RRRRBRT
CIGIGIGIGIGIGIGIOIGOIGOIOION

8888666668666

IOh@©)
C m
uur O @ °
ANV@Q mmd .._m
55T E8¢
O) 556 :
= @@@ rm._wd m
= @rm 9'p £ :
z ® o L
0, G o} ’

Nvewder 73

DEC-15-MR3A-D Z
pY 3h D

PDP-15/30 anp PDP-15/40
BACKGROUND/FOREGROUND MONITOR

SOFTWARE SYSTEM

PROGRAMMERS REFERENCE MANUAL

To obtain additional copies of this manual, order number DEC—15-MR3A-D
from the Program Library, Digital Equipment Corporation, Maynard,
Massachusetts, 01754. Price §6.50

Printed December, 1970
Second Printing, April, 1972

Copyright (C) 1970, 1971, 1972 Digital Equipment Corporation

The material in this manual is intended for
information purposes and is subject to change
without notice.

The following are trademarks of Digital

Equipment Corporation, Maynard, Massachusetts

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

CONTENTS

Page

SECTION 1 BACKGROUND/FOREGROUND MONITOR

1.1 Introduction 1-1
1.2 Background/Foreground Monitor Functions 1-1
1.2.1 Scheduling of Processing Time 1-2
1.2.2 Protection of Foreground Core and I/0 1-3
1.2.3 Sharing of Multi-User Device Handlers 1-4
1.2.4 Use of Sottware Priority Levels 1-4
1.2.5 Use of Real-Time Clock 1-4
1.2.6 Communication Between Background and Foreground Jobs 1-4
1.2.7 Use of CPU Registers 1-5
1.3 Hardware Requirements and Options 1-5
SECTION 2 BFKM15 - NON-RESIDENT BACKGROUND/FOREGROUND MONITOR

2.1 Introduction 2-1
2.2 Location and When Called 2-1
2.3 Initial Operation 2-2
2.4 Information Commands 2-3
2.4.1 The LOG Command (L) 2-4
2.4.2 The REQUEST Command (R) 2-4
2.4.3 The DIRECT Command (D) 2-5
2.4.4 The INUSE Command (I) 2-5
2.5 Allocation Commands 2-5
2.5.1 The ASSIGN Command (A) 2-6
2.5.2 The FILES Command (F) 2-7
2.5.3 The FCORE Command 2-8
2.5.4 The FCONTROL Command 2-9
2.5.5 The BCONTROL Command 2-9
2.5.6 The NEWDIR Command (N) 2-10
2.5.7 The SHARE Command (S) 2-11
2.5.8 The NOSHARE Command 2-11
2.5.9 The 7CHAN Command (7) 2-11
2.5.10 The 9CHAN Command (9) 2-12
2.5.11 The MPOFF Command 2-12
2.5.12 The MPON Command (M) 2-12
2.6 Program Load Commands 2-13
2.7 Final Operation 2-13
2.8 Control Characters 2-13
2.9 Summary of Commands 2-14

SECTION 3 CONTROL CHARACTERS

1 Purpose 3-1
2 Control Teletype 3-1
3 Teletype Handler 3-2
4 CTRL C (4C) 3-2
5 CTRL S (48) 3-3
6 CTRL T (4T) 3-3

Page

3.7 CTRL P (4P) 3-3
3.7.1 NORMAL CTRL P 3-4
3.7.2 No Change 3-5
3.7.3 REAL-TIME CTRL P 3-5
3.8 CTRL R (4R) 3-5
3.9 CTRL Q (4Q) 3-5
3.10 CTRL U (@) 3-6
3.11 RUBOUT (\) 3-7
3.12 CTRL D (4D) 3-7

SECTION 4 LOADERS

4.1 Introduction 4-1
4.2 Foreground Linking Loader 4-1
4.2.1 Option Characters and Their Meanings 4-2
4.2.2 Use of « Terminator 4-2
4.2.3 Sequence of Operation 4-2
4.3 Background System Loader 4-3
4.4 Background Linking Loader 4-5
4.5 Loading XCT Files 4-6
4.5.1 EXECUTE in the Foreground 4-6
4.5.2 EXECUTE in the Background 4-7
4.6 Error Conditions 4-8
4.7 System Memory Maps 4-9
SECTION 5 EXAMPLES OF BACKGROUND/FOREGROUND OPERATIONS

5.1 Introduction 5-1
5.2 Startup Procedures 5-1
5.2.1 Loading Master B/F Monitor System 5-1
5.2.2 System Generation 5-3
5.3 Examples 5-3
5.3.1 IDLE Loaded as the Foreground Job 5-3
5.3.2 Single-user FOCAL Loaded (Foreground) 5-4
5.3.3 Two-user FOCAL Loaded (Foreground) 5-4
SECTION 6 BACKGROUND FOREGROUND MONITOR COMMANDS (SYSTEM MACROS)
6.1 Introduction 6-1
6.2 .REALR 6-1
6.3 . REALW 6-2
6.4 .IDLE 6-3
6.5 .IDLEC 6-4
6.6 . TIMER 6-4
6.7 . RLXIT 6-5
6.8 Mainstream Real-Time Subroutines 6-5
6.9 API Software Levels -- Programming Note 6-5

ii

SECTION 7 WRITING DEVICE HANDLERS FOR THE PDP-15
BACKGROUND/FOREGROUND MONITOR SYSTEM

Introduction
I/0 Service Routine
I/0 Device Handler
Types of Device Handlers
General Structure of Device Handlers
Reentrancy Protection
Device Handler's CAL Processor
Arguments of the CAL
.SETUP
Initiating I/0
Device Handler's Interrupt Processor
Error Processing
Stop I/0 Routines
Recovery From I/0 Device Not Ready Condition
CTRL R Mechanism
.INIT Consideration
The .INIT Function
Sequential Multi-user Device Handler
Transition from Single-user Handler
Peculiarities
Use of the .WAITR Function
External I/O Buffers
Calling for a Buffer
Releasing a Buffer
PDP-9/PDP-15 Compatibility
Page Mode
Bank Mode
Device Handler Listing

.
N =

. .
o o
wN -

NN NNNNNNNNY
. « o e e o o

o

N

.
HEFH R R R RO OVOVENANUUTU S WWWN

BLWLWLOUNMNNNHERHEROS
[RE N

L4
. . . .
L N S

NNNUUNU NN NNNN Y
PP .

SECTION 8 SYSTEM GENERATION

Introduction
BFSGEN, Generation and Update Features
BFSGEN Device Requirements
DECtape Masters
Loading BFSGEN
System Generation Procedures
Section A -- Initialization
Section B -- System Selection & Read-in
Section C -- System Parameters
Section D -- Existing I/0 Devices
Expendable (Deletable) Devices
Section E -- Additional I/0 Devices
Section F -- PI Skip Chain
Section G -- .IOTAB
Section H -- .DAT Slots
Section I -- Re-write System Information
Post-Generation Procedures
Error Detection

. e
.
[

O WWLWWWLWWLWWWwWwWwWwwNNND -

N =

e o o
.

O oo U d W
.
[

. .
. e

Q0 00 0O 0O 0O 0O 00 0O 00 0O OO 00 0O 0 0O O 0O O
. . . « e

APPENDICES

I .SCOM Registers

II Errors

IIT Teletype Hardware Characteristics
v Monitor System Tables

iii

Page

NNNNNNNNNNN
[}
=0 0~NN0U

GO 00 CO 00 0O 00 00 00 00 0O GO 00 00
|
HFRPOUONUOSEWWNHEH-

I-1
II-1
I1I1-1
Iv-1

SECTION 1

BACKGROUND/FOREGROUND MONITOR

1.1 INTRODUCTION

In the preparation of this manual, it was assumed that the reader is familiar
with the PDP-15 ADVANCED Monitor Software System as described in DEC-15-MR2A-D.
A complete description of the Background/Foreground Monitor System is given in
this manual; however, where redundancy occurs, the reader has been referenced to

the ADVANCED Monitor manual.

1.2 BACKGROUND/FOREGROUND MONITOR FUNCTIONS

The Background/Foreground Monitor is designed to control processing and I/O
operations in a real-time or time-shared environment. It is, essentially, an
extension of the ADVANCED Monitor and allows for time-shared use of a PDP-15

by a protected, priority, user FOREGROUND program! and an unprotected system or
user BACKGROUND program.

The Background/Foreground Monitor greatly expands the capabilities of PDP-15/20
ADVANCED Software and makes optimum use of all available hardware. Tt permits
recovery of the free time (or dead time) that occurs between input/output

operations, thus promoting 100% utilization of central processor time.

FOREGROUND programs are defined as the higher-priority, debugged user programs!?
that interface with the real-time environment. They normally operate under
Program Interrupt (PI) or Automatic Priority Interrupt (API) control, and are
memory protected. At load time they have top priority in selection of core
memory and I/0 devices, and at execution time they have priority (according to
the assigned priority levels) over processing time. Depending upon system
requirements, the user's Foreground program could be an Executive capable of

handling many real-time programs or subprograms at four levels of priority.

BACKGROUND processing is essentially the same as the processing normally
accomplished under control of the ADVANCED Monitor. That is, it could be an
assembly, compilation, debugging run, production run, editing task, etc.
Background programs may use any facilities (for example, core, I/O and processing
time) that are available and not simultaneously required by the Foreground job.
Under certain circumstances, I/O devices may be shared by both the Foreground

and the Background jobs.

'It may be feasible in the future to provide system programs which will operate
in the FOREGROUND.

The Background/Foreground Monitor system is externally a keyboard-oriented
system; that is, Foreground and Background requests for systems information,
core, I/O devices, programs to be run, etc., are made via the Teletypelkeyboards.
At run time, the Monitor internally controls scheduling and processing of I/0
requests, while protecting the two resident users.

The Background/Foreground Monitor performs the following functions as it controls
the time-shared use of the PDP-15 central processor by two co-resident programs:

a. Schedules processing time.

b. Protects the Foreground job's core and I/O devices.

c. Provides for the sharing of multi-user device handlers, such as
DECtape, by both Foreground and Background jobs.

d. Allows convenient use of API software levels by Foreground jobs.

e. Provides for convenient and shared use of the system Real Time
Clock.

f. Allows communication between the Background and Foreground jobs
via core-to-core transfers or by the shared use of bulk storage
devices.

g. Allows concurrent use of the CPU's active registers, such as the

AC and Index Register.

1.2.1 Scheduling of Processing Time

At run time, the Foreground job retains control except when it is I/O bound;
that is, when completion of an I/O request must occur before it can proceed

any further. 1In the following example, if the .WAIT is reached before the input
requested by the .READ has been completed, control is transferred to a lower
priority Foreground segment or to the Background job until the input for the

Foreground job is completed.

.READ 3, g, LNBUF, 48 /READ TO .DAT SLOT 3

.WAIT 3 /WAIT ON .DAT SLOT 3

Since multi-user device handlers can be shared by Foreground and Background
programs, there is a mechanism by which a Foreground I/0 request may cause a
Background I/0 operation to be stopped immediately so that the Foreground
operation can be honored. On completion of the Foreground I/O, the Background
I/0 is resumed with no adverse effects on the Background job.

The Foreground program can also indicate that it is I/0 bound by means of the

lTeletype is a registered trademark of the Teletype Corporation.

1-2

.IDLE or .IDLEC command (Sections6.4 and 6.5). This is useful when the
Foreground job is waiting for real-time input from any one of a number of
input devices. Consider the following example (see Section 6.2 for description

of real-time read .REALR command).

.REALR 1, ¢,LNBUF1, 32, CTRL1l, N1 /REAL
.REALR 2, 2,LNBUF2, 42, CTRLZ2, N2 /TIME
.REALR 3, 3,LNBUF3, 36, CTRL3, N3 /READS
.IDLE

If .IDLE is reached before any of the input requests have been satisfied, control
is transferred to a lower priority Foreground segment or to the Background job.
The lower priority job retains control until one of the Foreground input requests
1s satisfied. Control is then returned to the Foreground job by executing the’
subroutine at the specified completion address (CTRL1, CTRL2, CTRL3) and at the
priority level specified by N1, N2, N3 which may be:

Value of N Level
) = Mainstream (lowest level)
4 = Current level (level of .REALR)
5 = Software level 5
6 = Software level 6
7 = Software level 7

NOTE

If real-time reads (.REALR), real-time writes (.REALW),
or interval timer (.TIMER) requests are employed in

the Background, N may be set to #, 4, 5, 6, or 7, but
is converted to § since the Background job can run only
on the mainstream level. This allows the value of N to
be preset in cases where a Background program is to be
subsequently run in the Foreground.

1.2.2 Protection of Foreground Core and I/0

The Foreground job's core is protected by the Memory Protection Option (Type
KM15) . The Background job runs with memory protect enabled; the Foreground job

runs with memory protect disabled.

Protection of the Foreground job's I/O devices is accomplished via the haraware
by the Memory Protect Option (which prohibits IOT and Halt instructions in the
Background area) and by the software since the Monitor screens all I/0 requests
made via I/0 macros. Also, the Monitor and the Background Loaders prevent the
Background job from requesting I/0 which would conflict with that of the Fore-

ground job (for example, they would not honor a Background request for a paper

1-3

tape handler being used by the Foreground job).

1.2.3 Sharing of Multi-User Device Handlers

The Background/Foreground Monitor permits sharing of multi-user device handlers
(such as DECtape, Magnetic Tape and Disk) between Background and Foreground jobs.
Using these multi-user handlers, n files can be open simultaneously, where n
equals the number of .DAT slots associated with the particular bulk storage
device. Some multi-unit handlers require external data buffers (assigned at
load time), one for each open file. These buffers are acquired from and
released to a pool by the handler as needed.

When this count is not accurate (when the .DAT slots are not used simultaneously),
the keyboard command FILES (Section 2.5.2) can be used to specify the actual
number of files simultaneously open. Both the Foreground and Background jobs

can indicate their file requirements by means of the FILES keyboard command.

The multl -user handlers are capable of stacking one Background I/0 request.
This provision is made to exactly simulate program operation as it would occur
under ADVANCED or I/0 Monitor (i.e., single user) control. Thus, control is
returned to the Background job to allow non-I/0 related processing when the
handler is preoccupied with an I/0 request from the Foreground job. For
example, if the Foreground job has requested DECtape I/O with a .READ, and is
waiting for its completion on a .WAIT, control is returned to the Background job.
If the Background job then requests DECtape I/0 with a .READ, the handler will
stack the request and return control to the Background job following the .READ.
The Background job can then continue with non-I1/0 related processing as though
the .READ were being honored.

1.2.4 Use of Software Priority Levels

The Background/Foreground Monitor allows convenient use of software priority
levels of the API by the Foreground job. The Background job is permitted to use

only the mainstream level.

1.2.5 Use of Real-Time Clock

The Background/Foreground Monitor provides for convenient and shared use of
the system real-time clock. It will effectively handle many intervals at the
same time; thus, the real-time clock can be used simultaneously by both Back-

ground and Foreground jobs.

1.2.6 Communication Between Background and Foreground Jobs

The Background/Foreground Monitor allows communication between Background and

1-4

Foreground jobs via core-to-core transfers. This is accomplished by means of a
special "Core I/0 device" handler within IOPS. Complementing I/O requests are
required for a core-to-core transfer to be effected; for example, a Foreground

-READ (.REALR) from core must be matched with a Background .WRITE (.REALW) to
core.

Two possible uses of this feature are:

a. The Background job could be related to the Foreground job and,
as a result of its processing, pass on information that would
affect Foreground processing, or vice-versa.

b. The Background job could be a future Foreground job and the

current Foreground job, being its predecessor, could pass on
real-time data to create a true test environment.

Communication between two jobs can also be done by storing and retrieving data on

shared bulk storage devices.

1.2.7 Use of CPU Registers

Whenever contrcl passes from one API software level to another, or to Foreground

mainstream or to Background, the following CPU registers are saved and restored.

XR Index Register !

LR Limit Register'!

MQ Multiplier-Quotient Register

AIX The Autoincrement Registers —

L The Link

PC The Program Counter (including bits to indicate the

state of memory protect and page/bank mode)

The Step Counter and the Accumulator are saved and restored only for the Back-
ground job. The éﬁﬁééﬁgEie job, because it runs with memory protect disabled,
can save the contents of the Step Counter in the two free (non-interruptible)
instructions following a Normalize instruction by saving the AC (DAC) and then
loading the AC with the SC (LACS). The AC is not saved for any level of the
Foreground job because a level can give up control only by issuing a Monitor
call (CAL) (either .IDLE, .WAIT, or an implied .WAIT). The contents of the AC
are not saved and restored by the CAL handler. In addition to these hardware
registers, .SCOM+1,+2,+3,+4, and +1§ are swapped whenever control changes from

Foreground to Background or vice versa.

1.3 HARDWARE REQUIREMENTS AND OPTIONS

The following PDP-15 System hardware confiqurations are required to run the

1 .
In the bank mode system, the XR and LR registers are not saved and restored; all other registers

are handled as stated.

PDP-15/30 DECtape System

PDP-15 CPU with a minimum of
16K- core memory

KE15 (EAE)

KSR35 Console Teletype!

PC1l5 (High Speed Reader/Punch)
KAl5 (API)

KW1l5 (Real Time Clock)

KM15 (Memory Protect)

TC@2D%0r TCl5 (DECtape Control)

3 TU55 (DECtape Transports)

or
2 TU56 (Dual-DECtape Transports)
as a minimum

An LT15 or an LT19°Teletype Control

Background/Foreground Monitor Software System.

PDP-15/40 DECdisk System

PDP-15 CPU with a minimum
of 24K of core

KE15 (EAE)

KSR35 Console Teletype'!

PC1l5 (High Speed Reader/Punch)
KAl5 (API)

KW1l5 (Real Time Clock)

KM15 (Memory Protect)

TC@2D?%or TCl5 (DECtape Control)

2 TU55 (DECtape Transports)

or
1 TU56 (Dual-DECtape Transport)
as a minimum

An LT15 or an LT192Teletype Control

Unit with at least one additional
KSR33 or KSR35 Teletype

RF15 (DECdisk control)

2 RSL3 (Disk platters) minimum;
4 maximum at present.

Unit with at least one additional
KSR33 or KSR35 Teletype

'The basic system Teletype is normally assigned to the Background environment.
One Teletype of the external Teletype system must be reserved for the Foreground
job; additional Teletypes may be assigned to either Background or Foreground
functions.

Model 37 Teletypes are not supported. Models 33 or 35 ASR are supported only to
the extent that they operate as KSR's;. their paper tape input and output
facility cannot be used. Detailed information concerning Teletype units is
given in Appendix III.

The TCO02D DECtape control and the LT19 Teletype Control require the DW15.

1-6

In addition to the 15/30 and 15/40 configurations shown, the following

PDP-9 configurations may also be used when running the bank mode system.

PDP-9 DECtape System

PDP-9 with a minimum of 16K core
memory

Real Time Clock

KX09A (Memory Protect)
KEO9 (EAE)

2KSR 33/35 (Teletypes)

PC02 (high speed paper tape
reader/punch)

KF09A (API)

TC02 (DECtape control)
3 TUS5 (DECtape transports)
or
2 TU56 (Dual-DECtape transports)

LT19A (Teletype control)

PDP-9 DECdisk or RB@9 Disk System

PDP-9 with minimum of 24K core
memory

Real Time Clock

KX09A (Memory Protect)

KEO9 (EAE)

2KSR 33/35 (Teletypes)

PC02 (high speed paper tape

reader/punch)
KF09A (API)
TC02 (DECtape control)
2 TUS5 (DECtape transports)

or
1 TU56 (Dual-DECtape transport)
LT19A (Teletype control)
RF09 (NECdisk control) and

Rs09 (DFCdisk plotter) or
RBU9 disk anu control

Options

Additional 8192-word Core MemorY
Modules, Type MM15-A plus MK15A
(to a maximum of 32,768 words)

Additional DECtape Transports,
Type TU56, or IBM-compatible
Magnetic Tape Transports, Type
TU20A or TU20B and Tape Control
Type TC59D

Automatic Line Printer, Type
LP15F or C

200 CPM card Reader, Type CRO3B

Additional Teletype Line Units,
Type LT19E} and Teletypes, Type
KSR33, KSR35 or equivalent
(standard system is configured

to handle up to 6 Teletype units
including the console unit. The
system may be expanded to handle up
up to 17 units including the
console unit).

1
2
and LP@9.

3 LT19B on the PDP-9.

Two line printers supported on the PDP-9 are designated T

The following options currently supported by software may be added to improve
system performance (as noted):

Effect

Increases the maximum size of
both Background and Foreground
programs that can be handled
by the system.

Allows greater bulk storage
capability, simultaneous use

of storage media by more programs.
Since only one file may be open

at a time on IBM-compatible mag-
netic tape transports, more than
two Type TU20A or TU20B transports
may be desirable for some applica-
tions

Provides greater listing capabilities.

Provides another form of data
input to the machine.

Provides additional control
terminals useful for multi-
user programs.

MM09 B and C core memory modules on the PDP-9,

ype 647

SECTION 2

BFKM15 - NON-RESIDENT BACKGROUND/FOREGROUND MONITOR

2.1 INTRODUCTION

The non-resident portion of the Background/Foreground Monitor, entitled BFKM15,
is identical in nature to the Keyboard listening section of the ADVANCED Monitor.
BFKM15 reads and interprets commands typed by the user at either the Background
control Teletype or the Foreground control Teletype.

There are three kinds of commands which the user may type:

a. Requests for information, such as a directory listing of unit @
of the system device;

b. Allocation parameters, such as free core required, number of open
files, and I/0 devices to be used;

€. Requests to lcad a system or user program.

2.2 LOCATION AND WHEN CALLED

BFKM15 is loaded from register 12000 of the highest core bank to the top of

memory and 1is transparent to the user since it is always overlayed.

When the Background/Foreground system is loaded or reloaded to start a new Fore-
ground job, the Resident Monitor is first loaded into lower core from unit @
of the system device, either by use of the paper tape bootstrap or by typing
CTRL C! at the Foreground control Teletype. The Resident Monitor then brings
the Non-resident Monitor into the top of memory. When operating in the Fore-

ground, BFKM15 runs with memory protect disabled.

After the Foreground user program has been loaded and has started to run, the
Non-resident Monitor is reloaded with memory protect enabled, to converse with
the user at the Background control Teletype.‘ BFKM15 is also reloaded whenever
the Background job exits or the user types CTRL C at the Background control
Teletype.

In both the Foreground and the Background, after the user has given a command
to load a program, the Non-resident Monitor brings the System Loader into

memory from the system device, overlaying the Non-resident Monitor.

'Refer to Section 3.4 for a discussion of CTRL C.

2.3 INITIAL OPERATION

When BFKM15 is started for the Foreground job, it must perform some initialization
of which the following is of interest:

a. Set the contents of .SCOM+25 to the initial size of free core
to be allotted to the Foreground job, in addition to the space
required by the Foreground user programs. The initial value
of .SCOM+25 is set during system generation. This value must
take into consideration the initial size of free core to be
allotted to the Foreground job plus the space required by the
Foreground user program. The user may change free core
allotted by issuing the FCORE command, described in Section 2.5.3.

b. BFKM15 checks the entire Foreground Device Assignment Table
(.DATF) to see if any of those .DAT slots request the Teletype
handler and the unit number currently assigned to the Background
control Teletype. If so, those slots are changed to the Fore-
ground control Teletype and a message is output as in the follow-
ing example.

EXAMPLE 1: The Foreground control Teletype is TT1l, the Background
control Teletype is TT@, and the initial contents of
.DATF slots 1 and 3 refer to TTAf. .DATF slots 1 and
3 will be changed to refer to TTAl and the following
message will be printed on the Foreground control Teletype:

FGD .DATS CHANGED TO TTAl:

1 3

FKM15 v3al
$

The Non-resident Monitor identifies itself to the Fore-
ground user by printing FKM15 V3A and types $ whenever
it is ready to accept a command.

When BFKM15 is started for the Background job, it performs initialization, of

which the following is of interest:

a. It builds the initial configuration of the Background .DAT table
(.DATB) . Any .DATB slots which request a single user version of
a device handler (for example, DTF) will be changed to
the multi-user handler (DTA in this case) if it is already in
core for the Foreground job or if it is the resident system device
handler.

b. BFKM15 will check all Background .DAT slots to make certain that
they do not conflict with Foreground I/0. The Resident Monitor
contains, for this purpose, a table (.IOIN) which lists all I/0
handlers and unit numbers in use. The following occurs:

(1) If a handler for this I/O device is not already in core, the
Background .DAT slot is left untouched.

