JSA, and JRA, the ET9 transfer results
in the appropriate configuration for the store cycle. In the other four instructions, represented
by the logic level JP A IR6(0), the result is already correctly placed before ET9, so a second
switch of MB and AR is made at ET10. This double switch is made so that the address from AC
right is available to MA at ET10 in PUSH and PUSHJ (the transfers are unnecessary in POP

and POPJ, but extra hardware would be required to eliminate them).

The remaining transfer is that of both ones and zeros from MQ (Figure 6-3, upper right) which
is triggered by two signals from the subroutine interface, one for a single transfer, the other
for a switch of MB and MQ. The conditions within MB control that trigger the transfer (B5)
include FT4A to return E to MB following a second accumulator fetch operation, and STé prior
to storing a second accumulator. The transfer also occurs at the beginning of the block trans-
fer subroutine (6.6a). In the execute cycle, it is used at ETO in three of the JP instructions

(C1) to move to MB the word fetched from a location addressed by half of AC.

6.2 ARITHMETIC REGISTER

Figures 6-5 and 6-6 show the left and right halves of the full-word arithmetic register. Each
AR flip-flop has a direct clear input (which receives the register clear pulse), gatable clear
and set inputs, and two complement- inputs, one of which accepts a positive-going pulse, the

other a negative-going pulse. The AR modules include ten sets of internal gates, but the
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gatable 0 and 1 inputs are also available at the connector so that transfers can be made with

single-bit pulses from external gates.

The AR outputs are connected within the 6205 modules to the input gating of the memory buffer
and are also available through the module connectors for connection to the shift gates in other
AR flip-flops, the in-out bus, and various other places in the processor. The outputs of the
sign bit ARO are used throughout the processor for control purposes, such as in the prograin
control test nets and in many of the arithmetic subroutines, so these outputs are buffered by the
drivers shown in the lower left of Figure 6-5. The O outputs of all AR bits are also available
at the connectors through diodes that are joined externally to form large AND gates as shown
in the left of Figure 6-10. Assertion of the output from a single AND gate indicates that the
corresponding portion of the register contains all zeros (note that bit 9 is not included among
the four gates). The first stage decoder outputs are further ANDed in the two nets in C3: the
lower net decodes AR for the condition that every bit is 0, the upper net for the condition that
bit 9 is 1 and bits 10 to 35 are all zeros. The latter condition, represented by assertion of the
signal AR = FPHALF, is necessary for normalizing in floating-point operations. The floating-
point fraction -1/2 (AR bits 0 and 9 both 1, and zeros in bits 10 to 35) is considered normal-

ized even though bit 9 is the same as the sign bit.

In addition to the arithmetic register gating and control, this section describes the addition

algorithm, the AR subroutines, and the flag logic.

a AR Gating

The external gates for single-bit pulse inputs are shown at the bottom of the two AR drawings,
Figures 6-5 and 6-6. The only inputs presently used are for bits 0-8 and the gates for these
are shown in the lower part of Figure 6-4. The upper pair of transfer pulses merely clear or
set bits 1-8; the lower pair (the two gates at the lower left are triggered by the same transfer

pulse as the row above) provide jam transfers from SC1-8 to AR1-8 and from SC3-8 to ARO-5.

The bottom two sets of gates in the register drawings, Figures 6-5 and 6-6, provide 1 transfers
into AR from the /O bus and the console DATA switches. Both of these transfers are preceded
by the clear pulse for the register. The next two rows are jom transfer gates for right and

left shifting; gating levels for a given bit are the 0 and 1 outputs of the adjacent bits. Since
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at the register extremities the connections vary depending upon the type of shift, there are
special inputs for the left shift gates at AR35 and for both sets at ARO. The generating nets
for these special shift inputs are shown in the upper portion of Figure 6-7. At the left are
listed the different types of shifts with the time pulses at which they occur and block diagrams
showing the shift configurations. These diagrams are also drawn at the appropriate places in
the flow charts. Among the level inputs to the shift nets are several composite functions that
represent groups of conditions, all of which require the same shift type. The arithmetic shift
of AR and MQ combined (B4) is required by the corresponding shift operation, but it is also
required in the normalize return and floating-add subroutines. Another composite function is
SHC DIV, which is asserted by any type of division provided NRF2 is 0 (D4). The flip-flop
condition does not apply to fixed division but is necessary in control over floating division so
that the control level cannot affect shifting in the normalize return subroutine, which follows
all floating=point arithmetic subroutines. Just above is another composite function (C4), which

is asserted during a division or a combined logical shift.

The three shift input nets use these composite functions as well as individual instruction levels
to determine the effect of any given shift on the AR extremities. In left shifting, ARO receives
the state of AR1 unless some type of arithmetic shift is being performed, in which case ARO

is unaffected. The center net controls ARO whenever AR is shifted right. The upper two gates
make MQ35 the source of data for ARO on a combined rotation and AR35 the source on a single
rotation. The gates at the lower right of the net disable the 1 input so that ARO is automatically
cleared in a character load or a logical shift; the gate at the lower left disables both inputs

so that ARO is unaffected by any right shift in multiplication or division, or a right arithmetic
shift. The net at the right provides shift left input to AR35 from ARO in a single register ro-
tation, from MQ1 in any double length arithmetic shift, and from MQO in a combined logical
shift, combinedrotation, or division shift. The gate at the lower right disables the 1 input so
that AR35 is automatically cleared in a single left arithmetic or logical shift, or a character

deposit.