' FKM15 is the page mode monitor printout. F9/15 is the bank mode monitor

printout. Bank mode users should substitute the correct monitor printout
in further references.

(2) If a single user handler for this device is already in
core for use by the Foreground job, by definition the
Background job may not use this device. Therefore the
Background .DAT slot is cleared (set to zero).

(3) If the multi-user handler for this device is in core, but
the device unit number in question is not assigned to the
Foreground job, Background is allowed to share that

handler. Unit g of the system device may always be
used by the Background job.

(4) If the Background .DAT slot requests a multi-user handler
and unit number already assigned to the Foreground,
normally this is illegal and that .DAT slot will be
Cleared. However, some users may wish to allow both jobs
to access the same unit. Normally, this is permitted
only for bulk storage devices (DECtape, Disk, etc.)
provided that the Foreground user typed the command
SHARE, explained in Section 2.5.7.

If the initial Background .DAT table was altered by clearing .DAT slots for the
reasons given above, a message will be output to the Teletype as in the following

example.

EXAMPLE 2: The Foreground job is running and has been assigned
device handlers and unit numbers DTAl, DTA2, TTAl,
TTA2, and PPA (paper tape punch handler - not
shareable). The initial Background .DAT table contains
conflicting requests as follows:

.DAT SLOT CONTENTS
-15 DTA1

-4 DTA?2

3 TTA2

7 PPAg

The following will be printed on the Background control
Teletype when BFKM15 is first loaded:

BGD .DATS CLEARED BECAUSE OF FGD I1/0:
-15 -4 3 7
FCONTROL = TTAl
FGD DEV-UNITS:
TTAZ2
DTAl
DTAZ2
PPAQ

BKM15 V3A'l
$

' BKM1S5 is the page mode monitor printout. B9/15 is the bank mode monitor

printout. Bank mode users should substitute the correct monitor printout
in further references. ‘

FCONTROL indicates which unit is the Foreground control
Teletype. The remainder of the message indicates what
;/O is being used by the Foreground job. The Monitor
identifies itself to the Background job user as BKM15 V3A
and signals that it is ready to accept a command by
printing §.

2.4 INFORMATION COMMANDS

The following information commands exist in Background/Foreground:

COMMAND USE

LOG To print a comment

REQUEST To examine .DAT slots

DIRECT To obtain a directory listing

INUSE To list information about core and I/0

in use by the Foreground.

2.4.1 The LOG Command (L)

This command is legal in both Foreground and Background and may be abbreviated
by the single letter L. It is used to record comments on the Teletype. Unlike
all other commands, LOG is terminated only by the character ALTMODE, so that

multiple comment lines may be typed.

EXAMPLE 3:
$LOG THIS LINEJ
AS WELL AS THIS ONEJ)
AND THIS ONE ARE IGNORED
$

2.4.2 The REQUEST Command (R)

This command is legal in both Foreground and Background and may be abbreviated
by the single letter R. It is used to examine the contents of all or part of
the user's .DAT table. The Foreground user may examine only the Foreground

.DAT table and th= Background user, only the Background .DAT table.

FORM 1: RJ

This requests a printout of the entire .DAT table. No example is given since
R is essentially the same request as in the ADVANCED Monitor System.

FORM 2: R_USER)

This requests a printout of the contents of all the positive numbered .DAT
- slots. The result, again, is the same as in the ADVANCED Monitor System.

FORM 3: R, XYZ)

Here, XYZ stands for the name of a system program; e.g., MACRO, PIP, F4, LOAD,
etc. The names given must be identical to those used to load the programs.

The information printed, as in the ADVANCED Monitor System, is those .DAT slots
used by the given system program. Since, at present, the only system program
load commands allowed in the Foreground are LOAD, GLOAD, PIP and EXECUTE, only
these four may be used in Foreground REQUEST commands.

FORM 4: R _.DAT_j, k, 1, ... , r, sJ)
Here, j, k, 1, etc., are .DAT slot numbers.
EXAMPLE 4:

$R,.DAT, -3, -1, 4, 7)
TTA1 DTA2 NONE LPAM

$

2.4.3 The DIRECT Command (D)

This command is legal in both Foreground and Background and may be abbreviated

as D. The format is:

D_nJ)

where n = a unit number (# through 7) on the system device. Directory listings
have been altered in BFKM15 to print the number of free biocks before the file
names. The Background user may not request directory listings of any units
owned by the Foreground job unless the Foreground user typed the SHARE command
(see below).

2.4.4 The INUSE Command (I)

This command is legal only in the Background and may be abbreviated by the
single letter I. It causes the Monitor to print the first free core location
above the Foreground job, the Foreground control Teletype unit number, and

any other I/O used by Foreground.
EXAMPLE 5:

$1)

1ST REG ABOVE FGD = 3231
FCONTROL = TTA2

FGD DEV-UNITS:

DTAl
LPAJ

2.5 ALLOCATION COMMANDS

The following commands assign parameters, controls, and conditions:

2-5

COMMAND PURPOSE

ASSIGN To assign I/O handlers to .DAT slots
FILES To specify handler file capacity

FCORE To set up Foreground free core
FCONTROL To select Foreground control Teletype
BCONTROL To select Background control Teletype
NEWDIR To write a new file directory

SHARE To allow jobs to share same I/O units
NOSHARE To nullify effect of SHARE

7CHAN To specify 7-channel MAGtape operation
9CHAN To specify 9-channel MAGtape operation
MPOFF To let Background access all of core
MPON To nullify effect of MPOFF

2.5.1 The ASSIGN Command (A)

This command is legal in both Foreground and Background and may be abbreviated
by the single letter A. 1Its format and function are, with a few exceptions,
identical to the same command in the ADVANCED Monitor System.

The format is:

A DDLN,m, n, ..., p/ .../DDLNum, n, ..., p)

where DD stands for the two letter device name; e.g., DT for DECtape,
PP for paper tape punch, etc.

L represents the third letter of a device handler name and is
optional. 1If not given, the third letter is assumed to be A;
€.g., DTl = DTAl. The "A" version of a handler is the multi-
user, shareable handler, provided that one exists. PPA, for
example, is not a multi-user handler.

N is the unit number to go with the device handler and is also
optional. If the unit number is missing, N is assumed to be @,
€.g., DTA = DTA@.. Therefore, DT = DT§ = DTA = DTA@. The
letters m, n, ..., p stand for .DAT slot numbers. The slash (/)
separates handlers.

To clear out a .DAT slot, assign NONE to it. If any error is detected in the

command, none of the assignments will be made.

The Foreground and Background users may make assignments only to their
respective .DAT tables. Foreground may not assign TTAg if, for example, that
is the Background control Teletype. Since DTA is permanently in core with the
Resident Monitor (assuming that DECtape is the system device) DTE, DTF, etc.,
when assigned, will automatically be changed to DTA. This applies as well to
handler assignments made in the Background whenever the multi-user version of
the handler is in core for Foreground use.

2-6

Background .DAT slot assignments are tested to ensure that they do not conflict
with Foreground I/0, as explained in section 2.3. Whenever the Monitor detects
such a conflict, it will print the message:

OTHER JOB'S DEV-UNIT
To ensure that no conflict can occur when assigning the core-to-core handler,
COA., the unit number is preset to § for Foreground and 1 for Background. The

core-to-core handler disregards the unit number anyway.

2.5.2 The FILES Command (F)

This command is legal in both Foreground and Background and may be abbreviated
as F. The purpose of this command is to save core space by limiting the number

of I/O buffers assigned to multi-user device handlers.
e —————

The format of the FILES command is:
FILES, DD_N,)

where: DD stands for the multi-user handler or device name (e.g., DTA or DT).

N stands for an octal file count.

EXAMPLE 6: Assume that the Foreground user programs are being loaded
into core by the Foreground Linking Loader and that these
programs use .DAT slots 1 through 1g. (.IODEV 1, 2, 3, ...,

18). Further, assume that all 1§ slots were assigned to
DECtape, DTAn (the unit numbers are unimportant to this
discussion).

Most multi-user handlers, DTA being one of them, require
that I/O buffers be assigned to them externally. This 1is
done by the various loaders. 1In this example, the Fore-
ground Linking Loader, seeing that no FILES command was
given for the handler DTA, must assume that the user wants
19 files open simultaneously. This will require 1@ buffers,
each 6@# octal words in size.

The FILES command is used to tell the loaders to assign a
given number of buffers for a particular multi-user handler
based on the maximum number of files that the user programs
will have open simultaneously. Each multi-user handler

has a maximum open file capacity; for example, DTA may have
up to 2f octal. If 1@ I/O buffers are assigned for DTA in
the Foreground, then only up to 18 may be assigned for
Background. The FILES command issued in the Foreground
specifies only Foreground I/O buffers. Thus, to limit the
number of I/O buffers assigned to the Background, the

FILES command, for the same multi-user device, must also be
issued in the Background.

At load-time, I/O buffers are set aside in core by the Loaders. The buffers are
recorded in a table within the Resident Monitor, .BFTAB, but are not flagged for

the exclusive use of particular device handlers. At run—-time, each multi-user
2-7

handler which needs a buffer must request a buffer from the Monitor. The handler

must also release the buffer to the pool when it is no longer needed.

The resident buffer?, permanently assembled into the Resident Monitor, is always
available to the Background job. In the event that the Background job were to
.IODEV only one .DAT slot which is linked to a multi-user handler that requires
external buffers, (DTA. for example) the user could save 609 registers by

typing:
$FILES_DT, g

that is, assign one less buffer than is needed.

In the FILES command, the pseudo-device .- is recognized. The size of the
external buffer for this pseudo-device is 199 octal. Some functions in multi-
user handlers may require a smaller buffer size than others. If the user were
only to use such function types, he could type, for example, $FILESuDTuﬂ and
$FILESu..uN. In DTA., .TRAN and .MTAPE commands only require the smaller buffer.

2.5.3 The FCORE Command

This command is legal only in the Foreground and may not be abbreviated.
The format of the FCORE command is:
FCOREN)
where N is the amount (in octal) of free core requested for the Foreground job.

As in the ADVANCED Monitor System, unused (free) core is defined by the
address pointers in the registers .SCOM+2 and .SCOM+3, the lowest and the
highest free core location, respectively. Since both the Foreground and the
Background jobs have their own separate free core areas, the values in .SCOM+2

and .SCOM+3 are changed appropriately whenever control passes from one job to
the other.

The FCORE command allows the Foreground user to specify how much free core his
program will need, in addition to that required to load his program. The default
value for FCORE is specified during system generation. It is possible for all
of core to be assigned to Foreground. This means, however, that there will be
no room for Background to run, which is perfectly legal. If this is the case,
the message:

SORRY, NO ROOM FOR BGD

1
The resident buffer (6@ words) is assumed to be large enough to be used by
any multi-user handler which might be used by the loaders.

2-8

is printed on the control Teletype.

2.5.4 The FCONTROL Command

This command is legal only in the Foreground and may not be abbreviated. It is
used to transfer control from the control Teletype to some other Teletype unit.

The format of the FCONTROL command is:
FCONTROL, N,

where: N is the number (octal) of any Teletype on the system.

If N is already the Foreground control Teletype, the command is ignored. If N
is the current Background control Teletype, the two Teletypes are swapped but

no message will be printed to this effect. Changing the Background control
Teletype may affect Foreground .DAT slots and an appropriate message will be
printed on the Foreground control Teletype. This is fully explained in the next
section on the BCONTROL command.

When FCONTROL changes the Foreground control Teletype, the following action

takes place:

a. The following message is printed on the old control unit:

CONTROL RELINQUISHED

The system is reloaded from the system device.

The Monitor prints

FKM15 V3A
$

on the new Foreground control unit and is ready to accept
commands there.

2.5.5 The BCONTROL Command

This command is legal both in the Foreground and in the Background and may not
be abbreviated. It is used to transfer control from the Background control Tele-
type to some other Teletype unit.
The format of the BCONTROL command is:
BCONTROL, NJ)

where N is the number (octal) of any Teletype on the system. This command is

2-9

illegal and is ignored if

a. N is the Foreground control Teletype

b. N has been .IODEVed by a Foreground user program
C. N is already the Background control Teletype

If the Background control Teletype is changed by either a BCONTROL or FCONTROL
command in the Foreground, all Foreground .DAT slots which now refer to the new
Background control unit will be changed to the Foreground control unit to avoid

I/0 conflict. Should that situation occur, the following example shows what

would be printed on the Foreground control unit:

FGD .DATS CHANGED TO TTAl

-6 2 7 19

If BCONTROL is issued in the Background, the following action takes place:

a. The following message is printed on the old control unit:

CONTROL RELINQUISHED
b. iC is printed on the new unit

c. The Non-resident Monitor (BFKM15)is reloaded for Background
from the system device

d. The Monitor prints

BKM15 V3A
$

on the new Background control Teletype and is ready to
accept commands there.

2.5.6 The NEWDIR Command (N)

This command is legal in both Foreground and Background and may be abbreviated
by the single letter N. Just as in the ADVANCED Monitor System, this command
allows the user to write a new file directory on some unit of the system device..

However, space will not be reserved for a tQ (CTRL Q) area.

The format of the NEWDIR command is:

N, MJ)

where M is some unit number (octal) on the system device. Unit @ may not be
used. The Background may not write a new file directory on a unit that belongs
to the Foreground unless the Foreground has issued the SHARE command (see below).

2-10

2.5.7. The SHARE Command (S)

This command is legal only in the Foreground and may be abbreviated by the single
letter S. 1Its purpose is to allow the Background job to assign and to use the
same units of any I/O devices that belong to the Foreground job, provided that
they are unit-shareable devices! (DECtape, Disk, MAGtape, etc.) and that the
device handlers are the multi-user versions. The user must be careful when
allowing this condition to occur. The "tape" could be fouled if both jobs were

to try to use the same unit for output at the same time.

The SHARE command also removes the restriction that the Foreground user program
may not use unit @ on _Lhe system device. Normally, this unit is reserved for the
Background.

The format for this command is:

SHARE))

2.5.8 The NOSHARE Command

This command is legal both in Foreground and in Background and may not be
abbreviated. It nullifies the effect of any previous SHARE command; i.e., does

not allow the Background to share device units with the Foreground.

When NOSHARE is issued in the Background, it may cause some Background .DAT slot
to be cleared. A message, as in Example 2, will be printed to that effect.

The command format is:
NOSHARE)

2.5.9 The 7CHAN Command (7)

This command is legal only in the Foreground and may be abbreviated by the
single character 7. The effect of this command is to clear bit 6 in .SCOM+4 to
inform the Magtape device handlers that the default assumption is 7-channel
operation.

The format of the 7CHAN Command is:

7CHAN,)

"Normally, only mass storage devices are unit-shareable.

2-11

2.5.10 The 9CHAN Command (9)

This command is legal only in the Foreground and may be abbreviated by the single
character 9. It sets bit 6 in .SCOM+4 to inform the Magtape device handlers that
the default assumption is 9-channel operation.

The format of the 9CHAN command is:
9CHAN)

2.5.11 The MPOFF Command

This command is legal only in the Foreground and may not be abbreviated.
The format is:
MPOFF,)

Under normal circumstances, the Background job operates in user mode (memory
protect enabled) with the memory protect boundary register set from the contents
of .SCOM+32. The MPOFF Command does not disable memory protect for Background;
it causes the contents of the boundary register to be set to zero, independent
of .SCOM+32.

The effect this has is to allow the Background job to reference, modify, and
transfer to any location in core memory. Any attempt to do so via a system
macro call (CAL sequence, such as .WAITR) will not result in a terminal error,
-ERR #36. Normally, the Monitor's CAL handler would validate Background argu-
ments by comparison with .SCOM+31 or .SCOM+32, as appropriate.

Since the Background still runs with memory protect on, IOT instructions,
non-existent memory references, double XCT instructions, HLT, and OAS will

trap to the Monitor. OAS! is executed by the Monitor whether or not the MPOFF
command was issued. IOT instructions are executed by the Monitor for the Back-
ground job (this includes IOT's that cause a skip) when MPOFF is in effect.

The reader is cautioned to avoid the use of instructions, such as CAF, EBA,

DBA, ISA, which could play havoc with the system if executed in the Background.
The MPOFF facility was provided to allow a limited amount of Foreground debugging
by using DDT in the Background (strictly for examination and modification--no

breakpoints) .

2.5.12 The MPON Command (M)

This command is legal in both Foreground and Background and may be abbreviated by
the letter M.

'0AS must not be microcoded with any skip instruction.

2-12

The format is:

MPON,)

The MPON command nullifies the effect of MPOFF, thereby protecting the Foreground

job from the Background job in the normal manner.

2.6 PROGRAM LOAD COMMANDS

In the Foreground, only four load commands are legal: LOAD,), GLOAD,), PIP)), and
EXECUTE _,XXX)). EXECUTE may be abbreviated by the single letter E. LOAD and
GLOAD have the same meaning and effect as in the ADVANCED Monitor System.

The following program load commands exist in the Background:

PATCH,) MACROA,)
CHAIN,) LOAD)
F4) GLOAD,)
F4A) DDT,)
EDIT) DDTNS,))
PIP) DUMP,)
EXECUTE, XXX, UPDATE,)
MACRQ) BFSGEN J
DTCOPY) SRCCOM)

2.7 FINAL OPERATION

After BFKM15 has received a program load command from either the Foreground or the
Background, it will bring the System Loader (.SYSLD) into the top of core over-
laying BFKM15. 1In the Foreground, .SYSLD is actually the Foreground Linking
Loader. In the Background, .SYSLD loads Background System Programs, including

the Background Linking Loader.

2.8 CONTROL CHARACTERS

While control is in BFKM15, the user may type CTRL P to terminate execution of
the current command and to restart. Restart in this manner does not nullify the
effect of previously executed commands; e.g., will not reset the .DAT table to
its initial configuration. To reload the Monitor for the current job, the user
may type CTRL C.!

'Refer to section 3.4 for a discussion of CTRL C.

2.9

SUMMARY OF COMMANDS

LEGAL IN
F B
F B

B
B
F
F
B
B
F B
B
B
B
F B
B
B
F
F
F B
F B
B
F B
F B
B
B
F
F B
F B
F B
B
F B
F B
F
B
B

ABBREVIATION

A

COMMAND EXAMPLE

ASSIGN, DTAl 2, 3/TT1_1, 4/DT_-4)
BCONTROL,,2)

BFSGEN))

CHAIN)

7CHAN,)

9CHAN,)

DDT,)
DDTNS)
DIRECT #,)
DTCOPY)
DUMP)

EDIT)
EXECUTE, XXX,
F4)

F4a)
FCONTROL, 1)

FCORE_140%)

FILES, DT, 3/
GLOAD,)

INUSE)
LOAD) -

LOG, ;- - (ALTMODE

MACRO))
MACROA)
MPOFF,))
MPON,)

NEWDIR, 5)
NOSHARE)
PATCHJ)
PIP)

REQUEST, XXX, or REQUEST,SER) or
REQUEST, .DAT j,k,1) or REQUEST)

SHARE)

SRCCOM))
UPDATE,)

2-14

SECTION 3

CONTROL CHARACTERS

3.1 PURPOSE

Control characters are single characters, typed by the user at a Teletype, which
request special action by the Monitor. Except for the character, RUBOUT, all
control characters are formed by holding down the control key, CTRL, while

striking the appropriate letter key.

The characters CTRL U and RUBOUT are used as "erase" characters during Teletype
input or output. CTRL C, CTRL P, CTRL S, and CTRL T are used to interrupt the
operation of the current program and to transfer control elsewhere. CTRL R

is used to restart I/O after a not-ready condition has been detected for some
device. CTRL Q stops the current job and dumps memory onto a specified area of
some unit of the system device. CTRL D effects an end-of-file condition during

Teletype input.

3.2 CONTROL TELETYPE

In the Background/Foreground System, which may accommodate up to 17 (decimal)
Teletype units!, two Teletypes are designated as control Teletypes (one for
Background and one for Foreground). Initially, it is assumed that unit 2 (the
console Teletype) is the control Teletype for Background and unit 1 is the con-

trol unit for Foreground?.
Control Teletypes differ from the other units in two ways:

a. They are used to converse with the Non-resident Monitor and
system programs in order to set up parameters and conditions
for a job and to initiate the loading and execution of programs.
b. Certain control functions are honored only at control Teletypes;
i.e., they are ignored if they are typed on the other Teletype
units (see Section 3.4 and following).

!The system as shipped to customers will handle a maximum of 6 Teletypes. Expan-
sion requires a simple reassembly of the code for the Resident Monitor.

2The initial control Teletypes are specified during system generation.

3.3 TELETYPE HANDLER

The multi-user Teletype handler (TTA) which is imbedded in the Resident Monitor
makes special tests for control characters when it receives typed input. Normally,
when no .READ request has been issued to a Teletype, characters received from

that unit are ignored unless they are control characters. A description of the
action taken in each case is given in the following paragraphs.

3.4 CTRL C (4C)

This character is ignored unless typed at a control Teletype. It is echoed to
the teleprinter as *C.

If a Background job is not in core and the user types CTRL C at the Foreground
control Teletype, 1C is echoed to it and the Resident Monitor is reloaded by
the resident bootstrap.

If a Background job is in core when CTRL C is typed on the Foreground control
Teletype, 4B is echoed to it to indicate ﬁhat a Background job exists, a "bell"
is sent to the Background control Teletype, and a flag is set indicating that
CTRL C has been typed in the Foreground. What happens thereafter depends on
which job is the "confirmer", a parameter set by the System Generator. Once

CTRL C has been entered on the Foreground control Teletype, the Foreground job is
terminated.

When Foreground is the "confirmer", the second time CTRL C is typed on the
Foreground control Teletype AC is echoed to it and the Resident Monitor is
reloaded.

When Background is the "confirmer", CTRL C typed on the Foreground control
Teletype causes 4B to be printed on the Foreground control Teletype and a "bell"
to be sent to the Background control Teletype. Thus Foreground cannot abort
Background. When CTRL C is typed on the Background control Teletype, AC is
echoed to it and then the Resident Monitor is reloaded by the resident bootstrap.

In the normal case where Foreground is running and CTRL C is typed on the Back-
ground control Teletype but not on the Foreground control Teletype, the Fore-
ground job is not affected. The Background job is aborted and the Non-resident
Monitor is reloaded to start up a new Background job.

The "confirmer" flag is .SCOM+1g4.
g = Foreground.
1 (nonzero) = Background.

3.5 CTRL S (4S)

CTRL S is recognized only at a control Teletype and, specifically, only after
the Monitor has printed 4S. This is the result of loading a user program by
giving the command $LOAD (instead of $GLOAD) to the Non-resident Monitor. Both
commands bring in the Linking Loader to load user programs. S$GLOAD means
LOAD-AND-GO. S$LOAD means load the user programs, signal the user that this has
been done (by printing 4S), and then wait for the go-ahead signal (when the
user types CTRL S).

This feature allows the user to set up I/O devices before starting his program.
When CTRL S is typed by the user and is accepted by the Monitor, 1S is echoed
back to the teleprinter.

3.6 CTRL T (4T)

This character is recognized only at the Background control Teletype when the
user has called in the system program DDT. When CTRL T is typed and accepted,
it is echoed to the teleprinter as 4T.

CTRL T provides a means of interrupting the execution of a user program and
transferring control to DDT. When CTRL T is typed, the Monitor saves the

status of the Link, page/bank mode, and memory protect along with the interrupted
PC in .SCOM+7 so that DDT will be able to return control to the user program at
the point at which it was interrupted. The contents of the AC at the time of
interruption is returned in the AC and saved by DDT.

3.7 CTRL P (+4P)

CTRL P is the interrupt and restart character available to user and system
programs. When it is typed on some Teletype and is accepted by the Monitor, e
is echoed to the teleprinter on that unit.

In the Background/Foreground system there are two types of CTRL P functions:

1. NORMAL CTRL P and
2. REAL TIME CTRL P.

The two CTRL P functions are described, individually, in paragraphs 3.7.1 and
3.7.3.