Above the shift gates are three rows of gates that use the outputs of the corresponding bits in
‘MB. The bottom two rows supply 1 and O transfers that provide the OR and AND functions
of MB and AR when used separately, but provide a jam transfer when pulsed together. The

third set is connected to the AR complement inputs and is conditioned by ones in MB. Pulsing
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this set of gates produces in AR the exclusive OR of MB and AR, The next row of gates above
the MB gates provides a simple complement function, i.e., pulsing these gates complements
all AR bits. The top two sets of gates generate carry pulses, both of which are applied to the
flip-flop to the left of the module containing the gate that generates the pulse. For example,
the gates on the AR8 module use AR8 and MB8 outputs as level inputs, but the carry output
complements AR7 (this method of placing the gates saves pin connections because the level
inputs are internal to the module). The two sets of gates provide related carry functions, a
ripple carry and a carry initiate. The lower set, the ripple carry, is a serial function, i.e.,
there is no control pulse applied to all gates simultaneously. The chain starts at AR35 with

the pulse AR+-1T1, which is applied both the the AR35 complement input and the lower carry
gate. This pulse, which occurs only when adding 1 to the contents of the register, complements
AR35; and if AR35 is 1, it also triggers the ripple carry to AR34. This second carryin turn com-
plements AR34; and if that bit is a 1, carries on to AR33. The chain continues through the
register in this manner except for a break between AR18 and AR17: the carry out of AR18
automatically enters AR17, but the latter may be pulsed independently in order to index two

18-bit words simultaneously.

The upper set of carry gates provides the full-register carry-initiating function for addition.
This arithmetic operation is carried out in two stages, first a partial addition, then a carry
function. The partial addition is the exclusive OR function of MB and AR (AR « MB@¥)).
After the partial sum (the result of the partial addition) has been formed, the full-register
carry-initiating pulse triggers the upper set of carry gates to change the exclusive OR into
the arithmetic sum. At the end of the operation, the number in AR represents the sum of the

contents of MB and the previous contents of AR.

For any given bit, the partial sum-(the exclusive OR function) of two numbers is actually the
correct sum if there is no carry into that bit. But if there is a carry for that bit, the partial
sum is the opposite of the arithmetic sum. For each bit where both summands are 1, the carry
initiate directly complements the next more significant bit. However, since the processor
cannot sense the prior state of a flip-flop, it instead senses the corresponding configuration
of the partial sum. |f after partial addition, ARi is 0 and MBi is 1, both bits must originally
have been 1 and the carry therefore complements ARi-l . Anytime a bit is complemented, a

ripple carry is initiated into the next more significant bit, but this carry is inhibited if the
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bit was complemented from 0 to 1. At each stage, a carry produced through the upper gate
goes not only to the complement input of the next more significant bit but also to its lower
gate. Thus, a carry initiated by the partial addition of two ones ripples up the register until
it terminates when a 0 bit is complemented. That this algorithm does produce the correct sum

of two binary numbers is proved below.

b Addition Algorithm

Let A be the original contents of AR, B the contents of MB, PS the partial sum produced in
AR by the partial addition, and S the arithmetic sum of A and B. For convenience, let A

and B be positive binary fractions whose sum is less than 1, i.e., there is no overflow. A

bit of the partial sum PSi is equal to a bit of the sum Si if there is no carry into Si' If there
is a carry, PSi is the complement of Si. Since there can be no carry into the least significant

bit, P535 = 535.

To understand the operation of the two carry functions, divide PS into sections from the right

so that the first section starts with PS__ and ends at the first bit PSi that satisfies the conditions

35
PSi =0, Ai = Bi =1, The second section starts with PS, . and extends to the next bit that

satisfies the same conditions as PSi. Proceed in this wcly ]fhrough the entire partial sum. Since
there can be no carry input to the least significant bit of the partial sum, it must be correct.

If this bit is 1 or if it is O resulting from the partial addition of two zeros, there is no carry out
and the next bit of the partial sum is also correct. Proceed with each more significant bit

of the partial sum until reaching the bit PSi’ which is 0 resulting from the partial addition of

two ones. This bit is also correct; therefore, all bits in the first section are correct.

Because the partial sum in PSi generates a carry, PSi-l is not correct and a 1 from the first
section is carried into it by the carry initiate. If PSi_] is 1 (resulting from the partial addition
of 0 and 1), there is a ripple carry into Psi-2' The ripple carry propagates up the register
until a 0 bit is encountered. If this O is the result of a partial addition of two zeros, no
further carry is generated; all further bits are correct up to the next O that results from the
partial addition of two ones, i.e., up to the end of the section. If the O that terminates the
ripple carry results from the partial addition of two ones, there must be a carry into the next

bit. However, the partial addition of two ones is the condition that ends the section and the
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carry initiate begins a new ripple carry in the next section. Consequently, the carry comple-
ments all incorrect bits of the partial sum. At the completion of the carry operation, the

result S is the correct sum of A and B.

The preceding example shows that the addition algorithm works for the special case of two
positive numbers. Before proving the algorithm for the remaining cases, including negative

operands, some further facts should be understood:

The sign bits are included in the partial addition, i.e., the partial sum of two minus signs

(ones) is a plus sign (0).

Both carry functions are applied to the sign bit ARO, which is treated as though it were a

next more significant bit of AR,

The sign bit conditions both carry functions: there is a carry out of ARO if two negative num-
bers are added, or if there is a carry out of AR1 and the sign of the partial sum is minus.
Carries into and out of the sign bit (i.e., carries out of AR1 and ARO) are used to detect

overflow.

Assume that the binary point is to the left of the most significant bit, i.e., all positive num-
bers are 35-bit, fixed-point fractions. The computer representation of the positive number x
is therefore +.[x] where the brackets enclose the number contained in AR1-35. The sign of
this number is represented by the state of ARO. In 2's complement arithmetic, the negative

of a number is produced by changing the sign and subtracting the magnitude from 1. The com-
puter representation of the number - x is therefore -.[1 - x]. With this representation, there
is no negative 0; the magnitude 1-0 overflows, changing the sign back to plus. Furthermore,

the largest negative number is -1, represented by the configuration -.[0] .