Setting a CTRL P restart address (ADDR) is accomplished by issuing the I/0
MACRO .INIT to any .DAT slot linked to the Teletype handler.

The format of the .INIT macro is:
.INIT A,M,P+ADDR
which is expanded by the MACRO assembler into the following machine code:

LoC CAL M,+A

LOC+1 1 8 79-17
LOC+2 P+ADDR
LOC+3 g 9-17

where A = a .DAT slot number (octal radix)

= Input

=
I

transfer mode
1 = Output

ADDR = a 15-bit address (octal) of a restart point in the program
or of the entry point of a closed real-time subroutine.

P = priority code I} = Normal CTRL P
%ggggg} = Mainstream (REAL-TIME)
300009 = No change to CTRL P
ApRPRR = Priority level of the .INIT
500008 = API level 5
690000 = API level 6
7900029 = API level 7

Background requests to an API level (489988 - 798999) will be converted to

Mainstream since Background programs cannot use the API software levels.

3.7.1 NORMAL CTRL P

A .INIT to set up a NORMAL CTRL P (priority code @) may be done only to a
control Teletype. NORMAL CTRL P was so named because the action taken when the
user types CTRL P is nearly the same as in the ADVANCED Monitor System.

When a control Teletype has been set up for a NORMAL CTRL P and that character
is typed by the user, the Teletype handler will abort all Teletype I/0 for
that job (Background or Foreground). The Monitor will, when control is at
Mainstream, save the status of the Link, page/bank mode, and memory protect
with the interrupted PC in .SCOM+10 (whose contents are swapped in and out for
Background and Foreground), return the interrupted AC to the AC, and transfer
control to the restart address ADDR as specified by the last .INIT.

NOTE

When the Monitor processes a CTRL T or a NORMAL CTRL P, it
kills any pending mainstream real-time routines to be run

by zeroing the contents of .SCOM+57 (Foreground) or .SCOM+61
(Background). The user's program (if NORMAL CTRL P) or the
user (if CTRL T) must zero the entry points of all his main-
stream real-time routines. CTRL P and CTRL T do not affect
API level real-time requests.3_4

If the restart address ADDR = @, CTRL P to the given Teletype will be disabled;
i.e., ignored if typed (except if P = 3ggggg).

3.7.2 No Change

If .INIT for a given Teletype unit contains the priority code 3¢@@d@@, the CTRL P
restart address for that unit is not changed. DDT uses this so that it can .INIT
to abort a .READ to the Teletype without altering the CTRL P address set up by the

user's program.

3.7.3 REAL-TIME CTRL P

A .INIT to set up a REAL-TIME CTRL P may be done to any Teletype unit. When so
set up and the user types CTRL P, I/0 to that Teletype is aborted. Control
eventually goes to a closed real-time subroutine, ADDR, at the priority level

defined by P, in the same manner as for a -REALR, .REALW, or .TIMER request.

If the restart address ADDR = @, CTRL P to the given Teletype will be disabled,
i.e., ignored if typed.

REAL-TIME CTRL P is useful for multi-user programs, for instance multi-user

FOCAL, where each Teletype has the ability to interrupt and restart.
3.8 CTRL R (4R)

In the Background/Foreground system, I/0 device handlers which detect a not-ready
condition will request the Monitor to print a message on the appropriate control

Teletype. The line printer handler message, for instance, would be:
LP# NOT READY

The unit number has no significance for the line printer. Some single-unit
handlers, such as the card reader handler, use the unit number designation to
indicate the cause of the not-ready condition. After the message has been
printed, the user should ready the device and then type CTRL R, which is

echoed as 4R. I/0 for that device is then resumed.

While the Monitor is waiting for the user to type CTRL R, the user's program
continues execution provided that it is not hung up waiting for completion of
I/0 from the not-ready device. The Monitor can handle one not-ready condition
per job. Should a second not-ready request occur while another is being

processed, job execution will be aborted with a .ERR 294 terminal error.
3.9 CTRL Q (1Q)

CTRL Q may be typed at any time, but it is ignored if it is not issued at a
control Teletype.
3-5

The purpose of typing CTRL Q is to stop program execution and to dump all of
core memory onto a specified area of some unit on the system device. The dump
starts with block 181 octal on the given unit and overlays any data that may
have existed in that area on the output device. A 16K system will dump 10§
octal blocks (181-2@8); a 24K system, 148 octal blocks (1g1 - 24f); a 32K
system, 2@@ octal blocks (1g1 - 3¢0).

To ensure that CTRL Q will not overlay useful data, the user must employ the
system program PIP to write a new file directory on that unit, using the (S)

switch to reserve space for CTRL Q. For example:
>NXXuea(S))

where XX is the device name and u the unit number. Note that the size of the
CTRL Q area reserved is based on the amount of core existing in the system in
which the new directory is written. The area reserved on a DECtape in a 16K

system is not sufficient to do a protected CTRL Q in a 24K or 32K system.

When the Monitor accepts CTRL Q, it first terminates execution of the job

(Foreground if Foreground CTRL Q, Background if Background CTRL Q). This
involves calling all device h-ndlers tied to that job to stop I/O, clearing all
Monitor queues of entries for that job and disabling all control characters for
that job except CTRL C.

The Monitor then prints #Q on the appropriate control Teletype and reads one
character. The user must then type the number of the unit on which the dump

is to occur. Unit zero may not be used. If the SHARE command is not in effect,
a dump may not be done to a unit which belongs to the other job. If the
Monitor rejects the typed character, it prints #Q again and waits for another
character.

When the unit number is accepted, the dump takes place; then the Monitor is
automatically reloaded. A Background CTRL Q does not affect Foreground. A Fore-
ground CTRL Q, on the other hand, aborts the Background job. It is not possible

to load and restart a core dump in Background/Foreground.
3.10 CTRL U (@)

CTRL U may be typed at any Teletype unit. If a .READ or .REALR was issued to
some Teletype and the user decides he wants to "erase" everything he has

typed for that read request, he may type CTRL U, which will be echoed to the
teleprinter as @. The .READ or .REALR will still be in effect and he may then
retype the input.

While output to a Teletype is being done as a result of a .WRITE or .REALW,

3-6

the user may type CTRL U to terminate the write. In this case nothing is echoed

to the teleprinter.

3.11 RUBOUT (\)

This character is recognized only while the user is typing input to satisfy a
-READ or .REALR request. When typed, RUBOUT deletes the last input character.
For example, if the user has typed ABC and then RUBOUT, the C will be "erased".
If he now types another RUBOUT, the B will be 'erased". Every time a character is

so removed, the character \ is echoed to the teleprinter.
3.12 CTRL D (1D)

The character CTRL D is recognized at all Teletypes and is echoed back as 4.
When typing input, CTRL D effects an end-of-file condition by terminating the
-READ or .REALR request and storing the end-of-file, @gg18@5, in the input line
buffer header. Since the word pair count returned is a 1, any characters
typed prior to the CTRL D for the same read request will be lost.

SECTION 4

LOADERS

4.1 INTRODUCTION

There are three program Loaders in the Background/Foreground system. On the
system file directory they are listed as .SYSLD SYS!, BFLOAD BIN2 and
EXECUT BIN?Z.

-SYSLD is an absolute system program that functions as two loaders: when it is
called in for Foreground loading, it is the Foreground Linking Loader; when it
is called in for Background loading, it is the Background Syétem Program
Loader. BFLOAD is the Background Linking Loader.

EXECUTE operates in both Foreground and Background as a loader of overlay programs
(XCT files) built by the CHAIN system program. A description of CHAIN and

EXECUTE is given in the utility manual.

4.2 FOREGROUND LINKING LOADER

Link loading of the Foreground job is initiated by typing GLOAD (Load-and-Go)
or LOAD (Load-and-Pause) to the Monitor at the Foreground control Teletype.
The Foreground Link Loader (.SYSLD) is then brought into the top of memory,
overlaying the Non-resident Monitor. The following message will then be

printed:

FGLOAD V2A
>

The > signals the user that he may now type in his command string.

The command string format is the same as for the Linking Loader in the ADVANCED
Monitor System:

>options<mainprog, others,... ALTMODE

'Operates in bank mode.

ZOperates in page mode; operates in bank mode only when running in bank mode.

4.2.1 Option Chavacters and their Meanings

Character Meaning
p Print program names and their assigned relocation
factors
C Print common block names and their assigned
locations
G Print global symbol names and their definitions

4.,2.2 Use of « Terminator

Prior to the terminator « all characters except option characters are ignored.
Carriage return preceding the « starts a continuation line headed by »>. ALTMODE

preceding the « restarts the Loader; therefore, no loading is done unless the

character « appears in the command string.

If no option characters precede the <+, the default assumption is that no memory

map is to be prin*ed.

After the +, type the program names (main program first - no extensions)
separated by comma or carriage return. Terminate the command string with
ALTMODE. Before the terminating ALTMODE has been typed, the Loader may be re-
started by typing CTRL P. All files named in the command string may contain 1

or more program units, and all program units will be loaded in each file named.

4.2.3 Sequence of Operation

Once the command string has been accepted, the Loader will perform the following

sequence of operations:

a. Load to end of file all user programs! specified in the command
string, from .DATF -4. These programs are loaded from the bottom
of core up, starting at the top of the Resident Monitor. CcCalls to
external library routines via .GLOBL, common block definitions, and
-IODEV requests are saved in the Loader's symbol table, built from
the bottum of the Loader down. Programs containing executable code
(which excludes BLOCKDATA subprograms) are relocated such that
they do not overlap core page boundaries in the page mode system or

core bank boundaries in the bank mcde system.

! These programs will operate in page mode and must not execute the EBA

instruction which would change operation to bank mode. Aall programs

in the bank mode system operate in bank mode only. Avoid EBA instructions
in the bank mode system. Although EBA instructions have no effect on *he
PDP-15, they are equivalent to a LEM ({(leave extend mcde) con the PDE-9.

LEM has disastcrous results during a background/foreground system run.

4-2

b. If a library search is necessary and the contents of .DATF -5 is
non-zero, the Loader will seek the user library, .LIBR5 BIN, via
that .DAT slot, and will load all requested library routines!

which it finds. 1I/0 device handlers must not be in the user

librarx.

c. If a library search is still necessary for non-I/0 routines,

the Loader will search the system arithmetic library!,
.FALIB BIN, via .DATF -7 in the same manner as above.

I/0 device handlers must not be in .F4LIB.

d. 1If any I/0 handlers! must be loaded, the ILoader searches
through the system I/0 Library, .IOLIB BIN, via .DATF -7.

After this has been done, program loading has terminated.

e. At this point, all undefined common blocks are defined and
assigned core space. Common blocks are allowed to overlap

page boundaries.

f. If there are still some undefined global symbols, they will
be matched with common block names and, if a match is found,

defined as the base address of the matching common block.

g. For all multi-user device handlers in use for the user's
programs, external I/O buffers are assigned core space (if
necessary) and recorded in .BFTAB within the Resident Monitor.
The number of such buffers depends on the $FILES counts given
by the user to the non-resident Monitor or, if no counts
given, the number of .IODEV'ed .DAT slots calling those

handlers. 1I/0 buffers are allowed to overlap core boundaries.

h. The amount of free core assigned to the Foreground job
(contents of .SCOM+25) is added to the current size of
assigned Foreground core to determine the upper limit of the
Foreground job. Pointers to the first and last registers in
Foreground free core are then stored in .SCOM+2 and .SCOM+3,

respectively.

i. The Loader now exits to the Resident Monitor. The Resident
Monitor prints 4S and waits for the user to type CTRL S, if
the Louader is called by the LOAD command. Control then is
given to the start address of the user's main program, which
was stored in .SCOM+6 by the Loader.

4.3 BACKGROUND SYSTEM LOADER

Loading of all system programs is done by the System Loader (.SYSLD), which

1 . .

.These programs will operate in page mode and must not execute the EBA
instruction which would change operation to bank mode. All Programs in the
bank mode systen operate in bank mode only.

4-3

also performs link loading for the Foreground. Initiation of the loading cycle
is done when the user, in the Background, types a request to the Non-resident

Monitor to load a system program; e.g., $PIP, SEDIT, etc.

The Non-resident Monitor puts a code number in .SCOM+5 to tell the System Loader
which program to load. The System Loader is then loaded into upper core overlaying
the Non-resident Monitor. When loading a Background program other than the

Linking Loader or EXECUTE, .SYSLD contains a SYSBLK which lists the .DAT slots

used by each system program and information about the load address, start

address, size and initial block number on the system device for each system
program. SYSBLK exists as block 4 on the system device and is also used by

PATCH.

To load a system program in the Background, .SYSLD performs the following

operations:

a. For each .DAT slot (with non-zero contents) required by a system
program, it determines which device handlers! are needed; and, if
a library search is necessary, it brings in the handlers from the
file .IOLIB BIN on the system device through .DATB -7. They are
loaded starting immediately above the top of the Foreground job.

b. I/0 buffers are then assigned core space immediately above the
handlers as in the description in paragraph 4.2Z2.3g. The hardware
memory protect bound is set above the handlers and buffers.

c. If the load command was $LOAD, $GLOAD, $DDT, or SDDTNS, the
Background Link Loader (BFLOAD)', a relocatable file, is loaded

starting just above the new hardware protect bound.

d. For all other system programs (excluding EXECUTE)'!, .SYSLD builds
a short routine just above the hardware protect bound to bring in
the program? overlaying the System Loader.

e. Finally, .SYSLD exits to the Resident Monitor?, which establishes
the new hardware protect bound and then passes control to the

system program via the address stored by .SYSLD in .SCOM+5.

The Loader allows the loading of absolute .LOC programs prior to loading any
relocatable files. This permits the user to load programs which may overlay
parts of the Resident Monitor. Mixing of absolute and relocatable .LOC's in

the same program file is not allowed and will be flagged as an error. The

'Operate(s) in page mode; operates in bank mode only when using bank mode system.

2Operates in bank mode.

Loader ensures that the relocatable programs do not overlay any of the absolute

programs.

The Foreground Linking Loader is also responsible for loading the system program
PIP! in the Foreground. The Foreground version of PIP exists in the system as
the relocatable file PIP BIN. It is loaded by typing PIP as a command to the

Non-resident Monitor?.

4.4 BACKGROUND LINKING LOADER

Externally, the Background Linking Loader (BFLOAD) looks nearly the same to the
user as the Foreground Linking Loader. When it has been loaded, it prints the

following message on the Background control Teletype:

BGLOAD V2A
>

The command string processing is identical with that of the Foreground Linking

Loader (see 4.2).

If the Load command was $DDT or $DDTNS, the system program DDT! (a relocatable
file) has already been loaded into the top of core via .DATB -1, prior to

reading in the command string.

Once the command string has been accepted, the Loader will perform the following
sequence of operations:

a. Load to end of file all user programs'

specified in the command
string from .DATB -4. These programs are loaded from the top

of core down. Calls to external library routines via .GLOBL,
common block definitions, and .IODEV requests are saved in the
Loader's symbol table, built from the top of the Loader upwards

in core. Programs containing executable code (which excludes
BLOCKDATA subprograms) are relocated such that they do not overlap

page boundaries.
b. Same action as described in 4.2.3b, using .DATB -5,
c. Same action as described in 4.2.3c, using .DATB -7.

d. If any I/0 handlers must be loaded, the Loader searches through
.IOLIB BIN via .DATB -7. The handlers are relocated to run in

lower core, that is, as if they were being loaded upwards in

'Operate(s) in page mode; operates in bank mode only when using bank mode system.
20Operates in bank mode.

core, stisrting just above the Foreground job. They may, however,

be loadecd above the Loader if the Loader is in the way.

e. Same act. ... as described in 4.2 e,f,g. Common blocks are

assigned space in upper core; I/0 buffers, in lower core.

f. The hardware memory protect bound is established above the I/0
handlers and buffers. Common blocks may go below the hardware

protect bound.

g. If DDT was loaded and a symbol table was requested (not
$DDTNS), the symbol table is compacted to delete entries
not needed by DDT. The Loader determines where the symbol
table should be moved; and, along with the I/0O handlers which
were loac:d into upper core, builds a special .EXIT list which
tells the Resident Monitor where to block transfer each segment.
The DDT symbol table may be loaded below the hardware protect
bound.

h. The Loader then exits to the Resident Monitor, which performs
the block transfers, sets the new hardware memory protect bound,
and transfers control to DDT (via .SCOM+5) or to the user
program (via .SCOM+6), pausing to print 45 and waiting for the
user to type CTRL S if the Load command was S$LOAD.

4.5 LOADING XCT FILES

XCT files are overlay programs1 built by the system program CHAIN and run by
the system program EXECUTE . Loading of an XCT file in either the Foreground
or the Background is initiated by typing E.XXX or EXECUTEuWXXX to the Monitor

(where XXX is the file name without the extension XCT).

The Non-resident Monitor, BFKM15, stores the filename (.SIXBT format) in
.SCOM+1#7, 118, and 111 for the Foreground, or .SCOM+112, 113, and 114 for the
Background. If EXECUTE's .DAT slot requests the resident system device
handler?, the Monitor stores "XCS" as the extension. If EXECUTE's handler is

different from the resident handler, the Monitor stores the extension "XCT".

The System Loader is then called in, overlaying the Non-resident Monitor in

upper core.

4.5.1 EXECUTE in the Foreground

The following operations are carried out when EXECUTE is used in the Foreground:

! These programs will operate in page mode and must not execute the EBA instruc-
tion which would change operation to bank mode., All programs in bank mode

system operate in bank mode only.
Runs in bank mode, unlike most I/0 handlers; in the bank mode system, all I/0
handlers run in bank mode only.

4-6

EXECUTE's handler, if different from the resident handler, is

loaded immediately above the Monitor.

b. The System Loader, which must open the XCT file, checks the
extension. If "XCS", meaning EXECUTE's handler is the
resident handler, the file is loaded via .DAT -7. If "XCT",
it is loaded via .DAT -4. The extension is then set to "XCT".

C. The XCT file is read and checked that it was indeed built to be run
in the Foreground of a PDP-15 in page mode. In the bank mode system,

The XCT file is checked to ensure that it was built to run in bank mode.

d. The upper and lower core limits of the overlay structure are
saved and a check is made that it does not overlay the

Resident Monitor.

e. The .IODEV bit map in the XCT file is decoded. The loading
bound is set immediately above the area of core to be
occupied by the overlay structure and then all I/0 handlers
required by the XCT file are loaded. Also, another copy of
EXECUTE's handler is loaded (the first copy will be overlayed).

f. EXECUTE is loaded.
g. Same action as described in 4.3.4g and h.

h. The Loader exits to the Resident Monitor. The Monitor gives
control to EXECUTE, whose start address is stored in .SCOM+6
by the Loader.

4.5.2 EXECUTE in the Background

The following operations are carried out when EXECUTE is used in the Background:

a. EXECUTE's handler, if different from the resident handler, is

loaded immediately above the Foreground job.
b. Same action as described in 4.5.1b.

C. The XCT file is read and checked that it was built to be run in the
Background of a PDP-15 in page mode. 1In the bank mode system, the
XCT file is checked to ensure that it was built to run in the bank

mode.

d. The lower core limit of the overlay structure is saved and,
when EXECUTE has been loaded, a test is made to ensure that

they do not overlap.

e. The .IODEV bit map in the XCT file is decoded and then any
I/0 handlers needed by the file are loaded.

f. ©Same action as described in 4.3.4q.

g. The hardware memory protect bound is set above the I/0 buffers
and EXECUTE is loaded starting above this bound.

h. Same action as described in 4. 3e.

4.6 ERRCR CONDITIONS

The number of different error messages in the Loaders has been ex-
panded in Background/Foreground. These are tabulated in Appendix II.
The error number is passed on to the Resident Monitor by a special
error .EXIT macro (CAL seqguence). Loader errors are non-recoverable
After the error message is printed, the Monitor will automatically be

reloaded to start another job.

SYSTEM MEMORY MAPS

Memory Map A

16K

8K

%

N\

«—System Bootstrap

The System Bootstrap is loaded at the top of

core via the paper tape reader in HRM format.

Memory Map B

.SCOM—16K ?222;;/,
/(;:6——System Bootstrap

8K f---m-m---

_)//
////// ¢—Resident Monitor includ-
ing the multi-unit
Teletype handler and
the system device handler,
(DTA. or DKA.)
i

The System Bootstrap automatically loads the

Resident Monitor from the system device into lower
core.

.SCOM + 1
.SCOM + 2

Memory Map C

::;;;;%%%ff ¢——Non-resident Monitor

8K|l-——-— - - ——

.SCOM—>16K

.SCOM
.SCOM

[\

\

NN

'f4_____Resident Monitor

0

The Resident Monitor loads the Non-resident Monitor
(via the resident system device handler) into upper
core, overlaying the System Bootstrap. Within
itself the Resident Monitor contains a simpler copy
of the bootstrap which is used whenever the Resident
Monitor is to be reloaded. The bootstrap restart

address is location 1118.

4-11

Memory Map D

«SCOM ———31 6K

.SCOM + 3

7

///4——

Foreground Linking
Loader (.SYSLD)

8K
.SCOM + 1

v

.SCOM + 2

0

¢«— Resident Monitor

To load a user FOREGROUND program, the Non-resident

Monitor brings in the Foreground Linking Loader

(.SYSLD), overlaying itself.

Memory Map E

.SCOM ———16K

¢——Foreground Linking Loader
(.SYSLD)

\
\

¢—TLoader's I/0 Handlers

C\><\><\C\ «——Loader's Symbol Table
v

.SCOM + 32 —7 ,\“‘-Hardware protect bound
.SCOM + 31 *\\\\Software protect bound
.SCOM + 3 - Foreground free core

.SCOM + 2 User's I/O Handlers and

I/0 Buffers
Foreground W\ Foreground user programs
Job 8 K\ -]¢——_ and library routines

<«——Resident Monitor

\

The Foreground Linking Loader first brings in any additional
I/0 handlers required for loading. Then it loads the user
program(s), library routines, user I/0 handlers and I/O
buffers, and allocates Foreground free core. The software
memory protect bound is established just above the Foreground
job. The hardware memory protect bound, because it can be set
only in increments of 256 decimal, will leave some unused space
between it and the Foreground job. The software protect bound
allows this space to be used for dynamic data storage by the
Background job. On the PDP-9 the memory protect bound can only be
set at 1024 (10) word intervals, so the bank mode system sets

the bound at 1024 word increments, not 256, even on a PDP-15.

For a description of loading of Foreground XCT files, see Memory
Map L.

Memory Map F

.SCOM —16K //
//// <——Non-resident Monitor

/ 4,}
.SCOM + 32 Hardware protect bound
.SCOM + 1] >F -~~~ |
.SCOM + 2 —_ N Software protect bcund
.SCOM + 25 \\\\
.SCOM + 31 \

8K F Foreground job

;;:r/:;jjjje———— Resident Monitor
, %

’ A
//;/
/

9

L

N\

When the FOREGROUND job becomes I/0 bound. control is trans-
ferred to the BACKGROUND Zob. The Resident Mcnitor loads the Non-
resident Monitor (via the resident system device handler) intc
upper core. It then gives control to the Keyboard Listener
(within the Non-resident Monitor) to await a BACKGROUND keyboard
command. Memory protect is enabled while the Background job is

runn:ag.

Memory Map G

.SCOM—>16K
Background System

¢ Loader, (.SYSLD)
.SCOM + 3 5
.SCOM + 32
scoM + 1] .| ¢ Hardware protect bound
.SCOM + 2 ¢« Software protect bound
.SCOM + 25
.SCOM + 31

Foreground Job

¢&——Resident Monitor

When a BACKGROUND keyboard command requests loading

of a system or user program, the Non-resident Monitor
brings in the System Loader, overlaying itself. Note
that the BACKGROUND System Loader and the FOREGROUND
Linking Loader are physically the same program, except
that SYSBLK is also read into core when the BACKGROUND
system program to be loaded is other than the Linking
Loader or Execute.

Memory Map H

- SCOM——16K

.SCOM +

.SCOM +

.SCOM +
.SCOM +
.SCOM +
.SCOM +

7

~—

Background
System Program

3 >

2

2
3J
1
25

8K

(//Background Free Core

__—Hardware Protect Bound
«—Software Protect Bound

¢«——— Background I/0 Buffers
¢«—Background I/0 Handlers

Foreground Job

¢———Resident Monitor

If the BACKGROUND request is for a system program, the

System Loader loads the system program I/O handlers up
from the top of the FOREGROUND job, allocates I/O buffer
space, and loads the system program at the top of core

(overlaying the System Loader).