The four cases of addition of two positive 35-bit fractions are:

xty

(=x) + (-y)
x+(-y), vy <x
xt+(-y), y>x
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1

Since the 2's complement format allows a representation for -1, either x or y may be 1 in the
second case and y may be 1 in the fourth case. In the first case, which is discussed above,
the contents of AR after addition represent the number +.[x + yl. If (x +y) > 1, the carry
out of AR1 changes the sign. Consequently, if the addition of two positive numbers results in
a negative answer, it is apparent that the sum has exceeded the capacity of the register. The
processor detects the overflow by checking the sign bit carries: there is a carry from AR1 but

none from ARO.- The contents of AR then represent the number:

- Ix+y-1]

In case two, the addition of two negative numbers, the partial addition and all carries except

that into the sign bit would be:
-.[1-x]
-.[1-y]
+[1+1-x-y]

If (x +y) <1, the AR1 carry changes the sign and the complete result is:
- [1-x-yl]

which is the computer representation of —=(x + y). If )x + y) > 1, there is no carry into the sign

bit, and its absence in the presence of a carry from the sign bit indicates overflow. AR then

contains:

+.01-(x+y-1)

In case three, the addition of x and -y, where y is less than or equal to x, the partial addition

and all carries except that into the sign bit would be:

+.[x]
-.[1-y]
-[i+x-yl

Since y <x, it follows that (1 + x = y) > 1. Hence the ARI carry changes the sign and the
complete result is +.[x -yl . Since the signs of the operands are different, the magnitude of
the result cannot exceed the larger operand and there can be no overflow. Although there is
an AR1 carry, the minus sign resulting from the partial addition allows it to ripple through pro-

ducing an ARO carry.
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In case four, the addition of x and -y with y greater than x, the partial addition and the

carry function are:

+.[x]
-.[1-y]
- [1+x-yl

Because y >x, it follows that (1 + x - y) < 1. Hence there are no carries from AR1 or ARO

and no overflow. The above result is the 2's complement representation of the number x - y,

i.e., =(y - x).

Addition is also used in fixed-point subtraction with the minuend x in AR, the subtrahend y
in MB. The subtraction could be performed by taking the 2's coniplemenf negative of x,
adding -x to y and taking the negative of the result. It is much simpler however to comple-
ment the word in AR, then add and again complement the result in AR. The complement of a
word, which is produced by exchanging all ones for zeros and zeros for ones, is equivalent to
the arithmetic 1's complement in which the sign is changed and the magnitude is subtracted

from all ones, i.e., from 1-2_35. The complement of x is thus:

l-x-2 -35;
adding y to ~ x yields:
l-x+y=-2 -3
which equals:
-35
1-k-y)-2

which is the 1's complement of x - y. Overflow is indicated in the same way as in addition;
that is, by an AR1 carry without an ARO carry or vice versa. Overflow is properly indicated
even for operations involving -1 because the 1's complement is 2-35 more negative than the
2's complement (i.e., when subtracting -1 from O, the proper carries occur in the addition

of -1 to the complement of 0).

¢ AR Control

Figure 6-8 shows the generating logic for the AR control pulses. The pulse amplifiers that
drive the register gates are in the top section; these PAs are triggered through OR nets most

of whose inputs come either from the subroutine interface (6.5) or from the transfer gates in
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the left center section. Timing inputs to these gates are supplied by the various main sequence
and subroutine chains, and the gating levels for the execute time pulses are supplied by the
OR nets at the lower right. Six of these diode nets are used almost exclusively to gate the

AR events necessary for the execution of the Boolean instructions. The flow chart (Figure 4-8)
lists at each time the instructions that require each event, and also lists the specific sequence
of events necessary for each of the 16 Boolean functions. Because there are no complement
gates for MB, all functions that require the AND with the complement of memory use the OR
and complement the result; the same is true for the converse. BOOLE 14, which places the
complement of memory in an accumulator, clears AR first and then uses the exclusive OR as a
1 transfer. All other functions are quite straightforward. The other diode nets in Figure 6-8
gate the events necessary for the data transmission, 1OT, and compare instructions; the functions

that are not immediately obvious from the flow chartsare described in 4.5.

The pulse amplifiers that clear AR are shown in the upper left corner of Figure 6-8. To leave
the desired address in the right half, only the left half is cleared in the address cycle and the
block transfer subroutine. For console operations, both halves are cleared by a signal from
the key logic (5.1) and the subsequent transfer from the DATA switches is triggered through the
PAs in B7. The other AR clear input is generated by the nets in B3 and C3. Subroutines that
require the clear include divide, floating add, and multiply. The clear may also occur at the
first two pulses in the execute cycle: it is required at ETO for four of the Boolean functions (D2),
at ET1 by any input IOT (D6) and in any half-word transfer that affects the other half of the
destination location. For input instructions, 10T T3 triggers the subsequent transfer into AR
from the bus (B8). For an HWT, there is no further action if the instruction is to clear the
other half, or the transfer half is positive and the instruction is to extend it; however, to set,
or to extend a negative half, the other half is set by complementing through the appropriate

gate in Bl,

All other complements affect the entire word. One input to the PA gates (A2) comes from the
subroutine interface; another is the first pulse in the add-subtract time chain—this pulse occurs
only if the subroutine is to subtract (d below). Corresponding time pulses for the index and
negate subroutines trigger the complement through the top gate in C2. The gates below that
provide the complement at ETO or ET4 for Boolean functions, and at ET5 and ET7 for the ACBM



group in case the masked bits must be cleared at ET6é. The bottom gate complements at the end

of the carry function in an AR subroutine if the complement control flip-flop has been set.

The four PAs in A3 and A4 are triggered in several combinations to provide 0, 1, and jam
transfers from MB into either or both halves of AR. All four must be triggered for a full-word
jam transfer. The top two inputs provide for a simultaneous interchange of MB and AR; for
any such transfers not made through the subroutine interface, the generating logic is shown
with MB control (6.1). Half-word jam transfers include transfer of the address portion of the
instruction word into ARRT at the beginning of the address cycle, and transfer of the selected
half word in an HWT triggered by ET4 through the gates in B2 with gating levels supplied from
the nets in C7. The left transfer also occurs in a CONO so that E is available on both halves
of the I/O bus. All other pulses that trigger the PAs in A3 and A4 are for full-word, one-
directional transfers. Transfers of zeros alone (B4) are required in both the deposit and load
character sequences (6.6b), at ET1 in four of the Boolean functions (D4) and at ETé for the
two 1OT status test instructions (D8). The 1 transfer (C5) is used to set the masked bits in an
ACBM (D4) as well as to provide a 1 transfer in SETM (BOOLE 3) and an OR function in four
of the other Boolean instructions. The gates for the jam transfer are located between B3 and
B4 in the figure. This transfer is required in fixed-point multiplication (6.7a), at ETO in
various data transmission, compare and IOT instructions (D5), and in character operations in

the first part and in the load sequence of the second part (6.6b).