Control is returned to

the Resident Monitor, which sets the memory protect bound

above the buffer space and gives control to the system

program.

Memory Map I

.SCOM r—————*l6K
.SCOM + 3 ///

<«—— Background System
Loader (.SYSLD)

N\

.SCOM + 2 N ’
I «—— Background Linking Loader
.SCOM + 32 > Ll Hardware Protect Bound
.SCOM + 1 4____L1nk Loader's I/O Handlers
.SCOM + 25 5 < Software Protect Bound
+

. SCoM 31J i
Foreground Job

«——Resident Monitor

x\\\\

If the BACKGROUND program is a user program!, the
System Loader loads the Linking Loader I/O handlers
up from the top of the FOREGROUND job and loads the
Linking Loader such that the memory protect bound
can be set just below it.

lUser programs may be loaded along with the system
program DDT.

.SCOM
.SCoOM

.SCOM

.SCOM
.SCOM
.SCOM

.SCoOM

+

Memory Map J

N

M0

: \\\

N\

0

Background user Programs and
Library Routines

¢ Background User I/0
Handlers

«—Loader's Symbol Table

<— Background Linking Loader

“~—~ Hardware Protect Bound
Software Protect Bound

Foreground Job

&——Resident Monitor

The BACKGROUND Linking Loader overlays the System Loader
by loading user programs down from the top of core. User

I/0 handlers, presuming that they cannot fit in core
between the FOREGROUND job and the bottom of the Loader,
are loaded into upper core but relocated to run just above
the FOREGROUND job so that the memory protect bound can

be set above them.

shown in this memory map.

Common blocks and I/0O buffers are not

Memory Map K

.SCOM—>16K

¢——— Background User Programs
//// and Library routines

«———User's Common Blocks

-SCOM + 3 > Background Free core

.SCOM + 32

LSCOM + 2 Y Pl -------1 Hardware Protect Bound

.SCOM + 31 L] | LI | ﬁ\\“Software Protect Bound

.scoMm + 1?1 R «———Background User I/0 handlers

.SCOM + 25

8K"&i\; :\§>\ Foreground :Job

;;;;;;;;;;;‘Resldent Monitor

The .EXIT from the Linking Loader causes the user program

I/0 handlers to be block transferred to their running
position, the memory protect bound to be set just above

the I/0O buffer space, and control given to the user program.
If DDT was also loaded, it resides at the top of core, above
the user programs. Its symbol table, built by the Loader,
is block transferred by the Monitor to start at the soft-

ware protect bound.

1If DDT is loaded, .SCOM + 1 will be set to point at the start
of the DDT symbol table.

Memory Map L

//jjjjé————System Loader
/

.SCOM ———— 16K

% «~——Loader's symbol table
.SCOM + 32 ———— S} _ «— Hardware protect bound
.SCOM + 25 and 31— : < Software protect bound
.SCOM + 3— A F—= é——Foreground free cor
.SCOM + 2 N ~ g € core
€——EXECUTE
\\<?\\ N I/0 Handlers + I/O buffers
AN including 2nd copy of
EXECUTE's handler
Foreground . '
Job Core occupied by
8 Overlay structure
H|——— ——
_____ lst copy of EXECUTE's
T I/0 handler
(S
¢é——=Resident Monitor
0

EXECUTE in the Foreground:

The System Loader first loads EXECUTE's I/O handler (if not
the resident handler) in order to read the XCT file. The
core limits of the overlay structure are read from the file
as well as the request for I/O from its .IODEV bit map.

The requested handlers, including a second copy of EXECUTE's
handler, are loaded above the core area to be occupied by
the overlay structure. Then I/O buffers are created, if
necessary, and EXECUTE is loaded above them. Finally,
Foreground free core, the software protect bound, and the
hardware protect bound are established.

Memory Map M

.SCOM ———> 16K[

&———System Loader
Core occupied by /////
Overlay structur

&——1ILoader's symbol table

.SCOM + 3 \\F\\ \Sz\ <«——Free core

.SCOM + 2 > < EXECUTE

.Scom + 32 >/ // ~ ————Hardware protect bound
.SCOM + 31 >

.SCOM + 25

' 4

Background I/O handlers

8K and I/O buffers

:::::;Unused core
XCKCXSX?K;g\\\\{foftware Protect Bound

Foreground job

«— Resident Monitor

EXECUTE in the Background:

The System Loader loads EXECUTE's I/O handler (if not in
core) in order to read the XCT file. The core limits of
the overlay structure and the I/O requests in the .IODEV
bit map are read from the XCT file. The user's I/0
handlers and I/O buffers are then loaded above EXECUTE's
handler, and the hardware protect bound is established
above them. EXECUTE is loaded above the bound and Back-
ground free core is set up from the top of EXECUTE to the
bottom of the overlay area.

SECTION 5

EXAMPLES OF BACKGROUND/FOREGROUND OPERATIONS

5.1 INTRODUCTION

The initial system startup procedure and three examples of operating within the
Background/Foreground environment are described in this Section. The procedure
and examples are intended to get the programmer "on the air" and to demonstrate

loading programs in the Foreground.

5.2 STARTUP PROCEDURES

During initial system startup, the user normally loads the master system supplied
(on DECtape) and utilizing system program BFSGEN generates a "working system".
The user may run using the master system, but it is usually more desirable to
generate a working system which is optimized to meet the user's needs and

particular equipment configuration.

5.2.1 Loading Master B/F Monitor System

The master system for both the DECtape and DECdisk B/F systems is supplied on
DECtape. To load the master system into a PDP-15/30 (DECtape system) :

1. Mount the master DECtape onto a transport (TU-55 or -56) and set
its unit number to that of the system device; that is, @ on a
TU-56, 8 on a TU-55.

2. Load the paper tape Bootstrap; B/F V3A uses the multi-core bootstrap.
3. Set the console address switches as follows:

If you have a - Set Switches to -
16K system 37637
24K system 57637
32K system 77637

4. Check to ensure that the MEMORY PROTECT/RELOCATE switch is in the
PROTECT position. This switch is located at the rear of the
memory protect cabinet. P-mode and R-mode indicator lights are
mounted on a panel located at the top front of the cabinet. T.c

PDP-9 does not have a MEMORY PROTECT/RELOCATE switch. A PDP-9 equip-

ped with the memory protect feature will always be in the protect
position.

5. Press and release, in sequence, the console STOP, RESET, and READIN
switches.

When loaded, the Monitor identifies itself and indicates its readiness by out-

putting the following message on the Foreground control Teletype (normally unit 1):

FKM15 V3A
$

To load the master system into a PDP-15/40 DECdisk system:

1. Mount the master disk system DECtape onto a transport and set its
unit number to that of the system device; that is, @ on a TU-56;
8 on a TU-55.

2. Load the RFSAV paper tape (supplied with the system) into the paper
tape reader.

3. Set the console address switches to 17724.

4. Set the DECdisk WRITE LOCKOUT switches for disk unit # to the WRITE
ENABLE position.

5. Press and release, in sequence, the console STOP, RESET, and READIN
switches. When loaded, the RFSAV program outputs the following

message:

RFSAV V2A

SET: ACS@g= @ DECTAPE TO DISK (LOAD)
ACS@= 1 DISK TO DECTAPE (SAVE)
ACS15-17= UNIT#¢4,1,2,3,4,5,6,7

6. Set all console AC switches to the @ position.

7. Press and release the console CONTINUE switch. This action causes
the disk system contained by the DECtape on unit @ to be copied onto
disk unit g.

8. Set the DECdisk WRITE LOCKOUT switches to the WRITE DISABLE position.

9. Load the disk multicore bootstrap, RF15BT, into the paper tape reader.

10. Set the console address switches as follows:

If you Have a - Set Switches to -
16K system 37637
24K system 57637
32K system 77637

11. Press and release, in sequence, the console STOP, RESET, and READIN
switches. When loaded, the Monitor identifies itself and
indicates its readiness by outputting the following message on the
Foreground control Teletype:

FKM15 V3A
$

5.2.2 System Generation

A step-by-step procedure for the generation of a working system from a master
system is given in Section 8 of this manual.

5.3 EXAMPLES

Three example procedures are described in paragraphs 5.3.1, 5.3.2, and 5.3.3.
These procedures are used to demonstrate the loading of IDLE, single-user FOCAL,
and two-user FOCAL in the Foreground.

The following conventions are used for the examples given:

1. All user inputs are underlined.

2. Readiness to accept commands is indicated by the symbol $§ for the Monitor
and the symbols > and * for system programs.

3. The entry of an ALTMODE character is indicated by the symbol ®.

5.3.1 IDLE Loaded as the Foreground Job

An Idle job is loaded in the Foreground to allow immediate use of the Background.
Refer to section 6.4 for a discussion of the .IDLE system macro.

FKM15 V3A

$A DTAf -4 (DECtape) /The program "IDLE" is on unit
°" $A DKA -4 (DECdisk) /§ of the system device.

$GLOAD

FGLOAD V2A /The Loader is in core.

>IDLE (§) /Load "IDLE BIN".

When IDLE is loaded, no indication is given on the Foreground control Teletype.
Control passes to the Background and the Non-resident Monitor is then loaded into
core. The Monitor identifies itself on the Background control Teletype as:

BKM15 v3a /The Monitor is now ready to
$ /accept Background commands.

5-3

5.3.2 Single-user FOCAL Loaded (Foreground)

The following illustrates a step-by-step procedure to load single-user FOCAL in

the Foreground:

FKM15 Vv3A
or SADTg -4 (DECtape) /FOCAL is on unit ¢ of
SA DKF -4 (DECdisk) /the system device.

A DT ' 5 /Library input-output to FOCAL.
$A DT3 7,1p /User's data input-output.
SFCORE 1490 /Free core for FOCAL buffer.
SGLOAD /Call loader to LOAD-and-Go.

FGLOAD V2
>FOCAL gg?
FOC

*

/Loader is in core.

/Load FOCAL.

/FOCAL is in core and is ready to
/accept commands.

/User can begin to run FOCAL commands.

5.3.3 Two-user FOCAL Loaded (Foreground)

FKM15 v3a

or $A DTP -4 (DECtape) /FOCAL is on unit @ of
SA DKJ -4 (DECdisk) /the system device.
SA TT1I 1 /Teletype for User #1.
SA DT1 2 /Library input-output for User #1.
A TT /Teletype for User #2.
SA DT2 4 /Library input-output for User #2.
SFCORE 3990 /Assign 14g@ (octal) locations
SGLOAD /for each user.

/Call Loader to LOAD-and-Go.

FGLOAD V2A - /Loader is in core.
>+«FOCAL?2 /Load two-user FOCAL'
FOCAL VOA /FOCAL is in core and will identify
* /itself on each user's Teletype.

/User can begin to run FOCAL programs.

NOTE

Two-user FOCAL is not available on
the bank mode B/F V3B system.

SECTION 6

BACKGROUND/FOREGROUND MONITOR COMMANDS (SYSTEM MACROS)

6.1 INTRODUCTION

The system MACROS unique to the Background/Foreground Monitor are listed and
described briefly in Table 6-1. The Monitor Macros listed below are available
in addition to those provided in the PDP-15/2¢ Monitor System for use in
programs that are to be run in the Background/Foreground environment. Detailed

descriptions of the macros are given in the remainder of this Section.

The .INIT macro has been altered for Background/Foreground to handle the CTRL P
restart address in a manner different from the Advanced Monitor. Refer to

Section 3 for an explanation.

TABLE 6-1
Background/Foreground System Macros

Name Purpose

.REALR Real-time transfer of data from I/0 device to line
buffer (real-time READ).

.REALW Real-time transfer of data from line buffer to I/0
device (real-time WRITE).

.IDLE Allows Foreground job to indicate that control can

be given to lower levels of the Foreground job or to
the Background job until completion of any Foreground
real-time transfer or clock interval.

.IDLEC Allows Foreground Mainstream to give control to
Background job with Foreground continuing after the
-IDLEC on completion of any Foreground real-time
transfer or clock interval.

.TIMER Calls and uses real-time clock and allows priority
level to be established.
.RLXIT Accomplishes the exit from all real-time subroutines

that were entered via .REALR, -REALW, .TIMER, or
real-time CTRL Pl!requests.

6.2 L.REALR

FORM: .REALR A, M, L, W, ADDR, P
VARIABLES: A = .DAT slot number (octal radix)

IOPS binary

Image binary

IOPS ASCII

Image Alphanumeric
Dump Mode

L = 15-bit buffer address (octal radix)

M?= Data Mode

WS
L L I

'see Section 3.7.
’Data modes 5, 6, and 7 are passed to all I/O handlers.

6-1

W = Line buffer word count (decimal radix),
including the two-word header

ADDR!

15-bit address of closed subroutine that
is given control when the request made by
the .REALR is completed.

P = API priority level at which to go to ADDR

P Priority Level
'] Mainstream
4 Level of .REALR
5 API software level 5
6 API software level 6
7 API software level 7
EXPANSION: LOC CAL+18080+Mc_o+Ry_,
LoC+1 1g¢
LOC+2 L
.DEC /Decimal Radix
LOC+3 -W
.OCT /Octal Radix

LOC+4 ADDR+Py ,

DESCRIPTION: The .REALR command is used to transfer the next
line of data from the device assigned to .DAT slot A to the line
buffer in the user's program. In this operation, M defines the
mode of the data to be transferred, L is the address of the line
buffer (including the two-word header), and ADDR is the address
of a closed subroutine which should be constructed as shown in
the following example.

EXAMPLE 1: STRUCTURE OF A REAL-TIME SUBROUTINE

ADDR 2 /Entry point

DAC SAVEAC /SAVE AC and all other
. /live registers used.
/Any system Macro may be

. /issued at this point.

LAC SAVEAC /Restore AC and all other
/registers saved.

.RLXIT ADDR /Return to interrupted

/point via Monitor CAL.

6.3 .REALW

FORM: .REALW A, M, L, W, ADDR, P
VARIABLES: A = .DAT slot number (octal radix)

!The subroutine specified by a .REALR, .REALW, .TIMER, or real-time CTRL P
should not be used at more than one priority level. The subroutine is
entered via a JMS and normally cannot be protected against re-entry.

IOPS binary
Image binary

g -

M'= Data Mode 2 = IOPS ASCII
3 = Image Alphanumeric
4 = Dump Mode

L = 15-bit Line buffer address (octal radix).

W = Line buffer word count (decimal radix),
including the two-word header

>

g

o

o
N

I

15-bit address of closed subroutine that is
given control when the request made by the
.REALW is completed.

P = API priority level at which to go to ADDR

P Priority Level
2 Mainstream
4 Level of .REALW
5 API software level 5
6 API software level 6
7 API software level 7
EXPANSION: LOC CAL+lﬂﬂﬁﬂ+M6_8+A9_l7
LOoC+1 11
LOC+2 L
.DEC /Decimal Radix
LOC+3 -W
.OCT /Octal Radix

LOC+4 ADDR+Py ,

DESCRIPTION: The .REALW command is used to transfer the next line
of data from the line buffer in the user's program to the device
assigned to .DAT slot A. 1In this operation, M defines the mode of
the data to be transferred, L is the address of the line buffer, W
is the count of the number of words in the line buffer (including
the two-word header), and ADDR is the address of a closed subroutine
which should be constructed as shown in EXAMPLE 1 above.

6.4 .IDLE
FORM: .IDLE
EXPANSION: LOC CAL

LOC+1 17

DESCRIPTION: The Foreground job in a Background/Foreground environ-
ment can indicate that it wishes to relinquish control to lower levels
of the Foreground job or to the Background job by executing this
command. This is useful when the Foreground job is waiting for the
completion of real-time I/O from any one of a number of I/O requests
that it has initiated or for completion of .TIMER requests.

The .IDLE is the logical end of the current level's processing;

!Data modes 5, 6, and 7 are passed to all I/O handlers.

2The subroutine specified by a .REALR, .REALW, .TIMER, or real-time CTRL P
should not be used at more than one priority level. The subroutine is
entered via a JMS and normally cannot be protected against re-entry.

that is, control never returns to LOC+2. If the .IDLE is issued at
a Foreground API software level, it effects a debreak (DBR) from
that level so that pending real-time routines at that level will not
be executed until the level is requested again. If the .IDLE is
issued at Foreground Mainstream, control goes to the Background job.
If the .IDLE is issued at Background Mainstream, control is returned
to the .IDLE CAL.

6.5 L.IDLEC

FORM: .IDLEC
EXPANSION: LOC CAL+109¢9
LOC+1 17

DESCRIPTION: .IDLEC is identical to .IDLE except when issued at

the Foreground Mainstream level. 1In this case, control goes to the
Background job, and LOC+2 is saved as the Foreground Mainstream
return pointer. The next time control returns to Foreground (at

any priority level), Foreground Mainstream processing will resume at
LOC+2 when Mainstream becomes the highest active Foreground level.

6.6 .TIMER

FORM: .TIMER N, ADDR, P
VARIABLES : N!'= Number of clock increments (decimal radix)

ADDR?= 15-bit address of closed real-time subroutine
to handle interrupt at end of interval

P = API priority level at which to go to ADDR
P Priority Level
2 Mainstream
4 Level of .TIMER
5 API software level 5
6 API software level 6
7 API software level 7
EXPANSION: LOC CAL?
LOC+1 14
LOC+2 ADDR+Py_,
.DEC /Decimal Radix
LOC+3 -N
DESCRIPTION: .TIMER is used to set the real-time clock to N increments

and to start it. Each clock increment represents 1/60 second for 60

Hz systems and 1/50 second for 50 Hz systems. When the Monitor services
the clock interrupt, it passes control to location ADDR+1 with the
priority level set to P. The coding at ADDR should be in closed sub-
routine form, as in EXAMPLE 1.

'To transfer control to subroutine ADDR at priority level P immediately, N
should be set equal to zero.

’The subroutine specified should not be used at more than one priority level.
The subroutine is entered via a JMS and normally cannot be protected against
re-entry.

’When bit 8 of CAL is set to 1, an abort .TIMER is effected. All intervals
having the same address and priority level (LOC+2) will be aborted.
6-4

6.7 .RLXIT

FORM: -RLXIT ADDR

VARIABLES : ADDR = 12-bit! entry point address of the
real-time subroutine from which an exit
is to be made.

EXPANSION: LoC CAL ADDR
LOC+1 29

DESCRIPTION: .RLXIT is used to exit from all real-time subroutines
that were entered via .REALR, .REALW, .TIMER, or real-time CTRL P
requests. The instruction just preceding the .RLXIT call should
restore the AC with the value of the AC on entrance to this sub-
routine. .RLXIT will restore the link from bit @ and page/bank mode
from bit 1 of the contents of ADDR.

-RLXIT protects against re-entrance to Background or Foreground Main-
stream real-time subroutines. When the contents of ADDR is non-zero,
the subroutine is assumed active; .RLXIT sets the contents of ADDR

to @, thus making it available again. Note: Real-time subroutines
should initially have their entry point register set to g; and
restart procedures, entered via CTRL P or after CTRL T, should reset
all entry points to §.

6.8 MAINSTREAM REAL-TIME SUBROUTINES

Mainstream real-time subroutines in the Foreground are not equivalent to those
in the Background due to the manner in which I/0 busy situations are handled.
If the Background becomes I/0 busy, the Monitor "sits on" the Background CAL
instruction (while Background is in control) until it can be processed.
Therefore, Background Mainstream real-time routines can be executed despite

the fact that Background Mainstream is I/0 busy. 1If Foreground Mainstream is
I/0 busy, Foreground Mainstream real-time routines cannot be executed until the
busy situation is terminated. This is due to the fact that control is given to
the Background whenever Foreground Mainstream becomes I/0 busy. The device
handler responsible for the busy situation is remembered in the Foreground Main-
stream busy flag. Mainstream real-time routines cannot then be run because
they too could become busy.

This situation can be avoided either by using .REALR or .REALW in conjunction
with .IDLE or .IDLEC, or by using .WAITR to prevent Foreground Mainstream from

becoming I/0 bound.

6.9 API SOFTWARE LEVELS -- PROGRAMMING NOTE

On configurations that have API, elements of the Foreground job may run at four

!The Resident Monitor, which operates in bank addressing mode, uses .RLXIT
with a 13-bit entry point address. In the bank mode system, all addresses
have 13-bit values.

priority levels (levels 5, 6, and 7 of the API and Mainstream]. It is important
to understand that as Foreground becomes I/O busy at a given level, the Monitor
drops to the Foreground's next highest active level.

The lower level may be dependent upon the completion of the I/O that caused the
higher level to become busy. The following coding method is incorrect because

the lower level will receive control as a result of the I/O not being done.

Level 5 Subroutine

.READ n,2,BUFFER,52
.WAIT n

When the Monitor processes the .READ and encounters the unsatisfied .WAIT, it
recognizes this as an I/O busy situation on level 5 and drops control to the

next lower active level. Suppose at level 7 there is a user subroutine dependent
upon the contents of BUFFER.

Level 7 Subroutine

.WRITE x,2,BUFFER,52

In the above case, the .WRITE will be executed independent of whether the level
5 I/0 call to fill BUFFER has been completed.

Two proper coding methods would be:

(1) to perform the .WRITE within the level 5 subroutine after
the .WAIT n;

(2) to use a .REALR at level 5 which would specify the level 7
subroutine to be called upon completion of the .REALR.
This would eliminate the need for .WAIT n in the level 5
subroutine.

SECTION 7

WRITING DEVICE HANDLERS FOR THE PDP-15
BACKGROUND/FOREGROUND MONITOR SYSTEM

WARNING:

I/0 device handlers and service routines
written according to this section will
operate on a PDP-15 in page mode or, with
the modifications noted, on a PDP-9 or
PDP-15 in bank mode. For further infor-
mation, read section 7.13.

7.1 INTRODUCTION

The reader is assumed to be acquainted with the concept of an I/0 device handler
from experience using the Keyboard Monitor system. I/0 handlers are a con-
venience because they interface to user programs by accepting 'a small set of
standard commands (Monitor calls), e.g., .READ and .WRITE. Within reason,
programs can be written to function without regard to specific I/0O devices.

They refer to logical devices (.DAT slots) and the assignment of real devices

is made at program load time. Device handlers, because they interface with the
Monitor, must conform to certain established conventions (which differ from
those in the Keyboard Monitor environment) and are more difficult to write and

to understand than stand-alone I/0 service routines.

An I/0 service routine!, unlike a device handler, is coded into the user program
or is loaded as a user subprogram. It interfaces directly with the user program
and does not use system macros (.READ, etc.), does not use .DAT slots, and is
not loaded from the system's I/O library. Such a routine cannot normally?
operate in the Background because it employs IOT instructions.

7.2 I/0 SERVICE ROUTINE

The coding of an I/0 service routine is most easily explained by example. Ceon-
sider a device which consists of two pushbuttons. Each sets a hardware flag
which can be tested by skip IOT, and either flag being set requests a hardware
interrupt. The device has the following IOT instructions:

'The term I/0 service routine is used in this section to distinguish a simple,
direct interface user I/0 routine from a standard, full-blown I/0O device handler.

2Refer to the MPOFF command in Section 2.5.12.

PBSF1 /Skip if button 1 flag is set.

PBCF1 /Clear button 1 flag.
PBSF2 /Skip if button 2 flag is set.
PBCF2 /Clear Button 2 flag.

If the device were connected to the API assume that it would interrupt at API
level 3 and via API channel 2@ (Register 6@). If the device were connected to
the PIC it would interrupt at API level 3%and via Register @ (as all PI devices
do) .

At system generation time one would have to add this as a new device to the
system. The following illustrates the conversation with the System Generator
(read Section 8):
API CAGSE:
MORE I/0? Y

DEVICE NAME > PBJ
NUMBER OF INTERRUPTS SETUP > 1J

API ? Y
SKIP IOT > 786601)
API CHNL > 2

PI CASE:

MORE I1/0 ? Y

DEVICE NAME > PBJ

NUMBER OF INTERRUPTS SETUP > 2)
API ? N
SKIP I0T >
MNEMONIC >
SKIP IOT >
MNEMONIC >

In the API case, note that both device flags interrupt via the same API channel;

hence, only one .SETUP call is needed.