The PAs for the exclusive OR function of MB and AR (A5) are triggered when ET1 is gated at
B4 by the level from D5. This function complements the masked bits in an ACBM, provides

a 1 transfer in SETCM (BOOLE 14) and an exclusive OR in XOR and EQV (BOOLE 6 and 11).
The exclusive OR pulse amplifiers are also triggered by AR AS T1 in the add-subtract subroutine
to provide the partial addition. The next pulse in the chain initiates the carry function
through the pulse amplifier in B6. The remaining PAs in the upper right of Figure 6-8 provide

for the left and right shifts, which are triggered from the subroutine interface.

The control pulses for the special AR gates that are external to the arithmetic register modules
are shown at the right in Figure 6-9. To understand the significance of these transfers, the
reader should refer to the description of the subroutines in which they occur. In the exponent

calculate and floating add subroutines, AR bits 1-8 are cleared or set according to whether
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the sign bit is 0 or 1 in order to nullify the exponent part of the register. The jam transfer
from SC1-8 into AR occurs in the normalize return and floating-scale subroutines to insert
the exponent in the result; a similar transfer of SC3-8 to ARO-5 occurs in the first part of a

character operation to insert the new position if the pointer has been incremented.

d AR Subroutines

Figure 6-9 shows the logic governing the negate, index and fixed-point add and subtract sub-
routines; the flow chart for these is in the upper right of Figure 4-8. In the lower right of
Figure 6-9 are the nets that provide the level gates to trigger and control the subroutine time
chains. The add gate is asserted only for fixed-point addition, the subtract gate for both
fixed-point subtraction and the instructions that arithmetically compare an accumulator
against memory. The add 1 and subtract 1 levels are generated by instructions requiring up-
ward or downward indexing of either the entire AR or its two halves independently. AR+1 is
asserted in any MEMAC instruction that adds 1 to the test word, in the two add-1-to-both
jump instructions, and to index the pointer in any pushdown instruction or block 1OT. Similarly,
AR-1 is asserted for the MEMAC instructions that decrement the test word and to decrement the
pointer in the pullout instructions. Between the add 1 and subtract 1 nets is a net that gen-
erates the level AR+-1LTRT, which causes any entry into the carry chain at AR35 to enter

the chain at AR17 as well. The double indexing occurs in the two add-1-to-both jumps and
for operations on the pointer in a block 10T or in any pushdown or pullout instruction (these
last four are included in the level JPA IR6(0)). The net in the lower right corner generates
the level that causes the execute cycle to pause after ET3 for an AR subroutine. ARSBR is
generated by any of the four subroutine calling levels described above, and also for negation
in a full-word transfer and for a floating subtraction (this last case is for negation of the

subtrahend before entering the floating-add subroutine).

The AR subroutines are actually two separate time chains, each with multiple entries, that

join for the return to the interrupted sequence. The chain in the upper left handles indexing
and negation; downward indexing and negation both require a preliminary pulse to comple-
ment AR. Subtracting 1 is done by complementing, adding 1, and complementing again;
hegation by complementing, then adding 1. All subroutines in the execute cycle are triggered

at ET3. AR-1 triggers AR+-1TO, which complements AR and also sets the complement control

6-15






e AR Flags

The jump-addressable flags and associated logic are shown in the right half of Figure 6-10.
Although some AR flag control functions also affect the user flag and the flip-flop that dif-
ferentiates the two parts of a character operation, only the four AR flags can be sensed or
cleared directly by the program. The PC change, overflow, carry 0,and carry 1 flags are
cleared initially by the master start rather than the master clear because their states must re-
main from one main sequence to the next. Program control over the flags is exercised by
three instructions, JRST with a 1 in IR11, JFCL, and the CONO for the processor. The last
instruction, which governs the many flags in the processor |/O interface (8.3), clears the PC
change flag if a 1 is programmed in bit 29 or the overflow flag if bit 32 is 1. JFCL selects
flags with bits 9-12 of the instruction word and clears the selected flags after sensing them to
make the jump. The JRST, which must be addressed indirectly, clears all the flags and re-
stores them according to the first four bits of the word taken from memory as the direct address.

The flag clear and set pulses generated here also handle the restoration of CHF7 and EX USER.

The remaining gates include conditions for setting the flags so that the program may determine
whether or not certain events have occurred. Any jump or skip sets the PC change flag pro-
vided the instruction in process is not a JRST that is restoring the flags. All other gates are

for arithmetic conditions indicating overflow. Overflow in most fixed-point cases is determined
from the pair of flip-flops in the lower right, which are cleared at the beginning of every
execute cycle and then set by carries out of ARO and AR1. Since overflow is indicated by the
presence of one of these carries in conjunction with the absence of the other (as is shown in

the discussion of the addition algorithm in b above), the level AR OV SET is cssefted when the
two flip-flops have oppositestates; i.e., the overflow level is the exclusive OR of the two
carry flip-flops. In fixed-point addition or subtraction or in the MEMAC instruction group—
the latter condition being relevant only for those MEMAC instructions that index the test word—
ET10 transfers the states of the carry flip-flops to the corresponding flags, and if overflow has
occurred, sets the overflow flag. The remaining gates in Cé set the overflow flag on an over-
flow signal from the subroutine interface (6.5); on the attempt by an FWT to form the negative
of -1; and on the loss of a significant bit in an arithmetic shift to the left, i.e., if a 1 is lost
in a positive number or a 0 in a negative number (the exclusive OR input for this gate is gen-

erated in E5).









At the top of the figure are the pulse amplifiers that control the register. MQ is cleared only
at the master clear and the shift PAs are triggered only from the subroutine interface (6.5).
The remaining PAs provide transfers of zeros and ones from MB. Transfer of ones occurs in the
deposit character sequence (6.6b). The jam transfer occurs on a signal from the subroutine
interface that switches MB and MQ, and at the four time pulses listed at the gate in B4. The
transfer at FT4 saves E in MQ if there is to be a second AC fetch operation; FT4A transfers
this additional word into MQ at the same time that it returns E to MB. The remaining transfers

occur in the multiply and divide subroutines (6.8b, c).

6.4 ARITHMETIC SHIFT COUNTING

In addition to the three full-word arithmetic registers, the arithmetic logic also includes two
9-bit registers for use in auxiliary computations and counting steps in arithmetic operations.
The shift counter and the floating-exponent register are shown in Figure 6-14. Each module
in the figure includes one flip-flop from each register and all associated gating. FE is used
only for storage of intermediate results. In floating multiplication and division, the exponent
is calculated in SC and stored in FE while SC counts the number of shift steps in the operation
on the fractions. FE also provides temporary storage for the position portion of the pointer in

a character operation.

Since actual computations are performed in SC, there is considerable gating associated with
its flip-flops, including a carry chain; but FE is used only for storage so it includes only a
direct clear and two sets of transfer gates connected to the flip-flop collectors. These provide

1 transfers from SC and from MBO-5 to FE3-8.

a SC Gating

Below the SC flip-flops in Figure 6-14 are the gates that implement the transfers, partial
addition, and carry logic. In addition to gatable clear, complement, andset inputs, each
flip-flop also has a carry input and a carry output. These are connected from one flip-flop to
the next so that a pulse at the SC+1 input to SC8 adds 1 to the contents of the counter. The
clear input is used only for the register clear. There are three sets of complement gates: the
top one provides a simple complement funcfion and the other two provide the partial add and

carry functions which are described below. The remaining gates are connected to the 1 inputs.
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The top gate provides an ordinary 1 transfer from FE to SC. The middle gate provides a com-
plement transfer from MB18, 28-35 into SC. The last gate is a diode net (not part of the

6203 module) which receives no level inputs, but instead control pulses are applied to individual
gates in order to place a specific number in the counter. In multiplication and division, for
example, SC receives the complement of the number of steps to be counted; it is then incre-

mented until it contains all ones, terminating the operation.

At the bottom of the figure are two networks, the lower a carry chain, the upper a set of level
gates that supply the data inputs to the partial add (exclusive OR) gates at the complement
inputs to the SC flip-flops. The partial add gates are used not only for partial addition but also
for transfers provided SC is cleared or set first. The source of information for the partial add
gates varies depending upon the operation in which SC is being used. The nets that generate
the data levels are sets of four AND gates ORed together; each AND gate receives an enabling
level that is common to all nets and an input from a single bit of a source register. For example,
the top set of AND gates places the complement of MBO-5 into SC3-8, i.e., with SC clear,

a 0 in a given MB bit causes the partial add pulse to set the corresponding SC bit by comple-
menting it. For this function, the first three data levels are automatically asserted. For

the other three sets of AND gates, the data levels are asserted by ones in the source register:
the second set enables input from MB6-11 to SC3-8 with the first three bits negated; the

bottom two sets enable input to SC from ARO-8 and MBO-8.

To calculate the exponent in floating-point operations and the pointer in character operations,
numbers must be added in SC. The addition is performed with essentially the same algorithm
used in the arithmetic register (6.2b). First, the partial add pulse produces in SC the exclusive
OR of the contents of SC with the number represented by the data inputs, then the carry pulse
adjusts the partial sum to produce the arithmetic sum. The carry function for SC differs from
that in AR in that no ripple carry is used. The carry connections from one flip-flop to the next
are for indexing and are not associated in any way with the full-register carry function; no
carries propagate from one bit to the next when a bit is complemented by the carry pulse. In-
stead, as soon as the partial sum is formed, a series of level transitions from right to left across
the carry chain determines the carries for all bits, and all bits are adjusted simultaneously by

the carry pulse. The conditions for a carry are the same as those in AR. There is no carry into
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the least significant bit (D8) and a carry out occurs only when two ones are added—a condition
that is indicated by a 1 in the data and a O in the partial sum. For the other bits, there are
two carry out conditions, one dependent upon a carry in. For any bit, there is a carry out if
both summand bits are ones, or if the partial sum is 1 and there is a carry in. After the level
changes have propagated through the chain defining the carries for all bits, the carry pulse
complements those bits that receives carries; the SC8 carry supplies the gating level for 5C7,
and so on through the register. Since there can be no carry into the LSB, the carry gate for

SC8 is disabled (B8).

l_) SC Control

The various functions of SC and FE are triggered directly from the subroutine time chains in-
cluding the SC subroutines. There are no connections through the subroutine interface and
SC functions are triggered by execute time pulses only prior to entry into a subroutine. The
logic governing the SC and FE functions is shown in Figure 6-15. The conditions governing
FE, which is used only for temporary storage, are quite simple: it is cleared only on the
master clear (B6), and may receive an exponent from SC in the exponent calculate subroutine
for floating multiplication or division (B7), or may receive the position portion of the pointer
in the first part of a character operation (B4). In all cases, the information is subsequently

transferred to SC (B2).

The complement transfer of MB18, 28-35 into SC (C8) is made at ETO in a shift operation or
floating scale. The only other function triggered from the execute cycle is the complement
pulse, which occurs at ET1 in FSC if AR is positive (B3). All other functions govern SC for
shifting or calculating in the data and arithmetic subroutineinstructions, and they are triggered
by pulses from the special time chains. In most instances, these pulses are ungated although
many of those that trigger the complement are gated by sign conditions. Read the appropriate
subroutine description (all are included in the final three sections of this chapter) to determine
the significance of each SC event in a given subroutine. SC is cleared through the net in the
upper left (which includes the master clear), complemented through the nets in the top center,
and its partial add function is triggered through the net in the upper right. This last function
fs used for addition only in the SC add subroutine in which it is followed by the carry (B3); in

all other cases, the exclusive OR is used for transfers. The source of information for the data
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levels to the partial add gates is determined by the enabling levels in the upper right of
Figure 6-16. A flip-flop in the logic for the appropriate subroutine enables the required
input for each transfer or partial addition. There are no flip-flops associated with the SC add
subroutine; instead the enable level is derived from a flip~flop in the main subroutine that
calls for the SC addition. SC may also be incremented by 1 through the nets shown below the

enable levels.