Since PB is added as a new device, the System Generator assumes the existence
of a "PBA" handler. To be safe, change the handler to "PBW" so that this non-
existent handler is not inadvertently assigned to some .DAT slot.

.TITLE FOREGROUND JOB

/THE PUSHBUTTON SERVICE ROUTINE COULD BE A SEPARATELY LOADED SUBPROGRAM;
/HOWEVER, HERE IT IS SHOWN AS IN-LINE CODE WITHIN A LARGER PROGRAM.
/IN THE NORMAL MODE OF SYSTEM OPERATION THIS CODE IS ILLEGAL IN THE
/BACKGROUND BECAUSE IT USES IOT INSTRUCTIONS?®. SINCE THE MONITOR HAS NO

True only of the PDP-15.
2 See Section 2.5.12.

/CONNECTION TO THIS SERVICE ROUTINE, THERE IS NO WAY TO GUARANTEE THAT THIS
/DEVICE HAS STOPPED I/0 BEFORE RELOADING THE MONITOR!, E.G., FOLLOWING CTRL C.

BEGIN . /THIS IS MAIN PROGRAM CODE AND
. /NEED HAVE NOTHING TO DO WITH
. /THE "PB" SERVICE ROUTINE.

/"PB" (PUSHBUTTON) SERVICE ROUTINE. THE FOLLOWING IS ONCE-ONLY
/INITIALIZATION CODE. THESE LOCATIONS MAY BE USED LATER ON FOR TEMPORARY
/STORAGE (AS SHOWN).

ACH LAC* (.SCOM+55 /ADDRESS OF THE MONITOR'S
.SETUP DAC . SETUP /.SETUP ROUTINE.
TEMP1 LAC* (.SCOM+51 /ADDRESS OF THE MONITOR'S
REALTP DAC REALTP /REALTP ROUTINE.

/RAISE TO API LEVEL 4 FROM THE MAINSTREAM LEVEL. THE MONITOR'S .SETUP
/ROUTINE IS. CALLED FROM THE CAL LEVEL AND IS NOT REENTRANT CODE.

ACl LAC (490019
AC2 ISA

/CALL THE MONITOR'S .SETUP ROUTINE TO LINK HARDWARE INTERRUPTS FROM
/THE DEVICE TO THE SERVICE ROUTINE NOW THAT IT IS IN COREZ. AT SYSTEM
/GENERATION TIME, IT IS ASSUMED, BFSGEN RESERVED API CHANNEL 28

/ (REGISTER 6¢) FOR THIS DEVICE BY PLACING THERE A "JMS* (ERROR"
/INSTRUCTION AND ASSOCIATING IT WITH THE SKIP IOT "PBSF1". THE .SETUP
/ROUTINE WILL CHANGE THE INSTRUCTION TO "JMS* (PBINT".

JMS* .SETUP /CALL .SETUP WITH 2 ARGUMENTS:
PBSF1 /THE SKIP IOT AND THE ADDRESS
PBINT /OF THE INTERRUPT SERVICE ROUTINE.

/IF THIS DEVICE IS ON PI, A SECOND .SETUP CALL IS NECESSARY BECAUSE
/THERE WILL BE TWO SKIP IOT'S IN THE SKIP CHAIN. FOR PI DEVICES,
/THE ENTRY INSTRUCTIONS ARE "JMP* (PBINT".

JMS* .SETUP /CALL .SETUP WITH 2 ARGUMENTS:
PBSF2 /SKIP IOT AND THE ADDRESS
PBINT /OF THE INTERRUPT SERVICE ROUTINE.

/DEBREAK FROM LEVEL 4 BACK TO MAINSTREAM.
DBK
/END OF ONCE-ONLY CODE.

/MAIN PROGRAM PROCESSING MAY NOW CONTINUE UNTIL IT IS INTERRUPTED BY ONE
/OF THE PUSHBUTTON FLAGS.

.
.
-

/THE FOLLOWING IS THE INTERRUPT SERVICE ROUTINE FOR THE PUSHBUTTONS. IT
/IS ENTERED AT API LEVEL 3.

/IN THE CASE WHERE THIS DEVICE IS ON API, THIS ROUTINE IS ENTERED VIA A
/JMS INSTRUCTION. THE STATE OF THE PROGRAM INTERRUPT CONTROL (ION OR IOF)
/WILL NOT BE ALTERED.

!See Section 7.8.
2’See Section 8.3.4, Note 3.

PBINT '] /LINK + PAGE/BANK + MEM.PROT. + PC.
DBA! /ENTER PAGE MODE.
DAC ACH /SAVE THE ACCUMULATOR.

/IF, INSTEAD, THE DEVICE IS CONNECTED TO THE PIC, THE ROUTINE IS ENTERED
/BY A JMP INSTRUCTION AND THE FOLLOWING CODE SHOULD BE SUBSTITUTED FOR
/THE ABOVE. THE PIC IS OFF (IOF).

PBINT DBA /ENTER PAGE MODE.
DAC ACg /SAVE THE ACCUMULATOR.
LAC* (g /SAVE THE INTERRUPT POINT:
DAC PC /LINK + PAGE/BANK + MEM.PROT. + PC.
DZM* (g /NECESSARY ON THE PDP-9; GOOD
ION? /PRACTICE ON THE PDP-15.

/FROM HERE ON, THE CODE IS COMMON TO BOTH API AND PIC DEVICES.

PBSF1 /SKIP IF BUTTON 1 FLAG SET.
JMP PB2 /NO. MUST BE BUTTON 2.
PBCF1 /CLEAR BUTTON 1 FLAG.

/BUTTON 1 IS INTERPRETED TO MEAN: REQUEST REAL-TIME SUBROUTINE "SUBR1"
/AT API SOFTWARE PRIORITY LEVEL 5.

LAC (SUBR1+509900
JMP RUN.IT

/BUTTON 2 MEANS: REQUEST "SUBR2" AT API LEVEL 6.

PB2 PBCF2 /CLEAR BUTTON 2 FLAG.
LAC (SUBR2+6g2008

/CALL THE MONITOR'S REALTP SUBROUTINE TO PLACE THE REAL-TIME REQUEST IN
/THE API QUEUE. AS SOON AS THE API LEVEL AT WHICH THE SUBROUTINE IS TO RUN
/BECOMES THE HIGHEST ACTIVE LEVEL, THAT SUBROUTINE WILL BE CALLED.

RUN.IT DAC TEMP1 .
LAC* (.SCOM+1@2 /RAISE TO API LEVEL @ OR LEVEL 1.
ISA
LAC TEMP1 /SUBR+API LEVEL CODE.
JMS* REALTP"
DBK /TO LEVEL 3.

/NOW THAT THE PUSHBUTTON HAS BEEN SERVICED AND A SPECIFIC ACTIVITY

/ (SUBRL OR SUBR2) HAS BEEN SCHEDULED, EXIT FROM THE HARDWARE LEVEL TO

/THE API LEVEL 4 INTERRUPT HANDLER IN THE MONITOR. LEVEL 4 IS THE SYSTEM
/DISPATCHER WHICH DECIDES WHAT IS TO BE RUN NEXT BASED UPON CONDITIONS SET
/BY HARDWARE INTERRUPT ROUTINES.

" Omit DBA iInstructions in background /foreground bank mode.

The ION instruction may precede the clearing of the device flags on the
PDP-15 so long as operation continues at API level 3. On a PDP-9, however,
the ION must come after the flags have been cleared; otherwise, an immediate

interrupt would occur, unless the ION was executed after a raise to API level 3

’Refer to section 7.4 which explains why .SCOM+1@2 is used to protect common
Monitor routines from reentrancy.

“If the highest Monitor API level is defined to be level one, according to
the contents of .SCOM+1@2, then REALTP must not be called at API level zero.
This statement holds true for all Monitor routines called at the highest
Monitor level.

LAC (494909 /REQUEST AN API INTERRUPT

ISA /AT SOFTWARE LEVEL 4.
LAC ACg /RESTORE THE ACCUMULATOR.
DBR /DEBREAK AND RESTORE FROM LEVEL 3.

/IF THE DEVICE IS ON API, THE INTERRUPTED PC IS STORED IN "PBINT".

JMP * PBINT

/IF THE DEVICE IS ON THE PIC, THE INTERRUPTED PC IS STORED IN "PC".
JMP * PC

/WHICHEVER JMP* IS USED, IT MUST IMMEDIATELY FOLLOW THE DBR. ONCE THE
/DBR HAS BEEN EXECUTED, THERE MUST BE NO POSSIBILITY OF INTERRUPTING BEFORE
/THE JMP* IS DONE. ALL DECISION MAKING MUST THEREFORE PRECEDE THE DBR.

/END OF PUSHBUTTON SERVICE ROUTINE.

/API LEVEL 5 REAL-TIME SUBROUTINE -- DOES SOMETHING AS A RESULT OF BUTTON 1
/HAVING BEEN PRESSED.

SUBR1 2
DAC ACl
LAC ACl
- RLXIT SUBR1

/API LEVEL 6 REAL-TIME SUBROUTINE -- DOES SOMETHING AS A RESULT OF
/BUTTON 2 HAVING BEEN PRESSED.

SUBR2 i}
DAC AC2
LAC AC2
.RLXIT SUBR2

This is a very simple I/0 service routine. It does not perform data manipula-

tion and does not issue any IOT's that could cause further interrupts.

7.3 1/0 DEVICE HANDLER

A device handler written to operate in the Background/Foreground Monitor

environment must conform to the rules outlined in the remainder of this

section. Handl .: differ from I/O service routines in the following ways:

1. They ii.citace to user programs via Monitor calls, e.g., .READ.

2. Because they are referenced by .DAT slot number, they can be
used bv device independent programs.

3. Except for TTA. and the resident system device handler, all
handlers are part of the system's I/0 library.

4. Handlers can be used by the Background job when there is no
conflict with Foreground needs.

5. I/0 handlers all have STOPIO routines which allow the Monitor
to shut down I/O in an orderly fashion. This is absolutely
necessary when a handler is to be used by the Background .job.

7.3.1 Types of Device Handlers

There are three types of I/0 device handlers that can operate within the
Background/Foreground Monitor System:

1. Single user -- This handler can be used by either the Foreground
job or the Background job but not both during the same core load;
that is, it is dedicated to one job and the Monitor System will
not permit the other job to be connected to it.

2. Sequential Multi-user -- This handler can be connected to both
the Foreground and the Background job and both can utilize
it on a sequential first-come-first-served basis.

3. Multi-user -- This handler can be connected to both the Foreground
and the Background jobs with the Foreground job having priority
on usag~. If the Background job is using the handler and Fore-
ground requires it, the Background I/O will be deferred until
the Foreground I/0 has been completed.

This section is primarily devoted to describing the development of single-user
handlers. Thereafter, the transition to a sequential multi-user handler is

described.

I/0 handler type 3 (Multi-user) is not described because it is unlikely that
a customer will need to write one and because the description would overly
complicate this section of the manual. Should the need to write such a
handler arise, it is recommended that a listing be obtained of the Multi-user
DECtape (DTA.) or Disk (DKA.) handler to be used as a guide.

All device handlers, except for TTA. and the resident system device handler,
are loaded to run in page mode and therefore may use indexed instructions.
Where they do so, however, they must save and restore the Index Register (and

7-6

Limit Register, if used). All device handlers in the bank mode system run only

in bank mode/ nc indexed instructions are allowed in the bank mode system.

7.3.2 General Structure of Device Handlers

User program commands to device handlers are initiated by CAL instructions,
which trap to absolute location 2§ octal in the Monitor. The CAL handler in
the Monitor, operating at API level 4, transfers control to the CAL processing
section of the device handler at level 4.

All devices which perform I/O should be interrupt driven!, i.e., should rely

on a hardware interrupt condition to signal I/0 completion. Without an interrupt,
the device would have to be polled after elapsed clock intervals (which is pos-
sible for slow devices) or tested continuously (which defeats the purpose of a
real-time system). Handlers which perform I/O will, in general, have an
interrupt service routine which operates at the API level of the hardware.

For some devices, all I/O must be solicited. For example, no interrupt from the
papertape punch can occur until the handler, PPA., has initiated I/O as a result
of some Monitor call. This fact allows the CAL and interrupt portions of PPA.
to share common storage registers and common code.

Some devices, such as Teletype, generate unsolicited interrupts which can occur
while the Teletype handler is processing a CAL command. Therefore, the CAL and
interrupt portions of TTA. cannot use common code and common registers except
where the CAL code raises to API level 3 (the hardware level for Teletypes) to
prevent Teletype interrupts.

Besides CAL and interrupt processors, a handler must have subroutines for stop-
ping I/0. The STOPIO code is called at Mainstream (all API levels inactive) but

is guaranteed not to be called while CAL processing is in progress.

7.4 REENTRANCY PROTECTION

There are common routines in the Monitor which are called by all device handlers.
Since these routines cannot be reentered?, all calling programs must raise to

the highest commonly used API level in order to avoid being interrupted. Normally,
API level # is the highest commonly used level; and the instructions to raise to
level @ would be:

LAC (4992090
ISA

! The core-to-core handler, COA., is an example of a handler which is not interrupt
driven; and therefore all its processing is done at the CAL level (API level 4).

Interrupted, entered at a higher API level, and then resumed at the lower level.

7-7

However, some Monitor routines which operate at this highest commonly used level
may take nearly 2@f microseconds to complete. Some devices may require faster
service than this allows; hence, it is desirable to reserve API level @ for

them. The highest commonly used Monitor level would be defined to be API level
1, and devices on level # would only have to compete with one another. They
could not, however, use common Monitor routines!due to the problem of reentrancy.

Such routines would best be I/0 service routines rather than I/0 device handlers.

The highest commonly used API level (f or 1) is established during system gen-
eration and the value 4@@2¢g@ (for level @) or 4@@1@P (for level 1) is placed
in .SCOM+1@2. The instructions that must be executed to protect against

reentrancy are:

LAC* (.SCOM+1@2
ISA

For devices which operate at the highest commonly used API level, a raise has

no effect. Therefore, a check for this case must be made so that the corres-
ponding debreak (DBK) instruction is not executed. Where a DBR (debreak and
restore) instruction would have been used, an RES (restore) should be executed
instead. The PDP-9 does not have an RES instruction as does the PDP-15; however,

there has never yet been a need for a user to replace a DBR with an RES.
As a side issue to reentrancy protection, the reader is cautioned not to share
subroutines within a handler at the CAL and interrupt levels unless CAL's and

interrupts cannot coincide.

7.5 DEVICE HANDLER'S CAL PROCESSOR

7.5.1 Arguments of the CAL

The first 37 (octal) words of an I/0 handler must have the format described in
the following pages. The CAL handler in the Monitor has been implemented to do
as much of the function processing as possible. 1In giving control to the I/0
handler, the CAL handler will have set up registers in the I/O handler with all
pertinent information (arguments) of the CAL in the most accessible state, and
will then transfer control to the appropriate function processor via the JMP
table in the I/O handler which begins at word 208 relative to the first location
in the handler. Since CAL is not a reentrant process, CAL instructions should

not be executed while at the CAL level or at a hardware interrupt level?

!such as, REALTP and IOBUSY.

’As a special case, the Monitor allows the MAGtape handler to do so.

WORD #: JMS SWAP

The SWAP subroutine is in the device handler. The JMS instruction will be
simulated from within the Monitor so that the SWAP routine will return to the
Monitor and not to WORDl of the handler. The SWAP subroutine must execute
WORD5 which restores the state of the program interrupt! and DBK from level J/]
or 1 of the API. The presence of this routine becomes functionally necessary
for type 3 (Multi-user) handlers to accomplish swapping from Background to
Foreground usage. The I/O device independence of the system requires that all
handlers look alike to the outside world (namely, the Monitor's CAL handler).

WORD 1: g /Foreground Busy Register?
WORD 2: '] /Background Busy Register?

For both busy registers:
= Not Busy

Non-g = Busy (the CAL handler in the Monitor places
the current .DAT slot number here --
full 18 bit value if negative.)

When the Monitor's CAL handler receives an I/O call, it checks the validity of
the .DAT slot number for this job (Foreground or Background) , checking for its
existence, whether or not a device has been assigned to it, and if the appro-
priate handler was loaded.

The CAL handler then checks the appropriate busy register?® and proceeds as
follows:

1. If the flag indicates that the handler is already busy, the job
becomes I/O bound at this level. Foreground can become I/0
bound at 4 levels, which means it gives up control to lower levels
or to the Background until the I/0 operation is completed.

2. If the flag indicates not busy, it is set to busy" and the CAL
handler processes the function and passes the request on to the

device handler.

'This is a vestige from PDP-9 code.
’Must be assembled with contents = f. The Teletype handler is a special case.
*The Teletype handler is an exception.

‘Actually, there is also a test on the CLOSE flag (Word 3 or 4) which is des-
cribed on the next few pages. As a result, the function might not be passed
on to the handler.

7-9

Note that .WAIT's and .WAITR's are c?mpletely processed by the CAL handler and
are not passed on to the I/0 handler .

If the corresponding busy register indicates busy:

l. For .WAIT in the Foreground, control is given to a lower Foreground
level or to the Background. The .WAIT command is not reexecuted;
instead, the WAIT condition is recorded for the specific Foreground
level in a .SCOM register. When the I/O completes, the device
handler will call the IOBUSY routine in the Monitor, which will clear
the WAIT condition and prepare to resume processing at that level
following the .WAIT.

2. For .WAIT in the Background, since there is no further processing
that can be done, control is returned to the .WAIT.

3. For .WAITR in either the Background or Foreground, control goes to
the address specified in LOC+2 (which must be above the hardware

memory protect bound if in the Background)?.

If the corresponding busy register indicates not busy, the WAIT condition has
been satisfied and control is returned to LOC+2 (if .WAIT) or LOC+3 (if .WAITR).

WORD 3: '] /Foreground .CLOSE register?.
WORD 4: g /Background .CLOSE register?.

For both .CLOSE registers:
= .CLOSE or .OPER not in progress
Non-f = .CLOSE or .OPER in progress

-CLOSE and .OPER functions have a built-in WAIT condition. When the .CLOSE or
-OPER is first executed, the busy register and .CLOSE register for the appro-

priate job contain zero. The CAL handler in the Monitor sets the return PC so
that the function will be reexecuted. The busy register is set with the .DAT

slot number and the .CLOSE register is set non-g (-1).

At completion of the .CLOSE or .OPER function, the device handler must clear
only the appropriate busy register. When the function is reexecuted with the
busy register cleared but the .CLOSE register set, the contents minus 1 of the
.CLOSE register are returned in the AC to the calling program following

the .CLOSE or .OPER command and the handler's .CLOSE flag is cleared by the

;The Teletype handler is an exception.

The CAL handler validates Background arguments in Monitor calls. The test
based on the setting of the hardware memory protect bound uses the contents
of .SCOM+32, which is not set to zero by the S$MPOFF command.

SMust be assembled with contents = f.

Monitor. The handler is not entered a second time. The contents minus 1 of the
.CLOSE register are returned in the AC specifically for .OPER functions (.FSTAT,
.RENAM, .DLETE). Device handlers that utilize this capability should set the
appropriate .CLOSE register (WORD 3 if Foreground; WORD 4 if Background) as

follows:

1l = File not present

INFORMATION +1 = File is present (where INFORMATION is the
device block number, which must not = -1)

Either @ or INFORMATION is returned in the AC.

WORD 5: ION /The CAL handler will store an ION
/instruction here. This is vesti-
/gial code from the PDP-9.

WORD 6: ION! /The CAL handler will also store an
/ION here.
WORD 7:1! /Return Pointer. The CAL handler

/places the address of the Monitor's
/CALXIT routine in this register.

Words 1f through 17 are the BACKUP DATA REGISTERS. The CAL handler sets up
these registers prior to entering the device handler. For multi-user handlers,
a set of backup registers must be available to queue one Background I/0 re-
quest when the handler is processing a Foreground request. The handler's SWAP
routine is called to swap the contents of the backup registers with that of

the live registers (elsewhere in the handler). For single user handlers, the
SWAP routine does not perform a swap since the backup registers are the live

registers.

WORD 10: JMP FUNC /After checking the validity of
/function and subfunction codes, the
/CAL handler places a JMP to the
/appropriate entry in the function
/JMP table (words 2@-32) of the I/0
/handler in this register.

WORD 11: /The CAL handler sets this register
/to indicate which job executed
/this CAL:
/ /]
/ 1

Foreground
Background

WORD 12: /.DAT slot number (18-bits if
/negative). The CAL handler sets
/this register.

'If it is guaranteed that the device cannot cause an interrupt while processing
is at the CAL level, then the handler's CAL and interrupt processors can use
common exit code as described in 7.6. If so, the interrupt service routine
must store a DBR instruction in WORD6é and the interrupted PC (with Link,
Page/Bank Mode and Memory Protect bits) in WORD7.

7-11

/Unit number for multi-unit devices
/in bits @-2 with bits 3-17 contain-
/ing the address of the CAL. The CAL
/handler sets this register.

WORD 13:

The CAL handler makes a general check for validity on:

a. File type

b. Data Mode

c. MAGtape subfunction code
d. Transfer directions

e. .OPER subfunction code
f. Addresses

g. Word counts

and will pass on what appears to be legitimate values. Each handler must then

make its own validity determination with respect to the device it controls. For
example, - the CAL handler will always accept data modes @ through 7; however,

the device handler may only accept a subset of these.

The contents of words WORD 14 through WORD 17 vary with the function being
processed. Adjacent to what will appear in each of these words are the limits

on the values that will be-accepted and passed on by the CAL handler.

WORD 14: LINIT File type g = input
1 = output
.READ Data mode # = IOPS binary
1 = Image binary
- REALR 2 = IOPS ASCII
.WRITE 3 = Image ALPHA
4 = DUMP
- REALW 5 = DUMP ALPHA
6 and 7 are undefined but are
passed on by the CAL handler.
. MTAPE MAGtape function g thru 178
. TRAN Transfer direction g thru 3
.OPER Subfunction code 1 thru 3
WORD 15: LINIT? User restart address plus code bits (g - 2)
.READ! Line buffer address
.REALR!
.WRITE!
.REALW!

!Checked for non-existent memory. If this is a Background CAL and if the Back-

ground is operating in normal protect mode ($MPON) this address is also compared
with the contents of .SCOM+31, the software boundary, to signal an error if the

address points below the bound.

’same as for footnote 1, except that the check is made on .SCOM+32, the hardware
bound, and only if the function is to be executed by the Teletype handler.

7-12

.FSTAT! Address of the Directory entry block
.DLETE!
.RENAM!
.ENTER?
.SEEK?

.TRAN! Core starting address.

WORD 16: JINIT! Address of register which is to have standard
buffer size placed in it.

.READ? Linebuffer word count (from the CAL argument list).
.REALR?®
.TRAN®

.WRITE? Line buffer word count (from the linebuffer word
pair count, except for dump mode and mode 5 which
.REALW? use counts from the CAL argument list.

WORD 17: .FSTAT! Address of the register which will have the device
code placed in bits g - 2.

.REALR" Address to which control will be passed on completion
" of the real-time I/0 request. Bits 0 - 2 will contain
. REALW the priority code:

= Background Mainstream
1 = Foreground Mainstream
5 = Foreground API Level 5
6 = Foreground API Level 6
7 = Foreground API Level 7

The CAL handler always changes the Background code to
since Background cannot use the API software levels.

. TRAN The device address (block number).

Words 20 through 32 make up the Function JMP Table. Those functions which are
ignored, those which are illegal, and those which do not issue IOT's at the CAL
level must prepare to have the Foreground or Background busy flag (WORD 1 and
WORD 2, respectively) cleared during the protected exit routine. Because the CAL
handler in the Monitor has set the busy flag prior to entering the handler, the

handler must clear the busy register since no further processing will be done.

!Checked for non-existent memory. If this is a Background CAL and if the Back-
ground is operating in normal protect mode ($MPON) this address is also compared
with the contents of .SCOM+31, the software boundary, to signal an error if

the address points below the bound.

? No address check is made.

’Counts are validated for the Background job to ensure a negative value and
to ensure that the count added to the start address does not reference non-
existent memory.

“same as for footnote 1, except that the check is made on .SCOM+32, the hardware
bound.