In the lower left of Figure 6-15 are several control signals derived from the SC outputs. The
function in D6 indicates that the first three bits are all ones and hence SC contains a 1's
complement negative less than or equal to 63 in magnitude. The net in D1 decodes SCO-7 for
all ones and its output is ANDed with SC8(1) for a signal indicating that a shift-count has
been complemented, i.e., SC has counted to - 0 which is all ones. The termination of the
count may also be indicated by a pulse through the pulse amplifier in C4. When SCO0-7 are
all ones, the next count pulse in theshift-count, multiply or divide subroutine triggers the PA
to produce a leading edge at output SC8B. The PA output is ORed with the -0 configuration,

so SC8B remains asserted even after the PA output disappears.

c SC Subroutines

There are two subroutines associated with the shift counter, an add subroutine for use in cal-
culations on exponents and pointers, and a shift and count subroutine that counts the number
of steps required in an operation and shifts the intermediate result at each step. The logic
for these subroutines is shown at the left in Figure 6-16 and the flow charts are in the lower
right of Figure 4-8. Listed with the shift-count subroutine are the entry conditions, the con-
trol levels governing the type of shift, and the pulses to which the subroutine returns in the
interrupted sequences. Similarly, the flow chart for add lists the entry, the source enabled

for the partial addition, and the return for each call.

The time chain for add is in the upper left in Figure 6-16. The first pulse always clears the
character control flip-flop CHF1, although this is of relevance only in character operations.
SATI then triggers the partial add, and after a delay sufficient for all level transitions through
the carry chain, SAT2.1 triggers the carry. SAT3 then returns to the interrupted sequence.
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The shift-count subroutine is used only in character operations, shift operations, and the floating-
add subroutine. All other shifting counted by SC is produced directly by pulses from the
arithmetic subroutines. Entry into the shift-count sequence * at SCTO, which performs no
operation but provides a delay before the first shift. If SC does not contain - 0 (indicated by
the condition that either SC8 is not 1 or SCO-7 does not contain all ones), SCT1 increments

SC and triggers the appropriate shift (6.5). |f the counting is still incomplete, the output

of the delay triggered by SCT1 again triggers SCT1 for a new shift and count. When the count

is complete, the delay output returns to the interrupted sequence via SCT2.

6.5 SUBROUTINE INTERFACE

Because the same event is often required at many different times in the various subroutines,
the processor includes a subroutine interface that collects signals from the subroutines to re-
duce the number of signals applied to the control logic for the arithmetic registers. For
example, all shifts of AR or MQ are triggered through the nets at the left in Figure 6-17. The
lower set of nets, which includes level gates, is for shifting on SATI in the shift-count sub-
routine. For a shift operation, AR and MQ are shifted left if bit 18 of the instruction word is
0, right if bit 18 is 1. Note that even though the program may request the shift of a single
accumulator, the logic shifts both AR and MQ, the latter being empty. The level gates for
other SC-controlled shifts are supplied by subroutine control flip-flops. The first part of a
character operation requires an MQ left shift; this is followed in the second part by a shift
left of both in the deposit sequence or an AR shift right in the load sequence. Floating'
addition requires a right shift of both registers. The upper set of gates allows pulses from the
subroutine time chains to trigger shifts. The regular division shift is both registers left at
DST14A, but two other divide pulses produce right shifts of AR alone and one left shifts MQ
alone. Similarly the multiplication process shifts both to the right at MST2, but a final shift
at the end of the subroutine moves MQ alone to the right. The normalize return begins by
shifting both registers right in case there has been overflow in calculations with the fractions,
and then the regular normalizing process shifts both to the left. In floating division, a 2-bit
overflow is possible; so following the divide subroutine, the final pulse in the floating-divide
instruction sequence (FDT1) shifts both registers right to supplement the single shift that begins

the normalize return. The effects at the register extremities for all of these shifts are controlled
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by the special shift inputs shown in Figure 6=7 and described with the gating for the regis-
ters (6.2a, 6.3). The exact configurations for all shifts are shown in block diagram form

in Figure 6-7 and each shift is shown at the appropriate place in the flow charts.

The remaining nets in Figure 6=17 are mostly for gates that collect subroutine time pulses
for transmission to the register gating. In some cases, the pulse inputs are gated by levels,
particularly in the upper right nets that detect overflow. All connections from subroutine
time chains, other than for functions listed at the top of the figure, are made directly to
the control logic for the registers. All subroutines pulses that trigger the AR negate or
add subroutine, the switch of MB and MQ, or the AR complement are routed through the
subroutine interface. For the other functions, which include entry to the AR subtract sub-
routine, the transfer of MQ to MB, the switch of MB and AR, and overflow, most pulses
are routed through the interface but some are connected directly to the register gating.
For example, the net in the upper right of Figure 6-17 handles overflow for multiplication,
division, and all floating-point operations, but overflow in an arithmetic shift operation is

handled by a net included with the flag logic (6.2e).

Except for one special case, all SBR flip-flops and control flip-flops in the subroutine
logic are cleared at the beginning of every main sequence. For this purpose, the master
clear triggers several pulse amplifiers to drive additional clear lines. Two of ‘these with
prefix MP are in the lower right of Figure 6-21, a third with prefix DS is in the upper
right of Figure 6-26. '

6.6 DATA SUBROUTINE INSTRUCTIONS

Three types of data transmission instructions switch to subroutines for their execution. Flow
charts for all three types are'in Figure 4-9. The block transfer moves an entire block of words
from one area in memory to another. The character operations handle single characters smaller
than a word and can insert a character into a word in memory or retrieve a character from a
word without affecting the rest of it. Shift operations move the bits of a word or pair of words

to the left or right. There are several shift configurations differentiated mainly by the effects
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of the shift on the register extremities. The last group may be viewed as logical operations
rather than data transmission; the arithmetic shift is equivalent to multiplying the word by a

power of 2.

a Block Transfer

A flow chartof the block transfer instruction is at the right in Figure 4-9 and the time chain

is in Figure 6-18. The left and right halves, respectively, of the accumulator addressed by

the instruction provide source and destination addresses S and D. The first fetch cycle retrieves
a word from location S. The subroutine then stores the word in location D, increments both

S and D, and returns to the fetch cycle to retrieve and store a second word according to the
incremented source and destination addresses. The entire sequence is iterated until D equals

the effective address E.

The first fetch cycle retrieves AC, swaps its halves so that S is available to MA, and fetches
C(S). At the beginning of the execute cycle, AR contains (D,S), MB contains (0,E), and MQ
contains C(S). The first execute pulse switches MB and AR to save E and bring (D,S) to MB.
ET! then clears MA and swaps the MB halves so ET3 can transfer D to MA. ET3 also triggers
the first subroutine pulse BLT TO (Figure 6-18, upper left) which switches MB and MQ to save
(S,D) in MQ and make C(S) available to memory from MB. It also requests a memory write

to store C(S) in D.

Upon receipt of the memory return, the BLT time chain transfers MQ to MB so that the addresses
are now in both registers. The next pulse then switches MB and AR so that E is now in MB

and (S,D) in AR, BLTT2 clears ARLT and the next pulse calls the subroutine to subtract E

from D. Following the AR subroutine, BLT T3A places E in MQ and returns (S,D) to MB.

BLT T4 then moves D-E to MB and the two addresses to AR. The next pulse moves the subtrac-
tion result to MQ, bringing E to MB, and triggers the subroutine that adds 1 to both halves of
AR, incrementing both addresses. Upon the return BLT Té saves E in AR, moves the new
addresses to MB and reenters the fetch cycle at FTIA. This is the point just following the
retrieval of an accumulator, so the processor repeats the entire procedure using the incremented
addresses in MB as though they had just been retrieved from AC. For convenience, the fol-
lowing table shows the contents of AR, MB, and MQ following each pulse in the sequence (or

following a subroutine called by the pulse).
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INITIAL D,S E c(s)
ETO Ea——"aDS cs)
ETI E s, D cs)
BLT TO E cs) S,D
BLT TOA E S, D 5D
BLT TI S Da—— o F s,D
BLT T2 D E 5D
BLT T3 D-E E 5D
BLT T3A D-E s,D E
BLT T4 S Da—"_p D-E E
BLT T5 S+1,D+] E D-E
BLTTSA  S+1.D+l E D-E
BLT T6 E S+1,D+] D-E

Since E is initially greater than D, the result of the address subtraction is negative until the
cycle following that in which the indexing of D makes it equal to E; then the result is O so the
sign is positive. The transfers at BLT T4 and BLT T5 move the result to MQ, and BLT T5A tests
MQO (D4, B8) to determine whether the block is complete. If MQO is O at this time, the
program counter is incremented (the normal program counting at ET1 is inhibited throughout
the block transfer) and the subroutine returns to ET10 instead of going on to BLT Té. There

are no operations in the store cycle and the processor goes on to the next instruction.

Since a block transfer may use many main sequences, the subroutine includes provision for
strobing the priority interrupt system at every BLTT4. If a Pl request is generated, the level
BLTDONE is asserted even though MQO may not be O (if it is, the subroutine terminates in the
usual manner). This prevents the final MB-AR switch at BLT T, so the incremented addresses
are still in AR and BLT T5A goes directly to ET10. Since BLTLAST is negated (D6), there is
no store=AC inhibit and the current addresses are stored in the accumulator in place of the
original ones. Following the store cycle, the processor returns to the instruction cycle osten-
sibly to repeat the same instruction but it is interrupted by the Pl request. After all requests
have been serviced, the pr;':gram returns to the interrupted block transfer, fetches the new

addresses from AC, and begins where it had previously left off.

b Character Operations

There are five instructions in the character operation group, four of which require two main

sequences for execution: the first part fetches and if necessary increments the pointer, the
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CH~INC OP, the chain then skips to CHT8B. CH INC OP uses the CHT6 and CHT7 opera-
tions already mentioned because $ is still available from the old pointer in MB; additional events
specifically for CH INC OP are that CHTé inserts the new P into the pointer by transferring it
from SC3-8 into ARO-5 (dropping SCO-2 means SC mod 64 is transferred) and clears SC. CHT7
then moves the new pointer to MB after which CHT8 restarts the read/write memory cycle to
deposit it. The return triggers CHT8B which clears both CHF6 and CHF2, transfers the new P
from MBO-5 to FE and complements S in SC. If incrementing the pointer is the only operation
required by the instruction, the subroutine terminates here and the sequence returns to ST7 for

a new instruction cycle. For any character operation other than an IBP, CHT8B calls the shift-
count (C2) which shifts MQ left S places loading ones in at MQ35. Upon the return, CHT8A
clears SC and IR13-17, the latter in preparation for receiving the | and X portions of the pointer
in the address cycle following the first part. Then CHT9 transfers P from FE to SC, sets CHF5

so that the next execute cycle will select the second part, and sets CHF7 in case there is a Pl

request at the beginning of the address cycle to which the sequence then returns.

The two chains for the second part are shown at the top in Figure 6-20. Both sequences start
with MB containing the word retrieved according to the effective address of the pointer, and
MQ containing a word made up of ones in the last S places at the right and zeros elsewhere.

For the two load instructions, AR contains E. The initial gates include FC(E) as there will be

no subsequent storage in E, and ETO triggers the first pulse in the chain (A2). LCTO moves the
data word to AR and the mask to MB, complements P in SC, and calls the shift-count subroutine.
The character is then right justified by right shifting AR P places. Following this, LCTOA trans-
fers zeros from the mask into AR thus clearing all of AR except that part containing the desired

character. The pulse also clears CHF7 and returns to ET10.