WORD 24:
WORD 21:
WORD 22:
WORD 23:
WORD 24:
WORD 25:
WORD 26:
WORD 27:
WORD 30:
WORD 31:
WORD 32:

WORD 33:

WORD 34:

When the Foreground job terminates as a result of a terminal error,

JMP INIT
JMP OPER
JMP SEEK
JMP ENTER
JMP CLEAR
JMP CLOSE
JMP MTAPE
JMP READ!
JMP WRITE?
XX3

JMP TRAN

SUBRF

/Function
/Function
/Function
/Function
/Function
/Function
/Function
/Function
/Function
/Function
/Function

/Storage for .SCOM+35, the "in an
/interrupt service" flag -- set by

/the CAL handler. This is a vestige

/from the PDP-9.

/Address of the STOP-F

/subroutine.

a .EXIT command, the Foreground STOPIO routine in every device handler

assigned to the Foreground job is called" at the Mainstream level to effect

the controlled shutdown of the device (see 7.8).

WORD 35:

For single user device handlers (devices that cannot be shared by Foreground

SUBRF

/Address of the STOP-BACKGROUND-I/O

/subroutine.

OREGROUND-1I /0

CTRL C,

or

and Background), the same subroutine can be used for Foreground and Background

STOPIO (as noted above).

WORD 36:

/Handler I.D. code (normally).

This word has other values (non-f) for devices that require special considera-

tion from the CAL handler.
into a busy handler unless the I.D.
slot on which the handler is busy.

7.5.2 .SETUP

code is -1 and the

.INIT is to the same

If a device generates hardware interrupts they must be routed to the proper

interrupt service routines.

interrupts are routed to an error processor which treats the interrupts as

illegal.

'Includes .REALR.
2Includes .REALW.

.WAIT and .WAITR never get to the handler; they are processed by the Monitor's
Word 31 can be used for data storage.

CAL handler.

“The call is made only if the handler's Foreground busy register is set.

7-14

The Monitor will not allow .INIT to force its way

.DAT

When the appropriate handler is not in core, the

When a handler has been loaded in core it must call the Monitor's .SETUP routine
@t the CAL level, API level 4) to connect the interrupt line(s) to the handler's
interrupt service routine(s). As a rule, this is executed as once-only code the
first time a .INIT call is processed. To ensure that .SETUP has been done for a
device which has IOT's that can cause interrupts, all CAL functions that could

perform such IOT's must test that a .INIT was performed at least once. If .INIT

was not performed, the offending job should be terminated with an .ERR @68 (.INIT
not executed).

The .SETUP routine is typically called only once for API devices; but, for de-
vices on the Program Interrupt Control, one call per IOT in the Monitor's skip
chain is required. Read section 8.3.4, Note 3, for a clearer explanation.

Calling sequence:

LAC* (.SCOM+55 /Get address of .SETUP

DAC TEMP

JMS* TEMP /Call .SETUP

SKPIOT /Argument 1: IOT skip

INTSVC /Argument 2: Address of the
(return here) /interrupt service subroutine

7.5.3 1Initiating I/0

For interrupt driven devices it is imperative that all IOT's that initiate
hardware operations be executed during the protected exit from the handler
to ensure that the exit takes place prior to the completion of the hardware

operation (which could cause re-entry to the handler at the interrupt level).

CAL function requests that require more than one hardware operation should
cause the 2nd through Nth operations to be initiated at the intertupt level
during protected exit. A handler should not cause an implicit .WAIT for the
duration of the function processing because this prevents optimum usage of the
central processor time. The .CLOSE and .OPER functions are exceptions and the
implied .WAIT in those functions is handled automatically by the CAL handler.

7.6 DEVICE HANDLER'S INTERRUPT PROCESSOR

The following steps detail the logic necessary for interrupt processing in a
single-user handler. References to a common exit routine for both CAL's and

interrupts presupposes that interrupts for the device cannot occur while CAL's
are being processed.

Both page mode and bank mode systems now require API hardware, consequently tne

interrupt servige routine can rely on its existence.

1. 1If this ic zan API interrupt, the PC, Link (bit @), Page/Bank (bit 1),
and Memory Protect (bit 2) are stored at the entry point to this routine.
If this is a PIC interrupt, the PC et al. are stored in location zero
in memory. This routine is entered at the API level of the device

(level 3 with PIC off if a PIC interrupt),with memory protect disabled.

2. DBA -- Disable Bank (Enter Page) Address Mode.

3. Save the AC -- to be restored on exit from interrupt service. Also,

save hardware registers such as XR, LR, if they are to be used herein.

4. Save the PC, Link, Page/Bank Mode, and Memory Protect in WORD 7 of the
handler. WORD 7 is so used if the CAL and interrupt code can use common

exit logic.

5. Store a DBR instruction in WORD 6 of the handler. This is done only
if the CAL and interrupt code can use common exit logic.

6. Turn off (<lear) the device's hardware flag so that it will not cause

another interrupt unless reset.

7. If this is a PIC interrupt, set location zero to zero and execute the
ION instruction to turn the Program Interrupt Control on. Location
zero with non-zero contents indicates a PIC interrupt in progress (this
was significant in PDP-9 logic. On a PDP-9, the device flag(s) must
be cleared before the PIC is turned on again.)

8. 1If this is the type of device for which I/0 in progress cannot be
stopped, test if this is the last interrupt expected from the device.!l
If it is, clear (set to zero) the IOSTOP flag (read section 7.8
describing STOPIO procedures). Only one IOSTOP flag is needed for

a single user or sequential multi-user handler.

9. 1Is the busy flag (WORD 1 if Foreground; WORD 2 if Background) zero?
If it is (meaning that the handler was not busy and that the
interrupt was unsolicited, or that the STOPIO routine was called),

ignore the interrupt by going to step 13.

19. Process the interrupt, e.g., store data or prepare to transmit more
data.

11. 1Is the I/0 request (the I/O call issued by the user program) complete
as a result of this last interrupt? If so, continue at step 14.

'The CRP3B card reader handler must test if this is last interrupt since, for
one read operation, 8@ column interrupts will occur and there is no way to
prevent them.

7-16

12.

13.

14.

15.

16.

17.

18.

If more I/O must be done before the CAL request is satisfied, set up
the protected exit routine to issue the next IOT(s) to the device. Go
to step 22, the protected exit routine.

If the interrupt was unsolicited, set up to have the Foreground or
Background busy flag (WORD 1 or 2 as appropriate) cleared during the
protected exit code. Go to step 22, the protected exit routine. Note
that WORD 11 in the handler indicates Background or Foreground owner-
ship of the I/0 request.

I/0 is complete as a result of this interrupt; therefore, set up to
have the Fereground or Background busy flag (WORD 1 or 2 as appropriate)
cleared during the protected exit code. Note that WORD 11 in the
handler indicates Background or Foreground ownership of the I/O request.

LAC* (.SCOM+1g2
ISA

This will raise to API level zero or one, depending upon the contents
of .SCOM+1@2. 1If this device interrupts at level one or zero, reread
section 7.4.

LAC* (.SCOM+52
DAC TEMP

LAC (WORD @
JMS * TEMP

-SCOM+52 contains the address of the Monitor's IOBUSY subroutine,
which must be protected against reentrancy. It is passed an argument
in the AC -- the address of WORD # of the device handler. IOBUSY will
compare this with the contents of the Foreground busy registers
(.SCOM+42 through .SCOM+45). If a match is found, it indicates that
the Foreground level was waiting for I/O completion by this device.
Since I/0 has completed, the Foreground level is made not busy and

is set up to resume operation when that level becomes the highest
active level in the system. The level-busy .SCOM registers are set
originally by the Monitor's CAL handler. Note that the call to IOBUSY
must be done for Background as well as Foreground I/O completion.

DBK

Debreak from API level zero or one (reread section 7.4 if this device
interrupts at level zero or one). This is done, as is step 19, simply
to allow interrupts to occur for higher level devices if their flags
come up while the IOBUSY code is being executed.

The handler must check if this is a real-time I/0 request. It is if
WORD 1f contains a JMP to WORD 27 (.READ or .REALR) or to WORD 3

7-17

19.

2.

21.

22.

23.

24.

(.WRITE or .REALW) and WORD 17 is non-zero. If this is not a real-time
request, go to step 22.

LAC* (.ScoM+1g2
ISA

Raise to API level zero or one to protect the following Monitor
routine from being reentered. 1If this device operates at level one

or zero, reread section 7.4.

LAC™* (.SCOM+51

DAC TEMP

LAC WORD 17

JMS * TEMP

-SCOM+51 contains the address of the Monitor's REALTP subroutine. It
is passed an argument in the AC -- the contents of WORD 17 which is

the priority level code plus real-time subroutine address. REALTP
will prime the Monitor to run the real-time subroutine.

DBK
From API level zero or one, as in step 17.

This is the beginning of the protected exit routine. Note that it
is coded as a common exit for both interrupt and CAL code. This is
explained in section 7.3.2. If I/O is to be performed now to the
device, check the device to ensure that it is ready to accept I/O
commands. If the device is not ready, a message must be output to
denote this fact (see section 7.9) and the I/0 must be deferred.
Therefore, set a program flag, call it IOTFLG, for example, so that
the IOT(s) will not be issued in step 27. 1If the device is ready,
clear IOTFLG.

LAC* (.scoM+1g2
ISA

Raise to API level zero or one. Reread section 7.4 for level zero

or level one devices.

If WORD 6 contains a DBR instruction (recall step 6), this is an
interrupt service exit. TIf SO, request an API level 4 interrupt as
follows:

LAC (4p4p090
ISA

The API level 4 handler is the Monitor's dispatch routine. It con-
trols transitions from Background to Foreground, real-time requests,

errors, and control character functions.

25. If previously set up to do so, as in steps 13 and 14, clear the
Background and/or Foreground busy flags (WORDS 2 and 1, respectively).
The busy flag is cleared on ignored functions, completed functions,
and aborted functions.

26. Is I/O supposed to be done now? If IOTFLG (set or cleared in step 22)
is non-zero, if the appropriate busy flag is zero, or if the IOSTOP
flag is non-zero (see step 8) go to step 28 to bypass execution of
the IOT(s). '

27. Execute the IOT(s) to the device. This may involve several instruc-
tions. If this is an exit from the CAL level of the handler and if
no I/0 is to be done (e.g., an ignored function), this code will be
bypassed since the busy flag was cleared.

28. Restore the AC plus any other hardware registers used (refer to

step 3).

29. DBK
Debreak from API level zero or one (reread section 7.4 if this is a
level zero or level one device).

3. XCT WORD 6
This will be a DBR instruction if this is an interrupt exit (recall
step 6) and ION if this is a CAL exit. This assumes that the device
handler can have common interrupt and CAL exit code.

31. JMP* WORD 7
Again, this assumes common CAL and interrupt exit code. The DBR in
step 3§ for an interrupt exit will debreak out of the device's hard-
ware level and will prime the machine to restore the state of the Link,
Page/Bank Mode, and Memory Protect (in this case from bits § - 2 of
WORD 7). The ION instruction in step 3¢ for a CAL exit is effectively
a NOP. Return will be at API level 4 to CALXIT, the common CAL exit

routine in the Monitor.

Note that once the DBK in step 29 is executed, the sequence of code leading to
step 31, the JMP*, must be non-interruptible, i.e., a string of IOT instruc-

tions.

If the exit is done with the device not ready, note that the device's busy
flags are still set. The job will continue execution without knowledge of the
not-ready situation. Of course, if the job attempts to perform more I/0 to
the device (.INIT being a special case; see section 7.9.2), it will become

I/0 bound.
7-19

7.7 ERROR PROCESSING

All device handler error conditions should be terminal; that is, they should

terminate the operation of user programs. Whether errors are detected during

CAL processing or during interrupt processing the following coding sequence

will set up an error condition and cause an error message to be printed on the

appropriate job control Teletype. This coding sequence cannot be common to

both the CAL and interrupt levels unless it is known that the device cannot

cause interrupts while the handler is processing a CAL.

1.

LAC* (.SCOM+66
DAC TEMP /This TEMP cannot be common.
/ (See preceding paragraph.)

-SCOM+66 contains the address of the error queuer subroutine in the
Monitor.

LAC* (.scomM+1g2
IsAa

Raise to API level zero or one to protect the error queuer from being

reentered. Reread section 7.4 for level zero and level one devices.

LAW code or LAC (code
JMS* TEMP
auxarg

Go to the error queuer with one argument in the AC and one following
the JMS instruction. The argument in the AC, loaded either by LAW
code or LAC (code, is formatted as follows:

Bits #§ - 5 are ignored
Bit 6 = 1 means a terminal error
Bit 7

Bit 8 = 1 means a Foreground error

1 means a Background error
Bits 9 - 17 form a 3-digit error code
If the error pertains to both jobs then both bits 7 and 8 may be set.

The auxiliary argument, auxarg, is simply a 6-digit quantity to be
printed with the error message, which is of the form:

.ERR NNN XXXXXX,))

NNN is a 3-digit error code
XXXXXX is a 6-digit auxiliary argument

4. DBK ,
Debreak from API level zero or one. Reread section 7.4 if this is a
level zero or level one device.

5. If no further interrupts are expected, set up to have the appropriate
job busy flag (WORD 1 or WORD 2) cleared during protected exit from
the handler. However, if more interrupts are expected, the busy flag
must remain set to signal the STOPIO routine that interrupts are
pending. Instead, set the IOSTOP flag so that I/0 set up to be
executed in the protected exit routine will be bypassed.

The actual printing of the error message will not be done until all interrupt
and CAL processing is complete. Background error messages are not printed until
the Background job is given control.

As a result of a terminal error, the handler can be certain that its STOPIO
routine will be called by the Monitor if the handler's busy flag is set for the

job in error.

7.8 STOP I/O ROUTINES

In Background/Foreground it is necessary to have some orderly means of stopping
I/0 that is in progress. When a job terminates (.EXIT, terminal error, etc.),
the Monitor must ensure that all I/O for that job is shut down. This is
particularly necessary in the Background where I/0 must be stopped before the

associated device handlers are removed from core.

WORD 34 of each handler must contain the address of its Foreground STOPIO sub-

routine.

WORD 35 of each handler must contain the address of its Background STOPIO sub-
routine, which for single-user handlers can be the same as the Foreground STOPIO
routine.

Whenever a job terminates execution, the Monitor calls the appropriate STOPIO
subroutine at the Mainstream level. The following steps should be followed:

1. Is this the type of device for which I/O can be terminated by
issuing an IOT instruction? Terminating I/O means ensuring that no
further interrupts will occur. If so, do so, and continue at step 6.

19.

11.

12.

LAC* (.SCOM+102
Isa

Raise to API level zero or one to protect against getting interrupted

in mid-decision.

If this device does not generate Not-Ready conditions (read section

7.9), go to step 5.

Check the "CTRL R in progress" flag (see CTRLR in section 7.9). If it
is set, clear the STOPIO flag (which is tested in step 11) and'go to
step 6. This is done because I/0 cannot be under way if the handler

is waiting for tR. Otherwise, go to step 5.

Check the appropriate job busy flag (WORD 1 or WORD 2). 1If it is set,
set the IOSTOP flag (a flag internal to the handler) non-zero. Other-
wises clear it. This flag is tested in step 11.

Clear the appropriate job busy register (WORD 1 or WORD 2).
Clear the appropriate .CLOSE register (WORD 3 or WORD 4).

If the handler has one, clear the "CTRL R in progress" flag (see
step 18 in section 7.9).

If this is the type of device which can terminate I/0 by IOT (refer
back to step 1), go to step 12.

DBK
Debreak from API level zero or one back to Mainstream to allow hard-
ware flags that may have or will occur to be serviced.

LAC IOSTOP
SZA
JMP .-2

If the appropriate busy register had been set and I/0 is under way,
control will stay here until the IOSTOP flag is set to zero. That
will happen only when the device's final interrupt occurs (refer to
section 7.6, step 8). This loop is executed at Mainstream, in case
the handler is being used by Background, so that the Foreground job
may resume execution when ready.

JMP * STOPIO
Exit back to the Monitor. I/0O by the device has stopped and, if the
job is restarted, the handler flags have been reset so that the

handler can accept more I/O commands.

7-22

7.9 RECOVERY FROM I/O DEVICE NOT READY CONDITION

7.9.1 CTRL R Mechanism

The Background/Foreground Monitor system is designed to handle simultaneously
one not-ready condition per job. This is a limitation but a reasonable one

based on Keyboard Monitor (single user) experience.

I/0 handlers that can encounter and detect not-ready conditions must adhere to
the following ground rules in their announcement of the not-ready condition and

in their continuation once the condition has been corrected.

Some devices are designed so that they can be tested at any time for a state of
readiness; therefore, the test can be made at the CAL level prior to starting
I/0. Other devices will not generate a not-ready condition until after an IOT
has been issued and an error flag results. In such cases, the not-ready condi-
tion is detected at the interrupt level.

The reader is assumed to understand the mechanism whereby a device interrupt
transfers control to a handler's interrupt service routine at a hardware API
level and the process called .SETUP whereby the handler connects itself to the
device's interrupt line(s). When the handler is not in memory, interrupts from
the device are shunted to the illegal interrupt handler. When the handler is in
core and has performed the .SETUP, device interrupts will transfer control to
the handler. The processing of a device-not-ready condition involves a pseudo-
-SETUP and a simulated API interrupt, which will be explained at the end of this

section.

It is best to check for device ready in only one location, the beginning of the
protected exit routine in the handler. This starts at step 22 in section 7.6,
where it is assumed that the CAL and interrupt portions of the handler share a

common exit logic.

1. Test for device ready or not. This is the same as step 22 in section
7.6. If the device is ready, set IOTFLG to zero so that the IOT(s) in
step 27 may be executed, and go to step 23 in section 7.6.

2. With the device not ready, it is necessary to defer the IOT(s), announce
the not-ready condition, and exit from the handler set up to continue
after CTRL R is typed on the user's control Teletype. For a single-user
or sequential multi-user handler, the IOT(s) that were to be executed
may remain where they are. Set IOTFLG non-zero so that they will not
be executed in step 27 of the protected exit logic (section 7.6). (For
multi-user handlers, the IOT(s) must be physically moved in case I/O

7-23

for the other job is started up.)
3. JMS NRMSG
Call a subroutine to initiate the printing of the not-ready message.

Then go to step 23 in the protected exit routine (section 7.6).

Steps 4 through 11 contain the code for subroutine NRMSG.

4. NRMSG g /Entry point.
LAC CTRLR
SZA!CLC

JMP* NRMSG
DAC CTRLR

Register CTRLR is a program flag internal to the handler. If it
contains zero, the handler has not already initiated a not-ready
request. If it is non-zero, exit from the subroutine, since a not-

ready condition has been announced. If CTRLR was zero, set it non-zero.

5. LAC WORD11
DAC ARGl

WORD 11 in the handler contains zero if Foreground and one if Back-
ground. This is passed on as argument one in the call to the Monitor's
CTRL R setup routine.

6. LAC UNITNO
DAC ARG3

Bits @-2 of argument three are considered to be the device unit number,
which is printed as part of the device-not-ready message. Some devices
have only one unit, for example, the papertape punch; and this code is,
therefore, unnecessary. The card reader handler uses the unit number in

the printout to indicate the cause of the not-ready condition.

7. LAC* (.SCOM+64
DAC TEMP /Beware -- TEMP probably cannot be used
/by both the CAL and interrupt levels.

.SCOM+64 contains the address of the CTRL R setup subroutine, which
is part of the Teletype handler in the Monitor. Store this address in

a temporary register.

8. LAC* (.scoM+1@2
ISA

Raise to API level zero or one. Reread section 7.4 if this device is

already operating at level one or zero.

19.

11.

JMS* TEMP

ARGl XX

ARG2 - .ASCII /DV/
.LOC -1

ARG3 XX

ARG4 F.CTLR+?g00800
ARG5 B.CTLR+?0p000

Call the CTRL R subroutine in the Monitor. Argument 1 contains

zero if Foreground and one if Background. Argument 2 is the two-
letter device name in .ASCII, e.g., LP for Line Printer. Argument

3 is the device's unit number, in bits @-2. Argument 4 is the
address (F.CTLR) and API level code (?@@@@@) of the subroutine which
is to be entered when a Foreground not-ready condition for this
device exists and CTRL R is typed on the Foreground control Teletype.
Argument 5 is similar to argument 4, but is used for Background.
(?00088@8) for API level 2 would be 20@g@@, for example. Only levels
g, 1, 2, or 3 are allowed.

For device DV with unit number @, the not-ready message would be

printed as follows:
DV@ NOT READY)

Return from the CTRL R subroutine will either be normal (step 1f) or
skip one location (to step 11).

DZM CTRLR

If the Monitor's CTRL R subroutine does not skip on return (returns
here), it is because the request to set up a not-ready condition was
not honored. This would happen if, for this job, a not-ready condi-
tion had been established for some other device. No queueing
mechanism exists; thus, two simultaneous not-ready conditions for a
job will result in a job terminal error, .ERR @@4. When return is
to step 1§, the Monitor has already posted the .ERR @@4 printout re-
quest.

DBK
JMP * NRMSG

If the Monitor has honored the request to set up a device-not-ready
condition, step 1§ will have been bypassed. Debreak from API level
zero or one. Reread section 7.4 if this device operates at level

Zero or one.

Steps 12 through 18 contain the code for subroutine F.CTLR and B.CTLR.

7-25

12.

13.

14.

15.

16.

17.

18.

F.CTLR 2 /Entry point
B.CTLR=F.CTLR
For a single-user handler, the same subroutine can be used for Fore-

ground and Background, as indicated by the equivalence statement.

Prior to entering this routine, the Monitor was called by the handler
to set up a not-ready condition for this device. A not-ready message
was printed on the appropriate job control Teletype and the CTRL R
function for that job was primed by storing ARG4 or ARG5S, as appropriate,
(see step 9), in the Monitor's Foreground CTRL R or Background CTRL R

register.

Note that this has the effect of a pseudo-.SETUP call. If CTRL R is
now typed on the appropriate job control Teletype (the user's way of
posting a "done" flag), the corresponding CTRL R register in the Moni-
tor acts like an API channel register. The Teletype handler raises

to the designated API priority level and then performs a JMS to this
subroutine. The subroutine must -be entered at API level zero, one,
two, or three. Prior to entering this subroutine, the Teletype handler
will clear the relevant Monitor CTRL R register to disable CTRL R

until another not-ready condition is established.

DZM CTRLR

Clear the handler's not-ready-condition-in-progress flag.

Test for device ready or not. If ready, go to step 16.

JMS NRMSG
The device still isn't ready. Reestablish the not-ready condition
and then exit by going to step 17.

Execute the IOT(s) that were deferred for this device, i.e., start
I/0 up again.

DBR
JMP * F.CTLR

Debreak and return to the Teletype handler. Note that the AC need
not be restored.

CTRLR §#
The "CTRL R in progress" flag must initially be cleared. It must
also be cleared in the STOPIO subroutine and in the .INIT code. For a

single-user handler, only one CTRLR register is needed.

7.9.2 L.INIT Consideration

WORD 36 of the I/0 handler is an identification code which is zero for most
handlers. Only if the code is -1 (777777)! will the Monitor allow .INIT to be
processed by a busy handler.

In the latter case, the handler must test its CTRLR flag (and then clear it) to
see if a not-ready condition existed for the device. If $0, the handler must

also clear the appropriate CTRL R register in the Monitor as follows:

LAC CTRLR
SNA
JMP OVER
LAC (.SCOM+67
TAD WORD11 /8 = FGD; 1 = BGD.
DAC TEMP /-.SCOM+67 = FGD; .SCOM+7¢ = BGD.
LAC* TEMP /Address of FGD or BGD CTRL char. table.
TAD (4
DAC TEMP
DZM* TEMP /@ Monitor's B or F CTRL R.
OVER DZM CTRLR /¥ Handler's own CTRL R.

Note that .SCOM+67 points to the Foreground control character table in the Tele-
type handler and that .SCOM+7@ points to the Background control character table.
WORD 11 in the handler contains zero if Foreground and one if Background. The
CTRL R register for each job is the fifth entry in each of these tables.

7.10 THE .INIT FUNCTION

In order to satisfy the requirements of the disk and DECtape handlers, the FIOPS
routine in the FORTRAN Object Time System operates somewhat differently in
Background/Foreground from the way it does in the Keyboard Monitor. 1In Background/
Foreground, FIOPS will perform a .INIT to a given .DAT slot only the first time

the slot is referenced, not each time the direction of data transfer changes.

The .INIT-only-once change is necessary because DTA. and DKA. can perform non-
file-oriented I/C, that is, treat the DECtape or Disk as if it were MAGtape.
.INIT always resets the device to file-oriented mode and is, thereforer avoided.

This change has ramifications for user-written device handlers, even if they are
strictly file-oriented handlers. .INIT can no longer be relied upon to signal
a change in the direction of data transfer. However, if .CLOSE is followed by
.SEEK, .ENTER, .FSTAT, .DLETE, .RENAM, .CLEAR, or REWIND (.MTAPE @), the trans-
fer direction is obvious anyway. Therefore, .INIT need only be used to tie the

'This is a necessary but not sufficient condition.

7-27

handler to its interrupt lines (.SETUP) and to abort I/O (after CTRL P, for
example).

7.11 SEQUENTIAL MULTI-USER DEVICE HANDLER

7.11.1 Transition from Single-user Handler

To accomplish the transition from a single-user device handler to a sequential

multi-user device handler, the following procedures must be adhered to:

1.

The device handler must be the "A" version; that is, LPA., MTA., etc.,
as the Background/Foreground Monitor System will only allow "A" versions
to be connected to both jobs simultaneously. Also, this shareability
must be specified to the B/F System Generator.

The SWAP subroutine (pointed to by WORDZ of the handler) must set
both busy registers (WORD1 and WORD2) to prevent the Foreground job
from forcing itself in before the Background job has completed its
operation. This is in addition to and prior to its normal duties as
outlined in 7.5.1.

The handler's identification code, WORD36, should not be -1. If it
were, it would be possible for one job to abort the I/0O operation of
the other.

There must be two unique STOP I/O subroutines, one for Foreground
(pointed to by WORD34) and one for Background (pointed to by WORD35).
Before executing the STOP I/0 procedures, both subroutines must first
determine if the I/O belongs to their respective jobs. This is done
by testing WORD1ll, (@=Foreground I/0O, l=Background I/O). They should
do nothing if the other job is in control.

In step 8 of the STOPIO routine, section 7.8, check the CTRLR flag
before clearing it. If the flag was set, call the I/O BUSY routine
in the Monitor (as in steps 15, 16, 17 of section 7.6) in case some
level of the Foreground job is I/0 bound on this device.

Because the SWAP subroutine sets both busy registers (WORDLl and WORD2) ,
the CLEAR BUSY FLAG routine that sets up to have the flags cleared
during protected exit from the device handler (refer to steps 13 and

14 in section 7.6) must always setup to have both flags cleared.

The STOP I/O subroutines should also clear both busy registers.

7.11.2 Peculiarities

It is understood that in multi-user handlers, such as DTA., the Foreground has

a built-in priority. Therefore, it comes as no surprise that the Foreground job
can completely prevent the Background from performing DECtape I/O. For
sequential multi-user handlers, one might assume that Foreground and Background

I/0 operations would compete on an equal basis. This may not be the case.

It is possible, given the right set of circumstances, that Foreground never gets
a chance to manipulate the device, that Background never gets a chance to mani-
pulate the device, or that one program (not necessarily Foreground) does more

actual I/0 to the device than an identical program running as the other job.

This situation should only become a problem when one or both jobs attempt con-
tinuous operation of the device. The "right set of circumstances" depends upon
where processing is in the Monitor's CAL handler when the current I/0O operation

for the device completes (interrupts).

7.11.3 Use of the .WAITR Function

When a sequential multi-user device handler is being used by the Background job,

the Foreground job will become I/O bound if it attempts to use the same handler.

The .WAITR monitor function affords both the Foreground job and the Background
job a means of determining that the handler is available before requesting I/O
from and to it. This feature is only useful when the job has other things which

can be performed while it is waiting for the handler to free up.

The use of .WAITR in this manner is foolproof when executed in the Foreground.
This is not so in the Background because the Foreground job can regain control
after the Background .WAITR has been executed and before the ensuing Background
I/0 command.

7.12 EXTERNAL I/O BUFFERS

Device handlers which might require a great deal of buffer space may do well
to use the system's capability of setting aside I/0 buffers at load time. Only
multi-user or sequential multi-user handlers (the shareable "A" versions) may

utilize external buffers.

Buffer sizes required by each shareable handler are specified during system
generation. Buffers are set aside at load time by the Loaders either as a result
of a $FILES Keyboard command or, in lieu thereof, one per .DAT slot which

references the multi-user device handler.

7-29

Typically, the handler would test to see if it had a buffer for a given .DAT

slot before performing the I/O request. If not, it would call the GETBUF routine
in the Monitor to scan the buffer table, .BFTAB, for a usable free buffer. At
the end of the I/0O sequence, usually .CLOSE, the handler must relinquish the
buffer so that other handlers might use it.

7.12.1 Calling for a Buffer

At run time, the handler may obtain an external I/0 buffer as follows:

1. LAC* (.SCOM+56
DAC TEMP /Beware -- TEMP probably cannot be
/used by both the CAL and interrupt
/levels.
The address of the GETBUF subroutine in the Resident Monitor is in
.SCOM+56.
2. LAC* (.SCOM+1@2
ISA

Raise to API level zero or one. Reread section 7.4 if the handler
is already at level zero or one.

3. JMs* TEMP
argument

Call GETBUF with one argument:

Bit # = @# if Foreground
Bit @ = 1 if Background
Bits 1-5 = @

Bits 6-17 = Buffer size.

GETBUF will search .BFTAB for a free Foreground or Background buffer,
as specified, of a size equal to (or greater than, if necessary)

that indicated in the argument.

4. If a buffer is found, the address of the first word of the .BFTAB
entry is returned in the AC and the entry is flagged busy by the
GETBUF routine. If no buffer can be found, zero is returned in the
AC and GETBUF initiates a terminal error (.ERR @55) for the

job.

5. DBK
Debreak -- Reread section 7.4 if this is an API level one or zero

device.

7.12.2 Releasing a Buffer

The format of .BFTAB is given in Appendix IV. When the handler wishes to
relinquish a buffer, it does so by clearing the busy bit of the entry in .BFTAB.
Note that the address of the first word of this entry in .BFTAB is returned in
the AC by the Monitor subroutine GETBUF.

7.13 PDP-9/PDP-15 COMPATIBILITY

7.13.1 Page Mode

The I/O handler description in this manual was written for page-mode operation,
which is valid only on the PDP-15.

Two coding requirements which are necessary for PDP-9 hardware may be omitted
for handlers that are to run in page-mode-only systems: (1) raising to API
level 3 and (2) double XCT .+1 following DBR (see 7.13.2). For page mode opera-
tion on a PDP-15, add a DBA (Disable Bank Addressing = Enter Page Mode) instruc-

tion as the first instruction in the handler's interrupt service routine.

7.13.2 Bank Mode

Since handlers that operate in the bank mode system must be able to run on both
a PDP-9 and a PDP-15 (assuming that the device exists on both machines), the

following PDP-9 requirements must be followed:

1. Do not insert a DBA instruction at the beginning of the interrupt
service routine.

2. If a device on the PDP-9 is connected to the PIC (Program Interrupt
Control) but not to API, then the interrupt service routine must raise
to AP1 level 3 before executing the ION instruction. On the PDP-15,
this raise to level 3 is done automatically by the hardware. Formerly,
when API hardware was optional on PDP-9 Backaground/Foreground, an "in
interrupt service routine" flag (.SCOM 35) was needed to signal that
state after the ION instruction was executed.

3. To allow API synchronization following a DBR instruction on a PDP-9,
the following exit sequence must be used:

DBR
XCT .+1
XCT .+1
JMp*

7.14 DEVICE HANDLER LISTING

The following pages contain the assembly listing of a paper tape reader handler

(PRA.) for PDP-15 Background/Foreground operation.

403r3’

300W 9NISS3¥AQY 39vd NI A9M3YILN3 S3ivy3ido ‘s /
301A¥3S LdNYY3LNT ONY YD A8 /

NOWWOO NI SH3,SI93y¥ gNY 300D 3SN NVa ‘v /

y MONOUHL @ S3QO0W VIVO S3TQNVH ‘¢ /
(SS3JIV-WOONYYaNON NVIW 0L N3INVL /
SIWIL3WO0S WY3l v) Q3INITHO-3T14=NON ‘2 /
Y3TONYM (378v3¥YHS=NON) ¥3SN=-379NIs 'T /

/

/

18214514310V HVYHD

*ONNOYOIN0I/ANNQYNIYE 6=d0d NI NOILVH3HO/

H04 NOISHAANOD 0L 3IVGYNIWY AMVYINOILY¥Vd LON/

$1 3INO SIHL LVHL SI SNOISH3A OML 3S3aWl N33Mi38/
IONIYISLI0 HOPYW 3IML "AVNNVYW MOLINOW @b/cT=-dQd ONV/
2€/6%=d0d 3ML 40 4 NOILD3S NI ¥3TUNVM 301A3Q vV 40/
NOILdI¥OS3Q 3HL OL WHOJINOD OL (SVYN4IS 'W ONvV/

A3N3T "0 A8 N3LiJum) ‘vdd WOM4 (Nv3L0¥d 'D AB)/
034dYQY SI Ll °'SW3ILSAS ONNO¥I3INO04/ONNOOXIVE 3IHL/
HiIM 0317ddNS °‘vdd 40 NOISH¥3IA 3IML L1ON SI SIHL/

'W3LSAS HOLINOW GNNOYO3HOI/ONNOYINIYE ¢T-dQd/
3HL H04 ¥3TQNYH 301A30 0/1 ¥3QV3I¥ 3dVL ¥3dvd/

'SSYW ‘QHYNAYW 'NOILYYHOdN¥O0D AIN3WdINO3 VIIOIQ ‘BL6T LHOIY¥ALOD/

‘vdd =- 310

‘vid

800

‘vd

AONMITINOMN OO

39vd

7-32

‘dIns 0L low/

lNg ¥3LSI93¥ V 0L T UOv 0L SI LIN3LINI/
3ML N3HM 2SI 40 QV3ILSNI 03SH SI xql/
'SUIALSII3Y NOILVYOINAWWOD W3ILSAS/
S+¥0LINOW 3HL d0 SS3¥OQV 3Svg/

*13s Lon/

SI 8 L18 41 G3¥ON9I SI 3NIT 3HL/

ONY fQ3N¥ON9ST SI 3INIY 34Vl v 40 £ 118/
'300W SIHL NI *QYOM AYVYNIG Llg=8T 3INO/
WY0d Ol H344Ng ¥30v38 3IHL OLNI W3IHL/
378WISSY ONV SYILIVHVHO 1]8-9 3IIHHL/
O0v3Y¥ N3HL ONY 9V14 ¥3gV3I¥ HV3IN0/
'300W AdVNIS NI y3gy3y 13373S/
'¥344N8 ¥30v3y 3IML OLN] (Q314ILSPr/
LHOTY) d3L10VHVKHO Jl8-g 3INO QV3Iy/

N3HL ONY 9Vv74 d3gv3y 3IWl ¥v3127/

*300W JIY3IWNNVYHAIY NI ¥3Qv3y 10371357
'OVI4 ¥3QY3y 3IML ¥v31D aOav/

QV 3Wl OLINI ¥3434n8 ¥30VY3IY¥ QVIN/

*413S S1 9V94 y3uvay 41 dIxs/

1J3r3e

2S1=x0l

¢01=2W008"

vv100L=88Y

vZ2To0L=vSY

211p@Ll=484y
TeTegal=4sH

'vid ==

<

Reaavy

geI202

vvTogL

vetlegzl

A1)
12120¢L

820

‘ved

7-33

©1S3N03Y 3IWIL VY

¥3INIOd 321S H344NE HO M=

Ss3HaQY H¥3ddnNg 3ININ

300w vivg

LNNOD ALIN¥Vd ~ SSIHAQAY Y3 ONV # LIND
ANNOD LI HLE = #i07s Lva'
(Q98=%709482) vD 3ISOHM

NOILONN4 0L oWl

LY
93
at
1A
£7
27
13
2T

am/
aM/
amM/
oM/
am/
am/s
aM/
am/

193r3’

S¥31S193y vivO

XX
XX
XX
XX
XX
XX
XX
XX

40 ON3/

JMyld
dHBTyd
WQyid
d3yvd
1084d

SY3LS193Y4 VYLIVQ dN¥JvEs3A1T 40 LdvisS/

H3IINIOd NYNL3Y

¥ag 40 40 HO Nol

'62d0d WOY4 391LMS3A OQ3SNNN NV S] SIH
(¥37ONVYH VD AB L3S) NOI

¥43Ls193y 35070 Qod

¥3LS193y 3S070 Q94

¥34S193Y¥ ASNne Q98

¥31SI934¥ Asng8 d94

ANILNOY¥EBNS dVMS 0L SWM

Fr

O~

|BANM TN

*08WAS V8019 T AINO

aM/
aM/

/
oM/
am/
aM/
aM/
GM/
aM/

d¥MSHd

*vyd

IAVH AVW ¥3TONVH vV == 310N/

‘vdd 18p719°

*NOIIN3ANOD ¥3TONVH 0947098 0L 9ONIQ¥ODJIV J3dnLDN¥LS 3yv/
HOIHM SQYOM V100 (f LSHI4 3HL NIVINOD 39Vd LX3IN 3HL CNV SIHL/

‘vud

AL CCI

< <<

radada<adad<a

QvRovL
gvoovvl
gveavL
pvoeyL
ByasyvL
Breavl
gvaevL
aveave

evauvvL
evoeve

AT AN
WoLNTY
eeeaoe
voRaRY
deodoe
LEC2DT

829

oo e oo o @ o0

s}

rxY xox

x

L1200
91202
61290
yTCde
$Tu0d
21282

(7202

YQA0de

Gdedd
2202

aedo
Z¢c
L7 ge

EI
R 2 S

‘vud

7-34

'H3TONYH VD ol NNNL3N/ dVMSHd edkl
'$ 3A37 0L T ¥0 ¢ 13A3Y wWouds %8a
'Nolv g+'vid 10X

” dV¥MSyd

'378Y1 HOLV4SIQ NOILONAY 3HL NI AMINI/
3LV1dd0yddY 3ML LY ¥3TONVH 3ML 0L/
T0ULNOD INIAIO 0L HCOIMd LgNrM ¥3TONYH/
0/1 sIHL 40 @ CHOM VYIA ¥3ITANYH v3/
3HL A8 Q3Y¥3UIN3I SI 3INILNOMENS SIHL/

T ¥0 @ 13A37 Idv =~ 3NILNON¥BNS dVYMS == 37514°

T 80 @ 73A37 Idv == 3INILNOY¥ENS dVYMS ==

@ = QI ¥3IONYH - 9¢ QM/ ¢
0/1 098 d04S - ¢§ gM/ d0)SYyd
0/1 Q94 dOLS = pg aM/ d01S¥d
'6=d0d WO¥4 3914S3A Q3SNNN NY SI SIHL /
(Y3TONVH VD A8 13S) g£+W0OS* Q3AVS - £¢ gM/ 2
HOHYI~NYYL'aET - 2¢ QgM/ 9434d dhi
NOILISOd Y¥ILOVYHVHD 110SV (/g == 39V /
=¥0LS 378YIMVA VvV SY N¥3.1S1934 SIHL /
S3SN 'VHd ‘HOLINOW 3HL A8 AT3IYILINI /
U3$S3D08d SI NOILONN4 SIHL 3ONIS /
HLIVM® *LIVM' 22T = T¢ gM/ 2 LGYld
HOHY3 = MAVIY''3LIYM'TT = gf QgM/ 9434d dWr
V34 ' 'aV3Y =0T - (2 gM/ J34¥d dnr Uv3yd
Q3YON9I=3dViW®a, = G2 M/ N9Idd dwWl N9IPyd
U340N91=35070'89 - g2 gM/ NOI¥d dnWh
H0HY¥3=¥V3N0'=g ~ pz gM/ 9434d dWr
YOUY3I=Y3LNI'=sp - g2 M/ 9434d dnWl
Q3¥ON9I=M33S'eg - 22 oM/ N9TY¥d dWr
0340N9I~-Y¥3d0°'=2 = T2 gM/ NOldd dwr
LINI'=2T - gg gM/ NINd gun

378V1 HOLYHSIO AVILONAL 40 lLyavis/

‘vidd ==

<X <@

oax o<

Lg0wpe9
1423914
SooooY
peoeon

802

ooeo0o
LART1]]
Yv9032

0ooveo
129029

poBRRY
129209
a92009
L16029
L1S209
129009
129029
Lreens
L1see9
Nv3dg9

822

xo oo

e d

fs Sl s i s) 2 Al « s s B3 4

cyeRo
Tv200
2yzd0
Lep@d

‘vyd

92209
EEN1P
ve720

£8008
290020

Tenad
ALY
L2¢d0
92¢00
42400
v2202
$2890
22200
lzwoe

17 5y

911
s33
2%}
£1T
A%
T1°%
2T1
627
CIRS
(2T
907
sl

39vd

7-35

123r3’
{ 3COW/ agowW veo3lnl/ ({H¥3Y4d
9 300W/ 30QW vo3l/ Ly3ud
g 3G0W/ 3gow v93711/ L4344
t 300w/ 300W dWnQ/ gSy
¢ 300W/ YHdY 39VW]/ v Sy
2 300W/ 119Sv Sdol/ vSd
1 300W/ AHYNIB 39VWI/ gey
@ 300W/ A¥VYNI8 Sdol1/ vSy 10Iyld

*$300W Viva V93171 3ILVIIAONID *'S3NAYA 3AIL1SOd 9NI3E ¢4 ONY 9 fg/
lVHL 340N 'S30OW YIVQ SNOTEYA 3HL HLIM QO3S Silol 40 378vi/
*3000 AINO=-30MO 40 ON3/

03SS3004d ¥3loVYHVHI/ N9IHd dwl YVHOHd
JY Q3AvS/ LINyd ov0 Jvyld
H3LNNO0D XI3HI Allyvd/ Z2+' ov1 iNJyd

*INILNOYENS SAQHd N04 39YHOLS AYVYOdW3d/
(112SY Sd01) WNSXIIWI/

WSXJ¥dagSAQud
INT¥ld WSMJ¥d

Y3INI0d QuOM VLIVO 43lvl/ 45y d8gyd
ANNOD Y¥VHI = dNi3s‘/ 1Jgdd aSwWr 1004d
ANNCD q¥0M viva/ i08¥d OVQ 12lQyud

PANTANOY dNL3S' SI¥OLINOW J0 Ss3H¥AQV¥/ ¢G+W0IS') «0v1 LINYd

'S318VINYA VYLVQ 340LS oL NO ¥3lvl/

Q3gN 3yv S¥3ILSIO3Y 3SIHL '3ION3IH 13000 AINO=3ONO SI ONIMOTIT04 3IHL/
*uN9Idd dWPMu Ol L3S ONI38 LIN¥d No Q3sve SI ‘LINI® 3nO LSv3l Lv/
"ATININDASNOD 'ONV 3NOQ N338 9NIAVH d4N13S* Nu 4S3L 34l =- 3ILON/

(@T)2¢=32]S ¥344N8 QYVANVYLS/ 91+'vdd »0VQ
v9) 2v7 N1yd

'ONISSIJ0Hd LdaNYYILNTD SLI Q3QNTINOD SYH ‘'vyd TILINA *V¥d4 O[NI 03MOTV/
38 17IM v ON '3M043u3HL *NOJLIONOD ASNE Vv 3Q14N3A0 LONNVD/

LINT® *Te LON SI (9¢ QuOM) 3000 'Q°l ¥3ITONVH 3HL 30N1S == 310N/
NOILONNSG y32 == LINI'/

13A37 14V == OINISS300¥d VD == 37IM°

b 13A37 1dv -~ INISS3IO0Hd VD =--

roocadc oo

A COX X

LT9020
LT92eQ
(192w
vvT20L
p2TuRL
pETIRL
pvTedL
veT120¢L

L15089
(24122
veuree
160200
297402
T0T20¢L
Z2iepet
cteovo
vi9aee

9120290
g£L9002

800

X oo owx

X oo

rooox

x o

vyl
£9:246
<9:92
1934
1§ AGU
Ler s
v4 0 3d
ﬁﬂ..&&&

veZ32
§$440¢
267202

164829
vaydid
L2 D
Sv109

CpIBY

vvi00
Y v 700

‘vud

Gagt
vgT
£aT
2al
Tgt
ZeT
6p1T
CEAS
(pT
v T
Sv1T
veT
I
XA
TpT
2¢7
6¢71
8¢e7T
LgT
9¢7%
cet
(23
£eT
2gt
1¢7
2¢7T
62T
[FAS
L27
927
1A
et
et
cet
127
gev
617
6§17
LTT

3gvd

7-36

123r3’

'S300W 39YWI ¥O0 110SV Sc0l ¥04/ UMXNY¥d SKM

¥30V3H ¥344NE 3INIT LsVd X3aNI/ OMXNYd Skl
'¥3ILNIOd YIMV VUVU X3ONI1/

AON 00 =- S300W 4WNO ONY A¥YNIg Sdol/ TYXNYd dkl

VNS

*S3A0W A¥YNIB SdOI ONV dwNQ ¥O0d ¥I3WD/ £) ONY

300w viva/ Wadydld 2v1

‘Ylvd QMOM YAQY3IH 3HL LSVd Q3A0W 38 1SnW HIINIOd VLIVE 3HL '3404343HL/
f3dV) 3KWL NO ¥3AV3IH ON SI 3¥3HL I13Sv sS40l ¥04 ONV S300w 29VWI ¥04/
'¥3LINIO0d4 ViVO 3ML 39NVHD LiNOU 05 "3dVi 3IHL WOH4 NI Qv3ae 38 L1SHI4/
LSNW Y1Vd QHOM ¥30Vv3W 3HL (@ 300A) 3COW AMYNIB Sd0I ¥pd "¥3ANI0d/
YivQ0 3HL 3IONVHO LiNOQ OS *¥30v3H ON S1 343HL (p 300+) 330k dWNQ ¥04/
'gS3¥AAY ¥3AV3M ¥344n8 3NIT 3ML OL ONILINIQd MON SI ¥3INIpg viVO 3HL/

ANNOD VUIVD ¥V3I0/ 101384 W23

viva/s dgayd ava

H3IQV3IH ¥344hg 3INIV/ 448144 ov1
ANNOD Q¥OM AdyNIg Sdol/ IH401¥d ova
T- #v1

*NOILVY¥3d0 U294 ONV (198 Hl08/

Ly08Y QINOM LVHL LINS3Y LHIIW LdNuy3AND VI3 NV ¢3SImd3HLIO0/
*$1401 S3nSSI LI 340438 3NIT LdNHYILNT SL1T O0p O3LD3NNQOD/

S1 ¥3TONVHM 3HL LVYHL 3¥NSNI 0l 3IQVW SYM LS3L 9NIC303dd 3IHL/

*3ANOC ¥3A3N SyM/ © p9434d dnl

d¥S

LINI® N3INL 'unN9l¥d duWlu 0L/ NYIPHd CVS
Q3IONVHI N338 LiNSVH LlIN¥dG 41/ LIngd ov? G3yyd