The two deposit instructions request a fetch and pause, and ETO enters the deposit sequence (A4).
DCTO complements P in SC and calls a shift-count that moves AR and MQ left P places loading
zeros in at the right in bothb registers. Upon subroutine completion, AR contains the character

in the appropriate position and the ones in the mask are in the same position. The pair of

pulses triggered by the return transfers the mask to MB, the ones from MB to MQ, and com-
plements AR. Thus MB contains the mask, whereas MQ contains the data word other than in

the character position which contains all ones. DCTI then transfers zeros from the mask to

AR clearing it other than in tne character position which contains the complement of the
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character. At the same time, the data word with ones in the character position is moved back
to MB. The next pulse again complements AR so that it contains ones outside of the character,
and DCT3 then inserts the character into the appropriate position in the data word by trans-
ferring zeros from the character (all other bits are ones) into the all ones portion of MB. This
pulse also clears CHF7 and returns to ET10. The subsequent store cycle restarts the waiting

memory cycle to deposit the data word in E.

If the program specifies a size greater than 36, the character is at most the entire word. For
P > 36, no character is processed. If both P and S are less than 36 but P+ S > 36, a character
of size 36 - P is loaded from position P or the right 36 - P bits of the character are deposited

in position P.

¢ Shift Operations

The lower part of Figure 6-20 shows the logic governing the shift operations and the flow chart
for them occupies the right portion of Figure 4-9. The three combined instructions generate
the level SHAC2 (B6) which causes the main sequence to fetch and store a second accumulator.
The direction of the shift is specified by bit 18 of the instruction word (0 left, 1 right), and the
number of places to be shifted is specified by bits 28 to 35.

At the beginning of the execute cycle, AR contains AC; and for a combined shift, MQ con-
tains a second AC. ETO transfers the complement of MB18, 28-35 into SC. Since left shift-
ing‘ is considered to be positi\)e and right shifting negative, it is assumed that if bit 18 is 1,
bits 28 to 35 contain the 2's complement of the number of shifts desired. Thus if MB18 is O,
SC is already correct and contains the complement of a positive number; however if MB18 is
1, SC contains a positive number one less than the number of shifts. Thus MB18(1) gates ET1
to trigger SHTO (B5), which adds one to SC. Then ET3 starts the subroutine chain for all in-
structions and the first pulse SHT1 complements SC on the condition MB18(1) so that SC now
contains the correct complement. SHTI1 also calls the shift~count, which counts SC up to all
ones and at each count shifts AR and MQ left or right according to the state of MB18. The
shift connections to the registers are made through the subroutine interface (6.5), andthe special
shift inputs that control the shift actions at the register extremities are shown in Figure 6-7
and described with the AR and MQ gating (6.2a, 6.3). Block diagrams below the flow chart

show the configurations for all twelve types of shift.

6-31



Since an arithmetic shift multiplies fixed-point numbers by powers of 2, an overflow condition
is included in case significant bits are lost in a positive shift. In asingle- or double-left
arithmetic shift, the overflow flag is set if a 1 is shifted out of AR1 in a positive number, or

a 0 in a negative number (6.2e). The return from the shift-count triggers SHT1A which re-

truns to the main sequence at ET10.

6.7 ARITHMETIC INSTRUCTIONS

This section describes fixed multiply and the floating-point instructions. Each of these in-
structions goes from the execute cycle to a special sequence which may or may not call an
arithmetic subroutine. Fixed add and subtract are both performed within the execute cycle
and are described with the arithmetic register (6.2). Fixed divide enters directly into the

divide subroutine from ETO and is described with that subroutine in 6.8c.

a Fixed Multiply

A flow chart of the two fixed-multiply instructions is in the left part of Figure 4-8; Figure 6-21
shows the special time chain for them. Both integral and fractional multiplication use AC and
either C(E) or E itself as operands, but the product in the latter case is a double-length fraction,
whereas in the former it is assumed that the desired integer is in the low-order half of the
double-length product. Both instructions enter the special sequence at ETO by triggering
MPTO (Figure 6-21, upper left). This pulse sets the appropriate bits in SC to count 35 steps
and sets MPF2 if both operands are negative. It also calls the multiply subroutine (6.8b) and
waits until MST6 returns to MPTOA. If both operands are negative and the result is also neg-
ative, MPTOA sets the overflow flag. This can occur only if =1 is multiplied by -1, whose
answer +1 overflows generating the representation for -1. If integral multiplication is being
performed (IR6(0)) and the result is negative, MPTOA complements the high-order half in AR.
At this point, the fractional process is complete and the sequence returns to ET10 via NRTé,
the final pulse in the normalize return subroutine. In the store cycle, the low-order half is
stored in a second accumulator for all but the memory mode wherein no accumulator is stored.
For integral multiplication, MPTOA continues the chain to MPTI, which transfers the resulting
integer in the low-order half from MQ to MB and sets the overflow flag if the high-order

half is not clear. MPT2 then transfers the result to AR so that the sequence can make use of

the standard transfer and store functions following the return to ET10 via NRT6.
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b Floating Scale

This instruction allows the program to change the exponent of a floating-point number without
affecting the fractional part. The number in AC is multiplied by 2” where y is the number
contained in bits 28 to 35 of the effective address. This number is interpreted as positive or
negative in 2's complement notation as the sign, bit 18, is 0 or 1. The flowchart for the in-
struction occupies the left quarter of Figure 4-10, and the time chain is shown in the lower

right of Figure 6-19.

The first pulse in the execute cycle transfers the complement of MB18, 28-35 to SC. The next
two pulses then adjust SC according to the sign of the number in AR: if positive, ET1 com-
plements SC; if negative, ET3 adds one to SC by triggering FST1. In either case, ET3 triggers
FSTO, which calls the SC add subroutine. During the subroutine, the 1 state of FSF1 enables
the ARO-8(1) data inputs to SC. The return pulse FSTOA transfers the new exponent from SC1-8
to the exponent part of AR; and if the signs of AR and SC are different, it sets the overflow

flag.

To see that the above sequence of events produces the correct exponent and properly detects
overflow or underflow, consider the various cases keeping in mind that the floating-point
exponents from ~128 to +127 are represented by the numbers 0 to 255 and that th