NolILiONNd VD == ¥lv3y' 40 Qviy'/

v 13A37 1d¥ =-=- ONISS300dd VD ==

ax o

xro <o

< @o@oo

o <<o

29aaz’t
29snat

2129
beeTyeL
SL9226
viegeze

9vZepT
G272
&linl
£992p2
INYNYNA

a192¢9
QZeTYL
9d¢nya
st 2uze

A

a @

o oo

& @ o x

o

[ed

£21a4
¢41d4d

2122
23199
LL 333
9Le28

SLedd
LCedd
“Grdn

©9234

687
8871
L87
9871
gl
121
£87
2gt
Tg?
287
6L
8L7

LT
VA
LT
A
2Ll

oLy

7-37

lo3r3’ , . 922

g2e

'Y30Y3Y¥eN=34VL1=-0N/ RO3¥d gkl 4 Tov@09 ¥ ££T32 vee

v2S V 0020pL ¥ L2120@ £22

SNY3W QHOM sNivLS/ 2@a%) anv 4 (L9208 8 $2120 2ze

S40l 3HL NI 1 = g f18/ S¥01 zinowd V vTIS00L ¥ 4921208 T2

2z2

*3000 3071AM3s 1dNY¥3LNI IHL NI Q3NDIND/ 632

087V S1 WNIQ3W=30=ON3 '03.374W00 SI NOILONNA V2 3HL GNY ¥3IT1vo/ 812
3HL OL Q3N¥NL3¥ ST NOILVWNO4NI AGY3Y LQN 3Hd '¥3A3IMOH 'WNICIW-40~-ON3/ (12
NO '03437dW00 LON SI NOILONNS VD 3HL any ASNA SNIVW3IY y3ITONVH 3HL/ 912
'AQY3y LON 03403030 SI 301A30 v N3MM 'YO03HD AQV3Y LON V 3NIT SI/ 612
MOT28 U1S3L WNIQIW=40-0N3 3HL ‘3I¥3H 38 GINOM INIOd %J93HO Q3IUN3WWOD3Y/ v12
3HL 'AQY3Y¥ LON 380038 NV LVHL 32IA3Q 40 3dAl 3HL 3u3m SIML 41/ £12
2e

N80Id¥d ova Y b990v0 ¥ v2120 112

‘ANNCD 31AB € AN¥VNIg Sdol/ €= MY £801yd V SLLLLL ¥ £2T30 z212

'OMOM YiVO Ax3N ¥V3ITD/ d80¥d #W20 9801ud Y BS0P09T & 22162 602

8g2

‘Y5 Qv3Y 3HL HLIM NOWWOD NI 3009/ Lz

S« 3Y3M ¥3IINI AVW 3INILNOY 30IAY3S LdNuy3IINI AYVYNI8 SdOI 3HL/ 522

qge

¢ ¥0 ¥ 73A37 Idv - LIX3 NOWWOD =- 3751.° bae
¢ ¥0 v 13A37 Idv == LIX3 NOWWOD =- 820 ‘vad 6 39vd

'OVId uviva A¥VYNIE SdOI $S30X3u ¥Y3I13/ S$30x¥d wza 4 249397 & 12120 £p2
HILIMS ¥Ou¥3 ALIYvd ¥vV3IT0/ 434vd W20 4 212267 ¥ $2Ta¢ 2ue

YALNNOD L3S 118 Mig II12SY ¥v34ld/ 1084d WZG 4 2T2¢9T ¥ L1102 Tge
WNSYI3HD ¥v3I0/ WSMJY¥d WZQ ¥ 162297 ¥ 9TT2C 222

'INNOD ¥ILOVHVHI ¥V310/ L2J¥d wWz0 4 LP22YT & 5T1902 667

*¥3INNOD/ : {gY¥1ld avC 4 T€02by & Y1122 861

¥3LOVUVHO (rG/ G- my1 V §LLLLL ¥ £TT22 L6T

*300W VYiVva Tv93711/ L¥34d dkl Y (T9209 ¥ 21132 967

Vs V 20Tovl ¥ TT122 131

L0lyd ava 4 £6Tab0 ¥ 21130 (T3S

X X V RY@AVL N LATH €67

T+* ovQ ¥ (27290 ¥ S3T2v 267

lol¥ld v avl 4 9L92b8 ¥ $7T3¢ Tet

300w viva/ WOddld IOV THXNYG 4 12222 & ¥7Td¢ 261

v 13A37 IdV == 9NISS300¥d VD =- 87 ‘vyd 8 39Vd

7-38

‘YOLINOW 3HL NI wilXI¥2w g37vas
INIOd v OL N¥NL3Y 97IM SIHL/
'SLIX3 VD ¥04 "MIINIOC N¥NLIN/
*(LIX3 LdNYy3INT 41) waly

40 (4Ix3 vy 41) NOI/

'T ¥0 2 13A39 woud/

'0v 3y04iS3¥/

'lol y3avaus

‘401 3ML SsvdAg '(@=NON) L3S/

81 9Vd 0/1 d0.4S 3HL 41 yO/
(B SI SAVMAY ¥3HI0 3HL) @ sl/
9VI4 ASNE 3LVI¥dONddY 3IHL 41/

'SIWEQ 3HL dINS OL 97404d L3S3N/

'438 SYM T AINO == s¥3LS§193y ASn8/

Q08 ONV (094 3HL HL08 ¥v3To/

'03Yv37D 3@ Ol 38V SOV JI wdONw 0L 13S/
‘Y3IHILVASIO SI¥OLINOW 3H4 3lvAILgV/

Ol LdNYH3UINI ¥ T3A37 v Lls3Ino3y/

*LIX3 VD v SI SIHL ‘*oON/

'LIX3 LdNYYILINI NV SI SIHL *S3A/

t480 vV NIVLINOD 9 QguOm s30Q/
(T 80 g 1dv)/

(+°VYd adhl

9**v¥d LIX
%8qa

Jv¥ld ov1
X X

SdlSHd @Qvs
ge' dil
V2 VNS
c*'vdd Qvl
T+'vdd ov1
97404d 2va
' dwr) ova
2*°'vi4d WZQ
T*'vyd W20
£+' dWl
vSI
P0R2v2%) 2V
g+’ durl
dMS

¥8Q0) Qvs
9+*°'v¥¥4d IV
vSI

Q3M0TTY I3A37 LS3IHIIM OL 3SIvd/ 2@E+W0IS') w0V

101I4d

97404d

d0NYd

‘(2 _I3A37 Idv) 13A47 Ldny¥3ILND ONv/
(v T3A37 1dY) 73A37 vD ¥04 LIX3 U3123108d NOWWDD/

2 ¥0 ¥ T3A37 IdV =- LIX3 NOWWOD ==

ac

CXIOrra<arradaecrrxx e o <o oo

La2o29

90voaty
p3€€0¢L
£60202
ProapL
BL93b¢g
vsT209
go2TeL
2ezZove
Teeace
Tv10v0
e2L(002
2ZoevT
T020v1
pvT209
v266aL
2oLeec
Tv1209
ge2TvL
T2L2bs
922922
v2850L
geLpec

820

a

LGTBY

96122
66122
vcT2¢
£6T40
ce19¢
16109
06138
(yT00
9v100
Sp102
bvT20
£p102
cpT0Y
TvT20
Lvb130
L2120
YV
91324
veTRS
£0129
28132
T¢120

‘VYad

ZT

6gd
g
£g8
2gé
Tge
gge
6pe
Spe
Lye
9p e
ape
tve
£pe
epe
Ty
gve
6¢é
gee
Lee
9¢e
sge
1434
g£ee
2ge
Tee
gge
6ee
gze
L22

39Vvd

7-39

123r3*

_'0v3y Lisvyl 3IyON9l ‘oN/ N9TYd dnl

N0/ VNS

2+'vYd Ovi

*10373S LSV 30NIS d0LS ¥CJ ¥O3WD/ T+'vyy4d oV

‘ldNuY¥ALINT 3ML 3WON9II ‘0s 41 'LI Q3¥v3T0 3NILNOY O/1 401S 3HL N3HL/
‘(@ 38 ISNW 3NO ¥3HLO 3HL) 0¥3Z S! 9VI4 ASNE 3LVIHdOnNddVY 3IHL 41/

‘HOLIMS d04S ¥V3TD/ Sdisyd W20

*dN000 17IM SLIINY¥3ILNT/

YAWL¥NA ON LVHL 3NILNOY 0/! d0LS 3HL TYN9IS OL 9Y14 0/ 40LS 3HL/
¥V3T0 '13S SVM LI 3SVD NI '03dd0LS SVH 0/1 ‘3¥04383HL *NOTLYH3dO 0/1/
SIHL 804 ¥30V3y¥ 3H. WOU4 03103dX3 LdN¥YILNI TYNI4 3IHL SI SIHL/

*(4T=2Y SL18) yILOVHYHMO 3HL 3AVS/ YVHIY4d 2vJ
'9VId ¥3OV3y 3HL ¥Y3YD gNv v/

3Nl OLNI y¥344n8 ¥3qQv3Iy Qvad/ ayy

‘9 QyoM NI/ 9**vyd ova

NOILONYLISNI ¥8Q V 3M0.S/ ¥8Q) 2v1

*(¥3LSI9AY LIX3 NOWWOD 3HL) ¢ QHOM/ L+'VY¥d 2Jv0

NI OdedWed/d* 3HL 3AvS/ INT¥ld 2v7

'OV 3HL 3AavS/ Jvdld 2ova@

'ONISS3¥QAY 300w 39vd 37avyn3/ v8a

©

*SS3NAQY NuNL3YedWe8/de1/ INTyld

'(@s W3LSI93y 3H0D) @T T3INNVHI 1dY NI dN 13S NOILONYLSNI SWM 3IHL A8/
2 3A37 1dV LV Q3Y3IN3 == 3NILNOHENS 30I1AN3S LdN¥¥IINT ¥3IAVIY/

¢ T3A37 1dY == 391Ay¥3S LdNYYILNI =-- 37)1L1°
2 T3A37 1dVY == 3DI1AY3IS LdN¥YILIN] ==

o aa

o

R e s i o s S - ¢

Lrsee9
AucivL
AAAE2Y
122022

alL9evt

v<eovo

cligaL
902042
TaL0g2
LOR32ve
gotege
£Geevo
e9LLaL

peeeay

x x Xx

oo

e 4

TOXrXxYX oo

3LV
v LT3
WAV
/1129

~

(&Y

Ay

L9T4e
99T4d¢
S9T2¢
v9122
£9127
29122
19129

v91%d

11

8¢

Lge
9ge
cge
vge
fye
2ge
g2
rge
6.2
t¢2
Le2
9¢2
gLe
vee
£L2
2Le
T2
2L
692
892
L92
992
692
9
£9¢
292
192
92
662
8ge
Lg2
962

39vd

7-40

H3LIVHTHD LxaN/

ANILN0¥BNS 3437gw00 GyOoM/
'¥344N8 viva NI G¥OM/
AYVNIE 30 ¥3LOVyVYHI 3401S/

I
a

d

103r3*

LN0¥d dhr
MXNHd Shi

HO0dd «0V0 dWldd

'300W dWNQ HO I12SY 39vWl H¥O A¥VYNIE 3Iyw] SSI00H4/

110SY 39vwl/
113Sv sdolv/
AYVNIB 39VWl/
A¥VYNlg sdolv/

'300W viva Ol 9NIQy0DdJv 301AN¥3S/

g

dON

VOIY¥d dil

HWIYd dwl
8014d dWlM TSIQgyd

XX

YHOYd 2V¥Y1

2+' 0VQ

TSI0¥d dWl) (vl

NQY¥ld OV

*LdNY¥3INT 3IHL SS3J30u8d ONV 3J0W VLVG 3Ml NC HMOLVdASIQ/

'ONIUVY3Y dOLS ONV ¥344n8 vivOe N1 Wod L3S/

(TegSy¥0l) ¢3dvl 40 4ANO y3gvady
'OV 3HL CLNI SNLVLS S¥01 Qv3y/

W03yd dWl
V#S
2027) ANV
SuCl

PANTANOY LIx3 NOWWOD 3ML NI L0! Ag C3LVILINI/

38 171M 0/1 3¥OW *LON JI

*3.37dW0D ST VD 0/1 3md

'01907 3NOQ 0/1 3HL CL 09 17Ir 10¥LINQD/

'0S ONIOQ ¥3l4v 41 °*LldNy¥3LND 3HL $S300¥d/

2 13A37 14V

JOIAH3S 1dNYEILINI

rroroar e o <a

< @ <@

6212¢9
c96221

0vse292

A2y L
(28289
£12209
912229
vyl
pcanze
92y
PaLLYE
pTevid

Tvv22

25229L
LL94DS
vicdazL

@ oo

ctedd
11232
21288
(223
32294
€223y
v2ede
2208
eeeas

iw

~t
LS
O

= i\
Ta O 0 &
Tl Ox

FONAN
o~ o~
&

21

L8
91¢
qTe
P
£T¢
21¢
T1¢e
2T¢
6u¢
g§0¢8
(28
92¢
ses
rue
£0¢8
g8
1743
XS
662
LY
Lee
962
G628
ved
g6
26d
Tel
e2ee
652

39Vd

7-41

YINIT LHOHS ON ‘OM¥Ld OLNI DdM/
"INIT LHOHS 'OM < DdM/

'2dM 3HL 3¥OLS ATIYVYHO0dW3IL/

*(IM) LNNOD QMOM 3ML NVHL Ss37 sl/
(dM) INNOD wWlvd QMOM 3HL 41 X¥23HO/
'3L374W00 QMOM ViVvQ AN3¥YNI/

'AINNOD @ QXOM ¥3QY3H X3anI/

‘CHOM V.ivVO INIH¥ND NO 9NINNOM 1LSy
*ANNOD AMVNIB Sd01 3lA8 € Xx3aONI/
'MO3HO ALllNvd V 30404 04/

Y3LIOVHVHDI SSVd LNE 3AVS=HOMNI AllNyyd/
W40/

Ta4T L1686 41 QqQo/

ALIY¥Vd H3LOVHYHO MO3WI/

2 H0 T ¥IHLIO OL W3ILOVNVHD SIWL QqQv/

1437 SY3LOVHVHD H3IyV3 LJIHS/
‘41 3MONII 'S3A/

¢VIVO SS3IX3 SIHL slv/

g%2 NI ¥3lovyvmo/

(3YON9SI) 3WVYHI ANYNIE=NON/
(LINVEd AMYNIB) T=g 118/

TINN 41 1IX3 ONV ALINYd 31NdW0d/

2 13A37

ANILNOY 3iA8

123r3’

68014d dwl
YNS{VdS
IJMuld Qvl
JHOTIY¥d 2va
9LL) GNYV
vy

yHMS

d80dd «0V7
pd014d diM
Jr0lyd 2SI
2iN0¥d dwr
Nd0Iy¥d 2SI
40944 x(Ql
d434vd xcl
NS

¥vy

TiNJY¥d oV7
ddd¥dd «0VG
avd

ars-

Rre!

Aia

HYHJI¥4 MOX
1724wy
duQ¥d #0v7
SH0IYdd dhl
VZS

$30xy4d 2V

YVHO¥d 2V3
2LiNd¥d dhr
108V E;INS

d¥d¥d Skr

118=9 1X3N/

g0 ud

*AUYNIA S401 $S32044d/

IdY == 30IAH¥3S LdNHYILN] ==

r.r.<m(r<tr<<<<nrn:<<(rlx¢zn:a:o:cr<<u:|xa:<m

o <o

2728209
02€Tv¢
912ups
£992v0
S2L22¢%
21200
2€22v¢L
gezzee
$92209
£997v ¢
621329
»99%p ¢
AT PE 27
eT22v¢
22v2vL
geauve
699222
262292
BIRevL
aTecye
grTaeve
2TeevL
LAY/ X4
22ZvvL
ganeee
cUeuZ9
gnezveL
2L9pze

PS22v2
621229
AT E XY
IASYA'AY

827

oo xa

€G6eda
vQocid
£6edy
111470
153447
46229
Lyeid
9v22s
cvede
voeld
£9222
12 X472

Y
gl

NNNNN QLM M Mg

(VRGN
[SVII

v v
T o

Ty

(S VALV o VR Q VI o VI U A VIS VIR VI AN N s
[V N

O 2 S O G & O
W

[N

[QURL OIS SR TA WV AN

R N
LR RaUReY}
[SUN QN eUNEV
SRV NS
(S NS BN

AR

£T

9¢¢
11
141y
£gf
2gt
Teg
sgg
6p¢
gy
(e
9p¢
T2
142
£ve
X2
Tpe
Zyg
6¢¢
8gg
Lg€
9ee
Sge
beg
gee
2sg
Igg
geg
¢2e
ge¢¢
Leg
92¢
T4
bee
£ze
2z¢
Teg

61¢
81¢

39Yd

7-42

Y3078 A¥VYNIS 40 aN3/
*ANNOD QHOM ViVQ SS32X3 X3ONI1/
ANNOD 3iAg £ X3gnI/

OMEdd OLNI 24M/

'INNCD 3lAg £ L3S3¥/
'9vVId wVIVQ SS3IX3. L3S/

¢vivd ss30x3/

QyOM vivVg Lx3N/

ANNODJ OyOM X3anI/

LNNOD Q¥OM VLIVO X3anl/
Y3INIOd QdOM VLiVO x3ONI1/

WNSXJ3HJ ol agv/

YIvy3llg v s/

g3sn SI NOILONMLISNI SIHLI=Q¥OM Vivd/
VivQ SS30X3 dIXMS 0L JHOlyd dn L3S/

'3NIT LHOMS=SlIg ALIQIIVA VYivO L3S/
'OM¥Lld NI SAviS oM/

2 T3A37 IdV == 331AH3S LdNYYILIND ==

103r3*

33014d dkf
{801Yd dk'
JH0lYd 2SI
2inoyd dwr
N80lyd 2SI

S80lydd

"l¥0Hs SI ¥3ddng/
-ANTT 838N 3HL N3HM vIVO A¥YNIE $S30X3 SSVdHA8 0 3I¥3m 3IW0D/

p80IYd dWl
IMYld JvQ
Vi

JM0lud avld
T« My
L8014d dil
$40Xx¥d 2vaQ
39014d dh'l
331 YWS
oM0lyd ov7
9801¥4d dhM
IM¥ld 2SI
131a¥d X0l
dgayd x01
WSYO¥d4 0V3
WSYOY¥d avl

d804d #0V7
2M01yd ava
Vikd

JHOlYd Qv
2= My1
SAQYd Swh
29) 2av1

68014d

80 1¥d

o oo

roocrrrrarcaxxadar <owo

@@« X X @

1434"1°F]
£cTa09
£990v v
62ten9
v992bp

p92209
9120v0
Tegeve
£990¢p¢
LLLLet
£2TU29
2L90vd
2svag9
T3Teee
£99¢g¢ge
22Tag9
9Taavd
Ghiovy
2G22bv
16agav0
Te2eve

gaeee
£992v 02
Taezve
£992p¢
9LLLLL
989221
9L

820

oroooxaoa

xx orxa

s 8

12331
¢Igde
Lned0
9¢edd
Q2839

Y2823
£2£00
ag2e
12¢90
COELY
LLede
9L2dY
cLeIe
ve22e
£L23¢
¢LeDd
Teeze
,‘.NNJ&
L9
5924
$9cdd

veery
£920y
29228
19224
L9 A
(G2 s
9¢2l¢

‘vyd

i

Tet
P6f
6g¢g
88 ¢
L8t
98¢
Gge
et
£8¢
2gt
151
28t
6L8
g¢e
LLs
9L¢
qLg
b
£LE
cLE
TLS
2Le
69%
698
L9¢
99¢
co¢
v9g
£9¢
29¢
T9¢
729¢
66¢
Bef
Lg®

39Vd

7-43

403r3°*

YVdidd adhi
pe' gl
iNJud 2SI
¥3INNOD Llg I/ TANIY¥d XGl
q2Ss
MY Y
1InN/ 2LNO¥d dhl
YNS
YYHIN¥d OV)
TINJHd W20
ANDJ¥d 2VO
(g=) ¥3INNOJ Alldvd/ 2T mvy7
2 Yvdid

=NO~N SI ¥340VYVYHD 41 Nynp3y)
Yydydd Swr

NN\

130N3NB3S 9NITIva/

/

PTANOMd NI (LT L18) All¥vd QQO ¥0 N3A3 345 SI 1INS3N/

ANYOIJINOIS 3HL 'SLIB T 40 ¥38WAN 3HL LNNOD 'ION 41 *(0y3Z) 170N/

SI YVMOYd YALOVHVHD L1628 3ML 41 21N0yd 0L LIX3 -« ¥vdyd 3N1Ln0uENS/

2 13A37 IdV == 3D0I1AN3S LldNYYILND ==

A oradaora<gx@ oo

ATNIA)
T2¢229
242ab¢
G992p b
QZvTvL
B2y L
621229
2in2IvtL
»S2292
G992+ 71
2G2v2
@LLeLLL
duedde

40]

x rredxXx @ o TrTxr Yo

(5
IS

~

(&5
[N e

cu ¢

[N

L BEQ UL GRS S T of
[4V AV AURQUNQVIRAN g
MY N N M
LRI

~ <
—
~

CG v Cu & N
XN

')
—
~
©
o

‘vid

Gt

STY
bTY
eIy
2Th
Tty
GTy
sgd
2z
LY
Sub
cgy
Yoy
L2
2ad
Tav
200
66¢%
g6¢g
L6g
96¢
c6¢
b6t
g6t
26t

39Vd

7-44

133r3’

¥IVd ONOM VY.IVO 4SVT Qvd/ dvdyd

ANTT NENL3Y 39YINHVY 3TONIS 3HONSI/ TYXNYd
1)

12944

Y3LOVHVHI I13Sy LXaN/ 2inoyd

LUNINd

4/6 N1 ¥344N8 3ANIT 0LND »Ovd/ L9Xdyd
24noud

JyONS9l=(in0oaNy) 3009 313730/ (L)
slle ¢ ine 1y 4080/ LLT)

S300WLY Ly3IANQD/ LUN3Yd

ALT¥Yd N3A3 LON/ d34Vd

N3A3 38 O0TNOMS=LINNOD ALldvd/ TINOYd
100¥d

INNOD Ol QQv 'Tallg Hig/ 10844d

TINN 41 LIX3 QNVY ALINYd 3LNdWOD/ Yvdyd
0334 WYO04 3MON9I/ 2inoyd

$T)

8yl vOILlN¥3A 3HON9IL/ 2inoud

£T)

Q334 3N1T 34ONSl/ 24Nn0oyd

2T)

L)

4YHOYd

S3A/ - £3svyd

vivQ0 §S39x3 41 338/ IMYld

SWr
dhf
ovs
v
dWl
YhS
Skl
Swr
dwfl
avs
oNv
St
Xl
28
Hvy
avi
Xal
Xal
928
SWr
dWr
avs
dWl
avs
dWrh
avs
anNv
v
dhf
VWS
ov1

vOlyd

. 119Sv S401 SS300¥d/

2 13A37 1dV == 301Ay3S LdNHYILIND ==

rarrrrro@rrrr4a@rrr€« <O rrrrocxcadaX e oo

BLs%0T
vZTeeo
gTeLevs
(vdnee
(X AY1"1)
B2T2vL
Gveat
2eseat
(Y AY]/L
LBL2ZYS
L2L20S
c2vzat
eTa0bp
POPIVL
gcoevL
699g0¢
(Y2t
2lozvy
gevive
gigaet
G2Tn@9
rAYAX2
621009
127412
62Tp09
grLaYvS
{oLegs
rS2202
SCv229
gerave
91g@p2e

800

[a s

x

9 iy
LA RN
£9¢ ¢
c9¢d¢
19624
L9 B
LGE T
96824
TN
vGeeae
£6¢29
26824
T6e ¢
LGE2a
(bedi
Svede
CHpeIe
PHe292
CHee
2bed2
Tyedo
cbridd
L8220
9¢¢29
Seed0
AN NN
£8¢2¢
4491
Te¢9¢
Lee2d
(2208

‘vyd

9%

nay
X34
gvd
Lyd
9 b
Shd
1424
124
2y b
1524
v b
6¢d
144
LSV

seb
1434
g£eb
ey
teb
z2ey
62y
82y
Ley
9zy
144
bev
£y
X44
1144
ey
61¥
R4
L1y
9Td

390vd

7-45

"dN17 L¥OHS 3LVOIONI 04 L3S 'i3s N338/
AQVIYTY LiNIAVH Silg ALIQITVA Viva 41/

NENL3y 39vIy¥vD 340438 3u0W 3sva NI/
YiVd QMOM LSV NI NunL3y 39v18¥vD Ind/

Y3L0VHVYHI LSV 04 SUNIOd/

ANIT ON3 0L dIvS/
'Q3¥0N91 38 04
NI an3/

119Svy sdolv

SLI8 ALIOITVA L35 ¥0uNd ALl¥vd/
S3A/

oN/

H0uY¥3 Allyvd/

[10SY SdCI NON 3wngsSY = S3A/
ALIT¥Vd 234D 110SVY sd0] = Ny

8 118 3AVH S.8VHD v @g1<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>